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Preface of the editor of the German edition

Geometry (from the Greek word for ‘measuring the Earth’, the modern sci-
entific discipline of which is now called geodesy), branch of science which
deals with regular patterns, shapes and solids, was one of the first human
attempts, after counting, to concern themselves with the emerging science
mathematics. This is evident from the spirals on megalithic graves, incisions
in stone and patterns on clay fragments.

In this book, you will learn how geometry has developed over the millennia
from these earliest origins in distant times and much more. Geometry is
an indispensible aid for building and surveying, and became an axiomatic
science of plane and spatial shapes in Ancient Greece. It served as a basis
for astronomical observations and calculations, for Islamic decorative art, and
the building of medieval Christian cathedrals. Furthermore we will look at the
discovery of perspective and its application in Renaissance art, at the disputes
regarding the Euclidean parallel postulate, the discovery of non-Euclidean
geometries in the 19th century, and, finally, the theory of infinite-dimensional
spaces and contemporary computer graphics.

This book is edited by the project group “History of Mathematics” at the
University of Hildesheim as part of the series Vom Zählstein zum Computer
(From Pebbles to Computers). Other titles in this series published by Springer
Publishing Heidelberg are: 4000 Jahre Algebra (4000 Years of Algebra) [Al-
ten et al. 2003], and 6000 Jahre Mathematik (6000 Years of Mathematics)
[Wußing, in two volumes 2008/09]. To the series ‘From Pebbles to Computers’
two video films have been produced (University of Hildesheim): ‘Mathematik
in der Geschichte – Altertum’ (Mathematics in History – Antiquity) [We-
semüller-Kock/Gottwald 1998] and ‘Mathematik in der Geschichte – Mittel-
alter ’ (Mathematics in History – Middle Ages) [Wesemüller-Kock/Gottwald
2004]. Following multiple reprints and the second edition in 2004 we now
present the third edition of 5000 Jahre Geometrie including new research
results on circular ditches in the Stone Age and the Nebra Sky Disk, as well
as many illustrations in colour.

In this book, we will reflect on the development of geometry as part of our
cultural history over the course of five millennia. Both authors have succeeded
in portraying the origins and growth of this branch of mathematics, which is
often thought of as dry and jejune, in a tremendously lively manner. They un-
cover the origins and impulses for the development of geometric notions and
methods, and present how they are related to historical events and personal
fates. Moreover, they describe the applications of geometrical knowledge and
methods in other areas and the interdependencies that resulted from them.
Finally, they emphasize their importance for other disciplines.

At the heart of this book series is portraying the history of mathematics as
an integral part of the history of mankind, particularly as a fundamental part
of our cultural heritage. Both authors have done justice to this task in an
impeccable manner. They have depicted the genesis of geometry and its in-
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terlacing with cultural developments in other areas, such as literature, music,
architecture, visual arts and religion, by a standard far higher than usual in
mathematical-historical presentations. They also describe the implications of
geometrical findings and methods for other areas. As such, the authors also
deal far more extensively than usual with the development of geometry in
other cultures, mainly in the ancient oriental cultures, in Islamic countries,
as well as in India, China, Japan and the old American cultures. Tables at
the beginning of each chapter give an overview of important political and
cultural events of each cultural area and era dealt with. Tables at the end
summarise the main geometrical contents of each chapter in note form.

Moreover, the authors compare views of ancient and medieval mathemati-
cians with modern mathematical findings and link those to contemporary
mathematics and related sciences, for example, references to computer sci-
ences regarding the description of Euclid’s “algorithmic accomplishment”.
Furthermore, they highlight the specifications of geometrical examinations of
different eras and cultural areas and the changes in content, methods and
approaches geometry has faced as a proto-physics within three-dimensional
or even infinite-dimensional spaces. They discuss the relationship of geome-
try with other branches of mathematics, for instance with algebra, analysis,
and stochastics. Refreshing asides with biographical highlights and references
to unexpected relations, as well as text excerpts in the appendix, bring this
book to life.

Chapters 1 through 4, with the exception of sub-chapter 2.3 (Euclid), were
written by Dr. Christoph J. Scriba, professor emeritus for the history of the
natural sciences in the former Institute for History of Natural Sciences, Math-
ematics and Engineering at the University of Hamburg. Euclid’s accomplish-
ments and the development of geometry in modern times from Chapters 5
through 8 were described by Dr. Peter Schreiber, professor for geometry and
the foundations of mathematics at the University of Greifswald.

We are also grateful to the authors for numerous illustrations and the texts
for the appendixes. The figures that have been added to support geometrical
theorems that are not referenced were drawn by the authors themselves.
They also thought of the summarising problems for every sub-chapter at
the end of each chapter (cf. Introduction). They often differ from ordinary
tasks in regard to type and size and also vary in level of difficulty. Thus,
solving them requires very different background knowledge, as well as the
use of secondary literature at times. Hence, to solve some of the problems
of Chapters 1 through 4, you will mainly need knowledge gained in junior
high school, while other problems will require highschool knowledge, whereas
some problems to Chapters 5 through 8 demand insight into notions and
methods taught at university. This is due to the nature of the subject, since
mathematics has grown more and more complex and difficult over the course
of the centuries and understanding modern mathematics usually assumes
knowledge of the mathematics of past eras. Therefore, you will occasionally
find hints to solutions within the text and also the literature. However, the
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solutions themselves have not been included in the appendix to avoid the
following: first, we do not want you to look up the solutions too quickly;
second, the solutions most often are not the result of calculations, but require
the description of approaches for solving the problem at hand or retracing
more or less extensive considerations.

All this has been done intentionally in order to attract as large a readership
as possible. Cursory readers or those that are in a hurry should not simply
skip the problems, since they include many interesting historical remarks and
additions to the text, which is why reading the problems carefully will benefit
everyone. The extensive bibliography and index of names invite the reader
to study further.

I thank both authors sincerely for the multifaceted and intensive work in
particular their dedication to setting new accents with this book integrating
geometry in cultural history and composing many interesting problems.

I further express my gratitude to my colleagues Dauben, Flachsmeyer, Fol-
kerts, Grattan-Guinness, Kahle, Lüneburg, Nádeńık und Wußing for their
scholarly advice and critical reviewing and thank H. Mainzer for advice on
historical details and Lars-Detlef Hedde (University of Greifswald), Thomas
Speck and Sylvia Voß (University of Hildesheim) for converting the manu-
scripts, illustrations and figures into printable electronic formats.

Moreover, I wish to thank media educator Anne Gottwald, who helped us
clear the licensing for printing the illustrations, and each publisher for au-
thorising the printing rights.

I also remain grateful to the director of the Centre for Distance Learning and
Extension Studies (ZFW), Prof. Dr. Erwin Wagner, the present and former
directors of the Institute for Mathematics and Applied Computer Science,
Prof. Dr. Förster and Prof. Dr. Kreutzkamp, the deans Prof. Dr. Schwarzer
and Prof. Dr. Ambrosi and the administration of the University of Hildesheim.

Last but not least, I wish to thank the members of the project group “History
of Mathematics” of ZFW: the historian of mathematics Dr. Alireza Djafari
Naini and the media expert and sociologist Heiko Wesemüller-Kock, for the
great and intensive teamwork while planning and preparing this book. I ex-
press my gratitude to Springer Publishing Heidelberg for taking my requests
into account and the excellent design of this book.

I hope that this volume will inspire many readers to study the history of
mathematics more intensively, and to learn about the background of the ori-
gins and incredibly exciting development of geometrical notions and methods.
Hopefully, this will result in the reader viewing geometry not just as a math-
ematical discipline or as an indispensible aid for architects, robot engineers
and scientists, but also as a valuable part of our culture that we encounter
everywhere and that makes the world in which we live so much richer.

On behalf of the project group

Hildesheim, August 2009 Heinz-Wilhelm Alten.
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Preface of the editor of the English edition

This is the first volume of our series ‘From Pebbles to Computers’ that ap-
pears in English. It is a translation of the 3rd edition (2010) of 5000 Jahre
Geometrie, again updated, supplemented and enriched with many illustra-
tions by the author P. Schreiber and the editors H.-W. Alten, K.-H. Schlote,
and H. Wesemüller-Kock.

Meanwhile the book 4000 Jahre Algebra appeared 2014 in its 2nd edition, in
2011 3000 Jahre Analysis was published by Springer Berlin Heidelberg, and
we are now preparing its translation 3000 Years of Analysis to be published
by Springer Basel. Some other volumes of this series will also be published
in English. Besides the film ‘Mathematik in der Geschichte – Mittelalter’ has
now been produced in English as History of Mathematics – Middle Ages.

All of us have been affected by the death of our author Prof. Dr. C. J. Scriba
in 2013. We are grateful for his support over many years and glad to be able
to present Chapters 1 through 4 of this book with the supplements he wrote
before his death as part of his scientific legacy. We shall miss his advice in
future.

The translation of this book was done by Jana Schreiber, the daughter of the
author P. Schreiber. We are very grateful to her because she has done this
with great efficiency and commitment in a short time.

After the corrections and supplements of the editor, language copy editing
by the publisher, and proof reading by the author and editor we now present
this volume.

I thank the members of the project group for their intensive teamwork: A.
K. Gottwald for clearing the licenses (now world-wide) for printing the illus-
trations, H. Wesemüller-Kock for his involvement inserting new illustrations
with his comments and the index of illustrations, proof reading and preparing
the graphic design and layout for the whole book, the historian of mathemat-
ics Dr. K.-H. Schlote for many comments and for transferring the index of
names and the subject index, Prof. Dr. K.-J. Förster and Prof. Dr. E. Wagner
for providing financial support.

We are grateful for the help of our secretaries B. David and R. Falso, the
students J. Schönborn and N. Westphal for preparing the text, illustrations
and indexes ready for printing.

Last, but not least we thank Springer Publishing Basel AG and its editor
Dr.A. Mätzener for her kindly support and the excellent layouting of this
book.

I hope that this book will please, inspire and benefit many readers all over
the world.

On behalf of the project group

Hildesheim, August 2014 Heinz-Wilhelm Alten.
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Introduction

It is certainly not easy to define the content and nature of mathematics
briefly. Formal explanations, which are possible nowadays due to the general
notion of structure and other logical notions, neglect not only the historical
development, but also the instinct and experience of a mathematician, who
knows what is “substantial” and “interesting” and what is not. However,
within the given understanding of mathematics, it is even more complicated
to explain what geometry is and what, in turn, is part of its history. The
dominant views on the subject of geometry, as well as its position and mean-
ing within mathematics, have not only changed repeatedly over the course
of time. As mathematics became increasingly sophisticated, mathematicians
also took opposing positions while trying to find answers to these questions.
We will look at all these aspects in this book.

Even though geometry was mainly considered as one application of a primar-
ily arithmeticaly oriented mathematics amongst many others in the earliest
cultures (such as in ancient Egypt, Mesopotamia, India, China, etc.), it be-
came the core and main interest of mathematics in Ancient Greece. It was
there and then that vague notions and procedures justified only by trial and
error were transformed into a theory with definitions, axioms, theorems and
proofs. The heritage stemming from this period was so powerful for over
two thousand years that mathematicians were usually called geometricians.
Furthermore, the axiomatic-deductive method of cognition assurance, which
was based on the Greeks’ methods of dealing with geometric matters, was
referred to as “mos geometricus”, and the implementation in other sciences,
including other realms of mathematics, “more geometrico”, in other words
‘in geometrical fashion’, became a rarely achieved scientific and theoretical
program. This agenda influenced, for example, Newton in the 17th century, as
he re-founded mechanics, Galois at the beginning of the 19th century, when
criticising the contemporary situation of algebra, and Hilbert, while encour-
aging the scientific community to axiomatise further branches of physics in
his famous speech in 1900.

As a result of the European Renaissance, geometry was flooded by an extraor-
dinary wave of inspiration and applications in the fields of astronomy, geodesy,
cartography, mechanics, optics, architecture, visual arts and, hence, leading
to a wealth of new challenges. The efforts made to solve these new challenges
essentially led to the development of the four pillars of the “modern” math-
ematics in the 17th century. These pillars are: the concept of function, co-
ordinate-systems, differential calculus and integral calculus. Geometry gave
birth to these pillars, and then was superseded and lost its leading position to
them in a very subtle manner. Formulae and calculus took over increasingly
in the 18th century and pushed visualisation and logical argumentation aside.

The 19th century led to an enormous growth in the size and meaning of ge-
ometry. Projective, descriptive and n-dimensional geometry, vector calculus,
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non-Euclidean geometry, intrinsic differential geometry, topology, and also
numerous “buds” in other areas that would only come to blossom in the 20th

century, such as geometrical probability and measure theory, graph theory
and general polyhedral theory, began developing at first without any recognis-
able relationship to one another. This “explosion” of geometrical disciplines,
which led to the century being named the “geometrical century” according
to mathematicians, was accompanied by the disintegration of the then domi-
nant understanding of geometry as a science of “true physical space”. We will
look at how the different approaches for dealing intellectually with the new
situation in geometry crucially coined the whole view of mathematics that
was dominant until the invention of the computer and its rising popularity.
However, we must also examine how geometry lost its central position within
mathematics over the course of the first half of the 20th century. This has
been a development that still negatively influences the organisation of math-
ematics in secondary and further education nowadays, despite the fact that
geometry has achieved a higher than ever level in regards to its theoretical
width and depth as well as its practical significance.

At the end of the 20th century, geometry was, on the one hand, a huge pool
of facts on the “ordinary two and three dimensional Euclidean space” and
an even bigger pool of unanswered questions on those. On the other hand,
geometry was not really thought of as being part of mathematics in the ordi-
nary sense nowadays, but rather considered a way of thinking, which is more
or less useful and necessarily found in almost every realm of mathematics,
depending on the scientist’s personal approach. Thus, there is a geometrical
theory of numbers, a geometrical theory of functions, algebraic geometry and
geometrical stochastics. There are geometrical methods within variational
calculus, discrete and combinatorial geometry, as well as computer geome-
try. The latter is not to be confused with computational geometry, which
basically refers to a “theory of complexity of geometrical algorithms”.

The dichotomy of geometry suggested here has established itself very well
in the meantime. The three dimensional Euclidean space remains the ap-
propriate model for all “ordinary” problems, even though it is only a very
rough approximation of reality according to the findings of physics. Within
the Euclidean plane we create “pictures” of everything we want to “look at”
and understand. Their meanings are associated with the dominance of seeing
amongst the human senses. Inside the n-dimensional Euclidean space, math-
ematics embeds functions, relations and, almost all other examined objects
by using coordinates, for example. Furthermore, geometry predominates in
all those areas where a number of possibly very abstract objects are viewed
as a “space” by using in broader sense terms taken from geometry, such as
topology, metrics, dimension and linearity, with the intention of inspiring our
imagination and to use analogies. To what extent one may want to practise
this is – as already pointed out – a matter of style. It is an intellectual tech-
nique, without which modern mathematics in the form described here could
not have developed.
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To what degree the latter can really be considered geometry and to what ex-
tent the applied branches of geometry belong to mathematics or are already
part of engineering is debatable. In the following, we will also defend the con-
cept that there is an “unconscious” unprofessional mathematics that coexists
with professional, deductive mathematics. The former manifests itself in the
intuitive use of notions, shapes, methods, knowledge and know-how, which
is difficult to put into words, but exists as a material product of engineering,
handcrafts and the arts. Hence, this book will also serve as a reflection on
the historical development of geometry, which will include many, often un-
usual aspects. We intend to contribute to the clarification of the position and
meaning of geometry within mathematics and to raise interest in it.

The critical reader, that we would like to have, may pose the question how a
history of geometry fits in a series called ‘From Pebbles to Computers ’. What
computers have to do with geometry is investigated in detail in Chapter 8.5.
With regards to ‘pebbles’ (accounting tokens) we refer to the Pythagoreans,
who got some simple pre-numbertheoretical results from patterns of geomet-
rically ordered stones. Thus they could realize why ab is forever equal to ba
and why the distance between two square numbers n2 and (n+1)2 is always
2n+ 1.

This book features problems added chapter by chapter, most of which are
not historical problems strictly speaking, but problems that result from the
history presented here. For instance, questions without answers when they
first occurred; questions that just simply did not come to mind, but were
possible; old problems that nowadays are much easier to solve given modern
methods; and suggestions that result from old problems. Most of the problems
are reduced to special cases, contain hints or are asked in a manner that will
require only a highschool or slightly more advanced mathematical background
to be solved. However, a few questions are more difficult and “open-ended”.
Here, the reader is invited to probe and explore.

We have avoided the use of first names and the inclusion of the dates births
and deaths within the main text apart from a few, well-reasoned exceptions.
As far as we could determine those data, they are available in the index of
names at the end of the book.

The pictures of the people at the beginning of each chapter are of different
styles. We cannot rely on authentic portraits from antiquity or the non-
European Middle Ages. (One reason being that people in Islamic countries
were often not portrayed due to religious reasons.) However, we must ac-
knowledge that later eras felt the necessity to make pictures of their most
important personalities. In this book, a “picture” can be an imagined por-
trait or a symbolic graphic representation. In this respect, stamps can also
serve as a cultural document of the history of science. Multiple books have
been devoted to this exact subject [Gjone 1996, Schaaf 1978, Schreiber, P.
1987, Wußing/Remane 1989]. For example, a picture of Euclid (not shown
here) was taken from a manuscript of Roman field surveyors (agrimensores).
Here, two things are striking. First, these agrimensores thought of Euclid, the
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master of the logical-axiomatic approach, as their forefather, and, second, the
picture has an almost oriental ambience. Considering the mix of peoples and
cultures in Alexandria at 300BC, this may appear more realistic than some
neo-classically influenced pseudo-antique art.

From the European Middle Ages onwards, portraits began to appear inten-
tionally more similar to the individual persons, as artists started relying on
themselves as models. For example, the portrait of Piero della Francesca is an
alleged self-portrait. It comes from his Fresco “Resurrection” (around 1465)
located in his hometown of Borgo Sansepolcro.

The picture of René Descartes presented here was painted by Frans Hals
shortly before the philosopher departed for Sweden. It is not only one of the
very few cases in which a genuinely famous painter portrayed a genuinely fa-
mous mathematician (a second example is the portrait of Felix Klein painted
by Max Liebermann), but multiple copies of this painting were subsequently
made in the 17th century reflecting varying facial expressions, which since
then partially even flipped horizontal have haunted encyclopaedias and the
science-historical literature as images of Descartes.

Peter Schreiber

Advice for the reader
Round brackets (...) contain additional insertions, translation of original titles
or information on illustrations or problems.

Square brackets [...] contain information on literature within the text, expla-
nations or references below illustrations.

Illustrations have been numbered according to sub-chapters, e.g. illustration
7.4.3 is the third illustration of Part 4 of Chapter 7.

In order for the reader to find related texts more easily, problems have been
summarised at the end of each chapter and been numbered according to
sub-chapters, e.g. problem 7.3.6 is the sixth problem of Part 3 of Chapter 7.

The problems are of different sizes and vary in level of difficulty. Problems or
partial problems, which the publisher believes to be especially challenging,
have been marked with an*. However, we would like to point out that such
a judgement is clearly subjective and depends on the reader’s individual
knowledge and skills.

The kind of quotations and the references follow the style of the author P.
Schreiber.
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6 1 The beginnings of geometrical representations and calculations

1.1 Primal Society

Long before writing was developed, mankind may have realised and system-
atically used geometrical structures. Nature offers the eye multiple curved
lines, and a blade of grass or a tree trunk can symbolise the thought of a
straight line as well as the idea of a circle (as a cross-section). When weav-
ing or braiding we generate simple two-dimensional patterns, which then are
purposely modified or also replicated as decoration on clay pots. There is evi-
dence that such purposely geometrically shaped ornaments existed already in
40 000BC. They can be so characteristic for such cultural societies that pre-
historians can reconstruct their migrations by digging up and analyzing clay
fragments. For instance, we can find in the Cretan culture patterns of folded
strips on Neolithic clay pots, or six congruent circles, aligned around a central
circle of the same size and touching each on two neighbouring circles. The
equilateral triangle, the square (with four right-angled corners) or also the
regular hexagon must have been noticed very early as special cases of plane
shapes, awakening playful interest as well as first theoretical considerations
(cf. e.g. [Kadeřávek 1992]).

Illus. 1.1.1 Geometrical ornaments on prehistoric ceramic

[Drawing by Hubert J. Pepper from “The Dawn of Civilization” edited by Stuart
Piggott, Thames and Hudson Ltd., London]
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Needs and activities of everyday life provided further inspiration: when con-
structing ditches, dams or houses, and land surveyingelementary geometrical
ratios were required. Men probably did not realise this at first until their
first logical considerations set in. Without three-dimensional solids (cuboids,
cubes, pyramids, columns) building was impossible. Observing the course of
the stars suggested a transition from the plane triangle to the spherical trian-
gle. It seemed to be obvious that the diagonal bisects the square or rectangle
as does the diameter the circle. All pre-Greek cultures have been aware of
such immediately insightful relations and applied them in practise. Only the
Greeks started probing and asking for reasons. They finally arrived at an
axiomatic construction of a geometric theory that has been passed down to
us by Euclid’s ‘Elements’. If we want to focus primarily on Egyptian and
Babylonian geometry in the following, we must emphasize that there is no
culture that does not reflect the versatile use of geometrical elements. Design-
ing jewellery is often heavily influenced by religious ideas: Pots devoted to
the gods would feature more abundant decorations, the altars would feature
special shapes and rituals (including dances) which would be conducted in a
special manner. We also must not neglect play as a source of engaging with
geometrical properties. This goes beyond just board games, which are almost
always sources for symmetrical patterns.

Illus. 1.1.2 Single course line concerning the cosmogonic myth of Jokwe in Angola:
The course of the sun (left), moon (right) and man (below) to god (above)

[Africa counts: Number and Pattern in African Culture, c©1973 by Claudia Za-
slavsky. Publ. by Lawrence Hill Books, an imprint of Chicago Review Press Inc.]
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Illus. 1.1.3 Goseck circle (near Halle, Germany), Nebra sky disk

(State Museum of Prehistory, Halle/Saale) [Photo: H. Wesemüller-Kock]

Ethnomathematics, which recently has turned towards the implicit mathe-
matical ideas of primitive people, yields some astonishing research results.
For example, there is an African tribe in Angola, whose people draw a shape
freehandedly from a single curve, which interlaces elaborately, when telling
their cosmogonic myth. This indicates thorough geometrical considerations,
if the desired outcome with its symmetrical properties is to be achieved (Il-
lus. 1.1.2). Since we have been aware of its changes, the starry sky has pro-
vided men with further inspiration to make basic geometrical observations.
The movements of the shadow of a tree trunk or towering stone, taken over
the course of a day or a year, form the basis for a simple sundial. Drawing
the course of the shadow lace systematically on the ground, the result is a
projection of the course of the sun on the sky in plane curves, which encour-
age us to think about it. In the 1990s, in Goseck (near Halle, Germany) a
set of concentric circular ditches, dating back to approx. 4800BC, was dis-
covered, archaeologically researched and reconstructed. It is the earliest sun
observatory currently known worldwide (Illus. 1.1.3). Circular ditches were
constructed in Central Europe close to settlements around 4800 to 4500BC.
Goseck’s circle features a dual ring of palisades with three gates, one each
facing north, southeast (sunrise on 21 December) and southwest (sunset on
21 December). The distance between the palisades grows wider around 21
June. This configuration allowed farmers of 7000 years ago to determine, by
means of position of the sun, the most propitious times to sow and harvest
over the course of the year. However, as findings indicate, circular ditches
were also used for cultural purposes. Only about 2000 years later the most
famous construction of the megalithic culture (3rd and 2nd millenniumBC),
Stonehenge near Salisbury in the south of England, was erected, which has
been interpreted as a sun observatory and a cult site [Gericke 1984], (Illus.
1.1.4).

Research of the last decades has shown that Stonehenge not only reflects use
of astronomical knowledge but also basic geometrical ratios, e.g. Pythagoras’s
theorem. However, we can only assume that the Pythagorean triangle with
side lengths 3, 4, 5 (for instance, it is possible to mark them with knots on a
rope of length 12) was used that early to generate right angles. Researchers
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Illus. 1.1.4 Stonehenge (South England): The biggest preserved stone monument
in Europe from the 3rd/2nd millennium (diameter of outer ring approx. 100m)

[Photo: H.-W. Alten]

argue that they can prove that the wood construction of Woodhenge (approx.
1800BC) was built by applying the Pythagorean triangle 12, 35, 37 (Illus.
1.1.5, 1.1.6).

For Stonehenge see [North 1996]; for a critique on the hypothesis of the right
angle view [Knorr 1985]. The bronze Nebra sky disk, found just recently
near Halle (Germany), comes from approx. the same time as Woodhenge.
Its constellation of the stars with the Pleiades is taken to be the first sky
representation [Schlosser 2004]. This disk has been the source of lively debates
in regards to theories of interpretation and meaning, whose final outcomes
are expected in the near future.

Illus. 1.1.5 Reconstruction of Woodhenge

[Ashbee, P.: The Bronze Age Round Barrow in Britain, Phoenix House Ltd, London
1960]
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Illus. 1.1.6 Ground plan of Woodhenge

[Thom, A.: Megalithic Sites in Britain, Oxford, Clarendon Press 1967, Fig. 6.16
p. 74, by permission of Oxford University Press]
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1.2 Old river valley civilisations

3000-2000 Town civilisations at the Indus
valley: Harappa and Mohenjo Daro

Script not yet deciphered

3000-2700 Union of kingdoms at Nile Hieroglyphs invented

3000-2700 Sumerian city states Cuneiform on clay tablets
developed

2700-2170 Old kingdom in Egypt Pyramids built

2700-2100 Akkadian invasion and reign Nomographs

2170-2040 First intermediate period of Egypt

2040-1794 Middle kingdom in Egypt Mathematical papyri

2100-1900 Several kingdoms in Mesopotamia

1900-1600 Old Babylonian kingdom

1728-1668 King Hammurabi in Babylon Tablets of law

1794-1550 Second intermediate period of
Egypt

1550-1070 New kingdom in Egypt Temple of Hatschepsut

1290-1224 Pharaoh Ramses II Amun temple in Karnak

1285 Battle of Kadesh Graves in Valley of the
Kings

1600-625 Hittites, Kassites, Assyrians rule
in Mesopotamia

Mathematical scripts in
cuneiform

1070-525 Late period in Egypt: Libyans,
Ethiopians, Assyrians rule at Nile

625-539 New Babylonian kingdom Astrology and astronomy
prosper

539 Cyrus the Great conquers Babylon

525 Persians conquer Egypt

332 Alexander the Great conquers
Egypt

323-30 Egypt reigned by Ptolemy Dynasty Egypt trade and cultural
centre of the world

Eratosthenes of Cyrene
director of Library, Euclid
and Apollonius in

47BC Library of Alexandria on fire Alexandria

30BC Egypt becomes Roman province Hero of Alexandria

391AD Library of Alexandria is destroyed Pappus and Proclus work
in Alexandria
Mathematician Hypatia
murdered by pagan
persecution

395 Egypt becomes part of the Eastern
Roman Empire (Byzantium) when
the Roman Empire is divided
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Illus. 1.2.1 Mohenjo-Daro. Exvacated ruins of one of the largest Settlements of
the ancient Indus Valley Civilisations [Photo: Saqib Qayyum, 2014]; stone statue
of a ‘Priest-King’, found in 1927AD in Mohenjo-Daro (National Museum, Karachi,

Pakistan) [Photo: Mamoon Mangal]

1.2.1 Indus civilisations

One of the oldest advanced civilisations of mankind is the settlement Mohenjo-
Daro at the Indus. The town belonging to the Harappa culture with approx.
40 000 inhabitants experienced its heyday around 2500BC. It was almost as
old as the Egyptian kingdom located along the Nile and Mesopotamia situ-
ated between the river valleys of Euphrates and Tigris. In all archaeological
sites of this culture, bricks feature the same side lengths with a ratio of 1:2:4,
streets follow the outline of a chessboard and weights were standardised.
Since excavations and interpretations of the findings of Mohenjo-Daro (lo-
cated in todays Pakistan) are still continuing, we are not able to reach final
conclusions on the role of geometry in this cultural area.

1.2.2 Egyptian mathematics

We have gained better insights into the geometrical knowledge of old Egypt
and Mesopotamia (also called Babylonia), since both civilisations have their
origins in the Neolithic age, and have left written sources behind, which have
been studied in great depth since the middle of the 19th century.

Hieroglyphs had been developed since approx. 2900BC in the strictly orga-
nized and centrally administrated Egypt. Next to the impressive construc-
tions of the pyramids, two mathematical papyri from the time of the middle
kingdom (11th to 13th dynasty) have served particularly well as sources for
our knowledge of Egyptian geometry. Their content reflects the level of knowl-
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Illus. 1.2.2 Egypt and Mesopotamia in ancient times

[Map: H. Wesemüller-Kock]

edge for approx. or shortly after 2000BC. The two most important ones are
the Rhind Mathematical Papyrus and the Moscow Mathematical Papyrus.
They constitute collections of problems with relevant approaches to solving
them. They seem to be texts, which have been written by teachers (writers)
at schools for officials to serve as teaching handbooks. The Rhind Mathemat-
ical Papyrus was originally 5.34m long, but only 33 cm wide. The Moscow
Mathematical Papyrus was 5.44m long, but only 8 cm wide. The latter con-
tains 25, the former 84 problems ordered according to factual aspects, which
sometimes feature visualising drawings. Thereby, geometrical solids are rep-
resented by their top or side views, since perspective drawing was unheard-of
in Egypt of that time. Sometimes the same drawing even demonstrates the
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most important aspect in a top view and individual parts in front views, e.g.
the representation of a rectangular pond with trees on the edge, the trees are
folded over to the left side (Illus. 1.2.3).

Relief designs and other wall pictures provide evidence that surveying the
ground of a temple was a holy act accompanied by many ceremonies, which
only the pharaoh or the highest priests were allowed to carry out. The holy
and mysterious aspects of the art of surveying and constructing were reflected
by conserved amulets, which have the shape of simple geometric instruments.
However, it does not seem likely that they drew the construction and trans-
ferred them to the building true to scale. Top and front views of columns and
ledges in original size have been found on suitable plane surfaces of stone.
Realisations of these can be found in surrounding buildings [Kadeřávek 1992].

Illus. 1.2.3 “Pond in a Garden” Change of perspective in the same picture, fresco
from the Tomb of Nebamun, Thebes, c. 1400BC

[British Museum London, MDID Collection]
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One of the simplest geometric problems is the calculation of area A of rect-
angles, trapeziums and triangles. The approximation formula for any quadri-
lateral with sides a, b, c, d is

A =
(a+ c)

2
· (b+ d)

2
. (1.2.1)

Hence, it entails dual averaging of the opposite sides. Interestingly, this rule
has also been applied to a triangle by zeroising the fourth side (better: omitted
because not existing, since the Egyptians did not know the concept of the
number zero). A peculiar instruction is applied when calculating area A of a
circle by means of a given diameter d: deduct 1/9 of its length and multiply
the result with itself and the outcome is

A = (
8

9
d)2. (1.2.2)

As usual, there is no reason for the astonishingly accurate method. However,
problem 48 of the Rhind Mathematical Papyrus contains a drawing showing
a square of side length 9, which is turned into an octagon by cutting off the
edges. This can be interpreted as a circle approximation. This shape inspired
Kurt Vogel in 1928 to interpret the Egyptian instruction (see Problem 1.2.1).

Apart from plane shapes, in Egyptian texts also volumes are calculated, when
structurally engineered problems or calculation of the holding capacity of
pots and basins are concerned. Hereby, the mention of a layer measure for
volumes is remarkable. Similarly, there is a stripe measure for calculating
areas. It suggests more of a calculation of the volume of a brick by multiply
inserting a layer, which equals its base and whose height constitutes the
unit measure, on top of one another (like when making plywood boards),
rather than calculating the volume of a brick by means of filling it with unit
cubes (since we use the latter method nowadays to multiply length, width
and height). All problems are calculated like recipes and only with concrete
numerical values. In these early times, men had neither a method to express
formulae nor abstract quantities.

When calculating volumes, they mainly dealt with cuboid-shaped or cylin-
drical containers, whereby the mentioned formula for circular areas was used.
The great pyramids suggest that the old Egyptians must have also known the
capacity formula for pyramids. However, there is no proof of this. (As proven
by Max Dehn in 1900, a strict derivation of this formula for any pyramid is
impossible without a limit process. See also Problem 1.2.2 for special cases.).

In contrast, Problem 14 of the Moscow Mathematical Papyrus contains the
correct instructions to calculate the volume of a square truncated pyramid
according to the correct formula

V =
h

3
· (a2 + ab+ b2) (1.2.3)
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Illus. 1.2.4 Regarding the calculation of the volume of a truncated square pyramid

[Design: H. Wesemüller-Kock]

(V = Volume, a = length of basis edge, b = length of top edge, h = height).
You can arrive at this formula, if the one for the volume of a pyramid is
known (see Problem 1.2.3). As pointed out, there is no evidence prominent
in the sparsely preserved Egyptian texts that this formula was used.

Sometimes the Egyptians approximated the square truncated pyramid by
calculating an average, i.e. they treated it like a cuboid, whose basis B was
chosen to be the arithmetic means of the basis area and top surface area:

B =
1

2
(a2 + b2). (1.2.4)

leads to

V =
h

2
(a2 + b2). (1.2.5)

Historian of mathematics Kurt Vogel pointed out that the Egyptians may
have realised their mistake and, as a result, have inserted a median area unit
a · b:

B =
(a2 + ab+ b2)

3
. (1.2.6)

This way, they discovered the correct calculation instruction from an incorrect
formula by means of unproven generalisation. (Beyond: If we view a pyramid
as a truncated pyramid with the top surface area b2 = 0, the formula for the
capacity of the truncated pyramid delivers the correct formula for the volume
of the pyramid.)
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Illus. 1.2.5 Cheops Pyramid of Giza, the tallest of all pyramids

[Photo: H.-W. Alten]

Illus. 1.2.6 Cheops Pyramid and Sphinx 1858AD.

The Sphinx deeply covered by sand [Photo: Francis Frith 1858]



18 1 The beginnings of geometrical representations and calculations

1.2.3 Babylonian mathematics

The sources of Babylonian mathematics are much richer than those of the
Egyptians, since Mesopotamian clay tablets were used to write on. They have
survived time much better than the perishable papyrus. Numerous texts date
back to the time of the old Babylonian kingdom (ca. 1900 – 1600BC), which
followed the time of the Sumerian city states (approx 3000 – 2700BC) and
the Akkadian reign (approx. 2700 – 2100BC). However, findings of the fol-
lowing centuries, in which Mesopotamia experienced a lot of political tur-
moil (Assyrian and Chaldean reign, rule of the Hittites), show that after
the initial development of mathematics hardly anything changed for a long
time. The next advancements occurred in the period of the Seleucids (the
last pre-Christian centuries), especially in astronomy, since just as in Egypt,
Mesopotamian mathematics was applied practically and developed within
this context: economy, trade, building industry and sky observations led to
mathematical considerations, which reached a higher peak than in Egypt. Re-
searchers were especially amazed when they found the Pythagorean Theorem
and a method for calculating square roots in texts in 1916AD.

Field plans, ground views of houses or technical constructions of dams or
channels are often attached to the appropriate calculation instructions and
enable us to gain initial insights into the practical nature of the problems. A
special terminology is partially missing. Instead they have borrowed words
from everyday language to refer to, for instance, a wall, a dam, a ditch etc.
Of course, when they wanted to calculate the area of regular polygons and,
consequently, scratched matching geometrical drawings into tablets, there
seems to be early theoretical interest, which exceeded immediate everyday
needs, just as in the so-called Babylonian algebra (see Illus. 1.2.9).

The frequent calculation of the diagonals of rectangles by means of the
Pythagorean Theorem is particularly striking, given that it was centuries be-
fore Pythagoras was even born. Thereby, Babylonian mathematicians chose
numeric values in a manner that would guarantee rational sides. However,
they were also able to calculate square roots by means of approximation
either through iteration or applying Hero’s formula,

√
n =

√
a2 ± r ≈ a± r

2a
, (1.2.7)

whereby n is broken down into the nearest square a2, either increased or re-
duced by rest r. One problem of this type, not just known from contemporary
school teaching, but also occurring in Chinese and Indian mathematics, as
well as the European Middle Ages, is manifested in a problem the Seleucids
wrote down about a bar leaning against a wall (BM 34568, British Museum
London). When first leaned against the wall perpendicularly it reaches an
unknown height. Then the foot of the bar is moved nine cubits from the wall,
which brings the top of the bar three cubits lower. The aim is to calculate bar
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Illus. 1.2.7 Ziggurat of Chogha Zambil. The gradual tower made of clay bricks
has the typical shape of a temple erected by the Sumerians, Babylonians, Assyrians
and Elamites. The five-stage Ziggurat of Chogha Zambil built around 1250BC is

the best preserved building of its kind

[Photo: H.-W. Alten]

Illus. 1.2.8 Elamite cuneiform text at the Ziggurat of Chogha Zambil

[Photo: H.-W. Alten]



20 1 The beginnings of geometrical representations and calculations

Illus. 1.2.9 Babylonian polygons. [Kurt Vogel: Vorgriechische Mathematik
(Pre-Greek Mathematics), part II. Illus. 22a-c, p.69: Mémoires de la Mission

Archéologique française en Iran, Tome XXXIV p. 12]

[Bruins and Rutten, published by Paul Geuthner, Paris 1961]

length (x). Hence, we must calculate quantity x by means of the following
formula for a Pythagorean triangle: x2 = (x− 3)2 + 92 (see Problem 1.2.4).

The widespread division problems also form a part of geometry. For instance,
if we want to divide any four-sided field with the sides a, b, c, d into two parts
of equal area by means of a transversal x, which runs from b to d, we follow
the instruction below:

x =

√
(a2 + c2)

2
. (1.2.8)

You could interpret this approximation as forming a median square of both
squares above sides a and c, whose side in this case is taken to be the quantity
of the transversal. However, as you can see, this method neglects the lengths of
sides b and d. Thus, this instruction can only be used to deliver a proximately
correct value for certain field forms (see Problem 1.2.5).

In order to calculate circles, Babylonians used a novel method, which was
completely different from those applied by the Egyptians. Area A of a circle
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was calculated by taking a detour and using its circumference c. Thus, we
were supposed to take a twelfth of the square of the circumference,

A =
c2

12
. (1.2.9)

Thereby, they accepted the triple diameter d as the circumference. If we

apply this, the result is A = 9d2

12
= 3r2. The question arises as to why

the Babylonians calculated the circular area in this peculiar manner, even
though it suggests using either the diameter or the radius. First, we need
to understand that two factors of proportionality occur when studying the
circle. On one hand, there is a fixed ratio between the two lengths of diameter
and circumference. On the other hand, there is a fixed ratio between the two
areas of diameter or radius square and circular area. Only Archimedes showed
that both factors are identical by stretching out the periphery of the circle
or, in other words, by strictly proving the ratio (see section 2.4.2)

A =
1

2
· c · r. (1.2.10)

Since c = 3d = 6r means that you can approximate the circumference by
means of the periphery of the inscribed hexagon, you might think that you
could calculate the circular area by viewing the circle sector as a triangle of
baseline c/6 and height r approximated from the internal angle by 60◦. As a

result, A = 6 · ( 12 · c
6
· r) = 6 · (1

2
· c
6
· c
6
) = c2

12
. (Another explanation would be

that they calculated the arithmetic average between the circumscribed square

d2 and the inscribed square d2

2 , hence 3d2

4 = 3r2, which then afterwards was
calculated back from the radius to the circumference.)

The Babylonians also dealt with circle segments cut off from the circle
through a chord c (cf. Illus. 1.2.5), whose height (the line segment, which
stands perpendicularly on the middle of the chord between chord and cir-
cumference), also called sagitta s, was calculated with diameter d and the
chord c according to the formula

s =
1

2
(d−

√
d2 − s2). (1.2.11)

The chord or segment base c was calculated according to

c =
√
d2 − (d− 2s)2. (1.2.12)

(see Problem 1.2.6).

We are dealing here with the first steps of chord geometry, which was fur-
ther developed by Hipparchus later on. Ptolemy placed this subject at the
beginning of his great astronomic textbook (called “Almagest” by the Arabs;
cf. section 2.5.4). However, a notion of angle in general had not yet been
developed in Babylonian mathematics; only the right angle occurs implicitly
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Illus. 1.2.10 Circle segment with chord c and sagitta s

in regards to rectangles and Pythagorean triangles. It was possible to mea-
sure the inclination of oblique planes, by which e.g. dams were bordered, by
a so-called rebound by one cubit. They stated on which height section the
rebound by one cubit occurred.

Within the realm of problems of spatial geometry occurring everyday the
calculation of cuboids, perpendicular prisms and cylinders did not constitute
any problems (if necessary, the base was calculated by means of the already
discussed approximation formula before multiplying it by height). Neither
in Egyptian sources nor in Mesopotamian texts the formula for the volume
of a pyramid has been found until now. The Babylonians used the same
approximation formula for the truncated pyramid, which we have already
encountered in Egypt (1.2.5). This certainly confirms that calculating the
average is one of the earliest and most widespread mathematical considera-
tions. Text BM 85194,28 could contain the same formula as we know it from
Greek sources, if factor (a − b)/3 was omitted, which in this case equals 1
due to the special numeric values of a and b.

V = [(
a+ b

2
)2 +

1

3
· (a− b

2

2

)] · h =
a2 + ab+ b2

3
· h. (1.2.13)

In one case the frustum of a cone is also calculated by forming the average
according to the formula

V =
1

2
(F1 + F2) · h. (1.2.14)

Repeatedly had been pointed out that Babylonian mathematicians used the
Pythagorean Theorem - or perhaps better said: the validity of a2 + b2 = c2

in rectangular triangles. An old Babylonian text published by Otto Neuge-
bauer and Abraham Sachs in 1945 was long taken to be particularly re-
markable. This text can be found in the Plimpton Collection of Columbia
University in New York and quickly became known as “Plimpton 322”
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Illus. 1.2.11 Plimpton 322; Old Mesopotamian text in cuneiform (Plimpton Li-
brary, Columbia University, New York). The text contains a list of right-angled
triangles with integer sides h, w and d. A few columns on the left have broken off.
The second and third column feature width w and the diagonal (hypotenuse) d in
integers. The last column specifies the ongoing row numbering. In rows 11 and 15

values w and d have a common factor; in all other instances they are coprime

[Neugebauer/Sachs 1945]. It seemed that this text contained a type of trigono-
metric table, fitting in the great number of tables which we have from
Mesopotamia.

Apart from the title, the text of the table (there may be a piece missing on
the left side) consists of five columns and fifteen rows, which indicate only
numbers (see illus. 1.2.7). The column on the right edge shows an ongoing
row numbering from 1 (indicated by a perpendicular wedge) to 15 (next to
the wedge for one, which can be repeated up to nine times, we also find the
‘Winkelhaken’ (‘hook’), the Babylonian symbol for ten, from row 10 onwards.)
The preceding column always reflects the same term, i.e. it indicates the
following row numbering. The analysis of the mostly multi-digit sexagesimal
numbers in the first three columns showed that the first column indicates the
ratios, which are ordered according to decreasing values:

d2

h2
=

(h2 + w2)

h2
= 1 +

w2

h2
. (1.2.15)

This led Neugebauer and Sachs to interpret the table as a systematically ar-
ranged sequence of 15 right-angled triangles. The one in the first row would
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be almost isosceles; the last one would have the approximate angles of 30◦

and 60◦. This interpretation led to the sensational conclusion that Plimp-
ton 322 was indeed a trigonometric table from the Babylonian era. Other
researchers attempted a number-theoretic interpretation based on reciprocal
number pairs. In both cases, we would be dealing with a highly abstract
text, which until then had not been demonstrable in Mesopotamian mathe-
matics. Besides, our knowledge of the Babylonian angle concept contradicts
a trigonometric interpretation. Since the view had been accepted during the
last decades that such texts should not be analysed in isolation but under
consideration of the entire cultural environment, both interpretations were
doubted, especially the one by Eleanor Robson [Robson 2001]. The tablet
written in the middle of the 18th pre-Christian century comes from the town
of Larsa in present Iran and belongs to a collection of texts, which were cat-
egorized as accounting and bureaucracy. The header of the tablet and the
composition of the table make this evident. They remind us of other clay
tablets, on which writers composed exercises and collections of examples for
teaching purposes. In this case, we would be dealing with a collection of
problems on Pythagorean triples, for which in the second column preferably
simple numeric values were chosen, whose geometrical relation is yet unclear.
This interpretation eliminates the special position, which tablet Plimpton 322
had been assigned by the previous description of Mesopotamian mathemat-
ics. The belief that trigonometry already existed approx. 4000 years ago has
been reduced to a mere myth. However, this tablet remains a unique compi-
lation of Pythagorean triples to date, which are connected to each other by
a quadratic relation.

Illus. 1.2.12 Cuneiform text with quantities on a claybull with seal (18th cen-
turyBC), Old Babylonian Period(l.); Cylinder with tablet of quantities according

to capacity, Old Babylonian Period (r.) (Vorderasiatisches Museum Berlin)

[Photo: H. Wesemüller-Kock]
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1.3 Problems to 1

Problem 1.2.1: Reconstruction of the Egyptian approximation formula for
a circular area

a) Reconstruct Kurt Vogel’s interpretation of the Egyptian approximation
formula for the circular area (1.2.2): A circle with a diameter of d = 9 has a
square circumscribed, which is divided into nine squares with a side length
of 3. Each of the four corner squares has the outer half (along a diagonal)
cut off, which gives you an octagon approximated to the circle. Calculate its
area and approximate it to the most proximate square root, from which you
extract the root! Accordingly, this root is the side length of a square, which
together with the circle of diameter d = 9 are almost of equal area. To what
extent does the Egyptian formula result from that?

b) In order to judge the quality of this approximation formula, calculate the
resulting value for n with two digits after the comma!

Problem 1.2.2: Volume of a pyramid

Prove the formula for calculating the volume of a pyramid V = 1
3
·B · h

(B = Base, h = height) for two special cases:

a) If we draw the four spatial diagonals in a cube with side lengths a, the
solid is divided into six congruent perpendicular pyramids with a square base,
whose apex is located in the centre of the cube.

b) Consider that this cube can also be divided into three congruent oblique
pyramids of height a (only use one spatial diagonal)!

c) Is it possible to apply this train of thought to a cuboid with sides a, b, c?

Problem 1.2.3: Volume of a pyramid frustum

Derive the formula for calculating the volume of a pyramid frustum by using
the formula for calculating volume V of a pyramid, V = 1

3 ·B · h (B = base,
h = height), and by dividing the frustum (base = a2, top surface area = b2,
height = h) into a cuboid, four lateral rest prisms and four corner pyramids!
(see Illus. 1.2.4)

Problem 1.2.4: Applying the binomial formula

In the text from the Seleucids’ era (BM 34568), obviously composed for teach-
ing purposes, occurs a rectangle with the sides a = 4, b = 3, for whose diag-
onals d we are given the terms d = a/2 + b and d = b/3 + a. Then we are
supposed to calculate the three pieces a, b and d by means of the quantities
a + d and b or b + d and a. Other than that, we can use a − b = 1 and
A = a · b = 12, or a+ b = 7 and A = a · b = 12.

a) Solve these problems according to the modern method!
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b) Retrace the Babylonian steps of calculation by using the term (a+ b)2 −
4A = (a − b)2 passed down to us on clay tablets, in order to, first of all,
calculate the difference a− b from the sum a+ b and thereafter the sum and
difference of quantities a and b themselves!

Problem 1.2.5: The transversal formula

Derive the transversal formula (1.2.8) x =
√

(a
2+c2

2
) by using the area for-

mula (1.2.1) for any quadrilateral (which also occurred in Egypt):

A = a+c
2 · b+d

2 .

a) Sketch the following: in the original field divide transversal x, sides b and
d in b1 and b2 or d1 and d2, whereby the new field A1 is embedded by line
segments b1, a, d1, x and the new field A2 by line segments b2, c, d2, x. Con-
sequently, 4A1 = 4A2 and 4A1 + 4A2 = 4A must be valid for the quadruple
areas, from which it is possible to derive the transversal formula.

b) Show that this formula does not apply only to rectangles (given that the
transversal is parallel to a and c), but also to trapeziums, if x is also parallel
to a and c.

Problem 1.2.6: Segment of a circle

Show that it is possible to derive both formulae (1.2.11) and (1.2.12) for
sagitta s and chord c of a circle segment (see Illus. 1.2.10) by means of the
Pythagorean theorem.

Problem 1.2.7: A Pythagorean triangle in the sexagesimal system

Show that the famous Pythagorean triangle (3, 4, 5) in row 11 of the Plimp-
ton tablet (the row with the smallest number in Illus. 1.2.11) is presented

multiplied by one factor. The numbers stated there are: w2

d2 = 33, 45, b =
45, d = 1, 15. Consider that the Babylonian manner of writing numbers was
not familiar with decimal points – better: sexagesimal points. Thus, value 1
can also refer to 60.
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3rd/2nd

milennium
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Peloponnese and Crete

Minoan and Mycenaean culture

Approx.
1000BC

Doric migration Geometric arts
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coast of Asia Minor
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Anaximander, Hecataeus,
Anaximenes
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490–448 Persian wars Parmenides, Empedocles, Anaxagoras
Approx.
450–300

Classical Greece
(Athenian era)

Sophists

462–429 Golden age of Athens
under Pericles

Socrates, Plato, tragedies of
Aeschylus, Sophocles, Euripides

431–404 Peloponnesian war
between Athens and
Sparta

Origins of Dorian, Phrygian, Lydian
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387 Founding of Platon’s
Academy

Acropolis of Athens is built, classical
sculptures of Phidias and Polycleitus

From 338 Greece under Macedonian
rule

335 Aristotle founds Lyceum
334–323 Campaigns of Alexander

the Great to conquer
Persia, Egypt and India

Hippocrates of Cos founder scientific
medicine

311 Division of the
Alexandrian Empire

Hellenistic culture develops due to
mix of Greek and Oriental cultures

Approx.
300–150

Hellenistic (Alexandrian)
era

Stoicism, Epicureanism, Scepticism;
teaching poems and epigrams as
poetic categories; late Baroque period
of Greek art; mathematical and
natural scientific findings by Euclid,
Aristarchus, Archimedes, Apollonius
of Perga
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2.0 Introduction

Generally speaking, the Greeks are accepted to be the founders of the natural
sciences, in other words, of rational explanations of natural phenomena based
on principles and systems. At the same time, it was they who systemised and
accounted for rules and instructions passed on (partially by the Oriental
cultures) for counting, measuring and solving equations by means of a self-
developed logic. These were summarised into a system of theories, which
made them the founders of scientific mathematics.

Sometime near the end of the 2nd or beginning of the 1st millennium BC, as
part of their migration, the Dorians invaded Greek areas (especially within
Peloponnese), apparently as a consequence of the downfall of the Mycenaean
state, which had been highly developed culturally and strictly administrated.
The Dorians advanced further and further from the Northwest from the
Albanian-Dalmatian coastal area, where they had settled down originally,
and colonised the Greek home country, which had been populated by the
Achaeans for a millennium. The natives were conquered or drew back to the
islands and the west coast of Asia Minor as part of the so-called Ionian mi-
gration. As a result, within a very geologically and geographically confined
space divided into small and very small areas, there was a plenitude of differ-
ent tribes and peoples, each of which took its own course and development.
The structure of the city states (polities) became determinant politically as
well as culturally. Colonists settled down as farmers and tradesmen, especially
in the colonies of Miletus in Asia Minor, at the south coast of the Black Sea,
and at the Nile Delta, all of which were home to centrally organised empires.
As a result, they were influenced intellectually and culturally by various Ori-
ental aspects. They became familiar with collections of observations and rules
of conduct, which provided them with material for the gradual organisation
of scientific thinking.

This period in Greek mathematics is called here and treated as Ionian era (ap-
prox. 600–450BC) and followed by Classical Greece (Athenian era, approx.
450–300BC), whereas these eras both are usually subsumed under Classical
Greece (about 600–300BC).

2.1 Ionian era

2.1.1 The early natural philosophers

The Ionian era (approx. 600 – approx. 450BC), which is followed by Classical
Greece in the middle of the 5th century, is usually cited as the beginning of the
“discovery of the mind” (book title by philologist Bruno Snell [Snell 1946]).
The feudalism of the aristocracy was replaced by the polity/town structure
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during this era. Next to the Oriental empires with centralist ruling, inde-
pendent Ionian trading towns blossomed. Due to the merchants’ practical
thinking and the small confined areas of political structure and administra-
tion, citizens took part in public life to a greater extent. These towns became
the centres of classic Greek culture and science. The peripheral areas of the
Mediterranean Sea and the Black Sea were also Hellenised due to the founding
of colonies. The Ionian era is particularly known for the first great natural
philosophers of all time: Thales, Anaximander and Anaximenes. It is here
that we find the origins of European thinking and, also, of the deductive
method in mathematics, which developed in this era in close correlation with
logic.

It is not possible to reconstruct in detail this unique process due to the
almost complete absence of immediate sources, especially since the reports
passed down to us later on are often written from a certain perspective and,
therefore, tend to be subjective. Proclus (5th century AD) mentioned Thales
of Miletus (ca. 600BC) a few times in his commentary on Euclid, relying
on historical communications written by Aristotle’s student Eudemus (ca.
320BC). Apparently, Thales was not only the first Greek philosopher, but
also the first mathematician, bringing mathematics from Egypt to Greece and
making a lot of discoveries himself. According to Herodotus, who lived in a
temporally proximate time, Thales had Phoenician roots; approx. 300 years
before his time, the Greeks had adopted the Phoenician alphabet. Babylo-
nian astronomical knowledge may have permitted Thales to forecast a solar
eclipse that took place in 585 during the battle between the Lydians and the
Persians at Halys River and caused the fight to be abandoned.

The Ionian natural philosopher Anaximander of Miletus, who worked until
the middle of the 6th pre-Christian century, was a little younger than Thales.
He is said to have brought the gnome (an instrument used to measure sun
shadow and made of a perpendicular bar fixed onto a horizontal board) from
Babylon to Greece. Furthermore, Anaximander developed a mathematically
organised world system: the Earth located at the worldly centre is said to
have the shape of a column drum, the height of which was a third of its di-
ameter; fixed-star sky, moon and sun orbit the Earth like turning wheels with
distances of 1-3-3, 2-3-3, 3-3-3 Earth diameters (i.e., moon and sun outside
of fixed-star sphere!). We recognise how such system concepts geometrically
determined by elementary number ratios coined this early view of the world.
Geometry and symmetry are means of visualisation of the natural regularities
and reoccurring laws of nature.

Here, at the beginning of Greek natural science, the early philosophers could
not make use of an accomplished mathematical theory. Yet, they accessed its
so to speak first building blocks, when attempting to clarify their view of
the world by means of simple numeric rules and elementary geometric shapes.
In his representation of ancient science, which is worth reading [Krafft 1971,
p. 200], Fritz Krafft argues that we “cannot refer to mathematics as an aid
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Illus. 2.1.1 Theatre of Miletus

[Photo: H.-W. Alten]

to recognition of nature and its forms (...), since its mathematical field as a
science itself only has developed and existed in the human mind since the
middle of the 5th century.” Thereby, he implies that “mathematics” is a the-
ory that has been well developed by the human mind and can be used as
an “aid”. The development of this “own realm of mathematics” took place
in close correlation to external reality, as we can see many times during the
course of the history of geometry. Anaximander’s model allows us to take a
look at the early phase of this development. The analysis of structures found
in nature led repeatedly to new mathematical theories, which were then used
to explain or visualise further natural (later also economic, social and other)
phenomena. The mutual interlocking of empirical observation and scientific
theoretical formation is not just characteristic for natural sciences, but also
for the historical development of mathematical thinking. Thereby, we do not
want to deny that there were repeated phases, in which inspiration for de-
veloping mathematical theories originated from mathematics itself. Further-
more, mathematical impulses from within were very determining, whereas in
other cases external challenges provided stimuli for new developments.

But now let us go back to the early natural philosophers, who are also often
referred to as Pre-Socratic philosophers. The generation after Anaximander
was dominated by Hecataeus of Miletus (born in approx. 560). One long jour-
ney led him to Egypt, others to the Persian Empire and Scythia at the north
coast of the Black Sea. Hecataeus (following Anaximander, who is accepted
to have designed the first picture of Earth) drew a map of the Ecumene,
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Illus. 2.1.2 World map with OT representation. Tip: North is on the left. The large
surrounding circle represents the circularly drawn ocean; the horizontal crossbar of
the T reflects the Nile on the right; the Bosporus and the access to the Black Sea
on the left; the trunk of the T indicates the Mediterranean Sea. This OT form
determined the design of maps of Earth within the European area until the Middle

Ages (Concerning the tradition of Ptolemaic maps cf. paragraph 5.2.)

[Sallust, manuscript from 14th century]
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the contemporary term for the known world, by means of written credentials
supplemented by personal experience. Since Hecataeus only had scant infor-
mation on many regions, he was forced to schematise. Thereby, his use of
geometrical concepts is characteristic. He divided Earth, which was imagined
to be a circular disc, with a diameter into two semi-circles.

“I have to laugh, when I see some people drawing maps of the world, which
yet do not really know how to explain the shape of Earth. They draw Oceanus
running around Earth and as regularly as a circle” [Krafft 1971, p. 175].

It was not the highest aim of this type of representation to remain truthful
to details, as we expect from modern geographical maps, but rather to visu-
alise principles and generalities in a memorable manner. Hecataeus described
Scythia and the north of Libya in a similar geometrical manner by means of
rectangles which were segmented by parallel stripes and which were home to
different tribes.

2.1.2 Thales

Thales has been referred to as one of the Seven Sages of Greece since the
4th century BC. The late ancient Neo-Platonist Proclus, who, as already
pinpointed, could indirectly utilise the lost mathematical history of Eudemus
of Rhodes, passed down the first four theorems, which have been accredited
to Thales as a mathematician. These theorems are often represented in short
as follows:

1. The base angles in an isosceles triangle are equal (Euclid, ‘Elements’ I,
5).

2. The vertical angles between two intersecting line segments are equal (Eu-
clid, ‘Elements’ I, 15).

3. A triangle is determined by one side and both adjacent angles or, in other
words, two triangles, which agree in one side and the adjacent angles,
thereby agreeing in all units (Euclid I, 26).

4. The diameter halves the circle.

To compare, let us look at how, for instance, the first and third theorem are
worded by Proclus:

“May the old Thales be blessed, the discoverer of many other and especially
these theorems! It is said that he was the first to recognise and say aloud that
the base angles in every isosceles triangle are equal, but that he used ‘similar’
instead of ‘equal’ in an old-fashioned manner.” [Proclus/Morrow 1992, p.
341f.].
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Illus. 2.1.3 Thales of Miletus (l.); detail from the Market Gate of Miletus

(Vorderasiatisches Museum Berlin SMBI) [Photo: H.-W. Alten]

“But Eudemus states in his ‘History of geometry’ that this theorem is to
be accredited to Thales. Given the manner, with which Thales is said to
have determined the distance of ships at high sea [from the shore?], Eu-
demus concluded that there was no other way than to use this theorem.”
[Proclus/Morrow 1992, p. 409].

We notice instantly that the theorems mostly refer to elementary symmetric
ratios. The fact that Thales is said to have been the first to ‘find’ and say
these theorems aloud can mean at most that he was the first Greek to have
phrased these theorems explicitly. It was also considered to mean that he
may have presented us with the first reasons to prove their correctness, i.e.,
considerations of how to prove these theorems. The second of the Proclus
quotes shows that such assumptions stand on rather wobbly ground. Therein,
Thales is accredited with knowledge of a method to determine the distance
of ships at high sea from the shore (cf. Problem 2.1.1). This must have had
a geometrical background, from which Eudemus concluded that the third
theorem is also to be accredited to Thales. However, he could have brought
this method with him from Egypt.

Moreover, there are two further theorems, which are related to each other.
The second one especially is often linked to Thales:

5. The diagonals of a rectangle are equal and halve each other.

6. The peripheral angle in a semi-circle is a right one.
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The theorem stated last, known as Thales’ theorem, has been passed on by
the female historian Pamphile (1st century AD), as reported by Diogenes
Laertius (3rd century). In order to express his gratitude for recognising this
fundamental fact, Thales is said to have sacrificed an ox to honour the gods!

As we already know from the paragraphs on pre-Greek mathematics, the line
segment and/or the straight line and the circle (next to the point) belong to
the oldest geometrical elements. This is supplemented by Thales’ mentioning
of the notion of the angle, which is created by intersecting two straight lines.
They also must have noticed early that the right angle (R = 90◦) amongst
all others has a special position. It occurs when two line segments so inter-
sect each other that each one is an axis of symmetry of the other one. The
relevant construction is stated in Euclid’s ‘Elements’ I, 9–11. Principally, we
can construct this playfully by taking a given line segment and drawing two
circles with a compass from the extremities using the same opening. (The
connecting line of both circle intersections is placed perpendicularly onto the
initial line segment “for symmetrical reasons”.):

Illus. 2.1.4 Construction of a right angle

From this, it is easy to conclude the construction of a rectangle with four
right angles and the fact that each of its opposing sides is of equal length. If
we add both diagonals, they are also of equal length and halve each other.
Thus, a circle drawn around the intersection of the diagonals touching one
corner of the rectangle will also touch the remaining three corners. (Illus.
2.1.5)

Using this shape we can demonstrate almost all theorems that are connected
to Thales. The equality of the vertical angles according to Theorem 2 would
result from the relevant arc of the circle, which again is determined by the
equality of the opposing sides of a rectangle and leads to the equality of the
diagonals (Theorem 5). Theorem 1, concerning base angles within an isosceles
triangle, would again be the result of the symmetry of a rectangle, as well
as Theorem 3 (at least, concerning the two special cases of the isosceles and
the right-angled triangle). Theorem 6 is further verified by the fact that the
same shape, half a rectangle in each, is found in the semi-circles divided by a
diagonal. Hereby, the construction begun with any rectangle and the resulting
circumstances are equal for all of them.
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Illus. 2.1.5 Rectangle with circumcircle

Thus, we can derive the theorem immediately by looking at the shape: “The
sum of angles in a triangle equals two right angles” (first, for all right-angled
triangles, then also for any triangle in which we still need to draw a height
h). However, this consequence has not been accredited to Thales in the an-
cient tradition, but to ‘the elder’, i.e., probably the subsequent generation.
Besides, the theorem was proved independently for both the equilateral and
the isosceles triangle. Concerning the latter, the rectangular shape in the cir-
cle could have served again as the basis of evidence and the isosceles triangle
itself suggests consideration of the hexagon inscribed in the circle, which can
be viewed as one of the original geometrical shapes:

Illus. 2.1.6 Regular hexagon inscribed in the circle

Every angle at the centre here equals 60◦ or a sixth of four right angles. Since
each angle at the centre lies opposite to a triangle side of length r
(r = radius), the other two angles also equal 60◦, thus, 3× 60◦ = 180◦ = 2R.
The symmetric ratios form the basis for the logical conclusion in this case,
too: since the three sides are of equal length, there is no reason for the three
angles not to be of equal size as well. Such simple symmetric ratios form the
starting point of every geometrical theory.
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Finally, the ancient sources report that Thales determined the height of tall
buildings by means of their shadow. To do so, he is said to have waited for the
time of day at which his own shadow was as long as he himself. This implies
that he knew how to deal with similarity contemplations (see Problem 2.1.2).

2.1.3 Pythagoras and the Pythagoreans

Unfortunately, reliable texts are scarce concerning the early development of
mathematics in ancient Greece and subsequent eras, if we ignore the fact
that Pythagoras of Samos chronologically follows Thales. Pythagoras is said
to have acquired his wealth of knowledge on his great journeys, during which
it is believed that he gained his mathematical expertise from Babylonian
sources. Soon after the middle of the 6th century, he immigrated to Cro-
ton in lower Italy, where he founded a religious/philosophical community
and soon turned into a mythical figure. It is unclear nowadays which geo-
metrical contributions were made by Pythagoras himself and which by his
followers (he died in approx. 500BC). Aristotle was already referring to them
as “Pythagoreans”; this school of thought died out during the course of the
4th century. (We must not confuse this movement with the so-called Neo-
Pythagoreans, who followed up on the old school of thought from 100AD
onwards. The mathematicians Porphyry and Iamblichus formed part of this
later movement.) Eudemus’s historical report, mentioned above, which un-
fortunately has been passed on only indirectly, states that Pythagoras is said
to have turned geometrical knowledge into ‘free teaching’. This supposedly
means that geometry was studied for its own sake, in contrast to acting ac-
cording to rules given by necessities, practical life or sacred purposes. Hence,
here lies the beginning of the development of pure mathematics.

The number was at the core of Pythagoras’s religious-philosophical teach-
ing. Based on the unit (monas) and the natural numbers 2, 3, 4, ..., the
Pythagoreans developed the first foundations of number theory as well as a
musical theory based on simple numeric ratios.

When dealing with mathematical questions, they had the devastating cogni-
tion that irrational ratios exist. According to many researchers, this resulted
in the first crisis in regards to the foundation of mathematics. Hippasus of
Metapontum is said to have made this tragic discovery in approx. 450BC.
According to the legend, as a result of revealing the secret, he was banned
from the Pythagorean community and perished at sea.

A possible trigger could have been studying the ratio of side s and diagonal
d of a square: the Pythagorean Theorem immediately results in d2 = 2 · s2.
Hereby, we can quickly derive a contraction, if we assume s and d as num-
bers and use the natural number properties ‘even’ and ‘uneven’. (In Euclid’s
manuscript, ‘Elements’, this proof is located at the end of Book X; Aristotle
referred to this proof of contradiction repeatedly throughout his texts.)
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Illus. 2.1.7 Memorial of Pythagoras on the isle of Samos

[Photo: R. Tobies]
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Illus. 2.1.8 Pythagoras of Samos (medieval wooden sculpture in the choir stalls of
the Minster of Ulm) [Photo: H. Wesemüller-Kock]

This contradiction can also be proved purely geometrically, and not only with
the square, the simplest shape. Above all, the regular pentagon offers itself
as first evidence of the existence of non-rational ratios, since the regular pen-
tagram (a five-pointed star) used to be the symbol of the Pythagorean order.
The pentagram is drawn by marking the five diagonals inside a pentagon
(Illus. 2.1.9). As with the square, we cannot rationally relate the length of
a diagonal to the length of the side of a pentagon, since this method, de-
rived from measuring the anthyphairesis (see below), leads in both cases to
a never-ending process: the exciting discovery of the existence of irrational
ratios. Since we can assume that the Pythagoreans had intensively researched
the properties of the symbol of their order, it is not farfetched to suppose
that their belief that everything could be expressed in integers was only
destroyed when studying pentagrams or regular pentagons. The method of
anthyphairesis (which corresponds to the arithmetical Euclidean algorithm)
is a further development of the normal measuring procedure: we deduct the
shorter of the two line segments as often as possible from the longer one. If
this is possible without remainder, then we have an integer ratio (a factor).
If there is a remainder, which then must be shorter than the shorter line
segment, we deduct this rest as often as possible from the shorter line seg-
ment. If this works without an additional remainder, then this remainder is
a common measure for both line segments and both stand in a rational ratio
to each other. Otherwise, the procedure, if necessarily multiplied, is repeated
with the previously obtained, smaller remainder. If at some point there is no
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Illus. 2.1.9 Regular pentagon inscribed in a circle

remainder left, the previous remainder is a common measure for all line seg-
ments generated via this method, including both initial ones. These are called
commensurable and they can be measured exactly with a common measure
(in other words, they stand in a rational ratio to each other). However, if
the anthyphairesis does not come to an end, the two initial line segments are
incommensurable to each other (they do not relate to each other rationally).

Hippasus could have proven the irrationality of diagonal and side by using the
regular pentagon in the following manner (the terms refer to Illus. 2.1.9): Each
of the five diagonals (of length d0) of the initial pentagon run parallel to one
side (s0), and internally they form a new regular pentagon, the diagonals of
which (of length d1) also take the same five directions. Consequently, CDED′

and AC ′ A′D′ are two rhombi (varying in size), each with four equal sides.
Hence, the greater section of a diagonal, e.g., ED′, has the length of a side s0
of the initial pentagon, whereas the smaller section has the same length as a
diagonal d1 of the inner pentagon. Since the smaller section of d0 is identical
to side s1 of the inner pentagon, anthyphairesis takes its course as

d0 − s0 = d1 < s0, s0 − d1 = s1 < d1,
d1 − s1 = d2 < s1, s1 − d2 = s2 < d2,

d2 − s2 = d3 < s2, ....

As shown, it does not end and, therefore, does not deliver a common measure
for side and diagonal (see Problem 2.1.3).

Since all core Pythagorean discoveries and theories within the realm of ge-
ometry are part of Euclid’s ‘Elements’, which will be looked at in detail in
paragraph 2.3, we will now turn to the so-called ‘Golden Age’ of Greek natural
sciences and mathematics.
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2.2 Classical Greece (Athenian era)

As already implied by the name, the heart of mathematical research lies
within this era in Athens, lasting for approx. 150 years (approx. 450 until
approx. 300BC). In the philosophical school of thought of Plato’s (429–348)
academy, mathematics was shaped as ideal case of purely deductive science,
which has influenced the development of this science enormously up to the
present day. Plato argued that mathematics had an intermediate position
between the realm of mere ideas and the world of empirical objects. Within
the surroundings of the academy, many theories originated that have been
passed down to us in a systematised form in Euclid’s ‘Elements’.

In Politeia (Republic), designed as a dialogue between Socrates, Glaucon and
other dialogue partners, Plato describes the high requirements that a wise
statesman has to fulfill. On top of everything, there is philosophy, the true
science that leads to true epistemological cognition (last but not least, of the
good and the beautiful). Nonetheless, it is clear for Plato that a statesman
must also be skilled in the art of war: “And our guardian is both warrior and
philosopher? – Certainly.” Socrates enquires about those matters of education
that lead to cognition of reason and, thus, open the path to the world of
essential being (known as ‘ousia’).

Illus. 2.2.1 Famous witness of classical Greek architecture on the Acropolis of
Athens: Propylaei (437-432BC)

[Photo: H.-W. Alten]
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Illus. 2.2.2 The Parthenon (447-438BC), built with pentelian marble, looked upon
as perfect masterpiece of Greek architecture

[Photo: H.-W. Alten]

First, he mentions the art of counting and calculating; we will skip its justi-
fication here. Then, the dialogue partners agree on geometry as the second
science. Again, its use for commanders of war is cited first: “Clearly, he said,
we are concerned with that part of geometry which relates to war; for in
pitching a camp, or taking up a position, or closing or extending the lines of
an army, or any other military manoeuvre, whether in actual battle or on a
march, it will make all the difference whether a general is or is not a geometri-
cian. (...), but for that purpose a very little of either geometry or calculation
will be enough.” That is why Socrates stresses that we must check whether
studying the subject of geometry more extensively and thoroughly is benefi-
cial “to make more easy the vision of the idea of good”. This is affirmed, since
it is epistemological cognition of the never changing being. Hence, the citi-
zens, consequently the coordinators of the ideal state, “should by all means
learn geometry”. Moreover, there are extra benefits to geometrical knowledge:
first, the practical gain for war; second “and in all departments of knowledge,
as experience proves, any one who has studied geometry is infinitely quicker
of apprehension than one who has not.”

The third indispensible science is astronomy, according to Plato and Socrates,
and the fourth one the study of harmonies. The former opens the eyes to laws
and principles of celestial movements, the latter, the ears for the movements
which show themselves in harmonic tones. Hence, these sciences “are sister
sciences – as the Pythagoreans say”. (An extract of the Politeia can be found
in Appendix A. 1 p. 565)
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2.2.1 Eudoxus

The most genius mathematician amongst Plato’s contemporaries was Eu-
doxus of Cnidus (408?–355?). He developed his theory of irrationality based
on an ambition to extend the notion of ratio to include irrational ones. His
second great accomplishment was developing the method of exhaustion (Eu-
clid, ‘Elements’, Book XII), the basis for determining the capacity of curved
areas and volumes, which was expertly applied by Archimedes one century
after Euclid. The Pythagoreans’ basic assumption that all numbers are com-
posed of one unit that, as such, is indivisible, enabled them to develop an
elementary theory of proportions. Accordingly, the ratio of two given num-
bers a, b was rational, if there was a common measure k, of which both are
an integer factor: a = n · k, b = m · k; n,m ∈ N. If in according manner for a
number pair c, d it is true that c = n ·k′, d = m ·k′, then a : b = c : d. In this
case. ma = nb and mc = nd. But if m′a < n′b for any two integers m′, n′,
then also m′c < n′d and likewise for >. This is worded in Euclid’s ‘Elements’
in definition 20 of Book VII as follows:

“Numbers are proportional if the first is the same multiple, or the
same part or the same set of parts of the second that the third is of
the fourth.”

In contrast to (natural) numbers, which consist of units, line segments are
infinitely divisible; this is why we cannot necessarily assume a common mea-
sure, which consequently makes this approach to proportionality fail. Eu-
doxus solved this dilemma by means of constructing a new approach, which
applied to rational as well as irrational quantities. The considerations ad-
umbrated above may have shown him the way, since it is unsure whether a
rational ratio is given, the definition of equality of ratio of two pairs of mag-
nitudes is based on these ratios. This has been described in definition 5 and
6 at the beginning of Book V of ‘Elements’ as follows:

“Quantities are said to be in the same ratio, the first to the second
and the third to the fourth, when, if any equimultiples whatever are
taken of the first and third, and any equimultiples whatever of the sec-
ond and fourth, the former equimultiples alike exceed, are alike equal
to, or alike fall short of, the latter equimultiples respectively taken in
corresponding order.”

“Let quantities which have the same ratio be called proportional.”

This way, Eudoxus freed geometry of the Pythagorean shackles of restric-
tion to rational numbers. The so-justified proportionalism is systematically
established in Book V of ‘Elements’.
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Illus. 2.2.3 The five Platonic solids: tretrahedron, hexahedron (cube), octahedron,
dodecahedron, icosahedron

The reader may have noticed that the simpler definition (for proportions
made of natural numbers) is offered in Book VII of ‘Elements’, whereas the
considerably more sophisticated definition already appears in Book V. This is
one of the examples which demonstrates Euclid’s approach to historians: his
work unites different models and, apparently, uses an older definition in Book
VII, which was actually outdated by the one introduced in Book V proposed
by Eudoxus. Another explanation which offers itself in such cases lies within
the assumption that the parts might have been confused in the long process
of tradition. Such questions do not only arise concerning Euclid: the texts
passed on are duplications of duplications, adaptations, translations or all of
the above, never the self-written manuscripts of the authors themselves. The
text passages, which afterwards were taken to be ‘definite versions’, are the
result of careful comparison and critical pondering by the editors, who had
to take into account the updated results of contemporary research.

Apart from Eudoxus, we must, above all, mention the extremely talented
Theaetetus (415?–369?), to whom Plato dedicated a particular dialogue.
He accomplished a systematic construction of quadratic irrationalities (‘Ele-
ments’, Book X) and, based on this, the existential proof of the five regular
(or Platonic) solids (‘Elements’, Book XIII, wherein it is also proven that
there cannot be more than five of these solids).
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Aristotle (384–322) assigned mathematics a central role in science too, even
if his opinion on the nature of mathematics differs greatly from the Platonic.
He defended the view that mathematical objects are obtained by abstraction
from perception. He was especially interested in mathematics in relation to
his elaboration of syllogistics. In his book ‘Physics’, he began examining the
infinite (which, according to him, could only exist potentially, but not ac-
tually) and the continuum (like space and time), which, according to him,
cannot consist of points. Classical Greece ended with the great mathemati-
cal systematist Euclid, even if he did most of his work at the Musaeum in
Alexandria. Due to his importance to geometry, we have dedicated an own
section to him (2.3).

However, since Euclid’s ‘Elements’ only deals with compass and straightedge
constructions, we must emphasize the discovery of conic sections and the
development of the relevant theory here. Nowadays we usually describe curves
by means of their algebraic or transcendent equations (as taught by Descartes
during the 17th century; cf. Chapter 6), which means that the circle is a type
of conic section. However, the Greeks believed that the means of construction
were a crucial criterion when systematizing geometry for the first time. As a
result, compass and straightedge constructions have determined the field of
elementary geometry up to the present day.

2.2.2 The so-called classical problems of mathematics

In accordance with nature, the Greeks had occasionally to encounter prob-
lems, which, despite all efforts, could not be exactly solved by these two (the-
oretically imagined) instruments. Three of these problems have been given
a special meaning in the history of geometry and are often summarised as
‘the three classical problems of geometry’. These are the Delian problem or
doubling the cube, angle trisection and squaring the circle. However, since
the decision on the real ‘nature’ of these problems (possible only in the 19th

century) was made with the help of algebraic means, it is customary nowa-
days to deal with all three of them within the realm of algebra. The reader
is most likely to know the outcome of this analysis: doubling the cube and
angle trisection lead to cubical equations; in contrast, the problem of squar-
ing the circle is transcendental; in other words, it cannot be grasped by an
algebraic equation, regardless of how high the order. From today’s view, it
means that the Greeks, in order to solve these problems, had either to in-
troduce further curves (exceeding straight line and circle, in part influenced
by designing more complicated instruments for drawing) or see themselves
forced to use the straightedge in a manner otherwise not permitted in geome-
try. The following presents an overview of their diverse efforts. Some examples
concerning the different possibilities shall be introduced here partly in an-
ticipation of later paragraphs presented chronologically in order to preserve
coherence. A detailed account can be found, for example, in [Heath 1921, vol.
1, Chap. VII].
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Doubling the cube

The problem of doubling the cube has a legendary origin, which varies from
version to version. According to Theon of Smyrna, the story is as follows:
troubled by plague, the Delians consulted the Oracle of Apollo, who told
them that the god demanded they build an altar double the size of the one
already built to him (cf. paragraph 3.3.1). This is said to have caused great
awkwardness amongst the architects, since they did not know how to double
a solid. According to another tradition, people were trying to adhere to the
demand to double Glaucus’s cubical tomb by means of doubling the length
of the sides. Hereby, they stumbled upon their mistake and began searching
for the right solution (cf. account of the texts in [Waerden 1962]). Speaking
purely geometrically, we can deal with this issue easily when generalising the
problem of doubling the square (cf. paragraph 3.3.1). Speaking algebraically,
we are dealing with the extension of extracting the square root to extracting
the cubic root, which is an issue that had already been addressed by the
Babylonians.

Hippocrates of Chios traced the problem back to determining two median
proportionals x, y between the cube side a and their double:

a : x = x : y = y : 2a (2.2.1)

This formation of two geometrical means x, y between two given quantities
(here: a, 2a) corresponds to a pure cubic equation, as springs to mind easily.
Basically, all subsequent attempts to find a solution originated from this
version of the problem.

The relation for doubling the cube (2.2.1) found by Hippocrates inspired Eu-
doxus’s student Menaechmus to determine these two proportionals by means
of a parabola and an equilateral hyperbola and to solve the Delian problem
constructively in this manner (see Problem 2.2.1).

It is not certain if Menaechmus had already realised that parabolae and
hyperbolae were sections of the perpendicular circular cone. He could have
simply (stated in a modern fashion) investigated how the transformation of
all rectangles, the one side length of which equals 2a, into squares of equal
area of side length y follows from the functional relation, or how xy = 2a2

results in the transformation of a rectangle 2a · a into all other possible ones,
which are of equal area, respectively. In order to do so, he could have used
the method of constructing areas described in Book II of Euclid’s ‘Elements’.

Aristaeus knew (approx. 330) the correlation of these curves with the circu-
lar cone. He constructed the hyperbola (to be exact: a branch thereof), the
parabola and also the ellipse as sections perpendicular to a generating line
of an obtuse, a right-angled and an acute (perpendicular) circular cone. He
dealt with these curves in a (lost) treatise on such “bodily” loci thus called
because they were derived from the solid of a cone. All other curves of higher
order, including the transcendent ones, were referred to as “linear loci” (not
to be confused with the contemporary term “linear”).
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Also a treatise by Euclid on conic sections has been lost. The reason for losing
both should be the same: they were superseded by an approach to conic
sections taught by Apollonius of Perga in a series of eight books. Apollonius,
however, already belongs to the Alexandrian Era together with Archimedes,
who was even more outstanding.

Another approach to solving this problem based on determining two median
proportionals is reflected by the Cissoid of Diocles, discovered in approx.
180BC, and of which Proclus reports in his commentary on Euclid more than
500 years later. We draw the perpendicular diameter AB and the horizontal
diameter CD in a circle. Then we mark the points E and F on the arcs
B̂D and B̂C, whereby the arcs B̂E and B̂F are of equal length. Then we
draw EG and FH perpendicularly onto DC. The connecting straight line
EC intersects FH in P , a point on the cissoid. We obtain the other points
of the cissoid by varying the position of E and F (Illus. 2.2.4).

Now it has to be proven that point P on the constructed cissoid by means
of line segments FH and HC delivers two mean proportionals between DH
and HP , which means that it is true that

DH : HF = HF : HC = HC : HP (2.2.2)

Illus. 2.2.4 The Cissoid of Diocles

This can be easily shown, if we consider the equality of both triangles DHF
and CGE, as well as the fact thatHF is the geometrical mean ofDH andHC
(altitude theorem in the right-angled triangle DCF ). If we introduce a coor-
dinate system with the axes OC,OB and origin O equate OH = x, HP = y
and circle radius OB = OC = OD = r, we arrive at the Cartesian equation
of the cissoid as
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y2 =
(r − x)3

r + x
. (2.2.3)

It has an apex at C, and the tangent line to the circle at D is its asymptote
simultaneously.

If we take the cissoid to be given and want to find both mean proportionals
for two given line segments a, b, we have to choose point K on OB so that
DO : OK = a : b. (Notice that only the ratio of the two given line segments
matters at this point, since radius r of the circle on which the cissoid is based
is already given!) Then we connect DK and extend it until intersection Q
with the cissoid. We draw the ordinate LM through Q perpendicularly to
DC. Then LM and MC are the two mean proportionals for DO and OK:

DM : LM = LM : MC = MC : MQ

In addition,

DM : MQ = DO : OK = a : b

If we want to obtain the mean proportionals belonging to both given line
segments a, b, we have to extend (or shorten) similarly the line segments
DM,LM,MCandMQ according to level of measurement DM : a.

Angle trisection

The classical problem of dividing any angle into three equal parts kept many
Greek mathematicians busy. Since they were not able to solve this problem by
means of compass and straightedge alone, they devised sophisticated methods
with other resources.

Only the methods of modern algebra proved that trisecting any angle by
means of compass and straightedge alone is an impossible task. We can easily
see that constructing α from 3α is equivalent to constructing cosα from cos3α.
Trigonometry then yields

cos3α = 4cos3 α− 3cos α (2.2.4)

or with cos α = x and cos 3α = a

4x3 − 3x− a = 0 (2.2.5)

(cf. Problem 2.2.5). It is likely that this problem occurred amongst mathe-
maticians when attempting to construct a table of chords for astronomical
purposes. As further details on Ptolemy’s table of chords show in paragraph
2.5.5, we encounter the problem there, which cannot be dealt with by elemen-
tary geometry, to obtain a chord for 1◦ from the chord for 3◦. The systematic
construction of regular polygons beyond the pentagon and hexagon also re-
quires non-trivial divisions of angles: 360◦ : 7 for heptagons, 120◦ : 3 or 60◦ : 3
for nonagons.
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In order to divide an angle into n parts, Hippias of Elis thought of a curve,
which was later named ‘quadratrix’, since it solved the problem of squaring
the circle, too. Hence, it is clear that we must be dealing with a transcendental
curve! Yet, we can easily describe it, since it is constructed by two simple
movements. Imagine a square, the upper side of which moves parallel to the
starting position with constant speed to the lower side. At the same time,
the left side of the square turns clockwise around the lower corner point
with constant angle speed in a manner such that both movements start and
end simultaneously. In this case, the upper end of the turning line segment
describes a quadrant within the square. Accordingly, in the end position both
turning sides collapse with the lower square side.

It is advisable for us to introduce a right-angled coordinate system, the x-
axis of which is the lower side and the y-axis the left side of the square (side
length is a). The intersection P (x, y) = P (�, Φ) of both moved line segments
describes the quadratrix (� = distance to origin, Φ = angle between x-axis
and revolving side, decreasing from π

2 until 0◦). Hence, P moves from the
upper left corner to the right and down. The consequence of this movement
instruction is, for instance, that the side which moves down from the top has
already moved a third of its way (parallel to itself) after a third of the time,
while simultaneously the left side turns a third of 90◦(30◦). If we imagine the
quadratrix now, the left side of the square parts into n equal parts and draws
a parallel through the top point of division to the upper side. As a result, we
obtain a point of intersection on the curve, the link of which to the origin
delivers an axis of length p, which has been cut off the fraction 1

n
of angle π

2
.

From the proportionality of the movements, we get

y : a = Φ :
π

2
= � sinΦ : a. (2.2.6)

The polar equation, which can be immediately derived from this, is transcen-
dental. As far as the sources tell us, this transcendental curve, the oldest of
its kind, was discovered earlier than conic sections!

Approximately two generations after its inventor Hippias, Dinostratus recog-
nised that it was also possible to use the quadratrix in order to square the
circle (cf. Problem 2.2.2).

A method used more frequently by the Greeks is an insertion, the so-called
neusis construction from the Greek. Hereby, the basic principle consists of
fitting a given line segment in between given curves in a certain manner.
Hereby, we can mark the extremities of this line segment on a straightedge,
which then can be moved until both points have reached the desired position.
Since marking a straightedge is not permitted in elementary geometry, this
construction is also referred to as “paper strip construction”.

Pappus described such a construction from classical times concerning angle
trisection. We embed angle α = �AOB < π

2 , which is to be trisected, in a
rectangle in such a manner that the vertex O in the lower left corner comes
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to lie, one arm collapses with the lower side and the other forms diagonal
OB of the rectangle (such rectangles can always be found). The corners are
to be named anti-clockwise O,A,B,C. We now mark both line segments
DF = FE = OB on a paper strip, place E on straight line CB, which goes
beyond B, in such a manner that D comes to lie on side AB and the paper
strip simultaneously runs through O. Once this position has been found ex-
perimentally, the new artificial line ODFE parts the given angle in the ratio
2 : 1; in other words, it is trisected (cf. Problem 2.2.3).

For another trisection of angles by neusis, ascribed to Archimedes, see sec-
tion 2.4.2 and Problem 2.2.4. It offers a simple and generalisable possibility
to derive the trisection equation (2.2.5) (or the n-section equation) for the
given angle. The reader will find advice for this in Problem 2.2.5).

Nicomedes conceived of an instrument that accomplished this condition me-
chanically (cf. [Scriba 1992]). Due to their shape, the curves constructed with
this instrument were given the name ‘conchoid’ or ‘cochleoid’, which literally
translates to ‘shell curve’. The instrument consists of two straightedges that
have the shape of a ‘T’ and are firmly attached to each other. A third straight-
edge can move on those in a certain manner (Illus. 2.2.5).

Illus. 2.2.5 Nicomedes’ conchoid and the instrument required for its mechanical
construction

The first straightedge AFB has a slot longitudinally. We perpendicularly
attach the second straightedge FE at its middle F , in which we fit a fixed
pen C in distance b of F . The third straightedge ends in apex P and carries
a pen D in fixed distance a of P (i.e. PD = a), which can move within
the slot of the first straightedge. Another slot starts perpendicularly on this
straightedge longitudinally beyond D, in which pen C hitches. When moving
the third straightedge, extremity P describes a conchoidal line. Obviously, the
crossbar of the T -shaped device (more precisely: the straight lines running
through A,F and B) is an asymptote.
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In order to compare Nicomedes’ instrument with Pappus’s neusis construc-
tion, we must identify pen C with corner O and slot AFB of the first straight-
edge with rectangle side BA, on which the fixed line segment a = DE is sup-
posed to start. If we now draw the conchoid with this device, the extended
upper rectangle side CB will intersect the wanted point, which will lead us
to the solution (cf. Problem 2.2.6).

Squaring the circle

The problem in constructing a square of exactly equal area to a given circle is
a matter of integration according to present understanding. Thus, this issue
is addressed by mathematical analysis. The Greeks predominantly saw it as
a geometrical construction problem. We will list a few examples.

Already, Hippocrates’ attempts in the 5th century BC to square circular
moons may have been triggered by the problem of turning the area of a circle
into a square. He managed to do so in three cases, the easiest being the one
whereby the moon is bordered by a semi-circle and a quadrant (see Illus.
2.2.6).

Illus. 2.2.6 Hippocrates’ squaring a moonlet

However, this result did not contribute to squaring the full circle. The indirect
question arising here is if there are further squared moonlets beyond those
of Hippocrates that can be squared by means of elementary geometry. How-
ever, this question was only answered fully in 1947 (with algebraic methods):
there are exactly five such circular moons [Scriba 1988]. Approx. in 430BC,
Antiphon attempted to exhaust the circle area by means of inscribed regular
3 · 2n − gons or 4 · 2n − gons. A little later, Bryson utilised simultaneously
inscribed and circumscribed regular polygons, whereby he, however, used a
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simple intermediate value theorem, which led to criticism. Approximately in
the middle of the 4th century, the brothers Dinostratus and Menaechmus re-
alised how they could utilise Hippias’s curve to square the circle (cf. Problem
2.2.2). Archimedes provided the crucial proof that the constant π determines
the ratio of circumference to diameter as well as the ratio of circle area to
square. He also delivered both bounds, which are often used as approximate
values:

310
71 < π < 3 1

7

2.3 Euclid

2.3.1 Euclid’s Elements

Euclid’s era was between Classical Greece (Athenian era) and the Hellenis-
tic era of Greek mathematics, in regards to content and time. We hardly
know anything about him as a person, but his works were so influential for
the whole of mathematics, especially for geometry, that his name was of-
ten synonymously used for both and is still constantly used in correlation to
Euclidean space, Euclidean geometry, Euclidean metric and Euclidean ring.

Euclid’s main treatise ‘Elements’ is the oldest of the larger mathematical
texts passed down from ancient Greece. Our modest knowledge of the de-
velopments preceding ‘Elements’ comes from different sources: fragmented,
unreliable and subjective reports of scholars of the late Antiquity and the
Islamic Middle Ages; from what we can extract from the text of ‘Elements’
by means of content and critical language analysis, or what we believe to be
able to do, the smallest part comes from pre-Euclidean text fragments. A wide

Illus. 2.3.1 Fragment of Euclid’s ‘Elements’ (Papyrus from 75-125AD, one of the
oldest diagrams from Euclid’s Elements of Geometry. The diagram accompanies

Proposition 5 of Book II of ‘Elements’)
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field of speculations, hypotheses and debatable questions opens up whenever
a meagre source and a certain world-view of philosophical pertinence coin-
cide, as was the case with the early history of occidental mathematics. Thus,
secondary literature on Euclid and his ‘Elements’ has become almost un-
manageable by now and continues to grow constantly. To present all of this
even briefly would fill a book on its own. ([Schreiber 1987a], [Artmann 1999],
[Schönbeck 2003], also see the article on Euclid by [Wußing/Arnold 1989].)
We have to limit this chapter to a summarising overview on the content and
(obviously subjectively chosen) aspects, as well as some details on the history
of tradition. Further information on content and history of tradition will be
inevitably looked at in the following chapters (see, e.g., 5.1, 6.1.1 and 7.5).

‘Elements’ is composed of 13 ‘Books’, traditionally numbered in Roman let-
ters, whereby one ‘Book’ corresponds to one papyrus roll, i.e., one chapter
of a modern book. The following list gives a first overview on content and
supposed origin:

(I) Beginning of an axiomatic construction of plane geometry until the
Pythagorean group of theorems, and far reaching knowledge of the
Ionian era, especially of the Pythagoreans

(II) Foundations of algebraic operations with geometrical quantities (line
segments, areas, volumes), as well as Pythagorean ideas, traditionally
interpreted as a reaction of the discovery of incommensurable line seg-
ment pairs. As a result, mathematicians turned towards a notion of
geometrical quantity. The term ‘geometric algebra’, suggested by the
Danish mathematics historian H.G. Zeuthen around the end of the
19th century, has become widely accepted.

(III) Circle theory, supposedly Pythagorean
(IV) Construction of inscribed and circumscribed regular polygons
(V) Eudoxian theory of proportionality in its general form, i. e., not limited

to geometrical quantities
(VI) Application of the theory of proportionality to plane geometry
(VII) Theorems on natural numbers, not further considered here
(VIII) Theorems on natural numbers, not further considered here
(IX) Theorems on natural numbers, not further considered here
(X) A very challenging algebraic theory of compass and straightedge con-

structible quantities, especially classification according to the number
of (stated in a modern fashion) nested square roots, which are neces-
sary to generate them. Apparently, going back to Theaetetus.

(XI) Basics on spatial geometry
(XII) Theorems on volumes, partially by Eudoxus (cf. Problem 2.3.1)
(XIII) Construction of the five regular polyhedra based on the radius of

the circumsphere (according to Theaetetus) by consulting the results
of Book X on characterising the relevant edge length. Book XIII
concludes with the (relatively trivial) proof that apart from the ones
addressed here there are no further regular polyhedra (cf. Problem
2.3.2).
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Illus. 2.3.2 Titlepage of the famous first English translation of Euclid’s ‘Elements’
by Henry Billingsley in 1570 with a preface by M. J. Dee
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Apart from the preliminary works of Thales, Oenopides, Hippocrates, Leon,
the Pythagoreans, Eudoxus, Theaetetus, etc., Euclid’s ‘Elements’ in the
given form are hardly imaginable without Plato’s philosophy and Aristo-
tle’s methodology. The former arises from the kind of demonstration that
explicitly relates to neither the material world nor any other applications;
possibly also from the fact that construction means were limited to compass
and straightedge. (Of course, Euclid never talks of the instruments themselves
anywhere, only of the objects line segment and circle, which are obtained by
their means.) The latter concerns not just deductive composition as a whole
but also partition of conditions into axioms (these are general basic princi-
ples, whose truth is undisputable) and postulates (these are theory-specific
basic principles, whose permission is debatable. In Euclid’s work, they essen-
tially concern supposed feasibility of certain constructive basic operations, of
which all solutions of construction problems can be combined.) Most books
start with definitions, particularly Book I. Some of those definitions reduce
derived notions to basic notions in a manner also customary in modern logic,
e.g., Def. I, 17: A diameter of the circle is any straight line drawn through the
centre and terminated in both directions by the circumference of the circle;
Def. I, 23: Parallel straight lines are straight lines which, being in the same
plane and being generated indefinitely in both directions, do not meet one
another in either direction.
Others attempt to describe a basic notion, e.g., Def. I, 1: A point is that
which has no part; Def. I, 2: A line is breadthless length. It is clear that it is
impossible to prove a mathematical theorem concerning the defined notions
with the ‘definitions’ of this second type. Furthermore, they are unnecessary
from a modern point of view and are not used by Euclid anywhere else. This
criticism, however, presupposes that Euclid really intended something like a
formal axiomatic composition of geometry (like in the sense of Hilbert’s fa-
mous book Grundlagen der Geometrie (Foundations of Geometry from 1899),
of which we are by no means certain. Other mathematicians, philosophers and
translators have debated and attempted to improve these definitions for cen-
turies, whereby the difference between definitions of type I, 23 and such of
type I, 1 went mostly unnoticed.

In light of so many roots and sources of ‘Elements’, Euclid was multiply de-
nied his own scientific accomplishments and described as merely a ‘textbook
writer’ and ‘didact’, if yet a very successful and clever one. Both have to be
questioned: there are justified doubts that Euclid did not write the extant
text himself, that his teaching was not oral discourse, following the traditions
of the time, and that the text was developed based on his students’ notes. In
this case, Euclid could have been a good didact, from whose teaching only
dry facts were written down (as is still the practice of many modern stu-
dents). Moreover, his debatable definitions may have just been badly written
notes of an extensive propaedeutic explanation. If, however, he wrote ‘El-
ements’ himself, we must clearly criticise his dry style, the stolid listing of
definition, theorem and proof, as well as the lack of motivation and examples.
Quite a few didacts of modern times and authors of most diverse eras have
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argued that mathematics as a subject at school was constantly unpopular
due to Euclid’s dominance within its teaching. (Also see, e.g., [Fladt 1927],
extract at appendix, or the polemic book title Los von Euklid (Free of Euclid)
[Kusserow 1928].)

Concerning Euclid’s own scientific accomplishments, we must consult the
so-called compendium of smaller works, which are hardly known nowadays,
while also keeping in mind how clear it is that the constructive aspect of
‘Elements’, detailed below, forms a red line throughout his work, which is
otherwise so heterogeneous in subject and content. It is not exactly easy to
ascribe this aspect to the different sources. Here the original scientific style is
evident. Especially from the view of the end of the 20th century, Euclid comes
across as an excellent pioneer of an algorithmic culture of mathematics that
had been lost for a long time. Hence, nobody had looked for it in Euclid’s
work and, consequently, not found it 1.

The building blocks of ‘Elements’, called propositions, are divided into the-
orems followed by proofs and problems with the relevant solutions. Every
task deals with given objects (points, line segments, circles), for which cer-
tain conditions are made, and wanted objects, which are supposed to stand
in certain relation to the given objects, e.g., Book I, prop. 2 (translation here
and in the following according to Joyce):

To place a straight line [line segment] equal to a given straight line [line
segment] with one end at a given point (i.e., to construct a point D for
given points A,B,C(B unequal C), so that AD congruent to BC).

The solution to such a problem always consists of describing a method (algo-
rithm), the input of which are the given objects and the output the wanted
objects, and the proof that this algorithm delivers the objects with the wanted
properties by means of the given conditions constituted by the objects. This
method was not just overall paradigmatic for all areas of mathematics of all
subsequent eras, but also details many remarkable future-indicating trends,
only some of which can be discussed here.

1 In order to prove that this view of Euclid is shared nowadays by renowned math-
ematicians, we will quote from the preface of the book [Preparata/Shamos 1985,
Computational Geometry, 1985, p. 1]: “It is popularly held that Euclid’s chief con-
tribution to geometry is his exposition of the axiomatic method of proof, a notion
that we will not dispute. More relevant to this discussion, however, is the inven-
tion of Euclidean construction, a schema which consists of an algorithm and its
proof, intertwined in a highly stylized format. The Euclidean construction satisfies
all of the requirements of an algorithm: it is unambiguous, correct, and terminat-
ing. After Euclid, unfortunately, geometry continued to flourish, while analysis of
algorithms faced 2000 years of decline. This can be explained in part by the success
of reduction ad absurdum, a technique that made it easier for mathematicians to
prove the existence of an object by contradiction, rather than by giving an explicit
construction for it (an algorithm).”
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The steps permitted to formulate construction algorithms can be found in
the postulates (after definitions and axioms) at the beginning of Book I:

Required is

1. To draw a straight line [line segment] from any point to any point.

2. To generate a finite straight line continuously in a straight line.

3. To describe a circle with any centre and radius.
[Euclid a]
...

Illus. 2.3.3 Regarding proposition I, 2 of Euclid’s ‘Elements’

In the first two problems it is shown (without actually explaining) that we
can reduce the operation to construct a circle of radius BC around A with
the given points A,B,C(B unequal C), to a more specific operation by means
of a ‘subprogram’ (stated in a modern fashion) to construct the circle around
A through B, whereby we clarify the otherwise existing ambiguity of the
third postulate. To do so, we must first construct a point H by means of
the auxiliary problem (subprogram!) solved in I, 1 in a manner, which allows
A,B and H to form an isosceles triangle. We extend HA and HB via A resp.
B until we have found the following intersections: intersection E of HB with
the circle around B of radius BC, which is located on the side of B, which
is turned away from H; intersection D of HA with the circle around H of
radius HE, which is located on the side of A, which is turned away from H
(Illus. 2.3.3). Now we come to understand proposition I, 2 as quoted above:
Since AD is congruent to BC, the circle around A through D corresponds to
the circle around A with radius BC.
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Algorithms were also taught as part of old Egyptian and old Mesopotamian
mathematics, but only by means of a series of numeric examples. Euclid’s
works are the first to refer to algorithms in general. For this we need (stated
in a modern fashion) addresses for the input objects, intermediate results
and output objects. Euclid used (Greek) capital letters for points, referred
to straight lines by means of two points located on the straight line and to
circles by means of three points located on the circle. This is a unique, pio-
neering achievement, but partially due to factual circumstances: geometrical
objects are, in contrast to numbers, bound to a fixed location. If we name
a concrete geometrical object, then this name does not identify the object
on its own without a corresponding mapping, in contrast to number-naming
systems. As a result, the names of geometrical objects, which are unavoidable
in the description of an algorithm, basically assume the characters of vari-
ables or (stated in a modern fashion) addresses. However, we shall remark
peripherally that Euclid also used his ‘programming technique’, which he de-
veloped successfully for his geometrical algorithms, in the number-theoretic
books of ‘Elements’ here also, for the first time, by using variables in order
to formulate algorithms to solve number-theoretic problems, e.g., the famous
Euclidean algorithm for determining the greatest common divisor.

The notion of an infinite straight line is strange to Euclid. There are only
straight line segments, which, according to postulate 1, can be constructed
as a connection of their extremities. Their gradual extension is permitted
as an elementary operation by the second postulate. Whereas intersections
of circles can be determined without theoretical (axiomatic) justification ev-
erywhere, where their existence is graphically evident, intersections of two
straight lines prove to be a challenge under these conditions, since we are
only given constructed line sections, which we have to extend unpredictably,
often depending on their position to each other in order to finally obtain an
intersection. Euclid – analogous to the other basic operations – is just con-
sistent when formulating a condition, under which this procedure is assumed
to be feasible:

5th postulate: That, if a straight line falling on two straight lines makes
the interior angles on the same side less than two right angles, the two
straight lines, if generated indefinitely, meet on that side having the
angles less than the two right angles. (Illus. 2.3.4)

Illus. 2.3.4 Regarding the 5th postulate of Euclid’s Elements
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Proposition I, 17 says “in any triangle the sum of any two angles is less than
two right angles”. Accordingly, the condition of the existence of an intersec-
tion (which is the third corner of a triangle ABC) listed in the 5th postulate
is necessary. Thus, the 5th postulate eliminates the potential difficulty by reg-
ulating that this necessary condition shall also be sufficient. Unfortunately,
we will never be able to clarify if Euclid and maybe even his predecessors
really recognised a problem here and contemplated it thoroughly or if the
5th postulate was introduced to the world as a, so to speak, improvisation.
Since this formulation is noticeably complex compared to other postulates,
criticism arose already during Antiquity and attempts were made to prove it
as a theorem.

As a result, non-Euclidean geometry developed via numerous intermediate
stages during the 19th century. That its consistency was proven around 1870
clarifies that the 5th postulate is neither mandatory nor capable of proof by
means of the other axioms and postulates of Euclidean geometry. We must
also remark that – with increasing distance to Aristotle’s methodology – the
difference between axioms and postulates started to be blurry. Postulates are,
after all, explicitly debatable, not mandatory basic propositions; we can either
accept or reject them. Only once the difference between axioms and postu-
lates (the European Middle Ages occasionally renumbered the 5th postulate
into the 11th axiom) had been eliminated did equalling the postulates with
the current customary formulation (coming from Ptolemy, but popularised
by John Playfair in 1796) of the uniqueness of parallels to a given straight
line through a given point become acceptable. Both expressions are indeed
equal as axioms, in other words, each is capable of proof by means of the
other and the remaining axioms. However, Euclid stated more with his 5th

postulate; namely, he assumed that the relevant operations are feasible, i.e.,
the cyclic process of repeating the extension of both line segments always
delivers an intersection under the given conditions (to clarify: given these
weak conditions, we would have good reason to reject the feasibility of the
straightedge operation, postulate 1, without having to question the validity
of the theorem of the unique existence of the connecting straight lines, e.g.,
because the points are too close to or too far from each other).

Concerning the further geometrical content of ‘Elements’, many theorems
are proven in the same manner and order as is customary nowadays. The
gaps remaining in Euclid’s proofs almost always refer to questions of order
and can, in most cases, be easily eliminated. His ideas of proof are univer-
sally feasible and often tricky, which suggests a long maturing process of the
subject matter. We sometimes miss elementary subject matters, which we
would intuitively expect in ‘Elements’ (e.g. the fourth theorem of congruence
or the construction of the tangent common to two circles), since it has been
added by later generations. Propositions often prove to be theorems regard-
ing construction problems after they and the location in which they occur
have been inspected more closely, e.g., by verifying conditions as necessary
or solutions as uniquely determined. Having studied this intensively, we may
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Illus. 2.3.5 Figure for the Euclidean proof of the theorem of the catheti (I, 47);
tablet with this figure in the hands of personified geometry in front of ‘Zeughaus’

in Berlin [Photo: Hollewood Media OHG]

come to believe (although this is subjective) that Euclid did not intend to
compose an encyclopaedia of everything known back then, but planned ex-
emplarily to demonstrate a (highly constructivist) scientific program, which,
especially within the realm of geometry, exhausted the compass and straight-
edge “program package”. The overwhelming impact that Euclid’s ‘Elements’
had on subsequent eras has all in all somewhat deformed the picture of an-
cient geometry. Compass and straightedge were not as dominant, as suggested
by ‘Elements’, which does not mention conic sections, other special curves
of different types, approximate methods, determining of capacity and other
important aspects of ancient geometry.

Euclid’s proof of the theorem of the catheti for right-angled triangles is one
of the much-admired didactic pieces of art, from which we can easily derive
Pythagoras’s theorem. The difficulty was constituted by the fact that the
customary proof of the similarity of the triangular parts generated by the
height on the hypotenuse to the whole triangle, which was probably already
known by the Pythagoreans, required theorems of similarities of triangles and,
thus, knowledge of proportionality. The Eudoxian approach to proportional-
ity forms, however, part of the most challenging chapter of ‘Elements’ and is
only addressed in Book V. In contrast, Pythagoras’s theorem was meant to
be accessible as early as possible. Illus. 2.3.5 (also see 2.3.6) belongs to those
Euclidean proofs that seemingly do not require proportionality. The triangles
ADB and FCB are congruent, i.e., of equal area, due to the congruence of
SAS (Side-Angle-Side). Since, as proven before, every triangle is of equal area
to every rectangle made of one triangle side and half of the belonging height,
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Illus. 2.3.6 The same figure in different versions of ‘Elements’

[a) Ms. Vat. Grec. 204; b) Adelard of Bath; c) Billingsley, London 1570; d) so called
pseudo-Tusi; e) Forcadel, Paris 1564; f) Ricci 1607]
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it follows that triangle ADB is of equal area to half the rectangle made of
baseDB and heightDL, and triangle FCB is of equal area to half the rectan-
gle made of base FB and height FG. (Speaking from experience, pupils tend
to struggle with viewing triangle FCB from this unusual perspective, i.e.,
locating the height belonging to base FB!) All in all, employing customary
marking, we obtain: b = AB, c = BC, p = DL : b2 = pc. We invite the reader
to round down this fine train of thought where appropriate whilst referring
to each axiom used.

1. Things that are equal to the same thing are also equal to one another.

2. Things that are doubles of each other are equal to each other.

3. Things that coincide with one another equal one another.

This way, we indeed obtain a method to prove Pythagoras’s theorem without
proportions. Nonetheless, we must inspect sharply what we have, in fact, just
proven:

The square above the hypotenuse is equivalent by decomposition to the
union of both squares above the catheti.

We must not consider area, since otherwise proportions enter again through
the backdoor, as, in order to define the notion of area, we must prove that the
product of base and height of a triangle is a quantity independent of what
base is selected, i.e., (Illus. 2.3.7) a · ha = b · hb or a : hb = b : ha, which
can only be proven via the similarities of the participating triangles, i.e., by
proportionality.

Illus. 2.3.7 Regarding the independence of the product side times height in a
triangle

The oldest known parchment manuscript of ‘Elements’ (D’Orville 301, named
after an early owner and kept at the Bodleian Library in Oxford) was written
in Byzantium in 888, approx. 1200 years after the assumed date of origin of
‘Elements’. As known today, the parchment represents a version of the text
that was written down by the Alexandrian mathematician Theon in approx.
370. Only in 1808 another version was found at the Vatican Library (Ms. ‘P’
after its discoverer, Peyrard), and even though it was written down later (from
the 10th century), this version resembles an older text and always serves as
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Illus. 2.3.8 A page from Manuscript P from Vatican Library

[Codex Vat. Grec. 190 c© Biblioteca Apostolica Vaticana]

the basis for the modern versions of ‘Elements’ (Illus. 2.3.8). However, this
version is probably also not the original, if there ever has been one. All in
all, 120 lines of texts on shards and papyrus fragments have been found up
to now, all much older than the named manuscripts. In regards to content,
they belong to ‘Elements’, but their wording constantly deviates from the
text accepted nowadays as ‘canonical’.

‘Elements’ resembles a cultural legacy of the first order, which has received
due attention at all times. However, two dividing approaches were chosen to
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deal with this text. One group (it would be too simple to call them “the
mathematicians”) addressed the content without much respect for the word-
ing, but were inspired and developed it further. Every era found new inter-
esting aspects of ‘Elements’; a very modern view was shown above. The other
group thought of ‘Elements’ as an educational asset, material for language
analysis, texts for reading and as historical documentation, and they pur-
sued the phantom of the authentic wording. This proved to be difficult due
to the pronounced ambiguity of the ancient Greek language. This group, who
could not truly grasp the meaning of what was intended to be said (let alone
prove that they had succeeded in doing so), stood little chance of accomplish-
ing a well done translation or even an interpretation. But, to be absolutely
clear, the approaches of both groups were legitimate. Mathematics, as well
as historiography has a lot for which to thank them.

2.3.2 Euclid’s further geometrical works

Apart from ‘Elements’, Euclid has been accredited some smaller works, which
have been passed on partially in Greek or Arabic; some have become lost
or been labelled as ‘fake’ by modern research, i.e., not composed by Eu-
clid. Some of these writings have been studied, translated and printed for
centuries together with ‘Elements’ and have belonged to the general mathe-
matical education legacy as much as ‘Elements’ itself. Nowadays, these texts
are mainly known by specialists, and are difficult to access at times, since
they are available in the Greek-Latin standard edition of the works of Eu-
clid by Heiberg/Menge, but have rarely been translated into modern lan-
guages or reprinted. However, they are crucial if we want to paint a well-
rounded picture of Euclid’s personality and accomplishments. Just as with
‘Elements’, they hold some inspiring insights for modern mathematics. A
complete overview can be found in [Schreiber 1987a] and the article on Eu-
clid in [Wußing/Arnold 1989]. Below, we will present only those stages that
belong to geometry in the broader sense. These are:

• A lost theory of conic sections, the content of which approximately cor-
responds to the first four books of Apollonius of Perga’s theory of conic
sections, which we will look at later. (It is likely that the latter extended
and pushed aside Euclid’s ‘Conics’ in a manner similar to the way ‘Ele-
ments’ superseded some similarly titled works by earlier writers.)

• A lost script on geometrical loci in space. (It could have dealt with areas,
such as planes, spheres and spheroids in space and also loci, i.e., curves
in such areas.)

• A text on catoptrics, a theory of mirrors and reflections, of which we
know today that the included text was not written by Euclid, although
he is said to be the author of ‘Catoptrics’ according to reports from late
Antiquity.
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Illus. 2.3.9 Euclid l.: Tableau of Justus of Ghent; r.: Statue, Oxford University
Museum of Natural History [Photo: Th. Sonar]

• A treatise called ‘Phaenomena’ about the beginnings of spherical geom-
etry made to fit the needs of astronomy

• One text called ‘Data’, one ‘Optics’, one ‘On divisions of figures’ and a
lost writing called ‘Porisms’.

We will report in a little more detail on the four last mentioned texts. How-
ever, the title overview already shows that Euclid was very different from the
person portrayed in the mathematical and historical literature. His writings
basically cover all areas of applied geometry relevant back then, apart from
building trade and geography.

‘Data’ (from the Greek ‘dedomena’ meaning ‘given’) stands in closest re-
lation to ‘Elements’. In fact, they had been printed together until the be-
ginning of modern history, of which there is a modern English translation
[McDowell/Sokolik 1993]. At first glance, it offers little new compared to ‘El-
ements’. It seems to be a kind of compendium and was also mostly interpreted
as such. However, it seems that Euclid attempted here to deal with construc-
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tion problems, the given objects of which are not empirically perceivable
objects like in ‘Elements’, i.e., points, straight lines and circles according to
Greek opinion, but equivalence classes of such objects in regards to different
equivalence relations. Namely, he started by defining when a geometrical ob-
ject is given according to size, shape or position. Thus, the propositions are
of the following nature, e.g. prop. 39:

“If all sides of a triangle are given according to size, then this triangle
is given according to form.”

This can be interpreted in the following manner:

Given are three ‘lengths’; each one, of course, by means of a constructed
line segment, i.e., a representative of the relevant equivalence class of
line segments of the same length. The object to be constructed is an
equivalence class too, namely of congruent triangles. As in ‘Elements’,
construct a concrete triangle as a representative of the wanted class.
This problem and its solution are, as said in modern mathematics,
independent of the representatives, i.e., if we change the representatives
of the given classes, we would influence the concrete result, but not the
equivalence class in which it is located.

Analogously, ‘Data’ deals with problems of ratios, which – stated in a mod-
ern fashion – are equivalence classes of fractions. For instance, the result
of the problem of finding d for quantities a, b, c given a : b = c : d, does
not depend on the concrete representative (a, b), but only on the class of all
pairs (a′, b′) equivalent to (a, b), i.e., the ratio. The climax of the theoretical
script, although rather trivial in regards to practical execution, is reflected
by grasping the notion of power of a point regarding a circle as an abstrac-
tion. Although this abstraction is already given by the product of the chord
sections of any circle chord running through the point, it does not depend on
the arbitrary selection of this chord.

Euclid’s ‘Optics’ is the oldest remaining text concerning this topic. In ancient
times, optics was the “geometry of seeing” and was based on experiencing
straight dispersion of “visual rays” via the air between object and eye. The
fact that there already were two opposing theories on the direction of these
visual rays (Euclid assumes the direction from the eye to the object) did not
concern the addressed geometrical issues. The notion and content of optics
gradually changed in a process over many centuries. Whereas ‘dioptrics’ was
still concentrating on studying gauges via “dioptre” in the 1st century AD,
it changed its focus to the visual rays passing through the boundary lay-
ers between different media. During the Islamic and European Middle Ages,
questions regarding the anatomy and physiology of the eye arose, including
psychological questions of vision, e.g., an extended classification of optical
illusions. Optics became a branch of physics and only focussed specifically on
studying the nature of light and its dispersion very late, such as in Kepler’s
work.
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On the one hand, Euclid’s ‘Optics’ is extremely primitive in comparison to
nowadays’ view; on the other hand, it contains a great scientific concept,
which again – as almost always is the case in Euclid’s work – is only demon-
strated by example. Clearly, those people who he could not personally in-
troduce to his intellectual world did not grasp his idea. By means of many
geometrical, mostly very elementary examples, Euclid showed what conclu-
sions we can and cannot draw from the immediately observable (in this case,
the angles of vision) of the observed by mathematical means (Problem 2.3.5).
Hereby, he leaves no doubt that he first devised this idea as a geometrical
auxiliary science for astronomy. Aristarchus of Samos’s clever conclusions (cf.
2.4.1) agree here, and the biographical data of both open the possibility that
Aristarchus may have been Euclid’s direct student. (More details on Euclid’s
‘Optics’ are in [Schreiber 1995].)

The text ‘On divisions on figures’ has only been passed on in an Arabic ver-
sion, which features all 36 problems, but only four solutions to the problems
of actual interest (also see Problem 2.3.3). They address the issue of “cut-
ting” certain elementary geometric figures in given area ratios by means of
straight incisions, which satisfy certain side conditions (e.g., run through a
given point). Some of these problems are highly suitable for understanding
the systematically taught geometrical algebra, as described in Book II of ‘El-
ements’, and can be used to find a solution with compass and straightedge by
means of analysis and synthesis in a manner analogous to the later Cartesian
coordinate method. Other problems require a clever trick and, to a degree,
are only presented to demonstrate this trick (Problem 2.3.4). All these to-
gether do not really carry any practical meaning, which is why it is even more
astonishing that they belonged to the standard content of texts on practical
geometry (art of land surveying and similar uses) over the centuries. (More
details are in [Schreiber 1987a], [Schreiber 1994].)

The script ‘Porisms’ belongs to those that were lost. We know of its existence
and some of its content due to reports written by Pappus and Proclus. How-
ever, its actual importance as well as the meaning of the word ‘porism’ is
largely unclear despite many attempts to reconstruct it by renowned math-
ematicians (including Fermat and Chasles). Pappus’s description in Book
VII of his ‘Synagogue’ or ‘Collection’ suggests that ‘Porisms’, amongst oth-
ers, basically contained Desargues’ theorem, though in a peculiar dynamic
wording:

Given six points A,B,C, P,Q,R of which P,Q,R;A,B, P as well as
B,C,Q and A,C,R each are located on a mutual straight line, we
fixate P,Q,R and move A and B along two straight lines, then C
moves on a straight line (illus. 2.3.10).

We could conclude from this that Euclid’s ‘Porisms’ intended to grasp some-
thing like functional relations by means of geometrical figures by fixating
some parts of the figure (we would call them parameters) and subjecting
other parts (we would call them independent variables) to arbitrary change.
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Illus. 2.3.10 Desargues’ theorem in Euclid’s and Pappus’s version

The manner of the reaction of the remaining parts of the figure (dependent
variables) is expressed as a type of proposition. However, we know far too
little about the original content to construct this hypothesis wholeheartedly.
Pappus had already joined different Euclidean theorems together to form one
and then generalised them, which is why it is hard to distinguish between his
additions and Euclid’s intention.

2.4 Era of Alexandria (Hellenistic era)

Alexander the Great (356–323) was tutored by Aristotle, and as general of the
League of Corinth, took on the Persian wars, occupied Asia Minor, subdued
Syria, Egypt and Palestine, conquered Babylon and Persia and advanced as
far as India. As a result, countless cities were founded. The foundation of
Alexandria in 332/331 at the west border of the Nile delta was of crucial
importance for the development of science and mathematics. From 304 until
30BC, the government of the Ptolemaic dynasty of Macedonian origin was
located in this city. The famous Library of Alexandria, the most influen-
tial of ancient times, was attached to the Musaeum there, in which artists
and scholars lived and worked together. There, scientists had access to and
based their work on hundreds of thousands of scrolls, which covered almost
the entirety of literature written until then. Thus, it is not surprising that,
within the history of science, we also speak of the era of Alexandria in ad-
dition to using “Hellenistic era” (derived from the process of Hellenisation,
the development of a unified culture with Greek as their world language).
Its golden era lasted approximately until the middle of the 2nd century BC;
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the following decline of science at the end of Antiquity was enlightened only
occasionally by remarkable individual accomplishments. Nonetheless, Alexan-
dria remained attractive to students for a long time. Euclid is likely to have
worked at the Library of Alexandria, the director of which, amongst others,
was Eratosthenes of Cyrene (276?–194?), who accomplished an astonishingly
accurate determination of the circumference of the Earth based on an arc
measurement between Alexandria and Syene (Aswan) and was Archimedes’
contemporary, living approximately one generation after Apollonius. Euclid,
Archimedes and Apollonius form an outstanding triad of the golden era of
Greek mathematics. The work of Aristarchus falls in the time between Eu-
clid and Archimedes. Aristarchus is known as the first astronomer, having
founded the heliocentric model. In the 16th century, Copernicus referred to
this ancient predecessor, who also deserves to be mentioned in the history of
geometry.

2.4.1 Aristarchus

Aristarchus’s treatise ‘On the sizes and distances of the sun and the moon’
starts when exactly 50% of the part of the moon’s surface that is turned
towards Earth is illuminated by the sun. Hereby, the midpoints of the three
celestial bodies – sun, moon, and Earth – form a triangle with a right angle

Illus. 2.4.1 Old Alexandria in ancient times (c. 30BC until first century AD)
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Illus. 2.4.2 Sphinx and column of Pompeius in Alexandria, city with the major
bibliotheca of Antiquity and many scholars. The column is called after Pompeius
because his grave was supposed to be here. After an inscript at the socle it was

probably erected by the Roman Emperor Diocletian

[Photo: H.-W. Alten]

at the centre of the moon. Aristarchus assumed that the acute angle of this
triangle, located at the Earth (in this time very hard to measure exactly),
is 87◦ (in reality 89◦50′). During a lunar eclipse, he observed that the di-
ameter of the moon was half of the shadow of the Earth at this distance.
(The vanishing of the moon in the shadow of the Earth took the same time
as its total invisibility.) Aristarchus’s further considerations follow the model
of Euclid’s ‘Optics’ in regards to composition and precision. Beyond these
aspects the text evokes further interest since it basically addressed trigono-
metric ratios. He systematically estimated these ratios, as did Archimedes
in a similar manner later when measuring the circle. Aristarchus used two
theorems:

1. If α is the arc measure for an angle of α < π
2 , then the ration sin α

α

decreases and ratio tan α
α

increases, while α rises from 0 until π
2 .

2. If β is the arc measure for a second angle of β < π
2 and α > β, then:

sin α

sin β
<

α

β
<

tan α

tan β
. (2.4.1)
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Illus. 2.4.3 Aristarchus of Samos a Greek atronomer and mathematician (Statue
Aristoteles-University, Thessaloniki) [Photo: Dr. Manuel, 2005]; Eratosthenes of
Cyrene, mathematician geograph, astronomer, poet, director of the famous Library

of Alexandria

Based on this, he proved:

1. The distance between Earth and sun is greater than 18 times, but smaller
than 20 times, of the distance from Earth to moon.

2. The diameter of the sun relates to the diameter of the moon in the same
manner.

3. The ratio of the diameter of the sun to the diameter of the Earth is
greater than 19 : 3, but smaller than 43 : 6.

Even though the used values of the observations do not reflect the real ratios,
as we know today, we must admire the ingenuity with which Aristarchus
developed and executed his method (more details in Problem 2.4.1).
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2.4.2 Archimedes

Archimedes (287?–212), who was of noble descent, grew up in the seaport
town of Syracuse, which was founded by the Corinthians at the eastern shore
of Sicily about 733BC. The Syracusans had to defend themselves multiple
times against Carthaginian attacks. Archimedes was the son of an astronomer
and is said to have studied in Alexandria before returning to his hometown.
Apart from mathematics, he focused on mechanics, optics, hydrostatics and
engineering (Illus. 2.4.4).

Illus. 2.4.4 Archimedes sets fire with parabolic mirror on Roman ships. (Copper-
plate print at the title page of the Latin edition of Thesaurus opticus by Alhacen)
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He is said to have crucially contributed to the two-year-long defence of his
town against the Roman occupation during the second Punic war by means
of constructing especially effective weapons. Contrary to General Marcellus’s
order, Archimedes was slain as an old man by a Roman soldier when Syra-
cuse was conquered in 212BC. According to the legendary tradition, this
happened when he was busy drawing a geometrical figure and shouted to the
approaching Roman soldier: “Do not disturb my circles!” (Illus. 2.4.5)

Perhaps Archimedes’ most genius accomplishment lies within shaping the
prehistory of infinitesimal mathematics. In a text devoted to Eratosthenes
on the ‘method’, which was only rediscovered in 1906 in a duplicate from the
10th century, he explains heuristic methods to determine areas and volumes
based on mechanic considerations. (The duplicate is a so-called palimpsest,
i.e., a manuscript parchment, the text of which was washed off and newly
written over in the 13th century. Fortunately, it was still possible to iden-
tify Archimedes’ original text. This unique manuscript was purchased at a
spectacular auction on 29 October 1998 for an astonishing two million US
Dollars! [Archimedes d]). It was examined again with modern methods at
Walters Art Museum in Baltimore and shown there in an exhibition. Parts
of the palimpsest were presented in an exhibition called “The Archimedes
code” in the Roemer- and Pelizaeus-Museum at Hildesheim, Germany 2012
(see [Netz/Noel 2007] and Illus. 2.4.6).

Illus. 2.4.5 Death of Archimedes (Mosaic, Municipal Gallery Francfort)
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Illus. 2.4.6 One page of the Archimedes Palimpsest after preparation and exami-
nation at Walters Art Museum, Baltimore

[Archimedes exhibition in Roemer- und Pelizaeus-Museum, Hildesheim 2012,
Walters Art Museum Baltimore, Photo: Wesemüller-Kock]

On the last folio of the palimpsest Archimedes started his treatise called
‘stomachion’. It contains the introduction to a combinatorial problem: What
is the number of different possibilities to arrange 14 pieces of geometric shape
within the canonical “stomachion puzzle” (see Illus. 2.4.7) to a square?
In this only preserved folio of the ‘stomachion’ Archimedes supposed the
sought number of possibilities may be very great. He started with a sim-
ple proposition and the beginning of a second as preliminary practice. Un-
fortunately nothing is delivered about real mathematical calculation on the
problem because the following folios were lost.

With the modern trick of “pseudo-colour-pictures” the damaged and mouldy
text of the preserved folio could be read and the problem was solved after-
wards with two methods: with a special computer program by Bill Cutler
from Illinois and by mathematicians with ‘pencil and paper’ by rotating or
substituting some of the 14 pieces or combinations of them within the square.
The exact number of possibilities is 17 152! Thus the ‘stomachion’ can be
looked upon as the first example of combinatorics or as a very difficult prob-
lem of geometry.
The name ‘stomachion’ was probably given to the problem because studying
it caused stomachache (see [Netz/Noel 2007]).
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Illus. 2.4.7 The so-called Stomachion of Archimedes in its canonical form

[Roemer-Pelizaeus Museum, Hildesheim]

Geometry as such was not Archimedes’ focus, but took on an indispensible
auxiliary function when investigating infinitesimal problems (e.g., squaring
the parabola). The only text of his that was entirely dedicated to geome-
try dealing with semi-regular polyhedra – was lost. His treatise ‘On spirals’
[Archimedes c] serves as an example of how Archimedes used geometrical
considerations in his research. Archimedes dedicated this particular work to
the mathematician Dositheus. Hereby, his introduction was written as a letter
to Dositheus and referred to other works and proofs that had been commu-
nicated previously (cf. extract in Appendix A. 2, p. 566).

Then Archimedes continued as follows:

“After these came the following propositions about the spiral, which are as it
were another sort of problem having nothing in common with the foregoing;
and I have written out the proofs of them for you in this book. They are as
follows. If a straight line [ray] of which one extremity remains fixed be made
to revolve at a uniform rate in a plane until it returns to the position from
which it started, and if, at the same time as the straight line revolves, a point
move at a uniform rate along the straight line, starting from the fixed ex-
tremity, the point will describe a spiral in the plane. I say then that the area
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bounded by the spiral and the straight line which had returned to the position
from which it started is a third part of the circle described with the fixed point
as centre and with radius the length traversed by the point along the straight
line during the one revolution... .” [Archimedes a, p. 153f]

We first observe that Archimedes defined the spiral (nowadays named after
him) based on geometrical movements as a combination of a revolving and a
linear movement; it is impossible to construct this “mechanically” generated
movement with compass and straightedge. Then we notice that the quoted
sentence by him should be ascribed to integral calculus. So if we translate
the definition into the equation

r = aΦ, (2.4.2)

he seems to claim the following (since an infinitesimal part of the area in
polar coordinates has the quantity of 1

2r · rdΦ as a triangle):∫ 2π

0

1

2
a2Φ2dΦ =

4

3
π3a2. (2.4.3)

After one rotation, the fixed extremity of the ray has the distance 2aπ
from the centre. Hence, the whole circle has an area of 4π3a2, which proves
Archimedes’ claim.

Illus. 2.4.8 Regarding the calculation of the Area A under the spiral; l.: Area A,
r.: division of circle and spiral in n parts

Archimedes also studied the tangents of the spiral (cf. Problem 2.4.2). If we
draw a straight line perpendicularly to a position vector r = OP through
centre O and imagine drawing tangent t = PT in curve point P , whereby T
shall be its intersection with this straight line, then line segment PT is called

polar subtangent st. Archimedes proved that st =
r2

a
.
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Illus. 2.4.9 Regarding the trisection of an angle by Archimedes

Arabic tradition also ascribes two further accomplishments to Archimedes,
which cast an interesting light on his mechanically-oriented mathematical ap-
proach to thinking. In both cases we are dealing with the applied version of
an intuitive intermediate value principle for continuous insertions, referred to
as neusis by the Greeks. When trisecting an acute angle ABC (Illus. 2.4.9),
we need to position a straightedge, on which a line segment of length AB is
marked, in a manner so that it passes through C and, thereby, cuts out line
segment DE of marked length AB between the straight line AB extended in
direction of BF and circle ACF . It is easy to see that angle FDE forms the
third part of angle ABC. The argument, which is not explicitly stated in the
Arabic text, for the possibility of such a position of the straightedge is based
on the fact that the applicable section between line AB and circle ACF in-
creases monotonously and continuously from zero to infinity when gradually
turning up the straightedge around point C from the initial position CF un-
til it has reached the position parallel to AB. Consequently, there must be a
position (which is easy to find by drawing) in which it has the exact length
BC = AB. In contrast, Archimedes’ solution to construct a regular heptagon
is also based on an argument of continuity, but cannot really practically be
executed by means of drawing, since it concerns locating a position in which
both triangles have the same area by turning a straight line around a point,
whereby a certain triangle decreases and a certain other one increases si-
multaneously [Scriba 1992] [Archimedes/Schreiber 2009]. Both problems are,
as known since the 19th century, not resolvable by means of compass and
straightedge.

2.4.3 Apollonius

Apollonius of Perga (260?–190?) is almost an entire generation younger. He
also studied in Alexandria, taught by Euclid’s successors, and worked there
for a long time. As mentioned before, Apollonius’s theory on conic sections
pushed older texts aside. Only the first four books (chapters) have been
passed on in Greek, three further ones in Arabic translation, while the last one
has not been preserved. In contrast to Euclid, Apollonius followed Archimedes
by laying out his intentions in prefaces in each of the individual books. The
text starts with a letter addressed to Eudemus:
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Illus. 2.4.10 Cicero discovers the tomb of Archimedes

[Oil painting, Benjamin West 1797, Yale University Art Gallery]

“If you are in good health and circumstances are in other respects as you
wish, it is well; I too am tolerably well. When I was with you in Pergamum, I
observed that you were eager to become acquainted with my work in conics;
therefore I send you the first book which I have corrected, and the remaining
books I will forward when I have finished them to my satisfaction. I daresay
you have not forgotten my telling you that I undertook the investigation of
this subject at the request of Naucrates, the geometer at the time when he
came to Alexandria and stayed with me, and that, after working it out in
eight books, I communicated them to him at once, somewhat too hurriedly,
without a thorough revision (as he was on the point of sailing), but putting
down all that occurred to me, with the intention of returning to them later.
Wherefore I now take the opportunity of publishing each portion from time
to time, as it is gradually corrected...

Now of the eight books the first four form an elementary introduction...
(An overview of each book is given.) The rest [of the books] are more by
way of surplusage... . When all the books are published it will of course be
open to those who read them to judge as they individually please. Farewell.”
[Apollonius/Heath 1896, 1961]

In letters accompanying later books, Apollonius partially provides more de-
tails on the prehistory of the addressed topics and notes which parts reflect
results of his own research. Apollonius’s work differs greatly compared to his
predecessors in regards to the generality with which he phrases and proves
theorems in ‘Conics’. He purposely follows Euclid by systematically establish-
ing the basics of the entire theory of conic sections in the first four books
before turning towards more specialised problems in the second part.
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Apollonius generated all the different conic sections by means of a single
oblique circular cone (in case of a hyperbola, this cone was extended beyond
the apex to generate a double cone), by making the even cuts under varying
angles. As seen, Aristaeus had obtained the curves by means of perpendicular
cuts applied to three different circular cones. Thereby, Apollonius discussed
the geometrical relations, which we nowadays would extract from the vertex
equation of the conic sections (constant r = latus rectum, t = latus transver-
sum):

y2 = rx(1± x

t
). (2.4.4)

From this we can derive the names of the conic section, which are still custom-
ary nowadays: if the second member is missing on the right side, we would be
dealing with a parabola (from the Greek meaning ‘equality’); if this member
turns out to be positive, we would be dealing with a hyperbola (from the
Greek meaning ‘surplus’); if it is negative, we obtain an ellipse (from the
Greek “elleipsis” meaning ‘deficit’ or ‘fault’).

Illus. 2.4.11 Perga, metropolis of Pamphylia in Antiquity. Row of columns round
the ‘agora’ (market place). View through the southern gate of the city-wall at the
two round towers of the ‘Hellenistic Gate’. It was here that Apollonius lived and

worked [Photo: H.-W. Alten]
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Worded in this manner, we can afterwards interpret these three relations as
coordinates of the three (not degenerate) conic sections in an oblique coor-
dinate system, as introduced by Descartes in the 17th century. The axes of
this coordinate system are formed by one of the diameters and the tangent
in the intersection with the conic section. Whereas Archimedes had defined
conic section equations as ratio equations, Apollonius – as well as Menaech-
mus – used the tradition of establishment of area as described in Euclid’s
second book. Having obtained a characteristic relation (symptom) for each
conic section curve, Apollonius did not need the stereometric origin anymore.
Properties of tangents and asymptotes, the harmonic properties of pole and
polar and relations of foci of conic sections became the subject of further in-
vestigations. Since Apollonius distinguished between the hyperbolae made of
a branch and two hyperbolae “belonging together”, and did not include the
circle within his definition of ellipse, he, for instance, phrased a proposition
that comes close to that of pole and polar, as follows:

If we draw a straight line through the intersection of two tangents of
a conic section, a circle or two together belonging hyperbolae, which
intersect the curve in two points, the line segment, which lies on that
curve between these two points, is divided by the connecting line of
the osculation points of the tangent and the tangent intersection in an
equal ratio.2

In contrast to Euclid’s ‘Elements’, which also formed the basis of geometrical
teaching during the Middle Ages until well into the modern era (of course,
often just in extracts), Apollonius’s ‘Conics’ was only taught in the Islamic
area. It first gained more significance in Western Europe in the 17th century
after Kepler had recognised the ellipse as the true orbit of planets around
the sun and Newton had deducted this orbit shape from the general law of
gravity.

Apollonius is author of a series of further texts, of which, however, only
“Cutting of a ratio” has been preserved in an Arabic translation. Different
treatises on sections deal with properties of projective point ranges, others
with neusis constructions. He also investigated the following problem, which
has been named after him: given three circles in a plane or their degeneracy to
points or straight lines (seen as circles with infinite radius), construct those
circles with compass and straightedge, which touch all the given ones (cf.
Problem 2.4.3).

In some of his contributions, Apollonius followed up on Archimedes’ works,
e.g., when investigating the concave mirror (geometrical optics) and regu-

2 Stated in a modern fashion, this means: If P and Q are osculation points of two
tangents on a conic section, T is its intersection, R′ is nearest to T,R is the other
intersection of a straight line through T , which intersects the conic section twice,
and S is the intersection of the straight line through T with the straight lines PQ,
then the line segment R′R through S and T is divided internally and externally in
an equal ratio, i.e. divided harmonically: RS : SR′ = RT : TR′.
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lar solids (as we have seen, Archimedes had dealt with semi-regular ones).
Here, he succeeded in delivering the proof that the surface areas of regular
dodecahedra and icosahedra, which are inscribed into the same sphere, have
the same ratio as their volumes. Hypsicles of Alexandria (approx. 180BC)
included this result in his work on regular polyhedra which was attached to
Euclid’s ‘Elements’ as Book XIV.

2.5 Late Antiquity, Rome and Byzantium

After these three great theorists, Euclid, Archimedes and Apollonius, no more
mathematicians of comparable significance followed during the Hellenistic
era. Besides, neither Rome in the west nor Byzantium in the east, which
superseded this era, is known for any comparably famous mathematician.
Therefore, it seems to be justified to summarise the time from the middle of
the 2nd century BC until the ruin of the Roman Empire during the migration
period (3rd to 6th century AD). Finally, we will look at the late prosperity of
mathematics in Byzantium, which lasted from approx. the 10th until the 14th

century, since in regards to content, it developed in close relation to Greek
mathematics, which is also due to linguistic reasons.

Illus. 2.5.1 Statue of Ptolemy II. in front of the new library of Alexandria. The old
famous library was founded by Ptolemy I. in the 3rd century BC. Nothing remained

of the ancient building after being damaged or destroyed by several fires

[Photo: K.A. Gottwald]
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146BC Romans destroy
Carthage and subdue
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2.5.1 Hero

Hero was a mathematician and technician of whom we know very little. He
is said to have lived anytime between 150BC and 200AD (or even a little
later). Nowadays, he is assumed to have worked in Alexandria at the end
of the 1st century AD. As with Archimedes, he was also active within the
area of mechanics and mathematics. However, his interest in the latter was
preferably due to practical aspects. Hence, any comparison to the brilliant
theorist Archimedes would be absolutely inappropriate. In fact, he focussed
on encyclopaedic work, thereby following the ambition of his era to collect
and preserve the classical legacy. Many of his texts and lectures were widely
spread and often heavily revised. This was not just due to the fact that his
works centred on applications common in his era.

Hero did not just follow up on the classical tradition (e.g., Euclid’s ‘Elements’
and multiple texts of Archimedes), but also on the Babylonian–Egyptian
tradition, whereby he adopted or further developed some only approximately
valid methods. He replaced many indirect Euclidean proofs with direct ones
in a commentary on Euclid (partially known from references in Arabic texts).

His work ‘Metrica’ (the Greek text was rediscovered at the end of the 19th

century) was primarily addressed to applied scientists and deals with approxi-
mation formulae apart from many constructing and measuring instructions of
plane and spatial figures, e.g., to calculate square and cubic roots. The third
book (chapter) focuses on dividing areas and solids according to prescribed
ratios including Archimedes’ approach to dividing a sphere.

Nowadays, we still associate Hero’s formula of calculating the area of a tri-
angle with Hero’s name. If three sides a, b, c of any triangle are given, it is
possible to calculate the area A of the triangle by means of the auxiliary
variable s = 1

2
(a+ b+ c) without having to calculate one of its heights first:

A =
√

s(s− a)(s− b)(s− c) (2.5.1)

Although named after Hero, Archimedes already knew this formula according
to Hero’s proof (cf. Problem 2.5.1). As shown by Illus. 2.5.2, Hero made use
of the incircle of the triangle (radius r): the three line segments drawn from
the corners to the centre divide the triangle into three smaller triangles of
height r. Inserting two right-angled triangles makes calculating r possible.
Apart from the two figures, only the text block about Hero’s formula forms
part of the displayed page; the remainder are marginalia of a reader, who also
writes in Greek. They hint at how much the reader struggled when trying to
comprehend the proof. It was unusual for that time that Hero worked with
the product of four lengths (to be more precise: the product of two areas)
when proving his formula. This enabled him to first calculate the square of the
wanted triangle area without interference from square roots calculation. Hero
missed citing all required Euclidean lemmas in this case. So, for instance, the
writer of the manuscript (Illus. 2.5.2) did not immediately realise that the
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Illus. 2.5.2 Manuscript page of Hero’s ‘Metrica’ containing the proof of Hero’s
formula: Codex Constantinopolitanus Palatii Veteris No. 1 (11th/12th century),

folio 71v.
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connecting lines of the corners and the centre of the inscribed circle equal the
bisecting lines of the angles! He was further fooled by the thought that both
figures seemed to refer to a special case: a right-angled and isosceles triangle
instead of the general case.

2.5.2 Pappus

Pappus, who was significant for the tradition of history, worked in Alexandria
around 320, during late Antiquity next to other mathematicians, who dealt
more with other branches of mathematics (e.g., the number theorist Diophan-
tus, who was probably active in Alexandria around 250) and the founders of
trigonometry, which we will look at further on. He belonged to the circle of
the neo-Platonists. Pappus’s ‘Collections’ is a collective work in eight books;
all of them have been preserved apart from the first and the appendix of
the second. In the early modern ages, European mathematicians found a lot
of inspiration in ‘Collections’, as it contains many extracts from (partially
conserved, partially lost) texts by Euclid, Apollonius, Archimedes and other
mathematicians. Pappus expanded these extracts, critically commented on
them, and made his own remarkable additions.

He added theorems on projective figures, remarks on extreme value prob-
lems, and the so-called Guldinus theorem, or Pappus’s centroid theorem for
solids of revolution (published by Paul Guldin in 1641!). Pappus phrased
this theorem with a generality that was very rare during Antiquity and he
himself remarked: “These propositions, which are practically a single one,
contain many theorems of all kinds for curves and surfaces and solids, all at
once and by one proof (...).” [Pappus/Jones 1986]. He also summarised and
generalised a lost work by Apollonius on the division of two, three or four
straight lines into given ratios by another straight line through a given point.
Whereas Apollonius discussed the problem for three or four straight lines,
Pappus extended the investigation to any n straight lines, a problem that
challenged several mathematicians to study it in the 17th century.

2.5.3 Proclus

Among all the numerous collective and commenting literature composed dur-
ing late Antiquity, we will also mention the detailed commentary of Proclus
Diadochus (410–485) on Book I of Euclid’s ‘Elements’. Having studied in
Alexandria, Proclus became head of the academy in Athens and wrote com-
mentaries on a series of Plato’s dialogues. He opened his commentary on Eu-
clid with an explanation of the neo-Platonic philosophy of mathematics. Yet,
amongst all other things, his numerous valuable historical remarks, which he
included in his commentary on Euclid, became most important for poster-
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ity. (They mainly refer to the lost works by Eudemus and Geminus.) Proclus
engaged thoroughly with the principles of geometry, discussed the relation be-
tween postulates, axioms and hypotheses, explained the difference between
theorems and problems, and debated the structures of the proofs and termi-
nology. In the one instance in which he attempted to go beyond Euclid, he
intended to prove the parallel postulate after he had rejected an attempt of
proof by Ptolemy. It is unclear if Proclus also composed commentaries on
the other books of ‘Elements’ as he had intended.

We will discuss three more topics in this section: the origins of trigonometry,
the texts of the Roman surveyors, and the Byzantine accomplishments after
the turn of the millennium.

2.5.4 Chord geometry

Trigonometry was thought of as belonging to astronomy until Copernicus
(1473–1543). Accordingly, it is addressed in astronomical works. The first in-
dependent textbook on trigonometry was written by Regiomontanus around
1464. However, it was only published posthumously almost 70 years later
(1533). We have already been introduced to the first elements in pre-Greek
mathematics. Stating the rebound in order to mark the inclination of a plane
surface (e.g., of a pyramid) is core to a tangent function. Hereby, we must, of
course, consider that the Babylonians expressed both necessary indicated di-
mensions (magnitude of rebound at given height difference) in different units
and that they did not combine them to a common superordinate concept as
reflected by the tangent function. Their ambition to grasp a circle segment by
chord and sagitta can also be ascribed to a pre-stage of trigonometry, since
plane trigonometry was based on the circle and the study of the relations of
the circle chords before the sine and tangent function were introduced. (For
this reason, it is also better to speak of chord geometry and to reserve the
notion ‘trigonometry’ for the branch of geometry that applies to right-angled
triangles, including their side ratios, i.e., the trigonometric functions.)

Calculating with semi-chords, which commonly known angle functions are
based on, is more convenient than using chords. We will look at these in sec-
tion 3.4.4 when addressing Indian geometry, since they were first introduced
in India. The traditional Greek literature does not mention them. After the
sine function had been well spread across and beyond India, those rather
incomprehensible chord calculations disappeared from mathematics.

However, in order to understand chord geometry a little better, it is useful
first to clarify the relation between chord and sine (Illus. 2.5.3). If we draw
chord c to the angle α at centre in a circle of radius r, half the chord c

2 divided
by r is the sine of α

2 . If we employ the commonly used abbreviation ‘crd’ for
chord (Latin: chorda, corda), then: sinα

2 = s
2 : r = s

2r . As a result:

c = crdα = 2r · sinα
2
. (2.5.2)
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Illus. 2.5.3 The relation between chord and sine geometry

2.5.5 Ptolemy

We know that the astronomer Hipparchus calculated a table of chords in the
2nd century BC, which was passed on as Ptolemy’s table of chords. It forms
part of his astronomical main work “Mathēmatikē Syntaxis”, also called “Me-
galē Syntaxis” (the mathematical/great collection), which was the leading
astronomical textbook until Copernicus. It is better known under the Arabic
title “Almagest”.

When publishing this table and its calculations, Claudius Ptolemy (ca. 100–
ca. 160), who also worked in Alexandria, made a note that he would only
contribute the smallest possible amount of theorems required, all of which
were previously known. Based on the calculation of the side lengths of the
first regular polygons in a circle, he aimed to obtain the chord values with a
distance of each half a degree to the next. Thereby, he assumed the length
of the diameter to be 120 parts (partes = p) in order to avoid too small
sexagesimal fractions, since Ptolemy also used the sexagesimal system, as
was customary within astronomy since the Babylonians. This method deliv-
ered the chords for the following regular polygons with n edges by means of
elementary geometrical considerations:

n 3 4 5 6 8 10 12
Φ 120◦ 90◦ 72◦ 60◦ 45◦ 36◦ 30◦

By means of his chord theorem (an equivalent for the subtraction formula
of the sine function: cf. Problem 2.5.2) he could calculate the chord of 12◦,

from which he obtained the chord of 11
2

0
by means of repeated halving. After

remarking, that an exact construction of the angle 10 is impossible, Ptolemy

derives an approximate value for the chord of 10 from the chords of 1 1
2

0
and

3
4

0
which is sufficient for any practical use.
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Illus. 2.5.4 Ptolemy observing the constellation of stars (from Gregor Reisch:
Margarita Philosophica ca. 1503, edition Straßburg 1504). It was normal to show
Ptolemy with a crown until the Renaissance because it was assumed that he was
a member of the ruling family of Ptolemean Egypt. The personified astronomy
goes back to the Egyptian tradition of wall painting whereby the priest was always
assisted by a goddess behind him (invisible for the people) when constructing the

foundation of a temple or executing other holy acts
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Accordingly, Ptolemy cites the relevant theorem as follows:

If we draw two unequal chords in a circle, then the ratio of the greater
chord to the smaller chord is smaller than the ratio of the arc on the
greater chord to the arc on the smaller chord.

In other words, since it is not possible to construct the angle trisection ele-
mentarily, Ptolemy used here the linear interpolation in order to finally obtain
the chord of 1◦. He found: crd.1◦ = 1p2′12′′ (written in sexagesimal). In his

table, he stated the lengths of the chords for angles between 1
2

0
and 180◦

in half a degree intervals, which corresponds to a sine table with an angle
difference of 15’ (see Problem 2.5.2).

As the reader will have noticed, Ptolemy had obtained the chord of 12◦ from
the chords of 72◦ and 60◦, i.e., from the sides of a regular pentagon and
hexagon. His construction of the side of the regular pentagon is of interest in
this respect (see Problem 2.5.3), since it differed from Euclid’s.

Around 370, Theon of Alexandria composed a commentary on the first two
books of ‘Almagest’. Thereby, he was supported by his educated daughter
Hypatia, as he himself mentioned. Hypatia, who also lectured at the Musaeum
of Alexandria, was famous for her education and eloquence. She is said also
to have written a commentary on Apollonius’s conic sections (as well as on
Diophantus’s Arithmetica). Unfortunately, these works have not been passed
on and Hypatia was murdered by a Christian mob in 415 because she was a
follower of neo-Platonism. Her fate has inspired some novels, tales, films and
paintings.

2.5.6 Menelaus

Next to plane trigonometry, astronomers also needed the spherical version,
since the starry sky presents itself to the observer in the shape of a sphere, so
that the simplest figure is the spherical triangle made of great circular arcs.
The first collection of theorems from this area was composed by Theodosius of
Bithynia around 100BC. The basics for spherical trigonometry were written
down then by the astronomer Menelaus, who worked in Alexandria, in his
Sphaerica around 100AD. There we find the notion and a definition of a
spherical triangle for the first time. Menelaus presented relevant theorems
in analogy to those which Euclid had phrased concerning plane triangles.
Thereby, his rule of six great circular arcs was central. However, this does
not occur in Menelaus’s work in the form of a statement about the spherical
triangle, which is intersected by a transversal (neither in Ptolemy’s work, who
also proved the proposition), but he refers to two great circular arcs ADB
and AEC (both smaller than a semi-circle), which are intersected by two
other great circular arcs DFC and BFE (also smaller than a semi-circle) in
D,B or C,E. The result is stated in a term equal to the following formula:
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sin CE

sin EA
=

sin CF

sin FD
· sin DB

sin BA
. (2.5.3)

Nowadays, we would rather relate this to a spherical triangle ADC (with an
extended side ADB), which is intersected by the great circle BEF in B,E, F
and phrase a proposition, in which the product of the three sines is equal to
the product of the three other sines (apart from the algebraic sign):

sin AE · sin CD · sin DB = sin EC · sin FD · sin BA (2.5.4)

Similar to Ptolemy’s chord theorem, simpler rules follow from the rule of six
quantities (whose application presumes the knowledge of five quantities, if we
want to calculate the 6th), if one or even more great circular arcs are greater
than 90◦. However, we leave it up to the reader to look at such special cases.

2.5.7 Sundial, analemma

The idea to link movements along spherical orbits and plane curves must
have arisen quite early, i.e., as soon as one started to observe the simplest
type of sundial, the gnomon, more closely. The Egyptians used it in the form
of an obelisk. As already mentioned, Anaximander is said to have introduced
this instrument, which he supposedly got to know in Babylon, in Greece in
the first half of the 6th century BC. If we mark the amount the shadow of the
peak of the perpendicular bar moves around during an entire day on a (plane)
base area, we obtain the picture of the daily circular arc of the course of the
sun. If we do so in regular weekly or monthly intervals, these lines also reflect
the changes of the annual course. Thus, we can also determine the time of
the solstices, the incline of the ecliptic and the geographical latitude of the
observation point. Thus, the gnomon became an indispensible instrument for
astronomers and geographers, and engaging with the relevant theory, the ori-
gin of the theory of geometrical representations, was mandatory.

In his Naturalia Historica (Natural History), Pliny describes in detail the
greatest ancient construction, the Solarium Augusti at Campus Martius in
Rome, with its 30m high obelisk. The analemma, the plane dial face, cov-
ered a field of approx. 65m by 175m. As partial excavations from some years
ago show, it contained hour lines, meridians (noon lines with day marks)
and month lines, as well as engraved zodiac names and details on the season
([Buchner 1982] cf. Illus. 2.5.5).

The geometrical-mechanical method to generate the line net on differently
inclined receiving areas of sundials under consideration of the geographical
latitude was probably developed by Eudoxus of Cnidus. Ptolemy dedicated
this problem its own text, ‘Analemma’ (only preserved in a Latin transla-
tion). His treatise ‘Planispherium’ has only been passed on in Arabic. Having
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Illus. 2.5.5 Solarium and Mausoleum of Augustus at Campus Martius in Rome
(Reconstruction) [E. Buchner, in: Archälogische Entdeckungen. Die Forschungen
des Deutschen Archälogischen Instituts im 20. Jh., Vol. II, p. 180; Illus. 202 Mainz:

Philipp von Zabern 1999]

been revised by al-Majr̄ıt̄ı in 1143, it was translated into Latin by Hermann
von Kärnten. It describes the representations of celestial circles in a plane.
Ptolemy selected the south pole of the celestial sphere to be the projection
centre and laid the plane through the equator. Regarding this representation,
the stereographical projection has introduced the most popular astronomical
instrument of the Middle Ages, the (plane) astrolabe, as well as the later dis-
plays of astronomical clocks. Since it represents circles by circles (or meridians
by straight lines), it is especially suitable for astronomical purposes.

2.5.8 Cartography

The geographers also encountered representational issues as soon as they at-
tempted to represent greater areas or even the whole Ecumene (again, their
term for the section of the inhabited world known to them). Erastothenes
is to thank for introducing the right-angled coordinate system made of par-
allel circles and meridians, which pass through fixed points (towns, whose
coordinates had been determined). He selected a circle of latitude, which
runs through the Pillars of Hercules (Gibraltar), as the centre line. Although
some aspects of this draft were criticised by astronomer Hipparchus (who
suggested observing lunar eclipses for the difficult determination of longi-
tude), the method applied by Erastothenes to allocate points on the sphere
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to their picture point in the plane has been clearly determined from a geo-
metrical perspective. The geographer Strabo (64/63BC–20AD) used this as
the foundation of a draft of a world map in a right-angled coordinate system
in ‘Geographica’, his historically-oriented encyclopaedia of mostly regional
geography.

Claudius Ptolemy’s ‘Geography’ had a similarly significant role for geograph-
ical science as his ‘Almagest’ had for astronomy, being a summary and tradi-
tion of the geographical knowledge of his era. He dealt thoroughly with the
theory of projection and criticised the use of the cylindrical projection used
by his predecessor, Marinus of Tyre (beginning in the 2nd century AD), fol-
lowing Eratosthenes due to the strong distortions near the poles. Instead, he
propagated two versions of the conic projection, which are much more suit-
able in this respect. His great catalogue is ordered according to continents
and countries and contains the longitudinal and latitudinal coordinates for
8100 locations. Hence, it provides the possibility of marking the respective
locations in any constructed coordinate system. It is not known if he himself
constructed a map according to these specifications.

Marinus had attempted to represent the Ecumene on a plane map by pro-
jecting Earth’s surface on a cylinder, which touches the globe at the equator,
whereby it generates a right-angled coordinate system. Ptolemy’s idea was
basically to equate Earth to a conical cap, which touches the globe in a circle
of latitude, lying in the approx. middle of the known inhabited zone. (Ptolemy
selected the circle of 54◦ that runs through Rhodes.) As a result, the strip of
the Earth’s surface containing this circle is hardly distorted in this represen-
tation. The meridians remain straight lines in this projection and the circles
of latitude are represented as arcs of a circle. Only the northern and south-
ern border zones are noticeably stretched in a north-south direction (Illus.
2.5.6). In order to eliminate this deficit as well, Ptolemy added a second cone
from the south opposing the cone put on top of the northern hemisphere.
This leads to a bend-over at the equator in the map representation (cf. Illus.
5.2.4).

Nonetheless, Ptolemy was not satisfied and developed a modified, mathe-
matically more challenging conic projection. The circles of latitude are again
represented as circles of an arc. This time, both circles of latitude are meant
to pass through Thule (27◦) and Aswan (66◦17′). There is also a third, which
runs through a location situated in the same distance as Meroë as a reflection
south of the equator with 106◦42′ distance to the pole. All three locations
are mapped true to scale. Thus, there are three points given for each circle of
longitude, which are connected with each other via the determined arc of a
circle. If we did not just want to map three but indeed all circles of latitude
true to scale, the circles of longitude would be transformed into transcendent
curves.

Hence, Ptolemy chose an approximation, which can be constructed with com-
pass and straightedge (cf. Illus. 2.5.6; the stereographical projection was not
considered by Ptolemy to generate maps of Earth.)
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Illus. 2.5.6 Principle of Marinus’ cylindrical projection and Ptolemy’s conic pro-
jection

Historical maps from the Renaissance, which were used for Ptolemy’s conic
projection, are displayed in section 5.2. (From a geometrical point of view, the
development of cartography since the Renaissance has been determined by
the fact that the cartographer aims to fulfil three requirements: truth in scale,
angle and area. Their incompatibility can be demonstrated mathematically
by means of differential geometry as developed in the 18th century. Thus, the
wealth of the projections used by now for producing maps is a consequence
of deciding which of these properties can be neglected in favour of another
one. Also cf. section 5.2)
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2.5.9 Agrimensores

It seems to be a widespread opinion that mathematical theory developed from
practical need. History until now has repeatedly indicated that the Greeks
adapted a lot of knowledge and practical rules from many pre-Greek cultures,
systematised all this, accounted for and joined to form a network of theories.
However, we often miss the fact that there is not just one path from practice
to theory, from prescriptions and rules to scientific textbooks. The influence
is effective in the other direction as well. However, mathematical research
has often failed to realise this. Fragments of mathematical theories can find
their way back to practice. Depending on who got hold of them first, the user
was aware of the inner correlation and the scope of validity. Otherwise, the
knowledge of the structure and the logical composition that distinguished the
theory got lost again. It is also possible that the adopted elements were only
understood partially and applied in a way that did not necessarily do justice
to the practical needs in an optimal manner.

The Roman surveyors, or agrimensores, as they were called, constitute an
example of such a transfer. (Another one is indicated by the medieval ma-
sons’ lodges and their tradition, which lasted until Albrecht Dürer; cf. Chap.
4). Cicero, reporting in De Divinatione I, 17 that Romulus had founded and
built Rome according to the rules of the art of surveying (which, as known,
is said to have taken place in 753BC), rather indicates that this profession
was highly regarded during the era of Cicero (106-43), a somewhat dubious
assertion, since, initially, different ‘professions’ were responsible for survey-
ing in the Roman Empire. Priests were in charge of surveying temple areas,
the military took care of surveying the troop camps, and architects surveyed
the construction of aqueducts. Apparently, Greek experts were called to aid
in the first empire survey ordered by Caesar (conducted 37-20BC). Because
land had to be allocated after successful Roman conquests an agrarian legis-
lation was necessary. As known, Rome has received great credit concerning
the extension of the justice system. As a result, “guardians of justice” were
required who were responsible for transfers true to scale. Such professionals
were also needed when founding new towns within the colonies.

The rank of agrimensor had only fully emerged by the end of the 1st century
AD. Their own literature also developed during this time, the gromatic texts,
named after a simple measuring tool, the groma or gruma (a surveyor’s pole),
which was further developed by Hero into an instrument of precision, the
dioptra (see Illus. 2.5.7). The specialist literature was combined as Corpus
Gromaticorum in the 3rd century.

Cassiodorus (480?–575?) colourfully described how the agrimensores pursued
their profession after he noticed that the theoretical nature of other sciences
resulted in those professors having smaller numbers of students:

“But the agrimensor is entrusted with the adjudication of a boundary dispute
that has arisen, so that there may be an end to wanton quarrelsomeness. He is
a judge, at any rate of his own art; his law-court is deserted fields; you might
think him crazy, seeing him walk along tortuous paths. If he is looking for ev-
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Illus. 2.5.7 Reconstruction a) of the Groma to determine right angles and
b) Hero’s Dioptra [O. A. W. Dilke: The Roman land surveyors. Newton Abbot,

David & Charles 1971; p. 50, 75]

idence among rough woodland and thickets, he doesn’t walk like you and me,
he chooses his own way. He explains his statements, puts his learning to the
proof, decides disputes by his own footsteps, and like a gigantic river takes ar-
eas of countryside from some and gives them to others.” [Dilke 1971, p. 45-46]

Our modern knowledge of the Roman surveyors’ geometrical skills mainly
comes from collective manuscripts, which now belong to the Herzog August
Library in Wolfenbüttel (Germany). It concerns both Codices Arcerianus A
and B (named after Johannes Arcerius, who owned them from 1566 until
1604) and the Codex Gudianus (after the manuscript collector Marquard
Gude, 1635–1689). The ‘Arcerianus’ was written in the 5th–6th century and
is, thus, the oldest completely preserved ancient mathematical manuscript.
The ‘Gudianus’ comes from the 9th century. We are dealing with duplicates
of texts in both cases, which refer to the surveyors’ or agrimensores’ work
duties.

Noteworthy authors who informed us of the details of Roman surveying were
Vitruvius (writing around Christ’s birth), the former officer Columella, who
composed twelve books on country life in approx. 65AD, Frontinus, the ar-
chitect and supervisor of water engineering and management in Rome (died
approx. 100AD), and the surveyors Hyginus and Balbus. Apart from land
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surveying, the agrimensores were also in charge of jurisdiction as far as it
concerned real estate disputes (an example can be found in Appendix A. 3,
p. 568). Consequently, the surveyors’ texts are not just simple handbooks
of applied geometry, but represent legal guidelines at the same time. For
instance, they contain a distinguished specialised terminology to refer to dif-
ferent types of fields and their borders, which goes far beyond the terms
customary in geometry to refer to plane shapes. Whereas Euclid (‘Elements’,
Book I, def. 13) defines: “A boundary is that which is an extremity of any-
thing”, the surveyor Balbus writes: “Boundary is that, until which freehold
is effective.” However, the basic elements of geometry were often introduced
based on Euclid’s or Hero’s definitions.

Here are some examples from the Wolfenbüttel Manuscript Cod. Guelf. 105
Gud. Lat. (cf. Illus. 2.5.8):

Rectum est cuius longitudinem sine latitudine metimur.
(A straight line is that which is measured as length without width.)

However, following Euclid’s first definition,

Punctum est, cuius part nulla est.
(A point is that which has no part.)

he wrote the second:

Linea autem sine latitudine longitudo.
(A line [is] breadthless length.)

Hence, a surveyor explicitly includes the practical appliance of surveying in
the definition, which would only be an interference for a theorist like Euclid.
Defining area (planum) and solid (solidum) – pay attention to the drawing
– was done analogously. Three types of lines are introduced on the following
page: straight, circular and flexible, i.e., bendable in any direction. With their
help, the most diverse of figures can be named and later calculated. The
approximation formula used by the agrimensores can in part be traced back
to the pre-Greek cultures. This applies not only to measuring methods but
also to calculation approaches. Sometimes we can also observe improvements.
For instance, when the area of a circle segment is calculated by means of chord
c and sagitta s (cf. Formula 1.2.11) according to the rule:

A =
c+ s

2
· s+ (

c

2
)2/14 (2.5.5)

The first part, which indicates the substitute of a segment by a trapezoid,
can also be found in an Egyptian papyrus (3rd century BC or earlier). The
correcting term is part of an extensive work on agriculture (64AD) by Col-
umella, which is meant to teach agriculturists basic knowledge of surveying.
Hero discussed this correction in great detail. The denominator 14 indicates
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Illus. 2.5.8 Manuscript by agrimensores

[Cod. Guelf. 105 Gud. Lat., fol. 77r: (geometrical definitions), Herzog August Li-
brary Wolfenbüttel]
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Illus. 2.5.9 Agrimensor manuscript

[Cod. Guelf. 105 Gud. Lat., fol. 99r: Layout of quadrilateral fields, Herzog August
Library Wolfenbüttel]
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the use of Archimedes’ value 22/7 for π and, thus, shows how a value ob-
tained by theoretical consideration advances into practice, even though the
applied scientist is usually not able to recognise the reasoning of the rule (cf.
Problem 2.5.4).

To conclude the section on agrimensores, we present another page from the
Gudianus (Illus. 2.5.9). It shows how rectangular fields were meant to be
constructed in front of a town wall in a plane located between sea and moun-
tains. We also want to mention some scholars from the realm of Roman
culture from the 5th to 6th century, Martianus Capella, Boethius and Cas-
siodorus. The mathematical parts of their texts, together with elementary
sections of Euclid’s ‘Elements’, constituted an essential foundation for the
medieval teaching of geometrical knowledge within the scope of the quadriv-
ium (the four mathematical sciences: arithmetics, geometry, astronomy, and
harmony or music). These will be introduced in Chap. 4.

2.5.10 Byzantium

The Alexandrian school of mathematics finally fell victim to the persecution
by the Christians, whereby – as mentioned – Hypatia lost her life in 415. The
academy of Athens was closed by Emperor Justinian I in 529 (he ruled from
527 until 565). In Constantinople (independent of Rome since the Emperor
Theodosius’s death in 395), scholars were able to work a little longer and
to continue their collecting and commenting work. The Hagia Sophia was
erected there by Anthemius of Tralles (died 534) and Isidore of Miletus, who,
after Anthemius’s death, took charge of the construction. The former wrote a
treatise on foci, in which he proved that parallel incident rays are collected by
a parabolic reflector at the focus. Thereby, he also looked for a configuration
that reflects a beam of light, which comes from the sun and enters a dimmed
room through a small hole in a manner that makes it pass through a fixed
point independent of time of day or year. Anthemius succeeded in creating a
point-by-point construction for the shape of the reflecting surface, known as
an ellipsoid. He concluded the possibility of a string construction of the ellipse
based on the properties of the ellipsoid concerning a fixed plane (constant sum
of distance of two fixed points) (see Problem 2.5.5).

The short text on platonic solids, later referred to as Book XV of ‘Elements’,
probably comes from the Byzantine mathematics of the 6th or 7th century.
Its author remains a mystery. The text consists of three parts. The first part
contains methods of how to use platonic solids to generate another platonic
solid by means of inscribing, linking edge medians and likewise. The second
part describes ratios between the numbers of edges, edges originating from a
corner, the number of edges of each face and likewise. The third part deals
with determining the angles between adjacent faces of solids.

The topics are not addressed systematically, but perfunctorily. Despite the
triviality of the content compared to the works of Euclid, Archimedes and
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Illus. 2.5.10 Emperor Justinian (Mosaic in San Vı́tale, Ravenna)

[Photo: H.-W. Alten]

Apollonius, especially the first two parts, offer approaches to combinatory
thinking, completely unheard-of in Greek mathematics until then.

Eutocius of Ascalon (born around 480), who was friends with Anthemius, is to
thank for a number of valuable commentaries on some texts from Archimedes
and Apollonius, wherein he, amongst other things, reports of solutions for
the problems of doubling the cube, which have not been passed on in other
forms. The first four books of Apollonius’s conic sections were only preserved
in their original language as a result of Eutocius’s commentary. However, this
last centre, which tried to preserve Greek mathematics, experienced a major
decline in the era of iconoclasm (726–843).

In 863, Leo the Mathematician and Philosopher became vice chancellor of the
University of Constantinople, newly founded by Bardas, after he had rejected
an offer to work at the caliph’s court in Bagdad. He made his students dupli-
cate classic philosophical and mathematical texts. A Euclidean manuscript,
which was created back then, is kept in Oxford nowadays. An Archimedes
duplicate belonging to the popes had crossed the court of the lower Italian
Normans and was studied intensively in the 16th century before being lost.
The most beautiful of all the preserved manuscripts by Ptolemy was also
duplicated in Byzantium at the time.

From the 10th until the 14th century, a thin upper class re-emerged gradually
in Constantinople who were interested in philosophical and mathematical
studies and consciously used the Greek language. The scientists were again
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Illus. 2.5.11 The Abbasid caliph al-Ma’mun sends an envoy to the Byzantine Em-
peror Theophilos (lat. Theophilus). During the Middle Ages has been an exchange

between Byzantine and Islamic science.

(unknown, 13th century, History of John Skylitzes, Biblioteca Nacional de España)

focussed on collecting, preserving and continuing the Greek legacy in this
phase of Byzantine mathematics. However, new influences were also notice-
able in this era. These were from the Latin Middle Ages, from Arabic culture
and science, and some touched on Indian calculating with digits and other
Indian methods.

Around 1050, Michael Psellos became the leading professor of the renewed
university, at which Plato’s and Aristotle’s philosophy and science were dis-
cussed and critically commented upon – last but not least by means of the
logical texts of Aristotle. Psellos joined Plato’s and Proclus’s view that math-
ematics is the link between the world of ideas and bodily objects, and simul-
taneously a means to teach students abstract thinking. The church was finally
divided (in 1054) into western and eastern Roman during his lifetime. One
and a half centuries later during the fourth crusade (1202–1204), Byzantium
was conquered and plundered by the crusaders and was ruled by the Latin
Empire until 1261.

In the 12th century, the Byzantines made first contact with Indian numbers,
as marginalia in a Euclidean manuscript show. Indian calculation is first
explained in an anonymous text from 1252; a later account was composed by
Maximus Planudes (1255?–1310). He was already living under the reign of the
Palaiologan dynasty, which began in 1261 and lasted for approx. 200 years,
constituting the actual humanistic golden age of Byzantine mathematics.
Nicolaus Rhabdas (died 1350) edited the work of Maximus Planudes in 1340
and composed a description of finger calculation in the meantime.

Theodore Metochites (1260?–1332) worked within the area of geometry.
Amongst other things, he focussed on Euclid’s Elements, and the writing
of Apollonius and Ptolemy.
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Illus. 2.5.12 Mausoleum of Galla Placidia in Ravenna. Byzantine mosaics with
stars and geometrical ornaments decorate the ceiling of the tomb built in the 5th

century for the daughter of Theodosius I (the Great), who was the last Emperor to
rule the whole Roman Empire.

[Photo: H.-W. Alten]

At the same time, Johannes Pediasimus proposed an approach to applied
geometry in Hero of Alexandria’s style. The bilingual Basilian monk Bern-
hard Barlaam (1290?–1348?) from Calabria, who, as a Byzantine messen-
ger, negotiated the reunion of the western and eastern Roman churchs with
pope Benedict XII in 1339, interpreted Book II of Euclid’s ‘Elements’ in an
arithmetic-algebraic manner. Isaak Argyros (1310?–1371) wrote scholia on
Book I to VI of ‘Elements’. Being faced with downfall after negotiations be-
tween the popes for the reunion of the church had broken apart, and with
the Turkish threat a growing menace, many scholars immigrated to Italy and
passed on their knowledge to the prospering science of the Renaissance (cf.
Chap. 5).

To finish, we must emphasize that the research on Byzantine mathematics
is by no means concluded, as many manuscripts have only recently begun
to be looked at and evaluated. Thereby, the collaboration of mathematical
historians and Byzantinists, as demonstrated excellently by Kurt Vogel and
Herbert Hunger around 1960, is crucial. An intensification of this research
would be highly desirable based on the position of Byzantine mathematics
at the intersection of the mutual influence of east and west.
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The classical problems of Greek mathematics

≈ 585BC Thales Diameter halves circle, right-angled triangle in
semi-circle

≈ 550 Pythagoras?,
Pythagoreans

Regular pentagon in circle

≈ 450 Hippasus Dodecahedra; discovery of irrational numbers
≈ 440 Hippocrates Squaring of circular moonlets; insertion of two

intermediate proportionals x, y to solve the
Delian problem

≈ 434 Anaxagoras Attempt of squaring the circle (how?)
≈ 430 Antiphon Squaring the circle by means of inscribed

polygons of 3 · 2n or 4 · 2n edges
≈ 420 Hippias Angle section by means of y

α
= Φ

π/2

≈ 410 Bryson Squaring the circle by means of inscribed and
circumscribed polygons; intermediate value
theorem

≈ 390 Archytas Insertion of two geometrical means, solved
stereometrically

≈ 380 Theaetetus Five platonic solids with circumscribed spheres
≈ 370 Eudoxus Theory of irrationalities; ‘platonic’

movement-geometrical insertion of two
geometrical means?

≈ 350 Brothers
Deimonstratus
and Menaechmus

Squaring the circle by means of Hippias’ curve
(‘Quadratrix’); construction of parabola and
hyperbola by two geometric means

≈ 330 Euclid ‘Elements’; compass and straightedge
constructions

287–212 Archimedes Squaring the circle, the parabola; sphere volume;
heptagon construction (only preserved in
Arabic); angle trisection (paper strip
construction)

≈ 240 Eratosthenes Mechanical solution for the insertion of two
median proportionals

≈ 210 Apollonius Theory of conic sections; two geometric means;
‘platonic’ solids

≈ 180 Diocles Cissoid
≈ 180 Nicomedes Conchoid (shell line)
≈ 75AD Hero Neusis construction for two geometric means
85?–165? Ptolemy Table of chords (angle trisection)
≈ 320 Pappus ‘Collections’ with historical reports
≈ 370 Theon Euclid adaptation
≈ 460 Proclus Commentary on book I of Euclid’s ‘Elements’
≈ 520 Simplicius Extracts from Eudemus (around 320BC): report

on Hippocrates’ squaring the moonlets
≈ 520 Eutocius Commentary on Archimedes ‘On the sphere and

the cylinder’: Report of the history of the Delian
problem
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2.6 Problems to 2

Problem 2.1.1: Measuring distance according to Thales

Since we cannot measure the distance of a ship at sea directly, Thales is said
to have located it once from the peak of a tower and once from the foot of
the tower. The tower represented a side of a triangle, the two sight lines the
other two sides.

a) To what extent is the geometric theorem cited above required to justify
this method?

b) Which formula for calculating the distance of a ship follows from this?

Problem 2.1.2: Versions of measuring distance according to Thales

How could Thales have determined the distance of a ship at sea, if there was
no tower high enough on the shore? (Under the condition that he knew all
theorems accredited to him, two different methods are possible.)

Problem 2.1.3: The golden ratio applied to the pentagon

As is well known, the diagonal and side of a regular pentagon stand to each
other in the golden ratio (cf. Illus. 2.1.9). Derive the square equation, which
exists between d0 and s0 and the ratio as the solution. How is its irrationality
expressed?

Problem 2.2.1: Solving the Delian problem by means of conic sections

a) Show why Hippocrates’ approach leads to the solution of doubling the
cube.

b) Sketch the three conic sections contained therein in a (x, y) – coordinate
system and determine quantities x and y.

Problem 2.2.2: Hippias’ quadratrix

a) Draw the quadratrix by constructing some points according to the rule of
motion geometry (e.g., by using a protractor or by continued halving of
line segment and angle).

b) Where exactly are the limitations of elementary geometrical construction
exceeded when using the quadratrix for division of angles?

c) Write down the equation of the quadratrix in the polar form of ρ = f(Φ).
d) The extremity of the quadratrix on the x-axis is indeterminate, since the

side that is moving downwards and the revolving side collapse in this
position. Determine the limit point of the quadratrix on the x-axis, i.e.,
it’s distance ρ from the origin (the y-coordinate equals 0 here) and verify
that it is 2

π
. (Hint: Use the rule of de l’Hospital!)

e) How can you use this result for squaring a circle?
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Problem 2.2.3: Paper strip construction for angle trisection according to
Pappus

a) Draw the figure the paper strip construction is based on, as described in
the text.

b) In order to prove that this is correct, add the auxiliary line FB and drop
the perpendicular from F to BE, whose foot shall be named G. Why does
BF now also equal OB = DF = FE? If we refer to the smaller of both
separated angles �AOD as β, then �OFB = 2β. Why? Also why does
�BOE = 2β? Consequently, α = 3β, as was meant to be proven.

Problem 2.2.4: Angle trisection by means of neusis construction according
to Archimedes

a) Add in Illus. 2.4.9 the auxiliary line BE and prove that angle FDE is the
third part of angle ABC.

b) How can we extend the basic idea of this construction to find the fifth,
seventh, ... part of a given angle by means of a suitable aid?

Problem 2.2.5: Nicomedes’ conchoid

a) Assure yourself that the polar equation ρ = f(ϕ) of the conchoid has the
following form (ϕ = �DCF ):

ρ = a+
b

cos ϕ
= a+ b sec ϕ (2.6.1)

b) What is the distance between any point P of the conchoid and the straight
line AFB (Illus. 2.2.5)?

c) Prove that this straight line is an asymptote.

Problem 2.3.1: Volume of a pyramid according to Euclid

a) Book XII, 3 of ‘Elements’ describes how any three-sided pyramid ABCD
with base G and height h is decomposed in the manner shown in Il-
lus. 2.6.1a) by cuts through the centres E,F,G,H,L,K of the edges
in two pyramids P1 = HKLD, P2 = GFCL, which are similar to
the initial pyramid, and two triangular prisms Pr1 = AEGHKL and
Pr2 = EBKGFL, of which we already know at this point that their vol-
ume is the product of base and height, so together they have the volume
of 1

4 Gh.
(Concerning Pr1,

1
4 G is the base and 1

2 h is the height. Regarding Pr2,
first imagine an affinely distorted cuboid with base 1

2 G and height 1
2 h

by means of a congruent exemplar, which is added upside down, and then
take half of this product!) Since you can proceed analogously with the
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union of both remaining pyramids, whereby we must put the factor 1
4
in

front now (as a product of 2, the quartering of the base and the halving of
the height), the modern mathematicians would conclude without a doubt
that the pyramid volume is given by an infinite series

V = G · h · (1
4
+

(
1

4

)2

+ · · ·+
(
1

4

)n

+ · · · ) (2.6.2)

Account for the formula (2.6.2) and the value 1
3
Gh of the sum of the

series.
b) Euclid’s approach to the volume formula is much more circumstantial. By

showing that the prismatic parts split off the pyramid constitute more
than half of the overall pyramid volume (Which follows from?), he first
of all indicates in Book XII, 4-5 that the volumes of three-sided pyra-
mids with equal heights act like their bases. He does so by means of an
indirect proof (similar to the approach Archimedes chose when deriving
volume formulae). Finally, Book XII, 7 demonstrates that each three-sided
pyramid ABCD adds up to an oblique triangular prism (Illus. 2.6.1b) by
means of two other three-sided pyramids DEFC and ACED, whereby
each two of these have a base and the respective height in common.

Illus. 2.6.1 Figure to problem 2.3.1

As a result, we obtain the formula for volume. The text passage in ‘El-
ements’ in which this conclusion is explicitly stated may, however, be a
later addition. Given the basic idea of XII, 7, which is not obvious at all,
the formula is, in fact, almost too trivial to be mentioned.
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c) However, there is another strange method for obtaining the volume for-
mula directly by means of decomposing the pyramid as in XII, 3. Namely,
if we presuppose that the pyramid volume is proportional to both base
and height, then we only have to determine the constant c in the for-
mula V = c G h. Then, we obtain a linear equation for the constant c
from the decomposition stated in XII, 3. The solution would be c = 1

3
[Schreiber 1994]. Establish the equation!

Problem 2.3.2: Construction of the regular dodecahedra from a cube

a) Book XIII of ‘Elements’ shows that we can obtain a regular dodecahedron
from a cube by attaching hipped roofs to the sides of the cube as shown
in Illus. 2.6.2. (This is to date the most elegant method for proving the
existence of the regular dodecahedron). Take into account that this proof
is necessary and that the existence of the regular dodecahedron is not as
self-evident as that of the regular tetrahedron and the cube.

b) If we take the edge lengths of the given cube to be a unit, any hipped roof
is determined by the two parameters x(0 < x < 1

2 ) and h(> 0). However,
these two parameters must meet the following four conditions:
1) The trapezoid of a roof must lie in a plane with the adjacent triangle

of the adjacent roof. (Transfer this into an equation for x and h!)
2) All edges of the created pentagons must be of equal length, i.e., the

roof ridge AB must be as long as edge AE from the ridge to the corner
of the cube. (Transfer this also into an equation for x and h!)

3) The pentagon angles must be equal. (If 1) and 2) are already met, it
suffices that each diagonal of type BD and each diagonal of type AC
are equal to diagonal CE, i.e., equal 1.)

Verify that the solution x, h, which has already been definitely determined
by conditions 1) and 2), also meets both conditions of 3).

c) From the described construction of the regular dodecahedra, it follows
conversely that each dodecahedron has five inscribed cubes. If we view
the regular pentagon ABCDE from Illus. 2.6.2 as the side of a regular
dodecahedron, then each of the five diagonals could take on the role of the
cube edge CE. A congruent mapping of the regular dodecahedron onto
itself is obtained i) by determining a map corner f(A) for any arbitrarily
selected corner A, ii) by choosing one of the three edges originating from
f(A) as a map edge for one of the three edges k originating from A and
iii) by choosing one of the two possible map faces for one of the faces,
which borders on the chosen edge k. Accordingly, there are 20 (number
of corners of the dodecahedron) times 3 times 2 equals 120 mappings
of the regular dodecahedron onto itself. Half of them (60) preserve the
orientation of the regular dodecahedron (These are revolutions around its
centre). This group is isomorphic to group A5 of the even permutations of
the five inscribed cubes. State a one-to-one mapping between the group
of revolutions of the dodecahedron and the group of permutations of the
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Illus. 2.6.2 Figure to problem 2.3.2

cubes, and prove that it is an isomorphism of both groups. This correlation
proved to be of great significance for the irresolvability of group S5 and,
consequently, for the Abel-Ruffini theorem regarding the insolvability of
the general equation of degree five in radicals. This shows us again how
theories and theorems of modern mathematics are often closely connected
with concepts sometimes even dating back to Euclid.

Problem 2.3.3: Division of triangles in a given area ratio

Problem 19 of Euclid’s treatise ‘On divisions of figures’ requires us to divide a
given triangle ABC in two segments of the same area by means of a straight
line, which runs through a given point D.

a) Reduce this problem down to determine a line segment, the knowledge
of which thereof enables the construction of the wanted straight line, by
means of the sides a, b, c of the given triangle and two further line segments
d, e, which characterise the position of D regarding the triangle.

b) Solve this reduced problem in an algebraic manner and conclude the re-
solvability of the problem by means of compass and straightedge.

c) Contemplate how the solution found in b) can be accomplished with com-
pass and straightedge based on Book II of ‘Elements’.
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d) Investigate (beyond Euclid), how the resolvability and the number of so-
lutions depends on the position of point D regarding the triangle (e.g.,
if D is the centre of gravity of the triangle, then there are three straight
lines of the wanted type).

e) How does everything change if, instead of halving the area, division is
required based on a different ratio? (Euclid deals with the division given
any rational ratio according to the example 1 : 3.) Does this ratio have
to suffice under any conditions (e.g., due to an arbitrarily divided line
segment) in order for the problem to remain solvable with compass and
straightedge? Advice: the historical solution to problems a) and b) can be
found in [Schreiber 1987a], the solution to d) in [Schreiber 1994].

Problem 2.3.4: Halving a triangle with an attached circle segment

Another problem (no. 28) from ‘On divisions of figures’ requires us to divide
a figure that consists of a triangle and a circle segment, which has been
outwardly attached to one of the triangle sides, into two halves of equal
area by means of a straight line, which runs through the midpoint of the
arc of the circle. Illus. 2.6.3 shows the historical solution to this problem
without a rationale. We refer those who are not able to reconstruct the rule
of construction and/or their justification to [Schreiber 1987a].

Illus. 2.6.3 Figure to problem 2.3.4

Problem 2.3.5: Apparent centre of a line segment depending on the view
of the observer

In ‘Optics’, Euclid raised the following question: from which points can you
view a line segment AC, which has been divided unequally by point B, in
a manner that makes it appear halved? The fact that there are an infinite
number of such points follows immediately from the inscribed angle theorem.
It is even possible to indicate the common visual angle α, which is meant to
appear under the section of the line segment, beforehand (Illus. 2.6.4). This
problem may be the origin of Apollonius’s theorem, since he characterised
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circles as geometrical loci of such points in a plane [Schreiber 1994]. If A,B,C
are given in this order on a straight line and we have a visual angle α under
which both line segments are meant to appear, then each of the line segments
AB and BC together with angle 2α determine a circle k1 and k2 respectively,
the peripheral angle of which concerning each chord AB and BC equals
α (Illus. 2.6.4). The wanted point P is located in the intersection of both
circles differing from B. If M refers to the homothetic centre of both circles,
thenMA : MB = MB : MC, thus MB2 = MA · MC. Consequently, M is
solely determined by A,B,C and independent of α and P , respectively. Since
we can also obtain P by reflection of B on straight line g through the centres
of both circles, PM = BM , i.e., the variable point P is always located on
the circle with centre M and radius MB (Illus. 2.6.5). In order to arrive at
this characterisation of this circle by means of A,B,C, which is expressed by
Apollonius’s theorem, we refer to AB as a, BC as b, PA as c and PC as e
(Illus. 2.6.5). According to the law of sine:

In triangle ABP a : c = sin �APB : sin�ABP,
In triangle BPC b : e = sin �BPC : sin�CBP.

The latter is equal to the sine of the adjacent angle of the triangle �ABP .
As a result, �APB = �BPC (equal in meaning to sin�APB = sin�BPC)
exactly when PA : PC = c : e = a : b. Consequently, the circle, which is
characterised as a locus of all points P with �APB = �CBP , can also be
described as the set of all points P with PA : PC = a : b (Apollonius).
Retrace these considerations!

Two further “freshly” composed problems regarding Euclid’s ‘Optics’ can be
found in [Schreiber 1995].

Illus. 2.6.4 Figure to problem 2.3.5
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Illus. 2.6.5 Figure to problem 2.3.5

Problem 2.4.1: Aristarchus of Samos (approx. 310 – approx. 230BC) re-
alised a part of the program adumbrated in Euclid’s ‘Optics’.

He calculated the real sizes and distances of objects far away by taking a
geometrical approach to analysing observed facts. The reader is asked to
prepare unifilar drawings in respect to the following considerations and to
retrace Aristarchus’s conclusions.

a) If exactly half the moon appears to be illuminated seen from Earth (“half-
moon”), moon, sun and Earth (more precisely: the observer’s exact loca-
tion on Earth) form a right-angled triangle at the moon, whose shape or
side ratios are fully determined by the visual angle, which is to be mea-
sured, between moon and sun. The practical difficulties are due to the
following:
1) It is not easy to determine the exact time of half-moon.
2) It is difficult to recognise the moon, if the sun shines simultaneously.
3) The visual angle is close to 90◦ and, consequently, small errors in mea-

surement can greatly impact the side ratios.
Aristarchus found the following for the distance ratio: Earth-sun: Earth-
moon has the lower bound 18 : 1 and the upper bound 20 : 1, thus, a
relative value much too small for the distance of the sun, although he tried
to correct this estimate by means of a mathematical trick from Euclid’s
‘Optics’.

b) Given the assumption to be observed that the moon almost completely
covers the sun during a total solar eclipse, we also obtain a value of approx.
19 : 1 for a ratio of the diameter of both celestial bodies.

c) We observe that the moon takes approx. the same time to enter the umbra
of Earth as it takes to reappear immediately afterwards on the other side
of the shadow. Accordingly, the umbra of Earth is approx. double as wide
as the diameter of the moon, where it is crossed by the moon. (Account
for this and compare it to the phenomenon of a train, which takes exactly
the same time to completely disappear in a tunnel as to reappear on the
other side!) What can we conclude here regarding the diameter of Earth
and moon under consideration of the results of a) and b)?
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d) Since the common value of the visual angle under which the sun and moon
appear is approx. 0.5 degrees (Aristarchus used a greater estimate), the
circumference of both circuits corresponds to approx. 720 diameters of
each respective celestial body. If we know (according to Erastosthenes)
an approximate value for the diameter of Earth, we also have an absolute
approximate value for the diameters and the distances of sun and moon.
Although Aristarchus obtained a value far too small for the diameter and
distance of the sun based on the angle measured in a), he arrived at the
qualitatively correct result that the sun is considerably larger than Earth.
Aristarchus concludes from this that it is highly unlikely that the huge sun
revolves around the small Earth and assumed the contrary. During the An-
tiquity, this view stood no chance against the highly superior Aristotelian
physics. However, Copernicus knew of his predecessor and mentioned him
explicitly.

Problem 2.4.2: The Archimedean spiral

a) State the subset of those points on the Archimedean spiral that can be
constructed with compass and straightedge.

b) To what extent can the Archimedean spiral be used as an aid to rectifica-
tion (extension) of the circumference and, hereby, indirectly to construct
π?

c) The trisection of any angle can also be accomplished, if we take an
Archimedean spiral as given. How do we proceed?

d) Confirm Archimedes’ result for the subtangent by means of differential
calculus. As a result, how can we obtain a rule of construction for the
tangent at the Archimedean spiral?

e) If we draw the normal n in a curve point P and bring it to the intersec-
tion (intersection shall be N) with the subtangent extended beyond O,
then line segment ON = sn is the polar subnormal. Prove that sn = a.
(Archimedes does not state this reference!) Which tangent construction
do we obtain?

Problem 2.4.3: Apollonian problem

a) In the special case, regarding Apollonius’s problem, at which the three
given circles have degenerated to points, there is exactly one circle touch-
ing the three given points. How do we locate its centre?

b) Determine the touching circles for the special case, at which two points
and a circle are given, the centre of which has the same distance from the
given points.

c) How do we have to proceed if three congruent circles are given that do
not intersect each other, the centre of which is formed by the corners of
an isosceles triangle? How many touching circles are there in this case?
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d) How do we have to proceed in the degenerated case that three straight
lines are given?

A complete elementary solution for all cases can be found in H. Begander’s ar-
ticle Das apollonische Berührungsproblem (The Apollonian problem of touch-
ing); Mathematical Student Journal alpha 1980, Issue 5, published by Volk
und Wissen.

Problem 2.5.1: Hero’s Formula

Prove Hero’s formula for area Φ of any triangle
Φ =

√
s(s− a)(s− b)(s− c) according to Hero’s model (see Illus. 2.6.6).

Draw the inscribed circle of triangle ABC (in order to maintain the agree-
ment of the figures in the manuscript, name the corners with A,B,C starting
at the top anticlockwise). Then connect its centre O with the three corners
A,B,C and drop the perpendicular from O to the three sides a, b, c, the feet of
which shall be D,E, F . As a result, the perimeter of the triangle 2s = a+b+c
is divided into 6 pairwise even parts, the lengths of which are presented by
line segments s − a, s − b, s − c, those quantities that occur next to s in the
formula that is to be proven. The following method of proof is determined by
the fact that the four quantities are represented geometrically and expressed
appropriately.

Extend the triangle side CDB beyond B by line segment AF until H. As a
result (why?): CH ·OD = Φ and, thus, Φ2 = CH2 ·OD2. Now construct the
perpendicular OL on OC (which intersects BC in K), the perpendicular BL
on BC and finally link C with L. Why do points C,O,B,L lie on one circle
now and, consequently, �COB+�CLB = 2R? Since �COB+�AOF = 2R
(why?), it follows that �AOF = �CLB. Hence, �AOF ∼ �CLB. This leads
to CH : HB = BD : DK. Now look at CH2 : (CH ·HB) = (BD ·DC) : OD2

(Why does that apply?). Now insert this in the relation Φ2 = CH2 · OD2

derived above:

⇒ CH2 ·OD2 = CH ·HB ·BD ·DC = s(s− a)(s− b)(s− c).

Problem 2.5.2: Ptolemy’s chord theorem

a) Prove Ptolemy’s chord theorem! In a closed inscribed quadrilateral of a
circle with sides a, b, c, d and diagonals e and f , we have ef = ac + bd.
(Draw the respective quadrilateral ABCD with the diagonals e = AC and
f = BD. Why are the angles �BDC and �BAC equal to each other?
Link B with a point E that is located on AC, which is chosen in a manner
that leads to�ABE ∼ �DBC. However,�ABD ∼ �EBC. Confirm that
AB ·CD = AE ·BD or respectively AD ·BC = CE ·BD, from which we
can conclude the chord theorem by means of addition.)
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Illus. 2.6.6 Figure to problem 2.5.1

b) Consider the special case in which both diagonals are simultaneously (dif-
ferent) diameter of the circle. Which proposition follows?

c) Side d shall be the diameter of a circle. Refer to the arc above f as ϕ
and to the one above a as ψ. If we introduce abbreviation s for the chord
for the sake of shortening it, so that the respective chords become s(ϕ)
and s(ψ), and if we, according to Ptolemy, set the diameter at 120p, then
s(180◦ −ψ) · s(ϕ) = s(ψ) · s(180◦ −ϕ) + s(ϕ−ψ)120p. Having introduced
the further abbreviation s(180◦ − ϕ) = c(ϕ), how does the result differ
from the difference formula of the sine function?

Problem 2.5.3: Constructing a regular pentagon according to Ptolemy

Construct the side of a regular pentagon according to Ptolemy using the unit
circle and confirm algebraically that the length is the quantity

s5 = 1
2

√
10− 2

√
5.

Draw a circle with centre O and a (horizontal) diameter AOB, construct the
perpendicular upwards from O, which intersects the circle in C. Then halve
radius OB in D. Position the compass at D and transfer line segment DC
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in line segment DE on diameter AB. As a result, E is positioned between O
and A. Hence, EB is divided by O in the ratio of golden section (Proof?).
Claimed is s5 = CE. Consequently, we just need to transfer this line segment
to the circle by means of a compass positioned in C. This way, we construct
the first side of the pentagon in the desired position.

Problem 2.5.4: Hero’s Formula for a segment of a circle

Contemplate how Hero (or whoever was the original inventor) may have found
the formula (2.5.5) for the area of the circle segment!

Problem 2.5.5: Derivation of the ellipse formula from the string construc-
tion

Derive the canonical equation for the ellipse based on the underlying relation
of the string construction stating that the sum of the connecting line segments
of a curve point and two fixed points (foci) is constant. To do so, select the
two foci F1 and F2 on the x-axis with the coordinates −e,+e. Refer to the
constant sum of the distances of the curve points P = (x, y) from them as 2a.
Also consider that the relation e2 + b2 = a2 applies to the ellipse, whereby a
is the great semi-axis, b the smaller one and e refers to linear eccentricity.
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3.0 Introduction

Before we deal with the European Middle Ages in the following chapter, we
will present an overview in this chapter of the development of geometry in the
oriental countries up to the 15th century, in Japan until the end of its seclu-
sion in 1868, and in the old American cultures. We will show that, despite
all the outstanding problems with research, it is possible to define certain
characteristics for mathematics in China, Japan, India and the Islamic coun-
tries. Nonetheless, due to the specific focus of this book – geometry – we can
only sketch general statements rather than document those characteristics by
means of extensive examples from all branches of the mathematical sciences.
Whereas Chinese and Indian mathematics developed in a long-lasting pro-
cess of domestic maturation and Japanese Wasan-mathematics experienced
a short-lived, artificial golden age almost as if under a bell jar, mathematics
in the Islamic countries was not built upon a unified, independent develop-
ment from ancient times onwards. It depended on the adaptation and further
development of calculating and measuring methods from neighbouring cul-
tures from the 8th century onwards when it began growing. They may have
been particularly open to studying Greek theoretical mathematics. As a re-
sult of diverse influences, ‘Arabic mathematics’ emerged. For instance, they
adopted the deductive method for proofs, which is characteristic and distin-
guishes them from the remaining oriental mathematical cultures.

The name ‘Arabic mathematics’ is just as unsuitable as the customary term
‘Muslim mathematics’, since not all mathematicians working under Arabic
sovereignty were necessarily Arabs or Muslims. Even if we use the adjective
‘Arabic’ to refer only to the language, we must not forget that scientific texts
were also written in the Persian language from the 10th century onwards.

The names and book titles of oriental scholars and their works are represented
differently in the literature. Hence, this chapter occasionally contains spellings
that differ from each other or details from different versions.

Due to the fact that the written documents of the old American cultures are
only sparsely preserved, we will look at the development of geometrical ele-
ments and constructions in pre-Columbian America by examining and illus-
trating remarkable examples of the cultures of the Inuit and Ojibwa hunting
civilisations in North America and the advanced Aztec and Mayan cultures
in Middle America, as well as the Incas in South America.
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3.1 China

3000–1500 Early river valley civilisations at
Huang He and Yangtze River

Approx.
2000–1500

Legendary Xia Dynasty
founded by mythical
Emperor Yu

Bronze engravings in pre-classical
language

1500–1030 Shang Dynasty First songs, sacral bronze vessels
1030–481 Zhou Dynasty Confucius (551–479) proclaims his

Ethics, Laozi (around 300) founds
Taoism

221–207 Qin Shi Huang unites
empires and becomes
first emperor

Great Wall of China (2540 km) is
built

206 BC –
220 AD

Han Dynasties Golden age of mathematics,
astronomy, philosophy and rhyming
prose

221–280 Three Kingdoms period The Sea Island Mathematical
Manual

280–618 Further decline,
different dynasties

Advances of Buddhism, temples
and convents with Buddha figures
are built

618–906 Tang Dynasty, Climax
of Chinese power

Golden age of economy and culture
(painting, verses by Li Bai, Du Fu
and Bai Juyi)

907–960 Five dynasties period
960–1278 Song Dynasties Paintings of animals and plants
1278–1368 Yuan Dynasty

(Mongolian Rule)
2nd golden age of mathematics;
blue and white procelain, lacquer
works, paintings; Marco Polo’s
travels (1271–1291)

1368–1644 Ming Dynasty Monumental buildings; Ming
Dynasty Tombs

1644–1911 Qing Dynasty French and British influences and
conflicts

1911 Proclamation of the Republic
1949 Mao Zedong proclaims People’s Republic of China
1965–1969 Culture Revolution
1976 Death of Mao Zedong
1977 Deng Xiaoping establishes China’s advance to economic

power
1997 British Crown colony Hongkong falls back to China
1999 Portugese colony Macáo falls back to China
2011 China rises to worldwide second economic power
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Illus. 3.1.1 China in Antiquity and Middle Ages

[Map: H. Wesemüller-Kock]

3.1.0 Historical introduction

Within the scope of a brief presentation on the contributions of Chinese math-
ematics to the development of geometry, it is neither possible nor wise to look
in great detail at the history (according to tradition, 4000 years long) of the
huge area China covers. It is customary to arrange it according to dynas-
ties (cf. table above). The early ages (from approx. 2000BC) are rather leg-
endary. It is said that from -600 until -300, early mathematical-astronomical
texts were composed in China, none of which, however, have been passed
on. Those old Chinese scripts, which are still known nowadays, were written
within a period of approx. 500 years, the beginning of our Christian calcula-
tion of time in Europe falls rather accurately in its middle. Hence, their age
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Illus. 3.1.2 The Chinese Wall

[Photo: H.-W. Alten]

corresponds roughly to the age of the Alexandrian Hellenistic texts from the
European cultural area. Chinese mathematics experienced a second golden
era during the 13th century, even though late works were still created in the
16th century. With the arrival of the Jesuit astronomer and mathematician
Matteo Ricci in Peking in 1601, European science started slowly to penetrate
China. As a result, the era of uninfluenced development of Chinese mathe-
matics ended at that time. Nonetheless, there was much resistance to this
during the 17th century. Only with the beginning of the second half of the
19th century, when Chinese scholars again came into intensive contact with
western science, did they begin to be open-minded toward the often strange
ways of thinking.

There is a special feature that is characteristic for both the ancient and
the medieval era of mathematics in China, namely that a certain number of
mathematical works was ennobled to canons to which later mathematicians
were required to adhere. This was possible because mathematics was mainly
taught within the scope of educating officials – China kept a strictly organised
system for officials in force. Next to the officials’ customary administrative
duties, which would be considered standard and required elementary math-
ematical skills, there were also more mathematically-challenging tasks that
were addressed by trained specialists, e.g., celestial observations and calendar
calculations by astronomers, land surveys by geodesists. As a result, in 656,
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officials finally compiled a collection of works of varying levels of difficulty
under the title ‘The Ten Computational Canons’ (or handbooks, Suanjing
Shi Shu). From then onwards, this compilation determined education and,
hence, also mathematical accomplishments in China. ‘The Ten Computa-
tional Canons’ (or parts thereof) were commented on again and again and,
thereby, supplemented and extended. Simultaneously, people were scared to
leave tradition behind with these completely newly designed books. Never-
theless, there was a wealth of Chinese mathematical literature. A catalogue
of such works created in 1936 in Peking’s libraries listed more than one thou-
sand titles. And we know only the names of many further works from the
13th century. In the 15th century, the ten classics became part of an ency-
clopaedia. However, after that it became more and more difficult to get hold
of a complete text. ‘The Ten Computational Canons’ were reprinted at the
end of the 18th century (the first known reprint circulated in 1084!), after the
original texts of the ten books had been successfully rediscovered.

We will present here the development of Chinese geometry within the scope
of its mathematical and cultural surroundings in chronological order:

a) From the beginning until the Sanguozhi era (San Kuo; the division of
China into three kingdoms between 221 and 280)

b) From the division until the beginning of the Song Dynasty (960)
c) In the midst of the Song Dynasty (960–1278), Yuan Dynasty (Mongolian

rule, 1278–1368) and Ming Dynasty (1368–1644)

3.1.1 From the beginning until the division of China into three
kingdoms between 220 and 280

Archaeological excavation showed objects of everyday use from the 13th and
12th centuries BC, such as ornaments decorated with penta-, hepta-, octa-
or nonagons. However, the regularity of these shapes does not seem to have
inspired Chinese mathematicians to further research, in contrast with Greek
and Arabic mathematicians. The case of the relations between the sides of
a right-angled triangle was different, as they apparently sparked the interest
of Chinese mathematicians just a few centuries later. However, very little
is known of these early times since the tradition of old Chinese science was
brutally interrupted by an order of the despotic ‘Yellow Emperor’ Huangdi in
213 BC. He ordered that all books were to be burned and had many scholars
executed. Following generations struggled greatly to re-obtain some of the
old texts.
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Zhou Bi Suan Jing (Chou Pei Suan Ching)

We intend to introduce here three especially important works of this era.
The oldest one is called Zhou Bi Suan Jing (Arithmetical classic of the Chou
Gnomon – Needham [Needham 1959] literally ‘The Arithmetical Classic of
the Gnomon and the Circular Paths of Heaven’). In the past, this work has
been back dated until approx. -1100. However, today we assume that it was
composed no earlier than the 4th century BC and may contain older parts
from the late 6th and 5th centuries BC [Needham 1959, p. 19, 210, 257],
[Martzloff 1997, p. 124]. Essentially, it is a book on astronomy and calen-
dar calculation, and the featured mathematics is only taught as a means
of assisting these endeavours. It deals with the dialogue form properties of
the right-angled triangle, Pythagoras’s theorem, square and circle, measuring
heights and distances, and applying the gnomon. The book presumes math-
ematical skills in fractions and extracting square roots (which are supposed
to be acquired before engaging with geometry). (Initially, the Chinese used
counting rods when counting and calculating. These rods represented either
ones, tens, or hundreds in the decimal system. Around the middle of the 14th

century, the abacus made its entrance – a ball calculator, called, in Chinese,
‘suanpan’ – and spread quickly across the whole country and beyond to Japan
and Korea. Due to its similarity to the Roman abacus, there are speculations
that the suanpan could have come to China from Europe; how is unclear.)

Deductive proofs in the Euclidean sense are missing from the ‘Arithmetical
classic of the Chou Gnomon’. Pythagoras’s theorem is demonstrated by a
method referred to as ‘the putting together of rectangles’ by using a concrete
example as means of illustration. However, this is meant to apply generally.
Summarised, the description says: Draw the right-angled triangle with the
sides 3, 4, 5, the square above the hypotenuse and add congruent triangles
(3, 4, 5) on top of the three sides, so that the hypotenuse square is fitted at
a right angle in a square of side length 7. In the enclosed figure (Illus. 3.1.3),
both squares are divided into 5 · 5 respectively 7 · 7 unit squares, by two nets
crossing each other. The inner square equals 25 unit squares; the outer one
is split into four rectangles of 3 · 4 unit squares and the central unit square
(see Illus. 3.1.3). Generally expressed this delivers the formula

c2 = 4 · ab
2

+ (a− b)2 = a2 + b2. (3.1.1)

Thus, this oldest Chinese “proof” combines a visual construction and con-
siderations that carry out implicit algebraic transformations. This also pin-
pointed the direction that geometrical development took in China: geared
to applications in practice, geometry continued to develop within an alge-
braic scope. Attempts were made to express geometrical questions as equa-
tions in order to apply known methods of equation solving to these problems
[Needham 1959, p. 22-23], [Libbrecht 1973, p. 96ff.].



124 3 Oriental and old American geometry

The astronomical parts, which, of course, form a crucial component of this
work and are indispensible for an overall evaluation, will not be discussed
here. Nonetheless, we must not conclude from this that the ancient authors
had already split the two disciplines of geometry and astronomy in such a
manner.

Illus. 3.1.3 Chinese figure for Pythagoras’s theorem

However, it is striking that the Zhou Bi Suan Jing contains nothing on astrol-
ogy and fortune-telling, which was blossoming in China at that time. Celestial
and earthly occurrences were addressed highly factually without the slightest
reference to superstition (cf. quote in appendix A. 4, p. 568).

Jiu Zhang Suanshu (Chiu Chang Suan Shu)

The second oldest work that we will address here is part of the most well-
known Chinese mathematical books of all times: the Jiu Zhang Suanshu
(Chiu Chang Suan Shu, The Nine Chapters on the Mathematical Art)
[Vogel K. 1968]. The origins of this work have been verified as having been
found in the early Han era (-202 until +9) and older drafts were used to
compose this work. In contrast to the book mentioned before, this is a com-
pletely mathematical text: a collection of 240 problems with solution instruc-
tions. Since it was declared an official textbook in 656, meaning it had to
be studied by all civil servants and engineers, it became the most influen-
tial of all Chinese mathematical books. Due to its laconic shortness, which
was thought of as difficult, it represented one of the advanced works among
‘The Ten Computational Canons’, of which it became a part at the same
time. Furthermore, some parts went far beyond the needs of lower officials
and merchants. More recent investigations provided evidence that ‘The Nine
Chapters on the Mathematical Art’ had been influenced by Babylonia. This
is not surprising, since the Chinese were already entertaining a legation in
Babylon around 200BC.
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The first, fourth, fifth and ninth chapters especially address geometrical prob-
lems. The other chapters contain problems from the areas of applied cal-
culation and diverse applications, which are important for officials (grain
mixtures, allocation problems, taxes and charges, and also questions about
fractions and radicals, motion problems, Euclidean algorithm, linear equation
systems, and indeterminate equations). As expected, the first chapter offers
calculations of simple plane figures: rectangle, triangle, trapezoid, as well as
circle and circle segment. The circular area is calculated according to the

Babylonian rule (cf. p. 21 (1.2.9)) or by means of 3d2

4 . Concerning the circle
segment, we find a formula, which has been discussed by Hero, but rejected
afterwards due to being too imprecise (A = area, c = chord, s = sagitta; cf.
Illus. 1.2.10):

A =
(c+ s)s

2
(3.1.2)

Chapter 4, titled ‘The lesser breadth’, deals with area transformations,
whereby the breadth of a given area is meant to be decreased and the length
to be increased whilst maintaining the area. Chapter 5, titled ‘Consultations
of works’, contains problems on calculations of volumes of walls, dams, chan-
nels, etc.; in other words, stereometrical problems in wrapped form. In regards
to solids, the chapter addresses prisms, pyramids, tetrahedra, wedges, cylin-
ders, circular cones, and conic frusta. Given that the problems of right-angled
triangles are located in Chapter 9, this late classification suggests that the in-
dividual parts are of different origin. Concerning this passage, we can infer a
close connection to the book Zhou Bi Suan Jing described beforehand. Some
of the problems, e.g., the bent bamboo pole, may have reached India later
perhaps communicated by Buddhist monks before finally arriving in West-
ern Europe. Let us look at some examples of this last book [Vogel K. 1968,
p. 90ff.]. Problem 4 requires us to saw a rectangular bar of given strength
out of a circular tree trunk. The solution implicitly presumes that the angle
at circumference above the diameter is a right one. The following problem
requires to calculate the overall length of a helix, which is introduced to us
as a twining plant revolving around a tree. The rule for solving this problem

Illus. 3.1.4 Length of the side of a square town wall in ‘The Nine Chapters on the
Mathematical Art’
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is based on the unwinding in a plane. The problem of a bar leaning obliquely
against a wall, the foot of which is moved away by a certain line segment,
whereby the peak sinks by a certain amount, can also be found in other
cultures, as well as the problem of the bent bamboo pole.

Problem 20 addresses a town with a square top view that needs a gate on each
side in the middle of the wall (cf. Illus. 3.1.4). There is a tree at a distance
of 20 bu (Chinese measure of length) to the north from the northern gate.
If we walk 14 bu from the southern gate to the South and then 1775 bu to
the West, the tree becomes just visible behind the North-West corner of the
town wall. We have to calculate the length of the side of the town wall (the
side of the square). We obtain the square equation x2 + px = q, p, q > 0. A
derivation and solution approach is not given, only a rule, which utilizes the
algorithm to extract a square root onto this case (cf. Problem 3.1.1).

The chapter contains several versions of this town problem, which were
picked up again by later authors (e.g. Qin Jiushao in the 13th century;
[Juschkewitsch 1964, p. 50]).

Haidao Suanjing (Hai Tao Suan Ching)

This last chapter is followed by a small, but important book, Haidao Suanjing
by Liu Hui [Swets 1992]. It was published in 263. Its title means ‘The Sea
Island Mathematical Manual’. Supplementing his commentary on the ‘Nine
Chapters’, Liu Hui described measuring heights and distances. To accomplish
this, he used a level pole, which, if necessary, featured a perpendicular cross-
bar at the top end. These methods are most often based on the observation
of similar right-angled triangles. (Thus, it is not justified to speak of applied
trigonometry, as Mikami did in his representation of Chinese and Japanese
mathematics from 1913 [Mikami 1913], since neither angle properties nor an-
gle functions are featured. Moreover, there are no algebraic generalisations,
just concretely stated problems.)

The last chapter of Jin Zhang Suanshu (nine chapters) concludes with some
surveying problems after the described town problem. Liu Hui believed that
the method described there was insufficient in the case of inaccessible objects.
As a result, he also explained the ‘Chong Cha method’ of doubled measuring,
which was already widely spread in his time (Illus. 3.1.5).

The woodcut clearly illustrates the situation of the island that gave his work
not just its name, but also the addressed set of problems. A towering, inacces-
sible mountain peak on an island is measured by two observation points via
the end of a pole. We are asked to calculate the height of the mountain and its
distance to the front pole. We know the distance between the two measuring
poles. Thus, this method basically amounts to constructing a triangle given a
line segment and both adjacent angles and to calculate its height afterwards.
The approach chosen by Liu Hui is explained in Problem 3.1.2.

Since Chinese astronomers had early on been interested in the distance of the
sun from Earth, this approach could have been developed within this scope
and then been transferred to earthly circumstances. This method marks the
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climax of early Chinese surveying theory; it was explained in many later
works and often illustrated through Liu Hui’s phrasing of the problem (cf.
[Swets 1992]).

Volume calculations

Within the scope of his commentary on the ‘Nine Chapters’, Liu Hui’s cal-
culation of the constant π deserves a special mention. The astronomer and
philosopher Chang Héng had claimed approx. 150 years before him that the
ratio of the square of the circumference [i.e., (2πr)2] to the square of the
circumference of the circumscribed quadrangle of the circle [i.e., (8r)2] is
5 : 8. As a result, π ≈ √

10 = 3.162... . (This approximation was also known
by Brahmagupta in the 7th century and al-Khwārizmı̄ in the 9th century.)

In order to calculate the perimeter, Liu Hui started off with an inscribed
regular hexagon f6, the side number of which is increased to 192 by repeated
doubling, whereby he determined the approximation π ≈ 157

50 . He derived
better approximations by means of exhaustion of the circular area (cf. Illus.
3.1.6) by approximating its quantity by means of

fn+1 < f < fn + 2 · (fn+1 − fn). (3.1.3)

He obtained a fraction from the 6 · 29 − − polygon, which corresponds to
π ≈ 3.14159 and, therefore, exceeds Ptolemy’s accuracy of 3.14166 from
around 150 AD (see Problem 3.1.3). Two centuries later, Zu Chongzhi (Tsu
Ch’ung-Chih) even obtained the approximate fraction 355

113
and the bounds

3.1415926 < π < 3.1415927.

As part of the ‘Nine Chapters’, the 5th book addresses calculations of cuboids
and straight prisms, but also several complicated solids, which are confined
by plane areas, e.g., rising dams with inclined sides and solids, similar to
pyramid frusta. Some remind us of corresponding rules found in Babylonian
mathematics; deconstructing such solids into solid parts and, if necessary,
also using calculation of averages. In the difficult case of the pyramid, which
cannot be dealt with by elementary means, Liu Hui did not succeed by means
of deconstruction alone: he also had to deconstruct rest pyramids again and
to apply this method repeatedly, and so basically carry out a limit process
(cf. [Wagner 1979]).

Most interesting are the solids with curved surfaces: cylinder, cone and conic
frustum. Whereas we are used to calculating the volume of a cylinder by
means of base and height, the Chinese rule dictates that we square the cir-
cumference of the base circle, then take a twelfth thereof and multiply the
result by the height of the cylinder. Thus, it corresponds entirely to the

Babylonian method for calculating the circular area (A = C2

12 by means of
value 3 for π; cf. 1.2.9). Accordingly, the volume of the cone is determined
(multiplication by h

3 ) and of the conic frustum is determined to be
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Illus. 3.1.5 Illustration of the method of double measurements (Woodblock print-
ing from the encyclopaedia Gu jin tu shu ji cheng (1726))

[Frank G. Swets: The Sea Island Mathematical Manual: Surveyings and Mathe-
matics in ancient China, p. 10, Fig. 3, 1992, University Park, PA: The Pennsylvania

State University Press]
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Illus. 3.1.6 Explanation of Liu Hui’s exhaustion method in a text by Dai Zhen
(Tsai Chen) [Joseph Needham: Science and Civilization in China, vol. 3, figure 52,

Cambridge University Press 1959]
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V =
C1C2 + C1

2 + C2
2

12
· h
3
. (3.1.4)

(C1, C2 circumference of lower rsp. upper area of the conic frustrum)

No rule was given for calculating the volume of a sphere (the reasons are
discussed in [Fu 1991]). Nevertheless, the book states how to extract radicals
of the sphere diameter d by means of sphere volume V according to

d = 3

√
16
9 V , which is equivalent to V = 9

16d
3. Thus, we obtain π ≈ 27

8 . As

always, no reason is given. However, we could imagine that we have estimated
the sphere volume to three quarters of the volume of the circumscribed cylin-
der. Hereby, Liu Hui’s commentary states the estimate 8

16d
3 < π < 9

16d
3,

which corresponds to 3 < π < 31
8 . Of course, it is left unanswered as to

whether there was a mathematician back then who recognised the relation
between the constant π and the constant featured in this sphere calculation.

3.1.2 From the division in three Kingdoms to the beginning of
the Song Dynasty (960)

Development progressed relatively slowly in the following centuries. Presum-
ably the Sun zi suan jing (The Mathematical Classic of Master Sun) was
composed in the 4th or 5th century. This manual has been significant due
to its description of calculation with bamboo digits. Apart from explain-
ing calculation (including a demonstration of how to extract cube roots), it
also contains a compilation of customary measures and weights. (An English
translation can be found in [Lam/Ang 1992, p. 149-182].)

The Zhui shu (Method of interpolation) by Zu Chongzhi from the 5th century
has been accepted as the most important book of this era. Unfortunately,
however, it has been lost. It was said to be one of the era’s most difficult
books – probably because π was calculated to seven decimals and the differ-
ence method (interpolation) was described for astronomical calculations.

Contacts with India

By the end of the 5th century, first contact had been established with Indian
scholars. This is indicated by a series of titles of lost works, which feature the
addition ‘Brahmin’. Indian Buddhists also influenced Chinese thinking with-
in mathematics, for example, regarding the reproduction of large numbers.
During the 7th and 8th centuries, Indian scholars worked at the astronom-
ical office of the Chinese capital and improved the calendar. One of them,
known for a significant astronomical work, was even promoted to director.
Those Indian scholars probably even brought an early form of trigonome-
try with them from their home country. However, it would be inaccurate to
conclude from this that there was a continuous, intensive scientific commu-
nication between both countries. Rather, new developments were limited to
the discoverer and his circle of students. A report from 855 describes the ef-
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forts of the far-reaching travels to which talented young men had to subject
themselves if they wanted to receive further training and education by one of
the rare great masters [Needham 1959, p. 202-206]. This, as well as the inner
turmoil during the 7th and 8th centuries that led ultimately to the division of
the huge empire into five dynasties, may have been amongst the causes that
resulted in the stagnation of the subsequent era, since the court was not just
a political, but also a cultural and scientific centre of highest order.

3.1.3 The dynasties Song (960-1278), Yuan (Mongolian reign,
1278-1368) and Ming (until 1644)

It wasn’t until the 13th and 14th centuries that Chinese mathematics experi-
enced a strong boom again. The second half of the 13th century is especially
said to have been the actual golden era of Chinese mathematics, as several
excellent mathematicians composed important works.

Qin Jiushao (Ch’in Chiu-Shao)

Due to the narrow scope of this book, we have selected just a few noteworthy
mathematicians, of whom we will first mention Qin Jiushao. He completed his
work Shushu jiuzhang (Shu-shu chiu-chang, Mathematical Treatise in Nine
Sections) in 1247, ten years after the Mongols had invaded his home country.
The turmoil had long prevented him from engaging with mathematical prob-
lems [Libbrecht 1973]. The often discussed ‘Nine Sections’ (Shushu jiuzhang)
mentioned above was his main source. Qin Jiushao also chose a structure in
nine sections. However, he structured the subject matter differently and often
created difficult problems as a model – nine in each section (= chapter) for a
total of eighty-one. The questions, which are often asked in an applied man-
ner, are followed by answers, then general explanation, and finally numeric
solutions.

One stands out amongst the rules for calculating elementary plane figures:
a calculation that corresponds to Hero’s formula for calculating the area of
a triangle by means of its three sides (see Problem 3.1.4). This formula also
occurs in Brahmagupta’s work (around 625) and al-Karaj̄ı’s (around 1015).
Qin Jiushao used the formula in the following form:

A =

√
1

4
[c2a2 − (

c2 + a2 + b2

2
)2] (3.1.5)

The stated approaches to the solution are not always the easiest ones, a
situation that reoccurs. We cannot exclude the possibility that tradition was
subject to some misunderstanding at times or that an author just took a
problem from a different source, which he himself then did not interpret
correctly. Below is an example of an ‘applied’ problem [Libbrecht 1973, p.
107]:
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“Find the side of a square camp in which 99 companies are encamped. Each
company has at its disposal a square area with a side of 90 feet; between
any two companies there must be a distance equal to the side of the same
square. We take the area for each company as being 4 times the occupied
area; we put the rectangle BGFE below the rectangle DHJI. The width of
the rectangle ABKE’ is x and the length x+2, giving an area x · (x+2); the
area is also equal to 4 · 99 + 3. This gives the equation x(x+ 2) = 4 · 99 + 3
or x2 + 2x− 399 = 0 with the positive solution x = 19.”

Also see Problem 3.1.5!

The volumes of pyramid and cone frusta are calculated by means of the rule
that we already know from the Moscow Mathematical Papyrus:

V = (a2 + ab+ b2) · h
3

(3.1.6)

(V = volume, a = length of base edge, b = length of upper edge, h = height).
We also find observations on compound figures.

The height of a distant mountain is measured by locating the peak from two
points on a plane. In order to calculate this, we need the distance of both
observation points, the gradient of both visual rays, and theorems on similar
triangles. Evidence suggests that this known method was found in China first
in 263 (see Illus. 3.1.4). Qin Jiushao applied this method differently depending
on the nature of the applied problem. Here is a final text passage for such an
‘applied’ problem: ‘Observing the Distance of the Enemy’ [Libbrecht 1973,
p. 147-149]:

“The enemy pitches a circular camp on a sandy plain north of a river. We
do not know the number of men. Spies report that the space occupied by
each soldier in this camp is a square with a side of 8 feet. Our army is south
of the river at the foot of a hill. Below the hill we set up a gnomon 80 feet
high so that its top is at the height of a plateau at the edge of the mountain.
We stretch a cord from the top of the gnomon to this plateau. This cord
horizontal to the observer’s viewpoint shall be 30 paces long. At this point,
the northern border of the camp appears to the observer to be in one line
with the top of the gnomon. Afterwards, the observer focuses on the southern
border of the camp in a view line, which touches on the gnomon eight foot
underneath its top. The eye of the observer is 4.8 feet above the ground. We
make use of the precise value of π(= 22

7 ) and apply the ch’ung-sh’a method.
Find the numerical strength of the enemy.”

U. Libbrecht, who analysed the text in 1973, laconically remarked in regards
to the solution approach: “This is entirely incorrect” [Libbrecht 1973, p. 147-
149]. Perhaps the spies would have been better off counting the soldiers than
measuring the space they occupied!
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Li Ye (Li Zhi)

In 1248, Li Ye (Li Yeh, originally Li Zhi), who held highly rated administra-
tive offices only temporarily, published his book Ceyuan Heijing (Tshe Yuan
Hai Ching, Sea mirror of circle measurements). It does not address the calcu-
lation of π, but deals partially with properties of a circle, which is inscribed
in a triangle. However, above all the author engaged with the solving of equa-
tions by means of algebra, whereby he marked negative coefficients with a
crossbar on top. It seems that Li Ye did not know Qin Jiushao’s work, which
was finalised one year before, but printed much later. This is not surprising
given that Li Ye lived in the North and Qin Jiushao in the South of the huge
country of China.

Yang Hui

Thirteen years later, Yang Hui’s commentary on ‘The Nine Chapters of the
Mathematical Art’ was published. Yang Hui purposely avoided common frac-
tions by expressing them in decimal fractions. This way, he could represent
them on a calculating frame analogously to whole numbers and calculate
with them just as well. (In Europe, calculating with decimal fractions was
only introduced at the end of the 16th century by Stevin.) He also found an
approach that is similar to a theoretical, proving geometry. He used the figure
on which Problem 3.1.1 is based to prove that both partial rhomboids, which
are determined by the diagonal and located in a rhomboid, are of equal area.

Zhu Shijie (Chu Shih-Chieh) earned his living as a travelling scholar. He pub-
lished an introduction to mathematical studies in 1299. Four years later, his
famous work Siyuan yujian (Ssu Yuan Yü Chien, ‘Jade Mirror of the Four
Unknowns’) followed.

Guo Shojing (Kuo Shou-Shing)

Under the Yuan Dynasty, the Mongolian sovereignty, Guo Shojing (Kuo Shou-
Shing) emerged as a mathematician, astronomer and engineer. He developed a
theory on spherical triangles. However, it is unsure if he used angle functions.
Since all his texts have been lost, we only know of their content indirectly.
Thus, it may not be justified to speak of ‘trigonometry’ here. It seems he
was particularly interested in problems concerning the movements of celestial
bodies. He thought of a method for determining the length of a circular arc,
which amounts to a complicated square equation between diameter d, sagitta
s and arc b:

d2 · ( b
2
)2 − d2 · s− (d2 − bd) · s2 + s4 = 0. (3.1.7)

His (lost) method was referred to as ‘the study of right-angled triangles,
chords and sagittae, squares and rectangles, which are all contained in circles,
obliquely or perpendicularly’. He used differences of second order to provide
exact descriptions of the changing angular velocity of the sun.



134 3 Oriental and old American geometry

Illus. 3.1.7 Guo Shojing (Kuo Shou-Shing) [Photo: Shizhao 2006], Stamp of Guo
Shojing (China 1962)

Since Guo worked at the court of the Mongolian ruler Kublai Khan, who
also employed Muslim specialists, this suggests that he could have come
across their mathematical knowledge. Persians, Syrians and scholars from
other countries also worked at the Mongolian court, which, as a result, offered
plenty of opportunity for scientific exchange. In 1368, during the transition
from the Yuan to the Ming Dynasty, an independent Muslim astronomy office
was opened on top of the already existing domestic observatory. When the
Jesuits came to Peking at the end of the 16thcentury, the followers of these
‘Arabic’ astronomers were still working at the observatory. Hence, we can-
not exclude the possibility that Chinese astronomy and mathematics were
influenced by the famous observatories in Samarkand and Maragha. Some
even believe that Arabic translations of Euclid’s ‘Elements’ and Ptolemy’s
‘Almagest’ arrived in China earlier. However, historical research has still not
found clear evidence of this.

Between 1400 and 1500, Chinese mathematics lost its high position, but re-
covered in the 16th century. For instance, in 1552 Gu Yingxian (Ku Ying-
Hsiang), governor of Yunnan, published a book, in which he systematically
compiled the rules found until then to calculate circular arcs and segments
([Needham 1959, p. 51]). It contains, e. g., the instructions corresponding to
the following formulae (d = diameter, c = chord, s = sagitta, b = arc, A =
area of a circle segment):

s =
d

2

√
(
d

2
)2 − (

c

2
)2, b =

2s2

d
+ c, (3.1.8)

d = s+
( c2 )

2

s
, A =

1

2
(s+ c)s. (3.1.9)
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Even though the Chinese had a passion for solving equations and equation
systems (by means of Pascal’s triangle and a method similar to the Horner
scheme), some of their previously acquired knowledge in this area was for-
gotten. Only long after the Jesuits had introduced European algebra did
medieval Chinese algebra spring back into mathematical minds and lead to
the utilisation of former customary domestic methods in the 18th century.

Circle- and sphere-packings

In contrast to the Greeks, Chinese mathematicians did not show any fur-
ther interest in conic sections. To the contrary, they pursued a problem that
had hardly been addressed in Europe: neatly fitting circles touching each
other into given figures, such as crescents, ellipses and other shapes. This
process is called circle-packing (Illus. 3.1.8). (This problem also interested
Japanese mathematicians. Their perspective will be discussed in the section
on Japanese mathematics.) Furthermore, the Chinese were neither interested
in the Greeks pursuit of understanding regular and semi-regular solids, nor in
the so-called classical problems. The only exception was squaring the circle.

Illus. 3.1.8 Circle-packing in a circle segment

[Joseph Needham, Science and Civilisation in China, vol. 3, Figure 73, Cambridge
University Press 1959]
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In order to round out the picture of Chinese mathematics illustrated herein,
we want to emphasise that the Chinese preference of calculation algorithms
was an important feature of their mathematics. The individual steps were
executed with bamboo sticks on a calculation frame. The algorithms were
highly developed and suggest that negative numbers were already used very
early, although they were not justified by theoretical considerations (in the
texts), but introduced by means of examples.

The same applies to the geometrical theorems mostly directed at applica-
tions. Heuristic methods were introduced by means of concrete examples.
By applying them inductively, Chinese mathematicians obtained a wealth
of further results. In contrast, the Greek approach of viewing geometry as
a deductive system and configuring it accordingly only became known in
China when the Jesuits arrived. The initial translation of the first six books
of Euclid’s ‘Elements’, initiated by Matteo Ricci and finalised in 1607 in
collaboration with Xu Guangqi (Hsu Kuang-Chhi) (taken from the Latin
version of Euclid (1574, among other dates) by the Jesuit Christoph Clav-
ius [Knobloch 1990a]), had a highly missionary character due to its religious
overtones and, as a result, was not fully embraced. (The complete Chinese
translation of all books of ‘Elements’ was only introduced in 1857!) Nonethe-
less, the deductive approach was finally accepted. The Chinese ordered the
examination of the prospective officials in traditional mathematics in favour
of European methods [Martzloff 1997, p. 273ff.], [Li/Dú 1987, p. 190ff.].

The Jesuits also introduced trigonometry to China. In collaboration with
Xu Guangqi, Matteo Ricci published the first modern trigonometry book in
the Chinese language in 1607. Whereas geometry was needed particularly for
astronomy and calendar calculation, trigonometry assisted practical land sur-
veyors. The fifteen surveying problems addressed in this book are narrowed
down to relatively simple problems and could not compete with the ingenuity
of Liu Hui’s ‘Sea Island Mathematical Manual’ discussed above. To add to
such statements on the size of mathematical knowledge or the geometrical
content of such books, we must stress again that geometry, as was the case
with arithmetics, was not thought of as a separate discipline back then, but
as an integral component of a more extensive science, as the quote in A.4
suggests.

Games

To conclude this chapter, we will comment on mathematical games, which
are referred to as ‘Chinese’.

The most well-known game in Europe went by the name ‘Tangram’: a square
wooden board is split into a (smaller) square, an oblique quadrilateral and
five triangles of different size. Using these parts, we are meant to construct
a series of different shapes. Nothing is known for sure about the origins of
this game. The oldest known printed comment on this game comes from
the beginning of the 19th century. However, the two Chinese historians of
mathematics, Liu Dun and Guo Zhengyi, found a source from 1617 that
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gives a short description of a similar game of splitting figures. One version,
called ‘Yizhitu’ (literally: the forms of growing wisdom), consists of a square
split into 15 segments – amongst them two semi-circles [Martzloff 1997, p.
367-369].

Illus. 3.1.9 Tangram and Chinese rings

The art of origami (which, amongst other things, also allows us to illustrate
Pythagoras’s theorem), is mentioned in a well-known poem by Du Fu (Tu Fu)
[Needham 1959, p. 112]. The origin of the Chinese rings (also known under a
series of other names: Baguenaudier, Cardan’s Suspension, Cardano’s Rings,
Devil’s needle or five pillars puzzle) has not yet been clarified. In Europe,
G. Cardano mentioned this puzzle, which is based on topological linking,
in his 1550 work De subtilitate libri XXI. In 1693, J. Wallis published a
mathematical analysis as part of his work Opera (vol. 2, p. 472). The novel
Hongloumeng (Dream of the red chamber), which is widespread in China and
was published in 120 chapters in 1791, peripherally mentions this game in
Chapter 7. Nonetheless, this does not exclude the possibility of a European
origin [Martzloff 1997, p. 366-370]. The reference to ‘Chinese’ does not tell us
anything about the origin, since it was not uncustomary in Europe to raise
interest in such puzzles by giving them exotic-sounding names.
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Essential contents of Chinese geometry

6th – 4th

century
Zhou Bi Suan Jing
‘The Arithmetical Classic of the Gnomon and the Circu-
lar Paths of Heaven’: Theories on triangles and circles,
Pythagoras’s theorem, height and distance measurements,
simple astronomical applications; no proofs

Early Han era
202BC – 9AD

Jiu Zhang Suanshu
‘The Nine Chapters on the Mathematical Art’:
240 problems; calculation of simple plane figures, approxi-
mations for circular areas and circle segments, volume cal-
culations including pyramid, circular cone and cone frus-
tum (without proof), applied problems (including applica-
tions of Pythagoras’s theorem)

263 Liu Hui: Haidao Suanjing
‘The Sea Island Mathematical Manual’:
Climax of early Chinese theory on surveying; calculation of
circumference based on the regular polygon of 92 corners

End of 5th

century
First contact with Indian scholars: Early form of trigonom-
etry, calendar calculations

656 Suanjing shi shu
‘The Ten Computational Canons’:
Standardisation of mathematical problems

1261 Yang Hui:
Commentary on the ‘Nine Chapters’; first attempts of
proofing mathematics

13th century New golden age of Chinese mathematics:
Further development of problems from the ‘Nine Chap-
ters’ (in particular Qin Jiushao: Shushu jiuzhang): Hero’s
formula for calculating the area of a triangle, teaching of
spherical triangle; interest in circle packing

1601 Jesuit Matteo Ricci takes western astronomy and mathe-
matics to China
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3.2 Japan

2/11/660BC Mikado (Emperor) Jimmu Tenno founds the empire
440AD Japan adopts Chinese script
From 7th

century
Rise of royal court, absolute meritocracy

From 13th

century
Rise of the shoguns (military dictators), who took over
power, military nobleness, feudality (Samurai)

1637 Seclusion from external world, golden age of arts and sci-
ence, Japanese mathematics

1867 Absolute monarchy taken over from Shogun rule
1868 Japan opens for trade with other states
1894 Sino-Japanese War
1904 Russo-Japanese War
1910 Korea conquers Japan
9/27/1940 Japan signs Tripartite Pact
12/7/1941 Japan attacks USA at Pearl Harbour
1945 Nuclear bombs dropped on Hiroshima and Nagasaki
1950-1999 Rise to greatest world power of Asia
From 1990 Economic crisis, loss of economical leadership in Asia

• Japanese Art and Culture: Coined by Buddhist and Chinese influences,
temple constructions according to Chinese model, silk and brush paint-
ings, calligraphy; Buddha and god sculptures according to Chinese
model; lacquerware, pottery (for tea), porcelain

• Literature: 750–800 Man’yōshū, (“Collection of Ten Thousand
Leaves”), 4500 poems

Around 1010 Monogatari (legends, fairy tales, stories),
Nikki Bungaku Diary literature form

Around 1000 Zuihitsu (essays), Noh (class. drama with
music and dance),Kabuiki (folk theatre and
puppet shows)

Since 1868 Influences of European literature
• Philosophy: Confucian ethics in 3 waves as base of feudalism; Bud-
dhist philosphy practised by upper priesthood (Zen cult); occidental
philosophy first conveyed by Dutchmen
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3.2.0 Historical introduction

Since a detailed history of Japanese mathematics in a modern western lan-
guage does not exist, we need basically to focus on Mikami’s account from
1913 and the one by Smith and Mikami from the following year. The latter
describes the historical development chronologically in 14 chapters, with the
authors dividing the totality of Japanese history into six eras:

Until 552 A time only minutely and indirectly influence by Chinese
mathematics

552 until 1603 Penetration of Chinese science, first via Korea, then di-
rectly: the Japanese Middle Ages

1603 until 1675 Renaissance of Japanese mathematics: Renewed penetra-
tion of Chinese science, first encounters with Europe sci-
ence

1675 until 1775 The teaching of Seki Kōwa and his student Takabe lays
the groundwork for domestic Japanese mathematics

1675 until 1868 Climax of independent Japanese mathematics, which is
already influenced by Europe to a small degree

Since 1868 End of Japan’s seclusion, connection to western mathe-
matics.

The more extensive book Science and Culture in Traditional Japan (1978) by
M. Sugimoto and D. L. Swain characterises the historical development from
552 onwards by means of describing cultural-scientific ‘waves’, which are em-
bedded into the times of seclusion or periods of a (relatively) open-minded
attitude. Besides, it also contains an insightful description of the cultural and
social background of Japanese wasan mathematics. Their book presents us
with the following picture:

Approx. 600 until 894 First Chinese wave
894 until 1401 Semi-secluded era
1401 until 1854 Second Chinese wave, which is overlapped
from 1639 until 1854 by a time of isolation and superimposed
from 1543 until 1639 by a first western wave and
from 1729 until 1854 a second western wave

3.2.1 Dawn and Middle Ages

We know nothing for sure about the ancient days of mathematical devel-
opment in Japan. It is only certain that the decimal system was known in
China as well as in Japan. Hence, we will look directly at the ‘Japanese mid-
dle ages’. This era began with the introduction of Buddhism, which arrived
in Japan via China and Korea and was absorbed there by means of Chinese
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mathematical books, the Chinese calendar and the Chinese measuring sys-
tem. There is evidence that suggests that bamboo sticks had been used for
calculation since 600 and mobile balls on the abacus (known in Japanese as
a ‘soroban’) since the 7th century.

Japanese cultural heritage already encompassed a wealth of painting, liter-
ature, music, architecture and garden design in the Early Middle Ages, but
medicine, natural sciences and mathematics were neglected. At the end of
the 7th century, a university was founded in Kyoto, an institute for fortune-
telling and another for medicine. The university’s function was the training of
civil servants. At the beginning, only Confucian philosophy and mathematics
within the scope dictated by the administrative requirements were taught.
The instruction at the fortune-telling institute included astronomy, astrology
and calendar composition. We only know of a small number of mathemati-
cians from the 12th and 13th century onwards, although their texts were not
preserved.

3.2.2 Renaissance of Japanese mathematics

More detailed facts on the history of Japanese mathematics are known begin-
ning from the 17th century onwards. In 1603, feudalism came to an end and
was superseded by the centrally administrated state under Tokugawa. Trade
relations with the Portuguese already existed from 1543 onwards, and in 1609
Japan also began trading with the Netherlands. The Jesuits started to prose-
lytise in Japan in 1549. We can see that the phenomenon of the ‘Renaissance
of Japanese mathematics’, as referred to above, took place when Japan had
closer connections to Europe. Hence, science developed and conducted in this
time was influenced by Europe.

However, countermovement soon occurred: the Jesuits had already been
banned from Japan in 1587, and by the first third of the 17th century, a
massive suppression of Christians had begun. Japan secluded itself from all
external influences (and only opened up again in 1868!). This seclusion, ben-
efitted by the fact that Japan is not on the mainland, resulted in unique
development of all aspects of life, including mathematics: an individual math-
ematics culture was formed called wasan, which means ‘Japanese mathemat-
ics’. This form of study was of interest mainly to intellectual samurai, who
engaged with the subject for pastime and recreational reasons; its connec-
tion to real life applications was too limited. Wasan mathematics was neither
based on axiomatic-deductive theory, as we saw in Greece, nor connected
to natural scientific concept formation and philosophical reflections, as had
been customary in Europe since the 17th century. On the contrary, it was
founded upon the early encounters with the West and partially influenced
by European findings (including those of the early modern era). Its interest
in Chinese mathematics, its original source, started to decrease soon, and
only maintained a sporadic level. Thus, trapped like in a greenhouse, wasan
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mathematics took its own course and developed an individual character. We
want to devote our special attention to this period. The beginning of the Re-
naissance of Japanese mathematics during the 17th century was influenced
by the Chinese.

Elementary calculation on calculation frames was at the centre of Japanese
publications, the numbers of which increased noticeably and which were only
circulated as printed versions (of course, often in small number). Nonetheless,
more difficult operations, such as extracting square or cube roots by means
of calculation sticks, were also taught. The interest in surveying increased,
along with calculations of areas and volumes, as explained in the section on
Chinese geometry. Thus, we also find values 3.16 or

√
10 for π here. These ap-

plied mathematics encompassed all the skills that craftsmen, master-builders,
merchants and administrative officials needed.

Illus. 3.2.1 Calculation with the Soroban in Jinko-ki (1641) of Yoshida Kōyū
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Geometry as part of wasan mathematics

In contrast to the applied scientists, Yoshida Shichibei Kōyō, also known as
Mitsuyoshi, came from a respected and very wealthy family. He travelled to
China himself and studied the Chinese language thoroughly in order to engage
with the more challenging Chinese mathematical texts before composing his
own works. He wrote his first text in 1627 under the title ‘Jinko-ki’, which has
been accepted as one of the most significant textbooks from the period of the
Ming Dynasty. The title was also adopted by other authors after Yoshida’s
death (it translates as ‘Treatise on numbers from the largest to the smallest’).
Whereas Yoshida took on many applied problems in the first edition, he
addressed numerous problems from the realm of recreational mathematics in
the abundantly illustrated five-volume second edition. Later authors liked to
use Yoshidas collection of problems as their role model, which is why this book
became so significant as the foundation of developing wasan mathematics.
Thereby, the custom emerged of adopting unsolved problems as challenges
in the authors’ own works. Their followers solved them according to their
knowledge and simultaneously presented new or adapted problems of greater
difficulty to their colleagues.

A work by Imamura Chishō published in 1639 gained its author many follow-
ers, as it addresses the calculation of regular polygons (from the triangle to
the decagon) a topic that became quite popular. A problem from a collection
by Isomura Kittoku, published in five books in 1660, shows the finesse with
which these problems were designed. It followed Yoshidas collection and was
re-published with added notes by the author in 1684. The problem at hand
requires us to place nine smaller circles in a large circle with a diameter of 3
feet whilst ensuring that each of the smaller circles is exactly 0.2 feet away
from the central, adjacent and the given outer circle. Our goal is to determine
the diameter of the inner circle placed in the centre and the diameter of the
remaining eight circles placed around the central circle in a ring shape (the
centres of which then form a regular octagon; cf. Illus. 3.2.2).

This concept is related to another problem that requires us to fit nineteen
smaller circles into a given circle in a ring shape whilst ensuring that each
of these circles touches its two neighbours and the given larger circle. On
top of that, we must add nineteen circles tangentially around the outside
of the larger circle under the same conditions. We are asked to calculate
the radii of both kinds of circles. (Thus, we are implicitly dealing with a
regular nineteenagon.) In contrast, other mathematicians were satisfied with
calculating the side lengths of a great number of regular polygons, which are
inscribed in a circle, as accurately as possible [Smith/Mikami 1914, p. 77/78].

It was common to wrap problems so that they would appear to have prac-
tical relevance. Yoshida’s followers, for example, engaged with the following
problems [Smith/Mikami 1914, p. 66/67]:
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Illus. 3.2.2 A version of the nine ‘floating circles’ in Seki: the circles arranged in
a ring shape touch each other, but neither the inner nor the outer circle.

[Takakazu Seki: Collected Works, Ed. with Explanations, Osaka Kyoiku Tosho 1974]

(a) A mound of Earth has the shape of a circular conic frustum. The cir-
cumference at the top is 40 units, the one at the bottom 120 units. The
mound is 6 units high. How high is the mound, if we reduce the amount
of earth symmetrically from the top by 1200 units?

(b) A circular area of land with a diameter of 100 units is meant to be divided
by two parallel chords and to be allocated to three people, who should
receive, respectively, 2900, 2500 and 2500 units. What are the lengths of
the chords and the height of the segments (see Problem 3.2.1)?

One of the most famous Japanese mathematicians is Seki Kowa, who was
probably born in the same year as Newton. He anticipated the development
of determinant calculation to some extent (almost simultaneously to Leibniz’s
approaches) and improved the method of dealing with algebraic equations
and systems of equations. He derived the latter by means of similar geomet-
rical questions, like the afore-mentioned circle arrangements, the conditions
of which he analysed step by step. His most significant student, Takebe Hiko-
jirō Kenkō, particularly emphasised this systematic approach connected to a
special notation in a description of his teacher.

The circle principle

The yenri (also enri) or circle principle of Japanese mathematics deserves a
special mention. This principle concerns a peculiar method of determining the
length of a circle arc and the circumference of a circle, respectively, in order
to calculate constant π at high accuracy. Who exactly thought of this concept
first is historically controversial: older assignations to Seki Kowa cannot be
verified. It is probable that the composition of the method, at least, is to be
accredited to his student Takebe, who devoted himself to solving the problem
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Illus. 3.2.3 Seki Kowa Takakazu (taken from Masuhito Fujiwara) and stamp
(Japan 1992)

of squaring the circle with fanatical persistence. Later Japanese mathemati-
cians greatly praised Takebe, saying that he was one man in a thousand years
and the light of the Land of the Rising Sun. He also seems to have been excep-
tional in another respect: he considered mathematical objects philosophically.
Furthermore, he distinguished between analytical mathematicians (in which
group he counted himself) and those that choose an intuitive approach. He
argued that some problems could be better solved by means of the first group
and others by means of the second.

According to modern classification, the yenri principle almost belongs to in-
finitesimal mathematics. However, the interesting geometrical approach jus-
tifies discussing Takebe’s peculiar method developed around 1720. The aim
of this method is to calculate accurately the length of an arc b in a circle of
a given diameter d. The belonging chord is c, and the sagitta (distance be-
tween arc middle and chord middle) is s. Takebe chose d = 10, s = 0.000001,
which allowed him to assume that the tiny arc is straight. Then he calcu-
lated its square by means of Pythagoras’s theorem to 53 decimals, exactly to
0.00000 00000 33333 35111 11225 ... . If we calculate the square of the semi-
arcs in the same manner for the sagittae s = 1, s = 0.1 and s = 0.00001,
then we obtain 10, 1 and 0.0001 or, expressed differently, the product of the
diameter with the belonging sagitta: d ·s. Hence, Takebe chose d ·s = 0.00001
as his first approximation for the square of the very accurately calculated arc
and as first difference d1 = 1

3s
2. Repeating this procedure lead to the second

difference d2 = 8
15
d1

2. Continuing and inserting each preceding difference
into the one that follows ultimately delivers the infinite series

1

4
· b2 = d · s[1 +

∞∑
1

22n+1(n!)2

(2n+ 2)!
· ( s

d
)n]. (3.2.1)
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Since the sagitta does not behave differently from the versine (= 1 – cos), the
square of the inversed sine is expressed here by the versine. Takebe derived
a number of further series by means of similar considerations tailor-made
for each case. Thus, the yenri or circle principle is not a general method, as
represented by, for example, the Taylor series, but a special chain of reason
that applies to the circle, the outcome of which agrees with infinite series,
which were known in Europe at the end of the 17th century.

A later historiographically interesting problem is associated with the yenri
principle. The Jesuit Pierre Jartoux arrived in Peking in 1700 and lived there
until he died in 1720. Whilst working as an astronomer, he corresponded with
Leibniz and was familiar with the differential calculus developed by him. He
is said to have derived some series expansions, of which three arrived in
Japan. Since the explanations passed on by Takebe are not completely com-
prehensible, Smith and Mikami (1914) did not think it was impossible that
he encountered one or more series imported from the West and then aimed
to explain those as best he could. He encouraged other Japanese mathemati-
cians to turn towards research in this field. They derived a whole number
of further series expansions by means of clever considerations in the 18th

century.

The applied method by Kittoku and Takebe for determining the surface of a
sphere is also based on an idea that bears resemblance to infinitesimal math-
ematics. Traditionally, the Japanese used as its measurement one quarter of
the square of the circumference: S = 1

4 (2πr)
2 = (πr)2. Isomura recognised

the inadequacy of the rule and thought of calculating the surface by means
of the difference of the volumes of two concentric spheres, which only differ

Illus. 3.2.4 Sphere-packing in a cone from Fujita Sadasuke: Seijo Sampo (1779)

[Smith/Mikami: A History of Japanese Mathematics. Chicago Open Court Publ.
Co. 1914, p. 184]
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slightly. He took a sphere with a diameter of 10 and a second one with a
diameter of 10.0002, calculated the volume of the spherical shell bound by
both spheres to be 0.03141 66283 24118 8 and divided it by its thickness
0.0001. Then, he repeated the calculation for two spheres with a diameter
of 10 and 9.9998 and formed the average from both results: 314.16000 00418
88. (Due to r = 5, it is a hundredfold of π since the Japanese back then did
not know the surface formula S = 4πr2!) Takebe refined the method in 1722
and, thereby, realised that he had obtained the one hundredfold of π. As a
result, he concluded from his number ratio that the relation between d and
S must be S = d2π (see Problem 3.2.2). Whereas Isomura and Takebe were
restricting their considerations to a concrete numeric case, it was generalised
using the example of the surface of an ellipsoid.

During the 18th century, the problem of circle-packing in the plane was also
generalised to sphere-packing: given certain side conditions, the balls had to
be packed in a given sphere (or cone) whilst making sure that they touched
the wrapping solid and their neighbours (Illus. 3.2.4).

In the last third of the 17th century, the custom had already emerged of
hanging mathematical problems with their solutions, without indicating the
approach, on votive tablets in front of temples (Illus. 3.2.5). This tradition
was then practised for more than two centuries. Originally intended to thank
a Shinto deity or Buddha, the tablets also represented challenges of the col-

Illus. 3.2.5 Example of a temple problem and how it was dealt with in the magazine
“SUT Bulletin” 1987, No. 5 [Science University of Tokyo, SUT Bulletin 1987,

No. 5, p. 11]
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leagues. This custom reminds us of the habit of some European mathemati-
cians of that time of competing with other mathematicians by means of
problems spread by flyers.

Some examples of such problems with a geometrical background are below:

(a) We have two circles, one inscribed in a quadrilateral and one circum-
scribed. We know the diameter of the circumscribed circle and the prod-
uct of the diagonals of the quadrilateral. We have to find the diameter
i of the inscribed circle. (In 1795, there was a mathematician who cited
the formula i

√
(u+ e) = e to solve this, whereby e is the product of the

diagonals and u the diameter of the circumscribed circle).
(b) Five circles are symmetrically inscribed in an ellipse with a great axis a

and a small axis b (cf. Illus. 3.2.6). Calculate the diameter of circle A.
(c) Two spheres of size A, two of size B and two of size C are fitted into a

sphere whilst touching each other. Given are the diameters of A and C.
Calculate the diameter of B.

(d) A circle segment is halved by its sagitta. A square as large as possible
is inscribed in the left half (one side lies on the chord, the following one
on the sagitta). A circle as large as possible is fitted into the right half.
Given are the sum of chord, sagitta and diameter of the circle, the side
of the square and the sum of the three quotients sagitta to chord, circle
diameter to sagitta and side of the square to circle diameter. Find the
individual magnitudes. (Displayed at Gion Temple in Kyoto, it became
known as the Gion temple problem due to its high level of difficulty. It
leads to an equation for the chord of degree 1024. Simplifications resulted
in an equation of degree 46 and finally to one of degree 10.)

Illus. 3.2.6 A Japanese temple problem (around 1800): Five circles inscribed in an
ellipse [Smith/Mikami: A History of Japanese Mathematics. Chicago Open Court

Publ. Co. 1914, p. 186]
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At the beginning of the 19th century, Aida Ammei devoted an extensive work
to the ellipse and its associated problems. As a consequence, other mathe-
maticians were also inspired to engage with the ellipse and, thus, studying
ellipses within a wider scope (also cf. problems mentioned above) became a
popular subject. Aida described the string construction, as well as an instru-
ment with changeable distance of the foci to draw all kinds of ellipses. Since it
is said that an instrument for drawing ellipses arrived in Japan from abroad
around this time, it is possible that Aida had heard of it or maybe even seen
it. He derived the ellipse equation as an affine map of the circle, calculated
the area of an ellipse segment and also the length of an elliptical arc.

To determine the latter, he suggested a peculiar approach. Possibly inspired
by the method described above to calculate the circumference, he started
drawing a series of chords in a quarter of an ellipse that approached it more
and more. The first one resembled the connection between the extremities
(the two points at which the great and the small semi-axis meet the elliptical
arc). Then, he constructed the ordinate at the centre of the great semi-axis
and drew the two chords from its intersection with the elliptical arcs to
the extremities. Afterwards, he quartered the great semi-axis and obtained
four chords in the same manner, which approached the arc more closely, etc.
(The method fully corresponds to Archimedes’ approach when geometrically
squaring the parabola.) n narrow ellipses segments lie between the chords
of the nth repetition and the elliptical arc. If we continue this construction
far enough, the area of the segments practically disappears and their sum
strives against the length of the quarter elliptical arc. When calculating the
ellipses segments, Aida substituted the small elliptical arcs by cleverly chosen
circular arcs. Nonetheless, he obtained terms so complicated that he had to
leave the summation to his successors.

Other Japanese mathematicians attempted to calculate the surface of an
ellipsoid. They decomposed those either into rings, which they treated like
conic frusta by means of parallel sections, or into sectors (shaped like orange
peel) by means of central, plane sections, which have a common axis and
are twisted against each other in small angles. These sectors also had to be
approximated in a suitable manner. This led to long and complicated series
expansions, which they addressed very aptly by also using tables to represent
coefficients. The result is said to have been first published in print in 1844.

The authors’ infatuation with mathematical artistry, distant from applica-
tions, self-sufficient, and untouched by the ambition of developing unified
theories, was obvious. It seems that Japan’s long-lasting seclusion crucially
contributed to the fact that mathematics was treated like a game of glass
beads. All the attention was directed at a few types of problems that math-
ematicians attempted to advance to perfection.

It would be inapt to use our notion of science here. Wasan served a recre-
ational purpose, an art comparable to the Japanese tea ceremony or floristry.
The impulse to perceive and investigate different problems brought about by
external influences is missing in wasan mathematics, the followers of which
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Illus. 3.2.7 Figures for 20 problems from Yamamoto Kazen: Sampo Yoyutsu (1841)

[Smith/Mikami, A History of Japanese Mathematics. Chicago Open Court Publ.
Co. 1914, p. 246, Fig. 57]
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mainly came from the upper classes. Even in the first two thirds of the 19th

century, when western knowledge slowly penetrated the country due to im-
ported books, the Japanese stuck to their path and continued to fine-tune
their traditionally developed equipment (see Illus. 3.2.7).

Things only started to change after Japan had ended its seclusion in 1868.
A new generation of mathematicians managed to follow up on international
mathematics, although some representatives of the traditional methods re-
fused to relinquish their belief in the superiority of the domestic approaches.
Nevertheless, wasan mathematics died and domestic traditions were forgot-
ten. It has only been in the past few decades that mathematical historians
have become increasingly interested in Japan’s peculiar development of math-
ematics.

Essential contents of Japanese geometry

Dawn and
Middle Ages

Influenced by China (e.g. decimal system), rich cultural
life, but little interest in natural sciences and mathematics

17th century After contact with Portugal and the Netherlands in 1603,
feudalism is superseded by a centrally administrated state;
beginning of seclusion; origins of own mathematical cul-
ture “wasan” under samurais; little reference to applied
science, intellectual pastime

1627 Yoshida Shichibei Koyu, also called Mitsuyoshi: Jinko-
ki : Collection of problems, taken from applied and recre-
ational mathematics; role model for many works of the
same title

1639 Imamura Chishō studied regular polygons (triangle until
decagon); theory of circle-packing

1640/2 – 1708 Seki Kowa Takakazu and his student
1664 – 1739 Takebe Hikojirō Kenkō: Yenri principle for calculating a

circular arc: series expansions; calculating surface of a
sphere by means of volume differences of two concentric
spheres

From approx.
1660

Temple problems

18th century Generalisation of circle-packing to sphere-packing; math-
ematical artistry, no ambition for unified theories, lack of
external impulses
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3.3 India

3rd

millennium
BC

Towns established in
Indus valley:
Mohenjo-Daro, Harappa

Streets at right angle with
canalisation

Since
2000BC

Indo-Arians invade Language: Sanskrit

1500-200 Vedic era Indo-Arian-Brahman culture and
religion, Rigveda, heroic epic
Mahabharata, Kharosthi script and
number symbols

Approx.
560-480

Buddha founds new
religion

Buddhism in Northeast India

Approx.
545-470

Mahāv̄ıra founds new
religion

Jainism spreads across Northwest
India

327-325 Alexander the Great in
India

Hellenistic influence

322-184 Empire of Mauryan
Dynasty

Temple and stone sculptures (the
Great Stupa at Sanchi)

272-231 Emperor Ashoka: greatest
Expansion of Mauryan
Empire

Buddhism becomes state religion

184-320AD Different dynasties rule
microstates

Hellenistically-influenced Gandhara
culture

320-535 Empire of Gupta Dynasty ‘Golden age’ of science and art
480-1525 Many dynasties in Indian

constituent states
Revival and strengthening of
Brahman Hinduism, temples with
sculptures and geometrical decor,
golden era of Indian mathematics

Approx.
505-587

Varāhamihira Astronomical observations and
calculations

712 Islam begins gradual
conquest of the
subcontinent

Penetration of Arabic and Persian
aspects of culture

1498 Vasco da Gama arrives in
Calicut

Encounter with Christian religion
and occidental culture

1525-1754 Mughal emperors ‘Golden age’ of so-called Mughal
architecture and painting with
geometrical ornaments

1600 Dutch East India
Company founded

Increasingly influenced by
west-European culture

From 1757 England terminates reign of Hindu Princes
1877 Queen Victoria becomes Empress of India
1920 Ghandi invokes non-violent resistance
1947 Independence and partition in India and Pakistan
Since 1957 Conflict with Pakistan over Kashmir

2nd half of
20th century

Rise to nuclear and
economic power

Developments to become
industrialised state
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Illus. 3.3.0 Cultures and states in India in Antiquity and Middle Ages

[Map: H. Wesemüller-Kock]
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3.3.0 Historical introduction

Just as in China and Japan, the origins of mathematics in India are almost a
complete mystery. (It may be possible that the excavations in Mohenjo-Daro
and Harappa in the Indus valley, which hide ruins of a town dating back to
around 3000BC, will reveal some insights, since the pre-Indian script found
there has not yet been decrypted.) Around 2000BC, Indo-Germanic tribes
whose language was Sanskrit began to advance. The Vedic era (polytheistic
worshipping of natural deities noted down in the Vedas), which began around
1500BC, is mathematically characterised by the so-called Śulbasūtras (string
rules). They were composed around 800BC, yet were only passed on in very
late, annotated editions around 300AD. They contain instructions for the
construction of sacrificial altars; these are to be treated here as first geomet-
rical objects.

Buddhism and Jainism spread around 500BC. Both were opposed to Vedic
sacrificial rites for several centuries, which is why the string rules gradually
lost their use. There is evidence that the Karosthi script and numbers had
existed since around 400BC.

Very few texts have been preserved from the post-Vedic era, which ended
around 400AD. Hinduism had been pushing Buddhism aside since around
700. With the Arabic invasion in 712, India started being Islamised, although
Islam did not succeed in blocking Hinduism.

During the Indian Early Middle Ages, the time between 400 and 1200,
mathematics became independent in India. The first so-called Siddhāntas,
astronomical-mathematical Hindu-texts, seem to come from the 5th century
AD. The ‘golden age’ lasted from the 6th until the 12th century. Here, many
Indian mathematicians showed how creative they were. The following 400
years, which are also referred to as the Late Middle Ages of Indian mathe-
matics, were mainly characterised by commentaries on preceding mathemati-
cians.

In accordance with the subject of this book, we will, all in all, focus mainly
on the geometrical aspect of mathematical development in India. Further re-
marks are kept to a minimum. Although geometry only took on a minor role
compared to the Indians’ accomplishments in the areas of algebra and num-
ber theory, it still offers sufficient subject matter and is worth an independent
observation. Even though India never developed a theoretical geometry sim-
ilar to the scope of Euclid’s work, their colourful intuitive treatment is a
tempting topic and took several unexpected paths at times, giving Indian
geometry its own special character.
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3.3.1 Antiquity

Śulbasūtras

The ancient string rules or Śulbasūtras fall under the classification of sacral
geometry. They concern instructions (passed on in several versions) for Vedic
priests as to how to arrange sacrificial altars pointing in an East-West di-
rection and how to construct them by using specially shaped bricks. De-
pending on the ritual to be executed, there were altars in the shape of
squares, rectangles, trapezoids, circles and semi-circles; there were even al-
tars for special occasions in the shape of a hawk, constructed by means of
these shapes, and even wheel-shaped altars (see Illus. 3.3.1). There were sup-
posed to be three simple fire altars in every household (square, circular or
semi-circular), which were made of bricks of given shapes. The amount of
brick rows [Srinivasiengar 1988, p. 6] also took on a mystical meaning. One
version of the Śulbasūtras even emphasises: “We will describe the rules for
marking the ground, on which the altar is to be built.” Hence, teaching
mathematics is not the primary aim, but fulfils an auxiliary purpose. The
text describes the geometrical requirements needed to follow the religious
instructions: area transfers, similarity relationships, theorem for the supple-
mentary parallelogram, and Pythagoras’s theorem. The problems resemble
some analogies to Babylonian problems. However, their execution methods
differed. We can only notice some similarities to Chinese mathematics con-
cerning the fact that Indians as well as Chinese were fond of mathematical
algorithms. These texts, however, do not show how the methods are derived,
but simply state rules of how to proceed. The thesis that geometry devel-
oped out of ritual developments rather than practical needs was founded on
the seemingly mythical-religious background visualised by these early Indian
texts [Seidenberg 1962].

Illus. 3.3.1 An altar in the shape of a hawk. The shapes of the bricks to be used
are drawn in.
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It is only partially possible to reconstruct the methods by means of the given
outcomes. To state a numerical example, imagine we have to calculate the
value for

√
2 by following the rule 1+ 1

3
+ 1

3·4 +
1

3·4·34 ; in Babylon this would

have been done by repeated application of Equation (1.2.7):
√
a2 + r ≈ a+ r

2a
(see Problem 3.3.1).

A group of propositions deals with the increase in size of a square altar area: it
is meant to be doubled, tripled, ..., sextupled. To do so, the Śulbasūtras state
the following fundamental geometrical proposition: “The string positioned
across the square yields a (ground) area double the size.” This proposition
corresponds in its contents to Pythagoras’s theorem for right-angled isosceles
triangles. Comparing the given square a2 with the new one x2 leads to the
gnomon figure. If we insert the quantity y = x−a instead of the difference of
diagonal and side, we have to attach the two rectangles of the quantity a · y
and the smaller square y2 at the corner. This is phrased in the Śulbasūtras
as follows (cf. Illus. 3.3.2):

Henceforth the general instruction: The (rectangle), which is drawn
twice with the extension (of a side of the square) and the side itself, is
attached on two sides (of the square) and the square, which is produced
of it (i.e. the extension) is added at a corner.

Thus, we can geometrically construct the formula

a2 + (2ay + y2) = (a+ y)2 (3.3.1)

Illus. 3.3.2 Gnomon figure regarding doubling the square
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Illus. 3.3.3 Pythagoras’s theorem for right-angled isosceles triangles

In other words, the gnomon is represented by the area 2ay + y2. By means
of this gnomon figure we can also explain the method for determining

√
2

mentioned above. (There is no hint whatsoever that India discovered the
irrationality of

√
2 in this context.)

Doubling the area of the square altar reminds us not just of the classical Greek
problem of doubling the cube, but could also have triggered the discovery of
Pythagoras’s theorem concerning right-angled isosceles triangles. We only
have to put two examples of the initial square together to form a rectangle,
then halve them by two diagonals with a common extremity and reposition
the two outer triangles to generate a new square (see Illus. 3.3.3).

All in all, the Śulbasūtras feature six concrete Pythagorean triangles, namely
those with sides (3, 4, 5), (12, 5, 13), (15, 8, 17), (7, 24, 25), (12, 35, 37)
and (15, 36, 39). However, the theorem regarding the sum of the square
of the catheti is not stated in a general manner. Nonetheless, the concrete
triangles are cited at least once to prove that the theorem concerning the
diagonal of the rectangle is correct. The Indian mathematicians’ habit of
basing their constructions on concrete measures from the very beginning may
have inspired them to study numerical relations when contemplating general
geometrical relations.

The Śulbasūtras also state how to generalise the concept of a square to apply
to any rectangle: “The string (laid) across the rectangle yields both (areas
together), which the long side and the broad side yield for each on their own.”

If we are required to triple the area of the square altar, we can add the simple
and the doubled square together, according to the following rule:

If we want to unite two different large squares, we must elevate a
(parallel) strip to the larger square with the side of the smaller square.
The string (laid) across this strip is the side of both united squares.

Illus. 3.3.4 a) illustrates what is meant, and the following one (b) shows
the completed new square. We obtain the known figure c), which illustrates
Pythagoras’s theorem in the form of c2 = 2ab+(b−a)2[= a2+b2], by altering
the auxiliary lines.
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Illus. 3.3.4 Addition of two unequal squares to form a third square

The religious instructions also demanded the construction of altars for special
occasions, whereby equality of area took on a different form. As a result, the
problem of circling the square arose (configuring the radius of a circle that is
of equal area to a given square):

If we want to make a circle out of a square, we must position (a string)
at the middle of the square and link it to a corner. Then pull it around
in direction to a side (of the square). Together with a third, what is
left-over of it (what lies outside the square), draw the circle (cf. Illus.
3.3.5).

In another version the following remark is added: “Add as much as you take.”
(cf. Problem 3.3.2, [Jaggi 1986, p. 182])

The Śulbasūtras state two rules for executing the better known reverse prob-
lem of squaring the circle:

Illus. 3.3.5 Circling the square according to the Śulbasūtras
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Illus. 3.3.6 Squaring the circle according to the Śulbasūtras

1. If we want to square a circle, divide the diameter in 8 parts, divide one of
these parts in 29 parts, deduct 28 parts (of these 29 parts) and, further-
more, deduct the 6th part reduced by its 8th part from the (remaining
one) part.

2. Or, divide (the diameter) into 15 parts and deduct 2 (parts). The latter
(string) is usually used as the side of the square [Müller 1930, p. 179-190].
(cf. Problem 3.3.3)

Of course, the question arises as to how the composers of the Śulbasūtras
thought of the stated fractions. Conrad Müller could derive the second value
of 13

15 under the assumption that the quarter circle arc was divided into three,
and a vertical or horizontal line, respectively, was drawn through both points
of division. Together with the bound radii of the quarter circle, these lines
then formed a square, the area of which seemed roughly to correspond to the
quarter circle (Illus. 3.3.6).

The square side can be calculated by means of Pythagoras’s theorem as

s =
√
3
4 · d (d = circle diameter). Although, in contrast to

√
2, the conserved

Śulbasūtras do not state a fraction for
√
3, we can easily obtain the approxi-

mation
√
3 ≈ 5

3
+ 1

15
= 26

15
in two steps by means of the Indian method, which

answers the question.

We can also provide a reconstruction for the more complicated first instruc-
tion, given we consult the fraction representation for

√
2, as cited above.

Hereby, Müller stresses that the obvious question of accuracy, or which of
the two methods yields the most precise value, did not arise back then. The
Indians neither had an exact construction with which to compare it, nor were
they aware of the relations between circumference and area of a circle at this
time. (The Śulbasūtras state once that circumference is 3d!)

Jaina geometry

A so-called Jaina geometry had begun to develop around 400BC. This ge-
ometry seemed to be mainly interested in the trapezoid as a representation
of the universe and the continents, and the circle as a reflection of Earth and
as the orbits of celestial bodies. The so-called Ganita texts describe Earth
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and celestial orbits. Thereby, they state that the ratio of circumference to its
diameter is

√
10, next to π = 3 (without reason). This can also be found in

Brahmagupta’s work. Besides, Jaina geometry talks of circle segments. How-
ever, not one mathematical or geometrical Jaina text has been preserved. It
is said that they also contained details on everyday practice.

3.3.2 Middle Ages

The revival of mathematical studies in India in the Middle Ages, between
approx. 400 and 1200, coincides with the so-called classical Indian era or the
Renaissance of Brahmanism, which led to a golden age of literature and phi-
losophy. The penetration of astronomical knowledge from Alexandria may
have helped to awaken the interest in mathematical problems. It is strik-
ing, hereby, that the mathematicians of that time did not refer back to the
old Śulbasūtras – in contrast to China, which, as we saw, highly appreci-
ated the old works, which were passed on, and commented on over and over
again. Creation of the decimal position system is, without a doubt, the most
successful aspect of the global development of mathematics. The earliest ev-
idence of its existence comes from the 7th century. It is certain that great
assistance was given by the calculation frame, which was used all over the
oriental world, as its division in columns anticipates the meaning of the place
value within the numerical script. The Arabs got to know this digit system
via an Indian astronomical work, which finally spread across the whole world.

The Bakhshāli Manuscript

The Bakhshāli Manuscript, possibly from the 6th century, is one of the oldest
preserved collections of problems and economical texts with calculations. It
was written on birch bark and was only excavated in Northwest India in 1881.
It contains around 70 pages and seems to be a commentary on an older lost
work. Explanations of elementary calculation operations, including fractions
and extracting square roots, form the main part of this work. On top of that,
the text addresses series, calculating profit and loss, interest and the rule
of three. The numerical examples and their solutions are represented in the
decimal system. Just as in all later mathematical texts of India, the interest
in algebraic topics prevails in the Bakhshāli Manuscript: it looks at linear
equations and systems of equations, quadratic equations (negative quantities
are permitted, too) and the wrong approach. Contrary to the norm, a topic
that otherwise always reoccurs is missing: a discussion of the gnomon shadow,
which was important for astronomy and calculation of time. Some authors
believe that this proves that this text was composed very early [Jaggi 1986,
p. 130-131].
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The Sūrya Siddhāntas

The Sūrya Siddhāntas, a collection of astronomical texts, are at least as old
as the Bakhshāli Manuscript. The older texts work with chord geometry,
which was conceived by Hipparchus and Ptolemy and passed on to India
by Alexandrian sources. It was up to the Indians to overcome the inconve-
niences of chord calculation – no Hellenistic astronomer had attempted to
improve this means in any way. The sine, the essential function for modern
trigonometry, first occurred in an Indian handbook from the 4th or 5th cen-
tury [Berggren 1986, p. 132]. The Indian scholars improved and updated the
construction of observatories. In order to obtain angle and shadow lengths
as accurately as possible, they erected huge ‘instruments’. Some were refur-
bished or reconstructed. Illus. 3.3.8 shows the observatory; Illus. 3.3.9 repre-
sents an instrument of the observatory in Jaipur.

The Sūrya Siddhāntas state in Sanskrit verses the values of the sine func-
tion up to 90◦ in intervals of 33◦

4
(= 60◦ : 24). At the beginning of the 6th

century, Varāhamihira used trigonometric formulae in his astronomical work
“Pancha Siddhāntika”. Therein, he presented an annotated overview of all
five Siddhāntas. We will reproduce here one of the simpler instructions for
determining geographical latitude (Illus. 3.3.7):

‘Measure the midday shadow on the day when the Sun is at the
equinoxes (the equinoctial shadow). Square it, add 144, and find
the square root. By this, divide the product of the shadow mul-
tiplied by 120. The result is the sine of the latitude of the place,
called vis.uvajjyā.’

Illus. 3.3.7 Varāhamihira’s instruction to determine the geographical latitude by
means of the height of the sun at noon

[Subbarayappa/Sarma: Indian Astronomy, p. 184, No. 15.5.2]

If s is the length of the shadow, g = 12 the height of the gnomon and l
the distance from its image point (the end of the shadow) to the top of the
gnomon, then divide 120s by l. (The factor 120 is the result of the assump-
tion that we imagine the right-angled triangle inscribed into a circle with a
diameter of 120). Hence, the quotient to be formed is the sine of the angle
at the top of the gnomon. At the time of equinox, when the sun is exactly
above the equator, the quotient (or the belonging arc, respectively) equals
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the geographical latitude. The second part of the instruction refers to the
case that this observation is made on a different date than the equinox.

The Indians did not just replace the chord by the sine, they also introduced
cosine and versine (sin vers α = 1 − cos α). The latter occurs in formulae
such as

sin
α

2
=

√
1− cos α

2
. (3.3.2)

Manjula studied the functions sine, cosine and versine in all four quadrants
around 930. We can even find early hints of the laws of sines and cosines in
spherical trigonometry.

Āryabhat.a I

The frequent linking of astronomy and mathematics in India can already
be found in the work Āryabhat.a by Āryabhat.a I, written in very condensed
verses in 499. The author, who came from the very South of India, composed
this work at the age of 23. The mnemonics can often only be understood
if one is already familiar with the subject matter at hand (astronomical or
mathematical propositions). They were meant to serve as memory hooks for
oral teaching. Similarly to the Śulbasūtras, supplements are required when
translating. These usually come in brackets. Āryabhat.a I deals with the fol-
lowing aspects in four parts:

• His own alphabetical representation of numbers (nothing to do with the
position system) and next to astronomical details, the sine function in-
cluding a sine table with 24 values (i.e., in intervals of 33◦

4 , in the form
of first differences)

• Art of calculating (including some geometry) in 33 verses

• Calculation of time

• Spherics.

Along with ancient Indian influences, we can also prove Greek ones, especially
in the astronomical section (deferent and epicycle). Hereby, the Āryabhat̄ıya
was already translated into Arabic around 800AD.

The geometrical problems contain formulae concerning triangular area, pyra-
mid volume, circular area (F = r · C

2
) and spherical surface. It was believed

until recently that Āryabhat.a stated incorrect pyramid and sphere volumes.
K. Elfering provided an interpretation in his German translation from 1975,
which proves the accuracy of the instruction for the calculation of pyramid
volume and argued that the verse concerning the sphere, in fact, relates to
the surface [Elfering 1975]. Accordingly, we would translate it as follows:

Half the circumference multiplied by half the diameter is the circular
area. This (i.e., the circumference) multiplied by his determining base
(r) is the surface of the semi-sphere, and, in fact, exactly.

This interpretation is further supported by a late Indian commentary. Un-
fortunately, the brief mnemonics contain no hints how Āryabhat.a I (or his
sources) arrived at this conclusion.
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Illus. 3.3.8 The reconstructed observatory in Jaipur

[Photo: H.-W. Alten]

In another verse Āryabhat.a I states a value for π:

One hundred and four times eight, add sixty two thousand; this is ap-
proximately the circumference for the diameter of a pair of ten thou-
sands.

This means: π ≈ 62832
20000

. This value can be reconstructed by taking the regular
hexagon and repeatedly halving the chords until we obtain a polygon with
384 edges [Gericke 1984, p. 185], [Elfering 1975, p. 87]. The verse concerning
Pythagoras’s theorem is very insightful for the theoretical environment, in
which Indians gained and also originally phrased mathematical understand-
ings:

Having added the square of the measure of a gnomon to the square of
its shadow, its square root is the radius of the ‘celestial circle’.

Two further verses summarise elementary similarity relations and the altitude
theorem in the right-angled triangle, and another one deals with the common
chord of two intersecting circles. What follows concerns the summation of
series, solving determinate and indeterminate equations and other topics from
the area of algebra and number theory.
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Illus. 3.3.9 One of the reconstructed instruments of the observatory Jaipur

[Photo: H.-W. Alten]
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Brahmagupta

Apart from the usual instructions for calculating straight bounded, plane
areas and elementary solids (it would be redundant to repeat those here), we
can also find some remarkable particularities in the Indian texts. For instance,
Brahmagupta (598 – after 665) states a formula (rule) for calculating the
area of a general quadrilateral by means of its sides a, b, c, d and half the
perimeter p, which reminds us of Hero’s (better: the Archimedean) formula
(2.5.1) concerning the triangular area:

A =
√
((p− a)(p− b)(p− c)(p− c)) (3.3.3)

However, he does not state that we are dealing with an approximation for-
mula, which only applies exactly to the special case of an inscribed quadri-
lateral in a circle. (The correct formula would be:

A =
√
((p− a)(p− b)(p− c)(p− d)− abcd · cos2 α), (3.3.4)

whereby, α is half the sum of two opposite angles.) Later mathematicians
adopted this formula as well as the special case for d = 0, as done by Brah-
magupta. Only Āryabhat.a II highlighted around 950 that the formula (3.3.3)
does not yield the correct value for every quadrilateral.

We also find Ptolemy’s theorem of chords for the cyclic quadrilateral a, b, c, d
with the two diagonals e, f in the circle in Brahmagupta’s work:

e · f = a · c+ b · d (3.3.5)

Additionally, it is the first time that we find the following proportion in his
work:

e

f
=

ad+ bc

ab+ cd
(3.3.6)

Compare this with Regiomontanus’s efforts in the 15th century to generate
a formula concerning the area of an inscribed quadrilateral or with the fact
that W. Snellius encountered Brahmagupta’s formula in Europe only in 1615,
for which Philip Naudé the Younger could finally provide a proof in 1727(!).
Around 850, the Indian Jaina scholar Mahāv̄ıra also stated the formula 3.1.2,
obtained from the old Chinese texts, concerning the area of a circle segment:

A = (c+s)·s
2 (A = area, c = chord, s = sagitta). In his work, he followed up

on almost all the problems that had kept his predecessors busy. However, as
with most Indian mathematicians, concerns of numerical questions, solutions
to equations and infinite series dominated [Juschkewitsch 1964, p. 86].
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Three-dimensional coordinate geometry

We find starting points of a three-dimensional coordinate geometry in Vācas-
pati’s work from the 9th century. He developed this idea in a philosophical
commentary when examining the position of an atom in space. To do so, he
thought of three axes, one in an East-West direction between the point of
sunrise and sunset at the horizon, one North-South perpendicular to the first
one, and a third leading from the crossing of both points to the respective
position of the sun at noon (normally, it does not stand perpendicularly to
the plane of the two other axes). He then described the distance of two atoms
by means of the three directions [Bag 1979, p. 169-170].

Euclid’s influence

Determining to what degree Euclid’s ‘Elements’ influenced Indian mathe-
matics is a difficult historical undertaking. It seems that single definitions or
propositions became known from the 6th century onwards. It is certain that
‘Elements’ was accessible in India beginning in the 14th century. However, as
already mentioned, the encounters with Euclid (in Arabic or Persian trans-
lation) did not result in the adoption of proof by means of deduction.

Bhāskara II

Bhāskara II, to whom we owe several ingenious mathematical contributions,
lived in the 12th century. Above all, he is known for inventing the ‘chakravala’
method, a cyclic algorithm for solving indeterminate quadratic equations in
two unknowns. Hermann Hankel referred to this as the finest accomplishment
of number theory before Lagrange. We will now sketch his calculation of the
spherical surface, which introduces us again to a new method and shows the
various approaches taken during the course of history to attack the same
problem. Bhāskara II imagined a sphere with a circumference of 96 units
placed at the equator. This sphere was subdivided into 96 equal parts. He
drew 48 meridians through these points of division, each one of which was
also subdivided into 96 equal arcs. He laid the circles of latitude through the
points of division of equal altitude. This resulted in small fields (spherical
trapezoids and spherical triangles at the poles, respectively), which he held
to be plane. Their size decreases from the equator to the poles and proves to
be proportional to the sine of the angle distance of the pole, if we view the
fields within a strip (shaped like orange peel) from the pole to the equator.
This way, Bhāskara II was able to yield a good approximate value for the
spherical surface [Bag 1979, p. 296]. The chosen interval size required him to
yield sine values in an interval of α = 2π

90
= 3 3

4

◦
(cf. Problem 3.3.4).

To conclude, we will look at another interesting version for determining the
spherical surface, which had earlier been wrongly ascribed to Āryabhat.a I.
It is based on the following consideration, which perhaps was initiated by
his school of thought. (It has been passed on in the work Yuktibhās. ā by
an unknown author from the 16th century.) Imagine the surface of a sphere
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divided into circles by parallel (latitudinal) circles. Then, approximate the
area of one such ring by means of the lateral surface of the conic frustum,
which is determined by the lower and upper parallel circle. Finally, add all
these strips together by imagining unwinding the conic frusta in the plane and
viewing their surfaces as trapezoids. This idea also leads to the exact formula
S = 4πr2, if we, according to the modern view, proceed to the boundary
[Bag 1979, p. 296], [Sarasvati Amma 1979, p. 213-215]; (cf. Problem 3.3.5).

We have repeatedly pointed at the Indian mathematicians’ preference for
treating geometrical problems based on algebraic methods. Their main ac-
complishments were not of geometrical, but of algebraic nature – number the-
ory (divisor problem, continued fraction algorithm, Diophantine equations)
–as well as the development of numerous infinite series and considerations,
which point in the direction of infinitesimal methods. Nevertheless, they have
also shown a remarkable wealth of ideas in the realm of geometry in ancient
and medieval times, as the examples demonstrate.

Essential elements of Indian geometry

700–500
BC

Śulbasūtras (String rules)

(Vedic
era)

Altar constructions by means of triangles and rectangles;
Pythagoras’s theorem; square additions; squaring the circle
and circling the square

approx.
5th cen-
tury

Siddhāntas (astronomical, mathematical texts) Introduction
of trigonometric functions: first sine and cosine (relation to
gnomon); around 930 in all four quadrants

400–1200 Āryabhat.a I (born 476):
(Hindu
Middle
Ages)

Āryabhat.ı̄ya (mathematical mnemonics) Elementary geome-
try, spherical geometry, deferent and epicycle (Greek influence)
Brahmagupta (born 598):
Generalisation of Hero’s triangle formula to include inscribed
quadrilaterals; Ptolemy’s theorem for inscribed quadrilaterals
Bhāskara II (1114–1185?):
Siddhānta-siromani (Wreath of sciences):
Climax of Indian mathematics (chakravala method (cyclic al-
gorithm) in number theory); calculation of spherical surface by
decomposition

1200–1600
(Late
Middle
Ages)

Numerous commentators on the works of Bhāskara II; gen-
eral characteristics: calculating geometry, touching on Islamic
mathematics
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3.4 Islamic Countries

622 Mohammed emigrates from Mecca to Medina (begin of Islamic cal-
endar)

632 Mohammed dies
634–644 Caliph Umar (book burning)
635 Damascus and Mesopotamia are conquered
635–651 Sassanid Empire (Persia since 226) smashed
642 Egypt is conquered (Alexandria!)
712 Chorasmia (between Caspian Sea and Aral Sea) conquered, advances

until Indus

West East

661–750 Umayyad Caliphate, based in
Damascus

711 Crossing at Gibraltar,
Visigothic Kingdom in
Spain destroyed

717–720 Caliph Umar II: 718 scholars
relocated from Musaeum in
Alexandria to Antiochia

732 Karl Martell beats
Arabs at Tours and
Poitiers

750–1517 Abbasid Caliphate, based in
Bagdad from 763–1258, after
Mongol attack 1261–1517 in
Cairo

756–1031 Umayyad Emirate,
based in Córdoba,
Caliphate since 929

9th

century
Arabs at Crete and Sicily

8th − 10th

century
Translations into Arabic 754–775 Caliph al-Mans.ūr, founder of

Bagdad (763)
768–809 Caliph Harūn ar-Rash̄ıd

(1001 Nights)

11th−13th 813–833 Caliph al-Ma’mūn
century Translations into Latin 833–843 Caliph al-Mutaz̄ım

847–861 Caliph al-Mutawakkil
892–903 Caliph al Mutad̄ıd

912–961 Emir, from 929 Caliph
Abd ar-Rah.mān

961–976 Caliph al-Hakam II,
Library at Córdoba

969–1171 Fatimids in Egypt, Capital
Cairo (founded in 969)

1031 Caliphate broken down
into principalities

1206–1227 Dschingis Khan, Mongol
attack

1258 Hūlāgū Khan conquers
Bagdad, gains title of Ilkan

1409–1449 Ulugh Beg in Samarkand
(Uzbekistan)

1453 Osmans conquer
Constantinople

1492 Downfall of Granada,
the last Moorish
kingdom

1517 Turks conquer Cairo
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3.4.0 Historical information

Mathematics in the Islamic countries, henceforth mostly referred to as Arabic
mathematics, is based on three pillars: mathematics of old Mesopotamia,
contemporary Indian mathematics, and, in particular, Greek mathematics.

It is not necessarily wrong to stress that, above all, Arabic mathematics
brought the decimal position system and Greek mathematics (working with
proofs) to the occidental world and, therefore, the entire present civilisation.
However, this is a very narrow way of looking at the matter, since it relies
completely on the contemporary state of development as its benchmark. This
should not be the guideline for a historical representation, the duty of which
is primarily to draw as objective a picture as possible regarding development
of contemporary civilisation and culture (in our case, of mathematics and,
particularly, geometry). Thereby, it should attempt to carve out the mutual
influences and characterise the role that these activities played in that de-
velopment. Looking at the entire picture, the relations to religion fulfilled a
relatively subordinate function. The majority of investigations belonged to
the field of the so-called pure mathematics.

The prophet Mohammed from Mecca had his first visions around 610. His
epiphanies are noted in the Koran. He resettled in Medina with his followers
in 622, where more and more Bedouin tribes joined him. Soon, the religion
he was preaching had found a new home across the entire Arabic peninsula.
Three years after Mohammed died, the Arabs conquered Damascus and pro-
claimed it home of the Caliph. Two years later, they subdued Persia, reached
Kabul in 664, and Bukhara and Samarkand in 674. Bagdad was re-founded
as the base of the Caliph of the Abbasids in 762/63 (140 years after Mo-
hammed had fled from Mecca to Medina, also known as the “hijra”, which
was the beginning of Islamic calculation of time). Bagdad fast grew into an
influential cultural centre. Particularly, the Caliphs al-Mans.ūr (ruler from
754 until 775), Harūn ar-Rash̄ıd (786–809) and al-Ma’mūn (813–833) took a
great interest in science. The latter caliph founded the House of Wisdom in
Bagdad, which was equipped with an elaborate library and an observatory.

As part of the expansion to the West, the Arabic army had already conquered
the greatest part of the Iberian Peninsula before Bagdad had been re-founded.
Having subdued North Africa at Gibraltar (Jabal Tariq, “mountain of Tariq”)
in 711, commander Tariq stepped on European ground for the first time.
The emirate of Cordóba was founded here in 756. Islamic culture blossomed
here, especially in the 10th century after the city had grown to be the second
largest in Europe (after Byzantium), with paved streets that were illuminated
at night.

Yet, the difference between the cultures of the eastern and western parts
was extensive. The influences of the three named cultural circles crossed
in Bagdad. Even some degree of domestic Syrian and Persian scholarship
could be continued. In contrast, culture, arts and science from the eastern
parts of the country only gradually penetrated the West Arabic provinces in
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North Africa and Spain. Hereby, they were united not just by religion, but
also by the Arabic language. The Koran was only allowed to be read and
cited in Arabic, which also immediately became the language spoken at the
chancellery and administration, as well as the language of science.

The most important sources, according to our knowledge, are Arabic texts,
which were copied between the 10th and the 19th century, often by writers
who did not know much of mathematics. Non-mathematical texts (astronomy,
optics, law, linguistics, and many other subjects) can also contain excerpts
that belong to the realm of mathematics nowadays. Even though exploring
Arabic mathematics started with the beginning of the 19th century, we have
by no means inspected all manuscripts and examined their meaning. The
most significant collections of manuscripts are to be found at libraries in the
Middle East, Europe, India and North Africa [Berggren 1986], [Rashed 1996].

3.4.1 Translation work

First of all, avid translation work into Arabic started in the East. Apart from
some Indian works, all Greek classics have been accessible in good Arabic
versions since 900. It was inevitable that the Islamic mathematicians would
deal with this legacy in countless commentaries. In a second phase, which
overlapped the first translation period, critical points and open questions
triggered their own continuing investigations.

However, from the 11th century onwards, Spain became the best place, apart
from Sicily, where the small number of Western European scholars who were
so interested could encounter Islamic culture and science. As a result, Spain
became the important bridge that linked Greek and Oriental knowledge with
Western Europe. In Toledo, and to a lesser degree in other cities of the Iberian
Peninsula, significant schools of translators developed. Scientific works avail-
able in Arabic were mainly translated here into Latin, the language of scholars
in the Middle Ages. Afterwards, they were copied and circulated in Europe.
(However, we must not overlook the cultural differences between East and
West. Many significant works of mathematicians working in Persia, Egypt
and other countries of the Middle East were not known in the West back
then, and, consequently, had no effect here. We owe our knowledge of those
texts to modern historical research.)

This development went hand in hand with a second strand of communication,
which took its course from Byzantium via Italy. We will examine this aspect
in the subsequent chapter on the Middle Ages.

In the following passages, we will introduce key aspects and examples of in-
dependent investigations by Islamic mathematicians ordered according to the
branches of theoretical geometry, applied geometry, and trigonometry. In this
method, it is not always possible to avoid boundary crossings.
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3.4.2 Theoretical geometry

Within the field of theoretical geometry, Arabic mathematicians had already
started focussing on Euclid’s ‘Elements’ around 820. Euclid’s masterpiece was
translated into Arabic multiple times, was repeatedly commented on, and
represented the main foundation for further research of Arabic mathemati-
cians. It seems that they began to show interest in mathematical questions
for the sake of the subject itself very early, since applied science took on a
rather subordinate role. As key aspects of theoretical geometry, which could
be extended in any direction, we will introduce exemplarily the construction
of regular polygons, circle calculations (as topics within the realm of the so-
called three classical problems, whereby conic sections play a role, too) and
their theory of parallels.

Although not in an independent work of its own, al-Khwārizmı̄, who worked
at Caliph al-Ma’mūn’s court in Bagdad, also dealt with geometrical problems
in a section of his groundbreaking work in algebra at the beginning of Arabic
mathematics. Therein, he partially followed up on Hero (including some of
the numerical values, which occur in some problems). His selection of subject
matter all in all corresponds to the content of the first two books of Euclid’s
‘Elements’. An illustrative proof (possibly inspired by an Indian source; see
Illus. 3.4.1 and Problem 3.4.1) of Pythagoras’s theorem concerning the case
of isosceles, right-angled triangles is worth mentioning.

In the middle of the 9th century, the Banu (brothers) Musa wrote their own
work on geometry. These three brothers developed a vivid science of me-
chanics, astronomy, mathematics and the building of musical instruments in
Bagdad. Their work, preserved in Latin translation by Gerard of Cremona,
is known as “Liber trium fratrum de geometria”. The authors had named it
more distinctively ‘Book on the Measurement of Plane and Spherical Fig-
ures’. (In the form of an edition by at-Tusi, the content has also been passed
on in Arabic.) The three brothers added proofs to all propositions. Circle,

Illus. 3.4.1 al-Khwārizmı̄’s illustrative proof of Pythagoras’s theorem for the isosce-
les, right-angled triangle
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Illus. 3.4.2 Brick ornaments at the Iwan of the Friday Mosque of Nain, Iran. An
Iwan (also Eiwan or Liwan) is the overarching porch of a prayer room, which is

opened towards a yard with its narrow side

[Photo: H.-W. Alten]
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sphere and cone formed the most important objects of their investigation.
Hence, they did not bow to the restrictions marked by Euclid’s ‘Elements’.
They were the first within Arabic literature to describe the ancient Greek
method of exhaustion. Their work was studied in the oriental world for cen-
turies and also impacted European mathematicians in its Latin version.

Construction of regular polygons

Beyond the known elementarily constructed shapes (triangle, square, pen-
tagon, polygon with 15 corners and the respective polygons as the result
of repeatedly doubling the sides), the question of constructing regular poly-
gons was popular amongst geometers. The regular heptagon and the regular
nonagon must have been the first ones to awaken interest. The construction
of the latter is connected to the problem of angle trisection; the construction
of the first leads to a cubic formula. Thus, both are on the same level of
difficulty algebraically speaking, and suggest the same choice of path that
the Greek mathematicians had already taken, namely to find solutions based
on conic sections. Nonetheless, the Islamic mathematicians also conceived of
brilliant neusis constructions [Hogendijk 1984], [Scriba 1985a].

Abū’l-Wafā was one of the scholars who took particular pleasure in address-
ing regular polygons. His versatile work was done in Bagdad in the 10th

century and he is author of a treatise called ‘Book on What Is Necessary
from Geometric Constructions for the Artisan’. Therein, he described many
wonderful constructions of regular polygons up until the decagon. There were
some constructions amongst those (except for the heptagon and the nonagon)
that could be constructed by compass and straight edge. The proposal for
the square is demonstrated in Problem 3.4.2.

He suggested a very simple approximation construction for the heptagon:
take half of a side of an isosceles triangle inscribed in a circle to be the side
(see Problem 3.4.3). Hero had already taught the same approach, whereas
the neusis construction (though exact, not constructible by means of elemen-
tary geometry!) stated by Abū’l-Wafā for the regular heptagon came from
Archimedes [Berggren 1986], [Gericke 1984], [Juschkewitsch 1964].

Another heptagon construction based on the construction of two conic section
curves was developed by al-Kūh̄ı at the end of the 10th century. Imagine a
heptagon inscribed in a circle. Name one corner A, the corner after the next
one B and the following one C so that a triangle ABC can be formed by
means of a short chord (AB), a side (BC) and a long chord (CA) of the
heptagon. Now imagine the triangle (heptagon) side BC extended to the left
by the short diagonal AB and extended to the right by the long diagonal CA
and the extremities E (left) and D (right), determined this way, connected
with A. Then we can show that the following applies to the line segment
EBCD:

EB2 = BC ·BD and CD2 = EB · EC (3.4.1)
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Illus. 3.4.3 Madrasah (religious school) Tillya-Kari at Registan in Samarkand,
Uzbekistan

[Photo: H.-W. Alten]
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Thus, it is up to us to divide a given line segment ED by two points B and C,
whilst fulfilling both equations (which were already known by Archimedes).
By basing them on the construction of a parabola and a hyperbola and de-
termining their intersections, al-Kūh̄ı could construct the triangle ABC by
means of the required line segment division, construct a circle around this
and draw further heptagon sides therein (see Problem 3.3.4).

The wealth of Arabic ornaments is especially well known. Whereas some
indicate a high level of symmetry as a whole, others often demonstrate the
artistic linking of regular polygons of different types. The delivered Islamic
scholarly discussions concerning this topic have not yet been investigated
extensively. Apart from Abū’l Wafā’s often described text, we only know of a
study written by the mathematician al-Kāsh̄ı around 1415, which addresses
three-dimensional patterns shaped like honeycombs, called muqarnas.

Since we otherwise do not have any sources pointing at the deliberate appli-
cation of geometrical knowledge concerning architecture or mosaic construc-
tions (even though we can prove today that the latter reflected its applications
in the diversity of the plane symmetric groups discovered in the 19th century),
it is justified to assume that we are dealing with empirically acquired insights,
which were passed on and fine-tuned from generation to generation within
the scope of artisan tradition (cf. Illus. 3.4.2 – 3.4.6).

Circle calculation

As with all cultures we have looked at so far, Islamic countries could not re-
sist dealing with the shape of the circle. The constructions found in Euclid’s
‘Elements’ and relating to the circle were studied and attempts were made
to develop further or apply them to additional questions. Thereby, the Is-
lamic mathematicians tried to determine constant π more precisely, showing
very clearly that they followed up on both Greek and Indian mathematics.
Concerning circle calculation, al-Khwārizmı̄ already stated: C = d · (3 + 1

7
)

and C = d · √10 or C = d · 62832
20000 . The first value is Archimedean, the

third one is said to have been used by astronomers. al-Khwārizmı̄ could
have taken the third, just as he did second, from Indian texts [Gericke 1984],
[Juschkewitsch 1964].

To determine the area A of a circle by means of diameter d, he stated that

A = d2 − 1

7
− 1

2
· 1
7
d2 (3.4.2)

This formula comes very close to one stated by Hero (cf. Problem 3.4.5).
Al-Khwārizmı̄’s rule for calculating area S of a circle segment by means of
arc b, chord c and the height of the segment (sagitta) s is also peculiar. First,

he determined the diameter d as d = c2

4s + s, then he applied a double rule:

For a segment that is smaller than a semi-circle, calculate according to the
formula
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Illus. 3.4.4 Floral and geometrical Ornament in a tile of the Friday-Mosque of
Yazd, Iran

[Photo: H.-W. Alten]



178 3 Oriental and old American geometry

S =
d

2
· b
2
− (

d

2
− s)

c

2
. (3.4.3)

For a segment that is greater than a semi-circle, calculate according to the
formula

S =
d

2
· b
2
+ (s− d

2
)
c

2
. (3.4.4)

Since the terms he used are of Indian origin, al-Khwārizmı̄ probably learned
of these rules from an Indian text [Juschkewitsch 1964] (see Problem 3.4.6).

A special accomplishment of Arabic mathematics is the calculation of con-
stant π in al-Kāsh̄ı’s ‘Treatise on the circumference’, which he concluded in
1424. Al-Kāsh̄ı had set himself the ambitious aim to calculate π so exactly
that the error concerning a circumference, the diameter of which is 600 000
Earth diameters, would not exceed a hair’s breadth. He contemplated using
a regular quadrilateral, the side of which fulfils the inequation a < 8

604 for
a circle with a radius of 60. His conclusion was to use an inscribed polygon
of 3 · 228 = 805 306 368 sides, or, respectively, a 1, 2, 8, 16, 12, 48-gon in the
sexagesimal system. Al-Kāsh̄ı conducted his calculation so cleverly that his
result was exact to ten sexagesimals or 17 decimals. Not only did he state his
result in both systems, it also was the first time decimal fractions were used
in Islamic mathematics. In decimals, he found

2π = 6.283 185 307 179 586 5.

This calculation was only reproduced around 1600 by Adriaan van Roomen
by means of the 230-gon. Just a little later, he was superseded by Ludolph van
Ceulen, who first calculated 20 and then 32 decimals by means of a 60 · 229-
gon. This is why π is also sometimes called the ‘Ludolphian number’.

The parallel postulate

A topic particularly discussed by the Muslims was Euclid’s parallel postulate,
which had already given rise to debates back in ancient times. (Around 520,
Simplicius had written about a supposed proof of a certain ‘Aganiz’ (Gemi-
nos?) in his commentary on Euclid, which has been lost. The foundation is
said to have been the definition that “parallel straight lines are those of fixed
distance”.) Research regarding the parallel problem may be the example that
points most to the future within the scope of pure geometrical studies in Is-
lamic mathematics. Around 830, al-Jawhari followed up on the mentioned
definition. One generation later, T

¯
ābit ibn Qurra referred to this before he

consulted the notion of motion, which Euclid had avoided, as part of a second
investigation. Around 900, al-Nayr̄ız̄ı spread knowledge of the parallel postu-
late in an extensive commentary on the first ten books of Euclid’s ‘Elements’.
He proved the parallel axiom based on the definition that parallel straight
lines are lines which remain equidistant no matter how far they are extended.
The versatile Arabic mathematician, astronomer, physicist and physician ibn
al-Haytham, who was familiar with his predecessors’ works, also worked with
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Illus. 3.4.5 Geometrical ornaments and friezes in cufic script at the Iwan of the
Friday Mosque in Yazd, Iran

[Photo: H.-W. Alten]
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Illus. 3.4.6 Dome decoration of a Mausoleum in Shah-i Zinda, Uzbekistan

[Photo: H.-W. Alten]
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Illus. 3.4.7 Sextant in the mural quadrant of the Ulugh Beg Observatory,
Samarkand, Uzbekistan

[Photo: H.-W. Alten]
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Illus. 3.4.8 Ulugh Beg Observatory, Samarkand, Uzbekistan

[Photo: H.-W. Alten]

motions. He used a quadrilateral with three right angles (a Lambert quadri-
lateral; cf. Illus. 6.4.2) and proved that the fourth angle could neither be
acute nor obtuse. (Thereby, he silently used the Archimedean axiom and
Pasch’s axiom.) Around 100 years later, the mathematician and poet Umar
(or Omar) al-Khayyām worked with the Saccheri quadrilateral, which fea-
tures two right and two equal angles (cf. Illus. 6.4.1), although he criticised
the introduction of motions in geometrical proofs. In the 13th century, Nas.̄ır
ad-Dı̄n at.-Tūs̄ı gave his opinion on the parallel problem by means of two
Euclid editions initiated by him. Besides, he adopted large excerpts from his
predecessors’ works when writing his own text on this topic.

The investigations initiated by Islamic mathematicians between the 9th and
15th centuries all had something in common, namely that they excluded the
non-Euclidean possibilities by means of circular reasoning and illusive proofs.
Thus, they all reached the conclusion that the parallel postulate could be
proven. As mentioned, they thereby encountered (partially implicit without
the researchers being aware of it) very important axioms, e.g., the one by
Archimedes/Eudoxus and the Pasch configuration [Gericke 1984, p. 204-214].

European mathematicians did not find out about all Arabic texts in time.
However, it is certain that al-Nayr̄ız̄ı’s achievements concerning the paral-
lel problem were studied by the influential Jesuit mathematician Christoph
Clavius around 1600. Nas.̄ır al-Dı̄n at.-Tūs̄ı’s accomplishments were studied
and further developed by John Wallis around 1650.

In relation to basic matters, geometry was also consulted in Arabia to account
for algebraic operations. For instance, T

¯
hābit ibn Qurra, based on Book II
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of Euclid’s ‘Elements’, stated geometrical proofs for al-Khwārizmı̄’s rules to
solve quadratic equations. The efforts to solve cubic equations by means of
conic sections starting in the 10th century also belong within this context. An
investigation by al-Khayyām gained much attention, but dealt insufficiently
with the necessary and sufficient conditions of the existence of solutions. As
the history of mathematics showed a quarter of a century ago, this was only
accomplished in the 12th century by Sharaf ad-Dı̄n at.-Tūs̄ı (not to be con-
fused with Nas.̄ır ad-Dı̄n at.-Tūs̄ı) [Hogendijk 1989]. Other mathematicians
made an effort to state a geometrical justification of the proportionality pro-
posed by Euclid in his fifth book.

3.4.3 Practical geometry

Following the investigations within the realm of theoretical geometry, Islamic
mathematicians also engaged with multiple questions from the area of applied
geometry. Of course, geometry continued to form the basis for surveying.
The geometrical chapter of al-Khwārizmı̄’s algebra, mentioned above, bears
some resemblance to the old Hebrew treatise Mishnat ha-Middot (Treatise
on Measures). Its origins lie between the middle of the 2nd century and the
9th century. The unknown author had based his work on Hero and may have
been familiar with Euclid’s ‘Elements’. It is possible that al-Khwārizmı̄ had
taken his problems from this Hebrew work. Another possibility is that both
authors had access to the same sources, which have not been preserved.

The already cited work ‘Book on What Is Necessary from Geometric Con-
structions for the Artisan’ by Abū’l-Wafā from the 10th century systemati-
cally describes constructions with a fixed span of the compass. Accordingly,
they were already popular in Arabic crafts; we also find them in the Euro-
pean “Bauhütten” of the Middle Ages. Their practical advantage lies within
the fact that they avoid errors, which are inevitable when using compasses
instead of exact circle models and particularly with respected alteration in
the span of the compass. (This may have also been a motive for geometers
like Leonardo da Vinci, Tartaglia, Cardano, and later for Mascheroni and
Steiner, who addressed such constructions from a theoretical point of view;
more details in section 7.3.)

Having dealt with regular polygons constructible by means of elementary
geometry in the second and third chapter, Abū’l-Wafā turned towards the
problem of deconstructing a spherical surface into regular spherical polygons
in the last chapter of his book. This is synonymous with the construction
of regular polyhedra, which the author, however, did not mention. Therein,
not only did he determine the five platonic solids, but also two of the 13
semi-regular solids found by Archimedes. Given the Arabs’ fondness for geo-
metrical ornaments (due to the religious prohibition of image representations
in the mosques), we could assume that his intention was to provide crafts-
men with instructions to design surfaces of curvature. At the beginning of
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Illus. 3.4.9 Abū’l-Wafā’s highly illustrative solution to the problem of constructing
a square of an area three times as big as the area of a given square. We only have

to prove that area A is congruent and, hence, of equal area to area B.

the 15th century, in the chapter on measures in his book titled ‘The Key to
Arithmetic’, al-Kāsh̄ı also included complicated calculations and construc-
tions for pointed arches, vaults, domes and, lastly, the so-called stalactites,
which were very characteristic of Arabic architecture.

The successful continuation of the methods adopted from the Greeks and,
to a lesser degree, the Indians characterised the applied geometry of Islamic
mathematics. Furthermore, it distinguished itself by extending Archimedes’
approaches to systematically studying areas and solids of curvature, which
led to infinitesimal observations. It translates geometrical considerations into
the language of algebra and conducts calculations (including irrational quan-
tities) by means of well-considered methods with high accuracy. However, the
methods based on similarity observations with triangles and common during
the Antiquity (and the European Middle Ages) were pushed into the back-
ground in favour of trigonometric methods.
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3.4.4 Trigonometry

As known, astronomy, geography and geodesy had to fulfil important religious
tasks in the Islamic world: the calendar, depending on the course of the moon,
had to be forecasted by the astronomers, for which they had to know the date
of the first visibility of the crescent after new moon. The time of the five daily
prayers depended on the position of the sun and, thus, also depended on the
respective geographical coordinates. Moreover, it was necessary to determine
exactly the direction of the prayer to Mecca, known as the kibla or qibla, for
each inhabited place. The direction was further indicated by the sundials and
in every mosque.

By 800, in Bagdad already Alexandrian and Indian works on astronomy
were known, which addressed trigonometric methods [Sesiano 1993]. Hence,
there was an opportunity to compare the appropriate works by Hipparchus,
Ptolemy and Menelaus with the semi-chord trigonometry developed in India
[since the 6th century (?)]. At the beginning of Arabic trigonometry, we find
al-Khwārizmı̄ again, who composed a sine table including explanations. The
Greek chord trigonometry was increasingly pushed aside by sine trigonome-
try. The Muslims extended the two trigonometric basic functions put forward
by the Indians, sine and cosine, to six such functions. Tangent and cotangent
were developed first when studying the shadow cast by sundials: tangent as
a relation of the shadow length of a standardised pole mounted horizontally
to a wall, cotangent as the shadow of a gnomon (a vertical pole on horizontal
ground). Since the late 10th century, the possibility was known for using the
circle radius as a unit length so that all functions can be viewed as ratios
of line segments. These were soon also used for other problems. In addition,
there were secant and cosecant (the ratios of hypotenuse to the adjacent or
opposite side in the right-angled triangle). Tables had to be calculated for
all these functions and the relations between them had to be investigated.
For instance, al-Habashis said to have configured tables for some of the new
basic functions in the 9th century. Almost all astronomers in the Islamic area
composed astronomical, trigonometric handbooks, known as ‘ziges’. Math-
ematicians and astronomers spent a lot of time over the centuries working
towards such calculations, including the improvement of the required meth-
ods (next to interpolation of first degree, there are also examples of second
degree). Thereby, they maintained – just as Ptolemy had done – the sexa-
gesimal system, which goes back to the Babylonians and the division of the
circle into 360◦. In Abū’l-Wafā’s work ‘zig almagisti’ from the 10th century, we
can, for example, find the following wording for the addition and subtraction
theorems regarding the sine function [Berggren 1986, p. 136]:

“Calculation of the sine of the sum of two arcs and the sine of their
difference when each of them is known. Multiply the sine of each of
them by the cosine of the other, expressed in sixtieths, and we add the
two products if we want the sine of the sum of the two arcs, but take
the difference if we want the sine of their difference.”
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Illus. 3.4.10 Armillar-Sphere, displayed in the first printed edition by Hajji Kali-
fahs Jihan Numa (mirror of the world)

[ARAMCO World, vol. 43, no. 3]

When proving this theorem, Abū’l-Wafā consulted a proposition of Book III
of Euclid’s ‘Elements’.
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Illus. 3.4.11 Muslim astronomers with instruments, 16th century

[ARAMCO World, vol. 43, no. 3]
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The Islamic mathematicians also introduced the trigonometric functions in
spherics. For instance, the law of sines for spherical triangles was known in
the 10th century: the ratio of the sines of two sides equals the ratio of the
sines of their opposite angles in a spherical triangle.

Nas.̄ır al-Dı̄n at.-Tūs̄ı, whom A. P. Juschkewitsch [Juschkewitsch 1964, p. 304]
called the most significant oriental scholar within the realm of trigonome-
try and for whom Mongol ruler Hūlāgū Khan had built an observatory in
Maragha in Persia, systematically examined the application of the law of
sines for all possible cases of plane triangles:

c

sin γ
=

b

sin β
=

a

sin α
. (3.4.5)

He composed the first independent treatise on trigonometry: ‘Book on the
complete quadrilateral’. Menelaus’s theorem, which refers to this figure, had
already been consulted for triangle calculations by Islamic astronomers very
early on. At.-Tūs̄ı dealt with spherical triangles with and without this theo-
rem, whereas the law of sines was already known by his predecessors. Muslim
astronomy and trigonometry reached their climax in the 15th century at the
famous, excellently equipped Ulugh Beg Observatory in Samarkand (see Illus.
3.4.7, 3.4.8). The ingenious al-Kāsh̄ı worked there, utilising a clever iteration
method in order to calculate the sine of 1◦ with great accuracy by means
of the equation for angle trisection. Basically, he proceeded in the following
manner:

Since we can determine sin 3◦ as exactly as we wish (we can construct it by
means of compass and straightedge using the difference of 36◦ at a pentagon
and 30◦ at a hexagon), he applied the equation for angle trisection:

sin 3α = 3sin α− 4sin3 α. (3.4.6)

(We encounter this formula for the first time in this exact wording in Vieta’s
work at the end of the 16th century.) It is of type x3 + q = px. (The former
classification presumed coefficients to be positive – here: p = 3

4
, q = 1

4
sin 3◦.)

Al-Kāsh̄ı calculated the first approximation to be x1 = q
p
by means of x =

q+x3

p
≈ q

p
. This leads to the second approximation x2 = q+x1

3

p
, etc. This,

in turn, indicates the special feature of the ability to obtain a further exact
sexagesimal with every step (cf. Problem 3.4.7). Converted into the decimal
system, al-Kāsh̄ı’s result delivers 18 decimals:

sin1◦ = 0.017 452 406 437 283 571. (3.4.7)

This selection of geometry of Islamic mathematics is not narrowed down due
only to the limited space of this book. A great number of unread Arabic
manuscripts are located at oriental libraries, which is why researchers have
not yet been able to gain a more complete picture of the development and
accomplished knowledge. The future, here, may well hold some surprises.
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Illus. 3.4.12 This ornament (Iran) is of special interest, because the principle of
generating starpolygons by turning a crossbar may be generalized

[Photo: P. Schreiber]

Essential contents of Islamic geometry

8th–10th

century
Translations of Greek, Persian and Indian works) especially
in Bagdad) – before, no independent mathematical culture

Middle of 9th

– middle of
11th

Independent further development of mathematics following
Euclid and Hero

From 9th

century
Geometrical solutions of cubic equations (by means of conic
sections and other)

2nd half of
9th century

Banu Musa (three brothers): book on geometry: circle calcu-
lations, surfaces and volumes of solids, angle trisection with
neusis; string construction of ellipse; book on conic sections

From 9th

century
Following up on Indians and Greeks, further development of
trigonometry more strongly towards applied methods

Before 983 al-Kūh̄ı: construction of regular heptagon
13th century At.-Tūs̄ı: first independent work on plane and spherical

trigonometry
1424 Al-Kāsh̄ı: calculation of π to 10 sexagesimals and 18 deci-

mals by means of a regular polygon of 3 · 228 = 805 306 368
sides
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3.5 Old American cultures

From America

40000 Populated by Asia via Bering Strait in multiple batches

From North America Area
9000 Hunters of field prey and small animals “Great Basin”
8000 Big game hunters East and planes

Gatherers of wild fruits and plants West coast
5000 First settlements East and planes
3000 First plant cultivations Southwest
2500 First ceramics and farming East and planes
1500 Permanent settlements East
600 Barrows East
100 First villages, ceramics Pueblo area of southwest North

America (Mogollon culture)
0 Basket makers Southwest
500 Towns in area of pueblo Southwest
1000 Temple and hill towns Middle Mississippi and

Southeast

From Middle America Area
9000 Mammoth hunters Central Mexico
3000 First plantations Northeast Mexico
2500 Plantations with settlements, ceramics Central Mexico (Tehuacan

sequence)
1500 First temple hills, Olmecs Central Mexico

(La Venta culture, 500–100)
200 First towns Teotihuacán, Monte Albán
0 Teotihuacán-Toltecs: ‘classical time’ Central Mexico
0 ‘Classical’ Maya Guatemala, Southeast Mexico
1000 Aztecs and other tribes Central Mexico
1200 Toltec Maya Yucatán
1525 End of Aztec Empire Central Mexico
1546 End of Maya Empire Yucatán

From South America Area
7000 Hunters Patagonia
4000 Hunters Peru, Venezuela, Argentina
3500 First plant cultivations Central Andes
3200 Oldest ceramics findings Ecuador, Columbia
2500 Village settlements Central Andes (Chillón

sequence)
2000 Early fishers/planters
1000 Begin of ceramics; Chavin culture North coast and South coast
0 ‘Classical time’
200 First towns Southern highlands
300 Moche civilisation North coast
400 Nazca South coast
450 Tiwanaku South Andes
1000 Tiwanaku expansion Southern highlands
1200 Inca Empire Andes (Columbia until Chile)
1500 Chimú Coast states
1532 End of Inca Empire Andes
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Illus. 3.5.0 Native Indian advanced cultures in Middle America

[Map: H. Wesemüller-Kock]

3.5.0 Historical introduction

In contrast to the preceding sections of this chapter, when looking at the
ancient American (Indian) cultures, we are dealing with a great number of
different developments. The strictly organised Mesoamerican cultures of the
Nahuan and Mayan people are best known. The Aztecs and Mayans lived in
central and southern Mexico and the adjacent parts of Guatemala, Belize, El
Salvador and Honduras. At the time of its greatest expansion around 1500,
the Incan Empire covered the area from the northern border of Ecuador un-
til Rio Maule in Middle Chile. The ruins of towns and other relics of these
large-scale cultures, which were characterised by intensive building activity,
have served as rich sources for archaeological research for a long time. Spain
came into contact with these advanced ancient American civilisations when
discovering the ‘New World’ in the 16th century. Our knowledge of the less
settled Native Indians and Eskimos (Inuit) on the North American continent
and the inhabitants of the tropical lowland in South America is much more
incomplete. Whereas the matter of mathematical ideas and concepts of the
early American inhabitants was just one amongst many for ethnological re-
search, the so-called ethnomathematical research that grew strongly over the
last decades has delivered extensive results, which are incomplete, but allow
for an indicative description. Again, we can only illustrate a few examples
here, which belong to the field of geometry.
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Ethnomathematics is dedicated to the examination of opinions and concepts
of the cultures of the native peoples, which are associated with numbers,
logic and spatial perception, as well as the organisation of such into systems
and structures. Thereby, we are by no means dealing with notions that can
be identified as explicitly mathematical, but with cultural expressions con-
nected to subject matter, which manifests itself as implicitly mathematical.
They can also occur in a context that can well differ from the traditional
western understanding. Special linguistic properties can also be consulted as
sources for ethnomathematical research as well as artefacts or behaviours
(exhibited in, for example, play, dance, religious rituals or craftsmanship).
All in all, we extract from these cultures what we believe to be mathematical
– or, in the context of this book, geometrical – with the eye of a European.
Ethnomathematics teaches us to view mathematics as an abstract entity, the
cultural background of which can be incredibly versatile.

The cultural developmental state of the ancient American inhabitants, which
we will look at in this section, varies greatly. It is a more complicated under-
taking, since early conquerors, tradesmen and missionaries, although often
noting down the numerical systems that they saw used by the natives (an
everyday life necessity for the conquerors as much as the natives), reported
very little on geometrically interesting details. This, for instance, is reflected
by the miscellany [Closs 1986] of thirteen articles in Native American Math-
ematics, ten more or less deal exclusively with numerical terms and symbols,
and their composition and application. Another article already pinpoints the
problem at hand with its title, In Search of Mesoamerican Geometry.

We must also consider a further difference: Settled people are generally able
to erect great buildings and to decorate items of household and culture with
geometrical patterns. Itinerant hunting and gathering people have few pos-
sessions and naturally rarely leave permanent traces behind. So what do we
know nowadays of geometrically inspired games or dances or other tempo-
rary cultural expressions of the early inhabitants of the American double
continent? We can only present here a small collection of examples of early
American cultures, which remind us of geometrical thinking and acting in its
broadest sense.

3.5.1 Hunting civilizations Inuit (Eskimo) and Ojibwa

The Ojibwa belong to the group of Asian immigrants who arrived in the area
approx. 40 000 years ago and are related to many other Algonquin tribes.
They hunted in the forests of North Ontario, around Lake Huron and Lake
Superior. In contrast, the Inuit arrived from Asia only approx. 6000 years
ago. They hunted in the open tundra, in the Arctic Polar Regions and the
adjacent islands. Despite their differences, their mathematical concepts are
very similar to each other and, thus, are seen as representative of hunting
and gathering tribes, whose members itinerated and fed on wild plants and
animals.
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In contrast, settled people adapt their environment by means of agriculture,
growing new types of plants and domesticating animals, which were not just
eaten, but also used for labour. This leads to an additional specialisation
that hunting tribes had no use for, which is the need for mathematics in its
broadest sense: to conceive of numerical systems. Furthermore, ethnomath-
ematicians have also shown that hunters required much less time to ensure
their survival than farmers. As a result, they had more time for and were
more willing to engage with recreational and leisure activities, e.g., spinning
an extensive web of myths.

When discussing the Ojibwa and Inuit we will focus on examples of linguistic
instances, since we can read off the existence of concepts thereof that we would
accept as belonging to the area of geometry. It seems that the Ojibwa had
categories that were fixed by prototypical elements, the boundaries of which
were blurred. For example, the circle is a central or prototypical element of a
category that different objects fall into: more or less round and two or three
dimensional, such as the cross section of a tree, an egg or a potato (Illus.
3.5.1). Another category was ‘longish’. Moreover, objects can also belong to
two categories, e.g., a longish potato, which is also seen as round. Compared
to pure geometrical concepts, the perception of dimension is just as blurry.
A stick, an animal skin and an apple represent objects that, respectively,
cover one, two and three dimensions. In contrast, all three items are three
dimensional according to our concept of geometry.

Illus. 3.5.1 Ojibwa representation of the worldly orb. Pictures of Earth with ‘four
tails’ can be found in many Native Indian tribes of North America and reached
their climax with the Ojibwa of Lake Superior. They were carved into the inner skin
of birch bark, scratched into slate and wood or painted onto leather scrolls. The
pictures were meant to preserve oral tradition and also represented symbols of the
‘Great Spirit’. Earth by Ojibwa on scrolls: a) Red Lake, b) White Earth (Minnesota)
[According to Hoffmann: The Midewin, Tables III A and IV.], c) Ojibwa drawing
Aki of Earth [According to W. Jones: Ojibwa Texts II, p. 322 Table V, Brill, Leyden

1917]
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That having been said, a stick can have a round or round-longish cross section.
Additionally, it can have a long shape; it can be straight or bent. The Ojibwa
language has individual terms for all these special properties.

There is a linguistic advancement that is worth mentioning. It was discov-
ered when the Ojibwa made first contact with the objects introduced by the
Europeans. They only knew the round shape of the wigwam and were then
made familiar with right-angled cabins. On top, the logs were pre-cut into
squares by the settlers before assembling the walls. In order to grasp the con-
cept of this new shape, the Ojibwa developed two new categories for angles,
which occurred repeatedly. One concerned repeating right angles (to describe
a square or rectangle, which feature four right angles), the other one stood for
repeating acute or obtuse angles (strangely, they did not distinguish between
those!). By means of the latter category they could, for example, describe a
triangle, which is formed by the obtuse angle at the ridge of the roof and the
two acute angles at the base of both roof sides.

The Inuit have properties for categories comparable to the Ojibwa shape
categories (Illus. 3.5.2). The category ‘round’ can be modified more or less
by means of an infix: angmaluqtuq means round in general, angmalu-riq-tuq
completely round, and angmalur-lak-tuq round to some degree.

There is also a wealth of terms to describe the location of objects within the
speakers surrounding. In English, we basically use the words here and there
for this. However, there has been little research thus far into these categories
and their applications by the Inuit.

The considerable span of the variety of categories in both languages corre-
sponds to the typical forms and shapes that occur in nature. Nonetheless, it
is also suitable to describe human products of those societies, such as arcs,
knives, sleighs or moccasins. These linguistic features teach us that we must
not limit our research of early geometrical notions to abstract objects like
straight lines or circles. (J. P. Denny in chap. 6 Cultural Ecology of Mathe-
matics by [Closs 1986]).

Hereby, there is an instantaneous correlation to geometrical skills, which trav-
ellers noticed when visiting the Arctic at the end of the 19th century, namely
the Inuits’ skill for drawing highly detailed maps of great areas covering sev-
eral hundreds of kilometres. These were drawn either in the snow or with
pencil on paper. The relative position of individual objects and directions
was reproduced with astonishing accuracy. The absolute distances were not
right. (To supplement this, the Inuit added detailed descriptions of distinc-
tive places, which were indispensible for orientation on their long itineraries.)
It seems that their geometrical imagination enabled them to think topologi-
cally rather than metrically. It remains to be researched if the distances be-
tween the marked locations were determined by the amount of time it took
to cross through them, rather than representing length as actual distance
[Ascher 1991].
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Illus. 3.5.2 Inuit harpoon and kayak. The Inuit harpoon consists of a lance linked
via a strap joint to a bone cone made of walrus tooth and the harpoon top made of
walrus or narwhale tooth, and a lead to catch prey made of walrus or seal skin. The
wooden skeleton of the kayak was originally made of light driftwood; the outside
was covered with leather made of common or hooded seal fur. The slopes at the
bow and the stern form an obtuse angle of approx. 140◦ together with the base
of the kayak [Fritjof Nansen: Eskimoleben (Eskimo life), publishing house Georg

Heinrich Meyer, Leipzig and Berlin 1903]
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3.5.2 Aztec, Mayan and Incan advanced cultures

The fact that they structured their societies in classes is common to all those
civilisations: a large population of farmers is ruled by a small number of
aristocrats and priests. Apart from that, there were soldiers, who came from
high-ranking families, and a small middle class of craftsmen and merchants.
Above all, this social structure is reflected by the configuration of the towns
and design of representative monumental buildings.

Aztecs

The Aztecs form the largest tribe of the Nahuatl language group in Mexico.
After migrating for years, they founded their capital Tenochtitlán in 1325
(according to their own sources). It was located on an island in the area of
today’s megalopolis Mexico City and became the centre of Aztec expansion
in the 15th century. When Cortés arrived there in 1519, Tenochtitlán ruled
all other towns. Power was divided between the king as head of the army, and
the pontifex, a close relative, who functioned as a type of Prince of Peace. The
economy was mainly focussed on farming corn, which is why each farmstead
featured a big corn barn.

The Aztecs had a rebus-like writing, which also preserved historical events
and tribute lists. Concerning arts, they adopted many aspects of preceding
cultures: pyramid and temple architectures, playgrounds for ball games, lap-
idary and gold work. The temple of Malinalco in the highland of Mexico,
which was carved out of rock between 1476 and 1520, is a special Aztec ac-
complishment. The entrance in the shape of a dragons mouth leads to the
circular interior (diameter: 5.20m), which features a surrounding bench and a
temple floor with animal illustrations, hinting at the Aztec warfare. Relics of
the old Aztec culture have been preserved in remote valleys up to the present
day. Artefacts indicate that talented Aztec artists planned and sketched ob-
jects in their spatial surrounding before they were painted and sculptured,
probably by less gifted craftsmen. Thereby, they helped themselves with sim-
ple geometrical aids. Research has shown traces of using a simple compass for
objects. A preserved list of tools of Aztec master builders cites, apart from
the compass, the square (a right angle?), the plumb line, a straightedge, a
brick trowel and a wedge. Long before the Aztecs settled down in Mexico,
one of the most significant towns of Mesoamerica in that neighbourhood, in
ruins nowadays, experienced its golden age: Teotihuacán, located 40 km to
the North of Mexico City. This town was once capital of a great empire,
which had its climax around 600; between 650 and 750 the town, which was
arranged like a chess board, was abandoned. We will briefly sketch some
of its characteristics before introducing the Aztec capital Tenochtitlán. The
ceremonial area located at the centre of Teotihuacán is dominated by the
Pyramid of the Sun and the Pyramid of the Moon. It is arranged around a
central procession street – the Avenue of the Dead, 44m wide and 5 km long
– starting at the Pyramid of the Moon. This town, which expands across 22
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square kilometres and grew considerably during the previous pre-Christian
centuries, experienced its golden age from the first century to the middle of
the seventh. It also influenced other temple structures in Mesoamerica built
in the early classical era (approx. 300-550). The name Teotihuacán means
‘birthplace of the gods’. The pyramid of the Sun is approx. 61m high, has a
basal side length of 213m and a volume of around one million cubic metres
(Illus. 3.5.3).

The pyramid was erected upon a basalt cave accessible via a long tunnel,
which was believed to be the entrance to the underworld. There are myths
about the origins of sun and moon and the cycles of time surrounding this
pyramid. Furthermore, it is said that water and rain ghosts lived there.

There has been much speculation concerning the motivations for the plan-
ning and execution of this enormous urban structure. Some suspect that we
are not dealing with a ‘rational’ town planning here, but the belated effort
to connect the most important ceremonial buildings in a sensible manner,
whereby astronomically relevant events are supposed to have served as a ba-
sic indication. Others argue that this construction reflects the centralised,
hierarchically-ordered rule, which had to integrate and hold together more
than 100 000 inhabitants of different social classes. Linking religious and civil
buildings by a unified construction would have primarily served this aim.
Certainly, the art and architecture of Teotihuacán in conjunction with the
practised cultural rites would have strengthened the peoples feeling of to-
getherness.

Illus. 3.5.3 Pyramid of the Sun in Teotihuacán (Mexico). The step pyramid with
the monumental staircase comes from the classical era of Teotihuacán culture (100–

600AD) before the rule of the Aztecs. [Photo: H.-W. Alten]
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The geometrically arranged ‘Talud-Tablero’ profile, which features in the ar-
chitecture of the walls of the building, is also quite striking with its change of
inclined areas and vertical panels. This profile is found at other constructions
as well. This profile existed evidently in pre-Christian times already and was
repeated in pyramid buildings with upward reduced scale. The panels pro-
vided room for a wealth of decorative (partially leaping) sculptures. (J. K.
Kowalski in chap. 4 Natural Order, Social Order, Political Legitimacy, and
the Sacred City in [Kowalski 1999]).

Now let us turn towards the capital of the Aztec Empire, Tenochtitlán. It
features a large temple area in the shape of a rectangle of 350 x 300m. Apart
from the main temple (Templo Major, Pyramid of the Sun), this area was
the base for several smaller temples and further sacred buildings. The great
pyramid-shaped temple of Tenochtitlán was accepted as the cosmic centre
of the Aztec universe (E. M. Moctezuma in chap. 9 The Templo Mayor of
Tenochtitlán in [Kowalski 1999]), since its components (e.g., the sacrificial
altar) could be associated with the mythical Aztec gods. The upper sacred
area was based upon an expanded platform representing the earthly area. An
underground source was discovered below the pyramid, which was expanded
several times. The part of the huge building located there was dedicated to
the underworld, the world of the dead. Thus, the three worlds created by the
gods – heaven, earth and the underworld – were symbolised by the stepped
construction of the Pyramid of the Sun (cf. Illus. 3.5.3). The actual temple
area was separated from the profane area by a “serpent wall” – a great wall
made of heavy, worked cuboids with sculptured serpent heads. Relics of such
walls were also found at other locations. Simply comparing these two great
temple constructions illustrates the commonalities, which we also encounter
at other sacred Aztec sites and are part of the cultures that preceded the
Aztecs or developed parallel to them.

For instance, the core of the pyramid of Tenayuca (Illus. 3.5.4) on the out-
skirts of Mexico City ascribed to the Chichimeca comes from the 13th century.
In accordance with the custom of ancient Mexican peoples, it was encased
four times in intervals of 52 years – a ‘Mexican century’, last under Aztec
rule in 1507. Just like the Mayans, the Aztecs calculated with the vigesi-
mal system (base 20) and, thus, divided the solar year into 18 months of 20
days each and 5 ‘empty’ days. This was important for sowing and harvest,
as well as for calendar calculations. The days of a month were given names,
the twenty glyphs of which are engraved in the famous Aztec Calendar Stone
(Illus. 3.5.5) in a circle surrounding the symbols of the four preceding world
ages encompassed by the sun.

The days of the solar year were marked by their names and the number of
the month (or a symbol for the five ‘empty’ days, respectively). Apart from
that, the Aztecs calculated with 260 days in the ‘ritual’ year, divided into 13
periods of 20 days each and also marked by day names and the number of the
period. Due to L.C.M. (260 365) = 18 980 = 52 × 365, the same constellation
of both markings of one day only repeats itself after 52 solar years – an
explanation for the “Mexican century” and the encasing of pyramids. The
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Illus. 3.5.4 Temple pyramid of Tenayuca

[Photo: H.-W. Alten]

Illus. 3.5.5 Aztec calendar stone

[Photo: H.-W. Alten]
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Illus. 3.5.6 Serpent frieze at Coatepantli in Tollán (Tula, Mexico)

[Photo: H.-W. Alten]

Illus. 3.5.7 “Stone mosaic” in the palace of the Great Seer in Mitla (Mexico)

[Photo: H.-W. Alten]
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feathered serpent that served as a symbol of the god Quetzalcoatl can also
be found in many Mesoamerican cultures. Myths tell us that the Great King
Quetzalcoatl brought culture to the Toltecs in the 10th century. Their temple
town Tollán (today Tula) is encompassed by a wall, the middle ornament
frieze of which displays moving serpents with skulls in their wide-open mouths
(Illus. 3.5.6). Such “serpent walls” also decorated the Toltec Teotihuacán, the
temple of the feathered serpent in Xochicalco, as well as the temple on the
Pyramid of Kukulcan and the Temple of Warriors in Chichen Itzá at Yucatán,
designed by the Toltecs and Mayans.

Purely geometrical ornaments cover the walls in the palace of the Great Seer
in the temple town of Mitla (Illus. 3.5.7). The mosaic-like ribbons with step
meanders are not made of mosaic stones, but were carved out of carefully
assembled flagstone. Their patterns show clear relation to the textile weav-
ing. They came from the Mixtecs, who were pushed aside by the Zapotecs in
the high valley of Oaxaca between 1000 and 1400, who, in turn, superseded
the advanced civilisation that had developed at Monte Albán since the 5th

century BC.

Maya

The pre-European culture of the Mayans had developed in the lowland
of North Guatemala, the Yucatán peninsula, and the adjacent areas since
1000BC. Mayan culture has been accepted as the artistic and scientific cli-
max of Native Indian culture. The stone temples and palaces, often built upon
high step pyramids, formed the centre of the spaciously constructed towns. It
is not certain yet to what extent those sites were constructed according to as-
tronomical aspects, although we do know that the Mayan calendar was based
on astronomical observations: one solar year was divided into 18 months of 20
days each and five intercalary days. Their writing, a mix of syllables, words
and images, has been preserved in stone reliefs in many glyphs of the classical
era (300–950). Three codices (manuscripts) of post-classical time (1000–1500)
have been preserved, including numbers and calendar details. However, the
apex of Mayan culture had already passed when Spain encountered them.

According to the multiply reproduced Dresden Code (the most extensively
preserved Mayan text), the 13th Mayan 400 year cycle since the creation of
Earth ends on 21st December 2012. However, a consequent apocalypse is not
mentioned. Rather, the 14th 400 year cycle started the following day.

The preference of symmetry in Mayan sculptures and buildings, which are
openly constructed around a central axis, is striking. It is assumed that when
composing the stelae at Tikal, Mayans worked with the overlapping of isosce-
les and Pythagorean triangles. However, there has been no definite evidence
yet. Since the monuments were often seriously affected by weather condi-
tions, it is, for instance, not possible in many cases to prove the use of exact
angles (as they must occur, if determined by small Pythagorean numbers).
Methodologically speaking, the question arises as to whether recognisable
geometrical structures in artefacts are just the interpretation of modern re-
searchers or actually intended by the maker.
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This also applies to planning monumental buildings, temples and administra-
tive buildings, as well as their relative position to one another. The sites of
Tikal (Illus. 3.5.8, 3.5.9) and Copán were examined in regard to this aspect.
For instance, it was shown that Tikal features an exact East-West line from
the gateway of temple I (built around 700) to the gateway of temple III (built
around 810). This line must have been defined by means of astronomical ob-
servations before erecting temple III. However, the orientation of the façades
deviates by either 9◦ or 18◦. We would have to find another explanation (e.g.,
astronomical) for this. Right-angled and isosceles triangles, as well as parallel
lines, can also be found in the design of Tikal. Prominent locations, such as
altars, stelae or platforms (e.g., for ball games), or rock reliefs, could have
served as points of orientation when devising Copán.

Public buildings and sites could have provided strong indications for astronom-
ically-determined orientations. There, not only was the course of the sun cru-
cial, but also the exact boundary position of where Venus rises. This planet,
so close to the sun, took on a special role in Mayan cosmology. Such astro-
nomical aspects could explain why pure, right-angled sites, as we encounter
in Teotihuacán, are a rather rare feature and often interrupted by seemingly
irregular positioning.

The town of ruins Uxmal also offers impressive examples of Mayan architec-
ture. It is located on the Yucatán peninsula in Mexico, was inhabited between
the 7th and 11th centuries, and is accepted as one of the most important
Mayan centres. The so-called House of the Nuns was constructed around a
large, almost square place and seems to symbolise cosmological ideas (Illus.
3.5.10).

The Pyramid of the Magician, erected in multiple building phases, features
an almost elliptical ground view and carries several temples (Illus. 3.5.11).

However, the (partially reconstructed) Governor’s Palace is accepted to be
the masterpiece of Mayan architecture. It was built in the late 9th and early
10th century during an economic golden age and served as both an elite res-
idence and the administrative centre. It is the most outstanding among all
impressive buildings in this spacious area (Illus. 3.5.12). The palace itself
stands on a four-tier platform so as to remain visible at a distance and to
reach a height comparable to those of some pyramid temples within the area.
The most striking feature of the almost 100m long, right-angled construction
is the huge amount of large, immaculately worked stone blocks in a uni-
fied structure stretched out along the front side. It is trisected by means of
two high entrances, which end in acute triangles. Each part features smaller,
rectangular accesses, which result in the front side being structured symmet-
rically. The proportional sequence 2-7-2 is immediately eye-catching. On top
of the smooth cuboid wall, there is a wider and higher façade wall, which
is decorated by wonderful examples of Mayan sculpture art. The design is
strongly symmetrical. It features squares and both large and small rectan-
gles, shifted against each other whilst emphasising the diagonal. Nonetheless,
the complex underlines the monumentality of the overall view by means of
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Illus. 3.5.8 The northern Acropolis of Tikal (Guatemala)

[Photo: H.-W. Alten]

Illus. 3.5.9 Pyramid II of Tikal (Guatemala)

[Photo: H.-W. Alten]
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Illus. 3.5.10 House of the Nuns in Uxmal (Yucatán, Mexico)

[Photo: H.-W. Alten]

Illus. 3.5.11 Pyramid of the Magician in Uxmal (Yucatán, Mexico)

[Photo: H.-W. Alten]
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Illus. 3.5.12 Governor’s Palace in Uxmal (Yucatán, Mexico)

[Photo: H.-W. Alten]

Illus. 3.5.13 Ornaments and a round sculpture at House of the Nuns in Uxmal

[Photo: H.-W. Alten]
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Illus. 3.5.14 Kukulcan Pyramid and the Temple of Warriors in Chichén Itzá (Yu-
catán, Mexico) [Photo: H.-W. Alten]
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a clear, net-like structure. The spirals in the rectangles or squares, which
come forward three-dimensionally and are assembled by horizontal or verti-
cal parts (they do not feature any curvatures) are peculiar. When looking at
the neighbouring Pyramid of the Magician, we are attracted by a lattice work
made of diagonally running rhombi. This lattice – just as with the spirals – is
fit in between the characteristic Mayan sculptures. Other buildings also fea-
ture similar net-like structures and alternate between fields with geometrical
patterns and those with sculptures (Illus. 3.5.13).

We can find especially impressive examples of Mayan culture in Chichén
Itzá in the North of the Yucatán peninsula. They have their origins in the
time when Chichén, already founded in 432BC, was re-founded in the 10th

century AD by the Mayan tribe of Itzá, together with the Toltecs, who had
been banished from Tollán. The great temple pyramid of Kukulcan (Illus.
3.5.14; kuk = quetzal, ul = feather, an = serpent) and the Temple of Warriors
confirm their relation to the Toltec culture in the highland by means of their
geometrical shape and the decoration dominated by serpent heads.

In contrast, a round building used as an observatory was named “caracol”
(snail) by the Spanish due to the spiral staircase inside. These are witnesses
set in stone for the Mayans’ highly advanced astronomical observations and
calculations.

The architects of these great buildings must have had a distinct feeling for
geometrical shapes, the effect of symmetry as elements of building design,
and their decorative use, as well as a gift for impressive architectural compo-
sition [Kowalski 1987].

Inca

The Incan Empire, a Native Indian State in the West of South America,
existed from around 1200 until 1532, when the Inca Atahualpa was captured
by Francisco Pizarro in Cajamarca. The destruction of the Incan culture
started with the conquest of the Incas by the Spanish. They had covered the
area from the Pacific coast to the Andes mountains and in a North-South
direction from Ecuador to Middle Chile. Originally very different peoples
lived there. However, the Incas started to establish themselves in 1400 and
built a firmly organised state. The capital was Cuzco, at the eastern border of
the Andes not far from the equator (today: Peru). Beneath the Inca in charge,
there were four vice kings, who managed the four quarters of the state. Even
though they had a common language, they did not use writing, in contrast
to the Mayans. Hence, artefacts are the only genuine source of studying their
culture. Additionally, there are the reports of the Spanish conquerors. The
development of a unique, highly complex system of coloured knotted strings
(“quipus”, sometimes called ‘talking knots’) to record statistical information
is remarkable. The mathematical elements of this symbolic system consist of
numbers, spatial configurations and logic.
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Cuzco was re-structured in the 15th century, whereby the ideal plan of spatial
relations had to be adapted to the natural surroundings. The town was ar-
ranged in four parts. Three extended families, who had a mutual ancestor (an
earlier regent), lived in each part. Each quarter was in charge of settlements
of further extended families in the surrounding areas. Thereby, ideal lines, ra-
dially originated from the capital, separated the areas of responsibility. Here,
as elsewhere, the geometrical structure symbolised the power relationships.
The Incas devised storage facilities, groups of silos located at big crossroads,
which were supplemented by administrative and work buildings.

This took place in a very methodological manner by repeating the same basic
pattern over and over and over again. The scheme for residential buildings,
which were, e.g., erected around a square, was repeated likewise unmodified
from unit to unit. The expansion of towns also took place according to the
pattern. Thus, a newly designed area was basically a copy of an already
existing one.

Public buildings and temples were erected by means of large, exactly worked
polygonal blocks without mortar (Illus. 3.5.15). Although the basic pattern
was that of a square or rectangle, the blocks varied in size and shape and,
thus, provided the wall with extra stability. Sun-dried lay bricks were used
for simple buildings.

Illus. 3.5.15 Cyclopean wall in Cuzco (Perú). The Incan master builders designed
true marvels of precision with these walls made of gigantic, polygonal stone blocks

in the capital of the Incan Empire.

[Photo: H.-W. Alten]
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Illus. 3.5.16 Terraces at Pisac (Perú)

[Photo: H.-W. Alten]

Illus. 3.5.17 Incan stronghold (l.) and temple gate (r.) of Machu Picchu (Peru)

[Photo: H.-W. Alten]
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The tendency to repeat existing patterns as often as necessary is also reflected
by Incan ceramics. The decorations of clay pots repeat the elements mostly
made of small-scale geometrical patterns, until a strip or an area is completely
covered. These elements could be squares, triangles, rectangles, trapezoids,
parallel or diagonally running lines or circles, and also nested. Reflections,
double reflections in vertical or horizontal direction, and rotational symmetry
were used here, as well as in the design of buildings.

For instance, the trapezoid-shaped gate of the temple in Machu Picchu (Il-
lus. 3.5.17, right) is a hallmark of Incan architecture and can be found in
varying sizes at doors, windows and niches. The Incan stronghold Machu
Picchu (Illus. 3.5.17, left) is thought to be the most spectacular construction
by Incan master builders. It was only discovered in 1911 by Hiram Bingham,
between the steep rock walls of the Urubamba Valley. It served as protection
for the capital Cuzco and is towered over by the steep rugged rock cone of
Huayna Picchu. At its peak, buildings offered last shelter, and terraces facil-
itated the cultivation of vegetables to feed to the refugees. The terraces were
based on geometrical considerations and built with enormous effort through
highly advanced techniques. Hence, they rise to vertiginous heights even at
the steepest sides of the wild mountain world (Illus. 3.5.16). They helped to
ensure food for the growing population.

Clothes made of wool or cotton played an important role in Incan culture.
Changing one’s clothes indicated important stages in one’s life and was as-
sociated with ceremonial acts. The ponchos mainly featured decorations of
small rectangles with geometrically arranged patterns [Ascher 1991].

The striped ornaments on clay pots found in graves constitute an interesting
example of geometric decoration. The patterns, mostly made of simple ele-
ments bound by straight lines, repeat themselves in the stripes and can be
dyed in one or two variable colours. Most times, these colours are firmly con-
nected with the basic pattern, which is why dying does not result in new
symmetric groups. Both translational and rotational symmetry are used fre-
quently. In contrast, horizontal or glide reflection occur rarely. Next to simple
stripes, there are also double striped patterns, e.g., made of trapezoid-shaped
basic elements, which are reflected or contrasted by reversing colours.

Despite this wealth, all the striped patterns examined so far do not indicate
all possible symmetric groups. The seven basic symmetric groups lead to 17
further ones when using two colours. However, these have only been partially
realised in the Incan striped ornaments. Of course, the Incan artists’ and
craftsmen’s interest in such decorations, which did not stem from a practical
necessity, but arose from playful enjoyment of the design and creation, is
more significant than this mathematical imperfection [Ascher 1991].

All in all, results of the research up to the present day justify the assumption
that geometry was thought of as an integral part of the mix of religion,
techniques and science in the Central American civilisations (F. Vinette in
chap. 13 In Search of Mesoamerican Geometry by [Closs 1986]).
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Illus. 3.5.18 Clay vase with ornamental ribbons from the Nazca culture

[Auction catalogue Richter & Kafitz, 2006, No. ET 041]
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3.6 Problems to 3

Problem 3.1.1: Length of a Chinese town wall

Problem 20 of the 9th chapter of ‘9 Chapters’ [Kangshen Shen et al.1999](cf.
Illus. 3.1.4) (and the description of the problem on page 125):

a) Sketch the situation of the square town with the tree and the observer’s
path. Choose quantity a for the path North, b for the path South and c
for the path West.

b) What is the best approach for obtaining the equation stated in the text,
whereby x determines the length (in paces) of a side of the town wall?

c) How do p, q depend on a, b, c?
d) Is it also possible to interpret the quadratic equation as a relation between

areas?
e) Solve the quadratic equation and then try to comprehend the rule stated

in the text: (The Chinese mathematicians represented the coefficients of
an equation by means of calculation sticks, which were used to carry out
the necessary operations.) “The rule states: Multiply the number of paces
walked towards the West with the number of paces stepped away from the
North gate. Double this to obtain the dividend. Add the amounts of paces
together, which were stepped from the South and North gates to obtain the
amended divisor. Extract the square root from this to obtain the side of the
square town.” In the resulting equation x2+px = q (here p = a+b, q = ac)
the Chinese call q the ‘dividend’ and p the ‘amended divisor’. ‘Extract the
square root from this’ means solve this quadratic equation. The Chinese
did this with the ‘Horner-scheme’. Because p = 34, q = 71000 they tried
with x0 = 1 and x0 = 250 :

1 34 -71 000
x0 = 1 1 35 -70 965

285 remainder

1 34 -71 000
x0 = 250 1 284 71 000

0 remainder

Therefore the solution is x = 250.
f) It is obvious that we are not dealing with an applied problem here. Rather,

it is an exercise for establishing and solving quadratic equations (which
we can also find in Euclid’s work), which has been ‘wrapped’.

Problem 3.1.2: The method of doubled measure according to ‘The Sea
Island Mathematical Manual’

The method represented by the woodcut in Illus. 3.1.5 is described in the first
problem of ‘The Sea Island Mathematical Manual’ as follows: ([Li/Dú 1987,
p. 76–78], [Swets 1992, p. 19–20, 42–43]):
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“Observe an island, whose height and distance are unknown. Erect two mea-
suring poles of height h = 3 zhang ; the distance between both is d = 1000bu.
The two poles and the (peak of) the island shall be one line (vertical plane).
Go back a1 = 123bu from the first pole and observe the top of this pole and
the peak of the mountain in one line from the ground. We see that both
collapse into one another. Then go back a2 = 127bu from the second measur-
ing pole and observe the peak of the mountain from the ground. The top of
the measuring pole and the peak of the mountain collapse into one another.
Determine the height of the island and its distance from the first pole.” (The
reader will have noticed that the woodcut does not exactly correspond to
the description of ‘The Sea Island Mathematical Manual’, but an improved
version thereof. The observer’s eye is no longer located at ground level, but
at the upper right corner of the added rectangles. Thus, the observer need
not lie on the ground, but can observe whilst standing up. Of course, now we
also must consider his eye level when calculating. The further description in
the text concerns the more primitive case.)

(Answer:) “The height of the island is 4 li and 55 bu, its distance is 102 li
and 150 bu.”

(Method:) “Multiply distance d with height h of the poles. This will yield
the numerator. Take the difference of the distances of the observing points
a2 − a1 as the denominator, by which we have to divide the numerator. Add
the height of the pole to the result. The result is the height of the island.
– In order to obtain the distance of the island from the front pole, multiply
line segment a1, which was covered when going back from the first pole,
with distance d of both poles from each other. This will yield the numerator.
Take the difference of the distances of the observing points a2 − a1 as the
denominator, by which we have to divide the numerator. The result is the
distance of the island from the front pole y.”

(The letter labelling is, of course, absent from the description.) The following
instructions result if expressed in formulae:

x =
d·h

a2−a1
+ h, y =

d·a1
a2−a1

.

a) Derive both formulae.
b) Generalise them to apply to the case shown in the illustration, which

considers the observer’s eye level.

Problem 3.1.3: Estimating the circle area according to Liu Hui

a) Make a drawing to make sure you understand what Liu Hui meant geo-
metrically with the upper bound in the doubled estimation.

b) Which limits do we obtain for π, if we use fn + 1 for the dodecagon and
fn for the hexagon?

c) Which of the necessary steps for calculation cannot be executed exactly,
i.e., require a rounding? Do we need to round up or down if we want to
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make sure that in the case of a polygon with a high number of sides we do
not exceed F with the lower bound and, respectively, not undercut this
value with the upper bound?

Problem 3.1.4: Calculating the triangular area according to Qin Jiushao

a) Verify that the formula (3.1.5) corresponds to the one named after Hero.
b) Attempt a geometrical interpretation of this formula.

Problem 3.1.5: Determining a square military camp

a) Make a sketch of the camp described on p. 131/132.
b) BGFE shall be the last right column, which is made of blank squares and

which is repositioned to be under the last lower row DHIJ (which is also
made of blank squares). The rectangle constructed this way is ABKE′.

c) How are the occupied fields arranged, if we assume that the upper left
corner of the camp is occupied by a company?

Problem 3.2.1: Allocation of a circular land lot

Look at problem b) on p. 144 [Smith/Mikami 1914, 66]:

a) Which value for π was implicitly used here?
b) Which segment division is advisable in this case?
c) Is it possible to solve this problem by means of a formula discussed by

Hero concerning the area of a circle segment (cf. (2.5.5) and (3.1.2)?
d) What is the outcome if we use integral calculus?

Problem 3.2.2: Determining spherical surface according to Kittoku and
Takebe

Execute the Japanese method of determining spherical surface by means of
the difference of the volumes of two spheres imagined in a modern manner
as a limit process. [Mikami 1913, p. 206/207]

Problem 3.3.1: Indian fraction representation for
√
2

a) Derive the stated Indian fraction representation for
√
2 by means of the

Babylonian method.
b) How exact is the value (how many decimals)?

Problem 3.3.2: Circling the square

Execute the construction according to the instructions stated in the Śulbasūtras
(string rules).

a) What is meant is that we must add 1
3 of the difference from half the

diagonal d and half the side s to half the side and use this to draw a circle
around the centre of the square.

b) Calculate the area of this constructed circle and check by how much this
circle deviates from the given square area.
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Problem 3.3.3: Squaring the circle according to the Śulbasūtras

The first rule clarifies how difficult it often is to understand the very brief
wording of the verses. In this case, they mean that the square side a is obtain-
ed by means of the circle diameter d according to the following calculation:
a = [7

8
+ 1

8·29 − 1
8·29 (

1
6
− 1

6·8 )] · d. Calculate the approximate values of π by
means of both instructions from p. 158.

Problem 3.3.4: Calculating spherical surface according to Bhaskara II

Look at Bhaskaras approach in general:

a) Divide the circumference 2πr into n parts (a = 2π
n
). For the area of one of

the small trapezoids, use the arc length along the meridian as height and
the average of the arcs of the upper and lower circle of latitude as breadth.
Then, add together the triangular areas at the pole and the trapezoid areas
within half a strip from the pole until the equator. Double the outcome
and then multiply by n.

b) Finally, stated in a modern fashion, calculate the limit for n → ∞, i.e.,
α → 0. Confirm the following result:

S = 4πr2(
∫ π

2

0
sin αdα− lim

α→0

a
2 ) = 4πr2.

Problem 3.3.5: Spherical surface according to the Yuktibhās.ā Test

Calculate the spherical surface according to the Yuktibhās.ā description:

a) r shall be the radius, r1 < r2 < r the radii of both parallel circles of length
C1 = 2πr1 or respectively C2 = 2πr2, which bound the strip. Imagine the
strips as the external area of a disc cut out of a cone; it is approximated
as a conic frustum. Its height shall be h; the distance measured along a
circle of longitude between both bounding circles shall be s(> h).

b) Consider that the untwined strip can be viewed as a trapezoid of height
s and the average length C1+C2

2 and calculate its area in dependence of r
and h. (Contemplate two similar triangles, given that we draw a radius r
from the centre to a point at the middle of the strip.)

c) Add together the lateral areas of all discs (conic frustum).

Problem 3.4.1: Pythagoras’s theorem according to al-Khwārizmı̄

Contemplate the idea that al-Khwārizmı̄’s figure for proving Pythagoras’s
theorem can be interpreted in two ways (Illus. 3.4.1).

Problem 3.4.2: Abū’l-Wafā’s square construction with a fixed span of the
circle

Execute Abū’l-Wafā’s construction of a square inscribed in a circle (also called
“rusty compass construction”).

a) A circle with a centre S (drawn with a rusty compass) is given. Draw

a diameter ASG and mark the arcs ÂZ, ÂE, ĜT , ĜH (Z and T at the
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same side of ASG) with the compass and draw the lines ZE and TH,
which intersect the diameter ASG in I and K. Connect Z with K and
I with T ; the intersection of the connecting lines shall be M . Now draw
the diameter intersecting the circle in D and B passing though M and S.
Then ADGB is a square.

b) Consider the idea that the same construction for the same circle can also
be done with another fixed span of the compass.

Problem 3.4.3: Heptagon construction according to Abū’l-Wafā

a) Construct a regular heptagon according to the rules by Abū’l-Wafā. (see
p. 174). Can you see how it deviates from an exact heptagon with the
naked eye?

b) By what percentage does the side length of the heptagon obtained this
way deviate from the real one?

Problem 3.4.4: Heptagon construction according to al-Kūh̄ı

Fully execute al-Kūh̄ı’s heptagon construction.

a) Why does the triangle ABC described in the text (p. 174) feature angles
a, 4a and 2a?

b) How great are the angles in the three part triangles of the extended tri-
angle AED?

c) Derive the two relations key for the construction:
EB2 = BC ·BD and CD2 = EB + EC.

d) To construct a parabola and a hyperbola whilst keeping it simple, start
with the line segment ED, which is already divided by B and C accord-
ing to the rule (draw it horizontally in the middle of a sheet.). Draw a
perpendicular upwards from B : BZ = CD, and one downwards from
B : BF = BC. Add the rectangle EBZT . Now:

FZ ·BC = (BC + ET ) ·BC = TZ2

EC · EB = (EB +BC) · EB = (TZ +BC) · TZ = ET 2.
e) If we confirm BC = m as a fixed line segment and TZ = y, ET =

x, then the first equation represents a parabola and the second one a
hyperbola. Turn both into normal form and draw them into the figure
– we only need the left branch of the hyperbola. The result is EB =
TZ = y1 and CD = ET = x1 as coordinates of the intersections of
both curves. Hence, we constructed the length of two other line segments,
which together form a triangle similar to the triangle BCA, to a given line
segment m. Consequently, we must, as mentioned by al-Kūh̄ı, conduct a
direct homothetic transformation in order to inscribe a regular heptagon
into a given circle.

Problem 3.4.5: Calculating the circular area according to Hero and al-
Khwārizmı̄

Hero had stated the following concerning the calculation of the circular area
by means of the diameter: A = d2 − 1

7d
2 − 1

14d
2.
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a) How does this formula relate to Archimedes’ value of π?
b) Theoretically speaking, what is behind al-Khwārizmı̄’s rule? Does his ap-

proach constitute an improvement over Hero’s formula?

Problem 3.4.6: al-Khwārizmı̄’s formulae concerning the circle segment

a) Is the calculation for obtaining the circle diameter an approximation for-
mula?

b) For the first case (segment smaller than a semi-circle), try to state a
heuristic justification of the formula.

c) What does the formula yield in both extreme cases, in which p = 0 or
respectively, p = r?

Problem 3.4.7: al-Kāsh̄ı’s iteration method to calculate sin 1◦.

Examine the beginning of al-Kāsh̄ı’s calculation method to determine sin 1◦.
within the sexagesimal system. Consider hereby that he based his definition
of the sine function on a circle radius of 60 and understood the sine as a line
segment (semi-chord). Hence, we can expect the value to be close to 1 (the
belonging circumference is 2π · 60). Besides, the trisection equation adopts
the form of Sin 3a = 3Sin a− 0; 0.4 · Sin3a(0; 0, 4 = 0

60
+ 4

3600
) if we use the

Sine definition above and distinguish it from the ordinary one by Sin a. If we
now say that x = Sin a and with al-Kāsh̄ı
Sin3◦ = 3; 8, 24, 33, 59, 34, 28, 16, we obtain 3x = 3; 8, 24, 33, 59, 34, 28, 15 +
0; 0.4x3.

a) Assure yourself (whilst restricting yourself to the first positions) that this
equation can be rewritten as:

x = 47,6;8,29,53,37,3,45+x3

45,0
.

b) Since a value close to 1 is expected, al-Kāsh̄ı uses x = 1; a, b, c... in
the equation, whereby a, b, c, ...represent the following sexagesimals, and
deducts 1:
0; a, b, c, ... = 47,6;8,29,53,37,3,45+(1;a,b,c...)3

45,0 −1 = 2,6;8,29,53,37,3,45+(1;a,b,c...)3

45,0 .
The first sexagesimal on the left side, a, must be equal to the first sexagesi-
mal on the right. Due to the great denominator, the latter does not depend

on a; it suffices to calculate 2,6;8,29...+13

45,0 = 0; 2, [49 or 50], i.e., a = 2.

c) In the second step, position b is calculated accordingly by means of the
approach 1; 2, b, c, ... = .... Confirm the result b = 49. Al-Kāsh̄ı repeated
this elaborate iteration method until the 9th sexagesimal!

d) Given f(x) = 47,6;8,29,53,37,3,45+x3

45,0
, we recognise the thought behind this

method. The function f(x) increases so slowly close to 1 that the nth

position of f(x) does not depend on the nth position of x, but only on the
first n − 1 positions. However, al-Kāsh̄ı does not address the question as
to whether this is generally justifiable.

Problem 3.4.8: Proof of the Pythagorean theorem

Describe the construction of the decomposition (see Illus. 3.6.1) and justify
that the tiles with equal numbers are congruent
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Illus. 3.6.1 Proof of the Pythagorean theorem according to an-Nayr̄ız̄ı’s commen-
tary (10th century) on ‘Elements’
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375–568 Period of migration of nations
466 Collapse of the Roman reign in Gaul
486–751 Merovingian Kingdom of the Franks
Around 500 Angles, Saxons and Jutes immigrate to England
711 Arabs cross Strait of Gibraltar, conquer Iberian Peninsula

apart from Asturias
718–1492 Reconquista (re-capture) of the Iberian Peninsula
732 Karl Martell beats the Arabs at Tours and Poitiers
756 Umayyads found Emirate (caliphate since 929) of Córdoba
756 Papal State is constituted
800 Charlemagne is crowned emperor in Rome
843 Treaty of Verdun: Carolingian Empire is divided into three

parts
870 Treaty of Meersen: Lothar’s (middle) kingdom is divided
From 862 Normans (Varangians) rule Nowgorod
911 Duchy Normandy is formed at Seine mouth
955 Battle of Lechfeld (Hungarians defeated)
962 Otto I (the Great) is crowned Emperor of the Holy Roman

Empire by the pope

10thcentury Early Roman (Ottonian) architecture
978–1328 Capetians rule France
Around 1000 Leif Eriksson discovers North America (Vinland)
1024–1137 Frankish-Salian emperors
1066 Battle of Hastings, Normans conquer England
1077 Henry IV’s walk to Canossa
1096–1270 Crusades

11th/12thcentury Roman cathedrals, monasteries and sculptures in West Europe
1130–1260 Normans and House of Hohenstaufen rule in Sicily and Lower

Italy

1̃150–1535 Hanseatic League expands and rules Baltic Sea
12th/13thcentury Upper Italian towns (Pisa, Venice, Genoa, Milan) flourish,

early Gothic in Ile de France
1138–1250 House of Hohenstaufen rules in Germany

13th/14thcentury High Gothic cathedrals in West Europe
1337–1453 Hundred Years’ War between England and France
1453 Ruin of the Eastern Roman Empire

15thcentury Late Gothic in Germany, England and France
1469 Union of Castilia and Aragon by marriage of the “Catholic

Kings” Isabella and Ferdinand
1470 Moscow becomes “Third Rome”
1480 Grand Prince Ivan III founds tsardom in Moscow
1492 Granada conquered, end of Reconquista, Columbus

(re-)discovers America
Science and arts in
the Middle Ages

Carolingian book paintings, gospel books and wall paintings in
Ottonian era, glass paintings in Salian era and frescos in era of
House of Hohenstaufen; golden age of glass paintings in Gothic
time; scholastic philosophy (Albertus Magnus), arts and sci-
ence practised in monasteries and cathedral schools(septem
artes liberales), first universities founded
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4.0 Introduction

The time from the collapse of the Roman Empire as the result of the mi-
gration of nations (“Völkerwanderung”) up until the Renaissance shall be
summarised here as the era of the European Middle Ages. From the aspect of
development within the mathematical, natural-scientific realm we end here
with the beginning of the 15th century and not only with the discovery of
America. As a result, the two “newcomers” of mathematics, Nikolaus von
Kues (Nicholas of Cusa) and Regiomontanus will open the next period.

It is more difficult to determine precisely the beginning of the Middle Ages
in regards to mathematical development. The Greek-Hellenistic era strongly
affected the Islamic countries (which also passed on Indian knowledge); their
influence on Europe in the Middle Ages (predominantly effective in Sicily
and Spain) was supplemented by ancient mathematical knowledge commu-
nicated via the Eastern Roman Empire (Byzantium). Nonetheless, the col-
lapsing Western Roman Empire also passed relics of ancient education and
science directly to the Middle Ages. Hence, it is difficult to determine an
exact date of the beginning of this “middle” era. Concerning the history of
mathematics, it may be sensible to start this chapter with the 5th century.

4.1 Geometry in the Early Middle Ages

4.1.1 The seven liberal arts

Some late Roman works became fundamental for teaching mathematics,
which spread rather slowly. These works contained the so-called “artes lib-
erales” or “Seven Liberal Arts” (or at least parts thereof). These seven sci-
ences consisted of two parts: the “trivium”, formed by grammar, rhetoric
and dialectics (also called logics), and the “quadrivium”, composed of arith-
metics, geometry, astronomy and music. The trivium (the threefold path
of language-orientated subjects), which taught the necessary knowledge of
Latin, was the basis of all teaching at church schools and universities. The
quadrivium was responsible for introducing the variety of mathematical sci-
ences, which were already accepted by Plato as an educational foundation
following Pythagorean scientific teaching.

The oldest preserved abstract of the liberal arts, valued so highly and con-
nected to a family of sciences in Plato’s ‘Republic’, was written by Mar-
tianus Capella after 450: ‘On the Marriage of Philology and Mercury’. This
neo-Platonic philosophical allegory consists of nine books and was partially
written in prose and partially in verse. The author describes the wedding of
the god of merchants, craftsmen and philology (in other words, the sciences,
apart from philosophy, personified). The guests are the gods and allegoric
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Illus. 4.1.1 The Seven Liberal Arts were separated in two groups: trivium (gram-
mar, rethoric, dialectic) and quadrivium (arithmetic, geometry, astronomy, music)

[Herrad von Landsberg, Hortus Deliciarum, around 1180]
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figures, such as the four cardinal virtues, united since Plato, prudence, tem-
perance (restraint), fortitude (courage) and justice. Books 3 to 9 show, in
order, the seven arts as bridesmaids, who give their scholarliness as presents.
This gave Martianus the opportunity to represent the subject matter of these
seven disciplines rather dryly in textbook style. Since this work was passed
on in full, it became one of the most important sources for medieval school
teaching. Needless to say, the part titled ‘de geometria’ is mainly reserved
for geographical knowledge. It was only after a warning from the gods that
Martianus attached a brief description of Euclidean geometry. In contrast,
the book on astronomy is accepted as the best treatise in Latin of the Early
Middle Ages.

The portraits of the mathematical disciplines by Boethius, the chancellor of
Ostrogothic king Theoderich, are not completely preserved, but are qualita-
tively superior. He coined the term “quadrivium” for the four mathematical
sciences (see below for more details on Boethius’ geometry). We also owe him
the Latin translations of some Aristotelian texts, which feature examples and
comparisons of mathematical nature.

Illus. 4.1.2 Cassiodorus [Gesta Theodorici; Flavius Magnus Aurelius Cassiodorus;
Varie; and other texts. Latin, Manuscript on vellum. 186ff., Fulda, before 1176]
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Cassiodor composed a very brief description of the artes liberales that was
used fondly for centuries. He wrote his work in the middle of the 6th century
after retreating from politics in 537 – following the recapture of Italy by
Justinian – and moving into the monastery he founded at Vivarium. The
monks were supposed to dedicate their time there to studying the holy texts
and fostering the sciences. He outlined the subject matter of the arts in
a textbook for the members of the order, titled Institutiones divinarum et
humanarum litterarum. Geometry, of course, is summarised in approx. two
pages (!). (His justification for also studying the worldly sciences can be found
in the text passage in the Appendix: A. 5, p. 570)

Cassiodor explains the name ‘geometry’ as “terrae dimensio”, earth expansion
or surveying. He mentions the history of its origins in Egypt, the division of
the year into months, determining the distance between Earth and moon/sun,
as well as the size of Earth. Actual geometry is said to be the science of im-
mobile quantities (in contrast to astronomy, which deals with movements).
It is said to deal with quantities in the plane (countable, rational and irra-
tional) and solid figures. The plane figures feature length and breadth, the
solid ones, on top of those, height. Geometry examines the variety of these
figures on Earth and in the sky. In Greece, this was done by Euclid, Apol-
lonius, Archimedes and other authors; in Rome, Boethius published Euclid’s
work in Latin. These four short passages end with the hint that engaging
with astronomy turns the soul towards the sky and, thus, towards the shape
of the sphere or circle. They neither look concretely at just one figure, nor do
they cite a single axiom or theorem from Euclid’s ‘Elements’ or draw a figure.
A few short geometrical additions are contained in around 20 manuscripts,
which probably were taken from Boethius.

4.1.2 Venerable Bede and Alcuin

The monasteries were the first locations at which science was slowly revived.
Ireland had already been introduced to Christianity in the 5th century. First
aspects of independently acquired knowledge were found in the works of the
Irish monk Venerable Bede in Newcastle around 700. We do not just owe him
the oldest preserved representation of the finger calculating method; he also
addressed astronomical problems, such as moon phases, and described the
relation between those and the tides at sea.

It was significant for the further distribution of education and science that the
Frankish king Charlemagne summoned the educated monk Alcuin from York
in 781, so he could take over the palace school at his court and supervise the
development of a school system in Francia. The Propositiones ad acuendos
iuvenes, 56 problems for sharpening the young, have become quite well-known
amongst the texts that are attributed to him. The 13 preserved manuscripts
were written between the end of the 9th and the 15th century. We cannot be
absolutely certain that Alcuin is the author, since the text does not refer to a
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Illus. 4.1.3 Venerable Bede [Schedel, Nuremburg Chronicle, 1493]; Alcuin of York
in the palatial school of Charles the Great, woodcut [Deutsche Geschichte, 1862]

writer. However, there are good indications that speak for him. M. Folkerts,
who examined the manuscript and, together with H. Gericke, published a
German translation of the problems [Folkerts/Gericke 1993], distinguished
(next to some problems not easily classified, such as the well-known one of
a wolf, a goat and a cabbage that have to be transported across the river)
between three arithmetic-algebraic groups: equations and series, problems of
composition, and problems of calculating geometry.

Whereas most problems belong to recreational mathematics, the geometri-
cal problems follow the tradition of the Roman land surveyors and can be
found in the same or a similar manner in the so-called Geometria incerti
auctoris. We re-encounter the very old instruction for calculating a quadri-
lateral area, i.e., multiplying the averages of the opposite sides with each
other. Below, we will demonstrate the example of Problem 25 concerning a
round field, including both stated solutions [Folkerts/Gericke 1993], partially
also [Hadley/Singmaster 1992]:

Propositio de campo rotundo

“There is a round field which contains 400 perticae in its circle. Tell me, how
many aripenni ought it to hold?” (pertica = rod, aripennus = 12 rods times
12 rods)

Solution 1:
“A quarter of this field, which contains 400 perticae, is 100. If you multiply
[100] by 100, you get 10 000, which you must divide into 12 parts. For indeed,
a twelfth of 10 000 is 833, which when again partitioned into twelfths gives
69. This many aripenni are included in the field.”
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Solution 2:
“Take the fourth part of 400, which is 100. Further, the third part of 400,
which is 133. Take the half of 100, which is 50. Take the half of 133, which
is 66. Multiply 50 by 66, which is 3151 (possibly a typo? Correct would be
3300; It seems this value is used to continue the calculation.) Divide this into
the twelfth part, which is 280 (3300:12 = 275). Again divide 280 into the
twelfth part, which is 24. Multiply 24 times 4, which is 96. In total there are
96 aripenni.” [Folkerts/Gericke 1993, p. 325/36]

Also see Problem 4.1.1.

Problem 29 is a continuation or further development of Problem 25, reflect-
ing more of a joke problem than an issue of applied geometry: “Proposition
concerning a round city”:

“There is a round city which is 8000 feet in circumference. Let him say, he
who is able, how many houses should the city contain, such that each [house]
is 30 feet long, and 20 feet wide?”

Solution 1:
“This city measures 8000 feet around, which is divided into proportions
of one-and-a-half to one, i.e. 4800 and 3200. The length and width of the
houses are to be of these [dimensions]. Thus, take half of each of the above
[measurements], and from the larger number there shall remain 2400, while
from the smaller, 1600. Then, divide 1600 into twenty [parts] and you will
obtain 80 times 20. In a similar fashion, [divide] the larger number, i.e.
2400, into 30 pieces, deriving 80 times 30. Take 80 times 80, making 6400.
This many houses can be built in the city, following the above-written
proposal.”[Hadley/Singmaster 1992]

Solution 2:
“The circumference of this city is 8000 feet. Take the fourth part of 8000,
which is 2000. Further, take the third part of 8000, which is 2666. Take the
half of 2000, which is 1000, and the half of 2666, which is 1333. Take the 30th
part of 1333 (which is 44, further the 20th part of 1000, which is 50. Multiply
50 by 44), which is 2200. Then multiply 2200 times 4, which is 8800. This is
the number of houses.”[Folkerts/Gericke 1993, p.330/32]

Also see Problem 4.1.2.

It seems clear that we are dealing here with problems for sharpening the
mind rather than anything to be applied directly. Nonetheless, these calcu-
lation instructions clarify the level on which Carolingian applied geometry
existed.
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4.1.3 Gerbert d’ Aurillac

Only poor fragments, which had been preserved until the end of the 1st

millennium and were mainly passed on by educated monks in monasteries,
constituted the knowledge of scientific mathematics of the classical Antiquity.
The first monumental encounter with Islamic science took place shortly before
the turn of the millennium, when the French monk Gerbert came to Catalonia
from 967 until 970. Since he was elected pope in 999 (ruling as Silvester II until
1003), his mathematical works were very influential, being the first known
description of calculating by means of the calculation frame (abacus) in the
occidental world. He introduced new numbered calculation stones, calculi,
but did not use the customary Roman numbers. Instead, he used the West
Arabic or Gobar digits. Although initially not very skilled in mathematics,
he found parts of the Boethius Euclid translation as abbot of Bobbio in the
monastery library and wrote a book on geometry himself, the original version
of which, however, has been lost.

Editions from the 12th century clarify just how little was known back then.
The book only contains the simplest theorems on geometry and land survey-
ing. Euclid’s theory of parallels is not mentioned and the sum of angles in a
triangle is obtained by experimentation.

Illus. 4.1.4 Gerbert d’Aurillac l: as pope Silvester II. (detail from French stamp),
r.: monument in Aurillac

[Photo: H.-W. Alten]
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4.1.4 Boethius and pseudo-Boethius

In the first half of the 11th century, a compilation, which used to be ascribed
to Boethius, was composed by two or three sources. Nowadays, it is referred
to as Boethius’ ‘Geometry II’, since the author is unknown. In contrast, ‘Ge-
ometry I’ does not just contain Euclidean excerpts, but also extensive parts
of Boethius’s arithmetics, agrimensor texts and other excerpts. It is probable
that this work was composed in Corbie in the 8th century. ‘Geometry II’ con-
sists of two books. The first one partially covers the Euclidean excerpts from
‘Geometry I’ extended by a series of proofs and a section on calculating with
the abacus. The second book mainly consists of texts of surveying literature,
as described above, supplemented by a section on fractions. Although this ge-
ometry shows, on one hand, how low the level of geometrical knowledge that
arrived in Europe in the 11th century was (as was mathematical knowledge
in general), it has maintained parts of the Euclid translation from Greek into
Latin, which can probably be traced back to Boethius. Moreover, it belongs
to the earliest works that show an abacus tablet and the Arabic digits. A
selection of drawings (which precede those taken from the agrimensor texts)
demonstrates which geometrical problems the anonymous author addressed
in his work (Illus. 4.1.5).

4.1.5 Scholasticism

Before the occidental world became acquainted with the classical ancient
texts on a large scale by means of translations from Arabic, the so-called
scholastic method in philosophy and theology was formed under the influence
of Anselm of Canterbury and Peter Abaelard around 1100.

Based on the intentions of the church fathers and other authorities, the op-
posing views were settled in discussions, and decisions were made by means
of syllogisms. From around 1175 onwards, this method was linked to Aris-
totelian logic and, thus, formed a mental training thought of as a means of
preparing for mathematical thinking. In the 13th century, this scholastic men-
tality reached its climax under Thomas Aquinus with the successful melding
of Christian teaching and Aristotelian philosophy.

Monasteries and later the great churches had built their own schools to look
after their theological offspring. This resulted in European universities being
centres of study and education and the carriers of scholastic thinking from
1200 onwards.
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Illus. 4.1.5 Boethius in prison and the consolation of Philosophy (circa 524)

[Bayerische Staatsbibliothek München, Clm 2599, fol. 106v]
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4.1.6 Translations from Arabic

Countless works of translation started in Spain soon after Toledo had been
taken from the Moors as part of the reconquista in 1075. Translations of
Arabic scientific and mathematical texts were also done in Southern France
and Sicily, the latter of which was conquered by the Normans in 1091 after
Arabic rule of 200 years. Translators also began to engage with these texts
in a compiling and commentative manner.

Illus. 4.1.6 Euclid manuscript from Lüneburg [M. Folkerts: Ein neuer Text des Eu-
clides Latinus. (A new text of the Euclid Latinus) Facsimilie print of the manuscript

from Lüneburg D4◦48, f · 3r − 17ν . Gerstenberg, Hildesheim 1970]
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The educated Adelard of Bath, who was proficient in both Arabic and Greek,
translated, amongst other texts, Euclid’s ‘Elements’ from Arabic into Latin.
This Euclid translation, supposedly from around 1120 (usually referred to as
Adelard I), is very likely to have been the first to feature all 15 books (includ-
ing the two fake books, XIV and XV) in Latin. Before that, the Middle Ages
only knew ‘Elements’ in the form of excerpts of Boethius’s Euclid translation
from around 500, whereas the Arabs had been engaging with the complete
work since the 8th century. Apparently independent of Adelard, Herman of
Carinthia and Gerard of Cremona also translated ‘Elements’ in the 12th cen-
tury. The latter also translated the valuable commentary on Euclid by al-
Nayr̄ız̄ı (Anaritius), the Banu Musa’s geometry, and other mathematical and
astronomical works.

Until 1500, it was not the pure Euclid translations but edited versions that
were most effective. One of them is usually called Adelard II, as it is based
on Adelard I. However, it also makes remarkable references to the Boethius
tradition. Nowadays, Robert of Chester (as the name indicates, also an En-
glish scholar) is accepted as the author. Close to the end of the 12th century,
efforts were already being made to combine Robert of Chester’s compilation
with Boethius’s tradition. One example of this is a text that only comprises
five pages and is only preserved in one manuscript. This text was written in
Northern Germany around 1200 and has been owned by the council’s library
in Lüneburg (Germany) since at least the end of the 18th century (see Illus.
4.1.6). Originally transferred to the Michaelis Monastery in Hildesheim by
an otherwise unknown priest, Helmold of Bosau, this manuscript contains
most definitions, postulates, axioms and theorems of the first four books of
‘Elements’ (without proofs). The definitions and postulates bear a general
similarity to the so-called ‘Geometry II’ by “Boethius”, with axioms and
propositions mostly following Adelard II.

Campanus edited another version of Euclid shortly before 1260. The fact that
there are still around 130 manuscripts of this edition preserved (compared
to only 23 of Boethius’s ‘Geometry II’) reflects how influential this version
must have been. Campanus generally extended the proofs to a considerable
degree and partially rewrote them into commentaries to attempt a didacti-
cally arranged representation (by means of using remarks or whole sentences
by Jordanus Nemorarius).

4.2 Practical geometry

4.2.1 Hugo of Saint Victor

Next to the scientifically orientated strand of the Euclidean tradition, a se-
ries of texts on practical geometry were composed during the Middle Ages.
Whereas the former was taught at universities, the latter followed from the
agrimensor tradition. Hugo of Saint Victor’s Practica geometriae, written in
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the first half of the 12th century, became the model for the subsequent era.
Hugo structured his work in three sections: altimetry (altimetria), calculation
of area (planimetria), and Cosmimetria (calculation of the Earth’s circum-
ference, geographical latitude, size of the sun’s diameter, solar orbit, ecliptic
and some optical problems, such as determining the horizon). Therein, Hugo
of Saint Victor, who was a scholar, not a craftsman, also named ancient fore-
runners. The prologue already shows how different Hugo’s style is compared
to Euclid’s dry texts and his commentators [Homann 1991]:

“My goal is to teach practical geometry to our students, not as something
new, but rather as a collection of older, scattered material. Say what you
will, I think our predecessors worked miracles. They had immense energy,
and tried to get at the truth. Hard work could not dampen their ardour,
nor any obstacle deter their efforts. They had deep insights into marvellous
and almost incredible matters, and even in lesser ones they provided many
examples of wisdom. To equal them may not be possible; not to try would be a
disgrace. But enough exhortation; let us address our task.” The line is defined
as an expansion from one point to another one in any direction, forwards,
backwards, to the right or left, up or down; as long as there is expansion,
nothing else would be required to suffice the nature and definition of the line.
The point is capable of initiating a line in any direction or incorporating one.

a)

b)

Illus. 4.2.1 Astrolabe according to Hugo of Saint Victor: a) construction, b) appli-
cation[by permission: Practical Geometry, translated by F.A. Homann, Marquette
University Press, Milwaukee, Wisconsin 1991. a) fig 11, p. 42; b) fig 14, p. 45]
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The sources consulted by Hugo of Saint Victor do not describe the astrolabes
(an instrument adopted from the Arabs) to measure angles and altitudes. A
rotatable pole, the alidade (line of sight), is mounted onto a disc, which is
to be held perpendicularly. This disc features engraved lines and partial lines
as shown in Illus. 4.2.1.a). The alidade reaches the edge of the disc on both
sides and features a reading device. Illus. 4.2.1.b) shows how it is applied
practically: The geometer (or astronomer) holds the astrolabe in front of his
eye along the alidade, which is positioned in a suitable manner, to allow him
to focus on his target, e.g., the peak of a tower. As is clear, we must then
consider the eye level. Hugo mentioned that the surveyors often carried a stick
of this length for this reason (see Problem 4.2.1 and compare with Problem
3.1.2 and Illus. 3.1.5).

A Hebrew book on practical geometry by the Jewish mathematician Abra-
ham bar Hiyya (Savasorda) called ‘Treatise on Geometry’ was translated into
Latin by Plato of Tivoli in 1145 under the title Liber embadorum. In the last
quarter of the 13th century, Robertus Anglicus from Montpellier described
the application of another Arabic measuring device, the quadrant (quarter
circle) to measure angles.

4.2.2 Leonardo of Pisa

At the beginning of the 13th century, Leonardo of Pisa (“Fibonacci”), who
was primarily known for his extensive arithmetical, algebraic book Liber ab-
baci, referred back to the Liber embadorum by Abraham bar Hiyya when
composing his Practica geometriae. However, in contrast to its title, this
Practica geometriae is no special work on applied geodesic geometry, but
features different theorems with proofs, which refer to measuring, planimetry
and stereometry (different from Hugo of Saint Victor’s work). It also contains
problems on decomposing figures. Leonardo used relevant Greek and Arabic
literature, but also added his own theorems or proofs.

4.2.3 Johannes de Sacrobosco (John of Holywood)

Neither mathematics nor astronomy at that time was capable of comprehend-
ing the difficult argumentation of the classical works of the Greek scholars,
much less of advancing them. The elementary level of astronomy also at
university vividly documents the popular small book, later reprinted many
times, by Johannes de Sacrobosco. However, whereas Leonardo of Pisa was
also influenced by oriental sources, Sacrobosco (originally John of Holywood)
joined the Anglo-Saxon tradition. Three illustrations may communicate an
insight into the quality of this elementary introduction to astronomy. In Illus.
4.2.2a), the division of the world is introduced. Within the fixed starry sky,
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the spheres of the five planets and those of the sun and moon are arranged
around Earth in concentric circles. On the outside (represented as a double
ring decorated with the signs of the zodiac), the ninth sphere, the Primum
Mobile, surrounds all others and informs them about its motion. Illus. 4.2.2b)
shows a lunar eclipse, and Illus. 4.2.2c) illustrates the development of a solar
eclipse; Earth is at the centre; the moon, illuminated by the beaming sun, is
shown in ten different phases on an eccentric orbit.

4.2.4 Trigonometry

Engaging with astronomy more thoroughly towards the end of the Middle
Ages required sufficient familiarity with plane and spherical trigonometry.
(Since Greek chord calculation lacks the idea of using right-angled trian-
gles, it would actually be better to speak of triangular theory rather than
trigonometry.) The occidental world learned the appropriate propositions
from Greek and Arabic sources, whereby the latter had also adopted and
advanced methods originally developed in India (cf. Chap. 3).

Tables, either chords tables following Ptolemy, later sine tables, or tables
concerning other angle functions, were an important component of most
trigonometric works. It would go too far to name all these individually and
to describe their advancements (especially in regards to accuracy, but also
methods of calculation); an approximate overview ought to suffice here.

The works on spherics by Theodosius of Bithynia and Menelaus, which feature
the fundamental theorem on transversals for planes and spheres, were well
known, after Gerard of Cremona translated them into Latin (cf. section 2.5.6).
Ptolemy’s Almagest was also translated into Latin twice in the 12th century.
As a result, the astronomers encountered Ptolemy’s chord trigonometry. The
functions sine, cosine, and versine, introduced by the Indians, feature in one of
al-Khwārizmı̄’s works, which had been edited by al-Mǎjr̄ıt̄ı in the 10th century
and was translated by Adelard of Bath in the 12th century. However, he was
not familiar with the Latin word “sinus” (sine), in contrast to Robert of
Chester. Albategnius (al-Battān̄ı) perfected the Almagest. He systematically
used trigonometric lines instead of chords. This perfected version was then
translated by Plato of Tivoli in the 12th century. Both Richard of Wallingford
in the 14th century and Regiomontanus in the 15th century were familiar
with this work. Of course the different tables translated from Arabic were
effective and influential, e.g., to Johannes de Lineriis in the 14th and Johannes
von Gmunden in the 15th century. In 1534, Peter Apianus printed the work
“Improvements” of the Almagest by Jabir ibn Aflah (Geber), translated by
Gerard of Cremona. This work had already been used before by, for instance,
Richard of Wallingford.

The reformation of astronomy brought about by the School of Vienna in the
15th century (Johannes von Gmunden, Georg von Peurbach, Johannes Re-
giomontanus) was accompanied by a renewal and refining of trigonometry
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Illus. 4.2.2 Astronomical schemata by Johannes de Sacrobosco: a) Structure of the
universe (Notice the marginalia of an early reader); b) Schema to explain a lunar
eclipse; c) moon phases and solar eclipse [Joh. de Sacrobosco: Sphaera. Venice 1574,

p.79, p.12]



236 4 Geometry in the European Middle Ages

Illus. 4.2.3 Johannes Regiomontanus: Wording of the law of sines [Joh. Regiomon-
tanus: De triangulis omnimodis. Nuremburg 1533, p.46]

and table calculation. In 1437, Johannes von Gmunden described Ptolemy’s
and al-Zarqāl̄ı’s calculation methods in Tractatus de sinibus, chordis et ar-
cubus (Treatise on sines, chords and arcs). Georg von Peurbach continued
this work. His student Regiomontanus even calculated three sine tables with
increasing accuracy. He succeeded in doing so by increasing the circle radius
(to avoid decimal or sexagesimal fractions), as was customary in his time:
At first, 60 000, second time, 6 000 000, and the third time, 107. Above all,
however, Regiomontanus composed the first independent textbook on plane
and spherical trigonometry in Western Europe. It was titled: De triangulis
omnimodis libri quinque (Five books on triangles of all kinds, printed in
Nuremburg in 1533). For instance, the book explicitly states the law of sines
for triangles (see Illus. 4.2.3 and section 5.2).

4.3 Science on the move

4.3.1 Translation from Greek

Only after many works had been translated from Arabic did texts begin
to be translated on a larger scale directly from Greek into Latin, as far as
manuscripts were available. Not too long before, people had still believed that
the Euclid translation by Zamberti at the end of the 15th century had been the
first to be translated directly from Greek. However, we know nowadays that
‘Elements’ (under Theon’s compilation) had already been directly translated
from Greek into Latin in Sicily in the 12th century.

The most important translator to translate many Greek works into Latin was
Wilhelm von Moerbeke. He was active in the 13th century. He worked for his
friend, the influential theologian and versatile scholar Thomas of Aquinus.
Wilhelm travelled to Greece himself twice to look for Greek manuscripts. He
translated numerous works at the pontifical court of Viterbo, amongst them
mathematical works by Archimedes, Hero, Proclus and Ptolemy.
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Illus. 4.3.1 Archimedes (painting from Domenico Fetti, 1620; Gemäldegalerie Alter
Meister, Staatliche Kunstsammlung Dresden)
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4.3.2 Archimedes in the Middle Ages

The great influence Archimedes bore on the development of mathematics in
the early modern ages has long been known. This is demonstrated by, for in-
stance, the very fact that Galileo mentioned him in his works more than one
hundred times and praised him highly. The role his works played in the Middle
Ages had been less clear until the monumental collected edition Archimedes
in the Middle Ages by Marshall Clagett since 1964 [Clagett 1964], was pub-
lished, because, in contrast to Euclid, the number of preserved manuscripts
featuring Archimedean works is small. Only in the 12th century were Latin
translations made, for example, a translation of ‘On the Measurements of a
Circle’ by Gerard of Cremona before 1187. The overriding translation, which
comprised the majority of Archimedes’ works, comes from Wilhelm von Mo-
erbeke (1269). Apart from one manuscript, he also had access to another,
now lost text from Byzantium, which featured most of Archimedes’ works in
Greek. (Since there were only a few manuscripts by Archimedes in Byzan-
tium, the Arabs also struggled to familiarise themselves with the complete
mathematical works by Archimedes. However, they got hold of the crucial
methods and knew much better than those in the European Middle Ages
how to advance them.)

In ‘On the Measurements of a Circle’, Archimedes had already proved in
Theorem 1 that the area A of a circle equals the area of a right-angled tri-
angle, the sides of which embedding the right angle have the length of the
circle radius r or, respectively, the length of circumference c. A number of
medieval commentators thought it was necessary to carefully prove implied
Archimedean assumptions by means of Euclidean theorems. For instance,
they proved that more than half of the unexhausted area can be covered by
doubling the number of sides of a regular polygon inscribed in a circle stated
in a modern fashion, that the exhaustion method does indeed really converge.

Another commentator realised the difficulty lying within the assumption that
we could equal the length of a side to the length of the circumference in the
mentioned triangle. Thus, he consulted the Archimedean treatise ‘On spirals’,
the first 18 theorems of which address this issue. As a result, he compiled a
hybrid edition of both texts. Several manuscripts of this kind from the 13th

and 14th centuries clarify how scholars of that time strove towards under-
standing and, where thought necessary, also improved Archimedes’ works.
This proves that there were already noteworthy attempts to engage with
Archimedes’ studies before the Renaissance (when the Greek text became
available). A characteristic example of this is Johannes de Muris’s attempt
in the first half of the 14th century to introduce the problem of measuring
the circle in the 6th chapter of his treatise De arte mensurandi (On the art
of measuring):

“To measure the area of a given circle, following a previous estimation of the
ratio of the diameter of a circle to its circumference. This ratio perhaps no
one yet has truly reduced to number, although Archimedes, the most fervent
searcher among the geometers, thought he had demonstrated the ratio of a
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straight line to a curve by means of spirals. I propose to explain his inten-
tion in this regard and concerning the quadrature of the circle in the eighth
chapter of this work. Be content [for now] with the [approximate] concord
between the prior [terms], which is that three times the diameter of the circle
with the addition of a seventh part of it is equal to the circumference [i.e.
d · 31

7
= c], and that, if from the circumference 1

22
part is taken, one-third

of its remainder is equal to the diameter (i.e., [c − ( c
22 )] · 1

3 = d). I shall
speak on the method of [determining] this concord in the following (i.e., in
the beginning of the eighth chapter), it having been supposed that perhaps
one ought to be satisfied that, if a circle were continuously and regularly
moved on a plane until it completes a revolution, the line described in the
plane is equal to a circular line. Then with these things assumed (until we
demonstrate more fully the equality of a curve to a straight line), it is easy to
measure the circle. The common method is this: Multiply (1) the radius by
the semicircumference, or (2) the diameter by the semicircumference, keeping
half of the product, or (3) either the diameter by the semiperiphery or the
circumference by the radius with half the product [retained], or (4) the whole
diameter by the whole circumference, with one-fourth of the product taken;
or (5) take 11 times the square of the diameter and then assume 1/14 of the
product, or (6) subtract one-seventh of the square of the diameter from the
square of the diameter and [then subtract] one-half of the one-seventh [i.e.,

d2 − (d
2

7 ) − (d
2

14 ) = A]. The result of produced by all of these methods will
demonstrate the area of the circle. These methods, with which our ancestors
have until now been satisfied, differ only in the dominion of numbers. And
these deductions assume that from the product of a radius and a semicir-
cumference a rectangle is generated which is equal to the circle. This will be
evident in what follows.”[Clagett 1964, vol. 3, p. 31-32]

As we can tell from the cited text, Johannes de Muris was also hesitant
to compare the curvilinear circumference with a straight line segment. For
sure, the Aristotelian dictum not to compare curves and straight lines with
each other had an after-effect here. Thus, Johannes first tried to describe the
circle untwining in the plane and then took the straight line produced during
a revolution as length. The reference to the Archimedean spiral, defined as
r = α φ applies to its property of featuring exactly one radius vector of length
r = 2απ after one revolution of the angle; hence, its first intersection with
the positive x-axis has the same distance from the origin, which has a circle
of radius a as circumferential length.

Explanations as such show the effort by mathematically interested medieval
scholars to understand other ancient authors beyond Euclid and to think the
featuring problems through independently. Even though some aspects might
come across as clumsy or, as here, list trivial alternatives for calculations, we
should not ignore the striving towards theoretical clarification in a time that
is often incorrectly called the dark Middle Ages.
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4.3.3 The 14th century

The universities of Paris and Oxford became the centres of mathematics and
physics in the 14th century. Robert Grosseteste, the first chancellor of the
University of Oxford, and his student Roger Bacon devised a new ideal of
science based on the natural scientific texts by Aristotle and Islamic authors:
one’s own judgement based on observation and experience and, if necessary,
verified by experiments was to decide the truth of concepts of nature, not
just the authority of renowned authors. These were the origins of a school
interested in studying natural laws and principles of changes. This school was
named after Merton College of the University of Oxford and was advanced
in the respect that the school attempted to join physical and mathematical
considerations just as the school of Paris did. However, their mathematics
remained embedded in the general philosophical/theological concepts of late
scholasticism.

4.3.4 Thomas Bradwardine

The most important representative of this school was Thomas Bradwardine,
who later was elected Archbishop of Canterbury. Whilst teaching at Merton
College, he composed several mathematical texts, portions of which were
studied intensively far beyond England. A treatise on the speed of motion is
dedicated to kinematics. The Geometria speculativa (theoretical geometry)
followed up on the version of Euclid’s ‘Elements’ by Campanus. It often refers
to Boethius, but also contains the author’s own contributions; for instance,
the construction of star-shaped polygons by extending the sides of regular
n−gons (n ≥ 5) and a discussion of angles of contingence, i.e., angles between
circle and tangent. Bradwardine, as well as Campanus before him, came to
the conclusion that such angles stand in a certain irrational ratio to linearly
bordered angles, however different from the irrationality that exists between
the side and the diagonal of a square.

Illus. 4.3.2 Inscription above an entrance of Oxford University
[Photo: K.A. Gottwald]
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Illus. 4.3.3 Merton College of the University of Oxford, founded 1264

[Photo: K.A. Gottwald]

Bradwardine also studied the question of filling space without gaps by means
of regular solids. His geometry was printed around 1500, published in several
editions and highly appreciated by the subsequent generations of mathe-
maticians. For what it is worth, we just want to mention here that he also
established his own law regarding the speed of a motion in dependence on
force and resistance, which contradicted the Aristotelian theory.

In the treatise De continuo, which touches on philosophical as well as physical
and mathematical matters, he justifies his opinion that the continuum could
not consist of indivisible atoms. If a line segment d is only made of a finite
number of points, which cannot be divided further, he went on to say that, for
example, we could draw a semi-circle above this line segment as its diameter
d = 2r and erect a perpendicular in each of these points. Then, the semi-
circular arc would be intersected in just as many points as the diameter;
hence, the full circular arc C in double as many points. Thus, we would have
to conclude: C = 2d, which contradicts all our experience.

Nicole Oresme in Paris picked up and continued the investigations conducted
in Oxford, whereby he also helped himself to geometrical interpretations of
different motion types or quality changes. Hence, we speak of the ‘formlat-
itudes’: the change in latitude of a form illustrates the increase or decrease
of a quality, e.g., of speed. The investigations of mathematicians in the 14th

century were often inspired by engaging with Euclid’s work and represent
the climaxes of mathematical work in the European Middle Ages. At the
beginning of the 17th century, these considerations, mainly from Oxford and
Paris, found new interest: it is not by coincidence that the approaches of
Galileo’s motion theory and Cavalieri’s principle, also called the method of
indivisibles, bear similarities to the late scholastic schools.
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Illus. 4.3.4 Robert Grosseteste, Chancellor of Oxford University and Bishop of
Lincoln (1st quarter pf the 14th century [British Library Harley MS 3860, f.48])
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4.4 Applied geometry in the High and Late Middle Ages

4.4.1 Villard d’ Honnecourt

To conclude this chapter, we will again turn towards applied geometry; to be
precise, to that aspect of geometry that formed the “tools” for the medieval
“Bauhütten” (cathedral builders’ guilds). However, the master builders’ spe-
cialised knowledge was only passed on orally according to the rules of the
guilds. Hence, apart from one exception for the Early and High Middle Ages,
the sketchbook of Villard d’ Honnecourt, there are no noteworthy sources re-
garding the geometrical knowledge of the master builders and masons. Thus,
we still stand in front of the great medieval church and monastery build-
ings in amazement and admiration. These constructions silently certify their
creators’ skills, but also offer room for speculation due to the absence of writ-
ten sources. We only know for sure that medieval architecture was strongly
dominated by symbolic and mythical ideas.

The master builder Villard d’ Honnecourt came from the province of Picardy
(close to Cambrai) and travelled through France, Switzerland and Hungary
numerous times in the 13th century. He noted down numerous details of signif-
icant buildings in his sketchbook, which originally consisted of 63 parchments:
building drawings, stone mason work, representations of technical aids, but
also scattered bodily compositions (of humans and animals). Unfortunately,
the sketchbook hardly contains any text next to the 325 preserved pen draw-
ings. Illus. 4.4.1 and 4.4.2 will give the reader an impression of the quality
of the drawings. The first picture shows a rose window of the Cathedral of
Lausanne. (The upper French inscription says: “C’est une reonde veriere de
leglize de Lozane”, the lower Latin one states: “Ista est fenestra in Losana
ecclesia” (in English: This is a [round glass] window of the Cathedral of Lau-
sanne.)

The second illustration (4.4.2) shows views of the chancel vault of two cathe-
drals. The inscription of the upper drawing says: “Istud bresbiterium in-
venerunt Ulardus de Hunecort et Petrus de Corbeia, inter se disputando”
(This presbytery was designed by Villard d’ Honnecourt and Petrus de Cor-
bie when arguing with each other.)

4.4.2 The “Bauhütten” booklets

The four so-called “Bauhütten” booklets are structured differently. They were
written in Southern Germany around 250 years later in the German language.
Similar texts from the time before 1486 have not been preserved or, per-
haps, just simply were not written, since the specialised knowledge of master
builders, masons and carpenters was passed on orally from generation to gen-
eration. These four early printed works concern three small texts by Mathes
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Illus. 4.4.1 From Villard d’ Honnecourt’s sketchbook (1230-35): Church window
of the Early Gothic Cathedral of Lausanne (consecrated in 1275)

[Villard d’ Honnecourt Album. Paris, nd]
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Illus. 4.4.2 From Villard d’ Honnecourt’s sketchbook (1230-35): Views for two
church chancel rooms: Illustration of a rip vault

[Villard d’ Honnecourt Album. Paris, nd]
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Roriczer – Büchlein von der Fialen Gerechtigkeit (Booklet Concerning Pin-
nacle Correctitude), Wimpergbüchlein (Booklet on Gablets) and Geometria
Deutsch (Geometry [in] German) and Fialenbüchlein (Booklet on Pinnacles)
by Hans Schmuttermayer.

Pinnacles are small decorative turrets that crown buttresses and cap wim-
pergs, (Gothic ornamental gables with tracery over windows or portals, which
were often accompanied by pinnacles; originally “wimperge” = protecting
from the wind: protective gable). The pinnacle consists of a shaft or body
and a spire, whereby the shaft can also serve as a tabernacle a hollow space
to accommodate figures.

In this context, correctitude refers to the accurate draft of the drawings or
views to which the masons had to adhere. The first “textbooks” for this dec-
orative design at Gothic cathedrals are also significant from the perspective
of the history of printing: they are rare incunables from the first decades
of printing. They concern small texts: the first ‘Booklet concerning pinnacle
correctitude’ comprises 16 pages (only four copies have been preserved, par-
tially incomplete) and ‘Geometry [in] German’ is six pages long, with the last
three pages featuring instructions as to how to construct wimpergs.

The family Roriczer fathered four master builders of cathedrals in three gen-
erations in Regensburg. The first, Wenzel, probably came from Bohemia and
was trained by the famous master builder family of Parler in Prague. His
work as a master builder at the Cathedral of Regensburg covered the time
from 1411 until his death in 1419. His son, Lorenz, worked in Eichstätt and
at the chancel construction of St. Lorenz in Nuremburg before he was put
in charge of continuing the construction of the Cathedral of Regensburg in
1456. During his twenty years of work, he concluded the main portal, created
a magnificent draft with one tower (not executed) and was consulted as an
expert regarding the building of St. Stephen’s Cathedral in Vienna as well
as Frauenkirche (full name: ‘Cathedral of Our Dear Lady’) in Munich. His
older son was Mathes Roriczer, the author of the three mentioned texts. He
published them in his own printing factory the first domestic one in Regens-
burg in 1486/88. In the meantime, he had succeeded his father and become
master builder of the Cathedral of Regensburg.

Shortly after Roriczer’s booklet on pinnacles, Hans Schmuttermayer’s ‘Book-
let on Pinnacles” was released in Nuremburg, also dealing with the construc-
tion of wimpergs. The author was a goldsmith in Nuremburg. He had to
mount similar motives onto shrines and monstrances as the masons onto the
cathedrals. Perhaps this provoked his interest in these geometrical construc-
tions. As Roriczer did, Schmuttermayer referred to the master builder family
Parler. Hence, both stand in the tradition of Gothic architecture. Only one
copy of Schmuttermayer’s text exists nowadays.

Mathes Roriczer started his booklet of pinnacles with a dedication to the
Bishop of Eichstätt, who had encouraged him to publish. This dedication
speech presents his intention in old-fashioned German:
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Illus. 4.4.3 Tracery and figures of the late Gothic period at the Cathedral of
Rouen, France [Photo: H.W. Alten]
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Illus. 4.4.4 Apse of the Cathedral Notre Dame of Reims, France. In his sketchbook
Villard d’ Honnecourt has adhered the design of buttresses and their pinnacles

[Photo: H.W. Alten]

“...since every art is materials, form and measure, I have to explain some
of the touched art of geometry with God’s help and first intend to explain
the beginning of drawn stonework, how and by what means this is meant to
basically originate from geometry and by means of using the compass and to
be adjusted to a suitable extent. I also have drawn up a little depiction of
the following forms. This is my intention, which is only meant to benefit the
greater good.”[Roriczer/Shelby]

Both authors agree that the pinnacle construction starts with the so-called
“crossing over location”. A square is put in a second square used as a floor
plan by linking the centres of the sides. This process is repeated multiple
times. By turning each second square around the centre by 45◦, we obtain a
series of nested squares with parallel sides (Schmuttermayer displays eight in

his ‘booklet on pinnacles’.) Two consecutive squares have a side ratio of 1 :
√
2
2

; they form the higher positioned cross sections of the pointy pinnacle turrets,
which are to be transferred in order from the foot in exactly determined
intervals. Having designed the body of the pinnacle, Roriczer describes the



4.4 Applied geometry in the High and Late Middle Ages 249

construction of the spires and finally the draft of the decorations (flowers and
leaves), (cf. Illus. 4.4.5). The mason received his instruction in a recipe-like
manner: mark certain line segments with the compass and transfer them onto
the work piece.

Apart from the “crossing over location”, a construction principle we already
find in Plato’s, Vitruvius’s and Villard’s works, and the halving of the line
segments, Roriczer also sometimes speaks of trisection. First of all, he names
all marked points with letters. Those points and all auxiliary lines are only
eliminated at the end. Roriczer concluded:

“Afterwards put the spire of the pinnacle on the body of the pinnacle and
remove all part lines [auxiliary lines]. Thus, only the right lines remain, which
are necessary for the pinnacle. Now the figure is called a right pinnacle [i.e.
a right, appropriately constructed], drawn based on the top [view]. This [is]
an example next to the text, i.e. the top and front view. Thus, the booklet of
pinnacle correctitude comes to an end. Anno Domini M. CCCC. LXXXVJ.
Jar. In the evening Petrj and Paulj.” [Roriczer/Shelby]

Next to systematically using letters to refer to points and occasionally draw-
ings too, it is remarkable that an entire construction can be executed without
any calculations and, furthermore, that all other measures can be construc-
tively derived from the initial square. If we consider how long it took to build
cathedrals, the advantage of such a method becomes evident: they helped
later generations of stone masons execute their predecessors’ intentions and
conclude unfinished constructions.

Simple versions of pinnacle decorations did not constitute a problem, since
just the dimensional ratios had to be altered a little. However, the magnificent
overall impression of the “Gothic style” remained.

Roriczer’s ‘Geometry [in] German’, the first printed book on geometry in the
German language, features “a number of chapters [meaning: single construc-
tions] from geometry”, e.g., the construction of a right angle, of a regular
penta-, hepta- and octagon, and how to locate the “lost” centre of a circle
(all in all, seven constructions). The pentagon construction is special, since it
is done with a fixed span of the compass (see Problem 5.3.2). Albrecht Dürer
also described this construction, which is useful for practitioners.

The heptagon construction is very simple: A chord of same length is put into
a circle of radius r (i.e., die side of a regular hexagon). Then, we draw a
radius, which meets this chord at its centre. The part between circle centre
and chord centre is then transferred onto the circumference seven times, i.e.,
it will represent the side of the regular heptagon (see Problem 4.4.1). Consider
that, in contrast to the pentagon, there is no heptagon construction that can
be carried out exactly by means of compass and straightedge (cf. 2.4.2 and
3.4.2). Some of these constructions have a long history. The one with the
right angle goes back to Proclus; the one with the octagon was stated by
Hero.
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Illus. 4.4.5 End of the ‘Booklet Concerning Pinnacle Correctitude’ by Mathes
Roriczer: Two front views, ground view, end of text and printer’s mark (in red).

[Roriczer 1486]

Nonetheless, this small booklet on geometry, just as the booklets on pinna-
cles, stand in strong contrast to the ancient proving geometry. Therein lies
a significant difference compared to the works of the Renaissance, such as
Dürer’s ‘Four Books on Measurement’. These do not just contain recipe-like
instructions, but also attempt to convey the mathematical justifications, at
least rudimentarily. In other words, the leading “heads” are concerned with
linking science and praxis and, thus, to provide praxis (as Leonardo da Vinci
did with the arts) with a scientific foundation.
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4.4.3 Visualisation

The speculative, philosophical approach to thinking in the Middle Ages ben-
efited the early development of graphic representations of abstract entities,
which cannot be seen themselves, and their mutual relations [Schreiber 2003].
This is a branch of applied geometry, which was abruptly interrupted by the
fact that the Renaissance turned towards the worldly aspects of life and em-
pirical perception. It was only revived in the 19th century, but is nowadays
indispensible in all branches of science and techniques. We especially find
circular diagrams as well as directed and undirected graphs with vertices and
edges labelling, for instance, the tree of sciences, the tree of virtues, and the
tree of vices (see Illus. 4.4.6). The last mentioned example is particularly
interesting, since both trees are identical from a graph-theoretic viewpoint
(apart from the number of the top end knot) and, hence, both graphs yield
a mapping between each virtue, or, respectively, sub-virtue, and the corre-
sponding vice. We also want to refer the reader to the invention of the Eu-
ropean notation of music as a predecessor of the plane coordinate principle
(cf. remark on p. 326).

Illus. 4.4.6 Tree of vices and tree of virtues (from a collective edition of the 14th

century, Hessian county and university library, Darmstadt, l. Hs 815, fol. 33v, r. Hs
815, fol. 34r)
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Essential contents of geometry in the European Middle Ages

Late Roman Boethius,Cassiodor:
(6thcentury) Some elementary Euclidean geometry
11thcentury Boethius’ ‘Geometry II’:

A mathematical compendium with elementary Euclidean
excerpts based on Boethius and excerpts from agrimensor
manuscripts

Around 1120 Adelard of Bath:
Euclid translation from Arabic into Latin

12th/13th Hugo of Saint Victor, Leonardo of Pisa:
Practical geometry, use of simple instruments (elementary
geometry influenced by agrimensor praxis)

13thcentury Johannes de Sacrobosco:
Very elementary spherical geometry as basis of explaining
sky movements

Around 1235 Villard de Honnecourt:
Architectural sketchbook

14thcentury Thomas Bradwardine:
“speculative” (=theoretical) geometry
Nicole Oresme:
Theory of formlatitudes (geometrical representation of
variable qualities)

15thcentury Johannes von Gmunden:
Treatise on sine function, chord and arc

Around 1500 Mathes Roriczer, Hans Schmuttermayer:
“Bauhütten” booklets

4.5 Problems to 4

Problem 4.1.1: Circular area based on circumference

Consider that the circumference is expanded to a square in the first solution,

whereby the second solution reveals the Babylonian formula A = c2

12 (1.2.9).

Problem 4.1.2: Alcuinus: rectangular houses in a circular town

a) Which geometrical concepts stand behind the first solution? To what ex-
tent is the shape of the house included in the course of the solution?

b) Of what nature is the connection of the second solution with the second
solution of the preceding problem?

c) The respective problem in Geometria incerti auctoris requires us to deduct
the 22nd part of the circumference and to divide the rest by 3. This is then
the diameter, the half of which is multiplied by half the circumference. The
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result is divided by 600. Which considerations stand behind this instruc-
tion? [Folkerts/Gericke 1993, p. 332]

d) How would we solve this problem nowadays? Which of the three methods
comes closest to the real solution?

Problem 4.2.1: Applying the astrolabe according to Hugo of Saint Victor

Hugo explained that four congruent triangles occur in Illus 4.2.1b). The ratio
of both catheti (nowadays, we would say ‘tangent’) can be read off the scale.

a) Which measurements and which calculation steps are necessary to deter-
mine the height of the objects focussed on?

b) If it is not possible to measure the distance between the land surveyor and
the object directly, Hugo recommends focusing on the target from two
different standpoints (this method was also known by the agrimensores).
Follow his instructions:

“To measure the height of an object in front of you without moving from
your place, raise the astrolabe to the object. Adjust the medicline until you
can see the top of the object through both apertures. Then compare the
medicline degree reading with the whole side of the square. The ratio of the
medicline reading to the whole side (i.e., to twelve) is the ratio of height
to intervening space with surveyor’s height added either proportionally
or exactly. If the intervening space is impassable because of an obstacle
such as a river or a gorge, you can still get your result. Use the astrolabe
where you are. Adjust the medicline to the top of the object until you
can see it through both apertures. After this, note how many degrees of
the side of the square below appear above the medicline. Compare them
to the 12 degrees of the whole side. By rule, this is the ratio of height to
intervening distance plus surveyor’s height. [Hugo had explained before
that “increased by the observer’s height” is only taken to be literal in one
measure in diagonal direction. Otherwise, this quantity is to be converted
proportionally.]

Next, move back some distance to a second position. Take the astrolabe,
and sight the top along the medicline. Record the medicline degrees on
the square side and compare them to the whole side. The ratio is now
that between height and intervening space plus surveyor’s height. Then
compare the first and the second base, to determine how much the second
exceeds the first. Now compute the length of the first base by means of
the difference between first and second, i.e., the distance between your
first and second positions.

For example, suppose the medicline marker reading at the first station
is four. Because twelve is the triple of four, the intervening space plus
surveyor’s height will be triple the object’s height. Suppose the medi-
cline marker reading at the second station is three. Because twelve is the
quadruple of three, the space plus surveyor’s height will be quadruple
the object’s height. So suppose the first station separation plus surveyor’s
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height (the first base) is triple the object height (the perpendicular), and
the second station separation plus surveyor’s height (the second base)
quadruple the object height. Clearly, the second base is one and a third
times the first. A third part of the first base will be the excess of the
second over the first. Evaluate this distance, and take it as just one third
of the first base.

A warning. This distance is not always that from first to second station.
The surveyor’s height adjustment is not the same at both. Rather the
distance is measured from the end point of the first addition (where the
first base ends) to the end of the second addition (where the other ends).
This gives the true difference between bases.” [Homann 1991, p. 46-47].

c) This is how the instruction ends. How long is height H of the object
focussed on?

Tip: Name the distances between both observation points and the object d1
and d2, the difference d = d1 − d2, the surveyor’s eye level h and show that
we obtain H = 2d+ h for the stated measured values.

Problem 4.4.1: Heptagon construction according to Roriczer

• Calculate the angle at centre, which belongs to one side of the heptagon
as constructed by Roriczer, and compare it with the angle at centre 2π

7 ,
which occurs in the exact, regular heptagon.

• Compare this to the heptagon construction by Hero and Abū’l-Wafā ad-
dressed in Problem 3.4.3 on p. 216.
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14th century Painter Giotto di Bondone (1266–1337) and poets Petrarca
(1304–1374) and Boccaccio (1313-1375) mark the beginning
of the Renaissance

1370 Hanseatic league first gains dominance over the Baltic Sea
Area

1397–1524 Kalmar Union of Scandinavian countries under Danish lead-
ership

1419 First Northern European university is founded in Rostock
(Germany)

1434–1498 Florence under rule of House of Medici
1436 First treatise on perspective (Piero della Francesca)
Around 1445 Beginning of printing with movable letters (Gutenberg)
1452–1519 Leonardo da Vinci
1453 Turks conquer Constantinople, end of Byzantine Empire
1453 End of Hundred Years’ War between France and England
1471–1528 Albrecht Dürer
1475–1564 Michelangelo Buonarrotti
1492 First globe of Earth in Europe (Martin Behaim, Nuremburg)
1492 Columbus rediscovers America
1494 Spain and Portugal share New World (Treaty of Tordesillas)
Around 1510 Peter Henlein makes first pocket watches in Nuremburg
1517 Luther’s Ninety-Five Theses, beginning of reformation in

Germany
1518–1550 Adam Ries’ books on calculation
1519–1522 First sail around the world
1543 De revolutionibus orbium coelestium by Copernicus is printed
1543 Paracelcus founds modern medicine
1547 Ivan IV (the Terrible) becomes tsar
1548–1603 Elisabeth I rules England
1560 First European academy is founded in Naples
1564–1616 William Shakespeare
1569 Mercator’s projection of the world (angle-preserving)
1582 Gregorian calendar takes over from Julian calendar (first in

Catholic countries)
1587 First attempt at forming colonies in America (Virginia)
1588 Decline of Spanish Armada
1609 Kepler publishes the first two laws on planet movements
1610 Galileo publishes sensational astronomical discoveries with

the telescope
1614 First logarithm tables (John Napier)
1618 Beginning of the Thirty Years’ War
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5.0 Preliminary remarks

The following time period of around 230 years between approx. 1400 and
approx. 1630 is usually referred to as the Renaissance (i.e., rebirth, namely of
Antiquity) in the history of science, although this is not entirely accurate and
cannot be reconciled with the art-historical periods. The time frame we have
agreed on here differs from all other periods of the history of mathematics
by combining two features:

• In contrast to the preceding time, a clear turn towards praxis and devel-
oping numerous new areas of applications and applications themselves.
(The second half of the 20th century has this in common with the Re-
naissance.)

• The essential advances often do not come from the educated scholars
themselves, but partially from practitioners of all kinds: masters of calcu-
lation (Adam Ries), engineers (Simon Stevin), artists (P. della Francesca,
Dürer), craftsmen (Bürgi), marine engineers, merchants (Thomas Gre-
sham),..., and also partially from educated amateurs4 enthusiastic about
mathematics: physicians (Gemma Frisius, Robert Recorde, Cardano),
jurists (Vieta), noble estate owners (John Napier), courtiers (G. B.
Benedetti), ... This sort of accumulation is unique in the history of math-
ematics.

Mainly, the above-named practitioners and amateurs interested in the prac-
tical aspects of science started organising academies in the middle of the
16th century to serve as a platform for the exchange of scientific ideas and
concepts. These academies, which were only private at the beginning, were
then transformed into sovereign institutions from the middle of the 17th cen-
tury or were re-founded by the sovereigns according to the model of those
that already existed. Of course, parallel to this turn towards praxis, as em-
phasised above, secondary and higher education grew steadily quantitatively
and qualitatively in this era and far beyond the medieval standard. “Profes-
sional” mathematicians, meaning those teaching at schools and universities,
also wrote about practical problems of geometry on occasion. However, the
Renaissance primarily fostered the scholar’s interest in the almost forgotten
old Greek language and efforts to gain access to the original texts or to re-
store texts of ancient authors, which, until then, were only known through
retranslations from Arabic, or from references of their existence in different
sources. This was benefited by the fact that after the final ruin of the Byzan-
tine Empire (1453, Turks conquer Constantinople), Greek scholars sought
refuge in Italy and brought with them the Greek language and a series of
manuscripts that were still unknown in the rest of Europe. Having said that,
the invention of printing around 1445 made it possible to circulate scientific
texts in larger quantities.

4 The word ‘amateur’ can have a negative connotation nowadays. However, origi-
nally it comes from ‘amare’ (Lat. to love) and refers to a person who engages with
something not professionally but - stated in a modern fashion - as a hobby, whereby
material interest played a subordinate role at most.
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Indeed, ‘Elements’ was one of the first printed books (1482 in Venice by
printer Erhard Ratdolt from Augsburg, Illus. 5.0.2). It immediately became
a “bestseller”, which, over the course of the next 500 years, lived through
countless translations, versions and editions, of which we will report in due
course. If we take into account that ancient mathematics was basically ge-
ometry, it was, of course, much easier in the Renaissance to advance in arith-
metics, algebra and numerical mathematics beyond the ancient level than it
was in geometry. If we measure the advancements only by considering the
amount and difficulty of new geometrical theorems and solutions of construc-
tive problems, we will soon see that the mathematicians of the Renaissance
put a lot of effort into reacquiring the ancient knowledge and rising to that
level. However, if we look at the variety of new practical challenges geometry
had to face, the wealth of means conceived to solve such problems, and the
contribution of geometry to the social effectiveness and acknowledgement of
mathematics, the Renaissance appears as one of the most fruitful eras con-
cerning the historical development of geometry.

Illus. 5.0.2 Title page of the first printed version of ‘Elements’, Venice, 1482.
It differs from all later versions in the aspect that it does not name a publisher,
translator or printer and starts with the actual text, i.e., with the definitions of

Book I, straight away after just one introductory sentence
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Following the formation of the first universities, the dates of which are often
not precise, an era of regularity started in around 1360: sovereigns (including
ruling bishops), as well as rich trading towns, demanded a state university.
A pontifical bull permitted such formations. Thus, the following universities
were founded (as well as many others): Prague (1348) Krakow (1364), Vienna
(1365), Heidelberg (1386), Cologne (1388), Erfurt (1389), Leipzig (1409), Ros-
tock (1419), Löwen (1425), Greifswald (1456), Ingolstadt (1472), Uppsala and
Tübingen (1477) and Copenhagen (1479). The arising Protestantism (1517,
Luther’s 95 Theses) split the European education system deeply and sus-
tainably. In reaction to the higher Catholic schools, which mainly originated
from monastery or cathedral schools, the first Protestant and humanistic
grammar schools were established. The Society of Jesus was founded in 1534
with the aim of re-catholicisation. Part of their strategy was to establish their
own educational system with a high level. Jesuit lecture series were created

Illus. 5.1.1 Foundation of European Universities in the Middle Ages

[Map: H. Wesemüller-Kock]

5.1 Geometry at schools and universities, Euclid during
the Renaissance
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depending on the situation of each town either within the already existing
schools and universities or as competition. Hereby, Euclid took on an espe-
cially prominent role. A series of the most important printed Euclid editions
of this time were published by the Jesuits and adopted to form part of the
Jesuit educational institutions. Among them was the most extensive edition
by Christopher Clavius, which, since its first publication in Rome in 1574,
had gone through over twenty editions up to 1738. Clavius added, apart from
the late ancient Books XIV and XV, a sixteenth book to the actual Euclid
text and further extensive supplements, which covered almost all historical
and mathematical issues that had surrounded this text for almost 1900 years.
Many aspects we suspect to be part of ‘Elements’, but look for in vain, such
as the fourth congruence theorem for triangles or the construction of the com-
mon tangent of two circles, are to be found in Clavius’s version. Other Jesuit
Renaissance Euclid editions come from Stephanus Gracilis (1557), Johann
(Johannes) Lanz (1617) and Carolus Malapertius (1620), amongst others.
Matteo Ricci, one of Clavius’s students and one of the first missionaries in
China, translated parts of Clavius’s work into Chinese from 1603 to 1607. He
received help therein from domestic literature experts. As a result, he was
able to strengthen crucially the Jesuits’ position at the Chinese Emperor’s
court. In 1594, the Jesuits even had an Arabic Euclid version printed in Rome
(according to the so-called Pseudo-Tusi). This version was intended to serve
as a tutorial for the Jesuits sent to Islamic countries.

Whereas the first printed edition of ‘Elements’, already mentioned in 5.0,
was based on the Latin text by Campanus of Novara from around 1260, a
new Latin translation of ‘Elements’ as well as ‘Data’, ‘Optics’, ‘Catoptrics’
and ‘Phenomena’ by Bartholomeo Zamberti appeared in 1505, based on a
Greek manuscript. This initiated a dispute about the nature and meaning
of studying Euclid that continued throughout the centuries under different
aspects. Campanus, just as his Arabic sources had done, strove for a text as
mathematically meaningful as possible. Zamberti, who was more a philologist
than a mathematician and also more aware of his original sources, insulted
Campanus by calling him “the most barbarian of all translators”: However,
he failed just as often to convey the content accurately. Old Greek is an ex-
tremely equivocal language. Hence, it has been difficult up to the present day
to grasp the meaning of ancient mathematical texts from a sole philological
perspective. Nevertheless, Zamberti, who had been the first to make an “orig-
inal” Greek Euclidean text generally available in print, represented the be-
ginning of a new debate over Euclid’s legacy: his works were more understood
as cultural heritage, a classical tutorial and reading material, rather than a
mathematical textbook. This, unfortunately, set the image of Euclidean ge-
ometry for many generations of pupils and students, often decreasing their
interest in and understanding of mathematics.

As already stated, the revival of Old Greek as the language of science was
part of the humanistic program and was especially practised at the mostly
Protestant grammar schools. The first Greek edition of ‘Elements’ in print
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was published together with Proclus’s commentary in Basel in 1533. It was
published by the Hellenist Simon Grynaeus, who belonged to the circle of
Erasmus of Rotterdam. Copies of this edition, as well as the oldest Latin
printed versions, can still be found at libraries of very old universities or
grammar schools nowadays. The mathematics professor J.A. Segner from
Halle (Germany) was still defending the following opinion in a foreword of a
new Latin school edition of ‘Elements’ from 1773: the withdrawal of Greek
in favour of Latin school editions, enforced by the increasingly insufficient
knowledge of old Greek, would lead to a sad loss of the students’ oral and
writing skills, as well as their ability to express themselves and to think
logically (quote in [Schreiber 1987a, 124]).

To adumbrate the surrounding environment of the Euclidean tradition during
the Renaissance, we must stress that ‘Elements’, in full and in parts, had
been published in numerous popular, folk-like printed editions in modern
languages of that time since the middle of the 16th century: Italian in 1543,
English in 1551 and 1570, German in 1555 and 1562, French in 1564 and 1616,
Spanish in 1576 and Dutch in 1606. This continued until the 18th century
and ought to be distinguished from contemporary Euclid editions in modern
languages, which usually cater to strict historical and philological demands
and target a completely different readership. The folk-like literature on Euclid
from the 16th until the 18th century, written by masters of calculation and
educated amateurs, but also by university professors, omitted proofs in favour
of detailed examples and applications, reduced Euclid’s purely theoretical
theory of proportions to numeric calculations, and displayed the authors’
own scientific specialities regarding surveying, using proportional dividers,
or even recreational mathematics. The practical use expected from buying
these books and their simple comprehensibility were promoted tabloid-style
in words and pictures on the title pages (Illus. 5.1.2).

Geometry was still part of the seven liberal arts in the Renaissance and,
thus, belonged to the curriculum at the Faculties of Arts, the “seeds” of
the later philosophical faculties. Graduating successfully was a requirement
for studying theology, medicine or law. The students were quite young, com-
pared to nowadays, when studying the “studium generale”. There was no real
difference between the level of mathematics at university and at other educa-
tional institutions (grammar schools, colleges, schools for squires, academies
for knights). However, there were some universities that took an increased
interest in mathematical sciences, such as Vienna or Krakow.

Geometry was divided into “geometria speculativa” (theoretically orientated)
and “geometria practica” (practically orientated). The theoretically orien-
tated part of Renaissance geometry was arranged around some preferred top-
ics, such as squaring the circle or the problem of the “horn-shaped” angles:
the starting point is an unclear addition to Proposition III.16 of ‘Elements’,
which claims that the angle (of so-called contingency) between a circle and its
tangent is smaller than any acute angle with straight arms. This text passage
was sufficient for Clavius and others to speculate in page after page about
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Illus. 5.1.2 Title page of a German edition of books I – VI of ‘Elements’

[Staats- und Universitätsbibliothek Dresden, SLUB, Lit. Graec. B. 1569]

such quantities, which are “infinitely small, yet different to zero”. It is by all
means possible that these texts, still known by all mathematicians in the 17th

century, inspired the development of infinitesimal mathematics. Other math-
ematicians of the Renaissance, such as J. Peletier from France, vehemently
rejected the idea that the angle of contingency is an infinitely small positive
quantity. We can find first approaches to a theory on a structured character
of an axiomatically arranged geometry embedded in speculations, which are
difficult to comprehend nowadays, in the work of the Parisian scholar P. de
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la Ramée, who was predominantly involved with philosophy. He said it was
not the duty of geometry to clarify the (physical) nature of objects, such as
the point and the straight line. Postulates are not logically mandatory for
geometrical considerations. However, assuming them should be motivated
philosophically and/or didactically. Henry Savile, professor at the University
of Oxford, who himself held lectures on ‘Elements’, founded a chair for ge-
ometry under the condition that each owner would have to engage with the
“naevi” (birth defects) of ‘Elements’, namely the parallel problem and the
notion of ratio concerning proportionality, which was used on an insufficient
axiomatic basis. The passion for systematising and classifying brought about
by scholasticism also rubbed off on geometry. For instance, when listing all
possibilities of how to construct a triangle by means of given sides and an-
gles, Clavius encountered the fourth theorem of congruence, which is not
mentioned by Euclid. Other authors investigated how many different types
of quadrilateral, penta-, hexa-, ...gons there are.

Although special chairs for mathematics were established at several univer-
sities, for which several mathematicians worked, not forgotten until today, it
was quite common to have had mathematics taught along the way by profes-
sors of other specialities. Kepler’s academic teacher in Tübingen, M. Maestlin,
was also professor of Hebrew. J. J. Scaliger, who worked for a mathematical
chair in Leiden at the end of the 16th century, was highly distinguished within
the area of chronology as part of the historical sciences. However, a solution
to the problem of squaring the circle, which he had thought of as correct and
also published himself, was strongly attacked by Vieta, Snellius, Ludolph van
Ceulen and other contemporaries due to the inherent mistakes of his pro-
posal. Scaliger rejected this criticism, arrogantly arguing that a renowned
scholar like him could not be expected to deal with mathematics in the style
of a fencing master (van Ceulen) or surveyor (Snellius) (cf. contribution from
Vermij in [Hantsche 1996]).

Nonetheless, university professors also composed texts on practical aspects
of geometry, such as geodesy, cartography, optics and perspective, astron-
omy and astrology, ballistics, architecture, and the construction of fortresses.
Hereby, only questions with apparent practical relation, such as “On division
of figures” according to Euclid, were addressed. Such works partially served
as a simple means of topping off the mostly poor pay of university professors;
for instance, the contributions of W. Snellius in Leiden and P. Apianus in
Ingolstadt on geodesy, cartography and navigation, as well as many practical
works by W. Schickard in Tübingen [Hantsche 1996]. Moreover, there is a
Geometria practica in eight books by Clavius (1604), which is the first to
describe, amongst other things, the nonius (a forerunner of the vernier scale)
as a means of improving the accuracy of readings for linear measurements.
(P. Nunes, Lat. Nonius, after whom the device was named, had proposed a
similar device for angle measurements in 1542.) Clavius transformed the ba-
sic problems of spherical geometry into problems of plane geometry by means
of stereographic projection in order to solve them. Clavius recalculated the
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Illus. 5.1.3 Christoph Clavius (Engraving after a painting by [Francesco Villamena
1606]) and Piero della Francesca (presumably a selfportrait; detail of fresco, Museo

civico di Sansepolcro)

error concerning the approximate construction of the regular pentagon with
a fixed span of the compass, as known from the “Bauhütten” praxis men-
tioned in the previous chapter and taught in Geometria deutsch (Geometry
[in] German) by M. Roriczer and Dürer (1525) (cf. Problem 5.3.2). This is
interesting since it proves that scholars like Clavius also acknowledged, at
least partially, the literature written by artists and craftsmen.

Joachim Jungius chose his own path with his Geometria empirica from 1627
[Jungius 1627], a textbook with multiple editions for academic grammar
schools. Therein, he tried to include the pupils’ empirical experience in the
introduction to geometry by also permitting them to experiment with geo-
metrical devices, such as compass and straightedge. His aim, hereby, was to
foster the pupils’ insights into geometrical relations. Jungius’s German trans-
lation of his book, which, unfortunately, is only known incompletely, stressed
this aim in its title, ‘The art of ripping or experiential figure introduction’
(original: Reiß-Kunst oder Erfahrmessiger Figuhrkündigung).
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5.2 Geometry in astronomy, geodesy and cartography

Interest in astronomy had been one of the strongest incitements for engag-
ing with mathematics since the oldest civilisations up to the beginning of
the 19th century. Although it was just pure curiosity at the beginning, next
to cultic, religious motives and the needs of calendar calculation, astrology
had increasingly been the main motive for advancing astronomy since the
Late Antiquity. Many significant patrons of astronomically-orientated math-
ematics in the Middle Ages and Renaissance, from Alfonso X of Castile and
Friedrich II of Hohenstaufen to the German emperors of the end of the 16th

century, were motivated to support mathematicians and later also to print
mathematical works, mainly due to their belief in astrology. However, we also
need to include the role of astronomy since the 15th century as an auxiliary
science for developing nautical science and geodesy, which, over the course of
approx. three hundred years, will almost completely replace astrology as the
motive for astronomy.

Astronomy, from a mathematical perspective, is first of all geometry of the ce-
lestial movements projected onto an imagined sphere. Hence, it is not surpris-
ing that spherical trigonometry developed coequally to plane trigonometry
for a long time (although it does not form part of the contemporary mathe-
matical school and general education). Trigonometry was not an independent
branch of mathematics until the 15th century, but inherently connected to
its main astronomical application. However, astronomy was, of course, ac-
cepted as a mathematical science as part of the quadrivium. This did not
just influence terminology considerably, e.g., umbra recta = shadow of the
vertical gnomon on a horizontal plane for cosine, umbra versa = shadow of the
horizontal pole on a vertical plane for sine (Illus. 5.2.2), azimuth and rectas-
censio to denote special angles, but also led to a limitation of the discussion
of notions and problems over a long period of time to only include those that
actually occur in astronomy. For instance, the law of cosines was phrased and
proven as early as 1593 by Vieta, in clearer explanation by Bartholomaeus
Pitiscus 1600, not because finding the respective polar principles is relatively
difficult, but rather because determining a spherical triangle by means of its
three angles is nowhere to be found in positional astronomy. For the same
reason, the tangent function was introduced just as late.

Apart from the difficulties already mentioned (lack of systematics, terminol-
ogy nowadays being uncommon and clumsy, barely formalised notation), fur-
ther obstacles hindered those that engaged with modern trigonometry when
attempting to understand the trigonometry of the Renaissance. For example,
the values of the numerous tables calculated back then (one line segment
length in dependence of an angle measured by one degree, minute and sec-
ond) did not relate to the unit circle, but to an assumed radius, which differs
from case to case (and is then called sinus totus when the sine value of 90
degrees occurs). In order preferably to avoid fractions, this sinus totus was
ascribed a very high measure, e.g., 60 000 (by Regiomontanus), 100 000 (by
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Illus. 5.2.1 Regiomontanus (Johannes Müller) and Vieta (François Viète)

Regiomontanus, Rheticus, Maurolico), 600 000 (by Johannes von Gmunden,
Georg von Peurbach), 6 000 000 (by Regiomontanus), 107 (by Napier) and
1015 (by Rheticus).

These general remarks will now be followed by a brief chronological overview.
[Braunmühl 1900] offers a portrait that is very rich in details, but requires
correction or supplements in many aspects. [Hamann 1980] and the updated
English translation by [Zinner 1990] of the classic biography of Regiomon-
tanus from 1938 represent more extensive and more recent literature on this
subject.

A school of astronomy and trigonometry was established by Johannes von
Gmunden at the University of Vienna soon after 1400. His student and suc-
cessor Georg von Peurbach was mainly known as the last to advocate the
old Ptolemaic astronomy before it was superseded by Copernicus’ and Ke-
pler’s world view. His student and friend Regiomontanus (actually Johannes
Müller) continued his works, which were unfinished due to his early death.
Regiomontanus, who, after a long trip to Italy and a temporary stint work-
ing for the Hungarian king Matthias Corvinus, settled down in Nuremburg
and pursued three tasks there: first, he ran a factory for producing instru-
ments (partially invented or improved by himself); second, he engaged in
the translation and printing of classic mathematical and astronomical texts;
third, along with other works, he wrote the five books ‘De triangulis omn-
imodis’ (On triangles of every kind), with which he founded trigonometry
in Europe as a systematic discipline independent of astronomy (see Illus.
4.2.3). Regiomontanus has often been celebrated as the most significant Ger-
man mathematician of the 15th century. Accordingly, the literature on him
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Illus. 5.2.2 Geometrical representation for umbra recta, sinus totus and sinus
versus

is extensive. However, it is clear that on top of his own contribution, he
owed much of his acquired knowledge to ancient Islamic and also medieval
European literature (here particularly by Levi ben Gerson).

Whereas the first four books (chapters) are based on his influential work on
the law of sines of plane and spherical geometry and all triangle problems are
basically solved by means of decomposing them into right-angled triangles,
the fifth book phrases and proves the law of cosines of spherical geometry as
a theorem that applies to any spherical triangle for the first time, although
the wording is difficult for a modern audience to read, namely:

sinversA : (sinvers a− sinvers(b− c)) = sintotus2 : sinb · sinc. (5.2.1)

Thereby, A is the angle nowadays referred to as α and sinvers = versine =
sinustotus− cosine is a rather sensible quantity geometrically speaking, the
“height of the sagitta” of the arc belonging to the double angle (Illus. 5.2.2).
Equation (5.2.1) can be transferred to the form customary nowadays by
means of a simple calculation:

cosa = cosb · cosc+ sinb · sinc · cosα. (5.2.2)

However, we must keep in mind that equation 5.2.2 would be completely
pointless in the type of mathematics influenced by Greek tradition, since it
violates the principle of homogeneity if we grasp the participating quantities
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as line segments. In contrast, (5.2.1) adheres to the permitted form of a pro-
portion: line segment: line segment = area: area. The role of sinus totus also
becomes clear due to this consideration. (5.2.1), as well as (5.2.2), represents
a relation between the three sides of a spherical triangle and any of its angles.
However, Regiomontanus was still so under the spell of astronomy that he
only used the theorem to calculate the third side with two given sides and
one given angle, but not to obtain the angles by means of three given sides.

Whereas Regiomontanus’s main work, which was only printed in 1533 (57
years after his death), significantly influenced Johannes Werner, Georg Jo-
achim Rheticus, Peter Apianus, Francesco Maurolico and other specialists of
trigonometry, it seems that Copernicus conceived of his trigonometry rela-
tively independent of his direct predecessors. As a result, Copernicus’s con-
cept differs in some distinctive features, such as the introduction of the secant
function (as the reversed cosine) or the use of the tangent function. Partic-
ularly, Rheticus and Bartholomaeus Pitiscus contributed greatly to the sys-
tematically and didactically skilled preparation of the gathered knowledge.
Rheticus was the first to define all six trigonometric functions – sin, cos, tan,
cot, sec, cosec – as side ratios in a right-angled triangle and tabled them in a
manner in which each angle only varies between 0 and 45 degrees and there is
one table each to read off a pair sin-cos, tan-cot, sec-cosec. Pitiscus introduced
the word ‘trigonometry’ with the title Trigonometriae sive dimensionae of
his book published in 1595.

The advances in trigonometry first achieved in Germany soon spread across
Italy (Maurolico), France (Fine, Vieta), Great Britain (Napier) and the
Netherlands (Gemma Frisius, Stevin, Snellius). Vieta was the first to suc-
ceed in deriving the law of cosines, whereby he, of course, only substitutes
one corner of the triangle with the appropriate polar corner, instead of
the presently customary polar triangle (introduced by Snellius, see Prob-
lem 5.2.1). Geodesic and other technical applications of trigonometry also
gradually penetrated the textbooks: a Venetian manuscript from the middle
of the 15th century determines the shortest distance between the beginning
and the end of a trip by means of the linear parts of the route and the
changes of direction in the inflexion points. It seems that a text published
by Johannes Werner in 1514 is the first in Europe to display the problem
well-known from Islamic trigonometry for determining the shortest distance
between two points on the terrestrial surface by means of geographical coor-
dinates. Regiomontanus had similar problems. Pitiscus was the first to use
an appendix featuring application of the building trade in the third edition
(1612) of his book on trigonometry. This edition was translated into English
in 1614. Rheticus’s ‘Chorography’ could have made a significant contribu-
tion to the development of geodesy, but was not printed. Hence, the greatest
impulse for geodesy came from the Dutch.
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Illus. 5.2.3 “Family tree” of European trigonometry

[P. Schreiber in German edition]
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Gemma Frisius (actually Jemma Reinerszoon), a physician from the Frisian
North of the Netherlands, was the first to describe the method of triangulation
concerning purely terrestrial distance measuring in 1533: starting with a very
exactly measured basic line segment, only angles are measured; thence the
sides of joining triangles are calculated successively trigonometrically. In 1547,
he was again the first to propose measuring geographical longitude by means
of precise watches he took with him. The simplest principle is as follows: the
difference of longitude of two locations is proportional to the difference of their
local times. Hence, we only need to compare the astronomically determined
local times at each location with the local time of the standardised time
we have carried with us. Of course, to be able to realise this technically,
we need watches that are not just accurate over long periods of time, but
also unsusceptible to turbulence occurring whilst travelling at land or sea for
longer periods. This was only put into practice by the British John Harrison
around 1736 [Howse 1980, Sobel 1995].

Snellius, son and successor of a mathematics professor at Leiden, conducted
the first arc measurement by means of triangulation5 . Thereby, he deter-
mined the distance of around 130 km between the locations of Alkmaar and
Bergen op Zoom in the Netherlands, both of which are located approximately
on the same meridian, with remarkable precision. Apart from this survey, his
main work Eratosthenes Batavus (the Dutch Eratosthenes) from 1617 was
also the first to describe the so-called “recession”6 , which was later named af-
ter Laurent Pothenot (1692) who worked as a professor in Paris around 1700.
Thereby, the angles between each two of three points A,B,C with known
locations are measured from a standpoint S, which we need to determine.
The circles through S,A,B and S,B,C are obtained from their peripheral
angles in S, standpoint S as that intersection of these circles different from
B. As a result, this procedure fails if S lies on the circle through A,B,C
and it is arbitrarily imprecise if S approaches this “dangerous circle”. Just
such considerations are the messengers of a new type of geometrical thinking
despite the theoretical triviality of the subject matter.

The 17th century then became the century of the first large-scale land sur-
veys, in which mathematicians like J. Kepler, W. Schickard, G.D. Cassini and
M. Ricci participated. It seems that the mathematics professor W. Schickard
from Tübingen engaged practically with triangulation and recession simul-
taneous to and independent of Snellius. We shall not go into detail here

5 The first European arc measurement had already been conducted by Jean Fernel,
personal physician to the French king Henry II, between Paris and Amiens in 1525,
by passing the distance in a carriage whilst counting the amount of times the
wheels revolved. Although his method had its mistakes, he still managed to state a
relatively precise value. As a result, Fernel was accused of manipulating the result
(also by Snellius) [Bialas 1982].
6 When intersecting, we determine the location of this new point by means of
focussing on the “new point” of two known locations. Such a procedure had already
been ascribed to Thales.
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concerning the degree to which the (re-) discovery of America and the other
great expeditions of the 15th and 16th centuries revolutionised the medieval
world view, or how the new view of the world also intensified the issue of
the position of Earth within the cosmos and the question of its structure.
In close correlation with the boom of astronomy, geography and geodesy, a
further new field for application of geometry was developed, which, accord-
ing to its nature, was most closely related to “actual geometry”, that being
cartography. Basically, Antiquity had only developed one mathematically
interesting and exactly defined representation of the spherical surface in the
plane; namely stereographic projection, the circle-preserving quality of which
is the base of the functioning of astrolabes or, respectively, the mechanically-
powered faces of astronomical clocks. Nobody before Johannes Werner seems
to have conceived of also using this representation for geographical maps.
Even Ptolemy’s geography only addresses the representation of the known
part of the world, for which Ptolemy developed the much simpler but also
more illustrative maps that we nowadays identify as parts of conic projections
(Illus. 2.5.6 and 5.2.4, 5.2.5).

During the European Middle Ages, the world maps – as with most other
illustrative representations – had to fulfil a predominantly symbolic require-
ment. There were the so-called T and O maps with Jerusalem as the centre of
the circular world disc, which sometimes were precisely quartered by waters,
such as the Mediterranean Sea and the Red Sea, whereby one quarter rep-
resented Europe, a second one Africa and the remainder Asia (Illus. 2.1.2).
Later maps featured many, mostly fantastic details. Sea maps mainly served
as symbolised representations, indicating the compass courses or wind direc-
tions to reach a certain destination [Köberer 1982]. A geometrically-founded
cartography was only established around 1500. However, even elementary
basic notions, such as being true to area or angle, are not explicitly men-
tioned there. Relations, such as orthographic and stereographic projection,
were only introduced in the influential ‘Optics’ by the Belgian Jesuit François
d’ Aguilon around 1600. The imperial court astronomer Johann Stab (Lat.
Stabius) developed the image of the spherical surface true to area, which was
multiply reproduced due to its distinctive heart-shaped form (Illus. 5.2.6):

Based on the straight picture NS true to the length of a “Prime Meridian”, the
circles of latitude are transferred to both sides true to length onto concentric
circular arcs around the image N of the North Pole. As a result, we obtain the
distinctive heart shape as the location of the extremity of these circular arcs
and simultaneously as the double picture of the 180 degree meridian. We
cannot know at this point if Stab conceived of this heuristic consideration
himself for obtaining a picture true to area of the spherical surface by means
of truth to length at the Prime Meridian and the circles of latitude transferred
from there. The means to confirm such a hypothesis exactly, such as truth
to area or angle, were only introduced in the 19th century. Stab’s idea was
executed by the already-mentioned J. Werner in Nuremberg in 1514, but only
published by Peter Apianus in 1530.
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a)

b)

Illus. 5.2.4 Ptolemy’s world map a) Reconstruction of Ptolemy’s conic projection,
b) Map of the inhabited world in conic projection (Strasbourg 1513), reconstructed
by means of the longitudes and latitudes from Ptolemy’s handbook on geography
[a) from Lloyd A. Brown: The Story of Maps, Bonanza Books, New York 1949 new
ed. Dover Publ. Inc., Mineola 1990; b) Herzog August Library, Wolfenbüttel 1.2.

4.1 Geogr. 2◦, Karte]
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a)

b)

Illus. 5.2.5 Ptolemy’s modified spherical projection a) Reconstruction of Ptolemy’s
modified spherical projection, b) Nicolaus Germanus’s world map from the first
Ptolemy edition printed in Germany (Ulm 1482) [a) from Lloyd A. Brown: The
Story of Maps, Bonanza Books, New York 1949 new ed. Dover Publ. Inc., Mineola

1990; b) Herzog August Library, Wolfenbüttel 2.2 Geogr. 2◦, Karte]
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Illus. 5.2.6 Heart-shaped world map according to the principle of Stab(ius) and
Joh. Werner [Published by Peter Apianus: Tabula orbis cogniti universalior, Ingol-

stadt, 1530]



5.2 Geometry in astronomy, geodesy and cartography 275

Stab also designed a map of the terrestrial hemisphere by means of vertical
parallel projection onto a tangential plane. Besides, Albrecht Dürer helped
with the design of this map printed in 1515 by order of Emperor Maximilian
(Illus. 5.2.7). Further cartographic illustration first proposed or used in this
time are, amongst others:

• Azimuthal equidistant projection (Cusanus, Snellius), in which the merid-
ians are represented by rays originating in N and, the circles of latitude by
concentric circles in the map, whilst making sure that its radius equals the
pole distance measured in arc measure (the name of the method means
that all points are represented in their true distance from the North Pole
= centre of map).

• The draft first used by Gerard Mercator and later named after Sanson
and Flamsteed, in which the circles of latitude are represented by parallel
line segments true to distance and meridians stay true to area.

The climax of Renaissance cartography is, without a doubt, symbolised by
the work of the Flemish cartographer Gerard Mercator, who later worked in
Duisburg. The excellent mathematician Pedro Nunes (Nonius), who lived in
Portugal, first addressed the curves of constant course (later called rhumb
lines or loxodromes) on the globe, which are so important for seafaring; in
other words, curves that are defined by the fact that they intersect all meridi-
ans in a constant angle. (In 1624, Snellius introduced the still customary name
‘loxodrome’ for these curves in his theory on navigation Tiphys Batavus and
likewise the name ‘orthodrome’ for great circle arcs, i.e., shortest curve on
the globe.) Nunes showed by means of approximate construction (only us-
ing eight meridians and approximation until the next meridian by means of
circular arcs, Illus. 5.2.8) that these loxodromes, called “curvas dos rombos”
(rhumb curves) by him, approximate both poles in a spiral manner without
ever being able to reach them.

Some of these curves are displayed on a globe made by Mercator in 1541. In
1568, he finalised the first world map, which shows these curves as straight
lines – and the Mercator projection was born. However, this projection was
only circulated in 1595 in the printed world atlas, after Mercator’s death. Ever
since then, the literature has speculated as to how he could have achieved
his map [Köberer 1982]. The reasons for this speculation are twofold. On
one hand, the exact law, which says that the intervals of the images of the
circles of latitude grow into the infinite with increasing latitude from the
image of the equator, can only be found by solving an infinitesimal equation.
On the other hand, the Mercator projection, which features the spherical
surface (apart from the two poles) represented on a cylinder of infinite height,
tangentially located at the equator and subsequently unwound, can by no
means be explained as a ‘projection’ in an elementary geometrical manner.
(In this respect, the picture on p. 84 in [Mainzer 1980] is also misleading.)

However, since the loxodromes – constructed pointwise – occurred on Mer-
cator’s globe first, it is most probable that he transferred them from there
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Illus. 5.2.7 Stab(ius)-Dürer-map, 1515

Illus. 5.2.8 Loxodrome diagram by P. Nunes from 1537

[Nunes: Tratado em defensam da carta marear. Lisbon 1537]
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onto the approximately constructed map. In any case, the importance of this
new invention for high-sea navigation resulted in many mathematicians en-
gaging with the problem of exactly defining and calculating Mercator’s map.
Mercator, consequently, contributed a small stepping stone for the develop-
ment of infinitesimal mathematics. (To make matters more confusing, one
of these mathematicians, Nikolaus Kauffmann, also called himself Mercator.)
An almost forgotten English mathematician, Thomas Harriot, whose remark-
able and versatile works remained unpublished during his lifetime, seems to
have been the first to prove the truth of angle of the stereographic projection
around 1600 and, consequently, derived that the loxodromes intersect the
mappings of all circles of latitude in a constant angle during a stereographic
projection onto the equator plane. Thus, they are represented as logarithmic
spirals around the pole. He also realised that the area of a spherical triangle
is proportional to the spherical excess, i.e., the surplus of the sum of the angle
over 180 degrees. In anticipation, we will mention here that it is natural to de-
sire a convenient route between two locations on Earth far distant from each
other and to navigate approximately orthodromic globally, but loxodromic
locally. This leads to the very difficult problem, only solved at the end of
the 19th century, of determining the image of a great circle arc between two
given points in a Mercator projection, which can then be approximated by
means of a broken line corresponding to the local loxodromic line segments
[Schreiber, O. 1908].

Trigonometry led us from astronomy to geodesy and cartography. However,
we must now return to astronomy once more: At the end of the era introduced
here is a mastermind, an intellectual giant, who stands with one leg in the
Renaissance and the other one in the following era, which was characterized
by the invention of the coordinate method and infinitesimal mathematics:
Johannes Kepler. In this section, we will look, for now, at his astronomically
motivated contributions to geometry. With his first work Mysterium cosmo-
graphicum (The cosmographic mystery, 1596), he put himself forward to the
most significant astronomer of the preceding generation, Tycho de Brahe, as
the sought-after genius who could make the observation data agree with a
bold theory. Kepler had tried to account for the distances between the plan-
ets known at the time and the sun by means of interlacing the five regular
solids so that the circumscribed sphere of a solid determines the orbit of a
planet and simultaneously is the inscribed sphere of the following solid (Illus.
5.2.9). Hence, according to Plato’s theory on atoms and in great proximity
to it on an intellectual level, this would be the first time that the ensemble of
all five platonic solids would have been ascribed a natural scientific meaning.
We need not dwell upon about how pointless this speculation is from today’s
perspective. However, only a few know that Kepler held onto this basic idea
his entire life, which is why we must stress this fact. Having crucially im-
proved the Copernican model of circular orbits around the sun with his three
laws, he published a second version of Mysterium cosmographicum in 1621,
in which the concentric spheres were substituted for spherical shells of finite
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Illus. 5.2.9 Kepler’s model of the world from Mysterium cosmographicum

[M. Caspar (Transl. and Ed.): Das Weltgeheimnis (The cosmographic mystery),
Augsburg 1923]

thickness between each two consecutive platonic solids in such a manner that
the interspace between the circumscribed sphere of the inner solid and the
inscribed sphere of the outer solid left just enough space for the elliptical
orbit of each planet (see Problem 5.5).

We also will mention how Kepler’s laws of planetary motion stimulated the
purely geometrical theory of conic sections. Out of the wealth of problems, we
will pick out the following one originating from Kepler’s second law: planet
P is supposed to move on an elliptical orbit around the sun, which stands
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Illus. 5.2.10 Kepler’s problem: Based on Kepler’s second law, the position of planet
P for a given ratio of the two shaded areas is to be determined

in a focus S. Since the radius vector PS covers equal areas in equal times,
we have to split the semi-ellipse A (aphelion = farthest point from sun)
P Ph (perihelion = closest point to sun) into two partial areas ASP and
SPhP , which stand to each other in a ratio given by the time ratio, in order
to determine the location of P at a certain point of time t (Illus. 5.2.10).
Thereby, for example, a quarter year after aphelion the areas of ASP and
SPaP must be equal and one day after aphelion the area of ASP must be
around 1

183 of the area of SPaP , see Problem 5.2.6.

Newton’s theory of gravity will clarify the physical reason for conic section
orbits and, thus, the phenomenon of parabola and hyperbola-shaped orbits
of celestial bodies. However, it was Kepler – as strange as that may be –
who, in a completely different context – namely in his first text on optics (Ad
Vitellionem paralipomena quibus astronomiae pars optica, 1694 ) - put into
words for the first time the idea that the three naively different shapes of
non-degenerated conic sections always merge as the second focus drifts into
the infinite and re-approaches from the other side in a fixed focus. Kepler was
motivated to take on this view due to the definition of a concave mirror as a
reflector, in which the beams originating from one point run together again in
a second point. As the title of the mentioned text states, Kepler viewed optics
above all as an auxiliary science of astronomy (as did Euclid!). The trigger
for Kepler’s first text on optics was the question left behind by Tycho Brahe
as to why the sun’s diameter appears too large and the moon’s diameter too
small on the monitor of a camera obscura when observing a solar eclipse.
Kepler generally clarified that, given a light source and a pinhole both finite
in size, the illuminated picture is the union of all pictures of the light source
with varying aperture point on one hand, and on the other hand, the union
of all pictures of the pinhole with varying illumination point (Illus. 5.2.11,
also cf. [Schreiber 1997]). Thus, by means of knowing the aperture diameter
and the distance between monitor and aperture, we can eliminate the impact
of the finite aperture diameter. From the view of elementary geometry, this
is trivial and far below the level of ancient geometry. The liberal application
of known geometry to manifold practical problems is new.

In a further text (Dioptrice, 1611), Kepler brought much to optics of the no-
tion and content of its modern equivalent by addressing the optical path in the
human eye and in different, systematically examined lens systems. However,
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Illus. 5.2.11 The Brahe problem: a) Composition of the light spot on the diffusing
screen by means of the form of the light source and the form of the pinhole. b) If
the light source is an isosceles triangle and the aperture a circle, then the picture
is formed as the union of all triangular pictures, when a fixed point (for example,
the upper peak of the triangle) runs through all points of the circular aperture
or respectively, c) as the union of all circular aperture pictures, when the illumi-
nated point runs through the triangular light source. We see here that a triangular

aperture together with a circular light source would yield the same picture.

he just missed the exact wording of Snell’s law of refraction despite intensive
efforts. The approximation he had found for not too large apex angles, basi-
cally based on an approximation of the sine function, was, of course, sufficient
for practical needs of that time. Simpson’s rule (also called Keplersche Fass-
regel), which we will look at in due course, and his studies of tessellation and
polyhedra contained in Harmonice mundi and the small, so-to-speak, popular
scientific text ‘On the Six-Cornered Snowflake’ (1611) shows to what degree
Kepler was a creative geometer beyond his astronomically-motivated works.
Kepler’s motive was his absolute conviction that the same geometrical har-
mony rules the world by both large and small measures. Hence, he attempted
to contrast speculative cosmology of his “mysterium” to a matching “micro-
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cosm”. Thereby, his systematic proceeding led him to find tessellations with
star-shaped tiles and “monsters” (Illus. 5.2.12), star polyhedra (Illus. 5.2.13),
of which it is often (wrongly) said that Kepler was the first to have known
of them (cf. Chap. 5.3) and the first Catalan solids (Archimedean duals) (see
Problem 5.2.4). Furthermore, he included the infinite families of prisms and
anti-prisms in the discussion of Archimedean semi-regular polyhedra.

Illus. 5.2.12 Kepler’s tessellation from Harmonice mundi. The attempt to pave the
ground with regular pentagons leads to a tessellation, which also features regular
decagons, pentagrams and non-convex polygons with sixteen edges, which Kepler
referred to as “monster” [From M. Caspar (Transl. and Publ.): Weltharmonik (Har-

mony of the world). Munich – Vienna 1939]
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However, he dismissed them again since, according to his opinion, they turn
“disc-shaped” and are no longer “sphere-shaped” given a sufficiently high
number of corners (The Harmony of the World, 1619, Book II, def. XIII.)
In ‘On the Six-Cornered Snowflake’, he discusses the question, amongst oth-
ers, as to what extent the highly symmetrical shapes realised in nature are
determined by laws of nature and/or maximal practicality.

Illus. 5.2.13 The two star polyhedra displayed in Kepler’s Harmonice mundi. The
small star dodecahedron SS already occurs in around 1425 (Illus. 5.3.22). Tt is
nowadays referred to as a great star dodecahedron [From M. Caspar (Transl. and

Publ.): Weltharmonik (Harmony of the world). Munich – Vienna 1939]
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5.3 Geometry in Renaissance art

There is a highly extensive specialised literature on this topic at the border
between history of science, culture and art often richly and attractively illus-
trated and reaching far into the 19th century. However, we can only present a
rough overview here (we recommend [Kemp 1990] and [Field 1997] as the lat-
est extensive representations; on mathematical perspective, also see the works
by K. Andersen listed in the bibliography and further works cited therein).
Nonetheless, some of the following aspects have not been pointed out any-
where before. The art historians are often lacking knowledge of and interest
in mathematically relevant details. As the true children of their time, the
earlier generations of historians of mathematics little appreciated anything
that did not fit into the picture of mathematics directed at proving theorems
or explicitly wording algorithms. Besides, the modern mathematician coined
by computer science lacked the time and opportunity for extensive historical
studies in this field. However, the type of mathematics addressed here is “un-
conscious mathematics” (see introduction concerning this notion) to a special
extent, meaning we must at least consult their artistic works coequally when
judging the Renaissance artists’ geometrical knowledge and skills from our
present perspective next to what they may have written.

Illus. 5.3.1 The School of Athens (fresco from Raffael 1510/11 in the ‘Stanza della
Segnatura’ of Vatican). Many scholars of Greek Antiquity are to be found in this
fresco. Plato and Aristotle are in the middle of the background, Aristotle presents
his ‘ethics’. Below left Pythargoras reads in a book. With Averroes also persons of

the Renaissance are appreciated for the transfer of knowledge from antiquity
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(This applies particularly to, for example, Paolo Uccello, Leonardo da Vinci
and Wenzel Jamnitzer.) The intuitive, unverbalised knowledge of shapes, sub-
ject matter and algorithms expressed in material objects is displayed nowhere
so clearly as in the arts. Finally, we must remark in advance that the frequent
mentioning of Albrecht Dürer in due course is founded objectively. He is by
far the “mathematical mastermind” amongst the artists of his time [Dürer c],
[Schreiber 1999-2008].

With the beginning of the Renaissance, artists began turning away from the
heavily symbolised representation of the Middle Ages and strove towards re-
alism. Hence, the re-awakening8 and development of central perspective was
inevitable. However, it would be completely wrong to limit the relations be-
tween the era’s geometry and art to this. Artists thought of themselves as
craftsmen back then and not just in the best sense of the word; in other words,
they placed practical know-how above programmatic demands, but also were
incredibly versatile, being, respectively, engineers, architects, mechanics and
natural scientists. Furthermore, within the scope of their possibilities, they
were interested in re-acquiring ancient knowledge. However, in the foreground
stood the hope of practical use, the will to apply and the necessary redesign
and advancing. These desires were even stronger than those of the univer-
sity scholars. Apart from perspective, the following aspects also played an
important role:

• Here and there further examples of applying the method of top and front
view to solve spatial, constructive problems, which was only conceived
generally much later

• Geometrical constructions, whereby practical approximation methods of-
ten replace exact solutions, also in such cases in which an exact solution
with compass and straightedge is possible; invention of mechanisms to
solve geometrical problems

• Discovery of new geometrical shapes (curves, areas, solids)

• Approaches to study plane tessellation and ornaments

• Aesthetic fascination originating from regular and semi-regular polyhedra

• Attempts to grasp harmony and beauty by means of number ratios or
other mathematically expressible laws

• Last but not least, first origins of a non-Latin geometrical terminology,
since the artists mainly relied on their relevant national language if they
were composing texts targeted at professional peers.

We can find all of this united primarily in Albrecht Dürer’s and also in
Leonardo da Vinci’s work. Nonetheless, there are great differences: Dürer

8 The pioneers of perspective in the Renaissance knew nothing about the very
modest input of Antiquity. Even Vitruv’s De architectura, which only mentions
a few things on perspective, was first published in print in Italy in 1521 and in
German only in 1548, cf. [Vitruv].
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finalised three theoretical texts, which – printed multiply and in several edi-
tions up until today – are easily available. Leonardo did not conclude any-
thing. His written legacy was scattered to the four winds after his death and
only gradually put back together again in the 20th century. As a result, imita-
tions and errors appeared apart from the surprising, new discoveries of some
of Leonardo’s writings. ([Marinoni/Zammatio/Brizio 1980] does not just of-
fer a good history of these manuscripts, but also a great introduction to their
character.) Dürer tended to proceed theoretically, deductively and system-
atically. Leonardo “jumped” back and forth, rarely separated mathematics
from nature and deduction from induction, and is often mistaken. His main
achievements lie within anticipating technical principles and inventions, and
in the subtle observation of nature.

5.3.1 Perspective

According to Giorgio Vasari’s credential, Filippo Brunelleschi, known as the
architect of the cathedral dome in Florence, is said to have invented a method
for the pointwise construction of a view of correct perspective by means of
the top and front view of a building ensemble. This method was later referred
to as “method of intersection”, since it is based on supplementing the top and
front view by the assumed visual point and the assumed image plane, and
then determining the intersection of the “viewing rays” by means of the image
plane (Illus. 5.3.3). It is, after the astronomers’ analemma method, the second

Illus. 5.3.2 Layout of an unpublished title page of Geometrica et Perspec-
tiva, [Lorenz Stoer, 1566, Inventar No. 21268Z, Staatliche Graphische Sammlung

München]



286 5 New impulses for geometry during the Renaissance

Illus. 5.3.3 Schematic representation of the intersection method

special case of the solution of a constructive spatial problem by means of the
multiplane method. The method is still suitable for deriving basic laws of
perspective in an illustratively and mathematically correct fashion. However,
it was also extremely tedious in its practical “pointwise” execution before the
computer was used to effect it. Brunelleschi himself did not leave anything
behind about his invention in writing and his priority is debated nowadays
as a result.

On one hand, all further efforts were directed at mechanising the laborious
construction process (Illus. 5.3.4 and 5.3.5). As a result, photography was
developed via many intermediate steps. On the other hand, attempts were
made to derive laws and principles by means of the intersection method,
which would make the construction of pictures of correct perspective easier.
This trend climaxed in the solution of the questions as to which parameters
of a picture can be chosen freely under which conditions and how we can
reconstruct the observer’s location from a correct picture. The latter was dis-
cussed rudimentarily by Simon Stevin in his textbook on perspective Van de
deursichtighe from 1605 and concluded by J.H. Lambert in the 18th century.
However, while Italian artists in favour of scholarliness, like Leone Batista
Alberti (Della pittura libri tre 1436), Antonio Averlino Filarete (Trattato
della architectura around 1460) and Piero della Francesca (De prospectiva
pingendi around 1475), composed the first texts on perspective, the tricks
known amongst painters were first treated as a professional secret. Several
German and Dutch artists travelled to Italy in the 15th and 16th centuries
in order to learn a little more about the “new perspective art” at the Italian
masters’ painting workshops.
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Illus. 5.3.4 Dürer’s proposals to make producing perspective pictures mechanically
easier: Above: The essential element here is the adjustable pole to fix the visual
point [Underweysung 1525]. Below: By connecting the pen with a nail hit into the
rearward wall via a tight thread, the visual point can be located at a distance from
the image plane that is greater than the drawer can reach [Underweysung 1538, 2nd

edition]
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Illus. 5.3.5 Further suggestions for producing perspective pictures: Above: By
replacing the diffusing screen by a square grid, which is transferred onto the drawing
surface, we can replace the uncomfortable drawing on the vertical image plane by
working at the drawing table [Underweysung 1538]. Below: In contrast, the edition
from 1525 shows a still very copious and tedious method for determining image
points by means of their “coordinates”, i.e., by two shiftable threads in the picture
frame, which are perpendicular to each other. Of course, this picture has the didactic
advantage for beginners of perspective that the visual line between object and
picture can be illustrated by means of material realisation [Underweysung 1525]
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The simplest aid, easily grasped by everyone, was the ‘pavimento’ at first,
meaning a floor patterned like a chess board with an edge parallel to the
lower front picture edge; by means of its correct construction, one could ap-
proximately correct design the minimisation against the picture background
for the entire picture (Illus. 5.3.6). The construction of a pavimento that was
not parallel to the front of the picture was also learned gradually, followed
by how to scale any inclined straight line projectively (Illus. 5.3.7). In this
context, notions, such as horizon, vanishing point, principal point, etc., were
established. However, they were tainted with many obscurities, which are
difficult to comprehend nowadays. For instance, the visual point (equals lo-
cation of the observer’s eye) was identified with the principal point (equals
foot of dropped perpendicular from the visual point onto the image plane).
It was characteristic that Leonardo juxtaposed three types of perspective co-
equally, since he thought as an observer of nature, not as a mathematician:
the scaling down of distant objects, the increasing blurriness of contours and
the increasing cloudiness of colours [Leonardo 1952, p. 767].

While Guidobaldo del Monte, Commandino’s student, was writing the first
notionally reasonably clear (but very copious and diffuse) textbook on per-
spective with strict proofs in Italy around 1600, the teaching of perspec-
tive spread to France (Jean Pélerin, called Viator, 1505, Jean Cousin, 1560,
Jacques Perret, 1601), Germany (Dürer, 1525, 1538, Hieronymus Rodler,
1531, and others), the Netherlands (Simon Stevin, 1605) and finally, Eng-
land (a translation from French, 1710, then Brook Taylor, 1715). Above all,
the Jesuits laid hands on perspective towards the end of the 16th century,
perfecting it, but using it as an instrument of their strategy to re-catholicise
people by means of overwhelming sensations.

Illus. 5.3.6 Pavimento method. Choosing horizon h parallel to the lower picture
edge and principal point H on h fixes the perpendicular, on which eye A must be
located. Choosing the distance between f and the first seam row g controls the eye
distance d = HA, as the profile view shows. At the same time, it fixes vanishing
point F of the diagonal direction and, thus, allows the construction of all further

seam rows
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Illus. 5.3.7 Construction of a projective scale according to Dürer

[Underweysung 1538, 2nd edition]

In addition, the relief and the anamorphosis, or “curious” perspective, were
developed. Concerning the first, the half-space behind a “front plane” is
mapped injectively onto the layer between this plane and a parallel vanish-
ing plane (Illus. 5.3.8). It is said that this method was first used by Lorenzo
Ghiberti around 1420 when sculpting the door of the baptistery of Florence
Cathedral (Illus. 5.3.10). However, this is hard to believe given the early date.
Later, it was mainly used in theatre perspective and the so-called coro finto
(feigned choir), in other words, if the construction site of a church was not
big enough for a large apse, it was simulated by a relief (also cf. Illus. 6.3.6).
Anamorphosis concerns an ordinary picture of correct perspective that is con-
structed for an extreme observer’s viewpoint. Only if we find this point can
we fully grasp the content. Otherwise the picture has a chaotic effect; at best,
it comes across as marbled. A special textbook on this curious perspective
from the French Franciscan J. F. Niceron was published in 1638.

Illus. 5.3.8 Principle of the relief perspective
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Illus. 5.3.9 Portrait of Luca Pacioli and his student Guidobaldo da Montefeltro
(Duke of Urbino; Guido Ubaldo I reigned Urbino from 1482 – 1508 and was a great
fan and supporter of art and science) by Jacopo de’ Barbari, 1495 [Museo Nazionale

di Capodimonte, Napoli]

Illus. 5.3.10 One of the ten fields of the Gates of Paradise by Lorenzo Ghiberti at
Florence Baptistery at Florence Cathedral. Given the early development (around
1420), a correct, relief-perspective construction is highly unlikely. However, the work
documents an early interest in naturalist or illusionist reliefs and, hence, the motive

to solve the problem mathematically [Photo: A. Schreiber]
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5.3.2 Constructions

The oldest German textbooks on constructive geometry still followed the tra-
dition of the “Bauhütten”. These are ‘Booklet concerning Pinnacle Correcti-
tude’ (1486, reprinted in 1923, 1965) and ‘Geometry [in] German’ (thought
of as anonymous for a long time, see [Steck 1948]) by Mathes Roriczer, ‘Book
on Pinnacles’ (around 1490, reprinted in 1881) by Hans Schmuttermayer, and
‘Instruction’ by Lorenz Lechler (1516).

Dürer’s first and most famous geometrical work is Underweysung (1525, a
second posthumous edition, extended with many details, from 1538; in the
following section, it will be referenced as ‘Instruction’, which is the corre-
sponding meaning of Underweysung). The full title in English reads A Manual
of Measurement of Lines, Areas, and Solids by means of Compass and Ruler
[Strauss 1977]. The work is based on the tradition of the afore-mentioned pre-
decessors. The second main work Four Books on Human Proportions (1528)
and the so-called Dresden Sketchbook [Strauss 1972] are also important. How-
ever, Dürer differed from his predecessors, because he had at least partial
direct knowledge of ancient sources (mostly by benefit of his educated friend
W. Pirckheimer) and had an overall incomparably higher mathematical level.
A copy of the Latin printed edition of ‘Elements’ by Zamberti (1505), which,
according to Dürer’s own record, he had bought for a ducat in Venice in
1507 and which featured his own marginal notes, is now located in the Her-
zog August Library in Wolfenbüttel. In 1523, he acquired a second copy of
‘Elements’ from Regiomontanus’s inheritance. Dürer started his ‘Instruction’
with (seemingly) abundant modesty as follows: “The most sagacious of men,
Euclid, has assembled the foundation of geometry. Those, who understand
him well, can dispense with what follows here, because it is written for the
young and for those who lack a devoted instructor...” [Strauss 1977]. How-
ever, the truth is that Dürer did not just introduce many details, sought in
vain in Euclid’s work (amongst them, ancient material from various sources,
as well as his own contributions), but also pinpointed new directions and
problem clusters of geometry.

Regarding the title of ‘Instruction’, we further want to remark that Euclid
has been constantly linked to the “art of measuring” since the beginning
of geometrical literature in German, in an all-too literal translation of the
word geometry. As a result, measuring meant something like constructing at
that time and is very different from the present meaning of the word. (Con-
cerning the content of ‘Instruction’, see the following overview in a modern
language). Of course, Dürer knew and also taught how to construct exactly
a regular pentagon with compass and straightedge. However, he additionally
recommended an approximation construction to his artistic peers already de-
scribed in ‘Geometry [in] German’, which is easily done with a fixed span
of the compass and a relatively low number of steps, and yet, the angles do
not deviate more than 1.2 degrees from the exact value. The second book of
‘Instruction’ also mentions good approximate constructions for the regular
7-, 9-, 11- and 13-gon.
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Illus. 5.3.11 Dürer’s original drawing for constructing a 5, 10 (exact) and 7-gon
(approximate) [Underweysung 1525]

Up until then, the 9-gon construction seemed only to have been passed on
orally in accordance with the craftsmen’s tradition [Steck 1948, p. 49]. (All
these constructions will be further looked at in the problem section.) Dürer’s
approximate angle trisection was especially appreciated by later mathemati-
cians. His approach was compared with several other approximation solutions
for the same problem in [Vogel, F. 1931]. It was shown that it never deviates
from the exact value by more than 20 arc seconds and, hence, beats all other
later solution suggestions. We must add that Dürer’s construction idea is
easy to iterate. Hence, it can be even more precise, although this can nei-
ther be practically realised nor is it necessary. In everything Dürer does, he
is always aware of the fundamental difference between exact (he calls them
“demonstrative”) and approximate (he calls them “mechanice”) solutions,
and, thereby, distinguishes himself from most other professional mathemati-
cians of his time.

Illus. 5.3.12 Albrecht Dürer’s self-portrait from 1500 [Old Pinakothek Munich]
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‘Instruction’ – Overview of Content

Book 1 Definitions of basic notions, special curves, special different spirals
and (spatial) screws; Dürer’s conchoid (“shell curve”) and related
curves; epicycloids; ellipses as affine transformation of the circle;
ellipse, parabola, hyperbola as conic sections (by using the top
and front view method); approach to functional thinking using
the example of the circle (reconstruction of ordinate by means
of given abscissa and vice versa); proportional line segment divi-
sion; reconstruction of the centre of a given circle and other basic
constructions.

Book 2 Classification of curves, angles and areas: special different forms
of circular arc triangles and quadrilaterals, exact (as possible)
and approximate construction of regular n-gons for (in this or-
der!) n = 6, 3, 7, 14, 4, 8, 16, 5, 10, 7 again, approx. 5, 15, 9, 11 and
13. Very precise approximate circular arc (or angle) trisections,
plane patterns made of circles; tessellations with isosceles trian-
gles, squares, rhombi and regular pentagons, regular hexa- and
heptagons, squares and octagons, ...transformations equal to area,
especially approximately squaring the circle, Pythagoras’s theo-
rem.

Book 3 Columns and pyramids; graphic representation of “tangent func-
tion” (How is font size to be graded in dependence on the height
of its fitting, if we want all lines to appear equally high?); con-
struction of sundials; construction of different alphabets according
to unified geometrical rules.

Book 4 The five regular polyhedra in top/front view and unfolding into
a net; polyhedral sphere (with “meridians” and “circles of lati-
tude”); unfolding into a net; 7 Archimedean polyhedra as well as
two further polyhedra, which are not semi-regular in the mod-
ern sense; problem of the cube multiplication of n times next to
the ancient tool to construct the two mean proportionals to two
given line segments; brief demonstrations of central perspective,
especially the construction of a view of a cube with shadow at
light incidence; suggestions for mechanical aids (cf. Illus. 5.3.4
and 5.3.5).

5.3.3 New forms

In the first book of ‘Instruction’, Dürer looks at a great range of partially
known and partially novel construction principles for plane and spatial curves.
Apart from different spirals and screw lines, there are also new ones like
the conchoid he called “shell curve” (Problem 6.1.1), or the epicycloid he
called “spider curve”. Thereby, the relation between pointwise construction
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Illus. 5.3.13 Dürer’s ellipse construction based on the circle [Underweysung 1525]

of a curve and mechanical production by means of mechanisms is exemplarily
demonstrated. We can also find Dürer’s much discussed “intelligent mistake”.
He was aware of ellipses as affine transformation of circles and knew how to
construct them (Illus. 5.3.13). However, he constructed the plane intersec-
tion of a straight circular cone pointwise as an “egg curve” by means of the
completely regular two-plane method, despite not knowing anything about
the identity of these two types of curves, which is not exactly self-evident.
(After all, they do not occur in ‘Elements’.9) When constructing the “egg
curve” pointwise, he made an error in reasoning: Since the diameter of a
cone is smaller at the top than at the bottom, the “egg curve” can only
have one line of symmetry and must really look like an egg (Illus. 5.3.14).
We could say here that Dürer was behind ancient mathematicians. However,
he was, in fact, ahead of them, since his approach in constructing the “egg
curve” can be generalised. He constructed the parabola and hyperbola in the
same manner. He demonstrated a principle method for constructively obtain-
ing curves as plane sections of solids by using the cone coincidentally, so to
speak. As a result, he became Monge’s remarkable predecessor. Apart from
the Archimedean spiral, he also constructed an “Ionic snail” by arranging
increasingly large circular arcs together whilst avoiding any breaks.

Analogously, he constructed a real egg-shaped closed curve by means of six
circular arcs, which connect to one another “almost” without breaks10 (Prob-
lem 5.3.7). After the coordinate method had been established, such curves
arranged piece by piece were banned from mathematics for a long time. Nowa-
days we would tend to call Dürer the father of “splining”.

9 J. Werner, who was close to Dürer at that time and surely owed him a lot of
knowledge, had composed a text on conic sections, which – however strange that
may be – only addresses parabolae and hyperbolae.
10 This small break reveals the deficit of Renaissance mathematicians passed on by
Antiquity and concerning the general tangent notion. It was mainly caused by the
fact that the notion of tangent regarding the conic sections dominating in Antiquity,
but only these, can only be grasped due to the existence of exactly one common
point of curve and tangent without limit process.
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Illus. 5.3.14 Dürer’s ellipse construction based on the cone [Underweysung 1525]

[Underweysung 1525, p. 34]
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5.3.4 Top and front view method

Piero della Francesca addresses the top and front view method with aston-
ishing virtuosity in his Prospettiva pingendi (around 1475), which remained
unpublished back then. (Some examples of this can be found in [Field 1997].)
Dürer made some “technical suggestions” regarding central perspective in
1525 (see Illus. 5.3.4 and 5.3.5) that, due to their frequent reproduction in
more recent books, contributed considerably to colouring general opinions of
Dürer’s mathematics and the contents of his ‘Instruction’. His posthumous
edition from 1538 mainly features a lot of supplements in this respect, but
basically none of his own contributions. In 1525, he was mainly focused on
the construction of perspective pictures by means of combining the method of
intersection and the top and front view method. Here, Dürer already proved
himself a master of the two-plane method in a manner that brings him quite
close to the level of Monge’s intellect, although this has been little recognised
and appreciated until now. This becomes particularly clear when looking at
the simple problem of constructing the shadow of a cube given a cube in top
and front view and a point-shaped light source (Illus. 5.3.15). In his Four
Books on Human Proportion from 1528, he applies the two and three-plane
method in a versatile manner, for instance, in order to construct an inclined
face by means of the front of a head and the turned top or profile view (Illus.
5.3.16). It also comes as a surprise to find the later standardised method of
representing a body first in a very simple position in the top and front view
and then to turn it gradually in increasingly general positions applied here
to the cube and several other simple polyhedra as well (Illus. 5.3.17): Dürer
intended to teach proportional representation of a human body in different
positions and, thus, approximated the body in a polyhedral manner for this
purpose. This seems to have affected the subsequent generations of artists
stylistically [Schreiber 1999, 2005a, 2005b, 2007].

5.3.5 Ornaments and tessellations

Can the Renaissance add something decorative regular ornaments to the
overwhelmingly Gothic tracery? Leonardo, Dürer and others discovered the
completely non-Gothic circular arc patterns (Illus. 5.3.18) and the multiply-
interlaced knots, which seemingly were adopted from Islamic art (Illus.
5.3.19). Both experimented with the possibilities in assembling regular tessel-
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Illus. 5.3.15 Shadow of the cube according to Dürer [Underweysung 1525]
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Illus. 5.3.16 Application of assigned orthogonal projections for constructing differ-
ent views of the same human head [Dürer 1528, ‘Four Books on Human Proportion’]
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Illus. 5.3.17 Gradual construction of top and front view of a cube in general
position [Dürer 1528]
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Illus. 5.3.18 Circular ornaments a) Leonardo da Vinci b) Dürer

lations based on a few types of pairwise congruent “tiles”11 (in broader sense).
Dürer put forth some possibilities that were addressed neither before nor after
him12. Kepler will have advanced this kind of geometry to a level that only the
end of the 20th century will be able to continue [Grünbaum/Shephard 1987].
This is an area in which many ideas had to be gathered before it could be
systematised and theories could be formed. Nonetheless, the Middle Ages and
the Renaissance were already in love with “floor geometry”, partially only
painted, partially realised in buildings (Illus. 5.3.20, Problem 5.3.8).

Illus. 5.3.19 Knots a) in Islamic art b) Leonardo da Vinci c) Dürer [a) from A.
Speltz: Das farbige Ornament aller historischen Stile (The coloured ornament of
all historic styles, Leipzig: A. Schumanns Publishing 1915; b) and c) from Steck

1948]

11 It is interesting that the modern English terms “tile” and “tiling” are hinted at
by Dürer in this context: he uses the word “tillen” [Dürer/Strauss a, p. 170, line 4].
12 Dürer did not notice that two of the tessellations he found made of squares and
octagons merge if turned by 45 degrees.
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Illus. 5.3.20 Floor at Baptistery of Pisa Cathedral, 12th century

[A. Speltz 1915 l.c.]

5.3.6 Polyhedra

Apart from the common knowledge of ‘Elements’, Pacioli’s Divina propor-
tione (1509) created a general awareness of the regular and semi-regular
polyhedra13. Leonardo illustrated this book in a manner that shows that he
knew much more about mathematical perspective than we can assume based
on his scattered written comments (Illus. 5.3.21). This book also indicates
that the notion of semi-regularity was different from our modern meaning.
It rather seems that the existence of a circumscribed sphere and a good ap-
proximation of this sphere were a crucial criterion for accepting something as
semi-regular. Thus, apart from the five regular solids, Dürer also addresses
only seven of the Archimedean solids, and in the same context some solids
with circumscribed sphere , which are not semi-regular from today’s modern
perspective (Problems 5.3.10-12). The work Perspectiva corporum regular-

13 Thereby, Pacioli followed up on a text on regular polyhedra by Piero della
Francesca, whose student he seems to have been, at least for a while.
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Illus. 5.3.21 Leonardo’s illustrations regarding Divina Proportione by L. Pacioli
[Pacioli: De Divina Proportione. German by C. Winterberg. Vienna 1889]

ium (1668) by goldsmith Wenzel Jamnitzer, apparently meant to serve as
a sample catalogue, offers an impressive amount of intuitively regular solids
(Illus. 5.3.24). The style era of Mannerism following the Renaissance tended
to choose complicated geometrical shapes for their own sake as the subject
of their attention [Eimer 1956]. These were the origins of proper geometrical
still lifes (Illus. 5.3.23). Paolo Uccello was a surprising early forerunner of
this style (around 1397–1475). According to Vasari, he was heavily criticised
by his painting peers. Uccello produced one of the great science-historical
miracles by displaying the regular star solid, nowadays knows as “small star
dodecahedron”, in the marble floor of San Marco in Venice in 1426 (Illus.
5.3.22). Polyhedral net unfolding was first displayed in Pacioli’s Divina pro-
portione and in more detail in Dürer’s ‘Instruction’.

In 2006, whilst creating a new digital catalogue of the treasures of the depot of
the famous Albertina in Vienna, a set of 40 wooden printing blocks was found
representing the nets of all regular and semi-regular polyhedra (also including
examples of the prisms and anti-prisms, but no other sphere-like solids!).
This set also clarifies wordlessly how to obtain the semi-regular polyhedra in
different manners by cutting off vertices and/or edges of regular polyhedra.
Since some of the blocks exhibit the signing of Hieronymus Andreae (Dürer’s
collaborator and engraver, who died in 1556), there is only a small interval of
time between 1538 (when Andreae edited and printed the second expanded
posthumous edition of the ‘Instruction’) and 1556 in which these woodcuts
could have been made. Unfortunately, there has been no serious hint or idea
until now about the creator of this wordless theory of the full set of semi-
regular polyhedra, which is even more modern than Kepler’s, since it also
accepts prisms and anti-prisms. We can only be reasonably certain that it
was never printed [Schreiber 2008]. The next instance in which Archimedean
polyhedra are dealt with from a remarkable mathematical perspective is not
to be found until Simon Stevin’s Problemata geometrica (1583).

The art-historical literature of the 19th and 20th centuries is full of attempts
to reconstruct mathematical design principles of the Renaissance artworks
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Illus. 5.3.22 Floor mosaic at the entrance area of San Marco, Venice, based on
a draft by Paolo Uccello, around 1425. It clearly shows the star solid, nowadays

called “small star dodecahedron” [Photo: A. Schreiber]

(e.g., see [Dehio 1895], [Fichtner 1984]), including frequent attempts to read
ideas arbitrarily into it (Illus. 5.3.25). Pictures and architectural views are
covered with complicated constructions afterwards.

However, proofs that the artists did indeed plan their work in this man-
ner are rarely conclusive and the artists have seldom given us such clues
themselves (also see [Conrad 1990, p. 82f.] for a knowledgeable critique of
“the triangulating and squaring madness” in the architectural-historical lit-
erature). Nonetheless, there is a whole series of geometrically constructed
picture drafts by Dürer (Illus. 5.3.26). The literature indicates that there was
a competition to find proportions of the human body that could be mathe-
matically grasped. This goes back until Vitruvius and was followed up on by
Giotto, Leonardo da Vinci, Piero della Francesca, Alberti and others. The
latter stated that he obtained his number ratios by means of multiply mea-
suring different people. Dürer’s ‘Four Books on Human Proportion’ (1528)
also go beyond the traditional concern. It is the first time that geometrical
transformations are used.

Dürer developed different heads based on a normal face by means of linear
or non-linear net distortion (Illus. 5.3.28). He showed implicitly how many
different faces we can produce based on just a few basic elements and/or by
variation of a detail. May he also be the father of the method for produc-
ing facial composites at the end? We must mention that the construction of
aesthetically beautiful and stylistically unified alphabets (stated in a modern
fashion: typography) was used in the Renaissance and, hence, is theoretically
close to the canon of proportion of the human body. Due to multiple repro-
ductions, it is relatively known that Dürer constructed different alphabets
with compass and straightedge (Illus. 5.3.27). However, he had forerunners
in this case too, including Pacioli and Leonardo. Graphical design of letters
and numbers has lost nothing of its fascination for artists up to the present
time.
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Illus. 5.3.23 Wenzel Jamnitzer: Perspectiva corporum regularium [Nuremberg
1568, plate 23] Picture plates by Jost Ammann were engraved in wood based on
drafts drawn by the author. The great dodecahedron is to be found on the left,

middle row. Hence, another star polyhedron was known before Kepler.
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Illus. 5.3.24 A geometrical still life of Mannerism

[Lorenz Stoer 1567]

5.3.7 Terminology

We will confine this section to the origins of a German terminology and,
hence, find ourselves back at Dürer’s ‘Instruction’. It already starts with the
German title “richtscheyt” (straightedge). However, the latinised “Lineal”
(ruler) has won this “competition”. Dürer’s “brenlini” (burn/fire line) for
parabola and “gabellini” (fork line) for hyperbola have not become accepted.
(They were, in fact, merely suggestions for readers who did not know Latin
and Greek, since Dürer also states terms taken from Greek.) A circle is a “zir-
ckel lini” (compass line), a circular area is a “runde ebene” (round plane),
a square a “gefierte ebene” (four plane) or “fierung” (four thing), (“vier”
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Illus. 5.3.25 An “analysis” by Max Steck (Dürer, Crucifixion of Christ, 1521) The
relation of the covering grid to the picture is not convincing here

[Steck 1948, plate XXXV]
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Illus. 5.3.26 A geometrical auxiliary construction. Based on this study, Dürer
himself has left his geometrical auxiliary construction standing

[Steck 1948, plate X]

Illus. 5.3.27 Some of Pacioli’s and Dürer’s examples of constructing letters. The
first letter on the top left (S) is by Pacioli, the other ones are by Dürer

[Underweysung 1525]
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Illus. 5.3.28 Dürer: 1528: Different methods of non-linear, but mathematically
describable distortion of human heads [Dürer 1528]
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(Dürer writes “fier”) in German means “four” and Dürer used this word to
make verbs (fieren, past part. gefiert) and abstract nouns (fierung)), a diag-
onal an “ortsstrich” (location line), a horizontal line a “zwerchlini” (athwart
line), a parallel a “barlini” (bar line), More essential than understanding
these clumsy individual words is that we nowadays understand Dürer’s text
and especially his descriptions of construction. It is crucial that the nature
of the addressing technique developed by Euclid has been well preserved by
Dürer.

Dürer’s work had already been translated into Latin in 1532 and, thus, printed
in Paris in several editions. Soon, several imitators surfaced in Germany, but
they stood no chance of competing at Dürer’s level: amongst others, Hierony-
mus Rodler (Eyn schön nütlitz buchlin und underweisung (A nice, useful
booklet and instruction), Simmern 1531 (full of mistakes, see Illus. 5.3.29)),
Heinrich Lautensack (Des Circkels unnd Richtscheydts...underweisung (In-
struction of compass and straightedge), Frankfurt Main 1564), Hans Lencker
(Perspectiva literaria, Nuremberg 1567, 1571) and Paul Pfinzing (Ein schön
kurtzer Extract der Geometriae und Perspectivae (A nicely brief extract of
geometry and perspective), Nuremberg 1599, 1616.

We will conclude this section by looking at Dürer’s copperplate engraving
“MELENCOLIA I” from 1514 (Illus. 5.3.30). According to general consensus,
the angel lost in deep thoughts represents a symbolic self-portrait of Dürer:
Melancholy – caused by slow and partially fruitless pondering about difficult
mathematical problems. (For detailed discussions and interpretations see,
amongst others, [Panofsky/Saxl 1923], [Steck 1948, p. 141], [Schröder 1980,
p.64ff.], [Schuster 1991], [Schreiber 1999]. The displayed polyhedron will be
further examined in Problems 5.3.10 and 5.3.11.)
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Illus. 5.3.29 Spiral staircase by H. Rodler (1531)

What is wrong with this spiral staircase? [H. Rodler: Eyn schön nützlich büchlin
und underweysung der kunst des messens mit dem Zirckel/Richtscheyt oder Linial
(A nice, useful booklet and instruction on the art of measuring with com-

pass/straightedge or ruler), Simmern 1531]
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Illus. 5.3.30 A. Dürer: Melencolia I, copperplate engraving (1514)
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5.4 Geometrical roots of infinitesimal mathematics

Modern mathematics, which originated in the 17th century, stands on four
pillars: notion of function, coordinate method, differential and integral cal-
culus, of which at least the latter three originally belonged to geometry. The
historical roots of these four core areas are to be found at different times in the
past. It is clear that determining measured values (lengths, areas, volumes)
for geometrical objects forms part of the oldest practical problems in math-
ematics. However, we can solve them by means of elementary geometry only
for “linear objects”: line segments, linearly bound plane areas and polyhedra.
The first genuinely mathematical attempts to cross that boundary go, as we
have seen, back to Democritus (not passed on in writing), Book XII of ‘Ele-
ments’ and Archimedes. In the Renaissance, in which everything was focussed
on praxis, these parts of ancient mathematics are rehearsed with special in-
terest and soon advanced. The edition of Archimedes’ texts on spirals, circle
measurements, squaring the parabola, conchoids and spheroids and floating
bodies represented a crucial key for this (first, a Latin print, Basel, 1544, very
effective, followed by Greek-Latin editions from Commandino, 1558, 1566).
The attempts to replace the strict but tedious Archimedean proving methods
for area and volume formulae with heuristic and generalisable considerations
are characteristic for the Renaissance. The beginning of Kepler’s text ‘New
Stereometry of Wine Barrels’ (1615, herein shortened to ‘Wine Barrels’) is a
typical example of this. In this text, he first compiled the outcomes known
from Antiquity, but gave them new justifications: “A circumference has as
many parts as points, namely infinitely many; each part can be seen as the ba-
sis of an isosceles triangle, the vertex of which lies in the centre of the circle.”
He concluded that the circular area is composed of the area of infinitely many
triangles, the common height of which is the radius. The bases add up to the
circumference and, hence, the area equals half the product of circumference
and radius. Analogously, Kepler extracts from the pyramid volume formula
that spherical volume equals a third of the product of radius and surface by
imagining a sphere decomposed into infinitely many pyramids, the bases of
which form the surface and with a common apex that is the centre of the
sphere.

Whereas everything mentioned so far is thoroughly understandable given the
historical context, it is strange that there was a theological reason for the
emerging interest in problems of determining centres of gravity next to the
needs of shipbuilding, which, for instance, encouraged Stevin to conduct his
investigations. The medieval theologian and logician Jean Buridan argued
that every geological process (including the fact that broadleaf trees shed
all their leaves in autumn) shifts the centre of gravity of Earth, which then
has to try hard over and over again to reach the centre of the universe. He
continued to argue that this would lead to a constant tottering movement
of Earth around this assumed centre. Having said that, the dogma of the
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Illus. 5.4.1 Bonaventura Cavalieri and the title of his book 1635

immobility of Earth was also accepted, causing a theological argument in
which, amongst others, Bishop Nicole Oresme, who was so important to the
history of mathematics, participated. Furthermore, for example, the Jesuit
mathematician Paul Guldin still referred back to this argument in the 17th

century when engaging with gravity problems. He listed more metaphysical
than mathematical arguments concerning the Guldinus theorem, named after
him, in his main work in four volumes Centrobaryca (Vienna 1635-41).

Only Bonaventura Cavalieri attempted to prove the theorem based on in-
finitesimal methods (i.e., decomposition into “indivisibles”) in 1635. We can
also see Kepler as an essential forerunner, since he, in the first part of ‘Wine
Barrels’, produced a large variety of solids of revolution based on circles and
other conic section by means of simply shifting the axis of revolution away
from the axis of symmetry. Theorems, such as Proposition XVIII, follow:

“The volume of every ring-shaped solid with circular or elliptical cross section
equals a cylinder, the height of which equals the circumference specified by
the revolution from the centre of the figure, and the base equals the cross
section.” To justify this, he says: “If we cut the ring into infinitely many
and very thin discs by means of cuts from the centre, then the thickness of
the disc will decrease and become a lot narrower towards centre A of the
ring, whereas this thickness will increase symmetrically to it on the outside.
Afterwards both parts together will be twice as thick as in the centre of the
discs. This consideration would not apply if the discs with their parts inside
and beyond the centre [of the revolving profile] were not symmetrical to each
other.”

Coordinate methods were used indirectly in the Antiquity whenever curves
are described by their symptoms. The coordinate method is more explicitly
worded in astronomy and geography. All in all, the Renaissance could not top



5.4 Geometrical roots of infinitesimal mathematics 315

Illus. 5.4.2 Several solids of revolution with shifted axis of revolution: torus, apple,
lemon

these past achievements. However, G. B. Benedetti (little appreciated until
now) can be seen as a forerunner of Descartes, since he was the first to compile
the realisation of all four species and root extracting systematically by means
of geometrical construction in his Speculationum from 1585. Based on this, he
traced back the solution of any construction problem to the algebraic analysis
of the wanted parts and their – so to speak – algorithmic construction based
on given quantities.

The early development of differential calculus was heavily hindered at first by
the fact that it is exceptionally possible to define tangents of non-degenerate
conic sections elementarily (which had been the focus of theorems on tan-
gents since Antiquity) because they are just those lines that have exactly
one point in common with the conic section. This was sufficient for the re-
quirements of geometrical optics, in which reflecting or refracting surfaces
(which are created in the practically important cases by revolution of conic
sections) are substituted locally by their tangential plane. The essential im-
pulse to deal generally with the tangent problem was provided by questions
of local extreme values of functions, which were hardly ever asked before
the Renaissance, and if so, only in a hidden manner15. However, the crucial
thought-provoking impulse, on which Fermat will follow up, came from the
Renaissance and from Kepler.

The functional approach to thinking and the intention of finding maxima
broke spontaneously through in Kepler’s already mentioned ‘Wine Barrels’,

15 Occasionally, we can find a hint in the literature pointing at isoperimetric ob-
servations of ancient geometers, particularly in one passage in Proclus’s commen-
tary on Euclid. The relevant passage in Proclus’s work states, in badly worded
form [Proclus/Morrow 1992, p.314]: “The square is demonstrably greater than all
figures of same perimeter.” We can only deduct that quadrilaterals alone are per-
mitted here as rival figures by means of the context. Otherwise, this claim would
naturally be wrong.
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Illus. 5.4.3 Monument of Brahe and Kepler, Prague [Photo: P. Schreiber]

which is basically dedicated to problems of calculating volumes of solids of
revolution and already explicitly refers to Archimedes in the title (all quota-
tions are translated into English based on the German translation of ‘New
Stereometry of Wine Barrels’ in Ostwald’s classics): Part One, Proposition
XXIX: “If the lemon, the plums, the parabolic spindle and the double cone
(creative, but precisely defined notions introduced by Kepler for his solids of
revolution), which are all obtuse, have the same intersecting circle as well as
the same circle around the centre of the solid, then the lemon is the largest
solid...” (The emphases here and in the following are by Schreiber). Part
Two, Proposition IV: “The cube is the largest amongst all parallelepipeda or
columns, which are inscribed in one and the same sphere and stand on two
opposite square bases.” Corollary 2 for Proposition V: “This shows that a
certain practical, geometrical meaning is inherent to the rule, according to
which the Austrian cooper makes barrels... i.e., that it agrees with the rule
of Proposition V and has the largest possible volume regardless of whether
it deviates a little from completely fulfilling the rule. Other designs, which
stretch across this side and beyond this side until the points are very close
to G, hardly change the volume, since the volume is the largest possible for
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AGC: the [volume] adjacent on both sides to a greatest value only shows un-
noticeable decrease at the beginning.” There is not just functional thinking
at work here, but for the first time the idea that under certain conditions,
nowadays well defined, an extreme value can only occur if the changes of the
functional value caused by arbitrarily small changes of the argument will be
minimal. Of course, no proof is given, but based on geometrical intuition,
Kepler worded the concept that will later be referred to as Fermat’s theorem
in differential calculus. Proposition XXVII re-highlights his new thought:
“If the two halves of an Austrian barrel are not completely similar (i.e., equal),
but one barrel base is a little smaller and narrower than the other one, then
the difference of the capacity of both halves is not noticeable, given that only
the visor length is named However, this difference is always unnoticeable in
those points in which a change from the smaller to the larger and here again
to the smaller occurs according to a certain circle law.”

Further essential roots of initial functional thinking, which also belong to the
Renaissance, concern the mathematical wording of laws of motion (Galilei,
Kepler). However, they are not naturally geometrical, since time always oc-
curs as an independent variable.

Illus. 5.4.4 Detail of the title page of the book: Adam Risen, Rechenbuch auff
Linien und Ziphren in allerley Handthierung, Geschäfften und Kauffmanschafft,
1574 (Calculation book on lines [i.e. abacus] and ciphers [i.e. calculation on paper]

in all sorts of handlings, negotiations and merchants)
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Essential contents of geometry in the Renaissance

1377–1446 Filippo Brunelleschi invents “method of intersection” for
perspective Pictures(according to Vasari)

1404–1472 Leone Battista Alberti: books on architecture and paint-
ing(with perspective)

Around
1420–1492

Piero della Francesca:De prospectiva pingendi(On the per-
spective for painting)

1436–1476 Regiomontanus: establishes trigonometry in Europe as
systematic theory, translation of classic mathematical and
astronomical works

Around
1445–1517

Luca Pacioli:Divina proportione(golden ratio; regular and
semi-regular polyhedra)

Approx. 1450– Mathes Roriczer: ‘Booklet on Pinnacle Correcti-
tude’(1486)

Approx. 1500 ‘Geometry [in] German’(1487), descriptions of decorations
in Gothic architecture

1471–1528 Albrecht Dürer: Instruction(1525,1538),‘Four Books on
Human Proportion’(1528) deal extensively with practical
geometry, particularly perspective, multiplane method,
curves, tesselations, regular polyhedra

1473–1543 Nicolaus Copernicus: De revolutionibus orbium coelestium
libri VI (1543). heliocentric world system

1502–1578 Pedro Nunes: curves of constant course (loxodromes) in
seafaring

1508 – 1555 Gemma Frisius: method of triangulation
1508 – 1585 Wenzel Jamnitzer: Perspectiva corporum regularium

(1568)
1512 – 1594 Gerard Mercator: first world map as “Mercator projec-

tion”
1514 – 1576 Georg Rheticus: definitions of trigonometric functions in

right-angled triangles
1546 – 1601 Tycho Brahe: astronomical measurements (foundation of

Kepler’s work)
1561 – 1613 Bartholomaeus Pitiscus: Trigonometriae sive dimen-

sionae... (1595), ten books on trigonometry
1564 – 1642 Galileo Galilei: establishes modern kinematics
1571 – 1630 Johannes Kepler: ‘New Stereometry for Wine Barrels’

(1615) (root of infinitesimal mathematics), ‘On the Six-
cornered Snowflake’ (1611) and Harmonice Mundi (1619)
contain numerous approaches to discrete and combinatory
geometry, laws of planetary motion
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5.5 Problems to 5

Illus. 5.5.1 Figure to Problem 5.2.1

Problem 5.2.1: Polar triangles on the sphere

A,B,C are corners of a triangle on a spherical surface. CP refers to the
pole for the great circle through A,B, which lies on the same semi-sphere
as C regarding this great circle. Points AP and BP are defined analogously.
APBPCP is the polar triangle for ABC (Illus. 5.5.1). Consider:

a) That the polar triangle of the polar triangle of ABC is again ABC.

b) How the sides of the polar triangle measured in radians depend on the
angles of the fundamental triangle and the angles of the polar triangle on
the sides of the fundamental triangle.

c) How we can now determine the sides of the polar triangle based on the
three given angles of a spherical triangle and the sides of the fundamental
triangle based on its angles. (This corresponds to a derivation of the law of
cosines for angles of spherical trigonometry by means of the law of cosines
for sides.)

Problem 5.2.2: Vieta’s construction of the inscribed quadrilateral

In the appendix of Vieta’s Mesolabum from 1596, we encounter the following
tempting construction problem: In order for a convex quadrilateral with the
sides a, b, c, d to exist, it seems to be necessary and also illustratively sufficient
that each of these sides is shorter than the sum of the three remaining. Vieta
showed that it is possible under these weak conditions to always give the
quadrilateral a form that features a circumscribed circle, and that angle α ,
e.g., close to corner C and necessary to construct this form based on given
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a, b, c, d, can be constructed with compass and straightedge. We are dealing
with a trivial special case, if two opposite sides are equal. (Then, the wanted
figure is a symmetrical trapezoid.) The figure (Illus. 5.5.2) used by Vieta
gives us a hint for the general case. Regarding this figure, D′ and A′ are so
determined that SD′ = SD and SA′ = SA. Furthermore, BG is parallel to
AA′ and A′E is parallel to AB. Since a quadrilateral inscribed in a circle is
characterised by the fact that the sum of each two opposite interior angles
is 180 degrees ( this can be justified by means of the theorem of peripheral
angles), α reoccurs as an external angle at A. To know α, it now suffices to
know all three sides of the triangle A′EC, whereby A′F = AB = a,BC =
b, CD = c andDA = D′A′ = BE = d are given and EF (why?)= DA′. Thus,
we need x = EF and y = GC. (Solution: x + y = c − a and x : d = y : b.
Hence, we must divide the line segment c − a in the ratio d : b.)Following
this problem, the question naturally arises, if there is also always a convex
inscribed n−gon with given sides for n > 4 for n line segments a1, ..., an that
fulfil the necessary inequations, and if we can construct it based on these sides
with compass and straightedge. The answer to the first question is yes, the
answer to the second one is no. The proof can be found in [Schreiber 1993].
Also see Problem 7.3.4.

Illus. 5.5.2 Figure to Problem 5.2.2
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Problem 5.2.3: Resection

Solve the problem of resection analytically instead of graphically, i.e., how
do the Cartesian coordinates of the new point depend on the coordinates of
the three given points? How do we express in the analytical formula that the
new point must not be too close to the “dangerous circle”?

Problem 5.2.4: Archimedean and Catalan (Archimedean duals) polyhedra
and polygons

A polyhedron is Archimedean semi-regular, if its areas are regular (but not
necessarily pairwise congruent) polygons and its corners are pairwise con-
gruent (consisting of the cyclic ordered amount of the areas meeting in one
corner).

a) Prove that each Archimedean polyhedron has a circumscribed sphere, i.e.,
a centre, from which all corners have the same distance.

b) The Catalan polyhedron (Archimedean dual) DP , which is reciprocal to
an Archimedean polyhedron P has the circumscribed sphere of P as the
inscribed sphere. Its areas in the corners of P are tangential to this sphere.
Thus, it has its corners exactly on the axes from the centre of the sphere
through the centres of the areas of P , and the edges of both polyhedra are
injectively mapped. The equality of all areas of DP is due to the equality
of all corners of the Archimedean polyhedron P and the possible inequality
of the corners of DP results from the possible inequality of the areas of
P .
Prove that a polyhedron is absolutely regular, if it is Archimedean and
Catalan, i.e., features both a circumscribed and an inscribed sphere.

c) In his Harmonice mundi, Kepler initiated a discussion on a two-dimensional
analogon of the notion of Archimedean polyhedron. This is a convex poly-
gon, the “corner figures” of which, made of one corner each and both adja-
cent edges (possibly of different length), are pairwise congruent. Continue
this train of thought: for each of the infinitely many possible “corner fig-
ures”, there is an Archimedean polygon that always has a circumscribed
circle, in other words, is a cyclic polygon. This circumscribed circle is the
inscribed circle of the respective reciprocal Catalan polygon (Archimedean
dual). What characterises the latter ones?

Problem 5.2.5: Kepler’s Mysterium cosmographicum

Recalculate Kepler’s planet model, i.e., which radii feature the nested in-
scribed and circumscribed spheres if we equate the orbital radius of Earth
with 1? Compare the obtained values with the ratio of the mean orbital
radii stated by modern astronomical encyclopaedia. Would it be possible
to include the planets discovered since then, Uranus, Pluto and Neptune,
in Kepler’s model by allowing suitable Archimedean and Catalan polyhedra
(Archimedean duals)? (Archimedean polyhedra only have a circumscribed
sphere, but no inscribed sphere; vice versa for Archimedean duals (Catalan
solids).)
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Problem 5.2.6: Kepler’s Problem

Z refers to the centre of circle k with a diameter of 2a = APa (A = aphelion
= farthest point from sun, Pa = perihelion = closest point to sun) of the
orbit of planet P (Illus. 5.5.3, also cf. Illus. 5.2.8). The sun is located at focus
S of the ellipse. Then, the orbital ellipse of P is made of this circle k by
affine compression. Thereby, the planet location P is the image of a “pseudo
planet” Q, which moves on circle k in such a manner that PQ is always
perpendicular to the great axis APh of the orbital ellipse.

a) State the reason for why the ratio, to be determined, of area ASP to the
total area of the semi-ellipse equals the ratio of area ASQ to the area
of the semi-circle. As a result, Kepler’s initial problem is reduced to the
elementary problem of determining the position of the pseudo planet Q
belonging to P by means of the 2nd of Kepler’s law in dependence of time.

b) If we determine the position of Q(and, hence, of P ) by means of angle
β = AZQ, referred to as an eccentric anomaly, the arc segment ASQ
is calculated as a union of sector AZQ and triangle SZQ as 1

2 (βa
2 +

aesinβ).(Height SN of basis ZQ = a of triangle SZQ can be expressed
by β and eccentricity e = SZ of the orbital ellipse.)
State reason for this.

c) By expressing e by the numerical eccentricity ε = e
a

of the ellipse, we
finally obtain Kepler’s equation, if the ratio c of the area ASP to the
semi-ellipse is given:

β + ε · sinβ = c · π .

With this equation we can determine β. Recalculate this and consider
that this yields again a uniform movement in zero approximation for very
small eccentricities, such as approximately circular orbits around the sun.

Illus. 5.5.3 Figure to Problem 5.2.6
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Problem 5.3.1: Dürer’s construction of the regular 5, 7 and 10− gon

Check that the penta- and decagon edge are exact solutions, in respect to
Dürer’s construction of the penta-, hepta- and decagon edge for a given circle,

as stated in the text (Illus. 5.3.11). (We obtain
√

1
2
(5−√

5) for the pentagon

edge and 1
2 (
√
5 − 1) for the decagon edge from both the given construction

and the added figure at radius 1 of the circumscribed circle.)

Calculate the error made concerning the heptagon edge, for which the height
of the isosceles triangle formed by the side of the regular hexagon is used.

Problem 5.3.2: Approximate construction of the regular pentagon with
fixed compass span

The construction already described in Roriczer’s ‘Geometry [in] German’ is
as follows: AB is the given edge a. The circles (all of radius a) around A and
B intersect each other in C andD. The circle aroundD intersects the straight
line CD in E, the circle around A in F and the circle around B in G. Then,
the straight line EF meets the circle around B in the C-half-plane regarding
AB in H and, symmetrically to this, the straight line through EG meets
the circle around A in K. H and K are two further corners of the wanted
pentagon after A, B. Hence, it is clear that the last corner L lies on the
straight line DE and on the circle around H or K, respectively. According to
the construction, all five sides feature the length a of the used compass radius.

Calculate the size of the angles at A, K and L (Due to a reason of sym-
metry, the angle at B equals the one at A and the one at H equals the one
at K.) and verify that the angles at A, B are approx. 108.37 degrees and
the ones at H,K are approx. 107.04 degrees. Hence the angle at L is approx.
109.18 degrees.

Illus. 5.5.4 Figure to Problem 5.3.2
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Problem 5.3.3: Dürer’s construction of the nonagon

Dürer’s peculiar approximate construction of a regular nonagon (originating
from craftsmen praxis according to [Steck 1948, p. 49]) was described by him
as follows (according to [Strauss 1977]). Of course, Dürer’s original wording,
clumsy from a modern point of view, is hard to translate. But it is remark-
able that Dürer included letters that are used as marked between points to
distinguish them from other letters, for example, .a..

“You can construct a nine-sided figure based on a triangle. Draw a large circle
with center .a.. Then without changing the opening of the compass, draw
three “fish-bladders” whose upper end on the periphery you will mark .b..
Mark the others .c. and .d.. Within the upper “fish-bladder” draw a vertical
line ba and divide this line with two points 1 and 2 into three equal parts.
Point 2 should be closest to .a.. Then draw a horizontal line through point
2 at right angles to the vertical line .ba. Where the horizontal line crosses
the “fishbladder”, mark points .e. and .f.. Then place one leg of a compass
on center .a. and the other on point .e. and draw a circle through point .f..
Line .ef. will then represent one of nine sides which will compose a nonagon
inside the smaller circle, as shown in the diagram below.”(cf. Illus. 5.5.5):
The claim is made that angle .eaf. is approximately 40 degrees. Determine
its exact value and judge its accuracy.

Illus. 5.5.5 Figure to Problem 5.3.3
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Problem 5.3.4: Dürer’s approximate angle trisection

Illus. 5.5.6 Figure to Problem 5.3.4

The construction (which is actually a trisection of a respective circular arc
and, thus, can be improved in regards to its graphical accuracy by choosing
a preferably long radius r) is as follows for an (w.l.o.g acute) angle: Divide
the connecting line segment of the extremities A,B of the circular arc into
three equal parts and transfer both outer line segments by means of using the
compass as in Illus. 5.5.6 and the middle line segment by means of lifting it
perpendicularly onto the circular arc. The chords AC,EF and BD are now
equal (and consequently, so are their arcs). We now need to divide the rests
CE and FD. It would be possible to apply the same construction to this
and iterate it as often as we like. Dürer was satisfied with returning these
residual arcs to the basic chord AB by drawing circles around A and/or B
with the compass. There, he divided them linearly into three and added the
respective parts of two thirds to the outer partial arcs, but the two median
thirds to the median arcs by means of repeatedly drawing circles around A
and/or B. But keep in mind: Since E does not lie on a straight extension of
AC, C ′E′ is a little shorter than CE and analogously on the other side! As
calculated by F. Vogel in 1931, the mistake of the theoretical accuracy made
here is less than 20 seconds of arc. No drawing could practically achieve this
level of precision. Attempt to understand this calculus of errors.

Problem 5.3.5: Dürer’s angle trisection according to Vahlen

In [Vahlen 1911], which also addresses Dürer’s approximation, the described
construction deviates a little, as follows: Divide chord AB into three in C′, D′

and construct E,F as above. Take the arithmetic mean of the three chords
AE,EF, FB to be the chord of the third of the arc. Consider that this de-
scription yields the same result as Dürer’s!

Problem 5.3.6: Dürer’s approximate squaring of the circle

Dürer’s approximate squaring of the circle is based on taking 5
2 of the circle

radius as the diagonal of the square of approximate equality of area. In which
approximate value of π does that result?
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Problem 5.3.7: Dürer’s “egg curve”

“Now I want to teach you how to draw a line, which is similar to a well-
formed egg.” Dürer’s “splintered” egg curve (Illus. 5.5.7) is composed of the
circular arcs k(1) from point 3 until point 7 around point 5, k(2) from point
7 until point d around point a (symmetrically to this, k(3)), k(4) from d until
m around f (symmetrically to this, k(5)) and k(6) between m and n around
the centre i of the line segment between 10 and h: “Position the compass
with one foot in point i and the other one in the circle ch so that you reach
it in the shortest way possible.”

a) Justify why the curves in the points 3, 7, m and n are smooth, but have
a break in c and d (not visible with the naked eye)..

b) Calculate the angle between the one-sided tangents in c!

c) How would we have to adopt the construction of circle centre f and/or g
to avoid all breaks?

Illus. 5.5.7 Figure to Problem 5.3.7
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Problem 5.3.8: Symmetrical representations of floor patterns

a) Which symmetrical mappings do the floor pattern shown in Illus. 5.3.20
allow for (Pisa, end of 12th century)? (In [Rosenthal/Schreiber 2004], the
number of ornament groups is counted for the simplest case of woven
ornaments, i.e., strip ornaments.)

b) Which additional mappings are made possible if we ignore the undercross-
ing of the ribbons and only see those as linear patterns?

c) Try to continue the pattern beyond the displayed detail.

Problem 5.3.9: Star polyhedra

a) What are the differences between most of Jamnitzer’s drawn “regular”,
but not convex polyhedra (cf. Illus. 5.3.23) and his great dodecahedron
(left middle) and Uccello’s and Poinsot’s polyhedra (Illus. 5.3.2; Illus.
7.9.2), which nowadays are accepted as real star polyhedra?

b) Why is Kepler’s octahedral star (Illus. 5.5.8) not accepted as a star poly-
hedron from the modern perspective and/or how would we have to alter
the definition of the notion of star polyhedra in order to be able to include
Kepler’s?

c) Which further star polyhedra would then be acceptable (cf. Problem 2.3.2
for the last question)?

Illus. 5.5.8 Figure to Problem 5.3.9
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Problem 5.3.10: Dürer’s obtuse rhombohedron

The polyhedral solid in Dürer’s “Melencolia I” (Illus. 5.3.30) is created if we
stretch a cube in the direction of two diametral opposite corners to form a
parallelepiped (rhombohedron) bound by rhombi and then cut off the two
tops perpendicularly to this axis. Due to the distortion, the cube loses its
property of having a circumscribed sphere. Cutting off the tops in an appro-
priate manner restores this property (why is this possible?). It is probable
that this idea is the base of Dürer’s much-discussed solid [Schreiber 1999].

a) Consider how this construction (i.e., cutting off the tops of the rhombo-
hedron to restore the circumscribed sphere of the obtuse solid) can be
realised by means of the two-plane method, i.e., a means that Dürer knew
all too well.

b) The sphere in the foreground of the picture and the tools close by suggest
that the angel is just thinking about how we can reverse this idea and cut
out the relevant solid if the sphere is given. Try to solve this problem, too.

Problem 5.3.11: Dürer’s obtuse rhombohedron again

A consequence of the intersection method is that it shows us how we can
reconstruct the observer’s standpoint, i.e., principal point, and eye distance,
based on a picture of correct perspective, if the picture contains sufficient
information, such as the case of Dürer’s “Melencolia I”, in which the horizon
and the pictures of original right-angled objects must be given. We can then
reconstruct the top and front views of the displayed polyhedra based on the
observer’s standpoint. Further instructions, including the result, can be taken
from, for example, [Schröder 1980].

We want to invite the reader to execute this problem independently as far as
possible and to check the hypothesis made in Problem 5.3.10 by means of the
obtained top and front view of the polyhedron. Does Dürer’s solid really have
a circumscribed sphere? Furthermore, it is possible to extract the real shape
of the side areas from the top and front view, to make the solid yourself, and
to confirm that the smaller angle of the rhombi is 72 degree in Dürer’s ver-
sion, although this angle can actually be chosen arbitrarily in regard to the
construction described above. Thus, a clear relation to the regular pentagon
is established (and to the golden ratio, if we like).
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Problem 5.3.12: A wrong net unfolding

Apart from the five regular and seven of the Archimedean polyhedra, Dürer
also unfolds two non-Archimedean solids (in the modern sense) into a net
in ‘Instruction.’ Both solids also feature a circumscribed sphere. He made a
mistake when drawing the unfolding of one of these solids, which is created
by cutting off the cube faces to form a dodecagon, whereby three isosceles
and one equilateral triangle are created in each corner.

a) Why has this polyhedron a circumsphere?

b) The mistake of the net can be found by merely looking at Dürer’s net
drawing (Illus.5.5.9).What is obviously wrong?

c) Construct the solid in the oblique view or by means of the two-plane
method and then calculate the correct ratio of both occurring edge lengths!

Problem 5.4.1: Guldin’s theorem

Prove Guldin’s theorems by means of elementary geometry:

a) The volume of a solid of revolution is the product of a revolving area and
the path of its gravity centre.

b) The area of a surface created by the revolution of a plane curve around
an axis in its plane is the product of the length of the revolving profile
curve and the path of its gravity centre.

in case a) for the volume of rings with triangular or rectangular profile, in
case b) for the lateral surface of a conic frustum. (The general case results
from this in accordance with the understanding of the 17th century for both
rules by means of decomposing the revolving area or curve in any amount of
small parts.)

Problem 5.4.2: Kepler’s rules for the connection between surface and vol-
ume

The relation between area and circumference of the circle and/or between
volume and surface of the sphere, which, according to Kepler, are heuristic,
can also be obtained via another heuristic approach: Imagine the circle com-
posed of concentric circular rings of finite thickness d. If d is small, the volume
is approximately the product of d and the circumference with the respective
mean radius. Based on the summation of these part areas, this sum becomes
the integral for a going towards zero.

Analogously, carry out this observation for the spherical surface and spherical
volume.
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Illus. 5.5.9 Figure to Problem 5.3.12
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The known world is enriched in many directions by numerous geodesic, geo-
graphical expeditions as well as the invention and improvement of telescopes and
microscopes. The architecture of Baroque (∼1600–1730), Rococo (∼1720–1780)
and Classicism (∼1750–1830) is characterized by new shapes, ornaments and
figures and/or a return to classic ancient architecture. Geometry made essential
contributions to all of this.

1633 Galilei is forced by the Inquisition to withdraw his commitment to
Copernicus’s world system

1643–1715 Louis XIV rules in France
1644 B. Pascal builds the first preserved mechanical computing machine

(and receives a royal privilege to produce them in 1649)
1646 A. Kircher describes the “Laterna Magica” as the first (root of later

film projection)
1648 Peace of Westphalia ends 30 Years’ War
1649–1658 Commonwealth and Protectorate under Oliver Cromwell
1660 Restoration under Charles II (Stuart)
1662 (Official) founding of the Royal Society in London
1666 French Academy of Sciences is founded in Paris
1666 After a plague epidemic and the Great Fire of London: Rebuilding

of St. Paul’s Cathedral under supervision of Christopher Wren
1666–84 Canel du Midi built in France (connection Atlantic – Mediterranean)
1672 Leibniz invents staggered roll as element of mechanical computing

machine
1687 Newton’s Philosophiae naturalis principia mathematica
1709 E. W. v. Tschirnhaus and J. F. Böttger invent European white hard

porcelain in Saxony
1725 Russian Academy of Sciences opens in St. Petersburg
1729–96 Catherine II (the Great) rules in Russia
1733–43 Great Russian North expedition under supervision of Vitus Bering
1735–37 Arc measurement expeditions of French Academy to South America

and Lapland prove flattening of Earth
1740–86 Friedrich II (the Great) rules in Prussia
1741 Prussian Academy of Sciences re-founded in Berlin, Euler called to

Berlin
1756–1763 Seven Years’ War
1768–1779 James Cook’s expeditions
1769 James Watt receives patent for steam engine
1775–1783 War of Independence in the USA
1783 England accepts independence of the USA
1786 Mechanical power loom by E. Cartwright
1787 Debut performance of opera ‘Don Giovanni’ by Mozart in Prague
1789 Civil revolution starts in Paris

1794 École Polytechnique founded in Paris
1798 Casanova dies at Castle of Dux in Bohemia
1798 Battle of the Nile: Nelson defeats the French fleet of Napoleon
1799 Napoleon I consul of France, de facto autocrat
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6.0 Preliminary remarks

From about 1630 until approximately 1800 (when mathematics yet again
took a profound turn due to reasons we will discuss later on), those scholars
who dealt with the development of mathematics in a manner that – from to-
day’s perspective – was significant for its historical development, were small
in number and easy to identify. Generally speaking, they were in contact
with one another. Of course, this contact was established by other means
than are usual nowadays, in other words, not through conferences, journals
and email, but through spreading their books and individually printed ar-
ticles, and taking part in scientific talks at different, central locations that
sometimes formed the basis for future academies. Later on, they stayed in
contact by means of printed working titles and conference reports of those
academies (which basically were the first scientific journals ever), and by writ-
ing letters and visiting each other. Friar Marin Mersenne, who lived in Paris,
played a special role. From approximately 1623 until his death in 1648, he
introduced almost all the important scholars of Europe to each other through
correspondence and organising personal gatherings. Apart from a very few
exceptions, all those scholars thought of themselves as philosophers of na-
ture, meaning they engaged in mathematics in closest relation to philosophy,
astronomy, geodesy, cartography, mechanics, optics, acoustics and other ori-
gins of physics and techniques that were growing step by step. At this time,
mathematics was as embedded into the latest applied sciences as trigonom-
etry was into astronomy until the beginning of the Renaissance. Within its
own realm, mathematics had not yet specialised into subareas. Apart from
the fact that some scholars, such as Newton and Hobbes, considered geom-
etry to apply only within the scope of ancient geometry, and others, such
as Descartes und Huygens, viewed the new infinitesimal methods very scep-

Illus. 6.0.2 Thomas Hobbes, Marin Mersenne, Christiaan Huygens
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tically, hardly any mathematician of that time would have understood our
attempt to separate the new coordinate-orientated geometry from the in-
finitesimal mathematics rapidly developing at the time. Indeed, as already
indicated, the basic problems of analysis are of geometric nature with hardly
any exceptions. Geometry concerns the definition of the terms curve, area,
solid, surface, tangent, tangential plane, evolute and evolvent, the calculation
of curvature, arc length, surface area and volume. Of concern is determining
the shape of certain curves, areas or solids due to geometric or physical re-
quirements. For instance, looking at the problems of loxodromes, catenaries
or brachistochrones (curves on which a mass point under the influence of
gravity moves from point A to the below-positioned point B in the shortest
time possible), equilibrium figures of revolving masses, etc., the first ques-
tions dealing with maximums or minimums of functions, were of geometric
nature, as we have seen in Kepler’s work.

6.1 The coordinate method – geometry and algebra

A coordinate system (in its most general sense) always accomplishes two
things: First, it facilitates the algebraic treatment of geometric problems by
allowing us to translate theorems and problems on geometric objects into
equivalent theorems and problems via their coordinate formation and the –
so to speak – calculative simulation of geometric processes. (Thereby, within
the foundations of mathematics since the beginning of research, the possibil-
ity exists for demonstrating reliable models based on algebra and arithmetics
for axiomatically characterised geometric structures.) Second, a coordinate
system facilitates the illustration and optical representation of algebraic facts.
This way, it not only crucially supports intuition, but also delivers insights
into certain developmental stages of mathematics, which otherwise would
constitute unreachable algebraic relations. Most importantly, the connection
between possibly very abstract functional relations ( such as between eco-
nomic, scientific or technical quantities) and the (two or three dimensional)
graphic picture of the relevant function, which nowadays is taken for granted,
is the “fruit” of this “inverse application” of the coordinate method. From
today’s point of view, this interlocking of geometric and algebraic methods
is the premise and core for mathematics to be capable and effective. Conse-
quently, describing the historic development that led to this interlocking will
form a central chapter of the history of geometry.

The easiest and shortest answer to the question of the origin of the coordi-
nate methodis well known. It is said to stem from René Descartes and Pierre
de Fermat, who almost simultaneously and essentially independently of each
other agreed in 1637 (the year in which Descartes’ La Géométrie was pub-
lished) that this exact year of 1637 should consequently be the natural border
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between the long prehistory of modern mathematics and its actual beginning.
We will have to discuss three problems in this chapter:

1. A short summary of the prehistory, i.e., the base level upon which
Descartes and Fermat built their accomplishments.

2. A preferably careful and, as we will see, difficult analysis of their contri-
butions from today’s perspective, as indicated above.

3. An overview (admittedly rather brief due to size) of the essential further
steps and contributions that led to the full formation of the coordinate
method through the end of the 18th century.

Additionally, it is worth noting that the coordinate method has also been
a necessary premise for the development of infinitesimal mathematics. Both
approaches were pushed forward in close interaction, mostly by the same
people, during the 17th and 18th centuries. Nonetheless, we attempt here to
treat the development of analysis, as far as it must be touched on in regards
to the history of geometry, separately. See also [Sonar 2011].

6.1.1 Prehistory

The relatively few special curves that were looked at as part of ancient
mathematics, were either defined as plane sections of a simple spatial fig-
ure (like conic sections), or by means of a point-by-point construction (like
the quadratrix) or an imagined mechanic procedure (like conchoids). In prin-
ciple, based on this view a purely axiomatic-synthetic treatment for each
of these curves would likewise be possible, just as Euclid delivered for the
geometry of straight lines and circles. However, the ancient Greeks already
used to transform each original curve definition into an equivalent constraint,
which expresses that a point P belongs to such a curve by means of an “alge-
braic” relation between certain variables (dependent on point P ) and certain
fixed (dependent on the assigning pieces of the curve) quantities (mostly
line segments, but sometimes also areas, angles,... ), i.e., the “symptom” of
the relevant curve. It is clear that the ancient Greeks’ so-called geometrical
algebra mainly served the purpose of working with such symptoms and solv-
ing problems or verifying theorems based on this premise. Furthermore, the
sparse examples provided by the ancient world showed as a matter of expe-
riential fact that a curve in a plane is normally characterised by a symptom
with exactly two variables, whereas a symptom of a surface in space requires
three variables. However, the ancient geometric algebra was restricted, since
multiplication of quantities – stated in a modern fashion – was thought of as
a geometrically realised Cartesian product, which is why:

a) Equations were burdened with the requirement for homogeneity: All sum-
mands must be of the same dimension. (Thus, if a, b, c, x are line segments,
then ax2 + bx + c = 0 is meaningless, since ax2 is a volume, bx an area
and c a line segment.)
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b) Dimensions could be spatial at most. Thus, ax 2y =bxy2 is meaningless,
even though it suffices the requirement for homogeneity. Premise b) was
merely eased by the possibility of phrasing algebraic premises by means
of proportions. Hence, it was possible to express the equation ab = cd,
which is possibly meaningless due to dimensional reasons, with maximal
volume quantities a, b, c, d (whereby a, d belong to the same dimension
and b, c also belong to the same dimension) by means of the meaningful
proportion a : d = c : b. Additional premises are the result of:

c) Quantities being generally positive.
d) The lack of algebraic symbolism. Every algebraic equation and every al-

gebraic conversion had to be justified by means of heavy geometrical rea-
soning.

Given all of these, we must stress that Pythagoras’s theorem in Euclid’s
‘Elements’ basically serves as an introduction and a “door opener” for the
subsequent geometrical algebra of Book II (and also because of its position
at the end of Book I). It is the first time in history that a theorem expresses
a purely geometrical relation between three points, i.e., to form a right angle
by means of an entirely algebraic relation between participating quantities,
namely the pairwise distances between the points.

In regards to the status quo at the evening before the “invention of ana-
lytical geometry”, we must add that the functional approach to geometric
thinking may already have been thought of in Euclid’s ‘Porisms’, although
his followers struggled to understand it; likewise, it was touched on by the
theory of form latitudes by Richard Swineshead and Nicole Oresme in the
13th century and others, yet only on a purely qualitative level. In contrast,
the thriving occidental natural sciences and techniques offered plenty of in-
spiration and examples for functional correlations. Hereby, Kepler, Galilei,
and his students and followers Torricelli, Cavalieri and Viviani played their
parts excellently. The practice of measuring geometric quantities by means of
numbers is, of course, much older than Greek geometry and had been revived
as part of the medieval Islamic geometry. Yet, it does not seem to have had a
noteworthy influence on the development of the occidental coordinate geome-
try. However, the Cartesian principle regarding the graphic representation of
functional correlations – especially concerning a time axis – had already based
on the European musical notation developed around 1000, and the compar-
ison with extra-European or contemporary musical notation shows that this
type of representation is by no means mandatory [Schreiber 2003]. However,
the advances of algebra during the European Renaissance have had a great
influence. Fermat’s essay on the coordinate method called Ad locos planos
et solidos isagoge (written before 1636 and circulating in copies from 1636
onwards, but only printed posthumously in 1679) already hints at its depen-
dence on Vieta’s In artem analyticem isagoge (Introduction to the analytic
art, i.e., ‘letter algebra’) due to the use of the Greek word “isagoge” (intro-
duction) in the otherwise Latin text. Following 1637, Descartes repeatedly
underlined the fact that he had neither heard of nor read Vieta before writing
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Illus. 6.1.1 René Descartes (portrait after Frans Hals, 1648); Pierre de Fermat
(unknown painter, 17th century)

down his Géométrie. Indeed, the notation introduced by him has its own take.
However, it is evident that Descartes was influenced by his first mathemat-
ics tutor Isaac Beeckman, the German cossist Johannes Faulhaber, and his
studies of Clavius. Finally, we must accentuate that Fermat and Descartes,
like all mathematicians of this time, were completely familiar with the Greek
approach of treating geometry by utilising algebra. At the beginning of the
17th century, the time had come to redesign this concept entirely by using the
advances that had already been achieved in algebra. Thus, we can already
find parts of the ideas attributed to Fermat and Descartes some time earlier
in the works of G. B. Benedetti (in Diversarum speculationum in 1585) and
M. Ghetaldi (in De resolutione et de compositione mathematica in 1630).

6.1.2 Fermat’s and Descartes’ accomplishments

First of all, we will take a closer look at Fermat. His contribution is more mod-
est, yet fundamental and easier to pin down. According to his first innovation,
both variable quantities (modern x, y) always refer to the coordinates of the
variable point in regards to a mostly right-angled or at least an affine system
of coordinates. In his short essay, the title of which has already been cited
above, “loci plani” refer to plane locations, meaning symptoms or equations
in which area quantities are equated. Thus, these are equations of straight
lines, e.g., ax + by = cd or special conic sections, such as x2 + y2 = r2 or
ay = x2. “Loci solidi” are not spatial amounts of points, but plane curves
described by an equation between volumes, such as ax 2+ by2 = cde. Fur-
thermore, Fermat’s classification offers linear loci (all other curves), which
he, however, did not deal with any further. He used Vieta’s algebraic nota-
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tion with capital vowels for variables and capital consonants for fixed quanti-
ties (parameter) and systematically examined all algebraic possibilities that
resulted from this approach. Consequently, he remains obliged to adhere to
ancient limitations of (a) homogeneity and (b) a maximum of three algebraic
dimensions. The essence of his work lies within the fact that he started with
equations. Thereby, he clarified the following:

1. Every meaningful algebraic equation between x and y describes (in re-
gards to “Cartesian” or other coordinates) a quantity of points in a plane,
which, assuming this equation, can be examined with respect to its geo-
metric characteristics and independently of a possible mechanic or point-
by-point creation. As a result, the set of all curves to be investigated is
at once immensely expanded compared to the approach of the ancient
world. Instead of single examinations, general examinations over entire,
algebraically-described classes of curves could be conducted.

2. It is possible to classify curves based on algebra. The first result (of which
Fermat was very proud, whereas the contents under (1.) had to be read
between the lines) is as follows: the class of curves, geometrically defined
as conic sections, is identical to the algebraically defined class of curves of
second degree at most. Given that it is possible to obtain conic sections
as pictures of a circle by means of central projections, it springs to mind
to reduce the endless abundance of algebraic curves of a certain degree
to one or finitely many “normal forms” via geometric transformation.
(Admittedly, Fermat himself did not consider this great program; it was
executed by Newton, Euler and others step by step later on.)

Neither of Fermat’s results, illustrated above, can be deduced from Descartes’
entire works. In general, his contributions are much more scattered and dif-
ficult to analyse, although much more effective in retrospect. His main effort
probably lies within freeing algebra and, hence, geometry of the ancient limi-
tations a) and b), as stated above, by means of a single ingenious, yet simple
thought. By choosing a fixed line segment e as a unit, it is possible to turn
every rectangle ab into a rectangle ce of the same area and to use the line
segment c as a representation of the quantity ab. Since we can repeat this
trick as often as we want to, it is possible to transform the product of any
amount of linear quantities down to a linear quantity. Basically, all equations
turn into homogeneous equations between linear quantities. There is another,
weaker interpretation, whereby previously inhomogeneous equations between
linear quantities, such as ax2 + bx+ c = d, are interpreted as a homogeneous
equation ax2 + bex + ce2 = de2 by means of an imagined topping up with
relevant amounts of factors e. (This can be compared to the role of the si-
nus totus as part of the trigonometry of the Renaissance.) However, it is not
possible to reconstruct if or to what degree Descartes was aware that the
choice of a linear unit e simultaneously creates an isomorphism between line
segments and their measures. This is the basis of today’s admission of the co-
ordinate method, at least in its standard case. The dualism between, on one
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hand, “concrete” quantities, meaning quantities that are rational at most or
can be described by root-terms or other construction rules, and, on the other
hand, the continuously variable quantities, which can be imagined as straight
lengths and, thus, depend on geometric intuition, was dragged along until the
concept of a real number was defined set-theoretically-arithmetically by Eu-
ropean mathematics (Dedekind and Cantor, 1872, Bachmann, 1892, Hilbert,
1900). Basically, this dualism was revived by the constructivist stream of
mathematics, which was not especially evoked but aided by theoretical infor-
matics. Descartes seems to have been stuck in the mind of the ancient world,
which assumed that algebra dealt with geometrically represented quantities
(according to him, always straight lengths) that could be described numeri-
cally or by construction only “as an exception”.

We can already find Descartes’ main contribution described in his first (and
only posthumously printed work) Regulae ad directionem ingenii (Rules
of guiding the mind). It may be even more clearly worded there than in
Géométrie, in which his basic idea is pushed into the shadows due to an
abundance of other concerns that were often only sketched or illustrated
by examples. As known, the essay La Géométrie is one of three appendixes
meant to serve as an elaborate application of his philosophical main work
Discours de la méthode. Hereby, we only want to state that the principles
demonstrated in Discours de la méthode, unfortunately, bore little influence
on the clarity and systematics of Géométrie, even though they represented
the foundation for the philosophy of rationalism and had a great impact on
the general history of the mind. (However, Descartes has this in common with
other distinguished mathematic philosophers, such as Leibniz or Lambert.)
In Descartes’ work, we find even less of the Cartesian coordinates (as referred
to by Leibniz for the first time) than in Fermat’s. Here, he defends the an-
cient view of describing the locus of a curve point by means of two suitably
chosen straight lines, each time depending on the problem at hand. However,
in 1637, he turned towards fixed quantities represented by a, b, c, d,... and
variable quantities using the last letters of the alphabet, preferably x, y, z.
Before that, he referred to parameters with capitals and to variables with
lower case letters. He also hinted at a classification of curves, but followed
another principle: For him, the simplest curves were those ones that can be
generated by a single movement, like straight lines or circles. In 1619, he had
already addressed a letter to Beeckman in which he talked about “generalised
circles”, with which it was possible to generate more such curves. Curves of
class n + 1 are created by admitting already drawn curves of “class n” as
means of construction. (This suggests an idea that will be looked at again
by Jakob Steiner in 1832 in his Systematische Entwickelung der Abhängigkeit
geometrischer Gestalten von einander (Systematic development of the depen-
dence of geometrical forms to each other)). He intended to produce curves
of second class as loci of intersections of straight lines, which each move
uniformly on curves of first class. Thereby, he probably used model represen-
tation of producing the quadratrix already known in Antiquity, whereby a
straight line moves uniformly parallel to an x-axis in direction of a perpendic-
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Illus. 6.1.2 Title page of Discours de la méthode [Descartes 1637]
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ular y-axis and the other one turns uniformly around the coordinate origin,
i.e., along a circle. (Dürer’s “shell curve” would be another good example,
although probably not known by Descartes.) We can justify the problem of
such a classification attempt by the fact that it is possible to produce several
such motions synchronized with each other by means of a single motion and
suitable coupling mechanisms. Descartes distinguished algebraic curves that
can be solved geometrically by means of the stated approach from those that
cannot be treated “rationally”. However, he was mistaken in believing (and
underestimated by far the difficulties of solving equations algebraically) that
each polynomial equation could be solved with his methods. He showed us
how he proceeded when graphically solving the equation x3 + ax = b in case
of a, b >0. In this case, we can find positive p, q so that a = p2, b = p2q.
Then, the solutions of x3 + p2x − p2q = 0 are the solutions different to 0
of the equation x4 + p2x2 = p2qx, which is obtained when calculating the
common solutions of

(x− q/2)
2
+ y2 = (q/2)

2
(6.1.1)

and
x2 = py. (6.1.2)

The graphic representation of the situation in the first quadrant of an x-y-
axes system shows that the circle (6.1.1) and the parabola (6.1.2) in the area
of positive x-values have exactly one intersection, which “proves” a purely
algebraic theorem by geometrical interpretation.

The notion of Cartesian ovals can also be found amongst the many inspira-
tions that Descartes states in his La Géométrie. These are, generalising the
ellipses, curves, which are defined by n “foci” P1... Pn and the condition
that P is part of the curve if the sum of the intervals PP i is equal to a given
constant. These curves were meant to play an important role just a little later
in Fermat’s problem of finding that point P in a plane for which the sum of
the intervals PP i is minimal.

A problem, the special cases of which go back to Pappus, is dealt with in
great detail in La Géométrie, which perhaps is not appropriate for modern
geometry: n straight lines are given in the plane and a fixed angle α(g) for
each of these straight lines g. Determine the locus of those points P for which,
given line segments a(g) drawn from P to g for each of these straight lines so
that they cut g with angle α(g), it holds that the product of some of them
stands in a given ratio to the product of the remaining ones.

Descartes could show with his method that the wanted points form a curve
of nthdegree, if the product of n intervals equals the product of m ≤ nm ≤ n
intervals, particularly a conic section for n = m = 2. He mistakenly concluded
the unlimited ability and effectiveness of his methods from this. Whereas
Descartes geometrically solved an algebraic problem in the case of the general
cubic equation, Pappus’s geometrical problem is solved here algebraically.
However, nowhere does Descartes hint at this fundamental difference, despite
his high methodological standards.



342

6.1.3 History of impact and reception

“Discours” was first published anonymously in 1637 in the Netherlands, where
Descartes lived for quite some time. Mathematicians in contact with him very
quickly recognised the trend-setting meaning of the appendix on geometry.
Frans van Schooten published a Latin translation of this appendix in 1649
and, thus, made this text accessible to Italian, English, Dutch and German
scholars for the first time. A second edition, which was extended and supple-
mented by him and some of his students (especially Johan de Witt and Jan
Hudde) to form two volumes, was first published in 1659/61, then again in
1683 and 1695. This second edition already contains the three-dimensional
coordinate method. Meanwhile, almost all significant mathematicians of that
time had turned towards this topic: Leibniz was the first to use the words
“abscissa” and “ordinate” (in a letter to Oldenburg on 08/27/1676), and “co-
ordinates” (in Acta eruditorum in 1692). The brothers Jacob (I) and Johann
(I) Bernoulli were the first to speak of “Cartesian coordinates”. John Wallis
dealt with conic sections purely analytically as algebraic curves in the plane
in 1655 and, thereby, was also first to use negative coordinates. Above all,
we must highlight Newton, who began engaging with coordinate geometry
around 1665. The significance of this for the development of the coordinate
method is often underestimated nowadays and/or pushed aside by his contri-
butions to analysis and physics. We will try to systematise his contribution
without considering the chronological order (which is already complex, since
many aspects of his work were only published long after they were written):

1. Newton used plane and spatial Cartesian coordinates exactly in the now
common manner; in other words, he accepted negative coordinates as
fully equal.

2. Newton also used polar coordinates and taught how to convert both into
each other. Hence, the notion of coordinate began to turn towards the
now self-evident general meaning.

3. Since Newton always thought like a physicist, there is only one real in-
dependent variable for him, namely time t. According to him, a curve is
the course of a point through time and, hence, is described primarily by
the functions

x = x(t), y = y(t) (6.1.3)

and, if spatially, by z = z (t). The equation of a plane curve is created by
either taking t as proportional to x or – generally – eliminating parameter
t in both equations (6.1.3).

Apart from the fact that the description of a curve by means of a parameter
representation applies to a more general scope than the one by means of one
equation, especially in three-dimensional or higher cases, we will, for good
and all, include the fundamental remark here that the turn of coordinate
geometry triggered by Fermat and Descartes towards algebraic manifolds
(stated in a modern fashion) naturally caused a certain alienation of geom-
etry from reality amongst many positive and fruitful aspects. The curves,
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areas, ... . occurring in reality only generally satisfy an algebraic relation be-
tween coordinates partially and approximately at the most. Furthermore, all
order relations are lost when transferring a parameter representation (with
which we can describe an originally mechanical creation of a curve very well
and which can accommodate reality by means of restricting the parameter
interval) to an equation of the curve so that an algebraic equation mostly
describes a point set, which is too large in regards to the original problem.
Moreover, it can reveal surprising additional parts compared to the origi-
nal representation. (Also see the discussion on Dürer’s conchoid in Problem
6.1.1.)

4. In 1667, Newton referred back to Fermat’s problem of classification and
listed 72 types of curves of third order in the plane. (He ignored six
additional cases, although he was aware of them. These cases were only
rediscovered in the 18th century.) This classification was only published
in 1704 as an appendix to Newton’s Optics . This publication was his first
one on a purely mathematical topic. However, it was already reprinted in
1710 in the second volume of John Harris’s published Lexicon Technicum.

5. In contrast to Descartes and Fermat, Newton values the graphic repre-
sentation of the subject matter. His classification of curves of third order
is basically a picture atlas of possible forms, which we will look at in
greater detail.

Newton based his work on the most general form of the polynomial of third
degree in x and y and shows, first of all, that we can arrive at one of the four
forms by means of suitably transforming the coordinate system (!):

I. xy2 + ey = ax3 + bx2 + cx+ d,
II. xy = ax3 + bx2 + cx+ d,
III. y2 = ax3 + bx2 + cx+ d,
IV. y = ax3 + bx2 + cx+ d.

These four forms lead to the 72 listed types, if we continue transforming the
coordinates. In case III, depending on whether the right-hand side has three
different real zeros, a double and a single, a triple or just a single real zero,
Newton arrived at the five forms shown in Illus. 6.1.3, since, in the case of
the double zero a1 and single zero a2 , we must distinguish whether a1 < a2
or a2 < a1.

Strangely, Newton did not want to acknowledge all these aspects as geometri-
cal. It may have been his conservative upbringing and educational background
that made him shy away from understanding a greater number of aspects as
geometrical, in contrast to the Greeks. However, the impulses he triggered
caused further turbulent developments. An algebraic geometry began to form
in Scotland at the hands of James Stirling and Colin MacLaurin, who were
both active followers of Newton.
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Illus. 6.1.3 The five forms of cubic equations of type III [Newton: The Math.
Works, Vol. II, p. 158]. Top left: three different real zeros. Middle left: the two
greater zeros have become one (in figure : T ). Bottom left: the two smaller zeros
are pulled together into one point (not shown in the picture). Top right: the case of
triple real zeros. Equation III becomes y2 = a(x−A)3 and the curve of the so-called
Neilian semi-cubical parabola with the apex in A. Bottom right: there is only one

real zero (t)
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Illus. 6.1.4 Isaac Newton honoured on one-pound-note

Stirling published the first book on plane algebraic curves in 1717. Therein,

he found out that a curve of nth degree is generally given by n(n+3)
2

points by
counting the coefficients of the relevant equation. MacLaurin’s book followed
up on this in 1720. For example, he mentioned that a curve of nth and a curve
of mth order generally have m ·n points in common. Then, he began to notice
that his rule delivers 9 intersections for two different curves of third order.
In contrast, Stirling’s rule says that a curve of third order is uniquely deter-
mined by 9 points. Euler (Introductio, 1748, see below) and Gabriel Cramer
(Introduction á l’analyse des lignes courbes algébriques, 1750), amongst oth-
ers, deal with this apparent contradiction, which was later referred to as
Cramer’s paradox. Only J. Plücker could finally solve the problem of the “in-
dependent point systems”. MacLaurin was first to draw a connection between
the transformability of two curves into each other and the number of their
singularities.

The second volume of Euler’s Introductio in analysin infinitorum, published
in 1748, represented a further important milestone. Whereas the development
of analytic geometry was burdened by a nationalistically motivated, one-sided
emphasis of either Descartes’ or Newton’s position, Euler succeeded in syn-
thesizing all fruitful aspects of both schools of thought. Having compiled the
arithmetic and algebraic means of analysis in the first volume of Introductio,
he shared “all aspects of geometry worth knowing” in the second volume
“since the analysis is ordinarily developed in such a way that its application
to geometry is shown.” [Euler a, p. V]. His subject matter is structured as
follows:

• Theory of curved lines in general

• Equation of a curve

• Investigation and classification of conic sections based on their equations
(without using differential calculus)
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• Classification of curves of third order into 16 types and drawing up a
relation to Newton’s classification

• Classification of curves of fourth order following the same pattern (Euler
lists 146 types)

• Purely algebraic treatment of tangents, normals, curvatures, inflexion
points, peaks, multiple points, etc. (“Although all of these nowadays are
ordinarily accomplished by means of differential calculus” [l.c. p. IX].
This hints at a style that Lagrange will take to the extreme.)

• Determination of curves with given properties.

Euler dealt with the following matters only in the appendix (this shows again
the dominant role of plane geometry in the mind of the 18th century):

• General theory of solids and their surfaces (of course, restricted to those
aspects which can be described algebraically)

• Description “of one each” (!) surfaces by means of an equation between
three variables

• Classification of surfaces according to the degree of their order and list-
ing of six types of surfaces of second degree (Hereby, Euler introduces
the names of quadric, hyperboloid of one and two sheets, parabolic hy-
perboloid, etc., which are still customary nowadays.)

• Description of a spatial curve as the intersection of two surfaces and
their representation by an equation (Euler’s ideas can be simplified a
little as follows: the surfaces are given by the equations F (x, y, z) = 0
and G(x, y, z) = 0. Resolve both according to z : z = f(x, y), z = g(x, y).
The equation f(x, y) = g(x, y) yields all points of the x-y-plane for which
there is a common z-value of both surfaces. Now, we parameterise this
curve in the x-y-plane and represent z as the function of the parameter
t. It turns out that here again, as in many other cases, Euler generally
thought and calculated like an intelligent older pupil without knowledge
of modern mathematics.)

• Normal and tangential planes of the surfaces of second order (again purely
algebraically without differential calculus).

If we add that Euler introduced the “Euler angles” in another work (on
mechanics) to describe a point in space, basically introducing spatial polar
coordinates, we can characterise the level of the coordinate method in the
middle of the 18th century as follows:
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Illus. 6.1.5 Isaac Newton (painting by G. Kneller 1702, National Portrait Gallery,
London); Leonhard Euler (portrait by Emanuel Handman 1753, Kunstmuseum

Basel)

1. Everything takes place in the two or three-dimensional Euclidean space.
This space is grasped as physical space and not as space Rn of n-tuple real
numbers as was more and more customary later on. (Hence, nobody is
consciously aware that relations between more than three physical quan-
tities can be interpreted in a higher dimensional space analogous to the
classic Euclidean case.)

2. Coordinates are Cartesian (in the modern sense), in special cases also
oblique-affine or, as an exception, plane or spatial polar coordinates. No-
body is consciously aware that, for example, the spherical surface is an
alternative geometrical structure, and that geographical coordinates there
have a function analogous to the plane polar coordinates.)

3. Newton’s view that geometry ends with conic sections continues to en-
dure in the reservation of the term “analytic geometry”, from the scope
of which those aspects we take as algebraic geometry nowadays were
increasingly excluded. (Geometria analytica first occurs in a title of a
manuscript by Newton published posthumously in 1779. The well-known
textbooks by S. F. Lacroix especially helped strengthen this term.)

4. Newton’s discovery that functions relevant to the natural sciences back
then can be defined as a power series and that we can largely reduce
the analysis of polynomials of finite and infinite degree to algebra when
waiving an exact logical foundation, caused, together with Descartes’
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propagated alliance between algebra and geometry, the almost complete
constriction of geometry to objects that can be addressed within this
scope. There was no clear boundary between such problems that can
really be dealt with algebraically, and those that require analysis. Both
concepts were summarised under the notion “analytic”.

5. All the numerous open questions of “elementary geometry” were pushed
aside and the analytical method was not applied to elementary geometry,
especially not to linear problems, as they are prompted nowadays at the
beginning of every introduction to analytic geometry (and often at the
end, too).

The overcoming of the restriction listed in 5 deserves a special mention. It
started at the end of the 18th century and was triggered by two different
motives in two directions complementary to each other: Lagranges’ analytic
mechanics (1788) was the foundation for the transfer to n-dimensional Eu-
clidean space, which was introduced here (still unconsciously) as state or
phase space of mechanical systems. Once placed in this space, linear prob-
lems are, of course, immediately non-trivial and not to be dealt with by
means of “synthetic” methods. Monge was concerned with the education of
engineers. For him, everything took place in the three-dimensional “true phys-
ical space”. He viewed descriptive geometry and coordinate geometry as two
tools of equal rights and even of somewhat equal type, the task of which is to
convert the problems of three-dimensional space into a structure that can be
dealt with more easily; in one case, for the plane of projection, in the other
case, for calculation. All standard problems of linear geometry of plane and
space, coordinate transformation, transformation by reciprocal radii, prob-
lems of orientation, calculation of lengths, areas and volumes, are dealt with
in the manner customary nowadays in textbooks on applying algebra and
analysis to geometry, which circulated more and more from 1801 onwards.
Somehow even the idea of the vector and the idea of viewing straight lines
as basic elements of space instead of points were anticipated.
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6.2 Geometry and analysis

We follow up here on Chapter 5.4 and stress that the following very tight
representation of analysis is due to the extensive overlapping of the subject
matter with several good books on the history of analysis (for example see
[Sonar 2011]). However, a self-contained representation of the history of ge-
ometry requires us not to completely overlook the initially very close relations
between geometry and analysis.

Geometria indivisibilis (1635) by Bonaventura Cavalieri forms a milestone of
determining volumes. Indivisibles are “infinitely thin” parallel layers. We can
imagine an area or a solid being cut into infinitely many of those layers. If the
outcome of this was that, based on the comparison of two areas and/or solids
standing on the same base, their parallel sections to the base in each height
over the base had the same content, Cavalieri concluded that their volumes
must be overall equal (Problem 6.2.1). The principle, which is rather fruitful
in many individual cases, was named after Cavalieri and, as known, still plays
an important role as a heuristic rule in didactics. Furthermore, it is, of course,
inherent to each reduction of a higher dimensional integral to an integral re-
duced by one in dimension. Modern mathematics differs in this aspect from
Cavalieri’s only by the knowledge of “mathematical monsters” and the care
taken as a result of this when specifying the area of validity. This principle
likely goes back to Democritus, based on remarks by Archimedes and others.
Thus, it surely stands in correlation to his ideas of the atomic composition
of matter. Democritus’s principle, if there was one, deals with material solids
and their decomposition into layers of atomic thickness. Cavalieri did not refer
to such an interpretation. For him and his followers (he also had opponents,
such as Guldin and Huygens), it was pure heuristics, which was justified by
the obtained results. This was a point of view that was characteristic for
the entire era. Additionally, they were convinced that the ancient mathe-
maticians had found their theorems with exactly such heuristic principles
before converting their proofs into an unchallengeable form that was difficult
to read and even more difficult to transfer onto new problems. In regard to
this, Torricelli wrote: “I would not dare claim that geometry of indivisibles
is a real new discovery. I would rather believe that the ancient geometers
used it to discover the more difficult theorems, although they seem to have
preferred a different approach in their proofs.” We want to refer the reader
to applied examples in the problem section, such as the standard problem
of determining the semi-sphere volume according to Cavalieri. Furthermore,
we want to point out how Roberval used this method in 1636 in order to
determine the area under a cycloid arc (Problem 6.2.2). However, Roberval,
who came from a simple farmer’s family and acquired his education mainly
autodidactically, discovered this method fully independently of Cavalieri and
also used a different justification. His “little discs” are of finite but arbitrar-
ily small selectable thickness and his arguments are much closer to those of
modern integral calculus than Cavalieri’s.
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Geometrical roots of differential calculus

In contrast to determining volumes, differential calculus could hardly com-
pete with the pre-accomplishments of Antiquity. The fact that the question of
tangent directions was asked more generally than in regards to conic sections
alone is due to the wealth of newly introduced and/or discovered curves.
Nowadays, we are so focussed on the Leibniz-style access by means of the
“characteristic triangle” of dx, dy and secant and the following passage to
the limit, by which the secant becomes the tangent, that an encounter with a
completely new approach must be puzzling. The idea, cultivated by Roberval
and others, that the curve is created by the course of a moving point and the
momentary speed is obtained by the result of a speed in x−direction and a
speed in y-direction, leads to the characteristic triangle when executed. How-
ever, Descartes had a completely different idea, which, of course, was much
clumsier concerning its calculation. His idea again connected geometrical con-
siderations very closely with purely algebraic aspects and, thus, deserves our
interest. He was concerned with determining the subnormal d(x0) (i.e., the
projection of the normal to the curve point (x0, f(x0)) onto the x-axis. If
d(x0) = d0 is known, we can determine the slope of the normal by means of
elementary geometry and, thus, also the slope of the tangent. We describe
Descartes’ method (in the German translation of his Géométrie, p. 43) in
modern language. Since Descartes belonged to the declared opponents of in-
divisibles and similar methods on the basis of “infinitely small quantities”,
we want to remark that his method seems to have made no use of such con-
siderations. However, the truth is that there is a limit process, which lies in
the assumption that the usual two intersections of the circles merge with the
curve to a touching point, when d approaches the wanted value.

Illus. 6.2.1 The determination of the normal according to Descartes
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We fix a value x0 of the independent variable and an increase d (Illus. 6.2.1)
and draw circle k around the point x0 + d of the x-axis through the curve
point (x0, f(x0)). This circle will cut the curve twice for any d. We obtain
the x−coordinates of both intersections as solutions of the equation system

(x− (x0 + d))2 + y2 = r(x0, d)
2 (equation of circle k), (6.2.1)

y = f(x) (equation of the curve). (6.2.2)

In other words, after elimination of y, applying [f(x0)]
2+d2 for r2 and erasing

d2 on both sides we obtain

x2 − 2x(x0 + d) + x0
2 + 2dx0 + [f(x)]2 − [f(x0)]

2 = 0. (6.2.3)

The wanted subnormal d0 is characterised under all d-values by the fact that
the usual two x-solutions of equations (6.2.3) given any d collapse to a double
solution x0. Hence, we make the approach

x2 − 2x(x0 + d) + x0
2 + 2dx0 + [f(x)]2 − [f(x0)]

2 = (x− x0)
2 ·R(x) (6.2.4)

with a rest factor R(x), the degree of which depends on function f taken to
be a polynomial. (For instance, for a polynomial f of third degree there is a
polynomial of sixth degree on the left. Hence, R must be of fourth degree.)
By comparing coefficients, we obtain an equation system for the unknown
coefficients of R and finally also d = d0 for the course of its solution. We invite
the reader to carry this out for the case f(x) = x3 and then to determine the
slope of the normal (in dependence of x0) and finally the slope of the tangent.
Afterwards, the reader will have a completely new feeling of gratitude for
Leibniz’s differential calculus. However, we want to pinpoint: the notion of
tangent can be explained in a completely different but familiar manner; not
as a boundary position of secants, but as the perpendicular to the normal,
which on its side is defined by means of touching a circle without using limit
processes.

The concept of circles touching any curve proved to be key to advancing
curve geometry. Based on what has been said so far, the reader can probably
imagine that the definition of the circle of curvature in a curve point, whereby
the reciprocal value of its radius yields the measure of the local curvature,
was also accomplished in different ways by the followers and/or opponents of
infinitesimal methods. The followers of the infinitesimal approach (initially
Newton and Jacob I Bernoulli, who referred to the known formula for the
curvature as the function of the first and second derivative of the function
as “theorema aureum” (golden theorem)) determined the intersection of two
adjacent curve normals and then let one converge against the other, whereby
the intersection tends against the centre of the circle of curvature. Of course,
this was a nightmare for the followers of the Cartesian method. They defined
the circle of curvature as a circle that adapts best to the curve amongst
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all circles that touch the curve in the respective point, so that basically no
circle fits better in the “angle of contingence” between curve and circle of
curvature (cf. 5.1). However, it turned out that this version, free of limit
processes, indeed complicates the actual calculation tremendously.

The formation of the notion of torsion of spatial curves as a measure for
“local non-planeness”, and the notion of “geodesic” as the shortest connec-
tion of its points on a curved surface in space, also belong to the history
of curve geometry. After preparation from Jacob I and Johann I Bernoulli
around 1700, as well as Henri Pitot in 1724, the first combining work on
spatial curves was written by the 17-year-old Alexis Claude Clairaut in 1729,
who also stood out later as a practical geodesist by participating in an arc
measurement expedition to Lapland organised by the French Academy of
Sciences (1736/37).

The basic problem of tangent direction was not so closely linked to deter-
mining extreme function values from the beginning, as suggested by modern
“school analysis”. It also took on completely different roles in natural scien-
tific/technical questions of the 17th and 18th centuries, such as in ballistics,
geometrical optics, the practical shape of ship bodies, wind and water wheels,
and when constructing the pendulum clock. Christiaan Huygens was led to
the general notion of evolute and evolvent of a plane curve by the question
of how we could steer a clock pendulum so that it does not move in a circu-
lar arc but in a cycloid arc (in order to ensure the exact independence of an
oscillation period from amplitude of oscillation at finite expansion). Nonethe-
less, his discovery did not contribute to the actual technical development of
clocks in the end. However, he took on an important role for mathematical
curve theory. We owe it primarily to Pierre de Fermat that the question of
tangent in many cases turns into a question of the locus of horizontal tan-
gents. He wrote his Methodus ad disquirendam maxima et minima between
1638 and 1646 in different stages, which were circulated (amongst others, by
Mersenne), but only printed after Fermat’s death. This is indicated by the
fact that he constantly looked back to objections concerning earlier parts of
his writings and tried to invalidate them. Fermat solved numerous examples
of geometrical extreme value problems by determining those values of vari-
ables for which the tangent of the relevant function will be parallel to the
x-axis and/or the local variable speed of the function value becomes zero.
His method of determining these positions amounts mathematically to the
calculation of the differential quotient of this function. We will demonstrate
this through his first, still very simple example. (The result herein was al-
ready known in Antiquity and can be determined very easily by means of
elementary geometry. However, it is exactly the fact that it can be so easily
checked that serves Fermat in justifying his method.)

A given line segment of length a is meant to be deconstructed into two parts x
and a – x so that a rectangle of these line segments, the product x(a−x), is as
large as possible. If x+e is an adjacent value to the assumed optimum value,
it delivers a rectangle of size (x+e) (a – x – e). The difference of both function
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values is e(a−2x)− e2; hence, if e is very small, almost e(a–2x). (Fermat did
not use the likely argument of different orders of magnitudes from e and e2.)
Nowhere does this difference seem to grow smaller than for x = a/2. That
means: amongst all rectangles of given perimeter, the square has the largest
area. With this first example alone, Fermat had already shouted out: “You
could not possible state a more general method.”

Given this method fostered by Fermat through many further examples, it
is understandable that the dispute about priority between the followers of
Leibniz and those of Newton was declared meaningless in France. By speaking
of curvatures only qualitatively as convex or concave (without defining these
terms), Fermat also recognised that the inflexion points of a curve can be
interpreted and calculated as such points in which the angle between the
tangent and a fixed direction, such as the y-axis, takes on an extreme value
(Illus. 6.2.2). If we compare the tangent in inflexion point P0, in which the
curve changes from concave to convex characteristics, with the tangents in
the points P1 and P2 located on the right and left, we find that the angle
αmin formed between the tangent belonging to P0 and the y-axis is smaller
than angle α1 and/or α2. Keep in mind that this is an observation completely
free of calculi and follows up on an illustrative geometrical concept of convex
and concave.

The derivation of “Fermat’s principle” is the end of Fermat’s ‘Treatise on
maxima and minima’ [Fermat b]. This principle is proof that the law of re-
fraction follows from an extreme value principle, namely that it yields the
temporarily shortest (and/or sometimes longest) optical path if the light in
every permeable medium has a constant speed characteristic for this medium
and, thus, in the densest medium, the lowest. This is accompanied by a harsh
critique on Descartes, who had attempted to derive the law of refraction by

Illus. 6.2.2 Inflexion point as locus of an extreme tangent slope according to
Fermat
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means of the opposite, physically incorrect assumption of speeds. Apart from
mutual efforts concerning the coordinate method, this is one of many signs
to come of the overall very tense, competitive attitude between Fermat and
Descartes. We could almost say that France accommodated the dispute be-
tween Descartes and Fermat as an equivalent to the argument, unfortunately
tainted by nationalism, between the followers of Leibniz and Newton.

It was significant for the history of geometry that the first extreme value prob-
lems solved successfully were mostly of geometrical nature. Some of them are
still vigorously taught as part of analytic exercises at school and as part of
basic studies. Nevertheless, we must add that Fermat, completely exalted by
his successful method, put an extreme value problem that later proved to be
almost unsolvable by differential calculus even in its fully developed form.
This was the problem already mentioned of determining the point with min-
imal distance sum for n given points, a problem that seems to have attracted
mathematicians again and again up to the present day due to its theoretical
difficulty (in the general case) and its significance for praxis (see Problems
6.2.3, 7.3.6, section 7.9 and Problems 7.9.1 and 7.9.2).

Looking at the history more closely, we see that differential and integral cal-
culus had to establish themselves in strong competition against philosophi-
cally justified objections and, as a result of this, alternative, purely geomet-
ric or geometric-algebraic methods. However, we must simultaneously accept
that calculisation of infinitesimal methods conducted by Leibniz, Newton,
the Bernoullis and Wallis in different approaches symbolised the beginning
of the separation of geometry and analysis. By changing from working with
geometrical figures and geometrical arguments to working with formulae, the
performance rate was increased dramatically, but also alienated itself more
and more from the subject matter standing behind these formulae. Although
the end result of such a calculation can be interpreted again as geometric,
the intermediate steps can no longer be so interpreted at all times.

Cartography

There will be no discussion here of the relatively rapid subsequent expansion
of analysis to include functions of several variables, and we will go over the
development of actual differential geometry within the appropriate context
in section 7.4. This section is meant to look at a special geometrical applica-
tion. Whereas only a few special cartographic mappings were introduced in
the Renaissance and examined by means of elementary geometry within the
scope of possibility back then, Johann Heinrich Lambert was the first to ask
the general question of the notion of cartographic mapping of the spherical
surface or greater parts of it in the plane in his Anmerkungen und Zusätze
zur Entwerfung der Land- und Himmelscharten (Notes and Comments on the
Composition of Terrestrial and Celestial Maps). Furthermore, he raised the
question of their mathematical description and the characterisation of prop-
erties, such as preservation of area or angle, by means of partial differential
equations. Additionally, he introduced a number of new net drafts, of which
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most are still used nowadays under the name Lambert’s projection preserving
area and/or angle (...). Lambert, who acquired his education fully autodidac-
tically, differs from the other significant mathematicians of the 18th century,
in that he did not handle the calculi of analysis as well. (He compensated
for this by approaching problems unconventionally and justifying a number
of fruitful new sub-disciplines and problem areas for mathematics.) Hence, it
was up to Euler in 1777 and Lagrange in 1779 to state the general solutions to
the cartographical questions asked by Lambert (whereby Lagrange already
used complex numbers without further explanation), whereas Gauss, from
1816 onwards, only transferred the notion of preservation of angle and area
onto the mappings between any two surfaces [Gauß’ Werke (Gauss’ works),
vol. 8, p. 370ff, vol. 4, p. 189-216]. He later proved exactly what had been
known intuitively for a long time, that preservation of area and angle in a
mapping of spherical surface in the plane (and more generally, in a non-
isometric mapping) cannot co-exist. Lagrange’s work on cartographic map-
pings was, similar to that of Lambert and Euler, written in a broad, almost
popular scientific manner, with extensive verbal introduction to the problem
and very concrete examples of application. This was a style that disappeared
very rapidly in the 19th century. The mathematical language is still one of
“differentials” grasped as “infinitely small increases”. Gauss initially wrote
in this manner too, but had already changed to the modern writing style for
(partial) derivation around 1816.

6.3 En route to descriptive and projective geometry

A retrospective conclusion of the Renaissance shows again that a certain
type of work share was established in this time: When the “scholarly” math-
ematicians did not deal with the re-discovery and re-development of ancient
knowledge, the advances achieved by them were preferably connected to the
problems and questions of astronomy (including trigonometry and optics),
whereas the impulse to develop a practical “ordinary geometry” came mainly
from the class of artists, craftsmen and engineers. It would be wrong to in-
terpret this simply as a separation into “pure” and “applied” mathematics.
Astronomy also had a great practical significance for calendar calculation,
seafaring, geodesy and cartography. Questions of descriptive geometry (per-
spective, multiplane method and others) began increasingly to develop as
the most important part of “everyday geometry” in the 17th and 18th cen-
turies. They were gradually passed on from the practitioners to the scientists,
mainly in France. This took place especially in France, where a militarily and
economically strong national state had been created under the absolutist gov-
ernment, which ruled uninterrupted until 1789. This state created good con-
ditions for exchanges between theorists and practical scientists through the
founding of academies and universities of different natures in Paris. Further-
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Illus. 6.3.1 Two paintings of Blaise Pascal

more, Mersenne’s circle and his intellectual atmosphere benefitted the con-
tact between pure scientists, like Descartes, Pascal and Roberval, on one side,
and architects, stronghold master builders and military engineers, like Girard
Desargues and Alain Mallet, crafting drawers and engravers, like Abraham
Bosse, and geometrically engaged artists, like Laurent de La Hire, on the
other side. The son of the latter, Philippe de La Hire, whose name is primar-
ily connected nowadays to the so-called two-circle method for the pointwise
construction of ellipses (Illus. 6.3.2), has up to now played a little appreci-
ated role as a link between theorists and practical scientists of new geometry.
He succeeded Roberval at the College Royale in Paris in 1682 and became
professor at the Academie Royale d’Architecture in 1687. His teaching and
numerous publications covered all areas of physics and techniques back then
apart from actual mathematics; even other natural sciences, in part. His circle
of friends included men such as Roberval and Bosse. Similar conditions would
develop decades later in other European centres, such as Berlin, London or
Petersburg, but never achieve this quality.

Let us start with the architect and engineer Desargues. His first publication
in 1636 concerns central perspective. However, architects’ job descriptions
also included the construction of sundials, and if the sun moves along an
orbit, the shadow of the peak of the gnomon describes a conic section on the
plane of the sundial.

The studies of men like Fermat or Descartes, which were triggered based
on Antiquity, encountered practical needs. In 1639, Desargues published his
Brouillon project... (English: First draft of describing the events when a cone
meets a plane; modern English translation in [Field/Gray 1987]). This text, of
which only 50 copies were printed and which was long forgotten and lost, only
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Illus. 6.3.2 Two-circle construction of the ellipses according to de La Hire

to be rediscovered1 by M. Chasles in 1845, is nowadays accepted as the actual
“birth certificate” of projective geometry. Desargues started by pinpointing
that in his work all straight lines and planes are infinitely extended in every
direction (in contrast to Euclid’s view, which had been the dominant one until
then and which is based on line segments and their potential extension). He
recognised the analogy between the pencil of lines through a point and a flock
of all straight lines parallel to each other (in Desargues’ work, both types of
pencils together are called “ordonnance”, roughly “rule”), concluded correctly
and assigned such flocks to an “infinitely distant” intersection (his common
name for infinitely distant and finite points as centres of pencils of lines is
“butte”, roughly “target”) and later concluded, amongst other things, that a
circular cylinder is the special case of a circular cone with an infinitely distant
apex. He realises the transfer from the simple cone to a double cone, which was
highly important for the modern geometry of conic sections, and concentrated
on deriving as many properties as possible common to all conic sections by
producing them as a central perspective image of a circle. However, he first
introduced proper and improper pencils of planes analogously to the proper
and improper pencils of lines, studied the between and separation relation
for three or four collinear points and found out that the latter is preserved
when centrally projecting. He then examined the special case of harmonically
separating point pairs, discovered the notion of a complete quadrilateral,
constructed the fourth harmonic point for three given ones, and advanced to
the theory of polarity of point and straight line in conic sections.

1 The copy found by Chasles was a copy made by Philippe de La Hire in 1679. The
efforts of copying this text manually do not just indicate how much it must have
been appreciated, but also that La Hire could not get a printed copy of this rare
text. An original only appeared in 1950, on which [Field/Gray 1987] based their
translation.
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Illus. 6.3.3 Pascal’s theorem, a) general case, b)-d) different special cases

Desargues’ thoughts were appreciated by Fermat and Descartes and bore a
strong influence on the sixteen-year-old Pascal back then. They inspired him
to write his first treatise on conic sections, which already contains Pascal’s
theorem without proof. This short Essay pour les coniques (English transla-
tion in [Field/Gray 1987]) only circulated in a few copies in 1640. Modern
understanding of conic sections is rounded therein by the fact that a pair
of crossing straight lines (possibly in the infinite, thus, parallel) is viewed
as a conic section, which reveals Pappus’s theorem, already known in An-
tiquity, as a special case of Pascal’s theorem. Pascal’s original figure served
the illustration of several claims and was, thus, overloaded with many un-
necessary points and straight lines (Illus. 6.3.4). Illus. 6.3.3shows all basic
aspects (with other, now more common names). This theorem in modern
fashion is as follows: If 1, ... ., 6 are any points of a conic section and if 12,
23, etc., refer to the respective connecting line, 12/45, etc., refer to the re-
spective (possibly improper) intersection of these straight lines, then 12/45,
23/56 and 34/61 are located on a (possibly improper) straight line (in the
latter case, the three straight line pairs are pairwise parallel, as shown in,
for example, Illus. 6.3.3d). Illus. 6.3.3b)-d) show some of many elementar-
ily justifiable special cases and also illustrate that the order of the points
on the conic section is not important. Since the collinearities are preserved
when centrally projected, we can suppose that Pascal found his theorem by
means of the systematic transformation of an elementary initial case on a
circle by means of centrally projecting them onto other configurations. His
‘Essay’, which explicitly refers to Desargues and uses his notions, rather has
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Illus. 6.3.4 First text page of Pascal’s Essay pour les coniques (1640). The figure
on the top left contains the one belonging to Pascal’s theorem as partial figure (see

Illus. 6.3.3)

[Bibliothèque nationale de France]
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the character of an announcement, but indicates that many problems con-
cerning conic sections are solvable, such as pointwise construction given five
points or construction of the tangent given one point by means of the found
theorem based on linear construction (i.e., by cutting, linking or parallels).
An extensive treatise on this topic, on which Pascal subsequently worked for
many years, was, unfortunately, never published and is nowadays accepted as
lost. Mersenne confirmed that Pascal drew more than 400 conclusions from
his theorem. Leibniz also saw the text and reported on some of its content.
Desargues’ thoughts were appreciated by Fermat and Descartes and bore a
strong influence on the sixteen-year-old Pascal back then. They inspired him
to write his first treatise on conic sections, which already contains Pascal’s
theorem without proof. This short Essay pour les coniques (English transla-
tion in [Field/Gray 1987]) only circulated in a few copies in 1640. Modern
understanding of conic sections is rounded therein by the fact that a pair
of crossing straight lines (possibly in the infinite, thus, parallel) is viewed
as a conic section, which reveals Pappus’s theorem, already known in An-
tiquity, as a special case of Pascal’s theorem. Pascal’s original figure served
the illustration of several claims and was, thus, overloaded with many un-
necessary points and straight lines (Illus. 6.3.4). Illus. 6.3.3shows all basic
aspects (with other, now more common names). This theorem in modern
fashion is as follows: If 1, ... ., 6 are any points of a conic section and if 12,
23, etc., refer to the respective connecting line, 12/45, etc., refer to the re-
spective (possibly improper) intersection of these straight lines, then 12/45,
23/56 and 34/61 are located on a (possibly improper) straight line (in the
latter case, the three straight line pairs are pairwise parallel, as shown in,
for example, Illus. 6.3.3d). Illus. 6.3.3b)-d) show some of many elementar-
ily justifiable special cases and also illustrate that the order of the points
on the conic section is not important. Since the collinearities are preserved
when centrally projected, we can suppose that Pascal found his theorem by
means of the systematic transformation of an elementary initial case on a
circle by means of centrally projecting them onto other configurations. His
‘Essay’, which explicitly refers to Desargues and uses his notions, rather has
the character of an announcement, but indicates that many problems con-
cerning conic sections are solvable, such as pointwise construction given five
points or construction of the tangent given one point by means of the found
theorem based on linear construction (i.e., by cutting, linking or parallels).
An extensive treatise on this topic, on which Pascal subsequently worked for
many years, was, unfortunately, never published and is nowadays accepted as
lost. Mersenne confirmed that Pascal drew more than 400 conclusions from
his theorem. Leibniz also saw the text and reported on some of its content.

Hence, whereas Desargues via Pascal had an extraordinarily fruitful impact
on the “science of geometry”, his texts (apart from those papers on shadow
constructions, stereotomy and sundial constructions from 1640) were heavily
rejected by his professional peers. The thoroughly unusual way of thinking
and a wealth of newly introduced notions and terms may have contributed to
this rejection. However, it seems that the resistance of an established profes-
sion against “uncomfortable” changes and innovations was mainly to blame.
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As a result, Desargues, practitioner himself, only found one follower amongst
all practical scientists, though very faithful and active: the already mentioned
illustrator Abraham Bosse, who initiated the creation of generally under-
standable representations of Desargues’ texts on sundials and stereotomy in
1643 and an extended edition of Perspective in 1648, the appendix of which
was the first to publish Desargues’ theorem on equivalence of central and
axial perspectivity (Illus. 6.3.5). Desargues himself, embittered by his peers’
reactions, did not publish anything else after 1640.

From perspective to multiplane methods

Advances concerning mathematising perspective were also made in other
countries in the 18th century. Thereby, there often was no sharp boundary
between actual central perspective, its borderline case of parallel projection,
and the approach to multiplane methods. Illusionistic paintings enjoyed great
esteem in the Baroque era (Illus. 6.3.6). Relief perspective was also frequently
used in order to simulate spatial depth (Illus. 6.3.7, Problem 6.3.2). A treatise
on perspective by Brook Taylor (mostly known in analysis) was published in
London in 1715, released in several editions and also translated into French.
A popular version by Joshua Kirby (London 1754) has become immortal,
mainly due to its title page, which was designed by the famous, contempo-
rary graphic designer William Hogarth (Illus. 6.3.8). It features numerous
mistakes that can be committed if one does not study this exquisite book be-
fore actually drawing. It truly is an early piece of shock advertising, common
nowadays, and on top of that a highly valued example of art of “contradic-
tory perspective”, which is so popular at present! Mathematically speaking,
it seems that Taylor offered first and foremost the representation of straight
lines and planes based on their traces, in other words, their intersections with
the projecting planes. Furthermore, he had already studied the reconstruction
of the observer’s viewpoint based on a correctly constructed picture.

Lambert [Lambert/Steck 1943] engaged repeatedly with perspective in Ger-
many. His Freye Perspective was published in 1759 following an early small
text (1752), first printed in 1943, already describing the perspectograph that
he invented, with which we can mechanically transform a top view into its
central perspective view (Problem 6.3.1). The title shows that we are deal-
ing with the idea of drawing a central perspective picture directly without
using a top and/or front view. In Lambert’s work, the idea of grasping the
plane of projection as a model of space – which, of course, corresponded to
the case of central perspective not injectively mapped – by giving oneself the
picture of a spatial Cartesian trihedral becomes obvious. Afterwards, every
construction that we imagine to be executed in space transforms itself into
an assigned construction in the plane of projection. As we will see, exactly
this thought will be perfected by Monge by combining it with the multiplane
method. Since, in Lambert’s viewpoint, for instance the operation of drawing
a parallel to a given straight line through a given point is realised in the plane
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Illus. 6.3.5 Desargues’ theorem. a) General case: triangles ABC and A′B′C′ have
a perspectivity centre Z if and only if the sections P,Q,R of the assigned sides
are located on a common straight line, i.e., perspectivity axis a. Thereby, b) centre
Z can be infinitely distant, c) one of the intersections on the axis can drift into
the infinite, i.e., the relevant triangle sides become parallel to the axis and, hence,
also to each other. d) If a second pair of triangle sides becomes parallel at the
central perspective position, axis a yields two infinitely distant points. Thus, the
third intersection must also be infinitely distant. e) shows that the centre can also be
infinitely distant at the same time. “Desargues’ figure” or “configuration” a) can be
interpreted in several ways, e.g., P is the perspective centre for triangles AA’R and
BB’Q. In that case, straight line ZCC’ takes on the function of the perspectivity
axis. We now see that b) and c) represent the same special case. Imagine one of the

figures turned by 90 degrees
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of projection as the connection of the image point of the given point and the
vanishing point of the given straight line, his text opens up further access to
projective geometry:

Illus. 6.3.6 Illusive vault of the church di Badia in Arezzo, painted onto a plane
ceiling by Andrea Pozzo (1642–1700), a master of illusionistic perspective painting.

Pozzo painted several similar ceilings and also wrote a book on perspective

[Photo: A. Schreiber]
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Illus. 6.3.7 Wall painting (1767) in the Baroque church Saint-Roch in Paris. The
frame in relief perspective simulates great depth. In reality, the niche is barely 25 cm

deep [Photo: P. Schreiber]
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Illus. 6.3.8 Title page by William Hogarth for J. Kirby’s Dr. Brook Taylor’s Per-
spective Made Easy (1754). “Whoever makes a design without knowledge of per-
spective will be liable for such absurdities, as shown in this frontispiece.” (picture

caption)
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Within central perspective projections, most parallel straight lines feature an
intersection too, i.e., the merely imagined infinitely distant points transform
themselves into finitely located points. Moreover, drawing parallels seems like
a natural borderline case of connecting points.

Lambert’s text is at least partially the result of his stay in France in 1758
and was published in German and French in the same year. A second Ger-
man edition was published in a highly extended version in 1774. Along the
way, apart from his academy membership in Berlin, Lambert had also be-
come a Prussian senior building officer in 1770. This office was subsequently
held by famous architects like David Gilly and Karl Friedrich Schinkel. Such
“part-time jobs”, which also included being a building surveyor and a prac-
tical architect, was characteristic for mathematicians of the 18th century.
Stronghold and civil architecture will be regular subjects for mathematics
professors at universities until the 1830s and will occupy a large number of
pages in several volumes of mathematical textbooks, as written by, for exam-
ple, Christian Wolff, Abraham Gotthelf Kästner and Wenceslaus Karsten.

So-called cavalier perspective had established itself as the main representation
in the building trade since around 1600. In modern descriptive geometry,
everything is based on the concept of a perpendicular upright perspective,
which is, thus, true to scale and followed by shortened pictures of depression
lines, mostly inclined by 45 degrees. In contrast, everything back then was
based on a top view true to scale, above which the images of perpendicular
lines rose (hence, the French term “elevations géométrales” for this type of
representation, Illus. 6.3.9). The term “cavalier....” has nothing to do with the
general meaning of the word “cavalier”. Cavaliers back then were overhanging
parts (bastions) of a stronghold. The development of artillery had led to
a revolution in stronghold architecture. From the views of sovereigns and
commanders, the planning of a stronghold so that the entire surrounding area
could be seen and reached by ordnance, whilst making sure that nobody could
see into the stronghold from any location, had developed into one of the most
important tasks of applied geometry. Accordingly, the leading specialists of
stronghold constructions, such as the French admiral Vauban, enjoyed great
esteem. He could afford to compose a memorandum about the drawbacks and
deficits in France under the almighty and impeccable King Louis XIV; this
made him fall into disgrace with his king, but his memorandum came to be
accepted as an important event in the history of France.

A strictly organised training regime of military engineers developed under his
control, generating men like Lazare Carnot and Gaspard Monge at the end
of the 18th century. Christian Willenberg, who founded the present Czech
Technical University in Prague in 1717, had enjoyed such an education and
brought with him the typical French culture of military engineering training
to the countries of the Habsburg Monarchy, where descriptive geometry still
playes a greater role than at universities in other countries.

The authorities of stronghold constructions were opponents of the spread-
ing central perspective, since they could not deduct the real measures and
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Illus. 6.3.9 Fortress Rocca (Italy) in cavalier perspective (17th century)

([Leonardo: Forscher, Künstler, Magier] by permission from EMB-Service for
Publisher, Adligenswil)

distances as easily from perspective pictures as from cavalier perspectives
(nowadays generalised as axonometric single-plane projection). This argu-
ment would gain increasing significance with the rise of engine building, and
would first push central perspective to the edge of descriptive geometry be-
fore banishing it to the art academies. There too, it was not very appreciated
and was not practised much longer when the artists turned away from the
paradigm of preferably naturalistic drawings and graphics at the end of the
19th century. However, other approaches to constructive geometry also de-
veloped in the shadow of war constructions, such as constructing in an area
laced with obstacles, the purely linear construction (by means of bearing,
since a more large-scale work with the compass is naturally not possible) and
first approaches to estimating and minimising the unavoidable error concern-
ing practical works in the field. A book by the afore-mentioned A. Mallet
from 1672 titled Les travaux de Mars (The Works of Mars; Illus. 6.3.10) is a
rich source of such practical geometry. France and, in part, the needs of war
were also the origin of a new direction in cartography: the description of the
field by means of level curves and depression lines, which was later referred
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to as topographic single-plane projection and also consulted as an auxiliary
device of pure mathematics to graphically represent functions of a complex
argument respectively of two variables. Since measuring the depths of water
by sound could be realised much more easily than determining heights in the
field concerning a fixed zero level (approx. sea level), it is not surprising that
maps with depth contour lines (isobaths) occur earlier than those with height
contour lines (isohypsies). The first of the latter maps (1771 by Du Carla) was
the map of an “imaginary island” – thus, the primary concern was just the
principle itself. Jean Louis Dupain-Triel submitted the first map of France
with contour lines to the French Academy of Sciences in Paris in 1791. There
were already isobathic maps in 1697 from the Maas mouth (Pierre Ancelin),
1733 from Merwede (Samuel Cruquius) and 1737 from the English Channel
(Philippe Buache) [Wiener 1884, I, p. 25 Kupčik 1980, p. 212f].

The knowledge of Dürer’s remarkable contribution to the multiplane method
(assigned normal views) soon spread across France. His ‘Instruction’ had al-
ready been published in a Latin translation in Paris in 1532 and reprinted
several times after that. Another crucial source was known as stereotomy.
When building vaults, window embrasures, spiral staircases or the like with
natural stone, the cutting and working of which requires effort and is expen-
sive, the form of each individual stone had to be determined exactly before-
hand. Therefore the necessary geometrical knowledge was passed on mainly
orally in the “Bauhütten” for centuries.

When written representations appeared, for example, in France by Philibert
de l’Orme in 1576 or Derand in 1643, they were mostly limited to construction
drawings, including auxiliary lines, with the advice that every knowledgeable
person could deduct the method from this and spacious written explanations
would only complicate the matter [Wiener 1884]. (Compare this with mod-
ern DIY instructions to assemble furniture!) The work in three volumes by
the military engineer Amédée François Frézier published in 1737-39, which
even mentions stereotomy in the title, achieved remarkable advances. The
first volume is only dedicated to theory; the other two are of a practical na-
ture. Frézier based his ideas on clear and unambiguous definitions, phrased
general rules, and proved all his claims. He dealt extensively with curved sur-
faces in space and, following the needs of stereotomy, preferred such surfaces
that can be generated by mechanical grinding processes, hence, stated in a
modern fashion – ruled surfaces: a straight line is moved so that it is inserted
along two curves at possibly different speed levels. He also solves the prob-
lems very generally for constructing the curve of intersection, for spreading a
developable surface in the plane, and for determining the angle of intersection
of two surfaces.

The historical accomplishment from Gaspard Monge is based on this pre-
history. Coming from a very simple background, his talent was discovered
early due to fortunate circumstances. He went to the military engineering
school at Mézières, which, however, only offered officer education and train-
ing to aristocrats at that time. Talented individuals of lower class could
join the so-called “plaster class”, which led to an occupation as supervisor
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Illus. 6.3.10 Geometrical construction in the field

[A. Mallet: Les travaux de Mars (1672)]
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at stronghold constructions or technical drawer and/or producer of models.
Since Monge again sparked attention due to his original and well-considered
solutions of geometrical-technical problems, he was taken out of class and
promoted to teach his aristocratic classmates, although they did not pay him
any respect whatsoever. This experience made him an enthusiastic follower of
the French revolution. He was one of the initiators of the Polytechnic School
founded in Paris in 1794 and was temporarily director. If we look at this very
unemotionally, his main accomplishment in descriptive and/or constructive
geometry was securing the leading educational place for boarding pupils of the
Polytechnic School, who were treated like cadets. Furthermore, he conceived
of excellent teaching programs and also gave excellent lectures himself, wrote
a respective textbook and inspired a whole generation of French geometers
due to his personal charisma. This occurred mainly in the 19th century and
will be looked at individually later.

Monge’s purely scientific significance for descriptive geometry lies, above all,
within the fact that he was the first to say aloud as clearly as possible in his
time that the responsibility of descriptive geometry is twofold:

“First, it should deliver methods to map all spatial figures that have all three
dimensions, i.e., length, width and height onto a paper that only has two
dimensions, i.e., length and width, given that these figures can be strictly
defined.

Second, it should teach the method for recognising the shape of the spatial
figures and for deriving all theorems that follow from the figure and the
mutual position of the spatial figures, all based on an accurate drawing.”
([Monge 1798], translation into English from German of the first sentences of
his textbook, emphases added)

We can phrase the opinion expressed here even more precisely: we are not
simply dealing with a plane mapping of spatial objects, but are concerned
with creating a two-dimensional model of the three-dimensional space in
which problems that actually apply to space can be alternatively solved based
on their plane representatives. Thereby, the problems can address construc-
tions in the narrow sense, decision processes and proving theorems. This
thought approaches descriptive geometry methodologically to what we nowa-
days would refer to as coding, i.e., coding to make objects more manageable
for algorithms, in other words, in an analogy to number calculation by means
of number naming systems, to manipulate functions (calculating zeros, dif-
ferential and integral calculus, ...) by means of formulae that represent these
functions, and to edit geometrical questions by means of the coordinates of
the relevant object. Monge must have been especially aware of the last men-
tioned analogy, i.e., the great methodological proximity between the coordi-
nate method and the methods of descriptive geometry, since he also devel-
oped the coordinate method to serve as the tools for constructive problems
of three-dimensional space and taught engineers how to use both methods
parallel like their “left and right hand”.
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Illus. 6.3.11 Gaspard Monge, painting by J.G. Elzidor Naigeon

(Museée de l’Histoire de France, Versailles)

The fact that we are not insinuating that Monge had anything to do with this
interpretation of his first sentences will be reflected by a few further sentences
of his Géométrie descriptive:

“First problem: A point P is given by means of its two projections P ′, P ′′

and a straight line g is given by its two projections g′, g′′. Construct the
projections of straight line h, which passes through point P and is parallel to
straight line g.” [l.c., p. 23] If we translate this into the language of the end
of the 20th century, this means: In space we have an operation, that for each
single point P and one straight line g assigns the parallel through P to g.
Point P is now given in the plane (two-plane) model of space by its coding
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P ′, P ′′ and the straight line by its coding g′, g′′. Describe an algorithm that
will fabricate code h′, h′′ of the outcome.

“Compare descriptive geometry with algebra... Descriptive geometry acts in
this point exactly as algebra, neither of which had a general method to convert
a word problem into equations.

...and it is only possible to get beginners used to grasping these relations
accurately and writing them in equations by using widely different examples.
However, just as there are methods in analysis to further deal with equations
and to deduct the values of the unknowns with their help after a problem
has been converted into them, there are also general methods in descriptive
geometry to construct everything, which results from the shape and position
of the latter, once the solids have been projected (i.e. after the coding has
been executed).

It is not without intention here that we compare descriptive geometry with
algebra; both branches of mathematics are most closely related to each other.
There is no construction in descriptive geometry, which cannot be transferred
to analysis; and vice versa, concerning problems that do not contain more
than three unknowns, every analytic operation can be grasped as a descrip-
tion of a geometrical operation. It is desirable that these two branches of
mathematics would be looked after together...” [l.c. p. 17f.]

Monge was aware that the “empty” plane becomes a model of the entire
space, if we mark a fixed straight line, i.e., the “axis”, by interpreting it as
the straight line of intersection of two planes perpendicular to each other
that afterwards are folded onto one another in the plane of projection. Thus,
he differed from his predecessors since the top view is not located on one
semi-plane and the front view on another one regarding a base line, but each
point in the plane of projection has a double function as the top view image
of a point and simultaneously as the front view image of a generally different
point. Of course, it soon became obvious that this fine program would en-
counter difficulties. Already, a straight line cannot always be determined by
means of the pair of top and front view images. Hence, Monge utilised addi-
tional planes of projection and the so-called traces (intersections of straight
lines and planes with the planes of projection) in order to be able to code a
greater amount of spatial objects in the plane. Thereby, he used many fea-
tures that his predecessors had already developed by means of the concrete
case. However, Monge was primarily concerned with generality.

When Monge’s Leçons de géométrie descriptive was first circulated in writ-
ten form after his lectures in 1795 (first public version in 1798), his work had
already fully matured, since Monge had tested his methods for many educa-
tional years. He was not allowed to publish any of that before 1789 since his
methods were thought of as militarily important and, thus, secret. (Strangely,
this secret was not only forbidden from being passed on to foreign countries,
but also to other competing French military engineering schools like the ones
at Metz and Besançon!) Hence, it seems that some of his lecture notes may
have gotten into the hands of the competition. One of Monge’s first students

6 The development of geometry in the 17th and 18th centuries



6.4 Competing for the parallel postulate 373

in Paris, S. F. Lacroix (mentioned in another context because of his influ-
ential textbooks on coordinate geometry, but who also taught in Besançon
from 1788 until 1793, worked at the universities in Paris afterwards, and was
friends with Monge), published his own textbook on descriptive geometry al-
ready in 1795, differing only slightly from Monge’s. Lacroix explained in the
foreword that he had already had access to drawings and notes in Besançon
years ago via some of Monge’s former students. He had ordered these draw-
ings and notes himself into a textbook framework before Monge’s lectures
were printed. Other reports (e.g., Dupin’s Monge biography, 1819) basically
confirm this.

6.4 Competing for the parallel postulate

The question of the provability of the 5th Euclidean postulate and/or its sub-
stitutability by an “evident” assumption, which had already been discussed
by several authors in Antiquity, was basically revived in Europe by Christoph
Clavius’s edition of Euclid from 1574 (cf. Chap. 5.1). Clavius did not just talk
about the efforts concerning this matter of ancient mathematicians, but also
dealt with the problem himself and proved the 5th postulate under the as-
sumption that a line, which had a constant distance to another line, is also
a straight line2.

In 1641, Guldin used the same pre-condition as Clavius for his attempt at
proof. It is not by coincidence that it was often the Jesuits who focussed on
this question, since Euclid played a significant role in the development of their
educational system into a school that encouraged sharp-witted debate. After-
wards, many philosophers dealt with this problem up to the end of the 18th

century, though it was rarely the leading mathematicians (as already men-
tioned, elementary geometry had become old-fashioned). In cases in which
they did take part, their “contributions” remained far below their usual level
of excellence, e.g., Euler [Belyi 1968] or Wallis. The latter was under certain
external pressure. He was in charge of a chair founded by Sir Henry Savile, an
office predecessor at Oxford. Savile had connected the founding of the chair
with the condition that each one in charge of the chair would have to ad-
dress the two afore-mentioned “weak links” of ‘Elements’, which he referred
to as “naevi” (birthmarks). (Apart from the parallel problem, there is also
the notion of ratios in Euclid’s work, which at that time was unclear and is
to be found especially in the 6th definition of Book V and the 5th definition
of Book VI.) Hence, Wallis also held public lectures on both these topics
(printed in the second volume of his mathematical works). The quintessence

2 Taking a look at the spherical surface could have taught him the lesson that this
train of thought is not self-evident: the curves, which are of constant distance there
to the geodesic great circles, are circles but no great circles. Unfortunately, the
extensive analogies between plane and spherical geometry were rarely consciously
perceived.
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Illus. 6.4.1 Saccheri’s quadrilateral

of his attempt at proof from 1663 lies within replacing the 5th postulate with
the requirement that there are similar triangles (here meaning: agreeing in
all angles) of any size for each triangle. At least, Wallis hinted at a critical
distance to the general opinion of the time that axioms are characterised as
theorems neither capable of proof nor requiring it. He writes: “However, I do
not criticise the fact at all that Euclid did not provide proof. Rather, I would
not even complain, if he had stipulated even more unproven conditions; for
instance, if he (like Archimedes) had claimed that the straight line is to be
the shortest one amongst all lines between the same extremities. In this case,
he would not have needed to pre-deliver nineteen theorems before proving
that two triangle sides together are greater than the third, and other things,
which are actually self-explanatory.” [Wallis 1693, p. 674].

Girolamo Saccheri, also a Jesuit and mathematics professor in Pavia, pub-
lished an extensive and relatively high-class text in 1733 that refers to Savile’s
challenge in its title, Euclides ab omnio naevo vindicatus (The Euclid Free of
Any Defect). Herein, he introduced the figure now referred to as the Saccheri
quadrilateral (Illus. 6.4.1), whereby AB = CD and the angles at B and C
are right. This figure was linked to three possible hypotheses, i.e., angle α in
the figure could be acute, obtuse or right.

The latter case is equivalent to the parallel postulate (we recognise the corre-
lation to the requirement that the curves of constant distance from a straight
line be straight lines themselves.). The second case also applies to spherical
surface, but verifiably not to the plane. Saccheri made two failed attempts
to show that the hypothesis of the acute angle is contradictive. However,
he had thereby already discovered a series of theorems of the late so-called
absolute geometry (those theorems that apply equally to Euclidean and non-
Euclidean geometry and, thus, are independent of using or dismissing the
parallel postulate).

It is to Friedrich Engel and Paul Stäckel that we owe the great accomplish-
ment of having brought back into the general consciousness the extensive
pre-history of non-Euclidean geometry, which had finally been accepted af-
ter almost having been forgotten by the end of the 19th century, and that
the important early texts, apart from Wallis, and particularly from Saccheri
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Illus. 6.4.2 Lambert’s quadrilateral

and Lambert, were rediscovered and made available in German translation.
Their bibliography of texts on the parallel problem covers over one hundred
entries from between 1557 and 1800 (distributed very unevenly in time and
accumulated towards the end of the stated period), amongst them the above-
mentioned, but not,for example, Euler’s texts, which were still unknown back
then. The doctoral thesis by Georg Simon Klügel from 1763, inspired by A.G.
Kästner, on the history of the parallel postulate was a great preparatory work
for this undertaking. At that time in 1766, the most important work by Lam-
bert had not even been written yet (it was published posthumously in 1786),
whereas Lambert knew Klügel’s doctoral thesis and was probably inspired
by it to engage with the problem himself.

Lambert introduced a figure that was similar to Saccheri’s, but easier to
handle for the matter at hand, namely the one shown in Illus. 6.4.2. It was
also shown that the assumption that α is obtuse is not compatible with the
remainder of the axioms of Euclidean geometry, but applies to the sphere.
Furthermore, he indicated that the assumption that α is a right angle is
equivalent to the parallel postulate. Lambert also tried in several ways to
contradict his “hypothesis of the acute angle”, but remained unsatisfied with
all his results in contrast to his predecessors. He went so far with the con-
clusion of the hypothesis of the acute angle that he recognised that the area
of a triangle must then be proportional to the difference between the sum
of angles and 180 degrees and compared this to the fact that the area of a
triangle on a sphere is equal to the difference of the sum of angles against
180 degrees multiplied by the radius square. Then he wrote: “I might almost
draw the conclusion that the third hypothesis occurs in imaginary spherical
surfaces. [i.e., if we take radius r of the sphere to be purely imaginary so that
r2 is negative and the symmetrical difference of the sum of angles turns into
a defect]. At least, there always has to be some reason why it [the hypotheses
of the acute angle] cannot be overruled in plane areas as easily as it was with
the second [hypothesis of the obtuse angle].” (English translation of German
text by [Engel/Stäckel 1895, p. 203])

Due to his remarks on the applicability of the hypothesis of the acute angle
on a spherical surface of imaginary radius, Lambert had indeed approached
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non-Euclidean geometry more than Bolyai and Lobachevsky, who are now
accepted as the founders of non-Euclidean geometry. However, in contrast to
Lambert, they did not offer anything else other than largely extended edited
conclusions based on the negation of the parallel postulate and their inner
certainty that this theory did not yield any logical contradictions, but only
collided with everyday experience or rather with the acquired prejudices. In
contrast, Lambert would have had a model for this theory if he had just felt
confident enough with his subject matter. It seems, though, he was not, since
by no means did he conclude his efforts to find a contradiction at the cited
location and left everything unpublished while alive. Johann III Bernoulli
published this manuscript in 1786 as the first of a series from Lambert’s legacy
in theMagazin für reine und angewandte Mathematik (Magazine for Pure and
Applied Mathematics), which only existed for a short period of time since it
seems that it did not provoke any interest and was completely forgotten over
the course of time. The publisher of the magazine, C. F. Hindenburg, made a
comment regarding this matter: “I have ruled differently, based on versatile
experience, that what is claimed, i.e., that the proof of Euclid’s axiom can
easily go so far that that which remains not just appears apparently correct,
but also seems to be made up for and that the proof could be supplemented by
this, namely: that what still needs to be proved seems to be almost nothing
at first; but this apparent little something, if we want to correct it with
all our strength, is always the main issue if we look more closely; usually
it presupposed the theorem or one equal to it [i.e. logically equivalent]...”
[Engel/Stäckel 1895, p. 143].

Hindenburg’s commentary hints at psychic torment, which, for the partici-
pants, was linked to the ongoing competition to solve this problem and for
which there was nothing comparable in mathematics before 1800. Such sit-
uations occur more and more often later on. For instance, think of Cantor’s
competing in vain for the continuum problem, the long fight for the four
colour theorem (see section 7.8) or the still unresolved P versus NP problem
in computational complexity theory3. In order to anchor this impression, we
quote a section from a letter. The letter was written by Farkas Bolyai to his
son Janos in 1820, having discovered that he was also dealing with the paral-
lel problem just as his father had. “You must not investigate parallels in this
manner. I know this way until the end – I also have measured this endless
night, every light, every joy in my life has been erased by it – I summon you
by God! Leave the theory of parallels in peace – You should feel the same
repulsion from this as from a sloppy handling, it could cost you all your mo-
tivation, health, tranquillity and entire happiness in life. – ... ” (Translation
by J. Schreiber from German [Bolyai/Stäckel 1913, p. 76]). (This was indeed

3 It concerns this question whether an algorithmically solvable problem that can
be solved by a non-deterministically working system, which can follow many pos-
sibilities simultaneously and continue to branch out further and further within a
polynomial time limit (in dependence of the format of input) can also always be
solved by a strictly sequentially working system in polynomial time.
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the destiny that awaited Janos Bolyai. By the way, father Bolyai’s exuberant
style is due to the fact that, although actually a mathematics teacher, he was
also a treasured writer.) To complete the chapter on the fruitless competi-
tion for the parallel problem, we must mention that Adrien-Marie Legendre
attempted to prove the 5th postulate in his textbook Eléments de géométrie,
first published in 1794. He realised the mistake of his attempt at proof shortly
after publishing and fabricated a new proof for the next edition that was re-
peated over and over again until the 12th edition in 1823. Thereby, Legendre
found different correlations, which are still important nowadays, e.g., the two
theorems named after him:

1. Under the pre-condition of the Euclidean axioms different to the 5th pos-
tulate, the sum of angles of any triangle is always smaller than or equal to
180 degrees. (Nowadays, we know that we also need the Archimedean axiom
for this.)

2. If the sum of angles in any triangle is 180 degrees, so it will be in every
triangle.

Furthermore, for example, he could prove without the parallel postulate that
we can construct triangles of the same sum of angles for which the sum of
both base angles is smaller than ε, for each triangle and any small positive
error bound ε. These triangles seem to be arbitrarily flat. It is indeed diffi-
cult to imagine that the third angle does not need to converge against 180
degrees, in contrast to what Legendre had believed and had tried to prove
([Legendre 1844, p. 16], see Problem 6.4.2). This took place in an environ-
ment in which the leading French mathematicians had assumed the point
of view that it was uncalled for to keep trying to prove theorems that were
generally accepted by everyone and the truth of which were granted by expe-
rience. Clairaut wrote in his Eléments de Géométrie from 1741: “Extensive
examinations of things, which our healthy common sense already decides be-
forehand, are redundant and only serve to obscure the truth and to scare
the reader off.” (English translation of German text in [Engel/Stäckel 1895,
p. 153] by J. Schreiber). Hence, there was a French anti-Euclid movement,
which has continued through Dieudonné and the other members of Nicolas
Bourbaki, thus, up to the present day!

Although the parallel problem appears to be either meaningless or a play-
ground for outsiders, laymen and crazy people from the view of many of the
most productive mathematicians of the 17th and 18th centuries working in
accordance with the spirit of their time, we see in the painful competition
of the participants, if we probe deeply, that something fundamentally new
wanted to reveal itself, i.e., a deeper insight into the nature of mathematical
proofs, which only led to the realisation of the formal character of mathe-
matics (even then still incomprehensible and not fully understood by many
mathematicians) at the end of the 19th century, the clarifications of the no-
tions axiom system, theory, structure, model, conclusion, independence, etc.
We will again quote Lambert, who saw further here than his contemporaries
as a logician and methodologist. If they had only read and understood! “And
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since Euclid’s postulate and remaining axioms have been expressed now in
words, we can and should demand that we can never call upon the matter
itself but present the proof symbolically – if possible. In this respect, Euclid’s
postulates are equal as just as many equations, which we have already been
faced with and from which we must derive x, y, z & c without looking back
at the matter itself.” [Engel/Stäckel 1895, p. 162].

The final solution of the parallel problem in the 19th century was (despite sev-
eral attempts by Lobachevsky) completely meaningless for the applications
of mathematics. However, it made the greatest contribution to recognising
the true nature of mathematics. This meant simultaneously the end of the
concept that mathematics is a natural science and, above all, that geometry
was the theory of the real and only possible physical space. We want to return
again to the analogy of the painful competition for the continuum problem,
the four colour theorem and the P versus NP problem: Why was the first
painful? As a result of it, mathematicians had to say their goodbyes to the
much-loved concept that real numbers, the apparently so familiar original
matter of classic mathematics, could each be described completely unam-
biguously by formal means. Why was the second painful? Mathematicians
had to accept that there are problems that cannot principally be solved in
an “elegant” manner, in other words, in a manner that was straightforward
for common sense and doable in human time, although they were solvable.
This bade farewell to the long practised concept that, in the end, truths are
always simple and nice once one has found the right path to them. Why is
the P versus NP problem painful? We do not know yet, but one day it will
open the door to a fundamental new cognition, and then we will know.
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Essential contents of geometry in the 17th and 18th centuries

1591–1661 Gerard Deargues: founding of projective geometry
1598–1647 Bonaventura Cavalieri: Geometria indivisibilibus... (1635),

principle of calculating areas and/or volumes by decon-
structing in “infinitely thin” parallel sections

1596–1650 René Descartes: La Géométrie (1637), founding of coordi-
nate geometry: classification of curves according to their
generation by motion

1602–1675 Gilles Personne Roberval: method of arbitrarily small discs
to calculate area and/or volume

1607–1665 Pierre de Fermat: Ad locos planos et solidos isagoge (1636),
introduction to coordinate method: description of plane
point sets (curves) by means of algebraic equations (in
two variables), algebraic classification of conic sections, Fer-
mat’s principle

1613–1672 Jan de Witt: Extension of the coordinate method to include
the three-dimensional case

1623–1662 Blaise Pascal: Essay pour les coniques (1640) continuation
of projective geometry, Pascal’s theorem

1643–1727 Isaac Newton: parameter representation and classification
of curves

1646–1716 Gottfried Wilhelm Leibniz: curve geometry and area calcu-
lations with infinitesimal methods

1667–1733 Giralomo Saccheri: Euclides ob omnio naevo vindicatus
(1733): first approaches to non-Euclidean geometry

1707–1783 Leonhard Euler: Introductio ad analysin infinitorum vol. II
(1748) (application of analysis to geometry), treatises on
spherical trigonometry and map projections

1713–1765 Alexis Claude Clairaut: Examinations of spatial curves,
moon and planet orbits

1718–1777 Johann Heinrich Lambert: Approach to non-Euclidean ge-
ometry, texts on perspective, access to projective geometry

1746–1818 Gaspard Monge: Géometrie descriptive (1798), develop-
ment and fostering of descriptive and constructive geom-
etry
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6.5 Problems to 6

Problem 6.1.1: Dürer’s conchoid (“shell curve”)

1. Describe Dürer’s conchoid by means of a parameter representation. The
parameter chosen by Dürer himself suggests itself (naturally, since he
constructs the curve pointwise, only for equidistant, discrete values), we
will name t. Furthermore, a is the positive distance of the starting point
of t from the origin on the x-axis, b the length of the “pole producing”
the curve (Illus. 6.5.1). Angle α between pole and x-axis suggests itself
as an auxiliary parameter (which is expressed subsequently by t).

Illus. 6.5.1 Figure to Problem 6.1.1

1. Show without calculation by elementary considerations that

a. The maximum of the y-values of the conchoid is b and exactly as-
sumed for t = a

b. The curve asymptotically approaches the straight line y = b/2 · √2
for t → ∞ (equal in meaning to x → −∞) and the straight line
y = −b/2 · √2 for t → −∞ (equal in meaning to x → ∞), whereby it
remains equal in both cases above.

c. Determine those curve points in which the conchoid has tangents,
parallel to one axis, in dependence of a, b by means of the derivation
x′(t) and y′(t).
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Tip: Dürer’s conchoid (shell curve) is also addressed on p. 58 in [Brieskorn/
Knörrer 1981]. There, you can also find an answer to the further question of
how the curve changes in dependence of the variable ratio of line segments a
and b. This ratio as second independent variable v yields a “shell area” above
the x-v-plane, from which another “shell curve” is cut out for every constant
v.

Problem 6.2.1: Sphere volume according to Democritus/Cavalieri

Imagine a semi-sphere with the circular area facing down and embedded in a
circular cylinder with equal base, the height of which equals radius R (Illus.
6.5.2). A cut made in any height h(0 < h < R) through the difference-solid
cylinder – semi-sphere parallel to the base yields a circular ring with outer
radius R and inner radius r. Recalculate that its area equals the area of the
circle of intersection, with a circular cone that is put into the cylinder with its
apex facing down at this height. Thus, from Cavalieri’s principle follows that
this cone and the difference-solid are equal in volume. If, consequently, the
volume of the cone (1/3 base · height) is known, we obtain the semi-sphere
volume 2/3 base · height, i.e., 2

3
πr3.

Illus. 6.5.2 Figure to Problem 6.2.1

Problem 6.2.2: Area under a cycloid arc

1. Describe the curve by means of a parameter representation, whereby the
marked roll angle ϕ shall serve as parameter.

2. Roberval imagined the motion, as suggested in the lower part of the pic-
ture, i.e., originating from a pure sine oscillation around the horizontal
orbit of the centre and an oscillation of the orbital point to the back
and/or put together in the front after passing the highest point. (This
method to explain orbital curves by means of overlapping different mo-
tions is characteristic for Roberval.) Since the oscillation towards the base
straight line is r sinϕ for every parameter value, it is, according to Cav-
alieri’s (and/or Roberval’s) principle, the club-shaped correction, which
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Illus. 6.5.3 Figure to Problem 6.2.2 shows the development of a common cycloid
by rolling a circle off onto a straight line

has to be attached to the area beneath the sine curve equal to the area
of the semi-circle. However, the area beneath the sine curve is π · r2 due
to symmetrical reasons (the piece missing under the straight line y = r
is congruent to the piece overlapping on the right). Consequently, the
area below the cycloid arc between start point and apex is 3

2πr
2 and the

area below the entire arc (0 < ϕ < 2π) is the double there, again due to
symmetrical reasons.

3. Solve the same problem by means of integral calculus and compare the
results. Roberval’s approach is “heuristic”, but reveals the reason for the
surprisingly smooth result.

Problem 6.2.3: Fermat’s problem, Torricelli point

We study Fermat’s problem to determine point P0 for n given points Pi

(i = 1, ..., n), for which the sum f of the distances P0Pi becomes minimal,
first for any n and in the k-dimensional Euclidean space.

a) Represent the distance sum f , which is to be minimised, as a function
of k coordinates x1... xk of a variable point P and form the k partial
derivatives. The necessary conditions for an extreme value yield that the
wanted point P0 can, at best, be located where either all these derivations
disappear or at least one of them does not exist. The latter applies if P
equals one of the points Pi. The first condition leads to the fact that the
vector sum of the unit vectors directed from P toward point Pimust be
zero.
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b) The existence of the wanted minimum point results from the fact that
(k - 1)–dimensional subsets of the points P , for which the distance sum
has a constant value s, tend with increasing s to a (k – 1)– dimensional
sphere, the centre of which is located amidst the given finite point set.
Illustrate this for the case k = 2. (In this case, the curves of constant
distance sum s become more and more similar to the circle for great s.)
Since the k-dimensional “almost-sphere” of all P with the distance sum
≤ s is closed and restricted, the continuous function f must have an
absolute maximum there (which is assumed everywhere on the edge) and,
thus, inside an absolute minimum.

c) The necessary condition obtained in a) states for the plane (k = 2) for
n = 2 that the wanted point can only be located on the line segment
P1P2 (of course, every point on the line segment fulfils the condition); for
n = 4 that the wanted point can only be located on the intersection of
the diagonals, if there is one, i.e., if the four given points yield a convex
quadrilateral and/or that it must be the one point of the four that is
located in the inside of the triangle formed by the other three. For the
case n = 3, on which Fermat had only focused at first, the condition found
in a) states that the three unit vectors must yield an isosceles triangle, i.e.,
For n > 4 and/or in case of k > 2 already for n > 3, the closed polygon

Illus. 6.5.4 Figure to Problem 6.2.3
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of n unit vectors still has too many “degrees of freedom” in order for the
necessary conditions delivered by differential calculus to be able to yield
any useful information about the location of the wanted point. (However,
we consider it approximately useful for practical purposes by gradually
progressing from an estimated starting point towards the greatest decline
of the distance sum.)

d) Take the case of n = 3, which in the plane is not as trivial as n = 2, 4, but
still solvable by means of elementary geometry. Cavalieri and Torricelli
independently found fine solutions for this original problem shortly after
the problem had been released (by Mersenne). Part of this was the expla-
nation that the “Torricelli point” (so called ever since then) of the triangle
P1P2P3 is only located inside the triangle if all angles of the triangle are,
at most, 120 degrees. Otherwise, especially in the case of collinearity, that
point of the three in which the possibly even degenerated triangle is too
flat is the Torricelli point itself. Prove this! Illus. 6.5.4 shows the solution
of Fermat’s problem, which can be justified and constructively realised
most easily. For any point P inside triangle P1P2P3, traverse P3PHQ3

has distance sum PP3+ PP1+ PP2 as length. This distance sum is al-
ways larger than the direct line segment P3Q3 or is only equal if P is
located on this line segment. Give reasons for this (particularly: why is
HQ3 = PP2 ?) and conclude from this that P0 is the Torricelli point. How
would one consequently have to construct it?

e) Here is a tip for how to find the necessary condition (*) from c) without
differential calculus: if an ellipse with the foci P1, P2 intersects a circle
around P3, none of the intersections can be the minimum point, since we
enter the circle area along the ellipse and, thereby, decrease the distance
of P3, whereas the distance sum towards P1 and P2 remains constant.
Hence, the centre can only be located where such an ellipse and such a
circle touch each other. Since this consideration also applies to all other
divisions of the three points in a circle centre and two elliptical foci, it
follows that all three angles are equal. Concerning the further history of
Fermat’s initiated problem, which is still exciting and newsworthy, and the
extensive literature on this topic, see [Schreiber 1986]. Only in 1988 was
it proven that the Torricelli point for more than four points in the plane
cannot be constructed generally by means of compass and straightedge
[Bajaj 1988]. [Mehlhos 2000] presents a much simpler proof for this and
the analogous statement in case of k = 3, n = 4. See Problem 7.3.6.

f) Lightly modifying the idea sketched above indicates that the Torricelli
point of four points in space, which yields a tetrahedron that is not too flat,
can only be located where an ellipsoid revolving around two of the points
(as foci of the revolving ellipse) and an ellipsoid revolving around the other
two points touch each other. As shown by Mehlhos, the coordinates of this
point cannot generally be represented by quadratic radicals anymore, i.e.,
the coordinates of the Torricelli point cannot be constructed with compass
and straightedge based on the given points.
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g) Prove that the Torricelli point of n points, which have a (mirror or central)
symmetry, must be located on the symmetry axis and/or in space on the
symmetry plane and/or on the centre of the symmetrical mapping.

Problem 6.2.4: Construction of the circles of principal curvature of an el-
lipse

a) Based on the general formula for curvature radii of a plane curve given by
a parameter representation, derive these radii for an ellipse in the vertices.

b) Consider how we can practically construct the circles of principal curva-
ture from the given position of the vertices with compass and straight
edge. (Concerning ellipses with an eccentricity not too large, a marginal
adjustment between these circular arcs by eye normally suffices in order
to draw the ellipse sufficiently exactly for most purposes, such as in de-
scriptive geometry.)

*Problem 6.2.5: Flatting of Earth

The two equations obtained in 6.2.4 for the radii of principal curvature of an
ellipse in dependence of the semi-axes a, b can easily be resolved according to
a and b. The flattening of the Earth ellipsoid determined during the arc mea-
surement expedition of the French Academy of Sciences in 1735/37 to South
America (Lacondamine, Bouguer) and Lapland (Maupertuis, Celcius) was
based on this. By geodetically measuring the arc for a difference of latitudes
of, for example, one degree on an arc belonging to a meridian at both the
equator and the North Pole, we obtain (by adapting Eratostenes’ method)
the radii of the circles of principal curvatures. Since the flattening is not very
strong and the curvature only changes slowly close to the vertex, we can take
values measured in the greatest possible proximity to the North Pole and/or
the equator as good approximations for the exact principal curvature. Sub-
ject the conducted calculation to an error analysis as already done by Celsius
in his time in order to stand up to unjustified objections from the Cartesians,
who, in favour of the Cartesian theory of the extended ellipsoid of revolution,
doubted the results of the expeditions.

*Problem 6.3.1: Lambert’s perspectograph

a) Illus. 6.5.5 shows Lambert’s drawing of the perspectograph he invented in
1752. Turn this “technical drawing” into a representation of the geomet-
rical principle and use it to explain how it works.

b) How could we use a detail featured in Lambert’s drawing that ensures
the equality of two variable line segments, always perpendicular to each
other, to complete Dürer’s apparatus for drawing the conchoid?
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Illus. 6.5.5 Figure to Problem 6.3.1: Lambert’s drawing of the perspectograph

*Problem 6.3.2: Relief perspective and Desargues’ theorem

Illus. 5.3.8 shows the principle of relief perspective. Having selected a frontal
plane and a parallel vanishing plane as well as a visual point A in the half-
space averted from the vanishing plane regarding the frontal plane, the half-
space behind the frontal plane is mapped injectively onto the layer between
frontal and vanishing plane, so that the image point f(P ) of each point P of
the original half-space is located on the visual line from A to P and, hence,
provokes the same impression in the eye as P . Thereby, every bundle of paral-
lel straight lines g has a common vanishing point Fg in the vanishing plane, in
which the images of the parallel straight lines meet. By arbitrarily choosing a
vanishing point Fg on the vanishing plane and/or equivalently by arbitrarily
choosing a point P0 on the frontal plane we can, given point P , construct
image point f(P ) between the frontal and the vanishing plane or, given im-
age point Q, the original point P with f(P ) = Q. Consider how the proof
that each constructed point is independent of this selection must necessarily
lead to Desargues’ theorem (applicable in the general spatial case) whereby
the infinitely distant straight line of intersection of front and vanishing plane
occurs as axis of perspective and image point Q = f(P ) as centre of perspec-
tive. From the viewpoint of projective geometry, nothing would change if we
chose a straight line located in the finite as axis of perspective, i.e., we could
also map the half-space behind the frontal plane onto a wedge-shaped relief
between front and vanishing plane.
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Since the practical application of relief perspective was flourishing at Desar-
gues’ time, it is possible (but, unfortunately, cannot be proven) that Desar-
gues was led to his theorem exactly by the idea sketched above.

Problem 6.4.1: Defect of triangles as area measure

Under the assumption that the sum of angles of triangles is smaller than or
at most equal to 180 degrees, the defect of a triangle is the difference of 180
degrees – sum of angles of the triangle. Congruent triangles have, of course,
the same defect, based on this definition. Prove the following:

a) If triangle D is deconstructed into two part triangles D1, D2 by a transver-
sal (from a corner to a point at the opposite side), then defect (D) = defect
(D1)+ defect (D2).

b) If there are any triangles with a positive defect at all, then there are arbi-
trarily large triangles and arbitrarily small triangles with positive defect.

c) Since, consequently, every triangle contains a part triangle with positive
defect, every triangle has, according to a), a positive defect. Due to the in-
variance of the defect during motion and the additivity (a), the defect can
serve as a measure of area. We just have to standardise it, i.e., determine
area 1 for a freely selectable triangle.

*Problem 6.4.2: Legendre’s pseudo-proof for the angle sum of 180o (ac-
cording to Legendre 1823)

Let ABC be any triangle and, thereby, without restricting the generality
BC ≤ AC ≤ AB.

Illus. 6.5.6 Figure to Problem 6.4.2
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According to Euclid’s ‘Elements’, I.18, we can conclude α ≤ β ≤ γ, based on
this and without relying on the 5th postulate. Construct M as the centre of
BC,C ′ on the axis AM so that AC ′ = AB,K on AB so that AK = AM
and B′ as the duplication of AK beyond K (Illus. 6.5.6a). The reader is
asked to prove by only using the theorems of triangle congruence (which are
independent of the parallel postulate) that the angles drawn in the illustra-
tion and named the same are indeed equal. As a result, the sum of angles
of triangle AB′C′ equals the sum of angles of triangle ABC. Furthermore,
since B

′

C
′

= AC ≤ AB = AC ′, as a result of I. 18 applied to the triangle
AB′C ′, α′ ≤ α′′ and consequently, α′ ≤ 1

2
α. By repeating this construction

sufficiently enough, we obtain the triangles AnBnCn, so that the following
applies to the respective angles:

αn + βn = αn−1 ≤
(
1

2

)n−1

· α.

Legendre believed to be able to conclude from this that point Cn should con-
verge against the straight line AB if the sum of both base angles converges
against zero and, thus, angle γn should converge against 180 degrees. Since
the sum of angles remains constant during the entire procedure, the sum of
angles would already have to be 180 degrees in the initial triangle. However,
in reality the triangles AnBnCn already adopt the shape shown in Illus.
6.5.6b in non-Euclidean geometry, whereby their initial defect is preserved,
i.e., if the sum of both base angles is sufficiently small, angle γ tends against
the difference of 180 degrees and the defect of the initial triangle.
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The 19th century was a great century for geometry, discoveries and
inventions in natural sciences and techniques, but also marked by
colonialism and social tensions.

1810 Gergonne’s Annales de Mathematiques: first modern math.
journal

1813 Battle of Leipzig ends Napoleon’s domination in Europe
1815 Battle of Waterloo, Congress of Vienna
1822 Ch. Babbage finalises first program-controlled computing ma-

chine for tabling polynomials of the third degree
1822 J. N. Niepce invents photography
1825 First train in England (Stephenson)
1826 First multi-colour print (A. Senefelder)
1830 July Revolution in France
1833 Electromagnetic telegraph by Gauss and Weber
1837-1901 Reign of Queen Victoria, Expansion to the Empire
1838 F. W. Bessel, F. G. W. Struve and T. Henderson measure

almost simultaneously the first fixed star parallaxes
1846-1848 War between Mexico and USA: Texas, California, Nevada,

Utah, Arizona and New Mexico become States of the USA
1851 First world exhibition in London
1854-1856 Crimean War
1854 Electric bulb (H. Goebel)
1861-1865 Secession War in USA
1862 Society of Czech mathematicians and physicists: first national

union of mathematicians
1863 London underground
1869 Suez Channel opens
1870/71 War between Germany and France
1871 First volume of Jahrbuch über die Fortschritte der Mathematik

(First Annual Book on the advances of Mathematics) is pub-
lished

1874 Cantor’s first publication on set theory
1875 International metre convention
1876 Queen Victoria becomes Empress of India
1879 Carbon filament lamp (Th.A. Edison)
1880 First use of electric lighting
1884 International agreement on prime meridian at Greenwich
1895 Röntgen discovers X-rays
1896 Becquerel discovers radioactivity
1897 First International Congress of Mathematicians (Zurich)
1898 War between Spain and USA

Puerto Rico and the Philippines ceded to USA
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7.0 Preliminary remarks

At the turn from the 18th to the 19th century, both the character of mathe-
matics and its external conditions changed fundamentally. The industrialisa-
tion beginning in 1770 was the general background for technological develop-
ment. However, political turmoil in Europe caused by the French Revolution
and the following Napoleonic Wars, which conveyed civil ideas to almost ev-
ery corner of Europe, also contributed greatly to the changes. Next to the
local and national academies, institutions of higher technical education were
established in many countries for research and the teaching of mathematics.
The philosophical faculties of the classical universities, which for centuries
had only served as pre-study institutions for students of theology, medicine
and law, took on a new function as educational bodies for teachers of higher
schools of general education. This led to plenty of new professorial vacan-
cies, especially in mathematics, over the course of the 19th century to the
formation of the status of “Privatdozent” (unsalaried university lecturer) as
well as the founding of institutes and seminars. Examination regulations for
teaching candidates were passed in Prussia in 1866, explicitly demanding
that prospective mathematics teachers be put into the position of working
independently within the main areas of geometry, analysis and mechanics.
Many magazines were established, often in connection to local and, towards
the end of the century, national associations and societies of mathematicians.
Due to publications in the respective national languages of each country,
Latin was quickly superseded as the international language of science. How-
ever, since this was not accompanied by an increase in the teaching of foreign
languages at schools of general education (apart from a widespread knowl-
edge of French), and due to some very strong nationalistic feelings, a (more
or less silent) agreement on one well-established modern foreign language (as
is completely normal for us nowadays) was politically impossible. The rapid
increase in the number of productive mathematicians interacted with the
suddenly occurrence of language barriers in such a manner that there were
clusters of repeated discoveries, parallel developments difficult to follow, and,
hence, arguments of priority. An international understanding of the progress
of science was maintained until around 1870 by many book translations pub-
lished shortly after the original release and by just a few linguistically gifted
and interested mathematicians. For instance, the Irishman Hamilton easily
read English, French, German and several Oriental languages. Gauss began
learning Russian in old age. The Jahrbuch über die Fortschritte der Mathe-
matik (Annual Book on the Advances in Mathematics) was first published in
1871 (its first year under review was 1868) as the first mathematical body of
new books and seminar papers. It seems that the international effects of this
German publication have not yet been examined.

Whereas mathematicians had an overview of and edited mathematics as a
whole (without ever reflecting on it as a unit), including its most impor-
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tant applied areas, until the end of the 18th century, a specialisation within
mathematics developed very quickly in the 19th century that was only fully
comprehended by a few excellent scientists, such as Gauss, Cauchy, Jacobi,
Jordan and Poincaré. According to the general consensus, geometry, apart
from analysis, was the main area of mathematics during the entire 19th cen-
tury, and thus it branched out strongly. Some of its sub-disciplines were
heavily cross-linked with other branches of mathematics and also with ar-
eas of application outside mathematics; differential geometry, for example,
with analysis, geodesy, physics, the general (ultimately even philosophical)
space problem, but also still with descriptive geometry and its applications
in construction and machine building.

Until the 19th century and beyond, elementary mathematical teaching con-
sisted of calculating and, depending on country and type of school, more or
less pursued study of Euclid’s ‘Elements’. In 1773, the rather important math-
ematics professor J.A. Segner from Halle (Germany) still stressed the role of
geometry in accordance with Euclid for the development of logical thinking
as well as oral and writing skills in classic languages as part of his foreword
to a Latin school edition of ‘Elements’ (see [Schreiber 1987a, p. 124]). At the
University of Edinburgh in the middle of the 19th century, lack of awareness
of the works of Bolyai and Lobachevsky on non-Euclidean geometry led to
far reaching conclusions still being made based on the negation of the parallel
postulate as sheer exercises for students to draw strictly logical conclusions
[Kelland 1843] [Kelland 1864]. B. Bolzano also started his Betrachtungen über
einige Gegenstände der Elementargeometrie (Inspection of Some Objects of
Elementary Geometry) (Prague, 1804) with the sentences: “It is not unknown
that mathematics, next to the widespread use which is granted by its appli-
cations to practical life, can also deliver a second hardly minor use, although
not recognized at a first glance, by exercising and training the mind, by ben-
eficially promoting a sound way of thinking; a use which the state primarily
intends when demanding every academic to study sciences.” The mathemat-
ical “studium generale”, which was still mandatory for all first-year students
at the universities of the Habsburg Monarchy around 1840, proved a great
torment to the majority of those lucky students. For further information,
we refer to reader to the passage taken from the memoirs of the German-
Bohemian author Alfred Meissner to be found in the Appendix.

In the meantime, the emerging “Reformpädagogik” (progressive education)
had discovered “geometrische Anschauung” (geometrical observation) as an
important means of furtherance of education. Without going into detail, we
want to refer to the texts by J.H. Pestalozzi, J. F. Herbart, F. Fröbel and
A. Diesterweg. However, whereas Fröbel demanded the observation of sim-
ple geometrical solids and taking those into one’s hands, Diesterweg went
so far as to have his classrooms darkened in order to heighten imagination.
Such pedagogical differences of opinion also affected researching geometers,
such as Jakob Steiner, who, as one of Pestalozzi’s students and followers,
was a particularly argumentative representative of the style within geometry
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now called “synthetic” in contrast to “analytic”, or H.G. Grassmann and B.
Riemann, who had been heavily influenced by Herbart. Whereas “analytics”
emphasised the generality of the results achieved by algebraic and differential
calculus and the elegance of derivation, “synthetics” criticised the accompa-
nying neglect of the concrete case and geometrical observation. Gauss, who
was more of an analytic, wrote in a discussion of the third French edition of
Monge’s Géométrie descriptive:

“Indeed the investigations... [on spatial geometry] were dealt with exquisitely
in modern times by means of analysis and, thus, simultaneously withdrawn
from geometry, which only uses immediate observation. We also cannot deny
that the advantages of an analytic treatment in contrast to a geometrical one,
its briefness, simplicity, its uniform way, and especially its generality, usually
reveal themselves even more resolutely depending on how difficult and com-
plex the examinations are. However, in the meantime it becomes more and
more important to cultivate the geometrical method continuously...Due to
these reasons, it is a pleasure to see that in recent decades some French ge-
ometers have started cultivating this part of geometry [addressing] the ratios
of points and lines that are not located in a plane, of different planes against
each other ... as a special discipline under the name of géométrie descriptive.
Above all, we must praise the following work on this science for its great
clarity and precision of its recitation, a well-ordered transition from easy
to difficult and the wealth of new views and successful demonstrations and,
hence, recommend studying it as strengthening food for the mind, which is
why without a doubt we can contribute a plenitude to the revival and main-
tenance of the real geometrical spirit sometimes missed in new mathematics.”
(Translated into English by J. Schreiber based on German original in [Gauß a,
vol. IV, p. 359f])

Moreover, we want to mention the unmanageably large number of geometrical
textbooks for craftsmen and technicians of very different kinds (see text by
F. Wolff in Appendix), but also the origin of the great model collections of
different universities, which nowadays again enjoy an increasing appreciation,
despite having been condemned to gathering dust for a long time in the
central decades of the 20th century [Fischer 1986], [Böhm 1991]. Their origin
lies in France, where the geometrical materials of observation created since
Monge’s time belong to the protected national relics at the museums in Paris,
those that have survived the ages, anyway. Thus, looking at the broader
context, geometry of the 19th century offers a split picture between, on one
hand, picture-less printed pages always difficult to read, far from any concrete
view, and full of formulae, and on the other, a continuously polished culture
of representing and modelling.

Whereas the mathematical contents were “generally understandable” until
the end of the 18th century, any attempt to lead the history of mathematics
or one of its branches beyond this point harboured a risk of either presuming
too much expert knowledge of the readers or going off course in the description
of the developing mathematical contents in such a manner that the historical
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view was lost. Additionally, some developments that were marginal from the
viewpoint back then led to important new theories and applications in the
20th century, whereas many aspects that were at the centre of attention in
the 19th century had become old-fashioned in the meantime, broken off from
mathematics as technical special knowledge, or become meaningless due to
intra-mathematical or technical advances.

7.1 Descriptive and applied geometry

Paris at the beginning of the 19th century seems to have been one of the
few places where analytic and synthetic geometry cooperated under Monge’s
overwhelming influence, at least initially. Thereby, we should keep in mind
that Monge only taught sporadically after 1789 due to the large number
of offices he held and frequent extended absences (Italy in 1796/97, Egypt
in 1798/99), not to mention his intensive engagement with chemistry apart
from mathematics. Nonetheless, his rich contributions to both analytic and
synthetic geometry were usually swiftly incorporated into his constantly im-
proved and newly edited textbooks, many aspects of which were devised and
added by his students. Monge’s lifetime achievement harbours many pearls,
which nowadays belong to “geometrical folklore” (in other words, nobody
can remember where they come from), such as the notion of a director circle
of a conic section, which allowed for the viewing of all conic sections in a
perspective completely different from the algebraic or projective viewpoint
(Problem 7.1.1). His mathematical productivity decreased rapidly after 1805.
M. Chasles, himself a graduate of École Polytechnique, wrote in 1837: “It still
continues to be told in the story of the polytechnic school that Monge un-
derstood to an unheard-of extent how to clarify the assembled shapes of the
expansion in space and to sensualise its general relations and hidden prop-
erties by sole means of his hands, the motions of which followed his will
wonderfully and were always accompanied by the speaker’s true eloquence,
precision, wealth and depth of ideas.” ([Chasles 1837, p. 209], translated from
French original into English)

A long list of names came out of the school founded by Monge: J.-B. Meusnier,
J. N. P. Hachette and L. Carnot (the oldest students from the time in
Mézières), E. Bobillier, Ch. Brianchon, B. Brisson, Ch. Dupin, S. F. Lacroix,
G. Lamé, Th. Olivier, L. Poinsot, J. V. Poncelet, just to name the most im-
portant and gifted geometers of this time, which was also rich in noted names
in respect to other fields of mathematics. J. Gergonne, who founded France’s
first public mathematical magazine Annales des mathématiques pures et ap-
pliquées after the journal of École Polytechnique, also called himself Monge’s
student, even though he had not studied in Paris. This magazine quickly be-
came the main body of the style established by Monge, who did not disdain
analytical methods, but for whom visual ability and practicality remained



7.1 Descriptive and applied geometry 395

the core. Apart from the already multiply mentioned École Polytechnique
founded in 1794 and the University the École Normal Superieure (specialised
in educating teachers), the École des Ponts et Chaussées (bridges and streets),
the École des Arts et Metiers (similar to higher vocational schools) and the
École des Mines (something like a mining academy) all played a role in foster-
ing geometry in Paris. Most significant French mathematics professors taught
at several of these institutions at the same time after 1789, whereby they were
partially supported and represented by “adjuncts” (assistant professors) and
assistants. Monge, Carnot and Poncelet especially could only devote a portion
of their time to mathematics due to their military and/or public offices.

Brisson and Hachette published several edited and extended editions of
Monge’s main textbooks (apart from ‘Descriptive Geometry’ and ‘Applica-
tion of Analysis to Geometry’, published under different titles). Brisson added
appendixes on central perspective and shadow constructions to Géométrie
descriptive. The latter did not primarily serve artistic purposes back then
(although Monge had already referred to the use of descriptive geometry
for artists at suitable occasions in his lectures), but was meant to improve
comprehensibility and/or suggestiveness of technical drawings (Illus. 7.1.1).
Olivier established the construction of geometrical models. Hachette rendered
great services to the application of descriptive geometry regarding the tech-
nical drawings of machine building. Géométrie perspective (1828) featured
alternatives to the method of assigned normal views preferred by Monge.

It was written by engineer B. E. Cousinery, who, on one hand, related more
closely to central perspective and, on the other hand, represented the ba-
sic figures of space more symbolically, e.g., a point P is represented by an
orientated circle in the plane of projection, the centre of which is the foot
of the perpendicular of P , the radius of which “codes” the distance of P to
the plane of projection and its sense-class “codes” the half-plane (and/or the
algebraic sign) of this distance. (This approach was developed and called “cy-
clographics” by W. Fiedler in Germany in 1882.) The distance circle in central
perspective occurs first in this context as a special case in Cousinery’s works.
Thereby, the location of the visual point regarding the plane of projection is
represented by a circle, the centre of which is the main point and the radius
of which is the visual distance. In another description derived from central
perspective, Cousinery represented planes by their straight line of intersec-
tion with the plane of projection and its “horizon” regarding a visual point
A (i.e., the straight line of intersection of the parallel plane placed through
A with the plane of projection) located outside the plane of projection, and
proceeded analogously with the straight lines of space. Such ideas played no
permanent role in applications, although they temporarily occupied a wide
area in the textbooks on descriptive geometry, such as by Müller-Kruppa and
Krames. However, they prepared the concept of the later, so-called “transfer
principle”, the nature of which was to prove geometrical theorems by means
of reinterpretation of the participating objects (see, for example, Problem
7.1.3).
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Illus. 7.1.1 Conic gear in top and front view with exactly constructed shadow.
[Wolff 1840] (Descriptive geometry and its applications: Guide to teaching at the

Royal Institute for craftsmen education, Berlin)

Expansion of descriptive geometry

The mighty storm of geometry began to weaken in France in the middle of the
19th century and the majority of significant French mathematicians turned
towards other areas of mathematics, mainly due to the fact that the multitude
of individual results and applications could not be tamed by categorising new
theories and that Monge’s strong tradition had hindered the mathematicians
from turning towards issues of non-Euclidean geometry or inner differential
geometry. M. Chasles, who had made important contributions to projective
geometry in particular, wrote at the end of his famous Aperçu historique...
from 1837: “In old geometry, the truths stood isolated, new ones were difficult
to conceive of or to create and not every geometer who wanted could become
an inventor...At present, everyone can absorb some random truth and subject
it to different general principles, so that it is possible to replicate the number
of new truths almost infinitely.” (l.c., p. 263).

The theory of descriptive geometry spread quickly across Europe. For in-
stance, the first Russian technical university was founded as an institute for
engineers for traffic routes (construction of streets, bridges, etc.) in St. Peters-
burg in 1809 and the classes on descriptive geometry were absorbed by Faber
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and Potier, two of Monge’s students, “imported” from France. Faber wrote
the first crucial textbook for Russia in French in 1816, translated into Rus-
sian by Sevastyanov in the same year. (Later, Sevastyanov wrote textbooks
himself and is accepted as a type of “Russian Monge” in Russia nowadays.)
The first German textbook on descriptive geometry was composed by se-
nior construction director F. Weinbrenner from Karlsruhe (1810). A book by
Guido Schreiber, much richer in content, followed in 1828 in close connec-
tion to Monge. Further extensive textbooks were written by, amongst others,
Ludwig Burmester (also on illumination geometry and kinematics), Karl Wil-
helm Pohlke, and Christian Wiener (1884). The latter features a description
of the historical development rich in detail. Further centres of descriptive and
applied geometry were formed in Austria/Hungary (Vienna, Graz, Prague,
Brno and others) and Italy. However, Monge’s hope that descriptive geome-
try would become not just an essential aid and means of understanding for
techniques but also a permanently fruitful area of mathematics did not come
true. It fell very quickly into the hands of specialists who hardly had any con-
tact with other areas of mathematics and, thus, had neither opportunity nor
ability to address unresolved problems under new and general aspects. The
fact that descriptive geometry was dropped from mathematics – too early as
we now know – became apparent due to the fact that it was often an inde-
pendent teaching or examination subject next to mathematics and had many
peculiar notions and terms that were not in harmony with the remainder of
mathematics.

Apart from the multiplane method and central perspective, descriptive geom-
etry in the 19th century covered the different forms of parallel projection (also
called axonometry), the reconstruction of the spatial original image from two
central projections (later referred to as photogrammetry), relief perspective
and illumination geometry. The origins of photogrammetry can already be
found in Lambert’s works. Monge had also addressed them in his lectures in
anticipation of practical application when mapping out the field from the air.
(Remember that the first manned balloon flights took place in France from
1783 onwards.) Illumination geometry originated in the first half of the 18th

century (P. Bougner, Lambert, then Monge). Its central notions are isophote
(curve of same luminance strength on a curved surface at given central or
parallel illumination) and isopheng (curve of apparently same brightness,
additionally dependent on an assumed observer’s standpoint). Whereas illu-
mination geometry was first meant to help design pictures more realistically,
it was later also used in different applications of physics and techniques, such
as for the optimal illumination of rooms or the even drying of varnished sur-
faces. We refer the reader to [Bohne 1989] for a more detailed history of this
field.

Interesting approaches to a mindset that then developed mainly in entirely
different areas of mathematics (such as theory of errors, interval mathematics,
stability) can be found in applications of perspective in painting and theatre
decoration, beginning in a textbook by De la Gournerie (1859). For instance,
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there was an investigation into which area the observer’s eye could be al-
tered whilst ensuring that the distortions when viewing a perspective would
not exceed a given level. It seems that De la Gournerie was also the first to
pinpoint that the correct interpretation of a picture of central perspective
depends on additional information about the illustrated objects (e.g., that
we already know that certain line segments are equally long, certain angles
are 90 degrees, certain areas are horizontal or vertical, certain objects belong
together). Such traces - usually ignored and thought of as insignificant by
the classical historiography of mathematics - gain new importance and inter-
est from the view of modern scientific issues (picture recognition, artificial
intelligence).

Mathematically speaking, Pohlke’s theorem or “principle theorem of axonom-
etry” was a highlight. It is named after Karl Wilhelm Pohlke, who discovered
it in 1853, but only published it in 1860. Pohlke was at first “Privatdozent”
(unsalaried University lecturer), and then full professor from 1860 onwards,
for descriptive geometry and perspective at the Building Academy and the
Art Academy of Berlin. It is little known that a special case of the theorem
(for orthogonal axonometry) had already arisen from a work by Julius Weis-
bach, professor at the Mountain Academy Freiberg (Germany), published at
a remote location in 1844. This theorem has attracted the attention of math-
ematicians many times since then (amongst them, prominent ones, such as
H.A. Schwarz in 1864), partially due to its theoretical and practical meaning,
partially due to its difficulty in being proven by rather elementary1 means.
The big gap between mathematics and descriptive geometry is also made clear
by the fact that the theorem, which is highly interesting and indispensible
from a theoretical point of view, is not even mentioned in most textbooks on
descriptive geometry, let alone proven. It states that we can indicate a spatial
orthonormal basis and a direction of projection for each real two-dimensional
tripod OE1E2E3 (i.e., the vectors OEi span the plane of projection), so that
the given plane tripod is the parallel projection of the spatial one. Thus, this
theorem delivers the justification for the procedure common for axonometric
sketches of selecting the pictures of three pairwise perpendicular cube edges
arbitrarily or “intuitively”. Regardless of how we do this, Pohlke’s theorem
states that there is always one line of sight from which the cube looks exactly
as described.

Further branches of applied geometry

Apart from descriptive geometry, cartography and geodesy, as well as parts of
optics and mechanics, also belong to the pronounced applied fields of geome-
try, the development of which was characteristic for the 19th century. Optics
ultimately distanced itself far from its classical relation to geometry due to its
physical advances and now predominantly uses analysis as its mathematical
aid.

1 [Salenius 1978] gave a very illustrative newer proof (see Problem 7.1.2).
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The discovery and technical utilisation of double refraction, polarisation and
diffraction attracted enormous interest in crystallography and related ques-
tions of regular spatial configuration (more about this in section 7.9). Geodesy
and cartography lost their elementary geometrical character and were related
more and more to differential geometry. (Some of this will be mentioned in
section 7.4.) The theory of maps true to angle (referred to as “conform”
since Gauss) and area was approached and made equal to its modern con-
cept. Apart from further net drafts (also by Mollweide, Gauß-Krüger, Tissot
and Hammer), new topics for cartography were also made accessible. From a
geometrical perspective, the atlas of the magnetic fields of Earth published
by Gauss and Weber in 1840 may be especially impressive, since it was the
first time that components of a complicated spatial vector field were repre-
sented graphically (Illus. 7.1.2). The close link of the detailed geodesic and
cartographic exploitation of Earth to astronomical and mathematical aids
led to the filling of the first chairs for geodesy and even partially for geog-
raphy, established at German universities at the end of the century, initially
with mathematicians (e.g., Hermann Wagner for geography, 1880, Göttin-
gen; Ernst Hammer for geodesy, 1884, TH Stuttgart; Siegmund Günther for
geography, 1886, TH Munich).

The notion of vector (more in section 7.6), the theory of composition of
motions (more in section 7.7), graphic statics (above all, L. Cremona in Italy)
and the theory of mechanisms developed within the scope of mechanics.

Watt’s mechanism only delivers an approximately straight motion within
certain limits. Peaucellier’s mechanism represents the first historically exact
solution to the problem. It was shown later that there are also exact solutions
from five (instead of seven used by Peaucellier) parts and that an exact
solution with less than the five adjustable parts is impossible [Kempe 1877,
p. 9, 12].

Illus. 7.1.2 Maps for the calculated values of inclination.

Atlas des Erdmagnetismus (Atlas of Earth Magnetism) published by C. F. Gauss
and W. Weber. (Leipzig-London-Paris-Stockholm-Milan-St. Petersburg 1840; cf.

Gauß Werke (Gauss’ works), vol. XII)
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Illus. 7.1.3 Linear guiding by a) Watt (1784), b) Peaucellier (1864)

The latter started with individual questions and their solutions, such as the
linear guiding mechanism invented by James Watt in connection with the
steam engine in 1784 (Illus. 7.1.3 and Problem 7.1.4). What had been in-
vented in the Renaissance for the purpose of drawing special curves by means
of mechanisms now merged with the new needs of machine building to move
construction components along prescribed courses for the composition of ap-
proaches to theories, which were also developed by Poncelet in France, Cheby-
shev in Russia and J. J. Sylvester in Great Britain. A fine, popular scientific
introduction of this kind of “kinematics”, which reflects much of the ‘Zeit-
geist’, is [Kempe 1877]. Some engineering scientists were heavily criticised
by their professional peers because of their attempts largely to mathematise
practical mechanics. We want to mention Franz Reuleaux as a representative
who was also known in pure geometry for his discovery that, apart from the
circle, there are numerous, further plane figures of constant width, partic-
ularly the simple “Reuleaux triangle” (Illus. 7.1.4), which, however, Euler
had already published in 1778 in the Acta of Academy of St. Petersburg.
[Fischer 1986], for instance, shows spatial analogies.

Illus. 7.1.4 Reuleaux triangle and a further orbiform (figure of constant width)
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7.2 Projective and synthetic geometry

Carnot’s first book De la corrélation des figures de géométrie was published
in 1801. An extended edition from 1803 under the title Géométrie de position
is accepted as his geometrical main work. Since we can translate the title as
‘geometry of position’, which corresponds to the title of Christian v. Staudt’s
foundation of projective geometry discussed later on, his contribution is of-
ten associated primarily with the origin of projective geometry, which is not
entirely accurate.

However, Carnot had another wish, which could be roughly described as the
attempt to merge or reconcile the illustrative geometrical way of thinking
with the algebraic calculus of the coordinate method. Above all, he tried
to interpret the negative or even complex numbers that occur when dealing
analytically with geometrical facts. For this purpose, he imagined figures in
motion, which are constantly transformed into each other. (He himself high-
lighted the theoretical proximity to Euclid’s ‘porisms’.) Two figures stand in
a relation, if one of them is transformed into the other one by a continuous
change (which, of course, is not exactly defined by Carnot). For instance, if
we move a straight line that intersects a circle away from the circle, both
intersections merge first to one point, which is algebraically reflected in the
double solution of the equation for the intersections, and, subsequently, both
solutions of this equation turn complex. Then, Carnot also attempted in this
case to interpret the zeros as “codings” of the opposite position of circle
and straight line to each other. Thus, he gradually arrived at the geomet-
rical interpretation of negative and sometimes even complex numbers. Such
questions may have been triggered by Monge’s approach, according to his
student’s credentials, of repeatedly stressing in his lectures early on the no-
tion of radical axis (power line) of two circles as a phenomenon that first loses
its original illustrative meaning as a straight line through the two intersec-
tions of two circles if these circles do not intersect each other anymore, but
that, nonetheless, a purely geometrical interpretation is also possible for this
case based on the correct interpretation of the equation of the radical axis
(Problem 7.2.1). Carnot polemicised against negative quantities and wanted
to replace them by algebraically (nowadays, we might rather say proposition-
ally logically) working with notions, such as sense of description, sense-class,
orientation, inner – outer, etc. However, this turns out to be rather tedious
when executed, and, in the end, did not have any historical effect. To sum-
marise, we could say that Carnot’s ideas (in the shape of his collinear relations
and the coordinates to determine those) only very indirectly influenced the
development of projective geometry, but made way for the general concept of
geometrical maps, the invariants in a map and the group-theoretical structure
of map families.

a) According to the law of sine of plane trigonometry, it holds that CA :
CZ = sin γ : sin α, CZ : CB = sin β : sin γ′, hence (1) CA : CB = sin γ sin
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Illus. 7.2.1 Invariance of cross-ratio

β : sin α sin γ′, analogously (2) DA : DB = sin δ sin β : sin α sin δ′. Thereby,
we have to imagine line segments CA,CB,DA,DB and consequently, the re-
spective sine values as orientated or signed so that CA,CB have the same al-
gebraic sign, if they are equally orientated, i.e., C is located outside of line seg-
ment AB. Thus, the affine ratio (A,B;C) = CA : CB is positive if C is out-
side, but negative if C is within AB. It is zero for C = A, undefined for C = B.
The cross-ratio (A,B;C,D) of the four points A,B,C,D (which lie on a com-
mon straight line) is defined as (A,B;C) : (A,B;D) = CA ·DB : CB ·DA,
because of (1) and (2) consequently equal to (3) sin γ sin δ′ : sin γ′ sin δ. For-
mula (3) means that this cross-ratio is actually a property of the mutual
position of the four straight lines passing through Z to each other, indepen-
dent of the straight line passing through A,B,C,D. Hence, if we project two
straight lines onto each other from a centre Z, the cross-ratio of each four
image points remains the same as that of their original image points.

b) Straight line g is mapped onto g′ from centre Z so that the infinitely
distant point U of g is transformed, thereby, into the finitely located point U ′.
Regarding pointsO (origin of coordinates) and E, point P has a coordinate on
g, which we can write as an affine-ratio (P,E;O). Since (P,E;U), if defined at
all, can only have value 1 ((P,E;Q) tends towards 1 if Q tends towards U and
independently of the direction of Q), we can also write the coordinate from
P regarding O,E (and U) as a cross-ratio (P,E;O,U). Due to the invariance
of the cross-ratio, P ′ on g′ has the same coordinate regarding the three basic
points O′, E′, U ′ as P regarding O,E,U . The proof of the invariance of the
cross-ratio stated concerning Illus. 7.2.1 is strange to projective geometry,
since it uses notions of line segment length, ratio of lengths and sine of an
angle, which make no sense in projective geometry as they are not invariant
in projective mappings (or, according to the modern view, since they cannot
be defined by the notions of point, straight line and incidence). V. Staudt’s
opinion differs from that of his predecessors, since he, so to speak, reverses
the circumstances described above by gradually constructively obtaining the
coordinates of the points of g regarding the fixed points O,E,U by means
of continuous doubling and halving (in the projective sense) from the line
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segment already contained in OE and, thus, obtains the notion of cross-
ratio of four points reserved and “metric-free” based on the so-introduced
coordinates (although he does not call them that).

The actual fathers of projective geometry (apart from Desargues, whose re-
markable pre-accomplishments were only revived by Poncelet himself) were
Poncelet and Gergonne. Poncelet’s thoughts basically matured during his
wartime captivity in Russia for two years (1812-1814) and he only published
them in their original form under the title Cahiers de Saratov) in ‘Collected
Works’ in 1862, specifically to re-establish his priority rights over Gergonne
and Plücker. Indeed, all three developed the essential notions of projective
geometry independently of each other, but in almost the same manner: the
introduction of infinitely distant points, straight lines and planes, central pro-
jection, only then unrestrictedly executable (including its special case, if the
centre is infinitely distant) and its composition as the universal method for
transforming figures into each other whilst maintaining collinearity (hence,
he used projective mapping instead of the continuous change suggested by
Carnot!), cross-ratio of four points as the essential invariant of projective
mapping (Illus. 7.2.1), the duality principles for plane and space, the theory
of pole and polar in curves and surfaces of second degree, whereby the conic
section is grasped explicitly as the set of its tangents for the first time. Above
all, Poncelet was influenced by the works of his peer Charles Brianchon, who
published the dual theorem to Pascal’s theorem named after him in 1806 (Il-
lus. 7.2.2), introduced the methods for obtaining theorems of plane geometry
by means of central projection of spatial matter of facts in 1816 and was the
first to compose the parts of plane geometry systematically only based on
the notions of point, straight line and incidence whilst stressing the practical
significance of the purely linear construction in his main work Application de
la théorie des transversales in 1818. After Poncelet’s mainwork, Traité des
propriétés projectives des figures, which looked at Brianchon’s results in a
broader scope, had been published in 1822 (and again in a version extended
to two volumes in 1864/65), Brianchon turned his interest (as his teacher
Monge had done before him) to chemistry.

As already mentioned, Poncelet was also involved with the development
of an illustrative geometrical mechanics preferably free of analysis. (See
[Ziegler 1985] regarding this notion and its history.) His very intuitive style
appealing to visualisation resulted in the fact that many of his accomplish-
ments were only thought of as forerunners and ascribed to later authors (e.g.,
the Poncelet/Steiner theorem to be discussed in section 7.3). Cauchy, who
was a professed opponent of the infinite within mathematics, especially crit-
icised his näıve use of the infinitely distant as well as the infinitely small
changes of a figure. As a member of the academy and an influential reviewer,
Cauchy could delay the publishing of Poncelet’s works considerably.

It seems that most countries were aware of France’s leading role in math-
ematics, particularly in geometry, in the first decades of the 19th century.
Most French “classics” by, for example, Monge, Carnot, Poncelet, Chasles,
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Illus. 7.2.2 Brianchon’s theorem.

If 1,..., 6 are tangents of a conic section, ij the intersection of i and j and ij/kl
the connecting straight line of ij and kl, then 12/45, 23/56, 34/61 go through one

point
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but also Lacroix, Legendre and Cauchy, were translated into other languages
shortly after being published. We do not know of any cases in the reverse.
Chasles complained on several occasions that he could not read the profound
new works by German mathematicians. Projective geometry received its fi-
nal shape in Germany through A. F. Möbius, J. Steiner, J. Plücker and Ch.
v. Staudt. Möbius introduced homogenous coordinates in his Barycentrischer
Calcul in 1827. This was based on questions of mechanics (we refer the reader
again to [Ziegler 1985] for further details.): if three non-collinear points of the
plane and/or four points in space in general position are plated with weights,
the centre of gravity of this system assumes a position depending on this
plating. By also allowing negative weights, Möbius demonstrated that every
point in the plane and/or space in this manner can be the centre of gravity.
Weights of the given points served then as coordinates of the respective centre
of gravity. Since this fact does not change regardless of proportional change
of all weights, the coordinates are homogenous, i.e., λa, λb, λc, ... describes
the same point for any λ > 0 as a, b, c, ...(a, b, c, ... real weights). We now
see that the straight lines in the plane and/or planes in space are described
by homogeneous linear equations and that we obtain the most general map-
pings preserving collinearity by assigning the basic points of a coordinate
system to basic points of another coordinate system and continuously assign-
ing coordinate-wise (see Problem 7.2.3). Möbius’ work was highly acclaimed
in Germany by Gauss, Jacobi, Dirichlet and others. Of course, nobody other
than Cauchy himself reviewed this work in France.

Just one year after Barycentrischer Calcul, Julius Plücker’s Analytisch-
geometrische Entwicklungen (Analytic-Geometrical Developments) was pub-
lished. The essential ideas are more or less the same, although Plücker had
studied in Paris, but stressed the algebraic-analytical standpoint of projective
geometry much more strongly than Möbius had. Plücker also introduced ho-
mogeneous coordinates, although in a different manner, and then conceived
of the plane or spatial duality principle and the introduction of infinitely dis-
tant entities, since it is possible to exchange the role of the point coordinate
and coefficient of the equation of straight line and/or plane. Whilst doing
so, Plücker could also grasp straight lines in space rather elegantly by means
of homogeneous coordinates: having fixed two planes and a projective coor-
dinate system in each one, we can grasp every straight line in space by its
intersections with these two planes and every one of these again by its three
coordinates in the relevant plane. Dually to this, we can locate two points in
space and turn the bundle of planes carried by each of these points into coor-
dinates by means of each three coordinates. Each spatial straight line is now
described as the section of a plane of one bundle and a plane of the other bun-
dle. Plücker followed up on this in the 60s and composed Neue Geometrie
des Raumes, gegründet auf die Betrachtung der Geraden als Raumelement
(New Geometry of Space, Based on the Observation of the Straight Line as
an Element of Space, 1868), which remained unfinished due to his death, but
delivers an example of a “space” which has four dimensions, even though it



406 7 New paths of geometry in the 19th century

consists of very visual and elementary objects (see Problem 7.2.4). Plücker,
who turned more and more towards algebraic geometry, was first to phrase
the idea very clearly of grasping the coefficients of a describing equation as
coordinates of the respective object for algebraic figures of higher kind, so
that the equation of a curve, surface,... assumes the nature of translating the
incidence between point and figure into a relation between the coordinates
of both these objects. It seems that the nearby step of expressing areas in
the plane and/or solids in space by means of inequations in the relevant co-
ordinates was first conceived of by Cauchy (1847; more in section 7.6.). Both
Möbius and Plücker only occasionally devoted their attention to projective
geometry. Möbius held a chair for astronomy in Leipzig and engaged with
physical problems. Plücker also dedicated his attention mainly to experimen-
tal physics at times.

V. Staudt’s contribution

Basically, all contributions to projective geometry have been, so to speak,
impure until now. The length of a line segment has always been assumed as
given and nobody hesitated to use angle sizes freely (see the classic proof of
invariance of the cross-ratio in central projection, Illus. 7.2.1). Ch. v. Staudt
with his Geometrie der Lage (Geometry of Position, 1847) took the greatest
step towards an axiomatic view of projective geometry free of metrics. The
book presents itself in the foreword as an inspiration for geometry classes
for advanced secondary schools that are out of the ordinary. Naturally, this
fundamental book starts with a series of pre-observations on rays, angles,
surfaces, solids, etc., which feature no hint at all that the first consequent
projective geometry will soon follow based on just a few propositions and
according to Euclid’s model. Regardless of its pedagogic aim, the book is
completely free from illustrations and examples or applications, and features
a wealth of new terms. Some of them like “bunch” for simple infinite bundles
(e.g., of all straight lines in a plane through a fixed point or of all planes
in space through a fixed straight line) and/or “bundle” for twofold infinite
bundles (e.g., of all straight lines in space through a fixed point or of all planes
in space through a fixed point) have permanently established themselves.
Others, such as “uniform figure” for the set of all points of a straight line
or for a bundle of straight lines, make reading more tedious for the modern
reader.

Ch. v. Staudt justifies the introduction of infinitely distant elements with the
fact that point and “direction” accomplish the same for determining a straight
line as two different points, and that analogous point and “position” (which
means something like the direction of a plane in space) achieve the same as a
point and a straight line that does not intersect it. Then, he justifies the dual
principles (he calls them “reciprocity”) for the plane and/or space (therein
differing noticeably from Poncelet, Möbius and Plücker) with the duality of
the propositions, which he found for the structure expanded by infinitely
distant elements (these are implicitly the axioms of projective geometry),
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Illus. 7.2.3 Harmonic quadruple of points A,B,M,U in affine and projective view.

Although definable by means of incidence geometry, M is also the centre of line
segment AB from a metrical point of view. By replacing infinitely distant point U
by any point of straight line AB (and, simultaneously, special auxiliary point U2 by
any point), we obtain the projective centre M ′ of line segment AB relating

to U1.

and, from then on, phrases every matter of fact in two columns parallel to
both variants dual to each other. It seems he tried all of this with his students
since, in his foreword, he explicitly states, “but that the law of reciprocity
inspire every student open to geometry more than any individual theorem”.
Ch. v. Staudt now introduces harmonic pairs of points, which is nothing else
but the relation distorted by central projection between the four points A,B,
centre M of AB, infinitely distant point U and straight line AB (Illus. 7.2.3).
Furthermore, he shows the invariance of this relation in central projection
and arrives first of all at projective coordinates on a straight line by means of
continued projective halving and doubling of a unit OE regarding an infinitely
distant point U .

Afterwards, he arrives at the projective net in the plane and/or space (Illus.
7.2.4). He did all of this without explicitly speaking of coordinates. According
to v. Staudt, a projective mapping is a mapping that transforms harmonic
point pairs into harmonic point pairs. Central projections are such mappings,
and every projective map can be represented by the composition of central
projections. This is continued in a purely synthetic and coordinate-free style
until the “degrees of freedom” of a projective mapping are clarified and conic
sections are dealt with projectively. This book was appraised by v. Staudt’s
peers and established his fame.

V. Staudt mainly dealt with the issue of how to obtain “imaginary elements”
from the purely synthetical standpoint in three Beiträge zur Geometrie der
Lage (Contributions to Geometry of Position), which were published between
1856 and 1860. He based this on the idea that an orientation on a projective
straight line, which is completed to a closed curve by the infinitely distant
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Illus. 7.2.4 Projective coordinates on a straight line.

To determine the numeric value of the coordinates on an axis featuring O,E and U
according to v. Staudt, the unit line segment OE regarding the chosen U -point is
added again and again in the projective sense by repeatedly doubling in both direc-
tions, and this integer point net is arbitrarily refined subsequently by continuously
halving the part line segments. Illus. 7.2.4 shows how the construction of doubling
D from AB beyond B is transferred from the affine to the projective case by means
of any improper auxiliary line passing through U. In the same manner, Illus. 7.2.3
shows one of the possible purely linear constructions of centre M of any line seg-
ment AB, first affine and then generalised for the projective case. The coordinate
definition of any point of axis OEU should now result from the consideration of
the limit cases. However, this presumes, like in the affine case, conclusions on the
order, and is dealt with only at the level of illustrative evidence in v. Staudt’s work

point, is given by three given points O,E,U in order. A fourth point X of
this straight line is positive according to our interpretation, if we can obtain
it moving from O to U via E. It is negative if we obtain it by moving from O
to U in the opposite direction. However, if the straight line now is directed in
another sense (Durchlaufungssinn) from the beginning on (Durchlaufungssinn
is the term that v. Staudt uses in this context), point X can neither be
obtained by moving in the positive nor the negative sense, although it lies on
the straight line, since we can never reach E in the positive sense, and thus,
by no means can it go beyond. However, this concept is hidden in the motion
of involution2 in the work by v. Staudt and most authors following him,

2 In projective geometry, involution refers to every non-identical projective map
f , which agrees with the inverse map, i.e., points that are not fixed, pairwise in-
verted with each other. If fA,B for two different points A,B of a straight line g is
the mapping of g onto itself that assigns every point P the fourth harmonic point
to A,B, P , then fA,B is an involution, which has exactly the points A,B as fixed
points. As the analytic calculation with homogenous coordinates shows, there are
also involutions without fixed points resp. the two solutions of the fixed point equa-
tion can become conjugate complex numbers. This was the approach to explaining
“points with complex coordinates” geometrically. See Problem 7.2.5.
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Illus. 7.2.5 Projective coordinates in the plane.

From the view of plane projective geometry (it is analogous in space), a coordinate
system is given by four points O,U1, U2, E. O is the origin, U1 the “improper”
point of the x-axis so that O and U1 determine the x-axis together. Analogously,
O and U2 determine the y-axis. By fixing point E as the one that will have the
coordinates (1, 1), we also determine the 1-point on the x-axis and the 1-point on
the y-axis. An affine parallel coordinate system is a special case, in which U1 and U2

are “really” infinitely distant. A projective coordinate system is created vice versa,
even by means of a Cartesian system, by putting the infinitely distant straight line

gU to the finite

whereby the complex elements correspond to elliptical involutions. The first
treatment of cyclic order (cf. p. 358) on the projective straight line closed
by the infinitely distant point is remarkable. The intellectual proximity to
Carnot’s efforts is just as clear in v. Staudt’s writing as the independent
reorganisation of contents already given. Nevertheless, the complete lack of
references to other literature and authors tends to alienate the modern reader.

Projective geometry, which was a flourishing area from 1820 to roughly a
century later, developed in two directions regarding the mentioned contri-
butions. On one hand, the generalisation of the contributions of projective
geometry from its very beginning to comprehension and mastery of conic
sections was appropriate as an entrance for “algebraic geometry” (which is
not looked at any further in this book, since we think of it as algebra rather
than geometry), since polynomials with an arbitrary number of variables are
always homogenous by being transformed into homogenous coordinates and,
thus, make linear algebra more applicable, along with other reasons. On the
other hand, it played several important roles in the investigations beginning
around 1870 concerning the logical and methodological basics of geometry.
We will further look at this in sections 7.7 and 8.1.
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7.3 Theory of geometrical construction

As we have seen, geometrical construction problems and their solutions
formed the origin and core of geometry. A theory that concerns the notion
of problem, its solution and the methods of solving and/or proof of irresolv-
ability, perhaps also the complexity of solutions, or examines the precision of
approximations generally and theoretically, can develop in two directions: on
one hand, within the scope of mathematical logic (which could not, of course,
happen before the end of the 19th century), and on the other hand, by trans-
ferring geometrical questions to the language of algebra. Modest approaches
to this can already be found in Antiquity. For example, the proof of the irra-
tionality of

√
2, as indicated by Aristotle and in ‘Elements’ (X, 1 15), could

be so interpreted that the diagonal of a given square cannot be transferred
towards one side by means of a purely linear operation. Other theorems from
Euclid’s Book X also say something about the impossibility of geometrical
constructions wrapped up algebraically. However, such an algebraic theory
of geometrical constructions could only become fruitful after constituting the
coordinate method and making algebraic means available that allow proving
the irresolvability of certain algebraic problems with given algebraic means.
This was basically accomplished by Gauss, and the actual theory of geomet-
rical constructions started with him. Nonetheless, we want to speak briefly of
some preceding steps. Whenever we subsequently speak of theory, we always
mean that we are not dealing with individual construction problems but with
an entire class of problems or with the notion of problem and its solution as
such.

In 1593, Vieta crowned his Supplementum geometriae with the proof that all
problems that lead to equations of third or fourth degree become solvable
if we, apart from compass and straightedge, allow instruments with which
we can extract the third root of given quantities and trisect every angle.
This outcome is actually understandable from the viewpoint of the complex
numbers, since, according to Ferrari, an equation of fourth degree can be
reduced to an equation of third degree and, according to Cardano, an equation
of third degree can be solved by rational operations and additionally second
and third roots. However, since we also need to make general use of complex
intermediate results when dealing with real given quantities and real zeros,
the plane of construction would have to be used temporarily as a complex
plane, whereby square roots can consequently be constructed with compass
and straightedge by means of the root of the radius coordinate of the relevant
number and by halving its angle coordinate, whereas we need to be able
to extract third roots from the radius and to trisect the angle coordinate
regarding third roots. Did Vieta know of the geometrical interpretation of
complex algebra in Gauss’s “complex number plane” (Illus. 7.3.1)? We might
just be able to conclude this based on his calculations.

Another direction for dealing theoretically with constructions is devoted to
examining how changes (expecially the restricions) in the permitted instru-
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Illus. 7.3.1 Extracting roots in Gauss’s complex number plane

ments and/or construction steps or the available area of construction af-
fect the solvability of problems. Pappus, later medieval Islamic geometers
like Abū’l-Wāfā, artists of the Renaissance like Leonardo da Vinci, and fi-
nally Cardano and Tartaglia had engaged with construction problems that
can be solved with a compass with a fixed opening span and a straightedge
[Hallerberg 1959]. The fixed compass can be replaced by a circle template,
which is appreciated by each drawer whose circle turned out to be a spiral
due to the compass being too loose or an enlarged hole in the drawing paper.
In 1653, this resulted in a text by G. B. Benedetti, in which all problems
from Books I – IV and VI of Euclid’s ‘Elements’ were solved by the fixed
compass and straightedge mentioned above. A booklet with the odd title
Compendium Euclidis Curiosi was published in the Dutch language in Ams-
terdam in 1673. Therein, the anonymous author (Georg Mohr from Denmark,
as is now known) revealed the same results. He wrote in the introduction that
he had heard of the relevant text by “Joan Baptista” (apparently he was re-
ferring to Giovanni Battista Benedetti), but could not get access to it and
subsequently had obtained these results himself after initial disbelief. There
was even an English translation of this ‘curious Euclid’ in 1677 (excerpts in
Problem 7.3.2). Both texts were lost for a long time and were only generally
accessible again from 1982 onwards [Mohr 1673]. Moreover, the Danish ge-
ometer Johannes Hjelmselv had rediscovered in 1927 the forgotten treatise
Euclides Danicus (the Danish Euclid) by the same author and published it
[Mohr 1672]. Therein, Mohr made it plausible that all points constructible
with compass and straightedge by means of given figures can be constructed
with the compass alone.
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In forgivable ignorance of this predecessor, Lorenzo Mascheroni devoted his
book Geometria del compasso (Geometry of the Compass), printed in 1797,
to the same topic. It is interesting that his intention was motivated by his
opinion that constructions with the compass are more precise regarding their
practical execution than the ones with the straightedge, whereas Lambert,
Brianchon, Poncelet and others, in contrast, favoured the sole linear con-
struction, or at least restricting the compass as much as possible, since only
linear constructions can be realised in greater distances in the field (by means
of taking a bearing and aligning). Jacob Steiner concluded this set of prob-
lems in 1833 with his theorem that a single drawn circle or just a piece of
it, including (the indispensible) centre, would suffice in order to reduce all
compass and straightedge constructions to purely linear ones (which basi-
cally was already shown by Poncelet in 1822). The development of the logical
foundations of mathematics has put all these theorems in a new perspective
under different aspects [Schreiber 1975], [Schreiber 1984]. However, we do not
want to neglect the curious fact that Napoleon Bonaparte, who, as known,
was interested in mathematics, got to know Mascheroni himself during his
campaign in Italy just after he had finalised his book, but before it had been
published in print. Filled with pride at having obtained his head start, he
returned to Paris and was ever so happy to give the famous French mathe-
maticians a “really easy” construction problem, which they, of course, could
not solve ad hoc (see Problem 7.3.1).

Algebraisation of the theory of geometrical construction

So far, so good concerning the pre-history. The decision of the eighteen-year-
old Gauss to dedicate his life back then to mathematics and not to ancient
languages, as he had considered before, is, as known, due to his discovery that
the regular 17-gon can be constructed with compass and straightedge. His
diary also begins with this entry from 30/03/1796. Further entries indicate
that he came back to questions of circle division again and again, reduced
to purely algebraic questions by using complex numbers, for the equation
xn = 1 (and/or after separating the trivial factor x − 1 from xn − 1) for
which n the equation 1+x+ ...xn−1 = 0 can be solved by quadratic radicals.
Gauss’s final answer was: this is exactly the case, if n has the form

2m · p1 · p2 · ... · pk (7.3.1)

Thereby, m ≥ 0, k ≥ 0 and p1, ..., pk are pairwise different prime numbers of
the form 2i + 1 (for example, 3, 5, 17). A considerable part of his early work
Disquisitiones arithmeticae published in 1801 is dedicated to the question
as to which conditions of a polynomial equation must be fulfilled in order
to be solvable by quadratic radicals. We also find there the essential the-
orems named after Gauss, with whose help most of the classical problems
can be proven to be irresolvable by means of compass and straightedge: an
irreducible polynomial with rational coefficients within the realm of rational
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numbers is at most then solvable by means of quadratic radicals, if its degree
is a power of two. The question of the reducibility of a polynomial with ra-
tional coefficients within the range of rational numbers can be reduced to the
question of the reducibility of an integer polynomial of same degree within the
range of integer coefficients (and the latter can be decided by means of a finite
case-by-case analysis). Two of the classical construction problems (cf. section
2.2.2), doubling the cube and angle trisection, can immediately be proven to
be irresolvable with these algebraic means. Doubling the cube leads to the
equation x3−2 = 0 for the wanted edge x. The polynomial is irreducible and
its degree is not a power of two (Problem 7.3.3). If angle trisection would be
generally possible with compass and straightedge, then such is also the case
in which the given angle is 60 degrees, and, thus, is actually constructible, i.e.,
an angle of 20 degrees, a regular 18-gon would also be constructible. How-
ever, 18 does not have the form stated in (7.6.1). Given these conclusions
from Gauss’s work, it seems it is due to the afore-mentioned communication
difficulties of the 19th century that the French mathematician Pierre Wantzel,
who died young, proved these outcomes again between 1837 and 1845, and
is claimed as the originator of these theorems in different books. The third
famous ancient problem, squaring the circle, leads to an investigation under
the new circumstances if the number π is the root of a polynomial equation
solvable by quadratic radicals. Lambert showed the irrationality of π in 1767.
His text Vorläufige Kenntnisse für die, so die Quadratur und Rektifikation
des Cirkuls suchen (Provisional Knowledge for Those that Seek Squaring and
Rectification of the Circle) was targeted at a broad audience. Therein, he in-
vited the large number of amateurs who strove towards solving this problem
with completely insufficient prerequisites (such amateurs still existed in the
20th century!) rather to do something useful within their reach, like calcu-
lating prime number tables. This text is still a pleasure to read nowadays.
After all, Charles Hermite could follow up on Lambert’s pre-accomplishments
when proving the transcendence of e in 1873. Ferdinand Lindemann finally
generalised the idea of proof in 1882, i.e., he proved the transcendence of
π, meaning that π cannot at all be the solution of any algebraic equation
with rational coefficients. Thus, squaring the circle and the closely related
rectification of the circle are not just irresolvable by means of compass and
straightedge, but also by any other means and/or aids (such as insertion or a
section with given conic sections), the algebraic analysis of which yields that
we can only construct points with their help, the coordinates of said points
depending algebraically on the coordinates of the given points. (We still rec-
ommend [Vahlen 1911] for mathematical details and a well-formed proof of
transcendence of e and π.)

Gauss’s investigations had increased the qualitative level of the manner in
which geometrical construction problems were addressed, but also turned
them somehow into a branch of algebra as they have subsequently been
grasped by many authors since then, with the negative side effect of a cer-
tain “de-geometrisation”. We will look at the correction of this development
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later on in the 20th century. Nonetheless, the 19th century also reveals cer-
tain approaches to another view on geometrical constructions. For instance,
Carnot’s Géométrie de position, discussed in section 7.2, is to be under-
stood to a high extent as an attempt at a theory of geometrical construction
in a completely different sense, and Gergonne’s Annales are a rich source
of individual contributions to an almost completely algebra-free treatment
of special construction problems. August Adler, an educational expert from
what constituted Austria back then, presented a new translucent and general
proof for Mohr’s/Mascheroni’s theorem in 1890 by using the transformation
by reciprocal radii in order to transform the entire figure made of given and
wanted components as well as auxiliary lines into a figure that does not con-
tain any straight lines at all. In 1902, he showed that both a ruler to be used
in a certain manner with two parallel edges and a set square, the edges of
which meet in the arbitrarily fixed angle, have the same level of performance
as circle and straightedge. His compiled book on geometrical constructions,
which is not just a pure collection of solutions and solution recipes (like,
for example, [Petersen 1879]), was published in 1906. Approximately at the
same time, Paul Zühlke wrote a summarising description on constructing
with obstacles (limited instruments, limited drawing area). Despite the date,
we mention this here, because intellectually it still belongs to the 19th century.

Geometrography

Pointing to the 20th century, although actually originating in the 19th century,
a peculiar theory was formed, established under the term ‘geometrography’,
by the Frenchman Emile Lemoine, who was very influential due to his activ-
ity in scientific organisations. Using the example of geometrical construction
algorithms, the first attempt at complexity theory was made after Steiner
had coined the oft-quoted saying of “solving only with the tongue” at the
end of his text from 1833, mentioned above. He meant that the fashionable
reduction of new problems to already solved ones and/or the pure sketching
of an approach to a solution completely neglected the feeling for the actual
effort of solving or the practical feasibility. Lemoine counted the steps of a
construction according to an assessment suggested by him (and, separately,
those steps that influence the practical precision, according to him) and re-
ferred to those solutions to a problem that revealed the lowest amount of
steps as geometrographic. A considerable number of interested parties and
combatants, especially teachers, hoped for a revival of the stiff geometry
lessons by stressing a “sporty aspect”. Surprising simplifications were found
for a series of classical problems, for example, the number of steps needed
to solve Apollonius’s problem was reduced from around 500 (per Vieta and
also Gergonne) to 150, above all by crafty multiple use of auxiliary lines. Af-
ter a short-lived golden age, however, geometrography was quickly cast into
oblivion from 1906 onwards. It revealed three deficits, which are particularly
informative for modern computational complexity theory:
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1. The century-old deficit of classic mathematics in respect to considering
the notion of algorithm led to Lemoine and all his combatants thinking
only within the category of a fixed step sequence without branching or
cycling. Thus, they viewed the complexity measure as a pure counting of
possibly weighted steps.

2. Lemoine and his followers could never agree on a common assessment
of the steps. Rather, a considerable portion of the written literature is
dedicated to polemical disputes, whereby,for example, it was meant to be
proven with the stopwatch how much faster it would be to execute this
step over that one.

3. There was no method for proving optimality or the approximate opti-
mality of a solution. Rather, the term “geometrographic” was a kind of
challenge cup, which, on the following day, was given to a solution faster
by two steps. (Think of the modern use of the word “efficient”!)

However, apart from these three points, the literature on geometrography fea-
tures many remarkable ideas, which nowadays must be considered to belong
to an astonishing pre-history of computer science within classic mathematics,
as should geometrical constructions in general.

7.4 Differential geometry

The 17th and 18th centuries accomplished a great deal of groundwork for
addressing “objects of curvature” by means of infinitesimal mathematics,
which we will now look at briefly. Whereas Clairaut’s afore-mentioned book
on spatial curves (1731) is limited to those notions and properties that can
be treated by means of the first derivation of coordinates according to the
curve parameter, Monge approached the notion of curvature of spatial curves
more geometrically from 1771 onwards. The tangent determines a perpen-
dicular normal plane in every curve point. Two “infinitesimally adjacent”
normal planes generally intersect each other at a straight line, the normal
plane of which through the given point is the osculating plane of the curve
in the given point. Changing the inclination of this osculating plane is the
torsion. (However, the term ‘torsion’ was only used from the 19th century on-
wards.) The three unit vectors directed towards the curve tangent, towards
the curve normal, and towards the normal of the osculating plane (referred
to as binormal) form the “accompanying tripod” of the curve. J. F. Frenet,
J. A. Serret, P.-O. Bonnet and J. Bertrand completed the theory of spatial
curves around 1850 by proving, amongst other things, that such a curve is
determined independently from its position regarding the coordinate system
and/or motions by curvature k(s) and torsion w(s) as functions of arc length
s. This result became the model for the coordinate-invariant characterisation
of higher manifolds of curvature.
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The systematic differential geometrical study of curved surfaces in a space
basically began with Euler’s textbook on differential calculus in two volumes
(1755) and continued in the form of individual investigations from 1760-67.
Euler looked at curves of intersection of all planes that pass through the
normal to the surface in a given point P of the surface and the surface
depending on which side of the surface lies the centre of curvature. Each of
the intersection curves (as plane curves) features a curvature in the sence
of a plane curve and the angle ϕ of its tangent in the tangential plane of
the surface in P. Euler assigns the radius of curvature R(ϕ) to each of these
curves, in addition to that signed depending on which side of the surface
lies the centre of curvature. He found out that this function, which, radically
plotted in the tangential plane, adopts maximum R1 and minimum R2 in two
directions perpendicular to each other, the so-called principal curvatures, and
that the radius of curvature R(ϕ) in direction of ϕ suffices the equation

1/R(ϕ) = cos2ϕ/R1 + sin2ϕ/R2. (7.4.1)

Meusnier in 1776 and Monge in 1784 followed up on this, and Dupin in-
troduced the “indicatrix” named after him in 1813. After Euler, who, when
exchanging ideas with Johann Bernoulli, had already developed the notion of
geodesic curve as one that locally represents the shortest link of its respec-
tive points within the surface, Monge studied those curves in the plane that
run either in the direction of the larger or smaller principal curvature in ev-
ery point and, thus, intersect themselves everywhere perpendicularly. Hence,
these geodesics are created as a solution to a variation problem. (However,
the term “geodesic” was only made customary much later, namely by Liou-
ville.) Lagrange was first to study the analogous problem of fitting a minimal
surface into a given boundary curve (later called Plateau’s problem) in 1760.
He found the following necessary condition for minimality for the case that
the surface can be represented in the form z = f(x, y):(

1 + fy
2
)
fxx + fxfyfxy +

(
1 + fx

2
)
fyy = 0. (7.4.2)

Meusnier showed in 1776 (published in 1785) that this condition is equivalent
to the condition R1 = −R2 in every point of the minimal surface. This, for
instance, leads to the fact that a surface that features a positive “Gaussian”
curvature R1 ·R2 in one point (and due to the continuity in its surrounding)
cannot be minimal. Furthermore, he found the first two types of non-trivial
minimal surfaces, namely the catenoids created by revolving a catenary, and
the helicoids. It only became clear much later that the surfaces characterised
by Lagrange’s and/or Meusnier’s conditions only represent “local minima”
in the set of all surfaces fit into a given boundary, which corresponds to its
physical generation by means of soapsuds (Plateau around 1850!).
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Beginning of inner differential geometry

Up to this point, curved surfaces had always been seen as objects in three-
dimensional space. However, their role as part of geodesy had sooner or later
to reveal the question of notions and properties, which could be determined by
measuring or experimenting within the surface without relating to its spatial
embedding. It has been one of C. F. Gauss’s greatest accomplishments to
establish this “inner geometry”, which is fundamental for modern physics
and is the only possibility, speaking physically, for curved spaces of a higher
dimension than two (since a surrounding space is then not imaginable for us
or at least is not accessible), and to clarify how it differs from the viewpoint
customary until then.3

In 1818, Gauss was told to continue the arc measurement conducted by his
friend, the astronomer H. C. Schumacher in Denmark, with the aim to mea-
sure exactly the difference of latitude between Altona and Göttingen, a task
that he conducted himself through immense efforts between 1818 and 1827.
This undertaking was followed by the measuring of the entire kingdom of Han-
nover, whereby Gauss was in charge of evaluating the results [Biermann 1990,
p. 19ff]. Similar undertakings were finalised or partially worked on in other
European countries around this time. These assignments caused a more inten-
sive turn towards the differential geometry of curved surfaces. As indicated by
certain letter excerpts, Gauss had been planning an extensive work on higher
geodesy not later than 1822. However, it was only published in treatises in
two parts in 1844-47 (reprinted in Ostwalds Klassikern) and was preceded
by an incomplete manuscript from 1825 found in his estate [Gauß a, vol. 8,
408-422]. Having worked in 1825 with the representation of surfaces in the
form of F (x, y, z) = 0 or even z = f(x, y), he later switched to using rep-
resentations by means of two parameters, which, until then, had only been
used occasionally.

Over the course of this work, he must have become so aware of the significance
of inner geometry that his first publication, Allgemeine Untersuchungen über
gekrümmte Flächen (General Investigation on Curved Surfaces) finalised in
1827 and reviewed at a glance by Göttingische Gelehrte Anzeigen (Göttin-
gen’s Scholarly notifications), published in 1828 in Latin, German translation
in Ostwalds Klassikern, reprinted in Teubner-Archiv vol. 1), purposely omits
all that does not agree with this standpoint. Due to the large number of
sources, it is easy to follow the development of ideas. Gauss transferred the
definition of total curvature (“amplitude”) of a curve segment, which orig-
inated from the Monge school, to surface segments: indicate the normal of

3 Here, we have cause to mention a peculiar elementary geometric analogon: since
Antiquity, spherical geometry has always been treated based on the idea that a
spherical surface exists in three-dimensional space, so-to-speak, as a practically im-
portant part of spatial geometry. It seems that, up to 1980, nobody has thought
of establishing elementary spherical geometry analogously to plane geometry com-
pletely axiomatically as inner geometry without any relation to the surrounding
space [Schreiber 1984, chap. 2.3].
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length one in every point, transfer its end point onto a fixed unit sphere
by means of parallel translation and take the content of the created surface
segment of the sphere as the measure of the total curvature of the surface
segment. If the surface is, for example, developable, the assigned subset on
the unit sphere is only one-dimensional, and the total curvature is, thus, zero.
By dividing the total curvature of a small surface segment around point P by
the area of this surface segment and conducting a limit process, we obtain a
numeric measure for the local curvature in point P (nowadays referred to as
Gaussian curvature). His treatise from 1828 is entirely devoted to the ques-
tion of how to determine the notion of total (and, thus, also local) curvature
by means of measurements executed within the surface. As shown by Gauss,
this is possible by means of triangulation and the difference between the sum
of angles in the geodesic triangles and 180 degrees thereby obtained. The fur-
ther outcome that he himself referred to as “theorema egregium” (something
like “extraordinary theorem”) states that this notion of curvature is invariant
not just when shifting the surface in space, but also when arbitrarily bend-
ing (not distorting) the surface, since it can be defined by measuring within
the surface, and that it can be calculated by formulae that only feature the
coefficients E,F,G (nowadays referred to as first fundamental quantities gij)

of the differential arc element
√

Edp2 + 2Fdpdq +Gdq2 as functions of the
surface parameters p, q. Gauss then shows that his local curvature is identical
to the signed product of both principal curvatures studied since Euler. He
generalised the notion of development, which, until then, had only been used
for surfaces that could be isometrically mapped in the plane, to apply to the
development of a surface onto another one (equal in meaning to the existence
of a mapping, which is isometric in regards to the inner geometry of both
surfaces), and showed that surface segments, which can be successively de-
veloped in this respect, have the same Gaussian curvature in the respectively
assigned points. (Ferdinand Minding succeeded in reversing this concept in
1839. In other words, we are dealing with a successive local development of
surfaces, given a map that leaves the Gaussian curvature pointwise invariant.)

Further outcomes in Gauss’s Disquisitiones generales circa superficies curvas
(that is the original title) from 1828 concern analogies between plane geom-
etry and inner geometry of curved surfaces: a circle around P in terms of
inner geometry is created by indicating geodesics of the same length from P
in every direction. It then intersects all its radii in a right angle. A distance
line is created by marking a “geodesic perpendicular” of constant length on
a geodesic in every point towards a given side. The so-created distance curve
intersects all its perpendiculars again perpendicularly. All this serves the gen-
eralisation of the geographic grid to geodesic grids on any surfaces. Gauss also
extended Legendre’s theorem concerning spherical triangles, which is impor-
tant for higher geodesy, to include geodesic triangles of any curved surfaces.
If we compare a plane and a geodesic triangle of same side length, the angles
of both triangles differ, apart from the quantities of fourth order, by amounts,
the sum of which is the deviation of the sum of angles of the geodesic triangle
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Illus. 7.4.1 A tractrix with directrix l
a) A tractrix with directrix l is defined by the fact that, for each curve point P ,

the section of the tangent of the tractrix has the constant value R in point P
between P and its intersection with l. According to this definition, it is – in
contrast to many other “dynamically” defined curves – not exactly pointwise
constructible. However, since it intersects all circles k of radius R with centre M
on l perpendicularly, we can draw it quite well approximately as the orthogonal
trajectory of the bundle of circles by starting with its cusp P0, which is to be
given anywhere in distance R of the directrix.

b) If we choose l as y-axis and the relevant perpendicular through P0 as x-axis of
a coordinate system, we obtain y′ = ±√

R2 − x2/x for the slope of the tangent
in curve point P (x, y), whereby the + applies to the lower branch and the − to
the upper branch of the curve symmetrical to the x-axis. As a result, we obtain
the following curve equation for the upper branch:
y = Rln

(
R+

√
R2 − x2/x

)−√
R2 − x2 (0 < x ≤ R)
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Illus. 7.4.2 Surfaces of constant negative curvature. In the middle, the pseudo-
sphere created by revolving the tractrix

of 180 degrees and the distribution of which depends on the local curvatures
in the corners of the geodesic triangle. In the case of constant positive (that
was Legendre’s theorem) or negative curvature, the angles of the spherical or
pseudo-spherical triangle are larger or respectively smaller than the angles of
the plane triangle with equal sides by one third each of the excess or respec-
tive defect of the triangle. Here, Gauss’s consideration touches not only on
practical geodesy, but also on his interest in non-Euclidean geometry, nowa-
days referred to as hyperbolic or Lobachevskian geometry. Not later than
1827, Gauss must have been aware of the fact that they agree locally with
the inner geometry of a pseudo-sphere, i.e., a surface of constant negative
curvature, and, thus, are no phantasm. The fact that there are such surfaces
and that, for example, such a surface (Illus. 7.4.2) is created by revolving the
tractrix (Illus. 7.4.1) first introduced by Newton, was already known at the
end of the 18th century (Problem 7.4.1).

Transition to n-dimensional differential geometry

Gauss must have known that his inner geometry only needed an appropri-
ately generalised notion of “multiply extended quantities” in order to include
higher dimensions and lead us to a completely new concept of space. That
is why he pushed through that Riemann on occasion of his habilitation in
Göttingen in 1854 had to speak about the third topic submitted by him
instead of the first, as was, in fact, customary. So Riemann was forced to
speak “On the Hypotheses that Geometry Is Based On” [Riemann 1876],
[Klein 1928] (Lectures on Non-Euclidean Geometry).

Riemann fulfilled Gauss’s expectations completely in this oral presentation
imposed upon him, although basically it had a more non-mathematical char-
acter in a very informal manner almost without formulae. As examples for
continuously varying, multiply extended quantities, he listed colours (this was
followed up on later by Helmholtz and Ostwald) apart from the “locations
for sensual objects” (i.e., physical space). However, he did not cite states
of mechanical systems, which would have been an obvious idea. His verbal
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description of how to obtain an (n + 1)th extended system based on a nth

extended system by changing one parameter (for example, a parallelogram
by means of a line segment and a cuboid by means of a rectangle) reminds us
very much of Grassmann’s Ausdehnungslehre (Theory of Extension) already
published in 1844. However, it is unclear if Riemann knew this work, which at
that time had hardly been circulated. Having expanded the fundamental met-
ric quantities introduced by Gauss to include this general case, he focused on
spaces of constant curvature and, thereby, on the special case of a curvature
of zero, and clarified – without using these terms – that constant curvature
is the necessary condition for homogeneity and isotropy of a space, in other
words, for uniformity of all points and all directions, and for the unrestricted
mobility of “solids”. He then discussed the difference between infinity and un-
boundedness of a space and noticed that, given constant positive curvature,
the space has to be necessarily finite. The last passage indicates his prophetic
sharp eye:

“However, now the empirical notions in which the measure-relationships of
space are established, the notion of firm solid and ray of light, seem to lose
their validity in the infinitely small; thus, it is easy to imagine that the ratios
of space do not suffice the pre-conditions of geometry in the infinitely small,
and we would indeed have to assume this as soon as it is possible to explain
appearances in a simpler manner with these means. The question of the
validity of pre-conditions of geometry in the infinitely small is connected to
the question of the inner reason of ratios of space. Concerning this question,
which can be thought of as part of a theory of space,... Thus, that which is real
and what space is based on must form a discrete manifold, or we must find
the reason of ratios of measure outside the binding powers affecting those.”
(translated from German [Riemann 1876, p.267f.])

If Riemann was justifiably honoured as the intellectual father of an orienta-
tion, which in the end led to general theory of relativity, the last sentences
reveal him to be the forerunner of a even more actual turn of physics that
questions all physical concepts inspired by the paradigms of classic analysis
and differential geometry.

Gauss’s treatise on inner geometry had already been multiply reprinted in
the 19th century and also translated into French, which, in the end, led to
differential geometry and its inner standpoint in particular advancing to form
a central area of geometry in the 19th century. The Gaussian definition of the
main notions established itself, although other measures of curvature were
occasionally suggested (for example, in 1831, by the French mathematician
Sophie Germain, who was in contact with Gauss, and in 1889, by F. Casorati).
Riemann’s habilitation speech was only taken from his estate and published
after his death by R. Dedekind in 1868. The German (Minding , Enneper,
Lipschitz, Christoffel, Weingarten), the French (Dupin, Bonnet, Bertrand,
Liouville, Bour, Darboux), and the Italian mathematicians (Brioschi, Betti,
Dini, Bianchi, Codazzi, Mainardi, Beltrami, Casorati) were greatly involved
in advancing the direction of geometry initiated by Gauss and Riemann in
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a predominantly calculus-like manner. Christoffel generally founded the so-
called absolute, i.e., inner differential geometry free from coordinates of the
surrounding space, and created in this context the elements of the later tensor
calculus. However, other classical sets of problems more closely related to
geodesy were also continuously fostered, such as C.G. J. Jacobi explicitly
determining the equations of the geodesic on the ellipsoid with three axes in
1844.

Many investigations in the second half of the 19th century were devoted to
surfaces of constant negative curvature, partially due to the correlation be-
tween constant curvature and free motion created by Riemann and partially
because of the interest in non-Euclidean geometry, which had increased after
Gauss’s death. Minding systematically studied surfaces of revolution of con-
stant negative curvature and classified their local characteristics as elliptic,
hyperbolic or parabolic in 1839 (Illus. 7.4.2), whereby only the tractrix can
be considered as the profile of the parabolic case.

However, in 1865, Dini realised that the surfaces with the profiles found by
Minding do not necessarily have to be surfaces of revolution, but that surfaces
of constant negative curvature are also created by screwing the profiles with
an arbitrarily selectable pitch around the relevant axis. Bour had already
proven in 1857 that every helicoid is developable onto a surface of revolu-
tion. The works by Ferdinand Joachimsthal (1846), Alfred Enneper (1868),
and their students, as well as by Theodor Kuen (1884), discovered extraor-
dinarily shaped surfaces (Illus. 7.4.3) and produced an unheard-of wealth
of possible shapes of surfaces for the case of constant negative curvature.

Illus. 7.4.3 Kuen’s surface.

[Gerd Fischer: Mathematische Modelle (Mathematical Models), Vieweg Verlag,
Braunschweig/Wiesbaden 1986]
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Due to efforts made to provide an overview thereof and to be certain that
the amount of surfaces found was complete, developments took place that
would later show their main effects outside of differential geometry. In 1860,
the French Academy of Sciences hosted a competition to find methods with
which it was possible by means of a given surface to produce further surfaces,
which were developable onto the given one. The first prize was awarded to Ed-
mond Bour in 1862, who died shortly after turning 33. The methods found
by Bour, Ribaucour, Bäcklund, and others to produce other surfaces with
the same features of curvature based on one surface by means of geomet-
rical transformation (consider the historical relation to the method to list
all curves of third order applied by Newton and the following development!)
finally led to the notion of contact transformation and its application to the
theory of solving differential equations via works by Albert Bäcklund, Luigi
Bianchi, Sophus Lie, and others. The seeds of group theory were also hidden
therein. For instance, Lie discovered in 1883 that Bianchi’s transformations
regarding Lie’s transformations are exactly the conjugated ones of Bäcklund’s
transformations (stated in a modern fashion). Delfino Codazzi was awarded
the second prize by the French Academy of Sciences for the problem set in
1860 for phrasing the conditions that two given quadratic forms must fulfil in
order to be the first and second fundamental form of a surface. Afterwards,
G. Mainardi pinpointed that he had already published these equations in an
Italian journal in 1857. It was found out that Mainardi-Codazzi’s equations
had already been featured in Gauss’s manuscript from 1825 mentioned above
and already published by Gauss’s estate, and that K. Peterson had already
used them in Dorpat (Tartu, Eesti) in his dissertation in 1853.

The generous use of differential calculus was of advantage for “local thinking”
in geometry, and some not exactly precise claims of the 18th and early 19th

century can be traced back to the wrong assumption that all that is locally
possible can also be “continued” without problems. For example, Meusnier
believed himself able to prove in 1776 that spherical surfaces and their parts
are the only surfaces of constant positive curvature. Other surfaces of con-
stant positive curvature were only found towards the end of the 19th cen-
tury. However, these feature singularities (Illus. 7.4.4). In 1890, Felix Klein
phrased the question of those two- or three-dimensional manifolds of constant
curvature in which it is possible to mark a geodesic of length r from every
point in every direction. This question was later generalised as the spherical
space problem of Clifford-Klein to apply to any dimension. Hence, Euclidean,
Lobachevskian or spherical geometry applies locally in such spaces. For in-
stance, for the case of curvature 0 and dimension 2, we must also consider
every curved cylinder surface of infinite length apart from the plane. Only
Heinrich Liebmann proved around 1900 that complete spheres are the only
surfaces of constant positive curvature free of boundaries and singularities.
David Hilbert showed in 1901 that a surface of constant negative curvature
cannot exist in three-dimensional space without boundaries or singularities,
in other words, that the flaw of the “pseudo-sphere” (as used by Beltrami)
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Illus. 7.4.4 Surface of constant positive curvature.

This surface is created by cutting open a spherical surface along a meridian and
sliding the cutting edges into each other. However, as a result, peaks are created,
i.e., points without tangential plane, at the poles. [Gerd Fischer: Mathematische
Modelle (Mathematical Models), Vieweg Verlag, Braunschweig/Wiesbaden 1986]

of only being a local model of non-Euclidean geometry was unavoidable if we
want to realise it as inner geometry of a surface in R

3.

For newer historical descriptions that go more into technical details, we refer
the reader to [Reich 1973], [Scholz 1980], [Fischer 1986, Volume of commen-
taries, chap. 3] and the article on differential geometry in [Dieudonné 1985],
as well as the commentary by Böhm and Reichardt in Teubner-Archiv, vol.
1 (Gauss, Riemann, Minkowski). However, this does not make the extensive
historical and bibliographical details by Wangerin in his remarks on the first
edition of Gauss’s theory of surfaces redundant.
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7.5 Non-Euclidean geometry

We immediately follow up on 6.4 by remarking that there is plenty of acces-
sible detailed literature on this important portion of the history of geometry
(amongst others, [Engel/Stäckel 1895], [Sommerville 1911], [Bonola 1911],
[Bolyai/Stäckel 1913], [Sjöstedt 1968], [Reichardt 1985], [Trudeau 1987]).
Thus, we will restrict this section to a relatively brief description of the course
of time and content, but discuss some aspects little mentioned until now and
follow the “broad effects” of the events.

Multiple passages from Gauss’s letters show that he had already begun to
engage with the parallel problem in 1792, along with the young Hungarian
Wolfgang (Hungarian: Farkas) v. Bolyai. They studied in Göttingen at the
same time and their interest in that problem was an essential catalyst for
their friendship, which thrived in an irregular correspondence over the years.
W. v. Bolyai’s own contribution lies within the fact that he could deduct the
uniqueness of the parallels based on the condition that a circle passes through
each of the three points that do not lie on a mutual straight line. His textbook
Tentamen, written in Latin and with the intention of being used for teaching
mathematics at grammar school, was published in Hungary in 1832. At this
time, it was not uncommon – partially as the result of Legendre’s widespread
books on geometry – to look at the parallel problem in such textbooks by
means of, if nothing else, pedagogically well-balanced marginalia or footnotes.
For instance, in 1834, J. A. Grunert, back then still professor at a grammar
school in Brandenburg (Germany), wrote in his textbook Lehrbuch der ebenen
Geometrie für die mittlern Classen höherer Lehranstalten (Textbook on Plane
Geometry for the Middle Classes of Higher Educational Institutions):

“As known, the mathematicians have found the theory of parallels difficult
since Euclid’s time, and it cannot be our intention here to look at and explain
this subject matter more closely, but rather to try to lift these difficulties
themselves, since we would need an independent detailed treatise for this,
which does not exactly belong in an elementary book like this one presented
to you here.”

However, he could not help but present his own “view on this subject matter
in a few words” (l. c. p. 51). To sum up, this view basically amounts to the
fact that Euclid’s other axioms and postulates are local – so to speak – and
also states some aspects about the conditions for the congruence of triangles.
However, the gist of the 5th postulate states a “global” property of the plane
and, hence, we cannot expect to be able to do without it (i.e., to prove it by
means of the other axioms).

The text by Wolfgang’s son Johann v. Bolyai was attached in the Appendix
of the Tentamen. As had some before him, Johann encountered correlations
by means of his own attempts to derive a contradiction based on the negation
of the parallel postulate, which contradicted the naive concept, but seemed
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more and more meaningful to him the more he looked at it. Above all, he
found that the created alternative for Euclidean geometry so depends on
a constant that the ratios arbitrarily approach the Euclidean ratios given
that the constant is sufficiently small. The basic tendency of his appendix
lies within developing geometry, first of all, without using the parallel pos-
tulate or its negation as far as possible (following his wording, this part of
geometry was later referred to as absolute geometry) and to develop the con-
sequences of the negation of the parallel postulate so in dependence of this
constant that we encounter the Euclidean case as a boundary case of an infi-
nite bundle of possibilities. He stressed repeatedly that we could not expect
more from mathematics here and determining the constant would be up to
physical measurements, whereby the case of Euclidicity generally cannot be
verified, since the derivation may be so insignificant that it cannot be de-
termined within the scope of the possible accuracy of measurement. Next
to many other individual results, he also showed that squaring the circle is
possible with compass and straightedge in the case of non-Euclidicity. After
this brief description of the content of the appendix, the title of his text is
clear: Raumlehre, unabhängig von der (a priori nie entschieden werdenden)
Wahr- oder Falschheit des berüchtigten XI. Euklidischen Axioms4 : für den
Fall einer Falschheit derselben geometrische Quadratur des Kreises (Theory
of Space Independent of Truth or Falsity (never decided a priori) of the Infa-
mous XI. Euclidean Axiom: For the Case of Falsity of the Same Geometrically
Squaring the Circle). (A German version of the entire text composed by him
in 1832 can be found in [Bolyai/Stäckel 1913], [Reichardt 1985] and others.)

We have already mentioned how vehemently the father warned his son be-
forehand not to get too deeply involved in this problem. (Further such letter
passages can be found in [Bolyai/Stäckel 1913], [Reichardt 1985, p. 56 ff.] and
others). These passages also reflect that the publication of the appendix in
this given form was only finalised after longer discussions between father and
son. Nonetheless, the elder Bolyai sent his son’s work to his old friend Gauss
and it is completely clear that both Bolyais not only counted on a strong
affirmation, but also expected above all that the already very famous Gauss
would publically approve and defend the new theory. Praise and approval
followed, however in a manner that must have deeply hurt and disappointed
the already psychically weak J. v. Bolyai:

“Now some things regarding your son’s work. If I start by saying “that I
must not praise such”, you will be speechless for a moment. But I cannot do
otherwise; to praise it would mean praising me, since the entire content of
the text, the path your son chose and the results to which it led him already
occur almost completely in my own meditation, which I have been engaging
with for almost 30-35 years at parts. Indeed, I am extremely surprised at this.
My intention was not to release any of my own work during my lifetime, of
which I have hardly written down anything, by the way. Most people are not

4 5th postulate
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Illus. 7.5.1 Wolfgang (Farkas) Bolyai and his son Johann (Janos). The “portrait”
of Jonas Bolyai does not show Janos. It is a pseudo-portrait from a Romanian stamp
that appeared 1960 on the occasion of the 100th anniversary of his death. Because
no real painting of Janos was found a portrait of a young man (probably member of
the House of Habsburg) was used for the stamp, printed also on Hungarian stamps

and in many books (see [Schreiber 2005c])

of the right mind for this, which matters here... Thus, I am very surprised
that I can save these efforts [to work out everything in writing] and I am
delighted that it is the son of my old friend who beat me to it in such a
strange manner...” (Translated from the quote in [Reichardt 1985, p. 59f.];
some pages on suggestions of how to improve the content follow.)

Indeed, Gauss had occasionally mentioned his view on the parallel problem
in letters to good friends and praised Johann v. Bolyai’s work, but avoided
any public statement and refused to refer to his statements made in letters
in an almost abrupt manner. Having found out about the investigations of
the legal expert F.K. Schweikart and his nephew F.A. Taurinus (partially
printed in [Engel/Stäckel 1895]), he wrote to the latter in 1824: “I do not fear
of a man who has revealed himself to me as a thinking mathematical mind
that he could misinterpret that given herein [a short description of Gauss’s
results and views]: however, in any case, you must view this as a private
message, which you must not, in any case, use in a public manner or in a
manner that leads to publication.” (Translated from German into English
based on [Reichardt 1985, p. 39])

Completely independent of Lambert, Gauss, Bolyai, Schweikart and Tauri-
nus, N. I. Lobachevsky had already given a first public talk on non-Euclidean
geometry in distant Kazan in 1826. Several publications on this subject fol-
lowed from 1829-40. ‘Geometrical Investigations on the Theory of Parallel
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Illus. 7.5.2 Carl-Friedrich Gauss and Nikolai Ivanovich Lobachevsky

Lines’ was even translated into German in 1840 (engl. translation by Halsted
1891). Lobachevsky had a completely different social rank as a meritorious
vice chancellor at the University of Kazan for years and, above all, was in
a completely different state of mind than the officer J. v. Bolyai, who had
retired early and been surrounded by scandals. He did not give up on defend-
ing the theory of parallels, which he had believed to be true during his entire
life, because of failures or non-approval. The main difference between this
and Bolyai’s theory was that, in Lobachevsky’s work, the idea of constant (of
curvature, stated in a modern fashion) and the deviation from Euclidicity,
which cannot be perceived experimentally in a space of little curvature, did
not play a dominant role. Of course, Gauss followed these works with the
greatest of interest and was the reason that Lobachevsky became appointed
corresponding member of the “Göttinger Gelehrten Gesellschaft” (Scholar
Society of Göttingen). It is also true that he began learning Russian in his
old age. However, it is just a myth that he did so to be able to read those
works by Lobachevsky that were written in Russian.

Although, as mentioned, the parallel problem was discussed on different levels
by many people at that time, even in textbooks, the publications by Bolyai,
Lobachevsky and Schweikart did not have any effect. This only changed after
Gauss’s opinion on this subject became generally known after his death, first
in 1856 due to a remark by his first biographer, Sartorius von Waltershausen,
and even more greatly due to the publishing of the Gauss-Schuhmacher cor-
respondence (6 volumes, 1860-65). One consequence was that Lobachevsky’s
‘Pangeometry’ was published in France in 1856 and in Italy in 1867 and his
main work (1840) in a French translation in 1866 (with an extensive com-
mentary by the translator J. Hoüel [Sjöstedt 1968], who, as a result, had to
be accepted as the pioneer of non-Euclidean geometry in France). Bolyai’s
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Appendix was only translated into Italian in 1868. The article ‘Über den
neuesten Stand der Frage von der Theorie der Parallelen’ (On the Latest
Updates on the Questions of the Theory of Parallels), published in Archiv
der Mathematik und Physik (Archive of Mathematics and Physics) in 1867
and written by the already mentioned Grunert, draws a good picture of the
time. Grunert had been appointed mathematics professor at the University
of Greifswald by then and was founder and publisher of ‘Archiv’, a jour-
nal mainly targeted at teachers and spread across Europe. There he writes,
amongst other things:

“...it seems now that uniting the views of the new geometers, partially very
important voices [!], to make a decision about this [namely about the sum
of angles in a triangle] in believing that the a priori theoretical investigation
of the above (Legendre’s theorems listed in 6.4) had reached its end, and
nothing else is left than asking experience. Hence, geometry is at least in one
point a science of experience!!” (Grunert Archiv 1867, p. 319).

We have now arrived at the crucial question of the philosophical interpre-
tation of all the efforts (and further ones not looked at here) mentioned so
far. The highly regarded philosopher Immanuel Kant from Königsberg had
multiply decreed, mainly in his ‘Critique of Pure Reason’ (1781), that Eu-
clidean geometry is just as necessary a subject matter as the notion of natural
numbers, a priori, given before all experience, so-to-speak the empty shelf, in
which we then put the experiences. Which role such an authoritatively spoken
opinion played back then can perhaps be better understood if we remember
that mathematics was a subject studied within the scope of the philosophi-
cal faculties and that, naturally, all prospective mathematics teachers at the
higher schools of general education (from which the professors of universities
and institutions of higher technical educational were recruited) had to engage
with a significant amount of philosophy as part of their studies. As a result,
many of them had a priori philosophical tendencies for their entire life.

It is clear in the works of all authors of non-Euclidean geometry (the only ex-
ception is Lambert!) that they could only view the question under the aspect
of possible doubt over the Euclidicity of physical space. Mathematics was a
natural science; geometry was proto-physics, so-to-speak, the theory of empty
but actually existing space. Schweikart named his geometry “Astralgeome-
trie”, since he thought that their possible applicability could only be seen on
a cosmic scale. J. v. Bolyai defended the same opinion. Lobachevsky spoke of
“imaginary” geometry, since we can only “imagine” it as long as we have not
proven its “truth”. Gauss wrote to Taurinus in the often quoted letter: “All
my efforts at finding a contradiction, an inconsequence in this non-Euclidean
geometry have been fruitless and the only thing that resists our mind is that
there would have to be a certain special linear magnitude (although unknown
to us) in space, if it was true [!]” [Reichardt 1985, p. 38]. A passage in a letter
from Gauss to his friend Schumacher from Nov. 28, 1846 is also highly re-
markable: “It [the German edition of Lobachevsky’s theory of parallel lines]
features the basics of such a geometry, which had to take place [!] and strictly



430 7 New paths of geometry in the 19th century

could take place, if the Euclidean is not the true one... You know that I have
been convinced of this for fifty-four years already (with a certain later ex-
tension, which I will not mention here);...” (translated from German after
[Reichardt 1985, p. 77]). Apart from repeatedly stressing non-Euclidean ge-
ometry as merely an alternative for the structure of physical space, it seems
very plausible (and this is in contrast to Reichardt’s assumption following
the quoted passage) that Gauss already hinted at his insight gained in 1827
as part of his remark added in brackets that plane non-Euclidean geome-
try is the inner geometry of surfaces of constant negative curvature. Next
to the repeatedly stated and surely applicable view that most mathemati-
cians would not understand him and that “the wasps would unnecessarily
fly around his ears”, as he had once expressed, as well as Gauss’s known
aversion to all the turbulence of external life, a reason for his careful lifelong
reservation was that he was missing the spatial analogies for curved surfaces.
This would explain the unusual reaction that he showed towards Riemann’s
habilitation speech in 1854. According to witnesses, Riemann had simultane-
ously answered two open questions with which Gauss had fought a long time
himself: how could be structured a space of higher dimension than three, in
which we could imagine a three-dimensional curved space embedded? How
could we generalise inner geometry of surfaces to inner geometry of curved
spaces of higher dimension? It seems that imagining a curved space without
a surrounding space of higher dimension, in which the curvature could be
located, laid outside all psychological possibilities, like recognising that phys-
ical space can, or even must, in general, be inhomogeneous. In the quote,
Gauss speaks of “either” (Euclidean) “or” (non-Euclidean in the classical
sense of Lobachevsky-Bolyai). The modern extensive meaning of the words
‘space’ and ‘non-Euclidean’ is the result of much later developments.

The first models of non-Euclidean geometry

In 1868, E. Beltrami published his famous and oft-quoted article Sag-
gio... (English: Attempt at an Interpretation of Non-Euclidean Geometry)
in the Italian language at the age of 33, explicitly referring to Gauss and
Lobachevsky (without, however, mentioning Bolyai; cf. the year of publica-
tion of the Appendix in Italian, as stated above). Its essential content is proof
that non-Euclidean geometry is the inner geometry of the surface of constant
negative Gaussian curvature created by revolving the tractrix (i.e., a very
special surface). It seems that Beltrami was first to use the term “pseudo-
sphere” in this context. Beltrami’s article finally made non-Euclidean ge-
ometry legitimate in the eyes of the mathematical public, since now it had
been interpreted in the real world. In 1868, Beltrami still had doubts that
something analogous would be possible for spatial non-Euclidean geometry.
Having read Riemann’s habilitation speech printed in 1868, he expanded his
investigations to the spatial case. Meanwhile, Felix Klein had found a general
model of non-Euclidean geometry within Euclidean geometry in 1871 that
works completely analogously for the plane as for the spatial case. Based on
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the manner with which A. Cayley had explained measuring lengths and an-
gles in projective space by means of an imaginary surface of second order (cf.
7.7), Klein now showed that it was possible to obtain models analogously for
non-Euclidean space on the inside of a non-degenerated surface of second de-
gree, whereby the intersection with any plane yields a model of non-Euclidean
plane bound towards the outside by a conic section. Klein also introduced
the term ‘hyperbolic’, since then customary for non-Euclidean in the sense
of Lobachevsky-Bolyai, ‘elliptic’ for the geometry locally applicable to the
sphere with sum of angles > 180 degrees, and ‘parabolic’ for the Euclidean
case in this article. Thus, he had once and for all eliminated concerns regard-
ing the possibility of a three-dimensional hyperbolic geometry, as had been
explicitly stated by Bolyai and Beltrami, and presumably also mentioned by
Gauss and others. Furthermore, he had wiped away the flaw of the pseudo-
sphere of not delivering a global model due to the unavoidable singularities in
three-dimensional space. Influential textbooks affirmed the position of non-
Euclidean geometry, including those by J. Frischauf (1876) and W. Killing
(1885), as did the proof stated by R. Lipschitz that the laws of mechanics
are maintained in hyperbolic space, and the multiple contributions by H. v.
Helmholtz for non-Euclidean geometry, partially by means of clever popular-
scientific talks (for an example, see the talk [Helmholtz 1870], which is still
a pleasure to read nowadays, excerpts in appendix A.9, p. 574).

Below, some critical remarks concerning the history:

1. Both the basics of Klein’s and Poincaré’s (plane) model, which we will
look at later on, are comprehensible. If we compare the original descrip-
tions by Beltrami, Klein, Poincaré and others from the 19th century, we
are confused because of the wealth of complicated formulae and computa-
tions, which seem to be secondary from a modern perspective. Apart from
the afore-mentioned differential-geometrical tendency fashionable in the
19th century (unfortunately, trends and authorities still play an important
role nowadays regarding the level of attention caused by a mathematical
accomplishment), another main reason lay within the fact that, before
the modern axiomatic foundation of Euclidean geometry first established
by D. Hilbert in 1899, it was not clear at all which theorems in a “model”
(this notion did not yet exist back then!) had to be proven as valid. After
all, Euclid’s axioms and postulates form a rather incomplete basis for
axiomatic systems in the modern sense. Thus, all efforts were directed
at finding the analoga of the formulae of Euclidean trigonometry and
of measure determinations (lengths, angles, areas, volumes) in the non-
Euclidean geometries (here including the spherical one), and then prov-
ing them as applicable in the found “Versinnlichungen” (sensualisation)
(expression from Klein!). In contrast to checking a complete axiomatic
system, this is an ‘open’ and rather incomplete program.

2. As repeatedly emphasised, before the rise of mathematical logics with
its clear notions of formal language (or at least a sharply bound system
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of notions), axiomatic systems, interpretation, model, etc., briefly, before
the transformation of mathematics from a natural science to a science of
structure non-Euclidian geometry could only be looked at through the
aspect of its possible validity in the physical sense. The models found
by Beltrami and Klein were also not grasped by the authors themselves
as models in the modern sense, but only very vaguely as proof of logical
consistency. Rather, visualisation or sensualisation served to strengthen
the conviction that such a geometry, which until then had contradicted
the previous visualisation, was possible in the physical sense.

3. The historical significance of Beltrami’s publication from 1868 shall not
be challenged. Nonetheless, it would have been utterly possible to deduct
this result far earlier from the works by Gauss and others on inner ge-
ometry of surfaces of constant negative curvature. Furthermore, we find
the basic concept of the model by Klein implicitly in Beltrami’s work.
Beltrami had the general intention (also in other publications) of rep-
resenting curved surfaces in the plane in such a way that the geodesics
thereby are transformed into straight lines. He also did this with the
pseudo-sphere. If we look at his representation, we basically see Klein’s
plane model (Illus. 7.5.3). Having heard of Riemann’s habilitation speech,
Beltrami extended his model to a spatial one inside a sphere in the same
year (1868, published in 1869). It remains Klein’s accomplishment to
have connected this model with Cayley’s measure determination and,
thus, to have included it in a general context. In contrast, substituting
the interior of a circle for the interior of any non-degenerated conic sec-
tion is rather tedious in its didactical aspects, if we are only focussed
on a preferably elementary proof of consistency. In 1871, Klein referred
to Beltrami’s work from 1868, although it seems that he was unaware
of the article from 1869, since he wrote rather unclearly: “Beltrami, to
whom we owe the respective sensualisation of hyperbolic geometry, has
proven that something analogous is not possible for space.” [Nachrichten
von der Kgl. Gesellschaft der Wissenschaften Göttingen (News from the
Royal Society of Sciences, Göttingen) 1871, p. 626].

Hardly any other intra-mathematical advancement has ever provoked as
much public attention as non-Euclidean geometry. And the mathematicians’
“camp” remained split after Beltrami’s and Klein’s publications.

Next to disputatious propagandists (amongst them, for example, the radical-
liberal Briton W.K. Clifford, and mathematics professor Kurd Laßwitz from
Gotha, also known as an early writer of science fiction stories), there were mil-
itant opponents, such as J. Bertrand in France and I. C.V. Hoffmann (founder
of the Journal for Mathematical and Natural Scientific Teaching) in Germany,
some of whom took the position they did due to a conservative attitude (G.
Frege, C. L. Dodgson, alias Lewis Carroll). Philosophers also felt affected
and threatened in their very own area of expertise, such as, amongst others,
R.H. Lotze and E. Dühring. Professor F.K. Zöllner in Leipzig, also known
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Illus. 7.5.3 Beltrami-Klein Model for the plane case
The “world” only consists of the points inside the circle. Between the limiting
parallels (also horoparallels) g2, g3 to g1, there are an infinite number of further
straight lines through P that do not reach g1. The inside of a sphere yields an

analogous model of spatial hyperbolic geometry.

for his extraordinary astrophysical achievements, concluded the existence of a
surrounding four-dimensional space from the now possible curvature of three-
dimensional space. He further concluded that intelligent four-dimensional be-
ings could live in this four-dimensional space. His spiritualistic attempts to
make contact with these beings provoked an immense furore around 1880
[Wirtz 1887]. Finally, Helmholtz’s appealing thought experiment of putting
oneself in the position of two-dimensional beings living on a curved surface
inspired a whole genre of literature [Helmholtz 1870] [Sjöstedt 1968] (see Ap-
pendix). For instance, Flatland (1884) by the British educational expert E. A.
Abbott (no mathematician but a theologian; see A.10) and “Bolland” (1957)
by the Dutchman D. Burger were translated into several languages and have
remained successful up to the present day.

In 1881, Henry Poincaré found a new model of plane non-Euclidean geometry
in correlation with investigations on applying conformal mappings of complex
number fields to solve certain differential equations without first being aware
of this geometrical interpretation. Through the medium of Felix Klein, he
wrote a report summarising this for the journal Mathematische Annalen in
1882. Only through the thought exchange with Klein did gradual awareness of
the model character of Poincaré’s construction rise. Following the work Sur
les hypothéses fondamentales de la géométrie published in 1887, Poincaré,
with a notional clarity unmatched until then, represented his found model
in his scientific philosophical book La science et l’hypothése first published
in 1902 and translated into German in the same year (by F. Lindemann and
his wife): a is any straight line of the Euclidean plane, H one of both open
half-planes bounded by a. In the non-Euclidean sense, points are all points
of Hand straight lines are semi-circles in H, the centres of which are located
in a, as well as all half-lines in H standing perpendicularly on a (which can
be grasped as degenerated cases of the semi-circles named above for the case
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of a radius tending towards the infinite). Since every non-Euclidean congru-
ence mapping can be produced by composition of (3 at most) straight line
reflections, it suffices to say what reflections are in hyperbolic terms, namely
inversions on the relevant semi-circles or half-lines, consequently conformal
mappings (true to angle). All this can be done analogously for the three-
dimensional case, whereby a plane takes the place of a, a half-space takes
the place of H and the non-Euclidean planes are represented by hemispheres
and/or half-planes. When describing this model, Poincaré speaks of “some
kind of dictionary” for the first time, with the help of which every propo-
sition of plane geometry (regardless of whether it applies to Euclidean or
non-Euclidean geometry, or to neither) can be “translated” into the corre-
sponding proposition of this model. Finally, we can also check the validity
of his basic propositions of hyperbolic geometry. Apart from the fact that
this publication naturally preceded Hilbert’s ‘Foundations’, the formal (this
word seems to have a negative aftertaste) or, more appropriately, syntactic
standpoint clearly breaks through: We have a system of notions. If any in-
terpretation of these notions is given now, we can check if certain theorems
become true, i.e., if it represents a model for these theorems.

Poincaré and many after him were fascinated with the property of the model
that every hyperbolic angle is represented by a Euclidean angle of the same
size (which does not apply to Beltrami’s and Klein’s models). Furthermore,
he saw the opportunity to apply hyperbolic geometry independently of the
question of whether it is valid in physical space by reverse-interpreting its
theorems as theorems about conformal mappings.

Of course, we can represent the entire model by conformal mappings onto
the inside of a circular disc. However, it would still differ from the Beltrami-
Klein model, since all straight lines are represented as straight chords there

Illus. 7.5.4 Poincaré’s model. a) in a Euclidean half-plane, b) inside a circle

Model b) is created by a conformal mapping of a). It still differs fundamentally
from the Beltrami-Klein model, since the straight lines inside are not represented
by chords, but by perpendicular circular arcs on the boundary circle. There are also
spatial analoga for Poincaré’s model in a semi-space bound by a plane or inside a

sphere.
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(Illus. 7.5.4). Only much later were some other properties of Poincaré’s model
realised, also distinguishing it from Klein’s model: constructions of hyperbolic
geometry, which can be done with compass and straightedge there, can be
simulated by construction with compass and straightedge in the Euclidean
sense here ([Schreiber 1984], [Schreiber 1996a]]; Problem 7.5.1).

The last outcome of the 19th century worth mentioning concerning hyper-
bolic geometry was also only published in print in 1901. Analogous to spher-
ical geometry, a triangle is also uniquely determined by its three angles in
hyperbolic geometry. As known, the relevant construction problem regarding
spherical geometry had its solution coming for a long time, until Vieta and
Snellius found the polar principles, which reduce this problem to the problem
of constructing a triangle based on its three sides. Lobachevsky and Bolyai
had failed to solve the analogous problem for hyperbolic geometry. Now, H.
Liebmann also found a kind of polar or duality principle for hyperbolic ge-
ometry, with the help of which we could reduce a construction based on three
angles to the construction of a “polar” triangle based on its three sides. How-
ever, it only works directly for right-angled triangles, and no doubt made
the construction possible for the general case, but only very complicated.
(How lucky that we apparently never have to do it! See [Liebmann 1901],
[Schreiber 1984].)

Until now, we have restricted the notion of non-Euclidean geometry to Bolyai-
Lobachevskian hyperbolic geometry. However, hand in hand with its increas-
ing acceptance and parallel to the development of inner differential geometry,
awareness also grew that the hyperbolic space form is just one of many pos-
sible non-Euclidean forms. Of course, spherical geometry also defended its
ancient right to a sensible alternative in a certain way. Nonetheless, it seems
that geometers of the waning 19th century were more interested in the exam-
ple created when only looking at a hemispherical surface and identifying each
pair of diametrically opposite boundary points. This has been referred to as
the elliptical variant ever since then. On one hand, we obtain a geometry
that corresponds locally to the spherical one with a difference between angle
sum and 180 degrees, which is proportional to the area. However, each two
geodesics corresponding to the straight lines always have only one intersec-
tion. On the other hand, this geometry is isomorphic to the geometry of the
bundle of straight lines carried by the centre of the sphere.

In clear reference to the title of Riemann’s habilitation speech after its first
publication in 1866, H. Helmholtz subjected Riemann’s space forms to the
additional condition of free mobility of fixed solids in two published presen-
tations: Über die thatsächlichen Grundlagen der Geometrie (On the Actual
Foundation of Geometry, 1866) and Über die Tatsachen die der Geometrie
zum Grunde liegen (On the Facts on which Geometry is Based, 1868) from
the physicist’s viewpoint. Based on this, he further deducted that only spaces
of constant curvature could then be considered. Simple examples, like an in-
finitely long cylindrical surface, which has the constant Gaussian curvature of
zero, already show that Helmholtz’s condition makes globally different struc-
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tures possible for every one of the three cases of curvature greater, smaller
or equal to zero. These investigations were especially uplifted when Clif-
ford discovered a finite surface of the constant curvature of zero in 1873,
the global topological structure of which looks like a ring (see, for example,
[Klein 1928], Chap. VIII and IX). This topic was called the space problem
of Clifford-Klein since 1890, which means listing all such possibilities and
proving their completeness. (There is also occasional reference to the names
of Riemann, Helmholtz and Lie.) Indeed, it seemed that this question was of
cosmic relevance before the rise of the theory of relativity.

7.6 Notion of vector and n-dimensional geometry

From our modern perspective, every mathematical problem featuring n vari-
ables, takes place in an n-dimensional space. For instance, the names for
higher powers of the unknown, introduced by Diophantus and conserved by
Vieta until modern algebra was established, show that algebra often benefit-
ted more or less consciously from analogous ideas between the case of n ≤ 3
and the higher “dimensional” case: δ (dynamis) for x2, κ(kubos) for x3, δδ for
x4, δκ for x5, κκ for x6, ... It seems particularly that the analogies between
producing a line segment by linearly moving a point, producing a rectangle by
linearly moving a line segment perpendicularly to it and producing a cuboid
by linearly moving a rectangle perpendicularly to it inspired the mathemati-
cian’s imagination early on. We find traces of speculation about this in both
medieval Islamic and European mathematics. Abū-l’Wāfā imagined some-
thing like an n-dimensional analogon for Pythagoras’s theorem around 970.
With this, he wanted to transform the sum of more than three squares into
one square by means of geometrical construction. Michael Stifel, in his edition
of Coß by Christoph Rudolff in 1552, expressed his regret that it is not “al-
lowed” in geometry to look at things that have no “shape”, like, for example,
the motion of a point perpendicularly to all three edges of a cube. As long
as geometry was accepted as proto-physics, meaning as the theory of true
physical space and, hence, as a “natural science”, we could hardly expect a
fundamental turn in this respect. The greatest possibility until then, namely
interpreting time as a true fourth dimension, is only found explicitly in the
article ‘Dimension’ by d’Alembert in the French Encyclopédie (1764).

We would remind the reader of Plücker’s four-dimensional space of all straight
lines of R3 (1846) and his approaches to grasp algebraic (or geometric?) ob-
jects, for the characterisation of which we need more coefficients, as elements
of a higher dimensional space (1868). Cauchy’s ideas, which matured around
the same time, were aimed in a similar direction. He basically wrote in an
academic note on ‘Analytische Örter’ (Analytic Loci, 1847): If a function de-
pends on two or three variables, we can look at its domain of definition as an
amount of points in the plane and/or space regarding Cartesian coordinates.
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Let us now assume that the amount of variables is greater than three. Then,
every value system determines for these variables what we want to call an
‘analytical point’ and of what these values are the coordinates. If these value
systems are subject to certain conditions expressed by inequations, these an-
alytical points, the coordinates of which suffice for these conditions, form
an ‘analytical locus’. This ‘locus’ is bounded by ‘analytical closers’, which
are expressed by equations, created if we substitute the signs “<” and/or
“>” with “=” in the inequations describing the locus. We want to refer to a
system of analytical points as an ‘analytical straight line’, the entire coordi-
nates of which are linear functions of one of them. Finally, the ‘distance of
two analytical points’ is the root of the sum of the squares of the coordinate
differences of these points. Looking at analytical points and loci enriches the
means to solve many difficult questions, especially those which refer to the
theory of polynomials. (Free translation based on [Cauchy, Works, 1. Ser.,
vol. X, p. 292]).

The analogies occur most clearly between the illustratively imaginable and
the higher dimensional when speaking of linear notions and problems. Hence,
the actual transition to n-dimensional geometry is most closely connected to
the development of linear algebra and the origins of the notion of vector.
The word ‘vector’ does not occur in mathematics before the middle of the
19th century, perhaps first in W.R. Hamilton’s work. The vectors themselves
occur first in mechanics as velocities and forces, whereby both the manner
of naming and the physical interpretation connected to the notion of force
remained nebulous for centuries. The addition of forces according to the par-
allelogram rule occurred around 1600 in Stevin’s and Snellius’s works for
special cases, the one of velocities in Roberval’s work from 1635 onwards.
Pierre Varignon played a role (even if possibly exaggerated earlier by Bossut,
Lagrange and others) when teaching composition of forces that is still hardly
mentioned in the overall description of the mathematical and physical his-
tory of the 20th century. He used the parallelogram of forces fully generally
and the whole mutual compensation of n forces, the vector sum of which
yields the zero vector. We can also determine Fermat’s point for n points
with the device invented by Varignon to determine experimentally the point
for n forces at which they are balanced. Monge’s statics reached a relatively
concluded form (Traité élémentaire de statique, 1788) and, above all, in the
works of his student L. Poinsot (Éléments de statique, 1803, many edited
versions and translations). In 1832, the Italian mathematician G. Bellavitis
was first to express the fact that translations also act like vectors in regards
to composition. (This astonishingly late recognition is surely related to the
difficult birth of the notion of mapping in geometry. We will look at this again
in 7.7.)

At the beginning of the 19th century, the physical notion of vector received
another great impulse due to the examination of electric and magnetic fields
(amongst others, the discovery of electromagnetism by Hans Christian Oer-
sted in 1820). Now, the magnetism of Earth was understood as a spatial vec-
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tor field, the state of which is characterised not just by the direction within
the tangential plane of Earth (declination), but additionally by the inclina-
tion (inclination towards this plane) and intensity. Gauss, his colleague from
Göttingen, the physicist Wilhelm Weber, and the Norwegian Ch. Hansteen
(Oersted’s student) especially rendered outstanding services to the worldwide
exploration and evaluation of Earth’s magnetism. Notions such as rotation
and divergence emerged in this context. However, this led to great advances
in vector analysis on the basis of coordinate-wise calculations before there
was clear vector algebra.

Vector algebra, complex numbers and quaternions

The geometrical interpretation of complex numbers played a strange role
in the development of vector algebra. The Norwegian geodesist Caspar
Wessel is nowadays accepted as its first (historically ineffective) founder
(treatise 1797, published in Danish in 1799, for English translation see
[Lützen/Branner 1999]). He had nothing else in his mind than an algebraic
calculus for composing translations and rotations, the first expressed by the
coordinate-wise addition (hence, the two-dimensional special case of vector
addition), the latter by connecting the direction cosines, which corresponds to
the addition theorems of sine and cosine and the multiplicative connection of
real and imaginary parts of a complex number. Wessel also had a forerunner,
although he did not know him, in the teacher Heinrich Kuehn from Danzig,
who had published a Latin work on the geometrical visualisation of imag-
inary quantities in the proceedings of the Russian Academy of Sciences in
St. Petersburg in 1751/52. The amateur mathematician J. R. Argand anony-
mously self-published a further work on this subject matter in Paris in 1806,
hardly known at first. It was his explicit wish to state a geometrical inter-
pretation of calculating with complex numbers that had been very obscure
until then. His results included, amongst others, de Moivre’s formula and
observations regarding the fundamental theorem of algebra. This work be-
came so well known after 1813 due to articles in Gergonne’s Annales and the
subsequent review by Cauchy and other significant French mathematicians
that it bore a crucial influence. W.R. Hamilton studied it and let himself
be guided by it when inventing quaternions (1843) for the construction of
an algebraic calculus analogous to the complex numbers for the transforma-
tion of spatial vectors. Such a transformation consists of a scalar dilatation
and/or compression (referred to as “tensor” by Hamilton) by a factor a,
which acts multiplicatively during composition, and the revolution around
the origin of coordinates in the new orientation, which depends on three pa-
rameters and acts like the outer product of vectors during composition. Thus,
the quaternions form (stated in a modern fashion) a four-dimensional vector
space, the elements of which consist of a one-dimensional “scalar part” ae
and a three-dimensional “vector part” bi + cj + dk with the units e, i, j, k.
Thereby, addition takes place component-wise and multiplication according
to the rules below:
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ee = e, ei = ie = i, ej = je = j, ek = ke = k, ii = jj = kk = −e,

jk = −kj = i, ki = −ik = j, ij = −ji = k.

If we multiply the vector part of two quaternions according to these rules, we
obtain a quaternion, the scalar part of which corresponds to the inner prod-
uct of these vectors apart from the algebraic sign and the vector part of which
corresponds to its vector product. An extensive description of Hamilton’s own
considerations can be found in, for example, [Coolidge 1940, p. 257ff.]. It was
only made clear much later that he had found the first and also final exten-
sion of complex numbers for the price of no more commutative multiplication.
Whereas quaternions have maintained a restricted meaning for algebra from
the contemporary view, they have proven to be a complete detour for arriving
at actual vector algebra, because they cannot also be generalised for higher
dimensions. However, Hamilton was already a very famous and influential
mathematician around 1850, so a strong group of followers for his quater-
nions calculus was formed.

Grassmann’s theory of linear extension

In the meantime, the grammar school professor H.G. Grassmann published
his Lineale Ausdehnungslehre (Theory of Linear Extension) in Stettin (now
Szczecin in Poland) in 1844. This work hardly received any attention back
then, since, on one hand, it was written in a rather “philosophical” style that
was free of formulae and unusual for his contemporaries, and, on the other
hand, it was, to a great extent, leaps and bounds ahead of the imagination of
the mathematicians of the time. Nowadays, Grassmann is accepted worldwide
as one of the most significant mathematicians of the 19th century. He was not
just the real founder of geometry of n-dimensional space, but also. within this
context. triggered impulses of algebra, which only fully came to blossom in the
20th century. (Moreover, he accomplished many things in the areas of physics,
linguistics and folklore, for which he received much more praise during his
lifetime than for his mathematical work. Cf. [Grassmann 1911], [Crowe 1967],
[Zaddach 1994], [Schubring 1996]). The attempt to explain how Grassmann
arrived at his theory of linear extension, seemingly without any predeces-
sors or prehistory, only leads us back to his exam paper from 1839 on the
‘Theory of Low and High Tide’, in which he makes ample use of the contem-
porary knowledge of physical vector analysis, and refers to his father Justus
Grassmann, also a mathematics teacher in Stettin, who played a role in devel-
oping crystallography. Grassmann the elder had already stated in a textbook
in 1824 that parallelograms and/or parallelepipeds should be grasped in a
specific sense as geometrical product formations. When he turned towards
crystallography influenced by the dynamic natural philosophy dominating in
Germany back then, he based his idea on the hypothesis of forming forces
and, thus, described orientation and area of boundary surfaces by means of
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Illus. 7.6.1 William Rowan Hamilton and Hermann Günther Grassmann

length and orientation of their (stated in a modern fashion) normal vector.
(For details, see [Scholz 1989, p. 48ff.].)

Grassmann the younger immediately based his concept on the notion of ex-
tensive quantities of any (finite) level, which, in the case of first level, cor-
responds to a vector in n-dimensional space (for Grassmann: area of nth

level). To make it understandable and to the point, we will subsequently use
the term ‘vector’ to refer to Grassmann’s “extensive quantity”. Grassmann
himself, however, never used this term. He may have rejected it, as physics
described vectors as objects in space that are characterised by direction and
length, whereas Grassmann focussed on any dimensional case from the begin-
ning on and, above all, had a very affine grasp of it all, whereby the notions
‘length’ and ‘direction’ first have no meaning at all. n-dimensionality of space
is indicated by the existence of a base (for Grassmann: “system of units”) of n
vectors. On one hand, these are linearly independent and, on the other hand,
produce every vector by means of linear combination. The central basic idea
now lies within forming successive higher dimensional extensive quantities by
means of an “outer” product formation of vectors (in the simplest case, the
parallelogram spanned by two vectors (“bivector”) and/or the parallelepiped
spanned by three vectors), which, on top of that, are signed so that its outer
product is not just linear but also alternating. In contrast to Hamilton’s
vector or cross product, which was just so gladly adopted by the physicists
and for which the position of a surface is represented by the orientation of a
perpendicular vector and its size by the length of this vector, Grassmann’s
“bivector” remains a two-dimensional entity and is also an element of another
new vector space of dimension

(
n
2

)
.
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After 1870, when a party of “Grassmannians” had formed, the Hamiltonians
were temporarily referred to as “monovectorians” and the Grassmannians as
“bivectorians”. This dispute, however, took place mainly amongst physicists,
who had started to use vector analysis long before vector algebra. The adop-
tion of Hamilton’s, Cayley’s and Grassmann’s ideas in physics was mainly
triggered by J.W. Gibbs in the USA (1881) and O. Heaviside in England. The
first textbook of this kind in Germany was Einführung in the Maxwellsche
Theorie (Introduction to Maxwellian Theory) by A. Föppl, 1894. We will not
look at this any further. (See contribution by K. Reich in [Schubring 1996].)

Grassmann’s ‘Theory of Linear Extension’ from 1844 contains almost all basic
notions and theorems of affine vector algebra, although in a language diffi-
cult to read back then; for instance, linear dependence and independence,
exchange theorem, invariance of dimension, dimension formula for subspace
mutually created by two subspaces, etc. The reaction to this was disappoint-
ing for him: there simply was none. Möbius, who would have been most able
to put himself into Grassmann’s world, declined to review the ‘Theory of Lin-
ear Extension’. Upon his friends’ advice, Grassmann published a completely
re-edited, much more mathematical version of his theory in 1862. Only after
this one had gained ground was a new edition of the version from 1844 (a
tremendous portion of the publication of which was turned into pulp in 1864,
owing to low sales) published in 1877. Whereas Grassmann mentioned only
hastily in the introduction in 1844 that he had also discovered another prod-
uct with interesting algebraic properties, apart from the outer one (which we
nowadays refer to as “inner” or “scalar product”), he devoted more atten-
tion to this in an awarded text published in 1847 and titled Geometrische
Analyse geknüpft an die von Leibniz erfundene Charakeristik (Geometrical
Analysis Linked to the Characteristics Invented by Leibniz). This text, sub-
mitted to the Jablonowskische Gesellschaft zu Leipzig (Jablonowskich Society
of Leipzig), was evaluated by professor Möbius in Leipzig [Möbius, vol. 1, 615-
33]. Möbius then wrote: “Studying the present treatise by Mr Grassmann,
and especially the last part of this, may be connected with some difficulties
regardless of the author’s unmistakable striving for clarity, which result from
the author trying to account for his new geometrical analysis in a manner
that is far from the previously usual course of mathematical considerations...
Since his new analysis seems to deserve much attention due to its simplicity,
with which we can conduct geometrical investigations, I have attempted in
the following to establish it in a manner apt for the mind of geometry and,
thus, as I hope, in a more easily graspable manner and to show how those
apparent quantities can be looked at as shortened terms of real quantities.”

The ‘Theory of Linear Extension’ from 1862 differs from that of 1844 dis-
tinctively, in amongst other ways, by including metric notions. The inner
product of vectors occurs there as a special case of a much more general
product, which can be applied to extensive quantities of any level (multi-
vectors). This is introduced by pre-supposing a (stated in a modern fashion)
orthonormalised basis of the entire space. If A,B are such multivectors, then
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Grassmann defines,for example, the fact that they stand perpendicularly to
each other by making this product [A/B] disappear, despite A �= 0, B �= 0,
the numeric value of a multivector A by

√
[A/A]2 and the cosine of the angle

between A and B by dividing their product [A/B] by the product of their
numeric values. We owe it to the Cauchy-Bunjakowski-Schwarz inequation
that the latter is meaningful – for a number to be a cosine value, its abso-
lute value cannot be higher than one. We will now adumbrate the history
of this inequation, since it exemplarily demonstrates in which manner fun-
damental notions and approaches to thinking of modern mathematics result
from concrete, yet coincidental reasons and via many detours, but also how
geometry turns into algebra or analysis and vice versa at certain points of
its development, and that nowadays such assignments are often completely
pointless.

Lagrange, in whose work we find plenty of implicit n-dimensional geometry
wrapped up in algebra, wrote down the following identity (easy to prove by
complete induction) in 1773 (modern notation by us):(

n∑
i=1

aibi

)2

+
∑
i<j

(aibj − ajbi)
2
=

(
n∑

i=1

a2i

)(
n∑

i=1

b2i

)
(7.6.1)

[Lagrange 1923/1924, vol. 3, p. 662f.].

Cauchy added an appendix (note II) to his Analyse algébrique in 1821.
Therein, he dealt with inequations for the first time without any relation
to certain applications. (We have already mentioned that he later also used
inequations to describe n-dimensional subsets of n-dimensional Euclidean
space nowadays known as semi-algebraic, i.e., surfaces in R2, solids in R3,
...) There, we find “Cauchy’s inequality” as Theorem XVI in the following
manner:

∑n

i=1
aibi <

√∑n

i=1
a2i

√∑n

i=1
b2i (7.6.2)

with the following addition: if the ratios ai/bi are not all equal (otherwise we
have equality due to (7.6.1)) as conclusion from (7.6.1). (However, Lagrange
is nowhere cited as a source of (7.6.1)). Cauchy’s inequality is born, curi-
ously enough, without any relation to geometry and only by suppressing the
information of (7.6.1) regarding the difference between both sides of (7.6.2).
In 1829, Cauchy again returned to a special case of this inequality and this
time there was a hint of geometry in there, since he applied it to the complex
number field for the case of n = 2 in order to show that the triangle inequal-
ity applies there [Cauchy, Oeuvres, ser. II, tome IV, p. 573-609]. In 1859, the
mathematics professor V. J. Bunyakovsky from St. Petersburg, who had been
Cauchy’s student in Paris, applied this inequality to equidistant function val-
ues in order to account in a very intuitive manner for the analogous inequality
for the case that (stated in a modern fashion) the vectors are real functions
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f, g and that their inner product is formed as the integral of fg. In 1875, H.A.
Schwarz phrased the corresponding analytical inequality for a special case he
needed in his famous work on minimal surfaces, probably without knowing
of Bunyakovsky . When F. Engel commented on both ‘Theories of Linear
Extension’ in the edition of Grassmann’s works he published in 1894/96, he
noticed a footnote concerning Grassmann’s definition of the angle between
two multivectors, as mentioned above: “It is easy to show that the value of
the term for cosAB lies between the boundaries -1 and + 1...”. His following
proof is based on introducing a vector basis and applying Cauchy’s inequality
(7.6.2) to the coordinate vectors. We first find in the book Raum, Zeit, Ma-
terie (Space, Time, Matter), written by Hermann Weyl in 1918, how much
more elegantly we can obtain the inequality free of coordinates for any (also
infinitely dimensional) vector spaces based on the axiomatic characterisation
of the inner product (as bilinear, symmetric and positively definite), in order
to apply it in reverse to the case that the vector space is a space of real
n-tuples.

Let us go back to Grassmann. His groundbreaking ideas were, as stated, ac-
knowledged very slowly. Hamilton himself was one of the first to comment on
Grassmann’s work. He wrote in 1853: “It is proper to state here that a species
of non-commutative multiplication for inclined lines occurs in a very original
and remarkable work by Prof. H. Grassmann with whom I did not meet till
after years had elapsed from the invention and communication of the quater-
nions... Notwithstanding these and perhaps some other coincidences of view,
Prof. Grassmann’s system and mine appear to be perfectly distinct and inde-
pendent of each other, in their conceptions, methods, and results...” (Quoted
from [Zaddach 1994, p. 15]. The interested reader will find many more de-
tails about Grassmann, Hamilton and the history of their discoveries there.)
In Germany, it was Hermann Hankel who was first interested in Grassmann’s
works and made them better known. However, it seems that the greatest im-
pact was brought about by Giuseppe Peano with his book Calcolo geometrico
secondo (i.e., following here, according to the role model) l’Ausdehungslehre
di H. Grassmann published in 1888. We will later look at Peano’s important
role in fundamentally modernising the understanding of mathematics. We
only want to state here that Peano’s version essentially bases his work on the
axiomatically grasped notion of vector space as we know it today.

Further sources of n-dimensional geometry

We have reached an area where it becomes increasingly difficult to separate
geometry from algebra, and particularly from linear algebra. For instance,
there are determinants. They first occur implicitly in Leibniz’s work (1693),
and then are referred to by G. Cramer (1750), but only initially as formal
terms in the solution of linear equation systems. The term ‘determinant’ was
introduced by Gauss in Disquisitiones arithmeticae (1801). It seems that we
owe the fact that this also turned into a piece of geometry to Cauchy, who had
engaged with determinants since 1815 (whereby he introduced the effective
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notation as quadratic schema) and recognised the characters of determinants
as multilinear and alternating functions of their rows or columns. Hence,
the algebraic tool was already ready for recognising the significance of the
determinants as orientated volume of the n-dimensional parallel solid spanned
by n vectors, as soon as just this solid itself existed as a notion, and also the
realisation of the correlation between the determinants and the scalar triple
product of vectors in the case of n = 3. The further organisation of linear
algebra was mainly taken care of by the British mathematicians A. Cayley
and J. J. Sylvester, who worked closely together. For instance, we can see
how difficult it was for the participants back then to distinguish between
algebra and geometry (this still applies to many mathematicians nowadays!)
when looking at Cayley’s work from 1843 with the promising title Analytic
Geometry in n Dimensions, which basically does not feature anything but
a theory for solving linear equation systems for the general case, clearly a
sensationally modern idea given the circumstances back then (in the general
case the rank of the system could be different from the number of variables
and from the number of equations). If it was not like this, Cayley, instead
of Grassmann, would have to be accepted as the father of n-dimensional
geometry.

In correlation to the solution to a problem of probability calculus, W.K.
Clifford determined the volume of an n-dimensional simplex and an n-
dimensional sphere by means of complete induction over the dimension in
1866. Having concluded the two and three-dimensional case of his problem
in the introduction, he wrote without any further ado: “Now consider the
analogous case in geometry of n dimensions. Corresponding to a closed area
and a closed volume we have something which I shall call a confine [i.e.,
the enclosed]. Corresponding to a triangle and to a tetrahedron there is a
confine with n + 1 corners or vertices which I shall call a prime confine as
being the simplest form of confine. A prime confine has also n + 1 faces,
each of which is, not a plane, but a prime confine of n − 1 dimensions.”
[Clifford 1866, p. 2]. The Swiss Ludwig Schläfli accomplished a further piece
of real geometry of Rn (which could never be interpreted as linear algebra
in any manner). His work, which could only be published in excerpts during
his lifetime, supposedly due to its large size (but possibly because the pub-
lisher in charge did not understand the content) and was only published in
full in 1901, six years after his death, has a title that does not tell the mod-
ern reader about its content any better than it did the readers back then,
just like so many fundamental accomplishments of the 19th century: The-
orie der vielfachen Kontinuität (Theory of Multiple Continuity). Therein,
Schläfli offers, amongst other things, an extension of the notions of poly-
hedra, corner, edge, lateral surface,..., convexity, regularity, etc., to include
the n-dimensional case. He also introduces the ‘Schläfli symbols’, which are
still used today to mark regular polytopes. His investigation climaxed in the
proof that there are exactly six regular polytopes in R

4 (Illus. 7.6.2), but
that there are only three of such polytopes in all higher dimensions, namely
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Illus. 7.6.2 4-dimensional regular simplex, 4-dimensional cube and the dual 4-
dimensional solid bounded by 16 tetrahedra

the self-dual n-dimensional simplex (in generalisation of the tetrahedron),
the n-dimensional cube and its dual solid. He conducted the analogous in-
vestigation for the regular decomposition of the surface of the n-dimensional
sphere. Furthermore, he stated volume formulae for such entities and the
classification of the motions in R

n. In this context, we must also name Victor
Schlegel, professor at the Higher School of Machine Building in Hagen, who
had dealt with the higher dimensional, especially regular, polytopes and the
possibility of tessellation of Rn with them in presentations and publications
since 1883. His name has almost been forgotten, even in the specialised lit-
erature on polyhedra (e.g., [Cromwell 1997]). Only the “Schlegel diagrams”,
special projections of polytopes onto the Euclidean plane, remind us of him.

Another pioneer of true n-dimensional geometry was E. Betti in Italy, who,
in 1871, befriended by Riemann and inspired by his works, continued the
attempt, left unfinished due to Riemann’s early death, to examine the (stated
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in a modern fashion) topological equivalence of k-dimensional manifolds in
n-dimensional space. We will look at the consequences for the developing
topology in 7.8.

7.7 Transformation groups

For a long time, geometrical mappings were only looked at implicitly and
by applied disciplines like optics, perspective, cartography or mechanics. The
first three areas offer relatively little motive for thinking about the composi-
tion or reversion of mappings. Furthermore, the domain there is almost always
different from the original domain. The notion of motion or rigid mapping dif-
fers in mechanics. There, however, reflections did not play any role, since they
cannot be realised on material solids in space. Hence, it is understandable
that the first implicit group-theoretical considerations concerned the area of
motions (or congruence mappings) of Euclidean space onto itself, nowadays
referred to as proper (i.e., orientation-preserving). The first finding possibly
worth mentioning was that such a mapping can be represented as a screwing,
i.e., as the composition of a revolution around a straight line and a translation
towards this straight line, whereby one of these parts can be omitted so that
translations and revolutions are kept as special cases. (Of course, there was a
long way to go until the identical mapping was acknowledged as a mapping!)
This is also only explicitly stated in a treatise by Chasles on the motion of
solids in 1830. The classification and composition of spatial motions was fur-
ther elaborated by O. Rodrigues in 1840 and L. Poinsot in 1851. Möbius made
an attempt in 1838 to account for the chaining of motions synthetically free of
reflections, which he had intended to be a contribution to mechanics. At the
same time, we must point out that the analytical treatment of such questions,
which dominated at this time, with traditional coordinate systems compared
to other calculi, but especially the now customary representation of motions
as a product of reflections, let the simple geometrical subject matter appear
back then as being rather complicated. An alternative analytical treatment
followed up on Hamilton’s quaternions: in 1873, Clifford described the most
general spatial motion of a solid by means of a biquaternion invented by
him for this purpose. E. Study took a similar approach in his Geometrie der
Dynamen (Geometry of the Screw Theory) in 1903. At the very least, the
notion of a rigid mapping including the relevant implicit group-theoretical
observations was so well established in 1866 that H. v. Helmholtz could use
it to subject Riemann’s manifolds, which could be considered as physically
possible forms of space, to the additional condition of free mobility of rigid
solids (cf. final part of section 7.5).

Carnot’s blurry notion of (continuous) deformation of a figure in a “related
one”, which Poncelet narrowed down to the notion of projective mapping by
means of composition of central projections, is a completely different source
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for the late triumph of the notion of transformation group within the entire
geometry (cf. section 7.2). However, the proper father of the idea of map-
pings and group theory in geometry is Möbius. His Barycentrischer Calcul
from 1827 was already inspired by the concept of geometrical relation in its
general form. The second part of this book is titled Von den Verwandtschaften
der Figuren und den daraus entspringenden Classen geometrischer Aufgaben
(On the Relations of Figures and the Resulting Classes of Geometrical Prob-
lems). Projective mappings, the affinities resulting from fixing an improper
straight line, the equiform transformations, the similarities as special cases
of affine mappings and the “equality” as the special case of similarity are de-
scribed on 150 printed pages. He determined the degree of freedom for each of
these types of mappings, which we have when determining such a mapping,
and afterwards classified notions that maintain their meaning under the listed
types of mappings. (An appendix to [Staudt 1847] contains similar, but much
briefer considerations without any comparison to Möbius or other forerun-
ners.) Möbius always returned to this principle in later works, for instance,
in 1834, when studying the not necessarily linear mappings (which, however,
preserve area ratios), in 1846, when dealing with the motions of the spherical
surface as such, and in 1852, when stereographically mapping those onto the
plane, whereby the corresponding circle-preserving mappings are produced
by composition of reflections at the circle (1853, 1855),this is why geometry
of this group of mappings was later referred to as Möbius, but above all, in
1863, in his Theorie der elementaren Verwandtschaft (Theory of Elementary
Relations), in which he attempted to describe those mappings that are now
called topologic (also see section 7.8).

A. Cayley founded the matrix calculus during a thought exchange with J. J.
Sylvester from 1845 onwards. As known, within the scope of linearity, this cal-
culus permits us to treat all relations between the different types of mappings,
their group-theoretical properties and their invariants purely algebraically
and, on top of this, to generalise this without any problems for n-dimensional
space. Of course, the following methodological key idea does not play any role
here. Geometrical mappings are also objects of geometry. A matrix is the co-
ordinate formation of such an object regarding a coordinate system that is
at least projective. The advantage of homogeneous, or inhomogeneous, but
linear coordinate systems (in contrast to, for example, polar coordinates) also
lies within the fact that we can transform composition and reversion of linear
mappings as well as determination of special properties and invariants into
algebraically well manageable procedures. At the same time, the triumph of
linear algebra found herein and the closely related algebraic invariance the-
ory led to certain parts of geometry, especially those discussed in Sections
7.8 and 7.9, being pushed out of the picture.

One of the greatest successes of the Cayley-Sylvester contribution to the
coordinate method was Cayley’s discovery in 1859 that a Euclidean metric
in a projective space can be generated by calling for the invariance of an
exceptional imaginary formation of second degree (i.e., in the plane: of a
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Illus. 7.7.1 Arthur Cayley (unknown, portrait in London by Barrand & Jerrard)
and Felix Klein

conic section). However, this outcome, preserved in Cayley’s Sixth Memoir
upon Quantics, has a prehistory: based on one of Poncelet’s ideas, E. Laguerre
had shown in 1853 that two straight lines being mutually perpendicular can
be explained by the fact that these harmonically separate an exceptional pair
of straight lines of the same bundle. Thereby, the other pair fixed for every
bundle is determined by its two straight lines running through both special
imaginary points of the infinitely distant straight line, which every circle has
got in common with this straight line in the complex. It is no surprise that
such discoveries fostered the tendency to base analytical, largely algebraicised
geometry on complex instead of real coordinate values.

By replacing the complex formation with a real one of second degree, F. Klein
had gained the metric of hyperbolic geometry in the interior of this formation
in analogy to Cayley’s approach. Hence, on one hand, he had accounted for
the plane model already found by Beltrami in a novel manner useable in all
dimensions, and, on the other hand, shown that Euclidean and non-Euclidean
geometry are two very closely related theories, which both result from the
view of the general Cayley-Sylvester invariance theory by subjecting projec-
tive mappings to a certain simple invariance requirement.

Erlangen Program

From here on, there is only one small step to the famous “Erlangen Program”,
which Klein submitted in 1872 when he began working at Erlangen. However,
this also has a prehistory. Due to a study trip to Paris together with his friend
S. Lie in 1870, the twenty-one-year-old Klein had encountered the new group
theory, which had only recently been published by C. Jordan. Jordan had
been the first to unite the theory of finite permutation groups coming from
algebra and the theory of geometrical transformations, although this did not
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yield the abstract notion of group in the modern sense, but the discrete sub-
groups of Euclidean motion, which Jordan had also studied, originating from
crystallography, a bridging function between finite groups and the continu-
ous groups of mappings of classic geometry. It is strange that Klein himself
acknowledged the influence of Jordan’s Traité des substitutions (1870), but
not of the preceding Mémoire sur les groups de mouvements (1869), which
had been much more relevant for the Erlangen Program: “Camille Jordan
had a great impression on me, whose traité des substitutions et des equa-
tions algébriques has just been published and occurred to us as a mysterious
book.” [Klein 1921, Ges. Math. Abhandl. Vol. 1, p. 51]. Klein also made no
use of the terminus group in the original version of the “Erlangen Program”,
bringing it up only in later editions. Jordan had first used explicitly the no-
tion of a ‘group of motions’ in the afore-mentioned work from 1869 (whereby,
however, he also silently presupposed the existence of the inverse) and classi-
fied 174 types of subgroups, which included both continuous and discrete, but
were incomplete in different aspects. Jordan received a crucial impulse from
theoretical crystallography, which had already prospered to a great degree,
especially through the works of A. Bravais (around 1850). We want to refer
the reader to [Scholz 1989] for the very complicated history of crystallogra-
phy; furthermore, to [Wußing 1969] for the development of group theory, to
[Tobies 1981] for Klein’s biography, and to the newly annotated edition of
[Klein 1872, Ostwalds Klassiker] for the history of development and effect of
the Erlangen Program.

The “Erlangen Program” did not just become greatly popular because it
approached the problem, maturing around 1870, of restoring order to the
diversity of geometrical trends and opinions of its time. After Klein, one ge-
ometry (actually: a geometrical theory) is given by the fact that for any basic
set M (Klein had originally only thought of n-dimensional manifolds in Rie-
mann’s sense) a group G of unique mappings of M onto itself is fixed. The
theory (M,G) deals with the invariants I(G) of this group. Thereby, Klein’s
idea of invariants was highly inspired by the contemporary state of algebraic
invariance theory. If G1 is a subgroup of G2 given a fixed “space” M , then all
invariants of G2 are invariants of G1, in other words, the smaller the group,
the richer the theory. The unconstrained manner in which this specified the
classification contemplated by Möbius and other forerunners is clear. It is
also obvious that Klein’s discovery from 1871 regarding definability of Eu-
clidean metrics in projective geometry stands as a high point of his program
and legitimizes projective geometry as the mother discipline of all classic
geometries (i.e. excluding topology) and that Möbius’s elementary relations
fit in as well. Apart from many other consequences (not the least being di-
dactical), the so-achieved marriage between geometry and group theory also
gradually resulted in the inverse mappings of geometrical transformations
finally becoming explicit. Until then, all named authors had silently presup-
posed and/or used the uniqueness of the mappings they had studied, but
argued only about the closure of types of mappings regarding composition.
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Only the inclusion of inverse mappings forced mathematicians to acknowl-
edge the identical mapping as the logical consequence from both other closure
requirements for a group.

Some geometers proud of their traditions may still be shocked nowadays to
find out that the Erlangen Program ever so slightly missed its aim from the
perspective of mathematical logic. From the present point of view, a theory is
defined by a system of notions (i.e., if we want to be absolutely exact, by an
aptly chosen formalised language) and an axiomatic system created by means
of these notions (in this language). To each of such system of notions and to
each of its interpretations (which may be a model for the axioms phrased in
this system of notions) belongs the group of automorphisms of this interpre-
tation. As easy as it is to show this through logic, every such automorphism
also leaves all notions invariant that can be defined by means of these basic
notions, apart from the notions of the relevant system by which it is defined.
The theory given in a chosen system of notions actually deals with all no-
tions that are definable by this system of basic notions (in a syntactically
specified meaning). According to the above, these definable notions are in-
variants of the relevant group of automorphisms. However, in many cases the
group of automorphisms also leaves notions invariant that are not definable
and, hence, do not constitute the real subject matter of the theory, since we
cannot talk about them in the chosen language. Thus, the area of objects
characterised by Klein as the subject matter of the theory can be too large.5

At a time when notions such as formalised language were not at all provided,
and others such as an axiomatic system, provability, and definability only in
a vague and intuitive sense, Klein’s program meant substituting the not yet
graspable definability based on the basic notions with the often more exten-
sive property of invariance regarding the group of automorphisms. The fact
that the groups presupposed by Klein as given are in reality always given as
groups of automorphisms of a system of notions was also not considered back
then.

Whereas Klein’s works were dedicated to the geometrical transformation
groups in the narrower sense, S. Lie, who had come across group theory
together with Klein in Paris, developed his very own theory of contact trans-
formations, whereby the transformed element pairs are given by a point of
the observed space and a hyperplane indexed by this point (i.e., straight line
in the two-dimensional, plane in the three-dimensional case, etc.), interpreted
as a tangential manifold of a curved manifold M . Lie created one of the most
important tools of present analysis by reversing the process to obtain the

5 Perhaps the simplest example, although not very geometrical, is the theory of real
numbers. Here, the identical map is the only automorphism, which, consequently,
leaves every single real number invariant. However, simply due to reasons of cardi-
nality, not every single real number could constitute a possible subject matter of
the theory of real numbers. Above all, the language, by which we mean the way the
theory and its axiomatic system are worded, generally and originally only featured
the individual names 0 and 1, from which we can naturally derive countably many
further individual names of reals by means of definition.



7.7 Transformation groups 451

differential equation of the bundle of tangential manifolds and the group of
those transformations, which leave these invariant, by means of analytically
describing M . In contrast to Klein, by basing his idea on a differential equa-
tion, he determined the group of transformations that leave this one invariant,
in order to obtain an overview of the solutions of the equation by means of
geometrical ideas about a belonging manifold M . Thus, he founded a new
role for geometry as a school of thought in other areas of mathematics. Sim-
ilar to Riemann, his insights were at first rather intuitive and difficult for his
contemporaries to comprehend, being used for calculating with coordinates.
We owe it mainly to Engel’s selfless commitment that Lie’s idea was finally
generally accepted and used.

Groups and notion of symmetry

The notion of a transformation group is closely related to the notion of sym-
metry, which nowadays is so very important for mathematics and physics.
Symmetry was only indirectly a mathematical notion from Antiquity until
the 18th century, and by no means had its present meaning. Rather, symme-
try meant repeating certain proportions in many or all parts of, for example,
a building or artwork. Crystallography, which turned away from empiricism
in the 19th century, also contributed considerably to the word ‘symmetry’ fi-
nally adopting its present meaning. At the same time, crystal symmetry next
to optics (and against the needs of mechanics back then) constituted a reason
for contemplating reflections from a physical point of view. R.-J. Haüy, one of
the first pioneers of crystallography in France, had already spoken of symme-
try in this context in 1815. J. F. Hessel, professor of mineralogy, technology
and natural history in Marburg (Germany), who had translated Haüy’s work
into German in 1819, presented his own “crystallonometry”, first published
in Gehler’s Physikalischem Wörterbuch (Physical Dictionary) in 1830, with
a purely geometrical introduction to the possible forms of spatial symmetry,
as well as a classification of polyhedra based on this and possibilities for fill-
ing space with them, whereby he, due to reasons of systematics, was first
to consider everything mathematically possible, but not realisable in nature
within the scope of knowledge back then. He says “...taking as a basis new
general theories of pure theory of shapes (Gestaltenkunde)...” in the com-
plete title of his extensive article, also separately printed in 1831 (Reprint in
Ostwalds Klassiker, vol. 88/89, 1879). He distinguished here between congru-
ence of the same sense (in Hessel, “equality of image”) and congruence of not
the same sense (in Hessel, “equality of counter-image”). Axes of revolution
were classified according to the number of possible revolutions. Afterwards,
the composition of revolutions around different axes was examined implicitly
group-theoretically. Hessel’s investigations, which climaxed in listing 32 crys-
tal classes, received little attention during his lifetime. A. Bravais, physics
professor at École Polytechnique at this time, could, after Hessel, begin anew
within the scope of crystallography through purely geometrical examination
of possible symmetries of polyhedra in 1849. Thereby, he distinguished point
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Illus. 7.7.2 August Ferdinand Möbius (engraving by Adolf Neumann, presumably
before 1864); Richard Dedekind (unknown, about 1870)

reflections (central symmetries), axial or rotational symmetries and plane re-
flections in space. However, he was not aware of the existence of improper
orthogonal mappings (combination of rotation and reflection). He called a
polyhedron symmetrical if it at least featured one of the three types of sym-
metry.

Thus, while the first studies on symmetry were conducted within the context
of crystallography from a modern perspective and not originated by actual
mathematicians, this notion only attracted the mathematicians’ interest from
the middle of the 19th century onwards. In 1849, Möbius began a work titled
Ueber das Gesetz der Symmetrie der Krystalle und die Anwendung dieses
Gesetzes auf die Eintheilung der Krystalle in Systeme (Regarding the Law of
Symmetry of Crystals and the Application of This Law to the Classification
of Crystals into Systems). He wrote: “A figure shall be called symmetrical (in
its broadest meaning), if we can equate it to an equal or similar figure in more
than one way as equal or similar.” This is a correct, and yet baffling definition.
Another work by Möbius followed in 1851 titled Ueber symmetrische Figuren
(On Symmetrical Figures). Therein, he first demonstrated his knowledge of
Bravais’s work mentioned above and then put forward a new definition: “§1.
As every quantity is equal to itself, so every figure is equal and similar to
itself. However, there are figures that are equal and similar to themselves in
more than one way, and such figures shall be called symmetrical.” Having,
amongst other things, begun to describe symmetries by tables of values of the
corresponding classifications, he noticed a footnote, which said: “The degree
of symmetry of a figure will be more certainly determined by the number
that states in how many different ways the figure can be equal and similar
to itself.” Möbius finally reached the conclusion in a brief note from 1855
that the notion of symmetry (as he had grasped it) can be expanded to
include (stated in a modern fashion) more general mappings than just the
isometric ones: “This extended notion says that a figure stands to itself in
the namely relation in more than one way.” The highly general proposed



7.8 Beginnings of topology 453

concept increasingly dominated Möbius’s way of thinking. Nonetheless, his
projected great work remained unpublished during his lifetime. It was only
reconstructed due to the publication of his Collected Works in 1886, by virtue
of his estate and the efforts of Klein as the publisher, who acknowledged only
having gotten to know Möbius’s lifework thoroughly through this occasion.
In a comment in the last edition of his “Erlangen Program” in 1921, Klein
wrote: “By the way, I would like to refer to... Möbius’s works (which I myself
have only grasped according to their inner correlation having been allowed to
assist with the complete edition of his works arranged by the Saxon Society of
Sciences from 1885–1887). Möbius did not know the general notion of group
and also many of the geometrical transformations that are consulted in the
Erlangen Program for illustrative purposes. However, guided by a feeling
of certainty, he established them in his consecutive geometrical works in a
manner corresponding to the basic idea of the program.” (translated from
German; [Klein 1872, Ostwalds Klassiker vol. 253, p. 84]).

7.8 Beginnings of topology

Although Leibniz’s vision of “Analysis situs” (‘Analysis of Position’) had
spooked through mathematical literature since the end of the 17th century,
references to it popping up every now and then without any relation to con-
tent, “we do not have a lot more than nothing after one and a half hundred
years”, Gauss stated in 1833 [Gauß a, vol. V, p. 605]. When topology began
truly developing shortly after, it did so in two directions, the mutual relations
of which have been rather blurry until today, although we do have names for
them by now: general or set-theoretic topology and combinatorial (soon to
be renamed, ‘algebraic’) topology. It is perhaps easiest, though not precisely
exact, to characterise this relation as follows: general topology deals with
continuity, thereby, often with the “local”, the microcosm. Algebraic topol-
ogy, in contrast, addresses discretised objects and, thereby, mostly “global”
properties. Both collaborate in applications, but differ fundamentally in their
methods.

As the name indicates, set-theoretic topology cannot actually exist without
set theory, i.e., not before Cantor’s and Dedekind’s foundational theory and,
thus, not before 1872. Conversely, set theory was born as an approach to
set-theoretic topology. It first addressed notions such as inner, outer, frontier
point of a set (in R

n), open and closed set, connectivity, (metric) complete-
ness, continuous mapping, before turning, almost against Cantor’s initial in-
tentions, towards the hierarchy of infinite cardinal numbers, well-ordering,
the continuity problem and similar issues. In 1878, Cantor discovered that a
line segment can be continuously mapped onto a triangular area. As a result,
Jordan, Peano and others began competing for a sound notion of curve. As
soon became obvious, without its embarrassingly exact definition and exam-
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ination, even illustratively plausible propositions, such as the property of a
curve for transforming into a curve in topological mappings (i.e., bijective
and continuous in both directions), or Jordan’s curve theorem, could not be
proven. The latter states that a simple closed curve in the Euclidean plane
dissects the plane into an inner and an outer area. A first attempt, which, as
it turned out later, remained incomplete despite Jordan’s well-known metic-
ulousness in regard to proof, can be found in Jordan’s Cours d’Analyse from
around 1880.

Approaches towards a set-theoretic topology can already be found in Möbius’s
Theorie der elementaren Verwandtschaft (Theory of Elementary Relation) in
1863. It seems that Möbius understood elementary relation to refer to what
we nowadays call “topological mapping”. However, he was unable exactly to
define it at this time. This work is full of fundamental propositions on topo-
logical equivalence of one, two or three-dimensional sets in Euclidean space.
In hindsight, these often were not based on sound reasoning, and thus were
sometimes partially wrong or at least carelessly worded. For instance, Möbius
had a basically valid intuitive idea of the notions of inner point and frontier
point and made it plausible that these notions stay invariant in elementary
relations. However, he continued to conclude that “of two elementary related
plane surfaces, one of the same number of closed curves must be bounded
like the other one”, and furthermore, “this condition is not just necessary but
also sufficient for the elementary relation of two plane surfaces.” In an un-
dated fragment Allgemeine Sätze über Räume (General Propositions About
Spaces) from Dedekind‘s estate [Gauß Werke (works), vol. 2, p. 353-355], it
is “proven”, amongst other things, that the boundary of a solid cannot be
a solid after the correct metric definition of the notions ‘inner’, ‘outer’, and
‘frontier point’ by means of surroundings and by means of a “solid” as (stated
in a modern fashion) a closed casing of a non-empty open subset of R3.

Combinatorial topology first dealt with the (expressible in whole numbers)
relation between numbers of corners, faces, edges, overcrossing, holes, etc., of
a one, two or three-dimensional geometrical entity and the resulting possibil-
ities and impossibilities. Accordingly, it actually began in the despised Book
XV of ‘Elements’ with the described relations between regular polyhedra and
their corners, edges, etc. The next step is the famous problem called ‘Seven
Bridges of Königsberg’, which was presented to Euler in 1735 by Mayor Ehler
of Danzig and the solution to which was published by Euler in 1736. It seems
there is no better proof for the categorical turn of the mathematicians’ at-
titude towards such questions between the middle of the 18th century and
present time than the letter that Euler wrote to Ehler in 1736 regarding the
‘Seven Bridges of Königsberg’:

“As you see, My Noble Lord, this solution in its character hardly bears any
relation to mathematics [!!], and I do not understand why mathematicians
are especially expected to deliver it than any other person, since the solution
is exclusively based on reason and does not require consulting any principles
of mathematics to find it. Thus, I do not know how it happens that even
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Illus. 7.8.1 Solids with cavity, perforation or ring-shaped boundary faces

a) The solid consisting of two cubes standing on top of each other has first the
shaded ring-shaped one under its boundaries. Check that Euler’s formula does not
apply in this case, but the one by l’Huillier does. The transition between both for-
mulae takes place by cutting the ring in the part surfaces by means of two further
edges so that now all boundary surfaces are coherent and no surface has any edge
in common with itself. b) We analogously obtain the version of the formula valid
for a solid with a perforation by cutting the solid open along a surface between the
outer boundary and the boundary of the perforation. c) We also accomplish the
occurrence of an inner cavity analogously. However, Listing criticised l’Huilliers’s
methods as having failed if the perforations are branched out in a sufficiently com-

plicated manner and interlaced with each other, cf. Illus. 7.8.4 and 7.8.5

questions that bear very slight relations to mathematics are solved more
quickly by mathematicians than by others. Instead, you, My Noble Lord,
grant this question a place in geometry of position. However, regarding this
new discipline, I admit that I do not know which kinds of problems Leibniz
and Wolff want to see related to this.” (Translated from [König 1936, p. 312].
The reader will also find a German translation of Euler’s Latin treatise on
the problem and further related details therein.)

A further, equally famous contribution by Euler regarding the so-called
“Analysis situs” concerns the Euler characteristic named after him (1750):
If e refers to the number of corners, k to the number of edges and f to the
number of the faces of a polyhedron (which suffices for conditions that still



456 7 New paths of geometry in the 19th century

need to be specified), then e − k + f = 2. A duplicate of a lost manuscript
by Descartes made by Leibniz and only rediscovered in 1860 states that he
had already known this formula. When Euler published it, he inspired several
mathematicians to engage further with this concept. It slowly became clear
that, in reality, it is a proposition regarding the dissection of the spherical
surface or a surface topologically equivalent (particularly of the Euclidean
plane closed by an infinitely distant point) into areas by any curves, whereby
their validity does not depend on the convexity of the surfaces or the form of
the curves, but rather on the “topological” character of the surface and their
parts. However, as the name states, it was originally thought of for (semi)
regular polyhedra and, thus, for straight edges and plane boundary faces.
After Legendre had already noticed in 1794 that this formula fails in certain
cases, the Swiss mathematician l’Huillier corrected the formula in 1812:
e−k+f = 2(1+h−p)+ c, whereby h refers to the number of closed cavities
of the solid, p to the number of perforations of the solid and c to the number
of ring-shaped boundary surfaces. (The latter is demonstrated by the exam-
ples shown in Illus. 7.8.1). Cauchy extended this formula in another direction
by permitting inner dividing walls, which subdivide the solid like a cellular
tissue. Moreover, he came to the correct conclusion and subsequently used
it to look at the case first addressed by Euler, in which the entire space is
dissected by a closed subdivided surface into an inner and outer solid. All
these efforts would be followed up on in 1862 by J. B. Listing, the true father
of combinatorial topology.

Beginnings of graph theory

First of all, we want to note that the branch later called graph theory soon
became independent of the later topology. This branch only deals with one-
dimensional entities consisting of knots (or corners) and edges (in the di-
rected case “arcs”). Due to its size and independence compared to geometry
and topology, we will only look at its beginnings, when it was still closely
connected to topology. The problem of the ‘Seven Bridges of Königsberg’ is
followed by the puzzle invented by W.R. Hamilton in 1858, which requires
us first to locate a so-called Hamiltonian cycle on the corner-edge-scaffolding
of a dodecahedron, i.e., a closed edge path that passes through each knot
exactly once. Although this problem seems to be closely related to the ‘Seven
Bridges of Königsberg’, only notions of complexity theory, which originated
around 1956, could specify that the decision concerning the existence of a
Hamiltonian cycle of a given graph is principally more difficult than the al-
most trivial decision concerning the existence of an Eulerian path (open or
closed) based on the Eulerian consideration. We will repeatedly see how even
the most important mathematicians struggled when initially dealing with
combinatorial-geometrical observations. In 1736, Euler devoted only brief and
completely irrelevant remarks to the question of how to find a Eulerian path
in a graph that fulfils the necessary conditions, demonstrating that he was
not especially interested in that question.
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Illus. 7.8.2 Seven Bridges of Königsberg

a) Drawing of the actual situation in Euler’s work from 1736,
b) Transition to the graph, which represents the essential aspects of this situation.
to a) [König, Dénes: Theorie der endlichen und unendlichen Graphen (Theory of
Finite and Infinite Graphs), Teubner Archiv zur Mathematik, vol. 6 c©1986 BSB

B. G. Teubner Verlagsgesellschaft, Leipzig]

In 1871, the young mathematician Carl Hierholzer from Karlsruhe (who died
shortly after) stated an algorithm for finding a Eulerian path, apparently
without knowing Euler’s work at all6. The first attempts by mathematicians
to establish algorithms for searching labyrinths also form part of the begin-
nings of graph theory (Ch. Wiener 1873, G. Tarry 1895). However, a problem
that only proved to be graph-theoretic after a certain transformation turned
out to have the greatest consequences:

In 1852, Frederick Guthrie presented his mathematics professor A. de Morgan
in London a question from his brother Francis Guthrie, as to whether it would
be possible to colour every map with only four colours so that each two coun-
tries with common borders along an edge would have different colours. This
program became known amongst mathematicians through de Morgan. It was
only solved in 1976 after many errors and failed attempts, and then also in a
rather controversial manner (with the help of a computer). Indeed, the origi-
nal question is graph-theoretic, since we can transfer it to the “dual” graph in
the case of a plane map, the knots of which correspond to the countries and
are linked by an edge, if the corresponding countries have common borders.
Then, the problem turns into a question of whether certain knot colourings
of undirected graphs are possible. (The detailed history of the four colour
theorem can be found in [Bigalke 1988] and [Fritsch 1994].) However, topo-

6 The presentation given by Hierholzer on this subject was reconstructed and pub-
lished after his death by Ch. Wiener and J. Lüroth [Math. Annalen, vol. 6, p. 30-32].
Therein, Wiener referred to the fact that Listing had already demonstrated this in
the Vorstudien zur Topologie (Pre-studies of Topology) in 1847 in a footnote. How-
ever, checking this text passage shows that Listing had also failed to discuss how to
locate a Eulerian path, but rather discussed the minimal number of Eulerian paths
necessary to run completely through any graph.
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Illus. 7.8.3 Regarding the triviality of the four colour theorem in R
3

If every single “bar” of n such lying at the bottom is connected to exactly one of
the n bars lying across on top forming a solid, then each one of these n solids

along a surface borders with all others, so that we need n colours to legitimately
colour these solids. Thereby, n is arbitrary.

logically speaking, the question remains as soon as we ask it more generally,
i.e., either for maps on another surface than a plane or for the analogous
colouring of three or higher dimensional “maps”. Frederick Guthrie himself
recognised that the latter case was trivial. He showed around 1880 that we
can find n polyhedra for every number n in R

3 that join each other pairwise
along certain surfaces (see Illus. 7.8.3). The first mentioned generalisation
(for maps on closed surfaces of higher gender) was finally answered after P. J.
Heawood’s groundwork and partial results for certain surfaces in the 1960s.

The difficult birth of combinatorial topology

Let us return to the general development of combinatorial topology. First, it
was mainly Gauss who repeatedly indicated this gap in contemporary geome-
try and also occasionally engaged with such pertinent questions. For instance,
there are several studies from his estate on the correlation between total am-
plitude (something like sum of all changes of direction) of a closed curve and
the number of overcrossings [Gauß a, vol. VIII, p. 271-286] as well as an inte-
gral formula, which yields the number of “enlacements” of two spatial curves
intertwined with one another in dependence of the parameter representation
of these two curves [Gauß a, vol. V, p. 605]. However, above all it seems that
he influenced one of his students in this respect, namely Johann Benedict
Listing, who worked as a physics professor in Göttingen from 1839 after sev-
eral stopovers. Apart from the great versatility of his other accomplishments
and interests, Listing is, next to Möbius, the true father of topology in many
respects. Hence, it is ever so unclear as to why he has been so little dealt
with in the literature of the history of science.
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Listing had already coined the word ‘topology’ first in a letter from 1836.
In his Vorstudien zur Topologie (Pre-studies of Topology) [Listing 1847], he
states the following motive for the new term: Carnot’s Géométrie de position
is to have given the “geometria situs” a different meaning than Leibniz had
originally intended. He also wrote:

“Having been made aware of the importance of the matter by the greatest
geometer at the present time on several occasions, I have attempted for a
rather long time now in the analysis of individual relevant cases, which are
prompted by the natural sciences and their applications. By daring, even
before these observations can claim a strict scientific form and method, to
communicate some aspects as pre-studies of the new science, my intention can
only be directed at rising awareness of the opportunity and the significance
of this science by propaedeutic rudiments, examples and materials.”

Nonetheless, the main content of ‘Pre-studies’ actually has hardly anything
to do with topology in its present sense and only indirectly in smaller ways.
For instance, stated in a modern fashion, it concerns the group-theoretic
examination of reflections on three planes pairwise mutually perpendicular,
with which Listing wanted to describe the mutual position of two solids in
space, but also (in accordance with his physical interests) the possible mutual
positions of preimage and image, which are produced by optical tools includ-
ing mirrors or different types of telescope. Furthermore, he dealt with (in
his opinion) the most general form of spiral-shaped curves and their possible
mutual positions to each other, extensively discussed the notion of right and
left hand thread and their occurrence and meaning in nature and techniques,
and finally advanced to considerations which would count as starting points
for knot and braid theory. Of course, these are again immediately followed by
attempts to apply this to natural science, in this case to the real and seem-
ingly mutual enlacement of orbits of planetoids. Although still worth a read,
the book truly just shows how difficult it was back then to keep topological
and non-topological notions and matters separate.

Listing then exceeded all his contemporaries in regards to topology because
of his Census räumlicher Complexe (Census of Spatial Complexes), published
in the treatises of the Royal Society of Sciences in Göttingen [Listing 1862].
Thus, the ‘Census’ is hidden in a local periodical in a pile of treatises on
medical, natural scientific, philosophical and historical topics. We can only
speculate to what extent this prevented a stronger reception by the inter-
national community of mathematicians. Hence, Listing followed up on the
set of problems discussed above following Euler’s characteristic. Thereby,
he neglected all constraints used more or less explicitly by his predecessors,
especially the straightness of all edges and surfaces distinct for polyhedral
geometry.

Just one look at the relevant tables of illustrations (Illus. 7.8.4, 7.8.5) shows
to what degree Listing’s “topological fantasy” had developed by 1862 from
his having engaged with such questions ever since his student days in Göttin-
gen. Fig. 3 in Table 1 represents the so-called Möbius strip and next to it a
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Illus. 7.8.4 Listing’s first table of illustrations

[Listing 1862: Der Census räumlicher Complexe (Census of Spatial Complexes).
Treatises of the Kgl. Gesellsch. d. Wiss. zu Göttingen (Royal Society of Sciences at

Göttingen), Vol. X, Table I]
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Illus. 7.8.5 Listing’s second table of illustrations [Listing 1862 l.c., Table II]
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second example of a surface that had never before been considered by any
pioneer of topology. The term “census” in the title (rather confusing for us,
since in modern parlance it tends to mean “stock taking”, “balance sheet”,
and, in particular, “population count”) refers to Listing having established a
much more general balance, though analogous to the Euler-l’Huillier effort,
for the numbers of the relevant points, lines, surfaces (which do not necessar-
ily restrict anything or are constrained by anything anymore) and solids of
the respective “constituents” of a “complex”, for which the total sum always
yields zero. The 86 page work is very rich in content and has an index of
newly introduced notions attached, featuring words such as ‘amplexum’ (the
surrounding space extended into the infinite), ‘diacrisis’ (a constant number
depending on the nature of the complex), ‘periphractic’ (closed all around),
‘diatresis’ (cancellation or annulment of periphraxis), etc. Amongst the many
remarkable ideas in “Census” we find the closure of space by means of a sin-
gle infinitely distant point for the spatial case, which will later be called an
Alexandroff compactification (in contrast to the dominant idea back then
of projective closure). Due to the stereographic projection of the plane onto
the spherical surface, the analogous case for the plane had a longstanding
tradition. Moreover, we find mappings of a spatial complex onto a plane “di-
agram”, i.e., first starting points to distinguish between homeomorphism and
homotopy. (Two objects are called homeomorph if they can be mapped onto
each other topologically. Two objects embedded into a surrounding space are
called homotopic if there is a topologic mapping of the surrounding space onto
itself, converting one object into the other one. Regarding R

3 the two closed
curves in Fig. 6 of Table I of Listing are homeomorph but not homotopic.)
I want to put forth the hypothesis that if Listing’s tables had been more
generally accessible, just looking at them would have advanced on an earlier
date several combinatorial or topological discoveries. For example, it is only
a small step from Table II, Fig. 53 to discovering infinitely extended, metri-
cally regular polyhedral surfaces (J. F. Petrie and H. S.M. Coxeter 1926, see
[Cromwell 1997, p. 79f.]), something most mathematicians still do not know
about now.

One-sided surfaces

A work by Möbius still relevant to topology was published just a few years
later in 1867. Inspired by a work from 1769/70 on the content of plane poly-
gons, which overlap with themselves, and apparently also by the renewed
examination of star polyhedra in France (see section 7.9), he engaged with
the analogous question in space and arrived at (open and closed) one-sided
surfaces via a notion that will later be called a simplicial complex. He illus-
trated the nature of these surfaces by means of the strip named after him.
We want to mention here that v. Staudt had claimed the following at the
beginning of his Geometrie der Lage (Geometry of Position) from 1847: “Ev-
ery surface has two sides.” [Staudt 1847]. Möbius had applied in vain for
the prize for substantial improvements of polyhedral theory awarded by the
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Illus. 7.8.6 Klein bottle; Möbius strip

French Academy of Sciences in 1862 with his two afore-mentioned works on
elementary relation and the content of polyhedra. Further drafts concerning
this set of problems were reconstructed from his estate [Möbius, vol. II, p.
513-60], which guarantee Möbius a coequal place next to Listing.

Several trends crossed and influenced each other during further development.
The representation of algebraic surfaces in R3 offered a lot of inspiration.
In 1876, Klein clarified the difference between one-sidedness of a surface (de-
pending on the surrounding space) and non-orientability as an inner property
independent of the surrounding space. Bear in mind the analogy to outer and
inner differential geometry and the forming bridge of ideas concerning the dif-
ference between homology and homotopy! In 1882, he discovered the “bottle”
named after him (Illus. 7.8.6) as a closed (i. e. without boundaries) analogy
to the Möbius strip. In this respect, we must also mention that the topo-
logical structure of the projective plane as a non-orientable surface was dis-
covered around 1874 during a thought exchange between Schläfli and Klein.
Nonetheless, in 1871, Betti took up Riemann’s plans, which were unable to
be finalised due to Riemann’s early death, for generalising the notion of a
Riemann surface for higher dimensions, as it had been created first for the
needs of complex analysis of a complex variable. (There is a relevant fragment
from Riemann’s estate that was published by H. Weber and R. Dedekind as
part of Riemann’s Collected Works in 1876.) In 1866, C. Jordan’s investiga-
tions into embedding spatial curves in curved surfaces also made a significant
contribution to forming the notion of homotopy.

In 1895, Poincaré concluded, to some extent, what Listing had begun for
complexes of dimension ≤ 3 and Riemann and Betti had pursued for the
higher dimensional case.

The term combinatorial topology was bindingly used from that time onwards.
Whereas the topological equivalence of two seemingly different manifolds can
always be demonstrated by a more or less illustrative description of a bijec-
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tive and continuous deformation of the one into the other, the actual problem
of topology lies within proving that such a transformation is impossible, such
as the topological difference of two given manifolds. Poincaré introduced the
notion of an n-dimensional topological complex, for which the occurring “con-
stituents” (in Listing’s language) can only be n-dimensional polytopes and
their k-dimensional boundary polyhedra (for all k ≤ n), and invoked that ev-
ery n-dimensional manifold could be approximated by such complexes with
arbitrary precision. This, of course, was recognised as too special by the topol-
ogy of the 20th century. Brouwer will further generalise Poincaré’s theory in
1912 by only looking at “simplicial” complexes consisting of “simplexes”, i.e.,
the k-dimensional analoga of line segment, triangle and tetrahedron. Poincaré
added a group structure to the set of k-dimensional chains (approx. “paths”)
in a complex, defined the homology groups as factor groups of this group,
and, thus, obtained the notions of Betti group, Betti number and torsion
number. These numbers can be calculated for complexes and are invariants
in topological mappings. Hence, we can prove the topological difference of
two manifolds by means of the non-agreement of such a number. (We recom-
mend to those readers completely unfamiliar with combinatorial topology the
very illustrative introductions by [Seifert/Threlfall 1934], the article in Vol.
V of the Encyclopaedia of Elementary Mathematics, and [Fomenko 1994] as
a modern read. None of these presuppose any pre-existing knowledge of the
matter at hand.)

Beginnings of knot theory

We will now describe one of those rare detours that the history of science
occasionally took. The famous physicist W. Thomson (Lord Kelvin), around
1865, had spread the hypothesis that atoms may have to be thought of as
some kind of swirls in “ether” and the molecular bond as a topologically
irresolvable enlacement of several such swirls – a theory that was even tem-
porarily supported by J.C. Maxwell. It delivered the motive for some notable
mathematicians (particularly P. Tait and T.P. Kirkman) to turn towards a
combinatorial-topological classification and listing of enlacements of several
curves with one another. Gauss and Listing had already shown interest in
this. There is even a note in this respect from 1771 by A.T. Vandermonde
that was repeatedly cited simply because of its early date (and because Gauss
knew and referred to it)7. Thereby, it turned out that the number of possi-
bilities in dependence of the number of the legitimate overcrossings grows
too rapidly in order to go beyond the modest beginnings of listing. However,
notions and techniques were developed for reduction, which only blossomed

7 The relevant text by Vandermonde starts as follows (based on a free translation
of the French original): No matter how complicated the enlacements of a system
of threads in space may be, we can, of course, principally describe it analytically.
However, those who have to deal with interlaces, nets or other knots practically are
interested in the positional ratios rather than the metric ones [Mém. Acad. Paris
1771, p. 566-574].
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as part of the independent knot and braid theory in the 20th century (M.
Dehn, J. Alexander, K. Reidemeister, E. Artin and others). For further de-
tails, see [Turner/van de Griend 1995], especially Part IV, and [Epple 1999].
As history took its course, Thomson’s idea re-awoke the physicists’ interest
in a modified manner as part of string theory.

7.9 Further, especially non-classical, directions

Even such a finely structured history of the geometry of the 19th century as
the one presented here can only communicate an insufficient and incomplete
picture of the actual events. To finish, we will report some details, certain
effects of which endured far into the 20th century, cast further light onto
the relation between research and application, and partially illustrate the
wealth of parallel developments indicated in the preliminary remarks. The
need to rely on chance findings when reconstructing the mathematics of the
19th century has endured until the present day, owing to the fact that the
first reviewing publication (Jahrbuch über die Fortschritte der Mathematik –
Annual Report on the Success of Mathematics) only came into existence in
1868 and did not cover everything that appears now interesting to us, not
to mention that the literature was classified according to aspects relevant
at the time, which may not be so now. The articles in Encyclopädie der
Mathematischen Wissenschaften (Encyclopaedia of Mathematical Sciences;
published from 1913 onwards) offer better access to the literature.

A version of Fermat’s problem of minimal sum of distance had already been
introduced in the first year of “Annales” by Gergonne in 1810: “Find a con-
necting system of line segments with minimal total length for n points of
the plane.” [Annales tome 1, p. 292]. Page 381ff. of the same year features
some incomplete comments on the solution, particularly the fundamental
statement that the additional knot points (now known as Steiner points),
which may have to be added, must have a valence of 3, stated in a mod-
ern fashion, and that the edges originating from them must pairwise form
an angle of 120 degrees. This follows from the solution of Fermat’s problem
for three points and also expresses the close relation between both problems
(see Problem 7.9.1). Questions and partial solutions were stated anonymously
and may even have been composed by the publisher Gergonne himself. We
have selected this example, since the literature on the problem, generally
though unreasonably referred to as the “Steiner” or “Steiner-Weber” prob-
lem, has increased a thousandfold in recent years. We also find historical
papers and historical remarks in purely mathematical articles amongst this
literature. However, each of these still contains only part of the true story
[Schreiber 1986], [Wesolowsky 1993]. Furthermore, we have chosen this story
because it demonstrates exemplarily the literary dilemma of the time with-
out any reviewing before 1868. G. Lamé and B.-P.-E. Clapeyron, who were
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amongst the borrowed French scientists temporarily working in St. Peters-
burg at the beginning of the 19th century, wrote an article about the same
problem in the journal of the earlier mentioned Institute of Transportation in
Petersburg in 1827, wherein they reached the same conclusions (and did not
advance either for good reasons). Gauss certainly did not know of either ar-
ticle when exchanging letters on this subject with his friend, the astronomer
Schumacher. Schumacher had asked for clarification of an apparent para-
dox concerning the ordinary Fermat problem of four points (Problem 7.9.1).
This shows how far the interest in this question had already spread back
then. Following the solution to this question, Gauss wrote to Schumacher:
“If we are speaking of the shortest connecting system and not of the strictly
mathematical [Fermat] problem of a 4-gon, then we must distinguish several
individual cases. Thereby, we create a quite interesting mathematical prob-
lem, which is not strange to me. Rather, I have considered it when taking
the train between Harburg, Bremen, Hannover, and Braunschweig, and have
thought myself that this could be quite a decent bonus question for our stu-
dents at the next opportunity.” [Gauß a, vol. X, 1; p. 459-468]. Probably as a
consequence of publishing this letter exchange, a dissertation by Karl Bopp
was defended in Göttingen in 1879, exhausting the problem for four points.
Steiner’s relation to this set of problems is limited to a talk given at the Prus-
sian Academy of Science in Berlin in 1837 on Fermat’s problem for n points.
In the meantime, E. Fasbender had shown in 1846 that Fermat’s problem
could also be grasped as a problem of maximum for the triangle. The con-
fusion surrounding the names, origin and history of this set of problems was
completed by the fact that the question was grasped rather independently of
the mathematics by economists and economic geographers towards the end
of the 19th century (amongst others A. Föppl in Schweizerische Bauzeitung
(Swiss Building newspaper) 1884, A. Weber 1909).

A geometrical balance problem

Another geometrical extremal problem with a strange history first occurred,
as far as is known, in 1803 in a mathematical journal characteristic for Great
Britain back then, mainly targeted at educated and interested amateurs. It
dealt with determining the point P for three (or more) straight lines a, b, c, ...,
for which the sum of squares of the distances becomes minimal to a, b, c, ...
The problem originated in nautical science and geodesy: three astronomi-
cal localisations deliver three locally approximate straight “locations”, which
only pass through the correct common point in the ideal case. Thus, we have
to determine the most probable position of the observation location accord-
ing to the method of the smallest squares. L’Huillier (1809), Steiner (1828),
E.W. Grebe (1847, after whom the relevant point was temporarily named),
E. Catalan (1852) and at least eight further authors discovered this problem
and its solution independently of each other before E. Lemoine released long
lists of interesting properties of the Grebe point at the annual conference of
the French Society for the Advancement of Science in 1873 and 1885. Under
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the wealth of “special points and lines of the triangle”, this point has been
known as the “Lemoine point” since then, and if we look up this name nowa-
days we find a lot of information, but usually not the minimum property of
the point anymore [Weiße/Schreiber 1989] (see Problem 7.9.3).

Equivalence by dissection

We remind the reader that Euclid’s proof for Pythagoras’s theorem was ac-
tually a proof for the finite equivalence by dissection of the square of the
hypotenuse and both squares of the cathetes, even though we first have to
carve out the actual creation of the relevant dissection of the square of the
hypotenuse and the following assembly to form the square of the cathetes
based on a series of given theorems. Later proofs of this theorem make much
more immediate and illustrative use of the fact taken for granted that the
equivalence of area of (plane or spatial) figures follows from their equivalence
by dissection. Speaking of Pythagoras’s theorem, there is an astonishingly
long and extensive tradition of such dissections and closely related comple-
tion proofs8. C. Cramer gathered 93 such proofs in a book published in 1837
and again in 1880 J. Wipper stated 46 partially different proofs. (The exact
details, as well as a series of further texts from the 19th and beginning of
the 20th century, on Pythagoras’s theorem also feature in the fourth edition
of [Lietzmann 1911] published in 1930. Even later editions do not refer to
this topic, since we can expect that these texts had become unattainable for
most readers.) W. v. Bolyai’s Tentamen (1832), of which Gauss approvingly
emphasised how easy it was to notice the author’s striving towards thorough-
ness and completeness, as well as the carving out of fundamental problems
everywhere, was first to present the proof that each two figures of the plane
equal of area and bounded by straight lines are equal by dissection, meaning
that equality of area, if it exists, can always be proven by dissection, i.e., by
means of the traditional methods that especially thrived during the Islamic
Middle Ages (see Problem 7.9.4). Just one year later, a German amateur,
the Prussian lieutenant P. Gerwien, published two articles, in which he – un-
aware, of course, of Bolyai’s book (which was a Latin textbook for grammar
schools in Hungary) – proved the same subject matter not just for the Eu-
clidean plane, but also for the spherical surface with analogous means. The
set of problems, although seemingly singular and not fitting in with the great
theories of the 19th century, again shows multiple aspects:

8 Two plane (or spatial) figures bounded either by straight lines or straight planes
are called equal of completion, if we can complete them to congruent figures by
adding each the same amount of figures, of which each one of the first added is con-
gruent to an assigned one of the second added. The classic example is the “Chinese”
proof of Pythagoras’s theorem (cf. Chap. 3). It is easy to demonstrate: If figures
of equal area are always equal of dissection in a space, then they are also equal of
completion. The reversed scenario already does not apply in R

3.
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1. These great theories by no means exhaust the essential geometrical events
of the 19th century.

2. People whose names are hardly known these days – amongst them typical
amateurs – have also made significant contributions.

3. Some things that were thought of as marginal back then have become
the roots of essential mathematical accomplishments of the 20th century.

Of course, Bolyai’s and Gerwien’s outcome immediately opened up the ques-
tion as to whether there is an analogous theorem that applies in space. In
1844, Ch. L. Gerling, one of Gauss’s many pen pals, showed Gauss his proof
for the fact that each two polyhedra that are the mirror image of each other
are equal of dissection [Gauß a, vol. VIII, 240-246]. In 1896, the Briton M.
J.M. Hill found three special types of tetrahedra, which are equal by dissec-
tion to a cuboid [Proc. London Math. Soc. 27, p. 39-53]. The now obvious
difficulty for solving the problem generally led to D. Hilbert making it the
third position of his list of 23 important unsolved problems as part of this fa-
mous talk at the second International Mathematics Conference in 1900. This
resulted in M. Dehn proving the following in his habilitation text in 1901:
cubes and regular tetrahedra equal of volume are not equal by dissection. The
applied method, which was multiply improved and refined later, is so similar
to the method introduced by Listing in ‘Census’ and advanced by Poincaré to
the tool of combinatorial topology that we can suspect a connection regard-
ing the history of ideas. We want to mention here that H. Brandes showed
the following in his dissertation (written under Hilbert’s indirect influence)
in 1908: a proof by dissection for Pythagoras’s theorem in the general case is
impossible with less than seven triangles. Hence, a new direction in research
had opened up and beaten the question of geometric extremity demonstrated
by the examples above.

The boom of polyhedral geometry in the 19th century has already been men-
tioned in two respects: in topology and graph theory and in crystallography
and/or its role when forming the geometrical notion of group and symmetry.
However, these are only two aspects of the literature on polyhedra which
blossomed abundantly during the entire 19th century. It is hardly possible to
observe the phenomenon of mutual non-acknowledgement and multiple dis-
coveries better in any other area of mathematics. Even an old theory, such
as the one of semi-regular polyhedra, was in need of a re-awakening and ad-
dition. It started in 1807 with Meyer Hirsch, followed by Lidonne in 1808,
l’Huillier in 1812, Gergonne in 1818, and many others until Badoureau in
1878. It concerns the proof that the list of regular and Archimedean polyhe-
dra is complete, whereby for the first time the prisms and anti-prisms with
regular base, which Kepler had rejected, were included. However, despite so
many attempts, an Archimedean polyhedron unknown until then was only
discovered in 1930 and multiple times after that (Illus. 7.9.1). L’Huillier was
first to refer to the three regular tessellations of the plane as boundary cases
of Platonic solids. Gergonne also looked at the Archimedean semi-regular
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Illus. 7.9.1 The Archimedean polyhedron discovered independently by Miller in
1930 and Aschkinuse in 1957

This polyhedron suffices for the classic definition, which states that it is bounded by
regular polygons and that the surfaces joining in any corner are pairwise congruent
corner figures. However, the group of its isometries is not transitive, i.e., there is
no isometry for each two of its corners, which maps the one onto the other one
and, thereby, the entire polyhedron onto itself. This Miller-Aschkinuse polyhedron
is the only one of its kind and very instructively shows a deficit of the classic
definition of Archimedean semi-regularity, since we intuitively refer to the pairwise
equivalence of all corners. However, it does not suffice for this to look at its “nearest

surroundings”.

Illus. 7.9.2 The fourth star polyhedron found by Poinsot and called great
icosahedron [Gerd Fischer: Mathematische Modelle, Vieweg-Verlag, Braun-

schweig/Wiesbaden 1986]



470 7 New paths of geometry in the 19th century

Illus. 7.9.3 Non-convex polyhedra

The non-convex polyhedron shown in a) has the same net as the one shown in
b). This example (with a minimal number of faces) shows that the condition of
convexity in Cauchy’s theorem about the determination of a convex polyhedron by
means of its net is necessary. If all boundary faces of a polyhedron have to be convex
themselves, then a) is a non-convex polyhedron with a minimal number of faces.
If non-convex faces can also occur, then c) shows the possibility of a non-convex

polyhedron with only five surfaces

plane tessellations, but missed some cases. Only Badoureau delivered a com-
plete list. The semi-regular solids reciprocal to the Archimedean ones were
addressed by E. Catalan in 1865 and are usually named after him. Whereas
combinatorial duality of tessellations and polyhedra has been known for a
while, Catalan made it clear that duality in metric terms is provided by a
sphere, which simultaneously is the circumscribed sphere of a polyhedron
and the inscribed sphere of the reciprocal (he says, ‘conjugated’) polyhedron.
In particular, the circumscribed sphere of an Archimedean polyhedron is
the inscribed sphere of the dual “Catalan” polyhedron. Another substantial
discovery within the realm of regular solids was made by L. Poinsot, who,
apparently without knowing Uccello’s and/or Kepler’s priority regarding two
of these solids, found the four polyhedra nowadays accepted as the regular
star polyhedra (Illus. 7.9.2). Star polygons, star polyhedra and, above all,
their correct determination of area and volume were one of the driving forces
of the developing topology for contemplating the phenomena under which
circumstances a curve dissects the surface on which it is located into two
parts or that a surface in space can be one-sided, etc. [Günther 1876].

Whereas everything written here up to now refers to regular polyhedra at
least to some extent, Cauchy proved in his first work from 1813 that a system
of corners, edges and surfaces, which can be realised at all as a polyhedron
in space, can only be realised in one way under the additional condition
of convexity (Simple contra-examples for different realisations at given non-
convexity are shown in Illus. 7.9.3).
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This will be followed up on by E. Steinitz when showing that every “abstract”
polyhedron, i.e., one given as an incidence instruction for a certain finite set
of corners, edges and surfaces, that suffices for certain necessary conditions,
can be convexly realised ([Steinitz 1930], published posthumously). However,
J. Steiner [Steiner 1882, Vol. I, p. 154] had already asked the much more
far-reaching question in 1832 as to whether such a polyhedron might not
be realised then with a circumscribed sphere. This question could only be
negated by a contra-example (also by Steinitz) in 1928. The great interest
that polyhedral geometry attracted during the 19th century is also expressed
by the fact that the French Academy of Sciences in Paris asked the bonus
question “to complete the geometric theory of polyhedra in any essential
point”. The bonus prize was not awarded, although Catalan’s works and
those by Möbius mentioned earlier were submitted.

[Brückner 1900], [Brückner 1906] features a smothering wealth of results re-
garding the theory of general and special polyhedra, meaning, for exam-
ple, semi-regular or star polyhedra. Moreover, [Brückner 1900] contains his-
toric and bibliographic information very rich in detail. [Cromwell 1997] is, of
course, incomparably more up-to-date and also historically insightful. How-
ever, it suppresses many factual and historical details.

Geometric probability

As a peculiar and nowadays highly important combination of probability cal-
culus and geometry, the theory of geometric probability began developing in
the 19th century after having a famous forerunner from the 18th century. This
theory can be interpreted without any stochastic background and simply as
an extension of measuring capacity of sets of points to sets of other geomet-
rical objects. The first mentioned impulse was provided by G. L. L. Buffon’s
needle problem. He was one of those universal scholars almost typical for the
18th century, engaged in, amongst other things, geology and mineralogy, cos-
mology, botany, and, within mathematics, above all, probability calculus and
its statistical applications. The historic significance of the needle problem (see
Problem 7.9.5) lies within the fact that, for the first time, a question of prob-
ability was proposed within the realm of even, innumerably many possible
events. Thus, the inevitable geometrical question of measures for the relevant
sample space superseded classic combinatorial counting of all possible and all
favourable cases. The needle problem is to determine the probability that a
needle of given length l intersects with one of the lines on a horizontal plane
with equidistant parallel lines (distance d > l) when randomly thrown. Buf-
fon had already presented this problem at the French Academy of Sciences
in Paris in 1733 and published it in 1777 within the scope of his 36 volumes
of general natural history. It was probably inspired by an old French gamble,
whereby we have to throw a coin or another flat object onto a floorboard so
that we hit a gap in the floor. P. S. Laplace pointed out in 1812 that we could
approximately determine π through experiment, since π is part of Buffon’s
result. This could be done by replacing probability with relative frequency,
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Illus. 7.9.4 Crofton’s theorem

Exactly the straight lines through a point P of the thickly marked rope piece around
M1,M2, which do not pass through one of the punctured rope piece, intersect M1

and M2. Hence, if the length of a curve is the measure for the set of the mutually
intersecting straight lines, Crofton’s theorem follows

which settles after a sufficiently large number of needle throws. This would
turn out to be meaningful over the course of the 19th century, since it became
obvious that measures in space of all straight lines or line segments seemingly
can be defined in different ways. The fine agreement of Buffon’s experiments
with the approximation values for π obtained with different methods delivers,
above all, an argument for the rationality of the measure chosen in this case.

In 1841, Cauchy solved the problem for the more general case occurring as
part of the mentioned gamble, whereby, instead of an infinitely thin needle,
we throw a convex disc of any given form in one direction. Thereby, he was
first to discover that the measure of the set of all straight lines m, which
intersect a plane convex set, is given by the perimeter of this set.

J. Steiner and several British mathematicians had also dealt with generalisa-
tions of such geometrical content measurement since the middle of the 19th

century. The Briton M.W. Crofton concluded his “Crofton theorem” from
Cauchy’s outcome in 1867. Accordingly, the measure of the set of all straight
lines that encounter two separately located convex plane figures M1,M2,
equals the difference between the length of the curve crossed over and sur-
rounding both figures and the perimeter of the mutual convex envelope (Il-
lus. 7.9.4). J J. Sylvester generalised this theorem in 1890 for more than two
convex figures. In the meantime, the first works and a book by E. Czu-
ber in 1884 on “geometrical probabilities” had also been published in the
German-speaking countries. However, given his own numerous contributions,
W. Blaschke would coin the name ‘integral geometry’ for this new and in-
creasingly important area in 1935 [Blaschke 1937].

In 1888, J. Bertrand shocked the mathematicians engaging with such ques-
tions with a “paradox” ([Bertrand 1888, p. 4f]): We are asked to calculate the
probability for a random chord of a circle being longer than the side of the
inscribed equilateral triangle. (We can also ask for the measure of the set of
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these chords and/or the straight lines created by extending them in the ratio
to the measure of all straight lines that intersect the circle.) Determining
measures for geometric objects is always based on describing these objects
by means of a suitable number k of independent parameters and measuring
the capacity of such sets in R

k, which thereby correspond to the original
sets of objects. Bertrand selected three options from the large number of
possibilities to determine the straight lines of the plane by means of two real
parameters and showed that we arrive at three different answers for the posed
question (see Problem 7.9.6). Hence, in this respect, Laplace’s proposal of-
fers a possibility for justifying the chosen measure for the case of Buffon’s
problem. E. Cartan and H. Poincaré stated a general theoretical justification
for the choice of each appropriate parameterisation of the objects in 1896:
the chosen measure must be invariant towards shifts of the relevant set, i.e.,
the motions of basic space must correspond to volume preserving coordinate
transformations in the space R

k of the coordinates.
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Essential contents of geometry in the 19th century

Advancement of descriptive geometry : multiplane method, central perspec-
tive, axonometry, photogrammetry, relief perspective, illumination geometry (G.
Monge and his students)
Projective geometry : invariance of the cross-ratio (M. Chasles), infinitely distant
points, straight lines, planes (J.V. Poncelet, J. Gergonne), duality principle (J.
Plücker), homogeneous coordinates and Barycentric calculus (A. F. Möbius), “ge-
ometry of position”, bundles, pencils, projective coordinates (v. Staudt)
Differential geometry : curvature and torsion of spatial curves (G. Monge), theory
of spatial curves (Frenet, Serret, Bonnet, Bertrand), theory of surfaces of cur-
vature in space (starting points by Euler; Meusnier, Monge, Lagrange; Dupin’s
indicatrix), foundation of “inner geometry” (C. F. Gauss), spaces of constant cur-
vature are homogeneous and isotropic (Riemann), advancement of calculus (Lips-
chitz, Christoffel, Weingarten, Betti, Dini, Bianchi, Codazzi, Mainardi, Beltrami,
Casorati)
Theory of geometric construction: Disquisitiones arithmeticae (C. F. Gauss,
1801): general theory of circle division, algebraic methods for proving the impos-
sibility of doubling the cube and angle trisection with compass and straightedge
Non-Euclidean geometry : proof of existence of “non-Euclidean” geometries when
negating the Euclidean parallel postulate – end of a thousand-year-old argument
(W. v. Bolyai, N. J. Lobachevsky, B. Riemann), models of non-Euclidean (hyper-
bolic) geometry (F. Klein, H. Poincaré, E. Beltrami)
Notion of vector and n-dimensional geometry : magnetic and electric “vector
fields”, rotation and divergence (Oersted, Gauss, Weber), calculating with com-
plex numbers as vectors (Weber, Argand), quaternions (Hamilton), ‘theory of lin-
ear extension’ (H.G. Grassmann: n-tuples of numbers as coordinates of a point,
units, basis, outer product, linear dependence/independence of vectors, invari-
ance of dimension, multivectors), determinants as multi-linear and alternating
functions of row/column vectors, later as orientated volume of the n-dimensional
parallel solid (Cauchy), Cauchy/Schwarz/Bunyakovsky inequality, Analytic ge-
ometry in n dimensions (A. Cayley, 1843), n-dimensional simplex (Clifford),
polyhedra, convexity, regularity in n-dimensional spaces, regular polytopes (L.
Schläfli)
Transformation groups: groups of motions (congruence mappings), projec-
tive maps, Möbius transformation amongst others (Chasles, Poinsot, Carnot,
Möbius), matrix calculus (A. Cayley, J. J. Sylvester), Erlangen Program (F.
Klein), Symmetry groups and crystallography (Haüy, Hessel)
Beginnings of topology : set-theoretic topology, topologic maps, Jordan curve the-
orem (Cantor, Dedekind, Jordan), combinatorial topology, graph theory, polyhe-
dra, four colour theorem, one-sided surfaces, notion of homology (Gauss, Listing,
Möbius, Jordan, Riemann, Poincaré)
Misc: Fermat’s problem for n points, Grebe-Lemoine point, equality by dissection,
star polyhedra, geometric probability
Basics and formation of geometry : turn towards new perceptions (M. Pasch, G.
Peano, H. Wiener, F. Klein), Grundlagen der Geometrie (Foundations of Geom-
etry; D. Hilbert, 1899)
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7.10 Problems to 7

Problem 7.1.1*: Director circle of conic section according to Monge

Prove the following: if the apex of a right angle glides along a circle k and
one of its legs, thereby, always through a fixed point F , then the other leg
runs through all tangents of a certain conic section K. Thereby, K is an
ellipse, if F lies within k, or, respectively, a hyperbola, if F lies outside k.
If circle k degenerates to a straight line g, then the produced conic section
is a parabola. (The latter was already known by J.H. Lambert.) k is called
the director circle of the produced conic section (this term, however, is also
occasionally used for other circles connected to the conic section) or director
line, respectively. F is always one of its foci.

Problem 7.1.2*: Proof of Pohlke‘s theorem according to [Salenius 1978]

We need a lemma, which is also of independent interest and is best proven
by means of calculation: If a triangle T is given, then every triangle can
be mapped onto a triangle similar to T by means of perpendicular parallel
projection. (Equivalent wording: we can produce any triangular shape by
means of plane sections of a given prism with three edges.) To prove this,
position triangle OA′B′, onto which we are meant to map perpendicularly,
as shown in Fig. 7.10.1 a) in the x-y-plane. Then, it is fully described by

b′ = OA′ and the coordinates x, y of B′, whereby a′2 = x2 + y2. The given
triangular shape, which is meant to be mapped onto OA′B′, is given by angle
γ and the ratio a : b of the adjacent sides. In order for a triangle OAB of this
shape, as shown in the illustration, to fit into the prism with profile OA′B′

above, we have to determine the parameters k > 0, s(z-coordinate of A) and

t(z-coordinate of B) so that (1) k2a2 = t2 + a′2, (2) k2b2 = b′2 + s2 and (3)
the inner product of vectors OA,OB has to be k2ab cos γ, while also yielding
xb+ st, i.e. xb+ st = k2ab cos γ by means of the coordinates of these vectors.
Show that this system of equations can always be solved under the given
conditions regarding b′, a, b, γ, x, y.

Now, let us assume that O,A,B,C are not collinear points of a plane (Fig. b).
We only provide the sketch regarding the proof for Pohlke’s theorem for the
general case that straight lines OA and BC intersect each other in one point
D. The remaining exceptions are all trivial and are left up to the reader. Fur-
thermore, O′, E1, E2, E3 shall form a Cartesian tripod (Fig. c). We determine
point D′ on straight line O′E1 so that the affine ratio of points O′, E1, D

′

is the same as the one of points O,A,D. Then we determine point C′ on
straight line D′E2 so that the affine ratio of points D′, E2, C

′ is the same as
the one of points D,B,C. The projection direction C ′E3 determines a (gen-
erally oblique) prism with three edges together with base O′D′C′, into which
we can fit a triangle O∗D∗C∗ similar to ODC according to the lemma. Given
this similarity, A and A∗, B and B∗ correspond to each other. Concerning
the mentioned projection direction, O′ is now also mapped onto O∗, D′ onto
D∗ and E3 onto C∗. Since the affine ratios stay invariant, E1 also converts
into A∗ and E2 into B∗.
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Illus. 7.10.1 Figures to Problem 7.1.2

Problem 7.1.3: Analogon of Pohlke’s theorem for central perspective

If three non-collinear points F1, F2, F3 are given in an image plane as van-
ishing points of three directions pairwise mutually perpendicular, then for
each two of these points, a geometrical locus is given for the position of the
belonging visual point A by means of the “Thales hemisphere” above the line
segment between these two points. If there is a point A that fulfils these three
conditions, it is located in the intersection of these three hemispheres. Since
the section of each two of these hemispheres can be projected as a straight
connection of the intersections of the base circles of these two hemispheres
when projecting perpendicularly onto the image plane, these three line seg-
ments pass through the principal point as a projection of the visual point.
Consider the following for this scenario:

1. What are these three line segments in regards to the triangle of the three
vanishing points?

2. Which theorem of plane triangular geometry is obtained as a result of
the projection of the spatial subject matter? (transfer principle)

3. Which conditions must the triangle of the three vanishing points fulfil in
order to really feature a visual point, of which they appear as vanishing
points of three pairwise perpendicular directions?
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Problem 7.1.4*: Watt’s and Peaucellier’s straight line motion

1. Analyse which curve is produced by the tracing points of Watt’s resp.
Peaucellier’s mechanisms shown in Illus. 7.1.3, and prove that Peaucel-
lier’s mechanism solves the problem exactly.

2. How do we have to dimension the parts of Watt’s mechanism in order to
produce a preferably approximately straight curve segment?

Problem 7.2.1: Power of a point with respect to a circle (Monge, Carnot)

The power (P, k) of a point P with respect to a circle k with centre M
and radius r is defined as PM2 − r2, thus greater than, equal to or smaller
than zero depending on whether P is located outside, inside or on the circle
itself. For two non-concentric circles k1, k2 the set power (k1, k2) of all points
P , which have the same power concerning both circles, is a straight line
perpendicular to the connection of the centres of both circles. This can be
traced back elementarily as follows: first, it seems there is exactly one point P0

on line segment s between both centres that belongs to power (k1, k2), since
the power concerning both circles increases for each case monotonously and
continuously with the distance to the centre. Every point on the perpendicular
erected on s in P0 also belongs to power (k1, k2). If in reverse P belongs to
power (k1, k2), so every point of the perpendicular is also dropped from P
onto s.

If k1 and k2 intersect, the connection of the intersections is the power line
(radical axis) of both circles, since both intersections concerning both circles
have a power of zero. If they do not intersect, add an auxiliary circle k0,
which intersects both, determine power (k0, k1) and power (k0, k2) and their
intersection – it is the power point of the three circles and it has the same
power regarding all three circles – and drop the perpendicular onto connection
s of the midpoints of k1 and k2.

1. Prove that for each straight line through P that intersects or touches k,
power (P, k) equals the product of the directed (i.e., algebraically signed)
distances from P to both intersections with k (or equal to the square
of the distance to the tangential osculation point), accordingly that this
does not depend on choosing the chord [Euklid c].

2. If we subtract the normed equations of two non-concentric circles, we
obtain a straight line equation. Show that this is always the equation of
the power line of both circles and derive all properties of this straight line
listed above based on its equation.

3. The notion of power facilitates elegant solutions for many construction
problems. For instance, one of the ten cases of Apollonius’s problem re-
quires us to construct all circles through P that touch both straight lines,
for two straight lines and one point P that is not located on either. Solve
this construction problem by means of power.
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Problem 7.2.2: Purely linear projective constructions

1. An alternative method to the one shown in Illus. 7.2.3 for halving line
segments projectively speaking regarding a given infinitely distant point
is given by the fact that the diagonals of a parallelogram halve each other.
Elaborate this to a solution.

2. Generally speaking, every construction that can be accomplished in the
Euclidean plane solely by means of linearly connecting, intersecting and
drawing parallels can be “translated” into a construction, which can be
made solely by intersecting and connecting by replacing the infinitely dis-
tant straight line by a finitely located one. This can also be interpreted
as alternatively working in a central perspective image of the construc-
tion plane. (In this regard, the purely linear constructions have already
been addressed in the last chapter of Lambert’s Freyer Perspective (Free
Perspective).) Provide concrete examples for the statements above.

Problem 7.2.3*: Homogeneous coordinates

A very illustrative access to plane homogeneous coordinates is created if we
first look at the bijective map between a projectively closed (i.e., extended by
infinitely distant points and a infinitely distant straight line) plane e of the
Euclidean space and the bundle of all straight lines through coordinate origin
O of a Cartesian (or more general affine) coordinate system in space that is
not located on e. To every P ∈ e, straight line OP corresponds. The straight
lines through O parallel to e correspond to the infinitely distant points of e.
(This bundle of straight lines is somehow a “better” model of the projective
plane, since the infinitely distant objects are not especially distinguished from
the outset. The objects parallel to e are only distinguished as improper by
choosing plane e.) Points of e are now collinear if the corresponding straight
lines of the bundle are located in one plane, i.e., the planes through O corre-
spond to the straight lines of projective plane e. Regarding the chosen spatial
coordinate system, these planes correspond injectively to the equations of the
form ax + by + cz = 0, whereby a, b, c are not all 0 at the same time and
are only determined except of a common factor different to zero. Having said
that, every point different from O (whose coordinates x, y, z are not all zero
at the same time), determines a straight line of the bundle and, hence, also a
point of e. We now want to grasp a, b, c as (determined for up to one factor)
coordinates of the intersection lines g in e, and x, y, z as (determined for up
to one factor) coordinates of the respective point P in e. P ∈ e is exactly
then true, if ax+ by+ cz = 0. (Here, we see the duality principle in the form
established by Plücker: we cannot see whether a, b, c are supposed to be the
coordinates of the straight lines and x, y, z the coordinates for the points or
vice versa.)

Now consider how choosing three non-collinear points in e is equal in meaning
to fixing three in O originating axial directions of a coordinate system in the
surrounding space and how the fourth point in general position in e serves to
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fix a point in space with the coordinates 1, 1, 1, which is why (how?) a unit
is determined on each of the three axes.

If we distinguish the straight line in e with the equation cz = 0 as im-
proper and/or have arranged our spatial coordinate system so that exactly
this straight line “really” is the improper straight line of e, then the improper
points located on it are characterised by z = 0; the proper ones, consequently,
by z �= 0. Regarding these proper points, we can go over to the new, “inho-
mogeneous” x′, y′ by x′ = x : z, y′ = y : z. Then, the homogeneous equations
of straight lines ax + by + cz = 0 turn into the known equations with two
variables and absolute term.

Problem 7.2.4*: Coordinatisation of straight lines in space

Having introduced a Cartesian coordinate system, we can also coordinatise
the space of all straight lines of R3 in an elementary (non-projective) manner
by first assigning to every straight line g the foot F (g) of the perpendicu-
lar dropped from the coordinate origin O onto g. If, conversely, we fix any
point P (described by three coordinates), then the straight lines g through
P , for which P = F (g), can only vary in the plane through P perpendicu-
lar to straight line OP , and consequently can be described by one further
parameter. Thus, we obtain the four-dimensionality of this manifold in a
completely different manner. Contemplate, whether and, if applicable, how
we can include the straight lines of the projective closure of space by means
of homogenising the used coordinates. Compare this approach to Plücker’s.

Problem 7.2.5: Involutions of a projective straight line and points with
complex coordinates

A projective map of a straight line onto itself is described by a fractional-
linear transformation regarding the usual (inhomogeneous) coordinate x:

f (x) = ax+b
cx+d

(a, c not simultaneously zero).

Whilst transforming into homogenous coordinates x0, x1, the transformation
has the following system of linear equations for the coordinates y0, y1 of the
image points:

y0 = cx1 + dx0, y1 = ax1 + bx0.

Confirm how the characterising property f(f(P )) = P of an involution is ex-
pressed by the coefficients a, b, c, d and then show that the condition f(P ) = P
always leads to a quadratic equation given this restriction, whereby in the
case of real coefficients a, b, c, d both fixed points are either real and the in-
volution can be grasped as a one-dimensional transformation by means of
reciprocal radii or both fixed points have mutually conjugated complex co-
ordinates. Conclusion: points with complex coordinates are the “ideal” fixed
points of involutions without real fixed points.
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Problem 7.3.1*: “Napoleon’s problem” (according to Mascheroni)

One of the first problems from Macheroni’s Geometria del compasso requires
us to divide a circle periphery in four equal parts (or equal in value: to con-
struct the corners of a right-angled isosceles triangle) solely by means of the
compass. (Solution tip: If given radius r, mark a line segment of length r

√
2

on the circumscribed circle, which we can find, according to Pythagoras, by
constructing a line segment of length r

√
3 beforehand.) Elaborate this to a

preferably “geometrographic” solution.

Problem 7.3.2: Construction à la Georg Mohr with compass by means of
fixed span width (circle template) and straightedge

How do we find the following with the subsequent means (solution tips in
brackets)?

1. The centre of a line segment (simultaneously the centre of each concentric
shorter line segment),

2. An equilateral triangle for the given base (obviously, we only need an
angle of 60 degrees at the extremities),

3. The perpendicular from a given point onto a given straight line g (simul-
taneously the perpendicular for all straight lines parallel to g),

4. The parallel through the given point for the given straight line,

5.∗ Marking any given line segment on any axis.

Concerning 5., a little theory may be helpful, which was not provided by
Mohr, but by Jacob Steiner in 1833: moving a line segment can be put to-
gether by parallel translation and revolution in the desired direction. The first
is a purely linear construction. Thus, at most, we need the compass to con-
struct parallels (see 4.). The latter can be reduced to the revolution of a line
segment, the length of which corresponds to the provided circle/compass, by
means of homothety (which also is purely linear). Since this revolving process
can be conducted at any location due to the possibility of executing parallel
translations, we do not necessarily need a circle template (although it often
shortens the method). Principally, a single already drawn circle with centre
suffices – for the given, and, as shown by Steiner, also for any other problem
resolvable with compass and straightedge. We refer those who are now suffi-
ciently curious to [Steiner 1833] or, if this is unattainable, to [Schreiber 1975].

Problem 7.3.3: Impossibility of doubling the cube with compass and
straightedge

Show by means of case-by-case analysis that x3 − 2 cannot be written as
(ax2 + b)(cx + d) with integers a, b, c, d. According to Gauss’s general theo-
rems, it follows that doubling the cube by means of compass and straightedge
is impossible.
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Problem 7.3.4*: Non-constructability of the inscribed pentagon by means
of its five given sides

Supplementing the construction of the inscribed quadrilateral by means of
its four sides according to Vieta, show that an inscribed pentagon generally
cannot be constructed by means of its sides with compass and straightedge.
As always in such cases (cf. the explanations regarding angle trisection), one
counter-example will suffice. We recommend the case a1 = a3 = 3 (length
units), a2 = a4 = 4, a5 = 5 and using Ptolemy’s theorem, according to which
the product of the diagonals equals the sum of the products of the opposite
sides in the inscribed quadrilateral. We refer those who cannot find the solu-
tion with these hints to [Schreiber 1993], which also proves the existence of
the wanted inscribed pentagon.

Problem 7.3.5*: Equivalence of construction problems in space

Show that the following three characterisations of the construction problems
that can be solved in space are equivalent:

1. A point can be constructed by means of given points iff (if and only if)
we can construct its three coordinates with compass and straightedge
by means of the coordinates of the given points in an auxiliary plane
regarding a given spatial-Cartesian coordinate system.

2. It can be constructed by means of given points iff, regarding a given posi-
tion of the projection plane, its top and front view pair can be constructed
by means of the top and front view pairs of the given points, meaning if
the plane image problem that results from the spatial problem caused by
Monge’s two-plane method can be solved.

3. It can be constructed iff we can obtain it by means of the given points
by using a planeal (i.e., an ideal instrument which produces the plane
through each three non-collinear points in space) and a spherical com-
pass (which produces the sphere of given radius around a given point)
and locating the intersections of the so-constructed planes and spheres
(additionally to compass and straightedge).

Problem 7.3.6*: Torricelli point of 5 points of the plane and 4 points in
space respectively

The question of whether the Torricelli point can be constructed for more than
4 points of the plane or, respectively, more than 3 points in space with com-
pass and straightedge has had no answer until recently, although Gauss had
already stated the following hypothesis in a letter to his friend Schumacher
in 1836 indicating that this will lead to “higher equations” [Gauß a, vol. X,
p. 465]. As far as is known, this was first confirmed in [Bajaj 1988], although
in a very tedious manner. Easily verifiable counter-examples for the plane
and space are given in [Mehlhos 2000]:

1. Regarding a Cartesian coordinate system, take the five points with the co-
ordinates (0,±1) ,

(
0,±√

2
)
, (2, 0). According to Problem 6.2.3, the Torri-
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Illus. 7.10.2 Figures to Problem 7.3.6

celli point P0 has to be located on the x-axis due to reasons of symmetry.
Thus, it suffices to find its x-coordinate x0 or angle β (Illus. 7.10.2) or,
respectively, y = cosβ or, respectively, to prove that one of these quan-
tities cannot be constructed with compass and straightedge. If we define
the auxiliary angle α as in the illustration and use what follows from the
necessary condition (vector sum of the unit vectors drawn from P0 to
P1, ..., P5 is the zero vector): 2 cosα + 2 cosβ = −1, then we obtain the
following equation for the wanted quantity:

4y4 + 4y3 − 3y2 + 4y + 1 = 0.

The irreducibility of this equation can either be proven directly or by looking
at the belonging cubic resolvent.
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2. Regarding a spatial Cartesian coordinate system, we choose the four
points (0, -1, 0), (0, 1, 0), (1, 0, 0) and (1, 0, 1). Then, the Torricelli
point P0 has to be located on the x-z-axis due to reasons of symmetry.
If x refers to the cosine of the angle between the x-axis and the axis of
the coordinate origin to P0, we obtain the following equation for x:

(*) 8x4 − 4x3 − 7x2 + 2x+ 1 = (x− 1)(8x3 + 4x2 − 3x− 1) = 0.

Thereby, x = 1 does not deliver a solution to the problem and the cubic rest
polynomial is yet again proven to be irreducible. Follow this through and
contemplate why this problem can be solved with compass and straightedge
iff we can construct x by these means. (In order to be able to appreciate the
details of this fine solution, we ask the reader to contemplate, for example,
the following: if x = sinϕ, only some algebraic signs change on the left side
of the equation, but they have the effect that we can no longer split such a
simple factor from the polynomial.)

Problem 7.4.1: Tractrix and Gaussian curvature of the pseudo-sphere

Based on the production of the tractrix demonstrated in Illus. 7.4.1, extract
the parameter representation for the curve and for the surface created by the
revolution around the asymptote and verify that the Gaussian curvature is
negative and constant.

Problem 7.5.1: Constructions in Poincaré’s model of the plane hyperbolic
geometry

Solve the following construction problems in Poincaré’s model with (Eu-
clidean) compass and straightedge:

1. Straight connection of two points P1, P2 (Thereby, the case that the Eu-
clidean connecting line is perpendicular to a is trivial.)

2. Marking out a line segment on a point (Take into account that reflections
are generally realised by transformation by means of reciprocal radii at
the relevant circle.)

3.* Construction of a circle with given centre and radius (Use the solution
to 2. as a “sub-program”!)

4.* Prove that trisecting any angle cannot also be done with compass and
straightedge in hyperbolic geometry by using the preservation of angles
of Poincaré’s model.

(Solutions in [Schreiber 1984], chap. 2.6)

Problem 7.5.2: The sum of angles of triangles is always smaller than 180
degrees in hyperbolic geometry. Consider that this deviation of the sum of
angles from the Euclidean value (“defect” δ) is additive, i.e., if a triangle
(or, more generally, a polygonal figure) is decomposed into part triangles,
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the defect of the whole figure equals the sum of defects of the part triangles.
Thus, we can use this defect as a measure of content.

* Squares and Pythagoras’s theorem do not exist in hyperbolic geometry.
However, we can use quadrilaterals with four sides of equal length and four
equal acute angles, which can be easily constructed, as “pseudo-squares”.
If such a pseudo-square has an angle of 90◦ − δ/4(δ defect of the pseudo-
square) in every corner, a square of n-tuple content has the corner angle
90◦ − nδ/4. However, the construction of such a square based on what
is given is already very tedious in the simplest case of n = 2, since it is
unavoidably linked to the more difficult problem of constructing a trian-
gle based on the given angles. Bearing this aspect in mind, look at the
Euclidean triplication of the square by Abū’l-Wāfā (Illus 3.4.9). Would its
application to a pseudo-square be correct in hyperbolic geometry? Attempt
to sketch this with slightly curved square sides. The resulting “sling star”
has exactly the triple content. But what happens when we change it to a
pseudo-square?

Problem 7.9.1: Solution to Schumacher’s paradox

The astronomer H.C. Schumacher wrote to his friend Gauss in 1836: “I have
recently come across a paradox, which I am frank enough to present to you.
I cannot yet sufficiently explain it. It is known that if we look for a point in a
quadrilateral ABCD, of which the sum of the lines drawn at the angle points
(i.e. A,B,C,D) shall be minimal, the wanted point is the intersection point
E of the diagonals. If we now let points A,B of lines DA,CB approach more
and more until they finally collapse in F (Illus. 7.10.3), then E also collapses

Illus. 7.10.3 Figure to Problem 7.9.1
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in F at the same time and the quadrilateral turns into triangle DFC and
we would have point F as the one, of which the sum of lines drawn to the
angle points F,C,D of the triangle shall be minimal. However and as known
[!!], this is only true, if the angle [at] F ≥ 120◦.” How can this “paradox” be
solved? Those, who cannot solve it can read Gauss’s answer in his Collected
Works, vol. X, 1, p. 459f or in [Schreiber 1986].

Problem 7.9.2: Valence of Steiner points

1. Prove that a “Steiner point” S always has a valence of three in the Eu-
clidean case (in the plane or space of any higher dimension) and that the
line segments from S to the three points connected to S have to enclose
the angle of 120◦ pairwise.

2. How can we consequently construct Steiner trees for four points that span
a convex quadrilateral in the plane?

3. Comprehend the problem in space by means of the top and front view
method (cf. Problem 7.3.6b). It generally cannot be solved there by means
of compass and straightedge, as recently proven [Mehlhos 2000].

Problem 7.9.3: Regarding the Grebe-Lemoine point

If P is any point inside triangle ABC and if da, db, dc are its distances
from a or b or c, respectively, dissecting this triangle into the part triangles
ABP,BCP,CAP yields the following for the total area A of ABC:

A =
1

2
(ada + bdb + cdc).

The problem of determining P so that da
2+db

2+dc
2 has a minimum given this

side condition yields the following necessary condition by means of differential
calculus:

a : da = b : db = c : dc. (*)

1. Check this and contemplate that (*) is also sufficient, since, on one hand,
there must be a point P in the triangle for which the minimum of the
function is assumed (why?), and on the other hand, that a point can be
uniquely determined by (*).

2. The construction of wanted point K according to Grebe (1847) is as
follows due to (*): enlarge the given triangle ABC to A′B′C′ by drawing
outside the triangle the parallel A′B′ in distance of the length of c to side
c, the parallel B′C ′ in distance of the length of a to a, etc. The fact that
the straight lines AA′, BB′, CC ′ intersect in one point K already follows
from Desargues’ theorem. Prove that K is the wanted minimum point.

3.* A synmedian of a triangle is created by reflecting a median on the cor-
responding bisectrix. First prove that the three synmedians also pass
through a common point and then that this point fulfils condition (*).



486 7 New paths of geometry in the 19th century

Problem 7.9.4: Equality by dissection of rectangles of equal area

Show that any two rectangles of equal area are equal by dissection. (A proof
can be found in e.g. [EdEM] (Encyclopaedia of Elementary Mathematics, vol.
V, p. 150.) Why does this proof make use of the Archimedean axiom?

Problem 7.9.5: Buffon’s needle problem

The distance of the parallel lines shall be d, the length of the thrown needle
l < d. Characterise its location by means of distance x of its right extrem-
ity of the straight line closest to the left of the given line grid and by angle
α
(−π

2 ≤ α ≤ π
2

)
, which it forms with the perpendicular dropped onto this

straight line. Then, a rectangle with the sides d and π is assigned to the set
of all possible locations of the needle in the x-α-plane. Determine the subset
that corresponds to the “favourable” positions of the needle, and verify that
the ratio of both capacities is 2l : dπ.

Problem 7.9.6: Bertrand’s paradox

1. For version 1, the position of any straight line g is characterised by its
distance r from centre O of the circle and by angle α between the per-
pendicular dropped from O onto g and an arbitrarily distinguished initial
direction. For version 2, it is described by angles α, β between this initial
direction and the connections from O to the intersections of g with the
circle. For version 3, it is described by the Cartesian coordinates x, y of
the foot of the perpendicular dropped from O onto g. Check that the
probability that the circle cuts out a chord from the straight line, which
is longer than the side of the inscribed equilateral triangle, would be 1/2
for the first version, 1/3 for the second one and 1/4 for the third one. Of
course, we could find out for this case which of the three theoretical ap-
proaches is the right one by means of a statistical experiment. (Thereby,
of course, we must only evaluate those throws of the straight line onto
the circle or, respectively, the circle onto the straight line, for which there
is any intersecting at all.) Nevertheless, we can also establish the right
version by means of the Cartan-Poincaré criterion:

2.* For version 1, the set of all straight lines of the plane is injectively mapped
onto the set of all pairs (r, α) with r ≥ 0 and 0 ≤ α < 2π, which we, for
practical reasons, imagine aligned on a cylindrical surface of a perimeter
of 2π, rising from the floor r = 0 into infinite height. Since the measure
of a set of straight lines should not depend on its position in the plane,
we must now show that all9 congruence mappings of the original plane

9 In order to make the problem easier, consider that any congruent mapping of
a plane can be produced by translations, revolution around the coordinate origin
and reflection on any single selectable straight line. Hence, we only need to indicate
for these special mappings that they correspond to mappings true to area on the
cylindrical surface.
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Illus. 7.10.4 Figures to Problem 7.9.6

(in which the straight lines at hand are located) correspond to mappings
true to area of the cylindrical surface onto itself. However, these cannot
all be congruence mappings of the cylindrical surface onto itself, since
no shifts towards the apothem (α constant) are possible due to its one-
sided narrowness, whereas translations in the original plane change r in
general, but leave fixed the α-coordinate of straight lines or change it
by 180 degrees. It is easy to see by means of Cavalieri’s principle that
the mappings belonging to the translations of the cylindrical surface onto
itself still remain true to area.

2. In order to show that the other versions for measuring the capacity of
sets of straight lines suggested by Bertrand are not translation-invariant,
a single counter-example for each suffices, i.e., a congruence mapping and
a set M of straight lines, the coordinate image K(M) of which is trans-
formed into a set not true to area for K(M) in this mapping. In the case
of version 3, for example, the unit circular disc is transformed into the set
shown in Illus. 7.10.4 by means of the translation τ = (−1, 0). Thereby, its
right half is considerably decreased and the left one is increased. Thereby,
the perpendicular diameter described by x = 0 remains pointwise fixed.
First, find a hypothesis for the image on the left and right half of the unit
circle by pointwise construction.

4.* Show (preferably by means of elementary geometrical considerations, it
is also possible by analytic means, but this is much more complicated)
that the created heart-shaped curve is the conchoid of a circle produced
by the unit line segment and the inserted circle

(x+ 1
2
)
2
+ y2 = 1

4
(*)

and that it is identical to the cardioid, which is produced by unrolling an
inserted variable circle on the fixed circle (*) (cf. Illus. 7.10.4).
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Problem 7.9.7: Measuring sets of straight lines by means of arc lengths

As first shown by Cauchy in 1841, the measure of the set of all straight lines
that intersect a limited plane convex set M equals the length of the boundary
curve of this set.

1. The reader shall verify this for the two special cases that set M is a circle
or a paraxial square.

2. Why is the theorem for non-convex sets not correct?
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1895–1910 Art Nouveau introduces new types of ornamentation
1900 Max Planck founds quantum theory
1905 Einstein publishes his theory of special relativity
1905/07 Civil Revolution in Russia
From 1908 Cubism in painting(Picasso), abstract art(Kandinsky and others)
1914 Panama channel opens
1914–1918 First World War
1916 A.Einstein: general theory of relativity
1917 October Revolution in Russia
1918 End of German Empire, Habsburg Monarchy, Osman Realm and

Empire of Tsar
From 1919 Bauhaus founded in Weimar, modern architecture, constructivism

in architecture
1920 Public broadcasting in the USA
1933 Hitler is Reich Chancellor in Germany
1936 Public television broadcasts Olympic Games in Berlin
1938 Nuclear fission of the Uranium core
1939–1945 Second World War
1941 First program-controlled electro-magnetic computer(K. Zuse)
1945 Use of atomic bombs against Japan (Hiroshima, Nagasaki)
1947 India and Pakistan gain independence, start of decolonisation
1949 Proclamation of Federal Republic of Germany and German Demo-

cratic Republic
1957 First artificial satellite(Sputnik)
1957 Treaty of Rome starts the European Union
1961 First manned space shuttle
From 1965 Computer with integrated circuit
1969 First men land on the moon
From 1975 Computer with microprocessor
1979 Ayatollah Khomeini founds theocrasy in Iran
1989/90 Collapse of communistic regimes in Eastern Europe, reunion of Ger-

many, decline of Soviet Union
From 1991 Boom of internet after the introduction of the World Wide

Web(WWW)
1979–1990 Margaret Thatcher Prime Minister of the UK
1991–2006 Decay of Yugoslavia
1997 Sheep Dolly cloned as first mammal
2001 World Trade Center in New York destroyed by terrorists
2001–2009 G.W.Bush President of the USA
2003 USA and allies occupy Iraq; Space Shuttle Columbia disaster
2004 Space probe “Mars Express” starts cartography of Mars surface
2004 Approx. 230 000 people die from tsunami in Indian Ocean
2008 Burst of housing bubble and insolvency of Investment Bank Lehman

Brothers cause global economical and financial crisis
2009 Barack Obama elected for President of the USA
2011 “Arabian Spring”: Revolts overthrow presidents of Tunisia, Egypt,

Lybia, Yemen and starts civil war in Syria
2012 CERN Research Centre successful in hunting Higgs-Boson-Particle
2014 Islamic forces of ISIS try to found a theocracy in Iraq and Syria
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8.0 Preliminary remarks

If it was difficult for the 19th century to fit the wealth of geometrical ten-
dencies into a limited number of sub-chapters, it will be hardly possible to
do so analogously for the 20th century and would not serve the purpose of
this book. The classification of mathematical disciplines currently valid (since
1991; MSC Math. Subject Classification) in the mathematical reviewing jour-
nals “Mathematical Reviews” and “Zentralblatt für Mathematik” pinpoints
fourteen sub-areas under the main group (H) 51 (Geometry), three further
sub-areas under H52 (Convex and Discrete Geometry) , and three sub-areas
under H53 (Differential Geometry). Furthermore, there are fifteen sub-areas
for H 14 (Algebraic Geometry), and eight sub-areas each for H 54 (Gen-
eral Topology) and H 55 (Algebraic topology). Under the main group 68
(Computer Sciences), there are, amongst others, the three sub-areas of Com-
puter Graphics/Computational Geometry (which have little in common),
Computer Aided Design, and Image Processing. If we also acknowledge that
analytic geometry, now paired once again with descriptive geometry, forms
one sub-group, that some geometrical works are reviewed under didactics,
physics, logics and basics, model theory or recreational mathematics, and
that some of the subjects added with so much care are basically empty of
substance while others overflow, we begin to understand the complexity of
mathematics in our time and a certain helplessness on the part of the authors
of this classification in swimming against the stream of geometrical research
and activity. In contrast, we will attempt here to put forth a picture of the
geometry of the last century by looking at some of the most important extra-
mathematical fields of application and also inspiration in relation to geome-
try. Sections 8.1 and 8.2 are exceptions, as they look at inner-mathematical
development, which had already begun towards the end of the 19th century,
but only fully matured in the 20th century.

Before starting with the history of geometry in the 20th century, we should
mention first that geometry now refers to two very different things due to the
emancipation of geometry from the three-dimensional and Euclidean case,
gradually concluded towards the end of the 19th century. On one hand, (and
the word ‘geometry’ is often understood as such by mathematicians nowa-
days, unless explicitly explained otherwise) geometry refers to the science
of “spaces” as a whole, their different forms and possibilities for describing
them and their mutual relations. On the other hand, geometry still and to
an increasing extent means investigating the individual geometrical objects
and/or a class of related objects in a space, which, of course, need not always
be the classic R

2 or R3.

After the turbulent and multiply branched development of the 19th century,
still in effect until around 1920, one segment of geometry had taken such
a route towards abstraction that no consensus existed for a long time as
to its inclusion as a part of geometry. Another, more illustrative segment
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had mostly been integrated into different engineering sciences. Geometry has
only played a small role also in the mathematical curriculum of school edu-
cation in many countries during the middle decades of the last century. The
trend only began to take a clear turn in the last twenty to thirty years. The
profound needs of computer sciences and other areas of application surely
must have borne a great influence on these renewed turns towards geometry
in illustrative terms. But also independently of this, knowledge has spread
amongst mathematicians that geometrical problems that exist in the two or
three-dimensional Euclidean space can be very difficult and are by no means
unworthy of a contemporary mathematician’s attention. In other words, a
mathematician must not feel ashamed anymore, as was common at certain
times, to engage with issues that can also be realised by laymen as geometric
in nature.

The ups and downs of the development may become more comprehensible if
we look at the background that mathematics as a whole went through a sim-
ilarly turbulent history in the past 140 years: with the establishment of set
theory and logics in the 1970s, caused last but not least by non-Euclidean and
n-dimensional geometry, mathematics rapidly turned from a quasi-natural
science into its present structure-theoretic existence. A phase of self-reflection,
of deepening the philosophical, methodological and logical basics began, but
with it the discovery of new possibilities, resulting from the fact that objects
suddenly, or at least not immediately, did not require a corresponding object
in the material world. This development, at least seemingly detached from
reality to a certain extent, reached its extreme in the statement ascribed to
one of the most prominent mathematicians of this time: “Mathematics is
nothing more than a luxury in which modern civilisation indulges.” How-
ever, the great political and economic turmoil of the recent past (in which
computer sciences again take part) have made ‘civilisation much’ less willing
than it was several decades ago to finance something that is not profitable.
At the same time, a mathematician’s job is a mass profession to a degree
unheard of until recently with blurred boundaries to computer sciences, eco-
nomics and other mass professions, reflected in the content and orientation of
academic studies. Thus, mathematicians were exposed to external pressure
to engage with application-orientated questions much more than during the
first decades of the 20th century, statistically speaking, and the results of pure
research reflect the actual role of geometry for mathematics and the world
less than they did before.

Having said that, we do not believe the reader will make any wrong con-
clusions based on the following statistical details. The Jahrbuch über die
Fortschritte der Mathematik (Yearbook on the Advances of Mathematics)
published a report around the year 1868, structured in 12 chapters, of which
two were assigned to geometry: analytic and synthetic. Differential geome-
try was partially hidden in analytic geometry, partially in the chapters on
differential and integral calculus, mathematical physics and geodesy. Both
main geometrical chapters took up 153 of 396 pages in the reviews, i.e. about
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39%27. Of course, this says nothing about the extent of the reviewed works
or the significance of the content. In 1884, geometry only took up 283 of 1097
pages, or about 26%, although the chapters were structured in the same
manner. Having updated the structure, in 1900 there were 109 of 909 pages
concerning the topic ‘Pure, elementary and synthetic geometry’ and ‘Ana-
lytic geometry’ (including further parts of differential geometry), all in all
about 21%. In 1910, there were 99 resp. 115 of a total of 1054 pages with the
same structure, or about 20%. The last published semi-volume of ‘Jahrbuch’
(yearbook) for 1942 devoted 190 of 657 pages to geometry, or about 28%.
However, geometry had been re-structured as follows:

• Foundations, non-Euclidean geometry

• Elementary geometry

• Analytic and projective geometry

• Algebraic geometry

• Vector and tensor calculus

• Differential geometry, particularly Lie groups

• Rieman manifolds, transformation

• Topologic differential geometry, convex objects, integral geometry

• Kinematics

• Applied geometry

Topology had been assigned its own main section, which also contained graph
theory as a sub-area. Applied geometry was further structured as follows:

• Descriptive geometry

• Photogrammetry

• Geodesic measuring

• Localisation, cartography, nautical science

• Geometric optics

The ‘Jahrbuch’ faltered in its attempt to further develop a presentation of
one properly-structured year of achievements. Meanwhile, the ‘Zentralblatt’
had come into existence, initially structuring geometry as follows:

• General

• Elementary geometry

• Descriptive geometry

• Analytic, projective and non-Euclidean geometry

27 Here and in the following sections, we refer not to the number of reviews and,
hence, works counted, but the number of pages in the reviewing institution, since
we assume that the length of each review can be taken as a rough measure for the
extent and significance of the content of the text.
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• Algebraic curves and surfaces (We see an attempt here to separate the
“geometrical part” of algebraic geometry and the more algebraic ten-
dency)

• Differential geometry, Riemannian geometry, tensors

• Topology (also see set theory; here, we see an attempt to split topology
into a more set-theoretic and a more geometric, i.e., mainly combinatorial-
algebraic, part.)

Here, geometry took up 59 of 432 pages, or only about 14%. However, all
areas apart from descriptive geometry summarised in ‘Jahrbuch’ from 1942
as “applied” fell prey to the greater modernity and even more so to the
present classifications. ‘Zentralblatt’ dedicated 26% of itself to geometry in
1942 (hence, the 28% stated above for ‘Jahrbuch’ for this time gains more
relevance). The formal part of geometry decreased drastically after the Second
World War: Zentralblatt Vol. 30 (1949) 18%, Vol. 45 (1955) 17%, Vol. 60
(1957) 15%. We will consult samples from Mathematical Reviews founded in
1940 for further development: 1960, 12%; 1980 and 1990, each around 6%;
slowly increasing from 1991 onwards. However, it looks even more dismal if we
limit statistics to geometry in narrow terms, i.e., to the main groups 51 and
52 (see above): 1960, around 1.5%; 1970 until 1990, less than 1% on average;
1996, 1.4%. However, this is all put into perspective by the literature on
“computer-relevant” geometry, which has been overflowing for years in order
to summarise everything that belongs here under a neutral name literature,
which, to a great degree, is either not included in the mathematical reviewing
organs at all or in a different section.

Let us now return to the turn to the 20th century. When Hilbert presented
his famous 23 problems at the 2nd International Mathematics Conference
in 1900, he was just engaging intensively with the foundations of geometry
himself. Hence, it did not come as a surprise that at least seven of these
problems are geometrical in nature. They are:

3. The question as to whether a theorem analogous to Bolyai’s and Gerwien’s
also applies to space.

4. The question of geometrical theories that are similarly adjacent to Eu-
clidean geometry as are the Lobachevskian or the spherical geometries, mean-
ing they only differ in respect to a few propositions, especially the question
of more general geometries, in which triangle inequality still applies.

5. The question of the dispensability of conditions of differentiability for con-
tinuous transformation groups.

15. The task of strictly accounting for Schubert’s calculus of enumeration
(which belongs to algebraic geometry).

16. Complete clarification of the topological nature of algebraic curves and
surfaces.

18. The question as to whether there are polyhedra with which we can fill
space without any gaps, but only so that these polyhedra are not a funda-
mental domain of a discrete group of motion; furthermore, if there is only
a finite number of discrete groups of motion with a fundamental domain in
n-dimensional space.
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Illus. 8.0.2 Spatial building stone for tessellation by Reinhardt

The hole in Reinhardt’s stone (a) can only be closed by taking a second stone
turned by 90 degrees and shifted by a quarter of the length in longitudinal direction
and uniting it with the first one to form a solid (b), which is then obviously a
fundamental domain. (Use it to form infinitely long strings of cross-shaped cross-

sections and pave the plane lying across as indicated in (c).)

The 6th problem is also related to geometry. It demands the axiomatic con-
figuration of sub-areas of physics according to the model of formal-axiomatic
Euclidean geometry as concluded by Hilbert shortly beforehand. Detailed
descriptions of the status of the solution to these problems from the view
of the year 1969 can be found in [?] [Browder 1976]. The solution to the
third problem by M. Dehn in 1901 has already been mentioned in section
7.9. K. Reinhardt stated the first spatial tile in 1928, with the help of which
Hilbert’s 18th question could be negated. The idea, hereby, was to dissect a
suitable fundamental domain F of a discrete group into two (or more) mutu-
ally congruent sections T1, T2, ... such that no motion that transforms T1 into
T2 leaves the F -tessellation invariant (Illus. 8.0.2). H. Heesch obtained an
analogous result for the plane in 1932 (Illus. 8.0.4). However, whereas Dehn’s
result basically concludes the third problem, apart from later simplifications
and/or deepening of proofs, the set of problems (in broadest terms) of the
irregular tessellations respectively pavements with a finite number of types of
paving stones, has established an extensive, new geometrical area of research
in the past decades. Apart from its purely mathematical and aesthetical at-
tractiveness (see Illus. 8.0.3), this new area also has some important natural
scientific-technical applications (more in sections 8.3, 8.4 and 8.5).
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The last mentioned set of questions signals a fundamental change in contrast
to the 19th century, both in respect to the inner-mathematical “fashion” and
the demands asked of mathematics by praxis. Problems that nowadays are
referred to all too readily as “discrete” and that only received little attention
during the 19th century, despite having positioned themselves outside the
main orientations of geometry, are not only equal in significance nowadays,
but have been moved almost to the centre of interest. Those things that
please a mathematician’s eye are also different than they were one hundred
years ago. Whereas then it was the models of analytic functions (the famous
“plaster models”), of algebraic surfaces or of surfaces of constant curvature,
also of semi-regular or star polyhedra, nowadays it is fractional formations,
such as the Mandelbrot set, sophisticated non-periodic tessellations or graphs
with special properties.

It is daring and presumptuous, but also tempting to list some unsolved or
unsatisfactorily solved problems and main foci of prospective geometrical
research according to Hilbert’s role model. We will attempt to do so here:

1. A geometry of the discretised plane dissected into pixels demands a formal-
axiomatic foundation, which is not trivial, but helpful for solving problems
of computational geometry.

2. The cooperation of optical information of a two-dimensional image of a spa-
tial scene with the non-optical knowledge either given additionally to and/or
in advance of this scene demands a theoretic comprehensive analysis.

3. The algorithmic description of construction processes in three-dimensional
space can still not compete in more demanding cases with the clarity of
geometrical construction algorithms in the plane.

Illus. 8.0.3 Polygonal tile by Voderberg

In 1936, Heinz Voderberg, one of Reinhardt’s students, found this form, which can
also be used to form an aesthetically pleasing double spiral, as the solution to the
problem of two congruent polygonal tiles completely surrounding one or two others

of the same type.
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Illus. 8.0.4 Building stones for tessellation in the plane

The original building stone a) by Heesch (1933) and a simpler example b) with
only seven instead of ten corners; both cases indicate that two or, respectively,
four assembled samples each yield a fundamental domain. However, thereby both
“witch profiles” a) can only be interlocked by a glide reflection, which never leaves
the whole tessellation invariant. In b), parts 2, or respectively, 3 are created by
means of glide reflection and/or revolving part 1, and can be interlocked without
any gaps only in this manner. However, these illustrations do not achieve congruence

of the respective other part with one stone of the entire tessellation.
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4. The P versus NP problem of computational complexity theory seems to
be one of the most difficult unsolved mathematical problems at present. It
concerns the question as to whether every algorithm, which given divided
or respectively non-deterministic work of an input of a quantity n works in
“polynomial time”, i.e., in a number of steps, that polynomially depends on
n, can be replaced by an algorithm that also works in polynomial time, but
strictly sequentially. The still unproven assumed answer is that this generally
is not true. There already is a number of techniques that represent different
levels of complexity of algorithms by geometric algorithms. So, could we
perhaps solve the P versus NP problem by taking geometrical considerations
into account, i.e., finding an example of a geometrical problem that can be
solved non-deterministically in polynomial time, of which, however, we can
prove by means of specific geometrical methods that it cannot be solved
deterministically (sequentially) in polynomial time?

A fine, up-to-date introduction to newer problems and outcomes of some sub-
areas of geometry is provided by the overview in [Giering/Hoschek 1994].

8.1 Foundations of geometry

The turn of mathematics from a quasi-natural science to a science of struc-
ture, which began around 1870, caused a flood of literature on logical-
methodological and/or philosophical questions of mathematics, which had
never been discussed before with such intensity. Geometry played a consider-
able role in the reasons for this development: the attempts, first successfully
accomplished in the 19th century, to prove the basic irresolvability of certain
construction problems with compass and straightedge28, as well as the non-
provability of the parallel axiom, were mathematical outcomes of a completely
new type. They inspired mathematicians to contemplate mathematics as a
whole, the nature of proving, the nature of being of mathematical objects,
the truth of mathematical propositions, and to make all of this the subject of
mathematical investigations. The works on n-dimensional and non-Euclidean
geometry (the latter to be understood in broader terms) did not just enable
us to doubt the Euclidicity of physical space, but also split the mathematical
notion of space from the physical one. Similarly, the gradual logical founda-
tion of different number domains, which was linked to knowing alternative
number domains like finite, non-Archimedean ordered or non-continuous do-
mains of quantities, caused the notion of number or quantity to take over
from the physically inspired notion of measure and number.

A simplified picture of history (which can be quite appropriate for some pur-
poses) links the beginning of geometrical foundational research with Hilbert

28 Especially the classical problems of doubling the cube, angle trisection and squar-
ing the circle
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and his Grundlagen der Geometrie (Foundations of Geometry), which was
first published in a smaller version in 1899 as a “Festschrift” for unveiling the
Gauss-Weber monument in Göttingen. [Toepell 1986] was first to make the
pre-history of this book generally accessible, as far as it concerns Hilbert him-
self. We know now that the ‘Grundlagen’ were preceded by some of Hilbert’s
lectures, as well as a summer course regarding further training for teachers
on this topic. Hilbert’s notes on these events were published in extracts in
[Toepell 1986] so that we can gain a detailed insight into the gradual maturing
process of Hilbert’s thoughts. After all, he had basically addressed completely
different areas of mathematics before 1899. Apart from a letter on straight
lines as the shortest connection between two points (which was added to the
2nd edition of ‘Grundlagen’ as Appendix I) published in Mathematische An-
nalen in 1895, he had published nothing before 1899 on geometry or even
merely its logical basics. Before thoroughly discussing the content and his-
torical significance of Hilbert’s book, we should also acknowledge that there
had already been an ongoing discussion on the foundations of geometry at
this time. This discussion covered the following problems amongst others:

– What is true physical space like and how is it related to geometrical theory?

– What justifies the selection and assumption of geometrical axioms and/or
which criteria do we have to follow thereby?

– What role do certain axioms play therein, particularly those that deter-
mine the structure of the domain of quantities with which the distances are
measured, i.e., above all the Archimedean axiom and continuity and/or com-
pleteness.

– On which assumption, which had not been reflected on until then, are the
measuring processes in physical space based?

– How complete may a proof be? Which are its smallest steps? How far
“down” do we have to go when defining basic notions and/or wording axioms?

– Prominent participants in these discussions were, amongst others, H. Han-
kel, O. Stolz, F. Lindemann, W. Killing, G. Frege, H. v. Helmholtz and
F. Klein in Germany and the Italians G. Peano, A. Padoa, M. Pieri and
G. Veronese.

Additionally, there were many people nowadays unknown, whose comments
have been forgotten. Even a pronounced analyst like K. Weierstraß could not
deny the spirit of the time and gave lectures on ‘the principles of geometry’.
Insight into the controversy, which is often pointless from a modern view,
but extremely interesting from a historical perspective, can be found in the
chapters “Geschichte und Philosophie” in ‘Jahrbuch über die Fortschritte’
(History and Philosophy in Yearbook on the Advances). A good overview is
also featured in Klein’s report [Math. Annalen, Vol. 50 (1898), p. 583-600] for
the first award ceremony of the Lobachevsky prize, sponsored by University
of Kasan for works on the foundations of geometry; for a modern viewpoint,
see [Dieudonné 1985, chap. 13].
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Above all, there are three men who must be mentioned regarding the more
detailed pre-history of Hilbert’s ‘Grundlagen’: Moritz Pasch, Giuseppe Peano
and Hermann Wiener. Pasch published his book Vorlesungen über neuere Ge-
ometrie (Lectures on Newer Geometry) in 1882. The main aim of this book
was the initiation of a program that Klein had inspired many times since
1871: the foundation of projective geometry (in other words: the construc-
tive introduction of the projective plane or, respectively, projective space)
independent of the parallel axiom. The projective closure was meant to be
accomplished by means of adjunction of improper points on the basis of a
“local absolute geometry”, for which the question of uniqueness of parallels
remains open at first. Hence, we must determine by means of local proposi-
tions (for which Pasch needed congruence and was upset with himself that
he could not do a better job of achieving it) when line segments belong to a
common bundle, even if their extensions do not intersect each other in the
accessible part. Then, we must adjoin the defined bundles as improper ob-
jects to the accessible part of the plane. The usual projective closure features
therein as that special case that is created when the available area in space
constitutes the entire Euclidean space from the outset. If, in contrast, the
available area of space is hyperbolic, adjunction delivers a much greater set
of ideal points that form a projective space together with the proper points, as
Klein’s model shows. The relevant geometrical subject matter had, of course,
already played a practical role when making constructions in restricted parts
of the plane, where inaccessible auxiliary points are represented by accessible
replacement objects. However, in Klein’s program [Math. Ann. Vol. 4 (1871),
p. 624; Vol. 6 (1873), p. 131], these techniques are assigned a new role as
the logical safeguard of projective geometry, which yields models for both
Euclidean and non-Euclidean geometry according to the Erlangen Program.

Illus. 8.1.1 David Hilbert and Moritz Pasch
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This wish met with Pasch’s ability to penetrate problems logically, a skill
strongly pronounced for his time (as reflected in his book on the basics of
analysis and his talent, praised by his contemporaries, for phrasing propo-
sitions of any kind) and his clearly emphasised empirical approach. Hence,
he rejected the notion of infinitely extended straight lines and returned to
Euclid’s line segments as the basic notion with which we can connect two
points uniquely and successively extend. Accordingly, the incidence between
points and line segments is the crucial basic notion of purely linear geometry.
Hence, Pasch arrived at the three-digit relation of betweenness as the term
for point C being located on the line segment with the extremities A and B.
Hilbert would follow up on this, but chose the relation of betweenness instead
of the incidence of point and line segment as the basic notion and some of
the “basic propositions” conceived by Pasch (which, in contrast to Hilbert,
can always be finitely experienced, according to Pasch) as axioms; amongst
them, the one he named “Pasch’s axiom”. It is worded by Pasch as follows:
“If three points A,B,C are pairwise connected by the straight line segments
AB,AC,BC in a plane area, and if the straight line segment DE is drawn
through a point within the line segment AB in the same plane area, then the
straight line segment DE or an extension of the same either passes through
a point of line segment AC or through a point of line segment BC.” (l.c. p.
21)

Bear in mind that Pasch did not speak of a plane but of a plane area (imag-
ined as bounded, but extendable) and of the idea that line segment DE or
an extension of DE fulfils the known condition. He is a consistent empiri-
cist (just like Helmholtz and, to a certain degree, Klein). Thus, his geometry
deals with the space of “observation” or “experience” despite its (relatively)
logical rigour. This distinguishes him crucially from Hilbert, who started his
‘Grundlagen’ from 1899 with the frequently quoted lines: “Let us consider
three distinct systems of things. The things composing the first system, we
will call points and designate them by the letters A,B,C, ... ; those of the
second, we will call straight lines and designate them by the letters a, b, c, ...
And those of the third system, we will call planes and designate them by the
Greek letters α, β, γ, ... The points are called the elements of linear geometry;
the points and straight lines, the elements of plane geometry; and the points,
lines, and planes, the elements of the geometry of space or the elements of
space. We think of these points, straight lines, and planes as having certain
mutual relations, which we indicate by means of such words as ‘are situated’,
‘between’, ‘parallel’, ‘congruent’, ‘continuous’, etc. The complete and exact
description of these relations follows as a consequence of the axioms of geom-
etry.” What Hilbert meant with this wording, namely the complete loosening
of the formal system ‘geometry’ by a fixed and possibly illustrative or physical
interpretation of the occurring notions and theorems, is even clearer in the
also frequently quoted report by O. Blumenthal, according to which Hilbert
states: “At all times, we must be able to say ‘tables’, ‘chairs’ and ‘beer mugs’
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instead of ‘points’, ‘straight lines’ and ‘planes’.” (cf. [Blumenthal 1922, p. 68]
or [Toepell 1986, p. 42]) or in Hilbert’s letter to Frege cited in Toepell l.c.

Hermann Wiener (son of the descriptive geometer Ch. Wiener) was the
founder of this view regarding the axiomatic treatment of geometry. He had
given a talk titled “über Grundlagen und Aufbau der Geometrie” (On the
Foundations and Composition of Geometry) at the annual conference of the
Gesellschaft deutscher Naturforscher und Ärzte (Society of German Natural
Researchers and Medical Doctors) in Halle in 1891. Unfortunately, only a
brief summary has been published in [Jahresbericht (annual report) DMV 1,
45-48], which, however, strongly influenced Hilbert in favour of the mentioned
trend. On his way home from this conference, whilst reflecting on impressions
Wiener’s talk had left behind, he is said to have made the well-known state-
ment about tables, chairs and beer mugs. The way Wiener spoke during this
talk was indeed novel, if not revolutionary: “Let us presuppose two types
of elements and two operations by assuming that connecting each two of
these elements of the same type yields an element of the other type.” (He
was referring to the projective plane incidence structure made of points and
straight lines with the operations of cutting and connecting.) Now, Hilbert
attempted the synthesis of the novel, abstract structure-theoretic perspec-
tive as it had mainly been articulated in England up to then as part of the
developing symbolic algebra and logics, with Pasch’s groundwork, in which
Pasch was not exactly aware of this view, and was even hostile towards it. In
1893, he wrote in a letter to Klein: “I have not even managed to hold my 3rd

lecture on non-Euclidean geometry [due to lack of audience]. However, I am
elaborating it for myself and think the best way to gain an understanding for
the geometers’ argument concerning the axioms is to look into Pasch’s clever
book. We also owe it to Pasch that the necessity of the axioms regarding
the notion ‘between’ has been recognised. The question of the smallest sys-
tem of postulates (axioms), which I demand answer to by a system of units
so that the same can assist me in describing the geometrical appearances
of the external world [referring to the external shape of entities] seems not
to have been completely answered until present day.” (translated based on
[Toepell 1986, p. 46f]). This demonstrates Pasch’s influence on Hilbert and
also indicates that Hilbert was not well-read within the realm of the founda-
tions of geometry, which he had been addressing only casually and not for
very long. Otherwise he would have known that Desargues and v. Staudt had
already debated the notion of ‘between’ and given his relations to the one for
the closed projective straight line, and could instead have found a four-digit
separation relation. We must also mention Peano’s axiomatic foundation of
Euclidean geometry, which had already come into existence in 1894. However,
Peano could only influence his students and followers with his work since it
had been published only in Italian and in a heavily formalised manner as was
characteristic for him.

To sum up, we want to pinpoint that Hilbert’s ‘Grundlagen’ did by no means
constitute the beginning of a new development, but rather mark a certain
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climax. Its charisma and effect, which were much greater compared to all its
predecessors, must have been due to a certain degree of the fame that Hilbert
had already gained in other areas of mathematics. Having said that, it must
also have been due to the fact that he presented a much broader spectrum
of interesting and fruitful questions regarding the axiomatic foundation of
elementary geometry than all his forerunners. In contrast, it did not really
matter that many of these questions were solved by others, particularly by
his own students and/or that his own solution proposals were not always the
best ones and his insight into problems was occasionally limited. This will be
demonstrated by means of a few examples.

Hilbert’s wording of some axioms is incomplete. For instance, regarding axiom
II.1 he wrote in 1899: “If A,B,C are points of a straight line and B lies
between A and C, then B lies also between C and A.” From the 7th edition
onwards (1930, in the meantime, Hilbert had thoroughly engaged with formal
logics and published the book Grundzüge der theoretischen Logik (Outlines
of Theoretical Logics) together with his student W. Ackermann), II.1 is: “If a
point B lies between a point A and a point C, then A,B,C are three different
points of a straight line and B then also lies between C and A.” This is what
he had meant from the beginning, but it could not be strictly deducted from
the original wording.

In 1899 he only phrased the Archimedean axiom under the headline “Group
of axioms V: axiom of continuity”. In the second edition from 1903, there
is also an axiom V2 of “completeness” apart from the Archimedean axiom
(now V1) under group of axioms V: “To a system of points, straight lines,
and planes, it is impossible to add other elements in such a manner that
the system thus extended shall form a new geometry obeying all of the five
groups of axioms. In other words, the elements of geometry form a system
which is not susceptible to extension, if we regard the five groups of axioms as
valid.” This, of course, is a proposition about an axiomatic system, and thus
belongs to a completely different language level than all other axioms. Axiom
V2 did not go through any more changes, including in Hilbert’s last edition
from 1930, although Hilbert had already worded an intention expressed by
V2 much better in the mentioned letter to Klein (later Appendix I), namely
by means of the geometrically worded axiom regarding the existence of the
upper and/or lower limit of bounded monotonic sequences: “If A1, A2, A3, ...
are an unbounded sequence of points of a straight line a and B is a further
point on a of the nature that generally Ai lies between Ah and B, as soon
as index h is smaller than i, then there is a point C, which has the following
properties: all points of the infinite sequence A2, A3, A4, ... lie between A1 and
C and every other point C ′, to which this also applies, lies between C and B”
(translation based on 2nd edition of ‘Grundlagen’, p. 84). Hilbert had also not
considered that the Archimedean axiom can be concluded from the axiom of
continuity phrased by Dedekind, although it had already been known from
the theory of real numbers [O. Stolz, Math. Annalen, Vol. 31 (1888)]. The
notion of categoricity of an axiomatic system (apart from isomorphy, there
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is only a single model of this axiomatic system), which played an especially
important role for theories á la Euclidean geometry and which Hilbert had
intended to refer to with his failed axiom V2, does not occur at all in his
work. It was formed in 1903 by the American O. Veblen, who also made
other significant contributions to the foundation of geometry.

The Archimedean axiom constitutes one of many issues for which (until
now) striving towards preferably independent axiomatic systems is not ex-
actly compatible with striving towards a preferably deep insight into the
role of single propositions. Veronese (1891 in his ‘Outlines of Geometry’29,
O. Stolz 1894, and others had attracted attention to the strange role of the
Archimedean axiom when conducting different geometrical proofs (for exam-
ple, Legendre’s theorems on sum of angles, equivalence of equality by dissec-
tion, equality by completion and equality of area)). Since the Archimedean
axiom enforces the commutativity of multiplication in a purely arithmetical
manner and the latter, as shown by Hilbert, is equivalent to Pappus’s theo-
rem30, he could provide a model of non-Archimedean geometry by means of
a non-Archimedean ordered coordinate domain and a model for which Pap-
pus’s theorem is false, by means of a non-commutative coordinate division
ring. All of these are fruits of a completely novel relation between axiomatic-
synthetic and analytic geometry, which Hilbert introduced in his ‘Grundla-
gen’. Whereas geometrical intuition of line segments and of the measuring
process had until then mainly served as justification for the still unspeci-
fied notion of real numbers, Hilbert founded the consistency of geometrical
axiomatic systems based on models formed of pairs and/or triples of appro-
priate numbers and, thereby, stated almost automatically which properties
of the coordinate domain are responsible for the validity of which geomet-
ric axioms. However, he chose the reverse path for the calculus of segments
by defining an algebraic structure (addition, multiplication, ordering pro-
cess) by means of geometrical construction (Descartes had already done so!)
and basing their structural properties on geometrical theorems. Thereby, he
was the first person that did not shy away from considering theorems by,
for example, Desargues and Pappus that play a major role in this context
as possible axioms regardless of their complicated structure, and unveiled
their central position for the structure of the geometrical subject matter.
Axioms are no longer characterised by their “simplicity” or “immediate ev-
idence” and/or as “experienced facts”, but freely selectable and should be
marked by their position within the logical structure. We owe it to Hilbert
that the respective coordinate system was unveiled as a result of the im-
mense wealth of wonderful mutual analoga between certain geometrical the-

29 Unfortunately, this flawed book was the only one from the Italian contribution
to the ‘foundation’ of geometry that was soon (1894) translated into German.
30 Hilbert and all of his contemporaries always spoke of Pascal’s theorem within
this context. However, we only need the special case ascribed to Pappus for all
foundation-theoretic investigations, whereby the conic section degenerates to a dou-
ble line.
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orems and certain algebraic properties. A gap that existed for a long time
in this respect was closed in 1970, when L.W. Szczerba and W. Szmielew
pinpointed the equivalence of Pasch’s axioms and the monotony of multi-
plication in the coordinate domain and proved the independence of Pasch’s
axiom by means of a suitably constructed “pathological” coordinate domain
(Lit. see [Schwabhäuser/Szmielew/Tarski 1983]).

Hilbert’s model of a non-Desarguesian plane (i.e., a plane to which the re-
maining axioms of incidence apply, but not Desargues’ theorem) was rather
complicated. The American Moulton had already found another model in
1902, one so simple that it can be explained to students easily (Illus. 8.1.2,
Problem 8.2.2). Hilbert only adopted it in the 7th edition from 1930 and an-
notated it as “a little simpler” in a footnote. G. Hessenberg proved in 1905
that Desargues’ theorem follows from Pappus’s theorem, which was also only
included in 1930. It had become clear in the meantime that every finite field
(or any other finite algebraic domain with corresponding properties) could
also be used for constructing finite models of geometrical axiomatic systems,
opening up another new field of study (see, for example, [Karteszi 1976]).
As a forerunner, we must mention here the minimal projective plane with 7
points and 7 straight lines already published by G. Fano in 1892. O. Veblen,
as well as his students and fellows, delivered excellent representations of ge-
ometrical axiomatics in the USA (amongst others, a Projective Geometry in
two volumes together with J. W. Young in 1910/18). J. Hjelmslev started
an axiomatics on the basis of reflections in 1907 (Fr. Bachmann conceived
of something of a concluding monograph in this respect in 1959). Thereby,
the points P of a space are represented by point reflections (i.e., that point
R for which P is the centre of line segment QR, corresponding to point
Q), the reflections on straight lines correspond to these straight lines, planes
analogous, etc., and the entire axiomatics refers to propositions on the com-
position of such reflections. One of the advantages resulting from this is a
natural access to absolute geometry, i.e., that subject matter that Euclidean
and Lobachevskian geometry have in common. For instance, it applies to ab-
solute geometry that the composition of two revolutions in the plane is always
a revolution again (but around a possibly improper centre). Only if we add
the parallel axiom do revolutions around improper centres become transla-
tions, which in this context are the result of degeneration cases of revolutions
in a very natural manner. Another benefit lies within the fact that “metric”
reflections can be generalised as oblique reflections and, thus, gain access to
affine geometry, which pays off for so-called affine differential geometry.

In Chapter IV of Hilbert’s ‘Grundlagen’, the notion of area of polygonal fig-
ures was also first defined, and, herewith, acknowledged the (psychological)
obstacle of needing to prove the independence of the product of base and
height of a triangle of the chosen base, for which we need proportions. Fur-
thermore, the mathematically difficult proof had to be accomplished so that
the area of a polygonal figure defined as the sum of areas (i.e., half the prod-
uct of bases and heights) of all partial triangles does not depend on the chosen
dissection into triangles. Hilbert also did not mention here the groundwork
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Illus. 8.1.2 Moulton’s non-Desarguesian plane

It consists of all points of a Euclidean plane in which any straight line g0 and a
direction of this straight line is chosen (hence, also a “lower“, namely the one on the
right regarding the direction, and an “upper” half-plane). All straight lines parallel
to g0 and all that intersect g0 “from top left to bottom right” or perpendicularly
serve as straight lines of the model. The straight lines running from “bottom left to
top right” are refracted when passing through g0 in a fixed refraction ratio (in the
illustration, 2 : 1) in the same manner that we know from optics for the passage
through the separation layer between two optical media. The reader is asked first to
contemplate that all basic axioms of plane Euclidean geometry (existence of non-
collinear points, unique possibility for connecting points, existence and uniqueness
of parallels) apply to this model and how we could conduct the respective operations
constructively. If we now position a Desarguesian figure, for example, in the manner
shown (of course, there are other possibilities) so that all essential points, except
for the perspective centre, are located in the lower half-plane and we have to refract
exactly one of the three projection rays, then the triangles maintain their perspec-
tive axis, but have no more perspective centre. Beyond this concrete purpose, this
example serves as a fine inspiration for constructing non-standard models in order

to clarify logical non-dependencies within the realm of geometrical theorems.
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of Bolyai, Gerwien and others. As already mentioned, it is probable that
Hilbert’s literary knowledge within the field of geometry was rather limited.
However, he managed to close almost all outstanding gaps in his ingenious
conceptual framework with his students and the students of his students. We
again refer the reader to Dehn’s solution to the 3rd Problem and to the 1908
dissertation in which H. Brandes, a student of Hilbert’s student F. Bernstein,
proved that the equality by dissection of the square of the hypotenuse and
the sum of the squares of the cathetes cannot generally be realized with less
than 7 partial triangles.

We must now turn our attention to a mathematician who remained in
Hilbert’s shadow for no good reason. Friedrich Schur had already entered
the discussion on the foundations of geometry with the publication of several
works beginning in 1891. It is easy to see his external significance for Hilbert,
since he is one of the most quoted authors in Toepell’s book on the origins
of Hilbert’s ‘Grundlagen’. However, his view on the subject matter was only
published in the form of a summarising book in 1909. There are important
differences from Hilbert: Schur used the notion of motion instead of the notion
of congruence as a basic notion, just like Killing, Peano and Pieri had done
before him. From a purely logical standpoint, both approaches are equally
valid, since we can define each of these notions by means of the other one
and then translate all axioms and theorems into theorems equal in meaning
via the other notion. Nonetheless, Schur’s approach had three advantages:
on one hand, the axiomatic characterisation of motions as a sub-group of
affine mappings with specific bounded degrees of freedom fit in better with
the group-theoretic classification of geometries according to Klein. On the
other hand, the congruence of line segments and, more generally, of any sets
or figures can naturally only be verified by attempts to make those congruent
(such an experiment would be measuring a line segment with a scaled ruler or
measuring tape), i.e., executing motions. Conversely, the attempt to prove a
mapping as a motion, i.e., as rigid, leads to us having to prove the congruence
of a certain system of pairs of line segments, which, again, is only possible
by means of motions. Third, the manner of how congruence is defined by
means of motion can be generalised for any other group of mappings and
fosters fruitful analogous thinking. Nevertheless, a consistent axiomatisation
in Schur’s sense requires us to grasp motions as a new kind of arbitrary basic
object (like Hilbert’s tables and beer mugs) and to characterise their nature
as bijective mappings of the set of points onto itself as well as the application
of a motion to a point as a binary operation between undefined objects by
axioms (see Problem 8.1.2). Obviously, Schur was nowhere near this.

Hilbert had introduced the geometrical instrument called the ‘gauge’, with
which we can just construct a minimal model of Hilbert’s axioms (excluding
completeness) by means of the four axiomatic non-coplanar points taken as
existent and which is equal in value to the closure of the coordinate field re-
garding the operation that forms the line segment

√
a2 + b2 by means of the

line segments a, b. In contrast, Schur introduced an elementary axiom that
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more rigorously affirms the closure of the coordinate domain regarding the
operation

√
a for a > 0 than the gauge and simultaneously assures that the

necessary condition for two circles to intersect – both radii and the distance
of the centres must suffice for the three triangle inequalities – is also suffi-
cient. Accordingly, this axiom by Schur, together with the other elementary
axioms, forms the appropriate scope for a real elementary geometry of com-
pass and straightedge constructions, whereas the axiom of continuity features
the real plane R

2 as its only model, but is too demanding for the purposes
of elementary geometry and also burdens geometry with all problems of real
numbers (such as uncountable sets). Schur referred to the book by Veronese,
who indeed had already thoroughly engaged with questions of closure of the
coordinate domain regarding different operations in 1891 and, in this context,
had also discussed the question of the existence of the intersections of circles
[Veronese 1891, German transl. 1894, Book II, 1. Chap. 16]. However, this
very extensive book is nearly indigestible. Klein wrote in the report men-
tioned above: “I find it very difficult to follow the way the author thinks even
just a little bit” [l.c. p. 596]. Hilbert, Peano and, decades later, Freudenthal
also commented negatively [Toepell 1986, p. 56].

It is a historical curiosity that the logician G. Frege heavily criticised the for-
mal part of Hilbert’s ‘Grundlagen’, but did not consider the deficits essential
from a modern viewpoint [Jahresber. DMV 12 (1903), 319-324 and 368-375],
and that Th. Vahlen (the author of the book on geometrical construction
cited in section 7.3) published Abstrakte Geometrie (Abstract Geometry) in
1905, which dwelled on formal subtleties, contained many errors and basically
did not provide anything new. The crushing critique by M. Dehn [Jahres-
ber. DMV 14 (1905), 535-537, Vahlen’s response 591-595], which Vahlen’s
had brought upon himself, made him an eternal enemy of such structure-
emphasizing mathematical work, an applied mathematician in a sense al-
ready archaic back then, and, finally, one of the few prominent Nazis (Dehn
was Jewish) and exponents of ‘illustrative German mathematics’ amongst
German mathematics professors.

Many investigations into different versions of axiomatic composition by means
of other notions or other axiomatic systems, which more or less directly fol-
lowed up on Hilbert’s ‘Grundlagen’, brought new geometrical knowledge as
well as clarity for the mutual relations of notions and theorems that Hilbert
was unable to achieve during his lifetime, and a set of theories “adjacent”
to Euclidean geometry due to alterations of such new single axioms (see,
for example, [Bernays 1959]). A. Padoa, one of Peano’s students, conceived a
method in 1900 with which we can prove the non-definability of a notion b by
a given system of notions B: since all notions definable by B remain invariant
for each automorphism belonging to B, it suffices to state a B-automorphism
that does not leave b invariant in a model. Thus, we could prove, amongst
other things, that congruence cannot be defined by the relation of between-
ness and that the relation of betweenness cannot be defined by incidence
relations (whereas reverse definitions are possible), so that there is a real hi-
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erarchy amongst Hilbert’s basic notions. Within this context, it also became
clear that the parallel axiom, positioned towards the end by Hilbert due to
traditional reasons, belongs with affine incidence geometry, meaning at the
beginning of the now common hierarchical composition of geometry of inci-
dence, order and motion. Mathematical logics, which matured in the 1930s,
made clear the fundamental difference between elementary theory (i.e., also
the notion of elementary geometry, which until then had been used rather
intuitively) and the non-elementary axioms, such as the Archimedean or the
axiom of continuity.

Nonetheless, most geometers in this field of study were not aware that their
work basically only referred to the level of manipulation with formalised lan-
guage. As soon as systems of notions are proven to be mutually definable,
the mutual translation of axioms and theorems becomes routine. In contrast,
changes to axiomatic systems, which are of a completely different nature, go
back to J. Hjelmslev. His ‘Geometry of Reality’ (1916) and ‘Natural Geome-
try’ (1928) criticised the traditional idealisation, for example, that arbitrarily
close points should be uniquely connectable. This concept has begun to har-
monize with the development of interval mathematics since the 1970s (see,
for example, [Schreiber 1984]).

A. Tarski’s result from 1940 that an appropriately defined elementary par-
tial theory of full Euclidean geometry is decidable heralded a new quality
regarding the investigations on the foundations of Euclidean (and also hy-
perbolic and other “classic” geometrical) theories. These theories were now
indeed only grasped as sets of character strings, which had to be examined
according to the criteria of enumerability, finite axiomatisability, decidabil-
ity, definability, or complexity. [Schwabhäuser/Szmielew/Tarski 1983] offer a
good insight into this topic. The contributions by Engeler, Schreiber, Seeland
and others since 1967 have taken another direction, which treats geometrical
constructions as model cases of algorithms in any axiomatically characterised
structure. [Schreiber 1984] also includes non-Euclidean geometries, interval-
mathematical and other aspects of practical geometry.

8.2 Total abstraction?

As we will see now, the 19th century produced almost all essential notions and
questions on which basic mathematics would rapidly reach abstract heights
in the 20th century, a fact nobody can comprehend anymore without having
thoroughly studied them. (Here, comprehension does not just refer to the
technical details, but also to content and intended goal.) Within the scope of
this development, the part of mathematics, which was accepted as geometri-
cal in the 19th century, at least to the extent that it generalised notions and
subject matter of ordinary Euclidean space in an obvious manner or looked
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at them under new aspects, dissolved into a mathematical style that trans-
ferred originally geometric notions onto completely non-geometrical objects
and problems. The notion of vector space is still linked to the R

n or Kn

(whereby K is another coordinate field, especially the one of the complex
numbers), i.e., with the existence of a finite base, at the end of the 19th

century, even after the first axiomatic presentation by Peano. The step of
ignoring this last restriction and at least subjecting coordinate vectors of in-
finite length, i.e., countable sequencies of numbers (ai), to term-wise addition
and scalar multiplication, whereby the domain of sequencies (ai) has to be
restricted to such with a convergent sum of squares, if we want to obtain
an inner product, i.e., measurement of lengths or angles, was not made for
the needs of geometry or pure linear algebra (an obvious conclusion from a
modern perspective). Having said that, the mathematicians had been aware
since Buniakovsky and Schwarz of the fact that the definite integral of f · g
acts like an inner product for functions f, g with sufficient conditions. This
includes the fact that a linear structure is given that suffices for the same
laws as the usual vector addition and scalar multiplication, by the operations
(f + g)(x) = f(x) + g(x) and (cf)(x) = cf(x) for a set of functions with a
common domain of definition. Generally speaking, there was a multitude of
attempts to transfer algebraic operations formally onto problems of analysis
over the course of the 19th century. This included attempts to write a differen-
tial or integral “operator” (of course, this notion did not exist at the time) in
the form (E−A) (with identical operation E) and then to dissolve the inverse
operator (E −A)−1 into the infinite series E +A+A2 + ... Such techniques
played a central role from around 1895 onwards in works by V. Volterra,
I. Fredholm and Hilbert on linear integral equations. Hilbert’s student E.
Schmidt clearly established the ‘geometrical core’ of these techniques in his
dissertation from 1907 and subsequent works. Furthermore, he created what
is now referred to as Hilbert space as a not necessary finitely dimensional
vector space with countable base and positively definite inner product, and
showed how we can always produce an orthonormal base in such a space and,
by means of this base, an isomorphism on the standard space of the sequences
with convergent sum of squares already mentioned above. One chapter of his
work from 1908 is directly titled “Geometrie in einem Funktionenraum” (Ge-
ometry in a Function Space). However, the space of the functions integrable
within a given domain of definition was at first not complete in terms of con-
vergence of any Cauchy sequence. Yet, F. Riesz and E. Fischer had shown
at approximately the same time how we can complete it by using Lebesgue’s
notion of integral. After all, this is also a fruit of the new approach to geo-
metrical thinking in analysis, which means that functions, operators, sets, ...
were increasingly taken to be “points of a space”. The now common type of
definition and axiomatic treatment of Hilbert spaces and their generalisation
to Hermite spaces (in case of a complex-valued scalar product) was only used
from 1929 onwards and first by J. v. Neumann.
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Let us turn towards another source of this new geometrical thinking in anal-
ysis. Since the beginning of systematic error analysis, a ‘pessimistic’ version,
intended to determine the maximally possible deviation between exact object
and approximate object, had competed against a ‘realistic’ version, which
looks at something like the statistical average of deviation. If objects are
functions (they could also be, for example, series of measured values, since a
series is nothing else but a function defined on the basis of the set of natu-
ral numbers), the realistic version leads to a value that results from suitable
integration or the addition of differences between exact and approximated
values. Gauss had made great efforts always to state new reasons for why
we should take the sum of squares of differences and/or, in the case of con-
tinuous functions, the integral of the square of difference as the measure of
deviation. Only about a century later did it become clear that this leads ex-
actly to the metric of Hilbert spaces. In the case of functions, the pessimistic
version, which originated from Chebyshev’s theory of mechanisms, looked at
the maximum of difference as the measure of deviation. The following became
gradually clear over the course of the 19th century: a factual pre-condition
for the existence of this maximum is that the common domain of definition
is bounded and closed (or something equivalent) and that functions are con-
tinuous there. Once more, we are faced with a vector space of functions as
the basic set, very similar to the one of a Hilbert space, but with an entirely
different metric, which cannot be founded upon an inner product this time
(and, thus, neither yields an angular measure), but simply assigns a norm
or length ||x|| with certain basic properties31 to every vector x so that the
distance of two vectors x, y can be measured by ||x− y||.
The axiomatic generalisation of this special norm to the notion of (possibly
additionally metrically complete) normed vector space was due to different
approaches (amongst others, H. Lebesgue in 1910 and 1913) in St. Banach’s
dissertation from 1922, after whom the complete normed spaces are named
nowadays. However, it is very strange that H. Minkowski had already con-
ceived of the notion of normed vector space for the finite dimensional case
when pursuing number-theoretic problems in 1896. He found that we only
need to state the set of the vectors the norm of which is 1 (today: standard
body), and that this can be any bounded convex and, regarding the coordi-
nate origin, centrally symmetrical subset of Rn in order to determine a dis-
tance in R

n compatible with the vector structure. (Thereby, convexity means
validity of the triangle inequality; central symmetry means: ||x|| = || − x||.)
If the standard body is the unit circle or, respectively, its higher dimen-
sional generalisation, we obtain the metric of the Euclidean or Hilbert space.
If it is bounded by the hyperplanes parallel to the coordinate axes (i.e., in
the two-dimensional case, a paraxial square of side length 2), we obtain the
(Chebyshev) maximum norm. If it is a square, the corners of which are the

31 The axioms characterising a norm are: (1)||x|| ≥ 0, (2)||x|| = 0, iff
x = 0, (3)||λx|| = |λ|||x||, (4)||x+ y|| ≤ ||x||+ ||y||.
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four points with the coordinates 1, -1 on the axes, or the corresponding n-
dimensional generalisation, we obtain the sum of the absolute values of the
coordinates as norm. It seems that back then nobody considered the fact that
they were dealing with the last mentioned metric, if they – like in a big city
with streets crossing at right angle – can only take paths that are composed
of line segments parallel to the axes – which is why this metric is handily
called a Manhattan metric – and that such a metric would in the future
play a practical role when designing electric circuits, even in the “trivial”
2-dimensional case. In 1935, J. v. Neumann and P. Jordan showed that the
so-called parallelogram law

||x+ y||2 + ||x− y||2 = 2(||x||2 + ||y||2) (8.2.1)

(geometrically: the sum of squares of the diagonals of a parallelogram equals
the sum of squares of the four sides), the validity of which can easily be
checked for norms defined by means of the inner product, is also sufficient
for being able to derive a given norm from an inner product (Problem 8.2.1).

We have repeatedly made reference to “metric” in recent pages with a silent
assumption that the reader is familiar with this notion or at least has a valid
intuitive notion thereof. Generally speaking, a metric space is a pair of a set
M and a distance function d defined in M so that for any x, y, z ∈ M :

1. d(x, y) is real and non-negative

2. d(x, y) = 0 exactly then, when x = y

3. d(x, y) = d(y, x)

4. d(x, y) ≤ d(x, z) + d(z, y).

At the same time, this notion is very illustrative and very abstract. It was
introduced by M. Fréchet in its just defined general form in 1906, also due
to functional-analytic motives. Nonetheless, it seems that the name “metric
space” was only coined by F. Hausdorff in 1914. The self-evident observation
that many different metrics are possible in one and the same basic set is linked
to the notion of metric space. Hereby, geometry seemingly needed the help of
analysis, although much earlier the fact had been clear that there will always
be an inner metric and a metric regarding the surrounding space (chordal
distance) on, for example, curved surfaces, and especially on a spherical sur-
face. Of course, Gauss and all differential geometers following him knew that,
but it did not seem to be worth pinpointing or contemplating any further.

All fundamental notions of analysis are connected to the notion of metric:
the “ε - neighbourhood” and, thus, all notions of inner, outer, frontier point,
convergence, continuity, open and closed set, compactness, connectivity, etc.,
but also the notion of Cauchy sequence and metric completeness. From this
viewpoint, many to some extent old theorems of analysis take on a new mean-
ing. For instance, in 1838, Ch. Gudermann had already introduced the notion
of uniform convergence of sequences of functions, which was then generally
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made known by his most important student K. Weierstraß towards the end
of the 19th century. The classic theorem that any sequence of continuous
functions uniformly convergent on a compact domain M converge towards a
continuous limit function is now understood to mean nothing other than the
metric completeness of “the space of functions continuous on M” regarding
the maximum norm of this vector space. Thus, the notion of metric is the
most important key for transferring geometrical concepts to other areas of
mathematics. If we now talk of transferring notions, such as approximate
solution or a measure of deviation to areas, in which mathematics has to
establish itself first, the crucial question is again mostly one of suitable met-
rics in the relevant area. Thereby, the inner-mathematical observation that
there is never just one inherent, completely determined metric in any basic
set can prevent errors and false approaches. However, for proper geometry
explicitly invoking the notion of metric means the development of a new and
very fruitful sub-discipline called “general metric geometry” (often somewhat
misleadingly equated with convex geometry). A summarisation entitled Die
innere Geometrie der metrischen Räume (The Inner Geometry of Metric
Spaces) by W. Rinow was published in 1961.

Based on the notion of metric space, it is possible to derive metrics from
originally given metrics in spaces R1, R2, ... for mostly abstract spaces, con-
sisting of cartesian products of R1, R2, .... For instance, we can immediately
generalize the manner for obtaining the “Pythagorean” metric of the Hilbert
space or the metrics of the Banach-Minkowski spaces by means of the natural
distance of two real numbers to techniques for defining metrics with differ-
ent properties in Cartesian products of sets with given metrics. The set of all
compact subsets of a given space turns into a metric “hyperspace”, according
to Hausdorff. He showed simultaneously how we can obtain a symmetrical no-
tion of distance from an initially unsymmetrical one (as, for example, occurs
in a terrain, when the way downhill may be “shorter” than the way uphill).
(See Problem 8.2.2 for details and elementary applications to the theory of
errors of geometrical operations.)

When writing above that the fundamental notions of analysis are based on the
notion of a metric, we deliberately stated a half-truth. Although the relevant
metric is indispensible for measuring and calculating, as well as for the entire
numeric realm of analysis, most fundamental theorems can also be obtained
by means of even more abstract pre-conditions, as long as they are topolog-
ical in nature. We remind the reader that the first notions and theorems of
general topology, such as inner and/or frontier point, are based on a metric.
Boundedness and closure of a domain are important for the validity of several
such theorems. Continuity of functions is based on the notion of an epsilon-
neighbourhood. Many small steps were necessary to split those notions and
theorems for which a metric is really necessary gradually from those for which
a metric only serves to define topological notions. For instance, E. Heine
showed in 1872 that the theorem on the continuity of limit functions cited
above is based on subject matter now referred to as the Heine-Borel covering



514 8 Geometry in the 20th century

Illus. 8.2.1 Luitzen Egbertus Jan Brouwer and Felix Hausdorff

theorem. This theorem states that we can choose a finite subset, which also
already covers M , from every covering with epsilon-neighbourhoods, if the
domain M is bounded and closed. As was later recognized, the seemingly
necessary metric property of M to be bounded and closed is reduced to the
equivalent topological property of compactness, which can be defined without
use of a metric just by the validity of the Heine-Borel theorem.

As the quintessence of such a series of insights, F. Riesz (1908), H. Lebesgue
and L. E. J. Brouwer (based on other notions) and, finally, F. Hausdorff, in
his book Grundzüge der Mengenlehre (Outlines of Set Theory) from 1914
[Hausdorff 1914] introduced the abstract notion of a topological space. Haus-
dorff defined this notion as a basic set in which, as the only geometrical
structure, only a system of subsets is distinguished as “open”, sufficing for
some simple axioms, for example, that the common part of two and/or the
union of any number of open sets is again open. It was discovered that we can
base (in part, after tightening the axioms to some extent) the entire general
or set-theoretic topology and, thus, also further parts of analysis on such an
abstract base of notions. It was recognized that many different metrics can
lead to the same topological structure of a “space” in a fixed basic set, but
also that different topologies are possible there (Problem 8.2.3). Based on
this foundation, the general set-theoretic topology quickly developed into a
blossoming and independent field of study, which, to a certain degree, split
from geometry and/or has more in common with analysis than with proper
geometry. This was expressed externally by the fact that one of the first
mathematical journals not to be dedicated to all mathematics, but to certain
special areas, such as Fundamenta Mathematicae, founded in Poland in 1920,
focused on the fields of set theory, topology and (higher) analysis, and that
one of the first international conferences (Moskow 1935), which was devoted
to only a sub-area of mathematics, also addressed topology.
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From the wealth of newly arisen questions, we will pick only two: how can
we define the dimension of such an abstract topological space so that it, on
one hand, remains invariant when topologically mapping32 it onto another
space, and, on the other hand, so that it agrees with the natural dimension
in such spaces in which there is already a “natural dimension” based on the
number of necessary coordinates due to given coordinatisation? This problem
was finally solved by K. Menger and P. Uryson in 1922 after the groundwork
by L. E. J. Brouwer and others. When and how can we introduce a metric
to a topological space that yields the given topology? This question was
also answered by Uryson in 1924/25 with further contributions by J. Nagata
and J.M. Smirnov in 1950/51. Uryson established the (astonishingly weak)
conditions under which a topological space is even homeomorphic to a subset
of the standard Hilbert space. The practical significance of this question is
also clear at present: in a new domain of discourse (think of, for example,
economy or psychology!), it is easier to say intuitively what is proximal and
what is not than to state a concrete measure of distance. Thus, we often have
a topology first and look for a matching measurement of distance afterwards.
However, given the spirit of the time back then, it is very probable that the
authors mentioned were motivated to take up their investigations by a purely
theoretical interest33.

A number of so-called fixed point theorems form part of the fundamental
gains of the general “notion of space”. These theorems can all be so inter-
preted that the convergence of certain approximate methods of analysis or
numeric mathematics is essentially based on interpreting the objects to which
these methods are meant to be applied as points of a suitable space and the
methods as suitable geometrical mappings of this space onto themselves, and
then using the topological properties of this space, such as metric complete-
ness or compactness. The first and most famous of these theorems was the
one by Brouwer (1912): every continuous map of a set homeomorphic to an
n-dimensional full sphere in itself has at least one fixed point. The theorem by
Banach (1922) is also relevant: every contractive map f of a complete metric
space in itself has exactly one fixed point. Thereby, f is called contractive if
there is a constant c < 1, so that the following applies to the distance of any
two points x, y and their image points: d(f(x), f(y)) ≤ cd(x, y). Brouwer’s
fixed point theorem was generalised by J. P. Schauder to convex and com-
pact subsets of any Banach space (Problem 8.2.4). It contains Brouwer’s
fixed point theorem as a real special case, but we need this one exactly
to prove Schauder’s theorem. (Both proofs can be found in, for example,
[Naas/Tutschke 1986].) The Stone-Čech compactification (1937) also repre-

32 A map between two topological spaces is called topologic if it is bijective and
transfers open sets to open ones in both directions (equal in meaning: f and f−1

are continuous).
33 The author of these lines considers himself to be qualified to pass such a judge-
ment, as he was an assistant at an institute at the beginning of the 1960s that, back
then, could have been called a centre for set-theoretic topology.



516 8 Geometry in the 20th century

sents a significant generalisation of classic geometrical methods: within the
general set of problems to “close” geometrical spaces by adding ideal (in-
finitely distant) elements, the closure by a single infinite point, as is assumed
in Möbius’s geometry, plays a minimum role. Not only the extension of a
hyperbolic space by all infinitely ideal points, as suggested by Klein’s em-
bedding of the hyperbolic into the projective space, but also the projective
closure of an affine plane are so-called ‘middle cases’, which always result in
embedding a non-compact set in a compact one, from the topological point
of view. The Stone-Čech compactification now yields the maximum result
of such an embedding process, for which ‘as many points as possible’ are
adjoined.

Nowadays, it has almost been forgotten/repressed that the question of mea-
sures (length, area, volume,...) was one of a geometrical nature for millennia
(and one of the most important of geometrical questions at that). Measure
theory is an independent field of mathematics today and may be closer to
stochastics than to geometry due to its most essential applications. However,
the path to modern measure theory still belongs to geometry. Cauchy had
defined the notion that we now refer to as definite integral as the common
limit value of upper and lower sums in his Cours d’ Analyse in 1821 and,
thus, given the relation between antiderivation and area, which until then
had only been intuitive, a clear foundation. He proved the existence of the
definite integral for continuous functions in 1823. Riemann had casually gen-
eralised this to the notion of Riemann integrability in his habilitation text
in a short section titled “über den Begriff eines bestimmten Integrals and
den Umfang seiner Gültigkeit” (On the Notion of a Definite Integral and the
Extent of Its Validity) in 1854. The relevant notion of content for any set
(which, hence, need not have the form {(x, y)|x ∈ Df and 0 ≤ y ≤ f(x)} of
an “ordinate set” regarding a suitable function f) was created by Peano and
Jordan around the same time in 1887, and also made clear that the “outer
content” can really be greater than the “inner content” for a bounded set34.
It seems that both were aware that the needs of analysis at this time already
demanded a notion exceeding the Riemann-Jordan-Peano content, namely a
totally (meaning countably) additive notion of measure. First attempts to de-
fine totally additive measures, for which in particular to every countable set
is automatically assigned the measure zero, go back to A. Harnack (1881),
O. Stolz (1884), G. Cantor (1884) and E. Borel (1894). (For details, see
[Dieudonné 1985] Chaps. 6.3 and 6.9.) These efforts were temporarily aban-
doned in 1902 due to the creation of the notion of measure and integral by
H. Lebesgue. In 1905, Lebesgue also asked the question as to whether or not
the domain of those sets that can be assigned a totally additive measure can
be further extended. In the same year, G. Vitali (using the axiom of choice)
constructed a counterexample of a bounded set V , of which countably many

34 Think of a carpet with fringes. The smallest covering is bigger than the biggest
exhaustion.
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congruent and pairwise disjoint samples are contained in a certain bounded
interval (which is why the measure of V would have to be zero, if it was de-
finable), and cover a smaller interval without gaps (which is why the measure
of V cannot be zero). After the problem of a totally additive measure func-
tion defined for all bounded sets had been negated by this, Hausdorff showed
in an addendum for his ‘Grundzüge’ in 1914 that we cannot even define a
finitely additive content for any bounded set in the three-dimensional case
and, thus, even less in one of higher dimension. He dissected the spherical
surface and, hence, also the full sphere in three congruent and pairwise dis-
jointed sets A,B,C and a rest with necessarily vanishing content, again by
means of the axiom of choice, so that A is also congruent to the union of
B and C. We can draw two possible conclusions from this paradox: either
it is a further argument (next to many others) against the axiom of choice,
or the classic geometry founded upon real numbers is a very bad model for
physical reality due to reasons completely different than the simply ‘global’
ones, which will be discussed in this course. Banach showed in 1923, also
by means of the axiom of choice, that there are universally defined finitely
additive content functions in the one or two-dimensional case, but uncount-
able equivalent ones, of which we cannot distinguish any as preferable in
constructive manner. (For more details on the history of measure problems,
see [Schreiber 1996b].)

Finally, there is one of Hausdorff’s accomplishments, which belongs to mea-
sure theory in its broadest terms: in 1919, he introduced an “outer measure”
for any sets by means of which we can assign them a dimension, which,
generally, is no longer an integer. This Hausdorff dimension became very
meaningful during the age of intensive study of “fractal sets”, since it reflects
the state of such sets, like the one of the v. Koch curve (see, for example,
[Mangoldt-Knopp, Vol. 2, no. 145]), between one and two dimensionality
rather well.

Generally speaking, the theories that we have rudimentarily introduced here
have developed originally from geometrical notions and problems and are
characteristic for the mathematics of the 20th century. Next to their intra-
mathematical and purely epistemological meaning, they represent a great
source of notions and methods for the most different and most recent ap-
plications, which often serve the applied fields of mathematics, as well as
techniques, natural sciences and humanities, in an unpredictable manner.
However, we could not possibly miss the fact that the golden age of those
directions, which are relatively poor in algorithms but rather dealt with es-
tablishing often profound subject matter, is long over.
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8.3 Geometry and natural sciences

First of all, there is physics here. It is generally known what role modern
geometry, and especially its forerunner in the 19th century, played in estab-
lishing both the special and then the general theory of relativity, as well as
for the cosmological hypotheses that followed. One of the main tasks of this
section is to make the reader look at completely different applications of ge-
ometry in physics, as well as chemistry, biology and geosciences. Nonetheless,
let us first look at what the reader expects.

The results of the end of the 19th century concerning hyperbolic, Riemann
and multi-dimensional geometry had led to an intellectual climate in the cir-
cles interested in mathematics, natural sciences and also philosophy, in which
almost every statement about physics regarding non-Euclidicity or non-three-
dimensionality of physical space would have been accepted by a majority
without much further questioning. However, that which enforced the experi-
entially ensured invariance of speed of light compared to reference systems
moved against each other (Michelson 1881, improved together with Morley
1887) was somehow still an unprepared change of traditional concepts, which
did not just have to include time in geometry in a manner unimaginable up to
that point, but also to equip the newly created four-dimensional space with
a kind of geometry, a notion unheard-of until then. Einstein had been a weak
mathematician, at least at the beginning of his career (also according to his
own opinion). When he published the work titled ‘On the Electrodynamics
of Moving Bodies’ in 1905, soon to be known as the special theory of rela-
tivity, it was less geometrically thorough than philosophically daring, since
something that had already been known in terms of formulae since 1895 due
to H. A. Lorentz and mathematically elaborated by Poincaré as the group
of Lorentz transformations was here claimed to be physical reality. Einstein
wrote: “Examples of a similar kind as well as the failed attempts to state a
movement of Earth relative to the ‘medium of light’ lead to the assumption
that properties of appearances do not just correspond to the notion of abso-
lute idleness in mechanics, but also in electrodynamics... We will advance this
assumption ( the content of which shall be called the principle of relativity
in the following) to precondition and furthermore introduce the seemingly
incompatible precondition that light always travels in empty space with a
fixed speed V independent of the state of motion of the emitted body...” (l.c.
p. 891).

We owe it to the mathematician H. Minkowski that Einstein’s theory was
soon equipped with a clear geometrical foundation despite its complete lack
of mathematical preparation. (Unfortunately, Minkowski died young shortly
after.) In 1908, he demonstrated that we would simply have to eliminate
the precondition applying to the already established theory of finitely di-
mensional Euclidean (or Hilbert) spaces that the inner product defining the
metric is positively definite, in order to obtain a mathematical model cor-
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Illus. 8.3.1 Hermann Minkowski and Albert Einstein

responding to Einstein’s space-time. Then, the norm of a vector can also
be purely imaginary or zero without having to be the zero vector itself. In
the case of four-dimensional space-time, these latter vectors form the “light
cone”, if we add them to any event (point of space-time). The light cone
separates the events reachable from this event from the unreachable ones,
and, conversely, those that could have had an influence from those that are
independent. Hyperboloids replace spheres as locations of constant distance
from a given point in this geometry. In general, it was discovered that many
elements of projective and hyperbolic geometry play a role, although the
space itself, including its lower dimensional sections, is neither projective nor
hyperbolic. Due to reasons of illustration and didactics, we often only look
at the subspace spanned by the time axis and one or two space coordinates
(Illus. 8.3.2).

Nowadays, this pseudo-Euclidean or Minkowski geometry (not to be confused
with that of the Banach-Minkowski spaces) has been thought through and
so thoroughly adapted that we can discuss it with older students without
any problems [Liebscher 1991]. Hence, the great quake turned into a small
one, especially since the ratios in the realm of lower speeds remain naturally
classical with any approximation. It is worth pointing out that it was just
pseudo-Euclidean Minkowski geometry that additionally motivated us to,
analogously, think through the geometrical ratios in non-relativistic space-
time, which is by no means Euclidean in terms of R

4. Thus, the Galilei-
Newton geometry was created as the boundary case of speed of light, being
assumed to be infinitely fast based on pseudo-Euclidean geometry. It seems
Klein was first to demonstrate and explain it in this way in his lectures on
non-Euclidean geometry ([Klein 1928], I.M. Yaglom 1966, also see [EdEM
Vol. V].) In this case, the light cone degenerates to a double-hyperplane (i.e.,
in the ‘didactical’ case of one or two space axes sketched above to a straight
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Illus. 8.3.2 Three-dimensional space-time with light cone

The more a space-time-point P is spatially distant from the space-time-point at
the apex of the double cone, the more time the information regarding an event in
P or its effects on the point of the apex of the cone will need in case of a past
event P and/or the later the information/effect regarding an event at the apex of
the cone will arrive in the future P . The surface of the double cone bounds the
set of events that can in any way stand in a causal relation with the events at the
apex of the cone, and its apex angle is greater the higher the maximal propagation
speed. All of this would also apply to a restriction of propagation, for example, by
old-fashioned techniques of telecommunication and/or traffic, and even more so to
the universal restriction of all propagation by speed of light. [F. Klein: Vorlesungen
über nicht-euklidische Geometrie (Lectures on non-Euclidean Geometry), Springer.

Berlin 1928, p. 30]

line or plane t0 = const.), which effectively separates future events (t > t0)
from past ones (t < t0). The history of a particle of matter that changes its
location over the course of time corresponds (both in the Einstein-Minkowski
and in the Galilei-Newton space-time) to a curve that leaves the past cone
and enters the future cone at all times. Consequently, it lies over the t-axes for
purely geometrical reasons (Illus. 8.3.3). However, the direction of the time
axis in space is distinguished in the Galilei-case. Co-ordinate transformations
must map it onto itself, i.e., can only shift it in a translative manner (which
corresponds to a transition to another 0-time) and, hence, map the space onto
itself in an orthogonal manner. Compared to the Minkowski-world, the light
cone must be mapped onto one with equal asymptotes (i.e., its section with
the infinitely distant must remain invariant), which leaves sufficient space
for transformations, mapping a time axis onto another one: time loses its
absolute character.
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Illus. 8.3.3 World line in the x -t-co-ordinate system

The special theory of relativity was followed by the general theory (first an-
nounced by Einstein in 1915, with complete publication in 1916, and a version
easier to comprehend and targeted at a broader audience by Einstein him-
self in 1917). In 1918, the fundamental book from a mathematical viewpoint,
Raum, Zeit, Materie (Space, Time, Matter) by H. Weyl, was published, also
adapting the entirety of basic mathematical knowledge into a new and modern
manner (for example, it was first to derive the Cauchy-Buniakovsky-Schwarz
inequality in the now common manner (cf. 7.6)). By 1923, five editions of
this book had been released, one for every year it had been in print.

The general theory of relativity states that four-dimensional space-time has
such a curvature varying from location to location and determined by the dis-
tribution of masses that the orbits of moved particles turn into the geodesic
under the influence of gravitation in this space. The first experimential con-
firmation of this theory consisted of proving the (very long-term) perihelion
precession of the orbit of Mercury and the (very slight) deflection of the light
rays in the gravity field of the sun, only observable during a solar eclipse.
Therefore, the mathematical model is now the general Riemann geometry of
four-dimensional space-time. Hence, the geometry of space is also Rieman-
nian at all times. (To illustrate this, contemplate that the section of a curved
surface with a plane generally yields a curve.) The space-time of the spe-
cial theory of relativity relates to the general theory as the linear tangential
manifold of a curved manifold to this manifold. Hence, it reflects the ratios
locally with sufficient approximation if the curvature is not too large (i.e.,
in physical terms, sufficiently distant from large masses). From a purely geo-
metrical perspective, the curvature of space-time could make it possible that
the curved future cone of an event overlaps with the past cone of the same
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event and, thus, closed world lines are possible, meaning things could “travel
into the past” after all. However, further reaching physical considerations
contradict this idea. Moreover, only elementary particles could survive such
a journey. We refer the reader to the up-to-date, generally comprehensible
and very geometrically illustrated depiction in [Hawking 1988].

However, it turns out that, along the way, the extended investigations of the
late 19th century regarding space forms of constant curvature and their cor-
relation to free motion lose several aspects of their physical relevance. True
space cannot have a constant curvature, since matter is not distributed ho-
mogeneously in it. Having said that, if we take such a distribution to be the
first approximation, the space forms of constant curvature describe more or
less what is possible in general terms. Due to physical reasons, a statistically
homogeneous distribution of masses seems unimaginable in an infinitely ex-
tended space, since it would yield an infinitely large total mass and, thus,
an infinitely large gravity potential. Therefore, almost all contemporary cos-
mological hypotheses favour unlimited, but at all times spatially finite (and
lately also finite in terms of time) models. Without intending to enter an
actual physical discussion or to pick on mathematical details, we have seen
how many ways the purely geometrical theories of the 19th century have laid
the ground for relativistic physics and cosmology of the 20th century.

The true revolution in physics was not triggered by relativity theory, but by
quantum physics, which began developing in 1905 and which was forced upon
physicists by experimential outcomes and against their intuition. In contrast
to everything sketched above, it is impossible to illustrate quantum physics,
even its basic assumptions. In other words, it cannot be explained by didac-
tically edited geometrical models. Hence, it is even stranger that geometry
(or analysis?), of course, in its most abstract forms, has also provided us
with one of the necessary mathematical means dressed as the notion of the
(infinitely dimensional) Hilbert space. Nevertheless, it is not the elements of
this Hilbert space that indicate something illustratively imaginable. Rather,
linear operators with certain properties correspond to the “observable quan-
tities” of classical physics in this space, and the physical laws are expressed
by relations between these operators. The notion of symmetry, which also
comes from geometry, plays a dominant role in this kind of physics. Since
this is a book on history, we may mention that very intelligent scientists,
who were also successful in other areas, struggled greatly with accepting a
theory of physics that gives up classical logic and the principles of determin-
ism and causality and the mathematical tools of which are no longer classical
analysis, vector and differential calculus. Einstein was also not happy about
this development and looked for an alternative throughout his life. Of all the
strange attempts to establish an alternative, we should mention Rechnender
Raum (Calculating Space) [Zuse 1969] by computer pioneer K. Zuse, based
on the concept of the cellular field, which J. v. Neumann had left behind
after his death in 1957: an infinitely extended two or three-dimensional flock
of regularly and mutually aligned, equal elementary automata that exchange
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synchronized signals with their respective neighbours and, thereby, change
their statuses according to a uniform instruction within the scope of a fi-
nite set of possible statuses. Zuse proposed imagining physical space as such
a space, which is assembled by cells that cannot be further dissected and
in which matter moves due to conglomerates of statuses of adjacent cells
transmitting from cell to cell in a synchronized manner (similar to the com-
puter game ‘Life’). Then, space and time are discrete in the microcosm and
the speed of propagation of the signals distinct to the system is the highest
achievable speed. In particular, if a moving object O with maximum speed
emits light particles on all sides, then the macroscopically observed speed
towards the motion of O is as fast as in the opposite direction. Nonetheless,
Zuse’s hypothesis can easily be disproved (Problem 8.3.1).

Zuse’s curious proposal yields a bridge to a completely different branch of
modern physics: condensed matter physics. According to [Schreier 1988], it
has been “an established sub-discipline of physics since the 1940s” and “is
nowadays accepted as the main area of physics, which at the same time is
closely connected with practical applications. Depending on how large we take
the area to be, the amount of works of the total number of physical publica-
tions is between 25 and 30 percent in the last thirty to forty years” (l.c. p.
363). Since the subject of condensed matter physics mainly takes place in an
order of magnitude in which matter is already presupposed to be discrete,
but the intra-atomic structure (which, according to the present knowledge,
cannot be illustrated at all) does not play an essential role, it has also become
an ideal field of application for discrete geometry, as classical geometry was
for classical physics. Processes at boundary layers between two different or
differently orientated regular orders of points, concluding the producing crys-
tal structure based on adjacent diffraction images and, recently, the theory of
quasi-crystal, which is closely linked to non-periodic tessellations, are typical
fields of contact between physics and geometry nowadays.

The pure geometrical play instinct has yet again created a forerunner for
an unpredictable natural scientific development in a remarkable manner. R.
M. Robinson (1971) and R. Penrose (1973) found the first systems of plane
tiles (“prototiles”), with which we can plaster the plane only non-periodically
(Illus. 8.3.4). Although it was only four prototiles at the beginning, Penrose
and Ammann could already confirm systems of only two prototiles in 1974.
Essentially, they are based on the possibilities that had already been studied
by Dürer and Kepler. Concerning the terminology, to be non-periodic is a
property of a certain tessellation. It means that there are no shortest trans-
lations that map tessellations onto themselves, in two (or, in space, three)
linearly independent directions. Of course, there are many systems of tiles
that can be used to make both periodic and non-periodic tessellations. This
is already possible when using only pairwise congruent squares or cubes. A
system of prototiles is called non-periodic if we can use it to plaster the plane
or space, but only in a non-periodic manner.
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Every non-periodic tessellation system prompts us to ask for proof that we
can indeed continue the tessellation in all directions. The most important
method used up to now is based on the ability to assemble a new system
of tiles similar to those originally given, but enlarged by a certain scale to
supertiles, which can be repeated any number of times (so-called inflation).
However, if we, like Berger in 1966, simulate the work of a Turing machine by
a row-wise tessellation, it suffices to prove that the respective machine pro-
gram will never stop when applying it to the initial row. As a result, a hardly
predictable, interesting link between discrete geometry, on the one hand, and
algorithm and complexity theory, on the other hand, has developed. As Illus.
8.3.5c shows, and looking at the bigger picture, such non-periodic tessella-
tions can show apparent symmetries, for example, the return of local penta-
or decagon shapes, which are impossible in terms of classical crystallography
due to purely geometrical reasons. In 1984, it became known that a certain
aluminium-manganese alloy macroscopically shows a diffraction image with
icosahedron symmetry under special physical conditions [Senechal 1995, 1.1].
Numerous such phenomena have been discovered since then, so we must at
least partially attempt to explain the strange fact that this had not been dis-
covered much earlier with the established dogmas of classical crystallography
and the well-known saying “it cannot be what may not be”. The material-
scientific research and its technical applications have experienced a great as-
cension ever since then, just as the purely geometrical investigations inspired
by this had.

In 1985/86, Danzer, Schmitt, Levine and Steinhardt also found real three-
dimensional non-periodic tessellations. In fact, Penrose’s tiles, by now almost
classic, also permit periodic tessellations. This has to be prevented by either
altering the edges so that certain matches become impossible in terms of
shape (keeping in mind that this implies hindering the principle of inflation),
or using the matching rules, as generally known from dominoes, according to
which only equally marked or equally coloured edges can touch each other.
The latest physical findings hint at the idea that such matching rules corre-
spond well to the physical conditions for forming quasi-crystals. Moreover,
fractal prototiles have also been considered recently, since self-similarity is
given as the natural consequence of combining form adjustment (instead of
rule) and the principle of inflation.

First considerations on the correlation between geometrical shapes, their cre-
ation, function and purpose in nature were put forward by Leonardo da Vinci
and J. Kepler. In approximately the mid-19th century, the physiologist Karl
Vierordt from Tübingen advocated the extensive application of mathematical
concepts in medicine and biology. The geometrical aspects of biology were ex-
amined and demonstrated systematically and extensively at the beginning of
the 20th century [Cook 1914], [Thompson 1917]. The latter book especially,
written by a Scottish zoologist, has been revived with the increasing interest
in the application of mathematical methods to biology since approx. 1950.
This has been reflected by new editions and translations. Whereas mainly
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Illus. 8.3.4 The first non-periodic tessellation by Penrose
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Illus. 8.3.5 The tessellation system “kites and darts” by Penrose

This tessellation can be used for both periodic (a, b) and non-periodic (c). By
altering the edges in the manner indicated by (d) (or, equivalently, “prohibiting”

certain contacts), we can prevent periodic versions from being included

classical mathematical means were initially used for descriptions, for exam-
ple, differential equations that roughly explained the formation of certain
spiral shapes or the manner with which biological supply chains branch out,
discrete geometry played a constantly increasing role in the 20th century.
One of the latest books pointing in that direction is [Meinhardt 1998]: algo-
rithmically describable growing processes often lead to approximately fractal
formations and, thus, to a better understanding of the manifolds of shapes
within flora and fauna. For instance, the formalism of cellular fields is used
to simulate the spread and mutual influence of populations.

A completely different application of geometry in biology is based on the fact
discovered by the biologist Tammes in 1930 that pollen have a certain number
of contact membranes on their surface in a regular structure, which, however,
differs from type to type. Thereby, polyhedral theory led to a classification
of pollen and to new insights into how they function as well as the relations
between different genera [Fejes Tóth 1964, p. 214ff.]. Studying viruses has
recently revealed similar connections to geometry of regular polyhedra. Ge-
ometry had been involved in the creation of a theoretical forerunner in this
and related fields of application since the 1930s with investigations of (dens-
est) packings and (thinnest) overlappings and related extreme questions “in
the plane, on the sphere and in space” (as per the subheading of the book
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Illus. 8.3.6 Fractals approximately describe growing processes

l.: Computer designed fractal shape of a tree [Solkoll], r.: Fractal shape of Ro-
manesco broccoli [Photo: John Sullivan 2004]

of well-established relevance by [Fejes Tóth 1953]). Such questions have be-
come important for understanding physical, chemical and micro-biological
phenomena, whereby we, for example, look at spheres from a finite number
of different diameters, which have to stand in given neighbourhood relations.
For instance, if we ask about the smallest convex set that can enclose n con-
gruent spheres, we find tube-like structures from n spheres for small numbers
that suddenly collapse into a more compact optimal structure at a certain
n. The analogous question for higher dimensions leads to one limit number
n(d) characterised by every dimension d (Problem 8.3.2).

Even if some classically educated geometers first looked upon such inves-
tigations very sceptically or mockingly, it is clear that, within the field of
discrete geometry, not only has an excellent harmony been established be-
tween interesting and difficult mathematical problems on one hand and the
versatile applications on the other, but also, an unpredictably broad spectrum
of methods and outcomes from distant branches of mathematics has become
necessary in order to answer seemingly simple questions; for instance, the
question of the distribution of n points on a spherical surface for which the
minimum distance of two points turns out to be as large as possible. For
some values of n (4, 6, 12), the question is easily answered by the existence
of regular polyhedra with triangular areas and a respective number of cor-
ners, but for n = 8, the alignment corresponding to the corners of the cube
is already by no means optimal. As the reader can easily recalculate, at the
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very least, the corners of the anti-prism with a square base yield a better
solution on its circumscribed sphere. The difficulty in proving that this so-
lution cannot be improved any further has been a significant problem for
years [Fejes Tóth 1953, p. 162ff.]. It is remarkable and symptomatic of the
attractiveness of the topic that this question and its analog for some further
n were solved by two mathematicians with different specialisations in 1931:
van der Waerden, one of the most famous algebraists of the 20th century, and
K. Schütte, a well-known logician.

If quantum and condensed matter physics, as well as the more recent devel-
opments of chemistry, biology and biochemistry, leave the impression that
discrete geometry (and in general, discrete mathematics) have stolen the
lead position from classical geometry of what is continuous and smooth in
present natural science, the inclusion of other areas shows a more balanced
picture. For instance, nowadays geodesy includes surveying and monitoring
the gravity field of Earth, having begun with the surveying and monitoring of
Earth’s magnetic field in Gauss’s time. Thereby, classical geometrical meth-
ods are applied. In soliton theory35, certain discrete problems of condensed
matter theory can be described with the same type of differential equation
as solitary water waves (already recognised as a phenomenon since 1834). In
this theory, with its strongly growing significance, a bridge between continu-
ous and discrete phenomena has started to become apparent, which then also
contributes to explaining the wave-particle duality. Generally speaking, we
will only regain practical control concerning discrete phenomena, for which
the number of participating objects exceeds a certain quantity, as in statis-
tics, by (like the reverse case of numeric analysis) approximating the discrete
by the continuous.

Finally, we want to pinpoint that, even in geography, an area that stands
with one foot in the natural sciences and the other in economics, and in
which there was special (partially objectively, but partially also subjectively
founded) resistance against mathematisation, the source of novel problems
and inspirations of a geometrical nature does not run dry: if it was geodesic
and cartographic questions that were handed over from geography to geome-
try a long time ago, followed by the mathematical means of geophysical prob-
lems and even later the statistical ones, nowadays we also have to deal with
optimising locations and transport networks, defining adequate measures for
the degree of fissure or the accessibility of an area, the penetrability of toxic
substances or biological populations, exactly determining catchment basins,
the density of information of maps, and graphically representing complicated
relations (overview and literature in [Schreiber 1989]).

35 A soliton equation describes the emission of a certain type of “standing wave”,
which behaves like “particles” during, for example, mutual encounters (for further
details, see, for example, [Meinel/Neugebauer/Steudel 1991]).
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8.4 Geometry and techniques

F. Klein stated in the introduction to a lecture called ‘Application of Dif-
ferential and Integral Calculus’, which was published in 1902 and again in
1907: “There is a profound gap in the modern mathematical literature that
you must all have come across: the theorists’ interests and their trains of
thoughts differ extraordinarily from those methods to which we actually help
ourselves when executing applications. Not only does the individual’s scien-
tific education suffer from this, but also the prestige of science itself” (l.c. p.
1). In this book, he continuously speaks of “precision-” and “approximation”-
mathematics. His viewpoint of the relation between these two sides of math-
ematics, which was rather revolutionary for a geometer back then, shall be
explained for the case of geometry by means of the following example: the the-
orems of Euclidean geometry are logical conclusions from the axioms, which
are idealisations of practical relations. For instance, the axiom “through any
two points, there is exactly one line” is a ‘shortened version’ of the empiri-
cal subject matter, “if the diameter of two plane areas a, b turn sufficiently
small, the set of the possible straight connections between a point A ∈ a
and a point B ∈ b tends against a uniquely determined limiting position”.
The task of precision-mathematics is to derive logical conclusions from the
shortened versions. The task of approximation mathematics is to re-interpret
these conclusions as propositions about reality and to supply those with er-
ror estimates (which mostly need the help of analysis). Thus, the theorem
“the heights of a triangle intersect at one point” really means: “if ABC is a
triangle and the straight lines passing A,B,C closely enough are sufficiently
perpendicular to the relevant opposite sides, then their pairwise points of
intersection slide together arbitrarily closely.” This theorem (as analogous to
every other one) of theoretical mathematics contains the demand for solving
the problem of how the diameter of the area in which the points of intersec-
tion of the heights could lie depends on the presupposed maximal deviation
of the points A,B,C and the deviation of the heights from the perpendicular
position.

Consider Klein’s position in front of the historical background that he was
first to advocate drastically for the re-approximation of pure and applied
mathematics, that he was responsible for establishing the first chair of Ger-
many for applied mathematics in Göttingen in 1904, and that this applied
mathematics, which actually only developed as an independent field in the
20th century, also included graphical methods for solving numeric problems
until the 1940s. Precision techniques, which are at an unattainable level for
amateurs nowadays, had also developed parallel to this since the end of the
19th century. The first worldwide chair of this kind at a technical university
was founded in Dresden in 1929, and appointed to G. Berndt, a pioneer in
this field. Nowadays, gear techniques (gears, worm wheels, antifriction bear-
ings, forced operations, etc.) use a sophisticated combination of differential-
geometrical and numeric methods, in order to fulfil these higher demands
[Giering/Hoschek 1994].
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Illus. 8.4.1 Skyscrapers in Toronto

The centres of many towns became more and more dominated by skyscrapers. The
CN-Tower (Toronto) was classified as one of the Seven Wonders of the Modern

World (American Society of Civil Engineers 1995)
[Photo: H. Wesemüller-Kock 1991]
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Illus. 8.4.2 Motion of human body (motion capture)

Our everyday environment consists of objects most often created by mankind.
All these reveal geometrical aspects in the most versatile manner. Hence, this
section can only be concerned with pinpointing some developmental trends
that distinguish the 20th century in this respect from the already industrially-
dominated 19th century. Furthermore, we will show by means of some exam-
ples how results of ‘pure’ geometry have practical effects in a sometimes
surprising manner and how geometry unlocks fields of applications that we
rarely think of within this context.

A still blossoming area, which is close to both classical geometry (its origins
go back all the way to the Renaissance) and mechanics, is geometrical kine-
matics. W. Blaschke, one of the most versatile geometers of the 20th century,
referred to it as ‘the geometers’ paradise’ in [Blaschke/Müller 1956]. The core
questions are: which orbits do certain points of a line segment, area or solid
describe, if other points of these objects move along given orbits or, respec-
tively, on prescribed areas; how can we conversely enforce certain motions;
which space do certain motions need and how can we optimise it? Think of
the geometrical question in connection with the so-called rotary piston engine
(also called a Wankel engine). Theorems of Holditch’s type state something
about the fact that a certain volume (area) independent of the special form
of the motion is covered during certain motions of a line segment (area). The
concept refers to the first of such theorems found by H. Holditch in 1858: a
chord of suitable length moves inside a convex curve so that each of its two
extremities passes through the boundary curve exactly once. In that case, a
fixed point of this chord, the distances of which from both extremities are
x, y, describes a curve inside the given boundary curve so that the ring area
between both curves has the capacity of πxy (Problem 8.4.1).
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Biomedical engineering is one of the most unusual applications of kinematics.
Amongst other things, it deals with exact descriptions of the forms and mo-
tions of the human body in order to construct prostheses, which reproduce
this mobility as perfectly as possible. In 1904, O. Fischer wrote extensive
reports on “physiological mechanics” as part of the communications of the
DMV (Deutsche Mathematiker-Vereinigung, German Mathematical Society)
and in Volume IV of Enzyklopädie der mathematischen Wissenschaften (En-
cyclopaedia of Mathematical Sciences), which were already based on an as-
tonishingly rich literature back then. A small book on this topic was also
published in the Czech language in 1952 and was probably inspired by the
fact that F. Kadeřávek, one of the two authors and professor of descriptive
geometry at the Czech Technical University in Prague, was the son of one
of the manufacturers, who engaged with fabricating prostheses at one of the
surgical university clinics in Prague. [Giering/Hoschek 1994, p. 191-194] offer
an up-to-date depiction.

A large field of application for differential geometry concerns curvature of
surfaces: the surfaces of gear parts moving against each other should be ca-
pable of being developed onto each other as exactly as possible. In order to
manufacture ship, plane and car bodies, we need to find optimal dissections
of the entire surface into parts that have a total curvature as small as possible
and, thus, can be made from plane material with only slight deformations.
A related question concerns the wrapping of curved pipelines and similar
objects with plane ribbons so that these cannot shift. Optics constitutes a
further field of application of differential geometry. Thereby, we are dealing
with, for example, calculating panorama and “frog eye” objectives, which
yield non-linearly distorted panorama images with certain properties, as well
as with the distortion of these images [Drs 1981]. Such optics are used,for
example, in medical endoscopy, but also for the inner control of technical
systems (cauldrons, pipelines, etc.).

Following up on Cauchy’s theorem [Cauchy 1813, cf. section 7.9]) that a poly-
hedron is uniquely determined apart from its location in space by its lateral
surfaces and the rule of linking them under the naturally necessary additional
condition of convexity, a problem had already started to develop shyly over
the course of the 19th century that addresses the possible difference of spatial
positioning of a given polyhedral surface or its edge structure. Concerning the
latter case, the applicability in the statics of framework constructions is, at
least, obvious. Hence, it feels even stranger for us nowadays that the motives
were originally of a rather theoretical nature: Euclid’s axiom that what can
coincide is equal, in combination with the notion of coincidence, which he
did not define, made philosopher A. Schopenhauer wonder in 1844 about the
fact that mathematicians accepted this without any questioning, but spent
all their time contemplating the much clearer parallel axiom [Cromwell 1997,
p. 221]. Nowadays, we say that a polyhedral surface is ‘wobbly’ or ‘infinites-
imally flexible’, if it has two adjacent realisations so that we can transform
one into the other by means of slight deformation. (Concerning pure bar
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framework, only the edges must not cross during this transformation; con-
cerning wobbly polyhedra, the surfaces must not intersect in the meantime.)
We experience it every day that bar frameworks respectively polyhedra with
sufficiently many edges respectively surfaces are generally not very stable.
Hence, almost from the beginning on, we were concerned with finding counter-
examples with a preferably small number of surfaces or edges and recalcu-
lating the deformations that are necessary for transforming one position into
the other one. Some simple wobbly bar frameworks were depicted by the
French engineer R. Bricard in 1897. It seems that it was first mentioned in
[Brückner 1900] that closed chains of at least six (not necessarily regular)
tetrahedra, for which each two opposite edges serve as connection ‘hinges’,
are rotatable within themselves (cf. also section 8.6 and the literature re-
ferring to caleidocyles given there). Simple wobbly polyhedra had already
been demonstrated by G.T. Bennett in 1912, and furthermore by W. Wun-
derlich in 1965 (Problem 8.4.2), M. Goldberg in 1978, and others. However,
there were doubts until recently that there are simply connected and overall
real three-dimensional polyhedra that are continuously flexible, meaning that
they can pass through an infinite family of positions without deformation and
self-overlapping of surfaces in the meantime. In 1977, R. Conelly found the
first surprising counter-example when he was still a student. His idea was
to insert little indents in suitable infinitesimal flexible polyhedra exactly at
those places that feature a small amount of self-overlapping, in order to make
a smooth passage possible. In the meantime, it had already become known
that almost all simply connected polyhedra are stable in the “space of poly-
hedra” in terms of a suitable measure (Gluck 1975). See [Cromwell 1997] for
further details and literature.

All that which makes a tempting but rather playful impression here has a
surprising practical consequence. Since radar had been invented (technical
application in the military field only since approx. 1935, expanded for civil
purposes after 1945) and especially since the rise of the use of lasers (approx.
from 1970), it has been possible to measure distances much more exactly than
angles. For instance, when determining the distance from the Earth to the
moon, nowadays the deviation will only be about 4in. Thus, classical triangu-
lation was rapidly superseded by trilateration in geodesy. (Every reader can
imagine what this change of terms means.) The wobbly respectively contin-
uously deformable polyhedra now show that, considering the analogy to the
‘dangerous circles’ of triangulation (cf. section 5.2), there are constellations in
trilateration for which either their mutual position cannot be uniquely deter-
mined at all except by means of the pairwise distances of the points or very
small errors in length measurement can lead to big errors in localisation. B.
Wegner demonstrated the invariance of wobbliness properties for projective
maps in 1984. (See [Giering/Hoschek 1994, p. 177-183] for details and further
literature.)
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The definition and investigation of a meaningful notion of measure for sets of
geometrical objects, based on which we can establish propositions of probabil-
ity or statistics, such as the ones above concerning the rigidness of polyhedra,
is addressed by integral geometry or the geometrical measure theory already
mentioned in section 7.9. However, whereas this theory in its classic era (since
approx. 1930: Bieberbach, Santaló, Maak) engaged with arbitrary mutual po-
sitions of well-defined geometrical objects and with propositions of the form
“almost all or, respectively, almost no objects of a certain type have a cer-
tain property”, stochastic geometry has emerged from under the pressure of
practical needs since approx. 1965. It seems that this term occurred first in
the title of the omnibus volume [Harding/Kendall 1974] published in 1974. It
concerns statistic propositions on irregular orderings of a generally large num-
ber of objects. A specialised field of stochastic geometry, also around since
approx. the mid-1960s, is stereology, which draws statistical conclusions on
spatial distributions based on random plane sections. Stochastic geometry
features a wealth of applications in biology, medicine, mineralogy and mate-
rial testing, whereby we have to derive propositions on the global distribution
of certain features and shapes from random samples or tissue sections. We
recommend [Stoyan/Mecke 1983] as an introductory read.

Geometrical questions of a completely different nature result from optimally
exploiting tissue (or metal) sheets to cut textiles or car body parts; suit-
ably packing non-cuboid-shaped objects into cuboid-shaped boxes; optimally
selecting locations for measuring or transmitting stations with given cover-
age, which together supply a certain territory, the coverage of which should
overlap as little as possible and exceed the total area not at all or as lit-
tle as possible; optimally selecting locations and designing traffic or distri-
bution networks. There are already thousands of books concerning just the
so-called Steiner-Weber problem and its generalisations introduced in section
7.9 [Cieslik 1998].

However, whereas all fields of application mentioned so far are only acces-
sible in detail for the respective specialists, the ordinary environment offers
opportunities over and over again for contemplating geometry and its effects:
rectangular plasters or tiles can be relatively easily separated from their bond
or tilt if the underground sinks. This is due to the fact that they have an axis
of revolution to which two lateral surfaces are orthogonal, but the perpendic-
ulars only have to incline a little, respectively. In contrast, the zigzag-shaped
stones, which we can spot everywhere these days, can only be separated from
their bond completely perpendicularly to the tread.
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8.5 Geometry and computer sciences

Practical geometry without a computer is hard to imagine nowadays. Even
visual artists have long discovered (since approx. 1963) the computer as a
possible tool. Thus, it is even more astonishing that none of the original
computer pioneers apparently expected this development. Despite (or maybe
because of) a constantly rising flood of literature, the entire field of computer
geometry is distinguished by a lack of boundaries and structure, which is why
some notional explanations shall be provided here at the beginning of this
section.

Although computer geometry tends to unite more theoretically and practi-
cally orientated fields, it is an area of application in respect to its relation to
geometry. Hence, it centres on solving problems by means of algorithmic pro-
cesses. An initial rough classification results from structuring these problems
as follows:

A. Those for which we are meant to produce a non-geometrical output based
on a geometrical input, e.g., determining measured values of geometrical
objects, extracting features, sorting of objects according to certain criteria
(also recognising handwritings), ...

B. Those for which we are meant to produce a geometrical output based on
a non-geometrical input, e.g., drawing a function graph based on a table
of values or a description of the function in formulae, including showing
the object in its temporal change given by a table or formula, producing
an object based on a verbal respectively formal description (this includes
all interactive CAD systems), ...As tools serve all further parts of clas-
sical descriptive and coordinate geometry, including the revived illumi-
nation geometry, which equips computer images with impressive realism.
“Splining” has also drastically advanced due to the needs of CAD, i.e.,
assembling curves and surfaces by means of parts that have common tan-
gents or tangential planes at the joints. The underlying mathematics is so
classical that we could say that this area originated in the 18th century.

C. Those for which we are meant to produce a geometrical output based on
a geometrical input, e.g., transforming an object given by assigned views
into a perspective view, rotating an object into another position for the
viewer, executing certain procedures to relieve ourselves from having to
recognize or classify the original object “digital image enhancement”),...
The basic operations of digital image enhancement often go back to the-
oretical concepts from around 1900 (Minkowski, Voronoi, Thue, ...). For
instance, we pass over from any plane set of points A to unite all circles
with a fixed radius r around any point of A that ‘inflates’ the set and
makes isolated points visible in the first place; or we reduce the set to
this ‘essential part’ by keeping only those points that have an entire sur-
rounding of a suitable chosen radius in the original set. Combining and
multiply repeating such procedures yield surprising outcomes.
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Illus. 8.5.1 Algebraic surfaces constructed with computer

The relation between formulae and forms can be experienced by SURFER soft-
ware. In an interactive way one can visualize real algebraic geometry. Based on
formula y4 + x2z2 = y2 (called ‘Helix’), surfaces like these examples (generated by

H. Wesemüller-Kock) can be created

The objects produced or edited in computer geometry are always represented
materially (the object containing the image representation being the main
case), hence Euclidean and two- or three-dimensionally. However, the latter
does not refer to so-called “three-dimensional” computer graphics, which,
nonetheless, only yield two-dimensional images, but to the fact that the
program-controlled working machines need not necessarily be a computer
in narrow terms, communicating with its surroundings by means of scanners,
plotters, printers or screens, but that we should also include, for example,
program-controlled machine tools and industrial robots. There have been
three-dimensional printers since approx. 2000 that, depending on the pro-
gram, can produce any complicated spatial object by means of powder and
binding agents.



8.5 Geometry and computer sciences 537

Three further classifications, which can be superimposed on the one above,
concern the questions as to whether the participating objects are (on the
input or output side) as follows:

I. two or three-dimensional,

II. “black and white” or multi-colour or respectively feature several mate-
rials/textures,

III. sharply defined or diffused, fussy, ... All in all, this yields 80 different
process types. We are already now at the point where little imagination
and expertise are needed to contemplate at least one meaningful already
existing or desirable example for each of these.

The classical disciplines, such as descriptive, analytic, algebraic and differen-
tial geometry, belong to the instruments of applied computer geometry (see,
for example [Faux/Pratt 1979]). However, this is not just the continuation
of classical applied geometry with a new, much higher performing instru-
ment. This is due to the following: first, this new instrument makes many
applications possible that nobody would have dared think of fifty years ago.
Second, it includes objects (such as X-rays or satellite photos) that cannot
be described by means of the notional system of classical geometry. Third, it
gives old questions concerning geometrical problems a new quality:

• The different nature of the objects of many problems demands the devel-
opment of matching notional systems, problem-orientated programming
languages, as well as new geometrical theories, for example, different clo-
sure operations, integral geometry, stochastic geometry, collaborations of
optical and non-optical information to interpret an image correctly.

• Classical coordinate geometry turns into a small special case of the ques-
tion as to how we can describe geometrical objects by means of finite
data structures and, on top of that, in such a manner that these “cod-
ings” ‘support’ the intended algorithms.

• Classical theory of irresolvability proofs for certain problems (such as with
compass and straightedge) and the modest starting points of geometrog-
raphy for comparing the effort of different solutions of the same problem
(cf. section 7.3) have advanced to complexity theory for geometrical algo-
rithms. The now internationally common term “computational geometry”
for studying the complexity of geometrical algorithms was introduced by
M. I. Shamos in 1975. Good introductions are [Preparata/Shamos 1985,
1985], [Edelsbrunner 1987] and [de Berg 1997]. The first of these books
is distinguished by a historical view on the prehistory, which is not so
self-evident for modern mathematical literature. It covers all fundamen-
tal aspects from Euclid via Mohr and Gauss until Lemoine, described
in the preceding chapters of our book regarding geometrical construc-
tions. Computational geometry focuses on problem classes, which hardly
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played a role in classical constructive geometry, but now attract more in-
terest due to the combination of (sometimes also questionable) practical
importance and high complexity. Amongst those are:

• Determining convex closures of a finite number of given points,

• Determining the common part of several polyhedra,

• Determining the visibility of line segments and areas for a given observer’s
viewpoint,

• Determining the nearest neighbour, the two points in a finite set of points
M , which are either closest to or farthest from each other, generally the
so-called Voronoi diagram of a finite set of points M , which divides the
plane into Voronoi (or Dirichlet) cells, assigning every point of the finite
set the set of those points that have the shortest distance to it from all
other points of M (Illus. 8.5.2).

• The group of guardian problems for which we must find number and
location of a minimal set of points that can see every part of a given set
(equal in meaning to those which can illuminate the entire set).

• Determining shortest connection systems (Steiner-Weber problem, cf. sec-
tion 7.9)

On one hand, the computer caused a massive turn towards geometry of the
Euclidean plane and the ordinary Euclidean space, whereas, on the other
hand, it led to novel, different complications from those discussed in sec-
tion 8.2 concerning the question of the boundary between geometry and
non-geometry. For instance, the problems of image interpretation are closely
connected to information theory and artificial intelligence, and many ques-
tions of designing programming languages and efficient algorithms that play
a central role in computer geometry are really questions that go far beyond
geometrical application. The geometrical construction algorithm as an infor-
mative model case of algorithms in any not necessarily discrete structures
had been addressed by E. Engeler by 1967 and including further aspects also
by [Schreiber 1975, Schreiber 1984] (see there for literature). Amongst these
typical sets of problems are:

• many-sortedness of geometrical structures (relation to “algebraic specifi-
cation” in any programming language),

• the equivocation of typical geometrical operations, as well as the neces-
sity for using random ‘auxiliary points’, which led to questions of non-
determinism in a natural manner,

• questions of mutual simulatability of different operational systems,

• propositions of irresolvability respectively complexity based on geomet-
rical ratios and transfer principles. We will cite two theorems as exam-
ples for the latter: although every problem solvable with compass and
straightedge can be solved in terms of the earlier described meaning ac-
cording to the Mohr-Mascheroni theorem solely by means of the compass,
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solutions with a constantly limited number of steps are generally trans-
formed into solutions with cyclic subprograms: [Schreiber 1975], gener-
alisation [Schreiber 1984]. Furthermore, not even in hyperbolic geome-
try can any angle be trisected with compass and straightedge (use of
Poincaré’s model) [Schreiber 1984].

After these preliminary remarks, we will attempt to sketch the historical
development. Of course, computer geometry is only possible with a given
periphery. The first input devices have been used to evaluate satellite photos
automatically in the USA since the 1960s. These “grey value analysers” by
IBM transformed photos in which the eye could hardly recognize anything
into bit strings, which were then numerically processed. The first plotters
(used for computer-aided design) were launched a little later, for example,
in Germany in 1964 by the Zuse company. The mainframe computer ILIAC,
especially equipped for graphic data processing, began being used in the
USA in 1963. In the same year, the first dialogue-orientated graphic program
system called SCETCH-PAD was developed. However, there had already been
initial efforts to develop graphics-orientated program systems for didactical
purposes in the USA in the 1960s. Hence, MIT created LOGO as a dialect
of the language LISP and the program-controlled drawing turtle was born.

Illus. 8.5.2 Voronoi diagram for ten randomly chosen points
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In 1967, the American ACM (Association for Computing Machinery) founded
a SIG (Special Interest Group) for computer graphics and the first special-
ized journal Computer Graphics. The term CAD (computer-aided design)
was formed soon after, in honour of which a first international specialized
conference (Southampton, GB) had already been held under this name in
1969, accompanied by the founding of a journal under the same name. The
terms of picture or image processing have been used since 1969/70.

The first experiments using them for artistic purposes also commenced in
the mid-1960s (for example, G. Nees in Stuttgart, F. Nake in Karlsruhe, Il-
lus. 8.5.3). The Computer Art Society was founded in London in 1969. In
1970, five stamps that reflected computer graphics (after drafts by the Tech-
nical University of Eindhoven) were released in the Netherlands. In many

Illus. 8.5.3 Fields with character distribution twice superimposed

Computer graphics by [Frieder Nake, no. 5, 13/09/1965]



8.5 Geometry and computer sciences 541

cases, the computer was just used as a ‘hard-working sketch artist’ for the
generation of complicated mathematically defined patterns (Illus. 8.5.5). We
could first lay eyes on the “Mandelbrot set” in 1967. Simpler fractal forma-
tions can also be easily produced nowadays, leading to versatile applications
[Herfort/Klotz 1997]. Within the realm of artistic design, we often either run
through and order a combinatorial system of possibilities accordingly (Illus.
8.5.4) or a statistic distribution function is given and a globally legitimate
pattern, though random in its details, is produced by including a random gen-
erator. An extensive factual and historical depiction of the topic of computer
art is given by [Steller 1992].

Illus. 8.5.4 Computer graphics according to the combinatorial principle: System-
atically running through and ordering cases [Horst Bartnig: computer graphics 2,
Weiß auf schwarzem Grund (White on black ground), 1979/1980, screen printing,

35x35, spectrum issue 9, Akademie-Verlag der DDR, 1981]
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Illus. 8.5.5 The computer as a hard-working artist c© Helmut Schwigon, Comput-
ergraphic from: [Gert Prokop: Das todsichere Ding (The Dead Sure Thing), Verlag

Das Neue Berlin. Berlin, 1986]
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Illus. 8.5.6 Computer graphics by Technical University of Eindhoven

[Dutch stamps from 1970]

A fundamental turn that affected computer sciences as a whole was the ‘mar-
riage’ between computer and screen in the 1960s and the launch of the per-
sonal computer (PC) around 10 years later (1979 Apple, 1982 IBM-PC).
Computer geometry has become a mass phenomenon since then, whereby,
speaking purely quantitatively, the overwhelming majority of all graphic com-
puter applications are targeted at the entertainment industry. Amongst the
huge amount of such products, there are some that are able to awaken geo-
metrical interest. One of those is the now classic “Life”, which was invented
by the mathematician J. H. Conway in 1970 and is nothing other than a
version of the idea of the cellular automaton passed on to us by J. v. Neu-
mann. However, it is distinguished by an excellent combination of simplicity
and wealth of diversity. All the versions of Blockout belong here, too. Com-
puter geometry in narrower terms has become possible for everybody due
to integrated mathematical program packages, such as MAPLE (1980) and
MATHEMATICA (1988). Simple drawing and painting programs are part
of the basic software of every home PC. There have been calculators with
display, capable of achieving simple graphics, since approx. the 1990s.

8.6 Geometry and art

We have seen that past needs and inspiration from architecture, design and
the visual arts have played an important role for the development of geome-
try. We have mentioned along the way that the building trade was covered by
the mathematics professor’s teaching and that practical work as an architect
or building expert was a typical source of their additional income. We want
to add in this respect that seminars on descriptive and elementary geometry
were sometimes also held by ‘academic drawing teachers’ at the same time.
These individuals were typical, at least for German universities, along with
dancing and fencing teachers. On first look, it seems as if these close rela-
tions were permanently halted due to the exclusion of descriptive geometry
from ‘proper mathematics’ and the artists’ decreasing interest in perspective.
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However, there were also a great number of artists interested in mathemat-
ics in the 20th century, amongst them, some that were very well known, at
least within mathematical circles, but also many lesser known. Some of them
only absorbed/used mathematical forms and notions. However, others have
provided geometry with so much fruitful inspiration through their work that
we are justified in ranking them among mathematicians like Dürer. We will
next look more closely at the work of some of these artists. Afterwards, we
will discuss some profound analogies between mathematics and visual arts.
Computer art has already been discussed in section 8.5 and need not be re-
visited. We will also bypass artworks the relation of which to mathematics is
not primarily geometrical (for example, representations of numbers, formu-
lae, laws and pictures that were inspired by self-reference and other topics
of logics) as well as the entire complex of portraits, busts and monuments of
mathematicians.

We refer the reader to [Schreiber 1999][Schreiber 2012] for a complete overview
with extensive literature and to [Guderian 1990], [MUMOK 2008], [Maur 1997]
and [Lauter/Weigand 2007] for extensive examples.

Those who hear the phrase ‘geometry and art in the 20th century’ probably
think first of M.C. Escher. Indeed, this Dutch graphic artist was an exception
at best comparable to Dürer, both of them a type seemingly only bestowed
upon the world in large time lags. Escher was an average student at best,
according to both objective facts and his personal evaluation, even in mathe-
matics. This only shows that ordinary mathematics instruction is little suited
for the discovery and fostering of exceptional talents and that the common
idea of what mathematics is, also held by many mathematicians, needs ur-
gently to be corrected, as had already been hinted at in the introduction to
this book as ‘unconscious mathematics’. Escher was distinguished from many
other artists who turned towards geometrical topics in the 20th century by a
great variety of addressed topics and aspects, as well as the strong inspiration
that his works have given to actual mathematical questions. His topics can
be roughly classified as follows:

• Ornaments, tessellations, surface packings (inspired by multiple visits to
the Alhambra and, historically speaking, at the beginning of his turn
towards geometrical topics from around 1936 onwards). Having got to
know the Poincaré model of the hyperbolic plane, Escher designed mul-
tiple regular tessellations in the Poincaré model inside a circular disc
(Illus. 8.6.1). [Herfort/Klotz 1997] have analysed this in great detail from
a mathematical standpoint; also see [Henderson 1983].

• Problems of two-dimensional images of the three-dimensional.

• Beyond this, further questions connected to the interpretations of images.

• Topology, polyhedra, one-sided surfaces, ...

• Anamorphisms (especially if the object is distorted by curved mirrors).
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Illus. 8.6.1 M. C. Escher’s “Circle Limit III” [ c© 2014 The M.C. Escher Company-
The Netherlands. All rights reserved, www.mcescher.com]

We will discuss all these topics factually when introducing further artists of
relevance. We only want to add here that Escher was ignored by the official
art scene for a long time and was heavily critizised later on.

(Bear in mind here the analogy to the rejection that Paolo Uccello had already
received from his artistic peers because of his overly geometrical style!) Math-
ematicians and physicists were the first to show how excited and enthused
they were with Escher’s works. Some, especially H. S.M. Coxeter, initiated
close personal relationships with him. The Dutch mathematician B. Ernst (a
pseudonym for J.A. F. Rijk) wrote a successful book about him [Ernst 1978].
Eventually, art criticism also had to accept that there was greater public in-
terest in and enthusiasm for Escher’s work than the art experts would have
ever thought. Some of his works are so widespread nowadays and, hence, so
well known that we could compare them in this respect to the “Mona Lisa”
or the “Sistine Chapel”. For Escher’s entire catalog, also see [Locher 1994]
and [Coxeter, Emmer, Penrose, Teuber 1987]. The Swiss Sandro Del Prete
can be compared to Escher in terms of originality, but his topics were not as
versatile. The Swede Oscar Reutersvärd also created ‘contradictory’ figures.
After an Austrian stamp displayed the ‘Escher cube’ in 1981 at a mathemat-
ics conference, some of the impossible figures conceived of by Reutersvärd
were then used as designs for permanent stamps in Sweden from 1982 on-
wards (Illus 8.6.2). This deserves an honourable mention. Through actions
such as this, many were introduced to a kind of geometry that, unfortunately,
they did not encounter at school.
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Illus. 8.6.2 Escher cube and contradictive forms by Reutersvärd as motives for
stamps

During the 20th century, at least three art forms were created that, all in all,
are closely related to mathematics. Escher, S. Dali, M. Ernst, Man Ray and
R. Magritte were Surrealists (G. Apollinaire from 1917, theoretically founded
by André Breton in 1924). All these artists thought of mathematics, in the
way amateurs perceive it by formulae and illustrations, as well as models
of mathematical objects made of glass, wire, thread and cast, as a fantas-
tic irreal parallel world, similar to the dream worlds they had created. This
served as the source of much inspiration and numerous motives. ‘Concrete
art’ (a notion conceived by Theo van Doesborg in 1930) deals with the (often
spatial) technically perfect design of aesthetic objects that denote or repre-
sent nothing other than themselves. Thus, simple geometrical shapes, such
as cubes, spheres and their parts, regular and semi-regular polyhedra and
mosaics, grids and Möbius strips, were designed with joy. Max Bill was an
outstanding representative of this. Amongst other things, he created a series
of dissections of the sphere into two mutually congruent halves for the Uni-
versity of Karlsruhe (1966), a series of plastics for Jerusalem (1973) that have
different sections of the cube as their theme, as well as (already from 1935)
numerous versions of the Möbius strip, which he initially believed to have in
principle discovered himself. In one of his last works, Kontinuität (Continuity,
1986, in folklore terms ‘Colossus of Frankfurt’, see Illus. 8.6.4), he returned
to this topic, whereby the question as to whether we are really dealing with
a one-sided surface was left unanswered on purpose. We list “Op Art” as the
third art form relevant to geometry. It works systematically with large-scale
regular patterns, translucent surfaces shifted against each other, very different
materials and illuminations, etc., in order to create optical effects, in particu-
lar simulating space through plane patterns (Illus. 8.6.3). The Hungarian
V. Vasarély, who mainly lived in France, is one of the primary representatives
of this. Further geometrically interesting works originate from W. Leblanc,
B. Riley, F. Morellet, S. Le Witt, J. R. Soto and others. Finally, the fact that
fractal sets were made visible by high-performance computers, especially the
famous Mandelbrot set by B. Mandelbrot, led to many other similar patterns
as, for example, textile and advertising designs, which, however, could often
not be described by a mathematical law.
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Illus. 8.6.3 Motive of Op Art

Producing vivid impressions of plasticity caused by special patterns is one of the
basic themes of Op Art [Tiré de Vasarely no 3, publié par les Editions du Griffon,

Neuchatel (Suisse) 1984]

After 1950, following a period characterized by a lack of imagination, ar-
chitecture again turned increasingly towards interesting geometrical figures.
Next to striking roof shapes, for the designs of which technical aspects played
as great a role as the aesthetic, and interesting surface designs, there are also
a few remarkable experiments of floor planning based on polyhedra that are
not right-angled. To give the reader an example, there is the synagogue of the
Israeli officer academy, which was built 1968/70 by A. and N. Neumann and
Z. Hecker according to the principle of regular space packing with tetrahe-
dra and octahedra. However, the corners are obtuse so that all in all obtuse
tetrahedra, obtuse octahedra and cuboctahedra occur as part solids (Illus.
8.6.5). Furthermore, there is the housing estate Ramot in Jerusalem, which
was built according to plans by Z. Hecker with dodecahedra between 1972
and 1985. Escher also drew an architecture based on a tetrahedra-octahedra
space packing (’Flatworms’, 1959). However, it is one of his weakest works,
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Illus. 8.6.4 Max Bill: Continuity (1986)

The approx. 6’4” tall monumental plastic in front of the Deutsche Bank building
in Frankfurt (Main) shows a multiply folded Möbius strip. See the article by G.

Fischer in DMV communications 4-1999, p. 24f. [Photo: H. Wesemüller-Kock]
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Illus. 8.6.5 Synagogue of the Israeli officer academy [Photo: P. Schreiber]

artistically speaking. Striking and innovative design of products and advertis-
ing plays so important and constantly increasing a role nowadays, given the
modern conditions of global competition in all areas, that, in the applications
of geometry, a new field of application has opened up that is definitely to be
taken seriously both scientifically and economically.

But now, let us turn to a more ordered look at the outcomes of inspiration
that resulted from art (in the terms adumbrated above) of the 20th century
and from which the science of geometry benefited.

1. The great rise of the complex of ornaments and tessellations in the 20th

century, of which the volume [Grünbaum/Shephard 1987], basically a clas-
sic nowadays, bears witness. Here, some quotes from the preface:

“Perhaps our biggest surprise when we started collecting material for the
present work was that so little about tilings and patterns is known. We
thought, naively as it turned out, that the two millenia of development
of plane geometry would leave little room for new ideas. Not only were
we unable to find anywhere a meaningful definition of a pattern, but we
also discovered that some of the most exciting developments in this area
(such as the phenomenon of aperiodicity for tilings) are not more than
twenty years old... we are rejecting the current fashion that geometry must
be abstract if it is to be regarded as advanced mathematics, and that
dispensed entirely with diagrams. To consider geometry without drawings
as a worthy goal... seems to us as silly as to extol the virtues of soundless
music (suggesting, of course, that the sign of true musical maturity is to
appreciate it by merely looking at the printed score!) While assembling the
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material we realized that the field abounds with challenging but tractable
problems, and that many previous publications contain serious errors.”

The physical-technical significance of non-periodic tessellations in connec-
tion with quasi-crystals has been addressed in section 8.3. We want to
stress complimentarily here that a second highly interesting and promis-
ing connection between problems of algorithms and complexity theory on
one hand, and its geometrical reinterpretation on the other hand has de-
veloped since the first outcomes of the simulatability of Turing machines
and similar models of recursive computation by means of tessellations (R.
Berger 1966) after the combinatorially difficult graph-theoretic problems.

2. Broadly speaking, descriptive geometry takes place everywhere in which
a two or three-dimensional Euclidean model of another (mathematically)
defined structure is established, first in order to foster illustrative aspects,
but then to realize algorithms of the material representation of their sub-
ject matter [Schreiber 2002]. We want to re-stress that operations (and
tests) can only be executed if the objects or, respectively, their repre-
sentative code objects are physically given. When physically representing
them, we basically need to distinguish between two types:

a) The geometrical form is not important. For instance, these are realized
sequences of characters as series of physical statuses, and also sequences
of letter characters, as long as we can neglect the aspect that their form
matters again when identifying them.

b) The geometrical form carries the crucial information. In this case, it
has to be two or three-dimensional and (approximately) Euclidean.

We are dealing with descriptive geometry in a sense still very close to
Monge when, for example, describing four-dimensional regular polyhedra
by means of their three-dimensional projection or development (see Illus.
7.6.1 and 8.6.6) and when modelling the plane hyperbolic or spherical
geometry in the plane. (The latter is the subject of classical cartography.)
We already go a little beyond this scope if cartography passes over to the
graphic representation of meteorological, political, economical, ecological
or traffic conditions. Actually, we are also facing descriptive geometry if
an abstract network of relations (such as the old problem of the wolf, goat
and cabbage) is grasped by a drawn graph. A profound analogy between
descriptive geometry in mathematical terms and visual arts can be found
within the fact that, in most cases, visual arts similarly strive ( excluding
so-called concrete art, meaning the creation of the object for its own sake)
to produce a two or three-dimensional image of something that, according
to its nature, is either abstract, does not have the same dimension, is
too far away in terms of space or time, or is too big or too small to be
immediately perceivable by our senses. Art and mathematics can learn
a lot from each other in regards to both the possible themes and the
techniques of representation.
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Illus. 8.6.6 Salvador Dali: Corpus hypercubus (1954)

“The crucifix is replaced here by the two-dimensional map of the three-dimensional
development of the four-dimensional hypercube. The key to understanding is the
development of the three-dimensional cube on the floor.” [Gilles Néret: Salvador

Dali. Benedict Taschen Verlag, Cologne 1995 c© Nicolas Descharnes]
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3. Image interpretation, special case perspective (detailed in [Ernst 1986]):
Since the respective inventions by Escher, R. Penrose and the Swedish
graphic artist O. Reutersvärd, the so-called contradictive pictures of per-
spective or impossible figures are very fashionable. We found out, subse-
quently, that their tradition goes far back into the past, requiring that we
distinguish the following concerning the older pictures:

a) if they have been created due to the artist’s plain inability to master
the laws of perspective,

b) if the artist was more interested in other aspects, such as making im-
portant details more visible (often applicable to old Egyptian pictures
or medieval ‘technical drawings’) or indicating a person’s significance
by their size (sacral pictures),

c) if they had already played or experimented with perspective in humor-
ous intentions in earlier times.

The customary terminology is very bad. There are no such things as con-
tradictive pictures of perspective: every picture has an infinite number of
original pictures in space, since we can randomly shift every point of the
image along its visual line without changing anything of the picture. (Stan-
dard method for creating tricks on film before they began to be realized
with computers.) The new wave of products of ‘art of contradictive per-
spective’ has reminded us again that we cannot conclude anything from the
three-dimensional original image based on the two-dimensional perspective
picture without any additional information. Rather, different artists and
mathematicians have enjoyed building objects or scenes of well-known pic-
tures so that they reflect the given picture (only) from a certain viewpoint.
The interaction between the viewed picture and additional information on
what is seen (without which we could not orientate ourselves in our en-
vironment) has become a central field of research for artificial intelligence
in the age of robots. However, this is still in its nascent stages, at least in
regards to grasping the theoretical problems.

Again, there is a profound analogy between the actual geometrical problem
and the reception of artworks. The message that an artwork conveys is also
usually grasped by the combination of what is visible and what we know
about the artist, his time, his views and intentions, and possibly about the
picture itself.

4. Image interpretation, broadly speaking. How is it that we interpret the
image of a known object correctly even if it is strongly interrupted, alien-
ated, with rough screens across it or simplified in another manner? May
it depend on the Hausdorff metric discussed in section 8.2 Escher made
us think with his pictures, in which a form is gradually transformed into
another one. In Metamorphosis I (1937, Illus. 8.6.7), we can still uniquely
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Illus. 8.6.7 M. C. Escher’s “Metamorphoses I and II” [ c© 2014 The M.C. Escher
Company-The Netherlands. All rights reserved, www.mcescher.com]

determine where the cubes stop being cubes. But what about Air and Wa-
ter I (1938, Illus. 8.6.8)? From what layer onwards can we determine fish
as fish and birds as birds? Could we also do this without the respective
environment?

Dali asked a completely different question with his picture “Gala Contemplat-
ing the Mediterranean Sea which in a distance of Twenty Meters becomes
a Portrait of Abraham Lincoln” (1976, Illus. 8.6.9). It concerns, just as in
similar works, a new type of anamorphosis for which there is a second one
hidden behind the information in the foreground, as conveyed by the picture.
This can only be grasped if we find the correct viewpoint (in the literal or in
the figurative meaning).



554 8 Geometry in the 20th century

Illus. 8.6.8 M. C. Escher’s “Air and Water I”

Hence, this picture inspires us to contemplate the relation between the notions of
picture puzzle and anamorphosis on one hand, and the notion of (secret) code on
the other hand. [ c© 2014 The M.C. Escher Company-The Netherlands. All rights

reserved, www.mcescher.com]
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Illus. 8.6.9 Salvador Dali: “Gala Contemplating the Mediterranean Sea...” (1976)
Dali painted this picture thinking of the digitalisation of Lincoln’s portrait by the
American cyberneticist Leon D. Harmon. [Gilles Néret: Salvador Dali. Benedict

Taschen Verlag, Cologne 1995, c© Nicolas Descharnes]



556 8 Geometry in the 20th century

Illus. 8.6.10 One of Janas paintings (aged 11)

Children discover the aesthetic appeal of legitimate geometrical objects over and
over again [Jana Schreiber]
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8.7 Instead of an afterword: geometry and game(s)

Let us again return to our initially worded and multiply highlighted thesis of
the existence of an ‘unconscious mathematics’. Perhaps even before the ma-
terial and cultic motives, the innate human instinct for play stands next to
our tendency to engage with mathematics and in particular with geometry.
Everyday life is full of examples of people who, due to their experiences in
school, are averse to mathematics or at least under the impression that they
are completely talentless at same, and yet are capable of engaging in astonish-
ing trains of thoughts as soon as their interest has been awoken and their play
instinct inspired. Let us remind ourselves of the remarkably early ‘invention’
of regular star-polyhedra by Uccello (around 1425) and Jamnitzer (1568),
that Miller was first to discover a new Archimedean polyhedron after more
than two thousand years when doing handicrafts, and that Reutersvärd in-
vented the contradictive-in-perspective “tribar” during a class in 1934 during
which he was so bored that he doodled lots of drawings in his notebook. The
Dane Piet Hein invented the soma-cube in a possibly similar mood during a
lecture on quantum physics by W. Heisenberg. Packing problems are closely
related to this, indicating both practical and playful aspects. The knights tour
problem, the eight queens puzzle and many further problems originally of a
geometrical nature have originated from board games. Games that concern
separating interlaced rings and loops or freeing objects seemingly bonded by
ropes by means of topological tricks had already been addressed by Cardano
in 1550. They became a fundamental component of puzzle books and so-called
table magic. Numerous types of ‘witch knots’ made of wooden parts are also
related to this. They may have originated from the ancient Scandinavian and
Slavic techniques of woodwork without connecting metal pieces. We do not
know how old the Chinese tile puzzle ‘tangram’ is (cf. Illus. 3.1.9). It first
occurred in Europe at the beginning of the 19th century and has been the sub-
ject of extensive literature and many interesting mathematical questions since
then (such as the number of different convex figures that we can assemble
with the 7 pieces). The Hungarian architect Ernö Rubik did not just become
famous with his cube (1977) and a series of subsequent geometrical games, but
also rich. Other inventors of games and puzzles also became famous, such as
Sam Lloyd, as well as some mathematicians whose full-time job was basically
to collect, edit and publish recreational mathematics. We could not possibly
count the amount of books on this topic. Some older ones are sought-after
rarities. As introductory reads, we recommend [Thiele 1984, Thiele 1988], the
classics in several editions [Ball 1892], [Ahrens 1918], the books and articles
by M. Gardner and the conference report [Guy/Woodrow 1994].

Herewith, we intend to express the following: Nobody should be talked into
believing that geometry is boring or that he/she is untalented. Nowhere else
than in the so-called experimential geometry, with or without a computer,
is there a greater chance of discovering something new, even nowadays and
without extensive knowledge of ‘higher mathematics’, which could even be
useful, but above all interesting.
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Essential contents of geometry in the 20th century

Foundations
of geometry :

transformation from a quasi-natural science to a structure
science, notion of space separated from physical meaning,
axiomatic foundation of geometry (D. Hilbert); method-
ological and logical investigations (Schwabhäuser, Tarski
and others).

Abstraction: Change to infinitely dimensional “spaces”, application of
geometrical notions to other objects, e.g., metric, inner
product, norm, orthogonal base, Hilbert spaces, normed
vector space, metric spaces, topological spaces, filter theory,
fixed point theorems (D. Hilbert, E. Schmidt, E. Fischer, F.
Riesz, S. Banach, M. Frechet, F. Hausdorff, H. Lebesgue,
L. Brouwer, P. S. Alexandrow, P. Uryson), introduction to
different notions of content and measure (Peano, Jordan,
Borel, Lebesgue, Hausdorff).

Applications
in the natural
sciences :

special and general theory of relativity (A. Einstein),
three or four-dimensional spaces as space-time models,
Minkowski geometry (H. Minkowski, H. Weyl), relations to
quantum physics, condensed matter physics, non-periodic
tessellations (R.M. Robinson, R. Penrose).

Applications
in techniques :

geometrical kinematics, robot constructions, manufacturing
of prostheses, differential geometry for curved surface parts
to assemble cars, planes and similar; stochastic geometry in
biology, medicine, material testing; dense or optimal pack-
ings for transporting goods, choosing standpoints, traffic
networks and timetables.

Applications
in computer
science:

computer geometry to represent two or three-dimensional
objects graphically (CAD, 3D progr.), to recognise pat-
terns, for mathematical program packages and computer
games.

Geometry
within art :

irreal representations (Escher, Reutersvärd), Op Art
(Vasarely), plastics (M. Bill), Anamorphisms (S. Dali), tes-
sellations and ornaments (M.C. Escher).

Solution to an
old problem:

proof of the four colour theorem based on considerations by
H. Heesch by means of computers (K. Appel, W. Haken)

Proof of an
old problem:

Proof of Fermat’s Last Theorem by A. Wiles
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8.8 Problems to 8

Problem 8.1.1: Moulton’s plane (see Illus. 8.1.2)

a) Look for different positions of the Desarguesian figure in this model, so
that the theorem is not fulfilled respectively.

b) Consider where we encounter difficulties when we want to define transla-
tions in this model or to prove that the translations form a commutative
group.

c)* The projective closure of the Moulton plane is, of course, possible, since
it is only based on the incidence axioms valid here. What happens to
the infinitely distant points when changing from the Euclidean standard
plane to the Moulton plane? Attempt to construct a non-Desarguesian
plane with only a finite number of points.

Problem 8.1.2∗: Axiomatisation of Euclid’s plane geometry according to
F. Schur

In order to phrase this correctly according to the modern standards of logic,
we assume two types of variables: points P, Pi, motions m,mj , the relation
of betweenness B(P1, P2, P3), an “application operation” A and an already
given axiomatisation of the plane affine geometry by means of the notions
point and betweenness B. These suffice to define straight lines and incidence
of point and straight-line. A(m,P ) = P1 means: Applying m to P results in
P1. The meaning of A and m is still open from an axiomatic viewpoint. For
now, we require the following:

1. For all m and all P there is exactly one P1, so that A(m,P ) = P1.
This justifies the definition m(P ) = defA(m,P ) and A will then not be used
anymore.

2. If m1(P ) = m2(P ) for all P , then m1 = m2;
(i.e., a motion is entirely determined by what it does with the points, anal-
ogous to how a set is determined by its elements. 2. is an “extensionality
axiom” for mappings).

3. For all m and all P there is exactly one P1, so that m(P1) = P .
The axioms 1-3 express those aspects that are communicated outside formal
language in Schur’s work, within the chosen language. We leave it up to the
reader to phrase Schur’s original axioms, namely:

4. The motions form a subgroup of the affine mappings;
(i.e., they are closed concerning composition and inversion, and leave the
relation of betweenness invariant).

5. There is exactly one motion m, which transfers one figure into the other
one, for each two figures consisting of a point, the axis starting from this
point and the half-plane hanging on this axis.

6. For each two different points, there is a motion that swaps both.

7. For each angle, there is a motion that exchanges both arms.
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Problem 8.2.1: Norm and inner product

How can we define the inner product based on the norm in a normed vector
space if the parallelogram law holds for the norm? (Use the bilinearity!)
Attempt to prove the basic properties (bilinearity, symmetry and positive
definiteness) for the so-defined inner product based on the preconditions of
the norm. For what do we need the precondition of the parallelogram law?

Problem 8.2.2: Hausdorff metric

A,B,C shall be bounded and closed subsets of a metric space (For illustra-
tive purposes, think of, for example, sets in the Euclidean plane.) For any
point p, gd(p,A) shall be the minimum of all distances d(p, a)(a ∈ A). From
which precondition does its existence result? Further, gd(B,A) shall be the
maximum of all gd(b, A) (b ∈ B).

a) Show that the following applies to this directed (asymmetrical) distance
of sets:

1) gd(B,A) ≥ 0, gd(B,A) = 0, if B ⊆ A.

2) gd(A,C) ≤ gd(B,A) + gd(B,C).

3) If f is a motion (i.e., a map preserving distance) of the space onto
itself, then gd(B,A) = gd(f(B), f(A)).

In order to take this notion in illustratively, consider the following: if b is a
point-shaped hare that can freely move on set B, and a is a point-shaped
dog that can freely move on A, gd(B,A) is realised as the distance of two
points b0, a0, which assume dog and hare, if the hare wants to be as far
away from the dog as possible in any case and then the dog approaches
the hare as much as possible. Based on this idea, find gd for simple plane
sets. When is a0 and when is b0 uniquely determinable?

b) Contemplate by means of a counter-example that, in general, gd(A,B) �=
gd(B,A). Hausdorff’s symmetrisation consists of transferring from gd to
d(A,B) = max[gd(A,B), gd(B,A)]. Show that this turns into a metric
that is additionally invariant in terms of 3), i.e., the distance of two sets
only depends on their mutual relative position.

c) Now show that the Hausdorff distance of two circles of the Euclidean
plane with radii r1, r2 and the distance r0 between the centres equals
r0+ ||r1−r2||. (The analogous case applies to the full sphere of dimension
n in every R

n, since the distance between hare and dog is to be realized
on the connecting line of the sphere centres in all dimensions.)

d) If we now coordinatize the set of all circles by the respective coordinates of
its centre and its radius, the Hausdorff distance proves to be the product
metric in this case, which we obtain in the Cartesian product from the
plane (as location of all centres) and R

+ as the location of all possible
radii, if we choose the Euclidean distance, respectively, in the first and
second factor.
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e) Contemplate what the ε-neighbourhood of a fixed circle k0 looks like con-
cerning the metric described above in the set of all circles of the plane for
a given ε. In terms of interval mathematics, this is the set of all circles, for
which the sum of the deviations of the centres and the radius of those of
circle k0 is smaller than the given ε. Those fill in a torus concentric with
k0 [Schreiber 1984, p. 215ff].

Problem 8.2.3: Equivalence of all norms in R
n

Why do all Banach-Minkowsky norms yield the same topology in R
n?

Problem 8.2.4: Convexity and Schauder’s fixed point theorem

Show by means of a simple, plane counterexample that the precondition of
convexity is necessary for Schauder’s fixed point theorem.

Problem 8.3.1: Contradiction of Zuse’s “calculating space”

For readers who know the game ‘Life’ or the notion of cellular field at all: as-
sume that single signals that are emitted linearly from cell to cell correspond
to photons and this speed of propagation shall be the speed of light, which
cannot be beaten by any conglomerate of signals. Why is Zuse’s proposal not
compatible with physical reality?

Problem 8.3.2: Sphere-packings

Imagine six congruent spheres put together once in a straight line, once in
two rows of three spheres each and once in an octahedral structure so that
everyone touches four other ones.

a) Determine the volume of the convex closure for the three cases and verify
that the octahedral structure is, surprisingly, not the densest one.

b) Examine the surfaces of the convex closures for the three cases. The latter
explain why a small number of approximately sphere-shaped objects are
mostly packed in a linear or plane structure.

Problem 8.4.1: Holditch’s theorem

Verify Holditch’s theorem mentioned in section 8.4 for the following elemen-
tary special cases:

a) The chord of length a+ b glides inside circle k of a diameter of d > a+ b
around once. Then point P of the chord, which divides it into section
a and section b, describes a circle apparently concentric to k. Compare
the content of the ring bounded by both circles with the proposition of
Holditch’s theorem.

b) The outer boundary curve shall now be a rectangle with sides x, y > a+b.
What kind of curve does point P describe now if the chord is only moved
around the boundary once? It seems that it then piecewise agrees with
the edges of the rectangle, but what happens in the corners? If we already
know the curved arcs that are created there, we obtain the formula for
the area of ...as the special case of Holditch’s theorem.
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c) What changes in contrast to b), if we take any (sufficiently large) convex
polygon instead of the rectangle as the outer boundary curve? The reader
only needs to approximate now a completely random (sufficiently large)
convex boundary by a polygon in order to obtain Holditch’s theorem.

Problem 8.4.2∗: Wunderlich’s wobble octahedron

We start off with a straight prism, the top surface ABC of which forms an
isosceles triangle with the opposite points DEF of the base. Height shall be
h and radius of the circumcircle of base and top surface r. (For the purpose
of the following calculation, take r = 1.) If we rotate the base with respect to
the top by angle α < 60◦, the four corners of a lateral surface (e.g., ABED)
do not stay coplanar. However, by inserting diagonal AE we get two triangles.
Analogously insert diagonals BF and CD (Illus. 8.8.1; every space point X
is represented by its top view X ′ and its front view X ′′ in the two-plane
method.). A non-convex solid is created, bounded by 8 triangles that are
analogously linked to the regular octahedron combinatorially. It is easy to
see that for α = 60◦, the three added diagonals meet in the centre of the
solid, i.e., in height h/2 over the midpoint of the base triangle. For α > 60◦,
the triangles would mutually penetrate each other. If we imagine the rotation
around the central axis given constant h, length d of the diagonals and the
lateral edges s = AD(= BE = CF ) change continuously. But we want to
fix s, which is why the solid with increasing α becomes flatter and flatter.
For given r and s and variable α, also apart from h, length d of the three
diagonals becomes a function of α. The problem is to establish d(α) explicitly.
Then, we can deduct from the formula that d (60◦ − α) = d(α) and d grows
monotonously between 0◦ and 30◦. Therefore, each d-value between d(0◦) and
dmax = d(30◦) occurs at exactly two positions 30◦ ± ε. If we additionally
determine d so that the relevant angle values are located sufficiently close
right and left of the maximum position, it means that d only changes a little
bit in the intermediate interval (according to Kepler!!).

Hence, we can push the solid from one position into another with only slight
deformation. This example illustrates quite well what we are supposed to
understand by ‘wobble’ or, respectively, ‘infinitesimal flexibility’. Readers are
invited to craft the solid themselves with suitable self-calculated values for
r, s and d and to confirm the belonging values experimentially.

Problem 8.7.1: Witch knots

Illus. 8.8.2a shows a ‘commercial’ witch knot and its individual components.
They have been numbered in order of assembly. However, this is only one of
an immense number of possibilities for designing the 6 square wood pieces so
that in the area where they cross (Illus. 8.8.2)

a) the knot does not collapse on its own,

b) there is no gap inside,

c) it can be constructed and deconstructed again, whereby exactly one of the
wood pieces, the “key” no. 6, remains without notch so that we can pull
it out and, as a result, are able to move the other wood pieces.
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Illus. 8.8.1 Wunderlich’s wobble octahedron

C. A. Cross and W. H. Cutler have determined by means of computers from
1977-79 that there are 113 577 such possibilities [Thiele 1988, p. 54 and 198].
Our problem is more modest: find at least one version that differs from the
one shown here so sharply that it also cannot result from rotations and/or
reflections thereof. To draw the components individually, as in Illus. 8.8.2a,
is a good exercise in descriptive geometry. If 2a refers to the lateral length of
the square cross section of the wood pieces and if we imagine the core (Illus.
8.8.2b) of the knot in cubes of edge length a dissected, then they form the
corners of a graph very regular in space. Our problem can also be phrased
like this: assign the numbers 1, ..., 6 to the corners of this graph (i.e., the
a-cubes) so that the conditions corresponding to the ones stated in a) to c)
above are fulfilled.
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Illus. 8.8.2 Figure for Problem 8.7.1



Appendix: Selection of original texts

A.1 Plato: “The Republic”

Following his well known “Allegory of the Cave” Plato developed the educa-
tional program for the prospective people responsible for the state in the 7th

book of “The Republic” – by letting Socrates explain his ideas in a dialogue
with some partners. It is meant to enable them to recognise the unchange-
able being and the truth based on this behind all perishable appearances
of becoming and decaying. He argues that studying the four mathematical
sciences is indispensible for this. Here, some extracts from the conditions
Socrates lists:

“And our guardian is both warrior and philosopher?
Certainly.

Then this is a kind of knowledge which legislation may fitly prescribe; and
we must endeavour to persuade those who are prescribe to be the principal
men of our State to go and learn arithmetic, not as amateurs, but they must
carry on the study until they see the nature of numbers with the mind only;
nor again, like merchants or retail-traders, with a view to buying or selling,
but for the sake of their military use, and of the soul herself; and because this
will be the easiest way for her to pass from becoming to truth and being.

That is excellent, he said. (...)

Let this then be made one of our subjects of education. And next, shall we
enquire whether the kindred science also concerns us?

You mean geometry?

Exactly so.

Clearly, he said, we are concerned with that part of geometry which relates to
war; for in pitching a camp, or taking up a position, or closing or extending
the lines of an army, or any other military manoeuvre, whether in actual
battle or on a march, it will make all the difference whether a general is or
is not a geometrician.

Yes, I said, but for that purpose a very little of either geometry or calculation
will be enough; the question relates rather to the greater and more advanced
part of geometry — whether that tends in any degree to make more easy
the vision of the idea of good; and thither, as I was saying, all things tend
which compel the soul to turn her gaze towards that place, where is the full
perfection of being, which she ought, by all means, to behold.

True, he said.

Then if geometry compels us to view being, it concerns us; if becoming only,
it does not concern us? (...)

And suppose we make astronomy the third — what do you say?
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I am strongly inclined to it, he said; the observation of the seasons and of
months and years is as essential to the general as it is to the farmer or sailor.

I am amused, I said, at your fear of the world, which makes you guard against
the appearance of insisting upon useless studies; and I quite admit the diffi-
culty of believing that in every man there is an eye of the soul which, when
by other pursuits lost and dimmed, is by these purified and re-illumined; and
is more precious far than ten thousand bodily eyes, for by it alone is truth
seen. (...)

Then, I said, in astronomy, as in geometry, we should employ problems, and
let the heavens alone if we would approach the subject in the right way and
so make the natural gift of reason to be of any real use. (...)

The second, I said, would seem relatively to the ears to be what the first is to
the eyes; for I conceive that as the eyes are designed to look up at the stars,
so are the ears to hear harmonious motions; and these are sister sciences —
as the Pythagoreans say, and we, Glaucon, agree with them?

Yes, he replied. (...)

Now, when all these studies reach the point of inter-communion and connec-
tion with one another, and come to be considered in their mutual affinities,
then, I think, but not till then, will the pursuit of them have a value for our
objects; otherwise there is no profit in them.”

[Plato: The Republic (On shadows and realities in education), Plain Label
Books: translated by Benjamin Jowett, 1930, p. 431 – 445]

A.2 Archimedes: Introduction to treatise “On Spirals”

Differently to the other scholars, who worked at the Musaeum in Alexan-
dria and could converse with their colleagues there about their research,
Archimedes worked very isolated in his hometown Syracuse on the island
of Sicily. In contrast to, e.g., Euclid, who did not start his “Elements” with
any kind of explanatory introduction at all, Archimedes stated details on the
motives, which had inspired him to his investigations, in accompanying let-
ters to some of his texts, which he sent to the mathematicians in Alexandria.
After his friend Conon had died, he addressed several letters to Dositheus,
since he had heard that he had also been Conon’s friend and, furthermore,
was a experienced mathematician.

“Archimedes to Dositheus greeting.

Of most of the theorems which I sent to Conon, and of which you ask me from
time to time to send you the proofs, the demonstrations are already before
you in the books brought to you by Heracleides; and some more are also
contained in that which I now send you. Do not be surprised at my taking a
considerable time before publishing these proofs. This has been owing to my
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desire to communicate them first to persons engaged in mathematical studies
and anxious to investigate them. In fact, how many theorems in geometry
which have seemed at first impracticable are in time successfully worked out!
Now Conon died before he had sufficient time to investigate the theorems
referred to; otherwise he would have discovered and made manifest all these
things, and would have enriched geometry by many other discoveries besides.
For I know well that it was no common ability that he brought to bear on
mathematics, and that his industry was extraordinary. But, though many
years have elapsed since Conon’s death, I do not find that any one of the
problems has been stirred by a single person. I wish now to put them in
review one by one, particularly as it happens that there are two included
among them which are impossible of realisation [and which may serve as a
warning] how those who claim to discover everything but generate no proofs
of the same may be confuted as having actually pretended to discover the
impossible. What are the problems I mean, and what are those of which you
have already received the proofs, and those of which the proofs are contained
in this book respectively, I think it proper to specify.

The first of the problems was, given a sphere, to find a plane area equal to the
surface of the sphere; and this was first made manifest on the publication of
the book concerning the sphere, for, when it is once proved that the surface
of any sphere is four times the greatest circle in the sphere, it is clear, that it
is possible to find a plane area equal to the surface of the sphere. [Six more
problems concerning the sphere follow.]

Of all the propositions just enumerated Heracleides brought you the proofs.
The proposition stated next after these was wrong (...). If a sphere be cut
into unequal parts by a plane at right angles to any diameter in the sphere,
the greater segment of the surface will have to the less the same ratio as the
greater segment of the sphere has to the less a ratio less than the duplicate
ratio of that which the greater surface has to the less, but greater than the
sesquialterate of that ratio.

After these came the following proposition about the spiral, which are as it
were another sort of problem having nothing in common with the foregoing;
and I have written out the proofs of them for you in this book. They are as
follows. If a straight line of which one extremity remains fixed be made to
revolve at a uniform rate in a plane until it returns to the position from which
it started, and if, at the same time as the straight line revolves, a point moves
at a uniform rate along the straight line, starting from the fixed extremity,
the point will describe a spiral in the plane. I say then that the area bounded
by the spiral and the straight line which had returned to the position from
which it started is a third part of the circle described with the fixed point as
centre and with radius the length traversed by the point along the straight
line during the one revolution... .”

[Archimedes: The works of Archimedes. Translated and edited by T. L. Heath,
(1897), published by Cambridge University Press, p.151 – 154]
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A.3 Pope Gregory the Great mentions the art of land surveying

One of the last mentions of the Roman art of land surveying is found in a
letter by Pope Gregory the Great from July 597:

Gregory to John, the Bishop of Syracuse:

“To prevent disputes about secular matters estranging the hearts of the faith-
ful, great care must be taken that a dispute may be settled as easily as pos-
sible. We have learnt from Caesarius, Abbot of the Monastery of St. Peter
at Baiae [at the Golf of Naples], that a serious dispute has arisen between
him and John, Abbot of the Monastery of St. Lucia at Syracuse, about cer-
tain lands. To prevent this being prolonged, we have decided that it must
be settled by a surveyor’s ruling. We have therefore written to Fantinus the
lawyer to send John the surveyor, who has set out from Rome for Palermo,
to your brotherhood. We accordingly urge you to go with him to the area
in dispute, and by presence of both parties on the spot to make an end to a
dispute kept up by both sides despite [?] a limitation of forty years. Whatever
is decided, your brotherhood should see that it scrupulously maintained, so
that henceforth no dispute about the matter may reach us.”

In another letter of this time You may read on a surveyor: “He is a judge, at
any rate of his own art; his law-court is deserted fields; you might think him
crazy, see him walk along tortuous paths. If he is looking for evidence among
rough woodland and thickets, he doesn’t walk like you or me, he chooses his
own way.”

[O. A. W. Dilke: The Roman Land Surveyors. Newton Abbot 1971, p. 46]

A.4 The old Chinese “Zhou Bi Suan Jing”

The oldest conserved Chinese mathematical-astronomical work, obviously
composed of different versions, starts with a dialogue between Chou Kung
(Duke of Chou) and his scholarly dialogue partner Shang Kao. Their con-
versation concerns the properties of the right-angled triangle, the gnomon,
the circle and the square, as well as measuring heights and distances. The
statement in sentence (3) that geometry has its origins in measuring is very
informative. Needham saw an indication here that the Chinese arithmetic-
algebraic way of thinking had already been expressed in earliest times [Need-
ham 1959, p. 23-34]. Also spend attention to the emphasis of the algebraic
aspect of the proof of Pythagoras’ theorem! Furthermore, the assignments of
geometrical objects to the cosmos are rather striking. (The numbering of the
paragraphs was introduced by later publishers.)

“(1) Of old, Chou Kung addressed Shang Kao, saying, ‘I have heard that the
Grand Prefect (Shang Kao) is versed in the art of numbering. May I venture
to enquire how Fu Hsi anciently established the degrees of the celestial sphere?
There are no steps by which one may ascend the heavens, and the earth is
not measurable with a foot-rule. I should like to ask you what was the origin
of these numbers?’
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(2) Shang Kao replied, ‘The art of numbering proceeds from the circle (yuan)
and the square (fang). The circle is derived from the square and the square
from the rectangle (lit. T-square or carpenter’s square; chu.)

(3) The rectangle originates from (the fact that) 9 · 9 = 81 (i.e., the multipli-
cation table or the properties of numbers as such).

(4) Thus, let us cut a rectangle (diagonally), and make the width (hou) 3
(units) wide, and the length (ku) 4 units) long. The diagonal (ching) between
the (two) corners will then be 5 (units) long. Now after drawing a square on
this diagonal, circumscribe it by half-rectangles like that which has been left
outside, so as to form a (square) plate. Thus the (four) outer half-rectangles
of width 3, length 4, and diagonal 5, together make (té chéng) two rectangles
(of area 24); then (when this is subtracted from the square plate of area 49)
the remainder (chang) is of area 25. This (process) is called “pilling up the
rectangles” (chi chü).

(5) The methods used by Yü the Great in governing the world were derived
from these numbers.

(6) Chu Kung exclaimed, ‘Great indeed is the art of numbering. I would like
to ask about the Tao of the use of the right-angled triangle.’

(7) Shang Kao replied, ‘The plane right-angled triangle (laid on the ground)
serves to lay out (works) straight and square (by the aid of) cords. The
recumbent right-angled triangle serves to observes hights. The reversed right-
angled triangle serves to fathom depths. The flat right-angled triangle is used
for ascertaining distances.

(8) By the revolution of a right-angled triangle (compasses) a circle may be
formed. By uniting right-angled triangles squares (and oblongs) are formed.

(9) The square pertains to earth, the circle belongs to heaven, heaven being
round and the earth square. The numbers of the square being the standard,
the (dimension of the) circle are (deduced) from those of the square.

(10) Heaven is like a conical sun-hat. Heaven’s colours are blue and black,
earth’s colours are yellow and red. A circular plate is employed to represent
heaven, formed according to the celestial numbers; above, like an outer gar-
ment, it is blue and black, beneath, like an inner one, it is red and yellow.
Thus is represented the figure of heaven and earth.

(11) He who understands the earth is a wise man, and he who understands
the heavens is a sage, knowledge is derived from the straight line. The straight
line is derived from the right angle. And the combination of the right angle
with numbers is what guides and rules the ten thousend things.’

(12) Chu Kung exclaimed ‘Excellent indeed!’ ...”

[J. Needham: Science and Civilisation in China, vol. 3: Mathematics and the
Sciences of the Heavens and the Earth. Cambridge 1959, p. 22-23]
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A.5 Cassiodorus Senator: Institutiones

Cassiodorus wrote his “Institutiones” in the monastery Vivarium founded
by him approx. between 531 and 562. They were directed at the monks at
the monastery, who are said to have introduced the theological sciences and
also the indispensible foundations of the worldly sciences. As justification for
studying the latter, he stated:

“However, in the second book we will briefly speak of the liberal arts and
sciences. A mistake is less likely in this area if we miss concerning the firmly
standing faith. However, what is found about such things in the Holy Bible
will be better understood due to the recognition given in advance. It is cer-
tain for once that the foundations of the worldly sciences lie at the beginning
of the theological sciences just like seeds: the teachers of the worldly sciences
have adapted them very cleverly in their own principles later. Perhaps we
have been able to prove this at an appropriate place when interpreting the
Psalter.”

[translated from German, K. S. Frank: Frühes Mönchtum im Abendland. Vol.
1: Lebensformen. Zurich and Munich 1975, p. 206-207.]

A.6 Preface of Albrecht Dürer addressing W. Pirckheimer

Extracts from [A. Dürer: Preface to “Four books on human proportions”
1528]

“However, nobody is forced to follow my teaching as if it were entirely perfect,
since human nature has not yet so decreased that someone else might not
invent something better. It would have to be a very thin mind that does not
dare invent something more, but is on the old path, only follows others and
does not allow himself to think further. It is obvious that the German painters
are not little skilled with their hands and using colours, although they have
lacked in the art of measuring, also perspective and similar... But without
correct proportion, no picture can be perfect... In order for this instruction to
also be better understood, I have published before a book of measurement,
namely concerning lines, planes, solids etc., without which this instruction
may not be thoroughly understood... Nobody should reject it since he will
soon understand all these things, because what is very easy cannot be very
artificial. But what is artificial that will need diligence, effort and work.”
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A.7 Alfred Meißner (1822 – 1885): Geschichte meines Lebens
(History of my Life, 1884)

Reprinted under the title [Meißner: “Ich traf auch Heine in Paris” (I also met
Heine in Paris), book publisher: Der Morgen, Berlin 1973]

(About studying at University of Prague 1837)

“’In the so called “first philosophical year”erything revolved around the pro-
fessor of mathematics, Ladislaus Jandera. Nobody could know in advance if
he would satisfy this fruitful enthusiast and if he did not satisfy him, one
was lost; because with a bad mark in mathematics it was impossible to rise.
We two – Hartmann1 and I – think nature has denied us all aptitude in this
area. We felt that we stayed behind; but instead of doubling our efforts in
this field, we slowed down and were full of bad premonitions regarding the
final result.

The terrifying Ladislaus Jandera was a very small old man, a figure like taken
from a fairy tale by E. T. A. Hoffmann. He was a Premonstratensian2, but did
not wear a monk’s robe, instead high mighty boots, a civil skirt, and because
he handled so much chalk a blue-white one like a miller. A terrible eager for
the holy sciences had been engraved in his face, the hard, angled face of a
gnome. If he had climbed up the teacher’s desk, which mostly happened with
a storming auditorium, he had the habit of crossing his arms across his chest
like Napoleon and to dominate the audience with wild looks until everything
was silent. In front of him was the so called ‘Me-mo-ria-le’, the chalk in his
hand, a short white stick under his arm, with which he used to demonstrate
and often started hammering onto the board as if possessed. He started his
speech with a yelling voice which passed through every storm and dissected
every word into its single syllables. ‘Cla-ri-ty’ was his motto, and ‘Now e-ve-
ry cook must un-der-stand this!’, his last word after every longer debate, with
which he paid himself the greatest tribute, according to him. Unfortunately,
I must confess that I very often did not grasp what every cook was supposed
to.

One time, when we laid hands onto a collection of old copper engravings
from the time of the French Revolution, we both made the discovery at
the same time that Professor Ladislaus Jandera bore the greatest similarity
to Robespierre. It was exactly the same head, only much older, the same
forehead, the same mouth. But I also cannot compare this man to nobody less
than the virtuous delegate of Arras. Jandera also was the personified virtue,

1 Moritz Hartmann (1821-1872), German-Bohemian poet, author, liberal journalist
and politician; poetry collection Kelch und Schwert (Goblet and sword; 1845), hist.
novel Der Krieg um den Wald (The war over the forest; 1850) and others.
2 Premonstratensian: cath. cleric order, founded in 1120. Chaplains teaching math-
ematics at universities had a long tradition going back to the Middle Ages. It was
customary until far into the 19th century in some countries.
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the justice and the incorruptibility itself, but terrifying, because he did not
accept anything else than his own principles and the individuals were nothing
in front of his eyes. Those, who did not pass him and his memorials, had ‘de-
mon-stra-ted their use-less-ness for the scien-ti-fic pro-fes-sion’. Thousands
of young people had already had to change their career, because they did not
suffice his standards. It did not even bother him in his sleep. The personal
use of all other professors could never ever have put him off an explicit ‘No’.
One nice sunny morning, Professor Ladislaus Jandera stood in front of his
board and explained us the theorem from teaching the ellipse, that the plane
of the curve AQMQ stands perpendicularly on the triangle KLM and that
any section, which is parallel to the base LBMD, must have its centre in the
axis KC in any case, if we put a plane KLM perpendicularly against the plane
RS through the axis KC of a cone.

Meanwhile, Hartmann still sat happy with his bank and read a book, which I
had gotten hold of yesterday and given to him today. Grabbes’ Faust and Don
Juan. Grabbe was one of our favourite poets. A ‘Quod erat demonstrandum!’
slammed into the air like a rooster’s cry awoke the reader from his dreams.
The terrifying nutcracker face up there had finished his line of argument.
‘And now’, the terrible continued in a seemingly mild tone – his sharp eye
may have followed the inattentive for the longest time – ‘and now (slowly
turning the pages in his catalogue, until he had found it), my dear Mortiz
Hartmann, come up to me and show your colleagues that you have understood
me. Hartmann, Moritz, come up!’

That was a shock that also made me, the friend, lose my joy, vision and
hearing! One would have to adhere to his call at all times. The storm of
expectation was already stirring amongst the immense number of students.
However, there was only a short appearance. Hartmann had gone up, drawn
some lines onto the board and murmured some words. Then he had taken the
first opportunity to escape and had dived into the sea of heads with a fire-
red face, whereas up there the evil goblin had thrown his hands up moaning
about so much ignorance.”

A.8 Preamble by F. Wolff

[F. Wolff: Descriptive geometry and its applications.Guide for teaching at
Royal Trade-Institute, second part, Berlin 1840] Extracts from the preface:

“The Mister-Really-Secret-Senior-Government-Councillor Beuth was first to
draw my attention to descriptive geometry and its importance, and later gen-
erously approved the means on behalf of a high ministry of finance, which were
drawn on when creating the work: hence, I must be grateful in two respects.
I also owe gratitude to Mister Senior-County-Building-Director Schinkel for
the great favour to advise us concerning several papers belonging to this de-
partment... Since the industry has decisively separated from what is given,
and, based on science, has experienced a more intellectual and daring boom,
we have been careful to provide the younger with a scientific education. In
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particular, the Prussian government has spent the greatest means to set up
a department in the trade-institute, which in regards to external facilities
and healthy thoughts, which it is originally based on, resembles the most
excellent features. Because of the application alone, the technician conducts
scientific studies, but only the application has meaning, which he practises
independently. The independent application demands two things: material
knowledge and educating the mind. First of all, we must state the most use-
ful for the moment from the sciences, but also touch on the least striking, as
far as there is enough time. What is an unapparent little detail nowadays,
may be of great importance tomorrow... The technician must not mention
that he is done with what he hears in the lectures, can read in books, or with
the applications, which he made himself. He should absorb all that, but then
strive further unbiased and independently... He should not have himself be-
witched by the gossip about theory and praxis. According to many people’s
opinion, this is nothing else than a convenient means to suspect what is in-
convenient, and to talk sugar-coated what they approve of... I have confirmed
that geometrical drawings are drawings of purely geometrical projections, to
which we add illumination and shadow, in order to obtain a more visual rep-
resentation, which simplifies understanding, but does not have the purpose
of illusion as perspective... Two things are part of geometrical drawings: the
skills to draw lines, to wash out and similar and the science of construction...
The still missing sections of this volume shall address perspective in respect to
the teachings of newer geometry, the stereometry and other technical applica-
tions, finally the methods to produce drawn objects in reality. Concerning my
own status as a private teacher, the circumstance that I taught some classes
at the trade-institute annually and also on descriptive geometry during some
weeks cannot be reason to spend significant amounts of time and effort after
an approximate estimate, which demands the execution of that plan despite
much groundwork. And if a year-long effort has only led to one position,
which does not even allow us to deny the effort spent on books, much less
to move otherwise, as it would be necessary and the private teacher has no
other opportunity than to live in suppressing conditions, as long as he is hale,
and to be a beggar, when he is old, it seems he is only now sufficiently been
warned to give his additional occupations a direction, which will be more
fruitful.”
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A.9 Hermann von Helmholtz: “The Origin and Meaning of Geo-
metrical Axioms”

Speech given in Heidelberg in 1870.

“The fact that a science like geometry can exist and can be developed as
it has been has always attracted the closest attention among those who are
interested in questions relating to the bases of the theory of cognition. Of all
branches of human knowledge, there is none which, like, it, has sprung as a
completely armed Minerva from the head of Jupiter; none before whose death-
dealing Aegis doubt and inconsistency have so little dared to raise their eyes.
It escapes the tedious and troublesome task of collecting experimental facts,
which is the province of the natural sciences in the strict sense of the word;
the sole form of its scientific method is deduction. Conclusion is deduced from
conclusion, and yet no one of common sense doubts that these geometrical
principles must find their practical application in the real world about us.
Land surveying as well as architecture, the construction of machinery no less
than mathematical physics, are continually calculating relations of space of
the most varied kind by geometrical principles; they expect that the success
of their constructions and experiments shall agree with these calculations;
and no case is known in which this expectation has been falsified, provided
the calculations were made correctly and with sufficient data.

Indeed, the fact that geometry exists, and is capable of all this, has always
been used as a prominent example in the discussion on that question, which
forms, as it were, the centre of all antitheses of philosophical systems, that
there can be a cognition of principles destitute of any bases drawn from ex-
perience. In the answer to Kant’s celebrated questions, ‘How are synthetical
principles a priori possible?’ geometrical axioms are certainly those exam-
ples which appear to show most decisively that synthetical principles are a
priori possible at all. The circumstance that such principles exist, and force
themselves on our conviction, is regarded as a proof that space is an a priori
mode of all external perception. He appears thereby to postulate, for this a
priori form, not only the character of a purely formal scheme of itself quite
unsubstantial, into...”

[Ewald, William B., ed., 1996. From Kant to Hilbert: A Source Book in the
Foundations of Mathematics, 2 vols. Oxford Uni. Press. 1876, The Origin and
Meaning of Geometrical Axioms, 663–88 , Extracts (p. 665-667 in vol. 2).]
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A.10 E. A. Abbott: “Flatland”

[E. A. Abbott: Flatland. A Romance of many dimensions. 1884] Extracts
(The somehow peculiar writing style adheres to the original)

“To the Inhabitants of Space in General And H. C. in Particular. This Work
is Dedicated By a Humble Native of Flatland In the Hope that Even as he
was Initiated into the Mysteries Of Three Dimensions Having been previously
conversant With Only Two So the Citizens of that Celestial Region May as-
pire yet higher and higher To the Secrets of Four Five or even Six Dimensions
Thereby contributing To the Enlargement 580 of the Imagination And the
possible Development Of the most rare and excellent Gift of Modesty Among
the Superior Races of Solid Humanity.

Imagine a vast sheet of paper on which straight Lines, Triangles, Squares,
Pentagons, Hexagons, and other figures, instead of remaining fixed in their
places, move freely about, on or in the surface, but without the power of rising
above or sinking below it... Our Women are Straight Lines. Our Soldiers and
Lowest Classes of Workmen are Triangles with two equal sides, each about
eleven inches long, and a base or third side so short (often not exceeding half
an inch) that they form at their vertices a very sharp and formidable angle.
Indeed when their bases are of the most degraded type, (not more than the
eighth part of an inch in size), they can hardly be distinguished from Straight
Lines or Women; so extremely pointed are their vertices...Our Middle Class
consists of Equilateral or Equal-sided Triangles. Our Professional Men and
Gentlemen are Squares (to which class I myself belong) and Five- Sided
Figures or Pentagons. Next above these come the Nobility, of whom there
are several degrees, beginning at Six-Sided Figures or Hexagons, and from
thence rising in the number of their sides till they receive the honourable title
of Polygonal, or many-sided. Finally when the number of the sides becomes
so numerous, and the sides themselves so small, that the figure cannot be
distinguished from a circle, he is included in the Circular or Priestley order,
and this is the highest class of all. It is a law of Nature with us that a male
child shall have one more side than his father, so that each generation shall
rise (as a rule) one step in the scale of development and nobility. But this
rule applies not always to the Tradesmen, and still less often of the Soldiers,
and to the Workmen; who indeed can hardly be said to deserve the name
of human Figures, since they have not all their sides equal... Chapter 13:
How I had a Vision of Lineland: ...I saw before me a vast multitude of small
Straight Lines (which I naturally assumed to be women) interspersed with
other Beings still smaller and of the nature of lustrous points — all moving
to and fro in one and the same Straight Line, and, as nearly I could judge,
with the same velocity... Approaching one of the largest of what I thought
to be Woman, I accosted her, but received no answer. A second and a third
appeal on my part were equally ineffectual. Losing patience, I brought my
mouth into a position full in front of her mouth so as to intercept her motion,
and loudly repeated my question ‘Woman, what signifies this concourse, and
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this strange and confused chirping, and this monotonous motion to and fro
in one and the same Straight Line?’ ‘I am no Woman’, replaid the small Line,
‘I am the Monarch of the world . . .”

We believe that these extracts sufficiently illustrate in what genius manner
social conditions were satirically criticised here together with the knowledge
of geometrical as up-to-date as it was at that time. The reference to the
method of illustration multiply used by Helmholtz cannot be missed.

A.11 Th. Storm3: “Der Schimmelreiter” (The Rider on the White
Horse)

Extract from the short story, translated by J. Schreiber.

“Well, he said, in the middle of the last century, or rather, to be more exact,
before and after the middle of that century, there was a dikemaster here who
knew more about dikes and sluices than peasants and landowners usually do.
But I suppose it was nevertheless not quite enough, for he had read little
of what learned specialists had written about it; his knowledge, though he
began in childhood, he had thought out all by himself. I dare say you have
heard, sir, that the Frisians are good at arithmetic, and perhaps you have
heard tell of our Hans Mommsen from Fahretoft, who was a peasant and
yet could make chronometers, telescopes, and organs. Well, the father of this
man who later became dikemaster was made out of this same stuff–to be
sure, only a little. He had a few fens, where he planted turnips and beans
and kept a cow grazing; once in a while in the fall and spring he also sur-
veyed land, and in winter, when the northwest wind blew outside and shook
his shutters, he sat in his room to scratch and prick with his instruments.
The boy usually would sit by and look away from his primer or Bible to
watch his father measure and calculate, and would thrust his hand into his
blond hair. And one evening he asked the old man why something that he
had written down had to be just so and could not be something different,
and stated his own opinion about it. But his father, who did not know how
to answer this, shook his head and said: ‘That I cannot tell you; anyway it
is so, and you are mistaken. If you want to know more, search for a book
to-morrow in a box in our attic; someone whose name is Euclid has written
it; that will tell you.’ The next day the boy had run up to the attic and soon
had found the book, for there were not many books in the house anyway,
but his father laughed when he laid it in front of him on the table. It was a
Dutch Euclid, and Dutch, although it was half German, neither of them un-
derstood. ‘Yes, yes’, he said, ‘this book belonged to my father; he understood
it; is there no German Euclid up there?’ The boy, who spoke little, looked
at his father quietly and said only: ‘May I keep it? There isn’t any German
one.’ And when the old man nodded, he showed him a second half-torn lit-

3 Theodor Storm (1817 – 1888) has been one of the most famous German writers
of his time. The story on The Rider on the White Horse is based on real events.
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tle book. “That too?” he asked again. “Take them both!” said Tede Haien;
“they won’t be of much use of you.” But the second book was a little Dutch
grammar, and as the winter was not over for a long while, by the time the
gooseberries bloomed again in the garden it had helped the boy so far that
he could almost entirely understand his Euclid, which at that time was much
in vogue. I know perfectly well, sir, the story teller interrupted himself, that
this same incident is also told of Hans Mommsen, but before his birth our
people here have told the same of Hauke Haien–that was the name of the boy.
You know well enough that as soon as a greater man has come, everything is
heaped on him that his predecessor has done before him, either seriously or
in fun. When the old man saw that the boy had no sense for cows or sheep
and scarcely noticed when the beans were in bloom, which is the joy of every
marshman, and when he considered that his little place might be kept up
by a farmer and a boy, but not by a half-scholar and a hired man, inasmuch
as he himself had not been over-prosperous, he sent his big boy to the dike,
where he had to cart earth from Easter until martinmas. “That will cure
him of his Euclid”, he said to himself. And the boy carted; but his Euclid he
always had with him in his pocket, and when the workmen ate their break-
fast or lunch, he sat on his upturned wheelbarrow with the book in his hand.”

[Th. Storm: Der Schimmelreiter. Berlin 1888]

A.12 K. Fladt: Euclid

Extract, translated by J. Schreiber.

“Therefore, there was no lack of attempts to represent geometry genetically.
However, the Euclidean manner of representation has enjoyed such a high
prestige for centuries that it was almost accepted as the matter itself that
we believed that the meaning of mathematics exhausted itself in its logical
consistency. Hence, mathematics should just be a formal subject at school,
i.e. there to educate the mind. A further consequence of this misunderstand-
ing was that schoolbooks for young pupils were created based on ‘Elements’,
the textbook of the students at Alexandria. And since it was not every stu-
dent’s cup of tea to distinguish form from core, mathematics was thought
to be difficult and it was believed that a special talent was necessary. All
the tribute, which extensive circles of our scholarly people paid to the adept
juniors of mathematical secret knowledge and are still paying, but also the
secret horror, which they feel towards mathematics, goes back to the effects
of the Euclidean ‘Elements’ at the end.”

[K. Fladt: Euklid, Berlin 1927]
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Ostwalds Klassiker, vol. 73, 1896.

[Euler c] Euler, L.: Drei Abhandlungen über Kartenprojektionen. Leipzig: Ost-
walds Klassiker vol. 93, 1898.

[Faux/Pratt 1979] Faux, J. D., Pratt, M. J.: Computational Geometry for Design
and Manufacture. John Wiley 1979.

[Feigl 1928] Feigl, G. 1928: Geschichtliche Entwicklung der Topologie. Jahres-
bericht der DMV 37, 1st part, 273-286.
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notices) German transl. Th. Lücke 1940, 2nd ed. 1952 Leipzig: Paul List.

[Libbrecht 1973] Libbrecht, U. 1973: Chinese Mathematics in the 13th. Century.
The Shu-shu chiu-chang of Ch’in Chiu-shao. Cambridge MA and London: MIT
Press.

[Liebmann 1901] Liebmann, H. 1901: Die Konstruktion des geradlinigen Dreiecks
der nichteuklidischen Geometrie aus den drei Winkeln. Leipziger Berichte 53,
477-491.

[Liebscher 1991] Liebscher, D. E. 1991: Relativitätstheorie mit Zirkel und Lineal.
Berlin: Akademie-Verlag.

[Lietzmann 1911] Lietzmann, W. 1911: Der pythagoreische Lehrsatz. Several edi-
tions, last print Leipzig: Teubner 1968.

[Listing 1847] Listing, J. B. 1847: Vorstudien zur Topologie. Göttinger Studien, 1.
Abt. 811-875.

[Listing 1862] Listing, J. B. 1862: Der Census räumlicher Complexe. Abhandlungen
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[Schreiber 2007] Albrecht Dürers Proportionenlehre aus der Sicht neuzeitlicher und
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A. 1983: Metamathematische Methoden in der Geometrie. Berlin etc.: Springer

[Scriba 1984] Scriba, C. J. 1984: Abriß der Geschichte der Analytischen Geome-
trie und Linearen Algebra. In: K. Endl: Analytische Geometrie und Lineare
Algebra. Gießen: Würfel-Verlag.

[Scriba 1985a] Scriba, C. J. 1985: Zur Konstruktion des regelmäßigen Neunecks
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[Vieta] Viète, F.: Opera mathematica, ed. F. van Schooten . Leiden: Elzevier 1646.
Reprint: New York- Hildesheim 1970.

[Villard de Honnecourt] cf. [Honnecourt]
[Vitruv] Ten Books on Architecture, transl. by I. D. Rowland, ed. by Th. Noble

Howe, Cambridge University Press 1999.
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Braunschweig: Vieweg (Ostwalds Klassiker, new series 4).
[Waerden 1962] van der Waerden, B. L. 1962: Science Awakening, 2nd ed. Gronin-

gen: Noordhoff.
[Wagner 1979] Wagner, D. B. 1979: An early derivation of the volume of a pyramid:

Liu Hui, Third Century A. D. Historia Mathematica 6, 164-188.
[Wallis 1693] Wallis, J.1693: OperumMathematicorum Volumen alterum. Oxoniae.

(Part on 5th. posatulate reprinted in [Sjöstedt 1968])
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amerikanischen Medium Herrn Slade und seine Hypothese intelligenter vierdi-
mensionaler Wesen. Leipzig.

[Wolff 1840] Wolff, F. 1840: Die beschreibende Geometrie und ihre Anwendungen.
Leitfaden für den Unterricht am Königlichen Gewerbe-Institut Berlin.

[Wußing 1969] Wußing, H. 1969: The Genesis of the Abstract Group Concept
(transl. from German) Cambridge MA: MIT Press 1984.

[Wußing/Arnold 1989] Wußing, H., Arnold, W. (Eds.) 1989: Biographien bedeu-
tender Mathematiker. Berlin: Volk und Wissen Publishers, Köln: Aulis.
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5.3.27 Some of Pacioli’s and Dürer’s examples of constructing letters . . . . . . . . 308
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al-Kūh̄ı, see Kūh̄ı
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al-Zarqāl̄ı, see Zarqāl̄ı
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at.-Tūs̄ı, see Tūs̄ı
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Brouwer, Luitzen Egbertus Jan
(1881–1966), 464, 514, 515, 558

Brunelleschi, Filippo (1377–1446), 285,
286, 318

Buache, Philippe (1700-1773), 368
Buffon, Georges-Louis Leclerc, Comte

de (1707–1788), 471
Bunyakovsky, Viktor Yakovlevich

(1804–1889), 442, 443, 474
Burger, Dionys (20th c.), 433
Bürgi, Jost (1552–1632), 257
Buridanus, Johannes (about 1300–

1358?), 313
Burmester, Ludwig (1840–1927), 397

Caesar, Julius (100–44 BC), 95
Campano di Novara, Giovanni (Jo-

hannes Campanus) (around 1260),
260

Cantor, Georg (1845–1918), 339, 390,
453, 474, 516

Cardano, Girolamo (1501–1576), 137,
183, 257, 410, 411, 557

Carnot, Lazare Nicolas Marguerite
(1753–1823), 366, 394, 395, 401,
403, 474, 477

Cartan, Èlie Joseph (1869–1951), 473
Casorati, Felice (1835–1890), 421, 474
Cassini, Giovanni Domenico (franz.

Jean Dominique) (1625–1712),
270

Cassiodorus (480?–575?), 95, 100, 223,
224, 252

Catalan, Eugéne Charles (1814–1894),
466, 470

Cauchy, Augustin-Louis (1789–1857),
392, 403, 405, 406, 438, 442, 443,
456, 470, 472, 474, 488, 510, 512,
516

Cavalieri, Bonaventura (1598?–1647),
314, 336, 349, 379, 381, 384

Cayley, Arthur (1821–1895), 431, 444,
447, 448, 474

Celsius, Anders (1701–1744), 385
Ceulen, Ludolph van (1540–1610), 178,

263
Ch’in Chiu-Shao, see Qin Jiushao
Chang Héng (78–139), 127
Charlemagne (742–814), 220, 224
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Chasles, Michel (1793–1880), 68, 357,
394, 396, 403, 405, 446, 474

Chebyshev, Pafnuti Lvovich (1821–
1894), 400, 511

Christoffel, Elwin Bruno (1829–1900),
421, 422, 474

Chu Shih-Chieh (end 13th c.), 133
Cicero, Marcus Tullius (106–43 BC),

79, 95
Clairaut, Alexis Claude (1713–1765),

352, 377, 379, 415
Clapeyron, Benoit-Pierre-Émile

(1799–1864), 465
Clavius, Christoph (original name

Schlüssel uncertain) (1537–1612),
136, 182, 260, 261, 263, 264, 337,
373

Clifford, William Kingdon (1845–1879),
432, 436, 444, 446, 474

Codazzi, Delfino (1824–1873), 421, 423,
474

Columella (1st c. AD), 96, 97
Commandino, Federigo (1509–1575),

313
Conelly, R. (20th c.), 533
Conway, John Horton (20th c.), 543
Copernicus (Koppernigk), Nicolaus

(1473–1543), 70, 87, 88, 113, 256,
268, 318, 332

Cousin, Jean (around 1500–1589), 289
Cousinery, Barthèlemy-Édouard

(1790–1851), 395
Coxeter, Harold Scott Macdonald

(1907–2003), 462, 545
Cramer, C. (19th c.), 467
Cramer, Gabriel (1704–1752), 345, 443
Cremona, Luigi (1830–1903), 399
Crofton, Morgan William (1826–1915),

472
Cruquius, Samuel (1678–1754), 368
Cusanus, Nicolaus (N. of Kues, alias N.

Chrypffs) (1401–1464), 275
Czuber, Emanuel (1851–1925), 472

D’Alembert, Jean-Baptist le Rond
(1717–1783), 436

Dali, Salvador (1904–1989), 546, 551,
553, 555, 558

Danzer, Ludwig (1927–2011), 524

Darboux, Jean Gaston (1842–1917),
421

Dedekind, Richard (1831–1916), 339,
421, 463, 474, 503

Dehn, Max (1878–1952), 15, 465, 468,
495, 508

Democritus of Abdera (460–371 BC),
313, 349, 381

Derand, François (1588–1644), 368

Desargues, Girard (1591–1661), 356–
358, 360–362, 387, 403, 502, 504,
505

Descartes, René (1596–1650), 46, 81,
315, 333–343, 345, 347, 350, 353,
354, 356, 358, 360, 379, 456, 504

Diesterweg, Friedrich Adolf Wilhelm
(1790–1866), 392

Dieudonné, Jean (1906–1992), 377

Dini, Ulisse (1845–1918), 421, 422, 474

Diogenes, Laeërtius (around 275), 36

Diophantus (Diophant) (about 250),
86, 90, 436

Dirichlet, Peter Gustav Lejeune
(1805–1859), 405, 538

Dodgson, Charles Lutwidge (known as
Lewis Carroll) (1832–1898), 432

Dositheus (around 250 BC), 76

Du Carla (18th c.), 368

Dühring, Karl Eugen (1833–1921), 432

Dupain-Triel, Jean Louis (1722–1805),
368

Dupin, Pierre-Charles-François
(1784–1873), 373, 394, 416, 421,
474

Dürer, Albrecht (1471–1528), 95, 249,
250, 255, 256, 341, 343, 368, 380,
381, 385, 523, 544

Ehler, Carl Leonhard Gottlieb (18th c.),
454

Einstein, Albert (1879–1955), 490,
518–522, 558

Engel, Friedrich (1861–1941), 374, 443,
451

Engeler, Erwin (20th c.), 509, 538

Enneper, Alfred (1830–1885), 421, 422

Erasmus of Rotterdam (1466–1536),
261
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Eratosthenes of Cyrene (276?–194?
BC), 70, 72, 74, 93, 104, 113, 270

Ernst, Bruno (J. A. F. Rijk) (born
1926), 545

Escher, Maurits Cornelis (1898–1972),
489, 544–547, 552, 558

Euclid (ca. 360–ca. 290 BC), 7, 11, 28,
31, 34, 36, 38, 41, 42, 44–48, 53,
54, 56–61, 65–68, 70, 79, 84, 86,
90, 97, 104, 106, 110, 136, 166,
178, 182, 183, 189, 227, 228, 231,
239, 259, 260, 292, 310, 335, 373,
374, 377, 392, 537

Eudemus of Rhodes (ca. 320 BC), 31,
34, 35, 38, 78, 87, 104

Eudoxus of Cnidus (around 408–around
347 BC), 44, 45, 47, 54, 56, 91,
104, 182

Euler, Leonhard (1707–1783), 332, 338,
345–347, 355, 373, 375, 379, 400,
416, 418, 454–456, 474

Eutocius of Ascalon (born ca. 480),
101, 104

Faber Stapulensis (Jacques Lefèvre
d’Etaples) (around 1455–1537),
396, 397

Fano, Gino (1871–1952), 505
Fasbender, Eduard (1816–1892), 466
Faulhaber, Johannes (1580–1635), 337
Fermat, Pierre de (1607 or 1608–1665),

68, 315, 317, 334–338, 342, 343,
352–354, 356, 358, 360, 379,
382–384, 465

Fernel, Jean (1497–1558), 270
Fibonacci, see Leonardo of Pisa
Fiedler, Wilhelm (1832–1912), 395
Filarete, Antonio di Pietro Averlino

(around 1400–1469), 286
Fine, Oronce (Orontius Fineaus)

(1494–1555), 268
Fischer, Ernst (1875–1954), 510
Fischer, Otto (1861–1916), 532
Flamsteed, John (1646–1719), 275
Folkerts, Menso (born 1943), 225
Föppl, August (1854–1924), 441, 466
Francesca, Piero della (around 1420–

1492), 255–257, 264, 286, 297,
302, 304, 318

Fréchet, Maurice (1878–1973), 512

Fredholm, Ivar (1866–1927), 510

Frege, Gottlob (1848–1925), 432, 499,
502, 508

Frenet, Jean Frédéric (1816–1900), 415,
474

Freudenthal, Hans (1905–1990), 508

Frézier, Amédée (1682–1773), 368

Friedrich II of Hohenstaufen (1194–
1250), 265

Frischauf, Johannes (1837–1924), 431

Frisius (i. e. the Friesian), see Gemma
Frisius

Fröbel, Friedrich (1782–1852), 392

Frontinus (1st c. AD), 96

Galilei, Galileo (1564–1642), 238, 241,
317, 318, 332, 336

Gauß, Carl Friedrich (1777–1855), 355,
390–393, 399, 405, 410, 412, 413,
417, 418, 420–432, 438, 443, 453,
458, 464, 466–468, 474, 481, 484,
499, 511, 512, 528, 537

Geminus (ca. 70 BC), 87

Gemma Frisius (Reiner Steen)
(1508–1555), 257, 268, 270, 318

Gerard of Cremona (1114?–1187), 172,
231, 234, 238

Gerbert d’ Aurillac (Pope Silvester II.),
227

Gergonne, Joseph (1771–1859), 390,
394, 403, 414, 465, 468, 474

Gericke, Helmuth (1909–2007), 225

Gerling, Christian Ludwig, 468

Germain, Sophie (1776–1831), 421

Gerwien, Paul (19th c.), 467, 468, 494,
507

Ghetaldi, Marino (1556–1626), 337

Ghiberti, Lorenzo (1381–1455), 290,
291

Gibbs, Josiah Willard (1839–1903), 441

Gilly, David (1748–1808), 366

Giotto di Bondone (around 1266–1337),
256, 304

Goldberg, M. (20th c.), 533

Gournerie, Jules René Maillard de la
(1814–1883), 397, 398

Gracilis, Stephan (16th c.), 260
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Graßmann, Hermann Günther
(1809–1877), 393, 421, 439–444,
474

Grebe, Ernst Wilhelm (1804–1874),
466, 474

Gresham, Thomas (1519–1579), 257
Grosseteste, Robert (1168?–1253), 240,

242
Grunert, Johann August (1797–1872),

425, 429
Grynaeus, Simon (1493–1541), 261
Gu Yingxian (Ku Ying-Hsiang) (16th

c.), 134
Gude, Marquard (1635–1689), 96
Gudermann, Christoph (1798–1852),

512
Guidobaldo del Monte (1545–1607),

289
Guidobaldo, Herzog von Urbino

(around 1470–1508), 291
Guldin, Paul Habakuk (1577–1643), 86,

314, 349, 373
Günther, Siegmund (1848–1923), 399
Guo Shojing (Kuo Shou-Shing)

(1231–1316), 133
Guthrie, Francis (1831–1886), 457
Guthrie, Frederick (1833–1886), 457,

458

H. abash al-Hāsib, al-Marzawi (770?–
870?), 185

Hachette, Jean Nicolas Pierre
(1769–1834), 394

Hamilton, William Rowan (1805–1865),
391, 437–441, 443, 446, 456, 474

Hammer, Ernst Hermann Heinrich
(1858–1925), 399

Hankel, Hermann (1839–1873), 166,
443, 499

Hansteen, Christopher (1784–1873),
438

Harmon, Leon D. (1922–1982), 555
Harnack, Carl Gustav Axel (1851–

1888), 516
Harriot, Thomas (about 1560–1621),

277
Harris, John (around 1667–1719), 343
Harrison, John (around 1667–1719),

270

Hausdorff, Felix (1868–1942), 489, 513,
514, 517, 558

Haüy, René-Just (1743–1822), 451, 474
Hayt

¯
am, Ibn al- (965–ca. 1040), 178

Heaviside, Oliver (1850–1925), 441
Heawood, Percy John (1861–1955), 458
Hecataeus of Miletus (550?–485?), 32,

34
Hecker, Zwi (born 1931), 547
Heesch, Heinrich (1906–1995), 489, 495,

558
Hein, Piet (1905–1996), 557
Heine, Eduard (1821–1881), 513
Heisenberg, Werner (1901–1976), 557
Helmholtz, Hermann v. (1821–1894),

420, 431, 433, 435, 436, 446, 499,
501

Helmodus (13rd c.), 231
Herbart, Johann Friedrich (1776–1841),

392, 393
Herman of Carinthia (12th c.), 231
Hermite, Charles (1822–1901), 413, 510
Hero of Alexandria (between 1st c. BC

and 250, probably around 100
AD), 103, 104, 114, 125, 138, 167,
172, 174, 176, 183, 189, 214, 216,
236, 249, 254

Herodotus of Halikarnassos (ca.
500–424 BC), 31

Hessel, Johann Friedrich (1796–1872),
451, 474

Hessenberg, Gerhard (1874–1925), 505
Hierholzer, Carl (1840–1871), 457
Hilbert, David (1862–1943), 56, 339,

423, 431, 434, 468, 474, 489,
494–496, 498–505, 507–511, 522,
558

Hill, M. J. M (1856–1929), 468
Hindenburg, Karl Friedrich (1741–

1808), 376
Hipparchus (around 180–127 BC), 21,

88, 92, 161, 185
Hippasus of Metapontum (around 450

BC), 38, 41, 104
Hippocrates of Chios (ca. 450–ca. 400

BC), 28, 47, 52, 56, 104, 105
Hirsch, see Meyer Hirsch
Hjelmselv, Johannes (1873–1950), 411,

505, 509
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Hobbes, Thomas (1588–1670), 333
Hoffmann, Immanuel Carl Volkmar

(1825–1905), 432
Hogarth, William (1696–1764), 361
Holditch, Hamnet (1800–1867), 531,

561, 562
Honnecourt, Villard (de or d’) (13rd c.),

243, 252
Hoüel, Guillaume-Jules (1823–1886),

428
Hudde, Jan (1628–1704), 342
Hugo of St. Victor (1096–1141),

231–233, 252, 253
Hūlāgū Khān (also: Hülegu, Hülegü)

(1217?–1265), 168
Hunger, Herbert (20th c.), 103
Huygens, Christiaan (1629–1695), 333,

349, 352
Hyginus (about 100 AD), 96
Hypatia of Alexandria (about 370–415),

90, 100
Hypsicles (2nd c. BC), 82

Iamblichus of Chalcis (about 285–about
330), 38

Imamura Chishō (Imamura Tomoaki,
about 1639), 143

Isidorus of Miletus (6th c.), 100
Isomura Kittoku (Isomura Yoshinori,

about 1600 until after 1684), 143,
146, 147

Jabir ibn Aflah (Geber) (1st half 12nd

c.), 234
Jacobi, Carl Gustav Jacob (1804–1851),

392, 405, 422
Jamnitzer, Wenzel (1508–1585), 284,

303, 318, 327
Jartoux, Pierre (1670–1720), 146
Jawhari, Isma’il ibn Mammad al- (ca.

830), 178
Joachimsthal, Ferdinand (1818–1861),

422
Johannes de Lineriis (de Lignères) (1st

half 14th c.), 234
Johannes de Muris (1st 14th c.), 239
Johannes de Sacrobosco (John of

Holywood, 1200?–1256?), 233
Johannes Pediasimus (13th c.), 103

Johannes von Gmunden (about
1380–1442), 234, 236, 252, 266

John of Gmunden, see Johannes of
Gmunden

John of Lignères, see Johannes de
Lineriis

John of Murs, see Johannes de Muris
John of Sacrobosco, see Johannes de

Sacrobosco
Jordan, Camille (1838–1922), 392, 448,

449, 453, 454, 463, 474
Jordan, Ernst Pasqual Wilhelm

(1902–1980), 512
Joshua Kirby (18th c.), 361
Justinian, Emporer of Byzanz

(482–565), 83, 100, 224

Kadeřávek, Frantǐsek (1885–1961), 532
Kant, Immanuel (1724–1804), 429
Karaj̄ı, Abū Bakr al- (died about

1029?), 131
Karsten, Wenceslaus Johann Gustav

(1732–1787), 366
Kāshān̄ı, al-, see Kāsh̄ı
Kāsh̄ı, Ghiyāth al-Dı̄n Jamsh̄ıd al-

(gest. 1429), 176, 178, 184, 188,
189, 217

Kästner, Abraham Gotthelf (1719–
1800), 366, 375

Kepler, Johannes (1571–1630), 67, 81,
255, 256, 263, 266, 270, 277–281,
301, 303, 313–318, 321, 322, 327,
329, 334, 336, 468, 470, 523, 524,
562

Khayyām, al-, cUmar ibn Ibrāh̄ım,
(1048?–1131?), 182, 183

Khwārizmı̄, Muh. ammad ibn Mūsā, (ca.
780–850), 127, 172, 176, 178, 183,
185, 215, 216

Killing, Wilhelm (1847–1923), 431, 499,
507

Kirkman, Thomas Penyngton (1806–
1895), 464

Klügel, Georg Simon (1739–1812), 375
Klein, Felix (1849–1925), 423, 430–434,

436, 448–451, 453, 463, 474,
499–503, 507, 508, 516, 519, 529

Krüger, Johannes Heinrich Louis
(1857–1923), 399
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Krafft, Fritz (born 1935), 31
Krames, Josef Leopold (1857–1923),

395
Kruppa, Erwin Wilhelm (1885–1967),

395
Kublai Khan (1215–1294), 134
Kuen, Theodor (2nd half 19th c.), 422
Kūh̄ı, Abū Sahl al- (ca. 975), 174, 176,

189, 216
Kuo Shou-Shing, see Guo Shojing

La Hire, Laurent de (1606–1656), 356
La Hire, Philippe de (1640–1718), 356
Lacher (or Lechler) Lorenz (16th c.),

292
Lacondamine (La Condamine), Charles

Marie de (1701–1774), 385
Lacroix, Sylvestre François (1765–

1843), 347, 373, 394, 405
Laërtius, see Diogenes
Lagrange, Joseph Louis (1736–1813),

166, 346, 348, 355, 416, 437, 442,
474

Laguerre, Edmond Nicolas (1834–1886),
448

Lamé, Gabriel (1795–1870), 394, 465
Lambert, Johann Heinrich (1728–1777),

286, 339, 354, 355, 361, 366,
375–377, 379, 385, 397, 412, 413,
427, 429, 475, 478

Lanz, Johannes (1564–1638), 260
Laplace, Pierre Simon (1749–1827),

471, 473
Laßwitz, Kurd (1848–1910), 432
Lautensack, Heinrich (16th c.), 310
Le Witt, Sol (1928–2007), 546
Lebesgue, Henri (1875–1941), 510, 511,

514, 516, 558
Leblanc, Walter (1932–1986), 546
Legendre, Andrien-Marie (1752–1833),

377, 387, 388, 405, 418, 420, 425,
429, 456, 504

Leibniz, Gottfried Wilhelm (1646–
1716), 144, 146, 332, 339, 342,
350, 351, 353, 354, 360, 379, 441,
443, 453, 455, 456, 459

Lemoine, Emile (1840–1912), 414, 415,
466, 467, 474, 537

Lencker, Hans (ca. 1530–1585), 310

Leon of Byzantium (ca. 400–ca. 350
BC), 56, 101

Leonardo da Vinci (1452–1519), 183,
250, 256, 284, 285, 289, 297, 302,
304, 367

Leonardo of Pisa (Fibonacci) (ca.
1170–after 1240), 233, 252

Levi ben Gerson (1288–1344), 267

Levine, D. (20th c.), 524

l’Huiller (l’Huilier), Simon Antoine
Jean (1750–1849), 455, 456, 462,
466, 468

Li Yeh, org. Li Chih (1192–1279), 133

Lidonne, Nicolas L. (beginning of 19th

c.), 468

Lie, Sophus (1842–1899), 423, 448, 450

Liebmann, Heinrich (1874–1939), 423,
435

Lindemann, Ferdinand v. (1852–1939),
413, 433, 499

Liouville, Joseph (1809–1882), 416, 421

Lipschitz, Rudolf (1832–1903), 421,
431, 474

Listing, Johann Benedikt (1808–1882),
455–459, 462–464, 468, 474

Lobachevsky, Nikolai Ivanovich (1793–
1856), 376, 378, 392, 427–431,
435, 474, 499

Lorentz, Hendrik Antoon (1853–1928),
518

Lotze, Hermann (1817–1881), 432

Loyd, Sam (1841–1911), 557

Lüroth, Jakob (1844–1910), 457

MacLaurin, Colin (1698–1746), 343,
345

Maestlin, Michael (1550–1631), 263

Mahāv̄ıra (about 850), 152

Mainardi, Gaspare (1800–1879), 421,
423, 474

Majr̄ıt̄ı, Maslama al- (10th c.), 92, 234

Malapertius (Maupertuis) Charles
(1581–1630), 260

Mallet, Alain Manneson (about
1730–1806), 356, 367

Manjula (about 930), 162

Marcellus Claudius (died 207 BC), 74

Marinus of Tyre (about 120 AD), 93
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Martianus Capella (about 450), 100,
221, 223

Mascheroni, Lorenzo (1750–1800), 183,
412, 414, 480, 538

Matthias Corvinus, King of Hungary
(died 1490), 266

Maupertuis, Pierre Louis Moreau de
(1698–1759), 385

Maurolico, Francesco (1494–1575), 266,
268

Maxwell, James Clerk (1831–1879), 464

Meißner, Alfred (1822–1885), 392

Menaechmus (about 350 BC), 47, 53,
81, 104

Menelaus of Alexandria (about 100
AD), 185, 234

Menger, Karl (1902–1985), 515

Mercator, (Kauffmann), Nicolaus
(1619?–1687), 275, 277, 318

Mercator, (Kremer), Gerard (1512–
1594), 255, 256, 275

Mersenne, Marin (1588–1648), 333,
352, 356, 360, 384

Metochites, Theodore (1260?–1332),
102

Meusnier de la Place, Jean-Baptiste
(1754–1793), 394, 416, 423, 474

Meyer Hirsch (1765–1851), 468

Michelson, Albert Abraham (1852–
1931), 518

Miller, Jeffrey Charles P. (1906–1981),
469, 557

Minding, Ernst Ferdinand (1806–1885),
418, 421, 422

Minkowski, Hermann (1864–1909), 424,
511, 513, 518–520, 535, 558

Möbius, August Ferdinand (1790–
1868), 405, 406, 441, 446, 447,
449, 452–454, 458, 462, 463, 471,
474

Moerbeke, Wilhelm von (1215?–1286),
236

Mohr, Georg (1640–1697), 411, 414,
480

Mollweide, Karl Brandan (1774–1825),
399

Monge, Gaspard (1746–1818), 295, 297,
348, 361, 366, 368, 370–373, 379,

393–397, 401, 403, 415–417, 437,
474, 475, 477, 550

Morellet, François (born 1926), 546
Morgan, Augustus de (1806–1871), 457
Morley, Edward Williams (1838–1923),

518
Moulton, Forest Ray (1872–1952), 505,

559
Müller, Conrad Heinrich (1878–1953),

159

Nagata, Jun-iti (1925–2007), 515
Nake, Frieder (born 1938), 540
Napier (Neper), John (1550–1617), 256,

257, 266, 268
Napoleon Bonaparte (1769–1821), 332,

390, 412
Naudé, Philip, the Younger (1684–

1747), 165
Nayr̄ız̄ı, Abū-Abbās an- (Anaritius, ca.

900), 218
Nees, Georg (born 1926), 540
Neugebauer, Otto (1899–1990), 22, 23
Neumann, A. and N. (20th c.), 547
Neumann, John (Johan, Janos) of

Margitta (1903–1957), 510, 512,
522, 543

Newton, Isaac (1643-1727), 81, 144,
332, 333, 338, 342, 343, 345–347,
351, 353, 354, 379, 420, 423, 520

Niceron, Jean François (1613–1646),
290

Nunez, Pedro (Petrus Nonius)
(1502–1578), 275, 318

Oenopides of Chios (about 450–about
400 BC), 56

Oersted, Hans Christian (1777–1851),
437, 438, 474

Olivier, Théodore (1793–1853), 394
Oresme, Nicole (about 1323–1382), 314,

336
Orme, Philibert de l’ (auch Delorme,

16th c.), 368

Pacioli, Luca (about 1445–1517),
302–304, 318

Padoa, Alessandro (1868–1937), 499,
508

Pamphile (1st c. AD), 36
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Pappus of Alexandria (about 320), 50,
52, 68, 69, 86, 104, 106, 341, 411,
504

Pascal, Blaise (1623–1662), 332, 356,
358, 360, 379, 403, 504

Pasch, Moritz (1843–1930), 182, 474,
500–502, 505

Peano, Giuseppe (1858–1939), 443, 453,
474, 499, 500, 502, 507, 508, 510,
516, 558

Peaucellier, Ch. N. (1832–1913), 399
Pélerin (Viator), Jean (1445?–1522?),

289
Peletier (Peletarius, Jacques (1517–

1582), 262
Penrose, Roger (born 1931), 523, 524,

552, 558
Perret de Chambéry, Jacques (16-17th

c.), 289
Pestalozzi, Johann Heinrich (1746–

1827), 392
Peterson, Karl Mikhailovich (1828–

1887), 423
Petrie, John Flinders (1907–1972), 462
Petrus de Corbeia (13th c.), 243
Peurbach, Georg von (1423–1461), 234,

236
Pfinzing, Paul (ca. 1600), 310
Pieri, Mario (1860–1913), 499, 507
Pitiscus, Bartholomaeus (1561–1613),

265, 268, 318
Pitot, Henri (1695–1771), 352
Plateau, Joseph Antoine Ferdinand

(1801–1883), 416
Plato (427–347 BC), 28, 42–45, 56, 86,

102, 104, 277, 283
Plato of Tivoli (about 1150), 221, 223,

233, 234, 249
Playfair, John (1748?–1819), 60
Pliny the Elder (23?–79 AD), 83
Plücker, Julius (1801–1868), 345, 403,

405, 406, 436, 474, 478, 479
Pohlke, Karl Wilhelm (1810–1876),

397, 398, 475
Poincaré, Henri (1854–1912), 392, 431,

433, 434, 463, 464, 468, 473, 474,
483, 486

Poinsot, Louis (1777–1859), 394, 437,
446, 469, 470, 474

Poncelet, Jean Victor (1788–1867), 394,
395, 400, 403, 406, 412, 446, 448,
474

Porphyry (ca. 234–about 302), 38
Pothenot, Laurent (died 1732), 270
Potier, Joseph Hubert (1803–?), 397
Pozzo, Andrea (1642–1700), 363
Proclus, Diadochus (ca. 410–485), 31,

34, 35, 48, 68, 86, 87, 102, 104,
236, 249, 261, 315

Psellos, Michael (1018–1080?), 102
Ptolemaeus, Claudius (ca. 90–ca. 168

AD), 49, 60, 82, 87–94, 101, 102,
104, 114, 115, 127, 134, 161, 167,
185, 234, 236, 271–273

Ptolemy, see Ptolemaeus
Pythagoras (ca. 580–ca. 500 AD), 18,

28, 38, 40, 61, 104, 123, 124, 138,
157, 167, 215, 218, 294, 480

Qin Jiushao (Ch’in Chiu-Shao,
1202–1261), 126, 131–133, 138,
214

Qurra, T
¯
ābit ibn (826–901), 178, 182

Ramée, Pierre de la (Petrus Ramus,
1515–1572), 263

Ratdolt, Erhard (1447–1528), 258
Recorde, Robert (1510?–1558), 257
Regiomontanus (Johannes Müller)

(1436–1476), 87, 165, 221, 234,
236, 265, 266, 268, 292, 318

Reinhardt, Karl (1895–1941), 495
Reuleaux, Franz (1829–1905), 400
Reutersvärd, Oscar (1915–2002), 545,

552, 557
Rhabdas, Nicolaus (died 1350), 102
Rheticus, Georg Joachim (1514–1576),

268
Ricci, Matteo (1552–1610), 260, 270
Riemann, Bernhard (1826–1866), 393,

420–422, 424, 430, 432, 435, 436,
445, 446, 449, 451, 463, 474, 516,
518

Ries, Adam (1492–1559), 256, 257
Riesz, Friedrich (1880–1956), 510, 514,

558
Riley, Bridget (born 1931), 546
Rinow, Willi (1907–1979), 513
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Robert of Chester (about 1150), 231,
234

Robert the Englishman, see Robertus
Anglicus

Robertus Anglicus (or Johannes)
(about 1280), 233

Roberval, Gilles Personne (1602–1675),
349, 350, 356, 379, 381, 382, 437

Robinson, R.M. (20th c.), 523, 558
Rodler, Hieronymus (16th c.), 289, 310,

311
Rodrigues, Olinde (1794–1851), 446
Roriczer, Matthäus (Mathias, Mathes;

Son of Lorenz, ca. 1450–ca. 1500),
246, 248–250, 252, 254, 264, 292,
318

Roriczer, Wenzel (died 1419), 246
Rubik, Ernö (born 1944), 557
Rudolff, Christoph (1500?–1549?), 436

Saccheri, Girolamo (1667–1733), 374,
375, 379

Sachs, Abraham (1914–1983), 22, 23
Sanson d’ Abbéville, Nicolas (1600–

1667), 275
Sartorius von Waltershausen, Wolfgang

Freiherr v. (1809–1876), 428
Savasorda, see Abraham bar H. iyya
Savile, Henri (1549–1622), 263, 373,

374
Scaliger, Joseph Justus (1540–1609),

263
Schauder, Juliusz Pawel (1899–1609),

515
Schickard(t), Wilhelm (1592–1635),

263, 270
Schinkel, Karl Friedrich (1781–1841),

366
Schläfli, Ludwig (1814–1895), 444, 463,

474
Schlegel, Victor (1843–1905), 445
Schmidt, Erhard (1876–1959), 510, 558
Schmitt, Peter (geb. 1947), 524
Schmuttermayer, Hans (about 1450–

after 1517), 246, 248, 252,
292

Schooten, Frans van (about 1615–1660),
342

Schopenhauer, Arthur (1788–1869), 532

Schreiber, Guido (1799–1871), 397
Schreiber, Otto (2nd half 19th c.), 316
Schreiber, Peter (born 1938), 509
Schumacher, Heinrich Christian

(1780–1850), 417, 429, 466, 481,
484

Schur, Friedrich (1856–1923), 507, 508,
559

Schütte, Kurt Wilhelm (1909–1998),
528

Schwarz, Hermann Amandus (1843–
1921), 398, 442, 443, 474, 510,
521

Schweikart, Ferdinand Karl (1780–
1857), 427–429

Scriba, Christoph (1929–2013), 51
Seeland, Horst (born 1943), 509
Segner, Johann Andreas (1704–1777),

261, 392
Seki Kōwa (Seki Takakazu, 1640/42–

1708), 140
Serret, Joseph Alfred (1819–1885), 415,

474
Sevastyanov, Jakov Alexandrovich

(1796–1849), 397
Shamos, Michael Ian (born 1947), 537
Shi Huang Di (Shih Hoang-ti), the

‘Yellow Emperor’ (about 200 BC),
119

Simplicius (about 520 AD), 178
Smirnov, Jurij M. (1921–2007), 515
Snell(ius), Willebrord van Royen

(1580–1626), 165, 263, 268, 270,
275, 435, 437

Snell, Bruno (1896–1986), 30
Soto, Jesus Rafael (1923–2005), 546
Stab(ius), see Stöberer
Stäckel, Paul (1862–1919), 374
Staudt, Christian v. (1798–1867), 401,

402, 405–409, 462, 474, 502
Steiner, Jakob (1796–1863), 183, 339,

392, 403, 405, 412, 414, 465, 466,
471, 472, 480

Steinhardt, P. J. (20th c.), 524
Steinitz, Ernst (1871–1928), 471
Stevin, Simon (1548–1620), 133, 257,

268, 286, 289, 303, 313, 437
Stifel, Michael (1487?–1657), 436
Stirling, James (1692–1770), 343, 345
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Stöberer (Stab), Johann (about
1450–1522), 275

Stoer, Lorenz (ca. 1540–ca. 1620), 285
Stolz, Otto (1842–1905), 499, 504, 516
Strabo (about 64/63 BC–20 AD), 93
Study, Eduard (1862–1930), 446
Swineshead, Richard (14th c.), 336
Sylvester, James Joseph (1814–1897),

400, 444, 447, 448, 472, 474
Szczerba, L.W. (20th c.), 505
Szmielew, Wanda (1918–1976), 505

T
¯
ābit ibn Qurra, see Qurra

Tait, Peter Guthrie (1831–1901), 464
Takebe Hikojirō Kenkō (Takebe

Katahiro, 1664–1739), 144–147,
151, 214

Tammes P.M. L. (20th c.), 526
Tarry, Gaston (died 1913), 457
Tarski (Teitelbaum), Alfred (1901–

1983), 509
Tartaglia (Fontana), Nicolo (1499?–

1557), 183, 411
Taurinus, Franz Adolph (1794–1874),

427, 429
Taylor, Brook (1685–1731), 289, 361
Thales of Miletum (about 625–547 BC),

28, 31, 34–38, 56, 104, 105, 270
Theaetetus (about 414–369? BC), 45,

54, 56, 104
Theodosius of Bithynia (about 100

BC), 90, 234
Theodosius, Roman Emperor (347–

395), 100
Theon of Alexandria (ca. 330–ca. 400),

63, 90, 104, 236
Thomas of Aquin (1225/26–1274), 228,

236
Thompson, d’Arcy Wentworth

(1860–1948), 524
Thomson, William (Lord Kelvin)

(1824–1907), 464
Thue, Axel (1863–1922), 535
Tissot, Nicolas Auguste (1824–1904),

399
Torricelli, Evangelista (1608–1647),

336, 349, 384, 481
Tūs̄ı, Nas.̄ır al-Dı̄n at.-Tūs̄ı (died 1274),

182, 188

Tūs̄ı, Sharaf ad-Dı̄n at.- (12
th c.), 183

Uccello, Paolo (1397–1475), 282, 284,
303, 304, 327, 470, 545, 557

Ulugh Beg (1394–1449), 168, 181, 182,
188

Uryson, Pavel Samuilovich (1898–1924),
515, 558

Vācaspati (9th c.), 166
Vahlen, Theodor (1869–1945), 325, 508
Van der Waerden, Bartel Leendert

(1903–1996), 528
Vandermonde, Alexandre Théophile

(1735–1796), 464
Varāhamihira (about 500 AD), 152
Varignon, Pierre (1654–1722), 437
Vasarely, Victor (de) (1908–1997), 558
Vasari, Giorgio (1511–1574), 285, 303,

318
Vauban, Sébastian (1633–1707), 366
Veblen, Oswald (1880–1960), 504
Veronese, Giuseppe (1854–1917), 499,

504, 508
Vieta (Viète), François (1540–1603),

188, 257, 263, 265, 266, 268, 319,
320, 336, 337, 410, 414, 435, 436,
481

Vitali Giuseppe (1875–1932), 516
Vitruvius, Marcus Pollio (about 90–10

BC), 96, 249, 304
Viviani, Vincenzo (1622–1703), 336
Voderberg, Heinz (1911–ca. 1942), 496
Vogel, Kurt (1888–1985), 15, 16, 25
Volterra, Vito (1860–1940), 510
Voronoi, Georgii Feodoseewich

(1868–1903), 535

Wafā, al-Būzjāni Abū’l- (940–998), 174,
183, 186, 216, 254

Wagner, Hermann (1840–1929), 399
Wallingford, Richard von (1292?–1336),

234
Wallis, John (1616–1703), 137, 182,

342, 354, 373, 374
Wangerin, Albert (1844–1933), 424
Wantzel, Pierre Laurent (1814–1848?),

413
Watt, James (1736–1819), 399, 400, 477
Weber, Alfred (1868–1958), 466
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Weber, Heinrich (1842–1913), 463
Weber, Wilhelm (1804–1891), 399, 438
Wegner, Bernd (born 1942), 533
Weierstraß, Karl Theodor Wilhelm

(1815–1897), 499, 513
Weinbrenner, Johann Jacob Friedrich

(1766–1826), 397
Werner, Johannes (1468–1528), 268,

271, 295
Wessel, Caspar (1745–1818), 438
Weyl, Hermann(1885–1955), 443, 521,

558
Wiener, Christian (1826–1896), 397,

457
Wiener, Hermann (1857–1939), 474
Willenberg, Christian (1655–1731), 366
Wipper, J. (19th c.), 467
Witt, Johan de (1625–1672), 342
Wolff, Christian (1679–1754), 366, 455
Wunderlich, Walter (1910–1988), 533,

562

Xu Guangqi (Hsu Kuang-Chi)
(1562–1633), 136

Yaglom, Isaak Moiseevich (1921–1988),
519

Yang Hui (13th c.), 133

Yoshida, Schichibei Kōyū (Yoshida
Mitsuyoshi) (1598–1672), 143

Yoshinori Isomura, see Isomura Kittoku

Young, John Wesley (1879–1932), 505

Zamberti, Bartolomeo (born about
1473), 236, 260, 292

Zarqāl̄ı (Azarchel), Abū Ishāq Ibrāh̄ım
al- (ca. 1030–1100), 236

Zeuthen, Hieronymus Georg (1839–
1920), 54

Zhu Shijie, see Chu Shih-Chieh

Zöllner, Friedrich (1834–1882), 432

Zu Chongzhi (Tsu Ch’ung-Chih or Tsu
Chhung-Chih) (429–500), 127,
130

Zühlke, Paul (1877–1957), 414

Zuse, Konrad (1910–1995), 490, 523,
539, 561
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abscissa, 294, 342
absolute geometry, 374, 426, 500, 505

academy, 28, 42, 83, 100, 256, 352
affinity, 447
age of robots, 552
Alexandroff compactification, 462

algebraic geometry, 2, 343, 347, 406,
409, 491, 493, 494

algorithm, 2, 40, 57, 59, 125, 126, 166,
167, 283, 284, 370, 372, 414, 415,
457, 496, 498, 517, 537, 538, 550

algorithm theory, 524, 550
analysis situs, 453, 455
anamorphosis, 290, 553, 554

anamorphosis perspective, 290
angle, 34, 36, 37
angle of contingence, 240, 261, 352
angle trisection, 49, 50, 78, 90, 104,

106, 174, 188, 189
anti-prism, 281, 303, 468, 528
Apollonius’s problem (of tangency),

113, 414, 477
Apollonius’s theorem, 110
applied mathematics, 142, 376, 529
approximation-mathematics, 529

arc measurement, 70, 270, 352, 417
Archimedean axiom, 182, 377, 486, 499,

503, 504

Archimedean dual, 281, 321
Archimedean polyhedron, 321, 468–470,

557
Archimedean spiral, 113, 239, 295
(surface) area, 16, 334
area of a circle, 52, 97, 134, 159, 165,

214, 505, 509, 531
assigned normal view (associated

orthogonal projection), 368, 395
astrolabe, 92, 232, 233, 253, 271
astrology, 11, 124, 141, 263, 265
axiom, 1, 56, 58, 60, 63, 87, 178, 182,

224, 231, 374–378, 406, 425, 426,
431, 450, 498–508, 514, 516, 517,
529, 559

axiom of continuity, 503, 508, 509

axiomatic system, 431, 432, 450,
503–505, 508, 509

axonometry, 397, 398, 474

Bäcklund’s transformation, 423
barycentric calculus (barycentrischer

Calcus), 405, 447, 474
“Bauhütte” (medieval mason’s lodge),

183, 243, 252, 264, 292, 368
Bertrand’s paradox, 472, 486
Betti group, 464
Betti number, 464
binormal, 415
biquaternion, 446
Brianchon’s theorem, 403, 404

CAD system, 535
(Zuse’s) “calculating space”, 522, 561
calculus (differential), 1, 113, 146, 313,

315, 317, 345, 346, 350, 351, 354,
384, 393, 416, 423, 474, 485, 492,
522, 529

caleidocycle, 533
Cartesian coordinates, 321, 339, 342,

436, 486
Cartesian oval, 341
cartography, 1, 83, 92, 94, 263, 265,

271, 275, 277, 333, 354, 355, 367,
398, 446, 493, 550

Catalan polyhedron, 281, 321, 470
categoricity, 503
catenary, 416
catenoid, 416
catoptric, 65, 260
cavalier perspective, 366, 367
Cavalieri’s principle, 241, 349, 379, 381,

487
cellular automaton, 543
cellular field, 522, 526, 561
central perspective, 284, 294, 297, 356,

357, 361, 363, 366, 395, 397, 398,
474, 476, 478

central projection, 338, 358, 360, 397,
403, 406, 407

Chinese rings, 137
chord geometry, 21, 87, 161
circle-packing, 135, 147, 151
circles of principal curvature of an

ellipse, 385
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circular arc, 36, 133, 134, 144, 159
circumference, 21, 127, 159, 238, 249,

329, 480
cissoid, 48, 49, 104
classical problems, 46, 49, 104, 135,

172, 412, 414, 498
cochleoid, 51
combinatorial topology, 454, 456, 458,

462–464, 471, 474
compact subset, 513, 515
compactness, 512, 514
compass and straightedge, 46, 49, 54,

56, 61, 68, 77, 78, 81, 93, 104, 174,
188, 249, 264, 284, 292, 304, 310,
320, 384, 410–413, 426, 435, 474,
480–483, 485, 498, 508, 537–539

compass with a fixed span width, 174,
183, 215, 216, 249, 264, 411, 480

complete quadrilateral, 188, 357
complex number, 355, 401, 410–412,

433, 438, 474, 510
(Gauss’s) complex number plane, 410
complexity theory, 2, 376, 414, 456,

498, 537, 538, 550
computational complexity theory,

376, 414, 496
computational geometry, 2, 57, 491,

496, 537
computer geometry, 2, 535–539, 543,

558
conchoid, 51, 52, 104, 106, 294, 313,

335, 380, 381, 385, 487
conformal mapping, 433, 434
congruence, 60, 260, 263, 388, 425, 434,

446, 451, 474, 486, 487, 497, 500,
507, 508

congruence of the same sense, 451
conic (section), 46, 48, 50, 61, 65,

78–81, 90, 93, 94, 101, 104, 105,
135, 172, 174, 183, 189, 278, 279,
294, 295, 314, 315, 335, 337, 338,
341, 342, 345, 347, 350, 356–358,
360, 379, 394, 403, 404, 407, 409,
413, 431, 432, 448, 475, 504

consistency, 60, 432, 504
contact transformation, 423, 450
continuum, 46, 241
continuum problem (of Cantor-), 376,

378

coordinate geometry, 166, 336, 342,
348, 373, 379, 535, 537

coordinate method, 68, 277, 295, 313,
314, 334–336, 342, 346, 354, 370,
379, 401, 410, 447

coordinate system, 48, 50, 81, 92, 93,
105, 334, 343, 405, 409, 504

coordinates, 2, 77, 81, 92, 93, 116, 185,
216, 268, 288, 321, 337–339, 342,
343, 346, 347, 351, 370, 382, 384,
401–403, 405–409, 413, 415, 422,
437, 443, 447, 451, 473–475, 478,
479, 481, 512, 515, 560

coro finto, 290

covering, 513

Cramer’s paradox, 345

Crofton’s theorem, 472

cross-ratio, 402, 403

crystal classes, 451

crystallography, 399, 439, 449, 451, 468,
474, 524

cubic (curve), 341, 344, 345, 483

curvature, 207, 334, 346, 351, 353, 385,
415, 417, 418, 421, 422, 428, 430,
433, 435, 474, 483, 521, 532

constant curvature, 420–422, 428,
435, 474, 496, 521

constant negative curvature, 420,
422, 424, 430, 432

constant positive curvature, 420, 421,
424

curve of the fourth order, 346

curve of the third order, see cubic
(curve)

“cyclographics”, 395

cycloid, 382

de Moivre’s formula, 438

defect of triangles, 387

definability, 449, 450, 509

definiteness, 560

definition, 1, 44, 45, 56, 58, 77, 81, 90,
97, 98, 166, 178, 217, 231, 232,
258, 279, 294, 318, 327, 334, 335,
351, 368, 373, 387, 408, 417, 419,
421, 436, 443, 450, 452–454, 469,
508, 510, 511, 534, 549, 559

depth contour lines, isobaths, 368
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Desargues’ theorem, 68, 69, 361, 362,
386, 387, 485, 504

description of construction, 496
descriptive geometry, 348, 355, 366,

367, 370, 372, 373, 385, 392, 395,
396, 398, 474, 491, 493, 494, 532,
543, 550, 563

determinant, 144, 443, 474
developable surface, 368, 422
differential geometry, 2, 94, 354, 392,

396, 399, 415, 417, 421–424, 435,
463, 474, 491–494, 505, 532, 537,
558

dimension, 193, 336, 370, 417, 420, 430,
437, 441, 474, 515, 517

director circle (of a conic), 394, 475
distance, 513, 515
distance circle, 395
divergence, 438, 474
dodecahedron, 45, 108, 303
doubling the cube, 46, 47, 101, 105,

157, 413, 474, 480, 498
duality principle, 403, 405, 406, 435,

474, 478

Earth magnetism, 399, 437
elementary (geometrical) relationship,

454, 463
elementary geometry, 46, 167, 183, 313,

493, 503, 508, 509
elementary theory, 509
ellipse, 100, 116, 135, 149, 295, 341, 385
ellipsoid, 100, 147, 384, 385, 422
elliptic, 149, 202, 278, 314, 409, 422
epicycloid, 294
equality (equivalence) by dissection,

467, 474, 486, 504, 507
equiform transformation, 447
“Erlangen programme” [program],

448–450, 453, 474, 500
ethnomathematics, 8, 192
Euclid’s Elements, 53, 59, 102, 388,

392, 410, 411, 454
(Euclid’s) parallel postulate V, 87,

178, 182, 373–375, 377, 379, 392,
425, 426, 474, see also Euclid(’s)
parallel axiom

(Euclid’s) porism, 65, 68, 336, 401
Euler angle, 346

Euler’s characteristic, 355, 455, 459
evolute, 334, 352
evolvent, 334, 352
extensive quantity (extensive magni-

tude), 440

Fermat’s point, 437
Fermat’s principle, 353, 379
field of gravity, 521, 528
fixed point theorem, 515, 558, 561
flatting of Earth, 385
foundations, 493, 509
foundations of geometry, 56, 474, 494,

498–509, 558
four colour theorem, 376, 378, 458, 474,

558
fundamental theorem of algebra, 438

Galilei-Newton geometry, 519
gauge, 507
Gaussian curvature, 416, 418, 430, 435,

483
general theory of relativity, 421, 436,

490, 518, 521, 522, 558
geodesic (curve), 352, 373, 416, 418,

422, 423, 432, 521
geodesy, 185, 224, 263, 265, 268, 271,

277, 333, 355, 392, 398, 417, 418,
420, 422, 466, 492

geography, 34, 66, 93, 185, 271, 314,
399, 528

geometria practica, 231, 233, 261, 263
geometria speculativa, 240, 261
geometric probability, 471, 474
geometrical construction, 246, 284, 315,

410, 412–415, 436, 474, 509, 537
geometrical extreme value problem, 86,

352, 354
geometrography, 414, 415, 537
gnomon, 91, 123, 132, 138, 156, 160,

161, 163, 167, 185, 265, 356, 568
golden ratio, 105, 116, 318, 328
graph theory, 2, 456, 457, 468, 474, 493
graphic program system, 539
graphic statics, 399
great icosahedron, 469
Grebe-Lemoine point, 466, 474, 485
group, 108, 176, 210, 327, 401, 423,

446–451, 453, 459, 464, 469, 474,
493, 494, 507, 518, 559
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guardian problems, 538
Guldin’s theorem (Guldin’s rule), 86,

314, 329

Hamiltonian cycle, 456
harmonic pairs of points, 407
“Harmonice mundi”, 280–282, 318, 321
Hausdorff dimension, 517, 560
Hausdorff metric, 552, 560
height contour lines (isohypsies), 368
Heine-Borel covering theorem, 513
helicoids, 416
Hero’s formula, 18, 84, 85, 114, 131,

138, 165, 167
Hilbert space, 510, 511, 513, 515, 518,

522, 558
Holditch’s theorem, 531, 561
homeomorphism, 462
homogeneous coordinates, 405, 474, 478
homotopy, 462, 463
(line of) horizon, 232, 289, 310, 328,

395
hyperbolic curvature, 422
hyperbolic geometry, 420, 431–435, 448,

474, 483, 518, 519, 539, 550
hyperbolic plane, 544
hyperbolic space, 431, 434, 500, 516
hyperboloid of one sheet, 346
hyperboloid of two sheets, 346

illumination geometry, 397, 535
illusionistic painting, 361, 363
image interpreation, 538, 552
impossible figures, 545, 552
improper orthogonal mapping, 452
incidence, 402, 403, 406, 471, 501, 502,

505, 508, 559
indivisible, 241
indivisibles, 314, 349, 350
infinite, 44, 46, 59, 77, 81, 107, 110,

145, 146, 165, 167, 313, 314, 318,
321, 333–335, 347, 354, 358, 360,
362, 379, 396, 403, 406, 409, 415,
423, 426, 434, 443, 453, 457, 462,
478, 486, 495, 501, 503, 510, 516,
522, 532, 533, 552, 558

infinitely distant, 357, 362, 366, 386,
402, 403, 405–407, 409, 448, 456,
462, 474, 478, 516, 520, 559

infinitely small, 262, 349, 355, 359, 403,
421, 472

infinitesimally flexible, 532, 562
inner product (scalar product), 439,

441, 443, 475, 510, 512, 518, 558,
560

inscribed quadrilateral, 114, 165, 167,
319, 320, 481

insertion, 78, 104, 413, see also neusis
integral geometry, 472, 493, 534, 537
involution, 408, 409, 479
irrational (number), 38, 40, 41, 44, 45,

104, 105, 157, 184, 224, 240, 410,
413

isopheng, 397
isophote, 397

kinematics, 240, 318, 397, 400, 493,
531, 532, 558

Klein bottle, 463

la geometria del compasso, 412
Lambert quadrilateral, 182, 375
law of cosines, 265, 267, 268
linear algebra, 409, 437, 443, 447, 510
linear loci, 47, 337
loci plani, 337
loci solidi, 337
loxodrome, 275, 276, 318, 334

magnetic field, 399, 437, 528
Manhattan metric, 512
MAPLE, 543
mapping (geometrical), 91, 99, 446, 515
mapping true to area, 399, 487
MATHEMATICA, 543
mathematical methods in biology, 524
matrix calculus, 447, 474
measure theory, 2, 516, 517, 534
mechanics, 1, 73, 74, 172, 284, 333, 346,

348, 391, 398, 399, 403, 405, 431,
437, 446, 451

mechanism, 284, 295, 341, 399, 477, 511
medical engineering, 532
melancholy, 310
Menelaus’s theorem, 90, 188, 234
Mercator projection, 275, 277, 318
metric, 2, 53, 403, 406, 447, 511–515,

552, 558, 560, 561
metric completeness, 453, 512, 515
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minimal sum of distance, 465
Minkowski geometry, 519, 558
Möbius strip, 459, 463, 546, 548
model, 2, 45, 70, 114, 131, 277, 278,

321, 334, 361, 372, 376, 377, 393,
395, 406, 415, 424, 430–434, 448,
450, 474, 478, 483, 491, 495, 496,
500, 504–509, 517, 518, 521, 522,
538, 544, 546, 550, 558, 559

motion (movement), 105, 125, 178, 182,
234, 240, 241, 278, 317, 318, 341,
379, 381, 387, 394, 399, 401, 408,
415, 422, 436, 445–447, 449, 473,
474, 477, 494, 495, 507, 509, 518,
522, 523, 531, 559, 560

motion of solids (rigid body movement),
446

Moulton’s plane, 406, 558, 559
multi-dimensional geometry (n-

dimensional geometry), 1, 436,
437, 442, 443, 446, 474, 492, 518

n-dimensional simplex, 443, 445, 474
n-dimensional space, 436, 439, 440, 446,

447, 474, 494
n-dimensional sphere, 383
Napoleon’s problem, 480
(Buffon’s) needle problem, 471, 486
negative coordinate, 342
negative curvature, 420, 422, 423, 430,

432
net unfolding, 303, 329
neusis, 50–52, 78, 81, 104, 106, 174, 189
non-constructability, 481
non-definability, 508
non-Desarguesian plane, 505, 506, 559
non-determinism, 538
non-Euclidean geometry, 2, 60, 374,

376, 379, 388, 392, 396, 420, 422,
424, 425, 427–435, 448, 474, 493,
498, 500, 502, 519, 520

non-orientability, 463
non-periodic (aperiodical), 496,

523–526, 549, 550, 558
non-periodic tessellation, 495, 523–526,

550, 558
norm, 511–513, 519, 558, 560
normed vector space, 511, 558
notion of between, 502

octahedral star, 327
one-sided surface, 462, 474, 546
Op Art, 546, 547, 558
optics, 1, 66–68, 71, 73, 81, 110–112,

171, 263, 271, 279, 315, 333, 343,
352, 355, 398, 446, 451, 493, 506,
532

ordinate, 49, 149, 294, 342
ornament, 6, 103, 122, 152, 173, 176,

177, 179, 183, 201, 205, 210, 211,
246, 284, 297, 301, 327, 332, 490,
544, 549, 558

ornamentation, 490, 544
orthodrome, 275
oval, 341

P versus NP problem, 376, 378, 498
packing, 135, 146, 147, 151, 526, 532,

534, 557, 558, 561
paper strip construction, 50, 104, 106,

see also Neusis
Pappus’s theorem, 69, 358, 360, 504,

505
parabolic

geometry, 431
hyperboloid, 346
mirror, 73
reflector, 100
spindle, 316
surface, 422

parallel axiom, 178, 498, 500, 505, 509,
532

parallel problem, 178, 182, 263, 373,
375–378, 425, 427, 428

parallelogram of forces, 437
parameter representation, 342, 343,

379–381, 385, 458, 483
Pasch’s axiom, 182, 501, 505
pavimento, 289
pencil of lines, 357
pencil of planes, 357, 474
Penrose’s tiles, 301, 532
perspective, V, 13, 14, 63, 93, 256, 260,

263, 265, 283–291, 294, 297, 302,
303, 310, 318, 327, 328, 333, 335,
355–357, 361–367, 379, 386, 387,
394, 395, 397–399, 431, 446, 450,
452, 474, 476, 478, 494, 499, 502,
506, 510, 535, 543, 552, 557
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perspectograph, 361, 385, 386
photogrammetry, 397, 474, 493
Plateau’s problem, 416
Platonic solid, 45, 100, 104, 183, 277,

468
“Plimpton 322”, 22, 24, 26
Pohlke’s theorem, 398, 475, 476
Poincaré’s model, 431, 433–435, 474,

483, 539, 544
polyhedra

regular enneadecagon (nineteenagon),
143

regular heptadecagon (17-gon), 412
regular heptagon, 49, 78, 104, 174,

176, 189, 216, 249, 254, 294, 323
regular hexagon, 6, 21, 37, 49, 90,

127, 163, 188, 213, 249, 323, 575
regular nonagon, 49, 122, 174, 324
regular pentagon, 40, 41, 49, 90, 104,

105, 108, 115, 116, 174, 188, 249,
264, 281, 292, 294, 323, 328

regular star polyhedra, 282, 469, 470,
557

polyhedral geometry, 459, 468, 471, 526
polyhedral surface, 462, 532
polyhedron, 54, 76, 82, 183, 281, 282,

284, 294, 297, 303, 313, 318, 321,
326–329, 451, 454, 456, 458, 462,
464, 468, 470, 474, 494, 526, 527,
532–534, 538, 544, 546, 547, 550,
557

postulate, 56, 58–60, 87, 231, 263, 392,
425, 426, 431, 502, 574

power of a point (with respect to a
circle), 67, 477

precision-mathematics, 529
principal curvatures, 416
principal point, 289, 328, 476
prism, 22, 25, 106, 107, 125, 127, 281,

303, 468, 475, 528, 562
projection, 8, 92–94, 256, 263, 271,

273–275, 299, 318, 332, 338, 348,
350, 355, 361, 367, 371, 372, 379,
395, 397, 398, 403, 406, 407, 445,
446, 462, 475, 476, 481, 506, 550,
573

projective
projective closure, 462, 479, 500, 516,

559

projective construction, 478
projective geometry, 355, 357, 363,

379, 386, 396, 401–403, 405, 406,
408, 409, 449, 474, 493, 500, 505

projective mapping, 402, 403, 407,
446–448

projective plane, 463, 478, 500, 502,
505

projective scale, 290
proof of irresolvability, 410, 498, 537
proportion, 44, 45, 47–49, 54, 63, 104,

165, 261, 294, 304, 336, 451, 505
proposition of irresolvability, 538
provability, 373, 450
pseudo-Euclidean geometry, 519
pseudo-sphere, 420, 423, 430–432, 483
Ptolemy’s (chord) theorem, 88, 90, 91,

114, 115, 165, 481
pyramid, 7, 11, 12, 15, 16, 22, 25, 87,

106–108, 125, 127, 138, 162, 196,
198, 199, 201–204, 206, 207, 294,
313

pyramid frustum, 25, 127, 132
Pythagoras’s theorem (Pythagorean

theorem), 8, 18, 22, 26, 38, 61, 63,
123, 124, 137, 138, 145, 155–157,
159, 163, 167, 172, 215, 217, 294,
336, 436, 467, 468, 484, 568

Pythagorean group of theorems, 54

quadratrix, 50, 104, 105, 335, 339
quadric, 346
quadrivium, 100, 221–223, 265
quasi-crystal, 523, 524, 550
quaternion, 438, 439, 443, 446, 474

radical axis (power line), 401, 477
reciprocal radii, 348, 414, 479, 483
regular polytope, 444, 445, 474
regular star solid, 303
relation of betweenness, 501, 508, 559
relief perspective, 290, 291, 361, 364,

386, 387, 397, 474
resection, 321
Riemann (Riemannian) geometry, 494,

521
Riemann surface, 463
rigid mapping, 446
rotation, 77, 438, 452, 562
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rotation (curl), 438, 474
rule of six great circular arcs, see

Menelaus’s theorem

Saccheri quadrilateral, 182, 374
Schauder(’s) fixed point theorem, 515,

see also fixed point theorem
Schumacher’s paradox, 484
science of structure, 432, 498
screw displacement, screwing, 422, 446
screw line (helix), 125, 294
secant (function), 185, 268, 351
segment of a circle, 21, 22, 26, 87, 97,

110, 116, 125, 134, 138, 148, 160,
165, 176, 214, 217

separation relation, 357, 502
shadow construction, 360, 395
similarity, 38, 61, 63, 155, 163, 447, 475
simplicial complex, 462, 464
sine (function), 87, 88, 91, 111, 115,

161, 166, 167, 185, 188, 217, 234,
236, 252, 265, 267, 280, 382, 402,
438

slope of the tangent (according
Descartes), 350, 351, 353, 419

soliton theory, 528
soma cube, 557
space-time, 519–521, 558
sphere volume, 104, 130, 162, 313, 329,

349, 381
sphere-packing, 135, 146, 147, 151, 561
spherical excess, 277, 420
spherical geometry, 66, 167, 172, 188,

252, 263, 267, 373, 417, 423, 431,
435, 494, 550

spherics, 162, 234
squaring a moonlet, 52
squaring the circle, 46, 50, 52, 104, 105,

145, 158, 159, 167, 215, 239, 261,
263, 294, 325, 413, 426, 498

squaring the parabola, 76, 104, 149, 313
star polyhedron, 281, 282, 305, 327,

462, 469–471, 474, 496, 557
Steiner points, 465, 485
Steiner-Weber problem, 465, 534, 538
stereographic mapping, 447
stereographic projection, 92, 93, 263,

271, 277, 462
stochastic geometry, 534, 537, 558

Stone-Čech compactification, 515
straight line motion (linear guiding),

477
string construction of an ellipse, 100,

116, 149, 189
string rules (Śulbasūtras), 154–159,

167, 214
string theory, 465
stronghold architecture, 366
surface of a sphere, 146, 151, 162, 166,

183, 214, 215, 271, 275, 313, 319,
329, 347, 354, 355, 373–375, 417,
423, 424, 430, 447, 456, 462, 467,
512, 517, 527, 567

surface packings, 544
(land) surveying, 68, 95–97, 126, 136,

183, 224, 261, 528, 533
symmetry, 31, 36, 176, 201, 207, 210,

295, 314, 323, 385, 451, 452, 468,
474, 482, 483, 511, 522, 524, 560

symmetry (symmetric) group, 176, 210,
468

tangent (function), 265, 268, 294, 315
tangram, 136, 137, 557
technical drawing, 395, 552
temple problem, 147, 148, 151
(special) terminology, 18, 97, 284, 306
tessellation, 280, 281, 284, 294, 297,

445, 468, 495–497, 523, 525, 526,
544, 549, 550, 558

tetrahedra-octahedra space packing,
547

Thales’ theorem, 34, 36
theorem of the catheti, 61
theory of gravity, 279
theory of proportions, 44, 261, 268
theory of relativity, 421, 436, 490, 518,

521, 522, 558
top and front view (method), 284, 285,

294, 297, 300, 328, 485
topographic single-plane projection,

368
topological, 137, 194, 457, 459, 464,

494, 513, 515, 557, 558
topological (vector) space, 513, 515
topological complex, 463
topological equivalence, 446, 454,

456, 463, 515
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topological mapping (homeomor-
phism), 454, 459, 463, 515

topological structure, 436, 462, 513

topology, 2, 446, 453, 454, 456, 458,
459, 462–464, 468, 470, 471, 474,
491, 493, 494, 513–515, 544, 561

Torricelli point (of a triangle), 382, 384,
481–483

torsion, 352, 415, 474

torsion number, 464

trace, 372

tractrix, 419, 420, 422, 430, 483

transcendence of π, 413

transformation, 47, 123, 125, 216, 294,
295, 304, 338, 348, 358, 360, 414,
423, 432, 438, 447–451, 453, 457,
464, 473, 474, 479, 483, 493, 494,
518, 520, 533

transformation group, 446, 447, 450,
474, 494

translation, 418, 437, 438, 446, 480,
486, 487, 505, 509, 523, 559

trapezium (trapezoid), 15, 26, 97, 108,
125, 155, 159, 166, 167, 210, 215,
320

triangulation, 270, 318, 418, 533

trigonometry, 24, 49, 86, 87, 90, 126,
130, 133, 136, 138, 161, 162, 171,
185, 188, 189, 234, 236, 265, 266,
268, 269, 277, 318, 319, 333, 338,
355, 379, 401, 431

trilateration, 533
true to angle, 271, 399, 434
true to area, 94, 271, 354, 355
Turing machine, 524, 550
two-plane method, 295, 297, 328, 329,

481, 562
typography, 304

(Dürer’s) “Underweysung” (“Instruc-
tion”), 292, 294, 295, 303, 306,
328, 368

unwinding (unwindability), 418

v. Koch curve, 517
vanishing point, 289, 363, 386, 476
vector, 1, 77, 239, 279, 348, 382–384,

398, 399, 415, 436–444, 474, 475,
482, 493, 510, 511, 513, 515, 519,
522, 558, 560

vector algebra, 438, 439, 441
vector space, 438, 440, 443, 510, 511,

513, 558, 560
visual point (point of sight), 285,

287–289, 386, 395, 476

wasan mathematics, 140–143, 149, 151
witch knot, 557
wobbly (polyeder, framework), 532
Wunderlich’s wobble octahedron, 562,

563

ziggurat, 19
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