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A Framework for I∗-Statistical Convergence of Fuzzy Numbers
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Abstract: In this study, we investigate the concept of I∗-statistical convergence for sequences of fuzzy
numbers. We establish several theorems that provide a comprehensive understanding of this notion,
including the uniqueness of limits, the relationship between I∗-statistical convergence and classical
convergence, and the algebraic properties of I∗-statistically convergent sequences. We also introduce
the concept of I∗-statistical pre-Cauchy and I∗-statistical Cauchy sequences and explore its connection
to I∗-statistical convergence. Our results show that every I∗-statistically convergent sequence is
I∗-statistically pre-Cauchy, but the converse is not necessarily true. Furthermore, we provide a
sufficient condition for an I∗-statistically pre-Cauchy sequence to be I∗-statistically convergent,
which involves the concept of I∗ − lim in f .

Keywords: I∗-statistical convergence; I∗-statistical Cauchy sequences; I∗-statistical pre-Cauchy;
I∗ − lim in f

MSC: 40A05; 40A35; 40D25

1. Introduction

There has been considerable progress in the convergence theory concerning fuzzy
number sequence due to seminal works and innovative extensions that have taken place.
Matloka [1] introduced the primary definition of convergence of sequences of fuzzy num-
bers and defined its limit and discussed its algebraic properties, while Nanda [2] studied
the spaces of bounded and convergent sequences of fuzzy numbers and showed that
they are complete metric spaces which furthered its theoretical background. Variations
are manifested by sequences that do not converge under classical convergence conditions.
Most mathematical problems involve sequences that are not convergent in the usual sense.
There is now a realization of the necessity of considering more classes of sequences for de-
termining or discussing their convergences. One of the approaches is to consider sequences
that converge when we restrict our attention to large subsets of natural numbers in some
meaningful sense. For example, if we define an important subset as all natural numbers
apart from those with finitely many, then we get the traditional concept of convergence. On
the other hand, recourse may be made to subsets having zero natural density. The natural
density of a subset A ofN is formally expressed as δ(A), and it is defined as follows:

δ(A) = lim
n→∞

1
n
|{k < n : k ∈ A}|,

which will lead us to a type of convergence namely, statistical convergence. The concept of
statistical convergence for sequences of real numbers was independently introduced by
Fast [3] and Schoenberg [4]. This foundational idea was later expanded by Savaş [5], who
discussed alternative conditions for sequences of fuzzy numbers to be statistically Cauchy.
Subsequent research further explored the nuances of this area, notably by Connor [6], who

Axioms 2024, 13, 639. https://doi.org/10.3390/axioms13090639 https://www.mdpi.com/journal/axioms1
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introduced the concept of statistically pre-Cauchy sequences and demonstrated that sta-
tistically convergent sequences are inherently statistically pre-Cauchy. The exploration of
statistical convergence from a sequence space perspective and its connection to summability
theory was advanced by researchers like Fridy [7] and Salát [8]. For a foundational under-
standing of statistical convergence, we recommend consulting works such as [9–13]. Some
of the applications of statistical convergence can be found in [14,15]. Kostyrko et al. [16]
extended the concept of statistical convergence by introducing I-convergence and I∗-
convergence, which utilize ideals in metric spaces. They discussed several basic properties
of these new types of convergence. For a detailed examination of I-convergence, we suggest
referring to [17–21].

Kumar and Kumar [22] applied the concepts of I-convergence, I∗-convergence, and
I-Cauchy sequences to sequences of fuzzy numbers, with further developments in this area
discussed in works such as [23,24].

Savaş and Das [25] later extended I-convergence to I-statistical convergence, aim-
ing to unify λ-statistical and A-statistical convergence using ideals. They introduced
the notion of I-statistically pre-Cauchy sequences, which were further investigated by
Debnath et al. [26]. Later on, Debnath et al. [27] discussed I-statistical convergence, intro-
ducing I-statistical limit points and cluster points, and exploring their basic properties.
They extended I-statistical convergence and proved that I∗-statistical convergence implies
I-statistical convergence. In recent years, various authors have studied different kinds of
convergence by generalising statistical convergence via ideals in different spaces and for
different types of sequences, for example, [28–30]. However, the properties and conse-
quences of I∗-statistical convergence have not been thoroughly discussed, which motivated
our current research.

This article investigates the concept of I∗-statistical convergence for sequences of fuzzy
numbers in metric space. We have proved that under I∗-statistical convergence the limit
of the sequence is unique. We established several theorems that comprehensively under-
stand this notion, which include the relationship between I∗-statistical convergence and
classical convergence and the algebraic properties of I∗-statistically convergent sequences.
We also defined I∗-statistically pre-Cauchy sequences and I∗-statistical Cauchy sequences
and explored their connection to I∗-statistical convergence. Our results show that every
I∗-statistically convergent sequence is I∗-statistically pre-Cauchy, but the converse is not
necessarily true. Furthermore, we provide a sufficient condition for an I∗-statistically
pre-Cauchy sequence to be I∗-statistically convergent, which involves the concept of
I∗− lim in f .

2. Preliminaries

In the theory of fuzzy numbers, we start by considering intervals denoted by A with
endpoints A and A . The set D comprises all closed, bounded intervals on the real lineR,
represented as:

D = {A ⊂ R : A = [A , A ]}.
For any A , B in D, we define A 6 B iff A 6 B and A 6 B, with the distance function

d(A , B) being the maximum of |A − B| and |A − B|.
The metric d establishes a Hausdorff metric on D, rendering (D, d) a complete metric

space. Moreover, 6 acts as a partial order on D.

Definition 1 ([22]). A fuzzy number is a function X fromR to [0, 1], which satisfy the following
conditions:

(i) X is normal, i.e., there exists an X0 ∈ R such that X (X0 ) = 1;
(ii) X is fuzzy convex, i.e., for any x, y ∈ R and λ ∈ [0, 1], X (λx+(1−λ)y) > min{X (x), X (y)};
(iii) X is upper semi-continuous;
(iv) The closure of the set {x ∈ R : X (x) > 0}, denoted by X 0 is compact.

The properties (i)–(iv) imply that for each α ∈ (0, 1], the α-level set:

2
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X α = {x ∈ R : X (x) > α} =
[
X α, X α].

where X α represents a non-empty, compact, and convex subset of the real numbersR.

The set of all fuzzy numbers is denoted by L(R), and the set comprising all sequences
of fuzzy numbers is represented by L(S). We define a mapping, denoted as d, which takes
pairs of fuzzy numbers from L(R)× L(R) and maps them to the real numbersR. Formally,
this mapping d can be expressed as follows:

d(X , Y ) = sup
α∈[0,1]

d(X α, Y α).

where d(X , Y ) computes the supremum of the distance, d, between the α-level sets of fuzzy
numbers X and Y across all values of α within the interval [0, 1].

Puri and Ralescu [31] demonstrated that the space (L(R), d̄) constitutes a complete
metric space: “We define the relation X 6 Y for X , Y ∈ L(R) if X α 6 Y α and X α 6 Y α for
each α ∈ [0, 1]. Furthermore, we define X < Y if X 6 Y and there exists some α0 ∈ [0, 1]
such that X α0 < Y α0 or X α0 < Y α0 . If neither X 6 Y nor Y 6 X holds, we say that X and Y
are incomparable fuzzy numbers”. Moreover, they continue that in the metric space L(R),
“we can define addition X + Y and scalar multiplication λX , where λ is a real number, in
terms of α-level sets as follows:

[X + Y ]α = [X ]α + [Y ]α

for each α ∈ [0, 1], and
[λX ]α = λ[X ]α

for each α ∈ [0, 1], respectively”.
Regarding fuzzy integers within a subset S of L(R), if there exists a fuzzy integer

denoted by µ such that X 6 µ holds for every X in the subset S, we designate S as having
an upper bound, with µ serving as the upper bound for the set. Similarly, we define the
lower bound.

For each α ∈ [0, 1], if we define Zα := X α
+ Y α and Zα := X α + Y α, we can express Z

as the sum of X and Y , denoted as Z = X + Y . Similarly, following a comparable pattern,
we represent Z as the difference of X and Y , expressed as Z = X − Y , iff Zα := X α − Y α

and Zα := X α − Y α for each α ∈ [0, 1].

Definition 2 ([22]). A sequence X = (Xn) of fuzzy numbers are said to be convergent to a fuzzy
number X0 if, for every ε > 0, there exists a positive integer m such that d(Xn, X0 ) < ε for every
n > m. The fuzzy number X0 is referred to as the ordinary limit of the sequence (Xn), denoted as
limn→∞ Xn = X0 .

Definition 3 ([22]). A sequence X = (Xn) of fuzzy numbers are regarded as a Cauchy sequence if,
for every ε > 0, there exists a positive integer n0 such that d(Xn, Xm) < ε for all n, m > n0 .

Definition 4 ([22]). A sequence X = (Xn) of fuzzy numbers are categorized as a bounded sequence
if the set {Xn : n ∈ N}, comprising all the fuzzy numbers in the sequence is itself a bounded set of
fuzzy numbers.

Definition 5 ([22]). A sequence X = (Xn) of fuzzy numbers are considered to be statistically
convergent to a fuzzy number X0 if, for any ε > 0, the set A(ε) = {n ∈ N : d(Xn, X0) > ε}
exhibits a natural density of zero. In this context, the natural density of a set refers to the proportion
of natural numbers within the set concerning the whole set of natural numbers. The fuzzy number
X0 is termed the statistical limit of the sequence (Xn), denoted as st− limn→∞ Xn = X0.

3
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Definition 6 ([22]). A sequence X = (Xn) of fuzzy numbers are termed statistically Cauchy if, for
any ε > 0, there exists a positive integer m = m(ε) such that the set {n ∈ N : d(Xn, Xm) > ε} has
a natural density of zero. In this context, the term “natural density” pertains to the proportion of
natural numbers within the set concerning the entire set of natural numbers.

Throughout this paper, we will useR andN to represent, respectively, the set of real
numbers and positive integers. We will denote the power set of any set X as P(X ), and the
complement of the set A will be denoted as Ac.

Definition 7 ([22]). Let X be a non-empty set, then a collection of subsets I contained in the power
set of X denoted as P(X) is said to be ideal iff it satisfies the following conditions:

(i) The empty set belongs to I, i.e., ∅ ∈ I;
(ii) For any set A and B belonging to I, A ∪ B also belongs to I;
(iii) If A ∈ I and B ⊂ A then B ∈ I.

Definition 8. Let X be a non-empty set. A non-empty family of sets F contained within the power
set P(X) is denoted as a filter on X iff it adheres to the following criteria:

(i) The empty set ∅ is not an element of the filter, meaning ∅ /∈ F;
(ii) For any two sets A and B that belong to the filter, their intersection denoted as A ∩ B is also a

part of the filter formally expressed as A ∩ B ∈ F;
(iii) If a set A is a member of the filter and B is a super set of A , then B is also an element of the

filter, i.e., B ∈ F.

Conditions (i), (ii), and (iii) jointly define the properties of a filter on set X.

An ideal I is termed non-trivial if it satisfies two conditions: it is not an empty set
(I 6= ∅), and it does not contain the entire set X (X /∈ I). Notably, a non-trivial ideal
I ⊂ P(X) corresponds to a filter, denoted as F(I), which is formed by taking the set
complement of each element of I with respect to the entire set X. The filter F(I) is referred
to as the filter associated with the ideal I.

An ideal I in X is considered admissible iff it includes all singleton sets, i.e.,{{x} : x ∈ X}.

Definition 9 ([22]). Suppose I ⊂ P(N) is a non-trivial ideal. We define a sequence X = (Xn)
of fuzzy numbers as I-convergent to a fuzzy number X0 if, for any ε, the set A(ε) = {n ∈ N :
d(Xn, X0 ) > ε} ∈ I.

The fuzzy number X0 is then referred to as the I-limit of the sequence (Xn), and this is denoted
as limn→∞ Xn = X0 .

The set of fuzzy number sequences that are both convergent and I-convergent can be
denoted by `1. These sequences exhibit both conventional convergence and convergence
according to the ideal I, providing a rich framework for the study of their convergence
properties. Throughout the paper, we consider I as an admissible ideal.

Definition 10 ([22]). A sequence X = (Xn ) ∈ L(S) of fuzzy numbers is said to be I∗-convergent
to a fuzzy number X0 iff there exists a set K = {m1 < m2 < m3 < · · · < mk < . . . } ⊂ N such that

K ∈ F(I) and d
(

Xmk , X0

)
→ 0 as n→ ∞.

3. I∗-Statistical Convergence of Sequence of Fuzzy Numbers

Definition 11. A sequence X = (Xn ) ∈ L(S) is said to be I∗-statistically convergent to a fuzzy
number X0 if and only if there exists a set K = {m1 < m2 < m3 · · · < mk < . . . } ⊂ N and for

each ε > 0 we have limn→∞
1
n
|{mk < n : d(Xmk , X0 ) < ε} ∈ F(I)| = 1. X0 is the I∗-statistical

limit of Xn and is denoted by I∗ − st− limn→∞Xn = X0 .

4
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Example 1. Consider the sequence X = (Xn ), which is defined as follows:

X = (Xn ) =

{
0 for n = k 2 where k ∈ N
1
n otherwise

which is I∗-statistically convergent to 0. Let K = {m1 < m2 < m3 < · · · < mk < . . .} ⊂ N,
where m1, m2, m3, . . . , mk, . . . are all non-perfect square natural numbers. Then, for each ε > 0,
we have:

lim
n→∞

1
n

∣∣∣
{

mk < n : d(Xmk , 0) < ε
}
∈ K

∣∣∣ = 1.

It is trivial to show that I is an ideal if it is the collection of subsets of the set X = {n ∈ N :
n = k2}. This implies that K ∈ F(I). Therefore:

lim
n→∞

1
n

∣∣∣
{

mk < n : d(Xmk , 0) < ε
}
∈ F(I)

∣∣∣ = 1.

Theorem 1. If I is an admissible ideal, then a sequence X = (Xn ) ∈ L(S) that is I∗-statistically
convergent will converge to a unique limit.

Proof. Let X = (Xn ) ∈ L(S) be an I∗-statistically convergent sequences to two different
fuzzy numbers X0 and Y0 . Without the loss of generality, suppose that X0 and Y0 are
comparable fuzzy numbers. Consequently, there exists α0 ∈ [0, 1] such that:

X α0
0 < Y α0

0 and X α0
0 > Y α0

0 (1)

or
X0

α0 > Y0
α0 and X0

α0 < Y0
α0 . (2)

We will prove that (1) and (2) can be performed in a similar manner.
Let us assume that (1) is valid. Choose ξ1 = Y0

α0 − X0
α0 and ξ2 = X0

α0 − Y0
α0 . Clearly

ξ1 > 0 and ξ2 > 0. Let ξ
′
= min{ξ1, ξ2}. Select ε such that 0 < ε < ξ

′
. Given that (Xn ) is

I∗-statistical convergent to both X0 and Y0 therefore, we have M = {m1 < m2 < m3 < · · · <
mk < . . . } ⊂ N and K = {n1 < n2 < n3 < · · · < nk < . . . } ⊂ N such that for every ε > 0:

limn→∞
1
n
|{mk < n : d(Xmk , X0 ) 6 ε} ∈ F(I)| = 1 and

limn→∞
1
n
|{nk < n : d(Xnk , Y0 ) 6 ε} ∈ F(I)| = 1

(3)

since F(I) is a filter onN therefore, by the definition of filter M ∩N 6= φ.
Let m ∈ M ∩N then by (3) there exists positive integers k1 and k2 such that:

limn→∞
1
n
|{mk < n : d(Xmk , X0 ) 6 ε} ∈ F(I)| = 1 for every mk ∈ M

withmk > K1 and

limn→∞
1
n
|{nk < n : d(Xnk , Y0 ) 6 ε} ∈ F(I)| = 1 for every nk ∈ N

with nk > K2 .

(4)

Let k = max{k1, k2} the (4) follows for m ∈ M ∩N with nk , mk > k . For each α ∈ [0, 1]

and m = max{mk , nk } we have, limn→∞
1
n
|{m < n : d(X α0

m , X0 ) 6 ε} ∈ F(I)| = 1 and

limn→∞
1
n
|{m < n : d (X α0

m , Y0 ) 6 ε} ∈ F(I)| = 1. Now the definition of d implies:

∣∣X α0
m − X α0

0
∣∣ < ε and

∣∣X α0
m − Y α0

0

∣∣ < ε,
∣∣X α0

m − X α0
0
∣∣ < ε and

∣∣X α0
m − Y α0

0
∣∣ < ε.

5
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X α0
m ∈

(
X α0

0 − ε, X α0
0 + ε

)
∩
(

Y α0
0 − ε, Y α0

0 + ε
)
= Φ. Thus, a contradiction arises, implying

the comparability of fuzzy numbers X0 and Y0 . Consider X0 6 Y0 and the neighborhoods
A =

{
n ∈ N : d(Xn, X0 ) < ε

}
and B =

{
n ∈ N : d(Xn, Y0 ) < ε

}
of X0 and Y0 , respectively,

are disjoint for ε = d(X0 ,Y0 )
3 > 0. By Definition (8), both the sets A , B ∈ F(I) so that

A ∩ B 6= Φ. A contradiction has arrived that the neighborhoods of X0 and Y0 are disjoint.
Hence, X0 is determined uniquely.

Theorem 2. Let X = (Xn ) and Y = (Yn ) ∈ L(S) then:

(i) limn→∞Xn = X0 implies I∗ − st− limn→∞Xn = X0 ;
(ii) I∗ − st− limn→∞Xn = X0 and c ∈ R, then I∗ − st− limn→∞cXn = cX0 ;
(iii) If I∗ − st − limn→∞ = X0 and I∗ − st − limn→∞Yn = Y0 then I∗ − st − limn→∞(Xn +

Yn ) = (X0 + Y0 ).

Proof.

(i) Let limn→∞Xn = X0 , then for each ε > 0 there exists a positive integer m(say) such that
d(Xn , X0 ) < ε for every n > m. Then, for ε > 0 let A(ε) = {mk : d(Xmk , X0 ) < ε}
for set K = {m1 < m2 < . . .< mk < . . . } ⊂ N is an infinite set then there exists a set
H = {n1, n2, n3, . . . , nk} such that N− H = K and H is a finite set, and therefore,
H ∈ I as I is an admissible ideal. This implies that K ∈ F(I) and δ(K ) = 1. Thus,

limn→∞
1
n
|{mk < n : d(Xmk , X0 ) 6 ε} ∈ F(I)| = 1. Hence, limn→∞Xn = X0 implies

I∗ − st− limn→∞Xn = X0 .
(ii) Let α ∈ [0, 1] and c ∈ R. Let K = {m1 < m2 < . . .< mk < . . . } ⊂ N and ε > 0 be

given. Since d(cXn
α, cX0

α) = |c|d(Xn
α, X0

α). Therefore, d(cXmk , cX0 ) = |c|d(Xmk , X0 ).
As I∗ − st− limn→∞Xn = X0 . Therefore, the set A(ε) = {mk : d(Xmk , X0 ) 6 ε} ∈ F(I)
and δ(A(ε)) = 1. Let B(ε) = {mk : d(cXmk , cX0 ) 6 ε}. We will show that B(ε) is
contained in A(ε1) for some 0 < ε1 < ε. Let mp ∈ B(ε), then d(cXmk , cX0 ) 6 ε, which
implies that |c|d(Xmk , X0 ) 6 ε, that is, d(Xmk , X0 ) 6 ε

|c| = ε1(say). Therefore, m ∈ A(ε1).
Since Xn is I∗-statistically convergent therefore, A(ε1) ∈ F(I) and by this B(ε) ∈ F(I).
Hence, I∗ − st− limn→∞cXn = cX0 .

(iii) For α ∈ [0, 1], let Xn
α, Yn

α, X0
α, and Y0

α be the α level sets of Xn , Yn , X0 , and Y0 ,
respectively. Since d(Xn

α + Yn
α, X0

α + Y0
α) 6 d(Xn

α, X0
α) + d(Yn

α, Y0
α), therefore,

d(Xn + Yn , X0 + Y0 ) 6 d(Xn , X0 ) + d(Yn , Y0 ). Let ε > 0 be given. Since Xn and Yn are I∗-
statistically convergent, therefore, there exists K = {m1 < m2 < · · · < mk < . . . } ⊂ N
such that limn→∞

1
n |{mk < n : d(Xmk , X0 ) 6 ε} ∈ F(I)| = 1 and limn→∞

1
n |{mk <

n : d(Ymk , Y0 ) 6 ε} ∈ F(I)| = 1. Take A( ε
2 ) = {mk : d(Xmk , X0 ) <

ε
2}, B( ε

2 ) = {mk :
d(Ymk , Y0 ) <

ε
2} and C(ε) = {mk : d(Xmk + Ymk , X0 + Y0 ) < ε}. Since, A( ε

2 ) ∈ F(I) and
B( ε

2 ) ∈ F(I), therefore, A( ε
2 ) ∩ B( ε

2 ) 6= φ and belongs to the filter; thus, we have for
all n ∈ A( ε

2 ) ∩ B( ε
2 ) ⊂ C( ε

2 ) ∈ F(I), i.e., limn→∞
1
n |{mk < n : d(Xmk + Ymk , X0 + Y0 ) 6

ε} ∈ F(I)| = 1. Hence, I∗ − st− lim(Xn + Yn ) = (X0 + Y0 ).

Theorem 3. For any sequence X = (Xn ) ∈ L(S) if there exists two sequences Y = (Yn ),
Z = (Zn ) ∈ L(S) of fuzzy numbers such that X = Y + Z, d(Yn , X0 ) → 0 as n → 0 and
SuppZ = {n ∈ N : Zn 6= 0} ∈ I and δ(SuppZ) = 0, then X is I∗-statistically convergent.

Proof. Let Y = (Yn ), Z = (Zn ) ∈ L(S) such that X = Y + Z, d(Yn , X0 ) → 0 as n → 0 and

limn→∞
1
n
|{n ∈ N : Zn 6= 0} ∈ I| = 0.

Let K = {n ∈ N : Zn = 0}. Since SuppZ belongs to I then K ∈ F(I) with δ(K ) = 1 and
also K is an infinite set as otherwise K ∈ I. Let K = {m1 < m2 < m3 · · · < mk < . . . } ⊂ N
such that δ(k) = 1 then Xmk = Ymk for each n ∈ N. Since Zn = 0 for all n ∈ K. It is given

6
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that d(Yn , X0 ) → 0. Therefore, d(Xmk , X0 ) → ∞. Thus, limn→∞
1
n
|{mk < n : d(Xmk , X0 ) 6

ε} ∈ F(I)| = 1. This proves that X is I∗-statistically convergent.

4. I∗-Statistically Cauchy and I∗-Statistically Pre-Cauchy Sequences

Definition 12. A sequence X = (Xn ) is said to be I∗-statistically Cauchy if there exists a set
K = {m1 < m2 < m3 < . . .< mk < . . . } ⊂ N and for each ε > 0, there exists mp ∈ N(ε) such

that limn→∞
1
n
|{mk < n : d(Xmk , Xmp ) 6 ε} ∈ F(I)| = 1. I∗ca denotes the collection of all

I∗-statistically Cauchy sequences.

Definition 13. A sequence X = (Xn ) is said to be I∗-statistically pre-Cauchy if there exists a set

K = {m1 < m2 < m3 < . . .< mk < . . . } ⊂ N and for each ε > 0 we have limn→∞
1
n2 |{(mk , mp) :

d(Xmk , Xmp ) 6 ε; mk , mp 6 n} ∈ F(I)| = 1.

Theorem 4. Every I∗-statistically convergent sequence is I∗-statistically Cauchy.

Proof. Let X = (Xn ) be I∗-statistically convergent to X0 . Then, there exists a set K =

{m1 < m2 < m3 · · · < mk < . . . } ⊂ N and for each ε > 0 we have limn→∞
1
n
|{mk <

n : d(Xmk , X0 ) 6 ε} ∈ F(I)| = 1. Let C = {mk < n : d(Xmk , X0 ) 6 ε
2} ∈ F(I) and

δ(C) = 1. Since I is an admissible ideal, therefore, we can choose d(Xmk , X0 ) 6 ε
2 . Define

B = {mk < n : d(Xmk , X0 ) 6 ε}. We need to show that C ⊂ B. Let d(Xmk , X0 ) be any arbitrary
element of C, then d(Xmk , X0 ) <

ε
2 , d(Xmk , X0 ) + d(Xmp , X0 ) 6 ε

2 + ε
2 , and d(Xmk , Xmp ) 6 ε,

which shows that every element of C is as element of B. Therefore, C ⊂ B. According to
the Definition (8) B ∈ F(I) and since δ(C) = 1, this implies that δ(B) = 1. Hence, we have

limn→∞
1
n
|{mk < n : d(Xmk , Xmp ) 6 ε} ∈ F(I)| = 1.

Theorem 5. Every I∗-statistically Cauchy sequence is I∗-statistically pre-Cauchy.

Proof. Let X = (Xn ) be any arbitrary sequence of I∗ca. Then, there exists a set K =

{m1 < m2 < m3 · · · < mk < . . . } ⊂ N and for each ε > 0 we have limn→∞
1
n
|{mk <

n : d(Xmk , X0 ) 6 ε} ∈ F(I)| = 1. Let C = {mk < n : d(Xmk , X0 ) 6 ε
2} ∈ F(I) and δ(C) = 1.

Now without any loss of generality define T such that Xmp be any term of the sequence
Xn and T = {(mk , mp) : d(Xmk , Xmp ) 6 ε; mk , mp 6 n} and by Definition (8) T ∈ F(I) and

δ(K) = 1. That is, limn→∞
1
n2 |{(mk , mp) : d(Xmk , Xmp ) 6 ε; mk , mp 6 n} ∈ F(I)| = 1, which

shows that every I∗-statistically Cauchy sequence is I∗-statistically pre-Cauchy.

Remark 1. Every I∗-statistically pre-Cauchy sequence need not be I∗-statistically Cauchy.

To understand this we will consider the following example.

Example 2. Let X = (Xn ) be a sequence defined as:

Xn =

{
(0, 1, 2) if n is a odd,
(0, 0.5, 1) if n is a even.

where (a, b, c) denotes a triangular fuzzy number [32] with peak at b and support [a, c]. Let ε > 0
be arbitrary. Without the loss of generality, we can choose n0 ∈ N such that n > n0, we have:

1
n2 |{(mk , mp) : d(Xmk , Xmp ) 6 ε; mk , mp 6 n}|

7
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> 1
n2 |{(mk , mp) : d(Xmk , Xmp ) 6 ε; mk , mp 6 n0}|

Let K be the collection of all odd natural numbers, K = {m1 < m2 < m3 < . . . } ⊂ N(say).
This implies K ∈ F(I). Since mk, mp 6 n0 and belongs to K implies that mk, mp are both odd, and
therefore:

d(Xmk , Xmp ) = d((0, 1, 2), (0, 1, 2)) = 0 6 ε

Let C = {(mk , mp) : d(Xmk , Xmp ) 6 ε; Xmk , Xmp 6 n0} and Cc denotes the compliment of C.
We will show that limn→∞

1
n2 |Cc| = 0. Since Cc contains all even numbers less than or equal to

n0. Thus, we have:

1
n2 |C

c| 6 n0/2
n2 6 1

2n
.

Since n0 is fixed, the right-hand side approaches 0 as n → ∞. Therefore, we have

limn→∞
1
n2 |{(mk , mp) : d(Xmk , Xmp ) 6 ε; mk , mp 6 n} ∈ F(I)| = 1, which shows that X is

I∗-statistically pre-Cauchy.
However, X is not I∗-statistically Cauchy. Suppose for the sake of contradiction that X is

I∗-statistically Cauchy. Then, there exists a set K = {m1 < m2 < m3 < . . . } ⊂ N and for each
ε > 0, there exists mp ∈ N(ε) such that:

lim
n→∞

1
n
|{mk < n : d(Xmk , Xmp ) 6 ε} ∈ F(I)| = 1

Without the loss of generality we can choose n0 ∈ N such that n > n0, we have:

lim
n→∞

1
n
|{mk < n : d(Xmk , Xmp ) 6 ε}| > lim

n→∞

1
n
|{mk < n0 : d(Xmk , Xmp ) 6 ε}|

Let D = {mk 6 n0 : d(Xmk , Xmp ) 6 ε} and Dc denotes the compliment of D. We will show
that limn→∞

1
n |Dc| = 0. Since Dc contains all even numbers less than or equal to n0. Thus,

we have:
1
n
|Dc| 6 n0/2

n
6 1

2
which is a contradiction, so X is not I∗-statistically Cauchy.

Theorem 6. Every I∗- statistically convergent sequence is I∗-statistically pre-Cauchy.

Proof. The proof is trivial from Theorem 4 and 5. See the Appendix A.

To illustrate the concept of a sequence that is I∗-statistically pre-Cauchy but not
I∗-statistically convergent, we can consider the the following example. Understanding that
any I∗-statistically convergent sequence must contain a subsequence that converges in the
usual sense is crucial. Let us look at the example below.

Example 3. Let X = (Xk ) be a sequence. Consider the sequence X = (Xk ) defined such that
for (mk − 1)! < k < mk !, we have Xk = ∑mk

n=1
1
n . This sequence X = (Xk ) does not possess any

convergent subsequences, implying that X is not I∗-statistically convergent. However, despite the
lack of convergent subsequences, the sequence is I∗-statistically pre-Cauchy. This means that while
the entire sequence does not converge in the I∗-statistical sense, it still satisfies the pre-Cauchy
criterion under I∗-statistical conditions.

Let ε > 0 be given and let K = {m1 < m2 < m3 . . .< mk < . . . } ⊂ N ∈ F(I), mk ∈ N
satisfy 1

mk
< ε. Now, consider the case where mk ! < n < (mk + 1)! and (mk − 1)! < j , k <n, then

d(Xmj , Xmk ) 6 1
mk

< ε. It follows that, for mk ! < n < (mk + 1)!, 1
n2 |{(mj, mk ) : d(Xmj , Xmk ) <

ε, mj , mk 6 n)}|, we have > 1
n2 [n− (mk − 1)!]2, >

[
1− (mk−1)!

mk !

]2
, and = [1− 1

mk
]2.

8
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Since limk→∞(1− 1
mk
) = 1. As a result, X is I∗-statistically pre-Cauchy.

Before we present the next theorem, we need to introduce the definition of the
I∗ − lim in f . Let us first outline this concept.

Definition 14. Let I be an admissible ideal ofN and let X = (Xn ) ∈ L(S). Let Ax = {µ ∈ L(R) :
{k : xk < µ} ∈ F(I)} then the I∗ − lim in f is given by:

I∗ − lim in f X =

{
in f Ax if Ax 6= φ

∞ if Ax = φ

It is known that “I∗ − lim in f X = η(finite) if and only if for arbitrary ε > 0 {k : xk <
η + ε} ∈ F(I) and {k : xk < η − ε} /∈ F(I)”.

Theorem 7. Suppose X = (Xk ) ∈ L(S) is I∗-statistically pre-Cauchy. If X has a subsequence
(Xpk ) that converges to X0 and 0 < I∗ − lim in f 1

n |{pk 6 n : k ∈ N}| < ∞ then X is
I∗-statistically convergent to X0 .

Proof. Let ε > 0 be given. Since limXpk = X0 choose r ∈ N such that d(Xj , X0 ) < ε
2

whenever j > r and j = pk for some k. Let A = {pk : pk > r, k ∈ N} and A(ε) = {k :

d(Xk , X0 ) > ε}. Now note that
1
n2 |{n ∈ N : d(Xmk , Xmp ) 6 ε

2 , mk , mp < n}|
6 1

n2 ∑A(ε)×A (mj , mk )

= 1
n |{pk 6 n : pk ∈ A}|. 1

n |{k 6 n : d(Xk , X0 ) > ε}|.
Since X is I∗-statistically pre-Cauchy, then there exists a set K = {m1 < m2 < · · · < mk < . . . }

⊂ N and for each ε > 0 we have limn→∞
1
n2 |{(mk , mj ) : d(Xmk , Xmj ) 6 ε; mk , mp < n} ∈

F(I)| = 1. Let C = {(mk , mj ) : d(Xmk , Xmj ) 6 ε
2 ; mk , mp} ∈ F(I) and δ(C) = 1. Again,

since I∗ − lim in f 1
n |{pk 6: k ∈ N}| = b > 0(say). So, {n ∈ N : 1

n |{pk 6 n : k ∈ N}| >
b
2} = D(say) ∈ F(I). As C and D belongs to F(I) so, C ∩ D ∈ F(I), i.e., consequently

limn→∞
1
n
|{mk < n : d(Xmk , X0 ) 6 ε} ∈ F(I)| = 1. This shows that X is I∗-statistically

convergent.

5. Conclusions

Our study has thoroughly examined the concept of I∗-statistical convergence for se-
quences of fuzzy numbers within a metric space. Our investigation confirms the uniqueness
of the limit under I∗-statistical convergence, establishing a firm foundation for understand-
ing this advanced mathematical concept. Through the development of several key theorems,
we have elucidated the relationship between I∗-statistical convergence and classical conver-
gence, alongside the algebraic properties intrinsic to I∗-statistically convergent sequences.

Additionally, our work has introduced and analyzed I∗-statistically pre-Cauchy and
I∗-statistically Cauchy sequences, highlighting their intricate connection to I∗-statistical
convergence. Notably, we demonstrated that while every I∗-statistically convergent se-
quence is necessarily I∗-statistically pre-Cauchy, the reverse does not universally apply.
To further enrich the theoretical framework, we provided a sufficient condition for an
I∗-statistically pre-Cauchy sequence to achieve I∗-statistical convergence, utilizing the
concept of I∗-lim inf. These findings contribute significantly to the broader understanding
of convergence in the context of fuzzy number sequences and open avenues for future
research in this area.

The future scope of this study includes examining the monotonicity and boundedness
of sequences of fuzzy numbers within the framework of I∗-statistical convergence. Ad-
ditionally, this concept can be extended to explore convergence in the context of double
and triple sequences, broadening the applicability of I∗-statistical convergence. Further

9
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research could also investigate these convergence properties in various other mathematical
spaces, potentially unveiling new theoretical insights and applications.
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Appendix A. Proof of Theorem 6.

Proof. From Theorem 4, we know that every I∗-statistically convergent sequence is
I∗-statistically Cauchy. Additionally, Theorem 5 establishes that every I∗-statistically
Cauchy sequence is I∗-statistically pre-Cauchy. Therefore, it follows that every I∗-statistically
convergent sequence is also I∗-statistically pre-Cauchy.
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Abstract: We deal with two apparently disparate theories. One of them studies extensions of orderings
from a set to its power set. The other one defines suitable scores on hesitant fuzzy elements. We show
that both theories have the same mathematical substrate. Thus, important possibility/impossibility
results concerning criteria for extensions can be transferred to new results on scores. And conversely,
conditions imposed a priori on scores can give rise to new extension criteria. This enhances and
enriches both theories. We show examples of translations of classical results on extensions in the
context of scores. Also, we state new results concerning the impossibility of finding a utility function
representing some kind of extension order if some restrictions are imposed on the utility function
considered as a score.

Keywords: extensions of orders from a set to its power set; criteria of extensions of orderings;
possibility and impossibility results; hesitant fuzzy elements and sets; scores

MSC: 03A72; 06A06; 91B02

1. Introduction
1.1. Motivation of the Manuscript

Sometimes it happens that two apparently disparate theories have a parallel develop-
ment. In a sense, one could be considered a part of the other, even if they belong to totally
different frameworks. When this occurs, the results of each theory can be applied to the
other, thereby reinforcing both.

In the present manuscript, we compare two such parallel theories.
One theory involves extending total orders from a set to its power set, following

some criteria established a priori. This had already been studied by people working
in mathematical economics from 1980 on (see [1,2]) when dealing with the problem of
ranking sets of objects. Depending on the chosen criteria, we may reach either possibility
or impossibility results.

On the other hand, we have the theory of scores on hesitant fuzzy sets. In terms of
extensions of orderings, we start with the usual order on the unit interval [0, 1] and, using
scores (see [3]), we get a new ordering on the subsets of [0, 1] (also known as the hesitant
fuzzy elements). Again, we seek to ensure that the scores accomplish some pre-defined
criteria. Depending on these criteria, we may have a suitable score or not (possibility or
impossibility, again).

At this stage, we notice that the second setting derives from the first.
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In fact, some criteria used by mathematical economists may be unknown to fuzzy set
theorists, and vice versa. This observation suggests the potential to broaden the scope of
criteria and possibility/impossibility results.

1.2. Aim and Objectives

This work arises from our professional experiences as mathematicians working with
two different collectives, namely economists and engineers, who sometimes, unfortu-
nately, overlook each other’s mathematical applications and achievements. These distinct
achievements—economists have their own, and engineers have theirs—could actually
be mutually beneficial and lead to future collaborations. This is especially true once we
recognize and highlight that the mathematical foundation is the same, and the results
obtained by economists could indeed be translated into the context used by engineers, and
vice versa.

We aim to highlight the fact that problems in mathematical economics, such as ex-
tending orders from a set to its power set in the spirit of “ranking sets of objects”, and
problems related to defining and analyzing scores of hesitant fuzzy elements encountered
by mathematicians and engineers in fuzzy set theory and artificial intelligence approaches
are, in a sense, equivalent. Furthermore, technical results obtained in one approach can
often be translated into new results in the other approach, enriching both theories, which
often ignore each other despite sharing the same mathematical substrate.

Specifically, we want to show the analogy between the study of extensions of orderings
from a set to its power set and the definition of scores of hesitant fuzzy elements.

1.3. Contents of the Manuscript

Bearing these ideas in mind, the contents of the manuscript are as follows:
After the Introduction and the section on Preliminaries, we introduce, on the one hand,

classical criteria to extend orderings from a set to its power set (Section 3) and analyze their
compatibility (Section 4). On the other hand, we introduce different classes of scores for
hesitant fuzzy sets (Section 5) and analyze compatibility among extra required features on
scores. In Section 6, we explore the analogies between both approaches, showing that some
(in)compatibility results in one setting could be translated in some way to the other setting.
A final section of concluding remarks and lines for future research closes the paper.

2. Preliminaries
2.1. Extension of Orderings from a Set to Its Power Set

Let X denote a nonempty set.

Definition 1. A preorder - on X is a binary relation on X that is reflexive and transitive. An
antisymmetric preorder is said to be an order. A complete (or total) preorder - on a set X is a
preorder such that if a, b ∈ X, then (a - b) ∨ (b - a) holds. If - is a preorder on X, then as
usual, we denote the associated asymmetric relation by ≺ and the associated equivalence relation
by ∼; these are defined by a ≺ b ⇔ (a - b) ∧ ¬(b - a) and a ∼ b ⇔ (a - b) ∧ (b - a). If
this asymmetric relation is transitive, then - is said to be a quasi-transitive preorder. For any
preorder - on X, the indifference part of -, denoted by ind(-) is the binary relation on X defined
by (a, b) ∈ ind(-) if and only if a ≺ c ⇐⇒ b ≺ c as well as c ≺ a ⇐⇒ c ≺ b, for any c ∈ X.
A complete preorder - defined on X is usually called a preference, and it is said to be representable
if there exists a real-valued function u : X → R such that a - b ⇔ u(a) ≤ u(b) holds for every
a, b ∈ X. Here u is said to be a utility function representing -.

From now on, we will consider X endowed with a complete preorder -. Sometimes
we will work in the particular case in which - is a total order.

13
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Definition 2. An extension of the complete preorder - from the set X to its power set P(X) is
another preorder -E, now defined in P(X) such that the following property holds true for any
elements a, b ∈ X: a - b⇔ {a} -E {b}.

Remark 1.

(i) Among possible extensions, the literature pays special attention to the following situations:
(a) Both - and -E are total orders; (b) both - and -E are complete preorders; (c) - is a total
order, but -E is a complete preorder.

(ii) Some authors do not consider ∅ in the extensions, so they define the extensions not on the
whole power set P(X) but instead on π(X) = P(X) \ {∅}.

(iii) The most classical criteria appeared from 1950 on, mainly in several papers related to social
choice and decision making (see, e.g., [1,4]). They usually consider a total order - defined on a
finite set X, whereas the extension -E can be either a total order or just a complete preorder
depending on the context.

2.2. Hesitant Fuzzy Elements, Hesitant Fuzzy Sets and Scores

Now we present some nomenclature (see, e.g., [5]) to be used henceforward.
By X, we will denote a nonempty set, also called the universe.

Definition 3 ([6]). A (type-1) fuzzy subset H of X is defined as a function µH : X → [0, 1]. Here
µH is called the membership function of H. If µH takes values just in {0, 1}, the corresponding
subset µH is a classical crisp (i.e., non-fuzzy) subset of X.

Throughout the manuscript, the following notation will be used:

- P([0, 1]) denotes the collection of all subsets of the unit interval [0, 1],
- Π([0, 1]) denotes the collection of all nonempty subsets of [0, 1],
- I([0, 1]) constitutes the subset of all intervals in [0, 1],
- IC([0, 1]) consists of all closed intervals in [0, 1],
- I∪([0, 1]) consist of all finite unions of intervals in [0, 1],
- F ([0, 1]) denotes the collection of all nonempty finite subsets of [0, 1], and
- Fn([0, 1]) denotes the collection of all nonempty subsets of [0, 1] with at most n elements.

If X, Y ⊆ R, we write Y > X to mean y > x for all y ∈ Y, x ∈ X. Notice that Y > X
implies X ∩Y = ∅.

The main objects to be handled in our analysis are called the hesitant fuzzy elements
(HFEs for short):

Definition 4 ([7,8]). A subset E of [0, 1] is said to be a hesitant fuzzy element (HFE). Also, a
function h : X → P([0, 1]) is called a hesitant fuzzy set (HFS) over X.

Remark 2. Classical fuzzy sets extend crisp subsets with the assistance of a first level of uncertainty:
the membership function µH maps any element x of the universe X with its “uncertainty degree”.
Thus, mapping x into a number from [0, 1] graduates the acceptability of the claim that this element
belongs to the fuzzy subset H, which therefore generalizes the idea of classical subsets. HFSs are a
particular case of “type-2 fuzzy sets” [9–11].

Basically, a type-1 fuzzy set on a universe X is a map h from X into [0, 1]. Concerning type-2
fuzzy subsets, they are defined as functions from X to the family of type-1 fuzzy subsets of [0, 1];
see, e.g., [12–14]. In that sense, a type-1 fuzzy set has a grade of membership that is crisp, namely a
number in the unit interval. And a type-2 has grades of membership that are fuzzy subsets of [0, 1],
that is, maps from [0, 1] into itself. Notice that HFSs correspond to the particular case of type-2
fuzzy subsets of X such that the grade maps [0, 1] into {0, 1}.

In many practical applications, the HFSs considered map each element of X to a finite
subset of [0, 1]. This particular case is well known in the literature:
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Definition 5 ([15]). A function h : X → F ([0, 1]) is said to be a typical hesitant fuzzy set (THFS)
of X. An element of F ([0, 1]) is called a typical hesitant fuzzy element (THFE).

Scores are now formally defined:

Definition 6. Given a family G ⊆ P([0, 1]), a score on G is defined as a function s : G → [0, 1]
that satisfies the following properties:

1. The score assigned to the empty set is zero. That is, s(∅) = 0 provided that ∅ ∈ G;
2. For all E ∈ G, we have that the score assigned to E must lie between the infimum and the

supremum of E. That is, inf(E) 6 s(E) 6 sup(E). (In particular, s({t}) = t holds true for
each t in the unit interval).

A score on G = P([0, 1]) (respectively, on G = F ([0, 1])) is called total (respectively, typical).
Additionally, a score on G = I([0, 1]) is said to be an interval score.

Remark 3. One significant application of scores defined on HFEs is that they enable the reduction of
uncertainty by one level. If h : X → P([0, 1]) defines an HFS, and s is a score defined on P([0, 1]),
then the composition s ◦ h directly defines a (type-1) fuzzy set over X.

3. Classical Criteria to Extend Orderings from a Set to Its Power Set

The most classical criteria appeared from 1950 on, mainly in several papers related to
social choice and decision making (see, e.g., [1,4,16]). They usually consider a total order
- defined on a finite set X, whereas the extension -E can be either a total order or just a
complete preorder depending on the context.

In order to classify criteria, we may focus on several important aspects, usually related
to some objective that we want to achieve from the restrictions imposed.

In the first classification of extension criteria, we may focus on the following facts:
(i) maxima and/or minima of sets; (ii) means; (iii) monotonicity.
Needless to say, there are some other possible classes, so that this is just a first approxi-

mation. In addition, these classes are not always pairwise disjoint.
In general, what we may expect a priori is that if we take criteria from different classes,

these give rise to an incompatibility result. However, this is not always true.
Here are several criteria based on the maxima or minima of a finite set.

Definition 7. Let X stand for a finite set endowed with a total order -. An extension -E satisfies
the Pure Maximality Criterion [PMA] (respectively, the Pure Minimality Criterion [PMI]) if for
every nonempty subsets A, B ⊆ X it holds true that maxA ≺ maxB ⇒ A ≺E B (respectively,
minA ≺ minB⇒ A ≺E B). Of course, here maxima and minima are taken as regards the given
total order - on X. They exist because X is finite.

Definition 8. Let X stand for a finite set endowed with a total order -. An extension -E satisfies
the Gärdenfors Principle [G] (see [4]) if for every nonempty subset A ⊆ X and any element x /∈ A
it holds true that x ≺ minA⇒ A ∪ {x} ≺E A, and also maxA ≺ x ⇒ A ≺E A ∪ {x}. Again,
maxima and minima are taken here with respect to the given total order - on X.

Definition 9. Let X stand for a set endowed with a complete preorder -. An extension -E
satisfies the Barberà-Pattanaik Property [BP] if for every x, y ∈ X with x ≺ y it holds true that
{x} ≺E {x, y} ≺E {y}.

In addition, -E satisfies the generalized Barberà-Pattanaik Property [GBP] if for every
nonempty subsets A, B ⊆ X such that a ≺ b holds for any a ∈ A, b ∈ B, we also have that
A ≺E A ∪ B ≺ B.

Remark 4. Notice that, unlike the Gärdenfors principle, here we do not ask X to be finite. If X
is finite, the Barberà-Pattanaik Property [BP] is much weaker than the Gärdenfors Principle [G],
of which it is an immediate consequence in that case. In addition, we could also think that [BP]
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reminds us of an idea of a mean, so that if an element y ∈ X is better than another one x, in the
extension to the power set, the subset {x, y} should lie between the subsets {x} and {y}. This
becomes much clearer when the extension is represented by a numerical function (utility) so that the
value for {x, y} represents, in a sense, a mean of the values for {x} and {y}.

Let us now introduce some more criteria based on the intuitive idea of a mean.

Definition 10. Let X stand for a set endowed with a complete preorder -. An extension -E
satisfies the Kelly Criterion [K] (see [17]) if given two nonempty subsets A, B ∈ P(X) with A 6= B
and such that y - x holds for every x ∈ A; y ∈ B, then B ≺E A also holds true.

Remark 5. Notice that this criterion [K] tells us that “the elements of A are at least as good as those
in B", but there is at least one that is better since A 6= B. Thus, at least intuitively, an “average
value” or a “mean” should be higher in A.

Definition 11. Let X stand for a set endowed with a complete preorder -. An extension -E
satisfies the Criterion of Useful Elements [CUE]. If for every subset A ⊆ X such that A has at least
two elements, there is a ∈ A such that A \ {a} ≺E A. Such an element a ∈ A is said to be a useful
element for the subset A.

Definition 12. Let X be a set endowed with a complete preorder -. An extension -E satisfies
the Criterion of Singular Elements [CSE] if for every subset A ⊆ X such that A has at least
two elements, there is a ∈ A such that A ≺E A \ {a}. Such an element a ∈ A is said to be
a singular element for the subset A. Also -E satisfies the Robustness Criterion [R] if for every
nonempty subsets A, B, C ∈ P(X) such that y ≺ x holds for any x ∈ A ∪ B; y ∈ C, it holds that
B ≺E A⇒ B ∪ C ≺E A.

Let us pay attention now to criteria based on monotonicity properties.

Definition 13. Let X stand for a set endowed with a complete preorder -. An extension -E
satisfies the criterion of Monotonicity for Inferior Element [MIE] (see [1], where the terminology is
different) if for every x, y, z ∈ X such that z ≺ y ≺ x it holds true that {y, z} ≺E {x, z}. Similarly,
the extension -E satisfies the criterion of Monotonicity for Superior Element [MSE] (see [1]) if for
every x, y, z ∈ X such that z ≺ y ≺ x it holds true that {z, x} ≺E {y, x}.

Definition 14. Let X stand for a set endowed with a complete preorder -. An extension -E
satisfies the criterion of Monotonicity for Sets [MS] if for every nonempty subsets A, B, C ⊆ X with
C ∩ (A ∪ B) = ∅ it holds that A ≺E B⇔ A ∪ C ≺E B ∪ C. Moreover, -E satisfies the criterion
of Simple Monotonicity for Elements [SME] (see [1]) if for every nonempty subsets A, B ⊆ X and
x ∈ X such that x /∈ (A ∪ B) it holds true that A ≺E B ⇒ A ∪ {x} ≺E B ∪ {x}. Also, -E
satisfies the criterion of Strong Monotonicity for Elements [STRME] (see [1]) if for every nonempty
subsets A, B ⊆ X and x ∈ X with x /∈ (A ∪ B) it holds that A ≺E B⇔ A ∪ {x} ≺E B ∪ {x}.

Definition 15. Let X stand for a set endowed with a complete preorder -. An extension -E
satisfies the General Criterion of Monotonicity for Superior Elements [CSUP] (see [1], with a
different nomenclature) if for every nonempty subsets A, B ⊆ X, and any element x ∈ X such that
y ≺ x holds true for every y ∈ A ∪ B, it holds then true that B ≺E A ⇒ B ∪ {x} ≺E A ∪ {x}.
Also, -E satisfies the General Criterion of Monotonicity for Inferior Elements [CINF] (see [1]) if for
every nonempty subsets A, B ⊆ X, and any element x ∈ X such that x ≺ y holds true for every
y ∈ A ∪ B, it holds then true that B ≺E A⇒ B ∪ {x} ≺E A ∪ {x}.

Remark 6. Notice that [CINF] is a consequence of [R] if we consider C = {x} in the corresponding
definition of Robustness. Therefore [R] implies [CINF].
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Definition 16. Let X stand for a set endowed with a complete preorder -. An extension -E
satisfies the Criterion of Monotonicity Relative to Disjoint Sets [MDS] (see once more [1], with a
different terminology) if for every nonempty sets A, B ⊆ X such that A ∩ B = ∅, and any x ∈ X
such that x /∈ (A ∪ B), it holds then true that B ≺E A ⇒ B ∪ {x} ≺E A ∪ {x}. Also, -E
satisfies the Criterion of Monotonicity Relative to Nested Sets [MNS] (see [1]) if for every nonempty
sets A, B ⊆ X such that B ⊆ A, and any element x ∈ X such that x /∈ A, it holds then true that
A ≺E A ∪ {x} ⇒ B ≺E B ∪ {x}.

4. Compatibility of Criteria of Extension of Orderings
4.1. Complete Preorders vs. Total Orders

In the classical theory, it is typical to analyze extensions in which we start with a total
order - on a set X and we want an extension -E that is also a total order on the power set
of X. However, sometimes this will not be possible. As a matter of fact, some combination
of criteria imposed on the extension may oblige it to be a complete preorder instead of a
total order, as shown in Proposition 1.

Proposition 1. Let X be a finite set with at least three elements, endowed with a total order of -.
There is no extension -E to a total order satisfying [SME] and [B].

Proof. Let X = {a, b, c} with a ≺ b ≺ c. It follows that {a} ≺E {b} ≺E {c}. Using
[B], we have {a} ≺E {a, b} ≺E {b} ≺E {b, c} ≺E {c}. Now, by [SME], we would arrive
at {a, c} ≺E {a, b, c}, since {a} ≺E {a, b}. Again, by [SME], it follows that {a, b, c} ≺E
{a, c}, because {b, c} ≺E {c}. We arrive at a contradiction. Therefore, -E cannot be a
total order.

Remark 7. Under Proposition 1, we wonder if -E could be a complete preorder. The answer is
affirmative. An example is the extension given as follows: {a} ≺E {a, b} ≺E {b} ∼E {a, c} ∼E
{a, b, c} ≺E {b, c} ≺E {c} ≺E ∅.

If X has at most two elements, then there exist extensions -E that are total orders and satisfy
[G] and [SME]. For instance, if X = {a, b} and a ≺ b, we may take the extension -E given by
∅ ≺E {a} ≺E {a, b} ≺E {b}.

Definition 17. Let X be a nonempty set endowed with a complete preorder -. Let -E be an
extension of - to the power set of X. Then we say that -E satisfies the Weak Monotonicity Criterion
[WM] if for any nonempty subsets A, B ⊆ X and any element x ∈ X \ (A ∪ B) it holds true that
A ≺E B⇒ A ∪ {x} -E B ∪ {x}.

Proposition 2. The [SME] criterion implies [WM]. The converse is false.

Proof. The implication follows directly from definitions. Now let X = {a, b, c} and a ≺ b ≺
c. Consider the extension -E given by ∅ ≺E {a} ≺E {b} ≺E {b} ∼E {a, b} ∼E {a, c} ∼E
{b, c} ∼E {a, b, c}. It satisfies [WM] but not [SME].

Lemma 1. Let X be a nonempty finite set endowed with a total order -. Let -E be a quasi-transitive
extension satisfying [G] and [WM]. Then, for every nonempty subset A of X, it holds true that
A ∼E {min(A), max(A)}.

Proof. The proof can be seen in [2], but we include it here for the sake of completeness,
since it is decisive in what follows then. Assume that X has at least three elements,
since otherwise the result becomes evident. So let n ≥ 3, and X = {a1, a2 . . . , an} with
a1 ≺ a2 ≺ . . . ≺ an. Iterating [G] and using the transitivity of ≺E, it follows that {a1} ≺E
{a1, a2} ≺E . . . ≺E {a1, . . . an−1}. Using [WM], we get {a1, an} -E X. Since, by [G] again,
{a2, . . . an} ≺E {a3, . . . , an} ≺E . . . ≺E {an}, once more, by [WM], we arrive at X -E
{a1, an}. Therefore, X ∼E {a1, an}.
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4.2. On Kannai-Peleg Theorem

Kannai and Peleg, in a seminal paper published in 1984 (see [2]), proved an impossi-
bility theorem where the Gärdenfors Principle [G], the Weak Monotonicity Criterion [WM],
and the fact that X is finite but has at least six different elements were crucial. Now we pay
attention to some variants of the original theorem.

Proposition 3 (Kannai-Peleg Theorem –1984–, see [2]). Let X be a finite set endowed with a
total order -. If X has at least 6 elements, then there is no extension -E that is also a complete
preorder and satisfies both [G] and [WM].

Proof. See the proof in the classical reference [2]. We omit it here. Instead, we will prove in
Proposition 5 below a result whose proof follows, so-to-say, similar ideas.

Proposition 4. Let X be a finite set whose cardinality is at most five, endowed with a complete
preorder -. Then there exists an extension -E that is also a complete preorder and satisfies [G]
and [WM].

Proof. There is no loss of generality in assuming that X has five elements, that is,
X = {a1, a2, a3, a4, a5}, and it is endowed with a total order - such that a1 ≺ a2 ≺ a3 ≺
a4 ≺ a5. Consider now the extension -E given by: ∅ ≺E {a1} ≺E {a1, a2} ≺E {a1, a3} ∼E
{a1, a2, a3} ≺E {a1, a4} ∼E {a1, a2, a4} ∼E {a1, a2, a3, a4} ∼E {a1, a3, a4} ≺E {a2} ≺E
{a2, a3} ≺E {a3} ∼E {a2, a4} ∼E {a2, a3, a4} ∼E {a1, a5} ∼E {a1, a2, a5} ∼E {a1, a3, a5} ∼E
{a1, a4, a5} ∼E {a1, a2, a3, a5} ∼E {a1, a2, a4, a5} ∼E {a1, a3, a4, a5} ∼E {a1, a2, a3, a4, a5} ≺E
{a3, a4} ≺E {a4} ≺E {a2, a5} ∼E {a2, a3, a5} ∼E {a2, a4, a5} ∼E {a2, a3, a4, a5} ≺E
{a3, a5} ∼E {a3, a4, a5} ≺E {a4, a5} ≺E {a5}.

Definition 18. Let X be a nonempty set endowed with a complete preorder -. Let -E be an
extension of - to the power set of X. Then we say that -E satisfies the Independence Criterion
[IND] if for any nonempty subsets A, B ⊆ X and any element x ∈ X \ (A ∪ B) it holds true that
A -E B⇒ A ∪ {x} -E B ∪ {x}.

Notice that the independence criterion [IND] implies [WM].

Proposition 5. Let X be a finite set endowed with a total order -. If X has at least five elements,
there is no extension -E being a complete preorder satisfying [G] and [IND].

Proof. By Lemma 1, since [IND] implies [WM], given a nonempty subset A ⊆ X, we
have that A ∼E {min(A), max(A)}. There is no loss of generality in assuming now that
X = {a1, a2, a3, a4, a5} and a1 ≺ a2 ≺ a3 ≺ a4 ≺ a5. Assume that there is an extension
-E that satisfies [G] and [IND]. First, we prove that {a2, a4} -E {a3}. To do so, we will
assume that this is false, and this will lead us to a contradiction: In fact, if {a3} ≺E {a2, a4},
using [IND] as regards a5, we get {a3, a5} -E {a2, a4, a5}. By Lemma 1, this implies
{a3, a5} ∼E {a3, a4, a5}, {a2, a4, a5} ∼E {a2, a5} ∼E {a2, a3, a4, a5}, so that, in particular, we
have {a3, a4, a5} -E {a2, a3, a4, a5}. Let now B = {a3, a4, a5}. Since a2 ≺ a3 ≺ a4 ≺ a5,
by [G] we get B ∪ {a2} ≺E B or equivalently {a2, a3, a4, a5} ≺E {a3, a4, a5}. This is a
contradiction. Therefore {a2, a4} -E {a3}.

At this stage, again proceeding by contradiction, we prove that [G] is incompatible
with [IND]. In fact, using now [IND], we get {a1, a2, a4} -E {a1, a3}. In a similar way to the
argument above, we use again Lemma 1 and obtain {a1, a3} ∼E {a1, a2, a3}, {a1, a2, a4} ∼E
{a1, a4} ∼E {a1, a2, a3, a4}. Hence {a1, a2, a3, a4} -E {a1, a2, a3}. Let now C = {a1, a2, a3}.
Since a3 ≺ a4 and a3 = max C, by [G] we have that C ≺E C ∪ {a4}, or equivalently
{a1, a2, a3} ≺E {a1, a2, a3, a4}. This is a contradiction.
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Example 1. The extension -E introduced in the example that appears in the proof of Proposition 4
satisfies [WM]. However, it fails to satisfy [IND]. To see this, notice that it is {a3} ∼E {a2, a4}, so
that in particular, {a3} -E {a2, a4}. However, {a3, a5} - {a2, a4, a5} does not hold.

If in Proposition 5 above we substitute the condition of X having at least five elements,
putting instead that X has at most four elements, we get compatibility.

Proposition 6. Let X be a finite set whose cardinality is at most four, endowed with a total order of
-. Then there is an extension -E that satisfies both [G] and [IND].

Proof. Without loss of generality, let X = {a1, a2, a3, a4} and - such that a1 ≺ a2 ≺ a3 ≺ a4.
Take the extension -E given by ∅ ≺E {a1} ≺E {a1, a2} ≺E {a1, a3} ∼E {a1, a2, a3} ≺E
{a2} ≺E {a2, a3} ∼E {a1, a4} ∼E {a1, a2, a4} ∼E {a1, a3, a4} ∼E {a1, a2, a3, a4} ≺E {a3} ≺E
{a2, a4} ∼E {a2, a3, a4} ≺E {a3, a4} ≺E {a4}.

If we substitute [IND] by [SME] in the statement of Proposition 5 above, not only does
the result become true, but now, just with three elements, we get incompatibility, as already
stated in Proposition 1.

Concerning compatibility of criteria, the following classical result that involves, as
well as weak monotonicity [WM], the Kelly criterion [K] instead of the more demanding
Gärdenfors property [G] was proved in [18].

Proposition 7. Let X stand for a finite nonempty set. Let - be a total order defined on X. Then
there exists an extension -E of - to the power set of X that is a complete preorder and satisfies both
[K] and [WM].

Proof. See Proposition 2 in [18].

In the same spirit, we now prove the following result on the compatibility of the criteria.

Proposition 8. Let X stand for a finite nonempty set. Let - be a total order defined on X. Then
there exists an extension -E of - to the power set of X that is a complete preorder and satisfies both
[R] and [SME].

Proof. Just notice that given X = {a1, a2 . . . , an}with a1 ≺ a2 ≺ . . . ≺ an, the lexicographic
order (that considers each element of X as a letter and each subset of X as a word where its
case letters are also ordered by means of ≺, and the words are ordered lexicographically, as
in a dictionary) satisfies both [R] and [SME].

5. Scores: Definitions, Hierarchies, and Incompatibility Results

A substantial part of this Section 5 already appeared in [3]. We have decided to include
some definitions and results here for the sake of completeness and the well-understanding
of the ideas.

5.1. Some Background on Scores

The most commonly used scores (see, for example, [8,19–27]) are typical (in the sense
of Definition 6), as they are defined on the family of all finite subsets of the unit interval.
Some examples may be seen in [3]. From the second condition in Definition 6, a score can
be understood as a “mean value” (see [28] for more details).

As a sample, we furnish now another example, not included in [3]. This defines a
function s : F ([0, 1]) → [0, 1] that is a typical score: For each E = {e1, . . . , en} ∈ F ([0, 1]),

with e1 < . . . < en, and p a natural number, we define s(E) = (ep
1 + . . . + ep

n)
1
p .

To classify scores on HFEs, we may pay attention to the following aspects:

(i) Properties based on certain coherence features of the score (e.g., the addition of better
elements should never decrease the score).
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(ii) Properties based on the specific type of HFEs for which the score will be considered
(e.g., finite HFEs, interval HFEs, etc.).

Remark 8. The classification will not necessarily produce mutually exclusive sets.

5.2. On Coherence Features of Scores

First, we introduce some definitions and results related to coherence.

Definition 19. Suppose G ⊆ P([0, 1]). A score s on G is said to be best-worst monotonic for
elements [BWME] if for any x, y ∈ [0, 1] such that x < y, and additionally {x}, {x, y} and {y}
belong to G, it holds that s({x}) < s({x, y}) < s({y}).

Notice that this property is essentially the Barberà-Pattanaik property [BP] (see Definition 9)
adapted for scores.

Definition 20. Suppose that G ⊆ Π([0, 1]). We say that a score s on G is strongly monotonic
with respect to unions [SMU] when for each A, B, A ∪ B ∈ G and such that a < b for every a ∈ A,
b ∈ B , it holds true that: s(A) < s(A ∪ B) < s(B).

[SMU] captures the following intuition: Adding better elements to a subset should
increase its score, and removing worse elements should also increase its score.

Remark 9. Notice that [SMU] implies [BWME]. However, the converse is not true in general. A
counterexample appears in [3].

Given a non-empty subset A of the unit interval [0, 1] and real numbers α, β > 0,
we define the set αA as αA = {α · t : t ∈ A}. Also, we define the set β + A as follows:
β + A = {β + t : t ∈ A}. Depending on A and α, β, the resulting sets αA and/or β + A
may or may not be subsets of [0, 1].

Definition 21. Suppose now that G ⊆ Π([0, 1]). We say that a score s on G is algebraically
coherent with respect to a dilatation [ACD] when for each A ∈ G and α > 0 such that αA also
belongs to G it holds true that s(αA) = αs(A).

Similarly, we say that a score s on G is algebraically coherent with respect to a translation
[ACT] when for each A ∈ G and β > 0 such that A + β also belongs to G it holds true that
s(A + β) = s(A) + β.

Remark 10. Many typical scores were introduced in [3] satisfy both [ACD] and [ACT].

Definition 22. Suppose G ⊆ P([0, 1]). We say that a score s on G satisfies translation invariance
[TI] when for each A ∈ G such that A + ε ∈ G (with ε > 0), it holds true that s(A) < s(A + ε).

Definition 23. Let G ⊆ P([0, 1]). We say that a score s on G satisfies the (adapted (We say here
“adapted” Gärdenfors property since this property was introduced by Gärdenfors [4] in 1976 just
to deal with finite subsets, so that the original definition was stated making reference to maxima
and minima instead of suprema and infima. (Remember Definition 8 above))) Gärdenfors property
[G] if for every A ∈ Π([0, 1]) and any element x /∈ A such that A, A ∪ {x} ∈ G the following two
conditions hold:

[G1] x < inf A⇒ s(A ∪ {x}) < s(A); [G2] sup A < x ⇒ s(A) < s(A ∪ {x}).

Remark 11. Among the classical scores (see [3]) defined for finite subsets of the unit interval
(TFHE’s), the minimum satisfies [G1], but not [G2]. Similarly, the maximum satisfies [G2] but
not [G1].
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Definition 24. Let G ⊆ P([0, 1]). We say that a score s on G satisfies the weak monotonicity
property [WM] if for every A, B ∈ Π([0, 1]) and x /∈ A ∪ B, such that A, B, A ∪ {x}, B ∪ {x} ∈
G, it holds true that s(A) < s(B)⇒ s(A ∪ {x}) < s(B ∪ {x}).

Remark 12. Notice that [WM] is a particular case of Definition 17 above for extensions of orderings.
It is not easy to find scores satisfying [WM], except maybe in situations dealing with special classes
of finite subsets of the unit interval (see, e.g., [29,30]).

A classical theorem by Kannai and Peleg [2] states this incompatibility result.

Proposition 9. Let G ⊆ P([0, 1]) such that there exists a subset A ⊆ [0, 1] whose cardinality is
at least 6, such that A and all its subsets belong to G. Then no score s on G satisfies both the adapted
Gärdenfors property [G] and the weak monotonicity property [WM].

Proof. See [2], p. 174. Observe also that this Proposition 9 is also a direct consequence of
Proposition 3 for extensions of orderings.

5.3. Scores Defined on Special Classes of Sets

All the results of this subsection appear in [3]. For this reason, we do not include
their proofs here. Nevertheless, the ideas involved in these results may affect Section 6.2 of
the next Section 6 when trying to induce impossibility results for extensions of orderings
mimicking the results got here for scores on HFEs.

Bearing this in mind, we now pay attention to scores that sometimes are not defined
on the whole set P([0, 1]) but instead act only on THFEs (namely, F ([0, 1])) or on intervals
I([0, 1]). In particular, we pay attention to scores defined on families G that include the set
of intervals I([0, 1]).

This gives rise to new definitions and results concerning the compatibility of the newly
introduced properties when imposed on those scores. These have been studied in depth
in [3]. We keep here just a sample of these new definitions and results to motivate their use
in Section 6 of the present paper when adapted to utility functions related to extensions
of orderings.

Definition 25. Suppose I([0, 1]) ⊆ G ⊆ P([0, 1]). A score s : G → [0, 1] is extremes monotonic
[EM] when it satisfies the following two conditions: [EM1]: 0 6 b < b′ 6 1 implies s([a, b]) <
s([a, b′]) for each a ∈ [0, b]; [EM2]: 0 6 a < a′ 6 1 implies s([a, b]) < s([a′, b]) for each
b ∈ [a′, 1].

Moreover, s is strongly extreme monotonic [SEM] if for each a, b ∈ [0, 1] with a < b it holds
that s([0, a)) < s([0, a]) < s([0, b)).

Proposition 10. Consider a score s : G → [0, 1] with I([0, 1]) ⊆ G ⊆ P([0, 1]). Then s cannot
satisfy the property [SEM] of strong extremes monotonicity.

Moreover, s cannot satisfy both [SMU] and [EM1].

Proof. See Lemmas 1 and 2 in [3].

6. Comparisons and Analogies between the Theory of Extension of Orderings and the
Theory of Scores on Hesitant Fuzzy Elements
6.1. From Extensions of Orderings to Scores

The theory of scores on HFEs can be considered a particular case of that of extensions
of orderings from a set to its power set. In fact, if we consider the usual total order ≤ on the
unit interval [0, 1] and a score s defined on Π([0, 1]), the order ≤ is immediately extended
to a complete preorder ≤E on Π([0, 1]), but just declaring that A ≤E⇔ s(A) ≤ s(B), for
any nonempty subsets A, B of [0, 1].

Even if we only consider the theory of extensions of orderings on finite sets, we can also
adapt its results to particular cases of scores, namely scores defined on the family F ([0, 1])
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THFEs. Actually, to compare two nonempty finite sets of [0, 1], say A = {x1, . . . , xn} and
B = {y1, . . . , yk}, first we endow the finite set A∪B with the total order≤ inherited from the
usual order of [0, 1], and, through a score s defined on F ([0, 1]), we extend it to a complete
preorder ≤ on the nonempty parts of A ∪ B by declaring that C ≤ D ⇔ s(C) ≤ s(D).

What is clear now is that the impossibility results arising from extensions of orderings
from a set to its power set have a parallel result on scores: Proposition 3 on extensions
induces Proposition 9 on scores.

Definition 26. Let G ⊆ P([0, 1]). We say that a score s on G satisfies the weak monotonicity
property of second type [WM2] if for every A, B ∈ Π([0, 1]) and x /∈ A ∪ B, such that A, B, A ∪
{x}, B ∪ {x} ∈ G, it holds true that s(A) < s(B) ⇒ s(A ∪ {x}) ≤ s(B ∪ {x}). Similarly, it
satisfies the weak monotonicity property of the third type [WM3] if for every A, B ∈ Π([0, 1])
and x /∈ A ∪ B, such that A, B, A ∪ {x}, B ∪ {x} ∈ G, it holds true that s(A) ≤ s(B) ⇒
s(A ∪ {x}) ≤ s(B ∪ {x}).

Proposition 3 for extensions of orderings also implies the following Proposition 11.

Proposition 11. Let G ⊆ P([0, 1]) such that there exists a subset A ⊆ [0, 1] whose cardinality is
at least 6, such that A and all its subsets belong to G. Then there is no score s on G that satisfies both
the adapted Gärdenfors property [G] and the weak monotonicity property of the second type [WM2].

And Proposition 5 immediately gives rise to the following result for scores.

Proposition 12. Let G ⊆ P([0, 1]) such that there exists a subset A ⊆ [0, 1] whose cardinality is
at least 5, such that A and all its subsets belong to G. Then there is no score s on G that satisfies both
the adapted Gärdenfors property [G] and the weak monotonicity property of the third type [WM3].

Needless to say, these cases are just a sample. That is, the key fact here is that
impossibility results encountered in the framework of the extensions of orderings from a
set to its power set (a.k.a, “ranking sets of objects”, see [1]) immediately induce parallel
results on the theory of scores on hesitant fuzzy elements.

A remarkable fact here is that, to the extent of what we know and perceive, a large part
of these results of the impossibility of extensions of orderings turn out to be little known, if
not ignored, by a substantial part of the researchers in fuzzy set theory, dealing with scores
on hesitant fuzzy elements.

6.2. From Scores to Extensions of Orderings

The converse situation, that is, using some results on scores on hesitant fuzzy elements
to get new (im)possibility theorems on extensions of total orders from a nonempty set to
its power set, is not so direct. Since the extension of orderings is a more general setting, it
may happen that some results on scores could not be translated into one for extensions of
orderings, in the most general case (extensions that start from a total order defined on a
nonempty set X, not necessarily finite).

In addition, the results on scores have [0, 1] as a starting point, that is, as a totally
ordered set through the usual order ≤, on whose power set we want to define some score s
accomplishing some properties or criteria. To translate this to some abstract set X endowed
with a total order -, we will need that X has some additional structure (e.g., topological)
that could, in some way, remind us of [0, 1].

Let us now discuss how to adapt Definition 25, Proposition 10, and some other
definitions and results introduced in [1] to the framework of extensions of orderings from a
set to its power set.

In what follows, X will stand for a nonempty set, and we will also assume that it is
endowed with a total order -. We want to extend - to a complete preorder (i.e., now we
will admit ties), say -E, defined on the power set of X.
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Given a, b ∈ X with a ≺ b we denote by [a, b] = {x ∈ X : a - x - b}; (a, b) = {x ∈
X : a ≺ x ≺ b}; [a, b) = {x ∈ X : a - x ≺ b}; (a, b] = {x ∈ X : a ≺ x - b}. Also, given
a ∈ X, we denote (a,→) = {x ∈ X : a ≺ x}; [a,→) = {x ∈ X : a - x}; (←, a) = {x ∈
X : x ≺ a}; (←, a] = {x ∈ X : x - a}.

Definition 27. An extension -E of - to the power set of X satisfies the property of interval compati-
bility [IC] if given a, b ∈ X with a ≺ b, it holds true that (a, b) ∼E [a, b] ∼E [a, b) ∼E (a, b].

Remark 13. This property [IC] is very demanding. It forces the total order - on X to be dense-in-
itself. That is, if a ≺ b, there is some other element c ∈ X such that a ≺ c ≺ b. The reason is that
the extension -E should accomplish, on the one hand, that {a} ≺E {b}. But, on the other hand, by
[IC] we have that [a, b) = {a}, whereas (a, b] = {b}, and [IC] then would imply that {a} ∼E {b},
a contradiction. As a clear consequence X should be infinite.

Definition 28. An extension -E of - to the power set of X is extreme monotonic [EM] when it
satisfies the following two conditions:

[EM1] If b ≺ c, then [a, b] ≺E [a, c] holds for every a - b (a, b, c ∈ X);
[EM2] If b ≺ c, then [b, a] ≺E [c, a] holds for every c - a (a, b, c ∈ X).
Moreover, it is strongly extreme monotonic [SEM] if for each a, b ∈ X with a ≺ b ≺ c, it

holds that [a, b) ≺E [a, b] ≺E [a, c) ≺E [a, c].

Remark 14. This new property, [SEM], is also very demanding. If X has at least three elements, the
total order - is almost “dense-in-itself” in the following sense: If a ≺ b ≺ c there exists d ∈ X with
b ≺ d ≺ c. Otherwise, [a, b] = [a, c), so that [a, b] ≺E [a, c) becomes impossible. In particular, X
should be infinite, too.

The results we can obtain now for extensions of orderings, after adapting some
impossibility results for scores, have a strong relationship with the existence of a utility
function. The reason is the following: If a complete preorder - on a nonempty set Z
has a utility representation u, there is no loss of generality in considering that u takes
values in [0, 1]. Consequently, impossibility results for scores, adapted now to criteria of
extensions of orderings from a set to its power set (see, e.g., Proposition 13 below), tell us
the following key fact Either the extension -E cannot be a complete preorder, or if it is, then
it does not admit a utility function. The first situation is typical for impossibility results on
finite sets. The reason is that any complete preorder on a finite set always admits a utility
representation. Moreover, if a set X is finite, its power set is also finite (see e.g., the first
three chapters in [31]).

Proposition 13. Let X be a set whose cardinality is at least that of the continuum. Suppose that
X is endowed with a total order -. Let -E be a complete preorder on the power set of X that is an
extension of -. Then, if -E satisfies [SEM], it does not admit a utility representation.

Proof. This is analogous to the first part of Proposition 10 for scores. Suppose by con-
tradiction that u is a utility function for -E. Take x ∈ X with either [x,→) or (←, x]
having the cardinality of the continuum. (We will assume the first possibility, without
loss of generality). Now, observe that for any x, y ∈ X with x ≺ y, z, we have that
a = u([x, y)) < b = u([x, y]) < c = u([x, z)) < d = u([x, z]). So there exists a rational
number qy ∈ (a, b) as well as another rational number qz ∈ (c, d), and by construction
qz > qy. But this leads to a contradiction since Q is countable.

Proposition 14. Let X be a set whose cardinality is at least that of the continuum. Suppose that
X is endowed with a total order -. Let -E be a complete preorder on the power set of X that is an
extension of -. Then, if -E satisfies [GBP], it does not admit a utility representation.
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Proof. This is analogous to the second part of Proposition 10 for scores. Suppose by
contradiction that u is a utility function for -E. Take x ∈ X with either [x,→) or (←, x]
having the cardinality of the continuum. (We will assume the first possibility, without
loss of generality). Now, observe that for any x, y ∈ X with x ≺ y, z, we have that
[x, y) ≺E [x, y] ≺E {y} by [GBP]:Moreover, for the same reason, [x, y] ≺E [x, z) ≺E (y, z).
As in Proposition 14, a = u([x, y)) < b = u([x, y]) < c = u([x, z)) < d = u([x, z]), and we
finally arrive at a contradiction.

7. Concluding Remarks and Lines for Future Research

The main objective of this paper has been to show analogies between two apparently
disparate theories. We have established some parallelism between the (more general)
theory of extensions of ordering from a set to its power set and the theory of defining scores
on hesitant fuzzy elements. Thus, each possibility or impossibility result encountered in
the theory of ranking sets of objects (i.e., extending total orders from a set to its power
set) immediately generates a parallel result of the same kind (possibility or impossibility)
concerning scores on HFEs. Moreover, some possibility or impossibility results on scores
on HFEs can be adapted somehow to obtain parallel results on extensions of orderings.

As a line for future research, we suggest exploring in depth both theories, searching
for (im)-possibility results that, being well known in one of the frameworks, have not been
used or even commented on in the other. Therefore, we could complete (or, at least, enlarge)
the panorama of possibility/impossibility theorems arising in both theories: extension of
orderings from a set to its power set vs. scores on HFEs.
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Abstract: Since the early 21st century, within fuzzy mathematics, there has been a stream of research
in the field of option pricing that introduces vagueness in the parameters governing the movement of
the underlying asset price through fuzzy numbers (FNs). This approach is commonly known as fuzzy
random option pricing (FROP). In discrete time, most contributions use the binomial groundwork
with up-and-down moves proposed by Cox, Ross, and Rubinstein (CRR), which introduces epistemic
uncertainty associated with volatility through FNs. Thus, the present work falls within this stream of
literature and contributes to the literature in three ways. First, analytical developments allow for the
introduction of uncertainty with intuitionistic fuzzy numbers (IFNs), which are a generalization of
FNs. Therefore, we can introduce bipolar uncertainty in parameter modelling. Second, a methodology
is proposed that allows for adjusting the volatility with which the option is valued through an
IFN. This approach is based on the existing developments in the literature on adjusting statistical
parameters with possibility distributions via historical data. Third, we introduce into the debate on
fuzzy random binomial option pricing the analytical framework that should be used in modelling
upwards and downwards moves. In this sense, binomial modelling is usually employed to value
path-dependent options that cannot be directly evaluated with the Black–Scholes–Merton (BSM)
model. Thus, one way to assess the suitability of binomial moves for valuing a particular option
is to approximate the results of the BSM in a European option with the same characteristics as the
option of interest. In this study, we compared the moves proposed by Renddleman and Bartter (RB)
with CRR. We have observed that, depending on the moneyness degree of the option and, without a
doubt, on options traded at the money, RB modelling offers greater convergence to BSM prices than
does CRR modelling.

Keywords: intuitionistic fuzzy numbers; probability–possibility transformation; fuzzy binomial
option pricing; zero-coupon bond options; binomial up-and-down modelling

MSC: 62A88; 91G20; 91G30

1. Introduction

The Black–Scholes–Merton (BSM) model for valuing European options [1,2] has been
one of the fundamental pillars of financial economics since the late 20th century [3]. The
approach used to determine the BSM formula, which is based on the no-arbitrage argument,
allows the valuation of not only options but also any asset containing some form of
optionality, using a few parameters that are relatively easy to estimate because they do not
depend on subjective risk perception. Thus, option pricing theory enables pricing not only
for a great deal of derivative assets but also for some embedded rights, such as convertibility
rights and early amortization in bonds or financial assets such as life insurance or mortgage
loans [3]. It also allows for the valuation of companies [1] or investment projects using real
options theory [3].

However, while the BSM philosophy allows for the valuation of a wide range of
economic rights, continuous-time option valuation models do not allow for the evaluation
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of the majority of path-dependent options. This encompasses American options, several
types of exotic options, or flexibilities associated with real options [4]. Thus, one of the main
derivations of the BSM is the binomial approximation, also called the two-state model [4],
where up-and-down moves are instantaneous, which is equivalent to the BSM formula [5].
Therefore, the use of a binomial methodology in valuing path-dependent options allows
the application of the philosophy and assumptions underlying the BSM [5].

The so-called binomial approximation is not a single model but comprises a great
deal of up-and-down binomial moves modelling. The most widely used and well-known
method is the one proposed by Cox, Ross, and Rubinstein [6] (CRR hereafter), although
there are many more approximations. In this regard, we can mention the ones simultane-
ously published by Rendleman and Bartter [7] (RB hereafter) or [8,9]. In fact, [5] identified
up to 11 possible variants of the binomial method.

Conventional option valuation models assume that the parameters governing vari-
ations in underlying asset prices are crisp values. However, in practical situations, there
is often imprecision and/or vagueness regarding their values. For example, the historical
volatility of the underlying asset must be estimated through sample values; thus, a more
comprehensive but also imprecise estimation requires at least the use of confidence interval
estimations associated with a significance level [10]. In the case of real options, parameters
such as the exercise price or even its date may be imprecisely estimated by the evaluator
or manager [11,12]. Thus, at the beginning of the 21st century, a trend in fuzzy mathe-
matics emerged, which we can label fuzzy random option pricing (FROP). A considerable
number of studies have modelled uncertainty in valuation parameters through possibility
distributions [13]. These works are based on conventional option valuation frameworks,
such as the BSM or the binomial method, which introduce the vagueness of parameters
governing movements of the underlying asset through fuzzy subsets [13]. In most cases,
the type of fuzzy subset used is the type-1 fuzzy number, which is typically triangular or
trapezoidal [12,13] and should be considered an epistemic fuzzy set [14].

FROP development spans both discrete and continuous periods. Over time, contribu-
tions within the BSM framework have been particularly numerous [10,11,15–21]. However,
FROP has utilized possibility distributions to model the parameter uncertainty of other
price variation models, such as multivariate Brownian geometric models [22] or Levy
processes [23,24].

Discrete-time developments have mainly focused on extending the binomial model
to price options for stocks [25–30] and real options [31–34]. In these papers, all binomial
models shape the up-and-down moves with the analytical groundwork of the CRR without
considering any of the numerous alternatives provided in the literature. However, there is
no reason not to choose any other binomial model from those mentioned earlier, such as
the RB model [31]. Likewise, to the best of our knowledge, modelling vagueness over the
value of parameters governing the movement of the underlying asset price is performed
through fuzzy numbers, which are typically linear [13]. An exception to this assertion is
the intuitionistic triangular extension to CRR [35], which uses soft set parameters to model
CRR. Notably, a significant number of FROP binomial extensions consider volatility to be
the main source of uncertainty [22,26,36].

The reflections outlined in the preceding paragraphs lead to the development of the
present work, in which we extend the two-state model of option valuation to estimate the
parameters governing underlying assets quantified by intuitionistic fuzzy numbers (IFNs),
with particular emphasis on volatility. This study introduces the following novelties to the
FROP literature:

1. We model uncertainty via IFNs, which generalize FNs, in an option pricing context.
Introducing parameter quantification with IFNs allows for the incorporation of bipolar
information; that is, capturing values that can actually take the parameter, as well
as those that are definitely not [37]. It should not be understood that IFNs introduce
more uncertainty in parameter estimation but rather introduce new information [38].
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Although intuitionistic fuzzy uncertainty has been considered in some studies [39–43],
it is quite residual and absent in fuzzy binomial modelling.

2. We propose a methodology that allows for the adjustment of the volatility necessary to
value the option as an IFN using the historical volatility approach [4] and the concept
of coherent probability–possibility transformation [44]. This focus has been adopted
to fit fuzzy number parameters in an FROP setting to price stock options [10], in a real
options setting [45], and in the field of valuation of interest-sensitive instruments [46].

3. We contribute to FROP in a binomial setting by critically proposing the modelling of
up-and-down moves in the valuation of the path-dependent option under assessment.
We compared the commonly used fuzzy literature CRR with the alternative of Rendle-
man and Bartter [7]. In this sense, given that the use of the binomial model is justified
by its convergence to the BSM, the evaluation of binomial models is carried out by
comparing the proximity of their calculated price with the BSM in a European option
with the same characteristics as those intended to be evaluated [47].

The paper is organized as follows. The following section presents the analytical
foundations of fuzzy mathematics used in this paper and proposes an intuitionistic fuzzy
estimate of option volatility on the basis of the concept of historical volatility. In the
Section 3, intuitionistic expressions of the BSM and binomial option prices are developed.
Fourth, we evaluated the modelling of binomial up-and-down moves with CRR and RB in
an intuitionistic fuzzy setting. We assume that volatility is a unique uncertain parameter.
To test up-and-down moves, we used historical data from the IBEX-35 Futures Index, which
is the reference index for the most traded options on stocks in the Spanish derivatives
financial market.

2. Intuitionistic Fuzzy Estimates of Statistical Parameters and Intuitionistic Fuzzy
Number Arithmetic
2.1. Fuzzy Numbers, Intuitionistic Fuzzy Numbers, and Distance between Intuitionistic
Fuzzy Numbers

Definition 1. A fuzzy set in a universe of discourse X,
∼
A, is

∼
A = {〈x, µA(x)〉, x ∈ X}, where

µA : X −→ [0, 1] is the so-called membership function [48]. Conversely,
∼
A can be represented

through level sets or α-cuts: Aα:Aα = {x|µA(x) ≥ α, α ∈ (0, 1]}.

Definition 2. A fuzzy number (FN),
∼
A, is a fuzzy subset of a real line. It is normal

(i.e., ∃x|µA(x) = 1)) or convex (i.e., ∀x1, x2 ∈ R, 0 ≤ λ ≤ 1, µA(λx1 + (1− λ)x2) ≥
min(µA(x1), µA(x2))) [49]. Therefore, the level sets of

∼
A and Aα are confidence intervals:

Aα = {x|µA(x) ≥ α,α ∈ (0, 1]} =
[
Aα, Aα

]
, (1)

where Aα increases with α and where Aα decreases with respect to α.

Remark 1. A fuzzy number
∼
A is also known as a possibility distribution, and µA(x) is known as

the possibility distribution function.

Definition 3. The intuitionistic fuzzy set (IFS)
∼
A

I
in the universe of discourse X is

∼
A

I
=

{〈x, µA(x), vA(x)〉, x ∈ X}, where µA : X −→ [0, 1] is the membership value of x in
∼
A

I
and

where vA : X −→ [0, 1] is the nonmembership value. The following relation holds: 0 ≤ µA(x) +
vA(x) ≤ 1 [50].

Remark 2. The degree of hesitancy of
∼
A

I
, hA(x), is hA(x) = 1− µA(x)− vA(x). Note that an

IFS generalizes the concept of an FS such that if hA(x) = 0 ∀x,
∼
A

I
is a conventional FS

∼
A.
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Definition 4. An intuitionistic fuzzy number (IFN)
∼
A

I
is an IFS defined on real numbers such

that [51]:
(i) is normal, ∃x|µA(x) = 1⇒ vA(x) = hA(x) = 0.
(ii) µA(x) is convex, which implies that ∀x1, x2 ∈ R, 0 ≤ λ ≤ 1, µA(λx1 + (1− λ)x2) ≥

min(µA(x1), µA(x2)), and vA(x) are concave; that is, ∀x1, x2 ∈ R, 0 ≤ λ ≤ 1, vA(λx1+
(1− λ)x2) ≤ max(vA(x1), vA(x2)).

Remark 3. An IFN
∼
A

I
can be represented throughout its level sets or 〈α, β〉-cuts, A〈α,β〉, as:

A〈α,β〉 = 〈Aα =
[
Aα, Aα

]
, A′β =

[
A′β, A′β

]
, 0 ≤ α + β ≤ 1, α, β ∈ (0, 1)〉. (2)

where Aα and A′β increase with respect to α and β, respectively. Similarly, Aα and A′β decrease
with respect to these arguments.

Remark 4. In an IFN, µA(x) is the lower possibility distribution function of
∼
A

I
, and µ∗A(x) =

1− vA(x) is its upper distribution function [52]. Consequently, the α-cut representation of
∼
A
∗
,

A∗α and the β-cut representation in (2), A′β, accomplishes that for β = 1− α, A′1−α = A∗α, i.e.,

[
A′1−α, A′1−α

]
=
[
A∗α, A∗α

]
(3)

Thus, µ*
A(x) and µA(x) can be interpreted as bipolar measurements of the reliability

of A as x [38]. Thus, µ*
A(x) quantifies for x the potential possibility and µA(x) its real

possibility. Figure 1 shows the shape of an intuitionistic triangular fuzzy number.

Figure 1. Shape of a triangular intuitionistic fuzzy number.

Definition 5. The expected value of an intuitionistic fuzzy number, EV(
∼
A

I
), can be defined via

(2) and (3) as follows [53]:

EV(
∼
A

I
) =

1
2

1∫

0

f (α)
(

Aα + Aα + A′1−α + A′1−α

)
dα. (4)

where f (α) is a function that satisfies f (0) = 0 and
∫ 1

0 f (α)dα = 0.5. Therefore, we consider in
this paper f (α) = α.

Definition 6. Let there be two IFNs:
∼
A

I
and

∼
B

I
. The distance between these IFNs is defined by (2)

and (3) as follows [54]:
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D(
∼
A

I
,
∼
B

I
) =

1
2

1∫

0

f (α)
[(

Aα − Bα

)2
+
(

Aα − Bα

)2
+
(

A′1−α − B′1−α

)2
+
(

A′1−α − B′1−α

)2
]

dα. (5)

where f (α) is the same function as in (4).

Note that (4) and (5) can be implemented by using any of the numerical approximations
to integral calculations existing in the literature, such as Simpson’s rule.

2.2. Fitting Statistical Parameters with Intuitionistic Fuzzy Numbers

Fuzzy numbers are frequently employed in fuzzy mathematics to represent the epis-
temic uncertainty of parameters and play an analogous role to random variables in proba-
bility theory [38]. Consequently, several studies have investigated the equivalence between
fuzzy numbers and random variables with the aim of facilitating consistent ways to trans-
form random variables into possibility distribution functions [44,55,56].

Definition 7. From a random variable A and a family of confidence intervals Aα such that

P(x ∈ Aα) ≥ 1− α, where P(·) is a probability measure, we can induce an equivalent FN
∼
A whose

α-cut representation Aαis [55]:

Aα =
[
Aα, Aα

]
=
[{

x
∣∣∣P(A ≤ x) =

α

2

}
,
{

x
∣∣∣P(A ≤ x) = 1− α

2

}]
. (6)

Thus, the membership function of the fuzzy number
∼
A equivalent to A is as follows:

µA(x) = sup{α|x ∈ Aα}. (7)

This analytical connection between random variables and possibility distributions
has led several authors to propose adjusting statistical parameters, such as the mean or
variance, with fuzzy numbers that are built up by overlaying sample confidence intervals
from the lowest to the highest level of significance [57–61]. Therefore, we define:

Definition 8. Let (i) be a sample of independent and identically distributed random variables with
an unknown parameter θ that allows its interval estimate to be obtained with a significance level
(1 − α)%,

[
θ(α), θ(α)

]
. (ii) be a monotonic function g(γ, α) : (0, 1]→

[ γ
2 , 0.5

]
, γ ∈ (0, 1) . Then,

from
[
θ(α), θ(α)

]
, we can induce a fuzzy number estimate for θ, γ

∼
θ whose α-cuts are [59]:

γθα =
[

γθα, γθα

]
=
[
θ(2g(γ, α)), θ(2g(γ, α))

]
. (8)

The function g(·) transforms the significance level of the probabilistic confidence
interval to a possibilistic membership degree.

Remark 5. According to [59], the parameter γ determines the width of the support of γ
∼
θ . The

determination of γ to encompass all potential values considered in γ
∼
θ can be interpreted through

the application of the 95% and 99.7% rules, which are commonly employed in finance and business
modelling [62]. A 95% value (implying a significance level of 5%) covers typical scenarios, incorpo-
rating those that are reasonable but not entirely extreme. Conversely, the utilization of significance
levels γ close to 0, such as 0.3% (i.e., the 99.7% rule), assumes virtually all conceivable scenarios in

support of γ
∼
θ .

Remark 6. In this study, the function g(γ, α) is defined as a linear function [59]:

g(γ, α) =

(
1
2
− γ

2

)
α +

γ

2
. (9)
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Definition 9. Let be a sample with n observations and a sample variance σ̂2(standard deviation σ̂).

For variance σ2, we can build a possibilistic estimate γ∼σ
2

whose membership function is [59]:

µγσ2(x) =





2−γ
1−γ − 2

1−γ F
(
(n−1)σ̂2

x

)
(n−1)σ̂2

χ2
n−1; 2−γ

2

≤ x ≤ (n−1)σ̂2

M

2
1−γ F

(
(n−1)σ̂2

x

)
− γ

1−γ
(n−1)σ̂2

M ≤ x ≤ (n−1)σ̂2

χ2
n−1; γ2

,
(10)

where F(·) is the distribution function of a Chi-squared distribution with n − 1 degrees
of freedom; χ2

n−1;(·) is its inverse for a probability level (·); and M is the median of the

Chi-squared distribution. Therefore, the α-levels of γ∼σ
2

and γσ2
α are as follows:

γσ2
α =

[
γσ2

α, γσ2
α

]
=


 (n− 1)σ̂2

χ2
n−1; 2−γ

2 −( 1
2−

γ
2 )α

,
(n− 1)σ̂2

χ2
n−1;( 1

2−
γ
2 )α+

γ
2


. (11)

Remark 7. Therefore, for the standard deviation, σ, the possibility distribution function estimate,
γ∼σ , can be obtained by performing µγσ (x) = µγσ2

(
x2); thus, the α-cuts γσα are as follows:

γσα =
[

γσα, γσα

]
=



√√√√ (n− 1)σ̂2

χ2
n−1; 2−γ

2 −( 1
2−

γ
2 )α

,

√√√√ (n− 1)σ̂2

χ2
n−1;( 1

2−
γ
2 )α+

γ
2


. (12)

Definition 10. Let us suppose a sample of a random variable with an associated unknown parameter
θ that allows us to obtain an interval estimate

[
θ(α), θ(α)

]
with a significance level of (1 − α)%.

Therefore, we can adjust an intuitionistic estimate
∼
θ

I
by fitting its lower distribution function via

(8) and (9) γ, (γ
∼
θ ), that is, µθ(x) = µγθ (x), and its upper distribution function with γ∗ ≤ γ in

(7), (γ∗
∼
θ ), that is, µ∗θ (x) = µγ∗ θ (x). Therefore, for

∼
θ

I
, we can state that:

µ∗θ (x) = µγ∗ θ (x) and so υθ(x) = 1− µγ∗ θ (x). (13)

Thus, θ〈α,β〉 = 〈θα =
[
θα, θα

]
, θ′β =

[
θ′β, θ′β

]
, 0 ≤ α + β ≤ 1, α, β ∈ (0, 1)〉, where:

θα = γθα =
[

γθα, γθα

]
=
[
θ(2h(γ, α)), θ(2h(γ, α))

]
, (14)

θ′β = γ∗θ1−β =
[

γ∗θ1−β , γ∗θ1−β

]
=
[
θ(2h(γ∗, 1− β)), θ(2h(γ∗, 1− β))

]
(15)

Remark 8. Note that the proposed approach utilizes, on the one hand, the transformation of
confidence intervals for statistical parameters into possibility distributions. On the other hand, an
IFN can be delimited through two possibility distributions: a lower distribution, which gathers the
values of the parameters of interest considered real according to the available evidence, and an upper
distribution, which gathers the potential values of the parameters [38].

Definition 11. Let be a sample with n observations and sample variance σ̂2. From Definition

10, we can fit intuitionistic variance
∼
σ

I2
by adjusting γ∼σ

2
and γ∗∼σ

2
. From (13), we can define a

possibilistic estimate,
∼
σ

I2
= {〈x, µσ2(x), vσ2(x)〉, x ∈ X}, where:

µσ2(x) = µγσ2 (x), µ∗σ2(x) = µγ∗σ2 (x) and vσ2(x) = 1− µ∗σ2(x). (16)
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Therefore, the level set representation
∼
σ

I2
can be denoted as σ2

〈α,β〉 = 〈σ2
α =

[
σ2

α , σ2
α

]
,

σ2′
β =

[
σ2′

β , σ2′
β

]
, 0 ≤ α + β ≤ 1, α, β ∈ (0, 1)〉, where by using (11), (14), and (15):

σ2
α = γσ2

α =
[

γσ2
α, γσ2

α

]
=


 (n− 1)σ̂2

χ2
n−1; 2−γ

2 −( 1
2−

γ
2 )α

,
(n− 1)σ̂2

χ2
n−1;( 1

2−
γ
2 )α+

γ
2


. (17)

σ2′
β =

[
γ∗σ

2
1−β, γ∗σ

2
1−β

]
=


 (n− 1)σ̂2

χ2
n−1; 2−γ∗

2 −( 1
2−

γ∗
2 )(1−β)

,
(n− 1)σ̂2

χ2
n−1;( 1

2−
γ∗
2 )(1−β)+ γ∗

2


. (18)

Remark 9. Therefore, for the standard deviation σ, we can fit an IFN
∼
σ

I
obtained by performing

µσ(x) = µσ2
(
x2) and υσ(x) = υσ2

(
x2). Therefore, the 〈α, β〉-cuts σ〈α,β〉 = 〈σα =

[
σα, σα

]
,

σ′β =
[
σ′β, σ′β

]
, 0 ≤ α + β ≤ 1, α, β ∈ (0, 1)〉 are:

σα =

[√
σ2′

α ,
√

σ2′
α

]
=

[√
γσ2

α,
√

γσ2
α

]
and σ′β =

[√
σ2′

β ,
√

σ2′
β

]
=

[√
γ∗σ

2
α,
√

γ∗σ
2
α

]
. (19)

Numerical application 1. The empirical applications developed in this section are based on
the daily average values of the IBEX35 Futures Index, which serves as the underlying asset
for most liquid stock options in the Spanish derivative market. This numerical analysis uses
daily data from 11 August 2022, to 27 January 2023, comprising 121 observations. Figure 2
illustrates the evolution of the index throughout the specified period and the corresponding
logarithmic returns.

Figure 2. Evolution of IBEX 35 Futures from 4 November 2022, to 27 January 2023.

The volatility of the index requires a predefined time horizon that varies over time. In
this example, we adjust an IFN for volatility over calculation horizons of n = 60 observations
and n = 120 observations as of 27 January 2023. That is, we calculate the 60-day and 120-day
volatility recorded on 27 January 2023.

The annualized 60-day volatility of the index is 9.806%. Thus, for a significance level
of γ = 5% (i.e., with the 95% rule), we obtain a membership function for the annualized
standard deviation 0.05∼σ , whose shape starts from (16) and Remark 5.

µ0.05σ (x) =





1.95
0.95 − 2

0.95 F
(

59·0.098062

x2

)
0.08312 ≤ x ≤ 0.09806

2
0.95 F

(
59·0.098062

x2

)
− 0.05

0.95 0.09806 ≤ x ≤ 0.11958
.
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Therefore, the α-cuts (12) are:

0.05σα =
[

0.05σα, 0.05σ2
α

]
=



√√√√ 59·0.098062

χ2
59;0.975− 0.95

2 α

,

√√√√ 59·0.098062

χ2
59; 0.95

2 α+0.025


.

We can construct an intuitionistic estimate for the volatility
∼
σ

I
of the index in the period of

interest on the basis of 0.05∼σ and adjust an upper possibility distribution whose support is
set by the 99.7% rule in (16) and (19); that is, by stating γ* = 0.3% and using 0.003∼σ to state
the nonmembership function. Thus, µσ(x) = µ0.05σ (x):

µσ(x) =





1.95
0.95 − 2

0.95 F
(

59·0.098062

x2

)
0.08312 ≤ x ≤ 0.09806

2
0.95 F

(
59·0.098062

x2

)
− 0.05

0.95 0.09806 ≤ x ≤ 0.11958
.

From (16) and (19), µ*
σ(x) = µ0.003σ (x):

µ*
σ(x) =





1.997
0.997 − 2

0.997 F
(

59·0.098062

x2

)
0.07668 ≤ x ≤ 0.09806

2
0.997 F

(
59·0.098062

x2

)
− 0.003

0.997 0.09806 ≤ x ≤ 0.13338
.

In such a way, the nonmembership of
∼
σ

I
is νσ(x) = 1− µ∗σ(x):

νσ(x) =





2
0.997 F

(
59·0.098062

x2

)
− 1

0.997 0.07668 ≤ x ≤ 0.09806
1

0.997 − 2
0.997 F

(
59·0.098062

x2

)
0.09806 ≤ x ≤ 0.13338

Similarly, σ〈α,β〉 = 〈σα =
[
σα, σα

]
, σ′β =

[
σ′β, σ′β

]
, 0 ≤ α + β ≤ 1, α, β ∈ (0, 1)〉, where:

σα = γσα =
[

γσα, γσα

]
=



√√√√ 59·0.098062

χ2
59;0.975− 0.95

2 α

,

√√√√ 59·0.098062

χ2
59; 0.95

2 α+0.025


,

and,

σ′β =
[

γ*
σ1−β, γ*

σ1−β

]
=



√√√√ 59·0.098062

χ2
59;0.9985− 0.997

2 (1−β)

,

√√√√ 59·0.098062

χ2
59; 0.997

2 (1−β)+0.0015


.

Figure 3 shows the shape of the possibilistic estimates of the annualized volatility for
the last 60 days of the IBEX-35 Futures Index on 27 January 2023, 0.05∼σ and 0.003∼σ , and the
IFN developed above.

On the other hand, the annualized 120-day volatility of the IBEX-35 Futures index
is 13.908%. Thus, analogous to the 60-day volatility, we can construct an intuitionistic

estimate for the 120-day volatility
∼
σ

I
of the index in the period of interest on the basis of

0.05∼σ and 0.003∼σ . Thus, µσ(x) = µ0.05σ (x):

µ0.05σ (x) = µσ(x) =





1.95
0.95 − 2

0.95 F
(

119·0.139082

x2

)
0.12343 ≤ x ≤ 0.13908

2
0.95 F

(
119·0.139082

x2

)
− 0.05

0.95 0.13908 ≤ x ≤ 0.15931
.
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From (16) and (19), µ*
σ(x) = µ0.003σ (x):

µ∗σ(x) =





1.997
0.997 − 2

0.997 F
(

119·0.139082

x2

)
0.11635 ≤ x ≤ 0.13908

2
0.997 F

(
119·0.139082

x2

)
− 0.003

0.997 0.13908 ≤ x ≤ 0.17995
.

In such a way, the nonmembership of
∼
σ

I
is νσ(x) = 1− µ∗σ(x):

νσ(x) =





2
0.997 F

(
119·0.139082

x2

)
− 1

0.997 0.07668 ≤ x ≤ 0.09806
1

0.997 − 2
0.997 F

(
119·0.139082

x2

)
0.09806 ≤ x ≤ 0.13338

Similarly, σ〈α,β〉 = 〈σα =
[
σα, σα

]
, σ′β =

[
σ′β, σ′β

]
, 0 ≤ α+ β ≤ 1,α, β ∈ (0, 1)〉, where:

σα = γσα =
[

γσα, γσα

]
=



√√√√ 119·0.139082

χ2
119;0.975− 0.95

2 α

,

√√√√ 119·0.139082

χ2
119; 0.95

2 α+0.025


,

and,

σ′β =
[

γ*
σ1−β, γ*

σ1−β

]
=



√√√√ 119·0.139082

χ2
119;0.9985− 0.997

2 (1−β)

,

√√√√ 119·0.139082

χ2
119; 0.997

2 (1−β)+0.0015


.

Regarding the obtained results, the following points need to be clarified:

• To determine historical volatility, the desired time horizon (e.g., 30 days, 60 days) must
be specified. The choice of horizon will determine the core of the IFN that quantifies
volatility.

• The time horizon for volatility affects the breadth of the membership and nonmem-
bership functions: a shorter time horizon implies fewer observations for calculating
volatility and broader confidence intervals (17) and (18).

• The percentiles used to set the upper and lower possibility functions determine their
breadth. The percentiles associated with lower probabilities result in narrower mem-
bership and nonmembership functions. For example, using 90% rules for the lower
possibility function and 95% for the upper possibility function would result in nar-
rower 〈α, β〉-cuts.

Figure 3. Fuzzy number and intuitionistic fuzzy number estimates of the 60-day volatility of the
IBEX35 Futures in 27 January 2023.
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2.3. Intuitionistic Fuzzy Number Arithmetic

We are now interested in evaluating continuous and differentiable functions

y = f (x1, x2, . . . , xn) such that the values of the arguments are estimated by IFNs
∼
A

I

(i),

i = 1, 2, . . . , n. Thus, f (·) generates an IFN
∼
B

I
,
∼
B

I
= f

(∼
A

I

(1),
∼
A

I

(2), . . . ,
∼
A

I

(n)

)
. The member-

ship and nonmembership functions of
∼
B

I
can be obtained via the generalization of Zadeh’s

extension principle [63]:

µB(y) = max
y= f (x1,x2,...,xn)

min
{

µA(1)
(x1), µA(2)

(x2), . . . , µA(n)
(xn)

}
, (20)

vB(y) = min
y= f (x1,x2,...,xn)

max
{

vA(1)
(x1), vA(2)

(x2), . . . , vA(n)
(xn)

}
. (21)

Therefore, if
∼
A

I

(i), i = 1, 2, . . . , n are simply fuzzy numbers
∼
A(i), the result is also a fuzzy

number
∼
B whose shape only depends on µB(y) in (20).

The compatibility of Zadeh’s extension with the α-cut arithmetic can also be extended
to the evaluation of f (·). Thus, to obtain B〈α,β〉 from A(i)〈α,β〉 , i = 1, 2, . . . , n, we must
implement:

B〈α,β〉 = f
(

A(1)〈α,β〉, A(2)〈α,β〉, . . . , A(n)〈α,β〉

)
, (22)

Thus, given that f is supposed to be continuous, B〈α,β〉 can be represented as

B〈α,β〉 = 〈Bα =
[
Bα, Bα

]
, B′β =

[
B′β, B′β

]
, 0 ≤ α+ β ≤ 1,α, β ∈ [0, 1]〉,

where for i = 1,2,. . .,n:

Bα = inf
{

y
∣∣∣y = f (x1, . . . , xn), xi ∈ A(i)α

}
, Bα = sup

{
y
∣∣∣y = f (x1, . . . , xn), xi ∈ A(i)α

}
, (23)

B′β = inf
{

y
∣∣∣y = f (x1, . . . , xn), xi ∈ A′(i)β

}
, B′β = sup

{
y
∣∣∣y = f (x1, . . . , xn), xi ∈ A′(i)β

}
. (24)

If f (·) increases with respect to xi, i = 1, 2, . . . m and decreases in xi, i = m + 1, m +
2, . . . , n, m ≤ n, we obtain [64]:

Bα = f
(

A(1)α
, A(2)α

, . . . , A(m)α
, A(m+1)α

, . . . , A(n)α

)
, (25)

Bα = f
(

A(1)α
, A(2)α

, . . . , A(m)α
, A(m+1)α

, . . . , A(n)α

)
. (26)

and thus, by induction, for B′β =
[

B′β, B′β
]
:

B′β = f
(

A′(1)β
, A′(2)β

, . . . , A′(m)β
, A′(m+1)β

, . . . , A′(n)β

)
, (27)

B′β = f
(

A′(1)β
, A′(2)β

, . . . , A′(m)β
, A(m+1)β

, . . . , A(n)β

)
. (28)

In the case where we evaluate f (·) in the fuzzy numbers
∼
A(i), i = 1,2,. . .,n, the α-cuts of the

result,
∼
B, are simply Bα = f

(
A(1)α

, . . . , A(n)α

)
, which can be fitted with (23), (25), and (26)

when f (·) is a monotonic function.
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In this regard, alternatives exist for directly computing (22)–(28) to reduce the compu-
tation time. For example, using piecewise linear approximations can significantly reduce
computational overhead.

3. An Extension Black–Scholes–Merton and Binomial Option Pricing Model for the
Use of Intuitionistic Fuzzy Parameters
3.1. Pricing European Options with the Black–Scholes–Merton Model and Intuitionistic
Fuzzy Parameters

Let be a call European option for an asset with price S, strike price K, and volatility
σ that can be exercised in T years. The BSM formula [1,2] for the price of a call option,
C(S, K, r, σ, T), for the free risk rate r is

C(S, K, r, σ, T) = SΦ




ln
(

S
K

)
+
(

r + σ2

2

)
T

σ
√

T


− e−rTKΦ




ln
(

S
K

)
+
(

r− σ2

2

)
T

σ
√

T


, (29)

where Φ(·) is the cumulative standard Gaussian function.
In the case of a European put option, the price is also a function of S, K, r, σ, and T

such that

P(S, K, r, σ, T) = e−rTKΦ


−

ln
(

S
K

)
+
(

r− σ2

2

)
T

σ
√

T


− SΦ


−

ln
(

S
K

)
+
(

r + σ2

2

)
T

σ
√

T


. (30)

Note that in the case of options on future contracts, Black [65] demonstrates that prices (29)
and (30) are obtained by evaluating them at r = 0.

A mainstream research field within the FROP literature is located within the BSM
framework. Within these applications, we outline the following settings:

1. Analytical aspects include computing prices (29)–(30) with possibility distribu-
tions [16,66,67].

2. The immunization measures derived from formulas (29)–(30), so-called ‘the Greeks’,
are computed and analysed when data are given fuzzy numbers [10,68–70].

3. The most relevant parameter is computed, at least for options on financial assets
traded in organized markets, which is volatility. Studies include both computing
historical volatility [10] and calculating implied volatility [19–21,67,71].

4. A fuzzy BSM formula is used for corporate and real option pricing [11,15,72,73].

Obviously, the parameters that should be subject to fuzzification depend on the
context in which optionality is embedded. In options for stocks traded in exchange markets,
parameters that may be vague include the price of the underlying asset, the risk-free interest
rate, and volatility. In contrast, exercise price and expiration are crisp parameters because
they are standardized contracts [12]. However, in the valuation of real options, a common
situation is that the exercise price or expiration date are parameters whose knowledge is
not precise [11,12,72].

Without loss of generality, we assume that all the variables used to evaluate (29)

and (30) S, K, r, σ, and T are given by IFNs
∼
S

I
,
∼
K

I
,
∼
r

I
,
∼
σ

I
, and

∼
T

I
, respectively. With the

exception of
∼
r

I
, the remaining IFNs were defined strictly in R+. Therefore, (29) induces

an intuitionistic fuzzy price for a call option
∼
C

I
= C (

∼
S

I
,
∼
K

I
,
∼
r

I
,
∼
σ

I
,
∼
T

I
) whose level sets

are obtained by evaluating C〈α,β〉 = C(S〈α,β〉 , K〈α,β〉 , r〈α,β〉 , σ〈α,β〉 , T〈α,β〉 ). Therefore, by
considering that ∂C

∂S ≥ 0, ∂C
∂K ≤ 0, ∂C

∂r ≥ 0, ∂C
∂σ ≥ 0 and ∂C

∂T ≥ 0 [3] and applying rules
(25)–(28) in (29)

Cα =
[
Cα, Cα

]
=
[
C
(
Sα, Kα, rα, σα, Tα

)
, C
(
Sα , Kα, rα , σα, Tα

)]
, (31)
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and

C′β =
[
C′β, C′β

]
=
[
C
(

S′β, K′β, r′β, σ′β, T′β
)

, C
(

S′β , K′β, r′β , σ′β, T′β
)]

. (32)

Similarly, in the case of put options, we can induce an intuitionistic fuzzy price
∼
P

I
=

P (
∼
S

I
,
∼
K

I
,
∼
r

I
,
∼
σ

I
,
∼
T

I
) whose level sets are obtained by evaluating P〈α,β〉 = P(S〈α,β〉 , K〈α,β〉 ,

r〈α,β〉 , σ〈α,β〉 , T〈α,β〉). To do so, we must apply rules (22)–(28) in (30) by considering
∂P
∂S ≤ 0, ∂P

∂K ≥ 0, ∂P
∂r ≤ 0, and ∂C

∂σ ≥ 0 [3]. Therefore, we obtain the following for
Pα =

[
Pα, Pα

]
:

Pα = minimum P
(
Sα, Kα, rα , σα, T

)
, subject to : Tα ≤ T ≤ Tα , (33)

Pα = maximum P
(

Sα, Kα, rα, σα, T
)
, subject to : Tα ≤ T ≤ Tα, (34)

and P′β =
[

P′β, P′β
]

considering:

P′β = minimum P
(

S′β, K′β, r′β , σ′β, T
)

, subject to : T′β ≤ T ≤ T′β , (35)

P′β = maximum P
(

S′β, K′β, r′β, σ′β, T
)

, subject to : T′β ≤ T ≤ T′β. (36)

3.2. Pricing European Options with a Binomial Model and Intuitionistic Fuzzy Parameters

The origin of the binomial option pricing model can be traced back to the nearly
simultaneous publication of Cox et al. [6] and Rendleman and Bartter [7]. In the binomial
framework, variation in stock prices occurs in discrete time, and there are only two possible
moves, which are growth (up) and decline (down). In both CRR and RB, as well as in their
multiple variants, movements of the prices of the underlying asset are multiplicative, and
both these movements and the risk-neutral probabilities depend on the volatility of the
underlying asset and the risk-free rate [5,9].

Thus, we symbolize the upwards growth rate of the underlying asset as u(r, σ) > 1
and the downwards rate as d(r, σ), where 0 < d(r, σ) < 1. Similarly, we denote the risk-
neutral probability of the upwards movement as πu(r, σ) and the associated probability of
the downwards movement as πd(r, σ) = 1− πu(r, σ). Table 1 shows the models analysed
in our work. The first is the most commonly used method in practice and is unanimously
considered in the fuzzy literature; we call this the CRR [6]. The alternative tested in this
paper is [7], which we call the RB. Note that both cases can be unified into a general
formulation of up-and-down moves, u(a, r, σ) = ea·σ

√
h and d(b, r, σ) = e−b·σ

√
h. Therefore,

while in the case of CRR a = b = 1, for the RB, it can be checked that a =
(
r− σ2/2

)
h+σ

√
h

and b = −
(
r− σ2/2

)
h + σ

√
h.

Table 1. Models of binomial up-and-down moves used in this paper.

CRR [6] RB [7]

u(r, σ) eσ
√

h e(r−σ2/2)h+σ
√

h

d(r, σ) e−σ
√

h e(r−σ2/2)h−σ
√

h

pu(r, σ) erh−e−σ
√

h

eσ
√

h−e−σ
√

h
eσ2h/2−e−σ

√
h

eσ
√

h−e−σ
√

h

pd(r, σ) eσ
√

h−erh

eσ
√

h−e−σ
√

h
eσ
√

h−eσ2h/2

eσ
√

h−e−σ
√

h

In any binomial model, maturity T is divided into n periods of duration h years such
that T = n·h. Then, the price of a European call option is
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Cb(S, K, r, σ, n, h) = e−r·n·h
n

∑
j=0

(
n
j

)
πu(r, σ)jπd(r, σ)n−jmax{Su(r, σ)jd(r, σ)n−j − K, 0} (37)

For a put option,

Pb(S, K, r, σ, n, h) = e−r·n·h
n

∑
j=0

(
n
j

)
πu(r, σ)jπd(r, σ)n−jmax{K− Su(r, σ)jd(r, σ)n−j, 0} (38)

As h→ 0 , Formulas (37)–(38) tend towards the price obtained with the BSM [5]. The
primary utility of using binomial lattices lies in their applicability to options where the use
of the BSM formula is challenging, such as American options, exotic options, or different
flexibilities linked to real options [4].

In the FROP literature, the binomial model is the most widely used discrete-time
option valuation method. In all the studies, modelling of the up-and-down moves and
their probabilities was performed using the CRR model, with volatility being the parameter
commonly considered fuzzy. Furthermore, in all contributions, uncertainty is introduced
epistemically through fuzzy numbers, which are typically triangular or trapezoidal [12,13].

Next, we extend (18) and (19), assuming that all the parameters, except those asso-

ciated with maturity, are IFNs
∼
S

I
,
∼
K

I
,
∼
r

I
,
∼
σ

I
. With the exception of

∼
r

I
, these IFNs are

defined in R+ The hypothesis that n and h are crisp parameters is a unanimous as-
sumption in the FROP literature. Therefore, (37) induces an intuitionistic fuzzy price

of call options
∼
C

I

b = Cb (
∼
S

I
,
∼
K

I
,
∼
r

I
,
∼
σ

I
, n, h) whose level sets are obtained by evaluating

Cb〈α,β〉 = Cb (S〈α,β〉 , K〈α,β〉 , r〈α,β〉 , σ〈α,β〉 , n, h) and by applying rules (25)–(28) in (37)

Cbα
=
[
Cbα

, Cbα

]
=
[
Cb
(
Sα, Kα, rα, σα, n, h

)
, Cb

(
Sα , Kα, rα , σα, n, h

)]
, (39)

and

C′bβ
=
[
C′bβ

, C′bβ

]
=
[
Cb

(
S′β, K′β, r′β, σ′β, n, h

)
, Cb

(
S′β , K′β, r′β , σ′β, n, h

)]
(40)

For the case of an intuitionistic fuzzy price of a put option
∼
P

I

b = Pb(
∼
S

I
,
∼
K

I
,
∼
r

I
,
∼
σ

I
, n, h), the

level sets are obtained by evaluating Pb〈α,β〉 = Pb(S〈α,β〉 , K〈α,β〉 , r〈α,β〉 , σ〈α,β〉 , n, h) analogous
to the case of call options. Therefore, we obtain Pbα

by applying (25)–(28) in (38)

Pbα
=
[

Pbα
, Pbα

]
=
[
Pb
(
Sα, Kα, rα , σα, n, h

)
, Pb
(

Sα, Kα, rα, σα, n, h
)]

, (41)

and

P′bβ
=
[

P′bβ
, P′bβ

]
=
[

P
(

S′β, K′β, r′β , σ′β, n, h
)

, P
(

S′β, K′β, r′β, σ′β, n, h
)]

. (42)

Numerical application 2. In this section, we evaluate European call options for IBEX-35
futures via the intuitionistic versions of the BSM and binomial models developed in this
section. Within the binomial models, we considered both CRR and RB for modelling moves.

The only intuitionistic fuzzy parameter is the 60-day volatility (
∼
σ

I
), which was adjusted in

the numerical application on 27 January 2023, in numerical application 1. Additionally, we
consider the intuitionist estimate of the 60-day volatility obtained from the S&P 500 index
on 4 November 2020.

In the application, we assume that the value of the underlying asset is S = 1 and
r = 0% because we are pricing futures on options [65]. The maturity of all the options
was T = 1 year. We consider three possible strike prices with three different degrees of
moneyness as follows: K = 0.9 (in the money), K = 1 (in the money), and K = 1.1 (out of
the money).
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For the binomial models, we considered the following eight different jump frequencies:
annual (h = 1, n = 1), semiannual (h = 1

2 , n = 2), quarterly (h = 1
4 , n = 4), monthly (h = 1

12 ,
n = 12), biweekly (h = 1

24 , n = 24), weekly (h = 1
48 , n = 48), daily (h = 1

252 , n = 252), and
every 12 h h = 1

504 , n = 504).
Therefore, to calculate the prices of call options with the BSM formula, we use (29),

(31), and (32) to implement
∼
C

I
= C (1, K, 0,

∼
σ

I
, 1).

Thus, the level sets of the BSM option price in the case of the 60-day volatility
obtained for the IBEX-35 of Futures obtained in numerical application 1 are C〈α,β〉 =
C(1, K, 0, σ〈α,β〉 , 1)

Cα =
[
Cα, Cα

]

=


C


1, K, 0,

√
59·0.098062

χ2
59;0.975− 0.95

2 α

, 1


, C


1, K, 0,

√
59·0.098062

χ2
59; 0.95

2 α+0.025

, 1




,

and

C′β =
[
C′β, C′β

]

=




1, K, 0,

√
59·0.098062

χ2
59;0.9985− 0.997

2 (1−β)

, 1


, C


1, K, 0,

√
59·0.098062

χ2
59; 0.997

2 (1−β)+0.0015

, 1




.

On the other hand, if call option prices are calculated using the binomial formula, they are

evaluated via an evaluation of (37) with intuitionistic volatility:
∼
C

I

b = Cb (1, K, 0,
∼
σ

I
, n, h).

The level sets are calculated using (39)–(40) as follows: Cb〈α,β〉 = Cb (1, K, 0, σ〈α,β〉 , n, h),
where

Cbα
=
[
Cbα

, Cbα

]

=


Cb


1, K, 0,

√
59·0.098062

χ2
59;0.975− 0.95

2 α

, n, h


, Cb


1, K, 0 ,

√
59·0.098062

χ2
59; 0.95

2 α+0.025

, n, h




,

and

C′bβ
=
[
C′bβ

, C′bβ

]
=

=


Cb


1, K, 0,

√
59·0.098062

χ2
59;0.9985− 0.997

2 (1−β)

, n, h


, Cb


1, K, 0 ,

√
59·0.098062

χ2
59; 0.997

2 (1−β)+0.0015

, n, h






Obviously, the final form of the above 〈α, β〉-cuts will depend on how we model the moves
of the underlying asset, which, in this work, are those listed in Table 1. Table 2 shows the
results of the expected values of the European call prices, which we calculate via (4); that

is, EV(
∼
C

I
) in the case of prices calculated with the BSM and EV(

∼
C

I

b) with those calculated
with the binomial model.

When evaluating a particular option that cannot be valued with the BSM formula, it
seems reasonable to choose a binomial model that yields prices of the European option of
the same type (call or put) and with the closest strike prices, maturities, and of the same
type as the BSM formula [47]. Therefore, Table 2 also shows the distance between the value
of the price calculated with the BSM and with the binomial model, which is expressed

in relation to the expected value of the BSM price; that is, D(
∼
C

I
,
∼
C

I

b)

EV(
∼
C

I
)

. It involves using (4)

and (5). This ratio indicates the error caused by the binomial approximation of the BSM
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formula. The calculations of (4) and (5) were performed by computing the integrals using
Simpson’s rule.

Table 2. A comparison of European option prices (with T = 1 and r = 0%) on futures over IBEX-35
obtained using the Black–Scholes–Merton model and binomial models such as CRR and RB via the
intuitionistic fuzzy variance in numerical example 1.

K = 900

h n BSM (a) CRR (a) CRR (b) RB (a) RB (b) (c)

1 1 107.83 101.87 8.401% 102.97 7.417% RB
1/2 2 107.83 109.36 2.179% 109.83 2.662% CRR
1/4 4 107.83 106.83 1.660% 107.07 1.563% RB

1/12 12 107.83 107.83 0.395% 107.94 0.374% RB
1/24 24 107.83 107.84 0.165% 107.84 0.172% CRR
1/48 48 107.83 107.81 0.085% 107.83 0.089% CRR
1/252 252 107.83 107.83 0.018% 107.83 0.017% RB
1/504 504 107.83 107.83 0.009% 107.83 0.009% CRR

K = 1000

h n BSM (a) CRR (a) CRR (b) RB (a) RB (b) (c)

1 1 40.85 51.18 34.909% 51.04 34.461% RB
1/2 2 40.85 36.20 15.712% 37.48 11.500% RB
1/4 4 40.85 38.40 8.288% 39.34 5.181% RB

1/12 12 40.85 40.01 2.844% 40.55 1.056% RB
1/24 24 40.85 40.43 1.431% 40.80 0.221% RB
1/48 48 40.85 40.64 0.717% 40.89 0.124% RB
1/252 252 40.85 40.81 0.137% 40.89 0.124% RB
1/504 504 40.85 40.83 0.068% 40.87 0.064% RB

K = 1100

h n BSM (a) CRR (a) CRR (b) RB (a) RB (b) (c)

1 1 10.36 4.61 90.444% 2.97 109.045% CRR
1/2 2 10.36 12.98 35.153% 12.48 28.995% RB
1/4 4 10.36 9.48 19.089% 9.06 22.685% CRR

1/12 12 10.36 10.60 4.641% 10.49 4.304% RB
1/24 24 10.36 10.36 2.127% 10.38 2.040% RB
1/48 48 10.36 10.38 1.097% 10.35 1.081% RB
1/252 252 10.36 10.36 0.208% 10.36 0.219% CRR
1/504 504 10.36 10.36 0.108% 10.36 0.106% RB

Notes: i. Prices are expressed in notions of 1000 monetary units. ii. (a) stands for the expected value of the option;

(b) stands for the ratio D(
∼
C

I
,
∼
C

I
b)

EV(
∼
C

I
)

; and (c) stands for the up-and-down binomial moves model that provides the

nearest price to the BSM price.

We can draw the following conclusions from the results presented in Table 2:

• As expected, both the CRR and the RB converge to the BSM since D(
∼
C

I
,
∼
C

I

b)→ 0
when h→ 0 .

• For the in-the-money options, the number of times that the CRR and RB are the closest
to the BSM is the same (50%). The RB provides the closest price when there is only
one move, and the CRR provides the closest price when the number of moves is the
maximum (n = 504).

• For out-of-the-money options, the RB tends to provide better approximations to the
BSM. However, when the movement frequency is annual, the CRR is better, but when
h = 1

504 , the price closest to the BSM comes from the RB.
• For at-the-money options, the best model is the RB model, regardless of the movement

frequency.
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• The price equations are monotonic functions of volatility, so the extremes of Cα and C′β
are easily programmable even in a spreadsheet. On the other hand, the calculation of

the integrals to obtain EV(
∼
C

I
) and D(

∼
C

I
,
∼
C

I

b) has been carried out via Simpson’s rule
with the discretization of the 〈α, β〉-cuts, which in our case have been obtained as α = 0,
0.25, 0.5, 0.75, 1, and β = 1 − α. Thus, these calculations are also easily implemented
with a spreadsheet.

The 60-day volatility of the S&P 500 index on 4 November 2020, was 17.462%. Thus,
from (16)–(19), the 〈1, 0〉-cut of the intuitionistic volatility is σ〈1,0〉 = 〈σ1 = [0.17462, 0.17462],
σ′0 = [0.17462, 0.17462]〉. Likewise, the 〈0, 1〉-cut of the volatility is
σ〈0,1〉 =

〈
σ0 = [0.14801, 0.21298], σ′1 = [0.13656, 0.23753]

〉
. Therefore, the results of the ap-

proximation to BSM prices for the same call options analysed in Table 2 are presented
in Table 3.

Table 3. A comparison of European option prices (with T = 1 and r = 0%) on the S&P 500 obtained via
the Black–Scholes–Merton model and binomial models such as the CRR and RB using the intuitionistic
fuzzy volatility on 4 November 2020.

K = 900

h n BSM (a) CRR (a) CRR (b) RB (a) RB (b) (c)

1 1 130.33 136.40 6.425% 140.19 10.295% CRR
1/2 2 130.33 136.08 6.208% 134.95 5.181% RB
1/4 4 130.33 133.57 3.426% 133.64 3.576% CRR

1/12 12 130.33 129.81 0.855% 130.38 0.692% RB
1/24 24 130.33 130.69 0.470% 130.40 0.365% RB
1/48 48 130.33 130.35 0.177% 130.43 0.209% CRR
1/252 252 130.33 130.34 0.036% 130.35 0.037% CRR
1/504 504 130.33 130.34 0.018% 130.34 0.019% CRR

K = 1000

h n BSM (a) CRR (a) CRR (b) RB (a) RB (b) (c)

1 1 72.67 90.95 34.749% 90.16 33.333% RB
1/2 2 72.67 64.41 15.713% 68.31 8.482% RB
1/4 4 72.67 68.31 8.289% 71.15 3.035% RB

1/12 12 72.67 71.18 2.844% 72.76 0.247% RB
1/24 24 72.67 71.92 1.431% 72.96 0.527% RB
1/48 48 72.67 72.30 0.717% 72.94 0.502% RB
1/252 252 72.67 72.60 0.137% 72.71 0.086% RB
1/504 504 72.67 72.64 0.068% 72.66 0.042% RB

K = 1100

h n BSM (a) CRR (a) CRR (b) RB (a) RB (b) (c)

1 1 36.58 45.50 33.176% 40.14 13.987% RB
1/2 2 36.58 42.52 23.032% 43.30 25.578% CRR
1/4 4 36.58 40.40 14.503% 39.90 12.453% RB

1/12 12 36.58 36.17 3.145% 35.75 3.612% CRR
1/24 24 36.58 36.78 1.553% 37.07 1.972% CRR
1/48 48 36.58 36.62 0.787% 36.52 0.721% RB
1/252 252 36.58 36.60 0.161% 36.59 0.162% CRR
1/504 504 36.58 36.59 0.075% 36.58 0.074% RB

Notes: i. Prices are expressed in notions of 1000 monetary units. ii. (a) stands for the expected value of the option;

(b) stands for the ratio D(
∼
C

I
,
∼
C

I
b)

EV(
∼
C

I
)

; and (c) stands for the up-and-down binomial moves model that provides the

nearest price to the BSM price.

Tables 2 and 3 both show that for options trading in the money and out of the money,
whether one binomial approximation is better than the other depends on the frequency of
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the moves. However, for at-the-money options, the RB modelling of the moves is better
than CRR regardless of their frequency.

Therefore, when deciding how to model up-and-down moves in a situation with fuzzy
volatility, which is the most common assumption in models developing binomial FROP, it
is worth considering Rendleman and Bartter modelling [7] as a more accurate alternative
than the more common CRR modelling. In the following section, we develop a deeper
analysis of the convergence of the RB and CRR to the BSM.

4. Assessment of the Convergence of Two Alternative Binomial Moves Modelling to
Black–Scholes–Merton Prices with Intuitionistic Fuzzy Volatility
4.1. Materials and Methods

In this section, we compare the ability of the two modelling approaches of binomial
moves (CRR and RB) to approximate the price obtained with the BSM for a European call
option on the IBEX 35 futures. We assume a notional value of 1 monetary unit, T = 1 year,
and strike prices of K = 0.9 (in the money), K = 1 (at the money), and K = 1.1 (out of the
money). Because these are options for futures, we consider r = 0 [65]. Thus, as in numerical
application 1, the only intuitionistic fuzzy parameter is volatility.

To evaluate the scenarios of fuzzy intuitionistic volatility, we considered the evolution
of the IBEX 35 futures index from 27 April 2011, to 27 January 2023. Therefore, we used
3020 observations. For this index, we determined volatility, measured as the annualized
standard deviation of logarithmic returns in a temporal window of 60 days. Figure 4 shows
the evolution of the 60-day historical volatility during the entire analysed period. We
observe that the average volatility is 17.21%, with a minimum of 8.71% and a maximum
of 48.74%.

The empirical analysis was conducted using the following steps:

Step 1: We identified five scenarios of low volatility, five of medium volatility, and five of
high volatility. The low-volatility scenarios are the 1st, 5th, 19th, 20th, and 30th percentiles of
historical volatility. The medium volatility scenarios are determined from percentiles 40, 45,
50, 55, and 60 of the calculated standard deviations. The high-volatility scenarios are identified
with 70th, 80th, 90th, 95th, and 99th percentiles. Table 4 shows the <0,1>-cut, <0.5,0.5>-cut,
and <1,0>-cut of the volatility scenarios considered in this empirical application.
Step 2: For these volatility scenarios, we fit an intuitionistic estimation using
Equations (16)–(19). We used 95 and 99.7 rules to adjust the membership and non-
membership functions, respectively. Thus, with γ = 0.05, we obtain µσ(x) = µ0.05σ (x),
and with γ* = 0.003, µ∗σ(x) = µ0.003σ (x) and so vσ(x) = 1− µ∗σ(x).
Step 3: We determined the prices of the evaluated European call options (for K = 0.9, 1, 1.1,
and T = 1) for all evaluated volatility scenarios. To calculate the binomial prices, we used
periodicities h = {1/504, 1/252, 1/48, 1/24, 1/12, 1/4, 1/2, 1}.
Step 4: In all valuations, we determined the distance (5) between the value obtained with

the BSM and the tested binomial models; that is, D(
∼
C

I
,
∼
C

I

b). Comparing the distances of
the prices obtained with CRR and RB in a specific option, volatility scenario, and move
frequency with respect to the benchmark, the BSM, allows us to establish which model
converges better to the BSM.
Step 5: We conducted three analyses of the convergence of the binomial IFN to the intu-
itionistic BSM as follows:

1. We analysed the level of convergence for each degree of moneyness (in the money,
out of the money, and at the money) separately, considering all volatility scenarios
and moving frequencies together.

2. We analysed the convergence levels by differentiating the degree of moneyness and
movement frequency by considering conjointly all volatility scenarios. Within move
frequencies, we differentiated between ‘low’ frequencies (monthly, quarterly, semi-
annual, and annual) and ‘high’ frequencies (every 12 h, daily, weekly, and every
half month).
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3. We analysed the convergence levels by differentiating the moneyness degree and
volatility scenarios without differentiating move periodicity. Within the volatility
scenarios, we differentiated low-volatility, medium-volatility, and high-volatility
scenarios, as indicated in Table 4.

Figure 4. Evolution of the 60-day volatility of the IBEX35 Futures Index from 27 April 2011, to 27
January 2023.

In all three analyses, we calculated the proportion ρ, in which RB modelling was
closer than CRR was to the BSM. Thus, if both methods provide approximations of equal
quality, the proportion ρ in which the RB improves the CRR should be 0.5. If the RB is
generally better than the CRR, ρ > 0.5, and if the CRR is better than the RB, then ρ < 0.5. In
all the cases, we evaluated the null hypothesis about the proportion ρ = 0.5, with the test
statistic z = ρ−0.5√

0.5(1−0.5)
N

, which tends to follow a standard normal distribution. where N is

the number of simulations embedded in the statistical test.

Table 4. <1,0>-cut, <0.5, 0.5>-cut, and <0, 1>-cut of historical intuitionistic fuzzy volatilities of futures
on the IBEX-35 linked to the 60-day windows are considered in this empirical analysis.

σ1=σ
′
0 σ0.5 σ

′
0.5 σ0 σ

′
1

Percentile σ̂ σ1=σ
′
0 σ0.5 σ0.5 σ

′
0.5 σ

′
0.5

σ0 σ0 σ
′
1 σ

′
1

Low
volatility

1% 9.32% 9.37% 8.61% 10.34% 8.30% 11.00% 7.90% 11.37% 7.29% 12.68%
5% 9.88% 9.94% 9.13% 10.96% 8.80% 11.66% 8.37% 12.05% 7.73% 13.44%

10% 10.28% 10.34% 9.50% 11.41% 9.16% 12.13% 8.71% 12.54% 8.04% 13.99%
20% 11.27% 11.34% 10.42% 12.51% 10.05% 13.31% 9.56% 13.75% 8.82% 15.34%
30% 12.55% 12.62% 11.59% 13.92% 11.18% 14.81% 10.63% 15.30% 9.81% 17.07%

Medium
volatility

40% 13.44% 13.51% 12.41% 14.91% 11.97% 15.86% 11.39% 16.39% 10.51% 18.28%
45% 14.04% 14.12% 12.97% 15.58% 12.51% 16.57% 11.90% 17.12% 10.98% 19.09%
50% 14.78% 14.86% 13.65% 16.40% 13.17% 17.44% 12.53% 18.03% 11.56% 20.10%
55% 15.66% 15.75% 14.46% 17.38% 13.95% 18.48% 13.27% 19.10% 12.24% 21.30%
60% 16.53% 16.62% 15.27% 18.35% 14.73% 19.51% 14.01% 20.16% 12.93% 22.48%

High
volatility

70% 18.30% 18.41% 16.91% 20.31% 16.31% 21.60% 15.51% 22.32% 14.31% 24.90%
80% 23.15% 23.28% 21.39% 25.70% 20.63% 27.32% 19.62% 28.24% 18.11% 31.49%
90% 26.71% 26.86% 24.67% 29.64% 23.80% 31.52% 22.64% 32.58% 20.89% 36.33%
95% 33.25% 33.43% 30.71% 36.90% 29.62% 39.23% 28.18% 40.55% 26.00% 45.22%
99% 47.87% 48.15% 44.23% 53.13% 42.66% 56.50% 40.58% 58.39% 37.44% 65.12%
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4.2. Results

The results in Table 5 suggest that while in the in-the-money options, the CRR model
converges more to the BSM than to the RB (44.17% = ρ < 50%), this closer proximity in
prices is not significant, because the p value (p) is 0.212. In contrast, if the option is out of
the money, the better performance of RB (ρ = 60%) is significant (p = 0.029).

Table 5. Convergence of the CRR and RB binomial models to the BSM on the moneyness degree.

Moneyness Degree Strike Price ρ z p Value

In the money K = 0.9 44.17% −1.278 0.201
At the money K = 1 100.00% 10.954 <0.001

Out of the money K = 1.1 60.00% 2.191 0.029
Note: The number of observations for every strike price is N = 120.

Table 6 shows that the different comparative performances of the intuitionistic bi-
nomial models tested to approximate the BSM depend on the periodicity of the moves.
Thus, the slightly greater performance of RB over CRR in the in-the-money and out-of-
the-money options when the frequency is low (periodicities h ≥ 1/12) is not significant.
In contrast, better CRR convergence is observed for the in-the-money options when the
frequency is high (periodicities lower than one month), which is significant (ρ = 36.67%,
p = 0.039). Greater convergence of the RB to the BSM at these frequencies is also noted for
the out-of-the-money options, which is also significant (ρ = 63.33%, p = 0.0389).

Table 7 shows that the volatility scenario also determines the significance at which the
RB or CRR converges more to the BSM. Thus, within low- and high-volatility scenarios and
in the in-the-money and out-of-the-money options, we do not observe that either of the two
binomial modelling approaches significantly provides greater convergence to the BSM than
the other approaches do. In contrast, in the ‘medium’ volatility scenarios and in-the-money
options, CRR provides greater convergence to the BSM than RB does (ρ = 32.5%, p = 0.027).
Conversely, in the out-of-the-money options and the same ‘medium’ volatility scenarios,
the RB generates prices closer to the BSM than the CRR does (ρ = 80%, p < 0.001).

Table 6. Convergence of the CRR and RB binomial models to the BSM based on the moneyness
degree and the periodicity of the moves.

Low Frequency
(h = 1, 1/2, 1/4, 1/12)

High Frequency
(h = 1/24, 1/48, 1/252, 1/504)

Moneyness Degree Strike Price ρ z p Value ρ z p Value

In the money K = 0.9 53.33% 0.516 0.606 36.67% −2.066 0.039
At the money K = 1 100% 7.746 <0.001 100.00% 7.746 <0.001

Out of the money K = 1.1 55.00% 0.775 0.439 63.33% 2.066 0.039

Note: The number of observations for every strike price and move periodicity was N = 60.

Table 7. Convergence of the CRR and RB binomial models to the BSM based on the moneyness
degree and the periodicity of moves.

Low Volatility Medium Volatility High Volatility

Moneyness Degree Strike
Price ρ z p Value ρ z p Value ρ z p Value

In the money K = 0.9 50% 0.000 1.000 32.5% −2.214 0.027 50% 0 1.000
At the money K = 1 100% 6.325 <0.001 100% 6.325 <0.001 100% 6.324 <0.001

Out of the money K = 1.1 45% −0.632 0.527 80% 3.795 <0.001 55% 0.632 0.527

Note: The number of observations for each strike price and volatility scenario is N = 40.
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Tables 5–7 also show that in the at-the-money options, the RB binomial model better
approximates BSM prices than does the CRR in all the simulations performed, regardless
of the periodicity of the moves and the evaluated volatility scenario.

5. Conclusions and Further Research

Fuzzy random option pricing (FROP) is a branch of fuzzy mathematics that models the
uncertainty of the parameters necessary for valuing options through fuzzy subsets [12]. A
common approach in FROP involves assuming stochastic variation in the underlying asset
price, where the uncertainty in the parameters governing these fluctuations is introduced
through type-1 fuzzy numbers [13]. In FROP, possibility distributions must be interpreted
as epistemic fuzzy sets [14].

Among the continuous-time frameworks considered by FROP, the most developed is
the Black–Scholes–Merton (BSM) model [10,11,15–20,71]. Similarly, the most commonly
used analytic groundwork for option pricing in discrete time in FROP is the binomial
model [25–27,29–34]. In most fuzzy literature, the forms used to model uncertainty as
parameters such as volatility are fuzzy numbers, usually with a linear shape [13], and the
modelling of Cox, Ross, and Rubinstein moves [6], denoted as CRRs.

The contributions of this study are located in the FROP with a binomial framework,
highlighting three aspects. First, the modelling of the parameters governing the valuation
of options is carried out through intuitionistic fuzzy numbers (IFNs), which are a gener-
alization of fuzzy numbers. Their use allows the introduction of bipolar uncertainty of
parameters into option pricing. Thus, in financial analysis, they not only offer informa-
tion about the possible values that variables may introduce but also information about
those variables that are certainly not worth considering [37]. We are aware that IFNs
increase computational complexity with respect to the use of simple type-1 fuzzy numbers.
Therefore, the use of a Gaussian quadrature or other numerical integration techniques that
require fewer evaluation points while maintaining accuracy and implement processing for
the computation of level sets and integrals should be considered. Modern computational
environments with multicore processors can be utilized to speed up these computations.

Second, we propose a methodology that allows for the adjustment of the volatility of
the underlying asset, which is the key parameter in option valuation and typically involves
the most uncertainty, with an IFN. The proposed methodology combines the concept of
historical volatility [4] and the interpretation of the α-level sets of possibility distributions
of the variable as the narrowest interval containing those values with a probability of
occurrence of 1-α [55]. This approach has already been used in the field of FROP to adjust
the volatility of the underlying asset through type-1 fuzzy numbers [10,45,46] by applying
the contributions of possibilistic adjustments of statistical parameters [57–61].

The proposed method requires adjusting two possibility distributions. On the one
hand, a lower possibility distribution, whose support can be aligned with the 95% rule,
assesses the current possibility levels. On the other hand, an upper possibility distribution,
encompassing a broader range of values and adjustable, for instance, using the 99.7%
rule, measures the potential possibility of the parameter of interest taking specific values.
The IFN resulting from applying the proposed methodology allows for the parametric
representation of all possible outcomes for the parameter of interest. This includes both
highly probable results (which form the core of the membership function and align with
the 95% rule) and those that are almost certainly not considered for the parameter (i.e.,
values that are not part of the 99.7% rule selection and have a nonmembership level of 1).

Third, although the literature on option pricing has proposed a wide variety of method-
ologies for modelling up-and-down moves [5,8,9], developments in FROP have been limited
to the most well-known method developed in [6], which we refer to as CRR. In this study,
the suitability of using an alternative, which we refer to as RB [7], is analysed. Notably, the
main justification for using the BSM is its ability to use the conceptual BSM framework in
path-dependent options, where the direct application of the BSM does not apply [4]. To
assess binomial approximations to the BSM in the valuation of path-dependent options, we
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compared their convergence to the value of the BSM in a European option with the same
characteristics (strike price, expiration date, volatility, and initial price of the underlying
asset). In this study, we evaluated the CRR and RB models on a call option on IBEX35
futures with a maturity of one year that can be traded in the money, at the money, and out
of the money.

We observe that the moneyness of the option is relevant for determining the con-
vergence of the proposed intuitionistic fuzzy binomial move models. While the CRR
might perform better for options traded in the money, the RB tends to perform better for
out-of-the-money options. Additionally, for options traded at the money, the RB always
approximated BSM prices better than the CRR did.

The periodicity of moves is a relevant second-order factor. We observe that the best
convergence of the CRR in-the-money options and that of the RB out-of-the-money options
is significant when the periodicity of the movements is less than one month. However,
in periods equal to or greater than monthly, it cannot be established whether any of the
methods approximate these moneyness degrees better than the alternatives do. Similarly,
we find that the volatility of the option determines which particular model of the binomial
moves is better than that of the alternative. We observe that both the superiority of the CRR
in the in-the-money options and the superiority of the RB in the out-of-the-money options
are significant only in the central volatility scenarios.

The results presented in this study have various theoretical and practical implications.
Studies introducing bipolar uncertainty through IFNs are scarce in financial economics,
and option principles are nonexistent in fuzzy binomial option pricing. In this context, we
outline contributions in the fields of FROP [36,39–43], capital budgeting [51,74,75], and risk
evaluation [76,77].

In the contributions of FROP with a binomial framework, the modelling of up-and-
down moves was carried out with the formulation of CRR without any critical consideration.
We highlight the need to consider alternative models that may converge better to the BSM.
In this work, we found that the contemporary modelling by Rendleman and Bartter [7]
often converges better to BSM prices than do CRRs in the out-of-the-money options and
always in the at-the-money options. The analysis presented in this work can be expanded
by introducing alternative up-and-down moves, such as those in [8,9].

The findings of this paper can be useful for practitioners because although volatility
or prices are assumed to be intuitionistic fuzzy subsets, their interpretation is very intuitive
and does not require knowledge of fuzzy logic. This covers both the construction of the
possibility distributions of volatility and the calculation of option prices. The construction of
IFNs to measure bipolar uncertainty is based on common quantitative concepts in financial
pricing, such as historical volatility [4] and the 95–99.7% rule [62]. Thus, the <1,0>-cut of the
variable of interest is a singleton that indicates its possible value with maximum reliability.
This is comparable to the result offered by the BSM model or the evaluated binomial models
using crisp parameters. The <0,1>-cut set was delimited by extreme values. Thus, the 0-cut
of the membership function indicates moderately extreme scenarios, comparable to those
generated via the 95% rule. The 1-cut of the nonmembership function indicates extremely
extreme scenarios, similar to those generated using the 99.7% rule. Using intermediate
levels of membership and nonmembership allows for the structuring of several scenarios
linked to prefixed membership and nonmembership levels of interest to the decision maker.

The developments presented in this paper open up several lines for future research,
both within option price modelling and in more general areas of quantitative finance. This
analysis can undoubtedly be extended to more binomial moves than the two considered
in the work and can be applied not only to stock market data but also in the field of real
option valuation. In any case, our work has shown that to value a specific non-European
option with a proposed binomial model, alternative binomial moves to the CRR should
be considered. To determine the optimum moves, it may be particularly useful to assume
that these can take the general form u(a) = ea·σ

√
h in the case of up and d(b) = e−b·σ

√
h for

down. Thus, in this problem, the decision variables are a and b, which must minimize the
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distance between the binomial and BSM prices of an equivalent European option that we
actually want to value (same maturity, strike price, etc.).

The modelling of the parameters that determine price behavior proposed in this work
can be generalized to option valuation models where the stochastic process governing the
movement of the underlying asset’s price is more complex than a univariate geometric
Brownian motion. The uncertainty of other parameters that govern price movements, such
as the correlation between the stochastic components in multivariate movements or the
parameter quantifying the speed of return to the equilibrium value in mean-reverting
processes, can be captured in the intuitional estimation through a probability–possibility
transformation criterion, as presented in this work. In this context, [46] quantified the
mean reversion parameter as a type-1 fuzzy number on the basis of its estimation through
probabilistic intervals with a time series model and applied the criterion of Equation (8).

The intuitionistic fit of volatility presented in this work is based on the concept of
historical volatility associated with the prices of the underlying asset [4], which has also
been used in the FROP literature [10,45,46]. An alternative procedure could be to adjust
intuitionistic fuzzy volatility from observed implicit volatilities. The modelling of implied
volatility has been the subject of extensive debate in quantitative finance [78]. In the FROP
literature, implicit volatility has been adjusted with fuzzy numbers, either with fuzzy
regression [19,20] or with coherent transformations of the empirical distribution functions
to possibility distributions [21,71]. These contributions can serve as an analytical basis
for adjusting empirical volatilities through IFNs, either by using intuitionistic regression
instruments or considering that IFNs can be modelled as bivariate distribution functions.

In financial modelling, methods aimed at making the best possible point predictions,
such as neural networks and many machine learning algorithms, are certainly useful [79].
However, we also understand the importance of being able to parametrize predictions that
take into account the variability of the parameter of interest, which will be the subject of
future analysis. In this work, we have demonstrated that intuitionistic fuzzy modelling can
be reliable.
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Abstract: A variety of process capability indices are applied to the quantitative measurement of the
potential and performance of processes in manufacturing. As it is easy to understand the formulae
of these indices, this method is easy to apply. Furthermore, a process capability index is frequently
utilized by a manufacturer to gauge the quality of a process. This index can be utilized by not only an
internal process engineer to assess the quality of the process but also as a communication tool for an
external sales department. When the manufacturing process deviates from the target value T, the
process capability index CPMK can be quickly detected, which is conducive to the promotion of smart
manufacturing. Therefore, this study applied the index CPMK as an evaluation tool for process quality.
As noted by some studies, process capability indices have unknown parameters and therefore must
be estimated from sample data. Additionally, numerous studies have addressed that it is essential for
companies to establish a rapid response mechanism, as they wish to make decisions quickly when
using a small sample size. Considering the small sample size, this study proposed a 100 (1 − α)%
confidence interval for the process capability index CPMK based on suggestions from previous studies.
Subsequently, this study built a fuzzy testing model on the 100 (1 − α)% confidence interval for the
process capability index CPMK. This fuzzy testing model can help enterprises make decisions rapidly
with a small sample size, meeting their expectation of having a rapid response mechanism.

Keywords: process capability indices; unknown parameters; confidence interval; fuzzy testing model;
mathematical programming method

MSC: 62C05; 62C86

1. Introduction

A number of process capability indices are unitless, measuring items produced in
processes to determine whether they can achieve the quality level required by the product
designer [1–3]. Indeed, process capability indices are common tools utilized by companies
to gauge process quality. They can be offered to internal process engineers to assess
process quality as well as viewed as communication tools for sales departments in external
companies [4–7]. The two most widely used capability indices, CP and CPK, as Kane [8]
suggested, are displayed below:

CP =
USL− LSL

6σ
=

d
3σ

(1)
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and

CPK =Min
{

USL− µ

3σ
,

µ− LSL
3σ

}
=

d−|µ−M|
3σ

. (2)

In the above equations, USL denotes the Upper Specification Limit, LSL denotes the
Lower Specification Limit, µ refers to the process mean, σ refers to the process standard
deviation, and M = (LSL + USL)/2 refers to the midpoint of the specification interval (LSL,
USL). Boyles [9] noted that indices CP and CPK are based on yields and independent of
the target T. Accordingly, they may fail to explain process centering, which refers to the
capability of gathering data around the target. To tackle this problem, Chan, Cheng, and
Spiring [10] came up with the Taguchi capability index CPM, as presented below:

CPM =
USL− LSL

6
√

σ2 + (µ− T)2
=

d

3
√

σ2 + (µ− T)2
, (3)

where T represents the target value. (µ− T)2 + σ2 = E(X− T)2 refers to the expected
loss function of Taguchi. Considering the Taguchi capability index CPM, Pearn, Kotz, and
Johnson [11] took the following example with T = {3(USL) + (LSL)}/4 and σ = d/3. Process
A, with µA = T − d/2 = m, and process B, with µB = T + d/2 = USL, both yielded the
same result − CPM = 0.555. Nonetheless, the expected non-conforming proportions were
approximately 0.27% and 50%, respectively. We can tell, in this case, that the Taguchi
capability index CPM measures process capability inconsistently. To overcome the problem,
the process capability index CPMK proposed by Choi and Owen [12] is employed to handle
the processes with asymmetric tolerances. For symmetrical tolerances, the index CPMK is
expressed as follows:

CPMK =
d−|µ− T|

3
√

σ2 + (µ− T)2
. (4)

As noted by Vännman [13], the rankings of indices CP, CPK, CPM, and CPMK are in the
following order: (1) CPMK, (2) CPM, (3) CPK, and (4) CP, based on their sensitivity to the de-
parture of the process mean µ from the target value T. These four process capability indices
are favorable for processes with quality characteristics of the nominal-the-better (NTB) type.
Among them, CPMK integrates the numerator of index CPK with the denominator of index
CPM. The deviation can thus be detected quickly as the manufacturing process deviates
from the target value T, which helps promote smart manufacturing. Therefore, this paper
utilizes the process capability index CPMK as an evaluation tool for process quality. As
noted by some studies, process capability indices have unknown parameters and therefore
must be estimated from sample data [14]. In addition, as highlighted by many studies,
companies typically seek a rapid response mechanism, enabling them to make decisions
quickly while utilizing a small sample size [15,16]. If decisions, however, are made based
on a small number of samples, there will be a risk of misjudgment due to sampling error.
Given the case of small sample size, this paper follows some suggestions from previous
studies and derives a 100 (1 − α)% confidence interval for the process capability index
CPMK. Next, building upon the 100 (1 − α)% confidence interval for the process capability
index CPMK, this paper develops a fuzzy testing model. This model, on the basis of the con-
fidence interval, helps enterprises make quick decisions with a small sample size, fulfilling
their need for a rapid response mechanism.

As noted by various studies, machine tools made in Taiwan won first place worldwide
in terms of output value and sales volume. They are mainly sold to emerging markets in
Southeast Asia and Eastern Europe. The central region of Taiwan is an industrial center for
precision machinery and machine tools. It combines machine tool parts factories, aerospace,
and medical industries, and connects parts processing and maintenance industries, forming
a large cluster of machine tools and machinery industries [17,18]. Additionally, several
studies have indicated that the high clustering effect of the machine tool industry in
Taiwan has enabled central Taiwan to develop a robust industry chain for machine tools;
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therefore, Taiwan plays a vital role in the world machine tool industry [19]. In view of this,
we demonstrate how to implement the proposed fuzzy evaluation model using an axis
produced by a machining factory in the central region of Taiwan.

In this paper, we organize the remaining sections as follows. In the Section 2, we
demonstrate how to derive the Maximum Likelihood Estimator (MLE) as well as 100
(1 − α)% confidence regions for the process mean and the process standard deviation,
respectively. This study utilizes the process capability index CPMK as the object function
and adopts the 100 (1 − α)% confidence regions for the process mean and regions for
the process standard deviation as the feasible solution areas. Subsequently, we apply
mathematical programming to find a 100 (1 − α)% confidence interval for the process
capability index CPMK. In the Section 3, we develop a fuzzy testing model using the 100
(1 − α)% confidence interval of the process capability index CPMK to measure the process
quality, so as to learn whether it reaches the required quality level. In this model, we first
derive a triangular fuzzy number and then obtain its membership function. Next, based on
fuzzy testing rules, we can determine whether the process quality satisfies the requirement,
which can serve as a reference for other industries. As mentioned before, central Taiwan is
an industrial center for machine tools. Therefore, in the Section 4, an axis manufactured
by a machining factory in the central region of Taiwan is used as an empirical example to
illustrate how to apply the proposed fuzzy testing model. In the Section 5, conclusions
are presented.

2. Confidence Interval for Process Capability Index CPMK

A random variable, denoted with X, has a normal distribution with the mean (µ) and
the standard deviation (σ). Let (X1, X2, . . ., Xn) be a random sample received from a normal
process. Then the Maximum Likelihood Estimators (MLEs) of the process mean (µ) and the
process standard deviation (σ) are written in Equation (5) and Equation (6), respectively:

µ∗ =
1
n

n

∑
i=1

Xi, (5)

and

σ∗ =

√
1
n

n

∑
i=1

(
Xi − X

)2. (6)

Furthermore, the estimator of the process capability index CPMK is denoted by

C∗PMK =
d−|µ∗ − T|

3
√

σ∗2 + (µ∗ − T)2
. (7)

Let random variables be Z =
√

n(µ∗ − µ)/σ and K = nσ∗2/σ2. As normality is
assumed, µ∗ and σ∗2 are mutually independent, and so are random variables Z and K [20].
The random variable Z is denoted as Z ~ N(0,1), following a normal distribution, while
the random variable K, denoted with χ2

n−1, represents a chi-squared distribution including
n − 1 degrees of freedom. Therefore, we have

p
(
−Z0.5−

√
1−α/2 ≤

√
n(µ∗ − µ)/σ ≤ Z0.5−

√
1−α/2

)
=
√

1− α (8)

and
p
(

χ2
0.5−

√
1−α/2;n−1 ≤ nσ∗2/σ2 ≤ χ2

0.5+
√

1−α/2;n−1

)
=
√

1− α, (9)

where Z0.5−
√

1−α/2 is the upper 0.5−
√

1− α/2 quintile of the standard normal distribution,
χ2

0.5−
√

1−α/2;n−1
is the lower 0.5−

√
1− α/2 quintile of χ2

n−1, and χ2
0.5+

√
1−α/2;n−1

is the

lower 0.5 +
√

1− α/2 quintile of χ2
n−1. Thus, we can further obtain p(A) =1− α, where
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A = p



µ∗ − e× σ ≤ µ ≤ X + e× σ,

√
n

χ2
0.5+

√
1−α/2;n−1

σ∗ ≤ σ ≤
√

n
χ2

0.5−
√

1−α/2;n−1

σ∗



. (10)

where we have e = Z0.5−
√

1−α/2/
√

n. In the random sample (X1, X2, . . ., Xn), the observed
values are written as (x1, x2, . . ., xn). Let the observed values of µ∗ and σ∗ be µ∗0 and σ∗0 ,
expressed as follows:

µ∗0 =
1
n

n

∑
i=1

xi (11)

and

σ∗0 =

√
1
n

n

∑
i=1

(
xi − µ∗0

)2. (12)

Then the observed value for the estimator C∗PMK is denoted by

C∗PMK0 =
d−
∣∣µ∗0 − T

∣∣

3
√

σ∗20 + (µ∗0 − T)2
. (13)

Furthermore, the 100 (1 − α)% confidence region of (µ, σ), denoted with CR(µ, σ), is
written as follows:

CR(µ, σ) = {(µ, σ)|µ∗0 − e× σ ≤ µ ≤ µ∗0 + e× σ, σL ≤ σ ≤ σU }, (14)

where we have σL = σ∗0
√

n/χ2
0.5+

√
1−α/2;n−1

and σU = σ∗0
√

n/χ2
0.5−

√
1−α/2;n−1

. Chen [14]

thinks that since the index CPMK is a function of (µ, σ), then the probability of (µ, σ)
belonging to CR(µ, σ) is as high as 1 − α. Thus, in this paper, the process capability index
CPMK was employed as an object function while the 1 − α confidence region of (µ, σ) was
used as a feasible solution area. Therefore, when p{(µ, σ) ∈ CR(µ, σ)} ≥ 1− α, then we
have p{LCPMK ≤ CPMK ≤ UCPMK} ≥ 1− α. Accordingly, the upper confidence limit for
the process capability index CPMK is defined in the model of mathematical programming as





UCPMK = Max CPMK(µ, σ)
subject to
µ∗0 − e× σ ≤ µ ≤ µ∗0 + e× σ
σL ≤ σ ≤ σU

. (15)

For any process standard deviation, when σ is bigger than or equal to σL (σ ≥ σL), then
we have CPMK(µ, σ) ≤ CPMK(µ, σL). Therefore, the mathematical programming model of
Equation (15) can be rewritten as below:





UCPMK = Max CPMK(µ, σL)
subject to
µ∗0 − e× σL ≤ µ ≤ µ∗0 + e× σL

. (16)

Similarly, for any process standard deviation, when σ is smaller than or equal to σU
(σ ≤ σU), then we have CPMK(µ, σ) CPMK(µ, σU). Therefore, the lower confidence limit for
the process capability index CPMK in the mathematical programming model is displayed
as follows: 




LCPMK = Min CPMK(µ, σU)
subject to
µ∗0 − e× σU ≤ µ ≤ µ∗0 + e× σU

. (17)

Based on the above, this article proposes a process to explain how to use a mathe-
matical programming method to solve the 100 (1 − α)% upper confidence limit and lower
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confidence limit of the index CPMK. Then, a confidence interval-based fuzzy testing method
was developed using Chen’s method [14]. The development process of this fuzzy test is
as follows:

Step 1: Expressing the index as a function of µ mean and standard deviation σ is
as follows:

CPMK(µ, σ) =
d−|µ− T|

3
√

σ2 + (µ− T)2
. (18)

Step 2: Derive the 100 (1 − α)% confidence region of (µ, σ) as shown in Equation (14).
Step 3: Taking CPMK(µ, σ) as the objective function and CR(µ, σ) as the feasible

solution area, the maximum value UCPMK and the minimum value LCPMK are respectively
obtained as shown in Equations (16) and (17).

Step 4: According to the confidence interval of index CPMK, the resemble triangular
fuzzy number and its membership function are constructed as shown in Equation (38).
Then, develop a confidence interval-based fuzzy test method.

Next, we derive the 100 (1 − α)% confidence interval for the process capability index
CPMK based on Case 1µ∗0 − e× σU ≤ T ≤ µ∗0 + e× σU , Case 2 T < µ∗0 − e× σU , and Case 3
µ∗0 + e× σU < T, respectively, as follows:

Case 1: µ∗0 − e× σU ≤ T ≤ µ∗0 + e× σU

In this case, we find µ = T and process capability index CPMK = d/(3σ) . According
to Equations (16) and (17), the 100 (1 − α)% confidence interval for the process capability
index CPMK is [LCPMK, UCPMK], where

LCPMK =
d

3σU
= C∗PMK0 ×

√
χ2

0.5−
√

1−α/2;n−1

n
; (19)

UCPMK =
d

3σL
= C∗PMK0 ×

√
χ2

0.5+
√

1−α/2;n−1

n
. (20)

Case 2: T < µ∗0 − e× σU

In this case, for any µ ≤ µ∗0 + e× σU , we have CPMK(µ, σU)≥CPMK(µ
∗
0 + e× σU , σU).

Based on Equation (17), the lower confidence limit for the process capability index CPMK is
depicted below:

LCPMK =
d− (µ∗0 + e× σU − T)

3
√

σ2
U + (µ∗0 + e× σU − T)2

. (21)

Similarly, for any µ∗0 − e × σL ≤ µ, we have CPMK(µ, σL)≤CPMK(µ
∗
0 − e× σL, σL).

Based on Equation (16), the upper confidence limit for the process capability index CPMK is
shown as follows:

UCPMK =
d− (µ∗0 − e× σL − T)

3
√

σ2
L + (µ∗0 − e× σL − T)2

. (22)

Case 3: µ∗0 + e× σU < T

In this case, for any µ∗0 − e× σU ≤ µ, we have CPMK(µ, σU)≥CPMK(µ
∗
0 − e× σU , σU).

Based on Equation (17), the lower confidence limit for the process capability index CPMK is
displayed below:

LCPMK =
d− (T − (µ∗0 − e× σU))

3
√

σ2
U +

(
T − (µ∗0 − e× σU)

)2
. (23)

Similarly, for any µ ≤ µ∗0 + e × σL, we have CPMK(µ, σL)≤CPMK(µ
∗
0 + e× σL, σL).

Based on Equation (16), the upper confidence limit of the process capability index CPMK
can be depicted as follows:
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UCPMK =
d− (T − (µ∗0 + e× σL))

3
√

σ2
L +

(
T − (µ∗0 + e× σL)

)2
. (24)

Based on the above three cases, this paper builds a method for fuzzy testing upon the
confidence interval for the process capability index CPMK.

3. Fuzzy Testing Model Based on Confidence Interval of Process Capability Index
CPMK

As mentioned above, in pursuit of a rapid response mechanism, companies usually
operate with a small sample size. Following several suggestions from previous studies, in
this paper, we constructed a fuzzy testing method on the basis of the confidence interval for
the process capability index CPMK, given a small sample size. Pearn and Chen [21] defined
the levels required by the process capability indices in the following table.

To identify whether the process capability index CPMK is greater than or equal to C,
the null hypothesis, denoted with H0, and the alternative hypothesis, denoted with H1, for
fuzzy testing are stated below:

H0: CPMK ≥ C (indicating the process capability has achieved the desired level);
H1: CPMK < C (indicating the process capability has not achieved the desired level).
Customers or process engineers can propose the required value C corresponding to

the process capability index CPMK with reference to Table 1. Based on the statistical testing
rules mentioned above and Chen’s method [14], this paper builds the fuzzy testing model
upon the observed values for the estimator and the 100 (1 − α)% confidence interval of
the process capability index CPMK. According to Chen and Lin [22], the α—cuts of the
triangular fuzzy number C̃PMK can be written as follows:

C̃PMK[α] =

{
[CPMK1(α), CPMK2(α)], f or 0.01 ≤ α ≤ 1
[CPMK1(0.01), CPMK2(0.01)], f or 0 ≤ α ≤ 0.01

. (25)

Table 1. The levels required by the process capability indices.

Required Level Capability Index Value

Inadequate CPMK < 1.00
Capable 1.00 ≤ CPMK < 1.33

Satisfactory 1.33 ≤ CPMK < 1.50
Excellent 1.50 ≤ CPMK < 2.00
Superb 2.00 ≤ CPMK

As mentioned earlier, this paper derived the 100 (1 − α)% confidence interval for
the process capability index CPMK from Case 1 µ∗0 − e× σU ≤ T ≤ µ∗0 + e× σU , Case 2
T < µ∗0 − e× σU , and Case 3 µ∗0 + e× σU < T. According to these three cases, CPMK1 (α)
and CPMK2 (α) can be depicted separately as follows.

Case 1: µ∗0 − e× σU ≤ T ≤ µ∗0 + e× σU

In this case, the process capability index CPMK is represented as

CPMK =
d

3σ
. (26)

The observed values of the estimator C∗PMK is represented as

C∗PMK0 =
d

3σ∗0
. (27)

Based on the above equations, Equations (19) and (20), CPMK1(α) and CPMK2(α) are
expressed as follows:
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CPMK1(α) = C∗PMK0 ×

√
χ2

0.5−
√

1−α/2;n−1

n
, (28)

CPMK2(α) = C∗PMK0 ×

√
χ2

0.5+
√

1−α/2;n−1

n
. (29)

Case 2: T < µ∗0 − e× σU

The process capability index CPMK is represented as

CPMK =
d− (µ− T)

3
√

σ2 + (µ− T)2
. (30)

The observed value of the estimator C∗PMK is represented as

C∗PMK0 =
d− (µ∗0 − T)

3
√

σ∗20 + (µ∗0 − T)2
. (31)

Based on the above equations, Equations (21) and (22), CPMK1(α), and CPMK2(α) are
expressed as follows:

e = Z0.5−
√

1−α/2/
√

n, σL= σ∗0
√

n/χ2
0.5+

√
1−α/2;n−1

, and σU =
nσ∗20

χ2
0.5−

√
1−α/2;n−1

CPMK1(α) =

d−
(

µ∗0 + σ∗0

√
Z0.5−

√
1−α/2

χ2
0.5−

√
1−α/2;n−1

− T
)

3

√
nσ∗20

χ2
0.5−

√
1−α/2;n−1

+

(
µ∗0 + σ∗0

√
Z0.5−

√
1−α/2

χ2
0.5−

√
1−α/2;n−1

− T
)2

(32)

CPMK2(α) =

d−
(

µ∗0 − σ∗0

√
Z0.5−

√
1−α/2

χ2
0.5+

√
1−α/2;n−1

− T
)

3

√
nσ∗20

χ2
0.5+

√
1−α/2;n−1

+

(
µ∗0 − σ∗0

√
Z0.5−

√
1−α/2

χ2
0.5+

√
1−α/2;n−1

− T
)2

(33)

Case 3: µ∗0 + e× σU < T

In this case, the process capability index CPMK is defined as:

CPMK =
d− (µ− T)

3
√

σ2 + (µ− T)2
. (34)

The observed values of the estimator C∗PMK is defined as:

C∗PMK0 =
d− (µ∗0 − T)

3
√

σ∗20 + (µ∗0 − T)2
. (35)

Based on the above equations, Equations (23) and (24), CPMK1(α) and CPMK2(α) are
derived as follows:

CPMK1(α) =

d−
(

T −
(

µ∗0 − σ∗0

√
Z0.5−

√
1−α/2

χ2
0.5−

√
1−α/2;n−1

))

3

√
nσ∗20

χ2
0.5−

√
1−α/2;n−1

+

(
T −

(
µ∗0 − σ∗0

√
Z0.5−

√
1−α/2

χ2
0.5−

√
1−α/2;n−1

))2
(36)
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and

CPMK2(α) =

d−
(

T −
(

µ∗0 + σ∗0

√
Z0.5−

√
1−α/2

χ2
0.5+

√
1−α/2;n−1

))

3

√
nσ∗20

χ2
0.5+

√
1−α/2;n−1

+

(
T −

(
µ∗0 + σ∗0

√
Z0.5−

√
1−α/2

χ2
0.5+

√
1−α/2;n−1

))2
. (37)

Therefore, we have the resemble triangular fuzzy number, C̃PMK = ∆ (KL, KM, KR),
where KL = CPMK1(0.01), KM = CPMK1(1) = CPMK2(1) and KR = CPMK2(0.01). Its member-
ship function is expressed as follows:

h(x) =





0 i f x < KL
α1 i f KL ≤ x < KM
1 i f x = KM
α2 i f KM < x ≤ KR
0 i f x > KR

, (38)

where α1 is determined by CPMK1(α1) = x and α2 is determined by CPMK2(α2) = x. Before
proposing the fuzzy testing method for the process capability index CPMK, we reviewed
the following statistical testing rules:

(1) When the upper confidence limit of the process capability index CPMK exceeds or
equals C (UCPMK ≥ C), do not reject H0 and conclude that CPMK ≥ C.

(2) When the upper confidence limit of the process capability index CPMK is smaller than
C (UCPMK < C), reject H0 and conclude that CPMK < C.

Then, this paper developed a fuzzy testing method, considering the confidence interval
for the process capability index CPMK based on statistical testing rules. According to
Equation (36), for the fuzzy number C̃PMK, its membership function h(x) is presented with
the vertical line x = C in Figure 1.
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Figure 1. Membership function h(x) with vertical line x = C.

Based on Chen and Lin [22], let AT denote the area in the diagram of membership
function h(x), and let AR denote the area in the same graph but to the right of membership
function h(x) from the vertical line x = C, such that

AT = {(x, α)|CPMK1 (α) ≤ x ≤ CPMK2(α)}. (39)

and
AR = {(x, α)|C ≤ x ≤ CPMK2(α)}. (40)

According to Yu et al. [23] and based on Equations (39) and (40), we let dT= KR − KL
and dR= KR − C. Then, we have dR/dT= (KR − C)/(KR − KL). Also, we denote Case 1 as
µ∗0 − e× σU ≤ T ≤ µ∗0 + e× σU , Case 2 as T < µ∗0 − e× σU , and Case 3 as µ∗0 + e× σU < T.
More detailed explanations are listed below:
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Case 1: µ∗0 − e× σU ≤ T ≤ µ∗0 + e× σU

dR/dT =
KR − C

2(KR − KM)
, (41)

where

KR = C∗PMK0 ×

√
χ2

0.9975;n−1

n
(42)

and

KM = C∗PMK0 ×

√
χ2

0.5;n−1

n
. (43)

Case 2: T < µ∗0 − e× σU

dR/dT =
KR − C

2(KR − KM)
, (44)

where

KR =

d−
(

µ∗0 − σ∗0

√
Z0.0025

χ2
0.9975;n−1

− T

)

3

√√√√ nσ∗20
χ2

0.9975;n−1
+

(
µ∗0 − σ∗0

√
Z0.0025

χ2
0.9975;n−1

− T

)2
(45)

and

KM =

d−
(

µ∗0 + σ∗0

√
Z0.0025

χ2
0.5;n−1

− T

)

3

√√√√ nσ∗20
χ2

0.5;n−1
+

(
µ∗0 + σ∗0

√
Z0.0025

χ2
0.5;n−1

− T

)2
. (46)

Case 3: µ∗0 + e× σU < T

dR/dT =
KR − C

2(KR − KM)
, (47)

where

KR =

d−
(

T −
(

µ∗0 + σ∗0

√
Z0.0025

χ2
0.9975;n−1

))

3

√√√√ nσ∗20
χ2

0.9975;n−1
+

(
T −

(
µ∗0 + σ∗0

√
Z0.0025

χ2
0.9975;n−1

))2
(48)

and

KM =

d−
(

T −
(

µ∗0 − σ∗0

√
Z0.0025

χ2
0.5;n−1

))

3

√√√√ nσ∗20
χ2

0.5;n−1
+

(
T −

(
µ∗0 − σ∗0

√
Z0.0025

χ2
0.5;n−1

))2
. (49)

Based on Yu et al. [23], we let 0 < φ ≤ 0.5, then the fuzzy testing rules of the process
capability index CPMK are shown as follows:

(1) If dR/dT ≤ φ, then H0 is rejected, and we can conclude that CPMK < C.
(2) If dR/dT > φ, then H0 is not rejected, and we can conclude that CPMK ≥ C.
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4. An Application Example

It is known that the central region of Taiwan is a machine tool center. Therefore, this
section of this paper demonstrates how to apply the proposed fuzzy testing model through
an empirical example involving the axis machined by a manufacturer in central Taiwan.
The fuzzy testing model built on the confidence interval of the process capability index
CPMK is an effective approach for deciding whether the process capability is acceptable or
requires improvement. The target value T of the axis machined by the factory is 1.80 mm
(T = 1.80), and the tolerance is 0.05 mm. Accordingly, the lower specification limit (LSL)
is 1.75 mm (LSL = 1.75) and the upper specification limit (USL) is 1.85 mm (USL = 1.85).
Thus, T = (USL + LSL)/2 and d = (USL − LSL)/2. According to customer requirements,
the process engineer sets the required value for the process capability index CPMK as 1.00.
Aiming to gauge whether the value of the process capability index CPMK exceeds or equals
1.00, the null hypothesis (H0) and the alternative hypothesis (H1) for fuzzy testing are listed
as follows:

H0: CPMK ≥ 1.00 (showing that the process capability is sufficient);
H1: CPMK < 1.00 (showing that the process capability is insufficient).
As mentioned earlier, in pursuit of a quick response mechanism, companies often opt

for a small sample size. Let (x1, x2, . . ., x16) be the observed values for a random sample (X1,
X2, . . ., X16). Then the observed values of µ∗ and σ∗ are µ∗0 and σ∗0 , respectively, as shown
below:

µ∗0 =
1
16

16

∑
i=1

xi = 1.083 (50)

and

σ∗0 =

√√√√ 1
16

16

∑
i=1

(
xi − µ∗0

)2
= 0.022. (51)

Thus,
µ∗0 − e× σU = 1.083− 0.702× 0.044 = 1.793

and
µ∗0 + e× σU = 1.083 + 0.702× 0.044 = 1.834.

The target value T belongs to the interval (1.793, 1.834). Thus, the observed value of
the estimator C∗PMK is calculated as follows:

C∗PMK0 =
d

3σ∗0
= 0.758. (52)

Based on Equation (50), we obtain the following values of KR and KM:

KR = C∗PMK0 ×

√
χ2

0.9975;n−1

n
= 0.758×

√
34.950

16
= 1.120 (53)

and

KM = C∗PMK0 ×

√
χ2

0.5;n−1

n
= 0.758×

√
14.399

16
= 0.717. (54)

Thus, the value of dR/dT is calculated as follows:

dR/dT =
KR − C

2(KR − KM)
=

1.120− 1.00
2× (1.120− 0.717)

= 0.15 (55)

Based on Yu et al. [23], we let 0 < φ ≤ 0.5 and reviewed the fuzzy testing rules of the
process capability index CPMK. We obtained the following result:

(1) If dR/dT ≤ φ, then H0 is rejected, and we can conclude that CPMK < C.

60



Axioms 2024, 13, 379

The process engineer, drawing from past professional experience, analyzed and set
the value of φ to 0.2; that is, φ = 0.2. According to the above fuzzy testing rule, since
dR/dT is less than 0.2, the null hypothesis H0 is rejected, and the conclusion CPMK < 1.00
is drawn. In fact, the observed value of the estimator C∗PMK is 0.758 (C∗PMK0 = 0.758), the
upper confidence limit of the process capability index CPMK is 1.120 (UCPMK = 1.120) with
α = 0.01. If the result of the statistical inference shows that CPMK ≥ 1.00, it indicates that
the proposed fuzzy testing model in this paper demonstrates greater practicality compared
to the conventional statistical testing model.

5. Conclusions

Various process capability indices are applied to the quantitative measurement of
the potential and performance of a process in the manufacturing industry. Not only can
an internal process engineer use them to assess process quality, but an external sales
department can also utilize them as a communication tool. The process capability index
CPMK can quickly detect process deviations from the target value, which is conducive to
the promotion of smart manufacturing. Therefore, in this paper, we utilized the process
capability index as a tool to evaluate process quality. Process capability indices, as noted by
some studies, have unknown parameters and therefore must be estimated from sample data.
In addition, as highlighted by many studies, companies typically pursue a rapid response
mechanism, so they need to make decisions using a small sample size. Consequently,
this study, based on some suggestions from previous studies for the case of small sample
size, proposed the process capability index CPMK with a 100 (1 − α)% confidence interval.
In the normal process condition where the sample mean and the sample variation are
mutually independent, this study derived the 100 (1 − α)% confidence region of (µ, σ).
Then, this study adopted the process capability index CPMK as an object function as well as
the 100 (1 − α)% confidence region of (µ, σ) as a feasible solution area, aiming to acquire
the 100 (1 − α)% confidence interval of the process capability index CPMK. Immediately
afterward, the 100 (1 − α)% confidence interval of the process capability index CPMK
was utilized to establish a fuzzy testing model to evaluate process quality and see if it
can achieve the required quality level. In this model, we first derived the triangular
fuzzy number C̃PMK and then obtained its membership function h(x). According to the
membership function h(x), this study established fuzzy testing rules. Through these rules,
we can tell if the process quality attains the required level, which can serve as a reference for
other industries. As mentioned earlier, central Taiwan is an industrial center for machine
tools. Accordingly, this study illustrated the use of the proposed fuzzy testing model with
an example of the axis machined by a factory located in the central region of Taiwan. It
is evident from this example that the proposed fuzzy testing model can exhibit greater
practicality compared to the conventional statistical testing model.
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Abstract: The Performance Evaluation Matrix (PEM) is an excellent decision-making tool for as-
sessment and resource management. Satisfaction Index and Importance Index are two important
evaluation indicators of construction and PEM. Managers can decide whether the service item needs
to be improved based on the Satisfaction Index of the service item. When resources are limited,
managers can determine the priority of improving the service item based on the Importance Index.
In order to avoid the risk of misjudgment caused by sample errors and meet the needs of enterprises’
rapid decision-making, this study proposed a fuzzy test built on the confidence intervals of the above
two key indicators to decide whether essential service items should be improved and determine the
priority of improvement. Since the fuzzy test was relatively complex, this study further came up
with fuzzy evaluation values and fuzzy evaluation critical values of service items following fuzzy
testing rules. Besides, evaluation rules were established to facilitate industrial applications. This
approach can be completed with any common word processing software, so it is relatively convenient
in application and easy to manage. Finally, an application example was presented in this paper to
explain the applicability of the proposed approach.

Keywords: performance evaluation matrix; satisfaction index; importance index; fuzzy evaluation
critical values; service operating system

MSC: 62C05; 62C86

1. Introduction

The Performance Evaluation Matrix (PEM) is an outstanding evaluation and improve-
ment tool for various service operating systems [1–4]. Many papers have been devoted to
conducting research into the PEM, aiming to evaluate the performance of various service
operating systems and determine whether they have reached the required level [5–7]. The
PEM method, mainly based on the service items provided by the service operating systems
and then designed into questionnaire scales, can be employed to investigate customers’ or
users’ satisfaction and importance for each service item as well as to set the Satisfaction
Index and the Importance Index [8–10].

Additionally, a few studies have used confidence intervals of indicators to create
evaluation coordinate points of the Satisfaction Index and the Importance Index for each
service item [11,12]. Observing where the evaluation coordinate points of all service items
are located in the service quality zones of PEM can help determine which service item
needs improvement or whether resource transfer is required [13,14]. The service item that
falls into the service quality improvement zone has high customer importance and low
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customer satisfaction, so it needs improvement. The service item that falls into the service
quality maintenance zone has equal customer importance and satisfaction, so it needs
maintenance. The service item that falls into the resource transfer zone has low customer
importance and high customer satisfaction, showing that customers are fully satisfied with
the service item, but its importance is not high; therefore, this item must be reviewed, and a
resource transfer must be considered to increase the overall satisfaction of the entire service
operating system [15,16].

Yu et al. [17] have indicated that the above-mentioned method of performance eval-
uation may fail to identify improvement points due to customers’ different cultures and
mindsets. With the spirit of continuous improvement and total quality management, PEM
is divided into four quadrants by the average values of the Satisfaction Index and the
Importance Index. Service items in quadrants 2 and 4, in principle, are those whose values
are lower than the average as well as the items which require improvement. It seems
that the evaluation is directly conducted by statistics calculated from the sample data, but
the evaluation method has taken sampling errors into account. To solve the problem of
sampling errors, some studies have also made statistical inferences through the confidence
intervals of the above two indices [11,12]. However, considering cost and effectiveness,
Chen and Yu [18] have suggested that the number of samples is usually not too large in
practice for making decisions quickly and accurately in a short time, thereby affecting the
accuracy of statistical inferences. Obviously, sampling errors, assessment accuracy, and
limited resources are issues that need to be considered and solved in the development of
PEM. Aiming to solve the problem concerning the maintenance of evaluation accuracy in
the case of small samples, this study, based on Chen and Yu [18] and the confidence interval
proposed by some studies [11,12,19], develops a complete fuzzy testing method to evaluate
which service item needs improvement. Meanwhile, when resources are limited, this
method helps decide which service item should be a top priority for improvement. Next,
following the fuzzy testing rules, this study derives the fuzzy decision-making value for
satisfaction improvement and the fuzzy decision-making value for improvement priority
of importance, so as to facilitate managers’ decision-making [18,19].

In the PEM method, first, based on the service system which needs to be evaluated,
we need to design a corresponding questionnaire and corresponding questions which are
called service items by this study. In order not to lose generality, this study, like other
studies, assumes that the number of service items provided by the service system is k; then
k questions are designed to conduct a survey targeted at learners about satisfaction and
importance for k service items [20].

Lin et al. [19] let random variable Xh represent the hth service item of satisfaction,
then random variable Xh is distributed as a Beta distribution with the first parameter αh
and the second parameter βh, denoted by Xh ∼ Beta(αh, βh), h = 1, 2, . . ., k. Furthermore,
let random variable Yh indicate the hth service item of importance, then random variable
Yh is distributed with the first parameter ah and the second parameter bh, denoted by
Yh ∼ Beta(ah, bh); the Beta distribution, denoted by Yh ∼ Beta(δh, γh), is also displayed.
Thus, these two indices can be shown as follows:

ISh =
αh

αh + βh
(Satisfaction Index); (1)

IIh =
ah

ah + bh
(Importance Index). (2)

For the convenience of explanation, according to the characteristics of the Beta distribu-
tion, we set the level of satisfaction higher than 50% as high satisfaction and the level of sat-
isfaction lower than 50% as low satisfaction. When ISh = 1/2, we have αh/(αh + βh) = 1/2,
and then we make the conclusion αh = βh, showing that the level of high satisfaction is
equal to the level of low satisfaction. When ISh > 1/2, we have αh/(αh + βh) > 1/2, and
then we make the conclusion αh > βh; at this time, the level of high satisfaction is higher
than that of low satisfaction. When ISh < 1/2, we have αh/(αh + βh) < 1/2 and then we

64



Axioms 2024, 13, 198

make the conclusion αh < βh, meaning that the level of high satisfaction is lower than
that of low satisfaction. When the value of Satisfaction Index ISh is lower, the level of high
satisfaction is also lower. In addition, the Importance Index has the same property as the
Satisfaction Index. The higher the value of Importance Index IIh, the higher the level of
high importance. Similarly, as the value of Importance Index IIh is lower, the level of high
importance is lower as well.

Obviously, Satisfaction Index and Importance Index are two important elements of
the performance evaluation matrix. The purpose of this paper is to use the unilateral
confidence intervals of these two important indicators to conduct a fuzzy test, so that the
fuzzy evaluation criteria of the performance evaluation matrix can be developed. Next,
according to the suggestion made by Lin et al. [19], a fuzzy performance evaluation chart is
created to assist businesses with their managment and decision-making.

The remainder of this paper is organized as follows. In Section 2, we derive the
100(1− α)% confidence interval of Satisfaction Index and develop its fuzzy evaluation
rules. In Section 3, we derive the 100(1− α)% confidence interval of Importance Index and
make its fuzzy evaluation rules. In Section 4, we use a case study to illustrate an application
of the model proposed by this study, demonstrating how to identify service items requiring
improvement as well as how to prioritize them for improvement as resources are limited.
In Section 5, conclusions, research limitations, and future research directions are presented
and explored.

2. Fuzzy Evaluation Rules for Satisfaction Index

As mentioned earlier, this study, built on existing literature, assumes that both dis-
tributions of customer satisfaction and importance follow the Beta distribution [19]. Let(

X h,1, . . . , X h,j, . . . , X h,n

)
be the sample data of customer satisfaction for Service Item

h with a size of n, where h = 1, 2,. . ., k. Then, the unbiased estimator of Satisfaction Index
ISh is expressed as follows:

ÎSh =
1
n
×

n

∑
j=1

Xh,j. (3)

The expected value of the unbiased estimator ÎSh is equal to ISh, denoted by E
[
ÎSh
]
= ISh.

Let random variable ZSh be defined as follows:

ZSh =
ÎSh − ISh

SXh/
√

n
, (4)

where SXh is the sample standard deviation, given by:

SXh =

√√√√ 1
n− 1

×
n

∑
j=1

(
Xh,j − Xh

)2
. (5)

Plenty of studies have revealed that the fuzzy test method based on the confidence
interval must be able to derive the two-tailed confidence interval of the indicator, so that
the subsequent fuzzy testing procedure can be completed [11,12,17,18]. Accordingly, if the
two-tailed confidence interval of the indicator cannot be derived, then it must be completed
by the Central Limit Theorem. Nevertheless, when the sample size is not large enough, it
will lead to larger sampling errors. Considering the customer satisfaction questionnaire
survey, the sample size is relatively large. Thus, in this paper, on the basis of the Central
Limit Theorem, the distribution of random variable ZSh approximates the standard normal
distribution for large sample size n [21], expressed as follows:

ZSh =
ÎSh − ISh

SXh/
√

n
≈ N(0, 1). (6)
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Based on the above-mentioned, we have 1− α = p(−zα/2 ≤ ZSh ≤ zα/2), where zα

is the upper α quantile of the standard normal distribution. As noted by Lin et al. [19],
Satisfaction Index ISh is set as the x-axis to form the PEM. Let

(
x h,1, . . . , x h,j, . . . , x h,n

)
be

the observed value of
(

X h,1, . . . , X h,j, . . . , X h,n

)
. Then ÎSh0 is the observed value of ÎSh,

written as follows:

ÎSh0 =
1
n
×

n

∑
j=1

xh,j. (7)

The average of ÎSh0 is expressed as follows:

IS0 =
1
k

k

∑
h=1

ÎSh0. (8)

According to Yu et al. [17], when the value of Satisfaction Index for Service Item h
is lower than the average value (ISh ≤ IS0), then Service Item h must be improved. The
hypotheses of the statistical test for the Satisfaction Index of Service Item h are written
as follows:

null hypothesis H0 : ISh ≥ IS0; (9)

alternative hypothesis H1 : ISh < IS0. (10)

The significance level of the test is β and the critical region can be defined as
CRSh =

{
ÎSh0 < Ch0

}
=
{

ZSh <
√

n(Ch0 − IS0)/SXh
}

. Therefore, the critical value of
Ch0 is determined by

p
{

ZSh <
Ch0 − IS0

SXh0/
√

n

}
= β, (11)

where SXh0 is the observed value of SXh, written as follows:

SXh0 =

√√√√ 1
n− 1

×
n

∑
j=1

(
xh,j − xh

)2
. (12)

Thus, the critical value is denoted by Ch0 = IS0 − zβSXh0/
√

n. Obviously, we have
p
{

ÎSh > Ch0 |ISh = IS0
}
= p

{
ZSh < −zβ|ISh = IS0

}
= β. Let the observed value of ZSh be

ZSh0. Then

ZSh0 =
ÎSh0 − IS0

SXh0/
√

n
. (13)

Thus, we can replace ÎSh0 with ZSh0 as the testing statistic and replace Ch0 with zβ

as the critical value. The α-cuts of the quasi-triangular fuzzy number z̃β is expressed
as follows:

z̃β[α] =

{ [
zβ1(α), zβ2(α)

]
=
[
−zβ − zα/2,−zβ + zα/2

]
, 0.01 ≤ α ≤ 1

[
zβ1(α), zβ2(α)

]
=
[
−zβ − z0.005,−zβ + z0.005

]
, 0 ≤ α ≤ 0.01

. (14)

Obviously, when α = 1, then zα/2 = 0 and zβ1(1) = zβ2(1) = −zβ. The fuzzy
number is z̃β =

(
−zβL,−zβM,−zβR

)
=
(
−zβ − z0.005,−zβ,−zβ + z0.005

)
. In fact, the fuzzy

evaluation technique proposed by this study based on the atypical fuzzy evaluation method
suggested by Buckley [22] belongs to the type-2 of fuzzy sets [23]. A quasi-triangular fuzzy
membership function is mainly constructed by the two-tailed confidence interval of the
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parameters that need to be evaluated. The quasi- triangular fuzzy membership function of
z̃β is as follows:

η(x) =





0, i f x < −zβ − z0.005

2×
(
1−Φ(−zβ − x)

)
, i f − zβ − z0.005 ≤ x < −zβ

1, i f x = −zβ

2×
(
1−Φ(x + zβ)

)
, i f − zβ < x ≤ −zβ + z0.005

0, i f − zβ + z0.005 < x

. (15)

Based on Equation (15), membership function η(x) with the vertical line of x = ÎSh0 is
depicted in Figure 1.
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Figure 1. Membership function η(x) with the vertical line of x = ZSh0.

Based on the concept of Yu et al. [24], let dhR = ZSh0 − zβR = ZSh0 − (−zβ + z0.005)
and dT = zβR − zβL = 2× z0.005. Then dhR/dT is expressed as follows:

dhR/dT =
−zβ + z0.005 − ZSh0

2× z0.005
. (16)

Let the decision value be dSh0, such that

dhR/dT =
−zβ + z0.005 − dSh0

2× z0.005
= φ. (17)

Therefore, we have
dSh0 = (1− 2φ)z0.005 − zβ. (18)

According to Chen et al. [25], we let 0 < φ < 0.5, and the decision rules of the fuzzy
two-tailed testing model are listed below:

(1) If ZSh0 < dSh0, then dhR/dT < φ. Therefore, we reject H0 and draw the conclusion
ISh < IS0. Thus, Service Item h needs to be improved.

(2) If ZSh0 ≥ dSh0, then dhR/dT ≥ φ. Thus, we do not reject H0 and draw the conclusion
ISh ≥ IS0. Thus, Service Item h does not need to be improved.
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3. Fuzzy Evaluation Rules for Importance Index

Let
(

Y h,1, . . . , Y h,j, . . . , Y h,n

)
be the sample data of customer importance for Service

Item h with a size of n, where h = 1, 2,. . ., k. Then, the unbiased estimator of Important
Index IIh is defined below:

ÎIh =
1
n
×

n

∑
j=1

Yh,j. (19)

The expected value of unbiased estimator ÎIh, equal to IIh, is denoted by E
[
ÎIh
]
= IIh.

Let random variable ZIh be defined as:

ZIh =
ÎIh − IIh

SYh/
√

n
, (20)

where SYh is the sample standard deviation, written as:

SYh =

√√√√ 1
n− 1

×
n

∑
j=1

(
Yh,j −Yh

)2
. (21)

According to the Central Limit Theorem, the distribution of the random variable ZIh
approximates the standard normal distribution, expressed as follows:

ZIh =
ÎIh − IIh

SYh/
√

n
n→∞→ N(0, 1). (22)

Based on the above-mentioned, we have 1− α = p(−zα/2 ≤ ZIh ≤ zα/2). Similarly,

the Important Index IIh is set as the y-axis to form the PEM. Let
(

y h,1, . . . , y h,j, . . . , y h,n

)

be the observed value of
(

Y h,1, . . . , Y h,j, . . . , Y h,n

)
. Then ÎIh0 is the observed value of ÎIh,

expressed as follows:

ÎIh0 =
1
n
×

n

∑
j=1

yh,j. (23)

Then, the average of ÎIh0 is defined as follows:

II0 =
1
k

k

∑
h=1

ÎIh0. (24)

According to Yu et al. [17], when the Importance Index of Service Item h is smaller
than the average value (IIh ≤ II0), the improvement priority of Service Item h is low. On
the contrary, when the Importance Index of Service Item h is greater than the average value
(IIh > II0), the improvement priority of Service Item h is high. Then, the hypotheses of the
statistical test for Important Index h are written as follows:

null hypothesis H0 : IIh ≤ II0; (25)

alternative hypothesis H1 : IIh > II0. (26)

The significance level of the test is β′, and the critical region is defined as
CRIh =

{
ÎIh > C′h0

}
=
{

ZIh >
√

n
(
C′h0 − IIh

)
/SYh0

}
, where C′h0 is determined by

p
{

ZIh >
C′h0 − II0

SYh0/
√

n

}
= β′. (27)
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Therefore, the critical value is written as C′h0 = II0 + zβ′SYh/
√

n. Obviously,

p
{

ÎIh > C′h0 |IIh = II0
}

= p
{

ZIh > zβ′ |IIh = II0

}
= β′. Let the observed value of ZIh

be ZIh0, written as follows:

ZIh0 =
ÎIh0 − II0

SYh0/
√

n
, (28)

where SYh0 is the observed value of SYh as follows:

SYh0 =

√√√√ 1
n− 1

×
n

∑
j=1

(
Yh,j −Yh

)2
. (29)

Thus, we can then replace ÎIh0 with ZIh0 as the testing statistic and replace C′h0 with
−zβ′ as the critical value. The α-cuts of the triangular fuzzy number z̃β′ is

z̃β′ [α] =





[
zβ′1(α), zβ′2(α)

]
=
[
zβ′ − zα/2, zβ′ + zα/2

]
, 0.01 ≤ α ≤ 1

[
zβ′1(α), zβ′2(α)

]
=
[
zβ′ − z0.005, zβ′ + z0.005

]
, 0 ≤ α ≤ 0.01

. (30)

As noted by Chen and Yu [18], when α = 1, then zβ′1(1) = zβ′2(1) = zβ′ . Therefore,

the fuzzy number is z̃β′ =
(

zβ′L, zβ′M, zβ′R

)
=
(

zβ′ − z0.005, zβ′ , zβ′ + z0.005

)
, and the

membership function of z̃β′ is

η′(x) =





0 , i f x ≤ zβ′ − z0.005

2×
(

1−Φ(zβ′ − x)
)

,i f zβ′ − z0.005 < x < zβ′

1 , i f x = zβ′

2×
(

1−Φ(x− zβ′)
)

,i f zβ′ < x < zβ′ + z0.005

0 , i f zβ′ + z0.005 ≤ x

. (31)

Following Equation (31), the diagram of membership function η′(x) with the vertical
line of x = ZIh0 is presented in Figure 2.
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( )0 0.0052 1Id z zβφ ′= − + . (34)

On the basis of the study of Chen et al. [25], we let 0 <  φ  <  0.5, and the decision-
making rules of the fuzzy two-tailed testing model are displayed below: 

(1) If 0 0Ih IhZ d> , then hR Td d φ′ ′ < . Therefore, we reject 0H  and draw the conclusion 

0Ih II I> . Consequently, Service Item h has a high priority for improvement. 

(2) If 0 0Ih IhZ d≤ , then hR Td d φ′ ′ ≥ . Therefore, we do not reject 0H  and draw the 
conclusion 0Ih II I≤ . Consequently, Service Item h has a low priority for 
improvement. 

4. An Application Example 
In order to explain the application of the above model, this paper adopted a foreign 

language teaching satisfaction questionnaire made by Yu et al. [26], including five 
dimensions to reflect the services provided by foreign language teaching. Among them, 
Dimension 1 is Teaching Preparation, containing 4 teaching service items; Dimension 2 is 
Teaching Attitude, including 5 teaching service items; Dimension 3 is Teaching 
Capability, containing 2 teaching service items; Dimension 4 is Teaching Management, 
containing 3 teaching service items; finally, Dimension 5 is Coursework and Evaluation, 
containing 2 teaching service items. These five dimensions include a total of 16 question 
items, and each question item has two subquestions about importance and satisfaction. 
Therefore, the entire questionnaire has a total of 32 questions that need to be answered. A 
total of 16 questions (k = 16) in these 5 dimensions are depicted as follows: 

Dimension 1: Teaching Preparation 

Figure 2. Membership function η′(x) with the vertical line of x = ZIh0.

69



Axioms 2024, 13, 198

According to Yu et al. [24], let d′hR = zβ′R − ZIh0 = (zβ′ + z0.005) − ZIh0 and
d′T = zβ′R − zβ′L = 2× z0.005. Then d′hR/d′T is defined as follows:

d′hR/d′T =
ZIh0 − zβ′ + z0.005

2× z0.005
. (32)

Let dIh0, such that

d′hR/d′T =
dIh0 − zβ′ + z0.005

2× z0.005
= φ. (33)

Thus, we have
dI0 = (2φ− 1)z0.005 + zβ′ . (34)

On the basis of the study of Chen et al. [25], we let 0 < φ < 0.5, and the decision-making
rules of the fuzzy two-tailed testing model are displayed below:

(1) If ZIh0 > dIh0, then d′hR/d′T < φ. Therefore, we reject H0 and draw the conclusion
IIh > II0. Consequently, Service Item h has a high priority for improvement.

(2) If ZIh0 ≤ dIh0, then d′hR/d′T ≥ φ. Therefore, we do not reject H0 and draw the
conclusion IIh ≤ II0. Consequently, Service Item h has a low priority for improvement.

4. An Application Example

In order to explain the application of the above model, this paper adopted a for-
eign language teaching satisfaction questionnaire made by Yu et al. [26], including five
dimensions to reflect the services provided by foreign language teaching. Among them,
Dimension 1 is Teaching Preparation, containing 4 teaching service items; Dimension 2 is
Teaching Attitude, including 5 teaching service items; Dimension 3 is Teaching Capability,
containing 2 teaching service items; Dimension 4 is Teaching Management, containing 3
teaching service items; finally, Dimension 5 is Coursework and Evaluation, containing 2
teaching service items. These five dimensions include a total of 16 question items, and
each question item has two subquestions about importance and satisfaction. Therefore,
the entire questionnaire has a total of 32 questions that need to be answered. A total of
16 questions (k = 16) in these 5 dimensions are depicted as follows:

Dimension 1: Teaching Preparation

1. The course material that the teacher has prepared is at an adequate level of complexity
(X1, Y1).

2. The quantity of the material is appropriate (X2, Y2).
3. The content of the material helps improve my foreign language proficiency (X3, Y3).
4. The teacher has prepared thoroughly for the class (X4, Y4).

Dimension 2: Teaching Attitude

5. The teacher emphasizes conversation practice in a foreign language (X5, Y5).
6. The teacher values the opinions of students (X6, Y6).
7. Student-teacher interaction in class is intensive (X7, Y7).
8. The teacher is happy to help students solve problems (X8, Y8).
9. The teacher treats all students fairly (X9, Y9).

Dimension 3: Teaching Capability

10. The teacher speaks the foreign language clearly (X10, Y10).
11. The teacher expresses himself/herself logically (X11, Y11).

Dimension 4: Teaching Management

12. The teacher uses a variety of teaching methods (X12, Y12).
13. The teacher interests me in learning the foreign language (X13, Y13).
14. The teacher adequately controls the pace of teaching (X14, Y14).
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Dimension 5: Coursework and Evaluation

15. The coursework or evaluation helps me improve my foreign language proficiency
(X15, Y15).

16. Evaluation is at an adequate level of complexity (X16, Y16).

As mentioned above, the performance of running foreign language learning cur-
riculums is the foundation for students who intend to increase their foreign language
proficiency since foreign language proficiency is often one of the key indicators for recruit-
ment in the corporate world [27–29]. It can not only help students improve their learning
efficiency in other professional subjects but also enhance their competitiveness for more
advanced studies or employment. Therefore, foreign language learning curriculums are
listed in important teaching enhancement plans promoted by various universities [26].

Based on the above-mentioned 16 questions in the foreign language teaching satis-
faction questionnaire, a total of 350 copies of questionnaire were given to students in the
case-study school and returned on the spot; in total, 324 copies of questionnaire were
collected, yielding a response rate of 92.5%.

First, we calculate observed values ÎSh0 and SXh0 for each service item according to
Equations (7) and (12). Following Equation (8), we calculate the average of ÎSh0 as follows:

IS0 =
1
16

16

∑
h=1

ÎSh0 = 0.645.

Therefore, the hypotheses of the fuzzy test for Satisfaction Index h are written as follows:

null hypothesis H0 : ISh ≥ 0.645;

alternative hypothesis H1 : ISh < 0.645.

This study sets the significance level β as 0.05, then the membership function η(x)
with significance level β = 0.05 is expressed as follows:

η(x) =





0, i f x < −4.221

2× (1−Φ(−1.645− x)), i f − 4.221 ≤ x < −1.645

1, i f x = −1.645

2× (1−Φ(x + 1.645)), i f − 1.645 < x ≤ 0.931

0, i f 0.931 < x

.

Let φ = 0.4. Then the decision value is dS0 = (1− 2φ)z0.005 − z0.05 = 0.6 × 2.576
− 1.645 = −0.10. Following Equation (15), the values of ZSh0 for all service items are
calculated and shown in Table 1.

Similar to the Satisfaction Index, we calculate observed values ÎIh0 and SYh0 for each
service item according to Equations (23) and (29). Following Equation (24), we calculate
the average of ÎIh0 as follows:

II0 =
1
16

16

∑
h=1

ÎIh0 = 0.682.

Therefore, the hypotheses of the fuzzy test for Important Index of Service Item h are
written as follows:

null hypothesis H′0 : IIh ≤ 0.682;

alternative hypothesis H′1 : IIh > 0.682.
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This study sets the significance level β′ as 0.05 and φ = 0.4, then the decision value is
dI0 = (2φ− 1)z0.005 + z0.05 = −0.6 × 2.576 + 1.645 = 0.10. According to Equation (28), the
values of ZIh0 for all service items are calculated and displayed in Table 2.

Table 1. The fuzzy improvement decision table for satisfaction of service items.

Dimensions/Item ÎSh0 ZSh0 Remark

Dimension 1: Teaching Preparation

1. The course material that the teacher has prepared is at
an adequate level of complexity.

0.72 1.95

2. The quantity of the material is appropriate. 0.69 0.89

3. The content of the material helps improve my foreign
language proficiency.

0.76 2.24

4. The teacher has prepared thoroughly for the class. 0.52 −2.79 Improve

Dimension 2: Teaching Attitude

5. The teacher emphasizes conversation practice in a
foreign language.

0.67 0.45

6. The teacher values the opinions of students. 0.49 −2.76 Improve

7. Student-teacher interaction in class is intensive. 0.68 0.54

8. The teacher is happy to help students solve problems. 0.51 −3.27 Improve

9. The teacher treats all students fairly. 0.69 0.82

Dimension 3: Teaching Capability

10. The teacher speaks the foreign language clearly. 0.71 1.22

11. The teacher expresses himself/herself logically. 0.73 1.61

Dimension 4: Teaching Management

12. The teacher uses a variety of teaching methods. 0.69 0.73

13. The teacher interests me in learning a foreign language. 0.65 −0.11 Improve

14. The teacher adequately controls the pace of teaching. 0.54 −2.37 Improve

Dimension 5: Coursework and Evaluation

15. The coursework or evaluation helps me improve my
foreign language proficiency.

0.72 1.40

16. Evaluation is at an adequate level of complexity. 0.69 0.92

Remark: If ZSh0 < dSh0 = −0.10, then Service Item h needs to be improved.

In the fuzzy improvement decision table for satisfaction of service items, the five
service items requiring improvement are as follows: “The teacher has prepared thoroughly
for the class” (Item 4), “The teacher values the opinions of students” (Item 6), “The teacher
is happy to help students solve problems” (Item 8), “The teacher interests me in learning a
foreign language” (Item 13), and “The teacher adequately controls the pace of teaching”
(Item 14). In the fuzzy decision list of improvement prioritization, improvement priority of
Service Items 4, 8, and 13 is low, whereas that of Service Items 6 and 14 is high. Improve-
ment involves various concerns, such as the cost of hiring high-quality teachers, teaching
training time and methods, expenses related to formulating various reward and punish-
ment systems, and other associated costs. Consequently, it is recommended that Service
Items 6 and 14 should be listed in as the top priority for improvement within the constraints
of limited resources and time to enhance the effectiveness of improvement efforts.

As highlighted by a number of studies, the fuzzy test based on the confidence interval
tends to be more practical than the statistical test in real-world scenarios [11,12]. The value
of ZSh0 for Service Item 13 is −0.11 in the above-mentioned case, which exceeds the critical
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value −z0.05. Had the statistical test been employed, then null hypothesis would not have
been rejected, potentially leading us to miss opportunities for improvement. Furthermore,
this model takes the prioritization of service item improvements into account, offering a
basis for decision making when resources are limited. Lastly, with standardized decision-
making values and critical values, compared with other existing methods based on fuzzy
tests and confidence intervals, this model is more convenient for decision makers [30,31].

Table 2. Fuzzy decision list of improvement prioritization.

Dimensions/Item ÎIh0 ZIh0 Priority

Dimension 1: Teaching Preparation

1. The course material that the teacher has prepared is at
an adequate level of complexity.

0.75 1.68

2. The quantity of the material is appropriate. 0.68 −0.05

3. The content of the material helps improve my foreign
language proficiency.

0.73 2.03

4. The teacher has prepared thoroughly for the class. 0.59 −2.15 Low

Dimension 2: Teaching Attitude

5. The teacher emphasizes conversation practice in a
foreign language.

0.58 −3.00

6. The teacher values the opinions of students. 0.78 1.23 High

7. Student-teacher interaction in class is intensive. 0.72 0.84

8. The teacher is happy to help students solve problems. 0.56 −2.86 Low

9. The teacher treats all students fairly. 0.57 −2.84

Dimension 3: Teaching Capability

10. The teacher speaks the foreign language clearly. 0.82 2.80

11. The teacher expresses himself/herself logically. 0.71 0.56

Dimension 4: Teaching Management

12. The teacher uses a variety of teaching methods. 0.66 −0.52

13. The teacher interests me in learning a foreign language. 0.61 −1.83 Low

14. The teacher adequately controls the pace of teaching. 0.80 2.73 High

Dimension 5: Coursework and Evaluation

15. The coursework or evaluation helps me improve my
foreign language proficiency.

0.74 1.32

16. Evaluation is at an adequate level of complexity. 0.61 −1.86

5. Conclusions, Research Limitations and Future Research

The performance evaluation matrix can evaluate all service items of the service oper-
ating system simultaneously. The Importance Index and Satisfaction Index of the service
items serve as two significant evaluation indicators of the performance evaluation matrix.
To cater to enterprises’ needs for rapid decision-making, this paper initially derived the
expected value and standard deviation of the Satisfaction Index estimation formula and
set the random variable ZSh equal to the standardized statistic of Satisfaction Index for
Service Item h. According to the Central Limit Theorem, ZSh followed the standard normal
distribution, and then the β lower quantile of the standard normal distribution was used as
the critical value to establish the fuzzy test of the Satisfaction Index. Given the complexity
of the fuzzy test, this paper obtained the fuzzy critical value dS0 following the fuzzy testing
rules. Managers only need to compare the ZIh value and fuzzy critical value dI0 of Service
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Item h to make decisions on whether to make improvements. Subsequently, this paper
derived the expected value and standard deviation of the Important Index estimate and
set the random variable ZIh equal to the standardized statistic of the Important Index.
Similarly, following the Central Limit Theorem, ZIh also followed the standard normal
distribution, and then the fuzzy test of the Important Index was established using the β′

upper quantile of the standard normal distribution as the critical value. Since the fuzzy test
was relatively complex, this paper received the fuzzy critical value dI0 following the fuzzy
testing rules. Managers only need to compare the values of ZIh and dI0 for each service
item to determine whether the service item should be prioritized for improvement. In fact,
the fuzzy evaluation model proposed in this paper can maintain evaluation accuracy in
cases of small samples by incorporating past accumulated data experience. In addition, the
fuzzy critical value can be derived by the fuzzy testing rules, and the decision-making rules
can be established by the fuzzy critical value, which can facilitate industrial applications.

The fuzzy evaluation model presented in this paper is built on the confidence intervals
of indices. Moreover, its importance lies in its ability to integrate past accumulated data
and experts’ experiences to make the evaluation more authentic in practical settings [18,24].
However, this study has its limitations, including insufficient accumulation of past data
and immature analysis techniques for experts’ experiences. In future research, we can focus
on the management’s need for sophisticated techniques of data analysis as well as develop
analysis and decision-making models based on the accumulated data. Additionally, the
method proposed in this paper must be capable of deriving the two-tailed confidence
interval of the indicator to complete the subsequent fuzzy testing process. If the two-tailed
confidence interval of the indicator cannot be obtained, it may require a larger sample
size and application of the Central Limit Theorem to reduce sampling errors caused by
insufficient sample size. Therefore, future research could also explore the incorporation
of other decision-making methods, such as the Multi-Criteria Decision-Making Fuzzy
Methods proposed by Al-shami and Mhemdi [32].
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Abstract: With the burgeoning growth of the internet, online evaluation systems have become in‑
creasingly pivotal in shaping consumer decision making. In this context, this study introduces an
intuitionistic fuzzy TODIM (an acronym in Portuguese for interactive andmulticriteria decisionmak‑
ing) methodology to rank products based on online reviews. Our approach aims to enhance user
decision making efficiency and address the prevalent issue of information overload. Initially, we de‑
vised a product attribute emotion quantification framework within the confines of the intuitionistic
fuzzy paradigm. This allows for the transformation of online reviews into exact functional outputs
via our advanced intuitionistic fuzzy scoring mechanism and its associated precise function. Fol‑
lowing this, we take into account the inherent correlation among product attributes, leading to the
development of an attribute‑associated intuitionistic fuzzy model. This model further ascertains the
dominance degree of alternative products. Moreover, by integrating the risk aversion factor, we can
derive a hierarchical structure for alternative products, aiding in the prioritization process. Finally,
this paper validates the proposed method using movie sequencing as a case study. The results show
that the proposed method, which takes into account the emotional tendencies of different attributes
in a movie and the different preferences of viewers in the attribute weighting and movie selection
process, is more reasonable than methods proposed in previous studies.

Keywords: online reviews; movie sorting; multi‑attribute decision making; sentiment analysis;
intuitionistic fuzzy sets

MSC: 62C86; 91B06

1. Introduction
The unprecedented growth of the Internet and social media platforms has led to the

emergence of specialized websites, such as those dedicated to books and music, as well as
e‑commerce sites. As a result, user reviews have burgeoned as a primary conduit for infor‑
mation dissemination. A significant portion of the public now gravitates towards online
platforms to voice their opinions, with experiential products like movies particularly ben‑
efiting from this trend [1]. Websites like Douban and Rotten Tomatoes have evolved into
primary sources for audiences formovie details and reviews. Concurrently, there has been
a noticeable uptick in the quality, expertise, and social interactivity of these reviews. The
emotional slant of these reviews wields considerable influence over potential consumers’
decisions [2]. Factors such as online reviews, ratings, and extensive feedback play a pivotal
role in influencing consumer decisions.

However, the deluge of reviews brings its own challenges, notably the phenomenon of
information overload. Current recommendation systems falter in tailoring suggestions to
individual genre preferences, highlighting the pressing need to deftly extract and harness
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the emotional nuances frommultitudes of online reviews [3]. This extraction process aims
to guide consumers towards more informed decisions.

While some review platforms showcase aggregate product ratings to circumvent the
necessity of sifting through individual reviews, the text within reviews remains invalu‑
able for potential consumers [4]. Therefore, efficiently pinpointing crucial information
within these reviews is essential for refining consumer decision making. Notably, given
that movies are experiential products, there is a surprising dearth of research on movie
sorting. This paper seeks to bridge this gap and validate the proposed method by using
movies as an example.

Historically, rankingmethodologies grounded in online reviews have predominantly
zeroed in on positive and negative sentiments, overlooking the nuances of neutral emo‑
tions [5–10]. Such oversights can lead to the omission of crucial information. Recent aca‑
demic endeavors have harnessed multi‑attribute decision making (MADM) methodolo‑
gies for online product categorization. For instance, Fan et al. [11] derived a comparative
superiority degree for various alternatives using the distribution percentages of specific
features across distinct commodities, employing the PROMETHEE II (Preference Ranking
Organization Method for Enrichment of Evaluations) method for comprehensive evalua‑
tion. In another study, Fan et al. [12] leveraged user ratings from online reviews to for‑
mulate two utility functions, with the subsequent application of the TOPSIS (Technique
for Order Preference by Similarity to an Ideal Solution) method for holistic evaluation and
ranking. Other notable works include Lee et al.’s [13] utilization of hierarchical deep neu‑
ral networks (DNNs) for product ranking, and Wang et al.’s [14] user‑centric commodity
recommendation model. As a result of our research, we found that many extant studies
exhibit a propensity to view products monolithically, often sidelining detailed attributes
and features. Some product ranking methods based on online reviews only take into ac‑
count the positive and negative affective tendencies of online reviews, ignoring the fact
that the affective tendencies in the reviews can be neutral, i.e., ambiguous information,
which can lead to a loss of information in the decision making process. Established mod‑
els like TOPSIS and PROMETHEE II, premised on the notion of the decision maker’s abso‑
lute rationality, disregard the psychological intricacies underpinning the decision making
process [11,12]. The TODIM method is appropriate for illustrating the psychological be‑
havior of consumers during the product prioritization process [15,16]. Its central concept
involves determining gain and loss values by comparing the characteristic values of each
alternative product, and then calculating the dominance degree between every pair of al‑
ternatives and the overall prospect value of each product [17,18]. The alternative products
are ranked based on their overall prospect value.

To address these lacunae, this paper embarks on an exploration of product ranking,
leveraging online review data within an intuitionistic fuzzy framework. We introduce an
intuitionistic fuzzy TODIM methodology, predicated on the multifaceted aspects of prod‑
uct reviews, particularly emphasizing the quantification of emotional tendencies across
varying product attributes. This method encompasses the following:
(1) The creation of a quantitative model for product attribute sentiment within an intu‑

itionistic fuzzy paradigm. Recognizing the diverse preferences among consumers,
we harness the Cemotion library, a sentiment analysis tool rooted in Bert, to discern
nuanced emotional cues from reviews. Subsequently, we introduce the emotional in‑
tuition fuzzy value (E‑IFV), which intuitively demonstrates the level of support for
an attribute by integrating multidimensional eigenvalues of a product attribute with
its emotional tendency.

(2) An enhancement of the current intuitionistic fuzzy score function is presented. We
analyze existing research to discern gaps in the current model. An augmented intu‑
itionistic fuzzy score function, coupled with an exact function, is proposed, aiming
to streamline decision making. This enhancement amalgamates concepts from hesi‑
tation allocation and voting models.
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(3) The integration of the TODIM approach to classify alternative products. The correla‑
tion among attributes is acknowledged, with the DEMATEL (Decision Making Trial
and Evaluation Laboratory) method determining attribute weights for distinct prod‑
uct genres. These weights, in tandem with the loss aversion coefficients within the
TODIM model, ascertain the relative prominence of alternative products. The final
result is a personalized ranking, derived from consumer preferences, and a loss aver‑
sion risk factor.
By synthesizing information fromonline comments, likes, and comment volumes into

intuitive fuzzy values, and aligning products with consumer attribute preferences, we aim
to significantly augment the consumers’ decisionmaking efficiency. In essence, our refined
intuitionistic fuzzy TODIM product ranking method, rooted in multidimensional product
review features, integrates diverse data sources, providing consumers with a tailored de‑
cision making guide.

2. Materials and Methods
This article introduces a novel methodology for product ranking by integrating in‑

sights from online reviews with inherent product attributes. In the intuitionistic fuzzy en‑
vironment, the emotional tendency of product attributes is transformed into an emotional
intuitionistic fuzzy value (E‑IFV); in order to effectively compare the magnitude of intu‑
itionistic fuzzy numbers, an intuitionistic fuzzy score function and an intuitionistic fuzzy
exact function are proposed. Finally, a product ranking model based on online reviews is
established by integrating the TODIMmethod. As this paper is based on the study of prod‑
uct ranking in an intuitionistic fuzzy environment, the intuitionistic fuzzy score function
and the exact function are proposed, and the advantages of the intuitionistic fuzzy value
(IFV) and intuitionistic fuzzy set (IFS) in terms of representing the affective tendencies of
product features are considered. This section presents the literature related to intuitionistic
fuzzy sets.

Zadeh [19], in 1965, introduced the fuzzy set (FS) theory. However, as fuzzy multi‑
attribute decision making paradigms evolved, it became evident that fuzzy sets were in‑
sufficient in capturing decision makers’ uncertainty comprehensively [20]. Addressing
this, Atanassov [21] unveiled the intuitionistic fuzzy sets theory. This enhanced approach
emphasized both membership and non‑membership degrees, providing a richer represen‑
tation of a decision maker’s hesitations. Later on, Liu et al. [22,23] built upon this theory
by incorporating sentiment analysis, allowing online product reviews to be represented by
intuitionistic fuzzy numbers. Furthermore, Roszkowska et al. [24–26] introduced a com‑
posite measure. This measure was tailored to the evaluation of complex social phenom‑
ena using questionnaires, refining the fuzzy set based on “objective” data. Specifically,
research [24] advocated for the use of interval intuitionistic fuzzy sets (I‑VIFS) to articulate
the data from questionnaires. They crafted the I‑VIFS composite measure and utilized the
outcomes to stipulate the optimistic coefficients, thereby defining the bounds of the inter‑
val for the I‑VIFS parameters. Meanwhile, other reserach [25] employed the intuitionistic
fuzzy synthesis measure (IFSM) based on pattern object distance. They suggested translat‑
ing ordered data using intuitionistic fuzzy sets and juxtaposed the results with traditional
methods. Çalı and Balaman [27] used IFS to represent online ratings of hotel customers
and used IF‑ELECTRE to rank alternative hotels integrated with VIKOR. In this paper, we
draw inspiration from the literature [24] and aim to augment the precision of product at‑
tributes tied to intuitionistic fuzzy values by formulating multidimensional eigenvalues
for these attributes.

Upon this proposition, our subsequent focus revolved around refining the intuitionis‑
tic fuzzymulti‑attribute decision theory to bolster decisionmaking efficacy. Of paramount
importance here is the intuitionistic fuzzy score function, pivotal for comparing and rank‑
ing intuitionistic fuzzy numbers. Despite significant contributions from scholars like Chen
andHONG [28,29], certain aspects of these functions, such as the hesitancy degree’s impact
on scheme ranking, remain under‑explored.
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While significant strides have been made in areas like text sentiment analysis and
multi‑attribute decision making using online reviews, specific challenges persist:
(1) The existing research often overlooks neutral and ambiguous sentiments in reviews.
(2) Most research presumes attribute independence, neglecting potential inter‑

attribute correlations.
(3) Models like TOPSIS tend to assume complete decision maker rationality, sidelining

psychological influences.
(4) Research surrounding intuitive fuzzy score functions requires bolstering to achieve

improved accuracy in intuitive fuzzy number discrimination.
Addressing these challenges, this paper presents a product‑ranking model anchored

in consumer preferences. By amalgamating sentiment analysis with intuitionistic fuzzy
sets and integrating the TODIM multi‑attribute decision making method, we aim to ele‑
vate decisionmaking efficiency for consumers, as exemplified using data from the Douban
(https://movie.douban.com (accessed on 13 May 2023)) platform.

3. Problem Description
Prior to finalizing a product selection, consumers frequently consult various online

indicators including reviews, ratings, aggregate review counts, and other pertinentmetrics.
A substantial body of research corroborates the utility of these scoring data in facilitating
informed decisions [30–33].

The primary challenge addressed in this study is to formulate a product ranking sys‑
tem that serves as a robust decision making tool for consumers. This ranking integrates
data from online reviews and the associated engagement metrics—such as “likes” and
comment counts—and takes into consideration consumers’ preferences related to specific
product attributes. The overarching goal is to improve the decision making efficiency for
potential consumers. The subsequent sections detail the representations and precise defi‑
nitions of the sets and variables relevant to this problem.

Let A = {A1, A2, · · · , Am } be the set of products that the consumer is interested in
choosing, where Ai denotes the ith product, i = 1, 2, · · · , m.

Let F = { f1, f2, · · · , fn } be the set of n attributes of the alternative product, where f j
denotes the jth attribute, j = 1, 2, · · · , n.

Let w = [w1, w2, · · · , wn] be a vector of product attribute weights, where wj is the

weight corresponding to attribute f j. wj ≥ 0,
n
∑

j=1
wj = 1. The weights represent the differ‑

ences in consumer preferences for product attributes.
Let Q = {q1, q2, · · · , qn } be the number of online reviews for the alternative product,

where qi is the number of online reviews for product Ai, i = 1, 2, · · · , n.
The following collections will be described below:
Suppose zj

p,qi denotes the number of “likes” for the qth comment under the jth attribute

of product Ai. If the sentiment tendency of the qth comment is positive, then zj
p,qi ∈ z

f j
pos,

otherwise zj
p,qi = 0;

Suppose zj
n,qi denotes the number of “likes” for the qth comment under the jth attribute

of product Ai. If the sentiment tendency of the qth comment is negative, then zj
n,qi ∈ z

f j
neg,

otherwise zj
n,qi = 0;

Suppose tj
p,qi denotes the number of words of the qth comment under the jth attribute

of product Ai. If the sentiment tendency of the qth comment is positive, then tj
p,qi ∈ t

f j
pos,

otherwise tj
p,qi = 0;

Suppose tj
n,qi denotes the number of words of the qth comment under the jth attribute

of product Ai. If the sentiment tendency of the qth comment is negative, then tj
n,qi ∈ t

f j
neg,

otherwise tj
n,qi = 0;

79



Axioms 2023, 12, 972

Let z
f j
pos =

{
zj

p,1, zj
p,2, · · · , zj

p,qi

}
be the set consisting of the number of “likes” by con‑

sumers for the comments of product Ai on attribute f j with a positive emotional tendency,
where zj

p,k denotes the data of likes for the kth comment on product Ai on attribute f j,
k = 1, 2, · · · , qi, i = 1, 2, · · · , m.

Let z
f j
neg =

{
zj

n,1, zj
n,2, · · · , zj

n,qi

}
be the set consisting of the number of “likes” by

consumers for the comments of product Ai on attribute f j with a negative emotional ten‑
dency, where zj

n,k denotes the data of likes for the kth comment on product Ai on attribute
f j, k = 1, 2, · · · , qi, i = 1, 2, · · · , m.

Let t
f j
pos =

{
tj

p,1, tj
p,2, · · · , tj

p,qi

}
be the set consisting of the word counts of the con‑

sumer comments on the product Ai on attribute f j with a positive affective tendency, where
tj

p,k denotes the word count of the kth comment on the product Ai on attribute
f j,k = 1, 2, · · · , qi, i = 1, 2, · · · , m.

Let t
f j
neg =

{
tj
n,1, tj

n,2, · · · , tj
n,qi

}
be the set consisting of the word counts of the con‑

sumer’s comments on the product Ai on attribute f j with a negative affective tendency,
where tj

n,k denotes the word count of the kth comment on the product Ai on attribute f j,
k = 1, 2, · · · , qi, i = 1, 2, · · · , m.

The process of problem solving in this research is divided into two primary segments:
• Firstly, this investigation introduces a model tailored to the quantification of emo‑

tions within the realm of intuitionistic fuzzy contexts. The preliminary step involves
the transformation of online product reviews into intuitionistic fuzzy numbers. Sub‑
sequently, using these comments, we propose an improved intuitionistic method for
fuzzy and exact functions. This leads to the derivation of intuitionistic fuzzy exact
functions anchored to specific product attributes.

• Secondly, the ranking of alternative products is executed via the enhanced intuitionis‑
tic fuzzy TODIM methodology, emphasizing attribute associations. Acknowledging
the interdependencies among attributes, the DEMATEL approach is deployed to as‑
certain attribute weights. The dominance hierarchy amongst products is determined
utilizing the intuitionistic fuzzy TODIM methodology. This hierarchy, when inte‑
grated with the risk tolerance parameters of the consumer, culminates in a bespoke
product ranking schema.
The flowchart for solving the problem is shown in Figure 1.
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4. A Quantitative Model of Product Attribute Sentiment in an Intuitively
Ambiguous Environment

In order to solve the above problems, this section proposes a quantitative model of
emotion based on product attributes in an intuitionistic fuzzy environment. The method‑
ology comprises three parts:
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• Identification of emotional tendencies in online product reviews;
• Multidimensional eigenvalue computation based on product attributes;
• Calculation of emotional intuition fuzzy values based on product attributes.

4.1. Identification of Emotional Tendencies in Online Product Reviews
This study uses Cemotion, a Chinese sentiment tendency analysis library based on

Bert, to identify positive, neutral, and negative sentiment tendencies regarding alternative
product attributes in online product reviews. Cemotion’s model is trained by a recurrent
neural network, which returns a confidence level between 0 and 1 for the sentiment ten‑
dency of Chinese text and can accurately identify the sentiment tendency of online product
reviews by linking them to the context of the online reviews.

Using the movie Titanic as an example, Table 1 presents some of the identified movie
review data. In Figure 2, (a) illustrates the distribution of various attribute comments
among online reviews of the movie Titanic, while (b) shows the proportion of the emo‑
tional tendency of the “Frame” attribute in those reviews.

Table 1. Partial movie review data obtained from emotional tendency recognition.

Review Text Emotion Score Analysis Result Number of
Favorable Reviews

The old couple who had no fear of death, the band who
didn’t let the outside world interfere, the man who
pretended to be a father for a living, the woman who
whistled for her lover. All for a kind of
spiritual attachment.

0.9961 positive 15,204

It will always be the film I have seen the most, the most
moving and the best in the cinema 0.9942 positive 12,114

In the film organized by the school, people seemed to
be curious about the love process between rose and
jack. However, the scene that touched me was that the
ship was about to sink, and the gentlemen of the sea
band arranged their bow ties and played the last song
solemnly. At that moment, it seemed to hear a soulless
song ringing.

0.9996 positive 20,726
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4.2. Multidimensional Eigenvalue Computation Based on Product Attributes
Consumers usually refer to existing online reviews, ratings, the number of likes, the

number of comments, and other information to make a comparative choice of products
before making a decision [34,35]. Therefore, in this paper, multidimensional eigenvalues
of products are introduced to improve the reasonableness of the ranking [36,37]. Since
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the credibility of a comment can be determined by the number of likes it receives [31], the
length of the text [36,38,39], and the emotion it conveys, this study used the number of likes
and the number of words in the text as indicators to evaluate the satisfaction of consumers
with the product characteristics. The indicators will be described in more detail in the
following sections.

Suppose there are m alternative products Ai and n decision attributes F = {f 1, f 2, · · · , fn}.

Definition 1. “Positive Likes” is the ratio of the number of likes in the comments with positive
emotional tendencies to the total number of likes in the comments of the corresponding attribute
f j of the alternative product Ai.

• Positive liking rate:

Z
f j
pos =

1
z f j

qi

∑
k=1

zj
p,k, (1)

where Z
f j
pos is the positive liking rate of the corresponding attribute f j of product Ai, and

z f j
is the total number of likes of the alternative product Ai on attribute f j.

Definition 2. “Negative Likes” is the ratio of the number of likes in the comments with negative
emotional tendencies to the total number of likes in the comments of the corresponding attribute
f j of the alternative product Ai.

• Negative liking rate:

Z
f j
neg =

1
z f j

qi

∑
k=1

zj
n,k, (2)

where Z
f j
neg is the negative liking rate of the corresponding attribute f j of product Ai, and

z f j
is the total number of likes of the alternative product Ai on attribute f j.

Definition 3. “The Positive Text Rate” is the ratio of the number of words of text in the comments
with positive emotional tendencies to the total number of words of text in the comments correspond‑
ing to attribute f j of alternative product Ai.

• Positive text rate:

T
f j
pos =

1
t f j

qi

∑
k=1

tj
p,k, (3)

where T
f j
pos is the positive text rate of the corresponding attribute f j of product Ai, and t f j

is the total number of words for the alternative product Ai on attribute f j.

Definition 4. “The Negative Text Rate” is the ratio of the number of words of text in the com‑
ments with negative emotional tendencies to the total number of words of text in the comments
corresponding to attribute f j of alternative product Ai.

• Negative text rate:

T
f j

neg =
1
t f j

qi

∑
k=1

tj
n,k, (4)

where T
f j

neg is the negative text rate of the corresponding attribute f j of product Ai, and t f j

is the total number of words for the alternative product Ai on attribute f j.
From Equations (1)–(4), we can obtain the text rate and like rate of the product Ai cor‑

responding to the attribute f j. The multidimensional eigenvalue for the product attribute
f j is obtained through further calculation:
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Definition 5. “The Positive Multidimensional Eigenvalue” D
f j
pos is the average of “The Pos‑

itive Liking Rate” Z
f j
pos and “The Positive Text Rate” T

f j
pos of the attribute f j corresponding to

product Ai.

• Positive multidimensional eigenvalues:

D
f j
pos =

Z
f j
pos+T

f j
pos

2
, (5)

Definition 6. “The Negative Multidimensional Eigenvalue” D
f j
neg is the average of “The Neg‑

ative Liking Rate” Z
f j
neg and “The Negative Text Rate” T

f j
neg of the attribute f j corresponding to

product Ai.

• Negative multidimensional eigenvalues:

D
f j
neg =

Z
f j
neg+T

f j
neg

2
, (6)

4.3. Calculation of Sentiment Means for Product Attributes
The identification of affective tendencies for the products’ online product reviews

through Section 4.1 yields positive, neutral, and negative affective tendencies regarding
the attributes of the alternative products. The identified affective tendencies are further
explained below.

Let α
j
ik, β

j
ik, and ν

j
ik be the positive, negative, and neutral sentiment strengths of the

kth comment by the consumer on attribute f j of the alternative product Ai, respectively.
Since this study uses Cemotion, a Bert‑based Chinese affective tendency analysis library,
for identification, Cemotion returns an affective tendency confidence level between 0 and
1 for the Chinese text, so α

j
ik, β

j
ik, ν

j
ik ∈ [0, 1], and α

j
ik + β

j
ik + ν

j
ik ∈ [0, 1], k = 1, 2, · · · , qi,

i = 1, 2, · · · , m.
In the following, the mean values of positive, negative, and neutral emotions corre‑

sponding to attribute f j of alternative product Ai will be calculated as follows:

ppos
ij =

1
q f j

qi

∑
k=1

α
j
ik, i = 1, 2, · · · , n, j = 1, 2 · · · , m, (7)

pneg
ij =

1
q f j

qi

∑
k=1

β
j
ik, i = 1, 2, · · · , n, j = 1, 2 · · · , m, (8)

pneu
ij =

1
q f j

qi

∑
k=1

ν
j
ik, i = 1, 2, · · · , n, j = 1, 2 · · · , m. (9)

where q fi
is the total number of comments on attribute f j for alternative product Ai;

ppos
ij is the mean value of positive sentiment about attribute f j for alternative product Ai;

pneg
ij is the mean value of negative sentiment about attribute f j for alternative product Ai;

and pneu
ij is the mean value of neutral sentiment about attribute f j for alternative product Ai.

4.4. Calculation of Intuitional Fuzzy Values
In this section, leveraging the unique characteristics of product reviews and integrat‑

ing the foundational principles of IFV, we propose the emotional intuitionistic fuzzy value
(E‑IFV) model for product attributes. The E‑IFV serves as an intuitive representation of the
emotional tendencies associated with attributes in product reviews.

The concept of the emotional intuitionistic fuzzy value introduced in this paper is
rooted in the theory of intuitionistic fuzzy value, which will be elaborated upon in
subsequent sections.
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Definition 7. Suppose X is an argument. If there are two mappings µA : X → [0, 1] and
νA : X → [0, 1] above X so that

x ∈ X| → µA(x) ∈ [0, 1], (10)

and
x ∈ X| → νA(x) ∈ [0, 1], (11)

simultaneously satisfy condition

0 ≤ µA(x) + νA(x) ≤ 1, (12)

µA and νA are said to determine an intuitionistic fuzzy set on X, which can be denoted as

A = {⟨x, µA(x), νA(x)⟩|x ∈ X }, (13)

where µA(x) and νA(x) are referred to as the degree of affiliation and non‑affiliation of x. The
degree of hesitancy is defined as the following equation:

πA = 1 − µA(x)− νA(x). (14)

For any x ∈ X, there is 0 ≤ πA ≤ 1.

To facilitate the understanding and application of intuitionistic fuzzy sets, Xu [40]
defines α = (µ, ν) as an intuitionistic fuzzy number, where µ ≥ 0, ν ≥ 0, and µ + ν ≤ 1,
and the degree of hesitation of intuitionistic fuzzy number α is πα = 1 − µ − ν.

From the aforementioned definition, it is evident that the intuitionistic fuzzy set (IFS)
can encapsulate affirmative, negative, and hesitant attitudes simultaneously, minimizing
the loss of emotional information. This makes it a robust tool for representing ambigu‑
ous and uncertain data. Given the intricate and subjective nature of emotions in online
product reviews, factors such as online reviews, ratings, and particularly the emotional
sentiments within these reviews, significantly influence consumers’ inclination to select
alternative products. To enhance the applicability of the intuitionistic fuzzy value, this
paper introduces the emotional intuitionistic fuzzy value (E‑IFV). This is achieved by in‑
tegrating the emotional mean with the multidimensional eigenvalue of product attributes,
building upon the foundational intuitionistic fuzzy value. The subsequent sections detail
the calculation methodology for E‑IFV.

µij = pij
pos · Dij

pos, (15)

νij = pij
neg · Dij

neg, (16)

πij = 1 − µij − νij, (17)

xij =
(
µij, νij

)
denotes the E‑IFV of alternative product Ai on the attribute word f j.

Where µij, νij, and πij are the degree of affiliation, non‑affiliation, and hesitation of
the alternative product Ai on attribute word f j, i.e., the consumers’ support, opposition,
and neutrality to attribute f j to alternative product Ai.

5. A Study on the Improved Intuitionistic Fuzzy TODIMModel Based on Attribute
Association for Product Ranking

This paper proposes s an improved intuitionistic fuzzy TODIMmodel for the correla‑
tion of attributes to rank alternative products, taking into account that consumer attributes
vary person‑to‑person and that correlations exist between them. Themodel comprises two
primary segments:
• An improved intuitionistic fuzzy score function is proposed, based on which an exact

function is determined to improve the accuracy of comparing intuitionistic
fuzzy numbers.
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• Since the attributes are correlated, instead of being independent of each other, the
weights for different product types’ attributes are determined using the DEMATEL
method. This study employs the TODIM method to determine the superiority of al‑
ternative products. The loss aversion coefficient θ, which reflects the consumer’s risk
appetite, is combined with the ranking to provide personalized decision making sug‑
gestions for the consumer.

5.1. The Available Intuitionistic Fuzzy Score Function
Establishing relative dominance (superiority and inferiority relationships) between

intuitionistic fuzzy numbers is pivotal to intuitionistic fuzzy multi‑attribute decision mak‑
ing. Existing research offers multiple methodologies for computing the score function of
intuitionistic fuzzy values [17,18,28,29,41–46], such as

S(α) =
µα

2
+

3να

2
− 1, (18)

S1(α) = µα − νa −
1 − µα − νa

2
=

3µα − νa − 1
2

, (19)

S2(α) = µα(1 + πα)− πα
2, (20)

etc, where Equations (18)–(20) belong to the literature [44–46] respectively.
These studies provide new ideas for the improvement of intuitionistic fuzzy functions,

but at the same time, there are shortcomings.

Counterexample 1. Taking Equation (18) [44] as an example, suppose α = (µα, να) is an intu‑
itionistic fuzzy number, then let

S(α) =
µα

2
+

3να

2
− 1, (21)

be the score value of α and S(α) be the score function of α. For any two intuitionistic fuzzy numbers
α1 and α2, there is then
If S(α1) <S(α2), α1 ≺ α2;
If S(α1) >S(α2), α1 ≻ α2;
If S(α1) = S(α2), α1 ∼ α2.

Suppose two intuitionistic fuzzy numbers α1 = (0, 0.2) and α2 = (0, 0.3) exist,
which can be obtained using Equation (18), S(α1) = −0.7, S(α2) = −0.55. Obviously,
S(α1) <S(α2), i.e., α1 ≺ α2. However, in the actual decision making process, people tend to
choose a small degree of opposition to α1. At this time, Equation (18) cannot judge the size
of the two intuitionistic fuzzy numbers. (For a comparison of the arithmetic examples of
different intuitionistic fuzzy score function ranking methods, see Table 2 in Summary 5.2).

From this, it can be found that the existing intuitionistic fuzzy score function has the
following problems:
(1) The same result is obtained when calculating two different intuitionistic fuzzy num‑

bers, and it is impossible to judge the size of two intuitionistic fuzzy numbers.
(2) Owing to the inherent constraints of the score function, the derived results occasion‑

ally contradict real‑world decision making scenarios.
To enhance the comparative efficacy of intuitionistic fuzzy numbers and, in turn, re‑

fine the product ranking model, this study introduces a refined intuitionistic fuzzy score
function and an exact function. Subsequently, we provide proof for the formula of this
newly formulated intuitionistic fuzzy score function.
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Table 2. Comparison of different intuitionistic fuzzy score functions.

Example Sorting Methods Sorting Results

α1 = (0, 0), α2 = (0.5, 0.5)

[29]

α1 ∼ α2[28]

[45]

[44]
α1 ≺ α2

[46]

Methodology of the paper α1 ≺ α2

α3 = (0.5, 0.2), α4 = (0.3, 0)

[28] α3 ∼ α4

[29]

α3 ≻ α4
[45]

[44]

[46]

Methodology of the paper α3 ≺ α4

α5 = (0.9, 0.1), α6 = (0.8, 0)

[28] α5 ∼ α6

[29]

α5 ≻ α6[45]

[44]

[46] α5 ≺ α6

Methodology of the paper α5 ≺ α6

α7 = (0, 0.2), α8 = (0, 0.3)

[29]

α7 ≻ α8[28]

[45]

[44]
α7 ≺ α8

[46]

Methodology of the paper α7 ≻ α8

α9 = (0.5, 0.2), α10 = (0.5, 0.3)

[29]

α9 ≻ α10[28]

[45]

[44] α9 ≺ α10

[46] α9 ∼ α10

Methodology of the paper α9 ≻ α10

5.2. Improved Intuitionistic Fuzzy Score Function
In this paper, we introduce the concept of the improved intuitionistic fuzzy score func‑

tion using a voting model as an illustrative example.
In real life, when faced with indecision, people often choose to wait and see what oth‑

ers do beforemaking afinal decision. Thus, for the intuitionistic fuzzy number α = (µα, να),
suppose that during the first vote, µ represents the proportion of those who voted in favor,
ν represents the proportion of those who voted against, and π represents the proportion of
those who voted neutrally; and during the second vote, since the hesitant part of the first
vote is affected by the first vote, that during the second vote πµ represents the part of the
vote that voted in favor, πν is the part of the vote that voted against, and π2 is the part of
the vote that continued to be neutral. The cycle continues in rounds, calculating the sum of
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the proportional parts in favor. The intuitionistic fuzzy score function considered in this
paper is the sum of the final proportions in favor:

SE = µ + πµ + π2µ + · · ·+ πn−1µ =
µ(1 − πn)

1 − π
=

µ(1 − πn)

µ + ν
, (22)

The following equation is obtained by taking the limit of the formula:

lim
n→∞

SE = lim
n→∞

µ(1 − πn)

µ + ν
=

µ

µ + ν
, (23)

Therefore, this paper proposes an improved intuitionistic fuzzy score function as
shown in the following equation:

Theorem 1. Suppose α = (µα, να) is an intuitionistic fuzzy number, then

SE =
µ

µ + ν
, (24)

is the score function of the intuitionistic fuzzy number α = (µα, να). In particular, when
µ = ν = 0, we define S(α) = 0.

The equation above reveals that the intuitionistic fuzzy score function proposed in
this paper has limitations, since the degree of affiliation of the intuitionistic fuzzy num‑
ber cannot be 0. To address this issue, the paper introduces the intuitionistic fuzzy exact
function. This paper presents a study on intuitionistic fuzzy exact functions as follows: for
an intuitionistic fuzzy number, a larger degree of affiliation is considered better while a
smaller degree of non‑affiliation is preferred. If the hesitation degree is taken into account,
the smaller the hesitation degree, the better. Building on the above concepts, this paper
puts forward the subsequent equation:

hE =
µ − ν

π + 1
+ 1, (25)

where, to avoid the case of π = 0, the denominator of the formula is taken as π + 1.
Further simplifying the formula, the new intuitionistic fuzzy exact function given in

this paper is defined as follows:

Theorem 2. Suppose α = (µ, ν) is an intuitionistic fuzzy number, then

hE =
2 − 2ν

π + 1
, (26)

is said to be an exact function of the intuitionistic fuzzy number α = (µ, ν).

After proposing the intuitionistic fuzzy score function and intuitionistic fuzzy exact
function, this paper proposes the following new ranking method for intuitionistic fuzzy
numbers:

Definition 8. Suppose that for any two intuitionistic fuzzy numbers α1 = (µα1 , να1) and
α2 = (µα2 , να2), SE(α1) and hE(α1) are the values of the score function and the exact function
for α1, and SE(α2) and hE(α2) are the values of the score function and the exact function for
α2. Then
If SE(α1) <SE(α2), then α1 ≺ α2;
If SE(α1) >SE(α2), then α1 ≻ α2;
If SE(α1) = SE(α2), then
when hE(α1) <hE(α2), α1 ≺ α2,
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when hE(α1) >hE(α2), α1 ≻ α2,
when hE(α1) = hE(α2), α1 ∼ α2.

The properties of the intuitionistic fuzzy score function proposed in this paper are
described and formulas are proved in the following:

Property 1. The score function SE(α) of an intuitionistic fuzzy number α = (µ, ν) is monotoni‑
cally increasing with respect to the degree of affiliation µ and monotonically decreasing with respect
to the degree of non‑affiliation ν.

Proof of Property 1. Since
∂SE(µ, ν)

∂µ
=

ν

(µ + ν)2 , (27)

and 0 ≤ µ + ν ≤ 1, so ν

(µ+ν)2 ≥ 0, the score function of the intuitionistic fuzzy number
α = (µ, ν) is monotonically increasing with respect to the degree of affiliation µ;

similarly
∂SE(µ, ν)

∂ν
=

−µ

(µ + ν)2 , (28)

and 0 ≤ µ ≤ 1 and 0 ≤ µ + ν ≤ 1, so that −µ

(µ+ν)2 ≤ 0, so the score function of the
intuitionistic fuzzy number α = (µ, ν) is monotonically decreasing with respect to the
unaffiliated degree ν, which is proved. □

Property 2. Intuitionistic fuzzy score function SE(α) ∈ [0, 1].

Proof of Property 2. Since Formula (24), and 0 ≤ µ ≤ µ + ν ≤ 1, 0 ≤ µ
µ+ν ≤ 1.

In particular,

(1) when µ = 0, then SE(α) = 0;
(2) when ν = 0, then SE(α) = 1;
(3) when µ = ν = 0, then SE(α) = 0.

Proof is completed. □

Property 3. Suppose two intuitionistic fuzzy numbers α1 = (µ1, ν1) and α2 = (µ2, ν2). If µ1 >µ2
and ν1 <ν2, then SE(α1) >SE(α2).

Proof of Property 3. Because

SE(α1)− SE(α2) =
µ1

µ1+ν1
− µ2

µ2+ν2
= µ1(µ2+ν2)−µ2(µ1+ν1)

(µ1+ν1)(µ2+ν2)
= µ1ν2−µ2ν1

(µ1+ν1)(µ2+ν2)

and µ1 >µ2 and ν1 <ν2, then µ1ν2 − µ2ν1 >0, (µ1 + ν1)(µ2 + ν2) >0; then, µ1ν2−µ2ν1
(µ1+ν1)(µ2+ν2)

>0,
i.e., SE(α1)− SE(α2) >0.

It is clear that SE(α1) >SE(α2). Proof is completed. □

The proposed intuitionistic fuzzy function and intuitionistic fuzzy exact function are
compared and analyzed with the existing methods in the following, and the results of the
comparative analysis are shown in Table 2.

5.3. DEMATEL Determines Attribute Weights
In problems involving multi‑attribute decision making, calculating indicator weights

through traditionalmethods is often based on subjective or objective criteria to reflect the at‑
tributes’ characteristics, but this ignores the correlation between them. This paper utilizes
the DEMATEL method to analyze the mutual influence relationship between attributes
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and determine their respective weights. The traditional multi‑attribute decision making
approach, which does not consider attribute weights in relation to each other, is addressed.
Because attribute weights vary between different types of products, experts are invited to
score the attributes of each product type. The average of these scores is then calculated to
obtain the relative weights of the attributes for each particular product type.

Assuming that the alternative product to be evaluated Ai(i = 1, 2, · · · , m) belongs to
a certain category of products, the evaluation of the product attribute is f j(j = 1, 2, · · · , n)
and that the category of the product is t, and r experts are invited to use the linguistic scale
evaluation for evaluation and scoring on a five‑level scale, then, the DEMATEL method is
used to calculate the attribute weight matrix Wr

t,n given by the r experts under the different
categories of the product, and the specific representation is as follows:

Wr
t,n =

∣∣∣∣∣∣∣∣

w11,r w12,r · · · w1n,r
w21,r · · · · · · w2n,r
· · · · · · · · · · · ·

wt1,r · · · · · · wtn,r

∣∣∣∣∣∣∣∣
, (29)

where t denotes the number of product types, n is the number of attributes of the product,
and r is the number of experts.

Finally, the weights obtained by r experts are averaged to obtain the attribute weight
matrix for different types of products:

Wt,n =
1
r

r

∑
s=1

Ws
t,n , (30)

where r denotes the number of experts.
The alternative product average weight vector is calculated as follows:

W =
1
t

t

∑
z=1

Wz,n, (31)

where W denotes the vector of average weights of alternative products and t is the number
of categories of products.

5.4. A Product Ranking Method Based on the Intuitionistic Fuzzy TODIMModel
Multi‑attribute decision making refers to a process where a decision maker identi‑

fies the best solution among various alternatives based on selected attributes; the method
ranks and selects solutions by calculating their perceived superiority relative to each other.
When selecting a product, consumers often consider various attributes to make alterna‑
tive choices. This paper presents an emotion quantification model for online reviews of
products, constructed in an intuitionistic fuzzy environment. Product attributes are trans‑
formed into intuitionistic fuzzy values. The differences between attributes of different
types of products and the correlation relationship between them are considered. The DE‑
MATEL method is used to obtain the attribute weights of the correlations. Finally, identi‑
fying the degree of superiority of alternative products based on consumer preferences is
achieved using the intuitionistic fuzzy TODIM model. A detailed description of the deci‑
sion making steps is provided below.
• Decision step:

Assume that A = {Ai|i ∈ M } is a limited number of alternative product scenarios
and that f =

{
f j|j ∈ N

}
is a finite set of attributes, where N = {1, 2, 3, · · · , n} and the

weight of each attribute is w = (w1, w2, · · · , wn)
T , where

n
∑

i=1
wi = 1. The alternative prod‑

uct Ai has an evaluation value of Iij under the product attribute f j, where Iij expresses the
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intuitionistic fuzzy set. This results in a decision matrix of m decision scenarios under n
decision attributes.

D =




I11 I12 · · · I1n
I21 I22 · · · I2n
...

...
...

...
Im1 Im2 · · · Imn


, (32)

the specific decision making steps are as follows:
normalize the original decision matrix D =

[
Iij
]

m×n to obtain X =
[
xij
]

n×n, where
M = {1, 2, 3, · · · , m}, N = {1, 2, 3, · · · , n}, and i ∈ M, j ∈ N.

Determine the attributewith the largest value as the reference attribute f j and calculate
the ratio of each attribute relative to the reference attribute wjr. The formula is

wjr =
f j

fr
, (33)

where wjr = max
{

wj|j ∈ N
}
.

The degree of dominance of Scenario Ai over Scenario Ak when the attribute is f j is
calculated. The formula is

Φj(Ai, Ak) =





√√√√ (xij−xkj)wjr
n
∑

j=1
wjr

0

− 1
θ

√√√√ (xkj−xij)

(
n
∑

j=1
wjr

)

wjr

xij − xkj > 0

xij − xkj = 0

xij − xkj < 0

. (34)

Loss aversion coefficient θ can reflect the psychological behavior of decision makers;
the smaller the value of θ, the higher the risk tolerance of decisionmakers, and the larger the
value of θ, the lower the risk tolerance of decision makers. In the subsequent experiments,
this paper will analyze the value of θ to confirm whether the size of θ will have an impact
on the final ranking results.

Calculate the degree of dominance of Scenario Ai over Scenario Ak for all attributes;
the formula is

δ(Ai, Ak) =
n

∑
j=1

Φ(A1, Ak) i, k ∈ M, (35)

Calculate the combined degree of dominance of all alternatives Ai over the other al‑
ternatives. The formula is

ξ(Ai) =

m
∑

k=1
δ(Ai, Ak)−min

{
m
∑

k=1
δ(Ai, Ak)

}

max
i∈M

{
m
∑

k=1
δ(Ai, Ak)

}
−min

i∈M

{
m
∑

k=1
δ(Ai, Ak)

} , i ∈ M. (36)

According to the above equation, the ξ(Ai) of each scenario can be obtained, and the
scenarios are ranked according to the size relationship of the ξ(Ai). A larger value of ξ(Ai)
indicates a better scenario Ai.

6. Tests and Results
This section demonstrates the application of the proposed method through a case

study where movies are ranked based on online reviews.

6.1. Problem Description and Data Source
With the development of the Internet, more and more viewers regularly use online

reviews on relevant platforms as a decision making reference before making decisions.
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A viewer chooses (A1, A2, A3, A4, A5, A6) as an alternative movie by referring to online
reviews. The software used to process the data in this paper and the dates on which the
data were analyzed are shown below in Table 3.

Table 3. Software for processing data and date of analysis.

Steps Software Date of Data Analysis

Crawling Movie Online Reviews Python 3.9 5.13–5.15

Sentiment Analysis of Online Reviews Python 3.9; The Bert‑model‑based Cemotion library 6.10–6.14

Calculation of the Degree of Dominance Matlab R2022a 6.20–6.25

The movies selected are Titanic (A1), Farewell My Concubine (A2), The Shawshank Re‑
demption (A3), This Killer Is Not Too Cold (A4),Green Book (A5), and Le fabuleux destin d’Amélie
Poulain (A6). The classification of the movies reveals that the six selected films belong to
three different genres, namely, romance, drama, and comedy. The evaluation panel, com‑
prising five members, selected five attributes to assess the alternative movies by: these at‑
tributes are “Frame” ( f1), “Character” ( f2), “Plot” ( f3), “Soundtrack” ( f4), and “Acting” ( f5).
Next, the proposed method is used in this study to rank the six movies
mentioned above.

Step 1. We performed sentiment analysis on reviews of alternative movies to deter‑
mine their tendencies of sentiments towards movie attributes. The affective tendencies of
some of the movie attributes are shown in Table 1.

Step 2. The sentiment orientation of the reviews is acquired in Step 1, and the aver‑
age sentiment value and multidimensional feature values of the movie attributes are cal‑
culated according to the content in Section 4.2. The results of the calculations are shown
in Tables 4 and 5.

Table 4. Mean values of sentiment corresponding to each attribute of the alternative movie.

Alternative Movie Attribute Frame Character Plot Soundtrack Acting

Titanic
Mean positive affect 0.8934 0.8814 0.8751 0.8975 0.8551

Mean negative affect 0.4467 0.4331 0.4261 0.4131 0.4313

Farewell my concubine
Mean positive affect 0.8813 0.8931 0.8852 0.8834 0.8821

Mean negative affect 0.4237 0.4424 0.4324 0.4541 0.4426

The Shawshank
Redemption

Mean positive affect 0.8701 0.8835 0.8857 0.8921 0.8936

Mean negative affect 0.4351 0.4234 0.4327 0.4353 0.4313

This killer’s not too cold
Mean positive affect 0.8831 0.8953 0.8924 0.8813 0.8854

Mean negative affect 0.4353 0.4424 0.4345 0.4334 0.4313

Green book
Mean positive affect 0.8834 0.8924 0.8835 0.8834 0.8954

Mean negative affect 0.4335 0.4324 0.4352 0.4315 0.4314

Le fabuleux destin
d’Amélie Poulain

Mean positive affect 0.8741 0.8831 0.8937 0.8814 0.8764

Mean negative affect 0.4324 0.4354 0.4334 0.4353 0.4375
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Table 5. Multidimensional feature values corresponding to each attribute of the alternative movie.

Alternative Movie Attribute Frame Character Plot Soundtrack Acting

Titanic
Positive multidimensional eigenvalues 0.8272 0.8317 0.8264 0.8152 0.8366

Negative multidimensional eigenvalues 0.1721 0.1673 0.1736 0.1843 0.1638

Farewell my concubine
Positive multidimensional eigenvalues 0.8253 0.8214 0.8124 0.8319 0.8132

Negative multidimensional eigenvalues 0.1704 0.1786 0.1878 0.1631 0.1868

The Shawshank
Redemption

Positive multidimensional eigenvalues 0.8232 0.8174 0.8236 0.8281 0.8233

Negative multidimensional eigenvalues 0.1768 0.1821 0.1762 0.1718 0.1767

This killer’s not too cold
Positive multidimensional eigenvalues 0.8176 0.8231 0.8289 0.8219 0.8224

Negative multidimensional eigenvalues 0.1804 0.1763 0.1711 0.1781 0.1776

Green book
Positive multidimensional eigenvalues 0.8193 0.8165 0.8151 0.8169 0.8319

Negative multidimensional eigenvalues 0.1803 0.1835 0.1848 0.1836 0.1681

Le fabuleux destin
d’Amélie Poulain

Positive multidimensional eigenvalues 0.8185 0.8187 0.8293 0.8109 0.8303

Negative multidimensional eigenvalues 0.1814 0.1818 0.1706 0.1899 0.1697

Step 3. The intuitionistic fuzzy values for the movie attributes are calculated using
Equations (15) and (16), and are shown in Table 6.

Table 6. Intuitive fuzzy values for movie attributes.

Alternative Movie Intuitive Fuzzy Value Frame Character Plot Soundtrack Acting

Titanic
Membership degree u 0.7367 0.7315 0.7189 0.7259 0.7113

Degree of non‑membership v 0.0774 0.0725 0.0729 0.0756 0.0702

Farewell my concubine
Membership degree u 0.7299 0.7314 0.7146 0.7358 0.7139

Degree of non‑membership v 0.0716 0.0785 0.0807 0.0737 0.0832

The Shawshank
Redemption

Membership degree u 0.7244 0.7197 0.7249 0.7373 0.7327

Degree of non‑membership v 0.0762 0.0765 0.0757 0.0739 0.0759

This killer’s not
too cold

Membership degree u 0.7198 0.7331 0.7377 0.7232 0.7241

Degree of non‑membership v 0.0782 0.0776 0.0735 0.0765 0.0761

Green book
Membership degree u 0.7212 0.7269 0.7173 0.7189 0.7402

Degree of non‑membership v 0.0775 0.0788 0.0794 0.0787 0.0723

Le fabuleux destin
d’Amélie Poulain

Membership degree u 0.7203 0.7199 0.7381 0.7136 0.7306

Degree of non‑membership v 0.0781 0.0781 0.0733 0.0813 0.0729

Step 4. The improved intuitionistic fuzzy exact function Formula (26) is used to obtain
the exact function values for each attribute of the movie, as shown in Table 7.

Table 7. Exact function values for movie attributes.

Movie
Attribute

Frame Character Plot Soundtrack Acting

Titanic 1.5561 1.5511 1.5346 1.5426 1.5259

Farewell my concubine 1.5493 1.5481 1.5262 1.5562 1.5244

The Shawshank Redemption 1.5405 1.5343 1.5412 1.5576 1.5513

This killer’s not too cold 1.5337 1.5514 1.5587 1.5388 1.5401

Green book 1.5359 1.5427 1.5301 1.5324 1.5624

Le fabuleux destin d’Amélie Poulain 1.5346 1.5341 1.5593 1.5247 1.5497
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Step 5. Five experts were invited to assess various types of movies based on the
methodology used to establish attributeweights in Section 5.3. Expert 1 rated the attributes
in the romance movie category, as illustrated in Table 8.

Table 8. Results of expert scoring of romance movies.

Acting Character Plot Soundtrack Frame

Expert 1 f1 f2 f3 f4 f5

C1 0 4 3 0 3

C2 4 0 3 2 2

C3 2 2 0 2 2

C4 2 0 3 0 2

C5 1 2 3 0 0

The weights ω of the attributes of the movies in the romance category evaluated by
Expert 1 were obtained using the DEMATEL method, as shown in Table 9.

Table 9. Weights of attributes scored by Expert 1 for romance movies.

f1 f2 f3 f4 f5
ωj 7.6197 7.8342 7.7847 4.6162 6.2126

ω j 0.2237 0.2299 0.2285 0.1355 0.1824

Here, ωj is the weight of each attribute obtained via DEMATEL after Expert 1 scored
the movies in the romance category, and ω j is the weight of each attribute of the movies in
the romance category after normalization.

Since the genres of the alternative films are romance, drama, and comedy, the attribute
weights of the different genres of films obtained from the scoring of the three genres by the
five experts according to Equation (30) are shown in Table 10.

Table 10. Attribute weights for different types of movies in the romance, drama, and comedy genres.

Movie Genre
Attribute

Frame Character Plot Soundtrack Acting

Romance Movie 0.2026 0.2291 0.1932 0.2136 0.1615

Drama Movie 0.1956 0.2211 0.2134 0.1708 0.1991

Comedy Movie 0.2017 0.1934 0.2004 0.1936 0.2109

Step 6. Table 11 presents the average attribute weights for the three alternative movie
types, as obtained using Equation (31).

Table 11. Average attribute weights for alternative movies.

Weight
Attribute

Frame Character Plot Soundtrack Acting

Average weight of alternative movies 0.2053 0.2397 0.2159 0.1506 0.1885

Step 7. Construct the decision matrix for Scheme Ai under attribute f j based on the
exact function values in Table 7, as shown in Table 12.
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Table 12. Judgment matrix of Scheme Ai under attribute fj.

f 1 f 2 f 3 f 4 f 5
A1 1.5562 1.5511 1.5347 1.5426 1.5259

A2 1.5494 1.5481 1.5263 1.5562 1.5245

A3 1.5405 1.5343 1.5412 1.5577 1.5513

A4 1.5337 1.5511 1.5587 1.5388 1.5405

A5 1.5359 1.5427 1.5301 1.5324 1.5624

Step 8. The total degree of dominance of scenario Ai over scenario AI under all at‑
tributes is calculated using Equations (34) and (35). In this step, it is assumed that the loss
recession factor θ = 1. Finally, based on Equation (36), we get the total dominance degree
of scheme Ai over scheme AI under all attributes Φ(Ai, AI). The results are as follows:

Φ̃(Ai, AI) =




0 −0.8868 −3.7232 −2.7445 −1.0983 −2.4641
−3.3320 0 −3.2042 −3.7951 −2.0809 −2.8380
−3.0381 −2.4698 0 −2.8097 −1.8626 −0.8174
−2.3941 −2.7771 −3.5970 0 −1.5087 −1.1336
−5.3305 −4.4661 −3.9319 −4.0953 0 −1.1236
−5.3599 −5.3583 −4.1064 −3.3616 −4.1401 0




. (37)

Step 9. Normalize the total dominance degree of Scenario A:
ξ̃(A1) = 1, ξ̃(A2) = 0.62, ξ̃(A3) = 0.99, ξ̃(A4) = 0.95, ξ̃(A5) = 0.29, ξ̃(A6) = 0.
Based on the above results, the six alternative movies can be ranked in order:

A6 ≺ A5 ≺ A2 ≺ A4 ≺ A3 ≺ A1.
From the above results, it is clear that movie Ai has the largest ξ̃(A1) and is the best

alternative movie for the audience.

6.2. Impact Analysis of Different Weights
To confirm the feasibility of the proposed method, we introduce identical attribute

weights and objective weights to rank six alternative movies using the method described
in this paper. We then compare these results with the rankings obtained from the paper.
Equivalent attribute weights can be seen as disregarding certain movie attributes in online
movie reviews, while objective weights exclude the influence of movie genres and viewer
personality preferences. The ranking results are shown in Table 13.

Table 13. Alternative movie ranking results with different attribute weights.

Alternate Movie Sorting Results
Attribute Weight

w1 w2 w3 w4 w5

A1 ≻ A3 ≻ A4 ≻ A2 ≻ A5 ≻ A6 0.2053 0.2397 0.2159 0.1506 0.1885

A1 ≻ A4 ≻ A3 ≻ A2 ≻ A5 ≻ A6 0.1393 0.1173 0.2557 0.1936 0.2941

A1 ≻ A4 ≻ A3 ≻ A2 ≻ A5 ≻ A6 0.2000 0.2000 0.2000 0.2000 0.2000

The rankings resulting from the weightings proposed in this paper produce differ‑
ences compared with the other two weightings. The results achieved through ranking by
the equal and objective weights are identical. However, the ranking based on the weights
proposed in this paper, which consider movie genres and attributes, produce similar but
distinct ranking outcomes when compared with the other two weights. A comparison of
the ranking results under different weights reveals the presence of personalized attribute
preferences. The final ranking results of the scheme are subject to variation, based on the
preferred attributes.
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6.3. Impact Analysis of Different Parameters
The loss aversion parameter θ in the intuitionistic fuzzy TODIMmethod can reflect the

decision maker’s psychological behavior. To examine whether the magnitude of θ affects
the final ranking results, this section presents a sensitivity analysis of the θ parameter under
the intuitionistic fuzzy TODIMmethod. The sensitivity analysis mainly involves selecting
various values of θ, calculating whether the final program rankings are consistent under
these values, and analyzing the impact of θ on the rankings. Table 14 displays the results
of ranking the schemes based on different parameters θ.

Table 14. Alternative movie ranking results with different parameters θ.

Specifies the Value of Parameter θ Scheme Sorting Result

θ = 0.2 A3 ≻ A1 ≻ A4 ≻ A2 ≻ A5 ≻ A6

θ = 0.6 A3 ≻ A1 ≻ A4 ≻ A2 ≻ A5 ≻ A6

θ = 1 A1 ≻ A3 ≻ A4 ≻ A2 ≻ A5 ≻ A6

θ = 1.5 A1 ≻ A3 ≻ A4 ≻ A2 ≻ A5 ≻ A6

θ = 2 A1 ≻ A3 ≻ A4 ≻ A2 ≻ A5 ≻ A6

θ = 2.5 A1 ≻ A3 ≻ A4 ≻ A2 ≻ A5 ≻ A6

θ = 3 A1 ≻ A3 ≻ A4 ≻ A2 ≻ A5 ≻ A6

The sensitivity analysis results in Table 12 indicate a difference in the final ranking
of scenarios when the parameter θ value is changed from 0.2 to 3. As θ increases, the
scheme is ranked A3 ≻ A1 ≻ A4 ≻ A2 ≻ A5 ≻ A6 when θ is between 0.2 and 0.6 and
A1 ≻ A3 ≻ A4 ≻ A2 ≻ A5 ≻ A6 when θ is between 1 and 3. It can be shown that the final
ranking result of the scheme is sensitive to the values of the parameters.

7. Discussion
In this study, movies are systematically ranked while considering diverse weightage

criteria, which is followed by a comparative analysis of the experimental outcomes. No‑
tably, when movies are ranked using uniform and objective weights, the results display
consistency. However, alterations in movie attribute weights ω lead to discernible varia‑
tions in rankings. This accentuates the pivotal role that attribute weight preferences play
in influencing ranking outcomes.

Our experimental framework provides a salientmethodology that empowers viewers
to obtain recommendations that are meticulously tailored to their individualistic prefer‑
ences concerning diverse movie attributes. Through parameter sensitivity analysis, it has
been discerned that the parameter value θ oscillates between 0.2 and 3. The chosen param‑
eter value θ plays a pivotal role, inducing specific shifts in the final ranking algorithm.

The efficacy of the decision making approach developed in this paper is not merely
theoretical; it finds practical resonance in real‑world decision making paradigms. The un‑
derpinning rationale is that the parameter θ encapsulates the spectrum of risk preferences
among decisionmakers, and such heterogeneity directly modulates the final ranking. This
paradigm can be analogously understood in the context of audience movie preferences:
those with a more eclectic taste, displaying an openness to diverse movie genres and at‑
tributes, exhibit higher risk tolerance. They are, in essence, more resilient to potential mis‑
alignments betweenmovie preferences and actual viewings. Consequently, for such an au‑
dience demographic, a lower parameter value θ is apt, as it resonates with their higher risk
tolerance threshold, suggesting they are more amenable to movie selections that might not
align perfectly with their expectations. Conversely, an audience cohort with a pronounced
predilection formovie personalization demonstrates reduced resilience to discrepancies in
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attribute preferences. Their diminished risk tolerance suggests the advisability of a higher
parameter value θ when leveraging the model proposed for movie selections.

Furthermore, our empirical observations emphasize the inherent sensitivity of the
rankingmodel to the parameter value. Variability in parameter preferences andweightage
criteria culminates in diverse ranking outcomes. This underscores the burgeoning demand
for bespoke movie recommendations, aligning seamlessly with nuanced
viewer predilections.

8. Conclusions
This study presents a structured approach to extracting and processing product at‑

tribute reviews from digital platforms and subsequently converting them into evaluative
metrics via intuitionistic fuzzy set principles. In this context, we established a quantitative
model that adeptly encapsulates the emotional nuances of product attributes. Moreover,
we have worked towards refining the prevalent scoring function for intuitionistic fuzzy
numbers, enhancing the model’s accuracy and efficacy in decision making.

Our study further explores the relationship dynamics between product attributes,
harnessing the DEMATEL methodology. This technique assists in determining attribute
weights specific to individual product genres. Employing themulti‑attribute decisionmak‑
ing paradigm, based on TODIM, provides a sophisticated solution to modern product
sequencing challenges and expands the use cases of the TODIM decision making model
within an intuitionistic fuzzy framework. This study’s innovations can be articulated
through three primary conclusions:
(1) The introduction of a comprehensive product ranking methodology, attuned to the

consumer’s genre and attribute preferences. The resulting rankings, molded by these
unique inclinations, provide consumers with a more tailored decision making tool
for product selection.

(2) The systematic quantification of emotional weightage associated with product at‑
tributes in online dialogues using intuitionistic fuzzy techniques. We propose a re‑
fined quantitative model to decipher emotional tones within a fuzzy setting. The
improved intuitionistic fuzzy scoring algorithm captures consumers’ emotional eval‑
uations effectively. By leveraging multidimensional eigenvalues, the ranking’s foun‑
dation is further solidified. Our methodology, which prioritizes consumer feedback
over traditional expert opinions, offers a more authentic and objective assessment. It
presents a robust foundation for the product ranking algorithm, effectively handling
vast online reviews and countering information overload.

(3) A pioneering product ranking algorithm designed for recommendation systems. Al‑
though many existing recommendation systems offer basic sorting options, they of‑
ten lack depth and refinement. Our approach, recognizing themultitude of attributes
that consumers consider, can be smoothly integrated into digital platforms,
providing users with a nuanced multi‑attribute ranking tool, thereby enriching their
browsing experience.
While this research heralds a notable advancement in product rankings based on dig‑

ital reviews, some aspects could benefit from further development:
(1) Scope of platforms: Although our methodology is tested on the Chinese platform

Douban, there is a need to expand its applicability to global platforms like Rotten
Tomatoes and IMDb, requiring adaptation to diverse linguistic contexts.

(2) Decision maker’s risk aversion: Our framework incorporates a parameter reflecting
the decision maker’s risk aversion. Determining its optimal value is crucial for accu‑
rate ranking and clear decision making guidance.

(3) Focus on product attributes: While our method provides a comprehensive ranking
based on product attributes, it may overlook potential correlations with other
product features.
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Building on the above, our proposed “Emotionally Intuitive Fuzzy TODIM Method‑
ology for Decision‑Making Based on Online Reviews” has distinct potential. However, its
current testing is limited to movie rankings. A transition to other product arenas may ne‑
cessitate deeper dives into consumer focus areas and nuanced object classifications. Future
endeavorswill delve into these areas, ensuring a broader applicability of ourmethodology.
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Abstract: Rough Set (RS) theory is used for data analysis and decision making where decision-making
rules can be derived through attribute reduction and feature selection. Energy shortage is an issue
for governments, and solar energy systems have become an important source of renewable energy.
Rough sets may be used to summarize and compare rule sets for different periods. In this study, the
analysis of rules is an element of decision support that allows organizations to make better informed
decisions. However, changes to decision rules require adjustment and analysis, and analysis is
inhibited by changes in rules. With this consideration, a solution approach is proposed. The results
show that not only can decision costs be reduced, but policymakers can also make it easier for the
public to understand the incentives of green energy programs and the use of solar panels. The
application process is simplified for the implementation of sustainable energy policies.

Keywords: Rough Set Theory; decision making; atribute reduction; decision support; sustainable;
feature selection

1. Introduction

Energy shortages are an urgent issue for governments worldwide, and sustainable
development is a common global goal. Governments attach great importance to the devel-
opment of renewable energy to create better global energy policies. Energy conservation
and carbon reduction are also indispensable elements of energy policies, so the Green
Energy Roofs Project encourages households to install solar panels and actively participate
in the sustainable development of renewable energy by promoting energy conservation
and carbon reduction. Roof solar systems are a pollution-free and renewable energy source
and represent a sustainable and green source of energy.

Climate change has exacerbated energy shortages since environmental sustainability
has become more difficult due to economic and social development. In recent years, the
Russian–Ukrainian war, the COVID-19 pandemic and extreme droughts in the Northern
Hemisphere have been the principal climate change factors and have created a reduction
in global economic growth. Governments use subsidies to address this problem, but their
effectiveness is often limited, and the expected results are often not achieved [1]. Decision
support systems must be used to assist decision makers in designing measures more quickly
and accurately.

Rapid developments in information technology have allowed companies and govern-
ment agencies to collect vast amounts of data, but these data must be extracted, processed
and organized to be transformed into useful information that supports decision making.
This transformation involves formulation, analysis, improvement and prediction.
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Rough set knowledge is the most important pertinent element of decision making [2].
Rough set technology is used for complex decision-making problems that feature uncer-
tainty to induce decision rules and to support decision-making formulation. Therefore,
decision support systems must transform data into knowledge to increase the efficiency
and accuracy of decision making.

The motivation of this study is as follows: decision rule sets may require adjustment
over time and the relationship between rule sets can change, so analysis is difficult. Differ-
ences between rule sets may require flexible strategic modifications in response to business
trends. Previous studies quickly established applicable algorithms and verified those mod-
els to create disposable solutions, but this process did not involve a comprehensive analysis
of rules. Yen, Huang, Wen and Wang [3] showed that advanced rule sets are not accurately
or thoroughly analyzed, although rule analysis is an indispensable element of decision
support that responds to the challenges of changes in rule sets to allow institutions to make
better-informed decisions.

Previous studies have determined methods to generate rule sets [4–6], but these
studies do not pertain to correlation-based rule evolution and renewable energy exploration.
Previous studies also did not induce decision rules or consider changes in energy usage
for different time periods or the effect of environmental factors on energy use. This study
compares rule sets to provide more relevant information and to support decision making
in terms of sustainable energy. The results of this study are more useful than those for
simple data analysis and address the need for rapid decision making with regard to
sustainable energy.

Due to the shortage of energy resources, renewable energy has become a development
trend in the future, and solar panels are one of the renewable energy sources that has
attracted people’s attention. This study uses the “Green Energy Roofs Project” that was
proposed by the Taiwanese government as a case study of a nationwide participation policy.
It monitors the encouragement of public participation and the sharing of benefits from the
project to provide more useful information for decision making with regard to sustainable
energy. This study compares rule sets for different periods for case studies and for empirical
research. Rough sets are used to induce rule sets and to determine the differences and
changes in the public’s willingness to participate in energy incentives, with respect to rule
evolution and feed-in tariffs.

This study is an in-depth case study of the analysis of participation in renewable
energy programs before and after the COVID-19 pandemic. It provides specific policy
recommendations for decision makers that allow governments to develop more effective
sustainable energy policies. The contribution of this study is that not only will this study
reduce the cost of decision-making, but policymakers can also make it easier for the public
to understand green energy programs and incentives for solar panel use.

This study determines the evolution and application of decision-making rules for
sustainable renewable energy in order to provide decision makers with relevant information
to formulate more effective policy strategies. This study features five sections. Section 1
details the collection of information that is related to decision making and sustainable
renewable energy. A literature review that shows the evolution and application of decision
rules is presented in Section 2. Nine types of decision rules are compared in Section 3.
The condition attributes and the results for the nine types of decision-making rules are
summarized in Section 4. Section 5 draws conclusions and presents recommendations for
attribute weight measurement and with regard to the evaluation criteria that are required
to allow decision makers to make wiser decisions.

2. Literature Review
2.1. Rough Sets

Rough Set (RS) theory is a mathematical method and decision classification rule
theory that was proposed by Pawlak in 1982. It is used for data that feature uncertainty,
incompleteness, and fuzziness. Decision rules are presented in IF-THEN form to represent
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knowledge that is used for reasoning and classification. Rough sets are combined with
decision rules to solve decision problems that involve uncertainty.

This theory divides a database into condition attributes and decision attributes. The
information about objects is allocated to subsets based on its attributes. The approximate
relationship between subsets of condition attributes and decision attributes is then deter-
mined, in order to generate decision rules. These decision rules provide the most direct
result and are used to mine contextual rules in the database. These scenarios are used
to demonstrate the effect of changes in conditional patterns and outcome attributes on
decision rules to better understand the relationships between rule sets.

The results of this study show that rough set theory can be used to mine contextual
rules in a database to better predict various phenomena and behaviors. The following
details some basic concepts of rough set theory.

Rough set theory is a method of classifying knowledge that is used for decision making
by determining the effect of changes in the condition type and the outcome attributes on
decision rules. A finite set of objects that is described by a finite set of attributes is used
to mine knowledge rules in the database, in order to categorize the information system
to allow decision making using all available information about the set of objects in the
information table [7]. An information system S is defined as

S = (U, A, V, p), A = C ∪ D, (1)

where

U: the set of objects
A: the set of attributes,
V = ∪Va, Va, the set of values of attributes a ∈ A,
p: U × A −→ V, an information function, px : A→ V ,
x ∈ U the information about x in S,

where
px(a) = p(x, a),

for every x ∈ U and a ∈ A.
It is assumed that the empty set is fundamental in every S. The pair S = (U, A) is

called an approximation space. If U is the set U = {x1, x2, · · · , xn}, which is called the full
domain, and attribute set A is an equivalence relation on U, then C is the condition attribute
subset and D is the decision attribute subset.

An equivalence relationship features indiscernibility. If the set of attributes B ⊆ A is a
subset of the indiscernible relationship ind(B) on the universe U, which is expressed as

ind(B) = (x, y)
∣∣∣(x, y) ∈ U2, ∀b∈B(b(x) = b(y)), (2)

where x objects are defined by the equivalence class [x]ind(B), [x]B or [x], then (U, [x]ind(B))
is called the approximation space.

For an information system S = (U, A, V, p), for a subset X ⊆ U. The upper and lower
approximation sets are defined as

apr(X) = x ∈ U|[x] ∩ X 6= ∅,
apr(X) = {x ∈ U|[x] ⊆ X} (3)

where [x] is the equivalence class for x.
Therefore, (U, X) forms an approximation space. The universe is divided into three

disjointed regions, as shown in Figure 1, which shows the upper and lower approximation
sets i.e., the positive, boundary and negative regions. X is bounded by the red circle
line. The boundary region is defined as the difference between the upper and lower
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approximation sets [8]. As the area of the boundary increases, the degree of uncertainty
increases. The approximate values and the three regions are expressed as,

POS(X) = apr(X),
BND(X) = apr(X)− apr(X),

NEG(X) = U − apr(X),

and
apr(X) = POS(X) ∪ BND(X),

apr(X) = POS(X). (4)
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If object x ∈ POS (X), then it must belong to the target set X;
If object x ∈ BND (X), then x definitely does not belong to the target set X;
If object x ∈ NEG (X), it may or may not belong to the target set X, and therefore it is

not possible to determine whether object x belongs to the target set X.
For any target subset X ⊆ U and attribute subset B ⊆ A, X is called a rough set with

respect to B if and only if apr(X) 6= apr(X). The roughness of set X with respect to B is
defined as

PB(X) = 1−

∣∣∣apr(X)
∣∣∣

|apr(X)| (5)

where X 6= ∅(IF X = ∅ , then PB(X) = 0), and |·| denotes the base of a finite set.
If there is a large amount of information and many uncertainties, it is very difficult to

make scientific and rational decisions. The condition attribute and the decision attribute in
rough set theory are used to determine the similarities and differences in the approximation
space, in order to classify the data messages into different equivalence categories and
conduct a meaningful structural analysis. Decision support systems allow decision making
using IF THEN rules. Decision support systems that use rough sets allow better decisions
than common decision-making methods. Rough set theory determines these rules by
analyzing a large amount of historical empirical data. Oblique and less complete attribute
factors in the decision object are used to achieve essentially positive conclusions.
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Pawlak [7] proposed that approximation spaces give rise to topological spaces. For
each X ⊂ U, and for each approximation space, S = (U, R).

apr(X) ⊃ X ⊃ apr(X),
apr(U) = apr(U) = U,
apr(∅) = apr(∅) = ∅,

apr(apr(X)) = apr(apr(X)) = apr(X),

apr
(

apr(X)
)
= apr

(
apr(X)

)
= apr(X).

(6)

The notions of apr(X) and apr(X) can be understood as the interior and closure
of the set in the associated topological space, respectively. Within the rough set theory
of topological spaces, a considerable body of literature exists, encompassing various as-
pects such as fundamental concepts [9]; the study of generalized rough neighborhood
systems involving rough approximations (lower and upper) and topological operators
(interior and closed) [10]; the exploration of approximation spaces inspired by subset
rough neighborhoods and their practical applications [11,12]; and the proposal of a novel
rough approximation operator in the form of an abstract structure known as a “supra-
topology” [13].

Al-shami [11] proposed neighborhood space of lower and upper approximations.
Let

(
U, Ω, λj

)
be a j-NS such that is an equivalence relation and X ⊆ U. The pair

(FCj (X), FCj(X)) represents the lower and upper approximations of a set X based on
Cj-neighborhoods, respectively. The Cj is refer to Cj-neighborhoods (as containment neigh-
borhoods), j-NS refers to j-neighborhood space and j ∈ {r, l, 〈r〉, 〈l〉, i, u, 〈i〉, 〈u〉}.

The Cj-neighborhoods defined as follows:

FCj(X) =
{

x ∈ U : Cj(x) ⊆ X
}

,
FCj(X) =

{
x ∈ U : Cj(x) ∩ X 6= ∅

}
.

The three regions and accuracy measure are expressed as:

BCj(X) = FCj(X)\FCj(X),
POSCj(X) = FCj(X),

NEGCj(X) = U\FCj(X),

MCj(X) =
|FCj(X)|
|F Cj(X)| ,

(7)

where X 6= ∅ for any j and each nonempty subset X of U. The best accuracy measures
obtained with j = i, 〈i〉.

Decision-making problems often involve multiple conditions, goals or subjects. By
integrating the use of topological space and rough set theory, the structure within the data
can be understood in greater depth, thus reducing the boundary regions. This enables
decision makers to make accurate decisions and obtain solutions quickly.

For two finite, non-empty sets U and A, where U is the universe of objects and cases
and A is a set of attributes and features [14], the pair IS = (U, A) is called an information
table. For each attribute, a ∈ A is a set Va of its values, which is referred to as the domain
of a. The object x and attributes A = a1, . . . , an are defined as a(x) with a data pattern
(a1(x), . . . , an(x)).

The IS information table (U, A) divides A into two types of attributes: C, D ⊆ A.
These are, respectively, called conditional and decision (action) attributes. Each decision
table describes decisions (actions, results, etc.) that are determined when some conditions
are satisfied, so each row of the decision table specifies a decision rule that determines the
decisions for a specific set of conditions. DT = (U, C, D) is called a decision table, in which
U = {x1, . . . , xN}, C = {a1, . . . , an} and D = d1, . . . , dk are represented by means of a data
sequence (also called a data set) of data patterns ((v1, target1), . . . , (vN , targetN)), where
vi = C(xi), targeti = D(xi), and Ci = (a1(xi), . . . , an(xi)), Di = (d1(xi), . . . , dk(xi)), for
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i = 1, . . . , N. A data sequence also defines a decision table. The equivalence classes of I(D)
are the decision classes.

Using the attribute selection method for rough sets, the attribute subsets are subdi-
vided into positive domains, boundaries and negative regions to identify significant and
non-significant features and increase accuracy and efficiency. Classification, categorization,
analysis and evaluation are used to determine the decision rules between data. After
analysis of the data of different attributes and corresponding decisions, if the attributes
and decisions are the same, a positive, certain, and non-conflicting rule is generated,
which is called a consistent decision rule. If the attributes and decisions are different, a
non-deterministic and conflicting rule is generated, which is an inconsistent decision rule.

Conflict analysis is a mathematical formal model that uses rough set theory to deter-
mine the relationship between the degree of conflict between subjects. In the context of
conflict analysis, rough set theory is used to analyze and classify data that are related to a
conflict. This process can be used to solve governmental, political, and business strategy
formulation models [7]. There is no universal theory of conflict analysis using mathematical
models. The domain has the greatest effect.

For a finite, non-empty set U that is called the universe, the elements of U are called
agents. A function v:U→{−1, 0, 1}, or {−, 0, +} assigns a value −1, 0 or 1 to every agent,
representing an opinion, view or voting result for an issue that, respectively, corresponds
to against, neutral and favorable.

The pair S = (U, v) is denoted as a conflict situation.
Three basic binary relationships are defined in the universe to express the relationship

between subjects: conflict, neutrality and alliance. The auxiliary function is defined as

∅v(x, y) =





1, if v(x)v(y) = 1 or x = y,
0, if v(x)v(y) = 0 and x 6= y,
−1, if v(x)v(y) = −1.

(8)

Therefore, if ∅v(x, y) = 1, agents x and y share the same view on issue v (allied on v);
if ∅v(x, y) = 0, at least one agent, x or y, is neutral with regard to a (neutral on a); and if
∅v(x, y) = −1, both agents differ on issue v (in conflict on v).

The three basic relationships R+
v , R0

v and R−v on U2, respectively, refer to alliance,
neutrality and conflict relationships and are defined as

R+
v (x, y) if ∅v(x, y) = 1,

R0
v(x, y) if ∅v(x, y) = 0,

R−v (x, y) if ∅v(x, y) = −1.
(9)

Conflict analysis is used to resolve conflicts of interest and value in a complex decision-
making environment. Rough sets are used to compare options in terms of benefit and
cost, in order to determine the option that minimizes conflict and contradiction. Conflict
analysis identifies conflicts and their root causes, and rough set theory is used to analyze
complex and uncertain data that are related to conflicts and to extract useful knowledge to
inform a conflict resolution process.

Pawlak [15] proposed a method of data analysis for a specific type of data table:
a decision table. Zhang and Yao [16] and Zhang and Miao [17] proposed a three-level
granularity structure for decision tables, which provides a framework for granularity
calculations, data processing and attribute simplification. The decision table is represented
by

DT = (OB, AT = C ∪ D, {Va | a ∈ AT}, {Ia | a ∈ AT}), (10)

where OB is a universe with finite objects; AT is the finite set of attributes, which includes
the set of condition attributes C and the set of decision attributes D; Va is the value domain
for a ∈ AT; Ia: OB→ Va is an information function; x ∈ OB has a value Ia(x) on attribute a;
and DT = (OB, C ∪ D) represents a simplified decision table.
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Three-way decisions are used in RSs to reduce the cost of a decision. Positive certainty
rules that are derived from the positive domain indicate acceptance of a concept, negative
certainty rules that are derived from the negative domain indicate rejection of a concept and
uncertainty rules that are derived from the boundary domain are used to delay decision
making (deferment).

Solutions that quickly support decision making are necessary in an organization that
is changing from traditional management to a more flexible and adaptable form [18]. This
faster, more flexible change is beneficial to global organizations, but data change dynam-
ically over time, so it is complex and time-consuming to obtain relevant and consistent
up-to-date information across large organizations [19]. These organizations must use de-
cision support to allow decision makers to make faster and more accurate judgments in
response to changing environments. The process of extracting and transforming rules
(in IF-THEN form) using expert knowledge is a knowledge management process, tech-
nique and methodology [2]. These rules are used for the reasoning process for decision
support. Extracting useful information by analyzing rules and identifying the evolution
of rules by comparing rule sets to make decisions increases efficiency and innovation in
decision support.

In terms of rough sets, many studies propose effective multi-criteria decision-making
methods. Wang and Zhang [20] used rough sets and fuzzy measures to propose a multi-
criteria decision-making method that allows decision makers to deal with complex multi-
criteria decision-making problems. Ayub et al. [21] proposed the linear Diophantine
fuzzy rough set model, which is used for multi-stage decision analysis. Many studies
also show that rough sets and rule evolution are practical in a real-world context [22–24].
These methods allow decision makers to make better decisions in a complex decision-
making context.

2.2. Renewable Energy

There is an energy shortage crisis, so renewable energy sources must be identified for
contemporary society. Sharma et al. [6] showed that solar energy is a renewable energy man-
agement system that is efficient and reduces energy wastage. Jafari and Malekjamshidi [25]
proposed the use of rule control and rule optimization methods to manage sustainable
energy sources.

In terms of renewable energy, Gung et al. [5] proposed a hybrid analytical approach
that uses quantitative and qualitative analysis to determine the factors that affect household
energy consumption. Alzahrany et al. [4] used rough set theory to determine the barriers
and drivers in the use of solar energy in Saudi Arabia and showed that technical, financial
and policy factors are the main barriers. However, Saudi Arabia has abundant solar
resources, and there is an impetus for energy transition. These studies show that effective
energy management strategies that promote sustainable development are possible.

In terms of environmental protection and sustainable development, rooftop solar
systems offer many advantages [26,27]. To promote the use of renewable energy, the
Taiwanese government launched the “Green Energy Roofs Project” in 2019. This was
modeled on Germany’s Renewable Energy Act of 2000, which used a feed-in tariff policy for
solar power generation. Li, Wang, Dai, and Wu [28] showed that the Chinese government’s
support for the solar energy industry has given a strong impetus to the development of
solar power generation.

The US government supports the development of the solar energy industry by imple-
menting policy measures such as tax credits and by simplifying the application process for
solar projects [29]. This incentive has greatly increased the number of solar panels installed.
Incentives encourage individuals to install solar panels on their roofs to provide clean
renewable energy for households and to generate additional income [26].

Costa, Ng, and Su [30] showed that if there are no incentives to stimulate consumers,
few solar systems are installed. Barnes, Krishen, and Chan [31] showed that residents who
had already installed solar panels in their communities had a positive impact on those who

105



Axioms 2023, 12, 811

did not, and the use of solar panels increased. However, the adoption of solar panels is
influenced by factors such as roof size, climate and equipment costs, so in promoting green
roof programs, it is necessary to account for the needs and resources of different households
and to develop suitable solar panel installation plans in order to establish effective rules for
renewable energy use decisions.

Energy consumers are an essential part of the energy system and are the target audi-
ence for governments promoting renewable energy policies. As renewable energy produc-
tion and markets expand globally, consumers have become involved in small-scale energy
production, with policymakers playing a critical role [32]. In the past, consumers were
passive buyers of energy and used traditional sources to meet their needs, but increasing
numbers of consumers are becoming small energy producers by installing solar systems
and actively participating in energy production [25]. This transition allows consumers to
use renewable energy more effectively and reduces their dependence on traditional sources,
which contributes to the goal of energy transformation.

Increasing energy demands from households have led to a continuous increase in
energy consumption, which has increased environmental damage. To achieve sustainable
development goals, interventions and guidance are required at multiple levels. The decision
environment to increase participation in energy-saving programs is changed by macro- and
micro-interventions, such as cash incentives and legal or energy-saving factors [33,34]. The
Taiwan Power Company offers cash incentives to households to encourage participation in
energy-saving plans with fixed electricity prices.

It is also possible to change individual behavior. Solar panels on household roofs
conserve energy and reduce carbon dioxide emissions, and previous studies determined
the factors that affect household energy consumption. Rausch and Kopplin [35] studied the
effect of environmental awareness, values, beliefs and perceived knowledge on the willing-
ness of consumers to purchase sustainable products. Namazkhan et al. [33] determined the
effect of factors such as building characteristics, social demographics and psychological
factors on natural gas consumption from the perspective of household natural gas con-
sumption using a decision tree. This method offers a more comprehensive analysis and
better guides policy development and energy management.

Studies show that environmental, economic, technological and policy factors have
a significant effect on household energy consumption [34,36]. Voluntary behavior can
be changed through behavioral intervention measures and individual factors, such as
perception, preferences and abilities. Sustainable development goals can only be achieved
by promoting energy conservation and establishing policies at various levels to meet the
energy needs of households.

Few studies have determined the evolution of rules through comparative correlations,
or the effect of rule changes on renewable energy incentives. In terms of the renewable
energy industry as a future development trend, the effect of rule evolution on energy
incentive issues and trends in the willingness of households to accept renewable energy
incentives is important. Target households, as users and producers, are playing an increas-
ingly important role in government policy. The goal is to provide valuable information
to decision makers to allow the formulation of more effective policies. This study makes
a substantive contribution to the formulation and implementation of renewable energy
incentive policies.

3. Methodology and Conceptual Framework
3.1. Conceptual Framework

This study determines the factors that affect households in terms of installing solar
panels on rooftops and determines the public’s needs and expectations for solar panel
systems. Using rough set theory, rules are induced for each object through attribute
reduction, and these rules are saved in a rule set. Rule induction is used to generate a rule
set, and then object classification and prediction are performed.
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The recognition process for each type of rule set involves inputting two different rule
sets for time t and t + 1. The process then evolves into nine output forms, based on changes
in a condition attribute addition, deletion or modification or changes in result attributes.
For each rule set, if there are changes in the condition attribute values, the rule set is of the
seventh, eighth or ninth type. The remainder are assigned to the first through sixth types.

The evaluation process depends on whether the result attribute changes. In terms of
the seventh, eighth and ninth types, if a condition attribute does not change, the rule set is
assigned to the seventh type; if the result changes, the rule set is assigned to the eighth type;
and if the result changes significantly, the rule set is assigned to the ninth type. If there are
changes in the result attribute, the rule set is assigned to the second, fourth or sixth type.

The rule set is then classified based on the direction of changes in the condition
attribute. If there is no change, it is assigned to the second type; if there is an increase, it is
assigned to the fourth type; and if there is a decrease, it is assigned to the sixth type. If there
are no changes in the result attribute, the rule set is of the first, third or fifth type. This is
further classified based on the direction of changes in the condition attribute. If there is no
change, it is assigned to the first type; if there is an increase, it is assigned to the third type;
and if there is a decrease, it is assigned to the fifth type. The process is shown in Figure 2.
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The classification rules are expressed in terms of pseudocode judgments, whose
algorithm is expressed as follows: Algorithm 1.

This study uses RS decision categorization to create a summary. In terms of the
differences in installation figures before and after the COVID-19 pandemic, changes in
household energy use are determined to collect data on public willingness and the factors
that affect the installation of solar panels. This allows decision-making recommendations to
be derived that promote green energy plans for nationwide participation. Taiwan’s “Green
Energy Roofs Project” is used as a case study.
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Algorithm 1.

1. Input t and t + 1
2. if condition changed
3. if result changed
4. if result change is significant
5. output “form 9”
6. else
7. output “form 8”
8. else
9. output “form 7”
10. else
11. if result changed
12. if condition increased
13. output “form 4”
14. elif condition decreased
15. output “form 6”
16. else
17. output “form 2”
18. else
19. if condition increased
20. output “form 3”
21. elif condition decreased
22. output “form 5”
23. else
24. output “form 1”
25. end

3.2. Methodology

Rough set decision classification rules are used to compare intervals that feature differ-
ent conditions for various periods and to determine the relationship between two rule sets
rt and rt+1. Three different types of conditions, including addition, deletion and modifica-
tion, are considered, and these are categorized into nine different forms, based on whether
the outcome attribute changes (see Table 1). Attributes are either condition attributes or
decision attributes, and all object information is classified into subsets according to the
feature selection. The approximate relationship between the subset of condition attributes
and the decision attributes is then determined, and decision rules are generated.

Table 1. Classification of rule set forms.

Result Unchanged Result Changes

Condition attribute remains unchanged Form 1 Form 2

Addition of a condition attribute Form 3 Form 4

Removal of a condition attribute Form 5 Form 6

Change in a condition attribute value Form 4 Form 8

Special case Form 9

Notations:

• t: time interval.
• rij: rule set.
• A: condition attribute.
• O: result (decision attribute).
• v: variable of condition attribute.
• w: variable of result attribute.
• i: rule index, i = 1− rt, i ∈ 1, . . . , n.
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• j: rule index, j = 1− rt+1, j ∈ 1, . . . , n.
• n: number of condition attributes
• m: number of result attributes.

The nine forms of condition changes are described in the following.
Form 1: Maintaining Equality
For rule sets rt and rt+1, the condition and result attributes are consistent.
If rt

ij = rt+1
ij , i.e., (A1i = v1i) ∩ . . . ∩ (Ani = vni)→

(
O1j = w1j

)
∩ . . . ∩

(
Omj = wmj

)
,

where vt
i = vt+1

i , wt
j = wt+1

j , then rt
ij and rt+1

ij pertain to maintaining equality.
Form 2: Result Change
Two rule sets have the same condition attributes in rt and rt+1, but the results are

different.
If rt

ij = rt+1
ij , i.e., (A1i = v1i) ∩ . . . ∩ (Ani = vni)→

(
O1j = w1j

)
∩ . . . ∩

(
Omj = wmj

)
,

where vt
i = vt+1

i , wt
j 6= wt+1

j , then rt
ij and rt+1

ij pertain to a change in the result.
Form 3: Condition Attribute Addition (Increased Restriction)
Two rule sets are different in terms of one condition attribute for rt and rt+1, where t +

1 has an additional attribute, but the results are the same.
If rt

ij = rt+1
ij , i.e., (A1i = v1i) ∩ . . . ∩ (Ani = vni)→

(
O1j = w1j

)
∩ . . . ∩

(
Omj = wmj

)
,

where vt
i = vt+1

i+1 , wt
j = wt+1

j , then rt
ij and rt+1

ij pertain to an additional condition attribute.
This represents the addition of an attribute between time t and t + 1 that produces no

change in the results.
Form 4: Increase in Condition Attributes and Change in Results
There is a difference in the condition attributes for rule sets in rt and rt+1, where t + 1

is later than t, and the results are different.
If rt

ij = rt+1
ij , i.e., (A1i = v1i) ∩ . . . ∩ (Ani = vni)→

(
O1j = w1j

)
∩ . . . ∩

(
Omj = wmj

)
,

where vt
i = vt+1

i+1 , wt
j 6= wt+1

j , then rt
ij and rt+1

ij pertain to this form.
There is a change in the results when a condition attribute is added between times t

and t + 1.
Form 5: Reduction in Condition Attributes (Reduced Condition)
There is a difference in the condition attributes for rule sets rt and rt+1, where t + 1 is

less than t, but the results are the same.
If rt

ij = rt+1
ij , i.e., (A1i = v1i) ∩ . . . ∩ (Ani = vni)→

(
O1j = w1j

)
∩ . . . ∩

(
Omj = wmj

)
,

vt
i+1 = vt+1

i , wt
j = wt+1

j , then rt
ij and rt+1

ij
A condition attribute is removed between time t and t + 1, and there is no change in

the results.
Form 6: Reduction in Condition Attributes and Change in Results (Reduced Condition

and Change in Results)
There is a difference in the condition attributes for rule sets rt and rt+1, where t + 1 is

less than t, and the results are different.
If rt

ij = rt+1
ij , i.e., (A1i = v1i) ∩ . . . ∩ (Ani = vni)→

(
O1j = w1j

)
∩ . . . ∩

(
Omj = wmj

)
,

where vt
i+1 = vt+1

i , wt
j 6= wt+1

j , then rt
ij and rt+1

ij belong to this form.
The result changes because the target audience has one condition attribute removed at

t + 1.
Form 7: Change in Condition Attribute Values (Adjusted Condition)
The majority of the condition attributes in the two rule sets are the same, but there is a

change in the value of one condition attribute between rt and rt+1.
If rt

ij = rt+1
ij , i.e., (A1i = v1i) ∩ . . . ∩ (Aki = vki)→

(
O1j = w1j

)
∩ . . . ∩

(
Omj = wmj

)
,

where vt
i = vt+1

i , wt
j = wt+1

j , then rt
ij and rt+1

ij pertain to a change in the condition attribute
values, where k means the condition of adjustment.

There is a change in the condition attribute values from time t to t + 1, but the results
remain the same.

Form 8: Change in Result Values (Adjusted Condition and Change in Results)
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The majority of the condition attributes in the two rule sets are the same, but there is no
change in the condition attribute values between rt and rt+1, and the result values change.

If rt
ij = rt+1

ij , i.e., (A1i = v1i) ∩ . . . ∩ (Aki = vki)→
(
O1j = w1j

)
∩ . . . ∩

(
Ok j = wk j

)
,

where vt
i = vt+1

i , wt
j 6= wt+1

j , but kt = kt+1, then rt
ij and rt+1

ij pertain to a change in the
result value.

This is similar to Form 7, but the result value changes.
Form 9: Special Case
There are significant changes in both the condition attributes and the results between

time t and t + 1.
If rt

ij = rt+1
ij , i.e., (A1i = v1i) ∩ . . . ∩ (Aki = vki) ∩ . . . ∩ (Ani = vni) →

(
O1j = w1j

)

∩ . . . ∩
(
Ok j = wk j

)
∩ . . . ∩

(
Omj = wmj

)
, where vt

i 6= vt+1
i , wt

j 6= wt+1
j , but kt = kt+1, then

rt
ij and rt+1

ij pertain to this type.
In practical applications, it is difficult to perform analysis or support a decision because

there are significant changes in the premise and in the conclusion.
These decision rules allow for a direct interpretation of the results and show contextual

rules in the database. The effects of changes in the condition type and outcome attributes
on decision rules are determined. The results of this study show the relationships between
rule sets. Rough set theory is used to mine contextual rules in the database, in order to
predict phenomena and behaviors.

3.3. Case Study

The global economy was significantly affected by the COVID-19 pandemic, which
was the greatest economic shock since the Second World War, and governments around the
world faced enormous challenges. Individuals who were forced to work and study from
home due to social distancing measures spent almost 24 h a day at home, so there was a
significant increase in household electricity consumption. Therefore, green and energy-
efficient practices must be promoted to households, and policymakers must establish
decision-making rules for household energy use. This study determines the changes in
attitudes to rooftop solar panel installations before (PBe) and after (PAf) the COVID-19
pandemic to establish effective policies.

This study determines the willingness of households to accept incentives for renewable
energy. This study uses the “Green Energy Roofs Project” of the Taiwanese government
between 2019 and 2022 as a case study and focuses on the two different rule sets before and
after the outbreak of the COVID-19 pandemic. Two decision rules are used to determine
the changes in public willingness to accept feed-in tariffs for installing solar panels on
rooftops before and after the COVID-19 pandemic. Rule analysis is used to categorize
the influencing factors as either basic data factors, public background factors or energy
incentive factors.

To encourage the public to install solar panels, the government implemented an energy
incentive that includes an additional percentage (1 + %) on top of the feed-in tariff. The
basic data factor is based on the area where the equipment is installed, such as the northern
region, offshore islands or other remote areas, and can be changed through policies such as
incentives or subsidies. The public background factors include family living conditions,
building environmental data, household income and self-perceived value. These can be
changed by interventions such as media advocacy, legal restrictions and social expectations.
This study determines the characteristics and contours of households.

There is an additional bonus solar green billing rate (see Table 2) to the 15% bonus for
installations in Taipei, New Taipei, Taoyuan, Hsinchu, Miaoli, Yilan and Hualien (northern
region). Starting in 2020, participants in indigenous or remote areas received a 1% bonus.
In terms of the capacity tier, there is a distinction between those who pay a grid connection
fee (GF) and those who do not pay a grid connection fee (NGF). Those who participated in
the Green Energy Roofs Project received a 3% bonus, with the initial 15% bonus remaining

110



Axioms 2023, 12, 811

if no submarine cable is connected to the island (expressed as OT1), being reduced to 4% if
one is connected to the island (expressed as OT2).

Table 2. Feed-in tariff for solar photovoltaic power generation equipment.

(Announced Upper Limit, Unit: NTD/kWh)

2022 2021 2020 2019

First
Quarter

Second
Quarter

First
Quarter

Second
Quarter

First
Quarter

Second
Quarter

First
Quarter

Second
Quarter

Capacity ranges = x (unit: kWh)

1 < x < 20 5.8952 5.7848 5.6707 5.6281 5.7132 5.7132 5.7983 5.7983

20 < x < 100
NGF 4.5549 4.4538

4.3304 4.2906 4.4366 4.3701 4.5925 4.5083
GF 4.4861 4.3864

100 < x < 500 4.0970 3.9666 3.9975 3.9227 4.1372 4.0722 4.3175 4.2355

<500
NGF

4.1122 3.9727
3.9449 3.8980 4.0571 3.9917 4.2313 4.1579

GF 4.4191 4.3722 4.5245 4.4591 4.6902 4.6168

Rate increase items and percentages:

Green Energy Roofs Project 3% 3% 3% 3%

Indigenous or remote areas none 1% none 1% 1% none none

Northern Taiwan 15% 15% 15% 15%

OT1 15% 15% 15% 15%

OT2 4% 4% 4% 4%

Source: Bureau of Energy, Ministry of Economic Affairs.

Table 3 shows the types of variables that are used for the case study and whether they
are subject to interference. Household income is defined as the net amount of compre-
hensive income after deducting any tax exemption and other relevant deductions. The
maximum useful life of a building is defined as 50 years in the fixed asset depreciation
table of the Ministry of Finance, but this study defines the age of a house as the number of
years since completion. Common classification categories include new houses (completed
less than 5 years ago), second-hand houses (completed between 6 and 20 years ago) and
old houses (completed more than 20 years ago).

The effect of the basic data factor on the target household in terms of the decision rule
sheet is changed by changing the incentive method and the percentage bonus. The effect of
the background factor on decision making is determined by changing the feature selection,
and determining whether the outcome attribute changes. Three different condition types
are proposed—add, delete, and modify—in order to allow more accurate decision making.
The decision table for the various attributes is shown in Table 4.

This study changes a variety of interventions, such as cash incentives and legal and
energy conservation factors, to change the decision-making environment. Taiwanese power
companies offer cash incentives for household electricity consumption at a fixed tariff to
encourage greater participation in the program. This study determines the relationship
between the household sector, green energy and government regulatory interventions to
develop recommendations for decisions on energy consumption and feed-in tariff rates
that promote sustainable development and carbon reduction.
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Table 3. Definitions of variables.

Type Attribute Definition Intervention

Basic information factors
Region Offshore islands, northern region, others Yes

Remote area Remote area: no, yes Yes

Background factors

Family type Single family, childless family, single-parent family,
grandparent family, extended family, others No

Gender Gender of the head of household: F = female, M = male No

Age Age of the head of household (years, adults over 20 years
old): 20~29, 30~39, 40~49, 50~59, 60~69, >69 No

Education
Head of household education level: 0 = elementary and

under, 1 = junior, 2 = senior, 3 = college, 4 = graduate
and above

No

Population
(pop.) Number of persons: ≤1, 2~3, 4~5, >5 Yes

Income Household annual net income (USD): 0~18,000;
18,001~40,000; 40,001~80,000; 80,001~150,000; >150,001 Yes

Age of house Age of house (years): ≤5, 6~20, >20 Yes

Number of stories Number of stories: 1~2, 3~4, >5 Yes

Capacity (cap) Device capacity (kilowatts): <20, 20~100, 100~500, >500 Yes

Perceived value (PV) Perceived value/benefit or no benefit: no, yes Yes

Reward factors Reward Incentive bonus for household installation of rooftop solar
panels: 3%, 4%, 7%, 8%, 18%, 19% Yes

Table 4. Decision table for condition attributes.

Basic Attributes Background Attributes Outcome Attribute

No A1 A2 B1 B2 B3 B4 B5 B6 O1 O2
Region Remote pop. Income House Stories cap PV Ratio Accept

0 Offshore
islands No ≤1 0~18,000 ≤5 1~2 <20 No 3% Low

1 Northern
region Yes 2~3 18,001

~40,000 6~20 3~4 20~100 Yes 4% Sustain

2 Others 4~5 40,001
~80,000 >20 >5 100~500 7% High

3 >5 80,001
~150,000 >500 8%

4 >150,001 18%

5 19%

4. Results and Discussion

For Case 3.3, the results are as follows.

4.1. Result

Form 1: Maintenance
PBe: if A1 = 2, A2 = 0, B1 = 1, B2 = 0, B3 = 2, B4 = 0, B5 = 0 and B6 = 1, then O1 = 2 and

O2 = 1.
PAf: if A1 = 2, A2 = 0, B1 = 1, B2 = 0, B3 = 2, B4 = 0, B5 = 0 and B6 = 1, then O1 = 2 and

O2 = 1.
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The COVID-19 outbreak has changed the global political and economic environment,
and there are new challenges to green energy development and policy making for sus-
tainable energy. In the post-pandemic period, government policymakers must determine
how to continue to promote existing green energy programs and initiatives in a new en-
vironment. The government must work closely with the public to ensure that targeted
households continue to support these programs.

The government must also conduct regular, rolling tracking and evaluation to ensure
the sustainability and effectiveness of policy implementation. The pandemic provides an
opportunity for the government to strengthen its support for green energy development
and to promote sustainable socio-economic development. Encouraging the installation of
renewable energy facilities, such as solar panels on the roofs of homes, will reduce carbon
emissions and reliance on traditional energy sources, which will help to achieve the goal of
sustainable energy development.

Form 2: Result Change
PBe: if A1 = 2, A2 = 0, B1 = 0, B2 = 0, B3 = 2, B4 = 0, B5 = 0 and B6 = 1, then O1 = 1 and

O2 = 1.
PAf: if A1 = 2, A2 = 0, B1 = 0, B2 = 0, B3 = 2, B4 = 0, B5 = 0 and B6 = 1, then O1 = 1 and

O2 = 0.
To avoid the risk of cluster infections of COVID-19, governments encouraged people

to restrict travel and to work or study at home. This change in lifestyle due to the pandemic
has forced governments to reduce economic activity, so there has been a significant increase
in the demand for electricity from the household sector [37], but electricity consumption by
the commercial and industrial sectors has decreased.

The pandemic has changed lifestyles. Citizens work from home for extended periods
and are more concerned about their home environment, energy consumption and increased
household expenses. Therefore, target households no longer feel as incentivized and do
not expect rewards or subsidies from government policies that are as high as those that
were previously offered. The pandemic has changed the environment, but the government
must ensure the continuity of existing plans and programs and sustain support for target
households in terms of these initiatives. The government must conduct regular, rolling
tracking and evaluation to ensure the continuity and effectiveness of policy implementation
and outcomes. If there is no sense of urgency, target households will prioritize maintaining
their existing standard of living over considering additional policy plans, so the government
must develop policies to meet the various demands of target households by ensuring that
policies are feasible and effective.

Form 3: Adding Restrictions
PBe: if A1 = 2, A2 = 0, B2 = 0, B3 = 2, B4 = 1 and B5 = 0, then O1 = 1 and O2 = 1.
PAf: if A1 = 2, A2 = 0, B1 = 2, B2 = 0, B3 = 2, B4 = 1 and B5 = 0, then O1 = 1 and O2 = 1.
In recent years, reducing the carbon footprint has become an important environmental

policy goal for many governments. Wiedenhofer, Smetschka, Akenji, Jalas and Haberl [38]
showed that household population is a crucial factor in reducing the carbon footprint since
household appliances are shared in larger households, meaning the individual carbon
footprint is reduced. Reducing the carbon footprint and increasing the supply of green
electricity are important elements of a renewable energy policy.

During the COVID-19 pandemic, the government encouraged working from home, so
there was an increase in daytime electricity consumption. Therefore, adding the restriction
of “household population size” may not have a significant effect on the target households.
Decision makers must reconsider the appropriateness and importance of the “household
population size” attribute to ensure policy effectiveness. Target households underwent
changes during the pandemic, and the government must re-evaluate existing policies to
account for new lifestyles and environments.

Form 4: Adding Restrictions with Result Change
PBe: if A1 = 2, A2 = 0, B1 = 1, B2 = 0, B3 = 2 and B5 = 0, then O1 = 1 and O2 = 1.
PAf: if A1 = 2, A2 = 0, B1 = 1, B2 = 0, B3 = 2, B4 = 3 and B5 = 0, then O1 = 1 and O2 = 0.
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Alrwashdeh [39] compared the energy output from two different heights of solar
towers and showed that energy output is proportional to tower height. In the same year,
the Energy Bureau of the Ministry of Economic Affairs proposed a solar photovoltaic
strategy of “rooftops first, ground later”. The government aims to ensure a stable energy
supply, improve energy storage efficiency for rooftop solar panels and enhance lighting
conditions. During the COVID-19 pandemic, the “number of floors” was added as an
incentive condition to encourage households to participate in the program. However, the
addition of this attribute is directly related to the existing building, so some households are
less willing to participate since they do not meet these conditions.

Policymakers must consider the relevance of the number of floors in target households.
Attributes are a significant consideration for target households, so the green energy plan
must be evaluated to determine whether it meets their needs. If the plan is unable to
achieve the original objectives, it requires review and adjustment.

Form 5: Reduction in Conditionality
PBe: if A1 = 2, A2 = 0, B1 = 1, B2 = 0, B3 = 2, B4 = 0 and B5 = 0, then O1 = 1 and O2 = 1.
PAf: if A1 = 2, A2 = 0, B1 = 1, B2 = 0, B4 = 0 and B5 = 0, then O1 = 1 and O2 = 1.
Aksoezen et al. [1] found a correlation between building age and energy consumption.

The report by the Bureau of Energy, MOEA, in 2019 showed that current solar energy
projects require a contract of at least 20 years and evaluation by professional installers
and public agencies to determine the suitability of solar equipment installation. Therefore,
building age has little impact on the installation of solar equipment: the structure and safety
of the house are more important. During the COVID-19 pandemic, the age of a house had
a less significant impact on the power generation efficiency for rooftop solar panels, and
the transitional period during the pandemic was shorter than the average age of houses.
Therefore, deleting the “age of the house” attribute has no significant impact on the policy,
so the policy has little effect on target households, and this is an unnecessary attribute.

Form 6: Reduction in Conditionality and Result Changes
PBe: if A1 = 2, A2 = 0, B1 = 1, B2 = 0, B3 = 4, B4 = 0 and B5 = 0, then O1 = 1 and O2 = 1.
PAf: if A1 = 2, B1 = 1, B2 = 0, B3 = 4, B4 = 0 and B5 = 0, then O1 = 1 and O2 = 0.
Residents in remote areas have a lower willingness than urban dwellers to participate

in the Green Energy Roofs Project. They tend to lead a more natural lifestyle with less
reliance on modern technology, so their electricity demand is lower. In terms of the
economy, there are fewer job opportunities and lower salaries. However, during the
COVID-19 pandemic, economic activities significantly decreased, so more difficulties
were experienced in remote areas, where individuals are less willing to participate in
such projects.

If the “remote area” attribute is deleted, there may be significant changes in the results
since a lack of incentives may lead to a significant reduction in rural residents’ willingness to
participate. This attribute has a significant impact on target households, and policymakers
must account for this attribute. Remote areas have fewer high-rise buildings and longer
sunshine hours, and they are well suited to the Green Energy Roofs Project. Therefore,
it is necessary to listen more to the needs of residents in remote areas and to formulate
appropriate policy adjustments.

Form 7: Adjustment Conditions
PBe: if A1 = 1, A2 = 0, B1 = 1, B2 = 0, B3 = 2, B4 = 0 and B5 = 0, then O1 = 3 and O2 = 1.
PAf: if A1 = 1, A2 = 0, B1 = 1, B2 = 0, B3 = 2, B4 = 0 and B5 = 2, then O1 = 3 and O2 = 1.
The concept of capacity may be unfamiliar to the public since the installation of

capacity equipment must comply with the local electricity demand and building restrictions.
The capacity for households is closely related to the rooftop space. The variability of
capacity in households is much less significant than that for large buildings, and its impact
on energy consumption is relatively small. Funkhouser et al. [29] showed that residential
solar energy accounts for an increasing proportion of installed capacity, surpassing large-
scale capacities in public utilities. Therefore, adjusting the attribute value for “nameplate
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capacity” may result in very similar before-and-after scenarios, with a smaller impact on
the judgment of the target households.

Form 8: Adjustment Conditions and Result Changes
PBe: if A1 = 2, A2 = 0, B1 = 1, B2 = 0, B3 = 6, B4 = 0 and B5 = 1, then O1 = 1 and O2 = 0.
PAf: if A1 = 2, A2 = 0, B1 = 1, B2 = 1, B3 = 6, B4 = 0 and B5 = 1, then O1 = 1 and O2 = 1.
The income of households with solar panels installed is usually greater than that of

those that do not have solar panels [40]. The government actively intervened in the housing
market policy by adjusting the Central Bank’s Regulations on Financial Institutions’ Real
Estate Mortgage Loan Business at the end of 2020 [41], with the intention of discouraging
fewer investment buyers from purchasing homes. However, this did not affect the willing-
ness of the investing public to buy houses, and the phenomenon of “you do your thing,
I’ll do mine” appeared, possibly due to the excessive amount of capital in the market and
the shortage of labor and materials due to the pandemic, so the economy became stagnant,
and real estate remains a popular investment. The government also adjusted the tax base
and rate for property holding tax in 2014, which directly reduced income and willingness
to purchase homes. Two different examples of housing market policies show that the
government’s policy adjustments have a direct impact on people’s income attributes and
are of concern to them.

The COVID-19 pandemic had a significant impact on the global power sector and
a direct effect on oil and natural gas prices [33]. In this environment, households have
experienced a decrease in disposable income, so policymakers must increase the willingness
of target households to participate by adjusting the “income” attribute value to provide
more achievable subsidy conditions. Adjustment of the “income” attribute is crucial since it
has a direct and significant impact on the outcome. Policymakers must determine whether
the adjustment of this attribute aligns with the original planning goals.

Form 9: Special Circumstances
PBe: if A1 = 2, A2 = 0, B1 = 1, B2 = 0, B3 = 2, B4 = 0 and B5 = 0, then O1 = 1 and O2 = 1.
PAf: if A1 = 1, A2 = 0, B1 = 3, B2 = 0, B3 = 0, B4 = 3 and B5 = 3, then O1 = 0 and O2 = 0.
In special circumstances, analysis is challenging and prone to errors, so new decision

rules must be formulated. Comparing rule sets within a short period of time from t to t + 1
is not feasible.

Table 5 summarizes the nine types of evolutionary implications of case studies using
different time differences and RSs for decision rule analysis. The results show the changes
in the evolutionary process.

Table 5. Integration of evolutionary implications.

Condition Attributes Outcome Type Evolutionary Implications

Maintenance

Result does not change 1 Maintain original attitude

Result changes 2 No longer feel policy relevance or have
higher expectations

Increasing restrictions

Result does not change 3 Attributes are not noticed by the target households or
have little impact on participation conditions

Result changes 4 Attributes are more valued by the target households, and
the program’s original goals may need to be reassessed

Reducing conditions
Result does not change 5 Deleted attributes are less necessary

Result changes 6 Attributes have a significant impact on target households

Adjusting conditions

Result does not change 7 Low changes before and after adjustment, with little
impact on willingness to participate

Result changes 8
Changes in attributes have a significant impact on target

households, and subtle adjustments may have a
significant impact

Special circumstances 9 New decision rules are generated
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4.2. Case Study Summary

This study shows that the majority of the public support the Green Energy Roofs
Project, particularly since the outbreak of the COVID-19 pandemic, which has led to a
decrease in income. This program provides a passive income and serves as a channel for
household revenue. However, some members of the public have concerns about the safety
of the installation process and the ongoing maintenance that is required. It is important that
the incentives for the Green Energy Roofs Project and knowledge related to solar panels
are made more easily comprehensible to the public. The results of these studies allow the
government to make decisions on the development of green energy programs to increase
the installation of solar panels on household roofs.

However, due to the changing policies and the differences in the installation of so-
lar energy equipment due to environmental conditions, the amount of electricity that is
generated and the reduction in the service life, current rates may not be suitable for all
users. This study shows that different rates or incentives are required to meet the needs of
different households. This study recommends that the feed-in tariff be adjusted to meet
the needs of different households, so as to avoid any burden on users, policy changes or
cost issues that may prevent the long-term stability of renewable energy generation. There
is a current shortage of resources, so the use of solar power reduces the dependence on
traditional energy sources, and carbon emissions. Solar power is a widely used green en-
ergy source that is renewable and features low maintenance costs, so the government must
formulate policies that feature more comprehensive considerations in order to implement
green energy policies.

From a decision-making perspective, the RS rule set evolves over two different periods.
During the pandemic, public concern about energy increased, so the government had an
opportunity to increase the implementation of green energy policies. Before and after
the COVID-19 outbreak, the factors that influence the decision to install solar panels may
have changed. The negative impact of the pandemic on income and expenses may make
economic cost more important. The pandemic may also have an impact on energy markets
and policies, so policymakers must promote green energy and environmental conservation
and adopt a more holistic attitude to issues related to energy policy. Policies must be
flexible to mitigate the impact of the pandemic on household energy costs. Governments
and businesses are reducing carbon emissions, achieving carbon neutrality and increasing
the use of green energy.

5. Conclusions

This study compares two rule sets to determine the weighting and assessment criteria
for each attribute in different temporal and spatial contexts. Past experience can provide
strategies for decision making if there are variations between conditions and outcomes and
can be applied to decision making in different industries. This approach selects different
features and generates more favorable decisions. There is a global energy shortage, so in
terms of energy saving and achieving the carbon reduction goals, solar panels are an ideal
green energy source. This study determines the willingness of the public to participate in
the Green Energy Roofs Project and the effectiveness of adjustment strategies developed by
the government in its implementation.

Individuals assess their suitability to participate in the program based on their own
conditions, such as renting unused roofs to install solar panels or joining the program under
appropriate conditions. The government adjusts to the response from target families and
achieves its policy goals through intervention and other means. Appropriate policy support
must also be provided to the public in terms of systems and infrastructure. Governments are
promoting rooftop solar projects to improve energy efficiency and reduce environmental
impact. During the pandemic, increased working and studying from home increased
household energy use.

This study determines the changes in willingness to install solar panels on roofs and
the considerations before and after the outbreak. The results show that after the pandemic,
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people’s interest in green energy and energy reduction increased, which increased their
willingness to install solar panels on roofs. Despite the positive attitude to installing solar
panels on rooftops, the negative impact of the pandemic on income and expenses also had
an impact on the financial cost of this decision. The government and industry must increase
their efforts in terms of policy advocacy and marketing.

Rooftop solar power systems are simpler to implement than ground-based systems.
They do not require a large area of land and people can easily participate in the program by
providing their roofs. It is important to ensure that households have access to information
and to streamline the application process. A level of awareness and confidence in solar
panels will naturally lead to increased participation. The government and the industry
must also continue to promote the implementation of sustainable energy policies through
advocacy and effective funding to provide the public with information about the Green
Energy Roofs Project incentives and information on solar panels.

This study determined the impact of rule evolution and feed-in tariff rates on house-
holds’ willingness to participate in energy incentive programs, using Taiwan’s Green
Energy Roofs Project as a case study. The research scope was limited to the energy in-
centive for the household sector and excluded other sectors, such as energy development
and industrial rooftop solar installations. Therefore, the generalizability of the research
results was limited. The decision-making model for this study must also be improved by
accounting for more decision factors to increase the accuracy and reliability of the decision
that is made.

The proposed approach is based on the rough set theory. The limitation of classical
rough sets requires large amounts of labeled data. Computation is time-consuming when
dealing with large amounts of labeled datasets based on rough sets. In addition, when
faced with real-valued continuous data, the rough set theory has difficulties in dealing with
it, since it is more suitable for discrete data information systems [42].

To better achieve the goal of sustainable development, the following steps will be
take: (1) a future study will expand the research scope to other sectors to determine
different sectors’ views and willingness toward energy subsidies and incentives; (2) future
research will determine the innovation and development trends of solar panel technology
that further reduce the cost of solar panels, improve their competitiveness and increase
the scope of application; (3) the research results will also be extended to other fields to
improve the study’s usability and strengthen communication with other research areas; (4) a
future study will propose more extensive and detailed levels to promote the application of
renewable energy and achieve sustainable development; and (5) to improve computation
efficiency, discretization methods and different types of neighborhoods such as containment
neighborhoods may be considered in a future study to reduce the boundary region and
improve the accuracy measure [12].
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Abstract: The overlap function is an important class of aggregation function that is closely related to
the continuous triangular norm. It has important applications in information fusion, image processing,
information classification, intelligent decision-making, etc. The usual multi-attribute decision-making
(MADM) is to select the decision object that performs well on all attributes (indicators), which is quite
demanding. The MADM based on fuzzy quantifiers is to select the decision object that performs
well on a certain proportion or quantification (such as most, many, more than half, etc.) of attributes.
Therefore, it is necessary to study how to express and calculate fuzzy quantifiers such as most, many,
etc. In this paper, the Sugeno integral based on the overlap function (called the O-Sugeno integral)
is used as a new information fusion tool, and some related properties are studied. Then, the truth
value of a linguistic quantified proposition can be estimated by using the O-Sugeno integral, and the
O-Sugeno integral semantics of fuzzy quantifiers is proposed. Finally, the MADM method based on
the O-Sugeno integral semantics of fuzzy quantifiers is proposed and the feasibility of our method is
verified by several illustrative examples such as the logistics park location problem.

Keywords: overlap function; sugeno integral; fuzzy quantifier; multi-attribute decision-making

MSC: 03B52; 03E72; 90B50

1. Introduction

The triangular norm (t-norm) first appeared in Menger’s paper “Statistical metrics”
in 1942, which proposed t-norm as a natural generalization of triangular inequalities in
classical metric spaces [1]. A t-norm is an aggregation operator that satisfies commutativity,
monotonicity, and associativity, and has the identity element 1. From the mathematical
structure, t-norms and t-conorms are pairs of dual operators. T-norms play an important
role as the general fuzzy “and” operator in the fuzzy logic community. In order to apply
more widely, researchers proposed many generalized forms of t-norms and t-conorms, such
as t-seminorms [2], pseudo-t-norms [3], t-operators [4], uninorms [5], semiuninorms [6], etc.
Recently, many scholars still studied the extension structure of t-norms. For example, Dan
proposed a universal way to study t-semi(co)norms and semiuninorms in terms of behavior
operations [7]. For partially defined binary operations in practical problems, Borzooei et al.
introduced a partial t-norm on a bounded lattice [8]. Zhang et al. further investigated the
partial residual implications of partial t-norms and partial residuated lattices [9].

The measures discussed in classical measure theory are additive, and they are abstrac-
tions of real-world concepts such as length, area, volume and weight. However, additivity
cannot be satisfied in many practical situations, e.g., the work efficiency of two people in
cooperation is often greater or less than the combined work efficiency of two people. In
1971, Shilkret introduced the maxitive measure in place of the usual additive measure, and
then proposed the integral with respect to a maxitive measure in [10]. The concepts of fuzzy
measures and fuzzy integrals (also called Sugeno integrals) were first introduced by Sugeno
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in his doctoral thesis in 1974 [11]. Fuzzy measure is a class of set functions using weaker
monotonicity instead of additivity. Fuzzy measures have been widely used in different
scenarios and can be described as similar concepts such as importance, reliability, and satis-
faction. Sugeno integrals replace the addition and multiplication of Lebesgue integrals with
the maximum and minimum operators, respectively. These operations have limitations.
Subsequently, many scholars further generalized Sugeno’s integral theory based on other
operators. For example, Garcia and Alvarez defined semi-normed fuzzy integrals and
semiconorm fuzzy integrals and pointed out that Sugeno integrals are a special case [2].
Dudois et al. introduced Sugeno-like qualitative integrals and qualitative co-integrals
defined in terms of fuzzy conjunctions and implications, respectively [12]. In 2010, Klement
et al. Proposed the framework covering generalizations of Sugeno integrals, in which the
role of multiplication is played by semicopulas [13]. Note that the multiplication of Shilkret
integrals is still the standard product. Jin et al. introduced the concept of weak universal
integrals based on semicopulas, which are generalizations of Sugeno integrals and Shilkret
integrals [14]. Mihailovi and Pap defined Sugeno integrals based on set functions that have
the properties of absolute monotony and sign stability [15]. In recent years, many scholars
have been interested in Sugeno integrals and their generalizations, such as [16–20].

Eslami et al. pointed out that t-norms are not suitable for solving natural interpreta-
tions of language words [21]. In addition, Fodor and Keresztfalvi proposed non-associative
conjunctions are very effective in generalized inference patterns [22]. Bustince et al., in 2010,
introduced the concept of overlap functions as a special class of bivariate continuous aggre-
gation functions, which are closely related to continuous t-norms [23]. Subsequently, schol-
ars deeply studied the theory of overlap functions and their application, such as [24–29].
Overlap functions are mainly used for image processing, classification problems, decision
analysis, and intelligent information fusion, in which the associative law is not strongly
required. In order to be applied in more fields, overlap functions were generalized in vari-
ous ways, including general overlap functions [30], Archimedean overlap functions [31],
quasi-overlap functions [32], pseudo-overlap functions [33], semi-overlap functions [34],
and interval-valued pseudo-overlap functions [35].

The MADM requires comprehensively considering multiple attributes through the
aggregation function, and gives the optimal choice or sorts the schemes. The usual MADM
is to select the decision object that performs well on all attributes (indicators), which is quite
demanding. Attribute weight values can reflect the importance of attributes. In the MADM
problem with known attribute weights, the decision-maker considers all the attributes
together by means of an aggregation function and gives the optimal choice or ranking of
decision objects. However, different attribute weights will affect the decision results and it
is difficult to obtain the optimal attribute weights. The MADM problem with unknown
attribute weights has been studied by many researchers from different perspectives. For
example, a new MADM method based on rough sets and fuzzy measures was proposed by
Wang et al. [36]. Because decision objects that perform well on all attributes are difficult to
be selected out, many scholars have begun to study the MADM based on fuzzy quantifiers.
The MADM problem based on fuzzy quantifiers selects the decision object that performs
well on a certain proportion or quantification (such as most, many, more than half, etc.) of
attributes. Therefore, it is necessary to study how to express and calculate fuzzy quantifiers
such as most, many, etc.

In 1983, Zadeh first used the term “fuzzy quantifier” and described a method for quan-
tifying fuzzy sets [37]. Zadeh treated fuzzy quantifiers as fuzzy numbers, and linguistic
quantified propositions correspond to fuzzy sets defined by linguistic predicates. Zadeh
obtained the truth value of a quantification proposition by calculating the cardinality of the
fuzzy set. In 1988, Yager, an American scholar, proposed the method of evaluating a linguis-
tic quantified proposition based on the ordered weighted average (OWA) operators [38].
Recently, Dvorak et al. proposed the notion of fuzzy quantifiers over fuzzy domains
and investigated relevant semantic properties [39]. Medina et al. further investigated
the properties of generalized quantifiers and defined the semantics of multi-adjoint logic
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programs [40]. In 2006, Ying, a Chinese scholar, proposed a method for modeling linguistic
statements involving fuzzy quantifiers in natural language, in which fuzzy measures can
be used to represent fuzzy quantifiers and Sugeno integrals can be used to calculate the
truth value of a quantified statement [41]. Zhang et al. studied fuzzy quantifiers and their
integral semantics based on the Sugeno integral with t-norm, and successfully applied
them to the problem [42].

For wider application, we generalized the t-norm-based Sugeno integral in [42] by
replacing t-norms with overlap function, which is non-associative and continuous. The
Sugeno integral based on overlap functions (O-Sugeno integral) is proposed as a new
information fusion tool, and its related properties are studied. Then, the O-Sugeno inte-
gral is used to deal with fuzzy quantifiers and the O-Sugeno integral semantics of fuzzy
quantifiers is proposed. In fuzzy quantifier integral semantics, fuzzy measures are usually
used to represent fuzzy quantifiers, and O-Sugeno integrals are used to calculate the truth
value of a quantified proposition. Finally, a novel MADM method is proposed based on the
O-Sugeno integral semantics of fuzzy quantifiers. The method is used to solve the fuzzy
quantifiers-based MADM problems.

2. Preliminaries

We briefly review the basic definitions and conclusions that are used in our discussion
of overlap functions, fuzzy quantifiers, and Sugeno integrals.

Definition 1. Binary mapping O: [0, 1] 2 → [0, 1] is called an overlap function if it satisfies the
following requirements: for any x, y ∈ [0, 1]:

(i) O is commutative, that is, O(x, y) = O(y, x);
(ii) O(x, y) = 0 if and only if x y = 0;
(iii) O(x, y) = 1 if and only if x y = 1;
(iv) O is non-decreasing; and
(v) O is an continuous function [23].

Definition 2. Overlap function O is inflationary if it satisfies the condition O(x, 1) ≥ x, and
is deflationary if it satisfies O(x, 1) ≤ x; and has unit element 1 if O(x, 1) = x holds for each
x ∈ [0, 1] [43].

Example 1.

(1) The binary function is defined by

O(x, y) = xy
x + y

2
where x, y are two arbitrary element on the unit interval. Then it is an overlap function that does

not have associativity and 1 is not a unit element, therefore, it is not a continuous t-norm.

(2) The binary function is defined by

O(x, y) = min(xp, yp)

for every x, y ∈ [0, 1] and p > 0. Then it is an overlap function and is deflationary if p > 1 and
inflationary if 0 < p < 1, and has neutral element 1 if p = 1.

In natural languages, many “vague” words are used to express quantity, such as
“several”, “a few”, “quite a few”, “most”, “many”, “very many”, “not many”, “not very
many”, “approximately eight”, “frequently”, etc. These linguistic components used to
represent inexact amounts are called fuzzy quantifiers [37].

Definition 3. A fuzzy quantifier includes two items:
For arbitrary non-empty set X, a Borel field ℘ X over X; and
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a selection function
Q: (X, ℘X) a Q(X, ℘X) ∈M(X, ℘ X)

of the truth class {M(X, ℘ X): (X, ℘ X) is a measurable space} [41].

For convenience, the selection function Q(X, ℘X) is usually abbreviated as QX when
the Borel field does not need to be specifically indicated. Given X as a discourse domain, if
E represents individuals in X that have a specific attribute A, then QX(E) is seen as the truth
value of the linguistic quantified statement “Q Xs are As”.

Example 2.
The quantifier “at least five” is defined as follows:

at least f iveX(E) =
{

1, i f |E|≥ 5,
0, otherwise.

where the domain X is any nonempty set, and E is any subset of X. Then the quantifier “at least
five” is a crisp quantifier because at least fiveX(E) ∈ {0, 1}.

As is well known, ∀ and ∃ are also crisp quantifiers. The following example gives
three typical fuzzy quantifiers.

Example 3.
The terms “many”, “most”, and “almost all” are often used to indicate inexact amounts in

natural language, and are defined based on the following fuzzy measures [41]:

manyX(E) =
|E|
|X| , mostX(E) =

( |E|
|X|

)3/2
, almostX(E) =

( |E|
|X|

)2
,

for every non-empty set X and any subset E of X, where |E| represents the cardinality of E.

Definition 4: Suppose (X, 2X, m) is a fuzzy measure space. If h: X → [0, 1] is a measurable
function, then the Sugeno integral of h over A ∈ ℘ is defined as follows [11]:

∫

A
h ◦m = sup

F∈2X
min[ inf

x∈F
h(x), m(A ∩ F)]

Theorem 1. Given (X, ℘, m) as a fuzzy measure space, for any ℘ measurable function h: X→ [0, 1],
we have ∫

A
h ◦m = sup

λ∈[0,1]
min[λ, m(A ∩ hλ)]

where hλ = {x∈X: h(x) ≥ λ} for every λ ∈ [0, 1] [11].

In particular,
∫

A h◦ m will be abbreviated as
∫

h◦ m whenever A = X.

3. Sugeno Integrals Based on Overlap Functions

Definition 5. Given (X, ℘, m) as a fuzzy measure space and O: [0, 1]2 → [0, 1] as an overlap
function, if h: X→ [0, 1] is a ℘ measurable function, then the Sugeno integral based on the overlap
function (O-Sugeno integral) of h over A ∈ ℘ is defined by

∫ (OS)

A
h ◦m = sup

λ∈[0,1]
O[λ, m(A ∩ hλ)]

where hλ = {x∈X: h(x) ≥ λ} for every λ ∈ [0, 1].
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When the Borel field in measurable space is the power set of the underlying set, the
O-Sugeno integral can be simplified.

Theorem 2. Assume (X, ℘, m) is a fuzzy measure space and O: [0, 1]2 → [0, 1] is an overlap
function. If ℘ = 2X, then for any ℘ measurable function h: X → [0, 1] and any subset A of X,
we have ∫ (OS)

A
h ◦m = sup

F⊆X
O[ inf

x∈F
h(x), m(A ∩ F)]

where hλ = {x∈X: h(x) ≥ λ} for every λ∈ [0, 1].

Proof of Theorem 2.

(1) ∀F ⊆ X, Let λ′ = inf
x∈F

h(x).

If λ′ = 0, then hλ ′ = X, so F ⊆ hλ ′ ;
If λ′ > 0, then ∀x∈F, h(x) ≥ λ′, so F ⊆ hλ ′ .
Hence, we have

O[λ′, m(A ∩ hλ′)] ≥ O[ inf
x∈F

h(x), m(A ∩ F)]

Further, we obtain

∫ (TS)
A h ◦m = sup

λ∈[0,1]
O[λ, m(A ∩ hλ)]

≥ sup
F⊆X

O[λ′, m(A ∩ hλ′)], (λ′ = inf
x∈F

h(x))

≥ sup
F⊆X

O[ inf
x∈F

h(x), m(A ∩ F)]

(2) ∀λ ∈ [0, 1], Let F′ = hλ, then ∀x ∈ F′, h(x) ≥ λ, so inf
x∈F′

h(x) ≥ λ.

Hence, we have

O[ inf
x∈F′

h(x), m(A ∩ hλ)] ≥ O[λ, m(A ∩ hλ)]

Further, we obtain

∫ (OS)
A h ◦m = sup

λ∈[0,1]
O[λ, m(A ∩ hλ)]

≤ sup
λ∈[0,1]

O[ inf
x∈F′

h(x), m(A ∩ F′)], (F′ = hλ)

≤ sup
F⊆X

O[ inf
x∈F

h(x), m(A ∩ F)]

In summary, we can get

∫ (OS)

A
h ◦m = sup

F⊆X
O[ inf

x∈F
h(x), m(A ∩ F)]

�.

In the case where the domain is finite, the O-Sugeno integral over it can be further
simplified.

Theorem 3. Given domain X = {x1, . . ., xn} as a finite set, and ℘ = 2X, (X, ℘, m) as a fuzzy measure
space, and O: [0, 1]2→ [0, 1] as an overlap function, if a ℘ measurable function h: X→ [0, 1] such
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that h(xi) ≤ h(xi+1), for 1 ≤ i ≤ n − 1 (if not, rearrange h(xi), 1 ≤ i ≤ n). Then the O-Sugeno
integral of h over A is further simplified as follows:

∫ (OS)

A
h ◦m =

n
max
i=1

O[h(xi), m(A ∩ Xi)]

where A is any subset of X and Xi = {xj: i ≤ j ≤ n}, 1 ≤ i ≤ n.

Proof of Theorem 3. For any λ ∈ [0, 1], it holds that

hλ =





X1 = X, 0 ≤ λ ≤ h(x1)
X2, h(x1) < λ ≤ h(x2)
X3, h(x2) < λ ≤ h(x3)
· · ·
Xn, h(xn−1) < λ ≤ h(xn)
Φ, h(xn) < λ

So, we obtain

∫ (OS)
A h ◦m = sup

λ∈[0,1]
O[λ, m(A ∩ hλ)]

=
n+1
max
i=1

{
sup

λ∈[h(xi−1),h(xi)]

O[λ, m(A ∩ hλ)]

}
(h(x0) = 0, h(xn+1) = 1)

=
n+1
max
i=1

{
sup

λ∈[h(xi),h(xi+1)]

O[λ, m(A ∩ Xi)]

}
(Xn+1 = Φ)

=
n+1
max
i=1
{O[h(xi), m(A ∩ Xi)]}

=
n

max
i=1
{O[h(xi+1), m(A ∩ Xi+1)]} ∨O[1, 0]

=
n

max
i=1
{O[h(xi+1), m(A ∩ Xi+1)]}

�.

Theorem 4. Given (X, ℘, m) as a fuzzy measure space and ℘ = 2X and O: [0, 1]2 → [0, 1] as an
overlap function, for arbitrary ℘ measurable functions h, h1, and h2 and arbitrary subset A of X, the
following conclusion is established:

(1) If h1 ≤ h2 (i.e., for any x ∈ X, h1(x) ≤ h2(x)), then it holds that

∫ (OS)

A
h1 ◦m ≤

∫ (OS)

A
h2 ◦m

(2) If m(A) = 0, then it holds that

∫ (OS)

A
h ◦m = 0

(3) If a constant c ∈ [0, 1], then it holds that

∫ (OS)

A
c ◦m = O[c, m(A)]

(4) If a constant c ∈ [0, 1], and for any x ∈ X, max(c, h)(x) = max{c, h(x)}, then it holds that

∫ (OS)

A
max(c, h) ◦m = max

(∫ (OS)

A
c ◦m,

∫ (OS)

A
h ◦m

)

(5) If A1 ⊆ A2, then it holds that

125



Axioms 2023, 12, 734

∫ (OS)

A1

h ◦m ≤
∫ (OS)

A2

h ◦m

(6)

∫ (OS)

A
max(h1, h2) ◦m ≥ max

(∫ (OS)

A
h1 ◦m,

∫ (OS)

A
h2 ◦m

)

Proof of Theorem 4.

(1) For any λ ∈ [0, 1], it holds that for any x ∈ X, λ ≤ h1(x) ≤ h2(x).

Then,
h1λ = {x ∈ X: h1(x) ≥ λ} ⊆ {x ∈ X: h2(x) ≥ λ} = h2λ

So,
m(A ∩ h1λ) ≤ m(A ∩ h2λ).

Then, we have
O(λ, m(A ∩ h1λ)) ≤ O(λ, m(A ∩ h2λ))

Furthermore, we obtain

sup
λ∈[0,1]

O(λ, m(A ∩ h1λ)) ≤ sup
λ∈[0,1]

O(λ, m(A ∩ h2λ))

that is, ∫ (OS)

A
h1 ◦m ≤

∫ (OS)

A
h2 ◦m

(2) From m(A) = 0, we have m(A ∩ hλ) = 0.

Thus, it holds that

∫ (OS)

A
h ◦m = sup

λ∈[0,1]
O[λ, m(A ∩ hλ)] = sup

λ∈[0,1]
O[λ, 0] = 0

(3) For any x ∈ X, we define h(x) = c.

If λ ≤ c, then hλ= X. So,

O[λ, m(A ∩ hλ)] = O[λ, m(A ∩ X)] = O[λ, m(A)].

If λ > c, then hλ = Φ. So,

O[λ, m(A ∩ Φ)] = O[λ, m(Φ)] = O[λ, 0] = 0

Hence, we can obtain

∫ (OS)
A h ◦m = sup

λ∈[0,1]
O[λ, m(A ∩ hλ)]

= max

(
sup

λ∈[0,c]
O[λ, m(A ∩ hλ)], sup

λ∈[c,1]
O[λ, m(A ∩ hλ)]

)

= max

(
sup

λ∈[0,c]
O[λ, m(A)], sup

λ∈[c,1]
O[λ, m(Φ)]

)

= max(O[c, m(A)], 0)
= O[c, m(A)]

(4) If λ ≤ c, then for every x ∈ X,
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max(c, h)(x) = max(c, h(x)) ≥ c ≥ λ,

that is, max(c, h)λ = X.
Hence,

O[λ, m(A ∩max(c, h)λ)] = O[λ, m(A ∩ X)] = O[λ, m(A)].

If λ > c, then
{x ∈ X: max(c, h(x)) ≥ λ} = {x ∈ X: h(x) ≥ λ},

that is, max(c, h)λ = hλ.
Hence,

O[λ, m(A ∩max(c, h)λ)] = O[λ, m(A ∩ hλ)].

Furthermore, we obtain

sup
λ∈[0,1]

O[λ, m(A ∩max(c, h)λ)]

= max

(
sup

λ∈[0,c]
O[λ, m(A ∩max(c, h)λ)], sup

λ∈[c,1]
O[λ, m(A ∩max(c, h)λ)]

)

= max

(
O[c, m(A)], sup

λ∈[c,1]
O[λ, m(A ∩ hλ)]

)

And because

sup
λ∈[0,c]

O[λ, m(A ∩ hλ)] ≤ sup
λ∈[0,c]

O[λ, m(A)] ≤ O[c, m(A)]

we obtain
∫ (OS)

A max(c, h) ◦m = sup
λ∈[0,1]

O[λ, m(A ∩max(c, h)λ)]

= max

(
O[c, m(A)], sup

λ∈[0,1]
O[λ, m(A ∩ hλ)]

)

= max
(∫ (OS)

A c ◦m,
∫ (OS)

A h ◦m
)

(5) For any λ ∈ [0, 1] and A1 ⊆ A2, we have

(A1 ∩ hλ) ⊆ (A2 ∩ hλ), then m(A1 ∩ hλ) ≤ m(A2 ∩ hλ).

Thus, we can obtain

sup
λ∈[0,1]

O[λ, m(A1 ∩ hλ)] ≤ sup
λ∈[0,1]

O[λ, m(A2 ∩ hλ)]

that is, ∫ (OS)

A1

h◦m ≤
∫ (OS)

A2

h◦m

(6) For any x ∈ X, it holds that

max(h1, h2)(x) = max(h1(x), h2(x)).

So, for any λ ∈ [0, 1], we have

max(h1, h2)(x) ≥ h1(x) ≥ λ and max(h1, h2)(x) ≥ h2(x) ≥ λ.
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Then,
h1λ ⊆max(h1, h2)λ and h2λ ⊆max(h1, h2)λ.

Therefore, we get

m(A ∩ h1λ) ≤ m(A ∩max(h1, h2)λ) and m(A ∩ h2λ) ≤ m(A ∩max(h1, h2)λ).

Furthermore, we obtain

∫ (OS)

A
max(h1, h2) ◦m ≥

∫ (OS)

A
h1 ◦m,

∫ (OS)

A
max(h1, h2) ◦m ≥

∫ (OS)

A
h2 ◦m

that is, ∫ (Os)

A
max(h1, h2) ◦m ≥ max

(∫ (OS)

A
h1 ◦m,

∫ (OS)

A
h2 ◦m

)

�.

Example 4. Consider the decision-making problem of a commercial housing purchase. After
preliminary screening, the buyer needs to choose one of two properties. Assume that the evaluation
of the property mainly considers the attributes geographical location, floor, and orientation, which
are recorded as s1, s2, and s3. Let the attribute set X = {s1, s2, s3}. The importance of each attribute
is determined by experts and house buyers as follows:

m(Φ) = 0, m({s1}) = 0.7, m({s2}) = 0.5, m({s3}) = 0.4, m({s1, s2}) = 0.9, m({s1, s3}) = 0.6, m({s2, s3}) = 0.8, m({s1, s2, s3}) = 1

The buyer rates the two properties and the three attributes as follows:
First property: h1({s1}) = 0.9, h1({s2}) = 0.8, h1({s3}) = 0.5; second property: h2({s1}) = 0.6,

h2({s2}) = 0.9, h2({s3}) = 0.7.

Taking the importance of the attribute in the property evaluation as a measure of the
attribute set, it easy to see that it is non-additive. The h1 and h2 scores of the two properties
are regarded as functions of the property set X. The overlap function is defined by

O(x, y) = x2y2, for any x, y ∈ [0, 1].

Then the buyer’s composite score for the first property can be calculated by the
O-Sugeno integral of h1 over X, as follows:

∫ (OS) h1 ◦m =
3

max
i=1

O[h1(xi), m(Xi)]

= max{O(h1(x3), m(X)), O(h1(x2), m({x1, x2})), O(h1(x1), m({x1}))}
= max{0.52× 12, 0.82× 0.92, 0.92× 0.72}
= 0.5184

The buyer’s composite score for the second property can be calculated by the O-Sugeno
integral of h2 over X, as follows:

∫ (OS) h2 ◦m =
3

max
i=1

O[h2(xi), m(Xi)]

= max{O(h2(x1), m(X)), O(h2(x3), m({x2, x3})), O(h2(x2), m({x2}))}
= max{0.62× 12, 0.72× 0.62, 0.92× 0.52}
= 0.36

This shows that the buyer has a higher comprehensive score for the first property, so
he should buy the first property.
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4. O-Sugeno Integral Semantics of Fuzzy Quantifiers

For the sake of completeness, we recall several concepts of a first-order logical language
Lq with fuzzy quantifiers.

Definition 6. A first order logical language Lq contains the following:

(i) An enumerable set of individual variables: x0, x1, x2;
(ii) A set of predicate symbols: F = ∪∞

n=0Fn, where Fn indicates the set of all n-place predicate
symbols for every n ≥ 0, assuming that ∪∞

n=0Fn 6= Φ;
(iii) Propositional connectors: ~ and ∧; and
(iv) Parentheses: ( ) [41].

The following definition gives the syntax of language Lq:

Definition 7. The minimum set of symbol strings is called set Wff of well-formed formula if the
following conditions are satisfied:

(i) For every n ≥ 0, if F is an n-place predicate symbol and y1, . . ., yn are individual variables,
then F(y1, . . ., yn) is a well-formed formula;

(ii) If Q is a quantifier, x is an individual variable, and ϕ is a well-formed formula, then (Qx) ϕ is
also a well-formed formula; and

(iii) If ϕ, ϕ1, and ϕ2 are all well-formed formulas, then ~ϕ, ϕ1, and ∧ϕ2 are also well-formed
formulas [41].

The following definitions give the semantics of language Lq:

Definition 8. The following items comprise an interpretation I of the logic language:

(i) A measurable space (X, ℘), which is called the domain of the interpretation;
(ii) For every n ≥ 0, there exists an element xi

I in X corresponding to the individual variable xi;
and

(iii) For every n ≥ 0 and any F ∈ Fn, there exists a ℘n-measurable function FI: Xn→ [0, 1] [41].

Definition 9. Assume that I is an interpretation. Then the truth value TI (ϕ) of formula ϕ under I
based on O-Sugeno integrals is defined recursively as follows:

(i) If ϕ = F(y1, . . ., yn), then

TI (ϕ) = F(y1
I, . . ., yn

I).

(ii) If ϕ = (Qx) y, then

TI(ϕ) =
∫ (OS)

TI{·/x}(ψ) ◦QX

where X is the domain of I, TI {. / x}: X→ [0, 1] is a mapping such that

TI {. / x} (ϕ)(u) = TI {u/x} (ϕ), for every u ∈ X,

and I {u/x} is the interpretation which is different from I only in the assignment of the individual
variable x, that is,

yI {u/x} = yI and xI {u/x} = u, for every x, y ∈ X and x 6= y.

(iii) If ϕ = ~ ψ, then

TI (ϕ) = 1 − TI (ψ),
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and if ϕ = ϕ1 ∧ ϕ2, then

TI(ϕ) = min{TI(ϕ1), TI(ϕ2)} =
∫ (OS)

TI{·/x}(ϕ) ◦QX

Proposition 1. For any quantifier Q and for any formula ϕ ∈Wff, if O is an overlap function with
unit element 1 and I is an interpretation with the domain of a single point set X = {u}, then

TI ((Qx)ϕ) = TI (ϕ).

Proof of Proposition 1.

TI((Qx)ϕ) =
∫ (OS) TI{·/x}(ϕ) ◦QX

= sup
F⊆X

O[ inf
u∈F

TI{u/x}(ϕ), QX(F)]

= O[ inf
u∈ϕ

TI{u/x}(ϕ), QX(ϕ)] ∨O[TI{u/x}(ϕ), QX({u})]
= O[ inf

u∈ϕ
TI{u/x}(ϕ), 0)] ∨O[TI{u/x}(ϕ), 1)]

= O[TI{u/x}(ϕ), 1)]
= TI{u/x}(ϕ)

= TI(ϕ)

�.

The above proposition states that quantification degenerates in a single point domain.

Proposition 2. For any quantifier Q and for any formula ϕ ∈Wff, if O is an overlap function with
unit element 1, then for any interpretation I with domain X

(1) TI((∃x)ϕ) = sup
u∈X

TI{u/x}(ϕ) and

(2) TI((∀x)ϕ) = inf
u∈X

TI{u/x}(ϕ).

Proof of Proposition 2.
(1)

TI((∃x)ϕ) =
∫ OS TI{u/x}(ϕ) ◦ ∃X

= sup
F⊆X

O[ inf
u∈F

TI{u/x}(ϕ), ∃X(F)]

= O[ inf
u∈ϕ

TI{u/x}(ϕ), ∃X(ϕ)] ∨ sup
ϕ 6=F⊆X

O[ inf
u∈F

TI{u/x}(ϕ), ∃X(F)]

= O[ inf
u∈ϕ

TI{u/x}(ϕ), 0)] ∨ sup
ϕ 6=F⊆X

O[ inf
u∈F

TI{u/x}(ϕ), 1)]

= sup
ϕ 6=F⊆X

O[ inf
u∈F

TI{u/x}(ϕ), 1]

= sup
ϕ 6=F⊆X

inf
u∈F

TI{u/x}(ϕ)

= sup
u∈X

TI{u/x}(ϕ)
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(2)
TI((∀x)ϕ) =

∫ OS TI{u/x}(ϕ) ◦ ∃X
= sup

F⊆X
O[ inf

u∈F
TI{u/x}(ϕ), ∀X(F)]

= O[ inf
u∈X

TI{u/x}(ϕ), ∀X(X)] ∨ sup
F⊂X

O[ inf
u∈F

TI{u/x}(ϕ), ∀X(F)]

= O[ inf
u∈X

TI{u/x}(ϕ), 1] ∨ sup
F⊂X

O[ inf
u∈F

TI{u/x}(ϕ), 0]

= O[ inf
u∈X

TI{u/x}(ϕ), 1]

= inf
u∈X

TI{u/x}(ϕ)

�.

The above proposition shows that for the two quantifiers ∀ and ∃, the method of
calculating the truth value of a quantified proposition based on O-Sugeno integrals cor-
responds to the standard method, which shows that the O-Sugeno integral semantics of
fuzzy quantifiers is reasonable.

Example 5. We consider a comprehensive evaluation of students’ health status (see Example 43
in [41]). Assuming X is a set consisting of 10 students, X = {s1, s2, . . ., s10}, and H is a linguistic
predicate, “to be healthy”. The health evaluation of these students is shown in Table 1.

Table 1. Health condition of 10 students.

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

H (x) 0.95 0.1 0.73 1 0.84 0.7 0.67 0.9 1 0.81

Next, we choose the fuzzy quantifier Q = “most” to describe the overall health status
of this group of students.

Let QxH(x) be the proposition ”Most students are healthy” and I be the interpretation
given in Table 1, then TI ((Qx)H(x)) represents the truth value of QxH(x) under I calculated
by the O-Sugeno integral. According to Theorem 2 in Section 3 and Definition 4 in Section 4,
we have

TI((Qx)H(x)) =
∫ (OS)

TI{·/x}(H(x)) ◦QX =
10

max
i=1

O[h(xi), QX(Xi)]

where h(xi) is the result of rearranging the possible values of H(x) in non-decreasing order,
and Xi = {xj: i ≤ j ≤ 10} for 1 ≤ i ≤ 10. Table 2 presents the rearranged truth values h(xi) for
1 ≤ i ≤ 10.

Table 2. Rearranged truth values.

1 2 3 4 5 6 7 8 9 10

h (xi) 0.1 0.67 0.7 0.73 0.81 0.84 0.9 0.95 1 1

According to the definition of the quantifier “most” in Example 3, we calculate the
fuzzy measures of Xi as follows:

QX(Xi) = (|Xi|/|X|)3/2= [(11 − i)/10]3/2, for 1 ≤ i ≤ 10

Using the O-Sugeno integral in which the overlap function O(x, y) = x2y2 for every x, y
∈ [0, 1], the truth value of QxH(x) is calculated as follows:
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TI((Qx)H(x)) =
10

max
i=1

O[h(xi), QX(Xi)]

= 0.01∨ 0.327∨ 0.251∨ 0.183∨ 0.142∨ 0.088∨ 0.052∨ 0.024∨ 0.008∨ 0.001
= 0.327

If the overlap function by O(x, y) = min (
√

x,
√

y) for any x, y ∈ [0, 1], the truth value
of QxH(x) is calculated as follows:

TI((Qx)H(x)) =
10

max
i=1

O[h(xi), QX(Xi)]

= 0.316∨ 0.819∨ 0.837∨ 0.765∨ 0.682∨ 0.595∨ 0.503∨ 0.405∨ 0.299∨ 0.178
= 0.837

The above example shows that choosing different overlap functions to calculate the
true value of the proposition “Most students are healthy” under the interpretation will
lead to different results. In decision-making problems based on preference relationships,
different overlap functions can reflect different fuzzy preferences, which provide multiple
choices for decision-makers (they can manifest the preference relationship by choosing
different overlap functions).

Example 6. We consider a comprehensive evaluation of the weather conditions for a week (see
Example 42 in [41]). Let X be a set consisting of 7 days, X = {Sunday, Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday}. And let P1 and P2 represent respectively the linguistic predicates “to
be cloudy” and ”to be cold”. The respective weather conditions of the week are indicated in Table 3.
Suppose Q is a fuzzy quantifier, “most”, then the formula ϕ = (Qx)ψ = (Qx) (P1(x)∧~ P2(x))
represents “many days (in this week) are cloudy but not cold”.

Table 3. Truth values of linguistic predicates P1 and P2.

Sunday Monday Tuesday Wednesday Thursday Friday Saturday

P1
I 0.1 0 0.5 0.8 0.6 1 0.2

P2
I 1 0.9 0.4 0.7 0.3 0.4 0

With interpretation I and truth values P1 and P2 given in Table 3, then TI (ϕ) = TI ((Qx)
(P1(x) ∧~P2(x))) represents the truth value of ϕ = (Qx) (P1(x)∧~ P2(x)) under interpretation
I about the O-Sugeno integral. According to Theorem 2 in Section 3 and Definition 4 in
Section 4, we have

TI(ϕ) =
∫ (OS)

A
TI{·/x}[P

I
1 (x)∧ ∼ PI

2 (x)] ◦QX =
7

max
i1

O[h(xi), QX(Xi)]

where h(xi) is the result of the rearranged possible values of TI (P1(x)∧~ P2(x)) in non-
decreasing order, and Xi = {xj: i ≤ j ≤ 7} for 1 ≤ i ≤ 7. Table 4 presents the rearranged truth
values h(xi) for 1 ≤ i ≤ 7.

Table 4. Rearranged truth values.

1 2 3 4 5 6 7

h(xi) 0 0 0.2 0.3 0.5 0.6 0.6

According to the definition of the quantifier “most” in Example 3, fuzzy measures
about the fuzzy quantifier of Xi are calculated as follows:

QX(X1) = 1, QX(X2) = 6/7, QX(X3) = 5/7, QX(X4) = 4/7, QX(X5) = 3/7, QX(X6) = 2/7, QX(X7) = 1/7.
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The overlap function be defined as O(x, y) = min(
√

x,
√

y) for any x, y ∈ [0, 1], and by
using the O-Sugeno integral, the truth value of (Qx)(P1(x)∧~P2(x)) is calculated as follows:

TI(ϕ) =
7

max
i=1

O[h(xi), QX(Xi)]

= 0∨ 0∨ 0.447∨ 0.548∨ 0.655∨ 0.535∨ 0.378
= 0.655

5. Applying Integral Semantics of Fuzzy Quantifiers to MADM

The MADM based on fuzzy quantifiers is to select the decision object that performs
well on a certain proportion or quantification (such as most, many, more that half, etc.)
of attributes. In this section, we propose a MADM method based on O-Sugeno integral
semantics of fuzzy quantifiers to solve the MADM problem involving fuzzy quantifiers.
The specific process is described as follows.

The basic representations are as follows: S = {s1, s2, . . ., sm} is a set of m decision objects
(also known as feasible alternatives), G = {g1, g2, . . ., gn} is a set of n evaluation indicators
(also called attributes), and Q represents the fuzzy quantifiers such as most, many, more
than half, etc.

Step 1: Calculate the truth values of linguistic predicates under the interpretations and
rearrange them to obtain the standardized truth values.

The performance of each decision-making object on the attributes is regarded as an
interpretation I. For any x ∈ G, ϕ(x) means that the predicate meets the requirements of
attribute x. For each decision-making object s ∈ S, we compute the truth value of the
linguistic predicate ϕ(x) under interpretation I, and then rearrange all of them to get h(xi),
where for 1 ≤ i ≤ n − 1, h(xi) ≤ h(xi+1).

Step 2: Calculate fuzzy measures about the fuzzy quantifier.
According to the semantic analysis of the fuzzy quantifier, we can calculate a family of

fuzzy measures QX(Xi), where for 1 ≤ i ≤ n, Xi = {xj: i ≤ j ≤ n}.
Step 3: Calculate the truth value of the proposition for each decision object based on

O-Sugeno integral semantics.
We consider the proposition (Qx)ϕ(x) = “A decision object meets the requirements

of attributes with the fuzzy proportion Q”. Based on the O-Sugeno integral semantics
of fuzzy quantifiers, we calculate the truth values D(si) of proposition (Qx)ϕ(x) under its
interpretation for each decision-making object si ∈ S:

D(s) = TI((Qx)ϕ(x)) =
∫ (OS)

s ◦QX =
n

max
i=1

O[h(xi), QX(Xi)]

for any s ∈ G
Step 4: Obtain the optimal object by ranking the truth values of decision objects.

Example 7. Decision-making problem for selecting excellent students. The best of three high school
students will be recommended to enter a well-known university based on their mathematics, physics,
biology, chemistry, and literature grades. The relevant data in Table 5 show the grades for each
student in each course.

Table 5. Performance of three students.

Mathematics Physics Biology Chemistry Literature

s1 0.75 0.85 0.95 0.90 0.86
s2 0.85 0.92 0.91 0.95 0.86
s3 0.92 0.87 0.90 0.89 0.91

In order to obtain a comprehensive evaluation of each student, we consider the
proposition “(student) has performed well in almost all courses”. The domain is indi-
cated as X = {mathematics, physics, biology, chemistry, literature}, the fuzzy quantifier
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is Q = ”almost all”, and the predicate is ϕ (x) = “(student) performed well on x” for each
student, then the proposition “(student) performs well in almost all courses” is expressed
as the logic formula (Qx)ϕ(x).

Each student’s performance in the five courses is considered as an interpretation I.
For each student, we rearrange the truth values of the linguistic predicate ϕ(x) under its
interpretation I to get h(xi) for 1 ≤ i ≤ 5. Table 6 presents the rearranged truth values.

Table 6. Rearranged truth values.

1 2 3 4 5

s1 (h1(xi)) 0.75 0.85 0.86 0.9 0.95
s2 (h2(xi)) 0.85 0.86 0.91 0.92 0.95
s3 (h3(xi)) 0.87 0.89 0.90 0.91 0.92

According to the definition of “almost all” in Example 3, we can calculate fuzzy
measures of Xi = {xj: i ≤ j ≤ 5} for 1 ≤ i ≤ 5 about the fuzzy quantifier as follows:

QX(X1) = 1, QX(X2) = 0.64, QX(X3) = 0.36, QX(X4) = 0.16, QX(X5) = 0.04.

The overlap function is defined by O(x, y) = x y (x + y)/2 for any x, y ∈ [0, 1], then the
true value (Qx)ϕ(x) of each student under interpretation I based on the O-Sugeno integral
is calculated as follows:

D(s1) = TI(Qx)ϕ(x)) =
∫ (OS) s1 ◦QX =

5
max
i=1

O[h1(xi), QX(Xi)]

= 0.75× 1× (0.75 + 1)/2∨ 0.85× 0.64× (0.85 + 0.64)/2∨ 0.86× 0.36× (0.86 + 0.36)/2
∨0.9× 0.16× (0.9 + 0.16)/2∨ 0.95× 0.04× (0.95 + 0.04)/2
= 0.656∨ 0.405∨ 0.189∨ 0.076∨ 0.019
= 0.656.

D(s2) = TI(Qx)ϕ(x)) =
∫ (OS) s2 ◦QX =

5
max
i=1

O[h2(xi), QX(Xi)]

= 0.85× 1× (0.85 + 1)/2∨ 0.86× 0.64× (0.86 + 0.64)/2∨ 0.91× 0.36× (0.91 + 0.36)/2
∨0.92× 0.16× (0.92 + 0.16)/2∨ 0.95× 0.04× (0.95 + 0.04)/2
= 0.786∨ 0.413∨ 0.208∨ 0.079∨ 0.019
= 0.786.

D(s3) = TI(Qx)ϕ(x)) =
∫ (OS) s3 ◦QX =

5
max
i=1

O[h3(xi), QX(Xi)]

= 0.87× 1× (0.87 + 1)/2∨ 0.89× 0.64× (0.89 + 0.64)/2∨ 0.9× 0.36× (0.9 + 0.36)/2
∨0.91× 0.16× (0.91 + 0.16)/2∨ 0.92× 0.04× (0.92 + 0.04)/2
= 0.813∨ 0.436∨ 0.204∨ 0.078∨ 0.018
= 0.813.

The maximum value D(s3) can be obtained by ranking these true values, so student s3
is the best student.

Example 8. Decision-making problem about supplier selection. A factory needs to choose a supplier
for an important raw material, and the decision-maker intends to select from four alternative
suppliers, which are represented as s1, s2, s3, and s4. The decision-maker evaluates these suppliers in
four aspects, which are called decision attributes: product price, product quality, service level, and
reputation. The specific data are given in Table 7.
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Table 7. Attribute values of four suppliers.

Product Price Product Quality Service Level Reputation

s1 0.95 0.71 0.85 0.8
s2 0.8 0.76 0.92 0.83
s3 0.85 0.81 0.7 0.86
s4 0.76 0.9 0.75 0.84

In order to obtain a comprehensive evaluation of each supplier, we consider the
proposition “(supplier) meets the requirements for most attributes”. Domain X is indicated
as X = {product price, product quality, service level, reputation}, the fuzzy quantifier is
Q = ”most”, and the predicate is ϕ (x) = “(supplier) meets the requirement of x” for each
x ∈ X, then the proposition “(supplier) meets the requirements for most attributes” is
expressed as the logic formula (Qx)ϕ(x).

Each supplier’s performance on four attributes is considered as an interpretation I.
For each supplier, we rearrange the truth values of the linguistic predicate ϕ(x) under its
interpretation I to get h(xi) for 1 ≤ i ≤ 4. Table 8 presents the rearranged truth values.

Table 8. Rearranged truth values.

1 2 3 4

s1 (h1(xi)) 0.71 0.8 0.85 0.95
s2 (h2(xi)) 0.76 0.8 0.83 0.92
s3 (h3(xi)) 0.7 0.81 0.85 0.86
s4 (h4(xi)) 0.75 0.76 0.84 0.9

According to the definition of “most” in Example 3, we can calculate fuzzy measures
of Xi = {xj: i ≤ j ≤ 4} for 1 ≤ i ≤ 4 about the fuzzy quantifier as follows:

QX(X1) = 1, QX(X2) = (3/4)3/2 ≈ 0.650, QX(X3) = (1/2)3/2 ≈ 0.354, QX(X4) = (1/4)3/2 ≈ 0.125.

Let the overlap function O: [0, 1]2 → [0, 1] be defined as

O(x, y) =
1

1− xy + 1/xy

for any x, y∈ [0, 1], then the true value (Qx)ϕ(x) of each supplier under its interpretation I
based on the O-Sugeno integral is calculated as follows:

D(s1) = TI(Qx)ϕ(x)) =
∫ (OS) s1 ◦QX =

4
max
i=1

O[h1(xi), QX(Xi)]

= 1
1−0.71+1/0.71∨ 1

1−0.8×0.65+1/(0.8×0.65)
∨ 1

1−0.85×0.354+1/(0.85×0.354)∨ 1
1−0.95×0.125+1/(0.95×0.125)

= 0.589∨ 0.416∨ 0.248∨ 0.108
= 0.589.

D(s2) = TI(Qx)ϕ(x)) =
∫ (OS) s2 ◦QX =

4
max
i=1

O[h2(xi), QX(Xi)]

= 1
1−0.76+1/0.76 ∨ 1

1−0.8×0.65+1/(0.8×0.65)
∨ 1

1−0.83×0.354+1/(0.83×0.354) ∨ 1
1−0.92×0.125+1/(0.92×0.125)

= 0.643∨ 0.416∨ 0.243∨ 0.104
= 0.643.
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D(s3) = TI(Qx)ϕ(x)) =
∫ (OS) s3 ◦QX =

4
max
i=1

O[h3(xi), QX(Xi)]

= 1
1−0.7+1/0.7 ∨ 1

1−0.81×0.65+1/(0.81×0.65)
∨ 1

1−0.85×0.354+1/(0.85×0.354) ∨ 1
1−0.86×0.125+1/(0.86×0.125)

= 0.579∨ 0.421∨ 0.248∨ 0.098
= 0.579.

D(s4) = TI(Qx)ϕ(x)) =
∫ (OS) s4 ◦QX =

4
max
i=1

O[h4(xi), QX(Xi)]

= 1
1−0.75+1/0.75∨ 1

1−0.76×0.65+1/(0.76×0.65)
∨ 1

1−0.84×0.354+1/(0.84×0.354)∨ 1
1−0.9×0.125+1/(0.9×0.125)

= 0.632∨ 0.395∨ 0.246∨ 0.102
= 0.632.

Therefore, the evaluation shows that supplier s2 has the highest score, thus supplier s2
should be selected.

Example 9. Decision-making problem about logistics park location. A city wants to build a logistics
park, and the decision-maker plans to choose from eight alternatives, which are represented as si,
for 1 ≤ i ≤ 8. The decision-maker evaluates these alternatives in 12 aspects, which are called
decision attributes: urban support, traffic conditions, geological environment, land price, urban
traffic improvement, convenient delivery, surrounding facilities, neighboring enterprises, talent
attraction, logistics development space, prospect of environmental development, and predicted
economic development. The specific data are given in Table 9.

Table 9. Evaluation of 12 attributes.

s1 s2 s3 s4 s5 s6 s7 s8

Urban support 0.912 0.97 0.824 0.706 0.964 0.556 0.656 0.734
Traffic conditions 0.9 0.846 0.786 0.93 0.824 0.972 0.738 0.892

Geological environment 0.89 0.876 0.93 0.824 0.772 0.932 0.936 0.814
Land price 0.69 0.574 0.856 0.712 0.592 0.93 0.726 0.794

Urban traffic improvement 0.7 0.624 0.858 0.89 0.652 0.978 0.972 0.904
Convenient delivery 0.85 0.864 0.904 0.774 0.902 0.606 0.596 0.912

Surrounding facilities 0.648 0.774 0.912 0.842 0.804 0.67 0.806 0.796
Neighboring enterprises 0.806 0.828 0.912 0.774 0.812 0.604 0.772 0.804

Talent attraction 0.846 0.972 0.826 0.774 0.962 0.604 0.796 0.806
Logistics development space 0.796 0.712 0.912 0.804 0.806 0.608 0.778 0.952

Prospect of environmental
development 0.792 0.774 0.956 0.796 0.846 0.734 0.752 0.846

Predicted economic
development 0.808 0.808 0.816 0.842 0.792 0.774 0.804 0.912

In order to obtain a comprehensive evaluation of each alternative, we consider the
proposition “(alternative) meets the requirements of most attributes”. Domain X is indi-
cated as X = {urban support, traffic conditions, geological environment, land price, urban
traffic improvement, convenient delivery, surrounding facilities, neighboring enterprises,
talent attraction, logistics development space, prospect of environmental development,
predicted economic development}, the fuzzy quantifier is Q = ”most”, and the predicate
is ϕ (x) = “(alternative) meets the requirement of x” for each x ∈ X, then the proposition
“(alternative) meets the requirements of most attributes” is expressed as the logic formula
(Qx)ϕ(x).

The performance of each alternative on 12 attributes is considered as an interpretation
I. For each alternative, we rearrange the truth values of the linguistic predicate ϕ(x) under
its interpretation I to get h(xi) for 1 ≤ i ≤ 12. Table 10 presents the rearranged truth values.
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Table 10. Rearranged truth values.

s1 (h1(xi)) s2 (h2(xi)) s3 (h3(xi)) s4 (h4(xi)) s5 (h5(xi)) s6 (h6(xi)) s7 (h7(xi)) s8 (h8(xi))

1 0.648 0.574 0.786 0.706 0.592 0.556 0.596 0.734
2 0.69 0.624 0.816 0.712 0.652 0.604 0.656 0.794
3 0.7 0.712 0.824 0.774 0.772 0.604 0.726 0.796
4 0.792 0.774 0.826 0.774 0.792 0.606 0.738 0.804
5 0.796 0.774 0.856 0.774 0.804 0.608 0.752 0.806
6 0.806 0.808 0.858 0.796 0.806 0.67 0.772 0.814
7 0.808 0.828 0.904 0.804 0.812 0.734 0.778 0.846
8 0.846 0.846 0.912 0.824 0.824 0.774 0.796 0.892
9 0.85 0.864 0.912 0.842 0.846 0.93 0.804 0.904

10 0.89 0.876 0.912 0.842 0.902 0.932 0.806 0.912
11 0.9 0.97 0.93 0.89 0.962 0.972 0.936 0.912
12 0.912 0.972 0.956 0.93 0.964 0.978 0.972 0.952

According to the definition of “most” in Example 3, we can calculate fuzzy measures
of Xi = {xj: i ≤ j ≤ 12} for 1 ≤ i ≤ 12 about the fuzzy quantifier as follows:

QX(Xi) = (|Xi|/|X|)3/2 = [(13 − i)/12]3/2, for 1 ≤ i ≤ 12.

After the calculation, we can obtain:

QX(X1) = 1, QX(X2) ≈ 0.878, QX(X3) ≈ 0.761, QX(X4) ≈ 0.650, QX(X5) ≈ 0.544, QX(X6) ≈ 0.446,

QX(X7) ≈ 0.354, QX(X8) ≈ 0.269, QX(X9) ≈ 0.192, QX(X10) = 0.125, QX(X11) ≈ 0.068, QX(X12) ≈ 0.024.

The overlap function is defined as

O(x, y) = min(
√

x,
√

y)

for any x, y ∈ [0, 1], then the true value (Qx)ϕ(x) of each supplier under its interpretation I
based on the O-Sugeno integral is calculated as follows:

D(sj) = TI(Qx)ϕ(x)) =
∫ (OS)

sj ◦QX =
12

max
i=1

O[hj(xi), QX(Xi)]

for 1 ≤ j ≤ 8.
After the calculation, we obtain the comprehensive evaluation values of all alternatives,

as shown in Table 11.

Table 11. Comprehensive evaluation values of eight alternatives.

s1 s2 s3 s4 s5 s6 s7 s8

Evaluation
value 0.837 0.844 0.903 0.872 0.872 0.778 0.852 0.891

Therefore, the evaluation shows that alternative s3 has the highest score, thus alterna-
tive s3 should be selected.

Example 10. Decision-making problem about the purchase of a new energy car. A customer is
going to buy a new energy car. After preliminary screening, the customer has four alternatives.
These alternatives are represented as si, for 1 ≤ i ≤ 4. In order to purchase a satisfactory car, the
customer browsed the comments of each alternative on various network platforms and evaluated
them from seven aspects (attributes): appearance, interior, space, comfort, power, operation difficulty,
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and cost performance. Through text sentiment analysis, all evaluation information is converted into
specific data, as shown in Table 12.

Table 12. Evaluation of 7 attributes.

s1 s2 s3 s4

Appearance 0.8149 0.7320 0.8352 0.6786
Interior 0.6890 0.7302 0.7056 0.6810
Space 0.5969 0.3858 0.2555 0.3183

Comfort 0.7058 0.6030 0.7398 0.6429
Power 0.5708 0.5227 0.6259 0.4488

Operation difficulty 0.6632 0.6041 0.4893 0.4579
Cost performance 0.6765 0.4597 0.6123 0.4090

In order to obtain a comprehensive evaluation of each alternative, we consider the
proposition of “(alternative) meets the requirements for almost all attributes”. Domain X is
indicated as X = {appearance, interior, space, comfort, power, operation difficulty, cost per-
formance}, the fuzzy quantifier is Q = “almost all”, and the predicate is φ(x) = “(alternative)
meets the requirement of x” for each x∈X, then the proposition “(alternative) meets the
requirements of almost all attributes” is expressed as the logic formula (Qx)φ(x).

The performance of each alternative on seven attributes is considered as an inter-
pretation I. For each alternative, we rearrange the truth values of the linguistic predicate
φ(x) under its interpretation I to get h(xi) for 1 ≤ i ≤ 7. Table 13 presents the rearranged
truth values.

Table 13. Rearranged truth values.

s1 (h1(xi)) s2 (h2(xi)) s3 (h3(xi)) s4 (h4(xi))

1 0.5708 0.3858 0.2555 0.3183
2 0.5969 0.4597 0.4893 0.4090
3 0.6632 0.5227 0.6123 0.4488
4 0.6765 0.6030 0.6259 0.4579
5 0.6890 0.6041 0.7056 0.6429
6 0.7058 0.7302 0.7398 0.6786
7 0.8149 0.7320 0.8352 0.6810

According to the definition of “almost all” in Example 3, we can calculate fuzzy
measures of Xi = {xj: 1 ≤ i ≤ 7} for 1 ≤ i ≤ 7 about fuzzy quantifier as follows:

QX(Xi) = (|Xi|/|X|)2 = [(8 − i)/7]2, for 1 ≤ i ≤ 7.

After the calculation, we can obtain:

QX(X1) = 1, QX(X2) = 0.735, QX(X3) = 0.510, QX(X4) = 0.327, QX(X5) = 0.184, QX(X6) = 0.082, QX(X7) = 0.020

The overlap function is defined as

O(x, y) = min(
√

x,
√

y),

for any x, y∈ [0, 1], then the truth value (Qx)φ(x) of each alternative under its interpretation
I based on the O-Sugeno integral is calculated as follows:

D(sj) = TI((Qx)ϕ(x)) =
∫ OS

sj ◦QX =
7

max
i=1

O[hj(xi), QX(Xi)]

for 1 ≤ j ≤ 4.
After the calculation, we obtain the comprehensive evaluation values of all alternatives,

as shown in Table 14.
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Table 14. Comprehensive evaluation values of four alternatives.

s1 s2 s3 s4

Evaluation value 0.773 0.714 0.714 0.670

Therefore, the evaluation shows that alternatives s1 has the highest score, thus alterna-
tives s1 should be selected.

Example 11. Decision-making problem about red wine selection. There are currently four types of
red wines. In order to select the optimal one, the components (attributes) of each wine needs to be
measured and evaluated, including fixed acidity, volatile acidity, citric acid, residual sugar, chlorides,
free sulfur dioxide, total sulfur dioxide, sulfate and alcohol. The specific data are revealed in Table 15.
(data from open source datasets website).

Table 15. Evaluation of nine components.

s1 s2 s3 s4

Fixed acidity 0.9689 0.9222 0.8210 0.8327
Volatile acidity 0.4055 0.9843 0.7323 0.7323

Citric acid 0.6648 0.5369 0.8750 0.7983
Residual sugar 0.8147 0.6207 0.8922 0.9914

Chlorides 0.7727 0.4513 0.8312 0.7581
Free sulfur dioxide 0.8285 0.7531 0.3430 0.9456
Total sulfur dioxide 0.7143 0.8937 0.6246 0.9867

Sulfate 0.6903 0.8148 0.8726 0.9580
Alcohol 0.7607 0.7855 0.8020 0.8682

In order to obtain a comprehensive evaluation of each alternative, we consider the
proposition of “(alternative) meets the requirements for almost all attributes”. Domain X
is indicated as X = {fixed acidity, volatile acidity, citric acid, residual sugar, chlorides, free
sulfur dioxide, total sulfur dioxide, sulfate, alcohol}, the fuzzy quantifier is Q = “almost all”,
and the predicate is φ(x) = “(alternative) meets the requirement of x” for each x ∈ X, then
the proposition “(alternative) meets the requirements for almost all attributes” is expressed
as the logic formula (Qx)φ(x).

The performance of each alternative on nine attributes is considered as an interpre-
tation I. For each alternative, we rearrange the truth values of the linguistic predicate
φ(x) under its interpretation I to get h(xi) for 1 ≤ i ≤ 4. Table 16 presents the rearranged
truth values.

Table 16. Rearranged truth values.

s1 (h1(xi)) s2 (h2(xi)) s3 (h3(xi)) s4 (h4(xi))

Fixed acidity 0.4055 0.4513 0.3430 0.7323
Volatile acidity 0.6648 0.5369 0.6246 0.7581

Citric acid 0.6903 0.6207 0.7323 0.7983
Residual sugar 0.7143 0.7531 0.8020 0.8327

Chlorides 0.7607 0.7855 0.8210 0.8682
Free sulfur dioxide 0.7727 0.8148 0.8312 0.9456
Total sulfur dioxide 0.8147 0.8937 0.8726 0.9580

Sulfate 0.8285 0.9222 0.8750 0.9867
Alcohol 0.9689 0.9843 0.8922 0.9914

According to the definition of “almost all” in Example 3, we can calculate fuzzy
measures of Xi = {xj: 1 ≤ i ≤ 9} for 1 ≤ i ≤ 9 about the fuzzy quantifier as follows:

QX(Xi) = (|Xi|/|X|)2 = [(9− i)/9]2, for 1 ≤ i ≤ 9
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After the calculation, we can obtain:

QX(X1) = 1, QX(X2) = 64/81, QX(X3) = 49/81, QX(X4) = 4/9, QX(X5) = 25/81, QX(X6) = 16/81, QX(X7) = 1/9, QX(X8)
= 4/81, QX(X9) = 1/81.

The overlap function is defined as

O(x, y) = min(
√

x,
√

y),

for any x, y∈ [0, 1], then the truth value (Qx)φ(x) of each supplier under its interpretation I
based on the O-Sugeno integral is calculated as follows:

D(sj) = TI((Qx)ϕ(x)) =
∫ OS

sj ◦QX =
9

max
i=1

O[hj(xi), QX(Xi)]

for 1 ≤ j ≤ 4.
After the calculation, we obtain the comprehensive evaluation values of all alternatives,

as shown in Table 17.

Table 17. Comprehensive evaluation values of nine alternatives.

s1 s2 s3 s4

Evaluation value 0.815 0.778 0.790 0.871

Therefore, the evaluation shows that alternatives s4 has the highest score, and the
alternatives s4 should be selected.

6. Conclusions

In this study, we proposed O-Sugeno integrals and studied their basic properties. Since
overlap functions can be non-associative, the range of applications of O-Sugeno integrals is
greatly expanded. Fuzzy quantifiers can be quantified by fuzzy measures, and linguistic
quantifier propositions containing fuzzy quantifiers can be calculated their truth values
using O-Sugeno integrals. Then, we researched the O-Sugeno integral semantics of fuzzy
quantifiers. Finally, we proposed a MADM method based on O-Sugeno integral semantics
of fuzzy quantifiers to solve the MADM problem involving fuzzy quantifier-based.

In future work, we will introduce Choquet integrals based on overlap functions and
apply them to MADM problems involving fuzzy quantifiers.
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Abstract: In entrepreneurship management, the evaluation and selection of startups for acceleration
programs, especially technology-based startups, are crucial. This process involves considering
numerical and qualitative criteria such as sales, prior startup experience, demand validation, and
product maturity. To effectively rank startups based on the varying importance of these criteria, a
fuzzy multi-criteria decision-making (MCDM) approach is needed. Although MCDM methods have
been successful in handling complex problems, their application in startup selection and evaluating
criteria interrelationships from the accelerator perspective is underexplored. To address this gap, a
hybrid DEMATEL-ANP-based fuzzy PROMETHEE II model is proposed in this study, facilitating
startup ranking and examining interrelationships among factors. The resulting preference values are
fuzzy numbers, necessitating a fuzzy ranking method for decision-making. An extension of ranking
fuzzy numbers using a spread area-based relative maximizing and minimizing set is suggested to
enhance the flexibility of existing ranking MCDM methods. Algorithms, formulas, and a comparative
analysis validate the proposed method, while a numerical experiment verifies the viability of the
hybrid model. The final ranking of four startup projects is A4 < A1 < A3 < A2 which indicates that
startup project A2 has the highest comprehensive potential, followed by startup project A3.

Keywords: DEMATEL; ANP; PROMETHEE II; ranking fuzzy numbers; startups

MSC: 91B06

1. Introduction

Entrepreneurship has been recognized as a significant driver of economic growth,
both directly and indirectly, and as well as a catalyst for more investments in knowledge
creation and generation [1]. Notably, technology-based startups can transform the tradi-
tional economy into a digital economy through innovation [2]. The key determinants of
entrepreneurial success encompass a range of factors, including entrepreneurs’ networks,
leadership skills, financial competency, aptitude, knowledge, and support services [3].
Stam [3] defined the entrepreneurial ecosystem as a complex network of interconnected
actors and factors that collaborate to facilitate productive entrepreneurship. Among the fac-
tors, accelerators are the primary players in the entrepreneurial ecosystem and are actively
engaged in fostering innovation and nurturing startups. They develop startup projects,
including financing, services, networking, mentoring, and training [4]. Not only do accel-
erators support through networking services, mentorships, and educational endeavors,
but they also play a crucial role in augmenting the financial capabilities of entrepreneurial
firms. However, despite their critical role, exploring the selection process employed by ac-
celerators in identifying and evaluating entrepreneurial firms and the underlying selection
criteria remains relatively scarce [5].
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The initial phase in the process of the entry-boost-exit process is to select a suitable
startup. Accelerators whose financial gains are contingent upon the successful exit of the
startups in which they invest must exercise discernment when evaluating prospective
projects [5]. The selection process encompasses three distinct steps: soliciting startup
submissions, conducting comprehensive examinations and evaluations of the projects,
and, based on the input of key decision-makers (DMs), eliminating unpromising projects
while investing in those that exhibit promise [6]. Lin et al. [7] used the hesitant fuzzy
linguistic (HFL) multi-criteria decision-making (MCDM) method to evaluate startups from
a technology business incubator perspective, taking into account DMs’ psychology. The
researchers developed a ratio of score value to deviation degree to compare HFL term
sets and defined the HFL information envelopment efficiency, analysis, and preference
model. Their numerical example showed the method’s applicability, and they concluded
that it is more flexible and general. Nonetheless, it should be noted that this method
exclusively applies to HFL information environments with unrevealed criteria weight
values. Furthermore, the authors acknowledged the limited extent of research on ranking
startups within the existing literature.

The process of selecting startups for acceleration programs involves intricate consider-
ation of both qualitative and quantitative criteria. Qualitative criteria encompass factors
such as competitive advantage and demand validation, while quantitative criteria include
investment costs and team size. Consequently, the ranking of startups poses an MCDM
problem. MCDM, as a research field, contributes to the development and implementation of
decision-support methodologies and tools [8]. Additionally, MCDM methods are valuable
in resolving multiplex problems involving objectives, multiple criteria, and alternatives
rated by DMs. It is important to note that the DMs’ judgment through qualitative criteria
is crucial to the decision-making process, despite its inherent subjectivity and vagueness.
Fuzzy numbers (FNs) offer a more effective means of modeling human thought compared
to their crisp counterparts.

However, the conventional MCDM method solely adheres to classical mathematical
theory, and different methods must be improved or combined to adapt to actual MCDM [9].
Moreover, the amalgamation of DEMATEL-ANP-based fuzzy PROMETHEE II has not been
previously applied. This study aims to bridge this gap by investigating the technology
startup selection process from the perspective of accelerators, utilizing the DEMATEL-ANP-
based fuzzy PROMETHEE II approach. To the best of our knowledge, no prior research
has scrutinized this hybrid method in evaluating startups. Accordingly, our study explores
its feasibility and effectiveness. A ranking method based on spread areas is proposed
with formulas to support the decision-making process, and a comparison is conducted to
demonstrate the method’s advantages. Subsequently, a numerical example is presented to
elucidate the complete process of the hybrid method.

The subsequent sections of this paper are structured as follows. Section 2 provides
a literature review of the accelerator, selection criteria, and MCDM techniques. Section 3
introduces the classical concept of fuzzy set theory and outlines the hybrid DEMATEL-ANP-
based fuzzy PROMETHEE II method. In Section 4, a comparative analysis is presented
to underscore the advantages of the ranking technique. Section 5 presents a numerical
example that illustrates the applicability and implementation of the hybrid approach in
real-world problems. Finally, Section 6 concludes the work by summarizing key findings
and suggesting potential avenues for future research.

2. Literature Review
2.1. Accelerators and the Startup Selection Approach

In the last 15 years, accelerators have boomed due to their effects on startup de-
velopment, entrepreneurial ecosystem formation, and innovation support [10]. The Y-
Combinator, the first accelerator founded by Paul Graham in 2005, was a milestone for
the growth of startup accelerators worldwide. By April 2023, according to Seed-DB,
8153 companies were accelerated with funding of USD 88,874,580,633 [11]. Worldwide
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high-impact accelerators include Y-Combinator, with 1801 companies accelerated and
USD 52,211,811,615 of funding, Techstars with 1336 companies accelerated and USD
12,690,624,018 of funding, and 500 startups with 1686 companies accelerated and USD
4,030,020,819 of funding. In the entrepreneurial ecosystem, many organizations support
startups in their early stages with financial and nonfinancial investment, including in-
cubators, accelerators, angel investors, venture capitalists, and governments. However,
accelerators are the primary players with their mission of fostering innovative ecosystems
and nurturing startups.

Accelerators provide mentoring and networking for selected startups in their intensive
programs that develop startups’ ability to seek investors. “Accelerators are organizations
that serve as gatekeepers and validators of promising business innovations through their
embeddedness in their respective ecosystems and, thus, play an active and salient role in
socioeconomic and technological advancement” ([10], p. 2). Moreover, various accelera-
tors require equity to counterbalance the support services. For example, the structured
investment of one of the biggest accelerators, 500 startups, is USD 150,000 for 6% of their
companies [12]. The primary return of profit-driven accelerators is from initial public
offerings or acquisitions when a startup exits [13]. Therefore, accelerators must be selective
when evaluating startup projects. The filtering process is crucial yet challenging for both
accelerators and startups; however, research on the selection criteria and process is still
lacking [5].

When investigating the Singapore-based Joyful Frog Digital Incubator (JFDI), Yin and
Luo [5] adopted an RWW framework for innovation projects to apply to the accelerator
program’s assessment. Using a scoreboard of 30 criteria based on the RWW framework,
they identified eight vital criteria in the initial screening process. Among these factors, mar-
ket attractiveness factors explain the existing markets and potential customers, including
“demand validation”, “customer affordability”, and “market demographics”, and product
feasibility factors include “concept maturity”, “sales and distribution”, and “product matu-
rity”. In addition, product advantage factors, such as “value proposition” and “sustainable
advantage”, and team competence factors, such as “technology expertise”, “prior startup
experience”, and “feedback mechanism”, were crucial. Furthermore, “growth strategy”
was considered an essential criterion.

Mariño-Garrido et al. [14] used statistical methods on a Spanish accelerator case study
analysis to determine the essential criteria for selecting an entrepreneurial project. Out
of the nine criteria investigated, six were significant: speed of acceleration, the extent of
innovation, the extent of investment ability, creativity, negotiation, and the extent of team
consistency.

Learning about ranking startup methods is crucial for investors, incubators, accelera-
tors, and other stakeholders as it facilitates effective decision-making, risk management,
resource allocation, and benchmarking and ultimately increases the chances of success in
the dynamic and competitive startup ecosystem. More recent studies about startups can be
found at [15–17].

2.2. DEMATEL

MCDM methods assist in resolving complex problems that entail multiple objectives,
criteria, and alternatives evaluated by decision-makers (DMs). A review of MCDM methods
can be found in various studies [18–21].

DEMATEL [22,23] is a constructive method for identifying cause–effect-linked com-
ponents of a multiplex system. Using a visual systemic model, the technique evaluates
interrelationships among criteria and uncovers the critical interrelationships. Moraga
et al. [24] used DEMATEL to create a quantitative strategy map identifying causal rela-
tionships. Using an MCDM method, the authors developed the final strategy map with
qualitative and quantitative approaches that improve and assist managers’ assessment
process. Altuntas and Gok [25] applied DEMATEL to making correct quarantine decisions,
aiming to reduce the burden of the COVID-19 pandemic on the hospitality industry. In 2023,
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Wang et al. [26] suggested a new approach for group recommendation, named GroupRecD,
which utilizes data mining and the DEMATEL technique to allocate user weights scien-
tifically and rationally. Si et al. [27] conducted a systematic review of DEMATEL. They
claimed that the DEMATEL has advantages, including effectively analyzing the direct
and indirect effects among factors, visualizing the interdependent relationships between
factors by network relation maps, and identifying critical criteria. However, the review
also pointed out that DEMATEL cannot achieve the desired level of alternatives, as in
Vise Kriterijumska Optimizacija I Kompromisno Resenje (VIKOR) method, or produce
partial ranking sequences, as in the ELimination Et Choix Traduisant la REalite (ELECTRE)
method. Hence, the DEMATEL was combined with different MCDM methods to obtain
appropriate outcomes [27].

2.3. AHP

Saaty [28] introduced both the AHP and ANP methods. The AHP method [29] as-
sumes criteria independence and analyzes decision-making problems in a hierarchical
criteria structure. To overcome this limitation, Saaty [30,31] developed the ANP method,
which considers dependencies and feedback among elements in a network structure to
obtain criteria weights. A systematic review of both methods can be found in [32]. The ANP
method has been applied to various fields of research. Galankashi et al. [33] amalgamated
fuzzy logic and linguistic expression with ANP for investment portfolio selection. When
sorting portfolios, multiple studies have focused on financial factors; however, the results
indicated that other factors, such as risk, the market, and growth, are essential. The study
demonstrated that ANP could present the internal relations between criteria, which is
critical in decision-making. In 2023, Saputro et al. [34] utilized Multi-Dimensional Scaling
(MDS) and ANP to examine the sustainability approach for developing rural tourism in
Panjalu, Ciamis, Indonesia. Kadoić [35] noted that the ANP method effectively analyzes
interconnections and consistency within a decision system. When the criteria are interde-
pendent, only the ANP technique can be used [36]. When rating startups, the evaluation
values may change over time, thus a network structure to express interdependencies is
required, and the original weight of each criterion should be turned into the comprehensive
weight. As a result, ANP is chosen over AHP to deal with this problem more effectively.

2.4. Fuzzy PROMETHEE II

The Preference Ranking Organization Method for Enrichment Evaluations (PROMETHEE),
developed by Brans [37], is one of the most common MCDM methods. PROMETHEE was
extended to decision-making in many studies, such as PROMETHEE I for partial rank-
ing and PROMETHEE II for complete ranking [38]. The method has undergone many
modifications and improvements to assist humans in decision-making [39]. Among them,
PROMETHEE II is the most frequently used because it allows a DM to establish a full
ranking [40]. Numerous studies have applied hybrid models combining the PROMETHEE
method and other MCDM techniques. Khorasaninejad et al. [41] used a hybrid model to
determine the best prime mover in a thermal power plant. The model combined fuzzy
ANP-DEMATEL to assess criteria importance and relationships and PROMETHEE to rank
alternatives. Govindan et al. [42] used an integrated Fuzzy Delphi, a DEMATEL-based ANP
(DANP), and a PROMETHEE method to choose the best supplier based on corporate social
responsibility practices and to identify the key factors. Seikh and Mandal [40] proposed an
integrated approach, combining PROMETHEE II and SWARA within a fuzzy environment,
to streamline the selection of the best bio-chemistry waste management organization. The
effectiveness and practicality of their approach were demonstrated through a case study.
Hua and Jing [43] extended the classical PROMETHEE method by incorporating the gener-
alized Shapley value in interval-valued Pythagorean fuzzy sets to achieve a more rigorous
ranking outcome. To verify the effectiveness of this approach, a case study is conducted to
evaluate sustainable suppliers.
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The comprehensive literature review conducted in this study revealed the effectiveness
and reliability of combining DEMATEL, ANP, and PROMETHEE methods in assisting
decision-making in various fields. However, despite the proven success of these individual
methods, the amalgamation of DEMATEL-ANP-based fuzzy PROMETHEE II has not been
previously applied. Given the intricate nature of rating startups, a robust hybrid approach
is essential to effectively address the complexities involved. Considering the multitude
of qualitative and quantitative criteria that need to be evaluated, the incorporation of
DEMATEL in the initial stage becomes crucial. DEMATEL allows for the examination of
cause–effect relationships among these criteria, facilitating the identification and elimi-
nation of nonsignificant factors. Subsequently, ANP emerges as the optimal choice for
determining criterion weights, as it accounts for criterion interdependencies and provides
a comprehensive weighting scheme. To establish a complete ranking, the fuzzy-based
PROMETHEE II method is employed with utmost precision. This method accommodates
the inherent uncertainties and subjectivity in decision-making processes, enabling a more
robust assessment of the startups. By integrating DEMATEL, ANP, and PROMETHEE
II within a fuzzy framework, this hybrid approach offers a novel and effective solution
for the evaluation and ranking of startups, particularly in contexts where qualitative and
quantitative criteria interact and require comprehensive analysis.

2.5. Ranking Fuzzy Numbers

Lofi Zadeh [44] introduced fuzzy sets to efficiently model human thought. Fuzzy
sets have widely affected many areas of scientific research, including mathematics [45],
engineering [46], business, and management [47]. A literature review of the historical evo-
lutions of fuzzy sets, their application, and their frequencies was conducted by Kahraman
et al. [48].

Ranking FNs became a critical problem in linguistic decision-making. Jain [49] pro-
posed the first FN ranking method based on maximizing sets. Since then, various methods
have been presented, such as the Pos index and its dual Nec index [50], maximizing set and
minimizing set [51], area compensation [52], an area method using a radius of gyration [53],
deviation degree [54], defuzzified values, heights and spreads [55] and mean of relative
values [56].

Wang et al. [54] proposed a ranking method based on left and right deviation degrees
derived from maximal and minimal reference sets. Additionally, Wang and Luo [57]
introduced an area ranking method using positive and negative ideal points, which they
claimed more effectively discriminated FNs than Chen’s maximizing and minimizing
sets [51]. Asady [58] pointed out that the methods of Wang et al. [54] could not correctly
rank fuzzy images. Therefore, he proposed a revised method using parametric forms.
Nejad and Mashinchi [59] developed a technique based on the left and right areas to
improve the deviation degree method. Yu et al. [60] proposed an extension using an
epsilon-deviation degree. Nevertheless, Chutia [61] observed that the approach of Yu et al.
still presented limitations in discriminating FNs. Chutia suggested a modified method
constituting the ill-defined magnitude value and the angle of the fuzzy set. However, this
method cannot be used when FNs have non-linear left and right membership functions [61].
Ghasemi et al. [62] discovered a disadvantage in both the deviation degree method [54]
and area ranking based on positive and negative ideal points [57]. The author accordingly
introduced an improved approach that considers DMs’ risk attitudes. Moreover, numerical
examples that demonstrated the efficiency of ranking the proposed method’s FNs were
provided.

Chu and Nguyen [63] suggested a method to improve Chen’s [51] maximizing and
minimizing sets to rank FNs. In their study, comparative examples were provided. An
experiment demonstrated that the relative maximizing and minimizing set (RMMS) could
consistently and logically rank the final fuzzy values of alternatives. This study proposed a
fuzzy ranking approach inspired by area ranking and using four spread areas. Based on
the RMMS model, the areas were measured and integrated with a confidence level µ to
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assist the FN ranking procedure. The DMs provided confidence levels, which indicated
their confidence toward alternatives.

3. Model Establishment
3.1. Fuzzy Set Theory

Fuzzy Sets

A = {(x, fA(x))|x ∈ U} where x is an element in the space of points U, A is a fuzzy
set in U, fA(x) is the membership function of A at x [44]. The larger fA(x), the stronger the
grade of membership for x in A.

Fuzzy Numbers

A real FN A is described as any fuzzy subset of the real line R with a membership
function fA that possesses the following properties [50]. fA is a continuous mapping
from R to [0, 1], fA(x) = 0 for all x ∈ (−∞, a] . fA is strictly increasing on the left mem-
bership function [a, b] and is strictly decreasing on the right membership function [c, d].
fA(x) = 1 for all x ∈ [b, c] and fA(x) = 0 for all x ∈ [d, ∞), where a, b, c, and d are real
numbers.

We may let a = −∞, or a = b, or b = c, or c = d, or d = +∞. Unless elsewhere defined, A
is assumed to be convex, normalized, and bounded, i.e.,−∞ < a, d < ∞. A can be indicated
as [a, b, c, d], a ≤ b ≤ c ≤ d. Let f L

A(x), a ≤ x ≤ b represent and f R
A(x), c ≤ x ≤ d represent

the left and the right membership function of A, respectively, and fA(x) = 1, b ≤ x ≤ c.
In this research, TFNs will be used. The FN A is a TFN if its membership function fA

is given as follows [51].

fA(x) =





(x− a)/(b− a), a ≤ x ≤ b,
(x− c)/(b− c), b ≤ x ≤ c,
0, otherwise,

(1)

where a, b, and c are real numbers.

α-Cuts

The α-cuts of FN A can be determined as Aα = {x| fA(x) ≥ α} , α ∈ [0, 1], where
Aα is a non-empty bounded closed interval is contained in R and can be denoted by
Aα =

[
Aα

l , Aα
u
]
, where Aα

l are lower bounds and Aα
u are upper bounds [64].

Arithmetic Operations on Fuzzy Numbers

Given FNs A and B, A, B ∈ R+, Aα =
[
Aα

l , Aα
u
]

and Bα =
[
Bα

l , Bα
u
]
. By the interval

arithmetic, some primary operations of A and B can be described as follows [64].

(A⊕ B)α = [Aα
l + Bα

l , Aα
u + Bα

u] (2)

(A	 B)α = [Aα
l − Bα

u, Aα
u − Bα

l ] (3)

(A⊗ B)α = [Aα
l · Bα

l , Aα
u · Bα

u] (4)

r(A)α = [r · Aα
l , r · Aα

u] , r ∈ R+ (5)

Linguistic Values

A linguistic variable is a variable whose values are represented in linguistic terms. It
is advantageous for dealing with complicated matters or is ambiguous to be rationally de-
scribed in traditional quantitative information [51,65]. DMs are assumed to have agreed to
weight alternatives over criteria using linguistic values such as Extremely Poor (EP), Very Poor
(VP), Poor (P), Moderate (M), High (H), Very High (VH), and Extremely High (EH) which can
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also be represented by TFNs such as EP = (0,0.1,0.25), VP = (0.1,0.2,0.35), P = (0.25,0.35,0.5),
M = (0.35,0.5,0.65), H = (0.5,0.65,0.75), VH = (0.65,0.8,0.9), and EH = (0.75,0.9,1).

3.2. Relative Maximizing and Minimizing Sets

Chu and Nguyen [63] suggested a technique to improve Chen’s [51] maximizing and
minimizing set to rank FNs. In their study, numerical comparisons and examples were
conducted to demonstrate that the RMMS can consistently and logically rank fuzzy values
of alternatives. The RMMS [63] technique is introduced as follows.

Assume there are n FNs Ai = (ai, bi, ci), i = 1, . . . , n, n ≥ 2, fAi ∈ R. xmin = infS,
xmax = supS, S = Un

i=1Si, Si =
{

x
∣∣ fAi (x) > 0

}
. FNs Ag = (ag, bg, cg) and Al = (al , bl , cl)

are added to the right and left sides of the above n FNs Ai = (ai, bi, ci), i = 1, . . . , n, re-
spectively. Assume xmin = a1, xmax = cn, cg ≥ xmax and al ≤ xmin. Let δR = cg − xmax and
δL = xmin − al , where xmax = cn, xmin = a1, δR ≥ 0, δL ≥ 0. The new supremum element is
defined as x′max = xmax + δ and the new infimum element is defined as x′min = xmin − δ,
where δ = max{δL, δR}.

The relative maximizing set M′ and the relative minimizing set N′ are determined as:

fM′(x) =





(
xRi
−(xmin−δ)

(xmax+δ)−(xmin−δ)

)k

0, otherwise
, (xmin − δ) ≤ xRi ≤ (xmax + δ) (6)

fN′(x) =





(
xLi
−(xmax+δ)

(xmin−δ)−(xmax+δ)

)k

0, otherwise
, (xmin − δ) ≤ xLi ≤ (xmax + δ) (7)

Herein, k is set to 1. The value of k can be varied to suit the application. The total
relative utility of each Ai is denoted as in Equation (8).

UT′ (Ai) =
1
4
[URi1 (Ai) + ((1−ULi1 (Ai)) + ULi2 (Ai) + ((1−URi2 (Ai))], i = 1, . . . , (n + 2) (8)

where the first right relative utility URi1(Ai) = sup
(

fM′(x) ∧ f R
Ai
(x)
)

, the first left rel-

ative utility ULi1(Ai) = sup
(

fN′(x) ∧ f L
Ai
(x)
)

, the second left relative utility ULi2(Ai) =

sup
(

fM′(x) ∧ f L
Ai
(x)
)

and the second right relative utility URi2(Ai) = sup
(

fN′(x) ∧ f R
Ai
(x)
)

.

3.3. Spread Area-Based RMMS

In 2011, Nejad and Mashinchi [59] pointed out the shortcomings of Wang et al.’s [54]
deviation degree method that when the values of the left area, the right area, the transfer
coefficient λi or 1− λi is zero, the ranking result is inaccurate. Hence, to prevent these
problems from occurring, expanding xmax and xmin is needed when ranking. Chu and
Nguyen [63] also found out that when adding a new FN, xmax and xmin must be modified
by adding equal values to consider both sides of membership functions. Consequently, four
utilities need to be accounted for to reduce the inconsistency of Chen’s [51] maximizing
and minimizing set. However, if a set of FNs with xmin = 3, then a new FN Ag = (3, 3, 3) is
added, there is no extended value applicable in this situation. Therefore, this work suggests
integrating confidence levels in ranking FNs to solve the mentioned problems.

Yeh and Kuo [66] in their research on evaluating passenger service quality of Asia-
Pacific international airports, suggested incorporating a DM’s confidence level α and
a preference index λ to obtain an overall service performance index. In the evaluation
procedure, DMs give the value α, based on the concept of an α-cut, with respect to the
criteria’s weights and alternative performance ratings.

This work proposes to use confidence level in a new perspective, which is confidence
level, symbolized as µ, will be integrated into measuring areas spreading based on the
RMMS model to assist the ranking FNs procedure, as shown in Figure 1. First, h experts
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in the group of DMs, D = {D1, . . . , De, . . . , Dh} are asked to specify their confidence µDe ,

representing their confidence for alternatives to obtain µ =

h
∑
e

µDe

h , µDe ∈ [0, 1]. The greater
the µ, the more assured is the decision-maker on the alternative.
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Since DMs’ confidence in an alternative will influence their confidence level in other
alternatives, the confidence level µ, calculated by the average of all DMs’ evaluation, should
be engaged simultaneously with the immensity of the RMMS concept. Accordingly, value
µ is integrated by shifting the RMMS’s infimum element to the left, provided that the new
infimum element is obtained as x′′min = x′min − µ. Similarly, the average value of µ will be
integrated by shifting the RMMS’s infimum element to the right, provided that the new
supremum element is obtained as x′′max = x′max + µ.

The coordinates of the intersection of the Ai with the relative maximizing set M′′ and
the relative minimizing set N′′ can be seen in Figure 1 and are determined as the following
equations.

xLi1 =
bx′′max − ax′′min

b− a− x′′min + x′′max
(9)

xLi2 =
bx′′min − ax′′max

x′′min − x′′max + b− a
(10)

xRi1 =
bx′′min − cx′′max

b− c + x′′min − x′′max
(11)

xRi2 =
cx′′min − bx′′max

c− b + x′′min − x′′max
(12)

The first left spread area SLi1 is defined as follows.

SLi1(Ai) =
∫ xLi1

x′′min
1dx−

∫ xLi1

x′′min
f ′′N(x)dx

SLi1(Ai) = xLi1 − x′′min −
∫ xLi1

x′′min

(
x−x′′max

x′′min−x′′max

)
dx

= xLi1 − x′′min −
(

x2

2(x′′min−x′′max)
− xx′′max

x′′min−x′′max

)∣∣∣∣
xLi1

x′′′min

= xLi1 − x′′min −
(

x2
Li1
−2xLi1

x′′max

2(x′′min−x′′max)
− x′′min

2−2x′′minx′′max

2(x′′min−x′′max)

)

=
(xLi1

−x′′min)(2x′′min−2x′′max−xLi1
−x′′min−2x′′max)

2(x′′min−x′′max)
=

(xLi1
−x′′min)(x′′min−4x′′max−xLi1

)

2(x′′min−x′′max)

(13)

If the first left spread area SLi1 is larger, the fuzzy number Ai is larger. The second
left spread area SLi2 is defined as Equation (14); and if SLi2 is larger, the fuzzy number
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Ai is also larger. The first right spread area SRi1 is defined as Equation (15); but if SRi1 is
larger, the fuzzy number Ai is smaller. Finally, the second right spread area SRi2 is defined
as Equation (16); and if SRi2 is larger, the fuzzy number Ai is also smaller. Therefore,
the above four areas must be considered when ranking FNs. The detailed derivation for
Equations (14)–(16) is placed in Appendix A.

SLi2(Ai) =
∫ xLi2

x′′min

f ′′M(x)dx=
(xLi2 − x′′min)

2

2(x′′max − x′′min)
(14)

SRi1(Ai) =
∫ x′′max

xRi1

f ′′M(x)dx=
(x′′max + xRi1)(x′′max − xRi1 − 2x′′min)

2(x′′max − x′′min)
(15)

SRi2(Ai) =
∫ x′′max

x′′Ri2

1dx−
∫ x′′max

x′′Ri2

f ′′N(x)dx=
(
x′′max − xRi2

)(
2x′′min − x′′max + xRi2

)

2
(

x′′min − x′′max
) (16)

Finally, the ranking value of each Ai is determined as Equation (17) to classify FNs.
An FN is more prominent if its value is larger.

V(Ai) =
1
4
(
SL1(Ai)− SR1(Ai) + SL2(Ai)− SR2(Ai)

)
(17)

3.4. The Hybrid DEMATEL-ANP Based Fuzzy PROMETHEE II Model
3.4.1. DEMATEL

The DEMATEL method is first used to demonstrate the interrelationships between
criteria and produce the influential network relationship map. The constructing equations
of the classical DEMATEL model can be summarized as follows [67].

Assume that h experts in a decision group D = {D1, D2, . . . , Dh} are asked to indicate
the direct effect of factor (criterion) Ci has on factor (criterion) Cj in a system with m
factors (criteria) C = {C1, C2, . . . , Cm} using an integer scale of No Effect (0), Low Effect (1),
Medium Low Effect (2), Medium Effect (3), Medium High Effect (4), High Effect (5) and
Extremely Strong Effect (6). Next, the individual direct-influence matrix Ze =

[
ze

ij

]
m×m

provided by the eth expert can be constructed, where all main diagonal components are
equal to zero and ze

ij represent the respondent’s evaluation of DM on the degree to which
criterion Ci affects Cj.

Step 1. Generating the group direct-influence matrix. By aggregating h DMs’ judg-
ments, the group direct-influence matrix Z =

[
zij
]

m×m can be constructed by

Z =
1
h

h

∑
e=1

zij, i, j = 1, 2, . . . , m. (18)

Step 2. Acquiring the normalized direct-influence matrix. At this step, the normalized
direct-influence matrix by the eth expert is Xe =

[
xe

ij

]
m×m

, e = 1, 2, . . . h.

The following equations calculate the average matrix X

X =
(x1 ⊕ x2 ⊕ . . .⊕ xh)

h
(19)

xij =
∑h

e=1 xe
ij

h
(20)

Step 3. Computing the total-influence matrix T. The total-influence matrix T =
[
tij
]

m×m
is computed as the summation of the direct impacts and all the indirect impacts by
Equation (21)

T = X + X2 + X3 + . . . + Xh = X(I − X)−1, (21)
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when h→ ∞ in the identity matrix, known as I.
Step 4. Setting up a threshold value and producing the causal diagram.
The sum of columns and the sum of rows are symbolized as R and D, respectively,

within the total-relation matrix T =
[
tij
]
, {i, j ∈ 1, 2, . . . , m} by the following formulas:

D = [di]m×1 =

[
m

∑
j=1

tij

]

m×1

(22)

R =
[
rj
]

1×m =

[
m

∑
i=1

tij

]

1×m

(23)

The horizontal axis vector (D + R) called “Prominence” demonstrates the power
of influence degree that is given and received by the criteria. The vertical axis vector
(D − R) named “Relation” shows the system’s criteria effect. If (D − R) is positive, the
criterion Cj influences other criteria and can be grouped into a causal group; if (D + R) is
negative, the criterion Cj is being influenced by the other criteria and can be grouped into
an effect group. A causal diagram can be produced by mapping the (D + R, D − R) dataset,
yielding valuable assessment perception. A threshold value can be defined to screen out
the negligible factors [68,69]. In this work, factors that have a value higher than the average
value of the “Prominence” (D + R) and/or (D − R) is positive are selected to use in the next
step.

3.4.2. ANP

Next, the present work applied the ANP method to produce the weights of the criteria.
The generalized ANP process from previous studies is summarized as follows [30,70,71].
In this work, a set of importance scales [28] is adopted to weight each criterion using
linguistic values, including 1—Identically Important (II), 3—Moderately Important (MI),
5—Highly Important (HI), 7—Very Highly Importance (VHI), 9—Extremely Important (EI), and
2, 4, 6, 8 are the median values. Reciprocal values are used for inverse comparison.

Step 1. Obtaining Pairwise Comparison Matrix (PCM). Assume that h experts in a decision
group D = {D1, D2, . . . , Dh} are responsible for evaluating criteria C = {C1, C2, . . . , Cm}
that are screened through the previous step. The PCM is generated by comparing the ith
row with the jth column. The weights of components are formed as shown in matrix A.
The diagonal components with identical importance are illustrated by 1.

A =
[
aij
]

m×m




1 a12 . . . a1m
a21 1
... 1

am1 1




As there are several DMs, the pairwise comparison values from different DMs may
vary. Experts can decide together, or each assessment can be integrated into a PCM by the
geometric mean GM as in Equation (24).

GM = j
√

i1i2i3 . . . ij (24)

Step 2. Computing eigenvectors and the unweighted supermatrix. In this step, eigen-
vector Ei is obtained through Equation (25), which is computed by each row’s average.

Ei =
1
m

m

∑
j=1

aij (25)

Then, the eigenvectors of each matrix are consolidated to form the unweighted matrix.
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Step 3. Examining the consistency. To guarantee consistency among the judgments
of the DMs, it is necessary to test the consistency by three metrics, including Consistency
Measure (CM), Consistency Index (CI), and Consistency Ratio (CR).

The general form for CM values is obtained through Equation (26).

CMj =
aj × E

Ej
, (26)

where j = 1,2,3, . . . , m, aj is the corresponding row of the comparison matrix, E is Eigenvector
and Ej represents the corresponding component in E.

Then, λmax is obtained by the average of the CM vector. The CI is calculated as shown
in Equation (27).

CI =
λmax −m

m− 1
(27)

Next, a random index, as listed in Table 1 [28], is computed following the order of the
PCM. Consequently, the Consistency Ratio CR is obtained by Equation (28).

CR =
CI
RI

(28)

Table 1. Random Index.

Order 1 2 3 4 5 6 7 8 9 10

R.I 0 0 0.52 0.89 1.11 1.25 1.35 1.40 1.45 1.49

The value of CR ≤ 0.1 is in the satisfactory range; otherwise, the pairwise comparison
is required to be revised.

Step 4. Obtain the weighted supermatrix. A weighted supermatrix is obtained to
evaluate the relation between criteria. Then, the unweighted matrix is converted into a
weighted supermatrix to make the sum of each column 1, called column stochastic.

Step 5. Determining stable weights by obtaining limit supermatrix. The values
produced from the previous step are elevated to the power of 2k until the values are firmly
established, where k is an arbitrarily large number. The final priorities can be determined
using the normalization function on each block of the limit matrix. The most significant
value represents the most critical criterion among other criteria. The stable weights w
constructed from this step are utilized in the following steps.

3.4.3. Fuzzy PROMETHEE-Based Ranking Method

The same group of h experts D = {D1, D2, . . . , Dh} will assess n alternatives
A = {A1, A2, . . . , An} under m criteria C = {C1, C2, . . . , Cm} that are screened through the
previous steps. Let f e

ij = (ae
ij, be

ij, ce
ij), i = 1, 2 . . . , n, j = 1, 2 . . . , m, e = 1, 2 . . . , h, be the

rating assigned to an alternative Ai under the criterion Cj by a decision-maker De. Criteria
chosen from the earlier steps are first categorized into the cost-benefit framework as qualita-
tive benefit criteria, Cj, j = 1, 2 . . . , k, quantitative benefit criteria, Cj, j = k + 1, . . . , k′, cost
qualitative criteria, Cj, j = k′ + 1, . . . , k′′ , and cost quantitative criteria Cj, j = k′′ + 1, . . . , m.
The fuzzy PROMETHEE II process is summarized as follows [72,73].

Step 1. Constructing the fuzzy decision matrix. Aggregated rating fij = (aij, bij, cij) is:

fij =

(
1
h

)
⊗
(

fij1 ⊕ . . .⊕ fije ⊕ . . .⊕ fijh

)
(29)

where aij =
h
∑

e=1

aije
h , bij =

h
∑

e=1

bije
h , cij =

h
∑

e=1

cije
h .
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Step 2. Computing the normalized matrix. The normalization is completed using the
Chu and Nguyen [63] approach. The ranges of normalized TFNs belong to [0, 1]. Suppose
lij = (alij, blij, clij) is the value of an alternative Ai, i = 1, 2, . . . , n, versus a benefit (B)
criterion or a cost (C) criterion. The normalized value lij can be as

lij =

(
alij − al∗j

y∗j
,

blij − al∗j
y∗j

,
clij − al∗j

y∗j

)
, j ∈ B, (30)

lij =

(
cl∗j − clij

y∗j
,

cl∗j − blij
y∗j

,
cl∗j − alij

y∗j

)
, j ∈ C, (31)

where al∗j = min
i

alij, cl∗j = max
i

clij, y∗j = cl∗j − al∗j , i = 1, 2, . . . , n, j = k′ + 1, . . . , k′′

and j = k′′ + 1, . . . , m, lij = (alij, blij, clij).
Step 3. Calculating the evaluative differences. Pairwise comparison is made by

calculating the evaluative differences of ith alternative with respect to other alternatives.
The intensity of the fuzzy preference Pj(Ai, Ai′) of an alternative Ai over Ai’ is obtained by
Equations (32) and (33), based on Equation (3)

P′ j
(
Cj(Ai)− Cj(Ai′)

)
= P′ j(Ai, Ai′) (32)

= lij − lij′ = (alij, blij, clij)− (al′ ij, bl′ ij, cl′ ij) = (alij − cl′ ij, blij − bl′ ij, clij − al′ ij) (33)

where Pj is the fuzzy preference function for the jth criterion and Cj(Ai) is the evaluation of
alternative Ai corresponding to criterion Cj.

Step 4. Determining the preference function. To avoid the complexity and be in a more
practicable form, the simplified fuzzy preference function is applied in this study as in
Equations (34) and (35).

P′ j(Ai, Ai′) = 0 if Cj(Ai) ≤ Cj(Ai′) (34)

P′ j(Ai, Ai′) = (Cj(Ai)− Cj(Ai′)) if Cj(Ai) > Cj(Ai′) (35)

Step 5. Reckoning the aggregated fuzzy preference function. Calculate the aggregated
fuzzy preference function considering the criteria weights computed from the ANP method.

π′(Ai, Ai′) =
m

∑
j=1

wjP′ j(Ai, Ai′)/
m

∑
j=1

wj (36)

The higher π′(Ai, Ai′) is, the stronger preference for the ith alternative will be.
Step 6. Determining the fuzzy leaving flow ϕ′+(Ai) and the fuzzy entering flow

ϕ′−(Ai)
The fuzzy leaving flow of Ai is determined as

ϕ′+(Ai) =
1

n− 1

n

∑
i′ = 1
i′ 6= 1

π′(Ai, Ai′) (37)

The fuzzy entering flow of Ai is determined as

ϕ′−(Ai) =
1

n− 1

n

∑
i′ = 1
i′ 6= 1

π′(Ai′ , Ai) (38)
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Step 7. Calculating the fuzzy net outranking flow for each alternative

ϕ′(Ai) = ϕ′+(Ai)− ϕ′−(Ai) (39)

Step 8. Defuzzifying the fuzzy net outranking flow value and obtaining the ranking
of alternatives. In this step, the spread area-based RMMS model is proposed to apply to
assist defuzzification and obtain the final ranking using Equations (12)–(20). An FN is more
prominent if its value V(Ai) is more significant.

4. Numerical Comparison and Consistency Test

In this section, various examples of comparisons are established to investigate the
effectiveness of the proposed method. The first example illustrates the ranking orders of
the method compared with the methods of Wang et al. [54] and Nejad and Mashinchi [59].
We used FNs in Examples 2–4 from Nejad and Mashinchi [59], and then different situ-
ations were generated through the addition of new FNs for testing the consistency of
the ranking results, as shown in Table 2. In Situation (1), methods from both Nejad and
Mashinchi and Wang et al. produce A1 = A2 ≺ A3, but the proposed method can dis-
criminate between three FNs with the order A1 ≺ A2 ≺ A3. Furthermore, the ranking
order is A1 ≺ A2 ≺ A3, and either A4 = (−3,−2,−1) is added (see Situation (1.1)) or
A4 = (8.75, 9.5, 11) is added (see Situation (1.2)). In Situation (2), the proposed method
yields the same ranking, A1 ≺ A2, as that of the method of Nejad and Mashinchi when
either A4 = (−1.5,−0.8,−0.6) or A4 = (1.15, 2.5, 3.15) is added. However, the method of
Wang et al. highlights the inconsistency and produces A1 = A2 in Situation (2.2). In
Situation (3), the proposed method yields the same ranking A1 � A2 as that of Nejad and
Mashinchi when A4 = (−5,−4,−3,−1) or A4 = (6, 6, 7, 8) is added, but the method of
Wang et al. compensates for the inconsistency and produces A1 = A2 in Situation (3.2).
The first comparison demonstrates the usefulness of the proposed method in discriminat-
ing FNs.

Table 2. Modified comparison based on Examples 2, 3, and 4 from Nejad and Mashinchi [59].

Situations Methods Results Results after Adding New FNs

(1) (1.1)
A4 = (−3,−2,−1)

(1.2)
A4 = (8.75, 9.5, 11)

A1 = (2, 3, 5, 6)
A2 = (1, 4, 7)
A3 = (4, 5, 7)

[54] A1 = A2 ≺ A3 A2 ≺ A1 ≺ A3 A1 = A2 ≺ A3

[59] A1 = A2 ≺ A3 A1 = A2 ≺ A3 A1 = A2 ≺ A3

Proposed method A1 ≺ A2 ≺ A3 A1 ≺ A2 ≺ A3 A1 ≺ A2 ≺ A3

(2)
(2.1)
A4 =

(−1.5,−0.8,−0.6)

(2.2)
A4 = (1.15, 2.5, 3.15)

A1 = (0.2, 0.5, 0.8)
A2 = (0.4, 0.5, 0.6)

[54] A1 ≺ A2 A1 ≺ A2 A1 = A2

[59] A1 ≺ A2 A1 ≺ A2 A1 ≺ A2

Proposed method A1 ≺ A2 A1 ≺ A2 A1 ≺ A2

(3) A1 � A2
(3.1)

A4 = (−5,−4,−3,−1)
(3.2)

A4 = (6, 6, 7, 8)

A1 = (1, 2, 5)
A2 = (1, 2, 2, 4)

[54] A1 � A2 A1 � A2 A1 = A2

[59] A1 � A2 A1 � A2

Proposed method A1 � A2 A1 � A2 A1 � A2
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Second, three sets of FNs are created to further examine the proposed method’s
stability and credibility, as shown in Table 3. In all previous situations, the method of
Wang et al. is ineffective in distinguishing FNs. For example, in Situation (1.1), the
method of Nejad and Mashinchi yields an FN ranking, A1 ≺ A2 ≺ A3 ≺ A4, but yields
A1 = A2 = A3 = A4 in cases (1) and (1.2), indicating inconsistency, but the proposed
method yields A1 ≺ A2 ≺ A3 ≺ A4 in all Situations (1), (1.1), and (1.2). Similarly,
in Situations (2) and (2.2), the ranking order obtained using the method of Nejad and
Mashinchi is A1 = A2 = A3; however, when A4 = (−7,−5,−3,−2) is added, the order
changes to A1 ≺ A2 ≺ A3, as in Situation (2.1); whereas the suggested method persistently
ranks in the following order: A1 ≺ A2 ≺ A3. In Situations (3) and (3.2), both the proposed
method and the method of Nejad and Mashinchi yield a ranking order of A1 ≺ A2; however,
in (3.1), when A3 = (−4,−2.5,−1.5) is added, the method of Nejad and Mashinchi yields
A1 � A2; however, the proposed method yields a persistent rank order of A1 ≺ A2. Hence,
the second comparison has demonstrated the effectiveness of the proposed method in
discriminating FNs compared to Wang et al.’s technique and the consistency compared
with the method of Nejad and Mashinchi.

Table 3. Comparison with Wang et al.’s [54] and Nejad and Mashinchi [59].

Situations Methods Results Results after Adding New FNs

(1) (1.1)
A5 = (−5,−4,−3)

(1.2)
A5 = (8, 9, 10)

A1 = (3, 3, 3)
A2 = (3, 3, 6)
A3 = (3, 3, 8)

A4 = (3, 3, 6, 8)

[54] A1 = A2 = A3 = A4 A1 = A2 = A3 = A4 A1 = A2 = A3 = A4

[59] A1 = A2 = A3 = A4 A1 ≺ A2 ≺ A3 ≺ A4 A1 = A2 = A3 = A4

Proposed method A1 ≺ A2 ≺ A3 ≺ A4 A1 ≺ A2 ≺ A3 ≺ A4 A1 ≺ A2 ≺ A3 ≺ A4

(2) (2.1)
A4 = (−7,−5,−3,−2)

(2.2)
A4 = (7, 9, 11, 12)

A1 = (3, 3, 3)
A2 = (3, 3, 6)

A3 = (3, 3, 5, 6)

[54] A1 = A2 = A3 A1 = A2 = A3 A1 = A2 = A3

[59] A1 = A2 = A3 A1 ≺ A2 ≺ A3 A1 = A2 = A3

Proposed method A1 ≺ A2 ≺ A3 A1 ≺ A2 ≺ A3 A1 ≺ A2 ≺ A3

(3) (3.1)
A3 = (−4,−2.5,−1.5)

(3.2)
A3 = (6, 7.8, 8.5)

A1 = (2, 2, 7)
A2 = (2, 4, 4)

[54] A1 = A2 A1 = A2 A1 = A2

[59] A1 ≺ A2 A1 � A2 A1 ≺ A2

Proposed method A1 ≺ A2 A1 ≺ A2 A1 ≺ A2

Additionally, a consistency test is designed to examine the reliability of the pro-
posed method, as shown in Tables 4 and 5. In Example 1, the result is A1 ≺ A2 ≺ A3,
A1 ≺ A2 ≺ A3 for all assumed various µ values. In Example 2, when A4 = (8, 9, 10) is
added, the classifying order remains the same as A1 ≺ A2 ≺ A3 for all 0.1 ≺ µ ≺ 1.
Finally, in Example 3, when A4 = (−3,−2,−1) is added, the proposed method consistently
yields an order of A1 ≺ A2 ≺ A3 for all tested values of µ. The results of the numerical
comparison demonstrate the credibility and effectiveness of the suggested ranking method
based on spread area-based RMMS.
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Table 4. Numerical comparison with Chu and Nguyen [63].

Situations Methods Results Results after Adding New FNs

(1) (1.1)
A3 = (1, 4, 5)

(1.2)
A3 = (−3,−2,−1)

A1 = (1, 3, 5)
A2 = (2, 3, 4)

[63] A1 = A2 A1 = A2 A1 = A2

Proposed method A1 ≺ A2 A1 ≺ A2 A1 ≺ A2

(2) (2.1)
A3 = (2, 3, 7)

(2.2)
A3 = (−4,−2,−2)

A1 = (2, 2, 4)
A2 = (2, 2, 6)

[63] A1 = A2 A1 = A2 A1 = A2

Proposed method A1 ≺ A2 A1 ≺ A2 A1 ≺ A2

Table 5. A consistency test with various values of µ in different examples.

µ

Examples

(1) Three FNs
A1 = (2,3,5,6), A2 = (1,4,7)

A3 = (4,5,7)

(2) Add an FN to the Right Side
A1 = (2,3,5,6), A2 = (1,4,7)
A3 = (4,5,7), A4 = (8,9,10)

(3) Add an FN to the Left Side
A1 = (2,3,5,6), A2 = (1,4,7)

A3 = (4,5,7), A4 = (−3,−2,−1)

0.1 A1 ≺ A2 ≺ A3 A1 ≺ A2 ≺ A3 A1 ≺ A2 ≺ A3

0.2 A1 ≺ A2 ≺ A3 A1 ≺ A2 ≺ A3 A1 ≺ A2 ≺ A3

0.3 A1 ≺ A2 ≺ A3 A1 ≺ A2 ≺ A3 A1 ≺ A2 ≺ A3

0.4 A1 ≺ A2 ≺ A3 A1 ≺ A2 ≺ A3 A1 ≺ A2 ≺ A3

0.5 A1 ≺ A2 ≺ A3 A1 ≺ A2 ≺ A3 A1 ≺ A2 ≺ A3

0.6 A1 ≺ A2 ≺ A3 A1 ≺ A2 ≺ A3 A1 ≺ A2 ≺ A3

0.7 A1 ≺ A2 ≺ A3 A1 ≺ A2 ≺ A3 A1 ≺ A2 ≺ A3

0.8 A1 ≺ A2 ≺ A3 A1 ≺ A2 ≺ A3 A1 ≺ A2 ≺ A3

0.9 A1 ≺ A2 ≺ A3 A1 ≺ A2 ≺ A3 A1 ≺ A2 ≺ A3

1.0 A1 ≺ A2 ≺ A3 A1 ≺ A2 ≺ A3 A1 ≺ A2 ≺ A3

5. Numerical Example

Suppose 4 DMs (Dh, h = 1, 2, 3, 4) of an accelerator must establish criteria and analyze
the criteria’s effect on a technology-based acceleration program. To achieve this goal,
the methods DEMATEL and ANP are performed. Assume (Cm, m = 1, 2, . . . , 19) are the
qualitative criteria and quantitative criteria under consideration, as shown in Figure A1
(see Appendix B for details). Assuming that DMs have reached a consensus, the effects
of criteria on each other are indicated using a scale of No Effect (1), Low Effect (2), Medium
Low Effect (3), Medium Effect (4), Medium High Effect (5), High Effect (6), and Extremely Strong
Effect (7). After each DM rates the alternatives, the aggregating direct-relation matrix is
determined using Equation (18) and is shown in Table A1 (see Appendix C for details).

Subsequently, values of the normalized direct-relation matrix are obtained using
Equations (19) and (20) and are shown in Table A2 (see Appendix D for details). Finally, the
total-relation matrix is attained using Equation (21), as shown in Table A3 (see Appendix E
for details). Next, the prominence (D + R) and relation (D − R) values are calculated
using Equations (22) and (23). Thereafter, the threshold value is set, which determines
the filtered factors. The causal relationship and notable factors are displayed in Table 6
and Figure 2. According to Table 6, “(C6) demand validation” has the greatest (D + R)
value and is the most critical factor, followed by “(C7) customer affordability” and “(C8)
market demographic”. All these factors need to be evaluated in the initial steps when
building a product or service. Additionally, the (D − R) values of “(C3) prior startup
experience”, “(C1) sales”, and “(C2) product development cost” demonstrate that these
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criteria have net influences on other factors. Other medium value factors that are selected
when proceeding to the next steps are “(C9) concept maturity”, “(C10) product maturity”,
“(C11) value proposition”, “(C13) technology experience”, “(C15) growth strategy”, “(C18)
creativity”, and “(C19) negotiation”.

Table 6. Prominence and Relation value of criteria.

D R D + R D − R

C1 1.4660 1.0098 2.476 0.4562

C2 1.3166 0.9326 2.249 0.3840

C3 2.8245 2.0101 4.835 0.8144

C4 1.3291 1.9605 3.290 −0.6314

C5 1.5740 2.1332 3.707 −0.5593

C6 3.0201 3.1850 6.205 −0.1649

C7 2.9359 3.1138 6.050 −0.1778

C8 2.9104 3.1088 6.019 −0.1985

C9 2.5804 2.8768 5.457 −0.2964

C10 2.3358 2.7069 5.043 −0.3711

C11 2.2284 2.6253 4.854 −0.3969

C12 1.3718 1.9929 3.365 −0.6211

C13 2.6701 2.9201 5.590 −0.2500

C14 1.3602 2.0277 3.388 −0.6675

C15 2.1349 2.5318 4.667 −0.3969

C16 1.6294 2.1784 3.808 −0.5490

C17 1.8855 2.3726 4.258 −0.4871

C18 2.4492 2.7714 5.221 −0.3222

C19 2.5088 2.8181 5.327 −0.3093

Average 4.516
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Table 7. The unweighted supermatrix. 

  C1S C2 PDC C3 PSE C6 DV C7 CA C8 MD C9 CM C10 PM C11 VP C13 TE C15 GS C18 Cre C19 Neg 
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Next, the pairwise comparison must be carefully evaluated by DMs according to the
criteria. In this study, the statistical software Super Decisions was used for the analysis.
Super Decisions is a decision-support program that implements AHP and ANP to calculate
the weights of the dimensions and tests the expert’s competency. After obtaining the
integrated PCM, the values are entered into the software to compute CR values. First, the
integrated matrix is computed with respect to each criterion, including the Consistency
Ratio CR ≤ 0.1, as shown in Equations (24)–(28) (see Tables A4–A16 in Appendix F for
details). Then, the unweighted supermatrix and weighted matrix are created, as shown
in Tables 7 and 8. Finally, the limited matrix with the stable weights and the final weight
order can be determined, as shown in Tables 9 and 10. According to Table 10, “(C8) market
demographics” has the highest value with 0.1253, followed by “(C6) demand validation”
with 0.1196 and “(C3) prior startup experience” with 0.0940. The lowest weight value is
“(C11) value proposition” with 0.0215.

Table 7. The unweighted supermatrix.

C1S C2 PDC C3 PSE C6 DV C7 CA C8 MD C9 CM C10 PM C11 VP C13 TE C15 GS C18 Cre C19 Neg

C1S 0.03614 0.02318 0.17330 0.03728 0.03882 0.03972 0.14571 0.15206 0.03883 0.17549 0.03695 0.04388 0.18769

C2 PDC 0.01653 0.04581 0.10342 0.04958 0.04628 0.04749 0.10732 0.10631 0.02190 0.10314 0.01747 0.01689 0.10480

C3 PSE 0.03338 0.15625 0.04742 0.17850 0.17685 0.17666 0.03819 0.04569 0.03989 0.04565 0.03391 0.03338 0.04480

C6 DV 0.01423 0.18950 0.13997 0.15548 0.14938 0.13554 0.14084 0.13822 0.01601 0.15156 0.01444 0.01552 0.13387

C7 CA 0.16286 0.07300 0.06280 0.08022 0.08345 0.08509 0.06857 0.06773 0.14256 0.04789 0.16540 0.16458 0.04802

C8 MD 0.12483 0.16978 0.06602 0.18612 0.18717 0.18934 0.06726 0.06685 0.10806 0.06635 0.12572 0.12298 0.06639

C9 CM 0.03999 0.06738 0.02107 0.10666 0.10801 0.11045 0.02145 0.02110 0.03401 0.02129 0.03741 0.03359 0.02160

C10 PM 0.07094 0.07526 0.08248 0.08041 0.08405 0.08596 0.08810 0.08796 0.06341 0.08393 0.06744 0.06902 0.08430

C11 VP 0.02344 0.01298 0.02558 0.01390 0.01398 0.01415 0.02695 0.02594 0.06117 0.02575 0.02421 0.02427 0.02577

C13 TE 0.22517 0.05499 0.06987 0.03349 0.03341 0.03477 0.08177 0.07892 0.21790 0.07524 0.22318 0.22273 0.07842

C15 GS 0.06504 0.01957 0.05668 0.01696 0.01707 0.01769 0.05688 0.05184 0.06853 0.05801 0.06724 0.06790 0.05799

C18 Cre 0.11064 0.09415 0.02974 0.03832 0.03826 0.03718 0.03954 0.03792 0.10767 0.03890 0.10966 0.10762 0.03941

C19 Neg 0.07680 0.01817 0.12165 0.02307 0.02327 0.02597 0.11742 0.11946 0.08005 0.10681 0.07698 0.07764 0.10694

Table 8. The weighted supermatrix.
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C6 DV 0.01423 0.18950 0.13997 0.15548 0.14938 0.13554 0.14084 0.13822 0.01601 0.15156 0.01444 0.01552 0.13387
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Table 9. The limited supermatrix.

C1 S C2 PDC C3 PSE C6 DV C7 CA C8 MD C9 CM C10 PM C11 VP C13 TE C15 GS C18 Cre C19 Neg

C1 S 0.08852 0.08852 0.08852 0.08852 0.08852 0.08852 0.08852 0.08852 0.08852 0.08852 0.08852 0.08852 0.08852

C2 PDC 0.06374 0.06374 0.06374 0.06374 0.06374 0.06374 0.06374 0.06374 0.06374 0.06374 0.06374 0.06374 0.06374

C3 PSE 0.09400 0.09400 0.09400 0.09400 0.09400 0.09400 0.09400 0.09400 0.09400 0.09400 0.09400 0.09400 0.09400

C6 DV 0.11965 0.11965 0.11965 0.11965 0.11965 0.11965 0.11965 0.11965 0.11965 0.11965 0.11965 0.11965 0.11965

C7 CA 0.08917 0.08917 0.08917 0.08917 0.08917 0.08917 0.08917 0.08917 0.08917 0.08917 0.08917 0.08917 0.08917

C8 MD 0.12532 0.12532 0.12532 0.12532 0.12532 0.12532 0.12532 0.12532 0.12532 0.12532 0.12532 0.12532 0.12532

C9 CM 0.05665 0.05665 0.05665 0.05665 0.05665 0.05665 0.05665 0.05665 0.05665 0.05665 0.05665 0.05665 0.05665

C10 PM 0.08054 0.08054 0.08054 0.08054 0.08054 0.08054 0.08054 0.08054 0.08054 0.08054 0.08054 0.08054 0.08054

C11 VP 0.02149 0.02149 0.02149 0.02149 0.02149 0.02149 0.02149 0.02149 0.02149 0.02149 0.02149 0.02149 0.02149

C13 TE 0.09150 0.09150 0.09150 0.09150 0.09150 0.09150 0.09150 0.09150 0.09150 0.09150 0.09150 0.09150 0.09150

C15 GS 0.04306 0.04306 0.04306 0.04306 0.04306 0.04306 0.04306 0.04306 0.04306 0.04306 0.04306 0.04306 0.04306

C18 Cre 0.05593 0.05593 0.05593 0.05593 0.05593 0.05593 0.05593 0.05593 0.05593 0.05593 0.05593 0.05593 0.05593

C19 Neg 0.07044 0.07044 0.07044 0.07044 0.07044 0.07044 0.07044 0.07044 0.07044 0.07044 0.07044 0.07044 0.07044

Table 10. Final weight order.

Criteria Symbol Values Ranking

(C8) Market Demographic C8 MD 0.1253 1

(C6) Demand Validation C6 DV 0.1196 2

(C3) Prior Startup Experience C3 PSE 0.0940 3

(C13) Technology Experience C13 TE 0.0915 4

(C7) Customer affordability C7 CA 0.0892 5

(C1) Sales C1 S 0.0885 6

(C10) Product Maturity C10 PM 0.0805 7

(C19) Negotiation C19 Neg 0.0704 8

(C2) Product Development Cost C2 PDC 0.0637 9

(C9) Concept Maturity C9 CM 0.0567 10

(C18) Creativity C18 Cre 0.0559 11

(C15) Growth Strategy C15 GS 0.0431 12

(C11) Value Proposition C11 VP 0.0215 13

Finally, the fuzzy PROMETHEE II-based spread area ranking method is applied. Sup-
pose the same DM group assesses four technology-based startup projects (An, n = 1, 2, 3, 4)
under 13 criteria that are screened during the previous steps. The ratings of the alternatives
over qualitative criteria and quantitative criteria are shown in Tables A17 and A18 (see
Sections G and H, respectively, for details). Subsequently, the mean ratings are calculated
using Equation (29), as shown in Table 11, and the alternatives’ normalized gradings versus
quantitative criteria are produced using Equations (30) and (31), as shown in Table 12. The
confidence level ratings on alternatives are also collected to produce µ value, as shown in
Table 13.

The aggregated fuzzy preference is attained using Equations (32)–(36), as shown in
Table 14. Subsequently, the fuzzy leaving flow ϕ′+(Ai), the fuzzy entering flow ϕ′−(Ai),
and the fuzzy net outranking flow for each alternative are computed using Equations (37)–(39),
as presented in Table 15. Using the proposed spread area-based RMMS model, the fuzzy
net outranking flow of each alternative is defuzzified using Equations (9)–(17) and yields
values of A1 (−0.0519), A2 (0.0905), A3 (0.0594) and A4 (−0.0980) as presented in Table 16.
The final ranking of four startup projects A4 < A1 < A3 < A2 indicates that startup project
A2 has the highest comprehensive potential, followed by startup project A3.
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Table 11. The average ratings of the alternatives over qualitative criteria.

Cn

Average Rating

A1 A2 A3 A4

(aj1, bj1, cj1) (aj2, bj2, cj2) (aj3, bj3, cj3) (aj4, bj4, cj4)

C6 0.500 0.650 0.750 0.600 0.750 0.850 0.500 0.650 0.763 0.388 0.538 0.675

C7 0.750 0.900 1.000 0.538 0.688 0.788 0.538 0.688 0.788 0.388 0.538 0.675

C8 0.425 0.575 0.700 0.425 0.575 0.700 0.538 0.688 0.788 0.350 0.500 0.650

C9 0.425 0.575 0.700 0.613 0.763 0.863 0.650 0.800 0.900 0.325 0.463 0.613

C10 0.500 0.650 0.763 0.563 0.713 0.813 0.500 0.650 0.750 0.388 0.538 0.675

C11 0.463 0.613 0.725 0.438 0.575 0.688 0.375 0.500 0.638 0.425 0.575 0.700

C13 0.213 0.313 0.463 0.650 0.800 0.900 0.650 0.800 0.900 0.350 0.500 0.650

C15 0.213 0.313 0.463 0.650 0.800 0.900 0.650 0.800 0.900 0.350 0.500 0.650

C18 0.388 0.538 0.675 0.500 0.650 0.775 0.613 0.763 0.863 0.188 0.288 0.438

C19 0.500 0.650 0.750 0.388 0.538 0.675 0.425 0.575 0.700 0.350 0.500 0.650

Table 12. The average ratings of the alternatives over quantitative criteria.

Cn

Average Rating

A1 A2 A3 A4

(al1, bl1, cl1) (al2, bl2, cl2) (al3, bl3, cl3) (al4, bl4, cl4)

C1 0.250 0.375 0.500 0.750 0.875 1.000 0.500 0.625 0.750 0.000 0.125 0.250

C2 0.752 0.877 1.000 0.000 0.125 0.248 0.501 0.627 0.749 0.750 0.875 1.000

C3 0.000 0.125 0.250 0.750 0.875 1.000 0.375 0.500 0.625 0.375 0.500 0.625

Table 13. Confidence level µ from DMs.

A1 A2 A3 A4 A1 A2 A3 A4 µ

D1 0.6 0.8 0.7 0.6 D3 0.7 0.7 0.8 0.5
0.6625

D2 0.6 0.8 0.7 0.5 D4 0.5 0.8 0.7 0.6

Table 14. The aggregated fuzzy TNs preference.

A1 A2 A3 A4

A1 - - - 0.0321 0.0479 0.0637 0.0002 0.0160 0.0318 0.0164 0.0771 0.1301

A2 0.0863 0.1594 0.1998 - - - 0.0118 0.0574 0.1030 0.0628 0.1825 0.2857

A3 0.0289 0.1020 0.1659 0.0161 0.0320 0.0478 - - - 0.0373 0.1336 0.2118

A4 0.0117 0.0352 0.0587 0.0321 0.0479 0.0637 0.0002 0.0160 0.0318 - - -

Table 15. The fuzzy TNs net outranking flow for each alternative.

φ+ φ− φ

A1 0.0162 0.0470 0.0752 0.0423 0.0989 0.1415 −0.1253 −0.0519 0.0329

A2 0.0536 0.1331 0.1962 0.0268 0.0426 0.0584 −0.0048 0.0905 0.1694

A3 0.0275 0.0892 0.1418 0.0040 0.0298 0.0555 −0.0281 0.0594 0.1378

A4 0.0147 0.0330 0.0514 0.0388 0.1310 0.2092 −0.1945 −0.0980 0.0126
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Table 16. Defuzzification and ranking of the alternatives.

φ SL1 SL2 SR1 SR2 V(Ai) Ranking

A1 −0.1253 −0.0519 0.0329 0.9364 0.1733 0.6221 0.6364 −0.0519 3

A2 −0.0048 0.0905 0.1694 1.1217 0.2415 0.6852 0.4956 0.0905 1

A3 −0.0281 0.0594 0.1378 1.0830 0.2263 0.6719 0.5262 0.0594 2

A4 −0.1945 −0.0980 0.0126 0.8599 0.1462 0.6058 0.6724 −0.0980 4

The utilization of the DEMATEL-ANP-based fuzzy PROMETHEE II provides a com-
prehensive procedure for ranking alternatives. The DEMATEL investigated the cause–effect
relationships between criteria and filtered out the nonsignificant criteria. Subsequently,
ANP helped to determine the criteria weights because it permits criterion dependency.
Finally, the final ranking was generated by the fuzzy-based PROMETHEE II method,
which includes a proposed ranking model to enhance consistency and discrimination
ability. The numerical results demonstrated the feasibility of the hybrid model for various
decision-making management applications.

6. Conclusions

Language has naturally evolved to reflect human judgment and fuzzy ranking is
required to turn assessments into decision-making. An extension on ranking FNs using
spread area-based RMMS was proposed to improve the applicability and differentiation of
the methods of Wang et al. [54], Nejad and Mashinchi [59], and Chu and Nguyen [63]. The
algorithm and equations were derived by implementing a ranking method. Comparative
examples demonstrated the strengths of the proposed method in discriminating fuzzy
numbers and consistency ranking. Finally, the suggested ranking method was integrated
into a hybrid DEMATEL-ANP-based fuzzy PROMETHEE II model to inspect the inter-
relationships among factors, obtain critical criteria weights, and organize startups for a
comprehensive decision-making procedure. The numerical example has illustrated the
feasibility of the hybrid fuzzy MCDM method.

In future studies, the proposed fuzzy ranking method can be amalgamated into
different MCDM methods to further investigate its validity and apply the method to various
practices in entrepreneurial problems, such as project selections, business investment
evaluation, accelerator evaluation, risk management, performance evaluation, and other
areas where decision-making involves subjective judgment and uncertainty. Hybrid fuzzy
ranking methods enable comprehensive evaluation and prioritization of project proposals
or initiatives by considering multiple criteria and incorporating fuzzy logic, aiding decision-
makers in selecting projects aligned with their strategic objectives. In addition, fuzzy
ranking methods can aid in evaluating and comparing different accelerators based on their
offerings, mentorship quality, network strength, success rate, and other relevant criteria.
This helps entrepreneurs make informed decisions about which accelerator program would
best suit their needs and increase their chances of success. The fuzzy ranking approach adds
a layer of flexibility to handle uncertain or imprecise data in investment decision-making.
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Appendix A

The derivation of Equation (A1) for the second left spread area SLi2 is presented as follows.

SLi2(Ai) =
∫ xLi2

x′′min
f ′′M(x)dx

=
∫ xLi2

x′′min

(
x−x′′min

x′′max−x′′min

)
dx

=

(
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(A1)

The derivation of Equation (A2) for the first right spread area SRi1 is presented as follows.

SRi1(Ai) =
∫ x′′max

xRi1
f ′′M(x)dx

=
∫ x′′max

xRi1

(
x−x′′min

x′′max−x′′min

)
dx
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(A2)

The derivation of Equation (A3) for the second right spread area SRi2 is presented as
follows.

SRi2(Ai) =
∫ x′′max

x′′Ri2

1dx−
∫ x′′max
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Figure A1. Structure of criteria (Yin and Luo, 2008; Mariño-Garrido et al.,2020) 

  

Figure A1. Structure of criteria (Yin and Luo, 2018 [5]; Mariño-Garrido et al., 2020 [14]).

Appendix C

Table A1. The aggregating direct-relation matrix of decision-makers.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19

C1 0 2 1.5 4 5 1 1 1 1.5 1 2.75 4 4 3 2 5 3 3 3

C2 5.5 0 1.25 5 4 1.25 1 1.75 1.25 2 1 4 2 3 1 4 2 2 2

C3 6 6 0 6 6 4 5 4 3 3 4 6 5 6 6 5 6 5 5

C4 4 3 1 0 4 1 1.75 1 2 1 2 3 1 5 2 3 3 4 2

C5 3 4 1 4 0 1.75 2 2 1 2 1 4 4 6 1 2 3 5 4

C6 6 6 4 5.75 6 0 4.25 4.5 6 6 6 6 4 5.75 6 6 5.75 5.25 3.75

C7 6 6 3 6 6 3.75 0 3.25 6 5.75 5.75 6 6 6 5.25 5.5 6 4.75 3.75

C8 5.75 6 4 5.75 5.25 3.5 4.75 0 5.5 5.25 6 5.5 4 6 5.75 6 5.75 5 3.75

C9 6 6 5 6 6 1.5 1 2.5 0 6 5 6 3.25 6 6 6 5 4 4

C10 6 6 5 6 5.75 1 1 2.25 2 0 5 6 3 6 5 5 6 3 4

C11 5.25 6 4 6 6 2 2 1.75 2.75 3 0 6 5 5 3 6 4 3 3

C12 4 4 1 4.75 4 1 1 1 1 2 2 0 2 3 2 4 4 2 3

C13 4 6 3 6 4 4 2 4 4.75 5 3 6 0 6 6 5 5 6 6

C14 5 5 2 3 2 2.25 2 1.5 1.75 1.75 3 5 1 0 1 2 2 1 3

C15 6 6 2 6 6 1 2.75 2 1.75 3 5 6 2 6 0 6 6 2 3

C16 3 4 3 5 6 2 1.75 1 2 3 2 4 3 6 1 0 3 2 2

C17 5 6 2 5 5 1.75 2 2 3 2 4 4 3 6 2 5 0 3 2

C18 4.75 5.75 3 4 3 2.75 3 3 4 5 5 6 2 6 6 6 5 0 5

C19 5 6 3 6 4 4 4 4 4 4 5 5 2 5 5 6 6 3 0

164



Axioms 2023, 12, 528

A
pp

en
di

x
D

Ta
bl

e
A

2.
Th

e
no

rm
al

iz
ed

di
re

ct
-r

el
at

io
n

m
at

ri
x.

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
10

C
11

C
12

C
13

C
14

C
15

C
16

C
17

C
18

C
19

C
1

0
0.

02
06

0.
01

55
0.

04
12

0.
05

15
0.

01
03

0.
01

03
0.

01
03

0.
01

55
0.

01
03

0.
02

84
0.

04
12

0.
04

12
0.

03
09

0.
02

06
0.

05
15

0.
03

09
0.

03
09

0.
03

09

C
2

0.
05

67
0

0.
01

29
0.

05
15

0.
04

12
0.

01
29

0.
01

03
0.

01
80

0.
01

29
0.

02
06

0.
01

03
0.

04
12

0.
02

06
0.

03
09

0.
01

03
0.

04
12

0.
02

06
0.

02
06

0.
02

06

C
3

0.
06

19
0.

06
19

0
0.

06
19

0.
06

19
0.

04
12

0.
05

15
0.

04
12

0.
03

09
0.

03
09

0.
04

12
0.

06
19

0.
05

15
0.

06
19

0.
06

19
0.

05
15

0.
06

19
0.

05
15

0.
05

15

C
4

0.
04

12
0.

03
09

0.
01

03
0

0.
04

12
0.

01
03

0.
01

80
0.

01
03

0.
02

06
0.

01
03

0.
02

06
0.

03
09

0.
01

03
0.

05
15

0.
02

06
0.

03
09

0.
03

09
0.

04
12

0.
02

06

C
5

0.
03

09
0.

04
12

0.
01

03
0.

04
12

0
0.

01
80

0.
02

06
0.

02
06

0.
01

03
0.

02
06

0.
01

03
0.

04
12

0.
04

12
0.

06
19

0.
01

03
0.

02
06

0.
03

09
0.

05
15

0.
04

12

C
6

0.
06

19
0.

06
19

0.
04

12
0.

05
93

0.
06

19
0

0.
04

38
0.

04
64

0.
06

19
0.

06
19

0.
06

19
0.

06
19

0.
04

12
0.

05
93

0.
06

19
0.

06
19

0.
05

93
0.

05
41

0.
03

87

C
7

0.
06

19
0.

06
19

0.
03

09
0.

06
19

0.
06

19
0.

03
87

0
0.

03
35

0.
06

19
0.

05
93

0.
05

93
0.

06
19

0.
06

19
0.

06
19

0.
05

41
0.

05
67

0.
06

19
0.

04
90

0.
03

87

C
8

0.
05

93
0.

06
19

0.
04

12
0.

05
93

0.
05

41
0.

03
61

0.
04

90
0

0.
05

67
0.

05
41

0.
06

19
0.

05
67

0.
04

12
0.

06
19

0.
05

93
0.

06
19

0.
05

93
0.

05
15

0.
03

87

C
9

0.
06

19
0.

06
19

0.
05

15
0.

06
19

0.
06

19
0.

01
55

0.
01

03
0.

02
58

0
0.

06
19

0.
05

15
0.

06
19

0.
03

35
0.

06
19

0.
06

19
0.

06
19

0.
05

15
0.

04
12

0.
04

12

C
10

0.
06

19
0.

06
19

0.
05

15
0.

06
19

0.
05

93
0.

01
03

0.
01

03
0.

02
32

0.
02

06
0

0.
05

15
0.

06
19

0.
03

09
0.

06
19

0.
05

15
0.

05
15

0.
06

19
0.

03
09

0.
04

12

C
11

0.
05

41
0.

06
19

0.
04

12
0.

06
19

0.
06

19
0.

02
06

0.
02

06
0.

01
80

0.
02

84
0.

03
09

0
0.

06
19

0.
05

15
0.

05
15

0.
03

09
0.

06
19

0.
04

12
0.

03
09

0.
03

09

C
12

0.
04

12
0.

04
12

0.
01

03
0.

04
90

0.
04

12
0.

01
03

0.
01

03
0.

01
03

0.
01

03
0.

02
06

0.
02

06
0

0.
02

06
0.

03
09

0.
02

06
0.

04
12

0.
04

12
0.

02
06

0.
03

09

C
13

0.
04

12
0.

06
19

0.
03

09
0.

06
19

0.
04

12
0.

04
12

0.
02

06
0.

04
12

0.
04

90
0.

05
15

0.
03

09
0.

06
19

0
0.

06
19

0.
06

19
0.

05
15

0.
05

15
0.

06
19

0.
06

19

C
14

0.
05

15
0.

05
15

0.
02

06
0.

03
09

0.
02

06
0.

02
32

0.
02

06
0.

01
55

0.
01

80
0.

01
80

0.
03

09
0.

05
15

0.
01

03
0

0.
01

03
0.

02
06

0.
02

06
0.

01
03

0.
03

09

C
15

0.
06

19
0.

06
19

0.
02

06
0.

06
19

0.
06

19
0.

01
03

0.
02

84
0.

02
06

0.
01

80
0.

03
09

0.
05

15
0.

06
19

0.
02

06
0.

06
19

0
0.

06
19

0.
06

19
0.

02
06

0.
03

09

C
16

0.
03

09
0.

04
12

0.
03

09
0.

05
15

0.
06

19
0.

02
06

0.
01

80
0.

01
03

0.
02

06
0.

03
09

0.
02

06
0.

04
12

0.
03

09
0.

06
19

0.
01

03
0

0.
03

09
0.

02
06

0.
02

06

C
17

0.
05

15
0.

06
19

0.
02

06
0.

05
15

0.
05

15
0.

01
80

0.
02

06
0.

02
06

0.
03

09
0.

02
06

0.
04

12
0.

04
12

0.
03

09
0.

06
19

0.
02

06
0.

05
15

0
0.

03
09

0.
02

06

C
18

0.
04

90
0.

05
93

0.
03

09
0.

04
12

0.
03

09
0.

02
84

0.
03

09
0.

03
09

0.
04

12
0.

05
15

0.
05

15
0.

06
19

0.
02

06
0.

06
19

0.
06

19
0.

06
19

0.
05

15
0

0.
05

15

C
19

0.
05

15
0.

06
19

0.
03

09
0.

06
19

0.
04

12
0.

04
12

0.
04

12
0.

04
12

0.
04

12
0.

04
12

0.
05

15
0.

05
15

0.
02

06
0.

05
15

0.
05

15
0.

06
19

0.
06

19
0.

03
09

0

165



Axioms 2023, 12, 528

A
pp

en
di

x
E

Ta
bl

e
A

3.
Th

e
to

ta
l-

re
la

ti
on

m
at

ri
x.

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
10

C
11

C
12

C
13

C
14

C
15

C
16

C
17

C
18

C
19

C
1

0.
06

81
0.

09
11

0.
05

07
0.

11
17

0.
11

65
0.

04
06

0.
04

18
0.

04
17

0.
05

32
0.

05
39

0.
07

54
0.

10
97

0.
08

20
0.

10
40

0.
06

55
0.

11
47

0.
08

91
0.

07
80

0.
07

81

C
2

0.
11

52
0.

06
20

0.
04

42
0.

11
34

0.
10

00
0.

03
91

0.
03

81
0.

04
50

0.
04

62
0.

05
80

0.
05

32
0.

10
18

0.
05

81
0.

09
54

0.
05

04
0.

09
79

0.
07

27
0.

06
31

0.
06

29

C
3

0.
19

30
0.

19
63

0.
06

92
0.

19
86

0.
18

95
0.

09
79

0.
11

10
0.

10
10

0.
10

50
0.

11
51

0.
13

53
0.

19
51

0.
13

20
0.

20
09

0.
14

86
0.

17
74

0.
17

47
0.

14
19

0.
14

19

C
4

0.
10

22
0.

09
39

0.
04

24
0.

06
46

0.
10

01
0.

03
72

0.
04

59
0.

03
83

0.
05

42
0.

04
95

0.
06

42
0.

09
36

0.
04

88
0.

11
56

0.
06

07
0.

08
93

0.
08

30
0.

08
21

0.
06

35

C
5

0.
10

45
0.

11
61

0.
04

87
0.

11
66

0.
07

08
0.

05
07

0.
05

43
0.

05
45

0.
05

24
0.

06
75

0.
06

35
0.

11
54

0.
08

41
0.

13
74

0.
06

06
0.

09
10

0.
09

38
0.

10
04

0.
09

17

C
6

0.
20

28
0.

20
62

0.
11

54
0.

20
64

0.
19

97
0.

06
14

0.
10

72
0.

10
95

0.
13

83
0.

15
02

0.
16

15
0.

20
51

0.
12

86
0.

20
88

0.
15

54
0.

19
62

0.
18

06
0.

15
03

0.
13

63

C
7

0.
19

83
0.

20
19

0.
10

34
0.

20
44

0.
19

52
0.

09
69

0.
06

26
0.

09
57

0.
13

60
0.

14
51

0.
15

56
0.

20
09

0.
14

49
0.

20
67

0.
14

53
0.

18
73

0.
17

90
0.

14
30

0.
13

38

C
8

0.
19

52
0.

20
09

0.
11

24
0.

20
09

0.
18

73
0.

09
41

0.
10

96
0.

06
27

0.
13

07
0.

13
96

0.
15

77
0.

19
50

0.
12

54
0.

20
56

0.
14

93
0.

19
12

0.
17

59
0.

14
42

0.
13

26

C
9

0.
18

10
0.

18
36

0.
11

25
0.

18
62

0.
17

83
0.

06
71

0.
06

57
0.

07
97

0.
06

52
0.

13
41

0.
13

49
0.

18
28

0.
10

71
0.

18
81

0.
13

89
0.

17
48

0.
15

41
0.

12
26

0.
12

37

C
10

0.
16

90
0.

17
13

0.
10

54
0.

17
37

0.
16

41
0.

05
75

0.
06

06
0.

07
18

0.
07

91
0.

06
70

0.
12

58
0.

17
03

0.
09

75
0.

17
53

0.
12

05
0.

15
37

0.
15

28
0.

10
50

0.
11

52

C
11

0.
15

62
0.

16
59

0.
09

34
0.

16
85

0.
16

14
0.

06
55

0.
06

77
0.

06
52

0.
08

46
0.

09
53

0.
07

27
0.

16
53

0.
11

40
0.

16
07

0.
09

88
0.

15
82

0.
12

93
0.

10
28

0.
10

29

C
12

0.
10

37
0.

10
51

0.
04

31
0.

11
40

0.
10

26
0.

03
78

0.
03

93
0.

03
91

0.
04

52
0.

05
96

0.
06

48
0.

06
49

0.
05

95
0.

09
85

0.
06

14
0.

10
06

0.
09

42
0.

06
45

0.
07

39

C
13

0.
16

72
0.

18
94

0.
09

65
0.

19
11

0.
16

31
0.

09
41

0.
07

85
0.

09
75

0.
11

72
0.

13
01

0.
12

13
0.

18
80

0.
07

65
0.

19
33

0.
14

46
0.

17
09

0.
15

93
0.

14
53

0.
14

63

C
14

0.
11

39
0.

11
43

0.
05

32
0.

09
73

0.
08

34
0.

05
00

0.
04

91
0.

04
41

0.
05

28
0.

05
76

0.
07

49
0.

11
43

0.
05

05
0.

06
67

0.
05

26
0.

08
19

0.
07

52
0.

05
45

0.
07

38

C
15

0.
15

89
0.

16
07

0.
07

11
0.

16
33

0.
15

71
0.

05
29

0.
07

21
0.

06
42

0.
07

14
0.

09
09

0.
11

84
0.

16
00

0.
08

22
0.

16
48

0.
06

32
0.

15
35

0.
14

35
0.

08
85

0.
09

81

C
16

0.
10

67
0.

11
81

0.
06

92
0.

12
89

0.
13

31
0.

05
33

0.
05

25
0.

04
52

0.
06

19
0.

07
74

0.
07

34
0.

11
75

0.
07

70
0.

14
04

0.
06

06
0.

07
16

0.
09

52
0.

07
37

0.
07

38

C
17

0.
13

79
0.

14
92

0.
06

59
0.

14
15

0.
13

57
0.

05
58

0.
05

99
0.

05
98

0.
07

81
0.

07
55

0.
10

11
0.

12
97

0.
08

46
0.

15
27

0.
07

77
0.

13
31

0.
07

49
0.

09
09

0.
08

15

C
18

0.
16

38
0.

17
59

0.
09

10
0.

16
14

0.
14

43
0.

07
70

0.
08

27
0.

08
22

0.
10

32
0.

12
24

0.
13

24
0.

17
72

0.
09

15
0.

18
16

0.
13

59
0.

17
03

0.
14

96
0.

07
82

0.
12

85

C
19

0.
16

89
0.

18
08

0.
09

23
0.

18
33

0.
15

70
0.

09
04

0.
09

39
0.

09
32

0.
10

56
0.

11
48

0.
13

43
0.

17
01

0.
09

41
0.

17
55

0.
12

81
0.

17
27

0.
16

13
0.

11
15

0.
08

10

166



Axioms 2023, 12, 528

Appendix F

Table A4. Comparison Matrix of 13 criteria with respect to criterion 1.

C1 C2 C3 C6 C7 C8 C9 C10 C11 C13 C15 C18 C19

C1 1 2 3 3 1/4 1/5 1/4 1/5 3 1/7 1/4 1/3 1/2

C2 1/2 1 1/3 3 1/5 1/8 1/4 1/5 1/4 1/8 1/3 1/8 1/5

C3 1/3 3 1 3 1/5 1/4 2 1/2 3 1/6 1/3 1/3 1/6

C6 1/3 1/3 1/3 1 1/5 1/8 1/2 1/5 1/3 1/8 1/6 1/8 1/3

C7 4 5 5 5 1 3 6 3 6 1/2 4 2 3

C8 5 8 4 8 1/3 1 5 2 5 1/3 2 2 3

C9 4 4 1/2 2 1/6 1/5 1 1/2 2 1/8 1/2 1/7 1/5

C10 5 5 2 5 1/3 1/2 2 1 3 1/6 1/2 1/2 2

C11 1/3 4 1/3 3 1/6 1/5 1/2 1/3 1 1/8 1/2 1/5 1/4

C13 7 8 6 8 2 3 8 6 8 1 4 2 4

C15 4 3 3 6 1/4 1/2 2 2 2 1/4 1 1/2 1/2

C18 3 8 3 8 1/2 1/2 7 5 5 1/2 2 1 2

C19 2 5 6 3 1/3 1/3 5 4 4 1/4 2 1/2 1

Inconsistency: 0.08328

Table A5. Comparison Matrix of 13 criteria with respect to criterion 2.

C1 C2 C3 C6 C7 C8 C9 C10 C11 C13 C15 C18 C19

C1 1 1/6 1/5 1/7 1/8 1/8 1/6 1/8 3 1/2 3 1/4 3

C2 6 1 1/3 1/5 1/2 1/4 1/3 1/2 3 1/2 4 1/2 4

C3 5 3 1 3 3 1/2 2 4 7 2 5 2 6

C6 7 5 1/3 1 5 3 2 3 9 5 7 3 7

C7 8 2 1/3 1/5 1 1/6 3 1/2 5 2 4 1/2 4

C8 8 4 2 1/3 6 1 3 2 8 6 4 2 6

C9 6 3 1/2 1/2 1/3 1/3 1 1/2 4 2 4 1/3 5

C10 8 2 1/4 1/3 2 1/2 2 1 6 1/3 4 1/2 4

C11 1/3 1/3 1/7 1/9 1/5 1/8 1/4 1/6 1 1/3 1/2 1/7 1/3

C13 2 2 1/2 1/5 1/2 1/6 1/2 3 3 1 3 1/2 2

C15 1/3 1/4 1/5 1/7 1/4 1/4 1/4 1/4 2 1/3 1 1/6 2

C18 4 2 1/2 1/3 2 1/2 3 2 7 2 6 1 4

C19 1/3 1/4 1/6 1/7 1/4 1/6 1/5 1/4 3 1/2 1/2 1/4 1

Inconsistency: 0.09659
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Table A6. Comparison Matrix of 13 criteria with respect to criterion 3.

C1 C2 C3 C6 C7 C8 C9 C10 C11 C13 C15 C18 C19

C1 1 3 3 1/2 3 2 8 5 6 3 2 4 3

C2 1/3 1 3 1/2 2 2 4 3 3 2 4 2 1/2

C3 1/3 1/3 1 1/3 3 1/2 2 1/3 2 1/3 1/2 3 1/4

C6 2 2 3 1 1/2 2 4 2 4 3 2 5 2

C7 1/3 1/2 1/3 2 1 1/2 2 1/3 2 1/2 3 2 1/3

C8 1/2 1/2 2 1/2 2 1 3 1/2 3 1/2 2 3 1/2

C9 1/8 1/4 1/2 1/4 1/2 1/3 1 1/4 1/2 1/3 1/2 1/2 1/4

C10 1/5 1/3 3 1/2 3 2 4 1 2 3 1/2 4 1/3

C11 1/6 1/3 1/2 1/4 1/2 1/3 2 1/2 1 1/2 1/3 1/2 1/5

C13 1/3 1/2 3 1/3 2 2 3 1/3 2 1 3 1/2 2

C15 1/2 1/4 2 1/2 1/3 1/2 2 2 3 1/3 1 3 1/3

C18 1/4 1/2 1/3 1/5 1/2 1/3 2 1/4 2 2 1/3 1 1/2

C19 1/3 2 4 2 3 2 4 3 5 1/2 3 2 1

Inconsistency: 0.09391

Table A7. Comparison Matrix of 13 criteria with respect to criterion 6.

C1 C2 C3 C6 C7 C8 C9 C10 C11 C13 C15 C18 C19

C1 1 1/6 1/5 1/7 1/6 1/7 1/4 1/5 3 2 3 3 4

C2 6 1 1/3 1/4 1/2 1/4 1/3 1/3 3 1/2 4 1/2 3

C3 5 3 1 4 3 1/2 2 4 6 3 4 6 7

C6 7 4 1/4 1 4 1/2 2 2 7 8 6 6 7

C7 6 2 1/3 1/4 1 1/2 1/3 2 5 3 4 3 2

C8 7 4 2 2 2 1 3 2 8 5 8 6 7

C9 4 3 1/2 1/2 3 1/3 1 2 7 3 7 3 5

C10 5 3 1/4 1/2 1/2 1/2 1/2 1 5 3 4 3 5

C11 1/3 1/3 1/6 1/7 1/5 1/8 1/7 1/5 1 1/3 1/2 1/4 1/2

C13 1/2 2 1/3 1/8 1/3 1/5 1/3 3 3 1 4 1/2 1/2

C15 1/3 1/4 1/4 1/6 1/4 1/8 1/7 1/4 2 1/4 1 1/3 1/2

C18 1/3 2 1/6 1/6 1/3 1/6 1/3 1/3 4 2 3 1 3

C19 1/4 1/3 1/7 1/7 1/2 1/7 1/5 1/5 2 2 2 1/3 1

Inconsistency: 0.09784
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Table A8. Comparison Matrix of 13 criteria with respect to criterion 7.

C1 C2 C3 C6 C7 C8 C9 C10 C11 C13 C15 C18 C19

C1 1 1/5 1/5 1/4 1/6 1/7 1/4 1/5 3 2 3 3 4

C2 5 1 1/4 1/4 1/2 1/4 1/3 1/4 3 1/2 4 1/2 3

C3 5 4 1 4 2 1/2 2 4 6 3 4 6 7

C6 4 4 1/4 1 4 1/2 2 2 7 8 6 6 7

C7 6 2 1/2 1/4 1 1/2 1/3 2 5 3 4 3 2

C8 7 4 2 2 2 1 3 2 8 5 8 6 7

C9 4 3 1/2 1/2 3 1/3 1 2 7 3 7 3 5

C10 5 4 1/4 1/2 1/2 1/2 1/2 1 5 3 4 3 5

C11 1/3 1/3 1/6 1/7 1/5 1/8 1/7 1/5 1 1/3 1/2 1/4 1/2

C13 1/2 2 1/3 1/8 1/3 1/5 1/3 3 3 1 4 1/2 1/2

C15 1/3 1/4 1/4 1/6 1/4 1/8 1/7 1/4 2 1/4 1 1/3 1/2

C18 1/3 2 1/6 1/6 1/3 1/6 1/3 1/3 4 2 3 1 3

C19 1/4 1/3 1/7 1/7 1/2 1/7 1/5 1/5 2 2 2 1/3 1

Inconsistency: 0.09426

Table A9. Comparison Matrix of 13 criteria with respect to criterion 8.

C1 C2 C3 C6 C7 C8 C9 C10 C11 C13 C15 C18 C19

C1 1 1/5 1/5 1/4 1/6 1/7 1/4 1/5 3 2 3 3 4

C2 5 1 1/4 1/4 1/2 1/4 1/3 1/4 3 1/2 4 1/2 3

C3 5 4 1 4 2 1/2 2 4 6 3 4 6 7

C6 4 4 1/4 1 4 1/2 2 2 7 5 5 4 5

C7 6 2 1/2 1/4 1 1/2 1/3 2 5 3 4 3 2

C8 7 4 2 2 2 1 3 2 8 5 8 6 7

C9 4 3 1/2 1/2 3 1/3 1 2 7 3 7 3 5

C10 5 4 1/4 1/2 1/2 1/2 1/2 1 5 3 4 3 5

C11 1/3 1/3 1/6 1/7 1/5 1/8 1/7 1/5 1 1/3 1/2 1/4 1/2

C13 1/2 2 1/3 1/5 1/3 1/5 1/3 3 3 1 4 1/2 1/2

C15 1/3 1/4 1/4 1/5 1/4 1/8 1/7 1/4 2 1/4 1 1/2 1/3

C18 1/3 2 1/6 1/4 1/3 1/6 1/3 1/3 4 2 2 1 2

C19 1/4 1/3 1/7 1/5 1/2 1/7 1/5 1/5 2 2 3 1/2 1

Inconsistency: 0.09230
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Table A10. Comparison Matrix of 13 criteria with respect to criterion 9.

C1 C2 C3 C6 C7 C8 C9 C10 C11 C13 C15 C18 C19

C1 1 3 3 1/2 3 2 6 3 4 2 2 4 2

C2 1/3 1 3 1/2 2 2 5 3 3 2 4 2 1/2

C3 1/3 1/3 1 1/3 1/2 1/2 2 1/3 2 1/3 1/2 3 1/4

C6 2 2 3 1 1/2 2 4 2 4 3 2 5 2

C7 1/3 1/2 2 2 1 1/2 2 1/3 2 1/2 3 2 1/3

C8 1/2 1/2 2 1/2 2 1 3 1/2 3 1/2 2 3 1/2

C9 1/6 1/5 1/2 1/4 1/2 1/3 1 1/4 1/2 1/3 1/2 1/2 1/4

C10 1/3 1/3 3 1/2 3 2 4 1 2 3 1/2 4 1/3

C11 1/4 1/3 1/2 1/4 1/2 1/3 2 1/2 1 1/2 1/3 1/2 1/5

C13 1/2 1/2 3 1/3 2 2 3 1/3 2 1 3 1/2 2

C15 1/2 1/4 2 1/2 1/3 1/2 2 2 3 1/3 1 3 1/3

C18 1/4 1/2 1/3 1/5 1/2 1/3 2 1/4 2 2 1/3 1 1/2

C19 1/2 2 4 2 3 2 4 3 5 1/2 3 2 1

Inconsistency: 0.09890

Table A11. Comparison Matrix of 13 criteria with respect to criterion 10.

C1 C2 C3 C6 C7 C8 C9 C10 C11 C13 C15 C18 C19

C1 1 3 3 1/2 3 2 7 3 4 3 2 4 2

C2 1/3 1 3 1/2 2 2 5 3 3 2 4 2 1/2

C3 1/3 1/3 1 1/3 1/2 1/2 2 1/3 2 1/3 1/2 3 1/4

C6 2 2 3 1 1/2 2 4 2 4 3 2 4 2

C7 1/3 1/2 2 2 1 1/2 2 1/3 2 1/2 3 2 1/3

C8 1/2 1/2 2 1/2 2 1 3 1/2 3 1/2 2 3 1/2

C9 1/7 1/5 1/2 1/4 1/2 1/3 1 1/4 1/2 1/3 1/2 1/2 1/4

C10 1/3 1/3 3 1/2 3 2 4 1 2 3 1/2 4 1/3

C11 1/4 1/3 1/2 1/4 1/2 1/3 2 1/2 1 1/3 1/3 1/2 1/5

C13 1/3 1/2 3 1/3 2 2 3 1/3 3 1 3 1/2 2

C15 1/2 1/4 2 1/2 1/3 1/2 2 2 3 1/3 1 3 1/3

C18 1/4 1/2 1/3 1/4 1/2 1/3 2 1/4 2 2 1/3 1 1/4

C19 1/2 2 4 2 3 2 4 3 5 1/2 3 4 1

Inconsistency: 0.09964
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Table A12. Comparison Matrix of 13 criteria with respect to criterion 11.

C1 C2 C3 C6 C7 C8 C9 C10 C11 C13 C15 C18 C19

C1 1 2 3 3 1/4 1/2 1/2 1/4 1/3 1/3 1/2 1/3 1/2

C2 1/2 1 1/2 2 1/4 1/3 1/2 1/4 1/2 1/7 1/4 1/5 1/3

C3 1/3 2 1 3 1/5 1/4 2 1/2 3 1/6 1/3 1/3 1/6

C6 1/3 1/2 1/3 1 1/5 1/8 1/2 1/5 1/3 1/8 1/6 1/4 1/3

C7 4 4 5 5 1 2 5 3 3 1/2 3 2 2

C8 2 3 4 8 1/2 1 5 2 1/2 1/3 2 2 3

C9 2 2 1/2 2 1/5 1/5 1 1/2 2 1/8 1/2 1/7 1/5

C10 4 4 2 5 1/3 1/2 2 1 1/3 1/6 1/2 1/2 2

C11 3 2 1/3 3 1/3 2 1/2 3 1 1/5 1/2 1/3 1/2

C13 3 7 6 8 2 3 8 6 5 1 4 2 4

C15 2 4 3 6 1/3 1/2 2 2 2 1/4 1 1/2 1/2

C18 3 5 3 4 1/2 1/2 7 5 3 1/2 2 1 2

C19 2 3 6 3 1/2 1/3 5 4 2 1/4 2 1/2 1

Inconsistency: 0.09801

Table A13. Comparison Matrix of 13 criteria with respect to criterion 13.

C1 C2 C3 C6 C7 C8 C9 C10 C11 C13 C15 C18 C19

C1 1 4 4 1/2 3 2 7 4 6 3 2 4 3

C2 1/4 1 3 1/2 2 2 4 3 3 2 4 2 1/2

C3 1/4 1/3 1 1/3 3 1/2 2 1/3 2 1/2 1/2 2 1/2

C6 2 2 3 1 3 2 4 2 4 3 2 5 2

C7 1/3 1/2 1/3 1/3 1 1/2 2 1/3 2 1/2 3 2 1/3

C8 1/2 1/2 2 1/2 2 1 3 1/2 3 1/2 2 3 1/2

C9 1/7 1/4 1/2 1/4 1/2 1/3 1 1/4 1/2 1/3 1/2 1/2 1/4

C10 1/4 1/3 3 1/2 3 2 4 1 2 3 1/2 4 1/3

C11 1/6 1/3 1/2 1/4 1/2 1/3 2 1/2 1 1/2 1/3 1/2 1/5

C13 1/3 1/2 2 1/3 2 2 3 1/3 2 1 3 1/2 2

C15 1/2 1/4 2 1/2 1/3 1/2 2 2 3 1/3 1 3 1/3

C18 1/4 1/2 1/2 1/5 1/2 1/3 2 1/4 2 2 1/3 1 1/2

C19 1/3 2 2 2 3 2 4 3 5 1/2 3 2 1

Inconsistency: 0.09084
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Table A14. Comparison Matrix of 13 criteria with respect to criterion 15.

C1 C2 C3 C6 C7 C8 C9 C10 C11 C13 C15 C18 C19

C1 1 5 4 3 1/4 1/4 1/3 1/4 4 1/5 1/4 1/3 1/2

C2 1/5 1 1/3 3 1/5 1/7 1/3 1/5 1/4 1/8 1/4 1/6 1/4

C3 1/4 3 1 3 1/5 1/4 2 1/2 3 1/6 1/3 1/3 1/6

C6 1/3 1/3 1/3 1 1/5 1/8 1/2 1/5 1/3 1/8 1/6 1/8 1/3

C7 4 5 5 5 1 3 6 3 6 1/2 4 2 3

C8 4 7 4 8 1/3 1 5 2 5 1/3 2 2 3

C9 3 3 1/2 2 1/6 1/5 1 1/2 2 1/8 1/2 1/7 1/5

C10 4 5 2 5 1/3 1/2 2 1 3 1/6 1/2 1/2 2

C11 1/4 4 1/3 3 1/6 1/5 1/2 1/3 1 1/8 1/2 1/5 1/4

C13 5 8 6 8 2 3 8 6 8 1 4 2 4

C15 4 4 3 6 1/4 1/2 2 2 2 1/4 1 1/2 1/2

C18 3 6 3 8 1/2 1/2 7 5 5 1/2 2 1 2

C19 2 4 6 3 1/3 1/3 5 4 4 1/4 2 1/2 1

Inconsistency: 0.08784

Table A15. Comparison Matrix of 13 criteria with respect to criterion 18.

C1 C2 C3 C6 C7 C8 C9 C10 C11 C13 C15 C18 C19

C1 1 2 3 3 1/4 1/5 1/5 1/4 4 1/5 1/4 1/3 1/2

C2 1/2 1 1/3 3 1/5 1/7 1/3 1/5 1/4 1/8 1/4 1/6 1/4

C3 1/3 3 1 3 1/5 1/4 2 1/2 3 1/6 1/3 1/3 1/6

C6 1/3 1/3 1/3 1 1/4 1/7 1/2 1/5 1/3 1/7 1/5 1/6 1/4

C7 4 5 5 4 1 3 6 3 6 1/2 4 2 3

C8 5 7 4 7 1/3 1 5 2 5 1/3 2 2 3

C9 5 3 1/2 2 1/6 1/5 1 1/2 2 1/8 1/2 1/7 1/5

C10 5 5 2 5 1/3 1/2 2 1 3 1/6 1/2 1/2 2

C11 1/4 4 1/3 3 1/6 1/5 1/2 1/3 1 1/8 1/2 1/5 1/4

C13 5 8 6 7 2 3 8 6 8 1 4 2 4

C15 4 4 3 5 1/4 1/2 2 2 2 1/4 1 1/2 1/2

C18 3 6 3 6 1/2 1/2 7 5 5 1/2 2 1 2

C19 2 4 6 4 1/3 1/3 5 4 4 1/4 2 1/2 1

Inconsistency: 0.08708
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Table A16. Comparison Matrix of 13 criteria with respect to criterion 19.

C1 C2 C3 C6 C7 C8 C9 C10 C11 C13 C15 C18 C19

C1 1 4 4 2 3 2 5 4 6 3 2 4 3

C2 1/4 1 3 1/2 2 2 5 3 3 2 4 2 1/2

C3 1/4 1/3 1 1/3 3 1/2 2 1/3 2 1/3 1/2 2 1/2

C6 1/2 2 3 1 3 2 4 2 4 3 2 5 2

C7 1/3 1/2 1/3 1/3 1 1/2 2 1/3 2 1/2 3 2 1/3

C8 1/2 1/2 2 1/2 2 1 3 1/2 3 1/2 2 3 1/2

C9 1/5 1/5 1/2 1/4 1/2 1/3 1 1/4 1/2 1/3 1/2 1/2 1/4

C10 1/4 1/3 3 1/2 3 2 4 1 2 3 1/2 4 1/3

C11 1/6 1/3 1/2 1/4 1/2 1/3 2 1/2 1 1/2 1/3 1/2 1/5

C13 1/3 1/2 3 1/3 2 2 3 1/3 2 1 3 1/2 2

C15 1/2 1/4 2 1/2 1/3 1/2 2 2 3 1/3 1 3 1/3

C18 1/4 1/2 1/2 1/5 1/2 1/3 2 1/4 2 2 1/3 1 1/2

C19 1/3 2 2 2 3 2 4 3 5 1/2 3 2 1

Inconsistency: 0.09114

Appendix G

Table A17. Rating of Alternative Qualitative Criteria—Linguistic Values.

DMs Alternatives
Qualitative Criteria

C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

D1

A1 H EH H M H H VP VH H H

A2 VH H H VH H H VH H VH M

A3 H H VH VH H VH VH H VH H

A4 M H M M H M M VP EP M

D2

A1 H EH M M H H P VH M H

A2 H VH M VH H H VH H VH H

A3 M H H VH H M VH H VH M

A4 H M M M M M M VP P M

D3

A1 H EH M H VH H P VH M H

A2 EH H H VH H H VH H M M

A3 VH H H VH H P VH H H H

A4 M M M M M H M P P M

D4

A1 H EH H H M M P VH M H

A2 H H M H EH P VH H M M

A3 H VH H VH H P VH H VH M

A4 M M M P M H M P P M
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Appendix H

Table A18. Rating of Alternative versus Quantitative Criteria.

Alternatives
Quantitative Criteria

C1 C2 C3

A1 2001 2500 3000 101 150 200 3 4 5

A2 4001 4500 5000 401 450 500 9 10 11

A3 3001 3500 4000 201 250 300 6 7 8

A4 1001 1500 2000 101 150 200 6 7 8
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Abstract: The integration of key indicators from the results of the analysis of time series represents
a constant challenge within organizations; this could be mainly due to the need to establish the
belonging of each indicator within a process, geographic region or category. This paper thus illustrates
how both primary and secondary indicators are relevant for decision making, and why they need to
be integrated by making new final fuzzy indicators. Thus, our proposal consists of a type-2 fuzzy
integration of multivariate time series, such as OECD country risk classification, inflation, population
and gross national income (GNI) by using multiple type-1 fuzzy inference systems to perform time
series classification tasks. Our contribution consists of the proposal to integrate multiple nested type-1
fuzzy inference systems using a type-2 fuzzy integration. Simulation results show the advantages of
using the proposed method for the fuzzy classification of multiple time series. This is done in order
so the user can have tools that allow them to understand the environment and generate comparative
analyses of multiple information sources, and finally use it during the process prior to decision
making considering the main advantage of modeling the inherent uncertainty.
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1. Introduction

Analytical purposes about demographics, financial, industry and labor market statis-
tics indicators, among others, are commonly accumulated over time and represent a signifi-
cant part of the decision-making process. Furthermore, the analysis of historical informa-
tion [1–3] makes it possible to use the collected information to issue early warnings on the
current and future measurement of indicators (variables).

For governments, a key aspect that must end poverty is sustainable development,
through which better health conditions are created and prosperity is fostered, in addition
to considering improvements in education and social conditions. Sustainable development
is found in the main goals and policies of societies all over the world [4]. On the other
hand, many organizations have been recording the fulfillment of their goals, objectives and
performance indicators for decades.

A common aspect of the historical analysis of variables (indicators) is that it is necessary
to classify these indicators into categories, geographical regions or topics in order to achieve
an optimal composition of each group. Because of the individual characteristics and based
on the membership of the determined group, it could place each indicator in more than
one category, which means that there is uncertainty in class membership.

Due to a lack of comprehensive measures in some time series, making comparisons
in terms of multiple variables (indicators) is a complex task, as is the case with most
country statistics. This, in some cases, causes summaries of the information to be made
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and composite measures to be constructed, for which reason a frequent problem for the
analyst is the selection of an adequate weighting for each of the considered indicators [5,6].
The ideal objective is for individuals to assign weights according to their preferences and
based on experience, though in most cases it is not possible because there is not enough
information available [7].

Thus, our motivation comes from the need for a computational intelligence model for
handling uncertainty in decision making, through comparisons in terms of nested fuzzy
classification of multiple variables (indicators) instead a typical model of Multi-Criteria
Decision Making (MCDM), with the common understanding that it evaluates the criteria
using an aggregation method function which returns a binary output; no preference is
represented by a 0 and the strongest preference is represented by a 1. So, we can rely
our proposal on the theory of fuzzy reasoning that is an inference procedure that derives
conclusions from a set of fuzzy if-then rules and known facts [8,9] by modeling vagueness
and unreliability of information, where an interval also represents the degree of membership
(consists of two limits between 0 and 1) of the function.

Therefore, the main contribution of this paper consists of the combination of multiple
fuzzy systems [10,11] to perform integration of time series’ analysis results, which slightly
simulate the cognitive functioning of the human brain when the person makes a decision
and is focusing on achieving a management of uncertainty in this type of decisive process.
It consists of a type-2 fuzzy integration of multivariate time series such as OECD country
risk classification, inflation, population and gross national income (GNI) by using time
series classification tasks multiple type-1 fuzzy systems.

This approach differs from most existing methods and computational models in
the literature by combining multiple nested type-1 fuzzy systems using a type-2 fuzzy
integration for comparisons in terms of multiple variables (indicators), which represents
a great advantage of our method when managing uncertainty in decision making using
linguistic variables.

This paper consists of the following sections. In Sections 2 and 3, we show the literature
review and theoretical aspects, respectively. In Section 4, the problem is described. The
methodology used is clarified in Section 5. The experimental and discussion of results are
presented in Sections 6 and 7, respectively. Ultimately, in Section 8, the final conclusions
are outlined.

2. Literature Review

In recent decades, attention has been paid to the design of decision-making systems,
mainly those that consider multiple criteria weighted by a group of experts; that is, they
establish the importance or select certain criteria based on their knowledge, experience or
intuition. There is a challenge in establishing an appropriate hierarchy among the multiple
criteria [12,13].

There are numerous mathematical techniques for Multi-Criteria Decision Making
(MCDM) [14]: Simple Additive Weightage (SAW), Technique for Order Preference by Simi-
larity to Ideal Solution (TOPSIS), Weighted Aggregated Sum Product Assessment (WAS-
PAS), Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE)
Elimination Et Choice Translating Reality (ELECTRE), Linear programming, Goal program-
ming, LINMAP, Measurement of alternative and ranking according to the compromise
solution (MARCOS) and Lexicographic, among others. Some of these models have been con-
templated in different areas such as the humanities, administration, politics or engineering.

In the last decade, researchers have proposed hybrid models that combine mathemat-
ical models such as those mentioned above with general aspects of the fuzzy set theory
proposed by Zadeh in the 1960s. In [15,16], the authors investigate an outranking approach
with ELECTRE II and MARCOS methods, respectively, for group decision making in
2-tuple linguistic fuzzy context. Furthermore, other authors applied TOPSIS approach to
modeling problems based on interval-valued probabilistic linguistic q-rung orthopair fuzzy
sets in [17]. The Intuitionistic fuzzy set theory is used by the authors in [18] to choose the
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most appropriate energy alternative among a set of renewable energy alternatives; to map
(fuzzy ranking) the linguistic judgements of the MCDM problems [19,20]; and to introduce
a new aggregation and ranking method based on the WASPAS and TOPSIS methods [21].
In [22], authors proposed a new interval type-2 fuzzy (IT2F) MCDM method based on the
analytic hierarchy process (AHP) and TOPSIS to the selection of a maintenance strategy
for an industrial asset. In [23,24], the authors investigate the multiple attribute group
decision-making problems in which the attribute values and the weights take the form of
trapezoidal interval type-2 fuzzy sets.

Limitation of the current models validates the results, since they use different method-
ologies to establish the importance or hierarchy of the criteria or indicators [25], as they are
dynamic or uncertain since they depend on the global environment. As far as intelligent
techniques are concerned [26–28], the review of the literature indicates that there is no
MCDM model that contemplates multiple type-1 and type-2 fuzzy systems to carry out the
evaluation of the impact of using or ignoring criteria through a fuzzy integration that can
model the results obtained.

3. Basic Concepts

In this section, we show a summary about the theory considered during the develop-
ment of our model, covering mainly the use of bio-inspired methods, as is the case with
fuzzy systems.

3.1. Type-2 Fuzzy Systems

When we refer to fuzzy logic we can take into account two relevant aspects; if it is
type 1 we seek to model the vagueness in linguistic concepts, while in type 2 we intend
to model uncertainty, mainly that which affects the decision-making process [29] and is
inherent to the information attribute, appearing in several different ways.

We can start from the composition of a fuzzy inference system: a fuzzy rule base; a
database containing the type and parameters of the considered the membership functions,
which will be very useful when generating fuzzy rules; and finally a reasoning mechanism,
that is a procedure to infer which rules apply to the given values to reach a result, which
are mostly fuzzy sets. Therefore, it is necessary to use a defuzzification method to extract a
crisp value that represents a fuzzy set [30].

There are no changes in the basic concepts of the different fuzzy sets; both type-1 and
type-2 fuzzy use the fuzzy if-then rules in the antecedent or consequent. The difference is
that the uncertainty in type-2 membership functions is modeled, since they contain type-2
fuzzy sets (which contain type 1 fuzzy sets). In other words, it consists of a representation
of the uncertainty by means of a crisp output due to the perturbation, once the reduced type
set is deblurred to produce a crisp type 2 output, by finding the centroid of the type-reduced
set. This means the equivalent of finding the weighted average of the outputs of all the
type-1 fuzzy logic systems that are embedded in the type-2 fuzzy logic system, where the
weights correspond to the memberships in the type-reduced set.

So, the amount of uncertainty in a system can be reduced by using type-2 fuzzy logic
as it offers better capabilities to handle linguistic uncertainties by modeling vagueness
and unreliability of information, and also an interval represents the degree of membership
(consists of two limits between 0 and 1) of the function [31].

It is possible to mathematically express an Interval Type-2 Fuzzy Set as Equation (1)

Jx =
{
((x, u))| u ∈

[
µ

A
(x), µA(x)

]}
(1)

where µA (x) and µA(x) correspond to the limits of the fuzzy set, frequently known as
lower and upper membership functions, correspondingly.

The mathematical expression of the Footprint of Uncertainty (FOU) is presented
as Equation (2)

FOU ∈
[
µ

A
(x), µA(x)

]
(2)

179



Axioms 2023, 12, 385

where the µA (x) and µA(x) are the lower and upper membership functions, respectively [32].
We can highlight that a similar process is carried out in an Interval Type-2 Mamdani

FIS as in a Type-1, with the difference that lies in the activation forces of upper and lower
rules. We rely on the fuzzy logic version of modus ponens to compute the inference
calculation, as can be seen in the equation in Equation (3)

Rl : IF x1 is F̃l
1 and . . . and xp is F̃l

1 , THEN y is G̃l (3)

where l = 1, . . . , M.

3.2. Multi-Criteria Decision Making

Multiple-criteria decision making or multiple-criteria decisions belong to the area of
operations research (OR), where its purpose is to allow a quantitative analysis to be carried
out first for the solution of complex problems in a public, private or social organization.

Generally, regardless of the person or work environment, it is considered that for
decision making many criteria should be evaluated systematically and formally, through
an analysis that includes multiple criteria, such as cost, price or measurement of the quality.
A simple example is portfolio management, where obtaining high returns is a priority, but
reducing risks is also required. In the service industry, customer satisfaction and the cost of
providing the service are two of the significant criteria that must be weighed [33].

In artificial intelligence, the generalization of logical connectives is mainly used when
a system must decide. It is possible that the system has a multiple-criteria decision problem,
which means that the system has numerous criteria. To simulate the environment in an
information system, it is required to have a general understanding of the environment
and that the sources of information are reliable. Unfortunately, when the information is
provided by a single source (by a sensor or an expert) it is often not reliable enough. Thus,
when the information is provided by several sensors (or experts), it must be combined to
improve the reliability and precision of the data [34–36].

An indicator (criterion) is presumed to be useful if its predictions result in a smaller
loss when compared to a prediction where that indicator was ignored. In the case of
vulnerability indicators, these are used as useful early warning indicators for policymakers
when faced with severe recessions. Hence the importance of considering international
events when assessing a country’s vulnerabilities. In a global economy, the vulnerabilities
of countries accumulate, and are potentially transmitted between them [37].

There are multiple factors for the development of a country. By carrying out a ranking
process, it is possible to compare the strengths and weaknesses of each nation. Therefore, it
is necessary to identify a correct classification mechanism by which it is possible to perform
a comparative analysis [38].

4. Problem Description

The Organization for Economic Co-operation and Development (OECD) is an inter-
national organization that works to build better policies for better lives. Together with
governments, policy makers and citizens, OECD works on establishing evidence-based
international standards and finding solutions to a range of social, economic and environ-
mental challenges.

As part of the civil and governmental actions, global comparable data are available to
uncover the strengths of the OECD and other leading economies, which makes it possible
to analyze multiple historical trends such as inflation, population and gross national
income (GNI), among others, though this is an arduous task that will probably take a
long time, so in the meantime it is necessary to have tools that allow these variables to
be associated, provide new insights into areas of policy interest and inform the global
panorama to decision-makers. Furthermore, indicators are pointers; they do not address
causal relationships. Moreover, the validity of a set of indicators depends on its use [39].

For this case, four datasets were selected for each of the 38 OECD member countries,
and no data preprocessing was performed (Table 1):
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Table 1. OECD member countries.

Country Name Country Code Country Name Country Code

Australia AUS Japan JPN
Austria AUT Republic of Korea, Rep. KOR
Belgium BEL Latvia LVA
Canada CAN Lithuania LTU

Chile CHL Luxembourg LUX
Colombia COL Mexico MEX
Costa Rica CRI Netherlands NLD

Czech Republic CZE New Zealand NZL
Denmark DNK Norway NOR
Estonia EST Poland POL
Finland FIN Portugal PRT
France FRA Slovak Republic SVK

Germany DEU Slovenia SVN
Greece GRC Spain ESP

Hungary HUN Sweden SWE
Iceland ISL Switzerland CHE
Ireland IRL Turkey TUR
Israel ISR United Kingdom GBR
Italy ITA United States USA

The first dataset consists of six attributes (Table 2) for 61 instances corresponding to
the total annual population, from 1960 to 2020 (Figure 1) [40].

Table 2. Annual total population: attributes of the time series.

Code Attribute Attribute Name

att1 Country
att2 IDCountry
att3 Criterion
att4 IDCriterion
att5 IDYear
att6 ValueCriterion

Figure 1. OECD member countries: total annual population.

In the second dataset, it consists of six attributes (Table 3) for 15 instances correspond-
ing to GNI, from 2006 to 2020 (Figure 2) [41].
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Table 3. GNI: attributes of the time series.

Code Attribute Attribute Name

att1 Country
att2 IDCountry
att3 Criterion
att4 IDCriterion
att5 IDYear
att6 ValueCriterion

Figure 2. OECD members: average annual GNI.

The third dataset consists of six attributes (Table 4) for 28 instances corresponding to
the inflation, from 1993 to 2020 (Figure 3) [42].

Table 4. Inflation: attributes of the time series.

Code Attribute Attribute Name

att1 Country
att2 IDCountry
att3 Criterion
att4 IDCriterion
att5 IDYear
att6 ValueCriterion

The fourth dataset consists of four attributes (Table 5) for 34 instances corresponding
to OECD country risk, from 1987 to 2020 [43].

Table 5. OECD country risk: attributes of the time series.

Code Attribute Attribute Name

att1 Country
att2 IDCountry
att3 IDYear
att4 ValueCriterion

High-income OECD member countries have been not classified; these belong to category 0.
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Figure 3. OECD members: inflation annual percentage.

5. Proposed Method

We presented a computational model that comprises three levels. In the first, a time
series dataset is selected; and for the second, type-1 fuzzy inference systems are used to
classify a set of countries by weighting: population, GNI, inflation and OECD country
risk time series values (based on the time series values a class is assigned to each country).
Finally, in the third, the results obtained in the previous levels are used as inputs of a
type-2 fuzzy inference system to integrate the results and obtain an indicator or global
result (Figure 4).

Figure 4. Illustration of the proposed method.

Type-1 fuzzy systems used to integrate the population and GNI time series are the
Mamdani type, consisting of two inputs and one output (Table 6), triangular membership
functions type: Low (LW), Medium (MM), High (HH), 9 rules and the centroid defuzzifica-
tion method. To select these values, the parameters of the membership function and fuzzy
rules were thoroughly tested (Figure 5).
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Table 6. First Type-1 fuzzy system population and GNI variables.

Variables Type Variables Name Membership Functions

Input Population LW, MM, HH
GNI LW, MM, HH

Output Criterion 1 LW, MM, HH

Figure 5. First Type-1 fuzzy system population and GNI variables.

The second type-1 fuzzy system is the Mamdani type, and is used to integrate GNI time
series values; it consists of three inputs and one output (Table 7), triangular membership
functions type (Lower income (L), Lower Middle income (LM), Upper Middle income
(UM), High income (H), 10 rules and the centroid defuzzification method. To select these
values, the parameters of the membership function and fuzzy rules were thoroughly
tested (Figure 6).

Table 7. Second Type-1 fuzzy system GNI variables.

Variables Type Variables Name Membership Functions

Inputs

GNI1 L, LM, UM, H
GNI2 L, LM, UM, H
GNI3 L, LM, UM, H
GNI4 L, LM, UM, H

Output Criterion 2 L, LM, UM, H

Type-1 fuzzy systems used to integrate the inflation and OECD country risk time
series consist of two inputs and one output, triangular membership functions type: Low
(LW), Medium (MM) and High (HH) (Table 8). It is Mamdani type, with 9 rules and the
centroid defuzzification method. To select these values, the parameters of the membership
function and fuzzy rules were tested thoroughly (Figure 7).

Table 8. Third Type-1 fuzzy system inflation and OECD country risk variables.

Variables Type Variables Name Membership Functions

Input Inflation LW, MM, HH
OECD cr LW, MM, HH

Output Criterion 3 LW, MM, HH
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Figure 6. Second Type-1 fuzzy system GNI variables.

Figure 7. Third Type-1 fuzzy system inflation and OECD country risk variables.

Type-2 fuzzy system used to integrate the results of the type-1 fuzzy systems consists
of three inputs and one output, triangular membership functions type Low (LW), Medium
(MM) and High (HH) (Table 9). It is the Mamdani type, with 27 rules and the centroid
defuzzification method. To select these values, the parameters of the membership function
and fuzzy rules were tested thoroughly (Figure 8).

Table 9. Type-2 fuzzy indicators.

Variables Type Variables Membership Functions

Input
Criterion 1 LW, MM, HH
Criterion 2 LW, MM, HH
Criterion 3 LW, MM, HH

Output Criteria LW, MM, HH
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Figure 8. Type-2 fuzzy criteria integration.

It is necessary to establish that after the type reduction, to calculate the final output of
the type-2 fuzzy system, the weights of the outputs of the fuzzy rules are averaged, where
the membership functions of the rules are the weights as Equation (4)

y(t) =
µ1y1(t) + µ2y2(t) + · · ·+ µ27y27(t)

µ1 + µ2 + · · ·+ µ27
(4)

where yi(t) are the outputs of the rules, i = 1, . . . 27, µi are the membership function values
at the outputs of the rules, i = 1, . . . 27 and y(t) is the total output.

6. Experimental Results

For the case of calculating the level of increase for each variable (time series), we
first subtract the immediate previous value of the time series from the initial value. After
obtaining the result, it is divided by the initial value. Subsequently, with the result of
calculating the level of increase in the population and the GNI for each of the calendar
years, we classify the variables of the level of increase in the population and the GNI by
using a Mamdani type-1 fuzzy inference system with two inputs and one output, triangular
membership functions: Low (LW), Medium (MM) and High (HH) (Tables 10 and 11).

Table 10. First Type-1 FIS: Input-Output Parameters.

Variables Membership Functions Parameter a Parameter b Parameter c

Input 1 Population
LW 0.000 0.100 0.300
MM 0.200 0.600 1.200
HH 0.900 2.500 3.000

Input 2 GNI
LW 0.000 0.100 0.300
MM 0.200 0.600 1.200
HH 0.900 2.500 3.000

Output 1 Criterion 1
LW 0.000 0.600 1.200
MM 0.900 1.600 2.200
HH 2.000 2.500 3.000

By using a Mamdani fuzzy type-1 Inference System with four inputs and one output,
as well as triangular membership functions based on the GNI variable, the indicator level
was reached for each of the countries according to the corresponding classification for every
calendar year, Lower income (L), Lower Middle income (LM), Upper Middle income (UM)
and High income (H), seeking to integrate the results with respect to the class assigned to
each country, into a new classification label (Tables 12 and 13).
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Table 11. First Type-1 FIS: Output increase level.

Country Code Criterion 1 Country Code Criterion 1

AUS MM JPN MM
AUT LW KOR LW
BEL LW LVA LW
CAN LW LTU LW
CHL MM LUX MM
COL MM MEX MM
CRI MM NLD MM
CZE MM NZL MM
DNK LW NOR LW
EST MM POL MM
FIN LW PRT LW
FRA LW SVK LW
DEU MM SVN MM
GRC MM ESP MM
HUN MM SWE MM
ISL LW CHE LW
IRL MM TUR MM
ISR MM GBR MM
ITA LW USA LW

Table 12. Type-1 FIS: Input-Output membership function.

Variables Membership Functions Parameter a Parameter b Parameter c

Input1 GNI1

L 0 0.002 0.010
LM 0.008 0.144 0.244
UM 0.234 0.274 0.915
HM 0.910 1.2 1.5

Input 2 GNI2

L 0 0.002 0.011
LM 0.009 0.144 0.245
UM 0.235 0.274 0.916
HM 0.911 1.2 1.5

Input 3 GNI3

L 0 0.002 0.012
LM 0.010 0.144 0.246
UM 0.236 0.274 0.917
HM 0.912 1.2 1.5

Input 4 GNI4

L 0 0.002 0.013
LM 0.011 0.144 0.247
UM 0.237 0.274 0.918
HM 0.914 1.2 1.5

Output 1 Criterion 2

L 0 0.002 0.010
LM 0.008 0.144 0.250
UM 0.230 0.280 0.890
HM 0.790 1.2 1.5

Then, a third Mamdani type-1 fuzzy inference system was used to classify the level
of increase of inflation and OECD country risk. It consists of two inputs and one output,
as well as triangular membership functions: Low (LW), Medium (MM) and High (HG)
(Tables 14 and 15).
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Table 13. Output first Type-1 FIS Criterion 2.

Country Code Criterion 2 Country Code Criterion 2

AUS H JPN H
AUT H KOR H
BEL H LVA H
CAN H LTU UM
CHL UM LUX H
COL UM MEX UM
CRI UM NLD H
CZE H NZL H
DNK H NOR H
EST H POL UM
FIN H PRT H
FRA H SVK UM
DEU H SVN H
GRC UM ESP H
HUN UM SWE H
ISL H CHE H
IRL H TUR UM
ISR H GBR H
ITA H USA H

Table 14. Third Type-1 FIS: Input-Output parameters.

Variables Membership Functions Parameter a Parameter b Parameter c

Input 1 Inflation
LW −3.000 0.100 0.300
MM 0.200 0.600 1.200
HH 0.900 2.500 3.000

Input 2 OECD cr
LW −3.000 0.100 0.300
MM 0.200 0.600 1.200
HH 0.900 2.500 3.000

Output 1 Criterion 3
LW −3.000 0.600 1.200
MM 0.900 1.600 2.200
HH 2.000 2.500 3.000

Table 15. Third Type-1 FIS Criterion 3.

Country Code Criterion 3 Country Code Criterion 3

AUS LW JPN LW
AUT LW KOR LW
BEL LW LVA LW
CAN LW LTU LW
CHL LW LUX LW
COL LW MEX LW
CRI LW NLD LW
CZE LW NZL LW
DNK LW NOR LW
EST LW POL LW
FIN LW PRT LW
FRA LW SVK LW
DEU LW SVN LW
GRC LW ESP LW
HUN LW SWE LW
ISL LW CHE LW
IRL LW TUR LW
ISR LW GBR LW
ITA LW USA LW

188



Axioms 2023, 12, 385

Finally, once the classification results of the level of increase of the variables population,
GNI, inflation and OECD country risk from one period to another are obtained by using
three type-1 fuzzy systems, these results are integrated by using a type-2 fuzzy system with
triangular membership functions, where the three inputs correspond to the classification of
each of the type-1 fuzzy systems, for the purpose of obtaining an output that represents
the final classification of the level of increase of the variables Low (LW), Medium (MM) or
High (HH), as appropriate (Tables 16 and 17).

Table 16. Fist Type-2 FIS: Input-Output parameters.

Variables Membership Function a b c Lower Scale Lower Lag

Input 1 Criterion 1
LW 0.1223 0.6223 1.2980 1.000 0.2000 0.2000
MM 0.894 1.544 2.166 1.000 0.2000 0.2000
HH 2.000 2.500 3.000 1.000 0.2000 0.2000

Input 2 Criterion 2
LW 0.1223 0.6223 1.2980 1.000 0.2000 0.2000
MM 0.894 1.544 2.166 1.000 0.2000 0.2000
HH 2.000 2.500 3.000 1.000 0.2000 0.2000

Input 3 Criterion 3
LW 0.1223 0.6223 1.2980 1.000 0.2000 0.2000
MM 0.894 1.544 2.166 1.000 0.2000 0.2000
HH 2.000 2.500 3.000 1.000 0.2000 0.2000

Output 1 Criteria
LW 0.000 0.500 1.200 1.000 0.2000 0.2000
MM 1.000 1.500 2.200 1.000 0.2000 0.2000
HH 2.000 2.500 3.000 1.000 0.2000 0.2000

Table 17. Output Type-2 FIS variables (Criteria).

Country Code Criteria Country Code Criteria

AUS MM JPN MM
AUT MM KOR MM
BEL MM LVA MM
CAN MM LTU MM
CHL MM LUX MM
COL MM MEX LW
CRI MM NLD MM
CZE MM NZL MM
DNK MM NOR MM
EST MM POL MM
FIN MM PRT MM
FRA MM SVK MM
DEU MM SVN MM
GRC MM ESP MM
HUN MM SWE MM
ISL MM CHE MM
IRL MM TUR LW
ISR MM GBR MM
ITA MM USA MM

Finally, we are presenting a comparison of the classification results obtained for each
country using type-1 fuzzy systems and the final classification obtained using the type-2
fuzzy system as an integrator of all the criteria evaluated (Table 18).
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Table 18. Comparison of Type-1 (T1) and Type-2 (T2) fuzzy systems results (FIS).

Country Code T1 FIS1 Criterion 1 T1 FIS2 Criterion 2 T1 FIS3 Criterion 3 T2 FIS1 Criteria

AUS MM H LW MM
AUT LW H LW MM
BEL LW H LW MM
CAN LW H LW MM
CHL MM UM LW MM
COL MM UM LW MM
CRI MM UM LW MM
CZE MM H LW MM
DNK LW H LW MM
EST MM H LW MM
FIN LW H LW MM
FRA LW H LW MM
DEU MM H LW MM
GRC MM UM LW MM
HUN MM UM LW MM
ISL LW H LW MM
IRL MM H LW MM
ISR MM H LW MM
ITA LW H LW MM
JPN MM H LW MM
KOR LW H LW MM
LVA LW H LW MM
LTU LW UM LW MM
LUX MM H LW MM
MEX MM UM LW LW
NLD MM H LW MM
NZL MM H LW MM
NOR LW H LW MM
POL MM UM LW MM
PRT LW H LW MM
SVK LW UM LW MM
SVN MM H LW MM
ESP MM H LW MM
SWE MM H LW MM
CHE LW H LW MM
TUR MM UM LW LW
GBR MM H LW MM
USA LW H LW MM

7. Discussion of Results

The main goal of this work lies in achieving the separation of the results obtained
using each type-1 fuzzy system, with the idea of making decisions based on the integrated
results through the type-2 fuzzy system. In this understanding, these results show that
it is possible to integrate utilizing type-2 fuzzy systems with the outputs of type-1 fuzzy
systems, with which it is possible to identify countries with similar trends and provide an
overview of the performance of multiple variables in different countries concurrently.

Since most member countries of the OECD have been classified by international orga-
nizations, in the case of the type-1 fuzzy system classification by GNI and classification of
the OECD risk variables, the vast majority of the countries obtained similar a classification.

Similarly, the final classification obtained using type-2 fuzzy concentrates most of
the results in the middle range, with 36 countries classified as MM, with the exception
of two countries that obtained low (LW) classification. This is because both criterion 1
and criterion 2, which represent the increase in population and gross national income,
respectively, obtained different weights compared to the rest of the countries with similar
classifications in the results of type-1 fuzzy systems. This means that by integrating the
results using the type-2 fuzzy system, it is possible to separate into new classes elements that
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belong to the same group, since in this case the difference is mainly marked in criterion 2,
which models the increase in gross national income of the last four years for each country.
Consequently, the results of type-2 fuzzy are slightly similar.

8. Conclusions

We have presented in this work a model for the classification of time series of popu-
lation, GNI, inflation and OECD country risk using multiple type-1 fuzzy systems and a
type-2 fuzzy system as integrator.

The simulation results have shown the countries with similar indicators. The results
have shown that it is possible to use type-2 fuzzy systems to find the final country key
indicator (criteria) based on the trend and similarity of their primary indicators. Therefore,
the combination of nested fuzzy models to perform integration of time series’ analysis
results slightly simulate the cognitive functioning of the human brain when the person
makes a decision, and focuses on achieving a management of uncertainty in this type of
decisive process, with this representing the main contribution of this work.

By carrying out the experiments, we identified some of the advantages of using type-2
fuzzy integration for classification problems, particularly applied as a decision-support tool,
as it is possible to achieve results for a specific place or area by having the data grouped
based on their similarity or groups of elements. Furthermore, by incorporating the type-2
fuzzy system, it was possible to observe the improvement in the integration of the outputs
of type-1 fuzzy systems, since by offering threshold values between 0 and 1, elements that
apparently belong to the same group (in other words, that obtained the same classification)
can be separated into a new cluster due to differences that only an expert in the function
could detect through exhaustive analysis. This will depend on the problem to be solved to
decide whether to use three phases of the proposed method simultaneously, or to work
with each one of them separately.

As future work, we could design a model consisting of multiple type-2 fuzzy inference
systems, with the aim of performing tests with other types of membership functions,
seeking to extend the membership threshold of each function. On the other hand, we also
intend to combine our proposal with the use of supervised neural networks to perform
multi-variable prediction tasks, seeking to reach a greater number of global indicators.
In addition, we are evaluating working with new datasets, with the idea of considering
the relevant attributes within the time series by using several types of demographics and
financial, industry and labor market statistics indicators, among others. On the other hand,
it is also intended to combine our proposal with the use of supervised neural networks to
perform variable prediction tasks, seeking to reach a greater number of global indicators.
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