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Preface

My main purpose in writing this book was to introduce some mem-
bers of the scientific community to a set of mathematical tools that
can be used to obtain qualitative information about the solutions of
differential equations. These techniques are important because they
allow the determination of many features of the solutions indepen-
dent of a knowledge of the exact solutions. With this general overview
of the solutions and their critical features, generally ‘good mathemat-
ical approximations’ can be constructed and applied to analyze the
physical system modeled by the original differential equations.

This book consists of eight short chapters and an appendix of use-
ful mathematical relations. The major issues discussed include the
following topics:

What is a solution to a differential equation?
Linear stability of 1-dim and 2-dim systems
Sturm–Liouville problems and the Liouville–Green transforma-
tion
Separation and comparison theorems for differential equations
Separation of variable and traveling wave solutions for partial
differential equations
Introduction to bifurcation techniques
Limit cycles
Approximating the numbers ‘0’ and ‘1’
How many of you know that the numbers, ‘0’ and ‘1’, can
be expanded as a parameter, ‘p’, and used (via perturbation
techniques) to calculate approximate solutions to differential
equations?

To make good use of this book, the reader needs only to have the
knowledge that comes from having an undergraduate degree in one

xv
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of the physical, mathematical and/or engineering sciences. Of course,
having a background at higher levels of technical education will help.

The general perspective of this book is that of a scientist, not
that of a mathematician concerned with rigorous proofs. In general,
no proofs of anything are given. However, when required, relevant
references are provided.

As I have stated in several previous books, all published by Taylor
& Francis/CRC Press, I thank Callum Fraser, my Editor, for allow-
ing me complete freedom to write this book in the unconventional
style and format that you are accessing.

Finally, I want to acknowledge two others who have provided their
services to get me a large number of articles and books related to
the subject matter of this book. They are Ms Imani Beverly and Mr
Brian Briones, both reference librarians at the Atlanta University
Center’s Robert W. Woodruff Library, Atlanta, Georgia. Without
their effective and speedy aid, the completion of this book would
have been greatly delayed.

Ronald E. Mickens
Atlanta, Georgia 30314 USA



Preliminaries

0.1 PURPOSE OF BOOK

Humans are curious, especially concerning the physical universe. Sci-
ence began when (some) humans understood that ignorance exists,
but they could do something about it within the context of a pro-
cess that we now call the scientific methodology. Jointly with this
methodology there arose an associated language, which we now call
‘mathematics’. One consequence of the construction of mathematical
tools was their separate evolution into an intellectual field for the
study of its own features, separate from its origins in science.

Taking mathematics as the language of science, the precision
study of the physical universe began with the construction of math-
ematical models for the analysis of particular physical phenomena.
However, an interesting thing happened; essentially none of the asso-
ciated mathematical equations could be solved exactly for their solu-
tions. Consequently, a broad range of approximation techniques were
created including computational methods for determining numerical
solutions.

Another, less used set of techniques, is based on acquiring only
qualitative information on the desired solutions. While many of these
procedures have been available since the early nineteenth century,
many working scientists and researchers are not knowledgeable about
their existence and/or how to apply them to the equations they hope
to analyze, understand and solve.

The main purpose of this small volume is to introduce some of
these qualitative methods and show how they may be applied to dif-
ferential equations. The reason for the focus on differential equations
follows from the fact that many, if not most, of the physical systems
have some form of mathematical model for which the mathematical
structure is represented by differential equations.

DOI: 10.1201/9781003422419-1 1
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0.2 EXPERIMENTS AND PHYSICAL MEASUREMENTS

Experimental science and the data it generates by means of physi-
cal measurement have an important aspect: it is discrete in nature.
All data acquisition, often in some hidden manner, relies on making
space and time measurements and these are always done discretely.

0.3 MATHEMATICS AND PHYSICAL MATHEMATICS

There is no standard agreement as to how to define mathematics. As
a practical matter, I use the following working definition

Mathematics is the study, creation and analysis of patterns in the
abstract universe of human thought and mental perception.

Likewise, my working definition of science is

Science is the systematic observation, creation, analysis,
and modeling of patterns which exist in the physical
universe.

However, Albert Einstein’s statement on the relationship between
science and mathematics must be taken very seriously. He stated
that

as far as the laws of mathematics refer to reality, they are
not certain; and as far as they are certain, they do not refer
to reality.

The definitions of mathematics and science, given above, along with
Einstein’s statement, imply that current mathematical structures are
not the ‘exact language’ of science, as many believe. While mathe-
matics and science are deeply intertwined, neither is an exact replica
of the other. At best, current mathematics is an approximation to
whatever may be the ‘natural language of science’. What can be
said is that mathematics in many instances works extremely well
for formulating and expressing science and its results, but what
we have now available is not the final word. What is required is
a new mathematical structure or formulation that directly incorpo-
rates how experiments are actually done and data acquired. Further,
not only are all experiments discrete in nature, they also have errors
occurring as part of the measuring processes.

Physical mathematics is the application to the analysis of physical
systems’ concepts, ideas, techniques and understandings that arise
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in mathematics, but without the strict logical vigor that we associate
with mathematics. For example, for physical mathematics

There are no real numbers, only rationals…
Both independent and dependent variables are discrete valued…
Physical infinities are assumed not to exist…
There do not exist derivatives; differences are what is measured….

These ‘facts’ imply that calculus and its generalizations to differential
equations, Fourier theory, complex function theory, geometry, etc.,
are approximations. The required mathematical structure needed to
faithfully represent the physical universe has to be some discrete form
of these ‘continuous structures’. And, for the time being, we have no
clue as to what they are!

In recent years, the idea that nature is discrete or that nature
can only be realistically analyzed from the perspective of a discrete-
based mathematical structure has been presented to the scientific
community. Essays giving arguments, both mathematical and phys-
ical, against nature being continuous have been given by Gregory
Chaitin and Sheldon Glashow.

0.4 DYNAMIC CONSISTENCY AND MATHEMATICAL
MODELING

We now provide some definitions related to just what is mathematical
modeling and the role played by dynamic consistency in the formu-
lation of these models. Our discussion here is brief and the reader is
referred to Mickens book (2022) for a more detailed presentation.

Definition 1 A system is a set of interrelated, interacting,
interdependent elements, which collectively form a complex whole.

Definition 2 Modeling is the representation of one system by
another system.

Definition 3 Mathematical modeling is the representation of a
system by a set of mathematical relations or equations.

Definition 4 Dynamic consistency is concerned with the relation-
ship between two systems S1 and S2. Let S1 have the property or
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feature P. If S2 also has property P, then S2 is said to be dynamically
consistent with S1 with respect to P.

Examples of properties for which two systems might be dynami-
cally consistent include the following items:

Satisfaction of a conservation law
Positivity of particle number or density
Stability properties of equilibrium states
etc.

For our purposes S1 could be a physical system, s2 a mathematical
model and S3 the solutions of the equations derived to obtain S2, i.e.,
in pictorial representation.

S1: physical system
↓
S2: mathematical model
↓
S3 ∶ Solutions
Note that S2 may be dynamically consistent with respect to cer-

tain features of S1, but not to other features. It is this fact that allows
the creation of a range of mathematical models for S1. Similarly, S3
may be dynamically consistent with particular features of S2, but
not with other aspects. This realization is the basis of many of the
issues related to determining analytic approximation to the solution
of mathematical equations and the introduction of numerical errors
in discretization schemes.

Consequently, given a system S, different models of it, S can
be obtained by creating/constructing models (S1,S2, …), which are
dynamically consistent with different combinations of features or
properties of S. This fact is an illustration of the fact that the
modeling process is generally not unique.

BTW : In this book, essentially all the mathematical models are
represented as differential equations.

0.5 PHYSICAL AND MATHEMATICAL EQUATIONS

Usually the mathematical modeling equations are derived from var-
ious physical principles. This means that their independent and
dependent variables and associated parameters are expressible in
terms of the physical units of (mass, length, time). However, it is
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generally more suitable to transform these equations into expres-
sions where all the variables and parameters have no physical units.
The main reason for doing this is that the physical variables and
parameter magnitudes will be dependent on the units of physical
measurement selected. To resolve this issue, the notion of scaled
variables is introduced.

Definition 5 A physical equation, derived in the construction of a
mathematical model for a system, in general, has all its variables and
parameters expressed in terms of a given set of physical units such
as mass, length and time.

Definition 6 A mathematical equation has all of its variables
and parameters dimensionless, i.e., they can be expressible as pure
numbers.

The major advantages of a mathematical equation are that, in
general, they contain fewer parameters and this makes the result-
ing equations easier to study. The following elementary example
illustrates this point.

Consider the decay equation
dx
dt = −𝜆x, x (0) = x0 (given) , (0.5.1)

where 𝜆 is a positive parameter. If x has units of length and t, units
of time, then 𝜆 has units of inverse time, i.e.,

[x] = L, [t] = T, [𝜆] = 1
T . (0.5.2)

The original differential equation can be rewritten to the form

dy (t)
dt

= −y (t) , y (0) = 1, (0.5.3)

where

t → t = 𝜆t, x (t) ⇒ y (t) = x (t)
x0

, (0.5.4)

Note two things about Equation (0.5.3). First, its variables are
dimensionless or pure numbers. Second, for this example, the y-
equation has only one, simple initial condition, y (0) = 1. This
certainly aids in the overall analysis of the solution behavior of the
decay equation. This type of manipulation can be extended to more
complex equations.
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0.6 LOCAL BEHAVIOR OF FUNCTIONS

Much of this book will be, at some point, based on the ability to
sketch representations of various functions by hand. To effectively
do so, we will need to know some basic features of the properties of
functions. One of the things to aid us in this task is to understand
the local behaviors of functions, f (x), near a point, x = x1, based on
the properties of its derivative or slope. Fortunately, nearly all the
functions that we will consider are at least piece-wise-continuous.

Let

y (x) = f (x) , (0.6.1)

and consider its plot, i.e., y (x) vs x, in the x − y plane. Assume
that at x = x1, the derivative, y´ (x) = df (x) /dx, exists. Figure 0.1
gives the local behavior of y = f (x). For various values of y´ (x1). For
completeness, we have also included the two cases where the slope
is unbounded or infinite. In words, Figure 0.1 depicts the following
situations:

(1) If at y1 = y (x1) , y´ (x1) > 0, then the curve passing through the
point, (x1, y1), has a tangent that is pointing upward and to the
right.

(2) If y´ (x1) = 0, then the tangent is horizontal and pointing to the
right.

(3) If y´ (x1) < 0, then the tangent is pointing downward and to the
right.

(4) If y´ (x1) = +∞, then the tangent is pointing vertically upward.
(5) If y´ (x1) = −∞, then the tangent is pointing vertically down-

ward.

PROBLEMS

Section 0.2

1) Think about how the number ‘𝜋’ is used in mathematics and
computations. Is the ‘same’ numerical 𝜋 appearing in each
situation?
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Section 0.4

2) Discuss why physical mathematics and mathematics are not
equivalent.

3) It is often stated that ‘Mathematics is the language of science’.
What does this statement mean? Is it true?

Section 0.5

4) The van der Pol oscillator differential equation is

md2x
dt2 + kx = (a − bx2) dx

dt ,

where m has the dimension of mass, x and t have, respectively, the
dimensions of length and time. Scale this ODE such that all the new
variables and parameters have no physical dimensions. 

Section 0.6

5) Consider the curve

x2 + y2 = 1.

Locate and draw this curve indicating points where

y´ = 0, y´ = ∞, y´ = −∞, y´ = 1, y´ = −1.

NOTES AND REFERENCES

Some references that cover in more detail the variety of topics
discussed in this chapter are listed below:

1. R. E. Mickens, Dynamic consistency: A fundamental principle for
constructing NSFD schemes for differential equations, Journal of
Difference Equations and Applications, Vol. 11 (2005), 645–653.

2. R. E. Mickens, Mathematical Methods for the Natural and
Engineering Sciences, 2nd Edition (World Scientific, London,
2017).

3. T. Szirtes, Applied Dimensional Analysis and Modelling
(MaGraw-Hill, New York, 1998).
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FIGURE 0.1 Local behavior of the curve, y = f (x), in the x − y plane for
x = x1. For, all are drawn for the first

Arguments and discussions on the nature of science and mathemat-
ics, and their relations to each other are covered in the following
interesting references:

4. I. Bah, D. S. Freed, G. W. Moore, N. Nekrasov, S. S. Razamat,
and S. Schafer-Nameki, A panorama of physical mathematics;
published in many venues, but also arXiv:2211.04467v3 [hep-th]
(Accessed May 9, 2024).

5. G. Chaitin, How real are real numbers?; arXiv:math/0411418v3
[math.HO] (Accessed November 29, 2004).
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6. G. t’Hooft, Confusions regarding quantum mechanics, reply by
sheldon Lee Glashow, Inference, Vol. 5, No. 3 (September 2020).
https://doi.org/10.37282/991819.20.56.

7. B. Wu, Mathematics is physics; arXiv:2306.03766v2 [physics.gen-
ph] (Accessed June 7, 2023).



C H A P T E R 1

What Is a Solution?

1.1 INTRODUCTION

This chapter examines the process of ‘calculating’ solutions to the
differential equations modeling physical phenomena. The various
obtained results will not necessarily be what a mathematician would
either calculate or find rigorous. Our point of view is that of a
scientist whose task is to find mathematics-based structures that pro-
vide physical insight into the phenomena under investigation. While
the modeling equations are relatively elementary, they illustrate the
methodology of a mathematical scientist who is doing science rather
than being a mathematician. Remember, insights and understanding
are the goals.

1.2 RADIOACTIVE DECAY

Radioactive decay is a general phenomenon occurring in many areas
of the natural and engineering sciences. For elementary decay, it is
the usual case that it is modeled by a first-order differential equation
having the form

dx
dt = −𝜆x, x (0) = x0, (1.2.1)

where 𝜆 has the physical units of (time)−1 and x (t) is the amount of
radioactive decaying material at time t.

Another approach, which is more general, is to construct a mathe-
matical model based on the experimental finding that for elementary
decays, sometimes called ‘direct decays’, there exists a constant 𝜏
such that at time t + 𝜏, the amount of radioactive material is one-
half the amount at time t. Mathematically, we can express this as

10 DOI: 10.1201/9781003422419-2
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the following relationship

x (t + 𝜏) = (12) x (t) , x (0) = x0. (1.2.2)

If we denote the respective solutions of Equations (1.2.1) and (1.2.2)
by x1 (t) and x2 (t), then as shown by Mickens

x1 (t) = x0e−𝜆t, (1.2.3)

x2 (t) = x0eA(t)e−[
Ln(2)
𝜏

]t, (1.2.4)

where

A (−t) = −A (t) , A (t + 𝜏) = A (𝜏) . (1.2.5)

Note that A (t) is an odd function and periodic with period 𝜏. The
simplest case is A (t) = 0, giving Equation (1.2.3) with

𝜆 = Ln (2)
𝜏 . (1.2.6)

Inspection of Equation (1.2.2) shows that it is a functional equation,
in contrast to Equation (1.2.1), and has a much broader set of solu-
tions. The main reason why the differential equation model is used
to study simple decay is the fact that it has a solution that is simple
to comprehend and the exponential form requires only one param-
eter, 𝜆, to uniquely determine its behavior. On the other hand, the
functional Equation (1.2.2) actually requires prior knowledge of X (t)
over a time interval 𝜏 to uniquely determine its solutions, which is
essentially impossible to do by means of experiments. This clearly
demonstrates that what needs to be done is superseded by what can
actually be done easily. 

1.3 X2 + Y2 = 1

What does this equation represent? Another way of stating this
question is ‘What does this expression mean?’

One interpretation of

x2 + y2 = 1 (1.3.1)
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x0

Ln x1(t)

0
(a)

t

x0

Ln x2(t)

0
(b)

t

FIGURE 1.1 Plots of the decay curves: (a) is for Equation (1.2.3). (b) is for
Equation (1.2.4), where the oscillations are exaggerated.

is that it represents the plot of a unit circle in the x–y plane.
A second interpretation is that it represents two functions f (t) and

g (t) such that the relationship between them is given by Equation
(1.3.1). Particular examples include

x = f1 (t) = cos t, y = g1 (t) = sin t, (1.3.2)

and

x = f2 (t) = CNt, y = g2 (t) = SNt, (1.3.3)

where f2 (t) and g2 (t) are, respectively, the Jacobian cosine and sine
functions. In fact, an unlimited number of periodic functions can be
constructed such that they satisfy Equation (1.3.1); for example

x (t) = cos 𝜃 (t) , sin (t) = sin 𝜃 (t) , (1.3.4)

𝜃 (−t) = −𝜃 (t) , 𝜃 (t + T) = 𝜃 (t) + 2𝜋, (1.3.5)
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where

𝜃 (t) = 2𝜋 ( t
T) + A (t) , (1.3.6)

with

A (−t) = −A (t) , A (t + T) = A (t) . (1.3.7)

The period of these functions is T.
Assuming x and y to be functions of t and taking the derivative

of 1.3.1, we obtain

xdx
dt + ydy

dt = 0. (1.3.8)

From this, it follows that
dx
dt = h (t) y, dy

dt = −h (t) x, (1.3.9)

where we assume for convenience that

h (t) > 0 for all relevant t. (1.3.10)

Thus, given any such h (t), x (t) and y (t) are periodic. The simplest
case is for h (t) = 1, giving

dx
dt = y, dy

dt = −x, (1.3.11)

whose solutions are

x (t) = sin t, y (t) = cos t. (1.3.12)

In summary, the answer to the question ‘What is the solution to
x2 + y2 = 1?’ depends on the context in which the question is asked?

1.4 MICKENS–NEWTON LAW OF COOLING

Newton’s law of cooling is not dynamically consistent with the fact
that objects that are cooling or heating do not take an unlimited
time to reach the equilibrium temperature of their environments.
Mickens has created a modified model to deal with this situation. In
its simplest manifestation, it takes the form

dx
dt = −𝜆x

1
3 , x (0) = x0, (1.4.1)
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where

Te = fixed environmental temperature,
T0 = initial temperature of the object,

T (t) = temperature of the object at timet,
x (t) = T (t) − Te,

Note that

Lim
t→∞

T (t) = T (∞) = Te, (1.4.2)

Also, Equation (1.4.1) is a separable, first-order, nonlinear differen-
tial equation and can be easily integrated to give the solution

x (t) =
⎧
⎨
⎩
[x

2
3
0 −

2𝜆t
3
]
2
3

, 0 < t ≤ t∗,
0, t > t∗,

(1.4.3)

where

t∗ =
3x

2
3
0

2𝜆 . (1.4.4)

I have had several really outstanding mathematicians tell me that
Equation (1.4.1) does not satisfy existence–uniqueness conditions,
and therefore this equation cannot provide a valid physical model!
Can you think of reasons why their analysis is incorrect? In any
case, it requires a deep understanding of the rather obvious physics
to go from the mathematical modeling equation, Equation (1.4.1),
to the solution given by Equations (1.4.3) and (1.4.4). All of this is
connected to the fact that x (t) = 0 is an equilibration solution.

1.5 WHAT ARE THE SOLUTIONS TO Y′′ + Y′ = 0?

This differential equation can to used to model a number of physical
systems, including a massive object moving in a viscous liquid and
having no other force acting on it. Since it is a second-order, linear
differential equation, the initial conditions will be selected to be

y (0) = y0 > 0, y′ (0) = −y′0 < 0, (1.5.1)
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where y = y (t) and we write out in full our differential equation

d2y
dt2 +

dy
dt = 0. (1.5.2)

Assuming that the solutions take the form

y (t) = ert, (1.5.3)

we obtain the characteristic equation

r2 + r = r (r + 1) = 0. (1.5.4)

Therefore, two particular solutions are

y1 (t) = 1, y2 (t) = e−t, (1.5.5)

Since the solutions to Equation (1.5.4) are

r1 = 0, r2 = −1. (1.5.6)

With these results, the general solution to Equation (1.5.2) is

y (t) = C1 + C2e−t, (1.5.7)

where C1 and C2 are arbitrary constants.
It should be indicated that the general solution y (t), as given by

Equation (1.5.7), has derivatives of all orders for −∞ < t < +∞,
and this may be acknowledged by stating that the solution to Equa-
tion (1.5.2) is a C(∞) function. However, since the original differential
equation is only second order, we really only need to require its solu-
tions to be C(1), i.e., the function y (t) and its derivative, dy/dt, exist
and are continuous. However, if we allow the existence of piecewise
continuous functions, then solutions exhibited in Figure 1.2 also can
occur. Some of these solutions are C(0) and are not special cases of
the general solution, Equation (1.5.7), and we will call these solutions
generalized solutions of the original differential equation. However,
most mathematicians would take the view that this manner of clas-
sifying ‘solutions’ is nonsense and clearly not mathematically valid.
But, our view is that such functions still might be physically use-
ful in interpreting the behavior of the universe. Remember that we
are doing science rather than mathematics and in science one tries
everything.
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y(t)

0 t1

(a)

t

y(t)

0 t1 t2 t3

(b)

t

FIGURE 1.2 Two piecewise continuous or generalized solutions of Equation
(1.5.2).

1.6 APPROXIMATE SOLUTION TO THE HEAT PDE

The heat equation, in space dimension, is

ut = Duxx, u (x, 0) = f (x) (1.6.1)

where D is the assumed constant diffusion coefficient and the
following initial conditions hold

u (0, t) = 0, u (L, t) = 0. (1.6.2)

Physically, these equations model a wire of length L, that is insu-
lated, and the temperature (u) of the ends, x = 0 and x = L, is
maintained at the value zero.

Rescaling the independent variables

x → L∗x, t → T∗t, (1.6.3)

where L∗ and T∗ are scaling factors, gives

𝜕u
𝜕t

= 𝜕2u
𝜕x2

, 0 ≤ xb ≤ 1. (1.6.4)

For

L∗ = L, T∗ = L2

D . (1.6.5)

For the remainder of this section, we will drop all bars on the
variables and use the equation

𝜕u
𝜕t =

𝜕2u
𝜕x2 ; u (0, t) = 0, u (1, t) = 0, u (x, 0) = f (x) , (1.6.6)
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where f (x) is specified with

f (0) = 0, f (1) = 0; f (x) > 0, 0 < x < 1. (1.6.7)

Let us assume that we have no knowledge as to how Equation (1.6.6)
can be solved. So, what to do? One rather elementary possibility is
to assume that u (x, t) takes the form of a product of two functions,
one depending only on x and the other only on t, i.e.,

u (x, t) = F (x)G (t) . (1.6.8)

Substitution of this ansatz into the PDE in Equation (1.6.6) gives

F (x)G′ (t) = F′′ (x)G (t) . (1.6.9)

Now, let us try something new or at least different. Assume that
F (x) is known and average of both sides of the equation over x, i.e.,

[∫
1

0
F (x) dx]G′ (t) = [∫

1

0
F′′ (x) dx]G (t) . (1.6.10)

If we define the constants (a, b) by the relations

a = ∫
1

0
F (x) dx, b = ∫

1

0
F′′ (x) dx, (1.6.11)

then it follows that G (t) satisfies the first-order differential equation

dG
dt = (b

a)G. (1.6.12)

At this point, the essential issue is how to select the function F (x)
from which the constants (a, b) can be calculated. Note that F (x)
must be such that

b
a < 0. (1.6.13)

But, where does this condition come from? It follows from the expe-
riences that we have had with hot and cold bodies that generally
a hot body decreases in time its temperature (u = temperature).
Consequently, dG/dt < 0.

With nothing else to go on, select

F (x) = f (x) = u (x, 0) , (1.6.14)
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where

f (x) = x (1 − x2) . (1.6.15)

Therefore,

a = ∫
1

0
x (1 − x2) dx = 1

4, (1.6.16)

b = ∫
1

0
(−6x) dx = −6 (1.6.17)

and
dG
dt = −24G ⟹ G (t) = Ae−24t, (1.6.18)

where A is an arbitrary integration constant. Hence

U (x, t) = F (x)G (t)
= Ax (1 − x2) e−24t, (1.6.19)

Since U (x, 0) = x (1 − x2), we have A = 1 and the approximation to
the solution of Equation (1.6.6) is

u (x, t) = x (1 − x2) e−24t. (1.6.20)

In summary, while it should not be expected that this approxi-
mation to the solution of Equation (1.6.6) is exact, it still might
be reasonable to hold the view that this formula, i.e., Equation
(1.6.20), at least provides good qualitative insight into both the
physics represented by this model and the exact solution to Equation
(1.6.7).

Later, we will consider the nonlinear oscillations of a beam and
see how its time dependence behavior can be well approximated by
the application of the methodology presented in this section.

1.7 DISCUSSION

We have not really answered the issue of ‘What is a solution to a
differential equation?’ For a partial differential equation, whether
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linear or nonlinear, there is no concept of a general solution and this
situation can generate confusion as to what mathematical expression
to use for a given application. However, things are somewhat better
for ordinary differential equations; but even for them there may exist
singular solutions that are not special cases of the so-called general
solutions.

This chapter examined a number of toy model differential equa-
tions, which appear in the modeling of some important physical
systems. Our discussions hint at the fact that the mathematical mod-
els may not be unique: an example is that for decay in radioactivity.
For such cases, the interpretation of the solutions coming from the
different models implies that what experiments are done have to
be carefully selected to provide useful data to actually distinguish
between the mathematical models.

The solution technique presented in Section 1.6 illustrates both
the power and weakness of ad hoc methods to obtain either approx-
imate or exact solutions to an arbitrary differential equation. For
our particular case, we examined the heat equation and made a
definite assumption regarding the mathematical structure of a par-
ticular solution. However, it should be clearly understood that
the selected ansatz depends on our needs and knowledge. What
is selected is neither ‘right’ or ‘wrong’. Its value derives from
whatever insights it can provide about the physical system being
investigated.

Finally, we should take very seriously the following comments
made by Edward Redish:

Mathematics is commonly referred to as ‘the language of
science’ … But, using math in science … is not just doing
math. It has a different purpose – representing meaning
about physical systems rather than expressing abstract
relations – and it even has a distinct semiotics - the way
meaning is put into symbols – from pure mathematics.

It almost seems that the ‘language’ of mathematics we
should in physics is not the same as the one taught by
mathematicians.
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PROBLEMS

Sections 1.2 and 1.4

1) Consider the following modified decay and/or coding equation

dx
dt = −𝜆x − 𝜖x

1
3 ,

(𝜆, 𝜖) are positive parameters.
Solve this first-order, nonlinear differential equation and analyze
the properties of its solutions.

Section 1.5

2) Let the solution to a linear ordinary differential equation be

y (t) = c1 + c2e−t + c3e−5t,

(C1,C2,C3) are arbitrary constants. Construct the differen-
tial equation which has this solution. Sketch some bounded,
continuous, piecewise functions on the interval, −∞ < t < +∞.

Section 1.6

3) Consider the nonlinear diffusion PDE

uut = Duxx,

D > 0, is a constant. Construct solutions having the form
U (x, t) = f (x) g (t).
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C H A P T E R 2

One-Dimensional Systems

2.1 INTRODUCTION

If the mathematical model of a continuous dynamical system is
represented by a single, first-order differential equation

dx
dt = f (x) , x (0) = x0given, (2.1.1)

then it will be called a one-dimensional dynamic system. Note that
f (x) depends only on x and not the independent variable t. This type
of differential equation is called a first-order, autonomous equation.
We also assume that f (x) has mathematical properties such that the
sought-after physical solutions exist and are unique.

2.2 FIXED-POINTS

The fixed-points of Equation (2.1.1) correspond to its constant
solutions, i.e.,

x (t) = x = constant. (2.2.1)

Consequently, they are solutions of the equation

f (x) = 0. (2.2.2)

In general for physical systems, only the real zeros have physical
meaning. Further, these fixed-points correspond to the equilibrium
or time-independent states of the system.

22 DOI: 10.1201/9781003422419-3
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2.3 SIGN OF THE DERIVATIVE: ONE FIXED-POINT

Consider the case where there is a single, simple fixed-point at x = x,
i.e., Equation (2.1.1) takes the form

f (x) = f1 (x) (x − x) . (2.3.1)
This implies that f1 (x) has a definite sign for all physically relevant
x, i.e., either f1 (x) > 0 or f1 (x) < 0.

Case A: f1 (x) > 0
We have

⎧⎪
⎨⎪
⎩

dx
dt
> 0, ifx > x,

dx
dt
< 0, ifx < x.

.
x x

(2.3.2)

Case B ∶ f1 (x) < 0
Likewise, we have

⎧⎪
⎨⎪
⎩

dx
dt
< 0, ifx > x,

dx
dt
> 0, ifx < x.

.
x x

(2.3.3)

Following Equations (2.3.2) and (2.3.3), we have depicted the corre-
sponding motions of the system along the x-axis. Note that dx/dt > 0
means moving to the right, while dx/dt < 0 implies motion to the left.

For a double zero, we have
dx
dt = f2 (x) (x − x)2 (2.3.4)

with f2 (x) having a definite sign. Thus, it follows that
Case C: f2(x > 0

{
dx
dt
> 0, ifx > xor x < x,

.
x x

(2.3.5)

Case D: f2 (x) < 0
dx
dt
< 0, ifx > xor x < x,

.
x x

(2.3.6)



24 ∎ Introduction to Qualitative Methods for Differential Equations

Inspection of the flows along the x-axis, as indicated in Equa-
tions (2.3.2), (2.3.3), (2.3.5) and (2.3.6), shows that three types of
behaviors are present: stable node, unstable node and saddle node,
i.e.,

stable node (S) , (2.3.7)

unstable node (U) , (2.3.8)

} saddle node (SS), (2.3.9)

where the saddle node is also called a ‘semi-stable (SS)’ fixed-point.
In more detail, the motion along the one-dimensional, x phase-

space, for a single fixed-point, has one of the following three
possibilities:

(a) If all trajectories approach the fixed-point, then t → ∞, then it
is a stable node.

(b) If all trajectories move away from the fixed-point, as t → ∞,
then it is an unstable node.

(c) If trajectories on one side of the fixed-point approach it as t →∞,
while trajectories on the other side move away as t → ∞, then
it is a saddle point.

In addition, this general behavior continues to hold for a single,
higher power zero of f (x), i.e.,

dx
dt = f1 (x) (x − x)n, n > 1 (2.3.10)

where f1 (x) has a definite sign, i.e., n = odd, produces results similar
to Equations (2.3.2) and (2.3.3), while n = even yields the conclusions
stated in Equations (2.3.5) and (2.3.6).

2.4 TWO FIXED-POINTS

We now examine the case of a 1-dim system with three distinct fixed-
points. Note that each fixed-point might correspond to a higher-order
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zero of f (x). Below we draw the eight possible flows in the 1-dim
phase-space. However, we indicate only half of the possible flows
since the other four can be gotten by reversing the direction of the
arrows and making the changes

S → U, U → S, SS → SS. (2.4.1)

SS SS
A ∶ x (2.4.2)

SS S
B ∶ x (2.4.3)

S U
C ∶ x (2.4.4)

S SS
D ∶ x. (2.4.5)

Note that if there are n distinct fixed-points, then there are 2n+1 flow
diagrams.

Figure 2.1 gives plots of the solution behaviors, i.e., x (t) vs t for
the four cases (A,B,C,D) as indicated above.

2.5 LINEAR STABILITY

If the function f (x) has simple zeros, then we can analyze the local
stability properties in the neighborhood of each fixed-point. An
advantage of carrying out such calculations is that it allows the
determination of the various time scales of the system.

To proceed, let a system be modeled by the differential equation

dx
dt = f (x) , x (0) = x0given. (2.5.1)

Let x be a simple zero of f (x), i.e.,

f (x) = 0. (2.5.2)
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SS
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x(t) x(t)
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t

x̄1

x̄2 S
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(b)
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x(t)

(c)
t

SS

S

x(t)

(d)
t

FIGURE 2.1 Solution plots, x (t) vs t, for two fixed-points; only one haft
is shown and they correspond to the 1-dim phase-space flows indicated in
Equations (2.4.2)–(2.3.15).

For initial conditions in a small neighborhood of the fixed-point,
x (t) = x, we can write

x (t) = x + 𝜖 (t) , (2.5.3)

where

|𝜖 (0)| <<x. (2.5.4)

Substituting Equation (2.5.3) into Equation (2.5.1) gives, upon doing
a Taylor expansion, the result

dx
dt = f (x + 𝜖) = f (x) + df

dx |x=x
𝜖 + O (𝜖2) . (2.5.5)

If we retain only the linear term, then
d𝜖
dt = R𝜖, 𝜖 (0) = 𝜖0, (2.5.6)



One-Dimensional Systems ∎ 27

where R is the constant

R = df (x)
dx |

x=x
. (2.5.7)

The solution to Equation (2.5.6) is

𝜖 (t) = 𝜖0eRt. (2.5.8)

Observe that if R > 0, then 𝜖 (t) increases in magnitude, while for
R < 0, 𝜖 (t) decreases to zero. From these results, we can determine
the stability of the fixed-point, x (t) = x,

R > 0 ⇒ x (t) = x, locally unstable; (2.5.9)

R < 0 ⇒ x (t) = x, locally stable. (2.5.10)

2.6 APPLICATIONS

2.6.1 Radioactive Decay

The differential equation modeling phenomena like simple radioac-
tive decay are

dy
dt = −𝜆y, y (0) = y0, given𝜆 > 0. (2.6.1)

Since y (t) is related to the amount of material undecayed at time t,
this implies that all physical relevant solutions have the properties

y (t) ≥ 0, t > 0; y (0) = y0 ≥ 0. (2.6.2)

For this system f (y) = −𝜆y < 0, and the only fixed-point is
y (t) = y = 0. Note that

dy (t)
dt < 0, y (t) > 0, (2.6.3)

and it follows that the solution y (t) begins at y0 at t = 0 and mono-
tonically decreases to zero. So, even if we could not solve Equation
(2.6.1), we can conclude that a plot of y (t) vs t ties the form presented
in Figure 2.2 .
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y(t)

y0

0
t

FIGURE 2.2 Qualitative behavior of the physical solutions to Equation
(2.6.1).

(–)

(+)

y(t)

t

FIGURE 2.3 The right-hand solution plane for Equation (2.6.1) with two
typical solution curves indicated.

Since f (y) = −𝜆y, we see that the fixed-point is a simple zero
and the linear stability analysis yields R = −𝜆. Consequently, this
procedure leads to the conclusion that the fixed-point y (t) = y = 0
is linearly stable.

If we draw the full (right side) of the solution plane, then this
result is illustrated in Figure 2.3 . The (±) symbols indicate the ‘sign’
of dy/dt. Note that all solutions decrease in magnitude to zero, i.e.,

Lim
t→∞

y (t) = 0. (2.6.4)

However, Equation (2.6.1) can be solved exactly. To do so, let us
rescale it by using the variables transformation

y (t) → x (t) = y (t)
y0

, t → t = 𝜆t (2.6.5)



One-Dimensional Systems ∎ 29

to obtain
dx
dt

= −x, x (0) = 1, (2.6.6)

having the solution

x (t) = e−tory (t) = y0e−𝜆t. (2.6.7)

Note that in going from y (t) to the rescaled variable x (t), the result-
ing differential equation and its solution do not explicitly depend on
the parameter 𝜆.

2.6.2 Logistic Equation

This differential equation is

dy
dt = ay − by2, y (0) = y0 > 0; a > 0, b > 0. (2.6.8)

This equation may be rescaled by using the variable changes

y (t) → x (t) = y (t)
y0

, t → t = at, (2.6.9)

to obtain
dx
dt = x (1 − x) , f (x) = x (1 − x) , (2.6.10)

where the barred-t has been replaced by t in the last equation.
The derivative function f (x) has two simple zeros, i.e.,

f (x) = 0 ⇒ x1 = 0, x2 = 1. (2.6.11)

Also, in physical application

x (0) = x0 ≥ 0, x (t) ≥ 0. (2.6.12)

Figure 2.4 gives the solution plane for x (t), indicates its two fixed-
points, shows where the slope of x (t) is positive or negative (±),
and labels the stability of the fixed-points by S or U, i.e., stable or
unstable.

Inspection of Figure 2.4 shows that for 0 < x0 < 1, x (t) monoton-
ically increases to the fixed-point value x2 = 1, and for x0 > 1, x (t)
monotonically decreases to the fixed-point value x2 = 1. Thus, X2 is



30 ∎ Introduction to Qualitative Methods for Differential Equations

(–)

(+)

x(t)

S

U
0 t
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FIGURE 2.4 Major features of the solution plane for the logistic equation;
see Equation (2.6.10).

a stable fixed-point. To summarize, all physical solutions have the
property

Lim
t→∞

x (t) = x (∞) = x2 = 1. (2.6.13)

Equations (2.6.8) and (2.6.10) can be solved to find their exact
solutions in terms of elementary functions; they are, respectively,

y (t) = y0K
y0 + (K − y0) e−at ,K = a

b , (2.6.14)

and

x (t) = x0
x0 + (1 − x0) e−t . (2.6.15)

2.6.3 Gompertz Model

Another model with two fixed-points is that constructed by B.
Gompertz. Its differential equation is

dy
dt = −ry Ln ( y

K) , y (0) = y0 > 0, (2.6.16)

and

r > 0, K > 0. (2.6.17)

For this case
dy
dt = f (y) → f (y) = −ry Ln (y

k) , (2.6.18)
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with

f (0) = 0, f (k) = 0, (2.6.19)

which gives the fixed-points

y1 = 0, y2 = K. (2.6.20)

The following rescaling

y (t) → x (t) = y (t)
K , t → t = rt, (2.6.21)

gives the dimensionless equation
dx
dt = −xLn (x) , x (0) = x0 > 0. (2.6.22)

where the bar over the t has been dropped. Equation (2.6.22) can be
solved to give for y (t) the answer

y (t) = K (y0
K ) . (2.6.23)

This result can be checked by evaluating y (0) and y (∞) , i.e.,

y (0) = K (y0
K ) = y0, (2.6.24)

y (∞) = Lim
t→∞

y (t) = K = y2. (2.6.25)

It should be indicated that the Gompertz equation has a solution
plane representation that is exactly the same as the logistic equation;
see Figure 2.4 . This is a consequence of both differential equations
having just two fixed-points with the same stability properties.

The Gompertz differential equation, for most students and pro-
fessionals, would be difficult to integrate. However, it has been shown
that the qualitative approach allows an easy and direct determination
of the general features of solutions to this equation.

2.6.4 Draining a Tank

There exists several physical systems that can be modeled by a
first-order different equation having the form

dy
dt = −k√y , y (t) > 0, y (0) = y0 > 0. (2.6.26)
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y(t)

a

A

FIGURE 2.5 Fluid following out of a tank from the small hole at the bottom
with area a and constant cross-section A. The height of the fluid at time
t > 0 is y (t).

In particular, it can represent the draining of a tank filled with water
or some other freely flowing liquid.

(By ‘freely flowing liquid’, we mean such fluids having sufficiently
small viscosities as water.)

The geometry of the system is shown in Figure 2.5 . It consists
of a cylindrical tank of constant cross-sectional area A, and at the
bottom a small circular hole of area a. We assume

a<<A. (2.6.27)

If the tank is initially filled to a height of y0, we are interested in how
the height of the liquid surface changes with time, i.e., the solution
of the mathematically problem given in Equation (2.6.26).

It should be noted that application of the fundamental laws of
physics to this system, along with certain physically valid approxi-
mations, gives the following value for the parameter k in Equation
(2.6.26)

k =√2g ( a
A) , (2.6.28)

where g is the acceleration due to gravity at the surface of the earth.
While Equation (2.6.26) is solvable, the general changes in the

height, y (t), as a function of time can be easily determined by consid-
ering an experiment corresponding to a cylindrical tank with a small
hole at the bottom. If the tank is filled to a height y0 and the hole at
the bottom is unplugged, then the surface height will decrease with
time and at some definite finite future time the tank will be empty.
This analysis implies that y (t), the solution to Equation (2.6.26),
should look like the behavior shown in Figure 2.6. 
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y(t)

0

y0

t*
t

FIGURE 2.6 Plot of y (t) vs t. The value of y (t) becomes zero at a finite
time t = t∗.

It should also be clear that at t = t∗, the function y (t) is
continuous with a continuous derivative since

y (t∗) = 0, dy (t∗)
dt = 0, d2y (t∗)

dt2 = k2 > 0. (2.6.29)

Again, note that Equation (2.6.26) can be easily solved since it is a
separable, first-order, ordinary differential equation. Its solution is
the piece-wise continuous function

y (t) = { (√yo −
kt
2
)
2
, for0 < t ≤ t∗;

0, fort ≥ t∗,
(2.6.30)

where

t∗ =
2√y0

K . (2.6.31)

There are two further comments. First, it should be clear that the
solutions we seek hold only for y ≥ 0. Negative solutions are physically
meaningless. Second, y (t) = 0 is a physically meaningful solution in
that it corresponds to the tank being empty. This also follows from
an inspection of Equation (2.6.26), which tells us that y (t) = y = 0
is a fixed-point.

2.6.5 f (x, t) Depends on t
Up to now, we have only investigated first-order autonomous dif-
ferential equations, i.e., those equations for which the function ‘f’
depended on x, but not t. However, let’s see what can be done when
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x < t

x = t(–)
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t

FIGURE 2.7 Regions in the x − t plane where the slopes of the solutions to
Equation (2.6.32) have definite signs, except along the line x = t.

‘f’ does depend on t. Perhaps the simplest example of this is the
linear equation

dx
dt = t − x, x (0) = x0. (2.6.32)

First, observe that in the x− t plane, the slope of x (t) is zero on the
line x(0) (t) = t. Note that x(0) (t) = t is not a solution to Equation
(2.6.32).

Second, we also have the slope negative at all points in the x − t
plane where x (t) > t and positive at points for which x (t) < t. This
is indicated in Figure 2.7 .

Third, using this information, we can sketch the corresponding
solution curves in the x − t plane. These results are presented in
Figure 2.8 for several different solution trajectories.

For this particular differential equation, we can solve it to obtain
its exact solution, which is

x (t) = Ae−t − 1 + t, (2.6.33)

where A is an arbitrary constant whose value is determined by the
initial condition on X (t). For example, if

X (0) = x0is given, (2.6.34)

then

A = x0 + 1 (2.6.35)

and

x (t) = (x0 + 1) e−t − 1 + t. (2.6.36)
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FIGURE 2.8 Sketchs of solutions to the differential Equation (2.6.32).

Comparison of this analytic solution to the qualitative features shown
by the x (t) vs t curves in Figure 2.8 shows that they are consistent
with each other. However, the details of the general analytic behav-
ior of such solutions, as presented in Figure 2.8 , cannot be obtained
from our qualitative examination. For example, from Figure 2.8 , it
may be concluded that all solutions increase in magnitude when |t|
increases, for sufficiently large |t|. However, the qualitative proce-
dure cannot provide the details as to what this increase is. But the
analytical solution does contain these answers, i.e., from Equation
(2.6.36)

x (t) = { (x0 + 1) e−t, fort < 0, large;
(−1 + t) , fort > 0, large. (2.6.37)

2.6.6 Spruce Budworm Population Model

One of the most important mathematical models in single popula-
tion dynamics is the so-called ‘spruce budworm model (SBM)’, which
takes the form

dx
dt = r0x (1 −

x
K) − 𝜌x

x + A , (2.6.38)

where

τ0 = growth rate of spruce budworm for small populations,
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K = carrying capacity of the budworms in the absence of preda-
tors,

ρ = predation parameter, associated with birds who consume the
spruce budworms,

A = parameter in the bird consumption function.

All three of these parameters are assumed to be positive.
Equation (2.6.38) can be rewritten to the form

dx
dt = x [r (x) − p (x)] , (2.6.39)

where

r (x) = r0 (1 −
x
K) , p (x) = 𝜌

x + A . (2.6.40)

Inspection of Equation (2.6.39) shows that there is always a fixed-
point at

x1 = 0. (2.6.41)

Consequently, any other fixed-points must come from the term

r (x) − p (x) = 0 (2.6.42)

or

x2 + (A − K) x + (K𝜌
r0

− A) = 0. (2.6.43)

While the last equation is just a quadratic algebraic equation, it
depends on four parameters, (r0,A,K, 𝜌) and would be very difficult
to analyze. However, a way to get around this issue is to under-
stand that an equilibrium or fixed-point will occur whenever the
two curves, r (x) and p (x), intersect. Figure 2.9 shows that three
possibilities exist:

(i) r (x) and p (x) do not intersect. This means that there is only the
fixed-point at x1 = 0.

(ii) r (x) and P (x) intersect at two points. This means that in addi-
tion to the fixed-point, x1 = 0, there are two real and positive
fixed-points at x2 > 0 and x3 > 0.

(iii) r (x) and p (x) intersect, but one intersection occurs at a negative
value of x, with the other occurring at x1 = 0 and x3 > 0.
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FIGURE 2.9 Plots of p (x) and r (x) vs X for the spruce budworm model.
The items on the right side are the corresponding flow diagrams.

In ecological terms, the explanation goes as follows:

(a) When predation is very large, p (x) > r (x), then the two curves
never intersect and dx/dt < 0 for all x > 0. Consequently, the
spruce budworm population goes to extinction and settles in
the x1 = 0 state of stable equilibrium. Note that x1 is a stable
fixed-point.
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(b) For a somewhat weakened predation, there can be two additional
real and positive fixed-points: x2 and x3. This case still has x1 = 0
as a stable fixed-point, but x2 and x3 are, respectively, unstable
and stable.

(c) If the consumption of the spruce budworms is very weak, then
in addition to the fixed-point at x1 = 0, which is now unsta-
ble, there exists a single, real, positive and stable fixed-point
at x3 > 0. The other fixed-point is unphysical because it
corresponds to a flxed-point having a negative value.

This example illustrates the value and power of using qualitative
methods to study the possible solution behaviors of differential equa-
tions. Later in the text, we will introduce the concept of bifurcation
and show its role in providing insight into some of the issues arising
in models such as the one just discussed for the spruce budworm.

Finally, an examination of the three outcomes shows that the
rightmost fixed-point is always stable. This has to be a prior case
since any realistic model of spruce budworm dynamics must always
predict the existence of finite worm populations.

2.7 DISCUSSION

This chapter introduced geometric techniques applied to mathemat-
ical models of one-dimensional systems. Such systems are defined as
those whose mathematical models correspond to first-order, ordinary
differential equations, i.e.,

dx
dt = f (x) . (2.7.1)

In Section 2.5, we have also given reasons to believe that (sometimes)
these techniques can be extended to nonautonomous systems whose
mathematical model is represented by equations of the type

dx
dt = g (x, t) . (2.7.2)

This can always occur if g (x, t) has one of the following structures

g (x, t) = f1 (x) − f2 (t) , g (x, t) = f1 (x) f2 (t) . (2.7.3)

Our general conclusion is that even in the absence of exact solutions
to Equations (2.7.2) and (2.7.3), important information on the prop-
erties of their solutions may be determined from the applicant of
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qualitative methods related to the geometric features of the 1-dim
flow diagrams and the associated x − t solution planes.

PROBLEMS

Analyze the following differential equations:

(1) dx
dt
= −𝜆1x − 𝜆2x

1
3 ; 𝜆1 > 0, 𝜆2 > 0

(2) dx
dt
= t − x2

(3) dx
dt
= rx2 (1 − x

k
) ; r > 0, k > 0

(4) dx
dt
+ x3 = sin t

In particular

● Determine the value of any fixed-points;
● Determine the stability of any found fixed-points;
● Sketch the x flow-fields and/or the trajectors in the x− t solution

plane.

Try to think of possible physical systems corresponding to each of
these differential equations. Can any of these equations be solved
analytically in terms of known functions? If so, then solve for these
solutions.
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C H A P T E R 3

Two-Dimensional
Dynamical Systems

3.1 INTRODUCTION

Many of the physical systems of interest can be modeled by a single,
second-order, differential equation having the form

d2x
dt2 = F (x, dx

dt ) . (3.1.1)

This expression can be rewritten as two coupled first-order equations

dx
dt = y, dy

dt = F (x, y) . (3.1.2)

If we take the initial conditions of Equation (3.1.1) to be x (0) = x0
and dx (0) /dt = x′0, then the corresponding initial conditions for
Equation (3.1.2) are x (0) = x0 and y0 = y (0) = x′0.

The main purpose of this chapter is to examine a somewhat more
general pair of differential equations than that expressed in Equation
(3.1.2), i.e.,

dx
dt = f (x, y) , dy

dt = g (x, y) . (3.1.3)

Since f (x, y) and g (x, y) do not depend explicitly on the indepen-
dent variable, t, these differential equations are called autonomous.
However, non-autonomous equations may always be transformed into
autonomous ones by simple renaming of the independent variable.

For example, consider

dx
dt = F1 (x, y, t) ,

dy
dt = G1 (x, y, t) , (3.1.4)

DOI: 10.1201/9781003422419-4 41
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then an equivalent set of equations is
dx
dt = F1 (x, y, z) ,

dy
dt = G1 (x, y, z) ,

dz
dt = 1. (3.1.5)

In the next section, we introduce a number of definitions of concepts
central to the study of 2-dim dynamical systems. This is followed
by Section 3.3 in which we discuss some very general features of the
trajectories in the 2-dim phase-plane. Section 3.4 demonstrates how
phase diagrams for the trajectories are to be done. This is followed
by Sections 3.5 and 3.6 where, respectively, linear stability analysis
is presented, followed by a brief discussion of the local behavior of
the trajectories near fixed-points for nonlinear systems. Section 3.7
gives working illustrations of how one can apply z-dim phase-space
techniques to determine and analyze the qualitative behavior of a
large number of dynamical systems.

3.2 DEFINITIONS

3.2.1 2-Dim Dynamical System

A 2-dim dynamical system is one whose mathematical model is

{
dx
dt
= P (x, y) , dy

dt
= Q (x, y) ,

x (0) = x0, y (0) = y0
(3.2.1)

It is assumed that P (x, y) and Q (x, y) have properties such that
unique solutions exist for the problems of interest.

The phase-plane is the space (x, y), and the trajectories are curves,
y = y (x), obtained by solving the first-order differential equation

dy
dx = Q (x, y)

P (x, y) . (3.2.2)

This equation follows from noting that since

x = x (t) , y = y (t) , (3.2.3)

then
dy (x)

dt = dy
dx

dx
dt (3.2.4)

and
dy
dx = dy/dt

dx/dt =
Q (x, y)
P (x, y) . (3.2.5)
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3.2.2 Fixed-Points

The fixed-points are constant or equilibrium solutions to Equation
(3.2.1)

x (t) = x, y (t) = y, (3.2.6)

i.e., they correspond to time-independent solutions, and therefore are
solutions to the simultaneous equations

P (x, y) = 0, Q (x, y) = 0. (3.2.7)

It should be observed that in most cases only the real solutions have
‘physical interpretations’.

3.2.3 Nullclines

There are two important curves in the (x, y) plane that while not, in
general, being solution trajectories, play critical roles in construct-
ing the behavior of solution trajectories. With respect to Equation
(3.2.2), these curves are the x-nullcline and the y-nullcline, and they
are defined as follows:

(i) The x-nullcline is the curve along which dy/dx = ∞.
(ii) The y-nullcline is the curve along which dy/dx = 0.

Note that each nullcline may consist of several disjointed segments.
If these curves are denoted, respectively, by y∞ (x) and y0 (x), then

their functional forms can be calculated by solving the equations

P [x, y∞ (x)] = 0,Q [x, y0 (x)] = 0. (3.2.8)

With regard to the nullclines, it is important to be aware of the
following points:

(a) y = y∞ (x) and y = y0 (x) are not in general solution to Equation
(3.2.2).

(b) The places where these two curves intersect are the fixed-points
of the system.

(c) The places where either nullcline intersects with itself have no
particular significance.

(d) The nullclines divide the phase-plane into many open domains.
The boundaries of these domains are the nullclines. Moreover,
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FIGURE 3.1 Nullclines for dy/dx = − (x/y).

in each separate domain, the ‘sign’ of the derivative, dy/dx, is
constant, i.e., dy/dx is bounded and is either positive or nega-
tive. The only way the derivative can change its sign is to cross
from one open domain to another.

A simple illustration of these concepts is shown in Figure 3.1 for the
system

dx
dt = y, dy

dt = −x, (3.2.9)

for which
dy
dx = −(x

y) ; fixed-point (x, y) = (0, 0) (3.2.10)

and nullclines

y∞ (x) ∶ y = 0, thex-axis; (3.2.11)

y0 (x) ∶ x = 0, they-axis. (3.2.12)

Note that for this simple example, the coordinate axes are the null-
clines, and they divide the x−y plane into four domains, in which the
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derivative, dy/dx, has the indicated constant sign. Further, the two
nullclines intersect at the origin, which as expected is the location of
the only fixed-point (x, y) = (0, 0).

3.2.4 First-Integral and Symmetry Transformations

A first-integral is defined to be a general solution to Equation (3.2.2).
If we denote it by I (x, y), then

I (x, y) = C, (3.2.13)

where C is an arbitrary integration constant, determined by the
initial conditions, i.e.,

I (x0, y0) = C. (3.2.14)

In general, this means that y = y (x) can only be obtained implicitly
by means of the first-integral. For a specific value of C, say C1, the
curve

y = y (x, c1) (3.2.15)

in the x–y plane is called a level curve. Observe that different values
of C give rise to different level curves. The totality of level curves is
the level set of the system.

In many cases, I (x, y) will be invariant under a change of coordi-
nates. If this occurs, then the system has a symmetry. Examples of
possible elementary symmetries include

(i) x → −x, y → y ∶ reflection in the y-axis;
(ii) x → x, y → −y : reflection in the x-axis;
(iii) x → −x, y → −y : inversion through the origin.

It will be seen later in this book that the existence of first-integrals
and/or symmetry transformations plays very important roles in the
construction and interpretation of the paths of trajectories in the
2-dim x − y plane.

3.3 GENERAL FEATURES OF TRAJECTORIES

Trajectories in the x−y plane for a dynamical system, generally, will
have one of the following behaviors:
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(1) A trajectory may approach a fixed-point as t → +∞, i.e.,

Lim
t→+∞

( x (t)
y (t) ) = ( x

y ) . (3.3.1)

(2) A trajectory may become unbounded as t →∞, i.e.,

Lim
t→+∞

(x (t)
y (t)) = (∞∞) .

(3) If a trajectory begins at a fixed-point, it remains there for all
t > 0.

(4) A trajectory may be a simple (i.e., nonintersecting) closed curve.
(5) A trajectory may approach a closed curve as t → +∞, or a tra-

jectory that begins in the neighborhood of a closed curve may
move away from it as t → +∞.

See Figure 3.2 for graphic representations of these cases.
If we wish to include more detail in our understanding of the

behavior of the trajectories, a better understanding of the local
behavior of the trajectories in the neighborhood of fixed-points is
needed. The following possibilities may occur:
(1) Stable node: All trajectories approach the fixed-point along non-

spiraling curves, i.e., as t → +∞, the trajectories are asymptotic
to straight lines.

(2) Unstable node: All trajectories leave a neighborhood of the
fixed-point along non-spiraling curves.

(3) Stable spiral node: All trajectories approach the fixed-point
along spiral curves as t → +∞.

(4) Unstable spiral node: All trajectories leave a neighborhood of
the fixed-point along spiral curves as t → +∞.

(5) Saddle point: Trajectories initially move toward the fixed-point
and then move away. There are two trajectories that move
toward the fixed-point and end on it. Likewise, there are two
trajectories that originate at the fixed-point, but move away
from it. These respective trajectories are called the stable and
unstable manifolds of the saddle point.

(6) Center: All neighboring trajectories form closed curves about a
fixed-point.

Sketches of these six behaviors are given in Figure 3.3.
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FIGURE 3.2 Trajectory possibilities.
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FIGURE 3.3  Trajectory local behaviors near a fixed-point.
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3.4 CONSTRUCTING PHASE-PLANE DIAGRAMS

Given a 2-dim dynamic system, the behavior of its trajectories in the
x-y plane can generally be determined by the following steps.
(A) Calculate the location of the real fixed-points of the system

dx
dt = f (x, y) , dy

dt = g (x, y) , (3.4.1)

by solving the pair of equations

f (x, y) = 0, g (x, y) = 0. (3.4.2)

Denote these fixed-points by

{x(i), y(i) ∶ i = 1, 2, …, I} , (3.4.3)

I is the total number of real fixed-points.

(B) Calculate the x-nullcline by solving for y∞ (x) the equation

f [x, y∞ (x)] = 0. (3.4.4)

(C) Calculate the y-nullcline by solving for y0 (x) the equation

9 [x, y0 (x)] = 0. (3.4.5)

(D) Draw on the x − y plane the (real) fixed-points and x- and y-
nullclines. Note that there should not be any fixed-points that
do not lie at the intersections of the x- and y-nullclines.

(E) The x- and y-nullclines will divide the phase-plane into several
open domains. In each separate domain, the sign of dy/dx is
either all positive or all negative. Further, dy/dx is bounded in
each domain. Determine the sign of the derivative for each of
the domains.

(F) Pick an ‘appropriate point’ on the plane and sketch carefully the
trajectory passing through this point. Repeat this for a number
of other points until the general flow of the trajectories in the
plane becomes clear.

If the system equations or the trajectory equation
dy
dt =

g (x, y)
f (x, y) (3.4.6)
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is invariant under certain coordinate transformations, then use
this information to and in the sketching of the trajectories.

(G) Following the above steps will often provide a unique geometri-
cally structure for the flow of the trajectories. When there are
ambiguities, it may be helpful to examine in more detail the
local behavior of the fixed-points in their neighborhoods.

The next section presents a brief discussion of the use (when
applicable) of the concept of linear stability analysis.

3.5 LINEAR STABILITY ANALYSIS

Consider a 2-dim, linear, autonomous system

{
dx
dt
= ax + by,

dy
dt
= cx + dy,

(3.5.1)

where (a, b, c, d) are real constants. In general, the fixed-point is
located at (x, y) = (0, 0). We can rewrite these two, coupled
differential equations in the matrix form

dX
dt = AX, (3.5.2)

where

X = (x
y) , A = ( a b

c d ) . (3.5.3)

Let 𝜆1 and 𝜆2 be the eigenvalues of matric A, i.e., they are solutions
to the equation

det (A − 𝜆I) = 𝜆2 − (a + d) 𝜆 − (ad − bc) = 0, (3.5.4)

where I is the 2 × 2 unit matrix. If 𝜆1 ≠ 𝜆2, then associated with
each of these eigenvalues is an eigenvector, i.e.,

AVi = 𝜆iVi, i = (1, 2) . (3.5.5)

Thus, the general solution can be expressed as

X (t) = c1V1e𝜆1t + c2V2e𝜆2t, (3.5.6)

where (c1, c2) arbitrary constants. AN examination of Equation
(3.5.6) provides the following conclusions:
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(a) If 𝜆1 and 𝜆2 are both real and negative, then all trajectories
approach the fixed-point as t → +∞ and the fixed-point is a
stable node.

(b) If 𝜆1 and 𝜆2 are both real and positive, then all trajectories
move away from the fixed-point as t → +∞ and the fixed-point
is an unstable node.

(c) If 𝜆1 and 𝜆2 are both real, but 𝜆1 is positive and 𝜆2 is negative,
then the trajectories approach in the direction of V2 and move
away in the direction of V1. For this case, the fixed-point is a
saddle point.

(d) If the 𝜆 are complex conjugates, i.e., 𝜆1 = 𝜆∗2, then if then
the fixed-point is a spiral point. For Re 𝜆1 = Re 𝜆2 < 0, the
trajectories spiral toward the fixed-point, while for Re 𝜆1 =
Re 𝜆2 > 0, the trajectories away from the fixed-point. These
cases correspond, respectively, to stable and unstable spiral
points.

Re 𝜆1 = Re 𝜆2 ≠ 0, (3.5.7)
(e) If 𝜆1 and 𝜆2 are purely imaginary, i.e., then the vector X (t)

describes a closed curve and the motion or solution is periodic.

Re 𝜆1 = Re 𝜆2 = 0, (3.5.8)
Finally, with these results and classifications, the general structure of
the trajectories in the x–y plane can be easily determined. However,
since our systems are generally nonlinear, the above results may not
hold. In the next section, we resolve some of these issues.

3.6 LOCAL BEHAVIOR OF NONLINEAR SYSTEMS

Consider the following nonlinear system

{
dx
dt
= ax + by + F1 (x, y) ,

dy
dt
= cx + dy + G1 (x, y) ,

(3.6.1)

where

Lim
x → 0
y → 0

{
F1(x,y)
r(x,y)

G1(x,y)
r(x,y)

} = (00) (3.6.2)
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and
r2 = x2 + y2. (3.6.3)

(Note that we are still assuming that the fixed-point is located at
(x, y) = (0, 0).) Our task is to determine how the stability of the fixed-
point changes as we go from the linear system, Equation (3.5.1), to
the nonlinear system, Equation (3.6.1).

The fixed-point at (x, y) = (0, 0) is said to be stable if the initial
point (x0, y0) is sufficiently close to the fixed-point such that x (t) and
y (t) remain close to (x, y) = (0, 0) for all t > 0. This can be formulated
for a general fixed-point by using the following vector representation:

X (t) = (x (t)
y (t)) ,X0 (0) = (x0

y0
) ,X = (x

y
) (3.6.4)

and

||X0 − X|| =√(x0 − x)2 + (y0 − y)2 . (3.6.5)

The fixed-point x is stable provided that for each 𝜖 > 0, there exists
a 𝛿 such that

||x0 − x|| < 𝛿 ⇒ ||x (t) − x|| < 𝜖, t > 0. (3.6.6)
A fixed-point is unstable if it is not stable.

A fixed-point, X, is asymptotically stable if it is stable and
every trajectory that starts sufficiently close to it approaches it as
t →∞, i.e.,

||x (t) − x|| < 𝛿 ⇒ Lim
t→∞

x (t) = x. (3.6.7)

For the nonlinear system given in Equation (3.6.1), the following
theorem provides information on the stability properties of the
fixed-point (x, y) = (0, 0), provided ad − bc ≠ 0.

Theorem:

Let 𝜆1 and 𝜆2 be the eigenvalues associated with the matrix of the
linear coefficients of Equation (3.6.1), i.e.,

det (A − 𝜆I) = det |||
a − 𝜆 b
c d − 𝜆

|||
= 𝜆2 − (a + d) 𝜆 + (ad − bc)
= (𝜆 − 𝜆1) (𝜆 − 𝜆2) .
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TABLE 3.1 Classification of the Fixed-Points for Nonlinear Systems

Eigenvalues Type of Fixed-Point and Stability

𝜆1 > 𝜆2 > 0 Unstable node
𝜆1 < 𝜆2 < 0 Stable node
𝜆1 = 𝜆2 > 0 Unstable node or spiral point
𝜆1 = 𝜆2 < 0 Stable node or spiral point
𝜆1 < 0 < 𝜆2 Saddle point (unstable)
𝜆1 = 𝜆∗2 = a + bi (a > 0) Unstable spiral point
𝜆1 = 𝜆∗2 = a + bi (a < 0) Stable spiral point
𝜆1 = 𝜆∗2 = bi Stable center or stable or unstable spiral point

Then the stability properties of the fixed-point for the nonlinear
system of Equation (3.6.1) are as given in Table 3.1 .

Examination of Table 3.1 indicates that if a linear stability anal-
ysis of a fixed-point is a center, then the corresponding nonlinear
system may not have it as a center. It may turn out to be a stable
or unstable spiral point. Thus, centers are very fragile fixed-points.

In the next section, we use these results and related geometrical
techniques to sketch the flow of a variety of 2-dim systems. While
some of these equations have known exact analytical solutions, our
purpose is to examine them as if we did not know the actual solutions
and see how much information can be obtained on the qualitative
properties of the solutions. This is clearly the situation that confronts
most researchers or even students when given arbitrary differential
equations.

3.7 EXAMPLES

3.7.1 Harmonic Oscillator

The harmonic oscillator is modeled by the equation

d2x
dt2 + x = 0, x (0) = x0,

dx (0)
dt = v0, (3.7.1)

where x0 and v0 are the respective location and velocity at t = 0. In
a system form, this equation can be represented as

dx
dt = y, dy

dt = −x,wherex (0) = x0, y (0) = y0. (3.7.2)
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FIGURE 3.4 Basic features of the phase-plane for the harmonic oscillator.

Note that the system equations could also be written as
dx
dt = −y, dy

dt = x, wherex (0) = x0, y (0) = v0. (3.7.3)

Examination of Equation (3.7.2) indicates that there is only one
fixed-point and it is

x = 0, y = 0. (3.7.4)

The equation determining the trajectories in the x− y phase-space is
dy
dx = −x

y , (3.7.5)

and the associated nullclines are

⎧
⎨
⎩

dy
dx
= 0 ∶ x = 0ory0 (x) is they-axis;

dy
dx
= ∞ ∶ y = 0ory∞ (x) is thex-axis.

(3.7.6)

Observe that the nullclines intersect at the origin, which is where the
only fixed-point is located, i.e., (x, y) = 0. Figure 3.4 shows this infor-
mation and the signs of the derivative in the four domains created
by the nullclines.

Equation (3.7.5) can be integrated to give

I (x, y) = x2 + y2 = x20 + y20 = constant. (3.7.7)
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Note that the first-integral, I (x, y), is invariant under the following
coordinate transformations:

T1 ∶ x → −x, y → y; reflection in they-axis.

T2 ∶ x → x, y → −y; reflection in thex-axis.

T3 = T1T2 = T2T1 ∶ inversion through the origins.

x → −x, y → −y.
We now use these transformations to construct a typical trajectory
in the 2-dim x−y plane for the harmonic oscillator. This is pictorially
illustrated in Figure 3.5. In more detail, we carry out the following
steps:
(1) In the upper left diagram, the fixed-point and four domains are

indicated, along with the signs of the dy/dx. The x- and y-axes
are, respectively, the y∞ (x) and y0 (x) nullclines.

(2) Starting at point-1, on the y-axis, we obtain a curve from point-
1 to point-2, which is on the x-axis. Since the derivative must
be zero at point-1, negative in the first quadrant, and infinite
on the x-axis, the curve joining points −1 and −2 must have the
shape indicated in the upper right figure.

(3) If this curve is now reflected in the x-axis, i.e., applying T2, we
obtain the curve shown in the lower right figure.

(4) Applying T1 to the curve labeled by 1−2−3, we obtain the full
trajectory as depicted in the lower left figure and this is a closed
curve.

Comments

(i) Since T1 and T2 are symmetry transformations, it is clear that
point-1 and point-3 are the same exact distances from the origin,
with the same holding for point-2 and point-4. This also means
that point-1 and point-5 coincide (as drawn in the figure).

(ii) Since the full curve (1 → 2 → 3 → 4 → 1) is closed, this implies
that the solutions to the harmonic oscillator equations of motion
are periodic. In fact, it is easy to show that when(A,B) are arbi-
trary integration constants using the initial conditions, x (0) = x0
and y (0) = v0 = y0, we obtain
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FIGURE 3.5 Steps for constructing a typical trajectory for the harmonic
oscillator system. Equation (3.7.2) or (3.7.5).

x (t) = A cos t + B sin t, y (t) = −A sin t + B cos t, (3.7.8)

x (t) = x0 cos t + y0 sin t, y (t) = −x0 sin t + y0 cos t. (3.7.9)

(iii) Most importantly, our qualitative analysis has shown (geo-
metrically) that all the solutions to the harmonic oscillator
are bounded and periodic, and this was determined without
knowledge of the analytic solutions to the equations of motion.

3.7.2 Damped Harmonic Oscillator

The differential equation modeling the damped harmonic oscillator
is

d2x
dt2 + 2𝜖dx

dt + x = 0; x (0) = x0,
dx (0)

dt = v0. (3.7.10)
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In system form, we have

dx
dt = y, dy

dt = −x − 2𝜖y; x (0) = x0, y (0) = v0 = y0. (3.7.11)

There is a single fixed-point located at

(x, y) = (0, 0) . (3.7.12)

Also, for our purposes, assume that the ‘damping coefficient’, 𝜖, is
small and positive.

The differential equation determining the trajectories, y = y (x),
in phase-space is

dy
dx = −(x + 2𝜖y

y ) , (3.7.13)

and the two nullclines are (using the notation y′ ≡ dy/dx)

{ y′ = 0 ∶ y0 (x) = − ( 1
2𝜖
) x,

y′ = ∞ ∶ y = 0 or the x-axis.
(3.7.14)

Close inspection of the main features of the x − y phase-plane for
the damped harmonic oscillator, see Figure 3.6, allows the following
conclusions to be made:

(a) There is only one fixed-point, (x, y) = (0, 0).
(b) For 𝜖 > 0, this fixed-point is a stable spiral.
(c) The general solution of the damped harmonic oscillator equa-

tions, see Equations (3.7.10) or (3.7.11), is expected to have the
form sketched in Figure 3.7 .

3.7.3 Nonlinear Cubic Oscillator

This oscillator has the equation of motion

d2x
dt2 + x3 = 0, x (0) = x0,

dx (0)
dt = y0. (3.7.15)

The corresponding system equations are

dx
dt = y, dy

dt = −x3, (3.7.16)
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FIGURE 3.6 (a) Fixed-point, nullclines, and ‘sign’ of dy/dx in each of the
four domains determined by the two nullclines, y0 (x) and y∞ (x). Sketches
of two trajectories for the damped harmonic oscillator.

with the same initial conditions as given previously.
This system has one fixed-point at (x, y) = (0, 0). From the

trajectory differential equation

dy
dx = −x3

y , (3.7.17)

it is seen that Equation (3.7.17) has the same invariant properties
as the harmonic oscillator; see the discussion after Equation (3.7.7).



Two-Dimensional Dynamical Systems ∎ 59

t

x(t)

0

FIGURE 3.7 Plot of expected features of the solution to the damped
harmonic oscillator equation.

Also, observe that a first-integral of Equation (3.7.17) is

(12) y2 + (14) x4 = (12) y20 + (14) x40 = constant. (3.7.18)

Further, the nullclines for this nonlinear oscillator are exactly the
same as the linear, harmonic oscillator; see Equation (3.7.6). How-
ever, there is a major difference in the nature of their fixed-points
at (x, y) = (0, 0). While both are ‘centers’, the harmonic oscillator
is a ‘linear center’ and the cubic oscillator is a ‘nonlinear center’.
In terms of their respective phase-plane trajectories, the two sets of
curves are topologically equivalent to each other. Hence, based on
this discussion, it can be concluded that for each x0 and y0, such
that (x0, y0) ≠ (0, 0), the cubic oscillator has periodic solutions. For
this particular oscillator equation, the exact analytic solutions are
known and may be expressed in terms of the Jacobi cosine and sine
functions.

The arguments of this section can be extended to systems of the
form

{
d2x
dt2

+ x
2N+1
2m+1 = 0,

N = (0, 1, 2, …) ,m = (0, 1, 2, …)
(3.7.19)

Thus, this nonlinear differential equation has one fixed-point at (x, y),
which is a nonlinear center and all solutions are periodic.

(x, y) = (0, 0) . (3.7.20)
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Except for n = m, which gives the linear harmonic oscillator, the
case with N = 0 and m = 1 has been extensively investigated by a
number of researchers.

3.7.4 Damped Cube-Root Oscillator

This oscillator is modeled by the differential equation

d2x
dt2 + x

1
3 = −𝜖dx

dt , 𝜖 > 0, (3.7.21)

which can be rewritten to the form
dx
dt = y, dy

dt = −𝜖y − x
1
3 . (3.7.22)

From these latter equations, we determine that there is a single fixed-
point at (x, y) = (0, 0). Also, the trajectories in the x− y phase-plane
are solutions of the differential equation

dy
dx = −(x

1
3 + 𝜖y

y ) , (3.7.23)

and from this expression the two nullclines are found to be

{ y′ = 0: along the curvey0 (x) = − ( 1
𝜖
) x

1
3

y′ = ∞:y∞is thex-axis.
, (3.7.24)

Figure 3.8a gives the major features of this phase-space, with a
typical trajectory sketched in Figure 3.8b.

The qualitative, geometric analysis coming from the detailed
examination of Figure 3.8 allows the following conclusions:

(i) Given an initial point (x0, y0) ≠ (0, 0), then its trajectory spirals
into the fixed-point located at (x, y) = (0, 0).

(ii) The fixed-point, (x, y) = (0, 0), is stable.
(iii) The following ‘sum rule’ holds

𝜖
∞

∫
0

[y (t)]2dt = (12) y20 + (34) x
4
3
0 . (3.7.25)
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FIGURE 3.8 Phase-space for the damped cube-root oscillator given in
Equation (3.7.22).

The arguments to support these results will now be given.
First, define V (x, y) to be

V (x, y) = (12) y2 + (34) x
4
3 . (3.7.26)

Then,

V (0, 0) = 0 ; V (x, y) > 0, forx ≠ 0, y ≠ 0. (3.7.27)

Further,
dV
dt = ydy

dt + x
1
3
dx
dt , (3.7.28)
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If Equation (3.7.22) is used to evaluate the right-hand side of this
expression, then

dV
dt = −𝜖y2 ≤ 0, (3.7.29)

and this implies that V (t) is a non-negative, monotonic decreasing
function of t. Since the phase-space analysis implies the result

Lim
t→∞

(x (t)
y (t)) = (00) , (3.7.30)

We have from Equation (3.7.29)

V (t) = V (0) − 𝜖∫
t

0
y(z)2dz, (3.7.31)

where

V (0) = V (x0, y0) > 0, ifx0 ≠ 0, y0 ≠ 0. (3.7.32)

Taking the limit, t →∞, we have

V (∞) = V (0) − ∫
∞

0
y(z)2dz, (3.7.33)

where

V∞ = V [x (∞) , y (∞)] = V (0, 0) = 0. (3.7.34)

Substituting this last result into Equation (3.7.33) gives Equation
(3.7.25).

3.7.5 ẍ + (1 + ẋ) x = 0
This differential equation models a system for which the angular
frequency depends on the first derivative, i.e.,

d2x
dt2 + (1 + dx

dt ) x = 0, (3.7.35)

or

d2x
dt2 +Ω2x = 0, Ω2 = (1 + dx

dt ) . (3.7.36)



Two-Dimensional Dynamical Systems ∎ 63

Note that there are three possible solution behaviors; they are

⎧⎪
⎨⎪
⎩

dx
dt
< −1 ∶ Ω2 < 0, unbounded solutions,

dx
dt
= −1 ∶ Ω2 = 0, linear motion,

dx
dt
> −1 ∶ Ω2 > 0, periodic solutions.

. (3.7.37)

Also,

x (t) = −t + x0 (3.7.38)

is a solution to Equation (3.7.35).
The system equations for Equation (3.7.35) are

dx
dt = y, dy

dt = − (1 + y) x (3.7.39)

and there is one fixed-point at (x, y) = (0, 0). Further, the two
nullclines are

{ y′ = 0 ∶ x = 0 or they-axis, and y = −1;
y′ = ∞ ∶ x = 0 or thex-axis, (3.7.40)

since
dy
dx = −(1 + y) x

y . (3.7.41)

With regard to symmetry transformation, only reflection in the y-axis
exists, i.e.,

T1 ∶ x → −x, y → y. (3.7.42)

The sketches of typical phase-space trajectories given in Figure 3.96
shows this.

Equation (3.7.41) is a separable differential equation and can be
exactly integrated, i.e., it can be rewritten as

∫ y
1 + ydy + ∫ xdx = 0, (3.7.43)

and carrying out the integrations gives the first-integral

I (x, y) = y − Ln (1 + y) + x2
2 = constant. (3.7.44)
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FIGURE 3.9 x − y plane information for Equation (3.7.39).

Observe that for small enough x and y, i.e.,

|x| ≪ 1, |y| ≪ 1, (3.7.45)

we have

I (x, y) = (12) y2 + (12) x2 + O (y3) , (3.7.46)

where the first two terms on the right-hand side are the first-integral
for the harmonic oscillators. This implies that the trajectories close
to the fixed-point (x, y) = (0, 0) are nearly circles. Finally, the inspec-
tion of Figure 3.96 further shows that the line, y = −1, separates the
periodic and unbounded solutions. 



Two-Dimensional Dynamical Systems ∎ 65

3.7.6 Simple Predator–Prey Model

Consider two interacting populations: rabbits and foxes. A simple
predator–prey model by making the following assumptions:

(a) If no foxes are present, the rabbits reproduce at a constant rate,
k.

(b) If only foxes are present, they die at a rate proportional to the
size of their total population.

(c) When both rabbits and foxes are present, the rabbits die at a
rate proportional to the product of the two populations.

(d) Likewise, when both rabbits and foxes are present, the foxes
increase at a rate proportional to the product of their two
populations.

If we denote, respectively, the rabbit and fox populations by x (t) and
y (t), then the above assumptions translate into the mathematical
model:

dx
dt = k − r1xy, dy

dt = r2xy − r3y, (3.7.47)

where (k, r1, r2, r3) are positive parameters.
If we scale the variables in Equation (3.7.47) and set the remaining

dimensionless parameters to one, then we have

dx
dt = 1 − xy, dy

dt = xy − y. (3.7.48)

This set of equations has a fixed-point at (x, y) = (1, 1) and from the
trajectory determining differential equation

dy
dx = y (x − 1)

1 − xy , (3.7.49)

we can calculate the nullclines; they are

{
y′ = 0 ∶ y = 0or thex-axis andx = 1;
y′ = ∞ ∶ y∞ (x) = 1

x
. (3.7.50)

With this information, we can draw a typical trajectory in the x–y
plane (see Figure 3.10). We see that starting at an initial point in
the first quadrant, then the trajectory that goes through that point
spirals into the fixed-point at (x, y) = (1, 1).
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FIGURE 3.10 Phase-space of predator–prey model for Equation (3.7.48).

Another way of achieving this result is to do a linear stability
analysis of the fixed-point. Let

x (t) = 1 + 𝛼 (t) , y (t) = 1 + 𝛽 (t) , (3.7.51)

where

|𝛼 (0)| ≪ 1, |𝛽 (0)| ≪ 1. (3.7.52)

Substituting these expressions into Equation (3.7.48) and keeping
only linear terms give

d
dt (

𝛼
𝛽) = ( −1 −1

1 0 ) (𝛼𝛽) . (3.7.53)
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The 2 × 2 matrix has the characteristic equation

𝜆2 + 𝜆 + 1 = 0, (3.7.54)

which has the complex conjugate solutions

𝜆1 = 𝜆∗2 = −(12) + i (√32 ) . (3.7.55)

The negative real parts of these roots imply that the fixed-point,
(x, y) = (1, 1), is a stable spiral point.

3.7.7 van der Pol Equation

The van der Pol equation provides a first approximation to many phe-
nomena in the natural and physical sciences. Its differential equation
is

d2x
dt2 + x = 𝜖 (1 − x2) dx

dt , 0 < 𝜖 ≪ 1. (3.7.56)

Variants of this equation have also being investigated, including the
following forms

d2x
dt2 + x = 𝜖 (1 − |x|) dx

dt , (3.7.57)

d2x
dt2 + x = 𝜖 (1 − x2) (dx

dt )
1
3
, (3.7.58)

d2x
dt2 + x

1
3 = 𝜖 (1 − x2) dx

dt . (3.7.59)

All of these four equations have solutions with the same qualitative
properties for their solutions.

Equation (3.7.56) written in the system form is
dx
dt = y, dy

dt = −x + 𝜖 (1 − x2) y, (3.7.60)

where the parameter, 𝜖, is taken to be positive. This system has a
single fixed-point located at (x, y) = (0, 0). Also, note that the linear
approximation, which holds in a neighborhood of the fixed-point, is

d2x
dt2 + x = 𝜖dx

dt ; |x| ≪ 1, |y| ≪ 1. (3.7.61)
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Since the characteristic equation for Equation (3.7.41) is

𝜆2 − 𝜖𝜆 + 1 = 0, (3.7.62)

with solutions

𝜆1 = 𝜆∗2 = (12) [𝜖 + i√4 − 𝜖2 ]

≃ (12) 𝜖 + i, (3.7.63)

it follows that the fixed-point, (x, y) = (0, 0), of the van der Pol
oscillator is an unstable spiral.

The trajectory determining differential equation is

dy
dx =

−x + 𝜖 (1 − x2) y
y . (3.7.64)

From this equation, we find the two nullclines to be

{ y′ = 0: along the curvey0 (x) = ( 1
𝜖
) ( x

1−x2
) ,

y1 = ∞:y = 0or along thex-axis.
(3.7.65)

We represent in Figure 3.11 , the major features of the x − y
phase-plane for the van der Pol oscillator.

The next figure sketches a typical phase-space trajectory for initial
conditions far from the fixed-point located at the origin. Note that for
this case, the trajectory spirals inward toward the fixed-point. But,
we know that trajectories in the neighborhood of the origin must spi-
ral outward from it. So, how do we resolve this seemingly paradox,
i.e., distant trajectories spiraling toward the origin, close to the origin
spiraling from the origin? The resolution is that there must exist a
simple closed curve around the fixed-point such that all trajectories
spiral toward this closed curve (see Figure 3.13). This simple closed
curve is called a limit cycle and represents a stable periodic solution
of the van der Pol equation; in fact, it is the only periodic solution.
For small 𝜖, this solution is given by the approximation.

FigurerePhase-space trajectories for the van der Pol equation. The
closed curve is the periodic solution. All other trajectories spiral in
or out to this closed solution.

xp (t) = 2 cos t + O (𝜖) . (3.7.66)
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y0(x)

y∞(x)

(–) (–)

(–)

x = –1 x = +1

(–)

(x̄, ȳ) = (0, 0)

FIGURE 3.11 Phase-space features for the van der Pol equation.

In general, we have for any solution of the van der Pol differential
equation the result (for 𝜖 ≪ 1 )

X (t)
−−−−−⟶

larget Xp (t) . (3.7.67)

3.7.8 SIR Model for Disease Spread

The final system considered is a rather elementary model, which was
constructed to provide insight into the spread of certain types of dis-
eases. Since our interest is in the mathematical model itself rather
than the details of its formulation, we will start with these equations.
For readers interested in the formulation of models for the spread of
disease, there is a vast literature on the subject and we provide a
short list of such items in the Comments and Reference section. 

The particular model we examine is
dS
dt = −𝛽S ( I

N) , (3.7.68)

dI
dt = 𝛽S ( I

N) − 𝛾I, (3.7.69)
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x

y

(+)

(+)(–) (–)

(–) (–)

P

FIGURE 3.12 Trajectory for the van der Pol equation. starting at a point
P (x0, y0) where |x0| ≫ 1 and |y0| ≫ 1. All such trajectories spiral toward
the fixed-point.

dR
dt = 𝛾I, (3.7.70)

N (t) = S (t) + I (t) + R (t) = constant, (3.7.71)

where

S (t) is the susceptible population, i.e., those members of the general
population who can become infected, but are not.

I (t) is the infected population, i.e., infected individuals who upon
contact with susceptible individuals can infect susceptible per-
sons.

R (t) is the recovered population consisting of those individuals who
have recovered from the disease.

We make the assumption that individuals in R (t) have permanent
immunity and never return to the susceptible population.

The above mathematical model allows for the prediction of how
individuals transition from one population class to another, i.e.,

S (t) → I (t)⟶ R (t) . (3.7.72)
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x

y

FIGURE 3.13 Phase-space trajectories for the van der Pol equation. The
closed curve is the periodic solution. All other trajectories spiral in or out
to this closed solution.

S

I

S*0

(+) (–)

I0(S)

I∞(S)

I0(S)

FIGURE 3.14 Phase-space for the SIR model using Equation (3.7.48).

Note that the mathematical structure of the model, Equations
(3.7.68)–(3.7.70), imply the correctness of Equation (3.7.71), i.e., the
whole population is constant. Also, since the variable R (t) appears
only in the third modeling equation, we can carry out our analysis
with just the first two equations.

dS
dt = −𝛽S ( I

N) , dI
dt = 𝛽S ( I

N) − 𝛾I. (3.7.73)
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S∞ S*

S0 < S*

(S0, I0)

0
(a)

(+) (–)

(S0, I0)

FIGURE 3.15 Two trajectories for the SIR disease spreading model. If
S0 > S∗, then an epidemic takes place. If S0 < S∗, no epidemic occurs.

If S∗ is defined to be

S∗ = (𝛾𝛽)N, (3.7.74)

then Equation (3.7.73) becomes

dS
dt = −𝛽S ( I

N) , dI
dt = 𝛽 ( I

N) (S − S∗) , (3.7.75)

and
dI
dS = −1 + S∗

S . (3.7.76)

Note that this is a separable differential equation, which can be easily
solved to give the result 

I (t) + S (t) = I0 + S0 + S∗Ln (S (t)
S0

) , (3.7.77)
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I0
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R0
0

(b) S0  > S*

I(t)
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FIGURE 3.16 General time dependence of S (t) , I (t), and R (t) for an SIR
model. We assume S0 > 0, I0 > 0, and R0 = 0.

Figure 3.14 gives the major geometric features of the I–S plane. The
nullclines are determined from

dI
ds =

dI/dt
ds/dt =

𝛽 ( I
N
) (s − s∗)

𝛽s ( I
N
)

, (3.7.78)

from which we conclude (I′ = dI/dS)

I′ = 0 ∶ I0 (x) consists of theS-axis and the
line S = S∗.

I′ = ∞ ∶ I∞ (x) consists of theS- and I-axes.

An interesting aspect of this SIR model is that in the I–S plane,
the S-axis is both I0 (S) and I∞ (S) nullclines. Since points where
these two types of nullclines intersect are fixed-points, it follows
that we have a continuum of fixed-points and they lie along the
(non-negative) S-axis. This makes sense because points on the S-axis



74 ∎ Introduction to Qualitative Methods for Differential Equations

correspond to the absence of infectious individuals. Consequently, in
these situations, there is no disease to spread. Also, we have that

{ 0 < S0 < S∗ ⇒ disease dies out;
S0 > S∗ ⟹ an epidemic occurs. (3.7.79)

The general behavior of S (t) and I (t) is sketched in Figure 3.16 .
While the SIR modeling equations cannot be solved analytically

in terms of a finite combination of the elementary functions, our qual-
itative analysis using the I–S phase-plane shows that great insights
into the evolution of disease spreading can still be achieved.

3.8 DISCUSSION

The main task of this chapter was to demonstrate the power of using
the 2-dim phase-plane to obtain qualitative information on systems
that are modeled by these mathematical structures. We have seen
that such an analysis provides many insights into the nature of the
behaviors of the solutions to the corresponding differential equations
even if no exact analytical solutions exist. This knowledge can also be
used as an aid for the construction of ‘valid’ approximations to the
actual solutions. Further, the understandings derived from a phase-
plane diagram may provide information on constructing improved
mathematical models for the system being examined.

Another important feature is that, at least for 2-dim systems,
almost all of the ‘work’ can be done ‘by hand’. The only require-
ment is the ability to be able to make reasonably accurate sketches
of various types of curves.

Finally, it is clear that extending this methodology to dim −3 or
higher systems will generally require the use of computers.

PROBLEMS

Instead of a list of problems, it is strongly recommended that the
following books be consulted. They all contain many examples of
2-dim systems and their analysis using phase-plane techniques.

1. D. Basmadjian, Mathematical Modeling of Physical Systems
(Oxford University Press, Oxford, 2003).
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C H A P T E R 4

Sturm–Liouville Problems

4.1 INTRODUCTION

Many physical systems can be modeled in one-space dimension by
ordinary differential equations having the form

d2x
dt2 = F (x, dx

dt ) . (4.1.1)

This particular structure is a consequence of the fact that these sys-
tems have dynamics that follow from the basic Newton’s law of force,
i.e.,

(mass) (acceleration) = (total) force. (4.1.2)

Similarly, many continuous physical phenomena have mathematical
models that are either first- or second order in the time-independent
variable. The purpose of this chapter is to investigate the behav-
ior of the solutions to ordinary differential equations, which can be
expressed as

a0 (x) y′′ (x) + a1 (x) y′ (x) + a2 (x) y (x) = 0, (4.1.3)

considered as boundary-valued problems over the interval

a ≤ x ≤ b, (4.1.4)

where (a, b) may be either finite or unbounded. For this chapter, the
following notation is used

y = y (x) , y′ = dy (x)
dx , y′′ = d2y (x)

dx2 , etc. (4.1.5)

We begin by showing that generally the first-derivative term in
Equation (4.1.3 ) can be eliminated by a suitable change of the

76 DOI: 10.1201/9781003422419-5
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dependent variable. Another interesting and valuable transformation
is the one associated with the names of Liouville and Green, called
appropriately the Liouville–Green transformation. This procedure is
especially useful for calculating the asymptotic behaviors of solutions
to linear, second-order differential equations.

4.1.1 Elimination of First-Derivative Term

Assume that the function a0 (x) has no zeros in the interval given by
Equation (4.1.3). If we divide this equation by a0 (x) and make the
definitions

p (x) = a1 (x)
a0 (x)

, q (x) = a2 (x)
a0 (x)

, (4.1.6)

then we have

y′′ (x) + p (x) y′ (x) + q (x) y (x) . (4.1.7)

Let I (x) be

I (x) = (12)∫
(x)

p (z) dz, (4.1.8)

and make the following dependent variable transformation

y (x) = u (x) e−I(x). (4.1.9)

Then, we have

I′ (x) = P (x)
2 , I′′ (x) = (12)P′ (x) , (4.1.10)

and

{
y′ (x) = [u′ − I′u] e−I,
y′′ (x) = {u′′ − 2I′u′ + [(I′)2 − I′′] u} e−I. (4.1.11)

Substitution of all of these results into Equation (4.1.7) gives, after
some algebraic manipulation, the result

u′′ (x) + Q (x) u (x) = 0, (4.1.12)

where

Q (x) = q (x) − (12) p′ (x) − p(x)2
4 . (4.1.13)



78 ∎ Introduction to Qualitative Methods for Differential Equations

To illustrate this procedure, consider the differential equation

x2y′′ + xy′ + (x2 − 𝜆) y = 0, (4.1.14)

or upon division by x2,

y′′ + (1x) y’ + (1 − 𝜆
x2 ) y = 0. (4.1.15)

Therefore,

p (x) = 1
x , q (x) = 1 − 𝜆

x2 , (4.1.16)

and

I (x) = (12)∫
x

p (z) dz

= (12)∫
x dz

z

= (12)Ln (x) = Ln (√x ) , (4.1.17)

with

e−I(x) = 1
√x

. (4.1.18)

The final result is that u (x) satisfies the following differential
equation:

u′′ (x) + [1 + (1 − 4𝜆
4x2 )] u (x) = 0. (4.1.19)

4.1.2 Liouville–Green Transformation

In the previous section, we showed that the equation

d2y (x)
dx2 + p (x) dy (x)

dx + q (x) y (x) = 0 (4.1.20)

could be transformed into

d2v (x)
dx2 + Q (x) v (x) = 0, (4.1.21)
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where

V (x) = y (x) exp [(12)∫
x

p (z) dz] (4.1.22)

and

Q (x) = q (x) − (12) p′ (x) − (14) p(x)2. (4.1.23)

Let us now introduce a new independent variable, s, which is a
function of x, i.e., s = s (x) and it is defined by the relation

s = s (x) = ∫
x
√Q (z) dz. (4.1.24)

Our goal is to replace the variable x in Equation (4.1.21) by new
variable s. From the calculus, it follows that

dv
ds =

dv
ds

ds
dx =√Q (x) dv

ds . (4.1.25)

Since from Equation (4.1.24)

ds
dx =√Q (x) . (4.1.26)

Also,

d2v
dx2 = Q (x) d2v

ds2 + ( 1
2√Q (x)

) (dQ (x)
ds ) dv

ds . (4.1.27)

The result of Equation (4.1.24) can be inverted to give x as a function
of s, i.e., x = x (s), and consequently, Q (x) = Q (x (s)). If we make
these replacements in Equation (4.1.21), then we get the expression

d2v
ds2 + [(12) (

dQ
dx ) (

1
Q3/2 )]

dv
ds + v = 0. (4.1.28)

The first-derivative term can be eliminated by the following change
of variable, i.e., v (s) → w (s), where

w (s) = v (s) exp [(12)∫
s

(dQ
dz ) (

1
2Q3/2 ) dz] . (4.1.29)
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Since

ds = ds
dxdx =√Q (x) dx, (4.1.30)

Equation (4.1.29) can be rewritten as

w (s) = v (s) [exp (14)∫
x

(dQ
dz ) (

1
Q) dz]

= [Q]
1
4 v (s) . (4.1.31)

With this result, Equation (4.1.28) becomes

d2w
ds2 + [1 − (12)

dh
ds − (14) h2]w = 0, (4.1.32)

where

h (s) = (12) (
dQ
dx ) (

1
Q3/2 ) . (4.1.33)

This series of variable transformations, i.e.,

y (x)⟶ v (x)⟶ v (s)⟶ w (s) , (4.1.34)

is the Liouville–Green transformation and will be used later in this
chapter to calculate the behavior of solutions to certain differential
equations for large x.

4.2 THE VIBRATING STRING

As a preliminary introduction to Sturm–Liouville problems, we
examine in some detail a vibrating finite-length string of length L.
Let it be aligned with the x-axis. The equation of motion is

d2u (x)
dx2 + 𝜆u (x) = 0, (4.2.1)

where x denotes the location of a point on the string and u (x) is the
distance of that point from the x-axis (see Figure 4.1). 

The parameter 𝜆 is a priori unknown and, as we will show, is
determined by the values of u (x) and du (x) /dx selected at x = 0 and
x = L. The four possibilities are

(1) x (0) = 0, x (L) = 0; (4.2.2)
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0

• • • • • •

Lx1

u(x1)

x

FIGURE 4.1 String along the x-axis, 0 ≤ x ≤ L, u (x) is the displacement from
the x-axis.

(2) x (0) = 0, x′ (L) = 0; (4.2.3)

(3) x′ (0) = 0, x (L) = 0; (4.2.4)

(4) x′ (0) = 0, x′ (L) = 0. (4.2.5)

Note that cases (2) and (3) are mathematically equivalent and we
will only consider (2). Physically, the four cases correspond to the
following situations:

(1) The string is clamped at both ends;
(2) The string is clamped at x = 0, but free at x = L;
(3) The string is free at x = 0, but clamped at x = L;
(4) Both ends are free to move.

Also note that since we wish to have periodic solutions, we assume
𝜆 > 0.

4.2.1 Both Ends Fixed

The general solution to Equation (4.2.1) is

u (x) = A sin (√𝜆 x) + B cos (√𝜆 x) . (4.2.6)

Since u (0) = 0 and u (L) = 0, we have

{
u (0) = 0 ⇒ B = 0;
u (L) = 0 ⇒ A sin (√𝜆L) = 0, (4.2.7)

or

√𝜆L = n𝜋, n = (1, 2, 3, …) . (4.2.8)
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0
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0
Lu2(x)

0
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FIGURE 4.2 First three modes of vibration for the case u (0) = 0 and
u (L) = 0.

However, the length of the string is constant, consequently, it follows
that the values of 𝜆 can only take on the discrete values

𝜆n = (n𝜋
L )

2
. (4.2.9)

Therefore, the solutions of Equation (4.2.1) for the boundary condi-
tions, u (0) = 0 and u (L) = 0, are

Un (x) = An sin (n𝜋x
L ) . (4.2.10)

Since the differential equation is linear, we do not have enough infor-
mation to determine the An. Figure 4.2 gives sketches of the first
three modes of vibrations.

4.2.2 One Fixed and One Free Ends

For this case, the general solution is still Equation (4.2.6), but the
initial conditions are now those given in Equation (4.2.3). Therefore,

{
u (0) = 0 ⇒ B = 0;
U’ (L) = 0 ⇒ u’L = −√𝜆 cos (√𝜆L) = 0. (4.2.11)
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0
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0
Lu2(x)

0
Lu3(x)

FIGURE 4.3 First three modes of a vibrating string in which one end is
fixed and the other is free, i.e., u (0) = 0 and u′ (L) = 0.

But,

cos (√𝜆L) = 0 ⇒√𝜆L = (2n − 1) (𝜋2 ) , n = (1, 2, 3, …) , (4.2.12)

and therefore we have for 𝜆 the following set of discrete values

𝜆n = [(2n − 1)𝜋
2L ]

2
, n = (1, 2, 3, …) . (4.2.13)

Therefore, the associated solutions, un (x), are

un (x) = An sin [(2n − 1)𝜋x
2L ] . (4.2.14)

Figure 4.3 sketches the general shapes of the first three modes for
u (0) = 0 and u′ (L) = 0.

4.2.3 Both Ends Free

The general solution is Equation (4.2.6), it follows that

u′ (x) =√𝜆 cos (√𝜆 x) −√𝜆B sin (√𝜆 x) , (4.2.15)
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0
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FIGURE 4.4 Sketches of first three modes for the care where the vibrating
string is free at both ends, i.e., u′ (0) = 0 and u′ (L) = 0.

and

{
u’ (0) = 0⟹ A = 0;
u’ (L) = 0⟹ B sin (√𝜆L) = 0. (4.2.16)

and, therefore,

𝜆n = (n𝜋
L )

2
, (4.2.17)

with

un (x) = Bn cos (n𝜋x
L ) , n = (1, 2, …) . (4.2.18)

The modes u1 (x) , u2 (x) and u3 (x) are sketched in Figure 4.4 .

4.2.4 Summary

Our study of the vibratory modes of a finite length allows the
following conclusions to be reached:

(a) The type of boundary conditions selected determines the values
of 𝜆 and its associated function u (x, 𝜆).

(b) For a given set of boundary conditions, 𝜆 takes on a set of
unbounded discrete values.
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(c) There is a smallest value for 𝜆 and they can be ordered in an
increasing unbounded sequence, i.e., with

𝜆1 < 𝜆2 < 𝜆3 < ⋯ < 𝜆n < ⋯, (4.2.19)

Lim
n→∞

𝜆n = ∞. (4.2.20)

(d) For a given set of boundary conditions and for a particular 𝜆n,
the functions un (x) have a definite number of zeros whose value
depends on n.

(e) Note that the boundary conditions, u (0) = 0 and u (L) = 0, and
u′ (0) = 0 and u′ (L) = 0, have the same set of 𝜆 values, and the
characteristic shape functions differ.

From a physics perspective, our analysis of the finite length string
shows that the different ways of clamping the string give rise to
entirely different modes of oscillation.

We now turn to a major generalization of the results of this sec-
tion, namely, the ‘Sturm–Liouville problem’. However, before doing
so, we state several results related to the comparison of solutions
to linear, second-order, ordinary differential equations. These are
presented in the next section.

4.3 SEPARATION AND COMPARISON RESULTS

We now state, without proofs, several interesting and important
results regarding the solutions to the linear, second-order differential
equation

y′′ (x) + a1 (x) y′ (x) + a2 (x) y (x) = 0. (4.3.1)

We assume that a1 (x) and a2 (x) are defined and continuous on the
interval, a ≤ x ≤ b. This equation has two linearly independent
solutions, Y1 (x) and Y2 (x), and, consequently, its general solution is

y (x) = c1y1 (x) + c2y2 (x) , (4.3.2)

where c1 and c2 are arbitrary constants.
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The following theorem provides information on the interconnec-
tions of the zeros of y1 (x) and y2 (x).

Theorem 1 Let y1 (x) and y2 (x) be linearly independent solutions of
Equation (4.3.1), then y1 (x) must have a zero between any two con-
secutive zeros of y2 (x) and, likewise, y2 (x) must have a zero between
any two consecutive zeros of y1 (x).

Another way of stating this result is that the zeros of y1 (x) and
y2 (x) alternate. This powerful result is called the Sturm separa-
tion theorem. An elementary example involves the sine and cosine
functions, which are solutions to the differential equation

d2x
d𝜃2 + x = 0⟹ x (𝜃) = A cos 𝜃 + B sin 𝜃, (4.3.3)

and where

{
sin (0) = 0 cos (𝜋

2
) = 0

sin (𝜋) = 0 cos (3𝜋
4
) = 0

. (4.3.4)

The next theorem allows knowledge of the solution behaviors of one
differential equation to restrict the solution behaviors of a related
second differential equation if certain conditions hold.

Theorem 2 Let p (x) and q (x) be defined on the interval, a ≤ x ≤ b,
and let them have the property

p (x) ≥ q (x) , a ≤ x ≤ b. (4.3.5)

Let f (x) and g (x) be, respectively, solutions of

u′′ (x) + p (x) u (x) = 0andv′′ (x) + q (x) v (x) = 0. (4.3.6)

Then f (x) has at least one zero between any two zeros of g (x),
unless p (x) ≡ q (x) and f (x) and g (x) are linearly dependent.

An interesting consequence of this theorem is that if q (x) ≤ 0,
then no non-trivial solution of

V′′ (x) + q (x) v (x) = 0, q (x) ≤ 0, (4.3.7)

Can have more than one zero.
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Another result is that if q (x) = 𝜆2 > 0, where 𝜆 is a constant, and
if p (x) ≥ q (x) = 𝜆2, then every solution of

u′ (x) + p (x) u (x) = 0, p (x) ≥ 𝜆2 > 0, (4.3.8)

must have a zero between any two consecutive zeros of the solutions
to

v′′ (x) + 𝜆2v (x) = 0 (4.3.9)

Note that since the general solution of Equation (4.3.9) is

v (x) = A sin [𝜆 (x − x0)] , (4.3.10)

then under these conditions, u (x) must have at least one zero in every
interval of x of length (𝜋/𝜆).

A corollary to Theorem 2 is that if

y′′ (x) + p (x) y (x) = 0 (4.3.11)

has all nontrivial solutions oscillatory, then if P (x) ≥ p (x), it follows
that all solutions of

u′′ (x) + P (x) u (x) = 0 (4.3.12)

are oscillatory.

4.3.1 y′ (x) + f (x) y (x) = 0
The differential equation

y′′ (x) + f (x) y (x) = 0 (4.3.13)

appears in many areas of the science. In particular, the time-
independent Schrodinger equation (TISE) in one space dimension
takes this form. Based on the discussion of the previous section, the
following conclusions can be reached:

(i) If there exists an interval, x1 < x < x2, such that f (x) is positive
on this interval, then y (x) is oscillatory.

(ii) If there exists an interval, x3 < x < x4, such that f (x) is negative,
then y (x) has two ‘exponential type’ components, one increasing
and the other decreasing.
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To illustrate these results consider the Airy differential equation

y′′ (x) + xy (x) = 0, −∞ < x < +∞, (4.3.14)

where f (x) = x. Since

f (x) = x ∶ { > 0, forx > 0;
< 0, forx < 0, (4.3.15)

it follows that y (x) is oscillatory for x > 0 and ‘exponentially’ increas-
ing/decreasing for x < 0. Because the Airy equation is a linear,
second-order differential equation, there are two linearly independent
solutions. For x > 0, we write the solution as

x > 0 ∶ y+ (x) = C (x) + S (x) , (4.3.16)

where C (x) and S (x) are bounded, oscillatory functions similar in
form to the trigonometric cosine and sine functions. Note that C (x)
and S (x) are oscillatory, but not in general periodic.

For x < 0, the solution takes the form

x < 0 ∶ y− (x) = E+ (x) + E− (x) , (4.3.17)

where E+ (x) and E− (x) are, respectively, exponential-type increasing
and decreasing functions.

Figure 4.5 provides sketches of generic curves corresponding to
C (x) ,S (x) ,E+ (x) and E− (x).

The two linear independent solutions to the Airy equation are
generally denoted by Ai (x) and Bi (x). In terms of the (for now
unknown) functions given in Equations (4.3.16) and (4.3.17), these
two functions are defined as follows

Ai (x) = {
E− (x) , forx < 0;
Linear combination ofC (x)
andS (x) , forx > 0,

(4.3.18)

and

Bi (x) = {
E+ (x) , forx < 0;
Linear combination of
C (x) and S (x) forx > 0.

(4.3.19)

Note that at x = 0, we require that the functions to the left and right
match with regard to being continuous and having the same value
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FIGURE 4.5 Sketches of generic plots of C (x), S (x) ,E+ (x) and E− (x).

of the derivative. Based on these requirements, Figure 4.6 provides
sketches of Ai (x) and Bi (x).

Finally, it should be remarked that from the qualitative results
of the previous section, we have been able to derive a large number
of the general features of the Airy functions. It should be clear that
this methodology can be applied to any other differential equation
that has the form of Equation (4.3.13). An important example is the
time-independent Schrodinger equation:

−( ℏ
2

2m)𝜓′′ (x) + V (x) 𝜓 (x) = E𝜓 (x) , (4.3.20)

which can be rewritten as

𝜓′′ (x) + (2mℏ2 ) [E − V (x)] 𝜓 (x) = 0, (4.3.21)
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FIGURE 4.6 Sketches of the Airy functions.

where (m, ℏ,V (x)) are given and subject to certain bounded condi-
tions and other constraints, E and 𝜓 (x), are to be determined.

4.4 STURM–LIOUVILLE PROBLEMS

Definition 1
Consider three real functions, [p (x) , q (x) ,T (x)], defined on the
interval, a ≤ x ≤ b. Assume that they have the following properties:
(i) p (x) has a continuous first derivative and has the additional

property that p (x) > 0.
(ii) q (x) and r (x) are continuous, with r (x) > 0.

Let 𝜆 be a parameter that does not depend on x. Let real constants
[A1,A2,B1,B2] exist such that

{ A1y (a) + A2y′ (a) = 0,
B1y (b) + B2y′ (b) = 0, (4.4.1)

where (A1,A2) and (B1,B2) are not both equal to zero.
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The second-order, linear differential equation
d
dx [p (x)

dy
dx] + [q (x) + 𝜆r (x)] y = 0, (4.4.2)

along with the boundary-value conditions of Equation (4.4.1) defines
the Sturm–Liouville problem.

Definition 2
The values of the parameter 𝜆 for which the Sturm–Liouville prob-
lem has nontrivial solutions are called the eigenvalues of the problem.
The associated solutions are called the eigenfunctions of the problem.

4.4.1 Properties of the Eigenvalues and Eigenfunctions

The following is a listing of some of the important properties of the
eigenvalues and eigenfunctions for the Sturm–Liouville problem.
(1) For a particular Sturm–Liouville problem there are an infinite

number of eigenvalues, all real, and they form an unbounded
monotonic increasing sequence, i.e., with

𝜆1 < 𝜆2 < 𝜆3 < ⋯ < 𝜆n < ⋯, (4.4.3)

Lim
n→∞

𝜆n = ∞. (4.4.4)

(2) Associated with each eigenvalue, 𝜆n, there exists a unique
eigenfunction, 𝜑n (x), defined up to an overall multiplicative
constant.

(3) In general, the eigenfunction 𝜑n (x), associated with eigenvalue
𝜆n has exactly (n − 1) simple zeros in the open interval, a < x <
b.

4.4.2 Orthogonality of Eigenfunctions

Definition 3
Let f (x) and g (x) be defined on the interval, a ≤ x ≤ b. Let there exist
a function, w (x) > 0, defined on this interval, such that

∫
b

a
f (x) g (x)w (x) dx = 0. (4.4.5)

Then f (x) and g (x) are said to be orthogonal on this interval with
respect to the weight function w (x).
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Definition 4
Let {𝜓n (x) ∶ n = 1, 2, 3, …} be an infinite set of functions defined on
the interval, a ≤ x ≤ b.

Let

∫
b

a
𝜓n (x) 𝜓m (x)w (x) dx = 0,n ≠ m. (4.4.6)

Then the set {𝜓n (x) ∶ n = 1, 2, 3, …} is called an orthogonal system
on the interval, a ≤ x ≤ b, with respect to the weight function w (x).

Theorem 3 Consider the Sturm–Liouville problem with its
infinite set of corresponding eigenvalues and functions, i.e.,
{𝜆n, 𝜑n (x) ∶ n = 1, 2, 3, …}. Then

∫
b

a
𝜑m (x) 𝜑n (x) r (x) dx = 0, m ≠ n. (4.4.7)

This means that the eigenfunctions 𝜑m (x) and 𝜑n (x) are orthogo-
nal with respect to the weight function w (x) = r (x) on the interval,
a ≤ x ≤ b.

4.4.3 Expansion of Functions

Definition 5
Let f (x) be defined on the interval, a ≤ x ≤ b, such that the following
integral exists

∫
b

a
[f (x)]2w (x) dx = 1. (4.4.8)

Then f (x) is said to be normalized with respect to the weight function
w (x) on this interval.

Definition 6
Let {𝜓n (x) ∶ n = 1, 2, 3, …} be an infinite set of functions defined on
the interval, a ≤ x ≤ b.

Let

∫
b

a
𝜓n (x) 𝜓m (x)w (x) dx = 𝛿mn, (4.4.9)

where discrete delta function, also known as the Kronecker delta
function, is defined as
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𝛿nm = 𝛿mn = { 0, ifm ≠ n;
1, ifm = n.

Theorem 4 Consider a Sturm–Liouville problem with its infinite
set of eigenvalues and eigenfunctions, phi {𝜆n, 𝜑n (x) ∶ n = 1, 2, 3, …}.
Assume that f (x) is continuous on the interval, a ≤ x ≤ b, and has a
piecewise-continuous first-derivative on this interval. Further, assume
that f (x) and all the 𝜑n (x) satisfy the same boundary conditions at
x = a and x = b. Then the series

∞
∑
n=1

cn𝜑n (x) (4.4.10)

where

cn = ∫
b

a
f (x) 𝜑n (x) r (x) dx, n = (1, 2, 3, …) , (4.4.11)

converges uniformly and absolutely to f (x) in the interval, a ≤ x ≤ b.
In other words, under these conditions

f (x) =
∞
∑
n=1

cn𝜑n (x) . (4.4.12)

4.5 RELATED ISSUES

4.5.1 Reduction to Sturm–Liouville Form

We now show how to reduce the following second-order, linear
differential equation to the Sturm–Liouville form,

a0 (x) y′′ (x) + a1 (x) y′ (x) + a2 (x) y (x) = 0. (4.5.1)
It can be directly verified that the following is an integrating factor
for Equation (4.5.1),

𝜇 (x) = [ 1
a0 (x)

] exp [∫ a1 (x)
a0 (x)

⋅ dx] . (4.5.2)

Therefore, multiplying Equation (4.5.1) by 𝜇 (x), the resulting expres-
sion can be written as

d
dx [𝜇 (x) a0 (x)

dy (x)
dx ] + 𝜇 (x) a2 (x) y (x) = 0. (4.5.3)
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4.5.2 Fourier Series

Let f (x) be a piecewise continuous function defined over the interval,
0 ≤ x ≤ 2𝜋. Let f (x) be periodic, i.e.,

f (x + 2𝜋) = f (x) . (4.5.4)

Then the Fourier series for f (x) is

f (x) = a0 +
∞
∑
k=1

[ak cos (k × z) + bk sin (kx)] , (4.5.5)

where

a0 = ( 12𝜋)∫
2𝜋

0
f (x) dx, (4.5.6)

ak = ( 1𝜋)∫
2𝜋

0
f (x) cos (kx) dx, (4.5.7)

bk = ( 1𝜋)∫
2𝜋

0
f (x) sin (kx) dx. (4.5.8)

In the calculation of the Fourier series of a particular function f (x),
the following orthogonality relations may be of value

∫
2𝜋

0
cos (kx) sin (mx) dx = 0, (4.5.9)

∫
2𝜋

0
cos (kx) cos (mx) dx = ∫

2𝜋

0
sin (kx) sin (mx) dx

= { 𝜋, ifk = m,
0, ifk ≠ m. (4.5.10)

Note that if we wish to change the interval in x, [0, 2𝜋], to an arbitrary
interval, [a, b], in x̃, then this can be done by the transformation

x = c1 + c2x̃1
where

c1 = −( 2𝜋a
b − a) , c2 =

2𝜋
b − a . (4.5.11)



Sturm–Liouville Problems ∎ 95

It should also be obvious that if f (x) is even or odd, then the corre-
sponding Fourier series will contain, respectively, only cosine or sine
terms. For example, if

f (x) = x2, −𝜋 ≤ x ≤ 𝜋, (4.5.12)

then its Fourier series is

f (x) = 𝜋2
3 +

∞
∑
k=1

(−1)k ( 4k2 ) cos (kx) . (4.5.13)

Similarly, for

f (x) = x, −𝜋 < x < 𝜋, (4.5.14)

the Fourier series is

f (x) =
∞
∑
k=1

(−1)k+1 (2k) sin (kx) . (4.5.15)

However, the function

f (x) = x (1 − x) , 0 ≤ x ≤ 1, (4.5.16)

is neither even nor odd over this interval. However, since it does
have an odd extension to the full x-axis, it will have a sine Fourier
expansion given by the expression:

f (x) = x (1 − x)

= (2
5
2

𝜋3)
∞
∑
k=1

sin (2k − 1)𝜋x
(2k − 1)3

. (4.5.17)

See Figure 4.7 for a sketch of this function.
Finally, while not generally useful for linear problems, the follow-

ing inner product formula exists:
Let f (x) and g (x) be defined on the interval, −𝜋 < x < 𝜋, and

have the representations

f (x) = a0 +
∞
∑
k=1

[ak cos (kx) + bk sin (kx)] , (4.5.18)

g (x) = A0 +
∞
∑
k=1

[Ak cos (kx) + Bk sin (kx)] , (4.5.19)
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FIGURE 4.7 Sketches related to the periodic function f (x) = x2.

then

∫
𝜋

−𝜋
f (x) g (x) dx = 2𝜋a0A0 + 𝜋

∞
∑
k=1

[akAk + bkBk] . (4.5.20)

4.5.3 Special Functions

There are a number of so-called ‘special functions’ that are solutions
to the Sturm–Liouville problem. These functions have a wide appli-
cability in the physical and engineering sciences. A partial listing of
these items would include the following functions (k = 0, 1, 2, …):

Hermite polynomials, {Hk (x)}, which appear in quantum systems
involving the harmonic oscillator.
Legendre polynomials, {Pk (x)}, which occur in many problems in
both classical and quantum physics.
Laguerre polynomials, {Lk (x)}, which are used to represent the
radial part of hydrogen-type wavefunctions.
Chebyshev polynomials, {Tk (x) ,Uk (x)} which are of great impor-
tance in both numerical analysis and approximation theory.
Jacobi polynomials, {P𝛼,𝛽

k (x)} contain as special cases the Legen-
dre, Chebyshev, and other orthogonal polynomials.
Bessel functions {Jk (x) and Yk (x)} arise in many problems, clas-
sical and quantum, for which there is cylindrical or spherical
symmetry.
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A concise, but detailed summary of all the important features and
properties of the Legendre, Chebyshev, Hermite and Laguerre func-
tions are given in the book by Mickews (2017). See, in particular
Sections 6.5.1 and the whole of Chapter 7. The full reference is

R. E. Mickens, Mathematical Methods for the Natural and Engi-
neering Sciences, 2nd Edition (World Scientific, Singapore, 2017).

For each of these functions, the following items are given

● The differential equation
● Interval of definition and weight function
● Generating function
● Rodrique’s formula (for generating the functions
● Orthogonality condition
● Recurrence relations
● List of first six functions in standard form
● Summary of special properties and value.

A discussion of Bessel functions is also included.

4.5.4 TISE: Sketches of Wavefunctions

Many important systems in quantum physics may be modeled as one-
space dimension time-independent SchrÃ¶dinger equations. These
differential equations take the form

−( ℏ
2

2m) d2𝜓 (x)
dx2 + V (x) 𝜓 (x) = E𝜓 (x) , (4.5.21)

with the requirement that 𝜓 (x) is zero at the boundaries. The
(ℏ,m) are atomic parameters, V (x) is the potential energy function,
assumed known, and E is to be determined. Thus, we have a Sturm–
Liouville problem in which E and 𝜓 (x) play the roles of eigenvalue
and eigenfunction.

Comments

(a) Our discussion is only for systems for which there are only bound
states, i.e., the eigenvalues or eigen-energies take on only discrete
values.

(b) There is also the requirement that if 𝜓 (x) is an eigenfunction,
then it has the property
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FIGURE 4.8 Generic behavior of the first five wavefunctions for the TISE
defined in the interval, a ≤ x ≤ b.

∫
b

a
𝜓(x)2dx = 1. (4.5.22)

(c) Note that for the situation under discussion, the differential
equation for the TISE is defined over the interval

a ≤ x ≤ b, (4.5.23)

with

𝜓 (a) = 0, 𝜓 (b) = 0. (4.5.24)

(d) In the physical literature, 𝜓 (x) is called the wavefunction.

With these requirements in mind, let us now discuss/sketch the
possible shapes of the wavefunctions for the following three cases for
the location of the boundaries:

(1) a ≤ x ≤ b; both (a, b) bounded;
(2) 0 ≤ x < ∞; a is finite and set to zero;
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FIGURE 4.9 Generic behavior of the first five wavefunctions is for the TISE
defined in the interval, 0 ≤ x < ∞. (For this case a = 0 and b = ∞.)

(3) −∞ < x < ∞; both boundaries are at infinity. In Figures 4.8 and
4.9, we will label the wavefunction for the smallest eigenvalue
𝜓0 (x), in agreement with the usage in the physics community.

Figure 4.8 sketches these wavefunctions if the TISE is defined in the
interval, a ≤ x ≤ b. A much used physical system modeled by such an
equation is the particle-in-a-box.

A physical system having the wavefunctions given in Figure 4.9 
is the interaction of two particles by means of a central force acting
between them. For this case, x is the radial distance between them.  

The wavefunctions sketched in Figure 4.10 are very similar to
those that occur in the quantum modeling of a harmonic oscillator.

In Chapter 6, we will demonstrate how a knowledge of the gen-
eral features of the wavefunctions can be used to construct analytic
approximations to the wavefunctions of the TISE when exact solu-
tions do not exist or are of such complex forms that we cannot
usefully calculate with them.
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FIGURE 4.10 Generic behavior of the first five wavefunctiones for the TISE
defined in the interval, −∞ < x < +∞.

PROBLEMS

Section 4.1

1) Eliminate the first derivative term in the equation y′′ (x) + 2 ∈
y′ (x) + 𝜔20y (x) = 0.

Explain the advantages of using the transformed equation.

2) Apply the Liouville–Green transformation to the equation
y′′ (x) + x2y = 0. From this result, what general conclusions can
be reached concerning the original differential equation?

Section 4.2

3) Apply and interpret the results obtained for the vibrating string
to sounds produced by organ pipes.

Section 4.3
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4) Show that if we have two sets of orthogonal eigenfunctions and
their associated eigenvalues, i.e.,

[𝜆k, 𝜓k (x) ∶ k = 0, 1, 2, …] and [𝜆m, 𝜓m (x) ∶ m = 0, 1, 2, …] ,

and if they satisfy the same boundary conditions, then each 𝜓k (x)
can be expanded in terms of {𝜓m (x)} and vice versa.

COMMENTS AND REFERENCES

Sections 4.1–4.4: These sections are rewritten selections in from
my book

(1) R. E. Mickens, Mathematical Methods for the Natural and
Engineering Sciences (World Scientific, Singapore, 2017). See
Chapter 4.

Two excellent texts on Slurm–Liouville problems that provide proofs
of the quoted theorems are

(2) E. A. Coddington and N. Levinson, Theory of Ordinary Differ-
ential Equations (McGraw-Hill, New York, 1955).

(3) H. Sagan, Boundary and Eigenvalue Problems in Mathematical
Physics (Wiley, New York, 1961).



C H A P T E R 5

Partial Differential
Equations

5.1 GENERAL COMMENTS

A partial differential equation is an expression that relates a func-
tion of several independent variables to its various partial derivatives.
For the case of one-space coordinate, x, and time, t, some elementary
examples are

uxt = 0, ut + auux = buxx, utt = c2uxx, (5.1.1)

where u = u (x, t) , (a, b, c) are constants, and

ux =
𝜕u (x, t)
𝜕x , ut =

𝜕u (x, t)
𝜕x , uxt =

𝜕2u (x, t)
𝜕x𝜕t , etc. (5.1.2)

A partial differential equation (PDE) is linear if it is linear in the
dependent variable and its various derivatives. Thus, in Equation
(5.1.1), the first and third PDEs are linear, while the second is
nonlinear because of the uux term.

The order of a PDE is the highest order of the derivatives that
appear in the PDE. Therefore, in Equation (5.1.1), the first PDE is
first order with respect to t and first order with respect to x; the
second PDE is first order with respect to tt but second order with
respect to x; and the third PDE is second order with respect to both
x and t.

It should be noted that PDEs do not have general solutions in
the sense that hold for ordinary differential equations; i.e., there
exist functional relations such that all solutions are particular cases
of these expressions. This fact makes the study and analysis of
PDEs much harder to carry out than is the situation for ordinary
differential equations.
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One reason for this is that what appears in the solutions for ODEs
as arbitrary constants shows up in PDEs as arbitrary functions of
the independent variables. For example, consider the following linear
second-order ODE

d2y (x)
dx2 = 0; (5.1.3)

its general solution is

y (x) = A + Bx, (5.1.4)

where (A,B) are arbitrary constants. However, the linear PDE

Uxt (x, t) = 0, (5.1.5)

has a solution

u (x, t) = f (x) + g (t) , (5.1.6)

where f (x) and g (t) are arbitrary functions of x and t. It is only
required that both functions have well-defined first derivatives.

Related to the discussion of the last several paragraphs is another
important fact, i.e., often it is the particular or special solutions to
PDEs that provide the solutions relevant to the study and investiga-
tion of many (if not most) physical phenomena, especially for non-
linear PDEs. Historically, two linear PDEs play critical roles in the
modeling of physical systems, at least as good first approximations.
These two equations are

ut = Duxx, D > 0; (5.1.7)

and

utt = c2uxx, |c| > 0;

and are called, respectively, the diffusion/heat and wave equations.
Another important PDE that links these two equations is

𝜖utt + ut = Duxx; 𝜖 > 0,D > 0; (5.1.8)

which in the research literature on heat conduction is called the
Maxwell–Cattaneo equation; in mechanical engineering, it goes by
the damped wave equation.
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The purpose of this chapter is to examine several topics related
to applying qualitative methods to the analysis of PDEs, with an
emphasis on the diffusion/heat and wave equations and their gener-
alizations. Section 5.2 demonstrates the use of symmetry arguments
to derive these two PDEs, both in their linear and nonlinear manifes-
tations. Next, in Section 5.3, we consider the method of separation-
of-variables (MSOV) and show how it has been used to construct
useful approximations to both linear and nonlinear PDEs. Finally,
in section 5.4, we introduce the concept of traveling wave solutions
(TWS) and calculate such solutions for several linear and nonlinear
PDEs.

5.2 SYMMETRY-DERIVED PDES

Symmetry principles play important roles in the sciences, especially
in physics. Many of the foundational PDEs may be derived just
from the requirement that these equations must be invariant under
particular symmetry transformations.

Further restrictions coming from an experimental knowledge of a
system can place additional constraints on the sought-after mathe-
matical structures. Also, limitations related to issues of what actually
can be done experimentally can often be used to forbid certain
mathematical terms or expressions.

The main goal of this section is to use symmetry arguments, along
with measurability restrictions, to show that both the diffusion/heat
and wave equations can be derived using these requirements. From
these arguments, we also place limitations on possible nonlinear
extensions of these two PDEs.

5.2.1 Heat Conduction PDE

One way to derive the heat conduction PDE is to assume that at the
micro-level, the heat conduction is modeled by the following random
walk equation

u (x, t + 𝜏) = (12) u (x + a, t) + (12) u (x − a, t) , (5.2.1)
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where the parameters, (a, 𝜏), represent micro-level characteristic
distance and time scales. This equation can be rewritten as

u (x, t + 𝜏) − u (x, t)
𝜏 = (a2

2𝜏) [
u (x + a, t) − 2u (x, t) + u (x − a, t)

a(2)
] .

(5.2.2)

If we now let

a → 0, 𝜏 → 0,witha2
2𝜏 = D = constant, (5.2.3)

then the following equation appears

𝜕u (x, t)
𝜕t = D 𝜕2u (x, t)

𝜕x2 . (5.2.4)

This is the standard diffusion/heat conduction PDE for one space
dimension. The physical constant, D, has the physical units of
(meter)2/time.

To see what symmetry and other constraints give, let us make the
following assumptions:

(i) We want a PDE that is linear and has constant coefficients.
(ii) The PDE must be invariant under x → −x.
(iii) The PDE should not be invariant under t→−t (since it is to

describe a dissipative system).
(iv) The PDE must satisfy a measurability condition. (This implies

that time derivatives higher than the first order should not
appear. This reflects the fact that at the current state of exper-
imental methodology, these derivatives cannot be measured.)

A little thought, based on these four assumptions, leads to the
following expression for the symmetry-derived PDE for the heat
equation

ut (x, t) = Duxx (x, t) + (𝜏D) utxx (x, t) . (5.2.5)

COMMENTS

(1) The parameters (D, 𝜏) in Equation (5.2.5) do not correspond to
the same labelled parameters in Equations (5.2.1) and (5.2.4).
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(2) However, in Equation (5.2.5), the two parameters (D, r), still
have the physical units of (meter)/time, and time.

(3) Note that while Equation (5.2.5) is first order in the time deriva-
tive and second order in the space derivative, the second term
on the right-hand side is of combined order three.

(4) Taking D and 𝜏 as just two physical parameters, the situation
where 𝜏 = 0 gives the standard heat PDE.

Nonlinear generalizations of the linear heat equation are easy to
construct. For example, an expression consistent with the four
assumption is

ut = DF [(ux)
2 , uxx] uxx

+ (𝜏D)G [(ux)
2 , uxx] utxx, (5.2.6)

where (F,G) are functions of the indicated derivatives. In particular,
if we require an equation that is linear in uxx and utxx, the following
is an example

ut = D [1 + b1 (ux)
2] uxx + (𝜏D) [1 + b2 (ux)

2]
u

txx
, (5.2.7)

where now there are four physical parameters, (D, 𝜏, b1, b2).

5.2.2 Wave PDE

The wave equation is

utt (x, t) = c2uxx (x, t) , (5.2.8)

where c is the characteristic velocity associated with the wave prop-
agation, where u (x, t) is the transverse displacement of a one-space
dimension string at location x and time t. This can be demonstrated
by defining um (t) to be

um (t) = u (xm, t) , xm = (Δx)m,m = integers, (5.2.9)

and discretizing uxx as follows:

uxx →
um+1 (t) − 2um (t) + um−1 (t)

(Δx)2
. (5.2.10)
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Therefore, Equation (5.2.8) becomes

d2um
dt2 = [ c2

(Δx)2
] (um+1 − 2um + um−1) . (5.2.11)

If all the ‘particles’ located at (xm) have the same mass, M, then it
follows that

M
d2um
dt2 = k (um+1 − um) − k (um − um−1) , (5.2.12)

where

K = Mc2

(Δx)2
. (5.2.13)

Thus, we can interpret Equation (5.2.12) as a chain of identical
coupled simple harmonic oscillators having for each oscillator the
effective mass, M, and a force constant, k, given in Equation (5.2.13).

Equation (5.2.11) can further be interpreted as a micro-level
model for the continuum macroscopic level PDE represented by
Equation (5.2.8).

Let us now derive a symmetry-based formulation of the wave
equation. The two major requirements are the following:

(a) The PDE must be linear with constant coefficients.
(b) The PDE should be invariant under the transformations

x → −x, t → −t. (5.2.14)

The lowest-order PDE satisfying these conditions is

Utt = auxx, a > 0, (5.2.15)

a is a positive parameter having the physical units of
(meters/time)2, i.e., the units of speed.

If we consider nonlinear versions of the wave equation that con-
tain only derivative terms, then a generalization of the linear wave
equation takes the form (a = c2)

utt = c2F [(ut)
2, (ux)

2] uxx, (5.2.16)
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where

F (0, 0) = 1. (5.2.17)

If F (v,w) is assumed to have a Taylor expansion at (v,w) = (0, 0),
then

F (v,w) = 1 + f1v + f2w + O (v2) + O (w2) , (5.2.18)

where f1 and f2 are constants, and this leads to the nonlinear wave
equation

utt = c2 [1 + f1(ut)
2 + f2(ux)

2] uxx. (5.2.19)

5.2.3 Discussion

The four broadly used, linear, constant coefficient PDEs appearing
in the natural and engineering sciences are

● Diffusion/heat equation operator

ut = DΔ2u (5.2.20)

● Wave equation

utt = c(2)Δ2u (5.2.21)

● Laplace’s equation

Δ2u = 0 (5.2.22)

● Poisson’s equation

Δ2u = 𝜌 (5.2.23)

where Δ2 is the Laplace operator, which can be expressed in Cartesian
coordinates as

Δ2 ≡ 𝜕2
𝜕x2 +

𝜕2
𝜕y2 +

𝜕2
𝜕z2 . (5.2.24)

In the above equations, D and c2 are taken to be constants, and 𝜌
is a function of the space coordinates. However, in a fundamental
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sense, only the wave and diffusion/heat equations are essential. This
is because if we write out the most complete and general linear wave
PDE, i.e.,

𝜖utt + aut = bΔ2u + v⃗0Δu + 𝜌, (5.2.25)

where v⃗0 is a constant vector, and (𝜖, a, b) are constants, then all of
the other three PDEs are just special cases.

Note that the symmetry arguments, given above, suggest that the
elementary forms of the wave and diffusion/heat PDEs are funda-
mental and are expected to show themselves in all branches of the
natural and engineering sciences. The main reason for our making
this statement is that the considered symmetries are direct conse-
quences of an analysis of both experimental data and the require-
ments needed to actually carry out a valid scientific experiment, i.e.,
in more detail:
(i) When we initiate an experiment should play no role in deter-

mining the obtained results. (The associated symmetry trans-
formation is ‘invariance’ under t → t0 + t, where t0 is arbitrary.)

(ii) The location of the experiment is irrelevant. (The symmetry
transformation is ‘invariance’ under x → x0 + x, where x0 is
arbitrary.)

(iii) The choices made for the orientation and positive directions of
the coordinates should not matter.

(iv) Constructed mathematical models and theories should only
include parameters and functions that can be actually measured.

COMMENTS

(1) The parameters, (D, 𝜏) in Equation (5.2.5) do not correspond to
the same labeled parameters in Equations (5.2.1) and (5.2.4).

(2) However, in Equation (5.2.5), the two parameters, (D, r), still
have the physical units of (meter)/time and time.

(3) Note that while Equation (5.2.5) is first order in the time deriva-
tive and second order in the space derivative, the second term
on the right-hand side is of combined order 3.

(4) Taking D and 𝜏 as just two physical parameters, the situation
where 𝜏 = 0 gives the standard heat PDE.
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Nonlinear generalizations of the linear heat equation are easy to
construct. For example, an expression consistent with the four
assumptions is

ut = DF [(ux)
2, uxx] uxx

+ (𝜏D)G [(ux)
2, uxx] utxx, (5.2.6)

where (F,G) are functions of the indicated derivatives. In particular,
if we require an equation that is linear in uxx and utxx, the following
is an example

ut = D [1 + b1(ux)
2] uxx + (𝜏D) [1 + b2(ux)

2]
u

txx
, (5.2.7)

where now there are four physical parameters, (D, 𝜏, b1, b2).

5.3 METHOD OF SEPARATION OF VARIABLES

5.3.1 Introduction

Partial differential equations do not have general solutions in the
sense of ordinary differential equations. PDEs may have various
classes of solutions, which cannot be reduced to each other. This
result is a consequence of the fact that arbitrary functions may
appear in the solutions of PDEs. For example, the linear PDE

uxt (x, t) = 0, (5.3.1)

has the solution

u (x, t) = f (x) + g (t) , (5.3.2)

where f (x) and g (t) are arbitrary except for the requirement that
they each have a first derivative. The usual case is that for any given
PDE, whether linear or nonlinear, only particular or special solutions
can be found.

The main purpose of this section is to introduce a methodology for
determining special solutions to PDEs. But, this technique, named
the method of separation-of-variables (SOV), only applies to a lim-
ited type of PDEs, and therefore it is not of general applicability.
This procedure can also be applied to some ODEs.

The method of SOV is based on the realization that if we can find
any solution that solves the PDE and, in addition, satisfies the initial
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and/or boundary conditions for the problem under study, then this
is the required solution.

In the next subsection, we define the method of SOV and discuss
some of its advantages and disadvantages. This is followed by sub-
sections where we apply this technique, respectively, to ODEs and
PDEs.

5.3.2 Definition of the Method of SOV

Consider an ODE that has the structure
dy
dx = f (x) g (y) . (5.3.3)

Note that the derivative is equal to a product of two functions,
one depending on the independent variable and the other depending
only on the dependent variable. We call this ODE separable and its
general solution is

∫ dy
g (y) = ∫ f (x) dx + C. (5.3.4)

An elementary example is
dy
dx = −x

y , (5.3.5)

where

f (x) = −x, g (y) = 1
y . (5.3.6)

Therefore,

∫ ydy = −∫ xdx, (5.3.7)

and we obtain

y2 + x2 = r2, C = r2, (5.3.8)

consequently, there are two functions that are solutions

y+ (x) =√T2 − x2 , y− (x) = −√r2 − x2 . (5.3.9)

In general, there may exist other solutions to Equation (5.3.3) in
addition to the one given by Equation (5.3.4). The other solutions are
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constant functions and are called fixed-point or equilibrium solutions.
They correspond to the (real) zeros of g (y), i.e.,

yi (x) = yi ∶ g (yi) = 0, i = (1, 2, …, I) . (5.3.10)

Thus, for

dy
dx = xy (1 − y) , (5.3.11)

we have

f (x) = x, g (y) = y (1 − y) , (5.3.12)

with

g (y) = 0 ∶ y1 = 0, y2 = 1. (5.3.13)

Consequently, the solution to Equation (5.3.11) consists of three
functions

∫ dy
y (1 − y) =

x2
2 + C, y2 (x) = 0, Y3 (x) = 1. (5.3.14)

For PDEs the situation is different. For this case, we assume that the
solution is written as a product of functions, each depending on one
independent variable. So if u = u (x, t), the separation of the variable
solution is

u (x, t) = F (x)G (t) . (5.3.15)

If this ansatz ‘works’, then two separate ODEs will be obtained for
the functions F (x) and G (t). In essence, the original PDE has been
reduced to a set of ODEs. The ODEs are related to each other by
a so-called constant of separation. For the situation where the PDE
is linear, we can add solutions for different values of the separation
constant to obtain a general solution.

Since PDE problems generally come with certain initial conditions
and boundary restrictions, we should make sure that our functions
satisfy the boundary conditions, otherwise, the method of SOV fails.
It must be kept in mind that the method of SOV does not always
work, but when it does, it provides very satisfactory results.

We now illustrate the value of this method by considering several
ODEs and PDEs.
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5.3.3 Examples

Example 5.1 The first-order, nonauton ODE

dy
dx = 2x(1 − y)2, (5.3.16)

is separable and has an equilibrium solution

y1 (x) = 1. (5.3.17)

The other, one parameter, solution can be obtained from the
expression

∫ dy
(1 − y)2

= ∫2xdx + C, (5.3.18)

where C is an arbitrary constant. Integrating this gives

1
1 − y = x2 + C, (5.3.19)

which when solved for y gives

y2 (x) = 1 − 1
x2 + C (5.3.20)

If we require y (0) = y0, the C can be calculated; it is

C = 1
1 − y0

, (5.3.21)

and this gives for Equation (5.3.18) the result

y2 (x) =
(1 − y0) x2 + y0
(1 − y0) x2 + 1 . (5.3.22)

Observe that for y0 > 1, y2 (x) has singularities at xs, where

xs = (±) 1
√y0 − 1

(5.3.23)

Also, an inspection of y2 (x) shows that there is no finite value of C
for which y1 (x) = 1 is a solution. The result follows from the facts
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that the integrand for the y integral is not defined for y = 1; see the
right-hand side of Equation (5.3.17).

Example 5.2 Let us solve and analyze the solutions for

dy
dx = (12) x (1 − y2) . (5.3.24)

First, there are two equilibrium or constant solutions; they are

y1 (x) = +1, y2 (x) = −1. (5.3.25)

Since this ODE is separable, we can integrate it in the form

∫ 2dy
(1 − y2) = ∫ dx + C. (5.3.26)

If we use
2

y2 − 1 = ( 1
y − 1) − ( 1

y + 1) , (5.3.27)

and do the integrations in Equation 5.3, the following result is
obtained

Ln |||
y − 1
y + 1

||| = − (x2
z ) + C, (5.3.28)

or solving for y (x) or y3 (x),

y3 (x) =
1 + ce−

x2

z

1 − ce−
x2
z

, y2 ≠ 1, (5.3.29)

where the two C’s in Equations (5.3.28) and (5.3.29) are not the
same, but are related to each other. The solution to Equation (5.3.24)
is composed of the three functions given in Equations (5.3.25) and
(5.3.29).

Another way to analyze the behavior of the solutions to this dif-
ferential equation is to examine the integral curves for Equation
(5.3.24) in the x–y plane. Observe that the ODE is invariant under
the transformation

x → −x, y → y. (5.3.30)
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FIGURE 5.1 (a) The domains of constant y ′ signs for y ′ = x (1 − y2) /2. (b)
Typical solution curves in the x − y plane.

This means that in the x − y plane, the solutions or integral curves
are symmetric with respect to the y-axis. Also, further inspection of
the ODE shows that the derivative is zero along the curves

y ′ = 0 ∶ { x = 0or the y − axis;
y0 (x) = (±) 1. (5.3.31)

Figure 5.1 provides a representation of the x − y plane and the six
domains where the sign of the derivative, y ′ = dy (x) /dx, is either
plus or minus. It also sketches several solution or integral curves,
i.e., y (x) vs x. 
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Example 5.3 The three simplest linear wave equations are

ut + cux = 0, c > 0; (5.3.32)

ut − cux = 0, c > 0; (5.3.33)

utt − c2uxx = 0. (5.3.34)

We now demonstrate how the method of SOV can be used to
determine their ‘general’ solutions.

Starting with Equation (5.3.32), assume that it has a solution of
the form

u (x, t) = f (x) g (t) , (5.3.35)

and substitute this into the PDE to obtain

fg ′ + cf ′g = 0. (5.3.36)

Next divide each term by fg to obtain

(g ′
g ) + c ( f ′

f ) = 0. (5.3.37)

Since the first term is a function of t, while the second term depends
only on x, it follows that there exists a constant, k, such that

g ′
cg = −k, f ′

f = +k. (5.3.38)

These first-order, linear ODEs have solutions

g (t) = A (k) e−kct, f (x) = B (k) ekx, (5.3.39)

where, for the moment, A (k) and B (k) are arbitrary functions of k.
Therefore,

u (x, t, k) = F (k) ek(x−ct), F (k) = A (k)B (k) , (5.3.40)

for some k is a solution of Equation (5.3.32).
If we wish to have bounded solutions, then we can select k to be

purely imaginary, i.e., write

k → ik, k(on the right-side real). (5.3.41)
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With this change, Equation (5.3.40) becomes

u (x, t, k) = F (k) eik(x−ct), (5.3.42)

where the ‘i’ is not indicated in the functions u and F. Summing over
discrete k and integrating over real, continuous k, we finally obtain

u (x, t) = ∫
∞

−∞
F (k) eik(x−ct)dk

= H (x − ct) , (5.3.43)

i.e., u (x, t) is just a function of (x − ct). It is assumed that F (k) has
properties such that the sum/integration exists.

In summary, the PDE, ut+cux = 0, has as a solution an arbitrary
function of Z = x−ct, where this function possesses a first derivative.
We can check this by observing that

{
𝜕
𝜕t

H (x − ct) = −cH ′, 𝜕
𝜕x

H (x − ct) = H ′,
H ′ (z) = dH(z)

dz
.

(5.3.44)

This technique can be applied to Equation (5.3.34) to show that the
solution to it is

ut − cux = 0 ⇒ u (x, t) = M (x + ct) , (5.3.45)

where M (w) is an arbitrary function of w = x + ct, where dM/dw
exists.

Also, since

utt − c2uxx = (𝜕t − c𝜕x) (𝜕t + c𝜕x) u = 0, (5.3.46)

it follows that the solution is

U (x, t) = H (x − ct) + M (x + ct) . (5.3.47)

Example 5.4 The following nonlinear PDE is a type of nonlinear
diffusion equation

ut = uuxx, u = u (x, t) . (5.3.48)
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Let us find an SOV solution of the form

u (x, t) = f (x) g (t) . (5.3.49)

Substituting this expression into the PDE gives

fg ′ = (fg) (f ′′g) (5.3.50)

or
g ′
g2 = f ′′ = −𝜆 = separation constant. (5.3.51)

Therefore, g (t) and f (x) satisfy the ODEs

dg (t)
dt = −𝜆g2 (t) , d2f

dx2 = −𝜆, (5.3.52)

with the respective solutions

g (t) = 1
A + 𝜆t , f (x) = − (𝜆2) x2 + B1x + B2. (5.3.53)

Therefore, the SOV solution for the PDE, ut = uuxx, is

usov (x, t) =
− (𝜆

2
) x2 + B1x + B2

A + 𝜆t , (5.3.54)

where (𝜆,A,B1,B2) are arbitrary constants.
Note that

u (x, t) = c1 + c2x, (5.3.55)

is the solution to the equilibrium, steady state of a system modeled
by Equation (5.3.48), i.e., uxx = 0.

Example 5.5 The Burgers’ equation is

ut + uux = Duxx. (5.3.56)

However, our interest is for the case where D = 0. This is the
diffusion-free Burgers’ equation, i.e.,

ut + uux = 0. (5.3.57)
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Assuming u (x, t) = f (x) g (t) and substituting this into Equation
(5.3.57) give

fg ′ + (fg) (f ′g) = 0 (5.3.58)

which if now is divided by fg yields the expression

g ′
g2 + f ′ = 0, (5.3.59)

or

g ′ = 𝜆f 2, f ′ = −𝜆. (5.3.60)

The solutions to these ODEs are

g (t) = 1
A1 − 𝜆t , f (x) = A2 − 𝜆x, (5.3.61)

where (𝜆,A1,A2) are arbitrary constants. Therefore, the SOV solu-
tion for the diffusionless Burgers’ equation is

uSOV (x, t) =
A2 − 𝜆x
A1 − 𝜆t . (5.3.62)

Example 5.6 Simple heat conduction in one dimension is usually
studied by application of the so-called heat equation

𝜕u (x, t)
𝜕t = D 𝜕2u (x, t)

𝜕x2 , D > 0. (5.3.63)

A generalization of this equation is

𝜕u
𝜕t + k (t) u = f (x) 𝜕

2u
𝜕x2 + g (x) 𝜕u

𝜕x + h (x) u, (5.3.64)

where our major requirement is that f (x) > 0 for all relevant values
of x, i.e.,

a ≤ x ≤ b. (5.3.65)

Also, we impose the following boundary and initial conditions

u (a, t) = 0, u (b, t) = 0, u (x, 0) = S (x) (5.3.66)
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Let us assume that an SOV solution exists, i.e.,

u (x, t) = X (x)T (t) . (5.3.67)

Also, define the two operators, L̂ (x) and M̂ (t), as

{
L̂ = L̂ (x) ≡ f (x) d2

dx2
+ g (x) d

dx
+ h (x) ,

M̂ = M̂ (t) ≡ d
dt
+ K (t) .

(5.3.68)

If we substitute u = XT into our PDE and rearrange its various
terms, then we obtain the result

L̂X
X = M̂T

T . (5.3.69)

Since the left-hand and right-hand sides are, respectively, functions.
only of x and t, then they must be equal to the same constant, which
we label, 𝜆. Therefore, Equation (5.3.69) becomes the two equations

{ L̂ (x)X (x) = 𝜆X (x) ;X (a) = 0,X (b) = 0,
M̂ (t)T (t) = 𝜆T (t) ,T (0) arbitrary.

Note that the first of these equations can be treated as a Sturm–
Liouville problem, and this will give us a set of orthonormal
eigenfunctions and eigenvalues, i.e.,

L̂X = 𝜆X → [(Xn (x) , 𝜆n) ∶ n = 1, 2, 3, …] , (5.3.70)

with

∫
b

a
Xn (x)Xm (x)w (x) dx = 𝛿nm, (5.3.71)

and w (x), the weight function, is given by

w (x) = [ 1
f (x)] exp [∫ g (x)

f (x) dx] . (5.3.72)

Once the eigenvalues, (𝜆n ∶ n = 1, 2, 3, …) are determined, then the
T (t) functions can be calculated from the following linear, first-order
ODE

dTn (t)
dt = [𝜆n − k (t)]Tn (t) . (5.3.73)
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The solution to this equation can be written as

Tn (t) = exp [𝜆nt − ∫
t

0
k (z) dz] , (5.3.74)

where we have used Tn (0) = 1.
Finally, with all of these results, the SOV solution to the ini-

tial/boundary value problem, defined by Equations (5.3.62)–(5.3.64),
is

u (x, t) =
∞
∑
n=1

anXn (x)Tn (t) , (5.3.75)

where

an = ∫
b

a
S (x)Xn (x)w (x) dx. (5.3.76)

Note that the an are the expansion coefficients for the initial function,
S (x), in terms of the eigenfunctions, i.e.,

u (x, 0) = S (x) =
∞
∑
n=1

anXn (x) . (5.3.77)

Example 5.7 Many fundamental physical systems can be modeled
within the context of three space dimensions. An exceptionally impor-
tant example is the quantum model of the hydrogen atom. For this
and also many classical systems, the modeling PDEs can be separated
into three ODEs by application of the method of SOV. In general,
these ODEs are the differential equations for special functions such
as the
● Trigonometric and hyperbolic functions
● Bessel functions
● Jacobi elliptic functions
● Hermite polynomials
● Laguerre polynomials
● Chebyshev polynomials
● Legendre functions
● Lambert W-function
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The method of SOV plays a prominent role in the quantum model
and its interpretation of the structure of the hydrogen atom. The
details of this mathematical model and the derived physical proper-
ties are given in many textbooks. A concise summary is provided at
https://web.mst.edu/∼sparlin/phys107/lecture/chap06.pdf.

The Schrödinger equation for the hydrogen atom in spherical
coordinates, (r, 𝜃, 𝜑), is

−( ℏ
2

2m)Δ2𝜓 + U (r) 𝜓 = E𝜓, 𝜓 = 𝜓 (r, 𝜃, 𝜑) , (5.3.78)

where

m =
memp

me + mp
;me = electron mass,mp = proton mass;

ℏ = reducedPlanck constant;

U (r) = −(ke2
r ) ,potential energy of interaction between the

charge (-e) of the electron and the charge (+e) of the proton;
r = distance between the electron and proton;
E = energy eigenvalues;
𝜓 = wave function eigen functions.

Written in full spherical coordinates, Equation (5.3.78) is the expres-
sion

( 1r2 )
𝜕
𝜕r (r

2 𝜕𝜓
𝜕r ) + ( 1

r2 sin 𝜃)
𝜕
𝜕𝜃 (sin 𝜃

𝜕𝜓
𝜕𝜃 )

+ ( 1
r2 sin 𝜃)

𝜕2𝜓
𝜕𝜑2 + (2mℏ2 ) (E − U) = 0. (5.3.79)

If we now use an SOV ansatz for 𝜓, i.e.,

𝜓 (r, 𝜃, 𝜑) = R (r) Θ (𝜃)Φ (𝜑) , (5.3.80)

and then use separation constants to isolate each independent
variable, the following three ODEs arise

d2Φ
d𝜑2 + m2

l Φ = 0, (5.3.81)

( 1
sin 𝜃)

d
d𝜃 (sin 𝜃dΘ

d𝜃 ) + [l (l + 1) −
m2

l

(sin 𝜃)2
]Θ = 0, (5.3.82)
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( 1r2 )
d
dr (r

2 dR
dr ) + [(2mℏ2 ) (E − U) − l (l + 1)

r2 ]R = 0. (5.3.83)

Note that these three ODEs are associated, respectively, with the
defining differential equations of the trigonometric, Legendre, and
Laguerre functions.

5.4 TRAVELING WAVES

Definition 1 A PDE of the form

ut = H (u, ux, uxx, …) , u = u (x, t) , (5.4.1)

with a maximum order in the x-derivative is called an evolution PDE.

Definition 2 A traveling wave solution of a PDE is any solution
that can be represented as

u (x, t) = f (x − ct) , (5.4.2)

with c constant.
The traveling wave solutions are generally special solutions to a

PDE. However, they play an important role in the natural and engi-
neering sciences because they appear in a wide variety of phenomena.
Examples extend from pulses in fiber optics to electrical propa-
gation along nerves. Again, these are illustrations of cases where
special solutions are the required solutions, rather than more general
mathematical representations.

Since traveling wave solutions play such important roles in the
sciences, a vast research literature exists on techniques to calculate
them for particular classes of PDEs. The derived methods allow the
determination (sometimes) of exact and/or approximate traveling
wave solutions. A short listing of some of the recent works on this
topic includes the following items:
1. W. Malfliet and W. Hereman, The tanh method: I. Exact solu-

tions of nonlinear evolution and wave equations, Physica Scripta,
Vol. 54, No. 6 (1996), 563–568.

2. D. Bazeia, A. Das, L. Losano, and A. Silva, A simple and direct
method for generating travelling wave solutions for nonlinear
equations, Annuals of Physics, Vol. 323, No. 5 (2008), 1150–1167.
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3. D. Bazeia, A. Das, L. Losano, and M. J. Santos, Traveling
wave solutions of nonlinear partial differential equations, Applied
Mathematics Letters, Vol. 23, No. 6 (2010), 681–686.

4. G. W. Griffiths and W. E. Schiesser, Traveling Wave Analysis of
Partial Differential Equations (Elsevier, Amsterdam, 2012).

5. S. W. Cho, H. J. Hwang, and H. Son, Traveling wave solutions
of partial differential equations via neural networks, Journal of
Scientific Computing, Vol. 89 (2021), Article Number 21.

We give in the remainder of this section four PDEs for which explicit
formulas can be calculated for their traveling wave solutions. How-
ever, we note that the existence and calculation of such solutions for
a particular PDE is often a long and complex process if it can be
done at all.

5.4.1 Burgers’ Equation

The standard form of this PDE is

ut + uux = Duxx, D > 0. (5.4.3)

Substituting

u (x, t) = f (x − ct) (5.4.4)

into the PDE gives

−cf ′ + ff ′ = Df ′′, (5.4.5)

where

z = x − ct, f ′ (z) = df (z)
dz . (5.4.6)

If Equation (5.4.5) is integrated once and the terms are rearranged,
then we obtain the expression

df
dz = ( 1

2D) (f2 − 2cf + 2A) , (5.4.7)

where A is (for now) an arbitrary integrations constant.
Considering the whole z-axis, i.e., −∞ < z < +∞, let us require

the following conditions to hold,

Lim
z→−∞

f (z) = u1, Lim
z→+∞

f (z) = u2, u1 > u2 > 0, (5.4.8)
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where (u1, u2) are the constants. With this information, we can write

df
dz = ( 1

2D) (f − u1) (f − u2) (5.4.9)

= ( 1
2D) [f2 − (u1 + u2) f + u1u2] . (5.4.10)

Comparing Equations (5.4.7) and (5.4.10) allows for the determina-
tion of the speed, c, and the constant, A; they are

A = u1u2
2 , c = u1 + u2

2 . (5.4.11)

Using the result of Equation (5.4.10), the general behavior of f (z) is
sketched in Figure 5.2.

Equation (5.4.10) is a separable ODE and can be solved for its
solution, which is

f (z) = u2 +
(u1 − u2)

1 + exp [(u1−u2
2D

) z]
. (5.4.12)

Observe that taking the limit, D → 0, and being careful, we find that
Equation (5.4.12) reduces to a shock wave, i.e.,

f (z) = u1𝜃 (z) + u2𝜃 (−z) , (5.4.13)

where

𝜃 (z) = { 1, z < 0;
0, z > 0, (5.4.14)

A sketch of the shock wave solution is also given in Figure 5.2. 

5.4.2 Korteweg de Vries Equation

This PDE is

ut + uux + uxxx = 0. (5.4.15)

We wish to seek traveling wave solutions

u (x, t) = f (z) , z = x − ct, (5.4.16)
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f (z)

z

(a)

u2

u1

u2

u1

f (z)

z

(b)

FIGURE 5.2 Sketches of Equations (5.4.11): (a) D > 0; (b) D = 0.

where f (z) has the properties

Lim
|z|→∞

f(k) (z) = 0, k = (0, 1, 2, 3) . (5.4.17)

Substitution of Equation (5.4.16) into Equation (5.4.15) gives

−cf ′ + ff ′ + f ′′′ = 0. (5.4.18)

Integrating once, we obtain

−cf + (12) f 2 + f ′′ = 0. (5.4.19)

If this equation is multiplyed by f ′, i.e.,

−c (ff ′) + (12) (f
2f ′) + f ′f ′′ = 0, (5.4.20)

then it can be integrated to give

−(c
2) f 2 + (16) f 3 + (12) (f

′)2 = 0. (5.4.21)

Solving for f ′ with the positive root selected gives

√3
f√3c − f

⋅ f ′ = 1. (5.4.22)
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From the appearance of the square-root term, it follows that a real
solution will only exist if the following restriction holds

0 ≤ f (z) ≤ 3c. (5.4.23)

If the change of variables

g2 (z) = 3c − f (z) (5.4.24)

is made, then we obtain from Equation (5.4.22) the expression

( 2√3
3c − g2) g ′ = 1, (5.4.25)

and this ODE can be solved to obtain

g (z) = − (√3 c) tanh [(12)√c z] , (5.4.26)

where the integration constant has been set to zero. Using Equation
(5.4.24), f (z) is

f (z) = (3c) sech2 [(12)√c z] , (5.4.27)

and the traveling wave solution is

u (x, t) = f (x − ct) = (3c) sech2 [(√c
2 ) (x − ct)] . (5.4.28)

The sech (y) function is

sech (y) = 2
ey + e−y , (5.4.29)

therefore, the traveling wave solution is a ‘pulse’ moving in the pos-
itive x-direction, if c > 0, with a speed c and a maximum height of
3c. An important feature of this traveling wave is that higher pulses
travel faster than smaller amplitude pulses.

It should be indicated that the KdV equation has many other
types of solutions other than the single pulse that was discussed
above. The book Nonlinear Partial Differential Equations for Scien-
tists and Engineering by L. Debnath provides an excellent introduc-
tion to these issues. We now show that rational solutions exist for
this PDE.
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Assume that u (x, t) = f (x) g (t) and substitute this into the KdV
equation to obtain

fg ′ + (fg) (f ′g) + f ′′′g = 0. (5.4.30)

Dividing by fg gives

g ′
g + f ′g + f ′′′

f = 0 (5.4.31)

Let

f ′′ (x) = 0 → f (x) = A + Bx, f ′ (x) = B, and f ′′′ (x) = 0. (5.4.32)

Therefore,

g ′
g + Bg = 0 → g (t) = 1

Bt + C , (5.4.33)

and

u (x, t) = f (x) g (t) = A + Bc
Bt + C . (5.4.34)

5.4.3 Fisher’s Equation

The Fisher PDE

ut = Duxx + 𝜆u (1 − u) , 0 ≤ u ≤ 1, (5.4.35)

may be the most famous of the so-called reaction–diffusion PDEs.
The three terms in this equation have the following interpretations

(
Evolution
of the
system

) = (Diffusion) + (Reaction
term ) .

For the remainder of this subsection, we will take D = 1 and 𝜆 = 1,
thus giving the normalized expression

ut = uxx + u (1 − u) . (5.4.36)

Also, an inspection of this equation shows that there are two
equilibrium or constant solutions

u(1) (x, t) = 0, u(2) (x, t) = 1, (5.4.37)
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and they are, respectively, unstable and stable.
We now show that the Fisher equation has a traveling wave

solution. To do this, we assume that

u (x, t) = f (x − ct) , z = x − ct, (5.4.38)

and substitute this into Equation (5.4.36) to obtain

−cf ′ = f ′′ + f − f 2, (5.4.39)

or

f ′′ + cf ′ + f − f 2 = 0, f ′ = df (z)
dz (5.4.40)

Now for small values of f (z), i.e.,

0 < f (z) <<1, (5.4.41)

the linear approximation to Equation (5.4.40) is

f ′′ + cf ′ + f ≃ 0. (5.4.42)

The corresponding characteristic equation is

r2 + cr + 1 = 0, (5.4.43)

if

f ∼ erz. (5.4.44)

Solving for the two values of r gives

𝛾± = (12) [−c ±√c2 − 4 ] , (5.4.45)

and, also the result

r− < r+ < 0. (5.4.46)

Consequently, for small values of f (z), which holds for z large and
positive, f (z) can be expressed as

z large > 0 ∶ f (z) ∼ Ae−|r+|z, A > 0. (5.4.47)

Likewise, for f (z) near 1, we can write

f (z) = 1 − 𝜖 (z) , 0 < 𝜖 (z) ≪ 1, (5.4.48)
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and therefore,

𝜖 ′′ + c𝜖 ′ − 𝜖 = 0, (5.4.49)

with the characteristic equation

s2 + cs − 1 = 0, for 𝜖 (z) = esz. (5.4.50)

Solving for s gives

s± = (12) [−c ±√c2 + 4 ] , (5.4.51)

with

s− < 0 < S+. (5.4.52)

Therefore,

zlarge < 0 ∶ f (z) ∼ 1 − Be|s−|z, B > 0. (5.4.53)

Comments

(i) A and B are unknown constants since the ODEs are linear.

(ii) The equilibrium solutions, u(1) (x, t) = 0 and u(2) (x, t) = 1, and
the condition, 0 ≤ u (x, t) ≤ 1, require that the speed of the
traveling wave satisfies

c ≥ 2. (5.4.54)

(iii) Figure 5.3 sketches the trajectory in the (f, f ′) phase-plane for
c ≥ 0 and 0 < c < 2.

(iv) In summary, the traveling wave solution, u (x, t) = f (x − ct) =
f (z), has the following features:

0 ≤ f (z) ≤ 1, −∞ < z < +∞; (5.4.55)

Lim
z→−∞

f (z) = f (−∞) = 1, Lim
z→+∞

f (z) = f (+∞) = 0; (5.4.56)

f ′ (z) < 0, −∞ < z < +∞; (5.4.57)

c ≥ 0. (5.4.58)
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FIGURE 5.3  Phase-plane trajectories. (a) c ≥ 2. (b) 0 < c < 2.

(v) f (z) is sketched in Figure 5.4 for the two cases, c ≥ 2 and
0 < c < 2.

(vi) An analytical, mostly ad hoc, approximation for the traveling
wave solution of the Fisher equation is

fapp (z) =
1

1 + exp (|r+| z)
. (5.4.59)

Note that it satisfies all of the conditions listed in Comment (iv)
above. But, whether this expression is satisfactory or not depends
on what the user needs and what they wish to accomplish.

5.4.4 Heat PDE

It is often stated that the heat PDE does not have traveling wave
solutions, i.e., bounded solutions existing over the interval, −∞x <
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FIGURE 5.4  Traveling waves for the Fisher equation. (a) c ≥ 2. (b)
0 < c < 2.

+∞, with bounded first and second derivatives. To see what this
means, consider the heat equation

ut = Duxx, u = u (x, t) , −∞ < x < +∞, (5.4.60)

and assume a solution of the form

u (x, t) = f (x − ct) = f (z) , z = x − ct. (5.4.61)

Using this in Equation (5.4.60) gives the second-order, linear ODE

−cf ′ = Df ′′, f ′ = df/dz. (5.4.62)

The general solution for this ODE is

f (z) = a + b exp (− c
D) z, (5.4.63)
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FIGURE 5.5 Piece-wise-continuous traveling wave solution to the heat
equation. Definition given in Equation (5.4.65).

where (a, b) are arbitrary constants such that they are selected to
satisfy the condition

f (z) ≥ 0. (5.4.64)

Inspection of Equation (5.4.63) shows that f (z) is not bounded on
the interval, −∞ < z < +∞, but it does have derivatives of all orders.

It is important to point out that bounded, piecewise-continuous
solutions can be constructed for the interval, −∞ < z < +∞. Figure
5.5 provides an example of such a function. Its definition is given by
the expression

f (z) = {
f1 > 0, −∞ < z ≤ 0;
f1 exp (− c

D
) z, 0 ≤ z ≤ z1;

f2, z ≥ z1,
(5.4.65)

where

f1 > f2 > 0, z1 = (D
c )Ln ( f1

f2
) . (5.4.66)

Note that while f (z) is continuous, it does not have a derivative at
z = 0 or z = z1 > 0.

A question to be asked is whether traveling wave solutions such
as that indicated in Figure 5.5 correspond to the actual physical
solution of some system that can be investigated in a laboratory?
In the end, an answer must be provided by experiment rather than
mathematics. 
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PROBLEMS

Section 5.2

1) All (or most) of the differential equations we consider in this
book are invariant under the transformations

t → t + t0, x → x + x0, (t0, x0) constant.

What are the implications of this result?
Section 5.3

2) Are there general rules for determining when an ODE or PDE is
separable? If so, what are they? If not, why?

Section 5.4

3) As models for physical systems, what arguments would you give
in support of having piece-wise-continuous functions as traveling
wave solutions?

4) As models for physical systems, what arguments would you give
in support of ruling out discontinuous functions as corresponding
to the actual behavior of such systems?

NOTES AND REFERENCES

Section 5.1: For readers who wish to acquire a good background
knowledge of the basic properties and related features of ODEs and
PDEs, the following publications can be consulted

1. N. A. Kudryashov, Seven common errors in finding exact solu-
tions of nonlinear differential equations, Communications in
Nonlinear Science and Numerical Simulation, Vol. 14 (2010),
3507–3529.

2. J. D. Logan, An Introduction to Nonlinear Partial Differential
Equations (Wiley, New York, 1994).

3. A. D. Polyanin and V. Zaitsev, Handbook of Nonlinear Partial
Differential Equations (Chapman & Hall/CRC, Boca Raton, FL,
2004).

4. A. D. Polyanin and V. Zaitser, Handbook of Exact Solutions
for Ordinary Differential Equations, 2nd Edition (Chapman &
Hall/CRC, Boca Raton, FL, 2003).
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5. W. Miller, Symmetry and Separation of Variables (Cambridge
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6. R. E. Mickens, Mathematical Methods for the Natural and
Engineering Sciences, 2nd Edition (World Scientific, Singapore,
2017). See, in particular chapter 10.
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7. L. Debnath, Nonlinear Partial Differential Equations
(Birkhäuser, Boston, 1997).
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wiki/ Separation - of - variables (Accessed July 4, 2024). Sec-
tion 5.4: While being very selected techniques for obtaining exact
solutions to both linear and nonlinear differential equations, a
number of procedures have been created to calculate SOV and
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11. W. Malflient and W. Hereman, The tanh method:I. Exact solu-
tions of nonlinear evolution and wave equations, Physica Scripta,
Vol. 54 (1996), 563–568.

12. D. Bazeia, A. Das L. Losano, and A. Silva, A simple and direct
method for generating traveling wave solutions for nonlinear
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Introduction to
Bifurcations

6.1 INTRODUCTION

To obtain a ‘feel’ for the subject of bifurcations, consider the
differential equation

md2x
dt2 = −kx − 𝛼dx

dt . (6.1.1)

This ordinary differential equation (ODE) provides a mathematical
model for a damped harmonic oscillator of mass, m; spring con-
stant, k; having a linear damping force characterized by the constant
𝛼(Figure 6.1). Experimentally, the appropriate initial conditions are

x (0) = x0 > 0, y (0) = y0 =
dx (0)

dt = 0. (6.1.2)

Note that, as currently written, this ODE has four associated
parameters: m, k, 𝛼, x0. However, we can rescale the ODE using

{
x (t) = x0x (t) , t = T1t,
T1 =√

m
k
, T2 =

m
𝛼
, 2𝜖 = T1

T2
. (6.1.3)

In the weak or small damping case, we have
T1 ≪ T2 ⟶0 < 𝜖 ≪ 1. (6.1.4)

This last restriction just means that the period of oscillation is small
in comparison to the damping time. If we make these substitutions
into Equation (6.1.1) and simplify the resulting expression, then we
obtain

d2x

dt
2 + 2𝜖dx

dt
+ x = 0, x (0) = 1, dx (0)

dt
= 0, (6.1.5)

DOI: 10.1201/9781003422419-7 137
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or, dropping the bars

d2x (t)
dt2 + 2𝜖dx (t)

dt + x (t) ; x (0) = 1, dx (0)
dt = 0. (6.1.6)

Now, if we rewrite this ODE as

dx
dt = y, dy

dt = −x − 2 ∈ y; x0 = 1, y0 = 0, (6.1.7)

then a 2-dim phase-plane analysis produces the results shown in
Figure 6.2 .

Observe that there are three cases to examine.

Case I: 0 < 𝜖 ≪ 1
For this situation, the system oscillates with a damped amplitude.
Also, we clearly see that

Lim
t→∞

(x (t)
y (t)) = (00) , (6.1.8)

in other words, the fixed-point, (x, y) = (0, 0), is a stable spiral.

Case II: 𝜖 = 0
For this case, the fixed-point, (x, y) = (0, 0), is a center or has neutral
stability.

Case III: 𝜖 < 0
For this case, the fixed-point, (x, y) = (0, 0) is an unstable spiral node
and

Lim
t→∞

(x (t)
y (t)) = (∞∞) . (6.1.9)

 Comments

(i) It is important to note that for the ‘physical ODE’, Equation
(6.1.1), the problem had four parameters, (m, k, 𝛼, x0), but after
rescaling the ODE, the number of parameters was reduced to
one, namely, 𝜖.

The critical lesson is that given an ODE or partial differential
equation (PDE), we should always rescale both the dependent
and independent variables to reduce the number of parameters.
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FIGURE 6.1 The damped harmonic oscillator for various epsilon values of
the scaled damping coefficient 𝜖.

(ii) For our particular example, the qualitative nature of the ODE’s
solutions depended on the value of the parameter 𝜖, i.e.,

item 𝜖 > 0 : bounded, decreasing oscillatory solutions;
item 𝜖 = 0 : bounded, periodic solutions;
item 𝜖 < 0 : unbounded, increasing oscillatory solutions.

(iii) We will call 𝜖 a bifurcation parameter and 𝜖 = 0, the bifurcation
point for the rescaled damped harmonic oscillator equation, i.e.,
Equation (6.1.6).



140 ∎ Introduction to Qualitative Methods for Differential Equations

x

(a
)

λ
 >

 0
 

(b
)

 λ
 =

 0
 

(c
)

 λ
 <

 0
 

t

x

x

t
0

0
t

FI
G

U
R
E

6.
2

Q
ua

lit
at

iv
e

be
ha

vi
or

of
th

e
so

lu
tio

ns
fo

r
dx
/d

t=
−𝜆

x.



Introduction to Bifurcations ∎ 141

The remainder of this chapter will be devoted to specific examples
of elementary equations that feature a select set of bifurcation phe-
nomena. The only exception will be Section 6.2, where we present
a working definition of bifurcation and discuss briefly why such a
concept is relevant to the analysis of ODEs and PDEs that arise in
the modeling process.

6.2 DEFINITION

Differential equations modeling physical systems also contain param-
eters corresponding to properties of the system, which in general are
assumed to be either constant or to change slowly with respect to
both time and other variables. For our purposes, we take the fol-
lowing as the definition of a bifurcation which depends on a single
parameter, 𝜆.

6.2.1 Bifurcation

Consider a differential equation

dx (t)
dt = f (x (t) , t, 𝜆) , (6.2.1)

where X (t) may be a scalar or vector function, and let f (x, t, 𝜆), scalar
or function, depend on a single real parameter, 𝜆. Then x will also
depend on 𝜆, i.e., if x is a solution of Equation (6.2.1), then

x = x (t, 𝜆) . (6.2.2)

A value, 𝜆 = 𝜆∗, of the parameter, 𝜆, will be called a bifurcation
point of the differential equation, if the qualitative properties of its
trajectories in phase-space change their fundamental character as 𝜆
passes through 𝜆∗. The value, 𝜆 = 𝜆∗, is called the bifurcation point
with respect to 𝜆.

This behavior was demonstrated in Section 6.1 with regard to the
damped harmonic oscillator.

Differential equations are generally dependent on one or more
parameters, the values of which can change to reflect the precise
nature of the system to be modeled. Thus, even for the most elemen-
tary differential equations, we expect bifurcations to be present, as
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the following ODE demonstrates.
dx (t)

dt = −𝜆x (t) . (6.2.3)

It should be clear that 𝜆 = 𝜆∗ = 0 is the bifurcation point, and that
three classes of solutions exist, depending on whether

𝜆 < 0, 𝜆 = 0, 𝜆 > 0. (6.2.4)

See Figure 6.2 .
While we will only briefly cover several of the more elemen-

tary types of bifurcations, there does exist a broad class of articles,
books, lecture notes and videos on the many forms that bifurca-
tions can appear. In fact, new classifications of bifurcations regularly
appear and the general subject is being actively investigated by many
researchers. We provide below a short list of items that we have used
to understand the subject of bifurcation.
(1) J. Hale and H. Kocak, Dynamics and Bifurcations (Springer-

Verlag, New York, 1991).

(2) G. Iooss and D. D. Joseph, Elementary Stability and Bifurcation
Theory (Springer-Verlag, New York, 1980).

(3) M. Hazewinkel, Bifurcation phenomena: A short introductory
tutorial with examples, in M. Hazewinkel, R. Jurkovich, and
J. H. P. Paelinck (editors) Bifurcation Analysis (Springer,
Dordrecht, 1985).

(4) H. Kielhofer, Bifurcation Theory: An Introduction with Appli-
cations to Partial Differential Equations (Springer, Berlin,
2012).

(5) T. Ma and S. Wang, Bifurcation Theory and Applications
(World Scientific, Singapore, 2005).

(6) S. Wiggins, Global Bifurcations and Chaos (Springer, New York,
2013).

6.3 EXAMPLES OF ELEMENTARY BIFURCATIONS

For 1-dim systems
dx
dt = f (x) , (6.3.1)
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there are essentially only three kinds of bifurcations that occur; they
are
(1) saddle node
(2) transcritical
(3) pitchfork
● supercritical
● subcritical

In this section, we discuss briefly the saddle node, transcritical
and supercritical pitchfork bifurcation and provide references to
examinations of the subcritical pitchfork bifurcation.

6.3.1 Saddle-node Bifurcation

Consider the following ODE where r is real
dx
dt = r + x2. (6.3.2)

This equation has two fixed-points or equilibrium solutions located
at

x = ±√−r . (6.3.3)

There are three cases to consider:
Case 1: r < 0

For this situation, two real roots occur and the fixed-points are

x1 = −√|r| , x2 = +√|r| , (6.3.4)

and the x− t phase-plane, along with several typical solution behav-
iors are sketched in Figure 6.3 . Note that the two fixed-points have
the following stability properties.

{
x (t) = x1 = −√|r| ∶ stable,
x (t) = x2 = +√|r| ∶ unstable,
r < 0.

(6.3.5)

Case 2: r = 0
There is now a double root at x = 0 and the fixed-points are
x1 = x2 = 0. The nature of these fixed-points means that x = 0
is semi-stable. See Figure 6.4 .
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FIGURE 6.3 x− t plane, for r < 0, with the domains where dx/dt has definite
signs. The equilibrium solutions are x1 (t) = x1 and x2 (t) = x2.

Case 3: r > 0

For this case, there is no (real) fixed-point and all solutions become
unbounded.

Finally, Figure 6.5 is a sketch of the bifurcation diagram for Equa-
tion (6.3.2), i.e., the plot of x vs r. This case provides the general
features of a so-called saddle-node bifurcation.

6.3.2 Transcritical Bifurcation

The prototypical example of a system exhibiting a transcritical
bifurcation is the ODE

dx
dt = rx − x2, (6.3.6)
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x̄1 = x̄2 = 0 

FIGURE 6.4 x − t plane, for r = 0. The double fixed-point at x1 = x2 = 0
means that x (t) = 0 is semi-stable.

0

r

x̄

FIGURE 6.5 Bifurcation diagram for a saddle-node bifurcation, r = x2.

where r is real. For this case, there are two fixed-points

x1 = 0, x2 = r. (6.3.7)
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FIGURE 6.6 Sketches of typical solutions for Equation (6.3.6).

Since

f (x) = rx − x2 ⟹ f’ (x) = r − 2x (6.3.8)

and

f′ (x1) = f′ (0) = r, f′ (x2) = r = −r, (6.3.9)

it follows that for

{
r < 0 ∶ x1is stable, x2is unstable;
r = 0 ∶ x1 = 0andx2 = 0, are semi stable;
r > 0 ∶ x1 = 0 is unstable, x2is stable.

(6.3.10)

See Figure 6.6 for typical x − t sketches for various intervals of the
parameter r. The bifurcation diagram for this case is given in Fig-
ure 6.7 . The name associated with this bifurcation is that it is a
transcritical bifurcation.
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r

x̄

FIGURE 6.7 Bifurcation diagram for Equation (6.3.6) showing its transcrit-
ical bifurcation behavior.

6.3.3 Supercritical Pitchfork Bifurcation

This type of bifurcation is shown by the ODE
dx
dt = rx − x(3). (6.3.11)

Note that there are three fixed-points located at the positions
x1 = 0, x2 =√r , x3 = −√r . (6.3.12)

If we define
f (x) = rx − x3, (6.3.13)

then
f′ (x) = r − 3x2, (6.3.14)

and
f′ (0) = r, f′ (√r ) = −2r, f′ (−√r ) = −2r. (6.3.15)

Consequently, combining these results with linear stability theory, it
can be concluded that
(i) r < 0 : Only the fixed-point x1 = 0 exists and it is stable.
(ii) r = 0 : There is a triple zero at x = 0 and x1 = x2 = x3 = 0, and

this fixed-point is stable.
(iii) r > 0 : The fixed-point at x1 becomes unstable and two new

fixed-points appear at x = ±√r .
This situation is called a supercritical pitchfork bifurcation and a
representation of its diagram, i.e., x vs r is given in Figure 6.8. 
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FIGURE 6.8 Bifurcation diagram for a supercritical pitchfork bifurcation
for Equation (6.3.11).

6.3.4 Subcritical Pitchfork Bifurcation

This bifurcation appears in the ODE

dx
dt = rx + x3 − x5 (6.3.16)

and can have as many as five fixed points. The bifurcation diagram,
given in Figure 6.9 , for this ODE shows the major features of the
associated subcritical pitchfork bifurcation. The details of how this
figure is constructed and its important properties can be found in
the references

S. Strogatz, Non-linear Dynamics and Chaos: With Applications
to Physics, Biology, Chemistry and Engineering (Perseus Books,
New York, 2000).
S. Wiggins, Introduction to Applied Non linear Dynamical
Systems and Chaos (Springer-Verlag, Berlin, 1990).

However, a quick summary goes as follows:

The fixed-points of Equation (6.3.16) are the solutions of

x (r + x2 − x4) = 0. (6.3.17)

The fixed-point, x = 0, exists for all values of the parameter, r.
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r

x̄

FIGURE 6.9 Diagram for the subcritical pitchfork bifurcation. Solid and
dashed lines represent, respectively, stable and unstable fixed-points.

Also, the quartic equation can be solved for x2, which then can
be solved for x.

x4 − x2 − r = 0, (6.3.18)
These four roots are

x = (±)√(12) (1 ±√1 + 4r ) . (6.3.19)

Inspection of Equation (6.3.19) shows that to have x real, then
from the inner square root.

r ≥ −(14) . (6.3.20)

Also, from the outer square root, 1 −√1 + 4r becomes negative for
r > 0. Therefore, there are three intervals in r to consider and these
intervals and the values of the associated fixed-points are given by
the following expressions:

r < −(14) ∶ x = 0(one fixed-point);

− (14) < r < 0 ∶ x = 0, x = (±)√(12) (1 ±√1 + 4r ) ,
five fixed-points;

r > 0 ∶ x = 0, x = (±)√(12) (1 +√1 + 4r ) , three fixed-points.
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Figure 6.9 gives the bifurcation diagram for this situation, i.e., a
subcritical pitchfork bifurcation. Note that heavy continuous lines
represent stable fixed-points, while dashed heavy lines correspond to
unstable fixed-points.

6.4 EXAMPLES FROM PHYSICS

6.4.1 Lasers

An elementary, but very useful, model of the operation of a laser
provides the following ODE as its mathematical model

dn (t)
dt = (GN0 − k)n − (𝛼G)n2, (6.4.1)

where
n (t) : number of photons (light particles) in the laser light field;
N (t) : number of atoms in an excited state;

k : essentially the time that a photon spends in the active
material of the laser before being loss through the end faces;

N0 : the initial number of excited atoms;
G : gain coefficient;
α : parameter coming from the assumption that

N (t) = N0 − 𝛼n (t) , (𝛼 > 0) . (6.4.2)

If we define r as

r = GN0 − k, (6.4.3)

then Equation (6.4.1) takes the form
dn (t)

dt = rn (t) − (𝛼G)n(t)2, (6.4.4)

and, consequently, a transcritical bifurcation will exist for the laser
model.

In physics, one usually constructs the bifurcation diagram from a
plot of n, the fixed-points, vs N0. This is shown in Figure 6.10 . Note
that negative n and N0 are physically meaning less.

The details of the theory of the laser are presented in
H. Haken, Laser Theory (Springer-Verlag, Berlin, 1983).
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N0
0 K/G

n̄

FIGURE 6.10 Bifurcation diagram for the laser equation. Note that for
0 < N0 < K/G, the laser device acts as a ‘lamp.’ For N0 > k/G, lasering
takes place.

6.4.2 Statistical Mechanics and Neural Networks

The following first-order, nonlinear ODE provides a model for many
physical phenomena in the physics of magnetization and neural
networks

dx
dt = −x + b tanh (x) , (6.4.5)

where b is generally a non-negative parameter, and the tanh(x) is
defined to be

tanh (x) = ex − e−x

ex + e−x . (6.4.6)

The fixed-points, x, occur where the two curves

y = x, y = b tanh (x) , (6.4.7)

intersect. With a rather minor effort, it can be determined that the
bifurcation diagram, x vs b, has the form presented in Figure 6.11 .
Observe that for
(a) 0 < b ≤ 1: The fixed-point x1 = 0 is stable and there are no other

fixed-points.
(b) b > 1: Three fixed-points exist; the one at x1 = 0 now becomes

unstable, while the other two x2 and x3 are stable.
For case (b), which state the system settles into will depend on the
initial condition for x (t).
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0 b

x̄

FIGURE 6.11 Bifurcation diagram for Equation (6.4.5) Heavy continuous
lines are stable fixed-points. The heavy dashed line corresponds to an
unstable fixed-point.

6.5 HOPF-BIFURCATIONS

6.5.1 Introduction

An important class of systems for which bifurcations may occur are
those that have a certain type of oscillatory behavior. This section
will be concerned with so-called Hopf-bifurcations in 2-dim dynam-
ical systems, i.e., they can be modeled by differential equations of
the form

dx
dt = P (x, y, 𝜆) , dy

dt = Q (x, y, 𝜆) , (6.5.1)

where 𝜆 is a parameter.
The treatment of this topic is based on the presentation given in

my book
R. E. Mickews, Mathematical Methods for the Natural and Engi-

neering Sciences, 2nd Edition (World Scientific, Singapore, 2017).
Sections 4.6.1 and 4.6.2.

To begin, assume that Equations (6.5.1) have an isolated fixed-
point at (x (𝜆) , y (𝜆)). We have explicitly indicated the dependence of
the fixed-point on the parameter, 𝜆. Now, for motions in a neighbor-
hood of this fixed-point, we further assume that x (t, 𝜆) and y (t, 𝜆)
have the structure

{ x (t, 𝜆) = x (𝜆) + 𝛼 (t, 𝜆) ,
y (t, 𝜆) = y (𝜆) + 𝛽 (t, 𝜆) . (6.5.2)
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If Equation (6.5.2) is substituted into Equation (6.5.1) and only the
linear terms are retained, then we have

d
dt (

𝛼
𝛽) = A (𝛼𝛽) , (6.5.3)

where the matric A is

A = (
𝜕Q
𝜕x

𝜕Q
𝜕y

𝜕P
𝜕x

𝜕P
𝜕y

) , (6.5.4)

and where the bar over each term in the matrix implies that the
element is evaluated at the fixed-point, (x (𝜆) , y (𝜆)).

The eigenvalues of the matrix, A, are solutions of the equation

det |A − rI| = 0 (6.5.5)

where I is the 2 × 2 unit matrix

[I = ( 1 0
0 1 ) . (6.5.6)

Denote the two eigenvalues of A by r1 (𝜆) and r2 (𝜆), and assume
that there exists a positive constant, 𝛿, such that for, |𝜆| < 𝛿, r1 (𝜆)
and r2 (𝜆) are complex-valued functions of 𝜆, and also have a first
derivative with respect to 𝜆. In other words, we have

{
r1 (𝜆) = R (𝜆) + iI (𝜆)
r2 (𝜆) = r∗1 (𝜆)
dr1(𝜆)

d𝜆
and dr2(𝜆)

d𝜆
, exist,

(6.5.7)

where also dR (𝜆) /d𝜆 and dI (𝜆) /d𝜆 exist over the interval |𝜆| < 𝛿.
It should be indicated that we are taking the bifurcation point to

be 𝜆 = 0.
Our version of the Hopf-bifurcation theorem takes the form:

6.5.2 Hopf-Bifurcation Theorem

Let the fixed-point, (x (𝜆) , y (𝜆)), of Equation (6.5.1) be asymptot-
ically stable for 𝜆 < 0 and unstable for 𝜆 = 0, Let R (0) = 0 and
let

dR (𝜆)
d𝜆 |

𝜆=0
> 0, I (0) ≠ 0. (6.5.8)
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Under these conditions, for all sufficiently small |𝜆|, an isolated,
closed trajectory exists for either 𝜆 > 0 or 𝜆 < 0. (This isolated,
closed trajectory is called a limit-cycle.) In general, the stability of
the limit-cycle is opposite to that of the fixed-point.

6.5.3 Fixed-Points and Closed Integral Curves

Let the system

dx
dt = P (x, y) , dy

dt = Q (x, y) , (6.5.9)

have a closed integral curve in the x− y plane. Then this curve must
enclose fixed-points whose ‘indices’ sum t0 + 1:

Comments

(i) The index of the fixed-points that we have examined has the
following indices

⎧
⎨
⎩

Fixed-Point Index
node +1
saddle −1
center +1

(6.5.10)

See Strogatz, Section 6.8, for a good introduction to this topic.

(ii) A consequence of this result is that every closed curve in the
x − y plane must contain at least one fixed-point.

(iii) Another implication of the above result is that if only one fixed-
point is interior to a closed curve, then the fixed-point cannot
be a saddle point.

See Figures 6.11 and 6.12 for illustrations of this result (Figure 6.13). 

6.5.4 Two Limit-Cycle Oscillators

The van der Pol oscillator was one of the first nonlinear models that
exhibited a limit-cycle. While it is usually written as

d2x
dt2 + x = 𝜆 (1 − x2) dx

dt , (6.5.11)
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y = x

0

x

·

FIGURE 6.12 Phase-plane, x−y, for ẍ+x = 0. The fixed-point, (x, y) = (0, 0),
is a center.

y = x·

x

FIGURE 6.13 Phase-plane, x − y for ẍ − x + x3 = 0. The fixed-points
are (x1, y1) = (0, 0), a saddle point and the centers, (x2, y2) = (1, 0) and
(x3, y3) = (−1, 0).

where 𝜆 is a parameter, we will use the form

d2x
dt2 + x = (𝜆 − x2) dx

dt , (6.5.12)

in which system notation is

dx
dt = y, dy

dt = −x + 𝜆y − x2y. (6.5.13)
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This system has a single fixed-point located at (x, y) = (0, 0), and its
linear approximation is

d
dt (

x
y) = ( 0 1

−1 𝜆 ) (x
y) . (6.5.14)

Also, the eigenvalues of the matrix A

A = ( 0 1
−1 𝜆 ) , (6.5.15)

arise from the solutions to the following characteristic equation

det (A − rI) = det ( −r 1
−1 𝜆 − r )

= r2 − 𝜆r + 1 = 0.

Thus,

r1 (𝜆) = r2(𝜆)
∗

= 𝜆
2 + (√4 − 𝜆2

2 ) i, i =√−1 , (6.5.16)

with

R (𝜆) = 𝜆
2 , I (𝜆) = √4 − 𝜆2

2 . (6.5.17)

Note that

R (0) = 0, dR (0)
d𝜆 = 1

2 > 0, I (0) = 1. (6.5.18)

Also, for 𝜆 = 0, Equation (6.5.12) becomes

d2x
dt2 + x = −x2 dx

dt , (6.5.19)

which is a linear harmonic oscillator with positive damping. Conse-
quently, its solutions have the property

Lim
t→∞

(x (t)
y (t)) = (00) , (6.5.20)

which implies that the fixed-point, (x, y) = (0, 0), is stable.
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Combining all of these results, it follows from the application of
the Hopf-bifurcation theorem that the van der Pol oscillator, Equa-
tion (6.5.12), has a stable limit-cycle for small, positive values of the
parameter 𝜆.

A second example of a system having a limit-cycle is

{
dx
dt
= 𝜆x − 𝜔y − (x2 + y2) (x + ay) ,

dy
dt
= 𝜔x + 𝜆y + (x2 + y2) (ax − y) ,

(6.5.21)

where the parameters, (a, 𝜔) are held fixed and 𝜆 is the bifurca-
tion parameter. The only fixed-point is at (x, y) = (0, 0) and the
linearization matrix is

A = ( 𝜆 −𝜔
𝜔 𝜆 ) ,

with the eigenvalues solutions of the equation

(𝜆 − r)2 + 𝜔2 = 0. (6.5.22)

Therefore,

r1 (𝜆) = r∗2 (𝜆) (6.5.23)

= 𝜆 + i𝜔, i =√−1 , (6.5.24)

and

R (𝜆) = 𝜆, I (𝜆) = 𝜔, (6.5.25)

from which it follows that

R (0) = 0, dR (0)
d𝜆 = 1 > 0, I (0) = 𝜔. (6.5.26)

Based on the results contained within this last equation, we can con-
clude that the 2-dim system of ODEs, Equation (6.5.21), has small
values of 𝜆, a limit-cycle.

It should be indicated that Equations (6.5.21) can be exactly
solved in terms of the elementary functions. The way that this can
be accomplished is by carrying out the following steps:

(1) Transform from (x, y) to polar coordinates (r, 𝜃), using
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x (t) = r (t) cos 𝜃 (t) , y (t) = r (t) sin 𝜃 (t) . (6.5.27)

(2) Taking the derivatives of x (t) and y (t), substituting these results
into Equation (6.5.21), and then solving for d𝜏/dt and d𝜃/dt,
gives

dr
dt = (𝜆 − r2) , d𝜃

dt = 𝜔 + ar2. (6.5.28)

(3) Multiplying the first of these equations by r and defining z (t) as

z (t) = r(t)2, (6.5.29)

we obtain

dz
dt = 2 (𝜆 − z) z, (6.5.30)

and this ODE can be solved exactly.

(4) Substitution of r (t) =√z (t) into the second expression in Equa-
tion (6.5.28) gives an ODE, which can be solved explicitly for
𝜃 (t).

Inspection of Equation (6.5.28) shows that the r-equation has
fixed-points at

r1 (𝜆) = 0, r2 (𝜆) =√𝜆 , r3 (𝜆) −√𝜆 . (6.5.31)

However, based on the fact that r is a polar coordinate, then
it must satisfy the condition, r ≥ 0. Therefore, only r1 (𝜆) = 0
and r2 (𝜆) = +√𝜆 , have ‘physical meaning.’ Consequently, the two
stationary solutions are

r𝜆 (𝜆) = 0 ∶ x (t, 𝜆) = 0, y (t, 𝜆) = 0, 𝜆 ≤ 0; (6.5.32)

r2 (𝜆) =√𝜆 ∶ { x (t, 𝜆) =√𝜆 cos [(𝜔 + a𝜆) t + 𝜑0] ,
y (t, 𝜆) =√𝜆 sin [(𝜔 + a𝜆) t + 𝜑0] ,

(6.5.33)

where 𝜑0 is an arbitrary constant. Thus, in the x − y phase-plane,
the limit-cycle is a circle of radius√𝜆 , since from Equations (6.5.32)
and (6.5.33) an easy calculation gives

x2 + y2 = 𝜆. (6.5.34)
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6.6 RESUMÉ

The results and discussions given in this chapter clearly demonstrate
the utility of having some knowledge and understanding of bifurca-
tions. It also shows that the application of the theory of bifurcations
generally provides us with important qualitative properties of the
solutions to differential equations in the absence of having exact
solutions.

Finally, it should be obvious that while we have not discussed
bifurcations in PDEs, they must occur. There is a rather large
research literature on this topic and the following two publications
provide a hint of what is being investigated and applications where
these techniques can be used.

(1) H. B. Keller, Nonlinear bifurcation, Journal of Differential
Equations, Vol. 7 (1970), 417–434.

(2) H. Kielh¨ofer, Bifurcation Theory: An Introduction with Appli-
cations in Partial Differential Equations (Springer, Berlin,
2012).

(3) H. Vecker, Continuation and bifurcation in nonlinear PDEs -
Algorithms, applications, and experiments, Jahresbericht der
Deutschen Mathematiker - Vereinigung, Vol. 124 (2022), 43–80.

(4) Y. A. Kuznetsov, Elements of Applied Bifurcation Theory
(Springer, Berlin, 2023).

PROBLEMS

Section 6.3

1) Can the standard theory of bifurcations be applied to the
following ODE?

d2x
dt2 + x

1
3 = (𝜖 − x2) dx

dt
If so, then apply it. If not explain why not? To aid in this task,
consider the behavior of the trajectories in the x−y phase-plane.
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Section 6.4

2) The two examples considered in this section are first-
approximations to rather complex phenomena. Look up the
derivations of these equations and examine how they might be
generalized.

Section 6.5

3) The Lewis oscillator equation can be written as

d2x
dt2 + x = (𝜖 − |x|) dx

dt .

Does this equation have a Hopf-bifurcation?

COMMENTS AND REFERENCES

References to the relevant literature are given in the various sections.



C H A P T E R 7

Applications

This chapter contains a number of applications, which illustrate the
various techniques discussed in this book. Many of the applications
use several different methods to obtain the desired approximations
to the exact solutions of the differential equation under examination.
We also demonstrate in several cases that even when exact solutions
are available, their mathematical structures may be so complex (to
the average researcher) that the additional use of qualitative methods
is of great value to gaining an understanding of the most important
features of the differential equations.

Some of the presented applicants are based directly on the work
of the author or the author and his collaborators. In such cases, the
writings in this book follow closely the published paper.

Finally, it should be pointed out that the main goal of this chap-
ter is to indicate the very broad applicability of qualitative methods
in the natural and engineering sciences.

7.1 ESTIMATION OF Y (0) FOR A BOUNDARY-VALUE
PROBLEM

Consider the following boundary-value problem

y′′ (z) = y (z) [y (z) − zy′ (z)] , 0 < z < ∞, (7.1.1)

y’ (0) = −√3 , y (∞) = 0, (7.1.2)

where y′ = dy/dz, with the requirements

y (z) > 0, y′ (z) < 0, 0 < z < ∞. (7.1.3)
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The goals are first to determine y (0) and then calculate y (z). To date,
no exact result has been found to accommodate either task. Conse-
quently, we will construct an analytical approximation for y (z) and
use this to estimate y (0).

The derivations of Equations (7.1.1) and (7.1.2) are provided in
the book of Dressen [1]. The article by Mickens and Wilkins [2] pro-
vides a summary of this derivation and is the basis of the work to
be presented in this section. It should be indicated that these equa-
tions follow from a similarity-based solution of the partial differential
equation (PDE)

uut = uxx, x > 0, t > 0, u = u (x, t) , (7.1.4)

with

u (x, t) > 0, 0 < x < ∞, 0 < t < ∞, (7.1.5)

with the following initial- and boundary-value conditions:

u (x, 0) = 0, x > 0, (7.1.6a)

u (∞, t) = 0, t > 0, (7.1.6b)

ux (0, t) = −1, (7.1.6c)

7.1.1 Properties of y (z)
While an exact analytical solution to Equations (7.1.1) and (7.1.2)
does not exist in terms of a finite combination of the elementary
functions, it is still possible to determine the major features of these
solutions.

(i) An exact, nontrivial solution is

y (z) = 0. (7.1.7)

(ii) Another exact solution can be found by assuming that y (z) takes
the form

y (z) = Az𝛼, (7.1.8)
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y(z)

ys(z)

y(0)

y(z) = 0

0

Unbounded

solutions

Bounded

solutions

z

FIGURE 7.1  Bounded solutions lie below the ys (z) vs z curve, while the
unbounded solutions are above this curve.

(A, 𝛼) are to be determined. Substituting this ansatz into the
ordinary differential equation (ODE) and simplifying the result-
ing expression gives

𝛼 (𝛼 − 1) z𝛼−2 = A (1 − 𝛼) z2𝛼, (7.1.9)

Consistency requires or

𝛼 − 2 = 2𝛼, 𝛼 (𝛼 − 1) = A (1 − 𝛼) , (7.1.10)

𝛼 = −2, A = 2, (7.1.11)

y (z) = ys (z) =
2
z2 , (7.1.12)

is an exact solution, which is singular in the sense that

ys (0) = +∞, y′s (0) = −∞. (7.1.13)

Figure 7.1 provides a representation of the y− z plane. Note that
ys (z) is the boundary between the bounded and non-bounded
solutions.

(iii) Inspection of Figure 7.1 shows that there exist three types of
solutions:
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(1) The exact solutions, y (z) = 0 and

y (z) = ys (z) = 2/z2.

(2) Solutions for which y (z) > ys (z); all of which are unbounded.
(3) Solutions for which

0 < y (z) < ys (z) , (7.1.14)

with all bounded.
Note that in more detail, the last equation is

0 < y (z) < 2
z2 , 0 < z < ∞. (7.1.15)

(iv) From the ODE, it follows that at z = 0, we have

y′′ (0) = y(0)2. (7.1.16)

(v) If the ODE is differentiated twice and the results of Equation
(7.1.3) are used, then it follows that

y′′ (z) > 0, y′′′ (z) < 0, y(4) (z) > 0, 0 < z < ∞. (7.1.17)

The higher derivatives do not seem to have any particular pattern
of sign.

(vi) The following sum-rule holds

∫
∞

0
y(z)2dz = 2

√3
. (7.1.18)

This result is a consequence of the following arguments. The term
zy (z) y′ (z) can be rewritten as

zyy′ = (12) (zy
2)′ − (12) y2. (7.1.19)

Therefore, the ODE takes the form

y′′ = (32) y2 − (12) (zy
2)′. (7.1.20)
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Now integrate both sides from z = 0 to z = ∞ and obtain

y′ (∞) − y′ (0) = (32)∫
∞

0
y(z)2dz − (12) (zy

2) |∞0 . (7.1.21)

Since

⎧⎪
⎨⎪
⎩

y’ (∞) = 0, y’ (0) = −√3 ,
Lim
z→0

(zy2) = 0,
Lim
z→∞

(zy2) = 0,
(7.1.22)

the result in Equation (7.1.18) follows.

7.1.2 Approximation to y (z)
Since the exact solution, y (z), is not known, we will ‘assume’ that a
good, reasonable approximation is provided by the representation

ya (z) =
A

1 + Bz + Cz2 , (7.1.23)

where the ‘a’ indicates the approximate nature of ya (z) and the
parameters (A,B,C) are positive. Under these assumptions, we have

ya (z) > 0, y′a (z) < 0, 0 ≤ z < ∞. (7.1.24)

Also, note that the inequalities stated in Equation (7.1.17) hold.
The parameter A can be determined by evaluating ya (0), i.e.,

setting z = 0 gives

A = ya (0) = y (0) , (7.1.25)

where we have assumed that ya (0) takes the exact value y (0), which
is currently unknown.

If we take the derivative of ya (z) and let z = 0, we obtain

B = √3
y (0) , (7.1.26)

where again we are taking this evaluation to be equal to the exact
value given in Equation (7.1.2).
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Taking into consideration the asymptotics of Equation (7.1.23),
i.e.,

ya (z) =
2
z2 − O ( 1z3 ) , (7.1.27)

where we indicate that the correction term is negative in sign, we
determine C to be

C = y (0)
2 , (7.1.28)

If we now put all these results together, then ya (z) is

ya (z) =
y (0)

1 + [ √3
y(0)

] z + [ y(0)
2
] z2

. (7.1.29)

Examination of this ya (z) shows that the right-hand side depends on
the unknown, y (0), which we had to determine. And, the way to do
so is by substituting ya (z) for y (z) in the sum-rule given by Equation
(7.1.18), i.e.,

∫
∞

0
ya(z)

2dz = 2
√3

. (7.1.30)

With ya (z), given above, the left-hand side of the sum-role will be a
function of y (0), i.e.,

∫
∞

0
ya(z)

2dz = F (y (0)) , (7.1.31)

where F (y (0)) is a very complication function of y (0). However,
another way of estimating y (0) is to substitute ya (z) into the differ-
ential equation and setting z = 0. After a rather long, but straight-
forward set of manipulations, we find that y (0) = y0 satisfies a cubic
equation

y30 + y20 − 6 = 0, y0 = y (0) . (7.1.32)

It is rather easy to show that this equation has one, real, positive
root and two complex-conjugate root. The real root is

y0 = y (0) = 1.537656174…. (7.1.33)
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This is to be compared with Logan’s value of

Logan ∶ y (0) = 1.5111, (7.1.34)

using a numerical method to ‘solve’ the ODE. The absolute and
percentage errors between these two estimations of y (0) are

Absolute Error =∣ (1.5377 − 1.5111 ∣= 0.0266,
%Error = |1.5377 − 1.51111.5111| ⋅ (100) = 1.76%.

Finally, an easy calculation provides the following asymptotics for
ya (z)

ya (z) =
2
z2 − [ 4√3

y(0)2
] ( 1z3 ) + O ( 1z4 ) . (7.1.35)

This result is consistent with the inequality

O ≤ ya (z) < ys (z) , 0 < z < ∞, (7.1.36)

which shows that the approximate solutions lie below the singular
solution.

7.1.3 Resume

Our task was to construct an approximation to the initial-value,
boundary-value problem given by Equations (7.1.1) and (7.1.2), and
also estimate the value, y (0). This was done using a simple rational
expression for the approximate solution, ya (z). Using this ansatz, we
were able to estimate y (0) as ya (0) = 1.537.

The methodology presented can be easily generalized to other
rational approximations for y (z). In particular, the form

ya (z) =
PN (z)

QN+2 (z)
, (7.1.37)

is one possibility, where P (z) and Q (z) are polynomials, respectively,
of degree N and N + 2.

Finally, it should be noted that our analysis of this problem uses
several different qualitative methods to reach a valid approximation,
ya (z), to the solution y (x).
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7.2 THOMAS–FERMI EQUATION (TFE)

The Thomas–Fermi differential (TFE) equation is

d2y (x)
dx2 = y(x)(

3
2
)

x
1
2

, (7.2.1)

subject to the boundary conditions

y (0) = 1, y (∞) = 0. (7.2.2)

Historically, the TFE played a fundamental role in calculating the
structure of atoms and still is a subject of interest in applied
mathematics.

7.2.1 Exact Results

While the TFE cannot be solved analytically in terms of a finite
combination of elementary functions, a number of properties of its
solution, y (x), are known and can be proved. The paper of Hille
provides proofs for some of the statements to follow.

(i) The TFE has an exact solution

y (x) = ys (x) =
144
x3 . (7.2.3)

Note that this solution, ys (x), is a singular solution since it contains
no arbitrary constants and is not a special case of the (unknown)
general solution. Consequently, we expect that ys (x) is an ‘attractor’
in the sense that given a solution y (x), it follows that

Lim
x→∞

(x3y (x)) = 144. (7.2.4)

(ii) The curve, y = ys (x), separates the bounded and unbounded
solutions of the TFE. See Figure 7.2 for the flow-space of the
solutions.

Since y (x) = 0 is a solution, all solutions below the y = ys (x) curve
are bounded and all solutions above it are unbounded. The bounded
solutions all have a finite value of y (0), while the unbounded solutions
have y (0) = +∞, i.e.,

{ bounded solutions:0 < y (0) < ∞,
unbounded solutions:y (0) = ∞. (7.2.5)
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x

FIGURE 7.2 Trajectory flow for the Thomas–Fermi equation. Bounded solu-
tions lie below the curve of the singular solution, y = ys (x), while unbounded
solutions are above it.

(iii) The restrictions from atomic structure physics require that the
following conditions hold

{ y (x) > 0, y′ (x) < 0, 0 ≤ x < ∞,
y (0) = 1, y (∞) = 0. (7.2.6)

Since y′′ (x) > 0, for 0 < x < ∞, then y (x) is concave upward as
shown in Figure 7.2 .

(iv) From Equations (7.2.1) and (7.2.2), we have

y′′ (x) = O ( 1
√x

) , asx → 0+. (7.2.7)

(v) For the bounded solutions of the TFE, the following conditions
hold

{
0 < y (x) < y (0) ,

y′ (0) < y′ (x) < 0, 0 < x < ∞,
y′′ (x) > 0, 0 < x < ∞.

(7.2.8)

(vi) Arguments by Fernández demonstrate that y′ (0) can be cal-
culated to essentially any decimal place of accuracy. Defining B
as

y′ (0) = −B < 0, (7.2.9)

he obtains

B = 1.588071022611375…. (7.2.10)
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(vii) Also, for small x, it has been shown that y (x), with

y (0) = 1, y′ (0) = −B, (7.2.11)

has the representation

y (x) = [1 − Bx + (13) x3 − (2B15 ) x4 +⋯]

+ x
3
2 [(43) − (2B5 ) x + (3B

2

70 ) x2 + ( 227 +
B3

252) x3

+⋯] .. (7.2.12)

This interesting result is found in the article: E. B. Baker, The
application of the Fermi-Thomas statistical model to the calcula-
tion of potential distribution in positive ions, Physical Review, Vol.
16 (1930), 630–647.

(viii’) The following sum-rules have been derived by Mickens and
Herron:

∫
∞

0
√x y(x)

3
2 dx = 1, (7.2.13)

∫
∞

0
y (x) dx = (12)∫

∞

0
x
3
2 y (x) dx, (7.2.14)

B = ∫
∞

0
[(dy

dx)
2
+ y

5
2

√x
] dx, (7.2.15)

B = ∫
∞

0

y
3
2

√x
dx. (7.2.16)

As an illustration to how these sum-rules are derived, let us do so
for the one given in Equation (7.2.15).

First, multiply both sides of the TFE by y (x) to obtain

yy′′ = y
5
2

√x
. (7.2.17)
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Next, integrate this expression by parts and make evaluations at
x = 0 and x = ∞; doing this gives

y (∞) y′ (∞) − y (0) y′ (0) −∫
∞

0
(y′)2dx

= ∫
∞

0

y
5
2

√x
dx. (7.2.18)

Since

y (∞) = 0, y (0) = 1, y′ (∞) = 0, (7.2.19)

then a rearrangement of terms gives the sum-rule expressed in
Equation (7.2.15).

(ix) To indicate how the expansion given in Equation (7.2.12) can
be obtained, the following procedure was ‘created’ by Mickens. For
small x, the TFE can be approximated by

y′′ (x) ≃ 1
√x

, (7.2.20)

since y (0) = 1. If we integrate this ODE twice and use the initial
conditions

y (0) = 1, y′ (0) = −B, (7.2.21)

then the following result is obtained

y (x) ≃ 1 − Bx + (43) x3/2. (7.2.22)

Note that this corresponds to the first three lowest power terms in
Equation (7.2.12).

An iteration scheme to calculate higher-order terms (taking care
to be ‘careful’) is

y′′k+1 (x) =
[yk (x)]

3
2

√x
, k = (0, 1, 2, …) , (7.2.23)

yk (0) = 1, y′k (0) = −B, (7.2.24)
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y0 (x) = 1. (7.2.25)

Note that y1 (x) is the expression of Equation (7.2.22).
To obtain y2 (x), we use

y′′2 (x) =
[y1 (x)]

−3/2

√x

=
[1 − Bx + (4

3
) x

3
2 ]

3
2

√x
, (7.2.26)

and expand the bracketed expression to get

[1 − Bx + (43) x
3
2 ]

3
2 = 1 − (3B2 ) x +⋯, (7.2.27)

where only the first two terms are kept. Therefore, with this, we must
solve the following differential equation

y′′2 (x) =
1
√x

− (3B2 )√x . (7.2.28)

Integrating this equation twice and imposing the initial conditions

y2 (0) = 1, y′2 (0) = −B, (7.2.29)

we obtain

y2 (x) = 1 − Bx + (43) x
3
2 − (2B5 ) x

5
2 , (7.2.30)

and this reproduces the first four lowest power terms of Equation
(7.2.12).

7.2.2 Approximate Solutions

Two possible rational ansatzes for approximate solutions to the TFE
are

y′a (x) =
1

1 + Bx + ( 1
144

) x3
, (7.2.31)
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y2a (x) =
1

1 + B × −(4
3
) x

3
3 + Cx2 + ( 1

144
) x3

, (7.2.32)

where

C = B2

2 = 1.260985. (7.2.33)

These mathematical expressions were selected to be dynamically
consistent with the following properties of the TFE and/or its
solutions:

1. y (0) = 1, y′ (0) = −B; (7.2.34)

2. 0 ≤ y (x) ≤ 1, 0 ≥ x < ∞; (7.2.35)

3. − B ≤ y′ (x) < 0, 0 ≤ x < ∞; (7.2.36)

4. Lim
x→∞

(x3y (x)) = 144; (7.2.37)

5. The approximations, taken to be rational in√x , should have one
or the other forms for small x,

ya (x) = {
1 − Bx,

1 − Bx + (4
3
) x

3
2 . (7.2.38)

7.2.3 Discussion

The qualitative features of the two rational approximations, y(1)a (x)
and y2a (x), are given in Figure 7.3 . Note that the solutions intersect
at x ≃ 1. Observe that for x > x0, y(1)a (x) is greater than y2a (x), which
then appears to decrease much faster than y(1)a (x). The paper of Mick-
ens and Herron also provides a table giving numerical comparison of
the values of y(1)a (x) and y2a (x) over the interval, 0 ≤ x ≤ 40, along with
the values obtained from numerical integration of the Thomas–Fermi
ODE.

The reader should clearly understand that the TFE is itself an
approximation to an (unknown) not fully characterized equation
modeling atomic phenomena.
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y(x)

1

0 x0
x

ya (x)
(2)

ya (x)
(1)

FIGURE 7.3 Schematic drawing of the approximations to solution of the
Thomas–Fermi equation. The two solutions intersect at x0 ≈ 1.

Therefore, the actual, in use, value of this work and that of others
in constructing approximate solutions for the TFE will be dependent
on the weeds of the users of these solutions. What might ‘work’ in
one set of circumstances might not prove valid if these conditions
change.

A consistency check on the two approximate solutions is to use
them in Equation (7.2.15) to calculate the value of y′ (0) = B. A
numerical integration gives

B1 = 1.584744, B2 = 1.592931, (7.2.39)

where Bi is determined from the use of y(i)a (x), for i = (1, 2). The
fractional percentage errors are

E1 = (B − B1
B ) ⋅ 100 = 0.21\%, (7.2.40)

E2 = (B − B2
B ) ⋅ 100 = −0.27\%. (7.2.41)

Thus, with respect to the use of a sum-rule to ‘calculate’ B, the two
rational approximations give essentially the same result.
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7.3 TRAVELING-WAVE FRONT BEHAVIOR FOR A PDE
HAVING SQUARE-ROOT DYNAMICS

An important class of nonlinear PDEs is that associated with
reaction–diffusion–advection phenomena. For one-space dimension,
these equations take the form

ut ± g (u) ux = Duxx + f (u) , u = u (x, t) . (7.3.1)

Each term incorporates particular physical effects:

⎧
⎨
⎩

ut ∶ system evolution,
g (u) ux ∶ (nonlinear) advection,
Duxx ∶ diffusion (D = constant),

f (u) ∶ reaction.

Note that more complex PDEs can be formulated. For example, the
abovementioned is assumed to be independent of u; but if this is not
the case, then the diffusion term takes the form:

Diffusion: 𝜕𝜕x (D (u) 𝜕u
𝜕x ) . (7.3.2)

Also, for many physical systems, the reaction term has the following
properties:

{ f (u) > 0, 0 < u < u∗,
f (0) = 0, f (u∗) = 0, (7.3.3)

and f (u) takes the general shape indicated in Figure 7.4 . Another
important point is that for many physical systems, u (x, t) is required
to be non-negative. For these cases, u (x, t) might represent a popula-
tion number or a density. Further, u (x, t) may be restricted to satisfy
the positivity condition:

0 ≤ u (x, t) ≤ u∗. (7.3.4)

An excellent summary and extensive discussion of reaction–diffusion–
advection PDEs is given in the book by L. Debnath, Nonlinear Par-
tial Differential Equations for Scientists and Engineers (Birkhäuser,
Boston, 1997).

The main purpose of this section is to analyze the wave front
behavior of the traveling wave solutions for a reaction–diffusion
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f(u)

0
u

u*

FIGURE 7.4 Typical form for reaction term, f (u).

PDE having square-root dynamics. The particular equation to be
examined is

ut = Duxx + 𝜆1√u − 𝜆2u, (7.3.5)

where the parameters (D, 𝜆1, 𝜆2) are positive. Using scaling of the
independent and dependent variables, we will show that Equation
(7.3.5) can be rewritten to the form

𝜕u
𝜕t =

𝜕2u
𝜕x2 +√u − u (7.3.6)

in the scaled variables. Note that this PDE has two fixed-points or
constant solutions; they are

u(1) (x, t) = 0, u2 (x, t) = 1. (7.3.7)

A traveling wave (TW) solution of Equation (7.3.6) is a solution that
takes the form

U (x, t) = f (x − ct)
= f (z) , z = x − ct, (7.3.8)

where C is the velocity of the TW. Note that a prior C is unknown
and in many instances can either be explicitly calculated or have
bounds placed on its possible values.

Further, to be a TW solution, f (z) has the following properties:

Lim
z→−∞

f (z) = 1, Lim
z→+∞

f (z) = 0, (7.3.9)

df (z)
dz < 0, −∞ < z < +∞. (7.3.10)
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Since Equations (7.3.5) or (7.3.6) cannot be solved explicitly, this also
means that the differential equation for f (z) has this feature. How-
ever, our interest is in examining the properties of f (z) when f (z) is
small, i.e., the values of z such that

0 ≤ f (z) <<1. (7.3.11)

The resulting functional form of f (z) is called the wave front behavior.

7.3.1 Variable Scaling

We now show how Equation (7.3.6) can be from Equation (7.3.5) by
means of a rescaling of the variables (u, t, x).

Let (T,L,W) be, respectively, the time, length and dependent
variable u scales, i.e.,

t = Tt, x = Lx, u = Wu. (7.3.12)

Note that (u, t, x) are the scaled, dimensionless new variables. Substi-
tution of the results in Equation (7.3.12) into Equation (7.3.5) and
rearranging terms give the expression

𝜕u
𝜕t

= (TD
L2 )

𝜕2u
𝜕x2

+ (T𝜆1
√w

)√u − (T𝜆2) u. (7.3.13)

If we require

TD
L2 = 1, T𝜆1

√w
= 1, T𝜆2 = 1, (7.3.14)

and solve for the scales, then

T = 1
𝜆2
, L =

√
D
𝜆2

, W = (𝜆1𝜆2
)
2
. (7.3.15)

If the bars are now dropped over the scaled variables, then the PDE
in Equation (7.3.13) becomes

𝜕u
𝜕t =

𝜕2u
𝜕x2 +√u − u. (7.3.16)
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7.3.2 Traveling Wave Solutions

If we denote the TW solutions to Equation (7.3.15) by

u (x, t) = g (x − ct)

= g (z) , z = x − ct, (7.3.17)

then substituting this in Equation (7.3.16) gives

−cg’ = g′′ +√g − g; g’ = dg
dz , etc., (7.3.18)

which becomes on rearrangement

g′′ + cg′ +√g = g = 0. (7.3.19)

Inspection of Equations (7.3.15) and (7.3.19) shows that the intro-
duction of TWs has changed the original problem of studying a
nonlinear PDE to one involving an ordinary differential equation.
Using the requirements stated in Equations (7.3.9) and (7.3.10), we
sketch in Figure 7.5 the two possibilities for the TW profiles. This
drawing is based on the fact that the g-ODE has two fixed-points
located at

g(1) = 1, g2 = 0. (7.3.20)

The following physical argument will be used to show that TW
solutions exist with the general features given in Figure 7.5 .

First, relabel the variables

z → t, g → x, (7.3.21)

then Equation (7.3.19) becomes

d2x
dt2 + cdx

dt +√x − x = 0. (7.3.22)

This represents in classical mechanics a particle of mass one, acted
on by frictional and nonlinear elastic forces, i.e.,

Friction force = −cdx
dt , (7.3.23)

Nonlinear
elastic force ) = −√x + x. (7.3.24)
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g(z)

0
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z

g(1)
 = 1-

g(2)
 = 0-

g(z)

0

(b)

z
z0

g(1)
 = 1-

g(2)
 = 0-

FIGURE 7.5 (a) The TW decreases monotonical from g (−∞) = 1 to
g (+∞) = 0, with g (z) becoming zero at z = ∞. (b) The TW decreases
monotonical from g (−∞) = 1 to g (z0) = 0 and then becomes zero for
z > z0.

The nonlinear elastic force is obtainable from the potential energy
function

U (x) = (23) x3/2 − (12) x2, (7.3.25)

Nonlinear
elastic force ) = −dU (x)

dx . (7.3.26)

Rewriting Equation (7.3.22) in the system form

dx
dt = y, dy

dt = −√x + x − cy, (7.3.27)

we observe again that the fixed-points in the x− y plane are located
at the positions

(x(1), y(1)) = (0, 1) , (x2, y2) = (0, 0) . (7.3.28)

From a sketch of U (x) vs x, see Figure 7.6 , it is easily seen that the
TW solution corresponds to the particle trajectory, which starts at
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U(x)

0 1
x

FIGURE 7.6 Sketch of U (x) vs x. The fixed-points are at x = 0 and x = 1.

x = 1, where the maxima of U (x) occurs, and ends at the origin,
x = 0, which is where the potential is zero. Doing the ‘slide’ down
of the potential, the particle is acted upon by the friction force,
−cy (y = dx/dt).

Note that this argument plays no restriction on the TW velocity,
c, except for c > 0.

7.3.3 Traveling Wave Front Behavior

The traveling wave front behavior is determined by what happens
when u (x, t) = g (x − ct) = g (z) is very small, i.e.,

0 ≤ g (z) ≪ 1. (7.3.29)

In other words, it is the form of g (z) when g (z) satisfies the condi-
tions given in Equation (7.3.30). This asymptotic behavior can be
determined by the use of the method of dominant balance, which can
be summarized in the following four steps:
(1) Given an equation, first drop all terms that you believe to be

‘small’ and thus replace the original exact equation with an
asymptotic relation.

(2) Second, replace the asymptotic relation with an equation
obtained by exchanging the ‘asymptotically equal’ symbol with
the ‘equal sign’ and solve the resulting equal exactly,

(3) Third, check that the solution obtained in step (2) is fully
consistent with the approximations made in Step (1).

(4) If not, use a different set of terms to be kept and others dropped,
and start again at step (1).
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For our situation, we begin with the full ODE

g′′ + cg′ +√g − g = 0. (7.3.30)

Now, we can immediately drop the g term since

g ≪√g , 0 < g ≪ 1. (7.3.31)

Doing this gives

g′′ + cg’, +√g 0. (7.3.32)

There are three cases to consider

Case I:g′′ + cg′ = 0, (7.3.33)

Case II:g′′ +√g = 0, (7.3.34)

Case III:cg′ +√g = 0. (7.3.35)

Let us now assume the following ansatz for the form of g (z) in a
neighborhood of the point z = z0,

g (z) ∼ A(z − z0)
𝛼, (7.3.36)

where (A, 𝛼) are unknown parameters to be determined. Comment
The expression given in Equation (7.3.36) is a short-hand for

g (z) ∼ { A(z − z0)
𝛼, (z0 − 𝜖) < z ≤ z0,
0, z > z0.

(7.3.37)

Note that the value of z is not essential since Equation (7.3.32) is
invariant under the transformation

z → z + z0. (7.3.38)

Under the assumption that we can carry out the indicated differen-
tiations of g (z), as given in Equation (7.3.37), it follows that

{ g′ (z) ∼ 𝛼A(z − z0)
𝛼−1,

g′′ (z) ∼ 𝛼 (𝛼 − 1)A(z − z0)
𝛼−2.

(7.3.39)

We now examine the three cases presented in Equations (7.3.32)–
(7.3.34).



182 ∎ Introduction to Qualitative Methods for Differential Equations

7.3.4 Case I

Substitution of the ansatz into Equation (7.3.33) gives

𝛼 (𝛼 − 1)A(z − z0)
𝛼−2 + c𝛼A(z − z0)

𝛼−1 = 0, (7.3.40)

where consistency requires

𝛼 (𝛼 − 1)A + c𝛼A = 0, 𝛼 − 2 = 𝛼 − 1. (7.3.41)

However, the second relation, involving 𝛼, gives a contradiction,
2 = 1; consequently, Case I is eliminated as determining a valid
asymptotic solution for g (z) in the neighborhood of z = z0.

7.3.5 Case II

If Equation (7.3.36) is substituted into Equation (7.3.34), we obtain

𝛼 (𝛼 − 1)A(z − z0)
𝛼−2 + A

1
2 (z − z0)

𝛼
2 = 0, (7.3.42)

and consistency requires

𝛼 (𝛼 − 1)A + A
1
2 = 0, 𝛼 − 2 = 𝛼

2 . (7.3.43)

Solving for 𝛼 and A gives

𝛼 = 4, A = 1
144. (7.3.44)

Comment
Using 𝛼 = 4 in the first expression of Equation (7.3.43), we obtain

12A + A
1
2 = 0, (7.3.45)

which can be written

12√A (√A + 1
12) = 0. (7.3.46)

Selecting the nontrivial solution gives

√A = −( 112) → A = 1
144. (7.3.47)

To check that this g (z), i.e.,

g (z) ∼ ( 1
144) (z − z0)

4, (7.3.48)
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is consistent with our level of approximation, we substitute it into
Equation (7.3.29) and obtain the expression

( 112) (z − z0)
2 + C ( 136) (z − z0)

3 − ( 112) (z − z0)
2 (7.3.49)

−( 1
144) (z − z0)

4. (7.3.50)

Observe that the first and third terms dominate the asymptotics for
(z − z0) small, and therefore Equation (7.3.48) is consistent with the
approximation to Equation (7.3.30) given by Equation (7.3.34). Also,
since the first and third terms cancel each other, this expression is
asymptotic to zero as z → z−0 .

7.3.6 Case III

Equation (7.3.35) can be solved exactly. If we impose the condition
g (z0) = 0, (7.3.51)

then this solution is

g (z) = { ( 1
4
) [ z0−z

c
]
2
, z ≤ z0;

0, z > z0.
(7.3.52)

Relative to our assumed ‘asymptotic’ solution, Equation (7.3.36), it
follows that

𝛼 = 2,A = 1
4c2 , (7.3.53)

Substituting Equation (7.3.52) into Equation (7.3.30) gives the
expression

( 1
2c2 ) (z − z0)

0 + ( 12c) (z − z0)

− ( 12c) (z − z0) − ( 1
4c2 ) (z − z0)

2, (7.3.54)

where in the third term we used

√A = −( 12c) . (7.3.55)

Note that the first term dominates the three other terms, thus this
asymptotic solution is not consistent.

In summary, only the Case II asymptotic solution is consistent
with the behavior of g (z) in a neighborhood of z = z0.
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ga(z)

0

1

z

z0

FIGURE 7.7 Sketch of ga (z) vs z for the function given in Equation (7.3.58).

7.3.7 Approximation to Traveling Wave Solution

The Heaviside step ‘function’ is defined to be

H (x) = { 1, x ≥ 0,
0, x < 0. (7.3.56)

Using this function, then an approximate solution for the traveling
wave problem defined by Equations (7.3.5) and (7.3.8), and satisfying
the conditions in Equations (7.3.9) and (7.3.10), is

u (x, t) = g (x − ct) ≃ ga (z) , z = x − ct, (7.3.57)

where

ga (z) = {1 − exp [−(z − z0)
4

144 ⋅ H (z0 − z)]} . (7.3.58)

As stated previously, the value of this approximate solution for prac-
tical applications will depend on the particular needs of the user and
what they hope to achieve.

Figure 7.7 is a sketch of the curve representing ga (z).
Finally, we give a summary of the general features of the TW

solution of Equation (7.3.15), which also holds for its approximation,
ga (z):

(i) For arbitrarily large, negative values of z, the TW solution
has a value that starts at g (−∞) = 1 and then monotonically
decreases.

(ii) At some z = z0, g (z0) = 0 and g (z) = 0 for z > z0.
(iii) At z = z0, the slope is zero, i.e.,
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dg (z0)
dz = 0, (7.3.59)

with
dg (z)

dz = 0, z > z0. (7.3.60)

(iv) The result (iii) implies that g (z) is a piece-wise-continuous
function that is smooth over the interval, −∞ < z < +∞.

7.4 COMMENTS ON FUNCTIONAL EQUATION MODELS
OF RADIOACTIVE DECAY AND HEAT CONDUCTION

We now discuss briefly the selection of which mathematical structures
to use for the modeling of a particular physical phenomenon.

● Radioactive decay
● Heat conduction (in 1-dim)

When we say ‘mathematical structure’, we mean the type of math-
ematics used to construct a model. Examples of such structures
are

● Differential equations
● Difference equations
● Integral equations
● Algebraic equations
● Combinations of such equations etc.

Most mathematical models (MM) are formulated in terms of differ-
ential equations. A major reason is that differential equations are
but the extension of calculus, a subject all of us as scientists and
mathematicians have taken in our training at the university. Few
of us are familiar with difference equations, and consequently, MMs
involving these structures are lesser in number.

Another essential point is that in most scientific modeling activ-
ities, the assumption is implicitly made that space–time is ‘continu-
ous’. Note that this is, in some sense, an extreme assumption since the
maneuver in which we actually probe physical systems is always dis-
crete in both space and time, i.e., physical measurements are always
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done discretely. However, this assumption allows us to immediately
make use of differential equations.

There is also the issue with the use of discrete models based on
difference equations. In general, they are just much harder to con-
struct. And, few scientists fully understand that difference equations
are not approximations to differential equations; they have their own
dynamics that can differ remarkably from differential equations.

For example, consider the linear, first-order ODE

dx
dt = −𝜆x, x (0) = x0, 𝜆 > 0, (7.4.1)

which provides an MM for many physical phenomena. Its solution is

x (t) = x0e−𝜆t. (7.4.2)

Let us now discrete the ODE using a simple finite-difference ‘approx-
imation’, i.e.,

t → tk = hk, k = (0, 1, 2, …) ; h = Δt; (7.4.3)

x (t) → x (tk) → xk, (7.4.4)

dx (t)
dt →

xk+1 − xk
h , (7.4.5)

which gives
xk+1 − xk

h = −𝜆xk, x0given; (7.4.6)

or

xk+1 = (1 − 𝜆h) xk. (7.4.7)

The last equation has the solution

xk = x0(1 − 𝜆h)k. (7.4.8)

Note that all the solutions to the ODE smoothly decrease to zero.
However, the solutions to the discretization, Equation (7.4.8), have
this behavior only if

0 < 𝜆h < 1. (7.4.9)
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Otherwise, the solutions, xk, oscillate in values and can become
unbounded for sufficiently large h. Thus, h can be taken as a
bifurcation parameter with its critical value at

hc =
1
𝜆. (7.4.10)

Also, it is easily seen that, in general,

xk ≠ x (tk) , (7.4.11)

where x (t) is the solution to the differential equation and xk is the
solution to the discrete equation.

Now, let us try something that will turn out to be very interest-
ing. Start with the exact solution to the ODE, Equation (7.4.2), and
discretize it to obtain

x (t) = x0e−𝜆t ⟶ xk = x0e−𝜆tk . (7.4.12)

It follows that

xk+1 = (x0e−𝜆tk) e−𝜆h (7.4.13)

or

xk+1 = (e−𝜆h) xk. (7.4.14)

But

xk+1 − xk = − (1 − e−𝜆h) xk (7.4.15)

and

xk+1 − xk = −(1 − e−𝜆h

𝜆 ) (𝜆xk) , (7.4.16)

and, finally,
xk+1 − xk

( 1−e−𝜆h

𝜆
)
= −𝜆xk. (7.4.17)

Following how this last equation was constructed, we can conclude
that it is an exact finite-difference discretization of the ODE given
in Equation (7.4.1), i.e., exact in the sense that

xk = x (tk) . (7.4.18)



188 ∎ Introduction to Qualitative Methods for Differential Equations

Decaying

system data

(xk, tk)

Plots of Ln xk vs tk are

approximated by straight

lines

Consistent with data

lying on solution curves

of = – λxdx

dt

Results of analyzing many

different decay phenomena

provides evidence that they

all obey the “law”

= – λx(t)
dx(t)

dt

dx(t)

dt

accepted as a

fundament law

of nature

= – λx(t)

FIGURE 7.8 The discovery path for the formulation of the exponential decay
law, dx/dt = −𝜆x, and its acceptance as fundamental.

Since scientists and mathematicians of ten discretize ODEs for the
purposes of determining numerical solutions and since ‘numerical
instabilities’ may occur, we can conclude that these numerical insta-
bilities exist because improper discretization was used. The difficulty
is that, in general, we do not know how to construct ‘exact finite-
difference schemes’ or even if such schemes exist for any given ODE
or PDE. Figure 7.8 gives a possible path to the assessment that
dx/dt = −𝜆x is a ‘fundamental’ law of nature for decay phenomena.

But, another path is also plausible and could have been taken.
This alternative path is based on the concept of half-life. Experi-
mental evidence shows that for direct decaying systems, there exists
a time, 𝜏, such that if at time t the decaying substance has ‘activity’
x (t), then at time, t + 𝜏, the activity is one-half of its value at time
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t. Mathematically, these results can be summarized by the equation

x (t + 𝜏) = (12) x (t) . (7.4.19)

This equation is not a differential equation; it is called a functional
equation. It turns out that, in general, functional equations are much
more difficult to solve than differential equations. Further, these
equations generally do not have general solutions for which every
solution is a particular case.

The paper by Mickens and Rucker (2023) calculates the follow-
ing solution to this particular functional equation that is relevant to
decay processes; it is

x (t) = A (t) exp ⋅ [− (Ln (2)
𝜏 ) t] , (7.4.20)

where A (t) is an arbitrary periodic function of period, 𝜏, i.e.,

A (t + 𝜏) = A (t) , (7.4.21)

and it is odd, i.e.,

A (−t) = −A (t) . (7.4.22)

If we write A (t) as

A (t) = x0e𝜃(t), (7.4.23)

then 𝜃 (t) can be expressed as a sine-Fourier series,

𝜃 (t) =
∞
∑
k=1

bk sin [(2𝜋k
𝜏 ) t] . (7.4.24)

If only one term is retained in the Fourier series, then

x (t) = x0 exp {bi sin [(2𝜋𝜏 ) t]} ⋅ exp [− (Ln (2)
𝜏 ) t] (7.4.25)

and taking the logarithm of this gives

Ln (X (t)) = Ln (x0) + b1 sin [(2𝜋𝜏 ) t] − [Ln (2)
𝜏 ] t. (7.4.26)

Note that a plot of Ln (x (t)) vs t produces a straight line with
oscillations. This oscillatory line will have a slope of value

Slope = Ln (2)
𝜏 , (7.4.27)
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and the oscillations will only be observable at small t since the third
term dominates for large values of t. This behavior is consistent with
some experiments. See the references in this section.

The main point of the above discussion is that radioactive decay
can be modeled in more than one way and that a change in the
mathematical structure here from differential equations to functional
equations provides a possible deeper understanding of the physical
phenomena being investigated. For this case, decaying systems, we
expect a future quantum-based calculation to resolve the various
issues raised by various experiments.

We turn now to simple heat conduction in one-space dimension.
At the ‘macroscopic level’, the governing PDE is

ut = Duxx, u = u (x, t) , D = constant > 0. (7.4.28)

The corresponding ‘microscopic level’ equation is that for a random
walk

u (x, t + 𝜏) = (12) u (x + a, t) + (12) u (x − a, t) , (7.4.29)

where (𝜏, a) are fixed time and space parameters. To see the link
between Equations (7.4.28) and (7.4.29), we rewrite the random walk
equation in the following ways:

{
u (x, t + 𝜏) = u (x, t) = ( 1

2
) [u (x + a, t) − 2u (x, t) + u (x − a, t)] ,

u(x,t+𝜏)−u(x,t)
𝜏

= ( a2

2𝜏
) [u(x+a,t)−2u(x,t)+u(x−a,t)]

a2
(7.4.30)

We now make a ‘huge’ assumption. In place of the fixed parame-
ters; (𝜏, a), we assume that it makes ‘physical sense’ to take their
magnitudes to zero, i.e.,

𝜏 → 0, a → 0, (7.4.31)

but this is to be done such that
a2
2𝜏 = Dis constant > 0. (7.4.32)

If we do this, then the calculus informs us that partial derivatives
will arise from our manipulations, i.e.,

Lim
𝜏→0

u (x, t + 𝜏) − u (x, t)
𝜏 = 𝜕u (x, t)

𝜕t , (7.4.33)
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Lim
a→0

u (x + a, t) − 2u (x, t) + u (x − a, t)
a2 = 𝜕2u (x, t)

𝜕x2 . (7.4.34)

With these items in mind, we then determine that Equation (7.4.30)
becomes

𝜕u (x, t)
𝜕t = D𝜕2u (x, t)

𝜕x2 , (7.4.35)

which is the heat equation given in Equation (7.4.28).
Again, to derive the heat PDE from the random walk equation,

we make another ‘huge’ assumption, namely that u (x, t) has Taylor
series at each point, (x, t), of its domain of definition. While this may
or not hold for the actual physical universe, we need this assumption
for the derivation.

Also, the parameters, (𝜏, a), play very different roles in the ran-
dom walk and heat equations. For the random walk equation, these
two parameters are in principle independent of each other. We may
consider them to be the 2-dim lattice parameters in a 2-dim discrete
space–time. However, in the heat equation PDE, these parameters
do not explicitly appear and their values are zero, i.e., a = 0 and
𝜏 = 0. This is because

a → 0, 𝜏 → 0, a2
2𝜏 = D = constant. (7.4.36)

This fact should cause us to pause and ask: Why should we believe
that these kinds of arguments are valid? However, it must be rec-
ognized that scientists for the previous century and a half have
been doing just this and, as a consequence, they created the modern
technological world. We have been able to construct mathematics-
based approximate solutions to physical problems without the need
to understand the whole underlying mathematical theory.

A major goal of physical theory is to construct a mathemati-
cal structure that incorporates within itself the constraints of ‘real
physics’, such as the discrete nature of doing physical measurements.

Finally, we will complete this section by examining the random
walk equation (which we write again)

u (x, t + 𝜏) = (12) u (x + a, t) + (12) u (x − a, t) . (7.4.37)

A minor generalization of this equation is

u (x, t + 𝜏) = pu (x + a, t) + (1 − 2p) u (x, t) + pu (x − a, t) , (7.4.38)
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where

0 < p ≤ 12. (7.4.39)

This equation can be rewritten as

u (x, t + 𝜏) − u (x, t)
𝜏 = (pa2

𝜏 ) [u (x + a, t) − 2u (x, t) + u (x − a, t)
a2 ] ,

(7.4.40)

and gives in the limits

a → 0, 𝜏 → 0, pa2
𝜏 = D = constant > 0, (7.4.41)

again the heat conduction PDE,

𝜕u (x, t)
𝜕t = D𝜕2u (x, t)

𝜕x2 . (7.4.42)

The separation-of-variables solutions to the heat PDE are well
known, i.e.,

u (x, t) = F (x)G (t) (7.4.43)

and
G′ (t)
DG (t) =

F′′ (x)
F (x) = −k2, (7.4.44)

where the separation constant is taken to be (−k2).
The solutions to the ODEs in Equation (7.4.44)

G′ (t) = − (k2D)G (t) , (7.4.45)

F′′ (x) = −k2F (x) , (7.4.46)

are

G (t) = A (k2) e−(k2D)t, (7.4.47)

F (x) = B1 (k2) sin (kx) + B2 (k2) cos (kx) , (7.4.48)
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and therefore,

u (x, t, k2) = F (x)G (t) = [A1 (k2) sin (kx) + A2 (K2) cos (kx)] ,
(7.4.49)

where

A1 (k2) = A (k2)B1 (k2) , A2 (k2) = A (k2)B2 (k2) . (7.4.50)

The ‘general solution’ based on the separation-of-variables method
is therefore

u (x, t) = ∫ u (x, t, k2) (7.4.51)

or, in detail,

u (x, t) = ∫ e−(k2D)t [A1 (k2) sin (kx) + A2 (k2) cos (kx)] dk. (7.4.52)

Let us now see if we can do the same SOV procedure for the randow
walk equation

u (x, t + 𝜏) = (12) u (x + a, t) + (12) u (x − a, t) , (7.4.53)

with

u (x, t) = F (x)G (t) . (7.4.54)

Substituting this assumed SOV solution into Equation (7.4.53) gives

F (x)G (t + 𝜏) = (12)F (x + a)G (t) + (12)F (x − a)G (t) , (7.4.55)

and on separating the variables the expression

G (t + 𝜏)
G (t) = F (x + a) + F (x − a)

2F (x) . (7.4.56)

Since we want to have G (t) to be a decreasing function of t, the
separation constant will be selected as exp [−𝜆2] , −∞ < 𝜆 < +∞.
Therefore, the time and space equations are

G (t + 𝜏) = e−𝜆2G (t) , (7.4.57)

F (x + a) − 2 (e−𝜆2)F (x) + F (x − a) = 0. (7.4.58)
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The first equation has the solution

G (t) = 𝜃 (t) exp [−𝜆2 ( t
𝜏)] , (7.4.59)

where 𝜃 (t) is an arbitrarily bounded, periodic function, i.e.,

𝜃 (t + 𝜏) = 𝜃 (t) (7,4.58)

Likewise, the ‘general’ solution for F (x) is the following expression
(which I derived from the listing in Polyanin (1998)) book,

F (x) = 𝜃1 (x) cos [
𝜑 (𝜆2) x

a ] + 𝜃2 (x) sin [
𝜑 (𝜆2) x

a ] , (7.4.60)

where 𝜃1 (x) and 𝜃2 (x) are bounded, periodic functions, i.e.,

𝜃i (x + a) = 𝜃i (x) , i = (1, 2) , (7.4.61)

with 𝜑 (𝜆2) defined as

tan 𝜑 (𝜆2) = [e𝜆2 − 1]
1
2 . (7.4.62)

Putting all these together, we see that the expression for the SOV
solution is relatively complex, i.e.,

U (x, t, 𝜆2) = [Equation (7.4.57)] ⋅ [Equation (7.4.59)] . (7.4.63)

Finally, the full SOV solution to the random walk equation, see
Equation (7.4.53), is

u (x, t) = ∫ u (x, t, 𝜆2) d𝜆2, (7.4.64)

and, at this point, we stop.

7.5 APPROXIMATE SOLUTIONS TO A MODIFIED,
NONLINEAR MAXWELL–CATTANE EQUATION

Experimental and theoretical work on heat conduction shows clearly
that the simple heat equation

ut (x, t) = Duxx, u = u (x, t) ,D > 0, (7.5.1)
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does not give results in agreement with the data. A major difficulty
with this equation is that it makes the prediction that the speed of
information transfer is infinite. A way to resolve this particular issue
is to add an additional term, 𝜏utt, to give the PDE

𝜏utt + ut = Duxx, (7.5.2)

where the positive parameter, 𝜏, is usually interpreted as some type
of relaxation time in the thermal system. It should be noted that
Equation (7.5.2) is a damped, linear wave equation with the speed
of signal or information transfer given by

c =√
D
𝜏 . (7.5.3)

The goals of this section are to investigate the solutions to a modi-
fied version of Equation (7.5.2), where 𝜏 is now a function of u. The
function selected is

𝜏 (u) = 1
a√u

, (7.5.4)

where a is a positive parameter. This particular form for 𝜏 (u) is sug-
gested by the ideal gas law, i.e., if u is the Kelvin temperature, then
for fixed volume

⟨Kinetic energy2⟩ ∝ u, (7.5.5)

where the symbol, ⟨⋯⟩ denotes an average. But, if all the molecules
have the same mass, the

⟨Kinetic energy⟩ ∝ ⟨Velocity⟩ . (7.5.6)

Using physical units, it follows that

⟨(Length
Time )

2
⟩ ∝ u. (7.5.7)

Therefore, if we identify the ‘time scale’ with the parameter, 𝜏, then
the result in Equation (7.5.4) is found. We now assume that such a
relationship holds for our system of interest, regardless of its state
as a gas, liquid or solid.

With this 𝜏 (u), Equation (7.5.2) becomes

( 1
a√u

) utt + ut = Duxx, (7.5.8)
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and this can be rewritten to get the expression

utt + a√u (ut − Duxx) = 0. (7.5.9)

The remainder of this section will be devoted to a study of var-
ious exact and approximate solutions to Equation (7.5.9). Please
remember that we are not claiming that Equation (7.5.9) is applica-
ble to any actual physical system. We are studying it, for now, as an
interesting generalization of the damped wave equation.

Finally, it should be stated that in most of the research literature,
Equation (7.5.2) is called the Maxwell–Cattaneo equation. Thus,
Equation (7.5.9) can be thought of as a nonlinear Maxwell–Cattaneo
PDE.

7.5.1 Positivity and Equilibrium Solutions

In physics, the temperature of a system always refers to its value in
the Kelvin absolute scale. With this scale, the lowest temperature is
zero and all physical realizable temperatures have positive value. So
if u is identified with the temperature, then

u (x, t) ≥ 0. (7.5.10)

Inspection of our modified, nonlinear, Maxwell–Cattaneo equation
(MNMCE) also indicates that unless this condition holds, the
solutions will be complex valued.

Since each term in the MNMCE contains a derivative, then

u (x, t) = u > 0, (7.5.11)

where u is a constant in a solution. However, it must be stated
that classical thermodynamics is formulated such that absolute
zero Kelvin can only be attained asymptotically, i.e., to reach zero
temperature requires an infinite iterative physical process.

In general, equilibrium solutions are those for which

𝜕
𝜕tu (x, t) = 0. (7.5.12)

Therefore,

ueg (x, t) = A + Bx, (7.5.13)
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where we have used the result in Equation (7.5.12) to derive the
relation:

Duxx (x, t) = 0, (7.5.14)

from Equation (7.5.9). The constants A and B are arbitrary and
depend on the boundary conditions of each particular problem; but,
they must always be selected such that

ueg (x, t) ≥ 0. (7.5.15)

Note that this is also a solution to the usual linear heat equation,
ut = Duxx. In particular, consider a thin, insulated wire of length, L,
with one end held at u = T0 > 0, at x = 0, and the other end fixed
at x = L, at temperature u = TL > 0. The equilibrium solution is

ueq (x, t) = T0 + (TL − T0
L ) x, 0 ≤ x ≤ L. (7.5.16)

In summary, the equilibrium solutions are the time-independent
solutions; they can depend on x, but only linearly.

7.5.2 Space-Independent Solutions

The space-independent solutions

u (x, t) = S (t) ; S (t) > 0, t ≥ 0, (7.5.17)

satisfy the following ODE

S′′ + a√S S′ = 0, S′ = dS
dt . (7.5.18)

(We remind ourselfies that a > 0.) Integrating once gives

S′ + (2a3 )S
3
2 = A. (7.5.19)

There are three cases to examine,

A < 0, A = 0, A > 0. (7.5.20)

Case (i): A<0
For this case, write A as

A = − |A| . (7.5.21)
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To solve Equation (7.5.19), we must evaluate an integral of the form

I (w) = ∫ dw
1 + w3/2 = (?) , (7.5.22)

and this turns out to have the following evaluation, which cannot be
solved explicitly for w,

I (w) = (13) [Ln (x −√x + 1) − 2Ln (√x + 1)]

+ ( 2
√3

) arctan (2√x − 1
√3

) . (7.5.23)

Clearly, we need to use another approach to determine meaningful
information on the main features of the solutions to Equation (7.5.19)
when A < 0.

We proceed by looking at Equation (7.5.19) in more detail. From
the perspective of the physics of a system modeled by this first-order,
nonlinear, ODE, the following conditions are expected to hold,

{
⋅ Lim

t→∞
S (t) = S∗ > 0.

⋅ Lim
t→∞

S’ (t) = 0. (7.5.24)

As a result of these conditions, the constant A is given by the
expression

(2a3 ) (S
∗)

3
2 = A > 0. (7.5.25)

This means that Case (i), A < 0, and Case (ii), A = 0, do not need to
be considered. With this in mind, we can rewrite Equation (7.5.19)
to the form

S′ = A − (2a3 )S3/2

= (2a3 ) [(S
∗)3/2 − S3/2] . (7.5.26)

Also, it must not be forgotten that

S (t) = 0, (7.5.27)

is a nontrivial solution to Equation (7.5.18). In the S (t) vs t, the
solution plane, Figure 7.9 sketches the types of solution behaviors.
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tS(1)
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0

S*
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t

FIGURE 7.9 Sketch of solution plane for Equation (7.5.18).

(a) If 0 < S0 < S∗, then S (t) increases smoothly to s∗.
(b) If S0 > S∗, then S (t) decreases smoothly to s∗.
(c) If S0 = S∗, then S (t) stays at this value.

Clearly, the two fixed-points have the following stability properties

{ S
(1)
= 0: unstable,

S
2
= S∗: stable.

(7.5.28)

An (almost) ad hoc form that can be used to approximate solutions
to Equation (7.5.26) is

Sapp (t) =
A

1 + Be−𝜆t
. (7.5.29)

This particular structure is hinted at by looking at the so-called
logistic equation

dy
dt = 𝜆1y − 𝜆2y2, 𝜆1 > 0, 𝜆2 > 0. (7.5.30)

Its exact solution is

y (t) = y0y∗

y0 + (y∗ − y0) e−𝜆1t
, (7.5.31)
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y∗ = 𝜆1
𝜆2
, (7.5.32)

where 𝜆1 and 𝜆2 are given and y0 = y (0) > 0. For our ODE, Equation
(7.5.26), we use as our approximate solution the expression

Sapp (t) =
S0S∗

S0 + (S∗ − S0) e−𝜆t
, (7.5.33)

where 𝜆 is to be determined. Using the fact that 𝜆 is related to the
time scale,

t∗ = 1
𝜆, (7.5.34)

then this allows us to calculate 𝜆 via the relation
1
t∗ = 𝜆 ≡ |||

dF (S)
dS

|||S = S∗
, (7.5.35)

where

F (S) = (2a3 ) [(S
∗)

3
2 − S3/2] . (7.5.36)

(A discussion of the basis of this procedure is given in Mickens (2022),
Section 0.5.) Therefore,

𝜆 = a√S∗ . (7.5.37)

In the article by Herron and Mickens (2023), they found that Sapp (t)
was remarkably close to an accurate numerical solution of Equation
(7.5.26).

7.5.3 Traveling Waves

We now investigate whether the MNMCE

utt + a√u (ut − Duxx) = 0, (7.5.38)

has traveling wave (TW) solutions, i.e.,

u (x, t) = f (z) , z = x − ct. (7.5.39)

Substituting this expression into Equation (7.5.38) gives

c2f′′ + a√f (−cf′ − Df′′) = 0, (7.5.40)
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or

(c2 − aD√f ) f′′ = (ac)√f f′. (7.5.41)

Note that we are only interested in solutions with the property

f (z) > 0, −∞ < z < +∞. (7.5.42)

From Equation (7.5.42), we can construct its first-order system
representation,

df
dz = f′, df′

dz = (ac)√f f′

c2 − (aD)√f
. (7.5.43)

For the remainder of this section, we assume

C > 0. (7.5.44)

The case c < 0 can be worked out in a manner similar to the case
c > 0.

The trajectories in the f-f′ phare-plane are solutions to the
following first-order, nonlinear ODE

df′
df = (ac)√f

c2 − (aD)√f
. (7.5.45)

The corresponding nullclines are

df′
df = 0 ∶ { (1) along the f′-axis,

(2) along the f-axis, (7.5.46)

df′
df = ∞ ∶ {

(1) along the f-axis,

(2) along f = ( c2

aD
)
2 . (7.5.47)

Figure 7.10 provides in (a) information on the properties of the f− f′
phase-space. Some of these features are:

(i) The nullclines divide the phase-space into four regions (for
f > 0). They are indicated by the notation (R1,R2,R3,R4).

(ii) The arrows coming out of a representative point for each region
indicate the directions of the trajectories in each region. In more
detail, we have
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f '

0

R1 R2

R4 R3

(a)

(b)

f

f '

0
fA fB

f

f =            = f *C
2

aD

2

FIGURE 7.10 (a) Nullclines for Equations (7.5.43) with c > 0. Horizontal-
dashed lines (—) and vertical-dashed lines (), indicate, respectively, where
the slopes of the trajectories are zero and infinite. (b) A traveling wave
trajectory.

R1 ∶ 0 < f < f∗, f′ > 0, (↗) ;

R2 ∶ f > f∗, f′ > 0, (↘) ;

R3 ∶ f > f∗, f′ < 0, (↖) ;

R4 ∶ 0 < f < f∗, f′ < 0, (↙) .
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(iii) The positive f-axis is both a zero- and infinite nullcline. There-
fore, every point on the positive f-axis is a fixed-point, i.e.,
constant solution.

(iv) The fixed-points on the f-axis interval

0 < f < f∗, (7.5.48)

are all unstable, while the fixed-points on the f-axis interval

f > f∗, (7.5.49)

are stable.

(v) The (b) part of Figure 7.10 gives a sketch of a typical traveling
wave solution. It starts at fA, i.e.,

fA = f (−∞) > 0 (7.5.50)

and increases to fB, i.e.,

fB = f (+∞) > 0, (7.5.51)

fA < fB. (7.5.52)

At a value of z call it z = z∗, where

df′
df = ∞ (7.5.53)

the slope in f (z) has a ‘kink’. Figure 7.11 sketches a typical
traveling wave solution.

(vi) For the situation where c < 0, then all of the trajectory direc-
tional flow arrows have their f′ signs flip and the general f′-f
phase-space and traveling waves take the forms sketched in
Figure 7.11 .

Now the traveling waves start at fc, i.e.,
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f '
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R1 R2

R4 R3

f

f = f*
(a)

f

f '

0

fD fC

(b)

FIGURE 7.11 (a) Nullclines for Equation (7,5.43), with c < 0. Notations are
the same as in Figure 7.10.

fc = f (−∞) > 0, (7.5.54)

and decreases to fD; i.e.,

fD = f (+∞) > 0, (7.5.55)

fD < fc. (7.5.56)

(vii) The traveling wave solutions are drawn in Figure 7.12 .
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z
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c > 0

c < 0
z

FIGURE 7.12 Representations of the traveling wave solutions for Equation
(7.5.43).

7.5.4 Resume

We have derived a number of the important aspects of a nonlin-
ear generalization of the Maxwell–Cattaneo PDE. In particular, the
following results were obtained:

(a) Non-negative solutions were shown to exist.
(b) Explicit forms were calculated for the equilibrium solutions.
(c) For the space-independent solutions, we were not able to solve

explicitly their functional behavior, but we derived their sig-
nificant properties and constructed an approximation to these
solutions, which was ‘accurate’ when compared to corresponding
numerical solutions.

(d) The investigated traveling wave solutions, mainly using 2-dim
phase-space techniques, showed that they exist. However, at the
level of our calculations, the value of their speed, c, could not
be calculated.
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Whether or not our MNMCE has direct a physical application was
not considered.

7.6 NONLINEAR OSCILLATIONS: AN AVERAGING
METHOD

A large class of physical phenomena can be modeled as 1-dim,
nonlinear oscillators where the equation of motion takes the form

d2x
dt2 + x = 𝜖f (x, dx

dt ) , 0 < 𝜖 ≪ 1. (7.6.1)

In this section, we first introduce an ‘averaging method’ to calcu-
late first order in 𝜖 solutions to such differential equations. We also
present a brief discussion on some problems, which may arise if terms
higher-order in 𝜖 are calculated.

A major use of the averaging method is that there is evidence to
suggest that the first-order averaging procedure provides valid infor-
mation on the general qualitative features of the oscillatory solutions
in spite of such solutions not being entirely ‘mathematical correct’.
Consequently, the system can be examined and understood without
having a rigorously derived exact solution.

Section 7.6.1 gives a heuristic derivation of the method of averag-
ing, suitable for most physical scientists. This is followed by Section
7.6.2 which discusses some limitations of the averaging method as
indicated by a system with limit-cycles. Finally, in Section 7.6.3, we
work out the details of applying the method of averaging to several
explicit examples.

7.6.1 First Approximation of Krylov and Bogoliubov

To begin, let 𝜖 = 0. This reduces Equation (7.6.1) to the form

d2x
dt2 + x = 0 (7.6.2)

whose general solution is

x (t) = a cos (t + 𝜑) , (7.6.3)

with
dx (t)

dt = −a sin (t + 𝜑) , (7.6.4)
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where (a, 𝜑) are arbitrary constants.
For 0 < 𝜖 ≪ 1, assume that Equation (7.6.1) has a solution that

can be represented as

x (t) = a (t) cos [t + 𝜑 (t)] , (7.6.5)

where a and 𝜑 are now functions of t and 𝜖, i.e.,

a → a (t, 𝜖) = a (t) , (7.6.6)

𝜑 → 𝜑 (t, 𝜖) = 𝜑 (t) . (7.6.7)

Let us also assume that the derivative of x (t) has the form

dx (t)
dt = −a (t) sin [t + 𝜑 (t)] . (7.6.8)

Note that we have the freedom to do this since a (t) and 𝜑 (t) are the
present unknown.

If we take the derivative of Equation (7.6.5)

dx
dt =

da
dt cos 𝜓 − a sin 𝜓 − a

d𝜑
dt sin 𝜓, (7.6.9)

where

𝜓 (t) = t + 𝜑 (t) , (7.6.10)

and require

da
dt cos 𝜓 − a

d𝜑
dt sin 𝜓 = 0, (7.6.11)

then the relation in Equation (7.6.8) is obtained, along with a rela-
tionship between the derivatives da/dt and d𝜑/dt, given in Equation
(7.6.11).

If Equation (7.6.8) has its derivative taken, we have

d2x
dt2 = −da

dt sin 𝜓 − a cos 𝜓 − a
d𝜑
dt cos 𝜓. (7.6.12)

Substituting Equations (7.6.5), (7.6.8) and (7.6.12) into Equation
(7.6.1) gives

da
dt sin 𝜓 + a

d𝜑
dt cos 𝜓 = −𝜖f (a cos 𝜓,−a sin 𝜓) , (7.6.13)
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which is linear in the derivatives, da/dt and d𝜑/dt. Solving Equations
(7.6.11) and (7.6.13) for these derivatives gives the results

da
dt = −𝜖f (a cos 𝜓,−a sin 𝜓) sin 𝜓, (7.6.14)

d𝜑
dt = −( 𝜖a) f (a cos 𝜓,−a sin 𝜓) cos 𝜓, (7.6.15)

𝜓 (t) = t + 𝜑 (t) . (7.6.16)

Note that at this stage, these coupled first-order ODEs are exact and,
in general, cannot be solved to obtain a (t, 𝜖) and 𝜑 (t, 𝜖). However, a
first approximation can be found by making the following heuristic
physical argument:

(i) The right-hand sides of Equations (7.6.14) and (7.6.15) are
periodic functions of ̇𝜓, with period 2𝜋. Thus, over any interval of
2𝜋 in 𝜓, function, f, is bounded, then

da (t)
dt = O (𝜖) , d𝜑 (t)

dt = O (𝜖) . (7.6.17)

If 0 < 𝜖 ≪ 1, then these derivatives will change very little on any 𝜓
interval of 2𝜋. Therefore, if we average the right-hand side of Equa-
tions (7.6.14) and (7.6.15) over the interval 2𝜋 in 𝜓, then the resulting
ODEs may be a useful first approximation for calculating a (t, 𝜖) and
𝜑 (t, 𝜖). Doing this gives

da (t)
dt = −( 𝜖2𝜋)∫

2𝜋

0
f (a cos 𝜓,−a sin 𝜓) sin 𝜓d𝜓, (7.6.18)

d𝜑 (t)
dt = −[ 𝜖

2𝜋a (t)]∫
2𝜋

0
f (a cos 𝜓,−a sin 𝜓) cos 𝜓d𝜓, (7.6.19)

Note that the two integrals will depend only on a (t), since 𝜑 is
included in 𝜓. Therefore, these approximate equations take the form

da (t)
dt = 𝜖A (a) , d𝜑 (t)

dt = 𝜖B (a) , 0 < 𝜖 ≪ 1. (7.6.20)

The procedure for solving these coupled ODEs is to first solve the
first ODE for a (t, 𝜖), then substitute it into the right-hand side of the
second equation and integrate it to obtain 𝜑 (t, 𝜖). This is the method
of first-order averaging.
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7.6.2 Higher-Order Corrections

The method of averaging can be extended to higher orders in 𝜖. This
was done by Krylov, Bogoliuibov and Mitropolsky and is represented
by the following expansions

x (t, 𝜖) = a cos 𝜓 + 𝜖u1 (a, 𝜓) + 𝜖2u2 (a, 𝜓) +⋯ (7.6.21)

da
dt = 𝜖A1 (a) + 𝜖2A2 (a) +⋯, (7.6.22)

d𝜓
dt = 1 + 𝜖B1 (a) + 𝜖2B2 (a) . (7.6.23)

They construct a scheme for step-by-step calculation of the func-
tions on the right-hand sides of these equations from a knowledge
of Equation (7,6.1). This procedure is long and complicated, and
also has certain difficulties that make it not useful for determining
corrections to the basic first-order averaging procedure. The book
by Mickens (1996) provides an example where ‘spurious limit-cycles’
can occur in the application of these higher-order techniques.

The author’s experience is consistent with the fact that many
‘standard expansion (in 𝜖) methods’ only provide valid approxima-
tion in the lowest order 𝜖. All of the calculations that we carry out in
the next subsection are done only to O(𝜖). In a fundamental sense,
unless one is very careful, most of the expansion techniques will only
provide qualitative information on the solutions we seek.

7.6.3 Examples

7.6.3.1 The van der Pol Oscillator

The van der Pol oscillator equation is

d2x
dt2 + x = 𝜖 (1 − x2) dx

dt . (7.6.24)

Two other similar nonlinear oscillators are

Lewis equation ∶ d2x
dt2 + x = 𝜖 (1 − |x|) dx

dt , (7.6.25)

Rayleigh equation ∶ d2x
dt2 + x = 𝜖 [1 − ( i

3) (
dx
dt )

2
] dx

dt . (7.6.26)
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For the van der Pol equation

f (x, dx
dt ) = (1 − x2) dx

dt (7.6.27)

and

f (a cos 𝜓,−a sin 𝜓) = (1 − a2 cos2 𝜓) (−a sin 𝜓) . (7.6.28)

Therefore,

da
dt = ( 𝜖2𝜋)∫

2𝜋

0
a (1 − a2 cos2 𝜓) sin2 𝜓d𝜓, (7.6.29)

d𝜑
dt = ( 𝜖2𝜋)∫

2𝜋

0
(1 − a2 cos2 𝜓) sin 𝜓 cos 𝜓d𝜓. (7.6.30)

The second integrand is odd in 𝜓 and therefore equal to zero;
consequently, we have

−d𝜑
dt = 0⟹ 𝜑 = 𝜑 (t, 𝜖) = 𝜑0, 𝜑0 = constant. (7.6.31)

The first-integral can be easily evaluated to give

da
dt = 𝜖 (a

2) (1 −
a2
4 ) . (7.6.32)

If we make a change of variable,

a → z = a2, (7.6.33)

then z satisfies the ODE
dz
dt = 𝜖z (1 − z

4) , (7.6.34)

which has the solution

z (t, 𝜖) = z0e(𝜖t)

1 + ( z0
4
) (e(𝜖t) − 1)

, (7.6.35)

where

z0 = z (0) = [a (0)]2 = A2
0. (7.6.36)
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Therefore,

a (t, 𝜖) = A0e
𝜖t
2

[1 + (A2
0
4
) (e𝜖t − 1)]

1
2

, (7.6.37)

and the first-order averaging solution to the van der Pol equation is

x (t, 𝜖) = A0e
( 𝜖t
2
) cos (t + 𝜑0)

[1 + (A2
0
4
) (e𝜖t − 1)]

1
2

⋅ (7.6.38)

Inspection of this expression allows the following conclusions to be
reached:

(i)

x (0, 𝜖) = 0. (7.6.39)

(ii) Large

t ∶ x (t, 𝜖)⟶ 2 cos (t + 𝜑0) . (7.6.40)

(iii) Two fixed-points exist for the a-equation. They are located at

a (𝜖, t) = a1 = 0, a (𝜖, t) = a2 = 2. (7.6.41)

A linear stability analysis shows that their fixed-points are, respec-
tively, unstable and stable.

(iv) For this level of calculation, the period of the oscillation is 2𝜋,
i.e.,

T = 2𝜋 + O′ (𝜖) . (7.6.42)

Figure 7.13 provides sketches of the limit-cycle behavior.
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FIGURE 7.13 Sketches of x (t, 𝜖) vs t for Equation (7.6.38).

7.6.3.2 Oscillator with Nonlinear Damping

The equation for a harmonic oscillator with quadratic nonlinear
damping is

d2x
dt2 + x = −𝜖 |||

dx
dt
|||
dx
dt , (7.6.43)

for which

f (x, dx
dt ) = − |||

dx
dt
|||
dx
dt

⟶−|a sin𝜓| (−a sin𝜓) . (7.6.44)

Therefore,

da
dt = −( 𝜖2𝜋)∫

2𝜋

0
a2 |sin 𝜓| sin2 𝜓d𝜓, (7.6.45)

d𝜑
dt = −( 𝜖

2𝜋a)∫
2𝜋

0
a2 |sin 𝜓| sin 𝜓 cos 𝜓d𝜓, (7.6.46)

where the second integral is zero because the integrand is an odd
function of 𝜓. This means that

𝜑 (t, 𝜖) = 𝜑0 (7.6.47)
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FIGURE 7.14 Sketch of x vs t, for Equation (7.6.50).

Integrating the right-hand side of Equation (7,6.45) gives

da
dt = −( 4𝜖3𝜋) a2, a (0) = a0, (7.6.48)

whose solution is

a (t, 𝜖) = a0
[1 + (4∈a0

3𝜋
) t]

(7.6.49)

Therefore, the averaging method gives the following (approximate)
solution for the harmonic oscillator with quadratic damping

x (t, 𝜖) = A cos (t + 𝜑0)
1 + (4𝜖A

3𝜋
) t

(7.6.50)

where A = x (0, 𝜖).
Note that for large times, i.e.,

t ≫ t∗ = 3𝜋
4𝜖A , (7.6.51)

the solution has the behavior

x (t, 𝜖) →
larget

(3𝜋4𝜖 ) [
cos (t + 𝜑0)

t ] . (7.6.52)

See Figure 7.14 for a sketch of x (t, 𝜖) vs t.

7.6.3.3 Oscillator with Coulomb Damping

The so-called ‘dry friction force’ is often named the Coulomb fric-
tion force or Coulomb damping force. In the context of oscillators,
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a harmonic oscillator subjected to Coulomb damping is represented
by the following differential equation

d2x
dt2 + x = −𝜖C sgn (dx

dt ) ,C > 0, (7.6.53)

where the Coulomb damping force is given by

FC (
dx
dt ) = − ∈ Csgn (dx

dt ) , (7.6.54)

with

sgn (z) = { +1, z > 0;
−1, z < 0. (7.6.55)

Note that

f (x, dx
dt ) = −C sgn (dx

dt )

→ C sgn (−a sin 𝜓) = −C sgn (a sin𝜓)
= C sgn (sin𝜓) . (7.6.56)

The last relationship follows from the fact that for oscillatory
problems, the amplitude can always be selected or defined to be
non-negative.

The equation for d𝜑/dt is

d𝜑
dt = 0 → 𝜑 (t, 𝜖) = 𝜑0 (7.6.57)

because the corresponding integrand is odd in 𝜓. For da/dt, we have

da
dt = −( 𝜖2𝜋)∫

2𝜋

0
[C sgn (−a sin𝜓)] sin𝜓d𝜓

= −(𝜖C2𝜋)∫
2𝜋

0
sgn (sin𝜓) ⋅ sin𝜓d𝜓

= −(𝜖C2𝜋) [∫
𝜋

0
sin𝜓d𝜓 −∫

2𝜋

𝜋
sin𝜓d𝜓]

= −(2𝜖C𝜋 ) ⋅ (7.6.58)
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FIGURE 7.15 x (t) vs t for the Coulomb damped harmonic oscillator A = a0.

Or, in more detail

da
dt = { − (2𝜖C

𝜋
) , a > 0,

0, a = 0.
(7.6.59)

Integrating this last equation gives for a (t, 𝜖), the expression

a (t, 𝜖) = { a0 − (2𝜖c
𝜋
) t, 0 < t ≤ t∗;

0, t > t∗,
(7.6.60)

for

a0 = x (0, 𝜖) > 0, t∗ = 𝜋a0
2𝜖C . (7.6.61)

Thus, the damped oscillating will only exist for a finite time, t = t∗.
Further, the total number of oscillations will be finite. If we denote
this number by N, then

N ≃ t∗
2𝜋 = a0

4𝜖C . (7.6.62)

Figure 7.15 is a sketch of the function

x (t, 𝜖) = a (t, 𝜖) cos (t + 𝜑0) , (7.6.63)

where a (t, 𝜖) is the results expressed in Equation (7.6.60).

7.6.3.4 Oscillators Having Quadratic Terms

Two interesting examples to examine are harmonic oscillators with
the addition of the quadratic terms x2 and (dx/dt)2, i.e.,

d2x
dt2 + x + 𝜖x2 = 0, (7.6.64)
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d2x
dt2 + x + 𝜖(dx

dt )
2
= 0. (7.6.65)

If we calculate the first-averaging method solutions, it turns out that
they both have the solution

x (t, 𝜖) = A cos (t + 𝜑0) , (7.6.66)

where A and 𝜑0 are constant. This means that to the first approxi-
mation in the (small) parameter, 𝜖, no change occurs in the behavior
of the basic solution to the harmonic oscillator if quadratic nonlinear
terms are included.

Figures 7.16, 7.17 and 7.18 give the details of the x − y = dx/dt
phase-space, with sketches of typical trajectories, for 𝜖 > 0. We have
also included the third quadratic nonlinear term equation, i.e.,

d2x
dt2 + x + 𝜖xdx

dt = 0. (7.6.67)

Observe that all three cases produce entirely different phase-space
structures.

We now provide more details on these three quadratically modi-
fied harmonic oscillator ODEs.

d2x
dt2 + x + 𝜖x2 = 0

The first-order, coupled system ODEs are

dx
dt = y, dy

dt = −x (1 + 𝜖x) . (7.6.68)

There are two fixed-points located at

(x(1), y(1)) = (0, 0) , (x(2), y(2)) = (−1𝜖 , 0) . (7.6.69)

The ODE for the trajectories is

dy
dx = −x (1 + 𝜖x)

y . (7.6.70)

The nullclines are
dy
dx = 0 ∶ { along they-axis,

alongy = (−1/𝜖) . (7.6.71)
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FIGURE 7.16 X + x + 𝜖x2 = 0. (a) dy/dx = 0, along the horizontal-dashed
lines; dy/dx = ∞, along the vertical-dashed lines. (b) Sketches of typical
trajectories in the x−y phase-space.

dy
dx = ∞ ∶ along thex-axis. (7.6.72)

Since Equation (7.6.70) is invariant under

y → −y, (7.6.73)

the solutions are invariant in reflection on the x-axis.
The following conclusions can be reached from an inspection of

Figure 7.16 :
(a) Our nonlinear oscillator has both periodic solutions (closed

curves) and nonperiodic, unbounded solutions.
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FIGURE 7.17 ẍ + x + t𝜖(ẋ)2 = 0. (a) dy/dx = 0, along the horizontal-dashed
lines; dy/dx = ∞, along the vertical-dashed lines. (b) Sketches of typical
trajectories in the x − y phase-space.

(b) The periodic solutions take place around the fixed-point,
(x(1), x(2)) = (0, 0).

(c) The fixed-points are of the following types:

(x(1), x(1)) = (0, 0) ∶ center, (7.6.74)

(x(2), x(2)) = (−1𝜖 , 0) : hyperbolic (saddle point). (7.6.75)

(d) There is a homoclinic orbit that begins and ends at the same
fixed-point, (x(2), y(2)). Trajectories inside it are periodic; those
lying outside it have unbounded trajectories.
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FIGURE 7.18 ẍ + x + 𝜖xẋ = 0. (a) dy/dx = 0, along the horizontal-dashed
lines; dy/dx = ∞, along the vertical-dashed lines. (b) Sketches of typical
trajectories in the x − y phase-space.

d2x
dt2 + x + 𝜖(dx

dt )
2
= 0.

The system form of this ODE is
dx
dt = y, dy

dt = −x − 𝜖y2, (7.6.76)

and the corresponding ODE for the trajectory curves is
dy
dx = −(x + 𝜖y2

y ) . (7.6.77)
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There is a single fixed-point

(x, y) = (0, 0) . (7.6.78)

The nullclines are
dy
dx = 0: along the curvex + 𝜖y2 = 0, (7.6.79)

dy
dx = ∞ ∶ along thex-axis. (7.6.80)

Inspection of Equation (7.6.77) shows that it is invariant under the
transformation

y → −y, (7.6.81)

consequently, the phase-space trajectories are invariant with respect
to reflection in the x-axis.

Inspection of Figure 7.17 shows that all the trajectories in
phase-space are closed, and this result means that all solutions are
periodic

d2x
dt2 + x + 𝜖xdx

dt = 0.

The coupled, first-order, system ODEs are
dx
dt = y, dy

dt = −(1 + 𝜖dx
dt ) x, (7.6.82)

and they have a single fixed-point at

(x, y) = (0, 0) . (7.6.83)

The ODE determining the trajectories in phase-space is
dy
dx = −(1 + 𝜖y

y ) x. (7.6.84)

The nullclines are
dy
dx = 0 ∶ {

along they-axis;
along y = −( 1

𝜖
) . (7.6.85)

dy
dx = ∞ ∶ along the x-axis. (7.6.86)

From Figure 7.19 , the following conclusion can be reached:
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FIGURE 7.19 Minimum number of fixed-points for a realistic predator–prey
system.

(a) There are three classes of solutions.
Periodic solutions for trajectories having

x0 = x (0) , arbitrary,

y0 = y (0) > − (1𝜖 ) .

If y0 = y (0) = − ( 1
𝜖
), then the solution is

x (t) = x0 − t.

Unbounded solutions for any point for which the starting condi-
tions are

x0 = x (0) , arbitrary,

y0 = y (0) < − (1𝜖 ) .

(b) The flow of the phase-space trajectories has the appearance of
a flowing fluid.
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7.6.4 Summary

Our presentation of the method of first-order averaging and its appli-
cation to several 1-dim oscillatory equations show that it is valid only
in a neighborhood of fixed-points at (x, y) = 0. This result is consis-
tent with the results from an analysis of the trajectories in the 2-dim
phase-plane. In fact, the examination of the phase-plane trajectories
may give important details not readily available from the explicit
formulas provided by the method of averaging.

7.7 CULLING IN PREDATOR–PREY SYSTEMS

Culling of animals is a process of selectively removing animals from
a population to control their numbers such that a particular set of
goals are achieved. The removal methods may include killings, isola-
tion, etc. The reasons for culling are varied and include some or all
of the following outcomes:

● Economic benefits
● Disease reduction and control
● Achieving sustainable animal populations
● Elimination of animals that pose a serious threat to human health

and activities

However, culling can have negative consequences such as

● Harming unrelated animal species
● Destroy the biodiversity of a given ecosystem
● Drive the original animal species to extinction

Our interest in the issue of predator culling in predator–prey systems
had its genesis in a news story by Goldfarb (2016). He discussed evi-
dence to suggest that the outcomes of predator culling may not be
consistent with prior notions of what should occur, i.e., culling should
end or at least cause a reduction in predation. Goldfarb’s article was
a commentary and analysis of a research article by Prentice et al.
(2019). In the Abstract, they state

Culling wildlife to control disease can lead to decreases
and increases in disease levels, with apparently conflict-
ing respones observed, even for the same wildlife-disease
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system …. We show that if population reduction is too
low, or too few groups are targeted, a perturbation effect′
is observed, whereby culling leads to increased movement
and disease spread. We also demonstrate the importance of
culling across appropriate time scales, with otherwise suc-
cessful control strategies leading to increased disease if they
are not implemented for long enough.

The main purpose of this section is to present the work of Mickens
and his collaborators on culling of predators in simple predator–prey
mathematical models based on two coupled ODEs. We give argu-
ments to show that culling does not change the long-term behavior of
the population dynamics of either the prey or predator populations.

The following assumptions are assumed to hold:
(i) Prey can exist without the predator and generally have a

non-negative, net birth rate;
(ii) Predators consume the prey as their only food source;
(iii) All environmental factors are assumed to be constant;
(iv) Neither population is eradicated by the culling.

7.7.1 Predator–Prey Models

A broad variety of predator–prey mathematical models have been
constructed to analyze these types of two interacting population sys-
tems. The references, to be listed, provide information on the history
of these models, why they were created, and details on how they were
constructed:
(a) R. M. May, Science, Vol. 177 (1972), 900–902.
(b) R. M. May, Stability and Complexity in Model Ecosystems,

2nd Edition (Princeton University Press, Princeton, 1974), see
Chapter 4.

(c) J. D. Murray, Mathematical Biology (SpringerVerlag, Berlin,
1989).

(d) M. Rosensweig, Science, Vol. 171 (1971), 385–387.
Representative samplings of these models are:

Lotka–Volterra
dx
dt = x (a − by) , (7.7.1)
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dy
dt = y (−c + dx) . (7.7.2)

Verhulst–Pearl
dx
dt = rx (K − x) − bxy, (7.7.3)

dy
dt = y (−c + dxy) . (7.7.4)

Gompertz

dx
dt = (rx) Ln (K

x ) = −bxy, (7.7.5)

dy
dt = y (−c + dx) . (7.7.6)

Logistic–Ivlev

dx
dt = (rx) (K − x) − y [1 − exp (−bx)] , (7.7.7)

dy
dt = y {−c + d [1 − exp (−bx)]} . (7.7.8)

Logistic–Holling–Leslie

dx
dt = (rx) (K − x) − axy

b + x , (7.7.9)

dy
dt = cy (1 − y

gx) . (7.7.10)

In these equations, the parameters, (a, b, c, d, r, g, k) are non-negative
and, x = x (t) and y = y (t), denote, respectively, the prey and
predator populations at time t.

7.7.2 General Properties of Predator–Prey Models

There are a few rules that can be used to guide the construction
of mathematical models for predator–prey systems (PPS); the three
most important are:
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In the absence of the predator, the prey population should be
bounded. Note that this requirement eliminates the standard,
well-liked, Lotka–Volterra model.
The mathematical structure of the two, coupled, nonlinear ODEs
should be

dx
dt = xF (x, y) , dy

dt = yG (x, y) . (7.7.11)

In the x − y phase-plane, the ODE system, given in Equation
(7.7.11) must have at least three fixed-points or equilibrium
solutions. See Figure 7.19 for more details.

The three fixed-points must have the following properties:

(i) Fixed-point A ∶ (0, 0) corresponds to a state where there are
no predators or prey. It must be unstable. The reason for this
to be true is that the introduction of a small amount of prey
will cause, in the absence of predators, an increase in the prey
population.

(ii) The fixed-point B ∶ (x, 0) is the equilibrium state of the prey
population in the absence of a predator population. It must also
be unstable since the introduction of a small number of predators
will decrease the prey population from its equilibrium value.

(iii) The fixed-point C ∶ (x∗, y∗) denotes a fixed-point that indicates
an equilibrium state in which the prey and predator populations
can co-exist. It must obviously be stable.

In general, the fixed-points at A ∶ (00) and B ∶ (x, 0) are staddle-
points. However, the fixed-point at C ∶ (x∗, y∗) can a priori be of
three types:

● A (linear or nonlinear) center, which has neutral stability;
● A stable node;
● An unstable node.

Figure 7.20 illustrates these three possibilities. Note that the case
for a center is not ecological realistic since the initial conditions can
be selected such that the prey and predator oscillation amplitudes
can be made arbitrarily large. This implies that the Lotka–Volterra
model, while widely used to illustrate predator–prey dynamics, is not
realistic.
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FIGURE 7.20 The dot represents the fixed-point at (x∗, y∗). There are three
possibilities for the stability of this fixed-point as indicated in the diagrams.
In (c), the continuous closed curve is a limit-cycle.

If (x∗, y∗) corresponds to a stable node, then the near-by trajec-
tories all spiral into it, as shown in Figure 7.20 (b). However, the
third case is the most interesting situation; see Figure 7.20 (c). Here,
we have an unstable node, enclosed by a stable limit-cycle, which
means that essentially all initial conditions give rise to trajectories
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approaching the limit-cycle. For this case, the minimum and max-
imum values of the prey and predator populations, along with the
period of the osculation, are determined by the parameters appearing
in the mathematical model and not by the initial conditions.

7.7.3 Culling

Within the context of a mathematical model for the interacting
dynamics of a particular sat of predator and prey populations, we
define culling of the predator population as follows:

Definition
Culling is the (external) reduction of the predator population at time,
t = t0, by an amount yc, i.e.,

y (t0) → y (t0) − yc, (7.7.12)

where

0 < yc < y (t0) . (7.7.13)

Generally, culling is done with the expectation that there will be an
eventual increase in the prey population. Further, the culling action
may be repeated at later times at either regular or irregular time
intervals.

Here, our main purpose is to provide arguments to show, within
the context of standard mathematical models of predator–prey pop-
ulation dynamics, that culling does not change the long-term popula-
tion numbers of either the prey or predator. We do this by examining
what happens with just one culling event.

7.7.4 Culling the Predator

Culling the predator at time, t0, is equivalent to moving from the
phase-plane point, (x (t0) ; y (t0)), to (x (t0) , y (t0) − yc), where yc > 0
is the magnitude of the cull.

In Figures 7.20 and 7.21 , in the diagrams, ‘1’ denotes the loca-
tion of the trajectory at time t0, i.e., (x (t0) , y (t0)), while ‘2’ is
the position in the phase-plane after the culling has taken place,
(x (t0) , y (t0) − y0). The results from these diagrams are a visual
demostration that with a single cull the long-term dynamics does
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FIGURE 7.21 The fixed-point, (x∗, y∗) is a stable node. The full line is the
original trajectory; the dashed line is the perturbed (after culling) path.

not change, i.e., the predator and prey populations return to either
the fixed-point, (x∗, y∗), or to the surrounding limit-cycle (Figure
7.22). 

7.7.5 Summary

The results of this section imply that within the framework of stan-
dard, deterministic, ODE-based mathematical models for one prey
and one predator, culling of the predator does not have long-term
affects on the prey or predator populations. Consequently, there are
good reasons to investigate other types of mathematical models, such
as ones that include stochastic effects. Careful inspection of Figures
7.20 and 7.21 shows that culling of the predator population may
in some instances even cause, later on, an increase in the predator
population.



Applications ∎ 229

x

1

1

2

2

y

0(a)

x

y

0(b)

FIGURE 7.22 The fixed-point (x∗, y∗) is an unstable node and is inside a
stable limit-cycle. After culling, light lines, the trajectories still approach
the limit-cycle.

Finally, we should be aware that all the considerations of the sec-
tion were arrived at without the need to solve any equations. This is
the essence of the qualitative analysis methodology.

7.8 A LINEAR ODE: Y′ = (X − Y) /X2

One of the most frustrating aspects involved with the mathemati-
cal modeling of a physical system is finding out that the differential
equation has an exact solution, but this solution contains functions
that you have never encountered before. In this section, we will illus-
trate this phenomena and show one possibility as to how to deal with
it.
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FIGURE 7.23 The based features of the function, Ei (x).

The ODE under consideration is the following first-order, linear
equation

x2 dy
dx = x − y, (7.8.1)

which we rewrite as
dy
dx = x − y

x2 (7.8.2)

or
dy
dx + ( 1x2 ) y = 1

x . (7.8.3)

There are several methods of solving this equation for its ‘exact’
solution. For example, using any one of many differential equation
solvers, the following answer is given

y (x) = −Ei (−1x) ⋅ e
1
x + cie

1
x , (7.8.4)

and it is stated that Ei (x) is the so-called exponential integral

Ei (x) = ∫
x

−∞

et

t dt. (7.8.5)

The general features of Ei (x) are sketched is Figure 7.23 . Note that

Ei (0) = −∞; Ei (x∗) = 0; x∗ = 0.3725…. (7.8.6)

Few physical scientists will recognize this function and so having it
definition, Equation (7.8.16), will be of little value. One has to con-
sult either books on ‘special functions’ or use numerical methods to
obtain useful information.
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FIGURE 7.24 Nullclines for y′ = (x − y) /x2. Note that the nullclines divide
the x − y plane into four regions, each having a definite sign for y′ (x).

In the remainder of this section, we will show how a useful approx-
imate solution can be calculated. However, before doing this, an
analysis of the general features of ‘E’, Equation (7.8.13) will be done.

7.8.1 Qualitative Analysis

The first thing we will do is to reinterpret Equation (7.8.13) as the
ODE that gives the trajectories in an x−y planar phase-space. There-
fore, this 2-dim dynamic system can be represented by the following
coupled ODEs

dx
dz = x2, dy

dz = x − y, (7.8.7)

where a dummy independent variable, z, has been introduced. Since

dy
dx = dy/dt

dx/dt
= x − y

x2 , (7.8.8)

it follows that there is only one fixed-point and it is located at the
origin, i.e.,

(x, y) = (0, 0) . (7.8.9)

In this x − y plane, the nullclines are

dy
dx = 0: points on the curvey0 (x) = x. (7.8.10)
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FIGURE 7.25 Typical trajectories in the x− y plane. These trajectories are
the solutions we are seeking. The dashed line is the zero nullcline.

dy
dx = ∞: points on they-axis. (7.8.11)

With this information, Figures 7.23 gives the nullclines and Figure
7.25 sketches representations of the general flow of the trajectories. 

We now summarize some of the important features of the
trajectory flows as presented in Figure 7.25 :

(i) The neighborhood of the only fixed-point, at (x, y) = (0, 0), is
complex.

(ii) If we restrict our analysis to x > 0, then eventually all
trajectories become positive and monotonically increase.

(iii) In the first quadrant, trajectories that initially start above the
line, y0 (x) = x, i.e., the zero nullcline, decrease until they cross
y0 (x) with zero slope and then increase smoothly.

(iv) There is a curve, denoted by ys (x), for which all the trajectories
in (iii) lie above it. Further, all trajectories that originate in the
fourth quadrant lie below it.

(v) For x ≥ 0, we have

Lim
x→0+

y (x) = +∞, if y > 0; first quadrant.



Applications ∎ 233

Lim
x→0+

y (x) = −∞, if y < 0; fourth quadrant.

Finally, observe that the real value of considering our ODE as the
trajectory determining equation for a 2-dim system is that this pro-
cedure allows us to construct a phase-plane representation that gives
us information on the solutions, y (x), of the original ODE. Note that
the dummy varable, z, never appears.

7.8.2 Construction of an Approximate Solution

We will now use the method of dominant balance to help construct
an approximation to the exact solution of the ODE

dy
dx = 1

x − ( 1x2 ) y. (7.8.12)

For x large, ‘assume’ that the second term on the right-hand side is
negligible to react to the first term, i.e.,

Largex ∶ 1
x ≫ y

x2 . (7.8.13)

Therefore, our ODE can be approximated by

dy
dx ≃ 1

x , (7.8.14)

which has the solution

yL (x) = Ln (|x|) + C1, (7.8.15)

where C1 is a constant. Note that under this condition, the inequality
in Equation (7.8.13) holds.

Now, assume that for small x, i.e., in the neighborhood of 0+, the
second term on the right-hand side of Equation (7.8.12) dominates.
Under this condition our ‘approximation’ ODE is

dy
dx ≃ −( 1x2 ) y (7.8.16)

with solution

Ln (y) = 1
x + C2, (7.8.17)
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and this can be rewritten to the form

yS (x) = C3e
1
x . (7.8.18)

We will take as our approximation to the exact solution the following
expression

yapp (x) = yL (x) + yS (x) (7.8.19)

= Ln (|x|) + C3e
1
x + C1.

Since our original ODE is of first order, only one arbitrary constant
should appear. Therefore, we take

C1 = 0. (7.8.20)

This can also be justified by observing that in Equation (7.8.15),

xlarge ∶ Ln (|x|) >> +C1. (7.8.21)

Finally, we obtain the following result for an approximation to the
exact solution of Equation (7.8.12),

yapp (x) = Ln (|x|) + Ce
1
x , x > 0, (7.8.22)

where C is an arbitrary constant.
If Equation (7.8.12) satisfies the initial conditions

y0 = y (x0) , x0 > 0, (7.8.23)

and if we impose this requirement on yapp (x), then

y0 = Ln (|x0|) + Ce
1

x0 , (7.8.24)

then solving for C gives

C = [y0 − Ln (|x0|)] e−
1

x0 . (7.8.25)

Finally, substituting this into Equation (7.8.22) gives

yapp (x) = Ln (|x|) + [y0 − Ln (|x0|)] ⋅ exp (x0 − x
x0x

) . (7.8.26)
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Now, whether this is a good approximation to the actual exact
solution or not depends on what the user of this relation needs.

Taking the first derivative of

yapp (x) = Ln (|x|) + c exp (1x) (7.8.27)

gives

dyapp (x)
dx = 1

x − ( c
x2 ) e

1
x .(7, 8.17)

Also,

ce(
1
x
) = yapp (x) − Ln (|x|) ; (7, 8.18)

therefore,

dyapp (x)
dx = 1

x −
yapp (x)

x2 + Ln (|x|)
x2 . (7.8.28)

Comparing the ODEs in Equations (7.8.12) and (7.8.28), we see that
the ODE for yapp (x) has an extra term on its right-hand side, and
this term goes to zero as x →∞. Consequently, it should be expected
that yapp (x) is a good approximation only for large x. Our ‘numerical
experimental’ confirms this expectation.

7.8.3 Summary

The work of this section provides an example of an ODE whose solu-
tion is given in terms of one of the non-elementary functions, namely,
the exponential integral function, Ei (x). This function is generally
not known to most scientists and engineers. To aid in understand-
ing the solution to the ODE, Equation (7.8.12), we first studied the
major features of the solutions in the 2-dim x − y phase-space. We
did this under the useful construction of a dynamic system where x
and y are the independent variables of the system, using a ‘dummy
variable’, Z, Next, we constructed an approximation to the exact
solution and briefly discussed it in relationship to the exact ODE.

Overall, this example illustrates the fact that having an exact ana-
lytical solution may not provide the insights needed to understand a
system represented by the modeling ODE.
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7.9 APPROXIMATING ‘1’ AND ‘0’

7.9.1 Introduction

For most scientists, engineers and (all) mathematicians, the idea of
approximating ‘1’ or ‘0’ is nonsense. However, we will demonstrate in
this section that these concepts are valid, at least within the frame-
work of constructing numerical schemes for differential equations and
expansion-type solutions for analytical (perturbative) solutions also
of differential equations.

One technique used to achieve this task is the parameter expan-
sion method; see Senator and Bapat (1993) and Mickens (1999,
2010). A broad overview of this methodology, along with applica-
tions, is the article of He (2006):

J. H. He, Some asymptotic methods for strongly nonlinear equa-
tions, International Journal of Modern Physics, Vol. 20B (2006),
1141–1199.

The following is a summary of the basic methodology of parameter
expansion:

(1) First, introduce a parameter p, where

0 ≤ p ≤ 1, (7.9.1)

and place it in the differential equation such that for p = 1, the
original differential equation is recovered.

(2) Second, expand the dependable variable and one or more of
the ‘constants’ appearing in the differential equation in a power
series in p.

(3) The new rewritten equation is now solved under the assumption
that 0 < p ≪ 1, by using some perturbation method. Denote
this solution by x (p, t).

(4) Finally, evaluate this p-expansion result at p = 1. This is taken
to be a ‘valid’ approximation to the solution of the original
equation.

Note that the parameter expansion procedure can be applied to any
type of mathematical equation, although, in practice, its most impor-
tant uses have been to nonlinear ordinary differential equations.
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The remainder of this section is devoted to illustrating the actual
uses of the ideas concerned with ‘approximating one and zero’.

As a final comment, we would like to indicate that all expansion
methods correspond to some form of the dominant balance technique.

7.9.2 Finite Difference Discretization of a Modified Decay ODE

Consider the following modified decay ODE,
dx
dt = −𝜆√x , x (0) = x0 > 0, (7.9.2)

where 𝜆 is constant and positive. This equation only has valid
physical solutions if

x ≥ 0. (7.9.3)

Under this condition, we have
dx
dt < 0, x > 0, (7.9.4)

and x (t) decreases smoothly to zero as t → ∞. Just based on the
above information, the plot of x (t) vs t has two possibilities, as
indicated in Figure 7.26 :

(A) x (t) decreases smoothly to zero at x (∞) = 0.
(B) x (t) decreases smoothly to zero at t = t∗, and remains zero for

t > t∗.

Note that inspection of Equation (7.9.2) shows that it has an
equilibrium or constant solution

x (t) = x = 0. (7.9.5)

The exact solution to this ODE can be calculated using the method
of separation of variables; it is

x (t) = { (√x0 − 2𝜆t)
2
, 0 < t < t∗;

0, t > t∗; t∗ = √x0
2𝜆
.

(7.9.6)

Therefore, case (B) holds.
Now, suppose we wish to construct a finite-difference discretiza-

tion of Equation (7.9.2). A nonstandard way of processing is to do
the following:
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t

x(t)

x0

0
(a)

t
t*

x(t)

x0

0
(b)

FIGURE 7.26 Possible solution behaviors for Equation (7.9.2). (a) x (t)
decreases smoothly to x (∞) = 0. (b) x (t) decreases smoothly to x (t∗) = 0
and remains at zero for t > t∗.

(i) Make the following discretization replacements

t → tk = hk, h = Δt, k = (0, 1, 2, …) , (7.9.7)

x (t) → xk, (7.9.8)

dx
dt →

xk+1 − xk
h , (7.9.9)

√x →√xk . (7.9.10)

Putting these replacements in Equation (7.9.2) gives the discretiza-
tion

xk+1 − xk
h = −𝜆√xk (7.9.11)

or

xk+1 = xk − (𝜆h)√xk . (7.9.12)
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A closed examination of Equations (7.9.2)–(7.9.5) shows that

0 ≤ x (t) ≤ x0. (7.9.13)

If we now require that xk has the properties

xk ≥ 0, xk+1 ≤ xk, (7.9.14)

for all positive values of 𝜆 and h, then the finite-difference scheme of
Equations (7.9.11) or (7.9.12) may not be suitable. A way to elim-
inate this possibility is to return to Equation (7.9.11) and write it
as

xk+1 − xk
h = −𝜆(xk+1

√xk
) , (7.9.15)

which can be expressed as

xk+1 − xk
h = (−𝜆√xk+1 ) (

xk+1
xk

)
1
2 . (7.9.16)

On comparing with Equation (7.9.2), we see that in the continuum
limit

k →∞, h → 0, kh = t = fixed, (7.9.17)

we obtain
dx
dt = −(𝜆√x ) ⋅ (1) . (7.9.18)

(Observe that √xk has been replaced by √xk+1 .) A way to interpret
the second expression on the right-hand side of Equation (7.9.16) is
to say that it corresponds to a discretization of ‘1’, i.e.,

Lim(
x(k+1)

xk
)
1
2 = 1, (7.9.19)

where the limits are those appearing in Equation (7.9.17). A simple
calculation shows that

(xk+1
xk

)
1
2 = 1 + O (h) . (7.9.20)
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If we denote a discretization of ‘1’ by the symbol ‘1d’, then for this
ODE, another possibility is

1d =
2xk+1

xk+1 + xk
. (7.9.21)

Returning to the discretization given in Equation (7.9.15), solving
for xk+1 provides the result

xk+1 = ( √xk

𝜆h +√xk
) xk, (7.9.22)

and we can immediately conclude that

(i) given x0 > 0, then

xk > 0, k = (1, 2, 3, …) ; (7.9.23)

(ii)

0 ≤ xk+1 < xk. (7.9.24)

(iii) for given x0 > 0, then

Lim
k→∞

xk = 0. (7.9.25)

Therefore, we conclude that the finite-difference discretization of
Equation (7.9.2), as given by the expression in Equation (7.9.16),
provides numerical solutions that are in qualitative agreement with
all of the important features of the original ODE, and this is due to
use of the approximation of ‘1’ given in Equation (7.9.20).

7.9.3 d2x/dt2 + x3 = 0
This is an example of a ‘truly nonlinear osallator’, see Mickens (2010).
This fact implies that NONE of the standard perturbation can be
applied to this ODE, since there is no linear term appearing in the
equation and all these methods assume that the ODEs take the form

d2x
dt2 + x = 𝜖f (x, dx

dt ) , 0 < 𝜖 ≪ 1. (7.9.26)
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But, we know that

d2x
dt2 + x3 = 0 (7.9.27)

has all its solutions periodic. This follows easily from reformulating
the ODE in terms of 2-dim phase-plane variables, i.e.,

dx
dt = y, dy

dt = −x3, (7.9.28)

from which we obtain

dy
dx = −x3

y . (7.9.29)

Integrating gives

H (x, y) = y2
2 + x4

4 = constant ≥ 0. (7.9.30)

Since

H (x, y) = H (x0, y0) , (7.9.31)

and since the curves determined by this latter equation are simple,
closed trajectories, it can be concluded that all solutions are periodic.

The p-expansion procedure for calculating approximations to the
periodic solutions will now be presented.

To start, rewrite Equation (7.9.27) as

ẍ + 0 ⋅ x + px3 = 0, (7.9.32)

and make the following p-expansion

0 = Ω2 + p𝜔1 +⋯, (7.9.33)

x = x0 + px1 +⋯, (7.9.34)

where (Ω2, 𝜔1, x0, x1) are to be determined and ẋ = dx/dt, etc. Substi-
tution of these last two items into Equation (7.9.32) and collecting
together terms of order p0 and p, we find

p0 (ẍ0 +Ω2x0) + p (ẍ1 +Ω2x1 + 𝜔1x0 + x30) + O (p2) = 0. (7.9.35)
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Since this is a series in p that equal zero, its follows that each
coefficient in the expansion must equal zero, i.e.,

ẍ0 +Ω2x0 = 0; x0 (0) = A, ẋ0 (0) = 0; (7.9.36)

ẍ1 +Ω2x1 = −𝜔1x0 − x30; x1 (0) = 0, ẋ1 (0) = 0. (7.9.37)

The initial values for the x0 and x1 ODEs are consequences of the
relations

x (0, p) = A, ẋ (0, p) = 0. (7.9.38)

The solution for x0 (t) is

x0 (t) = A cos 𝜃, 𝜃 = Ωt, (7.9.39)

where at this level of calculation, Ω is not determined. With this
result, we have

ẍ1 +Ω2x1 = −𝜔1A cos 𝜃 − (A cos 𝜃)3

= −A [𝜔1 +
3A2

4 ] cos 𝜃

= −(A3

4 ) cos 3𝜃. (7.9.40)

The coefficient of the first term on the right-hand side of Equation
(7.9.40) must equal zero if we want to have a bounded, periodic
solution. The reasons for this are discussed in the book

R. E. Mickens, Introduction to Nonlinear Oscillations (Cam-
bridge University Press, New York, 1981).

Therefore,

𝜔1 = −(3A
2

4 ) , (7.9.41)

to first order in p, we have

Ω2 = −𝜔1p = (3A
2

4 ) p. (7.9.42)
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Therefore, x1 (t) is the solution to the initial-value problem

{
ẍ1 +Ω2x1 = −(A3

4
) cos 3𝜃,

x1 (0) = 0, ẋ (0) = 0, 𝜃 = Ωt = ( 3
4
)
1
2 (At) .

(7.9.43)

An easy, direct calculus gives

x1 (t) = − ( A
24) (cos 𝜃 − cos 3𝜃) (7.9.44)

Consequently, to first order p, the p-parameter expansion, periodic
solution for Equation (7.9.27) is, with p = 1, the expression

x (t, p = 1) = x0 (t) + x1 (t)

= A [cos𝜃 − ( 124) (cos𝜃 − cos3𝜃) , (7.9.45)

where

𝜃 (t) = (34)
1
2 (At) . (7.9.46)

This result is also obtained from the use of other techniques (Mickens,
2010).

7.9.4 ẍ + x
1
3 = 0

The ‘truly nonlinear oscillator’

d2x
dt2 + x

1
3 = 0, (7.9.47)

has the system equations representation
dx
dt = y, dy

dt = −x
1
3 , (7.9.48)

and from this it follows that

dy
dx = −x

1
3

y , (7.9.49)

with the first-integral

H (x, y) = (12) y2 + (34) x
4
3 = constant > 0. (7.9.50)
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Since the trajectories in the x − y phase-plane are all closed, except
for the fixed-point at (x, y) = (0, 0), all solutions to Equation (7.9.47)
are periodic.

To proceed, rewrite Equation (7.9.47) as

x = −(ẍ)3, (7.9.51)

multiply by Ω2, which is currently an unknown constant,

Ω2x = −Ω2(ẍ)3, (7.9.52)

and, add ẍ to both sides, to obtain

ẍ +Ω2x = ẍ −Ω2(ẍ)3. (7.9.53)

Note that this is an exact, but rearranged form of the original ODE.
The p-expansion form will be taken to be

ẍ +Ω2x = p [ẍ −Ω2(ẍ)3] , (7.9.54)

with

x (t) = x0 (t) + px1 (t) +⋯. (7.9.55)

If Equation (7.9.55) is substituted into Equation (7.9.54), then the
coefficients, respectively, of the p0 and p terms are

ẍ0 +Ω2x0 = 0 (7.9.56)

ẍ1 +Ω2x1 = ẍ0 −Ω2(ẍ0)
3, (7.9.57)

with initial conditions

{ x0 (0) = A, ẋ0 (0) = 0,
x1 (0) = 0, ẋ1 (0) = 0.

For x0 (t), we find

x0 (t) = A cos 𝜃, 𝜃 = Ωt, (7.9.58)

therefore,

̈x1 +Ω2x1 = [−Ω2 + 3A2Ω8

4 ]A cos 𝜃 (7.9.59)
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+(A3Ω8

4 ) cos 3𝜃. (7.9.60)

Bounded, periodic solutions require that the coefficient of the cos 𝜃
term be zero; this gives

Ω = (43)
1
6 ( 1

A
1
3

) = 1.0491
A1/3 . (7.9.61)

Calculating X1 (t), with the initial conditions imposed, gives

X1 (t) = ( A
24) (cos 𝜃 − cos 3𝜃) . (7.9.62)

Consequently, in terms of order −p, the solution with p = 1 is

x (t) = x0 (t) + x1 (t)

= A [(2524) cos 𝜃 − ( 124) cos 3𝜃] , (7.9.63)

with

𝜃 = Ωt

= [(43)
1
6 ( 1

A
1
3

)] t. (7.9.64)

A measure of the accuracy of the first order in p calculation may be
obtained by comparing the value of Ω in Equation (7.9.61) with that
of the exact value of Ω, i.e., (Micken, 2010):

Ωapp =
1.0491

A
1
3

, Ωexact =
1.0704

A
1
3

. (7.9.65)

The percentage error in our calculation is about 2\%.

7.9.5 Discussion

Like most expansion procedures, the naive use of the p-expansion
method generally gives valid and/or accurate results only to first
order. However, the methodology can be extended to higher orders
in p, but the calculations become complex. For oscillatory equations,
the correction term, x1 (t), is about 4\% in magnitude of x0 (t).

For purposes of discretization, the approximation of ‘1’ method
is often used to insure that some physical relevant variable is always
non-negative.
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tion 3.3. A discussion of the existence of ‘spurious limit-cycles’ that
may arise in the use of higher-order averaging techniques appears in
Mickens (1996), Section 3.6.

Section 7.7: The work of this section is based on the following
(unpublished) article:

(1) R. E. Mickens, M. Harlemon, and K. Oyedeji, Consequences
of culling in deterministic ODE predator-prey models; arXiv:
1612.09301v2 [q-bio.PE] (Accessed January 10 2017).

This article is an expansion of the discussion presented in an e-
letter to the journal Science, which makes comments on the following
publication:
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(2) B. Goldfarb, No proof that predator culls save livestock, study
claims, Science, Vol. 353 (2016), 1080–1081.

which was an analysis of the paper

(3) A. Treves, M. Krofel, and J, McManus, Predator control should
not be a shot in the dark, Frontiers in Ecology and Environment,
Vol. 14, No. 7 (September 2016), 380–388.

A quick read on the ecological concept of culling is in the following
two articles:

(4) Wikipedia: ‘Culling’, https://ent.wikipendia.org/wiki/Culling.
(5) J. C. Prentice et al., When to kill a cull: Factors affecting the

success of culling wild life for disease control, Journal of the
Royal Society Interface Vol. 16, No. 152 (March 2019).

Section 7.8: The exponential integral Ei (x) appears in the exact solu-
tion to the ODE examined in this section. It is related to another
exponential integral, E1 (x), by means of the relation

Ei (x) = −E1 (−x) , x > 0.

These two exponential integrals are defined by

Ei (x) = ∫
x

−∞

et

t dt, E1 (x) = ∫
∞

x

e−t

t dt.

Listed below are some of the properties of these functions that are
of value for our investigation:

( 1
2
) e−x Ln (1 + 2

x
) < E1 (x) < e−x Ln (1 + 1

x
)

E1 (x) ∼ ( e−x

x
) [1 − 1

x
+ 2

x2
+⋯] , x →∞

𝜕Ei(x)
𝜕x

= ex

x
Ei (x) ∼ −Ln |x| , x → 0

REFERENCES TO THE EXPONENTIAL FUNCTIONS

(1) M. Abramowitz and I. Stegun, Handbook of Mathematical Func-
tions with Formulas Graphs, and Mathematical Tables (Dover,
New York, 1964). See Chapter 5.
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(2) C. M. Bender and S. A. Orszag, Advanced Mathematical Methods
for Scientists and Engineers (Mc Graw-Hill, New York, 1978).

(3) R. R. Sharma and B. Zohuri, A general method for accurate
evaluation of exponential integrals E1 (x), x > 0, Journal of
Computational Physics, Vol. 25, No. 2 (1977), 199–204.

The following differential equation solver was used to obtain the
‘exact’ solution to the ODE:

(4) https://www.symbolab.com/solver/ordinary-differential-
equation-calculator.

Some additional references to the ‘method of dominant balance’ are

(5) hittps://www.physicsforums.com/threads/method-of-
dominant-balance.1020334.

(6) N. G. de Bruijn, Asymptotic Methods in Analysis (Dover,
Mineola, NY, 1981).

(7) hitps://en.wikipedia.org/wiki/Method-of-dominant-balance
(Accessed August 15, 2024).

Also, the book by Bender and Orszag (ref. [2]) is an excellent intro-
duction to the method of dominant balance and includes many
worked examples.

Section 7.9: The discussions and examples used to illustrate the
concepts of ‘approximating one and zero’ are based on Chapter 4 of
my book:

(1) R. E. Mickens, Truly Nonlinear Oscillations: Harmonic Bal-
ance, Parameter Expansions, Iteration, and Averaging Methods
(World Scientific, Singapore, 2010).

The following two articles provide background to the method of
parameter expansion as applied to the analysis of nonlinear oscil-
lations:

(2) M. Senator and C. N. Bapat, A perturbations technique that
works even when the non-linearity is not small, Journal of Sound
and Vibration Vol. 164 (1993), 1–27.

(3) R. E. Mickens, Generalization of the Senator-Bapat method to
systems having limit-cycles, Journal of Sound and Vibration,
Vol. 224 (1999), 167–171.
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Applications to more complex systems modeled by ODEs and PDEs
are included in the references:

(4) R. Buckmire, K. McMurty, and R. E. Mickens, Numerical stud-
ies of a nonlinear heat equation with square root reaction term,
Numerical Methods for Partial Differential Equations, Vol. 25,
No. 3 (2009), 598–609.

(5) M. Chapwanya, J. M.-S. Lubuma, and R. E. Mickens, Positivity-
preserving nonstandard finite difference schemes for cross-
diffusion equations in biosciences, Computers and Mathematics
with Applications, Vol. 68, No. 9 (2014), 1071–1082.



Appendix A

A.1 ALGEBRAIC RELATIONS

A.1.1 Factors and Expansions

(a ± b)2 = a2 ± 2ab + b2

(a ± b)3 = a3 ± 3a2b + 3ab2 ± b3

(a + b + c)2 = a2 + b2 + c2 + 2 (ab + ac + bc)
(a + b + c)3 = a3 + b3 + c3 + 3a2 (b + c)

+ 3b2 (a + c) + 3c2 (a + b) + 6abc
a2 − b2 = (a − b) (a + b)
a2 + b2 = (a + ib) (a − ib) , i =√−1
a3 − b3 = (a − b) (a2 + ab + b2)
a3 + b3 = (a + b) (a2 − ab + b2)

A.1.2 Quadratic Equations

The quadratic equation

ax2 + bx + c = 0

has the two solutions

x1 =
−b +√b2 − 4ac

2a ,

x2 =
−b −√b2 − 4ac

2a .

253
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A.1.3 Cubic Equations

The cubic equation

x3 + px2 + qx + r = 0

can be reduced to

z3 + az + b = 0

by means of the substitution

x = z − p
3 ,

where

a = 3q − p2
3

b = 3p3 − 9pq + 27r
27 .

With the definitions

A = [−(b
2) + (b2

4 + a3
27)

1
2
]

1
3

,

B = [−(b
2) − (b2

4 + a3
27)

1
2
]

1
3

,

the three roots of z3 + az + b = 0 are

Z1 = A + B,

Z2 = −(A + B
2 ) +√−3 (A − B

2 ) ,

Z3 = −(A + B
2 ) −√−3 (A − B

2 ) .

Let

Δ = b2
4 + a3

27,

then for
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(i) Δ > 0, there will be one real root and two complex conjugate
roots.

(ii) Δ = 0, there will be three real roots, for which at least two are
equal.

(iii) Δ < 0, there will be three real and unequal roots.

A.1.4 Expansions of Selected Functions

1
1 − x =

∞
∑
k=0

xk, |x| < 1

ex =
∞
∑
k=0

xk

k! , |x| < ∞

(1 + x)q = 1 + qx + q (q − 1)
2! x2

+⋯ + q (q − 1)⋯ (q − k + 1)
k! xk +⋯

The above series converges for |x| < 1.

cos x =
∞
∑
k=0

(−1)k x2k

(2k)!

sin x =
∞
∑
k=0

(−1)k x2k+1

(2k + 1)!

Ln (1 + x) =
∞
∑
k=1

(−1)k+1 xk

k

A.2 TRIGONOMETRIC RELATIONS

A.2.1 Fundamental Properties

(sin 𝜃)2 + (cos 𝜃)2 = 1
− 1 ≤ sin 𝜃 ≤ +1, −1 ≤ cos 𝜃 ≤ 1
sin (−𝜃) = − sin 𝜃, cos (−𝜃) = cos 𝜃
sin (𝜃 + 2𝜋) = sin 𝜃, cos (𝜃 + 2𝜋) = cos 𝜃
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The sine and cosine functions take the following values at the
indicated angles

sin (0) = 0, cos (0) = 1
sin (𝜋

2
) = 1, cos (𝜋

2
) = 0

sin (𝜋) = 0, cos (𝜋) = −1
sin (3𝜋

2
) = −1, cos (3𝜋

2
) = 0

We also have

ei𝜃 = cos 𝜃 + i sin 𝜃, i =√−1

sin 𝜃 = ei𝜃 − e−i𝜃

2i

cos 𝜃 = ei𝜃 + e−i𝜃

2

A.2.2 Sum of Angles Relations

sin (𝜃1 ± 𝜃2) = sin 𝜃1 cos 𝜃2 ± cos 𝜃1 sin 𝜃2
cos (𝜃1 ± 𝜃2) = cos 𝜃1 cos 𝜃2 ∓ sin 𝜃1 sin 𝜃2

A.2.3 Product and Sum Relations

sin 𝜃1 cos 𝜃2 = (12) [sin (𝜃1 + 𝜃2) + sin (𝜃1 − 𝜃2)]

cos 𝜃1 sin 𝜃2 = (12) [sin (𝜃1 + 𝜃2) − sin (𝜃1 − 𝜃2)]

cos 𝜃1 cos 𝜃2 = (12) [cos (𝜃1 + 𝜃2) + cos (𝜃1 − 𝜃2)]

sin 𝜃1 sin 𝜃2 = (12) [cos (𝜃1 + 𝜃2) − cos (𝜃1 − 𝜃2)]

sin 𝜃1 ± sin 𝜃2 = 2 sin (𝜃1 ± 𝜃2
2 ) cos (𝜃1 ∓ 𝜃2

2 )

cos 𝜃1 + cos 𝜃2 = 2 cos (𝜃1 + 𝜃2
2 ) cos (𝜃1 − 𝜃2

2 )

cos 𝜃1 − cos 𝜃2 = −2 sin (𝜃1 + 𝜃2
2 ) sin (𝜃1 − 𝜃2

2 )
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A.2.4 Derivatives and Integrals

d
d𝜃 cos 𝜃 = − sin 𝜃, d

d𝜃 sin 𝜃 = cos 𝜃

∫ cos 𝜃d𝜃 = sin 𝜃 + c1,∫ sin 𝜃d𝜃 = − cos 𝜃 + c2

where c1 and c2 are arbitrary constants.

A.2.5 Powers of Trigonometric Functions

(sin 𝜃)2 = (12) (1 − cos 2𝜃)

(cos 𝜃)2 = (12) (1 + cos 2𝜃)

(sin 𝜃)3 = (14) (3 sin 𝜃 − sin 3𝜃)

(cos 𝜃)3 = (14) (3 cos 𝜃 + cos 3𝜃)

A.3 HYPERBOLIC FUNCTIONS

A.3.1 Definitions and Basic Properties

hyperbolic:sine sinh 𝜃 ≡ e𝜃 + e−𝜃
2

hyperbolic:cosine cosh 𝜃 ≡ e𝜃 + e−𝜃
2

(cosh 𝜃)2 − (sinh 𝜃)2 = 1
cosh (−𝜃) = cosh (𝜃) , sinh (−𝜃) = − sinh (𝜃)
cosh (0) = 1, sinh (0) = 0

A.3.2 Derivatives and Integrals

d
d𝜃 cosh (𝜃) = sinh (𝜃) , d

d𝜃 sinh (𝜃) = cosh (𝜃)

∫ cosh (𝜃) d𝜃 = sinh (𝜃) + c1,∫ sinh (𝜃) d𝜃 = cosh (𝜃) + c2
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A.3.3 Other Important Relations

sinh (𝜃1 ± 𝜃2) = sinh (𝜃1) cosh (𝜃2) ± cosh (𝜃1) sinh (𝜃2)
cosh (𝜃1 ± 𝜃2) = cosh (𝜃1) cosh (𝜃2) ± sinh (𝜃1) sinh (𝜃2)

sinh (𝜃1) + sinh (𝜃2) = 2 sinh (𝜃1 + 𝜃2
2 ) cosh (𝜃1 − 𝜃2

2 )

cosh (𝜃1) + cosh (𝜃2) = 2 cosh (𝜃1 + 𝜃2
2 ) cosh (𝜃1 − 𝜃2

2 )

sinh (𝜃1) − sinh (𝜃2) = 2 cosh (𝜃1 + 𝜃2
2 ) sinh (𝜃1 − 𝜃2

2 )

cosh (𝜃1) − cosh (𝜃2) = 2 sinh (𝜃1 + 𝜃2
2 ) sinh (𝜃1 − 𝜃2

2 )

A.3.4 Relations between Trigonometric and Hyperbolic Functions

sinh (𝜃) = −i sin (i𝜃) , i =√−1
cosh (𝜃) = cos (i𝜃)

A.4 IMPORTANT CALCULUS RELATIONSHIPS

A.4.1 Differentiation

Using the notation

f’ (x) = d
dxf (x)

and (c1, c2) representing arbitrary constants, we have
d
dx [c1f (x) + c2g (x)] = c1f′ (x) + c2g′ (x)
d
dx [f (x) g (x)] = g (x)] f′(x) + f(x)g′(x)

d
dx [

f (x)
g (x)] =

g (x) f′ (x) − f (x) g′ (x)
[g (x)]2

d
dx [f (g (x))] = f′ (g (x)) g′ (x)
d
dxef(x) = f′ (x) ef(x)
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A.4.2 Integration by Parts

∫ f (x) dg (x) = f (x) g (x) − ∫ g (x) df (x)

A.4.3 Differentiation of a Definite Integral

Assume f (x, t) and its partial derivative 𝜕f (x, t) /𝜕t is continuous in
some domain in the x − t plane, which includes the rectangle

Ψ (t) ≤ x ≤ 𝜑 (t) , t1 ≤ t ≤ t2,
where 𝜓 (t) and 𝜑 (t) are defined and have continuous first derivatives
for t1 ≤ t ≤ t2. Then for t1 ≤ t ≤ t2, we have

d
dt ∫

𝜑(t)

𝜓(t)
f (x, t) dx = f [𝜑 (t) , t] d𝜑

dt

− f [𝜓 (t) , t] d𝜓
dt +∫

𝜑(t)

𝜓(t)

𝜕
𝜕t f (x, t) dx.

A.5 EVEN AND ODD FUNCTIONS

Let the real functions f (x) and g (x) be defined on a symmetric
interval, (−a, a), where a might be unbounded.
(i) A function f (x) is an even function on this interval if and only if

f (−x) = f (x) .
(ii) A function f (x) is an odd function on this interval if and only if

f (−x) = −f (x) .
(iii) Given an arbitrary function g (x), defined on this interval, then

it can also be written as where

g (x) = g(+) (x) + g(−) (x) ,

g(+) (x) = g (x) + g (−x)
2 ,

g(−) (x) = g (x) − g (−x)
2 .
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The functions g(+) (x) and g(−) (x) are, respectively, the even and
odd parts of g (x).

(iv) Let f (x) and g (x) be both even functions or both odd functions,
then h (x) = f (x) g (x) is an even function.

(v) If f (x) is an even function and g (x) is an odd function, the
h (x) = f (x) g (x) is an odd function.

(vi) Let f (x) be an even function, then

∫
a

−a
f (x) dx = 2∫

a

0
f (x) dx.

(vii) Let f (x) be an odd function, then

∫
a

−a
f (x) dx = 0.

(viii) Let f (x) be an even (odd) function over the interval (−a, a), then
if the derivative exists, it is odd (even) on this interval, i.e.,

f (x) even ⟹ df (x)
dx odd,

f (x) odd ⟹ df (x)
dx even.

A.6 ABSOLUTE VALUE FUNCTION

Let a be a nonzero real number. The absolute value of a is defined
to be

|a| = {
a, If a > 0,
0, If a = 0,
−a, If a < 0.

An alternative and sometimes very useful definition is to use the
expression

|a| = √a2 .
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The following properties follow directly from the definition of the
absolute value and may be generalized to functions:

|a| ≥ 0
|−a| = |a|
|ab| = |a| |b|
|an| = |a|n

|a + b| ≤ |a| + |b| .

A.7 DIFFERENTIAL EQUATIONS

A.7.1 General Linear, First-Order Ordinary Differential Equation

This differential equation takes the form
dy
dx + P (x) y = Q (x) ,

where P (x) and Q (x) are given. The general solution is
y (x) = Ce−∫P(x)dx

+ e−∫P(x)dx ∫ e∫P(x)dxQ (x) dx,

where C is an arbitrary constant.

A.7.2 Bernoulli Equations

This equation is nonlinear and can be written as
dy
dx + P (x) y = Q (x) yn, n ≠ 1,

where P (x) and Q (x) are specified for a given value of n. The
nonlinear transformation

u (x) = [y (x)](1−n),
reduces the Bernoulli differential equation into a linear equation of
the form

du
dx + P1 (x) = Q (x) ,

and this equation can be solved using the technique given in Section
G.1.
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A.7.3 Riccati Equation

This first-order, nonlinear differential equation is

dy
dx = y′ = q0 (x) + q1 (x) y + q2 (x) y2.

where q0 (x) , q1 (x) and q2 (x) are given, and it is assumed that q2 (x)
is non-zero and has a first derivative. The nonlinear transformation

v (x) = q2 (x) y (x)

gives

v′ = v2 + R (x) v + S (x) ,

where

S (x) = q0 (x) q2 (x) , R (x) = q1 (x) +
q′2 (x)
q2 (x)

If u (x) is defined as

v (x) = −u′ (x)
u (x) = −[Ln u (x)]′,

then u (x) is a solution to the following linear, second-order differen-
tial equation

u′′ − R (x) u′ + S (x) u = 0.

Thus, the solution to the original Riccati differential equation is

y (x) = − u’ (x)
q2 (x) u (x)

= − [ 1
q2 (x)

] [Ln u (x)]’

A.7.4 Linear, Second-Order Differential Equations with Constant
Coefficients

This class of differential equations has the form

a0
d2y
dx2 + a1

dy
dx + a2y = Q (x) ,
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where (a0, a1, a2) are given constants and Q (x) is a given function.
Consider first the case where Q (x) = 0, i.e.,

a0y′′ + a1y′ + a2y = 0.

This equation is generally called the homogeneous part of the
differential equation. The expression

a0m2 + a1m + a2 = 0,

is called the characteristic equation (CE) and determines the solu-
tions to the homogeneous differential equation as follows:

(a) If the two roots to the CE, m1 and m2, are real and distinct,
then the general solution is

yH (x) = C1em1x + C2em2x,

C1 and C2 are arbitrary constants, and where the corresponding
homogeneous solution is written as yH (x).

(b) If the two reals are real and equal, then

yH (x) = (C1 + C2x) emx, m1 = m2 = m.

(c) If m1 and m2 are complex conjugates, i.e.,

m1 = m∗
2 = a + bi, i =√−1 ,

then

yH (x) = {
Aeax cos (bx + B) ,

or
eax [C1 cos (bx) + C2 sin (bx)] ,

(A,B,C1,C2) are real arbitrary constants.

For Q (x) ≠ 0 and the known differential equation,

a0y′′ + a1y′ + a2y = Q,

is called an inhomogeneous, linear, second-order, constant coefficient
differential equation. Its general solution may be written

y (x) = yH (x) + v (x) ,
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where v (x) is a particular solution to the inhomogeneous equation.
In general, for an arbitrary function Q (x), no ∀ (x) can be found
such that it may be expressed in terms of a finite combination of the
elementary functions. However, if Q (x) consists of linear combina-
tions of functions whose derivatives consist of a finite set of linearly
independent functions, then v (x) can be calculated and expressed
as a linear combination of these linearly independent functions. For
this case, the following two rules may be applied to find particular
solutions:

Rule 1: Let no term in Q (x) be the same as in yH (x). For this
case, v (x) will be a linear combination of the terms in Q (x) and
all their independent derivatives.
Rule 2: Let Q (x) contain a term that, ignoring constant coef-
ficients, is xk times a term y1 (x) appearing in yH (x), where
k = 0, 1, 2, …. The corresponding particular solution, v (x), will be
a linear combination of xk+1y1 (x) and all its linearly independent
derivatives that are not contained in yH (x).

A.7.5 Fourier Series

Let f (x) be the periodic function of period 2L, i.e.,

f (x + 2L) = f (x) .
Assume that the following integrals exist

∫
2L

0
f (x) cos (k𝜋x

L ) dx,∫
2L

0
f (x) sin (k𝜋x

L ) dx,

for k = 0, 1, 2, …. The formal Fourier series of f (x) on the interval,
0 < x < 2L, is given by the expression

f (x) ∼ a0
2 +

∞
∑
k=1

[ak cos (k𝜋x
L ) + bk sin (k𝜋x

L )] ,

where

ak ≡ ( 1L)∫
2L

0
f (x) cos (k𝜋x

L ) dx,

bk = ( 1L)∫
2L

0
f (x) sin (k𝜋x

L ) dx.
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Definition 1 A function f (x) is said to be piecewise continuous on
the interval, a≤x≤b, if this interval can be partitioned into a finite
number of subintervals such that f (x) is continuous in the interior
of each of the subintervals and f (x) has finite limits as x approaches
either end point of each subinterval from its interior.

Definition 2 A function f (x) is said to be piecewise smooth on the
interval, a≤x≤b, if both f (x) and f′ (x) are piecewise continuous on
a≤x≤b.

Theorem 1 Let f (x) be piecewise smooth on the interval, 0<x<2L.
Then its Fourier series is

f (x) = a0
2 +

∞
∑
k=1

[ak cos (k𝜋x
L ) + bk sin (k𝜋x

L )] .

This series converges at every point x, in the interval 0<x<2L, to the
value

f (x+) + f (x−)
2 ,

where f (x+) and f (x−) are, respectively, the right- and left-hand limits
of f at x. If f is continuous at x, then the Fourier series of f at x
converges to f (x).
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