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Preface

This third and final volume in our Mathematics for Engineers series serves

as a companion text to the third-semester mathematics preliminaries for

students and lecturers in electrical engineering and other engineering disci-

plines.

Ordinary and partially differential equations play a central role in gradua-

te engineering courses. This topic is the main focus of the third volume:

The description of engineering problems leads either to ordinary differen-

tial equations as long as there is only one independent variable. When the

problem is described by more than one variable, the model equations are

partial differential equations, such as the wave equation, the heat transfer

equation, the Laplace equation and many more. Differential equations are

discussed in detail.

In addition to describing engineering problems using differential equations,

we need to analyze signals produced by oscillations and vibrations. This re-

quires frequency analysis of the signals, which leads to the topic of Fourier

series for periodic signals and Fourier transform for non-periodic signals.

Both techniques are also used in the solution of differential equations.

This volume provides students at universities and colleges with a vivid pre-

sentation of these topics as a practical aid to higher mathematics. Mathe-

matical terms are clearly motivated, systematically equated and visualized

in many animations. A large number of examples and applications illustrate

and deepen the material, and the numerous exercises (with solutions on the

book’s homepage) make it easier to prepare for exams.

Important formulas and statements are clearly highlighted in order to in-

crease the readability of the books. Many pictures and sketches support

the character of modern textbooks. The color-coded layout provides a clear

overview of the presentation of the content, e.g. new terms and definitions

in light grey, important statements and sentences in grey.
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There are additional styles to make the book easier to read:

The symbol4! Caution: draws your attention to passages that are often

misinterpreted, overlooked or ignored.

Tips and rules help you work through the examples and exercises.

Definitions and important phrases are highlighted in grey boxes.

Numerous summaries are highlighted in color.

Important formulas and results are marked.

Examples and applications are clearly arranged throughout the text.

Fully worked examples,

problems with solutions,

and a lot of illustrations and sketches will help very well for study pur-

poses and for examination preparations.

Alongside the topics covered in the book, additional material is available on

the website, as well as Maple worksheets that can be downloaded for the

current version of Maple. The description can be found under the Maple

tab on the book’s website:

https://www.imathonline.de/books/mathe/start.htm

In the book, the following two symbols explicitly refer to additional infor-

mation information that can be found on the home page:

©1 Animations, in gif format are available: By clicking on the

appropriate location on the web the animations are played

through the Internet browser.

©2 References indicate the Maple descriptions. All Maple worksheets

are available on the website. An overview of all worksheets can be found in

index.mws.

I would especially like to thank Mayur Shelke for his valuable and intensive

help in translating the German book into an adequate English textbook.

I would also like to thank the publisher for the careful proofreading and

excellent fine-tuning of the English version. Special thanks go to Mrs Rok

Ting of World Scientific Publishing for her support and help throughout.

She has made it possible to publish these lecture notes in this important

and renowned publishing house.

Karlsruhe, April 2025 Thomas Westermann

https://www.imathonline.de/ani/taylor1.gif
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15Chapter 15

Systems of Linear
Differential Equations

In many applications, time-dependent quantities x1 (t), x2 (t), . . ., xn (t) are coupled

in such a way that the change of a variable ẋi (t) depends not only on t and xi (t),

but also on the remaining variables and their derivatives. This gives rise to systems of

differential equations. In this chapter, first-order systems of linear differential equati-

ons with constant coefficients are discussed in detail. The abbreviation LDEq is used

for these systems.

The homogeneous systems of LDEq are solved using the eigenvectors and eigenvalues

of the corresponding system matrix assigned to the problem. If necessary, principal

vectors to the eigenvalues are also determined. A fundamental set of the homogeneous

solution is obtained using these eigenvectors and principal vectors. The method of

variation of constants is used to calculate a solution to the inhomogeneous problem.
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In many applications, time-dependent quantities x1 (t), x2 (t), . . ., xn (t) are coupled

in such a way that the change of a variable ẋi (t) depends not only on t and xi (t),

but also on the remaining variables and their derivatives. This gives rise to systems of

differential equations. In this chapter, first-order systems of linear differential equati-

ons with constant coefficients are discussed in detail. The abbreviation LDEq is used

for these systems.

The homogeneous systems of LDEq are solved using the eigenvectors and eigenvalues

of the corresponding system matrix assigned to the problem. If necessary, principal

vectors to the eigenvalues are also determined. A fundamental set of the homogeneous

solution is obtained using these eigenvectors and principal vectors. The method of

variation of constants is used to calculate a solution to the inhomogeneous problem.

15.1 Introduction
Examples of LDEq systems can be found in electrical filter circuits con-

sisting of RCL components or in mechanical oscillations in which several

spring-mass systems are coupled. For the introduction, a system of coupled

double pendulums is considered.

Application Example 15.1 (Coupled Pendulums).

Two pendulums of length l with masses m1

m1 m2D

Figure 15.1. Coupled pendulums

and m2 attached to their ends are coupled

by a spring with spring constant D (see Fig.

15.1). The two masses are initially deflected

by angles ϕ1 and ϕ2. We consider a fric-

tional force proportional to the velocity ac-

ting on the masses, FRi = −γ l ϕ̇i (t) , with

friction coefficient γ. Then the equations of

motion for small deflections ϕ1 and ϕ2 are

ϕ̈1 (t) = −g
l
ϕ1 (t)− γ

m1
ϕ̇1 (t) +

D

m1
(ϕ2 (t)− ϕ1 (t))

ϕ̈2 (t) = −g
l
ϕ2 (t)− γ

m2
ϕ̇2 (t) +

D

m2
(ϕ1 (t)− ϕ2 (t)),

(∗)
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where ϕ1 (t) and ϕ2 (t) are the deflections of the masses m1 and m2 at time

t. This is a system of second order LDEq for the angular deflections ϕ1 (t)

and ϕ2 (t).

First, we reduce this system of two second-order differential equations to

a system of four first-order differential equations. For this purpose, we in-

clude the angular velocities ϕ̇1 (t) and ϕ̇2 (t) belonging to ϕ1 (t) and ϕ̇2 (t)

as additional quantities. For a better overview, we introduce a systematic

notation

y1 (t) = ϕ1 (t)

y2 (t) = ϕ̇1 (t)

y3 (t) = ϕ2 (t)

y4 (t) = ϕ̇2 (t).

We differentiate each of the four unknowns yi (t) and evaluate them using

the DEq (∗):

ẏ1 (t) = ϕ̇1 (t) = y2 (t) (1)

ẏ2 (t) = ϕ̈1 (t) = − gl ϕ1 (t)− γ
m1

ϕ̇1 (t) + D
m1

(ϕ2 (t)− ϕ1 (t))

= − gl y1 (t)− γ
m1

y2 (t) + D
m1

(y3 (t)− y1 (t)) (2)

ẏ3 (t) = ϕ̇2 (t) = y4 (t) (3)

ẏ4 (t) = ϕ̈2 (t) = − gl ϕ2 (t)− γ
m2

ϕ̇2 (t) + D
m2

(ϕ1 (t)− ϕ2 (t))

= − gl y3 (t)− γ
m2

y4 (t) + D
m2

(y1 (t)− y3 (t)) . (4)

We define the vector ~y (t) :=


y1 (t)

y2 (t)

y3 (t)

y4 (t)

 with its derivative ~y ′ (t) =


ẏ1 (t)

ẏ2 (t)

ẏ3 (t)

ẏ4 (t)

.

The four first-order differential equations (1) to (4) can then be written in

vector notation as the derivative of the vector

~y ′ (t) =


ẏ1(t)

ẏ2(t)

ẏ3(t)

ẏ4(t)

 =


y2 (t)(
− gl −

D
m1

)
y1 (t)− γ

m1
y2 (t) + D

m1
y3 (t)

y4 (t)
D
m2

y1 (t) +
(
− gl −

D
m2

)
y3 (t)− γ

m2
y4 (t)


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=


0 1 0 0

− gl −
D
m1

− γ
m1

D
m1

0

0 0 0 1
D
m2

0 − gl −
D
m2

− γ
m2



y1 (t)

y2 (t)

y3 (t)

y4 (t)

 .

With the system matrix

A :=


0 1 0 0

− gl −
D
m1

− γ
m1

D
m1

0

0 0 0 1
D
m2

0 − gl −
D
m2

− γ
m2


the problem is abbreviated as:

~y ′ (t) = A~y (t) .

The above procedure is applied to any higher order LDEq so that it is

transformed into an extended first-order LDEq. Therefore, it is sufficient to

consider only first-order systems:

General Problem: Let I be an interval, ~f (t): I → Rn a given vector

function with continuous components fi(t) (i = 1, . . . , n) and A an

(n× n) matrix. We look at the LDEq

~y ′ (t) = A~y (t) + ~f (t) . (1)

If ~f (t) 6= 0, then (1) is called an inhomogeneous system.

If ~f (t) = 0, then (1) is called a homogeneous system.

We are looking for a differentiable vector function ~y : I → Cn which

satisfies LDEq (1).

The vector function ~y (t) consists of n functions

~y (t) = (y1 (t) , . . . , yn (t))
t
,

each of these functions can be differentiated and ~y ′ (t) = (y′1 (t) , . . . , y′n (t))
t
.

As with first-order linear differential equations, the homogeneous problem

is discussed first.
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15.2 Homogeneous Systems of LDEq
We consider the homogeneous LDEq

~y ′ (t) = A~y (t) (2)

with an (n× n) matrix A. Although the solutions are initially unknown, we

can make statements about the properties of the solution:

Theorem 15.1: Homogeneous LDEq

The set of all solutions Lh of a homogeneous LDEq

~y ′ (t) = A~y (t)

with an (n× n) matrix A is an n-dimensional vector space.

This central statement about homogeneous LDEq is illustrated by the ex-

ample given at the beginning of this chapter. The fact that the solution set

is a vector space reflects the superposition principle. In the case of oscil-

lating systems, this means that for two oscillations ~y1 (t) and ~y2 (t), their

superposition ~y1 (t) + ~y2 (t) is also a possible oscillation. Furthermore, for

every oscillation ~y (t) a multiple α~y (t) is also a valid oscillation. And, the

trivial statement that the rest position ~0 is a state of the system.

(1) The zero vector ~y (t) = ~0 is always a solution:

For ~y (t) = ~0 follows ~y ′ (t) = ~0′ = ~0. Besides A~0 = ~0⇒ ~0′ = A~0.

⇒ The zero vector ~0 is always a solution of the homogeneous LDEq.

(2) ~y1 (t) and ~y2 (t) are solutions, which means that ~y ′1 (t) = A~y1 (t) and

~y ′2 (t) = A~y2 (t). With these two solutions, the superposition ~y1 (t) +

~y2 (t) is also a solution, because

(~y1 (t) + ~y2 (t))
′

= ~y ′1 (t)+~y ′2 (t) = A~y1 (t)+A~y2 (t) = A (~y1 (t) + ~y2 (t)).

(3) Is ~y (t) a solution, i.e. ~y ′ (t) = A~y (t), then α~y (t) is also a solution:

(α~y (t))
′

= α~y ′ (t) = αA~y (t) = A (α~y (t)) .

We have proved that for all physical systems that are described by homoge-

neous LDEq, the superposition law is always valid! According to the subspace

criterion from Volume 1, Section 2.4.2 (1) - (3), we conclude that Lh is a

vector space. Since every finite dimensional vector space has a basis, every

solution of the homogeneous LDEq can be expressed as a linear combination
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of basis functions

~y (t) = c1 ~ϕ1 (t) + c2 ~ϕ2 (t) + . . .+ ck ~ϕk (t) .

The question is how many basic functions there are, or how many free pa-

rameters ci the solution must have.

To clarify this aspect, we return to the pendulum problem from Example

15.1: There are 4 independent ways to excite the system: Deflection ϕ1,

deflection ϕ2, initial velocity ϕ̇1 and initial velocity ϕ̇2. So the solution

of the pendulum problem must contain at least 4 free parameters, which

can be chosen independently. Therefore, the dimension is Lh ≥ 4. Since the

pendulum problem requires vector functions ~y (t) = (y1 (t) , . . . , y4 (t)) with

4 components, the dimension of Lh is ≤ 4.

⇒ dim (Lh) = 4.

The following statement clarifies the conditions that must be met for the

LDEq solutions to be linearly independent:

Theorem 15.2: Linearly Independent Functions

Let Lh be the solution set of the homogeneous LDEq ~y ′ (t) = A~y (t)

with an (n× n) matrix A. For n solutions ~ϕ1 (t), ~ϕ2 (t), . . ., ~ϕn (t)

the following statements are equivalent:

(1) ~ϕ1, . . . , ~ϕn are linearly independent functions.

(2) For any given t the vectors ~ϕ1 (t), ~ϕ2 (t), . . ., ~ϕn (t) are linearly

independent.

(3) For a given t0 the vectors ~ϕ1 (t0), ~ϕ2 (t0), . . ., ~ϕn (t0) are linearly

independent.

Consequences of the Theorem:

(1) If ~ϕ1, ~ϕ2, . . . , ~ϕk are solutions of the homogeneous LDEq, then every

linear combination of

~y (t) = c1 ~ϕ1 (t) + c2 ~ϕ2 (t) + . . .+ ck ~ϕk (t) (ck ∈ C , k ∈ N)

is also a solution.

(2) Since Lh is an n-dimensional vector space, there exists a basis of n

functions, so that the general solution of the homogeneous LDEq can
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be represented as a linear combination of these basis functions:

~y (t) = c1 ~ϕ1 (t) + c2 ~ϕ2 (t) + · · ·+ cn ~ϕn (t) .

(3) It is not yet clear how to calculate the basis functions, but based on

the Theorem 15.2 it is possible to decide for given solutions whether we

already have a basis of Lh or not.

Since the basis functions of the vector space Lh play a crucial role in the

description of all solutions of the homogeneous LDEq, they get their own

notation:

Definition: We call n solutions (~ϕ1 (t) , . . . , ~ϕn (t)) of the homogeneous

system of LDEq

~y ′ (t) = A~y (t) (2)

a fundamental set if they form a basis of the vector space Lh of all

homogeneous solutions.

In the n-dimensional vector space Rn, n vectors are linearly independent if

and only if the determinant of these vectors does not disappear.

Theorem 15.3: Fundamental Set

n solutions (~ϕ1, ~ϕ2, . . . , ~ϕn) of (2) are a fundamental set

⇔ det (~ϕ1 (t0) , ~ϕ2 (t0) , . . . , ~ϕn (t0)) 6= 0 for an allowed t0.

Application Example 15.2 (Charge in a Magnetic Field).

The Lorentz equation of motion for a charged particle q = −e in a homo-

geneous magnetic field ~B =

 0

0

Bz

 is

m
d

dt
~v (t) = q

(
~v × ~B

)
= q

∣∣∣∣∣∣∣
→
ex vx 0
→
ey vy 0
→
ez vz Bz

∣∣∣∣∣∣∣ = −e

 vy Bz
−vxBz

0

 .
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Figure 15.2. Electron in a magnetic field

In components, we get with ω = e
m Bz

1st component: v̇x (t) = − e
m Bz vy (t) = −ω vy (t) ,

2nd component: v̇y (t) = e
m Bz vx (t) = ω vx (t) ,

3rd component: v̇z (t) = 0.

The third component returns vz (t) = const. ⇒ vz (t) = 0 if there is no

initial velocity in z-direction. The first two components vx(t), vy(t) form a

system of the LDEq:(
vx (t)

vy (t)

)′
=

(
0 −ω
ω 0

) (
vx (t)

vy (t)

)
⇒ ~v ′ (t) = A~v (t) (∗)

with the (2× 2) matrix A =

(
0 −ω
ω 0

)
. We confirm directly that ~v1 (t) =(

cos (ωt)

sin (ωt)

)
and ~v2 (t) =

(
− sin (ωt)

cos (ωt)

)
are solutions of (∗):

rll~v ′1 (t) =

(
cos (ωt)

sin (ωt)

)′
=

(
−ω sin (ωt)

ω cos (ωt)

)

A~v1 (t) =

(
0 −ω
ω 0

) (
cos (ωt)

sin (ωt)

)
=

(
−ω sin (ωt)

ω cos (ωt)

)
⇒ ~v ′1 (t) = A~v1 (t). Similarly, this is checked for ~v2 (t). Furthermore, ~v1 (t)

and ~v2 (t) are linearly independent: According to Theorem 15.3 it is suffi-

cient to check that det (~v1 (0) , ~v2 (0)) 6= 0:

det (~v1 (0) , ~v2 (0)) =

∣∣∣∣∣ 1 0

0 1

∣∣∣∣∣ = 1 6= 0.

So (~v1, ~v2) is a fundamental set and every solution to the problem can be

written as a linear combination of ~v1 and ~v2

~v (t) = c1 ~v1 (t) + c2 ~v2 (t)
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(
vx (t)

vy (t)

)
= c1

(
cos (ωt)

sin (ωt)

)
+ c2

(
− sin (ωt)

cos (ωt)

)
or in components

vx (t) = c1 cos (ωt)− c2 sin (ωt)

vy (t) = c1 sin (ωt) + c2 cos (ωt).

The constants c1 and c2 are determined by the initial conditions of the

problem. In this example vx (0) = v0 and vy (0) = 0:

vx (0) = c1 = v0

vy (0) = c2 = 0
⇒ vx(t) = v0 cos (ωt)

vy(t) = v0 sin (ωt)
.

15.2.1 Solving Homogeneous LDEq with Constant Coefficients

The solution of the homogeneous LDEq is completely reduced to the ana-

lysis of the matrix A. This is based on the following statement:

Theorem 15.4: Solution of the Homogeneous System

Let A be an (n× n) matrix and ~x =

 x1

...

xn

 ∈ Rn be a non-zero

vector such that there is a λ ∈ C with A~x = λ~x. Then the function

~ϕ (t) = ~x eλ t

is a solution of the homogeneous LDEq ~y ′ (t) = A~y (t).

Proof: Let ~x ∈ Rn be a vector and λ ∈ C be a complex number with

A~x = λ~x. Then the derivative of the vector function ~ϕ (t) = ~x eλ t is

~ϕ ′ (t) =
(
~x eλ t

)′
= ~xλ eλ t = (λ~x) eλ t

= (A~x ) eλ t = A
(
~x eλ t

)
= A ~ϕ (t) .

But the question is, how do we get vectors ~x with the property A~x = λ~x ?

This is exactly the problem of finding eigenvalues and eigenvectors of a given

matrix A that is discussed in Volume 2, Section 11.1.
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15.2.2 Eigenvalues and Eigenvectors

Definition: Let A be an (n× n) matrix. ~x 6= 0 is an Eigenvector of A,

if there is a complex number λ with

A~x = λ~x.

λ is then the Eigenvalue of A to the eigenvector ~x.

The procedure for solving the eigenvalue problem is to first determine all

the eigenvalues and then to compute the eigenvectors for each eigenvalue.

To do this, we reformulate A~x = λ~x into the equivalent equation

(A− λ In) ~x = ~0 (3)

where In is the identity matrix. To get an eigenvector ~x 6= ~0, the determi-

nant of the matrix A− λ In must be zero

det (A− λ In) = 0.

To summarize Volume 2, Section 11.1 to Section 11.3, we know

Eigenvalues and Eigenvectors of a Matrix

Let A be an (n× n) matrix.

©1 λ is an eigenvalue of the matrix A ⇔ det (A− λ In) = 0.

©2 P (λ) = det (A− λ In) is the characteristic polynomial. The

zeros of the characteristic polynomial are the eigenvalues of

the matrix A.

©3 If λ is an eigenvalue of the matrix A, then all eigenvectors to

the eigenvalue λ are defined as the solution of the system of

linear equations (A− λ In) ~x = ~0.

©4 If λ is an eigenvalue of A, then the set of eigenvectors for the

eigenvalue λ forms a vector space.
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Example 15.3. Given is the (3× 3) matrix A =

 5 7 −5

0 4 −1

2 8 −3

. Find all

the eigenvalues and the eigenvectors of this matrix.

Step 1: To find the eigenvalues, we set up the matrix A− λ I3

A−λ I3 =

 5 7 −5

0 4 −1

2 8 −3

−λ
 1 0 0

0 1 0

0 0 1

 =

 5− λ 7 −5

0 4− λ −1

2 8 −3− λ


and calculate its characteristic polynomial

det (A− λ I3) =

∣∣∣∣∣∣∣
5− λ 7 −5

0 4− λ −1

2 8 −3− λ

∣∣∣∣∣∣∣
= (5− λ)

∣∣∣∣∣ 4− λ −1

8 −3− λ

∣∣∣∣∣+ 2

∣∣∣∣∣ 7 −5

4− λ −1

∣∣∣∣∣
= −λ3 + 6λ2 − 11λ+ 6

= − (λ− 1) (λ− 2) (λ− 3).

From det (A− λ I3) = 0 we identify the eigenvalues λ1 = 1, λ2 =

2 and λ3 = 3.

Step 2: Once the eigenvalues of a matrix have been determined, the cor-

responding eigenvectors are calculated for each eigenvalue by solving

the system of linear equations (A− λ In) ~x = ~0:

i) Calculate the eigenvectors for the eigenvalue λ1 = 1: We look for

vectors ~x 6= ~0, so that (A− λ1 I3) ~x = ~0. We solve the system 5− 1 7 −5

0 4− 1 −1

2 8 −3− 1


x1

x2

x3

 =

 0

0

0

 :

↪→

 4 7 −5

0 3 −1

2 8 −4

∣∣∣∣∣∣∣
0

0

0

 ↪→

 4 7 −5

0 3 −1

0 −9 3

∣∣∣∣∣∣∣
0

0

0

 ↪→

 4 7 −5

0 3 −1

0 0 0

∣∣∣∣∣∣∣
0

0

0

 .

Backward substitution gives x3 = t; 3x2 − t = 0 ↪→ x2 = 1
3 t; and

4x1 + 7
3 t−5 t = 0 ↪→ x1 = 2

3 t. We choose t = 3 to get ~x1 =

 2

1

3


as an eigenvector for the eigenvalue λ1 = 1.
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ii) Calculate an eigenvector for the eigenvalue λ2 = 2: We solve the

system of linear equations (A− λ2 I3) ~x = ~0: 5− 2 7 −5

0 4− 2 −1

2 8 −3− 2

∣∣∣∣∣∣∣
0

0

0

 ↪→

 3 7 −5

0 2 −1

0 0 0

∣∣∣∣∣∣∣
0

0

0

 .

This is x3 = t; 2x2 − t = 0 ↪→ x2 = 1
2 t; 3x1 + 7

2 t − 5 t = 0 ↪→
x1 = 1

2 t. An eigenvector for the eigenvalue λ2 = 2 is obtained by

selecting, for example, t = 2: ~x2 =

 1

1

2

 .

iii) Calculate an eigenvector for the eigenvalue λ3 = 3: By solving the

linear system (A− λ3 I3) ~x = ~0 we get ~x3 =

−1

1

1


as an eigenvector for the eigenvalue λ3 = 3.

15.2.3 Solving Homogeneous LDEq with Eigenvectors

Let us return to our original problem, solving a homogeneous system of

LDEq. Using the terms from the previous section, we formulate

Fundamental Set

If the (n× n) matrix A has a basis of eigenvectors ~x1, ~x2, . . ., ~xn
to the eigenvalues λ1, . . ., λn ∈ C, then the vector functions

~ϕk (t) = ~xk e
λk t (k = 1, . . . , n)

form a fundamental set of the homogeneous LDEq

~y ′ (t) = A~y (t) .

The procedure described in Section 15.2.2 for computing the eigenvalues

and associated eigenvectors is sufficient to calculate a fundamental set of

the LDEq ~y ′ (t) = A~y (t) if a basis of eigenvectors can be found. The next

statement summarizes some important conditions that guarantee the exis-

tence of a basis of eigenvectors.
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Basis of Eigenvectors

Let A be an (n× n) matrix.

(1) If the characteristic polynomial P (λ) = det (A− λ In) has n

different zeros, then there is a basis of eigenvectors.

(2) If for each eigenvalue of multiplicity m there are m linear inde-

pendent eigenvectors, then there exists a basis of eigenvectors.

(3) If A is a real symmetric matrix (i.e. A = At), then there exists

a basis of eigenvectors.

(4) If A is a complex matrix with A = At, then there exists a basis

of eigenvectors.

Note: If the dimension of the eigenspace Eig(A, λ) is equal to the multiplici-

ty of the eigenvalue, then there exists a basis of eigenvectors. More generally,

it can be shown that this condition is not only necessary but also sufficient:

A basis of eigenvectors exists if and only if for all eigenvalues the multiplicity

is equal to the dimension of the eigenspace. Since such matrices play a speci-

al role, they are called diagonalizable matrices (see Volume 2, Section 11.3).

Example 15.4 (Eigenvalues and Eigenvectors). Find a fundamental set to

~y ′ (t) = A~y (t) with A =

 1 1 1

1 1 1

1 1 1

 .

(i) Calculate the eigenvalues of A:

P (λ) = det (A− λ I3) =

∣∣∣∣∣∣∣
1− λ 1 1

1 1− λ 1

1 1 1− λ

∣∣∣∣∣∣∣
= (1− λ)

∣∣∣∣∣ 1− λ 1

1 1− λ

∣∣∣∣∣−
∣∣∣∣∣ 1 1

1 1− λ

∣∣∣∣∣+

∣∣∣∣∣ 1 1

1− λ 1

∣∣∣∣∣
= −λ2 (λ− 3) .

The eigenvalues are the zeros of the characteristic polynomial:

P (λ) = 0 ↪→ λ1 = 0 Eigenvalue with multiplicity 2.

λ2 = 3 Eigenvalue with multiplicity 1.
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(ii) Calculate the eigenvectors of A:

Eigenvectors to the eigenvalue λ1 = 0:

(A− 0 · I3) ~x = 0 ↪→

 1 1 1

1 1 1

1 1 1

∣∣∣∣∣∣∣
0

0

0

 ↪→

 1 1 1

0 0 0

0 0 0

∣∣∣∣∣∣∣
0

0

0

.

↪→ x3 = r; x2 = t; x1 = −r − t. So,

Eig (A, 0) =

~x ∈ R3 : ~x = r

−1

0

1

+ t

−1

1

0

 ; r, t ∈ R

.

The dimension of the eigenspace Eig(A, 0) is 2 and is equal to the

multiplicity of the eigenvalue. For example, two linearly independent

eigenvectors are

~x1 =

−1

0

1

 and ~x2 =

−1

1

0

 .

Eigenvector to the eigenvalue λ2 = 3:

(A− 3 I3) ~x = 0 ↪→

−2 1 1

1 −2 1

1 1 −2

∣∣∣∣∣∣∣
0

0

0

 ↪→

−2 1 1

0 −1 1

0 0 0

∣∣∣∣∣∣∣
0

0

0

.

↪→ x3 = r; x2 = r; −2x1 + r + r = 0 ↪→ x1 = r.

⇒ Eig (A, 3) =

~x ∈ R3 : ~x =

x1

x2

x3

 = r

 1

1

1

 ; r ∈ R

.

The dimension of the eigenspace Eig(A, 3) is 1 and is equal to the

multiplicity of the eigenvalue. An eigenvector is ~x3 =

 1

1

1

 .

(iii) A fundamental set of ~y ′ (t) = A~y (t) is−1

0

1

 e0 t ,

−1

1

0

 e0 t ,

 1

1

1

 e3 t

and with constants c1, c2, c3, the general solution is

~y (t) = c1

−1

0

1

 e0 t + c2

−1

1

0

 e0 t + c3

 1

1

1

 e3 t.
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Application Example 15.5 (Sample Example: Solving LDEq).

This example summarizes the solution of a first-order LDEq. The system

of differential equations is given:

4y2(t) = y ′2(t) + y3(t)

5y1(t) + 7y2(t) = y ′1(t) + 5y3(t) (∗)
y ′3(t) = 2y1(t) + 8y2(t)− 3y3(t).

Find the solutions y1(t), y2(t) and y3(t) for the initial conditions

y1(0) = 3, y2(0) = 2, y3(0) = 1.

1. Setting up the LDEq: All derivatives are placed on the left and the un-

known functions on the right.

y ′1(t) = 5y1(t) + 7y2(t)− 5y3(t)

y ′2(t) = 4y2(t)− y3(t)

y ′3(t) = 2y1(t) + 8y2(t)− 3y3(t)

2. Setting up the system matrix: By defining the vector ~y(t) with the un-

known functions y1(t), y2(t) and y3(t) as components, we set up the

first-order system of linear DEq and identify the system matrix A. y1(t)

y2(t)

y3(t)


′

=

 5 7 −5

0 4 −1

2 8 −3


 y1(t)

y2(t)

y3(t)

⇒ A =

 5 7 −5

0 4 −1

2 8 −3

 .

3. Calculating the eigenvalues and the eigenvectors: From the Example 15.3

we know that ~x1 =

 2

1

3

, ~x2 =

 1

1

2

, ~x3 =

−1

1

1

 are eigenvectors

to the eigenvalues λ1 = 1, λ2 = 2 and λ3 = 3.

4. Fundamental set: Knowing the eigenvalues and the corresponding eigen-

vectors, we specify a fundamental set by

~x1e
λ1t =

 2

1

3

 e1t , ~x2e
λ2t =

 1

1

2

 e2t , ~x3e
λ3t =

−1

1

1

 e3t.
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5. General solution: The general solution ~y(t) is then a linear combination

of the fundamental set

~y(t) = c1

 2

1

3

 e1t + c2

 1

1

2

 e2t + c3

−1

1

1

 e3t.

The components are the searched functions

y1(t) = 2 c1e
1t + 1 c2e

2t − c3e3t

y2(t) = 1 c1e
1t + 1 c2e

2t + c3e
3t

y3(t) = 3 c1e
1t + 2 c2e

2t + c3e
3t.

6. Determining the coefficients: The coefficients are determined by the in-

itial conditions:
y1(0) = 2 c1 + 1 c2 − c3 = 3

y2(0) = 1 c1 + 1 c2 + c3 = 2

y3(0) = 3 c1 + 2 c2 + c3 = 1.

This is a system of linear equations for the constants c1, c2 and c3 of

the form  2 1 −1

1 1 1

3 2 1

∣∣∣∣∣∣∣
3

2

1

 ↪→

 1 1 1

0 −1 −3

0 0 −1

∣∣∣∣∣∣∣
2

−1

4

 ,

which can be solved, for example, using the Gauss algorithm. This re-

sults in the constants c1 = −7, c2 = 13 and c3 = −4. So the solutions

of the LDEq (∗) are

y1(t) = −14 e1t + 13 e2t + 4 e3t

y2(t) = −7 e1t + 13 e2t − 4 e3t

y3(t) = −21 e1t + 26 e2t − 4 e3t.

The procedure described can be applied directly to second-order LDEq of

the form

~y ′′ (t) = A~y (t) .

Vibration problems without friction are described by such LDEq where the

first-order derivative does not occur.
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Second-order LDEq

Let A be an (n× n) matrix and ~x an eigenvector to the eigenvalue

λ. Then the functions

~y1 (t) = ~x e+
√
λ t and ~y2 (t) = ~x e−

√
λ t

are solutions of the second-order LDEq

~y ′′ (t) = A~y (t) .

Proof: Let ~x be an eigenvector to the eigenvalue λ. Then it holds for

~y (t) := ~x e
√
λ t:

~y ′′ (t) =
(
~x e
√
λ t
)′′

=
(
~x
√
λ e
√
λ t
)′

= ~x
√
λ

2
e
√
λ t = λ~x e

√
λ t

= ~x e
√
λ t = A~y (t) .

So ~y (t) is a solution of the second-order LDEq ~y ′′ (t) = A~y (t). Ana-

logously, we show that ~x e−
√
λ t is also a solution of the LDEq.

Hint: If A has a basis of eigenvectors (~x1, . . . , ~xn) to the corresponding

eigenvalues λi 6= 0 (i = 1, . . . , n), then

~x1 e
√
λ1 t , ~x1 e

−
√
λ1 t , . . . , ~xn e

√
λn t, ~xn e

−
√
λn t

is a fundamental set for ~y ′′ (t) = A~y (t). In this case it is not necessary

to go to the first-order system, but the eigenvalues and eigenvectors

of the matrix A are used to solve the second-order LDEq!

Application Example 15.6 (Coupled Pendulums).

We return to the introductory Example 15.1 of coupled pendulums. If the

frictional forces are neglected, the system of differential equations for the

angular deflections ϕ1 (t) and ϕ2 (t) are

ϕ̈1 (t) = −g
l
ϕ1 (t) +

D

m
(ϕ2 (t)− ϕ1 (t))

ϕ̈2 (t) = −g
l
ϕ2 (t) +

D

m
(ϕ1 (t)− ϕ2 (t)) .
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With ~ϕ (t) :=

(
ϕ1 (t)

ϕ2 (t)

)
and A =

−
g
l −

D
m

D
m

D
m − gl −

D
m

 we abbreviate

~ϕ ′′ (t) = A ~ϕ (t) .

(1) Calculation of the eigenvalues:

P (λ) = det (A− λ I2) =

∣∣∣∣∣∣∣
− gl −

D
m − λ

D
m

D
m − gl −

D
m − λ

∣∣∣∣∣∣∣
=

(
−g
l
− D

m
− λ

)2

−
(
D

m

)2

= 0.

The eigenvalues are the zeros of the characteristic polynomial

P (λ) = 0 ⇒ (
g

l
+
D

m
) + λ1/2 = ±D

m

↪→ λ1 = −g
l

and λ2 = −g
l
− 2 D

m .

(2) Calculation of the eigenvectors:

λ1 = −g
l

: (A− λ1 I2) ~x = 0 ↪→
(
−D
m

D
m

D
m −

D
m

∣∣∣∣∣ 0

0

)
↪→
(
−D
m

D
m

0 0

∣∣∣∣∣ 0

0

)
:

Eigenvector to the eigenvalue λ1 is ~x1 =

(
1

1

)
(in phase).

λ2 = −g
l
−2

D

m
: (A− λ2 I2) ~x = 0 ↪→

(
D
m

D
m

D
m

D
m

∣∣∣∣∣ 0

0

)
↪→
(

D
m

D
m

0 0

∣∣∣∣∣ 0

0

)
:

Eigenvector to the eigenvalue λ2 is ~x2 =

(
1

−1

)
(out of phase).

(3) Setting up the fundamental set: With the eigenvectors to the eigenvalues

we set up the complex fundamental system

~x1 e
√
λ1 t , ~x1 e

−
√
λ1 t , ~x2 e

√
λ2 t , ~x2 e

−
√
λ2 t

with √
λ1 =

√
−g
l

= i

√
g

l
= i ω1
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and √
λ2 =

√
−g
l
− 2

D

m
= i

√
g

l
+ 2

D

m
= i ω2.

(4) Interpretation:

ω1 =
√

g
l is the natural frequency of the pendulum without spring

coupling. This frequency is associated with the eigenvector

(
1

1

)
, which

corresponds to an initial deflection of the pendulums (see Fig. 15.2.3,

left) in the same direction. The spring is not stretched and both pen-

dulums oscillate at the natural frequency of a single pendulum without

coupling.

ω2 =
√

g
l + 2 D

m is the natural frequency of the spring-pendulum when

the two masses are deflected in opposite directions. The corresponding

eigenvector is

(
1

−1

)
(see Fig. 15.2.3, right). The opposite deflection

of the pendulums doubles the expansion of the spring, resulting in a

factor 2 D
m at the frequency.

(1) In-phase deflection (2) Out-of-phase deflection
Figure 15.3. Natural oscillations

The oscillations belonging to ω1 and ω2 are called natural oscillations.
When the system is excited with an eigenvector, only the correspon-
ding eigenfrequency is excited. All other modes are a superposition of
these fundamental modes. The general solution with arbitrary complex
constants c1, c2, c3, c4 is given by

~ϕ (t) = c1

(
1

1

)
ei ω1 t+c2

(
1

1

)
e−i ω1 t+c3

(
1

−1

)
ei ω2 t+c4

(
1

−1

)
e−i ω2 t.
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(5) Transition to a real fundamental set: Using Euler’s formula (see Volume

1, Section 5.1)

ei ω t = cos(ω t) + i sin(ω t)

we get for any t

cos(ω t) = 1
2

(
ei ω t + e−i ω t

)
sin(ω t) = 1

2i

(
ei ω t − e−i ω t

)
.

With the solutions ~ψ1 (t) = ~x1 e
i ω1 t and ~ψ2 (t) = ~x1 e

−i ω1 t, the super-

positions

1

2
~ψ1 (t) +

1

2
~ψ2 (t) = ~x1

1

2

(
ei ω1 t + e−i ω1 t

)
= ~x1 cos (ω1 t)

1

2i
~ψ1 (t)− 1

2i
~ψ2 (t) = ~x1

1

2i

(
ei ω1 t − e−i ω1 t

)
= ~x1 sin (ω1 t)

also satisfy the LDEq. Analogously, ~x2 cos (ω2 t) and ~x2 sin (ω2 t) are

solutions. In total, we get four real solutions:

~x1 cos (ω1 t) , ~x1 sin (ω1 t) , ~x2 cos (ω2 t) , ~x2 sin (ω2 t) .

So the general solution is

~ϕ (t) =

(
ϕ1 (t)

ϕ2 (t)

)
= c1

(
1

1

)
cos (ω1 t) + c2

(
1

1

)
sin (ω1 t)

+c3

(
1

−1

)
cos (ω2 t) + c4

(
1

−1

)
sin (ω2 t)

or in components

ϕ1 (t) = c1 cos (ω1 t) + c2 sin (ω1 t) + c3 cos (ω2 t) + c4 sin (ω2 t)

ϕ2 (t) = c1 cos (ω1 t) + c2 sin (ω1 t)− c3 cos (ω2 t)− c4 sin (ω2 t).

The constants c1, c2, c3, c4 are determined by the initial conditions.

(6) Different initial conditions:

a) With ϕ1 (0) = ϕ0, ϕ2 (0) = ϕ0, ϕ̇1 (0) = 0, ϕ̇2 (0) = 0 the in-phase

fundamental oscillation is excited. From the initial conditions we get

c1 = ϕ0, c2 = c3 = c4 = 0. The solution is

ϕ1 (t) = ϕ0 cos (ω1 t)

ϕ2 (t) = ϕ0 cos (ω1 t).

The pendulums oscillate in-phase at the frequency ω1 =
√

g
l .
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b) For ϕ1 (0) = −ϕ0, ϕ2 (0) = ϕ0, ϕ̇1 (0) = 0, ϕ̇2 (0) = 0 the out-

of-phase fundamental oscillation is excited. From the initial conditions

follows c3 = −ϕ0 and c1 = c2 = c4 = 0

⇒ ϕ1 (t) = −ϕ0 cos (ω2 t)

ϕ2 (t) = ϕ0 cos (ω2 t).

The pendulums oscillate in opposite phases at the frequency ω2 =√
g
l + 2 D

m .

c) We deflect only the first pendulum. Then, the initial conditions are

ϕ1 (0) = −ϕ0, ϕ2 (0) = 0, ϕ̇1 (0) = 0, ϕ̇2 (0) = 0.

From these initial conditions we obtain four linear equations for the

coefficients to be determined:

c1 + c3 = −ϕ0

c1 − c3 = 0

c2 ω1 + c4 ω2 = 0

c2 ω1 − c4 ω2 = 0.

The solution of the system of linear equations is

c1 = 1
2ϕ0, c2 = 0, c3 = 1

2ϕ0, c4 = 0.

Fig. 15.4 shows the solution ϕ1 (t) for the pendulum length l = 2, the

spring constant D = 0.2 and the mass m = 1. The initial deflection is

ϕ0 = −0.1.

Figure 15.4. Double pendulum without friction: Beats

The resulting oscillation can easily be identified as a beat.
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Visualization: On the homepage there is an animation that

visualizes the oscillation of the pendulums. The worksheet is

structured in such a way that the initial conditions can be

chosen freely. The coefficients in the overall solution are ad-

justed and the associated animation is displayed.

Note: On the homepage there is an animation, which treats the os-

cillations of the pendulums with friction. The corresponding work-

sheet visualizes the oscillations of the pendulums in the form of an anima-

tion. The angular deflection for the first pendulum ϕ1(t) is shown in Fig.

15.5.

Figure 15.5. Oscillations of a double pendulum with friction

Summary

By computing the eigenvalues and eigenvectors, we can determine

a fundamental set of the second-order system

~y ′′ (t) = A~y (t) :

If ~xk is an eigenvector to the eigenvalue λk, then two linearly inde-

pendent solutions are

~ϕk,1 (t) = ~xk e
√
λk t and ~ϕk,2 (t) = ~xk e

−
√
λk t.

The eigenvalues represent the eigenfrequencies of the system and

the eigenvectors are the shapes associated with the eigenfrequencies.

The general vibration is a superposition of these eigenfrequencies.

https://www.imathonline.de/ani/pendelOR.gif
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15.2.4 Main Vectors (Principal Vectors)

As long as the matrix A can be diagonalized, we are able to determine a

fundamental set for the first-order linear differential equation system. All

we have to do is to calculate the eigenvalues and the corresponding eigen-

vectors and we will get as many linearly independent solutions as we need

for a fundamental set. But what happens if the matrix can’t be diagonali-

zed? Consider the next example:

Example 15.7. Find a fundamental set for the LDEq

~y ′ (t) = A~y (t) with A =

(
−3 1

−4 1

)
.

(i) Computing the eigenvalues of A:

P (λ) = det (A− λ I2) =

∣∣∣∣∣−3− λ 1

−4 1− λ

∣∣∣∣∣
= (1− λ) · (−3− λ) + 4 = λ2 + 2λ+ 1 = (λ+ 1)2 = 0

The eigenvalues are the zeros of the characteristic polynomial. So λ =

−1 is a double root.

(ii) Computing eigenvectors of the eigenvalue λ = −1:

(A+ 1 · I2) ~x = ~0 :

(
−2 1

−4 2

∣∣∣∣∣ 0

0

)
↪→

(
−2 1

0 0

∣∣∣∣∣ 0

0

)
.

↪→ x2 = r; x1 = 1
2r. Only ~x1 = r

(
1
2

1

)
are the eigenvectors to the

eigenvalue λ = −1. The dimension of the eigenspace Eig(A, −1) is 1

but the multiplicity of the eigenvalue is 2. Consequently, we get only

one solution to the differential equation system, namely

~y1(t) = ~x1 · eλ t =

(
1

2

)
· e−t.

But for a fundamental set we need two independent solutions!

To find a second solution we choose the approach

~y(t) = (~x2 + ~x1 · t) · eλ t

where ~x1 is the eigenvector to the eigenvalue λ = −1 and ~x2 is a second

unknown vector that we need to determine so that ~y(t) becomes a solution.

We insert this approach into the differential equation by differentiating ~y(t)
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to get the left side of the LDEq and by applying the matrix A to ~y(t) to

get the right side.

~y ′(t) = ~x1 · eλt + (~x2 + ~x1 · t) · eλt · λ
= (~x1 + λ~x2 + λ~x1 · t) · eλt

A~y(t) = A (~x2 + ~x1 · t) · eλt

= (A~x2 +A~x1 · t) · eλt

= (A~x2 + λ~x1 · t) · eλt.

Hence,

~x1 + λ~x2 + λ~x1 · t = A~x2 + λ~x1 · t.

After a rearrangement we get

(A− λ I2) ~x2 = ~x1 .

We have to solve this system of linear equations where the right side is

the eigenvector ~x1 to the eigenvalue λ = −1. Solving the system of linear

equations gives us the second vector ~x2, which we will call main vector of

level 2. If we apply (A−λ I2) again on both sides of the equation, we obtain

(A− λ I2)2~x2 = (A− λ I2)~x1 = 0.

More generally, we define

Definition: Let A be an (n× n) matrix and λ ∈ C an eigenvalue. A

vector ~x is called main vector (principal vector) of the matrix A for the

eigenvalue λ if there exists a number k ∈ N such that

(A− λIn)k ~x = ~0.

The main vector ~x is called main vector of level k if

(A− λIn)k ~x = ~0 but (A− λ In)k−1 ~x 6= ~0.

Here we use the convention that (A− λ In)0 = In.

Note: Eigenvectors are also main vectors of the level 1.
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Example 15.8 (Main Vectors). Find a fundamental set to the LDEq

~y ′ (t) = A~y (t) with A =

(
−3 1

−4 1

)
.

From Example 15.7 we know that λ = −1 is an eigenvalue to the

eigenvector ~x1 =

(
1

2

)
where the geometric order of the eigenvector is

2 while the algebraic order of the eigenvalue is 1. So we need a main

vector to determine a fundamental set of the problem. Therefore, we

solve the linear equation (A− λI2) ~x2 = ~x1:(
−2 1

−4 2

∣∣∣∣∣ 1

2

)
↪→

(
−2 1

0 0

∣∣∣∣∣ 1

0

)

↪→ x2 = r; x1 = 1
2r−

1
2 . Thus, ~x =

(
− 1

2

0

)
+ r

(
1
2

1

)
are level 2 main

vectors to the eigenvalue λ = −1. We set r = 1 to get a main vector

of level 2: ~x2 =

(
0

1

)
. With the eigenvector ~x1 and the main vector

~x2 we build a fundamental set to the system of LDEq

~y2(t) = (~x2 + ~x1 · t) · eλ t =

(
0 + t

1 + 2t

)
· e−t

along with ~y1(t) = ~x1 · e−t =

(
1

2

)
· e−t.

Fundamental Set of Main Vectors

By computing the eigenvalues and eigenvectors and, if necessary, the

main vectors, we compute a fundamental set for the homogeneous

system of first-order differential equations

~y ′ (t) = A~y (t) .

If λ is an eigenvalue of order k then we have to compute main

vectors with increasing level until we get k main vectors. If ~xi are

main vectors of level i (i = 1, ..., k) then

~y1(t) := ~x1 · eλ t

~y2(t) := (~x2 + ~x1 t) · eλ t

. . .

~yk(t) :=
(
~xk + . . .+ ~x2

1
(k−2)! t

k−2 + ~x1
1

(k−1)! t
k−1
)
· eλ t

are linearly independent solutions to the system of LDEq.
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Basis of Main Vectors

It is a non-trivial theorem of linear algebra which states: For every

(n× n) matrix A there exists a basis of main vectors.

Example 15.9. Find a fundamental set for the LDEq

~y ′ (t) = A~y (t) with A =

 1 1 0

0 1 1

0 0 1

 .

(1) Computing the eigenvalues of A:

P (λ) = det (A− λ I3) =

∣∣∣∣∣∣∣
1− λ 1 0

0 1− λ 1

0 0 1− λ

∣∣∣∣∣∣∣ = − (λ− 1)
3
.

So λ = 1 is an eigenvalue of the algebraic order 3.

(2) Computing eigenvectors for λ = 1:

(A− 1 · I3) ~x = 0 ↪→

 0 1 0

0 0 1

0 0 0

∣∣∣∣∣∣∣
0

0

0

 ↪→

 0 0 0

0 1 0

0 0 1

∣∣∣∣∣∣∣
0

0

0

.

So all eigenvectors are ~x1 =

 1

0

0

 and multiples of ~x1. The geometric

order of the eigenvector is 1, which means that we need to find main

vectors as long as we have enough linearly independent vectors.

(3) Computing a main vector of level 2:

(A− 1 · I3) ~x = ~x1 :

 0 1 0

0 0 1

0 0 0

∣∣∣∣∣∣∣
1

0

0

 . . . ↪→ ~x =

 τ

1

0

.

We rewrite this solution ~x = τ ·

 1

0

0

 +

 0

1

0

 . The first part is the

eigenvector ~x1. To get a main vector of level 2, we choose e.g. τ = 0 to

obtain ~x2 =

 0

1

0

 .
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(4) Computing a main vector of level 3: To obtain a level 3 main vector, we

choose ~x2 as the right side of the system.

(A− 1 · I3) ~x = ~x2 :

 0 1 0

0 0 1

0 0 0

∣∣∣∣∣∣∣
0

1

0

 ↪→ ~x =

 τ

0

1

.

We rewrite this solution ~x = τ ·

 1

0

0

+

 0

0

1

 . The first part is again

the eigenvector ~x1. So we choose τ = 0 to get a main vector of level 3

~x2 =

 0

0

1

 .

Since ~x1, ~x2 and ~x3 are the unit vectors, the eigenvector ~x1 together

with its main vectors ~x2 and ~x3 are basis of R3.

(5) Fundamental set: Taking the eigenvector and the main vectors of level

2 and level 3, we obtain a fundamental set for the system of differential

equations LDEq

~y1(t) = ~x1 · eλ t =

 1

0

0

 · et

~y2(t) = (~x2 + ~x1 t) · eλ t =

 t

1

0

 · et

~y3(t) =
(
~x3 + ~x2 t+ ~x1

1
2 t

2
)
· eλ t =

 1
2 t

2

t

1

 · et
Note: When computing a level 2 main vector, we can alternatively choose

τ = 1 and get ~x2 =

 1

1

0

 . With this main vector we compute a level 3

main vector to get ~x3 =

σ

1

1

 for each σ. Again, ~x1, ~x2 and ~x3 are a basis

of R3, since det(~x1, ~x2, ~x3) = 1 6= 0.
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Example 15.10. Find a fundamental set for the LDEq

~y ′ (t) = A~y (t) with A =

 0 1 0

0 0 1

−1 −3 −3

 .

Similar to Example 15.9, we calculate the characteristic polynomial

and find that λ = −1 is an eigenvalue of order 3. It has an eigenvector

~x1 =

 1

−1

1

 of geometric order 1. So we determine a main vector of

level 2, ~x2 =

 2

−1

0

 , and also a main vector of level 3, ~x3 =

 3

−1

0

 .

We will skip the details of the calculation and just refer to the results.

The fundamental set is

~y1(t) = ~x1 · eλ t =

 1

−1

1

 · e−t

~y2(t) = (~x2 + ~x1 t) · eλ t =

 2 + t

−1− t
t

 · e−t

~y3(t) =
(
~x3 + ~x2 t+ ~x1

1
2 t

2
)
· eλ t =

 3 + 2t+ 1
2 t

2

−1− t− 1
2 t

2

1
2 t

2

 · e−t
Example 15.11. Find a fundamental set for the LDEq

~y ′ (t) = A~y (t) with A =

 8 0 1

−2 9 2

−1 0 10

 .

Similar to the previous examples, we calculate the characteristic poly-

nomial and find that λ = 9 is an eigenvalue of algebraic order 3.

(1) Computing eigenvectors of the eigenvalue λ = 9:

(A− 9 · I3) ~x = ~0 :

−1 0 1

−2 0 2

−1 0 1

∣∣∣∣∣∣∣
0

0

0

 ↪→

−1 0 1

0 0 0

0 0 0

∣∣∣∣∣∣∣
0

0

0

.
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The solution to this system has two parameters and, for example,

~x1 =

 0

1

0

 and ~x2 =

 1

0

1

 are linearly independent eigenvectors.

To find a main vector of level 2, we start with ~x1.

(2) Computing a level 2 main vector for ~x1: To compute a level 2 main

vector, we solve the system

(A− 9 · I3) ~x = ~x1 :

−1 0 1

−2 0 2

−1 0 1

∣∣∣∣∣∣∣
0

1

0

 ↪→

−1 0 1

0 0 0

0 0 0

∣∣∣∣∣∣∣
0

1

0

.

From the second row we can see that the system is not solvable.

This means that for the eigenvalue ~x1 there is no main vector of

level 2.

(3) Computing a level 2 main vector for ~x2: Now we try to solve the

system with ~x2

(A− 9 · I3) ~x = ~x2 :

−1 0 1

−2 0 2

−1 0 1

∣∣∣∣∣∣∣
1

0

1

 ↪→

−1 0 1

0 0 0

0 0 0

∣∣∣∣∣∣∣
0

−2

0

.

From the second row we see again that the system is not solvable.

This means that for the eigenvalue ~x2 there is no main vector of

level 2.

To find a main vector of level 2, we must therefore use a suitable

linear combination of ~x1 and ~x2

α~x1 + β ~x2 =

 β

α

β


with which we can compute a main vector:−1 0 1

−2 0 2

−1 0 1

∣∣∣∣∣∣∣
β

α

β

 ↪→

−1 0 1

0 0 0

0 0 0

∣∣∣∣∣∣∣
β

−2β + α

0

.

If we set α = 2β, the system is solvable and we will find a main

vector of level 2. So instead of ~x1 and ~x2 we take the eigenvector

~x3 =

 1

2

1

 to the eigenvalue λ = 9 and compute a level 2 main

vector for this eigenvector.
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(4) Computing a level 2 main vector for ~x3:−1 0 1

−2 0 2

−1 0 1

∣∣∣∣∣∣∣
1

2

1

 ↪→

−1 0 1

0 0 0

0 0 0

∣∣∣∣∣∣∣
1

0

0

 .

The solution to this linear system is

~x =

−1

0

0

+ τ

 1

0

1

+ σ

 0

1

0


where we identify the two eigenvectors ~x1 and ~x2. By choosing

σ = 0 and τ = 0 we obtain the main vector ~v =

−1

0

0

 .

(5) Fundamental Set: From the two eigenvectors ~x1 and ~x2 we get two

independent solutions

~y1(t) = ~x1 · eλ t =

 0

1

0

 · e9t

~y2(t) = ~x2 · eλ t =

 1

0

1

 · e9t

For the eigenvector ~x3 we identified a main vector of level 2, ~v, so

we have an additional solution to the differential system with

~y3(t) = (~v + ~x3 t) · e9t =

−1 + t

2t

t

 · e9t .

(6) Fundamental Matrix: Especially when we will solve the inhomoge-

neous problem, it is convenient to summarize the information of

the fundamental set in a corresponding matrix. The columns of

the fundamental matrix are the vectors of the fundamental set:

F (t) := (~y1(t), ~y2(t), ~y3(t)) =

 0 e9t (−1 + t) · e9t

e9t 0 2t · e9t

0 e9t t · e9t

 .

Note: So for any quadratic matrix A we can determine a fundamental set

to the homogeneous first-order system ~y ′ (t) = A~y (t).
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15.3 Inhomogeneous Linear Differential Equation
Systems

The solution of an inhomogeneous linear differential equation

~y ′ (t) = A~y (t) + ~f(t)

can be determined elegantly using the Fourier transform (Chapter 18) or

the Laplace transform (Volume 2, Chapter 14) if initial conditions are speci-

fied. In this section we will calculate a special solution of the inhomogeneous

system using the method of Variation of the Constant.

Let (~y1 (t) , ~y2 (t) , . . . , ~yn (t)) be a fundamental set of the homogeneous

problem, i.e.

~y ′i (t) = A~yi (t) (i = 1, . . . , n) . (∗)

Note that each vector ~yi (t) has n components ~yi (t) =


y1i (t)

y2i (t)

. . .

yni (t)

! From

the basis functions ~y1 (t) , . . . , ~yn (t) we form the fundamental matrix, who-

se columns consist of the basis functions.

Fundamental Matrix

F (t) := (~y1 (t) , . . . , ~yn (t)) =


y11 (t) y12 (t) · · · y1n (t)

y21 (t) y22 (t) · · · y2n (t)
...

...
...

yn1 (t) yn2 (t) · · · ynn (t)

 .

With the fundamental matrix we write the general solution of the homoge-

neous system as

~y(t) = c1 ~y1(t) + c2 ~y2(t) + . . .+ cn ~yn(t) = F (t) ·


c1
c2
· · ·
cn

 = F (t) · ~c .

F (t) is an invertible (n× n) matrix because the basis functions ~y1, . . . , ~yn
are linearly independent and det (F (t)) = det (~y1 (t) , . . . , ~yn (t)) 6= 0. The
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derivative of a matrix is defined as the derivative of its elements

F ′ (t) :=


y′11 (t) · · · y′1n (t)

y′21 (t) · · · y′2n (t)
...

...

y′n1 (t) · · · y′nn (t)

 = (~y ′1 (t) , . . . , ~y ′n (t)) .

Since the vector functions ~yi (t) are solutions of the homogeneous system

(∗), F ′ (t) is

F ′ (t) = (~y ′1 (t) , ~y ′2 (t) , . . . , ~y ′n (t))

= (A~y1 (t) , A ~y2 (t) , . . . , A ~yn (t))

= A · (~y1 (t) , ~y2 (t) , . . . , ~yn (t))

= A · F (t) .

Now we look at the inhomogeneous system

~y ′ (t) = A~y (t) + ~f (t)

~y (t0) = ~y0
(∗∗)

with a given continuous function ~f (t) and the initial condition ~y0. We know

that

~y(t) = F (t) · ~c

is the solution of the homogeneous system with an arbitrary constant vec-

tor ~c. As an approach to solving the inhomogeneous problem, we vary the

constant such that we assume it is also a function of t

~y (t) = F (t) · ~c (t) (Variation of the Constant),

with an unknown vector function ~c (t) = (c1 (t) , c2 (t) , . . . , cn (t))t. We get

the derivative of ~y (t) using the product rule

~y ′ (t) = F ′ (t) ~c (t) + F (t) ~c ′ (t)

= AF (t) ~c (t) + F (t) ~c ′ (t)

= A~y (t) + F (t) ~c ′ (t)

= A~y (t) + ~f(t).

~y (t) satisfies the inhomogeneous linear differential equation if and only if

F (t) ~c ′ (t) = ~f (t) .
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Since F (t) is an invertible matrix, we apply its inverse to get

~c ′ (t) = F−1 (t) ~f (t)

and after integration

~c (t) = ~c0 +

ˆ t

t0

F−1 (ξ) ~f (ξ) dξ.

So the solution to the problem is

~y (t) = F (t) · ~c (t) = F (t) ·
{
~c0 +

ˆ t

t0

F−1 (ξ) ~f (ξ) dξ

}

~y (t) = F (t) ~c0︸ ︷︷ ︸
homogeneous solution

+ F (t)

ˆ t

t0

F−1(t) (ξ) ~f (ξ) dξ︸ ︷︷ ︸
a particular solution

.

The constant vector ~c0 = (c1, . . . , cn)
t

must be chosen so that the vector

equation ~y(t0) = F (t0) ~c0 = c1~y1 (t0) + . . .+ cn ~yn (t0) is satisfied.

The general solution of the inhomogeneous problem is the sum of the

general solution of the homogeneous problem and a special solution

of the inhomogeneous differential equation.

Summary: Variation of the Constant

Let F (t) = (~y1 (t) , . . . , ~yn (t)) be the fundamental matrix of

~y ′ (t) = A~y (t) . Then

~y (t) = F (t) ~c0 + F (t)

ˆ t

t0

F−1 (ξ) ~f (ξ) dξ

is the general solution of

~y ′ (t) = A~y (t) + ~f (t) .

The constant vector ~c0 must be chosen so that the initial condition

~y(t0) is satisfied.
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Example 15.12 (Inhomogeneous Problem). Find the general solution of the

inhomogeneous LDEq

~y ′ (t) = A~y (t) + ~f(t) with A =

(
−1 3

2 −2

)
, ~f(t) =

(
0

e−t

)
.

(i) Computing the fundamental matrix F (t): To build the fundamental ma-

trix, we need the eigenvalues

P (λ) = det (A− λ I2) =

∣∣∣∣∣−1− λ 3

2 −2− λ

∣∣∣∣∣ = λ2 + 3λ− 4 = 0 .

The eigenvalues are λ1 = −4 and λ2 = 1. By solving the corresponding

systems of linear equations

(A− λi · I2) ~x = ~0,

we get the eigenvectors:

(
1

−1

)
to λ1 = −4 and

(
3

2

)
to λ2 = 1.

So ~y1(t) =

(
1

−1

)
·e−4 and ~y2(t) =

(
3

2

)
·et are a fundamental set and

F (t) =

(
e−4t 3et

−e−4t 2et

)
is the fundamental matrix. The determinant of F (t) is

det(F (t)) = 2 e−3t + 3 e−3t = 5 e−3t 6= 0

with its inverse matrix

F−1(t) =

(
2
5e

4t − 3
5e

4t

1
5e
−t 1

5e
−t

)
.

(ii) Computing F−1(t) · ~f(t) and integrating: It is

F−1(t) · ~f(t) =

(
2
5e

4t − 3
5e

4t

1
5e
−t 1

5e
−t

)
·
(

0

e−t

)
=

(
− 3

5e
3t

1
5e
−2t

)
and

F (t) ·
ˆ
F−1(t) · ~f(t) dt = F (t) ·

ˆ (
− 3

5e
3t

1
5e
−2t

)
dt
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= F (t) ·
(
− 3

5e
3t 1

3
1
5e
−2t 1
−2

)
=

(
e−4t 3et

−e−4t 2et

)
·
(
− 1

5e
3t

− 1
10e
−2t

)

=

(
− 1

2e
−t

0

)
.

Note: ~f(t) =

(
0

e−t

)
=

(
0

1

)
e−t is an exponential function and a par-

ticular solution is also of type exponential function. Together with the

homogeneous solution we obtain the general solution to the inhomoge-

neous problem

~y(t) = c1

(
1

−1

)
· e−4 + c2

(
3

2

)
· et +

(
− 1

2e
−t

0

)
.

Example 15.13 (Particular Solution). Find a particular solution to the inho-

mogeneous LDEq

~y ′ (t) = A~y (t) + ~f(t) with A =

(
−1 3

2 −2

)
, ~f(t) =

(
t

0

)
.

According to Example 15.12 we already know a fundamental set and

therefore the fundamental matrix and its inverse

F (t) =

(
e−4t 3et

−e−4t 2et

)
and F−1(t) =

(
2
5e

4t − 3
5e

4t

1
5e
−t 1

5e
−t

)
.

We have to calculate F−1(t) · ~f(t) and integrate. It is

F−1(t) · ~f(t) =

(
2
5e

4t − 3
5e

4t

1
5e
−t 1

5e
−t

)
·
(
t

0

)
=

(
2
5 t e

4t

1
5 t e

−t

)
and a particular solution is

~yp(t) = F (t) ·
ˆ
F−1(t) · ~f(t) dt = F (t) ·

(
1
40 (−1 + 4t) e4t

1
5 (−1− t) e−t

)

=

(
e−4t 3et

−e−4t 2et

)
·
(

1
40 (−1 + 4t) e4t

1
5 (−1− t) e−t

)

=

(
− 5

8 −
1
2 t

− 3
8 −

1
2 t

)
.

The particular is also a polynomial.
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Looking at the Examples 15.12 and 15.13 we see that the particular soluti-

on is of the same type as the inhomogeneity ~f(t). This leads to a popular

way to compute a particular solution by a right-hand-side approach, as we

have already considered in the case of first-order differential equations (see

Volume 2, Section 13.4).

To clarify the idea, we use the examples already discussed and compute a

particular solution by the right-hand-side approach.

Example 15.14 (Right-Hand-Side Approach). Find a particular solution to

the inhomogeneous LDEq

~y ′ (t) = A~y (t) + ~f(t) with A =

(
−1 3

2 −2

)
, ~f(t) =

(
0

e−t

)
.

The right side ~f(t) =

(
0

e−t

)
=

(
0

1

)
e−t is an exponential function

e−t. Therefore, we use the approach

~yp(t) =

(
a

b

)
e−t =

(
a e−t

b e−t

)
.

To identify the unknown parameters a and b we evaluate the right and

left sides of the system ~y ′ (t) = A~y (t) + ~f(t):(
−a e−t
−b e−t

)
=

(
−1 3

2 −2

)
·
(
a e−t

b e−t

)
+

(
0

e−t

)
(
−a
−b

)
e−t =

(
−a+ 3b

2a− 2b+ 1

)
e−t.

We compare the two components and get

−a = −a+ 3b

−b = 2a− 2b+ 1

with the solutions a = − 1
2 and b = 0.

This gives the same particular solution as in Example 15.12 using the

fundamental matrix

~yp(t) =

(
− 1

2e
−t

0

)
.
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Example 15.15 (Right-Hand-Side Approach). Find a particular solution to

the inhomogeneous LDEq

~y ′ (t) = A~y (t) + ~f(t) with A =

(
−1 3

2 −2

)
, ~f(t) =

(
t

0

)
.

The right side ~f(t) =

(
t

0

)
is of type polynomial of degree 1, so we

use the approach polynomial of degree 1 for each component

~yp(t) =

(
a1 + b1 t

a2 + b2 t

)
.

To identify the unknown parameters a1, a2 and b1, b2, we evaluate the

left and right sides of the system ~y ′ (t) = A~y (t) + ~f(t):(
b1
b2

)
=

(
−1 3

2 −2

)
·
(
a1 + b1 t

a2 + b2 t

)
+

(
t

0

)

=

(
−a1 − b1 t+ 3a2 + 3b2 t+ t

2a1 + 2b1 t− 2a2 − 2b2 t

)

=

(
(−a1 + 3a2) + (−b1 + 3b2 + 1) t

(2a1 − 2a2) + (2b1 − 2b2) t

)
.

We compare the two polynomials for each component. The first com-

ponent gives

t1 : 0 = −b1 + 3b2 + 1

t0 : b1 = −a1 + 3a2

and the second component

t1 : 0 = 2b1 − 2b2

t0 : b2 = 2a1 − 2a2.

The solutions to these linear equations are a1 = − 5
8 , b1 = − 1

2 and

a2 = − 3
8 , b2 = − 1

2 .

We obtain the same particular solution as in Example 15.13 using the

fundamental matrix

~yp(t) =

(
− 5

8 −
1
2 t

− 3
8 −

1
2 t

)
.
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Example 15.16. Find a particular solution to the inhomogeneous LDEq

~y ′ (t) = A~y (t) + ~f(t) with A =

(
2 1

3 4

)
, ~f(t) =

(
−3t e−t

−(3t+ 5) e−t

)
.

The right side ~f(t) is of the type polynomial times exponential e−t. So

we check the approach

~yp(t) =

(
(a1 + b1 t) e

−t

(a2 + b2 t) e
−t

)
.

To identify the unknown parameters a1, a2 and b1, b2, we evaluate the

right and left sides of the system, ~y ′ (t) and A~y (t) + ~f(t):

~y ′p(t) =

(
b1 e
−t + (a1 + b1 t)(−1) e−t

b2 e
−t + (a2 + b2 t)(−1) e−t

)

=

(
b1 − a1 − b1 t
b2 − a2 − b2 t

)
· e−t

=

(
2 1

3 4

)
·
(
a1 + b1 t

a2 + b2 t

)
e−t +

(
−3t

−(3t+ 5)

)
e−t

We compare the two components

b1 − a1 − b1 t = 2a1 + 2b1 t+ a2 + b2 t− 3t

b2 − a2 − b2 t = 3a1 + 3b1 t+ 4a2 + 4b2 t− 3t− 5

with the solution a1 = 0, b1 = 1 and a2 = 1, b2 = 0. A particular

solution is

~yp(t) =

(
t

1

)
e−t.

Note: To obtain the general solution to the LDEq, we have to add

the homogeneous solution. The matrix A has the eigenvalues λ1 = 1

and λ2 = 5 with the corresponding eigenvectors ~x1 =

(
1

−1

)
and

~x2 =

(
1

3

)
. So the general solution of the inhomogeneous problem is

~y(t) = ~yh(t) + ~yp(t)

= c1

(
1

−1

)
et + c2

(
1

3

)
e5t +

(
t

1

)
e−t
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Application Example 15.17 (Charged Particle in Electromagnetic Fields).

The equation of motion (non-relativistic Lorentz equation) of a charged

particle with charge q = −e in electromagnetic fields ~E and ~B is

m
d

dt
~v (t) = q

(
~E + ~v (t)× ~B

)
with ~v (0) = ~v0 .

For ~B =

 0

0

BZ

 and ~E =

Ex
Ey
Ez

 we get according to Example 15.2

1st component: v̇x (t) = − e
m Bz vy (t)− e

m Ex
2nd component: v̇y (t) = e

m Bz vx (t)− e
m Ey

3rd component: v̇z (t) = − e
m Ez

From the third component we conclude that vz (t) = v0z− e
m Ez ·t. From the

first two components we get the inhomogeneous linear differential equation

~v ′ (t) =

(
v′x (t)

v′y (t)

)
=

(
0 −ω
ω 0

)
~v (t) +

(
− e
m Ex
− e
m Ey

)
with ω =

e

m
B .

Assuming a homogeneous magnetic field, the functions

~y1 (t) =

(
cos (ωt)

sin (ωt)

)
, ~y2 (t) =

(
− sin (ωt)

cos (ωt)

)
are a fundamental set according to Example 15.2 and the fundamental

matrix is

F (t) =

(
cos (ωt) − sin (ωt)

sin (ωt) cos (ωt)

)
with F−1 (t) =

(
cos (ωt) sin (ωt)

− sin (ωt) cos (ωt)

)
.

The method Variation of the Constant provides the solution to the inho-

mogeneous problem:

~c (t) = ~v0 +

ˆ t

0

F−1 (ξ) · ~f (ξ) dξ

= ~v0 +

ˆ t

0

(
cos (ω ξ) sin (ω ξ)

− sin (ω ξ) cos (ω ξ)

)
·
(
− e
m Ex
− e
m Ey

)
dξ

= ~v0 −
e

m

ˆ t

0

(
Ex cos (ω ξ) + Ey sin (ω ξ)

−Ex sin (ω ξ) + Ey cos (ω ξ)

)
dξ
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= ~v0 −
e

m

1

ω

(
Ex sin (ωt)− Ey cos (ωt) + Ey
Ex cos (ωt)− Ex + Ey sin (ωt)

)
.

The solution of the inhomogeneous problem, which also satisfies the initial

condition ~y(t0) = ~v0, is thus

~y (t) = F (t) ~c (t)

= F (t)
→
v 0 −

e

m

1

ω
F (t)

(
Ex sin (ωt)− Ey cos (ωt) + Ey
Ex cos (ωt)− Ex + Ey sin (ωt)

)

=

(
cos (ωt) v0x − sin (ωt) v0y

sin (ωt) v0x + cos (ωt) v0y

)

− e

m

1

ω

(
Ex sin (ωt) + Ey (cos (ωt)− 1)

Ex (1− cos (ωt)) + Ey sin (ωt)

)
.

The components of the velocity are

vx(t) = cos (ωt) v0x − sin (ωt) v0y −
1

B
(Ex sin (ωt) + Ey (cos (ωt)− 1))

vy(t) = sin (ωt) v0x + cos (ωt) v0y −
1

B
(Ex (1− cos (ωt)) + Ey sin (ωt))

vz(t) = v0z −
ω

B
E t .

For the parameters ω = 1, B = 0.1, Ex = 10, Ey = 4, Ez = 1 and the

initial velocities v0x = 1, v0y = 0, v0z = 0, the motion is shown in Fig. 15.6.

Figure 15.6. Space curve of an electron in an electromagnetic field
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15.4 Problems on Systems of Linear Differential
Equations

15.1 Determine a fundamental set of the first-order LDEq system

a) ~y′ (t) = A~y (t) with A =

 2 0 −2

0 4 0

−2 0 5


b) ~y′ (t) = B ~y (t) with B =

 −2 −9 5

−5 −10 7

−9 −21 14


Check that the eigenvectors form a basis of R3.

15.2 Determine a fundamental set of the second-order LDEq system

~y ′′ (t) = A~y (t) with A =

(
1 −2

−2 4

)
.

15.3 a) The equations of motion of a charged particle in a magnetic field are

v̇x = − e

m
Bz vy, v̇y =

e

m
Bz vx

if ~B = Bz ~ez. Determine a real-valued fundamental set.

b) A particular solution is to be found if, in addition to the magnetic

field ~B, an electric field ~E = E0

 0

t

0

 is effective:

v̇x = − e

m
Bz vy v̇y =

e

m
Bz vx + E0 · t.

15.4 Given is the matrix A =

(
−3 1

1 −3

)
.

a) Find all eigenvalues and eigenvectors for the matrix A.

b) Determine a fundamental set of ~y ′ (t) = A~y (t).

c) Determine a complex fundamental set of ~y ′′ (t) = A~y (t).

d) Determine a real-valued fundamental set of ~y ′′ (t) = A~y (t).

e) Set up the first-order LDEq equivalent to ~y ′′ (t).

15.5 Compute a fundamental set of the first-order system ~y ′ = A~y in the case

of:

a) A =

(
3 4

−5 −5

)
b) A =

 3 1 1

1 5 1

1 1 3


c) A =

 3 −1 1

−1 3 −1

1 −1 3


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15.6 Solve the initial value problem:
y′1 (x) = 3 y1 (x) + 2 y2 (x) − y3 (x), y1 (0) = 2

y′2 (x) = 2 y1 (x) + 3 y2 (x) − y3 (x), y2 (0) = 4

y′3 (x) = −y1 (x) − y2 (x) + 4 y3 (x), y3 (0) = 0

15.7 Solve the second-order differential equation

y′′ − 5 y′ + 6 y = 0 (∗)

by introducing the new functions y1 = y, y2 = y′ and writing (∗) as

a system. Solve the first-order system. What is the solution for y (0) =

1 , y′ (0) = 0 ?

15.8 Determine a fundamental set of the first-order LDEq systems

a) ~y ′ (t) = A~y (t) with A =

 3 3 1

−1 6 −1

−1 1 3


b) ~y ′ (t) = B ~y (t) with B =

 2 1 −1

0 −3 −1

0 1 1


c) ~y ′ (t) = C ~y (t) with C =

 2 1 0

0 2 0

0 1 2


by calculating eigenvectors and main vectors. Check that the eigenvectors

with their main vectors form a basis of R3.



This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank



16Chapter 16

Linear Differential Equations
of n-th Order

Most kinematic problems lead to second-order differential equations according to

Newton’s law of motion; for solid bodies even to fourth-order or higher differential

equations. This chapter deals with the systematic solution of linear differential equa-

tions of order n.

The theoretical statements are taken from the chapter on systems of first-order dif-

ferential equations, since we will reduce a linear differential equation of order n to a

system of n first-order differential equations. According to the solution structure, the

homogeneous problem is solved first and then the inhomogeneous problem.
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16 Linear Differential Equations of
n-th Order

Most kinematic problems lead to second-order differential equations according to

Newton’s law of motion; for solid bodies even to fourth-order or higher differential

equations. This chapter deals with the systematic solution of linear differential equa-

tions of order n.

The theoretical statements are taken from the chapter on systems of first-order dif-

ferential equations, since we will reduce a linear differential equation of order n to a

system of n first-order differential equations. According to the solution structure, the

homogeneous problem is solved first and then the inhomogeneous problem.

16.1 Introduction

Application Example 16.1 (String Pendulum).

A mass m is attached to a string of length l. The

j

m

FG

l

Figure 16.1. Pendulum

angle ϕ (t) varies as a function of time as the mass

is deflected by an angle ϕ0. The force accelerating

the mass m is the component of the gravitational

force Ft perpendicular to the string deflection

Ft = −FG sinϕ = −mg sinϕ.

Here, we work under the restriction of small angles

sinϕ ≈ ϕ

and the frictional force FR is assumed to be proportional to the velocity

FR = −γ v = −γ (l ϕ̇).

Newton’s law of motion, the accelerating force FB = ma (t) = ml ϕ̈ (t) is

equal to the sum of all forces acting on m, giving

ml ϕ̈ (t) = −mg ϕ (t)− γ l ϕ̇ (t)

(second-order homogeneous linear DEq).
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Application Example 16.2 (Spring Pendulum).

At the end of a vertical spring with spring constant D there is a mass m. We

consider a frictional force proportional to the velocity. The displacement of

the mass m at time t is x (t). We look for the displacement-time-law x (t)

when the mass m is displaced x0 from the rest position at t0 = 0.

m

m

x(t)

x=0    rest position

deflection at time t 

Figure 16.2. Spring pendulum

The forces acting on the mass m are the spring force FD = −Dx (t) and

the friction force FR = −β ẋ (t). According to Newton’s law of motion, the

acceleration force FB = mẍ (t) is equal to the sum of all the forces acting:

mẍ (t) = −β ẋ (t)−Dx (t) with x (0) = x0, ẋ (0) = 0

(second-order homogeneous linear DEq).

Application Example 16.3 (RLC-Circuit). The RLC circuit is the electro-

magnetic analogue of the pendulum examples. A circuit is built with an

inductance L, a capacitance C and an ohmic resistance R. At t = 0 the

circuit is closed by applying an external voltage

UB (t) = U0 sin (ωt) .

The current I (t) is searched for as a function of time.

Figure 16.3. RLC circuit
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According to the mesh rule, the sum of the voltage drops at R, C and L

equals the applied voltage UB

UR (t) + UL (t) + UC (t) = UB (t) .

With Ohm’s law (UR(t) = R · I (t)), the law of induction (UL(t) = L dI(t)
dt )

and the voltage across the capacitor
(
UC(t) = 1

CQ (t) = 1
C

´ t
0 I (τ) dτ

)
, the

model equation is

R · I (t) + L
dI (t)

dt
+

1

C

ˆ t

0

I (τ) dτ = U0 sin (ωt) .

After differentiation, we finally get

L Ï (t) +R İ (t) + 1
C I (t) = U0 ω cos (ωt)

(second-order inhomogeneous linear DEq).

16.1.1 General Problem

Problem: Let f(x) be a continuous function on the interval I and let

ak ∈ R (k = 0, . . . , n−1) be real coefficients. The function y(x), which

is assumed to be continuously differentiated n times, must satisfy the

linear differential equation

y(n) (x) + an−1 y
(n−1) (x) + . . .+ a1 y

′ (x) + a0 y (x) = f (x) (DEqn)

for all x ∈ I. (DEqn) is called a differential equation of order n

because the n-th derivative of the function y(x) occurs.

If f (x) = 0 then (DEqn) is called homogeneous.

If f (x) 6= 0 then (DEqn) is called inhomogeneous.

In the next sections we will discuss the problems: How many solutions does

a linear differential equation of order n have? How do we solve the ho-

mogeneous problem and how do we solve the inhomogeneous problem? To

answer these questions, we first apply the results of Chapter 15 on systems

of linear differential equations to linear differential equations of n-th order:
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16.1.2 Reduction of an n-th Order DEq to a First-Order System

We start with the n-th order differential equation and construct n first-

order differential equations by introducing - generalizing the procedure in

Example 15.1 - n functions y0 (x), y1 (x), . . . , yn−1 (x) by

y0 (x) := y (x)

y1 (x) := y′ (x)

y2 (x) := y′′ (x)
...

yn−1 (x) := y(n−1) (x)


and the vector ~Y (x) :=


y0 (x)

y1 (x)
...

yn−2 (x)

yn−1 (x)

 .

Then, the derivatives of ~Y (x) are

~Y ′ (x) =


y′0 (x)

y′1 (x)
...

y′n−2 (x)

y′n−1 (x)

 =


y′ (x)

y′′ (x)
...

y(n−1) (x)

y(n) (x)



=


y1 (x)

y2 (x)
...

yn−1 (x)

−a0 y (x)− a1 y
′ (x)− . . .− an−1 y

(n−1) (x) + f (x)

 .

The identity for the first (n− 1) components is according to the definition

of the functions yi (x) and that of the last component is according to the

differential equation (DEqn)

y(n) (x) = −a0 y (x)− a1 y
′ (x)− . . .− an−1 y

(n−1) (x) + f (x) .

We replace the derivatives of y (x) of the last component with the corre-

sponding functions yi (x):

~Y ′ (x) =


y1 (x)

y2 (x)
...

yn−1 (x)

−a0 y0 (x)− a1 y1 (x)− . . .− an−1 yn−1 (x) + f (x)


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=


0 1 0 0

0 0 1 0
...

...
. . .

...

0 0 0 1

−a0 −a1 −a2 · · · −an−1

 ~Y (x) +


0

0
...

0

f (x)

 (DES 1)

This is an inhomogeneous system of first-order linear differential equations

for ~Y (x).

Remarks:

(1) If y (x) is a solution of the inhomogeneous, linear differential

equation of n-th order (DEqn), then

~Y (x) = (y(x), y′ (x) , ... , y(n−1) (x))t

is a solution of the corresponding inhomogeneous first-order li-

near differential system (DES 1).

(2) The inverse is also true:

If ~Y (x) = (y0 (x) , y1 (x) , ... , yn−1 (x))t is a solution of (DES 1),

then the first component of the vector ~Y (x), namely

y (x) := y0 (x) ,

is a solution of the n-th order differential equation (DEqn).

Proof: If ~Y (x) is a solution of (DES 1), then its first component y0 (x)

is a solution of (DEqn):

y′0 (x) = y1 (x)

y′′0 (x) = y′1 (x) = y2 (x)
...

...

y
(n−1)
0 (x) = y′n−2 (x) = yn−1 (x)

y
(n)
0 (x) = y′n−1 (x)

= −a0 y0 (x)− a1 y1 (x)− . . .− an−1 yn−1 (x) + f (x)

= −a0 y0 (x)− a1 y
′
0 (x)− . . .− an−1 y

(n−1)
0 (x) + f (x) .

So y0(x) is a solution of the differential equation of order n. The inverse

is valid because of the above considerations and the construction of the

system (DES 1).
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Example 16.4. Find the system of first-order differential equations belonging

to the fourth-order differential equation

x′′′′ (t) + 8x′′′ (t) + 22x′′ (t) + 24x′ (t) + 9x (t) = 0.

The differential equation is of fourth order, so we need to define four

functions

y0 (t) = x (t)

y1 (t) = x′ (t)

y2 (t) = x′′ (t)

y3 (t) = x′′′ (t) .

The derivatives of the functions y0 (t) , y1 (t) , y2 (t) and y3 (t) are

y′0 (t) = x′ (t) = y1 (t)

y′1 (t) = x′′ (t) = y2 (t)

y′2 (t) = x′′′ (t) = y3 (t)

y′3 (t) = x′′′′ (t) = −9x (t)− 24x′ (t)− 22x′′ (t)− 8x′′′ (t)

= −9 y0 (t)− 24 y1 (t)− 22 y2 (t)− 8 y3 (t) .

For the vector ~Y (t) :=


y0 (t)

y1 (t)

y2 (t)

y3 (t)

 applies

~Y ′ (t) =


y′0
y′1
y′2
y′3

 =


y1

y2

y3

−9 y0 − 24 y1 − 22 y2 − 8 y3



=


0 1 0 0

0 0 1 0

0 0 0 1

−9 −24 −22 −8

 ~Y (t) .

This is the first-order system of linear differential equations belonging

to the fourth-order differential equation.

Theorem 16.1:

Solving a linear differential equation of order n (DEqn) is equivalent

to solving the corresponding first-order system (DES 1).
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Remark: According to Theorem 16.1, it is irrelevant whether the differential

equation of n-th order is solved or the corresponding system. This theorem

has far-reaching consequences for numerically solving differential equati-

ons of order n: Instead of solving an n-th order differential equation, the

first-order system is used and each of these first-order differential equations

is solved numerically, e.g. by Euler’s method (see Volume 2, Section 13.4.2).

Due to the equivalence established in Theorem 16.1, the theorems on the

solution of first-order systems also apply to differential equations of n-th

order. According to the Theorems 15.1 and 15.3, the following applies

Theorem 16.2: Solving Linear DEq of n-th Order

(1) Let Lh be the set of all solutions of the n-th order homogeneous

linear differential equation

y(n) (x) + an−1 y
(n−1) (x) + . . .+ a1 y

′ (x) + a0 y (x) = 0.

Lh is an n-dimensional vector space.

(2) Let Li be the set of all solutions of the n-th order inhomogeneous

linear differential equation

y(n) (x) + an−1 y
(n−1) (x) + . . .+ a1 y

′ (x) + a0 y (x) = f (x) .

Then

Li = yp (x) + Lh,

where yp (x) is a particular (= special) solution of the inhomo-

geneous differential equation.

(3) n different solutions ϕ1 (x) , ϕ2 (x) , . . . , ϕn (x) of the homoge-

neous differential equation are linearly independent if for one,

and thus for all x ∈ I, the so-called Wronski determinant W (x)

is non-zero:

W (x) = det


ϕ1 (x) ϕ2 (x) · · · ϕn (x)

ϕ′1 (x) ϕ′2 (x) · · · ϕ′n (x)
...

...
...

ϕ
(n−1)
1 (x) ϕ

(n−1)
2 (x) · · · ϕ(n−1)

n (x)

 6= 0.
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Definition: A basis ϕ1 (x) , . . . , ϕn (x) of solutions to the homogeneous

differential equation is called fundamental set.

Conclusion: Fundamental Set

ϕ1 (x) , . . . , ϕn (x) is a fundamental set if and only if the Wronski

determinant W (x0) 6= 0 for a x0 ∈ I.

Example 16.5. For x > 0 a second-order homogeneous DEq is given by

y′′ (x)− 1

2x
y′ (x) +

1

2x2
y (x) = 0.

Two solutions are

ϕ1 (x) = x and ϕ2 (x) =
√
x,

which can be confirmed by inserting them into the differential equation.

The Wronski determinant of ϕ1, ϕ2 is

W (x) = det

(
ϕ1 (x) ϕ2 (x)

ϕ′1 (x) ϕ′2 (x)

)
=

∣∣∣∣∣x
√
x

1 1
2
√
x

∣∣∣∣∣ = −1

2

√
x.

For x > 0 it is W (x) 6= 0 and therefore (ϕ1(x), ϕ2(x)) is a fundamental

set. So the general solution of the differential equation is

y (x) = c1 x+ c2
√
x.

The constants c1 and c2 are determined by the initial conditions.

Application Example 16.6 (Electron in a Magnetic Field).

According to Example 15.2, the non-relativistic equations of motion for an

electron in a homogeneous magnetic field perpendicular to the direction of

motion are

v̇x (t) = −ω vy (t) and v̇y (t) = ω vx (t)

with ω = e
m B 6= 0. If we differentiate the first equation, v̈x (t) = −ω v̇y (t),

and use the second equation, we get a second-order differential equation for
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the velocity vx (t):

v̈x (t) + ω2 vx (t) = 0.

This differential equation has two solutions:

ϕ1 (t) = cos (ωt) and ϕ2 (t) = sin (ωt) ,

which we confirm by inserting them into the differential equation! These

two solutions form a fundamental set, since the Wronski determinant is

non-zero

W (t) = det

(
ϕ1 (t) ϕ2 (t)

ϕ′1 (t) ϕ′2 (t)

)
=

∣∣∣∣∣ cos (ωt) sin (ωt)

−ω sin (ωt) ω cos (ωt)

∣∣∣∣∣
= ω cos2 (ωt) + ω sin2 (ωt) = ω 6= 0.

So the general solution for vx (t) is

vx (t) = c1 cos (ωt) + c2 sin (ωt) .

We will now face the question of how to calculate all solutions of the ho-

mogeneous problem and a special solution of the inhomogeneous problem:

Solving the homogeneous problem is equivalent to finding the zeros of an

n-th order polynomial (characteristic polynomial) (see Section 16.2). A par-

ticular solution of the inhomogeneous differential equation is often obtained

by a special approach (see Section 16.3).

16.2 Homogeneous DEq of n-th Order

Example 16.7 (Complex Fundamental Set). Given is the second-order diffe-

rential equation

ẍ (t) + ω2
0 x (t) = 0.

Related physical problems include the string pendulum (Example 16.1) and

the spring pendulum (Example 16.2) without friction, an LC circuit (Ex-

ample 16.3) or the equation of motion of an electron in a magnetic field

(Example 16.6). We solve the differential equation using the approach:

x (t) = eλ t. (∗)
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Inserting this approach into the differential equation gives

λ2 eλ t + ω2
0 e

λ t = 0 ↪→ λ2 + ω2
0 = 0.

The resulting polynomial

P (λ) = λ2 + ω2
0

is called the characteristic polynomial associated with the differential

equation. If λ is a zero of the characteristic polynomial, then eλ t is

a solution of the differential equation. Here P (λ) = 0 means λ =

±
√
−ω2

0 = ± i ω0.

⇒ ϕ1 (t) = ei ω0 t and ϕ2 (t) = e−i ω0 t

are solutions of the differential equation. They form a fundamental set,

since the Wronski determinant is non-zero:

W (t) = det

(
ϕ1 (t) ϕ2 (t)

ϕ′1 (t) ϕ′2 (t)

)

=

∣∣∣∣∣ ei ω0 t e−i ω0 t

i ω0 e
i ω0 t −i ω e−i ω0 t

∣∣∣∣∣ = −2 i ω0 6= 0.

Since ϕ1 (t), ϕ2 (t) are complex functions, (ϕ1 (t) , ϕ2 (t)) is called a

complex fundamental set.

Example 16.8 (Real Fundamental Set). To this complex fundamental set,

we construct a real-valued by two special linear combinations of ϕ1 (t) and

ϕ2 (t).

The superposition principle applies to any linear DEq. With two so-

lutions ϕ1 (t) and ϕ2 (t) every linear combination c1 ϕ1 (t) + c2 ϕ2 (t)

is also a solution of the differential equation. With ϕ1 (t) = ei ω0 t and

ϕ2 (t) = e−i ω0 t we get

x1 (t) = 1
2 ϕ1 (t) + 1

2 ϕ2 (t) = 1
2

(
ei ω0 t + e−i ω0 t

)
= cos (ω0t)

x2 (t) = 1
2i ϕ1 (t)− 1

2i ϕ2 (t) = 1
2i

(
ei ω0 t − e−i ω0 t

)
= sin (ω0t) .

These are also solutions of the differential equation. Since the Wronski

determinant of these two functions is W (t) = ω0 6= 0, cos (ω0t) and

sin (ω0t) are a real-valued fundamental set. So the general solution is

x (t) = c1 cos (ω0t) + c2 sin (ω0t) .
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With the knowledge of Examples 16.7 and 16.8 the solution method is

transferred to a general, n-th order homogeneous linear differential equation

y(n) (x) + an−1 y
(n−1) (x) + . . .+ a1 y

′ (x) + a0 y (x) = 0. (∗)

With the approach

y (x) = eλx

for the searched function, the k-th derivative of y (x),

y(k) (x) = λk eλx,

is inserted into the differential equation (∗), which gives

λn eλx + an−1 λ
n−1 eλx + . . .+ a1 λ e

λx + a0 e
λx = 0

⇒ λn + an−1 λ
n−1 + . . .+ a1 λ+ a0 = 0.

Definition: (Characteristic Polynomial).

P (λ) := λn + an−1 λ
n−1 + . . .+ a1 λ+ a0

is called the Characteristic Polynomial related to the differential equa-

tion (∗) .

If λ0 is a zero of the characteristic polynomial P (λ), then

y (x) = eλ0 x

is a solution of the differential equation. According to the Fundamental

Theorem of Algebra (Volume 1, Section 5.2.7) every polynomial of degree

n has exactly n complex zeros λ1, . . . , λn, which can also occur multiple

times. If the characteristic polynomial has n different zeros, then

yk (x) = eλk x k = 1, . . . , n

are n linearly independent functions
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Theorem 16.3:

Characteristic Polynomial with n Different Zeros

Given is the homogeneous linear differential equation of n-th order

y(n) (x) + an−1 y
(n−1) (x) + . . .+ a1 y

′ (x) + a0 y (x) = 0.

If the corresponding characteristic polynomial P (λ) has n different

zeros λ1, λ2, . . . , λn, then the n different solutions

yk (x) := eλk x (k = 1, . . . , n)

are a fundamental set.

Proof: From our preliminary considerations it is clear that eλk x (k =

1, . . . , n) are solutions of the DEq if the λk are zeros of the characte-

ristic polynomial. All that remains is to show the linear independence

of the solutions. For this we use the Wronski determinant

W (x) = det


eλ1 x eλ2 x · · · eλn x

λ1e
λ1 x λ2e

λ2 x · · · λne
λn x

...
...

...

λn−1
1 eλ1 x λn−1

2 eλ2 x · · · λn−1
n eλn x

 .

By complete induction we can show that this so-called Vandermond

determinant is non-zero.

W (x = 0) = det


1 1 · · · 1

λ1 λ2 · · · λn
...

...
...

λn−1
1 λn−1

2 · · · λn−1
n

 =
∏
i>j

(λi − λj) 6= 0.

So the solutions form a fundamental set.

Example 16.9. Find a fundamental set of the differential equation

y(4) (x) + 3 y′′ (x)− 4 y (x) = 0.

Approach: The function y (x) = eλx is inserted into the differential

equation. This produces the characteristic polynomial

λ4 eλx + 3λ2 eλx − 4 eλx = 0 ⇒ P (λ) = λ4 + 3λ2 − 4 = 0.
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The zeros of the characteristic polynomial are determined with a sub-

stitution z := λ2. Then z2 + 3 z − 4 = 0 ↪→ z1 = 1, z2 = −4.

⇒ λ1/2 = ±
√
z1 = ±1 and λ3/4 = ±

√
z2 = ±

√
−4 = ±2i.

Therefore, P (λ) has 4 different zeros ±1, ±2i and

⇒ e1x , e−1x , e2i x , e−2i x

is a complex fundamental set. With

1

2

(
e2i x + e−2i x

)
= cos (2x)

1

2i

(
e2i x − e−2i x

)
= sin (2x)

a real fundamental set is found:

ex, e−x, cos (2x) , sin (2x) .

Theorem 16.3 clearly explains how to determine a fundamental set when

P (λ) has n different zeros. But what happens if the characteristic polyno-

mial has a double or multiple zero? To answer this question, we consider

the next example:

Example 16.10. Given is the differential equation

ẍ (t) + 2 ẋ (t) + x (t) = 0. (∗)

Approach: If we insert x (t) = eλ t into the differential equation, we

obtain the characteristic polynomial

P (λ) = λ2 + 2λ+ 1 = (λ+ 1)2 = 0.

P (λ) = 0 ↪→ λ1/2 = −1 is a zero of multiplicity 2

↪→ x1 (t) = e−t is a solution of (∗).

With this approach we obtain only one solution e−1·t. But since (∗)
is a second-order differential equation, Lh is a 2-dimensional vector

space and the fundamental set consists of two linearly independent

functions! Another solution is given by

x2 (t) = t · e−t ,
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because x2(t) and its derivatives

ẋ2 (t) = e−t − t e−t

ẍ2 (t) = −e−t − e−t + t e−t

inserted into the differential equation gives

⇒ ẍ2 (t) + 2 ẋ2 (t) + x2 (t) = 0.

Furthermore, x1 (t) and x2 (t) are linearly independent:

W (t) = det

(
x1 (t) x2 (t)

x′1 (t) x′2 (t)

)
=

∣∣∣∣∣ e−t t e−t

−e−t e−t (1− t)

∣∣∣∣∣
= e−2 t 6= 0.

Therefore, a fundamental set is

e−t, t e−t.

If λ0 is a double zero of the characteristic polynomial P (λ), then according

to the Example 16.10 eλ0 t and t eλ0 t are two linearly independent solutions

of the differential equation. If λ0 is a triple zero, then eλ0 t, t eλ0 t and t2 eλ0 t

are three linearly independent solutions and so on.

Generalizing, by applying the method of variation of constants, we obtain

the following theorem:

Theorem 16.4: Characteristic Polynomial with Multiple Zeros

Given is the homogeneous linear differential equation of n-th order

y(n) (x) + an−1 y
(n−1) (x) + . . .+ a1 y

′ (x) + a0 y (x) = 0.

If the corresponding characteristic polynomial P (λ) has l diffe-

rent zeros λk ∈ C (k = 1, . . . , l) with the multiplicity mk (k =

1, . . . , l), then

eλk x, x eλk x, . . . , xmk−1 eλk x

are linearly independent solutions and they form for k = 1, . . . , l a

fundamental set.
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Example 16.11. Find a real fundamental set and the general solution of the

differential equation

y(4) (x) + 8 y′′ (x) + 16 y (x) = 0.

Approach: Substituting y (x) = eλx into the differential equation gives

the characteristic polynomial

P (λ) = λ4 + 8λ2 + 16 = 0.

With the substitution z := λ2 we obtain z2 +8 z+16 = 0 ↪→ z1/2 = −4

is a double zero. And so

λ1/2 = ±
√
−4 = ±2i

are double zeros. For each double zero we get two solutions:

λ1 = 2i ↪→ ϕ1 (x) = e2i x, ϕ2 (x) = x · e2i x

λ2 = −2i ↪→ ϕ3 (x) = e−2i x, ϕ4 (x) = x · e−2i x.

This results in a complex fundamental set

e2i x , e−2i x , x e2i x , x e−2i x.

To obtain a real fundamental set, we choose the linear combinations

already introduced:

1
2 (ϕ1 (x) + ϕ3 (x)) = 1

2

(
e2i x + e−2i x

)
= cos (2x)

1
2i (ϕ1 (x)− ϕ3 (x)) = 1

2i

(
e2i x − e−2i x

)
= sin (2x)

1
2 (ϕ2 (x) + ϕ4 (x)) = x 1

2

(
e2i x + e−2i x

)
= x · cos (2x)

1
2i (ϕ2 (x)− ϕ4 (x)) = x 1

2i

(
e2i x − e−2i x

)
= x · sin (2x) .

So

cos(2x), sin(2x), x cos(2x), x sin(2x)

is a real fundamental set. So the general solution of the differential

equation is

y(x) = c1 cos(2x) + c2 sin(2x) + c3 x cos(2x) + c4 x sin(2x).

Finally, if the initial conditions y(x0), y′(x0), y′′(x0), y′′′(x0) are given,

then they determine the coefficients c1, c2, c3, c4.
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Hint: If the differential equation has only real coefficients, then the

characteristic polynomial P (λ) is also real. Thus, according to the

Fundamental Theorem of Algebra, the zeros of P (λ) are either real or

complex / complex conjugate. In the first case, we get a real soluti-

on directly, otherwise, as in Example 16.11, the linear combinations
1
2 (eλ1 x + eλ2 x) and 1

2 i (e
λ1 x − eλ2 x) lead to two real solutions.

Example 16.12. Find a real fundamental set for the differential equation

y′′′ (x)− y (x) = 0.

We insert the approach y (x) = eλx into the differential equation and

obtain the characteristic polynomial

P (λ) = λ3 − 1 = 0.

The zeros of the characteristic polynomial are λ1 = 1 and λ2/3 =

− 1
2 ±

1
2

√
3 i, so that

ex, e
(− 1

2
+ 1

2

√
3 i) x

and e
(− 1

2
− 1

2

√
3 i) x

is a complex fundamental set. With the linear combinations

1
2

(
e
(− 1

2
+ 1

2

√
3 i) x

+ e
(− 1

2
− 1

2

√
3i ) x

)
= e

− 1
2
x 1

2

(
e

1
2

√
3 i x

+ e
− 1

2

√
3 i x

)
= e

− 1
2
x

cos( 1
2

√
3x)

and

1
2i

(
e
(− 1

2
+ 1

2

√
3 i) x
− e

(− 1
2
− 1

2

√
3 i) x

)
= e

− 1
2
x 1

2i

(
e

1
2

√
3 i x

− e
− 1

2

√
3 i x

)
= e

− 1
2
x

sin( 1
2

√
3x)

a real fundamental set is achieved

ex, e
− 1

2
x

cos( 1
2

√
3x) and e−

1
2 x sin( 1

2

√
3x).

Application Example 16.13 (Free Damped Oscillation).

Returning to the spring pendulum from Example 16.2: For the deflection

x (t) of the mass m from rest, we modelled the system with the differential

equation

mẍ (t) = −β ẋ (t)−Dx (t) and x (0) = x0 , ẋ (0) = 0.
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With the parameters ω2
0 = D

m and µ = 1
2
β
m we simplify to

ẍ (t) + 2µ ẋ (t) + ω2
0 x (t) = 0 , x (0) = x0 , ẋ (0) = 0.

The approach

x (t) = eλ t

gives the characteristic polynomial

P (λ) = λ2 + 2µλ+ ω2
0 = 0

with the zeros λ1/2 = −µ±
√
µ2 − ω2

0 .

The sign of the discriminant

4 := µ2 − ω2
0

determines the type of vibration.

With weak damping, the mechanical system is capable of real vibrations

(vibration case). This case occurs when µ < ω0. With strong damping µ >

ω0 the system moves non-periodically (= aperiodic) towards the equilibrium

position (creep case). For 4 = 0, i.e. µ = ω0, the aperiodic limit occurs.

The following descriptions treat each of these three cases separately:

1. Case: 4 < 0, i.e. µ < ω0: damped oscillations.

2. Case: 4 = 0, i.e. µ = ω0: aperiodic limit.

3. Case: 4 > 0, i.e. µ > ω0: overdamped case (no vibrations).

1. Damped Vibration (Weak Damping).

For weak damping (µ < ω0), the zeros of the characteristic polynomial are

complex conjugate

λ1/2 = −µ±
√
µ2 − ω2

0 = −µ± i
√
ω2

0 − µ2 = −µ± i ω

with ω :=
√
ω2

0 − µ2 > 0. This results in a complex fundamental set

ϕ1 (t) = eλ1 t = e(−µ+i ω) t = e−µ t ei ω t

ϕ2 (t) = eλ2 t = e(−µ−i ω) t = e−µ t e−i ω t.
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With the real fundamental set

x1 (t) = 1
2 (ϕ1 (t) + ϕ2 (t)) = e−µ t cos (ωt)

x2 (t) = 1
2i (ϕ1 (t)− ϕ2 (t)) = e−µ t sin (ωt)

the general solution is given by

x (t) = e−µ t (c1 cos (ωt) + c2 sin (ωt)) .

The constants c1, c2 are determined by the initial conditions x(0) and
.
x (0).

To use the initial values for
.
x (0) we need the derivative of x(t):

.
x (t) = −µ e−µ t (c1 cos (ωt) + c2 sin (ωt))

+ e−µ t (−c1 ω sin (ωt) + c2 ω cos (ωt)) .

Specifying the initial conditions gives two equations for the constants c1
and c2:

x (0) = x0: x (0) = c1 = x0.

ẋ (0) = 0: ẋ (0) = c1 (−µ) + c2 ω = 0⇒ c2 = x0

(µ
ω

)
.

⇒ x (t) = x0 e
−µ t

(
cos (ωt) +

β

2m

1

ω
sin (ωt)

)
.

Interpretation: The solution consists of a time-dependent decreasing am-

plitude x0 e
−µ t and a periodic behavior (cos (ωt) + β

2m
1
ω sin (ωt)). The

periodic part of the function can be written in the form
(
ω0

ω sin (ωt+ ϕ)
)

with tanϕ = ω
µ , so that

x (t) = x0 e
−µ t ω0

ω
sin (ωt+ ϕ).

This is a damped oscillation. The spring pendulum oscillates at a reduced

frequency compared to the undamped oscillation

ω =
√
ω2

0 − µ2 < ω0.

Fig. 16.4 shows the typical shape of such a damped oscillation.
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Figure 16.4. Time behavior of a damped oscillation

2. Critically Damped: Aperiodic Limit.

4 = 0, i.e. µ = ω0, describes the aperiodic limit that separates the periodic

from the non-periodic behavior. For µ = ω0

λ1/2 = −µ

is a double zero of the characteristic polynomial P (λ) and ϕ1 (t) = e−µ t

and ϕ2 (t) = t · e−µ t form a real fundamental set. The general solution is

x (t) = c1 e
−µ t + c2 t e

−µ t.

The choice of initial conditions determines c1 and c2:

x (0) = x0: c1 = x0,

ẋ (0) = 0: −µ c1 + c2 = 0⇒ c2 = µx0.

⇒ x (t) = x0 e
−µ t (1 + µ t).

After its deflection by x0, the mass point moves non-periodically towards

the equilibrium position.

Figure 16.5. Aperiodic limit for x(0) = x0, x′(0) = 0
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3. Overdamped Mode.

Strong damping occurs when µ > ω0. Then the zeros of the characteristic

polynomial are two negative real numbers

λ1/2 = −µ±
√
µ2 − ω2

0 < 0

with k =
√
µ2 − ω2

0 . Then, ϕ1 (t) = e(−µ+k) t and ϕ2 (t) = e(−µ−k) t is a

real fundamental set. The general solution results in

x (t) = c1 e
(−µ+k) t

+ c2 e
(−µ−k) t

.

The mass cannot oscillate due to the strong friction and moves non-periodically

towards the equilibrium position. In mechanics this case is called creep case

or overdamped mode. The exact behavior depends on the initial conditions.

For x (0) = x0 and ẋ (0) = 0 the constants are c1 and c2:

x (0) = x0: x0 = c1 + c2,

ẋ (0) = 0: 0 = (−µ+ k) c1 + (−µ− k) c2.

The solution of this linear system of equations for c1 and c2 is

c1 = x0
k + µ

2 k
and c2 = x0

k − µ
2 k

.

With these coefficients we obtain the solution of the overdamped mode

⇒ x (t) =
x0

2 k
e−µ t

(
(k + µ) ek t + (k − µ) e−k t

)
.

(Exponential decay without vibration).

Animation: On the homepage there is an animation showing

the vibration behavior with respect to µ. The animation starts

with weak damping and then approaches the aperiodic limit.

It can be seen that in the aperiodic limit the system comes to

rest most quickly, as is required for shock absorbers or measuring instru-

ments, for example. If the damping is even smaller, the oscillation case is

obtained; the period of the oscillation then changes depending on µ.

https://www.imathonline.de/ani/freieSchwingung.gif
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16.3 Inhomogeneous DEq of n-th Order
In this section we consider the inhomogeneous problem: Given is a linear

DEq of n-th order with inhomogeneity f (x):

y(n) (x) + an−1 y
(n−1) (x) + . . .+ a1 y

′ (x) + a0 y (x) = f (x) . (∗∗)

The solution to this problem is according to Theorem 16.2

yi(x) = yh(x) + yp(x).

How to compute yh(x) is completely discussed in Section 16.2. So the task

now is to find a particular solution yp (x).

Using the corresponding first-order system and variation of the constant,

we can find a solution formula for any inhomogeneity (see Section 15.3).

However, we can shorten the calculation by introducing a special approach:

The right-hand side approach.

16.3.1 Inhomogeneity = Exponential Function

First, we consider the case where the inhomogeneity is an exponential func-

tion:

f (x) = c eµx with µ ∈ C.

The differential equation is then

y(n) (x) + an−1 y
(n−1) (x) + . . .+ a1 y

′ (x) + a0 y (x) = c eµx.

A particular solution is of the same type as the inhomogeneity

yp (x) = k eµx

with an unknown constant k. We insert yp (x) with its derivatives into the

differential equation,

k µn eµx + an−1 k µ
n−1 eµx + . . .+ a1 k µ e

µx + a0 k e
µx = c eµx

⇒ k
(
µn + an−1 µ

n−1 + . . .+ a1 µ+ a0

)︸ ︷︷ ︸
P (µ)

= c ⇒ k P (µ) = c,

where the characteristic polynomial P (λ) is evaluated at µ. If µ is not a zero

of the characteristic polynomial, P (µ) 6= 0, then the constant is k = c
P (µ)

and the solution is yp (x) = c
P (µ) · e

µx:
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Theorem 16.5: f(x) = Exponential

Given is an inhomogeneous linear differential equation of n-th order

y(n) (x) + an−1 y
(n−1) (x) + . . .+ a1 y

′ (x) + a0 y (x) = c eµx.

If µ is not a zero of the characteristic polynomial P (λ), then

yp (x) =
c

P (µ)
eµx

is a particular solution.

Examples 16.14:

©1 Find a particular solution yp (x) of the differential equation

y(4) (x) + 2 y′′ (x) + y (x) = 25 e2x.

The characteristic polynomial of this differential equation is

P (λ) = λ4 + 2λ2 + 1.

µ = 2 is not a zero of P (λ): P (2) = 25 6= 0. So the approach

yp (x) = k e2x

gives a particular solution. Inserting yp (x) into the differential equation

determines the constant k:

k 16 e2x + k 8 e2x + k e2x = s25 e2x

↪→ k = 25
25 = 1 ⇒ yp (x) = e2x.

©2 Find a particular solution yp (x) of the differential equation

y(4) (x) + 2 y′′ (x) + y (x) = 25 ei 2x.

The characteristic polynomial is

P (λ) = λ4 + 2λ2 + 1.

Because µ = 2 i and P (2 i) = 16 i4 + 8 i2 + 1 = 9 6= 0, µ is not a zero

of P (λ) and therefore a particular solution is

yp (x) = 25
P (2 i) e

i 2x = 25
9 ei 2x.
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Example 16.15. Find a particular solution to the differential equation

y′′′ (x)− 2 y′′ (x)− 2 y′ (x) + 2 y (x) = 2 sinx. (∗)

(1) Transferring the DEq to the Complex. To calculate a particular solution

yp (x) according to Theorem 16.5, the differential equation is extended

to the complex:

ỹ′′′ (x)− 2 ỹ′′ (x)− 2 ỹ′ (x) + 2 ỹ (x) = 2 eix. (∗̃)

If ỹp (x) is a solution of the complex differential equation (∗̃), then the

imaginary part

yp (x) := Im ỹp (x)

is a solution of the real DEq (∗). To see this, we insert yp(x) = Im ỹp(x)

into the differential equation (∗):

(Im (ỹp))
′′′ −2 (Im (ỹp))

′′ − 2 (Im (ỹp))
′
+ 2 (Im (ỹp)) =

= Im
(
ỹ′′′p
)
− 2 Im

(
ỹ′′p
)
− 2 Im

(
ỹ′p
)

+ 2 Im (ỹp)

= Im
(
ỹ′′′p − 2 ỹ′′p − 2 ỹ′p + 2 ỹp

) (∗̃)
= Im

(
2 eix

)
= 2 sinx.

(2) Solving the Complex DEq. To solve the differential equation (∗̃), we

choose the approach

ỹp (x) = k eix.

Inserting ỹp (x) into the differential equation we get

k i3 eix − k 2 i2 eix − k 2 i eix + k 2 eix = 2 eix

↪→ k (4− 3i) eix = 2 eix ↪→ k =
2

4− 3i
⇒ ỹp (x) =

2

4− 3i
eix.

With this result, we have found the solution of the complex differential

equation (∗̃) and from this complex solution we have to form the ima-

ginary part. This imaginary part is then the particular solution of (∗)
that we are looking for.

(3) Transition to Real Values. The solution yp (x) of (∗) is

yp (x) = Im (ỹp (x)) = Im

(
2

4− 3i
eix
)
.
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There are two different ways of calculating the imaginary part. In the

first case, both 2
4−3i and eix are decomposed into real and imaginary

parts, the product of the two complex quantities is determined in the

algebraic normal form and the imaginary part is read from the result.

In the second case, 2
4−3i is written in exponential form and multiplied

by ei x. The particular solution is again the imaginary part.

> Decomposition of 2
4−3i into real and imaginary parts

2

4− 3i
=

2

4− 3i
· 4 + 3i

4 + 3i
=

8

25
+

6

25
i.

⇒ ỹp (x) = 2
4−3i e

ix

=
(

8
25 + 6

25 i
)

(cosx+ i sinx)

=
(

8
25 cosx− 6

25 sinx
)

+ i
(

6
25 cosx+ 8

25 sinx
)
.

A particular solution is therefore

yp (x) = Im (ỹ (x)) =
6

25
cosx+

8

25
sinx.

> The complex number c = 2
4−3i = 8

25 + 6
25 i is written in exponential

form c = |c| eiϕ = 10
25 e

i 36.9◦ , since

|c| = 1
25

√
82 + 62 = 10

25 and tanϕ =
3

4
↪→ ϕ = 36.9◦.

⇒ ỹp (x) = 2
4−3i e

ix = 10
25 e

i 36.9◦ · eix = 10
25 e

i (x+36.9◦)

= 10
25 cos(x+ 36.9◦) + i 10

25 sin(x+ 36.9◦).

An alternative representation of the particular solution is therefore

yp (x) = Im (ỹp (x)) =
10

25
sin (x+ 36.9◦) .

16.3.2 Inhomogeneity = Polynomial × Exponential Function

The approach for a particular solution from Theorem 16.5 leads to a solu-

tion if µ is not a zero of the characteristic polynomial P (λ). But what if

µ is a zero? We will consider the more general case of an inhomogeneity

f (x) = h (x) eµx with a polynomial h (x):
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Theorem 16.6: f(x) = Polynomial × Exponential

Given is the inhomogeneous linear differential equation

y(n) (x) + an−1 y
(n−1) (x) + . . .+ a1 y

′ (x) + a0 y (x) = h (x) · eµx.

(i) Let µ be a zero of the characteristic polynomial of order k

(k ≥ 0)

(ii) and let h (x) be a polynomial of degree m.

Then the approach

yp (x) = g (x) · xk · eµx

provides a particular solution where g (x) is also a polynomial of

degree m.

Remarks:

(1) Theorem 16.5 is a special case of Theorem 16.6: If f(x) = c eµx and

µ is not a zero of the characteristic polynomial, then k = 0 (i.e. the

term x0 = 1 does not appear) and m = 0 (c is a polynomial of degree

0). Therefore, the approach function yp (x) = k eµx returns a particular

solution.

(2) If the inhomogeneity is the sum of several functions, then we determine

an individual approach function for each inhomogeneity, compute its

constants, and finally add all the individual results to obtain the overall

yp (x).

Examples 16.16 (Sample Examples):

©1 Find a particular solution to the differential equation

2 y′′ (x) + y′ (x) = x e−x :

The associated characteristic polynomial is

P (λ) = 2λ2 + λ

and the inhomogeneity is

f(x) = x e−x ↪→ µ = −1.
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µ = −1 is not a zero of P (λ), since P (−1) = 1 6= 0 ↪→ k = 0. h(x) = x

is a polynomial of degree 1 ↪→ m = 1. ⇒ The approach function for a

particular solution is therefore a polynomial of degree 1 times e−x:

yp (x) = (a0 + a1 x) e−x.

This approach for yp(x) together with its derivatives

y′p (x) = a1 e
−x − (a0 + a1 x) e−x

y′′p (x) = −2 a1 e
−x + (a0 + a1 x) e−x

is substituted into the differential equation to find a0 and a1. Thus,

2 y′′p + y′p (x) = [(a0 − 3 a1) + a1 x] e−x = x e−x

⇒ (a0 − 3 a1) + a1 x = x .

To determine the coefficients, a coefficient comparison is performed

according to descending powers of x

x1 : a1 = 1

x0 : a0 − 3 a1 = 0⇒ a0 = 3

}
⇒ yp (x) = (3 + x) e−x.

©2 Find a particular solution to the differential equation

2 y′′ (x) + y′ (x) = x :

The corresponding characteristic polynomial is

P (λ) = 2λ2 + λ

and the inhomogeneity is

f(x) = x e0 x ↪→ µ = 0.

µ = 0 is a simple zero of P (λ) ↪→ k = 1; h(x) = x is a polynomial of

degree 1 ↪→ m = 1. So a suitable function for a particular solution is

yp (x) = (a0 + a1 x) x1 e0 x = a0 x+ a1 x
2.

To find the coefficients a0 and a1, it is necessary to replace yp(x) to-

gether with its derivatives

y′p (x) = a0 + 2 a1 x

y′′p (x) = 2 a1
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into the differential equation. This gives

2 y′′p (x) + y′p (x) = 4 a1 + a0 + 2 a1 x = x

and with coefficient comparison:

x1: 2 a1 = 1 ⇒ a1 = 1
2

x0: 4 a1 + a0 = 0 ⇒ a0 = −2.

A particular solution is therefore yp (x) = −2x+ 1
2 x

2.

Examples 16.17:

©1 y′′ (x) + y (x) = eix:

The characteristic polynomial is P (λ) = λ2 + 1. The inhomogeneity is

eix ↪→ µ = i. µ = i is a simple zero ↪→ k = 1. Here, m = 0.

Approach: yp (x) = a0 x e
ix

y′p (x) = a0 e
ix + i a0 x e

ix

y′′p (x) = 2 i a0 e
ix − a0 x e

ix

Substitute into the differential equation:

y′′p (x) + yp (x) = 2 a0 i e
ix − a0 x e

ix + a0 x e
ix

= 2 a0 i e
ix

= eix

So 2 a0 i = 1 or a0 = 1
2i = − 1

2 i and a particular solution is

yp (x) =
1

2i
x eix = −1

2
i x eix.

©2 y′′ (x) + y (x) = cosx: (∗)

As in Example 16.15, the differential equation is extended to the com-

plex

ỹ′′ (x) + ỹ (x) = eix (∗̃)

ỹp (x) = − 1
2 i x e

ix is according to ©1 a particular solution of (∗̃). A

particular solution of (∗) is therefore given by the real part of ỹp (x)

yp (x) = Re (ỹp (x)) .

With
− 1

2 i x e
ix = + 1

2 e
i 3

2 π x eix = 1
2 x e

i (x+ 3
2 π)

⇒ yp (x) = Re
(

1
2 x e

i (x+ 3
2 π)
)

= 1
2 x cos

(
x+ 3

2 π
)

= 1
2 x sinx.
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©3 y′′ (x) + y (x) = sinx:

Following the procedure in©2 we get a particular solution

yp (x) = Im (ỹp (x)) = Im
(

1
2 x e

i (x+ 3
2 π)
)

= 1
2 x sin

(
x+ 3

2 π
)
.

= − 1
2 x cosx.

16.3.3 Special Cases of Theorem 16.6:

To find a particular solution of the inhomogeneous differential equation

y(n) (x) + an−1 y
(n−1) (x) + . . .+ a1 y

′ (x) + a0 y (x) = f (x) ,

in some special cases a real approach can be taken directly. Table 16.2 shows

the corresponding approach function for common inhomogeneities.

Table 16.2: Approach functions for particular solutions.

Inhomogeneity
Zero of

P (λ)
Approach

f (x) =
n∑
i=0

ai x
i 0 no zero yp (x) =

n∑
i=0

Ai x
i

0 is zero

of order k
yp (x) = xk

n∑
i=0

Ai x
i

f (x) = a eµx µ no zero yp (x) = Aeµx

µ is zero

of order k
yp (x) = Axk eµx

f (x) = a sin (β x) iβ no zero yp (x) = A sin (β x) +B cos (β x)

= C sin (β x+ ϕ)

f (x) = a cos (β x)
i β is zero

of order k
yp (x) = xk (A sin (β x)+B cos (β x))

= C xk sin (β x+ ϕ)
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Example 16.18. Given is the differential equation

y′′ (x) + 2 y′ (x) + y (x) = f (x)

with different inhomogeneities f . According to Table 16.2, we choose an ap-

proach function for a particular solution and calculate the free parameters.

The characteristic polynomial for the differential equation is

P (λ) = λ2 + 2λ+ 1 = (λ+ 1)
2
.

Hence, λ = −1 is a double zero.

f (x) Approach Function Parameters

x2 − 2x+ 1 yp (x) = a0 + a1 x+ a2 x
2 a0 = 11, a1 = −6, a2 = 1

(µ = 0 no zero of P (λ))

2 ex yp (x) = Aex A = 1
2

(µ = 1 no zero of P (λ))

cosx ỹp (x) = Aeix → in complex DE A = − 1
2
i

yp (x) = Re
(
Aeix

)
yp (x) = 1

2
cos
(
x+ 3π

2

)
cosx yp (x) = A sinx+B cosx A = 1

2
, B = 0

(µ = i no zero of P (λ))

sinx yp (x) = A sinx+B cosx A = 0, B = − 1
2

(µ = i no zero of P (λ))

e−x yp (x) = a2 x
2 e−x a2 = 1

2

(µ = −1 is double zero)

−x2 ex
(
a0 + a1 x+ a2 x

2
)
ex a0 = − 3

8
, a1 = 1

2
, a2 = − 1

4

x e−x (a0 + a1 x) x2 e−x a0 = 0, a1 = 1
6
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Summary: n-th Order Linear Differential Equations

The general solution of the n-th order inhomogeneous DEq

y(n) (x) + an−1 y
(n−1) (x) + . . .+ a1 y

′ (x) + a0 y (x) = f (x) (∗)

with constant coefficients consists of the general homogeneous so-

lution yh(x) and a particular solution yp(x) of the inhomogeneous

DEq:

y (x) = yh (x) + yp (x) .

1. Find the general homogeneous solution to

y(n) (x) + an−1 y
(n−1) (x) + . . .+ a1 y

′ (x) + a0 y (x) = 0 :

(1) Insert y (x) = eλx into differential equation.

(2) Characteristic polynomial

P (λ) = λn + an−1 λ
n−1 + . . .+ a1 λ+ a0.

(3) Zeros of the characteristic polynomial λ1, . . . , λm
λi single zero → ϕi (x) = eλi x.

λi k-th order zero → ϕi (x) = eλi x, x eλi x, . . . , xk−1 eλi x.

(4) ϕ1 (x) , ϕ2 (x) , . . . , ϕn (x) is a fundamental set.

(5) The general homogeneous solution is

yh (x) = c1 ϕ1 (x) + c2 ϕ2 (x) + . . .+ cn ϕn (x) .

2. Determine a particular solution to the inhomogeneous DEq:

According to Table 16.2, special approaches are chosen for a

particular solution or according to the Theorem 16.6.

If the inhomogeneity consists of several functions

f1 (x) , . . . , fl (x), a particular approach yp1
(x) , . . . , ypl (x) is

chosen for each term

y(n)
pi (x) + an−1 y

(n−1)
pi (x) + . . .+ a0 ypi (x) = fi (x) .

A particular solution for the complete inhomogeneity

f (x) = f1 (x) + . . .+ fl (x) is then
yp (x) = yp1 (x) + . . .+ ypl (x) .
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Continued

3. The general solution of the differential equation (∗) is

y (x) = c1 ϕ1 (x) + . . .+ cn ϕn (x) + yp (x) .

4. The coefficients c1, . . . , cn are determined by the initial condi-

tions y (0) , y′ (0) , . . . , y(n−1) (0).

Example 16.19 (Sample Example).

Find the solution to

y′′ (x)− 6 y′ (x) + 9 y (x) = 4 e2x + 9x− 15

with the initial conditions y (0) = y0, y
′ (0) = 0.

1. Solve the homogeneous differential equation

y′′ (x)− 6 y′ (x) + 9 y (x) = 0 :

The characteristic polynomial is

P (λ) = λ2 − 6λ+ 9.

The zeros of P (λ) are λ1 = λ2 = 3 (double). So the general solution of

the homogeneous differential equation is

yh (x) = c1 e
3x + c2 x e

3x.

2. Calculate a particular solution:

The inhomogeneity f(x) = 4 e2x + 9x − 15 is the sum of two types of

functions. Therefore, a particular solution is found in two steps:

(i) y′′ (x)− 6 y′ (x) + 9 y (x) = 4 e2x. (1)

µ = 2 is not a zero of P (λ); therefore the approach

yp1 (x) = Ae2x.

gives a particular solution. Substituting this into the differential

equation (1) we get:

A (4− 6 · 2 + 9) e2x = 4 e2x ⇒ A = 4 ⇒ yp1
(x) = 4 e2x.
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(ii) y′′ (x)− 6 y′ (x) + 9 y (x) = 9x− 15. (2)

µ = 0 is not a zero of P (λ); therefore,

yp2
(x) = a0 + a1 x

is inserted into the differential equation (2):

y′′p2
(x)− 6 y′p2

(x) + 9 yp2
(x) = −6 a1 + 9 (a0 + a1 x)

= (−6 a1 + 9 a0) + 9 a1 x

= 9x− 15.

Comparing the coefficients gives
x1: 9 a1 = 9 ⇒ a1 = 1,

x0: −6 a1 + 9 a0 = −15 ⇒ a0 = −1.

⇒ yp2
(x) = −1 + x.

(iii) The particular solution for 4 e2x+9x−15 is the sum of yp1
and yp2

:

yp (x) = 4 e2x + x− 1.

3. The general solution of the differential equation is therefore

y (x) = c1 e
3x + c2 x e

3x + 4 e2x + x− 1.

4. Find the constants c1, c2 with the initial conditions:

y (0) = c1 + 4− 1 = y0 ⇒ c1 = y0 − 3

y′ (0) = 3 c1 + c2 + 9 = 0 ⇒ c2 = −9− 3 c1 = −3 y0.

⇒ y (x) = (y0 − 3) e3x − 3 y0 x e
3x + 4 e2x + x− 1.

Application Example 16.20 (Forced Damped Oscillation).

An electrical resonant circuit consists of an oh-

Figure 16.6. Circuit

mic resistor R, a capacitor of capacity C and

a coil of inductance L (see Fig. 16.6). At time

t = 0, the circuit is closed and an external AC

voltage

UB (t) = U0 sin (ωt)

is applied.
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According to the mesh rule

L
dI (t)

dt
+RI (t) +

1

C

ˆ t

0

I (τ) dτ = U0 sin (ωt) .

Transferring this to the complex formulation, we get

L İ (t) +RI (t) +
1

C

ˆ t

0

I (τ) dτ = U0 e
i ω t

and with differentiation

Ï (t) +
R

L
İ (t) +

1

LC
I (t) =

U0

L
iω ei ω t.

We introduce the parameters β = R
2L (damping) and ω2

0 = 1
LC (undamped

eigenfrequency) and obtain

Ï (t) + 2β İ (t) + ω2
0 I (t) =

U0

L
iω ei ω t.

The general, homogeneous solution to this DEq is discussed in Example

16.13, so only one particular solution needs to be found to solve the in-

homogeneous differential equation. The characteristic polynomial for the

differential equation is

P (λ) = λ2 + 2β λ+ ω2
0 .

µ = i ω is not a zero of the characteristic polynomial. So a particular solu-

tion is given by the approach

Ĩp (t) = Aei ω t.

Substituting this into the differential equation, we get

(i ω)2Aei ω t + 2β (i ω)Aei ω t + ω2
0 Ae

i ω t =
U0

L
iω ei ω t

⇒ A = i
U0 ω

L

1

ω2
0 − ω2 + 2i β ω

and

Ĩp (t) = i
U0 ω

L

1

ω2
0 − ω2 + 2i β ω

ei ω t.
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Transition to a real particular solution: Ip (t) = Im (Ĩp (t)).

To calculate the particular solution, we represent the amplitude A in expo-

nential form

A = i
U0 ω

L

1

ω2
0 − ω2 + 2i β ω

· ω
2
0 − ω2 − i 2β ω

ω2
0 − ω2 − i 2β ω

=
U0 ω

L

1

(ω2
0 − ω2)

2
+ (2β ω)

2

[
2β ω + i

(
ω2

0 − ω2
)] !

= |A| eiϕ

with
|A| = U0 ω

L

1√
(ω2

0 − ω2)
2

+ (2β ω)
2

and tanϕ =
Im A

Re A
=
ω2

0 − ω2

2β ω
.

⇒ Ĩp (t) =
U0 ω

L

1√
(ω2

0 − ω2)
2

+ (2β ω)
2
eiϕ

︸ ︷︷ ︸
complex amplitude

ei ω t

⇒ Ip (t) = Im
(
Ĩp (t)

)
=
U0 ω

L

1√
(ω2

0 − ω2)
2

+ (2β ω)
2

sin (ωt+ ϕ) .

Interpretation: Replacing ω2
0 = 1

LC and 2β = R
L , we obtain the amplitude

U0 ω

L

1√
(2β ω)

2
+ (ω2

0 − ω2)
2

=
U0√

R2 +
(

1
ωC − ωL

)2 = I0

and the phase of the current

tanϕ(ω) =
ωL− 1

ωC

R
.

⇒ Ip (t) = I0 sin (ωt+ ϕ) =
U0√

R2 +
(

1
ωC − ωL

)2 sin (ωt+ ϕ). (∗)

Equation (∗) is Ohm’s law for an alternating current with maximum values

U0 and I0. The real resistance is

Z =

√
R2 +

(
1

ωC
− ωL

)2

= Z (ω) .

The current Ip (t) is phase-shifted with respect to the applied voltage by

ϕ(ω).
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16.4 Non-Constant Coefficients

In this section we discuss n-th order linear differential equations, which do

not necessarily have constant coefficients. Since the solution structure does

not change compared to constant coefficients, we first solve the homoge-

neous problem yh(x) and then proceed to find a particular solution yp(x)

to the inhomogeneous problem. Then the inhomogeneous solution yi(x)

yi(x) = yh(x) + yp(x)

is the sum of the general homogeneous solution and a particular solution.

16.4.1 Homogeneous Problem: d’Alembert’s Reduction Method

The basic idea of solving the homogeneous problem is that if we know a

part of the solution, we can reduce the order of the DEq, leading to a lower

order DEq. This is called the d’Alembert’s reduction method. We illustrate

this principle with a simple second order DEq

y′′(x)− y(x) = 0.

We directly verify that y1(x) = c · ex is a solution to the DEq, for any

constant c. The idea of d’Alembert is then to vary the constant c(x) and

determine a reduced order DEq to find c(x). We have already used such an

approach to find an inhomogeneous solution (see Volume 2, Section 13.3).

In that context we called the method Variation of the Constant. So we take

the approach with its derivatives

y2(x) = c(x) · ex (1)

y′2(x) = c′(x) · ex + c(x) · ex

y′′2 (x) = c′′(x) · ex + 2 c′(x) · ex + c(x) · ex.

We evaluate the DEq and get

y′′2 (x)− y2(x) = c′′(x) · ex + 2 c′(x) · ex = 0.

Now we reduce the order by setting w(x) = c′(x) and obtain

w′(x) · ex + 2w(x) · ex = 0 or w′(x) + 2w(x) = 0.

This is a first-order DEq for the function w(x), which is solved using the

methods introduced in the Chapter First-Order Differential Equations (see
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Volume 2, Section 13.2). The solution for w(x) is

w(x) = c0 e
−2x.

Since w(x) = c′(x), we integrate c(x) = c1 +
´
w(x) dx and obtain

c(x) = c1 − c0 1
2e
−2x.

According to our setting (1) we have the solution

y2(x) = c(x) · ex = (c1 − c0 1
2e
−2x) · ex = c1 · ex − 1

2c0 · e
−x.

From this result we can identify not only a second solution, but also a

fundamental set:

ex and e−x.

Note: Important for the d’Alembert reduction method is that we know a

solution to the DEq. Usually we try an approach with basic functions. Com-

mon approach functions that may give solutions to the DEq are listed in

Table 16.1.

Table 16.1: Approach Functions

Power Function y(x) = xα (1)

Polynomial y(x) = a+ b x+ c x2 (2)

Exponential Function y(x) = eαx (3)

Example 16.21 (Approach function). Given is the second-order DEq with

non-constant coefficients

(1− x2) y′′(x) + 2x y′(x)− 2 y(x) = 0 for x > 1.

We are looking for a function (power, polynomial, exponential) that is a

solution to the DEq.

We start with (1) of the Table 16.1 and evaluate the right side of the

DEq by replacing y(x) = xα, y′(x) = αxα−1, y′′(x) = α(α − 1)xα−2

in the DEq

(1− x2)α(α− 1)xα−2 + 2xαxα−1 − 2xα = 0.

We reorder in terms of the powers of x

α(α− 1)xα−2 − (α− 1)(α− 2)xα = 0.
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This identity is only true if both coefficients are zero at the same time,

which is only true for α = 1. So y(x) = x1 is a solution.

The calculation for approach (2) is more or less the same. We start with

y(x) = a + b x + c x2 and its derivatives y′(x) = b + 2 c x, y′′(x) = 2 c

and evaluate the right side of the DEq

(1− x2) 2 c+ 2x (b+ 2 c x)− 2 (a+ b x+ c x2) = 0,

which we simplify to

2 c− 2 a = 0.

We get a solution to the DEq whenever a = c for any b.

If we choose a = 0, c = 0 and b = 1, we obtain y(x) = x.

If we choose a = 1, c = 1 and b = 0, we obtain y(x) = 1 + x2 .

The approach (3) does not give a solution. Because with y(x) = eαx

and its derivatives y′(x) = α eαx, y(x) = α2 eαx we evaluate the DEq

and get

(1− x2) (α2 eαx) + 2x (α eαx)− 2 (eαx) = 0

and after simplification

(1− x2)α2 + 2xα− 2 = 0.

But we will not find an α such that the complete right side is zero

independently of x. So y(x) = eαx is not a solution to the DEq.

Example 16.22 (Reduction Method). Given is the second-order DEq with

non-constant coefficients

(1− x2) y′′(x) + 2x y′(x)− 2 y(x) = 0 for x > 1.

According to Example 16.21 the function y(x) = x is a solution to the DEq.

We use d’Alembert’s reduction method to find a second linearly independent

solution.

With y(x) = x also y(x) = c · x is a solution. We will now vary c as a

function of x. So we use the approach with its derivatives

y2(x) = c(x) · x
y′2(x) = c′(x) · x+ c(x) · 1
y′′2 (x) = c′′(x) · x+ 2 c′(x) · 1.
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When we evaluate the DEq, we get

(1− x2) y′′2 (x) + 2x y′2(x)− 2 y2(x) = 0

⇔ (1− x2) (c′′(x)x+ 2 c′(x)) + 2x (c′(x)x+ c(x))− 2 (c(x)x) = 0

⇔ (1− x2)x c′′(x) +
(
2(1− x2) + 2x2)

)
c′(x) = 0

⇔ (1− x2)x c′′(x) + 2 c′(x) = 0.

Now we reduce the order by setting w(x) = c′(x) and obtain

(1− x2)xw′(x) + 2w(x) = 0 or w′(x) = − 2

(1− x2)x
· w(x).

This is a first-order DEq for the function w(x), which we solve with

the method Separation of Variables (see Volume 2, Section 13.2)

dw

w
= − 2

(1− x2)x
dx.

To integrate, we decompose the right side into partial fractions

− 2

(1− x2)x
=
−2

x
+

1

1− x
+

1

1 + x
.

So we get ˆ
dw

w
=

ˆ (
−2

x
+

1

1− x
+

1

1 + x

)
dx

ln |w| = −2 ln |x|+ ln |1− x|+ ln |1 + x|+ c = ln

(
1− x2

x2

)
+ c.

We apply the exponential function to both sides of the equation

w(x) =
1− x2

x2
· ec =

(
1

x2
− 1

)
· c0

with c0 = ec. Since w(x) = c′(x), we integrate c(x) = c1 +
´
w(x) dx

and obtain

c(x) = c1 + c0
(
−x−1 − x

)
.

According to our setting, the solution is

y2(x) = c(x) · x = (c1 + c0
(
−x−1 − x

)
) · x = c1 · x− c0 · (1 + x2).

From this result we identify a second solution and a fundamental set:

x and (1 + x2).



16.4 Non-Constant Coefficients 85

Example 16.23 (Sample Example). We look for a fundamental set of the

third-order DEq with non-constant coefficients

x3 y′′′(x)+(5x3−3x2) y′′(x)+(6x3−10x2+6x) y′(x)+(10x−6x2−6) y(x) = 0.

Guess of a solution: According to the Table 16.1, we look for an approach

function (power function, polynomial, exponential) that might give a

solution to the DEq.

The power function y(x) = x is a solution to the DEq. Because if we

insert y(x) = x with its derivatives y′(x) = 1 and y′′(x) = 0, y′′′(x) = 0

into the DEq, we get

(6x3−10x2 +6x)+(10x−6x2−6)x = 6x3−10x2 +10x2−6x3−6x = 0.

Reduction of DEq: With y(x) = x also y(x) = c·x is a solution. We will now

vary c as a function of x. So we use the approach with its derivatives

y2(x) = c(x) · x
y′2(x) = c′(x) · x+ c(x) · 1
y′′2 (x) = c′′(x) · x+ 2 c′(x) · 1
y′′′2 (x) = c′′′(x) · x+ 3 c′′(x).

We evaluate the DEq and after simplifying the right side of the DEq

we get

c′′′(x) + 5 c′′(x) + 6 c′(x) = 0.

Now we reduce the order by setting w(x) = c′(x) and get

w′′(x) + 5w′(x) + 6w(x) = 0.

Solving the reduced DEq: The reduced DEq is a second-order homogeneous

differential equation which we solve using the characteristic polynomial

p(λ) = λ2 + 5λ+ 6 = (λ+ 3)(λ+ 2) = 0.

The roots of the characteristic polynomial are λ1 = −3 and λ2 = −2.

So the general solution of the reduced DEq is

w(x) = c1 e
−3 x + c2 e

−2 x.
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Solution of the given DEq: Since w(x) = c′(x), we integrate c(x) = c1 +´
w(x) dx and obtain

c(x) = c1
−1
3 e
−3 x + c2

−1
2 e
−2 x + c3.

According to our setting, the solution to the DEq is

y2(x) = c(x) · x = −c1 1
3 x e

−3 x − c2 1
2 x e

−2 x + c3 x .

From this result we identify a fundamental set:

x e−3 x, x e−2 x, x .

Example 16.24 (Sample Example). We look for a fundamental set of the

second-order DEq with non-constant coefficients

x y′′(x)− (1 + x) y′(x) + y(x) = 0 for x > 0.

Guess of a solution: First, we look for an approach function (see Table 16.1)

that might give a solution to the DEq. We check whether y(x) = eαx

will be a solution to the DEq.

So we insert y(x) = eαx with its derivatives y′(x) = α eαx and y′′(x) =

α2 eαx into the DEq and obtain

x y′′(x)− (1 + x) y′(x) + y(x) = 0

xα2 eαx − (1 + x)α eαx + eαx = 0

xα2 − (1 + x)α+ 1 = 0

xα(α− 1)− (α− 1) = 0

This identity is only true if both coefficients are zero at the same time,

which is only true for α = 1. So y(x) = ex is a solution.

Reduction of DEq: With y(x) = ex also y(x) = c · ex is a solution. We will

now vary c as a function of x. So we use the approach with its derivatives

y2(x) = c(x) · ex

y′2(x) = c′(x) · ex + c(x) · ex

y′′2 (x) = c′′(x) · ex + 2 c′(x) · ex + c(x) · ex.
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We evaluate the DEq and get after simplifying the right side of the DEq

x c′′(x) + (x− 1) c′(x) = 0.

Now we reduce the order by setting w(x) = c′(x):

xw′(x) + (x− 1)w(x) = 0.

Solving the reduced DEq: The reduced DEq is a first-order homogeneous

differential equation solved by Separation of Variables (see Volume 2,

Section 13.2). Therefore, we isolate w′(x)

w′(x) =
1− x
x
· w(x) = (

1

x
− 1) · w(x)

and separate the variables

dw

w
= (

1

x
− 1) dx.

With integration we get

ln |w| = ln |x| − x+ c

and finally using the exponential function (c0 = ec)

w(x) = eln |x|−x+c = x e−x ec = c0 x e
−x.

Solution of the given DEq: Since w(x) = c′(x), we integrate

c(x) = c1 +

ˆ
w(x) dx

by parts and obtain

c(x) = c1 + c0

ˆ
x e−x dx = c1 − c0 x e−x − c0 e−x.

According to our setting, the solution to the DEq is

y2(x) = c(x) · ex = c1 e
x − c0 (x+ 1).

From this result we identify a fundamental set:

x+ 1 , ex.
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16.4.2 Inhomogeneous Problem: Variation of Constants

For the discussion of the inhomogeneous problem we start with a second-

order DEq. We first transform the second-order DEq into a first-order sys-

tem and then apply the method Variation of the Constant as described in

detail in Section 15.3 using the fundamental matrix.

Suppose we have a second-order DEq of the form

y′′(x) + a1(x) y′(x) + a0(x) y(x) = g(x). (DEq)

We introduce the new functions

y0(x) := y(x) y′0 = y1(x)

y1(x) := y′(x) y′1 = −a0(x) y(x)− a1(x) y′(x) + g(x)

= −a0(x) y0(x)− a1(x) y′1(x) + g(x)

so that we obtain the equivalent first-order system(
y0(x)

y1(x)

)′
=

(
0 1

−a0(x) −a1(x)

)(
y0(x)

y1(x)

)
+

(
0

g(x)

)
(SYS)

or

~y ′(x) = A~y(x) + ~f(x)

with A =

(
0 1

−a0(x) −a1(x)

)
and ~f(x) =

(
0

g(x)

)
.

The relation between the second-order equation (DEq) and the first-order

system (SYS) is: y1(x), y2(x) is a fundamental set of (DEq) if and only if

~y1(x) =

(
y1(x)

y′1(x)

)
, ~y2(x) =

(
y2(x)

y′2(x)

)
is a fundamental set of the system

(SYS). With the fundamental matrix (see Section 15.3)

F (x) = (~y1(x), ~y2(x)) =

(
y1(x) y2(x)

y′1(x) y′2(x)

)
we write the general solution to the homogeneous DEq as

~yh(x) = c1 · ~y1(x) + c2 · ~y2(x) =

(
y1(x) y2(x)

y′1(x) y′2(x)

)
·
(
c1
c2

)
= F (x) ·

(
c1
c2

)
.

To get a particular solution to the inhomogeneous problem, we vary the

coefficients

~yp(x) = c1(x) · ~y1(x) + c2(x) · ~y2(x)
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=

(
y1(x) y2(x)

y′1(x) y′2(x)

)
·
(
c1(x)

c2(x)

)
= F (x)

(
c1(x)

c2(x)

)
.

According to the calculation on page 34 we identified a condition for c1(x)

and c2(x) to get a solution of the inhomogeneous problem:(
c′1(x)

c′2(x)

)
= F−1(x)

(
0

g(x)

)
,

where F−1(x) is the inverse of the fundamental matrix

F−1(x) =
1

y1(x)y′2(x)− y′1(x)y2(x)
·
(
y2′(x) −y2(x)

−y′1(x) y1(x)

)
·
(

0

g(x)

)
.

In components, we get

c′1(x) =
−y2(x)g(x)

y1(x)y′2(x)− y′1(x)y2(x)

c′2(x) =
−y1(x)g(x)

y1(x)y′2(x)− y′1(x)y2(x)
.

After integration we find c1(x) =
´
c′1(x) dx and c2(x) =

´
c′2(x) dx and a

particular solution to (SYS)

~yp(x) = F (x) ·
(
c1(x)

c2(x)

)
=

(
y1(x) y2(x)

y′1(x) y′2(x)

)
·
(
c1(x)

c2(x)

)
Taking the first component, we get a particular solution for the second-order

inhomogeneous DEq: yp(x) = c1(x) · y1(x) + c2(x) · y2(x).

Generalization: Inhomogeneous n-th Order DEq

To calculate a particular solution of the n-th order DEq

y(n)(x) + an−1(x) y(n−1)(x) + . . .+ a1(x) y′(x) + a0(x) y(x) = g(x)

we first determine a fundamental set y1(x), y2(x), . . . , yn(x). With

the fundamental set we build the fundamental matrix

F (x) =


y1(x) y2(x) . . . yn(x)

y′1(x) y′2(x) . . . y′n(x)
...

... . . .
...

y
(n−1)
1 (x) y

(n−1)
2 (x) . . . y

(n−1)
n (x)

 .
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The solution to the inhomogeneous DEq is

y(x) = c1(x) y1(x) + c2(x) y2(x) + . . .+ cn(x) yn(x) (∗)

where the coefficients are defined by
c′1(x)

c′2(x)
...

c′n(x)

 = F−1(x)


0

0
...

g(x)

 .

Integrating each component of the vector ~c ′(x) gives the individual

coefficients of (∗).

Special Case: Second-Order Inhomogeneous DEq

To calculate a particular solution to the DEq

y′′(x) + a1(x) y′(x) + a0(x) y(x) = g(x)

we first determine a fundamental set y1(x), y2(x). We obtain a so-

lution to the inhomogeneous DEq with

yp(x) = c1(x) · y1(x) + c2(x) · y2(x)

where
c1(x) = c1 +

ˆ −y2(x)g(x)

y1(x)y′2(x)− y′1(x)y2(x)
dx

c2(x) = c2 +

ˆ
y1(x)g(x)

y1(x)y′2(x)− y′1(x)y2(x)
dx.

Example 16.25 (Sample Example). We look for a solution to the second-

order inhomogeneous DEq with non-constant coefficients

x y′′(x)− (1 + x) y′(x) + y(x) = 3x2 for x > 0.

4! Caution: Before we continue, we first rewrite our problem in the

standard form, so that the coefficient of the highest derivative is 1:

y′′(x)− (1 + x)

x
y′(x) +

1

x
y(x) = 3x for x > 0.

This step is not relevant for the homogeneous problem but for the

inhomogeneous problem to identify the correct right-hand side g(x) =
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3x. To determine a particular solution, we need a fundamental set of

the homogeneous DEq. According to Example 16.24

y1(x) = ex and y2(x) = 1 + x

is a fundamental set, so

F (x) =

(
y1(x) y2(x)

y′1(x) y′2(x)

)
=

(
ex 1 + x

ex 1

)
is the fundamental matrix with its inverse

F−1(x) =
1

y1(x)y′2(x)− y′1(x)y2(x)

(
y′2(x) −y2(x)

−y′1(x) y1(x)

)

=
1

ex − (1 + x)ex

(
1 −(1 + x)

−ex ex

)
.

We compute F−1(x) · ~f(x), which is(
c′1(c)

c′2(x)

)
=

1

−x ex

(
1 −(1 + x)

−ex ex

)
·
(

0

3x

)

=
1

−x ex

(
−(1 + x) 3x

3x ex

)
=

(
(1 + x) 3 e−x

−3

)
.

So

c′1(x) = (3 + 3x) e−x

c′2(x) = −3

and with integration by parts we get

c1(x) =

ˆ
(3 + 3x) e−x dx = c1 + (−6− 3x) e−x

and

c2(x) = c2 − 3x.

Finally we calculate

y(x) = c1(x) · y1(x) + c2(x) · y2(x)

= (c1 + (−6− 3x) e−x) · ex + (c2 − 3x) · (1 + x)

= c1 e
x + c2 (1 + x) + (−6(1 + x)− 3x2)

= c1 e
x + c̃2 (1 + x)− 3x2
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16.5 Problems on n-th Order Differential Equations

16.1 Check that ϕ1 = 1− cos (2x) and ϕ2 = 1− cos2 (x) are solutions of

y′′ − (tanx+ cotx) y′ + 4 y = 0.

Do they form a fundamental set?

16.2 Show that the two functions sinh (k x) and cosh (k x) form a real-valued

fundamental set of the differential equation y′′ (x)− k2 y (x) = 0.

16.3 Solve the following 2nd order homogeneous linear differential equations

a) ü (t) + 13 u̇ (t) + 40u (t) = 0 b) v̈ (t)− 12 v̇ (t) + 36 v (t) = 0

c) y′′ (x) + 6 y′ (x) + 34 y (x) = 0 d) z′′ (x) + 16 z (x) = 0

16.4 Determine a real fundamental set for

a) y(4) (x)− 10 y′′ (x) + 9 y (x) = 0

b) u(3) (t)− 2 ü (t) + u̇ (t) = 0

c) y(6) (x)− y (x) = 0

16.5 Given is the inhomogeneous, linear 2nd order differential equation

y′′ (x)− 3 y′ (x) + 2 y (x) = s (x)

with inhomogeneity s (x). Find particular solutions for

a) s (x) = 6 b) s (x) = x c) s (x) = e2 x d) s (x) = cosx

e) s (x) = 4x+ 10 cosx f) s (x) = x e2 x g) s (x) = cosx ex

16.6 Solve the vibration problems

a) ẍ (t) + 16x (t) = 0 , x (0) = 3 , ẋ (0) = 4

b) ẍ (t) + 2 ẋ (x) + 2x (t) = 0 , x (0) = 2 , ẋ (0) = 0

c) ẍ (t) + 13 ẋ (t) + 40x (t) = 0 , x (0) = 3 , ẋ (0) = 0

16.7 Determine all real solutions of the following DEq

a) y(4) (x)− 10 y′′ (x) + 9 y (x) = sin (x)

b) y′′′ (x)− 7 y′ (x)− 6 y (x) = 12 ex

c) y′′′ (x)− 2 y′′ (x) + y′ (x)− 2 y (x) = cos (x)

d) y′′′ (x)− 6 y′′ (x) + 12 y′ (x)− 8 y (x) = 6 e2 x

16.8 Solve the differential equations from problem 16.6 numerically using the

Euler method. Vary the step size and compare the numerical result with

the exact solution.

16.9 Transform the third-order DEq

y′′′(x)− 2 y′′(x)− 4 y′(x) + 8 = 0

into a first-order system.
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16.10 Transform the coupled second-order DEq

x′′(t)− y′(t) + x(t)− y(t) = 0

y′′(t) + x′(t)− 3y(t) + x(t) = 0

into a first-order system.

16.11 Determine a fundamental set of

(x3 − 2x2) y′′(x)− 2x y′(x) + 2 y(x) = 0

using the d’Alembert reduction method. Check that x is a solution.

16.12 Solve the second-order DEq with non-constant coefficients

x2 y′′(x)− 2x y′(x) + 2 y(x) = x3 sin(x) :

a) Find a solution to the homogeneous DEq in the form y(x) = xα.

b) Use the d’Alembert reduction method to find a second solution.

c) Show that −x sin(x) is a particular solution.

d) What is the general solution to the inhomogeneous DEq.

16.13 Given is the DEq

(x+ 1) y′′(x) + x y′(x)− y(x) = (x+ 1)2

a) Find a solution to the homogeneous DEq in form y(x) = eαx.

b) Use the d’Alembert reduction to find a fundamental set.

c) Calculate a particular solution and the general solution.

16.14 The solution of a third-order DEq is given by

y(x) = c1 e
−x + c2 + c3 x+ x2.

What is the associated DEq?

16.15 Is

y1(x) = x2, y2(x) = ex, y3(x) = e−x

a fundamental set to a DEq with constant coefficients? Can it be a fun-

damental set to a DEq with non-constant coefficients? Find a DEq if it

is possible.
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17Chapter 17

Fourier Series

To analyze periodic signals, we need to represent the signal in the form of a Fourier

series

f (t) = a0+

∞∑
n=1

an cos (ωn t) +

∞∑
n=1

bn sin (ωn t) .

Such a decomposition of the signal into its harmonic components reveals which fre-

quencies with which amplitudes are contained in the signal.

After an introduction, the formulas for the Fourier series and the Fourier coefficients

of 2π-periodic functions are presented in Section 17.2 and applied to examples in

Section 17.3. The formulas are transferred to p-periodic functions in Section 17.4

and the complex formulation is discussed in Section 17.5. This complex formulation

prepares the transition to the Fourier transform which analyzes non-periodic signals.
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To analyze periodic signals, we need to represent the signal in the form of a Fourier

series

f (t) = a0+

∞∑
n=1

an cos (ωn t) +

∞∑
n=1

bn sin (ωn t) .

Such a decomposition of the signal into its harmonic components reveals which fre-

quencies with which amplitudes are contained in the signal.

After an introduction, the formulas for the Fourier series and the Fourier coefficients

of 2π-periodic functions are presented in Section 17.2 and applied to examples in

Section 17.3. The formulas are transferred to p-periodic functions in Section 17.4

and the complex formulation is discussed in Section 17.5. This complex formulation

prepares the transition to the Fourier transform which analyzes non-periodic signals.

17.1 Introduction
In physics, periodic processes such as the oscillation of a spring pendulum

or alternating voltages can be described by the general sinusoidal function

y (t) = A sin (ωt+ ϕ) .

This behavior is called a harmonic oscillation with frequency ω and am-

plitude A. Harmonic oscillations also occur in the description of vibrating

strings, membranes, pendulums, electromagnetic oscillations, sound and wa-

ve propagation, etc.

However, processes that are periodic but no longer sinusoidal are also com-

mon. Examples are sawtooth oscillations (sawtooth voltage, chalk squeak)

or the sinusoidal pulse of a rectifier, see Fig. 17.1.

Sawtooth oscillation Sine pulse of a rectifier

Figure 17.1. Periodic but non-harmonic oscillations
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For example, when considering the sawtooth oscillation that causes chalk to

squeak, the dominant frequencies and associated amplitudes are of interest.

If the three notes c1, g1, e2 are played simultaneously on a piano, and the

strength of the strokes is chosen so that the pressure generated at the ear is

equal to 1.273, 0.424 and 0.255 in normalized units, then the total pressure

p (t) at the ear is given by their superposition

p (t) = 1.273 sin (2π ν1 t) + 0.424 sin (2π ν3 t) + 0.255 sin (2π ν5 t)

with ν1 = 128Hz (this is c1), ν3 = 3 ν1 = 384Hz (this is g1) and ν5 =

5 ν1 = 640Hz (this is e2), see Fig. 17.2.

Figure 17.2. Acoustic pressure at the ear

Of general interest in signal analysis is the decomposition of a periodic time

signal into its fundamental and harmonics with their associated amplitudes.

It turns out that almost any periodic function y (t) can be represented as a

superposition of an infinite number of harmonic oscillations.

The mathematical relationship between a periodic signal and its decomposi-

tion into fundamental and harmonic oscillations with associated amplitudes

is described by the Fourier series

y (t) = a0+
∞∑
n=1

an cos (nω0t) +
∞∑
n=1

bn sin (nω0t) ,

where T is the period of the function y (t) and ω0 = 2π
T .

The decomposition of a periodic function into a Fourier series is called

Fourier Analysis. ω0 is the fundamental and nω0 are the harmonics.

The coefficients a0, a1, a2, . . . ; b1, b2, . . . are the Fourier coefficients

and represent the amplitudes of the individual frequency components.
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17.2 Computation of the Fourier Coefficients
To compute the amplitudes of the Fourier decomposition, we start with a

2π-periodic function f (see Fig. 17.3)

Figure 17.3. 2π-periodic function

and select the approach:

f (x) = a0+
∞∑
n=1

an cos (nx) +
∞∑
n=1

bn sin (nx). (∗)

For the formal computation of the coefficients a0; a1, a2, . . . ; b1, b2, . . . we

need the definite integrals compiled in Table 17.1 where we integrate the

sine and cosine functions over a period.

Table 17.1: Summary of elementary sine and cosine integrals

(1)

ˆ 2π

0

sin(nx) dx = 0 for n = 1, 2, 3, . . .

(2)

ˆ 2π

0

cos (nx) dx = 0 for n = 1, 2, 3, . . .

(3)

ˆ 2π

0

cos (nx) cos (mx) dx =

{
0

π

for m 6= n

for m = n
= π δ (n−m)

(4)

ˆ 2π

0

sin (nx) sin (mx) dx =

{
0

π

for m 6= n

for m = n
= π δ (n−m)

(5)

ˆ 2π

0

sin (nx) cos (mx) dx = 0 for n,m = 1, 2, 3, . . .
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In Table 17.1 we introduce the Kronecker symbol δ (k), which is defined for

all integers k ∈ Z by

δ (k) :=

{
1 for k = 0

0 for k ∈ Z \ {0}.

Note: The integrals (1) and (2) are calculated directly. With the formula

cosα cosβ = 1
2 (cos (α− β) + cos (α+ β)) we conclude (3) for m 6= n

ˆ 2π

0

cos (nx) cos (mx) dx =
1

2
(

ˆ 2π

0

cos ((n−m) x) dx+

ˆ 2π

0

cos ((n+m) x) dx) = 0.

For n = m it is ˆ 2π

0

cos2 (nx) dx = π.

Formula (4) is calculated analogously to (3) using the relationship

sinα sinβ =
1

2
(cos (α− β)− cos (α+ β)) .

The formula used to calculate (5) is

sinα cosβ =
1

2
(sin (α− β) + sin (α+ β)) .

Calculating a0:

We integrate the expression (∗) over the period [0, 2π]:

ˆ 2π

0

f (x) dx =

ˆ 2π

0

a0 dx︸ ︷︷ ︸
a0·2π

+
∞∑
n=1

an

ˆ 2π

0

cos (nx) dx︸ ︷︷ ︸
=0

+
∞∑
n=1

bn

ˆ 2π

0

sin (nx) dx︸ ︷︷ ︸
=0

According to Table 17.1, the integrals
´ 2π

0 cos (nx) dx and
´ 2π

0 sin (nx) dx

are zero. In the above representation, only the first integral
´ 2π

0 a0 dx ap-
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pears with a non-zero value a0 · 2π, resulting in

a0 =
1

2π

ˆ 2π

0

f (x) dx.

Calculating an:

We first multiply the expression (∗) by cos (mx) for any integer m > 0 and

then integrate over the period [0, 2π]:

ˆ 2π

0

f (x) cos (mx) dx = a0

ˆ 2π

0

cos (mx) dx

+
∞∑
n=1

an

ˆ 2π

0

cos (nx) cos (mx) dx

+
∞∑
n=1

bn

ˆ 2π

0

sin (nx) cos (mx) dx.

According to Table 17.1 (5), all the terms of the second sum disappear.

From the first sum over an, only the term where the index n is equal to m

is non-zero. Since also
´ 2π

0 cos (mx) dx = 0, we finally get

ˆ 2π

0

f (x) cos (mx) dx =
∞∑
n=1

an π δ (n−m) = π · am.

⇒ am =
1

π

ˆ 2π

0

f (x) cos (mx) dx m = 1, 2, 3, . . .

Calculating bn:

Analogous to the calculation of the coefficients an, we first multiply (∗) by

sin(mx) with m > 0 and then integrate over the period [0, 2π]:

ˆ 2π

0

f (x) sin (mx) dx = a0

ˆ 2π

0

sin (mx) dx

+
∞∑
n=1

an

ˆ 2π

0

cos (nx) sin (mx) dx

+
∞∑
n=1

bn

ˆ 2π

0

sin (nx) sin (mx) dx.
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All integrals containing cos (nx) disappear according to Table 17.1, also´ 2π

0 sin (mx) dx. The integrals
´ 2π

0 sin (nx) sin (mx) dx = π δ (n−m) are

all zero except the one where n = m. So

ˆ 2π

0

f (x) sin (mx) dx =
∞∑
n=1

bn π δ (n−m) = π · bm.

⇒ bm =
1

π

ˆ 2π

0

f (x) sin (mx) dx m = 1, 2, 3, . . .

17.3 Fourier Series for 2π-periodic Functions
Following these preliminary considerations, we obtain expressions for the

Fourier coefficients of a 2π-periodic function f . The Fourier series converges

for most functions and is identical to f (x). However, there are continuous

2π-periodic functions whose Fourier series diverges at an infinite number of

points. To ensure that the Fourier series of a 2π-periodic function f con-

verges everywhere and that the limit is f (x), the function f must satisfy

certain conditions.

In the following, two conditions are given without proof which together gua-

rantee the convergence and the coincidence of the Fourier series with the

function. Both conditions are easy to check and are almost always satisfied

in applications.

Condition 1: The period interval [0, 2π] can be divided by a finite number

of points 0 = x1 < x2 < . . . < xN = 2π so that in any open subinterval

(xk, xk+1) , 1 ≤ k ≤ N − 1, the function f is differentiable and f ′ is boun-

ded. Such functions are called piecewise continuous differentiable functions.

Condition 2: At the intermediate points xk the left and right limits exist

fl (xk) =lim
ε→0

f (xk − ε) and fr (xk) =lim
ε→0

f (xk + ε)

and the function value is

f (xk) = 1
2 (fl (xk) + fr (xk)) .

This property is called the mean value property.
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Fig. 17.4 shows the graph of a function that satisfies conditions (1) and (2).

Figure 17.4. Piecewise continuously differentiable function

Piecewise continuously differentiable functions can have many jumps. At

continuity points the mean value property is always satisfied, at disconti-

nuity points the function value is the mean of the left limit and the right

limit.

Fourier Theorem

Let f : R → R be a 2π-periodic function, piecewise continuously

differentiable and satisfying the mean value property for all x ∈ R.

Then the Fourier series

f (x) = a0 +
∞∑
n=1

an cos (nx) +
∞∑
n=1

bn sin (nx)

converges for all x ∈ R and it is identical to the function f . The

Fourier coefficients are

a0 =
1

2π

ˆ 2π

0

f (x) dx

an =
1

π

ˆ 2π

0

f (x) cos (nx) dx n = 1, 2, 3, . . .

bn =
1

π

ˆ 2π

0

f (x) sin (nx) dx n = 1, 2, 3, . . .



104 17. Fourier Series

Remark: For a 2π-periodic function f (x), always

ˆ 2π

0

f (x) dx =

ˆ α+2π

α

f (x) dx for any α ∈ R.

This formula says that any period interval of length 2π can be chosen to

calculate the Fourier coefficients. This feature simplifies the calculation of

Fourier coefficients for symmetric functions:

Figure 17.5. Even (a) and odd (b) functions

Symmetry considerations:

(1) For an even 2π-periodic function f (i.e. f is axially symmetric with

respect to the y-axis, i.e. f (−x) = f (x) for all x), all Fourier coefficients

bk are zero.

bk = 0 for all k ∈ N.

Since f (x) is even, f (x)·cos (nx) is an even function and f (x)·sin (nx)

is an odd function. We choose the integration interval [−π, π] so that

for the odd function f (x) · sin (nx) (see Fig. 17.5 (b)) the result is

bn =
1

2π

ˆ π

−π
f (x) sin (nx) dx = 0 n ∈ N.

For the coefficients an we get

a0 =
1

π

ˆ π

0

f (x) dx, an =
2

π

ˆ π

0

f (x) cos (nx) dx, n ∈ N.
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(2) For an odd 2π-periodic function f (i.e. f is point symmetric about the

origin, i.e. f (−x) = −f (x) for all x), all Fourier coefficients ak are zero.

ak = 0 for all k ∈ N0.

Since f (x) is odd, f (x)·cos (nx) is an odd function, while f (x)·sin (nx)

is even as the product of two odd functions. We choose the integration

interval [−π, π]. Taking into account the symmetry, we get (see Fig.

17.5 (a))

a0 = 0 and an = 0, n ∈ N.

For the coefficients bn it is

bn =
2

π

ˆ π

0

f (x) sin (nx) dx, n ∈ N.

Hint: Identifying symmetries can greatly reduce the amount of work

required to find the Fourier coefficients!

Example 17.1 (With Maple-Worksheet). Given is the 2π-periodic function

shown in Fig. 17.6. This function is described in the period interval [0, 2π]

by the expression

f (x) =


1 0 < x < π

0 x = 0, π, 2π

−1 π < x < 2π .

The Fourier coefficients and series of the function are searched for.

Figure 17.6. 2π-periodic rectangle function
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f is piecewise continuously differentiable and fulfills the mean value

property at all points. Due to the point symmetry with respect to the

origin we have

an = 0 for n = 0, 1, 2, . . . .

This leaves only the Fourier coefficients bn to be calculated. Due to

the symmetry consideration (2), the specific integral only needs to be

calculated in the range 0, ..., π when calculating the coefficients bn:

bn =
1

π

ˆ 2π

0

f (x) sin (nx) dx = 2 · 1

π

ˆ π

0

f (x) sin (nx) dx

=
2

π

ˆ π

0

sin (nx) dx =
2

π

[
− 1

n
cos(nx)

]π
0

=
2

π n
{− cos (nπ) + cos(0)} =

2

π n
{− (−1)

n
+ 1} ,

since cos (nπ) = (−1)
n

and cos (0) = 1. Note that (−1)
n

= +1 for

even n and (−1)
n

= −1 for odd n, we end up with

⇒ bn =


0 for n = 0, 2, 4, . . .

4

π n
for n = 1, 3, 5, . . . .

The Fourier series of the function f is

f (x) =
4

π

(
sin (x) +

1

3
sin (3x) +

1

5
sin (5x) +

1

7
sin (7x) + . . .

)

=
∞∑
n=1
n odd

4

nπ
sin (nx) =

∞∑
n=0

4

(2n+ 1) π
sin ((2n+ 1) x) .

In Fig. 17.7 (a) the partial sums of this series are shown for n = 3, 5, 7

and in Fig. 17.7 (b) for n = 40.

Discussion: We can see that many terms of the partial sum are needed

to approximate the function f reasonably well. However, even for large

N there are still oscillations before the jump. The coefficients of the

Fourier series bn are proportional to 1
n .



17.3 Fourier Series for 2π-periodic Functions 107

Figure 17.7. Partial sums of the Fourier series (a) for n = 3, 5, 7 and (b) for n = 40

Animation: On the homepage there is an animation that vi-

sualizes the point-by-point convergence of the Fourier series

to the function. The Fourier coefficients calculated from the

example are used to display the Fourier series.

Example 17.2 (With Maple-Worksheet). Find the Fourier series of the tri-

angle function in Fig. 17.8, which is described in the interval [0, 2π] by

f (x) =


x for 0 ≤ x < π

0 for x = π, 2π

x− 2π for π < x < 2π .

Figure 17.8. Periodic triangle function

f is piecewise continuously differentiable and fulfills the mean value

property at all points. Because of the point symmetry with respect to

the origin

an = 0 for n = 0, 1, 2, . . . .

According to the point symmetry, the Fourier coefficients bn are

bn =
1

π

ˆ 2π

0

f (x) sin (nx) dx

https://www.imathonline.de/ani/frbsp1.gif
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= 2 · 1

π

ˆ π

0

f (x) sin (nx) dx =
2

π

ˆ π

0

x · sin (nx) dx.

Partial integration gives

bn =
2

π

{[
x
− cos (nx)

n

]π
0

−
ˆ π

0

− cos (nx)

n
dx

}

=
2

π n
[−π cos (nπ)− 0] = − 2

n
(−1)

n
=

2

n
(−1)

n+1
,

because cos (nπ) = (−1)
n
. So the Fourier series of f is

f (x) = 2

(
sin (x)− 1

2
sin (2x) +

1

3
sin (3x)− 1

4
sin (4x)± . . .

)
= 2

∞∑
n=1

(−1)
n+1 1

n
sin(nx).

As in Example 17.1, the Fourier coefficients also behave as ∼ 1
n .

Example 17.3 (With Maple-Worksheet). Given is the function

f (x) =
1

π
(x− π)

2

in the interval 0 ≤ x ≤ 2π. The function is 2π-periodically extended to R.

Figure 17.9.

f is piecewise continuously differentiable and fulfills the mean value

property. Due to the axis symmetry with respect to the y-axis, the

coefficients bn are zero

bn = 0 for n = 1, 2, 3, . . . .

The coefficient a0 is

a0 =
1

2π

ˆ 2π

0

1

π
(x− π)

2
dx =

1

2π2

[
1

3
(x− π)3

]2π

0

=
1

3
π.
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The coefficients an (n ∈ N) are calculated taking into account the axis

symmetry

an =
2

π

ˆ π

0

1

π
(x− π)

2
cos(n x)dx.

Performing a partial integration twice gives the result

an =
2

π2
{
[
(x− π)2 1

n
sin(n x)

]π
0

− 2

ˆ π

0

(x− π)
1

n
sin(n x) dx}

= − 4

π2 n

ˆ π

0

(x− π) sin(n x)dx

= − 4

π2 n
{
[
(x− π)

−1

n
cos(n x)

]π
0

−
ˆ π

0

−1

n
cos(n x) dx︸ ︷︷ ︸
=0

}

=
4

πn2
.

So

f (x) =
π

3
+

4

π

∞∑
n=1

1

n2
cos (nx)

is the Fourier series. The graph of the function f together with the

first terms up to n = 5 are shown in Fig. 17.10.

f(x) and Fourier series

Figure 17.10. The function f(x) = 1
π

(x− π)2 and partial sum up to n = 5

Discussion: Unlike Examples 17.1 and 17.2, four summation terms are

sufficient to approximate the function reasonably well by the Fourier

series. No oscillations build up in the period interval. The coefficients

of the Fourier series are proportional to 1
n2 .

Note: Using Fourier series, it is sometimes possible to calculate the value of

the series discussed in Volume 2, Section 9.2 on Number Series by inserting

special values into the Fourier series. Using the Fourier series of Example

17.3 gives the following two results:
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x = 0 : f (0) = π =
π

3
+

4

π

∞∑
n=1

1

n2
⇒

∞∑
n=1

1

n2
=
π2

6
.

x = π : f (π) = 0 =
π

3
+

4

π

∞∑
n=1

(−1)
n 1

n2
⇒

∞∑
n=1

(−1)
n 1

n2
= −π

2

12
.

17.4 Fourier Series for p-periodic Functions
So far we have only considered 2π-periodic functions. To obtain the Fourier

coefficients of a general p-periodic function f , we compress or stretch the

function f so that the modified function F is 2π-periodic.

F (x) := f
( p

2π
x
)
.

Figure 17.11. p-periodic function f and corresponding 2π-periodic function F

F is 2π-periodic:

F (x+ 2π) = f
( p

2π
(x+ 2π)

)
= f

( p

2π
x+ p

)
= f

( p

2π
x
)

= F (x) .

For the 2π-periodic function F (x), the Fourier series is set up as follows

F (x) = a0+
∞∑
n=1

an cos (nx) +
∞∑
n=1

bn sin (nx)

with the Fourier coefficients

a0 = 1
2π

´ 2π

0 F (x) dx; an = 1
π

´ 2π

0 F (x) cos (nx) dx;

bn = 1
π

´ 2π

0 F (x) sin (nx) dx.

A back substitution

f (x) = F

(
2π

p
x

)
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constructs the Fourier series of f with the Fourier series of F .

f (x) = F (
2π

p
x) = a0+

∞∑
n=1

an cos(n
2π

p
x)+

∞∑
n=1

bn sin(n
2π

p
x).

To find the Fourier coefficients, we replace y = p
2π x and get:

a0 =
1

2π

ˆ 2π

0

F (x) dx =
1

2π

ˆ 2π

0

f ( p
2π x) dx =

1

p

ˆ p

0

f(y) dy,

an =
1

π

ˆ 2π

0

F (x) cos (nx) dx =
1

π

ˆ 2π

0

f( p
2π x) cos (nx) dx

=
2

p

ˆ p

0

f(y) cos(n 2π
p y) dy,

and similarly bn. In summary:

Fourier Series for p-Periodic Functions

Let f : R → R be a p-periodic function, that is piecewise conti-

nuously differentiable and satisfies the mean value property for all

x ∈ R. Then the Fourier series

f (x) = a0+
∞∑
n=1

an cos

(
n

2π

p
x

)
+
∞∑
n=1

bn sin

(
n

2π

p
x

)
converges for all x ∈ R and is identical to the function f . The

coefficients are

a0 =
1

p

ˆ p

0

f (x) dx

an =
2

p

ˆ p

0

f (x) cos

(
n

2π

p
x

)
dx, n = 1, 2, 3, . . .

bn =
2

p

ˆ p

0

f (x) sin

(
n

2π

p
x

)
dx, n = 1, 2, 3, . . . .

Note: The formulas for 2π-periodic functions are the special case p = 2π.

The symmetry considerations (1) and (2) also apply to p-periodic functions.
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Application: Fourier Decomposition of T -Periodic Signals

Let f (t) be a periodic oscillation with period T (= oscillation period). Then

the Fourier decomposition applies at any time

f (t) = a0+
∞∑
n=1

an cos (nω0t) +
∞∑
n=1

bn sin (nω0t) (∗)

with the fundamental frequency ω0 = 2π
T .

Developing the time signal f (t) into an infinite number of sine and

cosine functions means decomposing the signal into its harmonic

components.

A periodic signal has a discrete spectrum: It consists of the funda-

mental at frequency ω0 and the harmonics at frequencies nω0. The

Fourier coefficients are the amplitudes of these harmonics and thus

the contribution of the harmonics to the signal.

However, for a frequency of nω0, two coefficients are obtained, namely an
and bn, since the summands in the Fourier series (∗) represent the super-

position of two sine and cosine harmonics at the same frequency. If we are

looking for the amplitude at which the frequency nω0 occurs in the signal,

it is necessary to write this superposition as a cosine or sine signal. For

example, we take

an cos (nω0t) + bn sin (nω0t) = An cos (nω0t− ϕn)

where An is then the amplitude and ϕn the phase. To find expressions for

An and ϕn, we use the addition theorem for cosine

An cos (nω0t− ϕn) = An cos (nω0t) cosϕn +An sin (nω0t) sinϕn

= an cos (nω0t) + bn sin (nω0t)

and compare the coefficients of cos(nω0 t) and sin(nω0 t):

an = An cosϕn and bn = An sinϕn.

If we square and add the two equations, we obtain

a2
n + b2n = A2

n cos2 ϕn +A2
n sin2 ϕn = A2

n ⇒ An =
√
a2
n + b2n .
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Dividing the second by the first equation gives

bn
an

= tanϕn .

Hence, we obtain the Fourier series with the total amplitudes An and the

phases ϕn.

Summary: T -Periodic Signal

The Fourier series of a T -periodic signal can be written as

f (t) = a0+
∞∑
n=1

An cos (nω0t− ϕn)

with the amplitude An and the phase ϕn specified by

An =
√
a2
n + b2n and tan(ϕn) =

bn
an
.

Alternatively, we can use the complex formulation (see Section 17.5).

An is the total amplitude at which the frequency ωn = nω0 occurs in

the signal. ϕn is the corresponding phase. The value a0 is the coefficient

a0 = 1
T

´ T
0 f (t) dt. It corresponds to the mean value of the function during

one oscillation period. It is called the direct current component. For the

graphical representation of the coefficients, we choose the following graphs:

Figure 17.12. Amplitude spectrum An and phase spectrum ϕn

In these plots, the amplitudes An and the phases ϕn are plotted against the

discrete frequencies (= discrete spectrum of f). The amplitude plot is called

Amplitude Spectrum (left) and the phase plot is called Phase Spectrum

(right).

Example 17.4 (Amplitude Spectrum, with Maple-Worksheet). The ampli-

tude spectrum An =
√
a2
n + b2n for Examples 17.1, 17.2 and 17.3 is shown

in Fig. 17.13.
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(a) (b)

(c)

Figure 17.13. Amplitude spectrum for (a) Example 17.1, (b) 17.2 and (c) 17.3

From these plots we can see both the frequencies nω0 and the corresponding

amplitudes An. The amplitude spectrum of Examples 17.1 and 17.2 decre-

ases slowly, while in Example 17.3 the coefficients go to zero very quickly.

This reflects the fact that in the first two cases the convergence is ∼ 1
n , but

in the third case it is ∼ 1
n2 .

Convergence Considerations: Taking the Fourier series with a finite number

of terms gives an approximate function for f in the form of a finite trigo-

nometric sum. As with power series, the more terms considered, the better

the approximation. For the examples discussed, this is:

an → 0 and bn → 0 for n→∞ .

On closer inspection, we find that the approximations for continuous functi-

ons converge faster, requiring fewer terms in the Fourier sum to approximate

the function sufficiently well. The examples show that

an ∼
1

n2
and bn ∼

1

n2
,

if f has no discontinuities. The Fourier series of a p-periodic function con-

verges faster the smoother the function f is. More precisely, it is

Remark: If f is a p-periodic, (m+1)-times continuously differentiable func-

tion, then the Fourier coefficients of f behave as

|an| ≤
c

nm+2
and |bn| ≤

c

nm+2
.

Examples for m = 0 (continuous functions) are 17.3, 17.5 and examples for

m = −1 (functions with jump point) are 17.1 and 17.2.
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Application Example 17.5 (One-Way Rectifier, with Maple-Worksheet).

Fig. 17.14 shows the sinusoidal signal of a one-way rectifier with period T :

Figure 17.14. Sine wave of a half-wave rectifier

The signal is defined in the period interval [0, T ] by

f (t) =

{
u0 sin (ω0t) 0 ≤ t ≤ T

2

0 T
2 < t ≤ T

with ω0 = 2π
T . Since the signal is zero in the range T

2 ≤ t ≤ T , the

integration limits of the integrals are reduced to t ∈ [0, T2 ].

Calculation of the coefficient a0:

a0 =
1

T

ˆ T

0

f(t) dt =
1

T

ˆ T/2

0

u0 sin(ω0 t) dt

= −u0

T

[
1

ω0
cos(ω0 t)

]T/2
0

=
u0

π
.

Calculation of the coefficients an:

an =
2

T

ˆ T

0

f(t) cos(nω0t) dt =
2u0

T

ˆ T/2

0

sin(ω0 t) cos(nω0 t) dt.

Using the trigonometric formula

sin(α) cos(β) =
1

2
(sin (α− β) + sin (α+ β))

we get for n 6= 1

an =
u0

T

(ˆ T/2

0

sin((1− n)ω0 t) dt+

ˆ T/2

0

sin((1 + n)ω0 t) dt

)

=
u0

T

([
− 1

(1− n)ω0
cos((1− n)ω0 t)

]T/2
0

+

[
− 1

(1 + n)ω0
cos((1 + n)ω0 t)

]T/2
0

)
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= −u0

π

1

n2 − 1
((−1)n + 1).

The result for an shows that the integral expression is calculated for

n 6= 1. The coefficient a1 must be evaluated separately:

a1 =
u0

T

(ˆ T/2

0

0 dt+

ˆ T/2

0

sin(2ω0 t) dt

)

=
u0

T

([
− 1

2ω0
cos(2ω0 t)

]T/2
0

)
= 0.

So for the coefficients an we get

an =

 0 for odd n

− 2u0

π (n2 − 1)
for even n, n > 0.

The Fourier coefficients bn are calculated in the same way

bn =
2

T

ˆ T

0

f(t) sin(nω0t) dt =
2u0

T

ˆ T/2

0

sin(ω0 t) sin(nω0t) dt

with the trigonometric formula

sin(α) sin(β) =
1

2
(cos (α− β)− cos (α+ β)) .

For n 6= 1 this is

bn = − sin(nπ)u0

π (1 + n) (−1 + n)
= 0.

Similarly, the coefficient b1 is calculated separately:

b1 =
1

2
u0.

The Fourier series of the sine half-wave is therefore

f(t) =
u0

π
+
u0

2
sin (ω0t)−

2

π
u0

(
1

22−1 cos (2ω0t) + 1
42−1 cos (4ω0t)

+ 1
62−1 cos (6ω0t) + . . .

)
=
u0

π
+
u0

2
sin(ω0t)−

2

π
u0

∞∑
n=2
n even

1

n2 − 1
cos(nω0t).
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Figure 17.15. Partial sum for n = 8

The graphical representation of the Fourier series is shown in Fig. 17.15

for n = 8. The Fourier series shows a very good fit to the function with

only a few terms in the sum.

Application Example 17.6 (Sawtooth waveform, with Maple).

Find the amplitude spectrum of a sawtooth oscillation with period T (see

Fig. 17.16).

Figure 17.16. Time slope of a sawtooth waveform

The sawtooth is described in t ∈ [0, T ) by u(t) = u0

T t. We define ω0 = 2π
T .

As in Example 17.5, the Fourier coefficients are determined.

For a0 we get directly

a0 =
1

T

ˆ T

0

u(t) dt =
u0

T 2

ˆ T

0

t dt =
1

2
u0.

Using partial integration, the coefficients an and bn are calculated as follows

an =
2

T

ˆ T

0

u(t) cos(nω0t) dt =
2u0

T 2

ˆ T

0

t cos(nω0t) dt = 0,

bn =
2

T

ˆ T

0

u(t) sin(nω0t) dt =
2u0

T 2

ˆ T

0

t sin(nω0t) dt = − u0

nπ
.
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The Fourier series of the sawtooth has the form

u(t) =
u0

2
− u0

π

∞∑
n=1

1

n
sin (nω0t)

=
u0

2
− u0

π

(
sin (ω0t) + 1

2 sin (2ω0t) + 1
3 sin (3ω0t) + . . .

)
.

Discussion: The spectrum of a sawtooth is characterized by:

(1) The DC component u0

2 .

(2) The fundamental oscillation at frequency ω0 and the amplitude u0

π .

(3) The sinusoidal harmonics at the frequencies 2ω0, 3ω0, 4ω0, . . . and the

amplitudes u0

2π ,
u0

3π ,
u0

4π , . . ..

Fig. 17.17 shows the partial sum of the Fourier series for n = 30

Figure 17.17. Partial sum of the Fourier series for n = 30

and Fig. 17.18 shows the amplitude spectrum.

Figure 17.18. Amplitude spectrum up to n = 30

Discussion: The Fourier coefficients of the sawtooth are ∼ 1
n . The amplitude

spectrum shows how slowly the amplitudes decrease. High frequencies still

have relatively large amplitudes. The discontinuity in the time domain can

be seen in the graph of the Fourier series. Many harmonics are required to

represent the signal.
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17.5 Fourier Series in the Complex Domain
The Fourier representation takes a simple form with complex notation.

Using Euler’s formulas (see Volume 1, Chapter 5),

cos(x) =
1

2

(
eix + e−ix

)
and sin (x) =

1

2i

(
eix − e−ix

)
,

the real Fourier series of a p-periodic function f is written as follows:

f (x) = a0 +
∞∑
n=1

an
1

2

(
ei n

2π
p x + e−i n

2π
p x
)

+
∞∑
n=1

bn
1

2i

(
ei n

2π
p x − e−i n

2π
p x
)
.

After rearranging the expressions with respect to ei n
2π
p x and a second sum

with respect to e−i n
2π
p x , we get

f (x) = a0+
∞∑
n=1

1

2
(an − i bn) ei n

2π
p x+

∞∑
n=1

1

2
(an + i bn) e−i n

2π
p x .

If we examine the three sums of the Fourier series, we find that the last

series contains factors ei n
2π
p x for n = −∞, . . . , 1, the intermediate series

ei n
2π
p x for n = 1, . . . ,∞ and the first term ei n

2π
p x for n = 0. We define

c0 := a0;

cn :=
1

2
(an − i bn)

=
1

2

(
2

p

ˆ p

0

f (x) cos
(
n 2π

p x
)
dx− i 2

p

ˆ p

0

f (x) sin
(
n 2π

p x
)
dx

)
=

1

p

ˆ p

0

f (x)
(

cos
(
n 2π

p x
)
− i sin

(
n 2π

p x
))

dx

=
1

p

ˆ p

0

f (x) e−i n
2π
p x dx, n ≥ 1;

and

c−n :=
1

2
(an + i bn)

=
1

2

(
2

p

ˆ p

0

f (x) cos
(
n 2π

p x
)
dx+ i

2

p

ˆ p

0

f (x) sin
(
n 2π

p x
)
dx

)
=

1

p

ˆ p

0

f (x)
(

cos
(
n 2π

p x
)

+ i sin
(
n 2π

p x
))

dx

=
1

p

ˆ p

0

f (x) ei n
2π
p x dx, n ≥ 1.
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So the Fourier series of f is represented as one series over ei n
2π
p x for n =

−∞, . . . ,∞:

f (x) =
∞∑

n=−∞
cn e

i n 2π
p x

with the coefficients

cn =
1

p

ˆ p

0

f (x) e−i n
2π
p x dx for n ∈ Z .

The following complex formulation of the Fourier Theorem is obtained:

Complex Fourier Series

Let f : R → C be a complex function with real period p. Let f

be piecewise continuously differentiable and satisfy the mean value

property. Then for all x ∈ R the complex Fourier series converges

to f (x):

f (x) =
∞∑

n=−∞
cn e

i n 2π
p x.

For n ∈ Z the complex Fourier coefficients are given by

cn =
1

p

ˆ p

0

f (x) e−i n
2π
p x dx.

Note: This complex formulation is certainly also valid for real-valued func-

tions f : R→ R which are piecewise continuously differentiable and satisfy

the mean value property.

Remarks: Properties of the Complex Formulation

(1) There is only one series for the Fourier series and the coefficients cn are

determined by a uniform formula.

(2) The sum of the complex Fourier series covers n = −∞ . . .∞. So it ap-

pears that there are negative frequencies. But this is only due to the

complex formulation: ei ωn t and e−i ωn t are needed to define the real

oscillation sin (ωnt) and cos (ωnt) with the real frequency ωn > 0, since

cos(ωn t) = 1
2 (ei ωn t + e−i ωn t) and sin(ωn t) = 1

2 i (e
i ωn t − e−i ωn t).
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Advantages of the Complex Approach

The Fourier coefficients cn of a real signal f (x) have the following properties

(3) c∗n = c−n: The coefficients on negative n are the complex conjugate of

the corresponding coefficients on positive n.

(4) Consequently, the absolute values of cn and c−n are equal, namely

|cn| =
∣∣ 1
2 (an − i bn)

∣∣ = 1
2

√
a2
n + b2n = 1

2 An.

The magnitude of the complex Fourier coefficients is An up to the factor
1
2 . So the magnitude |cn| represents the amplitude spectrum half from

−∞ to −1 and half from 1 to ∞.

(5) The phase of the complex Fourier coefficients is given by

tanϕn =
Im cn
Re cn

=
− 1

2 bn
1
2 an

= − bn
an

.

Up to the sign, this is the phase spectrum.

(6) c0 = a0 represents the direct current component of the signal.

The advantage of the complex formulation is that we have a single

formula for the coefficients and that these coefficients include both

the amplitude spectrum (up to the factor 1
2 ) and the phase spectrum

(up to the sign).

Example 17.7 (With Maple-Worksheet). Find the complex Fourier series of

the T -periodic function f given in Fig. 17.19.

Figure 17.19. Square wave signal

From the magnitude of the complex coefficients we determine the amplitude

spectrum of the signal.
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With ω0 = 2π
T , the complex Fourier coefficients for n 6= 0 are

cn =
1

T

ˆ T

0

f (t) e−i n ω0t dt =
1

T

ˆ T
2

0

e−i n ω0t dt

=
1

T

1

−i n ω0

[
e−i n ω0

T
2 − 1

]
.

With ω0 · T = 2π and ω0
T
2 = π we get e−i n ω0

T
2 = e−i n π = (−1)

n

⇒ cn =
1

−i n 2π
[(−1)

n − 1] =


1

i n π odd n

0 even n 6= 0

Since the DC component of the signal is 1
2 , we can directly infer c0 = 1

2 .

⇒ f (t) =
1

2
+

∞∑
n=−∞
odd n

1

i n π
ei n ω0t .

The amplitude spectrum of this function is given by the magnitude of

the coefficients.

a0 = |c0| =
1

2

An = 2 |cn| =


2
nπ for odd n

0 for even n 6= 0 .

Calculating the Real Coefficients from the Complex

Although the calculation has been done in the complex, the real Fourier

coefficients an and bn are sometimes of interest. From the complex Fourier

coefficients cn, n ∈ Z, the real Fourier coefficients a0, an and bn can be

recovered so that the real integral formulas do not have to be recalculated.

By definition of cn we have

c0 = a0 (1)

cn = 1
2 (an − i bn) (2)

c−n = 1
2 (an + i bn) (3)

Directly from (1): a0 = c0
Add (2) and (3): an = cn + c−n n = 1, 2, 3, . . .

Subtract (3) from (2): bn = i (cn − c−n) n = 1, 2, 3, . . .
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Summary: Fourier Series

Given is a T -periodic signal f (t) that is piecewise continuously

differentiable and satisfies the mean value property.

(1) For all t ∈ R, the real Fourier series is

f (t) = a0+
∞∑
n=1

an cos

(
n

2π

T
t

)
+
∞∑
n=1

bn sin

(
n

2π

T
t

)

with a0 =
1

T

ˆ T

0

f (t) dt,

an =
2

T

ˆ T

0

f (t) cos

(
n

2π

T
t

)
dt, n = 1, 2, 3, . . . ,

bn =
2

T

ˆ T

0

f (t) sin

(
n

2π

T
t

)
dt, n = 1, 2, 3, . . . .

(2) For all t ∈ R

f (t) = a0+
∞∑
n=1

An cos

(
n

2π

T
t− ϕn

)

with An =
√
a2
n + b2n and tanϕn =

bn
an

for n = 1, 2, 3, . . ..

(3) For all t ∈ R, the complex Fourier series is

f (t) =
∞∑

n=−∞
cn e

i n 2π
T t

with cn =
1

T

ˆ T

0

f (t) e−i n
2π
T t dt (n ∈ Z).

(4) The real coefficients are calculated from the complex coefficients

by
a0 = c0,

an = cn + c−n n ∈ N,
bn = i (cn − c−n) n ∈ N.
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17.6 Compilation of Fourier Series

(1) Square wave signals

y (t) =



1 for |t| < δ

1
2 for |t| = δ

0 for δ < |t| ≤ π

y (t) = δ
π + 2

π

(
1
1 sin (δ) cos (t) + 1

2 sin (2δ) cos (2t) + . . .
)

y (t) =



1 for 0 < t < T
2

1
2 for t = 0, T2

0 for T
2 < t < T

y (t) = 1
2 + 2

π

(
sin (ω0t) + 1

3 sin (3ω0t) + 1
5 sin (5ω0t) + . . .

)

(2) Sawtooth oscillations

y (t) =


1
T t for 0 ≤ t < T

1
2 for t = T

y (t) = 1
2 −

1
π

(
sin (ω0t) + 1

2 sin (2ω0t) + 1
3 sin (3ω0t) + . . .

)

y (t) =


t for |t| < T

0 for t = T
2

y (t) = 2
(
sin (ω0t)− 1

2 sin (2ω0t) + 1
3 sin (3ω0t)∓ . . .

)
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(3) Sine impulses

y (t) =


sin (ω0t) for 0 ≤ t ≤ T

2

0 for T
2 ≤ t ≤ T

y (t) = 1
π + 1

2 sin (ω0t)− 2
π

(
1

1·3 cos (2ω0t) + 1
3·5 cos (4ω0t) + . . .

)

y (t) = |sin (ω0t)| for 0 ≤ t ≤ T

y (t) = 2
π −

4
π

(
1

1·3 cos (2ω0t) + 1
3·5 cos (4ω0t) + 1

5·7 cos (6ω0t) + . . .
)

(4) Parabolic functions

y (t) = 4
T 2

(
t− T

2

)2
for 0 ≤ t ≤ T

y (t) = 1
3 + 4

π2

(
1
12 cos (ω0t) + 1

22 cos (2ω0t) + 1
32 cos (3ω0t) + . . .

)

y (t) =
(
t
T

)2
for |t| ≤ T

2

y (t) = 1
3 −

4
π2

(
1
12 cos (ω0t)− 1

22 cos (2ω0t) + 1
32 cos (3ω0t)∓ . . .

)
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17.7 Problems on Fourier Series

17.1 Give an expression for the 2π-periodic functions in the period interval sket-

ched below, look for symmetries and expand them into a Fourier series:

Fig. a Fig. b

17.2 Sketch the following T -periodic functions and determine the Fourier series

and the associated amplitude spectrum:

a) f (t) =


et for −T

2
≤ t ≤ 0

e−t for 0 ≤ t ≤ T
2

b) f (t) =


2h t
T

for 0 ≤ t ≤ T
2

h for T
2
≤ t ≤ T

17.3 Calculate the complex Fourier expansion of

a) Problem 17.1a) b) Problem 17.1b)

17.4 Develop f (t) = sin3 t , |t| ≤ π into a Fourier series (think first!!!).

17.5 a) Expand f (t) = t2 , 0 ≤ t ≤ T , into a Fourier series.

b) What is the result for T = 2π ?

c) What do we get with b) for
∑∞
n=1

1
n2 at t = 2π?

17.6 Fig. (c) shows the slope of a sawtooth voltage with period T . Perform a

Fourier analysis on this pulse.

u (t) =
u0

T
t (0 < t < T ) .

Fig. c

17.7 Calculate the Fourier series taking symmetries into account:

a) f (x) =

{
8 for 0 < x < 2

−8 for 2 < x < 4
with period 4,

b) f (x) =

{
−x for − 4 ≤ x ≤ 0

x for 0 ≤ x ≤ 4
with period 8.
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17.8 Decompose the trapezoidal impulse into its harmonic components. What

is the value of the Fourier series at t = T?

f (t) =


2
T t 0 ≤ t ≤ T/2

1 T/2 ≤ t ≤ T
Fig. d
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18Chapter 18

Fourier Transform

This chapter introduces the Fourier transform to study the frequency behavior of

non-periodic signals f(t). As with the Fourier series, this analysis is called frequency

analysis of the time signal f(t). Section 18.1 introduces the formula for the Fourier

transform

F (ω) =

ˆ ∞
−∞

f (t) e−i ω t dt.

Section 18.2 presents important properties of the Fourier transform and discusses

their significance. To characterize linear systems, a signal is needed that contains all

frequencies with the same amplitude. This leads to the concept of the delta function,

which is introduced and whose properties are discussed in Section 18.3.
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18 Fourier Transform

This chapter introduces the Fourier transform to study the frequency behavior of

non-periodic signals f(t). As with the Fourier series, this analysis is called frequency

analysis of the time signal f(t). Section 18.1 introduces the formula for the Fourier

transform

F (ω) =

ˆ ∞
−∞

f (t) e−i ω t dt.

Section 18.2 presents important properties of the Fourier transform and discusses

their significance. To characterize linear systems, a signal is needed that contains all

frequencies with the same amplitude. This leads to the concept of the delta function,

which is introduced and whose properties are discussed in Section 18.3.

18.1 Fourier Transform and Examples
By specifying the Fourier series, it is possible to analyze periodic processes

regardless of the length of the period T . A T -periodic function f can be re-

presented as a superposition of infinitely many harmonic oscillations with a

fundamental frequency ω0 = 2π
T , harmonics ωn = n 2π

T and their associated

amplitudes. Periodic functions therefore have a discrete line spectrum. This

line spectrum provides a clear assignment between the time domain of the

function and its frequency domain.

In the following, a method (Fourier transform) is developed which also

provides all frequencies with associated amplitudes for non-periodic signals.

Transition from Fourier Series to Fourier Transform

To determine the frequencies in a time signal f , the function f is interpreted

as a periodic function with period T →∞. However, to obtain a represen-

tation of the spectrum, we assume a 2p-periodic function f(t). According

to Section 17.5, the corresponding complex Fourier series is

f (t) =
∞∑

n=−∞
cn e

i n 2π
2p t
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with the complex Fourier coefficients

cn =
1

2p

ˆ 2p

0

f (t) e−i n
2π
2p t dt =

1

2p

ˆ p

−p
f (t) e−i n

π
p t dt.

We insert the coefficients cn into the Fourier series and replace the frequen-

cies ωn = n π
p and the frequency spacing ∆ω = ωn − ωn−1 = π

p . So we

get

f (t) =
∞∑

n=−∞

[
1

2p

ˆ p

−p
f (t) e−i ωn t dt

]
ei ωn t

=
1

2π

∞∑
n=−∞

[ˆ π/∆ω

−π/∆ω
f (t) e−i ωn t dt

]
ei ωn t ∆ω.

Now we consider an arbitrary, not necessarily periodic time function f (t) as

a periodic function with p → ∞. For p → ∞, the frequency difference ∆ω

approaches zero and the sum becomes the integral. The frequency spectra

move closer together and in the limit we obtain a continuous function in ω:

f (t) =
1

2π

ˆ ∞
−∞

F (ω) ei ω t dω (FI)

with

F (ω) =

ˆ ∞
−∞

f (t) e−i ω t dt. (FT )

The representation of f (t) = 1
2π

´∞
−∞ F (ω) ei ω t dω is called Fourier inte-

gral and F (ω) the Fourier transform or Spectrum of the time function f (t).

Animation: This animation shows how the T -periodic exten-

sion of the rectangle converges for T → ∞. We see that the

distance between the spectral lines approaches zero (∆ω → 0).

So the discrete spectrum is replaced by a continuous frequency

function, also called the spectrum.

The Fourier integral is an improper integral. It can be shown to exist under

certain conditions (which are almost always satisfied in practice):

https://www.imathonline.de/ani/fr2ft.gif
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Theorem 18.1: Fourier Transform

Let f : R → R be a piecewise continuously differentiable function

and
´∞
−∞ |f (t)| dt <∞, then for every ω ∈ R the improper integral

exists

F (ω) =

ˆ ∞
−∞

f (t) e−i ω t dt (Fourier Transform of f).

The Fourier transform maps each time function f (t) to a frequency function

F (ω) : R→ C. We say that the Fourier transform maps the time domain to

the Spectral Domain (Frequency Domain) by assigning to each time function

f (t) its spectral function F (ω). To indicate exactly which time function

F (ω) belongs to, the following notation is used

F (f) (ω) = F (ω) .

This notation expresses the transform character of the Fourier transform:

The function f is assigned a new function F (f). Sometimes, a correspon-

dence notation is used, as in the case of the Laplace transform:

f (t) ◦ • F (ω) .

Remark: A function f : [a, b]→ R is said to be piecewise continuously diffe-

rentiable if the interval can be divided into a finite number of subintervals

Ik, so that f is continuously differentiable within the intervals Ik and there

exist both right and left limits at the boundaries.

Example 18.1. For the rectangular impulse shown below, the Fourier trans-

form F (ω) is to be calculated.

f (t) :=

{
1 for |t| < T

0 for |t| > T

}
=: rect

(
t
T

)

F (f) (ω) = F (ω) =

ˆ ∞
−∞

f (t) e−i ω t dt

=

ˆ T

−T
1 e−i ω t dt =

e−i ω t

− i ω

∣∣∣∣T
−T
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=
1

−i ω
(
e−i T ω − ei T ω

)
=

2

ω

1

2i

(
ei T ω − e−i T ω

)
=

2

ω
sin(ω T ) = 2T

sin (ω T )

ω T
.

The value of the transform does not depend on the choice of the func-

tion value of f(t) at the points t = −T and t = −T ! Introducing the

si-function si (x) := sin x
x , also known as the sinc-function, the result is

F
(
rect

(
t
T

))
(ω) =

2

ω
sin(ω T ) = 2T si (ω T ).

The graph of the Fourier transform is shown in Fig. 18.1.

Figure 18.1. Fourier transform of the rectangle function

The spectrum is a sine function in ω whose amplitude decreases with

1/ω. The zeros of F (ω) are the same as those of the sine function

ωnT = nπ ↪→ ωn = n
π

T

except for ω = 0: To calculate the value of the function at ω = 0, we

apply the rule of l’Hospital

F (ω = 0) = lim
ω→0

2 sin(ω T )

ω
= lim
ω→0

2 cos(ω T )T

1
= 2T.

Observation: The wider the rectangle f(t) or the larger T , the narrower

the maximum of F (ω) at ω = 0, since the first zero of the spectrum is

at ω1 = π
T . On the other hand: The narrower the rectangle f(t), i.e. the

smaller T , the wider the maximum.
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Example 18.2. For the exponential function shown in the next figure, the

corresponding spectral function is calculated:

f (t) = e−α t·S (t) =

{
0 for t < 0

e−α t for t > 0, α > 0.

Here S (t) is the step function (Heaviside function) S (t) =

{
0 for t < 0

1 for t > 0.

The spectrum of the function f is its Fourier transform F (ω):

F (ω) =

ˆ ∞
−∞

f (t) e−i ω t dt =

ˆ ∞
0

e−α t e−i ω t dt =

ˆ ∞
0

e−(α+i ω) t dt

=
e−(α+i ω) t

− (α+ i ω)

∣∣∣∣∣
t=∞

t=0

= lim
t→∞

e−(α+i ω) t

− (α+ i ω)
+

1

α+ i ω

= 0 +
1

α+ i ω
=

α

a2 + ω2
− i ω

α2 + ω2
.

⇒ F (ω) = F (e−α t · S (t)) (ω) =
1

α+ i ω
.

Note: For most applications it does not matter what value S(t) has at the

position t = 0. Commonly used values are S(0) = 0, S(0) = 1, but also

S(0) = 1
2 . In the latter case, S(t) = 1

2 + 1
2 sign(t), where sign(t) is the sign

function.

Representing the Fourier Transform

Example 18.2 shows that the Fourier transform F (ω) of a time function

f (t) is generally complex. The graph of complex-valued functions cannot

be drawn directly, but either the real and imaginary parts must be plotted

separately, or the complex function

F (ω) = |F (ω)| ei ϕ(ω)



136 18. Fourier Transform

must be split into magnitude and phase, where

|F (ω)| =
√
F (ω) · F ∗ (ω) (Magnitude)

tanϕ (ω) =
ImF (ω)

ReF (ω)
(Phase).

Both magnitude and phase are real functions of ω. By analogy with the

naming of the Fourier series, we also speak of the Amplitude Spectrum and

the Phase Spectrum, respectively.

Example 18.3 (Amplitude and Phase Spectrum). In Example 18.2 the Fourier

transform is

F (ω) =
1

α+ i ω
.

We look for the amplitude and the phase spectrum.

To compute the amplitude and the phase spectrum, we split F (ω) into

the magnitude

|F (ω)| =
√
F (ω) · F ∗ (ω) =

√
1

α+ i ω
· 1

α− i ω

=
1√

α2 + ω2

and the phase

tanϕ (ω) =
ImF (ω)

ReF (ω)
= −ω

α
.

w

w

Magnitude of F (ω) Phase of F (ω)

Figure 18.2. Magnitude and phase of the Fourier transform

The Fig. 18.2 shows both the amplitude spectrum (left) and the phase

spectrum (right) for α = 1.
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18.2 Inverse Fourier Transform
A time function is completely characterized by its spectrum, as shown by

the inverse Fourier transform.

Theorem 18.2: Inverse Fourier Transform

If F (ω) is the Fourier transform of a function f (t), then the func-

tion f (t) is given by

f (t) =
1

2π

ˆ ∞
−∞

F (ω) ei ω t dω (Inverse Fourier Transform),

if f (t) satisfies the mean value property.

The mean value property of a function f means that the function value

at any point t is given by the mean value of the left and right side limits:

f (t) =lim
ε→0

1
2 (f (t+ ε) + f (t− ε)) for all t ∈ Df (see Section 17.3). For

continuous functions the mean value property is always satisfied; for dis-

continuous functions, the mean value must be ensured at each step.

To be consistent with the mean value property, the step function S(t) should

be defined by S(0) = 1
2 at the position t0 = 0 for Fourier applications!

Theorem 18.2 implies that the Fourier transform of a function f contains the

same information as f itself, because the time signal f(t) can be completely

reconstructed from F (ω) using the inverse Fourier transform. In particular,

the function f can be characterized solely by its associated spectrum!

Remarks:

(1) The Fourier transform is also defined for complex functions f(t) =

f1 (t) + i f2 (t). F (ω) is generally a complex function (see Example

18.2).

(2) If f is a real function (a real signal), then the Fourier transform can be

calculated using Euler’s identity e−i ω t = cos (ω t)− i sin (ω t):

F (f) (ω) =

ˆ ∞
−∞

f (t) e−i ω t dt =

ˆ ∞
−∞

f (t) (cos (ω t)− i sin (ω t)) dt

=

ˆ ∞
−∞

f (t) cos (ω t) dt− i
ˆ ∞
−∞

f (t) sin (ω t) dt. (∗)

We call these transformations the cosine and sine transform.
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(3) Odd and even functions

(i) For an even real function f , that is f (−t) = f (t), it follows

F (ω) = 2

ˆ ∞
0

f (t) cos (ω t) dt.

Proof: With f(t) also f(t) · cos (ω t) is an even function and
ˆ ∞
−∞

f (t) cos (ω t) dt = 2

ˆ ∞
0

f (t) cos (ω t) dt ,

because the integrand is integrated symmetrically about the origin.

On the other hand, f (t) · sin (ω t) is an odd function. When an odd

function is integrated symmetrical to the origin, the integral is zero:
ˆ ∞
−∞

f (t) sin (ω t) dt = 0.

Inserting both integrals into the formula (∗) proves the statement.

(ii) For an odd real function f , this is f (−t) = −f (t), we simplify

similar to (i)

F (ω) = −i 2

ˆ ∞
0

f (t) sin (ω t) dt.

Example 18.4. Given is the even real function

f (t) = e−α |t| with α > 0.

The Fourier transform of f is calculated according to Note 3 (i)

F (ω) = 2

ˆ ∞
0

f (t) cos (ω t) dt = 2

ˆ ∞
0

e−α t cos (ω t) dt.

The absolute values in the argument of the exponential function can

be omitted as only positive t are used for integration. To calculate the

integral, we replace cos (ω t) with Re
(
ei ω t

)
and continue with

F (ω) = 2

ˆ ∞
0

e−α t Re(ei ω t) dt = 2 Re

ˆ ∞
0

e(−α+i ω) t dt
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= 2 Re
e(−α+i ω) t

−α+ i ω

∣∣∣∣∣
t=∞

t=0

= 2 Re
−1

−α+ i ω

= 2 Re

{
α

α2 + ω2
+ i

ω

α2 + ω2

}
=

2α

α2 + ω2
.

The same result can be obtained by partial integration.

⇒ F (ω) = F
(
e−α| t|

)
(ω) =

2α

α2 + ω2
.

Time function f(t) Spectral function F (ω)

Figure 18.3. Time function and corresponding spectral function from Example 18.4.

Example 18.5. Given is the odd real function

f (t) = e−α |t| sign (t)

with α > 0 and the sign function sign (t) =


1 for t > 0

0 for t = 0

−1 for t < 0

.

The Fourier transform according to Note 3 (ii) is given by

F (ω) = −i 2

ˆ ∞
0

f (t) sin (ω t) dt = −i 2

ˆ ∞
0

e−α t sin (ω t) dt.

To calculate the integral, we replace sin (ω t) = Im
(
ei ω t

)
and consider

Example 18.4

F (ω) = −i 2 Im

ˆ ∞
0

e−α t ei ω t dt

= −i 2 Im

{
α

α2 + ω2
+ i

ω

α2 + ω2

}



140 18. Fourier Transform

⇒ F (ω) = −i 2ω

α2 + ω2
.

Time function f(t) Fourier transform F (ω)

Figure 18.4. Time function and corresponding Fourier transform from Example 18.5.

Example 18.6. Given is the odd real function f (t) = 1
t . We look for its

Fourier transform.

Since f(t) is an odd function, we compute the sine transform of 1
t .

Although the function f is not defined at t = 0 (singularity), sin(ω t)
t

is continuous and bounded for all t ∈ R. We calculate the Fourier

transform of 1
t according to Note 3 (ii). With the substitution

x = ω t ↪→ dx = ω dt

we get for positive values of ω

F (ω) = −i 2

ˆ ∞
0

sin (ω t)

t
dt = −i 2

ˆ ∞
0

sinx

x
dx (ω > 0).

The value of the definite integral
ˆ ∞

0

sinx

x
dx =

π

2

is calculated in the Example 18.8 ©3 . Using this result, for positive ω

we get the value −i π. Similarly, for negative ω we get i π. Both results

together give the Fourier transform of the function

F (ω) =

{
−i π for ω > 0

i π for ω < 0
= −i π sign (ω) ,

where the sign function appears again.
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18.3 Properties of the Fourier Transform
This section introduces important properties and illustrates them with

examples. Subsequently, we will always assume that the time functions

satisfy the requirements of the Fourier transform, so the Fourier trans-

form is defined. F (ω) = F (f) (ω) is always the Fourier transform of f ;

F1 (ω) = F (f1) (ω) and F2 (ω) = F (f2) (ω) are the Fourier transforms of

f1 and f2, respectively.

18.3.1 Linearity

We compute the spectrum of a superposition k1 f1(t) + k2 f2(t) :

F (k1 f1 + k2 f2) (ω) =

ˆ ∞
−∞

(k1 f1 (t) + k2 f2 (t)) e−i ω t dt

= k1

ˆ ∞
−∞

f1 (t) e−i ω t dt+ k2

ˆ ∞
−∞

f2 (t) e−i ω t dt

= k1 F1 (ω) + k2 F2 (ω) .

(F1) Linearity: F (k1 f1 + k2 f2) (ω) = k1 F1 (ω) + k2 F2 (ω)

Important: Linearity means that the spectrum of a superposition of

two time functions consists of the corresponding superposition of the

spectra.

Example 18.7. Find the spectrum of the function 4 rect
(
t
T

)
+ 3 e−α |t|:

Using Examples 18.1 and 18.4 and applying the property (F1), we get

F
(

4 rect
(
t
T

)
+ 3 e−α |t|

)
(ω) = 4F

(
rect

(
t
T

))
(ω) + 3F

(
e−α |t|

)
(ω)

= 8
sin (ω T )

ω
+ 6

α

α2 + ω2
.

18.3.2 Symmetry Property

(F2) Symmetry: F (F (f)) (t) = 2π f (−t)

The symmetry property states that the Fourier transform applied twice to

a function f will give the function f as the result, but with the factor 2π
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and a negative argument. Using the Fourier integral (FI) we conclude that

F (F ) (t) =

ˆ ∞
−∞

F (ω) e−i ω t dω

= 2π
1

2π

ˆ ∞
−∞

F (ω) ei ω (−t) dω = 2π f (−t) .

The symmetry property is used to calculate the Fourier transform of func-

tions which are themselves Fourier transforms:

Examples 18.8.

©1 With F
(
rect

(
t
a

))
(ω) = 2 sin(ω a)

ω we get for the rectangle function rect:

F
(

2
sin (ω a)

ω

)
(t) = F

(
F
(
rect

(
t

a

)))
(t)

= 2π rect

(
− t
a

)
= 2π rect

(
t

a

)
.

So, after swapping the variables ω and t, the result is

F
(

sin (a t)

t

)
(ω) = π rect

(ω
a

)
.

©2 From Example 18.4 we conclude with α = 1

F
(
e−|t|

)
(ω) =

2

1 + ω2

and with (F2)

F
(

2

1 + ω2

)
(t) = F

(
F
(
e−|t|

))
(t) = 2π e−|−t|.

After swapping the variables we get

F
(

1

1 + t2

)
(ω) = π e−|ω|.

©3 We calculate the definite integral

ˆ ∞
0

sinx

x
dx =

π

2
using the Fourier

transform. We start with the result of Example 18.8©1

F
(

sin t

t

)
(ω) = π rect (ω) .
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According to the Note 3(i), for the even function sin t
t we get

F
(

sin t

t

)
(ω) = 2

ˆ ∞
0

sin t

t
cos (ω t) dt.

So we evaluate this expression at ω = 0:

2

ˆ ∞
0

sin t

t
dt = π rect (0) = π

which is the value of the definite integral.

18.3.3 Scaling Property

We examine the Fourier transform (the spectrum) of a function f (a t) which

is obtained from f (t) by compression (a > 1) or expansion (0 < a < 1).

Function f(t) Compressed function f(a t)

Figure 18.5. About the scaling property

For a > 0 the Fourier transform of f is calculated with the substitution

ξ = a t

F (f (a t)) (ω) =

ˆ ∞
−∞

f (a t) e−i ω t dt =

ˆ ∞
−∞

f (ξ) e−i ω
ξ
a
dξ

a
=

1

a
F
(ω
a

)
.

The argumentation for a < 0 is analogous, so the following applies

(F3) Scaling: F (f (a t)) (ω) =
1

|a|
F
(ω
a

)
, a ∈ R6=0

The scaling property indicates that in the compressed signal f (a t), where

a > 1, the frequencies F
(
ω
a

)
occur.
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18.3.4 Displacement Properties

Time Shift

The shift theorem is a statement about the Fourier transform of a time-

shifted function f (t− t0).

Figure 18.6. Function f(t) and function f(t− t0) shifted by t0

With the substitution ξ = t− t0 we compute:

F (f (t− t0)) (ω) =

ˆ ∞
−∞

f (t− t0) e−i ω t dt =

ˆ ∞
−∞

f (ξ) e−i ω (ξ+t0) dξ.

The exponential term is split into two factors. We exclude e−i ω t0 from the

integral because it is independent of the integration variable

F (f (t− t0)) (ω) = e−i ω t0
ˆ ∞
−∞

f (ξ) e−i ω ξ dξ = e−i ω t0 F (ω) .

Consequently, the Fourier transform of a time-shifted function is:

(F4) Time Shift: F (f (t− t0)) (ω) = e−i ω t0 F (ω)

Using F (ω) = |F (ω)| ei ϕ(ω), the spectrum of the time-shifted function

f (t− t0) is

F (f (t− t0)) (ω) = e−i ω t0 |F (ω)| ei ϕ(ω)

= |F (ω)| e−i (ϕ(ω)−ω t0).

The spectrum of f (t− t0) has the same amplitude as the spectrum of f (t)

only the phase is shifted by ω t0. This means that the same frequencies occur

with the same amplitude, but out of phase.
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Example 18.9. Find the spectrum of the square wave signal f (t) = rect
(
t
T

)
shifted by t0 = T :

F (f (t− T )) = e−i ω T F
(
rect

(
t

T

))
(ω) = e−i ω T 2

sin (ω T )

ω
.

Frequency Shift

This property makes a statement about the spectrum of a function f(t)

multiplied by ei ω0 t:

F
(
ei ω0 t f (t)

)
(ω) =

ˆ ∞
−∞

ei ω0 t f (t) e−i ω t dt

=

ˆ ∞
−∞

f (t) e−i (ω−ω0) t dt = F (ω − ω0) .

So the spectrum of a function multiplied by ei ω0 t is:

(F5) Frequency Shift: F
(
ei ω0 t f (t)

)
(ω) = F (ω − ω0)

This frequency shift property means that the spectrum of the function mul-

tiplied by ei ω0 t is the same as the spectrum of the original function shifted

by ω0. As an application of frequency shifting, the modulation property is

discussed:

18.3.5 Modulation Property

We want to find the spectrum of the amplitude modulated signal

f (t) cos (ω0 t) .

We start with Euler’s formula

cos (ω0 t) =
1

2

(
ei ω0 t + e−i ω0 t

)
and use the linearity property (F1) and the frequency shift property (F5)

F (cos (ω0 t) f (t)) (ω) = F
(

1

2
ei ω0 t f (t) +

1

2
e−i ω0 t f (t)

)
(ω)

=
1

2
F
(
ei ω0 t f (t)

)
(ω) +

1

2
F
(
e−i ω0 t f (t)

)
(ω)

=
1

2
(F (ω − ω0) + F (ω + ω0)) .
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(F6) Modulation:

F (f (t) cos (ω0 t)) (ω) =
1

2
(F (ω + ω0) + F (ω − ω0))

The spectrum of the cos (ω0 t)-modulated signal is the spectrum of the ori-

ginal function shifted by ±ω0. The spectrum is shifted exactly by the mo-

dulation frequency ω0!

Examples 18.10. Find the spectrum of a rectangular pulse modulated with

cos (ω0 t).

According to Example 18.1 the spectrum of the rectangle is

F
(
rect

(
t

T

))
(ω) = 2

sin (ω T )

ω
.

So, using the modulation property

F
(

cos (ω0 t) · rect
(
t

T

))
(ω) =

sin(T (ω − ω0))

ω − ω0
+

sin(T (ω + ω0))

ω + ω0
.

The amplitude modulation of the square wave corresponds to a shift of

the spectrum to the right and to the left by the modulation frequency

ω0.

1

1

‑T T t

t

trect( / )T

trect( / ) cos(w  t)T 0

rectangle signal

signal in time window 

spectrum

spectrum

2T

p2 /T

tF(rect( / ))(w)T

p‑ /T
p/T

2p/T
3p/T

w

ww0‑w0

T T

Figure 18.7. Spectrum of the amplitude modulated rectangular signal
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Comments/Interpretation:

(1) When messages are transmitted, the signal f (t) is often amplitude mo-

dulated, i.e. transmitted with a carrier frequency ω0: f(t) cos (ω0t). A

receiver can determine the carrier frequency by transmitting an am-

plitude modulated square wave as a test signal. The spectrum of this

signal is then the spectrum of the square wave shifted by the value of

the carrier frequency ω0.

(2) When we analyze real signals, we usually do not get a line spectrum,

but a broadening of the lines. Even if we are looking at sine or cosine

signals. This effect can be explained by our example:

Since it is not possible to measure the whole range −∞ < t < ∞
for all times, but only for a finite time interval, we analyze the function

rect
(
t
T

)
·cos (ω0 t) instead of cos (ω0 t). According to the Example 18.10

we then get the spectrum 2 sin(ω T )
ω shifted by ω0. This spectrum has its

maximum at ω0, but with a finite width 2π
T . Only in the case of T →∞

does the spectral width approach 0 and we get a line at ω0.

18.3.6 Fourier Transform of the Derivative

For the application of the Fourier transform to differential equations the

Fourier transform of the derivative F (f ′) is required. As with the Laplace

transform there is a relationship between F (f ′) and F (f). Using partial

integration, we get for the derivative F (f ′)

F (f ′) (ω) =

ˆ ∞
−∞

f ′ (t) e−i ω t dt

= f (t) e−i ω t
∣∣∞
−∞ −

ˆ ∞
−∞

f (t) (−i ω) e−i ω t dt.

The precondition for using the Fourier transform is the asymptotic behavior

of the function f, lim
t→±∞

f (t) = 0. So f (t) e−i ω t
∣∣∞
−∞ = 0.

⇒ F (f ′) (ω) = i ω

ˆ ∞
−∞

f (t) e−i ω t dt = i ωF (f) (ω) .

Fourier Transform of the Derivative

(F7) Derivative: F (f ′) (ω) = (i ω) F (ω)
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Important: The spectrum of the derivative f ′ is equal to the spectrum

of the function f multiplied by i ω.

Repeated application of the derivative theorem leads inductively to the Fou-

rier transform of the n-th derivative:

Fourier Transform of the n-th Derivative

(F8) n-th Derivative: F
(
f (n)

)
(ω) = (i ω)

n
F (ω)

Application Example 18.11 . Given is the linear differential equation

y′ (t) + α y (t) = f (t) S (t)

with the constant coefficient α and a continuous function f . S(t) is the step

function.

We apply the Fourier transform to this differential equation and take

into account the linearity property (F1). Then on the left side we have

F (y′ (t) + α y (t)) = F (y′ (t)) + αF (y (t)) .

We replace F (y′ (t)) = i ωF (y (t)) and get

i ωF (y (t)) + αF (y (t)) = F (f (t) S (t))

⇒ F (y (t)) =
1

α+ i ω
F (f (t) S (t)) .

This is the Fourier transform of the solution y (t) as the product of

F (f (t) S (t)) · 1
α+i ω .

According to Example 18.2

1

α+ i ω
= F

(
e−α t S (t)

)
(ω) .

⇒ F (y (t)) = F (f (t) S (t)) · F
(
e−α t S (t)

)
.

So the problem arises: Which time function belongs to a product of

frequency functions? The answer is given by the next theorem.
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18.3.7 Convolution Theorem

Given is the spectrum of the function f as the product of two frequency

functions

F (f) = F (f1) · F (f2) .

The corresponding time function f (t) is then an integral combination of

the time functions f1 (t) and f2 (t):

f (t) =

ˆ ∞
−∞

f1 (τ) f2 (t− τ) dτ ,

the so-called Convolution Integral. The abbreviated notation for the convo-

lution integral is

f (t) = (f1 ∗ f2) (t) .

Convolution Theorem

The Fourier transform of the convolution

(f1 ∗ f2) (t) :=

ˆ ∞
−∞

f1 (τ) f2 (t− τ) dτ

is the product of the transform of f1 and f2:

(F9) Convolution Theorem: F (f1 ∗ f2) = F (f1) · F (f2)

Proof:

F (f1 ∗ f2) =

ˆ ∞
−∞

(ˆ ∞
−∞

f1 (τ) f2 (t− τ) dτ

)
e−i ω t dt

=

ˆ ∞
−∞

(ˆ ∞
−∞

f1 (τ) f2 (t− τ) e−i ω t dτ

)
dt.

After swapping the integration sequence and the subsequent substitution

ξ (t) = t− τ (↪→ dξ = dt) we obtain

F (f1 ∗ f2) =

ˆ ∞
−∞

f1 (τ)

(ˆ ∞
−∞

f2 (t− τ) e−i ω t dt

)
dτ

=

ˆ ∞
−∞

f1 (τ)

(ˆ ∞
−∞

f2 (ξ) e−i ω (ξ+τ) dξ

)
dτ

=

ˆ ∞
−∞

f1 (τ) e−i ω τ dτ ·
ˆ ∞
−∞

f2 (ξ) e−i ω ξ dξ

= F (f1) · F (f2) .
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Example 18.12. To complete Example 18.11, we look for the time function

y (t), which belongs to the spectrum of

F (f (t) S (t)) · F
(
e−α t S (t)

)
.

According to the convolution theorem, the time function y(t) is the

convolution of the two functions

f1 (t) = f (t) S (t) and f2 (t) = e−α t S (t) :

y (t) = (f1 ∗ f2) (t) =

ˆ ∞
−∞

f1 (τ) f2 (t− τ) dτ

=

ˆ ∞
−∞

f (τ) S (τ) e−α (t−τ) S (t− τ) dτ .

Since S (τ) = 0 for τ < 0, the integration is to be calculated only from

the lower integration limit τ = 0. For τ > 0, S (τ) = 1, so

y (t) =

ˆ ∞
0

f (τ) e−α t eα τ S (t− τ) dτ.

We split the integral into two parts

y (t) =

ˆ t

0

f (τ) e−α t eα τ S (t− τ) dτ

+

ˆ ∞
t

f (τ) e−α t eα τ S (t− τ) dτ .

The second integral disappears because τ > t and S (t− τ) = 0 for

τ > t. In the first integral 0 < τ < t and for this range S (t− τ) = 1:

⇒ y (t) = e−α t
ˆ t

0

eα τ f (τ) dτ .

Conclusion: y(t) is, according to Example 18.11, the solution of the inho-

mogeneous first-order differential equation

y′ (t) + α y (t) = f (t) with y (0) = 0.

The above formula is also obtained by varying the constants for a linear dif-

ferential equation with constant coefficients and vanishing initial conditions

(see Volume 2, Section 13.3).
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Remarks:

(1) The convolution integral of two functions f1 and f2 is commutative:

f1 ∗ f2 = f2 ∗ f1.

With the substitution ξ(τ) = (t− τ) (↪→ dξ = −dτ) we obtain

(f1 ∗ f2) (t) =

ˆ ∞
−∞

f1 (τ) f2 (t− τ) dτ

=

ˆ ∞
−∞

f1 (t− ξ) f2 (ξ) dξ = (f2 ∗ f1) (t).

(2) For integrals of the form
ˆ ∞
−∞

g (t− τ) S (τ) dτ

=

ˆ 0

−∞
g (t− τ) S (τ)︸ ︷︷ ︸

=0

dτ

︸ ︷︷ ︸
=0

+

ˆ ∞
0

g (t− τ) S (τ)︸ ︷︷ ︸
=1

dτ

the discontinuous expression S (0) occurs at the upper (lower) limit of

the 1st (2nd) partial integral at τ = 0. This function value has no effect

on the result of the integration, since the area under a function does

not change when the function is changed at a finite number of points.

Example 18.13 (Geometric Interpretation). To get a more visual interpreta-

tion of the convolution integral, we choose f1 (t) = S (t) and f2 (t) = S (t)

and compute

(f1 ∗ f2) (t) =

ˆ ∞
−∞

S (τ) S (t− τ) dτ.

To determine the integral, we consider the sequence of images in Fig. 18.8

(a) to Fig. 18.8 (d).

(a) In (a) the function S (τ) is drawn. The step function is zero for τ < 0

and one for τ > 0.

(b) The function S (−τ) is derived from S (τ) by mirroring (= convolution)

on the y-axis, see Fig. (b): S (−τ) = 0 for τ > 0 and S (−τ) = 1 for

τ < 0.

(c) S (t− τ) is created from S (−τ) by shifting the graph of S (−τ) to the

right by t, see Fig. (c).
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(d) Then, the product of S (τ) and S (t− τ) is shown in (d): S (t− τ) ·
S (τ) = 0 for τ < 0 and for τ > t. For the integral

´∞
−∞ S (τ) S (t− τ) dτ

with the integration variable τ only the range between 0 ≤ τ ≤ t re-

mains non-zero and has the integral value t.

⇒ (f1 ∗ f2) (t) =

ˆ ∞
−∞

S (τ) S (t− τ) dτ = t S (t) .

Figure 18.8. The geometric interpretation of the convolution integral

Example 18.14 (Convolution Integral). Find the convolution integral f ∗ h,

where f and h are the functions shown in Fig. 18.9.

Figure 18.9. Functions f and h

We graphically determine the convolution

(f ∗ h) (t) =

ˆ ∞
−∞

f (τ) h (t− τ) dτ.

First, as in the Example 18.13, we mirror the function h(τ) to get h(−τ).

This function is then shifted along the τ -axis by the value T and then mul-

tiplied by the rectangle function. These four steps are shown schematically

in Fig. 18.10.
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Figure 18.10. Convolution of the rectangle function with the triangle function

As we can see in Fig. 18.11, there are four cases in the computation of the

convolution integral:

(1) t ≤ 0: The function h(t− τ) does not overlap with the function f(τ).

(2) 0 ≤ t ≤ T : The function h(t − τ) dips with its peak into the graph of

the function f(τ).

(3) T ≤ t ≤ 2T : The function h(t− τ) exits the graph of the function f(τ).

(4) 2T ≤ t: The function h(t− τ) does not overlap with the function f(τ).

Figure 18.11. Four cases for determining the convolution integral
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The result of the convolution can be written as

⇒ (f ∗ h) (t) =


0 for t ≤ 0

1
2T t

2 for 0 ≤ t ≤ T
t− 1

2T t
2 for T ≤ t ≤ 2T

0 for t > 2T

and graphically:

Figure 18.12. Convolution integral (f ∗ h)(t)

Application Example 18.15 (Solving Differential Equations).

The Fourier transform is not only used to solve first-order differential equa-

tions, but also higher order linear differential equations: For example, a

second-order differential equation is given by

y′′ (t)− y (t) = f(t)S (t) .

Step 1: We apply the Fourier transform

F (y′′ (t)) (ω) = (i ω)
2 F (y (t)) (ω)

and use the linearity property

(i ω)
2 F (y (t))−F (y (t)) = F (f(t)S (t)) .

Step 2: The algebraic equation for the Fourier transform F (y) is solved:

↪→ F (y (t)) =
1

−1− ω2
F (f(t)S (t))

= −1

2

2

1 + ω2
F (f(t)S (t))

= −1

2
F
(
e−1·|t|

)
· F (f(t)S (t)) ,

because according to Example 18.4: F
(
e−α| t|

)
=

2α

α2 + ω2
.
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Step 3: Inverse transform: Using the convolution theorem, we obtain the

solution of the second-order inhomogeneous differential equation

y (t) = −1

2

(
e−|t|

)
∗ (f(t)S (t))

= −1

2

ˆ ∞
−∞

e−|τ | f(t− τ)S (t− τ) dτ

= −1

2

ˆ t

−∞
e−|τ | f(t− τ) dτ .

Then, of course, the integral on the right has to be calculated for a given

f(t) to get an expression for y(t).

Summary: Properties of the Fourier Transform

F (ω) denotes the Fourier transform of f , F1 (ω) and F2 (ω) the

transforms of f1 and f2, respectively.

(F1) Linearity: F (k1 f1 + k2 f2) (ω) = k1 F1 (ω) +

k2 F2 (ω)

(F2) Symmetry: F (F (f)) (t) = 2π f (−t)

(F3) Scaling: F (f (a t)) (ω) = 1
|a| F

(
ω
a

)
a ∈ R 6=0

(F4) Time Shift: F (f (t− t0)) (ω) = e−i t0 ω F (ω)

(F5) Frequency Shift: F
(
ei ω0 t f (t)

)
(ω) = F (ω − ω0)

(F6) Modulation: F (f (t) cos (ω0 t)) (ω)

= 1
2 (F (ω + ω0) + F (ω − ω0))

(F7) Derivative: F (f ′) (ω) = i ω F (ω)

(F8) n-th Derivative: F
(
f (n)

)
(ω) = (i ω)

n
F (ω)

(F9) Convolution: F (f1 ∗ f2) (ω) = F1 (ω) · F2 (ω),

(f1 ∗ f2) (t) =

ˆ ∞
−∞

f1 (τ) f2 (t− τ) dτ
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18.4 Fourier Transform of the Delta Function
When analyzing systems with respect to their frequency response, we need

a function δ(t) that contains all frequencies at the same amplitude. With

this function as the input signal, the system will be excited equally at all

frequencies. With any other input signal, we would excite the system dif-

ferently at different frequencies. When the output signal is frequency analy-

zed, this information characterizes the frequency response of the system. So

we need a function that contains all frequencies with the same amplitude:

F (δ) (ω) ≡ 1.

This requirement leads to the Dirac or delta function.

18.4.1 Delta Function

In systems theory and many other areas of engineering and physics, the

impulse function δ (t) plays an important role. This function is often cal-

led the delta function (because of its notation) or the Dirac function, after

its inventor. In physics, this function is said to have the following properties:

Properties of the Delta Function:

(1) δ (t) = 0 for t 6= 0

(2) δ (0) =∞

(3)

ˆ ∞
−∞

δ (t) dt = 1

(4)

ˆ ∞
−∞

δ (t) f (t) dt = f (0) for any continuous function f : R→ R.

Of course, this is not a function in the usual sense, and the theory of distri-

butions (= generalized functions) cannot be discussed here. There is only

this much: The last equation is the essential one, (3) is the special case

f = 1, equations (1) and (2) have little meaning!

We will try to explain this phenomenon with the following consideration.

A freely moving body is subjected to an impact F (t) = 1
ε with constant

force in the finite time ε. Let us define the family of functions δε (t)
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δε (t) =


0 for t < 0
1
ε for 0 < t < ε

0 for t > ε

With this notation, the pulse function F (t) can be written as

F (t) = mv0 δε (t) .

The total transmitted impulse is

∆p =

ˆ ∞
−∞

F (t) dt = mv0

ˆ ∞
−∞

δε (t) dt = mv0

ˆ ε

0

1

ε
dt = mv0.

The result is independent of the duration ε! For ε → 0 the same impulse

is transmitted as for a finite ε. The limit of the function family δε (t) for

ε→ 0 gives the delta function (Dirac function sometimes just called impulse

function).

δ (t) := lim
ε→0

δε (t).

Figure 18.13. From rectangular impulse to delta function

The function defined in this way has properties (1) - (4): Properties (1) to

(3) are obviously fulfilled and property (4) can be checked as follows:
ˆ ∞
−∞

δε (t) f (t) dt =

ˆ ε

0

1

ε
f (t) dt = f (ξ)

ˆ ε

0

1

ε
dt = f (ξ)

due to the mean value theorem of integral calculus, where f is evaluated at

a suitable, but unknown intermediate position ξ ∈ [0, ε]. In the limit ε→ 0

we obviously get ξ → 0, since 0 ≤ ξ ≤ ε, and secondly δε (t) → δ (t). This
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is ˆ ∞
−∞

δ (t) f (t) dt =

ˆ ∞
−∞

lim
ε→0

δε (t) f (t) dt

= lim
ε→0

ˆ ∞
−∞

δε (t) f (t) dt= f (0) .

It is important to note that the delta function is a functional defined by

the integral property
ˆ ∞
−∞

f (t) δ (t) dt = f (0)

which is valid for any continuous function f(t). This is the universal pro-

perty of the delta function. More generally:

Property of the Delta Function

ˆ ∞
−∞

f (τ) δ (t− τ) dτ = f (t) .

Becauseˆ ∞
−∞

f (τ) δ (t− τ) dτ =

ˆ ∞
−∞

f (t+ ξ) δ (ξ) dξ = f (t+ ξ)|ξ=0 = f (t) .

This relationship is called the hide property of the delta function, because

a single value of the function f is “suppressed” by t.

Remark: The hide property can also be used to show that the delta function

is independent of the selected function family δε (t): Because if δ1 (t) is the

limit value of one function family δ1ε (t) and δ2 (t) is the limit value of

another function family δ2ε (t), then due to the hide property of δ1 (t) we

get

δ2 (t) =

ˆ ∞
−∞

δ1 (t− τ) δ2 (τ) dτ =

ˆ ∞
−∞

δ1 (ξ) δ2 (t− ξ) dξ = δ1 (t) .

The last equality holds because of the hide property of δ2 (t). Hence, δ2 (t) =

δ1 (t) for all t ∈ R.
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18.4.2 Fourier Transform of the Delta Function

The basic property of the delta function is that for any continuous function

ϕ (t) ˆ ∞
−∞

δ (t) ϕ (t) dt = ϕ (0) .

We apply this rule specifically to ϕ (t) = e−i ω t

ˆ ∞
−∞

δ (t) e−i ω t dt = e−i ω t
∣∣
t=0

= 1.

The left side of the equation is the Fourier transform of the function δ (t);

so the Fourier transform of the delta function is the constant function

F (δ) (ω) = 1.

The delta function is therefore exactly the function needed for system

analysis, containing all frequencies with the same amplitude 1.

Remarks:

(1) If we substitute the result of this transformation into the inverse formula

of the Fourier transform (FI), we obtain

δ (t) =
1

2π

ˆ ∞
−∞
F (δ) (ω) ei ω t dω =

1

2π

ˆ ∞
−∞

ei ω t dω. (∗)

We compute the improper integral (∗)

δ (t) = lim
ε→0

1

2π

ˆ 1/ε

−1/ε

ei ω t dω = lim
ε→0

1

2π

1

i t

(
ei ω t

)∣∣ω=1/ε

ω=−1/ε

= lim
ε→0

1

2π

1

i t

(
ei

1
ε t − e−i 1

ε t
)

= lim
ε→0

sin
(

1
ε t
)

π t

.

So the delta function can be identified as the limit ε→ 0 of the family

of functions
sin( 1

ε t)
π t already discussed graphically in Example 18.1.

(2) If the Fourier transform is applied again to the equation (∗), the symme-

try property (F2) gives the Fourier transform of the constant function:

F (1) (ω) = 2π δ (ω).
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Examples 18.16.

©1 We calculate the Fourier transform of the step function

S (t) =
1

2
+

1

2
sign (t) .

According to Example 18.6 the Fourier transform of f (t) = 1
t is

F
(

1

t

)
(ω) = −i π sign (ω) .

We apply the symmetry property (F2) on this identity to get the trans-

form of sign(t)

F (sign (t)) (ω) =
1

−i π
F(F(

1

t
)) (ω)

=
1

−i π
2π

(
1

−ω

)
=

2

i ω
.

Using the linearity (F1) of the Fourier transform we obtain

F
(

1

2
+

1

2
sign (t)

)
(ω) =

1

2
F (1) (ω) +

1

2
F (sign (t)) (ω)

⇒ F (S (t)) (ω) = π δ (ω) +
1

i ω
.

©2 With the shift properties (F4) and (F5) we calculate the Fourier trans-

forms of the shifted delta function and ei ω0 t

F (δ (t− t0)) (ω) = e−i ω t0 ,

F
(
ei ω0 t

)
(ω) = 2π δ (ω − ω0) .

©3 Applying the modulation property (F6) for the function f (t) = 1, we

conclude

F (cos (ω0 t)) (ω) = π δ (ω − ω0) + π δ (ω + ω0).

This result means that cos (ω0 t) contains only one frequency ω0. The

Fourier transform gives only a single line as the spectrum of cos (ω0 t).

However, if the spectrum of cos (ω0 t) is measured in a finite time in-

terval, this line will be expanded according to Example 18.10!
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©4 Using the hide property of the delta function we can evaluate

δ (t− t0) ∗ f (t) =

ˆ ∞
−∞

δ (τ − t0) f (t− τ) dτ

= f (t− τ)|τ=t0
= f (t− t0) .

Example 18.17 (Fourier Transform of Periodic Functions). Let f be a T -

periodic function. According to the complex formulation of Fourier series

for periodic functions with ω0 = 2π
T , we have the identity

f (t) =
∞∑

n=−∞
cn e

i n ω0 t.

Because of the linearity of the Fourier transform, we compute according to

Example 18.16©2

F (f (t)) (ω) =
∞∑

n=−∞
cn F

(
ei n ω0 t

)
(ω) = 2π

∞∑
n=−∞

cn δ (ω − nω0) .

The Fourier transform of a periodic function is given by the spectrum of

the Fourier series. Therefore, the spectrum of any signal f (t) is the Fourier

transform F (ω) of the signal.

18.4.3 Representation of the Fourier Transform of δ(t)

Visualization: The transition of the spectrum of the function family δε (t)

for ε→ 0 to the spectrum of the delta function will be visualized. According

to Example 18.1 we have the relationship between a rectangular function

with length T and height 1
T and its spectrum

FT (ω) = F
(

1
T rect(

2 t
T )
)

(ω) = sin(ω T/2)
ω T ,

which is also shown in Fig. 18.14.

For T → 0 the time function δT (t) = 1
T rect(

2 t
T ) converges to the delta

function. The spectrum FT (ω) is now discussed as a function of the para-

meter T : The maximum amplitude is 1, independent of T . The first two

zeros of the spectrum are ω = ± 2π
T ; dependent on T .
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Figure 18.14. a) Time function δT (t), b) Spectrum FT (ω)

For T → 0 these zeros go towards ±∞ which means that FT (ω) approaches

the constant function 1:

δT (t)
T→0−→ δ (t),

FT (ω)
T→0−→ 1.

.

The transition FT (ω)→ 1 for T → 0 can be illustrated quite well. We use

the spectrum

FT := 2
sin
(

1
2 ω T

)
ω T

and vary T .

Animation: The images show that the maximum amplitude

always remains at 1, but the first zero (and all the other ze-

ros) move towards ±∞, so the limit function is the constant

function F (ω) = 1.

https://www.imathonline.de/ani/delta.gif
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18.4.4 Correspondences of the Fourier Transform

Function f (t) Fourier Transform F(ω) = F (f) (ω)

δ (t) 1

1 2π δ (ω)

cos (ω0 t) π δ (ω − ω0) + π δ (ω + ω0)

sin (ω0 t)
π

i
δ (ω − ω0)− π

i
δ (ω + ω0)

sign (t)
2

i ω

S (t) π δ (ω) +
1

i ω

S (t) cos (ω0 t)
π

2
δ (ω − ω0) +

π

2
δ (ω + ω0) +

i ω

ω2
0 − ω2

S (t) sin (ω0 t)
π

2 i
δ (ω − ω0)− π

2 i
δ (ω + ω0) +

ω0

ω2
0 − ω2

S (t) e−a t
1

a+ i ω
(a > 0 or Re a > 0)

S (t) tn
e−a t

n!

1

(a+ i ω)n+1 (a > 0 or Re a > 0)

S (t) e−a t cos (ω0 t)
i ω + a

(i ω + a)2 + ω2
0

(a > 0 or Re a > 0)

S (t) e−a t sin (ω0 t)
ω0

(i ω + a)2 + ω2
0

(a > 0 or Re a > 0)

e−a |t|, a > 0
2 a

a2 + ω2

e−a |t| cos (ω0 t) , a > 0
2 a
(
ω2 + ω2

0 + a2
)

(ω2 − ω2
0)2 + a2 (2ω2 + 2ω2

0 + a2)

rect
(
t
T

)
=


1 for |t| < T

0 for |t| > T

2 sin (ω T )

ω

∆
(
t
T

)
=


1− |t|

T
for |t| < T

0 for |t| > T

4 sin2
(
ω T
2

)
T ω2
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18.5 Problems on the Fourier Transform

18.1 a) Determine the Fourier transform of

f1 (t) =

{
A for − T

2
< t < T

2

0 otherwise

b) Consider the function F (f1) (ω) for A = 1
T

c) What is the Fourier transform for

f2 (t) =

{
A for t0 < t < t0 + T

0 otherwise
?

18.2 Determine the spectrum of the triangular signal

f (t) =

{
A ·
(
1−

∣∣ t
T

∣∣) |t| ≤ T
0 |t| > T

18.3 a) Calculate the Fourier transform of e−α |t| sign (t) (see Fig. (a)).

b) Calculate the Fourier transform of cos2-pulse (see Fig. (b)).

Fig. (a) Fig. (b)

18.4 Take the Fourier transforms of 18.1 - 18.3 and plot the result. Can you

decide which functions have a jump, which have a non-zero mean and

which have?

18.5 Calculate the Fourier transform of the function f (t) shown in Fig. (c).

Fig. (c)

18.6 Show that the Fourier transform is a linear transform, i.e. that the su-

perposition law holds:

F (α1 f1 + α2 f2) = α1 F (f1) + α2 F (f2) .
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18.7 a) Prove the scaling property F (f (a t)) (ω) = 1
|a| F (f (t))

(
ω
a

)
.

b) Prove the displacement law F (f (t− t0)) (ω) = e−iω0t F (f (t)) (ω) .

18.8 Demonstrate by mathematical induction that

F ((−i t)n f) =
dn

dωn
F (f) (ω) = F (n) (ω)

where F (ω) = F (f) (ω).

18.9 Use the properties of the Fourier transform to find the transform of

a) δ (t) b) δ (t− t0) c) i
2

(δ (t+ t0)− δ (t− t0)) d) sin (ω0t)

18.10 Show that the following identities are valid

a) F
(
ei a t

)
(ω) = 2π δ (ω − a)

b) δ (t− t0) ∗ f (t) = f (t− t0)

18.11 What is the convolution of the rectangular pulse with itself, where

rect

(
2 t

T

)
=

{
1 |t| ≤ T

2

0 |t| > T
2

18.12 Calculate the Fourier transform of the functions given below

18.13 Use a sketch to find the convolution f ∗ h of the functions for a) t ≤ 0

b) 0 ≤ t ≤ T c) T ≤ t.
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Partial Differential Equations

Many important problems in applied mathematics and physics lead to partial differen-

tial equations (PDE): to equations that establish relationships between one or more

functions of several variables and their partial derivatives. There are three classical

second-order PDE, which we see in many applications and which dominate the theory

of PDE:

(1) ∂2

∂t2
u (x, t) = c2 ∂2

∂x2 u (x, t) is the Wave Equation. u (x, t) describes, for exam-

ple, the vibration of a stretched string at the location x at time t. This PDE also

occurs when studying acoustic, electromagnetic or water waves.

(2) ∂
∂t
u (x, t) = α2 ∂2

∂x2 u (x, t) is the Heat Equation. u (x, t) represents, for exam-

ple, the temperature distribution in a bar at the location x at the time t. This

PDE is used to describe heat conduction and other diffusion processes.

(3) ∂2

∂x2 u (x, y) + ∂2

∂y2 u (x, y) = 0 is the Laplace Equation. u (x, y) describes, for

example, the electrostatic potential in a plane problem. This PDE also occurs in

other steady-state problems such as a steady-state heat flow, the deflection of a

membrane, electric and magnetic potentials.
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19.1 Introduction
Many important problems in applied mathematics and physics lead to par-

tial differential equations (PDE): to equations that establish relationships

between one or more functions of several variables and their partial deriva-

tives. Two arbitrary examples of PDE are

∂3

∂x3
u (x, t) +

(
∂

∂t
u (x, t)

)2

=
∂2

∂x2
u (x, t) for u (x, t) ,

∂

∂x
u (x, y) =

∂

∂y
v (x, y) ,

∂

∂y
u (x, y) = − ∂

∂x
v (x, y) for u(x, y), v(x, y).

The order of a PDE is the highest partial derivative occurring in the equa-

tion.

There are three classical second-order PDE, which we see in many applica-

tions and that dominate the theory of PDE:

(1) ∂2

∂t2 u (x, t) = c2 ∂2

∂x2 u (x, t) is the Wave Equation. u (x, t) describes, for

example, the vibration of a stretched string at location x at time t.

This PDE also occurs when studying acoustic, electromagnetic or water

waves.

(2) ∂
∂t u (x, t) = α2 ∂2

∂x2 u (x, t) is the Heat Equation. u (x, t) represents, for

example, the temperature distribution in a bar at location x at time

t. This PDE is used to describe heat conduction and other diffusion

processes.

(3) ∂2

∂x2 u (x, y)+ ∂2

∂y2 u (x, y) = 0 is the Laplace Equation. u (x, y) describes,

for example, the electrostatic potential in a plane problem. This PDE

also occurs in other steady-state problems such as a steady-state heat

flow, the deflection of a membrane, electric and magnetic potentials.

In addition to the PDE, the initial and/or boundary conditions must be

specified to completely describe the behavior of the underlying physical pro-

blem. In the following sections we will not cover a systematic approach to

PDE, but we will solve special linear PDE, such as those mentioned above.
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Notation: The partial derivatives are abbreviated by

ux (x, t) =
∂

∂x
u (x, t) or uxx (x, t) =

∂2

∂x2
u (x, t)

The same applies to the other variables. With this convention the three

classical PDE are

(1) utt = c2 uxx (2) ut = α2 uxx (3) uxx + uyy = 0.

Classification of second-order linear PDE. Second-order linear PDE have the

general form

Auxx + 2B uxy + C uyy +Dux + E uy + F = 0 (∗)

with functions A, B, C, D, E and F which can depend on x and y. The

discriminant of the PDE (∗) is the function

d := AC −B2.

The PDE (∗) is called
parabolic if d = 0,

hyperbolic if d < 0,

elliptic if d > 0.

These names come from analytic geometry, where

a x2 + 2 b x y + c y2 + d x+ e y + f = 0

represents a parabola, hyperbola or ellipse, depending on whether

a c− b2 = 0, < 0 or > 0.

Examples 19.1.

©1 The wave equation utt = c2 uxx is hyperbolic:

A = c2, B = 0, C = −1 ⇒ d = −c2 < 0.

©2 The heat equation ut = α2 uxx is parabolic:

A = α2, B = C = 0 ⇒ d = 0.

©3 The Laplace equation uxx + uyyy = 0 is elliptic:

A = C = 1, B = 0 ⇒ d = 1 > 0.
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19.2 The Wave Equation
As a model for the wave equation, we consi-

Figure 19.1. Elastic string

der an elastic string of length L fixed at the

ends and deflected in the vertical plane. We

look for the vertical deflection depending on

the position x at time t: u (x, t).

19.2.1 Deriving the Wave Equation

For the vertical deflection u (x, t) of a vibrating string, the PDE is derived

under the following conditions

(V1) The string tension F0 = |~F (x) | is constant along the string.

(V2) Only small deflections are taken into account for u.

Figure 19.2. Shear force Fu

For the shear force (force in the direction of u) at point x, we compute for

small deflections

Fu (x) = −F0 sinα ≈ −F0 α ≈ −F0 · tanα = −F0

(
∂u

∂x

)
x

.

The same applies to the lateral force Fu at position x+4x

Fu (x+4x) ≈ F0

(
∂u

∂x

)
x+4x

≈ F0

[(
∂u

∂x

)
x

+4x
(
∂2u

∂x2

)
x

]
,

if
(
∂u
∂x

)
x+4x is linearized according to the formula f (x+4x) ≈ f (x) +

f ′ (x) · 4x. On the string element between x and x+4x, the total force is

−−→4F = ~F (x) + ~F (x+4x)

and its component in u-direction is

4Fu = Fu (x+4x)− Fu (x) ≈ F0 4 x
∂2

∂x2
u.
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This transverse force accelerates the mass element 4m = ρ ·4x ·A, where ρ

is the density and A is the cross-section of the string. According to Newton’s

law of motion (the accelerating force m · a is equal to the sum of all the

forces acting), we have

4m ∂2

∂t2
u = 4Fu = F0 4 x

∂2

∂x2
u

⇒ ∂2

∂t2
u (x, t) =

F0

ρA

∂2

∂x2
u (x, t). (Wave equation)

F0 is the tension of the string, ρ is the density and A is the cross-sectional

area of the string. In the following subsections, this wave equation is solved

for different physical conditions:

19.2.2 Infinitely Extended String (Initial Value Problem)

Let f be a 2-times continuously differentiable function of one variable. Then

the solution of the wave equation is obtained by the approach

u (x, t) = f (x+ c t) .

Using the chain rule we compute

uxx (x, t) = f ′′ (x+ c t) and utt (x, t) = c2 f ′′ (x+ c t) .

Inserting the two second-order derivatives into the PDE gives

c2 f ′′ (x+ c t) =
F0

ρA
f ′′ (x+ c t) ⇒ c2 =

F0

ρA
⇒ c = ±

√
F0

ρA
.

f (x+ c t) describes a wave moving in the negative x-direction with ve-

locity c;

f (x− c t) describes a wave moving in the positive x-direction with ve-

locity c.

So the solution is

u (x, t) = f1 (x+ c t) + f2 (x− c t)

with any 2-times continuously differentiable functions f1 and f2.
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Considering Initial Conditions

To specify the solution in more detail, we need to consider an initial deflec-

tion u (x, t = 0) = u0 (x) and an initial velocity ut (x, t = 0) = v0 (x). We

insert the initial conditions into our solution

u (x, t = 0) = u0 (x) = f1 (x) + f2 (x) (1)

ut (x, t = 0) = v0 (x) = c (f ′1 (x)− f ′2 (x)) . (2)

We integrate (2)

f1 (x)− f2 (x) =
1

c

ˆ x

x0

v0 (ξ) dξ +K (2’)

and add and subtract equation (1) from (2’). Hence,

f1 (x) =
1

2
u0 (x) +

1

2 c

ˆ x

x0

v0 (ξ) dξ +
K

2

f2 (x) =
1

2
u0 (x)− 1

2 c

ˆ x

x0

v0 (ξ) dξ − K

2
.

Finally, we obtain the result including the initial deflection u0 (x) and the

initial velocity v0 (x).

Solution of the Wave Equation

The solution of the wave equation for the initial displacement u0 (x)

and the initial velocity v0 (x) is given by

u (x, t) =
1

2
[u0 (x+ c t) + u0 (x− c t)] +

1

2 c

ˆ x+ct

x−ct
v0 (ξ) dξ

(d’Alembert’s formula).

In the case of no initial velocity, v0 (x) = 0, the solution simplifies to

u (x, t) = 1
2 u0 (x+ c t) + 1

2 u0 (x− c t) .

Figure 19.3. Waves moving to the right and to the left
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Interpretation: The first term describes the propagation of the initial

deflection to the left and the second to the right, each with half the

amplitude.

Application: Whip Cracking

When a whip is cracked, a one-sided “infinite”

Figure 19.4.

Deflection of the whip

extended string is led at the other end. If the

whip is deflected by raising and lowering the left

string end, the string has an initial deflection of

the shape f (x) at the beginning (see Fig. 19.4).

Then

u (x, t) = f (x− c t)

is the solution of the wave equation with the initial conditions

u (x, t = 0) = f (x) (and f (x) = 0 for x ≤ 0),

u (x = 0, t) = 0 for all t.

The solution is a wave running to the right. The velocity is c =
√

F
ρA .

As the cross-section A decreases, the velocity c increases. When the cross-

section A is small enough, the velocity c becomes greater than the velocity

of sound vsound and the whip cracks.

Visualization: For the graphical representation we have chosen

a Gaussian pulse as the initial deflection. We can see how the

Gaussian pulse moves to the right and also, that the speed of

the pulse increases as the cross-section is reduced.

19.2.3 Tensioned String (Initial Boundary Value Problem)

To determine the deflection of a guitar string u (x, t) at time t at location

x, we need the PDE

utt(x, t) = c2 uxx(x, t),

the initial deflection u0(x), the initial velocity v0(x)

u (x, t = 0) = u0 (x)

ut (x, t = 0) = v0 (x)

}
(Initial conditions)

https://www.imathonline.de/ani/welle1d.gif
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and two boundary conditions. At x = 0 and x = L the deflection of the

string is always zero:

u (x = 0, t) = 0 for all t

u (x = L, t) = 0 for all t

}
(Boundary values).

Since both initial conditions and boundary values are given, this problem

is called an initial boundary value problem.

If we observe the motion of a stretched string,

Figure 19.5. Tensioned string

each point on the string will vibrate. The am-

plitude of this oscillation depends on the x-

position of the point on the string. If the os-

cillation is denoted by T (t) and the amplitude

by X(x), a solution u(x, t) is sought which can be written as the product of

a position function X(x) and a time function T (t). The time function T (t)

then has a position dependent amplitude X(x). This product approach

u (x, t) = X (x) · T (t)

is used to separate the variables. Here

X (x) is a purely location-dependent function,

T (t) is a purely time-dependent function.

Substituting this product into the PDE gives

X (x) · T ′′ (t) = c2 X ′′ (x) · T (t)

and after the separation

T ′′ (t)

T (t)
= c2

X ′′ (x)

X (x)
.

Since the left side of the equation is not dependent on x, it is constant with

respect to x. Since the right side of the equation is not dependent on t, it

is constant with respect to t. So the constant does not depend on either t

or x:
T ′′ (t)

T (t)
= c2

X ′′ (x)

X (x)
= const = −ω2.

The case of a positive would constant would lead to a non-physical solu-

tion and is therefore not pursued further. This product approach reduces

the partial differential equation to two ordinary second-order differential

equations:
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(1) Time Dependency:

T ′′ (t) + ω2 T (t) = 0 ⇒ T (t) = A cos (ωt) +B sin (ωt) .

(2) Position Dependency:

X ′′ (x) +
ω2

c2
X (x) = 0 ⇒ X (x) = D cos(

ω

c
x) + E sin(

ω

c
x).

Note that the two ordinary differential equations are each oscillation equa-

tions. Therefore, the general solution can be given directly as in Example

16.7. The solution of the PDE is

u (x, t) = [D cos(ωc x) + E sin(ωc x)] [A cos (ωt) +B sin (ωt)]. (∗)

Considering Boundary Conditions

Not all functions satisfying the representation (∗) are solutions of the given

problem, because for the guitar string the boundary conditions

u (x = 0, t) = u (x = L, t) = 0

must be satisfied for all times t. The solution must therefore take into

account that there is no deflection at the edges.

x = 0 : u (0, t) = 0 for all t ⇒ D cos(ωc · 0)︸ ︷︷ ︸
=1

+E sin(ωc · 0)︸ ︷︷ ︸
=0

!
= 0

⇒ D = 0.

x = L : u (x = L, t) = 0 for all t ⇒ E · sin
(
ω
c L
)

= 0.

To get not only the zero solution, it must be E 6= 0 and sin
(
ω
c L
)

= 0. The

sine term becomes zero if its argument is a multiple of π:

⇒ ω

c
· L = nπ.

So only certain discrete frequencies are allowed:

ωn = n · π
L
· c, n ∈ N.
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Figure 19.6. The first 4 modes of a stretched string

For each n ∈ N

un (x, t) = sin
(
n
π

L
x
) [

an cos
(
n
π

L
c t
)

+ bn sin
(
n
π

L
c t
)]

is a solution of the PDE and satisfies the boundary conditions. Only fre-

quencies ωn that give rise to standing waves are allowed, so the functions

are 2L-periodic. The general solution for a vibrating string is obtained by

superposing all the standing waves un (x, t):

u (x, t) =
∞∑
n=1

un (x, t)

=
∞∑
n=1

sin
(
n
π

L
x
) [
an cos

(
n
π

L
c t
)

+ bn sin
(
n
π

L
c t
)]
.

In this representation the coefficients (an)n∈N and (bn)n∈N are still un-

known. They result from the initial conditions:

Considering Initial Conditions

The initial conditions are

u (x, t = 0) = u0 (x) =
∞∑
n=1

an sin
(
n
π

L
x
)

=
∞∑
n=1

an sin

(
n

2π

2L
x

)
.

This is the Fourier series of the 2L-periodic function ũ0 (x), which is ob-

tained from u0 (x) by mirroring u0 (x) at the origin and then continuing

2L-periodically to all x ∈ R.

Figure 19.7. Initial deflection u0(x)
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According to Chapter 17 (Fourier series), the Fourier coefficients of a 2L-

periodic, point-symmetric function are

an =
2

2L

ˆ 2L

0

ũ0 (x) sin

(
n

2π

2L
x

)
dx

= 2
1

L

ˆ L

0

u0 (x) sin
(
n
π

L
x
)
dx.

The same arguments apply to the initial velocity

ut (x, t = 0) = v0 (x) =
∞∑
n=1

(
bn · n

π

L
c
)

sin
(
n
π

L
x
)
.

This is the Fourier series of the 2L-periodic function ṽ0 (x), which is ob-

tained from v0 (x) by mirroring v0 (x) at the origin and then continuing

2L-periodically to all R. Consequently,(
bn · n

π

L
c
)

=
2

2L

ˆ 2L

0

ṽ0 (x) sin

(
n

2π

2L
x

)
dx

= 2
1

L

ˆ L

0

v0 (x) sin
(
n
π

L
x
)
dx.

Summary: Wave Equation with Boundary Conditions

The solution of the wave equation

utt (x, t) = c2 uxx (x, t)

with the boundary values u (x = 0, t) = u (x = L, t) = 0 for all t

and the initial values u (x, t = 0) = u0 (x) and ut (x, t = 0) = v0 (x)

for 0 ≤ x ≤ L is given by

u (x, t) =
∞∑
n=1

sin
(
n
π

L
x
) [

an cos
(
n
π

L
c t
)

+ bn sin
(
n
π

L
c t
)]
.

The coefficients an and bn are the Fourier coefficients of u0 (x) and

v0 (x):

an =
2

L

ˆ L

0

u0 (x) · sin
(
n
π

L
x
)
dx n = 1, 2, 3, . . .

bn =
2

nπ c

ˆ L

0

v0 (x) sin
(
n
π

L
x
)
dx n = 1, 2, 3, . . .



19.2 The Wave Equation 179

Physical Interpretation: We write the solution as

u (x, t) =
∞∑
n=1

An sin
(
n
π

L
x
)

sin
(
n
π

L
c t+ ϕn

)
,

which represents the superposition of harmonic oscillations with

Amplitudes An sin
(
nπ
L x

)
(dependent on x)

Phases ϕn (independent on x)

Frequencies ωn = n π
L c.

The solution is called a standing wave. The string performs harmonic oscil-

lations with phases ϕn and position-dependent amplitudes An sin
(
n π
L x
)
.

The string produces a tone, whose volume depends on the maximum am-

plitudes An =
√
a2
n + b2n . For n = 1 we get the basic tone, for n = 2, 3,

4, . . . we obtain the overtones.

Example 19.2 (With Maple-Worksheet). Given is an initial deflection (see

Fig. 19.8), corresponding to plucking a string.

u0 (x) =


u0

l1
x : 0 ≤ x ≤ l1

u0

L− l1
(L− x) : l1 ≤ x ≤ L

The initial velocity v0 is zero.

Figure 19.8. Initial deflection u0(x)

Partial integration calculates the Fourier coefficients an

an =
2

L

ˆ L

0

u0 (x) · sin
(
n π
L x
)
dx

=
2

L

(ˆ l1

0

u0

l1
x · sin(n πL x) dx+

ˆ L

l1

u0

L− l1
(L− x) · sin(n πL x) dx

)

=
2

L

(
−
(
− sin

(
nπ l1
L

)
L+ nπ cos

(
nπ l1
L

)
l1
)
Lu0

n2 π2 l1
− u0 L

2 sin (nπ)

(L− l1) n2 π2

−
u0 L

(
− sin

(
nπ l1
L

)
L− L cos

(
nπ l1
L

)
nπ + nπ cos

(
nπ l1
L

)
l1
)

(L− l1) n2 π2

)
.
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With sin(nπ) = 0 the coefficients are simplified to

an = 2
u0 L

2 sin
(
nπ l1
L

)
n2 π2 l1 (L− l1)

.

For the initial velocity v0 (x) = 0 the coefficients bn = 0 do not appear, so

the solution is given by

u (x, t) =
2u0 L

2

l1 (L− l1)π2

∞∑
n=1

1

n2
sin
(
n
π

L
l1
)

sin
(
n
π

L
x
)

cos
(
n
π

L
c t
)
.

Animation: The corresponding animation shows the time be-

havior of the standing wave. The tip of the string collapses;

the right flank remains stationary at first. The tip moves until

it reaches the maximum negative deflection. It is then reflec-

ted and returns to its initial deflection.

About the Timbre

The timbre of a sound is obtained by superimposing all the harmonics on

the fundamental. The different timbres are due to the fact that the harmo-

nics contribute to the sound with different amplitudes.

Plucking the guitar produces a different sound depending on whether the

string is plucked in the middle (1) or near the edge (2).

(1) When plucked in the middle (l1 = L
2 in Example 19.2), the amplitudes

are An = |an|

(An) =
8u0

π2

(
1, 0,

1

9
, 0,

1

25
, 0,

1

49
, 0, . . .

)
.

The overtones are very weak because the amplitudes decrease with 1
n2 .

The sound is clear.

(2) When plucked at the right edge (l1 = L) (the slope of the string at the

right edge is neglected), the amplitudes are obtained by applying the

rule of l’Hospital An = 2u0

π n or

(An) =
2u0

π

(
1,

1

2
,

1

3
,

1

4
, . . .

)
.

The overtones are strongly represented, as the amplitudes decrease with
1
n . The sound is hard and indistinct.

https://www.imathonline.de/ani/saite.gif
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19.3 Heat Equation
To illustrate the heat equation, we consider a metal bar of length L with

a rectangular cross-section of width b and height h. T (x, t) denotes the

temperature in the bar at position x at time t. Tu is the ambient tempe-

rature. The one-dimensional problem of heat transfer in the x-direction is

considered.

Figure 19.9. Heat transfer in x-direction

19.3.1 Deriving the Heat Equation

To introduce the heat equation, we summarize the physical laws describing

heat transfer in solid materials:

(1) The amount of heat δQ flowing in x-direction through a surface A = b·h
in the time 4t is given by

δQ = −λA 4 t
∂T

∂x
.

The amount of heat is proportional to the temperature gradient ∂T
∂x .

Since heat flows from hot to cold, δQ ∼ −∂T∂x applies. λ is the material

specific thermal conductivity.

(2) The amount of heat δQ stored in a volume of mass m and specific heat

c is given by

δQ = cm (T2 − T1) = cm 4 T,

where 4T = (T2 − T1) is the temperature difference at the ends of the

volume.

(3) The amount of heat that the body can give off to its surroundings is

proportional to the surface M and the temperature difference between

the body and the surroundings

δQ = −M α (T − Tu) .

α is the heat transfer coefficient.
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The energy balance is based on the energy consumption shown in Fig. 19.9

dV = b · h · dx:

The change in energy per unit time 4t in the mass element dm is

= Heat flux into the mass element through the surface

A at position x

+ Heat flux out of the mass element through the surface

A at position x+ dx

+ Heat dissipation to the environment.

Using the physical laws (1) to (3) we can write the energy balance in the

form of an equation

δQ

∂t
= c dm

∂T

∂t
= −λA

(
∂T

∂x

)
x

+ λA

(
∂T

∂x

)
x+dx

−2 (b+ h) dxα (T − Tu) .

If the expression
(
∂T
∂x

)
x+dx

≈
(
∂T
∂x

)
x

+ dx
(
∂2T
∂x2

)
x

is linearized and this

linearization is inserted into the above equation, it follows with dm = ρ ·
dV = ρ · b · h · dx

c ρ b h dx
∂T

∂t
= −λA ∂T

∂x
+ λA

[
∂T

∂x
+ dx

∂2T

∂x2

]
− 2 (b+ h) dxα (T − Tu)

⇒ ∂

∂t
T (x, t) =

λ

c ρ

∂2

∂x2
T (x, t)− α 2 (b+ h)

c ρ b h
(T (x, t)− Tu). (∗)

This is the heat equation with heat dissipation to the environment.

We will solve the heat equation for two special cases: In Section 19.3.2 the

heat equation is treated without dissipation to the environment (α = 0)

and in Section 19.3.3 the steady-state heat profile caused by dissipation to

the environment is determined
(
∂T
∂t = 0

)
.

19.3.2 Solution for α = 0 and Thermal Insulation at the Ends

With thermal insulation to the environment (α = 0) we get the pure heat

equation in the form
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Heat Equation

∂

∂t
T (x, t) =

λ

c ρ

∂2

∂x2
T (x, t).

To determine the temperature in the beam at any time t, both the initial

temperature distribution T (x, t = 0) = T0 (x) and the boundary conditions

at the ends of the beam are required. If the ends are also insulated, there is

no heat transfer through the edges at any time, i.e. Tx (x = 0, t) = 0 and

Tx (x = L, t) = 0. Note that the heat flow is proportional to the gradient
∂T
∂x ! If the ends were kept at a constant temperature, we would have to

consider T (x = 0, t) = Tl or T (x = L, t) = Tr.

We have a bar of length L which is insulated over its entire surface, including

the ends at x = 0 and x = L. We assume an initial temperature distribution

T0 (x). The temperature distribution at later times is sought:

ut(x, t) = κuxx(x, t) with κ = λ
c ρ (∗)

u (x, 0) = T0 (x) Initial temperature distribution

ux (0, t) = ux (L, t) = 0 Boundary values.

4! Not to be confused with the time function T (t), we write the tempera-

ture distribution we are looking for u (x, t). As with the wave equation, it

is helpful to choose a separation approach to solve this problem

u (x, t) = X (x) · T (t) ,

where
X (x) is a purely position-dependent function,

T (t) is a pure time-dependent function.

Inserting this product into the differential equation (∗) yields

X (x) · T ′ (t) = κ X ′′ (x) · T (t)

⇒ T ′ (t)

κT (t)
=
X ′′ (x)

X (x)
= const = −k2.

Since the left term does not depend on x, it is constant with respect to x.

Since the middle term does not depend on t, it is constant with respect to t.
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So the constant does not depend on either x or t: const = ±k2. A positive

constant would lead to an exponential increase in temperature at x = 0

and a decrease at x = L, which is physically impossible. It contradicts the

second main theorem of thermodynamics which states that entropy always

increases. Therefore −k2 is assumed to be the constant.

From this product approach we get two ordinary differential equations:

(1) Time Dependency: T ′ (t) + κ k2 T (t) = 0. This is a homogeneous first-

order linear differential equation with the solution

T (t) = De−κ k
2 t

(see Volume 2, Section 13.2 on First-Order Differential Equations).

(2) Position Dependency: X ′′ (x) + k2X (x) = 0. This is the oscillation

equation with the general solution

X (x) = A cos (k x) +B sin (k x)

(see Example 16.7).

So the solution of the PDE can be written as

u (x, t) = e−κ k
2 t (a cos (k x) + b sin (k x)).

Considering Boundary Conditions

In the case of insulation, there is no heat transport at the ends x = 0 and

x = L: Hence, ux (0, t) = ux (L, t) = 0 for all t. To take account of these

boundary conditions, we determine the partial derivative of the solution

with respect to x

ux (x, t) = e−κ k
2 t (−a k sin (k x) + b k cos (k x))

and evaluate this derivative at x = 0 and at x = L:

x = 0: ux (0, t) = 0 for all t ⇒ b = 0.

x = L: ux (L, t) = 0 for all t ⇒ a sin (k L) = 0.
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If a = 0, then u (x, t) would be zero. So to get a non-zero solution we use:

a 6= 0 and sin (k L) = 0 ⇒ k · L = nπ n = 0, 1, 2, 3, . . . .

Only discrete wavelengths (eigenvalues) kn = n π
L are possible. These are

only the wavelengths that have bulges at the ends of the bar, because the

corresponding functions are cos
(
n π
L x
)
. For each n ∈ N0 there is a solution

un (x, t) = an e
−κ (n π

L )
2
t cos

(
n π
L x
)
.

However, due to the law of superposition, every linear combination is again

a solution of the heat equation

⇒ u (x, t) =
∞∑
n=0

un (x, t) =
∞∑
n=0

an e
−κ (n π

L )
2
t cos

(
n π
L x
)
.

The coefficients an depend only on the given initial temperature distribution

u (x, 0) = T0 (x).

Considering the Initial Condition

u (x, t = 0) = T0 (x) =
∞∑
n=0

an cos
(
n π
L x
)

=
∞∑
n=0

an cos
(
n 2π

2L x
)
.

This representation is a 2L-periodic Fou-

Figure 19.10. Initial temp. T0(x)

rier series. Since it contains only cosine

terms, it must be axis-symmetric with

respect to the y-axis. So we mirror T0 (x)

around the y-axis and then extend it

2L-periodically to R.

The coefficients an are the Fourier coefficients of the initial temperature

distribution T0 (x) which can be computed using only the information of

T0(x) between 0 and L:

an = 2
1

L

ˆ L

0

T0 (x) cos
(
n
π

L
x
)
dx

a0 =
1

L

ˆ L

0

T0 (x) dx.
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Summary: Solution of the Heat Transfer Equation

The solution of the heat equation

ut (x, t) = κuxx (x, t)

with κ = λ
c ρ , the boundary values ux (0, t) = ux (L, t) = 0 (thermal

insulation) and the initial temperature distribution T0 (x) is given

by

u (x, t) =
∞∑
n=0

an e
−κ (n π

L )
2
t cos

(
n
π

L
x
)
,

where an are the Fourier coefficients of the even, 2L-periodic ex-

tension of T0 (x):

an =
2

L

ˆ L

0

T0 (x) cos
(
n
π

L
x
)
dx n = 1, 2, 3, . . .

a0 =
1

L

ˆ L

0

T0 (x) dx.

Example 19.3. We examine the temperature u (x, t) in a thin copper wire

(0 ≤ x ≤ L = 1) with material constant κ = 1.14. At the initial time t = 0

the wire has the temperature profile

T0 (x) = 10 + 5 cos (2π x) + 4 cos (4π x) + cos (6π x) .

The ends of the bar are thermally insulated. We are looking for the tempe-

rature behavior over time for t > 0.

Solution: The temperature u (x, t) satisfies the boundary value pro-

blem

ut = κuxx with

{
u (x, t = 0) = T0 (x)

ux (0, t) = ux (L, t) = 0.

The Fourier coefficients of T0 (x) are a0 = 10, a2 = 5, a4 = 4 and

a6 = 1; otherwise they are zero. So the temperature for times t > 0 is

u (x, t) = 10 + 5 e−1.14·4π2 t cos (2π x) + 4 e−1.14·16π2 t cos (4π x)

+1 e−1.14·36π2 t cos (6π x) .



19.3 Heat Equation 187

Interpreting the Solution

At time t = 0 the temperature distribution is given by

u (x, 0) =
∞∑
n=0

an cos(n
π

L
x) = a0+

∞∑
n=1

an cos(n
π

L
x) = T0 (x) .

For times t > 0 the terms n > 0 include the damping factor e−κ (n π
L )

2
t.

Therefore, we split the sum into

u (x, t) = a0+
∞∑
n=1

an e
−κ (n π

L )
2
t cos(n π

L x).

For large times this amplitude e−κ (n π
L )

2
t approaches zero. Then, the tem-

perature distribution approaches the value

u (x, t)
t→∞−→ a0 =

1

L

ˆ L

0

T0 (x) dx .

This is the integral mean of the initial temperature distribution. The initial

temperature distribution melts and a constant homogeneous mean tempe-

rature a0 is finally reached.

Animation: The animation shows the time course of the mel-

ting for the parameters L = 1, κ = 0.15 and the initial tem-

perature distribution T0 (x) = 10 + 5
5∑

n=1

1
n2 cos(n π

L x). The

process is quite fast at first, but slows down over time.

19.3.3 Solution for α = 0 and Fixed Temperatures at the Ends

The solution to the heat equation for insulation (α = 0) is given if the ends

of the beam are kept at constant temperatures, Tl at the left end and Tr at

the right end. However, we can transform this problem into a zero boundary

temperature problem as the next note shows.

Note: In the case of non-zero temperatures at the ends, the problem trans-

forms into a vanishing boundary temperature problem.

If the temperatures at the ends are non-zero,

T (x = 0, t) = Tl and T (x = L, t) = Tr,

then a solution u(x, t) of the heat equation is to be found

ut(x, t) = κuxx(x, t)

https://www.imathonline.de/ani/waerme.gif
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with u (x, 0) = T0 (x) initial temperature

and u (0, t) = Tl, u (L, t) = Tr boundary values.

Using

û(x, t) = u(x, t)− (1− x

L
)Tl −

x

L
Tr ,

the original problem transforms into a heat problem for û(x, t) with

vanishing boundary conditions, because for û the boundary conditions

are

û(x = 0, t) = u(x = 0, t)− Tl = Tl − Tl = 0

û(x = L, t) = u(x = L, t)− Tr = Tr − Tr = 0

but with modified initial temperature

û(x, t = 0) = u(x, t = 0)− (1− x
L )Tl − x

L Tr
= T0(x)− (1− x

L )Tl − x
L Tr.

The heat equation also applies to û(x, t).

According to the note, we consider the case where the ends of the beam

have zero temperatures T (x = 0, t) = 0 and T (x = L, t) = 0. We look for

the solution to the heat transfer equation

ut(x, t) = κuxx(x, t)

with u (x, 0) = T0 (x) initial temperature

and u (0, t) = 0, u (L, t) = 0 boundary values.

Following the same procedure as in Section 19.3.2, the solution of the heat

equation is

u (x, t) = e−κ k
2 t (a cos (k x) + b sin (k x)) .

Considering the boundary conditions: We conclude from u (x = 0, t) = 0

that a = 0 and from u (x = L, t) = 0 that sin (k L) = 0. The latter equation

states that only discrete wavelengths kn = n π
L are possible. These

wavelengths produce knots at the ends of the beam because the associated

solutions are sin(n π
L x). For each n ∈ N we get a solution of the form

un (x, t) = bn e
−κ (n π

L )
2
t sin(n π

L x)
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and by superposition

u (x, t) =
∞∑
n=1

bn e
−κ (n π

L )
2
t sin(n

π

L
x). (∗)

Considering the initial condition: The coefficients bn

u (x, t = 0) =
∞∑
n=1

bn sin(n π
L x) = T0 (x) .

are implicitly defined. The bn are the coefficients of the Fourier series of the

initial temperature distribution: We mirror T0 (x) at the origin to [−L, 0]

and then extend it 2L-periodically to R:

bn =
1

L

ˆ L

0

T0 (x) sin(n π
L x) dx n = 1, 2, 3, . . . .

Interpretation: Starting from T0 (x), the initial temperature distribution

melts again. But since each term contains the damping factor e−κ (n π
L )

2
t,

the final state is

u (x, t)→ 0 for large t,

and the body reaches the constant final temperature 0◦.

Example 19.4. We look for the temperature u (x, t) in a thin copper beam

(0 ≤ x ≤ L = 1) with material constant κ = 1.14. At t = 0 the initial

temperature profile is

T0 (x) = 2 sin (3π x) + 5 sin (8π x)

and the ends of the beam are packed in ice (0◦). For t > 0 we determine

the temperature inside the rod.

Solution: The temperature distribution satisfies the initial boundary

value problem

ut = κuxx with

{
u (x, 0) = T0 (x)

u (0, t) = u (L, t) = 0.

According to (∗) the solution is

u (x, t) = 2 e−1.14·9π2 t sin (3π x) + 5 e−1.14·64π2 t sin (8π x) .
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19.3.4 Solution of the Stationary Case

A rod of length L emits heat through its surface to the environment. The

stationary temperature profile is sought. A temperature profile is called

stationary if the temperature does not change with time. Then ∂T
∂t = 0

and the temperature depends only on x. For the stationary temperature

distribution T (x) in the bar, our model equation reduces to

d2

dx2
T (x)− 2

(
1

h
+

1

b

)
α

λ
(T (x)− Tu) = 0.

This is an ordinary differential equation for T (x). Possible boundary con-

ditions are:

A) The left end of the rod is heated with a constant power and the right end

is thermally insulated. The power P supplied to the system is defined

as the energy supplied per unit time, which gives

P = −λA
(
dT

dx

)
x=0

or

(
dT

dx

)
x=0

= − P

b · h · λ
.

The thermal insulation at x = L means
(
dT
dx

)
x=L

= 0.

B) The two ends of the rod are kept at a constant temperature. At the left

end the temperature is T (x = 0) = Tl and at the right end the constant

temperature is T (x = L) = Tr.

C) Combinations of (A) and (B).

Example 19.5 (With Maple-Worksheet). Given is the ordinary inhomoge-

neous second-order linear differential equation

T ′′ (x)− κ (T (x)− Tu) = 0 (∗)

with boundary conditions(
dT

dx

)
x=0

= − P

b · h · λ
and

(
dT

dx

)
x=L

= 0.

(1) The homogeneous differential equation

T ′′ (x)− κT (x) = 0

has the characteristic polynomial

P (λ) = λ2 − κ.
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P (λ) = 0 gives λ1/2 = ±
√
κ. ⇒ e

√
κx, e−

√
κx is a real fundamental

set. However, to take better account of the boundary values, we choose

cosh (
√
κx) = 1

2

(
e
√
κx + e−

√
κx
)

sinh (
√
κx) = 1

2

(
e
√
κx − e−

√
κx
)

as the fundamental set. Then, the general homogeneous solution is

Th (x) = A cosh(
√
κx) +B sinh(

√
κx) .

(2) A particular solution is given by Tp (x) = Tu

(3) and the general solution of (∗) is

T (x) = Tu +A cosh(
√
κx) +B sinh(

√
κx).

(4) To take into account the boundary conditions, we compute

T ′ (x) =
√
κA sinh(

√
κx) +

√
κB cosh(

√
κx).

and apply

x = 0 : T ′ (0) = − P

b hλ
⇒
√
κB = − P

b hλ

x = L : T ′ (L) = 0 ⇒
√
κ (A sinh(

√
κL) +B cosh(

√
κL)) = 0.

This linear system of equations has the solution

A =
P

b hλ

1√
κ

cosh(
√
κL)

sinh(
√
κL)

and B = − P

b hλ

1√
κ
.

Fig. 19.11 shows the steady-state temperature profile for Tu = 20◦; b =

0.1; h = 0.01; L = 1; α = 0.1; λ = 1000; P = 0.01 (so κ = 0.022).

Figure 19.11. Stationary temperature profile in the rod

The curve shows the heating from the left edge, since dT
dx 6= 0, while the

insulation is on the right edge: dTdx = 0.
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19.4 The Laplace Equation
The Laplace equation is one of the best known partial differential equations.

It occurs in many steady-state problems, such as a steady-state heat flow,

the deflection of a membrane and electrostatic potentials. The latter is the

reason why the Laplace equation is often called the potential equation.

19.4.1 Derivations of the Laplace Equation

©1 Electrostatic Potential for Plane Problems. The basic equations of elec-

trostatics for plane problems are

~E(x, y) = −grad Φ(x, y) = −
(

∂
∂x Φ (x, y)
∂
∂y Φ (x, y)

)
(1)

div ~E(x, y) =
1

ε
ρ(x, y). (2)

Where Φ (x, y) is the electrostatic potential, ~E (x, y) =

(
E1 (x, y)

E2 (x, y)

)
is the electric field, and ρ (x, y) is the charge density at the point (x, y).

ε is the dielectric constant. Substituting equation (1) into (2) using the

divergence rule gives

div ~E(x, y) = ∂
∂x E1 (x, y) + ∂

∂y E2 (x, y)

= ∂
∂x

(
− ∂
∂x Φ (x, y)

)
+ ∂

∂y

(
− ∂
∂y Φ (x, y)

)
=

1

ε
ρ(x, y)

⇒ ∂2

∂x2
Φ (x, y) +

∂2

∂y2
Φ (x, y) = −1

ε
ρ(x, y). (Poisson’s Equation)

For a charge-free space, ρ (x, y) = 0, Poisson’s equation reduces to

∂2

∂x2
Φ (x, y) +

∂2

∂y2
Φ (x, y) = 0. (Laplace’s Equation)

To abbreviate the left side of the two equations, we introduce

∆Φ(x, y) :=
∂2

∂x2
Φ (x, y) +

∂2

∂y2
Φ (x, y)

and call ∆ the Laplace operator.
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©2 2-dimensional Heat Transfer. We consider heat transfer in both the x-

and y-directions. Assuming an isotropic thermal conductivity λ, the

energy balance applied to a volume element dV = h · dx · dy is as

follows:

Figure 19.12. Heat transfer in x- and y-direction

Energy change per unit time 4t in a mass element dm

= Heat flux through surface h · dy at x

+ Heat flux through surface h · dy at x+ dx

+ Heat flux through surface h · dx at y

+ Heat flux through surface h · dx at y + dy.

Expressed in formulas, the above equation is consistent with the basic

laws of thermodynamics (see Section 19.3.1) means

δQ

∂t
= c dm

∂T

∂t
= λ (h dy)

∂2T

∂x2
dx+ λ (h dx)

∂2T

∂y2
dy.

With dm = ρ dV = ρ h dx dy finally follows

∂

∂t
T =

λ

c ρ

(
∂2

∂x2
T +

∂2

∂y2
T

)
.

For a stationary temperature profile it is ∂T
∂t = 0, so the temperature

depends only on x and y and is given by

∆T (x, y) =
∂2

∂x2
T (x, y) +

∂2

∂y2
T (x, y) = 0.

The 2-dimensional temperature profile T (x, y) of a body with surface

insulation is given by the Laplace equation.
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©3 Deflection of a membrane. The vibrations of a membrane are modelled

in the same way as those of a vibrating string. In equilibrium and ne-

glecting gravity, the membrane is clamped horizontally at z = 0.

The oscillation in z-direction is then described by a function z (x, y, t).

Using the same assumptions as in the derivation of the one-dimensional

wave equation (see Section 19.2.1), the force acting on an area element

dx dy of the membrane is calculated.

Figure 19.13. Deflection of a membrane

Assuming a constant stress γ
[
N
m

]
, the shear force 4Fu is

4Fu = (γ dy)

(
∂2z

∂x2

)
dx+ (γ dx)

(
∂2z

∂y2

)
dy.

This transverse force accelerates the mass element dm = ρ dV =

ρ h dx dy. According to Newton’s law of motion, the deflection z (x, y, t)

is written as

∂2

∂t2
z(x, y, t) =

γ

ρ · h

(
∂2

∂x2
z(x, y, t) +

∂2

∂y2
z(x, y, t)

)

with the stress γ
[
N
m

]
, the density ρ

[
kg
m3

]
and the thickness h [m] of

the membrane. This is the two-dimensional wave equation.

For the steady-state of the membrane, ∂
∂t z (x, y, t) = 0 holds. Then, z

is only a function of x and y and the steady-state is described by the

Laplace equation

∆z (x, y) =
∂2

∂x2
z (x, y) +

∂2

∂y2
z (x, y) = 0.
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19.4.2 Solution of the Laplace Equation (Dirichlet Problem)

We consider a membrane stretched by a rectangular wire. One of the rectan-

gular sides is bent in the z-direction. We look for the shape of the membrane

u (x, y) inside the rectangle (see Fig. 19.14).

y

y=b

u=0

u=0

u=0 x=a

u=f(y)

membrane

x

Figure 19.14. Clamped membrane

u (x, y) denotes the deflection of the membrane at location (x, y) in z-

direction. This deflection is given by

∂2

∂x2
u (x, y) +

∂2

∂y2
u (x, y) = 0. (Laplace equation)

Since the PDE is independent of time t, no initial conditions are required for

the complete solution of the differential equation, only boundary conditions.

We discuss the case where the right side of the rectangle (x = a) is bent in

z-direction according to a given function z = f (y):

u (x, 0) = 0; u (x, b) = 0;

(Dirichlet boundary conditions).

u (0, y) = 0; u (a, y) = f (y)

The separation approach

u (x, y) = X (x) · Y (y)

is inserted into the PDE

X ′′ (x) · Y (y) +X (x) · Y ′′ (y) = 0

⇒ Y ′′ (y)

Y (y)
= −X

′′ (x)

X (x)
= const = −k2 .

A positive constant would lead to k = 0 in the further analysis and thus

only to the zero solution u (x, y) = 0. Therefore, we introduce a negati-

ve constant −k2. From this product approach we obtain two second-order

ordinary differential equations:
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(1) y-dependency: Y ′′ (y) + k2 Y (y) = 0

⇒ Y (y) = A cos (k y) +B sin (k y) .

(2) x-dependency: X ′′ (x)− k2X (x) = 0.

The characteristic polynomial of this differential equation is P (λ) =

λ2 − k2, so we compute its zeros P (λ)
!
= 0:

λ1/2 = ±k ⇒ ek x, e−k x

form a real fundamental set. However, to take better account of the

boundary conditions, we choose the linear combination

cosh (k x) = 1
2

(
ek x + e−k x

)
sinh (k x) = 1

2

(
ek x − e−k x

)
as the fundamental set.

⇒ X (x) = C cosh (k x) +D sinh (k x) .

The solution of the PDE can be written as

u (x, y) = [A cos (k y) +B sin (k y)] [C cosh (k x) +D sinh (k x)].

Considering Boundary Conditions (Dirichlet Problem):

In the Dirichlet problem, the deflection of the membrane is given on all four

sides of the rectangle. In this case the following applies

u (x, 0) = 0 for all 0 ≤ x ≤ a ⇒ A cos (0)︸ ︷︷ ︸
=1

+B sin (0)︸ ︷︷ ︸
=0

= 0 ⇒ A = 0.

u(0, y) = 0 for all 0 ≤ y ≤ b ⇒ C cosh (0)︸ ︷︷ ︸
=1

+D sinh (0)︸ ︷︷ ︸
=0

= 0 ⇒ C = 0.

u (x, b) = 0 for all 0 ≤ x ≤ a ⇒ B sin (k b) = 0.

To get not only the zero solution, we have to choose B 6= 0 and sin (k b) = 0.

⇒ k · b = nπ . For each n ∈ N we obtain a valid constant kn = n π
b with

the solution

un (x, y) = cn sinh(n
π

b
x) sin(n

π

b
y).
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All these functions have a shape with knots at y = 0 and y = b. According

to the law of superposition for linear differential equations, the solution is

given by

u (x, y) =
∞∑
n=1

un (x, y) =
∞∑
n=1

cn sinh(n
π

b
x) sin(n

π

b
y).

The coefficients cn are determined by the fourth boundary condition:

u (a, y) = f (y) for all 0 ≤ y ≤ b

⇒
∞∑
n=1

[
cn sinh(n

π

b
a)
]
· sin(n

π

b
y) = f (y) . (∗)

If we extend the function f (y) oddly on the interval [−b, 0] and 2b-periodically

on R, (∗) is the Fourier series of the function f (y) with the Fourier coeffi-

cients

cn sinh(n
π

b
a) =

2

b

ˆ b

0

f (y) sin(n
π

b
y) dy n = 1, 2, 3, . . . .

Solution of the Laplace Equation (Dirichlet Problem)

The solution of the Laplace equation

uxx (x, y) + uyy (x, y) = 0

with the Dirichlet boundary conditions

u (x = 0, y) = u (x, y = 0) = u (x, y = b) = 0,

u (x = a, y) = f (y),

is given by

u (x, y) =
∞∑
n=1

cn sinh(n
π

b
x) sin(n

π

b
y)

with the coefficients

cn =
2

b sinh(n π
b a)

ˆ b

0

f (y) sin(n
π

b
y) dy n = 1, 2, 3, . . .
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Remark: The separation approach leads to the solution of the Dirichlet pro-

blem only if u is zero on three sides of the rectangle. However, any Dirichlet

problem for a rectangle can be split into four problems, with three Dirich-

let values disappearing on each side. The complete solution is obtained by

superimposing the four partial solutions.

Example 19.6 (Bending at x = a). A membra-

Fig. 19.15. Bending at x = a

ne is clamped by a rectangular wire (see Fig.

19.15). The membrane is bent in z-direction

at y = b, where the bending is given by

f (y) = y (y − b) .

We look for the deflection in z-direction inside the rectangle.

Step 1: We extend the function f (y) as a point symmetric 2b-periodic func-

tion. bn are the Fourier coefficients of f . A double integration by parts

gives

bn =
2

b

ˆ b

0

f (y) sin(n
π

b
y) dy =

2

b

ˆ b

0

y(y − b) sin(n
π

b
y) dy

=
4

n3 π3
(cos(nπ)− 1) =

4

n3 π3
((−1)

n − 1)

Figure 19.16. Function f and partial sum of the Fourier series with 3 terms

We evaluate the partial sum with only 3 terms
3∑

n=1
bn sin(n π

b y) and com-

pare the sum for a = 2 and b = 1 with the function f (y). Graphically there

is no difference (see Fig. 19.16).

Step 2: We display the solution in a 3-dimensional plot. From the solution

formula we evaluate cn = bn
1

sinh(n π
b ) and take only three terms:

u (x, y) =
3∑
n=1

cn sinh(n
π

b
x) sin(n

π

b
y).
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Figure 19.17. Deformation of the membrane

In Fig. 19.17 we see (for a = 2 and b = 1) that the membrane is clamped

on three sides and bends towards the shape of the fourth side.

19.4.3 Solution of the Laplace Equation (Neumann Problem)

In electrostatic problems, the potential values at all boundaries are usually

not known. For example, at open boundaries we only know that the equipo-

tential lines remain perpendicular to the boundary, which mathematically

means that the normal derivative of the potential disappears. This leads to

the Neumann boundary conditions.

Let us consider the following problem:

∂2

∂x2
u (x, y) +

∂2

∂y2
u (x, y) = 0 Laplace equation

uy (x, 0) = 0 uy (x, b) = 0

ux (0, y) = 0 ux (a, y) = f (y)

 (Neumann boundary conditions).

According to Section 19.4.2, a separation approach provides the solution

u (x, y) = [A cos (k y) +B sin (k y)] [C cosh (k x) +D sinh (k x)] .

To take into account the boundary conditions, the partial derivatives are

calculated with respect to x and y

ux (x, y) = [A cos (k y) +B sin (k y)] [C k sinh (k x) +Dk cosh (k x)]

uy (x, y) = [−Ak sin (k y) +B k cos (k y)] [C cosh (k x) +D sinh (k x)].
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We evaluate the solution at the boundaries:

uy (x, 0) = 0 for all 0 ≤ x ≤ a : Ak sin (0)︸ ︷︷ ︸
=0

+B k cos (0)︸ ︷︷ ︸
=1

= 0 ⇒ B = 0.

ux (0, y) = 0 for all 0 ≤ y ≤ b : C k sinh (0)︸ ︷︷ ︸
=0

+Dk cosh (0)︸ ︷︷ ︸
=1

= 0 ⇒ D = 0.

uy (x, b) = 0 for all 0 ≤ x ≤ a: sin (k b) = 0⇒ k b = nπ

⇒ kn = n π
b n = 0, 1, 2, 3, . . .

So for each n = 0, 1, 2, . . .

un (x, y) = cn cosh(n
π

b
x) cos(n

π

b
y)

is a solution and by superposition we get the general solution

u (x, y) =
∞∑
n=0

cn cosh(n
π

b
x) cos(n

π

b
y).

The coefficients cn are again determined by the fourth boundary condition:

ux (a, y) = f (y) for all 0 ≤ y ≤ b

⇒
∞∑
n=1

nπ

b
cn sinh(n

π

b
a) cos(n

π

b
y) = f (y) . (∗)

If the function f (y) is extended point symmetrically with respect to the

origin on the interval [−b, 0] and then 2b-periodically on R, (∗) is the Fou-

rier series of f (y) except for the constant term c0.

Therefore, the solution of this boundary value problem is unique up to a

constant c0. So it is necessary to add an additional condition, e.g.

c0 =
1

b

ˆ b

0

f (y) dy = 0.

The remaining cn are calculated for n = 1, 2, 3, . . . using the formula

cn =
2

nπ sinh
(
n π
b a
) ˆ b

0

f (y) cos(n
π

b
y) dy.
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19.4.4 The Laplace Equation in Polar Coordinates

Polar coordinates are usually used to solve

Figure 19.18. Capacitor

the Laplace equation in rotationally symme-

tric geometries. An example is a cylindrical

capacitor where the outer cylindrical part is

grounded and the inner part is at potential

φi. Although the equation

uxx (x, y) + uyy (x, y) = 0

is valid inside the cylinder, the boundary

conditions are not so easy to describe mathematically. Therefore, polar

coordinates (r, ϕ) are introduced, in which the boundary conditions can be

easily specified:

u (Ri, ϕ) = φi and u (RA, ϕ) = 0 for all 0 ≤ ϕ ≤ 2π.

The transformation equations are

j
r

r cos(j)

r sin(j)

x

y

x = r cosϕ ⇒ x = x (r, ϕ)

y = r sinϕ ⇒ y = y (r, ϕ)

So the potential u (x, y) = u (x (r, ϕ) , y (r, ϕ)) is a function of r and ϕ.

Using the chain rule, we partially differentiate this function with respect to

r and ϕ.

∂

∂r
u (x (r, ϕ) , y (r, ϕ)) =

∂ u

∂x
· ∂ x
∂r

+
∂ u

∂y
· ∂ y
∂r

= ux · xr + uy · yr
= ux cosϕ+ uy sinϕ

∂

∂ϕ
u (x (r, ϕ) , y (r, ϕ)) =

∂ u

∂x
· ∂ x
∂ϕ

+
∂ u

∂y
· ∂ y
∂ϕ

= ux xϕ + uy yϕ

= −ux r sinϕ+ uy r cosϕ.

This gives the system of linear equations for the two partial derivatives ux
and uy: (

ur
uϕ

)
=

(
cosϕ sinϕ

−r sinϕ r cosϕ

) (
ux
uy

)
.
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After inverting the matrix(
ux
uy

)
=

1

r

(
r cosϕ − sinϕ

r sinϕ cosϕ

) (
ur
uϕ

)
we obtain the solution in components by

ux = cosϕ ur − 1
r sinϕ uϕ

uy = sinϕ ur + 1
r cosϕ uϕ.

To reformulate the Laplace equation in polar coordinates (r, ϕ), we again

differentiate ux partially with respect to x and uy partially with respect to

y:

uxx = (ux)x = cosϕ (ux)r −
1

r
sinϕ (ux)ϕ

= cosϕ

(
cosϕur −

1

r
sinϕuϕ

)
r

− 1

r
sinϕ

(
cosϕur −

1

r
sinϕuϕ

)
ϕ

= cos2 ϕurr −
∂

∂r

(
1

r
cosϕ sinϕuϕ

)
+

1

r
sin2 ϕur

−1

r
sinϕ cosϕurϕ +

1

r2
sinϕ cosϕuϕ +

1

r2
sin2 ϕuϕϕ

uyy = (uy)y = sinϕ (uy)r +
1

r
cosϕ (uy)ϕ

= sinϕ

(
sinϕur +

1

r
cosϕuϕ

)
r

+
1

r
cosϕ

(
sinϕur +

1

r
cosϕuϕ

)
ϕ

= sin2 ϕurr +
∂

∂r

(
1

r
cosϕ sinϕuϕ

)
+

1

r
cos2 ϕur

+
1

r
cosϕ sinϕurϕ −

1

r2
cosϕ sinϕuϕ +

1

r2
cos2 ϕuϕϕ.

To summarize this result, the Laplace operator is

∆u (r, ϕ) = urr (r, ϕ) +
1

r
ur(r, ϕ) +

1

r2
uϕϕ (r, ϕ)

and with the identity 1
r
∂
∂r r

∂
∂r u (r, ϕ) = urr + 1

r ur (r, ϕ) finally

∆u (r, ϕ) =
1

r

∂

∂r
r
∂

∂r
u (r, ϕ) +

1

r2

∂2

∂ϕ2
u (r, ϕ) = 0.

This is the Laplace equation in polar coordinates (r, ϕ).
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Example 19.7. Back to the cylindrical condenser problem from the begin-

ning: We look for a solution φ (r, ϕ) of

∆φ (r, ϕ) = 0

with the boundary values φ (r = Ri, ϕ) = φi and φ (r = RA, ϕ) = 0.

Due to the symmetry property of the problem, the potential φ does

not depend on the angle ϕ, i.e. ∂
∂ϕ φ (r, ϕ) = 0. So φ is only a function

of the radius r and the problem is reduced to an ordinary differential

equation

1

r

d

dr
r
d

dr
φ (r) = 0

with the boundary values φ (Ri) = φi and φ (RA) = 0.

We integrate twice

d

dr
r
d

dr
φ (r) = 0 ⇒ r

d

dr
φ (r) = ρ

⇒ d

dr
φ (r) =

ρ

r
⇒ φ (r) = ρ ln(r) +A

with the integration constants A and ρ determined by the boundary

conditions:

φ (Ri) = φi : φ (Ri) = ρ ln(Ri) +A = φi (1)

φ (RA) = 0 : φ (RA) = ρ ln(RA) +A = 0 (2)

Subtracting (2) from (1) gives ρ = φi

ln
(
Ri
RA

) and inserting this into (2)

gives A = −ρ ln(RA). Finally, we obtain

⇒ φ (r) =
φi

ln
(
Ri
RA

) ln

(
r

RA

)
.

This is the potential distribution in a cylindrical capacitor with inner

radius Ri at potential φi and outer radius RA at potential φA = 0.
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19.5 The Two-Dimensional Wave Equation

An example of the two-dimensional wave equation is a membrane stretched

by a rectangular wire:

y

y=b

x=a

Membrane

x

Figure 19.19. Membrane

u (x, y, t) is the deflection in z-direction. If the edges are horizontal at

z = 0 and the membrane is deflected (e.g. by a drum beat), the equation

for the deflection u (x, y, t) at the point (x, y) at time t is given by the

two-dimensional wave equation according to 19.4.1©3

∂2

∂t2
u(x, y, t) = c2

(
∂2

∂x2
u(x, y, t) +

∂2

∂y2
u(x, y, t)

)

with the initial displacement and velocity

u (x, y, t = 0) = u0 (x, y)

ut (x, y, t = 0) = v0 (x, y)

 (Initial conditions)

and the boundary conditions

u (x = 0, y, t) = 0 ; u (x = a, y, t) = 0 for all y, t .

u (x, y = 0, t) = 0 ; u (x, y = b, t) = 0 for all x, t .

 (BC)

This initial boundary value problem is solved using a product approach

u (x, y, t) = U (x, y) · T (t) ,

where T (t) is a purely time-dependent function and U (x, y) is a two-

dimensional, location-dependent function. The product approach inserted

into the PDE provides

T ′′ (t) · U (x, y) = c2 (Uxx (x, y) + Uyy (x, y)) · T (t) .
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After separating the time from the spacial variables we get

T ′′ (t)

T (t)
= c2

Uxx (x, y) + Uyy (x, y)

U (x, y)
= const = −ω2 .

(1) For the time function the result is a second-order ordinary differential

equation:

T ′′ (t) + ω2 T (t) = 0 ⇒ T (t) = A sin (ωt) +B cos (ωt) .

(2) For the location-dependent function U (x, y) the result is a second-order

partial differential equation:

Uxx (x, y) + Uyy (x, y) +
ω2

c2
U (x, y) = 0.

This is the so-called Helmholtz equation.

Remark: The Helmholtz equation is also encountered when a separation

approach is chosen for the two-dimensional time-dependent heat transfer

equation (19.4.1 ©2 ). Only the ordinary differential equation for the time

function is then given by T ′(t)
T (t) = const = −ω2.

The Helmholtz Equation

To solve the Helmholtz equation, again a separation approach is chosen

U (x, y) = X (x) · Y (y)

which results in

X ′′ (x) Y (y) +X (x) Y ′′ (y) +
ω2

c2
X (x) Y (y) = 0

⇒ X ′′ (x)

X (x)
+
Y ′′ (y)

Y (y)
= −ω

2

c2
.

Since the variable x only appears in the first term and the variable y only

in the second term, both terms must be constant in x and y:

X ′′ (x)

X (x)
= const = −k2 and

Y ′′ (y)

Y (y)
= const = −l2 .
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⇒ k2 + l2 =
ω2

c2
or ω = c

√
k2 + l2.

(1) Location dependency on x: X ′′ (x) + k2X (x) = 0

⇒ X (x) = D sin (k x) + E cos (k x) .

(2) Location dependency on y: Y ′′ (y) + l2 Y (y) = 0

⇒ Y (y) = F sin (l y) +G cos (l y) .

With this solution of the Helmholtz equation and the time-dependent solu-

tion T (t), the solution of the two-dimensional wave equation is

u(x, y, t) = [A sin (ωt) +B cos (ωt)] · [D sin (k x) + E cos (k x)]

· [F sin(l y) +G cos(l y)] .

This solution of the two-dimensional wave equation again contains para-

meters which are determined by the boundary conditions and the initial

conditions:

Consideration of the Boundary Conditions:

©1 u (x = 0, y, t) = 0 for all y, t

⇒ X (0) = D sin (0) + E cos (0)
!
= 0⇒ E = 0.

©2 u (x = a, y, t) = 0 for all y, t ⇒ X (a) = D sin (k a) = 0.

A non-zero solution for u (x, y, t) is obtained if

sin (k a) = 0 ⇒ k a = nπ ⇒ kn = n
π

a
n ∈ N .

So in x-direction there are only standing waves with kn = n π
a and with

the wavelengths λ = 2π
kn

= 2 a
n .

©3 u (x, y = 0, t) = 0 for all x, t

⇒ Y (0) = F sin (0) +G cos (0) = 0⇒ G = 0.

©4 u (x, y = b, t) = 0 for all x, t ⇒ Y (b) = F sin (l b) = 0.
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To get a non-zero solution

sin (l b) = 0 ⇒ l b = mπ ⇒ lm = m
π

b
m ∈ N .

Also in y-direction there are only standing waves with lm = m π
b and

with wavelengths λ = 2π
lm

= 2 b
m .

For each pair (n, m) with n ∈ N and m ∈ N a solution of the two-

dimensional wave equation is given by

un,m (x, y, t) = [an,m sin (ωn,m t) + bn,m cos (ωn,m t)]

· sin(n
π

a
x) sin(m

π

b
y)

with the frequencies ωn,m = c

√(
n
π

a

)2

+
(
m
π

b

)2

.

The pair (n, m) is called the oscillation mode. The solution for the two-

dimensional vibrating membrane is a superposition of all the modes:

u (x, y, t) =
∞∑
n=1

∞∑
m=1

an,m sin (ωn,m t) · sin(n
π

a
x) sin(m

π

b
y)

+
∞∑
n=1

∞∑
m=1

bn,m cos (ωn,m t) · sin(n
π

a
x) sin(m

π

b
y)

Considering the Initial Conditions:

For the initial deflection u0 (x, y) we have the relation

u (x, y, t = 0) = u0 (x, y) =
∞∑
n=1

∞∑
m=1

bn,m sin
(
n
π

a
x
)

sin
(
m
π

b
y
)
.

This is the sine Fourier series of the two-dimensional function u0. The cor-

responding formulas for the Fourier coefficients bn,m can be obtained in a

similar way to the one-dimensional case (see 17.2); however, this relation

will not be discussed in detail here.
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Similarly, we have the relation for the initial velocity

ut (x, y, t = 0) = v0 (x, y) =
∞∑
n=1

∞∑
m=1

(bn,m ωn,m) sin
(
n
π

a
x
)

sin
(
m
π

b
y
)
.

This is the sine Fourier series of the two-dimensional function v0 with the

Fourier coefficients (bn,m ωn,m).

Visualization: The graphs show the elementary modes of vibration. For

(n, m) = (1, 1) ; (n, m) = (1, 2) ; (n, m) = (3, 1) ; (n, m) = (4, 4)

the information is shown in Fig. 19.20. In the (1, 1) mode only one half-

wave in x-direction and one half-wave in y-direction is established. We do

not see any knots, only a bump. In(1, 2) mode there is one half-wave in

x-direction but two half-waves in y-direction. Finally, in (4, 4) we see 4

half-waves in x-direction and 4 half-waves in y-direction.

Figure 19.20. Vibration modes of a rectangular diaphragm

Animation: The homepage contains the Maple-Animation for

the basic vibrations (n, m) = (1, 1). However, in the corre-

sponding Worksheet any other type of oscillation can be se-

lected and animated.

https://www.imathonline.de/ani/welle2d.gif
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19.6 The Beam Bending Equation
In this section we model the oscillations of an elastic beam. These oscilla-

tions are described by a 4th order partial differential equation.

19.6.1 Deriving the Bending Equation

To model the bending vibration equa-

Figure 19.21. Elastic beam

tion, we consider a homogeneous beam

(length L, cross-section A, moment of

inertia I, modulus of elasticity E) sup-

ported on the x-axis. This beam bends

under the influence of vertical loads ac-

cording to the laws of statics:

y (x) is the deflection of the beam at point x. For small displacements y (x),

the bending moment at point x is given by

M (x) = E · I d2

dx2
y (x) .

The associated lateral force Fq (x) at point x is

−Fq (x) =
d

dx
M(x) = E I

d3

dx3
y (x) .

The transverse force 4Fq acting on the mass element is analogous to the

transverse force for the vibrating string, using the linearization of Fq(x +

dx) ≈ Fq(x) +
dFq(x)
dx dx given by

4Fq = Fq (x+ dx)− Fq (x) ≈ Fq(x) + dx
dFq (x)

dx
− Fq (x) = dx

dFq (x)

dx
.

The dynamic description follows, conside-

Figure 19.22.

ring the acceleration force on a mass ele-

ment dm = ρAdx

F = dm
∂2

∂t2
y (x, t)
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and equals the resulting force 4Fq:

ρAdx
∂2 y (x, t)

∂t2
= −E I ∂

4 y (x, t)

∂x4
dx .

In summary, we get

Beam Bending Equation

∂2

∂t2
y(x, t) = −E I

ρA

∂4

∂x4
y(x, t).

This is a 4th order linear PDE with constants ρ (density), A (area), I (mo-

ment of inertia) and E (modulus of elasticity).

19.6.2 Solution of the Beam Bending Equation

To determine a solution to the bending equation, a separation approach is

used by

y (x, t) = X (x) · T (t)

with
X (x) a purely location-dependent function,

T (t) a purely time-dependent function.

Inserting this approach into the PDE gives

X (x) · T ′′ (t) = −E I
ρA

X(4) (x) · T (t)

⇒ −E I
ρA

X(4) (x)

X (x)
=
T ′′ (t)

T (t)
= const = −ω2 .

A positive constant would lead to a non-physical solution. This product

approach reduces the PDE to two ordinary differential equations:

(1) Time dependency: T ′′ (t) + ω2 T (t) = 0

⇒ T (t) = A cos (ωt) +B sin (ωt) .

(2) Location dependency:

X(4) (x)− ρA

E I
ω2X (x) = 0.



19.6 The Beam Bending Equation 211

This is a 4th order differential equation. With the approach X (x) =

eλx, the characteristic polynomial is

P (λ) = λ4 − ρA

E I
ω2 = 0.

The zeros of P (λ) are

λ = ±

√
±
√
ρA

E I

√
ω .

With κ = 4

√
ρA
E I

√
ω we get

λ1 = κ, λ2 = −κ, λ3 = i κ, λ4 = −i κ

and

eκx, e−κx, ei κ x, e−i κ x

is a complex fundamental set. With the linear combinations

sinh (κx) = 1
2 (eκx − e−κx), cosh (κx) = 1

2 (eκx + e−κx),

sin (κx) = 1
2i

(
ei κ x − e−i κ x

)
, cos (κx) = 1

2

(
ei κ x + e−i κ x

)
,

we obtain a real fundamental set

cosh (κx) , sinh (κx) , cos (κx) , sin (κx) .

Then, the solution to the ordinary differential equation is

X (x) = A1 cosh (κx) +A2 sinh (κx) +A3 cos (κx) +A4 sin (κx).

Finally, we get the solution to the beam bending equation

u(x, t) = (A1 cosh (κx) +A2 sinh (κx) +A3 cos (κx) +A4 sin (κx))

· (A cos (ωt) +B sin (ωt)) ,

where the constants A1, A2, A3, A4, and A, B are determined by the

boundary conditions, the initial deflection and the initial velocity.
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Considering the Boundary Conditions

The following boundary conditions for the right boundary (and correspon-

dingly for the left boundary) physically occur.

Fixed:
X(0) = 0

X ′(0) = 0

Flexible:
X(0) = 0

X ′′(0) = 0

Free:
X ′′(0) = 0

X ′′′(0) = 0

Two cases are discussed in the following subsections: The first is discussed in

19.6.3 flexible/flexible. This is the only case that leads to a closed solution.

The second is fixed/fixed in 19.6.4, in this case the corresponding eigenvalue

equation can only be solved numerically. To take into account the boundary

conditions, the derivatives of X(x) up to order 3 must be calculated

X (x) = A1 cosh (κx) +A2 sinh (κx) +A3 cos (κx) +A4 sin (κx)

X ′ (x) = A1 κ sinh (κx) +A2 κ cosh (κx)−A3 κ sin (κx) +A4 κ cos (κx)

X ′′ (x) = A1 κ
2 cosh (κx)+A2 κ

2 sinh (κx)−A3 κ
2 cos (κx)−A4 κ

2 sin (κx)

X ′′′ (x) = A1 κ
3 sinh (κx)+A2 κ

3 cosh (κx) +A3 κ
3 sin (κx)−A4 κ

3 cos (κx)

and evaluated at the boundaries x = 0 and x = L

X (0) = A1 + A3

X (L) = A1 cosh (κL) +A2 sinh (κL) + A3 cos (κL) +A4 sin (κL)

X ′ (0) = A2 κ +A4 κ

X ′ (L) = A1 κ sinh (κL) + A2 κ cosh (κL)−A3 κ sin (κL) +A4 κ cos (κL)

X ′′ (0) = A1 κ
2 −A3 κ

2

X ′′ (L) = A1 κ
2 cosh (κL) +A2 κ

2 sinh (κL) −A3 κ
2 cos (κL)−A4 κ

2 sin (κL)

X ′′′ (0) = A2 κ
3 −A4 κ

3

X ′′′ (L) = A1 κ
3 sinh (κL) + A2 κ

3 cosh (κL) +A3 κ
3 sin (κL) −A4 κ

3 cos (κL)
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19.6.3 Boundary Condition: flexible/flexible

X (0) = 0 : A1 +A3 = 0 ⇒ A1 = A3 = 0

X ′′ (0) = 0 : A1 −A3 = 0

X (L) = 0 : A2 sinh (κL) +A4 sin (κL) = 0

X ′′ (L) = 0 : A2 sinh (κL)−A4 sin (κL) = 0

The linear system of equations for A2 and A4 must not be uniquely solvable,

so that there is not only the zero solution X (x) ≡ 0. A homogeneous

linear system can be solved non-trivially if the determinant of the coefficient

matrix is zero

− sinh (κL) sin (κL)− sinh (κL) sin (κL) = 2 sinh (κL) sin (κL) = 0 .

This results in

sin (κL) = 0 ⇒ κL = nπ n = 1, 2, 3, . . . .

Only discrete frequencies or wavelengths are possible. The eigenvalues are

κn = n π
L (or wavelengths λn = 2L

n ). For each eigenvalue κn = n π
L it is

sin(n π
L x) = 0 and A4 is arbitrary. The linear system for A2 and A4 reduces

to

A2 sinh (κL) = 0⇒ A2 = 0.

The form of vibration associated with κn is therefore

Xn (x) = A sin
(
n
π

L
x
)

.

For each n ∈ N there is an eigenvalue κn with an associated function Xn (x)

(= mode of vibration). The solution y(x, t) of the beam bending equation

for the boundary condition flexible/flexible is the superposition of all single

modes

y (x, t) =
∞∑
n=1

(an cos (ωn t) + bn sin (ωn t)) sin
(
n
π

L
x
)

with the frequencies ωn =
√

E I
ρA n

2 π2

L2 .

The coefficients an and bn are defined by the Fourier coefficients of the initial

displacement u0 (x) and the initial velocity v0 (x), respectively. Analogous
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to the formulas for the stretched string, the following applies

an = 2
1

L

ˆ L

0

u0 (x) sin(n
π

L
x) dx n = 1, 2, 3, . . .

bn =
1√

E I
ρA n

2 π2

L2

2
1

L

ˆ L

0

v0 (x) sin(n
π

L
x) dx n = 1, 2, 3, . . .

Physical interpretation: As with the stretched string, the solution is to su-

perimpose harmonic waves:

y (x, t) =
∞∑
n=1

An sin
(
n
π

L
x
)
· sin (ωn t+ ϕn)

with the

Amplitudes An sin
(
nπ
L x

)
(location dependent on x)

Phases ϕn (independent of x)

Frequencies ωn =
√

E I
ρA n

2 π2

L2 (dependend on n2).

Visualization: We assume an initial displacement u0 (x) = 1
2x (x− L) with

L = 1 and an initial velocity v0 (x) = 0. So bn = 0 and an result from the

Fourier analysis of u0 (x): an = 2 (−1)n

n3 π3 − 2 1
n3 π3 . For the material constant√

E I
ρA = 0.1 we compute the solution as a function of x at different times t.

Fig. 19.23 shows a sequence for different t-values.

Figure 19.23. Fundamental vibrations of a beam

Interpretation: The animation shows not only an oscillation,

as with the stretched string, but the movement is superimpo-

sed by a fluttering within the beam.

https://www.imathonline.de/ani/balken1.gif
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19.6.4 Boundary Condition: fixed/fixed

X (0) = 0: A1 +A3 = 0

X ′ (0) = 0: A2 +A4 = 0

X (L) = 0: A1 cosh (κL) +A2 sinh (κL) +A3 cos (κL) +A4 sin (κL) = 0

X ′ (L) = 0: A1 sinh (κL) +A2 cosh (κL)−A3 sin (κL) +A4 cos (κL) = 0

The determinant of the coefficient matrix must disappear, otherwise A1,

A2, A3, A4 are all zero, giving the zero solution y (x, t) ≡ 0 for all (x, t).

det


1 0 1 0

0 1 0 1

cosh (κL) sinh(κL) cos (κL) sin (κL)

sinh (κL) cosh (κL) − sin (κL) cos (κL)

 =

= 2− 2 cosh (κL) cos (κL) = 0 .

This gives the eigenvalue equation

cosh (κL) cos (κL) = 1.

Only discrete κn (n ∈ N0) are allowed. The solutions of the eigenvalue equa-

tion cannot be given in a closed form and must be calculated approximately.

To do this, we set L = 1 and solve the non-linear equation

cosh (κ) · cos (κ) = 1 (∗)

numerically using the Newton algorithm (see Volume 1, Section 7.8).

For large κ the cosine-hyperbolic increases very strongly, so that the eigen-

values (i.e. the solutions of the equation (∗)) are close to the zeros of the

cosine at nπ + π
2 . To distinguish for larger values of κ, the accuracy of the

calculation must be increased. Therefore, we set the calculation accuracy

to 20 digits.

To get a better overview of the eigenvalues κn, we also calculate κn
π which

is shown in the second column of the next table.
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Table 19.1: Zeros κn and κn
π

4.7300407448627040260, 1.5056187311419397690

7.8532046240958375565, 2.4997526700739646572

10.995607838001670907, 3.5000106794359084827

14.137165491257464177, 4.4999995384835765581

17.278759657399481438, 5.5000000199439028337

20.420352245626061091, 6.4999999991381457567

23.561944902040455075, 7.5000000000372440985

26.703537555508186248, 8.4999999999983905363

29.845130209103254267, 9.5000000000000695511

32.986722862692819562, 10.499999999999996994

36.128315516282622650, 11.500000000000000130

39.269908169872415463, 12.499999999999999994

42.411500823462208720, 13.500000000000000000

45.553093477052001958, 14.500000000000000000

48.694686130641795196, 15.500000000000000000

The result shows that from n = 13 onward there is no numerical difference

between the solution of the equation (∗) and the zeros of the cosine. We

would have to increase the precision again to increase the numerical accu-

racy.

Instead, we use only the first twelve eigenvalues κn. With these values, we

obtain for each n ∈ N the coefficients A
(n)
1 , A

(n)
2 , A

(n)
3 and A

(n)
4 according

to the linear system of equations with one free parameter. If we arbitrarily

choose A
(n)
1 , the first two equations are

A
(n)
3 = −A(n)

1 and A
(n)
4 = −A(n)

2 .

Inserted into the last two equations gives

A
(n)
1 (cosh (κn)− cos (κn)) + A

(n)
2 (sinh (κn)− sin (κn)) = 0

A
(n)
1 (sinh (κn) + sin (κn)) + A

(n)
2 (cosh (κn)− cos (κn)) = 0.

The coefficients A
(n)
2 , A

(n)
3 , A

(n)
4 depend only on A

(n)
1 through

A
(n)
2 = A

(n)
1 · (−1)

cosh (κn)− cos (κn)

sinh (κn)− sin (κn)

A
(n)
3 = −A(n)

1

A
(n)
4 = −A(n)

2 = A
(n)
1 · cosh (κn)− cos (κn)

sinh (κn)− sin (κn)
.
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So for each n ∈ N we obtain a natural oscillation yn(x, t) as the product

Tn(t) ·Xn(x) where the x-dependency is specified by

Xn (x) = A
(n)
1 cosh (κn x) +A

(n)
2 sinh (κn x)

+A
(n)
3 cos (κn x) +A

(n)
4 sin (κn x)

and the t-dependency by

Tn(t) = an cos (ωn t) + bn sin (ωn t) .

The complete solution of the PDE y(x, t) is then given by the superposition

of all natural oscillations:

y (x, t) =
∞∑
n=1

(an cos (ωn t) + bn sin (ωn t)) ·(
cosh (κn x)− cosh (κn)− cos (κn)

sinh (κn)− sin (κn)
sinh (κn x)− cos (κn x)

+
cosh (κn)− cos (κn)

sinh (κn)− sin (κn)
sin (κn x)

)

with

ωn = κ2
n ·
√
E I

ρA
and κn from Table 19.1.

The coefficients an and bn depend on the initial deflection and the initial

velocity.

Visualization: For a given initial deflection without an initial velocity (↪→
bn = 0) the oscillations are shown. For this visualization we have chosen√

E I
ρA = 1 and an initial deflection y (x, t = 0) = y0 (x)

y0(x) =
7∑

n=1

sin(nπ2 )

n2

(
A

(n)
1 cosh (κn x) +A

(n)
2 sinh (κn x)

+A
(n)
3 cos (κn x) +A

(n)
4 sin (κn x)

)
,

where A
(n)
1 = 0.1 and A

(n)
2 , A

(n)
3 , A

(n)
4 are calculated according to the for-

mulas above.
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Figure 19.24. Beam bending fixed/fixed
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19.7 Problems on Partial Differential Equations

19.1 Check that

u (x, t) = cos (ωt) · sin (k x)

is a solution of the wave equation utt−c2 uxx = 0 with k = n π
L

and

ω = c ·k . Also show that this solution fulfills the two initial conditions

u (x = 0, t) = u (x = L, t) = 0.

19.2 Show that for ω = D · k2 the function

u (x, t) = e−ωt sin (k x)

is a solution of the heat equation ut −Duxx = 0.

19.3 Show that the functions solve the respective partial DE:

a) f (x, y) = 1
2

ln
(
x2 + y2

)
is a solution of fxx + fyy = 0

b) g (x, y, z) =
(
x2 + y2 + z2

)−1/2
is a solution of gxx + gyy + gzz = 0.

19.4 a) Show that with any two functions that can be continuously differen-

tiated twice f1, f2 : R→ R, the function

u (x, t) := f1 (x+ c t) + f2 (x− c t)

is a solution of the wave equation.

b) Solve the initial value problem

utt − c2 uxx = 0, u (x, t = 0) = u0, ut (x, t = 0) = v0

for two given functions u0 and v0 with the approach

u (x, t) = f1 (x+ c t) + f2 (x− c t) .

c) What does this mean for u0 (x) = sin (k x) , k = n π
L

and v0 = 0?

19.5 Show that R =
√

(x− a)2 + (y − b)2 + (z − c)2 fulfills the partial DE

∂2
x

1
R

+ ∂2
y

1
R

+ ∂2
z

1
R

= 0 .

19.6 Check that z (x, y) = xϕ
(
y
x

)
+ ψ

(
y
x

)
fulfills the partial DE

x2
∂2

∂x2
z + 2x y

∂2

∂x ∂y
z + y2

∂2

∂y2
z = 0

if ϕ and ψ are any twice continuously differentiable functions.

19.7 Define k so that u (x, t) = e−κ t sin
(
nπ
L
x
)

is a solution of the heat

equation ut = κuxx.
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19.8 Determine a general solution for partial DE

ut (t, x) + uxx (t, x) = 0 .

19.9 a) Determine the general solution of the partial differential equation

uxx (x, y)− uyy (x, y) = 0.

b) Determine a solution of this partial DE which satisfies the following

boundary conditions:

u (x = 0, y) = 0 for all y

u (x, y = 0) = 0 for all x

u (x, y = L) = 0 for all x

19.10 a) Set the parameter k so that

u (x, y, t) = sin

(
n

2π

L
x

)
sin

(
m

2π

L
y

)
ek t

is a solution of

uxx (x, y, t) + uyy (x, y, t) = utt (x, y, t) (∗)

b) Starting from a) give two real solutions of (∗). How to interpret this

result?

19.11 Determine the parameter k so that the function

u (x, y, t) = sin

(
n

2π

L
x

)
sin

(
m

2π

L
y

)
e−k t

is a solution of the partial DE uxx + uyy = ut .

19.12 a) Show that the function u (x, y) = sin (k x)
(
ek y + e−k y

)
is a solu-

tion of the partial DE uxx + uyy = 0 .

b) Determine the parameter k in the function

u (x, y) = sin (k x)
(
ek y + e−k y

)
so that the function satisfies u (x = L, y) = 0 for all y.

19.13 Find a solution to the partial DE

ut = uxx 0 ≤ x ≤ π , t > 0

with u (x, 0) = 1 for 0 < x < π and u (0, t) = 1, u (π, t) = 0 for t > 0.

19.14 Given is the 3D wave equation utt = c2 (uxx + uyy + uzz). Determine

solutions of the form
u = eαx+β y+γ z−c t.
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19.15 Given is the heat equation in the plane: Use a separation approach to

solve the differential equation

ut = uxx + uyy

by a separation u (x, y, t) = T (t) ·X (x) ·Y (y) (see Problem 19.14).

19.16 Use a separation approach to solve the following boundary value problems

a) ut = uy; u (0, y) = ey + e−2 y

b) ut = uy; u (t, 0) = e−3 t + e2 t

c) ut = uy + u; u (0, y) = 2 e−y − e2 y

d) ut = uy − u; u (t, 0) = e−5 t + 2 e−7 t − 14 e13 t
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20Chapter 20

Vector Analysis
and Integral Theorems

Vector analysis plays a fundamental role in the description of physical laws, in me-

chanics and electrodynamics, where vector fields are considered in R3

~v(x, y, z) =

 v1(x, y, z)

v2(x, y, z)

v3(x, y, z)

 : D ⊂ R3 → R3.

A vector field assigns a vector to each point P (x, y, z) in three-dimensional space.

The electric field strength ~E (x, y, z), the magnetic induction ~B (x, y, z) or the ve-

locity profile ~v (x, y, z) of a moving medium are examples of vector fields. Physical

laws are formulated by either differentiating or integrating these vector fields.

Vector analysis deals with arithmetic operations on vector fields: For differentiation

we introduce the gradient, the divergence and the curl. For integration, the integral

theorems of Gauss and Stokes are provided.
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Vector analysis plays a fundamental role in the description of physical laws, in

mechanics and electrodynamics, where vector fields are considered in R3

~v(x, y, z) =

 v1(x, y, z)

v2(x, y, z)

v3(x, y, z)

 : D ⊂ R3 → R3.

A vector field assigns a vector to each point P (x, y, z) in three-dimensional space.

The electric field strength ~E (x, y, z), the magnetic induction ~B (x, y, z) or the

velocity profile ~v (x, y, z) of a moving medium are examples of vector fields. Phy-

sical laws are formulated by either differentiating or integrating these vector fields.

Vector analysis deals with arithmetic operations on vector fields: For differentia-

tion we introduce the gradient, the divergence and the curl. For integration, the

integral theorems of Gauss and Stokes are provided.

A vector field ~v: D ⊂ R3 → R3 is said to be continuous or (partially) diffe-

rentiable if these properties hold for each component of ~v. In the following,

vector fields are always continuous and partially differentiable. In addition

to vector fields, scalar functions (scalar fields)

f (x, y, z) : D ⊂ R3 → R

are also discussed, because gradient fields are identified as the gradient of

a scalar field

grad f (x, y, z) =


∂
∂x f (x, y, z)

∂
∂y f (x, y, z)

∂
∂z f (x, y, z)

 .

Instead of grad (f), the term ∇f is often used with the Nabla operator ∇.

The integral theorems are a generalization of the Fundamental Theorem of

Calculus ˆ b

a

f ′ (x) dx = f (b)− f (a) .
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The definite integral is calculated by evaluating only the antiderivative func-

tion at the limits. The Gauss theorem assigns a volume integral to a surface

integral and Stokes’ theorem assigns a surface integral to a curve integral.

20.1 Line or Curve Integrals
Describing the work in a force field or the voltage in an electric field requi-

res the calculation of an integral along a curve. This leads to the concept

of a line integral, which is explained with examples from mechanics and

electrostatics.

20.1.1 Description of a Curve

The description of a curve C ∈ R3 is given by the parameter representation

C : ~r (t) = x (t) ~e1 + y (t) ~e2 + z (t) ~e3 =

x (t)

y (t)

z (t)

 ,

where x (t), y (t), z (t) are functions of the variable t. As the parameter t

varies, the point P (see Fig. 20.1) moves along the curve C:

r (t)

P

y

x

C

Figure 20.1. Space curve

Example 20.1 (Electron in a Magnetic Field). An electron moves in a ho-

mogeneous magnetic field ~B = B0 ~ez on a helical line with radius R. The

coordinates of the electron are given at any time by

x (t) = R cos (ωt)

y (t) = R sin (ωt)

z (t) = vz t.

ω = e
m B0 is the angular frequency and vz is the velocity in z-direction.
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20.1.2 Derivative of a Vector

If ~r (t) = x (t) ~e1 +y (t) ~e2 +z (t) ~e3 is a parameter representation of a curve

C, then the derivative of the vector ~r (t) is defined as the limit

~r ′ (t) = lim
4t→0

1

4t
(~r (t+4t)− ~r (t))

of the difference quotient for 4t → 0. Geometrically, this corresponds to

the transition of the difference vector (= secant vector) into the tangent

vector at the point ~r(t) = (x(t), y(t), z(t)).

Dr

r (t)

r (t+Dt)

C

r (t)

r  (t) C

Secant vector 4~r Tangent vector ~r ′ (t)

Due to the vector calculation rules we calculate

1

4t
4~r =

1

4t
(~r (t+4t)− ~r (t))

=


1
4t (x (t+4t)− x (t))
1
4t (y (t+4t)− y (t))
1
4t (z (t+4t)− z (t))

 4t→0−→

 ẋ (t)

ẏ (t)

ż (t)

 .

Derivative of a Vector Function

Given is a vector ~r (t) =

x (t)

y (t)

z (t)

 depending on t. The derivative

of ~r(t) with respect to t is ~r ′ (t) =

 ẋ (t)

ẏ (t)

ż (t)

.

The derivative of a vector ~r(t) is computed component by compo-

nent.
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Application Example 20.2 (Space Curve and Velocity).

If ~r (t) is the time-dependent position vector of the trajectory of a mass,

then

~v (t) = ~r ′ (t) is the velocity vector and

~a (t) = ~v ′ (t) = ~r ′′ (t) is the acceleration vector.

The velocity vector and the acceleration vector of an electron in a homoge-

neous magnetic field B = B0 ~ez are given by Example 20.1

~v (t) = ~r ′ (t) =

 ẋ (t)

ẏ (t)

ż (t)

 =

−Rω sin (ωt)

Rω cos (ωt)

vz

 =

 v1 (t)

v2 (t)

v3 (t)



~a (t) = ~v ′ (t) =

 ẍ (t)

ÿ (t)

z̈ (t)

 =

−Rω2 cos (ωt)

−Rω2 sin (ωt)

0

.

In particular, ẍ (t) + ω2 x (t) = 0 and ÿ(t) + ω2 y (t) = 0.

Application Example 20.3 (Acceleration of a Circular Motion).

For a planar circular motion with a constant

Figure 20.2. Circular motion

radius ρ, the coordinates x (t) and y (t) are

given in polar coordinates by

x (t) = ρ · cos(ϕ (t))

y (t) = ρ · sin(ϕ (t))
(polar coordinates),

where ϕ (t) is the angle to the positive x-

axis.

With this parameter representation, the motion is

~r (t) = x (t) ~ex + y (t) ~ey

= ρ cos(ϕ (t))~ex + ρ sin(ϕ (t))~ey = ρ

(
cos(ϕ (t))

sin(ϕ (t))

)
with the velocity vector

~v (t) = ~r ′ (t) = ρ

(
− sin(ϕ(t)) ϕ̇(t)

cos(ϕ (t)) ϕ̇(t)

)
= ρ ϕ̇(t)

(
− sin(ϕ(t))

cos(ϕ (t))

)
.
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When the radial unit vector ~er and the azimuthal unit vector ~eϕ are intro-

duced

~er =

(
cos(ϕ (t))

sin(ϕ (t))

)
, ~eϕ =

(
− sin(ϕ(t))

cos(ϕ (t))

)
,

then the velocity vector is

~v (t) = ρ ϕ̇(t)~eϕ .

In a circular motion, the velocity ρ ϕ̇ (t) is perpendicular to the position vec-

tor (i.e. tangential to the motion)! The acceleration vector is the derivative

of ~v (t) with respect to t:

~a (t) = ~v ′ (t) = ρ

(
− cos(ϕ(t)) ϕ̇2(t)− sin(ϕ(t)) ϕ̈(t)

− sin(ϕ(t)) ϕ̇2(t) + cos(ϕ(t)) ϕ̈(t)

)

= −ρ ϕ̇2(t)

(
cos(ϕ(t))

sin(ϕ(t))

)
+ ρ ϕ̈(t)

(
− sin(ϕ(t))

cos(ϕ(t))

)
= −ρ ϕ̇2(t) ~er + ρ ϕ̈(t) ~eϕ .

We calculate the magnitude of ~a using ~er
2 = ~eϕ

2 = 1 and ~er · ~eϕ = 0:

|~a| =
√
~a · ~a

= ρ
√
ϕ̇4(t) ~er2 − 2 ϕ̇2(t) ϕ̈(t) ~er · ~eϕ + ϕ̈2(t) ~eϕ2

= ρ
√
ϕ̇4(t) + ϕ̈2(t) .

The acceleration force ~F = m~a (t) has a component in the direction ~r (cen-

trifugal force) and another perpendicular to it:

Force in direction ~r (centrifugal force): ~Fr = −mρ ϕ̇2(t) ~er has the magni-

tude

Fr =
∣∣∣~Fr∣∣∣ = mρ ϕ̇2(t).

In the case of a circular motion with constant angular velocity ω = ϕ̇ (t) =

const, we get

Fr = mρω2.

Force in direction of velocity ~eϕ: ~Fϕ = mρ ϕ̈(t) ~eϕ. For a circular motion

with constant angular velocity ω = ϕ̇ (t) = const, we get ϕ̈ (t) = 0⇒ Fϕ =

0. So in this case there is no force in the direction of speed.
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20.1.3 Vector Fields (Force Fields)

Definition: A Vector Field is a vector function ~k : R3 → R3,

~k (x, y, z) =

 k1 (x, y, z)

k2 (x, y, z)

k3 (x, y, z)

 ,

with components k1, k2, k3 depending on the three spacial coordinates

(x, y, z). ~k assigns a vector ~k (x, y, z) to any point in space (x, y, z).

Example 20.4. According to Coulomb’s Law, the electric force between two

point charges Q and q is inversely proportional to the square of the distance

between the charges

~F =
1

4π ε0

q Q

r2

~r

|~r|
=

q Q

4π ε0

1

r3
~r =

q Q

4π ε0

1√
x2 + y2 + z2

3

x

y

z

 .

The force vector ~F varies in magnitude and direction.

20.1.4 Line Integrals (Curve Integrals)

Let ~r (t) = x (t) ~e1 + y (t) ~e2 + z (t) ~e3 be a space curve C and ~k a vector

field. PA = ~r (tA) is the beginning and PE = ~r (tE) the end of the curve.

We are looking for the work required to move m along C from the start to

the end points (see Fig. 20.3).

When a mass moves along a direction ~s, the work done by a constant force
~k is determined by the scalar product according to Volume I, Chapter 2

W = ~k · ~s.

To find the work required along a path, we move the mass on the curve C
but split C into parts

PA = P0 , P1 , . . . , PN = PE with Pi = ~r (ti) = ~ri (i = 0, ..., N)

and ti = tE−tA
N i+ tA. We replace the curve with tracks

−−−−→
Pi Pi+1 = 4~ri.
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P =PA 0

P1 P2

Pi

Pi+1

PN-1

P =PN Eki

Dri C

Figure 20.3. Work along the curve C

For each track we compute the scalar product of the local force field ~ki =
~k (~ri) with the direction vector 4~ri: Wi = ~k (~ri) · 4~ri . Wi is the work

required to move the mass from Pi to Pi+1. All contributions are summed

to

4W =
N−1∑
i=0

~k (~ri) · 4~ri =
N−1∑
i=0

~k (~ri)
1

4t
(~r (ti +4t)− ~r (ti)) · 4t.

This sum is an approximation of the total work. The approximation be-

comes better the finer the subdivision of the curve C is chosen. The limit

N →∞ (i.e. an arbitrarily fine sub-division of C with4~ri → 0 and4t→ 0)

lim
N→∞

N−1∑
i=0

~k (~ri) 4~ri = lim
N→∞

N−1∑
i=0

~k (~ri)
1

4t
(~r (ti +4t)− ~r (ti)) · 4t

returns the curve integral along C:

Definition: Curve Integral (Line Integral). Let ~k (x, y, z) be a vector

field and C a curve described by ~r (t) for tA ≤ t ≤ tE . Then

ˆ
C
~k · d~r =

ˆ tE

tA

~k (~r (t)) · ~r ′ (t) dt

is the Line or Curve Integral of the vector field ~k (x, y, z) along the

curve C. ~r (tA) is the start and ~r (tE) marks the end point of the curve.

Remarks:

(1) The curve integral is independent of the selected sub-division.

(2) The curve integral is therefore independent of the parameterization of

the curve C.
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(3) The curve integral is obtained by performing the scalar product and

evaluating the force field ~k at ~r (t)

ˆ
C
~k · d~r =

ˆ tE

tA

k1 (x(t), y(t), z(t)) ẋ (t) dt

+

ˆ tE

tA

k2 (x(t), y(t), z(t)) ẏ (t) dt

+

ˆ tE

tA

k3 (x(t), y(t), z(t)) ż (t) dt.

The three integrals depend only on the variable t and are calculated in-

dependently using the integration rules for functions with one variable.

(4) The value of the curve integral depends not only on the start and end

points of the integration path, but also on the specified path. Exceptions

are the so-called gradient fields.

(5) For a curve integral along a closed curve we use the symbol

˛
C
~k d~r.

(6) ~k (~r (t)) · ~r ′ (t) is the force acting tangentially on the curve, because

~r ′ (t) represents the tangent of the curve C at each point ~r (t).

Procedure for Calculating Curve Integrals

(1) Parameterize the curve C: ~r (t).

(2) Calculate ~r ′ (t).

(3) Replace the components of ~r (t), namely x(t), y(t), z(t), into the

three force components k1, k2, k3, compute the scalar product
~k (~r (t)) · ~r ′ (t) and evaluate the integrals with respect to t.

Example 20.5. The force field ~k =

x y2

x y

0

 is given. Find the curve integral

ˆ
C
~k · d~r =

ˆ
C

(
x(t) y2(t) ẋ (t) + x(t) y(t) ẏ (t)

)
dt

where C is a path shown in Fig. 20.4. In all cases the start and end points

of the curves are (0, 0) and (1, 1).
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Figure 20.4. Curves from origin (0, 0) to point (1, 1)

(1) Integration along path 1: A parameter representation of the path C1 is

~r (t) =

(
t

t

)
for 0 ≤ t ≤ 1 .

⇒ x (t) = t , y (t) = t ⇒ ẋ (t) = 1 , ẏ (t) = 1.

⇒
ˆ
C1

~k d~r =

ˆ 1

0

(
t · t2 · 1 + t · t · 1

)
dt =

ˆ 1

0

(
t3 + t2

)
dt =

7

12
.

(2) Integration along path 2: A parameter representation of the path C2 is

~r (t) =

(
t

t2

)
for 0 ≤ t ≤ 1 .

⇒ x (t) = t , y (t) = t2 ⇒ ẋ (t) = 1 , ẏ (t) = 2 t.

⇒
ˆ
C2

~k d~r =

ˆ 1

0

(
t · t4 · 1 + t · t2 · 2 t

)
dt =

ˆ 1

0

(
t5 + 2 t4

)
dt =

17

30
.

(3) Integration along path 3: A parameter representation of the path C3 is

~r (t) =



(
0

t

)
for 0 ≤ t ≤ 1

2 ⇒ x (t) = 0, y (t) = t(
2t− 1

1

)
for 1

2 ≤ t ≤ 1 ⇒ x (t) = 2t− 1, y (t) = 1 .

⇒
ˆ
C3

~k d~r =

ˆ 1
2

0

0 dt+

ˆ 1

1
2

(4t− 2) dt =
1

2
.
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(4) Integration along path 1: We select the path C1 again, but with a diffe-

rent parameter representation:

~r (t) =

(
t2

t2

)
for 0 ≤ t ≤ 1 .

⇒ x (t) = t2 , y (t) = t2 ⇒ ẋ (t) = 2t , ẏ (t) = 2t.

⇒
ˆ
C1

~k d~r =

ˆ 1

0

(
t6 · 2t+ t4 · 2t

)
dt =

ˆ 1

0

(
2t7 + 2t5

)
dt =

7

12
.

Example 20.5 shows that the value of the curve integral depends on the

selected path (see (1), (2) and (3)), but not on the special parameterization

for the same curve (see (1) and (4)).

Examples 20.6:

©1 The vector field ~k =

 x y

y

−x

 is integrated along the curve C with the

parameterization ~r (t) = t~e1 + t2 ~e2 + t3 ~e3 for 0 ≤ t ≤ 1. The selected

representation of ~r(t) gives

x (t) = t, y (t) = t2, z (t) = t3.

Then

ẋ(t) = 1, ẏ(t) = 2t, ż(t) = 3t2

and we get

~r ′ (t) = ~e1 + 2 t~e2 + 3 t2 ~e3 =

 1

2 t

3 t2

 , ~k (~r (t)) =

 t3

t2

−t


~k (~r (t)) · ~r ′(t) =

 t3

t2

−t


 1

2 t

3 t2

 = t3 + 2 t3 − 3 t3 = 0.

⇒
ˆ
C
~k · d~r =

ˆ 1

0

0 dt = 0 .
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©2 Find the curve integral of the vector field ~k =

(
x

x y

)
along the para-

bola y = x2 from the origin to the point P (1, 1):

~r (t) =

(
t

t2

)
for 0 ≤ t ≤ 1 ⇒ x (t) = t , y (t) = t2.

⇒ ~r ′ (t) =

(
1

2 t

)
and ~k (~r (t)) =

(
x

x y

)
=

(
t

t3

)

⇒ ~k (~r (t)) · ~r ′ (t) =

(
t

t3

) (
1

2 t

)
= t+ 2 t4.

⇒
ˆ 1

0

(
t+ 2 t4

)
dt =

[
1
2 t

2 + 2
5 t

5
]1
0

=
9

10
.

©3 Find the curve integral of the vector function ~k =

(
x

x y

)
along the

curve C with the parameterization ~r (t) =

(
t3

t4

)
for 0 ≤ t ≤ 1. C also

connects the origin to the point (1, 1):

~r (t) =

(
t3

t4

)
for 0 ≤ t ≤ 1 ⇒ x (t) = t3, y (t) = t4.

⇒ ~r ′ (t) =

(
3 t2

4 t3

)
and ~k (~r (t)) =

(
x

x y

)
=

(
t3

t3 t4

)

⇒ ~k (~r (t)) · ~r ′ (t) =

(
t3

t7

) (
3 t2

4 t3

)
= 3 t5 + 4 t10.

⇒
ˆ 1

0

(
3 t5 + 4 t10

)
dt =

[
1

2
t6 +

4

11
t11

]1

0

=
19

22
.

We observe that the curve integral is path dependent. For special vector

fields, however, it is path independent, i.e. the value of the curve integral

is independent of the chosen path, depending only on the start and end

points.
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Definition: (Gradient Field).

A vector field ~k (x, y, z) is called a gradient field (potential field), if

there exists a continuously differentiable function Φ(x, y, z): R3 → R
such that

~k (x, y, z) = grad Φ (x, y, z) .

This means for the components of the vector field ~k(x, y, z)

k1 (x, y, z) =
∂

∂x
Φ (x, y, z) ,

k2 (x, y, z) =
∂

∂y
Φ (x, y, z) ,

k3 (x, y, z) =
∂

∂z
Φ (x, y, z) .

The function Φ (x, y, z) is a potential function of ~k.

A potential function, in the context of physics, is a scalar function whose

gradient equals the given vector field ~k. This function describes the poten-

tial energy or potential of a force field. The gradient fields are those vector

fields for which the curve integrals are always path independent. This im-

portant theorem is stated in the next theorem (without proof):

Theorem: Main Condition on Curve Integrals

Let G ⊂ R3 be an axis-parallel cube and ~k : G → R3 be a vector

field with continuous partial derivatives in G. Then the following

statements are equivalent:

(1) ~k is a gradient field.

(2) In G the integrability conditions are satisfied

∂k1

∂y
=
∂k2

∂x
;

∂k2

∂z
=
∂k3

∂y
;

∂k1

∂z
=
∂k3

∂x
.

(3) The curve integral

ˆ
C
~k d~r depends only on the start and end

points of the curves for all curves in G.

(4) The curve integral

˛
C
~k d~r is zero for all closed curves C in G.
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Remark: The integrability condition for a two-dimensional vector

field ~k =

(
k1 (x, y)

k2 (x, y)

)
is:

∂k1

∂y
=
∂k2

∂x
.

Note:

(1) Potential functions belonging to ~k differ by at most one constant.

(2) In physics, force fields that have an associated potential function are

called conservative force fields.

(3) In physics, ~k is sometimes defined as the negative gradient −grad (Φ).

This is included in the above definition of a gradient field.

If ~k is a gradient field, then the line integral
´
C
~k d~r can easily be evaluated

using its potential function Φ (x, y, z):

~k (x, y, z) =

 k1 (x, y, z)

k2 (x, y, z)

k3 (x, y, z)

 !
= grad Φ (x, y, z) =

 ∂x Φ (x, y, z)

∂y Φ (x, y, z)

∂z Φ (x, y, z)

 .

The total differential of Φ is

dΦ =
∂Φ

∂x
dx+

∂Φ

∂y
dy +

∂Φ

∂z
dz

= k1 dx+ k2 dy + k3 dz

= ~k d~r.

Then ˆ
C
~k d~r =

ˆ P2

P1

dΦ = Φ
∣∣∣
P2

− Φ
∣∣∣
P1

,

where P1 is the start point and P2 is the end point of the curve C.

Integration of a Gradient Field

If ~k is a gradient field with potential Φ, e.g. ~k (x, y, z) = grad (Φ),

then the line integral is
ˆ
C
~k d~r =

ˆ
C
dΦ = Φ

∣∣∣
End point of C

− Φ
∣∣∣
Start point of C

.
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If the start point is identical to the end point, then˛
C
~k d~r = Φ

∣∣∣
P1

− Φ
∣∣∣
P1

= 0 .

The main theorem not only tells us whether a curve integral is path in-

dependent, but also how the integrability conditions can be used to check

whether a gradient field exists or not. If the potential of a gradient field

is available, the addition to the main theorem shows how to calculate the

curve integral: Analogous to the main theorem of calculus (see Volume 2;

Section 8.2), the curve integral is the difference of the potential function

evaluated at the end point and the start point.

Examples 20.7:

©1 There are many gradient fields in physics. Examples are the electrosta-

tic potential, the Newtonian gravitational field, or the magnetic field

produced by an electric current flowing through a wire.

©2 The vector field ~k (x, y) =

(
3x2 y

x3

)
is a gradient field because

∂k1

∂y
=

∂

∂y
(3x2 y) = 3x2

∂k2

∂x
=

∂

∂x
x3 = 3x2

 ⇒
∂k1

∂y
=
∂k2

∂x
.

Then the potential field Φ associated with ~k can be calculated: Since
~k has a potential function Φ (x, y) with ~k = grad Φ, we know that

~k =

 k1

k2

 = grad Φ =

 ∂x Φ

∂y Φ

 ⇒
∂x Φ = 3x2 y (1)

∂y Φ = x3 . (2)

When the equation (1) is integrated with respect to x, the result is

Φ(x, y) = x3 y +K (y)

with an integration constant that may depend on y. We differentiate

(2) with respect to y

∂

∂y
Φ(x, y) = x3 +K ′ (y) = x3 = k2(x, y)

⇒ K ′ (y) = 0⇒ K (y) = C = const .
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⇒ Φ (x, y) = x3 y + C.

The curve integral of ~k along a curve C with start point (x0, y0) and

end point (x1, y1) is given by

ˆ
C
~k d~r =

ˆ
C
dΦ = Φ

∣∣∣∣(x1, y1)

(x0, y0)

= x3
1 y1 − x3

0 y0 .

©3 The vector field ~k =

(
x y2

x y

)
is not a gradient field, because the inte-

grability condition is violated

∂k1

∂y
=

∂

∂y
(x y2) = 2x y

∂k2

∂x
=

∂

∂x
(x y) = y

⇒
∂k1

∂y
6= ∂k2

∂x
.

(Compare this statement with the result of Example 20.5!)

©4 Check whether the vector field

~k (x, y, z) =
1

x2 + y2 + z2

x

y

z


is a gradient field with the potential function

Φ (x, y, z) = ln
(
x2 + y2 + z2

)
+K .

The integrability conditions are explicitly checked to decide whether a gra-

dient field exists or not. If ~k is a gradient field, then the task is to find its

potential.

Example 20.8. Given is the vector field ~v (x, y, z) =

 2x+ y

x+ 2 y z

y2 + 2 z

. For this

vector field we can explicitly check the integrability conditions. Then, the

potential Φ belonging to ~v is searched for

~v = grad Φ =

 ∂x Φ

∂y Φ

∂z Φ

 =

 v1

v2

v3

 =

 2x+ y

x+ 2 y z

y2 + 2 z

 .

We integrate the first component ∂x Φ with respect to x.

∂x Φ = 2x+ y ⇒ Φ = x2 + y x+ f (y, z) (∗)
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returns an integration constant f (y, z), which may depend on y and

z. If the second component of ~v is compared to the partial derivative

of Φ with respect to y, the following holds for fy (y, z):

∂y Φ = v2 = x+ 2 y z and ∂y Φ
(∗)
= x+ fy (y, z)

⇒ fy (y, z) = 2 y z .

Integration with respect to y gives

f (y, z) = y2 z + g (z) ,

where the function g can still depend on z but no longer on x or y.

⇒ Φ (x, y, z) = x2 + y x+ y2 z + g (z) . (∗∗)

Comparing the third component v3 with the partial derivative of Φ

with respect to z, we get for g′ (z):

∂z Φ = v3 = y2 + 2 z and ∂z Φ
(∗∗)
= y2 + g′ (z)

⇒ g′ (z) = 2 z ⇒ g (z) = z2 +K .

The integration constant K depends neither on x, y nor on z.

⇒ Φ (x, y, z) = x2 + y x+ y2 z + z2 +K.

Example 20.9. Find the potential Φ associated with the gradient field

~k =

 k1

k2

k3

 =

 z + y

x+ z

x+ y

 = grad Φ =

 ∂x Φ

∂y Φ

∂z Φ

 :

We start with the first component and integrate over x. The inte-

gration constant may depend on the variables y and z. The result is

differentiated with respect to y and gives the second component of ~k:

∂x Φ = k1 = z + y ⇒ Φ = z x+ y x+ f (y, z)

⇓ ∂y

∂y Φ = x+ fy (y, z) = k2 = x+ z
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⇒ fy (y, z) = z ⇒ f (y, z) = z · y + g (z).

⇒ Φ(x, y, z) = z x+ y x+ z y + g (z).

We take the derivative with respect to z which is the third component

of ~k. Comparing the left and right sides gives g(z).

∂zΦ = x+ y + g′ (z) = k3 = x+ y ⇒ g′ (z) = 0 ⇒ g (z) = K

⇒ Φ (x, y, z) = z x+ yx+ z y +K.

20.1.5 Application Examples

The curve integral is used to calculate the work required to move a mass

m in a force field ~k (x, y, z) along the curve C from a start point PA to an

end point PE . According to the definition of the line integral, the work is

W =

ˆ
C
~k d~r =

ˆ tE

tA

~k (~r (t)) · ~r ′ (t) dt,

where ~r (t) is a parameter representation of the curve C, ~r (tA) is the start

point and ~r (tE) is the end point. W is positive if the force field is acting

on the mass, otherwise it is negative.

Application Example 20.10 (Radially Symmetric Force Fields).

A force field ~k is called radially symmetric if the magnitude of ~k depends

only on the distance r and the vector ~k points radially outwards. A radially

symmetric field has the form

~k (~r) = f (r) ~r =

 f (r) x

f (r) y

f (r) z


where f is a function in a variable and r = |~r| =

√
x2 + y2 + z2. Physical

examples of radially symmetric force fields are

~F (~r) = fg
mM

r2

~r

r
(Newtonian gravity)

~F (~r) =
1

4π ε0

q Q

r2

~r

r
(Coulomb force).
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All rotationally symmetric force fields are conservative: The work integral

depends only on the start and end points of the path, not on the path chosen!

We show that the first integrability condition is satisfied. To do this, we use

the chain rule to form the partial derivatives of ~k (~r) =

 f (r) x

f (r) y

f (r) z

:

∂

∂y
k1 (~r) =

∂

∂y
(f (r) x) = x f ′ (r)

∂

∂y

√
x2 + y2 + z2

= x f ′ (r)
y√

x2 + y2 + z2
= f ′ (r)

x y

r
.

∂

∂x
k2 (~r) =

∂

∂x
(f (r) y) = y f ′ (r)

∂

∂x

√
x2 + y2 + z2

= y f ′ (r)
x√

x2 + y2 + z2
= f ′ (r)

x y

r
.

⇒ ∂

∂y
k1 (~r) =

∂

∂x
k2 (~r) .

The other two integrability conditions are checked in the same way.

Application Example 20.11 (Coulomb Force).

The potential of the Coulomb force

Figure 20.5. Coulomb force

~k (~r) =
1

4π ε0

q Q

r2

~r

r

is the electrostatic potential

Φ (x, y, z) =
1

4π ε0

q Q

r

=
1

4π ε0

q Q√
x2 + y2 + z2

.

We calculate directly that ~k = −grad Φ. Thus,

according to the main theorem on curve integrals˛
C
~k d~r = 0

for all closed curves not containing the origin. There ~k becomes singular!

To compute the behavior of ~k including its singularity, we look at the curve
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integral along a circle with radius R

~r (t) = R

 cos t

sin t

0

 for 0 ≤ t ≤ 2π.

Then, the singularity of ~k is in the center of the circle: Because of x (t) =

R cos t (↪→ ẋ (t) = −R sin t), y (t) = R sin t (↪→ ẏ (t) = R cos t) and z (t) =

0, we obtain for the force field

~k (~r) =
1

4π ε0

q Q

r3
~r =

q Q

4π ε0

1

(x2 + y2 + z2)
3
2

x

y

z

 :

ˆ
C
~k d~r =

q Q

4π ε0

ˆ 2π

0

{
1

(x2 (t) + y2 (t) + z2 (t))
3
2

x (t) · ẋ (t)

+
1

(x2 (t) + y2 (t) + z2 (t))
3
2

y (t) · ẏ (t)

}
dt

=
q Q

4π ε0

ˆ 2π

0

1

R
3
2

(x (t) ẋ (t) + y (t) ẏ (t)) dt

=
q Q

4π ε0

1

R
3
2

ˆ 2π

0

(
−R2 cos t sin t+R2 sin t cos t

)
dt = 0.

Application Example 20.12 (Voltage).

For the electrostatic field ~E (~r) =

E1 (x, y, z)

E2 (x, y, z)

E3 (x, y, z)

, the curve integral

U =

ˆ
C
~E d~r =

ˆ
C

(E1 dx+ E2 dy + E3 dz)

gives the voltage between the start and end points of the curve C. Since the

electric field is a gradient field ( ~E = −grad (Φ)), the curve integral does not

depend on the selected path. So the voltage is just the difference between

the potential at the start and end points:

U =

ˆ
C
~E d~r = −Φ

∣∣∣
end

+ Φ
∣∣∣
start
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Application Example 20.13 (Magnetic Field of a Conductor).

A homogeneous current-carrying wire is along

Figure 20.6.

Current carrying conductor

the z-direction. The current generates a ma-

gnetic field in the (x, y)-plane proportional to
1
r , the direction of the magnetic field is tan-

gential to the circular rings:

~B =
µ0 I

2π

(
−y
x

)
1

x2 + y2
.

The magnetic field becomes singular at the ori-

gin (0, 0). We first compute the line integral in the (x, y)-plane in the case

where the origin is excluded. In a second calculation we choose a curve that

includes the origin.

For (x, y) 6= (0, 0), the integrability condition in the plane is satisfied:

∂B1

∂y
=
∂B2

∂x
=

y2 − x2

(x2 + y2)
2 .

Therefore, all closed curve integrals that do not include the origin are zero.

However, if the integral along the circle of radius R includes the singularity

(0, 0), we must explicitly calculate the line integral.

A parameterization of the circle is

Figure 20.7.

~r (t) = R

(
cos t

sin t

)
for 0 ≤ t ≤ 2π .

⇒ x (t) = R cos t (↪→ ẋ (t) = −R sin t)

y (t) = R sin t (↪→ ẏ (t) = R cos t).

So the curve integral along C containing the origin is

˛
C
~B d~r =

µ0 I

2π

ˆ 2π

0

1

x2 (t) + y2 (t)
(−y (t) ẋ (t) + x (t) ẏ (t)) dt

=
µ0 I

2π

1

R2

ˆ 2π

0

(
R2 sin2 t+R2 cos2 t

)
dt = µ0 I.

This curve integral results in the total current I flowing through the area

bounded by the curve C.
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20.2 Surface Integrals
Many applications require the area of curved surfaces. These so-called sur-

face integrals are also needed to calculate electric, magnetic or mass flow

through a surface. Therefore, the concept of integrals is extended to include

integrals of functions over a surface in R3.

Figure 20.8. Parameterization of a curved surface

Extending the description of a curve C using the parameter representation

~r (t) = x (t) ~e1 + y (t) ~e2 + z (t) ~e3

with one parameter t, we define curved surfaces using a parameter repre-

sentation with two parameters (u, v):

Definition: (Surface). Let S ⊂ R2 be an area in a plane (e.g. a rectangle)

with the parameter variables (u, v) ∈ S (e.g. u1 (v) ≤ u ≤ u2 (v),

v1 ≤ v ≤ v2). A surface F ⊂ R3 (see Fig. 20.8) is defined by the

parameter representation

F : ~r (u, v) = x (u, v) ~e1 + y (u, v) ~e2 + z (u, v) ~e3

where x, y, z are functions depending on the two variables (u, v). If the

(u, v)-values change, the point P (see Fig. 20.8) moves on the surface

F .

We interpret (u, v) as the coordinates of point P . We assume that the

components of the mapping ~r : R2 → R3, (u, v) 7→ ~r(u, v), are continuously

partially differentiable functions. The tangential plane at the point P is
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generated by the direction vectors ∂~r
∂u and ∂~r

∂v . For the direction vectors we

also write

~ru =
∂~r

∂u
=

 ∂u x(u, v)

∂u y(u, v)

∂u z(u, v)

 and ~rv =
∂~r

∂v
=

 ∂v x(u, v)

∂v y(u, v)

∂v z(u, v)

 .

Examples 20.14:
©1 A parallelogram surface defined by the 3 points

Figure 20.9.

P0, P1, P2 has the point-direction representation

of a plane

~r (P ) = ~r (P0) + u
−−−→
P0 P1 + v

−−−→
P0 P2

where 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1.

©2 A spherical surface with radius R at the center

0 and spherical coordinates u = ϕ, v = ϑ has the parameterization

~r (u, v) =

R cosu cos v

R sinu cos v

R sin v


where 0 ≤ ϕ ≤ 2π and −π2 ≤ ϑ ≤

π
2 .

To determine the area of a curved surface F , we divide the base area S into

rectangles with side lengths (4u, 4v). With this division of S, the surface

F is divided into surface elements 4Fi:

r (u,v)

Pi

a

b

r (u,v+Dv)

DFi

r (u+Du,v)

Figure 20.10. Surface element 4Fi

The content of each surface element 4Fi is approximated by the parallelo-

gram area Fp =
∣∣∣~a×~b∣∣∣, where the parallelogram is spanned by the direction
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vectors ~a and ~b. According to the Taylor theorem in linear approximation

(n = 1) we get

~a = ~r (u+4u, v)− ~r (u, v) ≈ ∂~r

∂u
· 4u

~b = ~r (u, v +4v)− ~r (u, v) ≈ ∂~r

∂v
· 4v.

⇒4Fi ≈
∣∣∣~a×~b∣∣∣ ≈ ∣∣∣∣ ∂~r∂u × ∂~r

∂v

∣∣∣∣ 4u4v.
The vector ~n := ∂~r

∂u ×
∂~r
∂v is perpendicular to the tangent plane. It is called

the normal vector of the surface F at the point P (u, v). The sign is reversed

if we change the order of the parameters u and v, because ~rv×~ru = −~ru×~rv.
The sum of all parts 4Fi is

Zn =
n∑
i=1

∣∣∣∣ ∂~r∂u (Pi)×
∂~r

∂v
(Pi)

∣∣∣∣ 4u4v.
This subtotal is an approximation of the area of F . This approximation gets

better the finer the subdivision of the surface S is. For 4u → 0, 4v → 0

we define

ˆˆ

(F )

dF =

ˆˆ

(S)

|~ru (u, v)× ~rv (u, v)| du dv

as the surface integral of the surface F . This is a double integral using the

function |~ru × ~rv| in the domain S, as described in Volume 2, Section 12.1.

Example 20.15. ©1 Find the surface of the hemis-

Figure 20.11.

phere with radius R. Using the parameterization

from Example 20.14 ©2 we get

~r (u, v) = R

 cosu cos v

sinu cos v

sin v

 :

~ru = R

− sinu cos v

cosu cos v

0

 , ~rv = R

− cosu sin v

− sinu sin v

cos v

 .
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⇒ ~ru × ~rv = R2 cos v (cosu cos v ~e1 + sinu cos v ~e2 + sin v ~e3)

⇒ |~ru × ~rv| = R2 cos v.

We insert this parameterization into the surface integral:

ˆˆ

(F )

dF =

ˆ π/2

v=0

ˆ 2π

u=0

R2 cos v du dv

= 2π R2

ˆ π/2

v=0

cos v dv = 2π R2 .

©2 Find the surface of the circular cone

Figure 20.12.

z = R−
√
x2 + y2 , 0 ≤ z ≤ R. With

x = u

y = v

z = R−
√
u2 + v2, u2 + v2 ≤ R2,

we get the parameterization of the surface F .

Therefore,

~r (u, v) =

 u

v

R−
√
u2 + v2

 ⇒ ~ru =

 1

0
−u√
u2+v2

 , ~rv =

 0

1
−v√
u2+v2



⇒ ~ru × ~rv =


u√

u2+v2

v√
u2+v2

1

 ⇒ |~ru × ~rv| =
√

2

⇒
ˆˆ

(F )

dF =

ˆˆ

(S)

√
2 du dv =

√
2π R2.

20.2.1 Surface Integral of a Vector Field

If ~v (x, y, z) is the velocity field of e.g. a flowing liquid, then the scalar

product

~v · ~n = ~v · (~ru × ~rv) 4u4v

is the amount of liquid per unit time 4t passing through the area 4F .
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Figure 20.13. Flow of a liquid through a surface F

The component of the liquid flowing parallel to the surface does not contri-

bute to the flow through the surface! So the flow of ~v through the surface

F is approximately

N∑
k=1

~vk ~nk =
N∑
k=1

~vk · (~ru × ~rv) 4u4v,

where 4Fi is summed over all surface elements. In case N →∞ (i.e. 4u→
0 and 4v → 0) we obtain the surface integral

ˆˆ

(F )

~v d~F .

Definition: (Surface Integral). Let ~v (~r) be a vector field on the surface

F . The surface is represented by the parameterization ~r (u, v) with

(u, v) ∈ S. Then
ˆˆ

(F )

~v d~F =

ˆˆ

(S)

~v (~r (u, v)) · (~ru × ~rv) du dv

is the Surface Integral (if it exists) of ~v (~r) on the surface F .

Remarks:

(1) If the surface integral exists, it is independent of the particular para-

meterization of S.

(2) If F is a closed surface (e.g. the surface of a body), then instead of
ˆˆ

(F )

~v d~F we write

"

(F )

~v d~F .
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(3) Often the surface F is not given in a parameter representation, but in

an explicit expression z = f (x, y). Then we must first parameterize

the surface in order to calculate
´´
(F )

~v d~F . We will always get such a

parameterization with

x = u , y = v , z = f (u, v) and ~r (u, v) =

 u

v

f (u, v)

 .

(4) The surface integrals are exactly what we need when we want to cal-

culate, for example, the mass flow of a fluid through a surface or the

magnetic flux as the next examples show.

Mass Flow Rate

Let ~v be the velocity field of a flowing medium. Thenˆˆ

(F )

~v d ~A is the volume per unit time and

ρ

ˆˆ

(F )

~v d ~A is the mass per unit time

of the fluid flowing through the surface F , if ρ is the homogeneous

density of the fluid.

Application Example 20.16 (Mass Flow Rate).

Given is the velocity field of a fluid ~v (~r) =

 x

y√
x2 + y2

 . We calculate

the mass flow through a hemispherical surface x2 + y2 + z2 = R (z > 0)

in 2 time units (ρ = 1). A parameterization of the sphere’s surface is given

in Example 20.14 ©2 :

~r (u, v) = R

 cosu cos v

sinu cos v

sin v

 0 ≤ u ≤ 2π

0 ≤ v ≤ π
2

with the normal vector

~ru × ~rv = R2 cos v

 cosu cos v

sinu cos v

sin v

 .
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⇒ ~v (~r) · (~ru × ~rv) =

R cosu cos v

R sinu cos v

R cos v

 ·R2 cos v ·

 cosu cos v

sinu cos v

sin v


= R3 cos v

(
cos2 v + cos v sin v

)
.

The volume of fluid per unit time
´´
(F )

~v d~F is

ˆˆ

(F )

~v d~F =

ˆ 2π

u=0

ˆ π/2

v=0

~v (~r (u, v)) · (~ru × ~rv) dv du

= R3

ˆ 2π

u=0

ˆ π/2

v=0

cos v
(
cos2 v + cos v sin v

)
dv du

= R3

ˆ 2π

u=0

1 du = 2π R3.

The mass M flowing through the surface in two units of time is

M = 2 · 1 · 2π R3 = 4π R3 .

Application Example 20.17 (Magnetic Flux).

The magnetic flux Φ of a magnetic field ~B penetrating an area A is

Φ =

ˆˆ

(A)

~B d ~A .

Given is the magnetic field of a straight, current-carrying

Figure 20.14.

conductor

~B =
µ0 I

2π

−yx
0

 1

x2 + y2
.

We look for the magnetic flux through the circular sur-

face A.

The magnetic field is in the (x, y)-plane, the surface vector d ~A = ~ru ×
~rv du dv is perpendicular to the surface A, i.e. in z-direction. So ~B · d ~A = 0

and the magnetic flux through the surface A is zero.
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20.3 The Divergence
Let ~v be the velocity field of a flowing liquid, given in a volume G ⊂ R3.

Let O be the surface of the volume. According to Section 20.2, the integral"

(O)

~v d ~O =

"

(O)

~v ~n dA

is the net flow of the fluid through the surface O. Instead of d~O we write

~n dA, where ~n is the outward normal unit vector and dA is the area element.

If the integral is positive, then the domain G contains sources. Otherwise,

G contains sinks. We introduce a method to calculate the sources by an ap-

propriate differentiation of the vector field ~v without evaluating the surface

integral.

The surface integral

"

(O)

~v d ~O allows only a global statement in the sense

of a total balance over the whole domain G. To obtain a local statement

about the properties of the velocity field ~v at point P , we select a volume

V with surface O including point P .

Definition (Divergence):

The limit (as the volume around P goes to zero) is called the local

source density or divergence of ~v. We write:

div(~v)
∣∣∣
P

= lim
∆V→0

1

∆V

"

(O)

~v ~n dA,

where O is the surface of the volume V .

To simplify the discussion, we assume the point P to be at origin and select

a cuboid centred at P with edge lengths 2 ∆x, 2 ∆y, 2 ∆z as the volume

(see Fig. 20.15).

The total mass flow out of the cuboid is balanced by determining the flow

through two opposite surfaces. The flow through the surfaces A1 and A2 is

given by

Φz =

ˆˆ

(A1)

~v ~n1 dA1 +

ˆˆ

(A2)

~v ~n2 dA2.
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x

y

z

P

n1

A2

A1

Figure 20.15. Outflow through area A1 and A2

The surface A1 at z = −∆z has the normal ~n1 =

 0

0

−1

 = −~e3 and

~v ~n1 = −~v ~e3 = −v3. The surface element is dx dy (Cartesian coordinates).

With −∆x ≤ x ≤ ∆x , −∆y ≤ y ≤ ∆y we calculate

ˆˆ

(A1)

~v ~n1 dA1 =

ˆ ∆y

y=−∆y

ˆ ∆x

x=−∆x

−~v ~e3 dx dy

= −
ˆ ∆y

y=−∆y

ˆ ∆x

x=−∆x

v3 (x, y, −∆z) dx dy.

Similarly, for the second surface integral at position z = ∆z, with ~n2 =

−~n1 = ~e3, we get

ˆˆ

(A2)

~v ~n2 dA2 =

ˆ ∆y

y=−∆y

ˆ ∆x

x=−∆x

v3 (x, y, ∆z) dx dy.

Therefore,

Φz =

ˆ ∆y

−∆y

ˆ ∆x

−∆x

(v3 (x, y, ∆z)− v3 (x, y, −∆z)) dx dy.

We linearize the function v3 for small ∆z with respect to the variable z.

Then

v3 (x, y, ∆z)− v3 (x, y, −∆z) ≈ ∂

∂z
v3 (x, y, 0) · 2 ∆z

⇒ Φz ≈
ˆ ∆y

−∆y

ˆ ∆x

−∆x

∂

∂z
v3 (x, y, 0) · 2 ∆z · dx dy



254 20. Vector Analysis and Integral Theorems

Using the Mean Value Theorem for Integrals (see Volume 2, Section 8.6.5),

the function ∂
∂z v3 (x, y, 0) is excluded from the integral if it is evaluated

at a suitable intermediate point (ξ1, η1) with −∆x ≤ ξ1 ≤ ∆x and −∆y ≤
η1 ≤ ∆y:

Φz ≈
∂

∂z
v3 (ξ1, η1, 0) ·

ˆ ∆y

−∆y

ˆ ∆x

−∆x

2 ∆z · dx dy

≈ ∂

∂z
v3 (ξ1, η1, 0) 2∆z 2∆x 2∆y.

Similar expressions are obtained for the other two adjacent surfaces for Φx
and Φy. The total flux outside the box is given by the sum of all contribu-

tions from Φx, Φy and Φz. So for ∆V = 8 ∆x∆y∆z we get

div(~v)
∣∣∣
P0

= lim
∆V→0

1

∆V
(Φx + Φy + Φz)

= lim
∆V→0

1

8 ∆x∆y∆z
8 ∆x∆y∆z

·
[
∂v3

∂z
(ξ1, η1, 0) +

∂v1

∂x
(0, η2, τ2) +

∂v2

∂y
(ξ3, 0, τ3)

]
where −∆x ≤ ξ1, ξ3 ≤ ∆x , −∆y ≤ η1, η2 ≤ ∆y , −∆z ≤ τ2, τ3 ≤ ∆z.

For ∆V → 0 (∆x→ 0, ∆y → 0, ∆z → 0) all points in the cuboid tend to

P . Especially for the intermediate points we get ξ1, ξ3, η1, η2, τ2, τ3 → 0.

It can be shown that the limit exists at any point P of the volume and is

independent of the selected volume (or surface):

Divergence

The scalar function

div(~v) =
∂v1

∂x
(x, y, z) +

∂v2

dy
(x, y, z) +

∂v3

∂z
(x, y, z)

is the divergence of the vector field ~v at (x, y, z).

The divergence div(~v) of a vector field ~v specifies the local source density at

point P (x, y, z). If div(~v) = 0, then the vector field has no local sources.

The divergence of a vector field ~v is not a vector field but a scalar field.
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Examples 20.18:

©1 The divergence of ~v =

x2 − y z
y2 − z x
z2 − x y

 is

div(~v) =
∂v1

∂x
+
∂v2

∂y
+
∂v3

∂z

=
∂

∂x

(
x2 − y z

)
+

∂

∂y

(
y2 − z x

)
+

∂

∂z

(
z2 − x y

)
= 2x+ 2 y + 2 z

At point P (1, 3, 2) the divergence becomes

div(~v)
∣∣∣
P

= 2 + 6 + 4 = 12.

©2 A local source density (= charge density) ρ (x, y, z) induces an electric

field ~E =

 1
3 x

3 + y

(z + 1) y

z2 (x− y) + 2 z

. Applying the divergence to the electric

field, we compute ρ:

1

ε0
ρ (x, y, z) = div( ~E)

=
∂

∂x

(
1

3
x3 + y

)
+

∂

∂y
( (z + 1) y)

+
∂

∂z

(
z2 (x− y) + 2 z

)
= x2 + (z + 1) + 2 z (x− y) + 2.

The charge density at the origin is ρ (0, 0, 0) = 3 ε0.

20.4 Integral Theorem of Gauss
Let G ⊂ R3 be a contiguous domain divided into sub-

Figure 20.16.

domains Gk with volumes ∆Vk, each containing the

points Pk. The surface belonging to the subdomain

Gk is Ak. Then the flow through the subdomain Gk
is

∆Vk div(~v)
∣∣∣
Pk
≈

"

(Ak)

~v ~n dA (k = 1, . . . , n) .
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If two domains Gk and Gl are adjacent, the fluxes at the adjacent surfaces

cancel each other out because the outwardly directed normals of the com-

mon surfaces are opposite. This means that the flux through Gk and Gl
can be determined by balancing only the outer surfaces!

Figure 20.17. Flow through two adjacent areas

Adding all the subdomains we obtain

n∑
k=1

div(~v)
∣∣∣
Pk
·∆Vk ≈

"

(A)

~v ~n dA

and for n→∞ (i.e. any fine subdivision ∆Vk → 0):
ˆˆˆ

(V )

div(~v) dV =

"

(A)

~v ~n dA.

This integral relation is called the Gaussian Integral Theorem: The flow

of a vector field ~v through a closed surface A is equal to the triple integral

over the source density div(~v) in the enclosed volume.

Gaussian Integral Theorem: Divergence Theorem

Let V ⊂ R3 be a 3-dimensional domain with surface A = ∂V . Let

~n be the normal of length 1 pointing outwards on the surface A.

Let ~v (x, y, z) be a vector field. Thenˆˆˆ

(V )

div(~v) dV =

"

(∂V )

~v ~n dA.

Example 20.19. The velocity field is given

~v =

 x− z
x3 + y z

−3 + y

 .

We are looking for the flux Φ through the surface of the cone with height

h = 2 and radius R = 2:
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The flux Φ through the surface of a volume is

Φ =

"

(∂V )

~v ~n dA =

ˆˆˆ

(V )

div(~v) dV

and the divergence div(~v) of the velocity field is

div(~v) =
∂

∂x
(x− z) +

∂

∂y

(
x3 + y z

)
+

∂

∂z
(−3 + y) = 1 + z.

Figure 20.18. Cone and integration along z-axis

For the integration we introduce cylindrical coordinates

x = r cosϕ

y = r sinϕ

z = z

and use the parameterization of the cone (R = 2)

ϕ-Integration : 0 ≤ ϕ ≤ 2π

z-Integration : 0 ≤ z ≤ R− r for given r,

r-Integration : 0 ≤ r ≤ R.

Φ =

ˆ 2π

ϕ=0

ˆ 2

r=0

ˆ 2−r

z=0

(1 + z) r dz dr dϕ = 2π

ˆ 2

r=0

[
z +

1

2
z2

]2−r

z=0

r dr

= 2π

ˆ 2

r=0

(
4 r − 3 r2 +

1

2
r3

)
dr = 4π.

Example 20.20. Given is the electric field ~E =

 1
3 x

3 + y

z + 1

x− y

. We calculate

the electric flow through the surface of a sphere with radius R.

The electric flow through the surface is calculated using the Gaussian

Integral Theorem

Φ =

"

(A)

~E ~n dA =

ˆˆˆ

(V )

div( ~E) dV =

ˆˆˆ

(V )

x2 dV.
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To describe the volume V of the triple integral, we introduce spherical

coordinates
x = r cosϕ cosϑ,

y = r sinϕ cosϑ,

z = r sinϑ.

With these coordinates the divergence of the electric field becomes

div( ~E) = x2 = r2 cos2 ϕ cos2 ϑ

and the volume integral is

ˆˆˆ

(V )

div( ~E) dV =

ˆ R

r=0

ˆ π
2

ϑ=−π2

ˆ 2π

ϕ=0

r2 cos2 ϕ cos2 ϑ r2 cosϑ dϕdϑ dr.

=

ˆ R

r=0

r4

ˆ π
2

ϑ=−π2
cos3(ϑ)

ˆ 2π

ϕ=0

cos2(ϕ) dϕ dϑ dr.

Using the integralsˆ
cos(x)2 dx =

1

2
cos(x) sin(x) +

1

2
x+ C

ˆ
cos(x)3 dx =

1

3
cos(x)2 sin(x) +

2

3
sin(x) + C,

we finally get the resultˆˆˆ

(V )

div( ~E) dV =
4

15
R5 π.

Examples 20.21:

©1 The total charge Q in a volume V with surface A at a charge density

ρ (x, y, z) is given by

Q =

ˆˆˆ

(V )

ρ (x, y, z) dV ≈
"

(A)

~E ~n dA.

The electric flow through the surface A is proportional to the total

charge in the volume V . We introduce the constant ε0 and obtain

Q =

ˆˆˆ

(V )

ρ (x, y, z) dV = ε0

"

(A)

~E ~n dA. (1)
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According to the Gaussian Integral Theorem, the surface integral is

Q = ε0

"

(A)

~E ~n dA = ε0

ˆˆˆ

(V )

div( ~E) dV. (2)

With the identity of the integrals (1) and (2) for each volume V we con-

clude with the Mean Value Theorem of Integral Calculus the identity

of the integrands

ε0 div( ~E) = ρ.

The sources of the electric field are the charge densities.

©2 Since there are no magnetic charges, the divergence of the magnetic

field is zero:

div( ~B) = 0.

At the end of this section we note that the

Gaussian Integral Theorem is also valid for

planes:

Gauss’ Integral Theorem in the Plane

Let G ⊂ R2 be a plane with the boundary curve C and let ~v (x, y) =(
v1 (x, y)

v2 (x, y)

)
be a two-dimensional vector field. Then

ˆˆ

(G)

div(~v) dx dy =

˛

(C)

~v(~r(t))~n(t) dt,

where ~r (t) =

(
x (t)

y (t)

)
is a parameterization of the curve C and

~n (t) =

(
ẏ (t)

−ẋ (t)

)
is the normal vector pointing outwards to ~r ′ (t).
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20.5 The Curl
To determine the local sources of a vector field, we have introduced the

divergence. The calculation of the vortices of a vector field leads to the

concept of the curl. Roughly speaking, the sources in a volume are deter-

mined by calculating the flow through its surface. To describe the vortices

(circulation) in a surface A, however, the vector field is integrated along the

boundary curve C.

Divergence = Local Source Density Rotation = Local Vortex Density

Figure 20.19. Divergence and Curl

Let ~v be the velocity field of a flowing liquid. Let C be a closed curve around

a point P . Then the line integral˛

(C)

~v d~r =

˛

(C)

~v (~r (t)) · ~r ′ (t) dt

is a measure of the circulation of the liquid near the point P . Note that ~r ′ (t)

is tangent to the curve C and therefore ~v (~r (t)) ·~r ′ (t) shows the component

of ~v along the curve. To obtain a local statement at a point P (see Fig.

20.20), we select a surface A near the point P with the boundary curve C
and the surface normal vector ~n. The vector ~n is perpendicular to A. The

orientation of C and ~n is chosen such that they form a right-handed helix.

Figure 20.20. Surface A with boundary curve C and normal ~n
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Definition (Curl, Rotation):

The Curl (local circulation) of a vector field ~v at a point P is a vector

rot(~v) whose component in direction ~n is defined by

~n · rot(~v) = lim
A→0

1

A

˛

(C)

~v · d~r.

By a suitable choice of the domain A, all components of rot(~v) are obtained.

It can be shown that the curl definition is independent on the specific choice

of the surface A, provided that the partial derivatives of the vector field ~v

are continuous.

We determine rot(~v) for the vector field ~v =

 vx
vy
vz

 in Cartesian coordina-

tes, taking the point P as the origin and choosing a rectangle with center

P and edge lengths 2∆x and 2∆y.

Figure 20.21. Circulation in z-direction

Then ~n = ~ez and ~n · rot(~v) = (rot(~v))z is the z-component of the curl. The

line integral over the boundary curve C is divided into four partial integrals:

(rot~v)z = lim
∆y→0
∆x→0

1

4 ∆x∆y


ˆ ∆x

−∆x

vx (t, - ∆y, 0) dt︸ ︷︷ ︸
(1)

+

ˆ ∆y

−∆y

vy (∆x, t, 0) dt︸ ︷︷ ︸
(2)

ˆ −∆x

∆x

vx (t, ∆y, 0) dt︸ ︷︷ ︸
(3)

+

ˆ −∆y

∆y

vy ( - ∆x, t, 0) dt︸ ︷︷ ︸
(4)

 .

Note that the last two integrals vary from x = ∆x to −∆x and from

y = ∆y to −∆y. By swapping the integration limits, these integrals get
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negative signs. By linearizing vx with respect to the second and vy with

respect to the first variable

vx (t, −∆y, 0)− vx (t, ∆y, 0) ≈ −∂vx
∂y

(t, 0, 0) · 2 ∆y

vy (∆x, t, 0)− vy (−∆x, t, 0) ≈ ∂vy
∂x

(0, t, 0) · 2 ∆x

we get for the z-component of the curl

(rot~v)z ≈
1

4 ∆x∆y

{ˆ ∆x

−∆x

−∂vx
∂y

(t, 0, 0) 2∆y dt

+

ˆ ∆y

−∆y

∂vy
∂x

(0, t, 0) 2∆x dy

}
.

According to the Mean Value Theorem of Integrals (see Volume 2) the term
∂
∂y vx (t, 0, 0) can be excluded, if it is evaluated at a suitable but unknown

intermediate point −∆x ≤ ξ1 ≤ ∆x. The same applies to ∂
∂xvy (0, t, 0) for

an intermediate point −∆y ≤ η1 ≤ ∆y. Therefore,

(rot~v)z ≈
1

4 ∆x∆y

{
−∂vx
∂y

(ξ1, 0, 0) 2∆x 2∆y +
∂vy
∂x

(0, η1, 0) 2∆x 2∆y

}
.

For ∆x → 0 and ∆y → 0 all points of the surface converge to the origin

(ξ1 → 0, η1 → 0), so that

( rot ~v)z = lim
∆x,∆y→0

˛
(C)
~v d~r = − ∂vx

∂y

∣∣∣∣
P

+
∂vy
∂x

∣∣∣∣
P

.

Similarly, the first and second components of the curl are obtained by se-

lecting areas in the (y, z)- and (x, z)-plane, respectively. In summary

Curl of a Vector Field

Let ~v(x, y, z) =

 vx(x, y, z)

vy(x, y, z)

vz(x, y, z)

 be a vector field with differentiable

components. Then, the curl of ~v(x, y, z) at (x, y, z) is

rot(~v) =



∂vz
∂y
− ∂vy

∂z

∂vx
∂z
− ∂vz

∂x
∂vy
∂x
− ∂vx

∂y


.
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The curl rot(~v) of the vector field ~v indicates the local circulation (vortex

density) of ~v at point P (x, y, z). If rot(~v) = ~0, then the vector field has no

local vortices and is called vortex-free.

If we replace the integrability condition in the main clause for line integrals

(see page 236) by the curl, we get

Statement 20.1:

In a simple contiguous domain, the following three conditions are

equivalent:

(1)

ˆ
(C)
~v d~r is path independent.

(2)

˛
~v d~r = 0.

(3) rot~v = ~0.

Note: When evaluating the curl in Cartesian coordinates, the determinant

notation is usually used:

rot(~v) =

∣∣∣∣∣∣∣
~ex ∂x vx
~ey ∂y vy
~ez ∂z vz

∣∣∣∣∣∣∣ .

Example 20.22. We calculate the curl of the vector field ~v =

 x2 y

−2x z

2 y z

:

rot(~v) =

∣∣∣∣∣∣∣
~ex ∂x x2 y

~ey ∂y −2x z

~ez ∂z 2 y z

∣∣∣∣∣∣∣
= ~ex (∂y 2 y z − ∂z (−2x z))

−~ey
(
∂x 2 y z − ∂z x2 y

)
+~ez

(
∂x (−2x z)− ∂y x2 y

)

=

 2 z + 2x

0

−2 z − x2

 .
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Examples 20.23:

©1 For radially symmetric force fields ~k (~r) = f (r) ~r the integrability con-

ditions are always satisfied. Therefore

rot(~k (~r)) = ~0.

©2 For all vector fields with rot(~k) = ~0 the integrability conditions are

fulfilled. Therefore, there is always a potential function Φ (x, y, z) with
~k = grad Φ:

rot(~k) = ~0 ⇔ There exists a scalar field Φ with ~k = grad Φ.

©3 Given is the vector field ~k =

−
y

x2+y2

x
x2+y2

0

. Show that rot(~k) = ~0.

Application Example 20.24 (Rotating Bodies).

The velocity of a rotating rigid body is ~v = ~ω×~r. Here ~ω is the vector whose

direction is parallel to the axis of the curl and whose magnitude indicates

the angular velocity.

~v = ~ω × ~r =

∣∣∣∣∣∣∣
~ex ωx x

~ey ωy y

~ez ωz z

∣∣∣∣∣∣∣ =

 ωy z − ωz y
ωz x− ωx z
ωx y − ωy x

 .

Using the determinant notation of the curl

rot(~v) =

∣∣∣∣∣∣∣
ex ∂x ωy z − ωz y
ey ∂y ωz x− ωx z
ez ∂z ωx y − ωy x

∣∣∣∣∣∣∣
we obtain the x-component

( rot ~v)x = ∂y (ωx y − ωy x)− ∂z (ωz x− ωx z) = 2ωx,

and so on:

rot(~v) = 2 ~ω.

If a small sample is placed in the velocity field ~v of a flowing liquid, the

angular velocity ~ω is proportional to the curl 1
2 rot(~v).
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20.6 Stokes’ Integral Theorem
To explain Stokes’ integral theorem on a given plane A with boundary

curve C, we divide A into sub-areas ∆Ai, i = 1, . . . , n. These subdivisions

contain points Pi and are bounded by curves Ci.

C

DAl

Figure 20.22. Stokes’ Integral Theorem

For the circulation of the vector field ~v in the area element ∆Ai we get

approximately

rot(~v)
∣∣∣
Pi
·∆ ~Ai ≈

˛

(Ci)

~v · d~r.

Looking at the boundaries of two adjacent sub-areas Ak and Al,

Ak
AlD D

Figure 20.23.

the contributions at the boundaries cancel each other out because they are

oriented in opposite directions. Therefore, the circulation in the area Ak
and Al can be determined by balancing the outer boundary curves. By

summing all the sub-areas, we obtain the approximation

n∑
k=1

rot(~v)
∣∣∣
Pk
·∆ ~Ak ≈

˛

(C)

~v · d~r.
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For n → ∞ (i.e. ∆ ~Ak → 0) the sum
n∑
k=1

rot(~v)
∣∣∣
Pk
·∆ ~Ak converges to the

integral
´´
(A)

rot(~v) · d ~A and thus

ˆˆ

(A)

rot(~v) · d ~A =

˛

(C)

~v · d~r.

This integral relation is the content of Stokes’ Theorem.

Stokes’ Integral Theorem

A

n

C

Figure 20.24.

Let A be a surface with boundary curve C
and let ~v (x, y, z) be a vector field defined

on A. Thenˆˆ

(A)

rot(~v) · d ~A =

˛

(C)

~v · d~r.

The orientation of C and the surface nor-

mal d ~A = ~n dA form a right-hand screw; the line element is

d~r = ~r ′ (t) dt with the tangent vector ~r ′ (t) to the curve C.

Example 20.25. In a time-varying magnetic field ~B, the law of induction

holds

Ui = −
ˆˆ

(A)

∂ ~B

∂t
· d ~A.

The voltage between two points in an electric field ~E is given by the line

integral along C

U =

ˆ
(C)

~E d~r.

Following Stokes’ theorem, we obtain

ˆˆ

(A)

rot( ~E) · d ~A = −
ˆˆ

(A)

∂ ~B

∂t
· d ~A

for any area A. So the identity holds for the integrands:

rot( ~E) = − ∂

∂t
~B.
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20.7 Working with Operators
This section summarizes important operations on scalar and vector fields.

A function Φ : R3 → R with Φ (x, y, z) is a scalar field. Examples of

scalar fields are spatial temperature profiles T (x, y, z) or the charge density

ρ (x, y, z). A function ~k : R3 → R3 with

~k (x, y, z) =

 k1 (x, y, z)

k2 (x, y, z)

k3 (x, y, z)


is a vector field. Examples of vector fields are the magnetic field ~B, the

electric field ~E or force fields ~F . A vector field ~k is a potential field (gradient

field), if a function Φ exists with ~k = grad (Φ). In physics, an operator

notation has been established for grad, div and rot using the Nabla operator:

∇ :=

 ∂x
∂y
∂z

 =

 ∂
∂x
∂
∂y
∂
∂z

 .

Formally, the Nabla operator is a vector that is always placed to the left

of the function to be differentiated. When using the Nabla operator for the

multiplications of vectors (scalar multiplication α · ~v, scalar product ~v · ~ω,

cross product ~v × ~ω), the following holds

grad (Φ) = ∇Φ

div(~k) = ∇ · ~k
rot(~k) = ∇× ~k.

Summary: Gradient, Divergence, Curl.

Let Φ(x, y, z) be a scalar and ~k =

 k1(x, y, z)

k2(x, y, z)

k3(x, y, z)

 a vector field.

(1) grad Φ(x, y, z) = ∇Φ(x, y, z) =

 ∂x Φ(x, y, z)

∂y Φ(x, y, z)

∂z Φ(x, y, z)


is the gradient of Φ(x, y, z). The gradient is a vector field.

(2) div(~k) = ∇ · ~k = ∂x k1 (x, y, z) + ∂y k2(x, y, z) + ∂z k3(x, y, z)

is the divergence of ~k. The divergence is a scalar field.
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(3) rot(~k) = ∇× ~k =

 ∂y k3(x, y, z)− ∂z k2(x, y, z)

∂z k1(x, y, z)− ∂x k3(x, y, z)

∂x k2(x, y, z)− ∂y k1(x, y, z)


is the curl of the vector field ~k. The curl is a vector field.

Example 20.26. Given is the scalar function

Φ(x, y, z) =
1√

x2 + y2 + z2 + 1
.

Its gradient is the vector field ~k

~k(x, y, z) = grad Φ(x, y, z) =


− x

(x2+y2+z2+1)
3
2

− y

(x2+y2+z2+1)
3
2

− z

(x2+y2+z2+1)
3
2

 .

The divergence of the vector field ~k leads to a scalar field

div(~k) = −3
1

(x2 + y2 + z2 + 1)
5
2

.

The curl is zero because it is the gradient of a scalar potential.

The Nabla operator can be used as a normal vector. For example, we can

check that ∇ ·
(
∇× ~k

)
= 0 and ∇× (∇Φ) = ~0 are valid:

Theorem 20.2:

Let ~k(x, y, z) be a differentiable vector field and Φ(x, y, z) be doubly

differentiable scalar field, then

div(rot~k) = 0 and rot (grad Φ) = ~0.

©1 We check the first identity directly using the Nabla notation:

div(rot(~k)) = ∇ · (∇× ~k) = ∇ ·

 ∂y k3(x, y, z)− ∂z k2(x, y, z)

∂z k1(x, y, z)− ∂x k3(x, y, z)

∂x k2(x, y, z)− ∂y k1(x, y, z)


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= ∂x (∂y k3(x, y, z)− ∂z k2(x, y, z))

+∂y (∂z k1(x, y, z)− ∂x k3(x, y, z))

+∂z (∂x k2(x, y, z)− ∂y k1(x, y, z)) = 0

©2 We also check the second identity using the Nabla notation and taking

into account that mixed second-order derivatives are equal:

rot(grad (Φ)) = ∇× (∇φ) = ∇×

 ∂xΦ

∂yΦ

∂zΦ


=

 ∂y ∂zΦ− ∂z ∂yΦ

∂z ∂xΦ− ∂x ∂zΦ
∂x ∂yΦ− ∂y ∂xΦ

 = ~0

The following differentiation rules can also be verified directly, assuming

that Φ is always a differentiable scalar field, ~v and ~ω are differentiable vec-

tor fields.

Identities with Differential Operators

a) div(~v + ~ω) = div(~v) +div(~ω)

b) rot(~v + ~ω) = rot(~v) +rot(~ω)

c) div(Φ~v) = grad Φ · ~v + Φ div(~v)

d) rot(Φ~v) = grad Φ× ~v + Φ rot(~v)

e) div(~v × ~ω) = ~ω·rot(~v)− ~v·rot(~ω)

f) rot(~v × ~ω) = div(~ω) ~v−div(~v) ~ω + (~ω · ∇) ~v − (~v · ∇) ~ω

g) grad(~v · ~ω) = ~ω× rot(~v) + ~v× rot(~ω) + (~ω · ∇) ~v + (~v · ∇) ~ω

where

(~ω · ∇) ~v = (ω1 ∂x + ω2 ∂y + ω3 ∂z)

 v1

v2

v3


=

ω1 ∂x v1 + ω2 ∂y v1 + ω3 ∂z v1

ω1 ∂x v2 + ω2 ∂y v2 + ω3 ∂z v2

ω1 ∂x v3 + ω2 ∂y v3 + ω3 ∂z v3

 .
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Finally, two important consequences are noted for source-free (div(~k) = 0)

and vortex-free (rot(~k) = ~0) vector fields.

Theorem 20.3:

(1) The vector field ~k is vortex-free if and only if there exists a

scalar field Φ with ~k = grad Φ. Φ is then its scalar potential:

There exists a Φ with ~k = grad Φ ⇔ rot(~k) = ~0.

(2) The vector field ~k is source-free if and only if there exists a

vector field ~A with ~k = rot( ~A). ~A is then its vector potential:

There exists an ~A with ~k = rot( ~A) ⇔ div(~k) = 0.

Example 20.27. Given is the scalar potential

Φ(x, y, z) = arctan
(y
x

)
for x ≥ 0.

The corresponding vector field ~k is

~k = grad Φ =

−
y

x2+y2

x
x2+y2

0

 .

Since ~k is a potential field, rot(~k) = ~0. The divergence of ~k is

div(~k) = ∂x

(
− y

x2 + y2

)
+ ∂y

(
x

x2 + y2

)
+ ∂z (0)

=
y · 2x

(x2 + y2)
2 +

−x · 2 y
(x2 + y2)

2 + 0 = 0.

The vector field ~k is free of both divergence and curl. For the scalar potential

Φ we get

div (grad Φ) = ∇ · ∇φ =

 ∂x
∂y
∂z


 ∂x
∂y
∂z

 Φ = ∂2
x Φ + ∂2

y Φ + ∂2
z Φ = 0.
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We call

∆Φ = ∂2
x Φ + ∂2

y Φ + ∂2
z Φ

the Laplace operator (see Section 19.4) which plays an important role in

electrostatics: All electrostatic problems can be described by

∆Φ = − ρ

ε0
,

where ρ(x, y, z) is the charge density and ε0 is the permittivity (dielectric

constant).

Example 20.28. A scalar function Φ (x, y, z) is called a harmonic function

if at each point of the domain ∆Φ = 0. The next functions

Φ (x, y) = x2 − y2

Φ (x, y) = cosx cosh y

Φ (x, y) = ln
(√

x2 + y2
)

Φ (x, y) = arctan
(y
x

)
are all harmonic functions which can be checked directly.

Examples 20.29:

©1 Given is the force field ~F =

 x y

x z

x2 y z2

. Is ~F a gradient field? We

compute the curl of ~F :

rot(~F ) =

∣∣∣∣∣∣∣
~ex ∂x x y

~ey ∂y x z

~ez ∂z x
2 y z2

∣∣∣∣∣∣∣ =

x2 z2 − x
−2x y z2

z − x

 .

Since rot(~F ) 6= ~0, ~F is not a gradient field.

©2 The force field

~F (~r) = c
~r

|~r|3
= c

1

(x2 + y2 + z2)
3
2

x

y

z





272 20. Vector Analysis and Integral Theorems

is a radial force field. We can check that

rot(~F ) = ~0 and div(~F ) = 0.

Since rot(~F ) = ~0, we conclude that ~F is a gradient field, i.e. there is a

potential Φ with

~F = grad Φ =

 ∂x Φ

∂y Φ

∂z Φ

 !
=

 f1

f2

f3

 =


c x

(x2+y2+z2)
3
2

c y

(x2+y2+z2)
3
2

c z

(x2+y2+z2)
3
2

 .

This potential Φ is determined by

Φ(x, y, z) = − c

(x2 + y2 + z2)
1
2

+ const =
c

|~r|
+ const

It is div(~F ) = div (gradΦ) = ∆Φ = 0. So Φ(x, y, z) is a harmonic func-

tion. Physical examples include the gravitational field or the Coulomb

field of an electric charge.

Example 20.30. Consider a viscous fluid flowing through a pipe of radius r

in the y-direction. Its velocity in y-direction is given by

~v = c ·

 0

r2 − x2 − z2

0


We discuss whether the fluid has sources or whether it has a circulation.

To determine the sources, we apply the divergence operator to the

vector field.

div(~v) =
∂

∂x
(0) +

∂

∂y

(
r2 − x2 − z2

)
+

∂

∂z
(0) = 0.

This field has no sources since div(~v) = 0. For the circulation, we

compute the rotation:

rot (~v) =

 2 c z

0

−2 c x


This field has a circulation perpendicular to its flow direction in the

(x, z)-plane.
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20.8 Maxwell’s Equations
Maxwell’s equations are one of the highlights of 19th century mathematical

physics. They describe all the phenomena of classical electrodynamics. They

are based on four laws of physics:

1. Faraday’s Law of Induction

Faraday’s law of induction (1831) states

Figure 20.25. Magnetic flux through A

that the change of magnetic flux in a

loop of conductor over time induces a

voltage

Ui = − ∂

∂t
Φ = − ∂

∂t

ˆˆ

(A)

~B d ~A.

If the area A penetrated by the magnetic field is constant in time, then

Ui = −
ˆˆ

(A)

(
∂

∂t
~B

)
d ~A.

The induced voltage is related to an electric field

Ui =

˛

(C)

~E d~r =

ˆˆ

(A)

rot( ~E) · d ~A

when the Stokes theorem is applied to the area A with boundary curve C.

⇒
ˆˆ

(A)

rot( ~E) · d ~A =

ˆˆ

(A)

(
− ∂

∂t
~B

)
d ~A.

This identity holds for all surfaces A (even for arbitrarily small ones). Using

the Mean Value Theorem of Integral Calculus, we conclude that the identity

must then already hold for the integrands

rot( ~E) = − ∂

∂t
~B.

2. The Gaussian Law

The Gaussian law of electrostatics states that the flux of an electric field

from a volume V through its surface A is proportional to the total charge

Q in the volume:

"

(A)

~E d ~A ∼ Q. The proportionality constant is 1
ε0

(ε0:
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dielectric constant). If ρ(x, y, z) is the charge density within the volume V ,

then the total charge is

Q =

ˆˆˆ

(V )

ρ(x, y, z) dV.

⇒ 1

ε0
Q =

1

ε0

ˆˆˆ

(V )

ρ(x, y, z) =

"

(A)

~E d ~A,

where A is the surface area enclosing the volume V . According to the Gaus-

sian Integral Theorem "

(A)

~E d ~A =

ˆˆˆ

(V )

div( ~E) dV.

⇒
ˆˆˆ

(V )

div( ~E) dV =
1

ε0

ˆˆˆ

(V )

ρ (x, y, z) dV.

This identity holds for any volume and therefore for the integrands

div( ~E) =
ρ

ε0
.

The sources of the electric field are the charge densities.

3. Ampere’s Law

Ampere’s law (1825) states that a conductor car-

y

x

current in
z-direction

C

Figure 20.26.

Current carrying conductor

rying an electric current induces a magnetic field˛

(C)

~B d~r = µ0 I.

If ~j is the current density distribution within an

area A defined by its boundary curve C, then the

current I is given by

I =

ˆˆ

(A)

~j d ~A.
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Using Stokes’ theorem, we get

µ0 I = µ0

ˆˆ

(A)

~j d ~A =

˛

(C)

~B d~r =

ˆˆ

(A)

rot( ~B) d ~A

⇒
ˆˆ

(A)

µ0
~j d ~A =

ˆˆ

(A)

rot( ~B) d ~A

for all areas A. So we conclude the identity for the integrands

µ0
~j = rot( ~B).

4. Source of the Magnetic Field

Since the magnetic field is source-free (there are no magnetic monopoles),

div( ~B) = 0.

5. The Continuity Equation

Summarizing all four laws gives the four equations

div( ~E) =
ρ

ε0
(1)

rot( ~B) = µ0
~j (2)

rot( ~E) = − ∂

∂t
~B (3)

div( ~B) = 0 (4)

However, there is a contradiction in these four equations: If the divergence

of equation (2) is formed, then

div
(
µ0
~j
)

= div
(

rot( ~B)
)

= 0.

The divergence of the current density is zero. This statement contradicts

the continuity equation: The time variation of the total charge in a volume,
∂
∂t

´´´
(V )

ρ dV , is equal to the current flowing through its surface

−
"

(A)

~j d ~A = −
ˆˆˆ

(V )

div(~j) dV
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⇒
ˆˆˆ

(V )

∂

∂t
ρ dV =

ˆˆˆ

(V )

−div(~j) dV.

Since this identity holds for all volumes V , it also holds for the integrands

∂

∂t
ρ = −div(~j) (Continuity Equation).

From the continuity equation we conclude that

div(~j) = − ∂

∂t
ρ

(1)
= − ∂

∂t
ε0 div( ~E) = div

(
−ε0

∂

∂t
~E

)

⇒ div

(
~j + ε0

∂

∂t
~E

)
= 0.

~j + ε0
∂
∂t
~E is the Maxwell total current and ε0

∂
∂t
~E is the displacement

current. So we replace ~j in equation (2) by

~j + ε0
∂

∂t
~E.

Then equations (1)−(4) are free of contradictions and we have the complete

set of Maxwell’s equations for the vacuum:

Maxwell’s Equations

Inner Field Equations Field Generation

rot( ~E) = − ∂

∂t
~B div( ~E) =

ρ

ε0

div( ~B) = 0 rot( ~B) = µ0
~j + ε0 µ0

∂

∂t
~E

Maxwell’s equations are four coupled linear partial differential equations

that describe the relationship between the electromagnetic fields ~E and ~B

and their sources, the charge and current densities.
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20.9 Problems on Vector Analysis
20.1 Determine the velocity ~v (t) and the acceleration ~a (t) for the motion of

a mass on a

a) circular path ~r (t) = R

(
cos (ωt)

sin (ωt)

)

b) cycloid path ~r (t) = R

(
t− sin t

1− cos t

)
.

20.2 Find the associated potential belonging to the vector fields

a) ~k =

(
2x y + 4x

x2 − 1

)
b) ~k =

(
ey

x ey

)
c) ~k =

(
3x2 y + y3

x3 + 3x y2

)
.

20.3 Given is the force field ~F =

(
x

y

)
.

a) Show that ~F is conservative.

b) Determine the associated potential.

c) Calculate the work
´
C
~F d~r to move a mass from P1 (1, 0) to P2 (3, 5).

20.4 Check whether the next vector fields are gradient fields and calculate the

corresponding potentials if possible

a) ~f1 =

 y z + 1

x z + 1

x y + 1

 b) ~f2 =

 z + y

x+ z

x+ y

 c) ~f3 =

 2x+ y

x+ 2 y z

y2 + 2z


d) ~f4 =

 x

x y

x y z

 e) ~f5 =

 1 + y + y z

x+ x z

x y


20.5 Calculate the line integralˆ

C

(
y dx+

(
x2 + x y

)
dy
)

along the adjacent lines between the points

A (0, 0) and B (2, 4).

20.6 Determine the value of the surface integral

"

O

~v d ~A for

~v =

 1 + z4

1 + z4

1 + x2 y2

. The parameterization of the surface is given by

F : ~r (u, v) = u~ex + v ~ey +
1

4
u v ~ez =

 u

v
1
4
u v


for −1 ≤ u ≤ 1 and −1 ≤ v ≤ 1.
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20.7 Find the flow of ~v=

 2 z

x + y

0

 through the surface of x2 + y2 + z2 = R2.

20.8 Find the divergence of the vector field ~v =

 x2 − y z
y z − y2

z2 + x z

 at the points

(2, −1, 3) , (2, 9, 4) and (−1, 1, −2).

20.9 Specify f (x, y) such that ~v =

 x y

x y

z · f (x, y)

 is source-free.

20.10 Calculate the divergence of the vector fields

a) ~k1 =

 y + z

x+ 2x y

x+ 2 z

 b) ~k2 =

 2x2 − y z
ez y

ez x+ y

 c) ~k3 =
~r

|r|

20.11 Determine the curl of ~v =

 x2 y

−2x z

2 y z

.

20.12 a) Calculate the curl for the vector fields ~v and ~w.

b) Is ~v or ~w vortex-free?

c) Is ~v or ~w source-free?

~v =

 y z

z x

x y

 , ~w =

 x+ y − z
z − x+ y

y + z − x

 .

20.13 a) Calculate the curl of ~v = (~a · ~r) · ~r with ~a =

 ax
ay
az

.

b) At which points is rot(~v) = ~0?

20.14 Calculate rot

rot

 z2

x+ y

z − x2 − y2


.

20.15 Calculate the curl and divergence of the following vector fields

a) ~f1 =

 x y

x z

x2 y z2

 b) ~f2 =

 x2 y + z

y2 ex − z2

z2 x+ y2

 c) ~f3 = c

 0

r2 − x2 − y2

0


20.16 Let ~v be a vector field and Φ a scalar field. Prove that the following

identities hold:

div(rot(~v)) = 0 and rot(grad Φ) = ~0.
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20.17 Show that ~f =

 1 + y + y z

x+ x z

x y

 is a gradient field.

20.18 Determine the associated scalar and vector potentials from the vector

field 20.17.

20.19 Check by differentiating whether

a)

ˆ  x cos (y)

x sin (y)

x2 + y2

 d~r is path-independent?

b) ~v =

 z sin2 (y)

2x z sin (y) cos (y)

x sin2 (y)

 is a gradient field?

20.20 Check the Gaussian Integral Theorem of the plane for a circle around the

origin of radius 2, where ~v =

(
x2 − 5x y + 3 y

6x y2 − x

)
.

20.21 Calculate the flow of ~v =

 x2−y2

z
x2+y2

z

− (x+ y) ln z

 out of the cube

0 ≤ x ≤ 1 , −1 ≤ y ≤ 2 , 1 ≤ z ≤ 4.

20.22 Calculate the flow of ~v =

 x3

z − x2 y
y − z x2

 out of the cylinder 0 ≤ z ≤ H ,

x2 + y2 ≤ R2.

20.23 Calculate the flow of ~v =

 0

y cos2 (x) + y3

z
(
sin2 (x)− 3 y2

)
 from the surface of the

sphere x2 + y2 + z2 = 4.

20.24 Verify Stokes’ integral theorem for

a) ~v =

 x y

y z

x z

 , V =
{

(x, y, z) ∈ R3 : x2 + y2 + z2 ≤ 1 , y ≥ 0 , z ≥ 0
}

.

b) ~v =

 x− z
x3 + y z

−3x y2

 , V =
{

(x, y, z) ∈ R3 : z = 2−
√
x2 + y2 , z ≥ 0

}
.



This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank



21Chapter 21

Splines

To describe technical shapes, series of measurements are often taken. The dependent

variable is measured at sample points xi. A list of pairs corresponding to an unknown

function f(x) is then available. Finding an approximate function that allows the

calculation of intermediate points is called interpolation.

Apart from conventional interpolation methods such as Lagrange or Newton inter-

polation from Volume 1, splines are the most commonly used today. These splines

can be used to construct the most complicated shapes, such as those used in CAD

design, by specifying only a few points.
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21 Splines

To describe technical shapes, series of measurements are often taken. The depen-

dent variable is measured at sample points xi. A list of pairs corresponding to an

unknown function f(x) is then available. Finding an approximate function that

allows the calculation of intermediate points is called interpolation.

Apart from conventional interpolation methods such as Lagrange or Newton in-

terpolation from Volume 1, splines are the most commonly used today. These

splines can be used to construct the most complicated shapes, such as those used

in CAD design, by specifying only a few points.

When many points are considered, conventional interpolation results in a

high degree polynomial: When interpolating n + 1 points, a polynomial of

degree n is required, resulting in a large waviness of the graph. These po-

lynomials fluctuate greatly with small changes in the measured values.

Example 21.1 (With Maple-Worksheet).

Figure 21.1. Function f(x) = 4 e−x
2

Given is the function

f(x) = 4 e−x
2

shown in Fig. 21.1. We calculate the

8th degree polynomial that interpola-

tes the 9 measurement points at

x = −4, −3, . . . , 3, 4

using the methods discussed in Volume 1, Section 4.2.5. The result, together

with the 9 pairs and the original function, is shown in Fig. 21.2.

Figure 21.2. Function (dashed) and interpolation polynomial (solid)

It can be seen that the interpolation polynomial fits the given points, but

has a large waviness that is not present in the original function.



284 21. Splines

To get rid of the waviness with higher-order polynomials, the interval is

divided into sub-intervals and a polynomial of small degree is determined

for each sub-interval. The simplest way to do this is to connect two conse-

cutive points with a straight line. However, this results in a polygon which

is discontinuous in its first derivative: The slope of the computed polygon

is not smooth.

It is therefore advisable to combine several polynomials of small degree

to form a function that can be differentiated as often as necessary over the

entire interval. This method is called spline interpolation. Multiple differen-

tiation is necessary to avoid buckling of the overall function at the interfaces.

This chapter describes two commonly used spline methods: For cubic spli-

nes, a polynomial of degree 3 is chosen between two values and a smooth

overall curve is constructed by a suitable transition and appropriate boun-

dary conditions. For the Bezier splines a constructive approach to generating

a given curve from multiple Bezier segments is described.

21.1 Interpolation with Cubic Splines
With the cubic splines, polynomials of degree 3 are selected in each sub-

interval and the coefficients of the functions are determined such that the

spline curve passes smoothly through all points.

In addition, two boundary conditions are selected at the edges. Depending

on these conditions, a distinction is made between natural cubic splines,

periodic cubic splines, natural parametric splines and periodic parametric

cubic splines. The details of the calculation are only presented for the case

of natural cubic splines. The procedure is similar for the other cases.

Definition: The cubic spline function S for the values (xi, yi)i=1,...,n

with monotonically arranged nodes xi at a = x1 < x2 < x3 · · · < xn =

b is defined by the four properties

(1) The spline function S can be continuously differentiated twice over

the entire interval [a, b].

(2) In each sub-interval [xi, xi+1] for i = 1, . . . , n−1, S is a polynomial

pi(x) of degree 3.
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(3) S satisfies the interpolation condition: S(xi) = yi for i = 1, . . . , n.

(4) Depending on the spline function (e.g. natural cubic, periodic cubic,

etc.) special boundary conditions are defined.

The cubic spline S results in a cubic polynomial pi(x) in each sub-interval

[xi, xi+1] for i = 1, . . . , n− 1:

Spline function in the sub-interval [xi, xi+1]

S
∣∣∣
[xi, xi+1]

: pi(x) = ai + bi(x− xi) + ci(x− xi)2 + di(x− xi)3.

For the n − 1 sub-intervals we obtain n − 1 polynomials p1(x), p2(x), . . .,

pn−1(x) with their derivatives:

p′i(x) = bi + 2 ci(x− xi) + 3 di(x− xi)2

p′′i (x) = 2 ci + 6 di(x− xi).

It is necessary to find 4 · (n−1) coefficients ai, bi, ci, di for i = 1, . . . , n−1.

This requires 4n−4 equations. Using properties (1) and (3) we obtain 4n−6

conditions:

Conditions for Spline Function

(a) pi(xi) = yi for i = 1, . . . , n− 1 and pn−1(xn) = yn.

(b) pi(xi) = pi−1(xi) for i = 2, . . . , n− 1.

(c) p′i(xi) = p′i−1(xi) for i = 2, . . . , n− 1.

(d) p′′i (xi) = p′′i−1(xi) for i = 2, . . . , n− 1.

(a) is the interpolation condition, (b) - (d) are the connection conditions

for the polynomials. The missing two equations are obtained from property

(4) by specifying two boundary conditions (BC).
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21.1.1 Natural Cubic Splines

Natural cubic splines define the boundary conditions such that the curva-

ture disappears at the outer boundaries:

p′′1(x1) = 0 and p′′n−1(xn) = 0.

From the definition of the cubic splines and the boundary conditions for the

natural cubic splines, all coefficients ai, bi, ci, di are determined. To make

the formulas clearer, we define for i = 1, . . . , n− 1

hi := xi+1 − xi.

Conditions (a) to (d) are used to determine the unknown coefficients. Every-

thing can be traced back to the solution of a linear system of equations for

c1, . . . , cn−1. From condition (a) we compute the coefficients ai directly by

ai = yi for i = 1, . . . , n− 1. (1)

For formal reasons, we introduce an := yn. From condition (d) we see that

the coefficients di are computed directly using ci:

di =
1

3hi
(ci+1 − ci) for i = 1, . . . , n− 2. (2)

From condition (b) we get bi, while for di the identity (2) is inserted:

bi =
1

hi
(ai+1 − ai)− hi

3 (ci+1 + 2 ci) for i = 1, . . . , n− 2. (3)

And from condition (c) follows for i = 2, . . . , n− 1:

bi − bi−1 = hi−1 (ci + ci−1). (4)

We insert equation (3) into (4) and obtain for i = 2, . . . , n− 2:

hi−1 ci−1 + 2 ci (hi−1 + hi) + hi ci+1 =
3 (ai+1 − ai)

hi
− 3 (ai − ai−1)

hi−1
. (5)

The above equation also holds for i = n− 1 if we define cn := 0.

The boundary conditions for natural cubic splines are that the curvature

disappears at the interval boundaries. This results in two additional equa-
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tions

p′′1(x1) = c1 = 0 and p′′n−1(xn) = 2 cn−1 + 6 dn−1 hn−1 = 0. (BC)

We define cn = 0, then equation (2) holds for i = 1, . . . , n− 1 according to

(BC). So the left side of the system of linear equations can be represented

by the matrix

A =



2(h1 + h2) h2

h2 2(h2 + h3) h3

. . .
. . .

. . .

. . .
. . . hn−2

hn−2 2(hn−2 + hn−1)


,

Note: The matrix A is a tridiagonal matrix because only the three central

diagonals, the major diagonal and the two adjacent minor diagonals, are

non-zero. All other coefficients are zero. This system of equations is solved

by a modified Gauss method for tridiagonal matrices, the Thomas algo-

rithm (see Section 21.3.1).

Summary: Natural Cubic Splines

Given are the values (xi, yi)i=1,...,n at ordered nodes xi with a =

x1 < x2 < x3 < · · · < xn = b. The natural cubic spline S consists

in each sub-interval of a cubic polynomial

pi(x) = ai + bi(x− xi) + ci(x− xi)2 + di(x− xi)3

where i = 1, . . . , n− 1.

For hi = xi+1 − xi the coefficients are calculated by

ai = yi for i = 1, . . . , n,

bi =
1

hi
(ai+1 − ai)−

hi
3

(ci+1 + 2 ci) for i = 1, . . . , n− 1,

di =
1

3hi
(ci+1 − ci) for i = 1, . . . , n− 1,

c1 = 0, cn = 0.
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The coefficients ci, i = 2, . . . , n− 1, are the solutions of the system

of linear equations A~c = ~r with the matrix

A =



2(h1 + h2) h2

h2 2(h2 + h3) h3

. . .
. . .

. . .

. . .
. . . hn−2

hn−2 2(hn−2 + hn−1)


,

the vector ~c containing the unknown coefficients and the right-hand

side ~r:

~c =


c2
c3
...

cn−1

 , ~r =



3

h2
(a3 − a2)− 3

h1
(a2 − a1)

...

...
3

hn−1
(an − an−1)− 3

hn−2
(an−1 − an−2)


.

Example 21.2 (With Maple-Worksheet). The points (1, 1), (4, 3), (5, 2),

(6, 4) and (9, 1) are given. We search for the natural cubic spline S through

these points.

First, we set up the system of linear equations A~c = ~r. For this, we

define

h1 = 3, h2 = 1, h3 = 1, h4 = 3

and according to the summary of natural cubic splines we get 8 1 0

1 4 1

0 1 8


 c2
c3
c4

 =

−5

9

−9

 .

The solution is c2 = − 59
60 , c3 = 43

15 , c4 = − 89
60 and c1 = 0. With

a1 = y1 = 1, a2 = y2 = 3, a3 = y3 = 2, a4 = y4 = 4 we compute

b1 = −33

20
, b2 = −13

10
, b3 =

7

12
, b4 = −59

30

and

d1 = − 59

540
, d2 = −77

60
, d3 = −29

20
, d4 =

89

540
.
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The cubic spline S associated with these coefficients is

S =



− 59
540 x

3 + 59
180 x

2 + 119
90 x− 73

135 for 1 ≤ x ≤ 4

77
60 x

3 − 983
60 x2 + 409

6 x− 269
3 for 4 ≤ x ≤ 5

− 29
20 x

3 + 1477
60 x2 − 821

6 x+ 252 for 5 ≤ x ≤ 6

89
540 x

3 − 89
20 x

2 + 1127
30 x− 484

5 for 6 ≤ x ≤ 9

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The graph of S with the given points is shown in Fig. 21.3.

Figure 21.3. Natural cubic spline S for Example 21.2

Example 21.3 (With Maple). Given is the function f(x) = 4 e−x
2

from

Example 21.1. We search for the natural cubic spline S through the points

at x = −4, −3, . . . 3, 4 and its graphical representation.

Figure 21.4. Natural cubic spline for Example 21.1

The spline function S is shown in Fig. 21.4. It can be seen very clearly

that the spline function, unlike the interpolation polynomial from Ex-

ample 21.1, has no waviness and represents the original function quite

well.
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21.1.2 Periodic Cubic Splines

Periodic cubic splines are defined for periodic boundary conditions:

S(x1) = S(xn), S′(x1) = S′(xn) and S′′(x1) = S′′(xn).

It is assumed that the spline S behaves periodically at the edges, i.e. it

has the same function values and the same first and second derivatives.

Applying these conditions to the first and last cubic polynomials, we get

p1(x1) = pn−1(xn), p′1(x1) = p′n−1(xn) and p′′1(x1) = p′′n−1(xn).

In the case of periodic cubic splines, we get the equations

a1 = an−1 + bn−1 hn−1 + cn−1 h
2
n−1 + dn−1 h

3
n−1

b1 = bn−1 + 2 cn−1 hn−1 + 3 dn−1 h
2
n−1 (BC’)

2 c1 = 2cn−1 + 6 dn−1 hn−1

instead of the equations (BC). We isolate bn−1 in the first equation and

insert the result into the second equation. Then

b1 =
1

3hn−1
(3 a1 − 3 an−1 + cn−1 h

2
n−1 + 2h2

n−1c1)

bn−1 =
1

3hn−1
(3 a1 − 3 an−1 − 2 cn−1 h

2
n−1 − h2

n−1 c1)

dn−1 = − 1

3hn−1
(−c1 + cn−1).

We use the above formulas and modify the system of linear equations for

the coefficients ci as described in the following summary

Periodic Cubic Splines

Given are the values (xi, yi)i=1,...,n with ordered nodes xi at a =

x1 < x2 < x3 < · · · < xn = b. The periodic cubic spline S consists

in each sub-interval of a cubic polynomial

pi(x) = ai + bi(x− xi) + ci(x− xi)2 + di(x− xi)3

where i = 1, . . . , n − 1. With hi := xi+1 − xi and hn := h1, the

coefficients are given by
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ai = yi for i = 1, . . . , n− 1,

an = a1, an+1 := a2,

bi =
1

hi
(ai+1 − ai)−

hi
3

(ci+1 + 2 ci) for i = 1, . . . , n− 1,

di =
1

3hi
(ci+1 − ci) for i = 1, . . . , n− 1,

c1 = cn.

The coefficients ci, i = 2, . . . , n are the solution of the system of

linear equations A~c = ~r with the matrix

A =



2(h1 + h2) h2 h1

h2 2(h2 + h3) h3

. . .
. . .

. . .

. . .
. . . hn−1

h1 hn−1 2(hn−1 + hn)


,

the vector ~c of the unknown coefficients and the right-hand side ~r:

~c =


c2
c3
...

cn

 , ~r =


3
h2

(a3 − a2)− 3
h1

(a2 − a1)
...
...

3
hn

(an+1 − an)− 3
hn−1

(an − an−1)

 .

Example 21.4 (With Maple). The points (1, 1), (4, 3), (5, 2), (6, 4) and

(9, 1) are given from Example 21.2. We look for the periodic cubic spline

S that fits these points.

We will skip the details of the calculation and just present the result

of the spline function S

S =



− 67
216 x

3 + 20
9 x2 − 283

72 x+ 163
54 for 1 ≤ x ≤ 4

37
24 x

3 − 20x2 + 2039
24 x− 231

2 for 4 ≤ x ≤ 5

− 41
24 x

3 + 115
4 x2 − 3811

24 x+ 1163
4 for 5 ≤ x ≤ 6

79
216 x

3 − 103
12 x2 + 1565

24 x− 629
4 for 6 ≤ x ≤ 9

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.
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Fig. 21.5 displays the given points together with the graph of S.

Figure 21.5. Periodic cubic spline for Example 21.4

It can be seen that the qualitative behavior of the periodic cubic spline

S within the interval [1, 9] is the same as for the natural cubic spline.

However, due to the modified boundary conditions, we observe devia-

tions near the interval boundaries.

21.1.3 Natural Parametric Cubic Splines

The natural parametric cubic splines are particularly useful for approxi-

mating a curve in space that does not have a monotonous distribution of

points, such as spirals or (non-smooth) closed curves.

The idea of the procedure is based on

Figure 21.6. Line g through P1 and P2

the following geometrical considerati-

on: The line through the two points

P1(x1, y1) and P2(x2, y2) is described

in parameter form by

g : ~r

(
x

y

)
= ~r(P1) + λ

−−→
P1P2.

For λ = 0 the line starts at point P1

and for λ = 1 it ends at point P2. Alternatively, we can use the notation

g : ~r

(
x

y

)
= ~r(P1) + (t− t1)

1

|−−→P1P2|
−−→
P1P2,

where |−−→P1P2| is given by

|−−→P1P2| =
√

(x2 − x1)2 + (y2 − y1)2.

The line g gives a linear connection between points P1 and P2. It starts at

point P1 for t = t1 and ends at point P2 for t = t1 + |−−→P1P2|.
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If we choose a cubic approach, instead of the linear approach in the para-

meter t, we define

~r

(
x

y

)
= ~r(P1) + (t− t1) k1

1

|−−→P1P2|
−−→
P1P2

+ (t− t1)2 k2
1

|−−→P1P2|
−−→
P1P2 + (t− t1)3 k3

1

|−−→P1P2|
−−→
P1P2.

With a suitable choice of k1, k2, k3 we get a connection of P1 with P2 through

a cubic curve.

Motivated by these considerations of a non-linear connection between the

points P1 and P2, the parametric spline S is composed of two components

Sx and Sy, where the components for t ∈ [ti, ti+1] are defined by

Sx(t) = pix (t) = aix + bix (t− ti) + cix (t− ti)2 + dix (t− ti)3

Sy(t) = piy(t) = aiy + biy(t− ti) + ciy(t− ti)2 + diy(t− ti)3.

Here, we define

t0 = 0; ti+1 = ti +
√

(xi+1 − xi)2 + (yi+1 − yi)2 for i = 1, . . . , n− 1.

The x-component of the spline Sx is obtained by using the equation sys-

tem for natural cubic splines, replacing xi with ti and yi with xi. The

y-component Sy results from replacing xi with ti, leaving yi. Geometrical-

ly, tn is the length of the polygon through the points P1, . . . , Pn.

Example 21.5 (With Maple). A spiral is defined by the following 13 points:

(0, 0), (3, 4), (2, 6), (0, 4), (4, 0), (7, 4), (6, 6), (4, 4), (8, 0), (11, 4), (10, 6),

(8, 4), (12, 0). We look for the natural parametric cubic spline S that fits

these points.

Although the method of calculating the spline interpolation curve is

clear and straightforward, the amount of work involved is too great

to describe here. Instead, we have implemented the algorithm in a

Maple-procedure.

The procedure ParaCubicSpline determines this spline and displays the

values along with the graph of S (see Fig. 21.7).
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Figure 21.7. Parametric cubic spline for a spiral

21.1.4 Periodic Parametric Cubic Splines

The periodic parametric splines are ideal for smooth closed curves such as

contours. The spline S again has two components, Sx and Sy. The basic

system of equations is a periodic cubic spline, the exchange of variables is

analogous to the natural parametric spline.

Example 21.6 (With Maple). To show the behavior of a periodic parame-

tric cubic spline, we select the points (5, 1), (8, 3), (9, 6), (7, 7), (6, 5), 8(, 4),

(10, 6), (7, 9), (2, 4), (5, 1). In this example, the last and first points of the

list are the same.

Figure 21.8 shows the parametric cubic spline S as a closed curve for

the selected points. The calculation uses the Maple-procedure Pe-

riodicParaSpline implemented in the corresponding worksheet. This

procedure calculates and graphically displays the spline curve S.

Figure 21.8. Periodic parametric spline
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21.2 Bezier Splines
Bezier spline curves and Bezier spline surfaces play an important role in

the modelling of free-form geometries in CAD/CAM design. They were dis-

covered independently by the engineers Bezier (Renault) and de Casteljau

(Citroen).

Bezier and de Casteljau introduced a basic element - the Bezier segment -

which can be used to model virtually any geometric shape. A Bezier cur-

ve or Bezier surface is made up of many Bezier segments. A constructive

algorithm is presented in Section 21.2.1 and an algebraic method for con-

structing of Bezier segments is given in Section 21.2.2.

Note: Although the method of calculating the Bezier segments is clear and

straightforward, the computational time involved is too great to describe

here. Instead, we have implemented the algorithms in Maple-procedures.

The great advantage of the Bezier splines is their data reduction, i.e. with a

few points (Bezier points) a curve or surface consisting of hundreds or even

thousands of points can easily be generated. We will see that the calculation

of spline curves involves the solution of large linear systems of equations.

The Section 21.3 deals specifically with solving such large systems of linear

equations.

21.2.1 Creating a Bezier Segment

The Bezier segment is constructed from four points. The construction of a

segment is realized by a constructive algorithm (de Casteljau algorithm),

which is illustrated in Fig. 21.9.

Figure 21.9. Constructing a point on the Bezier segment
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To construct a Bezier segment, four Bezier points (P0 to P3) are specified.

P0 is the start point and P3 is the end point of the Bezier segment; P1 and

P2 define the shape of the curve.

In the first step of the procedure, the three lines connecting the points P0 to

P3 are divided by a fixed ratio t. This creates three new points P01, P12, P23.

There are two connecting lines to these three points, again divided by the

same ratio. This defines two points P012, P123 and only one line. Dividing by

t again gives P0123 which is a point of the Bezier segment shown in Fig. 21.9.

The ratio t varies from 0 to 1, for t = 0 we get the point P0 and for t = 1

the point P3. The number of divisions of the lines is called an iteration. So 3

iterations are needed to find a point on the segment with 4 starting points.

This procedure is repeated for other values of t. The result are points on

the Bezier segment. The resolution depends on the number of t-parameters

chosen.

Example 21.7 (With Maple). The Bezier segment is searched for the points

P0(1, 1), P1(1.5, 5), P2(2.5, 3), P3(3.5, 1). The constructive method accor-

ding to de Casteljau gives a curve as shown in Fig. 21.10. The worksheet

used is structured such that Bezier points other than the default ones can

be specified.

P0

P1

P2

P3

Figure 21.10. Bezier segment to points P0, . . . , P4

Visualization. To illustrate the influence of the position of point P2 on the

overall curve, we choose P0(1, 1), P1(1.5, 5), P2(x, 3), P3(3.5, 1). P0, P1, P3

are fixed but the x-coordinate of P2 varies from x = 0 to x = 6. In Fig.

21.11 all curves have been superimposed to show the influence of the point

P2 on the behavior of the whole curve: If the x-value of P2 is smaller than

P1, a peaked curve is obtained; for larger x-values the curve becomes more

bulbous.
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Figure 21.11. Bezier segments depending on P2

21.2.2 Parameterization of a Bezier Segment

An explicit parametric representation of Bezier segments can be described

using the Bernstein polynomials. The Bernstein polynomials of degree n

are defined for i = 0, . . . , n by

B
(n)
i (t) :=

(
n

i

)
ti (1− t)n−i.

There are n+ 1 Bernstein polynomials of degree n.

(
n

i

)
are the binomial

coefficients:

(
n

i

)
=

n!

i! (n− i)!
.

Example 21.8 (Bernstein polynomials, with Maple-Worksheet). We define

all third degree Bernstein polynomials and show their graphs.

The following list contains all third degree Bernstein polynomials:

B
(3)
0 (t) = (1− t)3 = 1− 3 t+ 3 t2 − t3

B
(3)
1 (t) = 3 t (1− t)2 = 3 t− 6 t2 + 3 t3

B
(3)
2 (t) = 3 t2 (1− t) = 3 t2 − 3 t3

B
(3)
3 (t) = t3.

The Fig. 21.12 shows these four polynomials for t ∈ [0, 1].
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Figure 21.12. Bernstein polynomials of degree three

Using the Bernstein polynomials the Bezier segments can be described by

a simple formula. Using the polynomials from Example 21.8 we obtain the

Bezier segment with 4 points:

~r(t) = ~r(P0) (1− t)3 + ~r(P1) 3 (1− t)2 t

+~r(P2) 3 (1− t) t2 + ~r(P3) t3 . (1)

The vectors ~r(P0), ~r(P1), ~r(P2) and ~r(P3) are the position vectors of the

Bezier points P0 to P3. The result ~r(t) is a parameterization of the segment.

By varying t between 0 and 1, a complete Bezier segment of arbitrary pre-

cision is obtained.

Summary: Bezier Segment

The Bezier segment defined by the points P0, P1, P2, P3 is given

by the parametric representation

~r(t) =
3∑
i=0

~r(Pi) B
(3)
i (t) for t ∈ [0, 1], (2)

where B
(3)
i (t) =

(
3

i

)
ti (1 − t)3−i are the Bernstein polynomials

of degree 3 (i = 0, 1, 2, 3).

Example 21.9 (With Maple-Worksheet). Find the description of the Bezier

segment by the points P0(0, 0), P1(1, 5), P2(2, 2), P3(6, 0) using the Bern-

stein polynomials and the graphical representation of the segment.
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With the position vectors

(
0

0

)
,

(
1

5

)
,

(
2

2

)
,

(
6

0

)
the parameteri-

zation is

~r(t) =

(
3 (1− t)2 t+ 6 (1− t) t2 + 6 t3

15 (1− t)2 t+ 6 (1− t) t2

)

=

(
3 t3 + 3 t

9 t3 − 24 t2 + 15 t

)
.

The Bezier segment is shown in Fig. 21.13.

P0

P1

P2

P3

Figure 21.13. Bezier segment generated using Bernstein polynomials

Interpretation: The degree 3 of the Bezier segment in equation (2) is equal

to the number of Casteljau iterations. With equation (1) it follows that

~r(0) = ~r(P0) and d
dt ~r(0) = 3

−−→
P0P1. So for t = 0 the resulting point on

the Bezier segment corresponds to the first point P0 and the tangent at P0

corresponds to the line between P0 and P1. Similarly, it can be shown that

the segment at P3 is the tangent to the line defined by P2 and P3. Segments

of degree 3 are also known as cubic Bezier segments.

Higher Order Bezier Segments

Running the de Casteljau algorithm with n+ 1 points and n itera-

tions instead of 4 points and 3 iterations produces a Bezier segment

of degree n. Generalizing to equation (2) we obtain

~r(t) :=
n∑
i=0

~r(Pi) B
(n)
i (t). (3)

The Bezier coefficients ~r(Pi) are again the position vectors of the

points Pi and B
(n)
i (t) (for i = 0, . . . , n) are the Bernstein polyno-

mials of degree n.
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Example 21.10 (With Maple-Worksheet). Find the description of the Bezier

segment at points P0(1, 1), P1(1.5, 5), P2(2.5, 3), P3(3.5, 1), P4(4.5, 6) using

the 4th degree Bernstein polynomials.

With the position vectors ~r(P0) =

(
1

1

)
, ~r(P1) =

(
1.5

5

)
, ~r(P2) =(

2.5

3

)
, ~r(P3) =

(
3.5

1

)
, ~r(P4) =

(
4.5

6

)
and the 4th degree Bernstein

polynomials and the 4 points

~r(t) = ~r(P0) (1− t)4 + 4~r(P1) (1− t)3 t

+6~r(P2) (1− t)2 t2 + 4~r(P3) (1− t) t3 + ~r(P4) t4

we get the parameterization

~r(t) =

(
(1− t)4 + 6 (1− t)3 t+ 15 (1− t)2 t2 + 14 (1− t) t3 + 4.5 t4

(1− t)4 + 20 (1− t)3 t+ 18 (1− t)2 t2 + 4 (1− t) t3 + 6 t4

)

=

(
1
2 t

4 − 2 t3 + 2 t2 + 2 t+ 1

t4 + 24 t3 − 36 t2 + 16 t+ 1

)
.

The Bezier segment is shown in Fig. 21.14.

Figure 21.14. 4th order Bezier segment

Visualization with Maple. The Bernstein polynomial approach has been

implemented in Maple-worksheets. Depending on the point P2 the ani-

mation gives the same results as the constructive method. However, the

parameterized approach offers a significant time advantage over the con-

structive solution. The worksheet 3BSeg.mws contains several examples of

higher order Bezier segments and additional animations.
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21.2.3 Bezier Curves

To display complicated curves, one Bezier segment is usually not sufficient,

even at a higher level. Therefore, several simple Bezier segments of lower

degree (e.g. n = 3) are combined. The resulting curves are called Bezier

curves.

When modelling shapes, however, spline curves with smooth transitions

play a more important role. The condition for a smooth transition is that a

Bezier curve consisting of n-th degree segments is (n−1) times continuously

differentiable at the nodes. We will use the notation (Cn−1 -continuous) for

a point where the spline curve is (n− 1) times continuously differentiable.

This means that a cubic Bezier spline curve (n = 3) must be C2-continuous

at its transitions.

The following list gives the geometric conditions for the C0-, C1- and C2-

continuity:

C0 denotes a continuous junction, usually with a kink. The last point of the

first segment P
(k)
3 coincides with the first point of the second segment

P
(k+1)
0 :

P3
(k) = P0

(k+1)

for k = 1, 2, . . . , l− 1, where k is the number of the individual segment

and l is the total number of segments.

C1 denotes a continuously differentiable transition, i.e. the spline curve has

the same gradient at the contact point from the right as from the left.

More specifically, this means that

(1) the C0-continuity must be satisfied;

(2) the penultimate point of the first segment, the two connecting points

and the second point of the second segment lie on a straight line

(collinear) (see Fig. 21.15).

Figure 21.15. Construction of a C1-continuous Bezier curve
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C2 denotes a continuous differentiable transition. The curvature of the

curve is preserved at the transition points. This means that the C1-

continuity is satisfied and there is a point Ck with the following pro-

perties (see Fig. 21.16):

(1) Ck is collinear with the points P1
(k) and P2

(k);

(2) P
(k)
2 divides the distance P

(k)
1 Ck by the ratio vk;

(3) Ck is collinear with the points P1
(k+1) and P2

(k+1);

(4) P
(k+1)
1 divides the distance CkP

(k+1)
2 by the ratio vk.

Figure 21.16. Construction of a C2-continuous Bezier curve

Example 21.11 (C0-continuous curve, with Maple-Worksheet). Find the C0-

continuous Bezier curve to the given Bezier points for two Bezier segments:

P
(1)
0 = (0, 0), P

(1)
1 = (1,−7), P

(1)
2 = (6,−2), P

(1)
3 = (10, 0);

P
(2)
1 = (15,−4), P

(2)
2 = (22, 4), P

(2)
3 = (24, 0).

For the C0-continuity we define P
(2)
0 = P

(1)
3 and determine the first

and second segments separately by third-order Bernstein polynomials.

Figure 21.17. C0-continuous Bezier curve
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The Fig. 21.17 shows the Bezier curve together with the Bezier points.

The bend at the transition from the first to the second segment can

be clearly seen at the point P
(1)
3 .

Example 21.12 (C1-continuous curve, with Maple-Worksheet). Find the C1-

continuous Bezier curve to the given Bezier points for two Bezier segments:

P
(1)
0 = (0, 0), P

(1)
1 = (1,−7), P

(1)
2 = (6,−2), P

(1)
3 = (10, 0);

P
(2)
2 = (14, 4), P

(2)
3 = (24, 0).

To make the transition between the first and second segments conti-

nuously differentiable, two conditions must be met:

(1) P
(2)
0 = P

(1)
3 and

(2) the points P
(1)
2 , P

(1)
3 and P

(2)
1 lie on a straight line. To do this, for

example, we set λ = 7 and define

P
(2)
1 = P

(1)
2 +

λ

|P (1)
3 − P (1)

2 |
(P

(1)
3 − P (1)

2 ).

This definition of the points P
(2)
0 and P

(2)
1 determines the first and

second segments:

Figure 21.18. C1-continuous Bezier curve

The Fig. 21.18 shows the connection between points P
(1)
2 and P

(2)
1 .

The difference between the first and second segments is clearly visi-

ble. The slope of the curve at point P
(1)
3 is equal to the slope of this

straight line, i.e. the straight line is the tangent to the Bezier curve at

the transition point. However, we can also see at point P
(1)
3 that the

curvatures from the left and right are different: The curvature of the

left curve is negative (right curvature), while the curvature of the right

curve is positive (left curvature).
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To get the same curvature from both sides, it is necessary to switch to the

C2-continuity, as the next example shows:

Example 21.13 (C2-continuous curve, with Maple-Worksheet). Find the C2-

continuous Bezier curve to the given Bezier points for two Bezier segments:

P
(1)
0 = (0, 0), P

(1)
1 = (1,−7) and P

(2)
2 = (12, 4), P

(2)
3 = (24, 0).

This example constructs a Bezier curve that is twice continuously dif-

ferentiable at its interface. According to the C2-continuity, we need to

define a point C and a division ratio v. With these choices we define

two additional points for each segment: P
(1)
2 , P

(1)
3 and P

(2)
0 and P

(2)
1

are constructed from them. We choose C = (20, 20), the division ratio

v = 0.7 and define

P
(1)
2 = P

(1)
1 +

v

|C − P (1)
1 |

(C − P (1)
1 ),

P
(2)
1 = P

(2)
2 +

v

|C − P (2)
2 |

(C − P (2)
2 ),

P
(1)
3 = P

(1)
2 + v(P

(2)
1 − P (1)

2 ),

P
(2)
0 = P

(1)
3 .

With the calculated Bezier points

P
(1)
2 = (1.40, −6.42), P

(2)
1 = (13.75, 3.34),

P
(1)
3 = (10.04, 0.41), P

(2)
0 = (10.04, 0.41),

we determine the two Bezier segments and draw the Bezier curve:

Figure 21.19. C2-continuous Bezier curve

The Fig. 21.19 shows that the slope of the left curve corresponds qua-

litatively to the right curve at point P
(1)
3 , as does the curvature.
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21.2.4 Creating Bezier Surfaces

The creation of Bezier surfaces is similar to the parametric creation of a

spline curve. The starting point is again a base segment defined by adding

two Bernstein polynomials. This results in a vector ~r which depends on two

parameters (u, v). Both parameters vary in the interval [0, 1]. To define a

surface segment (n+ 1) · (m+ 1) Bezier points are needed, i.e. for a bicubic

surface segment (n = 3,m = 3), we need 16 Bezier points.

Equation (5) gives the general definition of a Bezier surface segment.

~r(u, v) =
n∑
i=0

m∑
j=0

Pij B
(n)
i (u) B

(m)
j (v)

 (5)

Visualization with Maple: The creation of the Bezier surface segments is

realized in the worksheet (5B3dSeg.mws).

Figure 21.20. Construction of a Bezier surface

This worksheet shows some Bezier surfaces and provides animations to show

the influence of the Bezier points on the surface segment. As with Bezier

curves, Bezier surfaces are created by connecting individual surface seg-

ments. Similar continuity conditions apply to the connections.
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21.3 Solving Systems of Linear Equations

Calculating the spline curves leads to large systems of linear equations that

must be solved to determine the unknown values. These linear systems are

sparsely populated because very few elements of the matrix are non-zero.

Therefore, the efficient solution of sparse systems of linear equations is an

important task.

In the case of simple matrix structures, such as those arising from the spline

problem, special variants of the Gaussian method play an important role.

The next two subsections describe the Thomas algorithm for tridiagonal

matrices and the Cholesky method for symmetric positive definite matrices.

21.3.1 Thomas Algorithm

We return to the summary of the spline problem. The calculation of the

coefficients of the spline function is related to the solution of a system

of linear equations with a tridiagonal matrix T. In the description of the

algorithm, we start with a system of linear equations

T ~x = ~d,

where the matrix on the left side is a tridiagonal matrix. This is why the

system is also called a tridiagonal equation system. The solution of a sys-

tem of linear equations is done by the Gaussian algorithm, which leads to

a particularly simple method, the tridiagonal or Thomas algorithm.

To describe the Thomas algorithm, we assume that T is given by

T :=



b1 c1 0 . . . 0 0

a2 b2 c2 . . . 0 0
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

...

0 0 . . . an−1 bn−1 cn−1

0 0 . . . 0 an bn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

d1

d2

...

...

dn−1

dn


,

where the diagonal elements bi 6= 0 for all i = 1 . . . n. Then the Gauss elimi-

nation can be formulated explicitly to solve the system of linear equations:
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Thomas Algorithm

Given is the tridiagonal matrix T from above. We define

q = ai
bi−1

b′i = bi − qci−1

d′i = di − qdi−1

 i = 2, . . . , n .

The backward substitutions give the solution

xn =
d′n
b′n

xi =
d′i − cixi+1

b′i
i = n− 1, . . . , 1 .

Example 21.14 (With Maple-Worksheet). We are looking for the solution

to T ~x = ~d with

T =


−2 1 0 0 0

1 −2 1 0 0

0 1 −2 1 0

0 0 1 −2 1

0 0 0 1 −2

 and ~d =


−1

−1

−1

−1

−1

 .

The Thomas algorithm is implemented in a Maple procedure and is

used to solve the systems of linear equations:

x1 =
5

2
, x2 = 4, x3 =

9

2
, x4 = 4, x5 =

5

2
.

21.3.2 The Cholesky Method

Like the Gaussian algorithm, the Cholesky method is a direct method for

solving systems of linear equations with a symmetric positive definite ma-

trix, such as those encountered when solving boundary value problems for

partial differential equations.

Before we discuss the decomposition of the matrix A, some criteria for posi-

tive definite matrices are given below. An important property is its diagonal

dominance. This notion is descriptively clear, but we will give a precise de-

finition.
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Definition: Let A be an (n× n) matrix.

(1) The matrix A is called diagonal dominant if for all i = 1, . . . , n

it holds: |aii| ≥
∑
k=1,k 6=i |aik|; at least for one i the greater sign

must hold.

(2) The matrix A is called strictly diagonal dominant if for all i =

1, . . . , n it holds: |aii| >
∑
k=1,k 6=i |aik|.

Criteria for Positive Definite Matrices

Let A be a symmetric (n× n) matrix.

©1 A is positive definite ⇒ aii > 0 for all i = 1 . . . n.

©2 A is positive definite ⇔
All principal determinants are positive, i.e.

det (aij)i=1..k,j=1..k > 0 for all k = 1 . . . n.

©3 A is strictly diagonal dominant ⇒ A is positive definite.

©4 A is diagonal dominant and aii > 0, aij < 0 for all i 6= j

⇒ A is positive definite.

©5 A is tridiagonal, diagonal dominant and aii > 0,

aij 6= 0 for all |i− j| = 1

⇒ A is positive definite.

Now we look at the Cholesky decomposition. The first step is to decompose

the matrix A into the product of the lower triangular matrix Rt and the

upper triangular matrix R such that

A = Rt ·R.

Example 21.15. We look for the Cholesky decomposition of the symmetric

matrix

A =

(
1 4

4 25

)
.
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We perform the matrix multiplication A = Rt ·R with an upper tri-

angular (2× 2) matrix R.(
1 4

4 25

)
= Rt ·R =

(
r11 0

r12 r22

)(
r11 r12

0 r22

)
=

(
r2
11 r11r12

(r12r11) r2
12 + r2

22

)
.

Due to the symmetry of the original matrix A we get only 3 equations.

By comparing the coefficients with the original matrix elements we get

r2
11 = 1 y r11 = 1

r11r12 = 4 y r12 = 4

r2
12 + r2

22 = 25 y r22 = 3.

So R =

(
1 4

0 3

)
and A = Rt ·R =

(
1 0

4 3

)
·
(

1 4

0 3

)
=

(
1 4

4 25

)
.

Example 21.16. We are looking for the Cholesky decomposition into a lower

and an upper triangular matrix R for the symmetric matrix

A =

 1 2 0

2 8 4

0 4 20

 .

We perform a matrix multiplication A = Rt ·R with an upper trian-

gular (3× 3) matrix R: 1 2 0

2 8 4

0 4 20

 = Rt ·R =

 r11 0 0

r12 r22 0

r13 r23 r33


 r11 r12 r13

0 r22 r23

0 0 r33


=

 r2
11 r11r12 r11r13

(r12r11) r2
12 + r2

22 r12r13 + r22r23

(r13r11) (r13r12 + r23r22) r2
13 + r2

23 + r2
33

 .

Due to the symmetry of A and also of the matrix product, we skip the

terms in brackets. Comparing the coefficients with the original matrix

elements we get

r2
11 = 1 y r11 = 1

1r12 = 2 y r12 = 2

1r13 = 0 y r13 = 0

4 + r2
22 = 8 y r22 = 2
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2 · 0 + 2r23 = 4 y r23 = 2

4 + r2
33 = 20 y r33 = 4.

So the upper triangular matrix is

R =

 1 2 0

0 2 2

0 0 4


and the Cholesky decomposition is

A = Rt ·R =

 1 0 0

2 2 0

0 2 4

 ·
 1 2 0

0 2 2

0 0 4



Similar to the examples above, we now consider the general case of an n×n
matrix. The algorithm for the Cholesky decomposition is obtained by com-

paring the coefficients of the symmetric matrix A with the product Rt ·R.

Cholesky Decomposition

Let A be a symmetric, positive definite (n × n) matrix. Then

A = Rt ·R is decomposed with an upper triangular matrix R. The

coefficients of R are computed using the following algorithm:

(1) For i = 1 . . . n we define

rii =

√√√√aii −
i−1∑
k=1

r2
ki (Diagonal elements).

(2) For j = i+ 1 . . . n we set

rij =
1

rii

(
aij −

i−1∑
k=1

rkj · rki

)
(Non-diagonal elements).

Let us return to the solution of the system of linear equations A ~x = ~b.

After decomposing the matrix A into Rt ·R, we replace the system of linear

equations A ~x = ~b by Rt ·R ~x = ~b and introduce the vector ~c by Rt~c = ~b.
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The problem is then solved in two steps:

Cholesky Algorithm

The system of linear equations A ~x = ~b with a symmetric positi-

ve definite matrix A is processed in two steps using the Cholesky

decomposition A = Rt ·R:

(1) Forward step: Calculate the solution of the system of linear

equations

Rt ~c = ~b

by forward insertion. The result is the vector ~c.

(2) Reverse step: Find the solution of the system of linear equations

R ~x = ~c

by backward substitution.

Example 21.17. We are looking for the solution to the system of linear

equations A ~x = ~b with

A =

(
1 4

4 25

)
and ~b =

(
1

1

)
.

According to Example 21.15 the Cholesky decomposition is

A = Rt ·R =

(
1 0

4 3

)
·
(

1 4

0 3

)
=

(
1 4

4 25

)
.

Forward step: First, we solve Rt~c = ~b :

(
1 0 1

4 3 1

)
.

The first equation gives 1 · c1 = 1 y c1 = 1 and the second gives

4 · 1 + 3 c2 = 1 y c2 = −1.

Reverse step: Then, we solve R~x = ~c :

(
1 4 1

0 3 −1

)
.

The second equation gives 3x2 = −1 y x2 = − 1
3 and from the first

1x1 − 4
3 = 1 y x1 = 7

3 .
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Example 21.18 (With Maple-Worksheet). We are looking for the solution

to the system of linear equations A ~x = ~b with

A =

 1 2 0

2 8 4

0 4 20

 and ~b =

 1

6

0

 .

According to Example 21.16 the decomposition is

A = Rt ·R =

 1 0 0

2 2 0

0 2 4

 ·
 1 2 0

0 2 2

0 0 4

 .

Forward step: First, we solve Rt ~c = ~b:

 1 0 0 1

2 2 0 6

0 2 4 0

 .

From the first equation we get 1 · c1 = 1 y c1 = 1; from the second

2 + 2 c2 = 6 y c2 = 2 and from the third 4 + 4 c3 = 0 y c3 = −1.

Reverse step: Then, we solve R ~x = ~c: 1 2 0 1

0 2 2 2

0 0 4 −1

 .

From the third equation we get 4x3 = −1 y x3 = − 1
4 , from the second

2x2 − 1
2 = 2 y x2 = 5

4 and from the first x1 + 10
4 = 1 y x1 = − 3

2 .
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21.4 Problems on Splines

21.1 Given are the value pairs (1, 1), (3, 3), (5, 3), (7, 1). Find the natural

cubic spline function S through these points.

21.2 Given is the function f(x) = cos(x). Show that the natural cubic spline

function S is replaced by the points

xk 0 1
6
π 1

4
π 1

3
π 1

2
π

f(xk) 1 1
2

√
3 1

2

√
2 1

2
0

is determined by the polynomials

p0(x) = 1− 0.148x− 0.394x2

p1(x) = 0.866− 0.472 (x− 1

6
π)− 0.619 (x− 1

6
π)2 + 0.398 (x− 1

6
π)3

p2(x) = 0.707− 0.715 (x− 1

4
π)− 0.307 (x− 1

4
π)2 + 0.058 (x− 1

4
π)3

p3(x) = 0.5− 0.864 (x− 1

3
π)− 0.262 (x− 1

3
π)2 + 0.166 (x− 1

3
π)3.

21.3 Given is the function f(x) = sin(x). Find the periodic cubic spline func-

tion S for the points x = 0, 1
4
π, . . . 7

4
π, π and their graphical represen-

tation.

21.4 Given is the function f(x) = x1/3.

a) Determine the interpolation polynomial of degree 5 for the values x =

−5, −3, −1, 1, 3, 5 using the Newton interpolation method. Draw

the output function and the interpolation polynomial in a diagram.

b) Determine the interpolation polynomial of 10th degree for the values

x = −5, −4, −3, −2, −1, 0.1, 1, 2, 3, 4, 5 using the Newton inter-

polation method. Draw the output function and the interpolation

polynomial in a diagram.

c) Determine the natural cubic spline function S to the values given in

part (b).

21.5 The unit circle is given. Select 8 points on the unit circle and define the

parametric spline function for these points.

21.6 a) Determine the second-order Bernstein polynomials and display the

polynomials in the interval [0, 1] graphically.

b) Determine the fourth-order Bernstein polynomials and display the

polynomials in the interval [0, 1] graphically.

21.7 Given are the Bezier points

P0(0, 0), P1(1, 5), P2(2, 4), P3(6,−2), P4(10, 0).
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Find the description of the Bezier segment by the points

a) P0(0, 0), P1(1, 5), P2(2, 2)

b) P0(0, 0), P1(1, 5), P2(2, 2), P3(6, 0)

c) P0(0, 0), P1(1, 5), P2(2, 4), P3(6,−2), P4(10, 0)

using the Bernstein polynomials and the graphical representation of the

respective segment.

21.8 Create a C2-continuous Bezier curve consisting of the two segments de-

fined by the points

P
(1)
0 (0, 0), P

(1)
1 (5,−5), P

(1)
2 (10,−5), P

(1)
3 (15, 0)

and P
(2)
2 (20, 5), P

(2)
3 (25, 0).

21.9 Solve the system of linear equations A ~x = ~b using the Thomas Algorithm

A =


−4 2 0 0 0

2 −4 2 0 0

0 2 −4 2 0

0 0 2 −4 2

0 0 0 2 −4

 and ~b =


1

0

1

0

1

 .

21.10 Given are the matrices

A =


1 0 2 0 1

0 1 0 2 −3

2 0 8 2 2

0 2 2 9 −4

1 −3 2 −4 12

 and R =


1 0 2 0 1

0 1 0 2 −3

0 0 2 1 0

0 0 0 2 1

0 0 0 0 1

 .

a) Show that the matrix A is positive definite by finding all principal

determinants.

b) Show that the matrix R can be Cholesky decomposed.

c) Solve the system of linear equations A ~x = ~b with the vector ~b =

(1, 0, 1, 0, 1)t using the Cholesky algorithm.

21.11 Determine the Cholesky decomposition of the following matrices.

A1 =

(
9 −3

−3 5

)
, A2 =

 4 2 2

2 5 −3

2 −3 14

 , A3 =


9 −3 0 −12

−3 5 8 12

0 8 20 14

−12 12 14 34

 .

21.12 Solve the system of linear equations Ai ~x = ~bi using the Cholesky al-

gorithm for the matrices from Problem 21.11 with the inhomogeneities

~b1 =

(
3

1

)
, ~b2 =

−1

0

−1

 , ~b3 =


0

4

0

4

 .
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Complex Fourier Series, 120

Complex Fundamental Set, 56

Continuity Equation, 276

Convolution Integral, 149
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Curve Integral, 231
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Fourier Analysis, 98

Fourier Coefficients, 103

Fourier Integral, 132
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Fourier Theorem, 103, 111

Fourier Transform, 131–133
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Gradient Field, 225, 267
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Maxwell Equations, 276
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Neumann Problem, 199
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Path Independence, 263
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