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Supervisor’s Foreword

Our ability to understand the fundamental lawsof the universe rests on the comparison
between theory and experiments. Scattering amplitudes are what makes this possible
for the quantum field theories describing elementary particles and their interactions.
Their computation to ever increasing accuracy is of the utmost importance. Simone
Zoia’s thesis offers insight into the dramatic progress the field of scattering ampli-
tudes has undergone in the last years. We now understand much better the special
functions appearing in the scattering amplitudes, in particular thanks to a deeper
understanding of the differential equations satisfied by the loop Feynman integrals.
This development was recently complemented by the application of finite field arith-
metics, which allows us to handle efficiently the complicated multivariate rational
functions appearing alongwith the special functions in the scattering amplitudes. This
is especially relevant for processes involving many kinematical scales, which are of
particular interest for phenomenological applications. These two tools constitute the
backbone of the modern workflow for computing scattering amplitudes presented in
this thesis.

This thesis is useful for master and Ph.D. students, as well as researchers who
would like to get acquainted with the latest methods and results. Starting from a
basic knowledge of quantum field theory, Dr. Zoia gives a pedagogical review of the
basic notions of scattering amplitudes, and smoothly moves on to presenting some
of the most advanced techniques for their computation. The discussion is thorough
yet concise, enriched with interesting explicit examples, and culminates with the
application to a problem of great relevance for the physics program of CERN’s Large
Hadron Collider: the computation of five-particle scattering amplitudes at two-loop
order. The work presented in this thesis constitutes an important step forward in the
field, and contributes significantly tomaking five-particle processes at two-loop order
the new state of the art for scattering amplitudes in the Standard Model of Particle
Physics. The techniques and the results discussed here open the door to precision
phenomenology for several processes of great interest for the LHC programme,
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such as three-photon production, three-jet production, and di-photon production in
association with a jet.

München, Germany
April 2022

Prof. Johannes M. Henn



Abstract

The scientific approach to understanding the laws of nature is based on the compar-
ison between theory and experiment. In laypersons’ terms, a theory is a set of rules
which describe mathematically how we think things work. We use these rules to
predict the outcome of a certain experiment, and the comparison against the actual
results of the experiment may disprove or uphold the theory.

Particle physics is concerned with the tiniest building blocks of the universe—the
fundamental particles—and the way they interact. Our best description of funda-
mental particles is given by the StandardModel of particle physics (SM), which treats
particles as oscillations of “quantum fields” permeating the space-time. The spec-
tacular success of the SM at describing the microscopic world is one of humanity’s
greatest intellectual feats. Yet, this theory fails to address a variety of theoretical
concerns and observed phenomena—gravity, to say themost obvious. Understanding
the limitations of the SM and constraining its extensions is of primary importance.

Scattering amplitudes are the bridge between theory and experiments in Quantum
Field Theories (QFTs). Roughly speaking, the amplitude of a scattering process
encodes its probability distribution: for a given initial state—say two colliding
protons—the scattering amplitude tells us how likely the production of certain other
particles is according to the theory. The rules of QFT are however complicated, and
scattering amplitudes can only be computed approximately as series in the coupling
constants which weigh the interactions. We know—at least in principle—how to
compute each term of the series, and including more terms makes the prediction
more accurate. The computation however becomes more and more difficult as the
order in the couplings—also called the “loop order”—or the number of particles
increase. In practice, we need as many terms as is necessary to make the theoret-
ical uncertainty comparable with the experimental one so that the comparison is
statistically significant.

Exploiting fully the physics potential of CERN’s Large Hadron Collider requires
predictions at the Next-to-Next-to-Leading Order (NNLO) in the coupling of the
strong interactions. This goal has already been reached for many 2 → 1 and 2 → 2
processes. Processeswith three particles in thefinal state are however of great interest,
as they would allow for precise measurements of the strong coupling constant and of
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viii Abstract

its scaling, in-depth studies of the Higgs couplings, better background estimates for
yet unknown phenomena, andmore. Themain bottleneck towardsNNLOpredictions
for 2 → 3 processes is the analytic computation of two-loop five-particle scattering
amplitudes.

The most difficult part of computing a scattering amplitude is the computation of
the Feynman integrals appearing in it. My collaborators and I computed the missing
and most complicated set of massless two-loop five-particle Feynman integrals. This
opened the doors to the computation of the amplitude for any process involving
five massless particles at two-loop order. Such processes feature prominently in the
LHC physics program. Cases in point are three-jet, three-photon, and di-photon+ jet
production. In order to compute these integrals we made use of cutting-edge mathe-
matical techniques, and proposed a new strategy which has already been applied to
other difficult problems.

Armed with analytic expressions for the Feynman integrals, we tackled the ampli-
tudes. The challenge is one of enormous algebraic complexity.We developed awork-
flow based on the recent idea of evaluating the rational functions in the intermediate
expressions numerically over finite fields. The analytic expression of the final result
is then reconstructed by “bootstrapping” an Ansatz or through reconstruction algo-
rithms. Before considering the SM, we tested our approach on the amplitudes in two
supersymmetric theories: N = 4 super Yang-Mills theory and N = 8 supergravity.
These were the very first complete five-particle scattering amplitudes to be computed
analytically at two loops. Although these models do not seek to describe physical
particles and forces, they are of great interest. They give precious insights into hidden
structures of QFT in general and—thanks to their simplicity and elegance—they are
a perfect testing ground for new techniques and ideas which can be later applied to
the SM.

The successful computation of the supersymmetric amplitudes showed that our
technology was mature enough to face the SM. We therefore computed the two-
loop amplitude describing the scattering of five positive-helicity gluons in Quantum
Chromodynamics (QCD), the part of the SM which describes the strong interac-
tions. Despite the leap in complexity with respect to the supersymmetric theories,
we managed to find an extremely compact and elegant analytic expression. Having
compact results for the amplitudes is not only a theorist’s delight but also is crucial
for their use in phenomenology. The simplicity of the expression allowed us to notice
that certain parts of the amplitude enjoy an unexpected property: they are invariant
under conformal symmetry.We identified the origin of this property in the conformal
invariance of the gluonic amplitudes in QCD at one loop, which we proved for any
number of gluons.

After the publication of the results presented in this thesis, there has been a
dramatic progress. Several other two-loop five-particle amplitudes have become
available analytically, and this has already led to the first theoretical prediction at
NNLO in QCD, for three-photon production. Partly using methods similar to those
presented in this thesis, many more results are sure to follow in the near future.
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Chapter 1
Introduction

Do I dare
Disturb the Universe?

What are the fundamental laws of the universe? Is it even possible for us to know
them? After all, what we have is just our experience of things, the way they appear
to us as observers. To put it in philosophical terms—the phenomenon [1]. We have
no direct access to things in themselves, the noumenon. So how dare we “disturb the
Universe”?1

After thousands of years of philosophical and scientific inquiry, the noumenon
remains impenetrable. Still, I think we can safely claim that our understanding of
the universe is better than it used to be, say, when Thales of Miletus—one of the
first western philosophers—argued with confidence that everything is made of water.
What has enabled this progress is the scientificmethod, a powerful practical approach
which by-passes the inaccessibility of the noumenon. Based on our imagination and
our experience, we make guesses for the form of the noumenon, which we call
models. Necessary condition for a model to be acceptable is that it must allow us to
make quantitative predictions which can be tested. We can then rule out the wrong
models by comparing predictions based on them against the phenomenon. Theories
can thus be falsified, never verified.2 In the truest sense, we learn from our mistakes.
While this approach might be unsatisfactory to some from the philosophical point of
view, it has taken us very far. Our entire civilisation is built upon the technological
progress stemmed from it.

1 From “The Love Song of J. Alfred Prufrock,” by T. S. Eliot.
2 See Ref. [2] for the first systematic treatment of this methodology based on falsifiability, and
Bertrand Russell’s “inductivist turkey” for the dangers that reside in the idea of verifying models
with repeated observations [3].
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2 1 Introduction

Particle physics is concerned with the tiniest building blocks of the Universe—the
fundamental particles—and their interactions. Our best description (so far) is given
by the Standard Model of particle physics, a Quantum Field Theory (QFT) where
fundamental particles are viewed as excitations of quantum fields which permeate
a four-dimensional Minkowski space-time. The current formulation of the Standard
Model dates back to the mid-Seventies. Ever since, it has been throughly scrutinised.
Although a few tensions between theoretical predictions and experimental data do
exist (e.g. see Ref. [4, 5]), none has reached sufficient statistical significance to claim
a discovery. For example, the value of the electron magnetic moment predicted by
the Standard Model agrees with the experimental measure to an astonishing part in
a trillion [6, 7]! The fact that it is even possible to describe the Universe down to
its (supposedly) fundamental constituents and to such a high accuracy continues to
amaze me. In case you are not amazed yet—although you should—I will give you
another—perhaps the most well-known—example of the success of the Standard
Model: the Higgs boson. This particle and its properties were speculated in the
Sixties to introduce masses in the model without spoiling its symmetry, and was first
detected atCERN’sLargeHadronCollider (LHC) in 2012. It took almost fifty years to
develop the technology and the expertise to observe experimentally a particle whose
existence had been suggested by the mathematical elegance and self-consistency of
the StandardModel. Tome, this is one of the supreme examples of “the unreasonable
effectiveness of mathematics in the natural sciences” [8].

Ironically, the triumph of the Standard Model is reason not only for delight, but
also for growing frustration. While none of its predictions has been clearly falsified
yet, there are things it does not account for at all. Some of them are of a theoretical
nature. For example, one concerns the sector of the Standard Model which describes
the strong interaction: Quantum Chromodynamics (QCD). The symmetries of QCD
would in principle allow a kind of interaction which breaks CP symmetry (the com-
bination of charge and parity symmetry). There is no theoretical reason to rule it out,
and yet this phenomenon has never been observed experimentally, thus requiring a
fine tuning of a parameter of the model which many consider as “unnatural.” This
issue, referred to as strong CP problem, is not a problem per se, but the necessity for
fine tuning often signals a lack of understanding. There are other theoretical issues
of similar kind, such as the hierarchy problem and the Landau pole, but the most
apparent shortcoming of the Standard Model is of a much more concrete nature: it
does not explain gravity. Our best description of gravity so far is given by General
Relativity, which has proven as successful at explaining the Universe onmacroscopic
scales as the Standard Model is with the microscopic world. Fitting the two descrip-
tions in a unique framework is definitely one of the most important open problems in
fundamental physics. The effects of gravity at the scales relevant for particle physics
are however negligible, so that the Standard Model’s accuracy in describing particle
interactions in the experiments we can carry out is not affected. Another prominent
and concrete issue not addressed by the StandardModel is the existence and nature of
dark matter and dark energy. The Standard Model in fact accounts only for ordinary
matter, which we know from cosmological observations to constitute just about five
percent of the total energy of the Universe. And even within this five percent that is
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described by the Standard Model there are issues. For instance, what we observe of
the Universe is disproportionately made of matter, while, comparatively, there is not
much anti-matter to be seen. This observed asymmetry cannot be explained by the
Standard Model alone. Moreover, the Standard Model neutrinos are massless parti-
cles, whereas the observation of neutrino oscillations indicates that neutrinos do have
small but non-vanishing masses. In short, we have an amazing model, mathemati-
cally elegant and astonishingly accurate, which however fails to address a variety of
theoretical concerns and observed phenomena. Can we do better?

In order to go “beyond” the Standard Model, it is of primary importance to deter-
mine its range of validity, and to constrain its possible extensions. Our best probe
into the microscopic world of fundamental particles is CERN’s LHC„ where two
beams of protons are accelerated to nearly the speed of light and smashed against
each other to observe the products of their interaction. Originally intended as a “dis-
covery” machine, after the discovery of the Higgs boson the LHC has revealed a
great potential for “precision” measurements as well. So far, the observations at the
LHC, as well as in the other particle colliders, have revealed only small tensions with
the Standard Model, not considered to be statistically significant. However, not all
hope is lost: we have only seen about one tenth of the total data that the full LHC
programme is expected to deliver! [9] This stunning wealth of present and future
precise measurements becomes however useless if it is not matched by a comparable
accuracy in the theoretical predictions. It is in fact not possible to achieve an exact
theoretical description of particle collisions. The current model consists of several
very distinct parts, each associated with difficult challenges and sources of uncer-
tainty. I will give a brief review of this “picture” in Sect. 2.1, but I must anticipate
that in this thesis I focus on the high-energy (or equivalently short-distance) effects,
captured by the scattering amplitudes. These objects, which I define in Sect. 2.1,
are computed in perturbation theory, namely as power series in the coupling con-
stants. Each coefficient of the series can in principle be determined systematically,
e.g. using Feynman diagrams. The complexity of the computation however escalates
very rapidly with the order in the couplings, so that scattering amplitudes in the
Standard Model and candidate extensions can only be computed up to some finite
order. The theoretical uncertainty reflects this truncation of the infinite perturbative
series (see e.g. [10, 11] for some recent work on this topic). Clearly, the smaller are
the values of the coupling constants, the better is the convergence of the perturbative
series.

Among the coupling constants of the Standard Model, the one that takes the
largest value at the energy scales relevant for the LHC—while still being in a
perturbative regime—is that of the strong interactions, αQCD. The higher orders
in αQCD are thus generally expected to give the most important corrections in a
generic process at the LHC. Indeed, theoretical predictions truncated at the Lead-
ing Order (LO) in QCD typically provide only estimates of the order of magnitude,
and are thus insufficient for precision studies. In order to exploit fully the enor-
mous scientific potential of the LHC it is necessary to push the theoretical predic-
tions for a number of phenomenologically relevant processes to the Next-to-Next-
to-Leading Order (NNLO) in QCD. NNLO predictions for 2 → 2 processes have by
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now become the state of the art (see e.g. Refs. [12, 13] for comprehensive reviews
of the current status of precision collider physics). There is however great inter-
est in higher-multiplicity processes as well. In this regard, the NNLO description
of 2 → 3 processes represents the current challenge. Only very recently this was
achieved for the first process, three-photon production [14–16], in the leading colour
approximation (see Sect. 4.3.1 for the definition of this approximation).3 Many other
2 → 3 processes feature in the so-called “precision wish-list,” updated every two
years in the workshop series “Physics at TeV Colliders” held in Les Houches [12]:
pp → 3 j, pp → 2γ + j, pp → V + 2 j, pp → H + 2 j , where p, j, γ, V and H
stand for proton, jet, photon, vector bosons (W± and Z ) and Higgs boson, respec-
tively, just to name a few. One of the main bottlenecks is the computation and evalu-
ation of the required two-loop five-particle scattering amplitudes. The last few years
have seen tremendous progress in this direction by several groups and approaches. I
have had the pleasure and the luck to take part in this endeavour, and in this thesis I
present my contribution.

This thesis is addressed to readers with a basic knowledge of QFT, and who have
already some familiarity with scattering amplitudes and their computation using
Feynmandiagrams.Chapter2 is an attempt to provide a smooth and concise transition
from a standard QFT course to the modern techniques presented in Chaps. 3 and 4. I
discuss what, at first, I found most bewildering about scattering amplitudes beyond
the tree level, namely that they diverge. I show where the divergences come from,
where they go, and why they are there in the first place. Once we have made peace
with the divergences, we focus on the analytic structure of scattering amplitudes
viewed as functions of the momenta of the external particles, whose understanding
plays a crucial role in the modern techniques presented in the following chapters. In
particular, I discuss the most distinctive analytic features of scattering amplitudes,
namely their singularities and their discontinuities, and relate them to the fundamental
principles of locality and unitarity.

The main bottleneck in computing scattering amplitudes beyond the tree level is
the loop integration. While Feynman diagrams allow us to write down the ampli-
tude of any process and at any loop order in a completely algorithmic way,4 the
computation of the relevant loop integrals beyond one loop is still far from being
systematic. In Chap.3 I present one of the most powerful techniques for computing
loop integrals analytically: the method of the differential equations in the canonical
form [18–21]. I give a (hopefully) pedagogical and self-contained discussion, with
a particular emphasis on the special functions which appear in the solution of the
differential equations.

Finally, inChap.4 I put the techniques and ideas introduced in the previous chapter
at the service of the two-loop five-particle cause, and present my and my collabora-

3 The neglected contributions are estimated to be phenomenologically irrelevant for this process.
4 Of course there are practical limitations, as the number of diagrams grows very rapidly with the
number of external legs and of loops. For instance, the number of Feynman diagrams contributing
to the tree-level amplitude for the process gg → ng grows factorially with n [17]. For this reason
alternative approaches have been and are being developed. See e.g. Sect. 2.4.2 for a fewwords about
unitarity-based methods.
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tors’ contributions. In Sect. 4.2 I discuss the analytic computation of the last missing
“family” of massless two-loop five-particle Feynman integrals. In order to achieve
it, we also developed a novel method to put the differential equations satisfied by
the integrals in the so-called “canonical form,” which we expect will be useful also
in future applications. Together with the results already available in the literature,
this work opened the door to the analytic computation of any massless five-particle
amplitude at two loops, in any theory. Indeed, this allowed us to provide the very first
analytic results for complete two-loop five-particle amplitudes. In Sect. 4.3 I present
the computation of the (super) amplitudes in N = 4 super Yang-Mills theory and
N = 8 supergravity. Moreover, I show how the method of the differential equations
can be used very effectively to expand Feynman integrals and scattering amplitudes
asymptotically in any kinematic limit. In particular, I discuss in detail how we com-
puted the asymptotic expansion of the two supersymmetric amplitudes in the multi-
Regge kinematics. Afterwarming upwith the super-symmetric amplitudes, we tackle
Yang-Mills theory in Sect. 4.5, and compute analytically the complete two-loop five-
gluon amplitude in the all-plus helicity configuration. Remarkable cancellations lead
to an extremely compact expression, which exhibits intriguing signs of conformal
symmetry.We expect that the integrals we computed and the workflowwe developed
will enable the computation of all the two-loop five-particle amplitudes required in
the theoretical predictions for processes of great phenomenological interest, such as
three-jet production and di-photon + jet production, at NNLO in QCD. I draw my
conclusions and discuss the outlook of the work presented here in Chap.5.
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Chapter 2
Scattering Amplitudes

In an attempt of making things more original, I will begin by telling you what this
chapter is not about. I do not wish to introduce the complete theoretical framework
of QFT. That has already been done elsewhere, and in a much better way than I
could possibly do (see the many great textbooks, e.g. [1–3]). This thesis is aimed
at people who have already some familiarity with QFT, and who can (at least in
principle) write down the expression of a scattering amplitude using Feynman rules
or whatever technique they are most comfortable with. I will also not introduce any
specific theory. The techniques presented inChaps. 3 and 4 are in fact very general and
can be applied to the computation of scattering amplitudes in anyQFT. In this chapter
I content myself with discussing a few aspects of scattering amplitudes in general,
with the goal of providing a smooth transition from a basic knowledge of QFT to
the recent developments in the computation of scattering amplitudes presented in
the next chapters. In this regard, I wish to point out the very useful textbooks [4, 5],
which give a pedagogical and modern discussion of scattering amplitudes.

Since scattering amplitudes are the main character of this play, I feel like I should
at least define them properly. This I do in Sect. 2.1, where I also discuss how these
seemingly abstract mathematical constructs are related to actual scattering experi-
ments. The interest in scattering amplitudes is however not solely due to their role in
phenomenology. In Sect. 2.2 I motivate a more “pure” and formal study of scattering
amplitudes in themselves, even in theories which have no pretence of describing the
universe we live in. In doing so, I touch upon some of the inspiring ideas stemmed
from the study of scattering amplitudes in the last few years, with the main intent of
intriguing the reader and giving references. Then I move on to what is perhaps the
most prominent and (at first) disconcerting feature of scattering amplitudes beyond
the tree level, namely that they diverge. In Sect. 2.3 I discuss the origin of these diver-
gences along with their underlying physical principles, how they are dealt with, and
how they actually make sense and do not affect the theoretical predictions for physi-
cal observables. Once we have made peace with their divergent nature, I discuss the
analytic structure of generic scattering amplitudes viewed as functions of the external
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8 2 Scattering Amplitudes

momenta. Section2.4 is devoted to their most important analytic features, namely
where they blow up (the poles) and where they are discontinuous (the branch cuts).
As we will see, these properties are deeply connected to fundamental postulates of
quantum mechanics: locality and unitarity.

2.1 Scattering Amplitudes and the Phenomenon

In this section I define what scattering amplitudes are, and discuss briefly where they
stand in the scientific process of understanding the laws of Nature. The rest of this
thesis will be much more “theory oriented”. Chapter 3 is about the mathematics of
loop integrals, and most of the applications discussed in Chap. 4 deal with super-
symmetric theories. It is however good to remember one’s ties to reality from time
to time. That is the purpose of this section.

Our goal is to understand the laws of nature. Having no direct access to things
in themselves, the noumenon, we can only pursue this objective by looking at the
phenomenon, namely how things appear to us as observers [6]. The keystone in the
scientific approach to this problem is the possibility of falsifying a theoretical model
of the noumenon by comparing quantitative predictions based on it against the data
measured in an experiment. In order to proceed with this programme, we first need
to understand what can actually be measured experimentally.

The typical particle-physics experiment is particle collision. Consider a bunch of
Na particles of type a colliding against a bunch of Nb particles of type b. If no black
hole is created and swallows up the Earth [7], we expect the number of observed
scattering events of a desired kind, say the detection of a certain final state c, to be
proportional to the numbers of incoming particles Na and Nb, and to the transverse
area A common to the two bunches. The coefficient of proportionality defines the
total cross section σ for the production of c from the collision of a and b,

σ = Number of events

NaNb A
. (2.1)

This simple formula (refined to take into account all the subtleties of a real-life
experiment) has taken us very far. In fact, we can do much more than just counting
the total number of events. We can count how many times an outgoing particle falls
in a certain bin of energy, scattering angle, transverse momentum... leading to the
definition of a differential cross section dσ. This is what our experimentalist friends
give us. How do we, theorists, make contact with that? This is where scattering
amplitudes enter the game.

In order to define what a scattering amplitude is, we need to refresh our quantum
mechanics. I adopt the interaction picture. We split the Hamiltonian of the theory H
into a free-field part H0, and an interaction part V ,
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H = H0 + V . (2.2)

The operators behave as free-field operators, while the states evolve with the time-
evolution operator associated with the interacting part of the Hamiltonian,

U (t, t0) = T exp

(
−i

∫ t

t0

dt ′VI (t
′)
)

, (2.3)

where T is Dyson’s time-ordering operator, and

VI (t) = eiH0(t−t0)V (t0)e
−i H0(t−t0) (2.4)

is the interacting part of the Hamiltonian, evolving freely—as prescribed by the
interaction picture—from an arbitrary reference time t0. From the theoretical point
of view, the scattering process is idealised as follows. The initial state |pa, pb; Ti 〉1
is made of two freely-evolving wave-packets constructed at the asymptotically past
time Ti → −∞, concentrated about the definite momenta pa and pb, respectively.
The interaction is assumed to take place during a finite time interval, so that in the
asymptotically far future, T f → ∞, the final state 〈p1, . . . , pn; T f | again consists of
n non-interacting wave-packets, each concentrated about amomentum pi . The initial
state evolves from Ti to T f with the time-evolution operator U given by Eq. (2.3).
The overlap between the two states defines the S matrix elements,

〈p1, . . . , pn|S|pa, pb〉 := lim
Ti→−∞ lim

T f →∞〈p1, . . . , pn; T f |U (T f , Ti )|pa, pb; Ti 〉 .

(2.5)

The S matrix therefore is a unitary operator which encodes the probability amplitude
that a given asymptotic state will evolve into some other state in the distant future.
Even if the theory is interacting, there is always some probability that the colliding
particles miss one another and do not interact at all. This implies that the S matrix
has a term which is simply the identity. This is not particularly interesting, and we
isolate the part which is due to interactions as

S = 1 + iT . (2.6)

Finally, we can define the scattering amplitude A for this process,

〈p1, . . . , pn |iT |pa, pb〉 = (2π)4δ(4)

⎛
⎝pa + pb −

n∑
i=1

pi

⎞
⎠ iA (pa, pb → p1, . . . , pn) ,

(2.7)

1 Of course the particle states can be labelled by other quantum numbers in general. I will keep the
notation minimal, as the generalisation is straightforward.
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where we factored out the overall momentum-conservation δ function. The scatter-
ing amplitude for any given process can be computed in perturbation theory using
Feynman diagrams and Feynman rules. I assume the readers have some familiarity
with this.

The absolute square of a scattering amplitude gives the probability that the initial
state will evolve to the desired final state. It must be proportional to the cross section.
The precise relation is given by

dσ = d�n

φ
|A|2 (2π)4δ(4)

(
pa + pb −

n∑
i=1

pi

)
, (2.8)

where d�n is the volume element of the n-body phase space,

d�n =
n∏

i=1

d3 pi
(2π)3

1

2Ei
, (2.9)

and φ is a flux factor,

φ = 2Ea2Eb|va − vb| , (2.10)

with |va − vb| being the relative velocity of the beams as seen from the laboratory
frame. Scattering amplitudes therefore offer a very concrete point of contact between
theory and experiments.

Things get slightly more complicated when the scattering particles are bound
states, rather than elementary fields. This is the case of QCD. The elementary fields
are quarks and gluons but, because of colour confinement, we can only observe
hadrons, i.e. colour-neutral composite states of quarks andgluons. In order to describe
quantitatively the scatteringof composite objects, therefore, oneneeds to supply some
information about their structure in terms of elementary particles. Unfortunately,
from the point of view of the elementary particles, this structure is a long distance
effect. QCD is an asymptotically free theory, meaning that the coupling constant
becomes weaker and weaker at high energy or, equivalently, at small distances.
At large distances or low energies (roughly below the scale �QCD ∼ 1 GeV), the
coupling becomes too large for a perturbative approach to be legitimate. The hadron
states therefore cannot be described perturbatively.

As you might guess, it is not yet game over. Long and short distance effects do not
talk to each other (up to power-suppressed terms), roughly speaking because they
take place at such different scales. They can thus be disentangled, and the parton
model [8] tells us how. Consider the scattering of two hadrons ha and hb, with
momenta pa and pb, and center-of-mass energy s = (pa + pb)2. We want to detect
a certain final state X . The differential cross section of this process is given by the
following convolution:
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dσhahb→X =
∑
i, j

∫ 1

0
dx1dx2 f

(ha)
i (x1,μ

2
F ) f (hb)

j (x2,μ
2
F )dσ̂i j→X + O

(
�QCD

s

)
.

(2.11)

The non-perturbative information about the structure of the hadron h is encoded in
the Parton Distribution Function (PDF) f (h)

i (x,μ2
F ). Roughly speaking, it gives the

probability of finding a parton i (either a quark or a gluon) in h carrying a fraction
x of the momentum of h. The PDFs are non-perturbative and, as such, they need to
be extrapolated from experimental data. On the other hand, since the structure of the
hadrons does not depend on the specific process under consideration, the PDFs are
universal. In other words, we can determine them by measuring a set of particularly
suitable processes, and then use them to make predictions about any other process.
The PDFs are “renormalised” in order to absorb the divergent contributions from
the emission of soft and collinear partons in the initial state (more about this in
Sect. 2.3.3). This introduces the factorisation scale μF . The evolution of the PDFs
with μF is governed by the DGLAP equations [9–11]. The perturbative information
about the high-energy (often referred to as “hard”) part interaction is instead encoded
in the partonic cross-section σ̂i j→X , i.e. the cross-section for the production of the
desired final state X from the interaction of two partons i and j , carrying momenta
xi pa and x j pb, respectively. I stress that the interference between long and short-
distance effects is power-suppressed by the energy scale�QCD belowwhich theQCD
coupling becomes non-perturbative, but it is not zero. Eventually, as the experimental
accuracy keeps increasing, it will become relevant.

The complications are not yet over. The final state of the hard interaction is in fact a
collection of elementary particles. Quarks or gluons cannot be detected individually.
Further non-perturbative information has thus to be supplied, describing the evolution
of the final state of the hard interaction into physical states that can be detected in
an actual collider experiment. The final state evolution is a combination of several
ingredients: how the final-state partons radiate further partons (parton showers), how
they combine into hadrons (hadronisation), and how the hadrons collimate into jets
(jet algorithms). Similarly to the PDFs, these final-state ingredients are universal,
and can usually be implemented in a process-independent way.

Each and every ingredient of this complicated recipe is crucial in order to produce
a meaningful theoretical prediction that can be compared against the experimental
data. In this picture, the scattering amplitude of the hard process is the main process-
dependent and perturbative part. Increasing the accuracy of a theoretical prediction
requires a joint effort to improve the entire theoretical description of the scattering
process. From the point of view of scattering amplitudes, this means increasing the
perturbative order. One should however keep in mind all the other steps that take
from the elegant analytic expression of a scattering amplitude to the plots with error
bands being compared against the experimental data. The impact of adding one
more loop order to a partonic scattering amplitude might in fact be negligible if,
say, the final-state evolution is described at a lower accuracy. A close cooperation
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between physicists working on the different aspects of theoretical predictions, and
experimentalists, is fundamental.

There is one last comment I would like to make about the role of scattering
amplitudes in the theoretical description of the universe. Our current understanding
of fundamental physics is broken into two theories: quantum mechanics and gen-
eral relativity. Scattering amplitudes were “born” in the former context and that is
where they have been conventionally used, but recently they have started playing an
increasingly important role in the latter as well. In 2016 the LIGO and Virgo collab-
oration detected the first gravitational wave signal, coming from a binary black hole
merger [12]. This spectacular achievement heralded the dawn of a new exciting era
for astronomy and physics in general. Several other gravitational-wave signals have
been observed ever since, and the detectors will become increasingly sensitive in
the future. There is therefore urgency to produce accurate theoretical predictions to
interpret the data. In a somewhat surprising twist of events, it is possible to compute
perturbative contributions of classical General Relativity using the loop expansion of
QFT. The amplitude techniques developed over the last decades for particle physics
can now be put at the service of gravitational-wave physics as well. I refer the inter-
ested reader e.g. to Ref. [13] for an outline of this exciting program, and Ref. [14] for
a recent review. This very exciting avenue calls for an even more invigorated effort
to improve the technology to compute scattering amplitudes.

2.2 Scattering Amplitudes and the Noumenon

After such a “pheno-oriented” section, I feel like I should stress that computing
theoretical predictions for collider or gravitational-wave physics is not at all the
only reason of interest for scattering amplitudes. Their privileged position as bridge
between theory and experiments makes them invaluable for phenomenology, but this
direct computational access to the underlying theory is extremely precious in itself,
even when the considered theory has no pretence of describing Nature. In a sense,
scattering amplitudes give us an insight in the noumenon—the thing in itself—
of quantum field theory, even without any reference to the phenomenon. In other
words, the analytic computation of scattering amplitudes may allow us to discover
properties of the underlying quantum field theory that are not visible in the traditional
Lagrangian formulation. In this view, since computing multi-loop and multi-particle
scattering amplitudes remains a formidable problem, it is useful to look at theories
which are simpler than the Standard Model.

The best playground for “amplitudeologists” isN = 4 super Yang-Mills theory.2

Its elegance and simplicity makes it easier to spot patterns. It is the perfect testing
ground for new techniques and ideas. Indeed, the study of scattering amplitudes in
this theory has brought about many conceptual and technical advances, which have

2 I refer the readers to the textbooks [4, 5] for an introduction to N = 4 super Yang-Mills theory
in the context of scattering amplitudes.
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boosted the computation of quantities of phenomenological interest as well (see
Ref. [15] for a recent review). My thesis fits in perfectly in this story. We begin by
computing analytically the N = 4 super Yang-Mills amplitude, and then gradually
increase the complexity, passing through N = 8 supergravity and finally arriving
at Yang-Mills theory (with no supersymmetry), the core of the Standard Model. In
doing so, we make use of several ideas and techniques that stemmed from N = 4
super Yang-Mills theory.

The analytic computation of scattering amplitudes has revealed many remarkable
properties of quantum field theory. We will encounter some of them later on in this
thesis, but I will make a few examples here, in the hope of convincing those readers
who are more interested in the fundamental aspects of quantum field theory rather
than in phenomenology to continue further.

Dual (super)conformal symmetry is a hidden symmetry of planar N = 4 super
Yang-Mills theory. By “hidden” Imean that it is nowhere to be seen in theLagrangian.
Nonetheless, it emerges spectacularly at the level of the scattering amplitudes, impos-
ing very tight constraints on their analytic structure [16–20]. Dual conformal sym-
metry was instrumental for many developments in planar N = 4 super Yang-Mills
theory, but its importance goes beyond that theory and the planar limit. For instance,
certain non-planar Feynman integrals,3 in generic quantum field theories, were only
recently discovered to be invariant under a subset of dual conformal transforma-
tions [21–23].

Another fundamental property of quantum field theory which cannot be appreci-
ated in the Lagrangian is the factorisation of the infrared singularities [24–29]. Scat-
tering amplitudes in quantum field theories involving massless particles are affected
by singularities which arise from the infrared regions of loop integration. Remark-
ably, these singularities factorise and the operator which captures them satisfies
renormalisation group evolution equations, whose solution can be written down in
closed form. The treatment of infrared singularities is of crucial importance in the
computation of scattering amplitudes, and is therefore treated in some detail in this
thesis, starting from Sect. 2.3.3.

A fascinating relation between gauge and gravity theories stems from the so-
called colour/kinematics duality of scattering amplitudes [30, 31] (see Ref. [32]
for a recent review). To understand this, consider a scattering amplitude in a gauge
theory written as a sum of Feynman diagrams. The analytic expression of each
diagram can be factored in a kinematic factor and a colour one. The colour factors
obey algebraic relations such as Jacobi and commutation identities. Remarkably, it is
possible to rearrange the scattering amplitudes so that the kinematic factors obey the
same algebraic relations as the corresponding colour factors. Once the amplitudes
are in this form—dubbed the Bern, Carrasco and Johansson (BCJ) form—replacing
the colour factors with kinematic ones produces scattering amplitudes in a gravity
theory.Which gravity theory depends on which gauge theories we take the kinematic
factors from. In this sense, wemay say that gravity is a double-copy of gauge theories.
In Sect. 4.3, for instance, we will see how the two-loop five-particle amplitude in

3 The difference between Feynman integrals and Feynman diagrams is clarified in Sect. 3.1.1.



14 2 Scattering Amplitudes

N = 8 supergravity is obtained through a double-copy of its N = 4 super Yang-
Mills counterpart. Although formal proofs of this construction are so far limited to
tree level, there is solid evidence that it holds for a variety of theories also at loop
level.

The rising role of mathematical structures in our understanding of quantum field
theories is also driven by the study of scattering amplitudes. Some of them will
play a lead role in this thesis: the notions of leading singularities, d log forms, and
transcendental weight—to mention the most relevant here, but this is just the tip
of an ever growing iceberg. A rich variety of unexpected geometric constructions
have been discovered in scattering amplitudes. The best known instance is perhaps
the “amplituhedron” [33], a Grassmannian generalisation of polygons and polytopes
whose geometry captures the scattering amplitudes in planar N = 4 super Yang-
Mills. In this formulation there is no reference to space-time or Hilbert space, and
the fundamental properties of locality and unitarity emerge as consequences of the
geometry. The amplituhedron is just the first of several fascinating constructions
which reformulate scattering amplitudes in terms of geometry (see e.g. [34] for a
recent review).

Another mathematical concept for which there is growing interesting in the con-
text of scattering amplitudes is that of cluster algebras [35–38]. For example, it
is well known that the branch-cut structure of scattering amplitudes is constrained
by physical constraints called Steinmann relations [39, 40]. In planar N = 4 super
Yang-Mills theory, the Steinmann relations have been found to be a special case of
a cluster algebra property called cluster adjacency [41–43], which puts even tighter
constraints on scattering amplitudes. This enabled to bootstrap—i.e. to fix from first
principles—certain amplitudes to astonishing loop orders [44, 45] (see Ref. [46] for a
review).On thewhole, there ismounting evidence that cluster algebras play an impor-
tant role for scattering amplitudes both at the level of the loop “integrand” [47]—i.e.
prior to carrying out the loop integration—and for the special function which arise
upon loop integration [48].

Determining which special functions are allowed to appear in scattering ampli-
tudes in general is still an open problem, and a very inspiring one. It has led to a
fruitful interplay between physicists and mathematicians from which both the dis-
ciplines are profiting enormously. As we will see in Sect. 2.4.2, unitarity implies
that scattering amplitudes must have discontinuities. They must thus contain special
functions with a non-trivial branch-cut structure, such as the logarithm. In Sect. 3.3 I
will talk profusely about the multiple polylogarithms, a class of functions that covers
most of the scattering amplitudes computed so far, but there is much more. Elliptic
multiple polylogarithms [49–55], and iterated integrals of 1-forms defined on even
more complicated geometries—e.g. hyperelliptic curves [56, 57] and Calabi-Yau
geometries [58–62]—become relevant as we look to higher numbers of loops and
variables.

The special functions appearing in scattering amplitudes have extremely rich
algebraic structures. The multiple polylogarithms, in particular, are endowed with a
Hopf algebra coaction [63–66], of which we will encounter the maximal iteration,
called the symbol [67] (see Sect. 3.3.6). Some of these structures emerge also at the
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level of the loop integrals. We now know that one-loop Feynman integrals can also
be endowed with a coaction [68, 69], which encodes their analytic properties [70,
71]. While a higher-loop generalisation is under study [72], the idea of a “coaction
principle” [73–75] has already been used to bootstrap certain amplitudes [76, 77].
Another branch of mathematics that has recently started playing a role is that of
intersection theory [78–80], where Feynman integrals are thought of as elements of
a vector space over which it is possible to define a notion of “scalar product.”

This list could be made almost arbitrarily long and I am probably doing wrong
to many by cutting it here. I make amends by inviting the interested reader to have a
look at the talks of the last “Amplitudes” conference [81] to get a sense of how many
exciting research directions are being explored in this field.

2.3 Loop Scattering Amplitudes

In Sects. 2.1 and 2.2 I have stressed the importance of scattering amplitudes from
both a phenomenological and a theoretical point of view. Whether we aim at com-
puting theoretical predictions or at unveiling a new geometrical principle underlying
quantum field theory, restricting ourselves to tree-level amplitudes only is unac-
ceptable. The main difference of loop amplitudes with respect to their tree-level
counterparts is the appearance of Feynman integrals. The entire Chap. 3 is devoted
to the computation of the latter. In preparation for that, I now want to talk about
what is perhaps their most uncomfortable feature for a beginner in this field: the
Feynman integrals, as they come out of the Feynman rules, may not converge. Scat-
tering amplitudes are therefore typically divergent at loop level, a rather awkward
feature for an object which encodes the probability distribution of a physical particle
scattering experiment. In this section I discuss how these divergences can be regu-
larised by analytically continuing the space-time to a generic number of dimensions.
I distinguish two regions—ultraviolet and infrared—where the loop integration may
not converge, and touch upon the deeper physical reason behind the appearance of
such divergences. Finally, I outline briefly how the physically-relevant cross-sections
manage to be finite, and preserve the physical interpretation I presented in Sect. 2.1.

2.3.1 Dimensional Regularisation

Quantum field theories are defined in some integer number of space-time dimensions
d0. For the Standard Model d0 = 4, but it is sometimes interesting to study theories
in other dimensions. We regularise the loop integrations by analytically continuing
the number of space-time dimensions from d0 to d = d0 − 2ε, and use the parameter
ε as a regulator [82]. The loop integration measure is modified as

https://indico.cern.ch/event/908370/overview
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∫ �∏
i=1

dd0ki
(2π)d0

−→ (μ2)�ε
∫ �∏

i=1

ddki
(2π)d

, (2.12)

where μ is an arbitrary mass scale which we need to introduce in order to preserve
the dimensionality of the coupling constants. Scattering amplitudes and Feynman
integrals are then computed as Laurent series around ε = 0, and the loop-integration
divergences show up as poles in ε. The Laurent series is typically truncated to the
finite term, of order ε0, or to some low power of ε. In Sect. 4.3.4 we will see explicitly
one reason why the first few orders in ε may sometimes be needed.

Dimensional regularisation is particularly convenient because it preserves gauge
and Lorentz invariance, and allows us to regularise at the same time both ultraviolet
and infrared divergences. As we will see in the next sections, the ultraviolet diver-
gences are regularised by assuming that ε > 0, whereas ε < 0 regularises the infrared
ones. In practice, we can keep ε generic and regularise both simultaneously.

Dimensional regularisation however has drawbacks as well. For instance, it fails
to regularise chiral theories consistently [83–88]. The source of contradictions is the
Dirac matrix γ5. The latter is defined in d = 4 dimensions as

γ5 = i

4!εμ1μ2μ3μ4γ
μ1γμ2γμ3γμ4 . (2.13)

Its continuation to generic d dimensions is however not uniquely defined. One could
assume that Eq. (2.13) holds as-is also in d dimensions, but this would result in a
breakdown of allWard identities relying on {γ5, γμ} = 0. Dimensional regularisation
can still be used in such cases, but some manual intervention may be required. The
theories considered in this thesis are not affected by this problem.

Similarly, it is not uniquely defined how to continue the Dirac algebra to d dimen-
sions. Several variants have been proposed, which share the continuation of the loop
momenta to d dimensions, but differ in how the external states and the spin degrees
of freedom are handled. I list here the most popular. In the original dimensional reg-
ularisation scheme, known as the “’t Hooft-Veltman” (HV) scheme [82], the external
states are treated as d0-dimensional, while the internal states are in d dimensions.
In the “conventional dimensional regularisation” (CDR) scheme [89], all states are
treated in d dimensions. In the “four-dimensional helicity” (FDH) scheme [90, 91],
instead, only the internal momenta are d-dimensional, whereas the external states
and the internal polarisation vectors are to be treated in d0 dimensions. This is partic-
ularly convenient for the unitarity-based approaches, where the loop amplitudes are
constructed by “gluing” together tree-level ones (more about unitarity in Sect. 2.4.2).
It is therefore useful that both the internal and the external states have the same spin
degrees of freedom. Furthermore, the FDH scheme preserves supersymmetry. I will
therefore adopt the FDH scheme in the supersymmetric applications discussed in
Sect. 4.3. In the Yang-Mills computation presented in Sect. 4.5, instead, I will not
commit to any specific scheme, and keep the spin-dimension of the internal gluon
generic.
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In the next two sections I will show how divergences in the loop integration may
arise from two distinct regions, the ultraviolet and the infrared, and how both are
regularised by dimensional regularisation.

2.3.2 Ultraviolet Divergences and Renormalisation

Ultraviolet (UV) divergences arise when the integration does not converge in the
large loop momentum region. Consider a generic one-loop integral with p prop-
agators (which we assume to be quadratic) and a generic numerator N . At large
loop-momentum k, it behaves as

∫
ddk

N (k)

(k2)p
∼

∫
d|k| |k|d+r−1−2p , (2.14)

where r , also known as rank, counts the powers of loopmomentum k in the numerator
N . If d + r − 2p ≥ 0, the integration does not converge and the integral exhibits a
UV divergence. This combination of numerator rank and number of propagators
takes the name of (superficial) degree of divergence,

ω = d + r − 2p . (2.15)

Ifω = 0, 1, 2, . . . the integral is logarithmically, linearly, quadratically... divergent in
theUV region. If it is negative, the integral is UVfinite. Themulti-loop generalisation
is almost straightforward. In order to ensure a complete absence of UV divergences,
one must check the convergence in all the possible regions where the loop momenta
become large. In other words, we need to check the power-counting for every sub-
graph. Note that this counting does not take into account potential cancellations of
terms. These may reduce—never increase—the degree of divergence. That is the
reason for the attribute “superficial” to this degree of divergence.

Dimensional regularisation is sensitive only to logarithmic divergences, which
manifest themselves as poles in the regulator ε. Power-like divergences instead vanish
(I will discuss this in Sect. 3.1.1). Clearly, an integral with degree of divergence
ω = 0 in d0 dimensions has ω = −2ε in d = d0 − 2ε dimensions. UV divergences
are therefore regulated by assuming that ε > 0, so that the degree of divergence is
negative.

The Standard Model and the theories considered in this thesis are renormalis-
able. This means that the UV divergences can be absorbed in a re-definition of the
Lagrangian parameters: fields, coupling constants and masses. I expect that, if you
are reading this thesis, you have already encountered this procedure called renor-
malisation. Still, I find a quick refresher always useful. Consider the coupling con-
stant. There is a distinction between the “bare” coupling constant that appears in
the Lagrangian, and the “physical” coupling constant. Of course we need to define
what we mean by “physical” coupling constant, e.g. by relating it to some measured
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quantity, which is definitely not divergent. We can compute this quantity in terms of
the bare parameters up to a certain order in perturbation theory, this way relating the
physical to the bare coupling constant. The relation may contain UV divergences, but
the physical coupling constant is by definition finite. We can then use this relation
to substitute the bare with the physical, renormalised coupling constant in any other
computation. In this way we absorb the UV divergences in the definition of an unob-
servable quantity—the bare coupling—in terms of a finite and observable one—the
renormalised coupling. Doing this for all the parameters of the Lagrangian removes
the UV divergences altogether (provided that the theory can be renormalised). The
renormalised quantities are defined at a specific value μR of the mass scale μ intro-
duced by dimensional regularisation. This renormalisation scale is unphysical, and
physical quantities do not depend on it. This translates into renormalisation group
equations, which govern the evolution of the renormalised parameters with respect
to the renormalisation scale. In Sect. 4.5 I will discuss in some detail the renormali-
sation of Yang-Mills theory. I refer to the standard QFT textbooks (e.g. [1, 89]) for
a thorough discussion.

In summary, the UV divergences are just an artefact of computing the S-matrix
elements using unphysical fields and in terms of unphysical (bare) parameters. Com-
puting the S-matrix elements with physical—i.e. renormalised—fields in terms of
physical parameters removes the UV divergences.

2.3.3 Infrared Divergences

Whenever the scattering process involves massless particles, the loop integral may
develop IR divergences, stemming from regions of the loop integration where suf-
ficiently many propagators go on shell simultaneously. This may occur when the
loop momentum becomes soft, or when it becomes collinear to the momentum of an
external massless particle. In the next subsections I discuss these two mechanisms
separately, and then show how IR divergences cancel out in any “legitimate” physical
observable.

Soft divergences

The loop momentum k is said to become soft when all its components become small,
kμ → 0. A toy example to understand this is given by the scalar loop diagram shown
in Fig. 2.1. The particles are massless and the external momenta p1 and p2 are on
shell, p2i = 0. The integrand has the form

∫
ddk

(2π)d

F(k)

(k − p1)2k2(k + p2)2
, (2.16)
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where I have made explicit only the part that is relevant in the soft region, and F
denotes the rest of the diagram. We rescale the loop momentum as

kμ = λk̂μ . (2.17)

The soft region then corresponds to the small-λ region, while k̂μ is kept fixed. The
propagators scale as

k2 ∼ λ2 , (k − p1)
2 ∼ λ , (k + p2)

2 ∼ λ , (2.18)

so that the relevant part of the integrand scales as

ddk

(k − p1)2k2(k + p2)2
∼ dλ

λ
λd−4 . (2.19)

Assuming that the rest of the diagram stays finite in the soft region, the integral has
a clear logarithmic divergence if d = 4. In dimensional regularisation around four
dimensions, d = 4 − 2ε, the integration converges for ε < 0, and produces a pole
1/ε. The integration instead converges in six dimensions. As we will see, the same
is true also in the collinear region. It is therefore sometimes interesting to look at
Feynman integrals in six dimensions, as they are free of IR divergences.

Collinear divergences

Collinear divergences may instead occur when the loop momentum becomes
collinear to the on-shell momentum of an external massless particle. Let us con-
sider once again the diagram shown in Fig. 2.1, and let us study the region of the loop
integrationwhere the loopmomentum k becomes collinear to the externalmomentum
p1. It is convenient to parameterise the loop momentum as

kμ = α1 p
μ
1 + α2 p

μ
2 + kμ

⊥ , (2.20)

such that

Fig. 2.1 Example of loop
Feynman diagram to
illustrate the origin of IR
divergences. The arrows
denote momentum flow
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k⊥ · p1 = 0 = k⊥ · p2 . (2.21)

We control the collinear limit with a parameter, ρ, such that the collinear region
k ‖ p1 corresponds to ρ = 0. The new integration variables

(
α1,α2, k

μ
⊥
)
scale as

α1 ∼ O(1) , α2 ∼ O(ρ2) , kμ
⊥ ∼ O(ρ) . (2.22)

In the small ρ region the relevant part of the integrand behaves as

ddk

(k − p1)2k2(k + p2)2
∼ dρ

ρ
ρd−4 . (2.23)

The same considerations we have made for the soft limit hold here as well. The
integral diverges logarithmically in d = 4, and is regulated by analytically continuing
to d = 4 − 2ε dimensions with ε < 0. In d = 6, instead, the integral converges in
the collinear region. It is important to stress that, in order to assess the presence
of collinear singularities in a loop integral, one should check systematically all the
regions where one or more loop momenta become collinear to some of the external
momenta.

Factorisation of the infrared divergences

In the previous sections we have seen that the IR divergences in loop scattering
amplitudes arise from the soft and collinear regions of the loop integration. In general,
soft and collinear divergences may occur simultaneously. In this thesis we will be
concerned with massless gauge and gravity theories in d = 4 − 2ε. The leading IR
pole in a �-loop amplitude or integral in d = 4 − 2ε is typically of order 1/ε2�.
Remarkably, the IR divergences of a renormalised scattering amplitude A factorise,
schematically as

A
(
pi · p j

μ2
R

, g(μ2
R), ε

)
= Z

(
pi · p j

μ2
F

, g(μ2
F ), ε

)
A f

(
pi · p j

μ2
R

,
μ2
F

μ2
R

, g(μ2
R), ε

)
,

(2.24)

where {pi }ni=1 are the external momenta, g is the renormalised coupling, μR is the
renormalisation scale and μF is a factorisation scale. Most importantly, Z is an
operator which captures all the IR divergences, i.e. all the 1/ε poles, so that A f is
finite at ε = 0.We can thus define a four-dimensional object called hard or remainder
function by letting ε = 0 in the finite amplitude,

H = lim
ε→0

A f . (2.25)

The precise form of the IR pole operator Z depends on the specific theory. In
Sects. 4.3.4 and 4.5.2 I discuss in some detail how IR divergences factorise in mass-
less gauge theories and in gravity theories.
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Cancellation of the infrared divergences

Just like UV divergences, also the appearance of IR divergences in massless theories
is not a “bug,” but the manifestation of a deep physical principle. We have seen
in Sect. 2.1 that, in order to define a scattering amplitude, one must have a well-
defined notion of asymptotic states, which correspond to the scattering particles in
the idealised collision. States with a fixed number of massless particles are however
not well defined: it is in fact impossible to distinguish between a single particle with
a definite light-like momentum p (p2 = 0) from a bunch of particles with collinear
momenta which sum up to p, or from the same particle surrounded by a cloud of
soft particles. These states are degenerate, and this ambiguity is the source of the IR
divergences in the loop integration, as well as of the singularities exhibited by the
amplitudes as the external momenta become soft or collinear (see Sect. 2.4.1).

The most common way of dealing with IR divergences is referred to as the cross-
section method [92, 93]. The basic idea is that the S-matrix elements are not observ-
able quantities, and we can therefore live with the fact that they have IR divergences.
What is important is that observable quantities are instead finite. This seemingly
innocent statement puts strong constraints on what we can call “observables”: they
must be infrared safe, i.e. theymust be insensitive to the addition of soft particles, and
to the exchange of a massless particle with momentum p with a bunch of collinear
particles whose momenta sum up to p. An example of infrared-safe observable is the
cross section for jet production defined by Sterman and Weinberg [94]. This makes
very much sense from the experimental point of view: the detectors have a finite
energy resolution, and cannot detect a particle with arbitrarily small momentum or
distinguish two particles moving in the same direction. What guarantees that this
actually works out also from the theoretical point of view is the fundamental theo-
rem by Kinoshita, Lee and Nauenberg (KLN) [95, 96]. In its original formulation,
the KLN theorem states that, for any given process, the IR divergences cancel out
in the cross section order by order in perturbation theory when summing over all
the degenerate initial and final states. The theorem was later gradually revisited and
made stronger, so as to prove that a more general class of infrared-safe observables
are finite (see e.g. Weinberg’s classic textbook [2], and Ref. [97] for recent develop-
ments). In practice, the cancellation of IR divergences in physical observables takes
place because of a conspiracy between the “virtual” divergences, i.e. those coming
from the loop integrations, and the “real-emission” divergences, which instead arise
from the phase space integration of squared amplitudes with fewer loops but extra
radiation in the final state. This distinction makes it very challenging to rearrange
the terms so that they can be integrated numerically.

When considering the scattering of composite objects there is one further subtlety.
Consider the (QCD-improved) parton model, which I briefly presented in Sect. 2.1.
The initial state of the hard scattering is precisely defined: there is exactly one parton
coming from each of the incoming hadrons, and it is not possible to accommodate
other degenerate states. This results in un-cancelled collinear divergences, which
arise from the radiation of massless partons from the incoming partons taking part
in the hard scattering process. The careful readers might recall that I have already
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hinted at the solution to this problem in Sect. 2.1 (below Eq. (2.11)). Similarly to
renormalisation, the initial state singularities can be absorbed into the “bare” PDFs
to obtain the physical ones. The latter depend on an unphysical factorisation scaleμF ,
of which the physical observables must be independent. This dictates the evolution
of the PDFs according to the DGLAP equations [9–11].

The appearance of IR divergences in the scattering amplitudes therefore does
not pose an obstacle for computing physical observables (although it is certainly a
complication). From the formal point of view it is however disturbing that the S-
matrix is not well defined in presence of massless particles, and the search for more
satisfactory formulations is an active area of research. See e.g. Refs. [98, 99] for
recent work on this topic.

2.4 Analytic Structure of Scattering Amplitudes

In this section I discuss some of the most salient analytic features of scattering ampli-
tudes viewed as functions of the external momenta, and show how they are related to
fundamental physical principles. Once again I want to keep the discussion as general
as possible, without specialising to a specific theory. We start in Sect. 2.4.1 with the
singularity structure of scattering amplitudes, tightly connected to the postulate of
locality. Then, in Sect. 2.4.2 I discuss how the non-trivial branch-cut structure of scat-
tering amplitudes follows from the unitarity of the S matrix. Indeed, it is the dream
of many to construct explicit expressions for scattering amplitudes based solely on
physical principles and a precise knowledge of their analytic structure. This is a
long-standing goal of the so-called “S-matrix program,” initiated in the early Six-
ties [100–102] and recently revived. The interplay between the “old” ideas of the
S-matrix program with perturbation theory, especially in N = 4 super Yang-Mills
theory, has led to major advances in our understanding of quantum field theory and
scattering amplitudes: generalised unitarity [103, 104], the Britto-Cachazo-Feng-
Witten recursion relations [105–107], and on-shell diagrams [47], just to name a
few. My goal in this thesis is more modest, but a thorough understanding of the
analytic structure of scattering amplitudes is at the basis of the techniques presented
in Chaps. 3 and 4.

2.4.1 Poles and Locality

The structure of the poles in scattering amplitudes as functions of the external
momenta is tightly connected to the fundamental principle of locality. Loosely
speaking, locality means that an object can be influenced only by its immediate
surroundings. More rigorously, locality implies that the Lagrangian density, defined
in position space, can only be a function of fields and of their derivatives at a single
point in spacetime. In momentum space, this means that the interaction vertices are
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either constant or polynomial in the momenta. Only the propagators contribute in
the denominator.

At tree level, locality implies that the only poles with non-vanishing residues arise
from the propagators of physical particles going on shell, i.e. from the exchanges
of physical particles. Tree-level amplitudes therefore may have poles only where
the sum of a subset of the momenta of the external particles goes on shell. More
explicitly, a n-particle tree-level amplitude with external momenta p1, . . . , pn , such
that

∑n
i=1 pi = 0, may only have poles of the form

1(∑
i∈I pi

)2 − m2
, (2.26)

where I ⊂ {1, . . . , n}, and m is the mass of any one-particle state of the theory
(including the case m = 0) which can couple to the external particles with momenta
in the subset I. Poles of the form given by Eq. (2.26) are called multi-particle poles
in the literature. Certain representations of a scattering amplitude or separate parts
of an amplitude (e.g. individual Feynman diagrams with obscure field redefinitions
or gauge choices) may contain poles of a different form, but they are spurious, and
the corresponding residues in the complete amplitude must vanish. The residues of
the poles associated with the exchange of physical particles instead factorise into
lower-point amplitudes, as shown in Fig. 2.2. This can be understood easily from
Feynman diagrams: the propagator going on shell splits the Feynman diagrams into
two parts, each containing all the Feynman diagrams required to compute a scattering
amplitude. The fact that the residues of a tree amplitude at all its poles are products
of lower-point amplitudes allows one to set up recursive relations to compute higher-
point amplitudeswithout usingFeynmandiagrams.TheBritto-Cachazo-Feng-Witten
(BCFW) on-shell recursion relations [106, 107] are themost notable example of such
a technique. I refer the interested readers e.g. to the textbooks [4, 5].

In massive quantum field theories the factorisation on the multi-particle poles rep-
resented in Fig. 2.2 can be shown to hold beyond the tree level, non-perturbatively [2].
This is a generalisation of the well known Lehmann-Symanzik-Zimmermann (LSZ)
reduction formula [108] for the correlation functions, which corresponds to the
special case where only one of the external momenta is put on shell (see e.g. the

Fig. 2.2 Factorisation of a n-particle tree-level amplitude. The arrows denote momentum flow,
pi j ...k = pi + p j + . . . + pk , and m is the mass of any one-particle state of the theory (including
m = 0) that can couple to the stateswithmomenta pi , p j , . . . , pk . The sum runs over all the possible
intermediate states
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standard textbook [1] for a pedagogical discussion). The mass appearing in this non-
perturbative factorisation must be a physical, renormalised mass, not the bare one
appearing in the Lagrangian.

As for quantum field theories with massless particles, the standard theory of
scattering needs to be modified because the states with a fixed number of mass-
less particles are not well defined. As we have seen in Sect. 2.3.3, this implies the
existence of infrared divergences in the S-matrix elements, but does not prevent us
from computing physical observables. Generalisations of the LSZ formula to accom-
modate massless particles as well are being explored (see e.g. Refs. [109, 110] for
recent work on this topic). The presence of IR divergences make the factorisation of
scattering amplitudes with massless particles substantially more complicated than in
the massive case. Even in the case of IR-finite loop amplitudes, the factorisation is
made more complicated by the presence of special functions, necessary because of
unitarity (see Sect. 2.4.2). Nonetheless, on-shell recursion methods similar to those
used at tree-level can be used to compute finite loop amplitudes (see e.g. Refs. [111–
113]). The special case where the sum of the momenta of exactly two particles goes
on shell is of particular interest. In the massless case, the two external momenta
become collinear in the limit, and the universal factorisation of the residue is well
understood also at loop level. In Sects. 4.3.5 and 4.5.6 I discuss in some detail the
factorisation in the collinear limit of the amplitudes in gauge and gravity theories at
two-loop order. Another limit where the amplitudes exhibit a universal factorisation
that is understood beyond the tree level is the soft limit, in which one of the momenta
of the external particles vanishes. I discuss the factorisation of gravity amplitudes in
the soft limit at two-loop order in Sect. 4.3.5.

The complications for loop amplitudes are of course due to the loop integration,
which is responsible for the appearance of both special functions and divergences.
The problem of integrating—to which Chap. 3 is devoted—is however separate from
that of constructing an un-integrated expression for a loop amplitude. We can strip
off the integral sign from an �-loop amplitude A(�),

A(�) (p1, . . . , pn) =
∫ (

�∏
i=1

ddki

)
I(�) (k1, . . . , k�, p1, . . . , pn) , (2.27)

thiswaydefining a loop integrand I(�). Setting aside the issue that such anobject is not
uniquely defined, the loop integrand is just a rational function. Indeed, its properties
are very similar to those of tree-level amplitudes, the only difference being that the
topology of the associated Feynman graphs ismore general, including also loops. On-
shell methods based on the factorisation in terms of lower-point objects can therefore
be used to compute the loops integrands, by-passing the Feynman diagrams. Perhaps
the most notable result of this approach is the explicit recursive formula for the (four-
dimensional) integrands of scattering amplitudes in planarN = 4 super Yang-Mills
theory at any loop order [114] (see also Ref. [115]).

As for the integrated amplitudes, it is known that for individual Feynman inte-
grals (whose integrands have only local propagators in the denominator) the loci
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where they may potentially be singular are determined by the solution of the Lan-
dau equations [102, 116, 117] (see also Refs. [118, 119] for some recent work).
The latter however offer a necessary condition, not a sufficient one. Moreover, the
singularities of the individual Feynman diagrams may cancel out in the complete
amplitude, which ultimately is the physical object of interest. In Sect. 4.2.4 I give
an interesting example of a non-trivial hypersurface in kinematic space where some
of the Feynman integrals are singular, whereas the amplitudes they contribute to are
finite. Understanding the singularity structure of the integrated amplitudes remains
an important and ambitious goal.

2.4.2 Discontinuities and Unitarity

Another important feature of the analytic structure of scattering amplitudes is the
presence of branch cuts. Their appearance follows from a fundamental postulate of
quantum mechanics: the unitarity of the S matrix,

SS† = 1 , (2.28)

or

T T † = i
(
T † − T

)
, (2.29)

in terms of the interacting part of the S matrix. In other words, the probability is
conserved in the scattering process. This observation seems innocent, but has far-
reaching implications for scattering amplitudes. In order to spell them out, we take
the matrix element of both sides of Eq. (2.29) between two generic states |i〉 and | f 〉,
with total momenta pi and p f , respectively. Next, we insert in the left-hand side the
resolution of the identity in Fock space,

1 =
∑
n≥0

∫
d�n|{n}〉〈{n}| , (2.30)

where |{n}〉 denotes loosely a n-particle state, with total momentum p{n}, and d�n is
the n-body phase space defined by Eq. (2.9). Strictly speaking, the sum in Eq. (2.30)
runs over the particle species and polarisations as well, but the generalisation is
straightforward and I prefer to keep the notation simple. Then, recalling the definition
of a scattering amplitude (2.7) and appealing to invariance under time reversal gives

2ImAi→ f =
∑
n≥0

∫ (
n∏

i=1

d�i

)
(2π)4δ(4)

(
p f − p{n}

)A{n}→ fA∗
{n}→i , (2.31)
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where the overall conservation of momentum, pi = p f , is understood. This result,
known as the optical theorem, has profound consequences. Let us consider the ampli-
tudeAi→ f as a function of some kinematic variable s, e.g. s = p2i . For real momenta
s is real, but allowing it to take complex values, although unphysical, leads to impor-
tant insights. Schwarz’s reflection principle,

A∗
i→ f (s) = Ai→ f (s

∗) , (2.32)

relates the imaginary part of the amplitude to its discontinuity as s crosses the real
axis,

Disc
s

Ai→ f (s) := lim
δ→0+

[Ai→ f (s + iδ) − Ai→ f (s − iδ)
] = 2iImAi→ f (s) . (2.33)

For instance, the discontinuity of a logarithm is given by

Disc
s

log (s) = 2πi�(−s) , (2.34)

where� is the Heaviside step function. The optical theorem then implies that scatter-
ing amplitude have branch points in the thresholds, i.e. where intermediate physical
states become kinematically accessible. By convention we take the branch cuts to lie
along the real axes.

These discontinuities may be traced back to the regions of the loop integration
where some virtual particles go on shell. The only source of non-vanishing imaginary
parts in a Feynman integral (for real kinematics) is the Feynman “+i0+” prescription
in the propagators,

1

k2 − m2 + i0+ , (2.35)

where 0+ is an infinitesimal positive real number.4 This prescription becomes relevant
only where the momentum flowing in the internal propagator goes on shell, k2 =
m2, and the propagator becomes purely imaginary. This also suggests a way of
computing the discontinuities across the branch cuts of a scattering amplitude through
an operation called unitarity cut [120]. The Sokhotski-Plemelj theorem implies that

lim
α→0+

Im

(
1

k2 − m2 + iα

)
= −πδ

(
k2 − m2

)
, (2.36)

to be understood in a distributional sense. A more careful derivation shows that
causality requires the virtual particles put on shell to have positive energies, so that
the δ function on the right-hand side of Eq. (2.36) has to be traded for

4 The infinitesimal positive real number 0+ in the Feynman prescription for the propagators is often
denoted by ε in the literature. I use 0+ to avoid confusion with the dimensional regulator ε.
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δ(+)
(
k2 − m2

) = δ
(
k2 − m2

)
�

(
k0

)
, (2.37)

where k0 is the energy component of kμ. The discontinuity of an amplitude across a
branch cut can then be computed by “cutting,” in all the relevant Feynman diagrams,
the propagators in a given channel, i.e. by replacing them with δ functions which put
the corresponding momenta on shell [120].

The fact that the relation given by Eq. (2.31) is non-linear in the scattering ampli-
tudes grants unitarity an extraordinary predictive power. In order to simplify the
notation, let us focus for a moment on a generic theory with trivalent vertices of
order g. The n-particle scattering amplitude An can be series-expanded in the cou-
pling constant g as

An = gn−2
∑
�≥0

g2�A(�)
n . (2.38)

Substituting this expansion into the optical theorem given by Eq. (2.31), it becomes
clear that the discontinuity of the �-loop amplitude is entirely determined by lower-
loop information. In particular, tree-level amplitudes have no discontinuity, as
expected, whereas the discontinuities of one-loop amplitudes, or equivalently their
unitarity cuts, are given by a product of tree-level amplitudes integrated over the
remaining internal degrees of freedom. This is graphically represented in Fig. 2.3.
The same result can be shown to hold for a generic theory. If the �-loop ampli-
tudes are known, then unitarity gives a strong handle over the (� + 1)-loop ones. The
branch cuts of the integrated amplitude are in fact constrained by unitarity in terms
of lower loop information. The unitarity cuts on the other hand relate the branch cut
structure of the integrated amplitude to the pole structure of its un-integrated expres-
sion, its integrand. We can therefore make a generic ansatz for the integrand of an
amplitude, which is just a rational function, and fix the coefficients by analysing dif-
ferent sets of unitarity cuts. This unitarity-based method to construct the amplitude
integrands has proven extremely useful, but can be made even more powerful by
generalising the concept of unitarity cut. Cutkosky’s rules to compute the disconti-
nuity of a one-loop amplitude in a given channel prescribe to cut the two propagators
in that channel [120]. Nothing prevents us from cutting more than two propagators.

1-loop tree tree
...Disc

(
p ...

)
=

∑ ∫
ddk δ(+) k2) δ(+) (k + p)2

) ...
...

k

k + p

Fig. 2.3 Pictorial representation of the optical theorem for a generic one-loop amplitude in a
massless theory. The dashed line denotes that we are computing the discontinuity in the p2-channel,
i.e. across the branch cut along the real p2 axis. The arrows indicate the momentum flow. The sum
runs over all the possible physical on-shell two-particle intermediate states. The constant overall
prefactors are omitted
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Fig. 2.4 Factorisation of a massless one-loop amplitude on the quadruple cut l2i
∣∣
k=k∗= 0 ,∀i =

1, . . . , 4, with l1 = k, l2 = k + p1, l3 = k + p1 + p2, l4 = k − p4. The arrows denote momentum
flow, and the dashed lines denote the cut propagators. The sum runs over all the possible intermediate
states, which carry momenta {li }4i=1 evaluated in one of the two solutions k∗ of the quadruple cut

For instance, at one-loop and treating the loop momentum as four dimensional, we
can cut up to four propagators. This quadruple cut localises entirely the internal
degrees of freedom, and the result factorises in terms of tree amplitudes, as shown
in Fig. 2.4. Strictly speaking, the factorisation of the generalised unitarity cuts in
terms of lower-loop amplitudes does not follow directly from unitarity, but can be
shown to hold e.g. by analysing the contributing Feynman diagrams [102]. For this
reason we talk of generalised unitarity [103–105] (see e.g. Refs. [121, 122] for a
review). One subtlety of generalised unitarity cuts is that the solution of the cuts is
in general complex. If any number of propagators is substituted by δ functions and
the loop integration is carried out in Minkowski space R1,3, the result may vanish,
because the support of the δ function may be complex. Generalised unitarity cuts
should therefore be viewed as the deformation of the integration contour around the
poles of the cut propagators, rather than the substitution of the latter with δ functions.
In order to understand this point, consider the following toy example:

f (z) =
∫ ∞

−∞
dz′ f

(
z′) δ

(
z − z′) , (2.39)

f (z) = 1

2πi

∮
∂D

dz′ f
(
z′)

z′ − z
, (2.40)

where D is a closed disk around z ∈ C, and f is holomorphic in D. While Eq. (2.39)
works only if z ∈ R, Cauchy’s integral formula (2.40) makes sense for z ∈ C. Com-
puting generalised unitarity cuts therefore amounts to computing (possibly multi-
variate) residues. From this point of view, a Feynman integral and its cuts differ only
in the integration contour, and it is thus reasonable to expect that they share common
properties. Since computing the cuts is easier than computing the original integral,
generalised unitarity cuts can be useful to anticipate certain properties of the inte-
grated expressions. In fact, we will see in Sect. 3.6.1 that a further generalisation
of the concept of unitarity cut—the leading singularity—plays a central role in the
method to compute Feynman integrals presented in the next chapter.
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Chapter 3
The Art of Integrating by Differentiating

The good, old Feynman rules offer a completely algorithmic way of writing down
the expression of any scattering amplitude. The number of Feynman diagrams grows
badly with the number of loops and of external particles, and the search of alternative
methods is an exciting area of research. However, it is fair to say that, given a
Lagrangian and an arbitrary amount of computing power, it is nomystery how towrite
down some expression of the scattering amplitude for a certain process at a certain
loop order. Yet, even once such an expression is available and properly massaged,
one has to face the hard truth that she is still quite far from the finishing line. The
main obstacle standing in the way are the Feynman integrals. Despite tremendous
progress in the last decades, the computation of Feynman integrals beyond one loop
is far from being an algorithmic process. In this chapter I will discuss the analytic
strategy which I am convinced is the most systematic at our disposal: the method of
the differential equations [1–5].

Before doing so, I feel that I owe the reader some words of persuasion on the
necessity of computing Feynman integrals analytically. I invite those who need no
persuasion to skip the following paragraphs.

First of all, there is a practical reason. Scattering amplitudes are the ultimate
gauge-invariant building blocks of cross sections. In order to compute a cross section,
however, the scattering amplitudes have to be integrated over the phase space. This
means evaluating themhundreds of thousands of times. Speed and numerical stability
are crucial. Despite the enormous progress in numerical integration, which has given
us extremely powerful tools such as FIESTA [6] and pySecDec [7], this approach
is still no match for a fully analytic result in the case of multi-loop integrals, in
particular if evaluated in the region of the kinematic space which is of interest for
phenomenology.

Yet, even if it were possible to evaluate numerically any Feynman integral in such
a way that our phenomenologist friends would be entirely satisfied, I argue that it
would still be worth pursuing a fully analytic computation. Scattering amplitudes
and Feynman integrals are more than numbers. Their analytic structure contains
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much more information than it is possible to read off from plots, and gives extremely
precious insights in the underlying theory. I have given a few examples in Sect. 2.2.

Finally, it is worth mentioning that hybrid analytic/numeric approaches are
also being explored [8], and have already lead to several promising applications
[9–13].

Hopefully galvanised by this motivation, we can now move on to discussing
the method of the differential equation for the analytic computation of Feynman
integrals. I wish to make the presentation rather pedagogical and self-contained.1

For this reason I complement the presentation of each technique and idea with its
application to an explicit case, the so-called “three-mass triangle” integral family,
which we will compute together step by step throughout this chapter. I begin in
Sect. 3.1.1 by defining the fundamental notion of integral family, roughly speaking
the set of all integrals with the same propagator structure and any numerator. I show
that an integral family admits a basis, and that the latter satisfies a system of first-
order linear differential equations. The choice of basis is arbitrary and the differential
equations can in general be very complicated. In Sect. 3.2 I argue that a natural choice
of basis exists, for which the differential equations simplify dramatically and take
the so-called “canonical form.” In order to write down the solution of the differential
equations, in Sect. 3.3 I define and discuss the analytic properties of the multiple
polylogarithms, and introduce some technology toworkwith them. InSect. 3.4 I show
three different approaches to write down the solution of the canonical differential
equations, anddiscuss the benefits and the limitations of eachof them.Thedifferential
equations are also an extremely convenient tool to compute the asymptotic expansion
of the Feynman integrals in any kinematic limit. I show how to do this systematically
in Sect. 3.5. Finally, in Sect. 3.6 I show how certain properties of the loop integrands,
prior to integration, can be used to construct canonical bases systematically.

3.1 Feynman Integrals and Differential Equations

In this section I introduce the important concept of “family” of Feynman integrals
associated with a given loop Feynman diagram. Although an integral family contains
infinite Feynman integrals, only a finite number of them are actually independent,
which naturally implies the notion of an integral basis. I discuss how the Integration-
by-Parts (IBP) relations can be used to rewrite any integral of the family in terms of
elements of the basis. The computation of the entire integral family therefore reduces
to that of the basis integrals, often called master integrals in the literature. I then show
that the basis integrals satisfy a system of first-order linear differential equations.

1 For an even more thorough discussion of this method I recommend the notes [14].
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Fig. 3.1 Graph representing
the propagator-structure of
the three-mass triangle
integral family defined by
Eq. (3.1). The arrows denote
momentum flow

3.1.1 Integral Families and Integration-by-Parts Identities

Depending on the theory and on the process under consideration, a loop Feynman
diagram may have a non-trivial spinor structure. While the denominator is always
given by a product of scalar propagators of the form k2i − m2

i because of locality (see
Sect. 2.4.1),2 the numerator can carry several Lorentz or Weyl indices in the loop
momenta kμ

i . With some manipulations—called tensor reduction—it is possible to
rewrite any tensor quantity as a combination of tensor monomials in the external
momenta pμ

i with scalar coefficients. As a result, we can restrict our analysis to scalar
Feynman integrals. Through the tensor reduction, however, a given Feynman diagram
can generate various scalar Feynman integralswith the same propagator structure, but
with different powers of propagators. For example, certain powers may be negative,
originating from a polynomial in the numerator of the original expression. This
suggests to generalise the idea of Feynman integral by allowing arbitrary integer
powers of the propagators. The resulting object is called integral family.

In general the propagators of the representative Feynman diagram may not be
sufficient in order to express any possible numerator. In other words, it may not be
possible to rewrite certain scalar products of the momenta in terms of propagators.
We talk in this case of Irreducible Scalar Products (ISPs). The standard procedure
to handle them is to add a minimal set of ISPs as auxiliary propagators. We will see
an example of this in the next chapter, when discussing the two-loop five-particle
integral families.

In order to be more explicit and to define the notation, let me give an explicit
example. Let us consider the integral family corresponding to the one-loop three-
particle graph with massless propagators shown in Fig. 3.1 [15],

Ia1,a2,a3 = eεγE
∫

dDk

iπ
D
2

1(
k2 + i0+)a1 ((k + p1)2 + i0+)a2 ((k + p1 + p2)2 + i0+)a3 .

(3.1)

2 The propagators can also be linear in the loop momenta, e.g. in the context of Wilson lines. In this
thesis I focus on quadratic propagators. The treatment of the linear ones follows analogously.
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The overall prefactor of eεγE is conventional, and serves the purpose of removing
Euler’s constantγE = −�′(1) from the results.We take the externalmomenta pi , with
i = 1, 2, 3, to be all incoming. They satisfy the on-shell conditions and momentum
conservation,

p2i = m2
i , ∀i = 1, 2, 3 , (3.2)

p1 + p2 + p3 = 0 . (3.3)

The loop momentum k lives in D = 4 − 2ε dimensions in order to regulate the
divergences, while the external momenta can be chosen to lie either in a four- or in a
D-dimensional space. The choice has no effect in this case, but it is in general impor-
tant (see Sect. 2.3.1). The Feynman prescription +i0+ in the propagators specifies
how to perform the Wick rotation from Minkowski space with metric + − · · · − to
Euclidean space. In most of the following we will omit it in order to simplify the
notation. Poincaré invariance and momentum conservation imply that the integrals
of this family depend only on three kinematic variables, which we choose as the
external masses m2

i , ∀i = 1, 2, 3, and on the dimensional regulator ε. In order to
simplify the notation, I denote the kinematic variables cumulatively by m,

m := (
m2

1,m
2
2,m

2
3

)
. (3.4)

It is important to stress that it is not necessary to specify the underlying theory and
Feynman rules. The propagators are in fact always the same, and the integral family
is defined by allowing arbitrary powers of the propagators so as to accommodate
any numerator. The graph in Fig. 3.1, therefore, is not to be mistaken for a Feynman
diagram. It is a pictorial representation of the propagator structure of the integral
family we are considering. Once the integral family has been computed, the results
can be used for the calculation of scattering amplitudes or correlation functions in
any theory.

We started off with the goal of computing a Feynman integral and we ended
up with a family of infinite integrals. At first glance it might seem like we did
not make a particularly good deal. However, the integrals in a given family are in
general not independent. They satisfy linear relations called Integration-by-Parts
relations (IBPs) [16]. They originate from the fact that total derivatives vanish in
dimensional regularisation. Given the important role played by this theorem in the
method of the differential equations, it is worth trying to understand why it holds—at
least qualitatively. Let f (k) be the integrand of a Feynman integral

∫
dDk f (k). The

Poincaré invariance of the integrand allows us to translate the loop momentum k by
some external momentum p,

∫
dDk f (k) =

∫
dDk f (k + p) . (3.5)

Assuming that p is infinitesimally small, the following series expansion holds,
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∫
dDk f (k) =

∫
dDk f (k) + pμ

∫
dDk

∂

∂ pμ
f (k + p)

∣∣∣∣
p=0

+ O
(
p2
)

=
∫

dDk f (k) + pμ

∫
dDk

∂

∂kμ
f (k) + O

(
p2
)

,

(3.6)

which implies that total derivatives vanish in dimensional regularisation,

∫
dDk

∂

∂kμ
f (k) = 0 . (3.7)

In order to perform all these manipulations the integral must be well defined. This is
why dimensional regularisation is crucial. Similarly, one can also prove that scaleless
integrals vanish in dimensional regularisation,

∫
dDk

(
k2
)a = 0 . (3.8)

This is often referred to as Veltman’s formula in the literature [17, 18].
Going back to the three-mass triangle integral family (3.1), we have that

eεγE

∫
dDk

iπ
D
2

∂

∂kμ

(
qμ(

k2
)a1 (

(k + p1)2
)a2 (

(k + p1 + p2)2
)a3
)

= 0 , (3.9)

for anymomentumq. In this case there are three independent choices,q ∈ {p1, p2, k}.
It is sufficient to perform a bit of algebra to show that the action of the differential
operator on the rest of the integrand in Eq. (3.9) can be rewritten in terms of mem-
bers of the integral family with different powers of the propagators {a1, a2, a3}. For
instance, choosing q = k gives the IBP relation

(D − 2a1 − a2 − a3)Ia1,a2,a3 − a3 Ia1−1,a2,a3+1 − a2 Ia1−1,a2+1,a3+
+ m2

3a3 Ia1,a2,a3+1 + m2
1a2 Ia1,a2+1,a3 = 0 .

(3.10)

The IBPs therefore relate integrals with different powers of the propagators ai . As
already anticipated, only a finite number of them are independent [19]. The members
of an integral family therefore form a finite-dimensional vector space. As we will
see in the next section, the choice of the basis of such a vector space is crucial. In the
three-mass triangle case, the basis or master integrals can be chosen for instance as

�f = {I1,1,0, I1,0,1, I0,1,1, I1,1,1} , (3.11)

corresponding pictorially to bubble-graphs in the three different channels, and a
triangle, as shown in Fig. 3.2.

It is then possible to make use of the IBPs iteratively to expand any integral of
the family in the chosen basis, with rational prefactors in the kinematic variables and
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Fig. 3.2 Integral basis of the three-mass triangle family given by Eq. (3.11)

the spacetime dimension D. For example,

I2,1,1 = D − 3

m2
1m

2
3

(
I0,1,1 − I1,0,1 − I1,1,0

)− (D − 4)
m2

1 − m2
2 + m2

3

2m2
1m

2
3

I1,1,1 . (3.12)

This procedure is called IBP reduction. Although in principle straightforward, this
task is rather tedious to do by hand, and can become very heavy from the com-
putational point of view. Several algorithms have been devised to perform it in an
automatic and efficient way, notably Laporta’s algorithm [20, 21]. Various imple-
mentations are publicly available [22–26].

3.1.2 Differential Equations

Thanks to the IBPs the computation of all the integrals of a given family reduces to
that of the basis integrals. We will now see how we can compute these integrals—
quite ironically—by differentiating them.

We want to compute the basis integrals as functions of the kinematic invariants,
but their defining expression (3.1) is written in terms of momenta. The first step
is thus to construct differential operators ∂/∂m2

i that can act on the integral repre-
sentation (3.1). This can be easily done by writing down ansätze for them, e.g. for
∂/∂m2

1

∂

∂m2
1

=
(
a1(m)pμ

1 + a2(m)pμ
2

)
∂

∂ pμ
1

+
(
b1(m)pμ

1 + b2(m)pμ
2

)
∂

∂ pμ
2

. (3.13)

Imposing that the operator behaves as expected, namely that

∂

∂m2
1

p21 = 1 ,
∂

∂m2
1

p22 = 0 ,
∂

∂m2
1

(p1 + p2)
2 = 0 , (3.14)
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fixes three of the free coefficients,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a2 = −1+2a1m2
1

m2
1+m2

2−m2
3
,

b1 = 2m2
2

m2
1+m2

2−m2
3

(
m2

1−m2
2−m2

3

λ(m2
1,m

2
2,m

2
3)

− a1
)

,

b2 = m2
1−m2

2−m2
3

λ(m2
1,m

2
2,m

2
3)

− a1 ,

(3.15)

where λ denotes the Källen function,

λ (x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz . (3.16)

The remaining freedom can be used to simplify the expression. For instance, by
choosing a1 = (m2

1 − m2
2 − m2

3)/λ(m2
1,m

2
2,m

2
3), we obtain

∂

∂m2
1

=
(
m2

1 − m2
2 − m2

3

)
pμ
1 + (

m2
1 − m2

2 + m2
3

)
pμ
2

λ
(
m2

1,m
2
2,m

2
3

) ∂

∂ pμ
1

. (3.17)

The other operators can be constructed the same way, using the remaining freedom
to ensure that they all commute,

[
∂

∂m2
i

,
∂

∂m2
j

]
= 0 , ∀i, j = 1, 2, 3 . (3.18)

Now that we have differential operators at our disposal, we can differentiate
the basis integrals �f (3.11). It takes just a little amount of algebra to show that
one obtains integrals within the same family. We can thus re-express the result of
the differentiation as a linear combination of basis integrals using IBPs. To put
it differently, the fact that a family of Feynman integrals admits an integral basis
implies that the latter satisfy a system of first-order linear homogeneous differential
equations,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ �f
∂m2

1

= B1(m, ε) · �f
∂ �f
∂m2

2

= B2(m, ε) · �f
∂ �f
∂m2

3

= B3(m, ε) · �f

, (3.19)

where we stress that Bi is a 4 × 4 matrix function of both the kinematics and ε. For
example, the derivative with respect to m2

1 gives
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B1 =

⎛
⎜⎜⎜⎝

− ε
m2

1
0 0 0

0 0 0 0
0 0 0 0

4ε−2
λ

(1−2ε)
m2

1−m2
2+m2

3

m2
1λ

(1−2ε)
m2

1+m2
2−m2

3

m2
1λ

m2
1(m

2
2+m2

3−m2
1)+ε(m4

1−(m2
2−m2

3)
2)

m2
1λ

⎞
⎟⎟⎟⎠ ,

(3.20)

where we denote λ ≡ λ(m2
1,m

2
2,m

2
3) for simplicity.

A few comments on the matrices of the differential equations Bi are in order. First
of all, Euler’s theorem on homogeneous functions implies that

3∑
i=1

m2
i Bi = diag (−ε,−ε,−ε,−1 − ε) , (3.21)

where on the diagonal are the scaling dimensions of the integrals. We can set them to
zero by normalising the integrals with appropriate dimensional factors, so that they
only depend on two non-trivial dimensionless variables.

Secondly, the matrices Bi must satisfy certain integrability conditions,

∂Bi

∂m2
j

− ∂Bj

∂m2
i

= [
Bj , Bi

]
, ∀i, j = 1, 2, 3 . (3.22)

They follow through the differential equations (3.19) from the requirement that partial
derivatives of the basis integrals commute,

[
∂

∂m2
i

,
∂

∂m2
j

]
�f = 0 . (3.23)

In practice, the scaling dimensions (3.21) and the integrability conditions (3.22)
offer a very precious opportunity to check one’s implementation of the differential
equations. Such an opportunity should never be missed.

The differential equations for the bubble integrals are trivial, as can be seen e.g.
for f1 from Eq. (3.20). Since they depend only on one scale, m2

1 for f1, their func-
tional dependence is entirely fixed by dimensional analysis. We can thus read off
from Eq. (3.21) that fi ∝ (m2

i )
−ε for i = 1, 2, 3. The overall kinematic-independent

normalisation cannot be determined from the differential equations. Its full expres-
sion is rather easy to compute in closed-form, e.g. by straightforward integration of
the Feynman parametrisation,

fi = eεγE
�2(1 − ε)�(ε)

�(2 − 2ε)

(−m2
i

)−ε = 1

ε
+ 2 − log

(−m2
i

)+ O(ε) , ∀i = 1, 2, 3 .

(3.24)
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The expression for the bubble integrals given by Eq. (3.24) is well defined in the
so-called Euclidean region, where m2

i < 0 ∀i = 1, 2, 3. I postpone the discussion of
the kinematic regions and of how to analytically continue away from the Euclidean
region to Sect. 3.4.1.

Finally, the differential equations exhibit manifestly the loci of the potential singu-
larities of the integrals. By looking at Eq. (3.20) and at the corresponding expressions
for B2 and B3, it is clear that the basis integrals can diverge when one of the exter-
nal masses vanishes, m2

i = 0, or on the hypersurface λ(m2
1,m

2
2,m

2
3) = 0. The latter

singularity may sound surprising. It has no physical meaning and therefore must not
appear in the Feynman integrals. The presence of such spurious singularities in the
differential equations is actually valuable: imposing their absence provides us with
constraints to fix the boundary constants, as discussed in Sect. 3.4.2.

To summarise, we have seen that any integral family admits an integral basis,
and that the latter satisfies a linear system of first-order differential equations (3.19),
whose expression can be computed in a completely algorithmic way. Their solution
is however not systematic, in general. Moreover, the choice of basis is arbitrary. We
are always free to switch to a different basis �g,

�g = T · �f , (3.25)

for some invertiblematrix T . The new basis integrals �g satisfy a system of differential
equations equivalent to Eqs. (3.19),

∂�g
∂m2

i

= Ai (m, ε) · �g , ∀i = 1, 2, 3 , (3.26)

where

Ai = T · Bi · T−1 + ∂T

∂m2
i

· T−1 . (3.27)

In the next section we will see that there is a natural choice of basis for which the
differential equations simplify dramatically.

3.2 Differential Equations in the Canonical Form

In Sect. 3.1.2 we have seen that the basis of an integral family satisfies a linear
system of first-order differential equations. The latter can be rather complicated for
a generic choice of basis, so that its solution remains a difficult problem. In [5] it
was conjectured that there exist special choices of basis for which the differential
equations take a certain “canonical” form. The canonical form of the differential
equations is dramatically simpler, so that the solution can be simply read off in terms
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of special functions. In this section I discuss the main features of the canonical form
by working out explicitly the case of the three-mass triangle family (3.1).

Let us make the following educated choice of integral basis,

g1 = εm2
1 I2,1,0 ,

g2 = εm2
2 I0,2,1 ,

g3 = εm2
3 I1,0,2 ,

g4 = ε2
√

λI1,1,1 .

(3.28)

The corresponding transformation matrix in Eq. (3.25) simply amounts to changing
the normalisation of the integrals,

T = diag
(
ε(2ε − 1), ε(2ε − 1), ε(2ε − 1), ε2

√
λ
)

. (3.29)

For the bubble integrals this can be seen e.g. by setting a1 = a2 = 1 and a3 = 0 in
Eq. (3.10), which yields the relation

I2,1,0 = 2ε − 1

m2
1

I1,1,0 . (3.30)

Analogous relations for the other bubbles, I0,1,1 and I1,0,1, can be deduced from
Eq. (3.30) by symmetry or determined using other IBP relations.

The basis defined by Eq. (3.28) might look more complicated than the one given
by Eq. (3.11), since we have introduced a square root. This is a fair price to pay for the
drastic simplification we achieve. The new integral basis {gi }4i=1 satisfies the system
of differential equations (3.26). The matrices of the differential equations Ai can
either be obtained from those of the previous basis through Eq. (3.27) or computed
following the procedure outlined in Sect. 3.1.2. Let us take a look for instance at A1,

A1 = ε

⎛
⎜⎜⎜⎝

− 1
m2

1
0 0 0

0 0 0 0
0 0 0 0
2√
λ

m2
3−m2

1−m2
2

m2
1

√
λ

m2
2−m2

1−m2
3

m2
1

√
λ

(m2
1+m2

2−m2
3)(m

2
1−m2

2+m2
3)

λ

⎞
⎟⎟⎟⎠ . (3.31)

The first striking simplification is that the dependence on ε is factorised. The system
of differential equations can therefore be rewritten as

∂�g
∂m2

i

= ε Ãi (m) · �g , ∀i = 1, 2, 3 , (3.32)

where we stress that the matrices Ãi = Ai/ε depend only on the kinematic variables.
As a result, the two sides of the integrability conditions, given by Eq. (3.22) with Bi
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traded for Ai , have a different order in ε. Since they must hold for any value of ε,
they split into

∂ Ãi

∂m2
j

− ∂ Ã j

∂m2
i

= 0 ,

[
Ãi , Ã j

]
= 0 ,

∀i, j = 1, 2, 3 . (3.33)

Moreover, the integrals of the new basis {gi }4i=1 all have the same scaling dimensions,

3∑
i=1

m2
i Ãi = diag (−1,−1,−1,−1) . (3.34)

One could therefore extract a factor of, say,
(
m2

1

)−ε
from the integrals gi , leaving a

non-trivial dependence on two dimensionless variables only.
The kinematic dependence simplifies enormously as well. In order to appreciate

this in full glory, it is convenient to combine the differential equations (3.26) and
write the full system in differential form,

d�g = ε d Ã(m) · �g , (3.35)

where

∂ Ã

∂m2
i

= Ãi , ∀i = 1, 2, 3 . (3.36)

Thematrix Ã canbeobtained from the Ãi by solving algorithmically theEqs. (3.36)—
see for instance [9]—or bootstrapped as I discuss below. It takes the form

Ã =

⎛
⎜⎜⎝

− logα1 0 0 0
0 − logα2 0 0
0 0 − logα3 0

− logα4 − logα5 logα4 + logα5 − logα1 − logα2 − logα3 + 2 logα6

⎞
⎟⎟⎠ ,

(3.37)

where {αi }6i=1 are algebraic functions of the kinematics,

{αi }6i=1 =
{
m2

1,m
2
2,m

2
3,

m2
1 − m2

2 − m2
3 − √

λ

m2
1 − m2

2 − m2
3 + √

λ
,
m2

2 − m2
3 − m2

1 − √
λ

m2
2 − m2

3 − m2
1 + √

λ
,
√

λ

}
.

(3.38)

The differential equations (3.35) with Ã given by Eq. (3.37) make beautifully
manifest not only the loci of the (physical and spurious) singularities, but also their
regular nature. It is worth spending a few words to clarify this concept. It is possible
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to prove, e.g. by analysing the Feynman parameterisation, that a Feynman integral
is always bounded in a limit by a power with a certain exponent (see e.g. [14]). This
means that Feynman integrals can only have regular singularities in the kinematic
variables. In other words, it is not possible for a Feynman integral to develop an
essential singularity, such as e1/x at x = 0. This observation has strong implications
for the differential equations. In order to appreciate this, let h(x) be a Feynman
integral depending on a kinematic variable x . Let xs 	= ∞ be a singular point of
h(x).3 There exists a constant a such that h(x) ∼ (x − xs)a in the limit x → xs .
This means that h(x) satisfies a first-order differential equation which exhibits a
simple pole at x = xs ,

∂h(x)

∂x
∼

x→xs

a

x − xs
h(x) . (3.39)

A differential equation which exhibits this behaviour around all its singular points is
called fuchsian. Higher poles would lead to essential singularities, absent in Feyn-
man integrals. In the case of an integral basis, the matrix nature of the differential
equations they satisfy may obscure the fuchsian property with spurious higher poles.
However, the fact that Feynman integrals can have only regular singularities implies
the existence of a basis whose differential equations are in fuchsian form. The matrix
Ã in Eq. (3.37)makes the system of differential equations (3.35)manifestly fuchsian.

Equation (3.35) with a manifestly fuchsian matrix Ã is called the canonical form
of the differential equations [5]. The integral basis forwhich the differential equations
takes this form is dubbed canonical basis.

Once the differential equations are cast into the canonical form, the problem of
solving them for the basis integrals as Laurent expansions around ε = 0 is essentially
solved. Formally, the solution can be written down straightforwardly as

�g (m, ε) = P exp

(
ε

∫
γ

d Ã

)
· �b(ε) , (3.40)

where P denotes the path ordering, γ is a path in the kinematic space going from
some boundary pointm(0) tom, and �b(ε) = �g0(ε) are the values of the basis integrals
at m(0). Equation (3.40) is to be understood in a Laurent expansion around ε = 0,

�g(m, ε) =
∞∑
k=0

εk �g(k)(m) , (3.41)

and similarly for the boundary values �b(ε). Note that it is always possible to rescale
the basis integrals such that they are finite as ε → 0, since the differential equation
is not affected by any overall kinematic-independent normalisation of the integrals.
This motivates the overall factor of ε in the definition of the canonical basis given by

3 Singularities at infinity, xs → ∞, can be analysed in the same way by first doing a variable
transformation x → z = 1/x and then studying the singular point zs = 0.
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Eq. (3.28). The kth term in the expansion is then given by a k-fold iterated integral
along the contour γ of the matrix differential form d Ã,

�g(k)(m) =
k∑
j=0

∫
γ

d Ã · · · · · d Ã︸ ︷︷ ︸
j

· �b(k− j) , (3.42)

with the empty iterated integral defined to be 1. I postpone to Sect. 3.3.1 the pre-
cise definition of iterated integral. For now it suffices to understand that, once the
differential equations are cast into the canonical form, the problem of solving them
can be considered as solved, at least formally. The 1-forms appearing in the matrix
d Ã constitute the integration kernels in the iterated-integral solution, and therefore
encode which class of special functions is required to write down the solution.

In the three-mass triangle case, we see from Eq. (3.37) that all the integration
kernels are logarithmic,

d Ã =
6∑

i=1

aid logαi , (3.43)

where ai are constant rational matrices and αi are algebraic functions given by
Eq. (3.38). This is the most well understood case and it covers a great number of
applications. The 1-forms {d logαi }6i=1 are called letters, and the set of linearly
independent letters is dubbed alphabet. If the alphabet can be rationalised with an
appropriate change of kinematic variables, then it is possible to express the result
algorithmically in terms of Multiple Polylogarithms (MPLs) [27–31]. I discuss how
to do that in Sect. 3.4.3. This is often possible even in the presence of non-rational
letters (see e.g. [32]), although it is not true in general. Reference [33], for instance,
provides an explicit example of an iterated integral with logarithmic kernels which
cannot be written as a linear combination of MPLs. In such a case, and whenever
the integration kernels in Eq. (3.42) are not logarithmic, more complicated functions
may be required. One practical way of assessing this is the analysis of the maximal
cuts, i.e. the generalised unitarity cuts where all propagators are cut. If all maxi-
mal cuts of a Feynman integral and of its sub-topologies are algebraic, for instance,
it is typically possible to express it in terms of MPLs. Maximal cuts that evaluate
to elliptic integrals, on the other hand, are the smoking gun of Elliptic Multiple
Polylogarithms [34–40]. Iterated integrals of 1-forms defined on even more compli-
cated geometries—e.g. hyperelliptic curves [41, 42] and Calabi–Yau geometries
[43–47]—become relevant as we keep increasing the number of loops and of
variables.

For the work presented in this thesis it suffices to consider logarithmic 1-forms
only. From now on I will thus specialise in this case and, for simplicity, I will refer
to the arguments of the logarithms {αi }6i=1 as letters, rather than to the full 1-forms
{d logαi }6i=1. I will therefore assume that the matrix Ã in the canonical differential
equations (3.35) has the form given by Eq. (3.43). Since the alphabet {αi }6i=1 can
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be determined by looking at the Ãi matrices, Ã can be computed by writing down
an ansatz of the form (3.43), and fixing the constant matrices ai by imposing that it
satisfies the differential equations (3.36). This can be done numerically, which often
makes it advantageous with respect to integrating the Eqs. (3.36) analytically.

3.2.1 A Note on the Choice of the Letters

Of course there is freedom in the specific expression of the letters, and finding the
simplest alphabet is an art. For instance, one might as well choose the letters α4 and
α5 in Eq. (3.38) to have only the numerator or the denominator, since

num [α4] den [α4] = 4α2α3 ,

num [α5] den [α5] = 4α1α3 ,
(3.44)

where den [x] and num [x] denote the denominator and the numerator of x , respec-
tively. I prefer the choice made in Eq. (3.38) because, in the kinematic region where
λ(m2

1,m
2
2,m

2
3) < 0, all the letters have a well-defined transformation under complex

conjugation. They are either even,

d logα∗
i = d logαi , i = 1, 2, 3, 6 , (3.45)

or odd,

d logα∗
i = −d logαi , i = 4, 5 . (3.46)

This property gives a useful criterion of classification of the functions appearing in
the solution.

In general, thus, whenever the alphabet contains a square root
√

λ, it is convenient
that the letters depending on it have the form

P − √
λ

P + √
λ

, (3.47)

where P is a polynomial in the kinematic variables. While it is typically easy to
identify a square root in the alphabet by looking at the differential equations even in a
form that is not canonical (see e.g. Eq. (3.31)), finding the corresponding polynomials
P to construct letters of the form (3.47) may be non-trivial, especially in the presence
of multiple square roots. This can be done algorithmically as follows. If a letter of the
form (3.47) belongs to the alphabet, it must be possible to factorise both numerator
and denominator separately in the alphabet. This implies that their product is given
by a product of letters which are even under the exchange

√
λ ↔ −√

λ,

P2 − λ = c
∏

αi even

αei
i , (3.48)
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where c, ei ∈ Q. Since the left-hand side of Eq. (3.48) is polynomial, the right-
hand side must be polynomial as well. There is therefore only a finite number of
combinations of exponents {ei } such that the right-hand side of the equation is a
polynomial with the right dimensions. We can therefore make an ansatz for P and
look for a solution for its free coefficients and for the constant c in Eq. (3.48) by
scanning systematically over all the allowed products of even letters. In the three-
mass triangle case, for instance, with λ given by Eq. (3.16), one solution is given by
P = m2

1 − m2
2 − m2

3, for which Eq. (3.48) becomes

P2 − λ = 4α2α3 . (3.49)

In this section I have introduced the canonical form of the differential equations
for an integral basis, and praised its many virtues. It encodes in a minimal way all
the information about the basis integrals: the alphabet defines which class of special
functions is needed to write down the answer, and the coefficient matrices ai in
Eq. (3.43) specify which linear combinations of those functions are required. It is
now high time we take a look at what these special functions look like. I collect their
definitions and main properties in Sect. 3.3. After this mathematical interlude, I will
discuss a few approaches to write down the explicit solution in practice in Sect. 3.4,
and in Sect. 3.5 I will show how even the asymptotic expansion in a limit can be
computed systematically using the differential equations. The problem of computing
a family of Feynman integrals therefore reduces to the task of finding a canonical
basis. I will tackle this issue in Sect. 3.6.

3.3 Special Functions

The canonical form of the differential equations (3.158) makes it manifest that the
solution can be written down perturbatively in terms of iterated integrals with log-
arithmic integration kernels. In Sect. 3.3.1 I give a precise mathematical definition
of what we call iterated integrals, and discuss some of their salient properties. For
a thorough discussion I refer to the notes by F. Brown [48]. While iterated integrals
can be very convenient to work with, it is often desirable to have expressions in
terms of more specific special functions, which for instance allow for a more effi-
cient numerical evaluation. We know that the unitarity of the S-matrix demands the
presence of special functions with branch cuts in its matrix elements. The simplest
example is of course the logarithm, but much wilder functions show up in scattering
amplitudes. In Sects. 3.3.2 and 3.3.3 I present the classical polylogarithms and the
multiple polylogarithms. These generalisations of the logarithm play a prominent
role in the computation of scattering amplitudes. Their importance stems from the
fact that, whenever the letters of an alphabet are d logs with rational arguments, the
iterated integrals can be expressed in terms of multiple polylogarithms. This is often
true even in the presence of square roots, as we will see. Having defined these special
functions is however not particularly useful unless we can work with them comfort-
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ably. To this end, I first define some vocabulary in Sect. 3.3.4, where I introduce the
notions of transcendental weight and of pure functions. Next, I argue that any pure
function generates a system of differential equations in the canonical form, and that
the latter can be used very conveniently to manipulate the multiple polylogarithms.
Finally, in Sect. 3.3.6 I introduce our most powerful weapon to simply expressions
containing multiple polylogarithms—the symbol—and show how it encodes in a
minimal and elegant way the analytic information.

3.3.1 Chen’s Iterated Integrals

Let ω1, . . . ,ωn be smooth 1-forms on a smooth manifold M , and let γ : [0, 1] →
M be a piecewise smooth path on M . In the context of Feynman integrals, M is
the kinematic space and {ωi }ni=1 is the alphabet. The (Chen) iterated integral of
ω1, . . . ,ωn along γ is defined by [49]

∫
γ

ω1 . . . ωn =
∫
0≤t1≤···≤tn≤1

f1(t1)dt1 . . . fn(tn)dtn , ∀n > 0 , (3.50)

where the functions fi are defined by pulling back the 1-formsωi to the interval [0, 1],

fi (t)dt = γ∗ωi . (3.51)

For an exact 1-form d�(z) the pull-back with the contour γ is given by

(
γ∗d�

)
(t) =

∂�
∣∣
z=γ(t)

∂t
dt . (3.52)

The empty iterated integral, namely the case n = 0, is defined to be the con-
stant 1. In general, we will consider Q-linear combinations of iterated integrals of
the form (3.50). In this thesis we will be interested in logarithmic 1-forms only,
ωi = d logαi .

Let us look at a few basic properties. The iterated integrals are independent on
the parameterisation of the path γ. Given two paths α,β : [0, 1] → M such that
α(1) = β(0), let αβ denote the composed path obtained by integrating first along α
and next along β. Then,

∫
αβ

ω1 . . . ωn =
n∑

i=0

∫
α

ω1 . . . ωi

∫
β

ωi+1 . . . ωn . (3.53)

The iterated integrals satisfy the shuffle relations

∫
γ

ωa1 . . . ωas

∫
γ

ωb1 . . . ωbt =
∑

�c∈�a���b

∫
γ

ωc1 . . . ωcs+t , (3.54)
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where �a = (a1, . . . , as), and similarly for �b and �c. The sum runs over the shuffle
product of the lists �a and �b, namely the set of the lists which contain all the elements
of �a and �b, for which the ordering of the elements of �a and �b is preserved.

Integrability Conditions

Let us now consider a contour γ from a fixed base point z0 = γ(0) ∈ M to a generic
point z = γ(1) ∈ M . We would like the iterated integral

∫
γ ω1 . . . ωn to be a (multi-

valued) function of z. In general, this is not the case, because the iterated integrals
depend on the choice of γ. Since there is an infinite continuum of contours from z0 to
z, the iterated integral does not evaluate to a (multi-valued) function. In order for this
to be the case, the iterated integral must be a homotopy functional. In other words,
given two contours with the same endpoints that can be deformed continuously into
each other, the value of the integral along the two must be the same. As a result, if the
manifold M is contractible, the iterated integral depends only on the end-point z (we
consider the base point z0 as fixed) and is thus a single-valued function. If themanifold
M has punctures, the iterated integral is a multi-valued function of z, since it also
depends on the homotopy class of the contour γ, namely on how it wiggles around
the punctures to reach to end-point. This defines the choice of the branch of themulti-
valued function. This requirement imposes constraints on the set of 1-forms {ωi }ni=1.

Let us consider the 1-fold iterated integral I1 = ∫
γ ω. It is a homotopy functional if

and only if ω is closed, namely if dω = 0. This is a consequence of Stokes’ theorem,

∮
γ

ω =
∫
D
dω , (3.55)

where γ is a closed loop encircling the disk D ⊂ M . If we assume that I1 is a
homotopy functional, then the integral on the left-hand side of Eq. (3.55) vanishes
for any closed loop. The integral on the right-hand side thus vanishes for every small
disk D centered in any point of M . This implies that dω = 0 everywhere in M . On
the other hand, any closed form is locally exact by Poincaré’s lemma, namely there
exists a potential function α such that ω = dα locally. Therefore, dω = 0 implies
that the integral around any small loop vanishes. As a result, the first constraint is
that the 1-forms are closed,

dωi = 0 , ∀i = 1, . . . , n . (3.56)

Let us now consider the 2-fold iterated integral
∫
γ ω1ω2. The constraint (3.56)

implies that there exists a function F2(z) = ∫
γ ω2. The 2-fold iterated integral can

thus be expressed as a 1-fold one,

∫
γ

ω1ω2 =
∫

γ

F2ω1 , (3.57)
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and we know that this is a homotopy functional if and only if d(F2ω1) = 0. Since
dω1 = 0 and dF2 = ω2,

∫
γ ω1ω2 is a homotopy functional if and only ifω1 ∧ ω2 = 0.

We see therefore that, for generic 1-forms ω1 and ω2, the iterated integral
∫
γ ω1ω2 is

not a homotopy functional, but the symmetric combination

∫
γ

(ω1ω2 + ω2ω1) (3.58)

is. In general we are therefore interested in Q-linear combinations of integrals of the
form (3.50).

By iterating this procedure one can work out the constraints for a genericQ-linear
combination of n-fold iterated integrals. Given a set of closed 1-forms {ω1, . . . ,ωn},
the iterated integral

∫
γ

∑
I=(i1,...,in)

cI ωi1 . . . ωin (cI ∈ Q) (3.59)

is a homotopy functional if and only if [49, 50]

∑
I=(i1,...,in)

cI ωi1 ⊗ · · · ⊗ ωik ∧ ωik+1 ⊗ · · · ⊗ ωin = 0 , ∀k = 1, . . . , n − 1 .

(3.60)

These constraints are referred to as integrability conditions.
In this thesis we will be concerned with iterated integrals of logarithmic forms,

or d log forms, ωi = d logαi on the kinematic space. In this case it is customary to
label the d log form d logαi by its argument αi only. Denoting by {xa}ma=1 the set of
independent kinematic variables, the integrability conditions (3.60) become

∑
I=(i1,...,in)

cI

(
∂ logαik

∂xa

∂ logαik+1

∂xb
− (a ↔ b)

)

αi1 ⊗ · · · ⊗ α̂ik ∧ α̂ik+1 ⊗ · · · ⊗ αin = 0 ,

(3.61)

for all k = 1, . . . , n − 1, and for all pairs of kinematic variables (xa, xb). The hat
denotes omission as usual. Clearly, if the kinematic space is described by only one
variable the integrability conditions are automatically satisfied.

Therefore, an integrable iterated integral with fixed base point γ(0) = z0 and
variable end-point γ(1) = z defines a multivalued function of z. This motivates the
following notation

[α1, . . . ,αn]z0 (z) =
∫

γ

d logα1 . . . d logαn , ∀n > 1 , (3.62)
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and []z0(z) = 1. Note that such a function vanishes by definition at the base point,
[α1, . . . ,αn]z0(z0) = 0. The differential is given by

d [α1, . . . ,αn]z0 (z) = d logαn(z)
[
α1, . . . ,αn−1

]
z0

(z) . (3.63)

The definition (3.62) and the differential rule (3.63) generalise to Q-linear combi-
nations of iterated integrals in the obvious way. A function which can be expressed
as a linear combination of integrable iterated integrals of d log forms is assigned a
transcendental weight, which is loosely defined as the number of iterated integra-
tions. For now it will play the role of a useful label for the functions and constants
presented in Sects. 3.3.2 and 3.3.3. The precise definition and its importance will be
discussed in full glory in Sect. 3.3.4.

Linear Independence of the Iterated Integrals

If we consider a set of linearly independent d log forms {d logαi }ni=1, namely if

n∑
i=1

cid logαi = 0 ⇐⇒ ci = 0 ∀i = 1 . . . , n , (3.64)

then (integrable) iterated integrals [α1, . . . ,αn]z0(z) with the same argument z but
different entries drawn from {αi }ni=1 give rise to linearly independent functions.
This means that all the complicated functional relations satisfied by transcenden-
tal functions—we will see many examples in the next sections—are automatically
implemented when they are expressed in terms of iterated integrals. In the context
of scattering amplitudes, this means that we can check all sorts of cancellations, e.g.
when subtracting UV/IR poles, at the level of the iterated integrals. This is a great
advantage, since solving the differential equations for the basis integrals in terms
of iterated integrals is completely straightforward, as we will see in Sect. 3.4.4. In
general, the non-trivial aspect remains how to express a given function in terms of
iterated integrals with letters drawn from a given alphabet. In Sects. 3.3.5 and 3.3.6
I discuss how to do this using the canonical differential equations and the symbol
associated with an iterated integral.

Tangential Base Points

It is sometimes convenient to integrate starting from a pole of the integrand or, in
other words, from a point which does not belong to the spaceM where the differential
form is defined. We talk in this case of a tangential base point. For instance, consider
the 1-form d log z. It is defined on M = C\{0}, but it is possible to define the iterated
integral [d log z]0 with base point at z = 0 in a regulated sense. Let γ : [0, 1] → M
be a smooth path from 0 to some point z ∈ M . Let us make an educated choice,
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γ(t) = t + t2(z − 1) . (3.65)

We can regulate the divergence by integrating on the interval [δ, 1], with δ small and
positive (0 < δ � 1),

∫ 1

δ

(γ∗d log z) = log z − log (1 + δ(z − 1)) − log δ . (3.66)

In general, one has the expansion

∫ 1

δ

(γ∗d log z)(γ∗ω2) . . . (γ∗ωn) = a0(z, δ) + a1(z, δ) log δ + · · · + an(z, δ) log
n δ ,

(3.67)

where the functions ai (z, δ) are analytic at δ = 0. The regularised value is defined
by formally setting log δ to 0, and letting δ = 0 in the remaining, e.g.

Reg
[
d log z,ω2, . . . ,ωn

]
0 (z) = a(z, 0) . (3.68)

From Eq. (3.66) we therefore see that

Reg[d log z]0(z) = log z . (3.69)

This definition is of course not unique. If we integrate along a straight line from 0 to
z, ρ(t) = t z, then

∫ 1

δ′
(ρ∗d log z) = − log δ′ . (3.70)

which in turn results in an awkward

Reg[d log z]0(z) = 0 . (3.71)

This is where the tangential nature of the base point becomes relevant. Consider a
generic change of the regularisation parameter δ′ = c1δ + c2δ2 + · · · , where c1 	= 0.
Then,

log δ′ = log δ + log c1 + O(δ) . (3.72)

This means that the result of the regularisation depends on c1 = ∂δ′/∂δ only. The
difference between Eqs. (3.69) and (3.71) is therefore due to a different regulator,
with c1 = 1/z. This is related to the derivative of the path at the base point, hence the
adjective “tangential.” We see in fact that γ′(0) = 1, whereas ρ′(0) = z. Therefore,
an iterated integral with a tangential base point depends not only on the end-points of
the integration path γ, but also on the tangent γ′(0). One can define a corresponding
notion of homotopy for paths γ with the same values of γ(0), γ(1) and γ′(0).
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3.3.2 Classical Polylogarithms

The classical polylogarithm Lin is defined by the power series

Lin(z) =
∞∑
k=1

zk

kn
, ∀n ∈ N , (3.73)

which converges to a holomorphic function in the unit circle |z| ≤ 1. The first poly-
logarithm is simply the ordinary logarithm, Li1(z) = − ln(1 − z). The second, called
dilogarithm, was defined and studied by Landen and Euler more than two centuries
ago. The higher polylogarithms were defined in [51]. The definition (3.73) can be
analytically continued to a multivalued holomorphic function on C/{0, 1} through
the differential relation

d

dz
Lin(z) = 1

z
Lin−1(z) , ∀n > 1 , (3.74)

or equivalently through the iterated integration

Lin(z) =
∫ z

0

dt

t
Lin−1(t) , ∀n > 1 , (3.75)

with the recursion starting from the logarithm. Equation (3.73) defines the principal
branch for |z| ≤ 1. It is straightforward to verify that the classical polylogarithm Lin
can be expressed as a Chen iterated integral of d log forms,

Lin(z) = −[1 − z, z, . . . , z︸ ︷︷ ︸
n−1

]
0(z) . (3.76)

The points 0 and 1 are special. The monodromies around them are given respec-
tively by [48]

M0Lin(z) = Lin(z) , (3.77)

M1Lin(z) = Lin(z) + 2iπ

(n − 1)! log
n−1(z) . (3.78)

This result has important consequences. First of all, we see that it still makes sense
to talk about the value of the classical polylogarithm at 0 and 1,

Lin(0) = 0 , Lin(1) = ζ(n) (Re(n) > 1) . (3.79)

Secondly, z = 1 is a branch point. We take the branch cut to lie along the interval
[1,∞). Finally, although the principal branch of Lin(z) defined by Eq. (3.73) is holo-
morphic at the origin z = 0, its Riemann surface is ramified there. Analytically con-
tinuing around z = 1 in fact brings in a term logn−1(z), which is singular at the origin.
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The knowledge of the monodromies of the classical polylogarithm can be used
to construct a single-valued version of it, by combining classical polylogarithms in
z and its complex conjugate z̄ in such a way that all the discontinuities cancel. One
way to do so is [52]

Dn(z) = Rn

[
n−1∑
k=0

2k Bk

k! logk |z|Lin−k(z)

]
, (3.80)

where Rn denotes

Rn( f ) =
{
2Re( f ) , if n odd ,

2iIm( f ) , if n even ,
(3.81)

and Bk are the Bernoulli numbers

B0 = 1 , B1 = −1

2
, B2 = 1

6
, . . . (3.82)

The single-valued classical polylogarithms Dn(z) are real-analytic functions on the
punctured complex plane C\{0, 1}, namely they are infinitely smooth and their Tay-
lor series around any point has a finite radius of convergence. In 0 and 1 they are
continuous but not differentiable, due to singularities of the type x log x there. For
n = 2, Eq. (3.80) reproduces the well-known Bloch–Wigner dilogarithm [53],

D2(z) = Li2(z) − Li2(z̄) + 1

2
(log(1 − z) − log(1 − z̄)) log(zz̄) , (3.83)

where z̄ is the complex conjugate of z.
The classical polylogarithms satisfy a plethora of functional identities. The classic

example are the two reflection rules of the dilogarithm,

Li2

(
1

z

)
= −Li2(z) − 1

2
log2(−z) − π2

6
, ∀z ∈ D1 , (3.84)

Li2(1 − z) = −Li2(z) − log(z) log(1 − z) + π2

6
, ∀z ∈ D2 , (3.85)

valid in the domains D1 = C\[0,∞) and D2 = C\{(−∞, 0] ∪ [1,∞)}, respectively.
Much more complicated relations exist, even for the dilogarithm. For instance, the
exotic two-variable five-term relation,

Li2(x) + Li2(y) + Li2

(
1 − x

1 − xy

)
+ Li2(1 − xy) + Li2

(
1 − y

1 − xy

)

= π2

2
− log(x) log(1 − x) − log(y) log(1 − y) + log

(
1 − x

1 − xy

)
log

(
1 − y

1 − xy

)
,

(3.86)
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for x, y ∈ C\{(−∞, 0] ∪ [1,∞)}, which provides an intriguing link to cluster alge-
bras discussed in Sect. 3.3.6. While the reflection rules are rather easy to prove by
differentiating, the five-term relation is already more cumbersome. The complexity
escalates quickly as we go to higher n. This can be a serious concern if we want to
use the classical polylogarithms to express scattering amplitudes and Feynman inte-
grals. Indeed, finding compact expressions is not only a matter of aesthetic elegance,
which of course is indispensable. From the theoretical point of view, elegant formu-
lae allow us to highlight properties and spot patterns otherwise obscured. From the
phenomenological point of view, we want to be able to evaluate the scattering ampli-
tudes numerically in a fast and reliableway. Expressions containing very complicated
zeros due to unresolved functional identities are no good. In Sect. 3.3.6 I will discuss
a method to derive and implement these relations in a simple and systematic way.

3.3.3 Goncharov Polylogarithms

The Goncharov Polylogarithms (GPLs) (or multiple polylogarithms) constitute a
particularly important representative of Chen iterated integrals of logarithmic 1-
forms d logαi . We refer to any function which can be expressed in terms of GPLs
as “polylogarithmic.” The reason of this importance is that, if the arguments αi are
rational functions and the base point is algebraic, it is always possible to express an
integrable iterated integral in terms of GPLs evaluated at algebraic arguments. What
is more, this can be done algorithmically. If the αi are not rational, however, this is
no longer possible in general. No algorithm exists and we know at least one explicit
example of iterated integral of d log formswith arguments that cannot be rationalised
which evaluates to non-polylogarithmic functions [33]. Nevertheless, we also know
of many examples of iterated integrals of non-rational d log forms which can be
evaluated in terms of GPLs (see e.g. [32]).

The GPLs can be defined recursively through the iterated integral [31, 54]

G(a1, a2, . . . , an; x) :=
∫ x

0

dt

t − a1
G(a2, . . . , an; t) , ∀n ∈ N , an 	= 0 ,

(3.87)

with the recursion starting from

G(; x) :=
{
0 , if x = 0 ,

1 , otherwise .
(3.88)

It is customary to refer to �a = (a1, . . . , an) and to x as the indices and the argument
of G(a1, . . . , an; x), respectively, although we will consider it to be a function of the
indices as well. The number of iterated integrations, or equivalently the number of
indices, is called the transcendental weight of a GPL.
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Trailing zeros, namely zeros on the right-most side of the index vector (e.g.
an = an−1 = · · · = ap = 0 for some p, 1 ≤ p ≤ n), are special, because the inte-
gral in Eq. (3.87) diverges. One can however define the GPLs with trailing zeros in
a regularised sense as Chen iterated integrals with a tangential base point with unit
tangent. In fact, this is exactly what we have done in Eq. (3.69) for the weight-1 case.
In practice, GPLs with trailing zeros are allowed through the definition

G(�0n; x) := 1

n! log
n x , (3.89)

where we have introduced the short-hand notation �an = (a, . . . , a), with a repeated
n times.

The GPLs have an extremely rich structure, and enjoy a variety of interesting
mathematical properties. Iwill contentmyselfwithmentioning thosewhich are useful
in the applications presented in this thesis. A useful reference for a more complete
discussion is [55], where the authors also present the usefulMathematica package
PolyLogTools to work with the GPLs. The more demanding reader is invited to
take on the original papers [31, 54].

First of all,GPLs satisfy a shuffle algebra [56]: anyproduct of twoGPLsofweights
w1 andw2 can be expressed as a linear combination with integer coefficients of GPLs
of weight w1 + w2 through the shuffle product relation

G(�a; x)G(�b; x) =
∑

�c∈�a���b
G(�c; x) , (3.90)

where �a ���b denotes the shuffle product of the lists �a and �b.
If there are no trailing zeros, the Goncharov polylogarithms are invariant under

the rescaling of all their arguments,

G(ka1, . . . , kan; kx) = G(a1, . . . , an; x) , ∀k ∈ C\{0} (an 	= 0) , (3.91)

In the presence of trailing zeros, it is possible to shuffle them away through Eq. (3.90)
and rescale the arguments in the separate terms (see [28, 30] for an explicit algorithm).
Only if all the indices ai are zero this is not possible, but then Eq. (3.89) holds. In
practice, one can study G(a1, . . . , an; 1) without loss of generality.

The GPLs can have a very rich branch cut structure. Let us focus on GPLs of
the form G(a1, . . . , an; 1) to simplify the discussion. As can be seen from the def-
inition (3.87), G(a1, . . . , an; 1) is in general not well defined whenever one of the
indices ai lies along the integration contour, namely whenever ai ∈ [0, 1] for some
i = 1, . . . , n. In fact, there is a discontinuity whenever some index ai crosses the
real axis between 0 and 1. These segments define all the branch cuts of the GPLs.
Therefore, if one of the indices ai ∈ [0, 1], it is necessary to choose which branch of
the function we are interested in. In practice, this is done by perturbing slightly the
indices lying on the integration path with the addition of a small positive or negative
imaginary part.
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The GPLs of the form G(a1, . . . , an; 1) have an end-point singularity if the left-
most indices are 1 (a1 = a2 = · · · = ap = 1 for some p, 0 ≤ p ≤ n). We can regu-
larise themby introducing a small positive cutoff 0 < δ � 1 asG(a1, . . . , an; 1 − δ).
This defines a tangential end-point (see the discussion of the tangential base points
in Sect. 3.3.1), which depends on the tangent at the end-point γ′(1). The logarithmic
divergences log δ can then be extracted easily using the shuffle algebra (3.90). E.g.,
for a 	= 1,

G(1, a; 1 − δ) = G(a, 1; 1 − δ) − G(a; 1 − δ)G(1; 1 − δ) =
= G(a, 1; 1) − G(a; 1) log δ + O(δ) .

(3.92)

If more than one of the left-most indices is equal to 1, the GPL can be expanded as

G(�1p, ap+1, . . . , an; 1 − δ) =
p∑

k=0

c(n−k)(δ) logk δ , ap+1 	= 1, (3.93)

where the coefficients c(w) are given by weight-w GPLs with indices drawn from
the set {1, ap+1, . . . , an} and are finite in the limit δ → 0. They can be determined
by applying the shuffle algebra iteratively, in the very same way one can shuffle the
trailing zeros away. The regularised value is then defined by formally setting log δ
to 0, but it is often useful to keep track of the logarithmic divergences as well. It is
worth stressing one more time that the result of the end-point regularisation depends
on the tangent at the end-point, γ′(1).

TheGPLs, seen as functions of all the arguments, satisfy the first-order differential
equation [54]

dG(an−1, . . . , a1; an) =
n−1∑
i=1

G(an−1, . . . , âi , . . . , a1; an)

× (d log (ai − ai+1) − d log (ai − ai−1)) ,

(3.94)

where the hatted indices are removed. This formula is valid in the generic case where
all the arguments are mutually different and do not take particular values.

An important subset of the Goncharov polylogarithms are the Harmonic Poly-
logarithms (HPLs) H(a1, . . . , an; x) [28], corresponding to the case where all the
indices ai are 0 or ±1. The harmonic polylogarithms are equal to the Goncharov
polylogarithms up to the sign,

H(a1, . . . , an; x) = (−1)pG(a1, . . . , an; x) , ai ∈ {0,±1} ∀i = 1, . . . , n ,

(3.95)

where p is the number of indices ai equal to +1. A vast collection of useful routines
to work with the HPLs is implemented in the Mathematica package HPL [57].

It is also worth mentioning that the GPLs are equivalent to another class of func-
tions often used in the physics literature, the MPLs [31]. The latter are defined by
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generalising the sum which defines the classical polylogarithms (3.73) to the multi-
variate case,4

Lim1,...,mn (x1, . . . , xn) :=
∞∑

0<k1<···<kn

xk11
km1
1

· · · x
kn
n

kmn
n

, (3.96)

for |xi | < 1 ∀i = 1, . . . , n. The two classes of functions are related by

Lim1,...,mk (x1, . . . , xk) = (−1)kG

(
�0mk−1,

1

xk
, . . . , �0m1−1,

1

x1 . . . xk
; 1
)

. (3.97)

This formula provides the analytic continuation of the nested-sum definition of the
MPLs by Eq. (3.96).

While the iterated integral definition (3.87) induces on theGPLs the shuffle algebra
structure thanks to the shuffle product (3.90), the nested sum definition (3.96) leads
to another algebra structure, called the stuffle algebra. Since this will not play a role
in the applications presented in this thesis, I will content myself with an example,

Lik1,k2(x, y) + Lik2,k1(y, x) = Lik1(x)Lik2(y) − Lik1+k2(xy) . (3.98)

The connection between classical polylogarithms and the values of the Riemann
zeta function ζ(n) at positive integers n given by Eq. (3.79) generalises to the MPLs.
Just like the values at 1 of the classical polylogarithms define the ordinary zeta values
ζ(n), the values at 1 of the MPLs define the Multiple Zeta Values (MZVs),

ζ(m1, . . . ,mk) = Limk ,...,m1(1, . . . , 1) , m1, . . .mk ∈ N . (3.99)

It is conjectured that all the relations among the MZVs follow from the shuffle and
stuffle algebras. This implies that no relation amongMZVs of different weight exists.
Moreover, writing down and solving all the shuffle and stuffle relations systemati-
cally allows us to construct an explicit basis of the MZVs at each weight [58–60].
Remarkably, the first MZV that cannot be written as a polynomial in ordinary zeta
values appears only at weight eight. In this thesis we will content ourselves with
using functions with transcendental weight up to four. The correspondingMZVs can
all be written in terms of ζ(2) = π2/6 and ζ(3) only.

In a few special cases, the GPLs can be rewritten for arbitrary weight in terms of
classical polylogarithms. We have already seen one such a case in Eq. (3.89). Other
examples are

G(�an; x) = 1

n! log
n
(
1 − x

a

)
, G(�0n−1, a; x) = −Lin

( x
a

)
. (3.100)

4 Note that the reverse summation convention is sometimes used.
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Moreover, all GPLs up to weight 3 can be rewritten in terms of classical polyloga-
rithms [54, 61, 62]. For instance,

G(a, b; x) = Li2

(
b − x

b − a

)
− Li2

(
b

b − a

)
+ log

(
1 − x

b

)
log

(
x − a

b − a

)
,

(3.101)

valid for |Im(a/x)| > |Im(b/x)| [63]. Only starting from weight 4 we can see a
genuine MPL, Li2,2, that cannot be expressed in terms of classical polylogarithms.
Reference [63] provides the relations to rewrite any GPL up to weight 4 in terms of
classical polylogarithms and Li2,2.

Let me finish this excursus with a practical note. Routines for the numerical
evaluations of the GPLs without any restrictions on the weight and the number of
variables are implemented with arbitrary precision arithmetic in C++ within the
GiNaC framework [64]. Therefore, once a result is written in terms of GPLs, it
can be evaluated easily and reliably. However, expressions in terms of GPLs are in
general not the most compact, due to the abundance of functional equations between
them. I discuss how find and implement the latter systematically in Sect. 3.3.6.

3.3.4 The Transcendental Weight

Given a polylogarithmic function f that can be expressed as a Q-linear combination
of integrable iterated integrals of d log forms with an algebraic base point z0,

f (z) =
∑

I=(i1,...,iW )

cI
[
αi1 , . . . ,αiW

]
z0

(z) , (cI ∈ Q) , (3.102)

its transcendental weight (or transcendentality) T is defined as the number of iterated
integrations,

T ( f ) = W . (3.103)

Clearly, T ( f1 f2) = T ( f1) + T ( f2). On the other hand, T ( f1 + f2) is well defined
only if T ( f1) = T ( f2). The transcendental weights of the special functions intro-
duced in the previous sections are

T (log z) = 1 , T (Lin(z)) = n , T (G(a1, . . . , an; z)) = n . (3.104)

This definition generalises straightforwardly to any constant that can be expressed
as a Q-linear combination of integrable iterated integrals of d log forms with alge-
braic end-points. For instance, T (π) = 1, since log (−1) = ±iπ, and i and −1 are
algebraic. Similarly, one can show that
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T (log c) = 1 , T (ζ(n)) = n , T (ζ(m1, . . . ,mk)) = m1 + · · · + mk ,

(3.105)

for any algebraic constant c 	= 0, 1.
The rigorous mathematician might rightfully feel uneasy. Not much is known

about the transcendentality of the polylogarithms and of the MZVs. For instance, we
know that π, e, and log q for any algebraic q 	= 0, 1 are transcendental. It follows
that the even zeta values ζ(2n) are also transcendental, since

ζ(2n) = (−1)n+1B2n(2π)2n

2(2n)! . (3.106)

For the odd zeta values, we basically only know that ζ(3) is irrational [65]. Even
less is known about the transcendentality of the classical polylogarithms at values
other than 1, or of the more general GPLs. Nonetheless, it proves useful to adopt
the widely-accepted conjecture that all polylogarithmic functions and MZVs are
transcendental.

The careful reader might have noticed that all the relations I presented are uniform
in the transcendental weight. Whether there exist relations among polylogarithms or
zeta values of different weight is an extremely interesting and still open problem.
As we conjecture that the polylogarithms are transcendental, it is also convenient
to conjecture that relations which are not uniform in the transcendental weight are
not possible. This has very strong implications. Let Pn be the vector space over Q
spanned by all the weight-n GPLs and their values at algebraic arguments. We set
P0 = Q. The conjecture implies that the vector space of all GPLs, P , is the direct
sum of all the Pn ,

P =
∞⊕
n=0

Pn . (3.107)

The vector space P can be equipped with a product, e.g. the shuffle product (3.90),
thus becoming a commutative algebra. Since the shuffle product preserves theweight,
the GPLs form a graded algebra. One could go very far along this road. The algebraP
can in fact be equipped also with a coproduct as well [66], leading to the conclusion
that the GPLs form a Hopf algebra. Clearly there are a lot of interesting aspects to be
discussed here, but this would take us too far. The purpose of this paragraph is to get
the mathematically-inclined readers interested in the topic. In the hope I succeeded,
I refer them to [67] for a thorough and pedagogical discussion.

The notion of transcendental weight is very tightly related to the differential
equations in the canonical form. In order to see this, we need to introduce two more
concepts. A function f which is given by a sumof termswith the same transcendental
degree is said to have a uniform transcendental degree. An ever stronger property
with respect to the transcendentality is that of purity. A function f is pure if its
transcendental weight is lowered by differentiation, i.e. ifT (d f ) = T ( f ) − 1.While
the uniform transcendentality can accommodate algebraic factors, the latter spoil the
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purity of a function, as they are “seen” by the differential operators (unless they
are constant, of course). The canonical differential equations (3.35) imply that the
canonical basis integrals �g have uniform transcendental weight at each order in ε.5

This becomes clear e.g. in Eq. (3.42): the kth term in the Laurent expansion around
ε = 0 is given by aQ-linear combination ofweight-k iterated integrals. There ismore.
It is conventional to assign transcendentalweight−1 to the dimensional regulator ε =
(4 − d)/2. One way to justify this is to think of the poles in ε as logarithms in some
cut-off�, 1/ε ∼ log�. Then, it follows from the canonical differential equations that

T (d�g) = T (d Ã) + T (�g) − 1 . (3.108)

In the cases we are interested in, d Ã is a logarithmic 1-form, as in Eq. (3.43), and
therefore it has transcendental weight 0. As a result, T (d�g) = T (�g) − 1, namely the
canonical basis integrals are pure functions. This is not just a mathematical fun fact.
The idea that the transcendental purity is marred by algebraic factors, for instance,
gives us a precious hint on how to find a canonical basis of integrals, as I discuss in
Sect. 3.6.

The transcendental weight is also related to a very fascinating conjecture about
scattering amplitudes. Let us consider an �-loop scattering amplitudeA(�) computed
in dimensional regularisation in D = D0 − 2ε dimensions for some even positive
integer D0,

A(�) =
∑
k≥k0

εkA(�)
k , (3.109)

where k0 ∈ Z. If the coefficients of the seriesA(�)
k can be written in terms of iterated

integrals of logarithmic 1-forms, the empirical observation leads to the conjecture
that

T
(
A(�)

k

)
≤ D0�

2
+ k . (3.110)

For instance, if we are interested in computing a two-loop amplitude for D0 = 4
up to the finite part, we need functions with transcendental weight up to four. A lot
of empirical evidence suggests that this bound is exactly saturated in N = 4 super
Yang–Mills theory. This conjecture, apart from being of great theoretical interest, has
also very important practical consequences. It opens the door to bootstrap approaches
for computing scattering amplitudes or Feynman integrals. For instance, the kth term
in the ε-expansion of the �-loop amplitude A(�) has the generic form

A(�)
k =

�D0/2+k∑
w=0

∑
i, j

ci j Ri F
(w)
j , (3.111)

5 Of course I am assuming that the base point is algebraic. It would be unreasonable to do differently.
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where ci j ∈ Q, Ri are algebraic functions, and F (w)
j are weight-w integrable iterated

integrals (eventually allowing also for special values). Given an alphabet, the integra-
bility conditions imply there is only a finite number of integrable iterated integrals at
each transcendental weight. Constructing them explicitly can be reduced to a linear
algebra problem, and can thus be done very efficiently (see e.g. [68, 69]). It is some-
times possible to make a guess for the algebraic functions Ri as well. For instance,
the notion of leading singularity discussed in Sect. 3.6.1 gives a handle on them.
Then, only the rational constants ci j remain the be fixed. The problem of comput-
ing A(�)

k therefore reduces to finding a sufficient number of constraints to determine
the constant coefficients (e.g. collinear and soft limits, symmetries...). In [70], for
instance, I bootstrap a two-loop five-particle integral using conformal symmetry.

3.3.5 On the Naturalness of the Canonical Form

We have seen that the differential equations in the canonical form imply that the
canonical integral bases are given by transcendental pure functions. The reverse is
true as well. Any pure function satisfies a differential equation in the canonical form.

Consider a weight-w (integrable) iterated integral s(w). Since it is a pure function,
its differential is expressed in terms of weight-(w − 1) iterated integrals. Choose a
set of linearly independent ones, �s (w−1), and differentiate them too. Their differential
involves weight-(w − 2) iterated integrals, out of which we extract a basis �s (w−2).
Continue differentiating until we reach the bottom, weight zero, where by definition
we have the constant 1. Then, it is convenient to introduce a parameter, ε, to which we
assign transcendental weight T (ε) = −1. This auxiliary parameter merely serves to
package all the iterated integrals together in a vector with a uniform transcendental
weight,

�S = (
εws(w) , εw−1�s (w−1) , . . . , ε�s (1) , 1

)T
. (3.112)

In Feynman integral computations this role is played by the dimensional regulator. It
is easy to see that the vector �S satisfies a differential equation in the canonical form,

d �S = ε d B̃ · �S . (3.113)

In particular, since the differential lowers strictly by 1 the transcendental weight of
a pure symbol, the matrix B̃ is strictly block upper triangular. It is thus nilpotent,
B̃w+1 = 0. If it were not nilpotent, the solution of the differential equation would in
general be non-zero at orders in ε higher than w. This is the norm in the case of a
Feynman integral, but here it would be absurd, sincewe know exactly the dependence
on ε of �S, given by Eq. (3.112).

For example, let us consider the weight-2 iterated integral

s(2) = − [1 − z, z]0 (z) . (3.114)
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Upon differentiation it generates the vector

�S(z, ε) = (−ε2[1 − z, z]0(z), ε[1 − z]0(z), 1
)T

. (3.115)

The corresponding differential equation is

d �S = ε

⎛
⎝0 −d log z 0
0 0 d log(1 − z)
0 0 0

⎞
⎠ · �S . (3.116)

Thanks to its (strictly) upper triangular form, this equation is very easy to solve by
hand (and even easier usingMathematica’s DSolve). Since we know the expres-
sion of �S in terms of iterated integrals, given by Eq. (3.115), we can just read off the
boundary values at the base point z = 0,

�S(0, ε) = (0, 0, 1)T . (3.117)

The solution for z < 1 is then given by

�S = (
ε2Li2(z) , ε log(1 − z), 1

)T
. (3.118)

Once we are able to solve the differential equations in the canonical form, the
procedure I just outlined can also be used to switch from one representation of a
function to another. In this case we started off with an iterated integral and solved
the associated differential equation in terms of classical polylogarithms. We could
have solved it in terms of GPLs or HPLs as well. Similarly, we could have started
from Li2(z) and solved the differential equation in terms of iterated integrals. I will
give a more interesting example in Sect. 3.4.4.

This simple argument shows that the canonical form (3.113) is the natural form of
the differential equations for any family of Feynman integralswhich can be expressed
in terms of polylogarithmic functions. An arbitrary choice of integral basis may
obscure the underlying elegance of the differential equations and it may be very
difficult to unveil it, but we must have faith that it is there.

3.3.6 The Symbol

The story of the first application of the symbol in theoretical physics is a very inspiring
one. A heroic computation—in its own inspiring!—led to a 17-page expression in
terms of thousands of GPLs for a quantity called the six-point remainder function
in N = 4 super Yang–Mills theory [71, 72]. Strongly motivated by a firm belief in
the beauty of that theory, the authors of [73] took a rather abstract mathematical
construct, the symbol [66, 74], and used it to simplify the known expression for the
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six-point remainder function. The result was astonishingly simple: just a few lines of
classical polylogarithms. Since then, the symbol has been used in many successful
applications, and has by now become a standard weapon in multi-loop computations.

The reason for its success is that the symbol is an extremely simple tool that man-
ages to capture the main analytical and combinatorial properties of the polylogarith-
mic functions. In particular, all functional equations among MPLs are conjectured
to be in the kernel of the symbol. In other words, a necessary condition for two
expressions written in terms of MPLs to be equal is that they have the same symbol.
As we will see, this is much simpler to check. Going back from symbol to function
is a much harder problem, for which no algorithm that works in general is known.
The methods presented in Sects. 3.3.6, 3.4.3 and 3.4.5 can be used for this purpose.
I refer to [75] for a complete discussion.

The symbol map can be defined by its action on the Chen iterated integrals of
logarithmic 1-forms. It maps linearly a k-fold iterated integral to the k-fold tensor
product of its 1-forms,

S
(∫

γ

d logα1 . . . d logαn

)
:= d logα1 ⊗ · · · ⊗ d logαn ≡ α1 ⊗ · · · ⊗ αn .

(3.119)

This definition generalises to all functions of uniform transcendental weight by lin-
earity. It is customary to omit the d log sign to simplify the notation, but really we
should keep in mind that each entry α of a symbol actually stands for the 1-form
d logα. The symbol in fact inherits from the d log differential a number of basic
properties,

A ⊗ (a × b) ⊗ B = A ⊗ a ⊗ B + A ⊗ b ⊗ B , (3.120)

A ⊗
(a
b

)
⊗ B = A ⊗ a ⊗ B − A ⊗ b ⊗ B , (3.121)

where A and B denote elementary tensors of arbitrary length, anda andb are algebraic
functions. Consequently,

A ⊗ an ⊗ B = n (A ⊗ a ⊗ B) , (3.122)

where we stress that, on the right-hand side, n is a coefficient in front of the symbol
in the parenthesis, rather than part of the first entry. Moreover, any symbol with a
constant entry vanishes,

A ⊗ c ⊗ B = 0 , if c constant . (3.123)

This follows trivially from the fact that the differential of any constant is zero, in
other words d log c = 0 for any constant c. Of course part of the information is lost
as a result of this. It is possible to extend the notion of symbol so as to accommodate
rational numbers in the entries as well, this way recovering part of the informa-
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tion [75]. This is not necessary for the work presented here, and I therefore adopt the
original convention of [73] given by Eq. (3.123).

The symbol inherits straightforwardly many properties from the iterated integrals
as well. The symbols satisfy the shuffle product relations (3.54),

(αa1 ⊗ · · · ⊗ αas ) × (αb1 ⊗ · · · ⊗ αbt ) =
∑

�c∈�a���b
αc1 ⊗ · · · ⊗ αcs+t . (3.124)

Furthermore, a Q-linear combination of tensors,

S =
∑

I=(i1,...,in)

cI αi1 ⊗ · · · ⊗ αin (cI ∈ Q) , (3.125)

represents a function if and only if it satisfies the integrability conditions given by
Eq. (3.61). As a result, given an alphabet, there is only a finite number of integrable
symbols at each transcendental weight.

Despite its simplicity, the symbol retains most of the analytic information of the
corresponding function. From the formula for the differential of the (integrable)
iterated integrals (3.63) it follows that

d (α1 ⊗ · · · ⊗ αn) = d logαn (α1 ⊗ · · · ⊗ αn−1) . (3.126)

The last entry of an (integrable) symbol therefore encodes its differential information.
The first entry, on the other hand, captures the branch cut structure in a beautifully
manifest way. A function f (z) whose symbol has the schematic form

S [ f (z)] = α1(z) ⊗ · · · ⊗ αn(z) , (3.127)

has branch cuts (in its canonical sheet) starting at the points zi such that α1(zi ) = 0
or α1(zi ) = ∞. The symbol of the discontinuity across the branch cut is given by

S [Disc f (z)] = Disc (logα1(z)) α2(z) ⊗ · · · ⊗ αn(z) . (3.128)

If f (z) is a Feynman integral or a scattering amplitude, its discontinuities are deter-
mined by the Cutkosky’s rules. As a result, the first entries are subject to constraints.
I address this and other important aspects of the symbol more in detail in the next
few sections.

How to Compute the Symbol

The differential rule given by Eq. (3.126) can be seen as an iterative definition of the
symbol. If the differential of a weight-w function F (w) has the form

dF (w) =
∑
i

ci F (w−1)
i d logαi , (3.129)
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where ci ∈ Q, F (w−1)
i are weight-(w − 1) functions and αi are algebraic functions,

then

S
(
F (w)

) =
∑
i

ci S
(
F (w−1)

i

)
⊗ αi . (3.130)

The recursion starts with S (logα) = (α), understood as a 1-fold tensor product.
Computing the symbol of a function can therefore be done systematically by taking
derivatives. For instance, let us consider the classical polylogarithm. From

dLin(z) = Lin−1(z)d log z ∀n ∈ N , (3.131)

together with the starting point of the recursion Li1(z) = − log(1 − z), one can
immediately read off the symbol,

S (Lin(z)) = −(1 − z) ⊗ z ⊗ · · · ⊗ z︸ ︷︷ ︸
n−1

. (3.132)

This is in manifest agreement with the iterated integral representation given in
Eq. (3.76). The symbol of the GPLs can be computed iteratively using the differen-
tiation formula (3.94).

Beyond the Symbol

The iterative definition of the symbol makes it clear that the symbol captures the
leading functional transcendentality part of a function. Any term given by a tran-
scendental constant times a lower-weight function is annihilated by the symbol map.
It can be useful to be pedantic once in a while, so consider for example the dummy
expression

a = Li2(z) + iπ log z + π2 . (3.133)

Differentiating removes the constant piece,

da = − log(1 − z)d log z + iπd log z . (3.134)

By applying the iterative definition the symbol we obtain

S(a) = −S (log(1 − z)) ⊗ z + S(iπ) ⊗ z . (3.135)

Since symbols with constant entries vanish, we can conclude that

S
(
Li2(z) + iπ log z + π2

) = S (Li2(z)) , (3.136)
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namely only the leading functional transcendentality part of the function is captured
by the symbol. The terms which are in the kernel of the symbol map are referred to
as “beyond-the-symbol” terms.

This is not a tragic loss. The symbol in fact keeps track of themost complicated part
of the function. What is lost has a lower transcendental weight, from the functional
point of view, and it is therefore easier to recover a posteriori. From this very simple
examplewe understand that what we losewhen taking the symbol are the “iπ”-terms,
which encode the information on the branch of the function, and the constant terms,
related to the boundary constants of the iterated integrals. In this sense, the symbol
is equivalent to an iterated integral stripped of the information on the integration
contour,

α1 ⊗ · · · ⊗ αn ≡ [α1, . . . ,αn] , (3.137)

where I intentionally omit the argument and the base point in the iterated integral on
the right-hand side. In order to obtain a function corresponding to a given symbol,
therefore, it is sufficient to upgrade the latter to iterated integral by making a physi-
cally motivated choice of the branch, and an arbitrary choice of the base point. This
straightforwardly produces a legitimate function with the correct symbol. Nonethe-
less, one might not be satisfied with an iterated integral, and would like to have a
more explicit expression in terms of standard functions.

Oneway to do so is offered by the differential equations in the canonical form. The
symbol in fact retains all the differential information of the corresponding iterated
integral. Given a symbol S, we may want to find a function f such that S( f ) = S.
We can write down a canonical differential equation for a vector of functions which
contains f togetherwith a tower of lower-weight functions, the very samewaywe did
in Sect. 3.3.5 for the iterated integrals. Starting from the symbol of the iterated integral
in Eq. (3.115), for example, we can write down the same differential equation shown
in Eq. (3.116). The only difference is that we can no longer fix the boundary values
(except for the weight-0 function, which is always 1 by definition). This freedom
reflects the freedom of the terms beyond the symbol. For example, the solution of
Eq. (3.116) with no boundary values fixed for the symbols has the form

�S =
(

ε2 (Li2(z) − c1 log(z) + c2) , ε (log(1 − x) + c1) , 1

)T

, (3.138)

where c1 and c2 are arbitrary weight-1 and 2 constants. The problem of associating a
function to a symbol therefore is equivalent to that of solving the differential equations
in the canonical form. Section 3.4 is devoted to discussing several approaches to do so.

The take-home message of this section is that the symbol encodes all the infor-
mation on the branch cuts of the function and on how to differentiate it, and captures
entirely its most complicated part. Considering what a simple object the symbol is,
that is pretty good.
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Proving Functional Relations with the Symbol

In the previous sections we have seen many functional identities relating polylog-
arithmic functions. All these complicated relations simply reduce to the algebraic
rules given by Eqs. (3.120), (3.121) and (3.123) at the symbol level. Proving a rela-
tion among polylogarithmic functions using the symbol is therefore straightforward.
First, one computes the symbol of both sides of the equation, either iteratively using
Eq. (3.130) or by applying known rules such as the one for the classical polyloga-
rithms given byEq. (3.132). For example, for the dilogarithm relation (3.84) this gives

−
(
1 − 1

z

)
⊗ 1

z
= (1 − z) ⊗ z − z ⊗ z . (3.139)

Next, the separate symbols have to be expanded out by factorising their entries and
then applying Eqs. (3.120), (3.121) and (3.123) until all the entries are simple factors.
This makes the cancellations apparent. From Eq. (3.139) we get

(z − 1) ⊗ z − z ⊗ z = (1 − z) ⊗ z − z ⊗ z . (3.140)

Note that Eqs. (3.120) and (3.123) imply that

A ⊗ (−a) ⊗ B = A ⊗ a ⊗ B , (3.141)

for any elementary tensors A and B. The two sides of Eq. (3.140) are thus the same,
which proves that themost complicated part of the relation is correct. Finally, one has
to fix the terms beyond the symbol. This can be done using various arguments, such
as analyticity at some point, differentiation and numerical evaluations. In this case,
we can miss terms of the generic form “π × log” and “π2”, where log and π denote
generically a weight-1 function and constant, respectively. One way to constrain the
“π × log”-terms is by differentiating. This in fact produces a strictly-lower weight
relation, which is simpler to prove than the original one. In the case at hand we imme-
diately see that no “π × log” is needed. The constant can be determined with a single
evaluation of both sides of the relation, this way completing the proof of Eq. (3.84).
It is important to stress that any relation has a precise domain of validity, to which the
point where we decide to evaluate must belong. The domain of validity of the relation
also suggests a heuristic but faster way of ruling out the “π × log”-terms. Since the
arguments of the functions in the relation (3.84) do not involve constants other than
±1, it is reasonable to assume that the only weight-1 constant that can potentially
show up is iπ, which typically comes from the analytic continuations. For z < 0 the
weight-2 functions captured by the symbol aremanifestly real, so that no iπ is needed.
If we traded log(−z) for log(z) on the right-hand side of Eq. (3.84), the symbol would
still vanish, but there would be no domain where all the functions are well-defined.
As a result, the analytic continuation would be required, together with factors of iπ.

This first example was almost trivial. Let us look at the much more interesting
five-term identity (3.86). A theorem states that all the relations among dilogarithms
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follow from the five-term identity [76]. Moreover, it has a hidden Z5 symmetry, and
a fascinating connection with cluster algebras. In order to unveil these two aspects,
it is convenient to introduce the Rogers L-function,

L(x) = Li2(x) + 1

2
log x log(1 − x) . (3.142)

It captures the part of the dilogarithm whose symbol is anti-symmetric,

S [L(x)] = −1

2
(1 − x) ∧ x , (3.143)

where the factor of 1/2 is a prefactor of the tensor, and a ∧ b := a ⊗ b − b ⊗ a.
Note that the symmetric part of a weight-2 symbol can always be written in terms of
products through the shuffle relations (3.124),

a ⊗ b + b ⊗ a = S(log a log b) . (3.144)

The logarithms on the right-hand side of Eq. (3.86) can then be absorbed in the
definition of the Rogers L-function, so that the five-term identity takes a tidier form,

L(x) + L(y) + L

(
1 − x

1 − xy

)
+ L(1 − xy) + L

(
1 − y

1 − xy

)
= π2

2
. (3.145)

Next, consider the recursive sequence

1 − ai = ai−1ai+1 . (3.146)

It is easy to prove that it has periodicity 5, namely that ai+5 = ai . This recursion is
(a slightly modified version of) the cluster coordinate mutation of the cluster algebra
A2 [77]. The five-term identity can then be expressed as

5∑
i=1

L(ai ) = π2

2
, (3.147)

which makes manifest the Z5 symmetry. The choice a1 = x , a2 = (1 − x)/(1 − xy)
produces the identity as in Eq. (3.145). In order to prove Eq. (3.147), let us compute
the symbol of the right-hand side,

S
[

5∑
i=1

L(ai )

]
= −1

2

5∑
i=1

(1 − ai ) ∧ ai . (3.148)

Using the definition of the sequence in Eq. (3.146) and the multi-linearity of the
symbol (3.120) gives
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S
[

5∑
i=1

L(ai )

]
= −1

2

5∑
i=1

(ai−1 ∧ ai + ai+1 ∧ ai ) . (3.149)

Next, we use the periodicity of the sequence to shift the indices in the first term of
the summand,

S
[

5∑
i=1

L(ai )

]
= −1

2

5∑
i=1

(ai ∧ ai+1 + ai+1 ∧ ai ) . (3.150)

Finally, the anti-symmetry implies that the symbol vanishes,

S
[

5∑
i=1

L(ai )

]
= 0 . (3.151)

The beyond-the-symbol terms can only be of the generic form “π × log” and “π2”,
where log and π denote generically a weight-1 function and constant, respectively. It
is easy to see that the derivatives of

∑5
i=1 L(ai ) vanish, so that there is no “π × log”

term. Also in this case, these terms could be excluded heuristically by noting that all
the functions are real in the region 0 < x, y < 1. The remaining weight-2 constant
can be determinedwith a single evaluation, e.g. at x = 0, y = 0. Using that L(0) = 0
and L(1) = π2/6 gives the complete functional identity,

5∑
i=1

L(ai ) = π2

2
. (3.152)

Symbols and Branch Cuts

We have seen that the first entry of a symbol encodes its branch cut structure. In
particular, a function has branch cuts starting where the first entry of its symbol
vanishes or diverges. This means that the first entries of the symbol of a Feynman
integral or a scattering amplitude are constrained by physics through the Cutkosky’s
rules. For Feynman integrals with massless propagators, this implies that the first
entry in the symbol can only be a Mandelstam invariant, i.e. of the form (pi + · · · +
pk)2 [78].

One might naïvely expect that only the functions which satisfy the first-entry
condition appear in the result for a scattering amplitude or a Feynman integral.
For instance, consider the scattering of four massless particles. The kinematics is
described by two independent Mandelstam invariants, say s and t , and a third one is
related to them by momentum conservation, u = −s − t . Only the functions log s,
log t and log u are allowed by the first-entry condition at weight 1. The hasty physicist
might conclude that no other logarithm can appear. Let us make an explicit example
to see why this expectation is wrong.
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The function

Li2

(
1 − t

s

)
(3.153)

is well-defined in the region t/s ∈ C\(−∞, 0], and it satisfies the first-entry condi-
tion, since

S
[
Li2

(
1 − t

s

)]
= −t ⊗

(
1 − t

s

)
+ s ⊗

(
1 − t

s

)
. (3.154)

Our goal is to analytically continue it from the Euclidean region {s < 0, t < 0} to
the s-channel {s > 0, t < 0}.

One simple way to do it is through Euler’s inversion formula (3.85),

Li2

(
1 − t

s

)
= −Li2

(
t

s

)
− log

(
t

s

)
log

(
1 − t

s

)
+ π2

6
, (3.155)

which is valid in the region t/s ∈ C\{(−∞, 0] ∪ [1,∞)}. Of the functions on the
right-hand side, only log(t/s) is problematic for s > 0, t < 0. Analytically continu-
ing a logarithm is however very simple. TheFeynmanprescription for the propagators
instructs us to add a small, positive imaginary part to each Mandelstam invariant, i.e.
s → s + i0+ and similarly for t . As a result, the analytic continuation of the function
in Eq. (3.153) to the s-channel is given by

−Li2

(
t

s

)
− log

(−t

s

)
log

(
1 − t

s

)
− iπ log

(
1 − t

s

)
+ π2

6
. (3.156)

This expression has the same symbol as the original function (3.153), and therefore it
satisfies the first entry condition. The “iπ”-term at first sight does not. It has a branch
cut along t > s. The latter, however, does not lie in the s-channel, where s > 0 and
t < 0. In order to access it, e.g. to compute the discontinuity, one would therefore
have to analytically continue to a regionwhere t can be greater than s, e.g. the original
Euclidean region. There, we know that the function is given by Eq. (3.153), which
is clearly well-defined for t > s. In summary,

Li2

(
1 − t

s

)

︸ ︷︷ ︸
s<0, t<0

−Li2

(
t

s

)
− log

(−t

s

)
log

(
1 − t

s

)
− iπ log

(
1 − t

s

)
+ π2

6︸ ︷︷ ︸
s>0, t<0

.

(3.157)

So we see that, in order to represent the result in a certain region, e.g. {s > 0, t < 0},
it may be necessary to use functions which do not satisfy the first entry condition on
their own, such as log(1 − t/s) on the right-hand side of Eq. (3.157).

This is a practical complication, but it does not mean that the full result has
unphysical discontinuities. In fact, it is very important to highlight that dropping the
“iπ”-term on the right-hand side of Eq. (3.157) would produce a function whose
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symbol still satisfies the first entry condition, but which does have the unphysical
discontinuity across the surface s = t .

The take-home message here is that the absence of certain discontinuities implies
first entry conditions, but not vice versa. A function which satisfies a first entry
condition at symbol level may still exhibit the forbidden branch cut.

Deeper entries in the symbol contain valuable information on the branch cut
structure as well. The first entry conditions imply that certain discontinuities, e.g.
those associated with letters that are not Mandelstam invariants, are not visible in the
canonical Riemann sheet of the Feynman integrals (or scattering amplitudes). It does
notmean that they are completely absent. They can in fact be exposed through analytic
continuation. Actually, we have already seen this for the classical polylogarithm
Lin(z) in Sect. 3.3.2. It is holomorphic at the origin z = 0, but its Riemann surface
is ramified there. We see from the monodromy around z = 1 (3.77) that the analytic
continuation across the branch cut [1,∞) introduces a term with logn−1 z, which has
a branch cut along the negative real axis (−∞, 0]. This information is contained in
the second entry of the symbol, S[Lin(z)] = −(1 − z) ⊗ z ⊗ · · · ⊗ z. The formula
for the discontinuity (3.128) can in fact be iterated: as the first entry encodes the
discontinuity of the principal sheet of the function, the second entry does the same
for the discontinuity of the discontinuity, and so on deeper into the symbol.

Physics can therefore impose constraints also on the second entries. An important
example of this is given by the Steinmann relations [79–81], which state that a
scattering amplitude cannot havedouble discontinuities in overlapping channels. This
constrains strongly the space of functions, andwas in fact instrumental in pushing the
computations in planar N = 4 super Yang–Mills to astonishing results: the 5-loop
six-particle amplitude [82], and the 3-loop NMHV and 4-loop MHV seven-particle
amplitudes [83]. As we will see in the next chapter, certain pairs of letters never show
up in the first two entries of the massless two-loop five-particle integrals. This is an
empirical observation, but it is not outrageous to believe in a physical explanation
along the lines of the Steinmann relations. Moreover, other observations have lead to
the conjecture that the Steinmann relations actually hold to all depths in the symbol
in planar N = 4 super Yang–Mills [84]. Remarkably, the ensuing restrictions on
multiple discontinuities are equivalent to the conditions coming from the cluster
algebra approach in the form of the cluster adjacency property [85, 86]. Clearly this
is a very active area of research. The symbol has still a lot to offer.

3.4 Solving the Differential Equations

Our goal in this section is to solve the system of differential equations in the canonical
form,

d�g = ε d Ã · �g , (3.158)

where
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d Ã =
∑
i

ai d logαi (m) . (3.159)

The αi are algebraic functions of the kinematic variables m called letters, and the
ai are constant rational matrices. We continue with the example of the three-mass
triangle integral family, for which the alphabet is shown in Eq. (3.38), and the vector
�g is the (canonical) integral basis given by Eq. (3.28). It is worth stressing that
this system of differential equations has a much more general nature, tightly linked
with the polylogarithmic nature of the functions. As I argued in Sect. 3.3.5, the
differential equations take the canonical form (3.158) for any set of pure functions
�g. The parameter ε plays the role of bookkeeper of the transcendental weight, and
its factorisation is the hallmark of transcendental purity. Being able to solve such
a system of differential equations therefore also allows one to manipulate in a very
powerful way the polylogarithmic functions introduced in Sect. 3.3.

We have seen that the formal solution of the system (3.158) is given by the path-
ordered exponential in Eq. (3.40), which produces Q-linear combinations of iterated
integrals of d log forms at each order in ε, as can be seen in Eq. (3.42). In practice,
it is convenient to view the formal solution (3.40) as a neat iterative procedure to
determine each order in the ε-expansion (3.41) in terms of the previous one,

�g(0)(m) = �b(0) ,

�g(k)(m) =
∫

γ

d Ã · �g(k−1) + �b(k) , ∀k > 0 ,
(3.160)

where γ : [0, 1] → M is an integration contour in the kinematic space M from some
boundary point γ(0) = m(0) to a generic point γ(1) = m. The details of how this
iterative integration is to be interpreted are given in Sect. 3.3.1. In Sect. 3.3 we
armed ourselves with a mathematical toolkit to handle such functions. It is time we
put it to good use.

Since the solution of the differential equations (3.158) is in general a vector of
multi-valued functions, it is crucial to define the domain of the kinematic variablesm
where wewant the result to be valid. I address this in Sect. 3.4.1. Next, in Sect. 3.4.2 I
show how the boundary constants �b(k) can be determined straightforwardly from the
differential equations themselves by imposing certain physical constraints. Then, we
will finally be in a position to discuss how the solution of the differential equations can
bewritten down. In Sects. 3.4.3, 3.4.4 and 3.4.5 I offer you three different approaches:
we can express the solution in terms of GPLs, iterated integrals/symbols or a tailored
basis of polylogarithmic functions, respectively. Each of these approaches has its
pros and cons, but they should all be in our arsenal.
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3.4.1 Kinematic Region and Analytic Continuation

The integrability conditions of the differential equations (3.33) guarantee that the
iterated integrals appearing in the solution at eachorder in ε are homotopy functionals.
In other words, the result of the integration depends only on the endpoints m(0) and
m, and on the homotopy class of the contour γ. Since the d log forms in the iterated
integrals have poles associated with the zeros of the letters, the kinematic space M
is punctured, and the basis integrals �g are thus multi-valued functions. The choice of
the branch is dictated by the Feynman prescription in the propagators of Eq. (3.1).

This is a crucial point. It is thus worthwhile to be pedantic at least once. The
readers who are even just slightly familiar with the concept of analytic continuation
are advised to skip this paragraph, as we are going to make the simplest example
possible. Consider the iterated integral

h(m2
1) := [

m2
1

]
−1 (m2

1) =
∫

γ

d logm2
1 , (3.161)

with the integration contour γ going from m2
1 = −1 to a generic point m2

1. Here one
must not get confused between the m2

1 in the square brackets, which defines the 1-
form d logm2

1 on the kinematic space, and the one on the parentheses, end-point of the
integration contour and argument of the function h. Integrating along a straight line,

γ(t) = −1 + t (m2
1 + 1) , t ∈ [0, 1] , (3.162)

gives

h(m2
1) =

∫ 1

0
dt

1 + m2
1

−1 + t (1 + m2
1)

. (3.163)

The integrand has a simple pole at t = 1/(1 + m2
1). If m

2
1 < 0, the pole lies outside

of the integration domain. The integral is thus well defined and evaluates to

h(m2
1) = log(−m2

1) , (m2
1 < 0) . (3.164)

If instead m2
1 > 0, the pole lies right on the integration path. In this case, one has to

specify whether the contour γ goes around the pole from above or from below. The
Feynman prescription tells us to add a small positive imaginary part “+i0+” to each
of the masses m2

i , so that

h(m2
1) =

∫
γ
d log

(
m2
1 + i0+) =

∫ 1

0

(1 + m2
1)dt

−1 + (1 + m2
1)t + i0+ = log(m2

1) − iπ , (m2
1 > 0) .

(3.165)

This choice of branch of the logarithm differs from the canonical one, for which we
would have that log(−1) = +iπ. Getting the analytic continuationwrong is therefore
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as easy as dangerous. In Sect. 3.4.1 wewill see this is in fact the analytic continuation
of the logarithm from the so-called Euclidean region, in Eq. (3.164), to the physical
scattering region, in Eq. (3.165).

In summary, Feynman integrals evaluate to multi-valued functions, and it is there-
fore crucial to specify the domain of the variables, which depends on the kinematics
of the scattering process. The differential equations are then solved in a specific
kinematic region. Results valid in other regions can be obtained through analytic
continuation (see e.g. [87]).

The three-mass triangle integrals (3.1) are functions of the masses of the three
external legs,m = (m2

1,m
2
2,m

2
3). The kinematic region of phenomenological interest

is given by m2
i > 0 ∀i = 1, 2, 3, which describes the decay of the particle with

greatest mass into two lighter particles. Moreover, the triangle integrals in this region
contribute also to the scattering amplitude for the production of a pair of weak gauge
bosons at higher orders in perturbation theory [15]. I will refer to this region as the
physical region. The values of the kinematic invariants m in this region correspond
to actual angles θ between the particle trajectories (i.e., such that sin θ ∈ [−1, 1])
and positive energies.

There is a more convenient region to solve the differential equations in than the
physical one. In order to define it, let us take a look at the Feynman parameterisation
of a generic element of the three-mass triangle family,

Ia1,a2,a3 = (−1)a�

(
a − d

2

)∫ ∞

0

(
3∏

i=1

dαi
αai−1
i

�(ai )

)
δ

⎛
⎝1 −

∑
j∈B

α j

⎞
⎠×

(α1 + α2 + α3)
a−D

(−m2
1α2α3 − m2

2α1α2 − m2
3α1α3

)D/2−a
,

(3.166)
where a = a1 + a2 + a3 and B is any non-empty subset of {1, 2, 3}. Since all the
integration variables αi are non-negative, the entire integrand is manifestly non-
negative form2

i < 0 ∀i = 1, 2, 3. As a result, the integral in Eq. (3.166) is manifestly
real, which constitutes a useful simplification in the computation of a Feynman
integral. The kinematic region where all the integrals6 in a family are real is called
Euclidean region. While all planar integrals have such a region, this is not true in
general for non-planar integrals.

In the three-mass triangle case there is an even simpler kinematic region. In order
to define it, let us consider the change of variables

m2
2 = m2

1zz̄ , m2
3 = m2

1(1 − z)(1 − z̄) . (3.167)

6 Strictly speaking, here I mean only the scalar integrals of the form Ia1,a2,a3 . One can always rescale
any real integral by some square root such that it becomes imaginary. In fact, this is what happens
with g4 (3.28).
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The inverse transformation is given by

z = m2
1 + m2

2 − m2
3 + √

λ(m)

2m2
1

, z̄ = m2
1 + m2

2 − m2
3 − √

λ(m)

2m2
1

. (3.168)

The new variables {m2
1, z, z̄} are extremely convenient. First of all, z and z̄ are dimen-

sionless. As a result, the dimensionality of the basis integrals gi is entirely given by
an overall factor of (m2

1)
−ε. What remains are dimensionless functions of the two

variables only, z and z̄. Moreover, the change of variables given by Eq. (3.167) ratio-
nalises the square root of the Källen function, since λ(m) = m4

1(z − z̄)2. The branch
of the square root corresponding to Eq. (3.168) is

√
λ(m) = m2

1(z − z̄) . (3.169)

In terms of the new variables {m2
1, z, z̄}, the Euclidean region is defined by

m2
1 < 0 , zz̄ > 0 , (1 − z)(1 − z̄) > 0 . (3.170)

The presence of the square root of the Källen function divides the Euclidean region
intofive sub-regions, shown inFig. 3.3. Ifλ(m) > 0,Eq. (3.168) implies that z, z̄ ∈ R.
Equation (3.170) then implies three sub-regions: z, z̄ < 0, 0 < z, z̄ < 1, and z, z̄ > 1.
If λ(m) < 0, instead, we see from Eq. (3.168) that z and z̄ are complex conjugate to
each other. Finally, the boundary surface λ(m) = 0 constitutes the fifth sub-region.

It is convenient to choose the regionwhereλ(m) < 0.There, in fact, the three-mass
triangle integrals are single valued [15]. The results can then be analytically continued

Fig. 3.3 Subdivision of the Euclidean kinematic region for the three-mass triangle integrals. All
masses are negative,m2

i < 0 ∀i = 1, 2, 3 . The red line denotes the surfaceλ ≡ λ
(
m2

1,m
2
2,m

2
3

) = 0
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to any region. In particular, the analytic continuation to the physical scattering region
where m2

i > 0 ∀i = 1, 2, 3 is performed by adding a small positive imaginary part
to each invariant m2

i . For the logarithm we have seen that this yields

log(−m2
i ) −→ log(−m2

i − i0) = log(m2
i ) − iπ . (3.171)

This operation is equivalent to the substitution

−m2
i −→ e−iπm2

i . (3.172)

The analytic continuation of the three-mass triangle integrals is therefore straight-
forward. We single out an overall scale from the canonical basis integrals computed
in the Euclidean region,

gi (m) = (−m2
1

)−ε
g̃i

(
m2

2

m2
1

,
m2

3

m2
1

)
, with m2

i < 0 ∀i = 1, 2, 3 , (3.173)

so that g̃i are dimensionless functions of two ratios. Then, the phase factor on the
right-hand side of Eq. (3.172) cancels out in the arguments of g̃i , and the analytic
continuation simply amounts to an overall phase factor,

gi (m) = eiπε
(
m2

1

)−ε
g̃i

(
m2

2

m2
1

,
m2

3

m2
1

)
, with m2

i > 0 ∀i = 1, 2, 3 . (3.174)

In general, the analytic continuation of high transcendental weight functions of
many variables can be significantly involved. In such a situation, it may be more
convenient to by-pass the problem by solving the differential equations separately
in each of the kinematic regions we are interested in. In practice, we pick a different
base point in each of the kinematic regions and fix the boundary constants there.
Then we solve the differential equations in such a way that the integration contour γ
never leaves the region the base point lies in. In this way the analytic continuation is
avoided altogether, and we obtain separate and reliable expressions for the solution
in each of the relevant kinematic regions. In give an example of this strategy in
Sect. 4.2.3.

Now that we have decided which region of the kinematic space we want to solve
the differential equations in, we need to choose a base point in it. It is convenient
to choose a point with as few and as simple numbers as possible. The boundary
constants are the values of the basis integrals at the base point. If the latter contains
complicated numbers, the resulting expressions for the integrals are polluted by a
proliferation of awful constants. See Eq. (3.186) for an example of this. A rather
good choice in this case is

m(0) := (−1,−1,−1) . (3.175)
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Since the problem involves a square root andwe are interested in the kinematic region
where its argument is negative, the kinematics is not entirely specified by the values
of the three kinematic invariants m2

i . One must also choose a branch of the square
root. My choice is

√
λ(m(0)) = +i

√
3 , (3.176)

which corresponds through Eq. (3.169) to

z(0) = e−iπ/3 , z̄(0) = eiπ/3 . (3.177)

Since no letter of the alphabet (3.38) vanishes at m(0) (3.175), the basis integrals
are finite there. It may sometimes be convenient to choose a singular point as base
point.We talk in this case of tangential base point (see Sect. 3.3.1). I show in Sect. 3.5
how to integrate the differential equations starting from a singular base point. Having
one or more of the kinematic variables set to 0 can in fact simplify dramatically the
constants appearing in the expressions of the integrals. I present an example of this
in Sect. 4.4.2.

To summarise, we have chosen to solve the differential equations (3.158) in the
kinematic region defined by

m2
i < 0 ∀i = 1, 2, 3 , λ(m) < 0 , (3.178)

where the integrals are single valued. Results valid outside of this region can be
obtained through analytic continuation. However, as long as the base point m(0) and
the integration contour γ in Eqs. (3.40) or (3.160) stay within the region (3.178), we
do not need to worry about the analytic continuation at all.

3.4.2 Boundary Constants

The goal of this section is to determine the boundary constants �b(ε), namely the values
of the basis integrals �g at the base point m(0) given by Eqs. (3.175) and (3.176). One
approach consists in evaluating the integrals numerically, e.g. using pySecDec [7]
or FIESTA [6]. At two or more loops, this is very challenging, and even in the best-
case scenario gives only a limited accuracy. The approach we are going to follow is
instead completely analytical. The basic idea is quite simple. The generic solution
of the differential equations in the canonical form (3.158) has singularities on all
the hypersurfaces where one of the letters vanishes. Some of these singularities are
however unphysical, and must be absent in the solution of the differential equations
which corresponds to Feynman integrals. This gives constraints on the boundary
constants, which are “fine-tuned” in such a way that the unphysical divergences can-
cel out. Solving the physical constraints allows one to relate the boundary constants
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to a small set of values of the simplest integrals in the family. Typically, only one
trivial integral—e.g. a bubble or a product of bubbles in the multi-loop case—has
to be computed in some other way to fix entirely the boundary constants. The dif-
ferential equations are in fact homogeneous, and it is thus inevitable that the overall
normalisation is given by some external input.

The three-mass triangle integral family at one loop is particularly simple, as the
three single-scale integrals can be easily computed in closed-form,

gi = −eεγE
�2(1 − ε)�(1 + ε)

�(1 − 2ε)

(−m2
i

)−ε
, ∀i = 1, 2, 3 . (3.179)

This result is obtained by rescaling the bubble integral (3.24) according to Eq. (3.25),
with the transformation matrix given by Eq. (3.29). From Eq. (3.179) we can imme-
diately read off the boundary values,

bi = −1 + π2

6
ε2 + O

(
ε3
)

, ∀i = 1, 2, 3 . (3.180)

The boundary value of the genuine triangle integral g4 is determined in terms
of the previous ones from physical constraints. For arbitrary boundary constants
�b the solution of the differential equations (3.158) is singular on the hypersurface
λ(m) = 0 because of the letter α6 = √

λ(m). This singularity is spurious and the
solution of the differential equations which corresponds to Feynman integrals must
be free of it. We can thus tune the boundary values in such a way that this singularity
drops out from the solution.

In practice, we integrate the differential equation (3.158) fromm(0) to some point
on the hypersurface λ(m) = 0. The result diverges logarithmically for arbitrary val-
ues of the missing constants b(k)

4 . We fix the latter by requiring that the divergences
cancel out. The integration can be performed easily in terms of GPLs or simpler sub-
sets of them. One choice of integration contour is particularly convenient. We keep
m2

1 fixed to its value at the boundary point, and varym
2
2 andm

2
3 together going to the

pointm∗ = (−1,−1/4,−1/4) such that λ(m∗) = 0. A convenient parameterisation
which rationalises the square root of the Källen function is given by

γ(t) =
(

−1,
(t − 1)(t + 1)

4
,
(t − 1)(t + 1)

4

)
, (3.181)

where the parameter t is purely imaginary and ranges from i
√
3 to 0, so thatγ(i

√
3) =

m(0) and γ(0) = m∗. This is just a straight line in terms of z and z̄ (3.167). The unusual
range of the parameter t makes it possible to perform the integration straightforwardly
in terms of HPLs, a special subset of the GPLs where the indices are drawn from
{0,±1} (see Eq. (3.95)). Pulling the letters of the three-mass triangle alphabet (3.38)
back with γ (3.181) in fact gives
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(γ∗d logαi )(t) = span
Q

(
d log t, d log(t − 1), d log(t + 1)

)
, ∀i = 1, . . . , 6 ,

(3.182)

which is the alphabet of the HPLs. Moreover, the path (3.181) never leaves the
kinematic regionλ(m) < 0, sinceλ(γ(t)) = t2 and t is purely imaginary.No analytic
continuation is thus required, and the integration can be straightforwardly performed
by simply implementing the rules defining the HPLs, given by Eqs. (3.87) and (3.89)
with ai ∈ {0,±1}.

As expected, the result of the integration for g4 diverges. We regulate the diver-
gences by truncating the integration before it reaches the end-point, as discussed in
Sect. 3.3.3. In practice, this simply amounts to giving them a name,

L := lim
t→0

H(0; t) = lim
t→0

log t . (3.183)

Up to order ε2, for instance, we have

g4
(
m∗) = b(0)

4 + ε
(
2b(0)

4 L + · · ·
)

+

+ ε2

[
2b(0)

4 L2 +
(
2b(1)

4 − 4 log

(
i
√
3

4

)
b(0)
4

)
L + · · ·

]
+ O

(
ε3
)

,

(3.184)
where the dots denote finite terms. Requiring that the integrals are finite at the point
m∗ thus fixes b(0)

4 = 0 = b(1)
4 .

From this very simple example we can already infer one important feature of
this approach: we need to integrate the differential equations up to weight w + 1 in
order to fix the weight-w boundary constants. Up to which weight to integrate thus
depends on which order in ε the boundary values are needed at. For instance, let us
say we are interested in the expression for the triangle integral I1,1,1 up to the finite
part, namely up to order ε0. We see from the transformation matrix in Eq. (3.29) that

I1,1,1 = g4

ε2
√

λ
, (3.185)

so that we need the boundary value of g4 up to order ε2. By integrating the differential
equations up to weight 3 and imposing finiteness we obtain

b4(ε) = ε24iIm
[
Li2

(
e−iπ/3

)]+ O
(
ε3
)

. (3.186)

The constant appearing at order ε2 might appear surprising. First, it is imaginary
although the boundary point is in the Euclidean region. All the scalar Feynman
integrals Ia1,a2,a3 of the family are real in this region, but g4 has an overall factor of√

λ, which is purely imaginary in the region of interest. Secondly, its valuemight look
rather unnatural.Whywould a Feynman integral depend on e−iπ/3? Indeed this is just



3.4 Solving the Differential Equations 83

an artefact of the representationwe are using. Solving the differential equations forces
us to choose a boundary point. This point feeds into the intermediate expressions. In
fact, note that e−iπ/3 is just the value of z at the boundary point (3.177). Once the
full integral g4 is expressed in terms of functions, this constant drops out. We will
see this explicitly in Eq. (3.240).

The appearance of such complicated constants, satisfying highly non-trivial rela-
tions, makes this approach unfeasible in the generic case, where the integration is
carried out in terms of GPLs. A good strategy consists in evaluating numerically
the functions appearing in the result of the integration. It is worth stressing that the
integration is carried out analytically in terms of GPLs or other classes of func-
tions, and that only the latter are evaluated numerically (e.g. using the C++ library
GiNaC [64]), if necessary with an outrageous number of digits. In this way all the
simplifications are immediate and the expressions are as compact as they could pos-
sibly be. Once the boundary constants are known numerically, their fully analytic
expression can be recovered. In fact, while the constants appearing in the integration
depend on the arbitrary choice of contour, the boundary values are strictly related to
the alphabet and to the boundary point. It is therefore possible to guess which con-
stants might appear. The numerical boundary constants can then be related to such
analytic constants through the PSLQ algorithm [88] or Mathematica’s built-in
function FindIntegerNullVector.

Finally, note that the approach here described for the three-mass triangle integrals
may not give enough constraints to fix all the boundary constants inmore complicated
cases. For the applications presented in the next chapter, a more refined method was
used, based on the same idea of removing unphysical singularities. Applying it to
the three-mass triangle case would be an overkill, to put it mildly. Therefore, I refer
to [89] for a thorough discussion.

3.4.3 Solution in Terms of Goncharov Polylogarithms

Whenever the alphabet is rational, the canonical differential equations can be inte-
grated algorithmically in terms ofGPLs (or subsets thereof). Let us consider a rational
letter R, and let us assume that, on the integration contour γ, it is given by a degree-n
polynomial,

R(t) := R (m = γ(t)) =
n∑

k=0

ckt
k . (3.187)

We do not lose generality, since any rational letter can be expressed in terms of
polynomial letters through d log(N/D) = d log N − d log D. The pull-back of R
with the contour γ can then be partial fractioned over C as

(γ∗d log R)(t) =
∑

ts :R(ts )=0

dt

t − ts
. (3.188)
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As a result, the iterated integrations given by Eq. (3.160) can be performed straight-
forwardly in terms of GPLs by simply implementing their defining formulae (3.87)
and (3.89). Loosely speaking, the roots ts in Eq. (3.188) are added as new indices in
the GPLs of the previous order in ε.

Clearly there is a practical limitation: if the degree of the polynomial is too high, it
might not be possible to express its roots in a closed form. Physics has been gracious
enough not to put me in such an uncomfortable situation so far. The letters of the
alphabets discussed in this thesis, pulled backwith the relevant contours, have atmost
degree 2. The choice of the contour is however crucial. We want it to rationalise the
square roots in the alphabet (at least those which appear simultaneously in a given
integration). If possible, we want it to lie within a chosen region of analyticity, to
avoid the worry of analytic continuation. And now we see that we also want it to
be simple enough that the numerators and denominators of the letters do not have
prohibitive polynomial degrees. While the rationalisation of the square roots—if
possible—is algorithmic to some extent (see e.g. [90–93]), finding a good contour
which satisfies all the criteria is an art.

The three-mass triangle alphabet (3.38) becomes rational in thevariables (m2
1, z, z̄)

defined by Eq. (3.167). In terms of the latter, the letters simplify significantly,

{
m2

1, z, z̄, 1 − z, 1 − z̄, z − z̄
}

. (3.189)

As a result, we can straightforwardly integrate the differential equation along a
straight line γ in these variables from the base point (3.175) to a generic point
(m2

1, z, z̄),

γ(t) =
(
m2(0)

1 , z(0), z̄(0)

)
+ t

(
m2

1 − m2(0)
1 , z − z(0), z̄ − z̄(0)

)
, (3.190)

where m2(0)
1 = −1, and z(0) and z̄(0) are given by Eq. (3.177). I do not spell them

out to keep the expressions tidier. It is worth stressing that, as long as the entire
contour γ lies in the same kinematic region, no analytic continuation is needed.
Moreover, I recall that, thanks to the homotopy invariance, we can choose the path
arbitrarily. Sometimes it is more convenient to vary one variable at a time, effectively
integrating along a zig-zag path. Different paths can lead to substantially different,
although equivalent, expressions.

Pulling back d Ã (3.37) with γ (3.190) gives

(γ∗d Ã)(t) =
6∑

i=1

Qi
dt

t − qi
, (3.191)

where the Qi are constant rational matrices and

{qi }6i=1 =
{

m2(0)
1

m2(0)
1 − m2

1

,
1 − z(0)

z − z(0)
,

z(0)

z − z(0)
,
1 − z̄(0)

z̄ − z̄(0)
,

z̄(0)

z̄ − z̄(0)
, 1 − z − z̄

z(0) − z̄(0)

}
.

(3.192)
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Substituting the pulled-back d Ã into the iterative solution of the canonical differential
equations (3.160) we immediately recognise the definition of the GPLs (3.87), with
argument 1 and indices drawn from the set {qi }6i=1. The constant matrices Qi tell
us which combinations of GPLs are required. A potentially complicated integration
therefore reduces to a very basic task of pattern recognition, easy to implement in a
computer algebra system.

The differential equations can now be algorithmically solved to any order in ε
(provided that the boundary constants are available). The solution, however, looks
awfully complicated. For example, let us take a look at g2. It is a bubble, and its
closed-form expression is given by Eq. (3.179). It is the archetypical simple integral.
Yet, its expression in terms of GPLs coming from the differential equations obscures
this simplicity,

g2 = −1 + ε

[
G

(
m2(0)
1

m2(0)
1 − m2

1

; 1
)

+ G

(
z(0)

z(0) − z
; 1
)

+ G

(
z̄(0)

z̄(0) − z̄
; 1
)]

+ O
(
ε2
)

.

(3.193)

The first GPL at order ε is single valued for m2
1 < 0, but the other two GPLs each

have a branch cut for Re(z) < 0 ∧ Im(z) = −√
3Re(z). This is spurious, of course,

and the discontinuity cancels out between the two. Using Eq. (3.100) to rewrite the
weight-1 GPLs in terms of logarithms, massaging the result, and going back to the
original variables via Eq. (3.168) then gives

g2 = −1 + ε log
(−m2

2

)+ O
(
ε2
)

, (3.194)

as expected. Clearly these manipulations become more and more complicated at
higher orders in ε. For instance, the expression we obtain for g4 using this approach
reads

g4 = ε2
[(

G(q2, q3; 1) − G(q3, q2; 1) + G(q2, q5; 1) − G(q3, q4; 1) + 2iIm
[
Li2(z

(0))
])

− (complex conjugate)

]
+ O

(
ε3
)

.

(3.195)

This expression is manifestly anti-symmetric under complex conjugation, i.e. under
the exchange z ↔ z̄ or equivalently

√
λ ↔ −√

λ. This property was expected. The
pure integral g4 is in fact defined by normalising the scalar triangle integral by the
square root of the Källen function (see Eq. (3.28)). Since the prefactor is odd and
the scalar integral is even under this transformation, it follows that g4 is odd. All the
other features of g4 are however obscured. This representation in fact exhibits several
spurious branch cuts and a spurious dependence on the base point. We must be able
to do better than this.

Whenever one is handed over a polylogarithmic function which looks more com-
plicated than it needs to be, the first thing to do is to compute its symbol. Let us
define
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g4 = ε2g̃4 + O
(
ε3
)

, (3.196)

and focus on the function g̃4. Using the technique discussed in Sect. 3.3.6, it is rather
easy to show that the symbol of g̃4 is given by

S (g̃4) = ([z, 1 − z] − [1 − z, z] + [1 − z, z̄] − [z, 1 − z̄]) − (z ↔ z̄) . (3.197)

This formula unveils a lot properties. The dependence on the base point has disap-
peared, as it should, and the anti-symmetry under the exchange z ↔ z̄ is even more
manifest. A few easy algebraic manipulations allow one to rewrite it as

S (g̃4) =
[
zz̄,

1 − z

1 − z̄

]
+
[
(1 − z)(1 − z̄),

z̄

z

]
, (3.198)

which manifestly satisfies the first-entry condition, since we recognise that only
the Mandelstam invariants m2

i appear in the first entries (see Eq. (3.167)). There is
even more. The symbol in Eq. (3.198) appears to have branch cuts in the complex
plane starting at z = 0, z = 1 or z = ∞. The discontinuities across these branch cuts
however cancel out. The discontinuity across the branch cut starting at z = 0, for
instance, receives contributions from the part of the symbol which has first entry z
and the one which has first entry z̄,

Discz=0
[
S (g̃4)

] = Discz=0
[
log z

] (1 − z

1 − z̄

)
+ Discz=0

[
log z̄

] (1 − z

1 − z̄

)
,

(3.199)

where the parenthesis denote 1-fold symbols. The two terms cancel out, because—
in the kinematic region we are considering—z and z̄ are complex conjugate to each
other,

Discz=0
[
S (g̃4)

] = 0 . (3.200)

The sameholds for the other branch cuts. The symbol-level analysis thus suggests that
g̃ is single valued. I stress that this is just a hint, not a proof. As I argued in Sect. 3.3.6,
the absence of a certain discontinuity in a function implies a first-entry condition in
its symbol, but the reverse is more subtle due to the terms beyond the symbol. Amore
careful analysis based on the Hopf algebra of the MPLs can legitimately extend this
conclusion to function level [15].

In conclusion, we have seen that it is very simple to solve the differential equa-
tions in the canonical form in terms of GPLs if the alphabet is rational. Although the
resulting expressions may sometimes be rather complicated, they can be straight-
forwardly evaluated numerically with arbitrary accuracy (e.g. using GiNaC [64]).
This is extremely valuable. In the context of the differential equations, the solution
in terms of GPLs plays a particularly important role in determining the boundary
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constants, as we have seen in Sect. 3.4.2. Extracting the logarithmic divergences
from the GPLs is in fact made extremely simple by the shuffle algebra (3.90).

Before moving on to the other approaches, I want to stress that a surprisingly—
for someone who has mainly used the differential equation method like I did—large
number of Feynman integrals can actually be integrated directly in terms of GPLs
starting from a suitable parametrisation (e.g. the Feynman parameterisation), thanks
to powerful algorithms for the symbol integration of GPLs [94, 95]. The three-mass
triangle integral g4 considered here in fact provides a very simple example of this [15].
These algorithms are implemented in the Maple package HyperInt [95].

3.4.4 Solution in Terms of Chen’s Iterated Integrals

In the previous section we have seen that, if the alphabet can be rationalised, the solu-
tion of the canonical differential equations can be written down in terms of GPLs
algorithmically. This approach has the advantage that the result can be straightfor-
wardly evaluated numerically, but the need to rationalise the square roots in the
alphabet is a serious limitation. Even when that is possible, the new variables might
make the expressions of the integrals rather complicated. Moreover, the separate
functions appearing in the results satisfy a multitude of complicated functional iden-
tities. Writing the solution of the differential equations in terms of Chen’s iterated
integrals, on the other hand, is straightforward regardless of how many square roots
are present in the alphabet. Moreover, if the alphabet has been chosen so that the
letters {αi } are linearly independent—as it should always be—the separate “words”
[α1 , . . . ,αn] are guaranteed to be independent as well. The functional identities are
thus automatically implemented, and the expression in terms of iterated integrals is
uniquely determined by the choice of letters and of the base point. As a result, even
though they cannot be evaluated numerically directly, the iterated integrals are very
useful to check cancellations and to study the analytic properties of the result.

In practice, solving the canonical differential equations in terms of iterated inte-
grals is as easy as it could possibly be. Because of the differentiation formula given
by Eq. (3.63), each integration in the iterative solution (3.160) just adds one of the
letters at the right end of the iterated integrals in the previous order in ε,

∫
γ

d logαk
[
αi1 , . . . ,αik−1

]
m(0) = [

αi1 , . . . ,αik−1 ,αik

]
m(0) . (3.201)

If one is interested only in the symbol of the solution, it is sufficient to solve
the differential equations with the weight-0 boundary constants �b(0), neglecting the
higher-weight ones, namely �b(k) for k ≥ 1. The latter produce terms beyond the
symbol. The procedure is then identical to the one for the iterated integrals.

Let us make some explicit examples for the three-mass triangle integrals. The
pure bubbles are given by
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gi = −1 + ε [αi ]m(0) + ε2
(

π2

12
− [αi ,αi ]m(0)

)
+ O

(
ε3
)

, ∀i = 1, 2, 3 . (3.202)

Since they involve iterated integrals with only one entry, it is trivial to upgrade these
expressions to explicit functions. At weight one we only have logarithms,

[αi ]m(0) (m) = log
(−m2

i

)
, ∀i = 1, 2, 3 . (3.203)

Through the shuffle product (3.54) this implies that

[
m2

i , . . . ,m
2
i︸ ︷︷ ︸

k times

]
m(0) (m) = 1

k! log
k
(−m2

i

)
. (3.204)

Plugging this into Eq. (3.202), it is easy to check that it matches the closed-form
formula given by Eq. (3.179).

More interesting is the expression of g4 in terms of iterated integrals,

g4 = ε2
{
[α3,α4]m(0) + [α3,α5]m(0) − [α1,α4]m(0) − [α2,α5]m(0)

+ 4iIm
[
Li2

(
e−iπ/3

)]}+ O
(
ε3
)

.

(3.205)

This expression satisfies manifestly the first entry condition. Moreover, it is clear its
symbol is odd, since the letters α4 and α5 are odd, while α1, α2 and α3 are even (see
Eqs. (3.45) and (3.46)). Applying the change of variables given by Eq. (3.167) to the
letters in Eq. (3.205) and doing some easy algebraic manipulations, it is straightfor-
ward to check that the symbol of g4 is in agreement with Eq. (3.197). Proving that
Eq. (3.205) is equivalent to Eq. (3.195) also beyond the symbol is left as an exercise
to the reader.

3.4.5 Solution in Terms of a Basis of Functions

The two approaches presented in Sects. 3.4.3 and 3.4.4 are extremely valuable, but
have both some limitations. The iterated integrals offer an elegant and unique way
of expressing the solution, well suited for analytic studies, whereas the GPLs may
be messy—especially if the contour of integration is chosen poorly—but can be
evaluated numerically with arbitrary accuracy. In this sense they complement each
other. However, it is of course preferable to have a representation which enjoys the
advantages of both iterated integrals and GPLs, but is exempt from their limitations.
In this section I suggest an approach to achieve this. The main idea is to construct a
basis of pure functions that have all the properties we would like to see manifestly
in the integrals or the scattering amplitudes, e.g. absence spurious dependence on
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Table 3.1 Basic functions needed to express any polylogarithmic function up to weight four

Transcendental weight Pure function types

1 log x

2 Li2(x)

3 Li3(x)

4 Li4(x), Li2,2(x, y)

the base point of the integrals and absence of spurious singularities and branch cuts.
The fact that it is a basis guarantees that no functional identities are left, so that the
expression is unique. Moreover, the basis is made of explicit functions, which can be
evaluated numerically directly. The price to pay for all this is that constructing such a
basis is not algorithmic, and definitely requires more effort than the other approaches
I presented. It is however an effort worth doing.

The goal therefore is to construct a basis that spans all the functions produced by a
given alphabet up to a certain transcendental weight. The key observation is that only
a small number of elementary functions is needed to express any polylogarithmic
function. They are shown in Table 3.1 up to weight four. Up to weight three only
classical polylogarithms are required, and the first genuine multiple polylogarithm
appears at weight four. What remains to be understood is which arguments to use for
these elementary functions so that their symbol belongs to the given alphabet and
that they form a basis. On top of these necessary requirements, the more demanding
physicists may also want the resulting functions to satisfy certain constraints, such
as the first-entry condition, and to be “simple,” e.g. to be well-defined in a certain
kinematic region. This is in general a complicated problem, and there is no completely
algorithmic approach. Nonetheless, a systematic strategy [75] combinedwith enough
will power has proven successful even in highly non-trivial cases, such as themassless
two-loop five-particle alphabet discussed in [96, 97].

In this section I show how to construct a basis of polylogarithmic functions for the
one-loop three-mass triangle integrals. For simplicity let us work with the variables
(m2

1, z, z̄) defined by Eq. (3.167), so that the square root rationalises. In particular,
we are interested in the kinematic region where m2

1 < 0, and z and z̄ are complex
conjugate. The alphabet can be chosen as

{βi }6i=1 =
{
m2

1, zz̄, (1 − z)(1 − z̄),
z

z̄
,
1 − z

1 − z̄
, z − z̄

}
, (3.206)

so that each letter has a well-defined transformation under complex conjugation: the
letters βi with i = 1, 2, 3, 6 are even, while β4 and β5 are odd. The Cutkosky rules
imply that, for Feynman integrals with massless propagators, the first entry in the
symbol can only be a Mandelstam invariant [78], in this case m2

i for i = 1, 2, 3.
Through the change of variables (3.167), this means that only the letters βi with
i = 1, 2, 3 are allowed as first entries in the symbol.
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Table 3.2 Number of integrable symbols in the three-mass triangle alphabet (3.206) with the first-
entry condition, divided into even|odd under the exchange z ↔ z̄. A symbol is said to be irreducible
if it cannot be expressed as product of lower-weight symbols

Transcendental weight 1 2 3 4

Total 3|0 6|1 12|4 24|13
Irreducible 3|0 0|1 2|1 2|4

The integrability conditions for the iterated integrals or the symbols given by
Eq. (3.61) inform us about howmany linearly independent functions are produced by
an alphabet at each transcendental weight. Solving them is a linear algebra problem
and can thus be done very efficiently using e.g. the method described in [69], or
the ad hoc Mathematica package SymBuild [68]. The results up to weight 4 are
presented in Table 3.2. It is possible to write down explicitly the integrable symbols,
which is very valuable in view of a bootstrap approach, but for now we are only
interested in their number.

At one loop we only need functions up to weight two, because of the conjecture
on the transcendental weight shown in Eq. (3.110). I will therefore discuss explicitly
the construction of the basis at weights one and two, and only make some comments
about the higher weights.

Weight-1 Functions

At weight one the number of integrable symbols is clearly equal to the number of
letters of the alphabet. Moreover, since the only possible elementary function is the
logarithm, the basis is simply given by the logarithms of the letters. Only three satisfy
the first-entry condition. We just need to make sure that they are well defined in the
kinematic region of interest. The most obvious choice is given by

w
(1)
1 = log

(−m2
1

)
, w

(1)
2 = log (zz̄) , w

(1)
3 = log ((1 − z)(1 − z̄)) . (3.207)

These functions are manifestly well defined in the regionm2
1 < 0, z ∈ C\{0, 1}, with

z̄ complex conjugate of z.
As I argued in Sect. 3.3.6, it is possible that weight-one functions which do not

satisfy the first-entry condition on their own are needed to express the terms beyond
the symbol at weight two. They can be chosen as

w
(1)
4 = log

(
z

z̄

)
, w

(1)
5 = log

(
1 − z

1 − z̄

)
, w

(1)
6 = log (z − z̄) . (3.208)

Some extra work is required to make these functions well defined. For w
(1)
4 , we

parametrise z using polar coordinates as z = |z|eiφ with φ ∈ [0,π] for Im(z) > 0,
and as z = |z|e−iφ with φ ∈ [0,π] for Im(z) < 0. Then,
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w
(1)
4 =

{
2iφ , if Im(z) > 0 ,

−2iφ , if Im(z) < 0 .
(3.209)

The function w
(1)
4 is thus well defined in both the upper and the lower half of the

complex plane, but has a branch cut along the negative real axis. Similarly forw(1)
5 we

parametrise z as z = 1 + reiφ for Im(z) > 0, and as z = 1 + re−iφ for Im(z) < 0.
In both cases φ ∈ [0,π] and r > 0. Then,

w
(1)
5 =

{
2iφ , if Im(z) > 0 ,

−2iφ , if Im(z) < 0 ,
(3.210)

so that w
(1)
5 has a branch cut along the real axis for Re(z) < 1. Finally, for w

(1)
6 we

have that

w
(1)
6 =

{
i π
2 + log (2|Im(z)|) , if Im(z) > 0 ,

−i π
2 + log (2|Im(z)|) , if Im(z) < 0 ,

(3.211)

and there is a branch cut along the entire real axis.

Weight-2 Functions

At weight two there are seven iterated integrals which satisfy the integrability and
the first-entry conditions. Six of them are even under complex conjugation, one is
odd. Clearly we can construct six even weight-2 functions by multiplying together
the three even weight-1 functions shown in Eq. (3.207). In principle we could also
multiply together two odd weight-1 functions, but there is none which satisfies the
first-entry condition. The resulting functions are by construction linearly indepen-
dent, and therefore span the entire even part of the weight-2 function space. We
call the functions which can be expressed as products of lower-weight functions
reducible. The shuffle product (3.54) implies that the reducible weight-2 iterated
integrals or symbols are symmetric under the exchange of the entries,

a × b = a ⊗ b + b ⊗ a . (3.212)

Given a generic weight-2 iterated integral it therefore possible to separate the
reducible and the irreducible parts by simply symmetrising and anti-symmetrising
the entries. This allows one to identify the genuine weight-2 part of the expression
by projecting away the products of logarithms. This operation can be generalised to
higher weight through the operator [98–100]

ρw (a1 ⊗ · · · ⊗ aw) = ρw−1 (a1 ⊗ · · · ⊗ aw−1) ⊗ aw − ρw−1 (a2 ⊗ · · · ⊗ aw) ⊗ a1 ,

(3.213)
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for w ≥ 2, with the recursion starting from ρ1 = 1. This operator annihilates all
shuffle products,

ρw1+w2

(
(a1 ⊗ · · · ⊗ aw1) ��(b1 ⊗ · · · ⊗ bw2)

)
= 0 , (3.214)

and can therefore be used to extract the irreducible part of a symbol. Other useful
projectors in this context can be found in [75].

The weight-2 basis lacks only one irreducible function. Since it is a genuine
weight-2 function, its expression must contain dilogarithms. We must then under-
stand which arguments are allowed for a dilogarithm in the alphabet given by
Eq. (3.206). We know that the symbol of a dilogarithm is

S [Li2(R)] = −(1 − R) ⊗ R , (3.215)

where R is a rational—in general algebraic—function of the kinematic variables.
The argument R is allowed only if both R and 1 − R factorise in terms of letters of
the alphabet {βi }6i=1, namely if there exist c, c′, ei , e′

i ∈ Q such that

R = c
6∏

i=1

βei
i , 1 − R = c′

6∏
i=1

β
e′
i

i . (3.216)

Requiring that the argument R is dimensionless imposes a constraint on the exponents
ei and e′

i , which depends on the dimensions of the letters. In our case only β1 = m2
1 is

dimensionful, and we can thus immediately deduce that e1 = e′
1 = 0.More formally,

following [75], we define the group of all the functions which factorise into letters
of the alphabet as

R =
{
c

6∏
i=1

βei
i |ei , c ∈ Q

}
. (3.217)

The allowed arguments of the dilogarithm are then given by the subset

R(1) = {R ∈ R|1 − R ∈ R} . (3.218)

The constraints in Eq. (3.216) cannot be solved in an algorithmic way, but it is
straightforward to verify whether they are satisfied for a given R. A typical strategy
consists in making a list of “reasonable” candidate arguments R of the form given
by Eq. (3.216) and in selecting those for which also 1 − R factorises in the alphabet.
This constraint can be checked numerically in a very efficient way, as it is equivalent
to asking whether the linear system of rational (or algebraic) equations

d log(1 − R) =
6∑

i=1

e′
i d logβi (3.219)
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admits a solution for the constant parameters e′
i . If enough arguments are found one

can move on to the next step, otherwise she needs to enlarge to set of candidates
for R and hope to be luckier. This procedure typically converges, because, for the
applications we are interested in, we do not expect to see functions whose arguments
are given by very high powers of the letters.

The alphabet of the three-mass triangle integrals is rather simple, and a quick
search returns

R(1) =
{
z, 1 − z,

1

z
,

1

1 − z
, 1 − 1

z
,

z

z − 1
, z̄, 1 − z̄,

1

z̄
,

1

1 − z̄
, 1 − 1

z̄
,

z̄

z̄ − 1

}
.

(3.220)

It looks like we have found many arguments, but it is too early to celebrate. The
reflection identities of the dilogarithm, given by Eqs. (3.84) and (3.85), imply that
Li2(R), Li2(1 − R) and Li2(1/R) are equivalent up to powers of logarithms. The
space of the allowed arguments R of the dilogarithm is therefore closed under the
action of the operators

σ2(R) = 1 − R , σ3(R) = 1

R
. (3.221)

This simple observation has important implications. The two operators in Eq. (3.221)
in fact generate a group of transformations {σ j }6j=1, with

σ1(R) = R , σ4(R) = 1

1 − R
, σ5(R) = 1 − 1

R
, σ6(R) = R

R − 1
, (3.222)

which is isomorphic to the permutation group S3. Sowhat we should be looking for is
notR(1), butR(1)/S3. Looking at Eq. (3.220) we can see that all the elements belong
to two equivalence classes. The choice of the representatives can make a significant
difference. Arguments in the same equivalence class may in fact produce branch cuts
in different locations of the kinematic space. The choice must thus be pondered with
special attention to the kinematic region under consideration. For the three-mass
triangle case, we have chosen a region where the integrals are single-valued. Any
branch cut will therefore cancel out, and we can choose the arguments which look
simpler,

R(1)/S3 = {z, z̄} . (3.223)

We now have at our disposal two dilogarithms: Li2(z) and Li2(z̄). We need only
one function, which must be odd under complex conjugation and must obey the
first-entry condition. The former constraint is simple. We just need to consider the
odd combination Li2(z) − Li2(z̄). In order to obtain a function which satisfies the
first-entry condition, we need to use products of lower-weight functions to “correct”
the branch-cut structure. We can do so by making an ansatz,
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w
(2)
ansatz =Li2(z) − Li2(z̄) + c1 log

(
z

z̄

)
log(zz̄) + c2 log

(
z

z̄

)
log ((1 − z)(1 − z̄))

+ c3 log

(
1 − z

1 − z̄

)
log(zz̄) + c4 log

(
1 − z

1 − z̄

)
log ((1 − z)(1 − z̄)) ,

(3.224)
where we included only the odd products of logarithms. One could also consider the
logarithm of z − z̄, but it is simple to argue that it cannot help this cause. In general
one should also include products involving transcendental constants, but we have
seen in Sect. 3.4.2 that the one-loop three-mass triangle integrals do not involve any
weight-1 constant in this kinematic region. Finally, we compute the symbol of the
ansatz and fix the free coefficients so that it satisfies the first-entry condition. There
is only one solution,

w
(2)
1 = Li2(z) − Li2(z̄) + 1

2
log(zz̄) log

(
1 − z

1 − z̄

)
, (3.225)

which—perhaps unsurprisingly—coincideswith theBloch–Wigner dilogarithmgiven
byEq. (3.83),w(2)

1 = D2(z). This completes the basis of functions required to express
the three-mass triangle integrals up to transcendental weight two.

It is worth stressing that in no point of this procedure the alphabet is required to
be rational. The absence of square roots of course helps a lot, but it is not necessary.
Armed with some more resolution, we can construct the genuine weight-2 function
w

(2)
1 also in terms of the original variables m2

i . The search for allowed arguments for
the dilogarithm is made slower by the presence of the square root, but it nonetheless
returns several possibilities. For instance, we can choose

τ2(m) = −2m2
2

m2
1 − m2

2 − m2
3 − √

λ(m)
, τ3(m) = −2m2

3

m2
1 − m2

2 − m2
3 − √

λ(m)
.

(3.226)

It is easy to check a posteriori that these functions belong to the set R(1) for the
alphabet (3.38). For τ2, for instance, we have

d log τ2 = 1

2
d log

(
α2

α3α4

)
, d log(1 − τ2) = 1

2
d log

(
α1α5

α3

)
. (3.227)

Repeating the procedure described above we arrive at7

w
(1)
2 = − Li2 (τ2) − Li2 (τ3) − π2

6

− 1

2
log

(
τ3

τ2

)
log

(
1 − τ3

1 − τ2

)
− 1

2
log (−τ2) log (−τ3) .

(3.228)

7 I thank Dmitry Chicherin for showing me this expression of the Bloch–Wigner dilogarithm.
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The equivalence between Eqs. (3.225) and (3.228) can be proven using the symbol.

Higher-Weight Functions

The construction discussed in the previous section is conceptually straightforward to
extend to higher weights. The functions in the setR(1) defined by Eq. (3.218) are in
fact allowed arguments of the classical polylogarithms at any transcendental weight,
since the symbol of Lin(R) involves only the entries R and 1 − R for any n. The
difference is that we can no longer mod out the action of the permutation group S3.
Polylogarithms with weight higher than two still satisfy identities which relate the
different arguments in Eq. (3.220), but they become increasingly complicated. For
instance, at weight three we have the identity

Li3(z) + Li3(1 − z) + Li3

(
1 − 1

z

)
= ζ(3) + 1

6
log3 z + π2

6
log z − 1

2
log2 z log(1 − z) ,

(3.229)

so that only two out of the arguments {z, 1 − z, 1 − 1/z} are inequivalent. In fact,
one can choose D3(z) and D3(1 − z), defined by Eq. (3.80), as the independent
irreducible functions which, together with products of lower-weight functions, span
the even part of three-mass triangle function space at weight three. The complete
function basis up to weight four is discussed in [15].

Starting from weight four, genuine multiple polylogarithms become necessary.
The search for allowed arguments for the multiple polylogarithms is the natural
generalisation of what we have seen for the classical polylogarithms, and I will not
go into any detail of it. I refer the interested reader to [75] for a thorough discussion.

I prefer to present here a different approach. The explicit polylogarithmic expres-
sions at low transcendental weights offer important advantages, from both the analyt-
ical and the numerical point of view. In particular, fast and reliable implementations
of the basic functions are immediately available. As we go to higher weights, how-
ever, the polylogarithmic expressions become increasingly bulkier and more difficult
to construct. Moreover, although the separate terms can be evaluated numerically
efficiently, their proliferation may lead to a significant slowdown and to a loss in
accuracy. For these reasons, the following hybrid approach suggested in [101] is
sometimes preferable.

Suppose we have an explicit representation in terms of polylogarithmic functions
for any weight-n iterated integral in a given alphabet {αi },

f �α(m) = [�α]m(0) (m) , (3.230)

where I introduced the short-hand notation �α = αi1 , . . . ,αin . Consider a generic
weight-(n + 2) (integrable) iterated integral

[�α,αa,αb
]
m(0) (m) =

∫
γ

d logαi1 . . . d logαin d logαad logαb , (3.231)
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where γ is a piece-wise smooth path from a fixed base point γ(0) = m(0) to a generic
end point γ(1) = m. Since we have an explicit polylogarithmic expression for the
first n integrations, only two remain to be performed,

[�α,αa,αb
]
m(0) (m) =

∫ 1

0
dt

∂ logWb (γ(t))

∂t

∫ t

0
dt ′

∂ logWa
(
γ(t ′)

)
∂t ′

f �α
(
γ(t ′)

)
.

(3.232)

If we exchange the order of integration over the variables t and t ′, the integration
over t can be immediately done in terms of logarithms,

[�α, αa, αb
]
m(0) (m) =

∫ 1

0
dt ′

∫ 1

t ′
dt

∂ logαb (γ(t))

∂t

∂ logαa
(
γ(t ′)

)
∂t ′ f �α

(
γ(t ′)

)

=
∫ 1

0
dt
[
logαb (m) − logαb (γ(t))

] ∂ logαa (γ(t))

∂t
f �α (γ(t)) .

(3.233)

Care must be taken that the logarithms in the integrand are evaluated on the right
Riemann sheet and that the appropriate analytic continuation is performed if the
contour γ leaves the region of analyticity where the base point m(0) lies. If we have
control over the weight-n functions, this simple trick gives us a one-fold integral
representation for the weight-(n + 2) iterated integrals. The latter might not look
particularly elegant, but it is often rather convenient for numerical evaluations. From
the computational point of view, the explicit polylogarithmic expressions at high
transcendental weight are often outperformed by the one-fold integral representa-
tions [96, 97, 101]. Therefore, having an explicit basis of functions up to weight two
allows us to evaluate numerically in an efficient way all the functions up to weight
four, which is the highest transcendental weight required in two-loop computations
in D = 4 − 2ε dimensions.

How to Express the Solution in the Function Basis

Once a basis of functions is available, one may wish to use it. In this section I discuss
a way to express the solution of the differential equations in the canonical form in
terms of a function basis.

The starting point is the observation that the solution in terms of Chen’s iterated
integrals can always be written down with no effort, even in the presence of multiple
square roots. A practical strategy therefore consists in first solving the canonical
differential equations in terms of iterated integrals, and then rewriting the latter in
terms of the function basis. The only extra step we need to take is to rewrite the
function basis in terms of iterated integrals. Once that is done, it becomes a mere
linear algebra problem to translate an expression written in terms of iterated integrals
to the function basis.

One way to rewrite a given function in terms of iterated integrals with letters
drawn from a given alphabet makes use, one more time, of the differential equation
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in the canonical form. In Sect. 3.3.5 we have seen that any polylogarithmic function
satisfies, together with all its derivatives, a system of differential equations in the
canonical form. So if we want to rewrite a function in terms of iterated integrals, we
just need to write down the associated differential equation and solve the latter in
terms of iterated integrals. Since we already know from the start the solution written
in at least one form, we can also evaluate it in some point and immediately get the
boundary values. Moreover, since the matrix in the differential equation depends on
the kinematics only through d log forms, it is very easy to change variables or letters
of the alphabet at the level of the differential equations.

Let me show the explicit example of the Bloch–Wigner dilogarithm w
(2)
2 given

by Eq. (3.225). Differentiating it all the way down to weight zero produces a vector
of linearly independent functions,

�h =
(
ε2w(2)

2 , εw(1)
2 , εw(1)

3 , 1
)

, (3.234)

which satisfies a differential equation in the canonical form,

d �h = ε d B̃ · �h . (3.235)

The functionwe started from,w(2)
2 , is given by Eq. (3.225) in terms of the z-variables.

One may wish to write it in terms of iterated integrals in the alphabet of the physical
variables m2

i , given by Eq. (3.38). We can then change variables through Eq. (3.168)
in the d log-forms contained in the matrix d B̃, obtaining

B̃ =

⎛
⎜⎜⎜⎜⎜⎝

0 − 1
2 logα5

1
2 logα4 + 1

2 logα5 0
0 0 0 logα2 − logα1

0 0 0 logα3 − logα1

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

. (3.236)

Next, we evaluate the functions �h at the base point m(0), given in terms of the z-
variables by Eq. (3.177),

�h(m(0), ε) = (
ε22iIm

[
Li2

(
e−iπ/3)] , 0, 0, 1)T . (3.237)

Finally, we solve the differential equation (3.235) in terms of iterated integrals as
discussed in Sect. 3.4.4. This waywe obtain the expression ofw(2)

1 in terms of iterated
integrals in the alphabet (3.38),

w
(2)
1 = 1

2

(
[α3,α4] + [α3,α5] − [α1,α4] − [α2,α5] + 4iIm

[
Li2

(
e−iπ/3

)])
,

(3.238)

where the subscriptm(0) in the iterated integrals is omitted to simplify the expression.
As a bonus, we also obtain the expressions for the weight-1 functions that appear in
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the differential of w
(2)
1 ,

w
(1)
2 = [α2]m(0) − [α1]m(0) , w

(1)
3 = [α3]m(0) − [α1]m(0) , (3.239)

which are however trivial and can be written down without too much thinking.
By comparing Eq. (3.238) to Eq. (3.205), we can immediately rewrite the triangle

pure integral g4 as

g4 = 2ε2w(2)
1 + O

(
ε3
)

. (3.240)

The simplification in the expression of g4 from the GPLs of Eqs. (3.195)–(3.240) is
dramatic. The latter is much more compact, and it is manifestly single valued in the
punctured complex plane C\{0, 1} and anti-symmetric under the exchange z ↔ z̄.
Moreover, the awful spurious dependence on the base point we see in Eq. (3.195) is
completely absent in Eq. (3.240).

3.5 Asymptotic Solution of the Differential Equations

The differential equations in the canonical form (3.158) allow us to determine the
asymptotic behaviour of the solution close to any regular singular point. I first present
the general procedure, and then apply it to a soft limit of the one-loop three-mass
triangle integrals. A complete discussion of this technique can be found e.g. in [102].

3.5.1 General Procedure

Let us consider a generic singular point x = 0, for some kinematic variable x . In order
to simplify the notation, I denote cumulatively by y the set of variableswhich are fixed
in the limit. Themulti-variable generalisation can be recovered straightforwardly. By
definition, the canonical basis integrals �g satisfy a system of differential equations
of the form

⎧⎪⎪⎨
⎪⎪⎩

∂

∂x
�g(x, y, ε) = εAx (x, y)�g(x, y, ε) ,

∂

∂y
�g(x, y, ε) = εAy(x, y)�g(x, y, ε) .

(3.241)

As discussed in Sect. 3.2, this system is fuchsian. This implies that x = 0 is a regular
singular point for the matrix Ax , namely that

Ax (x, y) = A0

x
+
∑
k≥0

xk Ak+1(y) , (3.242)
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where A0 is a matrix of rational numbers. Thematrix Ay , on the other hand, is regular
at x = 0.

The first step consists in performing a “gauge transformation” with a holomorphic
matrix T (x, y, ε),

�g(x, y, ε) = T (x, y, ε)�h(x, y, ε) , (3.243)

so that the new basis �h obeys a simplified differential equation with respect to x ,

∂

∂x
�h(x, y, ε) = ε

A0

x
�h(x, y, ε) . (3.244)

For this to hold, T (x, y, ε) must satisfy the differential equation

T−1

(
εAxT − ∂T

∂x

)
= ε

A0

x
. (3.245)

We can solve the latter for T (x, y, ε) as a series expansion around x = 0,

T (x, y, ε) =
∑
k≥0

xkTk(y, ε) . (3.246)

Substituting this formula into Eq. (3.245) and expanding both sides around x = 0
produces an equation at each order in x . The first, at order 1/x , implies that

[A0, T0] = 0 . (3.247)

The simplest choice is given by

T0(y, ε) = 1 . (3.248)

This means that the transformation matrix becomes the identity at x = 0. The higher
orders in x give a system of contiguous relations,

εAk(y) + εA0Tk(y, ε) − εTk(y, ε)A0 − kTk(y, ε) + ε

k−1∑
j=1

Ak− j (y)Tj (y, ε) = 0 , ∀k ≥ 1 .

(3.249)

These equations imply in particular that Tk(y, ε) = O(ε). Since we are interested
in the asymptotic solution as a Laurent expansion around ε = 0, it is convenient to
further series expand Tk(y, ε) in ε,

Tk(y, ε) =
∑
m≥1

εm Tk,m(y) . (3.250)
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The contiguous relations (3.249) then take the form

Tk,1(y) = 1

k
Ak(y) ,

Tk,m(y) = 1

k

⎡
⎣A0Tk,m−1(y) − Tk,m−1(y)A0 +

k−1∑
j=1

Ak− j (y)Tj,m−1(y)

⎤
⎦ , ∀m > 1 ,

(3.251)

which can be solved order by order in x and ε, giving an explicit expression for T as
a double series,

T (x, y, ε) = 1 +
∑
k≥1

∑
m≥1

xkεmTk,m(y) . (3.252)

After the gauge transformation, the system of differential equations for �h takes the
form ⎧⎪⎪⎨

⎪⎪⎩

∂

∂x
�h(x, y, ε) = ε

A0

x
�h(x, y, ε)

∂

∂y
�h(x, y, ε) = B(x, y, ε)�h(x, y, ε)

, (3.253)

where

B(x, y, ε) = T−1

(
εAyT − ∂T

∂y

)
. (3.254)

Our goal is to solve this system of differential equations using a boundary point in
the limit, namely at x = 0. We can achieve this by integrating the system along the
piecewise path

(x = 0, y = y0) −→ (x = 0, y) −→ (x, y) , (3.255)

for some values y0 of the other kinematic variables. In other words, we restore the
dependence first on y and then on x . Since

B(x = 0, y, ε) = εAy(0, y) , (3.256)

the solution is

�h(x, y, ε) = x εA0 P exp

[
ε

∫ y

y0

Ay(0, y
′)dy′

]
�h0(ε) . (3.257)

Finally, the solution of the initial system of differential equations (3.241) is given by

�g(x, y, ε) = T (x, y, ε) x εA0 P exp

[
ε

∫
γ

d Ã(x = 0, y)

]
�h0(ε) , (3.258)



3.5 Asymptotic Solution of the Differential Equations 101

where I have also made the straightforward generalisation to the multi-variable case.
Note that d Ã has to be evaluated at x = 0 after the differentiation, as can be under-
stood from Eq. (3.256). This subtle point is very important, because differentiation
and limit do not commute in general. In Eq. (3.258), γ is a path starting from a base-
point in the limit, (x = 0, y = y0), and ending in the generic point (x, y), while �h0(ε)
are the boundary constants �h0(ε) = �h(y = y0, ε) for the equation

∂

∂y
�h(y, ε) = εAy(0, y)�h(y, ε) . (3.259)

The boundary constants �h0(ε) can be computed by integrating the canonical dif-
ferential equations (3.158) from a base point in the bulk of the kinematic space,
where the values of the integrals are known, to the point in the limit (x = 0, y = y0).
This can be done efficiently in terms of GPLs (if the alphabet is rationalised along
the integration contour). Of course the integrals develop logarithmic singularities at
the end-point, which is defined in a tangential sense (see Sect. 3.3.1). In particu-
lar, these logarithmic divergences as x → 0 conspire together to produce the matrix
exponential x εA0 in Eq. (3.258). It is therefore important that the regularisation pro-
cedure at the tangential end-point is compatible with the asymptotic solution given
by Eq. (3.258). In other words, we need to make sure that, when integrating from the
bulk to the end-point in the limit x → 0, we discard the same logarithmic divergences
which are produced by the matrix exponential x εA0 in Eq. (3.258). I will stress this
again in the explicit example below.

This procedure allowsus to solve thedifferential equations in canonical form (3.158)
asymptotically starting from any regular singular point, say x = 0. The result con-
tains divergent logarithms stemming from the matrix exponential x εA0 . The path-
ordered exponential in Eq. (3.258), on the other hand, produces iterated integrals
which depend on the other kinematic variables. The gauge transformation matrix
T (x, y, ε) is instead responsible for the power corrections in x .

3.5.2 Soft Limit of the One-Loop Three-Mass Triangle
Integrals

Let us now make an explicit example: the soft limit pμ
2 → 0 of the one-loop three-

mass triangle integrals. At the level of the kinematic variables m this implies that
both m2

2 and m2
3 go to zero, because of momentum conservation. The first step is to

determine the boundary constants �h0(ε) in Eq. (3.258). As base point in the limit we
choose

msoft := (
m2

1 = −1 ,m2
2 = 0 ,m2

3 = −1
)

. (3.260)
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In order to reach it from the base point in the bulk m(0) (3.175) we only need to vary
m2

2. A convenient path is given by

m = γ(t) =
(

−1 ,
(1 − t)2

t
,−1

)
, (3.261)

with t varying along the complex ray from t = eiπ/3 to t = 0. This path in fact
rationalises the square root,

√
λ(γ(t)) = (−1 + t)(1 + t)

t
. (3.262)

The real parts ofm2
2 and ofλ(m) are always negative along the path, so that no analytic

continuation is needed. Moreover, the alphabet pulled back with this path becomes
that of the HPLs. The result of the integration contains logarithmic divergences,
which we denote as L := limt→1 H(1; t). For instance,

g2(msoft, ε) = −1 + ε (−2L + iπ) + O
(
ε2
)

. (3.263)

Here comes a subtle point.We know that the result of the regularisation depends on an
arbitrary choice.Naïvely, onewould regulariseEq. (3.263) by formally setting L = 0.
Another possibility consists in formally setting log(−m2

2) to 0 in the limit. Since

lim
t→1

log
(−m2

2 − i0
) ∣∣

m=γ(t)= −2L + iπ , (3.264)

this choice amounts to setting L = iπ/2. Although perhaps counterintuitive, the sec-
ond choice is preferable. In the first regularisation scheme we are in fact setting to
zero a logarithmic divergence which depends strongly on the specific path given by
Eq. (3.261). In the second, instead, we are setting to zero a quantity which does not
depend on the specific path, namely log(−m2

2). This is the physical quantity that is
vanishing in the soft limit pμ

2 → 0, and I therefore refer to this kind of regularisa-
tion as “physical.” The values of the integrals at msoft in the physical regularisation
scheme,

Reg [gi (msoft, ε)] = −1 + ε2
π2

12
+ ε3

7

3
ζ(3) + O

(
ε4
)

, ∀i = 1, 2, 3 ,

Reg [gi (msoft, ε)] = O
(
ε4
)

,

(3.265)

can be used as the boundary constants to write down the asymptotic solution in the
soft limit.

In order to parameterise the soft limit, let us make the change of variables

m2
2 = m2

1x
2 , m2

3 = m2
1 (1 − xy)

(
1 − x

y

)
. (3.266)
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The new variables x and y are related to z and z̄ defined by Eq. (3.167) through
z = xy and z̄ = x/y, and they also rationalise the square root,

√
λ(m) = m2

1x
y2 − 1

y
. (3.267)

The soft limit is then represented by the regular singular point x = 0. The logarithmic
divergences are produced by the matrix exponential

x εA0 = diag
(
1, x−2ε, 1, 1

)
. (3.268)

It is crucial to check that they are compatible with the regularisation used in the
computation of the boundary constants atmsoft. There, we have regularised by setting
log(−m2

2) to 0. The latter is related to log x by

log
(−m2

2

) = 2 log(x) + log
(−m2

1

)
. (3.269)

Since at msoft we have m2
1 = −1, setting log(−m2

2) = 0 there is equivalent to setting
log(x) = 0 in the new variables. No correction in the regularisation scheme is thus
needed. It would have been necessary if instead we had chosen the “unphysical”
regularisation discussed above. The gauge transformation matrix T can be computed
at any order in x and ε through the recursive relations given by Eqs. (3.251). Up to
the first order in ε and in x , for instance, it is given by

T =

⎛
⎜⎜⎜⎝

1 0 0 0
0 1 0 0

0 0 1 + εx y2+1
y 0

εx y2−1
y −εx y2−1

y 0 1 + εx y2+1
y

⎞
⎟⎟⎟⎠+ o (εx) . (3.270)

The last piece of the asymptotic solution is the path ordered exponential,

�g ′ = P exp

(
ε

∫
γ

d Ã(x = 0)

)
Reg

[�g(msoft, ε)
]

, (3.271)

with the boundary constants given by Eqs. (3.265). I stress one more time that d Ã
has to be evaluated at x = 0 after the differentiation. The function space is particu-
larly simple. Up to order ε3—the order at which we have determined the boundary
constants—we only need iterated integrals of the form

[
m2

1, . . . ,m
2
1︸ ︷︷ ︸

k times

]
msoft

(m) = 1

k! log
k
(−m2

1

)
. (3.272)

The result is given by
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�g ′ =
{

−1 + ε log
(−m2

1

)+ ε2
(

π2

12 − 1
2 log

2
(−m2

1

))+ O
(
ε3
)

, i = 1, 2, 3 ,

0 , i = 4 .

(3.273)

Substituting Eqs. (3.268), (3.270) and (3.273) into Eq. (3.258) finally gives the
asymptotic expansion of the canonical basis integrals in the soft limit. The first inte-
gral, g1, is a bubble in the m2

1 channel, and is thus unaffected by the limit pμ
2 → 0.

The second integral, a bubble in the m2
2 channel, is given in the limit by

g2 = −1 + ε

(
log

(
−m2

1

)
+ 2 log x

)
− ε2

[
1

2

(
log

(
−m2

1

)
+ 2 log x

)2
− π2

12

]
+ O

(
ε3
)

.

(3.274)

No rational function appears. It is easy to check that this expression matches
the closed-form expression in Eq. (3.179) after the change of variables given by
Eq. (3.266). The bubble in m2

3, g3, is more interesting, as it features also rational
functions

g3 = − 1 + ε

(
log

(−m2
1

)− x
y2 + 1

y
+ O

(
x2
))

− ε2
(
1

2
log2

(−m2
1

)− x
y2 + 1

y
log

(−m2
1

)− π2

12
+ O

(
x2
))+ O

(
ε3
)

.

(3.275)
Also this expansion is easy to check against the closed-form expression (3.179). In
the limit x → 0 it matches the bubble in m2

1, as expected since m2
3 → m2

1. Finally,
the triangle integral g4 vanishes in the limit,

g4 = ε2
[
−2x

y2 − 1

y
(−1 + log x) + O

(
x2
)]+ O

(
ε3
)

. (3.276)

It is a nice exercise to check that this expansion is equal to that of the known solution
written in terms of the Bloch–Wigner function, given by Eq. (3.240). Since the square
root

√
λ vanishes too ∼ x in the soft limit, the infinitesimal power corrections in g4

become relevant for the triangle integral I1,1,1, related to g4 through Eq. (3.185). We
find that it is divergent in the soft limit,

I1,1,1 =
[
− 2

m2
1

(−1 + log x) + O (x)

]
+ O (ε) . (3.277)

This divergence corresponds to an infrared pole 1/ε that would show up in the two-
mass triangle integral if we used dimensional regularisation to regularise the infrared
divergences as well.

In conclusion, it is worth stressing that this procedure can be applied to any basis
of functions which satisfies a system of differential equations in the canonical form.
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They do not need to be Feynman integrals. This technique therefore offers a useful
approach to the series expansion of polylogarithmic functions in general.

3.6 How to Find a Canonical Basis

Throughout this chapter we have seen that, whenever the differential equations for a
basis of Feynman integrals are cast into the canonical form, the problem of solving
them can essentially be considered as solved. Finding a canonical basis is therefore
crucial. Several different approaches has been proposed. One may for instance sim-
plify systematically the differential equations until the canonical form is reached
[14, 103–106]. A recent method [107], based on previous work by [108], allows one
to construct a canonical basis starting from a single pure integral. This procedure is
completely algorithmic and is implemented in the public Mathematica package
INITIAL [107]. Along with these systematic techniques, the literature is scattered
with heuristic rules,which often prove useful to find particularly simple pure integrals
(e.g. see [14, 109]). As I am writing this section, yet another approach has stemmed
from intersection theory [110], proof that this is a very active area of research.

I present here the approach which has had the greatest impact in my work, and to
which I have given a small contribution [111]. To understand it, let us start with the
simplest pure function,

x ε = 1 + ε log x + 1

2
ε2 log2 x + O(ε3) . (3.278)

It is sufficient to introduce any non-constant algebraic factor n(x) to spoil this prop-
erty. The function n(x)x ε has transcendental weight 0, but its differential does not
have uniform transcendental weight and the function is therefore not pure. So, given
a loop integral which evaluates to n(x)x ε—e.g. a bubble integral—we want to nor-
malise it so as to remove the overall algebraic factor n(x). The difficulty lies in the
fact that we want to identify the latter prior to performing the integration. Moreover,
a Feynman integral may have more than one algebraic factor. Following the conjec-
ture on the transcendental weight discussed in Sect. 3.3.4, a generic �-loop integral
in D = 4 − 2ε dimensions has the form

I (�)(x, ε) = 1

ε2�

∞∑
p=0

εp
∑
k

nk(x)
p∑

w=0

h(w)
p,k (x) , (3.279)

where h(w)
p,k (x) is a weight-w pure function of the kinematic variables x , and nk(x)

is an algebraic function. Finally, the uniform transcendentality can be spoiled by
ε-dependent factors as well. All things considered, the situation looks very intricate.
Two key ideas allow us to disentangle it: the notion of leading singularities, and the
conjecture that the so-called “d log”-integrands having constant leading singularities
integrate to pure functions.
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3.6.1 Leading Singularities

The loop integrand contains all the information about the rational factors nk in
Eq. (3.279). If the integrand has only simple poles in the integration variables, the
rational factors can be extracted systematically by taking (multi-variate) residues.
The “maximal” residues, namely those which localise all the integrations, are called
leading singularities [112–115].8 They give the rational factors arising upon integra-
tion. The relationship can be understood qualitatively as follows. The computation of
the leading singularities is a generalisation of the unitarity cuts. The latter are related
to the discontinuities of the integral, e.g. through the optical theorem. Computing a
discontinuity of Eq. (3.279) isolates the rational factors nk , because only the tran-
scendental functions h(w)

p,k (x) are multi valued. This establishes a link between the
leading singularities and the rational factors arising upon integration.

Let us consider for instance the bubble integral in D = 2 dimensions in the p1-
channel,

I (D=2)
1,1,0 =

∫
d2k

iπ

1

k2(k + p1)2
=: 1

iπ

∫
I(D=2)
1,1,0 . (3.280)

The careful readers might notice that I have set D = 2, although the integral is diver-
gent. They are right to be worried, but in many cases it turns out that this is actually
fine. After all, we are not going to integrate on the entire loop-momentum space, but
only take residues. I will comment on the D-dimensional subtleties below. In order
to compute the leading singularities, it is convenient to introduce a parameterisation
rather than to work with the components of the loop momenta. In two dimensions
there are two independent degrees of freedom. We parametrise them as follows. We
introduce a basis made of two auxiliary light-like vectors n1 and n2, n2i = 0, so that

p1 = n1 + n2 . (3.281)

Clearly, p21 = 2n1 · n2. We expand the loop momentum k in the basis,

k = a1n1 + a2n2 . (3.282)

The two-dimensional integrand then takes the form

I(D=2)
1,1,0 = 1

2m2
1

da1 ∧ da2
a1a2(1 + a1)(1 + a2)

. (3.283)

Hereafter the wedge corresponds to the standard definition of a differential form,
giving rise to an oriented volume upon integration (e.g. da1 ∧ da2 = −da2 ∧ da1).

8 Even in the presence of higher poles in the integration variables, the algebraic factors arising upon
integration are often called, by analogy, leading singularities, although the maximal residues of the
integrand are in this case not defined.
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Note that in this context we only vary the integration variables, and consider the
kinematic variables as fixed. The integrand of the two-dimensional bubble has four
multi-variate simple poles. The residues are easy to compute. The resulting leading
singularities are

LS
(
I (D=2)
1,1,0

)
= ± 1

2m2
1

. (3.284)

The two-dimensional bubble integral normalised by a factor of m2
1 has thus constant

leading singularities. The explicit computation in D = 2 − 2ε shows that this integral
is in fact pure,

εm2
1 I

(D=2−2ε)
1,1,0 = −2 + 2ε log

(−m2
1

)− ε2
(
log2

(−m2
1

)− π2

6

)
+ O(ε3) ,

(3.285)

where I have also inserted a factor of ε in order to make it weight zero. Using
the dimension shifting relations [116, 117], implemented e.g. in LiteRed [24], it is
possible to rewrite the two-dimensional bubble in termsof four-dimensional integrals,

I (D=2−2ε)
1,1,0 = I (D=4−2ε)

2,1,0 + I (D=4−2ε)
1,2,0 = 2I (D=4−2ε)

2,1,0 , (3.286)

where, in the last equality, I have used the graph symmetries. This simple calculation
motivates the choice of the three single-scale integrals gi , i = 1, 2, 3, for the one-loop
three-mass triangle family given by Eq. (3.28).

At this point it is natural to ask what is wrong about the bubble integrals directly in
D = 4 − 2ε dimensions. To see it, we need to parametrise four degrees of freedom.
We adopt the spinor-helicity parametrisation9 for the auxiliary light-like momenta,
ni = λi λ̃i . The spinors can be used to construct two additional complex vectors,
λ1λ̃2 and λ2λ̃1. Together with n1 and n2, they form a basis. The loop momentum is
decomposed as

k = a1n1 + a2n2 + a3λ1λ̃2 + a4λ2λ̃1 . (3.287)

Note that the two complex momenta are not helicity-free, and thus a3 and a4 carry
helicity as well. It is possible to normalise the momenta so as to work with scalar
parameters only, but it is not necessary. The integrand of the four-dimensional bubble
in the p1-channel is then given by

I(D=4)
1,1,0 = 1

4

da1 ∧ da2 ∧ da3 ∧ da4
(a1a2 − a3a4)(1 + a1 + a2 + a1a2 − a3a4)

. (3.288)

9 See e.g. [118–120] for an introduction to the spinor helicity formalism.
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Since there are only two poles, one may naïvely think it is impossible to localise all
the four integrations. Taking residues, however, introduces jacobian factors which
have poles on their own. For instance, taking the following two residues sequentially

∮
a3=− a2(1+a2)

a4

∮
a1= a3a4

a2

I(D=4)
1,1,0 = 1

4

da2 ∧ da4
a4

, (3.289)

introduces a pole at a4 = 0 which was not present in the original integrand. We talk
in such a case of composite leading singularities. Taking also the residues at a4 = 0
brings to light the problem,

∮
a4=0

∮
a3=− a2(1+a2)

a4

∮
a1= a3a4

a2

I(D=4)
1,1,0 = 1

4
da2 . (3.290)

This differential form has a double pole at infinity. The latter can be exposed by the
change of variables a2 = 1/y,

da2 = −dy

y2
, (3.291)

which has a double pole at y = 0, corresponding to a2 → ∞. Although higher poles
have well-defined residues too—in this case it would be zero—this appears to be an
obstruction for the uniform transcendentality of the integrated function. The four-
dimensional bubble, in fact, does not have uniform transcendentality. This can be
fixed only with an ε-dependent prefactor, given by Eqs. (3.25) and (3.29), which
translates the four-dimensional bubble into the two-dimensional one. The conjecture
presented in the next section sheds some light on the disruptive role of the double
poles.

Before we move on to that, let us conclude the computation of the leading singu-
larities of the one-loop three-mass triangle basis integrals. In the four-dimensional
parameterisation used for the bubble, the triangle integrand becomes

I1,1,1 ∝ da1 ∧ da2 ∧ da3 ∧ da4
(a1a2 − a3a4)(1 + a2 + a1 + a1a2 − a3a4)

× 1(
m2

1(a2 + a1a2 − a3a4) − m2
2(a2 + a3) + m2

3(1 + a1 + a4)
) ,

(3.292)

where I omit for simplicity the irrelevant overall constant. There are three poles to
localise four integration variables. The fourth pole comes from a jacobian, as we have
seen in the case of the four-dimensional bubble. This is therefore a composite leading
singularity. This computation is significantly more involved than the previous ones.
TheMathematica packagesMultivariateResidues [121] andDlogBasis [122]
come to our help. The former uses algebraic geometry methods to compute multi-
variate residues in general, while the latter is specifically meant for a systematic
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analysis of leading singularities. The readers who remember Eq. (3.28) will not be
surprised to see that the leading singularity of the triangle integral is given by

LS
(
I1,1,1

) = 1√
λ(m)

, (3.293)

where λ is the Källen function (3.16). Once again, we see that an integral whose
integrand has only simple poles and which is normalised so as to have constant
leading singularities evaluates to a pure function. We have gathered enough evidence
to motivate the conjecture presented in the next section.

3.6.2 d log Integrands

We have seen some evidence that two properties of the loop integrands are correlated
with the transcendental purity of the corresponding integrals: the absence of double
(or higher) poles in the integration variables, and the constant leading singularities.
These properties can be made beautifully manifest in the so called d log forms. Let
us consider an integrand I with n integration variables, ai with i = 1, . . . , n. We
consider the kinematic variables as fixed, and thus define the differential as

d =
n∑

i=1

dai
∂

∂ai
. (3.294)

An integrand admits a d log form if it can be expressed as

I =
∑

I=(i1,...,in)

cI d log ri1 ∧ · · · ∧ d log rin , (3.295)

where the ri are algebraic functions of the kinematic and of the integration variables,
while the cI are algebraic functions of the kinematic variables only. The d log forms
clearly behave as dx/x near any singularity x = 0, and thus have only simple poles.
The coefficients cI are the leading singularities. They can be computed—at least in
principle—by taking residues so as to localise all then integrations, e.g. by integrating
along the contour encircling the poles ri = 0.

It is important to stress the difference between the d log form of the loop inte-
grands (3.295) and thed log forms inChen’s iterated integrals discussed inSect. 3.3.1:
the former are differential forms in the loop integration variables, while the latter
are differential forms in the kinematic variables. A study of the intriguing relation
between the two has been initiated in [123].

It is instructive to spell out at least one example of d log form. Using the properties
of the wedge product it is rather easy to rewrite the integrand of the bubble in D = 2
dimensions given by Eq. (3.283) as
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m2
1 I

(D=2)
1,1,0 = 1

2
d log

(
a1

1 + a1

)
∧ d log

(
a2

1 + a2

)
. (3.296)

With some more algebraic manipulations, it is possible to express this d log form in
terms of the loop momentum,

m2
1 I

(D=2)
1,1,0 = 1

2
d log

(
k2

(k − k∗)2

)
∧ d log

(
(k + p1)2

(k − k∗)2

)
, (3.297)

where k∗ is one of the two solutions of the maximal cut,

{
(k∗)2 = 0 ,

(k∗ + p)2 = 0 ,
(3.298)

which in the parameterisation given by Eq. (3.282) are k∗ = −n1 and k∗ = −n2. An
analogous but lengthier d log form can also be worked out for the triangle integrand
in four dimensions, but not for the bubble, because of the double pole at infinity.

The conjecture underlying this method states that integrands which admit a d log
form with constant leading singularities integrate to pure functions [115, 124]. A
lot of evidence has been collected over the years in support of this statement, and
important steps towards a deeper understanding have been made in [123].

Apart from the mere theoretical interest, this observation has important implica-
tions for the search of pure integrals. The reason is that it is possible to construct
algorithmically all the d log formswith constant leading singularities associated with
a given integral family. The algorithm, first proposed in [125] and then refined in
[122], has also been implemented in the publicMathematica packageDlogBasis.
The systematic nature of this method and the particular simplicity of the resulting
pure integrals with respect to other techniques have made this approach extremely
successful. As we will see in the next chapter, it played a crucial role in the state-
of-the-art computation of all the Feynman integrals required for the massless five-
particle scattering amplitudes at two loops. Before moving on to that, however, it is
fair to mention also the limitations of this method.

First of all, the presence of double poles in the integrand does not imply that the
integral does not have a uniform transcendental weight in general. For example, the
two-dimensional bubble, shifted to D = 4 − 2ε dimensions, has a double propagator
and thus a clear double pole, as can be seen in Eq. (3.286). Nonetheless, it has uniform
transcendental weight. Clearly, the d log integrands do not cover the entire space
of integrands which evaluate to uniformly transcendental functions. The algorithm
proposed in [107] does not have this limitation, but it requires one pure integral
(which couples to all the integrals of the family) to start with, and the resulting
canonical bases typically have much more complicated expressions than the d log
ones. For this reason I see the two methods as complementary.

Another limitation is the integer-dimensional nature of the analysis of the leading
singularities presented in this section. We are typically interested in loop integrals in
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D = D0 − 2ε dimensions, for some integer D0, whereas we have mostly considered
the D0-dimensional part of the integrands only. While this is sufficient for many
highly non-trivial applications, it is in general not enough. It is in fact possible to
write down integrands which vanish identically in D0 dimensions, but yield a finite
result upon integration. The contribution of these “evanescent” terms are clearly
missed by the D0-dimensional analysis, and may sometimes be relevant. In [111],
my collaborators and I proposed a refined leading singularity analysis based on a
D-dimensional parameterisation, which allows us to control such evanescent terms
as well. I postpone the discussion of this to Sect. 4.2.1.

This topic concludes a long and hopefully not too tedious chapter, where I have
presented all the tools necessary to face an analytic multi-loop computation using
the method of the differential equations. Now I owe you, relentless reader who made
it to this point, a proof that it is really worthwhile to learn all of this. In the next
chapter I discuss the application of these techniques to the computation of several
five-particle integrals and scattering amplitudes at two-loop order.
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Chapter 4
Two-Loop Five-Particle Scattering
Amplitudes

In this chapter I present the first results for complete two-loop five-particle scattering
amplitudes. By “complete” I mean that the computation takes into account both the
planar and the non-planar Feynman diagrams. In case you are not familiar with
this distinction, bear with me until Sect. 4.3.1, where I define it properly. For now it
suffices to know that the non-planar contributions are substantiallymore complicated
than their planar counterparts, both in the reduction to basis integrals and in the
evaluation of the latter. Indeed, a lot is known about the scattering of five massless
particles at two-loop order in the planar limit. The planar integral family and all
the five-parton amplitudes in QCD1 have been computed analytically, in Refs. [1–3]
and [1, 4–8], respectively. Even a full-fledgedNNLO theoretical prediction is already
available in the planar limit, for three-photon production [9–11]. There has even been
important progress towards the computation of the planar two-loop five-particle
integrals with one massive external leg [2, 12–14]. In this chapter I outline the
recent progress towards including the non-planar corrections in massless two-loop
five-particle scattering amplitudes.

I begin in Sect. 4.1 by discussing the kinematics of the scattering of five massless
particles. Then, I move on to the Feynman integrals in Sect. 4.2. There are two non-
planar integral families.Onewas computed previously inRef. [15] (see also [16–19]).
I took part in the computation of the last non-planar integral family, the so-called
“double-pentagon” [20, 21]. I first discuss a D-dimensional extension of the four-
dimensional leading-singularity technique introduced in Sect. 3.6.2. I show how we
use it to construct a basis of pure integrals for the double-pentagon family, and how
we compute the latter in terms of Chen’s iterated integrals through the canonical
differential equations. Finally, I discuss the resulting function space and highlight
certain non-trivial analytic properties.

1 The available results for the two-loop five-parton amplitudes in the planar limit are valid in
the Euclidean region only. Further effort is required to analytically continue them to the physical
scattering region, in view of phenomenological applications.
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In Sect. 4.3 I present in parallel the computation of the two-loop five-particle
amplitudes inN = 4 super Yang-Mills theory andN = 8 supergravity. Historically,
we first computed them at symbol level [20, 22–24], starting from the integrands
of Ref. [25]. These were the very first analytic results for complete two-loop five-
particle amplitudes. Later, we lifted the results to function level [26]. Here I present
directly the final result. First I show that a lot of precious information can be extracted
from the integrand prior to integration. This allows us to write down rather restrictive
ansätze for the amplitudes, in terms of leading singularities and pure functions. Using
the results for the integrals discussed in Sect. 4.2 we can then fix the coefficients of
the ansätze, and in this way obtain explicit analytic expressions of the amplitudes
which have manifestly uniform transcendental weight. I discuss how their infrared
singularities factorise, and extract finite hard functions. To further validate our results,
I present several other checks, including the behaviour in collinear and soft limits.
Finally, I discuss throughly the asymptotic expansion of the hard functions in the
multi-Regge limit.

After warming up with the maximally supersymmetric theories, we raise the
stake and tackle Yang-Mills theory. Section 4.5 is devoted to the computation of
the two-loop five-gluon all-plus helicity amplitude in pure Yang-Mills theory [27,
28]. Despite the substantial increase in complexity, I show that it is nonetheless
possible to make an educated guess for the form of the two-loop hard function. I
discuss the renormalisation of ultraviolet divergences and the factorisation of the
infrared ones, and define a finite hard function. The fact that the tree-level amplitude
vanishes and that the one-loop amplitude is finite and rational (at order ε0) allows us
to use four-dimensional unitarity and leading singularities to constrain the form of
the two-loop hard function. Then I move on to the actual computation. I show how to
rewrite the integrand from Ref. [29] in a form that is suitable for Integration-by-Parts
relation (IBP) reduction. After this is achieved, IBP reduction to pure basis integrals,
substitution of the latter with their analytic expressions in terms of Chen’s iterated
integrals, and subtraction of the singularities are performed using the finite field
method. Remarkable cancellations take place. The final formula fits in just two lines
and involves logarithms and dilogarithms only. The rational prefactors of the latter
are conformally invariant, which we proved to be related to the conformal invariance
of the one-loop all-plus amplitudes [30].

4.1 Kinematics

We study the scattering of five massless particles. The five light-like momenta pi are
subject to on-shell and momentum conservation conditions,

p2i = 0 ,

5∑

i=1

pi = 0 . (4.1)
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They give rise to five independent parity-even Lorentz invariants, which can be
chosen as the scalar products of adjacent momenta,

s = (s12 , s23 , s34 , s45 , s51) , (4.2)

with si j = 2 pi · p j . We take the external momenta pi to lie in four-dimensional
Minkowski space,while the loopmomenta live in D = 4 − 2ε dimensions to regulate
the infrared and ultraviolet divergences.

Starting from n = 5 particles, the kinematics depends also on parity-odd Lorentz
invariants. Since there are four independentmomenta, they can be contractedwith the
Levi-Civita pseudo-tensor. It is therefore possible to construct a parity-odd Lorentz
invariant,

tr5 := tr(γ5/p1/p2 /p3/p4) = 4iεμ1μ2μ3μ4 p
μ1
1 pμ2

2 pμ3
3 pμ4

4 . (4.3)

Space-time parity in fact acts by inverting all the spatial momentum components,

(
p0i , �pi
) −→ (p0i ,− �pi

)
, (4.4)

which induces a change of sign in tr5, while leaving the scalar products si j invariant.
Clearly it is not possible to build a parity-odd invariant if fewer than five parti-
cles scatter, which makes five-particle scattering particularly interesting. It is conve-
nient to introduce the usual spinor-helicity parameterisation of the external light-like
momenta, pi = λi λ̃i . In terms of spinor brackets, the parity-odd invariant can be
expressed as

tr5 = [12]〈23〉[34]〈41〉 − 〈12〉[23]〈34〉[41] . (4.5)

The square of tr5 is a scalar quantity, and can thus be expressed in terms of the scalar
invariants si j . In order to do so, we introduce the so-calledGram determinants. Given
a set of momenta {qi }ni=1, the Gram matrix G(q1, . . . , qn) is defined by

[G(q1, . . . , qn)]i j = 2qi · q j , ∀i, j = 1, . . . , n , (4.6)

where the factor of 2 is conventional. The Gram determinant of a set of momenta is
the determinant of the corresponding Gram matrix. The Gram determinant vanishes
if the momenta qi are linearly dependent and, as a consequence, it is invariant under
the shift of any qi by any of the other momenta. In particular, if the momenta qi
are four-dimensional, the Gram determinant vanishes for any set of n momenta with
n > 4. This has important implications for the evanescent integrands discussed in
Sect. 3.6.2. I will address this in Sect. 4.2.1. Using the properties of the Levi-Civita
symbol, it is possible to show that

tr25 = �, (4.7)
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where � is the determinant of the Gram matrix constructed with four independent
external momenta,

� := detG (p1, p2, p3, p4) , (4.8)

which is a degree-four polynomial in the si j ,

� = (s12s23 + s23s34 − s34s45 + s45s51 − s51s12)
2 − 4s12s23s34(s23 − s45 − s51) .

(4.9)

The parity-odd invariant tr5 thus introduces an algebraic dependence on the kine-
matics through Eq. (4.7). We choose the positive branch of the square root,

tr5 = √
� . (4.10)

The cautious readers might feel quite uneasy looking at this equation: the left-hand
side has odd parity, whereas the right-hand side is a function of parity-even invariants.
Theymight fear that this choicewashes away the information about parity. In practice,
it is sufficient to recall that parity acts on helicity-free functions by flipping the sign
of

√
�, which plays the role of parity label.

In Sect. 3.4.1 we have seen that, since the Feynman integrals are multi-valued
functions, it is crucial to specify the domain of the variables, namely the kinematic
region. The double-pentagon integrals discussed in Sect. 4.2 do not have a Euclidean
region. Moreover, we are ultimately interested in phenomenological applications.
For these reasons, we work in the 2 → 3 physical scattering kinematics. Since any
pair of momenta (pi , p j ) can be incoming, the physical region in Minkowski space
consists of ten distinct regions. They are referred to as channels, and are labelled by
their initial-state si j invariant. The different channels are related by permutations of
the external momenta. Without any loss of generality, we can take the particles with
momenta p1 and p2 to be incoming. In other words, we work in the s12 channel. The
kinematic variables in the s12 channel are delimited by requiring that all s-channel
invariants are positive,

s12 > 0 , s34 > 0 , s35 > 0 , s45 > 0 , (4.11)

all t-channel invariants are negative,

s1 j < 0 , s2 j < 0 , ∀ j = 3, 4, 5 , (4.12)

and by the negativity of the Gram determinant,

� ≤ 0 , (4.13)

which follows from the real-valuedness of all momenta. This constraint might sound
unusual, and can be understood as follows. TheGrammatrix of the external momenta
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can be written as

G(p1, p2, p3, p4) = 2MT (p1, p2, p3, p4)gM(p1, p2, p3, p4) , (4.14)

where M(p1, p2, p3, p4) is a 4 × 4 matrix whose columns are the four-dimensional
momenta {pi }4i=1, and g is the metric tensor. Since detg = −1,

� = −24det2 [M(p1, p2, p3, p4)] . (4.15)

It follows that, if all the external momenta pi are real, � must be negative.

4.2 Feynman Integrals

The scattering amplitudes for five massless particles at two loops contain Feynman
integrals of the three families shown in Fig. 4.1. The planar “pentagon-box” family
in Fig. 4.1a and the nonplanar “hexagon-box” family in Fig. 4.1b were computed in
Refs. [1–3] and [15] (see also [16–19]), respectively. The last family, dubbed “double-
pentagon” and shown in Fig. 4.1c, was computed at symbol level in Ref. [20], and
in terms of Chen’s iterated integrals by my collaborators and I [21]. In this section
I cover the latter work. I first present a refinement of the technique described in
Sect. 3.6, which allowed us to construct a basis of pure master integrals. Then I
discuss the ensuing function space.

4.2.1 Pure Integrals from D-Dimensional Leading
Singularities

We define the integrals of the double-pentagon family shown in Fig. 4.1c as

(a)
Pentagon-box

(b)
Hexagon-box

(c)
Double-pentagon

Fig. 4.1 Integral topologies formassless five-particle scattering at two loops. The arrows inFig. 4.1c
denote the direction of the momenta
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Ia1,a2,...,a11 = e2εγE
∫

dDk1

iπ
D
2

dDk2

iπ
D
2

11∏

j=1

D
−a j

j . (4.16)

The inverse propagators Dj are given by

D1 = k21 , D7 = (k1 − k2)2 ,

D2 = (k1 − p1)2 , D8 = (k1 − k2 + p3)2 ,

D3 = (k1 − p1 − p2)2 , D9 = (k1 + p5)2 ,

D4 = k22 , D10 = (k2 − p1)2 ,

D5 = (k2 + p4 + p5)2 , D11 = (k2 − p1 − p2)2 ,

D6 = (k2 + p5)2 ,

(4.17)

where D9, D10 and D11 are Irreducible Scalar Products (ISPs). The IBPs relations
indicate that there are 108 independent integrals. Of these, 9 are in the top sec-
tor, namely they have all 8 propagators. The integrals with fewer propagators are
already known. Some are sub-topologies of the pentagon-box [1, 3] and of the
hexagon-box [15] families. Others have less than five, but possibly massive, external
momenta [31, 32]. Our goal is therefore to find 9 independent pure integrals in the
top sector.

We adopt the approach discussed in Sect. 3.6, and construct all the four-
dimensional d log integrands with constant leading singularities using the algorithm
of Refs. [33] (further refined in Ref. [34]). In order to perform the loop integration
in D dimension, however, one needs to specify how such d log integrands are to be
defined away from four dimensions. The easiest way to do so is to simply “upgrade”
the loop momenta from four to D dimensions. For obvious reasons, we dubbed this
the “naïve upgrade” of a four-dimensional integrand. Despite its name, this method
has been successful in many cases. In particular, it is sufficient to construct canonical
bases for the other massless two-loop five-particle integral families. Nonetheless,
one should expect the freedom involved in the upgrade to strike back, eventually.
Indeed, this is what happens for the double-pentagon family.

The naïve upgrade of a four-dimensional d log integrand of the double-pentagon
family in general does not integrate to a pure function. Let us make an explicit
example. Table 3 of Ref. [35] offers a list of massless two-loop five-particle integrals
whose four-dimensional integrands admit a d log form and have constant leading
singularities. The sum of the first and the fifth numerators for the double-pentagon
diagram (labelled (a) there), which we denote by B1 + B5, does not produce a pure
integral after the naïve upgrade. This can be assessed by computing the differential
equation.

The obstruction to the naïve upgrade must be related to missing evanescent terms
in the integrands, namely terms which vanish in four dimensions at the integrand
level, but which yield finite contributions upon D-dimensional integration.We found
a convenient way to construct such terms using the Gram determinants. In Eq. (4.6)
I have defined the Gram matrix of a set of vectors. We need to generalise it further
to two distinct sets of vectors {qi }ni=1 and {ri }ni=1,
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[
G

(
q1, . . . , qn
r1, . . . , rn

)]

i j

= 2qi · r j . (4.18)

In four dimensions, the determinant of the Gram matrix of any set or any pair of sets
of fivemomenta is zero, because the latter are linearly dependent. If the fivemomenta
involve also loop momenta, the Gram determinant gives a non-trivial integrand term
which vanishes in the D → 4 limit. For instance, consider the Gram determinants

Gi j = detG

(
ki , p1, p2, p3, p4
k j , p1, p2, p3, p4

)
, (4.19)

with i, j ∈ {1, 2}. An integrand whose numerator is proportional to any combination
of Gi j vanishes identically in four dimensions. Whenever such terms are relevant
for an integrand to integrate to a pure function, the four-dimensional analysis dis-
cussed in Sect. 3.6 may be inaccurate. In particular, the conjectured criterion that
four-dimensional d log integrands with constant leading singularities produce pure
functions can in such a case fail.

We developed a novel D-dimensional criterion for pure integrals, based on the
study of the leading singularities in Baikov representation [36, 37], which captures
the D-dimensional features of the integrand as well. For a given four-dimensional
d log integrand of the generic form N/(D1 . . . Dk), the new criterion generates a
D-dimensional integrand of the form

Ñ

D̃1 . . . D̃k

+ S̃

D̃1 . . . D̃k

, (4.20)

which is conjectured to integrate to a pure function. The tilde sign here denotes
the naïve upgrade, and S̃ is proportional to evanescent Gram determinants. We
name Eq. (4.20) the “refined upgrade” of the four-dimensional d log integrand
N/(D1 . . . Dk).

In order to understand how thisworks it is not necessary to go into the details of the
Baikov parameterisation. It is sufficient to recall the key idea: the inverse propagators
Dj of a D-dimensional Feynman integrand are taken as the integration variables. I
refer e.g. to [38] for a thorough discussion of how to write down the Baikov repre-
sentation of an integral. The new integration variables, called Baikov variables for
obvious reasons, capture also the D-dimensional features of the integrand. One can
thus define D-dimensional leading singularities as the maximal residues computed
in the Baikov variables. This can be done just as we did for the four-dimensional
parameterisations discussed in Sect. 3.6. Then, our new D-dimensional criterion for
a pure integral is to require that its integrand in the Baikov parameterisation admits
a d log form and that all its leading singularities are constant. In practice, one can
feed manually the Baikov parameterisation to the Mathematica package Dlog-
Basis [34], and execute its algorithm to construct all the D-dimensional d log forms
with constant leading singularities.
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There is however a technical complication. For the double-pentagon family, the
standard Baikov analysis of the maximal cut [39, 40], based on the two-loop Baikov
parameterisation, involves complicated three-fold integrals in the ISPs which are not
cut. We by-pass this computational difficulty by adopting the loop-by-loop Baikov
cut analysis [38]. Consider a generic double-pentagon integral with numerator N ,

Idp[N ] := e2εγE
∫

dDk1

iπ
D
2

dDk2

iπ
D
2

N

D1 . . . D8
. (4.21)

The analysis is analogous if the propagators are raised to some integer power. The
integration can be separated loop by loop as

Idp[N ] = e2εγE
∫

dDk2

iπ
D
2

1

D4D5D6

∫
dDk1

iπ
D
2

N

D1D2D3D7D8
. (4.22)

The two-loop integral Idp[N ] can thus be written as the composition of a pentagon
integral with loop momentum k1 and a triangle integral with loop momentum k2.
The idea is then to apply the Baikov parameterisation loop by loop, namely first
for the pentagon integral with numerator N and next for the triangle. Unfortunately,
here comes another technical subtlety. The four independent external momenta of
the pentagon integral are p1, p2, p3 and −k2. The numerator N may in general
contain scalar products between the loopmomentumof the pentagon, k1, and external
momenta which do not flow into the pentagon, i.e. k1 · p4 or k1 · p5. We refer to the
latter as crossed terms. They cannot be Baikov-parameterised straightforwardly in
the loop-by-loop approach, because they do not appear as propagators nor as ISPs of
the pentagon integral. In otherwords, the pentagon integral offers noBaikov variables
to express them. In such a case, we perform a one-loop integral reduction, i.e. we
expand the pentagon integral with numerator kμ

1 in its four independent external
momenta,

∫
dDk1

iπ
D
2

kμ
1

D1D2D3D7D8
= I (1) pμ

1 + I (2) pμ
2 + I (3) pμ

3 − I (4)kμ
2 . (4.23)

By contracting the two sides of this equations with the external momenta of the
pentagon we can construct a linear system, whose solution gives the coefficients I (i)

of the expansion. This way we can remove the crossed terms.2 As a consequence,
D9 drops out from the integrand. We are thus left with 10 Baikov variables, zi ≡ Di ,
i ∈ {1, . . . , 11}\{9}, as opposed to the 11 we would have had in the standard two-
loop Baikov representation. Once this parameterisation is complete, we can explore
the D-dimensional residues.

2 Technically, we have solved the problem only for a linear dependence of the numerator on the
crossed scalar products. The integral reduction on a quadratic crossed term, e.g. (k1 · p4)2, would
involve the metric tensor gμν , thus introducing a dependence on ε in the integrand. We did not need
to address this issue for our purposes, but this remains an interesting open problem.
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Let us consider, for example, a double-pentagon integral with an evanescent
numerator, e.g. Idp[G12]. The entire integrand, and thus also its leading singulari-
ties, vanishes in four dimensions. The method presented in Sect. 3.6 cannot establish
whether this integral is expected to be pure or not. The loop-by-loop Baikov repre-
sentation described above, on the other hand, does not vanish, and depends on 10
Baikov variables zi . Using the package DlogBasis [34] we can compute systemati-
cally all leading singularities. In practice, it is convenient to simplify the calculation
by working on the cut integral. So we take the residues in zi = 0 ∀i ∈ C for all the
subsets of propagators C ⊆ {1, . . . , 8}, we compute the residues of these integrands
in the remaining variables, and we make sure that there are no double poles. We
find that the leading singularities, computed on different cuts, all evaluate to either
±tr5/(s12 − s45) or zero. We therefore conclude that the integral

s12 − s45
tr5

Idp[G12] (4.24)

fulfills our D-dimensional criterion. Other integrals with purely Gram-determinant
numerators satisfy our D-dimensional criterion, for instance

s45
tr5

(G11 − G12) ,
s12
tr5

(G22 − G12) . (4.25)

The explicit computation of the differential equations proves that those given by
Eqs. (4.24) and (4.25) are indeed pure integrals.

This D-dimensional analysis of the leading singularities also allows us to deter-
mine the refined upgrade of the double-pentagon four-dimensional d log integrals in
Ref. [35]. For instance, the refined upgrade of (B1 + B5) is given by

(B̃1 + B̃5) + 16s45G12

tr25
(s12s23 − s12s15 + 2s12s34 + s23s34 + s15s45 − s34s45) .

(4.26)

We verified that the refined upgrades of the d log integrands of Ref. [35] are indeed
pure.

Finally, we can go back to the original goal: finding a canonical basis for the
top sector of the double-pentagon integral family. The four-dimensional d logs in
Ref. [35], upgraded in the refined sense, togetherwith theGram-determinant integrals
given in Eqs. (4.24) and (4.25), span a 8-dimensional linear space. Only one integral
is missing to form a basis.

The last integral was found using computational algebraic geometry. We consider
generic ansätze for the numerators,
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Neven =
∑

α

cαmα , (4.27)

Nodd = 1

tr5

∑

α

cαmα , (4.28)

where it is convenient to separate even and odd parity. Each cα is a polynomial in
the Mandelstam invariants si j , whilemα denotes a monomial in the ISPs. We require
the four-dimensional leading singularities of the ansätze to match a given list of
rational numbers. The polynomials cα can then be computed using the module lift
techniques [41] in computational algebraic geometry, implemented in the computer
algebra system Singular [42]. This produces another linearly independent integral
satisfying our D-dimensional criterion.

Putting together all the candidate pure integrals which satisfy our novel D-
dimensional criterion for uniform transcendentality gives a basis for the double-
pentagon on the top sector. Sub-sector pure integrals are found either via the method
described in Sect. 3.6, or taken from the literature [1, 3, 15]. The explicit compu-
tation of the differential equations proves that the resulting integral basis is indeed
canonical.

4.2.2 Pentagon Functions

Themethod described in the previous section leads to a basis of 108 pure integrals for
the double-pentagon family. We denote it by �g. They satisfy a system of differential
equations in the canonical form,

d�g = ε d Ã �g , (4.29)

with

d Ã =
31∑

i=1

aid logWi , (4.30)

where ai are constant 108 × 108 matrices, and {Wi }31i=1 are the letters of the so-called
pentagon alphabet [16]. The latter describes not only the double-pentagon family,
but all massless five-particle integrals at two loops. This was first conjectured in
Ref. [16], based on the results for the planar integrals [1–3], and later proven by
exhaustion [15, 19–21]. Let us break it down.

First there is a large group of parity-even letters, {Wi }25i=1, which are simply given
by scalar products of the external momenta,
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Wi = 2pi · pi+1 , (4.31)

W5+i = 2pi+3 · (pi+2 + pi−1) , (4.32)

W10+i = 2pi+2 · (pi+3 + pi−1) , (4.33)

W15+i = −2pi · pi+2 , (4.34)

W20+i = 2pi+2 · (pi + pi+3) , (4.35)

with i = 1, . . . , 5. Here and in the following, the index that labels the external
momenta pi is understood modulo 5 (pi+5 = pi ). These letters are clearly related to
the collinear and soft singularities of the integrals. Therefore, they could have been
anticipated by an analysis of the Landau equations. This block of letters is closed
under the 5! permutations of the external momenta. Moreover, it is clearly structured
into orbits of the cyclic permutation group, which is apparent from the presentation
given by Eqs. (4.31)–(4.35). The letters {Wi }25i=21 are purely nonplanar, as they do
not appear in the planar pentagon-box integrals. This set of letters was conjectured
in Ref. [16] by completing in a minimal way the planar alphabet so as to make it
closed under all permutations of the external legs. Finally, only the letters {Wi } with
i ∈ {1, . . . , 5} ∪ {16, . . . , 20} (only for i ∈ {1, . . . , 5} in the planar case) are allowed
as first entries of the symbol. See Sect. 3.3.6 for an explanation. On top of this well
understood first-entry condition, a mysterious second-entry condition was conjec-
tured in Ref. [16], based on the results available at the time. Iterated integrals of
the form [W1,W8, . . .], [W5,W8, . . .] and their permutations appear to be forbidden.
Since all the massless two-loop five-particle integrals have now been computed, we
can claim that this conjecture is in fact correct, but an understanding of the under-
lying physical principle is still missing. It is not unreasonable to fantasise about a
connection with the Steinmann relations [43–45] discussed in Sect. 3.3.6.

One last even letters is

W31 = √
�, (4.36)

or, equivalently,

W31 = tr
(
γ5/p1/p2 /p3/p4

)
. (4.37)

Although
√

� changes sign under parity, we must remember that the letter really
is d logW31, so that the sign of W31 is irrelevant. For the same reason, this letter
is invariant under any permutations of the external momenta. We recall that � is
defined by Eq. (4.8) as the determinant of the Gram matrix constructed with four of
the external momenta. This means that, if restrict the momenta to D < 4 dimensions,
the four momenta become linearly dependent and the Gram determinant vanishes.
The letter W31 is thus related to spurious singularities of the integrals in a lower-
dimensional subspace.

The letter W31 alone does not imply an algebraic dependence of the alphabet on
the Mandelstam invariants, since
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d log
√

� = 1

2
d log� . (4.38)

The algebraic nature is introduced by the five parity-odd letters,

W25+i = ai,i+1,i+2,i+3 − √
�

ai,i+1,i+2,i+3 + √
�

, (4.39)

with i = 1, . . . , 5, where ai,i+1,i+2,i+3 is a degree-two polynomial in theMandelstam
invariants defined by

a1,2,3,4 = tr
(
/p4/p5/p1/p2

) = s12s23 − s23s34 + s34s45 − s12s51 − s45s51 , (4.40)

and similarly for the other indices. Because of the dependence on
√

�, these let-
ters are genuine to five-particle kinematics. They form a set which is closed under
permutations of the external momenta. We recall that parity acts by flipping the
sign of

√
�. These letters are therefore manifestly odd, i.e. d logWi → −d logWi

under parity for all i = 26, . . . , 30. In fact, they have exactly the form advocated
around Eq. (3.47), and the polynomial ai,i+1,i+2,i+3 can be easily anticipated from �

and from the even letters via the procedure described in Sect. 3.2.1. In the physical
scattering region � < 0 and these odd letters are therefore complex phases, namely
|Wi | = 1 for all i = 26, . . . , 30. Their form might look rather complicated, but, as
pointed out in Ref. [1], an underlying simplicity emerges when we rewrite them as
ratios of traces,

W26 = tr
[
(1 − γ5)/p4/p5/p1/p2

]

tr
[
(1 + γ5)/p4/p5/p1/p2

] , (4.41)

and similarly for the others.
The possibility of the rewriting given by Eqs. (4.37) and (4.41) has important

implications. As discussed in Sect. 3.2.1, one could equally well choose the numera-
tors (or denominators) of the odd letters as independent letters. We choose to use the
ratios because they have simple transformation properties under parity, but numera-
tors and denominators, separately, have another virtue: they are linear in themomenta.
It is therefore possible to express the entire alphabet in a way that is linear in all the
external momenta. This suggests immediate parameterisations that are rational in
a given variable. Any BCFW-like shift of the momenta [46] would in fact lead to
a parameterisation of the alphabet that is linear in the shift parameter. The latter
therefore gives a “direction” along which we can very the letters in a rational way.
This is in general a very precious property, but in this case we can do even better.
We can in fact define changes of variables that completely rationalise the alphabet.
One way to see that this is possible, is by noting that all the letters are rational in the
spinor-helicity invariants. For example,
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W26 = 〈45〉[51]〈12〉[24]
[45]〈51〉[12]〈24〉 . (4.42)

Any parameterisation in terms of momentum twistors [47] therefore rationalises
the alphabet. See e.g. Refs. [48, 49] for explicit parameterisations of this kind. The
possibility of rationalising globally the pentagon alphabet implies that it is possible to
solve the differential equations systematically in terms of Goncharov Polylogarithms
(GPLs) (see Sect. 3.4.3). A basis of functions for the pentagon alphabet up to weight
four together with fast numerical routines for their evaluation was provided first
in Ref. [3] for the planar subset of letters, and then in Ref. [50] for the complete
alphabet. They are dubbed pentagon functions.

4.2.3 Boundary Values

Once the function space is well under control, the last missing ingredient to write
down the solution of the differential equations are the boundary values. As base
point, we choose

s0 = (3,−1, 1, 1,−1) , tr5
∣∣
s0
= i

√
3 . (4.43)

This is themost symmetric point lying in the s12 channel. In particular, it is symmetric
under the exchange of the incoming momenta, p1 ↔ p2, and under any permutation
of the outgoing momenta, {p3, p4, p5}. To determine the values of the integrals at
s0 we exploit the transparent singularity structure of the canonical form (4.29). The
method is a refinement of the one discussed in Sect. 3.4.2. I will content myself with
describing theprocedure. For the technical details I refer toRefs. [3, 15, 51]. Thed log
basis integrals are by construction ultraviolet-finite. This can be proven e.g. by power
counting [34]. We can therefore assign to ε a negative value, small enough that we do
not spoil the ultraviolet behaviour. For such a value of ε, all divergences are regulated,
and the integrals are therefore finite. The differential equations however bring into
the solution spurious singularities everywhere one of the letters vanishes, even for
a small negative value of ε. So we solve the differential equations asymptotically
close to the hypersurface where one of the letters vanishes, and require the result
to be finite for ε small and negative. This imposes constraints on the values of the
integrals on that hypersurface, which we transport back to the base point using the
differential equations. Repeating this procedure for all the letters of the alphabet
relates all the boundary values to a few simple integrals. The latter can be computed
in closed-form, or found in the literature [31, 32].

There is an important caveat. The fact that the integrals are finite everywhere for a
small and negative value of ε is a conjecture, and should be taken with great caution.
In fact, during the computation we realised that the hypersurface � = 0, boundary
of the physical scattering region, is a very dangerous place. Although it looks like a
rather unphysical locus, some of the integrals diverge there. I discuss this interesting
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phenomenon in the next section. For now, it suffices to say that we do not require the
integrals to be finite at � = 0, even for a small negative value of ε. We only impose
a matching between the full and the asymptotic solution.

Although it might sound slightly intricate, this procedure is very systematic and
can be implemented in an automatic way. This allowed us to overcome another
technical complication. In previous work, the pentagon-box integrals were computed
in all kinematic regions [1–3], whereas the hexagon-box integrals were computed
only in the Euclidean region [15]. Similarly, we computed the double-pentagon
integrals initially only in the s12 channel [21]. We will see in the next sections that
the integrals enter the amplitudes in all the orientations of the external momenta.
In other words, we need to know them in all the kinematic regions. For instance,
imagine that one of the double-pentagon integrals we computed in the s12 channel
evaluates to

Idummy(s, tr5) = 1 + ε log s12 + O(ε2) . (4.44)

The amplitude might contain this integral in another orientation. For instance, we
may need to trade {p1, p2, p3, p4, p5} as in Fig. 4.1c for {p2, p3, p4, p5, p1}. Let me
denote this cyclic permutation by σ1, with σ1 ◦ pi = pi+1. If we do this naïvely, we
get

[
σ1 ◦ Idummy

]
(s, tr5) = Idummy (σ1 ◦ s,σ1 ◦ tr5) = 1 + ε log s23 + O(ε2) , (4.45)

which is not well defined in the s12 scattering region, where s23 < 0. In principle
this can be fixed via analytic continuation (see Sect. 3.4.1). I find this approach to
be cumbersome at high transcendental weight, and very error-prone. In Ref. [27]
we adopted a different strategy. Consider now the differential equation satisfied by
Idummy,

d Idummy = ε d log s12 Idummy . (4.46)

The permuted integral satisfies the permuted differential equation,

d
(
σ ◦ Idummy

) = ε d log s23
(
σ ◦ Idummy

)
. (4.47)

Permuting the differential equation is however trivial and completely safe, since only
algebraic functions are involved. Given a systematic way of fixing the boundary
values for the differential equations in a given base point, the expression of the
permuted integral can be obtained by solving the permuted differential equations
directly in the kinematic region of interest. No analytic continuation is needed.

Since we do have a systematic procedure to fix the boundary values at a given
base point starting from the differential equations, our strategy is the following.
We consider each permutation of all the integral families shown in Fig. 4.1 as a
distinct integral family. We derive the differential equations and fix the boundary
constants for each of them directly at the base point in the s12 channel, given by
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Eq. (4.43). Moreover, to reduce the number of independent integrals and streamline
the calculation, we also derived the relations between integrals of different families
and in different orientations. This approach is completely automatic and less error-
prone, since we never need to continue analytically.

We verified the boundary values numerically for two orientations of the double-
pentagon integrals, and for selected integrals of the hexagon-box family. This was
done by computing the integrals numerically using pySecDec [52, 53] at the base
point s0. To simplify this computation, we performed it in D = 6 − 2ε dimensions,
and used the dimension shifting relations [54, 55] to relate the results to the integrals
in D = 4 − 2ε dimensions. The values of the planar integrals were checked against
the program provided with Ref. [3].

In conclusion, we computed analytically the values at the s12-channel base
point (4.43) of the basis integrals of the integral families shown in Fig. 4.1 in all the 5!
orientations of the external momenta, up to transcendental weight four. This opened
up the door to the computation of the first complete—i.e. including the non-planar
contributions—five-particle scattering amplitudes at two-loop order. Sections 4.3
and 4.5 are devoted to this topic.

4.2.4 Non-trivial Analytic Behaviour at the Boundary

In this section I present examples of Feynman integrals to illustrate the analytic
behaviour near the hypersurface tr5 = 0, boundary of the physical scattering region.
Specifically, we consider the nonplanar two-loop five-particle integrals shown in
Fig. 4.2,

Ia = e2εγE
∫

dDk1
iπD/2

dDk2
iπD/2

tr5
k21(k1 − p2)2k22(k2 − p1)2(k1 + k2 + p3)2(k1 + k2 + p3 + p5)2

,

(4.48)
and similarly for Ib. The factor of tr5 in the numerator makes these integrals pure
and parity-odd. We study them in the physical s12 scattering region. There, � < 0
and tr5 is purely imaginary. We assume that Im[tr5] > 0.

Given the factor of tr5 in the numerator, one might naïvely expect the integrals
Ia and Ib to vanish at tr5 = 0. As a matter of fact, Ib does vanish, but Ia does not.
As we will see later, because of the odd parity, the non-zero value at tr5 = 0 has
interesting implications for the analytic behaviour of the integrals. I stress that the
two integrals are related by a permutation of the external legs. Nonetheless, they
exhibit a completely different behaviour at tr5 = 0.

Let us start with Ib, shown in Fig. 4.2b. Using the method of the differential
equations one can show that, in the s12 channel, it takes the form

Ib = 1

ε2
f (2)
b + 1

ε
f (3)
b + f (4)

b + O(ε) . (4.49)
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(a) (b)

Fig. 4.2 Feynman integrals to illustrate the analytic properties near the hypersurface where tr5 = 0.
The arrows denote the direction of the momenta. The scalar integrals shown here are multiplied
by a factor of tr5. As a result, they are pure and parity-odd. The integral a does not vanish on the
hypersurface tr5 = 0 (approached from within the s12 scattering region), the integral b does

For our purposes, it is sufficient to look at the weight-two part. It can be expressed
explicitly in terms of dilogarithms,

f (2)
b = 3

[
Li2

(
W27

)
− Li2

(
1

W27

)
+ Li2

(
W28

)
− Li2

(
1

W28

)

+ Li2

(
1

W27W28

)
− Li2

(
W27W28

)]
.

(4.50)

This function is single valued in the s12 channel. This can be shown by rewriting it in
terms of Bloch-Wigner dilogarithms (3.83) with arguments W27, W28 and W27W28.
To this end, I recall that in the s12 channel these arguments are pure phases, and their
complex conjugation is given by their inverse. Since the odd letters {Wi }30i=26 become
1 at tr5 = 0, f (2)

b vanishes on the whole hypersurface tr5 = 0, in agreement with the
naïve expectations.

The integral Ia , shown in Fig. 4.2a, has a more interesting behaviour. Its Laurent
expansion reads

Ia = 1

ε2
f (2)
a + 1

ε
f (3)
a + f (4)

a + O(ε) . (4.51)

The weight-two part f (2)
a has a much more complicated expression than that of Ib.

A very careful analysis shows that it is given by

f (2)
a = 3Pa + 6iπha , (4.52)

where
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Pa = Li2

(
W30

W27W28

)
− Li2

(
W27W28

W30

)
+ Li2

(
W28

W26W30

)
− Li2

(
W26W30

W28

)

+ Li2

(
W26W27

)
− Li2

(
1

W26W27

)
,

(4.53)
and

ha = log(W28)�(a28) + ( log(W28) − 2iπ
)
�(−a28) − iπδa28

− log(W26)�(a26) − ( log(W26) − 2iπ
)
�(−a26) + iπδa26

− log(W30)�(−a30) − ( log(W30) + 2iπ
)
�(a30) − iπδa30 .

(4.54)

Here, I introduced the short-hand notation ai := ai,i+1,i+2,i+3 for the polynomial
appearing in the odd letters (see Eq. (4.39)), � is the Heaviside function (with
�(0) ≡ 0), and

δx =
{
1 , if x = 0 ,

0 , otherwise .
(4.55)

Both Pa and ha are single-valued in the s12 channel. While Pa vanishes identically
like f (2)

b if tr5 = 0, ha does not vanish in a generic point where tr5 = 0. Therefore,
in contrast to Ib, Ia does not vanish on the whole hypersurface tr5 = 0.

The analytic expressions given by Eqs. (4.53) and (4.54) were checked against
numerical evaluations performed with pySecDec [52]. In particular, we integrated
numerically the convenient integral representation given in Ref. [16],

Ia = −ε5e
2εγE

(
− �3(−ε)�(2 + 2ε)

�(−3ε)

)∫ 1

0
dα1

∫ 1

0
dα2

∫ 1

0
dα3 F

−2−2ε , (4.56)

where

F = (−s23)α2 + (−s13)α3 + (−s35)α1 + (−s25)α1α2 + (−s15)α1α3 + (−s12)α2α3 ,

(4.57)
and similarly for Ib. The analytic expressions are in agreement with the numerical
evaluations within the error estimates.

Finally, we can appreciate the interesting analytic consequences of the seemingly
innocuous fact that Ia does not vanish on the entire hypersurface tr5 = 0. The key
point is that Ia is a parity-odd integral. As such, it changes sign under parity, which
acts by flipping the sign of tr5. Approaching a point on the hypersurface tr5 = 0 from
within the scattering region but with different sigs of Im[tr5] therefore gives values
with opposite signs,

f (2)
a

∣∣∣∣
Im[tr5]=0±

= ±12π2

(
�(−a28) − �(−a26) + �(a30)

)
. (4.58)
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Here, the superscript± indicateswhether the offending hypersurface is reached along
a path with Im[tr5] > 0 or Im[tr5] < 0, respectively. In other words, any parity-odd
integral which does not vanish on the entire hypersurface tr5 = 0 has a discontinuity
across the latter, even though the scattering region is never left. We can therefore
think of the scattering region as composed of two copies, one with Im[tr5] > 0
and one with Im[tr5] < 0. I stress however that this is a feature of the individual
Feynman integrals. The scattering amplitudes are expected to be analytic throughout
the physical scattering region. While this is obvious for the two-loop five-gluon all-
plus helicity amplitude presented in Sect. 4.5, we checked numerically that also the
supersymmetric amplitudes discussed in Sect. 4.3 are continuous at the point

s =
(
3,−1 +

√
3

2
, 1, 1,−1

)
, tr5 = 0 , (4.59)

where some of the contributing Feynman integrals are discontinuous and even diver-
gent.

4.3 Maximally Supersymmetric Amplitudes

In this section I discuss the two-loop five-particle (super) amplitudes inN = 4 super
Yang-Mills theory and N = 8 supergravity.3 Since they share many properties, I
treat them in parallel.My collaborators and I, alongside another group of researchers,
computed them first at symbol level [20, 22–24]. Later, we supplied the information
about the boundary constants of the Feynman integrals, and lifted the results to
function level [26]. In the same work we also investigated the multi-Regge limit
of the amplitudes. The discussion is structured as follows. First, in Sect. 4.3.1, I
introduce the two amplitudes and define the notation. A lot of information on the
form of the amplitudes can be inferred from the integrands even prior to integration.
In particular, both amplitudes are expected to have uniform transcendental weight.
This allows us to make ansätze for the amplitudes in terms of a finite set of rational
factors and pure pentagon integrals, which I discuss in Sect. 4.3.2. Then I move on
to the actual computation. In Sect. 4.3.3 I use the known analytic expressions of the
pentagon integrals to integrate the integrands computed in Ref. [25], this way fixing
the coefficients in the ansätze and confirming the expected structure. In Sect. 4.3.4
I show how the infrared singularities of the amplitudes factorise, and define finite
hard functions (or remainder functions), for which I provide the numerical values at a
reference point. Our results are further validated in Sect. 4.3.5, where I present several
checks, such as the behaviour in collinear and soft limits. Section 4.4 is devoted to
discussing themulti-Regge limit of the hard functions.After defining themulti-Regge
kinematics in Sect. 4.4.1, I show how we computed the asymptotic expansions in
the limit using the procedure presented in Sect. 3.5. A basis of the transcendental

3 I refer the readers who are not familiar with these theories e.g. to the textbooks [56, 57].
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functions appearing in the Regge limit up to two loops is presented in Sect. 4.4.3.
In Sections 4.4.4 and 4.4.5 I present and discuss the asymptotic expansion of the
hard functions in N = 4 super Yang-Mills and N = 8 supergravity, respectively. I
comment on the results in Sect. 4.4.6.

4.3.1 Notation

It is convenient to expand the amplitude in N = 4 super Yang-Mills theory in a
modified coupling constant,

a = e−εγE

(4π)
D
2

g2 , (4.60)

where g is the coupling of the Lagrangian. This way we absorb in the new coupling
a the factor of eεγE introduced in the normalisation of the integrals to remove Euler’s
constant from the expressions, and the different loop integration measure of the
Feynman diagrams, dDk/(2π)D , with respect to the Feynman integrals, dDk/πD/2.
We expand the five-gluon super-amplitude as

A5 = δ(4) (p1 + p2 + p3 + p4 + p5) δ(8)(Q) g3
∑

�≥0

a�A(�)

5 , (4.61)

extracting the overall momentum and super-momentum Q conservation delta func-
tions. The latter implements all the supersymmetric Ward identities and packages
the information on how to extract from the super-amplitude the various amplitudes
for the states in the super-multiplet (see e.g. Refs. [56, 57] for an introduction to the
super-field formalism).

We make the SU (Nc) colour dependence explicit by further decomposing the
amplitudes A(�)

5 up to � = 2 as

A(0)
5 =

12∑

λ=1

A(0)
λ Tλ , (4.62)

A(1)
5 =

12∑

λ=1

NcA
(1,0)
λ Tλ +

22∑

λ=13

A(1,1)
λ Tλ , (4.63)

A(2)
5 =

12∑

λ=1

(
N 2
c A

(2,0)
λ + A(2,2)

λ

)
Tλ +

22∑

λ=13

(
NcA

(2,1)
λ

)
Tλ , (4.64)

where {Tλ}22λ=1 is a colour basis introduced in Ref. [58]. It is composed of 12 single
traces,
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T1 = Tr(12345) − Tr(15432) , T2 = Tr(14325) − Tr(15234) ,

T3 = Tr(13425) − Tr(15243) , T4 = Tr(12435) − Tr(15342) ,

T5 = Tr(14235) − Tr(15324) , T6 = Tr(13245) − Tr(15423) ,

T7 = Tr(12543) − Tr(13452) , T8 = Tr(14523) − Tr(13254) ,

T9 = Tr(13524) − Tr(14253) , T10 = Tr(12534) − Tr(14352) ,

T11 = Tr(14532) − Tr(12354) , T12 = Tr(13542) − Tr(12453) ,

(4.65)

and 10 double traces,

T13 = Tr(12)[Tr(345) − Tr(543)] , T14 = Tr(23)[Tr(451) − Tr(154)] ,

T15 = Tr(34)[Tr(512) − Tr(215)] , T16 = Tr(45)[Tr(123) − Tr(321)] ,

T17 = Tr(51)[Tr(234) − Tr(432)] , T18 = Tr(13)[Tr(245) − Tr(542)] ,

T19 = Tr(24)[Tr(351) − Tr(153)] , T20 = Tr(35)[Tr(412) − Tr(214)] ,

T21 = Tr(41)[Tr(523) − Tr(325)] , T21 = Tr(52)[Tr(134) − Tr(431)] .

(4.66)

Here I introduced the short-hand notation

Tr(i j . . .) := Tr(T̃ ai T̃ a j . . .) , (4.67)

where T̃ a = √
2T a and T a are generators of the symmetry group SU (Nc) in the

fundamental representation, normalised so that Tr(T aT b) = 1/2δab.
The components A(�,0)

n in this decomposition dominate in the large Nc limit, and
they are therefore referred to as leading-colour components. From the diagrammatic
point of view, they receive contributions only from planar Feynman diagrams with
the external legs ordered as the generators in the corresponding trace. In this sense
they constitute the planar part of the amplitude. Conversely, the subleading-colour
components are dubbed nonplanar.

The partial amplitudes A(�,k)
λ are related by group-theoretic identities [58, 59]. As

a result, the one-loop double-trace components A(1,1)
λ are entirely determined by the

planar ones A(1,0)
λ .At two loops, the colour-subleading single-trace components A(2,2)

λ

are given by linear combinations of the planar A(2,0)
λ and of the double-trace A(2,1)

λ

components. Moreover, the complete amplitude is symmetric under any permutation
of the external legs. This symmetry interplays with the transformation properties of
the colour structures Tλ, inducing relations among the different partial amplitudes
A(�,k)

λ . Two components A(�,k)
λ and A(�,k)

λ′ are related by the permutation of the external
legs which maps Tλ into Tλ′ . Therefore, there is only one independent component at
tree level and at one loop, say A(0)

1 and A(1,0)
1 , and only two at two loops, e.g. A(2,0)

1

and A(2,1)
1 . However, because of the complicated interplay between permutations and

analytic continuation (see the discussion in Sect. 4.2.3), we prefer to compute all the
components, and to use these relations as checks.

At tree level, the amplitude is given by the famous Parke-Taylor formula [60, 61],

A(0)
1 = 1

〈12〉〈23〉〈34〉〈45〉〈51〉 . (4.68)
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The Parke-Taylor factors play an important role in the following, and it is thus
convenient to define the short-hand notation

PT(i1i2i3i4i5) = 1

〈i1i2〉〈i2i3〉〈i3i4〉〈i4i5〉〈i5i1〉 . (4.69)

The integrands of the amplitude at one and two loops can be found e.g. in Refs. [25,
62].

For the five-graviton amplitude inN = 8 supergravity we adopt a similar expan-
sion in the gravitational coupling constant κ, with κ2 = 32πG,

M5 = δ(4) (p1 + p2 + p3 + p4 + p5) δ(16)(Q)

(
κ

2

)3∑

�≥0

[(κ
2

)2 e−εγE

(4π)
D
2

]�
M (�)

5 .

(4.70)

As in the super Yang-Mills case, we have absorbed in the coupling the conventional
normalisation of the Feynman integrals, and we have extracted the momentum and
super-momentum Q conservation delta functions. There are important differences
with respect to theN = 4 super Yang-Mills amplitude. The gravitational coupling κ
has the dimension of an inverse energy, 1/E . Moreover, there is no concept of colour
in supergravity. All the partial amplitudes M (�)

5 are thus intrinsically nonplanar. Sim-
ilarly to the super Yang-Mills amplitude, on the other hand, also the supergravity
amplitude is invariant under any permutation of the external legs. The explicit repre-
sentation of the amplitude may however obscure this symmetry. An example of this
is the following expression for the amplitude at tree level [63],

M (0)
5 = s12s34PT(12345)PT(21435) + s13s24PT(13245)PT(31425) . (4.71)

It is instructive for the following to investigate how this formula actually manages
to be permutation invariant. The rational factors appearing in Eq. (4.71) have the
generic form

si j sklPT(σ)PT(ρ) , (4.72)

where the Greek letters σ and ρ denote arbitrary permutations of the external
momenta. There are many relations among these factors, and only 146 of them are
linearly independent. These relations are responsible for the permutation symmetry
of the expression given by Eq. (4.71). Through them, we can rewrite the tree-level
amplitude in a manifestly symmetric form,

M (0)
5 = 1

60

∑

σ∈S5
σ ◦ [−s12s34PT(12345)PT(21435)

]
, (4.73)
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where the sum runs over all the permutations of the external momenta. These rela-
tions among the rational functions play an even more important role at loop level.
Unintegrated expressions of the one and two-loop five-graviton amplitudes are given
for instance in Refs. [25, 64].

4.3.2 Expected Structure of the Two-Loop Amplitudes

The computation of a scattering amplitude can be simplified dramatically by having
an insight into its final structure. For the two amplitudes under consideration, it turns
out that we can actually write down rather constrained ansätze before even starting
to integrate the known integrands [25].

We know from the explicit computation discussed in Sect. 4.2 that all the Feynman
integrals which contribute to the massless two-loop five-particle amplitudes can be
expressed as linear combinations of pure integrals. It follows that a generic (partial)
amplitude F (2)

5 has the form

F (2)
5 =
∑

i

Ri (λ, λ̃, ε) I(2)pure
i , (4.74)

where I(2)pure
i are pure two-loop integrals, and the factors Ri depend rationally on

both the external spinors and the dimensional regulator ε. In the special case in which
the rational factors Ri do not depend on ε, the (partial) amplitude F (2)

5 has uniform
transcendental weight. We have seen in Sect. 3.6.2 that this property of the amplitude
is conjecturally related to its integrand admitting a d log form. We recall that a d log
form by definition has only simple poles in the integration variables. The study of the
poles of the integrands can therefore lead to reasonable expectations about whether
an amplitude has uniform transcendental weight or not [33, 34, 65, 66].

The absence of double poles inN = 4 super Yang-Mills has been shown for sev-
eral amplitude integrands [67, 68]. In particular, a lot is known about theMaximally-
Helicity-Violating amplitudes, such as the one we are now considering. Not only
they are all conjectured to have uniform transcendental weight [67, 69–71], but their
leading singularities are in fact known [72]: they are given by permutations of the
Parke-Taylor tree-level amplitudes (4.69) only.4 In the five-particle case, only six of
them are linearly independent. We choose

PT1 = PT(12345) , PT2 = PT(12354) ,

PT3 = PT(12453) , PT4 = PT(12534) ,

PT5 = PT(13425) , PT6 = PT(15423) .

(4.75)

4 For the two-loop five-gluon amplitude, these properties are made manifest in the representation
of the four-dimensional integrand given by Ref. [35].
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Therefore, the partial amplitudes in Eq. (4.64) are expected to have the form

A(2,k)
λ =

6∑

i=1

∑

j

a(2,k)
λ,i j PTi I(2)pure

j , (4.76)

where a(k)
λ,i j are constant rational numbers and I(2)pure

j are pure two-loop integrals.
The amplitude integrands in N = 8 supergravity in general exhibit double or

higher poles. However, the two-loop five-graviton amplitude is free of double poles
at least at infinity [73, 74]. This is a convincing hint that the integrated amplitude has
uniform transcendentality, which was in fact confirmed by the explicit computations.
For the leading singularities, we canmake a guess based on the known expressions for
the tree-level and one-loop five-graviton amplitudes. Since the gravitational coupling
κ is dimensionful, the leading singularities must have a different dimension at each
order in κ2. At tree level we have already seen that the rational factors building blocks
of the amplitude (4.71) have the form (4.72). The naïve one-loop generalisation of
the latter is

si j skl smnPT(σ)PT(ρ) . (4.77)

The extra factor of si j with respect to the tree-level case compensates the dimension-
ality of the gravitational coupling κ. These objects form a 290-dimensional space
overQ. In order to assess the validity of this guess, we look at the one-loop amplitude.
It can be expressed as [64]

M(1)
5 = −

∑

S5

[
s45s

2
12s

2
23PT(12345)PT(12354)I(45)

4 + 2ε
[12][23][34][45][51]
〈12〉〈23〉〈34〉〈45〉〈51〉I

6−2ε
5

]
,

(4.78)

where I(45)
4 is the one-mass box integral with external momenta p1, p2, p3 and p4 +

p5 in D = 4 − 2ε dimensions, while I6−2ε
5 denotes the massless pentagon integral

in D = 6 − 2ε dimensions. It suffices to know that these two integrals evaluate to
pure functions, with overall leading singularity 1/(s12s23) and 1/tr5, respectively.
The one-loop amplitude therefore contains two classes of rational factors. As we
expected, there is the generalisation of the tree-level factors, given by Eq. (4.77).
In particular, the leading singularities of this form are spanned by 15 Q-linearly
independent permutations of

r (1)
1 = s12s23s34PT(34125)PT(43215) . (4.79)

In addition, the six-dimensional pentagon integral introduces

r (1)
16 = 1

tr5

[12][23][34][45][51]
〈12〉〈23〉〈34〉〈45〉〈51〉 , (4.80)
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which is independent of the factors in Eq. (4.77) and, quite remarkably, is invariant
under permutations of the external momenta.

A few observations are in order. First, the new one-loop factor in Eq. (4.80)
enters the amplitude only at order ε, as it is manifest in Eq. (4.78). This “D > 4”-
dimensional nature—spoiler alert—is confirmed at two loops: the two-loop general-
isation of Eq. (4.80) in fact drops out of the infrared-finite hard function. Secondly, it
is a goodmoment to highlight thewealth of non-trivial relations existing among these
rational functions. For instance, the prefactor of the one-mass box in the one-loop
amplitude given by Eq. (4.78) vanishes upon summing over all its S5 permutations

∑

σ∈S5
σ ◦ [s12s23s45 PT(12345)PT(12354)] = 0 . (4.81)

Interestingly, the same remains true even if we multiply it by any function of x ∈
{s34, s35, s14, s15},

∑

σ∈S5
σ ◦ [s12s23s45 PT(12345)PT(12354) f (x)] = 0 . (4.82)

This identity follows from the interplay between the permutation symmetries of the
rational factor and of the argument of f . It does not imply any non-trivial functional
identity for the latter. These examples indicate that the study of the relations among
the leading singularities is crucial in order to find a “good”—according to more or
less subjective criteria of elegance and compactness—expression for the amplitude.
In this view, I highlight that both the tree-level and the one-loop amplitude, can be
expressed in a fairly elegant way by summing over the permutations of a compact
“seed” function (see Eqs. (4.73) and (4.78)).

We can draw inspiration from the information collected at tree level and one
loop to make an ansatz for the leading singularities of the two-loop amplitude. The
minimal expectation is that the following two classes of rational factors are required,

si j skl smnsopPT(σ)PT(ρ) , (4.83)

and

si j
tr5

[12][23][34][45][51]
〈12〉〈23〉〈34〉〈45〉〈51〉 . (4.84)

Of the two sets, 510 and 5 are linearly independent, respectively. While this guess is
correct, it is convenient—in order to simplify the notation—to anticipate that only
45 of them actually appears in the amplitude. They are spanned by 40 independent
permutations of

r (2)
1 = s12s23s34s45PT(12345)PT(21435) , (4.85)
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and by

r (2)
40+k = sk k+1

tr5

[12][23][34][45][51]
〈12〉〈23〉〈34〉〈45〉〈51〉 , for k = 1, . . . , 5 , (4.86)

where the indices of theMandelstam invariants are understoodmodulo 5. The rational
factors {r (2)

i }45i=1, like the tree-level and one-loop ones, have the property of having
at most simple poles at all locations where 〈i j〉 = 0. This set of rational factors
can be further motivated by studying the leading singularities of the integrand using
the method discussed in Sect. 3.6.1 [24]. Also in this approach the factors given
by Eq. (4.84) remain slightly elusive, and can be caught only by employing a D-
dimensional parameterisation, as proposed in Sect. 4.2.1. In conclusion, we arrive at
the following ansatz for the two-loop five-graviton amplitude inN = 8 supergravity,

M (2)
5 =

45∑

i=1

∑

j

m(2)
i j r

(2)
i I(2)pure

j , (4.87)

where m(2)
i j are constant rational numbers and I(2)pure

j are pure two-loop integrals.

4.3.3 Integrating the Integrands

In this section I describe how explicit results for the amplitudes in the form given by
Eqs. (4.76) and (4.87) are obtained starting from known un-integrated expressions.
The latter were computed in Ref. [25] using D-dimensional unitarity and colour-
kinematics duality [75].

The integrand of the N = 4 super-Yang-Mills amplitude can be expressed as

A(2)
5 =
∑

σ∈S5
σ ◦
(
1

2
I(a)

N=4 + 1

4
I(b)
N=4 + 1

4
I(c)
N=4 + 1

2
I(d)

N=4 + 1

4
I(e)
N=4 + 1

4
I( f )
N=4

)
,

(4.88)
where I(x)

N=4 with x = a, b, . . . , f , denotes a Feynman integral whose propagator
structure is given by the graph (x) in Fig. 4.3. Each of the integrals in Eq. (4.88) has
the form

I(x)
N=4 = e2εγE

∫
dDk1
iπD/2

dDk2
iπD/2

c(x)N (x)

D(x)
1 . . . D(x)

8

, for x = a, b, . . . , f . (4.89)

The inverse propagators D(x)
i can be read off from the graph (x) in Fig. 4.3 (for

x = d, e, f one of the inverse propagators is given by s12). The colour factor c(x) is
given by a product of Lie-algebra structure constants. We find it convenient to write
it as a vector in the colour basis {Tλ}22λ=1 given by Eqs. (4.65) and (4.66). Finally,
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Fig. 4.3 Graphs representing the integrals appearing in the two-loop five-particle integrands given
by Eqs. (4.88) and (4.90)

N (x) is a kinematic factor. For the explicit expressions I refer to Eqs. (4.15) and Table
I of the original work [25]. Note that the numerator factors there contain the super-
momentum conservation delta function, which we have extracted from the definition
of the two-loop amplitude A(2)

5 (see Eq. (4.61)).
The N = 4 super Yang-Mills integrand given by Eq. (4.88) is in the so-called

Bern-Carrasco-Johansson form [75, 76]: the kinematic factors N (x) in the numerator
appear on equal footing with the colour factors c(x), i.e. they satisfy same alge-
braic relations as the colour factors. This is a manifestation of the colour-kinematics
duality [75]. Therefore, the integrand of the N = 8 supergravity amplitude can be
obtained by “squaring” the N = 4 super Yang-Mills one as dictated by the double-
copy mechanism [75, 76]. In practice, one trades the colour factors c(x) for copies
of the kinematic factors N (x). Such copies, which we denote by Ñ (x), are identical
to the original factors N (x) from the kinematic point of view, but have shifted R-
symmetry indices for a correct bookkeeping of the individual states. We delegate
this bookkeeping to the overall super-momentum conservation delta function, which
we have extracted from the two-loop amplitude M (2)

5 (see Eq. (4.70)). We thus keep
only the purely kinematic part of the numerator factors, which is identical between
the two copies N (x) and Ñ (x). The resulting expression for the N = 8 supergravity
amplitude is

M (2)
5 =
∑

σ∈S5
σ ◦
(
1

2
I(a)

N=8 + 1

4
I(b)
N=8 + 1

4
I(c)
N=8 + 1

2
I(d)

N=8 + 1

4
I(e)
N=8 + 1

4
I( f )
N=8

)
,

(4.90)
where the integrals are double-copies of the N = 4 ones given by Eq. (4.89),
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I(x)
N=8 = e2εγE

∫
dDk1
iπD/2

dDk2
iπD/2

[
N (x)
]2

D(x)
1 . . . D(x)

8

, for x = a, b, . . . , f . (4.91)

As discussed in Sect. 4.2, all massless two-loop five-particle integrals have been
computed. Integrating the integrands given by Eqs. (4.88) and (4.90) therefore
amounts to rewriting them in terms of the known pure basis integrals. Our work-
flow is the following. First, we rewrite the numerator factors N (x) in terms of inverse
propagators D(x)

i and ISPs, and map the integrals I(x)
N=4 and I(x)

N=8 to (permutations
of) the three integral families discussed in Sect. 4.2 (see Fig. 4.1). Then, we use IBP
relations to express the summands of Eqs. (4.88) and (4.90) for the first orientation
of the external momenta in terms of basis integrals. I stress that at this stage we are
focusing on one specific orientation of the external legs, and postpone the sum over
the 5! permutations. Thanks to the recent advances in the IBP-reduction techniques,
this step no longer represents a bottleneck. The numerators are in fact rather sim-
ple: they depend at most linearly (quadratically) on the loop momenta in theN = 4
(N = 8) case. Therefore, the IBP reduction can be performed using either the public
IBP packages like FIRE6 [77], Kira [78] and Reduze2 [79], or private IBP solvers
with novel approaches [6, 80–82]. The resulting form of theN = 4 super Yang-Mills
amplitude is

A(2)
5 =
∑

σ∈S5
σ ◦
⎡

⎣
22∑

λ=1

⎛

⎝
61∑

j=1

c(a)

λ, j I
(a)
j +

73∑

j=1

c(b)
λ, j I

(b)
j +

108∑

j=1

c(c)
λ, j I

(c)
j

⎞

⎠ Tλ

⎤

⎦ , (4.92)

where {I (a)
i }61i=1, {I (b)

i }73i=1 and {I (c)
i }108i=1 denote the integral bases for the pentagon-

box, for the hexagon-box, and for the double-pentagon integral family, respectively,
in the orientation of the external legs given by Fig. 4.3. The choice of these integral
bases depends on the specific IBP solver used. In general, they are not pure integrals.
The factors c(x)

λ, j in Eq. (4.92) depend on Nc, on the spinor products of the external
momenta, and on ε. An analogous expression holds for the supergravity amplitude.

Next, we change the integral bases to the known canonical bases, whichwe denote
by { Ĩ (a)

i }61i=1, { Ĩ (b)
i }73i=1 and { Ĩ (c)

i }108i=1. See Sect. 4.2 for the relevant references. In order
to perform this change of basis, we first reduce the canonical bases to those chosen
by the IBP solver. This gives the transformation matrices T (x) such that

Ĩ (x) = T (x) · I (x) . (4.93)

The inverse transformation matrices
(
T (x)
)−1

are computed using the sparse linear
algebramethod ofRef. [81]. They allow us to rewrite the summands of the amplitudes
in terms of pure integrals,

A(2)
5 =
∑

σ∈S5
σ ◦
⎡

⎣
22∑

λ=1

⎛

⎝
61∑

j=1

c̃(a)

λ, j Ĩ
(a)
j +

73∑

j=1

c̃(b)
λ, j Ĩ

(b)
j +

108∑

j=1

c̃(c)
λ, j Ĩ

(c)
j

⎞

⎠ Tλ

⎤

⎦ , (4.94)
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and similarly for theN = 8 supergravity amplitude. It is interesting that also at this
stage the prefactors of the integrals c̃(x)

λ, j are functions not only of the kinematics
and of Nc, but also of ε. In other words, these expressions for the amplitudes do not
exhibit uniform transcendentality. The sum over the permutations of the external legs
therefore appears to play a crucial role in making this property manifest.

To permute the integrals, we follow the strategy introduced in Ref. [27] and
outlined in Sect. 4.2.3. We do not compute the integrals for one orientation of the
external legs and then permute the result, which would require a careful analytic
continuation. Instead, we treat every permutation of each integral family as a different
family, for whichwewrite down the differential equations and compute the boundary
values at the base point in the s12 channel given by Eq. (4.43). This way, we can
express all permutations of any basis integral in terms of iterated integrals or of the
basis of functions of Ref. [50] straightforwardly and directly in the s12 channel. In
addition, we construct the relations between integrals of different families and in
different orientations, so that the remaining pure integrals are linearly independent.

The rational factors, on the other hand, come with a different issue. Although
they are trivial from the analytic point of view, their proliferation in the sum over the
permutations causes an uncontrolled growth in size of the expression. We can tame
this easily because we have a very precise idea of which leading singularities should
appear in the amplitudes. The latter, in fact, should ultimately take the forms given
by Eqs. (4.76) and (4.87). Our strategy then is to evaluate the prefactors of the pure
integrals in random kinematic points, leaving the integrals as symbolic expressions.
In particular, we use rational rather than floating-point numbers to avoid any loss
in accuracy. This way, the intermediate expressions are as compact as they could
possibly be. Using just 6 (45) independent random evaluations we can easily fit the
expected form of the N = 4 super Yang-Mills (N = 8 supergravity) amplitude. A
few more evaluations are used to validate the result. At this stage it is important that
only a set of independent pure integrals are left. Unresolved identities among the
pure integrals could in fact lead to spurious terms which do not have the expected
form.

Finally, after summing up all the permutations, the dependence on ε in the rational
factors drops out, and the amplitudes exhibit uniform transcendentality in full glory.
We obtain expressions for the two amplitudes with the expected form, given by
Eqs. (4.76) and (4.87). The leading singularities are those discussed in Sect. 4.3.2,
and the pure integrals are the independent canonical basis integrals which span all the
permutations of the three relevant integral families. These expressions give us full
analytical and numerical control over the amplitudes. Using the differential equations
we can in fact rewrite them in terms of iterated integrals, Goncharov polylogarithms
or the basis of functions of Ref. [50], and evaluate them anywhere in the physical
scattering regions. The expressions are however too bulky for me to write them out
here. They can be found in ancillary files of the original papers [22, 23, 26]. The
remarkable cancellations that ultimately lead to uniformly transcendent amplitudes
with precisely the expected leading singularities are on their own a compelling sign
that the computation is correct. Nonetheless, we carried out a number of tests to
validate our results, which I present in the next two sections.
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4.3.4 Divergence Structure and Hard Functions

In Sect. 2.3 I have shown how the divergences in loop scattering amplitudes stem
from either the infrared or the ultraviolet region of the loop integration. Ultraviolet
divergences can be removed through renormalisation, but we do not need to worry
about them in the present case. N = 4 super Yang-Mills theory is in fact known
to be ultraviolet finite [83–85]. The potential ultraviolet (UV) finiteness of N = 8
supergravity is still an extremely intriguing open problem. Various arguments rule
out UV divergences in supergravity amplitudes up to at least seven loops [86–92].
Therefore, the two-loop five-particle amplitudes in N = 4 super Yang-Mills and
N = 8 supergravity have infrared divergences only.

The infrared divergences of scattering amplitudes in gauge and gravity theories
factorise in well understood ways. Through the infrared factorisation theorems, the
infrared-divergent part of a loop amplitude is determined entirely by information of
lower loop order. This provides a precious check on amplitude computations. More-
over, it means that the infrared divergences can be subtracted, this way defining an
infrared-safe hard (or remainder) function where the regulator ε can be removed.
The hard functions are interesting objects for several reasons. Because the infrared
divergences are determined by lower-loop information, the hard functions contain
the truly new piece of information. Moreover, the Kinoshita-Lee-Nauenberg theo-
rem [93, 94] implies that infrared divergences of virtual amplitudes cancel out against
corresponding divergences from real emissions in any physical observable. The hard
functions thus capture the physically most relevant part of the amplitudes. Finally,
there is also a practical reason. Experience shows that the hard functions are substan-
tially simpler than the corresponding amplitudes, and they typically allow for much
more compact expressions.

In the next section I review the infrared factorisation of massless amplitudes in
gauge and gravity theories, and then present our results for the N = 4 super Yang-
Mills and N = 8 supergravity hard functions.

Infrared factorisation in N = 4 super Yang-Mills theory

The infrared (IR) divergences of (renormalised) massless amplitudes in gauge theo-
ries factorise to all perturbative orders as [95–99]

A5

(
si j
μ2

, a(μ2), ε

)
= Z5

(
si j
μ2
F

, a(μ2
F ), ε

)
A f

5

(
si j
μ2

,
μ2

μ2
F

, a(μ2), ε

)
, (4.95)

where Z5 is an operator which captures all the poles in ε, and the amplitude A f
5 is

thus finite in the ε → 0 limit. Treating the amplitudes as vectors in colour space, Z5

is a matrix. I denote matrices in colour space in bold face. In Eq. (4.95) μ and μF

are the renormalisation and factorisation scale. For simplicity we choose them to be
equal, μ = μF , and eventually set μ = 1. The explicit dependence can be recovered
a posteriori.
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The hard (or remainder) function is then defined by letting letting ε → 0 in the
finite amplitude,

H5 = lim
ε→0

A f
5 . (4.96)

This definition is of course ambiguous, as different choices for the finite part of the
pole operator Z5 can be made. We adopt the MS scheme, i.e. we keep only the pure
pole part in Z5. The latter may then be expressed as the path-ordered exponential
of an anomalous dimension, which up to two loops is given by the elegant “dipole”
form,

�5 ≡ −γcusp

5∑

i< j

(
Ti · T j
)
log

(−si j
μ2

)
+

5∑

i=1

γc , (4.97)

where the operator Ta
i inserts a SU (Nc) generator in the adjoint representation on

the i th leg. For convenience of the reader I spell out the action of the colour-insertion
operator on the SU (Nc) generators T ai ,

Tb
i ◦ T aj =

{
0 , j �= i ,

−i f bai ci T ci , j = i .
(4.98)

Keeping into account the vanishing of the (four-dimensional part of the) β-function
in N = 4 super Yang-Mills, the pole operator Z5 takes the form [98]

logZ5 = a

(
�

′(1)
5

4ε2
+ �

(1)
5

2ε

)
+ a2
(

�
′(2)
5

16ε2
+ �

(2)
5

4ε

)
+ O(a3) , (4.99)

where �
(�)

5 is the coefficient of a� in �5 and

�′
5 = μ

∂

∂μ
�5 = 2γcusp

5∑

i< j

(
Ti · T j
) = −5CAγcusp , (4.100)

with CA = Nc. Finally, in Eq. (4.97) γcusp is the cusp anomalous dimension nor-
malised by the quadratic Casimir in the adjoint representation CA [100–106],

γcusp = 4a − 4π2

3
CAa

2 + O(a3) , (4.101)

and γc is the collinear anomalous dimension,

γc = 2ζ3C
2
Aa

2 + O(a3) . (4.102)
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The logarithms in �5 (4.97) need to be analytically continued to the kinematic region
of interest. This can be achieved by adding a small positive imaginary part to each
Mandelstam invariant si j , and results in

log
(−si j − i0+) =

{
log si j − iπ , if si j > 0 ,

log
(−si j
)

, if si j < 0 .
(4.103)

Denoting by A(�)

5;k the order-ε
k term of �-loop amplitude A(�)

5 , the one and two-loop
hard functions in the MS scheme are explicitly given by

H(1)
5 = A(1)

5;0 , (4.104)

H(2)
5 = A(2)

5;0 + 5CA A(1)
5;2 + 2

5∑

i< j

(
Ti · T j
)
log

(−si j
μ2

)
A(1)
5;1 . (4.105)

We see in Eq. (4.105) that the two-loop hard function depends on the coefficients
of the one-loop amplitude up to order ε2. We computed the latter starting from the
integrand given in Ref. [25] and following the same strategy presented in Sect. 4.3.3
for the two-loop amplitude. The result has uniform transcendental weight, with the
same leading singularities of the two-loop amplitude,

A(1,k)
λ =

6∑

i=1

∑

j

a(1,k)
λ,i j PTi I(1)pure

j , (4.106)

where a(1,k)
λ,i j ∈ Q and I(1)pure

j are pure one-loop integrals.

Infrared factorisation in N = 8 supergravity

The IR structure of perturbative gravity is much simpler as compared to gauge
theories. Graviton amplitudes are in fact free of collinear divergences [107]. As
a result, they have only a single pole in ε per loop order, associated with soft gravi-
ton exchanges, rather than a double pole as in gauge theories. The soft divergences
exponentiate in a strikingly simple way [107–113],

M5 = S5 M f
5 . (4.107)

The gravitational soft functionS5 is the analogue of the pole operatorZ5 in Eq. (4.95)
for the Yang-Mills case: it captures all the singularities, leaving a finite amplitude
M f

5 . Thanks to the absence of colour, S5 is not an operator, and it is given by a
simple exponential, as opposed to the path-ordered exponential in the Yang-Mills
IR-pole operator Z5. In particular, the gravitational soft function S5 is given to all
orders in the coupling by
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S5 = exp
[σ5

ε

]
, (4.108)

where σ5/ε is the infrared-divergent part of the one-loop amplitude,

σ5 =
(κ
2

)2 5∑

j=1

∑

i< j

si j log

(−si j
μ2

)
. (4.109)

Here μ is a factorisation scale, which we set to 1 for simplicity. In this sense the
divergences of graviton amplitudes are said to be one-loop exact. The logarithms in
Eq. (4.109) are analytically continued to the desired scattering region according to
Eq. (4.103).

In complete analogywith theYang-Mills case, we let ε → 0 in the finite amplitude
M f

5 , and define an infrared-safe hard function,

F5 ≡ lim
ε→0

M f
5 . (4.110)

The one and two-loop contributions are given explicitly by

F (1)
5 = M (1)

5;0 , (4.111)

F (2)
5 = M (2)

5;0 − σ5 M
(1)
5;1 , (4.112)

where M (�)

5;k denotes the order-ε
k term of the �-loop amplitude M (�)

5 .
Computing the two-loop hard function requires the knowledge of the one-loop

amplitude up to order ε. We obtained the latter by applying the workflow discussed
in Sect. 4.3.3 to the integrand given in Ref. [25]. The result exhibits uniform tran-
scendental weight,

M (1) =
16∑

i=1

m(1)
i j r

(1)
i I(1)pure

j , (4.113)

where m(1)
i j ∈ Q, r (1)

i are the one-loop leading singularities discussed in Sect. 4.3.2,

and I(1)pure
j are pure one-loop integrals.

The two-loop hard functions

In this section I present our results for the hard functions.We begin withN = 4 super
Yang-Mills theory. We adopt for the hard functions the same colour decomposition
used for the amplitudes, given for the latter by Eqs. (4.63) and (4.64). The results
for the one and two-loop amplitudes have the form given by Eqs. (4.106) and (4.76),
respectively. Substituting them into Eqs. (4.104) and (4.105) gives expressions for
the hard functions of the form
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H(1,k)
λ =

6∑

i=1

∑

j

b(1,k)
λ,i j PTi P

(2)
j , (4.114)

H(2,k)
λ =

6∑

i=1

∑

j

b(2,k)
λ,i j PTi P

(4)
j , (4.115)

where b(�,k)
λ,i j ∈ Q and P (w)

j are weight-w pentagon functions. We observe that the
letter W31, defined in Eq. (4.36) and present in the amplitudes, drops out of the hard
function, as it was already noted at symbol level [20, 22]. We have full analytical
and numerical control over the hard functions in the form given by Eqs. (4.114)
and (4.115). For instance, this allows us to compute their asymptotic behaviour in
any kinematic limit. I give an explicit example of this in Sect. 4.4, where I discuss
the multi-Regge limit. Moreover, we can evaluate the hard functions anywhere in
the physical scattering region. To prove this and to facilitate future cross-checks,
we provide in Table 4.1 the numerical values of the two-loop hard function at the
randomly-chosen kinematic point

sR =
(
13

4
,− 9

11
,
3

2
,
3

4
,−2

3

)
, with tr5 = i

√
222767

264
. (4.116)

We find it interesting to note that the planar and the non-planar colour components
of the two-loop hard function are numerically of the same order of magnitude, as can
be seen in Table 4.1. We stress however that the impact of the non-planar corrections
on the theory predictions can be assessed systematically only at the level of the
physical observable. We provide the explicit expressions of the one- and two-loop
hard function in terms of the pentagon functions defined in Ref. [50] at

pentagonfunctions.hepforge.org/downloads/2l_5pt_hardfunctions_N=4_N=8.tar.gz.

The one and two-loop hard functions in N = 8 supergravity are given by
Eqs. (4.111) and (4.112) in terms of the finite part of the two-loop amplitude M (2)

5

and of the one-loop amplitude M (1)
5 up to order ε. Substituting our results for the

amplitudes, which have the form given by Eqs. (4.113) and (4.87), gives

F (1)
5 =

15∑

i=1

∑

j

c(1)
i j r

(1)
i P (2)

j , (4.117)

F (2)
5 =

40∑

i=1

∑

j

c(2)
i j r

(2)
i P (4)

j , (4.118)

where c(�)
i j ∈ Q and P (w)

j are weight-w pentagon functions. It is very interesting that

the rational factors r (1)
16 at one loop and r (2)

40+k , with k = 1, . . . , 5, at two loops drop
out of the hard function. At one loop this is already obvious from the integrand

https://pentagonfunctions.hepforge.org/downloads/2l_5pt_hardfunctions_N=4_N=8.tar.gz
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Table 4.1 Numerical values of the two-loop five-particle hard function in N = 4 super Yang-
Mills theory normalised by the Parke-Taylor factor PT1 (4.75), H(2)

5 /PT1, at the kinematic point
sR (4.116). The rows correspond to the colour decomposition in the basis defined by Eqs. (4.65)
and (4.66), and the columns to the power of Nc

N 2
c Nc N 0

c

T1 74.92986 − 61.83635i 0 −617.3565 + 294.7986i

T2 92.3051 + 108.9834i 0 −1024.0932 + 532.1760i

T3 −49.51614 + 73.37582i 0 258.3246 + 558.5523i

T4 7.50918 + 52.48750i 0 427.1264 + 340.3532i

T5 −95.8105 − 124.8597i 0 −73.4024 − 741.5020i

T6 −134.93821 + 4.43862i 0 853.1018 − 590.6476i

T7 −12.39259 + 33.13533i 0 494.0699 + 262.7033i

T8 37.35506 + 120.68054i 0 87.3332 + 500.0807i

T9 80.04433 + 33.19817i 0 −839.1711 + 349.2263i

T10 50.71731 − 21.09889i 0 −670.3692 + 131.0271i

T11 −39.34196 − 85.68420i 0 −263.6325 − 106.3503i

T12 −27.72786 + 22.45736i 0 662.8718 + 44.5041i

T13 0 −125.2669 + 216.9434i 0

T14 0 −696.3813 − 209.4301i 0

T15 0 −344.4732 + 447.8376i 0

T16 0 −127.9880 + 116.6798i 0

T17 0 −444.5692 − 325.7655i 0

T18 0 −510.7351 − 321.1812i 0

T19 0 459.3389 + 210.4025i 0

T20 0 −120.7437 + 267.2953i 0

T21 0 711.4669 + 60.1616i 0

T22 0 −460.7431 − 329.6070i 0

given by Eq. (4.78). There, in fact, it is clear that the factor r (1)
16 appears only at

order ε, which does not enter the one-loop hard function. Its absence at two loops is
instead non-trivial. In this regards it is interesting to note that, while the other factors
can be computed using the four-dimensional analysis of the leading singularities,
r (1)
16 and its two-loop versions can be caught only with a D-dimensional analysis
(e.g. using Baikov representation, as suggested in Sect. 4.2.1) [24]. In this sense
the hard function, which is a four-dimensional object, appears to contain only the
four-dimensional leading singularities. Another interesting observation is that the
letter W31 in the supergravity case is absent not only in the hard function, but also
in the amplitude. I complete this section by providing the value of the two-loop hard
function at the kinematic point sR defined in Eq. (4.116),

F (2)
5

PT2
1

∣∣∣∣
sR

= −1211.9365 − 215.6087i , (4.119)
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where the normalisation was chosen so as to cancel the helicity weight. The explicit
expressions of the one- and two-loop hard functions in terms of the pentagon func-
tions defined in Ref. [50] can be downloaded at

pentagonfunctions.hepforge.org/downloads/2l_5pt_hardfunctions_N=4_N=8.tar.gz.

4.3.5 Further Validation of the Results

We verified that our results for the two-loop five-particle amplitudes inN = 4 super
Yang-Mills theory and N = 8 supergravity satisfy several highly non-trivial con-
straints, in addition to having the correct infrared structure. All the checks discussed
in this section have been carried out at symbol level, where we also successfully
cross-check with the results of Refs. [20, 24].

Soft limit of the supergravity amplitude

The leading term in the asymptotic expansion of a n-graviton amplitude as one
of the gravitons becomes soft factorises into a (n − 1)-graviton amplitude times a
universal soft factor [64]. The latter does not receive quantum corrections [107, 114],
which explains the much simpler soft structure of supergravity amplitudes discussed
in Sect. 4.3.4 as compared to their super Yang-Mills counterparts. Since the four-
graviton amplitude inN = 8 supergravity is known up to two loops [109, 115, 116],
we can check that our result for the two-loop five-graviton amplitude has the correct
leading behaviour in the soft limit. I stress that here we consider the leading soft
behaviour only. The subleading soft operators are substantially more complicated:
they are realised as differential operators in the spinor variables and they do receive
quantum corrections [117].

Recall that we are actually working with a super-amplitude, which comprises
different component amplitudes related by supersymmetry. It is convenient to focus
on a specific component, without any loss of generality. In particular, we choose
the component amplitude describing the scattering of five gravitons with helicity
configuration (1−, 2−, 3+, 4+, 5+). As one of the external momenta becomes soft,
say p5 → 0, the five-point amplitude factorises as [64]

lim
p5→0

M(�)

5 (1−, 2−, 3+, 4+, 5+) ∼ S(5+) × M(�)
4 (1−, 2−, 3+, 4+) , (4.120)

where all subleading terms are omitted. The leading soft factor for a positive-helicity
graviton is given at all orders by [107, 114]

https://pentagonfunctions.hepforge.org/downloads/2l_5pt_hardfunctions_N=4_N=8.tar.gz
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S(5+) = − 1

〈15〉〈54〉
[ 〈12〉〈24〉[25]

〈25〉 + 〈13〉〈34〉[35]
〈35〉

]
. (4.121)

We usemomentum twistor variables Zi to parameterise the kinematics in the limit. In
particular, we find it convenient to use the Poincaré dual of the standard momentum
twistors [47],

Zi =
(

λ̃α̇
i

xi αα̇ λ̃α̇
i

)
, (4.122)

where

xi − xi+1 = λi λ̃i = pi , (4.123)

and the subscript of xi is defined modulo 5. Swapping the helicity spinors λ ↔ λ̃ in
Eq. (4.122) gives the standard momentum twistors. In momentum twistor space, the
soft limit p5 → 0 can be parameterised as [118]

Z5 → Z4 + a1Z1 + δ (a2Z2 + a3Z3) , (4.124)

where δ → 0 controls the limit, and the parameters a1, a2, a3 are fixed. It follows
from the parameterisation given by Eq. (4.124) that λ5 ∼ O(δ) and λ̃5 ∼ O(1) as
δ → 0. The soft factor (4.121) thus diverges as S(5+) ∼ 1/δ3. The Mandelstam
invariants are given by

s12 = s

1 + δ
[
y1
x + (1 + 1

x

) y1
y3

] ,

s23 = t ≡ s x ,

s34 = s

1 + δ
(
1 + 1

x

)
y2(1 + y3)

,

s45 = y1s δ

1 + δ
[
y1
x + (1 + 1

x

) y1
y3

] ,

s15 = y2 (s + t) δ

1 + δ y2
(
1 + 1

x

)
(1 + y3)

, (4.125)

where the fixed parameters y1, y2 and y3 specify how the soft limit is approached.
The ratio x = t/s is also introduced to simplify the expressions. Letting p5 = 0
or equivalently δ = 0, the five-particle invariants reduce to the usual Mandelstam
variables s and t describing four-point scattering,

s12 → s , s23 → t , s34 → s , s45 → 0 , s15 → 0 . (4.126)
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Substituting the parameterisation given by Eq. (4.125) into the pentagon alphabet
{Wi }31i=1 (see Sect. 4.2.2 for the definitions), and expanding the letters up to the leading
order in δ, produces a much simpler 15-letter alphabet. As expected, it contains the
sub-alphabet {x, 1 + x, s}, which describes the scattering of four massless particles.
Only they can appear in the right-hand side of Eq. (4.120). The remaining 12 letters—
δ and other functions of the non-universal parameters y1, y2, y3—must drop out in
the limit. This alone is already a highly non-trivial check of our result. Working out
the soft asymptotics of the symbol of the two-loop amplitudes we can also match the
leading terms—of order 1/δ3—on both sides of Eq. (4.120), finding agreement.

Collinear limit of the supergravity amplitude

The leading behaviour of gravity amplitudes in the asymptotic limit as two gravitons
become collinear is also very well understood. The leading term in the limit of a
n-graviton amplitude factorises into a (n − 1)-graviton amplitude times a universal
collinear splitting amplitude [64]. Just like the soft factor regulating the leading soft
behaviour, also the leading collinear splitting amplitude does not receive quantum
corrections [107, 114].Without any loss of generality, we consider the collinear limit
of particles 4 and 5, i.e.

lim
4‖5

p4 = zP , lim
4‖5

p5 = (1 − z)P , (4.127)

with P = p4 + p5 to preserve momentum conservation. Moreover, we focus on the
amplitude component corresponding to the helicity configuration (1−, 2−, 3+, 4+,

5+). The leading term in the asymptotic expansion of the five-particle amplitude then
factorises as

lim
4‖5

M(�)

5 (1−, 2−, 3+, 4+, 5+) ∼ Split(0)− (z; 4+, 5+) × M(�)
4 (1−, 2−, 3+, P+) ,

(4.128)

where Split(0)− is the universal tree-level splitting amplitude,

Split(0)− (z; 4+, 5+) = − 1

z(1 − z)

[45]
〈45〉 , (4.129)

M(�)
4 (1−, 2−, 3+, P+) is the four-graviton amplitude with external momenta p1, p2,

p3 and P [64, 119], and the subleading terms are omitted. Once again we find it
convenient to use momentum-twistor variables to parameterise the kinematics in
this limit [120, 121],

Z5 → Z4 + δ (a1Z1 + a3Z3) + δ2a2Z2 , (4.130)
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where δ approaches 0 in the limit, while the parameters a1, a2, a3 are fixed. The
Mandelstam invariants take the form

s12 = s

1 + δ
(
1 + 1

x

)
1
y + δ2
(
1 + 1

x

) ,

s23 = t ≡ s x ,

s34 = sz

1 + δ y(1 + x)(1 − z)
,

s45 = (s + t)δ2

1 + δ
(
1 + 1

x

)
1
y + δ2
(
1 + 1

x

) ,

s15 = t (1 − z)

1 + δ y(1 + x)(1 − z)
, (4.131)

where the fixed parameter y specifies how the limit is approached. In the limit, they
reduce to the Mandelstam invariants s and t of the four-point amplitude,

s12 → s , s23 → t , s34 → z s , s45 → 0 , s15 → (1 − z) t . (4.132)

Substituting the parameterisation given by Eq. (4.131) into the letters of the pen-
tagon alphabet, and keeping up to the leading order in δ, produces a 14-letter alphabet.
The right-hand side of Eq. (4.128) can contain the letters {s, x, 1 + x} only, which
describe the scattering of four massless particles. The remaining 11 letters have to
cancel out in the limit, making this test very stringent. The symbol of our expres-
sion for the two-loop five-point supergravity amplitude passes this test as well, and
exhibits the expected leading collinear behaviour given by Eq. (4.128).

Collinear limit of the super Yang-Mills amplitude

Scattering amplitudes in (super) Yang-Mills theory factorise in the collinear limit, but
their behaviour ismore complicated as compared to supergravity. Colour in fact gives
additional structure, and the leading collinear splitting amplitudes receive quantum
corrections. Nonetheless, the leading behaviour in the collinear limit is well known.
Without loss of generality, we consider the collinear limit of particles 4 and 5, which
we choose to be positive-helicity gluons. The two-loop five-particle amplitude then
factorises as

lim
4‖5

(
A(2)
5

)a1,a2,a3,a4,a5 ∼ f a4a5b
[
Split(0)− (z; 4+, 5+) A(2)

4 +Nc Split
(1)
− (z; 4+, 5+) A(1)

4

+ N 2
c Split

(2)
− (z; 4+, 5+) A(0)

4

]a1,a2,a3,b
,

(4.133)
where Split(�)− (z; 4+, 5+) and A(�)

4 are the �-loop splitting amplitude, and the four-
particle amplitude with external momenta p1, p2, p3, and p4 + p5. For the sake
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of clarity I have spelled out the colour indices in Eq. (4.133). We adopt the same
momentum-twistor inspired parameterisation introduced in Sect. 4.3.5. The alphabet
is also the same as in the supergravity case, and simplifies in the limit to the same
14 letters. Because of the quantum corrections to the splitting amplitudes, the right-
hand side of Eq. (4.133) contains also the letters {z, 1 − z}, on top of the massless
four-particle alphabet {s, x, 1 + x}. Still, most of the letters have to drop out in the
limit, making this check very constraining. Using the two-loop splitting amplitudes
given in Ref. [122] and the four-point amplitude up toO(ε2) from Ref. [123] we find
that our result for the two-loop five-particle amplitude exhibits the expected collinear
factorisation, given by Eq. (4.133).

Other checks of the super Yang-Mills amplitude

Thanks to the SU (Nc) symmetry, the super Yang-Mills amplitude has more structure
than its supergravity counterpart, and thus offers more checks. The partial amplitudes
A(�,k)

λ are related by group-theoretic identities [58, 59]. We checked that our result
satisfies these relations, which are spelled out explicitly for the five-particle case
up to two loops in Ref. [58]. More than an actual check on the calculation of the
amplitude, these identities should be viewed as checks on the implementation of
the colour algebra. In fact, they follow automatically from rearranging the colour
structure of the amplitude in the basis defined by Eqs. (4.65) and (4.66).

The notion of colour also allows us to separate a planar amplitude, corresponding
to the leading-colour partial amplitudes A(2,0)

λ . In Refs. [69, 124], the authors pro-
posed a formula expressing the planar amplitude inN = 4 super Yang-Mills theory
to all orders in the coupling in terms of the one-loop amplitude and other known
ingredients. This prediction, known as the ABDK/BDS ansatz from the names of
the authors, was confirmed numerically for the two-loop five-particle amplitude in
Refs. [125, 126], and was later shown to follow from a dual conformal Ward iden-
tity [127]. The planar component of our result is in perfect agreement with the
ABDK/BDS ansatz.

A stringent check on the non-planar part of the amplitude comes from the multi-
Regge limit. In Ref. [26] we computed the asymptotic behaviour of theN = 4 super
Yang-Mills amplitude (and of the supergravity amplitude as well). Section 4.4 is
devoted to this topic. What matters here is that, in the same work, a completely inde-
pendent computation of themulti-Regge limit for certain non-planar colour structures
is performed using the BFKL effective theory. Needless to say, the results agree. I
stress that this check is performed at function level, including the terms beyond the
symbol.
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4.4 Multi-Regge Limit of the Maximally Supersymmetric
Amplitudes

The expressions for the amplitudes in N = 4 super Yang-Mills theory and N = 8
supergravity in terms of rational factors and pure integrals allow us to study their
asymptotic behaviour in any kinematic limit. The rational factors are in fact trivial
in this context, and the asymptotics of the pure integrals can be studied in a very sys-
tematic and straightforward way through the canonical differential equations they
satisfy. To some extent we have already done this in the previous section, where the
soft and the collinear limits of the amplitudes were computed to validate our results.
The analysis there was however simplified: we worked at symbol level and focused
on the leading terms in the limit. Two classes of contributions were thus omitted: the
terms beyond the symbol and the power-suppressed terms in the asymptotic expan-
sion of the integrals. In this section I present the computation of another kinematic
limit, the so-calledmulti-Regge limit [128, 129]. We perform it at function level, and
do not restrict ourselves to the leading behaviour only, but rather we omit only the
terms which vanish in the limit. The technique presented in Sect. 3.5 to compute the
asymptotic expansion of pure integrals is therefore employed in full glory.

Loosely speaking, in theRegge limit the interacting objects are highly boosted and
have a fixed transverse profile. There is therefore a hierarchy between transverse and
longitudinal momenta, which allows one to expand the scattering amplitudes in pow-
ers and logarithms of a small parameter. The leading-logarithmic terms in this expan-
sion are universal. They are controlled by the gluon Regge trajectory and are related
to light-like cusp anomalous dimension. Much less is known about the subleading-
logarithmic and power-suppressed terms. They are substantially more complicated,
but they can be numerically relevant and thus important for phenomenology. Under-
standing these subleading contributions in the Regge limit, as well as in other kine-
matic limits, is an active area of research.

The interest in the Regge kinematics initially arose from the goal of interpreting
data from high-energy experiments. One of the aims is therefore to describe better
certain phase space regions of collider experiments. The Regge limit is however also
a very useful probe into the structure of scattering amplitudes in quantumfield theory.
One of the most interesting questions in this field is to what extent scattering ampli-
tudes are determined by general principles and properties. The Regge limit sheds
some light into the answer. For example, studies of this limit gave the first hints that
planar N = 4 super Yang-Mills theory is integrable [130, 131]. More recently, it
played an important role in studying multi-particle amplitudes in the context of the
Wilson loop/scattering amplitude duality. While it is difficult to formulate crossing
symmetry for multi-particle amplitudes in general, it is relatively well understood
in the Regge kinematics. Moreover, the absence of certain “overlapping” disconti-
nuities in the Regge limit gave early hints that the ABDK/BDS ansatz mentioned in
Sect. 4.3.5 was incomplete [132], and helps to constrain the form of the required cor-
rections [133]. Such constraints are an example of how the Regge limit can be useful
in a bootstrap approach to amplitudes, where an ansatz based on certain assumptions
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is made, and the free coefficients are fixed using various conditions [70, 134]. The
Regge limit can be used as an input in such a procedure, but whenever the ansatz can
be constrained by other means, it gives a prediction. See also Ref. [135] for recent
work onmulti-particle amplitudes in theRegge limit. Althoughmost studies inRegge
theory are restricted to the scattering of massless particles, an intriguing pattern of
exponentiation was observed also for certain massive amplitudes [136]. There, also
the subleading-power terms were found to be governed by the anomalous dimension
of a certain Wilson line operator. Relatedly, the power corrections to energy-energy
correlators have also revealed a surprisingly simple pattern [137].

Another restrictions ofmost studies of the Regge limit inN = 4 super Yang-Mills
is that of planarity. In the limit of large ’t Hooft coupling, scattering amplitudes in
N = 4 super Yang-Mills enjoy a dual conformal symmetry [138], which restricts
substantially their variable dependence and the transcendental functions appearing.
This is very interesting and helpful, but it is natural to wonder how universal the
structures found in this limit are. An answer to this question can be found only by
considering non-planar amplitudes as well. The latter are important for several rea-
sons. For phenomenology, it is unclear whether the non-planar terms are numerically
negligible with respect to the planar ones, especially in QCD, where Nc = 3. Non-
planar results are necessary also in order to understand if it is possible, and eventually
how, to make use of integrability inN = 4 super Yang-Mills [18, 139–141] beyond
the planar limit. Moreover, it is in itself interesting to investigate how the Regge limit
interplays with the much richer non-planar colour structures. Finally, (super)gravity
theories have no notion of colour. Any attempt to understand scattering amplitudes
in these theories necessarily includes also the terms which in a Yang-Mills theory
would count as non planar.

Conceptual advances in understanding the Regge limit in quantum field the-
ory [142–144] have led to predictions that were successfully compared against the
explicit computation of the full-colour four-gluon amplitudes inN = 4 super Yang-
Mills theory [123] at three loops. Furthermore, there are recent efforts in under-
standing certain terms in the Regge limit in supergravity theories [145–149], and
perturbative results for the four-graviton amplitudes are available up to three-loop
order [51, 109, 115, 116].

Non-planar studies at two-loop order have been limited to the scattering of four
massless particles until recently, because of the technical difficulty of computing full-
colour higher-point Feynman integrals and amplitudes. As I discussed in the previous
sections, for massless five-particle scattering this bottleneck has been overcome. All
the required integral families have been computed [15, 16, 19–21], a number of
full-colour amplitudes are now available [20, 22–24, 26, 27], and my collaborators
and I computed the Regge limit of the two-loop five-particle amplitudes in N = 4
super Yang-Mills theory and N = 8 supergravity [26]. In the same work we have
also extended to the five-particle case the ideas of Ref. [144]. This allowed us to
predict the Regge limit of certain non-planar colour structures of the super Yang-
Mills amplitude, which we found to be in perfect agreement with the perturbative
computation. Here I content myself with discussing the latter.
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I start in Sect. 4.4.1 by introducing the multi-Regge kinematics and showing how
we parameterise it. Next, in Sect. 4.4.2 I discuss how we compute the asymptotic
behaviour of the pure five-particle integrals, which we describe using the basis of
transcendental functions given in Sect. 4.4.3. I present our results for themulti-Regge
limit of the five-particle hard functions up to two loops in Sections 4.4.4 and 4.4.5,
respectively. I give a summary of our conclusions in Sect. 4.4.6.

4.4.1 Multi-Regge Kinematics

The multi-Regge kinematics [128, 129] is defined as a scattering process in which
the outgoing particles have strongly ordered rapidities and comparable transverse
momenta. Without any loss of generality we take the particles with momenta p1 and
p2 to be incoming, and assume that they travel along the z-axis. In order to define
quantitatively the multi-Regge kinematics, we introduce the light-cone coordinates
for the external momenta,

p j =
(
p+
j , p−

j ,p j

)
, (4.134)

with

p±
j = p0j ± p3j , p j = p1j + i p2j . (4.135)

The multi-Regge kinematics is then defined by

|p+
3 | � |p+

4 | � |p+
5 | , |p−

3 | � |p−
4 | � |p−

5 | , |p3| � |p4| � |p5| . (4.136)

We can implement the constraints given by Eq. (4.136) by introducing a parameter
x to regulate the size of the light-cone components as

|p−
1 | ∼ |p+

2 | ∼ |p+
3 | ∼ |p−

5 | ∼ O
(
1

x

)
,

|p+
4 | ∼ |p−

4 | ∼ |p3| ∼ |p4| ∼ |p5| ∼ O (1) ,

|p+
5 | ∼ |p−

3 | ∼ O (x) .

(4.137)

The limit x → 0+ gives the multi-Regge kinematics.
Scattering amplitudes and Feynman integrals are functions of Lorentz invariants.

It is therefore convenient to implement the scalings in Eq. (4.137) at the level of the
Mandelstam invariants. This can be done by parameterising the latter as

s12 = s

x2
, s23 = t1 , s34 = s1

x
, s45 = s2

x
, s15 = t2 , (4.138)
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where t1, t2 < 0 and s, s1, s2 > 0 are fixed in the limit. Oneway to see the equivalence
between Eqs. (4.138) and (4.137) is by rewriting the Mandelstam invariants in terms
of light-cone components,

s12 = p−
1 p+

2 = p+
3 p−

5 ≡ s

x2
,

s23 = −|p3|2 ≡ t1 ,

s15 = −|p5|2 ≡ t2 ,

s34 = p+
3 p−

4 ≡ s1
x

,

s45 = p+
4 p−

5 ≡ s2
x

.

(4.139)

In order to express the transverse momenta, we introduce the complex variables z
and z̄, defined by

zz̄ = − t1s

s1s2
, (1 − z)(1 − z̄) = − t2s

s1s2
. (4.140)

The transverse momenta then are given by

|p3| = z

√
s1s2
s

, |p̄3| = z̄

√
s1s2
s

, |p5| = (1 − z)

√
s1s2
s

, |p̄5| = (1 − z̄)

√
s1s2
s

,

(4.141)

and p1 = p2 = 0. In the s12 physical scattering region, z and z̄ are complex-conjugate
to each other. I give a pictorial representation of the multi-Regge kinematics in
Fig. 4.4.

Fig. 4.4 Pictorial
representation of the
multi-Regge kinematics in
the s12 channel
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4.4.2 Multi-Regge Limit of the Pentagon Functions

The starting point of the computation of the multi-Regge limit are the expressions
of the amplitudes in terms of rational factors and pure integrals. They have the form
given by Eqs. (4.76) and (4.87) for the super Yang-Mills and for the supergravity
amplitude, respectively. The asymptotic expansion in the multi-Regge limit of the
rational factors is trivial. The pure integrals are a subset of the ensemble of the
canonical bases of all the permutations of the three integral families shown in Fig. 4.1.
In order to work out their asymptotic expansion, we apply the procedure discussed
in Sect. 3.5 to each canonical basis.

We parameterise the kinematics according to Eq. (4.138).We denote cumulatively
by

y = (s, s1, s2, z, z̄) (4.142)

the set of kinematic variables which stay fixed in the limit. Let �g be the canonical
basis of one of the two-loop five-particle integral families with a given orientation of
the external legs. It satisfies a system of differential equations in the canonical form,

d�g(x, y, ε) = εd Ã(x, y)�g(x, y, ε) . (4.143)

Thematrix of 1-forms d Ã has the form given by Eq. (4.30). The alphabet is presented
in Sect. 4.2.2.

From the differential equations (4.143), following Sect. 3.5, we can systematically
derive an asymptotic expansion in the multi-Regge limit x → 0 of the form

�g(x, y, ε) = T (x, y, ε) x εA0 P exp

[
ε

∫

γ

d B̃

]
�h0(ε) . (4.144)

Let us us break this down piece by piece. The matrix T is a transformation matrix
defined by

T−1

(
ε
∂ Ã

∂x
T − ∂T

∂x

)
= ε

A0

x
, (4.145)

where A0 is a matrix of constant rational numbers, defined as the residue of ∂ Ã/∂x
at x = 0,

∂

∂x
Ã(x, y) = A0

x
+
∑

k≥0

xk Ak+1(y) . (4.146)

The matrix Ã is guaranteed to have such a form because Feynman integrals can only
have regular singularities (see Sect. 3.2). The transformation matrix T admits the
expansion
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T (x, y, ε) = 1 +
∑

k≥1

∑

m≥1

xkεmTk,m(y) , (4.147)

from which it is clear that it is responsible for the power corrections in x . If one is
interested only in the leading behaviour of the integrals, she can simply let T = 1.
The asymptotic expression given by Eq. (4.144) then contains divergent logarithms
of x , produced by the matrix exponential x εA0 and governed by the matrix A0. The
path-ordered exponential produces the polylogarithmic functions. The contour γ
goes from a base point y0 in the multi-Regge kinematics to a generic point y. We
choose

y0 =
(
s = 1 , s1 = 1 , s2 = 1 , z = e

iπ
3 , z̄ = e− iπ

3

)
, (4.148)

which corresponds to t1 = t2 = −1. The matrix B̃ is obtained from the original Ã
through

∂ Ã

∂yi

∣∣∣∣
x=0

= ∂ B̃

∂yi
, ∀yi ∈ y . (4.149)

Finally, �h0(ε) denotes the boundary values at y0 for the auxiliary systemof differential
equations

d �h(y, ε) = εB̃(y)�h(y, ε) . (4.150)

The letters appearing in thematrix B̃ are obtained from the original pentagon alphabet
by expanding it in x and keeping only the leading terms in the limit.

The alphabet in the limit is substantially simpler. First of all, it is rational, because
the Gram determinant is given by a perfect square at the leading order,

� ∼
x→0

s21s
2
2 (z − z̄)2

x4
+ O
(

1

x3

)
. (4.151)

We choose the branch of the square root as

tr5 ∼
x→0

s1s2(z − z̄)

x2
+ O
(
1

x

)
. (4.152)

Since z and z̄ are complex conjugate to each other in the physical scattering region,
tr5 is purely imaginary. This guarantees that � < 0, i.e. that the momenta are real.
On top of becoming rational, the pentagon alphabet in the multi-Regge limit reduces
to just 12 letters, factorised into four independent sub-alphabets:
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{x} ,
{ s1s2

s

}
,

{s1, s2, s1 − s2, s1 + s2} ,

{z, z̄, 1 − z, 1 − z̄, z − z̄, 1 − z − z̄} .

(4.153)

The function space of massless two-loop five-particle amplitudes therefore becomes
remarkably simple in the multi-Regge limit. The alphabets in the first two lines sim-
ply correspond to logarithms,while the third and the fourth lines encode the harmonic
polylogarithms [150] and the two-dimensional harmonic polylogarithms [151],
respectively. I stress that the logarithms of x are produced exclusively by the matrix
exponential in Eq. (4.144), whereas the remaining 11 letters appear through the
path-ordered exponential. A functional basis to express the latter is presented in
Sect. 4.4.3.

We compute the boundary values �h0(ε) in Eq. (4.144) by integrating the canonical
differential equation along a path going from the base point s0 (4.43) in the bulk of
the s12 channel, where the values of the integrals are already known, to a tangential
end-point in the multi-Regge limit, (x = 0, y = y0). The power corrections in x are
not relevant for this purpose, and the transformation matrix T can thus be ignored.
At the end-point the integrals develop logarithmic divergences. Since the end-point
is defined in a tangential sense (see Sect. 3.3.1), it is important to make sure that
the divergent logarithms which are formally set to zero match those produced by the
matrix exponential x εA0 in Eq. (4.144). After the divergent logarithms are moved,
what is left are the boundary values �h0(ε) at y0. This procedure has to be repeated for
all the permutations of the relevant integral families. Thanks to the simple functional
dependence in the multi-Regge limit, implied by the alphabet shown in Eq. (4.153),
the transcendental constants appearing in the values of the integrals at y0 can be antic-
ipated to be harmonic polylogarithms of argument 1, and two-dimensional harmonic
polylogarithms of arguments z and z̄ as given by Eq. (4.148). It is therefore relatively
simple to fit to analytic transcendental numbers the numerical values obtained by
integrating the differential equation in terms of GPLs and evaluating the latter at
very high precision with GiNaC [152]. For this purpose we use Mathematica’s
built-in function FindIntegerNullVector. I present in Table 4.2 a basis of inde-
pendent transcendental constants which spans the values of all the integrals at y0
up to weight 4. We could achieve an even greater simplification in the constants by
going to z = z̄ = 0 (or equivalently t1 = t2 = 0), but we find y0 more convenient as
it is less singular.

Before moving on to presenting the basis of polylogarithmic functions required
for the asymptotic expansion of the integrals, I should warn the readers about a
treacherous subtlety, related to the non-trivial analytic behaviour at the hypersurface
tr5 = 0 discussed in Sect. 4.2.4. Themulti-Regge base point y0 (4.148) is in the upper
half of the complex z plane, namely Im[z] > 0. The physical scattering region in the
multi-Regge kinematics is defined by
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Table 4.2 Basis of transcendental constants appearing in the values of the pentagon integrals at
the base point in the multi-Regge kinematics y0 (4.148)

Weight Real Imaginary

1 0 iπ

2 π2 i ImLi2(e
iπ
3 )

3 ζ3, π ImLi2(e
iπ
3 ), π2 log(3) iπ3, iπ log2(3) − 48i ImLi3

(
i√
3

)

4 π4,
(
ImLi2(e

iπ
3 )
)2

, iπζ3, iπ2 ImLi2(e
iπ
3 ), i ImLi4(e

iπ
3 ), iπ3 log(3),

π2 log2(3), π ImLi3
(

i√
3

)
iπ log3(3) + 288i ImLi4

(
i√
3

)

s > 0 , s1 > 0 , s2 > 0 . (4.154)

The transverse variables z and z̄ are complex conjugate to each other, and span the
whole complex plane. However, it is highly non-trivial to analytically continue from
the upper half of the complex plane, where the base point y0 lies, to the lower half.
In Sect. 4.2.4, in fact, we have seen that certain non-planar integrals contributing
to the amplitudes have discontinuities across the hypersurface tr5 = 0. The latter
corresponds to z = z̄, or equivalently Im[z] = 0, in the multi-Regge kinematics.

We prefer to avoid this perilous analytic continuation, and follow a less error-
prone strategy. We work in the two halves of the complex z plane separately. In both
we choose the branch of the square root for tr5 as in Eq. (4.152). We integrate the
canonical differential equations for the pure integrals from y0 and obtain expressions
valid for Im[z] > 0. We then take the conjugate of y0 as base point in the lower half
of the complex plane,

ȳ0 =
(
s = 1 , s1 = 1 , s2 = 1 , z = e− iπ

3 , z̄ = e
iπ
3

)
. (4.155)

Since we have chosen the pure basis integrals in such a way that they have definite
parity, the boundary values at ȳ0 can be obtained by those at y0 by flipping the sign
of the odd integrals. Integrating the differential equations starting from ȳ0 then gives
expressions of the amplitudes valid for Im[z] < 0.

An equivalent approach to construct representations of the amplitudes valid in
the lower half of the complex plane consists in keeping Im[z] > 0 and choosing the
opposite branch of tr5 with respect to Eq. (4.152). This affects the boundary values
at y0 by flipping both the sign of the odd integrals and of the odd letters. We followed
both approaches and found agreement between the two.
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4.4.3 Basis of Transcendental Functions in the Multi-Regge
Limit

In this section I present a basis of the transcendental functions appearing in the multi-
Regge limit of the five-particle hard functions inN = 4 super Yang-Mills theory and
N = 8 supergravity up to two loops. I recall that we neglect all terms which vanish
in the limit. The functions have transcendental weight up to four. The basis functions
at weight three and, in particular, at weight four are rather bulky, and do not add
anything conceptually to the presentation. For this reason, I prefer to discuss here
the basis only up to weight two. The remaining functions can be found explicitly in
our paper [26].

The transcendental functions in the multi-Regge limit have two sources, manifest
in Eq. (4.144). The matrix exponential x εA0 produces logarithms of x up to power
four, which correspond to the alphabet in the first line of Eq. (4.153). The path-
ordered exponential, on the other hand, produces non-trivial transcendental functions
of s, s1, s2, z and z̄. They belong to the sub-alphabets given by the other three lines
of Eq. (4.153). From the latter we can anticipate the loci of all singularities. Some
are physical,

z = 0 , z = 1 , s1 = 0 , s2 = 0 , s = 0 . (4.156)

Others are spurious,

z + z̄ = 1 , z = z̄ , s1 = s2 . (4.157)

The latter manifest themselves in the representation of the basis functions, but drop
out in the hard functions. We construct a basis of functions that are well defined and
real analytic in both the upper and the lower half of the complex z plane. Some of
the functions are however discontinuous across the real z axis, corresponding to the
dangerous hypersurface where tr5 = 0.

The presentation is organised by transcendental weight. Starting from transcen-
dental weight two, the supergravity hard function appears to be richer in the multi-
Regge limit than its super Yang-Mills counterpart. It involves more independent
functions, including several genuine weight-four functions. The weight-four part of
the super Yang-Mills hard function in the Regge limit, instead, is reducible. In other
words, it can be expressed in terms of products of lower weight functions.

Weight 1. The hard functions in bothN = 4 super Yang-Mills theory andN = 8
supergravity contain five manifestly single-valued logarithms,
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g(1)
1 = log(s1) ,

g(1)
2 = log(s2) ,

g(1)
3 = log

(
s

s1s2

)
,

g(1)
4 = log(zz̄) ,

g(1)
5 = log((1 − z)(1 − z̄)) ,

(4.158)

and two more logarithms whose analytic structure requires some attention,

g(1)
6 = log(z) − log(z̄) ,

g(1)
7 = log(1 − z) − log(1 − z̄) .

(4.159)

We can express g(1)
6 and g(1)

7 in a way that is manifestly well defined in both halves
of the complex plane. For g(1)

6 , we parametrise z using polar coordinates as z = reiϕ,
withϕ ∈ [0,π] for Im[z] > 0, and as z = re−iϕ withϕ ∈ [0,π] for Im[z] < 0. Then
g(1)
6 is given by

g(1)
6 =
{
2iϕ , for Im[z] > 0 ,

−2iϕ , for Im[z] < 0 .
(4.160)

Similarly, for g(1)
7 we parametrise z as z = 1 + reiϕ for Im[z] > 0, and as z = 1 +

re−iϕ for Im[z] < 0. In both cases, ϕ ∈ [0,π]. Then g(1)
7 becomes

g(1)
7 =
{

−2iπ + 2iϕ , for Im[z] > 0 ,

2iπ + 2iϕ , for Im[z] < 0 .
(4.161)

It is thus clear that g(1)
6 and g(1)

7 are well defined in the entire complex z plane
except for the real axis, across which they have a discontinuity for Re[z] < 0 and for
Re[z] > 1, respectively.

Weight 2. The N = 4 super Yang-Mills amplitude depends on just two weight-
two irreducible functions:

g(2)
1 = Li2(z) − Li2(z̄) + 1

2
(log(1 − z) − log(1 − z̄)) log(zz̄) , (4.162)

g(2)
2 = Li2(z) + Li2(z̄) . (4.163)

We have already encountered the first one several times. It is the Bloch-Wigner
dilogarithm defined by Eq. (3.83). Therefore, g(2)

1 is manifestly single-valued in the
entire punctured complex plane z ∈ C\{0, 1}. As for g(2)

2 , it is continuous, but not
real analytic along the real axis Im[z] = 0 for Re[z] > 1.
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Two more weight-two functions need to be introduced in order the describe the
multi-Regge asymptotics of the N = 8 supergravity hard function:

g(2)
3 = Li2

(
z

1 − z̄

)
+ Li2

(
z̄

1 − z

)
+ g′(2)

3 ,

g(2)
4 = D2

(
z

1 − z̄

)
+ g′(2)

4 ,

(4.164)

where D2 denotes the Bloch-Wigner dilogarithm defined by Eq. (3.83), and g′(3)
3

and g′(2)
4 are corrections to make the functions real-analytic away from the real axis.

The correction terms involve only logarithms and step functions. In order to express
them, it is convenient to introduce the short-hand notations

� = �(1 − z − z̄) log(1 − z − z̄) + �(z + z̄ − 1) log(z + z̄ − 1) ≡ log(|1 − z − z̄|) ,

(4.165)

and

θ = sign (Im[z])�

(
Re[z] − 1

2

)
. (4.166)

Then,
g′(2)
3 =
(
g(1)
4 − g(1)

5

)
� + iπ
(
g(1)
6 + g(1)

7

)
θ ,

g′(2)
4 =
(
g(1)
6 + g(1)

7

)
� .

(4.167)

The function g(2)
3 is real valued. The arguments of the dilogarithms cross the real axis

as z varies in either the lower or the upper half of the complex plane. Away from the
real axis, i.e. for Im[z] �= 0, the arguments become real only on the line Re[z] = 1/2,
where the letter 1 + z + z̄ of the alphabet vanishes. There, however, the arguments
of the dilogarithms in g(2)

3 evaluate to 1. As a result, the branch cut of the dilogarithm
is never crossed as z ranges in the upper or the lower half of the complex plane.
Equation (4.164) thus defines an unambiguous function away from the real axis.
The function g(2)

4 is manifestly single valued everywhere in the complex plane. The
Bloch-Wigner dilogarithm contains logarithms which are singular at 1 + z + z̄ = 0,
but the correction term g′(2)

4 is constructed so as to cancel them. It is interesting to
note that the two additional weight-two functions required in N = 8 supergravity
are actually derivatives of certain weight-three functions present in theN = 4 super
Yang-Mills hard function.
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4.4.4 Multi-Regge Limit of theN = 4 Super Yang-Mills
Amplitude

In this section I present the asymptotic expansion in the multi-Regge limit of the
five-particle hard function in N = 4 super Yang-Mills theory up to two-loop order.
We compute explicit analytic expressions for all the divergent and finite contributions
of the full-colour hard function, neglecting terms which vanish as x logk(x) in the
limit x → 0.

The planar part has already been investigated inRef. [132], where theABDK/BDS
formula [69, 124, 127] was shown to be Regge-exact at five points. My collaborators
and I extended the analysis to the full-colour amplitude first at symbol level [22].
There, the double-trace colour structures given by Eq. (4.66) were found to vanish
in the limit x → 0, and the leading-logarithmic part of the subleading-power terms
was provided analytically. Later we lifted the computation to function level [26].

The starting point of our computation are the expressions of the amplitudes in
terms of rational factors of the spinor-helicity variables, and of pure pentagon inte-
grals. They have the form given by Eq. (4.76) for the two-loop amplitude, and simi-
larly for the one-loop one. I have discussed how towork out the asymptotic expansion
of the pure integrals in the previous two sections. It is now time to talk about the ratio-
nal factors. They have an extremely simple behaviour in the limit. In order to see it,
we have to normalise the rational factors, because we defined the multi-Regge limit
for helicity-free quantities only. We choose to normalise them by the Parke-Taylor
factor PT1, defined in Eq. (4.75), which also gives the tree-level amplitude. Then, all
but two of the six rational factors vanish, with the remaining ones becoming 1 (up
to power corrections):

PTi

PT1
= ri + O(x) , (4.168)

with

{ri }6i=1 = {1, 0, 0, 0, 0, 1}. (4.169)

It is particularly important that the rational factors do not exhibit any pole in x . As
a result, we can neglect the power corrections to the pure integrals, produced by
the transformation matrix T in Eq. (4.144). This also implies that the expressions
for the Regge asymptotics of the hard function do not contain any rational function,
and that the uniform transcendental weight is preserved. This constitutes a major
simplification in both the computation and the presentation of the results. In contrast,
they are relevant in the N = 8 supergravity case. Putting together Eq. (4.168) for
the rational factors and computing the asymptotics of the pure pentagon integrals
according to Eq. (4.144) gives the asymptotic expansion of the amplitudes. Finally,
we assemble them in the hard function according to Eqs. (4.104) and (4.105).
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In order to present our results in a more meaningful way, it is convenient to first
introduce a colour decomposition based on the colour flowing in the t channels.
This emphasises certain properties of the Regge regime, and yields more compact
expressions. Then I discuss the asymptotic expansion of the one and two-loop hard
function. All the explicit expressions can be found in ancillary files of our paper [26].

Colour flow in the multi-Regge limit

We treat the super Yang-Mills amplitude as a vector in colour space. In Sect. 4.3.1
I have defined a basis of this vector space made of certain traces of generators
of SU (Nc) in the fundamental representation. This choice of basis is convenient
because it highlights the distinction between planar and non-planar components, as
well as the permutation symmetries. A different colour basis is more meaningful
when discussing the Regge limit. We decompose the �-loop five-particle amplitude
A(�)

5 into a colour basis {SJ } where each element corresponds to a definite exchange
in the t-channels,

A(�)

5 =
∑

J

A(�)
J SJ . (4.170)

Here, the sum runs over all possible pairs J = (r1, r2), where r1 (r2) denotes an
irreducible representation of the state propagating in the t1 (t2) channel. These rep-
resentations are obtained by reducing the tensor products of the representations cor-
responding to the particles 2 and 3, and 1 and 5,

R2 ⊗ R3 =
⊕

r1

r1 , R1 ⊗ R5 =
⊕

r2

r2 , (4.171)

where Ri labels the irreducible representation of the i th particle. Multiple occur-
rences of equivalent representations are counted as distinct. In the case of two adjoint
representations, the decomposition is given by

8a ⊗ 8a = 1 ⊕ 8s ⊕ 8a ⊕ 10 ⊕ 10 ⊕ 27 ⊕ 0 , (4.172)

where the subscripts a and s are used to distinguish the anti-symmetric adjoint
representation 8a from the 8-dimensional symmetric representation 8s . We label the
representations of SU (Nc) with their SU (3) dimensions, but all the expressions are
valid for generic Nc. We thus keep also the “null” representation 0, which does not
contribute for Nc = 3 since its dimension vanishes,

dim[0] = N 2
c (Nc − 3)(Nc + 1)

4
. (4.173)
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In order to understand better the decomposition into t-channel colour structures
given by Eq. (4.170), we introduce colour operators associated with the colour flow-
ing in the t-channels [153, 154],

Tt1 = T2 + T3 , (4.174)

Tt2 = T2 + T3 + T4 = −T1 − T5 , (4.175)

where we used colour conservation, i.e.
∑5

i=1 Ti = 0, and Ti denotes the colour
insertion operator introduced in Sect. 4.3.4 and defined by Eq. (4.98) for the adjoint
representation. Clearly, the Casimir operators T2

t1 and T2
t2 commute,

[
T2
t1 ,T

2
t2

] = 0, (4.176)

and can thus be diagonalised simultaneously. The colour structures SJ are by defi-
nition their simultaneous eigenvectors:

T2
tk ◦ SJ = CrkSJ , (4.177)

for k = 1, 2. I recall that J = (r1, r2), where rk is the representation of the state
propagating in the tk channel.

We then expand the hard function as

H(�)

5 = PT1

22∑

a=1

H (�)
a Sa , (4.178)

where the factor of PT1 is extracted so that the coefficient functions H (�)
a are helicity-

free. Table 4.3 shows our explicit choice for the eigenvectors of the t-channel oper-
ators, {Sa}22a=1.

This choice of basis greatly simplifies the analysis of the Regge limit, since it
is controlled by the quantum numbers propagating in the ti channels. For example,
(8a, 8a) is the only non-vanishing colour structure at tree level,

h(0)
3 = 1 ,

h(0)
a = 0 , ∀a �= 3 ,

(4.179)

and the only structure at leading-logarithmic order (LL) to all loop orders.
For convenience of the readers, I write here in terms of the trace-based basis

defined by Eqs. (4.65) and (4.66) the eigenvectors of the t-channel operators which
are of particular interest for this presentation:
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Table 4.3 Characterisation of the colour basis {Sa}22a=1. The first column refers to the element in the
basis. The second shows the pairs (r1, r2), where ri is the irreducible representation corresponding
to the state flowing in the ti -channel, labelled by its SU (3) dimensions (with 1 being the singlet).
The last two columns contain the associated Casimirs. The 10 stand for certain combinations of 10
and 10. The last two structures denote two invariant tensors between 10, 10 and the central gluon’s
8 (for Nc ≥ 4)

Sa (r1, r2) Cr1 Cr2

1 (1, 8a) 0 2Nc

2 (8a, 1) Nc 0

3 (8a, 8a) Nc Nc

4 (8a, 8s) Nc Nc

5 (8a, 0) Nc 2(Nc − 1)

6 (8a, 27) Nc 2(Nc + 1)

7 (8a, 10) Nc 2Nc

8 (8s , 8a) Nc Nc

9 (8s , 8s) Nc Nc

10 (8s , 10) Nc 2Nc

11 (0, 8a) 2(Nc − 1) Nc

Sa (r1, r2) Cr1 Cr2

12 (0, 0) 2(Nc − 1) 2(Nc − 1)

13 (0, 10) 2(Nc − 1) 2Nc

14 (27, 8a) 2(Nc + 1) Nc

15 (27, 27) 2(Nc + 1) 2(Nc + 1)

16 (27, 10) 2(Nc + 1) 2Nc

17 (10, 8a) 2Nc Nc

18 (10, 8s) 2Nc Nc

19 (10, 0) 2Nc 2(Nc − 1)

20 (10, 27) 2Nc 2(Nc + 1)

21 (10, 10)1 2Nc 2Nc

22 (10, 10)2 2Nc 2Nc

S3 = T1 + T2 − T5 − T6 , (4.180)

S9 = T1 − T2 − T5 + T6 , (4.181)

S12 = T1 − T2 − T5 + T6 − (Nc − 2) (T7 − T9 − T10 + T12 + T13 + T18 + T20 + T22) , (4.182)

S15 = T1 − T2 − T5 + T6 + (Nc + 2) (T7 − T9 − T10 + T12 − T13 − T18 − T20 − T22) ,

(4.183)

S21 = Nc

2
(T9 − T7 + T12 − T10) − T13 + T15 + T16 + T18 − T19 − T20 − T21 + T22 , (4.184)

S22 = T1 + T2 − T5 − T6 + Nc (T18 − T13 + T22 − T20) . (4.185)

The transformation matrix E relating the two colour bases as

Sa =
22∑

b=1

EabTb (4.186)

is provided in an ancillary file of Ref. [26].

One-loop hard function

Thanks to the simple behaviour of the rational factors, the uniform transcendental
weight property of the hard function is preserved in the multi-Regge limit. The one-
loop hard function is therefore simply given by a weight-two function. We organise
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it in powers of log(x),

H (1)
a =

1∑

k=0

h(1)
a,k (Nc, s, s1, s2, z, z̄) log

k(x) + o(1) , (4.187)

where the coefficient h(1)
a,k has transcendental weight (2 − k). Although the hard

function has weight 2, it exhibits only a single power of log x . In fact, this observation
generalises: there is at most one power of log x per loop order. This is a well-known
result of the BFKL formalism [128, 155] (see e.g. Ref. [144] for a recent discussion
in the scattering amplitudes context), related to the fact that boosting a projectile
does not introduce new collinear singularities.

There is only one non-vanishing component at order log x ,

h(1)
3,1 = −2Nc

[
2 log

(
s

s1s2

)
− log ((1 − z)(1 − z̄)) − log (zz̄)

]
,

h(1)
a,1 = 0 , ∀a �= 3 .

(4.188)

The non-trivial colour structure corresponds to the pair of t-channel representations
(8a, 8a). This is also well known. The leading logarithmic (LL) terms, of order
(g2)� log� x at � loops, have the same colour structure as the tree-level amplitude. The
underlying reason is that only a single elementary excitation (the reggeised gluon)
propagates in each channel at LL order. The other colour structures are suppressed
kinematically: either they have a lower power of log x , or they are suppressed by
powers of x [128, 155]. There are similar selection rules also at Next-to-LL (NLL)
order, where a (symmetrical) pair of adjoint excitations can be exchanged as well.
Since such a pair cannot carry the colour representation 10, many components vanish
at order log0 x too. We find

h(1)
a,0 = 0 , ∀a ∈ {7, 10, 13, 16, 17, 18, 19, 20, 21, 22} . (4.189)

The non-vanishing components are expressed in terms of the function basis presented
in Sect. 4.4.3. In particular, only functions which are single-valued in the whole s12
scattering region appear at one loop. The explicit expressions are provided in ancillary
files of Ref. [26].

Two-loop hard function

At two loops the hard function is given by a weight-4 function. We expand it in
powers of log x as
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H (2)
a =

2∑

k=0

h(2)
a,k (Nc, s, s1, s2, z, z̄) log

k(x) + o(1) , (4.190)

where the coefficient h(2)
a,k has transcendental weight 4 − k. Two colour components

are particularly simple, and we can spell them out. They are the eigenvectors corre-
sponding to the representation (10, 10). One vanishes,

H (2)
21 = O(x) . (4.191)

Interestingly, this follows from the behaviour of the rational factors alone, given by
Eq. (4.168). The transcendental functions are irrelevant here. The second eigenvector
of (10, 10) is finite in the limit x → 0,

H (2)
22 = 2π2

[
log2
(

s

s1s2

)
− 2 log

(
s

s1s2

)
log (zz̄(1 − z)(1 − z̄)) + log2(zz̄)

+ log2 ((1 − z)(1 − z̄)) + log ((1 − z)(1 − z̄)) log(zz̄)

− 2

(
Li2(z) − Li2(z̄) − 1

2
(log(1 − z) − log(1 − z̄)) log(zz̄)

)]
+ O(x) .

(4.192)
This function is manifestly single valued in the entire s12 physical scattering region.
In particular, we recognise the Bloch-Wigner dilogarithm in the third line.

Let us now discuss the separate orders in log x . As anticipated at weight one, only
the colour structure associated with (8a, 8a) contains the leading logarithm log2 x ,

h(2)
3,2 = 2N 2

c

(
2 log

(
s

s1s2

)
− log (zz̄) − log ((1 − z)(1 − z̄))

)2
,

h(2)
a,2 = 0 , ∀a �= 3 .

(4.193)

Many components vanish at order log x too,

h(2)
a,1 = 0 ∀a ∈ {7, 10, 13, 16, 17, 18, 19, 20, 21, 22} . (4.194)

Comparing this with Eq. (4.189), it is clear that these are the same components which
vanish at order log0 x at one loop (4.189). This is a general feature: only the colour
representations with non-vanishing coefficients at the previous loop order can exhibit
a logarithm of x . The non-vanishing two-loop components at order log x are very
simple. They contain manifestly single-valued logarithms and dilogarithms only.
Moreover, they are all proportional to iπ and thus vanish at symbol level, except
for h(2)

3,1. The latter is non-zero at symbol level, but does not contain any genuine
weight-3 function.

The finite terms, i.e. h(2)
a,0, have transcendental weight 4, but only h

(2)
3,0 is non-zero

at symbol level. Nonetheless, the latter is rather simple: it involves only logarithms
and the Bloch-Wigner dilogarithm. The other colour components are proportional
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to either iπ or π2. Three vanish, h(2)
a,0 = 0 for a = 10, 18, 21. Some contain genuine

weight-3 functions.
The N = 4 super Yang-Mills hard function in the multi-Regge limit contains

several functions which are not real-analytic in the entire complex z plane. They
appear only in the order-log0 x components h(2)

a,0 with a ∈ {1, 2, 5, 6, 11, 12, 14, 15}.
Among these, h(2)

12,0 and h
(2)
15,0 are particularly simple, as they involve—of the functions

which are not real-analytic—only the logarithms given by Eq. (4.159). For instance,

h(2)
12,0 = iπ

6

[(
g(1)
7

)3 −
(
g(1)
6

)3]+ 2iπ3

3

(
g(1)
7 − g(1)

6

)
+ (analytic) . (4.195)

The other components, h(2)
a,0 with a ∈ {1, 2, 5, 6, 11, 14}, involve also weight-2 and 3

functions which are not real analytic. Interestingly, we observe that the latter appear
in a specific combination. Nonetheless, we introduced them separately, as they enter
the hard function in N = 8 supergravity.

Although the hard function is continuous in the entire complex z plane, certain
colour components are not analytic across the real z axis. In particular, the second
derivatives of certain components have discontinuities: at Re[z] > 0 for components
1, 11 and 14; at Re[z] < 1 for components 2, 5 and 6; and at Re[z] < 0 and Re[z] > 1
for components 12 and 15. Such a non-analyticity of the non-planar amplitudes in
the multi-Regge limit, while absent in the planar limit, is not a new phenomenon.
It was already observed, for instance, in the computation of the non-planar impact
factor at one loop [156]. In our work [26] we also use the latter to compute in the
BFKL framework the non-analytic terms. We find agreement with the results of the
computation discussed here.

We provide the explicit expressions of the coefficients h(2)
a,k of the asymptotic

expansion given by Eq. (4.190) in both the upper and lower half of the complex z
plane in ancillary files of Ref. [26].

4.4.5 Multi-Regge Limit of theN = 8 Supergravity
Amplitude

In this section I discuss the multi-Regge asymptotics of the five-graviton amplitude
in N = 8 supergravity up to two-loop order. My collaborators and I initiated this
analysis at symbol level in Ref. [23], and then lifted it to function level in Ref. [26].
There are several novel featureswith respect to the correspondingN = 4 superYang-
Mills case. First of all, the behaviour of the rational factors of supergravity amplitude
is substantially more complicated. In order to see this, we need to normalise the
amplitudes and the hard functions so as to cancel the helicity. We choose to extract
a factor of PT2

1,
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M̃(�)

5 = M(�)

5

PT2
1

, F̃ (�)

5 = F (�)

5

PT2
1

. (4.196)

With this normalisation, the tree-level amplitude given by Eq. (4.71) is finite in the
multi-Regge limit,

M̃(0)
5 = − s21s

2
2

s2
z(1 − z̄)(z − z̄) + O(x) . (4.197)

The rational factors of the supergravity amplitude however diverge in general as 1/x2

at one loop and as 1/x4 at two loops. As a result, the asymptotic expansion of the
hard function is a double series of terms of the form x−m logk(x). Moreover, in order
to compute the leading contributions in the limit x → 0, the power corrections to
the asymptotic expansion of the pentagon integrals have to be taken into account.
They are given by the transformation matrix T in Eq. (4.144). This implies a drop
in transcendentality: the asymptotics of the hard function does not have uniform and
maximal weight, but contains lower-weight functions and rational factors.

At first it is natural to suspect that these complications are consequences of the
chosen normalisation, but they are in fact inevitable. We want a common normali-
sation factor at all loop orders. The dimensionality of the gravitational coupling κ
however implies that the dimension of the rational factors depends on the loop order.
We know that the latter diverge in the limit x → 0 as 1/x2 at one loop and as 1/x4 at
two loops with the normalisation given by Eq. (4.196). Therefore, any correction to
the latter which makes the two-loop rational factors finite also makes the one-loop
ones vanish, and does not cure the three-loop ones.Moreover, the normalisation given
by Eq. (4.196) is motivated. The minimal choice of normalisation factor to cancel
the helicity is given by a product of two Parke-Taylor factors. Among all possible
combinations, the one chosen in Eq. (4.196) is particularly good. In fact, most other
pairs of Parke-Taylor factors develop even higher poles in the limit. No product of
two Parke-Taylor factors leads to a less divergent behaviour of the rational factors
with respect to Eq. (4.196).

The rational factors are also related to another new feature. Some of them become
singular at z = z̄ in the multi-Regge limit, namely on the hypersurface where tr5
vanishes. This property is a consequence of the power corrections in the pentagon
integrals. We have seen in Sect. 4.2.4 that certain non-planar integrals are discon-
tinuous across the hypersurface tr5 = 0. Moreover, the Regge asymptotics of the
five-gluon hard function inN = 4 super Yang-Mills theory is not real analytic there,
as its second derivatives are discontinuous. If wewere to look at the subleading power
corrections, we would encounter rational factors singular at z = z̄ in the super Yang-
Mills hard function as well. Again, we cannot remove this uncomfortable feature by
changing the normalisation. The only way to cancel to poles at z = z̄ in the Regge
asymptotics of the supergravity hard function is the trivial one, i.e. to multiply it by
an appropriate power of (z − z̄). Higher poles at z = z̄ would however show up in
the higher power corrections, so that there is no overall fixed power of (z − z̄) that
would remove this singularity altogether.
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In the next two sections I present our results for the multi-Regge asymptotics of
the hard function at one and two-loop order. All the explicit expressions, written
in terms of the transcendental functions presented in Sect. 4.4.3, are provided in
ancillary files of Ref. [26].

One-loop hard function

The one-loop rational factors r (1)
i , normalised by PT2

1, are in general divergent in the
multi-Regge limit as

r (1)
i

PT2
1

∼
x→0

O
(

1

x2

)
. (4.198)

Therefore, in order to compute the asymptotics of the one-loop hard function up to
infinitesimal terms, we have to take into account power corrections up to x2 in the
asymptotic expansion of the pentagon integrals (4.144). We organise the asymptotic
expansion in the multi-Regge limit of the (normalised) one-loop hard function as

F̃ (1)
5 =

2∑

m=0

2∑

k=0

1

xm
logk(x) F (1)

m,k(s1, s2, s, z, z̄) + o(1) . (4.199)

The infinitesimal terms, i.e. those of the form xm logk(x) with m > 0 and k ≥ 0, are
neglected, but may be computed following the same procedure. The coefficients F (1)

m,k
contain a mixture of rational and transcendental functions with up to weight two.
The latter can be expressed entirely in terms of the single-valued logarithms given
by Eq. (4.158). The expression of the one-loop hard function in the multi-Regge
limit is thus straightforwardly valid in the whole s12 physical scattering region. As
an example, I spell out the leading power term,

F (1)
2,0 = 2iπ

s21s
2
2 z(1 − z̄)

s

[
g(1)
5 + z
(
g(1)
3 − g(1)

5

)
+ z̄
(
g(1)
4 − g(1)

3

)]
. (4.200)

I comment on the other terms proceeding by powers of log x .
Unlike the Yang-Mills theory case, the hard function in supergravity does exhibit

the maximal logarithms compatible with its transcendental weight. At one loop this
means log2 x . It is present only at power-suppressed order (O(x0)), so F (1)

2,2 = 0 and

F (1)
1,2 = 0, and is multiplied by the rational function

F (1)
0,2 = 2s31s

3
2 z(1 − z̄)(3z − 3z2 − z̄ + 4z2 z̄ + z̄2 − 4zz̄2)

s3
. (4.201)
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Also log1 x appears only at orderO(x0), i.e. F (1)
2,1 = 0 and F (1)

1,1 = 0. Its coefficient,

F (1)
0,1 , contains a rational and a weight-1 part.
The order-log0 x part is themost complicated. Equation (4.200) shows the leading-

power term, F (1)
2,0 . We find that F (1)

0,0 and F (1)
1,0 contain a mixture of terms of transcen-

dentalities ranging from 0 to 2. The expressions are too bulky to be given explicitly
here. Nonetheless, I can present them in a schematic way which highlights their
transcendentality structure:

F (1)
2,2 = 0 , F (1)

1,2 = 0 , F (1)
0,2 = Q(0)

0,2 ,

F (1)
2,1 = 0 , F (1)

1,1 = 0 , F (1)
0,1 = Q(1)

0,1 + iπQ(0)
0,1 + Q(0)′

0,1 ,

F (1)
2,0 = iπQ(1)

2,0 , F (1)
1,0 = iπQ(1)

1,0 + iπQ(0)
1,0 , F (1)

0,0 = Q(2)
0,0 + iπQ(1)

0,0 + Q(1)′
0,0 + iπQ(0)

0,0 + Q(0)′
0,0 .

(4.202)
where Q(w)

a,b denotes a uniform weight-w function, possibly containing rational
factors. These formulae show which components vanish and what transcendental
weights the others have. The explicit expressions are given in ancillary files of
Ref. [26].

As I anticipated in the introduction of this section, the hard function becomes sin-
gular for z = z̄ in the multi-Regge limit, because of its rational factors. In particular,
at one loop, F (1)

1,0 and F (1)
0,0 are divergent.Q

(1)
1,0 andQ

(1)
0,0 exhibit a simple pole at z = z̄,

andQ(1)
0,0 has a third-order pole. I stress that these poles do not cancel out upon series

expansion of the transcendental functions around z = z̄.

Two-loop hard function

The two-loop rational factors r (2)
i in general diverge as 1/x4 in the multi-Regge limit,

r (2)
i

PT2
1

∼
x→0

O
(

1

x4

)
. (4.203)

The soft factor σ5 is singular as well,

σ5 = −2iπs

x2
− 2s1s2

s
(1 − z − z̄ + 2zz̄) log(x) + O(1) . (4.204)

Therefore, computing the multi-Regge asymptotics of the two-loop hard function up
to infinitesimal terms requires the knowledge of the two-loop rational factors r (2)

i up
to order x0, while the one-loop rational factors r (1)

i and the soft factor σ5 are needed
up to order x2. As for the pentagon integrals, the power corrections in the asymptotic
expansion given by Eq. (4.144) have to computed up to order x4 at both one and two
loops.

We arrange the multi-Regge asymptotics of the (normalised) hard function at
two-loop order as
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F̃ (2)
5 =

4∑

m=0

4∑

k=0

1

xm
logk(x) F (2)

m,k(s1, s2, s, z, z̄) + o(1) . (4.205)

The coefficientsF (2)
5 havemixed transcendentality up toweight (4 − k). The leading-

power contribution is compact enough that I can present it here explicitly,

F (2)
4,0 = − 2π2s21s

2
2 z(−1 + z̄)

(
−z̄
(
g(1)
3 − g(1)

4

)2 + z
(
g(1)
3 − g(1)

5

)2 + 2g(1)
3 g(1)

5

− g(1)
4 g(1)

5 −
(
g(1)
5

)2 + 2g(2)
1

)
.

(4.206)
I discuss the remaining terms order by order in log x , adopting the same schematic
notation of Eq. (4.202) to emphasise the transcendentality structure.

The leading logarithm, log4(x), is associated with the simplest part of the hard
function. As at one loop, in fact, it appears only at order x0,

F (2)
4,4 = 0 , F (2)

3,4 = 0 , F (2)
2,4 = 0 , F (2)

1,4 = 0 , F (2)
0,4 = Q(0)

0,4 . (4.207)

where Q(0)
0,4 is a weight-0, i.e. rational, function. It is interesting to point out that the

power corrections of the pentagon integrals and of the soft factor σ5 do not contribute
at LL order.

At order log3(x) we find

F (2)
4,3 = 0 , F (2)

3,3 = 0 , F (2)
2,3 = iπQ(0)

2,3 , F (2)
1,3 = iπQ(0)

1,3 , F (2)
0,3 = Q(1)

0,3 + iπQ(0)
0,3 + Q(0)′

0,3 ,

(4.208)
where the apostrophe is simplymeant to distinguish different functions.Q(1)

0,3 involves
only the manifestly single-valued logarithms given by Eq. (4.158), together with
rational factors. The appearance of a rational termQ(0)′

0,3 in F
(2)
0,3 is a clearmanifestation

of the transcendentality drop. Some rational functions, Q(0)
1,3 and Q(0)

0,3, have poles at
z = z̄, of order 1 and 3, respectively.

At order log2(x) we find

F (2)
4,2 = 0 ,

F (2)
3,2 = 0 ,

F (2)
2,2 = iπQ(1)

2,2 + π2Q(0)
2,2 + iπQ(0)′

2,2 ,

F (2)
1,2 = iπQ(1)

1,2 + π2Q(0)
1,2 + iπQ(0)′

1,2 ,

F (2)
0,2 = Q(2)

0,2 + iπQ(1)
0,2 + π2Q(0)

0,2 + Q(1)′
0,2 + iπQ(0)′

0,2 + Q(0)′′
0,2 .

(4.209)

The transcendental part of the previous expressions can be entirely expressed in terms
of (products of) the single-valued logarithms in Eq. (4.158). Some rational functions
have poles at z = z̄ with order up to three.
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At order log(x) we find

F (2)
4,1 = 0 ,

F (2)
3,1 = 0 ,

F (2)
2,1 = iπQ(2)

2,1 + π2Q(1)
2,1 + iπ3Q(0)

2,1 + iπQ(1)′
2,1 + π2Q(0)′

2,1 + iπQ(0)′′
2,1 ,

F (2)
1,1 = iπQ(2)

1,1 + π2Q(1)
1,1 + iπ3Q(0)

1,1 + iπQ(1)′
1,1 + π2Q(0)′

1,1 + iπQ(0)′′
1,1 ,

F (2)
0,1 = Q(3)

0,1 + iπQ(2)
0,1 + π2Q(1)

0,1 + iπ3Q(0)
0,1 + ζ3Q(0)′

0,1 + Q(2)′
0,1 + iπQ(1)′

0,1

+ π2Q(0)′′
0,1 + Q(1)′′

0,1 + iπQ(0)′′′
0,1 + Q(0)′′′′

0,1 .

(4.210)

Almost all the weight-1 and 2 functions in these expressions involve only the single-
valued logarithms (4.158) and dilogarithm (4.162). The coefficient F (2)

0,1 alone has a
more complicated functional structure, especially at weight two and three.

Finally, at order log0(x) we find

F (2)
4,0 = π2Q(2)

4,0

F (2)
3,0 = π2Q(2)

3,0 + π2Q(1)
3,0 ,

F (2)
2,0 = iπQ(3)

2,0 + π2Q(2)
2,0 + iπ3Q(1)

2,0 + iπζ3Q(0)
2,0 + π4Q(0)′

2,0 + π2Q(1)′
2,0

+ iπ3Q(0)′′
2,0 + iπQ(1)′′

2,0 + π2Q(0)′′′
2,0 + iπQ(0)′′′′

2,0 ,

F (2)
1,0 = iπQ(3)

1,0 + π2Q(2)
1,0 + iπ3Q(1)

1,0 + iπζ3Q(0)
1,0 + π4Q(0)′

1,0 + iπQ(2)′
1,0

+ π2Q(1)′
1,0 + iπ3Q(0)′′

1,0 + iπQ(1)′′
1,0 + π2Q(0)′′′

1,0 + iπQ(0)′′′′
1,0 ,

F (2)
0,0 = Q(4)

0,0 + iπQ(3)
0,0 + π2Q(2)

0,0 + iπ3Q(1)
0,0 + ζ3Q(1)′

0,0 + π4Q(0)
0,0 + iπζ3Q(0)′

0,0

+ Q(3)′
0,0 + iπQ(2)′

0,0 + π2Q(1)′′
0,0 + iπ3Q(0)′′

0,0 + ζ3Q(0)′′′
0,0 + Q(2)′′

0,0

+ iπQ(1)′′′
0,0 + π2Q(0)′′′′

0,0 + Q(1)′′′′
0,0 + iπQ(0)′′′′′

0,0 + Q(0)′′′′′′
0,0 .

(4.211)
The leading-power coefficient F (2)

4,0 is given explicitly in Eq. (4.206). Both F (2)
4,0 and

F (2)
3,0 are non-zero only at this order in log x , where they are rather simple. They

involve only the single-valued logarithms (4.158) and the dilogarithm (4.162). The
structure of the coefficients F (2)

2,0 , F
(2)
1,0 and F (2)

0,0 is more complicated. In particular,

F (2)
2,0 and F (2)

1,0 contain functions with genuine weight three, while genuine weight-4

functions appear in F (2)
0,0 .

We can now make a few general observations. All the transcendental functions
appearing in the multi-Regge asymptotics of the hard function up to two loops are
real-analytic in both the upper and lower half of the complex z plane. In particular, I
stress that the hard function is real analytic across the line 1 − z − z̄ = 0. The rational
factors bring in singularities on the real axis, i.e. for z − z̄ = 0. It is thus impossible
to check the continuity of the full hard function across the real axis. The coefficients
which are not singular there—F (2)

0,4 , F
(2)
2,3 , F

(2)
2,2 , F

(2)
2,1 and F

(2)
4,0—domatch at Im[z] = 0,
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although their derivatives are discontinuous. The coefficients F (2)
1,3 , F

(2)
0,3 , F

(2)
1,2 , F

(2)
0,2 ,

F (2)
1,1 , F

(2)
3,0 are instead singular at z = z̄, but contain only functions which are single-

valued in the entire complex plane. In particular, F (2)
1,3 is purely rational. F

(2)
0,1 diverges

at z = z̄, and involves also functions which are defined separately in the two halves
of the complex plane. The singular rational factors however multiply single-valued
functions only, while the part which is finite at z = z̄ is continuous across the real
axis. This separation is impossible for F (2)

0,0 and F
(2)
1,0 , inwhich singular rational factors

appear alongside with non-single-valued functions. The coefficient F (2)
0,0 is the most

complicated, and contains the highest pole at z = z̄, of order 7.

4.4.6 Discussion

The two-loop five-particle hard function in N = 4 super Yang-Mills theory has a
substantially simpler multi-Regge asymptotics as compared to its supergravity coun-
terpart. The extremely simpler behaviour of the rational factors allows the hard func-
tion to maintain the uniform transcendental weight in the limit. The transcendental
functions appearing in the limit are also very simple: they can be expressed in terms
of classical polylogarithms of at most weight three. Nonetheless, the result exhibits
a very non-trivial analytic property, related to the pseudo-scalar invariant tr5. The
kinematics of the physical scattering constrains tr5 to be pure imaginary. Its sign dis-
tinguishes two copies of the scattering region, separated by the hypersurface tr5 = 0.
The Regge asymptotics of the super Yang-Mills hard function is continuous across
this hypersurface, but not real-analytic, as the second derivatives of certain colour
structures have discontinuities. This non-trivial analytic property stems from the dis-
continuity of certain individual non-planar integrals, which I discussed in Sect. 4.2.4.
The sum over all Feynman integrals smoothens this discontinuity, but leaves a trace
in the second derivatives of the hard function. In Ref. [26] we independently repro-
duced this non-analyticity using the BFKL effective theory. Using the latter we also
computed the multi-Regge limit of certain colour structures of the super Yang-Mills
hard function, finding agreement with the direct computation discussed here.

The N = 8 supergravity hard function has a much richer structure. The main
reason is that the rational factors develop poles in the Regge limit. This forces one
to include also power corrections in the asymptotic expansion of the integrals. As
a result, the Regge asymptotics of the hard function contains a mixture of terms
of different transcendental weight (up to four) and rational functions. Unlike the
N = 4 super Yang-Mills case, some of the rational factors become singular on the
hypersurface where tr5 = 0. The transcendental functions are more complicated as
well: they involve genuine weight-four functions and multiple polylogarithms.
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4.5 The All-Plus Amplitude in Pure Yang-Mills Theory

In this Section I present the computation of the amplitude describing the scattering of
five positive-helicity gluons at two-loop order in pure Yang-Mills theory [27]. This
constituted the very first fully-analytic result for a two-loop five-particle amplitude
including the non-planar contributions. We achieved it by employing the knowledge
of the massless two-loop five-particle integral families discussed in Sect. 4.2, start-
ing from the integrand constructed in Ref. [29]. The same result was independently
reached also in Ref. [28]. In the latter, the authors make a very smart use of the par-
ticularly simple structure of the all-plus gluonic amplitudes, and adopt a completely
different approach based on four-dimensional unitarity and recursion methods. Our
goal, on the other hand, was not to compute this specific amplitude, but to prepare
for the computation of all two-loop five-parton amplitudes in QCD. For this reason
we did not take advantage of the simplicity of the all-plus helicity configuration, and
tackled head-on a fully-fledged two-loop five-particle computation. The success of
our computation shows that the doors are nowopen for the analytic computation of all
the two-loop amplitudes entering the virtual corrections to processes with three parti-
cles in the final state at NNLO in QCD. Ultimately, this will enable the computation
of NNLO theoretical predictions for several processes of great phenomenological
interest, such as the production of three hadronic jets, of two photons and a jet, and
of one photon and two jets.

Moreover, the result presented in this section gives one more example of why
collecting analytic “data” is not only important for phenomenology, but is also crucial
to the advance of our theoretical understanding. It allows one to uncover structures
and patterns which may lead to deeper insights in the underlying theory, and to test
new ideas. Discovering patterns and structures is of course simpler if the expressions
are compact. This is why we put a lot of effort in simplifying our result for the all-
plus hard function, until it eventually fit in just two lines. This effort was rewarded. It
allowed us to notice that certain pieces of the hard function are conformally invariant,
i.e. they are annihilated by the generator of (special) conformal transformations [157],

kαα̇ =
5∑

i=1

∂2

∂λα
i ∂λ̃α̇

i

. (4.212)

The pure Yang-Mills Lagrangian is conformally invariant at the classical level. This
symmetry is however obscured by quantum corrections, due to the introduction of
scales to regularise the divergences. Finding signs of it at loop level is intriguing.
Indeed, another work stemmed from this observation. My collaborators and I proved
that the one-loop all-plus amplitude is conformally invariant for any number of
external gluons, which also explains the signs of conformal symmetry observed at
two loops [30].

I begin in Sect. 4.5.1 by defining the notation and discussing the tree-level and
one-loop amplitudes. Section 4.5.2 is devoted to the divergence structure of the two-
loop amplitude: I show how the UV divergences are removed via renormalisation,
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and how the IR divergences factorise and can be subtracted to define a finite hard
function. Anticipating the form of the latter is much more complicated than in the
supersymmetric cases discussed in Sect. 4.3. Nonetheless, in Sect. 4.5.3 I show how,
using four-dimensional unitarity and making a guess for the rational factors based
on the known planar part of the amplitude, we can write down a rather constrained
ansatz for the two-loop hard function. Having set our expectations, we can proceed
with the actual computation. The workflow is similar to the one adopted for the
supersymmetric amplitudes in Sect. 4.3, but requires some additional work at the
beginning. The expression for the integrand in the literature [29] is written in a form
which cannot be directly fed into the IBP reductions. I show in Sect. 4.5.4 how we
can rewrite it in a suitable form, i.e. in terms of inverse propagators. This procedure
introduces numeratorswhich depend on the loopmomentawith amuch higher degree
with respect to the supersymmetric cases. The IBP reduction to canonical basis
integrals is therefore substantially more involved. In Sect. 4.5.5 I show how this
bottleneck is overcome thanks to the finite field approach. I present and validate the
result for the two-loop hard function in Sect. 4.5.6. The expression is remarkably
compact, agrees with the expectations formulated in Sect. 4.5.3 and shows intriguing
signs of conformal symmetry. Finally, I comment on the result in Sect. 4.5.7.

4.5.1 Notation

We study the scattering of five gluons with positive helicity. The kinematics is dis-
cussed in Sect. 4.1. I recall that the loop momenta are D-dimensional, whereas
we take the external momenta pi to lie in four-dimensional Minkowski space. The
algebra in the numerators of the integrand introduces the spin dimension of the
gluon, Ds = gμ

μ. We keep the dependence on the latter explicit. Results in the Four-
Dimensional-Helicity [158] and t’Hooft-Veltman [159] schemes are obtained by
setting Ds = 4 and Ds = 4 − 2ε, respectively. In order the make the expressions
more compact, we introduce the short-hand notation

κ = Ds − 2

6
. (4.213)

We absorb the difference between the loop-integration measure of Feynman dia-
grams and of Feynman integrals in the coupling,

a = g2
e−εγE

(4π)2−ε
. (4.214)

We expand the five-gluon all-plus amplitude in a as

A5 = ig3 δ(4)(p1 + . . . + p5)
∑

�≥0

a� A(�)

5 . (4.215)
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Thanks to the particular helicity configuration, the amplitude enjoys a symmetry
under any permutation of the external gluons. Moreover, the amplitude vanishes at
tree-level [160, 161], and is thus finite at one loop.

We treat the amplitude as a vector in colour space. We use the trace-based basis
{Tλ}22λ=1 defined by Eqs. (4.65) and (4.66), and decompose the one and two-loop
amplitudes as

A(1)
5 =

12∑

λ=1

Nc A
(1,0)
λ Tλ +

22∑

λ=13

A(1,1)
λ Tλ , (4.216)

A(2)
5 =

12∑

λ=1

(
N 2
c A

(2,0)
λ + A(2,2)

λ

)
Tλ +

22∑

λ=13

NcA
(2,1)
λ Tλ . (4.217)

The partial amplitudes A(�,k)
λ satisfy the same group-theoretic identities [58, 59]

which I discuss in Sect. 4.3.1 for the N = 4 super Yang-Mills amplitude.
The one-loop partial amplitudes A(1,k)

λ can be expressed in terms of permutations
of one leading-colour component, say A(1,0)

1 . An expression for the latter can be
found in Ref. [48],

A(1,0)
1 = κ

2

s12s23 + s23s34 + s34s45 + s45s51 + s51s12 + tr5
〈12〉〈23〉〈34〉〈45〉〈51〉 + O(ε) . (4.218)

The rationality of the one-loop all-plus amplitude at order ε0 follows from the vanish-
ing of the all-plus and single-minus tree-level amplitudes through cutting rules. For
similar reasons the only allowed singularities are those where two colour-adjacent
momenta become collinear. The expression given byEq. (4.218)makesmanifest both
the permutation symmetry and the absence of spurious poles. We can sacrifice the
apparent expression of these two properties to highlight another: conformal symme-
try. The four-dimensional part of the one-loop all-plus amplitude is in fact annihilated
by the generator of special conformal transformations given by Eq. (4.212),5

kαα̇A
(1,k)
λ = O(ε) . (4.219)

This property is not at all obvious from Eq. (4.218), but becomes apparent if we
rewrite it as [27, 30]

A(1,0)
1 = κ

( [45]2
〈12〉〈23〉〈31〉 + [23]2

〈45〉〈51〉〈14〉 + [52]2
〈41〉〈13〉〈34〉

)
+ O(ε) . (4.220)

5 We are interested in generic configurations of the external momenta, and we therefore neglect
contact terms arising from differentiation [157, 162–165]. Moreover, the complete amplitude also
contains an overall momentum conservation δ function. Thanks to Lorentz and dilatation invariance,
the generator kαα̇ commutes with the δ function [157, 166].
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Conformal symmetry is now manifest term by term. Each addend is trivially annihi-
lated by the generator kαα̇, due to the form of the latter. See Ref. [30] for a thorough
discussion of the conformal properties of the n-gluon all-plus amplitudes. Note that
the higher orders in ε of the one-loop all-plus amplitude are substantially more com-
plicated, and involve functions with transcendental weight up to 4 at order ε2. In fact,
they play a crucial role in simplifying the expression of the two-loop hard function
by cancelling out the most complicated part of the two-loop amplitude.

Thanks to the complete permutation symmetry, the two-loop amplitude can be
expressed in terms permutations of just three partial amplitudes, e.g. as

A(2)
5 =

∑

σ∈S5/ST1

σ ◦
[(

N 2
c A

(2,0)
1 + A(2,2)

1

)
T1
]

+
∑

σ∈S5/ST13

σ ◦
[
NcA

(2,1)
13 T13
]

,

(4.221)

where the sums run over the permutations of the external legs, S5, modulo the subsets
STλ

of permutations that leave Tλ invariant. The two-loop planar partial amplitude
A(2,0)
1 was computed in Refs. [1, 4]. The most sub-leading colour component, A(2,2)

1 ,
can be expressed in terms of planar and double-trace components through colour rela-
tions [58]. The truly new piece of information that my collaborators and I computed
in Ref. [27] is thus the double-trace component A(2,1)

13 .

4.5.2 Divergence Structure and Hard Function

The divergence structure of the five-gluon all-plus amplitude in pure Yang-Mills
theory is very similar to that of the MHV amplitude in N = 4 super Yang-Mills
theory discussed in Sect. 4.3.4. The main difference is that the former has ultraviolet
divergences as well. Before we subtract the infrared divergences, therefore, we need
to renormalise the amplitude. The ultraviolet divergences in pure Yang-Mills ampli-
tudes can be universally absorbed into a renormalisation of the coupling. In other
words, we need to replace the bare coupling a with the running coupling aR(μ),

a = Z(μ)aR(μ)μ2ε , (4.222)

where μ and Z are the renormalisation scale and the coupling renormalisation factor,
respectively. The running of the coupling is governed by the β function,

β(aR) = −2a2Rβ0 + O(a3R) , (4.223)

through

daR
d logμ

= −2εaR + β(aR) . (4.224)
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Differentiating both sides of Eq. (4.222) gives an evolution equation for the renor-
malisation factor Z ,

d log Z

d logμ
= −β(aR)

aR
, (4.225)

whose solution is given up to order aR by

Z = 1 − β0

ε
aR + O(a2R) . (4.226)

Substituting the bare with the running coupling in the expansion of the ampli-
tude (4.215) and series expanding in the running coupling aR gives the renormalised
amplitudes,

A(1)
5,ren. = A(1)

5 , (4.227)

A(2)
5,ren. = A(2)

5 − 5β0

2ε
A(1)

5 . (4.228)

Hereafter I will often set the renormalisation scale to 1. The explicit dependence
can be recovered by dimensional analysis. The renormalised amplitudes inherit the
colour decomposition from the bare amplitudes.

The infrared singularities of the renormalised amplitude then factorise according
to the same dipole formula (4.95) discussed in Sect. 4.3.4 for theN = 4 super Yang-
Mills case. The cusp and collinear anomalous dimensions are in this case given
by [167]

γcusp =
∞∑

k=0

γ(k)
cuspa

k+1
R = 4aR + O(a2R) , (4.229)

γc =
∞∑

k=0

γ(k)
c ak+1

R = −β0aR + O(a2R) . (4.230)

The specific value of β0 is irrelevant here, as we are about to see. Since the tree-level
amplitude vanishes, we need the infrared pole operator Z5 only up to order a,

Z5 = 1 + a Z(1)
5 + O(a2). (4.231)

Putting together Eqs. (4.97), (4.99), and (4.100) gives

Z(1)
5 = 1

2ε2
γ(0)
cusp

⎡

⎣
5∑

i< j

Ti · T j − ε

5∑

i< j

(
Ti · T j
)
log

(−si j
μ2

)⎤

⎦+ 5

2ε
γ(0)
c , (4.232)
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where I recall that Ti is the colour-insertion operator defined by Eq. (4.98), and
that the logarithms have to be analytically continued to the s12 channel according to
Eq. (4.103). The finite two-loop amplitude is then given by

A(2)
5,finite = A(2)

5,ren. − Z(1)
5 A(1)

5,ren. =
= A(2)

5 − 5β0

2ε
A(1)

5 − Z(1)
5 A(1)

5 .
(4.233)

Thanks to the specific value of the collinear anomalous dimension, given by
Eq. (4.230), a nice simplification occurs. The contribution coming from the ultravi-
olet renormalisation cancels out with the contribution proportional to the collinear
anomalous dimension in the infrared pole operator, given by Eq. (4.232). As a result,
the finite two-loop amplitude is simply given by

A(2)
5,finite = A(2)

5 − 1

2ε2
γ(0)
cusp

⎡

⎣
5∑

i< j

Ti · T j − ε

5∑

i< j

(
Ti · T j
)
log

(−si j
μ2

)⎤

⎦A(1)
5 .

(4.234)

I recall that we are currently working in the MS subtraction scheme of infrared
singularities, namely that the infrared pole operator contains only the pure pole part.
We are however free to modify the finite part of Z(1)

5 , this way defining a different
scheme. In the square brackets on the right-hand side of Eq. (4.234) we recognise
the first two terms of a series expansion. We find it convenient to lift the latter to the
complete series,

Z(1)′
5 := 1

2ε2
γ(0)
cusp

5∑

i< j

Ti · T j

(
μ2

−si j

)ε

. (4.235)

We observe that a further simplification in the hard function can be achieved by
multiplying the infrared pole operator by a constant,

eεγE

�(1 − ε)
= 1 − π2ε2

12
+ O(ε3) , (4.236)

which affects only the finite part. In fact, this constant factor is present in Catani’s
original subtraction operators [95]. Finally,we define the two-loopfive-gluon all-plus
hard function as

H(2) = lim
ε→0

[
A(2)

5 − Z̃
(1)
5 A(1)

5

]
, (4.237)

with
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Z̃
(1)
5 = γ(0)

cusp

2

eεγE

ε2�(1 − ε)

5∑

i< j

Ti · T j

(
μ2

−si j

)ε

. (4.238)

We decompose the hard function in colour space similarly to the amplitudes. Renor-
malisation and infrared factorisation scales are set to 1.

4.5.3 Expected Structure of the Hard Function

Wehave seen in Sect. 4.3 that having a prior insight into the structure of the integrated
amplitude can simplify dramatically its computation. Things are howevermuchmore
complicated in Yang-Mills theory than in the maximally supersymmetric theories.
The two-loop five-particle amplitudes inN = 4 super Yang-Mills theory andN = 8
supergravity could in fact be constrained significantly before actually computing
them. They were both expected to have uniform transcendental weight and, thanks
to the absence of double poles in the integrands, the rational factors can be computed
using the leading singularity technique discussed in Sects. 3.6.1 and 4.2.1. The Yang-
Mills amplitude is instead amixture of functionswith different weight, bounded from
the conjecture expressed by Eq. (3.110). Moreover, the integrand has double poles
and the analysis of the leading singularities allows us to determine only a small
subset of the potential rational factors. The all-plus helicity configuration is however
special, and we can actually say quite a lot about the hard function.

We start by separating the two-loop hard function into a transcendental P (2) and
a rational part R(2),

H(2) = P (2) + R(2) . (4.239)

The hard function is a four dimensional object, and we can thus compute its transcen-
dental part P (2) using four-dimensional unitarity methods [168, 169]. The one-loop
all-plus amplitude is rational in four dimensions, and can effectively be used as an
additional on-shell vertex. The four-dimensional cuts of the two-loop amplitude this
way become one-loop cuts with an insertion of this effective vertex [28]. In this
spirit, the one and two-loop all-plus amplitudes are treated as tree-level and one-
loop, respectively. This implies that the functions appearing in the two-loop all-plus
amplitude have at most transcendental weight two.We can go even further. The anal-
ysis carried out in Ref. [28] shows that only the quadruple cuts contribute to the hard
function. In other words, the polylogarithmic part of the two-loop hard function can
be expressed in terms of box integrals. In particular, box integrals with one massive
leg, since they have to accommodate five external particles. The finite part of the
one-mass box integral with external momenta {p1, p2, p3, p4 + p5} is given by

I123;45 = Li2

(
1 − s12

s45

)
+ Li2

(
1 − s23

s45

)
+ log2
(
s12
s23

)
+ π2

6
. (4.240)
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Permuting in all possible ways the external legs produces 30 linearly-independent
one-mass box functions. We introduce an arbitrary basis, {I boxk }30k=1. Thanks to their
simplicity, they can be analytically continued to the s12 channel by simply adding a
small positive imaginary part to each two-particleMandelstam invariant, si j → si j +
i0+. The leading singularities associated with the quadruple cuts can be computed
e.g. using the method of the on-shell diagrams [170] (see Ref. [57] for a pedagogical
introduction). They are given by permutations of the finite part of the one-loop all-
plus amplitude. Thanks to our new formula for the latter, Eq. (4.220), we can express
these leading singularities as permutations of the basic conformally invariant object,

R = [45]2
〈12〉〈23〉〈31〉 . (4.241)

The permutations of the latter span a six-dimensional space.We introduce an arbitrary
basis, {Ri }6k=i . As a result, the transcendental part of the two-loop hard function has
a very constrained form,

P (2)
λ =

6∑

i=1

30∑

k=1

c(λ)
i,k Ri I

box
k , (4.242)

where c(λ)
i,k are rational numbers. Indeed, the planar hard function, previously com-

puted in Refs. [1, 4], perfectly matches the form given by Eq. (4.242). In order to
emphasise this, we rewrite it as

H(2,0)
1 =

∑

σ∈ST1

σ ◦
{
−κ

[45]2
〈12〉〈23〉〈31〉 I123;45+

+ κ2 1

〈12〉〈23〉〈34〉〈45〉〈51〉
[
5 s12s23 + s12s34 + tr2+(1245)

s12s45

]}
,

(4.243)
where

tr+(i jkl) = 1

2
tr
(
(1 + γ5)/pi /p j /pk /pl

)
= [i j]〈 jk〉[kl]〈li〉 , (4.244)

and ST1 is the set of all permutations of the external legs which leave the trace T1—
defined in Eq. (4.65)—invariant. In other words, ST1 contains the cyclic permutations
of the external legs.

The rational part of the two-loop hard function,R(2), is more elusive. The authors
of Ref. [28] computed it using recursive methods. For our purpose, we just want to
constrain it so as to simplify the assembly of amplitude. We adopt a heuristic but
very easy and quick approach. We assume that the rational functions appearing in
the non-planar amplitude are just non-cyclic permutations of the ones appearing in
the planar one. The rational factors in the planar hard function given by Eq. (4.243),
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permuted in all possible ways, generate a 76-dimensional vector space over Q. We
extract an arbitrary basis, {ri }76i=1, preferring the most compact functions. If our guess
is correct, then the rational part of the two-loop hard function is simply given by

R(2)
λ =

76∑

i=1

c(λ)
i ri , (4.245)

for some rational numbers c(λ)
i . As we will see, this is correct.

One might argue that such a guess is a bit far-fetched. The choice of which ratio-
nal functions we consider as separate in the planar hard function, for instance, is
completely arbitrary, and highly depends on the specific expression of the result.
Different people may have different tastes in this regard, and might thus come up
with different guesses for the basis of rational functions. Even so, it would still be
convenient to attempt this approach. Constructing such a simple ansatz costs no
effort and is very quick. If it is incorrect, there is no solution for the constant coef-
ficients. There is no risk of ending up with a wrong result, and no reason to despair
(typically). In fact, even without having any idea about the form of the result, we
can still reconstruct it analytically from the evaluation in a finite number of random
points. This idea reaches its peak of performance in the combination of finite field
arithmetics (also known as modular arithmetics) and multivariate functional recon-
struction algorithms [171, 172], implemented in the extremely flexible framework
FiniteFlow [173]. Moreover, even when a full-fledged finite field reconstruction
is needed, having a basis that covers a good portion of the functions appearing in
the result can reduce the complexity of the problem.6 If the ansatz is correct, on the
other hand, the result is reconstructed from just as many evaluations as the number
of unfixed constants, which is typically much smaller than the number of evaluations
required by even the most efficient reconstruction algorithm.

4.5.4 How to Express the Integrand in Terms of Inverse
Propagators

Our starting point is the integrand computed in Ref. [29] using modern generalised
unitarity techniques. I show it in a pictorial way in Fig. 4.5. It is given as a sum over
all the permutations of the external legs of a summand, written in terms of colour
factors and integrals of the families shown in Fig. 4.1. In the figure, I indicates

6 The idea is to first reconstruct only the linear relations among the functions that need to be
reconstructed—e.g. the rational prefactors of the iterated integrals or of a transcendental function
basis—together with the ones we guessed. This typically requires fewer evaluations than the full
reconstruction. We can then use the linear relations to express the most complicated functions in
terms of simpler ones and of functionswe guessed, which do not need to be reconstructed at all. Note
that this pays off only if the functions which remain to be reconstructed require fewer evaluations
than the original ones. For this reason having a good guess can be crucial.



4.5 The All-Plus Amplitude in Pure Yang-Mills Theory 189
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Fig. 4.5 Pictorial representation of the two-loop five-gluon all-plus amplitude in pure Yang-Mills
theory as presented in Ref. [29]

loop integration and C(X) stands for the colour factor of the diagram X , which we
express as a vector in the colour basis {Tλ}22λ=1 defined in Eqs. (4.65) and (4.66).
Finally, �(X) indicates that the Feynman integral X is decorated with a numerator
dependent on the loop momenta. For the explicit expressions of the latter I refer to
the original paper [29]. What matters here is that the numerators are written in terms
of the D > 4-dimensional part of the loop momenta, the so-called “μ terms.”

A loop momentum ki in D = 4 − 2ε dimensions can be decomposed as

ki = k[4]
i + k[−2ε]

i , (4.246)

where k[4]
i lives in the same four-dimensional subspace as the external momenta pi ,

and all the extra dimensionality is contained in k[−2ε]
i . The latter is perpendicular to

the four-dimensional subspace,

k[−2ε]
i · k[4]

j = 0 = k[−2ε]
i · p j ∀i = 1, 2 ,∀ j = 1, . . . , 5 . (4.247)

In the regularisation schemewe adopted, therefore, only the scalar products involving
two loop momenta receive contribution from the extra dimensions,

μi j = k[−2ε]
i · k[−2ε]

j . (4.248)

In other words, the extra dimensionality of a loop integrand can be entirely described
by of theseμ terms. At two loops there are three of them:μ11,μ12, andμ22. In order to
employ the IBP machinery, we need to rewrite them in terms of inverse propagators
and kinematic variables.
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In Sect. 4.2.1 we have seen another way of capturing the extra dimensionality of
the loop integrands, namely throughGramdeterminants involving the loopmomenta.
Clearly the Gram determinants must be related to the μ terms, and indeed offer one
way to rewrite the latter in terms of inverse propagators,

μi j = 1

2�
detG

(
ki , p1, p2, p3, p4
k j , p1, p2, p3, p4

)
, (4.249)

where I recall that the Gram matrix of two sets of momenta is defined by Eq. (4.18).
The Gram determinant in this relation evaluates to a polynomial in the scalar prod-
ucts of loop and external momenta, which can then expressed in terms of inverse
propagators using simple linear algebra. Proving Eq. (4.249) is rather easy. First,
note that only the extra-dimensional part of the loop momenta give a non-vanishing
contribution to the Gram determinant on the right-hand side of Eq. (4.249),

detG

(
ki , p1, p2, p3, p4
k j , p1, p2, p3, p4

)
= detG

(
k[−2ε]
i , p1, p2, p3, p4
k[−2ε]
j , p1, p2, p3, p4

)
, (4.250)

because the four-dimensional parts of the loopmomenta are linearly dependent on the
external momenta {pi }4i=1. Since k

[−2ε]
i is perpendicular to the external momenta, the

only term which survives in the determinant is the one proportional to k[−2ε]
i · k[−2ε]

j ,

detG

(
k[−2ε]
i , p1, p2, p3, p4
k[−2ε]
j , p1, p2, p3, p4

)
= 2(k[−2ε]

i · k[−2ε]
j )detG

(
p1, p2, p3, p4
p1, p2, p3, p4

)
. (4.251)

Putting together Eqs. (4.250) and (4.251) and recalling the definitions of the Gram
determinant of the external legs � and of the μ terms then gives Eq. (4.249).

Having dealt with the μ terms, there is one last ingredient of the integrand of
Ref. [29] which requires some work to be expressed in terms of inverse propagators:
the spinor chains involving a loop momentum k j , such as

〈i |k j |k]〈kl〉[li] , (4.252)

where ki is understood as the double spinor ki αα̇ = ki μ(σμ)αα̇, with σμ = (1, �σ)

being the four-vector of the Pauli matrices σi (see e.g. any of Refs. [56, 57, 174]
for a pedagogical discussion of the spinor-helicity formalism). In order to deal with
spinor chains such as the one given by Eq. (4.252), let us take one step back and
trade k j for an external momentum p j . Then, the trace in the SU (2) indices can be
turned into a trace in the Dirac indices through the well-known relation

〈i j〉[ jk]〈kl〉[li] = tr

[
1 − γ5

2
/pi /p j /pk /pl

]
. (4.253)



4.5 The All-Plus Amplitude in Pure Yang-Mills Theory 191

This identity actually holds also if one of the light-likemomenta, say p j , is substituted
by an off-shell momentum k j ,

〈i |k j |k]〈kl〉[li] = tr

[
1 − γ5

2
/pi/k j /pk /pl

]
. (4.254)

Since the externalmomenta pi lie in the four-dimensional subspace, also any complex
vector λi λ̃ j does, so that—because of Eq. (4.247)—the left-hand side of Eq. (4.254)
only sees the four-dimensional component of the off-shell momentum, k[4]

j . The latter
can always be decomposed into two auxiliary four-dimensional light-like momenta
n(a),

k[4]
j =

2∑

a=1

n(a) . (4.255)

For each of the light-likemomenta n(a) Eq. (4.253) holds, and the linearity of the trace
then implies Eq. (4.254). The use of Eq. (4.254) produces ε-contractions involving
loop momenta,

tr
(
γ5/pi/k j /pk /pl

) = −4iε
(
pi , k j , pk, pl

)
, (4.256)

which also need to be rewritten in terms of scalar products and tr5. In order to do this,
consider the identity relating the product of two Levi-Civita symbols to the metric
tensor gμν ,

εμ1μ2μ3μ4εν1ν2ν3ν4 = −det (gμiν j ) , (4.257)

where the factor of −1 comes from the Minkowskian signature, and on the right-
hand side there is the determinant of the matrix whose entries are gμiν j , with i, j =
1, . . . , 4. It follows that an ε-contraction involving one loop momentum ki can be
rewritten as

ε(ki , p j , pk, pl) = i

4 tr5
detG

(
ki , p j , pk, pl
p1, p2, p3, p4

)
, (4.258)

where we used that tr5 = −4iε(p1, p2, p3, p4), and the Gram determinant is defined
by Eq. (4.18). On the right-hand side of Eq. (4.258) the loop momentum ki appears
only in scalar products, and thus in inverse propagators. There is however a subtlety.
The identity (4.257) is four-dimensional, whereas the Gram determinant is defined
for D-dimensional vectors. One has thus to be careful when using Eq. (4.258). On
the left-hand side, the loop momentum ki is projected onto the four-dimensional
subspace by the Levi-Civita symbol. On the right-hand side, the loop momentum ki
always appears in scalar products with the external momenta pi , and is thus projected
on the four-dimensional subspace as well. Only the four-dimensional component of
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ki thus contributes on both sides. This happens because we have chosen the auxiliary
set of momenta in the Gram determinant—i.e. the lower one—to be made by four-
dimensional momenta only. For this reason, Eq. (4.258) holds also if there is more
than one loop momentum in the ε-contraction on the left-hand side, but fails if a
loop momentum is present in the auxiliary set of vectors, too. Let us consider, for
instance, a product of two ε-contractions both containing a loop momentum, e.g.

ε(ki , p1, p2, p3)ε(k j , p1, p2, p3) . (4.259)

One might naïvely use Eq. (4.257) to rewrite this product as

ε(ki , p1, p2, p3)ε(k j , p1, p2, p3) = − 1

16
detG

(
ki , p1, p2, p3
k j , p1, p2, p3

)
. (4.260)

This is wrong, because Eq. (4.257) holds only in D = 4 dimensions. On the right-
hand side there are contributions from the extra-dimensional components k[−2ε]

i and
k[−2ε]
j , which are instead absent on the left-hand side. Equation (4.260) therefore

needs to be corrected by some μ-terms (4.248),

ε(ki , p1, p2, p3)ε(k j , p1, p2, p3) = − 1

16
detG

(
ki , p1, p2, p3
k j , p1, p2, p3

)
+ (μ terms) .

(4.261)

On the other hand, it is straightforward to rewrite correctly a product of two ε-
contractions containing loop momenta such as Eq. (4.259) by applying Eq. (4.258)
to each of the ε-contractions separately, so that the loop momenta are everywhere
projected onto the four-dimensional subspace, as they should. By comparing the
outcome of the two different procedures, we can also fix the μ-terms needed to
correct Eq. (4.260),

(μ terms) = s12s23(s12 + s23 − s45)

2
μ12 . (4.262)

Using Eqs. (4.249) and (4.254) we can express the integrand of Ref. [29] in terms
of inverse propagators, and feed it into the IBP machinery. I discuss all the steps
which take us from the integrand to the fully-analytic result for the hard function in
the next section.

4.5.5 Computation of the Hard Function

The procedure discussed in the previous section returns a form of the integrand
which can be immediately fed into the usual IBP workflow. Conceptually there is
no difference in the next steps with respect to what we have already done for the
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maximally supersymmetric amplitudes in Sect. 4.3. There is however an important
practical difference. The integrand of the two-loop five-particle all-plus amplitude
in pure Yang-Mills theory features numerators with up to degree five for the eight-
propagator integrals shown in Fig. 4.1, and six for some of the one-loop squared
sectors. This is substantially higher as compared to the N = 4 super Yang-Mills
and N = 8 supergravity amplitudes, whose integrands have numerators with up to
degree one and two in the loop momenta, respectively. This means that the IBPs
identities required to reduce the all-plus amplitude to basis integrals are dramatically
more complicated. Recent conceptual and technical advances have finally brought
the solution of IBP systems of such a complexity within reach. In particular, what
was crucial in our computation was the finite-field method [171–173].

In the maximally supersymmetric theories discussed in Sect. 4.3 we have sim-
plified the sums over the permutations of the external legs in the amplitudes by
performing them “numerically,” i.e. we evaluated the rational functions in random
rational kinematic points. The analytic results were recovered from a small number
of evaluations by fitting well-motivated ansätze. The basic idea of finite fields is sim-
ilar: the rational functions are evaluated in random rational kinematic points modulo
some (big) prime number. This ensures that there is no loss of accuracy, which would
occur using floating point numbers, and no overflow, which could instead occur if
arbitrarily large integers were allowed to appear. Note that also ε can be evaluated
numerically. The fully analytic result can then be recovered from a finite number of
evaluations using very efficient multi-variate functional reconstruction algorithms.
The different evaluations are independent and can therefore be carried out in parallel
on a computing cluster. We used the framework FiniteFlow [173], which combines
the “speed” of C++ with the flexibility and user-friendliness of a Mathematica
interface.

One important advantage of using finite fields is that we can really target what we
are interested in, namely the amplitude or hard function, and treat all the intermediate
steps numerically. In particular, one is in general not interested in the solution of the
IBP system on its own. It is typically more complicated than the amplitude itself, and
its purpose is usually only to express the un-integrated amplitude in terms of basis
integrals. Determining the solution of the IBP system analytically may often be a
waste of time. All the steps from the integrand7 to the integrated hard function can
be performed numerically over finite fields, including the solution of the IBP system.
Only the final expression for the hard function is then reconstructed analytically. This
strategy has by nowbecome the state of the art, and several cutting-edge computations
have benefited from it. Just to mention one example, see the computation of all the
two-loop five-parton amplitudes in planar QCD in the Euclidean scattering region [6,
8]. More recently there have been even further advances in simplifying the system
of IBP relations [175] and the coefficients of the IBP reductions [176].

In Sect. 4.5.3 we made a reasonable ansatz for the two-loop five-gluon all-plus
amplitude. In such a case it is not necessary to perform a full-fledged functional
reconstruction. We just need to “fit” the constants in the ansatz. However, one of

7 Even the integrand can be constructed using finite fields.
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our main goals is to assess the feasibility of the computation of non-planar five-
parton amplitudes at two loops in general. For this reason, we also carried out the
computation ignoring the ansatz. We set up a system of IBPs identities with the help
of LiteRed [177]. We solve it over finite fields to express the one and two-loop
integrands in terms of pure basis integrals (see Sect. 4.2). We use the differential
equations in the canonical form and the boundary constants discussed in Sect. 4.2
to rewrite all the pure integrals in terms of Chen’s iterated integrals. We assemble
the two amplitudes in the hard function as shown in Eq. (4.237). In order to have a
common notation, we express also the infrared pole operator Z̃5 in terms of iterated
integrals. At every step the rational functions are evaluated in a random (rational)
kinematic point (including ε) modulo some prime number. Finally, we reconstruct
analytically the rational factors of the iterated integrals and of the transcendental
constants. The workflow is implemented in the framework FiniteFlow [173].

4.5.6 Result

Expressing all the ingredients of the hard function in terms ofChen’s iterated integrals
offers a useful practical advantage: all the simplifications due to functional relations
among the transcendental functions are automatically implemented. Before carrying
out the functional reconstruction we can already see marvellous simplifications:
all the weight one, three and four iterated integrals cancel out altogether. Only the
weight-two iterated integrals survive, which can be easily expressed in terms of
(products of) logarithms and dilogarithms, e.g.

[W1]s0 (s) = log
( s12
3

)
, (4.263)

[
W5

W2
,
W12

W2

]

s0

(s) = −Li2

(
1 − s51

s23

)
. (4.264)

All the relevant functions are manifestly real valued in the s12-channel. The imagi-
nary parts appear explicitly through the boundary values. Moreover, all logarithms
and dilogarithms, including their imaginary parts, can be absorbed into permutations
of the one-mass box functions defined in Eq. (4.240). Finally, the functional recon-
struction shows that the two-loop hard function has precisely the form we guessed
in Sect. 4.5.3. After some effort to simplify the expression, the result fits in just two
lines,

H(2,1)
13 =

∑

σ∈ST13
σ ◦
{
6κ2
[
3

2

[12]2
〈34〉〈45〉〈53〉 − s23 tr−(1345)

s34 〈12〉〈23〉〈34〉〈45〉〈51〉
]
+

+ κ
[15]2

〈23〉〈34〉〈42〉
[
I234;15 + I243;15 − I324;15 − 4 I345;12 − 4 I354;12 − 4 I435;12

]}
,

(4.265)
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where

tr−(i jkl) = 1

2
tr
(
(1 − γ5)/pi /p j /pk /pl

)
= 〈i j〉[ jk]〈kl〉[li] . (4.266)

All the other partial amplitudes can be obtained fromEqs. (4.243) and (4.265) through
permutations of the external legs and colour relations (see Eq. (4.221) and below).
Thanks to the simplicity of the special functions involved, the resulting expressions
for the independent partial amplitudes can be analytically continued to any other
region by simply adding a small positive imaginary part to each two-particle Man-
delstam invariant.

A number of non-trivial checks proves the validity of our result. The planar part
agrees with the previous computations [1, 4]. The ultraviolet poles of the amplitudes
cancel out upon renormalisation, and the infrared poles factorise as they should (see
Sect. 4.5.2). The agreement of the hard function with the expected form argued in
Sect. 4.5.3 based on four-dimensional unitarity and leading singularities, with the
enormous cancellations involved in the intermediate steps, is also a strong indication
that the result is correct. Furthermore, we also verified that our expression for the
two-loop amplitude exhibits the correct leading behaviour in the collinear limit. In
particular, we checked the limits p1 ‖ p2, p2 ‖ p3 and p3 ‖ p4 of the double trace
term T13. In the first one, for instance, the two-loop all-plus amplitude is expected to
factorise as

lim
p1‖p2

A(2)(1+, 2+, 3+, 4+, 5+) ∼Split(0)(−P−; 1+, 2+)A(2)(P+, 3+, 4+, 5+)+
+ Split(1)(−P−; 1+, 2+)A(1)(P+, 3+, 4+, 5+)+
+ Split(1)(−P+; 1+, 2+)A(1)(P−, 3+, 4+, 5+) ,

(4.267)
where we must sum over the colour index of the intermediate gluon labelled by “P .”
After inserting the expressions of the splitting amplitudes Split(�) [168, 178–180]
and of the four-gluon amplitudes [181, 182], we decompose the collinear limit in
the basis {Tλ}22λ=1 defined by Eqs. (4.65) and (4.66). The component of the two-loop
hard function corresponding to the double trace T13 vanishes in the limits p1 ‖ p2
and p2 ‖ p3, but has a non-trivial structure in the limit p3 ‖ p4. Finally, there is
agreement with the independent computation of Ref. [28].

4.5.7 Discussion

In this section I have presented the analytic computation of the five-gluon all-plus
helicity amplitude at two loops in pureYang-Mills theory. Thiswas the veryfirst fully-
analytic result for a full-colour two-loop five-particle amplitude. The hard function
has a remarkably simple form, which we could anticipate based on four-dimensional
unitarity and leading singularities. The polylogarithmic part can be entirely expressed
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in terms of the finite part of the one-mass box integral. Intriguingly, the rational
prefactors of the latter are conformally invariant. In another work, which I do not
discuss in this thesis,my collaborators and I showed this to be related to the conformal
invariance of the one-loop all-plus amplitude [30].

The work presented in this chapter has opened the door for the analytic compu-
tation of all two-loop five-parton amplitudes in QCD. The complete information on
all the relevant Feynman integrals integrals is now available in the physical scat-
tering region. Furthermore, the IBP reductions carried out in this computation are
of comparable complexity as to what is expected to be required for other helicity
amplitudes, or amplitudes including fermions.
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Chapter 5
Conclusions and Outlook

Scattering amplitudes play a crucial role in the way we study the fundamental laws
of the universe. Their importance is at least two-fold. On the one hand, they con-
nect theory and experiment, allowing us to submit our theoretical understanding to
the judgement of the experimental data. On the other hand, they often unveil unex-
pected properties of the underlying theory, which are nowhere to be seen in the usual
Lagrangian formulation of QFT. To both ends, truncating the perturbative expansion
of scattering amplitudes to the tree level is unacceptable, and we must endeavour
to compute higher corrections to the perturbative series. This is made difficult by
the necessity of integrating over the degrees of freedom associated with the virtual
particles.

Among the current challenges in this field, I have taken up that of computing
the scattering amplitudes for processes involving five massless particles at two-loop
order. There is growing demand to obtain these amplitudes due to their phenomeno-
logical relevance. They are the main bottleneck towards a theoretical description of
processes of great interest, such as three-jet and di-photon + jet production, at the
next-to-next-to-leading order in QCD. Reaching such a level of accuracy is impera-
tive in order to match the corresponding experimental precision and exploit fully the
LHC’s enormous physics potential. In the last few years there has been tremendous
progress in this direction, thanks to the work of several groups. I have joined this
endeavour, and in this thesis I have presented my contributions to it.

Firstly, my collaborators and I computed all the required two-loop five-particle
Feynman integrals [1, 2]. We used the method of the differential equations in the
canonical form. Our results are fully analytic and valid in the physical scattering
region. In order to reach this end, we refined the technique of the leading singu-
larities used to put the differential equations in the canonical form. This approach
typically relies on the computation of the leading singularities in four dimensions.
In this way, all terms which vanish in four dimensions at the integrand level but
give non-vanishing contributions upon D-dimensional integration are missed. Such
“evanescent” terms may be fundamental in constructing integrands which integrate
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to pure functions and satisfy a system of differential equations in the canonical
form.We showed how to parametrise the evanescent terms using Gram determinants
and proposed a notion of D-dimensional leading singularities based on the Baikov
parameterisation of the integrals. We expect this approach to be useful also in future
computations. The functions needed to write down the analytic expressions of all
massless two-loop five-particle integrals have later been systematically classified
and implemented [3], and are therefore ready for phenomenology applications.

Making use of our results for the Feynman integrals, we provided the first analytic
results for two-loop five-particle scattering amplitudes including the contributions
from the non-planar diagrams. We started by computing the (super) amplitudes in
N = 4 super Yang-Mills theory [4] and N = 8 supergravity [5] at symbol level. In
Ref. [6] we lifted these results to functions, and computed their asymptotic expansion
in the multi-Regge limit. The computations in the maximally supersymmetric theo-
ries served two purposes. They provided precious analytic data to study the properties
of these theories in a particle configuration never-before investigated beyond the pla-
nar limit. This is particularly important for supergravity, where no notion of colour
exists and the amplitudes are therefore intrinsically non-planar. We highlighted a
non-trivial analytic property of certain non-planar Feynman integrals that it is not
possible to have if fewer than five particles scatter: they exhibit a discontinuity within
the physical scattering region. This feature disappears from the complete amplitudes,
but manifests itself in their multi-Regge asymptotics. Our results may help shedding
light on very interesting open problems, such as—just to name a couple—whether it
is possible to make use of integrability inN = 4 super Yang-Mills theory beyond the
planar limit, and whether it is possible to formulate an effective theory to explain the
Regge limit of supergravity as the BFKL theory explains that of Yang-Mills theory.
On a more practical note, the computations in the supersymmetric theories served
us to test and improve our workflow in view of the computation of the amplitudes in
QCD required for the phenomenological predictions.

We took one further step in this direction by computing the two-loop amplitude
for the scattering of five positive-helicity gluons in pure Yang-Mills theory [2]. This
amplitude is not required in any NNLO QCD prediction because it interferes with a
vanishing tree-level amplitude, but its computation is substantiallymore complicated
than those in the supersymmetric theories. Therefore, it allows us to better assess
the feasibility of the computation of the MHV helicity amplitudes which are needed
for phenomenology. Our formula for the two-loop all-plus five-gluon amplitude is
remarkably compact. It contains only logarithms and dilogarithms, and can therefore
be analytically continued to any kinematic regionwith little or no effort. Interestingly,
the rational factors of the transcendental functions are conformally invariant, and we
managed to write them in a form that makes this symmetry beautifully manifest. In
a spin-off devoted to conformal symmetry, my collaborators and I showed that this
follows from the conformal invariance of the one-loop all-plus amplitude for any
number of external gluons [7].

The ultimate goal of this program is to compute analytically all the massless five-
particle amplitudes required to produce predictions for the processes of phenomeno-
logical interest—three-jet and di-photon + jet production in primis—at NNLO
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accuracy inQCD.With the state-of-the-art workflowbased on finite fields, the typical
bottlenecks of such amplitude computations are: achieving suitable expressions for
the Feynman integrals, IBP-reducing the amplitudes, and reconstructing the rational
functions in the amplitudes. Thanks to the recent progress, which I have partly pre-
sented in this thesis, the bottleneck of the Feynman integrals is completely removed.
The IBP reductions we performed for the all-plus amplitude are of comparable com-
plexity to what is required for other helicity amplitudes or for amplitudes including
fermions. Our computation has therefore shown that such IBP reductions are now
accessible. The remaining obstacle is time. The plain reconstruction of the rational
factors may require the evaluation of the IBP-reduced amplitude millions of times. If
wewant to achieve our goalswithin a reasonable timeframe, furtherwork is necessary
to optimise all the steps in the workflow and reduce the evaluation time. Moreover,
a refined reconstruction strategy is desirable. Several approaches are being pursued
in this sense: choosing carefully the kinematic variables, making use of the linear
relations among the rational functions, guessing frequent factors, constructing good
ansätze... Some of these or other ideas may reduce dramatically the complexity of
the computation. I have no doubt that the amplitude community—hopefully with
some contribution from me—will soon be able to overcome these challenges.
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