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Preface (to the Portuguese Version)

Mathematical topics labelled as Functional Analysis – concepts, definitions, results
– compose a deep example of a mathematical structure aimed at applications –
problems originated from Physics, from Engineering Sciences, even from other
areas within Mathematics. That is also the purpose carried by this book: to bring
familiarity to the reader who has been dwelling on topics where these tools are
needed, but definitely who does not wish to develop research on the associated
theory. Instead, as long as safety and precision are strongly required, look forward
to be kept safe of fallacious slips and misconceptions that a more shallow contact
often leads to.

The text emphasizes motivation, justification for the choices made, the right way
to employ discussed techniques, but in a large number of spots, proofs are not
shown. In such cases, the preferred author’s references are pointed. Complete proofs
– or sometimes only their sketch – get exposed whenever fared their knowledge
and familiarity as imperative for a safe use of the results they claim. Or else when
they indicate a technique which itself will bring its presence in any of these very
applications.

A main thread may be found throughout this exposition: to link the ideas
inside the completion of a metric space to those on the continuous extension
of operators. That is the tool that lets us, for example, to introduce in a quick
way Lebesgue integral, Sobolev spaces, and that leads to the almost ubiquitous
regularization technique, or the mollifiers, in K.O. Friedrichs’ favorite terminology.

This book is the third version of [22], written for a short time school and which,
due to the lack in Brazil, at that time, of texts with this approach, was later used
in different academic environments, until a second version [23] was published.
This one took on the same road, and with the suggestions of many colleagues that
have used it, I faced the adventure of the present write-up, more careful and with
some additions. The previous versions fail to include applications because these
were part of other mini-courses presented at the schools – this and those other
ones have been written for. Now this version includes additional applications, all
related to Numerical Analysis – finite elements, stability for numerical solutions
for differential equations. Besides, the presented results about Lebesgue integral
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viii Preface (to the Portuguese Version)

have been put together and are more complete. The Fourier and Laplace transforms,
together with the tempered distributions, are now included.

The sharpness of the mathematical remarks as well as suggestions about writing
language and exposition view, thanks to the previous careful reading carried on
by Professor Dinamérico Pombo – a very particular friend of mine, then at UFF
Mathematics Institute, was of out of sight value.

To Professor David Isaacson, from Rensselaer Polytechnic Institute, I owe a
dialogue with such a convincing power, which I always brought it back to my
memory when the giving up option was pulling me out.

A large portion of this book was written when the author was visiting the
Mathematics and Computation Institutes of the Fluminense Federal University –
UFF. I would like to express my thankful words for their support.

The book was finished and published while I was a visitor at the cozy environ-
ment from IME-UERJ, the Mathematics and Statistics Institute of the Rio de Janeiro
State University. The valuable support must also be acknowledged.

Conventions

Our notation follows the mathematical text standards, either theoretical or from
applications; exceptions are described whenever introduced, or in the paragraphs
that follow. We make use of the following conventions, all usual.

N : the positive integers
Z : the integers
Q : the rationals
R : the real line
RN : the Euclidean space with N dimensions
C : the complex plane

For two sets A and B, we denote by A\B the third combining set – counting A ∪B

and A ∩ B – of elements from A that do not belong to B.
Given the reals a, b, with −∞ < a ≤ b < ∞, we denote by [a, b] the closed

interval {x ∈ IR; a ≤ x ≤ b}, while for the open interval {x ∈ IR; a < x < b}
we shall use either ]a, b[ or (a, b), with analogous convention for the semi-open
intervals.

Sequences will be denoted by {xn}n∈IN , (xn)n∈IN or, in a simpler way, by {xn}
or (xn), even using upper indices. Not much strictness either with the notation for
functions: f (x), f (·), or f .

The symbol := in a given expression means that the “right-hand side” defines
whatever occupies the “left-hand side.” As regards to the symbol •, to point to the
end of some topic, its use was quite stingy, it only shows up if its absence would
bring doubts to the reader. Observe that a relative of this is used to indicate which is
the main argument in some expressions, like f ( · ) , ‖ · ‖ or analogous ones.
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To finish, it is wise not to take the notation for granted, as long as we have allowed
it being “una donna mobile”. Indeed, it may exhibit changes from chapter to chapter,
whenever convenient, as for example in:

‖f ‖L2 = ‖f ‖0 = ‖f ‖2 = ‖f ‖0,2 = {
∫

f 2}1/2,

‖f ‖H 1 = ‖f ‖1 = ‖f ‖1,2 = {
∫

f 2 +
∫

(f ′)2}1/2.

Itinerary

With Chap. 1 we look to motivate and, to some extent, to justify the developed
theory being announced. Chapter 2 introduces or recalls definitions and notation
for abstract spaces as well as for specific function spaces. This endeavor requires
Lebesgue integral, whose development for the real line through an almost geodesic
way, we discuss. And try to leave clear the changes needed to apply the results and
proofs for IRN .

The aim in Chap. 3 is to discuss some properties of dual spaces, which are firmly
glued to those particular spaces presented in the previous chapter; in particular, the
classical – and indispensable – identifications that allow to operate with them. They
turn out to be tools frequently used in Chap. 4, where ideal, or generalized, functions
are introduced. They allow us to refer with the needed rigor to, for example, the
Dirac delta. Thereby, we also present the construction for Sobolev spaces besides
introducing the Fourier and Laplace transforms.

The so-called Linear Functional Analysis basic triplet is the core of Chap. 5,
some applications being discussed therein. Chapter 6 introduces the concept of
compactness, fundamental for the construction of approximation sequences, as long
as it allows to guarantee convergence, in many contexts.

Up to this point, this text reading is assumed to be made sequentially. Now,
Chap. 71 uses only concepts introduced on Chap. 2, while the last one depends
on concepts from Chaps. 2 and 3. Chapter 7 generalizes the concept of derivative
for functions defined on normed spaces. Such a generalization allows to use, on
these spaces, approximation algorithms, like Newton-Raphson’s, besides several
optimization methods.

In the last chapter, one finds basic results about Hilbert spaces that turn out to
be of heavy importance to numerical approximations as well as to applications
on Physics, e.g., Quantum Mechanics. Within this framework, spectral theory is
discussed only for compact operators, so that we suggest for more general browsing

1 Portuguese version had it as the last chapter. We allowed ourselves here to adapt the translation
data as this version has exchanged it with the chapter previously taken as the seventh.



x Preface (to the Portuguese Version)

[6, 72]. These ones are also reference for the semi-group theory which, despite its
importance in several applications, see [36, 49], we lacked to bring into discussion.

Rio de Janeiro, Brazil Carlos A. de Moura
October 24th 2002

P.S.: contacts would be welcome at
demoura@ime.uerj.br



Preface to the English Version

Taken the decision to write myself this translation of [25], I thought at once that,
for this task, no sense to apply the old cliché “traduttore = traditore”. But quickly I
realized that it would be hard to restrain from scattered minor changes, besides two
sensible ones: the addition of the last section to the last chapter as well as, in the
first chapter, the 5th encounter to the first section.

Despite a lot of time gone since the previous version, I fail to find much to add
to the above translated preface. Nevertheless, I ought to recognize the four corners
of a square. Each one lodges an unforgettable help well.

The first is occupied by my wife Sandra. Impossible to believe how she acted to
bring joy to these pandemic days (and that is as she always acts!). Without her push,
no end for this task. . .

A long-time friend – life has turned him my brother –, Jerry A. Goldstein, made
me so happy to have him installed at the second corner, testifying the decades we
have shared. He definitely convinced me it would be worth to put hours and thoughts
on this version.

The support from UERJ, the university I work for since this millennium started,
particularly from IME, its math institute, with friends and friendly colleagues, fills
up the next corner.

The last one settles all sine-qua-non scientific/financial help from FAPERJ – the
Carlos Chagas Filho Rio de Janeiro State Research Support Foundation – which has
provided a grant that became essential. It is a pleasure to acknowledge that support
filed by:

E-26/202.500/2019, Program for Visiting Professor PV-2019.

Rio de Janeiro, Brazil Carlos A. de Moura
September 8th, 2020
demoura@ime.uerj.br
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Notation

�∞0 , �∞, �2

c, c0
Ck[a, b], C∞[a, b], C∞

0 (IR)

S(IR)

‖x‖p (p = 1, 2,∞)

‖f ‖p, ‖f ‖r,p (p = 1, 2,∞)

δt0(f )

B[v0; r], B(v0; r)
�p, ‖x‖p (p ∈ [1,∞))

dist (A,B)

L(X, Y ), L(X)

ker(T )

Im(T )

F(f )(t)

L[a, b], R[a, b]
�A

Lp(IR)

L∞(IR)

V ′, V ∗
J, jv

Dı

Hk
0 (�), Hk(�)

D(�)

D′(�)

L1
loc(�)

Lp (0, T ;B)

o( ||h|| )
supp
1I

(p) + i�(p)

L[f ]
[w]
[A]

Remark: Some symbols employed in a single section fail to be listed herein.
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Chapter 1
Road Map

Unfortunately, among scientific literature texts, we can find many reports of applications, as
well as of theoretical results, fully based on a mathematical formalism guided by the three
(false) principles hereby quoted.

• Principle of universal permutability – Whenever evaluating any combination of inte-
grals, series, derivatives, or limits, the adopted order is irrelevant. The reached results
are an invariant, no matter the chosen track.

• Principle of analogy between discrete and continuous indices – Properties held by finite
sums must remain valid for corresponding (or associated) integrals.

• Principle of unrestricted convergence – Whatever sequence, series, or improper integral
one deduces within a theoretical development, it ought to be convergent, unless a mistake
has been introduced in the construction of the mathematical model thereby employed.1

1.1 Some Encounters

Mathematical theory evolution is led by two mutually competing types of demand:
the first ones are internal and grow up due to all kinds of questionings. They are
created within the structure of its own concepts, definitions, and conclusions; in
short, they look for pure mathematical results. The other ones, external, are born
inside different scientific or technological areas that get hold of some mathematical
environment for their theoretical advancement, or else to simplify their own
procedures. And it turns out that, quite frequently, as fruit of this latter interaction,
unexpected forward laps have been observed. These successful results have arisen
from the need to fill up the gap of still unavailable – but sometimes wrongly dreamed
of – mathematical concepts or elements.

1 The text above is a free translation of [30], page xi.
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But it should also be underlined that it is quite frequent, despite rather dangerous,
the ill use of correct results, as well as the calling of ill-stated claims – like
those ironically quoted in the opening of this chapter. It is impossible to preview
the associated consequences, but anyway, the conclusion’s logic will always be
wrong. Besides, being the mathematical tools supported by an increasingly powerful
computer systems, it becomes practically impossible to evaluate experimentally or
computationally such deduced conclusions.

The examples that follow aim to illustrate some topics to be discussed afterwards,
or either to motivate such discussions. At the same time, they light a warning about
the serious risks brought in by the abovementioned false principles.

Encounter 1: No Matter Which Order? A fact taught from Calculus courses:
convergence of the so-called alternate harmonic series

h :=
∞∑
ı=1

(−1)ı

ı
. (1.1)

Suppose somebody, after stumbling on the series

−1 +1/2 +1/4 −1/3 +1/6 +1/8 +1/10 +1/12 −1/5 +1/14 +1/16 + . . . ,

observes that all its terms are the same as those from the alternate harmonic series,
just with a reordering. It may be accepted as rather natural to conjecture that this
latter is also a convergent series and further that it gets the same sum. Then, a
question pops up at once: for a sum of infinite terms, does commutativity and
associativity keep holding, as it were a finite sum? Or, in more precise terms, given
a permutation of the naturals, i.e., a bijection from the set of natural numbers on
itself

τ : N → N,

is it necessarily valid for such rearrangement of (1.1), that

∞∑
ı=1

(−1)τ(ı)

τ (ı)
=

∞∑
ı=1

(−1)ı

ı
?

A simple question with a surprising answer! Depending on the permutation τ ,
everything may show up: the new series may either diverge, or else it may converge,
but towards no matter which value is chosen on the line (or even on the extended
line). Let us describe this result in a more precise fashion.

For any real γ taken on the whole line, there exists a permutation of the natural
numbers, τ = τγ , for which
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γ =
∞∑
ı=1

(−1)τ(ı)

τ (ı)
.

It is worth mentioning that this result is valid not only for the alternate harmonic
series but also for all conditionally convergent series of real numbers, cf. [61], The-
orem 3.55, where the more general formulation we have first quoted is discussed.
The proof therein presented exhibits a nice sample of a constructive reasoning within
this framework.

This example deserves to be thought of as a herald for a warning: far from being
a mere addition of numbers, an infinite series is indeed a limit process!

Encounter 2: To Mend a Torus? A torus in R3 may be identified with the whole
plane R2 throughout quite a simple consideration: associate the points (t, y) in the
unit square Q := [0, 1[× [0, 1[ to the points on the plane by identifying

t with t + n, n ∈ /Z

y with y +m, m ∈ /Z

]
.

An initial feeling may drive one to expect that this shrinking – a three-
dimensional body associated to a two-dimensional space – is the most one may
reach. It should not be counted upon, for example, that it is feasible to thread a
piece of line all around the torus and completely cover it, so as to have any hole it
carries, no matter how small, mended, hidden. But just be surprised, that is precisely
what occurs, as described now.

We need to deal with the family of curves Cα,β defined by

Cα,β := {(t, y(t)), y := α + βt;−∞ < t < +∞, 0 ≤ α < 1, β ∈ R},

on R2, taking hold of the just introduced identification. In other words, consider
these curves image on the surface of the R3 torus and let us examine their behavior.

As long as β ∈ Q, a strain-free verification tells that the corresponding curve
Cα,β is periodical on the torus. The same reasoning also implies that, whenever
β ∈ Q, then Cα,β is not periodical. Moreover, an additional effort will get, for every
α ∈ [0, 1) and β ∈ Q, the following conclusion about the curve Cα,β . No matter
which point on the torus is chosen, as well as which distance bound is required,
there exists a point on this curve whose distance (on the torus) to the previously
chosen point shows up to be smaller than the beforehand tolerated distance.

A quite important feature this example is sought to emphasize: small changes
in one of the input parameters from a particular mathematical model may lead to
extremely strong changes in the output data. In the just discussed case, we have
moved from curves that carry a light weight on the torus to other ones that show
themselves everywhere in this torus, or loosely said, that “fill up the whole torus.”

It is also worth underlining that the instability presented here occurs within a
very simple environment, we could even roughly describe it as linear.
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Encounter 3: Functions, Distributions, . . . , Surprises In2 1872 Weierstrass
hugely shocked the mathematical community when he proved the existence of an
everywhere continuous real function which fails to be differentiable on all of its
domain, the whole line. An example of such a function may be defined, cf. [9, 70], as
the limit of the uniformly convergent series of infinitely differentiable functions

f (x) :=
∞∑
ı=0

cos(3ıx)

2ı
.

Later on, in the 1930s, while searching for the mathematical foundations of
a model for the mechanics of atomic particles, Paul Dirac introduced a function
subjected to quite special conditions, namely,

δ(x) = 0 ∀x = 0∫
R δ(x)f (x)dx = f (0) ∀f ∈ F

]
, (1.2)

where F denotes a conveniently a priori defined function set, cf. [29].
As long as in (1.2) the integrals shown are of Riemann or Lebesgue type, no

traditional function may fulfill both conditions. Nevertheless, for a long period,
physicists have (successfully) employed this mathematical being – considered queer
– as it failed to own duly structured basis. And despite having the mathematicians
stayed uncomfortable towards this structure, it remained being applied over and
over, before a formalization was born. This way, it has even driven to theoretical
results that later on bore experimental confirmation. This success leads to the
spreading of the terminology Dirac δ-function, or simply δ-function.

Working independently, Laurent Schwartz [65] and other mathematicians have
untangled the knot δ-function has brought in. The stroke was in some sense
unexpected: just look at these objects as of a new kind, as generalizations for
bona fide functions. Afterwards, they were baptized as distributions, or generalized
functions.

As compared to functions, distributions show a behavior quite different with
regard to the limit processes. For example, suppose a distribution T is a sum of
a given series

T =
∑

ı

Tı . (1.3)

It is possible (and correct) to get for T its derivative of any order – which always
exists – just by term-wise differentiation of (1.3), or explicitly:

2 Free version of [7], pp. 208, 216.



1.1 Some Encounters 5

T [n] =
∑

ı

T [n]ı .

Definitely, a dramatic off-balance exists between the way functions and distributions
perform within many frameworks. The behavior just pointed out must be compared
with the one shown by Weierstrass function.

Encounter 4: Space-Filling Curves Consider a special type of simple curves
on the plane, namely, the graph of a continuous real function whose domain is a
bounded interval. A supposedly intuitive way to characterize such an environment
(the set of continuous functions) is to require that each of their graphs may be drawn
by keeping a pencil steadily on a sheet of paper, never taking the hands off the sheet
until the graph is done.

This lousy definition reinforces the idea one naturally absorbs about the set of
the (domain) points where a continuous function lacks to be differentiable. One
is tempted to think of it as a discrete set, where two of its members, whenever
“neighbors,” are split by a whole interval. And throughout that interval, the
considered function holds differentiability everywhere.

Weierstrass function, W’f, mentioned at the previous example, guarantees that
some functions, despite continuous, may show themselves as roughly misbehaved.
Certainly for W’f, pencil and paper graph drawing is far from an achievable task. . .
Observe a sensible distinction between the building of W’f and of the torus-
filling functions on Encounter 2. These latter ones were presented throughout an
explicit construction, based on a finite sequence of steps. On the other hand, W’f
was introduced with the mighty alternate of a uniformly convergent trigonometric
function series.

In the sequel, an example is indicated of a space-filling plane curve, namely,
a continuous mapping from a real bounded interval whose image fills out a plane
square. Guided by our intuition, we ought to expect that a plane curve, being locally
a finite sequence of not-too-deformed intervals, owns the look of the geometrical
body we are used to call “curve.” In order to reach a different dimension body –
a square – we must be driven by an “infinite” procedure, climbing up to a limit
process. And again the solution is brought from a uniformly convergent function
series.

It is worthwhile to point out that the results hereby presented – as well as many
similar ones – may be linked to sometimes unexpected applications. It is quite
common to look at surprising examples – or counterexamples – as results per se,
but in fact they belong to a more involved stream of reasoning and search. The one
below, discovered by Hilbert in the late years of the nineteenth century, was recently
called in to design an efficient algorithm for numerically solving partial differential
equations of a special type, cf. [11, 26].

The graphs of the six first functions of a sequence of curves whose limit is dense
in the plane unit square – informally referred as “which fills up the unit square” –
may be seen, say, at the link which follows:
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https://upload.wikimedia.org/wikipedia/commons/thumb/7/7c/Hilbert-curve_
rounded-gradient-animated.gif/440px-Hilbert-curve_rounded-gradient-animated.
gif

Any reader who has ever been exposed to fractal sets of ideas has certainly
recognized their presence in the construction suggested by the abovementioned
pictures.

An additional remark: a rather naïve analysis for the curve hereby discussed
would not assign it to the hall of real surprising ones. Indeed, just take into account
that any piece of cloth – which may be thought, in a rigor freeway, as a plane body
– is woven with, no rigor again, a finite bunch of “one-dimensional” thin pieces of
thread. But it ought to be pointed out, as a response, that neither the cloth is two-
dimensional nor the thread has one dimension only: they can at most be taken as
approximate models for these mathematical abstractions. That was the reason for
having chosen above the expression “jumping to the limit” – or preferably “diving
to infinity” – so as to underline this unusual theoretical track from one towards two-
dimensional spaces while searching such an unexpected function.

Encounter 5: Rationals – The Gaps They Leave One of the pieces of surprise
the set of rational numbers play for its observers is the existence of gaps when
its elements are lined up. Indeed, given two of them, say a, b, a < b, no matter
how close they are, we have an “infinite amount” of rationals inside the interval
[a, b]. In spite of this, many constraints may be imposed that the rationals fail to
fulfill. The Greeks already knew to be impossible for a rational λ to satisfy the
condition λ2 = 2. This number surely is the most well-known irrational, always
quoted in order to confirm the existence of the abovementioned gaps. Thus, it is
worth to indicate other simple examples of them, like all the ones in the countable
set {ρ ∈ R|2ρ = 2n+ 1, n ∈ N, n > 0}.

Let x0 be a chosen rational number, 0 < x0 ∈ Q, to which a sequence of rationals
is associated, namely, (xn)n∈N defined as

xn+1 := 1

xn

+ xn

2
, n ≥ 0.

Just call for a little help from the function φ(x) := 1/x + x/2 together with its
derivative: their analysis will indicate that distinct positive rationals x0 for which
x2

0 < 2 lead to distinct sequences. Besides, for all of them, it may be seen that, as
long as n ≥ 1,

0 < xn ∈ Q, x2
n > 2

xn+1 < xn

if x2
n > β∀n, then β ≤ 2

⎤
⎦ . (1.4)

In short, we have constructed strictly decreasing sequences of positive rationals.
Moreover: all of them are subjected to the bound described by the last relation
in (1.4).
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Now observe: if any of these sequences converges, its limit ζ ought to fulfill

ζ = 1

ζ
+ ζ

2
,

an identity which implies

ζ 2 = 2. (1.5)

Therefore, as long as this limit exists, it fails to be a rational number.
Based on the knowledge of that the sequences (xn)n∈N are decreasing and lower

bounded, we can claim that any of them is a Cauchy sequence3. Further, it can be
verified that, for an arbitrary pair of these sequences (xn)n∈N and (x̃n)n∈N, the limit

lim
ı→∞ |xı − x̃ı | = 0 (1.6)

must hold. The whole bunch of just constructed sequences (xn)n∈N may be
identified among themselves, each one to whatever another be chosen. Besides, all
of them own a strong reason to be also identified to the number ζ . Recall that such
a number is known to be absent from the set of rational ones – as remarked, (1.5)
holds for itself. Such identification ought to include all Cauchy sequences (x̃n)n∈N
that fulfill (1.6) for at least one of the sequences (xn)n∈N we have constructed. As
a consequence, this identification must hold for all sequences obtained from our
receipt. We can think that all these sequences are pointing, waiving towards this gap
whose existence in the set of rational numbers we have become aware of.

This is one of the tracks to formally introduce the real line: add to the set of
rational numbers the set of irrational ones, via construction of a larger set where all
Cauchy sequences do converge.

1.2 Feel Invited

The track followed throughout the construction described on Encounter 5 is adopted
in quite a number of spots in this text, at different contexts. They are more
general than the set of rational numbers, despite being all of them heirs of the
strategy therein developed. It is a whole framework which allows to conclude such
constructions in an elegant fashion and quite quickly. The everywhere present stick
to help the reasoning is the Principle of the Continuous Extension, to be described
in the chapter which follows.

The above examples have steadily exhibited the task of identifying distinct
concepts or sets, making easier their understanding or operation. We could even

3 The geometrical series is a handy tool for convincing one of this result.
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state that maybe this is the most important aspect of mathematical research: to
search, among different structures, the one which allows to assign the same
label or identification to apparently distinct, unconnected properties, concepts,
or sets. Moreover, we let ourselves to allow the term identification to include
approximation, where interchange is carried out for elements that bear intrinsic
differences.

Let us observe that distinct ways of measuring distances – the so-called metrics
– are inherent to the approximation concept. Nevertheless, emphasis must be put on
the fact that not only quantitative aspects of approximation should be weighted by
the chosen metric: the model under exam may require that other fine aspects should
also be preserved, a qualitative evaluation ought to be performed then. We have in
mind several constraints like conservation or decay laws, or some profile restrictions
(monotonicity, bounds, regularity).

To browse through a mathematical framework demands always scattered reason-
ing about functions, and these are precisely the elements to be studied, dissected,
grouped, and approximated, in short, analyzed. Let us share then a stroll on the
Functional Analysis alley.



Chapter 2
Basic Concepts

Let us open this chapter recalling some concepts from linear algebra. We count upon
the reader familiarity with them, but the purpose is indeed to have notation and
terminology once for all fixed. Besides, the accompanying examples serve not only
to clarify the introduced definitions but rather to help the study of applications to be
shown in due time. Another point: it must be taken into account that the exercises
collection play the role of main actors inside the discussed theory. To think about
this cast is a need. Even if some of them fail to be solved, deeply think about their
formulation. They are an essential portion of the text, and thus they will be certainly
employed later on.

2.1 Real Vector Spaces

Recall that a real vector space is an arbitrary set V for whose elements two
operations are defined, just as we have for the vectors in the three-dimensional space
– namely, an addition and a product by a scalar. These operations are supposed to
fulfill the following conditions.

(i) Given two arbitrary elements v1, v2 in V, their sum is another uniquely defined
element from V , denoted by v1+v2, and for which the expressions below always
hold true.

(a) v1 + v2 = v2 + v1;
(b) (v1 + v2)+ v3 = v1 + (v2 + v3);
(c) Besides, there exists a unique element which we call zero and denote by 0,

such that, for all v in V , the identity which follows is true:

v + 0 = v;
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(d) Further, given an arbitrary vector v in V , there exists another element, called
symmetrical of v and denoted by −v, for which

v +−v = 0.

(ii) Given a real α and an element v ∈ V, associated to this pair is one (equally
unique) element from V, the product of α by v, denoted as αv, in
such a way that, being αı ∈ R and vı ∈ V, arbitrarily chosen, we have:

(a) α(v1 + v2) = αv1 + αv2;
(b) (α1 + α2)v = α1v + α2v;

(c) (α1α2)v = α1(α2v);
(d) 1v = v.

It is possible to deduce from these properties that:

0v = 0,

as well as that

(−α)v = −(αv).

Observe that the symbols “−” as well as “0” have distinct meanings in the two
sides of these expressions.
The identity

α0 = 0,

may also be proven, as well as uniqueness for the vector zero, a property which is
equally true for the symmetric of an arbitrary vector v. Moreover:

αv = 0 ⇐⇒ α = 0 or v = 0

holds, or in an equivalent expression,

αv = βv ⇐⇒ α = β or v = 0.

Underlining: the elements in V are called vectors, the vector zero is the null
vector in the space under study, and the operations thereby introduced are called
sum of vectors and product of a real number by a vector.

Example 2.1 The set of all N -tuples of real numbers x := (x1, . . . , xN), xı ∈ R,
gets the notation RN , provided the vector operations be defined component by
component (as in the familiar cases of N = 2, 3).

Example 2.2 The previous example is generalized by considering several sets of
sequences of real numbers
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x := (x1, x2, . . .) = (xj )j∈N,

with distinct constraints, but for all of them being the operations also defined
component-wise:

x + y = (xı)ı∈N + (yı)ı∈N := (xı + yı)ı∈N,

αx = α(xı)ı∈N := (αxı)ı∈N.

(a) �∞0 := the set of almost null sequences, which means

x ∈ �∞0 ⇐⇒
[

there exists N = N(x) for which
xı = 0 if ı > N.

(b) �∞ := {x = (xı)ı∈N; |xı | ≤ M = M(x)}, the set of bounded sequences.
(Observe that to each sequence in �∞, a distinct bound is associated!)

(c) c := the set of convergent sequences.
(d) c0 := the set of convergent sequences with null limit.
(e) �2 := the set of sequences of real numbers whose squares compose a convergent

series; in other words, the sequences

x := (xı)ı∈Nfor which
∞∑
ı=1

|xı |2 < ∞.

In the list below, each (above defined) space is properly contained in the one which
immediately follows itself:

�∞0 ⊂�2⊂c0⊂c ⊂ �∞.

Example 2.3 Denote by PN the set of all polynomials of degree < N, taking for
two elements p(x), q(x) ∈ PN the vector sum defined as the usual sum of two
polynomials: for

p(x) :=
N−1∑
j=0

ajx
j , q(x) :=

N−1∑
j=0

bjx
j ,

then

(p + q)(x) := p(x)+ q(x) =
N−1∑
j=0

(aj + bj )x
j .
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In the same track, for a real α,

(αp)(x) := αp(x) =
N−1∑
j=0

αajx
j .

In all examples of function spaces that follow, the operations of sum and product by
a scalar will be taken as pointwise, or explicitly,

(f1 + f2)(x) := f1(x)+ f2(x),

(αf )(x) := α[f (x)].

Example 2.4

(a) Consider the set of continuous functions defined on [0,1], usually denoted by
C0[0, 1]. In general we can as well take Ck[0, 1], k ≥ 1, the set of functions
defined on [0,1] and whose derivatives up to order k exist and are continuous.
It is usual to employ the notation

C∞[0, 1] :=
∞⋂

k=0

Ck[0, 1].

The functions in such a space are called infinitely differentiable.
(b) Take now the infinitely differentiable functions defined on the whole real line

and that vanish outside a bounded interval – this interval changes with each
considered function. Such a set is denoted by C∞

0 (R).

Exercise 2.1 Verify that the so-called bell function is an element of C∞
0 (R):

�

�

0 1−1 x

1/e

φ
φ(x) :=

[
exp[ 1

x2−1 ] , |x| < 1
0 , |x| ≥ 1

.

(c) Consider now the real infinitely differentiable functions φ(x), defined on the
whole line and that satisfy:
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M(φ, k, p) := max
x∈R

∣∣∣∣xp dkφ(x)

dxk

∣∣∣∣ < ∞ (2.1)

for any integers k, p ≥ 0. We call them as rapidly decreasing functions. The
set of these functions, associated with a convenient notion of convergence, is
denoted by S(R) and known as Schwartz space. We will have chances to pay
many visits to them later.

Exercise 2.2 Verify that ψ(x) := exp−x2
and ψ (p(x)) belong to S(R), for any

non-constant polynomial p.

2.2 Norm and Distance

It can be roughly expressed that functional analysis aim is to study vector spaces
where we are able to measure distances. And, essentially, numerical analysis
purpose is, in these environments, to approximate elements we are interested on
by other ones whose access is easier. But a pattern must always be followed: to
keep control upon the exchange prices. In a precise way, one ought to know the
approximation error thereby introduced.

A non-negative function

n : V → R+

defined on a real vector space V is said to define a norm if the following properties
hold:

(i) n(x + y) ≤ n(x)+ n(y)∀x, y ∈ V

(ii) n(αx) = |α|n(x)∀αreal,∀x ∈ V

(iii) n(x) = 0 ⇒ x = 0

Instead of n(x), it is universally accepted to represent a norm by ‖x‖. This concept,
already familiar from two- and three-dimensional spaces, is interpreted as the
distance from the vector x to the null vector 0, and this way the distance between
two vectors x and y is given by ‖x − y‖. Property i) is called triangle inequality
due to its geometrical interpretation.

It turns out that on the same vector space, it is possible to deal with different
norms. We shall verify that some issues, which are termed as topological properties
of such spaces, may be kept or not, depending on the chosen norms.

Example 2.5 Consider in RN the three norms that follow:

‖x‖1 :=
N∑

j=1

|xj |, (2.2)
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‖x‖2 :=

√√√√√
N∑

j=1

|xj |2, (2.3)

‖x‖∞ := max
1≤x≤N

|xj |. (2.4)

Exercise 2.3 Take N = 2 and draw the unitary circles that correspond to each
one of these norms. In other words, get the graphs of

{x ∈ R2; ‖x‖p ≤ 1}, with p = 1, 2,∞.

Example 2.6 In �∞,

‖x‖∞ := sup
j∈N

|xj | (2.5)

defines a norm. In �2, we may consider, besides the norm (2.5),

‖x‖2 :=
√√√√ ∞∑

j=1

|xj |2. (2.6)

And in �∞0 , it is possible to deal with, besides these two norms, a third one, namely:

‖x‖1 :=
∞∑

j=1

|xj |.

Example 2.7 In PN, for each fixed (and arbitrary) interval [a, b], with a < b, we
may consider the norm

‖p‖ := max
a≤x≤b

|p(x)|.

Example 2.8 For Ck[0, 1], we may deal with the following examples of norms:

‖f ‖1 :=
∫ 1

0
|f (x)|dx,

‖f ‖2 :=
√∫ 1

0
|f (x)|2dx, (2.7)
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‖f ‖∞ := max
a≤x≤b

|f (x)|,

or, more generally, being 0 ≤ r ≤ k,

‖f ‖r,1 :=
r∑

j=0

‖djf/dxj‖1,

‖f ‖r,2 :=
√√√√ r∑

j=0

(‖djf/dxj‖2)2, (2.8)

‖f ‖r,∞ := max
0≤j≤r

‖djf/dxj‖∞.

Observe that, given a sequence y = (yn) ∈ �2, by defining the piecewise constant
function fy in [0,∞[ by

fy(x) := yn, n ≤ x < n+ 1, n = 0, 1, . . . ,

the following identities hold

‖fy‖2
2 =

∞∑
n=0

|yn|2 = ‖y‖2
2,

and in some sense this justifies employing the same notation for these norms in
different spaces.

The main hardship when proving that the above definitions do lead to norms
shows up while facing the triangle inequality, as regards to the norms ‖ · ‖2.
Nevertheless the proof gets smoothed out just by recalling the concepts in the section
to be opened now.

2.3 Inner Product

By browsing through the R3 space, the concept of two-vector inner product becomes
quite familiar. Recall its value amounts to the length of the projection of one of the
vectors on the other, multiplied by the length of the latter, and affected by the sign
of the cosine of the angle generated by both. Given an arbitrary real vector space, a
real function

p : V × V → R

(x, y) → p(x, y)
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is considered to be an inner product whenever the constraints1 below hold, for any
choice of x, y, z ∈ V and arbitrary λ ∈ R:

positive definiteness

[
i) p(x, x) ≥ 0

p(x, x) = 0 ⇒ x = 0
symmetry ii) p(x, y) = p(y, x)

bilinearity

[
iii) p(x + y, z) = p(x, z)+ p(y, z)

iv) p(λx, y) = λp(x, y)

.

An inner product may get either of the representations < x, y >, < x|y >, (x, y),
(x|y), or even x•y. In general, our option will be for (x|y), but we will not give up
of either of the remaining ones.

Provided an inner product is available, it may be taken as the gadget to introduce a
norm. Just recall the geometrical interpretation of a general inner product described
above. If fully justifies to define

‖x‖ := √
(x|x). (2.9)

In order to verify the triangle inequality, we must demonstrate the so-called
Cauchy–Buniakowski–Schwarz inequality:

|(x|y)| ≤ (x|x)1/2(y|y)1/2. (2.10)

Once (2.10) is proven, we deduce that

(x + y|x + y) = (x|x)+ 2(x|y)+ (y|y)

≤ (x|x)+ 2(x|x)1/2(y|y)1/2 + (y|y)

= [
(x|x)1/2 + (y|y)1/2

]2
,

and this assures that ‖ · ‖, as defined in (2.9), is indeed a norm. Let us prove (2.10).
For t an arbitrary real number, and for any choice of x and y in V , it can be verified
to be valid the inequality that follows:

(x + ty|x + ty) ≥ 0.

It is then deduced that:

0 ≤ (y|y)t2 + 2(x|y)t + (x|x),

from which it may be seen that

1 Note that, as long as symmetry holds, linearity with relation to one of the variables implies that
the same holds for the other one, and thus we have bilinearity.



2.4 Convergence 17

4(x|y)2 − 4(y|y)(x|x) ≤ 0,

or

|(x|y)| ≤ (x|x)1/2(y|y)1/2.

Exercise 2.4 Verify that the norms introduced by (2.3), (2.6), (2.7), and (2.8) were
defined from an inner product.

A vector space where an inner product holds is called Euclidean. It is important
to keep in mind that not all norms derive from an inner product. Those ones that
do show up as very convenient, with respect to different concepts. This fact is a
consequence of being the geometry of Euclidean spaces strongly similar to that of
R3. They do not “allow” the presence of strange elements like the balls described in
Exercise 2.3.

Exercise 2.5 Verify: in any Euclidean space, for arbitrary v,w, we have

‖v + w‖2 + ‖v − w‖2 = 2‖v‖2 + 2‖w‖2. (2.11)

The geometrical interpretation of this identity justifies it being referred as the
parallelogram rule.2

2.4 Convergence

A sequence (xn)n∈N of elements from V is said to converge if, for some x ∈ V , we
have

lim
n→∞‖xn − x‖ = 0. (2.12)

We will call such element x as limit of the sequence (xn)n∈N; the triangle inequality
implies uniqueness for such a limit. We will also express this fact by saying that (xn)

approximates x, or that x is approximated by the sequence (xn).
All operations with limits we are used to for real numbers stay valid on V .

Suppose that limn xn = x, we then have:

2 It may be proved that if (2.11) holds in a normed space V , for any vectors v,w, the norm in V is
related to some inner product.
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a. limn αn = α �⇒ limn αnxn = αx (∀α ∈ R)

b. limn yn = y �⇒ limn(xn + yn) = x + y

c. limn yn = y �⇒ limn(xn|yn) = (x|y)

⎤
⎦ . (2.13)

We point out that this is just one of the convergence notions we will deal with. It is
named strong convergence or norm convergence. Whether a sequence converges
– or fail to – does not depend only on the sequence itself but also on the norm under
consideration.

Exercise 2.6 Verify that, no matter the above norms introduced in RN through
expressions (2.2) to (2.4), we have

‖xn − x‖ → 0 ⇐⇒ x
j
n − xj → 0,

where x
j
n and xj , j = 1, . . . , N, are the components of xn and x, respectively.

Exercise 2.7 A sequence

(fn)n∈N in C0[0, 1]

converges to

f ∈ C0[0, 1]

with respect to the norm ‖ · ‖∞ if and only if

fn → f

uniformly. (The norm ‖ · ‖∞ is called uniform convergence norm.)

Exercise 2.8

(a) The sequence (fn)n∈N from C0[0, 1] defined by

�

�

�
�
�
�
�
�
�
�
�
���
�
�
�
�
�
�
�
�
� �

fn

2/n1/n

1–

fn(x) :=

⎡
⎢⎣

nx 0 ≤ x ≤ 1/n
2 − nx 1/n ≤ x ≤ 2/n
0 2/n ≤ x ≤ 1
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converges to f ≡ 0 with respect to the norm ‖ · ‖2, that is, according to
quadratic average, but not in the sense of the norm ‖ · ‖∞.

(b) The converse of a) never holds, since the limit ‖fn − f ‖∞ → 0implies ‖fn −
f ‖2 → 0, provided all functions fn live on a bounded domain.

Exercise 2.9 Both norms ‖ · ‖∞ and ‖ · ‖2 may be considered on the space C0(R).

Recall the bell function φ(x) from Exercise 2.1 to define the sequence

ψn(x) := φ(x/n2)

n

and then verify that ‖ψn‖∞ → 0but‖ψn‖2does not tend to0.

As previously remarked, our main purpose is to approximate functions or, in short,
to build sequences that converge to an a priori presented function. But, as already
stated, the notion of convergence is strongly associated to the chosen norm on our
working function space. It is therefore natural to ask: How do these convergence
notions compare themselves with that one which is more familiar to everybody,
namely, pointwise convergence?
Recall that, for an arbitrary set X, being

φn : X → R, n = 1, 2, . . . ,

a given sequence of functions, we say that φn shows pointwise convergence to φ

on X whenever

lim
n

φn(x) = φ(x),∀x ∈ X.

Beware that such definition still makes sense when the functions φn have as their
range a normed space V .

As already remarked, convergence in C0[0, 1] relative to the norm ‖·‖∞ amounts
to uniform convergence, and therefore it implies pointwise convergence as well as
convergence with respect to quadratic average. On the other hand, quadratic average
convergence does not imply pointwise convergence, neither the latter implies the
previous one. The two following examples indicate these facts.

Example 2.9 Consider

h(x) :=
⎡
⎣ 2x x ∈ [0, 1/2]

2(1− x) x ∈ [1/2, 1]
0 x ∈ [0, 1]

and

hn(x) := h(2knx −mn),
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where

kn := max�∈N{2� ≤ n}
mn := n− 2kn

]
.

For an infinite amount of points all written as 2ı+1/2N , with ı = 0, 1, . . . , N−2, the
functions hn have their alternating values, either 0 or 1. Consequently, this sequence
fails to show pointwise convergence. Nevertheless, just calculate the integrals

∫
h2

n

to deduce the convergence of (hn) to the null function, as regards to the quadratic
mean.

Example 2.10 Take the sequence

�

�

�
�
�
�
�
�
�
�
�
���
�
�
�
�
�
�
�
�
� �

gn

2/n1/n

n–

gn(x) :=

⎡
⎢⎣

n2x 0 ≤ x ≤ 1/n
(2 − nx)x 1/n ≤ x ≤ 2/n
0 2/n ≤ x ≤ 1

.

This sequence exhibits pointwise convergence to the null function in [0,1], but
we verify that

∫
g2

n does not converge to zero.

Example 2.11 Important consequences are driven from the fact that, in C1[0, 1],
convergence with respect to the norm ‖ · ‖1,2 implies convergence relatively to the
norm ‖ · ‖∞. Indeed, for f ∈ C1[0, 1], we have that
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∫ 1

0
|f (s)|ds = |f (x0)|

for some x0 ∈ [0, 1]. Now, for any x in [0, 1], the identity

f (x)− f (x0) =
∫ x

x0

f ′(s)ds

holds; thus it follows that

|f (x)| ≤
∫ 1

0
|f (s)|ds +

∫ 1

0
|f ′(s)|ds.

By making use of Schwarz inequality (in fact, of CBS, expression (2.10)),

|
∫ 1

0
φ(x)ψ(x)dx| ≤ ‖φ‖2‖ψ‖2

with ψ := 1 and φ := f or f ′, it follows that

|f (t)| ≤ ‖f ‖2 + ‖f ′‖2.

Therefore,

‖f ‖2∞ ≤ ‖f ‖2
2 + ‖f ′‖2

2 + 2‖f ‖2‖f ′‖2

≤ 2{‖f ‖2
2 + ‖f ′‖2

2} = 2‖f ‖2
1,2

(2.14)

holds, since 2|ab| ≤ a2 + b2.

2.5 Continuous Functions

Given two normed spaces V,W, a function φ : V → W is said to be continuous if,
for any convergent sequence (vn) in V ,

lim
n→∞φ(vn) = φ( lim

n→∞ vn).

Example 2.12

(a) No matter which norm we would be dealing with in Rn, we can anticipate the
continuity of the n projections
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δj : Rn → R,

x = (x1, . . . , xn) → δj (x) := xj , 1 ≤ x ≤ n

]
1 ≤ x ≤ n;

(b) For all 0 ≤ t0 ≤ 1, we have the continuity of the functionals

δt0 : C0[0, 1] → R

f → δt0(f ) := f (t0)

as regards to ‖ · ‖∞, but not when ‖ · ‖2 is considered;
(c) No matter which vector w is fixed in a given Euclidean space V , the functional

defined through

φw : V → R,

v → φw(v) := (v|w)

is always continuous with respect to the norm associated to its inner product, as
a consequence of inequality (2.10);

(d) For any G ∈ C1(R2), it can be shown the continuity of

φ : C0[0, 1] → C0[0, 1]
f → [φ(f )](t) := ∫ t

0 G(s, f (s))ds

]
,

with respect to the norm ‖ · ‖∞.

It is straightforward to verify that:

(i) φ1, φ2 : V → W continuous ⇒ φ1 + φ2 continuous
(ii) α ∈ R, φ : V → W continuous ⇒ αφ continuous

There is no need to define the continuity concept for only functions defined on
the whole space, as above: their domain may be as well an arbitrary subset of V .
Indeed, the formulation just introduced requires only to put the hands on the notion
of a convergent sequence and consequently to deal with distance between elements
in the space under consideration.

2.6 The Open, Closed, Dense Sets

A subset F from a normed space V is closed if the limit of any convergent
sequence (vn) of elements from F belongs necessarily to F . With alternate words,
the elements in F may only approximate elements from F itself.

Chosen v0 ∈ V and r > 0, the closed ball with center in v0 and radius r is the
set

B[v0; r] := {v ∈ V ; ‖v − v0‖ ≤ r}.
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Exercise 2.10 As a consequence of the triangle inequality, B[v0; r] is always a
closed set.

a) Verify that in C0[0, 1], the set {f ; |f (t)| ≤ 1, 0 ≤ t ≤ 1} is closed relative to
the norm ‖ · ‖2.

b) Verify that {x ∈ �2; |xı | ≤ 1/ı} is closed in �2 with respect to the norm ‖ · ‖2 .
(This set is named the Hilbert cube.)

Given X ⊂ V , let us consider the set of all elements from V that tolerate to be
approximated by vectors in X. This set is called the closure of X and is denoted by
X. Rephrasing it: x ∈ X if and only if x appears as limit of some sequence (xn)

with all xn ∈ X.

Exercise 2.11 Verify that, for v0 ∈ X, r > 0, B[v0; r] is the closure of

B(v0; r) := {v ∈ V ; ‖v − v0‖ < r}.

The set just defined in this Exercise is called the open ball with center in v0 and
radius r . A set X ⊂ V is said to be open if its complement is closed, or in an
alternate expression form, if its elements may only be approximated by vectors that
live in X. Still another way to characterize this notion is described in the

Exercise 2.12 A set X ⊂ V is open if and only if, for any x0 ∈ X, there exists
an open ball with center in x0 and entirely contained in X. It can be verified that
B(v0; r) is always open, for any choice of r > 0 and any v0 ∈ V .

A subset X ⊂ V is defined as dense (in V ) if X = V , i.e., if every element of V

may be approximated by elements of X.

Exercise 2.13 Verify that �∞0 is dense in �2 with the norm ‖ · ‖2 as well as in c0
(with the norm ‖ · ‖∞), but it fails to be dense in c or in �∞.

Exercise 2.14 Is C∞
0 (R) dense in S(R) relative to the norm ‖ · ‖∞? What about

choosing the norm ‖ · ‖2?
An important sample of a dense set in C0[0, 1] is the space of all polynomials for
either norm ‖ · ‖∞ or ‖ · ‖2 . In the first case, this is exactly the statement of the
Weierstrass Approximation Theorem ([61], pp.146). The second claim follows
from that result.

Exercise 2.15 Verify that the set of all polynomials with rational coefficients is as
well dense in C0[0, 1], with respect to the uniform convergence norm. And what to
say about L2?

Dense sets may show, in particular events, that they carry more power than
a priori thought: it turns out that knowledge of some data on determinate dense
subsets suffices to make sure that these data also belong to the whole space under
exam. As an example, suppose that g ∈ C0[0, 1] is such that
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∫ 1

0
xrg(x)dx = 0 (2.15)

for r = 0, 1, . . . ; does this guarantee that

∫ 1

0
f (x)g(x)dx = 0 (2.16)

for an arbitrary f ∈ C0[0, 1]?
Well, from (2.15) we deduce that (2.16) holds whenever f is a polynomial. Take
into account that the functional

f →
∫ 1

0
f (x)g(x)dx

is continuous with regard to the norm ‖·‖∞. Choose then a sequence of polynomials
(pn) which approximates f , also according to this norm, in order to conclude
that (2.16) holds for any f ∈ C0[0, 1].

Exercise 2.16 Conclude that g ≡ 0. •
By the same token, as long as it is known that g : R→ R is continuous and vanishes
on the set of rationals, we can conclude that g ≡ 0.

Remark that the two exercises above unravel a quite general scenario: a continu-
ous function f : V → W is characterized by its values in any dense set X in V . In
other words,

f1, f2 : V → W continuous
f1(x) = f2(x),∀x ∈ X

X dense in V

⎤
⎦ �⇒ f1 ≡ f2.

But this result, as a gift, raises a question: suppose that f is continuously defined on
X which is dense in V . May it be assured that f holds a continuous extension to
all of V ? Another formulation: does it exist

F : V → W

continuous and such that

F(x) = f (x) for all x ∈ X?

It is known by now that, as long as such extension F exists, it is unique. In this case,
it is said that F is the continuous extension for f . It turns out that this search can
meet a blocking, though. For example, the function
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f : {x ∈ R; x = 0} → R

x → f (x) := sin(1/x)

]

points out that such an extension may be forbidden to exist.
The first idea that pops up as one looks for a continuous extension, within such a

framework, is to define, for all

x ∈ V \X := {x ∈ V ; x ∈ X},

the values of the sought extension by

F(x) := lim
n

f (xn),

having the sequencexn ∈ X the property: xn → x.
The adopted itinerary requires at once to answer: Is it indeed possible to assure

these limits existence, besides – a foremost point – its independence of the chosen
sequence (xn)? We will indicate below which conditions on f and about the space
W must be imposed.

2.7 The Cauchy Sequences

The definition of a convergent sequence of vectors (xn)n∈N in a normed space V ,
cf. (2.12), is extrinsic, since it employs data that are external to the sequence under
analysis, namely, a particular point that turns out to be its limit. Nevertheless, it turns
out that either this limit is unknown, and thus its value is being sought, or even its
very existence is unknown, or, last but not least, it needs to be approximated. This
is the strong endorsement to introduce the so-called Cauchy criterium.
For any convergent sequence (xn)n∈N, it follows from the triangle inequality that:

Given an arbitrary real ε > 0, there exists a value M = M(ε) such that, if n,m > M, then

‖xn − xm‖ < ε.

Cauchy sequences are defined as those that satisfy such criterium.

It is rather clear: every convergent sequence must be a Cauchy sequence. It
would be quite convenient to have its reciprocal to hold, since the Cauchy criterium
formulation deals just with the elements of the sequence under exam, being thus
intrinsic.
Let get this point illustrated by considering the function θ ∈ C∞

0 (R) defined by
in order to construct the sequence

ψn(x) := θ(x/n) exp−x2
.
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�

�

−2 −1 0 1 2 x

1 θ(x) :=

⎡
⎢⎢⎣
1 |x| ≤ 1
exp

[
e{1/(1−|x|)}

|x|−2

]
1 < |x| < 2

0 2 ≤ |x|

Exercise 2.17 Verify: the sequence {ψn} is a Cauchy sequence in C∞
0 (R) under the

norm ‖ · ‖∞, though it fails to be convergent, within this framework.

The same flavor comes from the example which follows: consider in �∞0

xn = (xn
j )j∈N with xn

j :=
[

1/j j ≤ n

0 j > n
.

Exercise 2.18 Prove that (xn) is a Cauchy sequence in �∞0 , no matter if the norm
‖ · ‖∞ is taken or ‖•‖2 is our choice; but it does not converge in �∞0 , under either
norm.

A quite important fact is present in both examples. Observe that

C∞
0 (R) ⊂ S(R), �∞0 ⊂ �2 ⊂ �∞.

The above considered sequences (ψn) and (xn) belong, thus, to S(R) and �2,
respectively. It turns out that, being

ψ(x) := e−x2 ∈ S(R),

x = (xj )j∈N := (1/j)j∈N ∈ �2 ⊂ �∞,

we can claim that

ψn → ψ in S(R),

under the norm ‖ · ‖∞, and

xn → x in �2 or �∞.

Therefore, the Cauchy sequences under consideration lack their convergence inside
the spaces first taken, but they become convergent provided we deal with the
“correct” ones. The choice done at first has pointed to spaces not “rich” enough,
as they lack the right elements to guarantee the sought convergence.
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A Banach space is defined as a normed space in which any Cauchy sequence
converges; on the other hand, an Euclidean space with this same property is defined
as a Hilbert space.

All spaces RN , independently of the chosen norm, are examples of Banach
spaces, while C0[0, 1] is a Banach space if we consider the norm ‖ · ‖∞, but lacks
this property under ‖·‖2. This last claim can be verified by considering, for example,
for n > 2, the sequence defined as follows.

�

�

�
�
�
�
�
�
�
�
�
�fn

. . . 1
1
2

1–

→ | 2
n
| ←

fn(x) :=

⎡
⎢⎢⎣
0 0 ≤ x ≤ 1

2 − 1
n

n
(
x
2 − 1

4

)
+ 1

2
1
2 − 1

n
≤ x ≤ 1

2 +
1
n

1 1
2 +

1
n

≤ x ≤ 1

Exercise 2.19 Prove that C1[0, 1] is complete under the norm ‖ · ‖1,∞, but it is not
a Banach space under the norm ‖ · ‖∞.

Exercise 2.20 Verify that, for 1 ≤ p < ∞, all the spaces

�p := {x = (xj ); xj ∈ R and
∞∑

j=1

|xj |p < ∞}

are as well complete, as long as we choose the norms

‖x‖p := {
∑
j

|xj |p}1/p.

Exercise 2.21 Demonstrate that, under the norm ‖ · ‖∞, we have completeness for
the spaces �∞, c, and c0.

Exercise 2.22 Provided 1 ≤ p < q ≤ ∞, deduce that �p ⊂ �q, �p = �q .
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2.8 Quotient Spaces

A concept that occupies an important slot in our theoretical development is that
of quotient spaces, which arises as fruit of different frameworks, one of them
described in

Example 2.13 Let P be the space of all real coefficient polynomials

P := {p(x) :=
∞∑
ı=0

aıx
ı; a = (aı) ∈ �∞0 }.

If we need to compute the values p(x̄) of an arbitrary element in P for, say, |x̄| ≤
1/2 , we will necessarily have to restrict ourselves to the terms of degree < N , for
some N which will depend on the number of digits which we can operate with.
This is a commandment from the floating point arithmetic employed by any digital
computer: xN = 0 for N large enough, as long as |x| < 1. And this amounts to
be unable do distinguish two distinct polynomials that coincide for all terms with
degree < N , when we are working with values for |x| < 1.

Two polynomials p and q are considered to be equivalent if

TN(p − q) = 0, (2.17)

where TN is the truncation operator

TN : P → PN

p(x) :=∑∞
ı=0 aıx

ı → (TNp)(x) :=∑N−1
ı=0 aıx

ı
.

The notations p ∼ q or pRNq are both assigned, and we have:

a. Reflexivity p ∼ p ∀p ∈ P
b. Symmetry p ∼ q ⇐⇒ q ∼ p ∀p, q ∈ P
c. Transitivity p ∼ q, q ∼ r �⇒ p ∼ r ∀p, q, r ∈ P

(2.18)

We express then that (2.17) defines an equivalence relation.
To each p ∈ P , we associate its equivalence class

p∗ := {q ∈ P; q ∼ p},

which amounts to the set of all polynomials that may have terms distinct from the
corresponding ones of p only if these have degree ≥ N . The collection of these
equivalence classes, denoted by P/ ∼, is named quotient set.

The operations on a vector space are then introduced in P/ ∼:
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a) p∗ + q∗ := (p + q)∗
b) λp∗ := (λp)∗

]
. (2.19)

At first sight, the right-hand terms in expressions (2.19) could depend on the chosen
element that “represents” the equivalence class in consideration, and this way the
operations thus introduced would fail to be well defined in P/ ∼. Making it more
clear, consider, for example, (2.19.b). If p1 ∼ p2, then p∗1 = p∗2 , and thus, λ(p∗1) =
λ(p∗2) could be defined by (λp1)

∗ as well as by (λp2)
∗ , and we ought to reach the

same element of P/ ∼. And, indeed,

p1 ∼ p2 �⇒ (λp1) ∼ (λp2) �⇒ (λp1)
∗ = (λp2)

∗,∀λ ∈ R.

Exercise 2.23 Show that (2.18.a) effectively defines an addition in P/ ∼, which,
with the operations we introduced, becomes a vector space.

In order to reach the space P/ ∼, called quotient space, the track followed is
to identify elements associated to some property. It is a scenario that recalls the one
with the free vectors on the three-dimensional space which are identified between
themselves whenever on the same direction, orientation, and length.

Now, as long as

FN := {p(x) :=
∞∑

ı=N

aıx
ı; (aı) ∈ �∞0 with aı = 0 if 0 ≤ ı < N},

then 0∗ = FN and (2.17) may be rewritten

p ∼ q ⇐⇒ p − q ∈ FN. (2.17′)

The relation ∼ is defined by the operator TN or else by its kernel FN . In a more
general environment, given E, a vector space and F ⊂ E, a subspace,

x ∼F y ⇐⇒ x − y ∈ F (2.20)

defines always an equivalence relation – i.e., fulfills the properties listed in (2.18)
– and E/ ∼F is a vector space when we introduce the operations in the same way
as in (2.19).

Example 2.14 Let E := R3, 0 = y ∈ R3 fixed and F := Y be the line generated
by y, i.e., Y := {x ∈ R3|x = αy, α ∈ R}. Then, for every x ∈ R3, the equivalence
class of x∗ is the line which is parallel to Y and which meets x.

In this framework, it is possible to measure the distance between two classes
x∗1 , x∗2 , which amounts to introduce the norm of x∗ := distance of x to the line Y .

This example guides us to wonder whether is it possible to work with the above
notions inside normed spaces. In a more precise formulation, being E a normed
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space and given one of its subspaces, say F , how to introduce a norm in E/ ∼F ?
Just observe that, in any normed space,

‖x‖ = distance from x to the origin,

and that in E/ ∼F , 0∗ = F . In other words, F is the origin in the quotient space;
therefore, it is quite natural to define

‖x∗‖ := distance from x∗ to F, (2.21)

provided we know how to introduce the notion of distance between two sets. Such
a notion is defined then, for A,B ⊂ E (= normed space), by means of:

dist (A,B) := inf{‖a − b‖; a ∈ A, b ∈ B}.

The step that follows at once is to confirm that

‖x∗‖ = inf{‖x − f ‖; f ∈ F }. (2.21′)

It must be taken into account that, in the right-hand side of this expression, x may be
replaced by any y ∈ x∗. This remark lets (2.21′) be taken as an alternate definition.
Besides, it can be verified that the following identity holds:

‖x∗‖ = inf{‖x‖; x ∈ x∗}. (2.21′′)

One question stays on the waiting stop: Does (2.21) actually define a norm? Observe
that no topological hypothesis was made about F . Unfortunately, if F lacks to be
closed and x ∈ F , but x ∈ F , then x∗ = 0∗ = F , despite occurring that ‖x∗‖ = 0.
And this happens since a sequence exists for which

fn ∈ F, fn → x.

Now, this is exactly the missing hypothesis, as it can be seen from
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Exercise 2.24

(a) Given a normed space N , if F ⊂ N is a closed subset, (2.21′) defines a norm
in E/ ∼F , where ∼F is introduced with (2.20).

(b) If N is a Banach space, so is E/ ∼F . And the converse?

2.9 Completion of a Normed Space

Throughout the examples in Sect. 2.7, convergence of a given Cauchy sequence
would be obtained were the space considered at first replaced by a larger one. And
it turns out that this is exactly the rationale backing what is called completion of
a normed space. It amounts to a general strategy for constructing an environment
where every Cauchy sequence from a given normed space becomes convergent –
inside this brought-in framework.

Let V be an arbitrary normed space. We will borrow its structure so as to build a
Banach space W̃ which, in a sense to be made precise, contains V as a dense subset.
Denote by W the set of all Cauchy sequences (xj ) with xj from V . This set W

becomes a normed space with the definitions choice:

i) (xj )+ (yj ) := (xj + yj )

ii) α(xj ) := (αxj )

iii) ‖(xj )‖W
:= lim ‖xj‖V

⎤
⎦ .

The triangle inequality guarantees that i) effectively defines an element in W . This
claim is quite clear for ii). In order to prove that iii) defines indeed a norm, we
must at once verify existence of the limit in the right-hand side and, for that, to take
hold of the inequality (2.22), which is important per se.
Let x, y be arbitrary vectors from a normed space. From the triangle inequality, it
follows that

‖x‖ = ‖x − y + y‖ ≤ ‖x − y‖ + ‖y‖,
which implies

‖x‖ − ‖y‖ ≤ ‖x − y‖. (A)

Now just exchange y and x in (A) so as to deduce that:

− ‖x − y‖ ≤ ‖x‖ − ‖y‖. (B)

From expressions (A) and (B),

−‖x − y‖ ≤ ‖x‖ − ‖y‖ ≤ ‖x − y‖
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follows, which amounts to

|‖x‖ − ‖y‖| ≤ ‖x − y‖. (2.22)

(We should remark that this relationship was deduced by employing just the triangle
inequality and that, for any vector x, it is true that ‖ − x‖ = ‖x‖.)
It turns out that the “function” introduced in W by means of iii) fails to be a norm.
Indeed, the zero vector in W is

(xj )j∈N, where xj = 0∀j ∈ N,

but limj ‖xj‖V
= 0 implies only that (xj ) is a sequence that approximates the null

vector in V .
We better retrieve the previous section where a norm fails to be defined by (2.21)
in E/ ∼F , for not being closed in W the subspace F . Now we deal with a space
that will show up as normed space only after an identification has been introduced
between its elements; or, with a better saying, after being defined an equivalence
relation. We find as more natural to treat this problem first in a more generic context
and then step down to the particular case of W .

Let N be a vector space where a semi-norm s(·) has been defined. For this
we mean a non-negative, homogeneous function for which the triangle inequality3

holds. In alternate words,

s(x) = 0 �⇒ x = 0

is the only property of a norm which s may fail to fulfill. In order to obtain, from
N , a normed space, consider the subspace

F := {x ∈ N; s(x) = 0}.

In the quotient space N/ ∼F , we introduce

‖M‖ := s(y),∀y ∈ M, with M ∈ N/ ∼F .

For all y ∈ M, s(y) exhibits the same value, since

y1, y2 ∈ M ⇐⇒ y1 − y2 ∈ F ⇐⇒ s(y1 − y2) = 0

and, by the same reasoning already called for to reach (2.22),

|s(y1)− s(y2)| ≤ s(y1 − y2).

This implies that s becomes indeed a norm in N/ ∼F .

3 Hereby also mentioned as sub-aditivity.
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Take now as N the space W of Cauchy sequences introduced above, denoted by
W̃ the quotient space or, else, W̃ will be W after the identification of two Cauchy
sequences x = (xj ) and y = (yj ) of elements from V whenever

lim ‖xj − yj‖V
= 0.

The notation ‖ · ‖∼ will be adopted for the norm of W̃ .

For any v ∈ V , the constant sequence w := (wj ), with wj := v for all j ∈ N,

belongs to W. The element v ∈ V is associated in a quite natural fashion to the class
w̃ ∈ W̃ determined by such an element w ∈ W, and we have that

‖w̃‖∼ = ‖v‖V . (2.23)

That is the meaning employed when it is said that V ⊂ W̃ . We shall employ the
notation Ṽ for this subset of W̃ which, from now on, we identify with the originally
considered space V. Alternatively said, Ṽ is the set of the (classes of) sequences
whose limit exists (inside V ). Property (2.23) points out that the function

v ∈ V → ṽ ∈ Ṽ ⊂ W̃

preserves the norm or, with mathematical slang, it is an isometry.
Let us show that any w̃ ∈ W̃ may be approximated, with an arbitrary precision level,
by elements ṽ ∈ Ṽ .

Let (wj ) ∈ W be a “representative” of the given class w̃ ∈ W̃ , and let ε > 0 be an
arbitrary real. Since (wj ) is a Cauchy sequence, there exists N = N(ε) such that,
as long as m, n ≥ N , we have

‖wm − wn‖V < ε.

It follows then that (vε
j ) defined by vε

j := wN(ε), for any j , is associated to an
element ṽε ∈ Ṽ and that

‖ṽε − w̃‖∼ < ε.

The proof that W̃ is a Banach space follows now.
Let (w̃n) be a Cauchy sequence in W̃ . No matter the choice for n, it is possible to
present an element ṽn ∈ Ṽ for which ‖ṽn − w̃n‖∼ < 1/n. It is valid the claim that
(ṽn) is a Cauchy sequence, since the chain of inequalities that follows is true:

‖ṽn − ṽm‖∼ ≤ ‖ṽn − w̃n‖∼ + ‖w̃n − w̃m‖∼ + ‖w̃m − ṽm‖∼

≤ 1/n+ 1/m+ ‖w̃n − w̃m‖∼.
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Observe now that, given ṽ ∈ Ṽ , in a unique way it is associated to an element
v ∈ V . This would then let us to consider the vectors vn ∈ V thus obtained from
the corresponding ṽn. This sequence (vn) belongs to W (why is that so?), and we
claim that it (would better be said, w̃, the class it determines inside W̃ ) is the limit
of (w̃n).

Indeed, we have

‖w̃n − w̃‖ ≤ ‖w̃n − ṽn‖∼ + ‖ṽn − w̃‖∼ ≤ 1/n+ lim
j
‖vn − vj‖V

→ 0,

which closes the proof.
This construction could have been carried out in no matter which metric spaceM ,
which means: a set where the notion of distance has been introduced. This means a
function

d : M ×M → R+
(x, y) → d(x, y) ≥ 0

(2.24)

for which the following three assumptions may be claimed to hold:

d(x, y) = d(y, x)

d(x, y) = 0 ⇐⇒ x = y

d(x, z) ≤ d(x, y)+ d(x, z)

⎤
⎦ .

A metric space where any Cauchy sequence necessarily converges is expressed as
being complete.

Example 2.15 As remarked in Chap. 1, this general construction was motivated and
guided by the case where

V = Q := the set of rational numbers,

for which we obtain

W̃ = R.

Exercise 2.25 What are the output results Ṽ and W̃ for an input space V already
complete?

Example 2.16 The space V := C0[0, 1] with the norm ‖ · ‖2 is not complete. Its
completion turns out to be W̃ := set of real functions defined on [0, 1], whose square
are integrable on the Lebesgue sense. This fact may be taken as a road to define
Lebesgue integral (see Sect. 2.14), or else may be proved, whenever this integral
happens to be developed with alternate tools.
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Example 2.17 With the choice of the space C1[0, 1] and the norm ‖ · ‖1,2 for V , we
are lead to W̃ as the Sobolev space H 1(0, 1), to be detailed on Chap. 4.

2.10 Principle of the Continuous Extension

Let’s get back to the example (or counterexample) in Sect. 2.6.

Example 2.18 The function

f : R\{0} → R

x → sin(1/x)

fails to own a continuous extension to the whole real line R. This is a consequence
of the existence of sequences of real numbers (xn) that approach zero and such that
(f (xn)) is not convergent. The reason lies on the fact that, even being continuous
the function f , as we take x̄ closer and closer to the origin, its graph becomes wilder
in a neighborhood of x̄. The corresponding values of |f ′(x)| get larger and larger,
pointing out that small changes for x lead to (proportionally) much larger variations
in the values of f (x). The same type of event is found with

f : R\{−1, 0, 1} → R

x → f (x) := 1/x(x2 − 1)

]
.

Example 2.19 Name as f any of the functions cos x, exp−|x|, or tan−1 x and
observe that, given any real x0, even with no information about f (x0), it is always
possible to determine this value, just borrowing data from f (x), for x = x0. Let us
rephrase it: were f defined only on R\{x0}, it would exist exactly only one choice
to define it in the whole line in such a way as it would become continuous – just
take its very value f (x0).

What keeps these two examples apart may be explained by the following remark:
whenever a Cauchy sequence (xn) is chosen in the domain of the functions in
Example 2.19, it is seen that (f (xn)) is also a Cauchy sequence. Let this story be
told with different words: these functions transform Cauchy sequences in Cauchy
sequences. In contrast, functions in Example 2.18 do not satisfy this property.
A given function

f : D ⊂ M → N

is said to be uniformly continuous whenever, given ε > 0, there exists a
counterpart δ = δ(ε) > 0 (i.e., a real positive δ, which depends only on the value of
ε) and is such that we have



36 2 Basic Concepts

‖f (x)− f (y)‖N < ε as long ‖x − y‖M < δ, x, y ∈ D.

Here, M and N are arbitrary normed spaces, likewise as in

Exercise 2.26

(a) If f : M → N is uniformly continuous, then f preserves Cauchy sequences.
(b) Being D ⊂ Rn bounded, then f : D → N is uniformly continuous if and only

if it preserves Cauchy sequences.

Exercise 2.27 If the partial derivatives ∂f/∂xj of f : D ⊂ Rn → R, for j =
1, 2, . . . , n, are known to be bounded, then f is uniformly continuous.

Suppose now that D is a dense subset of a normed space M and let f : D →
N be a uniformly continuous function. Had we assumed that f would be only
continuous and had tried to extend f to any x ∈ M\D by means of the natural
choice

f (x) := lim
n

f (xn), (2.25)

where xn → x, xn ∈ D, such definition could fail to be a consistent one. Indeed,
it would be quite possible to find distinct sequences (xn) that would have the same
element x as limit, but that would be mapped through f to sequences with different
limits. As a matter of fact, it suffices to require from f to be uniformly continuous
to assure that, as long as those limits exist, uniqueness holds. To prove that, let (xn)

and (yn) be sequences in D which do converge to the same element x ∈ M\D. The
sequence (zn) defined by

z2k := xk, z2k−1 := yk, k = 1, 2, . . . ,

converges to x, which assures it as being a Cauchy sequence. From this token
(f (zk)) also happens to be a Cauchy sequence and as a consequence

lim
k

f (xk) = lim
k

f (yk).

How can one guarantee the existence of the limit in (2.25), no matter which x ∈
M\D is chosen? The hard point in this question does not lie within the space M nor
the function f ; rather, it is carried on by the space N : despite being (f (xn)) Cauchy
sequences, they may fail to be convergent in N . It is then clear that if N turns out
to be a Banach space, we will have the right dressing on. It is then handy to express
the above reasoning with the

Principle of the Continuous Extension – PCE. Let D be a dense subset of a normed
space M and let

f : D → N



2.11 The Linear Operators 37

be a uniformly continuous function. If N is a complete space, there exists a unique
continuous extension of f to the whole space M . Moreover, such extension preserves the
uniform continuity.

Example 2.20 Define in C1[0, 1] the function

δt̃ : C1[0, 1] → R

f → δt̃ (f ) := f (t̃)

]
,

where t̃ ∈ [0, 1] is fixed but arbitrary. When the norm ‖·‖1,2 is chosen, it is seen that
δt̃ is continuous. In fact, suppose that fn → f . It can be verified, for g ∈ C1[0, 1],
that

g(x)2 ≤ 2(‖g‖2
2 + ‖g′‖2

2) = 2‖g‖2
1,2,∀x ∈ [0, 1],

from which it follows that

|fn(t̃)− f (t̃)| ≤ √2‖fn − f ‖1,2,

and therefore the conclusion that δt̃ is continuous is reached.

Exercise 2.28 Prove that δt̃ is uniformly continuous.
We have previously mentioned that the completion of C1[0, 1]with the norm ‖ · ‖1,2

gives birth to the Sobolev space H 1[0, 1]. From the remark just made in the previous
exercise, we are able to conclude that the function δt̃ owns a continuous extension
to H 1[0, 1]. Moreover, since for the functions in C1[0, 1] one can deduce that4

|f (t1)− f (t2)|2 =
∣∣∣∫ t2

t1
f ′(s)ds

∣∣∣2 ≤∫ t2
t1
|f ′(s)|2ds · |t1 − t2| ≤ |t1 − t2| · ‖f ‖2

1,2,
(2.26)

we can idealize the elements from H 1[0, 1] as being uniformly continuous
functions.

2.11 The Linear Operators

Given a function f : X → Y , it is natural to ask which properties from the set X get
preserved by f . Recall that we have deduced that uniformly continuous functions
preserve Cauchy sequences. When dealing with completion, it was observed that
an element v ∈ V is associated to another element ṽ ∈ Ṽ ⊂ W for which

4 In (2.26), the first inequality may be obtained as a consequence of (2.42), or even from
CBS (2.10).
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‖ṽ‖∼ = ‖v‖V

holds, and thus such association preserves norms. Naturally connected to vector
spaces is the next subject of our study, namely, linear transformations or operators:

T : V → W,V,Wvector spaces,

is defined as linear if

T (α1v1 + α2v2) = α1T (v1)+ α2T (v2)

for any choice of v1, v2 ∈ V, α1, α2 ∈ R.

Traditionally, for linear operators, parentheses are omitted, so that we write T v

replacing T (v).
In finite dimensional spaces, linear operators are naturally linked to matrices. All
above quoted examples illustrate linear operators, with the exception of

f → f (x0)+
∫ x

x0

G(t, f (t))dt,

which becomes linear only if G is linear with respect to the second variable. It is
worth remarking the linearity which holds for the identification

ı : V → Ṽ ⊂ W̃

v → Ṽ

of a space with a dense set in its completion.

Example 2.21 Let us quote the equation

utt = uxx, t > 0, 0 ≤ x ≤ 1, (2.27)

which models the free transverse vibrations of a flexible string. Take the boundary
conditions

u(0, t) = u(1, t) = 0 (2.27′)

that describe the string extreme points as fixed. It is known that, given arbitrary φ

e ψ , provided they are regular enough,5 it is possible to uniquely determine u =
u(x, t) that fulfills (2.27)–(2.27′), besides the initial conditions6

5 – By this we mean that these functions are as differentiable as the calculations thereby required
ask for –.
6 In short, existence and uniqueness hold for this problem.
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u(x, 0) = φ(x)

ut (x, 0) = ψ(x)

]
. (2.27′′)

Therefore, it is possible to define, for each fixed t0, the operator

{φ,ψ} → u(·, t0) ∈ C0[0, 1],

where u represents the system state at t0, which means the string displacement for
t = t0, or else, the value of the solution to (2.27)–(2.27′′) at the instant t0. It is
possible then to verify – due to the linearity of the differential equation, as well
as of the initial and boundary conditions, besides the uniqueness of the problem
solution – that the considered operator is linear.

At this point it is natural to question: Which is the relationship between linearity
and continuity?
Assume as continuous the linear operator T at a particular vector v0. No matter
which other vector v is chosen, if a sequence vn → v, it may be deduced that
(vn + v0 − v) → v0 and therefore, being T continuous at v0 ,

T (vn + v0 − v) → T v0.

Linearity implies then

T (vn + v0 − v) = T vn + T v0 − T v,

so that

T vn − T v → 0 or T vn → T v.

This way, to verify whether is T continuous, it suffices to verify its continuity at a
single point v0, no matter the choice done. Such a condition may be expressed by:

T (assumed linear) is continuous in the whole space V.

⇐⇒ T it is continuous at the origin {v = 0}.

Example 2.22 Consider

T : C1[0, 1] → C0[0, 1]
f → Tf := f ′

]
.

Take in both spaces the norm ‖ · ‖∞. Verify then that T lacks continuity. Indeed,
by choosing fn(x) := (1/n) sin nx, ‖fn‖ ≤ 1/n ↓ 0, but f ′n(x) = cos nx, and
consequently ‖f ′n‖∞ = 1.
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It must be made clear by now that the notion of continuity depends on the
norms thereby considered. If C1[0, 1] is equipped with the norm ‖ · ‖1,2, while
C0[0, 1] gets the norm ‖ · ‖2, the operator T in Example 2.19 would turn out to
be continuous.
Another result on linear operators follows.

T is continuous ⇐⇒ T is bounded

or, T maps balls inside balls:

{T x; ‖x‖ ≤ r1} ⊂ B(0; r2) with r2 = r2(T , r1).

To prove it, suppose T is continuous, and let (xn) be a sequence of elements from
the ball B(0; r1). We claim that (T xn) is bounded since, if not, it would exist a
subsequence 7 xnk

with xnk
= 0 and limk ‖T xnk

‖ = +∞. By taking

yk := xnk
/‖T xnk

‖

we get yk → 0 but ‖Tyk‖ = 1, which contradicts the continuity of T .

In analogous fashion, suppose T to be bounded, but not continuous. It would exist,
then, a sequence (xn), xn → 0 and so that T xn does not tend to zero. This implies
the existence of a subsequence (xnk

) such that ‖T xnk
‖ ≥ ρ, for some ρ > 0. The

sequence yk := xnk
/‖xnk

‖ is bounded, in spite of ‖Tyk‖ → ∞. These two claims
can not stand together with the assumed boundedness for T .

For any linear and continuous operator T , we denote

|||T ||| := sup
x =0

‖T x‖/‖x‖ = sup
‖x‖=1

‖T x‖ = sup
‖x‖≤1

‖T x‖, (2.28)

from which it follows, for any x ∈ V,

‖T x‖ ≤ |||T ||| · ‖x‖,

where the notation leaves as implicit, as long as no doubt shows up, that

‖x‖ := ‖x‖V and ‖T x‖ := ‖T x‖W .

Example 2.23 Let the operator

T : RN → V

7 We say that {xnk
} is a subsequence from {xn} if {nk} is a strictly increasing sequence.
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be linear, being V an arbitrary normed space and {e1, . . . , eN } the canonical basis
for RN. If

vı := T eı and ‖x‖1 ≤ 1,

‖T x‖V = ‖T
∑

αıeı‖
V
= ‖

∑
αıvı‖

V

≤ max ‖vı‖V

∑
|αı | = max ‖vı‖V ‖x‖1 = max ‖vı‖V .

This chain of deduced expressions implies that

|||T ||| ≤ max ‖vı‖V . (2.29)

Exercise 2.29 Show that equality holds in (2.29).

Example 3A Just like in Example 2.23, it may be proven that

‖x‖∞ ≤ 1 �⇒ ‖T x‖ ≤ N max ‖vı‖V , (2.29′)

or else that

‖T x‖ ≤
∑

‖vı‖V ; (2.29′′)

provided ‖x‖2 ≤ 1, we obtain

‖T x‖ ≤
∑

|αı |‖vı‖V ≤ (
∑

α2
ı )

1/2(
∑

‖vı‖2
V )1/2 ≤ (

∑
‖vı‖2

V )1/2.

(2.29′′′)

Exercise 2.30 Consider the expressions (2.29′), (2.29′′), and (2.29′′′) and prove the
existence of some vectors for which equality holds for every one of them.

The just exhibited example is in fact a particular show off of a general situation,
namely:

Given any linear operator defined on a finite dimensional vector space, such operator is
always continuous, independently of the chosen norms, either on its domain or range (see
Sect. 2.13).

Definition Given a continuous linear operator T , the value |||T |||, introduced
in (2.28), is called the norm of T as operator or, by now, its “norm.”
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Exercise 2.31 Verify that

|||T ||| = inf{α ∈ R; ‖T x‖ ≤ α‖x‖,∀x}
= diameter {T x; ‖x‖ ≤ 1}.

The “norm” of T is consequently the expansion – or contraction – factor for the
unity ball when subjected to the action of T . In short, what we reached above was
the following:

Theorem 2.1 Let T : M → N be a linear operator which maps some normed
space to another. All the claims that follow are then equivalent:

(a) T is continuous at the origin.
(b) T is continuous at some point xεM.

(c) T is continuous at any point xεM.

(d) T is uniformly continuous.
(e) T is a Lipschitz function, i.e., there exists a constant K for which

‖T x − Ty‖N ≤ K‖x − y‖M∀x, y ∈ M;

(e′) There exists a real K , which depends on T , for which the inequality

||T x|| ≤ K||x|| (2.30)

holds, no matter which vector x ∈ M is chosen.
(f ) T maps the unity ball from M inside some ball contained in N .
(g) The image of any ball from M is contained in some ball in N .
(h) T maps bounded sets from M into bounded sets in N .

Due to properties h) and e′), linear continuous operators have earned the identifi-
cation of bounded operators.

The following reading of properties a) to c) is more attractive: no matter which
linear operator is considered, either it is continuous at some particular point from
its domain – and therefore it turns out to be everywhere continuous – or else it is
everywhere discontinuous. This reasoning makes it natural to recall the nowhere
differentiable functions discussed on the first chapter. We can neither refrain from
quoting the differentiability properties on Chap. 7.
Now let X and Y be two fixed normed spaces. Denote by L(X, Y ) the set of all
bounded linear operators from X to Y . As we take in L(X, Y ) the “norm” defined
by (2.28), it is verified that this space turns out indeed as a normed space. Thus, we
can from now on write just norm, no quotes needed.
When considering X = Y , it is usual to employ L(X) instead of L(X,X).

Clearly for the identity operatorI : X → X , we obtain

I ∈ L(X) and |||I||| = 1.
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Furthermore, whenever

T ∈ L(X, Y ), S ∈ L(Y, Z),

it may be deduced that

S · T ∈ L(X,Z) and |||S · T ||| ≤ |||S||| · |||T |||.

Exercise 2.32 Whenever Y is a Banach space, so is L(X, Y ).

Example 2.2 Consider, for a fixed t̃ > 0, the operator associated to the linear wave
propagation equation

Wt̃ : C2
0 [0, 1] × C1[0, 1] → C2([0, 1] × [0, t̃])

{φ,ψ} → u(x, t) := solution of (2.27)–(2.27′′)

]
.

In V := C2
0 [0, 1] × C1[0, 1], we consider the norm

‖{φ,ψ}‖V := (‖φ′‖2
2 + ‖ψ‖2

2)
1/2

and in Im(Wt̃ ), the image of Wt̃ in C2([0, 1] × [0, t̃]), the norm

‖u(x, t)‖W := max
0≤t≤t̃

(‖ux(·, t)‖2
2 + ‖ut (·, t)‖2

2)
1/2.

(Caveat: When the whole space C2([0, 1]× [0, t̃]) is considered, this expression no
longer defines a norm.)

Given an arbitrary instant t0, the so-called system energy at t0 is introduced by
means of

E(t0) :=
∫ 1

0
[ux(x, t0)

2 + ut (x, t0)
2]dx.

It can be checked that

d

dt
E(t) = 2

∫ 1

0
[uxtux + uttut ]dx = 2

∫ 1

0
ut [utt − uxx]dx + 2utux |10 = 0,

where the last identity is a consequence of being null the integrand, due to (2.27),
and as well null the boundary term, by (2.27′).
This reasoning has brought us to the energy conservation, which means that the
system energy stays constant as time flows. From this property it follows, no matter
which solution u ∈ Im(Wt̃ ) is under consideration, that
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‖u(•, •)‖W = max
0≤t≤t̃

{E(t)}1/2 = E(0)1/2 = ‖{φ,ψ}‖V

and this brings as a consequence:

|||Wt̃ ||| = 1.

Exercise 2.33 Calculate (or estimate) the norm of the linear operators described in
Example 2.12 and Exercises 2.27 and 2.28.

2.12 Invertible Operators

Given the transformation T : X → Y between two normed spaces, the set {x|T x =
0} of all zeros of T is called the kernel of T , denoted by ker(T ). Whenever T is
continuous, ker(T ) is closed. Moreover:

If T is linear, ker(T ) is a vector subspace.

This terminology lets a previous result to be rephrased as:

If T is continuous and its kernel contains a subset which is dense (with respect to the domain
of T ), then

T ≡ 0.

It is known that 0 ∈ ker(T ) for linear T . Whenever {0} = ker(T ), then

T x1 = T x2 �⇒ T (x1 − x2) = 0 �⇒ x1 − x2 = 0 �⇒ x1 = x2.

Thus the above assumption implies that T must be one to one, and thus it owns an
inverse T −1. Such an inverse ought to be linear. Would T −1 have to be continuous,
under the assumption of being T continuous and linear?

Example 2.3 Let C̃1[0, 1] be the set of all functions that belong to C1[0, 1] and
vanish on the origin, under the norm ‖ · ‖∞.

The operator

T : C̃[0, 1] → C̃1[0, 1]
f → (Tf )(x) := ∫ x

0 f (s)ds

is linear and continuous when chosen the norm ‖•‖∞ on C̃[0, 1], which denotes
the space of functions from C0[0, 1] that vanish at the origin. This is readily a
consequence of the inequalities
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|
∫ x

0
f (s)ds| ≤ ‖f ‖∞

∫ x

0
ds ≤ ‖f ‖∞.

Besides, the operator T is one to one since f = 0 if Tf = 0. With the definition

S : C̃[0, 1] → C̃[0, 1]
g → (Sg)(x) := g′(x)

]
,

S turns out to be the inverse of T , but it lacks continuity. To prove this fact, just take
g(x) := xn,

(T gn)(x) =
∫ x

0
tndt = xn+1

n+ 1
,

from which it follows that

‖T gn‖∞ = max
0≤t≤1

tn+1

n+ 1
= 1

n+ 1
↓ 0.

This allows one to conclude that

‖gn‖∞ = max
0≤t≤1

|tn| = 1

and since

gn = Shnwithhn(t) := tn+1/(n+ 1),

we reach:

‖hn‖∞ → 0 but ‖Shn‖∞ = 1.

Therefore S is discontinuous. That lights the inspiration for the claims in

Exercise 2.34 Suppose given, for two arbitrary normed spaces, a linear and
continuous function T : X → Y . The inverse of T , which exists, defined throughout
the image of T – hereby denoted by Im(T ) ⊂ Y – is continuous if and only if there
exists a real δ > 0 for which

‖x‖ = 1 implies ‖T x‖ > δ. (2.31)

It is worth to keep an eye on the meaning of both expressions (2.30) and (2.31). In
short, they bring estimates to the way the unit ball from M gets mapped to ∞ or
away from the origin in N .
From a first look, being T linear, we should have
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||T x|| = O(||x||)as||x|| → ∞,

but as told by (2.30), this behavior is only allowed to bounded operators. On the
other hand, Exercise 2.34 tells that only those invertible operators that map the unity
ball boundary outside a fixed disk around the origin get the privilege to exhibit a
continuous inverse.
An operator which is very often needed in applications for different subjects is the
main actor in

Example 2.4 Let us denote by L̃1(R) the set of all functions f : R→ R which are
Riemann integrable in each closed and bounded interval and for which it is possible
to guarantee the existence of the limit

∫ ∞

−∞
|f (x)|dx := lim

M,N→∞

∫ N

−M

|f (x)|dx.

Take then the canonical vector operations as well as the norm

‖f ‖1 :=
∫ ∞

−∞
|f (x)|dx.

Now consider Ca(R) as the set of continuous functions8 f : R→ IC that vanish at
infinity, i.e.,

lim|x|→∞ f (x) = 0, (2.32)

equipped with the norm

‖f ‖∞ := sup
−∞<x<∞

|f (x)|.

It can be deduced that the Fourier transform, defined through

F : L̃1(R) → Ca(R)

f → (Ff )(t) := ∫∞
−∞ f (x)e−itxdx

, (2.33)

is a linear and continuous operator.9

8 In the current framework, we must take hold of the complex vector spaces – CVS – for whose
definition we just follow that one for a RVS, being the scalars replaced by complex numbers. While
dealing with an inner product, comutativity is changed by

< u|v >= < v|u >.

9 The expression (2.32) describes a property of the Fourier transform known as the Riemann-
Lebesgue lemma. For a proof, see [40], pp.303.
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Exercise 2.35 Estimate the norm of F with as much precision as you can and verify
that F does not have a continuous inverse. You may base your reasoning on facts
revealed by the sequence

fn(x) :=
[

1 |x| ≤ n

0 |x| > n
.

2.13 Equivalent Norms

We have already faced some doubts and conclusions that strongly depend on the
norms employed in the spaces under consideration. Therefore one needs, whenever
dealing with two different norms, to get hold of a handy criterion that would tell
which information about one of them brings into play some information about the
other one.

Example 2.5 Take the vector space C0[0, 1] and denote it by V2 when the mean
square norm is considered and by V∞ if our choice goes to the norm ‖ · ‖∞.

The identity operator

I : V2 → V∞
x → I(x) = x

is clearly linear. Pose the question: Is I continuous? To answer, it suffices to recall
that the continuity of I would be equivalent to be a truth the following conclusion,
which is false:

convergence in ‖ · ‖2 �⇒ convergence in ‖ · ‖∞.

Example 2.6 In C̃1[0, 1], f → ‖f ′‖2 defines a norm, which will be denoted by
‖ · ‖d . It can be seen that the following inequality holds:

‖f ‖d ≤ ‖f ‖1,2.

Since, for x ∈ [0, 1],

f (x) =
∫ x

0
f ′(s)ds, f ∈ C̃1[0, 1],
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we have

|f (x)|2 ≤
∫ x

0
|f ′(s)|2ds

∫ x

0
1ds ≤ x

∫ 1

0
|f ′(s)|ds

and thus

∫ 1

0
|f ′(x)|2dx ≤

∫ 1

0
xdx

∫ 1

0
|f ′(s)|2ds = ‖f ′‖2

2/2.

This estimate, known as Wirtinger’s or Friedrichs’ inequality, is a special case of
Poincaré inequality. One of its consequences is that, for f ∈ C̃1[0, 1] :

‖f ‖2
1,2 = ‖f ‖2

2 + ‖f ′‖2
2 ≤

1

2
‖f ′‖2

2 + ‖f ′‖2
2 =

3

2
‖f ′‖2

2.

The pair of inequalities

‖f ′‖2 ≤ ‖f ‖1,2 ≤
√

3/2‖f ′‖2

implies that the identity operator is continuous and has a continuous inverse when
read as a mapping between the spaces

C̃1([0, 1], ‖ · ‖1,2) and C̃1([0, 1], ‖ · ‖d).

We express that two norms are equivalent if whenever any sequence which is
convergent relatively to one of these two norms is necessarily convergent with
regard to the other one. Told in maybe a more precise fashion, ‖ · ‖1 and ‖ · ‖2
are equivalent norms on a space X, if two constants α, β > 0 can be found such that

α‖x‖1 ≤ ‖x‖2 ≤ β‖x‖1,∀x ∈ X.

In a space where two equivalent norms were introduced, the convergent sequences
and, as an aftereffect, all properties dependent to them turn out to be the same.

Let V be a real vector space. It is said that V is a finite dimensional space,
with dimension N , N ∈ N, and denoted dim(V ) = N, if there exists a linear
transformation

T : RN → V (2.34)

which is both one to one and onto.
We get now to the proof of the already mentioned result:

Theorem All norms introduced in a finite dimensional arbitrary normed space turn
out to be equivalent.
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As told by Example 2.23, Sect. 2.11, the operator T from (2.34) is continuous, no
matter which norm is the option among ‖ · ‖1, ‖ · ‖2, or ‖ · ‖∞. Our claim is that
T −1 is continuous as well. This property rests proven as long as

‖T x‖V ≥ ρ‖x‖p∀x = 0x ∈ RN, p = 1, 2,∞,

for some ρ > 0, which amounts to

||T x||V ≥ ρ∀x ∈ RN, ||x||p = 1,

or else

inf||x||p=1
||T x||V > 0.

Taking into account that, if

inf||x||p=1
||T x||V = 0

holds, there would exist a sequence {xn ∈ RN, ||xn||p = 1} for which

||T xn||V → 0.

Now, being the sequence {xn} is bounded, and as long as we have xn =
(x1

n, x2
n, . . . , xN

n ), this implies that each sequence {xj
n}n, j = 1, . . . , N, is bounded

as well. Such a fact implies to be possible then to extract off {x1
n}n a convergent

subsequence. When staying on this track, successively, component to component,
we will reach a subsequence {xjk

}k from {xn} in RN . We get convinced that
convergence holds due to a previously quoted fact: a necessary and sufficient
condition for any sequence in RN to converge according to any one of the chosen
norms || · ||p, p = 1, 2,∞, is that any of the sequences of reals formed by its

components be convergent. In such a framework, we obtain that xjk

k→ x0. Since
||xn||p = 1, we have then

lim
k
||xjk

||p = 1,

and this implies ‖x0‖p = 1. From the continuity of T , it is deduced that

lim
k

T xjk
= T (lim

k
xjk

) = T x0,

so that we conclude being T x0 = 0. But this contradicts to be T one to one.
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From the continuity of T −1, it follows equivalence of two arbitrary norms on
any finite dimension space V . We suggest as an exercise to work out the remaining
points in the proof.

Observations

(a) The main ingredient within the proof above is the Bolzano-Weierstrass Theorem which
states:
Any bounded sequence in the real line (or in RN ) necessarily contains a convergent
subsequence.
The above described result belongs strictly to the finite dimension world, a point made
explicit by the proof. Besides, a kind of reciprocal assertion holds, namely.

(b) Assume a particular normed space V exhibits the property that follows: no matter which
bounded sequence of its elements you are presented to, it is possible to extract from it a
convergent subsequence. Such a space ought to be a finite dimensional one.

Exercise 2.36 Verify that the set {cos nx}n≥0 is bounded in C0[0, 2π ], with respect
to the norm ‖ · ‖2, but it owns no convergent subsequence. (Hint: Cauchy criterion.)

Example 2.7 In the space PN of all polynomials with degree < N , consider both
norms:

||p||2 := (
∫ 1

0 p2(x)dx)1/2

||p||1,2 :=
(∫ 1

0 p2(x)dx + ∫ 1
0

(
dp
dx

(x)
)2

dx

)1/2

⎤
⎥⎦ .

As it is known that the space PN has dimension N,, the mentioned norms have to
be equivalent. In other words, for each fixed N , there exist positive constants sn and
SN such that, for each p ∈ PN ,

sN ||p||2 ≤ ||p||1,2 ≤ SN ||p||2.

Existence of the constant sn is quite clear (sn = 1), but we can not state the same
for SN , if we are not aware of the above proven result. Within numerical analysis
framework, the constant SN is called stability function associated – in this case –
to the pair {(PN, || · ||1,2), (PN, || · ||2)}.

Exercise 2.37 Verify that the conclusion below holds for the stability function:

SN ↑ ∞if N ↑ ∞.

With the support of a result to be stated some pages forward,10 we present

10 It is indeed ranked as one of the three functional analysis core results, referred to as the Open
Mapping Theorem.
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Theorem 2.2 Suppose that, on a vector space V , two norms are defined, namely,
||·||1 and ||·||2. Furthermore, with either one, V becomes a complete normed space.
It can then be assured that the existence of K1 > 0 for which

||x||1 ≤ K1||x||2,∀x ∈ V

is equivalent to the existence of K2 > 0 for which

||x||2 ≤ K2||x||1,∀x ∈ V.

In more intuitive terms, this theorem teaches that, under the assumptions it requires,
if one of the norms dominates the other, they show up as equivalent.

2.14 Lebesgue Integral

2.14.1 Introduction

Lebesgue integral is a generalization of the Riemann integral. Associated with the
former, there are some powerful results that do not hold for the latter, particularly
some of which are related to convergence properties. The present section aims
to discuss some basic facts within Lebesgue integral theory. They have shown
themselves quite relevant (or even indispensable) for the applications we carry in
mind. Unless pointed out, the functions dealt with throughout this section are all
real, with some portion of the real line assigned as their domain, according to
mentions conveniently made.

In a bounded11 interval [a, b], the class R[a, b] of bounded functions which
are integrable in the Riemann sense – called as Riemann integrable – is strictly
contained in the class of the functions which are integrable in Lebesgue sense,
or Lebesgue integrable – L[a, b]. (To get convinced of the term “strictly” writ-
ten above, just look at Example 2.19: it exhibits a bounded function living in
L[a, b]\R[a, b].) For the space L[a, b], the functional defined by Lebesgue
integral is an extension of the Riemann integral, because for f ∈ R[a, b] the
value for

∫ b

a
f (x)dx gets independent of which integral from these two is being

considered.
Watch out, when dealing with the so-called improper Riemann integrals, which

means – allow us to recall – either [a, b] fails to be finite or the taken functions lack
to be bounded, such a pattern is altered, as shown in

11 We would prefer the term bounded rather than finite, as the latter may push the idea of a set
with a finite number of points.
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Example 2.8 The bounded function f (x) := (1/x) sin x is not Lebesgue inte-
grable12 on the line R, but its improper integral in the sense of Riemann exists.
In fact, integration by parts gives

lim
B→∞

∫ B

π/2

sin x

x
dx = − lim

B→∞

∫ B

π/2

cos x

x2
dx

and the right-hand side limit exists.

Analogously, the bounded function

f (x) :=
[

x−1sin(1/x) 0 < x ≤ 1
0 x = 0

fails to be Lebesgue integrable, since
∫ 1

1/n
|f (x)|dx ↑ ∞. Nevertheless, as

∫ 1

1/n

1

x
sin(1/x)dx =

∫ n

1

sin(x)

x
dx,

its improper integral in Riemann sense exists.
On this whole section, the characteristic function of any set A is denoted by

�A(x) :=
[

1 x ∈ A

0 x ∈ A
. (2.35)

Example 2.9 The function f (x) := �Q(x), characteristic of the rational numbers,
fails to be Riemann integrable at no matter which interval [a, b] is chosen. Indeed,
for any partition

� := {a = x0 < x1 < . . . < xn = b},

we obtain for the upper sums

S�(f ) :=
n∑

ı=1

(xı − xı−1)

[
sup

xı−1≤x≤xı

f (x)

]
= b − a,

while the lower sums

S�(f ) :=
n∑

ı=1

(xı − xı−1)

[
inf

xı−1≤x≤xı

f (x)

]
= 0,

12 Confirm this claim with help from the results at Sect. 2.14.6.
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and thus the upper integral

∫ b

a

f (x)dx := inf
�

S�(f )

equals (b − a), being thus unequal to the lower integral

∫ b

a

f (x)dx := sup
�

S�(f ) = 0.

It is worth remarking that, no matter the way the rationals are counted, say via {qn},
by defining

fN(x) :=
[

1 x = qı1 ≤ ı ≤ N

0 elsewhere
,

it follows that

fN ∈ R[a, b], lim
N→∞ fN(x) = �Q(x).

This indicates that the (monotonous) pointwise limit f of a sequence of functions
from R[a, b] may fail to be Riemann integrable, even if ‖f ‖∞ < ∞. (Com-
pare this example with the statement of the Monotonous Convergence Theorem,
Sect. 2.14.6.)

In Sect. 2.14.3, it is proved that �Q is Lebesgue-integrable. Moreover, its integral is
zero, because the set of points where it does not vanish turns out to be, within this
framework, “irrelevant.”
Being g := �Q − (1/2), observe that g fails to be Riemann-integrable, but
|g| ∈ R[a, b]. (Such an event would never occur for Lebesgue-integral: arbitrary
functions f and |f | either are both – or both fail to be – Lebesgue-integrable.)
In the sense of Riemann, the lower integral of a function f (x) may as well be defined
as

∫ b

a

f (x)dx = sup{
∫ b

a

g(x)dx; g ∈ E},

with E denoting the set of all step functions defined on [a, b]:

g ∈ E ⇐⇒ g :=
n∑

ı=1

cı�[xı−1,xı ],

for some mesh on [a, b] and a set {cı} of constants. The functions g in E have their
integrals defined by
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∫ b

a

g(x)dx :=
n∑

ı=1

cı(xı−1, xı),

which is compatible with the notion of area under a curve graph, and from E we
build the extension of the notion of integral for more general functions.
An alternate way to define Lebesgue integral is to get hold of S , the set of the so-
called simple functions, which means functions whose image is a finite set. These
may be expressed in the form

f :=
n∑

ı=1

cı�Eı

where the sets Eı are spared to be intervals; rather, they ought to allow having a
measure m(Eı) assigned to each of them. In a precise fashion, we put

∫ b

a

f (x)dx =
n∑

ı=1

cım(Eı).

Being S ⊃ E , we expect then to be able to approximate a larger set of functions
for which it will be possible to define their integrals.
When constructing the Riemann integral, we have looked at intervals in the x-axis,
when we employed the step functions. For Lebesgue integral, emphasis is put on the
intervals on the y-axis, as long as we now deal with the following simple functions:
for A ≤ f (x) ≤ B, consider a partition {yı} for [A,B], and then take g ∈ S with

g(x) :=
n∑

ı=1

yı�cı ,

where cı := f−1([yı−1, yı]). Observe that, because cı is not necessarily an interval,
we need to impose conditions on f to be able to measure the sets cı .
These facts stay unclear from the approach we have taken to build Lebesgue integral.
In spite of that, these are ideas that turn out to be essential to justify the reason why
we reach an integral much more powerful than Riemann’s.

2.14.2 Definition, Properties, and the Space L1(R)

Let us consider now, and in the sequel, C0(R) – the space of the real continuous
functions defined on the line and that vanish outside a finite interval (which changes
with each function). The expression
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||f ||1 :=
∫
|f (x)|dx

defines13 a norm on C0(R). By making use of the functions from Exercise 2.17,
it is observed that the normed space thus obtained is not complete. Denote its
completion by L1(R). The elements in L1(R) are generally termed as generalized
functions.
The main reason for such a nickname is the vanishing of our chances to mention –
even to think of – any value at x0 ∈ R for whatever f ∈ L1(R) is chosen. This is a
straightforward consequence of the non-continuity of the functional

δx0 : C0(R) → R

f → δx0(f ) := f (x0)

with respect to the norm || · ||1. Just remind the discussion of choices to be made
when we treated the PCE – Principle of Continuous Extension.
Despite that, it remains quite surprising a counterpart: we will be able to deal with
notions and operators to be apparently introduced in a pointwise way, i.e., they
require (or, rather, should require) knowledge of the value for f at all points in its
domain.
At the present stage, with all shortcuts we have gone through, we are able to define
the main actor at this section. As long as

L(f ) :=
∫

f (x)dx

is linear and continuous in C0(R), it possesses a unique linear continuous extension
to the space L1(R). This extension is throughout called the Lebesgue integral,
which consequently is defined for generalized functions.
All linear properties of the Riemann integral

∫
f + g = ∫

f + ∫
g∫

αf = α
∫

f
(2.36)

are clearly preserved because we have constructed a linear extension. Besides, for
f ∈ C0(R), we have the positiveness,

f ≥ 0 �⇒ ∫
f (x)dx ≥ 0 , (2.37)

a property which, at first view, should not be demanded from elements in L1(R).
We would be pushed to this analysis since, in order to verify that f ≥ 0, we should

13 Here
∫

indicates the integral on the whole line R.
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own the pointwise knowledge of f . This barrier will be bypassed with once more
some help from the PCE.
Consider, for fixed a ∈ R, the non-linear operator

Ta : C0(R) → C0(R)

f → Taf := fa

]
,

where

fa(x) :=
[

f (x) if f (x) ≤ a

a if f (x) > a
.

This is the so-called truncation operator, and it fulfills

||Taf − Tag||1 ≤ ||f − g||1.

Thus, Ta is uniformly continuous, and it is possible to have it continuously extended
to the whole space L1(R). Observe then that for f ∈ C0(R),

f ≤ a ⇐⇒ Taf = f, (2.38)

we can take (2.38) as a definition, when f ∈ L1(R).
By the same token, we define

f ≥ a ⇐⇒ T−a(−f ) = −f.

The absolute value of a generalized function may be introduced then from the
operator Ta , with the choice of a := 0, by means of:

|f | := f+ + f−,

where we denoted

f− := −Ta(f ), f+ := −Ta(−f )(a := 0).

It follows from the definition that |f | ∈ L1(R) as well as that

∫
|f | =

∫
f+ +

∫
f−. (2.39)

Observe also that we have
∫

f =
∫

f+ −
∫

f−. (2.40)
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In an alternate track to construct the Lebesgue integral, we define the integral for a
function f , provided that (2.39) is finite, with the expression (2.40).

Exercise 2.38 Prove that, for f, g ∈ L1(R),

f, g ≥ 0 �⇒ f + g ≥ 0.

Exercise 2.39 Prove that, for α > 0, f ∈ L1(R),

|f | ≤ α ⇐⇒ f ≤ α and f ≥ −α.

Exercise 2.40 Verify that, for f ∈ L1(R),

lim
N→∞ TNf = f.

Exercise 2.41 Verify: if f ∈ L1(R),

f ≥ 0 ⇐⇒ ∃fn ∈ C0(R), fn ≥ 0andfn → f.

Based on the result in Exercise 2.41, it becomes simple to verify that in L1(R)

positiveness – property (2.37) – also holds for the Lebesgue integral.

2.14.3 Null Measure Sets

After reaching the domain of real numbers through the rationals completion trek,
our track became to search a lighter characterization for the irrational numbers, and
the choice pointed to decimal representation. Following this pattern, we will look
now for an equivalent way to deeply “understand” the generalized functions. We
will get convinced that they own also the right to be thought of as functions, with
their well-known very meaning, as long as we are tolerant enough, letting them to
stay undefined on sets from their domain allowed to be small enough.
A set M ⊂ R is defined as having14 null measure if it is possible to find, for any
value of ε > 0, a family of intervals In := (an, an+δn), n = 1, 2, . . . , whose union
∪∞n=1In contains M and such that

∑
n δn < ε.

It is clear that the following are examples of null measure sets: countable sets, as
well as countable unions of null measure sets. Observe that an arbitrary union of
null measure sets may fail to have a null measure, just look at ∪∞x=−∞{x}. Discovery

14 All over this chapter, both terms measure and integral will mean Lebesgue measure and integral.
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of a non-countable null measure set is not a simple task: the most popular sample is
the Cantor set, see [61], pp. 36 and 236.
When a particular property P is valid in the complement of a null measure set, it is
said that P holds almost everywhere, shortened as ae. A function is then said to be
“ae null” when the set of points from its domain where it does not vanish has null
measure. Another example: the functions f ≡ 0 and g ≡ �Q – cf. (2.35) – coincide
ae. Whenever we say that a sequence fn(x) converges ae, this means that pointwise
convergence holds in a subset of the domain shared by all this sequence functions,
being necessarily null this subset complement measure.
Example 2.18 in Sect. 2.4 describes a sequence {fn} which converges to the null
function according to the norm ‖ · ‖1, but which fails to converge at no matter which
point in the domain is chosen. Now, this sequence contains subsequences that turn
out to be pointwise convergent; {f2k

} is, namely, one of them. Such a state of affairs
is general, as claimed by the

Theorem 2.3 (Riesz-Fischer) Given in C0(R) any sequence {fn}, which is known
to be a Cauchy sequence as regards to the norm || · ||1, it is always possible to draw
from it an ae convergent subsequence {fnk

}. (Allow the emphasis: except for a null
measure set in its whole domain, such a subsequence converges pointwise.)

This result points out to an easier way to “look at” the generalized functions from
L1(R): they show themselves exactly as ae limits of Cauchy sequences in C0(R).
Or else, described in a more explicit form:

Whenever two Cauchy sequences from C0(R) are chosen, both convergent to the same
element in L1(R) (two equivalent sequences), Riesz-Fischer Theorem may be applied to
exhibit two ae defined functions. It may be proven then that these functions ae coincide.
This fact motivates thus the introduction of an equivalence relation within the set of
functions f known to be the ae limit of Cauchy sequences in C0(R). A conclusion follows,
namely: the elements in L1(R) are in 1–1 correspondence with these equivalence classes,
and we are thus allowed to think on the generalized functions from L1(R) as classes of
functions ae defined.

This just presented remark justifies to claim that �Q ∈ L1(R). Further, it is worth
stating Riesz-Fischer Theorem for functions from L1(R):

Assuming that fn ∈ L1(R), n = 1, 2, . . . , and ||fn− f ||1 → 0, we conclude the existence
of at least a subsequence {fnk

} which ae converges to f .

Put an eye on the proof of the result stated on Exercise 2.10(a) and have it compared
with the one obtained for the exercise that follows, provided use is made of this just
presented formulation of the Riesz-Fischer Theorem.

Exercise 2.42 Verify that {f ∈ L1(R)||f | ≤ 1} is a closed subset of L1(R).

Exercise 2.43

(a) Show that �(a,b) ∈ L1(R) ⇐⇒ (a, b) is bounded.
(b) Verify: the piecewise continuous functions belong to L1(R).
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Although having dealt in the present section with only functions on the real line,
all concepts introduced remain valid for Rn, n ≥ 2. Moreover the construction is
alike, in either case. Of course, even with its unexpected secrets and surprises, the
line R is easier to treat than the spaces Rn, n ≥ 2, as regards to technical details
throughout this topic. This is particularly valid when defining the measure – even
null measure – for a set. In spite of mentioning all over the real line, we try to keep
away from any reasoning which is private to it.

We define the measure of an open set A as

m(A) := sup

{∫
R

f (x)dx; f ∈ C0(R), f ≤ �A

}
.

It can be verified that, being A an interval (a, b), or n−polycube, which means
A := �n

ı=1(aı, bı), the following expressions hold:

m(A) = b − a or m(A) = �n
ı=1(bı − aı).

One could think as natural to define

m(A) :=
∫

�A(x)dx, (2.41)

but we would be stuck for not (yet) being aware whether �A ∈ L1(R). Such is the
motivation for the notion of measurable sets, which are those that can receive a
measure, cf. Sect. 2.14.7.

Exercise 2.44 On the real line, any open set Q may be described as the disjoint
union of open intervals Qı = (aı, bı):

Q = ∪N
ı=1Qı,N ≤ ∞,Qı ∩Qj = ∅, ı = j.

Verify that

m(Q) =
N∑

ı=1

(bı − aı).

Exercise 2.45 Enumerate the rational numbers as {qı} and take ε > 0. Consider
the open set

Qε := ∪∞ı=1(qı − ε/2ı , qı + ε/2ı ).

This is a dense open set on the line. Verify: its measure is ≤ 2ε.
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As long as we have in mind the notion of a measure tailored for sets more general
than intervals, we are allowed to exchange the previous definition by the one which
follows:

A set N is said to have null measure if, for any ε > 0, there exists an open set Aε ⊃ N
such that

m(Aε) ≤ ε.

2.14.4 The Spaces Lp(R), 1 < p < ∞

Now choose 1 < p < ∞ and denote by Lp(R) the completion of C0(R) when
equipped with the norm || · ||p, defined by

||f ||p :=
(∫

R

|f (x)|pdx

)1/p

.

It is easily seen that in C0(R), the functional ||·||p is non-negative, is homogeneous,
and vanishes only for f ≡ 0. As regards to the triangle inequality, which has earned
in this framework the name of Minkowski inequality, it will be shown with the help
of another inequality, which owns a lot of importance, by itself:

Hölder’s Inequality Iff, g ∈ C0(R), it is seen that

∫
|fg| ≤ ||f ||p||g||q (2.42)

as long as p, q ∈ (1,∞) are conjugated exponents, i.e., it holds for them

1

p
+ 1

q
= 1 (2.43)

or, the equivalent identities

pq = p + q, (2.43′)

p = q/(q − 1) = 1/(q − 1)+ 1, (2.43′′)

q = p/(p − 1) = 1/(p − 1)+ 1. (2.43′′′)
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Hölder’s inequality (2.42) is a consequence of the relation

ab ≤ ap

p
+ bq

q
, (2.44)

which is valid for a, b ≥ 0 and conjugated exponents p, q. Besides, this inequality
generalizes the well-known relationship between the arithmetic and geometric
averages.
As seen in the figure exhibited below, the rectangle area is always smaller than the
sum of the areas A1 + A2. Moreover, since

A1 = ap/p,A2 =
∫ b

a

y1/(p−1)dy = bq/q,

(2.44) follows.

Hölder’s inequality clearly holds under the assumption that either f ≡ 0 or g ≡ 0.
When ||f ||p = 1 = ||g||q , we have

∫
|fg| ≤

∫ |f |p
p

+
∫ |g|q

q
= ||f ||pp

p
+ ||g||qq

q
= 1

p
+ 1

q
= 1. (2.42′)

Finally, for arbitrary and non-null f, g, we can apply (2.42′) to f/||f ||p and g/||g||q
from which (2.42) follows.

Exercise 2.46 Deduce Hölder’s inequality for the norms || · ||p introduced in RN

or in �∞0 by

||x||p :=
(∑n

j=1
|xj |p

)1/p

,

[
N ∈ N for RN

N = ∞ for �∞0
.

Minkowski’s Inequality Whenever f, g ∈ C0(R), we obtain the so-called
Minkowski’s inequality:
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||f + g||p ≤ ||f ||p + ||g||p. (2.45)

Since

|f + g|p ≤ |f + g|p−1(|f | + |g|)

and, due to Hölder’s inequality,

∫
|f ||f + g|p−1 ≤ ||f ||p

(∫
|f + g|(p−1)q

)1/q

= ||f ||p · ||f + g||p/q
p ,

it follows, when f + g = 0, that

||f + g||pp ≤ (||f ||p + ||g||p)||f + g||p/q
p .

From this relation, (2.45) may be deduced because

p − p/q = p

(
1− 1

q

)
= 1.

2.14.5 The Space L∞(R)

At the present state of affairs, the quest for the completion of C0(R) relative to the
norm ‖ ·‖∞, as previously done for ‖ ·‖p, p = 1, 2 . . ., looks quite natural. A “more
crowded” space, as obtained before, would also allow deeper convergence results,
and we certainly count upon the arrival at a space that gives shelter to functions of
a new type. But going through this trail, forgive to mention it again – the search of
completion for C0(R) when equipped with the norm ‖ · ‖∞ – we will be left with a
set with not many new features to be shown: our finding is just Ca(R), the space of
continuous functions null at ∞, i.e., for which lim|x|→∞ f (x) = 0 holds.
Had we have chosen a larger set, with less restrictions, namely, CL(R), the space
of continuous and bounded real functions defined on the whole line, with the norm
|| · ||∞, its completion would not take us much more abroad: the starting point would
already have been a complete normed space.
Thus, as long as we are looking for more functions, particularly for ae defined ones,
as well as measuring them with the help of the norm || · ||∞ – indeed, another norm
which generalizes it – an alternate trail must be followed.

Let f be a measurable function, which means: f is the ae limit of functions
from L1(R). For β > 0, denote

Iβ := [−β, β]c = (−∞,−β) ∪ (β,∞).
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Define then

||f ||∞ := inf{β; f−1(Iβ)has null measure}, (2.46)

with the convention that ||f ||∞ := +∞ if the set for which we consider the “inf” is
empty. Now define

L∞(R) := {f measurable; ||f ||∞ < ∞}.

The right-hand side of (2.46) is called the essential supremum of f . Observe that
f may be modified on a null measure set in a such a way as to hold the following
identity:

sup
x
|f (x)| = supx ess |f (x)|.

Several applications make use of the claim stated below.

Theorem L∞(R) is a Banach space.

As a matter of fact, let {fn} be a Cauchy sequence. Introduce

Ak := {x; |fk(x)| > ||fk||∞}

and

Bm,n := {x; |fm(x)− fn(x)| > ||fm − fn||},

then denote by E the following null measure set:

E := ∪∞k,m,n=1Ak ∪ Bm,n.

We change fk(x); in E, by making fk(x) = 0, and then conclude that {fn}
is a Cauchy sequence of bounded functions. We can claim then its (uniform)
convergence to a function f ∈ L∞(R), on the complement of E.

We will adopt the tradition of considering p := 1 and q := ∞ as conjugate
exponents, since Hölder’s inequality holds for these values: being g ∈ L1(R), f ∈
L∞(R), we have

∫
|fg| ≤ ||f ||∞||g||1.
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2.14.6 Convergence Theorems

Section 2.14.3 introduces an equivalence relation for functions that share the
property of being pointwise ae limit of Cauchy sequences in C0(R). For these
sequences, it was a priori known that convergence in norm holds and therefore

lim
∫

fn =
∫

lim fn.

Next step is to pose the following question for a sequence fn ∈ L1(R) which is
known to satisfy

fn(x)
n→ f (x)ae.

Is it possible to assure that:

(i) f ∈ L1(R)?
(ii)

∫
fn

n→ ∫
f ?

The examples below show that neither one necessarily holds.

Example 2.10 Choose f ≥ 0, f = 0, f ∈ C0(R), and fn(x) := f (x − n). It is
seen that fn → 0 pointwise, but

∫
f = limn

∫
fn > 0 =

∫
limnfn. (2.47)

Example 2.11 For fn := �[0,n]/n, (2.47) also holds, being even uniform the
convergence of the sequence fn.

In both examples above, the sequence of functions fn turns out to be uniformly
bounded, both in pointwise sense and with respect to the norm ‖ · ‖1. Observe, on
the other hand, that there exists no function g ∈ L1(R) such that

|fn| ≤ g∀n.

A sequence which satisfies such a property is said to be dominated by g. Further,
the following important result holds:

Dominated Convergence Theorem (Lebesgue) Whenever a given sequence fn

converges to f ae and further is dominated by some function g ∈ L1(R), it then
follows that

(i) f ∈ L1(R)

(ii) ‖fn − f ‖1
n→ 0.
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Consequently:

limn

∫
fn =

∫
f =

∫
limnfn.

Exercise 2.47

(a) Calculate

limn→∞
∫ n

0

(
1+ x

n

)n

exp−2x dx.

(b) Prove that, if f (x) := |x|α�(0,1](x), then

f ∈ L1(R) ⇐⇒ α > −1.

This exercise illustrates the technique of function truncating coupled to the
Dominated Convergence Theorem so as to calculate the value of integrals on
unbounded sets.

The result which follows, besides its importance per se, allows us to refer to the
Lebesgue integral for a function f ≥ 0, or f ≤ 0, even when f ∈ L1(R).

Monotone Convergence Theorem (Lebesgue) Suppose that, for n =
1, 2, . . . , fn ∈ L1(R) and

0 ≤ f1 ≤ f2 ≤ . . . ≤ fn ↑ f ae. (2.48)

It follows, then:

f ∈ L1(R) ⇐⇒
∫

fn < M

and further,

∫
f = limn

∫
fn. (2.49)

Proof If f ∈ L1(R), by the Dominated Convergence Theorem, (2.49) holds. Thus,
the integrals

∫
fn turn out to be uniformly bounded.

Conversely, if
∫

fn < M, {fn} is a Cauchy sequence in L1(R), because, for m > n,

‖fm − fn‖1 =
∫
|fm − fn| =

∫
(fm − fn) =

∫
fm −

∫
fn.
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Further, being the sequence of real numbers {∫ fn} monotone and bounded, it
converges; hence, it is a Cauchy sequence. Then, from Riesz-Fischer theorem (see
Sect. 2.14.3), it follows that lim fn = f (in L1(R)), so that, by making use of the
Dominated Convergence Theorem, we reach (2.49).
Now let f ≥ 0 and suppose that there exists a sequence of functions in L1(R) that
satisfy (2.48). Define then the integral of f as the extended real15 given by

∫
f := limn

∫
fn.

It becomes then natural, for f ≤ 0 and 0 ≥ fn ≥ fn+1 ↓ f , to extend

∫
f := −

∫
(−f ).

Exercise 2.48 Prove: the above definitions are coherent – in mathematical slang,
“good definitions” – i.e., they do not depend on the chosen sequences; for f ∈
L1(R), it coincides with that one previously introduced.
We ought to observe that the definition above requires a priori the existence of
function sequences that approximate f . It is worth to emphasize that, for arbitrary
f , it is not always possible to find an approximating sequence, depending on the
searching space as well as the chosen distance to measure the approximation. Recall
that, in order to define a function f to be measurable, we have required from f to
be the ae limit of functions from L1(R).

It is worth to compare the above theorem with the

Example 2.12 Let fn := �[n,∞). It may be seen that:

fn ≥ fn+1 ↓ 0,

but

∞ = limn

∫
fn =

∫
limnfn = 0.

On the other hand, if gn := −fn,

gn ≤ gn+1 ↑ 0,

but

15 I.e., an element of R ∪ {−∞,∞}.
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limn

∫
fn =

∫
limnfn.

Remind that, for an arbitrary sequence of reals {αn}, the concept of lim inf, defined
as

lim
n→ inf∞αn := lim

k→∞{ inf
n≥k

αn} = sup
k

{ inf
n≥k

αn},

is an element of the extended real line, R∪{−∞,+∞}, which exists independently
of the properties of the numbers {αn}.
The Monotone Convergence Theorem has as one of its consequences the

Fatou Lemma Let fn ≥ 0 be arbitrary measurable functions. The inequality that
follows always holds:

∫ (
lim
n→ inf∞ fn

)
≤ lim

n→ inf∞

(∫
fn

)
. (2.50)

Observe that, on the left-hand side, we integrate a function which is pointwise
defined with the help of the concept of lim inf. A proof for this Lemma may be
read in [62], pp.22.
It is worth mentioning that the strict inequality may hold in (2.50), cf. Examples 2.11
and 2.12 in this section.

2.14.7 Fubini Theorem and Differentiation × Integration

The elements of the spaces Lp(R), for 1 < p < ∞, are also treated as generalized
functions like those living in L1(R). They would look more friendly if thought of
as measurable functions ae defined and subject to the constraint |f |p ∈ L1(R). The
reader must get aware that both Hölder and Minkowski inequalities hold in Lp(R),
due to a reasoning based on continuity.

Exercise 2.49 A set E is considered as measurable when �E is a measurable
function. Given a function f defined on a measurable set E, we say that f ∈ Lp(E)

if the extension

f̂ (x) :=
[

0 x ∈ E

f (x) x ∈ E

belongs to Lp(R). Define on Lp(R) the equivalence relation RE , for a measurable
set E, by

f REg ⇐⇒ f �E = g�Eae.
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Then define the space Lp(E) as the quotient space Lp(R)/RE . Verify that such a
definition for Lp(E) is equivalent to the previously assigned.
The result that follows explains a characterization for those functions which are
integrable on the sense of both Lebesgue and Riemann, along a bounded interval.

Theorem 2.1 Let f ∈ L1(a, b) be bounded. Then f ∈ R[a, b] if and only if the
set of its discontinuity points is countable.16

As previously remarked, cf. Sect. 2.14.3, up to this point we have restricted
ourselves, just for the sake of simplifying the exposition, to the integration on
subsets of the real line R. Nevertheless, in what follows, we ought to deal with
integrals on subsets of Rn, for n ≥ 2.
Suppose Q := [a, b]×[α, β] ⊂ R2 to be a bounded rectangle where the continuous
function f : Q → R is defined. It is known as an important fact that, in order to
obtain the value of the double integral

∫ ∫
Q f (s, τ )dsdτ , we may try to get hold of

any of the two expressions described below. Both describe a relationship between
a two variables integration and two (sequential) only one variable integrations. In
other words, the point to study is whether, for double integrals, it is possible to
employ repeated integrals so as to get:

∫ ∫
Q

f (s, τ )dsdτ

} = ∫ b

a

[∫ β

α
f (s, τ )dτ

]
ds

= ∫ β

α

[∫ b

a
f (s, τ )ds

]
dτ

. (2.51)

This result contains a point which, despite its importance, is poorly underlined,
remaining almost unnoticed. Emphasis is normally concentrated on the process of
exchanging the limits, or changing the order of integration, as told by (2.51). But,
when we have at our disposal only weaker hypotheses – say, being sure only that f

is Riemann-integrable – in order to be allowed to consider (2.51), how to guarantee
the integrability of the (one variable) functions

φτ (s) := f (s, τ )∀τ ; �(τ) := ∫ b

a
φτ (s)ds

λs(τ ) := f (s, τ )∀s; �(s) := ∫ β

α
λs(τ )dτ

]
, (2.52)

whose integrals show up in (2.51)?
These are the results described by

Fubini Theorem 17 Let

16 A proof for this result may be found, say, on [61], pp.248.
17 This statement is restricted to R2 and to rectangles, but it may be generalized in different ways,
like by taking arbitrary measurable sets Q := E×F , with E,F ⊂ R, as well as E ⊂ Rm, F ⊂ Rn

also measurable, for any values of m, n ∈ N. Their proofs and still more general statements may
be read in [62].
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f : Q := [a, b] × [α, β] ⊂ R2 → R

be a measurable function. As long as f ∈ L1(Q), if use is made of the notation
introduced in (2.52), the claims that follows hold,

φτ ∈ L1(a, b) ae in (α, β), � ∈ L1(α, β)

λs ∈ L1(α, β) ae in (a, b), � ∈ L1(a, b)

and (2.51) is true.

Exercise 2.50 For ı, j = 0, 1, 2, . . ., denote by Q
j
ı the squares [ı, ı + 1] × [j, j +

1] ⊂ R2, by �
j
ı := �Q

j
ı
, and take

aıj :=
⎡
⎣1 j = ı

(1/2ı )− 1 j = ı + 1
0 otherwise

,

so as to let

f : R2 → R

(x, y) → f (x, y) :=∑∞
ı,j=0 aıj�

j
ı (x, y)

]
.

Verify that, for this function – which does not belong to L1(R2) – the repeated
integrals associated to (2.51) lead to different values.

Exercise 2.51 Adapt the previous exercise, attacking now a function

f : [0, 1]2 → R.

Fubini theorem points to conditions under which we are entitled to change
the order to evaluate the repeated integrals. Recall that in Chap. 1 we already
indicated the needed care to invert two limit processes. We shall analyse now how
to differentiate under the integral sign, in other words, the interaction of two distinct
limit processes.
To make it explicit, consider the operator f → g defined on a real function space,

g(s) :=
∫

I

K(x, s)f (x)dx, (2.53)

where I is an interval – no tears if it is unbounded – and, for each s, or at least
outside a null measure set, K(·, s)f (·) ∈ L1(R). Questions asking to be posed:
Will g(s) be differentiable when the partial derivative ∂K(x, s)/∂s exists? In such
a case, will it be true that
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d

ds
g(s) =

∫
I

∂

∂s
K(x, s)f (x)dx? (2.54)

And if that holds, which are the precise hypotheses to require?
Now, to prove (2.54) amounts to reach

lim
h→0

[�s,h

∫
I

K(x, s)f (x)dx] =
∫

I

lim
h→0

[�s,hK(x, s)]f (x)dx

for the finite difference operator

�s,hφ(s) := [φ(s + h)− φ(s)]/h, h ∈ R. (2.55)

Being linear such relation, it may be written as

lim
h→0

∫
I

[�s,hK(x, s)]f (x)dx =
∫

I

lim
h→0

[�s,hK(x, s)]f (x)dx.

In order to have the right-hand side of (2.54) defined, it must be valid that

f (·) ∂

∂s
K(·, s) ∈ L1(R).

It is seen then that this is the only hypothesis to be required. Just observe that, under
such conditions, the Dominated Convergence Theorem will hold, cf. the previous
subsection.
Now, as it occurs with whatever result that deals with differentiation of a function
sequence, it is mandatory to handle direct hypotheses about the differentiability
of the limit function. Properties on derivatives or differentiability shared by the
sequence elements are not passed along to the limit function (compare this with
the result about distributions on Theorem 4.2, Sect. 4.4).
To finish, observe that, being the derivative a local operator, in order to verify the
theorem stated in the sequel, one may get restricted to subintervals in the domain of
f , so as to reach the required estimates for the operators (2.55); see, for example,
[37].

Theorem 2.2 (Integral Differentiation) Let g be defined by (2.53) and

f (·),K(·, s)f (·), f (·) ∂

∂s
K(·, s) ∈ L1(R).

Then g is differentiable, and its derivative fulfills the relation in (2.54).
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2.14.8 Classical Bibliography Remarks

The construction of Lebesgue integral we have described follows essentially that one
in [46, 47]; [60] and [62] introduce the notion of a measure through an axiomatic
road; [7] is quite clear and bears many examples; and [31, 58], and [61] exhibit
elegant and fairly compact presentations, each one with a particular approach. It is
also worth to browse throughout [42].



Chapter 3
Dual of a Normed Space

3.1 Introduction

This chapter gets you familiar with some properties of the linear forms on a normed
space V , by what are meant linear operators

� : V → R.

We adopt the usual notation of V ′ for the vector space of all linear forms defined
on V (the so-called V algebraic dual), while V ∗ will represent the vector space of
all continuous linear forms, or functionals, on V , also referred as V topological
dual. It is always valid that V ∗ ⊂ V ′, and we have remarked (Exercise 2.32) that V ∗
is a Banach space, as long as it is equipped with the norm defined in (2.28), being
V complete or not. (Let us emphasize that, whenever the notation V ∗ is used, we
will be mentioning this vector space of linear continuous forms, under the operators
norm!)

3.2 Linear Forms and Hyperplanes

For any vector space V , a subspace H is said to be a hyperplane whenever, given
another subspace W for which H ⊂ W ⊂ V , either H = W holds, or W = V . In
other words, H is a maximal subspace.
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Here follows an alternate definition:

Exercise 3.1 The subspace H ⊂ V is a hyperplane if there exists w ∈ V \H such
that, for each v ∈ V ,

v = αw + h (3.1)

is valid, with α = α(v) ∈ R and h = h(v) ∈ H . We can also tell that H ∪ {w}
generates the whole space V . We can even deduce that the expansion (3.1) is unique,
which allows writing V = H

⊕[ω].
Given � ∈ V ′, we denote by ker(�) the kernel, or the null space, of �:

ker(�) := {v ∈ V ; �v = 0}.

If � is non-null, ker(�) is a hyperplane: indeed, by taking w ∈ V , with �w = 1, and
defining, for each v ∈ V ,

αv := �v hv := v − αvw,

we then have that hv ∈ ker(�) and v = αvw + hv holds.
Conversely, given a hyperplane H , it is possible to obtain a linear form whose null
space is precisely H . It is enough to attribute an (arbitrary) value to �w with v

in (3.1) and then employ the linearity property in that expression in order to define
�:

�v := α(�w).

Besides, we have that

ker(�1) = ker(�2), �1, �2 ∈ V ′ �⇒ �1 = α�2, for some real α.

When � ∈ V ∗, ker(�) is closed. In fact, the following fact holds:

A linear functional � is continuous if and only if ker(�) is closed.

The converse assertion may be deduced from another claim: if � ∈ V ′ is unbounded,
the image by � of any ball fills up the whole line R. Stare at the proof.
Consider arbitrary reals δ > 0 and α > 0. Since � is unbounded, there exists v = vδ

with

‖vδ‖ < δ, �vδ > α.

Linearity implies then:

�{tvδ,−1 ≤ t ≤ 1} = [−�vδ, �vδ] ⊃ [−α, α].
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Fix then a real β = 0 and take the set Lβ := {v ∈ V ; �v = β}.
Having � a closed kernel, Lβ is equally closed, as this set is just a translation for

ker(�):

Lβ = βw + ker(�), with�w = 1.

As long as 0 ∈ Lβ , it is possible to catch a ball B(0; δ) for which

B(0; δ) ∩ Lβ = ∅.

But this claim contradicts the assumed claim about the image of B(0; δ) by the
functional � : it ought to fill up the whole real line R.
Observe that the closure of a vector subspace is also a subspace, so that:

Being a maximal subspace, a hyperplane either is dense or closed.

This conclusion lets to characterize the linear forms from V ′ and V ∗ by:

� ∈ V ∗ ⇐⇒ ker(�)is closed
� ∈ V ′, � ∈ V ∗ ⇐⇒ ker(�)is dense

]
.

Exercise 3.2

(i) Verify that, if φ ∈ C∞
0 (R), then

φ = ψ ′, for some ψ ∈ C∞
0 (R) ⇐⇒ ∫

R φ(x)dx = 0.
(ii) Prove that, for every φ ∈ C∞

0 (R), there exists a representation

φ = θ ′ + αψ0,

being ψ0 ∈ C∞
0 (R) fixed and θ ∈ C∞

0 (R) depending on φ.

Consider now this problem: given a linear continuous form � on a hyperplane H ⊂
V , how to reach for � an extension �̃ ∈ V ∗? The simplest cases, where � ≡ 0 or
H = V , have already been discussed. Now, being H a closed hyperplane, use the
notation from (3.1) to conclude that any linear extension of � must satisfy

�̃v = α�̃w + �h.

Therefore, the only value left to be found is �̃w. Having that in mind, as long as V

is a Banach space, the choice for this value does not matter as regards to continuity
of �̃. And this shows up to be true because

|�̃v| ≤ |α||�̃w| + ‖�|‖h‖ ≤ max{|�̃w|, ‖�‖}(|α| + ‖h‖)
≤ max{|�̃w|, ‖�‖}β‖v‖ .
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The last inequality comes from being

|||v||| := ‖h‖ + |α|

a norm equivalent to the norm employed on V , as can be deduced from Theorem 3.1,
Sect. 2.13, since

‖v‖ = ‖αw + h‖ ≤ max{‖w‖, 1}|||v|||.

With these steps we have ended the proof of

Theorem 3.1 Let H be a closed hyperplane of a Banach space V and let � be a
continuous linear functional on H . For any choice of w ∈ V \H and γ ∈ R, we can
claim continuity for the linear functional �̃ ∈ V ′ defined by

�̃w := γ, �̃h := �h, h ∈ H.

This result should be compared with another extension theorem, to be discussed on
Chap. 5, where we try to duly emphasize its importance. Here we are just praising
Hahn-Banach theorem.

3.3 Riesz Representation Theorem

For a Hilbert space V , fix a vector w ∈ V . The functional

fw : V → R

v → fwv := (v|w)
(3.2)

is an element of V ∗, as remarked on Example 2.12c, Sect. 2.5. Indeed,

‖fw‖ = ‖w‖, (3.3)

holds, since fww = ‖w‖2 and, thanks to Schwarz inequality, ‖fw‖ ≤ ‖w‖.
From being linear the inner product it follows the linearity of the transform

J : V → V ∗
w → Jw := fw

]
.

From (3.3) we see that J is an isometry, thus, 1-to-1. The functionals on J (V ) own
consequently a natural representation relatively to the vectors in V .
It is just expected to listen the question: Will J be onto? In full words, given f ∈ V ∗,
is it always possible to determine a vector w ∈ V so that f = fw?
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As long as such an element w exists, it is necessarily unique and orthogonal to
ker(f ). Conversely, if ker(f ) is a (closed) hyperplane for which it is possible to
find an orthogonal vector w̃ = 0, w̃ ⊥ ker(f ), then f ∈ J (V ).
The question posed above gets then a positive answer as long as it is possible to find,
for each closed hyperplane H , a non-null vector w̃ ⊥ H .
Suppose that u ∈ H . This vector is not necessarily orthogonal to H , but from it we
construct w ∈ V,w = 0, w ⊥ H .
Following an inspiration from R3, we search the vector w from the orthogonal
projection of u on H : we determine another vector h0 ∈ H which minimizes (on
H ) the function ‖u− h‖.
Use the fact that H is closed and u ∈ H to be allowed to denote

d : distance (u,H) :=∈ fh∈H‖u− h‖ > 0.

Let {hn} be a sequence on H for which ‖u − hn‖ → d. We claim that this is a
Cauchy sequence. Indeed, just employ parallelogram rule (2.11) in order to reach:

‖hm − hn‖2 = ‖(hm − u)− (hn − u)‖2

= 2‖hm − u‖2 + 2‖hn − u‖2 −
∥∥∥2

(
hm+hn

2 − u
)∥∥∥2

≤ 2{‖hm − u‖2 + ‖hn − u‖2 − 2d2} → 0

if m, n → ∞. Such inequality occurs due to being (hm + hn)/2 ∈ H . Since V

is complete and H is closed, H is necessarily complete, and thus hn converges to
some vector h0 ∈ H .
Therefore, by taking w := u− h0, one concludes that d = ‖w‖. Besides, (w|h) =
0,∀h ∈ H holds, then. In fact, take h ∈ H arbitrary; for any α ∈ R, we have the
following inequality

d2 ≤ ‖v − αh‖2 = d2 − 2(w|h)α + ‖h‖2α2,

and this implies to be null the coefficient of α, (w|h).

To finish, observe that if there exists another vector h1 ∈ H,h1 = h0, for which
d = ‖u−h1‖ holds, then (h0+h1)/2 ∈ H , and, again due to (2.11), it follows that

‖u− (h0 + h1)/2‖2 = 2‖(u− h0)/2‖2

+2‖(u− h1)/2‖2 − ‖(h0 − h1)/2‖2 < d2.

But this contradicts being h0 a minimizer for ‖u− h‖, h ∈ H .
In short, we are able to announce the

Theorem (Riesz Representation) Let H be a Hilbert space. To each continuous
linear form f ∈ H ∗, it corresponds a unique vector w = wf ∈ H for which

f v = (w|v),∀v ∈ H. (3.2′)
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Conversely, for each w ∈ H fixed, (3.2) defines a linear form f = fw which turns
out to be an element of V ∗, and for which:

‖fw‖H∗ = ‖w‖H . (3.3′)

Exercise 3.3 Verify that, in any Hilbert space,

‖v‖ = sup
‖w‖=1

(v|w).

3.3.1 Lax–Milgram Representation Theorem

Given a Hilbert space H , Riesz theorem allows to identify the continuous linear
forms from H ∗ to the vectors in H . The current section presents a theorem that
generalizes such a result.

Take B as a bilinear form on H , which means that to each pair (x, y) of elements
from H , B associates a real number, in such a way that, for each chosen x, B(x, ·)
is a linear functional and, analogously, for any fixed y, B(·, y) is linear. Suppose,
further, to be B bounded, by which we mean that there exists a constant C for which
the following inequality holds:

|B(x, y)| ≤ C‖x‖‖y‖,∀x, y ∈ H.

Such a property implies that the functionals βx := B(x, ·), i.e.,

βx : H → R

y → βx = B(x, y)

are all bounded, as long as their norm satisfy ≤ C‖x‖.
This structure poses quite automatically the question: What are the functionals on
H ∗ that may be represented in terms of B in the above fashion? In different terms,
which is the portion of H ∗ which can be generated from the linear forms defined
throughout the expression that introduced βx?
Observe: by Riesz theorem, given x ∈ H , it is possible to claim the existence of a
unique v = v(x) ∈ H such that

B(x, y) = (v | y),∀y ∈ H. (3.4)

So, it all amounts to determine the image of the bounded transformation

TB : H → H

x → TBx := v
,
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where v satisfies (3.4). We then impose the condition of being B coercive, by what
is meant the existence of a constant c > 0 for which

|B(x, y)| ≥ c‖x‖2∀x ∈ H.

This way TB is necessarily 1–1. Moreover, it turns out to be continuous the mapping
T −1

B : V := Im(TB) → H. To check this out, it suffices to make use of the Exercise
3.4, Chap. 2 as well the inequality

c‖x‖2 ≤ |B(x, x)| = |(TBx|x)| ≤ ‖TBx‖‖x‖.

As long as TB and its inverse are continuous, the subspace V is necessarily complete,
thus a Hilbert space. It is then possible to apply Riesz representation theorem to it,
with respect to the functionals from V ∗

v → (v|u) with u ∈ H arbitrary,

and this gives

(v|u) = (v|w),

for some w = w(u) ∈ V and every v ∈ V . Thus, u− w ∈ V ⊥. But

c‖u− w‖2 ≤ |B(u− w|u− w)| = (TB{u− w}|u− w) = 0,

which conducts to

u− w = 0 �⇒ u ∈ V �⇒ V = H.

In short, these steps demonstrate the

Lax–Milgram Lemma.1 Let B be a bilinear bounded and coercive bilinear form on the
Hilbert space H , equipped with the inner product (·|·). Then, to each vector x ∈ H , it is
associated a unique vector v = v(x) ∈ H for which

(x | u) = B(v, u),∀u ∈ H.

It is worth to call the reader’s attention: there is no need to assume B to be
symmetric. It is plain clear the symmetry that lives on the link between the variables
x and y on the reasoning we have described.

1 This is the common way this representation theorem is mentioned in the literature.
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Exercise 3.4 Verify that, under the hypotheses above on B, both

‖TB‖ = C, ‖T −1
B ‖ = 1/c

hold, provided
C := sup{‖x‖=‖y‖=1} B(x, y), c := inf{‖x‖=1} B(x, x).

Exercise 3.5 It follows from the triangle inequality,

|B(x, y)− B(ξ, η)| ≤ |B(x, y)− B(x, η)|+
|B(x, η)− B(ξ, η)| ≤ C{‖x − ξ‖ + ‖y − η‖},

that, as a function from H 2 to R, the form B, being bounded and bilinear, is
continuous provided we take on H 2 any one of the norms

‖(u, v)‖p,H := ‖(‖u‖H , ‖v‖H )‖p, p = 1, 2,∞.

3.3.2 An Application: Stokes Equation

In the sequel we present an application for the Lax–Milgram lemma, namely, a
discussion on the stationary Stokes equation. It models the behavior of the velocity
u = u(x) ∈ R3 and the internal pressure p = p(x) ∈ R for a fluid restricted to a
region � ⊂ R3:

a)

b)

c)

−ν�u+ ∇p = f

∇ · u = 0

]
on �

u = 0 on ∂� := boundary of �.

(3.5)

Here, ν > 0 is a given constant (viscosity coefficient), and the external force f is
previously determined.
We operate in an informal way, admitting all needed level of regularity2 for u, p,
and f .
Let us multiply (3.5a) by a function v, equally regular and which fulfills the same
conditions (3.5b) and (3.5c) imposed on u. Then integrate on all of �. After an
integration by parts, we obtain

ν(∇u,∇v)− (p,∇ · v) = (f, v)

2 See note after (2.27).
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where, it should be observed, we denote by (·, ·) the inner product for the vector
functions (� → R3), as well as for real functions (� → R). The condition (3.5c)
implies the vanishing of the boundary term in the first integration by parts,
while (3.5b) conducts to deducing that the second term on the left-hand side is null
also. Conclusion: u is the solution for the variational equation

ν(∇u,∇v) = (f, v)∀v ∈ V, (3.6)

where V is the space of regular functions that satisfy (3.5b) and (3.5c).
Just as in Example 2.6 in Sect. 2.13, it is seen that the bilinear form (∇u,∇v) is
coercive:

(∇u,∇u) ≥ α‖u‖2

with respect to the norm

‖u‖2 :=
∫

(u, u)dx.

Thanks to this fact, Lax–Milgram lemma assures the existence of u ∈ V which
fulfills (3.6).
The last step amounts to prove that, being u regular, it satisfies (3.5a).

3.4 The Projection Theorem

While studying the linear forms on a normed space V , it was essential to observe
the correspondence that exists between those forms and the hyperplanes from V .
Besides, the continuous linear forms are associated to the closed hyperplanes. On
the other hand, in Riesz representation theorem, we have considered, for a given
� ∈ V ∗, the orthogonal projection on the closed hyperplane ker(�). This section
aims to study the orthogonal projection operators on arbitrary closed subspaces on
a Hilbert space.
The main goal is to reach the proof of the projection theorem. We remark that this
result, at the same time, generalizes Riesz representation theorem – RPT – and its
demonstration depends on RPT. It will be established a 1-1 correspondence between
the closed subspaces of a Hilbert space and the projection operators.
A linear operator P : V → V on a vector space is said to be a projection if P 2 = P .
For these operators, by denoting the image of P by

Im(P ) := {v ∈ V ; v = Pwforw ∈ V },

we have that
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V = Im(P )
⊕

ker(P ).

This means that V is the direct sum of Im(P ) with ker(P ), i.e., for each v ∈ V , it
is possible to determine a unique pair (v1, v2) such that

v1 ∈ Im(P ), v2ker(P ),

v = v1 + v2.

Conversely, if V = V1
⊕

V2, we can find a projection operator P such that

V1 = Im(P ), V2 = ker(P ).

When V is a normed space, we suppose bounded the considered projections. In
such cases, being P a projection operator, the space V is written as a direct sum of
two closed subspaces. The corresponding converse also holds, provided that V be
complete:

Given a Banach space B and two closed subspaces F1 and F2 such that B = F1
⊕

F2, there
exists a (unique) projection operator P for which Im(P ) = F1, ker(P ) = F2.

The proof for this result, based in one of the three basic principles of functional
analysis, the Closed Graph Theorem, may be read in [67], pp. 237.
When dwelling in an arbitrary Banach space, it is not necessarily possible to
guarantee the existence of projection operators. On the opposite side, on any Hilbert
space, we are aware of a “large number” of such projections, a fact deduced from
the

Projection Theorem Let V be a Hilbert space and U be one of its closed
subspaces. Then

V = U
⊕

U⊥,

with the notation U⊥ := {v ∈ V ; (v|u) = 0,∀u ∈ U}.
If v = v1 + v2, v1 ∈ U, v2 ∈ U⊥, being this representation determined in a unique
way, the operator

PU : V → V

v → PUv := v1

is a projection operator. The continuity of PU follows from Pythagoras theorem:3

‖v‖2 = ‖v1‖2 + ‖v2‖2 �⇒ ‖PU‖ ≤ 1.

3 In fact, ‖PU‖ = 1, since in U,PU ≡ identity.
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This way, we have deduced that to each closed subspace of a Hilbert space, it
corresponds a projection operator.
Proof Consider, for v ∈ U , fixed, the functional

�v : U → R

v ∈ U → �vu := (u|v)

]
.

Since �v ∈ U∗, Riesz representation theorem guarantees the existence of a unique
w = w(v) ∈ U for which

�vu = (w|u),∀u ∈ U.

Thus:

(w − v|u) = 0,∀u ∈ U,

which gives us

w − v ∈ U⊥.

Observe that

dist(v, U) = ‖v − w‖

because, for u ∈ U ,

‖v − u‖2 = ‖w + (v − w)− u‖2 = ‖(v − w)+ (w − u)‖2

= ‖v − w‖2 + ‖w − u‖2 + 2(v − w|w − u)

= ‖v − w‖2 + ‖w − u‖2 ≥ ‖v − w‖2.

�

�

�
U⊥

U

vv − w

w

Geometrically, the orthogonal projection of a vector v on a closed vector
subspace W is the vector w from W which gives the best approximation for v.
In other words, which minimizes the function

f (z) := ‖v − z‖, z ∈ W.
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Therefore, we can infer that w is the solution of an optimization problem. Such
a vector w is unique, and this result stays valid within a more general context, in
which it is only required from W to be a closed convex4 set.
This is stated in the

(Upgraded) Projection Theorem. Let V be a Hilbert space and let W = ∅ be one
of its closed convex subsets. Given any v ∈ V , there exists a unique w = w(v) =
PWv in W for which

‖v − w‖ ≤ ‖v − z‖,∀z ∈ W, (3.7)

i.e.,

dist (v,W) = inf
z∈W

‖v − z‖ = ‖v − w‖. (3.7′)

It is not hard to get convinced that neither of the stated hypotheses can be called off:
if W is not closed, existence may fail to hold; and for non-convex W, more than one
solution may show up. (It suffices to pick on R2,

v = (0, 0) and W := {(x, y); x > 1},

in the first case, or

W := {(x, y); x ≥ 1− y or x ≤ y − 1},

in the second.) The theorem proof copies the steps of the one presented for Riesz
theorem: construction of a minimizing sequence and self-convincing that its limit
exists in W .
We say that the above defined operator

PW : V → W

is the projection on the convex set W .
Observe that, for any z ∈ W, 0 ≤ θ ≤ 1,

‖v − PWv‖2 ≤ ‖v − [θz+ (1− θ)PWv]‖2 =
= ‖v − PWv + θ(PWv − z)‖2 =
= ‖v − PWv‖2 + 2θ(v − PWv, PW v − z)+ θ2‖PWv − z‖2 .

As a consequence, for any θ > 0,

4 A set C in a vector space is defined as convex if, given two elements v1, v2 ∈ C, the line segment
which joins them stays within C. In alternate saying:

v1, v2 ∈ C �⇒ tv1 + (1− t)v2 ∈ C∀t ∈ [0, 1].



3.4 The Projection Theorem 85

2(v − PWv, PWv − z)+ θ‖PWv − z‖2 ≥ 0,

and this lets to conclude that

(v − PWv, PWv − z) ≥ 0,∀z ∈ W. (3.7′′)

Conversely, if w ∈ W satisfies

(v − w,w − z) ≥ 0,∀z ∈ W,

it follows that w = PWv.
In fact,

‖v − z‖2 = ‖v − w + w − z‖2

= ‖v − w‖2 + 2(v − w,w − z) +‖w − z‖2 ≥ ‖v − w‖2.

We can then conclude that (3.7), (3.7′), and (3.7′′) are all equivalent formulations.
The latter is called variational inequality. Geometrically, it expresses the condition
that the vectors v − PWv and z− PWv define an angle θ > 90◦.
When W is a subspace, we can choose z = y−PWv in (3.7′′), with arbitrary y ∈ W ,
from which it follows
(v− PWv, y) ≥ 0,∀y ∈ W. Since we have −y ∈ W, the orthogonality condition is
then deduced
(v − PWv, PW v − z) = 0,∀z ∈ W.

In this situation, PWv is a contraction, since

‖PWv − PWv′‖ = ‖PW(v − v′)‖ ≤ ‖v − v′‖.

This property remains valid for a bounded and convexW . Indeed, it is seen to be
true that

(PWv′ − v′, z′ − PWv′) ≥ 0,∀z′ ∈ W. (3.8)

By choosing in both (3.8) and (3.7′′), respectively
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z′ := PWv and z := PWv′,

plus adding the resulting inequalities, we reach

(PWv − v − PWv′ + v′, PW v′ − PWv) ≥ 0

or

‖PWv′ − PWv‖2 ≤ (PWv′ − PWv, v′ − v)

≤ ‖PWv′ − PWv‖ · ‖v′ − v‖.

Exercise 3.6 Demonstrate:

(a) If N is a finite dimension subspace in a normed space, N is then closed.
(b) Let H be a Hilbert space and F ⊂ H a finite dimension subspace. By the

projection theorem, H = F
⊕

F⊥. For this particular (and important) case,
prove directly such result, but without using Riesz theorem.

Example 3.1 The operators TN introduced in Sect. 2.8 are projection operators.
From the linear forms in Example 2.12a, Sect. 2.5, we can as well introduce
projections in RN .

3.5 Representation for Some Dual Spaces

Riesz representation theorem shows a more concrete form to operate with bounded
functionals on arbitrary Hilbert spaces. Nevertheless, for a given normed space, it
may be impossible to get hold of a similar result. In spite of that, for some particular
examples, some convenient representations may become available.

Example 3.2 The dual of c0

Let y = (yj ) ∈ �1. By defining

f : c0 → R

x = (xj ) ∈ c0 → f x :=∑∞
j=1 xjyj

]
, (3.9)

the inequality

|f x| ≤
∞∑

j=1

|xj ||yj | ≤ ‖x‖∞‖y‖1
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indicates not only the convergence of the series described in (3.9) but also the
boundedness forf . This way we are let to conclude:

f ∈ c∗0 .

Surprisingly, all functionals in c∗0 exhibit such a form:

Theorem 3.2 Given f ∈ c∗0 , there exists y = yf = (yj )j∈N ∈ �1 such that

f x =
∞∑

j=1

yjxj ,∀x = (xj ) ∈ c0

and further

‖f ‖ = ‖y‖1. (3.10)

Proof If such y exists, we must have yj = f ej , where

ej = (e
j
ı )ı = (δ

j
ı ), δ

j
ı :=

[
0 ı = j

1 ı = j
(Kronecker delta).

Let us define then yj := f ej and try to verify if y = (yj ) belongs to �1 and the
announced representation holds.
Let

xN :=
N∑

j=1

sgn(f ej )ej ∈ �∞0 ⊂ c0,

where

[
sgn(a)a = |a|, ∀a ∈ R, a = 0
sgn(0) = 0

.

Thus we can deduce that

f xN =
N∑

j=1

|f ej | =
N∑

j=1

|yj | ≤ ‖f ‖‖xN‖∞ = ‖f ‖.

There we are let to claim that:

y ∈ �1 and ‖y‖1 ≤ ‖f ‖.
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As long as

‖
N∑

j=1

xj e
j − x‖∞ N→ 0,∀x = (xj ) ∈ c0,

we get the conclusion that

f x =
∞∑

j=1

yjxj

holds. From the inequality

|f x| ≤
∞∑

j=1

|yjx
j | ≤ ‖x‖∞‖y‖1

it follows that ‖f ‖ ≤ ‖y‖1, which implies (3.10).

And from this result, we deduce the

Theorem 3.3 Given f ∈ c∗, there exists z = zf ∈ �1, such that

f x = z1(lim
j

xj )+
∞∑

j=1

zj+1xj .

Proof Being c0 a closed hyperplane from c, since

c = S
⊕

c0,

where S := {(α, α, α, . . .) ∈ �∞, α ∈ R}, from Theorem 3.1, Sect. 2.2 the above
representation follows for c∗.

These identifications are known as isometric isomorphisms. This means that the
operators

T : c∗0 → �1

f → Tf := yf
and

T : c∗ → �1

f → Tf := yf

are linear, 1–1, onto and preserve the norm. Besides, we have the

Theorem 3.4 Let p, 1 ≤ p < ∞ and q, its conjugated exponent, given by

q =
[

qp := p/(p − 1) p = 1
q1 := ∞ p = 1

.
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Then we have

(�p)∗ = �q,

or, in a more precise form, the topological dual for �p may be identified to the space
�q :

To each functional f ∈ (�p)∗ it corresponds a unique element y = yf ∈ �q such that

f x =
∞∑

j=1

yj xj∀x = (xj ) ∈ �p,

and conversely. Besides, such correspondence is an isometry, since

‖f ‖ = ‖yf ‖q .

This result proof follows the reasoning line of the representation theorems above
and is cordially left as an attractive chore to the reader.
Any one that gets aware of the previous result can’t restrain from posing the
question: Is it true that

(�∞)∗ = �1?

It is rather simple to verify that �1 may be identified to a part of (�∞)∗:

Exercise 3.7 For each y ∈ �1,

fy : �∞ → R

x = (xj ) → fyx :=∑∞
j=1 xjyj

is a functional in (�∞)∗ and

‖fy‖ = ‖y‖1.

It is possible to prove, although we do not have yet at our disposal the needed facts,
that not every functional f ∈ (�∞)∗ bears the form fy , for some element y ∈ �1.

We would like to point out that the – more intuitive – identification results hereby
claimed for some sequence spaces aim at making the reader familiar with the
concept of dual spaces representation. We start off from simpler frameworks for
which the corresponding proofs are not tough to get.
All these results are special cases of another Riesz representation theorem which we
formulate in a simpler form than the one commonly found, cf. [61].
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Theorem (Riesz) Given a measurable set � ⊂ RN , let 1 < p, q < ∞ be real
conjugated exponents, and when q := ∞, take p = 1.
To each functional � ∈ [Lp(�)]∗, there corresponds a function

g = g� ∈ Lq(�),

unique, such that

�f =
∫

�

f (x)g(x)dx∀f ∈ Lp(�), (3.11)

and conversely. Moreover,

|||�||| = ‖g�‖q . (3.12)

Exercise 3.8 Prove that, for g ∈ Lq(�), the functional � introduced by (3.11)
belongs to [LP (�)]∗ and, in a direct fashion, that (3.12) holds.

It is important to observe that

L1(�)
⊂= [L∞(�)]∗,

in the sense of such identification.
Some of the proofs hereby omitted, as well as some other results within this context,
may be found in [6, 69], or [72].

3.6 The Bidual Space

For a normed space V , consider the topological dual for V ∗, which gets the notation
V ∗∗ and is called V bidual. We show at once several examples of elements from
V ∗∗, here are they:
Define the transformation

J : V → V ∗∗
v → jv : V ∗ → R

� ∈ V ∗ → jv(�) := �v

⎤
⎦ .

The linearity for jv is quite evident, while its continuity follows from

|jv(�)| = |�v| ≤ ‖�‖V ∗‖v‖V ,
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a relationship that implies

‖jv‖V ∗∗ ≤ ‖v‖V ∀v ∈ V. (3.13)

As a matter of fact, it will be proved on Chap. 4 that equality always holds in (3.13),
which then implies that the mapping J is an isometry between V and a subspace of
V ∗∗. This mapping is usually mentioned as canonical identification.

Exercise 3.9

(a) Being V := �p, or V := Lp(�), with 1 < p < ∞, or else, if V is a Hilbert
space, J is then onto.

(b) Wherever dim(V ) < ∞, then J is onto.

Those normed spaces for which the corresponding operator J is onto are said to be
reflexive. Exercise 3.9 mentions the most important examples of reflexive normed
spaces.
A strategy to verify that �∞ (or L∞(�)) fails to be reflexive is to observe the
existence of vectors x, y ∈ �∞ (or, respectively, L∞(�)), with

‖x‖∞ = ‖y‖∞ = ‖x + y‖∞ = ‖x − y‖∞ = 1.

But such a fact is forbidden to occur within reflexive spaces, as we can deduce from
Millman’s theorem, cf. [72], pp. 126.
A final remark is worth to listen to. Since V ∗∗ is complete and

‖jv‖V ∗ = ‖v‖V ,

we already know: if it happens that V fails to be complete, the function J can not
be onto, i.e., V is not reflexive. In alternate words,

V reflexive �⇒ V Banach .

3.7 Radon-Nikodym Representation

Let us get back to the expression (2.41)

m(A) :=∈ tR�A(x)dx =∈ tA1dx

which defines Lebesgue measure for a measurable set A on the real line. If the
real 1 is exchanged for another positive real, the value of the measure assigned
to all measurable sets on the line will be changed. But that will occur in a
homogeneous way, independently of their location on R, in other words, preserving
Lebesgue measure property of being translation invariant. It would amount to
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assign different weights to different locations had we defined, for measurable
μ : R→ R+,

λ(A) :=∈ tAμ(x)dx. (3.14)

Being M the class5 of measurable sets on the line, the function

λ :M→ [0,∞]

introduces a new measure, because

λ(

M⋃
ı=1

Aı) =
M∑
ı=1

λ(Aı),M ∈ N ∪ {∞}, Aı ∈M disjoint sets.

Besides, it holds that

m(A) = 0 �⇒ λ(A) = 0,∀ measurableA. (3.15)

This relation between two measures is denoted by λ << m. It is then said that λ is
absolutely continuous with respect to m.
Radon-Nikodym representation theorem assures – see [60, 62] – that, if a given
measure λ satisfies (3.15) relatively to Lebesgue measure in Rn, then it necessarily
bears the form (3.14), now for some measurable μ : Rn → R+ and any measurable
A ∈ Rn.
The function μ is then known as the Radon-Nikodym derivative for λ with respect
to m, the Lebesgue measure in Rn.

3.8 Dirac Terminology

While looking for a mathematical formalism to model physical phenomena at
atomic particles level, Paul Dirac [29] has made use of the symmetry described
in Riesz representation theorem. Borrowing the term bracket associated to the inner
product symbol < | >, he has made the distinction between the vectors on the left
of the bracket, which are the functionals in H ∗, and the vectors on the right, i.e.,
those that belong to the very space H . Then he would mention them, respectively,
as bra and cket and employ the notation < v| and |w >.
Both bra and cket are vectors from the space H , but the ones quoted with bra get to
be identified with the elements of the dual space. When they get together (through
the inner product), they originate a scalar, and the product by a scalar is denoted

5 This class composes a σ−algebra, which means: (i) ∅,R ∈ M; (ii) A ∈ M �⇒ Ac ∈ M
(iii) Aı ∈M,M ∈ N ∪ {∞} �⇒ ∪M

ı=1Aı ∈M.
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by α|w > or < v|α, depending on being employed a cket or a bra. By the same
fashion, for the linear operators, either the notation T |w > or < v|T is employed.
This way, to define an eigenvector, we write

T |w >= λ|w > or < v|T =< v|λ.

Given a mapping T and the vectors < v| and |w >, the real numbers

{< v|T }|w > and < v|{T |w >}

are, in principle, distinct. If, for a particular operator, equality for these values is
always true, i.e., if associativity holds, such an operator is called self-adjoint –
Dirac option was for the term real. For these operators it is allowed, no ambiguity
showing up, to exclude the braces, writing them then as < v|T |w >.



Chapter 4
Sobolev Spaces and Distributions

4.1 Introduction and Notation

The present chapter aims to discuss the concepts of distributions and of Sobolev
spaces, whose presence can not to be forgotten whenever one deals with many prob-
lems on differential equations – either from a theoretical or numerical viewpoint.

Most of the examples exhibited in the previous chapters restricted themselves
to functions of just one real variable. We present now the comfortable Laurent
Schwartz notation: it allows writing in a quite compact form expressions that deal
with any kind of derivatives for arbitrary functions of several variables.

Let n ≥ 1 be fixed. Once n non-negative integers ı1, ı2, . . . , ın are chosen,
together with an arbitrary point ξ := (ξ1, ξ2, . . . , ξn) on IRn, we denote

ı := (ı1, ı2, . . . , ın)

|ı| := ı1 + ı2 + . . .+ ın =∑n
j=1 ıj

ı! := ı1!ı2! . . . ın! = �n
j=1ıj !

ξ ı := ξ
ı1
1 ξ

ı2
2 . . . ξ

ın
n = �n

j=1ξ
ıj
j

⎤
⎥⎥⎥⎦ .

As long as ıj are indices, we say that ı is a multi-index and, for example, aı will
stand for aı1ı2...ın . For two multi-indices ı and �, denote

(
ı
�

) := ı!
�!(ı − �)! =

ı1!ı2! . . . ın!
�1!�2! . . . �n!(ı1 − �1)! . . . (ın − �n)! .

By using the symbol Dj for the partial differentiation operator ∂/∂xj , with 1 ≤ j ≤
n, then D will denote the gradient vector
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D := (D1,D2, . . . , Dn)

so that we use the representation

Dı := D
ı1
1 D

ı2
2 . . . Dın

n = ∂ |ı|

∂x
ı1
1 ∂x

ı2
2 . . . ∂x

ın
n

.

Throughout this chapter, the norms ‖ · ‖p in IRn shall change their notation to | · |p,
while the Euclidean norm | · |2 will get still simpler: | · |.

The exercises below illustrate how practical Schwartz notation is.

Exercise 4.1 (The Binomial Theorem) For x, y ∈ IRn and ı, j, k multi-indices,
it holds, for this finite sum:

(x + y)ı =
∑

j+k=ı

ı!
j !k!x

jyk.

Exercise 4.2 If x ∈ IRn, |x|∞ < 1, the generalized geometric series gives

∑
ı

xı = 1

(1− x1)(1− x2) . . . (1− xn)
.

Exercise 4.3 If x ∈ IRn and |x|1 < 1, the identity below holds,

∑
ı

|ı!|
ı! xı = 1

(1− x1 − x2 − . . .− xn)
.

Exercise 4.4 For x ∈ IRn and any integer m > 0, it is true that:

∑
|ı|=m

m!
ı! xı = (x1 + x2 + . . .+ xn)

m.

Exercise 4.5 (Leibnitz Formula) For f, g : IRn → IR smooth enough,1 we have

1 As a matter of fact, it suffices to suppose, through almost all frameworks we deal with, that all
acting functions have as their domains not the full IRN space but some of its open subsets. The
needed additional hypotheses will be described therein.
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Dı[f (x)g(x)] =
∑

j+k=ı

ı!
j !k! [D

jf (x)][Dkg(x)].

Exercise 4.6 When f : IRn → IR has derivatives of all orders, its Maclaurin series
is given by

f (x) =
∑

ı

1

ı!D
ıf (0)xı .

4.2 Sobolev Spaces Hk(�) and Hk
0 (�)

Given an open subset � ⊂ IRn and an integer k ≥ 0, denote by Ck(�) the space of
all real functions defined on � such that Drf is continuous for |r| ≤ k. Following a
previous convention, Ck

0 (�) will represent the subspace of Ck(�) composed by all
functions f null outside a compact ⊂ � – which may change with each considered
f . (The term compact on IRn means a bounded and closed n−dimensional set.) To
complete, let

C∞(�) := ∩∞k=0C
k(�), C∞

0 (�) := ∩∞k=0C
k
0 (�).

On Ck
0 (�) we use the notation below for the norms thus defined,

‖f ‖r,p :=
(∑

|ı|≤r

∫
�
|Dıf (x)|pdX

)1/p

, dX := dx1 . . . dxn

‖f ‖r,∞ := [supx∈�;|ı|≤r |Dıf (x)|]

⎤
⎦ ,

where 0 ≤ r ≤ k. Naturally, for r = 0, ‖f ‖0,p = ‖f ‖p.
From now on, we will deal only with ‖ · ‖k,2, for which we simply choose the

notation ‖ · ‖k , and further introduce

C∞∗ (�) := {f ∈ Ck(�); ‖f ‖k < ∞}.

Both spaces, Ck
0 (�) and Ck∗(�), equipped with the norm ‖ · ‖k , lack completeness.

These spaces completion receive the notation, respectively, of Hk
0 (�) and Hk(�).

It is quite clear that they are Hilbert spaces and their elements are generalized
functions reached from a procedure similar to that one which has led to L1(IR)

(cf. Sect. 2.14).
For k = 0, it is seen that

Hk(�) = H 0
0 (�) = L2(�). (4.1)
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On Ck
0 (�) and Ck∗(�), the inner product is given by

(f |g)k :=
∑
|ı|≤k

(
Dıf |Dıg

)
,

where

(f |g) :=
∫

�

fgdX

denotes the inner product on L2(�).
Given u ∈ Hk(�), there exists {uj } in Ck∗(�) for which ‖uj − u‖k → 0. Since,

for every multi-index α with |α| ≤ k, we have that

‖Dαuj −Dαu�‖0 ≤ ‖uj − u�‖k,

we conclude that {Dαuj } is a Cauchy sequence in L2(�). As long as L2(�) is
complete, there exists vα ∈ L2(�) such that ‖Dαuj − vα‖0 → 0. It is then possible
to characterize Hk(�) as a set of functions from L2(�) such that there exists {uj }
in Ck∗(�) and vα in L2(�) that fulfill

lim
j
‖uj − u‖0 = 0, lim

j
‖Dαuj − vα‖0 = 0, |α| ≤ k. (4.2)

Being u ∈ Ck∗(�), if ‖uj − u‖k → 0 , then (4.2) remains valid with vα =
Dα u . Such a result inspires to think on the functions vα in (4.2) as a kind of
generalization for the concept of derivative for functions in Hk(�) . We make
sharp such a generalization with the

Definition 4.1 Given a function u ∈ L2(�), we say that the functions vα ∈
L2(�), |α| ≤ m, are their derivatives in the strong sense if there exists a sequence
{uj } in Ck∗(�) such that

lim
j

∫
�

|uj − u|2dX = lim
j

∫
�

|Dαuj − vα|2dX = 0, |α| ≤ m. (4.2a)

This fact is also expressed by saying that the function u has all derivatives (in the
strong sense) of order ≤ m.

At once a problem pops up: What about the uniqueness for these derivatives?
From the divergence theorem, the integration by parts formula follows:
if �0 ⊂ � and φ,ψ ∈ Ck∗(�), it is deduced that

∫
�0

φDıψdX =
∫

∂�0

φψηıdS −
∫

�0

ψDıφdX, 1 ≤ ı ≤ n (4.3)
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with η := (η1, . . . , ηn) the exterior normal to �0. Now, just take φ ∈ Ck
0 (�) on

(4.3) to arrive at

∫
�

φDıukdX = −
∫

�

ukDıφdX, 1 ≤ ı ≤ n

or, more generally,

∫
�

φDαukdX = (−1)α
∫

�

ukD
αφdX, |α| ≤ k. (4.4)

From (4.2) and (4.4), it may be claimed that

∫
�

φvαdX = (−1)α
∫

�

ukD
αφdX, |α| ≤ k,∀φ ∈ Ck

0 (�). (4.5)

If the functions wα as well as vα would be derivatives for u in the strong sense, we
would necessarily get

∫
�

φvαdX =
∫

�

φwαdX,∀φ ∈ Ck
0 (�),

or else,

(φ|vα − wα) = 0,∀Ck
0 (�).

But since Ck
0 (�) is dense in L2(�) – cf. (4.1) – the conclusion vα = wα would

follow.
For k = 0, Hk(�) = Hk

0 (�) holds. If k ≥ 1, this result is false, in general. For
example, let � be bounded and k = 1. For

z ∈ IRn, |z| = 1 and f (x) := exp[< x|z >] = exp
n∑

j=1

xj zj ,

it is seen that

Dıf (x) = zıf (x),�f (x) = |z|2f (x) = f (x).

Thus, for any φ ∈ C1
0(�),

(f |φı)1 = (f |φ)+
n∑

j=1

(Djf |Djφ)

= (f |φ)− (�f |φ) = 0.
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Now, f ∈ C∞(IRn), therefore f ∈ Ck∗(�) ⊂ H 1(�) for all k ≥ 0, since � is
bounded. As long as C1

0(�) is dense in H 1
0 (�), we can not have f ∈ H 1

0 (�),
because f ⊥ C1

0(�).

Conclusion H 1
0 (�) = H 1(�), for bounded �.

Take now � := IRn so as to prove that Ck
0 (�) is dense in Ck∗(�). Indeed, consider

in IRn the function ψ(x) := θ(|x|), where θ was employed in Exercise 2.17, Sect.
2.7. Given f ∈ Ck∗(�), it may be verified that

fj (x) = ψ(x/j)f (x) → f (x)

with respect to the norm ‖ · ‖k . (This is the so-called truncation of f .) Then

fj (x)− f (x) = 0if|x| ≤ j,

and thus

‖fj − f ‖2
k =

∑
|ı|≤k

∫
|x|≥j

|f (x)−Dı[ψ(x/j)f (x)]|2dX.

But, according to Exercise 4.5, we have

Dı[ψ(x/j)f (x)] =
∑

p+�=ı

ı!
p!�! [D

pf (x)][D�ψ(x/j)]

=
∑

p+�=ı

ı!
p!�!D

pf (x)
1

j |�|
D�ψ(x)|x=x/j .

Since ψ ∈ C∞
0 (IRn), ‖D�ψ‖0,∞ is bounded for every �, with |�| ≤ k, and this

implies that

‖fj − f ‖2
k ≤ C

∑
|ı|≤k

∫
|x|≥j

|Dpf (x)|2dX, (4.6)

for some constant C.

The Dominated Convergence Theorem assures then that, as long as j →∞, the
right-hand side of (4.6) tends to 0, which closes the proof of

Theorem 4.1 Whenever k ≥ 0 is an integer, we have

Hk(IRn) = Hk
0 (IRn).
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Exercise 4.7 If 0 ≤ k ≤ �, then Hk(�) ⊃ H�(�) and

ı : H�(�) → Hk(�)

f → ı(f ) := f

is bounded, with norm ≤ 1. (An analogous result holds for all spaces Hk
0 (�).)

Exercise 4.8 Define the mapping

D : Hk(�) → Hk−|α|(�)

for |α| ≤ k and prove its boundedness, with ‖Dα‖ ≤ 1.

4.3 Weak Derivative and Regularization

Another notion of derivative lives in Hk(�), namely, the derivative in the weak
sense. A function vα ∈ L2(�) is said to be the derivative in the weak sense, of
order α, for u ∈ Hk(�) if (4.5) holds for any φ ∈ C0(�). We can verify that this
notion of derivative is equivalent to the one previously introduced, despite being
operationally simpler.

Clearly, if vα is the order α derivative of u ∈ Hk(�) in the strong sense, it is
also its derivative in the weak sense. We prove now the reciprocal claim. The main
importance of this proof is that it calls for the help from a strongly used technique,
the regularization. It is essentially from [32] the following
Proof Let φ be the bell function on IR, introduced in Exercise 2.1, Chap. 2, and
denote by ρ the n−dimensional bell function, i.e., ρ(x) := Cφ(|x|), where C :=
[∫

IRn φ(|x|)dX]−1, and thus
∫
IRn ρdX = ∫

|x|≤1 ρ(x)dX = 1. Given a compact

K ⊂ � and ε > 0, with ε < dist(K, ∂�), being u, vα ∈ L2(�), if (4.5) holds, take

Jεv(y) := ε−n

∫
�

ρ

(
y − x

ε

)
v(x)dX,∀v ∈ L2(�). (4.7)

This function is called a regularization for v. It was due to Friedrichs the
introduction of the operator Jε . This strategy is based on a C∞ function, and, since

Jεv(y) = ε−n
∫
|y−x|≤ε

ρ
( y−x

ε

)
v(x)dX

= ∫
|z|≤1 ρ(z)v(y − εz)dZ,

(4.8)

it follows that

Jεv(y)− v(y) =
∫
|z|≤1

ρ(z)[v(y − εz)− v(y)]dZ. (4.9)
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Making use of Schwarz inequality on (4.8), it is possible to conclude that

|Jεv(y)|2 =
∣∣∣∫|z|≤1 ρ(z)1/2[ρ(z)1/2v(y − εz)]dZ

∣∣∣2

≤
{[∫

|z|≤1 ρ(z)dZ
]1/2 [∫

|z|≤1 ρ(z)|v(y − εz)|2dZ
]1/2

}2

=
[∫
|z|≤13131 ρ(z)dZ

] ∫
|z|≤1 ρ(z)|v(y − εz)|2dZ

= ∫
|z|≤1 ρ(z)|v(y − εz)|2dZ,

and, therefore,

∫
K

|Jεv(y)|2dY ≤
∫
|z|≤1

[∫
K

|v(y − εz)|2dY

]
ρ(z)dZ,

where we have been based on Fubini theorem. From that we can deduce that

‖Jεv‖L2(K) ≤ ‖v‖L2(K0)
(4.10)

for any compact K0 ⊂ � whose interior contains K and for which it holds that dist
(K,�\K0) > ε. Let now δ > 0 be such that

∫
K0

|v − w|2dX < δ.

From the linearity of Jε and from (4.10), it is deduced that

∫
K0

|Jεv − Jεw|2dX < δ,

while from (4.9) it follows that, if ε → 0, Jεw(y) → w(y) uniformly on K . The
conclusion is then that, being ε > 0 sufficiently small, we have

∫
K0

|Jεw − w|2dX < δ.

These three last inequalities may be combined, so as to reach:

∫
K0

|Jεv − v|2dX → 0ifε → 0,∀v ∈ L2(�). (4.11)
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We can then use the fact that the function ρ
( x−y

ε

)
belongs to C∞

0 as well as the
definition of derivative in the weak sense so as to obtain, with use of (4.7) applied
to v := u,

Dα[Jεu(y)] = ε−n
∫
�

Dα
y ρ

( x−y
ε

)
u(x)dX

= ε−n
∫
�

ρ
( x−y

ε

)
vα(x)dX,

(4.12)

where the first inequality follows from the derivation under the integral sign, already
discussed. It is quite clear that the right-hand side term in (4.12) equals to Jεvα(y),
that is, Dα(Jεu) = Jεvα , and this implies that the (classical) differentiation of the
regularization for u equals to the regularization of the derivative of u.

We then apply (4.11) to v := vα , in order to get

∫
K0

|Jεvα − vα|2dX → 0ifε → 0,

or, due to the above observation,

∫
K0

|Dα(Jεu)− vα|2dX → 0. (4.13)

Based on (4.11) and (4.13), it is deduced that the regularizations Jε for u produce
the sequence of functions uj employed in the definition of the strong derivative of
u, except for the following point: the integration on � in (4.2a) gets replaced by
another one, where K turns out to be the domain of integration in (4.11) and (4.13).

In short, what remains proved is just the local existence of the order α derivative
of u in the strong sense. The leap to the general framework is carried out by getting
hold of the technique known as partition of unity, which we shall omit. The reader
may read about it on, say, [32] or [2].

4.4 The Distributions

Throughout this section, � denotes an open connected2 set from IRn. As its first
step, we introduce the space of the test functions D(�). It is meant to be the set
C∞

0 (�) equipped with the notion of convergence below described.
Given φj ∈ C∞

0 (�), it is said that φj converges to φ on D(�), denoted as

φj
D→ φ, if:

2 An open set A ⊂ IRn is said to be connected if, for any pair of points p and q ∈ A, there exists a
polygonal P ⊂ A that joins p to q.
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(i) There exists a compact K ⊂ � such that φj (x) = 0 if x ∈ K , for all j =
1, 2, . . . .

(ii) For any multi-index α, with 0 ≤ |α|, we have

lim
j→∞ sup

x∈�

|Dαφj (x)−Dαφ(x)| = 0,

i.e., the functions φj and their derivatives converge uniformly (with respect to
x) to the function φ and to all of its corresponding derivatives; or, even in other
terms, if for each fixed k, we have that

‖φj (x)− φ(x)‖k,∞ → 0 if j →∞.

It is then also verified that φC∞
0 (�).

We have kept away from introducing a norm on C∞
0 (�), being restricted to

the notion of convergence. As it was remarked on Chap. 2, mostly all topological
notions we will make use of may be defined having sequences as their basic support.

Example 4.1 Taking ρ as the bell function on IRn, introduced on Sect. 4.3, it is
verified that

ρn(x) := ρ(x/n)/n

converges uniformly towards zero. The same occurs for all its derivatives, but
convergence in the sense of D(IRn) does not hold. In fact, (i) can not be checked to
occur.

It is straightforward to verify that, being φ, φj , ψ,ψj ∈ D(�) and γj , γ, βj , β ∈
IR, for j = 1, 2, . . . , it holds:

φj
D→ φ, γj → γ

ψj
D→ ψ βj → β

]
�⇒ γjφj + βjψj

D→ γφ + βψ, (4.14)

φj
D→ φ �⇒ Dαφj

D→ Dαφ,∀α multi-index. (4.15)

Motivated by the definition introduced on Sect. 2.5, in the present framework, we

also define an operator T in D(�) as continuous if φj
D→ φ implies T φj→T φ.

Exercise 4.9 Verify that the following operators are continuous in D(�):
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(a)
Dα : D(�) → D(�)

φ → Dαφ

]
α multi-index

(b)
δx̄ : D(�) → IR

φ → φ(x̄)

]
x̄ ∈ � fixed

(c)
δα
x̄ : D(�) → IR

φ → Dαφ(x̄)

]
x̄ ∈ � fixed,α multi-index

(d)
Mψ : D(�) → D(�)

φ → ψφ

]
C∞(�) fixed

(e)
I : D(�) → IR

φ → ∫
�

φdX

]

The continuous linear functionals3 defined on D(�) are named distributions. The
distributions space is denoted by D′(�), despite being more coherent with the
notation used here to keep D∗(�). For T ∈ D(�), φ ∈ D(�), we will denote
from now on

< T, φ >:= T (φ).

Nevertheless, we will rest with D(a, b) instead of D((a, b)) for open intervals on
the line, i.e., when � = (a, b); the same is applied to D′(a, b).

Example 4.2 All functionals on (b), (c), (e) from Exercise 2.9 are seen to be
distributions.

Example 4.3 Let f be a locally integrable function on �, which means, for each
compact K ⊂ �, it is assumed that f ∈ L1(K). (It is common to denote asf ∈
L1

loc(�).)
Define the distribution T (f ) by

< T (f ), φ >:=
∫

�

f φdX,∀φ ∈ D(�). (4.16)

Observe: we let f ∈ L1(�), but despite that the integral in (4.16) always exists,
for every φ ∈ D(�). This results from the fact that the integral is only taken on a
particular compact subset in �, outside which φ vanishes.

The linearity of T (f ) is clear; its continuity results from Lebesgue dominated
convergence theorem.

Making use of some basic facts from integration theory, it is possible to conclude
that

3 The notion of continuity hereby employed is that one based on sequences, as in normed spaces,
and of course based on the convergence notion introduced on D(�).
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f, g ∈ L1
loc(�), T (f ) = T (g) �⇒ f = gae,

cf. [35, pp. 288]. The notation Tf := T (f ) may as well be employed.
Example 4.3 is the inspiration to – informally – express that

every function is a distribution.

Observe that the converse fails to hold: for example,

locf ∈ L1
loc(�)locT (f ) = δx̄ .

The distribution δx̄ is called Dirac delta “function.” Due to the success drawn from
the way some physicists and engineers dealt with “functions” like this one, cf.
Sect. 3.8, some mathematicians4 were pushed to find the right theoretical framework
to understand them.

Despite not every distribution being defined through a given function according
to (4.16), it is possible to introduce some concepts and operators on D′(�) that
in principle make only sense for functions. This turns out to be a framework
which is quite similar to that one described in Sect. 2.14, to study the “generalized
functions” from L1(IR). The distributions are sometimes also called ideal functions
or generalized functions, cf. [19, 33].

Given ψ ∈ C∞(�) and T ∈ D′(�), the product of a function by a distribution is
defined by (ψT ) ∈ D′(�) :

< ψT, φ >:=< T,ψφ >,∀φ ∈ D(�). (4.17)

Observe that when T = T (f ), we obtain ψT = T (f ψ), that is, when distributions
given by functions are considered, the product defined by (4.17) comes to be the
usual function product.

By the same token, let a ∈ IRn and f ∈ L1
loc(IR

n). Denoting by τaf the shift of
f , that is,

(τ af )(x) := f (x − a),

we get, for φ ∈ D(IRn),

< T (τaf ), φ >= ∫
IRn f (x − a)φ(x)dX =∫
IRn f (x)φ(x + a)dX = < T (f ), τ−aφ >,

which motivates to pose the definition for distribution shift, through:

< τaT , φ >:=< T, τ−aφ >, φ ∈ D(IRn).

4 Among them Sobolev, Friedrichs, Schwartz, and Gel’fand.
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Analogously, the formula of integration by parts (4.3) gives, for f ∈ Ck(�),

< T (Dαf ), φ > = ∫
�

φ(Dαf )dX

= (−1)|α|
∫
�

f (Dαφ)dX = (−1)|α| < T (f ),Dαφ >,

for any φ ∈ D(�) and |α| ≤ k. Define, for α an arbitrary multi-index,

< DαT, φ >:= (−1)|α| < T,Dαφ >
∀φ ∈ D(�)

∀T ∈ D′(�)
. (4.18)

Therefore, a distribution exhibits derivatives of all orders.
Given f ∈ L1

loc(�), it is said that DαT (f ) is the derivative of f in the sense
of distributions . If f has a derivative in the classical sense, or on the strong sense,
they both coincide with its derivative in the sense of distributions.

Example 4.4 Suppose that T ∈ D′(IR) satisfies DT = 0. Then T is a constant, i.e.,
T = Ts , for some constant function s.

Indeed, by (4.18), for any θ ∈ D(IR), we have that

0 =< DT, θ >= − < T, θ ′ > .

But Exercise 3.2(ii) states that, given φ ∈ D(IR), the identity

φ = θ ′ + αφ0

holds, being θ ∈ D(IR) and α ∈ IR that depend on φ, while φ0 ∈ D(IR) is a fixed
function. Let us be explicit, α := (

∫
φ)/(

∫
φ0). Thus,

< T, φ >=< T, θ ′ + αφ0 >= α < T, φ0 >=
∫

IR

s(x)φ(x)dx,

for

s(x) :=< T, φ0 > /

∫
IR

φ0(t)dt = [some constant] .

Exercise 4.10 (a) Calculate the derivative of order k of the distribution associated
to the Heaviside function

H(x) :=
[

0 x < 0
1 x > 0

.

(b) If ı := (1, 2, . . . , n), calculate DıHn, for
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Hn(x) := H(x1)H(x2) . . . H(xn).

Exercise 4.11 Verify that f (x) := ln |x| ∈ L1
loc(IR) and calculate the first

derivative of T (f ).
We now define a notion of convergence in D′(�), the so-called pointwise

convergence of distributions. It is said that the sequence Tj ∈ D′(�) converges
to T ∈ D′(�) if, for each φ ∈ D(�), we have

lim
j

< Tj , φ >=< T, φ > .

It is worth comparing the results about termwise differentiation of sequences of
functions with

Theorem 4.2 For any sequence Tj ∈ D′(�), with Tj
j→ T ∈ D′(�) and any

choice of multi-indices α, the convergence

DαTj
j→ DαT,

holds, i.e., any convergent sequence of distributions may (validly) go through
termwise differentiation.

Indeed, let φ ∈ D(�) and α be a multi-index. We then have

< DαTj , φ >=
(−1)α < Tj ,D

αφ >
j→< T,Dαφ >=

=< DαT, φ >,

and this, by definition, means that Tj → T .
Banach-Steinhaus theorem, with a formulation slightly more general than the one

described on Chap. 5, implies

Theorem 4.3 Suppose that Tj ∈ D′(�) is such that, for each φ ∈ D(�), there
exists the limj→∞ < Tj , φ >. Then

< T, φ >:= lim
j→∞ < Tj , φ >

defines a distribution in D′(�).
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4.5 Vector Functions and Distributions

To study the evolution equations, a generalization of the concepts just introduced is
needed.

Consider B as a Banach space with norm ‖ · ‖B and, for fixed T ∈ (0,∞) and
1 ≤ p < ∞, define the space Lp (0, T ;B) as the completion of

C0(0, T ;B) := {f : [0, T ] → B; for continuousf } ,

equipped with the norm

|f |Lp(0,T ;B) :=
[∫ T

0
‖f (t)‖p

Bdt

]1/p

, 1 ≤ p < ∞.

(It ought to be considered that, when T = ∞, the completion must be taken not for
C0(0, T ;B) but, instead, for the space C0

0(0, T ;B).)
Essentially, all results that hold for the spaces of real functions, i.e., when B =

IR, remain valid within the new context. In particular, we have Minkowski inequality
as well as the dual representations:

[∫ T

0
‖f + g‖p

Bdt

]1/p

≤
[∫ T

0
‖f ‖p

Bdt

]1/p

+
[∫ T

0
‖g‖p

Bdt

]1/p

, (4.19)

for arbitrary f, g ∈ Lp(0, T ;B), with 1 ≤ p < ∞;

[Lp(0, T ;B)]∗ = [Lq(0, T ;B∗)], q := (1− 1/p)−1, 1 ≤ p < ∞. (4.20)

Expression (4.20) means that, given � ∈ [Lp(0, T ;B)]∗, there exists a unique G =
G� ∈ Lq(0, T ;B∗) for which

�(f ) =
∫ T

0
G(t) · f (t)dt,∀f ∈ Lp(0, T ;B), (4.21)

where G(t) · f (t) stands for the duality, quite often denoted by < G(t)|f (t) >.
Note that Hölder inequality implies the existence of the integral in (4.21): from

|G(t) · f (t)| ≤ ‖G(t)‖B∗‖f (t)‖B

it follows that

∣∣∣∣
∫ T

0
G(t) · f (t)dt

∣∣∣∣ ≤ |G|Lq(0,T ;B∗)|f |Lp(0,T ;B). (4.22)
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Expression (4.22) may be thought of as Hölder inequality, throughout the current
framework.

In a similar fashion, if B is a Hilbert space with inner product (·|·)B , then
L2(0, T ;B) is also a Hilbert space when equipped with the inner product

< f (t)|g(t) >:=
∫ T

0
(f (t)|g(t))B dt,

being Schwarz inequality then written as

< f |g >≤ ‖f ‖L2(0,T ;B)‖g‖L2(0,T ;B).

The latecomer L∞(0, T ;B) is introduced as the space of all functions f that map
(0, T ) on B, which are measurable and that hold the property:

sup
t

ess‖f (t)‖B < ∞.

(A function f : [0, T ] → B is said to be measurable if it happens to be the ae limit
of a sequence of functions on L1(0, T ;B).)

The vector-valued distributions (on B) are the linear continuous operators from
D(0, T ) to B. The space of those distributions is denoted by D′(0, T ;B).

The functions f on Lp(0, T ;B) are associated in a natural fashion to the
distributions from D′(0, T ;B) through the correspondence

τ : Lp(0, T ;B) → D′(0, T ;B)

f → T (f ) : D(0, T ) → B

φ → < T (f ), φ >:=[∫ T

0 φ(t)f (t)dt
] (4.23)

where the meaning of the integral is given by the same procedure employed for
real valued functions: the continuous extension of the Riemann integral operator
defined on C0(0, T ;B).

The notions like those of derivative and convergence on D′(0, T ;B) are as well
introduced following the same track as those on D′(0, T ). We shall spare the reader
from them, but not from the well recognized as important

Theorem 4.4 Being defined, for any f ∈ Lp(0, T ;B), 1 ≤ p < ∞, the
distribution T (f ) ∈ D′(0, T ;B) by (4.23), for it always hold:

(i) If f1, f2 ∈ Lp(0, T ;B) satisfy

< T (f1), φ >=< T (f2), φ >,∀φ ∈ D(0, T ),
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then

f1 = f2;

(ii) If fj , f ∈ Lp(0, T ;B), and, for any G ∈ Lq(0, T ;B∗), we have that5
∫ T

0
G(t) · [fj (t)− f (t)]dt → 0,

then

< T (fj ), φ >→< T (f ), φ >,∀φ ∈ D(0, T ), (4.24)

or, in an alternate saying,

T (fj ) → T (f ) in the sense of D′(0, T ;B).

A sequence fj for which (4.24) holds is said to converge to f in the sense of the
distributions.

4.6 The Trace Theorem

The elements in Hk(�) belong to L2(�). Due to such pedigree, they turn out to
be associated to distributions, and those have derivatives of every order. But it then
occurs that the derivatives of order ≤ k of these distributions are given precisely
by the derivatives in the strong (or weak) sense introduced in Sects. 4.2 and 4.3. In
other words, it is among our tools the

Theorem 4.5 The space Hk(�) may be defined as the set of functions from L2(�)

whose derivatives in the sense of distributions, of order ≤ k, belong to L2(�).

Let � be a bounded domain. Our purpose now is to characterize Hk
0 (�).

Observe that, based on the generic characterization for Hk(�) exposed above,
by which it is meant a set of functions from L2(�) with additional properties, it
makes no sense to look for the values of a given function f ∈ H 1(�) on ∂�. In
fact, besides being f defined ae, this is added to the fact that ∂� is a null measure
set. And, if worse gets to worst, nothing was required from f with regard to ∂�,
while defining H 1(�) – recall, as the C1∗(�) completion.

5 It is said then that the sequence fj converges weakly to the function f . This concept will be
introduced in a more general – as well as more precise – fashion in Sect. 5.4.
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Let us make a tour back on Sect. 2.10. We have reached therein, by putting to
work the inequality (2.26), that for every f ∈ C1∗(0, 1),

|f (t1)− f (t2)| ≤
√|t1 − t2|‖f ‖1,2 (4.25)

holds, and since, due to (2.14),

‖f ||0,∞ ≤ √2‖f ‖1,2 (4.26)

is true, we may deduce that the functions from H 1(0, 1) may be thought as being
uniformly continuous. The real meaning of this assertion is that, as long as the
elements from H 1(0, 1) are equivalence classes of functions, given any of these
classes, it contains a uniformly continuous function. In alternate terms, given a
function from H 1(0, 1), it is possible to modify its values on a null measure set
in such a way as to make it a uniformly continuous function.

For f ∈ C1∗(0, 1), define the trace of f , denoted by γf , as the operator which
generates (ou retrieves) the values of f on the boundary of [0, 1]. It may be deduced
that it is possible to define γ as a bounded operator on H 1(0, 1):

(i) By (4.25), every f in C1∗(0, 1) is uniformly continuous on (0, 1), thus may be
extended to [0, 1].

(ii) The operator f #→ γf is linear and, by (4.26), bounded, therefore uniformly
continuous on C1∗(0, 1); moreover it may be (uniquely) extended to the
completion of C1∗(0, 1), which is H 1(0, 1).

Finally, observe that on H 1
0 (0, 1) it must necessarily be the null operator. Indeed, γ

is null onC1
0(0, 1) and – due to the continuity – on its closure, which turns out to be

exactly H 1
0 (0, 1).

This example was presented as to motivate the trace theorem, described in the
sequel. Before that we need a definition:

A function f is said to belong to Ck(�) if it admits an extension f̃ ∈ Ck(�̃),
where the open set �̃ ⊃ �.

Trace Theorem Let � be an open bounded set, whose boundary ∂� is a surface
of class C2. Then there exists a unique linear operator

γ : H 1(�) → L2(∂�),

called trace operator, for which whenever f ∈ C1(�), we have that γf = f |∂�.
Furthermore:

(i) ‖γf ‖L2(∂�) ≤ C‖f ‖H 1(�)

(ii) ker(γ ) = H 1
0 (�)
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A remark is worth: it can be verified that the operator γ fails to be onto L2(�). In
fact, γ

(
H 1(�)

) = H 1/2(∂�), where H 1/2(∂�) ⊂ L2(∂�) is one of the so-called
Sobolev spaces of fractional order (see the following section).

References for this theorem are [5, 50, 51], the last one in Portuguese.
A formulation of the trace theorem for vector valued functions is required for

dealing with evolution partial differential equations.

4.7 Sobolev Spaces of Real Order

Sobolev spaces Hs(�), for s integer, have been defined and some of their properties
discussed on previous sections. When the trace theorem was formulated, we had to
mention the space H 1/2(�), which gives an idea of how we may need to generalize
these spaces for an arbitrary real s. That is the aim of the discussion on this section.

4.7.1 δ-Function Representations

Consider for 0 < a ≤ 1 the function ψa defined by

ψa(x) =
[

cosh x/sinh a 0 < x < a

0 a < x < 1
.

It is seen that the functional associated to ψa by

�ψa (f ) :=< ψa|f >H 1=
∫ 1

0
ψaf +

∫ 1

0
ψ ′

af
′, f ∈ H 1(0, 1) (4.27)

turns out to be the Dirac function δ(x−a) introduced6 on Sect. 4.4. Better said, ψa

is the representation in H 1 of the functional δa , explained with Riesz representation
theorem.

It became a piece of the mathematical folklore to refer to the ghost function δ as
a mathematical concept (intrinsically) defined through the property

∫
δ(x − a)f (x)dx = f (a),∀f, (4.28)

despite not a smart enough function exists as to fulfill simultaneously (4.28), for
any f , as long as it is being considered Riemann or even Lebesgue integral. (This
claim is true because (4.28) implies that δ(x) = 0ae, from which it follows the

6 Already mentioned on Example 2.12b, Sect. 2.5.
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vanishing of the integrals of δ×f , for any f . Employing then easy to operate dense
subsets is the way to make a clear reasoning.)

The representation for δa described in (4.27) gets to be coherent with (4.28),
though, as long as we treat the integral in that expression as a notation for the inner
product in H 1, but not in L2.

Observe now that, besides this identification

ψa(x) ←→ δ(x − a) on H 1(0, 1),

as ψ (forget for a while the index a) belongs to L2(0, 1), it is also associated to the
linear functional given by

Lψ : L2(0, 1) → IR

f → Lψ(f ) := ∫ 1
0 ψ(x)f (x)dx =< ψ |f >L2

. (4.29)

Now, take into account that the expression (4.29) even defines another linear
continuous functional on H 1(0, 1) ⊂ L2(0, 1), which will be denoted by λ = λψ .
And besides, for such functional the following inequality holds:

|λ(f )| ≤ ‖ψ‖L2‖f ‖L2 ≤ ‖ψ‖L2‖f ‖H 1 , f ∈ H 1(0, 1). (4.30)

As a consequence of those inequalities, it can be deduced that

‖λψ‖ := sup
‖f ‖

H1=1
|λ(f )| ≤ ‖ψ‖L2 = ‖Lψ‖. (4.31)

In all the above steps, ψ may be replaced by an arbitrary function on L2(0, 1) –
that’s the way we have reached an identification, denoted by I, of L2(0, 1) with a
part of the dual of H 1(0, 1), which may as well get the formulation herein described.

As long as H 1 ⊂ L2 and being continuous7 the identity II : H 1 → L2, it
is deduced that (L2)∗ ⊂ (H 1)∗. The identification I follows from composing the
mapping ı, given by Riesz representation theorem in L2, with the identity II – now
from (L2)∗ to (H 1)∗:

� �
II

L2 (L2)∗ (H1)∗
ı

�

7 This property is in general expressed by saying that “H 1 is continuously immersed in L2”.
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Let us assign the notation L2 to represent the vector space associated to the
elements of L2, but putting aside the norm ‖ · ‖2. The just described procedure
allows to introduce in L2 another norm, denoted by ‖ · ‖̃−1, namely:

Given ψ ∈ L2, its norm gets defined as the norm of the functional λψ ∈ (H 1)∗, cf. (4.31).

From (4.31) it may be deduced that

‖ψ ‖̃−1 ≤ ‖ψ‖L2 , ψ ∈ L2(0, 1), (4.32)

an inequality which naturally leads to question whether these two norms on L2 are
equivalent, which means:

Is it possible to claim the existence of α > 1 such that

‖ψ‖L2 ≤ α‖ψ ‖̃−1, (4.33)

for every ψ ∈ L2(0, 1)?

We call for help from the delta function to reach the answer.

Claim There exist functions ψn ∈ L2(0, 1) such that

lim sup ‖ψn‖̃−1 ≤ 1 but ‖ψn‖L2 →∞ if n →∞. (4.34)

Proof Take

ψn(x) :=
[

n 0 < x < 1/n

0 x ≥ 1/n
n > 0, (4.35)

so that

‖ψn‖L2 = √
n. (4.36)

On the other hand,

λψn(f ) :=
∫ 1

0
ψnf = n

∫ 1/n

0
f → f (0), f ∈ H 1(0, 1),

since we have that H 1(0, 1) ⊂ C0([0, 1]). Consequently, the sequence ψn is
bounded with respect to the norm ‖ψ ‖̃−1, because we can observe that

lim sup ‖ψn‖̃−1 ≤ sup{|f (0)|; ‖f ‖H 1 = 1} ≤ 1, (4.37)

and from the use of (2.14), it is seen that
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‖f ‖∞ ≤ √2‖f ‖H 1 in H 1(0, 1).

Expressions (4.36) and (4.37), that conduct to prove (4.34), contradict to be possible
(4.33) to hold.

An additional information which can be deduced from this result is that the set
L2, if equipped with the norm ‖ · ‖̃−1, fails to be a complete space. This turns out to
be a consequence of Theorem 2.2 from Sect. 2.13, whose statement we recall.

Given a Banach space B and a norm which turns out to be comparable to its original one,
these norms are equivalent if and only if B remains complete when equipped with the latter
norm.

A more constructive proof follows. The sequence {ψn} from (4.35) is a Cauchy
sequence with respect to the norm ‖ · ‖̃−1, but it does not converge in L2 for this
same norm. The relations

‖ψn − ψm‖̃−1 = sup
‖f ‖

H1=1

∫
f (ψn − ψm)

= sup
‖f ‖

H1=1

{
n

∫ 1/n

0
f −m

∫ 1/m

0
f

}
= sup
‖f ‖

H1=1
{f (xn)− f (xm)}

≤ sup
‖f ‖

H1=1
|xn − xm|1/2‖f ′‖L2 ≤ |xn − xm|1/2 ≤ [max{1/n, 1/m}]1/2,

– where the first inequality comes from (2.26) – lead to the reasoning that follows.

Assume a certain g ∈ L2(0, 1) satisfy ‖ψn−g‖̃−1 → 0. Then it follows that, for
every f ∈ H 1(0, 1), it would be true that

0 = lim < ψn − g|f >L2 = lim < ψn|f >L2 − < g|f >L2

= δ(f )− < g|f >L2 .
(4.38)

As a consequence, g ought to satisfy

∫
g(x)f (x) = f (0),∀f ∈ H 1(0, 1). (4.39)

But this can not hold, as we already know, a proof suggested after (4.28).
Recall that the set L2(0, 1) has been obtained as a completion. At the present

stage, with this new norm, known as Lax negative norm , it is possible to get
again its completion:8 we reach then a space denoted9 by H̃−1(0, 1). The following
relations are then true:

8 Compare this step with the result on Exercise 2.25.
9 We must emphasize that this one is not a standard notation, as opposed to H−1(0, 1), cf. Sect. 3.
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H̃−1(0, 1) ⊃ H 0(0, 1) = L2(0, 1) ⊃ Hs(0, 1), s ≥ 1, (4.40)

as well as the generalized Schwarz inequality

∫
fg ≤ ‖f ‖̃−1‖g‖H 1 , f ∈ H̃−1(0, 1), g ∈ H 1(0, 1), (4.41)

which is deduced from (4.31), as follows:

< f |g/‖g‖H 1 >= λf (g/‖g‖H 1) ≤ ‖λf ‖ =: ‖f ‖̃−1.

By construction, the space H̃−1(0, 1) ⊂ [H 1(0, 1)]∗. It is then natural to question:

How far is H̃−1 from being equal to the whole of (H 1)∗?

Otherwise:

Did we happen to have constructed a (new) representation for (H 1)∗? If not yet, what is
missing, then?

Still in an alternate way:

Which are the functionals on H 1 which can not be approximated by functions from L2, by
means of the identification �ψ described in (4.27)?

Consider once more the sequence ψn ∈ L2. The relation (4.38), which points up
to the impossibility of its convergence in L2, also shows that, when looked at as a
sequence of linear functionals, it is pointwise convergent to the delta function.

Examples similar to this one are quite spread through the (not too mathematically
rigorous) literature, being presented as sequences that converge to the delta function.
Their basis is the fact that the functions ψn fulfill

limn ψn(x) = 0 x = 0
limn ψn(x) = ∞ x = 0
limn

∫
ψn(x)f (x)dx = f (0) ∀f

⎤
⎦ ,

while it is assumed that the delta function satisfies

δ(x) = 0 x = 0
δ(x) = ∞ x = 0∫

δ(x)f (x)dx = f (0) ∀f

⎤
⎦ .

In the sequel, it is verified the possibility to reach more deep convergence results.
As long as we get aware of the pointwise convergence of the linear functionals
associated to the sequence ψn, we are able to claim that such a limit is also a linear
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functional which lives in the same space.10 Saying it with another words, if we
complete L2, equipped with the norm ‖ · ‖̃−1, we shall reach the functionals δ that,
as is already known, do not belong to the L2 space. This has brought as in shape to
pose the conjecture which rests on

Theorem 1H̃−1(0, 1) = [H 1(0, 1)]∗. (4.42)

Proof The claim in (4.42) amounts to show that I(L2) is dense in (H 1)∗. And this
means: given a functional T on (H 1)∗ –, i.e., T ∈ (H 1)∗∗ – which vanishes on
I(L2), we ought to have T = 0.

Now, knowing that H 1 is reflexive, it is deduced that such an operator T is the
image of some φ ∈ H 1 by the canonical isomorphism T = Tφ where:

T (�) = �(φ),∀� ∈ (H 1)∗. (4.43)

It must be pointed that, whenever we take � ∈ I(L2), we get � = �ψ for a certain
ψ ∈ L2, and therefore (4.43) linked to the hypothesis about T leads to

0 = T (�) =< ψ |φ >L2 ,∀ψ ∈ L2. (4.44)

In short, φ ∈ H 1 ⊂ L2 is orthogonal to L2, therefore null, which closes the proof.

It is worth having this result rewritten as

Theorem 1’ Any functional from H 1(0, 1)∗ may be approximated with respect to
the operator norm by functionals of type

�ψ : H 1(0, 1) → IR

f → �ψ(f ) := ∫
f ψ

]
ψ ∈ L2(0, 1).

When this result gets joined to Riesz theorem, we reach the two following
representations for the dual of H 1(0, 1):

For every functional � ∈ H 1(0, 1)∗ and each ε > 0, there exist functions ψε ∈ L2(0, 1)

and φ ∈ H 1(0, 1) – the latter uniquely determined – for which the following identity and
inequality hold

�(f ) = < f |φ >H 1(0,1)∣∣�(f )− < f |ψε >L2(0,1)

∣∣ < ε‖f ‖H 1

]
f ∈ H 1(0, 1). (4.45)

It is quite important to keep in mind that H̃−1 and H 1 are two distinct spaces,
but they are isometrically identified to the same space (H 1)∗. Due to these two

10 A consequence of the Banach-Steinhaus theorem, Sect. 5.5, Exercise 5.11.
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identifications, (H 1)∗ inherits the inner product from H 1 (Riesz representation
theorem) and exports it – via (4.29) – to the space H̃−1.

This subsection is shut with the dual variational formulas

‖ψ ‖̃−1 = sup{< ψ, f >; ‖f ‖H 1 ≤ 1}, ψ ∈ H̃−1(0, 1) (4.46)

‖f ‖H 1 = sup{< ψ, f >; ‖ψ ‖̃−1 ≤ 1}, f ∈ H 1(0, 1) (4.47)

where

• < ψ, f > denotes the action of the functional ψ ∈ H̃−1(0, 1) = (H 1)∗ on f –
usually quoted as duality

• The identity (4.46) repeats (4.31)
• And, finally, identity (4.47) is a consequence of Hahn-Banach theorem – to be

discussed on the following chapter, check further Exercises 3.3 and 5.2 and
Sect. 5.3.

Exercise 4.12
[
H̃−1(0, 1)

]∗ = H 1(0, 1).

Hint For f ∈ H 1,

�f : H̃−1 → IR

ψ → �f (ψ) :=< ψ, f >

defines an isometry. In order to conclude it is onto (H̃−1)∗, the same reasoning
employed for Theorem 1 may be recalled.

4.7.2 The Dual Space H−1(0, 1)

Instead of working on H 1(0, 1) as in the previous section, choose now H 1
0 (0, 1): all

steps may be repeated, the set L2(0, 1) being equipped at this turn with the norm

‖ψ‖−1 := sup{< ψ |f >L2; f ∈ H 1
0 (0, 1), ‖f ‖H 1 ≤ 1}. (4.48)

Its completion is then denoted by H−1(0, 1). The relations deduced for ‖ · ‖̃−1 as

well as H̃−1 remain valid for ‖ · ‖−1 and H−1 whenever exchange is done of H 1 by
H 1

0 . It is worth to emphasize (4.31)–(4.32)–(4.40)–(4.41)–(4.42)–(4.46)–(4.47), as
well as Theorem 2.1 and Exercise 2.1.

After all that work called for constructing H̃−1, the expressions in (4.45) may be
rated as unsatisfactory, as long as the reached identification is a bit loose: while the
former adds nothing to what Riesz representation theorem has already put on our
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hands, the latter just rewrites information previously available about the completion
technique. We thus would struggle to exhibit a more concrete characterization for
its elements. We fail to reach that for H̃−1, nevertheless for H−1, we were able to
arrive at something more tangible.

In fact, let ψ ∈ H−1(0, 1) = [H 1
0 (0, 1)]∗ be an arbitrary functional. Riesz

representation theorem assures the existence of a unique g ∈ H 1
0 (0, 1) for which

< ψ, f >=< g|f >H 1 , f ∈ H 1
0 (0, 1),

which means

< ψ, f >=
∫ 1

0
gf +

∫ 1

0
g′f ′, f ∈ H 1

0 (0, 1).

Suppose that f allows integration by parts

< ψ, f >=
∫ 1

0
gf −

∫ 1

0
gf ′′, (4.49)

an expression which motivates to take11 f ∈ C∞
0 (0, 1) = D(0, 1) and have it

rewritten as

< ψ, f >=< T (g), f > − < D2T (g), f > . (4.50)

Denote by T (g) the distribution from D′(0, 1) associated to the function g and by
D2T (g) its second derivative – cf. (4.16) and (4.18). (Beware, the brackets stand,
in the right-hand side, for duality < D′(0, 1),D(0, 1) >, and on the left-hand side,
analogously for < H−1,H 1

0 >.) The element ψ ∈ H−1 may thus be identified to
the distribution S := [T (g)−D2T (g)] ∈ D′(0, 1), since it is the unique extension
of S to H 1

0 .
The above remarks thus let us to think on H−1 as a space of distributions obtained

from H 1
0 by the operator

I − ∂2/∂x2 : H 1
0 → H−1, (4.51)

being the derivative ∂2/∂x2 understood within the framework just described: the
extension to H 1

0 of the derivative of a distribution. The operator in (4.51) is a
representation of the canonical isomorphism between H 1

0 and its dual H−1, which
from now on we start to refer as a space of distributions. A conclusion reached at
first by adapting (4.45) to H 1

0 and H−1 may be deleted.

11 The reader should spare the notation looseness in this equality, which must be thought relating
strictly the elements of the mentioned sets, no mention being made upon their structures.
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Observe that for H 1 we can not reach a representation as simple as this one.
Indeed, besides being compressed by requirements from (4.49) – boundary terms
must be dealt with – it shows up to be needed by the above reasoning that D(0, 1)

is dense in H 1
0 (0, 1), so that uniqueness for the extension for S rests assured.

In order to be led to still another representation for H−1, the following
generalization of (4.29) is called:

Given v1, v2 ∈ L2, taking v := (v1,−v2) ∈ L2 × L2 and

Lv : H 1
0 → IR

f →< Lv, f >:= ∫
f v1 −

∫
f ′v2

,

we identify Lv to a distribution from H−1, namely,

Lv ←→ v1 + v′2, v1, v2 ∈ L2.

From this reasoning we can conclude that every element of L2 × L2 generates a
distribution from H−1, throughout a mapping that clearly fails to be 1-1, since Lv =
0 when taking v := (−u′, u), for any u ∈ L2 for which u′ ∈ L2 also holds. But this
mapping happens to be onto, as taught by the following

Theorem 4.6 Given arbitrary ψ ∈ H−1, it is possible to determine a pair v1, v2 ∈
L2 such that, on the sense of the distributions, we can count on the identity

ψ = v1 + v′2. (4.52)

Besides, it is always possible to choose v1, v2 such that

‖ψ‖−1 = {‖v1‖2
L2 + ‖v2‖2

L2}1/2.

Proof Any ψ ∈ H−1 is naturally identified with a functional λ, defined on the
graph G ⊂ L2 × L2 of the operator

d/dx : H 1
0 → L2,

taking into account that this subspace is isometrically isomorphous to H 1
0 . The

functional λ may be extended by, say, λ̃ to the whole space L2 × L2, in such a
way that the norm of λ is preserved. Besides, for it the representation

λ̃(w) =
∫

v1w1 +
∫

v2w2,∀(w1, w2) ∈ L2 × L2

holds, being v = (v1, v2) ∈ L2 × L2 uniquely determined.
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In particular, for arbitrary ω ∈ H 1
0 , we have w := (ω, ω′) ∈ G and

< ψ,ω >= λ(w) =
∫

v1ω +
∫

v2ω
′, ω ∈ H 1

0 . (4.53)

Observe that the expression

‖ψ‖−1 = ‖λ‖ = ‖λ̃‖ = ‖v‖L2×L2

holds and that the reasoning so far presented may be applied as well to H 1, i.e., the
representation (4.53) holds for both H 1 and H 1

0 . But it should be emphasized that
only for the latter it is truly correct to pass from (4.53) to (4.52) the same reasoning
line built before.

Observation Given ψ ∈ H−1, we have remarked the validity of (4.53). By
building the distribution T (v1) +DT (v2), it allows a continuous extension (which
may fail to be unique) to H 1, which lets to express the fact that H̃ 1 is the space
of extensions of distributions of type (4.52). In brief, it is not possible to reach the
expression (4.52) for all functionals from H̃ 1 due to the boundary terms. In spite of
that, we can reach the following representation – cf.[5], p. 60:

< ψ,w >=
∫

w1v1 +
∫

w′
1v1 + α0w(0)+ α1w(1),

with v1, v2 ∈ L2 and α0, α1 ∈ IR.

4.7.3 The Spaces H−p, p Integer

Let us put together now the three ways to look at the space H−1(0, 1), but we will
make the choice of already presenting them for a natural generalization, namely, for
H−p(0, 1), p ≥ 1 integer:

H−p(0, 1):=

completion of L2 with the norm of the linear continuous functionals on H
p

0 (0, 1);
= extension to H

p

0 (0, 1) of the distributions of type

p∑
k=0

f
(k)
k , with fk ∈ L2(0, 1);

= extension to H
p

0 (0, 1) of the distributions of type

p∑
k=0

(−1)kf (2k), with f ∈ H
p

0 (0, 1).
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From these choices it becomes quite clear that

. . . ⊃ H−p ⊃ . . . ⊃ H−1 ⊃ H 0 = L2 ⊃ H 1
0 ⊃ . . . ⊃ H

p

0 ⊃ . . . , (4.54)

being each space densely and continuously contained in its immediate follower
at the chain and being proper all the inclusions. The inclusion of H

p

0 in H−p

is compatible with Riesz canonical isomorphism, which is given exactly by∑p

k=0(−1)kd2k/dx2k .
To finish, we point the identification

(H−p)∗ = H
p

0 , p ≥ 0 integer,

and the generalized Schwarz formula

| < f |g >L2 | ≤ ‖f ‖H−p‖g‖Hp, f ∈ L2, g ∈ Hp.

The same construction may be repeated in order to introduce H−p(IR) or H−p(�),
where � ⊂ IRn is a regular open set.

Exercise 4.13 Consider the operators

Dα : Hp → Hp−|α|, |α| ≤ p,

so as to generalize Exercise 4.8.

Exercise 4.14 Let ψ ∈ L2(0, 1) and −φ
′′ + φ = ψ, φ ∈ H 1. Then φ gives Riesz

representation for the form Lψ :

< Lψ, f >:=< ψ |f >L2=< φ|f >H 1 .

In particular, taking ψ ∈ H 1, we can have a look at how the same function ψ may
be identified to different elements from H−1. (For the case of H̃ 1, take the boundary
condition ψ ′(0) = ψ ′(1) = 0.)

4.7.4 The Spaces Hs, s Arbitrary Real

Let us recall the definition: a function u is said to be locally Hölder-continuous of
order α, 0 < α < 1, at x0, if

sup
y

|u(x0 + y)− u(x0)|
|y|α = K(x0) < ∞.
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And it owns the stronger characteristic of being uniformly Hölder-continuous of
order α if

sup
x0

sup
y

|u(x0 + y)− u(x0)|
|y|α = K < ∞.

Such a property is weaker than differentiability but stronger than continuity. The
constant K is a semi-norm for u in the space of order α uniformly Hölder-continuous
functions.

It would be suitable to measure this property of u rather globally, not locally.
Such motivation amounts to introduce, for u : IR → IR,

|u|2α :=
∫

dy

|y|
∫ [

u(x + y)− u(x)

|y|α
]2

dx. (4.55)

The functions u for which |u|α < ∞ correspond to Hölder-continuous functions.
This can be thought as the same trend that guided to the extension of the derivative
concept within the framework of the order m Sobolev spaces, for positive integer m.

Define then Hs, 0 < s < 1, as

Hs(IR) := {f ∈ L2; |f |s < ∞},

with the norm

‖f ‖2
Hs := ‖f ‖2

L2 + |f |2s .

Observe that a given f ∈ Hp belongs to the space Hp+1 if f (p) ∈ H 1, and

‖f ‖2
Hp+1 = ‖f ‖2

Hp + |f (p)|21,

where | · |1 denotes the semi-norm |u|1 := ‖u′‖L2 . This way define, for every s ∈
IR, 1 ≤ m < s < m+ 1,

Hs(IR) := {f ∈ Hm; f (m) ∈ Hs−m},

then introduce on it the norm

‖f ‖2
Hs := ‖f ‖2

Hm + |f (m)|2s−m.

As long as this definition is at hand, introduce the spaces H−s in a track similar to
the one previously displayed for any positive integers, and it is possible to complete
the chain (4.54)
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Hs ⊃ Hp if s < p, s, p ∈ IR, (4.56)

being each inclusion proper, continuous, and dense.
For IRn, besides the notation to become a little heavier, it is further needed to

replace in (4.55) dy/|y| by dy/|y|n. Lastly, when � ⊂ IRn is a regular open set,

Hs(�) := {f ∈ L2(�); ∃f̃ ∈ Hs(IRn) which extendsf },

or, getting hold of the quotient spaces,

Hs(�) := Hs(IRn)/{v; supp v ⊂ �c}.

We close these short words on this topic with the mention of an alternate, which in
several frameworks may turn out to be more operational. It consists in introducing
these spaces Hs via

Hs(IRn) := {T ∈ S; (1+ |ξ |2)s/2T̂ ∈ L2}.

In short, with the tempered distributions – described in the section that follows –
whose Fourier transform has a special decay, cf. [1].

And still another possibility is to introduce the spaces Hs via interpolation
theory, à la Lions, cf. [54].

4.8 Fourier and Laplace Transforms

A few words on the mathematical sentence: “Let the function f be known on the
space S .” What are exactly the hypotheses carried over by these words? Usually
they are understood as to assure our knowledge of some data associated to f ,
namely: its domain, its range – or at least an address where it may be found –
and somehow an account of how x, in the domain, and f (x) are related. Indeed,
it is largely spread the feeling that all is needed so as to consider a studied
function known is x → f (x). An explicit expression for it usually would give
the feeling of work done, despite being overlooked questions as instability for bona
fide computing and so on.

The analysis of some operators quite often aims to readily generate information
about intrinsic properties from elements under study in the space where these
operators act. Among these, it is worth mentioning derivatives, integrals, the
curvature, the trace, determinants, and some other less familiar.
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Other operators, baptized as transforms, have been created to, as we dwell on the
correspondence between the elements and their images – either in the same space
or in different ones – to make easier the access to searched information. We attain
such results, then, from data collected on the arrival space Sa . They let deducing
properties we had been looking for in the initially working space, Sd , the depart
space. An indirect reading,12 therefore.

4.8.1 Fourier Transform for Functions

It turns out that to operate with the Fourier transform in L1(IR) is a more appropriate
choice than that one described in (2.33). As soon as L̃1(IR) is a dense subspace of
L1(IR) and being F bounded, we are able to continuously extend it, in a unique
way:

F : L1(IR) → Ca(IR)

f → (Ff )(t) := ∫∞
−∞ f (x)e−itxdx

]
. (4.57)

In spite of that, for a large amount of applications, this is not yet the most convenient
framework to deal with. As a matter of fact, we have already pointed up the
discontinuity of the inverse F−1, with respect to the norm ‖•‖∞ in Ei = Ca(IR).
Besides, the functions on the range of F , despite being more regular than those from
L1(IR), since they are always continuous, may lack to be integrable on the real line,
as taught by the

Exercise 4.15 Verify that F(χA) ∈ L1(IR), for A := [−a, a],∀a > 0.
i. When a = 1, we have

F(χA) = 2
sin t

t
;

ii. For 0 = a ∈ IR, if haf (x) := f (ax), then

12 Mathematicians prefer to call that an inverse problem.
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F(haf ) = 1

a
h1/aF(f ). (4.58)

Another troublesome point when treating the Fourier transform with L1(IR)

chosen as the starting set is: How to characterize its range Ei := F(L1(IR))?
According to Example 5.8, we fail to deal with an onto mapping.

Consider in the domain of F functions φ with a stronger regularity, those whose
derivatives belong to L1(IR). These derivatives also have a Fourier transform, and
this way we deduce, by using twice the Riemann-Lebesgue lemma, an expression
for φ decay, cf. notation in (7.1):

∫
φ′(x)e−ixt dx = −

∫
φ(x)e−ixt [−it]dx = i/[1/t]F(φ)(t)

�⇒ F(φ)(t) = o(1/|t |) for |t | → ∞.

With repeated use of integration by parts, we reach, for n ≥ 0,

φ[n] ∈ L1(IR) �⇒ F(φ)(t) = o(1/|t |n) for |t | → ∞. (4.59)

Theorem 2.2 from 2.14.7 allows to differentiate:

d

dt
F(φ)(t) =

∫
d

dt

[
φ(x)e−ixt

]
dx =

∫
[−ix]φ(x)e−ixt dx. (4.60)

Therefore, provided the first moment of φ exists, i.e., if xφ(x) belongs to L1(IR), we
conclude to be differentiable its Fourier transform. In a similar way, we can deduce
results that show a relationship between moments and higher-order derivatives.

Further, we have reached, under the hypotheses for (4.59) and (4.60), expres-
sions that indicate how the operator F commutes with the differentiation operator.
As long as we denote

(νnf )(t) := (it)nf (t) and (μnφ)(x) := (x/i)nφ(x),

they are
F

(
φ[n]

)
(t) = (νnF(φ))(t) and (F(φ))[n] (t) = F(μnφ)(t).

(4.61)
The support of a real (or vector) function is defined as the closure of the

complement of the set of all its zeroes, i.e.,

supp f := f−1({0}c).

Exercise 4.16 From an alternate view point, the support complement for a given
function is the largest open set where it does not vanish. Therefore, if it does not
vanish in a given point, such a point must belong to the support – which may as well
also contain zeroes.
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Consider the functions f that happen to be continuous and have a compact
support. They form the subset C∞

0 (IR) of the space Ca(IR) introduced in Exam-
ple 2.4 on Sect. 2.12. For such functions f , all of their moments exist and therefore
F(f ) ∈ C∞(IR). The reasoning just presented may lead one to wonder whether the
best framework where to introduce the Fourier transform would be C∞

0 (IR). Such a
choice would be even better as long as it could be assured the support compactness
for the transform of every function from C∞

0 (IR). Unluckily we observe that, as a
consequence of the above presented Exercise 4.15:

Given a compactly supported function f , to linearly expand or shrink its support
– that is, to perform a homothety – induces a corresponding transformation in the
norm ‖F(f )‖∞.

This property may be thought of as a clue to the existence of a relation between
the support of f and the growth of F(f ). The result that follows13 points to this
direction and even to look for another background where further deepening the
search for F .

Theorem (Paley-Wiener) Let f ∈ C∞
0 (IR) and assume for its support:

supp(f ) ⊂ [−a, a].
It may then be deduced its transform F := F(f ) to be analytic through IC and

that, to each integer N , to be associated a constant CN in such a way that the
inequalities below hold:

|F(ξ)|
exp(a|ξ2|) ≤

CN

(1+ |ξ |)N , ξ = ξ1 + iξ2 ∈ IC. (4.62)

Conversely, being F an analytic function inIC which fulfills a chain of estimates
like (4.62), then, for some a > 0, there exists in C∞

0 (IR) a function f with
supp(f ) ⊂ [−a, a]

and for which

F(ξ) = F(f )(ξ).

Being analytic, the transform of a given function would have a compact support
only if it is identically null, thus the need to search for another space to be mapped
by F in itself. The choice goes to a space close to C∞

0 (IR), which is the Schwartz
space S . This choice was pushed exactly by (4.62).

Before getting further, observe that the familiar Gaussian function is steadily
seen to be an element of the space S and that for it holds the relation

13 See [72] or [62].
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�

�

0 x

1
g(x) := exp (−x2/2)

g′(x) = −xg(x),∀x ∈ IR. (4.63)

Apply F to both sides of (4.63) so as to reach

itF(g)(t) = −iF(μ1φ)(t) = −i
d

dt
(F(g)) (t);

in other words, the same relation (4.63), now expressed for

G(t) := (F(g))(t),

which gives

G′(t) = −tG(t).

From this conclusion, and due to the fact that g and G both live on the same domain,
besides being g a never vanishing function, it follows:

d

ds
G/g(s) = [−sG(s)]g(s)−G(s)[−sg(s)]

g2(s)
= 0.

As a consequence, there exists a constant λ for which

G(s) = λg(s),∀s ∈ IR.

Since

G(0) =
∫

g(x)dx = √
2π,

the choice of

F(f )(t) :=
√

1

2π

∫
IR

f (x) exp(−itx)dx, (4.64)

as a new definition assures the Gaussian function g to be a fixed point for F .
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Exercise 4.17 Compare the effects (symmetry, presence in the calculations, etc.)
that result from the choice above for the constant in defining F with the ones led by
the alternate choices given by

F(f )(t) :=
⎡
⎣
∫
IR

f (x) exp(−2πitx)dx

(1/2π)
∫
IR

f (x) exp(−itx)dx∫
IR

f (x) exp(−√2πitx)dx

,

besides, of course, the one in (2.33).
The space S of rapidly decreasing functions is mapped by F to a subspace

of functions that also live in S . This is a consequence of the above mentioned
properties about decay both on the domain and on the image of F . The equality
S = F(S) comes from the inversion formula,14 valid for every f ∈ S:

f (x) = 1√
(2π)

∫
IR

F (t) exp(ixt)dt, F := F(f ). (4.65)

Thus,

f = F(ρF ),∀f ∈ S, where ρF(t) := F(−t).

Moreover, from (4.65) follows

< f |g >L2(IR)=< F(f )|F(g) >L2(IR)

and now, to close, Plancherel-Parseval identity is presented:

‖f ‖2 = ‖F(f )‖2,∀f ∈ S. (4.66)

Taking into account that S is a dense subspace of L2(IR), there exists a unique
continuous extension for F to this space, so that we get hold of

Theorem 4.7 The Fourier transform

F : L2(IR) → L2(IR),

continuous extension for the operator defined by (4.64) for functions from S , is
an isometric isomorphism. Its inverse mapping is given, for regular elements from
L2(IR), by

F̄(f )(x) := 1√
(2π)

∫
IR

f (t) exp(ixt)dt. (4.67)

14 Cf. [40], pp.196, for an elegant proof.
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Exercise 4.18 Observe that, for (τ af )(x) := f (x − a), it follows that

F(τ af )(t) = exp(−iat)F(f )(t)

and, therefore, it suffices to deduce (4.65) for x = 0 and for any f, to conclude the
validity of the inversion formula.

Exercise 4.19 Examine the inherited properties by the restrictions

F : Hn(IR) → Hn(IR).

Let the subsection be closed by remarking that the just presented theoretical
development remains valid for any space IRn, n > 1, as long as all steps are duly
adapted.

4.8.2 The Tempered Distributions

Section 4.4 introduces in the space of distributions D′(IR) operators, like translation
and the derivative, that (initially) make sense only for spaces of bona fide functions.
They all are examples of the so-called definition by duality: an operator � is
defined in the dual space D′(IR) by means of its very action – otherwise said,
through the action of an operator γ we seek to extend15 – on the space D(IR),

� : D′ → D′
T → �T : D → IR

f → < �T, f >:=< T, γf >

⎤
⎦ .

The Fourier transform for distributions gets extended by this same track. But as long
as the domain of F is the space S(IR) ⊃ D(IR), a definition is on need for S ′(IR),
the topological dual for S(IR). But, beforehand, we must know which notion of
convergence to deal with in S – and, consequently, in S ′. Once these constraints are
established, the Fourier transform extension to the dual S ′(IR) is straightened as

F : S ′ → S ′
T → FT : S → IR

f → < FT , f >:=< T,Ff >

⎤
⎦ . (4.68)

15 Still, more precisely, to generalize.
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Being F linear in S , it follows that its extension to S ′ is alike linear. As long as
we work on16 S ′(IR) with the notion of continuity used in D′, namely, the one
associated to pointwise convergence, or weak* – cf. Sect. 6.3 –

Tj
S ′→ T ⇐⇒< Tj , f >

j→< T, f >,∀f ∈ S,

if F is continuous in S , the definition (4.68) will make it continuous in S ′.
We say that a sequence of functions (φj ) in S is convergent, in the sense of the

topology of S , and φ is its limit if, for every ψj := φj − φ ∈ S ,

M(ψj , k, p) := max
x∈IR

∣∣∣∣∣xp

(
dkψj (x)

dxk

)∣∣∣∣∣
j→ 0, (4.69)

for arbitrary integers k, p ≥ 0, cf. (2.1). In other words, if the sequence (ψj ) ∈ S
and, besides, the product of any of its derivatives with any polynomial converges
uniformly to zero.

Since S(IR) ⊃ D(IR), the distributions from S ′(IR) compose a proper subset of
D′(IR), as may be verified by considering, for example, the distribution associated to
the locally integrable function exp(x2). The elements of S ′(IR) can not present such
growing behavior, and that is the reason to be them called tempered distributions.

These distributions are characterized by the values they assume on D(IR), due to
being this space dense in S(IR), as shown, say, with the

Exercise 4.20 Taken the function θ ∈ D(IR) recalled in Exercise 2.17, the
sequence (θn) in D(IR) defined by

(θn)(x) :=
[

θ(x/n) |x| ≤ n

θ(x − n+ 1) |x| ≥ n
,

fulfills θnφ
S→ φ,∀φ ∈ S .

Worth to recall: the receipt to get D′(IRn) is also fit to any open domain � ⊂ IRn,
but the theory of tempered distributions is restricted to IRn.

A distribution T ∈ D′(IR) is said to vanish on the open set O ⊂ IR if, for every
φ ∈ C∞

0 (IR), null on the complement of O, we have < T, φ >= 0. The support of
T is then defined as

supp T :=
⋂
{Oc|T vanishes on O}.

16 Again, our writing restricts itself to the line IR, but all concepts and results may be applied to
IRn, n ≥ 2.
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The constant function f ≡ 1, which we shall denote by 1I, is associated to – or is –
a tempered distribution. Let us obtain its Fourier transform:

< F1I, φ >:=< 1I,Fφ >=
∫

1(Fφ)(t)dt

=
∫

ei0t

[
1√
2π

∫
e−ixtφ(x)dx

]
dt = √

2πφ(0).

This way we conclude that

F1I = √
2πδ0.

This result suggests to question whether it holds in S ′(IR) a relation that
corresponds to (4.65), so that we could formulate in S ′ a similar result to the
Theorem 4.7. The operator F̄ , defined in (4.67), is introduced in S ′, in an analogous
pattern to that one for F . For the obtained operator, it holds

< F̄(FT ), φ > = < (FT ), F̄φ >

=< T,F(F̄φ) > = < T, φ >,∀φ ∈ S(IR).

Once the corresponding identity also shows to be valid for F · F̄ , we are allowed to
announce the

Theorem 4.8 The Fourier transform F : S ′(IR) → S ′(IR) is a linear continuous
operator, besides being 1-1 and onto. Its inverse operator happens to be also
continuous and further given by F̄ .

Observe for the distribution 1I that the support of its Fourier transform equals
[−a, a], with a = 0, and thus the estimate |1I(x)| ≤ eax holds. This fact suggests to
search for an extension of the Paley-Wiener Theorem for distributions. That is what
the result that follows exposes, cf. [72].

Theorem (Paley-Wiener for Distributions) Let T ∈ S(IR). Its Fourier transform
F := F(T ) is an entire function – i.e., analytic in all of IC – besides, there exist
constants N ∈ IN , C > 0, a > 0 for which:

|F(ξ)|
exp(a|ξ2|) ≤ C(1+ |ξ |)N , ξ = ξ1 + iξ2 ∈ IC. (4.70)

Conversely, if F is analytic on IC and fulfills estimates like (4.70), for positive
constants a, C, and N ∈ IN , then there exists a distribution T ∈ S(IR) such that
F := F(T ).

Another characterization of the tempered distributions is contained in the
following
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Theorem 4.9 To any distribution T ∈ S(IR), there corresponds an integer � and
a function f ∈ C0(IR) with a polynomial growth – i.e., such that there exists a
polynomial which dominates f (x) on its whole domain, |f (x)| ≤ |p(x)| – and
besides such f satisfies

T = D�f.

The derivative in the sense of D is generally denoted by D. And the converse of
Theorem 4.9 also holds.

To close the present subsection, let us put some emphasis on the flexibility that
the distributions have handed to the Fourier transform, as it has opened alternate
tracks to the treatment of differential equations.

4.8.3 Laplace Transform

Consider a function f : IR → IC, null for {t<0} as well as locally integrable. Given
p ∈ IC, p := ξ + iη = 
(p)+ i�(p), for which the integral

∫
IR

f (t)e−ptdt =
∫ ∞

0
f (t)e−ptdt (4.71)

exists and is finite, its value, denoted by L[f ](p), defines the Laplace integral of
f at the point p.

Observe that, given f , the existence of L[f ](p) depends only on the real part of
p, which suggests:

The summability abscissa a = af of the Laplace integral of a function f is
defined as

a := inf{ξ ∈ IR|
∫

IR

e−ξ t |f (t)|dt < ∞}.

Exercise 4.21 Being H the Heaviside function,

(i) For f∓(t) := exp(∓t2)H(t), we have af∓ = ∓∞.
(ii) For

h(t) := H(t − 1)/t2, g(t) := H(t)et ,

ah = 0,L[h](0) = 1, ag = 1,
∫

e−t g(t)dt = +∞
]

,

and thus, in general, the integral L[f ](af ) fails to be defined. •
Given a function f for which af < +∞, it is possible to define its Laplace

transform on the half plane {p ∈ IC|
(p) > af } as
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L[f ](p) :=
∫ ∞

0
f (t)e−ptdt. (4.72)

This transform mimics then the Fourier transform as regards to an important relation
with the differentiation operator, namely, the latter is mapped on a much simpler
operator. Besides, an image function gotten by Laplace transform shows up much
more regularity than those given as images by Fourier transform. These are the facts
described by the following:

Proposition Suppose that f has a ∈ IR as its summability abscissa. Then L[f ](p)

is holomorphic on its domain, the half plane

Hp := {p ∈ IC|
(p) > a}.

For m ≥ 0, the functions [(−t)mf (t)] have all the same summability abscissa a

and, denoting the derivatives in IC by Dm := dm/dpm, the following relations hold:

DmL[f ](p) = L[(−t)mf ](p),m ≥ 1. (4.73)

Therefore, the operator L maps a set of functions into another, having each image
function eventually a different domain, which depends on the corresponding origin
function. This is the reason why the distributions for Laplace transform fail to be
introduced throughout the now standard definition via duality. The adopted path
may be thought of as a more straight generalization for (4.71): since the functions
on the domain of L are distributions,17 we write

L[f ](p) =< Tf , φp >, with φp(t) := e−pt ,

and struggle to formalize

L[T ](p) :=< T, φp >, with T = [some distribution]. (4.74)

We have not even specified which is the distribution space L operates on. Worse
than that, how to attribute a meaning to the right hand side of (4.74), since φp fails
to be a test function, at least not for the spaces we are dealing with, D and S?

Let us denote by D′+ the space of the distributions whose support is contained
in IR+ := [0,+∞[ and let us adapt to this space the construction of the Laplace
transform for functions, taking, by T ∈ D′+:

σ(T ) := inf{ξ0 ∈ IR|φ−ξ T ∈ S,∀ξ > ξ0}. (4.75)

17 Throughout this subsection the functions from D,S are considered with values on IC; the
distributions from D′,S are thus complex functionals.
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In the subspace of D′+ given by

DL := {T ∈ D′+|σ(T ) < +∞},

the definition (4.74) is put into a formal status as follows.
Take α ∈ C∞(IR) which satisfies

α(x) =
[

0 x ∈] −∞, x0]
1 x ∈ [0,+∞[ ,

being arbitrary x0 < 0 as well as the values assumed by α on ]x0, 0[.
Given T ∈ DL, let p ∈ IC with ξ := 
(p) > σ(T ) and ξ1 ∈]σ(T ), ξ [, in such a

way as we then have

α(t)φ−(p−ξ1)(t) = α(t)e−(p−ξ1)t ∈ S, φ−ξ1(t)T = e−ξ1t T ∈ S ′.

This will allow to define

L[T ](p) :=< φ−ξ1T , αφ−(p−ξ1) > . (4.76)

It is then seen that, fixed T ∈ DL and p ∈ {z ∈ IC|
(z) > σ(T )}, the value assumed
by the expression (4.76) is independent of α and of ξ1. Therefore, we are assured of
the consistency of the proposed definition for L[T ](p). We then informally write its
value as

L[T ](p) :=< T, e−pt > .

Exercise 4.22 Prove the linearity of L, in a sense to be made precise.

The operator L exhibits the following additional properties:

1-1ness Given U, T ∈ DL,

L[U ] = L[T ] �⇒ U = T .

Polynomial growth The transform L[T ] of each distribution T ∈ DL presents a
polynomial growth, i.e., for each closed half plane Rc := {z|
(z) ≥ c} contained in the
domain of L[T ], a polynomial Pc may be determined which fulfills

|L[T ](p)| ≤ |Pc(p)|,∀p ∈ Rc. (4.77)

Conversely, given a holomorphic function �(p), whose domain contains some half plane of
type Rc, in order to be sure that it happens to be the Laplace transform of some distribution
T ∈ D′+,

�(p) = L[T ](p),

it is enough that it shows a polynomial growth. In other words, there exists some polynomial
and some half plane such that an estimate like (4.77) holds for them.
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The proof of these properties demands strongly the tempered distributions represen-
tation assured by Theorem 4.9 on the previous section, cf. [8, 65].

Let us close the chapter bringing still another link between the two transforms
just discussed. Observe that every distribution T of compact support is tempered. By
the same route used to reach Laplace transform in DL, one may introduce – by using
the same functions α in order to truncate the support of φ−itx := exp(−itx), x ∈ IR,
but with no changes for its values on the support of T – the function:

< T, φ−it >:=< T, αφ−it > . (4.78)

It may then be seen that such a function is the distribution FT . Besides, it may as
well be extended to the whole plane as a holomorphic function, and it fulfills (4.78)
for t ∈ IC. In short, we can count on

Theorem 4.10 The Fourier transform of a distribution of compact support is an
entire function whose numerical values are given by (4.78).



Chapter 5
The Three Basic Principles

5.1 Introduction

This chapter is devoted to the so-called three Functional Analysis basic principles:
the Hahn-Banach Theorem about continuous extension of linear forms; the Open
Mapping Theorem – one of whose consequences has been used in the proof of The-
orem 5.1, Sect. 3.2. and the Banach-Steinhaus Theorem, or Uniform Boundedness
Principle, which we have also mentioned previously (Theorem 4.2). As long as we
will skip the proofs for all these three results, our aim through the sections that
follow1 is to motivate the readers, trying to convince them to be “reasonable” these
statements, as well as pointing up how to take hold of them, by showing some of
their relevant applications.

Rigorous proofs for these results may be found practically in any Functional
Analysis book, particularly in [6, 39, 55, 60, 61, 67]. All of them discuss these results
at the same level of generality as these notes do, while [69, 72] present a more
general treatment.

5.2 Hahn-Banach Theorem

Many consequences follow from the characterization for dense subspaces in a
normed space, as described in

Theorem 5.1 A subset D ⊂ N is dense if and only if, for every form � ∈ N∗,

�(D) = {0} �⇒ � ≡ 0.

1 This chapter has taken the option to denote by N,N1, N2, etc., or B,B1, B2, . . ., normed or
Banach spaces, respectively.
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Proof As long as D is dense and � continuous, � must be null if it vanishes on D.

Conversely, assume that D̄ = N and accept the following:

Proposition Every closed proper subspace from N is contained in a closed
hyperplane.

Thus, D̄ is then in a closed hyperplane H . Based on remarks from Sect. 3.2, it is
possible to find a non-null functional �H ∈ N∗ which has H as its kernel. Therefore,
�H (D) = {0} and �H = 0, but this contradicts the assumed hypothesis.

Theorem 5.1 proof was thus reached, except for the above stated Proposition,
whose proof is missing. In some sense this proposition looks intuitive, nonetheless
its proof is not straightforward. It follows precisely from Hahn-Banach Theorem.

For any Hilbert space, its dual has been completely characterized by Riesz
Representation Theorem. On the other hand, in Sect. 3.5 some Banach spaces have
had their dual characterizations presented: c0, c, �

p, and Lp(�), 1 ≤ p < ∞.
In spite of that optimistic start, for an arbitrary normed espace N , based on the
information we own up to this point, it is not even possible to claim that in N∗
there exists some non-null functional. Indeed, whenever N has infinite dimension,
the existence of � ∈ N ′, � = 0 may be only assured by employing the concept
of a Hamel basis, cf. Sect. 8.2. Such concept also leads to the proof that provided
N ′ = N∗, then dim(N) < ∞. But, in order to get information about the existence
of non-null elements in N∗, the required tool is the following:

Extension Theorem (Hahn-Banach) Let S ⊂ N be a subspace and � a functional
in S∗. In this case, there always exists �̃ ∈ N∗ with

‖�̃‖N∗ = ‖�‖S∗ , �̃|S = �. (5.1)

We call readers attention to the fact that this theorem does not require the
completeness hypothesis for N , neither assumes to be S closed.

The proof main idea is quite simple: just reach a continuous extension �1 to �

for a subspace S1 := S
⊕[w], where [w] := {v := αw;α ∈ R} and w ∈ S, in

such a way that �1 and � have the same norm. That is the tricky chunk of the proof.
This step is then repeated for �1 and S1. To deduce that such process leads to the
extension �̃ claimed in the theorem statement, a transfinite argument is needed, the
important Zorn Lemma.

Example 5.1 Given w ∈ N , there exists � ∈ N∗, with

‖�‖ = 1, �w = ‖w‖. (5.2)
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Indeed, the linear functional

�w : [w] → R

v := αw → �v := α‖w‖ (5.2a)

fulfills ‖�‖[w]∗ = 1, which gives the claimed result. From it there follows the

Example 5.2 Given v1 = v2 in N , there exists � ∈ N∗, with

�v1 = �v2, ‖�‖ = 1.

Another direct consequence follows:

Example 5.3 Given v ∈ N , it can be claimed that

‖v‖ := sup
{�∈V ∗‖�‖=1}

�v = sup
{�∈V ∗� =0}

�v

‖�‖ . (5.3)

The relation (5.3) is known as dual formula (or dual variational formula) for the
norm associated to v: get it compared to

‖�‖ := sup
{v∈V ‖v‖=1}

�v = sup
{v∈V v =0}

�v

‖v‖ . (5.3∗)

The identity (5.3) lets us to write, for example, for 1 ≤ p < ∞and conjugated
exponent q

‖f ‖p = sup
{g∈Lq(�)‖gq‖=1}

∫
�

f (x)g(x)dx, ∀f ∈ Lp(�), (5.3a)

‖ξ‖p = sup
{η=(ηj )∈�q ;‖η‖q=1}

∞∑
j=1

ξjηj , ∀ξ = (ξj ) ∈ �p. (5.3b)

From (5.3) it may also be deduced that equality holds in (3.13), i.e.,

‖jv‖V ∗∗ = ‖v‖V ,

for every v ∈ V (≡ normed space), being j• the canonical identification between V

and its bidual V ∗∗ introduced in Sect. 3.6.

Example 5.4 Given a closed subspace F and w ∈ F , there exists � ∈ N∗, with
�(F ) = {0} and �w = 0.

In other words, given a closed subspace F and a vector w outside it, there exists
a closed hyperplane which contains F but not w. This is precisely what is told by
the Proposition mentioned to get the proof of the above stated Theorem 5.1.
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Exercise 5.1 Any closed subspace F ⊂ N may be described as the intersection of
all closed hyperplanes that contain itself.

Exercise 5.2 Prove the conjugated variational principles (A)− (B) that follow.

Given the subspace S ⊂ N , let F := {� ∈ N∗; S ⊂ ker(�)}. Then it holds

(A) dist(x, S) := inf
s∈S

‖x − s‖ = sup
0 =�∈S

�x/‖�‖,

for every x ∈ N;

(B) dist(n, F ) := inf
�∈F

‖n− �‖ = min
�∈F

‖n− �‖ = sup
0 =s∈S

ns/‖s‖,

for every n ∈ N∗.
A normed (or metric) space is said to be separable whenever it contains a dense

countable subset. Exercise 2.15 shows that C0[0, 1] is separable. Other separable
spaces are presented in

Example 5.5 All spaces �p, with 1 ≤ p < ∞, are separable.

As a matter of fact, the set {q := (qj ) ∈ �p; qj ∈ Q, j ∈ N} is countable and
dense.

Example 5.6 The space �∞ fails to be separable.

Indeed, suppose that {xn} is a countable and dense set in �∞, with xn := (xn
j ).

The set {x̂n} with x̂
j
n := x

j
n/‖xn‖∞ will then be dense2 in the unity ball of �∞. Let

us define y = (yj ) ∈ �∞ by

yj :=
[−sgn (x

j
j ) x

j
j = 0

1 x
j
j = 0

.

It may be then deduced from this that ‖y− x̂n‖∞ ≥ 1,∀n ∈ N, ‖y‖∞ = 1. But this
claim contradicts to be {x̂n} dense in the unity ball.

Now we shall make use of Theorem 5.1 to prove that (�∞)∗ = �1, in the sense
of Exercise 3.4, or more precisely, on Theorem 3.3 from Sect. 3.5. At first we need
to make use of

Theorem 5.2 When N∗ is separable, N is separable as well.

Proof Let {φn} be a countable dense set in the unitary ball from N∗. It can be
claimed that the set {xn} is dense in the unity ball of N , where xn is chosen in such
a way as to fulfill

2 It may be assumed – with no loss of generality – that the null sequence is out of this set.
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|φnx
n| ≥ ‖φn‖/2, ‖xn‖ ≤ 1.

If {xn} fails to be dense, by Theorem 5.1 it is possible to determine a functional
φ ∈ N∗, with ‖φ‖ = 1, such that φxn = 0,∀n ∈ N. Since {φn} is a dense set in the
unity ball of N∗, there exists a sequence φnk

→ φ. From this it is deduced that

‖φ − φnk
‖ ≥ |(φ − φnk

)xnk | = |φnk
xnk | ≥ ‖φnk

‖/2.

Since ‖φ − φnk
‖ → 0, it follows that φnk

→ 0, which gives φ ≡ 0, and this
contradicts to be ‖φ‖ = 1.

Example 5.7 The space �∞ is not reflexive. In particular (�∞)∗ = �1.

In fact, had we (�∞)∗ = �1, then �∞ would be necessarily separable, by
Theorem 5.2.

5.2.1 Application: A Dirichlet Problem

An application of the Hahn-Banach Theorem is described in the sequel. Its aim is
to reach the solution, with the use of Green’s function, for the following Dirichlet
problem.

Let D be an open bounded and connected set in the plane xy, whose boundary
C is made up of a finite number of regular curves. Besides let us suppose that each
point p in C is one of the endpoints of a segment whose points, with the exception
of p, are all in the exterior3 of D.

Given a continuous function f on C, the aim is to determine on D a harmonic
function u – i.e., one that fulfills

�u := ∂2u

∂x2
+ ∂2u

∂y2
= 0−,

which is continuous on D and coincides with f on C; in short, u ∈ C0(D) and is
such that

[
�u = 0 on D

u = f in C . (5.4)

Denoting by H the space of the continuous functions on D, harmonic on D, and by
V the space of the real continuous functions on C, the maximum modulus principle
for harmonic functions assures that the linear operator

3 Exterior of D := Dc
(= complement of the closure of D).
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A : H → V
u → Au := u|C,

is 1-1. Therefore, we can count on the existence of the inverse operator

A−1 : Im(A) ⊂ V → H

and thus all amounts to determine V0 := Im(A), which means to know for which
functions from V is it possible to solve this Dirichlet problem. Observe that as long
as the norm ‖ · ‖∞ is taken in H as well as in V , by the maximum modulus principle
both operators A and A−1 turn out to be continuous.

On which follows we will need the Green identities: for u, v ∈ C(�), with
� ⊂ Rp, it may be proven that

∫
�

[v�u+ (∇u|∇v)] dX =
∫

∂�

v(∇u|n)dS, (5.5)

where

∇u := (∂u/∂x1, . . . , ∂u/∂xp)

is the gradient of u, dX := dx1 . . . dxp and n denotes the outer normal to the
surface ∂�, which is the boundary of �. The identity (5.5), called first Green’s
formula, is a consequence of the divergence (or Gauss) theorem: for an arbitrary
vector field F := (F1, . . . , Fp) ∈ C1(�), being

divF := (∇|F) =
p∑

ı=1

∂Fı/∂xı

the divergence of F , then

∫
divFdX =

∫
∂�

(F |n)dS (5.6)

holds. To have it checked it suffices to apply (5.6) to F := v∇u.
Now in (5.5) exchange u and v, then subtract the resulting identity from the

original one, so as to be led to the so-called second Green’s formula:

∫
�

[u�v − v�u] dX =
∫

∂�

[
u

∂v

∂n
− v

∂u

∂n

]
dS, (5.7)
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where ∂u/∂n := (∇u|n) denotes the u derivative in the direction of n. In particular,
if u, v happen to be both harmonic, it follows that

∫
∂�

[
u

∂v

∂n
− v

∂u

∂n

]
dS = 0. (5.7a)

By taking now v := 1, this conclusion is reached: if u is harmonic in �,

∫
�

∂u

∂n
dS = 0, (5.8)

for any surface � contained in �.
From (5.8) one may deduce the mean value property for harmonic functions.

Take for a given x0 ∈ � the surface

� := {y ∈ Rp; |y − x0| ≤ r} ⊂ �.

Then

0 =
∫
|y−x0|=r

∂u(y)

∂n
dS =

∫
|y|=1

[
d

dr
u(x0 + ry)

]
rp−1dS

= rp−1 d

dr

∫
|y|=1

[u(x0 + ry)] dS,

which implies, for 0 < r ≤ r0 = r0(x0), that

∫
|y|=1

[u(x0 + ry)] dS = α = constant .

This constant will be obtained by employing the Mean Value Theorem from Integral
Calculus linked to the continuity of u:

α = lim
r→0

∫
|y|=1

u(x0 + ry)dS = u(x0)ωp−1,

being ωp−1 the surface area of the unitary sphere in Rp. This way, for arbitrary
x0 ∈ �, we obtain

u(x0) = 1

ωp−1

∫
|y|=1

u(x0 + ry)dS

= 1

ωp−1

∫
|y−x0|=r

u(z)
dS

rp−1 ,
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otherwise said,

u(x0) = 1

ωp−1rp−1

∫
|z−x0|=r

u(z)dS. (5.9)

Exercise 5.3 The expression (5.9) is called first mean value property. Prove its
equivalence to

u(x0) = p

rpωp

∫
|z−x0|≤r

u(z)dS, (5.10)

known as second mean value property.

It can be verified to be a consequence of (5.9) the maximum modulus principle
for harmonic functions.

Now let us get back to the case p = 2. We point up that the general context
p > 2 may be read, for example, in [38] or [41]. Let

P0 := (x0, y0) ∈ D fixed, r := √[(x − x0)
2 + (y − y0)

2] > 0

and

v(x, y) := ln r.

As long as ε > 0 is small enough, applying (5.7) to Dε := D\Bε , with Bε :=
B(P0; ε), it follows that

0 =
{∫

C
+

∫
∂Bε

}[
u

∂

∂n
ln r − ln r

∂u

∂n

]
dS

=
∫
C

[
∂

∂n
ln r − ln r

∂u

∂n

]
dS − ln ε

∫
∂Bε

∂u

∂n
dS

+
∫

∂Bε

u
∂

∂n
(ln ε)dS.

Take (5.8) into account and then recall that on ∂Bε we have ∂ ln ε/∂n = 1/ε, in
order to deduce that

1

ε

∫
∂Bε

udS =
∫
C

[
u

∂

∂n
ln r − ln r

∂u

∂n

]
dS,

or alternatively, due to (5.9),

u(x0, y0) = 1

2π

∫
C

[
u

∂

∂n
ln r − ln r

∂u

∂n

]
dS. (5.11)
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Subtract then (5.11) from (5.7a) to get

u(x0, y0) = 1

2π

∫
C

[
u

∂

∂n
(v − ln r)− (v − ln r)

∂u

∂n

]
dS.

Suppose v to be harmonic on D and that it coincides with ln r in C. Deduce then
that

u(x0, y0) = 1

2π

∫
C

u
∂

∂n
(v − ln r)dS. (5.12)

A function v for which these properties hold lets one to solve, from (5.12), the
problem posed in (5.4) for an arbitrary f . This is which has motivated us to
introduce the notion of the Green function G(p;p0) associated to the Dirichlet
problem under discussion: it is a function which, being continuous in D, for each
fixed p0 ∈ D fulfills

a. G(p;p0) = 0 p ∈ C
b. �G(p;p0) = 0 p ∈ D

]
. (5.13)

Our aim now is to prove the existence of G.
For each fixed point q ∈ D, the linear functional lq := δqA−1 is continuous (here

we are using the notation on Example 2.12b, Sect. 2.5). More precisely, ‖l‖q = 1,
since for f ≡ 1, A−1f ≡ 1. Hahn-Banach Theorem assures then the existence of
an extension for lq , denoted by Lq ∈ V ∗, with ‖Lq‖ = 1.

Observe that, for each fixed p ∈ R2\C, the function

s #→ gp(s) := ln |s − p|

holds continuity in C, i.e.,

p ∈ D �⇒ gp ∈ V .

Since, for fixed p ∈ R2, the function s #→ ln |s − p| is harmonic on R2\{p}, we
conclude that

p ∈ D �⇒ gp ∈ V0.

Define then the Green function G(p; q) for the Dirichlet problem under study: for
fixed p ∈ R2, assign

G(p; q) = − ln |q − p| + k(p, q), (5.14)

where
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k(p, q) =
[

Lq(gp) p ∈ C
ln |q − p| p ∈ C .

Continuity for G ought to be proven, besides that (5.13b) holds, since (5.13a) is
fulfilled, thanks to the introduced definition.

In fact, let fixq. For p ∈ C,�k(p, q) = 0, while for p ∈ C, we have

0 = Lq�qp = �k(p, q).

The second equality must be justified, which amounts to verify that the operators �

and Lq commute. With such purpose, introduce, for h > 0, the discretized operators

�h : s(x, y) #→ [s(x + hy)+ s(x − hy)

−4s(x, y)+ s(x, y + h)+ s(x, y − h)]/h2.

It is seen that, provided v ∈ C3(D), the identities

lim
h→0

�hv(x, y) = �v(x, y)

hold uniformly in each compact of D. Therefore, since

�hLqgp − Lq�gp = Lq(�hgp −�gp),

the validity of

‖�hLqgp − Lq�gp‖∞ ≤ ‖�hgp −�gp‖∞ → 0

holds, as long as the sup in the norm ‖ · ‖∞ is taken on an arbitrary compact in D.
As a consequence, (5.13b) holds, which implies continuity for G on D.

It rests on waiting the proof for the continuity of G for any p ∈ C.
When p ∈ D and q ∈ D, then Lqgp = ln |p − q|. Thus, for p0 ∈ C, t ∈ D and

t → p0 it follows

k(t, q) = ln |t − q| → ln |p0 − q| = k(p0, q).

But our aim is to show that k(t, q) → k(p0, q) for t → p0 with t an interior point
in D. With this purpose, we will show that, provided p be near enough from p0, it
is possible to determine t = t (p) ∈ D such that

k(p, q)− k(t, q) → 0 if p → p0. (5.15)

Given p ∈ D, take the line segment that joins p to the point m of C and which is the
one closest to p. Extend such segment up to a point t for which |t −m| = |m− p|
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holds. For p near enough to p0, t ∈ D and, therefore,

k(p, q)− k(t, q) = Lq(gp − gt ).

Remark that

gp(ξ)− gt (ξ) = ln

∣∣∣∣p − ξ

ξ − t

∣∣∣∣
and, by making use of the hypotheses about C, it may be shown (cf. [21] or the
original work, [45]), that when p → p0 then t (p) → p0 and |p − ξ |/|ξ − t | → 1,
uniformly with respect to ξ ∈ C. From this it follows that

‖gp − gt‖∞ → 0

and, by the continuity of Lq , (5.15) may be obtained.
This way we have succeeded in proving:

The Dirichlet problem (5.4) admits a unique solution for arbitrary function f , provided it
is a continuous function and the hypotheses on the region D stated on the opening of this
section all hold.

5.3 Open Mapping: Closed Graph

Our road takes us now to some properties of linear mappings:

T : B1 → B2,

where both B1andB2 are Banach spaces.
Consider the product space

B1 × B2 := {z := (v1, v2); vı ∈ Bı, ı = 1, 2}

equipped with the norm

‖z‖ = ‖(v1, v2)‖ := ‖v1‖ + ‖v2‖ (5.16)

and the vector space operations component-wise defined.

Exercise 5.4 Prove that B1 × B2 is a Banach space.

Being T linear, the graph of T ,

G(T ) := {(v1, v2) ∈ B1 × B2; v2 = T v1, v1 ∈ B1},
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is a subspace of B1×B2. Assuming T continuous results G(T ) to be closed. In fact,
the conclusion that G(T ) is closed has no relation with being B1andB2 complete;
it is even free from the linearity assumption: it suffices to have T continuous and
B1andB2 metric spaces.

The converse of this result is precisely the

Closed Graph Theorem (Banach) Let T : B1 → B2 be a linear mapping.
Whenever the graph of T is closed on B1 × B2 under the norm defined by (5.16),
then T is continuous.

Observe that the function

f : R→ R

x →
[

0 x = 0
1/x x = 0

has its graph closed, without being continuous. This tells us that linearity of T is
essential. Besides, if B1 is not complete, the conclusion may be false, as indicated
by Example 5.2, Sect. 2.11. In the same way, requiring B2 to be complete may not
be disposed of.

Exercise 5.5 All norms

‖z‖p := (‖v1‖p + ‖v2‖p)1/p, 1 ≤ p < ∞, ‖z‖∞ := max{‖v1‖, ‖v2‖}

taken on B1 × B2 turn out to be equivalent.

A mapping between two metric spaces, f : M1 → M2, is continuous if and only
if the inverse image f−1(A) of any open set A ⊂ M2 would be an open set in M1.
Whenever is f 1-1, denoting its inverse by g : f (M1) → M1, it is seen that the
image of every open set in the domain of g – that is, in the image of f – is an open
set in M1. Thus, g maps the open sets in its domain into open sets. A transformation
with such a property is said to be an open mapping.

Within the framework of normed spaces, we can count with what states

Exercise 5.6 Given a linear function f : N1 → N2, the condition to be f open is
to exist δ > 0, ρ > 0 such that

f (B(0; δ)) ⊃ B(0; ρ).

Otherwise said, in order to be sure that a given linear transformation is an open
mapping, it is enough to assume that the image by f of some open ball contains
another open ball.

Recall that every analytic complex variable function, with a connected domain,
is necessarily open; otherwise it is a constant, cf. [62, pp. 214]. For T ∈ L(R,R),
it also holds that either is it open or a constant, (better said, null). And, given T ∈
L(R2,R2), we have an alternative to generalize what occurs on the real line – either
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is T open or it is singular – which also holds for every Rn, with n ≥ 2. As a matter
of fact, that is precisely the formulation that holds in general, as long as we take into
account that, for a linear operator on a finite dimension spaceX, the hypotheses of
being non-singular (ker(T ) = {0}) and being an onto mapping (Im(T ) = X) are
equivalent:

Open Mapping Theorem Let T be a mapping from B1 into B2, assumed linear,
continuous, and onto. Then T must be an open mapping.

It is straightforward deducing as one of the consequences of this result the

Isomorphism Theorem (Banach) Let T be a linear transformation, continuous
and 1-1 from B1 onto B2. Necessarily T −1 ought to be continuous.

Proof Denote S := T −1 : B2 → B1. The inverse image of an open set A1 ⊂
B1, S

−1(A1) = T (A1) is then open, as a consequence of the previous theorem as
well as the hypotheses made about T . From this, the continuity of T −1follows.

It is shown now that the previous result may as well be proven with the help of
the Closed Graph Theorem.

Being closed the graph of the mapping T : B1 → B2, it follows that the graph
of T −1 is closed as well. Indeed, let (vn, T

−1vn) be a sequence in G(T −1) which
converges to (v0, w0) ∈ B2 × B1. By (5.16), vn → v0 and T −1vn → w0. From the
continuity of T , it may be concluded that vn → T w0 and therefore v0 = T w0 or
w0 = T −1v0, which means (v0, w0) ∈ G(T −1); in other words, G(T −1) is closed.

Conclusion: T −1 is continuous.
It deserves to underline that the three theorems stated in the current section are

all equivalent. We indicate then how Banach Isomorphism Theorem implies both
the Closed Graph and the Open Mapping Theorems.

Exercise 5.7 Verify: if the hypotheses for the Closed Graph Theorem hold for the
operator T , by applying to

πT : G(T ) → B1

(x, T x) → πT x := x

the Isomorphism Theorem, the continuity of T is deduced, since

‖πT x‖ = ‖x‖ + ‖T x‖.

Exercise 5.8 Assume for T the conditions on the Open Mapping Theorem. Then
F := ker(T ) is closed, and, as a consequence, B̃1 := B1/ ∼F is a Banach space.
The mapping

T̃ : B̃1 → B2

x∗ ∈ B̃1 → T̃ x∗ := Ty, ∀y ∈ x∗
]
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is linear, continuous, 1-1 and onto B2, thus open, by the Isomorphism Theorem.
From this we conclude to be T open.

Let us get back to Theorem 5.1 from Sect. 2.13: it is a straightforward consequence
of the Isomorphism Theorem – just take as T the identity.

A more involved consequence of the Closed Graph Theorem is presented in
Sect. 5.5. The example that follows shows another application, where we get back
to Exercise 2.35 from Sect. 2.12.

Example 5.8 Fourier transform

F : L1(R) → Ca(R)

fails to be onto.

It has been verified, on the quoted Exercise 2.35, to be F−1 discontinuous, which
implies not being F onto Ca(R), as this would lead to a contradiction with the
Isomorphism Theorem.

As previously announced, this exposition fails to include the proof for the Open
Mapping Theorem. We mention, though, that its proof main ingredient is Baire
Category Theorem on complete metric spaces, cf. [67, pp. 74], or [55, pp. 65]. It is
also a consequence of Baire Theorem having we avoided to seek, for Example 2.9,
Sect. 2.14, a sequence of continuous functions fN to approximate �Q. This theorem
implies that a function which is the point-wise limit of continuous functions may not
present as its set of discontinuity points a collection “as large” as the function �Q

does, namely, the whole real line, cf. [39].

5.4 The Weak Convergence

There exist some information data on elements or subsets from a given normed
space N that can be deduced from data about the action of the functionals � ∈
N∗ on these elements or subsets. This is what occurs, e.g., with expression (5.3),
Theorem 4.1 and Exercise 4.2.

Assume (xj ) to be a convergent sequence on N with limit x. Then for each
� ∈ N∗ the following holds

�xj → �x. (5.17)

Conversely, suppose that, for the sequence (xj ) and the vector x, (5.17) holds, for
every � ∈ N∗. Think about the following question: does strong convergence

xj → x,

hold, i.e., is ‖xj − x‖ → 0 true?
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Example 5.9 Let ej := (δN
j )N ∈ �2. By Riesz Representation Theorem, for any

� ∈ (�2)∗, there exists v = (vN) ∈ �2 such that

�eN =
∞∑

N=1

vj δ
N
j = vj .

Thus, (ej ) fulfills (5.17) with x := 0, since

(vN) ∈ �2 �⇒ lim
N

vN = 0.

On the other hand, ‖ej‖2 = 1 and on account of this identity, it is impossible for the
limit ej → 0 to hold.

On a certain number of problems, the definition given below is quite important.
It is possible to list, among them, the variational formulation for problems from
Physics.

It is said that a sequence (xj ) in N converges weakly to a vector x ∈ N if

lim
j

�xj = �x for every functional � ∈ N∗ (5.18)

holds. Hereby the first point to worry about is the uniqueness of this so-called weak
limit. Suppose that (xj ) is such that its weak convergence simultaneously hold for
x and y. The uniqueness of the limit for a sequence of real numbers lets to conclude
that, for arbitrary � ∈ N∗, the equality below holds

�x = �y.

A consequence of Example 5.2, Sect. 4.2 is that x = y then.

Exercise 5.9 Verify: if (xj ) and (yj ) are wekly convergent sequences with limits x

e y, respectively, and if the real sequences (αj ) and (βj ) converge respectively to α

and β, then we have

lim
j

(αjxj + βjyj ) = αx + βy (weakly).

5.5 The Uniform Boundedness Theorem

Every weakly convergent sequence {xn; n ∈ N} is weakly bounded. In other words,
for each arbitrary � ∈ N∗, the set of numbers {�xn; n ∈ N} is always bounded. We
have in mind to reach a stronger boundedness relation, namely, one which assures
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that {‖xn‖; n ∈ N} is bounded, as occurs with the strongly convergent sequences.
By taking (5.3) into account, it amounts to estimate

{�xn; n ∈ N, � ∈ N∗, ‖�‖ = 1},

or, making use of the notation in Sect. 3.6,

{jxn�; n ∈ N, � ∈ N∗, ‖�‖ = 1}.

For each fixed n, the relations

|jxn�| ≤ ‖jxn‖N∗∗‖�‖N∗ = ‖xn‖N‖�‖N∗ = ‖xn‖N

hold and, by the same token, for any fixed �

|jxn�| = |�xn| ≤ C1(�),

since (�xn) converges.
Observe that the constants C1(�) and C2(n) := ‖xn‖ are independent of n as well

as of �, respectively. Our aim is reaching a unique constant C such that

C1(�) ≤ C ∀� ∈ N∗, ‖�‖ = 1,

C2(n) ≤ C ∀n ∈ N.

Let us have a look on a more general framework.

Uniform Boundedness Theorem (Banach–Steinhaus) Let (Tα)α∈� be a family of
linear continuous operators, Tα : B → N , with � as an arbitrary set, B a Banach
space and N a normed space. Denoting by S1 := {x ∈ B; ‖x‖ = 1}, suppose to be
fulfilled the following point-wise bounds:

sup
α∈�

‖Tαx‖ ≤ C1(x), for each x ∈ S1, (5.19)

sup
x∈S1

‖Tαx‖ ≤ C2(α), for each α ∈ �. (5.20)

It is then guaranteed the existence of a constant C related to a uniform bound:

sup
{x∈S1α∈�}

‖Tαx‖ ≤ C. (5.21)

The presented formulation emphasizes some kind of symmetry between the
variables x and α. It is more usual to express this result in the form

Every pointwise bounded set {Tα∈�} ⊂ L(B,N) is equicontinuous, as long as it is
uniformly bounded.
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Proof Let L∞(�; Ñ) be the Banach space of the bounded functions from � on Ñ ,
where Ñ denotes the completion of N , equipped with the norm

‖f ‖
L∞(�;Ñ)

:= sup
α∈�

‖f (α)‖
Ñ

.

Consider the linear mapping

S : B → L∞(�; Ñ)

x → Sx := hx
where hx : � → Ñ

α → hx(α) := Tαx

⎤
⎦ .

Observe that if S is bounded, as long as

‖S‖ := sup‖x‖B=1 ‖Sx‖
L∞(�;Ñ)

= sup‖x‖B=1 supα∈� ‖hx(α)‖
Ñ

= sup‖x‖B=1 supα∈� ‖Tαx‖
Ñ

,

we will have obtained (5.21) with C := ‖S‖. In order to reach the proof of the
continuity of S, we demand help from the Closed Graph Theorem.

Let (xn, Sxn) be a sequence of points on the graph of S, and suppose its
convergence to (x, y), with y ∈ L∞(�; Ñ). To show the graph of S is closed,
we must prove that y = Sx.

Since xn → x, for each α ∈ � occurs the convergence

Tαxn → Tαx,

which means that

lim
n
‖Tαxn − Tαx‖N = 0. (5.22)

On the other hand,

0 = limn ‖Sxn − y‖
L∞(�;Ñ)

= limn supα∈� ‖hxn(α)− y(α)‖
Ñ

= limn supα∈� ‖Tαxn − y(α)‖
Ñ

.
(5.22’)

From (5.22) and (5.22’), it results that Tαx0 = y0(α), that is, Sx0 = y0, since

[Sx0](α) = hx0(α) = Tαx0 = y0(α).

Concluded the proof, we can now state the following result, discussed before having
presented the Banach-Steinhaus Theorem.
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Theorem 5.3 Let (xn) be a weakly convergent sequence in the normed space N .
We then assure that {‖xn‖; n ∈ N} is a bounded set on the line, and we say that (xn)

is strongly bounded.

Observe: no need to assume N to be complete, as the Banach-Steinhaus Theorem
is applied in the space N∗, which is always a Banach space.

Exercise 5.10 A sequence (xj ) in N is said to be weakly Cauchy if, for arbitrary
� ∈ N∗, the real sequence (�xj ) is a Cauchy sequence. Prove that every weakly
Cauchy sequence is strongly bounded.

Exercise 5.11 If the sequence of bounded operators Tn : B → N converges
pointwise toward an operator T , which means

Tnx → T x, for each x ∈ B,

then the operator T is linear and continuous.

5.5.1 An Application to Numerical Schemes

In 1928, Richard Courant, Kurt O. Friedrichs, and Hans Lewy, in the article [20],
published a benchmark for the rigorous curtain opening of Numerical Analysis
for partial differential equations.4 Therewith they formalized the theory for finite
differences algorithms, as long as they made clear the sometimes surprising behavior
of some numerical schemes for pde’s. They introduced the concept of stability,
showing how this property is strongly related to convergence.

Passed around 30 years, Peter D. Lax observed, cf. [48], that the relation between
these two concepts is still deeper – they are equivalent, as expressed by the result
exposed in the sequel, which turns out to be an application of Banach-Steinhaus
Theorem.

Take the heat diffusion linear equation as an example which illustrates the
introduced concepts.5 The initial value problem – IVP – or Cauchy problem,

∂u(x, t)

∂t
− ν

∂2u(x, t)

∂x2 = 0

] −∞ < x < ∞
0 ≤ t ≤ T

(5.23)

u(x, 0) = φ(x)−∞ < x < ∞ (5.24)

may be formulated in the context of function spaces as

4 Also available through a version to English in [27].
5 We borrow the exposition in [57], but bringing in a lot of simplifying.
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d
dt

u(t) = Lu(t)

u(0) = φ
, (5.25)

for u ∈ C1(0, T ;H 1(R)) and the differential operator L : X → H 1(R) defined in
X, a subspace of H 1(R) to be duly stated.

Among other points to be considered ahead the choice of this space, let us
mention that it ought to include the boundary conditions imposed to u – whenever
one deals with the mixed problem. Such a choice must also assure that, with such
a formulation, (5.25) states a well-posed problem, in the sense of Hadamard. This
means, informally, that the collection of allowed solutions is large enough, and they
depend in a unique and continuous way from the given data.

With a more precise saying, let X ⊂ H 1(R) be such that, if φ ∈ X , (5.25) admits
a solution, being thus defined a family of operators

E(t) : X → H 1(R)

φ → E(t)φ := u(t)

]
, t ∈]0, T ]. (5.26)

It is said that this is a well-posed problem, in the sense of Hadamard, if it is
guaranteed to hold

a. Existence X dense in H 1(R)

b. Uniqueness E(t) uniquely defined
c. Continuity E(t) uniformly bounded

The first condition, a stronger formulation than the original one, by Hadamard,
assures the existence of generalized solutions. If the function ψ ∈ H 1(R) \ X , it
may be approximated by a sequence in X , and, due to c., the solutions whose initial
values are the elements of this sequence form a sequence which also converges. The
limit thus obtained is then assigned to the solution which has ψ as its initial value.
Again, all amounts to an application of the Principle of the Continuous Extension,
this time to the operators E(t).

The third condition is known as continuous dependence on initial data. It
assures that small errors – either from the measurements or the calculations –
associated to the initial value will lead to small deformations on the system response.

Numerical approximations for the solution u of (5.25) are built with finite
difference through the following steps.

First choose the discretization parameter k := �t := T/N ; then calculate, for
tn := nk and n = 1, . . . , N , simulations for un := u(tn), denoted by Un and
initially defined on a finite set of points xj := jh, j ∈ N, with h := �x > 0, by an
evolution scheme.6

The approximations Un are generated then in H 1(R) via some interpolation
starting from the values calculated in (xj , t

n) and denoted Un
j , taking into account

6 It is just to simplify the presentation that we restrict to using uniform meshes – the discretization
sub-intervals have the same length, just for x as for t .
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1 ≤ n ≤ N , j ∈ N. We look forward to guarantee Un
j ∼ un

j := u(xj , t
n), which

means to be dealing with a convergent scheme, that will be shortly made precise.
The considered algorithm follows the time evolution sequentially according to

[
U0

j := φ(jh) j ∈ N

Un+1 := B(h, k)Un 0 ≤ n < N
, (5.27)

being B the chosen finite differences operator. For example, maybe the simplest
scheme for (5.23) is

Un+1
j − Un

j

k
= σ

Un
j+1 − 2Un

j + Un
j−1

h2 , (5.28)

from which it follows, by denoting with τ±h the right, resp. left, translation,

B(h, k)Un := Un + k

h2

(
τ+hU

n − 2Un + τ−hU
n
)
.

To get hold of a numerical scheme which simulates, or discretly models, a given
differential equation means that the solutions of the finite differences relation it
requires somehow approximate the solution for the given differential equation.
Being the scheme compatible with the original equation, the solution should also be
almost a solution to the differences equation – and such is the condition to impose so
as to define a consistent algorithm. Through other words, as long as it is expected
that

Un+1 − Un

k
∼ LUn,

for I the identity, consistency is defined by requiring, for the solutions of (5.25), or
at least for a family which is dense on this set, the condition

lim
h,k→0

∥∥∥∥
[
B(h, k)− I

k
− L

]
u(t)

∥∥∥∥
H 1(R)

= 0,∀t ∈ [0, T ]. (5.29)

From now on it will be supposed that the discretization meshes hold a dependence
relation, v.g., h = g(k). The relation

Un+1 = BUn = . . . = Bn+1U0

implies to be demanded in the calculations powers of the involved operators B =
B(k), and consequently the numerical solutions built in by the scheme under exam
depend on two parameters, k and n. These remarks let us to introduce the
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Definition (Convergence) The numerical scheme (5.27) turns out to be convergent
if, given any sequences of integers (n�), (N�), with the properties

a. n�,N�
�→∞

b. being k� := T/N�, n�k�
�→ t for some t ∈]0, T ]

]
,

the limit below always holds

‖B(k�)
n�φ − E(t)φ‖ �→ 0, φ ∈ X . (5.30)

A concept that rested unknown until [20] has been published, when it was then
formalized, is the stability of a numerical scheme. The operators Bn, for n large,
are bound to approximate the operator E for solving the IVP. They ought, therefore,
to keep themselves bounded, more than that, uniformly bounded. That is exactly
what is required by the

Definition (Stability) A scheme (5.27) is considered to be stable if

∃C > 0; ‖B(k�)
n‖ ≤ C,∀n ∈ N, k�

�→ 0. (5.31)

Another reason to require the stability of the numerical schemes: (5.31) also implies
that the distortions introduced in the initial data, among them those brought in
by rounding errors, despite being reactivated by successive powers of B, are kept
bounded.

Definition (5.29) establishes a local constraint, since it encompasses to estimate the
evolution of the approximate solution from level n to level n + 1, while (5.30) and
(5.31) are global. On the other side, opposite to the two other definitions, (5.31)
keeps track only of the numerical scheme, not to mention the considered equation.
The strong relation that links these three properties is the core of

The Lax Equivalence Theorem. For a well-posed initial value problem, a consis-
tent finite difference scheme is convergent if and only if it is stable.

By contradiction, for a convergent scheme, let us suppose to be possible finding φ ∈
X that originates a sequence of non-bounded approximations, thus contradicting
(5.31),

‖B(k�)
n�φ‖ → ∞. (5.32)

Then Bolzano-Weierstrass theorem implies to be possible finding a subsequence for
which

n�′k�′
�′→ t̄ for some t̄ ∈ [0, T ].
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Analogously condition (5.30) implies to be convergent this subsequence, and,
therefore, (5.32) cannot hold. On this track, we conclude that, given φ ∈ X , there
exists a constant C1(φ) for which

‖B(k)nφ‖ ≤ C1(φ),∀n ∈ N, k�
�→ 0.

But this is exactly the condition under which the Banach-Steinhaus theorem assures
the uniform boundedness (5.31), and, as a consequence, convergence implies
stability.

The opposite sense of the proof is standard in Numerical Analysis; see [14, 57].
The concepts introduced in (5.29), (5.30), and (5.31) may hold (or fail to)

independently of the relation between h and k. It is then said that such a scheme is
unconditionally – or conditionally – consistent, convergent or stable. For example,
the scheme (5.28) is unconditionally consistent, but it is stable – thus convergent –
if and only if

h/k2 = �t/(�x)2 ≤ ν. (5.33)

Suppose a scheme to be unconditionally stable but conditionally consistent. Such a
coupling, which seems to be helpful, may lead to computational risks, as illustrated
by the reasoning that follows.

Consider an arbitrary sequence of numerical approximations. The scheme stabil-
ity implies this sequence boundedness and, by Theorem 6.2, the weak convergence
of some of its subsequences. This convergence may lead to evaluate that the
discretization parameters keep the required relation for consistence of the scheme
being used. It occurs, though, that in some problems, we fail to deal with a quite
“clear” condition like the one described in (5.33). It may then occur that the reached
convergence – and in practical terms, tested in some spot of the computer program –
may be as well generating approximations to another problem; see [24] for details.



Chapter 6
Compactness

6.1 Introduction

Given X ⊂ M (= metric space), it is said that X is compact if, from each sequence
{xn} of elements from X, a subsequence {xnk

} can be extracted which converges to
some x0 ∈ X.

Exercise 6.1 Let T : M1 → M2 be a continuous mapping, being M1andM2 metric
spaces. Whenever is K ⊂ M1 compact, T (K) ⊂ M2 is also necessarily compact.

The ball B[0, π1/2] ⊂ L2(0, 2π) is not compact, as stated on Exercise 2.36.
On the other hand, in every finite dimensional normed space, a closed and bounded
set is always compact, and, in fact, the following characterization discovered by F.
Riesz, cf. [72, pp. 85], is valid:

Theorem 6.1 On a normed space N , the closed balls are compact in the sense of
the norm – or strongly compact – if and only if N is finite dimensional.

Bolzano-Weierstrass theorem claims that the compact sets in Rp are the bounded
and closed sets. Given a normed space N with finite dimension p, it is home-
omorphic to Rp, which means, by definition, that there exists a linear and
continuous mapping T : N → Rp, 1-1 and onto, such that T −1 is also
continuous.1 Consequently, the bounded and closed subsets of N , since they exhibit
a homeomorphic correspondence with the bounded and closed sets from Rp, are
compact as well.

We suggest reading [72] for what still remains to be proved.

1 Any linear mapping from N onto Rp , being 1-1, is necessarily a homeomorphism, according to
the remark that follows Exercise 2.30.
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6.2 Compactness in C0 and Lp

It is a straight deduction from the definition that every compact set is closed and
bounded. From Theorem 6.1 above, in the infinite dimensional spaces, we must get
hand of other conditions so as to assure compactness for any of its subsets. So far
everything points out that a general characterization lacks to be available. What we
happen to recognize is, for some spaces, particular conditions to enroll their compact
sets.

To open the display, consider the space N := C0[0, 1] with the norm ‖ · ‖∞.
Assume F ⊂ N to be one of its compact subsets. Given {fn}, an arbitrary sequence
in F , there exists a subsequence {fnk

} such that

lim
k→∞‖fnk

− f ‖∞ = 0,

for a particular f ∈F. Since f is uniformly continuous, for any ε > 0, there exists
δ = δ(ε, f ) > 0 for which

x1, x2 ∈ [0, 1], |x1 − x2| < δ �⇒ |f (x1)− f (x2)| < ε. (6.1)

On the other hand, it is possible to determine K = K(ε) such that, if k ≥ K , it is
verified that

|fnk
(x)− f (x)| < ε,∀x ∈ [0, 1].

We thus conclude: if |x1 − x2| < δ and k ≥ K ,

|fnk
(x1)− fnk

(x2)| ≤ |fnk
(x1)− f (x1)|+

|f (x1)− f (x2)|+ |f (x2)− fnk
(x2)| < 3ε.

Therefore, the functions fnk
are not only uniformly continuous, but they happen

to be what is called equicontinuous,2 which means for any ε > 0, there exists
δ = δ(ε) > 0 (which depends only on ε), for which

|x1 − x2| < δ �⇒ |fnk
(x1)− fnk

(x2)| < ε,∀k ∈ N. (6.2)

It can be deduced that such a property holds not only for the subsequence {fnk
} but

for the whole set3 F , and this way we get hold of the following characterization of
the compact sets in C0[0, 1].
Theorem (Arzelà–Ascoli) A bounded and closed subset F of C0[0, 1] is compact
if and only if it is equicontinuous.

2 Or, more properly, an equicontinuous set.
3 This means that in (6.2) one can exchange ∀k ∈ N with ∀f ∈ F .
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This result stays valid when C0[0, 1] is replaced by C0(K), with K an arbitrary
compact, not necessarily contained in R, but in any metric space.

Proof We reason by contradiction, assuming that for the compact F does not hold
the equicontinuity property. It would then be possible to determine a number ε̃ for
which no corresponding δ > 0 would satisfy (6.1) for every f ∈ F . Saying with
other terms, for each δ > 0 being chosen, it would be possible to find a function
within F for which (6.1) would fail to hold. Now, this fact would imply the existence
of a sequence {fn} in F built from the values given by δ = δn := 1/n. Such a
sequence would not admit any equicontinuous subsequence. And this would then
imply that no convergent subsequence could be extracted from itself.

In order to prove that a bounded, closed, and equicontinuous set in C0[0, 1]
must be compact requires more creative steps. It makes use of the so-called Cantor
diagonal process.

Choose a countable dense set in [0,1] – for example, the rational numbers on that
interval. Denote this set by {q1, q2, . . .}, and let {fj } be an arbitrary sequence in F .
Being F bounded in the norm ‖ · ‖∞, the real sequence {fj (q1)} is bounded, so that
by Bolzano-Weierstrass theorem, it is possible to determine a subsequence {f1j }
from {fj } such that {f1j (q1)} is convergent. By the same reasoning, {f1j (q2)} is
bounded, and from this we get {f2j }, subsequence of {f1j } with {f2j (q2)} showing
convergence.

Follow then the same procedure for each one of the points qn, and define gn :=
fnn. Fixed m, {gj }j≥m is then a subsequence of {fn}, and therefore, {gj (qm)} is
convergent.

On the next step it is proven that {gj } converges uniformly. Since F is
equicontinuous, choose an arbitrary value for ε > 0 to determine δ(ε) > 0 such that
(6.1) holds for any f ∈ F . As long as k is large enough and Qk := {q1, . . . , qk},
for any x ∈ [0, 1], we verify that dist(x,Qk) < δ. Let then x ∈ [0, 1] be fixed and
q = q(x) ∈ Qk satisfying |x − q| < δ. We will have then:

|gm(x)− gm(x)| ≤ |gm(x)− gm(q)|+
|gm(q)− gn(q)|+ |gn(q)− gn(x)|. (6.3)

Since the set Qk is finite, it is possible to determine N = N(ε) such that

m, n ≥ N �⇒ |gm(q)− gn(q)| < ε, ∀g ∈ Qk.

From the equicontinuity of F , the first and third terms in the right-hand side of
(6.3) have both ε as an upper bound. The conclusion tells that {gn} is a uniformly
Cauchy sequence, i.e., it is a Cauchy sequence with respect to the norm ‖•‖∞. But
C0[0, 1] is complete for this norm, and F is closed, so these facts allow to deduce
convergence of {gn} to some g ∈ F . The proof ended.
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Example 6.1 Take K ⊂ C0[0, 1] bounded. Suppose that every f ∈ K is
differentiable and that there exists a constant M for which the inequalities ‖f ′‖∞ ≤
M,∀f ∈ K all hold. The compactness of K̄ follows then through the Mean Value
and the Arzelà-Ascoli theorems.

Example 6.2 By using the consequences of Exercise 2.28, it may be deduced
to be bounded and equicontinuous the closed unity ball from H 1(0, 1) in
(C0[0, 1], ‖•‖∞); thus it is a compact set.

Exercise 6.2 Let X := {f : R → R, f bounded and continuous}, with the norm
‖ · ‖∞, and let

g(x) :=
⎡
⎣0 x ≤ 0

x 0 ≤ x ≤ 1
1 1 ≤ x

.

Verify that

F := {f ; f (x) = g(x − n), n ∈ N}

is closed, bounded, and equicontinuous in X but lacks to be compact.
The exercise above intends to illustrate that, in order to assure the compactness

for a set F of functions with an unbounded domain, it is mandatory also to impose
conditions upon the asymptotic behavior of the elements of F , for |x| ∼ ∞. This is
shown on condition (ii) from the following:

Theorem (Fréchet-Kolmogorov) Fixed p ∈ [1,∞), any closed and bounded
subset F of Lp(R) is compact if and only if:

(i) limt→0
∫
R |f (s + t)− f (s)|pds = 0

(ii) limα→∞
∫
|s|>α

|f (s)|pds = 0

]
uniformly
for f ∈ F

.

Condition (i) may be thought of as an “equicontinuity measure” for the
generalized functions from F . You may visit the proof on [72, pp. 275].

6.3 The Weak∗ Convergence

The notions of weak and strong convergence have been previously exposed. On the
dual spaces a third concept is employed, the weak∗ convergence.

Let N be a normed space and N∗ its dual. It is said that a sequence of functionals
(�j ) in N∗ presents a weak∗ convergence to � ∈ N∗ if, for every vector x ∈
N, �jx → �x.
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It turns out this definition to be equivalent to require, for any F ∈ J (N), that
F�j → F�0, where J is the mapping which allows to identify N to the bi-dual
N∗∗. This way, whenever is N reflexive, weak∗ convergence is the same as weak
convergence.

As long as the weak∗ limit of a sequence (�j ) exists, it is unique. On the contrary,
suppose that, simultaneously,

�j
∗→ �0 and �j

∗→ �′0,

this notation standing for the weak∗ convergence. By definition, �0x = �′0x, for
every x ∈ N , thus �0 = �′0. All standard properties of limit processes behavior may
be straightly verified.

Observe that on D′(0, T ) and D′(0, T ;B), it was introduced exactly the weak∗
convergence. Both theorems stated in the sequel justify to deal with the concepts of
weak and weak∗ convergence.

Theorem 6.2 If B is a reflexive Banach space and (xj ) a bounded sequence, the
latter contains a subsequence (xjk

) which is weakly convergent.

Therefore the bounded and closed sets in B are weakly compact.

Theorem 6.3 Let N be an arbitrary normed space. Then its bounded and closed
subsets are weakly∗ compact. In another saying, given S ⊂ N∗, bounded and
closed, and chosen any sequence (�j ) in S, it may be determined a subsequence

(�jk
) and � ∈ S such that �jk

∗→ �.

The main appeal of Theorem 6.2 rests in applications to the spaces Hk(�) and
Lp(�), 1 < p < ∞. As regards to Theorem 6.3, it is usually applied to L∞(�) =
[L1(�)]∗. We will restrict ourselves to the
Proof for Theorem 6.2 We will suppose that B is separable. This will simplify the
proof and has a reasonable justification: a huge chunk of the function spaces we
work with hold such a property.

By Theorem 6.3 on Sect. 6.2, B∗ is separable, since its dual B∗∗ = J (B) is so.
Let (�j ) be dense in B∗ and let (xj ) be a bounded sequence in B. As a consequence
(�1xj ) is bounded, and, therefore, there exists a subsequence (x1

j ) such that (�1x
1
j )

is convergent. Now, (�2x
1
j ) is bounded as well, and, thus, it is possible to extract a

subsequence (x2
j ) from (x1

j ) such that (�2x
2
j ) converges.

On this way, for each integer p > 1, we obtain (x
p
j ), a subsequence of (x

p−1
j ),

such that (�kx
p
j ) is convergent, for 1 ≤ k ≤ p.

Thus, the diagonal sequence (x′j ) := (xj ) satisfies the condition of being (�kx
′
j )

convergent, for k = 1, 2, . . . .
Let now be � ∈ B∗ arbitrary and ε > 0 be given. The inequality

|�x′n − �x′m| ≤ ‖�− �k‖‖x′n‖ + |�kx
′
n − �kx

′
m| + ‖�k − �‖‖x′m‖
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implies to be (�x′j ) a Cauchy sequence, thus convergent. Consequently, (�x′j ) is
convergent, no matter which � ∈ B∗is chosen, and now all is left to show is that
there exists x0 ∈ B for which

�x0 = lim
j

�x′j .

Consider Fj := Jx′j ∈ B∗∗. The functional

F0� := lim
j

Fj � = lim
j

�x

is linear and continuous, by Banach-Steinhaus Theorem. This way we have reached
the conclusion that F0 ∈ B∗∗ = JB, and thus F0 = Jx0, for some x0 ∈ B. It
amounts to a short job to verify that

lim
j

x′j = x0(weak sense).

The converse to Theorem 6.2 is the

Eberlein-Shmulyan Theorem: Suppose that every bounded sequence in the
Banach space B owns a weakly convergent subsequence. For sure B is then
reflexive.

The long and tedious proof for this result may be found in [72, pp. 141].

6.4 Rellich and Immersion Theorems

A linear operator T : N1 → N2 is said to be compact if its image for any bounded
set (from N1) has a compact closure (in N2). Alternatively if, from each bounded
sequence (xj ) in N1, it is possible to obtain a subsequence (x′j ) such that (T x′j ) is
convergent in N2.

Example 6.3 Consider the Example 6.3 from Sect. 2.12. Arzelà-Ascoli Theorem
assures compactness for the operator:

f →
∫ x

0
f (s)ds.

Example 6.4 Take now the operator

ı : H 1(0, 1) → C0(0, 1)

f → ı(f ) := f

]
.
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With (2.14) and again Arzelà-Ascoli Theorem, we deduce the compactness of ı.

This fact is described by saying that H 1(0, 1) is compactly immersed in
C0(0, 1). It exhibits an example of a series of results known as immersion theorems
for the Sobolev spaces. Essentially, they pass along the information that the
functions on the spaces Hk(�),� ⊂ Rn, are much more regular than their
definitions would make us to expect.

Theorem (Relich) Let � ⊂ Rn be open and bounded. Given any sequence (fj ) in
Hk

0 (�), k ≥ 1, there exists a subsequence (fjp ) which converges in Hk−�
0 (�), 1 ≤

� ≤ k. Rephrasing: compactness holds for

ı : Hk
0 (�) → Hs

0 (�)

f → ı(f ) := f
, being 0 ≤ s ≤ k − 1.

Example 6.5 The condition which requires to be � bounded cannot be forgotten.
Indeed, let f ∈ Hk(Rn) and x0 ∈ Rn be an non-null vector. In such a case,

fj (x) := f (x − jx0), j ∈ N

is a bounded sequence which, in Hs(Rn), fails to admit a converging subsequence,
no matter the value of s.

For unbounded regions we may use the

Theorem 6.4 Take � ⊂ Rn an open set and (fj ) a bounded sequence in H 1(�).
In this case it is possible to choose a subsequence (fjp ) and a function f0 in L2

loc(�)

for which, in each compact K ⊂ �,

∫
K

|fjp (x)− f0(x)|2dx
p→ 0.

Rellich theorem remains valid for Hk(�) (replacing Hk
0 (�)) provided ∂� own

some regularity, see [32, pp. 31].
With regard to the smoothness level shown by the elements of Hk(�), a valid

tool is the

Theorem 6.5 Let k > n/2 be an integer. The elements from Hk(Rn) are then
continuous functions. To be more precise, for each f ∈ Hk(Rn), there exists
g ∈ C0(Rn) such that g = f ae.

With still a greater degree of generality, if k − � > n/2, except for changes on a
set of null measure, we have f ∈ C�(Rn) and

‖f ‖�,∞ ≤ C‖f ‖k,2,

for some constant C = C(�, k), which does not depend on f .
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A corollary may be gotten from Theorem 6.3: we may reach to the same
conclusions for Hk

0 (�), being � an open subset from Rn. Again, analogous
properties for Hk(�) may be proved, as long as ∂� own enough smoothness, cf.
[32, pp. 30], or [54, pp. 80].



Chapter 7
Function Derivatives in Normed Spaces

7.1 Introduction

Many nonlinear problems are sometimes treated as a perturbation for linear ones.
Such an approach allows a simpler track, as we deal with a more familiar structure.
As long as we know the latter with more details, we can migrate conclusions to
those tougher ones. That is the idea which lies, for example, when we approximate
a real function by its Taylor expansion restricted to the first-order term, namely by
employing the Mean Value Theorem:

f (x0 + h) = f (x0)+ f ′(x0 + θh)h, θ ∈ (0, 1)

in the approximated form

f (x0 + h) ≈ f (x0)+ f ′(x0)h.

The knowledge of the derivatives of a function lets us to replace, locally, such
a function by a linear approximation. This section brings the concept of derivative
from a more general viewpoint, so as to encompass vector functions.

Let M and N be normed spaces, and let f : D ⊂ M → N be an arbitrary
function.1 It is said that f is differentiable in Fréchet sense at the point x0 of its
domain, whenever there exists a bounded operator T = T (x0, f ) : M → N such
that

[f (x0 + h)− f (x0)− T h] = o(‖h‖), h → 0. (7.1)

1 In fact, we shall use always this notation, but in the sequel the domain of the functions may be
restricted to an open portion of M , or of the corresponding space.
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In (7.1) we employ the notation from (4.59), meaning that

lim
h→0

‖f (x0 + h)− f (x0)− T h‖N

‖h‖M

= 0.

It may be quickly verified that

(a) There exists at most a bounded operator which fulfills (7.1). Therefore, it is
consistent to mention T as the (Fréchet) derivative for f at the point x0,
which is denoted then by f ′(x0).

(b) Being f a constant, its derivative is the null operator:

f ′(x0) = 0,∀x0 ∈ M.

(c) When f is a linear operator, then f ′(x0) exists for any x0 ∈ M and, in fact,

f ′(x0) = f,∀x0 ∈ M.

(d) If f is differentiable at the point x0, it is continuous at this point.
(e) Being f differentiable at x0, for any z ∈ M it holds:

lim
λ→0

f (x0 + λz)− f (x0)

λ
= f ′(x0)z. (7.2)

Independently of being f differentiable at x0 or not, as long as the limit in (7.2)
exists, it is named the directional derivative – or Gâteaux derivative – for f at
x0 on the direction of z, denoted (∂f/∂z)(x0). It is clear that if y := αz, then
(∂f/∂y)(x0) = (∂f/∂z)(x0).

We present the proofs for (a) and for (b).
Suppose that for T1 and T2, (7.1) holds, it follows that, given ε > 0 there exists

δ = δ(ε) > 0 such that

‖T1h− T2h‖ ≤ ‖f (x0 + h)− f (x0)− T1h‖
+‖f (x0 + h)− f (x0)− T2h‖ ≤ 2ε‖h‖,

provided that ‖h‖ < δ. Divide both members of this inequality by ‖h‖ = 0, and
then it follows from the linearity of T1 and of T2 that

‖T1x − T2x‖ ≤ ε, ∀x ∈ M, ‖x‖ = 1,

and thus T1 = T2.
In order to prove the continuity of f at a point x0 where it happens to be

differentiable, we use the triangle inequality:
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‖f (x0 + h)− f (x0)‖ ≤ ‖f (x0 + h)− f (x′0)h‖
+‖f ′(x0)h‖ ≤ ε‖h‖ + ‖f ′(x0)‖ · ‖h‖ → 0.

(f ) It may be quickly verified that, if f and g are both differentiable at x0, then
αf + βg will also be so, for arbitrary real values α and β. Besides, the identity
below holds

(αf + βg)′(x0) = αf ′(x0)+ βg′(x0).

(g) When f : M → IR is differentiable at a point x0 and f ′(x0) = 0, then x0 is
said to be a stationary point, with the options of being a local minimum, a local
maximum, or a saddle point. In optimization problems, the search for points
of local minimum – or maximum – is thus strongly related to finding stationary
points, as long as the model under study deals with differentiable functions. A
remark worth to be made: it may happen that no internal point minimizes (or
maximizes) globally the considered function, as such extreme values may be
held at the domain boundary.

We state now the property known as the

Chain Rule Take M,N , and P as normed espaces where for the functions f :
M → N , g : N → P the existence of f ′(x0) and g′(f (x0)) is assured. Then the
composite function h := g ◦ f is differentiable at x0 and we have that

h′(x0) = g′(f (x0)) ◦ f ′(x0).

Proof It suffices to estimate

� := g(f (x0 + h))− g(f (x0))− [g′(f (x0)) ◦ f ′(x0)]h.

From the triangle inequality, besides adding and subtracting the same term, it
follows that

‖�‖ ≤ ‖g(f (x0 + h))− g(f (x0))− g′(f (x0))[f (x0 + h)− f (x0)]‖
+‖g′(f (x0))[f (x0 + h)− f (x0)− f ′(x0)h]‖,

and from it we are driven to ‖�‖/‖h‖ → 0, if ‖h‖ → 0, as a consequence of the
differentiability of g and of f , plus the continuity of f at x0.

Example 7.1 For functions f : D ⊂ IRn → IRp, as long as the operator f ′(x0) :
IRn → IRp is linear, it is identified to a matrix. Such a matrix turns out to be exactly
the Jacobian matrix
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[
∂fı

∂xj

(x0)

]
, 1 ≤ ı ≤ p, 1 ≤ j ≤ n.

Example 7.2 Take the nonlinear operator

F : C0(0, 1) → C1(0, 1)

f → ∫ t

0 G(S, f (S))dS

]
,

for a given G : IR2 → IR. Suppose now that G is continuous and that D2G is
continuous as well.2 It follows then, for each fixed f0 ∈ C0(0, 1) and for arbitrary
h ∈ C0(0, 1), that

[F(f0 + h)− F(f0)](t) =
∫ t

0 [G(S, f0(S)+ h(S))−G(S, f0(S))]dS

= ∫ t

0 [D2G(S, f0(S)+ θSh(S))h(S)]dS.

Therefore, since

F(f0 + h)− F(f0)−
∫ t

0
D2G(S, f0(S))h(S)dS

=
∫ t

0
[D2G(S, f0(S)+ θSh(S))−D2G(S, f0(S))]h(S)dS,

being D2G uniformly continuous for any compact, we deduce, for arbitrary values
of ε > 0, the existence of corresponding values of δ > 0 for which

∣∣∣∣
∫ t

0
[D2G(S, f0(S)+ θSh(S))−D2G(S, f0(s))]h(S)dS

∣∣∣∣

≤
∣∣∣∣
∫ t

0
εh(S)dS

∣∣∣∣ ≤ ‖h‖∞ε

∫ t

0
dS ≤ ε‖h‖∞,

provided ‖h‖∞ < δ.

As a conclusion,

[
F ′(f0)h

]
(t) =

∫ t

0
D2G(S, f0(S))h(S)dS.

2 D2G: notation for the partial derivative ∂G/∂x2, following Example 7.1.
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7.2 Mean Value Theorems

This section main task is to present an important tool for deducing inequalities,
particularly the so-called a priori estimates , that hold a fundamental status within
the search for the convergence of numerical schemes.

Consider a function f : M → IR assumed to be differentiable at every point of
the segment from x1 to x0, contained in its domain. In other words, suppose to be
defined the mapping

f ′ : [x0, x1] → L(M, IR)

x → f ′(x)
.

(With L(M,N) it is denoted the set of all linear continuous transformations from
M to N , here chosen N = IR.)

Under these conditions,

ψ : [0, 1] → IR

λ → ψ(λ) := f (x0 + λ(x1 − x0))

is differentiable on [0, 1], since ψ = f ◦ g, being

g : [0, 1] → M

λ → g(λ) := x0 + λ(x1 − x0)

differentiable, due to (b), (c) and (f ). Applying the Mean Value Theorem (from the
Differential Calculus on the line) to ψ , one concludes the existence of a point x on
the segment (x0, x1), for which

f ′(x)(x1 − x0) = f (x1)− f (x0). (7.3)

To reach (7.3) we have made use of the chain rule for ψ while, for g, the
identification of operators from L(IR,M) to vectors from M .

We have thus concluded the proof of the Mean Value Theorem for real functions
with domain in an arbitrary normed space. It is known that this result cannot
be extended to vector-valued functions, even to N = IR2. Through an intuitive
reasoning, we cannot have such an extension because, as any f is “split in its
components,” it is natural to expect generating different domain points x for each
component. Nevertheless, it is held as valid the following:

Theorem 7.1 (Mean Value Inequality) Let f : M → N be differentiable on the
segment [x0, x1] ⊂ M . It is then guaranteed to exist θ ∈ (0, 1) and x̄ ∈ M , being
x̄ := x0 + θ(x1 − x0), such that

‖f (x1)− f (x0)‖ ≤ ‖x1 − x0‖ · ‖f ′(x̄)‖,
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or, otherwise said:

‖f (x1)− f (x0)‖ ≤ ‖x1 − x0‖ sup
θ∈(0,1)

‖f ′(x0)+ θ(x1 − x0))‖. (7.4)

Proof Let �̃ ∈ N∗ be an arbitrary functional. Then g := �̃f : M → IR is
differentiable in [x0, x1] due to the chain rule, and it is verified that

g′(x) = �̃f ′(x).

The just proved version for the real line of the Mean Value Theorem implies that

‖f (x1)− f (x0)‖ = (�̃ ◦ f ′(x̄))(x1 − x0) (7.5)

for some x̄ ∈ [x0, x1], and such x̄ depends on the functional �̃. (The identity (7.5)
may be seen as a weak formulation of the Mean Value Theorem.)

Hahn-Banach Theorem implies the existence of a functional � ∈ N∗, with ‖�‖ =
1 and for which

‖f (x1)− f (x0)‖ = �(f (x1)− f (x0)).

By making use of (7.5), it follows that

‖f (x1)− f (x0)‖ ≤ ‖�‖‖f ′(x̄)(x1 − x0)‖ = ‖f ′(x̄)(x1 − x0)‖ ≤
≤ ‖f ′(x̄)‖ · ‖x1 − x0‖,

since ‖�‖ = 1, which closes the proof.
Hereby a simple consequence of the mean value inequality:

Whenever f ′(x) = 0, for every x in a connected open subset A of M , then f is constant all
over A.

7.3 Higher-Order Derivatives

When a function f : M → N turns out to be differentiable all over its domain, a
function g becomes naturally defined:

g := f ′ : M → L(M,N)

x → f ′(x)

]
.

One may wonder if such g is differentiable at x0 ∈ M . If so, it is said that f is twice
differentiable at x0, denoting then this derivative by f ′′(x0) ∈ L(M,L(M,N)).
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Let us have a look at the elements B̃ of L(M,L(M,N)). For a given x ∈ M , we
have that B̃(x) ∈ L(M,N); this way, given any y ∈ M , it follows that B̃(x)y ∈ N .
Observe that B̃(x)y is linear at x, for fixed y, as well as on y, for x fixed; in other
words, the function (x, y) #→ B̃(x)y is bilinear.

This fact allows to identify in a natural way the space L(M,L(M,N)) to the
space β(M,N) of the bounded bilinear mappings from M to N , more properly,
from M × M to N . (Let us recall, cf. Sect. 3.3.1, that a bilinear transformation
B ∈ β(M,N) is said to be bounded when

sup
‖x‖M=‖y‖M=1

‖B(x, y)‖N < ∞.

The value of this supremum defines the norm of B.)
The identification

I : L(M,L(M,N)) → β(M,N)

B̃ → B : M ×M → N

(x, y) → B(x, y) := B̃(x)y

⎤
⎦

is linear, 1-1 and onto. Since

‖B(x, y)‖ = ‖B̃(x)y‖ ≤ ‖B̃(x)‖‖y‖ ≤ ‖B̃‖‖x‖‖y‖, (7.6)

this is a continuous transformation. When N is complete, then β(M,N) and
L(M,L(M,N)) are both Banach spaces, then it may be claimed that this mapping
has a continuous inverse, as a consequence of Banach Isomorphisms theorem.

Indeed, the continuity of the inverse I−1 may be concluded directly, and,
moreover, we may deduce the equality ‖B̃‖ = ‖B‖ even when M and N lack
completeness. Given B ∈ β(M,N), being B̃(x)y = B(x, y), i.e., B̃ = I−1(B), it
holds, for fixed x:

‖B̃(x)y‖ ≤ ‖B‖‖x‖‖y‖,

or

‖B̃(x)‖ ≤ ‖B‖‖y‖,

and from this it follows

‖B̃‖ ≤ ‖B‖. (7.6’)

The inequalities (7.6) and (7.6′) imply the equality

‖B̃‖ = ‖B‖.
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It becomes more comfortable and natural to think on the second derivative of f as
an element of β(M,N).

Now let f : M → IR be a real valued function and x0 be a point of minimum for
f . It is known that f ′(x0) = 0 and that the bilinear form f ′′(x0) is positive, which
means

f ′′(x0)(x, x) > 0,∀x ∈ M,x = 0.

When M := IRp and N := IR, the bilinear transformation f ′′(x0) is identified to
the so-called Hessian matrix

[
∂2f

∂xı∂xj

(x0)

]
1≤ı,j≤p

.

For the same token, if f ′′(x) exists for every x in a particular open set A in M , we
have a mapping

f ′′ : A ⊂ M → β(M,N).

As long as the derivative of that mapping at the point x0 ∈ A exists, it is named
the derivative of order 3 for f at x0, denoted by f ′′′(x0). It is then an element of
L(M, β(M,N)) – or of L(M,L(M,N)). By the same track taken above, we shall
identify

L(M, β(M,N)) ⇐⇒ T (M,N),

where T (M,N) denotes the set of the mappings T : M ×M ×M → N , that hold
the property of being linear as regards to each coordinate separately, being called
then trilinear.

We follow thus the same pattern, so that the derivative of order k for f at x0 is
denoted by f (k)(x0). This happens to be then a k-linear mapping, that is, multilinear
of order k from M to N , or once more, from the product of k copies of M to N .

It suffices to follow the same order of ideas presented for the Mean Value
Theorem in order to prove, for f : M → IR, that

f (x0 + h) = f (x0)+ f ′(x0)h+ f ′′(x0 + θh)(h, h)/2! (7.7)

for some θ , with 0 < θ < 1, provided there exist f ′(x) and f ′′(x) for x ∈ {x0 +
λh, 0 ≤ λ ≤ 1}.

More generally, under the corresponding hypotheses, by denoting

h(k) := (h, h, . . . , h) ∈ Mk,

we shall have
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f (x0 + h) = f (x0)+ f ′(x0)h+ f ′′(x0)h
(2)/2!

+f ′′′(x0)h
(3)/3! + . . .+ f (k)(x0 + θh)h(k)/k!, (7.7’)

which is the k-th order Taylor formula.
For f : M → N , the mean value inequality may be extended under the

expression

‖f (x0 + h)− f (x0)− f ′(x0)h‖ ≤
‖f ′′(x0 + θh)(h, h)‖/2 ≤ ‖f ′′(x0 + θh)‖‖h‖2/2

(7.8)

or, in a more general estimate,

‖f (x0 + h)− f (x0)− f ′(x0)h− . . .− f (k−1)(x0)h
(k−1)/(k − 1)!‖

= ‖f (k)(x0 + θh)h(k)/k!‖ ≤ ‖f (k)(x0 + θh)‖‖h‖k/k!, (7.8’)

based on Taylor expansion of order k.

Exercise 7.1 Let f ∈ Ck
0 (�) be a real function, where � ⊂ IRn is a bounded open

set. Equivalence holds for the norms

‖f ‖k,2 :=
⎡
⎣ k∑
|�|=0

‖D�f ‖2
0

⎤
⎦

1/2

, |||f |||k :=
⎡
⎣ k∑

j=0

|||f (j)|||20
⎤
⎦

1/2

.

Here, |||T ||| denotes the norm of the multilinear mapping T .

Hint: it is enough to prove that
∑
|�|=j ‖D�f ‖2

0 and |||f (j)|||20 are equivalent
semi-norms. It occurs that, being {em}1≤m≤n the vectors from the canonical basis of
IRn, namely, em := (δ

p
m)1≤p≤n and � = (�1, �2, . . . , �n) a multi-index, with |�| = j ,

we have

D�f (x) = f (j)(x) · ξ,

where

ξ := (e1, . . . , e1, e2, . . . , e2, . . . , en, . . . , en)

/−−/ /−−/ /−−/

�1 �2 �n

. (7.9)

From this remark, from the equivalence of the norms in IRS and from being [IRn]j
generated by the vectors ξ in the form (7.9), we reach the conclusion for the proof
of the announced result.
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7.4 Iterative Methods

Almost surely the most familiar iterative method in Analysis is the one described by
the

Fixed Point Theorem (Banach) Suppose to be f : M → M a contraction on the
complete metric space M , which means: being d the distance in M , there exists a
constant ρ ∈]0, 1[for which

d(f (x1), f (x2)) ≤ ρd(x1, x2),∀x1, x2 ∈ M. (7.10)

Then, under such hypotheses, there exists a unique solution for the equation

f (x) = x. (7.11)

In other words, the function f has one and only one fixed point.
This fixed point x̄ may be reached throughout the following iteration scheme:

xj+1 := f (xj ) for j ≥ 0; x0 arbitrary , (7.12)

since the sequence (xj ) in (7.12) converges to x̄ and, moreover

d(xj , x̄) ≤ ρj+1

1− ρ
d(x1, x0). (7.13)

Therefore,

d(xj+1, x̄) ≤ Cd(xj , x̄), C := d(x0, x1), (7.14)

that is, the convergence of scheme (7.12) is linear.
The proof for this important result is simple indeed and shorter than its whole

statement: enough to verify, cf. [16], that (7.12) defines a Cauchy sequence, which
may be concluded by looking at the sum

d(xN+p, xN) ≤
N+p−1∑

ı=N

d(xı+1, xı).

Example 7.3 Consider M := [1,∞) and

f : M → M

x → x + 1/x

]
.
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For this function f , (7.11) presents no solution. Nevertheless, it occurs that, for
some ξ := x + θ(y − x), 0 < θ < 1, the relation

f (x)− f (y) = f ′(ξ)(x − y) = (1− 1/ξ2)(x − y)

is verified, and therefore

|f (x)− f (y)| < |x − y|,

which means that (7.10) holds for p = 1.
Example 7.3 illustrates the need of being the constant ρ in (7.10) strictly smaller

than 1.

Exercise 7.2 Verify that the same conclusion of the above theorem holds, as long
as f fulfills its hypotheses with the exception of (7.10), which is then replaced by

f n := f ◦ f n−1, for some n > 1.

As long as one makes use of the Mean Value Theorem – it should be said, the mean
value inequality – it can be stated the

Theorem 7.2 Take B as a Banach space and let f : B → B be a differentiable
function in B, such that

sup
x∈B

‖f ′(x)‖ < 1. (7.15)

Then f is a contraction and thus for it holds the Fixed Point Theorem.

Example 7.4 Let us turn back to Example 7.2. Being the derivative of

F : f →
∫ t

0
G(S, f (S))dS

given by

[F ′(f0)h](t) :=
∫ t

0
D2G(S, f0(S)) · h(S)dS,

for every f0 which fulfills

sup
0≤S≤t

|f0(S)| ≤ α,

it follows that
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|[F ′(f0)h](t)| ≤ t sup
0≤S≤t

|h(S)| sup
0≤S≤t−α≤σ≤α

|D2G(S, σ )|.

Thus, for t small enough,

‖F ′(f )‖ ≤ ρ < 1

holds, and this assures the existence proof for the solution of a first-order ordinary
differential equation.

To study solutions to nonlinear algebraic equations for real functions of real
variables,

F(x̄) = 0, (7.16)

one ought3 to appeal to iterative methods. Among these, one which beats a lot of its
counterparts is the Newton-Raphson method:

xj+1 := xj − F(xj )

F ′(xj )
, j ≥ 0; x0 given. (7.17)

When it converges, this method exhibits the property

|xj+1 − x̄| ≤ C|xj − x̄|2, (7.18)

for some constant C, which means that its convergence order is quadratic –
compare (7.18) with (7.14).

To make use of (7.17), it becomes a real need that F to be a differentiable function
and that F ′(xj ) = 0. Observe that, being F ′(x) = 0, (7.17) is precisely (7.12)
applied to

f (x) := x − F(x)/F ′(x),

because, for f thus defined, (7.16) is equivalent to (7.11).
Observe further that this approximation algorithm has already been employed.

Its job has been done while we were dealing with the construction of the example
quoted as Encounter 5, Sect. 1.1.

In order to apply Theorem 7.2 to f , suppose that F ∈ C2(IR), besides being
F ′(x̄) = 0. It is thus deduced:

3 Observe that the polynomial equations live among those problems in the solving queue. A
classical result from Algebra would not issue a permit to discover a finite number of steps algorithm
fit to solve all elements in this above problem collection. That is why we are lead to the iteration
ring. Remember that the eigenvalue search also enjoys this environment.
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f ′(x) = F(x)F ′′(x)/F ′(x)2,

and from that one concludes, for x → x̄, f ′(x) → 0. Therefore, for points that lie
“near enough” the root x̄, the auxiliar function f turns out to be a contraction, and
thus (7.17) defines a convergent sequence to x̄.

Our goal now is to generalize (7.17) for vector functions, duly told as

Newton-Raphson Vector Method Let be F : B → B a function on a Banach
space B. Suppose F ∈ C2(B), while looking for approximated solutions to

F(x̄) = 0.

Make then the hypothesis that F ′(x̄) is invertible, with [F ′(x̄)]−1 bounded. In this
setting, the iteration scheme

xj+1 := xj − [F ′(xj )]−1F(xj ), j ≥ 0; x0 given, (7.17’)

converges to x̄, with a quadratic convergence order.
For example, suppose that F̃ : IRp → IRp satisfies the hypotheses above,

being F̃ := (F1, . . . , Fp) and x̃ := (x1, . . . , xp)t ∈ IRp, where the transpose
of (x1, . . . , xp) is denoted by (x1, . . . , xp)t .

Newton scheme takes then the form

x̃j+1 := x̃j − (DkF�(x̃j ))
−1F̃ (x̃j ),

where

(DkF�) =
(
∂F�/∂xk

)
1≤�,k≤p

is the Jacobian matrix for F̃ .
Quite often, the modified scheme

xj+1 := xj − [F ′(x0)]−1F(xj ), j ≥ 0; x0 given, (7.17”)

replaces (7.17′). This strategy bears the property of liberating the user from the
inversion of F ′(xj ) on every iteration.

Other options are to get hold of the so-called quasi-Newton schemes, for which
the inverse of the derivative, [F ′(xj )]−1, is simulated at each iteration by a
conveniently defined operator Hk . One is then lead to

xj+1 := xj −HkF(xj ), j ≥ 0; x0 given, (7.17”’)

being the curious reader invited to browse, for example, on [28].



Chapter 8
Hilbert Bases and Approximations

8.1 Orthogonalization

This chapter works with a real Hilbert space H whose definition is based on an inner
product (·|·).

A subset S ⊂ H is said to be orthogonal if its elements are pairwise orthogonal,
which means

s1, s2 ∈ S, s1 = s2 �⇒ (s1|s2) = 0.

An orthogonal set is said to be orthonormal if all its elements have norm equal to
1. This way, a set S := {sı} is orthonormal if and only if

(sı |sj ) = δıj (δıj := Kronecker delta).

An orthonormal set is shown to be always linearly independent. Indeed, suppose
that

N∑
j=1

αj sıj = 0, (8.1)

for some finite collection of real numbers {αj }, j = 1, . . . , N and vectors
{sıj}j=1,...,N ⊂ S. It follows then, from multiplication of (8.1) by each one of the
vectors sıκ, that

ακ(sıκ |sıκ ) = ακ‖sıκ‖2 = ακ = 0.
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Conversely, given a sequence {sj }j∈IN of linearly independent vectors, it is possible
to reach, throughout this very sequence, another one {σj }j∈IN , which shows up to
be orthogonal and which generates the same subespace.1

The just stated converse property may be verified by the following process,
known as the Gram-Schmidt orthonormalization.

Define

σ1 := s1/‖s1‖, (8.2)

which can be carried over, since s1 = 0, as {sj } are all linearly independent. Let
now be

s̃2 := s2 − (s2|σ1)σ1. (8.3)

It is seen that (s̃2|σ1) = 0 and further s̃2 = 0; we then assign

σ2 := s̃2/‖s̃2‖. (8.2′)

(Observe that in (8.3) it has been defined s̃2 in such a way as to eliminate from s2 its
projection on the direction of σ1.) Recursively define, for n ≥ 2,

s̃n := sn −
n−1∑
j=1

(sn|σj )σj , (8.3′)

σn := sn/‖sn‖. (8.2′′)

The set {σj } exhibits thus the announced properties.

Exercise 8.1 (Modified Gram-Schmidt process) The procedure contained in
(8.2)–(8.3) may be replaced, with computational advantages,2 reordering the cal-
culations according to the algorithm described in the sequel.

Verify that, when exactly performed these calculations, (i.e., with whole preci-
sion, no rounding errors admitted), we are lead to the same orthonormal set, in both
processes:

1 A set A ⊂ H is said to generate the subspace [A], or that [A] is the subspace generated by A, if
any vector v ∈ [A] may be described as

v =
∑
ı∈I

αıaı ,

for some finite set of vectors aı ∈ A and of real numbers αı .
2 we mean, in such a way as to assure what is called computational stability.
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For k = 1, . . . , n, perform
p(k) := k

end
For k = 1, . . . , n, perform

Atribute to the variable J the smallest value of
j = k, . . . , n for which

‖sp(j)‖ ≥ ‖sp(ı)‖∀ı = k, . . . , n

σk := sp(J )/‖sp(J )‖
For ı = k, . . . , J − 1 perform

p(ı + 1) := p(ı)

end
For ı = k + 1, . . . , n, perform

sp(ı) := sp(J ) − (sp(J )|σk)σk

end
end

It is worth remarking that, in H , given S := {sı}ı∈IN – explicitly, a countable
non-empty set – it is possible to extract from itself a linearly independent subset S ,
such that [S] = [S].

Indeed, suppose S = {0} and define recursively the subsequence sık :

(a) ı1 := min{j ∈ IN; sj = 0};
(b) defined ı1, ı2, . . . , ın, let Vn := [{sıj ; 1 ≤ j ≤ n}], then

ın+1 := min{j ∈ IN; sıj ∈ Vn}.

(Whenever {j ∈ IN; sıj ∈ Vn} = ∅, it is enough to define

S := {sı1, sı2 , . . . , sın}.)

8.2 Fourier Series

An orthonormal set {ej } of vectors from H is called a complete system, or a
Hilbert basis, if {ej }⊥ = {0}; otherwise said, the only vector from H to be
orthogonal to all vectors3 {ej } is the null vector.

Our scope now is to prove that, given a complete system {ej }j∈IN , any vector
x ∈ H may be described in the format

3 We will herewith always suppose {ej } countable!
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x =
∞∑

j=1

xj ej (8.4)

for a convenient choice of the real numbers xj . But, beforehand, there is the need to
explain what is meant with a series like (8.4).

Given the vectors {vj } from H , the series
∑∞

j=1 vj is said to be convergent with
v0 ∈ H as its limit, so the writing

v0 =
∞∑

j=1

vj

if

v0 = lim
N→∞

N∑
j=1

vj .

Suppose then that such an expansion in the form (8.4) will be possible for the vector
x, and let xN := ∑N

j=1 xj ej . Since xN → x, due to (iii), Sect. 2.4, (xN |eJ ) →
(x|ej ), for every fixed j ∈ IN .

Now, since j < N ,

(xN |ej ) =
N∑

j=1

xj δıj = xj .

As a consequence,

xj = lim
N→∞(xN |ej ) → (x|ej ),

which means that, if an expansion on the form (8.4) exists, the real numbers xj are
determined uniquely:

xj = (x|ej ), j = 1, 2, . . . . (8.5)

It is then said that the series in the right-hand side of (8.4), with the scalar
coefficients xj defined in (8.5), is the Fourier expansion of the vector x with respect
to the basis {ej }. The scalar numbers xj are called Fourier coefficients of x for the
basis {ej }: they are, except for the sign, the absolute value of the projections of x

through the directions of ej .
The next step is to prove that the expansion (8.4) effectively holds, as long as xj

be defined by (8.5).
Let SN := [{ej ; j ≤ N}]. It is already known that SN is a closed subspace

(Exercise 3.4a). Thus, the orthogonal projection on SN exists and will be denoted
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by PN : H → SN . It is at once deduced that

PNx =
N∑

j=1

(xj |ej ). (8.6)

(In fact, as observed in part (b) of Exercise 3.4, Sect. 3.4, for a finite dimension
subspace, it is possible to prove directly the Projection Theorem, that is, to show
that (8.6) defines the orthogonal projection SN .)

As observed on Sect. 3.4, ‖PN‖ = 1, thus ‖PNx‖ ≤ ‖x‖, and from (8.6) it
follows

‖PNx‖2 =
N∑

j=1

|xj |2 ≤ ‖x‖2,

which implies the so-called Bessel inequality:

∞∑
j=1

|xj |2 ≤ ‖x‖2,∀x ∈ H. (8.7)

Observe that (8.7) holds for any orthonormal system {ej }, independently of being it
complete.

From Bessel inequality it follows that {xj } ∈ �2 and, moreover, that the series
(8.4) converges, since {xN } is a Cauchy sequence:

‖xN+P − xN‖2 =
∥∥∥∥∥∥

N+P∑
j=N+1

xj ej

∥∥∥∥∥∥
2

=
N+P∑

j=N+1

|x|2 → 0, if N →∞,∀P.

Therefore, there exists x0 ∈ H for which

xN → x0.

It remains to be shown that x0 = x. Now, we may use the same track that has led to
(8.5), so as to get

(x0|ej ) = xj , (8.5′)

from which it follows

(x − x0|ej ) = 0,∀j ∈ IN.
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We use then the fact of being {ej } a complete system in order to conclude that
x0 = x and, thus, (8.4) holds.

Given two vectors x, y ∈ H , again thanks to the continuity of the scalar product
– cf. (2.13.c) – it follows that

(x|y) =
(∑∞

j=1(x|ej )ej |∑∞
k=1(y|ek)ek

)

= limN→∞
(∑N

j=1(x|ej )ej |∑N
k=1(y|ek)ek

)
= limN→∞

∑N
j=1

∑N
k=1(x|ej )(y|ek)(ej |ek)

= limN→∞
∑N

j=1(x|ej )(y|ej ) =∑∞
j=1(x|ej )(y|ej ).

In plain words, we have

(x|y) =
∞∑

j=1

(x|ej )(y|ej ). (8.8)

From this equality, we deduce in particular the Parseval identity: by taking y := x,
it follows

‖x‖2 =
∞∑

j=1

|(x|ej )|2. (8.9)

We can think that such identity generalizes Pythagoras Theorem.
Observe the fact that (8.4) to hold for every x ∈ H implies [{ej }] to be dense in

H . Conversely, if [{ej }] is dense in H , the orthonormal system {ej } is necessarily
complete.

Indeed, being PN the orthogonal projection on SN as defined in (8.6), it is true,
for any collection of real values α1, . . . , αN ,

‖x − PNx‖2 ≤ ‖x −
N∑

j=1

αjej‖2.

Through another saying, the Fourier coefficients provide the best approximation
which is available for x in SN , with respect to, of course, the norm from H . This
implies that, as long as we could approximate the vectors from H by finite linear
combinations of the elements ej ’s, necessarily we will have xn → 0, which means
that (8.4) will hold.

An orthonormal system {ej } is said to be maximal if another set which properly
contains {ej } fails to be orthonormal.

We can state the following
Theorem Let H be a Hilbert space and {ej } be an orthonormal system. All the
following conditions about {ej }j∈IN turn out to be equivalent:
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(i) {ej } is maximal.
(ii) {ej } is complete (i.e., (x|ej ) = 0,∀j ∈ IN �⇒ x = 0).

(iii) x =∑∞
j=1(x|ej )ej ,∀x ∈ H .

(iv) [{ej }] is dense in H .
(v) (x|y) =∑∞

j=1(x|ej )(y|ej ),∀x, y ∈ H .

(vi) ‖x‖2 =∑∞
j=1(x|ej )

2,∀x ∈ H .

The proof for (ii) �⇒ (iii) �⇒ (iv)�⇒ (v) �⇒ (vi) has already been presented.
Suppose now that x0 = 0, but (x0|ej ) = 0,∀j ∈ IN . Then {ej } must be a proper

subset of {x0/‖x0‖}∪{ej }, which is orthonomal. This shows that (i)�⇒ (ii) holds.
In an analogous fashion, if {ej } is not maximal, there must exist {x0}∪{ej }which

is orthonormal, and this implies

0 =
∞∑

j=1

|(x0|ej )|2 = ‖x0‖2 = 0.

That shows thus (vi) �⇒ (i).
It may be recalled at this point that there exists another concept of basis for

infinite dimensional vector spaces: a subset β of a vector space V is said to be a
Hamel basis for V if, for arbitrary v ∈ V , there exist finite subsets {bı}ı∈I ⊂ β and
{αı}ı∈I ⊂ IR such that

v =
∑
ı∈I

αıbı .

Besides, such a representation ought to be unique.4

8.3 Separable Spaces: Approximation

It is quite natural to pose the question: which are the conditions to assure existence
in H of a Hilbert basis? Observe that, whenever it contains such a basis, the
considered space is necessarily separable. As a matter of fact, the set of all finite
linear combinations of elements from {ej }, with rational coefficients, is countable.
The converse is also true, and thus we have the

Theorem 8.1 A Hilbert space is separable if and only if it contains an at most
countable Hilbert basis.

4 The existence proof of such a basis, for any vector space, asks for help from Zorn Lemma, or,
which is equivalent, of the Axiom of Choice, see [55].
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Proof Let S be a countable dense set in H . It allows, then, to obtain from its
elements a (necessarily) countable and linearly independent subset S1, with the
property [S] = [S1].

Gram-Schmidt orthonormalization process would then lead us to an orthonormal
set S2, always countable (as well dense in {x ∈ H ; ‖x‖ = 1}), such that [S2] = [S].
We claim that completeness for S2 holds.

In fact, suppose that there exists x0 ∈ H such that (x0|sk) = 0∀sk ∈ S2. Being
[S] = [S2] dense in H , there exists a sequence {xN } for which xN → x0, where
each xN is a linear combination of elements s ∈ S2

xN :=
M∑

j=1

α
j
Ns

j
N , with M = M(N).

Once known that (xN |x0) = 0,∀N ∈ IN and (xN |x0) → ‖x0‖2, we may conclude
that x0 = 0, and thus S2 is complete.

Exercise 8.2 Every separable Hilbert space is isometrically isomorphic to the
space of sequences �2. In other words, there exists

J : �2 → H,

linear, 1-1 and onto, for which

(J x|J y)H = (x|y)�2 ,∀x, y ∈ �2.

Example 8.1 The space L2(0, 2π), being the completion of C0(0, 2π), is separable,
since by Exercise 2.15, the latter is a separable space. The set

β := {f ≡ 1} ∪ {cos nx, sin nx}n∈IN

is orthogonal in L2(0, 2π). It may be verified that it is complete, as a consequence
of the following version of

Weierstrass Approximation Theorem Given f ∈ C0(0, 2π) and being ε > 0,
there exists a trigonometric polynomial p = pε,f ,

p(x) :=
N(ε,f )∑
k=1

{ak cos kx + bk sin kx},

for which it holds

‖p − f ‖∞ < ε.
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According to this theorem, the closure of [β] in C0(0, 2π), with the norm ‖•‖∞,
contains C0

0(0, 2π). Therefore, the closure of [β] in L2(0, 2π) contains C0
0(0, 2π),

being, consequently, the same space L2(0, 2π).

Example 8.2 One may find some frameworks that would call for a special type of
approximation spaces in H : these are finite dimensional subspaces Vn ⊂ H , such
that ∪∞n=1Vn is dense in H . A possible choice for those spaces is VN := [{ej , 1 ≤
j ≤ N}].

Example 8.3 The spaces Hk(�) are also separable, provided � fulfills some partic-
ular regularity conditions. A way to prove this fact is by building the approximation
spaces of finite elements, like in [5], the particular example of H 1(0, 1) being
described in the sequel.

8.3.1 An Example: The Finite Elements

On Sect. 5.5.1 we have mentioned approximations numerically developed for the
solution of a given differential equation. The quoted result, when deduced, looked
for finite difference algorithms – which were those available to the authors [20] at
that time. This solution method sets itself on the pointwise (or strong) formulation
of the associated problem – initial value, boundary value, or mixed. Alternatively,
the finite element method, which will be quite shortly summarized in the sequel,
is global, as it makes use of the variational formulation (called weak as well).
It is quite important to emphasize that, despite being often this last formulation
considered as a mathematical gimmick, it turns out to be the most natural approach
to several problems. This can be stated because it reflects the global modelling of
particular behavior laws. The pointwise formulation – whose deduction, by passing
from space regions with defined volumes to other regions with “arbitrarily small”
volumes – incorporates an asymptotic approach , which is much more artificial.

It was Richard Courant, in [18], the first researcher to suggest the spaces of finite
elements, in an article which failed to call much attention about. This technique
was rediscovered in the 1960s, by civil engineers. It was Argyris in [4] the author
of the first publication at that time, while Clough [15] was the first to have
employed the expression finite element. Some years have passed by until part of the
mathematical community took the option to theoretically examine this tool. Many
of the properties then proved were already well-known and of course employed,
within the application and computing framework.

As the FE – finite elements – are compared with the finite differences, it is
observed that under treatment of the FE, differential operators are not approxi-
mated: we fully deal with their definitions on the FE approximation spaces. Making
it more clear, we take the operator restriction to those spaces so as to solve the same
equations proposed. Still, another saying: the spaces where the solutions are sought
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must first be approximated by spaces of FE. On these we look for the solutions
that must fulfill minimization properties, just like those associated to the orthogonal
projections, cf. Sect. 3.4.

The theorem discovered in 1891 by Karl Weierstrass (see pp. 23, 190, or cf. [71])
may be described as telling that the polynomials are able to very well mimic the set
of continuous functions: no matter how precise is our measuring tool, given, on the
interval [a, b], an arbitrary continuous function, a polynomial may be chosen that
manages to trick our tool. This happens because it will not be able to distinguish
between the found polynomial and the function we have started with. As long as
the numerical computing of a polynomial just requires algebraic operations (sum,
multiplication), easily processed with a computer, this result seems to point an
unbeatable track to the building of approximation algorithms.

It occurs, though, that the core of the approximation task lives not only in
discovering, finding it, but mainly in evaluating its numerical error, as well as the
computational cost, v.g. complexity, to be spent at implementation chores. In other
words, these are competing faces of the same problem, no sense bearing to solve
the former if information data are lacked on the latter ones. It can be shown that, in
order to get smaller errors with the approximations assured by Weierstrass’ theorem,
polynomials with higher degrees are required. Besides, this approximation generates
another type of errors, those linked to the digital finite precision arithmetic, the
rounding errors.

Given N + 1 distinct points in [a, b], {xj }, a ≤ x0 < x1 < . . . < xN ≤ b,

and a function f ∈ CN+1(a, b), being h := max{xj − xj−1, 1 ≤ j ≤ N},
the expression for the truncation error in the interpolation of f with the (unique)
polynomial pN = pN(f ) of degree N which coincides with f on these N + 1
points, called interpolation nodes, is

|f (x)− pN(x)| ≤ ChN+1, a ≤ x ≤ b, (8.10)

where C = CN(f ) is a constant associated to bounds for derivatives of f on [a, b],
cf. [12, p.145].

At first sight, estimate (8.10) suggests that trying to reduce the errors in
polynomial approximation, with interpolation as tool, is a dead end, as it requires
a larger and larger degree for these polynomials. By another look, such expression
hints an alternate recipe, just the one that has inspired the construction of the method
of finite elements, as hereby described.

Instead of working with global approximations, we deal with local ones, which
means interpolations defined separately on subintervals of the initially considered
interval. In this fashion, it is possible to have h → 0 without making N to increase
and, thus, to avoid the estimate (8.10) to be threatened by the value of CN . Another
way to justify this procedure is that the function f may lack the regularity level
required by (8.10) for high values of N . Let us recall that piecewise polynomial
functions are used in the repeated expressions for numerical integration.

We shall describe now how to approximate H 1(�) by quadratic finite elements,
for the simpler case of � = [a, b] ⊂ IR. Some of the technical difficulties that show
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up for regions � with dimension greater than 1 stay hidden throughout the present
discussion. Nevertheless it already exhibits the most relevant aspects of the method
construction. That is the aim sought when some details in the notation and even the
construction are kept, despite they being justified only for larger dimensions.

Take N > 0 as an arbitrary integer, and consider a mesh T for [a, b] composed
of N closed intervals,5 which we shall call elements and denote with e ∈ T .

The extreme points and the middle point of each element are called nodes of this
element6 and denoted e1 < e2 < e3; thus we have

⋃
{e∈T } e = �

e
⋂

e′ =
[

∅ or
{eı} = {e′j }, with {ı, j} = {1, 3}

.

Now, being

he := e3 − e1 = diam e, (8.11)

h := max
e∈T

{he}, (8.11′)

it holds

|eı − ej | ≤ h,∀e ∈ T , ı, j = 1, 2, 3.

The very definition (8.11) emphasizes itself being unnecessary the choice of a
regular mesh, i.e., formed with intervals of equal length. This equal length choice
even needs to be avoided in some problems, as to improve the approximation
quality; see for example [34].

The space Vh ⊂ H 1(�) to be constructed is composed by continuous functions
that, inside each element, coincide with a polynomial of degree ≤2. This way, each
function v ∈ Vh becomes completely characterized by its values in the nodes eı, ı ∈
1, 2, 3, e ∈ T . Being φeı ∈ Vh the form functions defined for e ∈ T , ı, j = 1, 2, 3
by

φeı (ej ) := δıj (δis Kronecker delta), (8.12)

and, by denoting

vı
e := v(eı),

5 Watch up the eventual misuse of the term “partition”, as there exist non void intersections for
neighboring subintervals.
6 (Watch out again, not all of them are mesh nodes.)
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we have

v(x) =
3∑

ı=1

vı
eφeı (x),∀v ∈ Vh, x ∈ e.

This is the so-called local representation for v, valid only at the element e ∈ T .
With regard to this local basis, v owns quite simple coefficients: they turn out to be
its very values on the three nodes eı . On the other hand, for any element e ∈ T , the
functions φeı may as well be calculated at any point at the element by employing
the same interpolation functions

θı : [−1, 1] → IR

given by (see the figure just below)

⎡
⎣ θ1(s) := s(s − 1)/2

θ2(s) := 1− s2

θ3(s) := s(s + 1)/2
,

�

�

θ3(x) θ2(x)

1

1 0

θ

1
x

θ1(x)

and the coordinate changes

ξe(x) := 2
x − e1

e3 − e1
− 1, x ∈ e,

or else

xe(ξ) := [ξ(e3 − e1)+ e3 + e1]/2,−1 ≤ ξ ≤ 1.
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In fact, we have

φeı (x) = θı (ξe(x)) , x ∈ e,∀e ∈ T .

The notation introduced in (8.12) is purposely ambiguous, since the same function
φ shows up with distinct indices according being a node seen as in one or another
element. Now, the family {φeı }ı=1,2,3;e∈T is a basis for {Vh}, with Nh = 2N + 1
elements, and thus we may attach to it indices in the form {φj }1≤j≤Nh

, which
corresponds to replace the nodes indices. This amounts to have now a global
indexation {xj }1≤j≤Nh

as well as a global representation

v(x) =
Nh∑
j=1

v(xj )φj (x). (8.13)

The functions φj exhibit the profiles described in the figure below. Observe that
the support of each of them intersects at most the support of other four. This way,
the set {φj } is not more than almost orthogonal: the inner products < φı |φj >

may be distinct from zero for at most five pairs (ı, j). When numerically solving
differential equations, this property of the finite elements assures that the linear
systems generated by the resolution algorithm correspond to sparse matrices (in
fact, band matrices), which lead to an important saving in computational cost.

�

�1 −

e1 = a e2 e3
e1 |e2 e3 |

e1 e2 e3

/ /e

e′
1 e′

2 e′
3

| |
e′

|e1 e2
e3 = b

Some functions φj from the global basis we have constructed have been “tore” as
to be considered in the local basis which corresponds to one of the elements where
they fail to vanish. The pieces of information generated at the level of element need
therefore to be “mended” in order to produce the global data. This is what is called
the assembly of the system global matrix, from the matrices associated to the local
equations.
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It is a need to list now some of the properties of the finite element technique:

– Handling of the functions φj is quite simple, since essentially performed by the
software on use. It is free of numerical approximation schemes, as those required
when dealing with the eigenfunction expansion. These may deceive the user with
their apparent advantage of generating a diagonal system, rather than just a sparse
one.

– The very coefficients of a given function with respect to the basis φj already hand
important data about this function – they happen to be exactly its values in the
nodes ej . This is indeed a strong property when the function to be approximated
is “delivered” throughout other characteristics, for example, as the solution of a
system of differential equations.

– The routine of constructing approximated solutions for a system of differential
equations encompasses a huge amount of procedures also required in many other
problems. This leads then to the efficient building of common program libraries.

– Indexation choice for e1 < e2 < e3 and xj < xj+1 implies having the associated
matrices the structure of band matrices. Of course this also happens to be the
natural indexation in one dimension. This property ceases being valid for greater
dimensions, thus making a need to search for the most convenient order for
indexation. Moreover, the correspondence between global indices and local ones
is not as simple, which asks for the introduction of the incidence matrices, cf.
[54].

Next goal is to quantify the accuracy degree – or the error level – for the
approximation generated by the functions just found. We define the so-called
interpolation function

�h : H 1(�) → Vh

w → �h(w) := wh,

characterized by fulfilling the conditions

wh(xj ) = v(xj ), j = 1, . . . , Nk,

which is equivalent, thanks to (8.13), to

wh(x) :=
Nh∑
j=1

w(xj )φj (x). (8.13′)

Recall the notation for h introduced in (8.11) and denote by

� := min
e∈T

{he},
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to claim that, cf. [68], for every function w ∈ C2(�), it holds

‖w −�hw‖1 ≤ C(w)
h3

�
,

where the constant C(w) depends on w – in fact, C(w) = C(‖w‖H 2).
Consequently, taking into account to be the subspace C2(�) dense in H 1(�), we

state the following:

Theorem (Piecewise Quadratic Approximations) Given f ∈ H 1(�), a sequence
of real numbers {hn}, with hn → 0, can be obtained, jointly with a sequence of
functions f n ∈ V hn so that they fulfill

‖fn − f ‖H 1 = O(h2
n).

As we have this theorem at hand, we can prove the result announced at the end of
last section, which is suggested as an

Exercise The space H 1(�) is separable.

A more general formulation of the interpolation properties for one-dimensional
finite elements with uniform mesh is the statement of the

Theorem (Piecewise Polynomial Approximations) For given integers r, �, and
N , with 0 < r < �− 1 and h = 1/(N + 1), consider the space S

�,r
h of the piecewise

polynomial functions of class Cr(0, 1) that coincide with a polynomial of degree
≤ �− 1 on each subinterval. The interpolation operator on these spaces

�h : H 1(0, 1) → S
�,r
h

v → Vh

fulfills

‖v − Vh‖H 1 = O(h�−1).

More complete formulations may be searched on [14], which also exposes – cf.
pp.112–114 – details from the result that follows.

It establishes the connection between interpolation and numerical solution of
differential equations with the help of the finite elements.

Let us suppose that the variational equation

a(u, v) = l(v),∀v ∈ V, (8.14)

fulfills Lax-Milgram conditions described on page 78. Being Vh a family of
subspaces of V with the parameter h → 0, on each of them we consider discretized
equation

a(uh, vh) = l(vh),∀vh ∈ Vh. (8.15)
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It is said that the spaces Vh generate a convergent discretization if, for any problem
in the form (8.14) we have, for the solutions found by (8.15),

lim
h→0

‖u− uh‖ = 0.

The connection we have mentioned is assured by

Céa Lemma Under the above described conditions for a, V, andVh, we can assure
the existence of a constant C, which does not depend on the subspace Vh, for which

‖u− uh‖ ≤ C inf
vh∈Vh

‖u− vh‖.

8.4 Compactness: Eigenvectors Bases

Consider in a Hilbert space H the operator T defined by

T : H → H

x =∑
xnen → T x :=∑

(xn/n)en,

where {en} is an orthonormal basis of H .
We claim that T is a compact operator.
(On this section, whenever the range of the indices for sequences or summands

are omitted, it must be understood that j, k, n run all over IN , or some of its duly
mentioned subsets, which ought to stay clear from the context.)

To check the above claim on compactness, we must take an arbitrary bounded
sequence {xj } ⊂ H and deduce the existence of a subsequence {xjk

} for which
{T xjk

} converges.

Step 1 (Subsequence building) Bessel inequality implies that

|xn|2 ≤ ‖x‖2
H ,∀x =

∑
xnen ∈ H, (8.16)

which assures being the real sequence {xn
j }j bounded, no matter the (fixed) n-th

component thereby considered.
Let n = 1. It is then possible to choose a subsequence {xj (1)} from {xj }, such
that

|x1
j (1)− x̄1| → 0 if j →∞, for some real x̄1.
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By the same token, being {x2
j (1)} bounded, it admits a subsequence which

converges, let us say, to x̄2 ∈ IR. Denote such a subsequence of {xj (1)} by
{xj (2)}, and take into account the following property that is held:

|x2
j (2)− x̄2| → 0 if j →∞.

The present procedure may be repeated, and by this fashion we construct

{xj (1)}, {xj (2)}, . . . , {xj (k)}, . . . ,

all subsequences of {xj } ⊂ H , each of them a subsequence of the previous one.
Besides, they hold the property:

|xk
j (k)− x̄k| → 0 if j →∞.

The convergent subsequence whose existence we have claimed is reached by the
so-called Cantor diagonal process (already employed in Sect. 5.2).
Let us denote it by {x̃ı}, being it defined by

x̃ı := xı(ı), ı ∈ IN.

Step 2 (Convergence checking) We claim that the vector

ȳ :=
∑

(x̄n/n)en ∈ H

is the limit of the sequence {T x̃ı}, that is

lim
ı→∞‖T x̃ı − ȳ‖2 = lim

ı

∑
n

|x̃n
ı − x̄n|2/n2 = 0. (8.17)

We observe at once that ȳ ∈ H because (cf. (8.16))

∑
|x̄n/n|2 ≤ K

∑
n−2,

being K an upper bound for ‖xj‖2.

Take now ε > 0 arbitrary. The convergence of the series
∑

n−2 implies the
possibility of determining N = N(ε) such that

∞∑
n=N

n−2 < ε/4K

and, as a consequence,
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∞∑
n=N

|x̃n
ı − x̄n|2/n2 < ε/2. (8.18)

It suffices now, in order to reach (8.17), to verify that

N−1∑
n=1

|x̃n
ı − x̄n|2/n2 < ε/2.

Well, since all (N − 1) components x̃n
ı converge (to x̄n, respectively) if ı → ∞,

then it is possible to find I = I (ε) for which

|x̃n
s − x̄n|2/n2 < ε/2N

[
s ≥ I

n = 1, . . . , N − 1
. (8.19)

By combining (8.18) to (8.21) we reach, for ı > I , the inequality

‖T x̃ı − ȳ‖2 < ε.

Exercise 8.3 Observe that with this same proof scheme, we can deduce the
compactness of the so-called Hilbert cube, the subset

K := {x = (xn) ∈ �2; |xn| ≤ 1/n}.

The operator T above is more than a (maybe) hard example of a compact operator:
it explains how the members of a large compact operators family act. Such is the
family that hosts the compact operators as well as the so-called self-adjoint ones,
which means: they fulfill the condition

(T x|y) = (x|Ty),∀x, y ∈ V. (8.20)

These latter operators own an important characteristic: their images T (V ) exhibit
an expansion with respect to an orthonormal basis composed by eigenvectors.

We list below the main properties associated to their spectra.

a) All eigenvalues from T are real, and they form an at most countable set {λı; ı ∈ IN}
whose only limit point is zero, λı → 0 if ı →∞.

b) To each eigenvalue λı , there corresponds a subspace Vı , of finite dimension δı , composed
by the set of the eigenvectors associated to λı (joined by the null vector, of course).

c) Eigenvectors that correspond to distinct eigenvalues are orthogonal to each other.
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d) Each eigenvalue holds the description from Courant mini-max principle:7

[
|λ1|2 = sup{(T x|T x); ‖x‖ = 1, x ∈ V }

|λı |2 = sup{(T x|T x); ‖x‖ = 1, x ∈ V ⊥
j , ı > j ≥ 1} . (8.21)

8.5 Unbounded Operators

A natural conclusion about unbounded operators, from a reader who has been
introduced to the Functional Analysis aisles only through the present text, is
that they are bound to the role of unwanted invitees. Moreover, inspired by real
function grounds, continuity at no point – cf. Theorem 2.1 from Sect. 2.11 – is
an anomaly prone to be rejected by our day-to-day function regularity searches.
Thus, these operators existence would only be justified to give a hand to creation of
counterexamples.

Being this the last section on our last chapter, it is worth to bring some words that
could be an aid to erase such a parti-pris.8 For that, the first smart step is to invite a
well-accepted operator sample.

Provisionally take the Laplacian differential operator −� : C∞
0 → C∞

0 on
the whole of IRn. This functional framework fails to be handy as regards to the
domain choice, having in mind that solutions to be searched commonly lack such
a strong smoothness. Another temptation concerns the unmentioned norm choice.
Inspired by −� : H 2(IRn) → L2(IRn), we will be dealing with the comfortable
bounded operator borough. But, in several contexts, it is worth to deal with the same
environment for the departure and arrival spaces, so it would be better to keep the
same norm for domain and range. There is a toll to be paid, though, as seen in the
development that follows.

From now on we deal with linear operators T whose domain D(T ) is a proper
subspace of the main space under use, say (N1, || · ||1), while its range is a subspace
of (N2, || · ||2). The considered operators are not necessarily bounded, that’s why we
call them unbounded. We also must consider on D(T ) the so-called graph norm:
it assigns to each v ∈ D(T ) the value of its norm as an element in the graph of T ,
under the associated product space norm. Let’s tell it in a shorter way: ||v||T :=
||v||1 + ||T v||2.

We refer to the operator T as being closed whenever its graph is a closed subset of
N1×N2, under the product norm. It may be proven the equivalence of this definition
and the one which requires being D(T ) a Banach space under the graph norm.

Now, an application:

7 Cf. [17], or Chap. 6 in [19].
8 Plenty of up-to-date information for this topic, very clearly written by C. Cheverry and N.
Raymond, is found in [13].
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Claim 1 Take N1 = N2 = L2(IRn) and the operator −� with H 2(IRn) as its
domain. This is a closed operator.

An operator is said to be closable if one of its extensions is a closed operator. As
long as such a definition is posed, one naturally deduces that not all operators are
closable. This is true (see Exercise 2.21, [13]). And what about all closed extensions
for T ? Is there one that mimics this operator in a better way than all other ones?
Indeed it can be found, being given by the closure of the graph of T , as always
under the product norm. And as a gift – or a mnemonics – it gets the same name,
the closure of the operator T . We show an example of these ideas, in part linking
back to this section start, with the

Claim 2 The closure of the minus Laplacian operator −� when taken C∞
0 (IRn)

as its domain, as a subspace of L2(IRn), is given by, again, the action of minus
Laplacian but now on H 2(IRn).



Appendix A
Recent References

Our text [25], which gave birth to the present one, came out of press more than two
decades ago. Mandatory, thus, to look at references published since then – that is
what this appendix aims to. Some of the publications quoted herein are even from
earlier years, later editions that have lately appeared endorse their importance on
our discussion area.

During this time period, the road taken by scientific computing was already paved
by parallel/distributed programming and the consequent help calling to graph theory.
It has also shown this research environment discovery by different trends, between
them a huge presence of biology, medicine, ecology, and economy. These areas
have all switched from computational humble demands to very heavy requirements.
In the problems their models deal with, nondeterministic assumptions show up as a
solid need. As a consequence, the steady presence of stochastic results have become
a strong asset. These two topics – graphs and randomness analyses – being scarce
in our list, deserve to be emphasized.

Let’s start with [53], an already classical piece, which bears plenty of information
for anyone leaning to surf on the finite-element waves. We also find [63] as worth
reminding, thanks to its precise theoretical approach to some mathematical models
for real phenomena, jointly with [3], which strolls through applications supported
by concepts it thoroughly exposes.

All books in the list which follows partially share the intentions and contents
of the present text. The first also deals with shape optimization, while the second
one discusses tensors and wavelets, carrying out an informal exposition: [10, 44,
52, 56, 64, 66]. We should also point out that the just refereed book [56] browses
through signal theory and its Fourier treatment, which it starts by discussing DFT
– the Discrete Fourier Transform – while the previously listed [52] has dealt with
quite a bunch of results on semigroups.
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204 A Recent References

Besides the traditional excuses presented by authors for choices made on lists
preparation, mine is both short and bears a disconnected appearance: let me finish
it with [43, 59] as the two ending references. While appraisal for the first goes
to its choice of the teaching methodology that makes the road from examples
to theoretical basis, the other one presents an impressive large amount of useful
examples.
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Symbols
B[v0; r], B(v0; r), 22
Im(T ), 45
L1, 54
Lp , 60
[A], 184
[w], 140
jv , 90
j•, 141
dist (A,B), 30
�A, 52
Dı , 96
Lp (0, T ;B), 109
V ′ , V ∗ , 73
δ-function, 4
1I, 133
σ -algebra, 92
bra, 92
cket, 92
S(R), 13
Ck[a, b], C∞[a, b], C∞

0 (R), 12
L∞, 62
o(h), 170
(Ff ) (t), 46
δt0 (f ), 22
L[a, b], 51
L(X, Y ), 42
L(X), 42
R[a, b], 51

(p)+ i�(p), 134
�∞0 , �∞, c, c0, �

2, 10
D(�), 103
D′(�), 105
L[f ], 134

Hk
0 (�),Hk(�), 97

L1
loc(�), 105

A
Absolutely continuous measure, 92
Ae, 58
Ae convergence, 58
Ae defined function, 58
Ae limit, 58
Algebraic dual, 73
Algebraic operations, 192
Algorithm, 184
Almost everywhere, 58
Almost null sequence, 11
Alternate harmonic series, 2
Analytic function, 128, 150
Approximation spaces, 191
A-priori estimates, 173
Argyris, J.H., 191
Asymptotic approach, 191
Axiom of Choice, 189

B
Baire category theorem, 152
Banach closed graph theorem, 150
Banach fixed point theorem, 178
Banach isomorphism theorem, 151
Banach space, 27
Banach-Steinhaus theorem, 139, 153, 160
Band matrix, 195
Behavior law, 191
Bessel inequality, 187
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Best approximation, 188
Bidual space, 90
Bilinear form, 79
Binomial theorem, 96
Bolzano-Weierstrass theorem, 50
Boundary conditions, 39
Boundary value problem, 191
Bounded operator, 42
Buniakowski inequality, 16

C
Canonical identification, 91, 141
Cantor diagonal process, 163, 199
Cantor set, 58
Cauchy criterium, 25
Cauchy inequality , 16
Cauchy problem, 156
Cauchy sequence, 25
CBS inequality, 16
Céa lemma, 198
Chain rule, 171
Cheverry, C., 201
Closable operator, 202
Closed ball, 22
Closed graph theorem, 82, 149, 150
Closed operator, 201
Closed set, 22
Closed unity ball, 164
Clough, R.W., 191
Coercivity, 79
Compact on IRn, 97
Compact operator, 166, 198
Compact set, 161
Compactness, 161
Comparable norms, 116
Compatible algorithm, 158
Complete metric space, 34
Complete system, 185
Completion of a normed space, 31
Complex vector space, 46
Computational complexity, 192
Computational cost, 192
Computational stability, 184
Conditional stability, 160
Conditional consistence, 160
Conditional convergence, 160
Conditionally convergent series, 3
Conjugated exponents, 60
Conjugated variational principles, 142
Connected set, 103
Consistent algorithm, 158
Continuity of the inverse, 45
Continuous extension, 24

Continuous extension principle, 36, 157
Continuous function, 21
Continuous immersion, 114
Continuous linear functional, 73
Contraction, 85, 178
Convergence, 17, 156
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Convergence in D′(�), 108
Convergence in S, 132
Convergence on D(�), 103
Convergent algorithm, 159
Convergent discretization, 198
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Countable set, 68
Courant mini-max principle, 201
Courant, R., 156, 191
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D
DE solution approximations, 191
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Derivative in the strong sense, 98
Derivative in the weak sense, 101
Derivative of a distribution, 107
Derivatives in normed space, 169
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Diagonal process, 163, 199
Differential equation solution, 191
Differentiation under integral sign, 69
Dirac delta, 106, 113
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Dirac, P., 4, 92
Directional derivative, 170
Direct sum, 82
Dirichlet problem, 143
Discontinuity set, 68
Discretization parameter, 157
Discretized equation, 197
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Distance between two sets, 30
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Distribution, 95, 105
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Distribution pointwise convergence, 108
Distribution shift, 106
Distribution support, 132
Distributions, 4
Divergence, 144
Dominated convergence theorem, 64, 70
Dominated sequence, 64
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Dual formula, 141
Dual variational formula, 119, 141
Duality, 119
Duality, definition by, 131

E
Eberlein-Shmulyan Theorem, 166
Eigenfunction, 196
Eigenvalue, 200
Eigenvector, 93, 200
Eigenvectors basis, 200
Eigenvectors expansion, 198
Energy conservation, 43
Entire function, 133, 137
Equicontinuous set, 162
Equivalence class, 28
Equivalence relation, 28
Equivalent norms, 47
Essential supremum, 63
Euclidean space, 17
Euclidean spaces geometry, 17
Existence of irrational, 7
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F
Fatou lemma, 67
Finite dimension vector space, 48
Finite difference algorithms, 191
Finite differences, 156
Finite differences operator, 70
Finite dimensional vector space, 41
Finite element, 191
Finite precision arithmetic, 192
First Green’s formula, 144
Fixed point, 129, 178
Fixed Point theorem, 178
Form function, 193
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Fourier expansion, 186
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Fourier transform, 46, 125, 152
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Fréchet-Kolmogorov theorem, 164
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Fubini theorem, 67
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Function support, 127
Function truncating, 65
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G
Gâteaux derivative, 170
Gauss divergence theorem, 144
Gauss theorem, 144
Gaussian function, 128
Gel’fand, I.M., 106
Generalized function, 4, 55, 106
Generalized Schwarz formula, 123
Generalized Schwarz inequality, 117
Generalized solution, 157
Generated subspace, 184
Geometrical series, 7
Global approximation, 192
Global indexation, 195
Global matrix assembly, 195
Global method, 191
Global modelling, 191
Global representation, 195
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Gram-Schmidt method, 184
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Green function, 147
Green identities, 144
Green’s formulae, 144
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Hahn-Banach extension theorem, 140
Hahn-Banach theorem, 139, 174
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Improper integral, 52
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Infinitely differentiable function, 12
Initial conditions, 39
Initial value problem (IVP), 156, 191
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Inner product, 15
Instability, 3
Integral defined function differentiation, 67
Integral differentiation, 70
Interpolation function, 196
Interpolation node, 192
Interpolation theory, 125
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Iteration scheme, 178
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Laplace integral, 134
Laplace transform, 125, 134
Laplacian operator, 202
Lax equivalence theorem, 159
Lax–Milgram lemma, 79
Lax–Milgram representation, 78
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Lax, P.D., 156
Lebesgue integrable function, 51
Lebesgue integral, 34, 54
Lebesgue measure, 91
Leibnitz formula, 96
Lewy, H., 156
Limit uniqueness, 17
Linear convergence, 178
Linear form, 73
Linear operator, 38
Linear problem perturbation, 169
Linear transformation, 38
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Local approximation, 192
Local basis, 194
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Local operator, 70
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Maximal orthonormal system, 188
Maximal subspace, 73
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Mean value inequality, 173
Mean value property, 145, 146
Mean value theorem, 164, 173
Measurable function, 62, 66, 110
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Millman theorem, 91
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Minkowski inequality, 60
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Modified Gram-Schmidt method, 184
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Monotone convergence theorem, 65
Multi-index, 95
Multilinear function, 176
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Negative integer Sobolev spaces, 122
Newton-Raphson method, 180
Node, 193
Norm, 13
Norm convergence, 18
Normed space dual, 73
Nowhere differentiable function, 4
Null measure, 57
Null vector, 10
Numerical Analysis, 156
Numerical approximation, 157
Numerical error, 192
Numerical scheme, 156
Numerical scheme, stability, 159



Index 213

O
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Strong convergence, 18, 152
Strong formulation, 191
Strongly bounded sequence, 156
Strongly compact set, 161
Sub-aditivity, 32
Subsequence, 40
Sum of polynomials, 11
Summability abscissa, 134
Supp, 127
Symmetrical to a vector, 10
System energy, 43
System state, 39

T
Taylor expansion, 169
Tempered distribution, 125, 131
Test-function, 103
topological dual, 73
Topological dual for S(IR), 131
Topological property, 13
Topology of S, 132
Torus, 3
Trace theorem, 111
Transfinite argument, 140
Translation invariant measure, 91
Tri-linear function, 176
Triangle inequality, 13
Trigonometric polynomials, 190
Truncation, 100
Truncation operator, 28, 56

U
Unbounded operator, 201
Uniform boundedness principle, 139

Uniform boundedness theorem, 153
Uniform convergence norm, 18
Uniformly continuous function, 35
Uniformly bounded operators, 159
Uniformly Cauchy sequence, 163
Uniformly Hölder-continuous function, 123
Upgraded projection theorem, 84
Upper integral, 53
Upper sum, 52

V
Variational formulation, 153, 191
Variational inequality, 85
Vector, 9, 10
Vector addition, 9
Vector by scalar product, 9
Vector expansion, 186
Vector space dimension, 48

W
Weak convergence, 111, 152
Weak formulation, 191
Weak limit uniqueness, 153
Weak∗ convergence, 164
Weak∗ limit, 165
Weakly bounded sequence, 153
Weakly Cauchy sequence, 156
Weakly compact set, 165
Weakly∗ compact set, 165
Weierstrass approximation theorem, 23, 190
Weierstrass function, 5
Weierstrass, K., 4
Well-posed problem, 157
Wirtinger inequality, 48

Z
Zero vector, 9
Zorn lemma, 140, 189
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