
Machine Learning: Foundations, Methodologies,
and Applications

Yang Yu
Hong Qian
Yi-Qi Hu

Derivative-Free
Optimization
Theoretical Foundations, Algorithms,
and Applications

Yu · Qian · Hu
Derivative-Free Optim

ization

Machine Learning: Foundations, Methodologies,
and Applications

Series Editors

Kay Chen Tan, Department of Computing, Hong Kong Polytechnic University,
Hong Kong, Hong Kong

Dacheng Tao, University of Technology, Sydney, Australia

Editorial Board

Leszek Rutkowski, Czestochowa University of Technology, Częstochowa, Poland
Junmo Kim, KAIST, Daejeon, Democratic People’s Republic of Korea

Kai Qin, Swinburne University of Technology, Melbourne, VIC, Australia

Piotr Duda, Czestochowa University of Technology, Częstochowa, Poland

Books published in this series focus on the theory and computational foundations,
advanced methodologies and practical applications of machine learning, ideally
combining mathematically rigorous treatments of a contemporary topics in machine
learning with specific illustrations in relevant algorithm designs and demonstrations
in real-world applications. The intended readership includes research students and
researchers in computer science, computer engineering, electrical engineering, data
science, and related areas seeking a convenient medium to track the progresses made
in the foundations, methodologies, and applications of machine learning.

Topics considered include all areas of machine learning, including but not limited
to:

• Decision tree
• Artificial neural networks
• Kernel learning
• Bayesian learning
• Ensemble methods
• Dimension reduction and metric learning
• Reinforcement learning
• Meta learning and learning to learn
• Imitation learning
• Computational learning theory
• Probabilistic graphical models
• Transfer learning
• Multi-view and multi-task learning
• Agents and Multi-Agent Systems
• Graph neural networks
• Generative adversarial networks
• Federated learning
• Large Language Models
• Multimodal Learning
• Transformer/Diffusion Models
• Generative Artificial Intelligence
• Bio-inspired Learning Models
• Embodied AI
• Explainable AI and Ethics

This series includes monographs, introductory and advanced textbooks, and state-
of-the-art collections. Furthermore, it supports Open Access publication mode.

Yang Yu · Hong Qian · Yi-Qi Hu

Derivative-Free Optimization
Theoretical Foundations, Algorithms,
and Applications

Yang Yu
Nanjing University
Nanjing, China

Yi-Qi Hu
Huawei Technologies Co., Ltd.
Nanjing, China

Hong Qian
East China Normal University
Shanghai, China

ISSN 2730-9908 ISSN 2730-9916 (electronic)
Machine Learning: Foundations, Methodologies, and Applications
ISBN 978-981-96-5928-9 ISBN 978-981-96-5929-6 (eBook)
https://doi.org/10.1007/978-981-96-5929-6

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Singapore Pte Ltd. 2025

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

If disposing of this product, please recycle the paper.

https://doi.org/10.1007/978-981-96-5929-6

Preface

The pursuit of solving optimization problems has long been a cornerstone in the
realms of computer science and artificial intelligence. While specialized algorithms
tailored to specific problems have been developed, there has also been a signifi-
cant emergence of general-purpose optimization methods. These methods, including
random search, simulated annealing, and evolutionary algorithms, are often crafted
based on heuristic principles. Consequently, their properties are predominantly
explored through empirical studies, with a comprehensive theoretical understanding
still largely out of reach.

Yang Yu, the first author of this monograph, previously co-authored a book entitled
Evolutionary Learning: Advances in Theories and Algorithms with Prof. Zhi-Hua
Zhou and Chao Qian, which was published by Springer in 2019. In that work, the
central theoretical focus was on running time analysis, which evaluates the time and
sample complexity required to find an optimal solution. Subsequently, Yang devel-
oped an interest in exploring alternative theoretical foundations for general-purpose
optimization methods, complementing the well-established theories of machine
learning. Given that machine learning is underpinned by a solid statistical frame-
work, it naturally raises the question: can we establish a similarly strong theoret-
ical foundation for optimization methods from a statistical perspective? Specifically,
such a theory could elucidate how these optimization methods approximate optimal
solutions.

Collaborating with the second author, Hong Qian, who was Yang’s Ph.D. student
in 2013, a preliminary framework was developed. Initially, this framework was
designed to meet certain theoretical desiderata. Surprisingly, the resulting algorithm
also demonstrated competitive practical performance against some state-of-the-art
methods. The third author, Yi-Qi Hu, who became Yang’s Ph.D. student in 2015,
joined the effort to further refine and extend the framework and enhance the algo-
rithm. This monograph provides a comprehensive overview of the authors’ research,
encompassing the development of the framework, algorithm design, and practical
applications.

The monograph is structured into four parts. Part I briefly introduces derivative-
free optimization within the context of machine learning. Part II presents the

v

vi Preface

classification-based optimization framework along with its basic algorithm. To tackle
practical challenges such as sequential execution, high-dimensionality, noisy evalu-
ations, and large-scale parallel execution, Part III introduces several variants of the
basic algorithm. This part also includes an introduction to ZOOpt, a general opti-
mization toolbox built on classification-based optimization algorithms. Part IV show-
cases various applications of classification-based optimization in the field of auto-
matic machine learning, including hyper-parameter selection, algorithm selection,
and neural architecture search.

The authors extend their heartfelt gratitude to their families, friends, and
collaborators for their unwavering support and contributions.

Nanjing, China
Shanghai, China
Nanjing, China
December 2024

Yang Yu
Hong Qian
Yi-Qi Hu

Competing Interests The authors have no competing interests to declare that are
relevant to the content of this manuscript.

vii

Contents

Part I Introduction

1 Introduction . 3
1.1 Machine Learning . 4
1.2 Derivative-Free Optimization (DFO) . 5

1.2.1 Structure of DFO Algorithms . 5
1.2.2 Development of DFO Algorithms 6

1.3 Automatic Machine Learning . 7
1.4 Organization of the Book . 8
References . 8

2 Preliminaries . 11
2.1 Evolutionary Algorithms . 11

2.1.1 (μ + λ)-EA . 12
2.1.2 (μ/μ, λ)-ES . 12

2.2 Estimation of Distribution Algorithms . 13
2.3 Bayesian Optimization . 15
2.4 Running Time Analysis . 16
2.5 No Free Lunch in Optimization . 17
References . 18

Part II Classification-Based Derivative-Free Optimization

3 Framework . 23
3.1 Sampling and Learning Framework . 24
3.2 Casting Previous DFO Methods Into the SAL Framework 25

3.2.1 Estimation of Distribution Algorithms 25
3.2.2 Bayesian Optimization . 26
3.2.3 Evolutionary Algorithms . 26
3.2.4 Other DFO Methods . 27

ix

x Contents

3.3 Sampling and Classification Framework . 28
3.4 Summary . 30
References . 31

4 Theoretical Foundation . 33
4.1 Problem Setting and Notations . 34
4.2 (ε, δ)-Query Complexity . 35
4.3 Performance Bound for SAL Framework . 36
4.4 Performance Bound for SAC Framework . 38
4.5 Error-Target Dependence and Shrinking Rate 40
4.6 Functions with Local Lipschitz Continuity 43
4.7 Functions with Bounded Packing and Covering Numbers 46
4.8 Summary . 48
References . 48

5 Basic Algorithm . 49
5.1 The Racos Optimization Algorithm . 50
5.2 Empirical Study on Testing Functions . 52
5.3 Empirical Study on Clustering Task . 53
5.4 Empirical Study on Classification with Ramp Loss 55
5.5 Summary . 56
References . 57

Part III Practical Extensions

6 Optimization in Sequential Mode . 61
6.1 Sequential Classification Model Based Algorithm 62
6.2 Theoretical Analysis . 63
6.3 Empirical Study . 65

6.3.1 Optimization on Synthetic Functions 65
6.3.2 Direct Policy Search on Reinforcement Learning

Tasks . 68
6.4 Summary . 71
References . 71

7 Optimization in High-Dimensional Search Space 73
7.1 Functions with Low Effective Dimension . 74

7.1.1 Random Embedding for Low Effective Dimension
Problems . 74

7.2 Optimal ε-Effective Dimension . 75
7.2.1 Random Embedding for Problems with Low

Optimal ε-Effective Dimension . 76
7.2.2 Optimization with Random Embedding 76

7.3 Sequential Random Embeddings . 77
7.3.1 Less Greedy SRE . 79

Contents xi

7.4 Empirical Study . 80
7.4.1 Experimental Setup . 80
7.4.2 Synthetic Functions . 80
7.4.3 Classification with Ramp Loss . 83

7.5 Summary . 85
References . 85

8 Optimization Under Noise . 87
8.1 Value Suppression . 88
8.2 The SSRacos Algorithm . 89
8.3 Empirical Study . 91

8.3.1 Synthetic Functions . 91
8.3.2 Controlling Tasks in OpenAI Gym 94
8.3.3 Hyper-Parameter Analysis . 97

8.4 Summary . 97
References . 99

9 Optimization with Parallel Computing . 101
9.1 The Asynchronous SRacos (ASRacos) Algorithm 102
9.2 Theoretical Analysis . 104
9.3 Empirical Study . 105

9.3.1 On Synthetic Functions . 106
9.3.2 On Controlling Tasks in OpenAI Gym 107

9.4 Summary . 112
References . 113

10 Toolbox: ZOOpt . 115
10.1 Methods in ZOOpt . 115
10.2 Usage . 117
10.3 Experiments . 121

10.3.1 Results on Optimizing Synthetic Functions 122
10.3.2 Results on Classification Tasks with Ramploss 124
10.3.3 Results on Direct Policy Search for OpenAI

Controlling Tasks . 125
10.4 Summary . 128
References . 128

Part IV Application to Automatic Machine Learning

11 Experienced Optimization: Acceleration in Hyper-Parameter
Optimization . 133
11.1 Experienced Optimization for Hyper-Parameter

Optimization . 134
11.2 The ExpSRacos and AdaSRacos Algorithms 134

11.2.1 ExpSRacos . 135
11.2.2 AdaSRacos . 137

xii Contents

11.3 Empirical Study . 140
11.3.1 Synthetic Tasks . 140
11.3.2 Hyper-Parameter Optimization Tasks 142

11.4 Summary . 143
References . 145

12 Multi-fidelity Optimization: Acceleration in Hyper-Parameter
Evaluation . 147
12.1 Multi-fidelity Optimization for Hyper-Parameter

Optimization . 148
12.2 The TseSRacos Algorithm . 149

12.2.1 Multi-fidelity Optimization Framework 149
12.2.2 Transfer Series Expansion (TSE) . 150

12.3 Empirical Study . 152
12.3.1 Experimental Setup . 152
12.3.2 Empirical Analysis . 154

12.4 Summary . 157
References . 157

13 Stepwise Optimization: Cascaded Algorithm Selection 159
13.1 Stepwise Optimization with Algorithm Selection 160
13.2 The ER-UCB Algorithm . 161

13.2.1 Extreme Region Target and Extreme Region Regret 162
13.2.2 ER-UCB on Stationary Distributions 163
13.2.3 ER-UCB on Non-stationary Distributions 164
13.2.4 Theoretical Results . 165

13.3 Empirical Study . 166
13.3.1 Synthetic Tasks . 166
13.3.2 AutoML Tasks . 169

13.4 Summary . 174
References . 174

14 Calculation Operation Optimization: Competition Neural
Architecture Search . 177
14.1 Calculation Operation Optimization with Neural

Architecture Search . 178
14.1.1 NAS Task Formulation . 179
14.1.2 Topological Structure Enumeration 179
14.1.3 Calculation Operation Optimization 180

14.2 The CNAS Algorithm . 182
14.2.1 Block-Based Search . 183
14.2.2 Experience Reuse . 183
14.2.3 Experience-Reused CNAS . 185

Contents xiii

14.3 Empirical Study . 187
14.3.1 Image Classification Tasks . 187
14.3.2 Image Denoising Tasks . 190

14.4 Summary . 191
References . 192

Notations

R Real number
N Integer
(·)+ Positive, (·) can be R or N
(·)0+ Non-negative, (·) can be R or N
x Scalar
x Vector
(·, ·, . . . , ·) Row vector
(·; ·; . . . ; ·) Column vector
0, 1 All-0s and all-1s row vectors
{0, 1}n Boolean vector space
X Matrix
(·)� Transpose of a vector/matrix
X Set
{·, ·, · · · , ·} Set by enumeration
[n] Set {1, 2, . . . , n}
| · | Cardinality of a set
2X Power set of X , which consists of all subsets of X
X − Y Complement of Y in X , which consists of elements in X

but not in Y
Pr(·), Pr(·|·) Probability and conditional probability
D Probability distribution
f Function
E·∼D[f (·)], E·∼D[f (·)|·] Expectation and conditional expectation of f (·) under

distribution D, simplified as E[f (·)] and E[f (·)|·] when
the meaning is clear

I(·) Indicator function which takes 1 if · is true, and 0
otherwise

�·�, �·� Floor and ceiling functions which take the greatest/least
integer less/greater than or equal to a real number

xv

Part I
Introduction

Chapter 1
Introduction

Abstract This chapter introduces the fundamental concepts of optimization, par-
ticularly in the context of machine learning, and explores the role of derivative-free
optimization (DFO) in solving complex computational tasks. Optimization is essen-
tial for finding optimal solutions within a solution space, and machine learning often
involves formulating such problems to learn generalizable models from data. The
chapter highlights the importance of DFO, which does not require gradient informa-
tion and is suitable for problems with discontinuous or non-differentiable objective
functions. It outlines the structure of DFO algorithms, their development, and their
application in automatic machine learning (AutoML), where they help automate the
selection of algorithms and hyper-parameters. The chapter concludes by presenting
the organization of the book, which aims to build theoretical foundations for DFO
and design practical algorithms for machine learning tasks.

Optimization is pervasive and fundamental in complex computational tasks. It is also
an area where computers can be immensely useful to us. An optimization problem
involves searching for an optimal solution within a solution space. The solution
space often depends on the specific task and is most commonly represented as a
vector space. X . The quality of a solution is evaluated using an objective function. f .
A general optimization problem can be written as

.x∗ = argmin
x∈X

f (x), (1.1)

where .x∗ is the optimal solution.
In this book, we are particularly interested in optimization problems that arise

in machine learning tasks. This is not only because machine learning involves a
wide variety of optimization problems but also because the optimization methods
developed in this book draw inspiration from machine learning concepts.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025
Y. Yu et al., Derivative-Free Optimization, Machine Learning: Foundations,
Methodologies, and Applications, https://doi.org/10.1007/978-981-96-5929-6_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-5929-6_1&domain=pdf
https://doi.org/10.1007/978-981-96-5929-6_1
https://doi.org/10.1007/978-981-96-5929-6_1
https://doi.org/10.1007/978-981-96-5929-6_1
https://doi.org/10.1007/978-981-96-5929-6_1
https://doi.org/10.1007/978-981-96-5929-6_1
https://doi.org/10.1007/978-981-96-5929-6_1
https://doi.org/10.1007/978-981-96-5929-6_1
https://doi.org/10.1007/978-981-96-5929-6_1
https://doi.org/10.1007/978-981-96-5929-6_1
https://doi.org/10.1007/978-981-96-5929-6_1
https://doi.org/10.1007/978-981-96-5929-6_1

4 1 Introduction

1.1 Machine Learning

Machine learning [12] is a subfield of artificial intelligence that studies how to learn
generalizable models from data. In supervised learning, a classical machine learning
task, a training dataset typically contains examples of input-output pairs, where an
instance of the input is called a feature vector and the corresponding output is called
a label. A central goal of supervised learning is to learn a model based on the training
dataset. A model is a function that maps from the input space to the output space,
which can take the form of a decision tree, linear model, artificial neural network,
etc. The model is expected to not only be consistent with the training dataset but,
more importantly, to be generalizable, meaning it can accurately predict labels for
instances outside of the training dataset. The model learning process can be viewed
as a search process in a model space, also known as a hypothesis space, to find the
model that best fits the training dataset. To ensure generalizability, constraints are
commonly incorporated into the search process. Therefore, many supervised learning
tasks can be formulated as

.h∗ = argmin
h∈H

∑

(x,y)∈D
�(h(x), y) + G(h), (1.2)

where . h is a model, .H is the hypothesis space, .D is the training dataset containing
.(x, y) example pairs,. � is a loss function measuring the difference between the model
output .h(x) and the label y, and .G(h) is a penalty on the model complexity.

Other branches of machine learning can be formulated in a similar manner. For
unsupervised clustering, a general formulation is

.h∗ = argmin
h∈H

�(D1, D2, . . . , Dk |Di = {h(x) = i}) + G(h), (1.3)

where . � is the evaluation criterion on the clusters partitioned by the model. For
reinforcement learning, a general formulation is

.π∗ = argmax
π∈�

∑

s∈S
ρπ(s)

∑

a∈A

π(a|s)R(s, a) + G(π), (1.4)

where. π is the policy model,.� is the hypothesis space,. ρ is the stationary distribution
induced by the policy, and . R is the reward function.

The key components of machine learning can be observed from the above formu-
lations, including the definition of the model space, the choice of loss function and
complexity penalty, and the optimization procedure. In other words, the represen-
tation, evaluation, and optimization, as summarized by Domingos [4]. The choice
of representation and evaluation define the optimization problem. Meanwhile, the
available optimization methods constrain the design choices for representation and
evaluation. We can see that a rich toolbox of optimization methods enables a wide

1.2 Derivative-Free Optimization (DFO) 5

range of design choices, leading to machine learning techniques suitable for various
situations and requirements.

Although a large body of research focuses on designing representations and
evaluations to simplify the optimization task, this book aims to develop general-
purpose optimization tools that can support diverse representations and evaluations,
including discontinuous functions with many local optima. To this end, we consider
derivative-free optimization.

1.2 Derivative-Free Optimization (DFO)

1.2.1 Structure of DFO Algorithms

To handle a broad range of optimization tasks, we do not assume the objective func-
tion . f in Eq. (1.1) to be linear, convex, differentiable, or even explicitly known.
Instead, we only assume access to the objective function value . f (x) for any given
solution . x , without requiring other information such as the gradient. This require-
ment characterizes derivative-free optimization (DFO), also known as zeroth-order
optimization or black-box optimization.

The simplest DFO method is perhaps random search, which generates solutions
uniformly at random and evaluates their objective values. The solution with the best
objective value is selected as the final output. Random search has been widely used
for hyper-parameter tuning in machine learning algorithms.

Despite its simplicity, random search shares a common framework with other
derivative-free optimization methods, as shown in Fig. 1.1. The framework consists
of three main components. The sampling component draws solutions from a dis-
tribution. In random search, the distribution .T is simply the uniform distribution
over the solution space, and solutions are sampled one at a time. The sampled solu-
tions are evaluated to obtain their objective values, and the best solution found so
far is recorded as the algorithm’s output. Based on the evaluated solutions, a DFO
algorithm updates its sampling distribution. T to guide the search towards better solu-
tions in the next iteration. Random search does not update the sampling distribution,
whereas many DFO algorithms differ in how they represent and adapt the sampling
distribution.

One may wonder why this DFO framework can solve optimization problems.
Let’s reconsider random search. Despite its simplicity, random search will converge
to the global optimum as it explores the entire solution space. In other words, random
search is complete in its exploration. However, random search is inefficient and can
take a very long time to find the optimal solution. Suppose the desired solutions, i.e.,
solutions that are sufficiently good, reside in a region .X ∗. Each time we randomly
sample a solution from . X , the probability of finding a desired solution is the pro-
portion of .X ∗ in the solution space, i.e., .|X ∗|/|X |. Therefore, the expected number
of samples needed to find a desired solution is .|X |/|X ∗|. Note that the target region

6 1 Introduction

Fig. 1.1 A framework for derivative-free optimization algorithms

is usually very small, requiring many samples. For example, finding.(1, 1, . . . , 1) in
.{0, 1}n by random search takes .2n samples on average.

The inefficiency of random search stems from its blind sampling, as it does not
learn from past samples. In other words, random search performs pure exploration. To
improve efficiency, we can reduce exploration by adjusting the sampling distribution
. T . As long as .T assigns non-zero probability to any solution, the DFO method will
ultimately converge to the global optimum. The question then becomes how to design
a good sampling distribution. T . A well-designed sampling distribution is believed to
accelerate convergence. However, the acceleration depends on the specific problem
due to the No Free Lunch Theorem.

1.2.2 Development of DFO Algorithms

Various DFO algorithms have been proposed based on different ideas and inspira-
tions. Early representative algorithms include simulated annealing (SA) [8], beam
search [13], and evolutionary algorithms (EAs) [1]. SA generates new solutions by
randomly perturbing the current solution and accepts them probabilistically based on
the objective value difference and a decreasing temperature parameter. Beam search
maintains a set of candidate solutions and iteratively expands and selects them based
on their objective values. EAs are population-based algorithms inspired by natural
evolution that generate new solutions using mutation and crossover operators and
select the fittest ones to form the next population. These early DFO algorithms often
employ heuristic rules to perturb solutions and generate new ones.

Later, estimation of distribution algorithms (EDAs) [9] were proposed, which
explicitly model the distribution of promising solutions and sample new ones from the
learned model. Bayesian optimization [15] builds a surrogate model to approximate
the objective function and selects the next solution to evaluate by maximizing an
acquisition function that balances exploration and exploitation.

DFO has also been an important research topic in the classical optimization com-
munity [3]. Notable methods include trust region methods [2], which approximate
the objective function using a local model within a trust region, and pattern search
methods [17], which perform exploratory searches along coordinate directions.

1.3 Automatic Machine Learning 7

The variety of DFO algorithms stems from their different philosophies in bal-
ancing exploration and exploitation and their assumptions about the characteristics
of the objective function. Understanding the properties and applicable scenarios of
different algorithms is crucial for their effective use.

1.3 Automatic Machine Learning

The abundance of machine learning algorithms creates both opportunities and chal-
lenges. Powerful tools are available to tackle diverse learning tasks, but there is
rarely a single algorithm that performs optimally on all tasks. The performance of a
machine learning algorithm depends on factors such as the data, model architecture,
and hyper-parameter settings. Choosing and configuring a suitable algorithm for a
specific task often requires considerable expertise and experimentation.

Automatic machine learning (AutoML) aims to automate this process and enable
non-experts to benefit from machine learning. A typical goal of AutoML is to find,
for a given task, the combination of algorithm components and hyper-parameters
that maximizes a predefined performance metric. This essentially treats AutoML as
an optimization problem, with the solution space being the combinatorial space of
algorithms and hyper-parameters, and the objective function being the performance
metric.

However, evaluating the objective function in AutoML is often expensive, as
it requires training and validating machine learning models. Moreover, the solu-
tion space is typically discrete, high-dimensional, and contains complex conditional
dependencies. These properties make AutoML a challenging optimization problem
that demands sample-efficient and flexible optimization algorithms.

DFO algorithms have found successful applications in AutoML. Bayesian opti-
mization has been a popular choice due to its sample efficiency and ability to handle
black-box objective functions [5, 16]. Evolutionary algorithms have also demon-
strated competitive performance, especially for high-dimensional and conditional
spaces [11, 14]. Recent studies showed promising results of combining Bayesian
optimization with meta-learning to warm-start and guide the optimization on a new
task [6].

Besides searching for performance-optimized models, another important aspect
of AutoML is to automate the composition and configuration of machine learning
pipelines, which include data preprocessing, feature engineering, model selection,
and ensemble construction. This often requires optimizing multiple competing objec-
tives, such as model performance, inference time, and complexity. Derivative-free
multiobjective optimization algorithms have been adapted to solve such problems [7].

Furthermore, AutoML systems need to handle various practical issues such as
computational resource constraints, noisy evaluations, and online adaptation to new
data. Addressing these issues requires extending and enhancing DFO algorithms to
meet the needs of AutoML, such as using multi-fidelity optimization to efficiently
allocate resources [10].

8 1 Introduction

The emergence of AutoML has brought new opportunities and challenges
for DFO. It motivates the design of algorithms that can efficiently search high-
dimensional, structured, and dynamic spaces. It also calls for rigorous benchmarking
to evaluate and compare different DFO algorithms for AutoML. Research progress
in these directions will make both AutoML and DFO more effective and widely
applicable.

1.4 Organization of the Book

Aiming to build the theoretical foundations of DFO and design better optimization
algorithms for machine learning, this book is organized into four parts, covering
the preliminaries, analysis methodology, theoretical perspectives, and applications
to AutoML.

Part I provides an introduction to DFO and its theoretical foundations. We present
an overview of classic DFO algorithms, including direct search methods, model-
based methods, and stochastic search methods. We also review the theoretical results
on the approximation ability of DFO algorithms, highlighting the challenges and
opportunities for theoretical analysis.

Part II presents a novel theoretical framework for analyzing and designing DFO
algorithms. We introduce a general framework based on classification, which unifies
existing algorithms and facilitates the design of new ones. We also present a basic
algorithm Racos designed under this framework.

Part III presents extensions of the Racos algorithm. We design methods for more
efficient optimization, high-dimensional problems, noisy problems, and large-scale
optimizations. We also introduce a toolbox ZOOpt that includes the major algorithms
in this book.

Part IV showcases the applications and integrations of DFO algorithms in
automatic machine learning systems for hyper-parameter and algorithm selection.

Through this book, we aim to provide an alternative theoretical treatment of
derivative-free optimization and present practical algorithmic innovations. We hope
that the insights and techniques presented will inspire new research and empower
practitioners to tackle real-world optimization challenges in machine learning and
beyond.

References

1. Bäck T (1996) Evolutionary algorithms in theory and practice: evolution strategies, evolution-
ary programming, genetic algorithms. Oxford University Press, Oxford, UK

2. Conn AR, Gould NI, Toint PL (2000) Trust region methods
3. Conn AR, Scheinberg K, Vicente LN (2009) Introduction to derivative-free optimization, vol 8.

Siam (2009)

References 9

4. Domingos P (2012) A few useful things to know about machine learning. Commun ACM
55(10):78–87

5. Feurer M, Klein A, Eggensperger K, Springenberg J, Blum M, Hutter F (2015) Efficient and
robust automated machine learning. In: Advances in neural information processing systems,
pp 2962–2970

6. Feurer M, Springenberg J, Hutter F (2015) Initializing bayesian hyperparameter optimization
via meta-learning. In: Twenty-ninth AAAI conference on artificial intelligence

7. Horn D, Demircioğlu A, Bischl B, Glasmachers T, Weihs C (2016) A multi-objective auto-
tuning framework for parallel coordinates plots. In: Proceedings of the 2016 on genetic and
evolutionary computation conference, pp 1255–1262

8. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science
220(4598):671–680

9. Larrañaga P, Lozano J (2002) Estimation of distribution algorithms: a new tool for evolutionary
computation. Kluwer, Boston, MA

10. Li L, Jamieson K, DeSalvo G, Rostamizadeh A, Talwalkar A (2017) Hyperband: a novel bandit-
based approach to hyperparameter optimization. J Mach Learn Res 18:6765–6816. JMLR.
org

11. Liu H, Simonyan K, Vinyals O, Fernando C, Kavukcuoglu K (2020) Evolving deep neural
networks. Artif Intell 288:103353

12. Mitchell T (1997) Machine learning. McGraw Hill, New York, NY
13. Ow PS, Morton TE (1988) Filtered beam search in scheduling. Int J Prod Res 26(1):35–62
14. Real E, Moore S, Selle A, Saxena S, Suematsu YL, Tan J, Le QV, Kurakin A (2017) Large-scale

evolution of image classifiers. In: Proceedings of the 34th international conference on machine
learning (ICML), pp 2902–2911, Sydney, Australia

15. Shahriari B, Swersky K, Wang Z, Adams RP, Freitas ND (2015) Taking the human out of the
loop: a review of Bayesian optimization. Proc IEEE 104(1):148–175

16. Snoek J, Larochelle H, Adams RP (2012) Practical Bayesian optimization of machine learning
algorithms. In: Advances in neural information processing systems 25, pp 2960–2968, Lake
Tahoe, Nevada

17. Torczon V (1997) On the convergence of pattern search algorithms. SIAM J Optim 7(1):1–25

Chapter 2
Preliminaries

Abstract This chapter provides an overview of fundamental derivative-free opti-
mization (DFO) algorithms, focusing on evolutionary algorithms (EAs), estimation
of distribution algorithms (EDAs), and Bayesian optimization (BO). EAs are inspired
by natural evolution. EDAs model the probability distribution of promising solutions
to guide the search, while BO uses surrogate models to efficiently optimize expensive
black-box functions. The chapter also discusses running time analysis, a key theoret-
ical tool for understanding algorithm performance, and introduces the No Free Lunch
Theorem, which highlights the importance of problem-specific knowledge in opti-
mization. These concepts lay the groundwork for analyzing and designing advanced
DFO methods, particularly in machine learning and other complex domains.

This chapter introduces some basic derivative-free optimization algorithms, includ-
ing evolutionary algorithms (EAs), estimation of distribution algorithms (EDAs),
and Bayesian optimization (BO). We will focus on representatives of EA for dis-
crete optimization and evolutionary strategy (ES) for continuous optimization, and
provide explanations of EDA and BO. These algorithms serve as the preliminary
for understanding and analyzing more complex optimization methods. Additionally,
we discuss some basic knowledge about the running time complexity of algorithms,
which is the classical way to understand algorithms from a theoretical perspective.

2.1 Evolutionary Algorithms

Evolutionary algorithms (EAs) are a class of general-purpose heuristic optimization
algorithms that simulate the natural evolution process by considering two key fac-
tors: variational reproduction and superior selection [1]. They repeatedly reproduce
solutions by varying the currently maintained ones and eliminate inferior solutions,
leading to iterative improvement. In this section, we introduce two representative
population-based EAs: the.(μ + λ)-EA for discrete optimization and the.(μ/μ,λ)-ES
for continuous optimization.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025
Y. Yu et al., Derivative-Free Optimization, Machine Learning: Foundations,
Methodologies, and Applications, https://doi.org/10.1007/978-981-96-5929-6_2

11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-5929-6_2&domain=pdf
https://doi.org/10.1007/978-981-96-5929-6_2
https://doi.org/10.1007/978-981-96-5929-6_2
https://doi.org/10.1007/978-981-96-5929-6_2
https://doi.org/10.1007/978-981-96-5929-6_2
https://doi.org/10.1007/978-981-96-5929-6_2
https://doi.org/10.1007/978-981-96-5929-6_2
https://doi.org/10.1007/978-981-96-5929-6_2
https://doi.org/10.1007/978-981-96-5929-6_2
https://doi.org/10.1007/978-981-96-5929-6_2
https://doi.org/10.1007/978-981-96-5929-6_2
https://doi.org/10.1007/978-981-96-5929-6_2

12 2 Preliminaries

2.1.1 .(μ + λ)-EA

The .(μ + λ)-EA algorithm, presented in Algorithm 2.1, is a population-based EA
for maximizing pseudo-Boolean functions over .{0, 1}n . The algorithm maintains a
population of . μ solutions and generates . λ offspring solutions in each iteration. It
starts with a randomly initialized population of. μ solutions (line 1). In each iteration,
. λ offspring solutions are generated by applying a mutation operator to the parent
solutions (lines 3–5). The mutation operator flips each bit of a solution independently
with probability .1/n. The . μ best solutions are then selected from the union of the
parent and offspring populations to form the next generation (line 6). This process
continues until a stopping criterion is met.

Algorithm 2.1 .(μ + λ)-EA
Require: pseudo-Boolean function . f : over{0, 1}n → R, population size . μ, offspring size . λ
Ensure:
1: initialize a population.P of. μ solutions uniformly at random;
2: while stopping criterion is not met do
3: let.P ′ = ∅;
4: for .i = 1 to. λ do
5: generate.x′ by flipping each bit of a randomly selected solution.x ∈ P independently with

probability.1/n; add.x′ to.P ′;
6: end for
7: select the. μ best solutions from.P ∪ P ′ to form the next population. P;
8: end while
9: return the best solution found

The .(μ + λ)-EA algorithm balances exploration and exploitation by adjusting
the population size . μ and the offspring size . λ. A larger . μ helps maintain diversity
and enables global exploration, while a larger . λ increases the selection pressure and
focuses the search on promising regions. The optimal settings of . μ and. λ depend on
the characteristics of the problem, such as the modality and the ruggedness of the
fitness landscape.

2.1.2 .(μ/μ,λ)-ES

The .(μ/μ,λ)-ES algorithm, presented in Algorithm 2.2, is a population-based evo-
lutionary strategy for continuous optimization problems. It maintains a population
of . μ solutions, each associated with a strategy parameter . σ that controls the step
size of the mutation operator. In each iteration, . λ offspring solutions are generated
by applying a mutation operator to the parent solutions (lines 4–6). The mutation
operator adds a normally distributed random vector to each parent solution, where
the random vector has zero mean and standard deviation . σ in each dimension. The
strategy parameter. σ is also mutated by multiplying it with a log-normally distributed

2.2 Estimation of Distribution Algorithms 13

random factor (line 5). The . μ best offspring solutions are then selected to form the
next generation (line 7). This process continues until a stopping criterion is met.

Algorithm 2.2 .(μ/μ,λ)-ES
Require: objective function . f : Rn → R, population size . μ, offspring size . λ, initial step size . σ0
Ensure:
1: initialize a population.P of. μ solutions.xi ∈ R

n uniformly at random, and set.σi = σ0 for each
solution;

2: while stopping criterion is not met do
3: let.P ′ = ∅;
4: for .i = 1 to. λ do
5: select a parent solution .x ∈ P uniformly at random, and mutate its strategy parameter

.σ = σ · exp(τ · N (0, 1)), where.τ = (
√
2n)−1;

6: generate an offspring solution .x′ = x + σ · N (0, I), where .N (0, I) is a vector of
independent standard normal random variables; add.(x′,σ) to.P ′;

7: end for
8: select the. μ best offspring solutions from.P ′ to form the next population. P;
9: end while
10: return the best solution found

The .(μ/μ,λ)-ES algorithm adapts the step size of the mutation operator to the
local characteristics of the objective function. The log-normal mutation of the strategy
parameter . σ allows the algorithm to self-adapt the step size based on the success of
the previous mutations. If larger steps lead to better offspring solutions, the strategy
parameter will increase, encouraging further exploration. If smaller steps are more
successful, the strategy parameter will decrease, focusing the search on a smaller
region. This self-adaptation mechanism enables the algorithm to efficiently explore
the search space and converge to an optimal solution.

The .(μ/μ,λ)-ES algorithm is a special case of the more general .(μ/ρ,λ)-ES,
where . ρ denotes the number of parent solutions used to generate each offspring
solution. When.ρ = 1, the algorithm is called a.(μ/1,λ)-ES or a.(μ,λ)-ES. When. ρ =
μ, the algorithm is called a.(μ/μ,λ)-ES. The choice of. ρ affects the balance between
exploration and exploitation, with larger values of . ρ promoting more exploitation.

The population-based EAs presented in this section have been widely studied in
the theoretical analysis of evolutionary computation. They serve as a foundation for
understanding the behavior and performance of more advanced EA variants and have
inspired the design of effective optimization algorithms for various domains.

2.2 Estimation of Distribution Algorithms

Estimation of distribution algorithms (EDAs) are a class of EAs that explicitly model
the probability distribution of promising solutions and sample new solutions from the
learned model [9]. Instead of using traditional variation operators like mutation and
crossover, EDAs build a statistical model of the selected solutions and generate new

14 2 Preliminaries

solutions by sampling from this model. The model is updated iteratively to reflect
the distribution of increasingly better solutions.

The general procedure of an EDA is described in Algorithm 2.3. The algorithm
starts with a randomly initialized population of solutions (line 1). In each iteration,
a subset of promising solutions is selected from the current population according
to a selection method (line 3). A probabilistic model is then built based on the
selected solutions (line 4). This model captures the statistical dependencies among
the variables of the selected solutions. New solutions are sampled from the learned
model (line 5) and are used to replace some or all solutions in the population (line
6). This process continues until a stopping criterion is met.

Algorithm 2.3 Estimation of Distribution Algorithm (EDA)
Require: objective function. f , population size. N
Ensure:
1: initialize a population.P of.N solutions randomly;
2: while stopping criterion is not met do
3: select a subset. S of promising solutions from. P;
4: build a probabilistic model.M based on the solutions in. S;
5: sample a set.O of new solutions from the model. M ;
6: replace some or all solutions in.P with the solutions in. O;
7: end while
8: return the best solution found

EDAs differ in the way they represent and learn the probabilistic model. Some
common model representations include Bayesian networks, Markov networks, and
multivariate normal distributions [10]. The choice of the model depends on the char-
acteristics of the problem, such as the type of variables (discrete or continuous), the
interactions among variables, and the complexity of the problem.

One of the most popular EDAs for discrete optimization is the Population-Based
Incremental Learning (PBIL) algorithm [2]. In PBIL, the probabilistic model is rep-
resented as a vector of probabilities, where each element represents the probability
of a variable taking the value 1 in the selected solutions. The model is initialized with
a probability of 0.5 for each variable. In each iteration, the model is updated by mov-
ing the probability vector towards the best solution in the current population. New
solutions are then sampled from the updated model by generating a binary vector
according to the probabilities. The PBIL algorithm has been successfully applied to
various combinatorial optimization problems, such as the traveling salesman problem
and the knapsack problem [9].

For continuous optimization, the Covariance Matrix Adaptation Evolution Strat-
egy (CMA-ES) is a well-known EDA [6]. In CMA-ES, the probabilistic model is a
multivariate normal distribution, characterized by a mean vector and a covariance
matrix. The mean vector represents the center of the distribution, while the covari-
ance matrix captures the dependencies among the variables. In each iteration, a set
of new solutions is sampled from the current distribution. The mean vector and the
covariance matrix are then updated based on the best solutions in the sample. The

2.3 Bayesian Optimization 15

update rules are designed to adapt the shape and the scale of the distribution to the
local landscape of the objective function. CMA-ES has been shown to be highly
effective on a wide range of continuous optimization problems [5].

2.3 Bayesian Optimization

Bayesian optimization (BO) is a model-based optimization approach that is particu-
larly effective for expensive black-box functions [12]. The key idea of BO is to build
a surrogate model of the objective function based on the observed data points and
use this model to guide the search for the optimum. The surrogate model provides
a probabilistic approximation of the objective function, allowing the algorithm to
balance between exploring unknown regions and exploiting promising areas.

The general procedure of Bayesian optimization is described in Algorithm 2.4.
The algorithm starts with an initial set of observations . D, which contains the evalu-
ated points and their corresponding objective values (line 1). A surrogate model . M
is then built based on the current observations (line 2). The most common choice
for the surrogate model is the Gaussian process (GP) [11], which provides a proba-
bilistic distribution over functions. A GP is specified by a mean function.m(x) and a
covariance function.k(x, x′), also known as the kernel. The mean function represents
the expected value of the function at a given point, while the covariance function
captures the similarity between two points.

Algorithm 2.4 Bayesian Optimization (BO)
Require: objective function. f , initial observations. D
Ensure:
1: initialize the observation set.D with a few evaluated points;
2: while stopping criterion is not met do
3: build a surrogate model.M based on the observations in. D;
4: select the next point.xnext to evaluate by optimizing an acquisition function.α(x | M);
5: evaluate the objective function at .xnext to obtain. f (xnext);
6: add the new observation.(xnext , f (xnext)) to. D;
7: end while
8: return the best solution found

Given a set of observations, the GP posterior provides a normal distribution for the
value of the function at any point. The mean and variance of this distribution can be
used to guide the search for the optimum. Points with high mean values are considered
promising and are more likely to be selected for evaluation (exploitation). Points
with high variance values are considered uncertain and may lead to improvement if
evaluated (exploration).

The selection of the next point to evaluate is performed by optimizing an acqui-
sition function .α(x | M) (line 4). The acquisition function measures the expected

16 2 Preliminaries

benefit of evaluating the objective function at a given point, based on the current
surrogate model. Some common acquisition functions include:

- Probability of Improvement (PI): .α(x) = �((μ(x) − f (xbest))/σ(x)), where
.�(·) is the standard normal cumulative distribution function, .μ(x) and .σ(x) are
the mean and standard deviation of the GP posterior at . x, and . f (xbest) is the best
objective value observed so far.

- Expected Improvement (EI): . α(x) = (μ(x) − f (xbest)) · �((μ(x) −
f (xbest))/σ(x)) + σ(x) · φ((μ(x) − f (xbest))/σ(x)), where .φ(·) is the standard
normal probability density function.

- Upper Confidence Bound (UCB): .α(x) = μ(x) + κ · σ(x), where .κ is a
parameter that controls the trade-off between exploration and exploitation.

The next point to evaluate is chosen as the one that maximizes the acquisition
function (line 4). This point is then evaluated on the objective function, and the new
observation is added to the data set (lines 5–6). The surrogate model is updated with
the new observation, and the process is repeated until a stopping criterion is met.

Bayesian optimization has been successfully applied to a wide range of problems,
including hyper-parameter tuning of machine learning algorithms [13], robot gait
optimization [3], and chemical design [4]. The main advantage of BO is its sample
efficiency, as it can find good solutions with a relatively small number of function
evaluations. However, the performance of BO depends on the choice of the surrogate
model and the acquisition function, as well as the dimensionality of the problem. In
high-dimensional spaces, the number of observations required to build an accurate
surrogate model increases exponentially, which limits the applicability of BO to
problems with a moderate number of variables.

2.4 Running Time Analysis

The running time of an algorithm is a measure of its computational complexity, which
is usually expressed as a function of the input size. In the context of EAs, the running
time is often analyzed in terms of the expected number of function evaluations needed
to find the optimal solution or to achieve a certain approximation ratio.

One common approach to running time analysis is to model the EA as a Markov
chain [7]. A Markov chain is a stochastic process that transitions between states,
where the transition probabilities depend only on the current state. By defining the
states of the Markov chain as the populations of the EA and the transition probabilities
based on the selection and variation operators, we can analyze the expected time for
the EA to reach a desired state, such as the global optimum.

Two classical methods for running time analysis of EAs modeled as Markov chains
are the fitness level method [14], the drift analysis [8], and the convergence-based
analysis [16]. The fitness level method partitions the search space into a sequence
of fitness levels and estimates the expected time to progress from one level to the
next. The total running time is then the sum of the expected times over all levels.
Drift analysis measures the expected progress towards the optimal solution in each

2.5 No Free Lunch in Optimization 17

iteration and uses this to bound the total running time. Convergence-based anal-
ysis bridges the convergence rate and the running time complexity. The running
time complexity can thus be derived from the convergence rate. The switch analysis
[17] is an advanced analysis approach that can unify these three approaches. More
comprehensive introduction of these analysis approaches can be found in [18].

However, running time analysis of EAs is still a challenging task, especially for
complex problems and advanced EA variants, which is the same for other DFO
methods. Techniques from probability theory, combinatorics, and graph theory are
often employed to derive tight bounds on the running time.

2.5 No Free Lunch in Optimization

When considering general-purpose optimization techniques, the No Free Lunch
(NFL) Theorem is a fundamental principle that should never be overlooked.

The NFL Theorem, formulated by Wolpert and Macready [15], states that no
optimization algorithm is universally better than any other when their performance
is averaged across all possible problems. Specifically, the NFL theorem assumes
that the algorithm has no prior knowledge about the objective function. Under
this assumption, if an algorithm outperforms random search on some problems,
it must underperform on others when uniformly averaged over all possible objective
functions.

Mathematically, let.X be a finite solution space,. Y a finite set of objective values,
and .F the set of all possible objective functions . f : X → Y . Let .d(·, ·) be a per-
formance measure, such as the best function value found within a fixed number of
iterations. The NFL Theorem states that for any two algorithms .a1 and . a2,

.

∑

f ∈F
d(a1, f) =

∑

f ∈F
d(a2, f). (2.1)

An intuitive proof is given below.

Proof Consider the set of all possible objective functions . f : X → Y , where
the algorithm has no prior knowledge. For two algorithms .A1 and .A2, define a
performance measure .d(A, f) that quantifies how well . A performs on . f .

Fix a sequence of .m solutions that .A1 evaluates for a given . f . There are . |Y|m
possible ways to assign objective values to these solutions. Among these, some
assignments favor .A1, while others do not.

Now consider .A2. For each assignment favoring.A1, there exists a corresponding
assignment favoring.A2 to the same extent, as.A2 could simply evaluate the solutions
in a different order.

Therefore, for every objective function where .A1 outperforms .A2, there exists
another where .A2 outperforms .A1 by the same margin. Averaged over all possible
objective functions, their performance is equal.

18 2 Preliminaries

This argument holds for any two algorithms and any performance measure. Thus,
without prior knowledge, no algorithm can outperform another when averaged over
all possible functions. �

The NFL Theorem implies that the performance of any two algorithms is equal
when averaged over all possible objective functions. It reveals the fundamental dif-
ficulty in designing general-purpose optimization algorithms—prior knowledge is
necessary for an algorithm to outperform random search. Without prior knowledge,
an algorithm can only excel on a subset of problems at the cost of inferior performance
on others.

This leads to a crucial question: for a given optimization algorithm, on which
subset of problems does it excel? Identifying the characteristics of problems that
an algorithm is well-suited for is one of the most significant considerations in the
design and analysis of DFO algorithms. Understanding an algorithm’s strengths and
limitations allows researchers and practitioners to make informed decisions when
selecting or designing optimization techniques for specific applications.

References

1. Bäck T (1996) Evolutionary algorithms in theory and practice: evolution strategies, evolution-
ary programming, genetic algorithms. Oxford University Press, Oxford, UK

2. Baluja S (1994) Population-based incremental learning. a method for integrating genetic search
based function optimization and competitive learning. Carnegie-Mellon Univ Pittsburgh Pa
Dept Of Computer Science

3. Calandra R, Seyfarth A, Peters J, Deisenroth MP (2016) Bayesian optimization for learning
gaits under uncertainty. In: Annals of mathematics and artificial intelligence, vol 76. Springer,
pp 5–23

4. Griffiths R-R, Hernández-Lobato JM (2020) Constrained bayesian optimization for automatic
chemical design using variational autoencoders. Chem Sci 11(2):577–586

5. Hansen N (2006) The cma evolution strategy: a comparing review. Towards a new evolutionary
computation, pp 75–102

6. Hansen N, Ostermeier A (2001) Completely derandomized self-adaptation in evolution
strategies. Evol Comput 9(2):159–195

7. He J, Yao X (2003) Towards an analytic framework for analysing the computation time of
evolutionary algorithms. Artif Intell 145(1–2):59–97

8. He J, Yao X (2004) A study of drift analysis for estimating computation time of evolutionary
algorithms. Nat Comput 3(1):21–35

9. Larrañaga P, Lozano J (2002) Estimation of distribution algorithms: a new tool for evolutionary
computation. Kluwer, Boston, MA

10. Pelikan M, Goldberg DE, Cantu-Paz E (2002) A survey of optimization by building and using
probabilistic models. Comput Optim Appl 21(1):5–20

11. Rasmussen CE (2003) Gaussian processes in machine learning. Summer school on machine
learning, pp 63–71

12. Shahriari B, Swersky K, Wang Z, Adams RP, Freitas ND (2015) Taking the human out of the
loop: a review of Bayesian optimization. Proc IEEE 104(1):148–175

13. Snoek J, Larochelle H, Adams RP (2012) Practical Bayesian optimization of machine learn-
ing algorithms. In: Advances in neural information processing systems, vol 25. Lake Tahoe,
Nevada, pp 2960–2968

References 19

14. Wegener I (2002) Methods for the analysis of evolutionary algorithms on pseudo-boolean
functions. Evolutionary optimization, pp 349–369

15. Wolpert D, Macready W (1997) No free lunch theorems for optimization. IEEE Trans Evol
Comput 1(1):67–82

16. Yu Y, Zhou Z-H (2008) A new approach to estimating the expected first hitting time of
evolutionary algorithms. Artif Intell 172(15):1809–1832

17. Yu Y, Qian C, Zhou Z-H (2015) Switch analysis for running time analysis of evolutionary
algorithms. IEEE Trans Evol Comput 19(6):777–792

18. Zhou Z-H, Yu Y, Qian C (2019) evolutionary learning: advances in theories and algorithms.
Springer, Berlin. ISSN 978-981-13-5955-2

Part II
Classification-Based Derivative-Free

Optimization

Chapter 3
Framework

Abstract This chapter introduces the Sampling-and-Learning (SAL) framework, a
unifying approach to understanding derivative-free optimization (DFO) algorithms.
The SAL framework consists of two main stages: sampling, where new candidate
solutions are generated, and learning, where promising solutions are selected to guide
future sampling. The framework iteratively alternates between these stages, using a
learned model to represent the algorithm’s belief about promising regions in the
solution space. The chapter also presents a simplified version called the Sampling-
and-Classification (SAC) framework, which uses binary classification to distinguish
between promising and unpromising solutions. The SAL and SAC frameworks
provide a statistical perspective on how DFO algorithms balance exploration and
exploitation, offering a systematic way to analyze and design optimization methods.
The chapter concludes by discussing the challenges and potential of these frame-
works, including the computational overhead of learning and the need for accurate
models to guide the search effectively.

In the previous chapter, we explored a variety of derivative-free optimization algo-
rithms, including evolutionary algorithms, estimation of distribution algorithms, and
Bayesian optimization. These algorithms are particularly effective for solving com-
plex optimization problems where direct analytical evaluation of the objective func-
tion is either infeasible or too computationally expensive. They have been success-
fully applied in diverse fields where objective functions remain hidden or are too
intricate for traditional gradient-based methods.

Upon closer examination, the reader may have observed a recurring theme or
underlying principle across these seemingly different algorithms. Despite their dis-
tinct methodologies, these algorithms appear to share a common strategy or concep-
tual foundation. In this chapter, we aim to formalize this observation by introducing
a unifying framework known as the sampling-and-learning (SAL) framework [5, 6].
This framework provides a statistical lens through which we can better understand the
mechanisms that drive the success of these heuristics. By examining these algorithms
from a statistical perspective, the SAL framework helps explain how they effectively
balance exploration and exploitation, ultimately guiding the search process toward
optimal solutions.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025
Y. Yu et al., Derivative-Free Optimization, Machine Learning: Foundations,
Methodologies, and Applications, https://doi.org/10.1007/978-981-96-5929-6_3

23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-5929-6_3&domain=pdf
https://doi.org/10.1007/978-981-96-5929-6_3
https://doi.org/10.1007/978-981-96-5929-6_3
https://doi.org/10.1007/978-981-96-5929-6_3
https://doi.org/10.1007/978-981-96-5929-6_3
https://doi.org/10.1007/978-981-96-5929-6_3
https://doi.org/10.1007/978-981-96-5929-6_3
https://doi.org/10.1007/978-981-96-5929-6_3
https://doi.org/10.1007/978-981-96-5929-6_3
https://doi.org/10.1007/978-981-96-5929-6_3
https://doi.org/10.1007/978-981-96-5929-6_3
https://doi.org/10.1007/978-981-96-5929-6_3

24 3 Framework

3.1 Sampling and Learning Framework

The SAL framework consists of two main stages: the sampling stage, which models
the generation of new candidate solutions, and the learning stage, which models the
selection of promising solutions to guide the next sampling step. The framework starts
with a randomly initialized set of solutions and then iteratively alternates between
the sampling and learning stages. In the sampling stage, new solutions are generated
based on the current learned model, which represents the algorithm’s belief about
the location of promising solutions. In the learning stage, the generated solutions are
evaluated, and the learned model is updated based on the obtained information. This
process continues until a satisfactory solution is found or a predetermined termination
criterion is met.

Formally, let .X denote the solution space, and let . f : X → R be the objective
function to be minimized. The SAL framework maintains a set of candidate solutions
. St at each iteration. t . The learning stage at iteration. t consists of constructing a learned
model .ht based on the current solution set .St−1 and their corresponding objective
function values. The model .ht represents the algorithm’s belief about the location
of promising solutions in the solution space. In the sampling stage, a new set of
candidate solutions .St is generated by sampling from a distribution .Tht induced by
the learned model . ht .

The learning stage can be formally described as follows:

.ht = L(St−1, f (St−1), ht−1), (3.1)

where .L is the learning algorithm, .St−1 is the set of candidate solutions from the
previous iteration, . f (St−1) are their corresponding objective function values, and
.ht−1 is the learned model from the previous iteration. The learning algorithm . L
can be any suitable machine learning technique, such as regression, classification, or
density estimation, depending on the specific optimization algorithm being modeled.

The sampling stage can be formally described as follows:

.St = {xi ∼ Tht | i = 1, . . . ,mt }, (3.2)

where.Tht is the sampling distribution induced by the learned model. ht , and.mt is the
number of candidate solutions to be generated at iteration. t . The sampling distribution
.Tht reflects the algorithm’s belief about the location of promising solutions and is
used to guide the search towards regions of the solution space that are likely to contain
good solutions.

The SAL framework can be summarized in the following algorithm:
The SAL framework provides a general template for modeling and analyzing a

wide range of derivative-free optimization algorithms. By specifying different learn-
ing algorithms. L and sampling distribution transformers. T , the framework can cap-
ture the behavior of various algorithms, such as evolutionary algorithms, estimation
of distribution algorithms, and Bayesian optimization.

3.2 Casting Previous DFO Methods Into the SAL Framework 25

Algorithm 3.1 Sampling and Learning (SAL) Framework
Require: Objective function. f , learning algorithm. L, sampling distribution transformer. T , number

of iterations. T , initial solution set. S0
Ensure: Best solution found
1: for .t = 1, . . . , T do
2: Construct the learned model. ht = L(St−1, f (St−1), ht−1)

3: Generate a new set of candidate solutions. St = {xi ∼ Tht | i = 1, . . . ,mt }
4: Evaluate the objective function. f for each solution in. St
5: end for
6: return Best solution found in.

⋃T
t=0 St

3.2 Casting Previous DFO Methods Into the SAL
Framework

The SAL framework provides a unifying perspective on various derivative-free opti-
mization methods. By identifying the key components of these methods and mapping
them to the sampling and learning stages of the SAL framework, we can gain insights
into their underlying principles and develop a more systematic understanding of their
behavior. In this section, we will discuss how some popular DFO methods, namely
evolutionary algorithms [2], estimation of distribution algorithms [4], and Bayesian
optimization, can be cast into the SAL framework.

3.2.1 Estimation of Distribution Algorithms

Estimation of distribution algorithms (EDAs) are a class of optimization algorithms
that explicitly build a probabilistic model of promising solutions and use this model to
generate new candidate solutions. EDAs can be naturally cast into the SAL framework
as follows:

• Sampling stage: In EDAs, the sampling stage involves generating new candi-
date solutions by sampling from the learned probabilistic model. The probabilistic
model captures the distribution of promising solutions in the solution space and
guides the search towards regions of high probability. The specific sampling mech-
anism depends on the type of probabilistic model employed, such as Gaussian
models, Bayesian networks, or Markov random fields.

• Learning stage: The learning stage in EDAs consists of building or updating the
probabilistic model based on the selected solutions from the previous iteration. The
selected solutions are typically the best-performing ones according to the objective
function. The probabilistic model is learned using statistical learning techniques,
such as maximum likelihood estimation, Bayesian inference, or graphical model
learning. The learned model represents the algorithm’s belief about the distribution
of promising solutions.

26 3 Framework

• Learned model: In EDAs, the learned model is explicitly represented as a proba-
bilistic model, such as a Gaussian distribution, a Bayesian network, or a Markov
random field. The probabilistic model captures the dependencies and relationships
among the variables of the optimization problem and provides a compact repre-
sentation of the promising regions in the solution space. The learned model is used
to guide the sampling stage in the next iteration.

3.2.2 Bayesian Optimization

Bayesian optimization (BO) is a class of optimization algorithms that build a sur-
rogate model of the objective function and use this model to guide the search for
optimal solutions. BO algorithms can be cast into the SAL framework as follows:

• Sampling stage: In BO, the sampling stage involves selecting the next point to
evaluate based on the surrogate model and an acquisition function. The acquisi-
tion function balances exploration and exploitation by considering both the pre-
dicted performance and the uncertainty of the surrogate model. Common acqui-
sition functions include expected improvement, probability of improvement, and
upper confidence bound. The selected point is then evaluated using the expensive
objective function.

• Learning stage: The learning stage in BO consists of updating the surrogate
model based on the observed data points, i.e., the evaluated solutions and their
corresponding objective function values. The surrogate model is typically a prob-
abilistic model, such as a Gaussian process, that provides a probabilistic estimate
of the objective function. The model is updated using Bayesian inference tech-
niques, such as maximum likelihood estimation or Markov chain Monte Carlo
(MCMC) methods.

• Learned model: In BO, the learned model is the surrogate model, which is a
probabilistic representation of the objective function. The surrogate model captures
the knowledge about the function’s behavior based on the observed data points. It
provides a probabilistic estimate of the function value at any point in the solution
space, along with an associated uncertainty. The learned model is used to guide
the sampling stage by informing the acquisition function.

3.2.3 Evolutionary Algorithms

Evolutionary algorithms (EAs) are a class of optimization algorithms inspired by
the principles of natural evolution. Classical EAs maintain a population of candidate
solutions and iteratively evolve the population through selection, reproduction, and

3.2 Casting Previous DFO Methods Into the SAL Framework 27

variation operators. They do not maintain explicitly models of distribution. How-
ever, it should be noticed that the distribution can be equivalently expressed by the
population of solutions. Likewise, in machine learning community, there is similarly
a branch of case-based learning algorithms that maintains a set of samples, such
as .k-nearest neighbor classifiers. Therefore, the main components of EAs, such as
genetic algorithms (GAs), evolution strategies (ES), and differential evolution (DE),
can be mapped to the SAL framework as follows:

• Sampling stage: In EAs, the sampling stage corresponds to the generation of new
candidate solutions through variation operators, such as mutation and crossover.
These operators introduce diversity into the population and explore the solution
space. For example, in GAs, mutation randomly modifies individual elements of a
solution, while crossover combines genetic material from parent solutions to create
offspring. The specific choice of variation operators depends on the representation
of the solutions and the problem domain.

• Learning stage: The learning stage in EAs is represented by the selection operator,
which chooses promising solutions from the current population to form the next
generation. Selection operators assign higher probabilities to solutions with better
fitness values, thus guiding the search towards promising regions of the solution
space. Common selection schemes include tournament selection, roulette wheel
selection, and truncation selection. The selected solutions serve as the basis for
the next iteration of the algorithm.

• Learned model: In the context of EAs, the learned model can be interpreted as
the distribution of the selected solutions in the solution space. The selection oper-
ator implicitly learns the characteristics of promising solutions by favoring those
with higher fitness values. The distribution of the selected solutions represents the
algorithm’s belief about the location of good solutions and guides the sampling
stage in the next iteration.

3.2.4 Other DFO Methods

The SAL framework can also accommodate other derivative-free optimization
methods, such as Ant Colony Optimization [1], Particle Swarm Optimization [3],
etc. These methods can be cast into the SAL framework by identifying the key
components of sampling and learning:

• Sampling stage: The sampling stage in these methods involves generating new
candidate solutions based on a set of predefined rules or heuristics. For example,
pattern search methods explore the solution space by generating points along
coordinate directions, while simplex methods create new points by reflecting,
expanding, or contracting the current simplex.

• Learning stage: The learning stage in these methods typically involves updating
the internal parameters or the search strategy based on the observed function values.

28 3 Framework

For example, trust-region methods adjust the size of the trust region based on the
agreement between the surrogate model and the actual function values.

• Learned model: The learned model in these methods may not be as explicit as
in EDAs or BO, but it still represents the algorithm’s belief about the promising
regions of the solution space. For example, in pattern search methods, the learned
model can be considered as the set of search directions that have led to successful
steps in previous iterations.

By mapping the key components of these methods to the sampling and learning
stages, the SAL framework provides a common language to analyze and compare
different DFO methods. We can understand the optimization power of DFO in a
unified way. It also facilitates the development of hybrid approaches that combine
the strengths of various methods. We can further leverage the theoretical founda-
tions and analysis techniques developed for the framework to gain insights into the
convergence properties and performance of these methods. This unified perspective
helps in identifying the key factors that influence the effectiveness of DFO methods
and guides the design of more efficient and principled optimization algorithms.

3.3 Sampling and Classification Framework

In addition to the general SAL framework, we also introduce a simplified version
called the sampling-and-classification (SAC) framework. Before that, let’s firstly
re-design the SAL framework specifically in Algorithm 3.2

Algorithm 3.2 The sampling-and-learning (SAL) framework
Require:

.α∗ > 0: Approximation level

.T ∈ N
+: Number of iterations

.m0, . . . ,mT ∈ N
+: Number of samples

.λ ∈ [0, 1]: Balancing parameter

. L: Learning algorithm

. T : Distribution transformation of hypothesis
Ensure:
1: Collect.S0 = {x1, . . . , xm0 } by i.i.d. sampling from. UX
2: . x̃ = argminx∈S0 f (x)
3: for .t = 1 to. T do
4: Learn. ht = L(St−1, f (St−1), ht−1, t)
5: for .i = 1 to.mt do

6: Sample.xi from.

{
Tht , with probability λ

UX , with probability 1 − λ

7: . St = St ∪ {xi }
8: end for
9: . x̃ = argminx∈St∪{x̃} f (x)
10: end for
11: return .x̃

3.3 Sampling and Classification Framework 29

The SAL framework starts with random sampling in Step 1, like all derivative-free
optimization methods. Steps 2 and 9 record the best-so-far solutions throughout the
search. It follows a cycle consisting of learning and sampling stages. In Step 4, it
learns a hypothesis .ht (i.e., a mapping from .X to . R) via the learning algorithm . L.
The learning algorithm allows taking the latest samples.St−1, the labels. f (St−1), the
last hypothesis .ht−1, and the iteration time . t into account. Different derivative-free
optimization methods may make different use of them. In Steps 5 to 8, it samples
from the distribution transformed from the hypothesis and the whole solution space,
balanced by a probability, where the sample set .St is initialized to be empty by
default. The distribution .Tht implies the potentially good regions learned by . ht .

Comparing with the framework in Algorithm 3.1, Algorithm 3.2 specifies the sam-
pling distribution to be combined with the uniform distribution and the transformed
distribution from the model. Note that this design reflects the exploration-exploitation
balance in many DFO methods, and the uniform sampling ensures that the algorithm
will converge to optimal solutions.

Now we can see that the SAL framework still leaves the learning algorithm and the
model transformed distribution unspecified. We then choose to implement the learn-
ing algorithm to be classification algorithms, which result in classification models
that lead to simple understanding and analysis of the framework as we will present
in later chapters.

The sampling-and-classification (SAC) framework is a special case of the SAL
framework where the learning stage employs a binary classification model to distin-
guish between promising and unpromising solutions. The classifier is trained on the
evaluated solutions, labeling them as positive (promising) or negative (unpromising)
based on a predefined threshold. The sampling stage then generates new solutions
by focusing on the regions classified as promising by the learned model.

Formally, let.ht : X → {−1,+1} be a binary classifier learned at iteration. t , where
.ht (x) = +1 indicates that solution . x is predicted to be promising, and . ht (x) = −1
indicates that . x is predicted to be unpromising. The learning stage in the SAC
framework can be described as follows:

.ht = C({(x, I[f (x) ≤ αt]) | x ∈ St−1}), (3.3)

where. C is a binary classification algorithm,.I[·] is the indicator function, and.αt is a
predefined threshold value at iteration. t . The classifier.ht is trained on the solution set
.St−1 from the previous iteration, with each solution labeled as positive if its objective
function value is below the threshold .αt and negative otherwise.

The sampling stage in the SAC framework focuses on generating new solutions
from the regions classified as promising by the learned classifier. This can be achieved
by sampling from a distribution that assigns higher probabilities to solutions in the
positive region of the classifier. One common approach is to use a truncated uniform
distribution over the positive region:

30 3 Framework

.Tht (x) ∝
{
U(x) if ht (x) = +1

0 otherwise
, (3.4)

where . U is the uniform distribution over the solution space . X .
The implementation of the SAC framework only differs from the SAL framework

in the learning algorithm, as summarized in Algorithm 3.3

Algorithm 3.3 The sampling-and-classification (SAC) framework
Require:

.α∗ > 0: Approximation level

.T ∈ N
+: Number of iterations

.m0, . . . ,mT ∈ N
+: Number of samples

.α1, . . . ,αT : Level parameters

.λ ∈ [0, 1]: Balancing parameter

. L: Learning algorithm

. T : Distribution transformation of hypothesis
Ensure:
1: Collect.S0 = {x1, . . . , xm0 } by i.i.d. sampling from. UX
2: . x̃ = argminx∈S0 f (x)
3: for .t = 1 to. T do
4: Learn a binary classifier. ht = C({(x, I[f (x) ≤ αt]) | x ∈ St−1})
5: for .i = 1 to.mt do

6: Sample.xi from.

{
Tht , with probability λ

UX , with probability 1 − λ

7: . St = St ∪ {xi }
8: end for
9: . x̃ = argminx∈St∪{x̃} f (x)
10: end for
11: return . x̃

The effectiveness of the SAC framework depends on several factors, such as the
choice of the classification algorithm, the selection of the threshold values, and the
sampling strategy. In the next chapter, we will identify the key factors that influence
its efficiency and provide guidelines for designing effective SAC algorithms.

3.4 Summary

In this chapter, we introduced the sampling-and-learning (SAL) and sampling-and-
classification (SAC) frameworks as unifying principles behind various derivative-
free optimization algorithms. The SAL framework provides a general template for
modeling and analyzing algorithms that alternate between a sampling stage and a
learning stage. The SAC framework is a simplified version of the SAL framework
that employs a binary classification model to guide the search process.

References 31

The SAL and SAC frameworks offer a principled way to design and ana-
lyze derivative-free optimization algorithms. By formalizing the common strategies
employed by these algorithms, the frameworks provide a deeper understanding of
their mechanisms and allow for a more systematic analysis of their performance. The
frameworks also open up new avenues for designing novel optimization algorithms
by exploring different learning algorithms, sampling strategies, and hybridization
techniques.

Meanwhile, the SAL and SAC frameworks also pose several challenges. The
performance of these frameworks heavily depends on the quality of the learned
models and the effectiveness of the sampling strategies. If the learned models are
not accurate or do not capture the relevant features of the optimization problem,
the search process may be misguided, leading to poor performance. Similarly, if
the sampling strategies do not effectively explore the solution space or focus on the
promising regions, the algorithm may get stuck in suboptimal solutions.

Another challenge is the computational overhead introduced by the learning com-
ponent. Training the models and generating samples from complex distributions can
be computationally expensive, especially in high-dimensional solution spaces. Bal-
ancing the cost of learning with the cost of function evaluations is crucial for the
overall efficiency of the algorithm.

In the next chapter, we will delve into the theoretical foundations of the SAL and
SAC frameworks. We will analyze their convergence properties, derive performance
bounds, and identify the key factors that influence their efficiency. Through this
theoretical investigation, we aim to provide a rigorous understanding of the strengths
and limitations of these frameworks and guide the design of new derivative-free
optimization algorithms.

References

1. Dorigo M, Maniezzo V, Colorni A (1996) Ant system: Optimization by a colony of cooperating
agents. IEEE Trans. Syst. Man Cybern.–Part B 26(1), 29–41 (1996)

2. Goldberg D (1989) Genetic algorithms in search, optimization, and machine learning. Addison-
Wesley, Reading, MA

3. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of the IEEE
international conference on neural networks, vol 4. Perth, Australia, pp 1942–1948

4. Larrañaga P, Lozano J (2002) Estimation of distribution algorithms: a new tool for evolutionary
computation. Kluwer, Boston, MA

5. Yu Y, Qian H (2014) The sampling-and-learning framework: a statistical view of evolutionary
algorithm. In: Proceedings of the 2014 IEEE congress on evolutionary computation. Beijing,
China, pp 149–158

6. Yu Y, Qian H, Hu Y-Q (2016) Derivative-free optimization via classification. In: Proceedings of
the 30th AAAI conference on artificial intelligence, Phoenix, AZ, pp 2286–2292

Chapter 4
Theoretical Foundation

Abstract This chapter provides a theoretical foundation for the Sampling-and-
Learning (SAL) and Sampling-and-Classification (SAC) frameworks in derivative-
free optimization (DFO). It introduces the concept of.(ε, δ)-query complexity, which
measures the number of function evaluations required to find an .ε-optimal solu-
tion with probability.1 − δ. The chapter derives general performance bounds for the
SAL framework and identifies two key factors influencing the SAC framework’s
efficiency: error-target dependence and shrinking rate. These factors measure the
alignment between the learned model and the target solution set, and the reduction in
the search space volume, respectively. The analysis shows that SAC algorithms can
achieve polynomial query complexity for functions with local Lipschitz continuity
and bounded packing/covering numbers. The chapter concludes by discussing practi-
cal implications for designing efficient DFO algorithms, emphasizing the importance
of model alignment and problem geometry in optimization performance.

Despite the success of DFO algorithms in practice, their theoretical foundations have
been relatively less explored compared to their gradient-based counterparts. Rigorous
theoretical analysis is crucial for understanding the convergence properties, sample
complexity, and performance guarantees of these algorithms. It provides insights
into the key factors that influence their efficiency and guides the design of more
principled and effective optimization methods.

In the previous chapter, we introduced the sampling-and-learning (SAL) and
sampling-and-classification (SAC) frameworks as unifying principles behind var-
ious DFO algorithms. These frameworks provide a general template for modeling
and analyzing algorithms that alternate between a sampling stage and a learning
stage. The SAL framework encompasses a wide range of DFO algorithms, while the
SAC framework focuses on algorithms that employ a binary classification model to
guide the search process.

The SAL and SAC frameworks offer a principled way to design and analyze
DFO algorithms by formalizing the common strategies employed by these algo-
rithms. They capture the essence of the exploration-exploitation trade-off, which is
fundamental to the success of any optimization algorithm. By leveraging the tools
and techniques from statistical learning theory and probability theory, we can derive
performance bounds and convergence guarantees for these frameworks.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025
Y. Yu et al., Derivative-Free Optimization, Machine Learning: Foundations,
Methodologies, and Applications, https://doi.org/10.1007/978-981-96-5929-6_4

33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-5929-6_4&domain=pdf
https://doi.org/10.1007/978-981-96-5929-6_4
https://doi.org/10.1007/978-981-96-5929-6_4
https://doi.org/10.1007/978-981-96-5929-6_4
https://doi.org/10.1007/978-981-96-5929-6_4
https://doi.org/10.1007/978-981-96-5929-6_4
https://doi.org/10.1007/978-981-96-5929-6_4
https://doi.org/10.1007/978-981-96-5929-6_4
https://doi.org/10.1007/978-981-96-5929-6_4
https://doi.org/10.1007/978-981-96-5929-6_4
https://doi.org/10.1007/978-981-96-5929-6_4
https://doi.org/10.1007/978-981-96-5929-6_4

34 4 Theoretical Foundation

In this chapter, we present a rigorous theoretical analysis of the SAL and SAC
frameworks, focusing on their convergence properties, sample complexity, and the
key factors influencing their efficiency. We introduce the concept of .(ε, δ)-query
complexity, which measures the number of function evaluations required by an algo-
rithm to find an .ε-optimal solution with probability at least .1 − δ. This complexity
measure provides a unified way to compare the performance of different DFO algo-
rithms and understand their scalability with respect to the problem dimension and
the desired accuracy.

We start by deriving a general performance bound for the SAL framework in
terms of the average success probability of sampling from the learned models. This
bound highlights the importance of the learning stage in guiding the search towards
promising regions of the solution space. We then specialize the analysis to the SAC
framework and identify two key factors that influence its performance: the error-
target dependence and the shrinking rate. The error-target dependence measures the
alignment between the classification error and the target .ε-optimal set, while the
shrinking rate quantifies the reduction in the volume of the promising region across
iterations.

To illustrate the applicability of our theoretical results, we consider two classes of
objective functions: functions satisfying the local Lipschitz condition and functions
with bounded packing and covering numbers. For functions satisfying the local Lip-
schitz condition, we show that the SAC framework can achieve a polynomial query
complexity if the error-target dependence is strictly less than one and the shrinking
rate is positive. For functions with bounded packing and covering numbers, we derive
a sufficient condition under which the SAC framework achieves a polynomial query
complexity.

4.1 Problem Setting and Notations

We consider general minimization problems.

Definition 4.1 (Minimization Problem) A minimization problem consists of a solu-
tion space .X and a function . f : X → R. The goal is to find a solution .x∗ ∈ X such
that . f (x∗) ≤ f (x) for all .x ∈ X .

We assume without loss of generality that the value of. f is bounded in.[0, 1], i.e.,
.∀x ∈ X : f (x) ∈ [0, 1]. Given an arbitrary function . g with a bounded value range
over the input domain, the bound can be implemented by a simple normalization

. f (x) = g(x) − g(x∗)
maxx′ g(x′) − g(x∗)

.

Therefore, under our assumption, the optimal value is . 0.

4.2 (ε, δ)-Query Complexity 35

Throughout this chapter, we use the following notations:

• . A: an optimization algorithm.
• . D: a probability distribution over the solution space . X .
• . U : the uniform distribution over . X .
• . H: a hypothesis space, where each hypothesis .h ∈ H is a function mapping from

.X to .{−1,+1}.
• .Dh : the region of .X where a hypothesis .h ∈ H predicts positive, i.e., . Dh = {x ∈

X | h(x) = +1}.
• .Dα: the .α-sublevel set of . f , i.e., .Dα = {x ∈ X | f (x) ≤ α}.
• .Dε: the .ε-optimal set, i.e., .Dε = {x ∈ X | f (x) − f (x∗) ≤ ε}.
• .μ(A) = |A|/|X |: the ratio of set . A taking place in . X .
• .Pr(·): the probability of an event.
• .E[·]: the expectation of a random variable.
• .poly(· · ·): represents the set of all polynomials of the related variables.
• .superpoly(· · ·): represents the set of all functions that grow faster than any
function in .poly(· · ·) with the related variables.

4.2 (. ε, . δ)-Query Complexity

To analyze the performance of the SAL and SAC frameworks, we introduce the con-
cept of.(ε, δ)-query complexity. Given an algorithm. A, the.(ε, δ)-query complexity is
the number of objective function evaluations required by. A to find an.ε-optimal solu-
tion with probability at least .1 − δ. This complexity measure reflects our belief that
DFO methods are, instead of accurate solvers, powerful approximate solvers. They
can produce good results in many, but not all, cases. It also reflects our adherence to
the No Free Lunch theorem.

Definition 4.2 (.(ε, δ)-query complexity) Given an optimization algorithm . A, an
objective function. f , and constants .ε > 0 and.0 < δ < 1, the .(ε, δ)-query complex-
ity of. A on. f , denoted as.TA, f (ε, δ), is the minimum number of function evaluations
. T such that

. Pr(f (AT) − f (x∗) ≤ ε) ≥ 1 − δ, (4.1)

where .AT denotes the solution returned by .A after . T function evaluations.

The .(ε, δ)-query complexity provides a way to quantify the efficiency of an opti-
mization algorithm in terms of the number of function evaluations required to achieve
a desired level of accuracy with high probability. It allows us to compare different
algorithms and analyze their performance guarantees.

36 4 Theoretical Foundation

4.3 Performance Bound for SAL Framework

We start by deriving a general upper bound on the .(ε, δ)-query complexity of the
SAL framework. The bound depends on two key quantities: the average success
probability of sampling from the learned model and the number of samples required
to achieve a certain success probability.

Theorem 4.1 (General performance bound for SAL) Given an objective function . f
and constants .ε > 0 and .0 < δ < 1, the .(ε, δ)-query complexity of a SAL algorithm
.A on . f is upper bounded by

.TA, f (ε, δ) ≤ O

(
max

{ 1

(1 − λ)Pru + λPrh
ln

1

δ
, m0 +

T∑
t=1

mPrht

})
, (4.2)

where . λ is the balancing parameter,

. Pru =
∫
Dα∗

UX (x) dx and Prht =
∫
Dα∗

Tht (x) dx

are the success probability of uniform sampling and hypothesis distribution,
respectively,

. Prh =
∑T

t=1 mt · Prht∑T
t=1 mt

is the average success probability of sampling from the learned hypothesis, .mPrht is
the sample size required to obtain .Prht , and .Dα∗ = {x ∈ X | f (x) ≤ α∗}.
Proof The .m0 + ∑T

t=1 mPrht part is natural. We prove the rest part of the bound.
Let’s consider the probability that after .T iterations, the SAL algorithm outputs a
bad solution . x such that . f (x) > α∗. Since . x is the best solution among all sampled
examples, the probability is the joint of events that every step of the sampling does
not generate such a good solution.

Case 1. For the sampling from the uniform distribution over the whole solution
space . X , the probability of failure is .1 − Pru .

Case 2. For the sampling from the learned hypothesis .T (ht), the probability of
failure is denoted as .1 − Prht .

Since every sampling is independent, we can expand the probability of overall
failures, i.e.,

4.3 Performance Bound for SAL Framework 37

. Pr(f (x) > α∗)

= (1 − Pru)
m0 ·

T∏
t=1

mt∑
i=0

(
mt

i

)
(1 − λ)iλmt−i (1 − Pru)

i (1 − Prht)
mt−i

= (1 − Pru)
m0

T∏
t=1

(
(1 − λ)(1 − Pru) + λ(1 − Prht)

)mt

= (1 − Pru)
m0

T∏
t=1

(
1 − (1 − λ)Pru − λPrht

)mt

≤ e−Pru ·m0

T∏
t=1

e−((1−λ)Prumt+λPrht mt)

= e
−

(
Pru ·m0+(1−λ)

∑T
t=1 Prumt+λ

∑T
t=1 Prht mt

)
, (4.3)

where the inequality is by .(1 − x) ≤ e−x for .x ∈ [0, 1].
At the same time, letting .Pr(f (x) > α∗) < δ, we get

.e
−

(
Pru ·m0+(1−λ)

∑T
t=1 Prumt+λ

∑T
t=1 Prht mt

)
< δ, (4.4)

which results in the theorem by noticing that .m� >
∑T

t=1 mt . �

Some readers may question the assumption of independence in iterative sampling,
given that it is natural for the hypothesis learned in one iteration to be influenced by
the samples drawn in previous iterations. This is a valid concern since, in many cases,
the results of each iteration are used to refine the sampling process in subsequent
steps, potentially introducing dependencies.

However, it is important to clarify that in this context, we are focusing solely
on the sampling process itself, not the hypothesis or model that is derived from the
samples. The independence we refer to applies to the act of sampling, where each set
of samples is considered to be drawn independently from the underlying distribution,
regardless of the hypothesis generated in prior iterations. This means that while the
hypothesis evolves based on previous iterations, the sampling steps can still be treated
as independent actions under the statistical assumptions of the framework.

That said, the calculation of probabilities and any potential dependencies arising
from the iterative learning process are more complex. These will be discussed in
detail later in the chapter, where we explore how the interplay between sampling-
and-learning affects the overall convergence and performance of the algorithm.

38 4 Theoretical Foundation

4.4 Performance Bound for SAC Framework

To further proceed with the analysis, we consider the SAC framework in this section.
According to Theorem 4.1, we need to estimate an upper bound of .Prh , i.e., how
likely the distribution .Tht will lead to a good solution.

We have a lower bound on the success probability as in Lemma 4.1, which implies
that without any prior knowledge, uniform distribution is the best worst case.

Lemma 4.1 For any minimization problem . f , any approximation level .α∗ > 0, any
hypothesis . h, the probability that a sample drawn from an arbitrary distribution . Th
defined on .Dh will lead to a solution in .Dα∗ is lower bounded as

. Prh = Pr(x ∈ Dα∗ | x ∼ UDh) ≥ μ(Dα∗ ∩ Dh)

μ(Dh)
− √

2DKL(Th‖UDh)

Proof The proof starts from the definition of the probability,

. Prh =
∫
Dh

Th(x) · I(x ∈ Dα∗) dx

=
∫
Dh

(Th(x) − UDh (x) + UDh (x)) · I(x ∈ Dα∗) dx

= μ(Dα∗ ∩ Dh)

μ(Dh)
+

∫
Dh

(Th(x) − UDh (x)) · I(x ∈ Dα∗) dx

≥ μ(Dα∗ ∩ Dh)

μ(Dh)
− sup

f :X→[−1,1]

∫
Dh

| f (x)Th(x) − f (x)UDh (x)| dx

≥ μ(Dα∗ ∩ Dh)

μ(Dh)
− √

2DKL(Th‖UDh), (4.5)

where the last inequality is by Pinsker’s inequality. �

We cannot determine.Dh , but we know that. h is derived by a binary classification
learning algorithm from a data set which is labeled according to .Dαt for given . t . A
classifier may not be completely correct. We denote .εD as the generalization error
of . h under the distribution . D, defined as

.εD =
∫
X
D(x)I

(
h(x) �= (2I(x ∈ Dαt) − 1)

)
dx. (4.6)

Meanwhile, we denote .ε̂D as the training error of . h, which is the error on the data
set drawn from the distribution . D.

For binary classification, we know that the generalization error, which is the
expected misclassification rate, can be bounded above by the training error, which
is the misclassification rate in the seen examples, as well as the generalization gap
involving the complexity of the hypothesis space indicated by the VC-dimension [3],
as in Lemma 4.2.

4.4 Performance Bound for SAC Framework 39

Lemma 4.2 ([3]) Let.H = {h : X → {−1,+1}} be the hypothesis space containing
a family of binary classification functions and .VC(H) = d. If there exist .m samples
i.i.d. from .X according to some fixed unknown distribution . D, then, .∀ h ∈ H and
.∀ 0 < η < 1, the following upper bound holds true with probability at least .1 − η:

.εD ≤ ε̂D +
√
8m−1

(
d log (2emd−1) + log (4η−1)

)
(4.7)

where.εD is the expected error rate of. h over. D and.ε̂D is the error rate in the sampled
examples from . D. When .ε̂D = 0,

.εD ≤ 2m−1(d log (2emd−1) + log (2η−1)
)
. (4.8)

Again by Pinsker’s inequality, we know that the error.εD under the distribution. D
can be converted to the error .εU under the uniform distribution, as

. εU ≤ εD + √
2DKL(D‖U)

≤ ε̂D +
√

8

m

(
d log 2emd−1 + log 4η−1

) + √
2DKL(D‖U), (4.9)

where we only take into account the event that the generalization inequality holds with
probability .1 − η. For simplicity, we denote the right-hand side as .�m,η

ε̂D,d,DKL (D‖U)
,

which decreases with .m and . η, and increases with .ε̂D, . d, and .DKL(D‖U).
We can use this result to eliminate the need for.Dh in Lemma 4.1. In every iteration

of SAC algorithms, there are .mt samples collected.

Theorem 4.2 For any minimization problem. f , any constant.η > 0, and any approx-
imation level .α∗ > 0, the average success probability of sampling from the learned
hypothesis of any SAC algorithm is bounded below as

. Prh ≥ 1 − η∑T
t=1 mt

T∑
t=1

mt

(
μ(Dα∗) − 2�mt ,η

ε̂Dt ,d,DKL (Dt‖UX)

μ(Dαt) + �
mt ,η
ε̂Dt ,d,DKL (Dt‖UX)

−
√
2DKL(Tht‖UDht

)

)
,

(4.10)

where .Dt = λTht + (1 − λ)UX is the sampling distribution at iteration . t , .ε̂Dt is the
training error rate of . ht , and . d is the VC-dimension of the learning algorithm.

Proof We follow Lemma 4.1, and examine the terms.μ(Dα∗ ∩ Dht) and.μ(Dht). By
set operators,

. μ(Dα∗ ∩ Dht) = μ(Dα∗ ∪ Dht) − μ(Dα∗�Dht)

≥ μ(Dα∗ ∪ Dht) − μ(Dα∗�Dαt) − μ(Dαt�Dht)

= μ(Dα∗ ∪ Dht) − μ(Dα∗�Dαt) − εU ,t

= μ(Dα∗ ∪ Dht) + μ(Dα∗) − μ(Dαt) − εU ,t , (4.11)

40 4 Theoretical Foundation

where .� is the symmetric difference operator of two sets, the first inequality is by
the triangle inequality, and the last equation is by the fact that .Dα∗ is contained in
.Dαt .

Since .

∣∣μ(Dht) − μ(Dαt)
∣∣ ≤ μ(Dht�Dαt) = εU ,t , we can bound .μ(Dht) as

. μ(Dαt) + εU ,t ≥ μ(Dht) ≥ μ(Dαt) − εU ,t .

Applying the above bounds to Lemma 4.1, the success probability of sampling
from.ht is lower bounded as

. Prht ≥ μ(Dα∗ ∪ Dht)

μ(Dht)
− √

2DKL(Th‖UDh)

≥ μ(Dα∗ ∪ Dht) + μ(Dα∗) − μ(Dαt) − εU ,t

μ(Dαt) + εU ,t
−

√
2DKL(Tht‖UDht

)

≥ μ(Dht) + μ(Dα∗) − μ(Dαt) − εU ,t

μ(Dαt) + εU ,t
−

√
2DKL(Tht‖UDht

)

≥ μ(Dα∗) − 2εU ,t

μ(Dαt) + εU ,t
−

√
2DKL(Tht‖UDht

). (4.12)

Substituting this lower bound and the probability .1 − η of the generalization bound
into .Prh yields the theorem. �

Combining Theorems 4.1 and 4.2 results in an upper bound on the sampling
complexity of SAC algorithms. Although the expression is sophisticated, it can still
reveal relative variables that generally affect the complexity. One could design vari-
ous distributions for .Th to sample potential solutions; however, without any a priori
knowledge, uniform sampling will lead to the best worst-case performance. Mean-
while, without any a priori knowledge, a small training error at each stage from a
learning algorithm with a small VC-dimension will improve the performance.

4.5 Error-Target Dependence and Shrinking Rate

Next, we focus on the SAC framework and derive a more specific upper bound on
its .(ε, δ)-query complexity. The bound reveals two critical factors that influence the
performance of the SAC framework: the error-target dependence and the shrinking
rate.

Definition 4.3 (Error-target.θ-dependence) Given a SAC algorithm . A, the error-
target dependence of .A is the smallest constant .θ ≥ 0 such that for all .ε > 0 and all
iterations . t ,

. μ(Dε) · μ(Dαt �Dht) − θμ(Dε)

≤ μ(Dε ∩ (Dαt �Dht))

≤ μ(Dε) · μ(Dαt �Dht) + θμ(Dε), (4.13)

4.5 Error-Target Dependence and Shrinking Rate 41

where the operator .� is the symmetric difference of two sets, i.e., . A1�A2 =
(A1 ∪ A2) − (A1 ∩ A2). It characterizes, when sampling a solution . x from .UX , the
dependence between the random variable that whether.x ∈ Dαt�Dht and the random
variable that whether .x ∈ Dε.

The error-target dependence measures the alignment between the classification
error and the target.ε-optimal set. A smaller. θ indicates a better alignment, with. θ = 0
implying that the classification error is independent of the target set.

Definition 4.4 (.γ-Shrinking rate) Given a SAC algorithm . A, the shrinking rate of
.A is the largest constant .γ > 0 such that for all iterations . t ,

.μ(Dht) ≤ γμ(Dαt). (4.14)

The shrinking rate quantifies the reduction in the volume of the positive region of
the learned hypothesis compared to the .αt -sublevel set. Note that the rate does not
imply any overlap between the positive region and the .αt -sublevel set.

Using these definitions, we can derive a performance bound for the SAC frame-
work with the parameters. θ and. γ. Note these parameters do not weaken the generality
of the analysis.

Theorem 4.3 (Parameterized bound for SAC) Given an objective function . f and
constants .ε > 0 and .0 < δ < 1, the .(ε, δ)-query complexity of a SAC algorithm . A
on . f with error-target dependence . θ and shrinking rate . γ is upper bounded by

.TA, f (ε, δ) ≤ O

⎛
⎝ 1

μ(Dε)

(
(1 − λ) + λ

γT

T∑
t=1

1 − θ − εDt
1−λ

μ(Dαt)

)−1

ln
1

δ

⎞
⎠ , (4.15)

where .λ ∈ [0, 1] is the balancing parameter and .εt is an upper bound on the
generalization error of the learned hypothesis .ht at iteration . t .

Theorem 4.3 discloses that the error-target.θ-dependence and the.γ-shrinking rate
are two important factors. It can be observed that the smaller . θ and . γ, the better the
query complexity.

The proof of Theorem 4.3 follows a similar structure to the proof of Theorem
4.1, with additional steps to incorporate the error-target dependence and the shrink-
ing rate. To prove this theorem, our strategy is to refine the bound of . μ(Dε ∩ Dht)

under the error-target .θ-dependence condition and the bound of .μ(Dht) under the
.γ-shrinking rate condition, respectively.

Lemma 4.3 For the classifier-based optimization algorithms under the condition of
error-target .θ-dependence,

. μ(Dε ∩ Dht) ≥ μ(Dε) · (1 − εUX ,t − θ)

holds for all . t , where .εUX ,t is the generalization error of .ht under .UX in iteration . t .

42 4 Theoretical Foundation

Proof Assume w.l.o.g. that .ε ≤ αt for all . t , we have

. μ(Dε ∩ Dht) = μ(Dε) − μ(Dε ∩ (Dαt�Dht))

≥ μ(Dε) − μ(Dε) · μ(Dαt�Dht) − θμ(Dε)

= μ(Dε)(1 − μ(Dαt�Dht) − θ),

where the first equality is by .Dε ⊆ Dαt , and the first inequality is by the condition
of error-target .θ-dependence.

Let .εUX ,t denote the generalization error of .ht under .UX in iteration . t , it can be
verified directly that .εUX ,t = μ(Dαt�Dht) under 0–1 loss. Thus, we have .μ(Dε ∩
Dht) ≥ μ(Dε)(1 − εUX ,t − θ). �

In order to refine Lemma 4.3, i.e., lower bound .μ(Dε ∩ Dht) using the gener-
alization error of .ht under the true sampling distribution . Dt = λUDht

+ (1 − λ)UX

instead of .UX , we need Lemma 4.4 below. It gives a relationship between .εUX ,t and
.εDt , where .εDt is the generalization error of .ht under .Dt in iteration . t .

Lemma 4.4 For any .ht ∈ H, let .Dt = λUDht
+ (1 − λ)UX , it holds for all . t that

.εUX ,t ≤ εDt /(1 − λ), where .λ ∈ (0, 1).

Proof We only consider continuous domains situation and omit finite discrete
domains situation since the proof procedure is quite similar. Let .D �=,t be the
region where .ht makes mistakes. Splitting .D �=,t into .D+

�=,t = D �=,t ∩ Dht and
.D−

�=,t = D �=,t − D+
�=,t , we can calculate the probability density . Dt (x) = λ 1

μ(Dht)
+

(1 − λ)
μ(Dht)

μ(X)
1

μ(Dht)
= λ 1

μ(Dht)
+ (1 − λ) 1

μ(X)
for any .x ∈ D+

�=,t , and . Dt (x) = (1 −
λ)

μ(X−Dht)

μ(X)
1

μ(X−Dht)
= (1 − λ) 1

μ(X)
for any .x ∈ D−

�=,t . Thus,

. εDt =
∫
X
Dt (x) · I[ht makes mistake on x] dx

=
∫
D �=,t

Dt (x) dx =
∫
D+

�=,t

Dt (x) dx +
∫
D−

�=,t

Dt (x) dx

≥
∫
D+

�=,t
(1 − λ)

1

μ(X)
dx +

∫
D−

�=,t
(1 − λ)

1

μ(X)
dx

= (1 − λ)εUX ,t ,

which proves the lemma. �

Combining Lemma 4.4 with Lemma 4.3, we can conclude that . μ(Dε ∩ Dht) ≥
μ(Dε) · (1 − θ − εDt /(1 − λ)). Meanwhile, the .γ-shrinking rate condition admits
.μ(Dht) ≤ γμ(Dαt) for all . t directly. So far, the proof of Theorem 4.3 becomes clear,
and is presented as follows.

4.6 Functions with Local Lipschitz Continuity 43

Proof (Theorem 4.3) By Lemma 4.1 and the assumption of .Tht = UDht
,

.DKL(Tht‖UDht
) = 0 and thus .Prht ≥ μ(Dε ∩ Dht)/μ(Dht) for all . t . Combining

it with the refined bounds of .μ(Dε ∩ Dht) and .μ(Dht) results in that

. Prht ≥ (1 − θ − εDt /(1 − λ)) · μ(Dε)

γ · μ(Dαt)
.

Finally, by the definition of .Prh and Theorem 4.1 we prove the theorem. �

Theorem 4.3 highlights the importance of the error-target dependence and the
shrinking rate in determining the performance of the SAC framework. A smaller
error-target dependence (. θ) and a smaller shrinking rate (. γ) lead to a tighter upper
bound on the .(ε, δ)-query complexity, indicating better sample efficiency.

Despite the generality of the performance bound, we still need to understand on
what kind of optimization problems SAC algorithms can perform well. We investigate
two classes of objective functions: functions satisfying the local Lipschitz condition
and functions with bounded packing and covering numbers. We will show in the
following sections that SAC algorithms can be efficient on the two classes.

4.6 Functions with Local Lipschitz Continuity

We find that a class of functions .FL ⊆ F satisfying the local Lipschitz continuity
(Definition 4.5) can be efficiently optimized by SAC algorithms with error-target
dependence.θ < 1 and shrinking rate.γ > 0. For finite discrete domains, we consider
.X = {0, 1}n and let.‖x − y‖H denote the Hamming distance between.x, y ∈ {0, 1}n .
Definition 4.5 (Local Lipschitz) Given . f ∈ F , let .x∗ be a global minimum of . f ,
for all .x ∈ X , if .X = {0, 1}n , then there exist positive constants .β1,β2, L1, L2 such
that

. L2‖x − x∗‖β2
H ≤ f (x) − f (x∗) ≤ L1‖x − x∗‖β1

H ;

if X is a compact continuous domains, then there exist positive constants
.β1,β2, L1, L2 such that

. L2‖x − x∗‖β2
2 ≤ f (x) − f (x∗) ≤ L1‖x − x∗‖β1

2 .

Let .Fβ1,L1,β2,L2
L (⊆ F) denote the function class that satisfies the condition.

This condition guarantees that . f has a bounded change range around the global
minimum.x∗. Within this constraint, the landscape of . f can be quite complex, such
as having many local minima.

Note that we can have classification algorithms with the convergence rate of the
generalization error .Õ(1

m) ignoring other variables and logarithmic terms [3, 4],

44 4 Theoretical Foundation

where .m is the sample size for the learning. Thus we assume that classification
algorithms with convergence rate .�̃(1

m) will be employed. We then prove that SAC
algorithms have polynomial .(ε, δ)-query complexity for local Lipschitz problems in
both discrete and continuous domains.

Corollary 4.1 In finite discrete domains .X = {0, 1}n, given . f ∈ Fβ1,L1,β2,L2
L , . 0 <

δ < 1 and .0 < ε ≤ L1(
n
2)

β1 , for a classification-based optimization algorithm using
a classification algorithm with convergence rate .�̃(1

m), under the conditions that
error-target dependence .θ < 1 and shrinking rate .γ > 0, its (. ε,. δ)-query complexity
belongs to .poly(1

ε
, n, 1

β1
,β2, ln L1, ln 1

L2
) · ln 1

δ
.

Proof Following the proof procedure of Theorem 4.3, letting .λ = 1/2, we have

. Prh ≥ 1

T

T∑
t=1

(Kt · μ(Dε))/(γ · μ(Dαt)),

where .Kt = 1 − θ − 2εDt . Assume that .θ < 1, there must exist a constant . K > 0
such that .Kt ≥ K as long as .εDt < (1 − θ)/2 for all . t .

Under the assumption of employing classification algorithms with convergence
rate.�̃(1

m),.εDt < (1 − θ)/2 can be guaranteed if the sampled solution size. m in each
iteration belongs to .poly(1

ε
, n) [3]. Letting .K ′ = K/γ, we therefore obtain that

. Prh ≥ 1

T

T∑
t=1

K · μ(Dε)

γ · μ(Dαt)
= K ′

T

T∑
t=1

μ(Dε)

μ(Dαt)
.

Since . f ∈ Fβ1,L1,β2,L2
L has local Lipschitz continuity, we know

. L2‖x − x∗‖β2
H ≤ f (x) − f (x∗) ≤ L1‖x − x∗‖β1

H .

Denote .D̃ε = {x ∈ X | ‖x − x∗‖β1
H ≤ ε

L1
}. It can be verified directly that . D̃ε ⊆ Dε

and thus .μ(D̃ε) ≤ μ(Dε).
Let .α′

t = αt − f (x∗) and we assume that .α′
t > 0,

. Dαt = {x ∈ X | f (x) ≤ αt } = {x ∈ X | f (x) − f (x∗) ≤ α′
t }.

Denote .D̃αt = {x ∈ X | ‖x − x∗‖β2
H ≤ α′

t
L2

}. Similarly, we have .Dαt ⊆ D̃αt and thus

.μ(Dαt) ≤ μ(D̃αt).

For simplicity, we assume that .(ε
L1

)
1
β1 and .(α′

t
L2

)
1

β2 are both positive integers. By
the definition of Hamming distance, we have

.μ(D̃ε) =
(ε
L1

)
1
β1∑

i=0

(
n

i

)
and μ(D̃αt) =

(
α′
t

L2
)

1
β2∑

i=0

(
n

i

)
.

4.6 Functions with Local Lipschitz Continuity 45

Let.H(p) = −p log p − (1 − p) log(1 − p)which is the binary entropy function of
. p, where .0 ≤ p ≤ 1 and.H(p) = 0 for .p = 0, 1. Then, the following inequality [1]
holds for all integers .0 ≤ k ≤ n with . p = k/n ≤ 1/2

.
1

1 + √
8np(1 − p)

· 2nH(p) ≤
k∑

i=0

(
n

i

)
≤ 2nH(p).

Since .0 < ε ≤ L1(
n
2)

β1 , we have .(ε
L1

)
1

β1 ≤ n
2 . Meanwhile, choosing .α′

t = 2L2
2t for

all . t can guarantee that .(α′
t

L2
)

1
β2 ≤ n

2 for all . t because .(α′
1

L2
) = 1 ≤ (n2)

β2 for .n ≥ 2.

If .n = 1, we can still choose smaller .α′
t s.t. .(

α′
t

L2
)

1
β2 ≤ n

2 , and we omit the details

since it is easy to verify. Combing the above statement with the inequality . Prh ≥
K ′
T

∑T
t=1 μ(Dε)/μ(Dαt), we have

. Prh ≥ K ′

T

T∑
t=1

μ(D̃ε)

μ(D̃αt)
= K ′

T

T∑
t=1

μ(D̃ε)

μ(D̃αt)

= K ′

T

T∑
t=1

∑(ε
L1

)
1
β1

i=0

(n
i

)
∑(

α′
t

L2
)

1
β2

i=0

(n
i

)

≥ K ′

T
· 2nH

(
(ε
L1

)
1
β1

)
1 +

√
8(ε

L1
)

1
β1

(
1 − (ε

L1
)

1
β1 /n

)
T∑
t=1

2−nH
(
(

α′
t

L2
)

1
β2

)
.

Let the number of iterations . T to approach .(α′
T

L2
)

1
β2 = (ε

L1
)

1
β1 . Solving this equation

results in that

. T = β2

β1
log

L1

ε
+ 1 ∈ poly

(
1

ε
, n,

1

β1
,β2, log L1

)
.

For simplicity, we assume that . β2

β1
log L1

ε
+ 1 is a positive integer and let the SAC

algorithm run .T = β2

β1
log L1

ε
+ 1 number of iterations. Now, we can conclude that

. Prh ≥
(
poly(

1

ε
, n,

1

β1
,β2, log L1, log

1

L2
)

)−1

.

Substituting this bound into Theorem 4.1, we have

.(m + 1)T ∈ poly(
1

ε
, n,

1

β1
,β2, ln L1, ln

1

L2
) · ln 1

δ
,

46 4 Theoretical Foundation

with probability at least .1 − δ. Finally, combining the fact that . εDt < (1 − θ)/2
can be guaranteed with .poly(1

ε
, n) sampled solutions in each iteration and . T ∈

poly(1
ε
, n, 1

β1
,β2, ln L1), the (. ε,. δ)-query complexity of the SAC algorithms belongs

to .poly(1
ε
, n, 1

β1
,β2, ln L1, ln 1

L2
) · ln 1

δ
. �

Corollary 4.2 In compact continuous domains. X, given. f ∈ Fβ1,L1,β2,L2
L ,. 0 < δ < 1

and .ε > 0, for a classification-based optimization algorithm using a classifica-
tion algorithm with convergence rate .�̃(1

m), under the conditions that error-target
dependence .θ < 1 and shrinking rate .γ > 0, its (. ε,. δ)-query complexity belongs to
.poly(1

ε
, n, 1

β1
,β2, ln L1, ln 1

L2
) · ln 1

δ
.

The proof is very similar with that of Corollary 4.1, only except that .μ(D̃ε) is the

volume of.�2 ball of radius.(ε
L1

)
1
β1 in.R

n which is proportional to.(ε
L1

)
n
β1 , and. μ(D̃αt)

is the volume of .�2 ball of radius .(
α′
t

L2
)

1
β2 in .R

n which is proportional to .(
α′
t

L2
)

n
β2 .

4.7 Functions with Bounded Packing and Covering
Numbers

More generally, instead of the local Lipschitz continuity for compact continu-
ous domains, we present another sufficient condition under which . f can be effi-
ciently optimized by classification-based optimization algorithms, using the .η-
Packing Number and .η-Covering Number (Definition 4.6). Recall that . Dε = {x ∈
X | f (x) − f (x∗) ≤ ε} for any .ε > 0. Let .α′

t = αt − f (x∗) and we assume that
.α′

t > 0.

Definition 4.6 (.η-Packing Number & .η-Covering Number) .η-Packing Number is
the largest.Np ≥ 0 such that, there exists.C1 > 0, for all .ε > 0, the maximal number
of disjoint .�2-balls of radius .ηε contained in .Dε with center in .Dε is not less than
.C1ε

−Np .
Meanwhile, .η-Covering Number is the smallest .Nc ≥ 0 such that, there exists

.C2 > 0, for all .ε > 0, the minimal number of .�2-balls of radius .ηε with center in . X
covering .Dε is not larger than .C2ε

−Nc .

Corollary 4.3 In compact continuous domains . X, given . f ∈ F satisfying
.
∑T

t=1 (α′
t)
Nc−n ∈ �

(
εNp−n

)
, where .Np and .Nc are its .η-Packing and .η-Covering

numbers, respectively, .0 < δ < 1 and .ε > 0, for a classification-based optimization
algorithm using the classification algorithms with convergence rate .�̃(1

m) , under
the conditions that error-target dependence .θ < 1 and shrinking rate .γ > 0, its
(. ε,. δ)-query complexity belongs to .poly(1

ε
, n) · ln 1

δ
.

Proof By the proof procedure of Theorem 4.3, letting .λ = 1/2, we have . Prh ≥
1
T

∑T
t=1(Kt · μ(Dε))/(γ · μ(Dαt)), where .Kt = 1 − 2εDt − θ. Assume that .θ < 1,

since.Kt = 1 − 2εDt − θ for all . t , there must exist a constant .K > 0 such that .Kt ≥

4.7 Functions with Bounded Packing and Covering Numbers 47

K as long as .εDt < (1 − θ)/2 for all . t . Under the assumption of classifier-based
optimization using the classification algorithms with convergence rate .�̃(1

m), . εDt <

(1 − θ)/2 can be guaranteed if the sampled solution size. m in each iteration belongs
to .poly(1

ε
, n) [3]. Letting .K ′ = K/γ, we therefore obtain that . Prh ≥ 1

T

∑T
t=1(K ·

μ(Dε))/(γ · μ(Dαt)) = K ′
T

∑T
t=1 μ(Dε)/μ(Dαt).

Recall that .Dε = {x ∈ X | f (x) − f (x∗) ≤ ε} for any .ε > 0. Let . α′
t = αt −

f (x∗) and we assume that .α′
t > 0, thus, . Dαt = {x ∈ X | f (x) ≤ αt } = {x ∈ X |

f (x) − f (x∗) ≤ α′
t }. Let .V (Dε), .V (Dαt) and .V (ηε) denote the volume of .Dε, . Dαt

and.�2 ball of radius .ηε in .R
n respectively. By the definition of .Np and.Nc, we have

. C1ε
−Np · V (ηε) ≤ V (Dε) = μ(Dε) ≤ C2ε

−Nc · V (ηε),

. C1(α
′
t)

−Np · V (ηα′
t) ≤ V (Dαt) = μ(Dαt) ≤ C2(α

′
t)

−Nc · V (ηα′
t).

Note that the volume of .�2 ball of radius .ηε in .R
n is . πn/2

�(n/2+1) (ηε)n . Combing it with

the inequality .Prh ≥ K ′
T

∑T
t=1 μ(Dε)/μ(Dαt), we have

. Prh ≥ K ′

T

T∑
t=1

μ(Dε)

μ(Dαt)
= K ′

T

T∑
t=1

μ(Dε)

μ(Dαt)

≥ K ′

T

T∑
t=1

C1ε
−Np · V (ηε)

C2(α
′
t)

−Nc · V (ηα′
t)

= K ′

T

T∑
t=1

C1ε
−Np · (ηε)n

C2(α
′
t)

−Nc · (ηα′
t)
n

= C1K ′

C2T

T∑
t=1

εn−Np

(α′
t)
n−Nc

= C1K ′ · εn−Np

C2T

T∑
t=1

(α′
t)
Nc−n.

Let .T ∈ poly(1
ε
, n), if the problem. f ∈ F satisfying.

∑T
t=1 (α′

t)
Nc−n ∈ �

(
εNp−n

)
,

we can conclude that .Prh ≥ (
poly(1

ε
, n)

)−1
.

Substituting .Prh ≥ (
poly(1

ε
, n)

)−1
into Theorem 4.1, we have . (m + 1)T ∈

poly(1
ε
, n) · ln 1

δ
, with probability at least .1 − δ. Finally, combining the fact that

.εDt < (1 − θ)/2 can be guaranteed with .poly(1
ε
, n) sampled solutions in each

iteration and .T ∈ poly(1
ε
, n), the (. ε,. δ)-query complexity of the classifier-based

optimization algorithms belongs to .poly(1
ε
, n) · ln 1

δ
. �

For continuous domains, we have .Np ≤ Nc. Because if we let .V (Dε) and. V (ηε)
denote the volume of .Dε and .�2 ball of radius .ηε in .Rn respectively, then it holds
that .C1ε

−Np · V (ηε) ≤ V (Dε) ≤ C2ε
−Nc · V (ηε). It is worthwhile to point out that

if .Nc = Np = n, the condition .
∑T

t=1 (α′
t)
Nc−n ∈ �

(
εNp−n

)
can always be satis-

fied, which implies that classification-based optimization is efficient on this class of
functions.

48 4 Theoretical Foundation

4.8 Summary

In this chapter, we presented a theoretical analysis of the sampling-and-learning
(SAL) and sampling-and-classification (SAC) frameworks for derivative-free opti-
mization. We introduced the concept of.(ε, δ)-query complexity to measure the sam-
ple efficiency of these frameworks and derived general performance bounds in terms
of the success probability of sampling from the learned models.

For the SAC framework, we identified two key factors that influence its perfor-
mance: the error-target dependence and the shrinking rate. We showed that under
certain conditions on these factors, the SAC framework can achieve a polynomial
query complexity for functions satisfying the local Lipschitz condition and functions
with bounded packing and covering numbers.

Our theoretical results provide insights into the behavior of the SAL and SAC
frameworks and highlight the importance of the alignment between the learned mod-
els and the target .ε-optimal set. They also shed light on the role of the problem
geometry and the complexity of the objective function in determining the sample
efficiency of these frameworks.

The analysis presented in this chapter has several practical implications. It pro-
vides guidance on designing effective learning algorithms for the SAL and SAC
frameworks by focusing on reducing the generalization error and improving the
alignment with the target set. It also suggests strategies for selecting the thresholds
and the balancing parameter to achieve a desired trade-off between exploration and
exploitation.

Furthermore, our theoretical results can help develop new derivative-free opti-
mization algorithms by incorporating the insights gained from the analysis. For
example, one could design adaptive strategies for setting the thresholds based on the
estimated error-target dependence or the shrinking rate. One could also explore hybrid
approaches that combine the strengths of different learning algorithms or incorpo-
rate prior knowledge about the problem geometry. We have also noticed the latest
study proposed the hypothesis-target .η-shattering rate to replace the error-target
.θ-dependence for achieving tighter bounds [2].

References

1. Ash RB (1990) Information theory. Dover Publications Inc., New York
2. Han T, Li J, Guo Z, Jin Y (2025) Scalable acceleration for classification-based derivative-free

optimization. In: Proceedings of the 39st AAAI conference on artificial intelligence (AAAI’25),
Philadelphia, PA

3. Kearns MJ, Vazirani UV (1994) An introduction to computational learning theory. MIT Press,
Cambridge, MA

4. Vapnik V (2000) The nature of statistical learning theory. Springer Science & Business Media

Chapter 5
Basic Algorithm

Abstract This chapter introduces the Racos (RAndomized COordinate Shrinking)
optimization algorithm, a novel approach designed to address complex optimization
problems in both continuous and discrete search spaces. Building on the theoretical
insights from the previous chapter, Racos minimizes critical factors such as error-
target dependence and shrinking rate to enhance optimization efficiency. The algo-
rithm integrates a randomized coordinate shrinking classification technique, which
effectively balances exploration and exploitation in the search process. The chapter
is structured as follows: Sect. 5.1 details the Racos algorithm, Sect. 5.2 presents
empirical evaluations on benchmark functions, Sect. 5.3 applies Racos to spectral
clustering tasks, and Sect. 5.4 examines its performance in classification tasks using
Ramp loss. Experimental results demonstrate Racos’s superiority over state-of-the-
art derivative-free optimization methods, highlighting its scalability, robustness, and
effectiveness in high-dimensional and complex optimization scenarios.

In the previous chapter, we presented a theoretical analysis of the sampling-and-
classification (SAC) framework and identified two critical factors that influence
its performance: the error-target dependence and the shrinking rate. The analysis
revealed that these factors should be as small as possible to achieve better optimiza-
tion efficiency. Inspired by these findings, we present a novel classification algorithm
called the randomized coordinate shrinking algorithm, which aims to learn a discrim-
inative model while keeping the error-target dependence and the shrinking rate small.

In this chapter, we introduce the randomized coordinate shrinking algorithm and
its integration into the SAC framework, resulting in a new optimization algorithm
called Racos (RAndomized COordinate Shrinking) [14]. Racos is designed to effec-
tively optimize both continuous and discrete search spaces by leveraging the insights
gained from the theoretical analysis. We conduct extensive experiments to compare
Racos with popular derivative-free optimization methods on various optimization
benchmarks and machine learning tasks, including spectral clustering and classifica-
tion with Ramp loss. The experimental results demonstrate the superiority of Racos
over the compared methods, highlighting its effectiveness and efficiency in solving
complex optimization problems.

The rest of this chapter is organized as follows. Section 5.1 presents the random-
ized coordinate shrinking algorithm and its integration into the Racos optimization

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025
Y. Yu et al., Derivative-Free Optimization, Machine Learning: Foundations,
Methodologies, and Applications, https://doi.org/10.1007/978-981-96-5929-6_5

49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-5929-6_5&domain=pdf
https://doi.org/10.1007/978-981-96-5929-6_5
https://doi.org/10.1007/978-981-96-5929-6_5
https://doi.org/10.1007/978-981-96-5929-6_5
https://doi.org/10.1007/978-981-96-5929-6_5
https://doi.org/10.1007/978-981-96-5929-6_5
https://doi.org/10.1007/978-981-96-5929-6_5
https://doi.org/10.1007/978-981-96-5929-6_5
https://doi.org/10.1007/978-981-96-5929-6_5
https://doi.org/10.1007/978-981-96-5929-6_5
https://doi.org/10.1007/978-981-96-5929-6_5
https://doi.org/10.1007/978-981-96-5929-6_5

50 5 Basic Algorithm

algorithm. Section 5.2 describes the experimental setup and presents the empirical
results on optimization testing functions, comparing Racos with state-of-the-art
derivative-free optimization algorithms. Section 5.3 evaluates Racos on the spectral
clustering task and compares its performance with classical clustering algorithms
and evolutionary optimization methods. Section 5.4 investigates the effectiveness of
Racos on the classification task with Ramp loss and compares it with gradient-based
and derivative-free optimization approaches. Finally, Sect. 5.5 summarizes the key
findings and highlights the advantages of Racos in high-dimensional and complex
optimization problems.

5.1 The RACOS Optimization Algorithm

Theorem 4.3 in Chap. 4 has revealed that two critical factors, the error-target depen-
dence and shrinking rate, should be as small as possible to achieve better optimization
performance. However, these factors are not typically considered in traditional clas-
sification algorithms. Therefore, we need to design a new classification algorithm
that explicitly takes these factors into account.

Algorithm 5.1 Racos
Require:

f : Objective function to be minimized;
C: A binary classification algorithm;
λ: Balancing parameter;
T ∈ N+: Number of iterations;
m ∈ N+: Sample size in each iteration;
k ∈ N+(≤ m): Number of positive samples;
Sampling: Sampling sub-procedure;
Selection: Decide the positive/negative solutions.

Ensure:
1: Collect S0 = {x1, . . . , xm} by i.i.d. sampling from UX
2: B0 = {(x1, y1), . . . , (xm , ym)}, ∀xi ∈ S0 : yi = f (xi)
3: Let (̃x, ỹ) = arg min(x,y)∈B+ y
4: for t = 1 to T do
5: (B+

t , B−
t) = Selection(Bt−1; k), Bt = B+

t
6: for i = 1 to m do
7: hi = C(B+

t , B−
t)

8: xi =
{
Sampling(UDhi

) w.p. λ
Sampling(UX) w.p. 1 − λ

9: yi = f (xi) and let Bt = Bt ∪ {(xi , yi)}
10: end for
11: (̃x, ỹ) = arg min(x,y)∈Bt∪{(̃x, ̃y)} y
12: end for
13: return (̃x, ỹ)

5.1 The Racos Optimization Algorithm 51

Inspired by the classical and simple version space learning algorithm [6], we
present the randomized coordinate shrinking classification algorithm. Given a set of
positive and negative solutions, the algorithm maintains an axis-parallel rectangle
that covers all the positive solutions while excluding the negative ones. The learning
process is highly randomized, and the rectangle is largely shrunk to meet the desired
properties of small error-target dependence and shrinking rate.

The detailed steps of the proposed learning algorithm are depicted in
Algorithm 5.2. The algorithm takes as input a set of solutions .Bt with their corre-
sponding objective values, which consists of positive and negative solutions accord-
ing to a threshold .αt (cf. Algorithm 3.3 in Chap. 3). The goal is to discriminate a
randomly selected positive solution (line 1) from the negative ones. In line 2, . Dht
denotes the positive region of the learned hypothesis . ht , and . I is the index set of
dimensions.

Algorithm 5.2 The randomized coordinate shrinking classification algorithm for
X = {0, 1}n or [0, 1]n
Require:

t : Current iteration number;
B+
t , B−

t : Positive and negative solution sets in iteration t ;
X : Solution space ({0, 1}n or [0, 1]n);
I : Index set of coordinates;
M ∈ N+: Maximum number of uncertain coordinates.

Ensure:
1: Randomly select x+ = (x (1)

+ , . . . , x (n)
+) from B+

t
2: Let Dht = X , I = {1, . . . , n}
3: while ∃x ∈ B−

t s.t. ht (x) = +1 do
4: if X = {0, 1}n then
5: k = randomly selected index from the index set I
6: Dht = Dht − {x ∈ X | x (k) �= x (k)

+ }, I = I − {k}
7: end if
8: if X = [0, 1]n then
9: k = randomly selected index from the index set I
10: x− = randomly selected solution from B−

t

11: if x (k)
+ ≥ x (k)

− then

12: r = uniformly sampled value in (x (k)
− , x (k)

+)
13: Dht = Dht − {x ∈ X | x (k) < r}
14: else
15: r = uniformly sampled value in (x (k)

+ , x (k)
−)

16: Dht = Dht − {x ∈ X | x (k) > r}
17: end if
18: end if
19: end while
20: while |I | > M do
21: k = randomly selected index from the index set I
22: Dht = Dht − {x ∈ X | x (k) �= x (k)

+ }, I = I − {k}
23: end while
24: return ht

52 5 Basic Algorithm

The algorithm consists of two main steps: learning with randomness until all neg-
ative solutions have been excluded (lines 3–19) and shrinking (lines 20–23). In the
learning step, we consider both discrete (.X = {0, 1}n) and continuous (.X = [0, 1]n)
domains. For the discrete domain (lines 4–7), the algorithm randomly selects a dimen-
sion and collapses that dimension to the value of the positive solution (lines 5–6). For
the continuous domain (lines 8–18), the algorithm sets the upper or lower bound on a
randomly chosen dimension to exclude negative solutions (lines 11–17). This process
can be easily extended to larger vocabulary sets or general box constraints. Finally,
lines 20–23 further shrink the classifier to leave only .M dimensions uncollapsed,
applicable to both discrete and continuous domains. This learning algorithm with
high-level randomness achieves a positive region with a small error-target depen-
dence and largely reduces the positive region for a small shrinking rate.

By incorporating this classification algorithm into Algorithm 5.1 (implement-
ing the . C in line 7), we obtain the Racos optimization algorithm. Note that the
Sampling procedure of Algorithm 3.3 (line 8) simply draws a solution uni-
formly from the rectangular positive area defined by the learned hypothesis. The
Selection procedure simply select the top . k solutions to be positive.

5.2 Empirical Study on Testing Functions

We first empirically evaluate Racos on minimizing two benchmark testing functions:
the convex Sphere function and the highly non-convex Ackley function, defined as
follows:

.Sphere: f (x) =
n∑

i=1

(xi − 0.2)2, (5.1)

.Ackley: f (x) = −20e
(
− 1

5

√
1
n

∑n
i=1 (xi−0.2)2

)
− e(

1
n

∑n
i=1 cos 2πxi) + e + 20. (5.2)

The goal is to minimize these functions within the solution space.X = [0, 1]n , where
the global minimum values are . 0. Note that although the two functions look quite
different, they both satisfy local Lipschitz continuity. We expect Racos performs
good on the two functions, particularly on the sophisticated Ackley function.

We compare Racos with the following state-of-the-art derivative-free optimiza-
tion algorithms:

• Simultaneous Optimistic Optimization (SOO) [8, 9].
• Random Embedding Bayesian Optimization (REMBO) [13].
• Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [5].

The implementations of these algorithms are provided by their respective authors.
To study the scalability of the algorithms with respect to the dimensionality of

the solution space, we set .n ∈ {10, 100, 500, 1000} and fix the maximum number of
function evaluations to .30n for all algorithms. To investigate the convergence rate

5.3 Empirical Study on Clustering Task 53

Fig. 5.1 Comparing the scalability with.30n evaluations in a and b, and the convergence rate with
.n = 500 in c and d [14]

with respect to the number of function evaluations, we choose.n = 500 and vary the
total number of function evaluations from.5 × 103 to.2 × 105 for the Sphere function
and from.5 × 103 to .5 × 104 for the Ackley function.

Each algorithm is run independently for 30 times, and the mean of the achieved
objective values is reported in Fig. 5.1.

Figure 5.1a, b show that Racos achieves the lowest growth rate as the dimen-
sion increases, indicating its superior scalability compared to the other algorithms.
Figure 5.1c, d demonstrate that Racos reduces the objective function value at the
highest rate, implying its consistently faster convergence than the other methods.

5.3 Empirical Study on Clustering Task

Next, we evaluate Racos on a kind of machine learning task, i.e., clustering task.
Specifically, we consider the RatioCut problem. Given a dataset .V = {v1, . . . , vn},
the goal is to cluster the data points into two groups, .{A1, A2}, by minimizing the
inter-cluster similarity. The solution space is naturally represented by the discrete

54 5 Basic Algorithm

Table 5.1 Comparing the achieved objective values of the algorithms (mean. ± standard deviation)
[14]. In each column, the entry with the best (smallest) mean value is bolded. An entry marked with
a bullet (. •) indicates that it is significantly worse than the best algorithm according to a.t-test with
a confidence level of .5%. The last column counts the win/tie/loss of each algorithm compared to
Racos
Algo. Sonar Heart Ionosphere Breast Cancer German w/t/l to Racos

USC 3.91. ±0.00.• 79.67. ±0.00.• 54.21. ±0.00.• 200.62. ±0.00.• 239.00. ±0.00.• 0/0/5

GA 3.14. ±0.74 57.31. ±0.46 55.71. ±3.74.• 189.52. ±1.26 205.61. ±1.80.• 0/3/2

RLS 4.07. ±0.82.• 58.81. ±0.45.• 58.74. ±2.81.• 192.63. ±1.62.• 207.36. ±2.11.• 0/0/5

UMDA 7.40. ±2.26.• 58.76. ±1.02.• 61.77. ±4.54.• 193.58. ±3.56.• 212.83. ±1.08.• 0/0/5

CE 8.00. ±1.35.• 58.75. ±1.39.• 63.71. ±3.41.• 188.76. ±3.77 209.57. ±1.96.• 0/1/4

Racos 2.88. ±0.63 57.45. ±0.89 50.01. ±2.80 187.55. ±3.01 192.11. ±2.51 -/-/-

domain .X = {0, 1}n for the bipartition. The optimization objective is formulated
as

. f (A1, A2) =
2∑

i=1

1

|Ai |
∑

p∈Ai ,q /∈Ai

Wp,q over X, (5.3)

where.Wp,q = exp (−‖v p − vq‖22/σ2) is the similarity between.v p and. vq . The Rati-
oCut problem is known to be NP-hard.

We compare Racos with the following algorithms:

• Unnormalized Spectral Clustering (USC) [12]: a classical approximate algorithm
for the RatioCut problem.

• Genetic Algorithm (GA) [4]: using bit-wise mutation with probability .1/n and
one-bit crossover with probability .0.5.

• Randomized Local Search (RLS) [10]
• Univariate Marginal Distribution Algorithm (UMDA) [7]
• Cross-Entropy (CE) method [3].

The parameters for GA, RLS, UMDA, and CE are set according to the recommen-
dations in their respective references.

We use five binary UCI datasets [1]: Sonar, Heart, Ionosphere, Breast Cancer,
and German, with 208, 270, 351, 683, and 1000 instances, respectively. All features
are normalized into the range .[−1, 1].

The total number of calls to the objective function for GA, RLS, UMDA, CE,
and Racos is set to .30n. Each algorithm is run independently for 30 times on each
dataset. Table 5.1 reports the achieved objective values.

Table 5.1 shows that, according to a .t-test with a confidence level of .5%, Racos
is never worse than the other algorithms. It consistently outperforms USC, RLS, and
UMDA, and achieves significant wins over GA and CE. These results demonstrate
that Racos not only exhibits superior performance but also maintains stability across
different datasets.

5.4 Empirical Study on Classification with Ramp Loss 55

5.4 Empirical Study on Classification with Ramp Loss

We further evaluate Racos on another kind of machine learning task, i.e., classifi-
cation task with the Ramp loss function [2]. The Ramp loss is defined as

.Rs(z) = H1(z) − Hs(z) with s < 1, (5.4)

where .Hs(z) = max{0, s − z} is the Hinge loss with . s being the hinge point. The
objective is to find a vector .w and a scalar . b that minimize:

. f (w, b) = 1

2
‖w‖22 + C

L∑
�=1

Rs
(
y�(w

�v� + b)
)
, (5.5)

where .v� is the . �th training instance and .y� ∈ {−1,+1} is its corresponding label.
This objective function is similar to that of Support Vector Machines (SVM) [11], but
SVM uses the Hinge loss instead. Due to the convexity of the Hinge loss, the number
of support vectors in SVM increases linearly with the number of training instances,
which can be undesirable in terms of scalability. This issue can be alleviated by using
the Ramp loss [2].

We compare Racos with the following algorithms:

• Simultaneous Optimistic Optimization (SOO) [8, 9]
• Random Embedding Bayesian Optimization (REMBO) [13]
• Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [5]
• Concave-Convex Procedure (CCCP) [16]: a gradient-based non-convex optimiza-
tion approach for objective functions that can be decomposed into a convex sub-
function plus a concave sub-function.

We use two binary-class UCI datasets, Adult and USPS+N (0 vs. rest), which
were also used in [2]. The feature dimensions of these datasets are 123 and 256,
respectively. All features are normalized into the range .[0, 1] or .[−1, 1]. Since our
focus is on optimization performance, we compare the results on the training set.

To study the effectiveness of Racos under different hyper-parameter settings, we
test.s ∈ {−1, 0} and.C ∈ {0.1, 0.5, 1, 2, 5, 10}, as there are two hyper-parameters (. C
and . s) in the optimization formulation.

The total number of calls to the objective function is set to .40n for all algorithms
except CCCP, while CCCP runs until convergence. Each algorithm is run indepen-
dently for 30 times. The achieved objective values are reported in Fig. 5.2.

As shown in Fig. 5.2, Racos consistently achieves the best performance compared
to SOO, REMBO, and CMA-ES in all settings. It is worth noting that the optimization
difficulty increases with. C , as a smaller. C corresponds to an objective function closer
to being convex. On the USPS+N dataset, we observe that CCCP performs the best
when the objective function is very close to being convex (i.e., when .C is very
small), which can be attributed to its gradient-based nature. However, CCCP does

56 5 Basic Algorithm

Fig. 5.2 Comparing the achieved objective function values against the parameter .C of the classi-
fication with Ramp loss [14]

not perform well in highly non-convex scenarios. Furthermore, the advantage of
Racos becomes more pronounced as .C increases in all situations, indicating its
suitability for complex optimization tasks.

5.5 Summary

In this chapter, we introduced the randomized coordinate shrinking algorithm for
learning the classification model, inspired by the critical factors identified in Chap. 4.
By integrating this algorithm into the SAC framework, we presented the Racos
[15] optimization algorithm, which is applicable to both continuous and discrete
search spaces. Experimental results on optimization benchmarks and machine learn-
ing tasks, including spectral clustering and classification with Ramp loss, demon-
strated the superiority of Racos compared to other state-of-the-art optimization
methods.

References 57

Moreover, we observed that Racos exhibits better scalability in high-dimensional
optimization problems and maintains a clear advantage as the difficulty of the opti-
mization problem increases. These findings highlight the effectiveness and robustness
of Racos in tackling complex and challenging optimization tasks.

The success of Racos can be attributed to its ability to learn a discriminative model
while keeping the error-target dependence and the shrinking rate small, as suggested
by the theoretical analysis in Chap. 4. The randomized coordinate shrinking algorithm
effectively balances the trade-off between exploration and exploitation, enabling
Racos to efficiently navigate the search space and converge to high-quality solutions.

In the next chapter, we will further extend the Racos algorithm to handle opti-
mization problems with mixed continuous and discrete variables, as well as those
with black-box constraints. We will also explore the potential of integrating Racos
with other optimization techniques to develop more powerful and versatile optimiza-
tion algorithms.

References

1. Blake CL, Keogh E, Merz CJ (1998) UCI Repository of machine learning databases. http://
www.ics.uci.edu/~mlearn/MLRepository.html

2. R. Collobert, F. Sinz, J. Weston, and L. Bottou. Trading convexity for scalability. In Proceed-
ings of the 23rd International Conference on Machine learning, pages 201–208, Pittsburgh,
Pennsylvania, 2006

3. de Boer P, Kroese DP, Mannor S, Rubinstein RY (2005) A tutorial on the cross-entropy method.
Ann Oper Res 134(1):19–67

4. Goldberg D (1989) Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley, Reading, MA

5. Hansen N, Müller SD, Koumoutsakos P (2003) Reducing the time complexity of the derandom-
ized evolution strategy with covariance matrix adaptation (CMA-ES). Evol Comput 11(1):1–18

6. T. Mitchell. Machine Learning. McGraw Hill, 1997
7. Mühlenbein H (1997) The equation for response to selection and its use for prediction. Evol

Comput 5(3):303–346
8. R. Munos. Optimistic optimization of a deterministic function without the knowledge of

its smoothness. In Advances in Neural Information Processing Systems 24, pages 783–791,
Granada, Spain, 2011

9. Munos R (2014) From bandits to Monte-Carlo tree search: The optimistic principle applied to
optimization and planning. Foundations and Trends in Machine Learning 7(1):1–130

10. Neumann F, Wegener I (2007) Randomized local search, evolutionary algorithms, and the
minimum spanning tree problem. Theoret Comput Sci 378(1):32–40

11. V. Vapnik. The Nature of Statistical Learning Theory. Springer Science & Business Media,
2000

12. Von Luxburg U (2007) A tutorial on spectral clustering. Stat Comput 17(4):395–416
13. Z. Wang, M. Zoghi, F. Hutter, D. Matheson, and N. De Freitas. Bayesian optimization in high

dimensions via random embeddings. In Proceedings of the 23rd International Joint Conference
on Artificial Intelligence, pages 1778–1784, Beijing, China, 2013

14. Y. Yu, H. Qian, and Y. Hu. Derivative-free optimization via classification. In Proceedings of the
30th AAAI Conference on Artificial Intelligence, pages 2286–2292, Phoenix, Arizona, 2016a

15. Y. Yu, H. Qian, and Y.-Q. Hu. Derivative-free optimization via classification. In Proceedings
of the 30th AAAI Conference on Artificial Intelligence, pages 2286–2292, Phoenix, AZ, 2016b

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html

58 5 Basic Algorithm

16. A. L. Yuille and A. Rangarajan. The concave-convex procedure (CCCP). In Advances in Neural
Information Processing Systems 14, pages 1033–1040, Vancouver, Canada, 2001

Part III
Practical Extensions

Chapter 6
Optimization in Sequential Mode

Abstract This chapter introduces SRacos, a sequential-mode classification-based
derivative-free optimization method designed to address the limitations of batch-
mode optimization in scenarios where samples and their evaluations must be obtained
sequentially. Unlike batch-mode methods, which require a set of samples to update
the model, SRacos updates the sampling model immediately after evaluating each
sample by reusing historical data from previous iterations. This approach improves
sample efficiency, requiring fewer samples to achieve the same optimization goal
compared to batch-mode methods. The chapter provides a theoretical analysis of SRa-
cos, demonstrating its potential for better query complexity under certain conditions.
Empirical studies compare SRacos with state-of-the-art optimization algorithms,
including CMA-ES, DE, CE, and IMGPO, on synthetic functions and reinforcement
learning tasks. Results show that SRacos consistently outperforms batch-mode meth-
ods in convergence rate and scalability, particularly in high-dimensional and com-
plex optimization problems. The chapter concludes by highlighting the advantages
of sequential-mode optimization in accelerating the optimization process.

In the previous chapters, we introduced the sampling-and-learning (SAL) and
sampling-and-classification (SAC) frameworks for derivative-free optimization and
proposed the Racos algorithm, which operates in a batch mode. However, in certain
real-world scenarios, obtaining a batch of samples and their evaluations simultane-
ously may not be feasible or efficient. For example, in reinforcement learning tasks
solved by direct policy search, each policy sample relies on the previous samples, and
the optimization process can only obtain the samples and their evaluations sequen-
tially. Another example is solving AutoML tasks using derivative-free optimization,
where the evaluation process is often extremely expensive, making it difficult to pro-
vide a batch of evaluations for the optimization process. In such sequential situations,
the batch-mode derivative-free optimization methods may be inefficient.

To address this challenge, we present a sequential-mode classification-based
derivative-free optimization method called SRacos [4]. SRacos aims to improve
the optimization efficiency by updating the sampling model immediately after eval-
uating each sample. However, updating the model typically requires a batch of sam-
ples according to the original batch-mode optimization framework, and a single

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025
Y. Yu et al., Derivative-Free Optimization, Machine Learning: Foundations,
Methodologies, and Applications, https://doi.org/10.1007/978-981-96-5929-6_6

61

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-5929-6_6&domain=pdf
https://doi.org/10.1007/978-981-96-5929-6_6
https://doi.org/10.1007/978-981-96-5929-6_6
https://doi.org/10.1007/978-981-96-5929-6_6
https://doi.org/10.1007/978-981-96-5929-6_6
https://doi.org/10.1007/978-981-96-5929-6_6
https://doi.org/10.1007/978-981-96-5929-6_6
https://doi.org/10.1007/978-981-96-5929-6_6
https://doi.org/10.1007/978-981-96-5929-6_6
https://doi.org/10.1007/978-981-96-5929-6_6
https://doi.org/10.1007/978-981-96-5929-6_6
https://doi.org/10.1007/978-981-96-5929-6_6

62 6 Optimization in Sequential Mode

sample cannot complete the update process. To overcome this issue, SRacos con-
siders reusing the samples from previous iterations. Through theoretical analysis, we
prove that SRacos can achieve better sample efficiency compared to the batch-mode
method, meaning that it requires fewer samples to achieve the same optimization goal.

6.1 Sequential Classification Model Based Algorithm

It is important to note that Racos operates in a batch mode: the hypothesis.hi depends
on .B+

t and .B−
t in line 7 of Algorithm 5.1, and within the loop of iteration (lines 6–

10), those two sets remain unchanged. This means that the sampling regions are
generated from the same distribution, even if this distribution is not optimal. Batch-
mode sampling may produce redundancy and may not be suitable for sequential-
mode problems like direct policy search. To address this limitation, we present the
sequential Racos (SRacos) algorithm.

Building upon Racos, a straightforward idea for converting Racos to a
sequential-mode algorithm is to update the sets.B+ and.B− immediately after obtain-
ing a sample and its evaluation value. However, in this case, there is only one new
sample, which cannot replace the entire .B+ and .B− sets as Racos does. To tackle
this problem, the sequential-mode algorithm reuses the historical samples from pre-
vious iterations, resulting in the SRacos algorithm. The pseudo-code of SRacos is
shown in Algorithm 6.1.

In Algorithm 6.1,.Sampling (S) denotes a sample sub-procedure which obtains
a sample from a given distribution . S. .Selection (B; k) denotes a sub-procedure

Algorithm 6.1 Sequential Racos (SRacos)
Require: (extra input than Racos)

.N ∈ N
+: Budget;

.r = m + k;
Replace: Replacing sub-procedure.

Ensure:
1: Collect.S = {x1, . . . , xr } by i.i.d. sampling from. UX
2: .B = {(x1, y1), . . . , (xr , yr)}, . ∀xi ∈ S : yi = f (xi)
3: . (B+, B−) = Selection(B; k)
4: Let.(x̃, ỹ) = argmin. (x,y)∈B+ y
5: for .t = r + 1 to.N do
6: . h = C(B+, B−)

7: . x =
{
Sampling(UDh) w.p. λ

Sampling(UX) w.p. 1 − λ

8: . y = f (x)

9: .[(x′, y′), B+] = Replace. ((x, y), B+, ‘strategy_P’)
10: .[∅, B−] = Replace. ((x′, y′), B−, ‘strategy_N’)
11: . (x̃, ỹ) = argmin(x,y)∈B+∪{(x̃,ỹ)} y
12: end for
13: return .(x̃, ỹ)

6.2 Theoretical Analysis 63

which splits the sample-evaluation pair set. B into two subsets.B+ and.B−, where. B+
contains the samples which has top-. k best evaluation values..Replace (a, A, ‘s’) is
a replacing sub-procedure that uses. a to replace a sample-evaluation value pair from
a set. A with a strategy “s” and update the pair set. A. The return of this sub-procedure
is a replaced pair. Three replacing strategies considered are as follows: replacing the
pair with worst evaluation value in . A (WR-); replacing a pair in . A randomly (RR-)
and replacing the pair which has largest margin from the best-so-far solution (LM-).

In Algorithm 6.1, after initialization, SRacos will get two pair sets .B+ and .B−,
denoting the positive sample-value pair set and the negative sample-value pair set.
The method of generating a new sample (lines 7 to 8) is the same as Racos. After
getting a new pair.(x, y), SRacos updates.B+ and.B− immediately. When updating
.B+ (line 9), SRacos uses the “strategy_P”. Because.B+ must contain the best-so-far
samples, “strategy_P” can only be “WR-”, i.e., a sample with the worst evaluation
value is removed from.B+ ∪ {(x, y)} and the rest of set is the new.B+. The removed
pair.(x′, y′) is used to update.B− using “strategy_N” in line 10. “strategy_N” can be
any one of three strategies mentioned above. In experiments section, we will prove
that selection of “strategy_N” has no influence on convergence rate of SRacos
empirically. In the end, SRacos returns the best sample-value pair .(x̃, ỹ).

6.2 Theoretical Analysis

In this section, we analyze the (. ε,. δ)-query complexity of the sequential classification-
based optimization algorithm SRacos. We adopt the same notations and definitions
introduced in Chap. 4, including the error-target .θ-dependence (Definition 4.3) and
.γ-shrinking rate (Definition 4.4).

For simplicity, let .t = r + 1, . . . , N . We derive an upper bound on the (. ε,. δ)-
query complexity of SRacos under the conditions of error-target.θ-dependence and
.γ-shrinking rate.

Theorem 6.1 Given . f ∈ F , .0 < δ < 1, and .ε > 0, if SRacos has error-target .θ-
dependence and .γ-shrinking rate, then its (. ε,. δ)-query complexity is upper bounded
by

. O

⎛
⎝max

⎧⎨
⎩ 1

μ(Dε)

(
(1 − λ) + λ

γ(N − r)

N∑
t=r+1

�t

)−1

ln
1

δ
, N

⎫⎬
⎭

⎞
⎠ ,

where .�t = (
1 − εDt − √

2DKL(Dt‖UX) − θ
) · μ(Dαt)

−1 and .|X | is the volume of
. X.

Proof By Lemma 4.1 (Chap. 4), we have .Prht ≥ μ(Dε ∩ Dht)/μ(Dht) for all . t .
Combining Lemma 4.3 (Chap. 4) with Lemma 4.4 (Chap. 4), we can conclude that

.μ(Dε ∩ Dht) ≥ μ(Dε) · (1 − εDt − √
2DKL(Dt‖UX) − θ),

64 6 Optimization in Sequential Mode

where .Dt is the true sampling distribution on which .ht is learned. Unlike the batch-
mode, where the distribution is a combination of uniform sampling and sampling
from the model, i.e., .Dt = λUDht

+ (1 − λ)UX , the distribution in the sequential
model is a combination of uniform sampling and sampling from a model set.H deter-
mined by the strategy of keeping previous samples, i.e., . Dt = λ 1

|Ht |
∑

h∈Ht
UDh +

(1 − λ)UX . For generality, we keep using the notation .Dt without specifying it.
Meanwhile, the .γ-shrinking rate condition directly admits . μ(Dht) ≤ γμ(Dαt)

for all . t . Let .�t = (
1 − εDt − √

2DKL(Dt‖UX) − θ
) · μ(Dαt)

−1. Therefore, . Prht ≥
γ−1μ(Dε)�t . On the other hand, by the procedure of SRacos, we have.

∑T
t=1 mPrht =∑N

t=r+1 mPrht ∈ O(N). Finally, by the definition of .Prh and Theorem 4.1 (Chap. 4),
we prove the theorem. �

To explicitly compare the query complexity of SRacos with the batch-mode
Racos (whose query complexity upper bound is shown in Theorem 4.3 of Chap. 4),
we have the following theorem:

Theorem 6.2 Ignoring the constant factor and fixing . θ and . γ, SRacos can have a
better (or worse) query complexity upper bound than Racos if for any iteration . t

. εDS
t

< (or >)
1

1 − λ
εDB

t
−

√
2DKL(DS

t ‖UX),

where .DS
t and .DB

t denote the distributions under which the classifier is trained
at iteration . t of SRacos and Racos, respectively, and .εDS

t
and .εDB

t
denote their

corresponding generalization errors.

Proof In Theorem 6.1, ignoring the constant factor and letting.ε > 0 be small enough
such that we only need to focus on the term

.
1

μ(Dε)

(
(1 − λ) + λ

γ(N − r)

N∑
t=r+1

�t

)−1

ln
1

δ
,

where .�t =
(
1 − εDS

t
− √

2DKL(DS
t ‖UX) − θ

)
· μ(Dαt)

−1.

Based on Theorems 6.1 and 4.3, to compare SRacos with Racos, it suffices
to compare the term .1 − εDS

t
− √

2DKL(DS
t ‖UX) − θ with . 1 − (1 − λ)−1εDB

t
−

θ, ignoring the corresponding constant factors. It can be verified directly that,
for any iteration . t , if .εDS

t
< (1 − λ)−1εDB

t
− √

2DKL(DS
t ‖UX), then SRacos has

a better query complexity upper bound than Racos; if . εDS
t

> (1 − λ)−1εDB
t

−√
2DKL(DS

t ‖UX), then SRacos is worse. �

Theorem 6.2 implies that when .γ is close to 1, i.e., more exploitation than
exploration, the sequential mode can be often better than the batch mode.

6.3 Empirical Study 65

6.3 Empirical Study

In this section, we conduct experiments to investigate the effectiveness of SRacos.
We compare SRacos with state-of-the-art methods, including CMA-ES [2], differ-
ential evolution algorithm (DE) [8], cross-entropy method (CE), and a Bayesian opti-
mization method with exponential convergence (IMGPO) [5]. In our experiments,
all these algorithms use their default hyper-parameter settings.

We select two types of tasks: optimization on two synthetic testing functions and
direct policy search for reinforcement learning, including the helicopter hovering
control task [6].

6.3.1 Optimization on Synthetic Functions

We select two benchmark testing functions: the convex Sphere function,

. Sphere: f (x) =
n∑

i=1

(xi − 0.2)2,

and the highly non-convex Ackley function,

. Ackley: f (x) = −20e(− 1
5

√∑n
i=1 (xi−0.2)2) − e

1
n

∑n
i=1 cos 2π(xi−0.2) + e + 20.

The goal is to minimize both functions within the search space .X = [−1, 1]n . The
optimal values of both functions are . 0 at the optimal solution .x∗ = {0.2}n . The
dimensionality of the functions is set to .n = 100 and .1000. For the optimization
process, we set the number of evaluated samples to .20n. We run each experiment
independently for 15 times and report the average performance.

First, we investigate the effectiveness of the selection of “strategy_N” for SRacos.
The compared methods in this experiment are SRacos with “WR-”, “RR-”, “LM-”
strategies and the batch-mode algorithm Racos. The results are shown in Fig. 6.1.
The convergence curves of SRacos with three replacing strategies almost overlap,
indicating that we can select any of the three replacing strategies in practice. In the
rest of the experiments, we select “WR-” as the replacing strategy.

Next, we focus on the convergence rate of all compared methods. The results are
shown in Fig. 6.2. Comparing SRacos with Racos, it is clear that SRacos consis-
tently outperforms Racos in all experiment settings. In low dimensionality and con-
vex function (.n = 100, Sphere), the Bayesian optimization (IMGPO) shows the high-
est convergence rate, but it struggles with high-dimensional problems (.n = 1000) or
problems with many local optima (Ackley). In contrast, SRacos demonstrates the
best convergence rate in those settings.

66 6 Optimization in Sequential Mode

Fig. 6.1 The effectiveness investigation of “strategy_N” of SRacos on Sphere and Ackley
functions [4]

The results of the scalability of compared methods are shown in Fig. 6.3. The
dimensionality is set as .n = 10, 20, 50, 100, 200, 500, 1000, 2000. The total evalu-
ation number for each dimension setting is .20n. SRacos shows the lowest perfor-
mance growth rate as the dimensionality increases, indicating that SRacos has the
best scalability among all compared methods. We also consider the real wall-clock
time that the compared methods cost and show the results in Fig. 6.4. SRacos takes
more computation time than Racos. However, SRacos achieves better final per-
formance than Racos. Even with the same wall-clock time, SRacos outperforms
Racos. All results verify that the sequential mode can effectively accelerate the
optimization process.

6.3 Empirical Study 67

Fig. 6.2 The convergence rate of compared methods on Sphere and Ackley functions with
dimensionality.n = 100 and.n = 1000 [4]

Fig. 6.3 The scalability of compared methods on Sphere and Ackley functions [4]

68 6 Optimization in Sequential Mode

Fig. 6.4 The convergence speed against the wall-clock time on Ackley functions with . 20n
evaluations [4]

6.3.2 Direct Policy Search on Reinforcement Learning Tasks

In this section, we use derivative-free optimization to solve direct policy search for
reinforcement learning tasks. Reinforcement learning can be described by a Markov
decision process (MDP) which consists of a tuple.〈S, A, Psa, R〉.. S is the state space,
.A is the action space, .Psa is the transition function which indicates the next state
when taking action. a at state. s, and.R : S → R is the reward function which gives the
reward when taking an action. The dynamics of MDP are as follows: the environment
initializes a state. s0, then the policy chooses an action.a0 based on. s0. The environment
transitions to the next state.s1 according to the transition function.Ps0a0 and provides
a reward. r0. Then, the policy takes the action.a1 based on. s1, and so on. The sequence
of .s0, s1, . . . , sN denotes a trajectory. Let .π : S → A denote the policy. The goal of
reinforcement learning is to maximize the long-term accumulated reward: .

∑N
i=1 ri .

In the experiments, we select a feed-forward fully connected neural network as
the policy. Thus, the objective is to optimize the weights of the policy network to
maximize the accumulated reward.

Helicopter Hovering Control Task. Helicopter flight is regarded as a challenging
control task that has been successfully solved by reinforcement learning [6]. In this
task, the helicopter should be controlled to stay in a hovering state within a limited
region. If the helicopter moves out of the region, it is considered crashed, and the
policy will receive a very low reward. Previously, neural networks have been proven
to be a good policy model [7]. In this experiment, we select a fully connected neural
network without any hidden layer as the policy. The environment flies the helicopter
for a total of 2000 steps. The sum of rewards is the evaluation of the policy. Let . w
denote the weights of the policy. We set .w ∈ [−10, 10]n as the policy search space.
The helicopter environment has a 13-dimensional state space and a 4-dimensional
action space. Thus, the policy has a total of 52 weights. The process of direct policy
search can be presented as follows: the derivative-free optimization methods generate

6.3 Empirical Study 69

a set of weights as the policy, the environment flies the helicopter under the control
of this policy, and the sum of rewards is the evaluation value for this policy. The
derivative-free optimization method will generate a new set of weights based on
the reward feedback. We compare SRacos with Racos, CMA-ES, DE, CE, and
IMGPO. We run each experiment for 15 times for each algorithm. The evaluation
number is .105 for all derivative-free optimization methods.

We show the convergence curves of the reward and hovering steps in Fig. 6.5. The
average performance is shown in Table 6.1. The results demonstrate that SRacos can
find the best policy faster than other compared methods, indicating that SRacos has
the fastest optimization convergence rate in the helicopter hovering control task.

Gym Tasks. We select 8 OpenAI Gym control tasks, including: “Acrobot”,
“MountainCar”, “HalfCheetah”, “Humanoid”, “Swimmer”, “Ant”, “Hopper”, and
“LunarLander”. A fully connected neural network is again used as the control pol-
icy. Due to the different state and action spaces of the tasks, we set different network
architectures for each task, as shown in Table 6.2. For example, on “Acrobot”,.|S| = 6,
.|A| = 1, the policy network has hidden layers with 5 and 3 neurons, and the weight

Fig. 6.5 The convergence speed on a the reward and b the hovering steps [4]

Table 6.1 Average performance of the reward, the hovering steps, and the success rate in the
helicopter hovering control task [4]. The values in bold represent the best result in each item

Algorithms Reward Hovering step Success rate

SRacos .−9.72 × 105 ± 2.17 × 106 1,837. ±364 4/15

Racos .−3.18 × 106 ± 3.34 × 106 1,477. ±535 2/15

CMA-ES .−5.29 × 106 ± 4.88 × 106 1,280. ±673 2/15

DE .−1.02 × 107 ± 5.92 × 105 453. ±74 0/15

CE .−5.48 × 106 ± 3.35 × 106 1,121. ±525 1/15

IMGPO .−1.18 × 107 ± 2.66 × 105 256. ±31 0/15

70 6 Optimization in Sequential Mode

Table 6.2 Parameters of the Gym tasks, including the dimensionality of the state space.dState, the
number of actions, the layers and nodes of the feed-forward neural networks, the number of weights,
and the horizon steps [4]

Task name d.State #Actions NN nodes #Weights Horizon

Acrobot 6 1 5, 3 48 2,000

MountainCar 2 1 5 15 10,000

HalfCheetah 17 6 10 230 10,000

Humanoid 376 17 25 9825 50,000

Swimmer 8 2 5, 3 61 10,000

Ant 111 8 15 1785 10,000

Hopper 11 3 9, 5 159 10,000

LunarLander 8 1 5, 3 58 10,000

Table 6.3 The average reward and the standard deviation of the best found policy by each algo-
rithm [4]. The numbers in bold represent the best cumulated reward in each row. The mark. ↓means
the reward is better when smaller, and. ↑ means better when larger

Method/Task Acrobat.↓ MountainCar.↓ HalfCheetah.↑ Humanoid. ↑
SRacos 156.60. ±18.48 132.40. ±39.60 36719.90. ±8288.84 502.57. ±88.03

Racos 169.70. ±14.15 141.50. ±0.97 27961.18. ±7493.08 398.03. ±19.23

CMA-ES 181.10. ±42.66 190.60. ±26.89 20191.83. ±984.95 357.09. ±124.77

DE 161.10. ±45.91 153.00. ±48.44 17250.21. ±305.01 428.97. ±67.89

CE 534.00. ±774.69 3048.90. ±4796.70 14714.05. ±5169.94 423.58. ±27.88

IMGPO 1545.00. ±736.14 5171.40. ±5090.29 10355.83. ±93.16 209.75. ±3.16

Method/Task Swimmer.↑ Ant.↑ Hopper.↑ LunarLander. ↑
SRacos 3692.65. ±7.89 2114.14. ±501.11 10818.98. ±501.11 238.14. ±15.61

Racos 3495.16. ±72.75 1215.28. ±1487.81 9892.70. ±417.85 193.45. ±35.62

CMA-ES 3202.33. ±11.98 63.66. ±12.00 9986.81. ±0.96 132.62. ±35.18

DE 3096.44. ±20.08 653.56. ±969.84 9931.70. ±1.35 125.00. ±93.86

CE 3002.26. ±46.14 722.88. ±531.73 5149.48. ±5006.35 92.45. ±110.81

IMGPO 270.73. ±3.27 42.52. ±3.57 136.28. ±23.04 64.29. ±27.32

dimension of the network is .|w| = 48. The maximum number of horizon steps is
2000. We run experiments for 15 times independently and report the test results of
the best policy obtained by each algorithm in Table 6.3. It can be observed that SRa-
cos obtains the best results on all of these tasks. Especially on complex tasks from
HalfCheetah to LunarLander, SRacos drastically improves the average reward.

References 71

6.4 Summary

In this chapter, we improved the existing batch-mode derivative-free optimization
framework and presented the sequential-mode framework, SRacos, originally pro-
posed in [3]. The sequential-mode derivative-free optimization can use the sample
and its evaluation value at every step immediately, accelerating the updating process
of optimization and improving the optimization efficiency. We also analyzed the
query complexity of SRacos and revealed the possibility that the sequential-mode
optimization can be better than the batch-mode optimization from a theoretical per-
spective. The empirical results also demonstrated that SRacos has a better conver-
gence rate and scalability than the batch-mode Racos algorithm. We also noticed
the latest study proposed the RACE-CARS method using region-shrinking idea that
achieves state-of-the-art sequential mode performance [1].

References

1. Han T, Li J, Guo Z, Jin Y (2025) Scalable acceleration for classification-based derivative-free
optimization. In: Proceedings of the 39st AAAI conference on artificial intelligence (AAAI’25),
Philadelphia, PA

2. Hansen N, Müller SD, Koumoutsakos P (2003) Reducing the time complexity of the deran-
domized evolution strategy with covariance matrix adaptation (CMA-ES). Evol Comput
11(1):1–18

3. Hu YQ, Qian H, Yu Y (2017) Sequential classification-based optimization for direct policy
search. In: Proceedings of the 31st AAAI conference on artificial intelligence, pp 2029–2035,
San Francisco, CA

4. Hu YQ, Qian H, Yu Y (2017) Sequential classification-based optimization for direct policy
search. In: Proceedings of the 31st AAAI conference on artificial intelligence (AAAI’17), pp
2029–2035, San Francisco, CA

5. Kawaguchi K, Kaelbling LP, Lozano-Pérez T (2015) Bayesian optimization with exponential
convergence. In: Advances in neural information processing systems, vol 28, pp7 91–2799,
Montreal, Canada

6. Kim H, Jordan M, Sastry S, Ng A (2003) Autonomous helicopter flight via reinforcement
learning. In: Advances in neural information processing systems

7. Rogier K, Whiteson S (2011) Neuroevolutionary reinforcement learning for generalized control
of simulated helicopters. Evol Intell 4(4):219–241

8. Storn R, Price K (1997) Differential evolution-a simple and efficient heuristic for global
optimization over continuous spaces. J Global Optim 11(4):341–359

Chapter 7
Optimization in High-Dimensional
Search Space

Abstract This chapter addresses the challenge of optimizing high-dimensional
functions, where traditional derivative-free optimization (DFO) methods struggle
with scalability due to slow convergence and high computational costs. The focus
is on problems with low optimal-effective dimensions, where only a small subspace
significantly impacts the function value. The chapter introduces the Sequential Ran-
dom Embeddings (SRE) technique, which sequentially applies random embeddings
and employs DFO algorithms in each subspace to refine solutions. SRE reduces the
embedding gap and improves optimization quality for a broad class of problems.
The chapter is structured as follows: Sect. 7.1 defines functions with low effective
dimensions, Sect. 7.2 discusses random embedding techniques, Sect. 7.3 introduces
SRE, and Sect. 7.4 presents empirical studies on synthetic functions and classifica-
tion tasks using the non-convex Ramp loss. Experimental results demonstrate that
SRE significantly enhances the performance of state-of-the-art DFO methods in
high-dimensional spaces, even for problems with up to 100,000 variables.

In the previous chapters, we introduced the sampling-and-learning (SAL) and
sampling-and-classification (SAC) frameworks for derivative-free optimization
(DFO) and proposed the Racos algorithm based on these frameworks. While Racos
and other DFO methods have shown effectiveness in solving optimization problems
typically with dimensionality smaller than 1,000, they often struggle with scalabil-
ity when dealing with high-dimensional search spaces. This scalability issue can be
attributed to the slow convergence rate in high dimensions, the high per-iteration
computational cost, or both.

Existing studies have proposed two main directions to improve the scalability of
DFO methods: decomposition and embedding. Decomposition methods extract sub-
problems from the original optimization problem and solve them to obtain a solution
to the original problem. Embedding methods assume that the function value only
depends on a small subspace of the high-dimensional space and optimize within that
effective subspace. However, these approaches have limitations, such as relying on
specific problem structures or assuming the existence of a clear effective subspace.

In this chapter, we study high-dimensional problems with low optimal.ε-effective
dimensions [6], where any variable can affect the function value, but only a small
linear subspace has a significant impact, while the orthogonal complement subspace

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025
Y. Yu et al., Derivative-Free Optimization, Machine Learning: Foundations,
Methodologies, and Applications, https://doi.org/10.1007/978-981-96-5929-6_7

73

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-5929-6_7&domain=pdf
https://doi.org/10.1007/978-981-96-5929-6_7
https://doi.org/10.1007/978-981-96-5929-6_7
https://doi.org/10.1007/978-981-96-5929-6_7
https://doi.org/10.1007/978-981-96-5929-6_7
https://doi.org/10.1007/978-981-96-5929-6_7
https://doi.org/10.1007/978-981-96-5929-6_7
https://doi.org/10.1007/978-981-96-5929-6_7
https://doi.org/10.1007/978-981-96-5929-6_7
https://doi.org/10.1007/978-981-96-5929-6_7
https://doi.org/10.1007/978-981-96-5929-6_7
https://doi.org/10.1007/978-981-96-5929-6_7

74 7 Optimization in High-Dimensional Search Space

has a bounded small effect. We characterize the property of random embedding for
such problems and present the sequential random embeddings (SRE) technique [6]
to overcome the embedding gap. SRE applies random embedding multiple times
sequentially and employs a DFO algorithm in each subspace to refine the solution.
We also provide conditions under which SRE can improve the optimization quality
for a broad class of problems.

Through extensive experiments on synthetic functions and classification tasks
using the non-convex Ramp loss, we demonstrate that SRE can significantly enhance
the performance of state-of-the-art DFO methods in high-dimensional problems,
even for search spaces with up to 100,000 variables.

7.1 Functions with Low Effective Dimension

We first introduce the concept of Effective Dimension, which characterizes problems
where the function value is affected by only a few effective dimensions [7, 8].

Definition 7.1 (Effective Dimension) A function. f : RD → R is said to have effec-
tive dimension . de, with .de < D, if there exists a linear subspace .V ⊆ R

D with
dimension .de such that for all .x ∈ R

D ,

. f (x) = f (xe + xc) = f (xe), (7.1)

where .xe ∈ V , .xc ∈ V⊥, and .V⊥ denotes the orthogonal complement of . V . We call
. V the effective subspace of . f and .V⊥ the constant subspace.

Intuitively, Definition 7.1 means that . f only varies along the effective subspace
. V , while remaining constant along the orthogonal complement .V⊥.

7.1.1 Random Embedding for Low Effective Dimension
Problems

Random embedding is a technique that allows DFO algorithms to operate in a low-
dimensional subspace of the high-dimensional search space [7, 8]. Given a high-
dimensional function . f and a random matrix .A ∈ R

D×d with independent entries
sampled from a Gaussian distribution .N (0,σ2), we construct a new optimization
problem:

. min
y∈Rd

g(y) = f (Ay), (7.2)

where the solution space for . g has dimension . d. Each solution . y is evaluated by
mapping it back to the original high-dimensional space using .Ay.

7.2 Optimal ε-Effective Dimension 75

The following lemma characterizes the effectiveness of random embedding for
functions with low effective dimension [7, 8].

Lemma 7.1 Given a function . f : RD → R with effective dimension . de, and a
random matrix .A ∈ R

D×d with .d ≥ de and independent entries sampled from
.N (0,σ2), then, with probability 1, for any .x ∈ R

D, there exists . y ∈ R
d such that

. f (x) = f (Ay).

Proof Since. f has effective dimension. de, there exists an effective subspace. V ⊆ R
D

with.dim(V) = de. Any.x ∈ R
D can be decomposed as .x = xe + xc, where. xe ∈ V

and .xc ∈ V⊥. By definition, . f (x) = f (xe) for all .xe ∈ V . Thus, it suffices to show
that, for any .xe ∈ V , there exists . y ∈ R

d such that .Ay = xe.
Let .� ∈ R

D×de be a matrix whose columns form a standard orthonormal basis
for . V . For any.xe ∈ V , there exists .c ∈ R

de such that .xe = �c. Assuming that . ��A
has rank.de (which will be proven later), there must exist. y ∈ R

d such that. ��Ay =
c, because .rank(��A) = rank([��A, c]). Multiplying both sides by . �, we have
.Ay = ���Ay = �c = xe.

It remains to prove that .��A has rank .de with probability 1. Let .Ae ∈ R
D×de be

a submatrix of .A consisting of any .de columns of . A, which are i.i.d. samples from
.N (0,σ2 I). By the orthonormality of . �, the columns of .��Ae are i.i.d. samples
from.N (0,σ2 Ide). The set of singular matrices in.R

de×de has Lebesgue measure zero,
and the Gaussian distribution is absolutely continuous with respect to the Lebesgue
measure. Therefore, .��Ae is almost surely non-singular, and the same holds for
.��A. �

Lemma 7.1 implies that, given a random embedding matrix .A ∈ R
D×d , for any

minimizer.x∗ ∈ R
D of. f , there exists. y∗ ∈ R

d such that. f (Ay∗) = f (x∗). Thus, we
can optimize the lower dimensional function .g(y) = f (Ay) instead of the original
high-dimensional . f (x).

7.2 Optimal .ε-Effective Dimension

The Effective Dimension assumption in Definition 7.1 requires the existence of a
linear subspace that has exactly zero effect on the function value. This assumption
may be too strict for real-world problems. We relax this assumption by introducing
the concept of optimal .ε-effective dimension.

Definition 7.2 (Optimal.ε-Effective Dimension) For any .ε > 0, a function . f :
R

D → R is said to have an .ε-effective subspace .Vε if there exists a linear subspace
.Vε ⊆ R

D such that for all .x ∈ R
D ,

.| f (x) − f (xε)| ≤ ε, (7.3)

where.xε ∈ Vε is the orthogonal projection of. x onto. Vε. Let.Vε denote the collection
of all .ε-effective subspaces of . f . The optimal .ε-effective dimension of . f is defined
as

76 7 Optimization in High-Dimensional Search Space

.dε = min
Vε∈Vε

dim(Vε), (7.4)

where .dim(V) denotes the dimension of a linear subspace . V .
Note that . ε and .dε are related variables: a small .dε often implies a large . ε, while

a small . ε implies a large . dε.

7.2.1 Random Embedding for Problems with Low Optimal
.ε-Effective Dimension

The following lemma characterizes the effect of random embedding for functions
with low optimal .ε-effective dimension.

Lemma 7.2 Given a function . f : RD → R with optimal .ε-effective dimension . dε,
and a random matrix .A ∈ R

D×d with .d ≥ dε and independent entries sampled from
.N (0,σ2), then, with probability 1, for any .x ∈ R

D, there exists . y ∈ R
d such that

.| f (x) − f (Ay)| ≤ 2ε.

Proof The proof follows a similar argument as in Lemma 7.1. Since. f has optimal.ε-
effective dimension. dε, there exists an.ε-effective subspace.Vε ⊆ R

D with. dim(Vε) =
dε. Any.x ∈ R

D can be decomposed as .x = xε + x⊥
ε , where .xε ∈ Vε and.x⊥

ε ∈ V⊥
ε .

By definition, .| f (x) − f (xε)| ≤ ε. Thus, it suffices to show that, for any .xε ∈ Vε,
there exists . y ∈ R

d such that .| f (xε) − f (Ay)| ≤ ε.
Following the same steps as in Lemma 7.1, we can prove that there exists. y ∈ R

d

such that .Ay = xε + x̃, where .x̃ ∈ V⊥
ε . Since .Ay ∈ R

D , by the definition of .ε-
effective subspace, we have .| f (xε) − f (Ay)| ≤ ε. Combining this with . | f (x) −
f (xε)| ≤ ε, we conclude that .| f (x) − f (Ay)| ≤ 2ε. �

Lemma 7.2 implies that, given a random embedding matrix .A ∈ R
D×d , for any

minimizer .x∗ ∈ R
D of . f , there exists . ỹ ∈ R

d such that . f (Aỹ) − f (x∗) ≤ 2ε. This
embedding gap grows twice as fast as . ε.

7.2.2 Optimization with Random Embedding

Given a high-dimensional function. f and a random matrix.A ∈ R
D×d , we construct

a new optimization problem:

. min
y∈Rd

g(y) = f (Ay), (7.5)

where the solution space for . g has dimension . d. Each solution . y is evaluated by
mapping it back to the original high-dimensional space using .Ay.

7.3 Sequential Random Embeddings 77

For functions with low optimal .ε-effective dimension, we can bound the gap
between the optimal function values of . g and . f based on Lemma 7.2.

Theorem 7.1 Given a function . f : RD → R with optimal .ε-effective dimension . dε,
and a random matrix .A ∈ R

D×d with .d ≥ dε and independent entries sampled from
.N (0,σ2), let .x∗ be a global minimizer of . f . Then, with probability 1,

. min
y∈Rd

g(y) − f (x∗) ≤ 2ε. (7.6)

Proof The proof follows directly from Lemma 7.2. �

Let . ỹ be the solution found by a DFO algorithm in the low-dimensional space.
There is an approximation gap between.g(ỹ) and.min y∈Rd g(y), which depends on the
dimension. d, the function complexity, and the optimization budget. We assume that
this approximation gap is upper bounded by . θ. Furthermore, as shown in Theorem
7.1, there exists an embedding gap of . 2ε, which cannot be compensated by the
optimization algorithm. Thus, the simple regret of the algorithm is upper bounded
by the sum of the approximation gap and the embedding gap:

.g(ỹ) − f (x∗) ≤ θ + 2ε. (7.7)

7.3 Sequential Random Embeddings

To reduce the embedding gap while keeping the approximation gap unaffected,
we present the sequential random embeddings (SRE) technique. SRE applies ran-
dom embedding multiple times sequentially and employs a DFO algorithm in each
subspace to refine the solution.

Let.x̃1 = 0 and.Si = {A(i) y | y ∈ R
d} denote the subspace defined by the random

matrix .A(i), where .i = 1, . . . ,m. The SRE procedure can be described as follows:

• In the first step, generate a random matrix .A(1) defining a subspace .S1, and
apply a DFO algorithm to find a near-optimal solution in the subspace: . ỹ1 =
argmin y f (A(1) y). Let .x̃2 = A(1) ỹ1 be the high-dimensional solution.

• In the second step, generate another random matrix .A(2) defining a subspace .S2,
and apply the DFO algorithm to optimize the residue of the current solution . x̃2
in the subspace: . ỹ2 = argmin y f (x̃2 + A(2) y). Update the current solution . x̃3 =
x̃2 + A(2) ỹ2.

• In the following steps, repeat the process of optimizing the residue in each
subspace.

Let .x∗ − x̃i be the residue solution to be approximated in the . i th step of
SRE, and let .x̂i be the orthogonal projection of .x∗ − x̃i onto the subspace . Si .
We define the embedding ratio as .‖x̂i‖/‖x∗ − x̃i‖ and the optimization ratio as
.‖x̂i − A(i) ỹi‖/‖x̂i‖.

78 7 Optimization in High-Dimensional Search Space

The following theorem provides a condition under which SRE can strictly reduce
the solution gap in each step.

Theorem 7.2 Given a function . f : RD → R with optimal .ε-effective dimension . dε,
and a sequence of random matrices .{A(i)}mi=1 ⊆ R

D×d with .d ≥ dε and indepen-
dent entries sampled from .N (0,σ2), let .x∗ be a global minimizer of . f . For all
.i = 1, . . . ,m, if

.
‖x̂i − A(i) ỹi‖

‖x̂i‖ ≤ 1

5
· ‖x̂i‖
‖x∗ − x̃i‖ , (7.8)

then .‖x∗ − x̃i‖ > ‖x∗ − x̃i+1‖.
Proof The proof follows a similar argument as in [11]. For any.i = 1, . . . ,m, since
.x̂i is the orthogonal projection of .x∗ − x̃i onto . Si , we have

. ‖x∗ − x̃i‖2 = ‖x∗ − x̃i − x̂i‖2 + ‖x̂i‖2
≥ (‖x∗ − x̃i − A(i) ỹi‖ − ‖x̂i − A(i) ỹi‖)2 + ‖x̂i‖2
= ‖x∗ − x̃i+1‖2 + ‖x̂i − A(i) ỹi‖2 + ‖x̂i‖2

− 2‖x∗ − x̃i − A(i) ỹi‖ · ‖x̂i − A(i) ỹi‖
≥ ‖x∗ − x̃i+1‖2 + (‖x̂i − A(i) ỹi‖ − ‖x̂i‖)2

− 2(‖x∗ − x̃i‖ + ‖A(i) ỹi‖) · ‖x̂i − A(i) ỹi‖
+ 2‖x̂i‖ · ‖x̂i − A(i) ỹi‖

≥ ‖x∗ − x̃i+1‖2 + (‖x̂i − A(i) ỹi‖ − ‖x̂i‖)2
− 2‖x∗ − x̃i‖ · ‖x̂i − A(i) ỹi‖ − 2‖x̂i − A(i) ỹi‖2,

where the last inequality follows from.‖A(i) ỹi‖ − ‖x̂i‖ ≤ ‖x̂i − A(i) ỹi‖.
Since .‖x̂i − A(i) ỹi‖ · ‖x∗ − x̃i‖/‖x̂i‖2 ≤ 1/5 and .‖x̂i‖ ≤ ‖x∗ − x̃i‖, we have

. (‖x̂i − A(i) ỹi‖ − ‖x̂i‖)2 − 2‖x∗ − x̃i‖ · ‖x̂i − A(i) ỹi‖ − 2‖x̂i − A(i) ỹi‖2 > 0.

Therefore, .‖x∗ − x̃i‖ > ‖x∗ − x̃i+1‖ for all .i = 1, . . . ,m. �

Theorem 7.2 suggests that, under a mild condition on the optimization ratio, SRE
can reduce the solution gap in each step for a broad class of problems with local
Holder continuity, defined as follows.

Definition 7.3 (Local Holder Continuity) A function . f : RD → R satisfies local
Holder continuity if there exist constants .L ,α > 0 such that, for all .x ∈ R

D ,

. f (x) − f (x∗) ≤ L · ‖x − x∗‖α
2 , (7.9)

where .x∗ is a global minimizer of . f .

7.3 Sequential Random Embeddings 79

Local Holder continuity allows the function to have many local optima or be
non-differentiable, as long as the rate of increase around the global minimizer is
bounded.

7.3.1 Less Greedy SRE

In the SRE procedure described above, each sub-problem in the subspace is solved
greedily. However, a perfect solution for one sub-problem may not be globally opti-
mal, and once an unsatisfactory solution is found, it is difficult to correct it in later
steps due to the greedy process. To address this issue, we introduce a withdrawal
variable . β to the previous solution, allowing the algorithm to eliminate the previous
solution if necessary. The optimization problem in each step becomes

. min
y,β

f (β x̃i + A(i) y). (7.10)

Since DFO methods make few assumptions about the optimization problem, we can
simply let the algorithm optimize . β together with . y.

The full SRE algorithm is presented in Algorithm 7.1.

Algorithm 7.1 Sequential Random Embeddings (SRE)
Require:

Objective function f ;
DFO algorithm M;
Number of function evaluations n;
Upper bound of optimal ε-effective dimension d;
Number of sequential random embeddings m.

Ensure:
1: x̃1 = 0.
2: for i = 1 to m do
3: Sample a random matrix A(i) ∈ RD×d with entries from N (0, 1/d).
4: Apply M to optimize gi (y) = f (β ̃xi + A(i) y) with n/m function evaluations.
5: Obtain the solution ỹi and βi for gi (y) using M.
6: x̃i+1 = βi x̃i + A(i) ỹi .
7: end for
8: return arg mini=2,...,m+1 f (̃xi).

80 7 Optimization in High-Dimensional Search Space

7.4 Empirical Study

We empirically evaluate the effectiveness of SRE in combination with state-of-the-art
DFO methods on synthetic functions and classification tasks using the non-convex
Ramp loss.

7.4.1 Experimental Setup

We consider the high-dimensional search space .X = [−u, u]D and the low-
dimensional search space .Y = [−l, l]d , where .u, l > 0. The random matrix . A ∈
R

D×d has independent entries sampled from.N (0, 1/d).
To handle the case where .Ay′ /∈ X for some . y′ ∈ Y , we employ Euclidean pro-

jection .PX (Ay′) = argminx∈X ‖x − Ay′‖2. The function value of .Ay′ is then set
to . f (PX (Ay′)) + ‖PX (Ay′) − Ay′‖1.

We apply SRE to three state-of-the-art DFO methods: IMGPO [4], CMAES [3],
and RACOS [9]. The prefix “RE-” denotes the single random embedding variant,
while “SRE-” denotes the sequential random embeddings variant. Random search is
included as a baseline.

7.4.2 Synthetic Functions

We construct high-dimensional versions of the Sphere and Ackley functions that
satisfy the optimal .ε-effective dimension assumption. The high-dimensional Sphere
function is defined as

. f1(x) =
10∑

i=1

([x]i − 0.2)2 + 1

D

D∑

i=11

([x]i − 0.2)2, (7.11)

where .[x]i denotes the . i th coordinate of . x. The high-dimensional Ackley function
is defined as

. f2(x) = − 20 exp

⎛

⎝−1

5

√√√√ 1

10

10∑

i=1

([x]i − 0.2)2

⎞

⎠ (7.12)

. − exp

(
1

10

10∑

i=1

cos(2π([x]i − 0.2))

)
+ e + 20 (7.13)

. + 1

D

D∑

i=11

([x]i − 0.2)2. (7.14)

7.4 Empirical Study 81

The optimal solution for both functions is .x∗ = (0.2, . . . , 0.2). We set . X =
[−1, 1]D , .Y = [−1, 1]d , and .β ∈ [−1, 1]. Each algorithm is run 30 times indepen-
dently, and the average performance is reported.

Effect of the Number of Random Embeddings
We investigate the effect of the number of random embeddings .m in SRE. We set
.D = 10000, .n = 10000 (total number of function evaluations), .d = 10, and vary
.m ∈ {1, 2, 5, 8, 10, 20}. Note that when .m = 1, SRE degenerates to RE.

Figure 7.1 shows that, for a fixed total number of function evaluations, there is a
trade-off in choosing. m. If .m is too large, the budget for each step of SRE is limited,
while if .m is too small, the number of steps in SRE is limited. Both scenarios can
lead to unsatisfactory optimization performance.

Effect of Subspace Dimension
We study how the low-dimensional subspace size . d affects the optimization perfor-
mance of SRE-based algorithms. We set .D = 10000, .n = 10000, .m = 5, and vary
.d ∈ {1, 5, 8, 10, 12, 15, 20}.

Figure 7.2 demonstrates that, in most cases, the closer . d is to the optimal .ε-
effective dimension . dε, the better the optimization performance. This highlights the
importance of having a good estimate of . dε. Moreover, even when .d < dε = 10 but
close to . dε, the performance of SRE-based algorithms remains satisfactory.

Scalability
We investigate the scalability of the algorithms with respect to the search space
dimension . D. We set .D ∈ {100, 500, 1000, 5000, 10000}, .n = 10000, .d = 10 for
RE and SRE, and .m = 5 for SRE.

Figure 7.3 shows that SRE-based algorithms have the lowest growth rate as the
dimension increases, while algorithms without RE have the highest growth rate.
This indicates that SRE can effectively scale DFO algorithms to high-dimensional
problems.

Fig. 7.1 Effect of the number of random embeddings.m on the optimization performance [6]

82 7 Optimization in High-Dimensional Search Space

Fig. 7.2 Effect of the subspace dimension. d on the optimization performance [6]

Fig. 7.3 Scalability of the algorithms with respect to the search space dimension.D [6]

Convergence Rate
We examine the convergence rate of the algorithms with respect to the number
of function evaluations. We set .D = 10000, .n ∈{2000, 4000, 6000, 8000, 10000},
.d = 10 for RE and SRE, and .m = 5 for SRE.

7.4 Empirical Study 83

Fig. 7.4 Convergence rate of the algorithms with respect to the number of function evaluations [6]

Figure 7.4 shows that SRE-based algorithms generally reduce the objective func-
tion value at the highest rate, while algorithms without RE have the lowest conver-
gence rate. This suggests that SRE can accelerate the convergence of DFO algorithms
in high-dimensional problems.

7.4.3 Classification with Ramp Loss

We evaluate the algorithms on a classification task using the non-convex Ramp
loss [2]. The Ramp loss is defined as .Rs(z) = H1(z) − Hs(z) with .s < 1, where
.Hs(z) = max{0, s − z} is the Hinge loss with hinge point . s. The objective is to find
a vector .w and a scalar . b that minimize:

. f (w, b) = 1

2
‖w‖22 + C

L∑

�=1

Rs(y�(w
�v� + b)), (7.15)

where .v� is the . �th training instance and .y� ∈ {−1,+1} is its corresponding label.
We employ four binary-class UCI datasets [1]: Gisette, Arcene, Dexter, and

Dorothea, with feature dimensions.D of.5 × 103,.104,.2 × 104, and.105, respectively.
To study the algorithms’ effectiveness under different hyper-parameter settings,

we test .s ∈ {−1, 0} and .C ∈ {0.1, 0.5, 1, 2, 5, 10}. We set .d = 20, .n = 3D, . X =
[−10, 10]D , .Y = [−10, 10]d , and .β ∈ [−10, 10] for all algorithms except CCCP
[10], a gradient-based non-convex optimization method. For CCCP, we set . X =
[−10, 10]D and let it run until convergence. For SRE-based algorithms, we set.m = 5.

84 7 Optimization in High-Dimensional Search Space

Fig. 7.5 Achieved objective function values of the algorithms on the classification task with Ramp
loss [6]

References 85

Figure 7.5 reports the achieved objective function values on each dataset. SRE-
based algorithms consistently outperform other methods, except on the Arcene
dataset where RE-based algorithms achieve the best performance. This verifies the
effectiveness of SRE and RE, with SRE being more effective than RE in most
cases. Moreover, SRE-based algorithms significantly outperform CCCP in terms
of optimization performance.

7.5 Summary

This chapter investigated high-dimensional optimization problems where all vari-
ables can affect the function value, but many of them have only a small bounded
effect. We defined such problems as functions with a low optimal.ε-effective dimen-
sion and showed that single random embedding incurs a .2ε loss that cannot be
compensated by the subsequent optimization algorithm.

To address this issue, we presented the sequential random embeddings (SRE)
technique [5], which applies random embedding multiple times sequentially and
employs a DFO algorithm in each subspace to refine the solution. We provided
conditions under which SRE can strictly reduce the embedding loss in each step for
a broad class of problems.

Empirical results on synthetic functions and classification tasks using the non-
convex Ramp loss demonstrated that SRE can significantly enhance the performance
of state-of-the-art DFO methods in high-dimensional problems, even for search
spaces with up to 100,000 variables. These findings highlight the potential of SRE in
scaling DFO algorithms to tackle complex high-dimensional optimization problems.

References

1. Blake CL, Keogh E, Merz CJ (1998) UCI Repository of machine learning databases. http://
www.ics.uci.edu/~mlearn/MLRepository.html

2. Collobert R, Sinz F, Weston J, Bottou L (2006) Trading convexity for scalability. In: Proceedings
of the 23rd international conference on machine learning, Pittsburgh, Pennsylvania, pp 201–208

3. Hansen N, Müller SD, Koumoutsakos P (2003) Reducing the time complexity of the deran-
domized evolution strategy with covariance matrix adaptation (CMA-ES). Evol Comput
11(1):1–18

4. Kawaguchi K, Kaelbling LP, Lozano-Pérez T (2015) Bayesian optimization with exponential
convergence. In: Advances in neural information processing systems, vol 28, Montreal, Canada,
pp 2791–2799

5. Qian H, Hu YQ, Yu Y (2016) Derivative-free optimization of high-dimensional non-convex
functions by sequential random embeddings. In: Proceedings of the 25th international joint
conference on artificial intelligence, New York, NY, pp 1946–1952

6. Qian H, Hu YQ, Yu Y (2016) Derivative-free optimization of high-dimensional non-convex
functions by sequential random embeddings. In: Proceedings of the 25th international joint
conference on artificial intelligence, New York, NY, pp 1946–1952

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html

86 7 Optimization in High-Dimensional Search Space

7. Wang Z, Zoghi M, Hutter F, Matheson D, De Freitas N (2013) Bayesian optimization in high
dimensions via random embeddings. In: Proceedings of the 23rd international joint conference
on artificial intelligence, Beijing, China, pp 1778–1784

8. Wang Z, Hutter F, Zoghi M, Matheson D, de Freitas N (2016) Bayesian optimization in a billion
dimensions via random embeddings. J Artif Intell Res 55:361–387

9. Yu Y, Qian H, Hu YQ (2016) Derivative-free optimization via classification. In: Proceedings
of the 30th AAAI conference on artificial intelligence, Phoenix, Arizona, pp 2286–2292

10. Yuille AL, Rangarajan A (2001) The concave-convex procedure (CCCP). In: Advances in
neural information processing systems, vol 14, Vancouver, Canada, pp 1033–1040

11. Zhang L, Mahdavi M, Jin R, Yang T, Zhu S (2013) Recovering the optimal solution by dual
random projection. In: Proceedings of the 26th conference on learning theory, Princeton, NJ,
pp 135–157

Chapter 8
Optimization Under Noise

Abstract This chapter addresses the challenge of optimizing noisy objective func-
tions in derivative-free optimization (DFO), a common issue in real-world applica-
tions like reinforcement learning. While the Racos algorithm is effective in noise-free
environments, it struggles with noisy evaluations. The chapter introduces value sup-
pression, a novel noise-handling mechanism that delays noise mitigation until the
best-so-far solution stagnates, reducing computational costs compared to traditional
methods like sampling and threshold selection. The mechanism is integrated into the
SRacos algorithm, resulting in SSRacos, which is shown to outperform other noise-
handling techniques in both synthetic functions and OpenAI Gym tasks. Empirical
results demonstrate that value suppression improves optimization efficiency and con-
vergence under noise, making it a promising approach for noisy DFO problems. The
chapter concludes with a discussion on the mechanism’s potential applicability in
noise-free environments.

In the previous chapters, we introduced the Racos algorithm based on the sampling-
and-learning (SAL) and sampling-and-classification (SAC) frameworks for derivative-
free optimization (DFO). While Racos has shown effectiveness in solving optimiza-
tion problems in noise-free environments, many real-world applications involve noisy
objective functions, where the evaluation of a solution is subject to random perturba-
tions. In this chapter, we focus on extending Racos to handle optimization problems
under noise.

There are two popular mechanisms to handle noise in DFO: sampling and thresh-
old selection equipped with re-evaluation. Sampling is a straightforward approach to
reduce noise [1], where a given solution is independently evaluated multiple times,
and the average of the noisy function values is used to approximate the true function
value. However, obtaining an accurate estimate of the true function value requires
a large sample size, which can be computationally expensive. Threshold selection
equipped with re-evaluation [3, 6– 9] independently re-evaluates solutions whenever
a comparison occurs and replaces an old solution only when the value of a new solu-
tion is better by at least a fixed or dynamic threshold. This mechanism delays noise
handling to the comparison step and has been shown to be helpful for DFO [10].
Compared to sampling, threshold selection with re-evaluation requires less compu-
tational cost and appears to be more efficient.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025
Y. Yu et al., Derivative-Free Optimization, Machine Learning: Foundations,
Methodologies, and Applications, https://doi.org/10.1007/978-981-96-5929-6_8

87

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-5929-6_8&domain=pdf
https://doi.org/10.1007/978-981-96-5929-6_8
https://doi.org/10.1007/978-981-96-5929-6_8
https://doi.org/10.1007/978-981-96-5929-6_8
https://doi.org/10.1007/978-981-96-5929-6_8
https://doi.org/10.1007/978-981-96-5929-6_8
https://doi.org/10.1007/978-981-96-5929-6_8
https://doi.org/10.1007/978-981-96-5929-6_8
https://doi.org/10.1007/978-981-96-5929-6_8
https://doi.org/10.1007/978-981-96-5929-6_8
https://doi.org/10.1007/978-981-96-5929-6_8
https://doi.org/10.1007/978-981-96-5929-6_8

88 8 Optimization Under Noise

In this chapter, we present a generic, simple, yet efficient noise handling mecha-
nism called value suppression [11], which can be integrated into most DFO methods.
Value suppression delays noise handling even further than threshold selection with
re-evaluation. It does nothing about noise until the best-so-far solution has not been
improved for a certain period, at which point it suppresses the value of the best-
so-far solution and continues the optimization process. Value suppression not only
helps DFO methods keep updating their best-so-far solutions but also records some
suppressed solutions, from which the best solution with a more reliable value can
be selected. Compared to sampling and threshold selection with re-evaluation, value
suppression may require the least computational cost while still being effective.

We integrate the value suppression mechanism into SRacos in Chap. 6, resulting
in the suppressed SRacos (SSRacos) for optimization under noise. To compare
value suppression with other mechanisms on SRacos, we conduct experiments on
two synthetic functions and reinforcement learning control tasks in OpenAI Gym.
Experimental results demonstrate that value suppression can significantly improve
the performance of SRacos under noise compared to other mechanisms.

8.1 Value Suppression

The idea of value suppression arises from the observation that if an algorithm has
not updated its best-so-far solution for a period, the observed value of the best-so-
far solution is likely to be much smaller than its true value due to noise. Thus, we
suppress the value of the best-so-far solution when it remains the best for a long
period, allowing the algorithm to resume its search and find better solutions.

The principle of value suppression is to adjust the overestimated value towards
the true value. One way to implement this is to re-sample the value of the solution
a sufficient number of times in the presence of unbiased random noise. In other
situations, the suppression can be implemented by multiplying a discount factor, for
example.

This simple mechanism can help the algorithm keep generating new solutions with
better observed values. However, when the optimization finishes, the algorithm needs
to choose the best solution among those it has generated. Since most solutions have
only a noisy observed value, we only choose the best solution from the suppressed
solutions, whose values are more reliable.

The value suppression mechanism can be easily applied to DFO algorithms that
keep track of the best-so-far solution. The framework of DFO with value suppression
is shown in Algorithm 8.1. First, the algorithm samples a set of solutions . S and
evaluates them (line 1). Let .S+ denote the best . k solutions in . S (line 2). In the
following loop, the algorithm generates a new solution based on .S+, evaluates it,
and uses it to update.S+ (lines 4–5). If .S+ does not update for a period, it suppresses
the values of the samples in.S+ by re-sampling and saves these suppressed solutions
(lines 6–8). Finally, the algorithm returns the best among all the suppressed solutions
(line 10).

8.2 The SSRacos Algorithm 89

Under mild conditions, we can prove that Algorithm 8.1 is convergent, indicating
that value suppression does not hurt optimization and is effective.

Theorem 8.1 (Convergence) For a DFO algorithm .A that generates any solution
.x ∈ X with non-zero probability, assume that the noise follows the same i.i.d. and
unbiased distribution for all solutions, and the value suppression assigns the true
value to the solution. Then, the algorithm .A with value suppression is convergent
under noise, i.e., with probability 1, it will eventually output the optimal solution .x∗.

Proof By assumption, once the true optimal solution .x∗ is generated during opti-
mization under noise,.x∗ could be better than the best-so-far solution with a non-zero
probability. Thus, by Algorithm 8.1, .x∗ could be absorbed into .S+ with probability
1 after a sufficient number of steps. Let .S′ denote the set of suppressed solutions,
initialized as .S′ = ∅. For a fixed maximum allowed non-update iterations . u, there
exists a non-zero probability that.S+ will not be updated during. u iterations, and thus
.x∗ could be further absorbed into .S′ with probability 1 after a sufficient number of
steps. By Algorithm 8.1, solutions cannot be removed from.S′ once absorbed. Note
that the value suppression step for solutions in .S′ discloses the true function values
as assumed. Since the algorithm will finally return the best solution in . S′, i.e., .x∗,
value suppression is convergent. �

8.2 The SSRACOS Algorithm

We integrate the value suppression framework with the SRacos in Algorithm 6.1.
SRacos maintains two sets of solutions: a good solutions set (positive set) and a bad
solutions set (negative set). A binary classifier is trained based on these two solution
sets to learn the potential high-quality region in the solution space. The learned
region contains one selected good solution from the positive set and excludes all
the bad solutions from the negative set. Then, a new solution is uniformly sampled
from this learned region with high probability or uniformly sampled from the entire
solution space with the remaining probability. SRacos evaluates this new solution
and updates both the positive and negative sets accordingly.

We now show how to integrate the value suppression mechanism into SRacos,
resulting in the suppressed SRacos (SSRacos). Since we can observe the positive set
.B+ in SRacos, if .B+ does not update for a period, we suppress the solutions in.B+.
In the end, the best solution among all the suppressed ones is returned as output. The
procedure of SSRacos is presented in Algorithm 8.2. The set .BS is used to collect
the suppressed solutions and is initialized as an empty set (line 2). During the loop,
after generating a new solution and updating .B+, .B−, and .(x̃, ỹ), SSRacos checks
if the positive set .B+ has been updated (line 6). If it does not update for . u iterations,
SSRacos re-samples the solutions in .B+, suppresses their values, and saves them

90 8 Optimization Under Noise

Algorithm 8.1 Value Suppression Framework for Derivative-Free Optimization
Require:

f N : Noisy objective function
Ensure:
1: S = generate a set of solutions and evaluate them
2: S+ = best k solutions in S
3: while termination condition is not met do
4: x = generate a new solution based on S+

5: evaluate x and use it to update S+

6: if S+ does not update for a period then
7: suppress the function values of solutions in S+

8: end if
9: end while
10: return the best among all the suppressed solutions

Algorithm 8.2 Suppressed SRacos (SSRacos)
Require: (extra input compared to SRacos)

u ∈ N+: Maximum allowed non-update iterations
v ∈ N+: Re-sample size
α: Balancing parameter
Re-sample: Re-sample sub-procedure

Ensure:
1: Initialize SRacos
2: BS = ∅
3: for t = r + 1 to N − v do
4: (x, y) = generate a new solution as in SRacos
5: Use (x, y) to update B+, B−, (x̃, ỹ) in SRacos
6: if B+ does not update for u iterations then
7: for (xi , yi) in B+ do
8: ŷi = Re-sample(xi , v)
9: yi = (1 − α)yi + α ̂yi
10: BS = BS ∪ {(xi , ŷi)}
11: t = t + v
12: end for
13: end if
14: end for
15: Re-sample (x̃, ỹ) and put it in BS

16: return arg min(x, ŷ)∈BS ŷ

with their mean values. ŷ in .BS (lines 7–12). The Re-sample.(x, n) sub-procedure
computes. f N (x) for. n times independently and returns the mean value. ŷ. After that,
it re-samples the best-so-far solution .(x̃, ỹ) and saves it in .BS (line 15). Finally, the
best solution in .BS is returned (line 16).

8.3 Empirical Study 91

8.3 Empirical Study

In this section, we empirically demonstrate the effectiveness of the value suppression
mechanism in reducing the negative effects of noise and saving computational cost.
We compare value suppression with other noise handling mechanisms by integrat-
ing them into SRacos. Specifically, SSRacos with the number of solutions in the
positive set.|B+| > 1 is abbreviated as VS. SRacos with.|B+| > 1 is abbreviated as
MPS. SRacos with.|B+| = 1 is abbreviated as NO_MPS. SSRacos with. |B+| = 1
is abbreviated as VS+NO_MPS. SRacos equipped with sampling is abbreviated as
SAMPLING, where a solution is evaluated . n times and the average value is used
to approximate its true function value [1]. SRacos equipped with re-evaluation is
abbreviated as REEVAL, where a solution is independently re-evaluated whenever
its function value is required [4, 7, 8]. SRacos equipped with threshold selection is
abbreviated as TS, where a solution is considered better than another only when its
function value is better by at least a threshold. τ [2, 3, 9]. SRacos equipped with the
combination of re-evaluation and threshold selection is abbreviated as REEVAL+TS.

We conduct experiments on both synthetic functions and reinforcement learning
control tasks in OpenAI Gym to investigate the ability of these mechanisms to handle
noise. Additive Gaussian noise is used to create a noisy environment for synthetic
functions. The OpenAI Gym environment is considered noisy because a policy may
receive different total rewards under different initial states (more details can be found
in the subsection on controlling tasks in OpenAI Gym). In addition to the noise
from the original environment, we also add extra Gaussian noise to observe the
performance of the mechanisms under different noise levels. Moreover, we analyze
the sensitivity of the hyper-parameter. u, the maximum allowed non-update iterations,
on OpenAI Gym tasks.

8.3.1 Synthetic Functions

We choose the Ackley and Sphere functions to investigate the noise handling ability of
each mechanism. The definition of these functions can be found in previous chapters.

We choose dimension sizes .D = 100 and .1000 for both functions in the experi-
ments. To create a noisy environment, we use additive Gaussian noise, i.e., the noisy
function. f N (x) = f (x) + N (0,σ2). For the Ackley function, the standard deviation
.σ = 0.1, and for the Sphere function, .σ = 1.

The parameters of the noise handling mechanisms are set as follows. For thresh-
old selection, we set the threshold value .τ = σ, because a solution that passes the
threshold may be truly better with high probability. For MPS, the number of positive
solutions is set to 5, which is a trade-off between computational cost and the chance
of keeping good solutions. For sampling, the sample size is set to 10, balancing the
accuracy of function evaluation and computational cost. For value suppression, we

92 8 Optimization Under Noise

Fig. 8.1 Function value of each noise handling mechanism during the optimization process [11].
For the Ackley function, the dimension size.D = 100 and.1000, and the standard deviation of noise
.σ = 0.1. For the Sphere function,.D = 100 and.1000, and. σ = 1

set the maximum allowed non-update iterations.u = 500, the re-sample size.v = 100,
and the balancing parameter.α = 0.5. Other parameters are set to their default values.

For each setting with different dimension size .D or standard deviation of noise
. σ, we run each mechanism 10 times independently to minimize the noisy function
. f N (x). The total number of function evaluations is set to 200,000. The true function
value. f (x) of the best-found solution during the process is shown in Fig. 8.1, and the
true function value of the returned best solution is listed in Table 8.1. SRacos with
the number of solutions in the positive set .|B+| = 1 (NO_MPS) is chosen as the
baseline. The results show that VS achieves the best performance in all settings.
SAMPLING and MPS show similar performance and are able to reduce the effects
of noise. VS+NO_MPS performs better than MPS and is competitive with SAM-
PLING. However, REEVAL, TS, and REEVAL+TS are worse than the baseline or
not significantly different. Figure 8.1 shows that VS requires significantly fewer iter-
ations to achieve good performance compared to the other mechanisms. Specifically,
on the Ackley function with dimension size 100 and noise level 0.1, VS only needs
less than half the function evaluations to reach a function value below 2 compared

8.3 Empirical Study 93

Ta
bl
e
8.
1

Fu
nc
tio

n
va
lu
e
fo
r
ea
ch
 n
oi
se
 h
an
dl
in
g
m
ec
ha
ni
sm

 [
 11

].
 F
or
 th

e
A
ck
le
y
fu
nc
tio

n,
 th

e
di
m
en
si
on

 s
iz
e.
D

=
10
0
an
d.
10
00

, a
nd
 th

e
st
an
da
rd
 d
ev
ia
tio

n
of
 n
oi
se

.σ
=

0.
1.
 F
or
 th

e
Sp

he
re
 f
un
ct
io
n,

.D
=

10
0
an
d
.1
00
0,

an
d
.σ

=
1.
 T
he
 n
um

be
r
of
 f
un
ct
io
n
ev
al
ua
tio

ns
 is
 s
et
 to

 2
00
,0
00

Fu
nc
tio

n_
D
im

Si
ze
_N

oi
se

V
S

V
S+

N
O
_M

PS
SA

M
PL

IN
G

M
PS

R
E
E
V
A
L
+
T
S

R
E
E
V
A
L

T
S

N
O
_M

PS

A
ck
le
y_
10
0_
0.
1

0.
93

2.
43

1.
32

2.
95

3.
71

3.
82

3.
75

3.
69

A
ck
le
y_
10
00
_0
.1

3.
82

3.
90

3.
93

3.
96

3.
99

4.
01

4.
01

3.
99

Sp
he
re
_1
00
_1

4.
17

7.
41

6.
53

8.
74

20
.6
5

24
.0
7

24
.8
8

15
.4
1

Sp
he
re
_1
00
0_
1

72
.4
1

10
4.
81

81
.7
8

97
.1
6

19
6.
14

24
6.
22

29
4.
42

17
2.
98

94 8 Optimization Under Noise

to the second best mechanism, SAMPLING. This indicates that the presented VS
mechanism can significantly reduce the computational and time cost.

8.3.2 Controlling Tasks in OpenAI Gym

OpenAI Gym provides a toolkit for reinforcement learning research. 1 We choose
the following controlling tasks to compare the noise handling ability of each mecha-
nism: Acrobot, MountainCar, HalfCheetah, Humanoid, Swimmer, Ant, Hopper, and
LunarLander.

We use the framework of direct policy search to solve these tasks. Direct policy
search applies optimization algorithms to search the parameter space of a policy,
which is often represented by a neural network [5]. The objective is to maximize
the accumulated reward of a policy. Specifically, a policy is represented by a neural
network with an input layer for the observation of the state, an output layer for
the available actions, and several hidden layers. In each step, an agent receives an
observation of the state and takes an action according to its policy. It then receives the
reward for that action together with the observation of the next state. This interaction
is repeated until the maximum number of steps is reached or the game is over. The
accumulated reward is used to evaluate the performance of a policy. The agent may
receive different accumulated rewards if the initial state is different. Therefore, we
consider the environment to be noisy. To summarize, our goal is to find the best
parameters . w for the neural network to achieve the best performance. The difficulty
lies in the fact that the accumulated reward. f N (w) used to evaluate the performance
can be noisy during optimization. Thus, we use the noise handling mechanisms
to reduce the effect of noise in this environment and compare their performances.
The settings of the neural network and OpenAI Gym tasks are listed in Table 8.2,
where .dstate, #Actions, NN nodes, #Weights, and Horizon denote the dimension of
the observation, the dimension of the action, the hidden layers of the neural network,
the total number of parameters in the neural network, and the maximum number of
steps, respectively.

We compare these mechanisms under the same parameter settings of SRacos,
which are listed in Table 8.3, where #.B− and #.B+ denote the size of the negative
set and positive set, respectively, and U-bits denotes the number of bits that can be
changed when generating a new solution from a positive solution. From the experi-
mental results on synthetic functions, we note that VS achieves the best performance.
Thus, we combine the other mechanisms with MPS to see if they can improve the
performance of MPS better than value suppression. On OpenAI Gym tasks, the total
number of function evaluations is set to 20,000.

The parameters of these mechanisms are set as follows. For sampling, the sample
size is set to 10. For threshold selection, the noise level is estimated to choose a
proper threshold value. To estimate the standard deviation of the noise, we draw 10

1 https://gym.openai.com.

https://gym.openai.com
https://gym.openai.com
https://gym.openai.com
https://gym.openai.com

8.3 Empirical Study 95

Table 8.2 Parameters of the OpenAI Gym tasks [11]

Task .dstate #Actions NN nodes #Weights Horizon

Acrobot-v1 6 1 5, 3 48 500

MountainCar-v0 2 1 5 15 200

HalfCheetah-v1 17 6 10 230 1,000

Humanoid-v1 376 17 25 9,825 1,000

Swimmer-v1 8 2 5, 3 61 1,000

Ant-v1 111 8 15 1,785 1,000

Hopper-v1 11 3 9, 5 159 1,000

LunarLander-v2 8 1 5, 3 58 1,000

Table 8.3 Parameters of SRacos and noise level [11]

Task #.B− #.B+ U-bits Noise level

Acrobot-v1 20 2 1 28.0

MountainCar-v0 20 2 1 10.0

HalfCheetah-v1 50 3 3 200.0

Humanoid-v1 20 2 3 56.0

Swimmer-v1 50 4 2 10.0

Ant-v1 20 2 3 46.0

Hopper-v1 50 6 4 60.0

LunarLander-v2 50 5 3 50.0

samples from the solution space, evaluate each sample 1,000 times independently, and
compute the standard deviation. The average standard deviation of these 10 samples is
used to estimate the standard deviation of the noise. The values are listed in Table 8.3
as the noise level . σ. We round these estimated values to the nearest integers and set
the threshold value.τ = σ. For value suppression, we set the maximum allowed non-
update iterations .u = 500, the re-sample size .v = 100, and the balancing parameter
.α = 0.5.

For each mechanism, the optimization algorithm is run independently 10 times.
At the end of each run, the average accumulated reward of 1,000 simulations is used
to estimate the performance of the found policy. The mean and standard deviation of
the 10 policies are reported in Table 8.4, where the standard deviation of additional
Gaussian noise is set to 0, 0.1, and 1 times the noise level in Table 8.3, respectively.
The mean value of a mechanism is in bold if it is not significantly worse than the
mechanism with the maximal mean value under a .t-test. SRacos with the number
of solutions in the positive set .|B+| > 1 (MPS) is chosen as the baseline for com-
parison. We can observe that VS performs the best on all tasks, while SAMPLING
and REEVAL+TS achieve the best performance only on the Humanoid-v1 task.
REEVAL, TS, and REEVAL+TS perform worse than the baseline on some tasks.
Since VS achieves the best performance within a given solution evaluation budget,

96 8 Optimization Under Noise

Ta
bl
e
8.
4

M
ea
n
va
lu
e
an
d
st
an
da
rd
 d
ev
ia
tio

n
of
 re
w
ar
d
ac
hi
ev
ed
 b
y
ea
ch
 m

ec
ha
ni
sm

 [1
1]
. T

he
 m

ar
k.

 ↓m
ea
ns
 th

at
 a
 s
m
al
le
r r
ew

ar
d
is
 b
et
te
r f
or
 th

e
ta
sk
, w

hi
le

. ↑
m
ea
ns
 t
ha
t
a
la
rg
er
 r
ew

ar
d
is
 b
et
te
r.
T
he
 m

ea
n
va
lu
e
of
 a
 m

ec
ha
ni
sm

 i
s
in
 b
ol
d
if
 i
t
is
 n
ot
 s
ig
ni
fic

an
tly

 w
or
se
 t
ha
n
th
e
m
ec
ha
ni
sm

 w
ith

 t
he
 m

ax
im

al
 m

ea
n

va
lu
e
un
de
r
a .
t-
te
st
 w
ith

 a
 s
ig
ni
fic

an
ce
 le
ve
l o

f.
 γ

=
10
%

N
oi
se

Ta
sk

V
S

SA
M
PL

IN
G

R
E
E
V
A
L
+
T
S

R
E
E
V
A
L

T
S

M
PS

0
A
cr
ob

ot
-v
1.↓

80
.7
6.
 ±1

.3
8

85
.5
1.
 ±3

.4
6

94
.0
3.
 ±1

3.
10

14
0.
58
. ±

12
0.
76

12
1.
74
. ±

40
.4
5

86
.5
0.
 ±4

.4
5

M
ou
nt
ai
nC

ar
-v
0.↓

13
4.
92
. ±

3.
87

14
1.
94
. ±

8.
29

18
1.
07
. ±

22
.6
1

19
9.
86
. ±

0.
40

15
8.
67
. ±

17
.1
0

15
0.
85
. ±

13
.3
3

H
al
fC
he
et
ah
-v
1.↑

19
24

.6
0.
 ±2

78
.0
8

14
08

.5
4.
 ±3

83
.8
5

12
31

.4
6.
 ±2

09
.5
0

75
2.
38
. ±

34
6.
83

96
8.
50
. ±

42
7.
66

13
88

.2
7.
 ±4

79
.9
4

H
um

an
oi
d-
v1
.↑

46
1.
85
. ±

23
.9
2

45
9.
53
. ±

22
.8
1

47
3.
05
. ±

34
.7
0

44
4.
60
. ±

39
.1
2

43
3.
87
. ±

32
.5
7

42
2.
40
. ±

41
.8
4

Sw
im

m
er
-v
1.↑

36
0.
51
. ±

3.
45

34
2.
02
. ±

20
.2
5

35
5.
40
. ±

3.
38

34
8.
84
. ±

9.
70

33
6.
94
. ±

16
.3
3

28
9.
97
. ±

71
.7
0

A
nt
-v
1.↑

13
12

.8
5.
 ±9

0.
16

11
30

.5
4.
 ±5

5.
35

10
52

.6
4.
 ±9

5.
64

10
56

.0
9.
 ±7

8.
96

10
16

.0
5.
 ±3

6.
28

11
26

.8
9.
 ±1

23
.1
1

H
op
pe
r-
v1
.↑

11
11

.9
1.
 ±1

17
.6
9

10
02

.0
3.
 ±4

8.
55

10
03

.7
3.
 ±1

2.
84

64
1.
23
. ±

40
6.
58

63
0.
02
. ±

24
2.
86

87
3.
87
. ±

18
6.
46

L
un

ar
L
an
de
r-
v2
.↑

80
.4
0.
 ±5

4.
51

. −
21

.2
3.
 ±9

1.
65

. −
19

1.
23
. ±

45
.7
7

. −
18

5.
59
. ±

24
.4
5

. −
17

2.
36
. ±

97
.1
7

. −
18

7.
70
. ±

10
7.
00

0.
1

A
cr
ob

ot
-v
1.↓

81
.2
6.
 ±1

.4
4

84
.4
5.
 ±5

.4
8

92
.9
1.
 ±1

1.
18

11
7.
18
. ±

61
.6
4

11
1.
94
. ±

51
.5
3

88
.8
7.
 ±5

.1
2

M
ou
nt
ai
nC

ar
-v
0.↓

14
0.
18
. ±

9.
20

15
4.
56
. ±

24
.5
2

17
2.
97
. ±

22
.8
8

20
0.
00
. ±

0.
04

16
3.
45
. ±

21
.2
1

15
8.
65
. ±

16
.6
9

H
al
fC
he
et
ah
-v
1.↑

16
03

.9
5.
 ±4

69
.2
6

13
14

.6
8.
 ±6

74
.5
6

10
25

.0
8.
 ±3

72
.5
7

57
2.
12
. ±

75
5.
55

57
3.
43
. ±

68
7.
99

12
28

.4
5.
 ±5

79
.6
5

H
um

an
oi
d-
v1
.↑

46
0.
15
. ±

25
.1
2

42
6.
24
. ±

19
.8
9

46
4.
92
. ±

28
.6
6

41
8.
89
. ±

45
.3
9

39
6.
49
. ±

39
.7
6

42
6.
85
. ±

21
.5
1

Sw
im

m
er
-v
1.↑

36
1.
42
. ±

2.
38

35
6.
64
. ±

4.
22

34
1.
74
. ±

18
.1
1

33
2.
89
. ±

40
.3
7

29
4.
99
. ±

54
.0
3

32
3.
52
. ±

39
.4
0

A
nt
-v
1.↑

11
79

.6
3.
 ±9

3.
48

10
97

.9
2.
 ±7

8.
16

10
06

.4
5.
 ±2

2.
73

10
07

.2
3.
 ±1

8.
04

99
8.
59
. ±

3.
10

10
97

.2
6.
 ±9

5.
47

H
op
pe
r-
v1
.↑

10
98

.8
4.
 ±9

2.
24

10
15

.1
8.
 ±3

8.
21

99
8.
98
. ±

13
.9
8

79
7.
96
. ±

28
8.
05

51
2.
60
. ±

27
3.
42

54
5.
55
. ±

25
1.
03

L
un

ar
L
an
de
r-
v2
.↑

40
.3
9.
 ±6

5.
07

. −
38

.6
0.
 ±6

9.
64

. −
18

0.
50
. ±

25
.7
3

. −
22

0.
36
. ±

81
.0
2

.−
25

0.
69

±1
07

.6
5

. −
24

0.
22
. ±

79
.5
0

1
A
cr
ob

ot
-v
1.↓

84
.2
8.
 ±2

.0
5

86
.8
9.
 ±2

.5
4

96
.5
3.
 ±1

2.
12

16
2.
16
. ±

11
9.
12

12
6.
18
. ±

52
.7
4

12
3.
88
. ±

77
.8
7

M
ou
nt
ai
nC

ar
-v
0.↓

13
6.
99
. ±

5.
02

16
7.
77
. ±

27
.8
9

16
2.
97
. ±

22
.9
2

20
0.
02
. ±

0.
34

17
5.
12
. ±

24
.4
9

17
5.
80
. ±

16
.0
0

H
al
fC
he
et
ah
-v
1.↑

12
86

.2
9.
 ±4

40
.4
6

85
8.
87
. ±

46
8.
68

77
6.
81
. ±

40
0.
41

37
7.
91
. ±

58
5.
26

58
5.
48
. ±

61
1.
87

98
7.
11
. ±

42
4.
63

H
um

an
oi
d-
v1
.↑

47
0.
63
. ±

36
.7
9

43
3.
63
. ±

39
.0
1

45
2.
51
. ±

37
.5
3

39
5.
58
. ±

57
.6
0

40
6.
76
. ±

43
.0
1

42
5.
62
. ±

33
.9
0

Sw
im

m
er
-v
1.↑

35
5.
73
. ±

5.
86

33
6.
34
. ±

38
.5
7

34
0.
85
. ±

16
.2
7

33
4.
31
. ±

12
.9
0

30
2.
17
. ±

35
.8
6

33
5.
54
. ±

20
.7
3

A
nt
-v
1.↑

10
10

.0
0.
 ±1

5.
27

99
7.
07
. ±

3.
57

10
00

.4
8.
 ±9

.3
8

99
2.
90
. ±

3.
55

99
3.
30
. ±

2.
98

99
4.
67
. ±

2.
64

H
op
pe
r-
v1
.↑

99
6.
14
. ±

70
.4
8

10
10

.3
2.
 ±3

0.
11

76
7.
96
. ±

35
0.
41

31
4.
72
. ±

33
9.
94

69
2.
43
. ±

19
0.
35

76
9.
20
. ±

28
5.
23

L
un

ar
L
an
de
r-
v2
.↑

58
.0
2.
 ±7

4.
66

. −
81

.3
9.
 ±7

3.
79

. −
17

5.
45
. ±

18
.4
9

. −
19

6.
36
. ±

70
.3
3

. −
26

4.
02
. ±

12
6.
33

. −
25

8.
27
. ±

91
.0
0

8.4 Summary 97

it requires the least computational and time cost compared to the other mechanisms,
making it the most efficient.

We further add Gaussian noise to these tasks and observe the performance of the
mechanisms under additional noise. Two experiments are conducted with different
levels of extra noise. For the first one, the standard deviation of the additional Gaus-
sian noise is set to 0.1 times the noise level in Table 8.3. For the second one, the
standard deviation is set to 1 times the noise level. We keep the other parameters
the same as in the previous experiment for OpenAI Gym. SRacos with the num-
ber of solutions in the positive set .|B+| > 1 (MPS) is chosen as the baseline for
comparison. The results are listed in Table 8.4, and the comparison of the mecha-
nisms under different extra noise levels is shown in Fig. 8.2. We can observe that VS
achieves the best or equally best performance under the .t-test in all tasks. Although
it performs worse than the environment without extra noise in tasks like Ant-v1 and
HalfCheetah-v1, it achieves almost the same or even better performance in other
tasks. However, SAMPLING and REEVAL+TS perform worse as the extra noise
increases in most tasks. In tasks like HalfCheetah-v1 and Swimmer-v1, they do not
perform better than the baseline, which does not handle noise.

8.3.3 Hyper-Parameter Analysis

We also investigate the sensitivity of the hyper-parameter . u, i.e., the maximum
allowed non-update iterations, in OpenAI Gym. The experimental setting is the same
as that without extra noise, and . u is chosen from .{100, 500, 1000}. In the previous
experiments, . u was always set to 500. The results are shown in Table 8.5.

Table 8.5 indicates that the results are not significantly different in most tasks when
.u ∈ {100, 500, 1000}. This implies that the hyper-parameter . u is not very sensitive.
If . u is too small, the confidence that the solution is trapped due to noise is low, and
it may waste samples to accurately evaluate a solution that would be replaced soon.
If . u is too large, the confidence is high, but it may waste samples waiting for the
confidence to build up. Therefore, the choice of . u should be balanced. According
to the experimental results, the default setting .u = 500 should be suitable in many
cases.

8.4 Summary

In many real-world applications, such as policy search in reinforcement learning,
the environment is noisy, and noise can significantly degrade the performance of
derivative-free optimization methods. This chapter presents a generic, simple, yet
effective noise handling mechanism called value suppression [11]. Value suppres-
sion can be integrated into most derivative-free optimization methods to handle and
reduce noise. To verify the effectiveness of this mechanism, we integrate it into

98 8 Optimization Under Noise

Fig. 8.2 Comparison of the performance under extra noise levels of 0, 0.1, and 1 times the noise
level, respectively [11]

References 99

Table 8.5 Hyper-parameter analysis of maximum allowed non-update iterations . u [11], where
.u ∈ {100, 500, 1000}. The mark. ↓ means that a smaller reward is better for the task, while. ↑ means
that a larger reward is better. The mean value of a mechanism is in bold if it is not significantly
worse than the mechanism with the maximal mean value under a.t-test with a significance level of
. γ = 10%

Task 500 100 1000

Acrobot-v1.↓ 80.76. ±1.38 79.52. ±2.54 82.06. ±1.39

MountainCar-v0.↓ 134.92. ±3.87 132.30. ±4.28 134.96. ±4.52

HalfCheetah-v1.↑ 1924.60. ±278.08 1554.27. ±486.50 1773.89. ±548.06

Humanoid-v1.↑ 461.85. ±23.92 460.39. ±34.97 455.46. ±35.26

Swimmer-v1.↑ 360.51. ±3.45 360.91. ±2.33 359.35. ±5.09

Ant-v1.↑ 1312.85. ±90.16 1239.24. ±119.53 1181.04. ±91.45

Hopper-v1.↑ 1111.91. ±117.69 1046.35. ±27.49 1058.87. ±30.77

LunarLander-v2.↑ 80.40. ±54.51 . −23.02. ±62.22 21.04. ±80.90

SRacos, resulting in the suppressed SRacos (SSRacos). Experimental results on
both synthetic functions and reinforcement learning control tasks in OpenAI Gym
demonstrate that value suppression can perform better than other popular noise han-
dling mechanisms, such as sampling and threshold selection with re-evaluation. In
the future, we will further explore whether value suppression can be helpful in noise-
free environments. Intuitively, value suppression may help the algorithm escape local
optima even in the absence of noise.

References

1. Arnold DV, Beyer H (2006) A general noise model and its effects on evolution strategy per-
formance. IEEE Trans Evol Comput 10(4):380–391

2. Bartz-Beielstein T (2005) Evolution strategies and threshold selection. In: Proceedings of the
2nd international workshop on hybrid metaheuristics, Barcelona, Spain, pp 104–115

3. Beielstein T, Markon S (2002) Threshold selection, hypothesis tests, and DOE methods. In:
Proceedings of the 2002 IEEE congress on evolutionary computation, Honolulu, HI, pp 777–
782

4. Doerr B, Hota A, Kötzing T (2012) Ants easily solve stochastic shortest path problems. In:
Proceedings of the 14th ACM annual conference on genetic and evolutionary computation,
Philadelphia, PA, pp 17–24

5. El-Fakdi A, Carreras M, Ridao P (2006) Towards direct policy search reinforcement learning
for robot control. In: Proceedings of the 2006 IEEE/RSJ international conference on intelligent
robots and systems Beijing, China, pp 3178–3183

6. Gießen C, Kötzing T (2016) Robustness of populations in stochastic environments. Algorith-
mica 75(3):462–489

7. Goh CK, Tan KC (2007) An investigation on noisy environments in evolutionary multiobjective
optimization. IEEE Trans Evol Comput 11(3):354–381

8. Jin Y, Branke J (2005) Evolutionary optimization in uncertain environments-A survey. IEEE
Trans Evol Comput 9(3):303–317

100 8 Optimization Under Noise

9. Markon S, Arnold DV, Bäck T, Beielstein T, Beyer H (2001) Thresholding-A selection operator
for noisy ES. In: Proceedings of the 2001 IEEE Congress on Evolutionary Computation, Seoul,
South Korea, pp 465–472

10. Qian C, Yu Y, Zhou Z (2018) Analyzing evolutionary optimization in noisy environments. Evol
Comput 26(1):1–41

11. Wang H, Qian H, Yu Y (2018) Noisy derivative-free optimization with value suppression. In:
Proceedings of the 32nd AAAI conference on artificial intelligence, New Orleans, LA

Chapter 9
Optimization with Parallel Computing

Abstract This chapter introduces ASRacos, an asynchronous variant of the SRa-
cos algorithm, designed to accelerate derivative-free optimization through parallel
computing. While SRacos excels in sequential optimization, its structure limits par-
allelization, which is crucial for time-consuming tasks. ASRacos modifies SRacos
to enable asynchronous parallelism, allowing multiple servers to evaluate solutions
concurrently while maintaining the sequential update structure. The chapter provides
a theoretical analysis of ASRacos, including its query complexity and conditions
under which it outperforms SRacos. Empirical studies compare ASRacos with other
parallel methods on synthetic functions and reinforcement learning tasks, demon-
strating its ability to achieve near-linear speedup and superior solution quality. The
results highlight the effectiveness of asynchronous parallelism in accelerating opti-
mization without compromising performance. Future work may explore integrating
noise-handling methods and applying ASRacos to large-scale real-world problems.

While SRacos has shown outstanding performance in various applications [7– 9], its
sequential structure prevents it from being parallelized, which can be a limitation for
time-consuming optimization tasks. Asynchronous parallelism is an effective way
to accelerate optimization, but it can destroy the sequential structure of optimization
algorithms, potentially deteriorating their performance. However, some optimiza-
tion algorithms have been proven to preserve their performance under asynchronous
parallelization, such as stochastic gradient descent for first-order optimization of dif-
ferentiable functions [10] and Pareto optimization for zeroth-order optimization in
binary space [5].

In this chapter, we present an asynchronous variant of SRacos called ASRacos
[4]. We apply a feasible modification to SRacos to make it parallelizable and imple-
ment its asynchronous version ASRacos, which maintains the sequential structure
while being able to utilize multiple servers. We provide the .(ε, δ)-query complexity
bound of ASRacos in theoretical analysis and further give the condition under which
ASRacos can achieve better (or worse) performance than SRacos, even when using
the same number of evaluations. We empirically compare ASRacos with several
other parallel classification-based optimization algorithms on four synthetic testing

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025
Y. Yu et al., Derivative-Free Optimization, Machine Learning: Foundations,
Methodologies, and Applications, https://doi.org/10.1007/978-981-96-5929-6_9

101

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-5929-6_9&domain=pdf
https://doi.org/10.1007/978-981-96-5929-6_9
https://doi.org/10.1007/978-981-96-5929-6_9
https://doi.org/10.1007/978-981-96-5929-6_9
https://doi.org/10.1007/978-981-96-5929-6_9
https://doi.org/10.1007/978-981-96-5929-6_9
https://doi.org/10.1007/978-981-96-5929-6_9
https://doi.org/10.1007/978-981-96-5929-6_9
https://doi.org/10.1007/978-981-96-5929-6_9
https://doi.org/10.1007/978-981-96-5929-6_9
https://doi.org/10.1007/978-981-96-5929-6_9
https://doi.org/10.1007/978-981-96-5929-6_9

102 9 Optimization with Parallel Computing

functions and apply them to direct policy search for six reinforcement learning con-
trol tasks, where an artificial neural network is used as the policy and optimized.
Experimental results show that ASRacos can achieve almost linear speedup while
preserving good solution quality.

9.1 The Asynchronous SRACOS (ASRACOS) Algorithm

The idea of making SRacos parallelizable is straightforward: sample .Ns solutions
(where.Ns is the number of evaluation servers) after initialization, rather than a single
solution. These solutions can then be evaluated in parallel. Whenever an evaluation is
finished, the method updates the model and samples the next solution for evaluation.
Note that the sequential update structure is still maintained through this modification.

The pseudocode of ASRacos is shown in Algorithm 9.1. The notations and sub-
procedures used in the algorithm are the same as those introduced in Chap. 6 for the
SRacos algorithm.

Algorithm 9.1 Asynchronous SRacos (ASRacos)
Require: (extra input compared to SRacos)

Ns ∈ N+: The number of evaluation servers
Ensure:
1: Collect S = {x1, . . . , xr } by i.i.d. sampling from UX
2: B = {(x1, y1), . . . , (xr , yr)}, ∀xi ∈ S : yi = f (xi)
3: (B+, B−) = Selection(B; k)
4: h1 = C(B+, B−)
5: D, E = Shared Queue{ }, Shared Queue{ }
6: D = {xr+1, . . . , xr+Ns } = λ-SamplingNs (UDh , UX)
7: Run Evaluation(D, E) sub-procedures on Ns daemon threads
8: for t = r + 1 to N do
9: (x, y) = take(E)
10: [(x′, y′), B+] = Replace((x, y), B+, ‘strategy_P’)
11: [∅, B−] = Replace((x′, y′), B−, ‘strategy_N’)
12: (̃x, ỹ) = arg min(x,y)∈B+∪{(̃x, ̃y)} y
13: h = C(B+, B−)
14: x = λ-Sampling1(UDh , UX)
15: put(x, D)
16: end for
17: return (̃x, ỹ)
18:
19: Evaluation(D, E):
20: while true do
21: x = take(D)
22: y = f (x)
23: put((x, y), E)
24: end while

9.1 The Asynchronous SRacos (ASRacos) Algorithm 103

After initialization, ASRacos obtains two tuple sets.B+ and.B− according to the
function values (line 3). Then, a binary classifier is trained based on these two sets
to learn the potential high-quality region in the solution space (line 4). The learned
region contains one selected good solution from the positive set and excludes all
the bad solutions from the negative set. ASRacos contains two first-in-first-out
blocking queues: .D for the unevaluated solutions and.E for the evaluated solutions.
.D and .E are shared between the main thread and the evaluation threads for data
communication. .D is initialized with the first batch of sampled solutions, and . E
is initialized as empty (lines 5–6). Then, ASRacos starts .Ns evaluation servers
(implemented as newly created threads), each continuously evaluating a solution
taken from .D and putting the result .(x, y) into .E (lines 21–23). In the following
loop, ASRacos takes the evaluated tuple .(x, y) from .E and uses it to update the
tuple sets .B+ and .B− (lines 9–11). Once a new binary classifier . C is trained (line
13), a new solution is sampled and put into .D (lines 14–15).

In summary, ASRacos divides the sequential evaluation and update procedure
of SRacos into two components: the asynchronous evaluation component and the
sequential model update component. The asynchronous evaluation component can
utilize multiple servers, while the model update component can still update the clas-
sification model sequentially, maintaining the sequential structure of SRacos. The
blocking queues .D and .E are created for data communication between threads.

Figure 9.1 demonstrates the flowcharts of the optimization procedures of
ASRacos and SRacos, where the solid arrow denotes the sampling and evalua-
tion procedure, the hollow arrow denotes an update on the data distribution .Dt , and
. si , . s j , and. sk denote the unused solutions sampled previously. It can be observed that
.Dt is always updated by the solution sampled from.Dt for SRacos, while it can be
updated by the solution sampled from another distribution several iterations ago for
ASRacos, which causes the difference in the data distributions of the two algorithms.
The next section discusses the effect of this difference on the query complexity of
ASRacos.

... ...

... ...

Fig. 9.1 Flowcharts of the optimization procedures of ASRacos (top, using three evaluation
servers) and SRacos (bottom) [4]

104 9 Optimization with Parallel Computing

9.2 Theoretical Analysis

We derive an upper bound on the .(ε, δ)-query complexity of ASRacos under
the conditions of error-target .θ-dependence and .γ-shrinking rate, as introduced in
Chap. 4.

Lemma 9.1 Given an objective function . f , .ε > 0, and .0 < δ < 1, if ASRacos has
error-target .θ-dependence and .γ-shrinking rate, then its .(ε, δ)-query complexity is
upper bounded by

.O

⎛
⎝max

⎧⎨
⎩

1

μ(Dε)

(
(1 − λ) + λ

γ(N − r)

N∑
t=r+1

�A
t

)−1

ln
1

δ
, N

⎫⎬
⎭

⎞
⎠ , (9.1)

where .�A
t =

(
1 − εDA

t
− √

2DKL(DA
t ‖UX) − θ

)
· μ(Dαt)

−1, and .|X | is the volume
of . X .

The proof of Lemma 9.1 is similar to the proof of Theorem 4.3 in Chap. 4, except
for the values of .εDt and .DKL(Dt‖UX) at each iteration. Using Lemma 9.1, we
can compare the query complexity bounds of ASRacos and SRacos. The result is
shown in Theorem 9.1.

Theorem 9.1 Ignoring the constant factor and fixing . θ and . γ, ASRacos can have
a better (or worse) query complexity upper bound than SRacos if, for any iteration
. t ,

.εDA
t

− εDS
t

< (>)

√
2DKL(DS

t ‖UX) −
√
2DKL(DA

t ‖UX). (9.2)

Proof Let.DA
t and.DS

t denote the distributions under which the classifiers are trained
in iteration . t of ASRacos and SRacos, respectively, and .εDA

t
and .εDS

t
denote their

corresponding generalization errors.
Recall the.(ε, δ)-query complexity bound of a classification-based sequential DFO

algorithm derived in Theorem 4.3 of Chap. 4. Given an objective function . f , .ε > 0,
and.0 < δ < 1, if a classification-based sequential DFO algorithm has error-target.θ-
dependence and .γ-shrinking rate, then its .(ε, δ)-query complexity is upper bounded
by

.O

⎛
⎝max

⎧⎨
⎩

1

μ(Dε)

(
(1 − λ) + λ

γ(N − r)

N∑
t=r+1

�S
t

)−1

ln
1

δ
, N

⎫⎬
⎭

⎞
⎠ , (9.3)

where.�S
t =

(
1 − εDS

t
− √

2DKL(DS
t ‖UX) − θ

)
· μ(Dαt)

−1, and.|X | is the volume

of . X .

9.3 Empirical Study 105

In Lemma 9.1, ignoring the constant factor and letting.ε > 0 be small enough, we
only need to focus on the term

.
1

μ(Dε)

(
(1 − λ) + λ

γ(N − r)

N∑
t=r+1

�A
t

)−1

ln
1

δ
, (9.4)

where .�A
t =

(
1 − εDA

t
− √

2DKL(DA
t ‖UX) − θ

)
· μ(Dαt)

−1.

Comparing Lemma 9.1 and Eq. (9.3), to compare ASRacos with SRacos,
it suffices to compare the terms .1 − εDA

t
− √

2DKL(DA
t ‖UX) − θ and . 1 − εDS

t
−√

2DKL(DS
t ‖UX) − θ, ignoring the corresponding constant factors. It can be verified

that, for any iteration. t , if.εDA
t

− εDS
t

<
√
2DKL(DS

t ‖UX) − √
2DKL(DA

t ‖UX), then
ASRacos has a better query complexity upper bound than SRacos; if . εDA

t
− εDS

t
>√

2DKL(DS
t ‖UX) − √

2DK L(DA
t |UX), then ASRacos is worse. �

Theorem 9.1 reveals that if the difference in the training distributions between
the two algorithms has a greater influence than the difference in generalization error,
ASRacos can be better than SRacos even when using the same number of evalua-
tions. Moreover, ASRacos can use nearly .Ns times more evaluations than SRacos
within the same time. Therefore, it is much easier for ASRacos to find a better
solution than SRacos in practice.

9.3 Empirical Study

We evaluate the performance of ASRacos in two environments. One is the optimiza-
tion of classical synthetic functions, containing a convex function and three highly
non-convex functions; the other is the controlling tasks in OpenAI Gym, an open
source environment for reinforcement learning research.

We investigate the performance of the asynchronous parallelism on the
classification-based optimization algorithms, including convergence rate, speedup
ratio, and solution quality. We compare our method with another two parallel
classification-based methods: Parallel Ra-cos (PRacos) and Parallel SRacos
(PSRacos). PRacos is a simple parallel implementation of the batch-mode method
SRacos [6]. PSRacos shares the same structure with ASRacos, and only varies
in that the classification model will not update until the slowest evaluation server
finishes evaluation. Note that when the number of evaluation servers is 1, ASRacos
and PSRacos are equivalent to SRacos, and PRacos equals SRacos. Reference
[3] has compared the performance of a sequential classification-based optimization
algorithm with other state-of-the-art derivative-free optimization algorithms, so we
omit these comparisons in this chapter.

106 9 Optimization with Parallel Computing

9.3.1 On Synthetic Functions

We choose four benchmark testing functions: the convex Sphere function and the
highly non-convex Ackley, Rastrigin, and Griewank function. They are defined as

. Sphere(x) =
d∑

i=1

x2i , (9.5)

. Ackley(x) = −20e− 1
5

√
1
d

∑d
i=1 x

2
i − e

1
d

∑d
i=1 cos(2πxi) + 20 + e , (9.6)

. Rastrigin(x) = 10d +
d∑

i=1

[
xi

2 − 10 cos(2πxi)
]

, (9.7)

. Griewank(x) =
d∑

i=1

x2i
4000

−
d∏

i=1

cos(
xi√
i
) + 1 . (9.8)

The functions are minimized within the solution space.X = [−1, 1]d , of which the
minimum value is . 0 and the optimal solution is .(0, . . . , 0). In the implementation,
we choose . d to be 100 and shift the optimal solution by .0.2, which means the
new optimal solution is .(0.2, 0.2, . . . , 0.2), to avoid possible optimization bias to
the origin point. In addition, we add a fixed 1-s sleep for each evaluation. This
is a reasonable modification since any distributed algorithm faces the networking
overhead. If the evaluation time cost is even smaller than the networking overhead,
parallelization may not be necessary. Another 1-s sleep with 0.25 probability is
also added to simulate a situation where evaluation servers vary in computational
performance, i.e., some servers are explicitly slower than others, which is common
in real-world applications. Each algorithm is repeated 10 times independently, and
the average performance is reported.

On Convergence Rate
We firstly study the convergence rate of ASRacos. We set the time for optimiza-
tion to be 2000 s compare the performance with the number of evaluation servers
.Ns = 1, 2, 4, 6, 8, 10. The results are shown in Fig. 9.2. The dotted line represents
the optimal value that ASRacos obtains when using one server (also the result of
SRacos). It can be observed that ASRacos with more evaluation servers reduces the
objective function value with a higher rate, indicating that asynchronous parallelism
can accelerate the convergence.

On Speedup
We then study the speedup w.r.t the number of evaluation servers (.Ns). We set the
budget to be 2000 for each algorithm and calculate the speedup as.Si = T1/Ti , where
. Ti represents the time consumed when.Ns = i . The results are shown in Fig. 9.3. From
the left plots of each function, we can observe that ASRacos (blue line) achieves
linear speedup, notably better than PRacos and PSRacos. The results reflect the

9.3 Empirical Study 107

Fig. 9.2 Comparison of the convergence rate with the number of evaluation servers . Ns =
1, 2, 4, 6, 8, 10 [4]

advantage of asynchronous parallelism over simple parallelism when servers vary in
computational performance.

On Solution Quality
To study the solution quality w.r.t. the number of evaluation servers within the same
time constraint, we set the time for optimization to be 20 min for each algorithm.
The results are shown in the right plots of Fig. 9.3. We can see that algorithms using
more servers get better solution quality and ASRacos achieves the best performance
among them.

9.3.2 On Controlling Tasks in OpenAI Gym

OpenAI Gym is a toolkit for developing and comparing reinforcement learning algo-
rithms. The toolkit provides many controlling tasts, from which we choose Acrobot,
MountainCar, Pendulum, HalfCheetah, Swimmer, and Ant to investigate the speedup
and solution quality of ASRacos.

108 9 Optimization with Parallel Computing

Fig. 9.3 On each objective function, left: speedup, right: the average of the function value (the one
closer to. 0 the better) [4]

9.3 Empirical Study 109

We use the framework of direct policy search to solve these tasks. Direct pol-
icy search employs optimization algorithms to search in the parameter space of a
policy for maximizing the cumulative reward. The policy is often represented by
a neural network [1, 2], whose weights .w = {w1, w2, . . . , wn} are the parameters
to be optimized. The neural network takes the observation of the state as input and
outputs an action according to its policy. After that, it will get the reward of that
action and the observation of the next state. This interaction can be repeated until
the game is over or the maximum step is reached. The cumulative reward is used as
an evaluation of the policy network, i.e., . f (w)i = ∑T

t=1 Rt . The agent would have
different cumulative rewards if the initial state is reset to be different, so we take the
average of multiple simulations as the final evaluation value of one neural network:
. f (w) = ∑m

i=1 f (w)i/m, which can reduce the noise to some extent. In a nutshell,
our aim is to find the optimal parameter .w for this network so as to achieve the
best performance. We list the task information and the settings of neural network
in Table 9.1, where .dState, #Actions, NN nodes, #Weights and Horizon respectively
denote the dimension size of observation, the dimension size of action, the hidden
layers of the neural network, the total number of parameters in the neural network
and the maximum step.

We will briefly summarize each task and the details can be found in the homepage
of OpenAI Gym. The Acrobot system includes two joints and two links, where the
joint between the two links is actuated. Initially, the links are hanging downwards and
the goal of this task is to swing the end of the low link up to a given height. In Moun-
tainCar, a car is on a one-dimensional track, positioned between two mountains. The
goal is to drive up the mountain on the right through driving back and forth to build
up momentum. In Pendulum, a pendulum starts in a random position, and the goal
is to swing it up so it stays upright. HalfCheetah, Swimmer, and Ant are simulation
tasks. In those tasks, a simulated object is controlled by a policy to achieve a specific
goal. For example, in Ant, the policy should control a four-legged creature to make it
walk forward as fast as possible. Among these tasks, Acrobot and MountainCar are
finding policies with the smallest step number to achieve the goal. Other tasks are
to find policies to get score from the environment as high as possible. The average
cumulative reward of 200 simulations is used as the evaluation value of one network
for Acrobot, MountainCar, and Pendulum. And for other tasks, the average reward

Table 9.1 Parameters of the Gym tasks [4]

Task .dState #Actions NN nodes #Weights Horizon

Acrobot-v1 .6 .1 .5, 3 .48 . 500

MountainCar-v0 .2 .1 .5 .15 . 200

Pendulum-v0 .3 .1 .5 .20 . 200

HalfCheetah-v2 .17 .6 .10 .230 . 1000

Swimmer-v2 .8 .2 .5, 3 .61 . 1000

Ant-v2 .111 .8 .15 .1785 .1000

110 9 Optimization with Parallel Computing

of 20 simulations is used. The solution space .X is set to be .[−10, 10]#Weight. The
output of the neural network is scaled to be within the action space, which is defined
by the environment. Each algorithm is repeated 10 times and the mean value of the
top-5 results is reported. The results are plotted in Figs. 9.4 and 9.5.

Fig. 9.4 For each task, left: speedup, right: the mean step (Acrobot, MountainCar) or minus score
(Pendulum, HalfCheetah, Swimmer, Ant) of the best found policy (the smaller .y-axis coordinate
value the better) [4]

9.3 Empirical Study 111

Fig. 9.5 For each task, left: speedup, right: the mean step (Acrobot, MountainCar) or minus score
(Pendulum, HalfCheetah, Swimmer, Ant) of the best found policy (the smaller .y-axis coordinate
value the better) [4]

112 9 Optimization with Parallel Computing

On Speedup
Budget is set to be .2000 for each algorithm. From the left plots of each task, we can
observe that ASRacos (blue line) can still achieve almost linear speedup, better than
PRacos and PSRacos. Due to the competition for computing resource, the speedup
ratio in these environments is smaller than that on synthetic functions, which simulate
the time-consuming tasks simply by adding sleep operations. In addition, for Acrobot,
MountainCar, and Ant, a better solution would make the game stop earlier, which
consumes less evaluation time, and result in a lower speedup.

On Solution Value
We convert the maximization problems in Pendulum, HalfCheetah, Swimmer, and
Ant to the minimization problems by adding a minus to the score. The time for
optimization is set to be 20 min for each algorithm. From the right plots in each
subfigure, we can see that the algorithm using more servers can get better solution
quality in most cases. Nevertheless, in some cases, the algorithm may get worse
solution quality. The reason is that in one case there exists randomness in the process
of optimization, in another the evaluation is inaccurate under noisy environments,
which may make a bad solution seem to be good and lead the optimization to the
wrong direction. Similar to the results of the synthetic functions, ASRacos achieves
the best performance in most cases.

9.4 Summary

In this chapter, we present an asynchronous derivative-free classification-based opti-
mization method, ASRacos, originally proposed in [4], for accelerating the optimiza-
tion. We analyze the query complexity of ASRacos and further provide the condition
on which ASRacos can achieve a better (worse) performance than SRacos using
the same number of evaluations. In experiments, we first study the convergence rate
of ASRacos on synthetic functions, showing that ASRacos can achieve higher
convergence rate when having more evaluation servers. On both synthetic functions
and direct policy search for controlling tasks, ASRacos demonstrates almost linear
speedup and gets a better solution quality than other parallel algorithms, which veri-
fies the effectiveness of asynchronous parallelism. Future work includes combining
noise-handling methods into ASRacos to speed up the optimization under noisy
environments and applying ASRacos to large-scale optimization problems in real
world.

References 113

References

1. El-Fakdi A, Carreras M, Palomeras N (2005) Direct policy search reinforcement learning
for robot control. In: Proceedings of the 8th international conference of the ACIA artificial
intelligence research and development, Alguer, Italy, pp 9–16

2. El-Fakdi A, Carreras M, Palomeras N (2006) Towards direct policy search reinforcement
learning for robot control. In: Proceedings of the 2006 IEEE/RSJ international conference on
intelligent robots and systems, Beijing, China, pp 3178–3183

3. Hu YQ, Qian H, Yu Y (2017) Sequential classification-based optimization for direct policy
search. In: Proceedings of the 31st AAAI conference on artificial intelligence, San Francisco,
CA, pp 2029–2035

4. Hu YQ, Qian H, Yu Y (2019) Asynchronous classification-based optimization. In: Proceedings
of the 1st international conference on distributed artificial intelligence, Beijing, China, pp
9:1-9:8.https://doi.org/10.1145/3356464.3357709

5. Qian C, Shi JC, Yu Y, Tang K, Zhou ZH (2016) Parallel Pareto optimization for subset selection.
In: Proceedings of the 25th international joint conference on artificial intelligence, New York,
NY, pp 1939–1945

6. Yu Y, Qian H, Hu YQ (2016) Derivative-free optimization via classification. In: Proceedings
of the 30th AAAI conference on artificial intelligence, Phoenix, Arizona, pp 2286–2292

7. Yu Y, Qu WY, Li N, Guo Z (2017) Open category classification by adversarial sample gen-
eration. In: Proceedings of the 26th international joint conference on artificial intelligence,
Melbourne, Australia, pp 3357–3363

8. Zhang J, Sun Y, Huang S, Nguyen CT, Wang X, Dai X, Chen J, Yu Y (2017) AGRA: an analysis-
generation-ranking framework for automatic abbreviation from paper titles. In: Proceedings
of the 26th international joint conference on artificial intelligence, Melbourne, Australia, pp
4221–4227

9. Zhou WJ, Yu Y, Zhang ML (2017) Binary linear compression for multi-label classification.
In: Proceedings of the 26th international joint conference on artificial intelligence, Melbourne,
Australia, pp 3546–3552

10. Zinkevich M, Weimer M, Smola A, Li L (2010) Parallelized stochastic gradient descent. In:
Advances in neural information processing systems, vol 23, British Columbia, Canada, pp
2595–2603

https://doi.org/10.1145/3356464.3357709
https://doi.org/10.1145/3356464.3357709
https://doi.org/10.1145/3356464.3357709
https://doi.org/10.1145/3356464.3357709
https://doi.org/10.1145/3356464.3357709
https://doi.org/10.1145/3356464.3357709
https://doi.org/10.1145/3356464.3357709

Chapter 10
Toolbox: ZOOpt

Abstract This chapter introduces the ZOOpt toolbox, a powerful tool for zeroth-
order optimization designed to address high-dimensional and noisy optimization
problems, particularly in machine learning tasks such as hyper-parameter tuning
and direct policy search. ZOOpt implements state-of-the-art algorithms, includ-
ing SRacos, ASRacos, and POSS, and supports optimization in continuous, dis-
crete, and hybrid spaces. It also features noise-handling mechanisms like value sup-
pression and threshold selection, as well as high-dimensionality handling through
sequential random embedding. The toolbox integrates with the Ray framework for
distributed optimization, enabling efficient parallel computation. Empirical studies
demonstrate ZOOpt’s superior convergence rate, scalability, and robustness against
noise compared to other optimization toolboxes. Experiments on synthetic functions
and machine learning tasks, including classification with Ramp loss and OpenAI
Gym control tasks, highlight ZOOpt’s effectiveness. The chapter concludes with a
summary of ZOOpt’s capabilities and its potential for real-world applications.

This chapter introduces the ZOOpt (Zeroth Order Optimization) toolbox [7], which
provides major algorithms introduced in the previous chapters. ZOOpt implements
single-machine parallel optimization using Python and multi-machine distributed
optimization for time-consuming tasks by incorporating the Ray framework, a pop-
ular platform for building distributed applications. ZOOpt particularly focuses on
optimization problems in machine learning, addressing high-dimensional and noisy
problems such as hyper-parameter tuning and direct policy search. The toolbox is
maintained as a ready-to-use tool for real-world machine learning tasks.

10.1 Methods in ZOOpt

In Table 10.1, we summarize the algorithms implemented in the ZOOpt toolbox,
along with their support for different search spaces, parallelization, and compatibility
with noise and high-dimensional handlers.

Optimization in continuous/discrete/hybrid spaces. ZOOpt implements SRa-
cos (Chap. 6 as the default optimization method, which has shown high efficiency

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025
Y. Yu et al., Derivative-Free Optimization, Machine Learning: Foundations,
Methodologies, and Applications, https://doi.org/10.1007/978-981-96-5929-6_10

115

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-5929-6_10&domain=pdf
https://doi.org/10.1007/978-981-96-5929-6_10
https://doi.org/10.1007/978-981-96-5929-6_10
https://doi.org/10.1007/978-981-96-5929-6_10
https://doi.org/10.1007/978-981-96-5929-6_10
https://doi.org/10.1007/978-981-96-5929-6_10
https://doi.org/10.1007/978-981-96-5929-6_10
https://doi.org/10.1007/978-981-96-5929-6_10
https://doi.org/10.1007/978-981-96-5929-6_10
https://doi.org/10.1007/978-981-96-5929-6_10
https://doi.org/10.1007/978-981-96-5929-6_10
https://doi.org/10.1007/978-981-96-5929-6_10

116 10 Toolbox: ZOOpt

Ta
bl
e
10
.1

A
lg
or
ith

m
s
im

pl
em

en
te
d
in
 th

e
Z
O
O
pt
 to

ol
bo
x
[7
].
 F
or
 e
ac
h
al
go

ri
th
m
, w

e
co
nc
lu
de
 it
s
su
pp

or
t o

n
di
ff
er
en
t k

in
ds
 o
f
se
ar
ch
 s
pa
ce
, p
ar
al
le
liz

at
io
n

an
d
th
e
co
m
pa
tib

ili
ty
 w
ith

 th
e
no

is
e
ha
nd

le
r
an
d
th
e
hi
gh

-d
im

en
si
on

al
 h
an
dl
er

A
lg
or
ith

m
s
in
 Z
O
O
pt

Se
ar
ch
 s
pa
ce

Pa
ra
lle
liz
at
io
n

N
oi
se
 H
an
dl
er

H
ig
h-
di
m
en
si
on
al
ity

ha
nd
le
r

Su
ita
bl
e
ta
sk
s

C
on
tin

uo
us

D
is
cr
et
e

H
yb
ri
d

Si
ng
le
-m

ac
hi
ne

M
ul
ti-
m
ac
hi
ne

A
sy
nc
hr
on
ou
s

C
la
ss
ifi
ca
tio

n-
ba
se
d

op
tim

iz
at
io
n

R
ac
os

.�
.�

.�
.�

.�
.�

N
on
-d
if
fe
re
nt
ia
l,

no
n-
co
nv
ex
, n

oi
sy

an
d

hi
gh
-d
im

en
si
on
al

fu
nc
tio

ns

SR
ac
os

.�
.�

.�
.�

.�
. �

A
SR

ac
os
 .
�

.�
.�

.�
.�

.�
.�

. �
Pa
re
to

op
tim

iz
at
io
n
fo
r

su
bs
et
 s
el
ec
tio

n

PO
SS

.�
.�

Su
bs
ec
t s
el
ec
tio

n
pr
ob
le
m
s

PP
O
SS

.�
.�

.�

10.2 Usage 117

in a range of learning tasks. Optional methods are Racos (Chap. 5) and ASRacos
(Chap. 9), which are the batch and asynchronous versions of SRacos, respectively.
A routine is in place to set up the default parameters of the two methods, while users
can override them. Benefiting from the compatibility of the classifier with multi-
ple data types, classification-based optimization naturally supports optimization in
continuous, discrete (categorical), or hybrid spaces.

Optimization in binary vector space with constraints. If the optimization task is
in a binary vector space with constraints, such as the subset selection problem, POSS
[9] is the default optimization method. POSS treats subset selection tasks as a bi-
objective optimization problem that simultaneously optimizes a given criterion and
the subset size. POSS has been proven to have the best-so-far approximation quality
on these problems. PPOSS [10] is the parallel version of the POSS algorithm.

Noise handling. Noise has a great impact on the performance of derivative-free
optimization. Resampling is the most straightforward method to handle noise, which
evaluates one sample several times to obtain a stable mean value. Besides resampling,
more efficient methods, including value suppression (Chap. 8) and threshold selection
[11], are implemented in ZOOpt.

High-dimensionality handling. An increase in the search space dimensional-
ity badly injures the performance of derivative-free optimization. When a high-
dimensional search space has a low effective dimension, random embedding [12] is an
effective way to improve efficiency. Also, sequential random embeddings (Chap. 7)
can be used when there is no clear low effective dimension.

Distributed optimization. Evaluation of a sampled solution is usually time-
consuming for many real-world optimization tasks, such as hyper-parameter tun-
ing in large-scale machine learning projects. Incorporating the Ray framework [8],
ZOOpt implements an efficient distributed optimization module that enables users
to parallelize single-machine code with little to no code changes.

10.2 Usage

This section briefly introduces single-machine optimization, distributed optimiza-
tion, optimization under noise, and optimization in high-dimensional spaces through
a few examples. For the full tutorial, including detailed API introduction, hyper-
parameter tuning tricks, and all examples, we refer readers to https://zoopt.
readthedocs.io/en/latest/.

Single-machine optimization. The core architecture of ZOOpt includes three
parts: .Objective, .Parameter , and .Opt.min. The .Objective object defines the
function expression and the search space. The.Parameter object defines all param-
eters used by the optimization algorithm. .Opt.min is the interface for performing
optimization. After defining a user-specified objective function and the correspond-
ing search space, only one line of code is needed to perform optimization using
.Opt.min. A quick-start example is provided as follows.

https://zoopt.readthedocs.io/en/latest/
https://zoopt.readthedocs.io/en/latest/

118 10 Toolbox: ZOOpt

import numpy as np
from zoopt import ValueType , Dimension2 , Objective ,

Parameter , Opt

def ackley(solution):
x = solution.get_x()
bias = 0.2
value = -20 * np.exp(-0.2 * np.sqrt(sum([(i

- bias) * (i -
bias) for i in x]
) / len(x))) - \

np.exp(sum([np.cos(2.0*np.pi*(i-bias
)) for i
in x]) /
len(x)) +
20.0 +

np.e
return value

dim_size = 100 # dimension size
dim = Dimension2([(ValueType.CONTINUOUS , [-1, 1], 1e

-6)]*dim_size)
obj = Objective(ackley , dim)
perform optimization
solution = Opt.min(obj , Parameter(budget=100*

dim_size))
print the solution
print(solution.get_x(), solution.get_value ())
parallel optimization for time -consuming tasks
solution = Opt.min(obj , Parameter(budget=100*

dim_size , parallel=True ,
server_num=3))

Distributed optimization. Distributed optimization in ZOOpt is implemented by
incorporating Ray. Currently, ZOOpt is an optional optimization tool in .Ray.tune,
a library for fast hyper-parameter tuning at any scale. Through .Ray.tune, users
can easily distribute the optimization without worrying about the communication
infrastructure. We provide an example as follows:

import time
from ray import tune
from ray.tune.suggest.zoopt import ZOOptSearch
from ray.tune.schedulers import

AsyncHyperBandScheduler
from zoopt import ValueType # noqa: F401

def evaluation_fn(step , width , height):
time.sleep(0.1)
return (0.1 + width * step / 100) ** (-1) + height

* 0.1

def easy_objective(config):

10.2 Usage 119

Hyperparameters
width , height = config["width"], config["height"

]

for step in range(config["steps"]):
Iterative training function - can be any

arbitrary
training
procedure

intermediate_score = evaluation_fn(step ,
width , height)

Feed the score back back to Tune.
tune.report(iterations=step , mean_loss=

intermediate_score
)

if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser ()
parser.add_argument(

"--smoke -test", action="store_true", help="
Finish quickly
for testing")

parser.add_argument(
"--server -address",
type=str ,
default=None ,
required=False ,
help="The address of server to connect to if

using "
"Ray Client.")

args , _ = parser.parse_known_args ()

if args.server_address:
import ray
ray.init(f"ray://{args.server_address}")

num_samples = 10 if args.smoke_test else 1000
zoopt_search_config = {

"parallel_num": 8,
}
zoopt_search = ZOOptSearch(

algo="Asracos", # only support ASRacos
currently

budget=num_samples ,
** zoopt_search_config)

scheduler = AsyncHyperBandScheduler ()
analysis = tune.run(

easy_objective ,
metric="mean_loss",
mode="min",
search_alg=zoopt_search ,
name="zoopt_search",
scheduler=scheduler ,

120 10 Toolbox: ZOOpt

num_samples=num_samples ,
config={

"steps": 10,
"height": tune.quniform(-10, 10, 1e-2),
"width": tune.randint(0, 10)

})
print("Best config found: ", analysis.

best_config)

Optimization under noise. The noise handler can be enabled by adding some
attributes to the definition of the .Parameter object. Three kinds of noise handlers
are implemented in ZOOpt: Naive resampling, value suppression, and threshold
selection. Naive resampling reduces noise by evaluating the same solution multiple
times and taking their mean value as the final result. Value suppression reduces noise
more efficiently by re-evaluating the best solution when it isn’t updated for a pre-
defined number of times. Threshold selection is a noise handler customized for the
POSS algorithm, where solution. x is better than. y only if . f (x) is smaller than. f (y)
by at least a threshold. We provide simplified cases on how to use these noise handlers
as follows. Their full versions can be found in the tutorial.

from zoopt import Parameter
from sparse_mse import SparseMSE
import numpy as np

naive resampling
parameter = Parameter(budget=200000 , noise_handling=

True , resampling=True ,
resample_times=10)

value suppression
parameter = Parameter(budget=200000 , noise_handling=

True , suppression=True ,
non_update_allowed=500 ,
resample_times=100 ,
balance_rate=0.5)

threshold selection
mse = SparseMSE(’sonar.arff’)
mse.set_sparsity(8)
parameter = Parameter(algorithm=’poss’,

noise_handling=True ,
ponss=True , ponss_theta=0
.5, ponss_b=mse.get_k(),
budget=2 * np.exp(1) * (
mse.get_sparsity () ** 2)
* mse.get_dim ().get_size
())

Optimization in high-dimensional spaces. ZOOpt contains the sequential ran-
dom embedding (SRE) (Chap. 7) to handle high-dimensional optimization problems.
SRE runs the optimization algorithms in a low-dimensional space, where the function
values of solutions are evaluated via embedding into the original high-dimensional
space sequentially. SRE is effective for the function class where all dimensions may

10.3 Experiments 121

affect the function value, but many of them only have a small bounded effect, and can
scale Racos, SRacos, and ASRacos (the main optimization algorithms in ZOOpt)
to 100,000-dimensional problems. The high-dimensionality handler can be enabled
by adding attributes to the definition of the .Parameter object. An example is pro-
vided as follows:

from simple_function import sphere_sre
from zoopt import Dimension , ValueType , Dimension2 ,

Objective , Parameter ,
ExpOpt

dim_size = 10000 # dimension size
dim_regs = [[-1, 1]] * dim_size # search space
dim_tys = [True] * dim_size # continuous
dim = Dimension(dim_size , dim_regs , dim_tys) # form up

the dimension object
objective = Objective(sphere_sre , dim) # form up the

objective function
budget = 2000 # number of calls to the objective

function
parameter = Parameter(budget=budget ,

high_dimensionality_handling
=True , reducedim=True ,
num_sre=5, low_dimension=
Dimension(10 , [[-1, 1]] *
10, [True] * 10))

solution_list = ExpOpt.min(objective , parameter , repeat=
1, plot=True)

10.3 Experiments

In our experiments, we aim to answer the following questions: (1) How does ZOOpt
compare to prior derivative-free optimization toolboxes on classic optimization
benchmarks? (2) Can ZOOpt scale better than other toolboxes when the dimen-
sion size of the optimization task increases? (3) Can ZOOpt have better robustness
against noise than other toolboxes? (4) How does ZOOpt compare to other toolboxes
on machine learning tasks?

To answer these questions, we compare ZOOpt to several prior derivative-free
optimization toolboxes, including pycma, 1 DEAP, 2 pygad, 3 and Hyperopt. 4 Pycma
[6] is a Python implementation of the CMA-ES [5] algorithm. DEAP [3] is an evo-
lutionary computation framework. Pygad [4] is an open-source Python library of
genetic algorithms. Hyperopt [1] implements state-of-the-art Bayesian optimization

1 https://github.com/CMA-ES/pycma.
2 https://github.com/DEAP/deap.
3 https://github.com/ahmedfgad/GeneticAlgorithmPython.
4 https://github.com/hyperopt/hyperopt.

https://github.com/CMA-ES/pycma
https://github.com/CMA-ES/pycma
https://github.com/CMA-ES/pycma
https://github.com/CMA-ES/pycma
https://github.com/CMA-ES/pycma
https://github.com/CMA-ES/pycma
https://github.com/DEAP/deap
https://github.com/DEAP/deap
https://github.com/DEAP/deap
https://github.com/DEAP/deap
https://github.com/DEAP/deap
https://github.com/ahmedfgad/GeneticAlgorithmPython
https://github.com/ahmedfgad/GeneticAlgorithmPython
https://github.com/ahmedfgad/GeneticAlgorithmPython
https://github.com/ahmedfgad/GeneticAlgorithmPython
https://github.com/ahmedfgad/GeneticAlgorithmPython
https://github.com/hyperopt/hyperopt
https://github.com/hyperopt/hyperopt
https://github.com/hyperopt/hyperopt
https://github.com/hyperopt/hyperopt
https://github.com/hyperopt/hyperopt

122 10 Toolbox: ZOOpt

algorithms for hyper-parameter tuning. For all toolboxes, we choose the default algo-
rithm and the recommended parameters according to their tutorials. It’s worth noting
that each toolbox actually implements many optimization algorithms. However, we
don’t exhaust the algorithm-level comparisons in this paper. Instead, we choose the
default algorithm and focus more on the toolbox itself. The source code of the exper-
iments can be found at https://github.com/AlexLiuyuren/ZOOpt_experiment.

Experiments are conducted on three kinds of tasks. To answer questions (1), (2),
and (3), we conduct experiments on optimizing benchmark synthetic functions. We
empirically evaluate the performance of the tested toolboxes, including the conver-
gence rate, scalability, and robustness against noise, on four benchmark synthetic
functions. To answer question (4), we conduct experiments on two machine learning
tasks. We study a classification task with Ramploss, where the objective function is
similar to that of support vector machines (SVM), but the loss function is the Ramp
loss instead of the hinge loss used in SVM. We then study direct policy search for
controlling tasks, where the policy is a fully connected feedforward neural network,
and its weights are optimized directly by derivative-free optimization algorithms.

10.3.1 Results on Optimizing Synthetic Functions

To answer questions (1), (2), and (3), we conduct experiments on optimizing bench-
mark synthetic functions. Among them, the Ackley, Rastrigin, and Schwefel func-
tions are highly non-convex, while the Sphere function is convex. The optimal values
of the four functions are all zero. The Ackley and Sphere functions are minimized
within the search space.X = [−1, 1]d , where . d is the dimension size. The Rastrigin
function is minimized within .[−5, 5]d . The Schwefel function is minimized within
.[−500, 500]d . The optimal position of each function (except the Schwefel function,
which is fixed to .[420.97, ..., 420.97]) is shifted from .[0, ..., 0] to a random point
sampled from .[0.2 ∗ l, 0.2 ∗ u]d , where . l and . u respectively refer to the lower and
upper bounds of the search space on that dimension. This is to avoid a possible opti-
mization bias toward the origin point. The 3-d graphs of these functions are shown
in Fig. 10.1. Each experiment is repeated 30 times. Mean values and 95% confidence
intervals are recorded. Results are shown in Fig. 10.2.

Convergence rate. We set the dimension size to be 20 for each objective function
and the number of evaluations to be 2000. We study the convergence rate with
regard to the number of function evaluations by recording the best-so-far solution
value during the optimization. As shown in Fig. 10.2, ZOOpt reduces the objective
function value at the highest rate in all tasks.

Scalability. The scalability of derivative-free optimization methods is critical
for solving large-scale problems. In this experiment, we quantitatively study the
scalability of ZOOpt. We set the dimension size. d to be 20, 200, 400, 600, 800, 1000
and the number of function evaluations to be .100 × d. The confidence interval is
omitted for clarity. Figure 10.3 shows that ZOOpt has the lowest growth rate of the

https://github.com/AlexLiuyuren/ZOOpt_experiment
https://github.com/AlexLiuyuren/ZOOpt_experiment
https://github.com/AlexLiuyuren/ZOOpt_experiment
https://github.com/AlexLiuyuren/ZOOpt_experiment
https://github.com/AlexLiuyuren/ZOOpt_experiment
https://github.com/AlexLiuyuren/ZOOpt_experiment

10.3 Experiments 123

Fig. 10.1 3-d graphs of four benchmark synthetic functions. Among them, the Ackley, Rastrigin,
and Schwefel functions are highly non-convex, while the Sphere function is convex

function value in all tasks as the dimension size increases, indicating that ZOOpt has
better scalability than other toolboxes.

Robustness against noise. To study the performance of ZOOpt on optimizing
noisy objectives, we add Gaussian noise to the original functions to simulate the noisy
environment. The new objective functions are defined as. f N (x) = f (x) + N (0, σ 2).
The number of function evaluations is set to 10000. For all tasks, ZOOpt and pycma
use their built-in noise handlers, while DEAP and pygad do not. Figure 10.4 shows
that ZOOpt reduces the function value at a steady pace as the number of evaluations
increases, despite the noise.

124 10 Toolbox: ZOOpt

Fig. 10.2 The convergence rate of the tested toolboxes on four minimization benchmark synthetic
functions [7]

10.3.2 Results on Classification Tasks with Ramploss

The Ramp loss is defined as .Rs(z) = H1(z) − Hs(z) with .s < 1, where . Hs(z) =
max{0, s − z} is the Hinge loss with . s being the Hinge point. The task is to find a
vector . w and a scalar . b to minimize. f (w, b) = 1

2‖w‖22 + C
∑L

� Rs(y�(w
�v� + b)),

where. vl is the training instance and.yl ∈ {−1,+1} is its label. Due to the convexity
of the Hinge loss, the number of support vectors increases linearly with the number
of training instances in SVM, which is undesirable with respect to scalability. This
problem can be alleviated by using the Ramp loss [2].

We employ two binary class UCI datasets, Adult and Bank, for the classification
task. Discrete variables of the original features are preprocessed by one-hot encoding.
Continuous variables are normalized into .[−1, 1]. The resulting feature dimension
(excluding the label) is expanded to 108 for Adult and 51 for Bank. Since we focus on
the optimization performance, we only compare the results on the complete dataset.
Two hyper-parameters, i.e., C and s, are adjustable in the optimization formulation.
We set .s ∈ {−1, 0} and .C ∈ {0.1, 0.5, 1, 2, 5, 10} to study the effectiveness of the
tested toolboxes under different hyper-parameter settings. We set the total number

10.3 Experiments 125

Fig. 10.3 The scalability of the tested toolboxes as the dimension size increases [7]

of calls to the objective function to be .40n for all toolboxes, where . n is the number
of instances. The achieved objective values are reported in Table 10.2.

It can be observed that ZOOpt is comparable with pycma and dominates DEAP
and pygad in all cases. Notice that the smaller . C is, the closer the objective function
is to convexity. Therefore, the optimization difficulty increases with . C . Although
the results of ZOOpt and pycma are close, ZOOpt achieves better results when . C
is large, i.e., when the objective function is further from convexity. Pycma is better
when the objective function is closer to convexity.

10.3.3 Results on Direct Policy Search for OpenAI
Controlling Tasks

Gym tasks. In the OpenAI Gym environment, we use six existing controlling tasks:
‘Acrobot’, ‘MountainCar’, ‘HalfCheetah’, ‘Hopper’, ‘Humanoid’, and ‘Swimmer’,
to test the toolboxes. We apply a feedforward neural network as the policy. The task
information and neural network structures are shown in Table 10.3. For example, in
‘Acrobot’: .|S| = 6, .|A| = 3; the neural network has two hidden layers with 5 and
3 neurons each; .|w| = 48; the activation functions for hidden layers and the output

126 10 Toolbox: ZOOpt

Table 10.2 Results on the Adult (upper) and Bank (lower) datasets [7]. Comparing the achieved
objective function values against the parameter C of the classification with Ramp loss
S Package. \ C 0.1 0.5 1 2 5 10

. −1 ZOOpt 1642.07. ±
79.33

6331.05. ±
147.10

12002.56. ±
287.74

23098.68. ±
435.40

55151.49. ±
772.15

108896.69
.± 1944.12

pycma 1414.25. ±
154.10

6028.83. ±
495.39

11537.06. ±
120.91

23259.40. ±
2184.85

55576.41. ±
762.45

109422.90. ±
944.75

DEAP 2005.05. ±
88.32

6822.13. ±
157.85

12625.33. ±
257.62

23909.87. ±
303.31

57152.50. ±
845.67

111093.63
.± 1454.88

pygad 3315.09. ±
146.83

8643.11. ±
276.07

14456.62. ±
240.14

26048.55. ±
381.98

59147.50. ±
440.53

113461.05
.± 840.28

0 ZOOpt 1001.56. ±
29.79

3585.84. ±
160.28

6665.13. ±
408.27

12451.74. ±
247.92

29583.38. ±
1886.19

57042.13. ±
751.92

pycma 780.45. ±
32.60

3406.22. ±
345.54

6668.67. ±
776.18

12715.15. ±
1493.09

29639.06. ±
2585.68

56650.23. ±
509.49

DEAP 1297.46. ±
41.37

4159.68. ±
201.96

7185.12. ±
457.99

13124.33. ±
859.58

30400.34. ±
1767.03

58898.11. ±
3797.57

pygad 2531.69. ±
164.29

5588.36. ±
146.79

8846.75. ±
300.44

14949.72. ±
710.44

32167.27. ±
474.29

60436.24. ±
600.72

S Package. \ C 0.1 0.5 1 2 5 10

. −1 ZOOpt 128.31. ±
6.69

545.45. ±
7.45

1068.09. ±
12.00

2075.12. ±
40.36

5045.72. ±
98.89

9957.51. ±
306.85

pycma 114.24. ±
5.82

531.11. ±
4.59

1056.25. ±
6.63

2088.15. ±
30.01

5185.14. ±
89.46

110236.24
.± 280.79

DEAP 248.58. ±
22.72

670.73. ±
21.44

1191.32. ±
24.96

2234.39. ±
19.57

5307.23. ±
67.89

10316.18. ±
226.76

pygad 627.27. ±
69.33

1055.97. ±
61.62

1564.35. ±
77.59

2618.18. ±
66.00

5753.68. ±
86.63

10893.56. ±
119.12

0 ZOOpt 73.69. ±
6.61

285.04. ±
9.02

545.82. ±
4.82

1064.49. ±
6.32

2618.38. ±
52.69

5091.75. ±
124.31

pycma 60.84. ±
4.08

270.39. ±
3.49

532.24. ±
5.70

1053.18. ±
3.72

2620.21. ±
11.10

5221.21. ±
31.35

DEAP 192.68. ±
16.94

415.67. ±
24.26

673.14. ±
21.71

1187.59. ±
16.59

2763.42. ±
17.70

5329.71. ±
44.41

pygad 543.22. ±
60.52

798.79. ±
73.10

1037.72. ±
81.79

1573.16. ±
89.69

3145.45. ±
80.23

5787.98. ±
71.72

layer are ReLU and softmax, respectively; the maximum number of steps is 500. We
will give a summary of each task. More details can be found on the homepage of
OpenAI Gym. In ‘Acrobot’, the system includes two joints and two links, where the
joint between the two links is actuated. Initially, the links are hanging downwards,
and the goal of this task is to swing the end of the low link up to a given height.
In ‘MountainCar’, a car is positioned in a valley between two mountains and wants
to drive up the mountain on the right by building up momentum. ‘HalfCheetah’,
‘Hopper’, ‘Humanoid’, and ‘Swimmer’ are simulation tasks. In those tasks, the policy
controls simulated objects to achieve a goal. For example, in ‘HalfCheetah’, the
policy should control a cheetah with half body to run forward as fast as possible.
The tasks of ‘Acrobot’ and ‘MountainCar’ are finding policies with the smallest step

10.3 Experiments 127

Table 10.3 The parameters of the direct policy search for OpenAI controlling tasks [7]
Task name d.State Action type Action

size
NN nodes #Weights Activation

(hidden)
Activation
(output)

Horizon

Acrobot-v1 6 Discrete 3 5, 3 54 relu softmax 500

MountainCar-v0 2 Discrete 3 5 25 relu softmax 200

HalfCheetah-v2 17 Continuous 6 10 230 relu tanh 1000

Hopper-v2 11 Continuous 3 9,5 159 relu tanh 1000

Humanoid-v2 376 Continuous 17 25 9825 relu tanh 1000

Swimmer-v2 8 Continuous 2 5,3 61 relu tanh 1000

Fig. 10.4 The performance on optimizing noisy functions [7]

number when goals are met. The tasks except for ‘Acrobot’ and ‘MountainCar’ are
finding policies to control objects to get scores from the environment as high as
possible. Therefore, in Table 10.4, the columns of ‘Acrobot’ and ‘MountainCar’ are
step numbers, where smaller is better. The other rows are the cumulative rewards
from environments, where larger is better.

The average cumulative rewards of 10 simulations are used as the evaluation value
of a neural network to reduce noise. The solution space. X is set to be.[−10, 10]#Weight.
The output of the neural network is scaled to be within the action space, which is
defined by the environment. All toolboxes use 2,000 evaluations for each task. The

128 10 Toolbox: ZOOpt

Table 10.4 The mean scores and the standard deviation of the best found policy by each toolbox [7].
The numbers in bold represent the best scores in each column. The down arrow means the score is
better when smaller, and the up arrow means better when larger
Package Acrobot-v1.↓ MountainCar-v0.↓ HalfCheetah-v2.↑ Hopper-v2.↑ Humanoid-v2.↑ Swimmer-v2. ↑

ZOOpt 82.02.± 3.05 128.23. ± 12.41 1295.39.± 731.71 738.86. ± 391.06 448.93.± 80.33 138.05. ± 107.95

pycma 314.40.± 186.55 197.81.± 6.56 465.50.± 492.81 305.27.± 358.43 398.30.± 111.12 35.39.± 32.06

DEAP 144.26.± 121.82 200.00.± 0.00 1409.11. ± 437.10 224.53.± 259.22 303.29.± 110.66 75.05.± 104.25

pygad 207.66.± 146.10 174.85.± 33.98 188.32.± 809.55 181.45.± 230.35 293.49.± 102.77 50.03.± 102.21

best solution will be re-evaluated 30 times to further reduce the noise, and their mean
value will be recorded as the final result. Each experiment is repeated 10 times. The
mean value and the standard deviation are recorded in Table 10.4. It can be observed
that ZOOpt obtained the best results on 5 out of 6 tasks.

10.4 Summary

In this chapter, we introduce the ZOOpt toolbox, which provides efficient derivative-
free solvers and is designed to be easy to use. By combining several state-of-the-art
classification-based optimization methods, noise handlers, and high-dimensionality
handlers, ZOOpt is particularly well-suited for optimization problems in machine
learning. By incorporating Ray, the optimization in ZOOpt can be easily distributed
across multiple machines. In empirical studies, we first study the convergence rate,
scalability, and robustness against noise of ZOOpt on optimizing synthetic functions.
ZOOpt achieves the best performance in all of these experiments. We then test ZOOpt
on two machine learning tasks. Results on classification tasks with Ramploss show
that ZOOpt is comparable with pycma and dominates other toolboxes. Results on
direct policy search for OpenAI controlling tasks show that ZOOpt achieves the best
performance on 5 out of 6 tasks. For a detailed tutorial on the usage of ZOOpt, we
refer readers to the project homepage https://github.com/polixir/ZOOpt.

References

1. Bergstra J, Yamins D, Cox D (2013) Making a science of model search: hyperparameter opti-
mization in hundreds of dimensions for vision architectures. In: Proceedings of the 30th inter-
national conference on machine learning, vol 28, Atlanta, GA, pp 115–123

2. Collobert R, Sinz F, Weston J, Bottou L (2006) Trading convexity for scalability. In: Proceedings
of the 23rd international conference on machine learning, vol 148, pp 201–208, Pittsburgh,
Pennsylvania

3. Fortin F-A, De Rainville F-M, Gardner M-A, Parizeau M, Gagné C (2012) DEAP: evolutionary
algorithms made easy. J Mach Learn Res 13:2171–2175

4. Gad AF (2021) PyGAD: an intuitive genetic algorithm Python library. CoRR, abs/2106.06158

https://github.com/polixir/ZOOpt
https://github.com/polixir/ZOOpt
https://github.com/polixir/ZOOpt
https://github.com/polixir/ZOOpt
https://github.com/polixir/ZOOpt

References 129

5. Hansen N, Müller SD, Koumoutsakos P (2003) Reducing the time complexity of the derandom-
ized evolution strategy with covariance matrix adaptation (CMA-ES). Evol Comput 11(1):1–18

6. Hansen N, Akimoto Y, Baudis P (2019). CMA-ES/pycma on Github Zenodo. https://doi.org/
10.5281/zenodo.2559634

7. Liu Y-R, Hu Y-Q, Qian H, Yu Y, Qian C (2022) Zoopt: toolbox for derivative-free optimization.
Sci China Inf Sci 65:207101

8. Moritz P, Nishihara R, Wang S, Tumanov A, Liaw R, Liang E, Elibol M, Yang Z, Paul W,
Jordan MI, Stoica I (2018) Ray: A distributed framework for emerging AI applications. In:
13th USENIX symposium on operating systems design and implementation, Carlsbad, CA, pp
561–577

9. Qian C, Yu Y, Zhou ZH (2015) Subset selection by pareto optimization. In: Advances in neural
information processing systems, vol 28, Montreal, Canada, pp 1765–1773

10. Qian C, Shi JC, Yu Y, Tang K, Zhou ZH (2016) Parallel pareto optimization for subset selection.
In: Kambhampati S (ed) Proceedings of the 25th international joint conference on artificial
intelligence, New York, NY. IJCAI/AAAI Press, pp 1939–1945

11. Qian C, Shi JC, Yu Y, Tang K, Zhou ZH (2017) Subset selection under noise. In: Advances in
neural information processing systems, vol 30, Long Beach, CA, pp 3563–3573

12. Wang Z, Zoghi M, Hutter F, Matheson D, Freitas ND (2016) Bayesian optimization in a billion
dimensions via random embeddings. J Artif Intell Res 55:361–387

https://doi.org/10.5281/zenodo.2559634
https://doi.org/10.5281/zenodo.2559634
https://doi.org/10.5281/zenodo.2559634
https://doi.org/10.5281/zenodo.2559634
https://doi.org/10.5281/zenodo.2559634
https://doi.org/10.5281/zenodo.2559634
https://doi.org/10.5281/zenodo.2559634

Part IV
Application to Automatic Machine

Learning

Chapter 11
Experienced Optimization: Acceleration
in Hyper-Parameter Optimization

Abstract This chapter explores the concept of experienced optimization in hyper-
parameter optimization, a critical task in Automatic Machine Learning (AutoML).
Hyper-parameter optimization often involves derivative-free optimization (DFO)
methods, which can be inefficient due to the high cost of evaluating hyper-parameter
configurations. The chapter introduces an experienced optimization approach that
leverages historical optimization data to improve efficiency in new tasks. Two algo-
rithms, ExpSRacos and AdaSRacos, are presented, which utilize directional models
trained on past optimization experiences to guide the search process. AdaSRacos
further enhances this by adaptively selecting relevant historical experiences, ensur-
ing that only useful information is utilized. The chapter includes empirical studies
on synthetic and real-world hyper-parameter optimization tasks, demonstrating the
effectiveness of the proposed methods in reducing evaluation costs and improv-
ing optimization performance. The results highlight the importance of experience
adaptation in achieving efficient and effective hyper-parameter tuning.

Hyper-parameter optimization is a core task in Automatic Machine Learning
(AutoML). It often follows a trial-and-error process, similar to manual tuning of
hyper-parameters. The search space in hyper-parameter optimization is highly com-
plex, being non-convex, non-differentiable, or even non-continuous. In such circum-
stances, derivative-free optimization (DFO) becomes a critical tool. DFO methods,
such as Racos and SRacos introduced in Chaps. 5 and 6, also follow a trial-and-
error framework. In each iteration, the optimization process samples one or several
solutions, and the objective function returns their evaluation values. The optimization
process then updates and samples new solutions based on the feedback.

Due to the limited optimization information (only objective function values are
available), DFO methods often suffer from low efficiency, requiring a large number
of samples and evaluations to achieve good optimization performance. In hyper-
parameter optimization, evaluating a hyper-parameter configuration is usually expen-
sive. For example, evaluating a learning rate setting for a deep neural network requires
training the network to convergence with that learning rate, and the validation accu-
racy serves as the evaluation value. Therefore, accelerating DFO becomes crucial
when solving hyper-parameter tuning tasks. This chapter presents an experienced

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025
Y. Yu et al., Derivative-Free Optimization, Machine Learning: Foundations,
Methodologies, and Applications, https://doi.org/10.1007/978-981-96-5929-6_11

133

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-5929-6_11&domain=pdf
https://doi.org/10.1007/978-981-96-5929-6_11
https://doi.org/10.1007/978-981-96-5929-6_11
https://doi.org/10.1007/978-981-96-5929-6_11
https://doi.org/10.1007/978-981-96-5929-6_11
https://doi.org/10.1007/978-981-96-5929-6_11
https://doi.org/10.1007/978-981-96-5929-6_11
https://doi.org/10.1007/978-981-96-5929-6_11
https://doi.org/10.1007/978-981-96-5929-6_11
https://doi.org/10.1007/978-981-96-5929-6_11
https://doi.org/10.1007/978-981-96-5929-6_11
https://doi.org/10.1007/978-981-96-5929-6_11

134 11 Experienced Optimization: Acceleration in Hyper-Parameter…

optimization approach [2] that utilizes historical optimization experience to improve
the optimization process for new tasks. In other words, the aim of experienced
optimization is to use fewer samples to achieve better performance.

11.1 Experienced Optimization for Hyper-Parameter
Optimization

Let.A denote a learning algorithmand.δ ∈ � denote a hyper-parameter configuration,
where .� is the hyper-parameter space. In machine learning, .k-fold cross-validation
is a common process for evaluating the quality of a learningmodel. The same process
can be used to evaluate a hyper-parameter configuration:

. f (δ) = 1

k

k∑

i=1

L(Aδ,Di
train,Di

valid), (11.1)

where .L(·) is a loss function and .Di
train and .Di

valid are the training and validation
datasets, respectively, in the .i-th fold. Based on the loss function definition, hyper-
parameter optimization can be defined as .δ∗ = argminδ∈� f (δ).

The evaluation process of .δ often has a high time cost because it involves model
training. When solving hyper-parameter optimization using DFO methods, the opti-
mization efficiency is challenged. We note that hyper-parameter optimization tasks
are related to each other. For example, when tuning hyper-parameters for a learning
algorithm on different datasets, there are different optimization tasks. Due to the
same learning algorithm, the hyper-parameter space of these tasks can be aligned,
and tasks are similar to each other.

The experienced optimization approach presented in this chapter aims to utilize
the relationships among similar hyper-parameter optimization tasks to accelerate
convergence.Weconsider a set of optimization tasks denoted by.F = { f },where. f ∼
F and .F is an underlying task distribution. We split .F into two parts: .F = Fe ∪ Ft

and.Fe ∩ Ft = ∅..Fe is the set of experienced tasks that have been optimized, and.Ft is
the set of target tasks that have not been optimized yet. Under this problem setting, we
present theExpSRacos andAdaSRacos algorithms [2] based onSRacos (Chap. 6).

11.2 The EXPSRACOS and ADASRACOS Algorithms

We observe that the search direction can be aligned and generalized across differ-
ent hyper-parameter optimization tasks. In gradient-based optimization, the gradient
indicates the search direction, which is key to efficient search. In DFO, we aim to
learn the search direction from the experience of historical optimization processes

11.2 The ExpSRacos and AdaSRacos Algorithms 135

Algorithm 11.1 Framework of Experienced Optimization by Directional Model
Require:

Fe, Ft : Experienced and target problem sets
O: The optimization approach
Log&Assign: Log and assign experience dataset
Train: Train directional model

Ensure:
1: DFe = ∅
2: for f ∈ Fe do
3: D f

Fe
= Log&Assign(O, f)

4: DFe = DFe ∪ D f
Fe

5: end for
6: � = Train(DFe)

7: for f ∈ Ft do
8: x∗

f = O(f,�)

9: end for

and use it to accelerate the search process in unseen tasks. Thus, we present the expe-
rienced optimization framework using a directionalmodel, as presented inAlgorithm
11.1.

The experienced optimization framework consists of three main steps:

• Organizing the experience dataset .DFe from historical optimization processes
(lines 1–4). DFO methods often store some historical samples during optimiza-
tion. The instances in .DFe can be extracted from snippets of the stored samples.
For each instance, we extract features and assign a label indicating the direction
to a later-found better solution. In line 3, the Log&Assign sub-process collects
the labeled instances from optimization processes.

• Learning the directional model .� on .DFe (line 6). With the labeled experience
dataset, training .� is a supervised learning problem. Note that .� can be trained
using any state-of-the-art learning algorithm.

• Utilizing.� to predict the direction of the next sample during optimization in new
problems (lines 7–9). Directional models can be embedded in the optimization
method by adding a pre-sampling step that generates a set of candidate samples.
Among the candidate samples, the one closest to the direction predicted by .� is
selected as the next sample.

Wefirst present the implementation of this frameworkwith theSRacos algorithm,
called ExpSRacos, and then present an improved version, AdaSRacos.

11.2.1 EXPSRACOS

In SRacos (Algorithm 6.1 in Chap.6), the foundation of optimization consists of
two solution sets:.B+ and.B−..B+ consists of the top-.k best solutions, called positive

136 11 Experienced Optimization: Acceleration in Hyper-Parameter…

solutions, while .B− consists of the remaining solutions, called negative solutions.
ExpSRacos follows the three steps of the experienced optimization framework.

Collecting the experience dataset. At this step, we extract the experience dataset
from optimization processes on previous tasks. We note that the new solution is
sampled based on .(x+

t , B−
t) in the .t-th iteration, where .x+

t ∈ B+
t . .B

−
t stores the

negative solutions. Therefore, we can organize the experience dataset using.(x+
t , B−

t)

as a context matrix:

.κ t =

⎡

⎢⎢⎢⎣

x−
t,1 − x+

t
x−
t,2 − x+

t
...

x−
t,m − x+

t

⎤

⎥⎥⎥⎦ ,where x−
t,i ∈ B−

t , i = 1, 2, . . . ,m. (11.2)

.κ t is an .m × n matrix, where .m = |B−
t | and .n is the dimensionality of the search

space. Each row of .κ t is a solution from .B−
t centralized by .x+

t . The centralization
aligns the search behavior at different times and in different optimization tasks,
making it the key to the generalization of the directional model on unseen tasks.

Let.x′
t denote the new solution sampled using the context matrix.κ t . We combine

them to create an instance of the experience dataset: .[κ t ; x′
t]. We assign a label to

this instance according to the evaluation value of .x′
t . If the new solution improves

the optimization performance so far, the label is positive; otherwise, it is negative:

.�t ([κ t ; x′
t]) =

{
1, f (x′

t) < f (x̃t)

0, f (x′
t) ≥ f (x̃t)

, (11.3)

where .x̃t is the best-so-far solution. At each iteration, we obtain an experience
instance. By combining them into a dataset, the experience dataset is .DFe =
{([κ1; x′

1], �1), ([κ2; x′
2], �2), . . . }.

Training the directional model. .DFe is a dataset with binary labels. Thus, any
classification algorithm can be applied to train on it. We note that an instance in.DFe
consists of two parts: .κ and.x. .κ is a matrix, and.x is a vector. Therefore, we should
reorganize the instance from .[κ; x] by reshaping .κ into a vector and combining it
with.x. In our work, we apply a simple multilayer perceptron (MLP) classifier as the
directional model, denoted as .�. The last layer of .� maps the output to the range
.[0, 1]. The output is a score that reflects the quality of the new solution.

Combining EXPSRACOS.We utilize.�within the framework of SRacos, result-
ing in the ExpSRacos algorithm. Before evaluating a solution, a pre-sampling step
is added to generate a set of solutions. These solutions are then filtered by the direc-
tional model. Algorithm 11.2 presents the pseudo-code of ExpSRacos. Line 1 is
the initialization step. Lines 4–8 constitute the pre-sampling process. The directional
model.� predicts the quality of each pre-sampled solution (line 6). Only the solution
with the highest predicted value is evaluated by the real objective function (lines
9–10) and used to update .(B+, B−).

11.2 The ExpSRacos and AdaSRacos Algorithms 137

Algorithm 11.2 Experienced SRacos (ExpSRacos)
Require:

f : Objective function to be minimized
P: The number of pre-samples
r : The number of samples in initialization
N : The evaluation budget
�: Directional model
Initialize: Initialization steps
Sample: Get a new sample by SRacos

Ensure:
1: (B+, B−, (x̃, ỹ)) = Initialize(UX)

2: for t = r + 1 to N do
3: P = ∅
4: for i = 1 to P do
5: (κ, x) = Sample(B+, B−, λ, C)

6: p = �(κ, x)

7: P = P ∪ {((κ, x), p)}
8: end for
9: (κ̂, x̂), p̂ = argmax((κ,x),p)∈P p
10: ŷ = f (x̂)

11: (B+, B−) = Update((x̂, ŷ), B+, B−)

12: (x̃, ỹ) = argmin(x,y)∈B+∪{(x̃,ỹ)} y
13: end for
14: return (x̃, ỹ)

We discuss why experienced optimization works under the following two
assumptions:

• We assume that optimization tasks. f ∈ Fe and.Ft share the same search space.X .
• For any two instances.([κa; xa], �a) and.([κb; xb], �b) in.DFe , we assume.�a = �b
if .[κa; xa] = [κb; xb].

The centralization process of .κ ensures that the second assumption is met in the
majority of cases. The directional model.� learned from historical optimization pro-
cesses predicts whether a new solution.x is good. Based on these assumptions,.� can
be reused to predict the quality of new solutions on unseen tasks. In ExpSRacos,
the solution with the highest predicted value from.� is evaluated by the real objec-
tive function. Compared to SRacos, which wastes many samples on exploration,
ExpSRacos avoids evaluating many inferior solutions.

11.2.2 ADASRACOS

Experienced optimization works when the experience extracted from historical tasks
can provide the right directions for unseen tasks. In real cases, we cannot guarantee
that the experience fromhistorical taskswill positively affect the optimization process
on new tasks. In Fig. 11.1, the target task is the Sphere function with the optimal point

138 11 Experienced Optimization: Acceleration in Hyper-Parameter…

1.5 2.0 2.5 3.0 3.5

Distances

0.40

0.45

0.50

0.55

0.60

O
p
ti

m
iz

at
io

n
 r

es
u
lt

s

Fig. 11.1 Illustration of the relevance between experience and target tasks [2]. The task is mini-
mizing the Sphere function. The.X -axis is the Euclidean distance between the optimal points of the
source and target tasks. A smaller distance indicates stronger relevance between the two tasks. The
.Y -axis is the performance of experienced optimization with an evaluation budget of only 50

.{0.1}n (.n = 10), and we randomly shift the optimal points of the Sphere function to
construct the experienced task distribution. As shown in the figure, the optimization
performance of experienced optimization is strongly related to the relevance between
tasks. Therefore, we need to address the problem of selecting positive experience,
i.e., the experience task most relevant to the target task. This leads to the adaptive
experienced optimization algorithm, AdaSRacos.

In the experienced optimization setting,.Fe = { f1, f2, . . . , fMe } denotes the set of
.Me experience tasks. Correspondingly, we obtain a set of directional models denoted
by .� = {�1,�2, . . . , �Me}. .�i is a directional model trained on the experience
dataset obtained by optimizing. fi , where.i ∈ {1, 2, . . . , Me}.We consider a weighted
ensemble approach to combine all directional models:

.�̄([κ; x]) =
Me∑

i=1

wi�i ([κ; x]), (11.4)

where.w = {w1, w2, . . . , wMe} are the weights of the directional models. The weight
intuitively indicates the relevance between the experience and target tasks. We want
the relevant directional model to have a larger weight. We note that the ground-truth
label of a piece of experience data .([κ; x], �) can be obtained during optimization
because.x will be evaluated by the objective function. In the optimization process, the
labeled experiencedata.([κ; x], �) arrives sequentially. Furthermore, the predictionof
each directional model is a real number in.[0, 1]. We define a squared loss to measure
the prediction quality of the directional model:.(�i ([κ; x]) − �)2. The weights of all
directional models can be adapted according to the loss:

11.2 The ExpSRacos and AdaSRacos Algorithms 139

Algorithm 11.3 DFO with Adaptive Experience (AdaSRacos)
Require: (extra input compared to Algorithm 11.2)

� = {�1,�2, . . . , �Me }: Basic directional model set
Normalize: A normalization procedure

Ensure:
1: B, x̃ = Initialize(UX)

2: w = {w1, w2, . . . , wMe } = { 1
Me

}Me

3: for t = 1 to N do
4: P = ∅
5: for p = 1 to P do
6: [κ p; x p] = Sample(B)

7: P = P ∪ {[κ p; x p]}
8: end for
9: [κ ′; x′] = argmax[κ;x]∈P

∑Me
i=1 wi�i ([κ; x])

10: �′ =
{
1, f (x′) < f (x̃)

0, f (x′) ≥ f (x̃)

11: for i = 1 to Me do
12: wi = exp(−α(�i ([κ ′; x′]) − �′)2)wi
13: end for
14: w = Normalize(w)

15: B = Update(B, x′, f (x′))
16: if f (x′) < f (x̃) then
17: x̃ = x′
18: end if
19: end for
20: return x̃

.wi = exp(−α(�i ([κ; x]) − �)2)wi , (11.5)

where .α is a scale hyper-parameter. Based on ExpSRacos (Algorithm 11.2), we
apply the above weight adaptation mechanism to construct the adaptive ExpSRacos
algorithm, AdaSRacos (Algorithm 11.3).

Algorithm 11.3 still follows the pre-sampling mechanism to utilize the directional
model. The algorithm starts with optimization initialization. We set the same weight
.
1
Me

for all basic directional models (line 2). Lines 5–8 constitute the pre-sampling
phase.Weutilize theweighted ensemble directionalmodel to predict the quality score
for each temporary solution (line 9). The solution with the highest predicted value
is evaluated by the real objective function (lines 10 and 15). We adapt the weights
for all basic directional models during lines 11–14. First, we obtain the ground-truth
label for the experience data .[κ ′; x′] (line 10). Then, we adjust the weight for each
directional model based on the prediction loss (lines 11–13). Finally, we apply a
normalization procedure to ensure that.

∑Me
i=1 wi = 1. With the selected solution and

its evaluation value, we update the optimization procedure (line 15) and the best-so-
far solution (lines 16–18). When the evaluation budget is exhausted, the best-so-far
solution is returned (line 20).

We discuss the experience adaptation mechanism based on experienced DFO.
With the weighted ensemble, all basic directional models obtained from different

140 11 Experienced Optimization: Acceleration in Hyper-Parameter…

experience tasks are integrated into a single directional model. When optimizing on
target tasks, we first employ the ensemble directional model to select solutions worth
evaluating. We then test all basic directional models on the labeled experience data.
According to the test results, the relevant directional models are selected by adapting
the weights. If a basic directional model gives a correct prediction, it will obtain
a small squared loss, and its corresponding weight will receive a small discount.
However, when a basic directional model gives a wrong prediction, its weight will
be heavily discounted. After the normalization step, the weights of basic directional
models that make correct predictions will increase relatively, while the weights of
those thatmakewrong predictionswill decrease relatively. In this way, relevant direc-
tional models that make fewer mistakes on the target task can be adaptively selected
with large weights, and irrelevant directional models that make more mistakes can
be adaptively omitted with small weights.

11.3 Empirical Study

We compare ExpSRacos [2] and AdaSRacos [3] to several state-of-the-art DFO
methods, including SRacos [1], SMAC [4], and Bayes [6]. We apply an MLP clas-
sifier as the directional model for ExpSRacos and AdaSRacos, with the network
structure depending on the tasks.

11.3.1 Synthetic Tasks

We select the Sphere and Rosenbrock functions as the basic synthetic functions. The
Sphere function is convex:

. f (x) =
n∑

i=1

(xi − x∗
i)

2. (11.6)

The Rosenbrock function is non-convex:

. f (x) =
n−1∑

i=1

[100(xi+1 − x∗
i+1 − (xi − x∗

i)
2)2 + (1 − xi + x∗

i)
2], (11.7)

where .x = {x1, x2, . . . , xn} is a solution, .n is the dimensionality, and .x∗ =
{x∗

1 , x
∗
2 , . . . , x

∗
n } is the optimal point. The task is to minimize the synthetic func-

tion value within a constrained region. The relevance between two tasks can be
easily measured by the distance between their optimal points. With this relevance,
we can investigate the effectiveness of the presented experienced optimization and
the weight adaptation mechanism.

11.3 Empirical Study 141

Table 11.1 Average performance on synthetic target tasks [2], i.e., Sphere and Rosenbrock func-
tions with the optimal points.x∗ = {0.10}10, {0.25}10, and.{0.40}10. The bold values represent the
best performance

Function x∗ AdaSRacos ExpSRacos

Sphere-Set Mixed-Set Sphere-Set Mixed-Set

Sphere {0.10}10 0.0694 ± 0.02 0.0747 ± 0.02 0.1132 ± 0.05 0.1165 ± 0.07

Sphere {0.25}10 0.0775 ± 0.03 0.1165 ± 0.07 0.1091 ± 0.05 0.1250 ± 0.08

Sphere {0.40}10 0.0909 ± 0.04 0.1528 ± 0.22 0.1978 ± 0.05 0.2938 ± 0.19

Rosenbrock {0.10}10 12.394 ± 2.27 11.010 ± 0.69 13.351 ± 3.39 14.109 ± 4.62

Rosenbrock {0.25}10 25.549 ± 9.54 15.814 ± 6.62 26.008 ± 8.93 17.771 ± 3.16

Rosenbrock {0.40}10 57.388 ± 20.4 45.408 ± 34.8 93.370 ± 40.7 54.763 ± 22.6

Function SRacos SMAC Bayes

Sphere {0.10}10 0.7941 ± 0.29 0.0700 ± 0.01 0.4894 ± 0.05

Sphere {0.25}10 0.8046 ± 0.39 0.2749 ± 0.11 0.4500 ± 0.11

Sphere {0.40}10 0.8306 ± 0.36 0.6778 ± 0.25 0.3444 ± 0.09

Rosenbrock {0.10}10 26.903 ± 5.18 17.176 ± 1.15 45.523 ± 17.1

Rosenbrock {0.25}10 33.065 ± 29.1 43.701 ± 8.37 45.733 ± 13.9

Rosenbrock {0.40}10 61.955 ± 24.2 99.798 ± 43.6 48.504 ± 12.9

Task setting. We construct the task distribution.F by randomly shifting the opti-
mal point for the Sphere andRosenbrock functions. The shifting region is.[−0.5, 0.5].
We have two kinds of experience task sets: Sphere set and Mixed set. The Sphere set
contains 20 Sphere functionswith 20 different optimal points. TheMixed set contains
10 Sphere functions with 10 different optimal points and 10 Rosenbrock functions
with 10 different optimal points. For the target tasks, we select three optimal points:
.x∗ = {0.1}n, {0.25}n, {0.4}n . By combining them with the Sphere and Rosenbrock
functions, we have a total of six target tasks. The search space is .[−1, 1]n , where
.n = 10. The number of evaluations, i.e., the budget, is set to 50 for all compared
methods.

Directional model training. We optimize the tasks in the Sphere set and Mixed
set separately to collect experience datasets. The budget is 500, and the optimization
process is repeated 10 times. The directional model is an MLP classifier. Thus, we
obtain 20 directional models from the Sphere set and 20 directional models from
the Mixed set. For ExpSRacos, we construct a directional model by an average
weighted ensemble. For AdaSRacos, we use the weighted ensemble approach, but
the weights are adapted using the presented adaptation mechanism.

Empirical analysis. We independently repeat each experiment on the target tasks
10 times and report the average performance in Table11.1. The table includes two
subtables. The first subtable shows the performance of experienced optimization,
i.e., ExpSRacos and AdaSRacos. The second subtable shows the performance of
classical DFO methods, i.e., SRacos, SMAC, and Bayes.AdaSRacos achieves the
best performance on all six target tasks, indicating that experienced optimization

142 11 Experienced Optimization: Acceleration in Hyper-Parameter…

with the adaptation mechanism is powerful on unseen tasks. Comparing experienced
optimization (first subtable) to classical DFO (second subtable), experienced opti-
mization generally outperforms classical DFO. We further verify how the weights of
AdaSRacos change during optimization by showing theweight changes in Fig. 11.2.
In each figure, the.X -axis from left to right indicates decreasing relevance. Theweight
bars on the left become higher, indicating that relevant directional models are effec-
tively selected. The weight bars on the right become lower, indicating that irrelevant
directional models are effectively omitted.

11.3.2 Hyper-Parameter Optimization Tasks

The classifier selected for hyper-parameter optimization tasks is LightGBM [5]. We
select a total of 11 hyper-parameters, including boosting type, learning rate, number
of estimators, number of leaves, etc.We use 40 datasets and F1 score as the evaluation

low high
Distance from target task

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

W
ei

g
h
t

v
al

u
es

sphere

rosenbrock

low high
Distance from target task

low high
Distance from target task

low high
Distance from target task

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

W
ei

g
h
t

v
al

u
es

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

W
ei

g
h
t

v
al

u
es

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

W
ei

g
h
t

v
al

u
es

Fig. 11.2 Illustration of AdaSRacosweight changes on the target task [2], i.e., the 10-dimensional
Sphere function with the optimal point .x∗ = {0.1}10. Weights are from AdaSRacos with Mixed
set experience at optimization steps .t = 0, 20, 30, and .40. In each figure, the .X -axis from left to
right indicates increasing distances between the optimal points of the experience and target tasks

11.4 Summary 143

criterion. The goal of hyper-parameter optimization is to maximize the F1 score by
tuning the hyper-parameters of LightGBM on the 40 datasets.

Task setting. The 40 datasets are split into two parts: 30 experience task datasets
and 10 target task datasets. To train the directional model, we employ SRacos to
optimize the hyper-parameters of LightGBM with 300 evaluations. Each optimiza-
tion process is repeated 10 times. The running log constructs the experience dataset
for training the directional model. The basic directional model is an MLP classifier.
We set the evaluation budget to 30 for all experiments and independently run each
experiment 5 times. We report the average performance.

Table11.2 shows the hyper-parameter optimization performance of the compared
methods on the 40 datasets. We compare the hyper-parameter optimization per-
formance to the baseline, i.e., LightGBM with default hyper-parameters. Hyper-
parameter optimization outperforms the baseline on 38 datasets, indicating that
hyper-parameter optimization is necessary for machine learning applications.

On experience datasets, we compare ExpSRacos to basic DFO methods
(SRacos, SMAC, and Bayes). ExpSRacos is even worse than SRacos and SMAC.
This phenomenon is caused by irrelevant directional models that have negative
impacts on ExpSRacos. AdaSRacos outperforms the other compared methods on
29/30 datasets and obtains an average rank of 1.13. This indicates that selecting rel-
evant directional models is necessary for improving hyper-parameter optimization
performance, and the presented experience adaptation mechanism can effectively
eliminate the negative impact of irrelevant basic directional models and correctly
select the relevant directional models.

On target datasets, the optimization results show that AdaSRacos can effec-
tively transfer optimization experience to unseen tasks (AdaSRacos outperforms
the other compared methods on all 10 datasets). ExpSRacos beats SRacos on 9/10
datasets, showing that experiencedoptimization is helpful for improvingoptimization
performance on unseen tasks. However, compared with AdaSRacos, AdaSRacos
significantly improves the F1 score on all 10 datasets with only an evaluation bud-
get of 30. This indicates that experience adaptation can significantly improve the
efficiency of hyper-parameter optimization.

11.4 Summary

Hyper-parameter optimization plays an important role in AutoML. A classical solver
employs DFO to discover the hyper-parameter configuration with the best perfor-
mance. Due to the high evaluation cost, previous hyper-parameter optimizationmeth-
ods suffer from low efficiency, i.e., they require a long time to find a sufficiently good
hyper-parameter configuration. To address this issue, this chapter presents the expe-
rienced optimization algorithm ExpSRacos, which utilizes the experience of histor-
ical optimization processes to accelerate new optimization on target tasks. However,
irrelevant experience can have a negative impact on experienced optimization. This

144 11 Experienced Optimization: Acceleration in Hyper-Parameter…

Table 11.2 Average optimization F1 score of hyper-parameter optimization on 40 datasets [2]. B.L.
means baseline that is the F1 score of LightGBMwith default hyper-parameters. The numbers with
.• and.◦ are the first and second rank performances. We also analyze the number of first/second/third
ranks and average rank (Avg. Rank)

Dataset Optimization F1 score on training dataset B.L.

AdaSRa. ExpSRa. SRacos SMAC Bayes

Experienced
datasets

Australian .9026.• .8817.• .8871.◦ .8871.◦ .8724.• .8389

Breast .9999.• .9999.• .9999.• .9999.• .9999.• .9402

Electricity .7431.• .7398.◦ .7377.• .7345.• .7322.• .5492

Buggy.C. .8943.• .8693.• .8825.• .8864.◦ .8825.• .8552

CMC .5860.• .5738.• .5754.◦ .5715.• .5741.• .4614

Contrac. .5785.• .5762.◦ .5750.• .5715.• .5725.• .4614

Credit.A. .8938.• .8921.• .8927.◦ .8864.• .8895.• .8250

G.E.2-1000 .5772.• .5433.• .5518.• .5590.◦ .5378.• .5368

G.E.2-200 .7534.• .7040.• .7041.• .7534.• .7131.• .6187

G.E.3-20 .5784.• .5623.• .5657.◦ .5485.• .5601.• .4936

G.H.20 .7221.• .7040.• .7169.• .7187.◦ .7076.• .6747

H.V.wo.N. .5934.• .5875.• .5786.• .5642.• .5888.◦ .5977

H.V.w.N. .5931.• .5889.• .5871.• .5910.◦ .5823.• .5241

Mfeat.K. .9713.• .9713.• .9680.• .9692.• .9693.• .9197

Mfeat.M. .7235.• .7212.◦ .7161.• .7140.• .7212.◦ .6967

Mfeat.P. .9722.• .9674.• .9685.• .9721.◦ .9661.• .9501

Mfeat.Z. .7867.• .7758.• .7780.◦ .7771.• .7766.• .7411

Monk2 .8732.• .6981.• .6548.• .5774.• .7413.◦ .6089

Parity5. .4948.• .4815.• .4847.◦ .4820.• .4837.• .2291

Pima .7236.• .7102.• .6948.• .7173.• .7177.◦ .6590

Tic.T.T .9741.• .9163.• .9401.• .9741.• .9241.• .7898

Tokyo.1 .9248.• .9203.• .9168.• .9243.◦ .9210.• .9081

Vehicle .7943.• .7853.• .7911.◦ .7763.• .7814.• .7610

Wine.Q.R. .4218.• .3875.• .3617.• .4021.◦ .3620.• .2589

Yeast .4754.• .4435.• .4447.◦ .4388.• .4388.• .4716

Airlines .6488.• .6483.◦ .6467.• .6438.• .6464.• .5943

Titanic .8238.• .8221.◦ .8187.• .8099.• .8048.• .8217

Twonorm .9749.• .9750.• .9751.• .9782.• .9757.• .9541

Glass .7499.• .7088.• .7125.• .7071.• .7497.◦ .4345

Horse.C. .8724.• .8586.• .8602.• .8702.◦ .8616.• .7989

.1st/2nd/3rd 29/0/0 2/5/8 1/8/11 4/9/2 1/6/7 –

.Avg.Rank 1.13 3.43 3.13 3.27 3.47 –

Target
Datasets

Messidor .7548.• .7525.◦ .7462.• .7353.• .7505.• .6581

Adult .8137.• .8121.• .8104.• .8128.• .8129.◦ .7558

Balance.S. .5448.• .5399.• .5380.• .5409.◦ .5398.• .5294

CNAE .9060.• .8924.• .8955.◦ .8946.• .8920.• .8227

Credit.G .7190.• .7174.◦ .7052.• .7173.• .7168.• .6894

CRX .8864.• .8854.◦ .8843.• .8690.• .8810.• .8974

Cylinder .8094.• .8065.◦ .7487.• .7791.• .7953.• .7990

Flare .7174.• .6816.• .6704.• .7141.◦ .6954.• .4518

Solar.F. .6724.• .6233.• .6131.• .6448.◦ .6195.• .5758

German .7498.• .7457.• .7331.• .7463.◦ .7432.• .5482

.1st/2nd/3rd 10/0/0 0/4/3 0/1/1 0/4/3 0/1/3 –

.Avg.Rank 1.00 2.90 4.40 3.10 3.60 –

References 145

chapter further presents an experience adaptation mechanism that tests the experi-
ence on target tasks. The relevant experience that makes fewer mistakes is adaptively
selected, while the irrelevant experience that makes more mistakes is omitted. We
implement AdaSRacos based on ExpSRacos. Experiments on synthetic tasks ver-
ify that AdaSRacos can effectively discover the relevance among tasks. The empir-
ical results of hyper-parameter optimization on 40 datasets show that AdaSRacos
significantly improves the efficiency of hyper-parameter optimization.

References

1. Hu YQ, Qian H, Yu Y (2017) Sequential classification-based optimization for direct policy
search. In: Proceedings of the 31st AAAI conference on artificial intelligence, San Francisco,
CA, pp 2029–2035

2. Hu YQ, Yu Y, Zhou ZH (2018) Experienced optimization with reusable directional model for
hyper-parameter search. In: Proceeding of the 27th international joint conference on artificial
intelligence, pp 2276–2282

3. HuYQ,LiuZ,YangH,YuY, LiuY (2020)Derivative-free optimizationwith adaptive experience
for efficient hyper-parameter tuning. In: Proceeding of the 24th European conference on artificial
intelligence, pp 1207–1214

4. Hutter F, Hoos HH, Leyton-Brown K (2011) Sequential model-based optimization for general
algorithm configuration. LION 5:507–523

5. Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu TY (2017) Lightgbm: a highly
efficient gradient boosting decision tree. In: Advances in neural information processing systems,
pp 3146–3154

6. Shahriari B, Swersky K, Wang Z, Adams RP, Freitas ND (2015) Taking the human out of the
loop: a review of bayesian optimization. Proc IEEE 104(1):148–175

Chapter 12
Multi-fidelity Optimization: Acceleration
in Hyper-Parameter Evaluation

Abstract This chapter addresses the challenge of expensive evaluations in hyper-
parameter optimization by introducing a multi-fidelity optimization approach.
Hyper-parameter optimization often involves time-consuming evaluations, espe-
cially with large datasets or complex models. The chapter proposes a method that
combines low-fidelity evaluations (using subsets of data) with high-fidelity evalua-
tions (using full datasets) to accelerate the optimization process. A key innovation is
the Transfer Series Expansion (TSE) algorithm, which predicts the residual between
low and high-fidelity evaluations, allowing for efficient optimization with fewer
costly evaluations. The chapter presents the TseSRacos algorithm, which integrates
TSE with the SRacos optimization framework. Empirical studies on LightGBM
hyper-parameter optimization tasks demonstrate that the proposed method signif-
icantly reduces evaluation time while maintaining high optimization performance.
The results highlight the effectiveness of multi-fidelity optimization in improving
efficiency, particularly for large-scale datasets. The chapter concludes that TSE-
based multi-fidelity optimization is a powerful tool for accelerating hyper-parameter
tuning in machine learning.

In this chapter, we continue to focus on hyper-parameter optimization tasks. As
discussed in Chap. 11, derivative-free optimization (DFO) is a popular solver for
hyper-parameter optimization. Hyper-parameter optimization typically involves a
large number of iterations, each of which includes a hyper-parameter evaluation
process that requires training the model and validating it on the real dataset. When
the dataset is large or the model is complex, the evaluation process becomes very
time-consuming, leading to inefficiency in hyper-parameter optimization.

Chapter 11 addressed the inefficiency of hyper-parameter optimization by reduc-
ing the number of iterations. This chapter tackles the problem from another perspec-
tive: accelerating the hyper-parameter evaluation [3], using a multi-fidelity approach.
By shortening the time cost of each iteration, the optimization process can increase
the number of iterations to improve optimization performance.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025
Y. Yu et al., Derivative-Free Optimization, Machine Learning: Foundations,
Methodologies, and Applications, https://doi.org/10.1007/978-981-96-5929-6_12

147

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-5929-6_12&domain=pdf
https://doi.org/10.1007/978-981-96-5929-6_12
https://doi.org/10.1007/978-981-96-5929-6_12
https://doi.org/10.1007/978-981-96-5929-6_12
https://doi.org/10.1007/978-981-96-5929-6_12
https://doi.org/10.1007/978-981-96-5929-6_12
https://doi.org/10.1007/978-981-96-5929-6_12
https://doi.org/10.1007/978-981-96-5929-6_12
https://doi.org/10.1007/978-981-96-5929-6_12
https://doi.org/10.1007/978-981-96-5929-6_12
https://doi.org/10.1007/978-981-96-5929-6_12
https://doi.org/10.1007/978-981-96-5929-6_12

148 12 Multi-fidelity Optimization: Acceleration in Hyper-Parameter…

12.1 Multi-fidelity Optimization for Hyper-Parameter
Optimization

We note that it is easy to construct multi-fidelity evaluations when optimizing hyper-
parameters. For example, when evaluating hyper-parameters on a small subset of the
dataset, it is considered a low-fidelity evaluation. Low-fidelity evaluations are much
faster than evaluations on the full dataset, but they are less accurate. High-fidelity eval-
uations, which train the model on the full dataset, are highly time-consuming but pro-
vide an accurate measure of the hyper-parameters’ quality. This raises the question:
can we combine different fidelity evaluations to accelerate the evaluation processes
while obtaining accurate evaluation values when optimizing hyper-parameters? This
leads to the concept of multi-fidelity DFO [1, 8]. Multi-fidelity optimization has been
extensively studied in the context of surrogate model optimization, such as Bayesian
optimization [4– 6]. However, few works [9] have explored its application to other
optimization methods.

Let us review the notations for hyper-parameter optimization introduced in
Chap. 11. .A denotes an algorithm, and .δ ∈ Δ denotes a hyper-parameter configura-
tion, where .Δ is the corresponding hyper-parameter space. The evaluation process
of a hyper-parameter configuration is a .k-fold cross-validation process:

. f (δ) = 1

k

k∑

i=1

L(Aδ,Di
train,Di

valid), (12.1)

where .L(·) is a loss function, and .Di
train and .Di

valid are the training and validation
datasets in the. i th fold. The goal of hyper-parameter optimization is to minimize the
objective function . f (·).

In the optimization setting, we still use.x ∈ X to denote a solution, where.X is the
search space.. x corresponds to. δwhen optimizing hyper-parameters. In multi-fidelity
optimization, a solution . x can be evaluated at several different levels. We consider
the simplest situation, where there are only two evaluation functions: . fH : X → R

denotes the high-fidelity evaluation function, which outputs an accurate evaluation
value for solutions but has a high time cost, and. fL : X → R denotes the low-fidelity
evaluation function, which quickly outputs an evaluation value but with a strong bias.
In hyper-parameter optimization, the high-fidelity function is

. fH (δ) = L(δ,Dtrain,Dvalid). (12.2)

The full dataset is used to evaluate the quality of a hyper-parameter configuration
. δ. When training the algorithm on a small subset of the dataset, it constructs a
low-fidelity function:

. fL(δ) = L(δ,DrL
sub,Dvalid), (12.3)

12.2 The TseSRacos Algorithm 149

where .0 < rL � 1 is the subsample ratio that indicates the size of the data subset,
and .DrL

sub ⊂ Dtrain is randomly selected.
In this chapter, we present a method that learns a model to predict the residual

between . fH and . fL with few observations. During optimization, we only use . fL as
the evaluation function, which is corrected by this predicted model. Due to the cheap
evaluation function, the optimization process is accelerated. Based on this idea, we
present the Transfer Series Expansion (TSE) optimization method and implement it
following the SRacos algorithm (Chap. 6), naming it TseSRacos [3].

12.2 The TSESRACOS Algorithm

The bias of. fL is the biggest obstacle preventing us from directly using the low-fidelity
evaluation function. We define a simple regret measuring the residual between . fH
and . fL as follows:

.R(x) = fH (x) − fL(x), (12.4)

where. x is a solution sampled from the search space. In hyper-parameter optimization
tasks,. x is equivalent to. δ. Based on this regret definition, once. R is available, we can
use.R + fL to substitute for. fH . In real optimization, we have some opportunities to
evaluate. x by. fH . Thus, we can create a dataset.D = {(x1, y1), (x2, y2), . . . }, where
.yi = R(xi). The regret function can be easily learned by a supervised regression
learner .Ψ from . D. Because . fH (x) has a high time cost, the size of .D is limited.
Therefore, the challenge of learning.Ψ is to train an accurate regret predictor from a
very small supervised dataset.

12.2.1 Multi-fidelity Optimization Framework

The regret predictor-based multi-fidelity optimization is a general framework that
can be implemented with any DFO method. We focus on minimization problems.
Let .SampleO denote the step of generating a new sample, which is a key step for a
DFO method, where.O is a DFO method. Different methods have different Sample
steps. In multi-fidelity optimization, the low-fidelity evaluation . fL is introduced to
decrease the total evaluation cost. The optimization process more frequently evaluates
solutions using. fL . The regret predictor.Ψ is a core component of this framework. The
dataset for training.Ψ requires some samples evaluated by the high-fidelity evaluation
function . fH . Thus, we also need a sub-procedure Find to select a sample to be
evaluated by. fH from the sample set. The presented framework learns a predictor. Ψ
to estimate the residual between high and low-fidelity evaluations. Then, optimization
using the corrected evaluations .(fL + Ψ) can find a good sample that still performs
well under high-fidelity evaluation.

150 12 Multi-fidelity Optimization: Acceleration in Hyper-Parameter…

Algorithm 12.1 Multi-fidelity Optimization Framework
Input:

X : The optimization space
fL , fH : Low and high-fidelity evaluation functions
TH : The budget of high-fidelity evaluations
TL : The low-fidelity evaluation times between high-fidelity evaluations
Initialization: Initialization step
SampleO: The sample step in optimization method O
Find: Select a sample to be evaluated by fH
Train: Train the regret predictor

Procedure:
1: XH , y = ∅, ∅
2: Ψ = Initialize, ∀x ∈ X : Ψ (x) = 0
3: XL = Initialization(X)
4: for tH = 1 to TH do
5: for tL = 1 to TL do
6: x = SampleO(X , fL + Ψ)
7: XL = XL ∪ {x}
8: end for
9: x′ = Find(XL)
10: γ′ = fH (x′)
11: XH , y = XH ∪ {x′}, y ∪ {γ′ − fL (x′)}
12: Ψ = Train(XH , y)
13: end for
14: return arg minx∈XH

fH (x)

Algorithm 12.1 presents the general multi-fidelity optimization framework. . XH

is a sample set that stores . x evaluated by . fH . . y is a set of regression targets corre-
sponding to .XH . .XH and. y are initially empty (line 1). In the initialization step (line
2), .Ψ can only output 0 because there is no learning information. .XL is a set to store
all samples generated by the method. The initialization step (line 3) samples from. X
uniformly. In each iteration, first, the corrected low-fidelity evaluation (. fL + Ψ) is
considered as the objective function, and.TL samples are generated in this loop (lines
5–8). Then, a sub-process Find selects a sample to be evaluated by the high-fidelity
function . fH (lines 9-10). With the high-fidelity evaluated sample, this framework
constructs the regression dataset (line 11) to re-train the predictor .Ψ (line 12). As
.tH increases, .Ψ approaches the real simple regret function. Optimization using the
corrected low-fidelity evaluation is similar to optimization using the high-fidelity
function. Finally, the algorithm returns the best-so-far sample (line 14).

12.2.2 Transfer Series Expansion (TSE)

A major challenge of Algorithm 12.1 is that .Ψ is not accurate enough because the
training dataset is small. To address this, we present the Transfer Series Expan-
sion (TSE) algorithm. We assume there is a series of pre-trained base predictors

12.2 The TseSRacos Algorithm 151

Algorithm 12.2 Multi-fidelity Optimization with TSE
Input: (extra input compared to Algorithm 12.1)

ψ = {ψ1, ψ2, . . . , ψk}: The base predictor set
Procedure:
1: XH , Z, y = ∅, ∅, ∅
2: Ψ ψ

w = Ψ ψ
0

3: XL = Initialization(X)
4: (̃x, γ̃) = (0, +∞)
5: for tH = 1 to TH do
6: for tL = 1 to TL do
7: x = SampleO(XL , fL + Ψ ψ

w)
8: XL = XL ∪ {x}
9: end for
10: x′ = arg minx∈(XL−XH) fL (x) + Ψ ψ

w (x)
11: γ′ = fH (x′)
12: if γ′ < γ̃ then
13: (̃x, γ̃) = (x′, γ′)
14: end if
15: XH , y = XH ∪ {x′}, y ∪ {γ′ − fL (x′)}
16: Z = Z ∪ {ψ1(x′), ψ2(x′), . . . , ψk (x′)}
17: w = (Z�Z)−1 Z� y
18: end for
19: return (̃x, γ̃)

.ψ = {ψ1,ψ2, . . . ,ψk}. We aggregate these base predictors as a final predictor using
a simple weighted ensemble approach:

.Ψ (x) =
k∑

i=1

wiψi (x) + b. (12.5)

.w = {w1, w2, . . . , wk, b} is a weight vector for the base predictors. . D =
{(x1, y1), (x2, y2), . . . } is the raw regression training dataset. For each. xi , we input it
into the base predictors and obtain the weight (. w) training dataset:.Z = {z1, z2, . . . },
where .zi = {ψ1(xi),ψ2(xi), . . . ,ψk(xi), 1}. . Z is the feature matrix for training the
weights. We rewrite . y = {y1, y2, . . . } as the learning target vector. By applying the
mean square loss, the learning task can be presented as

.w∗ = argmin
w

(y − Zw)�(y − Zw). (12.6)

The weights of the ensemble predictor have a closed-form solution: . w∗ =
(Z�Z)−1Z� y when . Z is a full-rank matrix. Thus, the process of training predictor
.Ψ has two steps: 1. using base predictors to predict .D to obtain the weight training
dataset . Z, and 2. calculating the weights with the above closed-form solution.

The linear ensemble approach of TSE is simple and easy to train. Another problem
of TSE is how to obtain the base predictors.

152 12 Multi-fidelity Optimization: Acceleration in Hyper-Parameter…

Obtaining base predictors. The base predictors are also regression models. In
this chapter, we decompose residual regression into middle-level problems. In hyper-
parameter optimization, we naturally introduce a middle-fidelity evaluation function:

. fM(δ) = L(δ,DrM
sub,Dvalid), (12.7)

where .rM is the subsample ratio and .0 < rL < rM � 1. The middle-level prob-
lem is to train the regression predictor that estimates the regret function between
. fM and . fL . Due to .rM � 1, the cost of . fM is much cheaper than the cost
of . fH . We can obtain a large enough dataset for the middle-level problem.
Thus, the middle-level predictor can be more accurate. If we need .k base
predictors in total, we should construct .k middle-level regression problems:
.{(DrL

sub1,DrM
sub1), (DrL

sub2,DrM
sub2), . . . , (DrL

subk,DrM
subk)}. In addition, an extra .DrL

sub is
needed to construct the final regression problem .(DrL

sub,Dtrain). Thus, a total of . k
.DrM

sub and .k + 1 .DrL
sub should be randomly sampled.

We implement the multi-fidelity DFO framework with TSE as Algorithm 12.2.
The presented multi-fidelity optimization framework focuses on the evaluation phase
of DFO. Only the evaluation phase is changed in optimization. Thus, this framework
can be easily applied to any DFO method. Additionally, we present TSE to learn
the residual predictor. Because high-fidelity evaluations are expensive, the train-
ing dataset is not large enough to learn an accurate predictor. TSE applies a linear
combination of base predictors to simplify the regression model, and the base pre-
dictors prevent the combination predictor from starting from scratch. We obtain the
base predictors by constructing middle-level regression problems related to the final
regression problem. In hyper-parameter tuning problems, the middle-level regres-
sion problem estimates the simple regret between . fM and . fL . The base predictors
are aligned by the learning model and can be transferred among different datasets.
We focus only on the local trajectory of optimization to sample the regression train-
ing dataset. Thus, only a few instances are sufficient for the combination predictor to
converge. With precise but cheap estimated evaluations as a substitute, optimization
can explore more to find a better solution with an affordable cost.

12.3 Empirical Study

12.3.1 Experimental Setup

In the experiments of this chapter, we select LightGBM [7] as the learning algorithm.
A total of 11 hyper-parameters of LightGBM constitute the search space, including
learning rate, number of leaves, tree depth, number of rounds, etc. We select 12
datasets and show their details in Table 12.1. The dataset sizes range from thousands
to 40 million. The subsampling ratio is set differently according to the dataset size.
For small datasets with fewer than 100,000 instances, the low-fidelity subsampling

12.3 Empirical Study 153

Table 12.1 Information about the datasets [3]. .|D| is the number of instances in dataset . D. The
validation datasets are constructed by sampling 10% of the instances from.Dtrain..rL and.rM are the
subsample ratios of.DrL

sub and. DrM
sub

Dataset .|Dtrain| .|Dtest| .rL . rM

Musk 4,991 2,083 0.05 0.2

HTRU2 14,318 3,580 0.05 0.2

Magic04 15,215 3,805 0.05 0.2

Credit 24,000 6,000 0.05 0.2

Adult 32,561 16,281 0.05 0.2

Sensorless 40,883 17,525 0.05 0.2

Connect 47,504 20,053 0.05 0.2

Miniboone 104,052 26,012 0.01 0.04

Airline 773,469 215,358 0.005 0.02

Higgs 10,000,000 1,000,000 0.001 0.004

MovieLens 16,000,210 4,000,053 0.001 0.004

Criteo 40,000,000 4,840,617 0.0005 0.002

ratio.rL is 0.05, and the middle-fidelity subsampling ratio.rM is 0.2. For large datasets,
.rL and .rM depend on the dataset size.

We implement the multi-fidelity framework with TSE based on SRacos [2] and
name it TseSRacos. The compared methods are as follows:

• TseTrans: The algorithm is the same as TseSRacos, but the base predictors are
transferred from another dataset. In our experiments, the base predictors are all
from the Miniboone dataset.

• RFSRacos: We replace the weighted ensemble of base predictors with a random
forest regressor to obtain RFSRacos.

• LF-Only: We apply the raw SRacos to optimize the hyper-parameters using only
the low-fidelity evaluation function.

• HF-Only: We apply the raw SRacos to optimize the hyper-parameters using only
the high-fidelity evaluation function.

Because high-fidelity evaluations are accurate, HF-Only serves as the upper bound
for all compared methods. However, due to the high time cost of high-fidelity evalu-
ations, HF- Only optimizes the hyper-parameters on large datasets with only a few
evaluations.

The evaluation criterion for the experiments is the AUC score. For multi-fidelity
optimization methods (TseSRacos, TseTrans, and RFSRacos), we apply one
high-fidelity evaluation for every 100 low-fidelity evaluations, i.e., .TL = 100. The
total number of high-fidelity evaluations is set to 50, i.e., .TH = 50. Thus, the multi-
fidelity optimization process has a total of 5,000 low-fidelity evaluations and 50
high-fidelity evaluations. For TseSRacos and TseTrans, there are 5 base predic-
tors to construct the final regret predictor. For LF-Only, we set the total number of

154 12 Multi-fidelity Optimization: Acceleration in Hyper-Parameter…

low-fidelity evaluations to 5,000, which is the same as for multi-fidelity optimiza-
tion. For HF-Only, we set 5,000 evaluations only when the dataset size is less than
100,000 (Musk, HTRU2, Magic04, Credit, Adult, Sensorless, Connect, Miniboone).
On large datasets (Airline, Higgs, MovieLens, Criteo), we early stop the optimization
process when the time spent is more than that of TseTrans (HF-Only. ∗). For the
huge datasets (MovieLens, Criteo), the middle-fidelity evaluation is hard to obtain.
We can only transfer the base predictors from other tasks. Thus, we did not test
TseSRacos but only tested TseTrans on these two datasets.

12.3.2 Empirical Analysis

We show the AUC scores and wall-clock running times of the compared methods
on each dataset. For a fair comparison, we also include the time cost of training
base predictors for TseSRacos in the total wall-clock running time. Based on the
experimental results, we can draw the following conclusions:

• Low-fidelity evaluation correction is necessary. From Table 12.2 , LF- Only usu-
ally achieves the best low-fidelity evaluation values. However, the correspond-
ing high-fidelity evaluations are not good. Thus, it is necessary to correct the
low-fidelity evaluation during optimization.

• Correction by a regression predictor is effective. From Table 12.2, the best AUC
scores achieved by optimizations with correction (TseSRacos, RFSRacos, Tse-
Trans) are close to the upper bound score (HF- Only). They are much better than
LF- Only on most datasets.

• The TSE regressor converges fast. In Figure 12.1, we compare the regression
error of the TSE regressor to that of the random forest regressor. At the beginning
(when the regression training dataset has only one instance), TSE has a larger
error. However, the error of TSE decreases quickly when the dataset size exceeds
5. In particular, the error variance of the TSE regressor is smaller than that of the
random forest regressor, indicating that the TSE regressor has good stability.

• Base predictors have the ability to transfer. In Table 12.2, except for TseSRacos,
TseTrans ranks first 10 times out of 11 datasets. Compared to TseSRacos, Tse-
Trans achieves similar optimization performance but spends less time because it
does not require a base predictor training phase. This verifies that base predictors
can be easily transferred to other datasets. This is meaningful for huge datasets
where training base predictors is challenging.

• Multi-fidelity optimization with TSE is effective. In Table 12.2, TseSRacos out-
performs others in most cases (ranking first 8 times out of 10 datasets). Compared
to LF- Only and HF- Only, the performance of TseSRacos is close to HF-
Only, while the time cost is close to LF- Only. This verifies that multi-fidelity
optimization with TSE can significantly improve optimization performance with
an acceptable extra time cost.

12.3 Empirical Study 155

Fig. 12.1 Histograms of the mean regression prediction error .| fL + Ψ − fH | at each training
step [3]. It only compares the prediction error of TseSRacos (green) and RFSRacos (blue). The
.X -axis represents the number of instances in the regression training dataset

156 12 Multi-fidelity Optimization: Acceleration in Hyper-Parameter…

Ta
bl
e
12
.2

A
U
C
 p
er
fo
rm

an
ce
 a
nd
 w

al
l-
cl
oc
k
tim

e
of
 t
he
 c
om

pa
re
d
m
et
ho
ds
 [
 3]
.
L
F-
E
va
l
an
d
H
F-
E
va
l
re
pr
es
en
t
th
e
be
st
 l
ow

 a
nd

 h
ig
h-
fid

el
ity

 e
va
lu
at
io
n

va
lu
es
 o
f
th
e
se
ar
ch
ed
 h
yp
er
-p
ar
am

et
er
s.
 T
es
t
re
pr
es
en
ts
 t
he
 g
en
er
al
iz
at
io
n
A
U
C
 s
co
re
 o
f
th
e
se
ar
ch
ed
 h
yp
er
-p
ar
am

et
er
s.
 T
he
 b
ol
d
nu
m
be
rs
 i
n
ea
ch
 c
ol
um

n
in
di
ca
te
 th

e
be
st
 A
U
C
 s
co
re

D
at
as
et

M
et
ho
d

L
F-
E
va
l

H
F-
E
va
l

Te
st

T
im

e
D
at
as
et

M
et
ho
d

L
F-
E
va
l

H
F-
E
va
l

Te
st

T
im

e

M
us
k

T
se
SR

a
co

s
0.
90
18

0.
99
91

0.
99
77

0:
07

:3
1

H
T
R
U
2

T
se
SR

a
co

s
0.
97
33

0.
98
41

0.
96
32

0:
02
:4
4

T
se
T
ra

n
s

0.
92
04

0.
99
91

0.
99
85

0:
07

:1
6

T
se
T
ra

n
s

0.
96
50

0.
97
58

0.
96
36

0:
01
:4
1

R
FS

R
a
co

s
0.
92
20

0.
99
90

0.
99
80

0:
06

:4
0

R
FS

R
a
co

s
0.
97
73

0.
98
14

0.
96
16

0:
01
:2
7

L
F-

O
n
ly

0.
92
94

0.
99
89

0.
99
74

0:
05

:4
6

L
F-
O
n
ly

0.
97
50

0.
97
91

0.
96
13

0:
02
:1
1

H
F-

O
n
ly

–
1.
00
00

0.
99
78

1:
49

:0
8

H
F-
O
n
ly

–
0.
98
71

0.
96
45

0:
08
:4
8

M
ag
ic
04

T
se
SR

a
co

s
0.
88
59

0.
94
46

0.
92
36

0:
04

:4
0

C
re
di
t

T
se
SR

a
co

s
0.
64
07

0.
74
51

0.
76
12

0:
03
:4
6

T
se
T
ra

n
s

0.
90
13

0.
94
38

0.
92
27

0:
03

:0
4

T
se
T
ra

n
s

0.
66
54

0.
74
32

0.
75
31

0:
01
:3
6

R
FS

R
a
co

s
0.
89
94

0.
93
87

0.
92
25

0:
02

:1
6

R
FS

R
a
co

s
0.
68
89

0.
74
04

0.
75
79

0:
01
:2
1

L
F-
O
n
ly

0.
90
92

0.
92
96

0.
92
01

0:
02

:4
5

L
F-
O
n
ly

0.
72
70

0.
73
24

0.
75
31

0:
00
:5
9

H
F-
O
n
ly

–
0.
94
95

0.
92
03

0:
20

:0
6

H
F-
O
n
ly

–
0.
75
54

0.
76
43

0:
04
:2
6

A
du

lt
T
se
SR

a
co

s
0.
89
61

0.
92
61

0.
92
19

0:
04

:2
0

Se
ns
or
le
ss

T
se
SR

a
co

s
0.
99
74

0.
99
99

0.
99
99

0:
33
:2
9

T
se
T
ra

n
s

0.
88
96

0.
92
24

0.
92
06

0:
02

:1
7

T
se
T
ra

n
s

0.
99
73

0.
99
99

0.
99
99

0:
21
:3
3

R
FS

R
a
co

s
0.
90
86

0.
91
90

0.
91
81

0:
02

:3
7

R
FS

R
a
co

s
0.
99
78

0.
99
99

0.
99
98

0:
54
:3
0

L
F-
O
n
ly

0.
90
70

0.
91
57

0.
91
56

0:
02

:3
7

L
F-
O
n
ly

0.
99
73

0.
99
97

0.
99
97

0:
19
:3
8

H
F-
O
n
ly

–
0.
92
81

0.
92
34

0:
26

:0
2

H
F-
O
n
ly

–
0.
99
99

0.
99
99

2:
23
:4
4

C
on
ne
ct

T
se
SR

a
co

s
0.
86
04

0.
93
18

0.
93
74

0:
11

:0
2

M
in
ib
oo
ne

T
se
SR

a
co

s
0.
96
64

0.
97
89

0.
97
85

0:
27
:5
3

T
se
T
ra

n
s

0.
86
50

0.
93
19

0.
93
53

0:
11

:1
4

T
se
T
ra

n
s

–
–

–
–

R
FS

R
a
co

s
0.
86
30

0.
92
84

0.
93
30

0:
09

:1
5

R
FS

R
a
co

s
0.
96
74

0.
97
87

0.
97
81

0:
12
:4
4

L
F-
O
n
ly

0.
86
84

0.
92
19

0.
92
72

0:
10

:3
2

L
F-
O
n
ly

0.
96
94

0.
97
79

0.
97
71

0:
14
:5
4

H
F-
O
n
ly

–
0.
93
67

0.
94
04

1:
20

:2
8

H
F-
O
n
ly

-
0.
98
14

0.
97
97

0:
51
:0
0

A
ir
lin

e
T
se
SR

a
co

s
0.
63
92

0.
68
01

0.
88
93

0:
44

:0
6

H
ig
gs

T
se
SR

a
co

s
0.
77
43

0.
80
37

0.
80
23

14
:0
9:
18

T
se
T
ra

n
s

0.
64
62

0.
66
74

0.
86
96

0:
40

:3
1

T
se
T
ra

n
s

0.
77
70

0.
80
46

0.
80
44

11
:3
7:
50

R
FS

R
a
co

s
0.
65
19

0.
66
74

0.
87
62

0:
35

:5
5

R
FS

R
a
co

s
0.
78
47

0.
80
25

0.
80
35

12
:5
7:
22

L
F-
O
n
ly

0.
65
66

0.
66
00

0.
86
93

0:
41

:2
9

L
F-
O
n
ly

0.
78
72

0.
79
91

0.
79
88

8:
53
:3
3

H
F-
O
n
ly

*
–

0.
69
00

0.
89
61

2:
00

:0
0

H
F-
O
n
ly

*
–

0.
81
45

0.
81
40

45
:0
0:
00

M
ov
ie
L
en
s

T
se
T
ra

n
s

0.
63
44

0.
66
82

0.
64
76

11
:5
3:
56

C
ri
te
o

T
se
T
ra

n
s

0.
72
58

0.
75
13

0.
74
96

62
:0
0:
25

R
FS

R
a
co

s
0.
64
44

0.
65
43

0.
65
91

11
:3
5:
42

R
FS

R
a
co

s
0.
72
89

0.
74
54

0.
74
96

65
:4
1:
30

L
F-
O
n
ly

0.
64
43

0.
64
77

0.
63
61

11
:1
0:
26

L
F-
O
n
ly

0.
72
98

0.
74
80

0.
74
80

60
:5
2:
23

H
F-
O
n
ly

*
–

0.
67
67

0.
65
91

36
:0
0:
00

H
F-
O
n
ly

*
–

0.
76
52

0.
75
84

18
0:
00
:0
0

References 157

12.4 Summary

This chapter applies multi-fidelity optimization to address the expensive evaluation
issue in hyper-parameter optimization. In hyper-parameter optimization, low-fidelity
evaluations can be obtained by validating the hyper-parameter configuration on a
subset of the dataset. These evaluations are cheap but significantly biased. Previous
works on multi-fidelity optimization are often based on specific methods. In this
chapter, we present a general multi-fidelity optimization framework based on DFO.
A correction predictor is trained to estimate the residual between high and low-fidelity
evaluations. We can optimize according to the corrected low-fidelity evaluations to
reduce the time cost. However, high-fidelity evaluations are still hard to obtain, and
the regression dataset is too small to train an accurate predictor. We present Transfer
Series Expansion (TSE) to address this issue. TSE linearly combines pre-trained
base predictors. Additionally, base predictors are trained on middle-level regression
problems, for which training datasets are easier to obtain. Experiments on LightGBM
hyper-parameter optimization tasks verify that multi-fidelity optimization with TSE
can effectively accelerate the optimization process.

References

1. M. G. Fernández-Godino, C. Park, N.-H. Kim, and R. T. Haftka. Review of multi-fidelity models.
arXiv preprint arXiv:1609.07196, 2016

2. Y. Hu, H. Qian, and Y. Yu. Sequential classification-based optimization for direct policy search.
In Proceedings of the 31st AAAI Conference on Artificial Intelligence, pages 2029–2035, San
Francisco, CA, 2017

3. Y.-Q. Hu, Y. Yu, W.-W. Tu, Q. Yang, Y. Chen, and W. Dai. Multi-fidelity automatic hyper-
parameter tuning via transfer series expansion. In Proceedings of the 33rd AAAI Conference on
Artificial Intelligence (AAAI’19), Honolulu, HI, 2019

4. Huang D, Allen TT, Notz WI, Miller RA (2006) Sequential kriging optimization using multiple-
fidelity evaluations. Structural and Multidisciplinary Optimization 32(5):369–382

5. K. Kandasamy, G. Dasarathy, J. B. Oliva, J. Schneider, and B. Poczos. Multi-fidelity gaussian
process bandit optimisation. arXiv preprint arXiv:1603.06288, 2016

6. K. Kandasamy, G. Dasarathy, J. Schneider, and B. Poczos. Multi-fidelity bayesian optimisation
with continuous approximations. arXiv preprint arXiv:1703.06240, 2017

7. G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu. Lightgbm: A highly
efficient gradient boosting decision tree. In Advances in Neural Information Processing Systems,
pages 3146–3154, 2017

8. March A, Willcox K (2012) Provably convergent multifidelity optimization algorithm not
requiring high-fidelity derivatives. AIAA journal 50(5):1079–1089

9. R. Sen, K. Kandasamy, and S. Shakkottai. Multi-fidelity black-box optimization with hierarchical
partitions. In Proceedings of the 35th International Conference on Machine Learning (ICML’18),
pages 4545–4554, 2018

http://arxiv.org/abs/1609.07196
http://arxiv.org/abs/1603.06288
http://arxiv.org/abs/1703.06240

Chapter 13
Stepwise Optimization: Cascaded
Algorithm Selection

Abstract This chapter introduces a stepwise optimization approach for algorithm
selection in Automatic Machine Learning (AutoML). Traditional methods like Com-
bined Algorithm Selection and Hyper-parameter optimization (CASH) often suffer
from inefficiency due to the large and redundant search space. To address this, the
chapter proposes a cascaded algorithm selection framework, which separates the
process into two levels: hyper-parameter optimization for individual algorithms and
a resource allocation strategy at the upper level. The upper level is formulated as a
multi-armed bandit problem, where each arm represents a hyper-parameter optimiza-
tion process. The chapter introduces the Extreme-Region Upper Confidence Bound
(ER-UCB) strategy, designed to maximize the final feedback by focusing on the
arm with the largest extreme region. Theoretical analysis and empirical studies on
synthetic and real-world AutoML tasks demonstrate the effectiveness of ER-UCB in
improving algorithm selection efficiency and performance. The results highlight the
importance of stepwise optimization in reducing redundancy and enhancing AutoML
outcomes.

Algorithm selection [1, 4, 5] and hyper-parameter optimization [9, 10], intro-
duced in the previous chapters, are two core tasks of Automatic Machine Learning
(AutoML) [17]. While hyper-parameter optimization has been extensively studied
by researchers recently [2, 3, 8, 14], there are fewer works focusing on algorithm
selection. Some approaches solve algorithm selection by combining it with hyper-
parameter optimization, such as the Combined Algorithm Selection and Hyper-
parameter optimization (CASH) method, which searches within a joint hyper-
parameter space of all candidate algorithms. However, the search result is the best
hyper-parameter configuration of the best algorithm, and the hyper-parameter spaces
constructed by other algorithms are redundant. The optimization solver, typically a
derivative-free optimization (DFO) method such as Bayesian optimization [12, 13],
is sensitive to dimensionality. The large and redundant search space hinders the
optimization solver from reaching its full potential and obtaining a good result.

To address this issue, we present a stepwise optimization approach to solve algo-
rithm selection: cascaded algorithm selection [11]. Cascaded algorithm selection
consists of a two-level process. The lower level is the hyper-parameter optimization
process for each algorithm. However, the optimization resources, such as running
time and sample budget, are usually limited. The upper level is a strategy to solve

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025
Y. Yu et al., Derivative-Free Optimization, Machine Learning: Foundations,
Methodologies, and Applications, https://doi.org/10.1007/978-981-96-5929-6_13

159

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-5929-6_13&domain=pdf
https://doi.org/10.1007/978-981-96-5929-6_13
https://doi.org/10.1007/978-981-96-5929-6_13
https://doi.org/10.1007/978-981-96-5929-6_13
https://doi.org/10.1007/978-981-96-5929-6_13
https://doi.org/10.1007/978-981-96-5929-6_13
https://doi.org/10.1007/978-981-96-5929-6_13
https://doi.org/10.1007/978-981-96-5929-6_13
https://doi.org/10.1007/978-981-96-5929-6_13
https://doi.org/10.1007/978-981-96-5929-6_13
https://doi.org/10.1007/978-981-96-5929-6_13
https://doi.org/10.1007/978-981-96-5929-6_13

160 13 Stepwise Optimization: Cascaded Algorithm Selection

how to reasonably allocate the optimization resources to each lower-level process.
We formulate this allocation problem as a multi-armed bandit problem and present
an Extreme-Region Upper Confidence Bound (ER-UCB) strategy [11]. Theoretical
analysis under ideal assumptions and empirical studies on real algorithm selection
tasks show that ER-UCB is an effective strategy for cascaded algorithm selection.

13.1 Stepwise Optimization with Algorithm Selection

Let .A = {A1,A2, . . . ,AK } denote a set of .K candidate learning algorithms. For
each algorithm .Ai , let .δi ∈ Δi denote a hyper-parameter configuration, where . Δi

is the hyper-parameter space of .Ai . Given a training dataset .Dtrain, a testing dataset
.Dtest, and an evaluation criterion . f (·), an AutoML task can be formulated as

.Aδ∗
i∗

i∗ = argmax
i∈{1,2,...,K }

argmax
δi∈Δi

1

k

k∑

j=1

f (Aδi
i ,D j

train,D j
valid), (13.1)

where.D j
valid ⊂ Dtrain and.D j

train = Dtrain \ D j
valid. In this chapter, we consider a max-

imization problem, where . f (·) is an evaluation criterion such as accuracy or AUC
score, and a larger value is better.

We note that Eq. (13.1) contains two cascaded optimization processes. Thus, we
can rewrite Eq. (13.1) as follows:

. Aδ∗
i∗

i∗ = argmax
i∈{1,2,...,K }

1

k

k∑

j=1

f (Aδ∗
i

i ,D j
train,D j

valid),

where δ∗
i = argmax

δi∈Δi

1

k

k∑

j=1

f (Aδi
i ,D j

train,D j
valid).

The inner part corresponds to the lower-level optimization process, which is the
hyper-parameter optimization process. We assume that the best hyper-parameters
.δ∗

i are available for every algorithm .Ai . The upper-level optimization process is
straightforward, as it only needs to select the algorithm with the highest evaluation
value. However, in reality, the cost for the lower-level hyper-parameter optimization
to obtain.δ∗

i is too high to be acceptable. Thus, the direct algorithm selection strategy
is not applicable. We tackle this issue by a stepwise optimization approach, i.e.,
cascaded algorithm selection.

The lower level of cascaded algorithm selection. The lower level contains a set
of hyper-parameter optimization processes, one for each algorithm .Ai . DFO is the
solver for this task. Current DFO methods share a similar optimization framework,
i.e., a .Sample&Evaluate loop. .Sample denotes a sampling step that builds a
model based on previous samples and generates a new sample. .Evaluate denotes

13.2 The ER-UCB Algorithm 161

an evaluation step that evaluates the new sample, and the evaluation result is the
feedback to the DFO method. By repeating this .Sample&Evaluate loop, the
DFO method improves the search performance iteratively. We also note that DFO has
a stepwise optimization process. The optimization loop can be paused at any iteration
and resumed if necessary. Compared to searching on the joint hyper-parameter space
(CASH), the optimization process at the lower level of cascaded algorithm selection
focuses only on the hyper-parameter space of each algorithm. All search dimensions
are active, mitigating the issue of redundant search. Furthermore, the dimensionality
of each optimization process is small, allowing the DFO method to obtain better
performance more easily.

The upper level of cascaded algorithm selection. The upper level is a resource
allocation strategy for the hyper-parameter optimization processes at the lower level.
With .K learning algorithms, we have a total of .K hyper-parameter optimization
processes at the lower level. Each hyper-parameter optimization process requires
resources to complete the search. For example, the evaluation criterion for hyper-
parameter optimization is usually a.k-fold cross-validation process, which consumes
time and computational resources to obtain the evaluation value. In an AutoML
system, the total resource is usually pre-defined. When the resource is exhausted, the
AutoML system stops and returns the best configuration found so far. The goal of the
upper level is to reasonably allocate the resource to the hyper-parameter optimization
processes at the lower level. Since DFO is the solver for hyper-parameter optimization
tasks and has a stepwise framework that can be paused and resumed at any iteration,
the upper level can be seen as a multi-armed bandit problem. An arm represents
a hyper-parameter optimization process of an algorithm. The action of pulling an
arm is to select the corresponding hyper-parameter optimization process and run it
for one iteration. The key to the upper level is the arm selection strategy under the
multi-armed bandit formulation.

Multi-armed bandit for cascaded algorithm selection. Figure 13.1 illustrates
the multi-armed bandit formulation of cascaded algorithm selection. The right-hand
part (the arm) is the stepwise DFO process. The action of pulling an arm is to
resume the .Sample step to generate a hyper-parameter configuration and evaluate
this configuration. The evaluation value is the feedback of pulling the arm. Since
the frequently used DFO methods are stochastic, the hyper-parameter optimization
process is a stochastic process. For example, if random search is employed as the
hyper-parameter optimization solver, the feedback distribution is the performance
distribution of the algorithm in the defined hyper-parameter space. Usually, the feed-
back distribution is unknown to us. The key to the arm selection strategy is to balance
exploration and exploitation when pulling arms.

13.2 The ER-UCB Algorithm

In the multi-armed bandit formulation, the key is the arm selection strategy. We
present the Extreme-Region Upper Confidence Bound (ER-UCB) strategy for

162 13 Stepwise Optimization: Cascaded Algorithm Selection

Fig. 13.1 Illustration of the cascaded algorithm selection framework [11]. The lower level
(right-hand side) is a stepwise hyper-parameter optimization process that contains .Sample and
.Evaluate steps. The upper level (left-hand side) is an arm selection strategy that decides which
arm should be pulled in the next iteration

cascaded algorithm selection. We assume that we have .K arms and a total of . n
trials for selecting arms. For the .i-th arm at the .t-th trial, let . Xi,t ∼ Di (μXi,t ,σ

2
Xi,t

)

denote the random variable of the feedback, where.Di denotes the underlying distri-
bution with the expectation .E[Xi,t] = μXi,t and the variance .D[Xi,t] = σ2

Xi,t
. In the

well-studied multi-armed bandit problem, the target is to maximize the long-term
accumulated feedback. The Upper Confidence Bound (UCB) strategy is a widely
used arm selection strategy in this setting, which aims to find the arm with the max-
imal feedback expectation. However, cascaded algorithm selection aims to find the
best algorithm and its best hyper-parameters. In the multi-armed bandit setting, the
strategy should maximize the single feedback. Thus, the classic UCB strategy is
inappropriate for cascaded algorithm selection. We present the extreme region of the
feedback distribution to meet the target of cascaded algorithm selection.

13.2.1 Extreme Region Target and Extreme Region Regret

Definition 13.1 (Extreme Region) Assuming.X ∼ D, where. X is a random variable
and .D is the corresponding distribution, with a constant real number . ρ, the extreme
region is

.ER(D) = Pr[X > ρ]. (13.2)

The extreme region (Definition 13.1) is the area under the probability density
function of the feedback distribution to the right of a constant value . ρ. Intuitively,
the extreme region indicates the probability of obtaining a sample larger than. ρwhen
sampling from the feedback distribution. Given a fixed . ρ, we want to find the arm
with the largest extreme region among all arms, as it is most likely to obtain a sample

13.2 The ER-UCB Algorithm 163

larger than . ρ by pulling this arm. Thus, the extreme region satisfies the requirement
of cascaded algorithm selection.

Figure 13.2 shows an example of the extreme region for two synthetic arms:
Gaussian distributions with .(μ1 = 0.5,σ2

1 = 0.152) and .(μ2 = 0.6,σ2
2 = 0.052).

Although arm 2 has a larger expectation than arm 1 (.μ1 < μ2), we still select arm 1
due to its larger extreme region (.ER(D1) > ER(D2)).

Definition 13.2 (Extreme Region Regret) Let .i∗ be the index of the best arm. With
a fixed . ρ and .i ∈ {1, 2, . . . , K }, let .pi = Pr[Xi > ρ] and .p∗ = Pr[Xi∗ > ρ]. With . n
total trials, a strategy selects the. It th arm at the. t th trial, where.t ∈ {1, 2, . . . , n}. The
extreme region regret of this strategy is

.Rn = np∗ − E

n∑

t=1

pIt . (13.3)

We define the extreme region regret (Definition 13.2) to measure the gap between
the real best strategy and the practical strategy. Intuitively, the extreme region regret
is the difference in the number of events where a sample is larger than. ρ between the
real best strategy and the practical strategy.

13.2.2 ER-UCB on Stationary Distributions

We first consider the scenario where the feedback distributions are stationary, which
corresponds to the case where the hyper-parameter optimization method is random
search. The ER-UCB-S strategy for stationary distributions is as follows:

Fig. 13.2 Illustration of the extreme region on the probability density function (PDF) of a distribu-
tion [11]. We assume that the feedback distributions of two arms follow the Gaussian distributions:
.G1(0.5, 0.152) and.G2(0.6, 0.052). With a constant. ρ, we define the extreme region as the probability
.Pr[X > ρ]. In this figure, we set .ρ = 0.7. The shaded areas under the PDF lines are the extreme
regions of the two arms

164 13 Stepwise Optimization: Cascaded Algorithm Selection

Fig. 13.3 Illustration of the
convergence curve of the
hyper-parameter tuning
process [11]. We apply a
DFO method to optimize the
hyper-parameters of a
decision tree on the Adult
dataset. The total sample
budget is 200. We run this
experiment 10 independent
times. The average
convergence curve is plotted

.It = argmax
i∈{1,2,...,K }

γμ̂i (t) + gi (t), where, (13.4)

μ̂i (t) = μ̂Ti (t)
Yi

+
√
1

θ
μ̂Ti (t)
Y 2 i

,

gi (t) =
√
2 ln t

Ti (t)
+

√
1

θ

√
2 ln t

Ti (t)
.

Here, .μ̂i (t) is the exploitation term, which is the estimated extreme region of the. i th
arm based on the observed feedbacks..gi (t) is the exploration term, which reflects the
uncertainty in the extreme region estimation. . γ is a hyper-parameter for balancing
exploration and exploitation..Ti (t) is the number of times the. i th arm has been pulled
up to the . t th trial. . θ is a hyper-parameter related to the size of the extreme region.

13.2.3 ER-UCB on Non-stationary Distributions

In the non-stationary setting, the feedback distributions change as the optimization
progresses, which corresponds to the case where the hyper-parameter optimization
method is an advanced local search method. Figure 13.3 illustrates the typical conver-
gence curve of hyper-parameter optimization, which increases quickly at the begin-
ning and slows down at the end. We assume that the curve can be represented by a
parameterized function .φ(at + b), where . a and . b are undetermined coefficients.

The ER-UCB-N strategy for non-stationary distributions is as follows:

13.2 The ER-UCB Algorithm 165

.It = argmax
i∈{1,2,...,K }

γμ̂i (t) + gi (t), where, (13.5)

μ̂i (t) = âi t + b̂i +
√
1

θ
σ̂2
Zi,t

,

gi (t) = ΔTi (t)(t) +
√√√√

(ΔTi (t)(Ti (t)) + 1)

√
α ln t
2Ti (t)

.

Here, .μ̂i (t) is the estimated extreme region of the . i th arm, which is modeled as a
linear function of . t with coefficients .âi and . b̂i . .σ̂2

Zi,t
is the estimated variance of the

transformed feedback.Zi,t = φ−1(Xi,t)..gi (t) is the exploration term, which depends
on the number of times the . i th arm has been pulled (.Ti (t)) and the total number of
trials (. t). .ΔTi (t)(t) is a function that captures the uncertainty in the extreme region
estimation.. γ and. α are hyper-parameters for balancing exploration and exploitation.

13.2.4 Theoretical Results

We provide theoretical guarantees for the ER-UCB-S and ER-UCB-N algorithms in
terms of the extreme region regret. Intuitively, the theorems state that the extreme
region regret grows sublinearly with the number of trials . n, which means that the
algorithms converge to the optimal strategy as . n increases.

Theorem 13.1 (Extreme Region Regret of ER-UCB-S) Under certain assumptions,
the extreme region regret of the ER-UCB-S algorithm satisfies:

.Rn ≤
∑

i :Γi>0

Θi

(
32 ln n

Γ 4
i /(1 + θ−1)4

+ 3

)
, (13.6)

where .Γi and .Θi are constants related to the extreme regions of the arms.

Theorem 13.2 (Extreme Region Regret of ER-UCB-N) Under certain assumptions,
the extreme region regret of the ER-UCB-N algorithm satisfies:

.Rn ≤
∑

i :Γi>0

Θi (κ(n) + 12((1 + n)1−α − 1)

1 − α
+ 1), (13.7)

where .κ(n) is a sublinear function of . n, and .α, Γi ,Θi are constants related to the
extreme regions of the arms.

We ignore the proofs in this section. Readers interested in the detailed proofs of
these theorems are referred to [11].

166 13 Stepwise Optimization: Cascaded Algorithm Selection

13.3 Empirical Study

We design synthetic and AutoML tasks to investigate the ER-UCB algorithm (ER-
UCB-S and ER-UCB-N). We choose several bandit algorithms as the compared
methods, including extreme bandits [7] (Extreme), the classic UCB [6] (C-UCB),
.ε-Greedy [15], Softmax strategy [16], successive halving (S-Halving), UCB-E, and
random strategy. For AutoML tasks, we choose the state-of-the-art algorithm selec-
tion method, AutoSklearn, as a compared method.

13.3.1 Synthetic Tasks

We design synthetic tasks with stationary arms and non-stationary arms separately.
Due to the available feedback distribution of the arm, we can conveniently investigate
the presented methods. We present the experiment details and the results.

Stationary Setting

We set 7 arms in this multi-armed bandit task. The feedback distribution of each
arm is a Gaussian distribution. The expectations and variances of the 7 arms are
.G1(0.64, 0.052), .G2(0.64, 0.012), .G3(0.65, 0.032), .G4(0.65, 0.022), .G5(0.68, 0.012),
.G6(0.68, 0.022), and.G7(0.69, 0.012). According to the extreme region definition,. G1

is the best arm in this bandit, i.e., .i∗ = 1. Thus, a good strategy should allocate trials
to.G1 as many as possible. We define the exploitation rate.Reoi

i = Ti (n)

n to measure the
percent of trials allocated to the. i th arm. For the best . i∗th arm, a larger.Reoi

i∗ is better.
For ER-UCB-S, we set .θ = 0.01, .β = 0.66, and .γ = 20. For ER-UCB-N, we set
.φ(x) = x , .θ = 0.01, and .γ = 20. We set the total number of trials to .n = 1000 for
all compared methods. All experiments are run for 3 independent times. The average
performance is reported.

Table 13.1 shows the average performance of all compared methods. Some criteria
are proposed to investigate the effectiveness of the methods: .X̄∗ is the best average
final feedback among 3 runs. .argmaxi X

∗
i shows from which arm .X∗ is obtained.

We report .Reoi
1 and .Reoi

7 in this task. .G1 is the best arm. .G7 has the largest expecta-
tion, which is easy to mislead arm selection strategies. .argmaxi R

eoi
i shows which

arm is most frequently pulled. According to the results, we can draw the following
conclusions:

• It is most likely to obtain an extreme value by pulling . G1. The random strategy
uniformly allocates trials to each arm. However, .X∗ always occurs at . G1, i.e.,
.{1, 1, 1} = argmaxi X

∗
i in the Random row of Table 13.1.

• The methods that maximize average expectation are easily misled by . G7, such as
C-UCB,.ε-greedy, and UCB-E, which fail to allocate trials to the correct arm (. G1).

• The methods that maximize extreme values successfully find. G1. ER-UCB-S, ER-
UCB-N, and Extreme achieve the result of .argmaxi R

eoi
i = {1, 1, 1}.

13.3 Empirical Study 167

Table 13.1 Average performance on the stationary setting [11]. .X̄∗ denotes the best average final
feedback from 3 runs..argmaxi X

∗
i denotes the arm index from which.X∗ is sampled.. argmaxi R

eoi
i

denotes the arm index to which the strategy allocates the most trials..Reoi
1 and.Reoi

7 are exploitation
rates of arms 1 and 7. The bold number is the best performance in its column

Method .X̄∗ .argmaxi X
∗
i .argmaxi R

eoi
i .Reoi

1 . Reoi
7

ER-UCB-N 0.7925 1, 1, 1 1, 1, 1 0.7463 0.0416

ER-UCB-S 0.8079 1, 1, 1 1, 1, 1 0.8613 0.0100

Extreme 0.7626 1, 1, 1 1, 1, 1 0.1660 0.1390

C-UCB 0.7353 3, 6, 6 7, 7, 7 0.0103 0.6996

Softmax 0.7860 1, 1, 1 7, 6, 3 0.1446 0.1520

.ε-Greedy 0.7286 7, 6, 6 7, 7, 7 0.0123 0.8853

S-Halving 0.7675 3, 1, 1 3, 1, 1 0.3819 0.0472

UCB-E 0.7506 1, 6, 1 7, 7, 7 0.0783 0.2596

Random 0.7650 1, 1, 1 6, 2, 5 0.1396 0.1446

• The ER-UCB algorithms show better efficiency than Extreme. .Reoi
1 of Extreme

is only 0.166, indicating that Extreme spends more trials on exploration. .Reoi
1 of

ER-UCB-S and ER-UCB-N are 0.8613 and 0.7463, indicating that ER-UCB can
quickly lock onto .G1 and allocate trials to it.

• By setting .φ(x) = x , ER-UCB-N is also effective in the stationary setting. ER-
UCB-N receives high .Reoi

1 and correctly finds that .G1 is the best arm within three
repeated runs.

• The regret study shows that ER-UCB is the best arm selection strategy among
the compared methods. In Fig. 13.4.1, the lines of ER-UCB-N (green line) and
ER-UCB-S (blue line) approach the expectation of the best strategy (dashed red
line) faster than others.

Non-stationary Setting

We design the non-stationary setting as follows. We set . φ(at + b) = 2/(1 +
exp(−0.005(at + b))) − 1 to simulate the convergence curve. The arm is repre-
sented by.Ai (a, b,σ2

i). We set a total of 6 arms:.A1(
5
9 , 50, 0.03

2), .A2(
5
9 , 60, 0.01

2),
.A3(

2
7 , 120, 0.03

2), .A4(
2
7 , 60, 0.02

2), .A5(
1
6 , 50, 0.02

2), and .A6(
1
6 , 60, 0.015

2). . A3

has the largest expectation at the beginning. But .A1 and .A2 have larger long-
term expectations. Although .A2 has a slightly larger expectation than .A1, due to
the larger .σ2, .A1 is the best arm. We run all compared methods for 3 indepen-
dent times. The total number of trials is set to .n = 1000. For ER-UCB-N, we set
.φ(x) = 2/(1 + exp(−0.005x)) − 1, .θ = 0.01, and.γ = 4.5. For ER-UCB-S, we set
.θ = 0.01, .β = 0.85, and .γ = 20 (Table 13.2 and Fig. 13.5).

168 13 Stepwise Optimization: Cascaded Algorithm Selection

Table 13.2 Performance of the compared methods on the non-stationary setting [11]. Please refer
to Table 13.1 for the column instructions

Method .X̄∗ .argmaxi X
∗
i .argmaxi R

eoi
i .Reoi

1 . Reoi
3

ER-UCB-N 0.9055 1, 1, 1 1, 1, 1 0.7799 0.0600

ER-UCB-S 0.3508 1, 1, 1 5, 5, 5 0.1460 0.0023

Extreme 0.5689 1, 1, 1 1, 1, 1 0.3150 0.1370

C-UCB 0.8465 3, 3, 3 3, 3, 3 0.0010 0.9946

Softmax 0.4664 3, 3, 3 3, 3, 3 0.1630 0.1916

.ε-Greedy 0.7917 3, 3, 3 3, 3, 3 0.0176 0.9136

S-Halving 0.6336 3, 3, 3 3, 3, 3 0.1667 0.5010

UCB-E 0.8039 3, 3, 3 3, 3, 3 0.0130 0.9303

Random 0.4401 3, 3, 3 5, 3, 2 0.1673 0.1663

Fig. 13.4 Illustration of the
regret curve on the stationary
setting of synthetic
tasks [11]. The red dashed
line is the expectation of the
best arm selection strategy

Fig. 13.5 Illustration of the
regret curve on the
non-stationary setting of
synthetic tasks [11]. The red
dashed line is the expectation
of the best arm selection
strategy

13.3 Empirical Study 169

According to the results, we can draw the following conclusions:

• .A1 is the best arm in this setting. In ER-UCB-N, the best.X̄∗ = 0.9055 is obtained
on.A1 with.Reoi

1 = 0.7799. In C-UCB, the best.X̄∗ = 0.8465 is obtained on.A3 with
.Reoi

3 = 0.9946. It shows that the feedback of .A1 at the 7799th step is expectedly
better than .A3’s at the 9946th step. Focusing on maximizing the final feedback,
.A1 is the best.

• .A3 easily misleads the compared methods that don’t consider maximizing the long-
term feedback. C-UCB, Softmax, .ε-greedy, and UCB-E allocate the majority of
trials to .A3.

• In the non-stationary setting, the methods that consider maximizing extreme values
tend to explore more. The.Reoi

i in Extreme and ER-UCB-S are uniform across arms.
• The extreme region target is important in this setting. ER-UCB-N doesn’t select

.A2 but accurately selects .A1 and allocates the majority of trials to .A1.

13.3.2 AutoML Tasks

The AutoML tasks consist of datasets and a set of learning algorithms. Table 13.3
shows the details of the selected learning algorithms. We select a total of 6 datasets
from UCI. The evaluation criterion is the fivefold cross-validation accuracy. To con-
struct the stationary setting of AutoML, we select random search as the solver for
hyper-parameter optimization. To construct the non-stationary setting of AutoML,
we use SRacos as the solver for hyper-parameter optimization. Besides the compared
methods, we apply random search and SRacos to search on the joint hyper-parameter
space as the baseline (Joint). We set the total number of trials to.n = 200. All exper-
iments are run for 15 independent times. We report the average performance. When

Table 13.3 Details of the hyper-parameters of the candidate classification algorithms [11]. #Int.
is the number of integer hyper-parameters. #Cont. is the number of continuous hyper-parameters.
#Cate. is the number of categorical hyper-parameters. #.Δ is the dimensionality of the whole hyper-
parameter space

Algorithms #Int. #Cont. #Cate. #. Δ

DecisionTree (DT) 3 0 2 5

ExtraTree (ET) 3 0 2 5

Kneighbors (KN) 1 0 2 3

PassiveAggressive (PA) 0 2 3 5

AdaBoost (Ada) 1 1 1 3

Bagging (Bag) 1 0 0 1

RandomForest (RF) 2 1 3 6

GaussianNB (NB) 0 1 0 1

170 13 Stepwise Optimization: Cascaded Algorithm Selection

the solver is random search, we set .φ(x) = x for ER-UCB-N. When the solver is
SRacos, we set .φ(x) = 2/(1 + exp(−0.005x)) − 1 for ER-UCB-N. For both task
settings, we set .θ = 0.01, .γ = 20, and .β = 0.6 for ER-UCB-S, and .θ = 0.01 and
.γ = 20 for ER-UCB-N.

According to Table 13.4, we can draw the following conclusions:

• The “no free lunch” theorem has been proved again. There is no algorithm that
can beat others on all 6 datasets. Thus, we have to select a suitable algorithm
for each dataset. In other words, algorithm selection is necessary for the AutoML
process. However, ensemble classification algorithms such as AdaBoost, Bagging,
RandomForest, etc., show great power in the experiments. They win the best
algorithm on 4 out of 6 datasets, indicating that ensemble algorithms usually have
good robustness.

• DFO shows better efficiency than random search for hyper-parameter optimization.
DFO beats random search on 4/6 datasets, indicating that employing DFO methods
to tune hyper-parameters is more reasonable.

• The cascaded algorithm selection framework can effectively improve the perfor-
mance of the AutoML process. The methods based on the cascaded algorithm
selection framework usually receive better validation accuracy than the methods
based on joint search space because the cascaded algorithm selection framework
successfully avoids the redundant dimension issue and improves the efficiency of
hyper-parameter tuning.

• On stationary arms, ER-UCB-S has the best performance. The results of stationary
arms are located on the left part of Table 13.4 using random search. From the
column of.X̄∗, ER-UCB-S outperforms others on 6/6 datasets. From the column of
.X∗, ER-UCB-S wins on 5/6 datasets. Furthermore, ER-UCB-S obtains. AX∗ = Ãi

on 6/6 datasets, indicating that ER-UCB-S can precisely find the true best algorithm
and allocate trials to it. Compared with other methods, the extreme region target
effectively helps ER-UCB-S find algorithms that can potentially reach extreme
values.

• On non-stationary arms, ER-UCB-N has the best performance. On non-stationary
arms (right part of Table 13.4, using DFO), ER-UCB-N outperforms others on
6/6 datasets. And ER-UCB-N obtains .AX∗ = Ãi on 6/6 datasets. Compared with
ER-UCB-S, ER-UCB-N has better stability, indicating that the convergence curve
estimation of ER-UCB-N effectively leads ER-UCB-N to correct arm selection.

• ER-UCB-N also shows competitive power on stationary arms. By setting a linear
function.φ(x) = x , ER-UCB-N receives the best performance (.X∗) on 1/6 datasets.
On other datasets, ER-UCB-N also outperforms most of the compared methods.
But the .Reoi

Ãi
of ER-UCB-N stays at a low level. ER-UCB-N needs some trials

to estimate the convergence curve. But the curve estimation is not necessary on
stationary arms. The exploration action wastes some trials and has a negative effect
on trial allocation.

13.3 Empirical Study 171

Ta
bl
e
13
.4

Pe
rf
or
m
an
ce
s
on
 6
 A

ut
oM

L
 t
as
ks
 [
 11

].
 .X̄

∗
is
 t
he
 a
ve
ra
ge
 p
er
fo
rm

an
ce
 o
f
th
e
th
re
e
re
pe
at
ed
 r
un
s,
 a
m
on
g
w
hi
ch
, .
X

∗
is
 t
he
 b
es
t
on

e.
 .A

X
∗
is
 t
he

se
le
ct
ed
 a
lg
or
ith

m
. .
Ã i

=
ar
g
m
ax

A
i∈

A
R
eo
i

A
i
de
no

te
s
th
e
al
go

ri
th
m
 t
ha
t
re
ce
iv
es
 t
he
 m

aj
or
ity

 o
f
th
e
tr
ia
ls
. .
R
eo
i

Ã
i
is
 t
he
 a
ve
ra
ge
 e
xp

lo
ita

tio
n
ra
te
 o
n
.Ã

i.
In

th
e

co
lu
m
ns
 o
f.
X̄

∗
an
d
.X

∗ ,
 th

e
nu
m
be
r
in
 b
ol
d
is
 th

e
be
st
 p
er
fo
rm

an
ce
 a
m
on
g
th
e
co
m
pa
re
d
m
et
ho
ds

D
at
as
et

R
an
do
m
 s
ea
rc
h

D
er
iv
at
iv
e-
fr
ee
 o
pt
im

iz
at
io
n

M
et
ho
d

. X̄
∗

.X
∗

.A
X

∗
.Ã

i
.R
eo
i

Ã
i

M
et
ho
d

. X̄
∗

.X
∗

.A
X

∗
.Ã

i
. R
eo
i

Ã
i

A
du

lt
E
R
-U

C
B
-N

0.
87
14
. ±

0.
00
03

0.
87
17

A
da

A
da

0.
32
. ±

0.
15

E
R
-U

C
B
-N

0.
87
32
. ±

0.
00
05

0.
87
38

A
da

A
da

0.
58
. ±

0.
05

E
R
-U

C
B
-S

0.
87
20
. ±

0.
00
04

0.
87
23

A
da

A
da

0.
45
. ±

0.
01

E
R
-U

C
B
-S

0.
87
24
. ±

0.
00
07

0.
87
32

A
da

A
da

0.
44
. ±

0.
23

E
xt
re
m
e

0.
87
16
. ±

0.
00
01

0.
87
17

A
da

A
da

0.
38
. ±

0.
00

E
xt
re
m
e

0.
87
22
. ±

0.
00
03

0.
87
24

A
da

A
da

0.
25
. ±

0.
00

C
-U

C
B

0.
87
15
. ±

0.
00
05

0.
87
19

A
da

A
da

0.
32
. ±

0.
03

C
-U

C
B

0.
87
15
. ±

0.
00
02

0.
87
17

A
da

A
da

0.
23
. ±

0.
01

.ε
-g
re
ed
y

0.
86
96
. ±

0.
00
28

0.
87
22

A
da

R
F

0.
65
. ±

0.
17

.ε
-g
re
ed
y

0.
87
26
. ±

0.
00
03

0.
87
28

A
da

A
da

0.
35
. ±

0.
03

So
ft
m
ax

0.
87
11
. ±

0.
00
03

0.
87
15

A
da

B
ag

0.
13
. ±

0.
08

So
ft
m
ax

0.
87
18
. ±

0.
00
01

0.
87
19

A
da

A
da

0.
17
. ±

0.
07

S-
H
al
vi
ng

0.
87
13
. ±

0.
00
03

0.
87
18

A
da

A
da

0.
29
. ±

0.
00

S-
H
al
vi
ng

0.
87
00
. ±

0.
00
14

0.
87
19

A
da

A
da

0.
29
. ±

0.
00

U
C
B
-E

0.
87
11
. ±

0.
00
05

0.
87
18

A
da

B
ag

0.
17
. ±

0.
01

U
C
B
-E

0.
86
98
. ±

0.
00
16

0.
87
17

A
da

R
F

0.
18
. ±

0.
01

R
an
do
m

0.
87
07
. ±

0.
00
02

0.
87
10

A
da

R
F

0.
15
. ±

0.
01

R
an
do
m

0.
87
14
. ±

0.
00
08

0.
87
22

A
da

R
F

0.
15
. ±

0.
01

Jo
in
t

0.
86
98
. ±

0.
00
02

0.
86
99

A
da

–
–

Jo
in
t

0.
87
19
. ±

0.
00
03

0.
87
25

A
da

–
–

A
ut
oS

K
L

–
–

–
–

–
A
ut
oS

K
L

0.
87
15
. ±

0.
00
03

0.
87
19

A
da

–
–

B
al
an
ce

E
R
-U

C
B
-N

0.
89
02
. ±

0.
00
42

0.
89
52

PA
PA

0.
50
. ±

0.
34

E
R
-U

C
B
-N

0.
89
20
. ±

0.
00
32

0.
89
58

PA
PA

0.
88
. ±

0.
09

E
R
-U

C
B
-S

0.
89
33
. ±

0.
00
38

0.
89
81

PA
PA

0.
92
. ±

0.
01

E
R
-U

C
B
-S

0.
88
28
. ±

0.
00
68

0.
88
78

PA
PA

0.
52
. ±

0.
28

E
xt
re
m
e

0.
87
97
. ±

0.
00
00

0.
87
97

K
N

K
N

0.
65
. ±

0.
00

E
xt
re
m
e

0.
88
12
. ±

0.
00
06

0.
88
16

K
N

K
N

0.
65
. ±

0.
00

C
-U

C
B

0.
88
86
. ±

0.
00
34

0.
89
18

PA
PA

0.
84
. ±

0.
04

C
-U

C
B

0.
88
86
. ±

0.
00
42

0.
89
37

PA
PA

0.
58
. ±

0.
10

.ε
-g
re
ed
y

0.
88
74
. ±

0.
00
52

0.
89
28

PA
PA

0.
76
. ±

0.
13

.ε
-g
re
ed
y

0.
89
18
. ±

0.
00
36

0.
89
58

PA
PA

0.
88
. ±

0.
01

So
ft
m
ax

0.
87
86
. ±

0.
00
42

0.
88
57

PA
K
N

0.
14
. ±

0.
01

So
ft
m
ax

0.
87
98
. ±

0.
00
24

0.
88
37

PA
G
N
B

0.
16
. ±

0.
04

S-
H
al
vi
ng

0.
88
46
. ±

0.
00
48

0.
88
97

PA
PA

0.
29
. ±

0.
00

S-
H
al
vi
ng

0.
88
81
. ±

0.
00
49

0.
89
38

PA
PA

0.
29
. ±

0.
00

U
C
B
-E

0.
88
27
. ±

0.
00
51

0.
89
18

PA
PA

0.
30
. ±

0.
01

U
C
B
-E

0.
88
62
. ±

0.
00
58

0.
89
18

PA
PA

0.
36
. ±

0.
01

R
an
do
m

0.
87
68
. ±

0.
00
84

0.
88
40

PA
K
N

0.
15
. ±

0.
02

R
an
do
m

0.
88
32
. ±

0.
00
46

0.
88
78

PA
A
da

0.
13
. ±

0.
01

Jo
in
t

0.
88
90
. ±

0.
00
40

0.
89
18

PA
–

–
Jo
in
t

0.
88
86
. ±

0.
00
40

0.
89
18

PA
–

–

A
ut
oS

K
L

–
–

–
–

–
A
ut
oS

K
L

0.
87
77
. ±

0.
00
33

0.
88
16

K
N

–
– (c
on
tin

ue
d)

172 13 Stepwise Optimization: Cascaded Algorithm Selection

Ta
bl
e
13
.4

(c
on
tin

ue
d)

D
at
as
et

R
an
do
m
 s
ea
rc
h

D
er
iv
at
iv
e-
fr
ee
 o
pt
im

iz
at
io
n

M
et
ho
d

. X̄
∗

.X
∗

.A
X

∗
.Ã

i
.R
eo
i

Ã
i

M
et
ho
d

. X̄
∗

.X
∗

.A
X

∗
.Ã

i
. R
eo
i

Ã
i

C
ar

E
R
-U

C
B
-N

0.
85
64
. ±

0.
00
46

0.
86
28

B
ag

A
da

0.
17
. ±

0.
01

E
R
-U

C
B
-N

0.
86
92
. ±

0.
00
42

0.
87
48

B
ag

B
ag

0.
90
. ±

0.
06

E
R
-U

C
B
-S

0.
85
96
. ±

0.
00
86

0.
86
83

B
ag

B
ag

0.
93
. ±

0.
01

E
R
-U

C
B
-S

0.
86
80
. ±

0.
00
48

0.
87
33

D
T

A
da

0.
34
. ±

0.
40

E
xt
re
m
e

0.
85
58
. ±

0.
00
82

0.
86
48

B
ag

B
ag

0.
16
. ±

0.
00

E
xt
re
m
e

0.
86
48
. ±

0.
00
72

0.
87
03

E
T

D
T

0.
36
. ±

0.
39

C
-U

C
B

0.
85
78
. ±

0.
00
78

0.
86
64

B
ag

B
ag

0.
87
. ±

0.
02

C
-U

C
B

0.
85
83
. ±

0.
00
48

0.
86
42

B
ag

B
ag

0.
43
. ±

0.
23

.ε
-g
re
ed
y

0.
85
74
. ±

0.
00
68

0.
86
42

B
ag

B
ag

0.
87
. ±

0.
01

.ε
-g
re
ed
y

0.
85
72
. ±

0.
00
56

0.
86
39

B
ag

B
ag

0.
37
. ±

0.
30

So
ft
m
ax

0.
85
68
. ±

0.
00
48

0.
86
25

A
da

B
ag

0.
13
. ±

0.
01

So
ft
m
ax

0.
85
63
. ±

0.
00
51

0.
86
25

A
da

B
ag

0.
15
. ±

0.
02

S-
H
al
vi
ng

0.
85
62
. ±

0.
00
48

0.
86
39

B
ag

B
ag

0.
29
. ±

0.
00

S-
H
al
vi
ng

0.
85
53
. ±

0.
00
47

0.
86
76

B
ag

B
ag

0.
29
. ±

0.
00

U
C
B
-E

0.
85
72
. ±

0.
00
58

0.
86
25

B
ag

B
ag

0.
33
. ±

0.
01

U
C
B
-E

0.
85
59
. ±

0.
00
43

0.
86
46

B
ag

B
ag

0.
39
. ±

0.
01

R
an
do
m

0.
85
56
. ±

0.
00
42

0.
86
18

B
ag

A
da

0.
15
. ±

0.
02

R
an
do
m

0.
86
36
. ±

0.
00
26

0.
86
54

D
T

G
N
B

0.
14
. ±

0.
01

Jo
in
t

0.
85
62
. ±

0.
00
70

0.
86
32

D
T

–
–

Jo
in
t

0.
86
17
. ±

0.
00
89

0.
87
19

B
ag

–
–

A
ut
oS

K
L

–
–

–
–

–
A
ut
oS

K
L

0.
86
14
. ±

0.
00
55

0.
86
75

E
T

–
–

C
he
ss

E
R
-U

C
B
-N

0.
94
57
. ±

0.
00
86

0.
95
62

A
da

A
da

0.
48
. ±

0.
23

E
R
-U

C
B
-N

0.
95
24
. ±

0.
02
28

0.
97
61

A
da

A
da

0.
70
. ±

0.
03

E
R
-U

C
B
-S

0.
94
98
. ±

0.
01
18

0.
96
21

A
da

A
da

0.
57
. ±

0.
12

E
R
-U

C
B
-S

0.
93
58
. ±

0.
00
74

0.
94
34

A
da

A
da

0.
30
. ±

0.
32

E
xt
re
m
e

0.
93
52
. ±

0.
00
68

0.
94
05

D
T

D
T

0.
96
. ±

0.
00

E
xt
re
m
e

0.
93
64
. ±

0.
00
65

0.
94
05

D
T

D
T

0.
96
. ±

0.
00

C
-U

C
B

0.
93
83
. ±

0.
00
22

0.
94
05

PA
PA

0.
40
. ±

0.
01

C
-U

C
B

0.
93
52
. ±

0.
00
72

0.
94
28

A
da

A
da

0.
40
. ±

0.
08

.ε
-g
re
ed
y

0.
93
92
. ±

0.
00
21

0.
94
13

PA
A
da

0.
55
. ±

0.
18

.ε
-g
re
ed
y

0.
94
08
. ±

0.
00
24

0.
94
36

A
da

A
da

0.
49
. ±

0.
28

So
ft
m
ax

0.
93
48
. ±

0.
00
28

0.
93
86

PA
PA

0.
15
. ±

0.
10

So
ft
m
ax

0.
94
13
. ±

0.
00
39

0.
94
56

A
da

R
F

0.
15
. ±

0.
04

S-
H
al
vi
ng

0.
93
83
. ±

0.
00
32

0.
94
28

PA
PA

0.
29
. ±

0.
00

S-
H
al
vi
ng

0.
94
08
. ±

0.
00
84

0.
94
36

PA
PA

0.
29
. ±

0.
00

U
C
B
-E

0.
93
68
. ±

0.
00
53

0.
94
16

PA
A
da

0.
21
. ±

0.
01

U
C
B
-E

0.
94
12
. ±

0.
00
98

0.
95
08

A
da

PA
0.
23
. ±

0.
01

R
an
do
m

0.
93
36
. ±

0.
00
52

0.
93
96

A
da

PA
0.
14
. ±

0.
01

R
an
do
m

0.
93
75
. ±

0.
00
48

0.
94
13

A
da

K
N

0.
14
. ±

0.
01

Jo
in
t

0.
94
23
. ±

0.
00
50

0.
94
36

A
da

–
–

Jo
in
t

0.
94
21
. ±

0.
00
70

0.
94
48

PA
–

–

A
ut
oS

K
L

–
–

–
–

–
A
ut
oS

K
L

0.
93
92
. ±

0.
00
08

0.
94
13

PA
–

– (c
on
tin

ue
d)

13.3 Empirical Study 173

Ta
bl
e
13
.4

(c
on
tin

ue
d)

D
at
as
et

R
an
do
m
 s
ea
rc
h

D
er
iv
at
iv
e-
fr
ee
 o
pt
im

iz
at
io
n

M
et
ho
d

. X̄
∗

.X
∗

.A
X

∗
.Ã

i
.R
eo
i

Ã
i

M
et
ho
d

. X̄
∗

.X
∗

.A
X

∗
.Ã

i
. R
eo
i

Ã
i

C
re
di
t

E
R
-U

C
B
-N

0.
91
24
. ±

0.
00
48

0.
91
64

D
T

D
T

0.
43
. ±

0.
32

E
R
-U

C
B
-N

0.
91
44
. ±

0.
00
36

0.
91
82

E
T

E
T

0.
54
. ±

0.
32

E
R
-U

C
B
-S

0.
91
52
. ±

0.
00
26

0.
91
82

R
F

R
F

0.
53
. ±

0.
03

E
R
-U

C
B
-S

0.
91
28
. ±

0.
00
00

0.
91
28

A
da

R
F

0.
50
. ±

0.
06

E
xt
re
m
e

0.
91
28
. ±

0.
00
00

0.
91
28

D
T

D
T

0.
96
. ±

0.
00

E
xt
re
m
e

0.
90
42
. ±

0.
00
78

0.
91
28

D
T

D
T

0.
96
. ±

0.
00

C
-U

C
B

0.
91
28
. ±

0.
00
00

0.
91
28

R
F

R
F

0.
44
. ±

0.
01

C
-U

C
B

0.
91
28
. ±

0.
00
00

0.
91
28

D
T

R
F

0.
57
. ±

0.
09

.ε
-g
re
ed
y

0.
91
08
. ±

0.
00
12

0.
91
28

R
F

R
F

0.
58
. ±

0.
36

.ε
-g
re
ed
y

0.
90
86
. ±

0.
00
35

0.
91
28

R
F

R
F

0.
49
. ±

0.
38

So
ft
m
ax

0.
90
86
. ±

0.
00
42

0.
91
28

E
T

R
F

0.
14
. ±

0.
02

So
ft
m
ax

0.
91
28
. ±

0.
00
00

0.
91
28

D
T

D
T

0.
15
. ±

0.
01

S-
H
al
vi
ng

0.
91
17
. ±

0.
00
39

0.
91
28

E
T

E
T

0.
29
. ±

0.
00

S-
H
al
vi
ng

0.
91
15
. ±

0.
00
27

0.
91
46

E
T

E
T

0.
29
. ±

0.
00

U
C
B
-E

0.
91
22
. ±

0.
00
23

0.
91
45

E
T

B
ag

0.
20
. ±

0.
01

U
C
B
-E

0.
91
01
. ±

0.
00
35

0.
91
28

R
F

B
ag

0.
22
. ±

0.
01

R
an
do
m

0.
91
28
. ±

0.
00
00

0.
91
28

E
T

A
da

0.
15
. ±

0.
01

R
an
do
m

0.
91
28
. ±

0.
00
00

0.
91
28

A
da

B
ag

0.
14
. ±

0.
01

Jo
in
t

0.
91
28
. ±

0.
00
00

0.
91
28

E
T

–
–

Jo
in
t

0.
91
36
. ±

0.
00
24

0.
91
64

E
T

–
–

A
ut
oS

K
L

–
–

–
–

–
A
ut
oS

K
L

0.
91
28
. ±

0.
00
00

0.
91
28

D
T

–
–

Sp
am

E
R
-U

C
B
-N

0.
93
16
. ±

0.
00
43

0.
93
58

R
F

R
F

0.
47
. ±

0.
33

E
R
-U

C
B
-N

0.
93
63
. ±

0.
00
33

0.
94
01

R
F

R
F

0.
85
. ±

0.
11

E
R
-U

C
B
-S

0.
93
22
. ±

0.
00
08

0.
93
31

R
F

R
F

0.
38
. ±

0.
11

E
R
-U

C
B
-S

0.
93
38
. ±

0.
00
43

0.
93
77

R
F

R
F

0.
53
. ±

0.
09

E
xt
re
m
e

0.
92
01
. ±

0.
00
48

0.
92
71

A
da

D
T

0.
96
. ±

0.
00

E
xt
re
m
e

0.
92
12
. ±

0.
00
26

0.
92
85

B
ag

D
T

0.
96
. ±

0.
00

C
-U

C
B

0.
92
89
. ±

0.
00
08

0.
93
02

A
da

A
da

0.
40
. ±

0.
08

C
-U

C
B

0.
93
02
. ±

0.
00
02

0.
93
04

A
da

A
da

0.
46
. ±

0.
04

.ε
-g
re
ed
y

0.
92
92
. ±

0.
00
12

0.
93
14

A
da

A
da

0.
48
. ±

0.
40

.ε
-g
re
ed
y

0.
92
93
. ±

0.
00
19

0.
93
20

A
da

B
ag

0.
59
. ±

0.
41

So
ft
m
ax

0.
92
93
. ±

0.
00
05

0.
92
97

R
F

R
F

0.
14
. ±

0.
01

So
ft
m
ax

0.
93
03
. ±

0.
00
24

0.
93
39

A
da

R
F

0.
14
. ±

0.
01

S-
H
al
vi
ng

0.
92
92
. ±

0.
00
14

0.
93
04

R
F

R
F

0.
29
. ±

0.
00

S-
H
al
vi
ng

0.
92
83
. ±

0.
00
17

0.
93
31

R
F

R
F

0.
29
. ±

0.
00

U
C
B
-E

0.
92
92
. ±

0.
00
13

0.
93
09

R
F

A
da

0.
20
. ±

0.
01

U
C
B
-E

0.
92
76
. ±

0.
00
28

0.
93
23

A
da

A
da

0.
24
. ±

0.
01

R
an
do
m

0.
92
87
. ±

0.
00
03

0.
92
92

A
da

R
F

0.
15
. ±

0.
01

R
an
do
m

0.
92
98
. ±

0.
00
14

0.
93
17

R
F

R
F

0.
14
. ±

0.
01

Jo
in
t

0.
92
58
. ±

0.
00
11

0.
92
88

A
da

–
–

Jo
in
t

0.
93
10
. ±

0.
00
24

0.
93
58

R
F

–
–

A
ut
oS

K
L

–
–

–
–

–
A
ut
oS

K
L

0.
93
20
. ±

0.
00
22

0.
93
58

R
F

–
–

174 13 Stepwise Optimization: Cascaded Algorithm Selection

13.4 Summary

For algorithm selection tasks, we present the cascaded algorithm selection frame-
work in this chapter to tackle the redundancy issue of the joint hyper-parameter
space. Cascaded algorithm selection has a two-level process. The lower level is the
hyper-parameter optimization process that searches hyper-parameters in the space
of a learning algorithm but not the joint space of all algorithms. The upper level is
formulated as a multi-armed bandit task, in which a hyper-parameter optimization
process of a learning algorithm can be seen as an arm. The key to the bandit is a
strategy that finds the best arm and allocates trials to it as many as possible. AutoML
needs to find the best algorithm and its best hyper-parameter configuration.

With this target in mind, this chapter presents the Extreme-Region Upper-
Confidence Bound (ER-UCB) strategy to maximize the final feedback by selecting
the arm with the largest extreme region. We design ER-UCB-S and ER-UCB-N algo-
rithms for stationary and non-stationary feedback distributions. With .K arms and . n
total trials, theoretical study shows that ER-UCB-S has an .O(K ln n) upper bound
and ER-UCB-N has an .O(Knν) upper bound on the extreme region regret, where
.
2
3 < ν < 1. We also investigated the ER-UCB strategy on synthetic and AutoML
tasks. The empirical results verified the effectiveness of the presented methods.

References

1. Adankon MM, Cheriet M (2009) Model selection for the LS-SVM. application to handwriting
recognition. Pattern Recognit 42(12), 3264–3270 (2009)

2. Bengio Y (2000) Gradient-based optimization of hyperparameters. Neural Comput
12(8):1889–1900

3. Bergstra J, Bengio Y (2012) Random search for hyper-parameter optimization. J Mach Learn
Res 13:281–305

4. Biem A (2003) A model selection criterion for classification: application to hmm topology
optimization. In: Proceedings of the 7th international conference on document analysis and
recognition, pp 104–108

5. Brazdil PB, Soares C, Da Costa JP (2003) Ranking learning algorithms: Using IBL and meta-
learning on accuracy and time results. Mach Learn 50(3):251–277

6. Bubeck S, Cesa-Bianchi N et al (2012) Regret analysis of stochastic and nonstochastic multi-
armed bandit problems. Found Trends Mach Learn 5(1):1–122

7. Carpentier A, Valko M (2014) Extreme bandits. In: Advances In neural information processing
systems, pp 1089–1097

8. Guo X, Yang J, Wu C, Wang C, Liang Y (2008) A novel LS-SVMs hyper-parameter selection
based on particle swarm optimization. Neurocomputing 71(16):3211–3215

9. Hu Y-Q, Yu Y, Zhou Z-H (2018) Experienced optimization with reusable directional model for
hyper-parameter search. In: Proceeding of the 27th international joint conference on artificial
intelligence, pp 2276–2282

10. Hu YQ, Liu Z, Yang H, Yu Y, Liu Y (2020) Derivative-free optimization with adaptive experi-
ence for efficient hyper-parameter tuning. In: Proceeding of the 24th European conference on
artificial intelligence, pp 1207–1214

11. Hu Y-Q, Liu X-H, Li S-Q, Yu Y (2022) Cascaded algorithm selection with extreme-region ucb
bandit. IEEE Trans Pattern Anal Mach Intell 44(10):6782–6794

References 175

12. Hutter F, Hoos HH, Leyton-Brown K (2011) Sequential model-based optimization for general
algorithm configuration. LION 5:507–523

13. Shahriari B, Swersky K, Wang Z, Adams RP, Freitas ND (2015) Taking the human out of the
loop: a review of Bayesian optimization. Proc IEEE 104(1):148–175

14. Snoek J, Larochelle H, Adams RP (2012) Practical Bayesian optimization of machine learning
algorithms. In: Advances in neural information processing systems, vol 25, Lake Tahoe, Nevad,
pp 2960–2968a

15. Sutton RS, Barto AG (1998) Reinforcement learning: an introduction. MIT Press, Cambridge,
MA

16. Tokic M, Palm G (2011) Value-difference based exploration: adaptive control between epsilon-
greedy and softmax. In: Annual conference on artificial intelligence. Springer, pp 335–346

17. Yao Q, Wang M, Chen Y, Dai W, Li YF, Tu WW, Yang Q, Yu Y (2018) Taking human out of
learning applications: A survey on automated machine learning. arXiv:1810.13306

http://arxiv.org/abs/1810.13306

Chapter 14
Calculation Operation Optimization:
Competition Neural Architecture Search

Abstract This chapter introduces Competition Neural Architecture Search (CNAS),
a method for automatically designing neural network architectures. CNAS separates
the search process into two parts: topological structure enumeration and calculation
operation optimization. The topological structures are enumerated under depth and
width constraints, while the calculation operations are optimized using derivative-
free optimization (DFO) methods. A competition mechanism is employed to iter-
atively eliminate poorly performing structures, ensuring that the best architecture
is selected. To improve efficiency, CNAS uses block-based search and experience
reuse, leveraging historical data to warm-start the optimization process and sim-
ulate competitions. The chapter presents empirical results on image classification
and denoising tasks, demonstrating that CNAS achieves competitive performance
compared to manual designs and state-of-the-art NAS methods. The experiments
highlight CNAS’s ability to efficiently explore the architecture space and produce
high-quality network designs.

Neural Architecture Search (NAS) [11, 20] has been proposed to automatically
design neural network architectures for deep learning tasks. This process can be
seen as determining a topological structure and operation settings on this structure.
Recent NAS methods consider both parts simultaneously, which is usually hard to
thoroughly explore the architecture space. This chapter presents a competition neu-
ral architecture search framework that considers topological structure search and
operation setting search separately. The method enumerates all possible topological
structures within limited length and width settings. For each structure, derivative-free
optimization, introduced in the previous chapters, is utilized to optimize its operation
setting. A competition mechanism is proposed to combine these two parts. In each
optimization loop, the topological structures are compared with each other according
to their previous operation setting performance, and the bad structures are eliminated.
The structure that is left finally with its best operation setting is the search result.
This chapter also presents an experience-reused mechanism to accelerate the search
process. With manual architectures and historical architectures, experience can be
extracted to preliminarily screen structures and warmly start the operation search

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025
Y. Yu et al., Derivative-Free Optimization, Machine Learning: Foundations,
Methodologies, and Applications, https://doi.org/10.1007/978-981-96-5929-6_14

177

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-5929-6_14&domain=pdf
https://doi.org/10.1007/978-981-96-5929-6_14
https://doi.org/10.1007/978-981-96-5929-6_14
https://doi.org/10.1007/978-981-96-5929-6_14
https://doi.org/10.1007/978-981-96-5929-6_14
https://doi.org/10.1007/978-981-96-5929-6_14
https://doi.org/10.1007/978-981-96-5929-6_14
https://doi.org/10.1007/978-981-96-5929-6_14
https://doi.org/10.1007/978-981-96-5929-6_14
https://doi.org/10.1007/978-981-96-5929-6_14
https://doi.org/10.1007/978-981-96-5929-6_14
https://doi.org/10.1007/978-981-96-5929-6_14

178 14 Calculation Operation Optimization: Competition Neural…

processes. The experiments on image classification tasks and an image denoising
task show that the presented method receives competitive architectures compared
with some manual networks and state-of-the-art NAS methods.

14.1 Calculation Operation Optimization with Neural
Architecture Search

NAS has developed along with the whole development of neural networks. In the
1990s, researchers tried to apply evolutionary algorithms to design the connections
for fully-connected networks and tune the hyper-parameters of their training pro-
cesses [18]. Because fully-connected networks can be easily formulated by some
hyper-parameters such as connection types, layer size, neural size, etc., the architec-
ture design is considered a hyper-parameter optimization problem [2, 3]. Evolution-
ary algorithms are suitable as the solver for this problem. However, many irregular
and imaginative architectures have been invented for different learning tasks. This
causes the architecture search space to become more complex and hard to be for-
mulated by several simple hyper-parameters. Thus, recent NAS works make more
contributions to the architecture space design and efficient search method proposal.

Previous NAS methods [10, 19, 20] usually consider a Directed Acyclic Graph
(DAG) space for the architecture search. A DAG consists of edges and nodes. The
edges indicate the data flows in network architectures, while the nodes indicate the
calculation operations. With a limited setting of depth and width, the DAG space
contains any possible network architectures. Because the number of candidate archi-
tectures expands exponentially with the increase of depth and width, previous works
place restrictions on the search space in two ways: macro space and micro space.
The macro space [1, 20] aims to generate entire network architectures directly and
intuitively. Thus, this search space always has a large depth setting. To limit the size
of the search space, the macro space only allows single-chain styled architectures.
Based on this, skipping connections are also allowed to generate complex struc-
tures. However, the macro space has clear shortcomings. It is impossible to generate
deep network architectures, and the search space is still huge with a large setting of
depth. Thus, the micro space has been proposed in NASNet [21]. The micro space
aims at a part of network architectures, i.e., a block, but not entire architectures, and
then stacks them together to construct an entire architecture. For example, NASNet
only searches for a normal block and a reduction block and repeats them 5 times
to construct a network architecture. It is a narrow search space for a block search.
Furthermore, the operation of stacking blocks effectively generates deep network
architectures. Thus, more and more NAS works [9– 12, 16] apply the micro space to
search for effective network architectures.

14.1 Calculation Operation Optimization with Neural Architecture Search 179

14.1.1 NAS Task Formulation

In this chapter, we only solve the architecture search on CNN. A deep learning task
can be defined by a training dataset .Dtrain and a testing dataset .Dtest. Let . (x, y) ∈
Dtrain ∪ Dtest denote an instance, where. x is an input tensor and. y is its corresponding
label tensor. A network architecture can be seen as a DAG that consists of edges
and nodes. The edges are the data flows in the network architecture, indicating the
topological structure. The nodes are the transformations from the input data flows
to output data flows, indicating the calculation operations. We assume a DAG has. m
nodes, and let.F = { f1, f2, . . . , fm} denote a set of calculation operations. Any. f ∈
F is a calculation operation that transforms the input tensors to an output tensor, i.e.,
.xout = f (xin1 , . . .). We note that the number of input tensors may be more than one,
but the number of output tensors must be one. By setting a nested connection, we can
determine a topological structure. Let. f out ⊗i (f in1 , . . .) denote the nested connection
in the . i th node. Thus, .⊗ = {⊗1,⊗2, . . . ,⊗m} denotes a topological structure. A
network architecture can be presented as follows:

.N = ⊗ � F, (14.1)

where .⊗ is a topological structure and .F is a set of calculation operations, and the
symbol . � means correlating .F to . ⊗. Let .N = {N1,N2, . . . } denote the set of all
possible network architectures. The NAS task can be formulated as follows:

.N ∗ = arg max
N∈N

Cvalid(N ,Dtrain), (14.2)

where.Cvalid(·,Dtrain) is an evaluation criterion of the validation process on the train-
ing dataset. The target of NAS is to select the network architecture from the possible
network architecture set that has the maximal validation performance.

We present the method of Competition Neural Architecture Search (CNAS) with
reused experience. CNAS is a hierarchical search process, i.e., considering the topo-
logical structure enumeration and calculation operation optimization separately. And
a competition mechanism is applied to combine both of them.

14.1.2 Topological Structure Enumeration

With limited settings of depth (. α) and width (. β), we can enumerate all possible
topological structures. To avoid obtaining strange structures, we apply a main-and-
branch chain approach for enumeration. In this approach, we set a main chain first,
which is the deepest chain in the topological structure. The length of the main chain
corresponds to the depth setting. Then, we add branch chains to the main chain.
The number of branch chains corresponds to the width setting. There are some
constraints when adding branches. First, skipping connections are not considered

180 14 Calculation Operation Optimization: Competition Neural…

Fig. 14.1 Illustration of the constraints when enumerating topological structures. The circle and
arrow in black indicate the main chain. The circle and arrow in green indicate the legal branch chain.
The circle and arrow in red indicate the illegal branch chain

when enumerating. Under this constraint, the branch chain must have at least one
node. Second, the length of the branch chain can’t be larger than the main chain’s.
Otherwise, it will produce a branch chain that is longer than the main chain. Third,
it is forbidden to add a branch chain to another branch chain because some repeated
and uncontrollable structures will be constructed in this way. Figure 14.1 shows the
constraints when enumerating topological structures. Under these constraints, we
can enumerate possible topological structures that are non-repeated and reasonable.
We denote the enumeration process as .

⊗ = {⊗1,⊗2, . . . } = enumerate(α, β),
where .⊗i ∈ ⊗

is a possible topological architecture.
Although we constrain the enumeration process, the number of possible topolog-

ical structures increases explosively when depth and width become large. To tackle
this, a block-based search is employed, which we will discuss later.

14.1.3 Calculation Operation Optimization

The enumeration process gives the topological structures. The next process should
assemble the calculation operations for each structure. We consider it a black-box
optimization task. A node in the structure is a calculation operation that transforms
tensors from input to output. In CNN, the options for calculation operations are lim-
ited and easy to parameterize. For example, we show a parameterized search space
of calculation operation optimization in Table 14.1..tC is the type of calculation oper-
ation. We only consider convolutional or pooling operations. . f is the kernel size.
We set some candidates for it, which are .2 × 2, .3 × 3, or .5 × 5. . d is the filter size.
. a is the activation type. .tP is the pooling type. Average pooling or maximal pooling
are considered. . s is the skipping connection setting. We design the skipping con-
nection architecture by this parameter. The parameter value means how many nodes
will be skipped to input the output of this node. . ∅ means no skipping connection.
Figure 14.2 gives an example of the correspondence between parameterized code and
network architecture. We note that not all dimensions of a setting are active. When
.tC = Conv., dimensions 1, 2, 3, 4, and 6 are active. When.tC = Pool., dimensions 1,

14.1 Calculation Operation Optimization with Neural Architecture Search 181

Table 14.1 The search space settings of calculation operations

Dim. Symbol Parameter Setting

1 .tC Type {Conv., Pool.}

2 . f Kernel size Square.. ∈ {2, 3, 5}
3 .d Filter size . ∈ {16, 24, 32}
4 .a Activation {ReLU, LeakyReLU, ReLU6}

5 .tP Pooling {ave., max.}

6 .s Skipping {. ∅, 1, 2, 3}

Fig. 14.2 Illustration of an
example of a calculation
operation setting. The table
shows the code in the
parameterized search space.
The figure shows the
corresponding network
architecture

2, and 5 are active. In this way, one node can be parameterized by 6 dimensions. Let
.N denote the number of nodes of a. ⊗ and.F⊗ denote the calculation operation space.
Thus,.|F⊗| = 6 × N . Because. ⊗won’t have too many nodes, the optimization won’t
suffer from a high-dimensional issue.

Like hyper-parameter tuning, calculation operation optimization can be seen as
a black-box optimization problem and solved by DFO methods, introduced in the
previous chapters. DFO relies only on the evaluation values, not the gradients, to
explore the search space. Thus, it is more suitable for this problem. Currently,
popular DFO methods are evolutionary algorithms [4], Bayesian optimization [8,
14], classification-based optimization [7], etc. These methods all follow a sample-
evaluation framework. Let .ω⊗ denote a calculation operation optimization process
for . ⊗. .ω⊗ has an inner model that is used to sample a new configuration of cal-
culation operations: .F = ω⊗.sample(F⊗). An entire network architecture can be
constructed: .N = ⊗ � F . Now, a criterion is needed to evaluate the quality of this
network architecture. The evaluation is usually a validation process as follows:

.v = Cvalid(Nw∗
,Dtrain), (14.3)

s.t. w∗ = arg min
w

Ltrain(Nw , Dtrain),

where .Cvalid is the validation criterion, such as accuracy, F1 score, etc., and . Ltrain

is the training loss, such as mean square loss, cross-entropy, etc. With the eval-

182 14 Calculation Operation Optimization: Competition Neural…

uation value . v, we update the inner model and get ready for the next sampling:
.ω⊗ = ω⊗.update(F, v). It is a stepwise framework that can be paused at any opti-
mization loop. And the optimization process can be activated if necessary. This
mechanism makes it possible to design a competition approach to combine the cal-
culation operation optimization and topological structure enumeration.

14.2 The CNAS Algorithm

In this step, we have to combine the topological structure enumeration and cal-
culation operation optimization together. The target is to eliminate the topological
structures that have poor performance during optimizing their calculation operations.
A competition mechanism is employed to accomplish this task. For each topological
structure .⊗i , there is an optimization process .ω⊗i that searches for its best calcu-
lation operations. The optimization process includes a sample step, an evaluation
step, and an update step. This optimization process can be paused at any loop, as
we mentioned before. Let .F̃i denote the best-so-far calculation operation setting of
.⊗i . After .B loops for each optimization process, the 1st round competition can be
raised by comparing.Cvalid(⊗i � F̃i ,Dtrain) with each other. And half of the topolog-
ical structures that lose the competition will be eliminated. After .K rounds, there is
only one topological structure left, which is the winner topological structure. Then,
we employ more loops (. B ′) to intensively optimize its calculation operations. This
process is shown in Fig. 14.3. The combination of the final best-so-far calculation
operations and the winner topological structure is the winner network architecture.

There are some discussions about the competition mechanism. The competition
mechanism can select the best topological structure with an exponential decay rate

Fig. 14.3 Illustration of the framework of CNAS that includes topological structure enumeration,
calculation operation optimization, competition mechanism, and block-based search. .C f

d means a

convolutional operation with an . f × f kernel and . d filters. .P f
a/m means an average or maximal

pooling operation with an. f × f kernel

14.2 The CNAS Algorithm 183

because half of the structures will be eliminated in each round. It can alleviate the
issue of the explosive number of possible topological structures in the enumeration
phase. The competition mechanism is a greedy strategy for selecting structures. But
the best structure will be selected finally. The competition process can be controlled
by some hyper-parameters such as the number of loops within a round . B, the num-
ber of loops for optimizing the calculation operations on the winner structure . B ′,
etc. Intuitively, larger .B and .B ′ will lead to better network architectures, but it has
more cost. However, the total search cost mostly depends on the number of possible
topological structures. We employ block-based search to tackle this issue.

14.2.1 Block-Based Search

Due to enumeration, the number of possible topological structures increases expo-
nentially with increasing depth and width. It is a direct way to tackle this by giving
a limitation for depth and width. However, this impedes the search for deep network
architectures. CNAS employs block-based search to reduce the number of enumer-
ations and obtain deep network architectures.

The block-based search splits the entire network architecture into several parts,
i.e., blocks. And then, a stepwise search is employed to search block by block. In
each block, the depth and width can be set as small numbers. In our work, we usually
set 4–5 nodes in depth and 2–3 branch chains in width. And we can obtain a deep
enough network architecture by using only 5–6 blocks. With this setting, there are
only hundreds of topological structures when enumerating, in which CNAS can
quickly select the best structure with the competition mechanism. Different from the
previous NAS methods with micro space, CNAS searches the next block based on the
winner network architecture of the last block but does not apply repetitive blocks, as
Fig. 14.3 shows. It helps us search on a larger space and obtain more suitable network
architectures.

14.2.2 Experience Reuse

The search method design of CNAS considers some limitations to improve the search
efficiency. But we still want to further improve the efficiency, so an experience
reused approach is employed. In this work, we consider the experience from two
sources. The first source is a set of manual network architectures. The manual network
architectures have been proven effective by real-world applications. There are many
inspired architectures that we can draw lessons from when designing the search
space, such as inceptions [15], skipping connections [5, 17], linear bottlenecks [6,
13], etc. The second source is the historical log when searching network architectures.
During the search, CNAS will sample many network architectures that have been
evaluated. Different from manual network architectures, not all architectures from

184 14 Calculation Operation Optimization: Competition Neural…

historical logs perform well. However, it won’t stop us from utilizing them to avoid
the new search starting from scratch. We reuse the experience in two directions. The
first is the calculation operation prediction, in which the experience is used to warm-
start the calculation operation optimization process. The second is the competition
simulation, in which we train a simulator from experience to preliminarily screen
the topological structures.

Calculation Operation Prediction
This step aims to warm-start the calculation operation optimization process. It can
be formulated as a prediction problem. The input is a topological structure, and the
output is the calculation operations for nodes. In this work, we focus on nodes and
predict their calculation operations node by node. The manual network architectures
and the historical search logs can provide the supervised information. We introduce
the details from data extraction, training predictor, and prediction.

Data extraction consists of feature design and label setting. We extract features
according to the topological structure. Before giving the details of feature design, we
introduce a concept, i.e., collection node. If a node has more than one input or more
than one output, we name this node a collection node. The collection node indicates
that the network architecture isn’t a simple single chain but a complex structure. We
split the features into global features and local features. The global features include
the number of nodes, the number of branch chains, depth, the number of collection
nodes, etc., a total of 9 features that reflect the global state of the topological structure.
The local features reflect the local state of a node. Thus, the local features correlate
with a single node, which includes whether it is a collection node, the depth of this
node, the number of branch chains that connect to this node, some information of
branch chains that are related to this node, etc., a total of 16 features. Combining both
of them, a total of 25 features are considered when extracting. The label of the features
is the corresponding calculation operations of the experienced network architecture.
The label space is the same as Table 14.1. Let. κ = {κ1, κ2, . . . , κm} = extract(⊗)

denote an extraction process from a topological structure. ⊗, where.κi ∈ κ is a piece
of features corresponding to the node .⊗i ∈ ⊗.

Training predictor and prediction. Because the data extracted from network
architectures is time-series, we apply an LSTM model to train a predictor. Let . φ
denote the predictor. For the target topological structure, we first employ the extrac-
tion process to get the features of each node. Then, the calculation operations of . ⊗i

are .F⊗ = φ(⊗).
In the calculation operation optimization process, the DFO method has an ini-

tialization step that uniformly samples on the search space. We use . φ to predict a
calculation operation configuration that replaces the uniform sample in the initial-
ization step. The warm-start by. φ helps the optimization process avoid starting from
scratch and improves the search efficiency.

Competition Simulation
This step aims to simulate the competition between two topological structures. The
key is how to evaluate the quality of a topological structure. Equation (14.3) shows
the evaluation of a network architecture. But with different calculation operation

14.2 The CNAS Algorithm 185

configurations, a topological structure can construct different network architectures.
Let .vm denote the mean of evaluation values of these network architectures, and . vs
denote the standard deviation of evaluation values of these network architectures.
.vm + vs is the performance upper bound that this topological structure can get with
a high probability. Thus, this value can be an evaluation of a topological structure.
With this evaluation, we can design the competition simulation from data extraction,
training simulator, and simulation.

Data extraction. We assume the competition is between.⊗1 and.⊗2. The feature
extraction for topological structures is the same as in the last section, that is, . κ1 =
extract(⊗1) and .κ2 = extract(⊗2). We combine them together .[κ1; κ2] and
give it a label as follows:

.�([κ1; κ2]) =
{

+1, v⊗1
m + v⊗1

s > v⊗2
m + v⊗2

s ,

−1, v⊗1
m + v⊗1

s ≤ v⊗2
m + v⊗2

s .
(14.4)

.([κ1; κ2] , �) is an instance for training the simulator. The label . � means whether

.⊗1 is better than .⊗2. Conversely, .([κ2; κ1] ,−�) is another instance. In the search
process, two instances can be extracted according to any two topological structures.
From the historical search log, we can extract a training dataset.

Training simulator and simulation. It is a supervised learning task to train the
simulator from a labeled dataset. This data is similar to the text classification data.
Thus, an LSTM model is applied. Let .ψ denote the simulator. The competition
simulation can be presented as

. � = ψ([extract(⊗1);extract(⊗2)]).

If .� = +1, .⊗1 wins and.⊗2 is eliminated. If .� = −1, .⊗2 wins and.⊗1 is eliminated.
Let .

⊗′ = simulate(
⊗

, ψ) denote the competition simulation, where .
⊗′ is the

set of winner structures.
There are some discussions. We employ the competition simulation after the

enumeration. Many bad topological structures can be eliminated according to the
simulator. Only the winner topological structures will keep on optimizing their cal-
culation operations. Furthermore, we can control the number of winners at a low
level. Thus, the competition simulation can substantially reduce the search cost and
improve the search efficiency.

14.2.3 Experience-Reused CNAS

The combination of CNAS and reused experience is the experience-reused CNAS
algorithm shown in Algorithm 14.1..Ñ denotes the best-so-far network architecture.
At line 1, .Ñ is set as empty because the search has just begun. The loop from lines
2–33 is the block-based search. Line 3 is the topological structure enumeration..

⊗ =

186 14 Calculation Operation Optimization: Competition Neural…

Algorithm 14.1 Experience-Reused CNAS
Input:
inp α, β, F , N : depth, width, operation space, block size
inp B, B ′: budget in each round and final optimization
inp φ, ψ, Dtrain: operation predictor, competition simulator, training dataset
inp enumerate, simulate: enumeration, competition simulation sub-procedure
inp initialize, compete: initialization, competition sub-procedure
Procedure:
1: Ñ = ∅
2: for t = 1 to N do
3:

⊗ = simulate(enumerate(α, β), ψ),	 = ∅
4: for each ⊗ ∈ ⊗

do
5: F̃⊗ = φ(⊗)
6: v = Cvalid(Ñ + ⊗ � F̃⊗, Dtrain)
7: ω⊗ = initialize(F̃⊗, v, F⊗)
8: 	 = 	 ∪ {ω⊗}
9: end for
10: while |	| > 1 do
11: for each ω⊗ ∈ 	 do
12: for i = 1 to B do
13: F = ω⊗.sample(F⊗)
14: v = Cvalid(Ñ + ⊗ � F, Dtrain)
15: ω⊗ = ω⊗.update(F, v)
16: if v > Cvalid(Ñ + ⊗ � F̃⊗, Dtrain) then
17: F̃⊗ = F
18: end if
19: end for
20: end for
21: 	 = compete()
22: end while
23: ω⊗ ← 	

24: for i = 1 to B ′ do
25: F = ω⊗.sample(F⊗)
26: v = Cvalid(Ñ + ⊗ � F, Dtrain)
27: ω⊗ = ω⊗.update(F, v)
28: if v > Cvalid(Ñ + ⊗ � F̃⊗, Dtrain) then
29: F̃⊗ = F
30: end if
31: end for
32: Ñ = Ñ + ⊗ � F̃
33: end for
34: return Ñ

{⊗1, ⊗2, . . . , ⊗M} denotes the set of possible structures. Line 3 is the competition
simulation that aims to eliminate topological structures according to the experience.
Lines 4–9 initialize the calculation operation optimization procedure, i.e., .ω⊗ for
each topological structure .⊗ ∈ ⊗

. The initialization step employs the calculation
operation prediction to get the operation configuration (line 5). Here,.F̃⊗ denotes the
best-so-far calculation operations for. ⊗. Lines 10–22 are the competition mechanism.
Each .ω⊗ will be pushed forward for .B steps, and then it competes with each other

14.3 Empirical Study 187

until we get the winner (line 23). The calculation operations on the winner will be
further optimized for .B ′ steps. The final .⊗ � F̃ is the best network architecture in
this block. Then, we combine it with the previous block architecture (line 32). After
search procedures on all.N blocks are finished,.Ñ is the winner network architecture
and returned.

14.3 Empirical Study

We conduct our experiments on two style tasks. First, the benchmark image clas-
sification task is employed to investigate our method by comparing it with other
state-of-the-art NAS methods. Then, we apply our method to automatically design
the network architecture for the image denoising task. For each task, we first show
the basic information about the dataset. Then, the implementation details are shown,
which include the architecture space, evaluation settings, search settings, etc. Finally,
we provide the result analysis for each dataset.

14.3.1 Image Classification Tasks

Implementation Details
For the CNAS algorithm, the architecture search space includes the topological space
and the calculation operation space. In image classification tasks, we employ block-
based search to reduce the size of the architecture space while still obtaining deeper
network architectures for better performance. Specifically, we set a total of XX blocks
for CIFAR-10... In each block, the depth and width of the micro-architecture are set
as 5 and 2. We search the network architecture block by block. The search processes
will repeat several times. In practice, the search efficiency is unsatisfactory in this
way. To tackle this, we follow a popular approach, i.e., repeated blocks, which is
widely used in NAS methods such as ENAS [11], DARTS [10], etc. The blocks
are classified into two categories: normal block and reduction block. CNAS only
searches two blocks sequentially, then stacks them repeatedly. Figure 14.4 illustrates
the high-level structure of block-based search on image classification tasks. The
calculation operation space gives the possible operations for each node in the topo-
logical structure. CNAS follows the operation setting of DARTS, which contains
6 operations: separable convolution with 3. ×3 and 5. ×5 kernels, dilated separable
convolution with 3. ×3 and 5. ×5 kernels, average pooling with 3. ×3 kernel, and max
pooling with 3. ×3 kernel. The skipping connect space is set as .{∅, 1, 2}. The opera-
tion space is set the same for both normal and reduction blocks, but the stride is set as
2 for reduction blocks. And the reduction blocks are only set at . 13 and.

2
3 of the depth

of the whole network architecture. On the evaluation part, the criterion is accuracy
on the validation data. Each network architecture that is sampled by CNAS has to be
trained and validated. Due to the limited search total time, it is impossible to employ

188 14 Calculation Operation Optimization: Competition Neural…

Fig. 14.4 Illustration of high-level structure for the block-based search on image classification
tasks

the whole training data to evaluate an architecture. There are two ways to reduce the
evaluation time cost: applying a part of the training data and applying few training
epochs. We have tried some combinations of both of them, such as whole data with
few epochs, a small part of data with large epochs, and a small part of data with few
epochs. The empirical results show that the way of whole data with few epochs can
obtain the rank performance of architectures. That is to say, evaluation from training
architecture on the whole data but with few epochs may not obtain the final accuracy,
but the architecture with good accuracy obtained by this way will perform well in
the final testing. Thus, during the training process of the evaluation part, we employ
whole data. The optimizer for training architectures is SGD with momentum 0.9 and
weight decay 0.0003. The learning rate is set as 0.025. The batch size is 96. In the
calculation operation optimization, we use SRacos (Chap. 6) as the search method,
whose efficiency, stability, and scalability have been proved in many real AutoML
applications. The total sample size is set as 200 for each experiment.

14.3.1.1 Result Analysis

We finish the experiments of CNAS on CIFAR-10 and CIFAR-100 on Tesla V100
GPU. We show the results on CIFAR-10 in Table 14.2. CNAS obtains 97.41% test
accuracy, which outperforms the manual architecture DenseNet by more than 1%
and outperforms the state-of-the-art NAS method DARTS by more than 0.2%. On
the architecture size (parameter size), the size which CNAS obtains is much less than
the size of the manual architecture (DenseNet). CNAS has a similar architecture size
as DARTS’s. From the above results, CNAS outperforms previous NAS methods on
architecture quality (test accuracy and parameter size) and search efficiency (time
cost). We show the results on CIFAR-100 in Table 14.3. DenseNet obtains 82.82%
test accuracy on CIFAR-100. ENAS and DARTS fail to outperform DenseNet. CNAS
obtains 83.03% test accuracy on CIFAR-100 by searching on it directly, which out-
performs DenseNet.

14.3 Empirical Study 189

Table 14.2 Comparisons of the architectures obtained by the state-of-the-art NAS approaches on
CIFAR-10. . † CNAS uses the evaluation policy with a partial dataset and many training epochs. . ‡

CNAS uses the evaluation policy with the entire dataset and few training epochs

Architecture Test Acc.
(%)

Params
(M)

Search cost
(GPU days)

Method cate

ResNet + cutout 96.01 6.6 – Manual

DenseNet + cutout 96.54 26.2 – Manual

PNAS 96.59. ±0.09 3.2 225 SMBO

AmoebaNet + cutout 96.66. ±0.06 3.2 3150 Evolution

NASNet-A + cutout 97.35 3.3 1800 RL

ENAS-macro + cutout 96.13 38 0.32 RL

ENAS-micro + cutout 96.15 4.3 0.33 RL

NAONet 96.82 10.6 200 NAO

DARTS (first order) +
cutout

97.00 3.3 1.50 Gradient-based

DARTS (second order) +
cutout

97.24 3.3 4.00 Gradient-based

SNAS (mild constraint) +
cutout

97.02 2.9 1.50 Gradient-based

SNAS (moderate
constraint) + cutout

97.15 2.8 1.50 Gradient-based

SNAS (aggressive
constraint) + cutout

96.90 2.3 1.50 Gradient-based

CNAS. † + cutout 97.31 3.0 1.02 Competition

CNAS. ‡ + cutout 97.41 2.8 2.86 Competition

Table 14.3 Comparisons of the architectures evaluated on CIFAR-100. The column Search Dataset
shows on which dataset the architecture is searched. If this column is CIFAR-10, it means the
architecture is searched on CIFAR-10 and transferred to CIFAR-100

Architecture Search
dataset

Test Acc.
(%)

Params
(M)

Search cost
(GPU days)

Method cate.

ResNet + cutout – 78.04 6.6 – Manual

DenseNet +
cutout

- 82.82 26.2 – Manual

ENAS-micro +
cutout

CIFAR-10 81.28 4.3 0.32 RL

ENAS-micro +
cutout

CIFAR-100 81.26 3.1 0.33 RL

DARTS + cutout CIFAR-10 82.24 3.3 1.50 Gradient-based

DARTS + cutout CIFAR-100 81.60 2.5 4.20 Gradient-based

CNAS + cutout CIFAR-10 82.78 2.8 2.86 Competition

CNAS + cutout CIFAR-100 83.03 3.2 2.08 Competition

190 14 Calculation Operation Optimization: Competition Neural…

14.3.2 Image Denoising Tasks

For image denoising tasks, we select the Waterloo and SIDD datasets. Waterloo has
3320 training images and 1423 testing images. SIDD has 113 training images and
48 testing images. We randomly add Gaussian noise to those images to construct the
training datasets. We use a .50 × 50 window to clip images for Waterloo and SIDD.
Then, we obtain 355200 training images on Waterloo and 739400 training images
on SIDD.

Implementation Details
The image denoising task requires that the output image should have the same size as
the input image. Thus, we have to constrain the macro architecture when searching.
In this experiment, we select UNet as the macro architecture, which is shown in
Fig. 14.5. The macro architecture has a symmetrical structure. The block that NAS
searches should have the symmetry too, so the first block should have the same opera-
tions as the last block. For example, if the operations of the first block are.{ f1, f2, f3},
then the operations of the last block are .{ f3, f2, f1}. There are a total of 6 blocks.
According to the symmetry, we should only search 3 blocks. CNAS uses block-based
search to search block by block. For the topological structure, the depth of a block is
3, and the width is 1. For the operation space, blocks share the same operation space.
But in each block, there are some differences: the operation space of the 1st block is
.2 × 2, .3 × 3, and .5 × 5 convolutional operations with kernel .{16, 32, 64}, the oper-

Fig. 14.5 Illustration of
high-level structure for the
block-based search on image
denoising tasks

14.4 Summary 191

Table 14.4 Comparisons of the architectures evaluated on Waterloo and SIDD. The column Search
Dataset shows on which dataset the architecture is searched

Dataset Methods PSNR
(dB)

Params
(M)

Search cost
(GPU days)

Method cate.

Waterloo CBDNet 34.57 4.13 – Manual

DnCNN 34.11 0.63 – Manual

CNAS 34.68 3.22 0.88 Competition

SIDD CBDNet 38.11 4.13 – Manual

DnCNN 36.58 0.63 – Manual

CNAS 38.15 4.62 1.58 Competition

ation space of the 2nd block is .2 × 2, .3 × 3, and .5 × 5 convolutional operations
with kernel .{32, 64, 128}, and the operation space of the 3rd block is .2 × 2, .3 × 3,
and .5 × 5 convolutional operations with kernel .{64, 128, 256}. We select the Adam
optimizer to train and test on Waterloo and SIDD. In the evaluation phase, we use .

1
7

of the dataset to train and .
1
10 of the dataset to validate. The learning rate of Adam is

0.0001. The batch size is 200. The training epoch is 20. In the testing phase, we use
the whole dataset to train for 800 epochs. The learning rate of Adam is 0.00001. The
evaluation criterion is the Peak Signal to Noise Ratio (PSNR) (Table 14.4).

14.3.2.1 Result Analysis

For the image denoising tasks, we select two manual architectures: CBDNet and
DnCNN. The topological structure is pre-defined. Thus, we only test the opera-
tion optimization performance of CNAS. CNAS searches architectures based on the
UNet macro architecture and obtains better PSNR than CBDNet on two datasets. On
Waterloo, CNAS obtains an architecture that outperforms CBDNet on PSNR, and
the parameter size is smaller than CBDNet’s. On SIDD, CNAS outperforms CBD-
Net on PSNR, but the parameter size is a little larger than CBDNet’s. The results
demonstrate the effectiveness of CNAS.

14.4 Summary

This chapter presents a competition neural architecture search method (CNAS). The
network architecture can be seen as a DAG that consists of a topological structure and
calculation operations. CNAS considers the search on the topological structure and
the calculation operations separately. For the topological structure, CNAS enumer-
ates all possible structures under a limitation of depth and width. For each topological
structure, CNAS considers the calculation operations as a black-box optimization
problem and solves it by DFO methods, introduced in the previous chapters. Then, a

192 14 Calculation Operation Optimization: Competition Neural…

competition mechanism is employed to combine both of them. To improve the search
efficiency, this chapter applies a block-based search approach to constrain the search
space. This chapter presents an experience reuse approach to search architectures by
considering the manual experience and search experience of history. For operation
optimization, the calculation operation prediction is proposed to predict high-quality
operations for a topological structure. For topological enumeration, the competition
simulation is proposed to select high-quality topological structures faster. In experi-
ments on image classification and image denoising, the empirical results verify the
effectiveness of CNAS.

References

1. Baker B, Gupta O, Naik N, Raskar R (2017) Designing neural network architectures using
reinforcement learning. In: Proceedings of the 5th international conference on learning repre-
sentations

2. Bengio Y (2000) Gradient-based optimization of hyperparameters. Neural Comput
12(8):1889–1900

3. Bergstra J, Bengio Y (2012) Random search for hyper-parameter optimization. J Mach Learn
Res 13:281–305

4. Fogel DB (1994) An introduction to simulated evolutionary optimization. IEEE Trans Neural
Netw 5(1):3–14

5. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778

6. Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam
H (2017) Mobilenets: Efficient convolutional neural networks for mobile vision applications.
arXiv:1704.04861

7. Hu YQ, Qian H, Yu Y (2017) Sequential classification-based optimization for direct policy
search. In: Proceedings of the 31st AAAI conference on artificial intelligence, San Francisco,
CA, pp 2029–2035,

8. Hutter F, Hoos HH, Leyton-Brown K (2011) Sequential model-based optimization for general
algorithm configuration. LION 5:507–523

9. Liu C, Zoph B, Neumann M, Shlens J, Hua W, Li LJ, Fei-Fei L, Yuille A, Huang J, Murphy K
(2018) Progressive neural architecture search. In: Proceedings of the European conference on
computer vision, pp 19–34

10. Liu H, Simonyan K, Yang Y (2019) DARTS: Differentiable architecture search. In: Proceedings
of the 7th international conference on learning representations

11. Pham H, Guan M, Zoph B, Le Q, Dean J (2018) Efficient neural architecture search via
parameter sharing. In: Proceedings of the 35th international conference on machine learning,
pp 4092–4101

12. Real E, Aggarwal A, Huang Y, Le QV (2019) Regularized evolution for image classifier archi-
tecture search. In: Proceedings of the 33rd AAAI conference on artificial intelligence

13. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC (2018) Mobilenetv2: inverted residuals
and linear bottlenecks. In: Proceedings of the IEEE conference on computer vision and pattern
recognition, pp 4510–4520

14. Shahriari B, Swersky K, Wang Z, Adams RP, Freitas ND (2015) Taking the human out of the
loop: a review of Bayesian optimization. Proc IEEE 104(1):148–175

15. Szegedy C, Ioffe S, Vanhoucke V, Alemi A (2017) Inception-v4, inception-resnet and the
impact of residual connections on learning. In: Proceedings of the 31st AAAI conference on
artificial intelligence

http://arxiv.org/abs/1704.04861

References 193

16. Xie L, Yuille A (2017) Genetic CNN. In: Proceedings of the IEEE international conference on
computer vision, pp 1379–1388

17. Xie S, Girshick R, Dollár P, Tu Z, He K (2017) Aggregated residual transformations for deep
neural networks. In: Proceedings of the IEEE conference on computer vision and pattern
recognition, pp 1492–1500

18. Yao X (1999) Evolving artificial neural networks. Proc IEEE 87(9):1423–1447
19. Zhong Z, Yan J, Wu W, Shao J, Liu CL (2018) Practical block-wise neural network architecture

generation. In: Proceedings of the IEEE conference on computer vision and pattern recognition,
pp 2423–2432

20. Zoph B, Le QV (2017) Neural architecture search with reinforcement learning. In: Proceedings
of the 5th international conference on learning representations

21. Zoph B, Vasudevan V, Shlens J, Le QV (2018) Learning transferable architectures for scalable
image recognition. In: Proceedings of the IEEE conference on computer vision and pattern
recognition, pp 8697–8710

	Preface
	Contents
	Notations
	Part I Introduction
	1 Introduction
	1.1 Machine Learning
	1.2 Derivative-Free Optimization (DFO)
	1.2.1 Structure of DFO Algorithms
	1.2.2 Development of DFO Algorithms

	1.3 Automatic Machine Learning
	1.4 Organization of the Book
	References

	2 Preliminaries
	2.1 Evolutionary Algorithms
	2.1.1 (\mu+\lambda)(µ+λ)-EA
	2.1.2 (\mu/\mu,\lambda)(µ/µ,λ)-ES

	2.2 Estimation of Distribution Algorithms
	2.3 Bayesian Optimization
	2.4 Running Time Analysis
	2.5 No Free Lunch in Optimization
	References

	Part II Classification-Based Derivative-Free Optimization
	3 Framework
	3.1 Sampling and Learning Framework
	3.2 Casting Previous DFO Methods Into the SAL Framework
	3.2.1 Estimation of Distribution Algorithms
	3.2.2 Bayesian Optimization
	3.2.3 Evolutionary Algorithms
	3.2.4 Other DFO Methods

	3.3 Sampling and Classification Framework
	3.4 Summary
	References

	4 Theoretical Foundation
	4.1 Problem Setting and Notations
	4.2 (\epsilonε, \deltaδ)-Query Complexity
	4.3 Performance Bound for SAL Framework
	4.4 Performance Bound for SAC Framework
	4.5 Error-Target Dependence and Shrinking Rate
	4.6 Functions with Local Lipschitz Continuity
	4.7 Functions with Bounded Packing and Covering Numbers
	4.8 Summary
	References

	5 Basic Algorithm
	5.1 The Racos Optimization Algorithm
	5.2 Empirical Study on Testing Functions
	5.3 Empirical Study on Clustering Task
	5.4 Empirical Study on Classification with Ramp Loss
	5.5 Summary
	References

	Part III Practical Extensions
	6 Optimization in Sequential Mode
	6.1 Sequential Classification Model Based Algorithm
	6.2 Theoretical Analysis
	6.3 Empirical Study
	6.3.1 Optimization on Synthetic Functions
	6.3.2 Direct Policy Search on Reinforcement Learning Tasks

	6.4 Summary
	References

	7 Optimization in High-Dimensional Search Space
	7.1 Functions with Low Effective Dimension
	7.1.1 Random Embedding for Low Effective Dimension Problems

	7.2 Optimal \varepsilonε-Effective Dimension
	7.2.1 Random Embedding for Problems with Low Optimal \varepsilonε-Effective Dimension
	7.2.2 Optimization with Random Embedding

	7.3 Sequential Random Embeddings
	7.3.1 Less Greedy SRE

	7.4 Empirical Study
	7.4.1 Experimental Setup
	7.4.2 Synthetic Functions
	7.4.3 Classification with Ramp Loss

	7.5 Summary
	References

	8 Optimization Under Noise
	8.1 Value Suppression
	8.2 The SSRacos Algorithm
	8.3 Empirical Study
	8.3.1 Synthetic Functions
	8.3.2 Controlling Tasks in OpenAI Gym
	8.3.3 Hyper-Parameter Analysis

	8.4 Summary
	References

	9 Optimization with Parallel Computing
	9.1 The Asynchronous SRacos (ASRacos) Algorithm
	9.2 Theoretical Analysis
	9.3 Empirical Study
	9.3.1 On Synthetic Functions
	9.3.2 On Controlling Tasks in OpenAI Gym

	9.4 Summary
	References

	10 Toolbox: ZOOpt
	10.1 Methods in ZOOpt
	10.2 Usage
	10.3 Experiments
	10.3.1 Results on Optimizing Synthetic Functions
	10.3.2 Results on Classification Tasks with Ramploss
	10.3.3 Results on Direct Policy Search for OpenAI Controlling Tasks

	10.4 Summary
	References

	Part IV Application to Automatic Machine Learning
	11 Experienced Optimization: Acceleration in Hyper-Parameter Optimization
	11.1 Experienced Optimization for Hyper-Parameter Optimization
	11.2 The ExpSRacos and AdaSRacos Algorithms
	11.2.1 ExpSRacos
	11.2.2 AdaSRacos

	11.3 Empirical Study
	11.3.1 Synthetic Tasks
	11.3.2 Hyper-Parameter Optimization Tasks

	11.4 Summary
	References

	12 Multi-fidelity Optimization: Acceleration in Hyper-Parameter Evaluation
	12.1 Multi-fidelity Optimization for Hyper-Parameter Optimization
	12.2 The TseSRacos Algorithm
	12.2.1 Multi-fidelity Optimization Framework
	12.2.2 Transfer Series Expansion (TSE)

	12.3 Empirical Study
	12.3.1 Experimental Setup
	12.3.2 Empirical Analysis

	12.4 Summary
	References

	13 Stepwise Optimization: Cascaded Algorithm Selection
	13.1 Stepwise Optimization with Algorithm Selection
	13.2 The ER-UCB Algorithm
	13.2.1 Extreme Region Target and Extreme Region Regret
	13.2.2 ER-UCB on Stationary Distributions
	13.2.3 ER-UCB on Non-stationary Distributions
	13.2.4 Theoretical Results

	13.3 Empirical Study
	13.3.1 Synthetic Tasks
	13.3.2 AutoML Tasks

	13.4 Summary
	References

	14 Calculation Operation Optimization: Competition Neural Architecture Search
	14.1 Calculation Operation Optimization with Neural Architecture Search
	14.1.1 NAS Task Formulation
	14.1.2 Topological Structure Enumeration
	14.1.3 Calculation Operation Optimization

	14.2 The CNAS Algorithm
	14.2.1 Block-Based Search
	14.2.2 Experience Reuse
	14.2.3 Experience-Reused CNAS

	14.3 Empirical Study
	14.3.1 Image Classification Tasks
	14.3.2 Image Denoising Tasks

	14.4 Summary
	References

