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Preface 

The pursuit of solving optimization problems has long been a cornerstone in the 
realms of computer science and artificial intelligence. While specialized algorithms 
tailored to specific problems have been developed, there has also been a signifi-
cant emergence of general-purpose optimization methods. These methods, including 
random search, simulated annealing, and evolutionary algorithms, are often crafted 
based on heuristic principles. Consequently, their properties are predominantly 
explored through empirical studies, with a comprehensive theoretical understanding 
still largely out of reach. 

Yang Yu, the first author of this monograph, previously co-authored a book entitled 
Evolutionary Learning: Advances in Theories and Algorithms with Prof. Zhi-Hua 
Zhou and Chao Qian, which was published by Springer in 2019. In that work, the 
central theoretical focus was on running time analysis, which evaluates the time and 
sample complexity required to find an optimal solution. Subsequently, Yang devel-
oped an interest in exploring alternative theoretical foundations for general-purpose 
optimization methods, complementing the well-established theories of machine 
learning. Given that machine learning is underpinned by a solid statistical frame-
work, it naturally raises the question: can we establish a similarly strong theoret-
ical foundation for optimization methods from a statistical perspective? Specifically, 
such a theory could elucidate how these optimization methods approximate optimal 
solutions. 

Collaborating with the second author, Hong Qian, who was Yang’s Ph.D. student 
in 2013, a preliminary framework was developed. Initially, this framework was 
designed to meet certain theoretical desiderata. Surprisingly, the resulting algorithm 
also demonstrated competitive practical performance against some state-of-the-art 
methods. The third author, Yi-Qi Hu, who became Yang’s Ph.D. student in 2015, 
joined the effort to further refine and extend the framework and enhance the algo-
rithm. This monograph provides a comprehensive overview of the authors’ research, 
encompassing the development of the framework, algorithm design, and practical 
applications. 

The monograph is structured into four parts. Part I briefly introduces derivative-
free optimization within the context of machine learning. Part II presents the

v
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classification-based optimization framework along with its basic algorithm. To tackle 
practical challenges such as sequential execution, high-dimensionality, noisy evalu-
ations, and large-scale parallel execution, Part III introduces several variants of the 
basic algorithm. This part also includes an introduction to ZOOpt, a general opti-
mization toolbox built on classification-based optimization algorithms. Part IV show-
cases various applications of classification-based optimization in the field of auto-
matic machine learning, including hyper-parameter selection, algorithm selection, 
and neural architecture search. 

The authors extend their heartfelt gratitude to their families, friends, and 
collaborators for their unwavering support and contributions. 

Nanjing, China 
Shanghai, China 
Nanjing, China 
December 2024 

Yang Yu 
Hong Qian 
Yi-Qi Hu
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Notations 

R Real number 
N Integer 
(·)+ Positive, (·) can be R or N 
(·)0+ Non-negative, (·) can be R or N 
x Scalar 
x Vector 
(·, ·, . . . ,  ·) Row vector 
(·; ·; . . .  ; ·) Column vector 
0, 1 All-0s and all-1s row vectors 
{0, 1}n Boolean vector space 
X Matrix 
(·)� Transpose of a vector/matrix 
X Set 
{·, ·, · · ·  , ·} Set by enumeration 
[n] Set {1, 2, . . . ,  n} 
| · | Cardinality of a set 
2X Power set of X , which consists of all subsets of X 
X − Y Complement of Y in X , which consists of elements in X 

but not in Y 
Pr(·), Pr(·|·) Probability and conditional probability 
D Probability distribution 
f Function 
E·∼D[f (·)], E·∼D[f (·)|·] Expectation and conditional expectation of f (·) under 

distribution D, simplified as E[f (·)] and E[f (·)|·] when 
the meaning is clear 

I(·) Indicator function which takes 1 if · is true, and 0 
otherwise

�·�, �·� Floor and ceiling functions which take the greatest/least 
integer less/greater than or equal to a real number

xv
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Chapter 1 
Introduction 

Abstract This chapter introduces the fundamental concepts of optimization, par-
ticularly in the context of machine learning, and explores the role of derivative-free 
optimization (DFO) in solving complex computational tasks. Optimization is essen-
tial for finding optimal solutions within a solution space, and machine learning often 
involves formulating such problems to learn generalizable models from data. The 
chapter highlights the importance of DFO, which does not require gradient informa-
tion and is suitable for problems with discontinuous or non-differentiable objective 
functions. It outlines the structure of DFO algorithms, their development, and their 
application in automatic machine learning (AutoML), where they help automate the 
selection of algorithms and hyper-parameters. The chapter concludes by presenting 
the organization of the book, which aims to build theoretical foundations for DFO 
and design practical algorithms for machine learning tasks. 

Optimization is pervasive and fundamental in complex computational tasks. It is also 
an area where computers can be immensely useful to us. An optimization problem 
involves searching for an optimal solution within a solution space. The solution 
space often depends on the specific task and is most commonly represented as a 
vector space. X . The quality of a solution is evaluated using an objective function. f . 
A general optimization problem can be written as 

.x∗ = argmin
x∈X

f (x), (1.1) 

where .x∗ is the optimal solution. 
In this book, we are particularly interested in optimization problems that arise 

in machine learning tasks. This is not only because machine learning involves a 
wide variety of optimization problems but also because the optimization methods 
developed in this book draw inspiration from machine learning concepts. 
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4 1 Introduction

1.1 Machine Learning 

Machine learning [ 12] is a subfield of artificial intelligence that studies how to learn 
generalizable models from data. In supervised learning, a classical machine learning 
task, a training dataset typically contains examples of input-output pairs, where an 
instance of the input is called a feature vector and the corresponding output is called 
a label. A central goal of supervised learning is to learn a model based on the training 
dataset. A model is a function that maps from the input space to the output space, 
which can take the form of a decision tree, linear model, artificial neural network, 
etc. The model is expected to not only be consistent with the training dataset but, 
more importantly, to be generalizable, meaning it can accurately predict labels for 
instances outside of the training dataset. The model learning process can be viewed 
as a search process in a model space, also known as a hypothesis space, to find the 
model that best fits the training dataset. To ensure generalizability, constraints are 
commonly incorporated into the search process. Therefore, many supervised learning 
tasks can be formulated as 

.h∗ = argmin
h∈H

∑

(x,y)∈D
�(h(x), y) + G(h), (1.2) 

where . h is a model, .H is the hypothesis space, .D is the training dataset containing 
.(x, y) example pairs,. � is a loss function measuring the difference between the model 
output .h(x) and the label y, and .G(h) is a penalty on the model complexity. 

Other branches of machine learning can be formulated in a similar manner. For 
unsupervised clustering, a general formulation is 

.h∗ = argmin
h∈H

�(D1, D2, . . . , Dk |Di = {h(x) = i}) + G(h), (1.3) 

where . � is the evaluation criterion on the clusters partitioned by the model. For 
reinforcement learning, a general formulation is 

.π∗ = argmax
π∈�

∑

s∈S
ρπ(s)

∑

a∈A

π(a|s)R(s, a) + G(π), (1.4) 

where. π is the policy model,.� is the hypothesis space,. ρ is the stationary distribution 
induced by the policy, and . R is the reward function. 

The key components of machine learning can be observed from the above formu-
lations, including the definition of the model space, the choice of loss function and 
complexity penalty, and the optimization procedure. In other words, the represen-
tation, evaluation, and optimization, as summarized by Domingos [ 4]. The choice 
of representation and evaluation define the optimization problem. Meanwhile, the 
available optimization methods constrain the design choices for representation and 
evaluation. We can see that a rich toolbox of optimization methods enables a wide
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range of design choices, leading to machine learning techniques suitable for various 
situations and requirements. 

Although a large body of research focuses on designing representations and 
evaluations to simplify the optimization task, this book aims to develop general-
purpose optimization tools that can support diverse representations and evaluations, 
including discontinuous functions with many local optima. To this end, we consider 
derivative-free optimization. 

1.2 Derivative-Free Optimization (DFO) 

1.2.1 Structure of DFO Algorithms 

To handle a broad range of optimization tasks, we do not assume the objective func-
tion . f in Eq. (1.1) to be linear, convex, differentiable, or even explicitly known. 
Instead, we only assume access to the objective function value . f (x) for any given 
solution . x , without requiring other information such as the gradient. This require-
ment characterizes derivative-free optimization (DFO), also known as zeroth-order 
optimization or black-box optimization. 

The simplest DFO method is perhaps random search, which generates solutions 
uniformly at random and evaluates their objective values. The solution with the best 
objective value is selected as the final output. Random search has been widely used 
for hyper-parameter tuning in machine learning algorithms. 

Despite its simplicity, random search shares a common framework with other 
derivative-free optimization methods, as shown in Fig. 1.1. The framework consists 
of three main components. The sampling component draws solutions from a dis-
tribution. In random search, the distribution .T is simply the uniform distribution 
over the solution space, and solutions are sampled one at a time. The sampled solu-
tions are evaluated to obtain their objective values, and the best solution found so 
far is recorded as the algorithm’s output. Based on the evaluated solutions, a DFO 
algorithm updates its sampling distribution. T to guide the search towards better solu-
tions in the next iteration. Random search does not update the sampling distribution, 
whereas many DFO algorithms differ in how they represent and adapt the sampling 
distribution. 

One may wonder why this DFO framework can solve optimization problems. 
Let’s reconsider random search. Despite its simplicity, random search will converge 
to the global optimum as it explores the entire solution space. In other words, random 
search is complete in its exploration. However, random search is inefficient and can 
take a very long time to find the optimal solution. Suppose the desired solutions, i.e., 
solutions that are sufficiently good, reside in a region .X ∗. Each time we randomly 
sample a solution from . X , the probability of finding a desired solution is the pro-
portion of .X ∗ in the solution space, i.e., .|X ∗|/|X |. Therefore, the expected number 
of samples needed to find a desired solution is .|X |/|X ∗|. Note that the target region
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Fig. 1.1 A framework for derivative-free optimization algorithms 

is usually very small, requiring many samples. For example, finding.(1, 1, . . . , 1) in 
.{0, 1}n by random search takes .2n samples on average. 

The inefficiency of random search stems from its blind sampling, as it does not 
learn from past samples. In other words, random search performs pure exploration. To 
improve efficiency, we can reduce exploration by adjusting the sampling distribution 
. T . As long as .T assigns non-zero probability to any solution, the DFO method will 
ultimately converge to the global optimum. The question then becomes how to design 
a good sampling distribution. T . A well-designed sampling distribution is believed to 
accelerate convergence. However, the acceleration depends on the specific problem 
due to the No Free Lunch Theorem. 

1.2.2 Development of DFO Algorithms 

Various DFO algorithms have been proposed based on different ideas and inspira-
tions. Early representative algorithms include simulated annealing (SA) [ 8], beam 
search [ 13], and evolutionary algorithms (EAs) [ 1]. SA generates new solutions by 
randomly perturbing the current solution and accepts them probabilistically based on 
the objective value difference and a decreasing temperature parameter. Beam search 
maintains a set of candidate solutions and iteratively expands and selects them based 
on their objective values. EAs are population-based algorithms inspired by natural 
evolution that generate new solutions using mutation and crossover operators and 
select the fittest ones to form the next population. These early DFO algorithms often 
employ heuristic rules to perturb solutions and generate new ones. 

Later, estimation of distribution algorithms (EDAs) [ 9] were proposed, which 
explicitly model the distribution of promising solutions and sample new ones from the 
learned model. Bayesian optimization [ 15] builds a surrogate model to approximate 
the objective function and selects the next solution to evaluate by maximizing an 
acquisition function that balances exploration and exploitation. 

DFO has also been an important research topic in the classical optimization com-
munity [ 3]. Notable methods include trust region methods [ 2], which approximate 
the objective function using a local model within a trust region, and pattern search 
methods [ 17], which perform exploratory searches along coordinate directions.
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The variety of DFO algorithms stems from their different philosophies in bal-
ancing exploration and exploitation and their assumptions about the characteristics 
of the objective function. Understanding the properties and applicable scenarios of 
different algorithms is crucial for their effective use. 

1.3 Automatic Machine Learning 

The abundance of machine learning algorithms creates both opportunities and chal-
lenges. Powerful tools are available to tackle diverse learning tasks, but there is 
rarely a single algorithm that performs optimally on all tasks. The performance of a 
machine learning algorithm depends on factors such as the data, model architecture, 
and hyper-parameter settings. Choosing and configuring a suitable algorithm for a 
specific task often requires considerable expertise and experimentation. 

Automatic machine learning (AutoML) aims to automate this process and enable 
non-experts to benefit from machine learning. A typical goal of AutoML is to find, 
for a given task, the combination of algorithm components and hyper-parameters 
that maximizes a predefined performance metric. This essentially treats AutoML as 
an optimization problem, with the solution space being the combinatorial space of 
algorithms and hyper-parameters, and the objective function being the performance 
metric. 

However, evaluating the objective function in AutoML is often expensive, as 
it requires training and validating machine learning models. Moreover, the solu-
tion space is typically discrete, high-dimensional, and contains complex conditional 
dependencies. These properties make AutoML a challenging optimization problem 
that demands sample-efficient and flexible optimization algorithms. 

DFO algorithms have found successful applications in AutoML. Bayesian opti-
mization has been a popular choice due to its sample efficiency and ability to handle 
black-box objective functions [ 5, 16]. Evolutionary algorithms have also demon-
strated competitive performance, especially for high-dimensional and conditional 
spaces [ 11, 14]. Recent studies showed promising results of combining Bayesian 
optimization with meta-learning to warm-start and guide the optimization on a new 
task [ 6]. 

Besides searching for performance-optimized models, another important aspect 
of AutoML is to automate the composition and configuration of machine learning 
pipelines, which include data preprocessing, feature engineering, model selection, 
and ensemble construction. This often requires optimizing multiple competing objec-
tives, such as model performance, inference time, and complexity. Derivative-free 
multiobjective optimization algorithms have been adapted to solve such problems [ 7]. 

Furthermore, AutoML systems need to handle various practical issues such as 
computational resource constraints, noisy evaluations, and online adaptation to new 
data. Addressing these issues requires extending and enhancing DFO algorithms to 
meet the needs of AutoML, such as using multi-fidelity optimization to efficiently 
allocate resources [ 10].
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The emergence of AutoML has brought new opportunities and challenges 
for DFO. It motivates the design of algorithms that can efficiently search high-
dimensional, structured, and dynamic spaces. It also calls for rigorous benchmarking 
to evaluate and compare different DFO algorithms for AutoML. Research progress 
in these directions will make both AutoML and DFO more effective and widely 
applicable. 

1.4 Organization of the Book 

Aiming to build the theoretical foundations of DFO and design better optimization 
algorithms for machine learning, this book is organized into four parts, covering 
the preliminaries, analysis methodology, theoretical perspectives, and applications 
to AutoML. 

Part I provides an introduction to DFO and its theoretical foundations. We present 
an overview of classic DFO algorithms, including direct search methods, model-
based methods, and stochastic search methods. We also review the theoretical results 
on the approximation ability of DFO algorithms, highlighting the challenges and 
opportunities for theoretical analysis. 

Part II presents a novel theoretical framework for analyzing and designing DFO 
algorithms. We introduce a general framework based on classification, which unifies 
existing algorithms and facilitates the design of new ones. We also present a basic 
algorithm Racos designed under this framework. 

Part III presents extensions of the Racos algorithm. We design methods for more 
efficient optimization, high-dimensional problems, noisy problems, and large-scale 
optimizations. We also introduce a toolbox ZOOpt that includes the major algorithms 
in this book. 

Part IV showcases the applications and integrations of DFO algorithms in 
automatic machine learning systems for hyper-parameter and algorithm selection. 

Through this book, we aim to provide an alternative theoretical treatment of 
derivative-free optimization and present practical algorithmic innovations. We hope 
that the insights and techniques presented will inspire new research and empower 
practitioners to tackle real-world optimization challenges in machine learning and 
beyond. 
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Chapter 2 
Preliminaries 

Abstract This chapter provides an overview of fundamental derivative-free opti-
mization (DFO) algorithms, focusing on evolutionary algorithms (EAs), estimation 
of distribution algorithms (EDAs), and Bayesian optimization (BO). EAs are inspired 
by natural evolution. EDAs model the probability distribution of promising solutions 
to guide the search, while BO uses surrogate models to efficiently optimize expensive 
black-box functions. The chapter also discusses running time analysis, a key theoret-
ical tool for understanding algorithm performance, and introduces the No Free Lunch 
Theorem, which highlights the importance of problem-specific knowledge in opti-
mization. These concepts lay the groundwork for analyzing and designing advanced 
DFO methods, particularly in machine learning and other complex domains. 

This chapter introduces some basic derivative-free optimization algorithms, includ-
ing evolutionary algorithms (EAs), estimation of distribution algorithms (EDAs), 
and Bayesian optimization (BO). We will focus on representatives of EA for dis-
crete optimization and evolutionary strategy (ES) for continuous optimization, and 
provide explanations of EDA and BO. These algorithms serve as the preliminary 
for understanding and analyzing more complex optimization methods. Additionally, 
we discuss some basic knowledge about the running time complexity of algorithms, 
which is the classical way to understand algorithms from a theoretical perspective. 

2.1 Evolutionary Algorithms 

Evolutionary algorithms (EAs) are a class of general-purpose heuristic optimization 
algorithms that simulate the natural evolution process by considering two key fac-
tors: variational reproduction and superior selection [ 1]. They repeatedly reproduce 
solutions by varying the currently maintained ones and eliminate inferior solutions, 
leading to iterative improvement. In this section, we introduce two representative 
population-based EAs: the.(μ + λ)-EA for discrete optimization and the.(μ/μ,λ)-ES 
for continuous optimization. 
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2.1.1 .(μ + λ)-EA 

The .(μ + λ)-EA algorithm, presented in Algorithm 2.1, is a population-based EA 
for maximizing pseudo-Boolean functions over .{0, 1}n . The algorithm maintains a 
population of . μ solutions and generates . λ offspring solutions in each iteration. It 
starts with a randomly initialized population of. μ solutions (line 1). In each iteration, 
. λ offspring solutions are generated by applying a mutation operator to the parent 
solutions (lines 3–5). The mutation operator flips each bit of a solution independently 
with probability .1/n. The  . μ best solutions are then selected from the union of the 
parent and offspring populations to form the next generation (line 6). This process 
continues until a stopping criterion is met. 

Algorithm 2.1 .(μ + λ)-EA 
Require: pseudo-Boolean function . f : over{0, 1}n → R, population size . μ, offspring size . λ
Ensure: 
1: initialize a population.P of. μ solutions uniformly at random; 
2: while stopping criterion is not met do 
3: let.P ′ = ∅; 
4: for .i = 1 to. λ do 
5: generate.x′ by flipping each bit of a randomly selected solution.x ∈ P independently with 

probability.1/n; add.x′ to.P ′; 
6: end for 
7: select the. μ best solutions from.P ∪ P ′ to form the next population. P; 
8: end while 
9: return the best solution found 

The .(μ + λ)-EA algorithm balances exploration and exploitation by adjusting 
the population size . μ and the offspring size . λ. A larger . μ helps maintain diversity 
and enables global exploration, while a larger . λ increases the selection pressure and 
focuses the search on promising regions. The optimal settings of . μ and. λ depend on 
the characteristics of the problem, such as the modality and the ruggedness of the 
fitness landscape. 

2.1.2 .(μ/μ,λ)-ES 

The .(μ/μ,λ)-ES algorithm, presented in Algorithm 2.2, is a population-based evo-
lutionary strategy for continuous optimization problems. It maintains a population 
of . μ solutions, each associated with a strategy parameter . σ that controls the step 
size of the mutation operator. In each iteration, . λ offspring solutions are generated 
by applying a mutation operator to the parent solutions (lines 4–6). The mutation 
operator adds a normally distributed random vector to each parent solution, where 
the random vector has zero mean and standard deviation . σ in each dimension. The 
strategy parameter. σ is also mutated by multiplying it with a log-normally distributed
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random factor (line 5). The . μ best offspring solutions are then selected to form the 
next generation (line 7). This process continues until a stopping criterion is met. 

Algorithm 2.2 .(μ/μ,λ)-ES 
Require: objective function . f : Rn → R, population size . μ, offspring size . λ, initial step size . σ0
Ensure: 
1: initialize a population.P of. μ solutions.xi ∈ R

n uniformly at random, and set.σi = σ0 for each 
solution; 

2: while stopping criterion is not met do 
3: let.P ′ = ∅; 
4: for .i = 1 to. λ do 
5: select a parent solution .x ∈ P uniformly at random, and mutate its strategy parameter 

.σ = σ · exp(τ · N (0, 1)), where.τ = (
√
2n)−1; 

6: generate an offspring solution .x′ = x + σ · N (0, I), where  .N (0, I) is a vector of 
independent standard normal random variables; add.(x′,σ) to.P ′; 

7: end for 
8: select the. μ best offspring solutions from.P ′ to form the next population. P; 
9: end while 
10: return the best solution found 

The .(μ/μ,λ)-ES algorithm adapts the step size of the mutation operator to the 
local characteristics of the objective function. The log-normal mutation of the strategy 
parameter . σ allows the algorithm to self-adapt the step size based on the success of 
the previous mutations. If larger steps lead to better offspring solutions, the strategy 
parameter will increase, encouraging further exploration. If smaller steps are more 
successful, the strategy parameter will decrease, focusing the search on a smaller 
region. This self-adaptation mechanism enables the algorithm to efficiently explore 
the search space and converge to an optimal solution. 

The .(μ/μ,λ)-ES algorithm is a special case of the more general .(μ/ρ,λ)-ES, 
where . ρ denotes the number of parent solutions used to generate each offspring 
solution. When.ρ = 1, the algorithm is called a.(μ/1,λ)-ES or a.(μ,λ)-ES. When. ρ =
μ, the algorithm is called a.(μ/μ,λ)-ES. The choice of. ρ affects the balance between 
exploration and exploitation, with larger values of . ρ promoting more exploitation. 

The population-based EAs presented in this section have been widely studied in 
the theoretical analysis of evolutionary computation. They serve as a foundation for 
understanding the behavior and performance of more advanced EA variants and have 
inspired the design of effective optimization algorithms for various domains. 

2.2 Estimation of Distribution Algorithms 

Estimation of distribution algorithms (EDAs) are a class of EAs that explicitly model 
the probability distribution of promising solutions and sample new solutions from the 
learned model [ 9]. Instead of using traditional variation operators like mutation and 
crossover, EDAs build a statistical model of the selected solutions and generate new
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solutions by sampling from this model. The model is updated iteratively to reflect 
the distribution of increasingly better solutions. 

The general procedure of an EDA is described in Algorithm 2.3. The algorithm 
starts with a randomly initialized population of solutions (line 1). In each iteration, 
a subset of promising solutions is selected from the current population according 
to a selection method (line 3). A probabilistic model is then built based on the 
selected solutions (line 4). This model captures the statistical dependencies among 
the variables of the selected solutions. New solutions are sampled from the learned 
model (line 5) and are used to replace some or all solutions in the population (line 
6). This process continues until a stopping criterion is met. 

Algorithm 2.3 Estimation of Distribution Algorithm (EDA) 
Require: objective function. f , population size. N
Ensure: 
1: initialize a population.P of.N solutions randomly; 
2: while stopping criterion is not met do 
3: select a subset. S of promising solutions from. P; 
4: build a probabilistic model.M based on the solutions in. S; 
5: sample a set.O of new solutions from the model. M ; 
6: replace some or all solutions in.P with the solutions in. O; 
7: end while 
8: return the best solution found 

EDAs differ in the way they represent and learn the probabilistic model. Some 
common model representations include Bayesian networks, Markov networks, and 
multivariate normal distributions [ 10]. The choice of the model depends on the char-
acteristics of the problem, such as the type of variables (discrete or continuous), the 
interactions among variables, and the complexity of the problem. 

One of the most popular EDAs for discrete optimization is the Population-Based 
Incremental Learning (PBIL) algorithm [ 2]. In PBIL, the probabilistic model is rep-
resented as a vector of probabilities, where each element represents the probability 
of a variable taking the value 1 in the selected solutions. The model is initialized with 
a probability of 0.5 for each variable. In each iteration, the model is updated by mov-
ing the probability vector towards the best solution in the current population. New 
solutions are then sampled from the updated model by generating a binary vector 
according to the probabilities. The PBIL algorithm has been successfully applied to 
various combinatorial optimization problems, such as the traveling salesman problem 
and the knapsack problem [ 9]. 

For continuous optimization, the Covariance Matrix Adaptation Evolution Strat-
egy (CMA-ES) is a well-known EDA [ 6]. In CMA-ES, the probabilistic model is a 
multivariate normal distribution, characterized by a mean vector and a covariance 
matrix. The mean vector represents the center of the distribution, while the covari-
ance matrix captures the dependencies among the variables. In each iteration, a set 
of new solutions is sampled from the current distribution. The mean vector and the 
covariance matrix are then updated based on the best solutions in the sample. The
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update rules are designed to adapt the shape and the scale of the distribution to the 
local landscape of the objective function. CMA-ES has been shown to be highly 
effective on a wide range of continuous optimization problems [ 5]. 

2.3 Bayesian Optimization 

Bayesian optimization (BO) is a model-based optimization approach that is particu-
larly effective for expensive black-box functions [ 12]. The key idea of BO is to build 
a surrogate model of the objective function based on the observed data points and 
use this model to guide the search for the optimum. The surrogate model provides 
a probabilistic approximation of the objective function, allowing the algorithm to 
balance between exploring unknown regions and exploiting promising areas. 

The general procedure of Bayesian optimization is described in Algorithm 2.4. 
The algorithm starts with an initial set of observations . D, which contains the evalu-
ated points and their corresponding objective values (line 1). A surrogate model . M
is then built based on the current observations (line 2). The most common choice 
for the surrogate model is the Gaussian process (GP) [ 11], which provides a proba-
bilistic distribution over functions. A GP is specified by a mean function.m(x) and a 
covariance function.k(x, x′), also known as the kernel. The mean function represents 
the expected value of the function at a given point, while the covariance function 
captures the similarity between two points. 

Algorithm 2.4 Bayesian Optimization (BO) 
Require: objective function. f , initial observations. D
Ensure: 
1: initialize the observation set.D with a few evaluated points; 
2: while stopping criterion is not met do 
3: build a surrogate model.M based on the observations in. D; 
4: select the next point.xnext to evaluate by optimizing an acquisition function.α(x | M); 
5: evaluate the objective function at .xnext to obtain. f (xnext ); 
6: add the new observation.(xnext , f (xnext )) to. D; 
7: end while 
8: return the best solution found 

Given a set of observations, the GP posterior provides a normal distribution for the 
value of the function at any point. The mean and variance of this distribution can be 
used to guide the search for the optimum. Points with high mean values are considered 
promising and are more likely to be selected for evaluation (exploitation). Points 
with high variance values are considered uncertain and may lead to improvement if 
evaluated (exploration). 

The selection of the next point to evaluate is performed by optimizing an acqui-
sition function .α(x | M) (line 4). The acquisition function measures the expected
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benefit of evaluating the objective function at a given point, based on the current 
surrogate model. Some common acquisition functions include:

- Probability of Improvement (PI): .α(x) = �((μ(x) − f (xbest ))/σ(x)), where 
.�(·) is the standard normal cumulative distribution function, .μ(x) and .σ(x) are 
the mean and standard deviation of the GP posterior at . x, and . f (xbest ) is the best 
objective value observed so far.

- Expected Improvement (EI): . α(x) = (μ(x) − f (xbest )) · �((μ(x) −
f (xbest ))/σ(x)) + σ(x) · φ((μ(x) − f (xbest ))/σ(x)), where .φ(·) is the standard 
normal probability density function.

- Upper Confidence Bound (UCB): .α(x) = μ(x) + κ · σ(x), where .κ is a 
parameter that controls the trade-off between exploration and exploitation. 

The next point to evaluate is chosen as the one that maximizes the acquisition 
function (line 4). This point is then evaluated on the objective function, and the new 
observation is added to the data set (lines 5–6). The surrogate model is updated with 
the new observation, and the process is repeated until a stopping criterion is met. 

Bayesian optimization has been successfully applied to a wide range of problems, 
including hyper-parameter tuning of machine learning algorithms [ 13], robot gait 
optimization [ 3], and chemical design [ 4]. The main advantage of BO is its sample 
efficiency, as it can find good solutions with a relatively small number of function 
evaluations. However, the performance of BO depends on the choice of the surrogate 
model and the acquisition function, as well as the dimensionality of the problem. In 
high-dimensional spaces, the number of observations required to build an accurate 
surrogate model increases exponentially, which limits the applicability of BO to 
problems with a moderate number of variables. 

2.4 Running Time Analysis 

The running time of an algorithm is a measure of its computational complexity, which 
is usually expressed as a function of the input size. In the context of EAs, the running 
time is often analyzed in terms of the expected number of function evaluations needed 
to find the optimal solution or to achieve a certain approximation ratio. 

One common approach to running time analysis is to model the EA as a Markov 
chain [ 7]. A Markov chain is a stochastic process that transitions between states, 
where the transition probabilities depend only on the current state. By defining the 
states of the Markov chain as the populations of the EA and the transition probabilities 
based on the selection and variation operators, we can analyze the expected time for 
the EA to reach a desired state, such as the global optimum. 

Two classical methods for running time analysis of EAs modeled as Markov chains 
are the fitness level method [ 14], the drift analysis [ 8], and the convergence-based 
analysis [ 16]. The fitness level method partitions the search space into a sequence 
of fitness levels and estimates the expected time to progress from one level to the 
next. The total running time is then the sum of the expected times over all levels. 
Drift analysis measures the expected progress towards the optimal solution in each



2.5 No Free Lunch in Optimization 17

iteration and uses this to bound the total running time. Convergence-based anal-
ysis bridges the convergence rate and the running time complexity. The running 
time complexity can thus be derived from the convergence rate. The switch analysis 
[ 17] is an advanced analysis approach that can unify these three approaches. More 
comprehensive introduction of these analysis approaches can be found in [ 18]. 

However, running time analysis of EAs is still a challenging task, especially for 
complex problems and advanced EA variants, which is the same for other DFO 
methods. Techniques from probability theory, combinatorics, and graph theory are 
often employed to derive tight bounds on the running time. 

2.5 No Free Lunch in Optimization 

When considering general-purpose optimization techniques, the No Free Lunch 
(NFL) Theorem is a fundamental principle that should never be overlooked. 

The NFL Theorem, formulated by Wolpert and Macready [ 15], states that no 
optimization algorithm is universally better than any other when their performance 
is averaged across all possible problems. Specifically, the NFL theorem assumes 
that the algorithm has no prior knowledge about the objective function. Under 
this assumption, if an algorithm outperforms random search on some problems, 
it must underperform on others when uniformly averaged over all possible objective 
functions. 

Mathematically, let.X be a finite solution space,. Y a finite set of objective values, 
and .F the set of all possible objective functions . f : X → Y . Let  .d(·, ·) be a per-
formance measure, such as the best function value found within a fixed number of 
iterations. The NFL Theorem states that for any two algorithms .a1 and . a2, 

.

∑

f ∈F
d(a1, f ) =

∑

f ∈F
d(a2, f ). (2.1) 

An intuitive proof is given below. 

Proof Consider the set of all possible objective functions . f : X → Y , where 
the algorithm has no prior knowledge. For two algorithms .A1 and .A2, define a 
performance measure .d(A, f ) that quantifies how well . A performs on . f . 

Fix a sequence of .m solutions that .A1 evaluates for a given . f . There are . |Y|m
possible ways to assign objective values to these solutions. Among these, some 
assignments favor .A1, while others do not. 

Now consider .A2. For each assignment favoring.A1, there exists a corresponding 
assignment favoring.A2 to the same extent, as.A2 could simply evaluate the solutions 
in a different order. 

Therefore, for every objective function where .A1 outperforms .A2, there exists 
another where .A2 outperforms .A1 by the same margin. Averaged over all possible 
objective functions, their performance is equal.
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This argument holds for any two algorithms and any performance measure. Thus, 
without prior knowledge, no algorithm can outperform another when averaged over 
all possible functions. �

The NFL Theorem implies that the performance of any two algorithms is equal 
when averaged over all possible objective functions. It reveals the fundamental dif-
ficulty in designing general-purpose optimization algorithms—prior knowledge is 
necessary for an algorithm to outperform random search. Without prior knowledge, 
an algorithm can only excel on a subset of problems at the cost of inferior performance 
on others. 

This leads to a crucial question: for a given optimization algorithm, on which 
subset of problems does it excel? Identifying the characteristics of problems that 
an algorithm is well-suited for is one of the most significant considerations in the 
design and analysis of DFO algorithms. Understanding an algorithm’s strengths and 
limitations allows researchers and practitioners to make informed decisions when 
selecting or designing optimization techniques for specific applications. 
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Chapter 3 
Framework 

Abstract This chapter introduces the Sampling-and-Learning (SAL) framework, a 
unifying approach to understanding derivative-free optimization (DFO) algorithms. 
The SAL framework consists of two main stages: sampling, where new candidate 
solutions are generated, and learning, where promising solutions are selected to guide 
future sampling. The framework iteratively alternates between these stages, using a 
learned model to represent the algorithm’s belief about promising regions in the 
solution space. The chapter also presents a simplified version called the Sampling-
and-Classification (SAC) framework, which uses binary classification to distinguish 
between promising and unpromising solutions. The SAL and SAC frameworks 
provide a statistical perspective on how DFO algorithms balance exploration and 
exploitation, offering a systematic way to analyze and design optimization methods. 
The chapter concludes by discussing the challenges and potential of these frame-
works, including the computational overhead of learning and the need for accurate 
models to guide the search effectively. 

In the previous chapter, we explored a variety of derivative-free optimization algo-
rithms, including evolutionary algorithms, estimation of distribution algorithms, and 
Bayesian optimization. These algorithms are particularly effective for solving com-
plex optimization problems where direct analytical evaluation of the objective func-
tion is either infeasible or too computationally expensive. They have been success-
fully applied in diverse fields where objective functions remain hidden or are too 
intricate for traditional gradient-based methods. 

Upon closer examination, the reader may have observed a recurring theme or 
underlying principle across these seemingly different algorithms. Despite their dis-
tinct methodologies, these algorithms appear to share a common strategy or concep-
tual foundation. In this chapter, we aim to formalize this observation by introducing 
a unifying framework known as the sampling-and-learning (SAL) framework [ 5, 6]. 
This framework provides a statistical lens through which we can better understand the 
mechanisms that drive the success of these heuristics. By examining these algorithms 
from a statistical perspective, the SAL framework helps explain how they effectively 
balance exploration and exploitation, ultimately guiding the search process toward 
optimal solutions. 
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3.1 Sampling and Learning Framework 

The SAL framework consists of two main stages: the sampling stage, which models 
the generation of new candidate solutions, and the learning stage, which models the 
selection of promising solutions to guide the next sampling step. The framework starts 
with a randomly initialized set of solutions and then iteratively alternates between 
the sampling and learning stages. In the sampling stage, new solutions are generated 
based on the current learned model, which represents the algorithm’s belief about 
the location of promising solutions. In the learning stage, the generated solutions are 
evaluated, and the learned model is updated based on the obtained information. This 
process continues until a satisfactory solution is found or a predetermined termination 
criterion is met. 

Formally, let .X denote the solution space, and let . f : X → R be the objective 
function to be minimized. The SAL framework maintains a set of candidate solutions 
. St at each iteration. t . The learning stage at iteration. t consists of constructing a learned 
model .ht based on the current solution set .St−1 and their corresponding objective 
function values. The model .ht represents the algorithm’s belief about the location 
of promising solutions in the solution space. In the sampling stage, a new set of 
candidate solutions .St is generated by sampling from a distribution .Tht induced by 
the learned model . ht . 

The learning stage can be formally described as follows: 

.ht = L(St−1, f (St−1), ht−1), (3.1) 

where .L is the learning algorithm, .St−1 is the set of candidate solutions from the 
previous iteration, . f (St−1) are their corresponding objective function values, and 
.ht−1 is the learned model from the previous iteration. The learning algorithm . L
can be any suitable machine learning technique, such as regression, classification, or 
density estimation, depending on the specific optimization algorithm being modeled. 

The sampling stage can be formally described as follows: 

.St = {xi ∼ Tht | i = 1, . . . ,mt }, (3.2) 

where.Tht is the sampling distribution induced by the learned model. ht , and.mt is the 
number of candidate solutions to be generated at iteration. t . The sampling distribution 
.Tht reflects the algorithm’s belief about the location of promising solutions and is 
used to guide the search towards regions of the solution space that are likely to contain 
good solutions. 

The SAL framework can be summarized in the following algorithm: 
The SAL framework provides a general template for modeling and analyzing a 

wide range of derivative-free optimization algorithms. By specifying different learn-
ing algorithms. L and sampling distribution transformers. T , the framework can cap-
ture the behavior of various algorithms, such as evolutionary algorithms, estimation 
of distribution algorithms, and Bayesian optimization.
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Algorithm 3.1 Sampling and Learning (SAL) Framework 
Require: Objective function. f , learning algorithm. L, sampling distribution transformer. T , number 

of iterations. T , initial solution set. S0
Ensure: Best solution found 
1: for .t = 1, . . . , T do 
2: Construct the learned model. ht = L(St−1, f (St−1), ht−1)

3: Generate a new set of candidate solutions. St = {xi ∼ Tht | i = 1, . . . ,mt }
4: Evaluate the objective function. f for each solution in. St
5: end for 
6: return Best solution found in. 

⋃T
t=0 St

3.2 Casting Previous DFO Methods Into the SAL 
Framework 

The SAL framework provides a unifying perspective on various derivative-free opti-
mization methods. By identifying the key components of these methods and mapping 
them to the sampling and learning stages of the SAL framework, we can gain insights 
into their underlying principles and develop a more systematic understanding of their 
behavior. In this section, we will discuss how some popular DFO methods, namely 
evolutionary algorithms [ 2], estimation of distribution algorithms [ 4], and Bayesian 
optimization, can be cast into the SAL framework. 

3.2.1 Estimation of Distribution Algorithms 

Estimation of distribution algorithms (EDAs) are a class of optimization algorithms 
that explicitly build a probabilistic model of promising solutions and use this model to 
generate new candidate solutions. EDAs can be naturally cast into the SAL framework 
as follows: 

• Sampling stage: In EDAs, the sampling stage involves generating new candi-
date solutions by sampling from the learned probabilistic model. The probabilistic 
model captures the distribution of promising solutions in the solution space and 
guides the search towards regions of high probability. The specific sampling mech-
anism depends on the type of probabilistic model employed, such as Gaussian 
models, Bayesian networks, or Markov random fields. 

• Learning stage: The learning stage in EDAs consists of building or updating the 
probabilistic model based on the selected solutions from the previous iteration. The 
selected solutions are typically the best-performing ones according to the objective 
function. The probabilistic model is learned using statistical learning techniques, 
such as maximum likelihood estimation, Bayesian inference, or graphical model 
learning. The learned model represents the algorithm’s belief about the distribution 
of promising solutions.
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• Learned model: In EDAs, the learned model is explicitly represented as a proba-
bilistic model, such as a Gaussian distribution, a Bayesian network, or a Markov 
random field. The probabilistic model captures the dependencies and relationships 
among the variables of the optimization problem and provides a compact repre-
sentation of the promising regions in the solution space. The learned model is used 
to guide the sampling stage in the next iteration. 

3.2.2 Bayesian Optimization 

Bayesian optimization (BO) is a class of optimization algorithms that build a sur-
rogate model of the objective function and use this model to guide the search for 
optimal solutions. BO algorithms can be cast into the SAL framework as follows: 

• Sampling stage: In BO, the sampling stage involves selecting the next point to 
evaluate based on the surrogate model and an acquisition function. The acquisi-
tion function balances exploration and exploitation by considering both the pre-
dicted performance and the uncertainty of the surrogate model. Common acqui-
sition functions include expected improvement, probability of improvement, and 
upper confidence bound. The selected point is then evaluated using the expensive 
objective function. 

• Learning stage: The learning stage in BO consists of updating the surrogate 
model based on the observed data points, i.e., the evaluated solutions and their 
corresponding objective function values. The surrogate model is typically a prob-
abilistic model, such as a Gaussian process, that provides a probabilistic estimate 
of the objective function. The model is updated using Bayesian inference tech-
niques, such as maximum likelihood estimation or Markov chain Monte Carlo 
(MCMC) methods. 

• Learned model: In BO, the learned model is the surrogate model, which is a 
probabilistic representation of the objective function. The surrogate model captures 
the knowledge about the function’s behavior based on the observed data points. It 
provides a probabilistic estimate of the function value at any point in the solution 
space, along with an associated uncertainty. The learned model is used to guide 
the sampling stage by informing the acquisition function. 

3.2.3 Evolutionary Algorithms 

Evolutionary algorithms (EAs) are a class of optimization algorithms inspired by 
the principles of natural evolution. Classical EAs maintain a population of candidate 
solutions and iteratively evolve the population through selection, reproduction, and
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variation operators. They do not maintain explicitly models of distribution. How-
ever, it should be noticed that the distribution can be equivalently expressed by the 
population of solutions. Likewise, in machine learning community, there is similarly 
a branch of case-based learning algorithms that maintains a set of samples, such 
as .k-nearest neighbor classifiers. Therefore, the main components of EAs, such as 
genetic algorithms (GAs), evolution strategies (ES), and differential evolution (DE), 
can be mapped to the SAL framework as follows: 

• Sampling stage: In EAs, the sampling stage corresponds to the generation of new 
candidate solutions through variation operators, such as mutation and crossover. 
These operators introduce diversity into the population and explore the solution 
space. For example, in GAs, mutation randomly modifies individual elements of a 
solution, while crossover combines genetic material from parent solutions to create 
offspring. The specific choice of variation operators depends on the representation 
of the solutions and the problem domain. 

• Learning stage: The learning stage in EAs is represented by the selection operator, 
which chooses promising solutions from the current population to form the next 
generation. Selection operators assign higher probabilities to solutions with better 
fitness values, thus guiding the search towards promising regions of the solution 
space. Common selection schemes include tournament selection, roulette wheel 
selection, and truncation selection. The selected solutions serve as the basis for 
the next iteration of the algorithm. 

• Learned model: In the context of EAs, the learned model can be interpreted as 
the distribution of the selected solutions in the solution space. The selection oper-
ator implicitly learns the characteristics of promising solutions by favoring those 
with higher fitness values. The distribution of the selected solutions represents the 
algorithm’s belief about the location of good solutions and guides the sampling 
stage in the next iteration. 

3.2.4 Other DFO Methods 

The SAL framework can also accommodate other derivative-free optimization 
methods, such as Ant Colony Optimization [ 1], Particle Swarm Optimization [ 3], 
etc. These methods can be cast into the SAL framework by identifying the key 
components of sampling and learning: 

• Sampling stage: The sampling stage in these methods involves generating new 
candidate solutions based on a set of predefined rules or heuristics. For example, 
pattern search methods explore the solution space by generating points along 
coordinate directions, while simplex methods create new points by reflecting, 
expanding, or contracting the current simplex. 

• Learning stage: The learning stage in these methods typically involves updating 
the internal parameters or the search strategy based on the observed function values.
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For example, trust-region methods adjust the size of the trust region based on the 
agreement between the surrogate model and the actual function values. 

• Learned model: The learned model in these methods may not be as explicit as 
in EDAs or BO, but it still represents the algorithm’s belief about the promising 
regions of the solution space. For example, in pattern search methods, the learned 
model can be considered as the set of search directions that have led to successful 
steps in previous iterations. 

By mapping the key components of these methods to the sampling and learning 
stages, the SAL framework provides a common language to analyze and compare 
different DFO methods. We can understand the optimization power of DFO in a 
unified way. It also facilitates the development of hybrid approaches that combine 
the strengths of various methods. We can further leverage the theoretical founda-
tions and analysis techniques developed for the framework to gain insights into the 
convergence properties and performance of these methods. This unified perspective 
helps in identifying the key factors that influence the effectiveness of DFO methods 
and guides the design of more efficient and principled optimization algorithms. 

3.3 Sampling and Classification Framework 

In addition to the general SAL framework, we also introduce a simplified version 
called the sampling-and-classification (SAC) framework. Before that, let’s firstly 
re-design the SAL framework specifically in Algorithm 3.2 

Algorithm 3.2 The sampling-and-learning (SAL) framework 
Require: 

.α∗ > 0: Approximation level 

.T ∈ N
+: Number of iterations 

.m0, . . . ,mT ∈ N
+: Number of samples 

.λ ∈ [0, 1]: Balancing parameter 

. L: Learning algorithm 

. T : Distribution transformation of hypothesis 
Ensure: 
1: Collect.S0 = {x1, . . . , xm0 } by i.i.d. sampling from. UX
2: . x̃ = argminx∈S0 f (x)
3: for .t = 1 to. T do 
4: Learn. ht = L(St−1, f (St−1), ht−1, t)
5: for .i = 1 to.mt do 

6: Sample.xi from. 

{
Tht , with probability λ

UX , with probability 1 − λ

7: . St = St ∪ {xi }
8: end for 
9: . x̃ = argminx∈St∪{x̃} f (x)
10: end for 
11: return .x̃
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The SAL framework starts with random sampling in Step 1, like all derivative-free 
optimization methods. Steps 2 and 9 record the best-so-far solutions throughout the 
search. It follows a cycle consisting of learning and sampling stages. In Step 4, it 
learns a hypothesis .ht (i.e., a mapping from .X to . R) via the learning algorithm . L. 
The learning algorithm allows taking the latest samples.St−1, the labels. f (St−1), the  
last hypothesis .ht−1, and the iteration time . t into account. Different derivative-free 
optimization methods may make different use of them. In Steps 5 to 8, it samples 
from the distribution transformed from the hypothesis and the whole solution space, 
balanced by a probability, where the sample set .St is initialized to be empty by 
default. The distribution .Tht implies the potentially good regions learned by . ht . 

Comparing with the framework in Algorithm 3.1, Algorithm 3.2 specifies the sam-
pling distribution to be combined with the uniform distribution and the transformed 
distribution from the model. Note that this design reflects the exploration-exploitation 
balance in many DFO methods, and the uniform sampling ensures that the algorithm 
will converge to optimal solutions. 

Now we can see that the SAL framework still leaves the learning algorithm and the 
model transformed distribution unspecified. We then choose to implement the learn-
ing algorithm to be classification algorithms, which result in classification models 
that lead to simple understanding and analysis of the framework as we will present 
in later chapters. 

The sampling-and-classification (SAC) framework is a special case of the SAL 
framework where the learning stage employs a binary classification model to distin-
guish between promising and unpromising solutions. The classifier is trained on the 
evaluated solutions, labeling them as positive (promising) or negative (unpromising) 
based on a predefined threshold. The sampling stage then generates new solutions 
by focusing on the regions classified as promising by the learned model. 

Formally, let.ht : X → {−1,+1} be a binary classifier learned at iteration. t , where 
.ht (x) = +1 indicates that solution . x is predicted to be promising, and . ht (x) = −1
indicates that . x is predicted to be unpromising. The learning stage in the SAC 
framework can be described as follows: 

.ht = C({(x, I[ f (x) ≤ αt ]) | x ∈ St−1}), (3.3) 

where. C is a binary classification algorithm,.I[·] is the indicator function, and.αt is a 
predefined threshold value at iteration. t . The classifier.ht is trained on the solution set 
.St−1 from the previous iteration, with each solution labeled as positive if its objective 
function value is below the threshold .αt and negative otherwise. 

The sampling stage in the SAC framework focuses on generating new solutions 
from the regions classified as promising by the learned classifier. This can be achieved 
by sampling from a distribution that assigns higher probabilities to solutions in the 
positive region of the classifier. One common approach is to use a truncated uniform 
distribution over the positive region:
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.Tht (x) ∝
{
U(x) if ht (x) = +1

0 otherwise
, (3.4) 

where . U is the uniform distribution over the solution space . X . 
The implementation of the SAC framework only differs from the SAL framework 

in the learning algorithm, as summarized in Algorithm 3.3 

Algorithm 3.3 The sampling-and-classification (SAC) framework 
Require: 

.α∗ > 0: Approximation level 

.T ∈ N
+: Number of iterations 

.m0, . . . ,mT ∈ N
+: Number of samples 

.α1, . . . ,αT : Level parameters 

.λ ∈ [0, 1]: Balancing parameter 

. L: Learning algorithm 

. T : Distribution transformation of hypothesis 
Ensure: 
1: Collect.S0 = {x1, . . . , xm0 } by i.i.d. sampling from. UX
2: . x̃ = argminx∈S0 f (x)
3: for .t = 1 to. T do 
4: Learn a binary classifier. ht = C({(x, I[ f (x) ≤ αt ]) | x ∈ St−1})
5: for .i = 1 to.mt do 

6: Sample.xi from. 

{
Tht , with probability λ

UX , with probability 1 − λ

7: . St = St ∪ {xi }
8: end for 
9: . x̃ = argminx∈St∪{x̃} f (x)
10: end for 
11: return . x̃

The effectiveness of the SAC framework depends on several factors, such as the 
choice of the classification algorithm, the selection of the threshold values, and the 
sampling strategy. In the next chapter, we will identify the key factors that influence 
its efficiency and provide guidelines for designing effective SAC algorithms. 

3.4 Summary 

In this chapter, we introduced the sampling-and-learning (SAL) and sampling-and-
classification (SAC) frameworks as unifying principles behind various derivative-
free optimization algorithms. The SAL framework provides a general template for 
modeling and analyzing algorithms that alternate between a sampling stage and a 
learning stage. The SAC framework is a simplified version of the SAL framework 
that employs a binary classification model to guide the search process.
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The SAL and SAC frameworks offer a principled way to design and ana-
lyze derivative-free optimization algorithms. By formalizing the common strategies 
employed by these algorithms, the frameworks provide a deeper understanding of 
their mechanisms and allow for a more systematic analysis of their performance. The 
frameworks also open up new avenues for designing novel optimization algorithms 
by exploring different learning algorithms, sampling strategies, and hybridization 
techniques. 

Meanwhile, the SAL and SAC frameworks also pose several challenges. The 
performance of these frameworks heavily depends on the quality of the learned 
models and the effectiveness of the sampling strategies. If the learned models are 
not accurate or do not capture the relevant features of the optimization problem, 
the search process may be misguided, leading to poor performance. Similarly, if 
the sampling strategies do not effectively explore the solution space or focus on the 
promising regions, the algorithm may get stuck in suboptimal solutions. 

Another challenge is the computational overhead introduced by the learning com-
ponent. Training the models and generating samples from complex distributions can 
be computationally expensive, especially in high-dimensional solution spaces. Bal-
ancing the cost of learning with the cost of function evaluations is crucial for the 
overall efficiency of the algorithm. 

In the next chapter, we will delve into the theoretical foundations of the SAL and 
SAC frameworks. We will analyze their convergence properties, derive performance 
bounds, and identify the key factors that influence their efficiency. Through this 
theoretical investigation, we aim to provide a rigorous understanding of the strengths 
and limitations of these frameworks and guide the design of new derivative-free 
optimization algorithms. 
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Chapter 4 
Theoretical Foundation 

Abstract This chapter provides a theoretical foundation for the Sampling-and-
Learning (SAL) and Sampling-and-Classification (SAC) frameworks in derivative-
free optimization (DFO). It introduces the concept of.(ε, δ)-query complexity, which 
measures the number of function evaluations required to find an .ε-optimal solu-
tion with probability.1 − δ. The chapter derives general performance bounds for the 
SAL framework and identifies two key factors influencing the SAC framework’s 
efficiency: error-target dependence and shrinking rate. These factors measure the 
alignment between the learned model and the target solution set, and the reduction in 
the search space volume, respectively. The analysis shows that SAC algorithms can 
achieve polynomial query complexity for functions with local Lipschitz continuity 
and bounded packing/covering numbers. The chapter concludes by discussing practi-
cal implications for designing efficient DFO algorithms, emphasizing the importance 
of model alignment and problem geometry in optimization performance. 

Despite the success of DFO algorithms in practice, their theoretical foundations have 
been relatively less explored compared to their gradient-based counterparts. Rigorous 
theoretical analysis is crucial for understanding the convergence properties, sample 
complexity, and performance guarantees of these algorithms. It provides insights 
into the key factors that influence their efficiency and guides the design of more 
principled and effective optimization methods. 

In the previous chapter, we introduced the sampling-and-learning (SAL) and 
sampling-and-classification (SAC) frameworks as unifying principles behind var-
ious DFO algorithms. These frameworks provide a general template for modeling 
and analyzing algorithms that alternate between a sampling stage and a learning 
stage. The SAL framework encompasses a wide range of DFO algorithms, while the 
SAC framework focuses on algorithms that employ a binary classification model to 
guide the search process. 

The SAL and SAC frameworks offer a principled way to design and analyze 
DFO algorithms by formalizing the common strategies employed by these algo-
rithms. They capture the essence of the exploration-exploitation trade-off, which is 
fundamental to the success of any optimization algorithm. By leveraging the tools 
and techniques from statistical learning theory and probability theory, we can derive 
performance bounds and convergence guarantees for these frameworks. 
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In this chapter, we present a rigorous theoretical analysis of the SAL and SAC 
frameworks, focusing on their convergence properties, sample complexity, and the 
key factors influencing their efficiency. We introduce the concept of .(ε, δ)-query 
complexity, which measures the number of function evaluations required by an algo-
rithm to find an .ε-optimal solution with probability at least .1 − δ. This complexity 
measure provides a unified way to compare the performance of different DFO algo-
rithms and understand their scalability with respect to the problem dimension and 
the desired accuracy. 

We start by deriving a general performance bound for the SAL framework in 
terms of the average success probability of sampling from the learned models. This 
bound highlights the importance of the learning stage in guiding the search towards 
promising regions of the solution space. We then specialize the analysis to the SAC 
framework and identify two key factors that influence its performance: the error-
target dependence and the shrinking rate. The error-target dependence measures the 
alignment between the classification error and the target .ε-optimal set, while the 
shrinking rate quantifies the reduction in the volume of the promising region across 
iterations. 

To illustrate the applicability of our theoretical results, we consider two classes of 
objective functions: functions satisfying the local Lipschitz condition and functions 
with bounded packing and covering numbers. For functions satisfying the local Lip-
schitz condition, we show that the SAC framework can achieve a polynomial query 
complexity if the error-target dependence is strictly less than one and the shrinking 
rate is positive. For functions with bounded packing and covering numbers, we derive 
a sufficient condition under which the SAC framework achieves a polynomial query 
complexity. 

4.1 Problem Setting and Notations 

We consider general minimization problems. 

Definition 4.1 (Minimization Problem) A minimization problem consists of a solu-
tion space .X and a function . f : X → R. The goal is to find a solution .x∗ ∈ X such 
that . f (x∗) ≤ f (x) for all .x ∈ X . 

We assume without loss of generality that the value of. f is bounded in.[0, 1], i.e., 
.∀x ∈ X : f (x) ∈ [0, 1]. Given an arbitrary function . g with a bounded value range 
over the input domain, the bound can be implemented by a simple normalization 

. f (x) = g(x) − g(x∗)
maxx′ g(x′) − g(x∗)

.

Therefore, under our assumption, the optimal value is . 0.
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Throughout this chapter, we use the following notations: 

• . A: an optimization algorithm. 
• . D: a probability distribution over the solution space . X . 
• . U : the uniform distribution over . X . 
• . H: a hypothesis space, where each hypothesis .h ∈ H is a function mapping from 

.X to .{−1,+1}. 
• .Dh : the region of .X where a hypothesis .h ∈ H predicts positive, i.e., . Dh = {x ∈

X | h(x) = +1}. 
• .Dα: the .α-sublevel set of . f , i.e., .Dα = {x ∈ X | f (x) ≤ α}. 
• .Dε: the .ε-optimal set, i.e., .Dε = {x ∈ X | f (x) − f (x∗) ≤ ε}. 
• .μ(A) = |A|/|X |: the ratio of set . A taking place in . X . 
• .Pr(·): the probability of an event. 
• .E[·]: the expectation of a random variable. 
• .poly(· · · ): represents the set of all polynomials of the related variables. 
• .superpoly(· · · ): represents the set of all functions that grow faster than any 
function in .poly(· · · ) with the related variables. 

4.2 (. ε, . δ)-Query Complexity 

To analyze the performance of the SAL and SAC frameworks, we introduce the con-
cept of.(ε, δ)-query complexity. Given an algorithm. A, the.(ε, δ)-query complexity is 
the number of objective function evaluations required by. A to find an.ε-optimal solu-
tion with probability at least .1 − δ. This complexity measure reflects our belief that 
DFO methods are, instead of accurate solvers, powerful approximate solvers. They 
can produce good results in many, but not all, cases. It also reflects our adherence to 
the No Free Lunch theorem. 

Definition 4.2 (.(ε, δ)-query complexity) Given an optimization algorithm . A, an  
objective function. f , and constants .ε > 0 and.0 < δ < 1, the .(ε, δ)-query complex-
ity of. A on. f , denoted as.TA, f (ε, δ), is the minimum number of function evaluations 
. T such that 

. Pr( f (AT ) − f (x∗) ≤ ε) ≥ 1 − δ, (4.1) 

where .AT denotes the solution returned by .A after . T function evaluations. 

The .(ε, δ)-query complexity provides a way to quantify the efficiency of an opti-
mization algorithm in terms of the number of function evaluations required to achieve 
a desired level of accuracy with high probability. It allows us to compare different 
algorithms and analyze their performance guarantees.
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4.3 Performance Bound for SAL Framework 

We start by deriving a general upper bound on the .(ε, δ)-query complexity of the 
SAL framework. The bound depends on two key quantities: the average success 
probability of sampling from the learned model and the number of samples required 
to achieve a certain success probability. 

Theorem 4.1 (General performance bound for SAL) Given an objective function . f
and constants .ε > 0 and .0 < δ < 1, the .(ε, δ)-query complexity of a SAL algorithm 
.A on . f is upper bounded by 

.TA, f (ε, δ) ≤ O

(
max

{ 1

(1 − λ)Pru + λPrh
ln

1

δ
, m0 +

T∑
t=1

mPrht

})
, (4.2) 

where . λ is the balancing parameter, 

. Pru =
∫
Dα∗

UX (x) dx and Prht =
∫
Dα∗

Tht (x) dx

are the success probability of uniform sampling and hypothesis distribution, 
respectively, 

. Prh =
∑T

t=1 mt · Prht∑T
t=1 mt

is the average success probability of sampling from the learned hypothesis, .mPrht is 
the sample size required to obtain .Prht , and .Dα∗ = {x ∈ X | f (x) ≤ α∗}. 
Proof The .m0 + ∑T

t=1 mPrht part is natural. We prove the rest part of the bound. 
Let’s consider the probability that after .T iterations, the SAL algorithm outputs a 
bad solution . x such that . f (x) > α∗. Since . x is the best solution among all sampled 
examples, the probability is the joint of events that every step of the sampling does 
not generate such a good solution. 

Case 1. For the sampling from the uniform distribution over the whole solution 
space . X , the probability of failure is .1 − Pru . 

Case 2. For the sampling from the learned hypothesis .T (ht ), the probability of 
failure is denoted as .1 − Prht . 

Since every sampling is independent, we can expand the probability of overall 
failures, i.e.,
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. Pr( f (x) > α∗)

= (1 − Pru)
m0 ·

T∏
t=1

mt∑
i=0

(
mt

i

)
(1 − λ)iλmt−i (1 − Pru)

i (1 − Prht )
mt−i

= (1 − Pru)
m0

T∏
t=1

(
(1 − λ)(1 − Pru) + λ(1 − Prht )

)mt

= (1 − Pru)
m0

T∏
t=1

(
1 − (1 − λ)Pru − λPrht

)mt

≤ e−Pru ·m0

T∏
t=1

e−((1−λ)Prumt+λPrht mt)

= e
−

(
Pru ·m0+(1−λ)

∑T
t=1 Prumt+λ

∑T
t=1 Prht mt

)
, (4.3) 

where the inequality is by .(1 − x) ≤ e−x for .x ∈ [0, 1]. 
At the same time, letting .Pr( f (x) > α∗) < δ, we get 

.e
−

(
Pru ·m0+(1−λ)

∑T
t=1 Prumt+λ

∑T
t=1 Prht mt

)
< δ, (4.4) 

which results in the theorem by noticing that .m� >
∑T

t=1 mt . �

Some readers may question the assumption of independence in iterative sampling, 
given that it is natural for the hypothesis learned in one iteration to be influenced by 
the samples drawn in previous iterations. This is a valid concern since, in many cases, 
the results of each iteration are used to refine the sampling process in subsequent 
steps, potentially introducing dependencies. 

However, it is important to clarify that in this context, we are focusing solely 
on the sampling process itself, not the hypothesis or model that is derived from the 
samples. The independence we refer to applies to the act of sampling, where each set 
of samples is considered to be drawn independently from the underlying distribution, 
regardless of the hypothesis generated in prior iterations. This means that while the 
hypothesis evolves based on previous iterations, the sampling steps can still be treated 
as independent actions under the statistical assumptions of the framework. 

That said, the calculation of probabilities and any potential dependencies arising 
from the iterative learning process are more complex. These will be discussed in 
detail later in the chapter, where we explore how the interplay between sampling-
and-learning affects the overall convergence and performance of the algorithm.
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4.4 Performance Bound for SAC Framework 

To further proceed with the analysis, we consider the SAC framework in this section. 
According to Theorem 4.1, we need to estimate an upper bound of .Prh , i.e., how 
likely the distribution .Tht will lead to a good solution. 

We have a lower bound on the success probability as in Lemma 4.1, which implies 
that without any prior knowledge, uniform distribution is the best worst case. 

Lemma 4.1 For any minimization problem . f , any approximation level .α∗ > 0, any 
hypothesis . h, the probability that a sample drawn from an arbitrary distribution . Th
defined on .Dh will lead to a solution in .Dα∗ is lower bounded as 

. Prh = Pr(x ∈ Dα∗ | x ∼ UDh ) ≥ μ(Dα∗ ∩ Dh)

μ(Dh)
− √

2DKL(Th‖UDh )

Proof The proof starts from the definition of the probability, 

. Prh =
∫
Dh

Th(x) · I(x ∈ Dα∗) dx

=
∫
Dh

(Th(x) − UDh (x) + UDh (x)) · I(x ∈ Dα∗) dx

= μ(Dα∗ ∩ Dh)

μ(Dh)
+

∫
Dh

(Th(x) − UDh (x)) · I(x ∈ Dα∗) dx

≥ μ(Dα∗ ∩ Dh)

μ(Dh)
− sup

f :X→[−1,1]

∫
Dh

| f (x)Th(x) − f (x)UDh (x)| dx

≥ μ(Dα∗ ∩ Dh)

μ(Dh)
− √

2DKL(Th‖UDh ), (4.5) 

where the last inequality is by Pinsker’s inequality. �

We cannot determine.Dh , but we know that. h is derived by a binary classification 
learning algorithm from a data set which is labeled according to .Dαt for given . t . A  
classifier may not be completely correct. We denote .εD as the generalization error 
of . h under the distribution . D, defined as 

.εD =
∫
X
D(x)I

(
h(x) �= (2I(x ∈ Dαt ) − 1)

)
dx. (4.6) 

Meanwhile, we denote .ε̂D as the training error of . h, which is the error on the data 
set drawn from the distribution . D. 

For binary classification, we know that the generalization error, which is the 
expected misclassification rate, can be bounded above by the training error, which 
is the misclassification rate in the seen examples, as well as the generalization gap 
involving the complexity of the hypothesis space indicated by the VC-dimension [ 3], 
as in Lemma 4.2.
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Lemma 4.2 ([ 3]) Let.H = {h : X → {−1,+1}} be the hypothesis space containing 
a family of binary classification functions and .VC(H) = d. If there exist .m samples 
i.i.d. from .X according to some fixed unknown distribution . D, then, .∀ h ∈ H and 
.∀ 0 < η < 1, the following upper bound holds true with probability at least .1 − η: 

.εD ≤ ε̂D +
√
8m−1

(
d log (2emd−1) + log (4η−1)

)
(4.7) 

where.εD is the expected error rate of. h over. D and.ε̂D is the error rate in the sampled 
examples from . D. When .ε̂D = 0, 

.εD ≤ 2m−1(d log (2emd−1) + log (2η−1)
)
. (4.8) 

Again by Pinsker’s inequality, we know that the error.εD under the distribution. D
can be converted to the error .εU under the uniform distribution, as 

. εU ≤ εD + √
2DKL(D‖U)

≤ ε̂D +
√

8

m

(
d log 2emd−1 + log 4η−1

) + √
2DKL(D‖U), (4.9) 

where we only take into account the event that the generalization inequality holds with 
probability .1 − η. For simplicity, we denote the right-hand side as .�m,η

ε̂D,d,DKL (D‖U)
, 

which decreases with .m and . η, and increases with .ε̂D, . d, and .DKL(D‖U). 
We can use this result to eliminate the need for.Dh in Lemma 4.1. In every iteration 

of SAC algorithms, there are .mt samples collected. 

Theorem 4.2 For any minimization problem. f , any constant.η > 0, and any approx-
imation level .α∗ > 0, the average success probability of sampling from the learned 
hypothesis of any SAC algorithm is bounded below as 

. Prh ≥ 1 − η∑T
t=1 mt

T∑
t=1

mt

(
μ(Dα∗) − 2�mt ,η

ε̂Dt ,d,DKL (Dt‖UX )

μ(Dαt ) + �
mt ,η
ε̂Dt ,d,DKL (Dt‖UX )

−
√
2DKL(Tht‖UDht

)

)
,

(4.10) 

where .Dt = λTht + (1 − λ)UX is the sampling distribution at iteration . t , .ε̂Dt is the 
training error rate of . ht , and . d is the VC-dimension of the learning algorithm. 

Proof We follow Lemma 4.1, and examine the terms.μ(Dα∗ ∩ Dht ) and.μ(Dht ). By  
set operators, 

. μ(Dα∗ ∩ Dht ) = μ(Dα∗ ∪ Dht ) − μ(Dα∗�Dht )

≥ μ(Dα∗ ∪ Dht ) − μ(Dα∗�Dαt ) − μ(Dαt�Dht )

= μ(Dα∗ ∪ Dht ) − μ(Dα∗�Dαt ) − εU ,t

= μ(Dα∗ ∪ Dht ) + μ(Dα∗) − μ(Dαt ) − εU ,t , (4.11)
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where .� is the symmetric difference operator of two sets, the first inequality is by 
the triangle inequality, and the last equation is by the fact that .Dα∗ is contained in 
.Dαt . 

Since .

∣∣μ(Dht ) − μ(Dαt )
∣∣ ≤ μ(Dht�Dαt ) = εU ,t , we can bound .μ(Dht ) as 

. μ(Dαt ) + εU ,t ≥ μ(Dht ) ≥ μ(Dαt ) − εU ,t .

Applying the above bounds to Lemma 4.1, the success probability of sampling 
from.ht is lower bounded as 

. Prht ≥ μ(Dα∗ ∪ Dht )

μ(Dht )
− √

2DKL(Th‖UDh )

≥ μ(Dα∗ ∪ Dht ) + μ(Dα∗) − μ(Dαt ) − εU ,t

μ(Dαt ) + εU ,t
−

√
2DKL(Tht‖UDht

)

≥ μ(Dht ) + μ(Dα∗) − μ(Dαt ) − εU ,t

μ(Dαt ) + εU ,t
−

√
2DKL(Tht‖UDht

)

≥ μ(Dα∗) − 2εU ,t

μ(Dαt ) + εU ,t
−

√
2DKL(Tht‖UDht

). (4.12) 

Substituting this lower bound and the probability .1 − η of the generalization bound 
into .Prh yields the theorem. �

Combining Theorems 4.1 and 4.2 results in an upper bound on the sampling 
complexity of SAC algorithms. Although the expression is sophisticated, it can still 
reveal relative variables that generally affect the complexity. One could design vari-
ous distributions for .Th to sample potential solutions; however, without any a priori 
knowledge, uniform sampling will lead to the best worst-case performance. Mean-
while, without any a priori knowledge, a small training error at each stage from a 
learning algorithm with a small VC-dimension will improve the performance. 

4.5 Error-Target Dependence and Shrinking Rate 

Next, we focus on the SAC framework and derive a more specific upper bound on 
its .(ε, δ)-query complexity. The bound reveals two critical factors that influence the 
performance of the SAC framework: the error-target dependence and the shrinking 
rate. 

Definition 4.3 (Error-target.θ-dependence) Given a SAC algorithm . A, the error-
target dependence of .A is the smallest constant .θ ≥ 0 such that for all .ε > 0 and all 
iterations . t , 

. μ(Dε) · μ(Dαt �Dht ) − θμ(Dε)

≤ μ(Dε ∩ (Dαt �Dht ))

≤ μ(Dε) · μ(Dαt �Dht ) + θμ(Dε), (4.13)
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where the operator .� is the symmetric difference of two sets, i.e., . A1�A2 =
(A1 ∪ A2) − (A1 ∩ A2). It characterizes, when sampling a solution . x from .UX , the  
dependence between the random variable that whether.x ∈ Dαt�Dht and the random 
variable that whether .x ∈ Dε. 

The error-target dependence measures the alignment between the classification 
error and the target.ε-optimal set. A smaller. θ indicates a better alignment, with. θ = 0
implying that the classification error is independent of the target set. 

Definition 4.4 (.γ-Shrinking rate) Given a SAC algorithm . A, the shrinking rate of 
.A is the largest constant .γ > 0 such that for all iterations . t , 

.μ(Dht ) ≤ γμ(Dαt ). (4.14) 

The shrinking rate quantifies the reduction in the volume of the positive region of 
the learned hypothesis compared to the .αt -sublevel set. Note that the rate does not 
imply any overlap between the positive region and the .αt -sublevel set. 

Using these definitions, we can derive a performance bound for the SAC frame-
work with the parameters. θ and. γ. Note these parameters do not weaken the generality 
of the analysis. 

Theorem 4.3 (Parameterized bound for SAC) Given an objective function . f and 
constants .ε > 0 and .0 < δ < 1, the  .(ε, δ)-query complexity of a SAC algorithm . A
on . f with error-target dependence . θ and shrinking rate . γ is upper bounded by 

.TA, f (ε, δ) ≤ O

⎛
⎝ 1

μ(Dε)

(
(1 − λ) + λ

γT

T∑
t=1

1 − θ − εDt
1−λ

μ(Dαt )

)−1

ln
1

δ

⎞
⎠ , (4.15) 

where .λ ∈ [0, 1] is the balancing parameter and .εt is an upper bound on the 
generalization error of the learned hypothesis .ht at iteration . t . 

Theorem 4.3 discloses that the error-target.θ-dependence and the.γ-shrinking rate 
are two important factors. It can be observed that the smaller . θ and . γ, the better the 
query complexity. 

The proof of Theorem 4.3 follows a similar structure to the proof of Theorem 
4.1, with additional steps to incorporate the error-target dependence and the shrink-
ing rate. To prove this theorem, our strategy is to refine the bound of . μ(Dε ∩ Dht )

under the error-target .θ-dependence condition and the bound of .μ(Dht ) under the 
.γ-shrinking rate condition, respectively. 

Lemma 4.3 For the classifier-based optimization algorithms under the condition of 
error-target .θ-dependence, 

. μ(Dε ∩ Dht ) ≥ μ(Dε) · (1 − εUX ,t − θ)

holds for all . t , where .εUX ,t is the generalization error of .ht under .UX in iteration . t .
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Proof Assume w.l.o.g. that .ε ≤ αt for all . t , we have  

. μ(Dε ∩ Dht ) = μ(Dε) − μ(Dε ∩ (Dαt�Dht ))

≥ μ(Dε) − μ(Dε) · μ(Dαt�Dht ) − θμ(Dε)

= μ(Dε)(1 − μ(Dαt�Dht ) − θ),

where the first equality is by .Dε ⊆ Dαt , and the first inequality is by the condition 
of error-target .θ-dependence. 

Let .εUX ,t denote the generalization error of .ht under .UX in iteration . t , it can be 
verified directly that .εUX ,t = μ(Dαt�Dht ) under 0–1 loss. Thus, we have .μ(Dε ∩
Dht ) ≥ μ(Dε)(1 − εUX ,t − θ). �

In order to refine Lemma 4.3, i.e., lower bound .μ(Dε ∩ Dht ) using the gener-
alization error of .ht under the true sampling distribution . Dt = λUDht

+ (1 − λ)UX

instead of .UX , we need Lemma 4.4 below. It gives a relationship between .εUX ,t and 
.εDt , where .εDt is the generalization error of .ht under .Dt in iteration . t . 

Lemma 4.4 For any .ht ∈ H, let  .Dt = λUDht
+ (1 − λ)UX , it holds for all . t that 

.εUX ,t ≤ εDt /(1 − λ), where .λ ∈ (0, 1). 

Proof We only consider continuous domains situation and omit finite discrete 
domains situation since the proof procedure is quite similar. Let .D �=,t be the 
region where .ht makes mistakes. Splitting .D �=,t into .D+

�=,t = D �=,t ∩ Dht and 
.D−

�=,t = D �=,t − D+
�=,t , we can calculate the probability density . Dt (x) = λ 1

μ(Dht )
+

(1 − λ)
μ(Dht )

μ(X)
1

μ(Dht )
= λ 1

μ(Dht )
+ (1 − λ) 1

μ(X)
for any .x ∈ D+

�=,t , and . Dt (x) = (1 −
λ)

μ(X−Dht )

μ(X)
1

μ(X−Dht )
= (1 − λ) 1

μ(X)
for any .x ∈ D−

�=,t . Thus, 

. εDt =
∫
X
Dt (x) · I[ht makes mistake on x] dx

=
∫
D �=,t

Dt (x) dx =
∫
D+

�=,t

Dt (x) dx +
∫
D−

�=,t

Dt (x) dx

≥
∫
D+

�=,t
(1 − λ)

1

μ(X)
dx +

∫
D−

�=,t
(1 − λ)

1

μ(X)
dx

= (1 − λ)εUX ,t ,

which proves the lemma. �

Combining Lemma 4.4 with Lemma 4.3, we can conclude that . μ(Dε ∩ Dht ) ≥
μ(Dε) · (1 − θ − εDt /(1 − λ)). Meanwhile, the .γ-shrinking rate condition admits 
.μ(Dht ) ≤ γμ(Dαt ) for all . t directly. So far, the proof of Theorem 4.3 becomes clear, 
and is presented as follows.
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Proof (Theorem 4.3) By Lemma 4.1 and the assumption of .Tht = UDht
, 

.DKL(Tht‖UDht
) = 0 and thus .Prht ≥ μ(Dε ∩ Dht )/μ(Dht ) for all . t . Combining 

it with the refined bounds of .μ(Dε ∩ Dht ) and .μ(Dht ) results in that 

. Prht ≥ (1 − θ − εDt /(1 − λ)) · μ(Dε)

γ · μ(Dαt )
.

Finally, by the definition of .Prh and Theorem 4.1 we prove the theorem. �

Theorem 4.3 highlights the importance of the error-target dependence and the 
shrinking rate in determining the performance of the SAC framework. A smaller 
error-target dependence (. θ) and a smaller shrinking rate (. γ) lead to a tighter upper 
bound on the .(ε, δ)-query complexity, indicating better sample efficiency. 

Despite the generality of the performance bound, we still need to understand on 
what kind of optimization problems SAC algorithms can perform well. We investigate 
two classes of objective functions: functions satisfying the local Lipschitz condition 
and functions with bounded packing and covering numbers. We will show in the 
following sections that SAC algorithms can be efficient on the two classes. 

4.6 Functions with Local Lipschitz Continuity 

We find that a class of functions .FL ⊆ F satisfying the local Lipschitz continuity 
(Definition 4.5) can be efficiently optimized by SAC algorithms with error-target 
dependence.θ < 1 and shrinking rate.γ > 0. For finite discrete domains, we consider 
.X = {0, 1}n and let.‖x − y‖H denote the Hamming distance between.x, y ∈ {0, 1}n . 
Definition 4.5 (Local Lipschitz) Given  . f ∈ F , let  .x∗ be a global minimum of . f , 
for all .x ∈ X , if .X = {0, 1}n , then there exist positive constants .β1,β2, L1, L2 such 
that 

. L2‖x − x∗‖β2
H ≤ f (x) − f (x∗) ≤ L1‖x − x∗‖β1

H ;

if X is a compact continuous domains, then there exist positive constants 
.β1,β2, L1, L2 such that 

. L2‖x − x∗‖β2
2 ≤ f (x) − f (x∗) ≤ L1‖x − x∗‖β1

2 .

Let .Fβ1,L1,β2,L2
L (⊆ F) denote the function class that satisfies the condition. 

This condition guarantees that . f has a bounded change range around the global 
minimum.x∗. Within this constraint, the landscape of . f can be quite complex, such 
as having many local minima. 

Note that we can have classification algorithms with the convergence rate of the 
generalization error .Õ( 1

m ) ignoring other variables and logarithmic terms [ 3, 4],
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where .m is the sample size for the learning. Thus we assume that classification 
algorithms with convergence rate .�̃( 1

m ) will be employed. We then prove that SAC 
algorithms have polynomial .(ε, δ)-query complexity for local Lipschitz problems in 
both discrete and continuous domains. 

Corollary 4.1 In finite discrete domains .X = {0, 1}n, given . f ∈ Fβ1,L1,β2,L2
L , . 0 <

δ < 1 and .0 < ε ≤ L1(
n
2 )

β1 , for a classification-based optimization algorithm using 
a classification algorithm with convergence rate .�̃( 1

m ), under the conditions that 
error-target dependence .θ < 1 and shrinking rate .γ > 0, its (. ε,. δ)-query complexity 
belongs to .poly( 1

ε
, n, 1

β1
,β2, ln L1, ln 1

L2
) · ln 1

δ
. 

Proof Following the proof procedure of Theorem 4.3, letting .λ = 1/2, we have  

. Prh ≥ 1

T

T∑
t=1

(Kt · μ(Dε))/(γ · μ(Dαt )),

where .Kt = 1 − θ − 2εDt . Assume that .θ < 1, there must exist a constant . K > 0
such that .Kt ≥ K as long as .εDt < (1 − θ)/2 for all . t . 

Under the assumption of employing classification algorithms with convergence 
rate.�̃( 1

m ),.εDt < (1 − θ)/2 can be guaranteed if the sampled solution size. m in each 
iteration belongs to .poly( 1

ε
, n) [ 3]. Letting .K ′ = K/γ, we therefore obtain that 

. Prh ≥ 1

T

T∑
t=1

K · μ(Dε)

γ · μ(Dαt )
= K ′

T

T∑
t=1

μ(Dε)

μ(Dαt )
.

Since . f ∈ Fβ1,L1,β2,L2
L has local Lipschitz continuity, we know 

. L2‖x − x∗‖β2
H ≤ f (x) − f (x∗) ≤ L1‖x − x∗‖β1

H .

Denote .D̃ε = {x ∈ X | ‖x − x∗‖β1
H ≤ ε

L1
}. It can be verified directly that . D̃ε ⊆ Dε

and thus .μ(D̃ε) ≤ μ(Dε). 
Let .α′

t = αt − f (x∗) and we assume that .α′
t > 0, 

. Dαt = {x ∈ X | f (x) ≤ αt } = {x ∈ X | f (x) − f (x∗) ≤ α′
t }.

Denote .D̃αt = {x ∈ X | ‖x − x∗‖β2
H ≤ α′

t
L2

}. Similarly, we have .Dαt ⊆ D̃αt and thus 

.μ(Dαt ) ≤ μ(D̃αt ). 

For simplicity, we assume that .( ε
L1

)
1
β1 and .( α′

t
L2

)
1

β2 are both positive integers. By 
the definition of Hamming distance, we have 

.μ(D̃ε) =
( ε
L1

)
1
β1∑

i=0

(
n

i

)
and μ(D̃αt ) =

(
α′
t

L2
)

1
β2∑

i=0

(
n

i

)
.
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Let.H(p) = −p log p − (1 − p) log(1 − p)which is the binary entropy function of 
. p, where .0 ≤ p ≤ 1 and.H(p) = 0 for .p = 0, 1. Then, the following inequality [ 1] 
holds for all integers .0 ≤ k ≤ n with . p = k/n ≤ 1/2

. 
1

1 + √
8np(1 − p)

· 2nH(p) ≤
k∑

i=0

(
n

i

)
≤ 2nH(p).

Since .0 < ε ≤ L1(
n
2 )

β1 , we have  .( ε
L1

)
1

β1 ≤ n
2 . Meanwhile, choosing .α′

t = 2L2
2t for 

all . t can guarantee that .( α′
t

L2
)

1
β2 ≤ n

2 for all . t because .( α′
1

L2
) = 1 ≤ ( n2 )

β2 for .n ≥ 2. 

If .n = 1, we can still choose smaller .α′
t s.t. .(

α′
t

L2
)

1
β2 ≤ n

2 , and we omit the details 

since it is easy to verify. Combing the above statement with the inequality . Prh ≥
K ′
T

∑T
t=1 μ(Dε)/μ(Dαt ), we have  

. Prh ≥ K ′

T

T∑
t=1

μ(D̃ε)

μ(D̃αt )
= K ′

T

T∑
t=1

μ(D̃ε)

μ(D̃αt )

= K ′

T

T∑
t=1

∑( ε
L1

)
1
β1

i=0

(n
i

)
∑(

α′
t

L2
)

1
β2

i=0

(n
i

)

≥ K ′

T
· 2nH

(
( ε
L1

)
1
β1

)
1 +

√
8( ε

L1
)

1
β1

(
1 − ( ε

L1
)

1
β1 /n

)
T∑
t=1

2−nH
(
(

α′
t

L2
)

1
β2

)
.

Let the number of iterations . T to approach .(α′
T

L2
)

1
β2 = ( ε

L1
)

1
β1 . Solving this equation 

results in that 

. T = β2

β1
log

L1

ε
+ 1 ∈ poly

(
1

ε
, n,

1

β1
,β2, log L1

)
.

For simplicity, we assume that . β2

β1
log L1

ε
+ 1 is a positive integer and let the SAC 

algorithm run .T = β2

β1
log L1

ε
+ 1 number of iterations. Now, we can conclude that 

. Prh ≥
(
poly(

1

ε
, n,

1

β1
,β2, log L1, log

1

L2
)

)−1

.

Substituting this bound into Theorem 4.1, we have  

.(m + 1)T ∈ poly(
1

ε
, n,

1

β1
,β2, ln L1, ln

1

L2
) · ln 1

δ
,
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with probability at least .1 − δ. Finally, combining the fact that . εDt < (1 − θ)/2
can be guaranteed with .poly( 1

ε
, n) sampled solutions in each iteration and . T ∈

poly( 1
ε
, n, 1

β1
,β2, ln L1), the  (. ε,. δ)-query complexity of the SAC algorithms belongs 

to .poly( 1
ε
, n, 1

β1
,β2, ln L1, ln 1

L2
) · ln 1

δ
. �

Corollary 4.2 In compact continuous domains. X, given. f ∈ Fβ1,L1,β2,L2
L ,. 0 < δ < 1

and .ε > 0, for a classification-based optimization algorithm using a classifica-
tion algorithm with convergence rate .�̃( 1

m ), under the conditions that error-target 
dependence .θ < 1 and shrinking rate .γ > 0, its (. ε,. δ)-query complexity belongs to 
.poly( 1

ε
, n, 1

β1
,β2, ln L1, ln 1

L2
) · ln 1

δ
. 

The proof is very similar with that of Corollary 4.1, only except that .μ(D̃ε) is the 

volume of.�2 ball of radius.( ε
L1

)
1
β1 in.R

n which is proportional to.( ε
L1

)
n
β1 , and. μ(D̃αt )

is the volume of .�2 ball of radius .(
α′
t

L2
)

1
β2 in .R

n which is proportional to .(
α′
t

L2
)

n
β2 . 

4.7 Functions with Bounded Packing and Covering 
Numbers 

More generally, instead of the local Lipschitz continuity for compact continu-
ous domains, we present another sufficient condition under which . f can be effi-
ciently optimized by classification-based optimization algorithms, using the .η-
Packing Number and .η-Covering Number (Definition 4.6). Recall that . Dε = {x ∈
X | f (x) − f (x∗) ≤ ε} for any .ε > 0. Let  .α′

t = αt − f (x∗) and we assume that 
.α′

t > 0. 

Definition 4.6 (.η-Packing Number & .η-Covering Number) .η-Packing Number is 
the largest.Np ≥ 0 such that, there exists.C1 > 0, for all .ε > 0, the maximal number 
of disjoint .�2-balls of radius .ηε contained in .Dε with center in .Dε is not less than 
.C1ε

−Np . 
Meanwhile, .η-Covering Number is the smallest .Nc ≥ 0 such that, there exists 

.C2 > 0, for all .ε > 0, the minimal number of .�2-balls of radius .ηε with center in . X
covering .Dε is not larger than .C2ε

−Nc . 

Corollary 4.3 In compact continuous domains . X, given . f ∈ F satisfying 
.
∑T

t=1 (α′
t )
Nc−n ∈ �

(
εNp−n

)
, where .Np and .Nc are its .η-Packing and .η-Covering 

numbers, respectively, .0 < δ < 1 and .ε > 0, for a classification-based optimization 
algorithm using the classification algorithms with convergence rate .�̃( 1

m ) , under 
the conditions that error-target dependence .θ < 1 and shrinking rate .γ > 0, its 
(. ε,. δ)-query complexity belongs to .poly( 1

ε
, n) · ln 1

δ
. 

Proof By the proof procedure of Theorem 4.3, letting .λ = 1/2, we have  . Prh ≥
1
T

∑T
t=1(Kt · μ(Dε))/(γ · μ(Dαt )), where .Kt = 1 − 2εDt − θ. Assume that .θ < 1, 

since.Kt = 1 − 2εDt − θ for all . t , there must exist a constant .K > 0 such that .Kt ≥
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K as long as .εDt < (1 − θ)/2 for all . t . Under the assumption of classifier-based 
optimization using the classification algorithms with convergence rate .�̃( 1

m ), . εDt <

(1 − θ)/2 can be guaranteed if the sampled solution size. m in each iteration belongs 
to .poly( 1

ε
, n) [ 3]. Letting .K ′ = K/γ, we therefore obtain that . Prh ≥ 1

T

∑T
t=1(K ·

μ(Dε))/(γ · μ(Dαt )) = K ′
T

∑T
t=1 μ(Dε)/μ(Dαt ). 

Recall that .Dε = {x ∈ X | f (x) − f (x∗) ≤ ε} for any .ε > 0. Let  . α′
t = αt −

f (x∗) and we assume that .α′
t > 0, thus, . Dαt = {x ∈ X | f (x) ≤ αt } = {x ∈ X |

f (x) − f (x∗) ≤ α′
t }. Let .V (Dε), .V (Dαt ) and .V (ηε) denote the volume of .Dε, . Dαt

and.�2 ball of radius .ηε in .R
n respectively. By the definition of .Np and.Nc, we have  

. C1ε
−Np · V (ηε) ≤ V (Dε) = μ(Dε) ≤ C2ε

−Nc · V (ηε),

. C1(α
′
t )

−Np · V (ηα′
t ) ≤ V (Dαt ) = μ(Dαt ) ≤ C2(α

′
t )

−Nc · V (ηα′
t ).

Note that the volume of .�2 ball of radius .ηε in .R
n is . πn/2

�(n/2+1) (ηε)n . Combing it with 

the inequality .Prh ≥ K ′
T

∑T
t=1 μ(Dε)/μ(Dαt ), we have  

. Prh ≥ K ′

T

T∑
t=1

μ(Dε)

μ(Dαt )
= K ′

T

T∑
t=1

μ(Dε)

μ(Dαt )

≥ K ′

T

T∑
t=1

C1ε
−Np · V (ηε)

C2(α
′
t )

−Nc · V (ηα′
t )

= K ′

T

T∑
t=1

C1ε
−Np · (ηε)n

C2(α
′
t )

−Nc · (ηα′
t )
n

= C1K ′

C2T

T∑
t=1

εn−Np

(α′
t )
n−Nc

= C1K ′ · εn−Np

C2T

T∑
t=1

(α′
t )
Nc−n.

Let .T ∈ poly( 1
ε
, n), if the problem. f ∈ F satisfying.

∑T
t=1 (α′

t )
Nc−n ∈ �

(
εNp−n

)
, 

we can conclude that .Prh ≥ (
poly( 1

ε
, n)

)−1
. 

Substituting .Prh ≥ (
poly( 1

ε
, n)

)−1
into Theorem 4.1, we have  . (m + 1)T ∈

poly( 1
ε
, n) · ln 1

δ
, with probability at least .1 − δ. Finally, combining the fact that 

.εDt < (1 − θ)/2 can be guaranteed with .poly( 1
ε
, n) sampled solutions in each 

iteration and .T ∈ poly( 1
ε
, n), the  (. ε,. δ)-query complexity of the classifier-based 

optimization algorithms belongs to .poly( 1
ε
, n) · ln 1

δ
. �

For continuous domains, we have .Np ≤ Nc. Because if we let .V (Dε) and. V (ηε)
denote the volume of .Dε and .�2 ball of radius .ηε in .Rn respectively, then it holds 
that .C1ε

−Np · V (ηε) ≤ V (Dε) ≤ C2ε
−Nc · V (ηε). It is worthwhile to point out that 

if .Nc = Np = n, the condition .
∑T

t=1 (α′
t )
Nc−n ∈ �

(
εNp−n

)
can always be satis-

fied, which implies that classification-based optimization is efficient on this class of 
functions.
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4.8 Summary 

In this chapter, we presented a theoretical analysis of the sampling-and-learning 
(SAL) and sampling-and-classification (SAC) frameworks for derivative-free opti-
mization. We introduced the concept of.(ε, δ)-query complexity to measure the sam-
ple efficiency of these frameworks and derived general performance bounds in terms 
of the success probability of sampling from the learned models. 

For the SAC framework, we identified two key factors that influence its perfor-
mance: the error-target dependence and the shrinking rate. We showed that under 
certain conditions on these factors, the SAC framework can achieve a polynomial 
query complexity for functions satisfying the local Lipschitz condition and functions 
with bounded packing and covering numbers. 

Our theoretical results provide insights into the behavior of the SAL and SAC 
frameworks and highlight the importance of the alignment between the learned mod-
els and the target .ε-optimal set. They also shed light on the role of the problem 
geometry and the complexity of the objective function in determining the sample 
efficiency of these frameworks. 

The analysis presented in this chapter has several practical implications. It pro-
vides guidance on designing effective learning algorithms for the SAL and SAC 
frameworks by focusing on reducing the generalization error and improving the 
alignment with the target set. It also suggests strategies for selecting the thresholds 
and the balancing parameter to achieve a desired trade-off between exploration and 
exploitation. 

Furthermore, our theoretical results can help develop new derivative-free opti-
mization algorithms by incorporating the insights gained from the analysis. For 
example, one could design adaptive strategies for setting the thresholds based on the 
estimated error-target dependence or the shrinking rate. One could also explore hybrid 
approaches that combine the strengths of different learning algorithms or incorpo-
rate prior knowledge about the problem geometry. We have also noticed the latest 
study proposed the hypothesis-target .η-shattering rate to replace the error-target 
.θ-dependence for achieving tighter bounds [ 2]. 
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Chapter 5 
Basic Algorithm 

Abstract This chapter introduces the Racos (RAndomized COordinate Shrinking) 
optimization algorithm, a novel approach designed to address complex optimization 
problems in both continuous and discrete search spaces. Building on the theoretical 
insights from the previous chapter, Racos minimizes critical factors such as error-
target dependence and shrinking rate to enhance optimization efficiency. The algo-
rithm integrates a randomized coordinate shrinking classification technique, which 
effectively balances exploration and exploitation in the search process. The chapter 
is structured as follows: Sect. 5.1 details the Racos algorithm, Sect. 5.2 presents 
empirical evaluations on benchmark functions, Sect. 5.3 applies Racos to spectral 
clustering tasks, and Sect. 5.4 examines its performance in classification tasks using 
Ramp loss. Experimental results demonstrate Racos’s superiority over state-of-the-
art derivative-free optimization methods, highlighting its scalability, robustness, and 
effectiveness in high-dimensional and complex optimization scenarios. 

In the previous chapter, we presented a theoretical analysis of the sampling-and-
classification (SAC) framework and identified two critical factors that influence 
its performance: the error-target dependence and the shrinking rate. The analysis 
revealed that these factors should be as small as possible to achieve better optimiza-
tion efficiency. Inspired by these findings, we present a novel classification algorithm 
called the randomized coordinate shrinking algorithm, which aims to learn a discrim-
inative model while keeping the error-target dependence and the shrinking rate small. 

In this chapter, we introduce the randomized coordinate shrinking algorithm and 
its integration into the SAC framework, resulting in a new optimization algorithm 
called Racos (RAndomized COordinate Shrinking) [14]. Racos is designed to effec-
tively optimize both continuous and discrete search spaces by leveraging the insights 
gained from the theoretical analysis. We conduct extensive experiments to compare 
Racos with popular derivative-free optimization methods on various optimization 
benchmarks and machine learning tasks, including spectral clustering and classifica-
tion with Ramp loss. The experimental results demonstrate the superiority of Racos 
over the compared methods, highlighting its effectiveness and efficiency in solving 
complex optimization problems. 

The rest of this chapter is organized as follows. Section 5.1 presents the random-
ized coordinate shrinking algorithm and its integration into the Racos optimization 
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algorithm. Section 5.2 describes the experimental setup and presents the empirical 
results on optimization testing functions, comparing Racos with state-of-the-art 
derivative-free optimization algorithms. Section 5.3 evaluates Racos on the spectral 
clustering task and compares its performance with classical clustering algorithms 
and evolutionary optimization methods. Section 5.4 investigates the effectiveness of 
Racos on the classification task with Ramp loss and compares it with gradient-based 
and derivative-free optimization approaches. Finally, Sect. 5.5 summarizes the key 
findings and highlights the advantages of Racos in high-dimensional and complex 
optimization problems. 

5.1 The RACOS Optimization Algorithm 

Theorem 4.3 in Chap. 4 has revealed that two critical factors, the error-target depen-
dence and shrinking rate, should be as small as possible to achieve better optimization 
performance. However, these factors are not typically considered in traditional clas-
sification algorithms. Therefore, we need to design a new classification algorithm 
that explicitly takes these factors into account. 

Algorithm 5.1 Racos 
Require: 

f : Objective function to be minimized; 
C: A binary classification algorithm; 
λ: Balancing parameter; 
T ∈ N+: Number of iterations; 
m ∈ N+: Sample size in each iteration; 
k ∈ N+(≤ m): Number of positive samples; 
Sampling: Sampling sub-procedure; 
Selection: Decide the positive/negative solutions. 

Ensure: 
1: Collect S0 = {x1, . . . ,  xm} by i.i.d. sampling from UX 
2: B0 = {(x1, y1),  . . . , (xm , ym )}, ∀xi ∈ S0 : yi = f (xi ) 
3: Let ( ̃x, ỹ) = arg min(x,y)∈B+ y 
4: for t = 1 to  T do 
5: (B+

t , B−
t ) = Selection(Bt−1; k), Bt = B+

t 
6: for i = 1 to  m do 
7: hi = C(B+

t , B−
t ) 

8: xi =
{
Sampling(UDhi 

) w.p. λ 
Sampling(UX ) w.p. 1 − λ 

9: yi = f (xi ) and let Bt = Bt ∪ {(xi , yi )} 
10: end for 
11: ( ̃x, ỹ) = arg min(x,y)∈Bt∪{( ̃x, ̃y)} y 
12: end for 
13: return ( ̃x, ỹ)



5.1 The Racos Optimization Algorithm 51

Inspired by the classical and simple version space learning algorithm [ 6], we 
present the randomized coordinate shrinking classification algorithm. Given a set of 
positive and negative solutions, the algorithm maintains an axis-parallel rectangle 
that covers all the positive solutions while excluding the negative ones. The learning 
process is highly randomized, and the rectangle is largely shrunk to meet the desired 
properties of small error-target dependence and shrinking rate. 

The detailed steps of the proposed learning algorithm are depicted in 
Algorithm 5.2. The algorithm takes as input a set of solutions .Bt with their corre-
sponding objective values, which consists of positive and negative solutions accord-
ing to a threshold .αt (cf. Algorithm 3.3 in Chap. 3). The goal is to discriminate a 
randomly selected positive solution (line 1) from the negative ones. In line 2, . Dht
denotes the positive region of the learned hypothesis . ht , and . I is the index set of 
dimensions. 

Algorithm 5.2 The randomized coordinate shrinking classification algorithm for 
X = {0, 1}n or [0, 1]n 
Require: 

t : Current iteration number; 
B+
t , B−

t : Positive and negative solution sets in iteration t ; 
X : Solution space ({0, 1}n or [0, 1]n); 
I : Index set of coordinates; 
M ∈ N+: Maximum number of uncertain coordinates. 

Ensure: 
1: Randomly select x+ = (x (1) 

+ , . . . ,  x (n) 
+ ) from B+

t 
2: Let Dht = X , I = {1, . . . ,  n} 
3: while ∃x ∈ B−

t s.t. ht (x) = +1 do 
4: if X = {0, 1}n then 
5: k = randomly selected index from the index set I 
6: Dht = Dht − {x ∈ X | x (k) �= x (k) 

+ }, I = I − {k} 
7: end if 
8: if X = [0, 1]n then 
9: k = randomly selected index from the index set I 
10: x− = randomly selected solution from B−

t 

11: if x (k) 
+ ≥ x (k) 

− then 

12: r = uniformly sampled value in (x (k) 
− , x (k) 

+ ) 
13: Dht = Dht − {x ∈ X | x (k) < r} 
14: else 
15: r = uniformly sampled value in (x (k) 

+ , x (k) 
− ) 

16: Dht = Dht − {x ∈ X | x (k) > r} 
17: end if 
18: end if 
19: end while 
20: while |I | > M do 
21: k = randomly selected index from the index set I 
22: Dht = Dht − {x ∈ X | x (k) �= x (k) 

+ }, I = I − {k} 
23: end while 
24: return ht
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The algorithm consists of two main steps: learning with randomness until all neg-
ative solutions have been excluded (lines 3–19) and shrinking (lines 20–23). In the 
learning step, we consider both discrete (.X = {0, 1}n) and continuous (.X = [0, 1]n) 
domains. For the discrete domain (lines 4–7), the algorithm randomly selects a dimen-
sion and collapses that dimension to the value of the positive solution (lines 5–6). For 
the continuous domain (lines 8–18), the algorithm sets the upper or lower bound on a 
randomly chosen dimension to exclude negative solutions (lines 11–17). This process 
can be easily extended to larger vocabulary sets or general box constraints. Finally, 
lines 20–23 further shrink the classifier to leave only .M dimensions uncollapsed, 
applicable to both discrete and continuous domains. This learning algorithm with 
high-level randomness achieves a positive region with a small error-target depen-
dence and largely reduces the positive region for a small shrinking rate. 

By incorporating this classification algorithm into Algorithm 5.1 (implement-
ing the . C in line 7), we obtain the Racos optimization algorithm. Note that the 
Sampling procedure of Algorithm 3.3 (line 8) simply draws a solution uni-
formly from the rectangular positive area defined by the learned hypothesis. The 
Selection procedure simply select the top . k solutions to be positive. 

5.2 Empirical Study on Testing Functions 

We first empirically evaluate Racos on minimizing two benchmark testing functions: 
the convex Sphere function and the highly non-convex Ackley function, defined as 
follows: 

.Sphere: f (x) =
n∑

i=1

(xi − 0.2)2, (5.1) 

.Ackley: f (x) = −20e
(
− 1

5

√
1
n

∑n
i=1 (xi−0.2)2

)
− e(

1
n

∑n
i=1 cos 2πxi) + e + 20. (5.2) 

The goal is to minimize these functions within the solution space.X = [0, 1]n , where 
the global minimum values are . 0. Note that although the two functions look quite 
different, they both satisfy local Lipschitz continuity. We expect Racos performs 
good on the two functions, particularly on the sophisticated Ackley function. 

We compare Racos with the following state-of-the-art derivative-free optimiza-
tion algorithms: 

• Simultaneous Optimistic Optimization (SOO) [ 8, 9]. 
• Random Embedding Bayesian Optimization (REMBO) [ 13]. 
• Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [ 5]. 

The implementations of these algorithms are provided by their respective authors. 
To study the scalability of the algorithms with respect to the dimensionality of 

the solution space, we set .n ∈ {10, 100, 500, 1000} and fix the maximum number of 
function evaluations to .30n for all algorithms. To investigate the convergence rate
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Fig. 5.1 Comparing the scalability with.30n evaluations in a and b, and the convergence rate with 
.n = 500 in c and d [ 14] 

with respect to the number of function evaluations, we choose.n = 500 and vary the 
total number of function evaluations from.5 × 103 to.2 × 105 for the Sphere function 
and from.5 × 103 to .5 × 104 for the Ackley function. 

Each algorithm is run independently for 30 times, and the mean of the achieved 
objective values is reported in Fig. 5.1. 

Figure 5.1a, b show that Racos achieves the lowest growth rate as the dimen-
sion increases, indicating its superior scalability compared to the other algorithms. 
Figure 5.1c, d demonstrate that Racos reduces the objective function value at the 
highest rate, implying its consistently faster convergence than the other methods. 

5.3 Empirical Study on Clustering Task 

Next, we evaluate Racos on a kind of machine learning task, i.e., clustering task. 
Specifically, we consider the RatioCut problem. Given a dataset .V = {v1, . . . , vn}, 
the goal is to cluster the data points into two groups, .{A1, A2}, by minimizing the 
inter-cluster similarity. The solution space is naturally represented by the discrete
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Table 5.1 Comparing the achieved objective values of the algorithms (mean. ± standard deviation) 
[ 14]. In each column, the entry with the best (smallest) mean value is bolded. An entry marked with 
a bullet (. •) indicates that it is significantly worse than the best algorithm according to a.t-test with 
a confidence level of .5%. The last column counts the win/tie/loss of each algorithm compared to 
Racos 
Algo. Sonar Heart Ionosphere Breast Cancer German w/t/l to Racos 

USC 3.91. ±0.00.• 79.67. ±0.00.• 54.21. ±0.00.• 200.62. ±0.00.• 239.00. ±0.00.• 0/0/5 

GA 3.14. ±0.74 57.31. ±0.46 55.71. ±3.74.• 189.52. ±1.26 205.61. ±1.80.• 0/3/2 

RLS 4.07. ±0.82.• 58.81. ±0.45.• 58.74. ±2.81.• 192.63. ±1.62.• 207.36. ±2.11.• 0/0/5 

UMDA 7.40. ±2.26.• 58.76. ±1.02.• 61.77. ±4.54.• 193.58. ±3.56.• 212.83. ±1.08.• 0/0/5 

CE 8.00. ±1.35.• 58.75. ±1.39.• 63.71. ±3.41.• 188.76. ±3.77 209.57. ±1.96.• 0/1/4 

Racos 2.88. ±0.63 57.45. ±0.89 50.01. ±2.80 187.55. ±3.01 192.11. ±2.51 -/-/-

domain .X = {0, 1}n for the bipartition. The optimization objective is formulated 
as 

. f (A1, A2) =
2∑

i=1

1

|Ai |
∑

p∈Ai ,q /∈Ai

Wp,q over X, (5.3) 

where.Wp,q = exp (−‖v p − vq‖22/σ2) is the similarity between.v p and. vq . The Rati-
oCut problem is known to be NP-hard. 

We compare Racos with the following algorithms: 

• Unnormalized Spectral Clustering (USC) [ 12]: a classical approximate algorithm 
for the RatioCut problem. 

• Genetic Algorithm (GA) [ 4]: using bit-wise mutation with probability .1/n and 
one-bit crossover with probability .0.5. 

• Randomized Local Search (RLS) [ 10] 
• Univariate Marginal Distribution Algorithm (UMDA) [ 7] 
• Cross-Entropy (CE) method [ 3]. 

The parameters for GA, RLS, UMDA, and CE are set according to the recommen-
dations in their respective references. 

We use five binary UCI datasets [ 1]: Sonar, Heart, Ionosphere, Breast Cancer, 
and German, with 208, 270, 351, 683, and 1000 instances, respectively. All features 
are normalized into the range .[−1, 1]. 

The total number of calls to the objective function for GA, RLS, UMDA, CE, 
and Racos is set to .30n. Each algorithm is run independently for 30 times on each 
dataset. Table 5.1 reports the achieved objective values. 

Table 5.1 shows that, according to a .t-test with a confidence level of .5%, Racos 
is never worse than the other algorithms. It consistently outperforms USC, RLS, and 
UMDA, and achieves significant wins over GA and CE. These results demonstrate 
that Racos not only exhibits superior performance but also maintains stability across 
different datasets.
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5.4 Empirical Study on Classification with Ramp Loss 

We further evaluate Racos on another kind of machine learning task, i.e., classifi-
cation task with the Ramp loss function [ 2]. The Ramp loss is defined as 

.Rs(z) = H1(z) − Hs(z) with s < 1, (5.4) 

where .Hs(z) = max{0, s − z} is the Hinge loss with . s being the hinge point. The 
objective is to find a vector .w and a scalar . b that minimize: 

. f (w, b) = 1

2
‖w‖22 + C

L∑
�=1

Rs
(
y�(w

�v� + b)
)
, (5.5) 

where .v� is the . �th training instance and .y� ∈ {−1,+1} is its corresponding label. 
This objective function is similar to that of Support Vector Machines (SVM) [ 11], but 
SVM uses the Hinge loss instead. Due to the convexity of the Hinge loss, the number 
of support vectors in SVM increases linearly with the number of training instances, 
which can be undesirable in terms of scalability. This issue can be alleviated by using 
the Ramp loss [ 2]. 

We compare Racos with the following algorithms: 

• Simultaneous Optimistic Optimization (SOO) [ 8, 9] 
• Random Embedding Bayesian Optimization (REMBO) [ 13] 
• Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [ 5] 
• Concave-Convex Procedure (CCCP) [ 16]: a gradient-based non-convex optimiza-
tion approach for objective functions that can be decomposed into a convex sub-
function plus a concave sub-function. 

We use two binary-class UCI datasets, Adult and USPS+N (0 vs. rest), which 
were also used in [ 2]. The feature dimensions of these datasets are 123 and 256, 
respectively. All features are normalized into the range .[0, 1] or .[−1, 1]. Since our 
focus is on optimization performance, we compare the results on the training set. 

To study the effectiveness of Racos under different hyper-parameter settings, we 
test.s ∈ {−1, 0} and.C ∈ {0.1, 0.5, 1, 2, 5, 10}, as there are two hyper-parameters (. C
and . s) in the optimization formulation. 

The total number of calls to the objective function is set to .40n for all algorithms 
except CCCP, while CCCP runs until convergence. Each algorithm is run indepen-
dently for 30 times. The achieved objective values are reported in Fig. 5.2. 

As  shown in Fig.  5.2, Racos consistently achieves the best performance compared 
to SOO, REMBO, and CMA-ES in all settings. It is worth noting that the optimization 
difficulty increases with. C , as a smaller. C corresponds to an objective function closer 
to being convex. On the USPS+N dataset, we observe that CCCP performs the best 
when the objective function is very close to being convex (i.e., when .C is very 
small), which can be attributed to its gradient-based nature. However, CCCP does
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Fig. 5.2 Comparing the achieved objective function values against the parameter .C of the classi-
fication with Ramp loss [  14] 

not perform well in highly non-convex scenarios. Furthermore, the advantage of 
Racos becomes more pronounced as .C increases in all situations, indicating its 
suitability for complex optimization tasks. 

5.5 Summary 

In this chapter, we introduced the randomized coordinate shrinking algorithm for 
learning the classification model, inspired by the critical factors identified in Chap. 4. 
By integrating this algorithm into the SAC framework, we presented the Racos 
[ 15] optimization algorithm, which is applicable to both continuous and discrete 
search spaces. Experimental results on optimization benchmarks and machine learn-
ing tasks, including spectral clustering and classification with Ramp loss, demon-
strated the superiority of Racos compared to other state-of-the-art optimization 
methods.
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Moreover, we observed that Racos exhibits better scalability in high-dimensional 
optimization problems and maintains a clear advantage as the difficulty of the opti-
mization problem increases. These findings highlight the effectiveness and robustness 
of Racos in tackling complex and challenging optimization tasks. 

The success of Racos can be attributed to its ability to learn a discriminative model 
while keeping the error-target dependence and the shrinking rate small, as suggested 
by the theoretical analysis in Chap. 4. The randomized coordinate shrinking algorithm 
effectively balances the trade-off between exploration and exploitation, enabling 
Racos to efficiently navigate the search space and converge to high-quality solutions. 

In the next chapter, we will further extend the Racos algorithm to handle opti-
mization problems with mixed continuous and discrete variables, as well as those 
with black-box constraints. We will also explore the potential of integrating Racos 
with other optimization techniques to develop more powerful and versatile optimiza-
tion algorithms. 
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Part III 
Practical Extensions



Chapter 6 
Optimization in Sequential Mode 

Abstract This chapter introduces SRacos, a sequential-mode classification-based 
derivative-free optimization method designed to address the limitations of batch-
mode optimization in scenarios where samples and their evaluations must be obtained 
sequentially. Unlike batch-mode methods, which require a set of samples to update 
the model, SRacos updates the sampling model immediately after evaluating each 
sample by reusing historical data from previous iterations. This approach improves 
sample efficiency, requiring fewer samples to achieve the same optimization goal 
compared to batch-mode methods. The chapter provides a theoretical analysis of SRa-
cos, demonstrating its potential for better query complexity under certain conditions. 
Empirical studies compare SRacos with state-of-the-art optimization algorithms, 
including CMA-ES, DE, CE, and IMGPO, on synthetic functions and reinforcement 
learning tasks. Results show that SRacos consistently outperforms batch-mode meth-
ods in convergence rate and scalability, particularly in high-dimensional and com-
plex optimization problems. The chapter concludes by highlighting the advantages 
of sequential-mode optimization in accelerating the optimization process. 

In the previous chapters, we introduced the sampling-and-learning (SAL) and 
sampling-and-classification (SAC) frameworks for derivative-free optimization and 
proposed the Racos algorithm, which operates in a batch mode. However, in certain 
real-world scenarios, obtaining a batch of samples and their evaluations simultane-
ously may not be feasible or efficient. For example, in reinforcement learning tasks 
solved by direct policy search, each policy sample relies on the previous samples, and 
the optimization process can only obtain the samples and their evaluations sequen-
tially. Another example is solving AutoML tasks using derivative-free optimization, 
where the evaluation process is often extremely expensive, making it difficult to pro-
vide a batch of evaluations for the optimization process. In such sequential situations, 
the batch-mode derivative-free optimization methods may be inefficient. 

To address this challenge, we present a sequential-mode classification-based 
derivative-free optimization method called SRacos [ 4]. SRacos aims to improve 
the optimization efficiency by updating the sampling model immediately after eval-
uating each sample. However, updating the model typically requires a batch of sam-
ples according to the original batch-mode optimization framework, and a single 
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sample cannot complete the update process. To overcome this issue, SRacos con-
siders reusing the samples from previous iterations. Through theoretical analysis, we 
prove that SRacos can achieve better sample efficiency compared to the batch-mode 
method, meaning that it requires fewer samples to achieve the same optimization goal. 

6.1 Sequential Classification Model Based Algorithm 

It is important to note that Racos operates in a batch mode: the hypothesis.hi depends 
on .B+

t and .B−
t in line 7 of Algorithm 5.1, and within the loop of iteration (lines 6– 

10), those two sets remain unchanged. This means that the sampling regions are 
generated from the same distribution, even if this distribution is not optimal. Batch-
mode sampling may produce redundancy and may not be suitable for sequential-
mode problems like direct policy search. To address this limitation, we present the 
sequential Racos (SRacos) algorithm. 

Building upon Racos, a straightforward idea for converting Racos to a 
sequential-mode algorithm is to update the sets.B+ and.B− immediately after obtain-
ing a sample and its evaluation value. However, in this case, there is only one new 
sample, which cannot replace the entire .B+ and .B− sets as Racos does. To tackle 
this problem, the sequential-mode algorithm reuses the historical samples from pre-
vious iterations, resulting in the SRacos algorithm. The pseudo-code of SRacos is 
shown in Algorithm 6.1. 

In Algorithm 6.1,.Sampling (S) denotes a sample sub-procedure which obtains 
a sample from a given distribution . S. .Selection (B; k) denotes a sub-procedure 

Algorithm 6.1 Sequential Racos (SRacos) 
Require: (extra input than Racos) 

.N ∈ N
+: Budget; 

.r = m + k; 
Replace: Replacing sub-procedure. 

Ensure: 
1: Collect.S = {x1, . . . , xr } by i.i.d. sampling from. UX
2: .B = {(x1, y1), . . . , (xr , yr )}, . ∀xi ∈ S : yi = f (xi )
3: . (B+, B−) = Selection(B; k)
4: Let.(x̃, ỹ) = argmin. (x,y)∈B+ y
5: for .t = r + 1 to.N do 
6: . h = C(B+, B−)

7: . x =
{
Sampling(UDh ) w.p. λ

Sampling(UX ) w.p. 1 − λ

8: . y = f (x)

9: .[(x′, y′), B+] = Replace. ((x, y), B+, ‘strategy_P’)
10: .[∅, B−] = Replace. ((x′, y′), B−, ‘strategy_N’)
11: . (x̃, ỹ) = argmin(x,y)∈B+∪{(x̃,ỹ)} y
12: end for 
13: return .(x̃, ỹ)
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which splits the sample-evaluation pair set. B into two subsets.B+ and.B−, where. B+
contains the samples which has top-. k best evaluation values..Replace (a, A, ‘s’) is 
a replacing sub-procedure that uses. a to replace a sample-evaluation value pair from 
a set. A with a strategy “s” and update the pair set. A. The return of this sub-procedure 
is a replaced pair. Three replacing strategies considered are as follows: replacing the 
pair with worst evaluation value in . A (WR-); replacing a pair in . A randomly (RR-) 
and replacing the pair which has largest margin from the best-so-far solution (LM-). 

In Algorithm 6.1, after initialization, SRacos will get two pair sets .B+ and .B−, 
denoting the positive sample-value pair set and the negative sample-value pair set. 
The method of generating a new sample (lines 7 to 8) is the same as Racos. After  
getting a new pair.(x, y), SRacos updates.B+ and.B− immediately. When updating 
.B+ (line 9), SRacos uses the “strategy_P”. Because.B+ must contain the best-so-far 
samples, “strategy_P” can only be “WR-”, i.e., a sample with the worst evaluation 
value is removed from.B+ ∪ {(x, y)} and the rest of set is the new.B+. The removed 
pair.(x′, y′) is used to update.B− using “strategy_N” in line 10. “strategy_N” can be 
any one of three strategies mentioned above. In experiments section, we will prove 
that selection of “strategy_N” has no influence on convergence rate of SRacos 
empirically. In the end, SRacos returns the best sample-value pair .(x̃, ỹ). 

6.2 Theoretical Analysis 

In this section, we analyze the (. ε,. δ)-query complexity of the sequential classification-
based optimization algorithm SRacos. We adopt the same notations and definitions 
introduced in Chap. 4, including the error-target .θ-dependence (Definition 4.3) and 
.γ-shrinking rate (Definition 4.4). 

For simplicity, let .t = r + 1, . . . , N . We derive an upper bound on the (. ε,. δ)-
query complexity of SRacos under the conditions of error-target.θ-dependence and 
.γ-shrinking rate. 

Theorem 6.1 Given . f ∈ F , .0 < δ < 1, and .ε > 0, if  SRacos has error-target .θ-
dependence and .γ-shrinking rate, then its (. ε,. δ)-query complexity is upper bounded 
by 

. O

⎛
⎝max

⎧⎨
⎩ 1

μ(Dε)

(
(1 − λ) + λ

γ(N − r)

N∑
t=r+1

�t

)−1

ln
1

δ
, N

⎫⎬
⎭

⎞
⎠ ,

where .�t = (
1 − εDt − √

2DKL(Dt‖UX ) − θ
) · μ(Dαt )

−1 and .|X | is the volume of 
. X. 

Proof By Lemma 4.1 (Chap. 4), we have .Prht ≥ μ(Dε ∩ Dht )/μ(Dht ) for all . t . 
Combining Lemma 4.3 (Chap. 4) with Lemma 4.4 (Chap. 4), we can conclude that 

.μ(Dε ∩ Dht ) ≥ μ(Dε) · (1 − εDt − √
2DKL(Dt‖UX ) − θ),
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where .Dt is the true sampling distribution on which .ht is learned. Unlike the batch-
mode, where the distribution is a combination of uniform sampling and sampling 
from the model, i.e., .Dt = λUDht

+ (1 − λ)UX , the distribution in the sequential 
model is a combination of uniform sampling and sampling from a model set.H deter-
mined by the strategy of keeping previous samples, i.e., . Dt = λ 1

|Ht |
∑

h∈Ht
UDh +

(1 − λ)UX . For generality, we keep using the notation .Dt without specifying it. 
Meanwhile, the .γ-shrinking rate condition directly admits . μ(Dht ) ≤ γμ(Dαt )

for all . t . Let .�t = (
1 − εDt − √

2DKL(Dt‖UX ) − θ
) · μ(Dαt )

−1. Therefore, . Prht ≥
γ−1μ(Dε)�t . On the other hand, by the procedure of SRacos, we have. 

∑T
t=1 mPrht =∑N

t=r+1 mPrht ∈ O(N ). Finally, by the definition of .Prh and Theorem 4.1 (Chap. 4), 
we prove the theorem. �

To explicitly compare the query complexity of SRacos with the batch-mode 
Racos (whose query complexity upper bound is shown in Theorem 4.3 of Chap. 4), 
we have the following theorem: 

Theorem 6.2 Ignoring the constant factor and fixing . θ and . γ, SRacos can have a 
better (or worse) query complexity upper bound than Racos if for any iteration . t

. εDS
t

< (or >)
1

1 − λ
εDB

t
−

√
2DKL(DS

t ‖UX ),

where .DS
t and .DB

t denote the distributions under which the classifier is trained 
at iteration . t of SRacos and Racos, respectively, and .εDS

t
and .εDB

t
denote their 

corresponding generalization errors. 

Proof In Theorem 6.1, ignoring the constant factor and letting.ε > 0 be small enough 
such that we only need to focus on the term 

. 
1

μ(Dε)

(
(1 − λ) + λ

γ(N − r)

N∑
t=r+1

�t

)−1

ln
1

δ
,

where .�t =
(
1 − εDS

t
− √

2DKL(DS
t ‖UX ) − θ

)
· μ(Dαt )

−1. 

Based on Theorems 6.1 and 4.3, to compare SRacos with Racos, it suffices 
to compare the term .1 − εDS

t
− √

2DKL(DS
t ‖UX ) − θ with . 1 − (1 − λ)−1εDB

t
−

θ, ignoring the corresponding constant factors. It can be verified directly that, 
for any iteration . t , if  .εDS

t
< (1 − λ)−1εDB

t
− √

2DKL(DS
t ‖UX ), then SRacos has 

a better query complexity upper bound than Racos; if  . εDS
t

> (1 − λ)−1εDB
t

−√
2DKL(DS

t ‖UX ), then SRacos is worse. �

Theorem 6.2 implies that when .γ is close to 1, i.e., more exploitation than 
exploration, the sequential mode can be often better than the batch mode.



6.3 Empirical Study 65

6.3 Empirical Study 

In this section, we conduct experiments to investigate the effectiveness of SRacos. 
We compare SRacos with state-of-the-art methods, including CMA-ES [ 2], differ-
ential evolution algorithm (DE) [ 8], cross-entropy method (CE), and a Bayesian opti-
mization method with exponential convergence (IMGPO) [ 5]. In our experiments, 
all these algorithms use their default hyper-parameter settings. 

We select two types of tasks: optimization on two synthetic testing functions and 
direct policy search for reinforcement learning, including the helicopter hovering 
control task [ 6]. 

6.3.1 Optimization on Synthetic Functions 

We select two benchmark testing functions: the convex Sphere function, 

. Sphere: f (x) =
n∑

i=1

(xi − 0.2)2,

and the highly non-convex Ackley function, 

. Ackley: f (x) = −20e(− 1
5

√∑n
i=1 (xi−0.2)2) − e

1
n

∑n
i=1 cos 2π(xi−0.2) + e + 20.

The goal is to minimize both functions within the search space .X = [−1, 1]n . The  
optimal values of both functions are . 0 at the optimal solution .x∗ = {0.2}n . The  
dimensionality of the functions is set to .n = 100 and .1000. For the optimization 
process, we set the number of evaluated samples to .20n. We run each experiment 
independently for 15 times and report the average performance. 

First, we investigate the effectiveness of the selection of “strategy_N” for SRacos. 
The compared methods in this experiment are SRacos with “WR-”, “RR-”, “LM-” 
strategies and the batch-mode algorithm Racos. The results are shown in Fig. 6.1. 
The convergence curves of SRacos with three replacing strategies almost overlap, 
indicating that we can select any of the three replacing strategies in practice. In the 
rest of the experiments, we select “WR-” as the replacing strategy. 

Next, we focus on the convergence rate of all compared methods. The results are 
shown in Fig. 6.2. Comparing SRacos with Racos, it is clear that SRacos consis-
tently outperforms Racos in all experiment settings. In low dimensionality and con-
vex function (.n = 100, Sphere), the Bayesian optimization (IMGPO) shows the high-
est convergence rate, but it struggles with high-dimensional problems (.n = 1000) or  
problems with many local optima (Ackley). In contrast, SRacos demonstrates the 
best convergence rate in those settings.
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Fig. 6.1 The effectiveness investigation of “strategy_N” of SRacos on Sphere and Ackley 
functions [ 4] 

The results of the scalability of compared methods are shown in Fig. 6.3. The  
dimensionality is set as .n = 10, 20, 50, 100, 200, 500, 1000, 2000. The total evalu-
ation number for each dimension setting is .20n. SRacos shows the lowest perfor-
mance growth rate as the dimensionality increases, indicating that SRacos has the 
best scalability among all compared methods. We also consider the real wall-clock 
time that the compared methods cost and show the results in Fig. 6.4. SRacos takes 
more computation time than Racos. However, SRacos achieves better final per-
formance than Racos. Even with the same wall-clock time, SRacos outperforms 
Racos. All results verify that the sequential mode can effectively accelerate the 
optimization process.
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Fig. 6.2 The convergence rate of compared methods on Sphere and Ackley functions with 
dimensionality.n = 100 and.n = 1000 [ 4] 

Fig. 6.3 The scalability of compared methods on Sphere and Ackley functions [ 4]
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Fig. 6.4 The convergence speed against the wall-clock time on Ackley functions with . 20n
evaluations [ 4] 

6.3.2 Direct Policy Search on Reinforcement Learning Tasks 

In this section, we use derivative-free optimization to solve direct policy search for 
reinforcement learning tasks. Reinforcement learning can be described by a Markov 
decision process (MDP) which consists of a tuple.〈S, A, Psa, R〉.. S is the state space, 
.A is the action space, .Psa is the transition function which indicates the next state 
when taking action. a at state. s, and.R : S → R is the reward function which gives the 
reward when taking an action. The dynamics of MDP are as follows: the environment 
initializes a state. s0, then the policy chooses an action.a0 based on. s0. The environment 
transitions to the next state.s1 according to the transition function.Ps0a0 and provides 
a reward. r0. Then, the policy takes the action.a1 based on. s1, and so on. The sequence 
of .s0, s1, . . . , sN denotes a trajectory. Let .π : S → A denote the policy. The goal of 
reinforcement learning is to maximize the long-term accumulated reward: .

∑N
i=1 ri . 

In the experiments, we select a feed-forward fully connected neural network as 
the policy. Thus, the objective is to optimize the weights of the policy network to 
maximize the accumulated reward. 

Helicopter Hovering Control Task. Helicopter flight is regarded as a challenging 
control task that has been successfully solved by reinforcement learning [ 6]. In this 
task, the helicopter should be controlled to stay in a hovering state within a limited 
region. If the helicopter moves out of the region, it is considered crashed, and the 
policy will receive a very low reward. Previously, neural networks have been proven 
to be a good policy model [ 7]. In this experiment, we select a fully connected neural 
network without any hidden layer as the policy. The environment flies the helicopter 
for a total of 2000 steps. The sum of rewards is the evaluation of the policy. Let . w
denote the weights of the policy. We set .w ∈ [−10, 10]n as the policy search space. 
The helicopter environment has a 13-dimensional state space and a 4-dimensional 
action space. Thus, the policy has a total of 52 weights. The process of direct policy 
search can be presented as follows: the derivative-free optimization methods generate
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a set of weights as the policy, the environment flies the helicopter under the control 
of this policy, and the sum of rewards is the evaluation value for this policy. The 
derivative-free optimization method will generate a new set of weights based on 
the reward feedback. We compare SRacos with Racos, CMA-ES, DE, CE, and 
IMGPO. We run each experiment for 15 times for each algorithm. The evaluation 
number is .105 for all derivative-free optimization methods. 

We show the convergence curves of the reward and hovering steps in Fig. 6.5. The  
average performance is shown in Table 6.1. The results demonstrate that SRacos can 
find the best policy faster than other compared methods, indicating that SRacos has 
the fastest optimization convergence rate in the helicopter hovering control task. 

Gym Tasks. We select 8 OpenAI Gym control tasks, including: “Acrobot”, 
“MountainCar”, “HalfCheetah”, “Humanoid”, “Swimmer”, “Ant”, “Hopper”, and 
“LunarLander”. A fully connected neural network is again used as the control pol-
icy. Due to the different state and action spaces of the tasks, we set different network 
architectures for each task, as shown in Table 6.2. For example, on “Acrobot”,.|S| = 6, 
.|A| = 1, the policy network has hidden layers with 5 and 3 neurons, and the weight 

Fig. 6.5 The convergence speed on a the reward and b the hovering steps [ 4] 

Table 6.1 Average performance of the reward, the hovering steps, and the success rate in the 
helicopter hovering control task [ 4]. The values in bold represent the best result in each item 

Algorithms Reward Hovering step Success rate 

SRacos .−9.72 × 105 ± 2.17 × 106 1,837. ±364 4/15 

Racos .−3.18 × 106 ± 3.34 × 106 1,477. ±535 2/15 

CMA-ES .−5.29 × 106 ± 4.88 × 106 1,280. ±673 2/15 

DE .−1.02 × 107 ± 5.92 × 105 453. ±74 0/15 

CE .−5.48 × 106 ± 3.35 × 106 1,121. ±525 1/15 

IMGPO .−1.18 × 107 ± 2.66 × 105 256. ±31 0/15
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Table 6.2 Parameters of the Gym tasks, including the dimensionality of the state space.dState, the  
number of actions, the layers and nodes of the feed-forward neural networks, the number of weights, 
and the horizon steps [ 4] 

Task name d.State #Actions NN nodes #Weights Horizon 

Acrobot 6 1 5, 3 48 2,000 

MountainCar 2 1 5 15 10,000 

HalfCheetah 17 6 10 230 10,000 

Humanoid 376 17 25 9825 50,000 

Swimmer 8 2 5, 3 61 10,000 

Ant 111 8 15 1785 10,000 

Hopper 11 3 9, 5 159 10,000 

LunarLander 8 1 5, 3 58 10,000 

Table 6.3 The average reward and the standard deviation of the best found policy by each algo-
rithm [ 4]. The numbers in bold represent the best cumulated reward in each row. The mark. ↓means 
the reward is better when smaller, and. ↑ means better when larger 

Method/Task Acrobat.↓ MountainCar.↓ HalfCheetah.↑ Humanoid. ↑
SRacos 156.60. ±18.48 132.40. ±39.60 36719.90. ±8288.84 502.57. ±88.03 

Racos 169.70. ±14.15 141.50. ±0.97 27961.18. ±7493.08 398.03. ±19.23 

CMA-ES 181.10. ±42.66 190.60. ±26.89 20191.83. ±984.95 357.09. ±124.77 

DE 161.10. ±45.91 153.00. ±48.44 17250.21. ±305.01 428.97. ±67.89 

CE 534.00. ±774.69 3048.90. ±4796.70 14714.05. ±5169.94 423.58. ±27.88 

IMGPO 1545.00. ±736.14 5171.40. ±5090.29 10355.83. ±93.16 209.75. ±3.16 

Method/Task Swimmer.↑ Ant.↑ Hopper.↑ LunarLander. ↑
SRacos 3692.65. ±7.89 2114.14. ±501.11 10818.98. ±501.11 238.14. ±15.61 

Racos 3495.16. ±72.75 1215.28. ±1487.81 9892.70. ±417.85 193.45. ±35.62 

CMA-ES 3202.33. ±11.98 63.66. ±12.00 9986.81. ±0.96 132.62. ±35.18 

DE 3096.44. ±20.08 653.56. ±969.84 9931.70. ±1.35 125.00. ±93.86 

CE 3002.26. ±46.14 722.88. ±531.73 5149.48. ±5006.35 92.45. ±110.81 

IMGPO 270.73. ±3.27 42.52. ±3.57 136.28. ±23.04 64.29. ±27.32 

dimension of the network is .|w| = 48. The maximum number of horizon steps is 
2000. We run experiments for 15 times independently and report the test results of 
the best policy obtained by each algorithm in Table 6.3. It can be observed that SRa-
cos obtains the best results on all of these tasks. Especially on complex tasks from 
HalfCheetah to LunarLander, SRacos drastically improves the average reward.
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6.4 Summary 

In this chapter, we improved the existing batch-mode derivative-free optimization 
framework and presented the sequential-mode framework, SRacos, originally pro-
posed in [ 3]. The sequential-mode derivative-free optimization can use the sample 
and its evaluation value at every step immediately, accelerating the updating process 
of optimization and improving the optimization efficiency. We also analyzed the 
query complexity of SRacos and revealed the possibility that the sequential-mode 
optimization can be better than the batch-mode optimization from a theoretical per-
spective. The empirical results also demonstrated that SRacos has a better conver-
gence rate and scalability than the batch-mode Racos algorithm. We also noticed 
the latest study proposed the RACE-CARS method using region-shrinking idea that 
achieves state-of-the-art sequential mode performance [ 1]. 
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Chapter 7 
Optimization in High-Dimensional 
Search Space 

Abstract This chapter addresses the challenge of optimizing high-dimensional 
functions, where traditional derivative-free optimization (DFO) methods struggle 
with scalability due to slow convergence and high computational costs. The focus 
is on problems with low optimal-effective dimensions, where only a small subspace 
significantly impacts the function value. The chapter introduces the Sequential Ran-
dom Embeddings (SRE) technique, which sequentially applies random embeddings 
and employs DFO algorithms in each subspace to refine solutions. SRE reduces the 
embedding gap and improves optimization quality for a broad class of problems. 
The chapter is structured as follows: Sect. 7.1 defines functions with low effective 
dimensions, Sect. 7.2 discusses random embedding techniques, Sect. 7.3 introduces 
SRE, and Sect. 7.4 presents empirical studies on synthetic functions and classifica-
tion tasks using the non-convex Ramp loss. Experimental results demonstrate that 
SRE significantly enhances the performance of state-of-the-art DFO methods in 
high-dimensional spaces, even for problems with up to 100,000 variables. 

In the previous chapters, we introduced the sampling-and-learning (SAL) and 
sampling-and-classification (SAC) frameworks for derivative-free optimization 
(DFO) and proposed the Racos algorithm based on these frameworks. While Racos 
and other DFO methods have shown effectiveness in solving optimization problems 
typically with dimensionality smaller than 1,000, they often struggle with scalabil-
ity when dealing with high-dimensional search spaces. This scalability issue can be 
attributed to the slow convergence rate in high dimensions, the high per-iteration 
computational cost, or both. 

Existing studies have proposed two main directions to improve the scalability of 
DFO methods: decomposition and embedding. Decomposition methods extract sub-
problems from the original optimization problem and solve them to obtain a solution 
to the original problem. Embedding methods assume that the function value only 
depends on a small subspace of the high-dimensional space and optimize within that 
effective subspace. However, these approaches have limitations, such as relying on 
specific problem structures or assuming the existence of a clear effective subspace. 

In this chapter, we study high-dimensional problems with low optimal.ε-effective 
dimensions [ 6], where any variable can affect the function value, but only a small 
linear subspace has a significant impact, while the orthogonal complement subspace 
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has a bounded small effect. We characterize the property of random embedding for 
such problems and present the sequential random embeddings (SRE) technique [ 6] 
to overcome the embedding gap. SRE applies random embedding multiple times 
sequentially and employs a DFO algorithm in each subspace to refine the solution. 
We also provide conditions under which SRE can improve the optimization quality 
for a broad class of problems. 

Through extensive experiments on synthetic functions and classification tasks 
using the non-convex Ramp loss, we demonstrate that SRE can significantly enhance 
the performance of state-of-the-art DFO methods in high-dimensional problems, 
even for search spaces with up to 100,000 variables. 

7.1 Functions with Low Effective Dimension 

We first introduce the concept of Effective Dimension, which characterizes problems 
where the function value is affected by only a few effective dimensions [ 7, 8]. 

Definition 7.1 (Effective Dimension) A function. f : RD → R is said to have effec-
tive dimension . de, with .de < D, if there exists a linear subspace .V ⊆ R

D with 
dimension .de such that for all .x ∈ R

D , 

. f (x) = f (xe + xc) = f (xe), (7.1) 

where .xe ∈ V , .xc ∈ V⊥, and .V⊥ denotes the orthogonal complement of . V . We call 
. V the effective subspace of . f and .V⊥ the constant subspace. 

Intuitively, Definition 7.1 means that . f only varies along the effective subspace 
. V , while remaining constant along the orthogonal complement .V⊥. 

7.1.1 Random Embedding for Low Effective Dimension 
Problems 

Random embedding is a technique that allows DFO algorithms to operate in a low-
dimensional subspace of the high-dimensional search space [ 7, 8]. Given a high-
dimensional function . f and a random matrix .A ∈ R

D×d with independent entries 
sampled from a Gaussian distribution .N (0,σ2), we construct a new optimization 
problem: 

. min
y∈Rd

g( y) = f (Ay), (7.2) 

where the solution space for . g has dimension . d. Each solution . y is evaluated by 
mapping it back to the original high-dimensional space using .Ay.
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The following lemma characterizes the effectiveness of random embedding for 
functions with low effective dimension [ 7, 8]. 

Lemma 7.1 Given a function . f : RD → R with effective dimension . de, and a 
random matrix .A ∈ R

D×d with .d ≥ de and independent entries sampled from 
.N (0,σ2), then, with probability 1, for any .x ∈ R

D, there exists . y ∈ R
d such that 

. f (x) = f (Ay). 

Proof Since. f has effective dimension. de, there exists an effective subspace. V ⊆ R
D

with.dim(V) = de. Any.x ∈ R
D can be decomposed as .x = xe + xc, where. xe ∈ V

and .xc ∈ V⊥. By definition, . f (x) = f (xe) for all .xe ∈ V . Thus, it suffices to show 
that, for any .xe ∈ V , there exists . y ∈ R

d such that .Ay = xe. 
Let .� ∈ R

D×de be a matrix whose columns form a standard orthonormal basis 
for . V . For any.xe ∈ V , there exists .c ∈ R

de such that .xe = �c. Assuming that . ��A
has rank.de (which will be proven later), there must exist. y ∈ R

d such that. ��Ay =
c, because .rank(��A) = rank([��A, c]). Multiplying both sides by . �, we have  
.Ay = ���Ay = �c = xe. 

It remains to prove that .��A has rank .de with probability 1. Let .Ae ∈ R
D×de be 

a submatrix of .A consisting of any .de columns of . A, which are i.i.d. samples from 
.N (0,σ2 I). By the orthonormality of . �, the columns of .��Ae are i.i.d. samples 
from.N (0,σ2 Ide). The set of singular matrices in.R

de×de has Lebesgue measure zero, 
and the Gaussian distribution is absolutely continuous with respect to the Lebesgue 
measure. Therefore, .��Ae is almost surely non-singular, and the same holds for 
.��A. �

Lemma 7.1 implies that, given a random embedding matrix .A ∈ R
D×d , for any 

minimizer.x∗ ∈ R
D of. f , there exists. y∗ ∈ R

d such that. f (Ay∗) = f (x∗). Thus, we  
can optimize the lower dimensional function .g( y) = f (Ay) instead of the original 
high-dimensional . f (x). 

7.2 Optimal .ε-Effective Dimension 

The Effective Dimension assumption in Definition 7.1 requires the existence of a 
linear subspace that has exactly zero effect on the function value. This assumption 
may be too strict for real-world problems. We relax this assumption by introducing 
the concept of optimal .ε-effective dimension. 

Definition 7.2 (Optimal.ε-Effective Dimension) For any .ε > 0, a function . f :
R

D → R is said to have an .ε-effective subspace .Vε if there exists a linear subspace 
.Vε ⊆ R

D such that for all .x ∈ R
D , 

.| f (x) − f (xε)| ≤ ε, (7.3) 

where.xε ∈ Vε is the orthogonal projection of. x onto. Vε. Let.Vε denote the collection 
of all .ε-effective subspaces of . f . The optimal .ε-effective dimension of . f is defined 
as
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.dε = min
Vε∈Vε

dim(Vε), (7.4) 

where .dim(V) denotes the dimension of a linear subspace . V . 
Note that . ε and .dε are related variables: a small .dε often implies a large . ε, while 

a small . ε implies a large . dε. 

7.2.1 Random Embedding for Problems with Low Optimal 
.ε-Effective Dimension 

The following lemma characterizes the effect of random embedding for functions 
with low optimal .ε-effective dimension. 

Lemma 7.2 Given a function . f : RD → R with optimal .ε-effective dimension . dε, 
and a random matrix .A ∈ R

D×d with .d ≥ dε and independent entries sampled from 
.N (0,σ2), then, with probability 1, for any .x ∈ R

D, there exists . y ∈ R
d such that 

.| f (x) − f (Ay)| ≤ 2ε. 

Proof The proof follows a similar argument as in Lemma 7.1. Since. f has optimal.ε-
effective dimension. dε, there exists an.ε-effective subspace.Vε ⊆ R

D with. dim(Vε) =
dε. Any.x ∈ R

D can be decomposed as .x = xε + x⊥
ε , where .xε ∈ Vε and.x⊥

ε ∈ V⊥
ε . 

By definition, .| f (x) − f (xε)| ≤ ε. Thus, it suffices to show that, for any .xε ∈ Vε, 
there exists . y ∈ R

d such that .| f (xε) − f (Ay)| ≤ ε. 
Following the same steps as in Lemma 7.1, we can prove that there exists. y ∈ R

d

such that .Ay = xε + x̃, where .x̃ ∈ V⊥
ε . Since .Ay ∈ R

D , by the definition of .ε-
effective subspace, we have .| f (xε) − f (Ay)| ≤ ε. Combining this with . | f (x) −
f (xε)| ≤ ε, we conclude that .| f (x) − f (Ay)| ≤ 2ε. �

Lemma 7.2 implies that, given a random embedding matrix .A ∈ R
D×d , for any 

minimizer .x∗ ∈ R
D of . f , there exists . ỹ ∈ R

d such that . f (Aỹ) − f (x∗) ≤ 2ε. This  
embedding gap grows twice as fast as . ε. 

7.2.2 Optimization with Random Embedding 

Given a high-dimensional function. f and a random matrix.A ∈ R
D×d , we construct 

a new optimization problem: 

. min
y∈Rd

g( y) = f (Ay), (7.5) 

where the solution space for . g has dimension . d. Each solution . y is evaluated by 
mapping it back to the original high-dimensional space using .Ay.
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For functions with low optimal .ε-effective dimension, we can bound the gap 
between the optimal function values of . g and . f based on Lemma 7.2. 

Theorem 7.1 Given a function . f : RD → R with optimal .ε-effective dimension . dε, 
and a random matrix .A ∈ R

D×d with .d ≥ dε and independent entries sampled from 
.N (0,σ2), let .x∗ be a global minimizer of . f . Then, with probability 1, 

. min
y∈Rd

g( y) − f (x∗) ≤ 2ε. (7.6) 

Proof The proof follows directly from Lemma 7.2. �

Let . ỹ be the solution found by a DFO algorithm in the low-dimensional space. 
There is an approximation gap between.g( ỹ) and.min y∈Rd g( y), which depends on the 
dimension. d, the function complexity, and the optimization budget. We assume that 
this approximation gap is upper bounded by . θ. Furthermore, as shown in Theorem 
7.1, there exists an embedding gap of . 2ε, which cannot be compensated by the 
optimization algorithm. Thus, the simple regret of the algorithm is upper bounded 
by the sum of the approximation gap and the embedding gap: 

.g( ỹ) − f (x∗) ≤ θ + 2ε. (7.7) 

7.3 Sequential Random Embeddings 

To reduce the embedding gap while keeping the approximation gap unaffected, 
we present the sequential random embeddings (SRE) technique. SRE applies ran-
dom embedding multiple times sequentially and employs a DFO algorithm in each 
subspace to refine the solution. 

Let.x̃1 = 0 and.Si = {A(i) y | y ∈ R
d} denote the subspace defined by the random 

matrix .A(i), where .i = 1, . . . ,m. The SRE procedure can be described as follows: 

• In the first step, generate a random matrix .A(1) defining a subspace .S1, and 
apply a DFO algorithm to find a near-optimal solution in the subspace: . ỹ1 =
argmin y f (A(1) y). Let .x̃2 = A(1) ỹ1 be the high-dimensional solution. 

• In the second step, generate another random matrix .A(2) defining a subspace .S2, 
and apply the DFO algorithm to optimize the residue of the current solution . x̃2
in the subspace: . ỹ2 = argmin y f (x̃2 + A(2) y). Update the current solution . x̃3 =
x̃2 + A(2) ỹ2. 

• In the following steps, repeat the process of optimizing the residue in each 
subspace. 

Let .x∗ − x̃i be the residue solution to be approximated in the . i th step of 
SRE, and let .x̂i be the orthogonal projection of .x∗ − x̃i onto the subspace . Si . 
We define the embedding ratio as .‖x̂i‖/‖x∗ − x̃i‖ and the optimization ratio as 
.‖x̂i − A(i) ỹi‖/‖x̂i‖.
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The following theorem provides a condition under which SRE can strictly reduce 
the solution gap in each step. 

Theorem 7.2 Given a function . f : RD → R with optimal .ε-effective dimension . dε, 
and a sequence of random matrices .{A(i)}mi=1 ⊆ R

D×d with .d ≥ dε and indepen-
dent entries sampled from .N (0,σ2), let  .x∗ be a global minimizer of . f . For all 
.i = 1, . . . ,m, if  

.
‖x̂i − A(i) ỹi‖

‖x̂i‖ ≤ 1

5
· ‖x̂i‖
‖x∗ − x̃i‖ , (7.8) 

then .‖x∗ − x̃i‖ > ‖x∗ − x̃i+1‖. 
Proof The proof follows a similar argument as in [ 11]. For any.i = 1, . . . ,m, since 
.x̂i is the orthogonal projection of .x∗ − x̃i onto . Si , we have  

. ‖x∗ − x̃i‖2 = ‖x∗ − x̃i − x̂i‖2 + ‖x̂i‖2
≥ (‖x∗ − x̃i − A(i) ỹi‖ − ‖x̂i − A(i) ỹi‖)2 + ‖x̂i‖2
= ‖x∗ − x̃i+1‖2 + ‖x̂i − A(i) ỹi‖2 + ‖x̂i‖2

− 2‖x∗ − x̃i − A(i) ỹi‖ · ‖x̂i − A(i) ỹi‖
≥ ‖x∗ − x̃i+1‖2 + (‖x̂i − A(i) ỹi‖ − ‖x̂i‖)2

− 2(‖x∗ − x̃i‖ + ‖A(i) ỹi‖) · ‖x̂i − A(i) ỹi‖
+ 2‖x̂i‖ · ‖x̂i − A(i) ỹi‖

≥ ‖x∗ − x̃i+1‖2 + (‖x̂i − A(i) ỹi‖ − ‖x̂i‖)2
− 2‖x∗ − x̃i‖ · ‖x̂i − A(i) ỹi‖ − 2‖x̂i − A(i) ỹi‖2,

where the last inequality follows from.‖A(i) ỹi‖ − ‖x̂i‖ ≤ ‖x̂i − A(i) ỹi‖. 
Since .‖x̂i − A(i) ỹi‖ · ‖x∗ − x̃i‖/‖x̂i‖2 ≤ 1/5 and .‖x̂i‖ ≤ ‖x∗ − x̃i‖, we have  

. (‖x̂i − A(i) ỹi‖ − ‖x̂i‖)2 − 2‖x∗ − x̃i‖ · ‖x̂i − A(i) ỹi‖ − 2‖x̂i − A(i) ỹi‖2 > 0.

Therefore, .‖x∗ − x̃i‖ > ‖x∗ − x̃i+1‖ for all .i = 1, . . . ,m. �

Theorem 7.2 suggests that, under a mild condition on the optimization ratio, SRE 
can reduce the solution gap in each step for a broad class of problems with local 
Holder continuity, defined as follows. 

Definition 7.3 (Local Holder Continuity) A function . f : RD → R satisfies local 
Holder continuity if there exist constants .L ,α > 0 such that, for all .x ∈ R

D , 

. f (x) − f (x∗) ≤ L · ‖x − x∗‖α
2 , (7.9) 

where .x∗ is a global minimizer of . f .
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Local Holder continuity allows the function to have many local optima or be 
non-differentiable, as long as the rate of increase around the global minimizer is 
bounded. 

7.3.1 Less Greedy SRE 

In the SRE procedure described above, each sub-problem in the subspace is solved 
greedily. However, a perfect solution for one sub-problem may not be globally opti-
mal, and once an unsatisfactory solution is found, it is difficult to correct it in later 
steps due to the greedy process. To address this issue, we introduce a withdrawal 
variable . β to the previous solution, allowing the algorithm to eliminate the previous 
solution if necessary. The optimization problem in each step becomes 

. min
y,β

f (β x̃i + A(i) y). (7.10) 

Since DFO methods make few assumptions about the optimization problem, we can 
simply let the algorithm optimize . β together with . y. 

The full SRE algorithm is presented in Algorithm 7.1. 

Algorithm 7.1 Sequential Random Embeddings (SRE) 
Require: 

Objective function f ; 
DFO algorithm M; 
Number of function evaluations n; 
Upper bound of optimal ε-effective dimension d; 
Number of sequential random embeddings m. 

Ensure: 
1: x̃1 = 0. 
2: for i = 1 to  m do 
3: Sample a random matrix A(i) ∈ RD×d with entries from N (0, 1/d). 
4: Apply M to optimize gi ( y) = f (β ̃xi + A(i ) y) with n/m function evaluations. 
5: Obtain the solution ỹi and βi for gi ( y) using M. 
6: x̃i+1 = βi x̃i + A(i) ỹi . 
7: end for 
8: return arg mini=2,...,m+1 f ( ̃xi ).
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7.4 Empirical Study 

We empirically evaluate the effectiveness of SRE in combination with state-of-the-art 
DFO methods on synthetic functions and classification tasks using the non-convex 
Ramp loss. 

7.4.1 Experimental Setup 

We consider the high-dimensional search space .X = [−u, u]D and the low-
dimensional search space .Y = [−l, l]d , where .u, l > 0. The random matrix . A ∈
R

D×d has independent entries sampled from.N (0, 1/d). 
To handle the case where .Ay′ /∈ X for some . y′ ∈ Y , we employ Euclidean pro-

jection .PX (Ay′) = argminx∈X ‖x − Ay′‖2. The function value of .Ay′ is then set 
to . f (PX (Ay′)) + ‖PX (Ay′) − Ay′‖1. 

We apply SRE to three state-of-the-art DFO methods: IMGPO [ 4], CMAES [ 3], 
and RACOS [ 9]. The prefix “RE-” denotes the single random embedding variant, 
while “SRE-” denotes the sequential random embeddings variant. Random search is 
included as a baseline. 

7.4.2 Synthetic Functions 

We construct high-dimensional versions of the Sphere and Ackley functions that 
satisfy the optimal .ε-effective dimension assumption. The high-dimensional Sphere 
function is defined as 

. f1(x) =
10∑

i=1

([x]i − 0.2)2 + 1

D

D∑

i=11

([x]i − 0.2)2, (7.11) 

where .[x]i denotes the . i th coordinate of . x. The high-dimensional Ackley function 
is defined as 

. f2(x) = − 20 exp

⎛

⎝−1

5

√√√√ 1

10

10∑

i=1

([x]i − 0.2)2

⎞

⎠ (7.12) 

. − exp

(
1

10

10∑

i=1

cos(2π([x]i − 0.2))

)
+ e + 20 (7.13) 

. + 1

D

D∑

i=11

([x]i − 0.2)2. (7.14)
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The optimal solution for both functions is .x∗ = (0.2, . . . , 0.2). We set  . X =
[−1, 1]D , .Y = [−1, 1]d , and .β ∈ [−1, 1]. Each algorithm is run 30 times indepen-
dently, and the average performance is reported. 

Effect of the Number of Random Embeddings 
We investigate the effect of the number of random embeddings .m in SRE. We set 
.D = 10000, .n = 10000 (total number of function evaluations), .d = 10, and vary 
.m ∈ {1, 2, 5, 8, 10, 20}. Note that when .m = 1, SRE degenerates to RE. 

Figure 7.1 shows that, for a fixed total number of function evaluations, there is a 
trade-off in choosing. m. If .m is too large, the budget for each step of SRE is limited, 
while if .m is too small, the number of steps in SRE is limited. Both scenarios can 
lead to unsatisfactory optimization performance. 

Effect of Subspace Dimension 
We study how the low-dimensional subspace size . d affects the optimization perfor-
mance of SRE-based algorithms. We set .D = 10000, .n = 10000, .m = 5, and vary 
.d ∈ {1, 5, 8, 10, 12, 15, 20}. 

Figure 7.2 demonstrates that, in most cases, the closer . d is to the optimal .ε-
effective dimension . dε, the better the optimization performance. This highlights the 
importance of having a good estimate of . dε. Moreover, even when .d < dε = 10 but 
close to . dε, the performance of SRE-based algorithms remains satisfactory. 

Scalability 
We investigate the scalability of the algorithms with respect to the search space 
dimension . D. We set  .D ∈ {100, 500, 1000, 5000, 10000}, .n = 10000, .d = 10 for 
RE and SRE, and .m = 5 for SRE. 

Figure 7.3 shows that SRE-based algorithms have the lowest growth rate as the 
dimension increases, while algorithms without RE have the highest growth rate. 
This indicates that SRE can effectively scale DFO algorithms to high-dimensional 
problems. 

Fig. 7.1 Effect of the number of random embeddings.m on the optimization performance [ 6]
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Fig. 7.2 Effect of the subspace dimension. d on the optimization performance [ 6] 

Fig. 7.3 Scalability of the algorithms with respect to the search space dimension.D [ 6] 

Convergence Rate 
We examine the convergence rate of the algorithms with respect to the number 
of function evaluations. We set .D = 10000, .n ∈{2000, 4000, 6000, 8000, 10000}, 
.d = 10 for RE and SRE, and .m = 5 for SRE.
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Fig. 7.4 Convergence rate of the algorithms with respect to the number of function evaluations [ 6] 

Figure 7.4 shows that SRE-based algorithms generally reduce the objective func-
tion value at the highest rate, while algorithms without RE have the lowest conver-
gence rate. This suggests that SRE can accelerate the convergence of DFO algorithms 
in high-dimensional problems. 

7.4.3 Classification with Ramp Loss 

We evaluate the algorithms on a classification task using the non-convex Ramp 
loss [ 2]. The Ramp loss is defined as .Rs(z) = H1(z) − Hs(z) with .s < 1, where 
.Hs(z) = max{0, s − z} is the Hinge loss with hinge point . s. The objective is to find 
a vector .w and a scalar . b that minimize: 

. f (w, b) = 1

2
‖w‖22 + C

L∑

�=1

Rs(y�(w
�v� + b)), (7.15) 

where .v� is the . �th training instance and .y� ∈ {−1,+1} is its corresponding label. 
We employ four binary-class UCI datasets [ 1]: Gisette, Arcene, Dexter, and 

Dorothea, with feature dimensions.D of.5 × 103,.104,.2 × 104, and.105, respectively. 
To study the algorithms’ effectiveness under different hyper-parameter settings, 

we test .s ∈ {−1, 0} and .C ∈ {0.1, 0.5, 1, 2, 5, 10}. We  set  .d = 20, .n = 3D, . X =
[−10, 10]D , .Y = [−10, 10]d , and .β ∈ [−10, 10] for all algorithms except CCCP 
[ 10], a gradient-based non-convex optimization method. For CCCP, we set . X =
[−10, 10]D and let it run until convergence. For SRE-based algorithms, we set.m = 5.
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Fig. 7.5 Achieved objective function values of the algorithms on the classification task with Ramp 
loss [ 6]
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Figure 7.5 reports the achieved objective function values on each dataset. SRE-
based algorithms consistently outperform other methods, except on the Arcene 
dataset where RE-based algorithms achieve the best performance. This verifies the 
effectiveness of SRE and RE, with SRE being more effective than RE in most 
cases. Moreover, SRE-based algorithms significantly outperform CCCP in terms 
of optimization performance. 

7.5 Summary 

This chapter investigated high-dimensional optimization problems where all vari-
ables can affect the function value, but many of them have only a small bounded 
effect. We defined such problems as functions with a low optimal.ε-effective dimen-
sion and showed that single random embedding incurs a .2ε loss that cannot be 
compensated by the subsequent optimization algorithm. 

To address this issue, we presented the sequential random embeddings (SRE) 
technique [ 5], which applies random embedding multiple times sequentially and 
employs a DFO algorithm in each subspace to refine the solution. We provided 
conditions under which SRE can strictly reduce the embedding loss in each step for 
a broad class of problems. 

Empirical results on synthetic functions and classification tasks using the non-
convex Ramp loss demonstrated that SRE can significantly enhance the performance 
of state-of-the-art DFO methods in high-dimensional problems, even for search 
spaces with up to 100,000 variables. These findings highlight the potential of SRE in 
scaling DFO algorithms to tackle complex high-dimensional optimization problems. 
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Chapter 8 
Optimization Under Noise 

Abstract This chapter addresses the challenge of optimizing noisy objective func-
tions in derivative-free optimization (DFO), a common issue in real-world applica-
tions like reinforcement learning. While the Racos algorithm is effective in noise-free 
environments, it struggles with noisy evaluations. The chapter introduces value sup-
pression, a novel noise-handling mechanism that delays noise mitigation until the 
best-so-far solution stagnates, reducing computational costs compared to traditional 
methods like sampling and threshold selection. The mechanism is integrated into the 
SRacos algorithm, resulting in SSRacos, which is shown to outperform other noise-
handling techniques in both synthetic functions and OpenAI Gym tasks. Empirical 
results demonstrate that value suppression improves optimization efficiency and con-
vergence under noise, making it a promising approach for noisy DFO problems. The 
chapter concludes with a discussion on the mechanism’s potential applicability in 
noise-free environments. 

In the previous chapters, we introduced the Racos algorithm based on the sampling-
and-learning (SAL) and sampling-and-classification (SAC) frameworks for derivative-
free optimization (DFO). While Racos has shown effectiveness in solving optimiza-
tion problems in noise-free environments, many real-world applications involve noisy 
objective functions, where the evaluation of a solution is subject to random perturba-
tions. In this chapter, we focus on extending Racos to handle optimization problems 
under noise. 

There are two popular mechanisms to handle noise in DFO: sampling and thresh-
old selection equipped with re-evaluation. Sampling is a straightforward approach to 
reduce noise [ 1], where a given solution is independently evaluated multiple times, 
and the average of the noisy function values is used to approximate the true function 
value. However, obtaining an accurate estimate of the true function value requires 
a large sample size, which can be computationally expensive. Threshold selection 
equipped with re-evaluation [ 3, 6– 9] independently re-evaluates solutions whenever 
a comparison occurs and replaces an old solution only when the value of a new solu-
tion is better by at least a fixed or dynamic threshold. This mechanism delays noise 
handling to the comparison step and has been shown to be helpful for DFO [ 10]. 
Compared to sampling, threshold selection with re-evaluation requires less compu-
tational cost and appears to be more efficient. 
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In this chapter, we present a generic, simple, yet efficient noise handling mecha-
nism called value suppression [ 11], which can be integrated into most DFO methods. 
Value suppression delays noise handling even further than threshold selection with 
re-evaluation. It does nothing about noise until the best-so-far solution has not been 
improved for a certain period, at which point it suppresses the value of the best-
so-far solution and continues the optimization process. Value suppression not only 
helps DFO methods keep updating their best-so-far solutions but also records some 
suppressed solutions, from which the best solution with a more reliable value can 
be selected. Compared to sampling and threshold selection with re-evaluation, value 
suppression may require the least computational cost while still being effective. 

We integrate the value suppression mechanism into SRacos in Chap. 6, resulting 
in the suppressed SRacos (SSRacos) for optimization under noise. To compare 
value suppression with other mechanisms on SRacos, we conduct experiments on 
two synthetic functions and reinforcement learning control tasks in OpenAI Gym. 
Experimental results demonstrate that value suppression can significantly improve 
the performance of SRacos under noise compared to other mechanisms. 

8.1 Value Suppression 

The idea of value suppression arises from the observation that if an algorithm has 
not updated its best-so-far solution for a period, the observed value of the best-so-
far solution is likely to be much smaller than its true value due to noise. Thus, we 
suppress the value of the best-so-far solution when it remains the best for a long 
period, allowing the algorithm to resume its search and find better solutions. 

The principle of value suppression is to adjust the overestimated value towards 
the true value. One way to implement this is to re-sample the value of the solution 
a sufficient number of times in the presence of unbiased random noise. In other 
situations, the suppression can be implemented by multiplying a discount factor, for 
example. 

This simple mechanism can help the algorithm keep generating new solutions with 
better observed values. However, when the optimization finishes, the algorithm needs 
to choose the best solution among those it has generated. Since most solutions have 
only a noisy observed value, we only choose the best solution from the suppressed 
solutions, whose values are more reliable. 

The value suppression mechanism can be easily applied to DFO algorithms that 
keep track of the best-so-far solution. The framework of DFO with value suppression 
is shown in Algorithm 8.1. First, the algorithm samples a set of solutions . S and 
evaluates them (line 1). Let .S+ denote the best . k solutions in . S (line 2). In the 
following loop, the algorithm generates a new solution based on .S+, evaluates it, 
and uses it to update.S+ (lines 4–5). If .S+ does not update for a period, it suppresses 
the values of the samples in.S+ by re-sampling and saves these suppressed solutions 
(lines 6–8). Finally, the algorithm returns the best among all the suppressed solutions 
(line 10).
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Under mild conditions, we can prove that Algorithm 8.1 is convergent, indicating 
that value suppression does not hurt optimization and is effective. 

Theorem 8.1 (Convergence) For a DFO algorithm .A that generates any solution 
.x ∈ X with non-zero probability, assume that the noise follows the same i.i.d. and 
unbiased distribution for all solutions, and the value suppression assigns the true 
value to the solution. Then, the algorithm .A with value suppression is convergent 
under noise, i.e., with probability 1, it will eventually output the optimal solution .x∗. 

Proof By assumption, once the true optimal solution .x∗ is generated during opti-
mization under noise,.x∗ could be better than the best-so-far solution with a non-zero 
probability. Thus, by Algorithm 8.1, .x∗ could be absorbed into .S+ with probability 
1 after a sufficient number of steps. Let .S′ denote the set of suppressed solutions, 
initialized as .S′ = ∅. For a fixed maximum allowed non-update iterations . u, there 
exists a non-zero probability that.S+ will not be updated during. u iterations, and thus 
.x∗ could be further absorbed into .S′ with probability 1 after a sufficient number of 
steps. By Algorithm 8.1, solutions cannot be removed from.S′ once absorbed. Note 
that the value suppression step for solutions in .S′ discloses the true function values 
as assumed. Since the algorithm will finally return the best solution in . S′, i.e., .x∗, 
value suppression is convergent. �

8.2 The SSRACOS Algorithm 

We integrate the value suppression framework with the SRacos in Algorithm 6.1. 
SRacos maintains two sets of solutions: a good solutions set (positive set) and a bad 
solutions set (negative set). A binary classifier is trained based on these two solution 
sets to learn the potential high-quality region in the solution space. The learned 
region contains one selected good solution from the positive set and excludes all 
the bad solutions from the negative set. Then, a new solution is uniformly sampled 
from this learned region with high probability or uniformly sampled from the entire 
solution space with the remaining probability. SRacos evaluates this new solution 
and updates both the positive and negative sets accordingly. 

We now show how to integrate the value suppression mechanism into SRacos, 
resulting in the suppressed SRacos (SSRacos). Since we can observe the positive set 
.B+ in SRacos, if .B+ does not update for a period, we suppress the solutions in.B+. 
In the end, the best solution among all the suppressed ones is returned as output. The 
procedure of SSRacos is presented in Algorithm 8.2. The  set .BS is used to collect 
the suppressed solutions and is initialized as an empty set (line 2). During the loop, 
after generating a new solution and updating .B+, .B−, and .(x̃, ỹ), SSRacos checks 
if the positive set .B+ has been updated (line 6). If it does not update for . u iterations, 
SSRacos re-samples the solutions in .B+, suppresses their values, and saves them
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Algorithm 8.1 Value Suppression Framework for Derivative-Free Optimization 
Require: 

f N : Noisy objective function 
Ensure: 
1: S = generate a set of solutions and evaluate them 
2: S+ = best k solutions in S 
3: while termination condition is not met do 
4: x = generate a new solution based on S+ 

5: evaluate x and use it to update S+ 

6: if S+ does not update for a period then 
7: suppress the function values of solutions in S+ 

8: end if 
9: end while 
10: return the best among all the suppressed solutions 

Algorithm 8.2 Suppressed SRacos (SSRacos) 
Require: (extra input compared to SRacos) 

u ∈ N+: Maximum allowed non-update iterations 
v ∈ N+: Re-sample size 
α: Balancing parameter 
Re-sample: Re-sample sub-procedure 

Ensure: 
1: Initialize SRacos 
2: BS = ∅  
3: for t = r + 1 to  N − v do 
4: (x, y) = generate a new solution as in SRacos 
5: Use (x, y) to update B+, B−, ( x̃, ỹ) in SRacos 
6: if B+ does not update for u iterations then 
7: for (xi , yi ) in B+ do 
8: ŷi = Re-sample(xi , v)  
9: yi = (1 − α)yi + α ̂yi 
10: BS = BS ∪ {(xi , ŷi )} 
11: t = t + v 
12: end for 
13: end if 
14: end for 
15: Re-sample ( x̃, ỹ) and put it in BS 

16: return arg min(x, ŷ)∈BS ŷ 

with their mean values. ŷ in .BS (lines 7–12). The Re-sample.(x, n) sub-procedure 
computes. f N (x) for. n times independently and returns the mean value. ŷ. After that, 
it re-samples the best-so-far solution .(x̃, ỹ) and saves it in .BS (line 15). Finally, the 
best solution in .BS is returned (line 16).
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8.3 Empirical Study 

In this section, we empirically demonstrate the effectiveness of the value suppression 
mechanism in reducing the negative effects of noise and saving computational cost. 
We compare value suppression with other noise handling mechanisms by integrat-
ing them into SRacos. Specifically, SSRacos with the number of solutions in the 
positive set.|B+| > 1 is abbreviated as VS. SRacos with.|B+| > 1 is abbreviated as 
MPS. SRacos with.|B+| = 1 is abbreviated as NO_MPS. SSRacos with. |B+| = 1
is abbreviated as VS+NO_MPS. SRacos equipped with sampling is abbreviated as 
SAMPLING, where a solution is evaluated . n times and the average value is used 
to approximate its true function value [ 1]. SRacos equipped with re-evaluation is 
abbreviated as REEVAL, where a solution is independently re-evaluated whenever 
its function value is required [ 4, 7, 8]. SRacos equipped with threshold selection is 
abbreviated as TS, where a solution is considered better than another only when its 
function value is better by at least a threshold. τ [ 2, 3, 9]. SRacos equipped with the 
combination of re-evaluation and threshold selection is abbreviated as REEVAL+TS. 

We conduct experiments on both synthetic functions and reinforcement learning 
control tasks in OpenAI Gym to investigate the ability of these mechanisms to handle 
noise. Additive Gaussian noise is used to create a noisy environment for synthetic 
functions. The OpenAI Gym environment is considered noisy because a policy may 
receive different total rewards under different initial states (more details can be found 
in the subsection on controlling tasks in OpenAI Gym). In addition to the noise 
from the original environment, we also add extra Gaussian noise to observe the 
performance of the mechanisms under different noise levels. Moreover, we analyze 
the sensitivity of the hyper-parameter. u, the maximum allowed non-update iterations, 
on OpenAI Gym tasks. 

8.3.1 Synthetic Functions 

We choose the Ackley and Sphere functions to investigate the noise handling ability of 
each mechanism. The definition of these functions can be found in previous chapters. 

We choose dimension sizes .D = 100 and .1000 for both functions in the experi-
ments. To create a noisy environment, we use additive Gaussian noise, i.e., the noisy 
function. f N (x) = f (x) + N (0,σ2). For the Ackley function, the standard deviation 
.σ = 0.1, and for the Sphere function, .σ = 1. 

The parameters of the noise handling mechanisms are set as follows. For thresh-
old selection, we set the threshold value .τ = σ, because a solution that passes the 
threshold may be truly better with high probability. For MPS, the number of positive 
solutions is set to 5, which is a trade-off between computational cost and the chance 
of keeping good solutions. For sampling, the sample size is set to 10, balancing the 
accuracy of function evaluation and computational cost. For value suppression, we
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Fig. 8.1 Function value of each noise handling mechanism during the optimization process [11]. 
For the Ackley function, the dimension size.D = 100 and.1000, and the standard deviation of noise 
.σ = 0.1. For the Sphere function,.D = 100 and.1000, and. σ = 1

set the maximum allowed non-update iterations.u = 500, the re-sample size.v = 100, 
and the balancing parameter.α = 0.5. Other parameters are set to their default values. 

For each setting with different dimension size .D or standard deviation of noise 
. σ, we run each mechanism 10 times independently to minimize the noisy function 
. f N (x). The total number of function evaluations is set to 200,000. The true function 
value. f (x) of the best-found solution during the process is shown in Fig. 8.1, and the 
true function value of the returned best solution is listed in Table 8.1. SRacos with 
the number of solutions in the positive set .|B+| = 1 (NO_MPS) is chosen as the 
baseline. The results show that VS achieves the best performance in all settings. 
SAMPLING and MPS show similar performance and are able to reduce the effects 
of noise. VS+NO_MPS performs better than MPS and is competitive with SAM-
PLING. However, REEVAL, TS, and REEVAL+TS are worse than the baseline or 
not significantly different. Figure 8.1 shows that VS requires significantly fewer iter-
ations to achieve good performance compared to the other mechanisms. Specifically, 
on the Ackley function with dimension size 100 and noise level 0.1, VS only needs 
less than half the function evaluations to reach a function value below 2 compared



8.3 Empirical Study 93

Ta
bl
e 
8.
1 

Fu
nc
tio

n 
va
lu
e 
fo
r 
ea
ch
 n
oi
se
 h
an
dl
in
g 
m
ec
ha
ni
sm

 [
 11

].
 F
or
 th

e 
A
ck
le
y 
fu
nc
tio

n,
 th

e 
di
m
en
si
on

 s
iz
e.
D

=
10
0
an
d.
10
00

, a
nd
 th

e 
st
an
da
rd
 d
ev
ia
tio

n 
of
 n
oi
se

.σ
=

0.
1.
 F
or
 th

e 
Sp

he
re
 f
un
ct
io
n,

.D
=

10
0
an
d
.1
00
0,

an
d
.σ

=
1.
 T
he
 n
um

be
r 
of
 f
un
ct
io
n 
ev
al
ua
tio

ns
 is
 s
et
 to

 2
00
,0
00
 

Fu
nc
tio

n_
D
im

Si
ze
_N

oi
se

V
S

V
S+

N
O
_M

PS
SA

M
PL

IN
G

M
PS

R
E
E
V
A
L
+
T
S

R
E
E
V
A
L

T
S

N
O
_M

PS
 

A
ck
le
y_
10
0_
0.
1

0.
93

2.
43

1.
32

2.
95

3.
71

3.
82

3.
75

3.
69
 

A
ck
le
y_
10
00
_0
.1

3.
82

3.
90

3.
93

3.
96

3.
99

4.
01

4.
01

3.
99
 

Sp
he
re
_1
00
_1

4.
17

7.
41

6.
53

8.
74

20
.6
5

24
.0
7

24
.8
8

15
.4
1 

Sp
he
re
_1
00
0_
1

72
.4
1

10
4.
81

81
.7
8

97
.1
6

19
6.
14

24
6.
22

29
4.
42

17
2.
98



94 8 Optimization Under Noise

to the second best mechanism, SAMPLING. This indicates that the presented VS 
mechanism can significantly reduce the computational and time cost. 

8.3.2 Controlling Tasks in OpenAI Gym 

OpenAI Gym provides a toolkit for reinforcement learning research. 1 We choose 
the following controlling tasks to compare the noise handling ability of each mecha-
nism: Acrobot, MountainCar, HalfCheetah, Humanoid, Swimmer, Ant, Hopper, and 
LunarLander. 

We use the framework of direct policy search to solve these tasks. Direct policy 
search applies optimization algorithms to search the parameter space of a policy, 
which is often represented by a neural network [ 5]. The objective is to maximize 
the accumulated reward of a policy. Specifically, a policy is represented by a neural 
network with an input layer for the observation of the state, an output layer for 
the available actions, and several hidden layers. In each step, an agent receives an 
observation of the state and takes an action according to its policy. It then receives the 
reward for that action together with the observation of the next state. This interaction 
is repeated until the maximum number of steps is reached or the game is over. The 
accumulated reward is used to evaluate the performance of a policy. The agent may 
receive different accumulated rewards if the initial state is different. Therefore, we 
consider the environment to be noisy. To summarize, our goal is to find the best 
parameters . w for the neural network to achieve the best performance. The difficulty 
lies in the fact that the accumulated reward. f N (w) used to evaluate the performance 
can be noisy during optimization. Thus, we use the noise handling mechanisms 
to reduce the effect of noise in this environment and compare their performances. 
The settings of the neural network and OpenAI Gym tasks are listed in Table 8.2, 
where .dstate, #Actions, NN nodes, #Weights, and Horizon denote the dimension of 
the observation, the dimension of the action, the hidden layers of the neural network, 
the total number of parameters in the neural network, and the maximum number of 
steps, respectively. 

We compare these mechanisms under the same parameter settings of SRacos, 
which are listed in Table 8.3, where #.B− and #.B+ denote the size of the negative 
set and positive set, respectively, and U-bits denotes the number of bits that can be 
changed when generating a new solution from a positive solution. From the experi-
mental results on synthetic functions, we note that VS achieves the best performance. 
Thus, we combine the other mechanisms with MPS to see if they can improve the 
performance of MPS better than value suppression. On OpenAI Gym tasks, the total 
number of function evaluations is set to 20,000. 

The parameters of these mechanisms are set as follows. For sampling, the sample 
size is set to 10. For threshold selection, the noise level is estimated to choose a 
proper threshold value. To estimate the standard deviation of the noise, we draw 10

1 https://gym.openai.com. 

https://gym.openai.com
https://gym.openai.com
https://gym.openai.com
https://gym.openai.com
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Table 8.2 Parameters of the OpenAI Gym tasks [ 11] 

Task .dstate #Actions NN nodes #Weights Horizon 

Acrobot-v1 6 1 5, 3 48 500 

MountainCar-v0 2 1 5 15 200 

HalfCheetah-v1 17 6 10 230 1,000 

Humanoid-v1 376 17 25 9,825 1,000 

Swimmer-v1 8 2 5, 3 61 1,000 

Ant-v1 111 8 15 1,785 1,000 

Hopper-v1 11 3 9, 5 159 1,000 

LunarLander-v2 8 1 5, 3 58 1,000 

Table 8.3 Parameters of SRacos and noise level [ 11] 

Task #.B− #.B+ U-bits Noise level 

Acrobot-v1 20 2 1 28.0 

MountainCar-v0 20 2 1 10.0 

HalfCheetah-v1 50 3 3 200.0 

Humanoid-v1 20 2 3 56.0 

Swimmer-v1 50 4 2 10.0 

Ant-v1 20 2 3 46.0 

Hopper-v1 50 6 4 60.0 

LunarLander-v2 50 5 3 50.0 

samples from the solution space, evaluate each sample 1,000 times independently, and 
compute the standard deviation. The average standard deviation of these 10 samples is 
used to estimate the standard deviation of the noise. The values are listed in Table 8.3 
as the noise level . σ. We round these estimated values to the nearest integers and set 
the threshold value.τ = σ. For value suppression, we set the maximum allowed non-
update iterations .u = 500, the re-sample size .v = 100, and the balancing parameter 
.α = 0.5. 

For each mechanism, the optimization algorithm is run independently 10 times. 
At the end of each run, the average accumulated reward of 1,000 simulations is used 
to estimate the performance of the found policy. The mean and standard deviation of 
the 10 policies are reported in Table 8.4, where the standard deviation of additional 
Gaussian noise is set to 0, 0.1, and 1 times the noise level in Table 8.3, respectively. 
The mean value of a mechanism is in bold if it is not significantly worse than the 
mechanism with the maximal mean value under a .t-test. SRacos with the number 
of solutions in the positive set .|B+| > 1 (MPS) is chosen as the baseline for com-
parison. We can observe that VS performs the best on all tasks, while SAMPLING 
and REEVAL+TS achieve the best performance only on the Humanoid-v1 task. 
REEVAL, TS, and REEVAL+TS perform worse than the baseline on some tasks. 
Since VS achieves the best performance within a given solution evaluation budget,
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it requires the least computational and time cost compared to the other mechanisms, 
making it the most efficient. 

We further add Gaussian noise to these tasks and observe the performance of the 
mechanisms under additional noise. Two experiments are conducted with different 
levels of extra noise. For the first one, the standard deviation of the additional Gaus-
sian noise is set to 0.1 times the noise level in Table 8.3. For the second one, the 
standard deviation is set to 1 times the noise level. We keep the other parameters 
the same as in the previous experiment for OpenAI Gym. SRacos with the num-
ber of solutions in the positive set .|B+| > 1 (MPS) is chosen as the baseline for 
comparison. The results are listed in Table 8.4, and the comparison of the mecha-
nisms under different extra noise levels is shown in Fig. 8.2. We can observe that VS 
achieves the best or equally best performance under the .t-test in all tasks. Although 
it performs worse than the environment without extra noise in tasks like Ant-v1 and 
HalfCheetah-v1, it achieves almost the same or even better performance in other 
tasks. However, SAMPLING and REEVAL+TS perform worse as the extra noise 
increases in most tasks. In tasks like HalfCheetah-v1 and Swimmer-v1, they do not 
perform better than the baseline, which does not handle noise. 

8.3.3 Hyper-Parameter Analysis 

We also investigate the sensitivity of the hyper-parameter . u, i.e., the maximum 
allowed non-update iterations, in OpenAI Gym. The experimental setting is the same 
as that without extra noise, and . u is chosen from .{100, 500, 1000}. In the previous 
experiments, . u was always set to 500. The results are shown in Table 8.5. 

Table 8.5 indicates that the results are not significantly different in most tasks when 
.u ∈ {100, 500, 1000}. This implies that the hyper-parameter . u is not very sensitive. 
If . u is too small, the confidence that the solution is trapped due to noise is low, and 
it may waste samples to accurately evaluate a solution that would be replaced soon. 
If . u is too large, the confidence is high, but it may waste samples waiting for the 
confidence to build up. Therefore, the choice of . u should be balanced. According 
to the experimental results, the default setting .u = 500 should be suitable in many 
cases. 

8.4 Summary 

In many real-world applications, such as policy search in reinforcement learning, 
the environment is noisy, and noise can significantly degrade the performance of 
derivative-free optimization methods. This chapter presents a generic, simple, yet 
effective noise handling mechanism called value suppression [ 11]. Value suppres-
sion can be integrated into most derivative-free optimization methods to handle and 
reduce noise. To verify the effectiveness of this mechanism, we integrate it into
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Fig. 8.2 Comparison of the performance under extra noise levels of 0, 0.1, and 1 times the noise 
level, respectively [ 11]
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Table 8.5 Hyper-parameter analysis of maximum allowed non-update iterations . u [ 11], where 
.u ∈ {100, 500, 1000}. The  mark. ↓ means that a smaller reward is better for the task, while. ↑ means 
that a larger reward is better. The mean value of a mechanism is in bold if it is not significantly 
worse than the mechanism with the maximal mean value under a.t-test with a significance level of 
. γ = 10%

Task 500 100 1000 

Acrobot-v1.↓ 80.76. ±1.38 79.52. ±2.54 82.06. ±1.39 

MountainCar-v0.↓ 134.92. ±3.87 132.30. ±4.28 134.96. ±4.52 

HalfCheetah-v1.↑ 1924.60. ±278.08 1554.27. ±486.50 1773.89. ±548.06 

Humanoid-v1.↑ 461.85. ±23.92 460.39. ±34.97 455.46. ±35.26 

Swimmer-v1.↑ 360.51. ±3.45 360.91. ±2.33 359.35. ±5.09 

Ant-v1.↑ 1312.85. ±90.16 1239.24. ±119.53 1181.04. ±91.45 

Hopper-v1.↑ 1111.91. ±117.69 1046.35. ±27.49 1058.87. ±30.77 

LunarLander-v2.↑ 80.40. ±54.51 . −23.02. ±62.22 21.04. ±80.90 

SRacos, resulting in the suppressed SRacos (SSRacos). Experimental results on 
both synthetic functions and reinforcement learning control tasks in OpenAI Gym 
demonstrate that value suppression can perform better than other popular noise han-
dling mechanisms, such as sampling and threshold selection with re-evaluation. In 
the future, we will further explore whether value suppression can be helpful in noise-
free environments. Intuitively, value suppression may help the algorithm escape local 
optima even in the absence of noise. 
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Chapter 9 
Optimization with Parallel Computing 

Abstract This chapter introduces ASRacos, an asynchronous variant of the SRa-
cos algorithm, designed to accelerate derivative-free optimization through parallel 
computing. While SRacos excels in sequential optimization, its structure limits par-
allelization, which is crucial for time-consuming tasks. ASRacos modifies SRacos 
to enable asynchronous parallelism, allowing multiple servers to evaluate solutions 
concurrently while maintaining the sequential update structure. The chapter provides 
a theoretical analysis of ASRacos, including its query complexity and conditions 
under which it outperforms SRacos. Empirical studies compare ASRacos with other 
parallel methods on synthetic functions and reinforcement learning tasks, demon-
strating its ability to achieve near-linear speedup and superior solution quality. The 
results highlight the effectiveness of asynchronous parallelism in accelerating opti-
mization without compromising performance. Future work may explore integrating 
noise-handling methods and applying ASRacos to large-scale real-world problems. 

While SRacos has shown outstanding performance in various applications [ 7– 9], its 
sequential structure prevents it from being parallelized, which can be a limitation for 
time-consuming optimization tasks. Asynchronous parallelism is an effective way 
to accelerate optimization, but it can destroy the sequential structure of optimization 
algorithms, potentially deteriorating their performance. However, some optimiza-
tion algorithms have been proven to preserve their performance under asynchronous 
parallelization, such as stochastic gradient descent for first-order optimization of dif-
ferentiable functions [ 10] and Pareto optimization for zeroth-order optimization in 
binary space [ 5]. 

In this chapter, we present an asynchronous variant of SRacos called ASRacos 
[ 4]. We apply a feasible modification to SRacos to make it parallelizable and imple-
ment its asynchronous version ASRacos, which maintains the sequential structure 
while being able to utilize multiple servers. We provide the .(ε, δ)-query complexity 
bound of ASRacos in theoretical analysis and further give the condition under which 
ASRacos can achieve better (or worse) performance than SRacos, even when using 
the same number of evaluations. We empirically compare ASRacos with several 
other parallel classification-based optimization algorithms on four synthetic testing 
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functions and apply them to direct policy search for six reinforcement learning con-
trol tasks, where an artificial neural network is used as the policy and optimized. 
Experimental results show that ASRacos can achieve almost linear speedup while 
preserving good solution quality. 

9.1 The Asynchronous SRACOS (ASRACOS) Algorithm 

The idea of making SRacos parallelizable is straightforward: sample .Ns solutions 
(where.Ns is the number of evaluation servers) after initialization, rather than a single 
solution. These solutions can then be evaluated in parallel. Whenever an evaluation is 
finished, the method updates the model and samples the next solution for evaluation. 
Note that the sequential update structure is still maintained through this modification. 

The pseudocode of ASRacos is shown in Algorithm 9.1. The notations and sub-
procedures used in the algorithm are the same as those introduced in Chap. 6 for the 
SRacos algorithm. 

Algorithm 9.1 Asynchronous SRacos (ASRacos) 
Require: (extra input compared to SRacos) 

Ns ∈ N+: The number of evaluation servers 
Ensure: 
1: Collect S = {x1, . . . ,  xr } by i.i.d. sampling from UX 
2: B = {(x1, y1),  . . . , (xr , yr )}, ∀xi ∈ S : yi = f (xi ) 
3: (B+, B−) = Selection(B; k) 
4: h1 = C(B+, B−) 
5: D, E = Shared Queue{ }, Shared Queue{ }  
6: D = {xr+1, . . . ,  xr+Ns } =  λ-SamplingNs (UDh , UX ) 
7: Run Evaluation(D, E) sub-procedures on Ns daemon threads 
8: for t = r + 1 to  N do 
9: (x, y) = take(E) 
10: [(x′, y′), B+] = Replace((x, y), B+, ‘strategy_P’) 
11: [∅, B−] =  Replace((x′, y′), B−, ‘strategy_N’) 
12: ( ̃x, ỹ) = arg min(x,y)∈B+∪{( ̃x, ̃y)} y 
13: h = C(B+, B−) 
14: x = λ-Sampling1(UDh , UX ) 
15: put(x, D) 
16: end for 
17: return ( ̃x, ỹ) 
18: 
19: Evaluation(D, E): 
20: while true do 
21: x = take(D) 
22: y = f (x) 
23: put((x, y), E) 
24: end while
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After initialization, ASRacos obtains two tuple sets.B+ and.B− according to the 
function values (line 3). Then, a binary classifier is trained based on these two sets 
to learn the potential high-quality region in the solution space (line 4). The learned 
region contains one selected good solution from the positive set and excludes all 
the bad solutions from the negative set. ASRacos contains two first-in-first-out 
blocking queues: .D for the unevaluated solutions and.E for the evaluated solutions. 
.D and .E are shared between the main thread and the evaluation threads for data 
communication. .D is initialized with the first batch of sampled solutions, and . E
is initialized as empty (lines 5–6). Then, ASRacos starts .Ns evaluation servers 
(implemented as newly created threads), each continuously evaluating a solution 
taken from .D and putting the result .(x, y) into .E (lines 21–23). In the following 
loop, ASRacos takes the evaluated tuple .(x, y) from .E and uses it to update the 
tuple sets .B+ and .B− (lines 9–11). Once a new binary classifier . C is trained (line 
13), a new solution is sampled and put into .D (lines 14–15). 

In summary, ASRacos divides the sequential evaluation and update procedure 
of SRacos into two components: the asynchronous evaluation component and the 
sequential model update component. The asynchronous evaluation component can 
utilize multiple servers, while the model update component can still update the clas-
sification model sequentially, maintaining the sequential structure of SRacos. The  
blocking queues .D and .E are created for data communication between threads. 

Figure 9.1 demonstrates the flowcharts of the optimization procedures of 
ASRacos and SRacos, where the solid arrow denotes the sampling and evalua-
tion procedure, the hollow arrow denotes an update on the data distribution .Dt , and 
. si , . s j , and. sk denote the unused solutions sampled previously. It can be observed that 
.Dt is always updated by the solution sampled from.Dt for SRacos, while it can be 
updated by the solution sampled from another distribution several iterations ago for 
ASRacos, which causes the difference in the data distributions of the two algorithms. 
The next section discusses the effect of this difference on the query complexity of 
ASRacos. 

... ... 

... ... 

Fig. 9.1 Flowcharts of the optimization procedures of ASRacos (top, using three evaluation 
servers) and SRacos (bottom) [ 4]
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9.2 Theoretical Analysis 

We derive an upper bound on the .(ε, δ)-query complexity of ASRacos under 
the conditions of error-target .θ-dependence and .γ-shrinking rate, as introduced in 
Chap. 4. 

Lemma 9.1 Given an objective function . f , .ε > 0, and .0 < δ < 1, if  ASRacos has 
error-target .θ-dependence and .γ-shrinking rate, then its .(ε, δ)-query complexity is 
upper bounded by 

.O

⎛
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⎧⎨
⎩

1

μ(Dε)

(
(1 − λ) + λ

γ(N − r)

N∑
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)−1

ln
1

δ
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⎭

⎞
⎠ , (9.1) 

where .�A
t =

(
1 − εDA

t
− √

2DKL(DA
t ‖UX ) − θ

)
· μ(Dαt )

−1, and .|X | is the volume 
of . X . 

The proof of Lemma 9.1 is similar to the proof of Theorem 4.3 in Chap. 4, except 
for the values of .εDt and .DKL(Dt‖UX ) at each iteration. Using Lemma 9.1, we  
can compare the query complexity bounds of ASRacos and SRacos. The result is 
shown in Theorem 9.1. 

Theorem 9.1 Ignoring the constant factor and fixing . θ and . γ, ASRacos can have 
a better (or worse) query complexity upper bound than SRacos if, for any iteration 
. t , 

.εDA
t

− εDS
t

< (>)

√
2DKL(DS

t ‖UX ) −
√
2DKL(DA

t ‖UX ). (9.2) 

Proof Let.DA
t and.DS

t denote the distributions under which the classifiers are trained 
in iteration . t of ASRacos and SRacos, respectively, and .εDA

t
and .εDS

t
denote their 

corresponding generalization errors. 
Recall the.(ε, δ)-query complexity bound of a classification-based sequential DFO 

algorithm derived in Theorem 4.3 of Chap. 4. Given an objective function . f , .ε > 0, 
and.0 < δ < 1, if a classification-based sequential DFO algorithm has error-target.θ-
dependence and .γ-shrinking rate, then its .(ε, δ)-query complexity is upper bounded 
by 
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In Lemma 9.1, ignoring the constant factor and letting.ε > 0 be small enough, we 
only need to focus on the term 

.
1

μ(Dε)

(
(1 − λ) + λ

γ(N − r)

N∑
t=r+1

�A
t

)−1

ln
1

δ
, (9.4) 

where .�A
t =

(
1 − εDA

t
− √

2DKL(DA
t ‖UX ) − θ

)
· μ(Dαt )

−1. 

Comparing Lemma 9.1 and Eq. (9.3), to compare ASRacos with SRacos, 
it suffices to compare the terms .1 − εDA

t
− √

2DKL(DA
t ‖UX ) − θ and . 1 − εDS

t
−√

2DKL(DS
t ‖UX ) − θ, ignoring the corresponding constant factors. It can be verified 

that, for any iteration. t , if.εDA
t

− εDS
t

<
√
2DKL(DS

t ‖UX ) − √
2DKL(DA

t ‖UX ), then 
ASRacos has a better query complexity upper bound than SRacos; if . εDA

t
− εDS

t
>√

2DKL(DS
t ‖UX ) − √

2DK L(DA
t |UX ), then ASRacos is worse. �

Theorem 9.1 reveals that if the difference in the training distributions between 
the two algorithms has a greater influence than the difference in generalization error, 
ASRacos can be better than SRacos even when using the same number of evalua-
tions. Moreover, ASRacos can use nearly .Ns times more evaluations than SRacos 
within the same time. Therefore, it is much easier for ASRacos to find a better 
solution than SRacos in practice. 

9.3 Empirical Study 

We evaluate the performance of ASRacos in two environments. One is the optimiza-
tion of classical synthetic functions, containing a convex function and three highly 
non-convex functions; the other is the controlling tasks in OpenAI Gym, an open 
source environment for reinforcement learning research. 

We investigate the performance of the asynchronous parallelism on the 
classification-based optimization algorithms, including convergence rate, speedup 
ratio, and solution quality. We compare our method with another two parallel 
classification-based methods: Parallel Ra-cos (PRacos) and Parallel SRacos 
(PSRacos). PRacos is a simple parallel implementation of the batch-mode method 
SRacos [ 6]. PSRacos shares the same structure with ASRacos, and only varies 
in that the classification model will not update until the slowest evaluation server 
finishes evaluation. Note that when the number of evaluation servers is 1, ASRacos 
and PSRacos are equivalent to SRacos, and PRacos equals SRacos. Reference 
[ 3] has compared the performance of a sequential classification-based optimization 
algorithm with other state-of-the-art derivative-free optimization algorithms, so we 
omit these comparisons in this chapter.
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9.3.1 On Synthetic Functions 

We choose four benchmark testing functions: the convex Sphere function and the 
highly non-convex Ackley, Rastrigin, and Griewank function. They are defined as 

. Sphere(x) =
d∑

i=1

x2i , (9.5) 

. Ackley(x) = −20e− 1
5

√
1
d

∑d
i=1 x

2
i − e

1
d

∑d
i=1 cos(2πxi ) + 20 + e , (9.6) 

. Rastrigin(x) = 10d +
d∑

i=1

[
xi

2 − 10 cos(2πxi )
]

, (9.7) 

. Griewank(x) =
d∑

i=1

x2i
4000

−
d∏

i=1

cos(
xi√
i
) + 1 . (9.8) 

The functions are minimized within the solution space.X = [−1, 1]d , of which the 
minimum value is . 0 and the optimal solution is .(0, . . . , 0). In the implementation, 
we choose . d to be 100 and shift the optimal solution by .0.2, which means the 
new optimal solution is .(0.2, 0.2, . . . , 0.2), to avoid possible optimization bias to 
the origin point. In addition, we add a fixed 1-s sleep for each evaluation. This 
is a reasonable modification since any distributed algorithm faces the networking 
overhead. If the evaluation time cost is even smaller than the networking overhead, 
parallelization may not be necessary. Another 1-s sleep with 0.25 probability is 
also added to simulate a situation where evaluation servers vary in computational 
performance, i.e., some servers are explicitly slower than others, which is common 
in real-world applications. Each algorithm is repeated 10 times independently, and 
the average performance is reported. 

On Convergence Rate 
We firstly study the convergence rate of ASRacos. We set the time for optimiza-
tion to be 2000 s compare the performance with the number of evaluation servers 
.Ns = 1, 2, 4, 6, 8, 10. The results are shown in Fig. 9.2. The dotted line represents 
the optimal value that ASRacos obtains when using one server (also the result of 
SRacos). It can be observed that ASRacos with more evaluation servers reduces the 
objective function value with a higher rate, indicating that asynchronous parallelism 
can accelerate the convergence. 

On Speedup 
We then study the speedup w.r.t the number of evaluation servers (.Ns). We set the 
budget to be 2000 for each algorithm and calculate the speedup as.Si = T1/Ti , where 
. Ti represents the time consumed when.Ns = i . The results are shown in Fig. 9.3. From  
the left plots of each function, we can observe that ASRacos (blue line) achieves 
linear speedup, notably better than PRacos and PSRacos. The results reflect the
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Fig. 9.2 Comparison of the convergence rate with the number of evaluation servers . Ns =
1, 2, 4, 6, 8, 10 [ 4] 

advantage of asynchronous parallelism over simple parallelism when servers vary in 
computational performance. 

On Solution Quality 
To study the solution quality w.r.t. the number of evaluation servers within the same 
time constraint, we set the time for optimization to be 20 min for each algorithm. 
The results are shown in the right plots of Fig. 9.3. We can see that algorithms using 
more servers get better solution quality and ASRacos achieves the best performance 
among them. 

9.3.2 On Controlling Tasks in OpenAI Gym 

OpenAI Gym is a toolkit for developing and comparing reinforcement learning algo-
rithms. The toolkit provides many controlling tasts, from which we choose Acrobot, 
MountainCar, Pendulum, HalfCheetah, Swimmer, and Ant to investigate the speedup 
and solution quality of ASRacos.
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Fig. 9.3 On each objective function, left: speedup, right: the average of the function value (the one 
closer to. 0 the better) [ 4]
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We use the framework of direct policy search to solve these tasks. Direct pol-
icy search employs optimization algorithms to search in the parameter space of a 
policy for maximizing the cumulative reward. The policy is often represented by 
a neural network [ 1, 2], whose weights .w = {w1, w2, . . . , wn} are the parameters 
to be optimized. The neural network takes the observation of the state as input and 
outputs an action according to its policy. After that, it will get the reward of that 
action and the observation of the next state. This interaction can be repeated until 
the game is over or the maximum step is reached. The cumulative reward is used as 
an evaluation of the policy network, i.e., . f (w)i = ∑T

t=1 Rt . The agent would have 
different cumulative rewards if the initial state is reset to be different, so we take the 
average of multiple simulations as the final evaluation value of one neural network: 
. f (w) = ∑m

i=1 f (w)i/m, which can reduce the noise to some extent. In a nutshell, 
our aim is to find the optimal parameter .w for this network so as to achieve the 
best performance. We list the task information and the settings of neural network 
in Table 9.1, where .dState, #Actions, NN nodes, #Weights and Horizon respectively 
denote the dimension size of observation, the dimension size of action, the hidden 
layers of the neural network, the total number of parameters in the neural network 
and the maximum step. 

We will briefly summarize each task and the details can be found in the homepage 
of OpenAI Gym. The Acrobot system includes two joints and two links, where the 
joint between the two links is actuated. Initially, the links are hanging downwards and 
the goal of this task is to swing the end of the low link up to a given height. In Moun-
tainCar, a car is on a one-dimensional track, positioned between two mountains. The 
goal is to drive up the mountain on the right through driving back and forth to build 
up momentum. In Pendulum, a pendulum starts in a random position, and the goal 
is to swing it up so it stays upright. HalfCheetah, Swimmer, and Ant are simulation 
tasks. In those tasks, a simulated object is controlled by a policy to achieve a specific 
goal. For example, in Ant, the policy should control a four-legged creature to make it 
walk forward as fast as possible. Among these tasks, Acrobot and MountainCar are 
finding policies with the smallest step number to achieve the goal. Other tasks are 
to find policies to get score from the environment as high as possible. The average 
cumulative reward of 200 simulations is used as the evaluation value of one network 
for Acrobot, MountainCar, and Pendulum. And for other tasks, the average reward 

Table 9.1 Parameters of the Gym tasks [ 4] 

Task .dState #Actions NN nodes #Weights Horizon 

Acrobot-v1 .6 .1 .5, 3 .48 . 500

MountainCar-v0 .2 .1 .5 .15 . 200

Pendulum-v0 .3 .1 .5 .20 . 200

HalfCheetah-v2 .17 .6 .10 .230 . 1000

Swimmer-v2 .8 .2 .5, 3 .61 . 1000

Ant-v2 .111 .8 .15 .1785 .1000
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of 20 simulations is used. The solution space .X is set to be .[−10, 10]#Weight. The  
output of the neural network is scaled to be within the action space, which is defined 
by the environment. Each algorithm is repeated 10 times and the mean value of the 
top-5 results is reported. The results are plotted in Figs. 9.4 and 9.5. 

Fig. 9.4 For each task, left: speedup, right: the mean step (Acrobot, MountainCar) or minus score 
(Pendulum, HalfCheetah, Swimmer, Ant) of the best found policy (the smaller .y-axis coordinate 
value the better) [ 4]
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Fig. 9.5 For each task, left: speedup, right: the mean step (Acrobot, MountainCar) or minus score 
(Pendulum, HalfCheetah, Swimmer, Ant) of the best found policy (the smaller .y-axis coordinate 
value the better) [ 4]
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On Speedup 
Budget is set to be .2000 for each algorithm. From the left plots of each task, we can 
observe that ASRacos (blue line) can still achieve almost linear speedup, better than 
PRacos and PSRacos. Due to the competition for computing resource, the speedup 
ratio in these environments is smaller than that on synthetic functions, which simulate 
the time-consuming tasks simply by adding sleep operations. In addition, for Acrobot, 
MountainCar, and Ant, a better solution would make the game stop earlier, which 
consumes less evaluation time, and result in a lower speedup. 

On Solution Value 
We convert the maximization problems in Pendulum, HalfCheetah, Swimmer, and 
Ant to the minimization problems by adding a minus to the score. The time for 
optimization is set to be 20 min for each algorithm. From the right plots in each 
subfigure, we can see that the algorithm using more servers can get better solution 
quality in most cases. Nevertheless, in some cases, the algorithm may get worse 
solution quality. The reason is that in one case there exists randomness in the process 
of optimization, in another the evaluation is inaccurate under noisy environments, 
which may make a bad solution seem to be good and lead the optimization to the 
wrong direction. Similar to the results of the synthetic functions, ASRacos achieves 
the best performance in most cases. 

9.4 Summary 

In this chapter, we present an asynchronous derivative-free classification-based opti-
mization method, ASRacos, originally proposed in [ 4], for accelerating the optimiza-
tion. We analyze the query complexity of ASRacos and further provide the condition 
on which ASRacos can achieve a better (worse) performance than SRacos using 
the same number of evaluations. In experiments, we first study the convergence rate 
of ASRacos on synthetic functions, showing that ASRacos can achieve higher 
convergence rate when having more evaluation servers. On both synthetic functions 
and direct policy search for controlling tasks, ASRacos demonstrates almost linear 
speedup and gets a better solution quality than other parallel algorithms, which veri-
fies the effectiveness of asynchronous parallelism. Future work includes combining 
noise-handling methods into ASRacos to speed up the optimization under noisy 
environments and applying ASRacos to large-scale optimization problems in real 
world.



References 113

References 

1. El-Fakdi A, Carreras M, Palomeras N (2005) Direct policy search reinforcement learning 
for robot control. In: Proceedings of the 8th international conference of the ACIA artificial 
intelligence research and development, Alguer, Italy, pp 9–16 

2. El-Fakdi A, Carreras M, Palomeras N (2006) Towards direct policy search reinforcement 
learning for robot control. In: Proceedings of the 2006 IEEE/RSJ international conference on 
intelligent robots and systems, Beijing, China, pp 3178–3183 

3. Hu YQ, Qian H, Yu Y (2017) Sequential classification-based optimization for direct policy 
search. In: Proceedings of the 31st AAAI conference on artificial intelligence, San Francisco, 
CA, pp 2029–2035 

4. Hu YQ, Qian H, Yu Y (2019) Asynchronous classification-based optimization. In: Proceedings 
of the 1st international conference on distributed artificial intelligence, Beijing, China, pp 
9:1-9:8.https://doi.org/10.1145/3356464.3357709 

5. Qian C, Shi JC, Yu Y, Tang K, Zhou ZH (2016) Parallel Pareto optimization for subset selection. 
In: Proceedings of the 25th international joint conference on artificial intelligence, New York, 
NY, pp 1939–1945 

6. Yu Y, Qian H, Hu YQ (2016) Derivative-free optimization via classification. In: Proceedings 
of the 30th AAAI conference on artificial intelligence, Phoenix, Arizona, pp 2286–2292 

7. Yu Y, Qu WY, Li N, Guo Z (2017) Open category classification by adversarial sample gen-
eration. In: Proceedings of the 26th international joint conference on artificial intelligence, 
Melbourne, Australia, pp 3357–3363 

8. Zhang J, Sun Y, Huang S, Nguyen CT, Wang X, Dai X, Chen J, Yu Y (2017) AGRA: an analysis-
generation-ranking framework for automatic abbreviation from paper titles. In: Proceedings 
of the 26th international joint conference on artificial intelligence, Melbourne, Australia, pp 
4221–4227 

9. Zhou WJ, Yu Y, Zhang ML (2017) Binary linear compression for multi-label classification. 
In: Proceedings of the 26th international joint conference on artificial intelligence, Melbourne, 
Australia, pp 3546–3552 

10. Zinkevich M, Weimer M, Smola A, Li L (2010) Parallelized stochastic gradient descent. In: 
Advances in neural information processing systems, vol 23, British Columbia, Canada, pp 
2595–2603

https://doi.org/10.1145/3356464.3357709
https://doi.org/10.1145/3356464.3357709
https://doi.org/10.1145/3356464.3357709
https://doi.org/10.1145/3356464.3357709
https://doi.org/10.1145/3356464.3357709
https://doi.org/10.1145/3356464.3357709
https://doi.org/10.1145/3356464.3357709


Chapter 10 
Toolbox: ZOOpt 

Abstract This chapter introduces the ZOOpt toolbox, a powerful tool for zeroth-
order optimization designed to address high-dimensional and noisy optimization 
problems, particularly in machine learning tasks such as hyper-parameter tuning 
and direct policy search. ZOOpt implements state-of-the-art algorithms, includ-
ing SRacos, ASRacos, and POSS, and supports optimization in continuous, dis-
crete, and hybrid spaces. It also features noise-handling mechanisms like value sup-
pression and threshold selection, as well as high-dimensionality handling through 
sequential random embedding. The toolbox integrates with the Ray framework for 
distributed optimization, enabling efficient parallel computation. Empirical studies 
demonstrate ZOOpt’s superior convergence rate, scalability, and robustness against 
noise compared to other optimization toolboxes. Experiments on synthetic functions 
and machine learning tasks, including classification with Ramp loss and OpenAI 
Gym control tasks, highlight ZOOpt’s effectiveness. The chapter concludes with a 
summary of ZOOpt’s capabilities and its potential for real-world applications. 

This chapter introduces the ZOOpt (Zeroth Order Optimization) toolbox [ 7], which 
provides major algorithms introduced in the previous chapters. ZOOpt implements 
single-machine parallel optimization using Python and multi-machine distributed 
optimization for time-consuming tasks by incorporating the Ray framework, a pop-
ular platform for building distributed applications. ZOOpt particularly focuses on 
optimization problems in machine learning, addressing high-dimensional and noisy 
problems such as hyper-parameter tuning and direct policy search. The toolbox is 
maintained as a ready-to-use tool for real-world machine learning tasks. 

10.1 Methods in ZOOpt 

In Table 10.1, we summarize the algorithms implemented in the ZOOpt toolbox, 
along with their support for different search spaces, parallelization, and compatibility 
with noise and high-dimensional handlers. 

Optimization in continuous/discrete/hybrid spaces. ZOOpt implements SRa-
cos (Chap. 6 as the default optimization method, which has shown high efficiency 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 
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in a range of learning tasks. Optional methods are Racos (Chap. 5) and ASRacos 
(Chap. 9), which are the batch and asynchronous versions of SRacos, respectively. 
A routine is in place to set up the default parameters of the two methods, while users 
can override them. Benefiting from the compatibility of the classifier with multi-
ple data types, classification-based optimization naturally supports optimization in 
continuous, discrete (categorical), or hybrid spaces. 

Optimization in binary vector space with constraints. If the optimization task is 
in a binary vector space with constraints, such as the subset selection problem, POSS 
[ 9] is the default optimization method. POSS treats subset selection tasks as a bi-
objective optimization problem that simultaneously optimizes a given criterion and 
the subset size. POSS has been proven to have the best-so-far approximation quality 
on these problems. PPOSS [ 10] is the parallel version of the POSS algorithm. 

Noise handling. Noise has a great impact on the performance of derivative-free 
optimization. Resampling is the most straightforward method to handle noise, which 
evaluates one sample several times to obtain a stable mean value. Besides resampling, 
more efficient methods, including value suppression (Chap. 8) and threshold selection 
[ 11], are implemented in ZOOpt. 

High-dimensionality handling. An increase in the search space dimensional-
ity badly injures the performance of derivative-free optimization. When a high-
dimensional search space has a low effective dimension, random embedding [12] is an  
effective way to improve efficiency. Also, sequential random embeddings (Chap. 7) 
can be used when there is no clear low effective dimension. 

Distributed optimization. Evaluation of a sampled solution is usually time-
consuming for many real-world optimization tasks, such as hyper-parameter tun-
ing in large-scale machine learning projects. Incorporating the Ray framework [ 8], 
ZOOpt implements an efficient distributed optimization module that enables users 
to parallelize single-machine code with little to no code changes. 

10.2 Usage 

This section briefly introduces single-machine optimization, distributed optimiza-
tion, optimization under noise, and optimization in high-dimensional spaces through 
a few examples. For the full tutorial, including detailed API introduction, hyper-
parameter tuning tricks, and all examples, we refer readers to https://zoopt. 
readthedocs.io/en/latest/. 

Single-machine optimization. The core architecture of ZOOpt includes three 
parts: .Objective, .Parameter , and .Opt.min. The  .Objective object defines the 
function expression and the search space. The.Parameter object defines all param-
eters used by the optimization algorithm. .Opt.min is the interface for performing 
optimization. After defining a user-specified objective function and the correspond-
ing search space, only one line of code is needed to perform optimization using 
.Opt.min. A quick-start example is provided as follows.

https://zoopt.readthedocs.io/en/latest/
https://zoopt.readthedocs.io/en/latest/
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import numpy as np 
from zoopt import ValueType , Dimension2 , Objective , 

Parameter , Opt 

def ackley(solution): 
x = solution.get_x() 
bias = 0.2 
value = -20 * np.exp(-0.2 * np.sqrt(sum([(i

- bias) * (i -
bias) for i in x] 
) / len(x))) - \ 

np.exp(sum([np.cos(2.0*np.pi*(i-bias 
)) for i 
in x]) / 
len(x)) + 
20.0 + 

np.e 
return value 

dim_size = 100 # dimension size 
dim = Dimension2([(ValueType.CONTINUOUS , [-1, 1], 1e

-6)]*dim_size) 
obj = Objective(ackley , dim) 
# perform optimization 
solution = Opt.min(obj , Parameter(budget=100* 

dim_size)) 
# print the solution 
print(solution.get_x(), solution.get_value ()) 
# parallel optimization for time -consuming tasks 
solution = Opt.min(obj , Parameter(budget=100* 

dim_size , parallel=True , 
server_num=3)) 

Distributed optimization. Distributed optimization in ZOOpt is implemented by 
incorporating Ray. Currently, ZOOpt is an optional optimization tool in .Ray.tune, 
a library for fast hyper-parameter tuning at any scale. Through .Ray.tune, users 
can easily distribute the optimization without worrying about the communication 
infrastructure. We provide an example as follows: 

import time 
from ray import tune 
from ray.tune.suggest.zoopt import ZOOptSearch 
from ray.tune.schedulers import 

AsyncHyperBandScheduler 
from zoopt import ValueType # noqa: F401 

def evaluation_fn(step , width , height): 
time.sleep(0.1) 
return (0.1 + width * step / 100) ** (-1) + height 

* 0.1 

def easy_objective(config):
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# Hyperparameters 
width , height = config["width"], config["height" 

] 

for step in range(config["steps"]): 
# Iterative training function - can be any 

arbitrary 
training 
procedure 

intermediate_score = evaluation_fn(step , 
width , height) 

# Feed the score back back to Tune. 
tune.report(iterations=step , mean_loss= 

intermediate_score 
) 

if __name__ == "__main__": 
import argparse 
parser = argparse.ArgumentParser () 
parser.add_argument( 

"--smoke -test", action="store_true", help=" 
Finish quickly 
for testing") 

parser.add_argument( 
"--server -address", 
type=str , 
default=None , 
required=False , 
help="The address of server to connect to if 

using " 
"Ray Client.") 

args , _ = parser.parse_known_args () 

if args.server_address: 
import ray 
ray.init(f"ray://{args.server_address}") 

num_samples = 10 if args.smoke_test else 1000 
zoopt_search_config = { 

"parallel_num": 8, 
} 
zoopt_search = ZOOptSearch( 

algo="Asracos", # only support ASRacos 
currently 

budget=num_samples , 
** zoopt_search_config) 

scheduler = AsyncHyperBandScheduler () 
analysis = tune.run( 

easy_objective , 
metric="mean_loss", 
mode="min", 
search_alg=zoopt_search , 
name="zoopt_search", 
scheduler=scheduler ,
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num_samples=num_samples , 
config={ 

"steps": 10, 
"height": tune.quniform(-10, 10, 1e-2), 
"width": tune.randint(0, 10) 

}) 
print("Best config found: ", analysis. 

best_config) 

Optimization under noise. The noise handler can be enabled by adding some 
attributes to the definition of the .Parameter object. Three kinds of noise handlers 
are implemented in ZOOpt: Naive resampling, value suppression, and threshold 
selection. Naive resampling reduces noise by evaluating the same solution multiple 
times and taking their mean value as the final result. Value suppression reduces noise 
more efficiently by re-evaluating the best solution when it isn’t updated for a pre-
defined number of times. Threshold selection is a noise handler customized for the 
POSS algorithm, where solution. x is better than. y only if . f (x) is smaller than. f (y)
by at least a threshold. We provide simplified cases on how to use these noise handlers 
as follows. Their full versions can be found in the tutorial. 

from zoopt import Parameter 
from sparse_mse import SparseMSE 
import numpy as np 

# naive resampling 
parameter = Parameter(budget=200000 , noise_handling= 

True , resampling=True , 
resample_times=10) 

# value suppression 
parameter = Parameter(budget=200000 , noise_handling= 

True , suppression=True , 
non_update_allowed=500 , 
resample_times=100 , 
balance_rate=0.5) 

# threshold selection 
mse = SparseMSE(’sonar.arff’) 
mse.set_sparsity(8) 
parameter = Parameter(algorithm=’poss’, 

noise_handling=True , 
ponss=True , ponss_theta=0 
.5, ponss_b=mse.get_k(), 
budget=2 * np.exp(1) * ( 
mse.get_sparsity () ** 2) 
* mse.get_dim ().get_size 
()) 

Optimization in high-dimensional spaces. ZOOpt contains the sequential ran-
dom embedding (SRE) (Chap. 7) to handle high-dimensional optimization problems. 
SRE runs the optimization algorithms in a low-dimensional space, where the function 
values of solutions are evaluated via embedding into the original high-dimensional 
space sequentially. SRE is effective for the function class where all dimensions may
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affect the function value, but many of them only have a small bounded effect, and can 
scale Racos, SRacos, and ASRacos (the main optimization algorithms in ZOOpt) 
to 100,000-dimensional problems. The high-dimensionality handler can be enabled 
by adding attributes to the definition of the .Parameter object. An example is pro-
vided as follows: 

from simple_function import sphere_sre 
from zoopt import Dimension , ValueType , Dimension2 , 

Objective , Parameter , 
ExpOpt 

dim_size = 10000 # dimension size 
dim_regs = [[-1, 1]] * dim_size # search space 
dim_tys = [True] * dim_size # continuous 
dim = Dimension(dim_size , dim_regs , dim_tys) # form up 

the dimension object 
objective = Objective(sphere_sre , dim) # form up the 

objective function 
budget = 2000 # number of calls to the objective 

function 
parameter = Parameter(budget=budget , 

high_dimensionality_handling 
=True , reducedim=True , 
num_sre=5, low_dimension= 
Dimension(10 , [[-1, 1]] * 
10, [True] * 10)) 

solution_list = ExpOpt.min(objective , parameter , repeat= 
1, plot=True) 

10.3 Experiments 

In our experiments, we aim to answer the following questions: (1) How does ZOOpt 
compare to prior derivative-free optimization toolboxes on classic optimization 
benchmarks? (2) Can ZOOpt scale better than other toolboxes when the dimen-
sion size of the optimization task increases? (3) Can ZOOpt have better robustness 
against noise than other toolboxes? (4) How does ZOOpt compare to other toolboxes 
on machine learning tasks? 

To answer these questions, we compare ZOOpt to several prior derivative-free 
optimization toolboxes, including pycma, 1 DEAP, 2 pygad, 3 and Hyperopt. 4 Pycma 
[ 6] is a Python implementation of the CMA-ES [ 5] algorithm. DEAP [ 3] is an evo-
lutionary computation framework. Pygad [ 4] is an open-source Python library of 
genetic algorithms. Hyperopt [ 1] implements state-of-the-art Bayesian optimization

1 https://github.com/CMA-ES/pycma. 
2 https://github.com/DEAP/deap. 
3 https://github.com/ahmedfgad/GeneticAlgorithmPython. 
4 https://github.com/hyperopt/hyperopt. 

https://github.com/CMA-ES/pycma
https://github.com/CMA-ES/pycma
https://github.com/CMA-ES/pycma
https://github.com/CMA-ES/pycma
https://github.com/CMA-ES/pycma
https://github.com/CMA-ES/pycma
https://github.com/DEAP/deap
https://github.com/DEAP/deap
https://github.com/DEAP/deap
https://github.com/DEAP/deap
https://github.com/DEAP/deap
https://github.com/ahmedfgad/GeneticAlgorithmPython
https://github.com/ahmedfgad/GeneticAlgorithmPython
https://github.com/ahmedfgad/GeneticAlgorithmPython
https://github.com/ahmedfgad/GeneticAlgorithmPython
https://github.com/ahmedfgad/GeneticAlgorithmPython
https://github.com/hyperopt/hyperopt
https://github.com/hyperopt/hyperopt
https://github.com/hyperopt/hyperopt
https://github.com/hyperopt/hyperopt
https://github.com/hyperopt/hyperopt
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algorithms for hyper-parameter tuning. For all toolboxes, we choose the default algo-
rithm and the recommended parameters according to their tutorials. It’s worth noting 
that each toolbox actually implements many optimization algorithms. However, we 
don’t exhaust the algorithm-level comparisons in this paper. Instead, we choose the 
default algorithm and focus more on the toolbox itself. The source code of the exper-
iments can be found at https://github.com/AlexLiuyuren/ZOOpt_experiment. 

Experiments are conducted on three kinds of tasks. To answer questions (1), (2), 
and (3), we conduct experiments on optimizing benchmark synthetic functions. We 
empirically evaluate the performance of the tested toolboxes, including the conver-
gence rate, scalability, and robustness against noise, on four benchmark synthetic 
functions. To answer question (4), we conduct experiments on two machine learning 
tasks. We study a classification task with Ramploss, where the objective function is 
similar to that of support vector machines (SVM), but the loss function is the Ramp 
loss instead of the hinge loss used in SVM. We then study direct policy search for 
controlling tasks, where the policy is a fully connected feedforward neural network, 
and its weights are optimized directly by derivative-free optimization algorithms. 

10.3.1 Results on Optimizing Synthetic Functions 

To answer questions (1), (2), and (3), we conduct experiments on optimizing bench-
mark synthetic functions. Among them, the Ackley, Rastrigin, and Schwefel func-
tions are highly non-convex, while the Sphere function is convex. The optimal values 
of the four functions are all zero. The Ackley and Sphere functions are minimized 
within the search space.X = [−1, 1]d , where . d is the dimension size. The Rastrigin 
function is minimized within .[−5, 5]d . The Schwefel function is minimized within 
.[−500, 500]d . The optimal position of each function (except the Schwefel function, 
which is fixed to .[420.97, ..., 420.97]) is shifted from .[0, ..., 0] to a random point 
sampled from .[0.2 ∗ l, 0.2 ∗ u]d , where . l and . u respectively refer to the lower and 
upper bounds of the search space on that dimension. This is to avoid a possible opti-
mization bias toward the origin point. The 3-d graphs of these functions are shown 
in Fig. 10.1. Each experiment is repeated 30 times. Mean values and 95% confidence 
intervals are recorded. Results are shown in Fig. 10.2. 

Convergence rate. We set the dimension size to be 20 for each objective function 
and the number of evaluations to be 2000. We study the convergence rate with 
regard to the number of function evaluations by recording the best-so-far solution 
value during the optimization. As shown in Fig. 10.2, ZOOpt reduces the objective 
function value at the highest rate in all tasks. 

Scalability. The scalability of derivative-free optimization methods is critical 
for solving large-scale problems. In this experiment, we quantitatively study the 
scalability of ZOOpt. We set the dimension size. d to be 20, 200, 400, 600, 800, 1000 
and the number of function evaluations to be .100 × d. The confidence interval is 
omitted for clarity. Figure 10.3 shows that ZOOpt has the lowest growth rate of the

https://github.com/AlexLiuyuren/ZOOpt_experiment
https://github.com/AlexLiuyuren/ZOOpt_experiment
https://github.com/AlexLiuyuren/ZOOpt_experiment
https://github.com/AlexLiuyuren/ZOOpt_experiment
https://github.com/AlexLiuyuren/ZOOpt_experiment
https://github.com/AlexLiuyuren/ZOOpt_experiment
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Fig. 10.1 3-d graphs of four benchmark synthetic functions. Among them, the Ackley, Rastrigin, 
and Schwefel functions are highly non-convex, while the Sphere function is convex 

function value in all tasks as the dimension size increases, indicating that ZOOpt has 
better scalability than other toolboxes. 

Robustness against noise. To study the performance of ZOOpt on optimizing 
noisy objectives, we add Gaussian noise to the original functions to simulate the noisy 
environment. The new objective functions are defined as. f N (x) = f (x) + N (0, σ 2). 
The number of function evaluations is set to 10000. For all tasks, ZOOpt and pycma 
use their built-in noise handlers, while DEAP and pygad do not. Figure 10.4 shows 
that ZOOpt reduces the function value at a steady pace as the number of evaluations 
increases, despite the noise.



124 10 Toolbox: ZOOpt

Fig. 10.2 The convergence rate of the tested toolboxes on four minimization benchmark synthetic 
functions [ 7] 

10.3.2 Results on Classification Tasks with Ramploss 

The Ramp loss is defined as .Rs(z) = H1(z) − Hs(z) with .s < 1, where . Hs(z) =
max{0, s − z} is the Hinge loss with . s being the Hinge point. The task is to find a 
vector . w and a scalar . b to minimize. f (w, b) = 1

2‖w‖22 + C
∑L

� Rs(y�(w
�v� + b)), 

where. vl is the training instance and.yl ∈ {−1,+1} is its label. Due to the convexity 
of the Hinge loss, the number of support vectors increases linearly with the number 
of training instances in SVM, which is undesirable with respect to scalability. This 
problem can be alleviated by using the Ramp loss [ 2]. 

We employ two binary class UCI datasets, Adult and Bank, for the classification 
task. Discrete variables of the original features are preprocessed by one-hot encoding. 
Continuous variables are normalized into .[−1, 1]. The resulting feature dimension 
(excluding the label) is expanded to 108 for Adult and 51 for Bank. Since we focus on 
the optimization performance, we only compare the results on the complete dataset. 
Two hyper-parameters, i.e., C and s, are adjustable in the optimization formulation. 
We set .s ∈ {−1, 0} and .C ∈ {0.1, 0.5, 1, 2, 5, 10} to study the effectiveness of the 
tested toolboxes under different hyper-parameter settings. We set the total number
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Fig. 10.3 The scalability of the tested toolboxes as the dimension size increases [ 7] 

of calls to the objective function to be .40n for all toolboxes, where . n is the number 
of instances. The achieved objective values are reported in Table 10.2. 

It can be observed that ZOOpt is comparable with pycma and dominates DEAP 
and pygad in all cases. Notice that the smaller . C is, the closer the objective function 
is to convexity. Therefore, the optimization difficulty increases with . C . Although 
the results of ZOOpt and pycma are close, ZOOpt achieves better results when . C
is large, i.e., when the objective function is further from convexity. Pycma is better 
when the objective function is closer to convexity. 

10.3.3 Results on Direct Policy Search for OpenAI 
Controlling Tasks 

Gym tasks. In the OpenAI Gym environment, we use six existing controlling tasks: 
‘Acrobot’, ‘MountainCar’, ‘HalfCheetah’, ‘Hopper’, ‘Humanoid’, and ‘Swimmer’, 
to test the toolboxes. We apply a feedforward neural network as the policy. The task 
information and neural network structures are shown in Table 10.3. For example, in 
‘Acrobot’: .|S| =  6, .|A| =  3; the neural network has two hidden layers with 5 and 
3 neurons each; .|w| =  48; the activation functions for hidden layers and the output 
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Table 10.2 Results on the Adult (upper) and Bank (lower) datasets [ 7]. Comparing the achieved 
objective function values against the parameter C of the classification with Ramp loss 
S Package. \ C 0.1 0.5 1 2 5 10 

. −1 ZOOpt 1642.07. ± 
79.33 

6331.05. ± 
147.10 

12002.56. ± 
287.74 

23098.68. ± 
435.40 

55151.49. ± 
772.15 

108896.69 
.± 1944.12 

pycma 1414.25. ± 
154.10 

6028.83. ± 
495.39 

11537.06. ± 
120.91 

23259.40. ± 
2184.85 

55576.41. ± 
762.45 

109422.90. ± 
944.75 

DEAP 2005.05. ± 
88.32 

6822.13. ± 
157.85 

12625.33. ± 
257.62 

23909.87. ± 
303.31 

57152.50. ± 
845.67 

111093.63 
.± 1454.88 

pygad 3315.09. ± 
146.83 

8643.11. ± 
276.07 

14456.62. ± 
240.14 

26048.55. ± 
381.98 

59147.50. ± 
440.53 

113461.05 
.± 840.28 

0 ZOOpt 1001.56. ± 
29.79 

3585.84. ± 
160.28 

6665.13. ± 
408.27 

12451.74. ± 
247.92 

29583.38. ± 
1886.19 

57042.13. ± 
751.92 

pycma 780.45. ± 
32.60 

3406.22. ± 
345.54 

6668.67. ± 
776.18 

12715.15. ± 
1493.09 

29639.06. ± 
2585.68 

56650.23. ± 
509.49 

DEAP 1297.46. ± 
41.37 

4159.68. ± 
201.96 

7185.12. ± 
457.99 

13124.33. ± 
859.58 

30400.34. ± 
1767.03 

58898.11. ± 
3797.57 

pygad 2531.69. ± 
164.29 

5588.36. ± 
146.79 

8846.75. ± 
300.44 

14949.72. ± 
710.44 

32167.27. ± 
474.29 

60436.24. ± 
600.72 

S Package. \ C 0.1 0.5 1 2 5 10 

. −1 ZOOpt 128.31. ± 
6.69 

545.45. ± 
7.45 

1068.09. ± 
12.00 

2075.12. ± 
40.36 

5045.72. ± 
98.89 

9957.51. ± 
306.85 

pycma 114.24. ± 
5.82 

531.11. ± 
4.59 

1056.25. ± 
6.63 

2088.15. ± 
30.01 

5185.14. ± 
89.46 

110236.24 
.± 280.79 

DEAP 248.58. ± 
22.72 

670.73. ± 
21.44 

1191.32. ± 
24.96 

2234.39. ± 
19.57 

5307.23. ± 
67.89 

10316.18. ± 
226.76 

pygad 627.27. ± 
69.33 

1055.97. ± 
61.62 

1564.35. ± 
77.59 

2618.18. ± 
66.00 

5753.68. ± 
86.63 

10893.56. ± 
119.12 

0 ZOOpt 73.69. ± 
6.61 

285.04. ± 
9.02 

545.82. ± 
4.82 

1064.49. ± 
6.32 

2618.38. ± 
52.69 

5091.75. ± 
124.31 

pycma 60.84. ± 
4.08 

270.39. ± 
3.49 

532.24. ± 
5.70 

1053.18. ± 
3.72 

2620.21. ± 
11.10 

5221.21. ± 
31.35 

DEAP 192.68. ± 
16.94 

415.67. ± 
24.26 

673.14. ± 
21.71 

1187.59. ± 
16.59 

2763.42. ± 
17.70 

5329.71. ± 
44.41 

pygad 543.22. ± 
60.52 

798.79. ± 
73.10 

1037.72. ± 
81.79 

1573.16. ± 
89.69 

3145.45. ± 
80.23 

5787.98. ± 
71.72 

layer are ReLU and softmax, respectively; the maximum number of steps is 500. We 
will give a summary of each task. More details can be found on the homepage of 
OpenAI Gym. In ‘Acrobot’, the system includes two joints and two links, where the 
joint between the two links is actuated. Initially, the links are hanging downwards, 
and the goal of this task is to swing the end of the low link up to a given height. 
In ‘MountainCar’, a car is positioned in a valley between two mountains and wants 
to drive up the mountain on the right by building up momentum. ‘HalfCheetah’, 
‘Hopper’, ‘Humanoid’, and ‘Swimmer’ are simulation tasks. In those tasks, the policy 
controls simulated objects to achieve a goal. For example, in ‘HalfCheetah’, the 
policy should control a cheetah with half body to run forward as fast as possible. 
The tasks of ‘Acrobot’ and ‘MountainCar’ are finding policies with the smallest step 
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Table 10.3 The parameters of the direct policy search for OpenAI controlling tasks [ 7] 
Task name d.State Action type Action 

size 
NN nodes #Weights Activation 

(hidden) 
Activation 
(output) 

Horizon 

Acrobot-v1 6 Discrete 3 5, 3 54 relu softmax 500 

MountainCar-v0 2 Discrete 3 5 25 relu softmax 200 

HalfCheetah-v2 17 Continuous 6 10 230 relu tanh 1000 

Hopper-v2 11 Continuous 3 9,5 159 relu tanh 1000 

Humanoid-v2 376 Continuous 17 25 9825 relu tanh 1000 

Swimmer-v2 8 Continuous 2 5,3 61 relu tanh 1000 

Fig. 10.4 The performance on optimizing noisy functions [ 7] 

number when goals are met. The tasks except for ‘Acrobot’ and ‘MountainCar’ are 
finding policies to control objects to get scores from the environment as high as 
possible. Therefore, in Table 10.4, the columns of ‘Acrobot’ and ‘MountainCar’ are 
step numbers, where smaller is better. The other rows are the cumulative rewards 
from environments, where larger is better. 

The average cumulative rewards of 10 simulations are used as the evaluation value 
of a neural network to reduce noise. The solution space. X is set to be.[−10, 10]#Weight. 
The output of the neural network is scaled to be within the action space, which is 
defined by the environment. All toolboxes use 2,000 evaluations for each task. The 
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Table 10.4 The mean scores and the standard deviation of the best found policy by each toolbox [ 7]. 
The numbers in bold represent the best scores in each column. The down arrow means the score is 
better when smaller, and the up arrow means better when larger 
Package Acrobot-v1.↓ MountainCar-v0.↓ HalfCheetah-v2.↑ Hopper-v2.↑ Humanoid-v2.↑ Swimmer-v2. ↑ 

ZOOpt 82.02.± 3.05 128.23. ± 12.41 1295.39.± 731.71 738.86. ± 391.06 448.93.± 80.33 138.05. ± 107.95 

pycma 314.40.± 186.55 197.81.± 6.56 465.50.± 492.81 305.27.± 358.43 398.30.± 111.12 35.39.± 32.06 

DEAP 144.26.± 121.82 200.00.± 0.00 1409.11. ± 437.10 224.53.± 259.22 303.29.± 110.66 75.05.± 104.25 

pygad 207.66.± 146.10 174.85.± 33.98 188.32.± 809.55 181.45.± 230.35 293.49.± 102.77 50.03.± 102.21 

best solution will be re-evaluated 30 times to further reduce the noise, and their mean 
value will be recorded as the final result. Each experiment is repeated 10 times. The 
mean value and the standard deviation are recorded in Table 10.4. It can be observed 
that ZOOpt obtained the best results on 5 out of 6 tasks. 

10.4 Summary 

In this chapter, we introduce the ZOOpt toolbox, which provides efficient derivative-
free solvers and is designed to be easy to use. By combining several state-of-the-art 
classification-based optimization methods, noise handlers, and high-dimensionality 
handlers, ZOOpt is particularly well-suited for optimization problems in machine 
learning. By incorporating Ray, the optimization in ZOOpt can be easily distributed 
across multiple machines. In empirical studies, we first study the convergence rate, 
scalability, and robustness against noise of ZOOpt on optimizing synthetic functions. 
ZOOpt achieves the best performance in all of these experiments. We then test ZOOpt 
on two machine learning tasks. Results on classification tasks with Ramploss show 
that ZOOpt is comparable with pycma and dominates other toolboxes. Results on 
direct policy search for OpenAI controlling tasks show that ZOOpt achieves the best 
performance on 5 out of 6 tasks. For a detailed tutorial on the usage of ZOOpt, we 
refer readers to the project homepage https://github.com/polixir/ZOOpt. 
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Chapter 11
Experienced Optimization: Acceleration
in Hyper-Parameter Optimization

Abstract This chapter explores the concept of experienced optimization in hyper-
parameter optimization, a critical task in Automatic Machine Learning (AutoML).
Hyper-parameter optimization often involves derivative-free optimization (DFO)
methods, which can be inefficient due to the high cost of evaluating hyper-parameter
configurations. The chapter introduces an experienced optimization approach that
leverages historical optimization data to improve efficiency in new tasks. Two algo-
rithms, ExpSRacos and AdaSRacos, are presented, which utilize directional models
trained on past optimization experiences to guide the search process. AdaSRacos
further enhances this by adaptively selecting relevant historical experiences, ensur-
ing that only useful information is utilized. The chapter includes empirical studies
on synthetic and real-world hyper-parameter optimization tasks, demonstrating the
effectiveness of the proposed methods in reducing evaluation costs and improv-
ing optimization performance. The results highlight the importance of experience
adaptation in achieving efficient and effective hyper-parameter tuning.

Hyper-parameter optimization is a core task in Automatic Machine Learning
(AutoML). It often follows a trial-and-error process, similar to manual tuning of
hyper-parameters. The search space in hyper-parameter optimization is highly com-
plex, being non-convex, non-differentiable, or even non-continuous. In such circum-
stances, derivative-free optimization (DFO) becomes a critical tool. DFO methods,
such as Racos and SRacos introduced in Chaps. 5 and 6, also follow a trial-and-
error framework. In each iteration, the optimization process samples one or several
solutions, and the objective function returns their evaluation values. The optimization
process then updates and samples new solutions based on the feedback.

Due to the limited optimization information (only objective function values are
available), DFO methods often suffer from low efficiency, requiring a large number
of samples and evaluations to achieve good optimization performance. In hyper-
parameter optimization, evaluating a hyper-parameter configuration is usually expen-
sive. For example, evaluating a learning rate setting for a deep neural network requires
training the network to convergence with that learning rate, and the validation accu-
racy serves as the evaluation value. Therefore, accelerating DFO becomes crucial
when solving hyper-parameter tuning tasks. This chapter presents an experienced

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025
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optimization approach [2] that utilizes historical optimization experience to improve
the optimization process for new tasks. In other words, the aim of experienced
optimization is to use fewer samples to achieve better performance.

11.1 Experienced Optimization for Hyper-Parameter
Optimization

Let.A denote a learning algorithmand.δ ∈ � denote a hyper-parameter configuration,
where .� is the hyper-parameter space. In machine learning, .k-fold cross-validation
is a common process for evaluating the quality of a learningmodel. The same process
can be used to evaluate a hyper-parameter configuration:

. f (δ) = 1

k

k∑

i=1

L(Aδ,Di
train,Di

valid), (11.1)

where .L(·) is a loss function and .Di
train and .Di

valid are the training and validation
datasets, respectively, in the .i-th fold. Based on the loss function definition, hyper-
parameter optimization can be defined as .δ∗ = argminδ∈� f (δ).

The evaluation process of .δ often has a high time cost because it involves model
training. When solving hyper-parameter optimization using DFO methods, the opti-
mization efficiency is challenged. We note that hyper-parameter optimization tasks
are related to each other. For example, when tuning hyper-parameters for a learning
algorithm on different datasets, there are different optimization tasks. Due to the
same learning algorithm, the hyper-parameter space of these tasks can be aligned,
and tasks are similar to each other.

The experienced optimization approach presented in this chapter aims to utilize
the relationships among similar hyper-parameter optimization tasks to accelerate
convergence.Weconsider a set of optimization tasks denoted by.F = { f },where. f ∼
F and .F is an underlying task distribution. We split .F into two parts: .F = Fe ∪ Ft

and.Fe ∩ Ft = ∅..Fe is the set of experienced tasks that have been optimized, and.Ft is
the set of target tasks that have not been optimized yet. Under this problem setting, we
present theExpSRacos andAdaSRacos algorithms [2] based onSRacos (Chap. 6).

11.2 The EXPSRACOS and ADASRACOS Algorithms

We observe that the search direction can be aligned and generalized across differ-
ent hyper-parameter optimization tasks. In gradient-based optimization, the gradient
indicates the search direction, which is key to efficient search. In DFO, we aim to
learn the search direction from the experience of historical optimization processes
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Algorithm 11.1 Framework of Experienced Optimization by Directional Model
Require:

Fe, Ft : Experienced and target problem sets
O: The optimization approach
Log&Assign: Log and assign experience dataset
Train: Train directional model

Ensure:
1: DFe = ∅
2: for f ∈ Fe do
3: D f

Fe
= Log&Assign(O, f )

4: DFe = DFe ∪ D f
Fe

5: end for
6: � = Train(DFe )

7: for f ∈ Ft do
8: x∗

f = O( f,�)

9: end for

and use it to accelerate the search process in unseen tasks. Thus, we present the expe-
rienced optimization framework using a directionalmodel, as presented inAlgorithm
11.1.

The experienced optimization framework consists of three main steps:

• Organizing the experience dataset .DFe from historical optimization processes
(lines 1–4). DFO methods often store some historical samples during optimiza-
tion. The instances in .DFe can be extracted from snippets of the stored samples.
For each instance, we extract features and assign a label indicating the direction
to a later-found better solution. In line 3, the Log&Assign sub-process collects
the labeled instances from optimization processes.

• Learning the directional model .� on .DFe (line 6). With the labeled experience
dataset, training .� is a supervised learning problem. Note that .� can be trained
using any state-of-the-art learning algorithm.

• Utilizing.� to predict the direction of the next sample during optimization in new
problems (lines 7–9). Directional models can be embedded in the optimization
method by adding a pre-sampling step that generates a set of candidate samples.
Among the candidate samples, the one closest to the direction predicted by .� is
selected as the next sample.

Wefirst present the implementation of this frameworkwith theSRacos algorithm,
called ExpSRacos, and then present an improved version, AdaSRacos.

11.2.1 EXPSRACOS

In SRacos (Algorithm 6.1 in Chap.6), the foundation of optimization consists of
two solution sets:.B+ and.B−..B+ consists of the top-.k best solutions, called positive
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solutions, while .B− consists of the remaining solutions, called negative solutions.
ExpSRacos follows the three steps of the experienced optimization framework.

Collecting the experience dataset. At this step, we extract the experience dataset
from optimization processes on previous tasks. We note that the new solution is
sampled based on .(x+

t , B−
t ) in the .t-th iteration, where .x+

t ∈ B+
t . .B

−
t stores the

negative solutions. Therefore, we can organize the experience dataset using.(x+
t , B−

t )

as a context matrix:

.κ t =

⎡

⎢⎢⎢⎣

x−
t,1 − x+

t
x−
t,2 − x+

t
...

x−
t,m − x+

t

⎤

⎥⎥⎥⎦ ,where x−
t,i ∈ B−

t , i = 1, 2, . . . ,m. (11.2)

.κ t is an .m × n matrix, where .m = |B−
t | and .n is the dimensionality of the search

space. Each row of .κ t is a solution from .B−
t centralized by .x+

t . The centralization
aligns the search behavior at different times and in different optimization tasks,
making it the key to the generalization of the directional model on unseen tasks.

Let.x′
t denote the new solution sampled using the context matrix.κ t . We combine

them to create an instance of the experience dataset: .[κ t ; x′
t ]. We assign a label to

this instance according to the evaluation value of .x′
t . If the new solution improves

the optimization performance so far, the label is positive; otherwise, it is negative:

.�t ([κ t ; x′
t ]) =

{
1, f (x′

t ) < f (x̃t )

0, f (x′
t ) ≥ f (x̃t )

, (11.3)

where .x̃t is the best-so-far solution. At each iteration, we obtain an experience
instance. By combining them into a dataset, the experience dataset is .DFe =
{([κ1; x′

1], �1), ([κ2; x′
2], �2), . . . }.

Training the directional model. .DFe is a dataset with binary labels. Thus, any
classification algorithm can be applied to train on it. We note that an instance in.DFe
consists of two parts: .κ and.x. .κ is a matrix, and.x is a vector. Therefore, we should
reorganize the instance from .[κ; x] by reshaping .κ into a vector and combining it
with.x. In our work, we apply a simple multilayer perceptron (MLP) classifier as the
directional model, denoted as .�. The last layer of .� maps the output to the range
.[0, 1]. The output is a score that reflects the quality of the new solution.

Combining EXPSRACOS.We utilize.�within the framework of SRacos, result-
ing in the ExpSRacos algorithm. Before evaluating a solution, a pre-sampling step
is added to generate a set of solutions. These solutions are then filtered by the direc-
tional model. Algorithm 11.2 presents the pseudo-code of ExpSRacos. Line 1 is
the initialization step. Lines 4–8 constitute the pre-sampling process. The directional
model.� predicts the quality of each pre-sampled solution (line 6). Only the solution
with the highest predicted value is evaluated by the real objective function (lines
9–10) and used to update .(B+, B−).
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Algorithm 11.2 Experienced SRacos (ExpSRacos)
Require:

f : Objective function to be minimized
P: The number of pre-samples
r : The number of samples in initialization
N : The evaluation budget
�: Directional model
Initialize: Initialization steps
Sample: Get a new sample by SRacos

Ensure:
1: (B+, B−, (x̃, ỹ)) = Initialize(UX )

2: for t = r + 1 to N do
3: P = ∅
4: for i = 1 to P do
5: (κ, x) = Sample(B+, B−, λ, C)

6: p = �(κ, x)

7: P = P ∪ {((κ, x), p)}
8: end for
9: (κ̂, x̂), p̂ = argmax((κ,x),p)∈P p
10: ŷ = f (x̂)

11: (B+, B−) = Update((x̂, ŷ), B+, B−)

12: (x̃, ỹ) = argmin(x,y)∈B+∪{(x̃,ỹ)} y
13: end for
14: return (x̃, ỹ)

We discuss why experienced optimization works under the following two
assumptions:

• We assume that optimization tasks. f ∈ Fe and.Ft share the same search space.X .
• For any two instances.([κa; xa], �a) and.([κb; xb], �b) in.DFe , we assume.�a = �b
if .[κa; xa] = [κb; xb].

The centralization process of .κ ensures that the second assumption is met in the
majority of cases. The directional model.� learned from historical optimization pro-
cesses predicts whether a new solution.x is good. Based on these assumptions,.� can
be reused to predict the quality of new solutions on unseen tasks. In ExpSRacos,
the solution with the highest predicted value from.� is evaluated by the real objec-
tive function. Compared to SRacos, which wastes many samples on exploration,
ExpSRacos avoids evaluating many inferior solutions.

11.2.2 ADASRACOS

Experienced optimization works when the experience extracted from historical tasks
can provide the right directions for unseen tasks. In real cases, we cannot guarantee
that the experience fromhistorical taskswill positively affect the optimization process
on new tasks. In Fig. 11.1, the target task is the Sphere function with the optimal point
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Fig. 11.1 Illustration of the relevance between experience and target tasks [2]. The task is mini-
mizing the Sphere function. The.X -axis is the Euclidean distance between the optimal points of the
source and target tasks. A smaller distance indicates stronger relevance between the two tasks. The
.Y -axis is the performance of experienced optimization with an evaluation budget of only 50

.{0.1}n (.n = 10), and we randomly shift the optimal points of the Sphere function to
construct the experienced task distribution. As shown in the figure, the optimization
performance of experienced optimization is strongly related to the relevance between
tasks. Therefore, we need to address the problem of selecting positive experience,
i.e., the experience task most relevant to the target task. This leads to the adaptive
experienced optimization algorithm, AdaSRacos.

In the experienced optimization setting,.Fe = { f1, f2, . . . , fMe } denotes the set of
.Me experience tasks. Correspondingly, we obtain a set of directional models denoted
by .� = {�1,�2, . . . , �Me}. .�i is a directional model trained on the experience
dataset obtained by optimizing. fi , where.i ∈ {1, 2, . . . , Me}.We consider a weighted
ensemble approach to combine all directional models:

.�̄([κ; x]) =
Me∑

i=1

wi�i ([κ; x]), (11.4)

where.w = {w1, w2, . . . , wMe} are the weights of the directional models. The weight
intuitively indicates the relevance between the experience and target tasks. We want
the relevant directional model to have a larger weight. We note that the ground-truth
label of a piece of experience data .([κ; x], �) can be obtained during optimization
because.x will be evaluated by the objective function. In the optimization process, the
labeled experiencedata.([κ; x], �) arrives sequentially. Furthermore, the predictionof
each directional model is a real number in.[0, 1]. We define a squared loss to measure
the prediction quality of the directional model:.(�i ([κ; x]) − �)2. The weights of all
directional models can be adapted according to the loss:
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Algorithm 11.3 DFO with Adaptive Experience (AdaSRacos)
Require: (extra input compared to Algorithm 11.2)

� = {�1,�2, . . . , �Me }: Basic directional model set
Normalize: A normalization procedure

Ensure:
1: B, x̃ = Initialize(UX )

2: w = {w1, w2, . . . , wMe } = { 1
Me

}Me

3: for t = 1 to N do
4: P = ∅
5: for p = 1 to P do
6: [κ p; x p] = Sample(B)

7: P = P ∪ {[κ p; x p]}
8: end for
9: [κ ′; x′] = argmax[κ;x]∈P

∑Me
i=1 wi�i ([κ; x])

10: �′ =
{
1, f (x′) < f (x̃)

0, f (x′) ≥ f (x̃)

11: for i = 1 to Me do
12: wi = exp(−α(�i ([κ ′; x′]) − �′)2)wi
13: end for
14: w = Normalize(w)

15: B = Update(B, x′, f (x′))
16: if f (x′) < f (x̃) then
17: x̃ = x′
18: end if
19: end for
20: return x̃

.wi = exp(−α(�i ([κ; x]) − �)2)wi , (11.5)

where .α is a scale hyper-parameter. Based on ExpSRacos (Algorithm 11.2), we
apply the above weight adaptation mechanism to construct the adaptive ExpSRacos
algorithm, AdaSRacos (Algorithm 11.3).

Algorithm 11.3 still follows the pre-sampling mechanism to utilize the directional
model. The algorithm starts with optimization initialization. We set the same weight
.
1
Me

for all basic directional models (line 2). Lines 5–8 constitute the pre-sampling
phase.Weutilize theweighted ensemble directionalmodel to predict the quality score
for each temporary solution (line 9). The solution with the highest predicted value
is evaluated by the real objective function (lines 10 and 15). We adapt the weights
for all basic directional models during lines 11–14. First, we obtain the ground-truth
label for the experience data .[κ ′; x′] (line 10). Then, we adjust the weight for each
directional model based on the prediction loss (lines 11–13). Finally, we apply a
normalization procedure to ensure that.

∑Me
i=1 wi = 1. With the selected solution and

its evaluation value, we update the optimization procedure (line 15) and the best-so-
far solution (lines 16–18). When the evaluation budget is exhausted, the best-so-far
solution is returned (line 20).

We discuss the experience adaptation mechanism based on experienced DFO.
With the weighted ensemble, all basic directional models obtained from different
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experience tasks are integrated into a single directional model. When optimizing on
target tasks, we first employ the ensemble directional model to select solutions worth
evaluating. We then test all basic directional models on the labeled experience data.
According to the test results, the relevant directional models are selected by adapting
the weights. If a basic directional model gives a correct prediction, it will obtain
a small squared loss, and its corresponding weight will receive a small discount.
However, when a basic directional model gives a wrong prediction, its weight will
be heavily discounted. After the normalization step, the weights of basic directional
models that make correct predictions will increase relatively, while the weights of
those thatmakewrong predictionswill decrease relatively. In this way, relevant direc-
tional models that make fewer mistakes on the target task can be adaptively selected
with large weights, and irrelevant directional models that make more mistakes can
be adaptively omitted with small weights.

11.3 Empirical Study

We compare ExpSRacos [2] and AdaSRacos [3] to several state-of-the-art DFO
methods, including SRacos [1], SMAC [4], and Bayes [6]. We apply an MLP clas-
sifier as the directional model for ExpSRacos and AdaSRacos, with the network
structure depending on the tasks.

11.3.1 Synthetic Tasks

We select the Sphere and Rosenbrock functions as the basic synthetic functions. The
Sphere function is convex:

. f (x) =
n∑

i=1

(xi − x∗
i )

2. (11.6)

The Rosenbrock function is non-convex:

. f (x) =
n−1∑

i=1

[100(xi+1 − x∗
i+1 − (xi − x∗

i )
2)2 + (1 − xi + x∗

i )
2], (11.7)

where .x = {x1, x2, . . . , xn} is a solution, .n is the dimensionality, and .x∗ =
{x∗

1 , x
∗
2 , . . . , x

∗
n } is the optimal point. The task is to minimize the synthetic func-

tion value within a constrained region. The relevance between two tasks can be
easily measured by the distance between their optimal points. With this relevance,
we can investigate the effectiveness of the presented experienced optimization and
the weight adaptation mechanism.
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Table 11.1 Average performance on synthetic target tasks [2], i.e., Sphere and Rosenbrock func-
tions with the optimal points.x∗ = {0.10}10, {0.25}10, and.{0.40}10. The bold values represent the
best performance

Function x∗ AdaSRacos ExpSRacos

Sphere-Set Mixed-Set Sphere-Set Mixed-Set

Sphere {0.10}10 0.0694 ± 0.02 0.0747 ± 0.02 0.1132 ± 0.05 0.1165 ± 0.07

Sphere {0.25}10 0.0775 ± 0.03 0.1165 ± 0.07 0.1091 ± 0.05 0.1250 ± 0.08

Sphere {0.40}10 0.0909 ± 0.04 0.1528 ± 0.22 0.1978 ± 0.05 0.2938 ± 0.19

Rosenbrock {0.10}10 12.394 ± 2.27 11.010 ± 0.69 13.351 ± 3.39 14.109 ± 4.62

Rosenbrock {0.25}10 25.549 ± 9.54 15.814 ± 6.62 26.008 ± 8.93 17.771 ± 3.16

Rosenbrock {0.40}10 57.388 ± 20.4 45.408 ± 34.8 93.370 ± 40.7 54.763 ± 22.6

Function SRacos SMAC Bayes

Sphere {0.10}10 0.7941 ± 0.29 0.0700 ± 0.01 0.4894 ± 0.05

Sphere {0.25}10 0.8046 ± 0.39 0.2749 ± 0.11 0.4500 ± 0.11

Sphere {0.40}10 0.8306 ± 0.36 0.6778 ± 0.25 0.3444 ± 0.09

Rosenbrock {0.10}10 26.903 ± 5.18 17.176 ± 1.15 45.523 ± 17.1

Rosenbrock {0.25}10 33.065 ± 29.1 43.701 ± 8.37 45.733 ± 13.9

Rosenbrock {0.40}10 61.955 ± 24.2 99.798 ± 43.6 48.504 ± 12.9

Task setting. We construct the task distribution.F by randomly shifting the opti-
mal point for the Sphere andRosenbrock functions. The shifting region is.[−0.5, 0.5].
We have two kinds of experience task sets: Sphere set and Mixed set. The Sphere set
contains 20 Sphere functionswith 20 different optimal points. TheMixed set contains
10 Sphere functions with 10 different optimal points and 10 Rosenbrock functions
with 10 different optimal points. For the target tasks, we select three optimal points:
.x∗ = {0.1}n, {0.25}n, {0.4}n . By combining them with the Sphere and Rosenbrock
functions, we have a total of six target tasks. The search space is .[−1, 1]n , where
.n = 10. The number of evaluations, i.e., the budget, is set to 50 for all compared
methods.

Directional model training. We optimize the tasks in the Sphere set and Mixed
set separately to collect experience datasets. The budget is 500, and the optimization
process is repeated 10 times. The directional model is an MLP classifier. Thus, we
obtain 20 directional models from the Sphere set and 20 directional models from
the Mixed set. For ExpSRacos, we construct a directional model by an average
weighted ensemble. For AdaSRacos, we use the weighted ensemble approach, but
the weights are adapted using the presented adaptation mechanism.

Empirical analysis. We independently repeat each experiment on the target tasks
10 times and report the average performance in Table11.1. The table includes two
subtables. The first subtable shows the performance of experienced optimization,
i.e., ExpSRacos and AdaSRacos. The second subtable shows the performance of
classical DFO methods, i.e., SRacos, SMAC, and Bayes.AdaSRacos achieves the
best performance on all six target tasks, indicating that experienced optimization
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with the adaptation mechanism is powerful on unseen tasks. Comparing experienced
optimization (first subtable) to classical DFO (second subtable), experienced opti-
mization generally outperforms classical DFO. We further verify how the weights of
AdaSRacos change during optimization by showing theweight changes in Fig. 11.2.
In each figure, the.X -axis from left to right indicates decreasing relevance. Theweight
bars on the left become higher, indicating that relevant directional models are effec-
tively selected. The weight bars on the right become lower, indicating that irrelevant
directional models are effectively omitted.

11.3.2 Hyper-Parameter Optimization Tasks

The classifier selected for hyper-parameter optimization tasks is LightGBM [5]. We
select a total of 11 hyper-parameters, including boosting type, learning rate, number
of estimators, number of leaves, etc.We use 40 datasets and F1 score as the evaluation
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Fig. 11.2 Illustration of AdaSRacosweight changes on the target task [2], i.e., the 10-dimensional
Sphere function with the optimal point .x∗ = {0.1}10. Weights are from AdaSRacos with Mixed
set experience at optimization steps .t = 0, 20, 30, and .40. In each figure, the .X -axis from left to
right indicates increasing distances between the optimal points of the experience and target tasks
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criterion. The goal of hyper-parameter optimization is to maximize the F1 score by
tuning the hyper-parameters of LightGBM on the 40 datasets.

Task setting. The 40 datasets are split into two parts: 30 experience task datasets
and 10 target task datasets. To train the directional model, we employ SRacos to
optimize the hyper-parameters of LightGBM with 300 evaluations. Each optimiza-
tion process is repeated 10 times. The running log constructs the experience dataset
for training the directional model. The basic directional model is an MLP classifier.
We set the evaluation budget to 30 for all experiments and independently run each
experiment 5 times. We report the average performance.

Table11.2 shows the hyper-parameter optimization performance of the compared
methods on the 40 datasets. We compare the hyper-parameter optimization per-
formance to the baseline, i.e., LightGBM with default hyper-parameters. Hyper-
parameter optimization outperforms the baseline on 38 datasets, indicating that
hyper-parameter optimization is necessary for machine learning applications.

On experience datasets, we compare ExpSRacos to basic DFO methods
(SRacos, SMAC, and Bayes). ExpSRacos is even worse than SRacos and SMAC.
This phenomenon is caused by irrelevant directional models that have negative
impacts on ExpSRacos. AdaSRacos outperforms the other compared methods on
29/30 datasets and obtains an average rank of 1.13. This indicates that selecting rel-
evant directional models is necessary for improving hyper-parameter optimization
performance, and the presented experience adaptation mechanism can effectively
eliminate the negative impact of irrelevant basic directional models and correctly
select the relevant directional models.

On target datasets, the optimization results show that AdaSRacos can effec-
tively transfer optimization experience to unseen tasks (AdaSRacos outperforms
the other compared methods on all 10 datasets). ExpSRacos beats SRacos on 9/10
datasets, showing that experiencedoptimization is helpful for improvingoptimization
performance on unseen tasks. However, compared with AdaSRacos, AdaSRacos
significantly improves the F1 score on all 10 datasets with only an evaluation bud-
get of 30. This indicates that experience adaptation can significantly improve the
efficiency of hyper-parameter optimization.

11.4 Summary

Hyper-parameter optimization plays an important role in AutoML. A classical solver
employs DFO to discover the hyper-parameter configuration with the best perfor-
mance. Due to the high evaluation cost, previous hyper-parameter optimizationmeth-
ods suffer from low efficiency, i.e., they require a long time to find a sufficiently good
hyper-parameter configuration. To address this issue, this chapter presents the expe-
rienced optimization algorithm ExpSRacos, which utilizes the experience of histor-
ical optimization processes to accelerate new optimization on target tasks. However,
irrelevant experience can have a negative impact on experienced optimization. This
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Table 11.2 Average optimization F1 score of hyper-parameter optimization on 40 datasets [2]. B.L.
means baseline that is the F1 score of LightGBMwith default hyper-parameters. The numbers with
.• and.◦ are the first and second rank performances. We also analyze the number of first/second/third
ranks and average rank (Avg. Rank)

Dataset Optimization F1 score on training dataset B.L.

AdaSRa. ExpSRa. SRacos SMAC Bayes

Experienced
datasets

Australian .9026.• .8817.• .8871.◦ .8871.◦ .8724.• .8389

Breast .9999.• .9999.• .9999.• .9999.• .9999.• .9402

Electricity .7431.• .7398.◦ .7377.• .7345.• .7322.• .5492

Buggy.C. .8943.• .8693.• .8825.• .8864.◦ .8825.• .8552

CMC .5860.• .5738.• .5754.◦ .5715.• .5741.• .4614

Contrac. .5785.• .5762.◦ .5750.• .5715.• .5725.• .4614

Credit.A. .8938.• .8921.• .8927.◦ .8864.• .8895.• .8250

G.E.2-1000 .5772.• .5433.• .5518.• .5590.◦ .5378.• .5368

G.E.2-200 .7534.• .7040.• .7041.• .7534.• .7131.• .6187

G.E.3-20 .5784.• .5623.• .5657.◦ .5485.• .5601.• .4936

G.H.20 .7221.• .7040.• .7169.• .7187.◦ .7076.• .6747

H.V.wo.N. .5934.• .5875.• .5786.• .5642.• .5888.◦ .5977

H.V.w.N. .5931.• .5889.• .5871.• .5910.◦ .5823.• .5241

Mfeat.K. .9713.• .9713.• .9680.• .9692.• .9693.• .9197

Mfeat.M. .7235.• .7212.◦ .7161.• .7140.• .7212.◦ .6967

Mfeat.P. .9722.• .9674.• .9685.• .9721.◦ .9661.• .9501

Mfeat.Z. .7867.• .7758.• .7780.◦ .7771.• .7766.• .7411

Monk2 .8732.• .6981.• .6548.• .5774.• .7413.◦ .6089

Parity5. .4948.• .4815.• .4847.◦ .4820.• .4837.• .2291

Pima .7236.• .7102.• .6948.• .7173.• .7177.◦ .6590

Tic.T.T .9741.• .9163.• .9401.• .9741.• .9241.• .7898

Tokyo.1 .9248.• .9203.• .9168.• .9243.◦ .9210.• .9081

Vehicle .7943.• .7853.• .7911.◦ .7763.• .7814.• .7610

Wine.Q.R. .4218.• .3875.• .3617.• .4021.◦ .3620.• .2589

Yeast .4754.• .4435.• .4447.◦ .4388.• .4388.• .4716

Airlines .6488.• .6483.◦ .6467.• .6438.• .6464.• .5943

Titanic .8238.• .8221.◦ .8187.• .8099.• .8048.• .8217

Twonorm .9749.• .9750.• .9751.• .9782.• .9757.• .9541

Glass .7499.• .7088.• .7125.• .7071.• .7497.◦ .4345

Horse.C. .8724.• .8586.• .8602.• .8702.◦ .8616.• .7989

.1st/2nd/3rd 29/0/0 2/5/8 1/8/11 4/9/2 1/6/7 –

.Avg.Rank 1.13 3.43 3.13 3.27 3.47 –

Target
Datasets

Messidor .7548.• .7525.◦ .7462.• .7353.• .7505.• .6581

Adult .8137.• .8121.• .8104.• .8128.• .8129.◦ .7558

Balance.S. .5448.• .5399.• .5380.• .5409.◦ .5398.• .5294

CNAE .9060.• .8924.• .8955.◦ .8946.• .8920.• .8227

Credit.G .7190.• .7174.◦ .7052.• .7173.• .7168.• .6894

CRX .8864.• .8854.◦ .8843.• .8690.• .8810.• .8974

Cylinder .8094.• .8065.◦ .7487.• .7791.• .7953.• .7990

Flare .7174.• .6816.• .6704.• .7141.◦ .6954.• .4518

Solar.F. .6724.• .6233.• .6131.• .6448.◦ .6195.• .5758

German .7498.• .7457.• .7331.• .7463.◦ .7432.• .5482

.1st/2nd/3rd 10/0/0 0/4/3 0/1/1 0/4/3 0/1/3 –

.Avg.Rank 1.00 2.90 4.40 3.10 3.60 –
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chapter further presents an experience adaptation mechanism that tests the experi-
ence on target tasks. The relevant experience that makes fewer mistakes is adaptively
selected, while the irrelevant experience that makes more mistakes is omitted. We
implement AdaSRacos based on ExpSRacos. Experiments on synthetic tasks ver-
ify that AdaSRacos can effectively discover the relevance among tasks. The empir-
ical results of hyper-parameter optimization on 40 datasets show that AdaSRacos
significantly improves the efficiency of hyper-parameter optimization.
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Chapter 12 
Multi-fidelity Optimization: Acceleration 
in Hyper-Parameter Evaluation 

Abstract This chapter addresses the challenge of expensive evaluations in hyper-
parameter optimization by introducing a multi-fidelity optimization approach. 
Hyper-parameter optimization often involves time-consuming evaluations, espe-
cially with large datasets or complex models. The chapter proposes a method that 
combines low-fidelity evaluations (using subsets of data) with high-fidelity evalua-
tions (using full datasets) to accelerate the optimization process. A key innovation is 
the Transfer Series Expansion (TSE) algorithm, which predicts the residual between 
low and high-fidelity evaluations, allowing for efficient optimization with fewer 
costly evaluations. The chapter presents the TseSRacos algorithm, which integrates 
TSE with the SRacos optimization framework. Empirical studies on LightGBM 
hyper-parameter optimization tasks demonstrate that the proposed method signif-
icantly reduces evaluation time while maintaining high optimization performance. 
The results highlight the effectiveness of multi-fidelity optimization in improving 
efficiency, particularly for large-scale datasets. The chapter concludes that TSE-
based multi-fidelity optimization is a powerful tool for accelerating hyper-parameter 
tuning in machine learning. 

In this chapter, we continue to focus on hyper-parameter optimization tasks. As 
discussed in Chap. 11, derivative-free optimization (DFO) is a popular solver for 
hyper-parameter optimization. Hyper-parameter optimization typically involves a 
large number of iterations, each of which includes a hyper-parameter evaluation 
process that requires training the model and validating it on the real dataset. When 
the dataset is large or the model is complex, the evaluation process becomes very 
time-consuming, leading to inefficiency in hyper-parameter optimization. 

Chapter 11 addressed the inefficiency of hyper-parameter optimization by reduc-
ing the number of iterations. This chapter tackles the problem from another perspec-
tive: accelerating the hyper-parameter evaluation [ 3], using a multi-fidelity approach. 
By shortening the time cost of each iteration, the optimization process can increase 
the number of iterations to improve optimization performance. 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 
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12.1 Multi-fidelity Optimization for Hyper-Parameter 
Optimization 

We note that it is easy to construct multi-fidelity evaluations when optimizing hyper-
parameters. For example, when evaluating hyper-parameters on a small subset of the 
dataset, it is considered a low-fidelity evaluation. Low-fidelity evaluations are much 
faster than evaluations on the full dataset, but they are less accurate. High-fidelity eval-
uations, which train the model on the full dataset, are highly time-consuming but pro-
vide an accurate measure of the hyper-parameters’ quality. This raises the question: 
can we combine different fidelity evaluations to accelerate the evaluation processes 
while obtaining accurate evaluation values when optimizing hyper-parameters? This 
leads to the concept of multi-fidelity DFO [ 1, 8]. Multi-fidelity optimization has been 
extensively studied in the context of surrogate model optimization, such as Bayesian 
optimization [ 4– 6]. However, few works [ 9] have explored its application to other 
optimization methods. 

Let us review the notations for hyper-parameter optimization introduced in 
Chap. 11. .A denotes an algorithm, and .δ ∈ Δ denotes a hyper-parameter configura-
tion, where .Δ is the corresponding hyper-parameter space. The evaluation process 
of a hyper-parameter configuration is a .k-fold cross-validation process: 

. f (δ) = 1

k

k∑

i=1

L(Aδ,Di
train,Di

valid), (12.1) 

where .L(·) is a loss function, and .Di
train and .Di

valid are the training and validation 
datasets in the. i th fold. The goal of hyper-parameter optimization is to minimize the 
objective function . f (·). 

In the optimization setting, we still use.x ∈ X to denote a solution, where.X is the 
search space.. x corresponds to. δwhen optimizing hyper-parameters. In multi-fidelity 
optimization, a solution . x can be evaluated at several different levels. We consider 
the simplest situation, where there are only two evaluation functions: . fH : X → R

denotes the high-fidelity evaluation function, which outputs an accurate evaluation 
value for solutions but has a high time cost, and. fL : X → R denotes the low-fidelity 
evaluation function, which quickly outputs an evaluation value but with a strong bias. 
In hyper-parameter optimization, the high-fidelity function is 

. fH (δ) = L(δ,Dtrain,Dvalid). (12.2) 

The full dataset is used to evaluate the quality of a hyper-parameter configuration 
. δ. When training the algorithm on a small subset of the dataset, it constructs a 
low-fidelity function: 

. fL(δ) = L(δ,DrL
sub,Dvalid), (12.3)
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where .0 < rL � 1 is the subsample ratio that indicates the size of the data subset, 
and .DrL

sub ⊂ Dtrain is randomly selected. 
In this chapter, we present a method that learns a model to predict the residual 

between . fH and . fL with few observations. During optimization, we only use . fL as 
the evaluation function, which is corrected by this predicted model. Due to the cheap 
evaluation function, the optimization process is accelerated. Based on this idea, we 
present the Transfer Series Expansion (TSE) optimization method and implement it 
following the SRacos algorithm (Chap. 6), naming it TseSRacos [ 3]. 

12.2 The TSESRACOS Algorithm 

The bias of. fL is the biggest obstacle preventing us from directly using the low-fidelity 
evaluation function. We define a simple regret measuring the residual between . fH
and . fL as follows: 

.R(x) = fH (x) − fL(x), (12.4) 

where. x is a solution sampled from the search space. In hyper-parameter optimization 
tasks,. x is equivalent to. δ. Based on this regret definition, once. R is available, we can 
use.R + fL to substitute for. fH . In real optimization, we have some opportunities to 
evaluate. x by. fH . Thus, we can create a dataset.D = {(x1, y1), (x2, y2), . . . }, where 
.yi = R(xi ). The regret function can be easily learned by a supervised regression 
learner .Ψ from . D. Because . fH (x) has a high time cost, the size of .D is limited. 
Therefore, the challenge of learning.Ψ is to train an accurate regret predictor from a 
very small supervised dataset. 

12.2.1 Multi-fidelity Optimization Framework 

The regret predictor-based multi-fidelity optimization is a general framework that 
can be implemented with any DFO method. We focus on minimization problems. 
Let .SampleO denote the step of generating a new sample, which is a key step for a 
DFO method, where.O is a DFO method. Different methods have different Sample 
steps. In multi-fidelity optimization, the low-fidelity evaluation . fL is introduced to 
decrease the total evaluation cost. The optimization process more frequently evaluates 
solutions using. fL . The regret predictor.Ψ is a core component of this framework. The 
dataset for training.Ψ requires some samples evaluated by the high-fidelity evaluation 
function . fH . Thus, we also need a sub-procedure Find to select a sample to be 
evaluated by. fH from the sample set. The presented framework learns a predictor. Ψ
to estimate the residual between high and low-fidelity evaluations. Then, optimization 
using the corrected evaluations .( fL + Ψ ) can find a good sample that still performs 
well under high-fidelity evaluation.
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Algorithm 12.1 Multi-fidelity Optimization Framework 
Input: 

X : The optimization space 
fL , fH : Low and high-fidelity evaluation functions 
TH : The budget of high-fidelity evaluations 
TL : The low-fidelity evaluation times between high-fidelity evaluations 
Initialization: Initialization step 
SampleO: The sample step in optimization method O 
Find: Select a sample to be evaluated by fH 
Train: Train the regret predictor 

Procedure: 
1: XH , y = ∅, ∅ 
2: Ψ = Initialize, ∀x ∈ X : Ψ (x) = 0 
3: XL = Initialization(X ) 
4: for tH = 1 to  TH do 
5: for tL = 1 to  TL do 
6: x = SampleO(X , fL + Ψ )  
7: XL = XL ∪ {x} 
8: end for 
9: x′ = Find(XL ) 
10: γ′ = fH (x′) 
11: XH , y = XH ∪ {x′}, y ∪ {γ′ − fL (x′)} 
12: Ψ = Train(XH , y) 
13: end for 
14: return arg minx∈XH 

fH (x) 

Algorithm 12.1 presents the general multi-fidelity optimization framework. . XH

is a sample set that stores . x evaluated by . fH . . y is a set of regression targets corre-
sponding to .XH . .XH and. y are initially empty (line 1). In the initialization step (line 
2), .Ψ can only output 0 because there is no learning information. .XL is a set to store 
all samples generated by the method. The initialization step (line 3) samples from. X
uniformly. In each iteration, first, the corrected low-fidelity evaluation (. fL + Ψ ) is  
considered as the objective function, and.TL samples are generated in this loop (lines 
5–8). Then, a sub-process Find selects a sample to be evaluated by the high-fidelity 
function . fH (lines 9-10). With the high-fidelity evaluated sample, this framework 
constructs the regression dataset (line 11) to re-train the predictor .Ψ (line 12). As 
.tH increases, .Ψ approaches the real simple regret function. Optimization using the 
corrected low-fidelity evaluation is similar to optimization using the high-fidelity 
function. Finally, the algorithm returns the best-so-far sample (line 14). 

12.2.2 Transfer Series Expansion (TSE) 

A major challenge of Algorithm 12.1 is that .Ψ is not accurate enough because the 
training dataset is small. To address this, we present the Transfer Series Expan-
sion (TSE) algorithm. We assume there is a series of pre-trained base predictors
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Algorithm 12.2 Multi-fidelity Optimization with TSE 
Input: (extra input compared to Algorithm 12.1) 

ψ = {ψ1, ψ2, . . . ,  ψk}: The base predictor set 
Procedure: 
1: XH , Z, y = ∅, ∅, ∅ 
2: Ψ ψ 

w = Ψ ψ 
0 

3: XL = Initialization(X ) 
4: ( ̃x, γ̃) = (0, +∞) 
5: for tH = 1 to  TH do 
6: for tL = 1 to  TL do 
7: x = SampleO(XL , fL + Ψ ψ 

w ) 
8: XL = XL ∪ {x} 
9: end for 
10: x′ = arg minx∈(XL−XH ) fL (x) + Ψ ψ 

w (x) 
11: γ′ = fH (x′) 
12: if γ′ < γ̃ then 
13: ( ̃x, γ̃) = (x′, γ′) 
14: end if 
15: XH , y = XH ∪ {x′}, y ∪ {γ′ − fL (x′)} 
16: Z = Z ∪ {ψ1(x′), ψ2(x′),  . . . ,  ψk (x′)} 
17: w = (Z�Z)−1 Z� y 
18: end for 
19: return ( ̃x, γ̃) 

.ψ = {ψ1,ψ2, . . . ,ψk}. We aggregate these base predictors as a final predictor using 
a simple weighted ensemble approach: 

.Ψ (x) =
k∑

i=1

wiψi (x) + b. (12.5) 

.w = {w1, w2, . . . , wk, b} is a weight vector for the base predictors. . D =
{(x1, y1), (x2, y2), . . . } is the raw regression training dataset. For each. xi , we input it 
into the base predictors and obtain the weight (. w) training dataset:.Z = {z1, z2, . . . }, 
where .zi = {ψ1(xi ),ψ2(xi ), . . . ,ψk(xi ), 1}. . Z is the feature matrix for training the 
weights. We rewrite . y = {y1, y2, . . . } as the learning target vector. By applying the 
mean square loss, the learning task can be presented as 

.w∗ = argmin
w

( y − Zw)�( y − Zw). (12.6) 

The weights of the ensemble predictor have a closed-form solution: . w∗ =
(Z�Z)−1Z� y when . Z is a full-rank matrix. Thus, the process of training predictor 
.Ψ has two steps: 1. using base predictors to predict .D to obtain the weight training 
dataset . Z, and 2. calculating the weights with the above closed-form solution. 

The linear ensemble approach of TSE is simple and easy to train. Another problem 
of TSE is how to obtain the base predictors.
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Obtaining base predictors. The base predictors are also regression models. In 
this chapter, we decompose residual regression into middle-level problems. In hyper-
parameter optimization, we naturally introduce a middle-fidelity evaluation function: 

. fM(δ) = L(δ,DrM
sub,Dvalid), (12.7) 

where .rM is the subsample ratio and .0 < rL < rM � 1. The middle-level prob-
lem is to train the regression predictor that estimates the regret function between 
. fM and . fL . Due  to  .rM � 1, the cost of . fM is much cheaper than the cost 
of . fH . We can obtain a large enough dataset for the middle-level problem. 
Thus, the middle-level predictor can be more accurate. If we need .k base 
predictors in total, we should construct .k middle-level regression problems: 
.{(DrL

sub1,DrM
sub1), (DrL

sub2,DrM
sub2), . . . , (DrL

subk,DrM
subk)}. In addition, an extra .DrL

sub is 
needed to construct the final regression problem .(DrL

sub,Dtrain). Thus, a total of . k
.DrM

sub and .k + 1 .DrL
sub should be randomly sampled. 

We implement the multi-fidelity DFO framework with TSE as Algorithm 12.2. 
The presented multi-fidelity optimization framework focuses on the evaluation phase 
of DFO. Only the evaluation phase is changed in optimization. Thus, this framework 
can be easily applied to any DFO method. Additionally, we present TSE to learn 
the residual predictor. Because high-fidelity evaluations are expensive, the train-
ing dataset is not large enough to learn an accurate predictor. TSE applies a linear 
combination of base predictors to simplify the regression model, and the base pre-
dictors prevent the combination predictor from starting from scratch. We obtain the 
base predictors by constructing middle-level regression problems related to the final 
regression problem. In hyper-parameter tuning problems, the middle-level regres-
sion problem estimates the simple regret between . fM and . fL . The base predictors 
are aligned by the learning model and can be transferred among different datasets. 
We focus only on the local trajectory of optimization to sample the regression train-
ing dataset. Thus, only a few instances are sufficient for the combination predictor to 
converge. With precise but cheap estimated evaluations as a substitute, optimization 
can explore more to find a better solution with an affordable cost. 

12.3 Empirical Study 

12.3.1 Experimental Setup 

In the experiments of this chapter, we select LightGBM [ 7] as the learning algorithm. 
A total of 11 hyper-parameters of LightGBM constitute the search space, including 
learning rate, number of leaves, tree depth, number of rounds, etc. We select 12 
datasets and show their details in Table 12.1. The dataset sizes range from thousands 
to 40 million. The subsampling ratio is set differently according to the dataset size. 
For small datasets with fewer than 100,000 instances, the low-fidelity subsampling
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Table 12.1 Information about the datasets [ 3]. .|D| is the number of instances in dataset . D. The  
validation datasets are constructed by sampling 10% of the instances from.Dtrain..rL and.rM are the 
subsample ratios of.DrL

sub and. DrM
sub

Dataset .|Dtrain| .|Dtest| .rL . rM

Musk 4,991 2,083 0.05 0.2 

HTRU2 14,318 3,580 0.05 0.2 

Magic04 15,215 3,805 0.05 0.2 

Credit 24,000 6,000 0.05 0.2 

Adult 32,561 16,281 0.05 0.2 

Sensorless 40,883 17,525 0.05 0.2 

Connect 47,504 20,053 0.05 0.2 

Miniboone 104,052 26,012 0.01 0.04 

Airline 773,469 215,358 0.005 0.02 

Higgs 10,000,000 1,000,000 0.001 0.004 

MovieLens 16,000,210 4,000,053 0.001 0.004 

Criteo 40,000,000 4,840,617 0.0005 0.002 

ratio.rL is 0.05, and the middle-fidelity subsampling ratio.rM is 0.2. For large datasets, 
.rL and .rM depend on the dataset size. 

We implement the multi-fidelity framework with TSE based on SRacos [ 2] and 
name it TseSRacos. The compared methods are as follows: 

• TseTrans: The algorithm is the same as TseSRacos, but the base predictors are 
transferred from another dataset. In our experiments, the base predictors are all 
from the Miniboone dataset. 

• RFSRacos: We replace the weighted ensemble of base predictors with a random 
forest regressor to obtain RFSRacos. 

• LF-Only: We apply the raw SRacos to optimize the hyper-parameters using only 
the low-fidelity evaluation function. 

• HF-Only: We apply the raw SRacos to optimize the hyper-parameters using only 
the high-fidelity evaluation function. 

Because high-fidelity evaluations are accurate, HF-Only serves as the upper bound 
for all compared methods. However, due to the high time cost of high-fidelity evalu-
ations, HF- Only optimizes the hyper-parameters on large datasets with only a few 
evaluations. 

The evaluation criterion for the experiments is the AUC score. For multi-fidelity 
optimization methods (TseSRacos, TseTrans, and RFSRacos), we apply one 
high-fidelity evaluation for every 100 low-fidelity evaluations, i.e., .TL = 100. The  
total number of high-fidelity evaluations is set to 50, i.e., .TH = 50. Thus, the multi-
fidelity optimization process has a total of 5,000 low-fidelity evaluations and 50 
high-fidelity evaluations. For TseSRacos and TseTrans, there are 5 base predic-
tors to construct the final regret predictor. For LF-Only, we set the total number of
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low-fidelity evaluations to 5,000, which is the same as for multi-fidelity optimiza-
tion. For HF-Only, we set 5,000 evaluations only when the dataset size is less than 
100,000 (Musk, HTRU2, Magic04, Credit, Adult, Sensorless, Connect, Miniboone). 
On large datasets (Airline, Higgs, MovieLens, Criteo), we early stop the optimization 
process when the time spent is more than that of TseTrans (HF-Only. ∗). For the 
huge datasets (MovieLens, Criteo), the middle-fidelity evaluation is hard to obtain. 
We can only transfer the base predictors from other tasks. Thus, we did not test 
TseSRacos but only tested TseTrans on these two datasets. 

12.3.2 Empirical Analysis 

We show the AUC scores and wall-clock running times of the compared methods 
on each dataset. For a fair comparison, we also include the time cost of training 
base predictors for TseSRacos in the total wall-clock running time. Based on the 
experimental results, we can draw the following conclusions: 

• Low-fidelity evaluation correction is necessary. From Table 12.2 , LF- Only usu-
ally achieves the best low-fidelity evaluation values. However, the correspond-
ing high-fidelity evaluations are not good. Thus, it is necessary to correct the 
low-fidelity evaluation during optimization. 

• Correction by a regression predictor is effective. From Table 12.2, the best AUC 
scores achieved by optimizations with correction (TseSRacos, RFSRacos, Tse-
Trans) are close to the upper bound score (HF- Only). They are much better than 
LF- Only on most datasets. 

• The TSE regressor converges fast. In Figure 12.1, we compare the regression 
error of the TSE regressor to that of the random forest regressor. At the beginning 
(when the regression training dataset has only one instance), TSE has a larger 
error. However, the error of TSE decreases quickly when the dataset size exceeds 
5. In particular, the error variance of the TSE regressor is smaller than that of the 
random forest regressor, indicating that the TSE regressor has good stability. 

• Base predictors have the ability to transfer. In Table 12.2, except for TseSRacos, 
TseTrans ranks first 10 times out of 11 datasets. Compared to TseSRacos, Tse-
Trans achieves similar optimization performance but spends less time because it 
does not require a base predictor training phase. This verifies that base predictors 
can be easily transferred to other datasets. This is meaningful for huge datasets 
where training base predictors is challenging. 

• Multi-fidelity optimization with TSE is effective. In Table 12.2, TseSRacos out-
performs others in most cases (ranking first 8 times out of 10 datasets). Compared 
to LF- Only and HF- Only, the performance of TseSRacos is close to HF-
Only, while the time cost is close to LF- Only. This verifies that multi-fidelity 
optimization with TSE can significantly improve optimization performance with 
an acceptable extra time cost.
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Fig. 12.1 Histograms of the mean regression prediction error .| fL + Ψ − fH | at each training 
step [ 3]. It only compares the prediction error of TseSRacos (green) and RFSRacos (blue). The 
.X -axis represents the number of instances in the regression training dataset
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12.4 Summary 

This chapter applies multi-fidelity optimization to address the expensive evaluation 
issue in hyper-parameter optimization. In hyper-parameter optimization, low-fidelity 
evaluations can be obtained by validating the hyper-parameter configuration on a 
subset of the dataset. These evaluations are cheap but significantly biased. Previous 
works on multi-fidelity optimization are often based on specific methods. In this 
chapter, we present a general multi-fidelity optimization framework based on DFO. 
A correction predictor is trained to estimate the residual between high and low-fidelity 
evaluations. We can optimize according to the corrected low-fidelity evaluations to 
reduce the time cost. However, high-fidelity evaluations are still hard to obtain, and 
the regression dataset is too small to train an accurate predictor. We present Transfer 
Series Expansion (TSE) to address this issue. TSE linearly combines pre-trained 
base predictors. Additionally, base predictors are trained on middle-level regression 
problems, for which training datasets are easier to obtain. Experiments on LightGBM 
hyper-parameter optimization tasks verify that multi-fidelity optimization with TSE 
can effectively accelerate the optimization process. 
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Chapter 13 
Stepwise Optimization: Cascaded 
Algorithm Selection 

Abstract This chapter introduces a stepwise optimization approach for algorithm 
selection in Automatic Machine Learning (AutoML). Traditional methods like Com-
bined Algorithm Selection and Hyper-parameter optimization (CASH) often suffer 
from inefficiency due to the large and redundant search space. To address this, the 
chapter proposes a cascaded algorithm selection framework, which separates the 
process into two levels: hyper-parameter optimization for individual algorithms and 
a resource allocation strategy at the upper level. The upper level is formulated as a 
multi-armed bandit problem, where each arm represents a hyper-parameter optimiza-
tion process. The chapter introduces the Extreme-Region Upper Confidence Bound 
(ER-UCB) strategy, designed to maximize the final feedback by focusing on the 
arm with the largest extreme region. Theoretical analysis and empirical studies on 
synthetic and real-world AutoML tasks demonstrate the effectiveness of ER-UCB in 
improving algorithm selection efficiency and performance. The results highlight the 
importance of stepwise optimization in reducing redundancy and enhancing AutoML 
outcomes. 

Algorithm selection [ 1, 4, 5] and hyper-parameter optimization [ 9, 10], intro-
duced in the previous chapters, are two core tasks of Automatic Machine Learning 
(AutoML) [ 17]. While hyper-parameter optimization has been extensively studied 
by researchers recently [ 2, 3, 8, 14], there are fewer works focusing on algorithm 
selection. Some approaches solve algorithm selection by combining it with hyper-
parameter optimization, such as the Combined Algorithm Selection and Hyper-
parameter optimization (CASH) method, which searches within a joint hyper-
parameter space of all candidate algorithms. However, the search result is the best 
hyper-parameter configuration of the best algorithm, and the hyper-parameter spaces 
constructed by other algorithms are redundant. The optimization solver, typically a 
derivative-free optimization (DFO) method such as Bayesian optimization [ 12, 13], 
is sensitive to dimensionality. The large and redundant search space hinders the 
optimization solver from reaching its full potential and obtaining a good result. 

To address this issue, we present a stepwise optimization approach to solve algo-
rithm selection: cascaded algorithm selection [ 11]. Cascaded algorithm selection 
consists of a two-level process. The lower level is the hyper-parameter optimization 
process for each algorithm. However, the optimization resources, such as running 
time and sample budget, are usually limited. The upper level is a strategy to solve 
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how to reasonably allocate the optimization resources to each lower-level process. 
We formulate this allocation problem as a multi-armed bandit problem and present 
an Extreme-Region Upper Confidence Bound (ER-UCB) strategy [ 11]. Theoretical 
analysis under ideal assumptions and empirical studies on real algorithm selection 
tasks show that ER-UCB is an effective strategy for cascaded algorithm selection. 

13.1 Stepwise Optimization with Algorithm Selection 

Let .A = {A1,A2, . . . ,AK } denote a set of .K candidate learning algorithms. For 
each algorithm .Ai , let  .δi ∈ Δi denote a hyper-parameter configuration, where . Δi

is the hyper-parameter space of .Ai . Given a training dataset .Dtrain, a testing dataset 
.Dtest, and an evaluation criterion . f (·), an AutoML task can be formulated as 

.Aδ∗
i∗

i∗ = argmax
i∈{1,2,...,K }

argmax
δi∈Δi

1

k

k∑

j=1

f (Aδi
i ,D j

train,D j
valid), (13.1) 

where.D j
valid ⊂ Dtrain and.D j

train = Dtrain \ D j
valid. In this chapter, we consider a max-

imization problem, where . f (·) is an evaluation criterion such as accuracy or AUC 
score, and a larger value is better. 

We note that Eq. (13.1) contains two cascaded optimization processes. Thus, we 
can rewrite Eq. (13.1) as follows:  

. Aδ∗
i∗

i∗ = argmax
i∈{1,2,...,K }

1

k

k∑

j=1

f (Aδ∗
i

i ,D j
train,D j

valid),

where δ∗
i = argmax

δi∈Δi

1

k

k∑

j=1

f (Aδi
i ,D j

train,D j
valid).

The inner part corresponds to the lower-level optimization process, which is the 
hyper-parameter optimization process. We assume that the best hyper-parameters 
.δ∗

i are available for every algorithm .Ai . The upper-level optimization process is 
straightforward, as it only needs to select the algorithm with the highest evaluation 
value. However, in reality, the cost for the lower-level hyper-parameter optimization 
to obtain.δ∗

i is too high to be acceptable. Thus, the direct algorithm selection strategy 
is not applicable. We tackle this issue by a stepwise optimization approach, i.e., 
cascaded algorithm selection. 

The lower level of cascaded algorithm selection. The lower level contains a set 
of hyper-parameter optimization processes, one for each algorithm .Ai . DFO is the 
solver for this task. Current DFO methods share a similar optimization framework, 
i.e., a .Sample&Evaluate loop. .Sample denotes a sampling step that builds a 
model based on previous samples and generates a new sample. .Evaluate denotes
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an evaluation step that evaluates the new sample, and the evaluation result is the 
feedback to the DFO method. By repeating this .Sample&Evaluate loop, the 
DFO method improves the search performance iteratively. We also note that DFO has 
a stepwise optimization process. The optimization loop can be paused at any iteration 
and resumed if necessary. Compared to searching on the joint hyper-parameter space 
(CASH), the optimization process at the lower level of cascaded algorithm selection 
focuses only on the hyper-parameter space of each algorithm. All search dimensions 
are active, mitigating the issue of redundant search. Furthermore, the dimensionality 
of each optimization process is small, allowing the DFO method to obtain better 
performance more easily. 

The upper level of cascaded algorithm selection. The upper level is a resource 
allocation strategy for the hyper-parameter optimization processes at the lower level. 
With .K learning algorithms, we have a total of .K hyper-parameter optimization 
processes at the lower level. Each hyper-parameter optimization process requires 
resources to complete the search. For example, the evaluation criterion for hyper-
parameter optimization is usually a.k-fold cross-validation process, which consumes 
time and computational resources to obtain the evaluation value. In an AutoML 
system, the total resource is usually pre-defined. When the resource is exhausted, the 
AutoML system stops and returns the best configuration found so far. The goal of the 
upper level is to reasonably allocate the resource to the hyper-parameter optimization 
processes at the lower level. Since DFO is the solver for hyper-parameter optimization 
tasks and has a stepwise framework that can be paused and resumed at any iteration, 
the upper level can be seen as a multi-armed bandit problem. An arm represents 
a hyper-parameter optimization process of an algorithm. The action of pulling an 
arm is to select the corresponding hyper-parameter optimization process and run it 
for one iteration. The key to the upper level is the arm selection strategy under the 
multi-armed bandit formulation. 

Multi-armed bandit for cascaded algorithm selection. Figure 13.1 illustrates 
the multi-armed bandit formulation of cascaded algorithm selection. The right-hand 
part (the arm) is the stepwise DFO process. The action of pulling an arm is to 
resume the .Sample step to generate a hyper-parameter configuration and evaluate 
this configuration. The evaluation value is the feedback of pulling the arm. Since 
the frequently used DFO methods are stochastic, the hyper-parameter optimization 
process is a stochastic process. For example, if random search is employed as the 
hyper-parameter optimization solver, the feedback distribution is the performance 
distribution of the algorithm in the defined hyper-parameter space. Usually, the feed-
back distribution is unknown to us. The key to the arm selection strategy is to balance 
exploration and exploitation when pulling arms. 

13.2 The ER-UCB Algorithm 

In the multi-armed bandit formulation, the key is the arm selection strategy. We 
present the Extreme-Region Upper Confidence Bound (ER-UCB) strategy for
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Fig. 13.1 Illustration of the cascaded algorithm selection framework [ 11]. The lower level 
(right-hand side) is a stepwise hyper-parameter optimization process that contains .Sample and 
.Evaluate steps. The upper level (left-hand side) is an arm selection strategy that decides which 
arm should be pulled in the next iteration 

cascaded algorithm selection. We assume that we have .K arms and a total of . n
trials for selecting arms. For the .i-th arm at the .t-th trial, let . Xi,t ∼ Di (μXi,t ,σ

2
Xi,t

)

denote the random variable of the feedback, where.Di denotes the underlying distri-
bution with the expectation .E[Xi,t ] = μXi,t and the variance .D[Xi,t ] = σ2

Xi,t
. In the  

well-studied multi-armed bandit problem, the target is to maximize the long-term 
accumulated feedback. The Upper Confidence Bound (UCB) strategy is a widely 
used arm selection strategy in this setting, which aims to find the arm with the max-
imal feedback expectation. However, cascaded algorithm selection aims to find the 
best algorithm and its best hyper-parameters. In the multi-armed bandit setting, the 
strategy should maximize the single feedback. Thus, the classic UCB strategy is 
inappropriate for cascaded algorithm selection. We present the extreme region of the 
feedback distribution to meet the target of cascaded algorithm selection. 

13.2.1 Extreme Region Target and Extreme Region Regret 

Definition 13.1 (Extreme Region) Assuming.X ∼ D, where. X is a random variable 
and .D is the corresponding distribution, with a constant real number . ρ, the extreme 
region is 

.ER(D) = Pr[X > ρ]. (13.2) 

The extreme region (Definition 13.1) is the area under the probability density 
function of the feedback distribution to the right of a constant value . ρ. Intuitively, 
the extreme region indicates the probability of obtaining a sample larger than. ρwhen 
sampling from the feedback distribution. Given a fixed . ρ, we want to find the arm 
with the largest extreme region among all arms, as it is most likely to obtain a sample
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larger than . ρ by pulling this arm. Thus, the extreme region satisfies the requirement 
of cascaded algorithm selection. 

Figure 13.2 shows an example of the extreme region for two synthetic arms: 
Gaussian distributions with .(μ1 = 0.5,σ2

1 = 0.152) and .(μ2 = 0.6,σ2
2 = 0.052). 

Although arm 2 has a larger expectation than arm 1 (.μ1 < μ2), we still select arm 1 
due to its larger extreme region (.ER(D1) > ER(D2)). 

Definition 13.2 (Extreme Region Regret) Let .i∗ be the index of the best arm. With 
a fixed . ρ and .i ∈ {1, 2, . . . , K }, let .pi = Pr[Xi > ρ] and .p∗ = Pr[Xi∗ > ρ]. With . n
total trials, a strategy selects the. It th arm at the. t th trial, where.t ∈ {1, 2, . . . , n}. The  
extreme region regret of this strategy is 

.Rn = np∗ − E

n∑

t=1

pIt . (13.3) 

We define the extreme region regret (Definition 13.2) to measure the gap between 
the real best strategy and the practical strategy. Intuitively, the extreme region regret 
is the difference in the number of events where a sample is larger than. ρ between the 
real best strategy and the practical strategy. 

13.2.2 ER-UCB on Stationary Distributions 

We first consider the scenario where the feedback distributions are stationary, which 
corresponds to the case where the hyper-parameter optimization method is random 
search. The ER-UCB-S strategy for stationary distributions is as follows: 

Fig. 13.2 Illustration of the extreme region on the probability density function (PDF) of a distribu-
tion [ 11]. We assume that the feedback distributions of two arms follow the Gaussian distributions: 
.G1(0.5, 0.152) and.G2(0.6, 0.052). With a constant. ρ, we define the extreme region as the probability 
.Pr[X > ρ]. In this figure, we set .ρ = 0.7. The shaded areas under the PDF lines are the extreme 
regions of the two arms
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Fig. 13.3 Illustration of the 
convergence curve of the 
hyper-parameter tuning 
process [ 11]. We apply a 
DFO method to optimize the 
hyper-parameters of a 
decision tree on the Adult 
dataset. The total sample 
budget is 200. We run this 
experiment 10 independent 
times. The average 
convergence curve is plotted 

.It = argmax
i∈{1,2,...,K }

γμ̂i (t) + gi (t), where, (13.4) 

μ̂i (t) = μ̂Ti (t) 
Yi 

+
√
1 

θ 
μ̂Ti (t) 
Y 2 i 

, 

gi (t) =
√
2 ln  t 

Ti (t) 
+

√
1 

θ

√
2 ln  t 

Ti (t) 
. 

Here, .μ̂i (t) is the exploitation term, which is the estimated extreme region of the. i th 
arm based on the observed feedbacks..gi (t) is the exploration term, which reflects the 
uncertainty in the extreme region estimation. . γ is a hyper-parameter for balancing 
exploration and exploitation..Ti (t) is the number of times the. i th arm has been pulled 
up to the . t th trial. . θ is a hyper-parameter related to the size of the extreme region. 

13.2.3 ER-UCB on Non-stationary Distributions 

In the non-stationary setting, the feedback distributions change as the optimization 
progresses, which corresponds to the case where the hyper-parameter optimization 
method is an advanced local search method. Figure 13.3 illustrates the typical conver-
gence curve of hyper-parameter optimization, which increases quickly at the begin-
ning and slows down at the end. We assume that the curve can be represented by a 
parameterized function .φ(at + b), where . a and . b are undetermined coefficients. 

The ER-UCB-N strategy for non-stationary distributions is as follows:
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.It = argmax
i∈{1,2,...,K }

γμ̂i (t) + gi (t), where, (13.5) 

μ̂i (t) = âi t + b̂i +
√
1 

θ 
σ̂2 
Zi,t 

, 

gi (t) = ΔTi (t)(t) +
√√√√

(ΔTi (t)(Ti (t)) + 1)

√
α ln t 
2Ti (t) 

. 

Here, .μ̂i (t) is the estimated extreme region of the . i th arm, which is modeled as a 
linear function of . t with coefficients .âi and . b̂i . .σ̂2

Zi,t
is the estimated variance of the 

transformed feedback.Zi,t = φ−1(Xi,t )..gi (t) is the exploration term, which depends 
on the number of times the . i th arm has been pulled (.Ti (t)) and the total number of 
trials (. t). .ΔTi (t)(t) is a function that captures the uncertainty in the extreme region 
estimation.. γ and. α are hyper-parameters for balancing exploration and exploitation. 

13.2.4 Theoretical Results 

We provide theoretical guarantees for the ER-UCB-S and ER-UCB-N algorithms in 
terms of the extreme region regret. Intuitively, the theorems state that the extreme 
region regret grows sublinearly with the number of trials . n, which means that the 
algorithms converge to the optimal strategy as . n increases. 

Theorem 13.1 (Extreme Region Regret of ER-UCB-S) Under certain assumptions, 
the extreme region regret of the ER-UCB-S algorithm satisfies: 

.Rn ≤
∑

i :Γi>0

Θi

(
32 ln n

Γ 4
i /(1 + θ−1)4

+ 3

)
, (13.6) 

where .Γi and .Θi are constants related to the extreme regions of the arms. 

Theorem 13.2 (Extreme Region Regret of ER-UCB-N) Under certain assumptions, 
the extreme region regret of the ER-UCB-N algorithm satisfies: 

.Rn ≤
∑

i :Γi>0

Θi (κ(n) + 12((1 + n)1−α − 1)

1 − α
+ 1), (13.7) 

where .κ(n) is a sublinear function of . n, and .α, Γi ,Θi are constants related to the 
extreme regions of the arms. 

We ignore the proofs in this section. Readers interested in the detailed proofs of 
these theorems are referred to [ 11].
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13.3 Empirical Study 

We design synthetic and AutoML tasks to investigate the ER-UCB algorithm (ER-
UCB-S and ER-UCB-N). We choose several bandit algorithms as the compared 
methods, including extreme bandits [ 7] (Extreme), the classic UCB [ 6] (C-UCB), 
.ε-Greedy [ 15], Softmax strategy [ 16], successive halving (S-Halving), UCB-E, and 
random strategy. For AutoML tasks, we choose the state-of-the-art algorithm selec-
tion method, AutoSklearn, as a compared method. 

13.3.1 Synthetic Tasks 

We design synthetic tasks with stationary arms and non-stationary arms separately. 
Due to the available feedback distribution of the arm, we can conveniently investigate 
the presented methods. We present the experiment details and the results. 

Stationary Setting 

We set 7 arms in this multi-armed bandit task. The feedback distribution of each 
arm is a Gaussian distribution. The expectations and variances of the 7 arms are 
.G1(0.64, 0.052), .G2(0.64, 0.012), .G3(0.65, 0.032), .G4(0.65, 0.022), .G5(0.68, 0.012), 
.G6(0.68, 0.022), and.G7(0.69, 0.012). According to the extreme region definition,. G1

is the best arm in this bandit, i.e., .i∗ = 1. Thus, a good strategy should allocate trials 
to.G1 as many as possible. We define the exploitation rate.Reoi

i = Ti (n)

n to measure the 
percent of trials allocated to the. i th arm. For the best . i∗th arm, a larger.Reoi

i∗ is better. 
For ER-UCB-S, we set .θ = 0.01, .β = 0.66, and .γ = 20. For ER-UCB-N, we set 
.φ(x) = x , .θ = 0.01, and .γ = 20. We set the total number of trials to .n = 1000 for 
all compared methods. All experiments are run for 3 independent times. The average 
performance is reported. 

Table 13.1 shows the average performance of all compared methods. Some criteria 
are proposed to investigate the effectiveness of the methods: .X̄∗ is the best average 
final feedback among 3 runs. .argmaxi X

∗
i shows from which arm .X∗ is obtained. 

We report .Reoi
1 and .Reoi

7 in this task. .G1 is the best arm. .G7 has the largest expecta-
tion, which is easy to mislead arm selection strategies. .argmaxi R

eoi
i shows which 

arm is most frequently pulled. According to the results, we can draw the following 
conclusions: 

• It is most likely to obtain an extreme value by pulling . G1. The random strategy 
uniformly allocates trials to each arm. However, .X∗ always occurs at . G1, i.e., 
.{1, 1, 1} = argmaxi X

∗
i in the Random row of Table 13.1. 

• The methods that maximize average expectation are easily misled by . G7, such as 
C-UCB,.ε-greedy, and UCB-E, which fail to allocate trials to the correct arm (. G1). 

• The methods that maximize extreme values successfully find. G1. ER-UCB-S, ER-
UCB-N, and Extreme achieve the result of .argmaxi R

eoi
i = {1, 1, 1}.
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Table 13.1 Average performance on the stationary setting [ 11]. .X̄∗ denotes the best average final 
feedback from 3 runs..argmaxi X

∗
i denotes the arm index from which.X∗ is sampled.. argmaxi R

eoi
i

denotes the arm index to which the strategy allocates the most trials..Reoi
1 and.Reoi

7 are exploitation 
rates of arms 1 and 7. The bold number is the best performance in its column 

Method .X̄∗ .argmaxi X
∗
i .argmaxi R

eoi
i .Reoi

1 . Reoi
7

ER-UCB-N 0.7925 1, 1, 1 1, 1, 1 0.7463 0.0416 

ER-UCB-S 0.8079 1, 1, 1 1, 1, 1 0.8613 0.0100 

Extreme 0.7626 1, 1, 1 1, 1, 1 0.1660 0.1390 

C-UCB 0.7353 3, 6, 6 7, 7, 7 0.0103 0.6996 

Softmax 0.7860 1, 1, 1 7, 6, 3 0.1446 0.1520 

.ε-Greedy 0.7286 7, 6, 6 7, 7, 7 0.0123 0.8853 

S-Halving 0.7675 3, 1, 1 3, 1, 1 0.3819 0.0472 

UCB-E 0.7506 1, 6, 1 7, 7, 7 0.0783 0.2596 

Random 0.7650 1, 1, 1 6, 2, 5 0.1396 0.1446 

• The ER-UCB algorithms show better efficiency than Extreme. .Reoi
1 of Extreme 

is only 0.166, indicating that Extreme spends more trials on exploration. .Reoi
1 of 

ER-UCB-S and ER-UCB-N are 0.8613 and 0.7463, indicating that ER-UCB can 
quickly lock onto .G1 and allocate trials to it. 

• By setting .φ(x) = x , ER-UCB-N is also effective in the stationary setting. ER-
UCB-N receives high .Reoi

1 and correctly finds that .G1 is the best arm within three 
repeated runs. 

• The regret study shows that ER-UCB is the best arm selection strategy among 
the compared methods. In Fig. 13.4.1, the lines of ER-UCB-N (green line) and 
ER-UCB-S (blue line) approach the expectation of the best strategy (dashed red 
line) faster than others. 

Non-stationary Setting 

We design the non-stationary setting as follows. We set . φ(at + b) = 2/(1 +
exp(−0.005(at + b))) − 1 to simulate the convergence curve. The arm is repre-
sented by.Ai (a, b,σ2

i ). We set a total of 6 arms:.A1(
5
9 , 50, 0.03

2), .A2(
5
9 , 60, 0.01

2), 
.A3(

2
7 , 120, 0.03

2), .A4(
2
7 , 60, 0.02

2), .A5(
1
6 , 50, 0.02

2), and .A6(
1
6 , 60, 0.015

2). . A3

has the largest expectation at the beginning. But .A1 and .A2 have larger long-
term expectations. Although .A2 has a slightly larger expectation than .A1, due to 
the larger .σ2, .A1 is the best arm. We run all compared methods for 3 indepen-
dent times. The total number of trials is set to .n = 1000. For ER-UCB-N, we set 
.φ(x) = 2/(1 + exp(−0.005x)) − 1, .θ = 0.01, and.γ = 4.5. For ER-UCB-S, we set 
.θ = 0.01, .β = 0.85, and .γ = 20 (Table 13.2 and Fig. 13.5).
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Table 13.2 Performance of the compared methods on the non-stationary setting [ 11]. Please refer 
to Table 13.1 for the column instructions 

Method .X̄∗ .argmaxi X
∗
i .argmaxi R

eoi
i .Reoi

1 . Reoi
3

ER-UCB-N 0.9055 1, 1, 1 1, 1, 1 0.7799 0.0600 

ER-UCB-S 0.3508 1, 1, 1 5, 5, 5 0.1460 0.0023 

Extreme 0.5689 1, 1, 1 1, 1, 1 0.3150 0.1370 

C-UCB 0.8465 3, 3, 3 3, 3, 3 0.0010 0.9946 

Softmax 0.4664 3, 3, 3 3, 3, 3 0.1630 0.1916 

.ε-Greedy 0.7917 3, 3, 3 3, 3, 3 0.0176 0.9136 

S-Halving 0.6336 3, 3, 3 3, 3, 3 0.1667 0.5010 

UCB-E 0.8039 3, 3, 3 3, 3, 3 0.0130 0.9303 

Random 0.4401 3, 3, 3 5, 3, 2 0.1673 0.1663 

Fig. 13.4 Illustration of the 
regret curve on the stationary 
setting of synthetic 
tasks [ 11]. The red dashed 
line is the expectation of the 
best arm selection strategy 

Fig. 13.5 Illustration of the 
regret curve on the 
non-stationary setting of 
synthetic tasks [ 11]. The red 
dashed line is the expectation 
of the best arm selection 
strategy
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According to the results, we can draw the following conclusions: 

• .A1 is the best arm in this setting. In ER-UCB-N, the best.X̄∗ = 0.9055 is obtained 
on.A1 with.Reoi

1 = 0.7799. In C-UCB, the best.X̄∗ = 0.8465 is obtained on.A3 with 
.Reoi

3 = 0.9946. It shows that the feedback of .A1 at the 7799th step is expectedly 
better than .A3’s at the 9946th step. Focusing on maximizing the final feedback, 
.A1 is the best. 

• .A3 easily misleads the compared methods that don’t consider maximizing the long-
term feedback. C-UCB, Softmax, .ε-greedy, and UCB-E allocate the majority of 
trials to .A3. 

• In the non-stationary setting, the methods that consider maximizing extreme values 
tend to explore more. The.Reoi

i in Extreme and ER-UCB-S are uniform across arms. 
• The extreme region target is important in this setting. ER-UCB-N doesn’t select 

.A2 but accurately selects .A1 and allocates the majority of trials to .A1. 

13.3.2 AutoML Tasks 

The AutoML tasks consist of datasets and a set of learning algorithms. Table 13.3 
shows the details of the selected learning algorithms. We select a total of 6 datasets 
from UCI. The evaluation criterion is the fivefold cross-validation accuracy. To con-
struct the stationary setting of AutoML, we select random search as the solver for 
hyper-parameter optimization. To construct the non-stationary setting of AutoML, 
we use SRacos as the solver for hyper-parameter optimization. Besides the compared 
methods, we apply random search and SRacos to search on the joint hyper-parameter 
space as the baseline (Joint). We set the total number of trials to.n = 200. All exper-
iments are run for 15 independent times. We report the average performance. When 

Table 13.3 Details of the hyper-parameters of the candidate classification algorithms [ 11]. #Int. 
is the number of integer hyper-parameters. #Cont. is the number of continuous hyper-parameters. 
#Cate. is the number of categorical hyper-parameters. #.Δ is the dimensionality of the whole hyper-
parameter space 

Algorithms #Int. #Cont. #Cate. #. Δ

DecisionTree (DT) 3 0 2 5 

ExtraTree (ET) 3 0 2 5 

Kneighbors (KN) 1 0 2 3 

PassiveAggressive (PA) 0 2 3 5 

AdaBoost (Ada) 1 1 1 3 

Bagging (Bag) 1 0 0 1 

RandomForest (RF) 2 1 3 6 

GaussianNB (NB) 0 1 0 1
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the solver is random search, we set .φ(x) = x for ER-UCB-N. When the solver is 
SRacos, we set  .φ(x) = 2/(1 + exp(−0.005x)) − 1 for ER-UCB-N. For both task 
settings, we set .θ = 0.01, .γ = 20, and .β = 0.6 for ER-UCB-S, and .θ = 0.01 and 
.γ = 20 for ER-UCB-N. 

According to Table 13.4, we can draw the following conclusions: 

• The “no free lunch” theorem has been proved again. There is no algorithm that 
can beat others on all 6 datasets. Thus, we have to select a suitable algorithm 
for each dataset. In other words, algorithm selection is necessary for the AutoML 
process. However, ensemble classification algorithms such as AdaBoost, Bagging, 
RandomForest, etc., show great power in the experiments. They win the best 
algorithm on 4 out of 6 datasets, indicating that ensemble algorithms usually have 
good robustness. 

• DFO shows better efficiency than random search for hyper-parameter optimization. 
DFO beats random search on 4/6 datasets, indicating that employing DFO methods 
to tune hyper-parameters is more reasonable. 

• The cascaded algorithm selection framework can effectively improve the perfor-
mance of the AutoML process. The methods based on the cascaded algorithm 
selection framework usually receive better validation accuracy than the methods 
based on joint search space because the cascaded algorithm selection framework 
successfully avoids the redundant dimension issue and improves the efficiency of 
hyper-parameter tuning. 

• On stationary arms, ER-UCB-S has the best performance. The results of stationary 
arms are located on the left part of Table 13.4 using random search. From the 
column of.X̄∗, ER-UCB-S outperforms others on 6/6 datasets. From the column of 
.X∗, ER-UCB-S wins on 5/6 datasets. Furthermore, ER-UCB-S obtains. AX∗ = Ãi

on 6/6 datasets, indicating that ER-UCB-S can precisely find the true best algorithm 
and allocate trials to it. Compared with other methods, the extreme region target 
effectively helps ER-UCB-S find algorithms that can potentially reach extreme 
values. 

• On non-stationary arms, ER-UCB-N has the best performance. On non-stationary 
arms (right part of Table 13.4, using DFO), ER-UCB-N outperforms others on 
6/6 datasets. And ER-UCB-N obtains .AX∗ = Ãi on 6/6 datasets. Compared with 
ER-UCB-S, ER-UCB-N has better stability, indicating that the convergence curve 
estimation of ER-UCB-N effectively leads ER-UCB-N to correct arm selection. 

• ER-UCB-N also shows competitive power on stationary arms. By setting a linear 
function.φ(x) = x , ER-UCB-N receives the best performance (.X∗) on 1/6 datasets. 
On other datasets, ER-UCB-N also outperforms most of the compared methods. 
But the .Reoi

Ãi
of ER-UCB-N stays at a low level. ER-UCB-N needs some trials 

to estimate the convergence curve. But the curve estimation is not necessary on 
stationary arms. The exploration action wastes some trials and has a negative effect 
on trial allocation.
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Ã
i
is
 t
he
 a
ve
ra
ge
 e
xp

lo
ita

tio
n 
ra
te
 o
n 
.Ã
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Ã
i

M
et
ho
d

. X̄
∗

.X
∗

.A
X

∗
.Ã
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13.4 Summary 

For algorithm selection tasks, we present the cascaded algorithm selection frame-
work in this chapter to tackle the redundancy issue of the joint hyper-parameter 
space. Cascaded algorithm selection has a two-level process. The lower level is the 
hyper-parameter optimization process that searches hyper-parameters in the space 
of a learning algorithm but not the joint space of all algorithms. The upper level is 
formulated as a multi-armed bandit task, in which a hyper-parameter optimization 
process of a learning algorithm can be seen as an arm. The key to the bandit is a 
strategy that finds the best arm and allocates trials to it as many as possible. AutoML 
needs to find the best algorithm and its best hyper-parameter configuration. 

With this target in mind, this chapter presents the Extreme-Region Upper-
Confidence Bound (ER-UCB) strategy to maximize the final feedback by selecting 
the arm with the largest extreme region. We design ER-UCB-S and ER-UCB-N algo-
rithms for stationary and non-stationary feedback distributions. With .K arms and . n
total trials, theoretical study shows that ER-UCB-S has an .O(K ln n) upper bound 
and ER-UCB-N has an .O(Knν) upper bound on the extreme region regret, where 
.
2
3 < ν < 1. We also investigated the ER-UCB strategy on synthetic and AutoML 
tasks. The empirical results verified the effectiveness of the presented methods. 
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Chapter 14 
Calculation Operation Optimization: 
Competition Neural Architecture Search 

Abstract This chapter introduces Competition Neural Architecture Search (CNAS), 
a method for automatically designing neural network architectures. CNAS separates 
the search process into two parts: topological structure enumeration and calculation 
operation optimization. The topological structures are enumerated under depth and 
width constraints, while the calculation operations are optimized using derivative-
free optimization (DFO) methods. A competition mechanism is employed to iter-
atively eliminate poorly performing structures, ensuring that the best architecture 
is selected. To improve efficiency, CNAS uses block-based search and experience 
reuse, leveraging historical data to warm-start the optimization process and sim-
ulate competitions. The chapter presents empirical results on image classification 
and denoising tasks, demonstrating that CNAS achieves competitive performance 
compared to manual designs and state-of-the-art NAS methods. The experiments 
highlight CNAS’s ability to efficiently explore the architecture space and produce 
high-quality network designs. 

Neural Architecture Search (NAS) [ 11, 20] has been proposed to automatically 
design neural network architectures for deep learning tasks. This process can be 
seen as determining a topological structure and operation settings on this structure. 
Recent NAS methods consider both parts simultaneously, which is usually hard to 
thoroughly explore the architecture space. This chapter presents a competition neu-
ral architecture search framework that considers topological structure search and 
operation setting search separately. The method enumerates all possible topological 
structures within limited length and width settings. For each structure, derivative-free 
optimization, introduced in the previous chapters, is utilized to optimize its operation 
setting. A competition mechanism is proposed to combine these two parts. In each 
optimization loop, the topological structures are compared with each other according 
to their previous operation setting performance, and the bad structures are eliminated. 
The structure that is left finally with its best operation setting is the search result. 
This chapter also presents an experience-reused mechanism to accelerate the search 
process. With manual architectures and historical architectures, experience can be 
extracted to preliminarily screen structures and warmly start the operation search 
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processes. The experiments on image classification tasks and an image denoising 
task show that the presented method receives competitive architectures compared 
with some manual networks and state-of-the-art NAS methods. 

14.1 Calculation Operation Optimization with Neural 
Architecture Search 

NAS has developed along with the whole development of neural networks. In the 
1990s, researchers tried to apply evolutionary algorithms to design the connections 
for fully-connected networks and tune the hyper-parameters of their training pro-
cesses [ 18]. Because fully-connected networks can be easily formulated by some 
hyper-parameters such as connection types, layer size, neural size, etc., the architec-
ture design is considered a hyper-parameter optimization problem [ 2, 3]. Evolution-
ary algorithms are suitable as the solver for this problem. However, many irregular 
and imaginative architectures have been invented for different learning tasks. This 
causes the architecture search space to become more complex and hard to be for-
mulated by several simple hyper-parameters. Thus, recent NAS works make more 
contributions to the architecture space design and efficient search method proposal. 

Previous NAS methods [ 10, 19, 20] usually consider a Directed Acyclic Graph 
(DAG) space for the architecture search. A DAG consists of edges and nodes. The 
edges indicate the data flows in network architectures, while the nodes indicate the 
calculation operations. With a limited setting of depth and width, the DAG space 
contains any possible network architectures. Because the number of candidate archi-
tectures expands exponentially with the increase of depth and width, previous works 
place restrictions on the search space in two ways: macro space and micro space. 
The macro space [ 1, 20] aims to generate entire network architectures directly and 
intuitively. Thus, this search space always has a large depth setting. To limit the size 
of the search space, the macro space only allows single-chain styled architectures. 
Based on this, skipping connections are also allowed to generate complex struc-
tures. However, the macro space has clear shortcomings. It is impossible to generate 
deep network architectures, and the search space is still huge with a large setting of 
depth. Thus, the micro space has been proposed in NASNet [ 21]. The micro space 
aims at a part of network architectures, i.e., a block, but not entire architectures, and 
then stacks them together to construct an entire architecture. For example, NASNet 
only searches for a normal block and a reduction block and repeats them 5 times 
to construct a network architecture. It is a narrow search space for a block search. 
Furthermore, the operation of stacking blocks effectively generates deep network 
architectures. Thus, more and more NAS works [ 9– 12, 16] apply the micro space to 
search for effective network architectures.
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14.1.1 NAS Task Formulation 

In this chapter, we only solve the architecture search on CNN. A deep learning task 
can be defined by a training dataset .Dtrain and a testing dataset .Dtest. Let  . (x, y) ∈
Dtrain ∪ Dtest denote an instance, where. x is an input tensor and. y is its corresponding 
label tensor. A network architecture can be seen as a DAG that consists of edges 
and nodes. The edges are the data flows in the network architecture, indicating the 
topological structure. The nodes are the transformations from the input data flows 
to output data flows, indicating the calculation operations. We assume a DAG has. m
nodes, and let.F = { f1, f2, . . . , fm} denote a set of calculation operations. Any. f ∈
F is a calculation operation that transforms the input tensors to an output tensor, i.e., 
.xout = f (xin1 , . . . ). We note that the number of input tensors may be more than one, 
but the number of output tensors must be one. By setting a nested connection, we can 
determine a topological structure. Let. f out ⊗i ( f in1 , . . . ) denote the nested connection 
in the . i th node. Thus, .⊗ = {⊗1,⊗2, . . . ,⊗m} denotes a topological structure. A 
network architecture can be presented as follows: 

.N = ⊗ � F, (14.1) 

where .⊗ is a topological structure and .F is a set of calculation operations, and the 
symbol . � means correlating .F to . ⊗. Let  .N = {N1,N2, . . . } denote the set of all 
possible network architectures. The NAS task can be formulated as follows: 

.N ∗ = arg max
N∈N

Cvalid(N ,Dtrain), (14.2) 

where.Cvalid(·,Dtrain) is an evaluation criterion of the validation process on the train-
ing dataset. The target of NAS is to select the network architecture from the possible 
network architecture set that has the maximal validation performance. 

We present the method of Competition Neural Architecture Search (CNAS) with 
reused experience. CNAS is a hierarchical search process, i.e., considering the topo-
logical structure enumeration and calculation operation optimization separately. And 
a competition mechanism is applied to combine both of them. 

14.1.2 Topological Structure Enumeration 

With limited settings of depth (. α) and width (. β), we can enumerate all possible 
topological structures. To avoid obtaining strange structures, we apply a main-and-
branch chain approach for enumeration. In this approach, we set a main chain first, 
which is the deepest chain in the topological structure. The length of the main chain 
corresponds to the depth setting. Then, we add branch chains to the main chain. 
The number of branch chains corresponds to the width setting. There are some 
constraints when adding branches. First, skipping connections are not considered
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Fig. 14.1 Illustration of the constraints when enumerating topological structures. The circle and 
arrow in black indicate the main chain. The circle and arrow in green indicate the legal branch chain. 
The circle and arrow in red indicate the illegal branch chain 

when enumerating. Under this constraint, the branch chain must have at least one 
node. Second, the length of the branch chain can’t be larger than the main chain’s. 
Otherwise, it will produce a branch chain that is longer than the main chain. Third, 
it is forbidden to add a branch chain to another branch chain because some repeated 
and uncontrollable structures will be constructed in this way. Figure 14.1 shows the 
constraints when enumerating topological structures. Under these constraints, we 
can enumerate possible topological structures that are non-repeated and reasonable. 
We denote the enumeration process as .

⊗ = {⊗1,⊗2, . . . } = enumerate(α, β), 
where .⊗i ∈ ⊗

is a possible topological architecture. 
Although we constrain the enumeration process, the number of possible topolog-

ical structures increases explosively when depth and width become large. To tackle 
this, a block-based search is employed, which we will discuss later. 

14.1.3 Calculation Operation Optimization 

The enumeration process gives the topological structures. The next process should 
assemble the calculation operations for each structure. We consider it a black-box 
optimization task. A node in the structure is a calculation operation that transforms 
tensors from input to output. In CNN, the options for calculation operations are lim-
ited and easy to parameterize. For example, we show a parameterized search space 
of calculation operation optimization in Table 14.1..tC is the type of calculation oper-
ation. We only consider convolutional or pooling operations. . f is the kernel size. 
We set some candidates for it, which are .2 × 2, .3 × 3, or  .5 × 5. . d is the filter size. 
. a is the activation type. .tP is the pooling type. Average pooling or maximal pooling 
are considered. . s is the skipping connection setting. We design the skipping con-
nection architecture by this parameter. The parameter value means how many nodes 
will be skipped to input the output of this node. . ∅ means no skipping connection. 
Figure 14.2 gives an example of the correspondence between parameterized code and 
network architecture. We note that not all dimensions of a setting are active. When 
.tC = Conv., dimensions 1, 2, 3, 4, and 6 are active. When.tC = Pool., dimensions 1,
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Table 14.1 The search space settings of calculation operations 

Dim. Symbol Parameter Setting 

1 .tC Type {Conv., Pool.} 

2 . f Kernel size Square.. ∈ {2, 3, 5}
3 .d Filter size . ∈ {16, 24, 32}
4 .a Activation {ReLU, LeakyReLU, ReLU6} 

5 .tP Pooling {ave., max.} 

6 .s Skipping {. ∅, 1, 2, 3}  

Fig. 14.2 Illustration of an 
example of a calculation 
operation setting. The table 
shows the code in the 
parameterized search space. 
The figure shows the 
corresponding network 
architecture 

2, and 5 are active. In this way, one node can be parameterized by 6 dimensions. Let 
.N denote the number of nodes of a. ⊗ and.F⊗ denote the calculation operation space. 
Thus,.|F⊗| = 6 × N . Because. ⊗won’t have too many nodes, the optimization won’t 
suffer from a high-dimensional issue. 

Like hyper-parameter tuning, calculation operation optimization can be seen as 
a black-box optimization problem and solved by DFO methods, introduced in the 
previous chapters. DFO relies only on the evaluation values, not the gradients, to 
explore the search space. Thus, it is more suitable for this problem. Currently, 
popular DFO methods are evolutionary algorithms [ 4], Bayesian optimization [ 8, 
14], classification-based optimization [ 7], etc. These methods all follow a sample-
evaluation framework. Let .ω⊗ denote a calculation operation optimization process 
for . ⊗. .ω⊗ has an inner model that is used to sample a new configuration of cal-
culation operations: .F = ω⊗.sample(F⊗). An entire network architecture can be 
constructed: .N = ⊗ � F . Now, a criterion is needed to evaluate the quality of this 
network architecture. The evaluation is usually a validation process as follows: 

.v = Cvalid(Nw∗
,Dtrain), (14.3) 

s.t. w∗ = arg min 
w 

Ltrain(Nw , Dtrain), 

where .Cvalid is the validation criterion, such as accuracy, F1 score, etc., and . Ltrain

is the training loss, such as mean square loss, cross-entropy, etc. With the eval-
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uation value . v, we update the inner model and get ready for the next sampling: 
.ω⊗ = ω⊗.update(F, v). It is a stepwise framework that can be paused at any opti-
mization loop. And the optimization process can be activated if necessary. This 
mechanism makes it possible to design a competition approach to combine the cal-
culation operation optimization and topological structure enumeration. 

14.2 The CNAS Algorithm 

In this step, we have to combine the topological structure enumeration and cal-
culation operation optimization together. The target is to eliminate the topological 
structures that have poor performance during optimizing their calculation operations. 
A competition mechanism is employed to accomplish this task. For each topological 
structure .⊗i , there is an optimization process .ω⊗i that searches for its best calcu-
lation operations. The optimization process includes a sample step, an evaluation 
step, and an update step. This optimization process can be paused at any loop, as 
we mentioned before. Let .F̃i denote the best-so-far calculation operation setting of 
.⊗i . After  .B loops for each optimization process, the 1st round competition can be 
raised by comparing.Cvalid(⊗i � F̃i ,Dtrain) with each other. And half of the topolog-
ical structures that lose the competition will be eliminated. After .K rounds, there is 
only one topological structure left, which is the winner topological structure. Then, 
we employ more loops (. B ′) to intensively optimize its calculation operations. This 
process is shown in Fig. 14.3. The combination of the final best-so-far calculation 
operations and the winner topological structure is the winner network architecture. 

There are some discussions about the competition mechanism. The competition 
mechanism can select the best topological structure with an exponential decay rate 

Fig. 14.3 Illustration of the framework of CNAS that includes topological structure enumeration, 
calculation operation optimization, competition mechanism, and block-based search. .C f

d means a 

convolutional operation with an . f × f kernel and . d filters. .P f
a/m means an average or maximal 

pooling operation with an. f × f kernel
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because half of the structures will be eliminated in each round. It can alleviate the 
issue of the explosive number of possible topological structures in the enumeration 
phase. The competition mechanism is a greedy strategy for selecting structures. But 
the best structure will be selected finally. The competition process can be controlled 
by some hyper-parameters such as the number of loops within a round . B, the num-
ber of loops for optimizing the calculation operations on the winner structure . B ′, 
etc. Intuitively, larger .B and .B ′ will lead to better network architectures, but it has 
more cost. However, the total search cost mostly depends on the number of possible 
topological structures. We employ block-based search to tackle this issue. 

14.2.1 Block-Based Search 

Due to enumeration, the number of possible topological structures increases expo-
nentially with increasing depth and width. It is a direct way to tackle this by giving 
a limitation for depth and width. However, this impedes the search for deep network 
architectures. CNAS employs block-based search to reduce the number of enumer-
ations and obtain deep network architectures. 

The block-based search splits the entire network architecture into several parts, 
i.e., blocks. And then, a stepwise search is employed to search block by block. In 
each block, the depth and width can be set as small numbers. In our work, we usually 
set 4–5 nodes in depth and 2–3 branch chains in width. And we can obtain a deep 
enough network architecture by using only 5–6 blocks. With this setting, there are 
only hundreds of topological structures when enumerating, in which CNAS can 
quickly select the best structure with the competition mechanism. Different from the 
previous NAS methods with micro space, CNAS searches the next block based on the 
winner network architecture of the last block but does not apply repetitive blocks, as 
Fig. 14.3 shows. It helps us search on a larger space and obtain more suitable network 
architectures. 

14.2.2 Experience Reuse 

The search method design of CNAS considers some limitations to improve the search 
efficiency. But we still want to further improve the efficiency, so an experience 
reused approach is employed. In this work, we consider the experience from two 
sources. The first source is a set of manual network architectures. The manual network 
architectures have been proven effective by real-world applications. There are many 
inspired architectures that we can draw lessons from when designing the search 
space, such as inceptions [ 15], skipping connections [ 5, 17], linear bottlenecks [ 6, 
13], etc. The second source is the historical log when searching network architectures. 
During the search, CNAS will sample many network architectures that have been 
evaluated. Different from manual network architectures, not all architectures from
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historical logs perform well. However, it won’t stop us from utilizing them to avoid 
the new search starting from scratch. We reuse the experience in two directions. The 
first is the calculation operation prediction, in which the experience is used to warm-
start the calculation operation optimization process. The second is the competition 
simulation, in which we train a simulator from experience to preliminarily screen 
the topological structures. 

Calculation Operation Prediction 
This step aims to warm-start the calculation operation optimization process. It can 
be formulated as a prediction problem. The input is a topological structure, and the 
output is the calculation operations for nodes. In this work, we focus on nodes and 
predict their calculation operations node by node. The manual network architectures 
and the historical search logs can provide the supervised information. We introduce 
the details from data extraction, training predictor, and prediction. 

Data extraction consists of feature design and label setting. We extract features 
according to the topological structure. Before giving the details of feature design, we 
introduce a concept, i.e., collection node. If a node has more than one input or more 
than one output, we name this node a collection node. The collection node indicates 
that the network architecture isn’t a simple single chain but a complex structure. We 
split the features into global features and local features. The global features include 
the number of nodes, the number of branch chains, depth, the number of collection 
nodes, etc., a total of 9 features that reflect the global state of the topological structure. 
The local features reflect the local state of a node. Thus, the local features correlate 
with a single node, which includes whether it is a collection node, the depth of this 
node, the number of branch chains that connect to this node, some information of 
branch chains that are related to this node, etc., a total of 16 features. Combining both 
of them, a total of 25 features are considered when extracting. The label of the features 
is the corresponding calculation operations of the experienced network architecture. 
The label space is the same as Table 14.1. Let. κ = {κ1, κ2, . . . , κm} = extract(⊗)

denote an extraction process from a topological structure. ⊗, where.κi ∈ κ is a piece 
of features corresponding to the node .⊗i ∈ ⊗. 

Training predictor and prediction. Because the data extracted from network 
architectures is time-series, we apply an LSTM model to train a predictor. Let . φ
denote the predictor. For the target topological structure, we first employ the extrac-
tion process to get the features of each node. Then, the calculation operations of . ⊗i

are .F⊗ = φ(⊗). 
In the calculation operation optimization process, the DFO method has an ini-

tialization step that uniformly samples on the search space. We use . φ to predict a 
calculation operation configuration that replaces the uniform sample in the initial-
ization step. The warm-start by. φ helps the optimization process avoid starting from 
scratch and improves the search efficiency. 

Competition Simulation 
This step aims to simulate the competition between two topological structures. The 
key is how to evaluate the quality of a topological structure. Equation (14.3) shows  
the evaluation of a network architecture. But with different calculation operation
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configurations, a topological structure can construct different network architectures. 
Let .vm denote the mean of evaluation values of these network architectures, and . vs
denote the standard deviation of evaluation values of these network architectures. 
.vm + vs is the performance upper bound that this topological structure can get with 
a high probability. Thus, this value can be an evaluation of a topological structure. 
With this evaluation, we can design the competition simulation from data extraction, 
training simulator, and simulation. 

Data extraction. We assume the competition is between.⊗1 and.⊗2. The feature 
extraction for topological structures is the same as in the last section, that is, . κ1 =
extract(⊗1) and .κ2 = extract(⊗2). We combine them together .[κ1; κ2] and 
give it a label as follows: 

.�([κ1; κ2]) =
{

+1, v⊗1
m + v⊗1

s > v⊗2
m + v⊗2

s ,

−1, v⊗1
m + v⊗1

s ≤ v⊗2
m + v⊗2

s .
(14.4) 

.([κ1; κ2] , �) is an instance for training the simulator. The label . � means whether 

.⊗1 is better than .⊗2. Conversely, .([κ2; κ1] ,−�) is another instance. In the search 
process, two instances can be extracted according to any two topological structures. 
From the historical search log, we can extract a training dataset. 

Training simulator and simulation. It is a supervised learning task to train the 
simulator from a labeled dataset. This data is similar to the text classification data. 
Thus, an LSTM model is applied. Let .ψ denote the simulator. The competition 
simulation can be presented as 

. � = ψ([extract(⊗1);extract(⊗2)]).

If .� = +1, .⊗1 wins and.⊗2 is eliminated. If .� = −1, .⊗2 wins and.⊗1 is eliminated. 
Let .

⊗′ = simulate(
⊗

, ψ) denote the competition simulation, where .
⊗′ is the 

set of winner structures. 
There are some discussions. We employ the competition simulation after the 

enumeration. Many bad topological structures can be eliminated according to the 
simulator. Only the winner topological structures will keep on optimizing their cal-
culation operations. Furthermore, we can control the number of winners at a low 
level. Thus, the competition simulation can substantially reduce the search cost and 
improve the search efficiency. 

14.2.3 Experience-Reused CNAS 

The combination of CNAS and reused experience is the experience-reused CNAS 
algorithm shown in Algorithm 14.1..Ñ denotes the best-so-far network architecture. 
At line 1, .Ñ is set as empty because the search has just begun. The loop from lines 
2–33 is the block-based search. Line 3 is the topological structure enumeration..

⊗ =
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Algorithm 14.1 Experience-Reused CNAS 
Input: 
inp α, β, F , N : depth, width, operation space, block size 
inp B, B ′: budget in each round and final optimization 
inp φ, ψ,  Dtrain: operation predictor, competition simulator, training dataset 
inp enumerate, simulate: enumeration, competition simulation sub-procedure 
inp initialize, compete: initialization, competition sub-procedure 
Procedure: 
1: Ñ = ∅  
2: for t = 1 to  N do 
3:

⊗ = simulate(enumerate(α, β), ψ),	 = ∅  
4: for each ⊗ ∈ ⊗

do 
5: F̃⊗ = φ(⊗) 
6: v = Cvalid( Ñ + ⊗ � F̃⊗, Dtrain) 
7: ω⊗ = initialize( F̃⊗, v,  F⊗) 
8: 	 = 	 ∪ {ω⊗} 
9: end for 
10: while |	| > 1 do 
11: for each ω⊗ ∈ 	 do 
12: for i = 1 to  B do 
13: F = ω⊗.sample(F⊗) 
14: v = Cvalid( Ñ + ⊗ � F, Dtrain) 
15: ω⊗ = ω⊗.update(F, v)  
16: if v >  Cvalid( Ñ + ⊗ � F̃⊗, Dtrain) then 
17: F̃⊗ = F 
18: end if 
19: end for 
20: end for 
21: 	 = compete(	) 
22: end while 
23: ω⊗ ← 	

24: for i = 1 to  B ′ do 
25: F = ω⊗.sample(F⊗) 
26: v = Cvalid( Ñ + ⊗ � F, Dtrain) 
27: ω⊗ = ω⊗.update(F, v)  
28: if v >  Cvalid( Ñ + ⊗ � F̃⊗, Dtrain) then 
29: F̃⊗ = F 
30: end if 
31: end for 
32: Ñ = Ñ + ⊗ � F̃ 
33: end for 
34: return Ñ 

{⊗1, ⊗2, . . . ,  ⊗M} denotes the set of possible structures. Line 3 is the competition 
simulation that aims to eliminate topological structures according to the experience. 
Lines 4–9 initialize the calculation operation optimization procedure, i.e., .ω⊗ for 
each topological structure .⊗ ∈ ⊗

. The initialization step employs the calculation 
operation prediction to get the operation configuration (line 5). Here,.F̃⊗ denotes the 
best-so-far calculation operations for. ⊗. Lines 10–22 are the competition mechanism. 
Each .ω⊗ will be pushed forward for .B steps, and then it competes with each other
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until we get the winner (line 23). The calculation operations on the winner will be 
further optimized for .B ′ steps. The final .⊗ � F̃ is the best network architecture in 
this block. Then, we combine it with the previous block architecture (line 32). After 
search procedures on all.N blocks are finished,.Ñ is the winner network architecture 
and returned. 

14.3 Empirical Study 

We conduct our experiments on two style tasks. First, the benchmark image clas-
sification task is employed to investigate our method by comparing it with other 
state-of-the-art NAS methods. Then, we apply our method to automatically design 
the network architecture for the image denoising task. For each task, we first show 
the basic information about the dataset. Then, the implementation details are shown, 
which include the architecture space, evaluation settings, search settings, etc. Finally, 
we provide the result analysis for each dataset. 

14.3.1 Image Classification Tasks 

Implementation Details 
For the CNAS algorithm, the architecture search space includes the topological space 
and the calculation operation space. In image classification tasks, we employ block-
based search to reduce the size of the architecture space while still obtaining deeper 
network architectures for better performance. Specifically, we set a total of XX blocks 
for CIFAR-10... In each block, the depth and width of the micro-architecture are set 
as 5 and 2. We search the network architecture block by block. The search processes 
will repeat several times. In practice, the search efficiency is unsatisfactory in this 
way. To tackle this, we follow a popular approach, i.e., repeated blocks, which is 
widely used in NAS methods such as ENAS [ 11], DARTS [ 10], etc. The blocks 
are classified into two categories: normal block and reduction block. CNAS only 
searches two blocks sequentially, then stacks them repeatedly. Figure 14.4 illustrates 
the high-level structure of block-based search on image classification tasks. The 
calculation operation space gives the possible operations for each node in the topo-
logical structure. CNAS follows the operation setting of DARTS, which contains 
6 operations: separable convolution with 3. ×3 and 5. ×5 kernels, dilated separable 
convolution with 3. ×3 and 5. ×5 kernels, average pooling with 3. ×3 kernel, and max 
pooling with 3. ×3 kernel. The skipping connect space is set as .{∅, 1, 2}. The opera-
tion space is set the same for both normal and reduction blocks, but the stride is set as 
2 for reduction blocks. And the reduction blocks are only set at . 13 and. 

2
3 of the depth 

of the whole network architecture. On the evaluation part, the criterion is accuracy 
on the validation data. Each network architecture that is sampled by CNAS has to be 
trained and validated. Due to the limited search total time, it is impossible to employ



188 14 Calculation Operation Optimization: Competition Neural…

Fig. 14.4 Illustration of high-level structure for the block-based search on image classification 
tasks 

the whole training data to evaluate an architecture. There are two ways to reduce the 
evaluation time cost: applying a part of the training data and applying few training 
epochs. We have tried some combinations of both of them, such as whole data with 
few epochs, a small part of data with large epochs, and a small part of data with few 
epochs. The empirical results show that the way of whole data with few epochs can 
obtain the rank performance of architectures. That is to say, evaluation from training 
architecture on the whole data but with few epochs may not obtain the final accuracy, 
but the architecture with good accuracy obtained by this way will perform well in 
the final testing. Thus, during the training process of the evaluation part, we employ 
whole data. The optimizer for training architectures is SGD with momentum 0.9 and 
weight decay 0.0003. The learning rate is set as 0.025. The batch size is 96. In the 
calculation operation optimization, we use SRacos (Chap. 6) as the search method, 
whose efficiency, stability, and scalability have been proved in many real AutoML 
applications. The total sample size is set as 200 for each experiment. 

14.3.1.1 Result Analysis 

We finish the experiments of CNAS on CIFAR-10 and CIFAR-100 on Tesla V100 
GPU. We show the results on CIFAR-10 in Table 14.2. CNAS obtains 97.41% test 
accuracy, which outperforms the manual architecture DenseNet by more than 1% 
and outperforms the state-of-the-art NAS method DARTS by more than 0.2%. On 
the architecture size (parameter size), the size which CNAS obtains is much less than 
the size of the manual architecture (DenseNet). CNAS has a similar architecture size 
as DARTS’s. From the above results, CNAS outperforms previous NAS methods on 
architecture quality (test accuracy and parameter size) and search efficiency (time 
cost). We show the results on CIFAR-100 in Table 14.3. DenseNet obtains 82.82% 
test accuracy on CIFAR-100. ENAS and DARTS fail to outperform DenseNet. CNAS 
obtains 83.03% test accuracy on CIFAR-100 by searching on it directly, which out-
performs DenseNet.
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Table 14.2 Comparisons of the architectures obtained by the state-of-the-art NAS approaches on 
CIFAR-10. . † CNAS uses the evaluation policy with a partial dataset and many training epochs. . ‡

CNAS uses the evaluation policy with the entire dataset and few training epochs 

Architecture Test Acc. 
(%) 

Params 
(M) 

Search cost 
(GPU days) 

Method cate 

ResNet + cutout 96.01 6.6 – Manual 

DenseNet + cutout 96.54 26.2 – Manual 

PNAS 96.59. ±0.09 3.2 225 SMBO 

AmoebaNet + cutout 96.66. ±0.06 3.2 3150 Evolution 

NASNet-A + cutout 97.35 3.3 1800 RL 

ENAS-macro + cutout 96.13 38 0.32 RL 

ENAS-micro + cutout 96.15 4.3 0.33 RL 

NAONet 96.82 10.6 200 NAO 

DARTS (first order) + 
cutout 

97.00 3.3 1.50 Gradient-based 

DARTS (second order) + 
cutout 

97.24 3.3 4.00 Gradient-based 

SNAS (mild constraint) + 
cutout 

97.02 2.9 1.50 Gradient-based 

SNAS (moderate 
constraint) + cutout 

97.15 2.8 1.50 Gradient-based 

SNAS (aggressive 
constraint) + cutout 

96.90 2.3 1.50 Gradient-based 

CNAS. † + cutout 97.31 3.0 1.02 Competition 

CNAS. ‡ + cutout 97.41 2.8 2.86 Competition 

Table 14.3 Comparisons of the architectures evaluated on CIFAR-100. The column Search Dataset 
shows on which dataset the architecture is searched. If this column is CIFAR-10, it means the 
architecture is searched on CIFAR-10 and transferred to CIFAR-100 

Architecture Search 
dataset 

Test Acc. 
(%) 

Params 
(M) 

Search cost 
(GPU days) 

Method cate. 

ResNet + cutout – 78.04 6.6 – Manual 

DenseNet + 
cutout

- 82.82 26.2 – Manual 

ENAS-micro + 
cutout 

CIFAR-10 81.28 4.3 0.32 RL 

ENAS-micro + 
cutout 

CIFAR-100 81.26 3.1 0.33 RL 

DARTS + cutout CIFAR-10 82.24 3.3 1.50 Gradient-based 

DARTS + cutout CIFAR-100 81.60 2.5 4.20 Gradient-based 

CNAS + cutout CIFAR-10 82.78 2.8 2.86 Competition 

CNAS + cutout CIFAR-100 83.03 3.2 2.08 Competition
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14.3.2 Image Denoising Tasks 

For image denoising tasks, we select the Waterloo and SIDD datasets. Waterloo has 
3320 training images and 1423 testing images. SIDD has 113 training images and 
48 testing images. We randomly add Gaussian noise to those images to construct the 
training datasets. We use a .50 × 50 window to clip images for Waterloo and SIDD. 
Then, we obtain 355200 training images on Waterloo and 739400 training images 
on SIDD. 

Implementation Details 
The image denoising task requires that the output image should have the same size as 
the input image. Thus, we have to constrain the macro architecture when searching. 
In this experiment, we select UNet as the macro architecture, which is shown in 
Fig. 14.5. The macro architecture has a symmetrical structure. The block that NAS 
searches should have the symmetry too, so the first block should have the same opera-
tions as the last block. For example, if the operations of the first block are.{ f1, f2, f3}, 
then the operations of the last block are .{ f3, f2, f1}. There are a total of 6 blocks. 
According to the symmetry, we should only search 3 blocks. CNAS uses block-based 
search to search block by block. For the topological structure, the depth of a block is 
3, and the width is 1. For the operation space, blocks share the same operation space. 
But in each block, there are some differences: the operation space of the 1st block is 
.2 × 2, .3 × 3, and .5 × 5 convolutional operations with kernel .{16, 32, 64}, the oper-

Fig. 14.5 Illustration of 
high-level structure for the 
block-based search on image 
denoising tasks
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Table 14.4 Comparisons of the architectures evaluated on Waterloo and SIDD. The column Search 
Dataset shows on which dataset the architecture is searched 

Dataset Methods PSNR 
(dB) 

Params 
(M) 

Search cost 
(GPU days) 

Method cate. 

Waterloo CBDNet 34.57 4.13 – Manual 

DnCNN 34.11 0.63 – Manual 

CNAS 34.68 3.22 0.88 Competition 

SIDD CBDNet 38.11 4.13 – Manual 

DnCNN 36.58 0.63 – Manual 

CNAS 38.15 4.62 1.58 Competition 

ation space of the 2nd block is .2 × 2, .3 × 3, and .5 × 5 convolutional operations 
with kernel .{32, 64, 128}, and the operation space of the 3rd block is .2 × 2, .3 × 3, 
and .5 × 5 convolutional operations with kernel .{64, 128, 256}. We select the Adam 
optimizer to train and test on Waterloo and SIDD. In the evaluation phase, we use . 

1
7

of the dataset to train and .
1
10 of the dataset to validate. The learning rate of Adam is 

0.0001. The batch size is 200. The training epoch is 20. In the testing phase, we use 
the whole dataset to train for 800 epochs. The learning rate of Adam is 0.00001. The 
evaluation criterion is the Peak Signal to Noise Ratio (PSNR) (Table 14.4). 

14.3.2.1 Result Analysis 

For the image denoising tasks, we select two manual architectures: CBDNet and 
DnCNN. The topological structure is pre-defined. Thus, we only test the opera-
tion optimization performance of CNAS. CNAS searches architectures based on the 
UNet macro architecture and obtains better PSNR than CBDNet on two datasets. On 
Waterloo, CNAS obtains an architecture that outperforms CBDNet on PSNR, and 
the parameter size is smaller than CBDNet’s. On SIDD, CNAS outperforms CBD-
Net on PSNR, but the parameter size is a little larger than CBDNet’s. The results 
demonstrate the effectiveness of CNAS. 

14.4 Summary 

This chapter presents a competition neural architecture search method (CNAS). The 
network architecture can be seen as a DAG that consists of a topological structure and 
calculation operations. CNAS considers the search on the topological structure and 
the calculation operations separately. For the topological structure, CNAS enumer-
ates all possible structures under a limitation of depth and width. For each topological 
structure, CNAS considers the calculation operations as a black-box optimization 
problem and solves it by DFO methods, introduced in the previous chapters. Then, a
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competition mechanism is employed to combine both of them. To improve the search 
efficiency, this chapter applies a block-based search approach to constrain the search 
space. This chapter presents an experience reuse approach to search architectures by 
considering the manual experience and search experience of history. For operation 
optimization, the calculation operation prediction is proposed to predict high-quality 
operations for a topological structure. For topological enumeration, the competition 
simulation is proposed to select high-quality topological structures faster. In experi-
ments on image classification and image denoising, the empirical results verify the 
effectiveness of CNAS. 
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