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Preface

This book is an introduction to linear algebra and its usein data science, including storing and transforming data,solving systems of linear equations, performing datainterpolation and regression, and extracting features fordimensionality reduction. This book is targeted towardanyone who wants to learn about linear algebra and itsapplications, given background knowledge of algebra and



basic computer programming. This book fits a unique nicheamong books on linear algebra:
This book applies a modern, computational
approach to work with data.– Many books on linear algebra are focused on themathematical details of matrix and vectormanipulation and on proofs of related properties. Byusing computational tools, this book instead focuseson how and why to apply the techniques of linearalgebra in data science, while also developing thesetechniques from first principles.
This book uses real data sets.– Many linear algebra books use contrived examplesthat are small enough to print in a book and workwith using a calculator, but this results in data setsthat are unrealistic and uninteresting. Thecomputational approach used in this book allows theuse of real data sets that are too large formanipulation by hand.
This book shows how to work with some of the most
important tools in the Python data-science stack,
including:– NumPy and PyTorch for working with vectors andmatrices numerical functions,– Pandas for loading, manipulating, and summarizingdata, and



– Matplotlib for plotting data.
This book was written alongside the book
Foundations of Data Science with Python, which
covers statistics, probability, and their application
to data science using the Python data-science stack.– Techniques like dimensionality reduction combineconcepts from probability and statistics, like meanand covariance, with techniques from linear algebra,like eigendecomposition. Dimensionality reduction iscovered in each of these texts with minimal coverageof those concepts that are not specific to thatparticular book.
This book provides a unique set of online,
interactive tools to help students learn the material,
including:– self-assessment quizzes,– flashcards to aid in learning terminology,– Python widgets and animated plots.
Interactive elements are available on the book's web site:la4ds.net, which can also be accessed using the QR codebelow:

http://la4ds.net/




1
Introduction

DOI: 10.1201/9781032664088-1
Welcome to Linear Algebra for Data Science with Python!This chapter introduces the book and its place in the fieldof linear algebra and data science. It then provides a briefintroduction to some of the tools that are used throughoutthe book. By the end of this book, you will learn:

the fundamental operations on vectors and matrices,how to use matrices and vectors to understand and solvesystems of linear equations,the interpretation of matrix multiplication as atransformation between vector spaces,how a square matrix can have special vectors called
eigenvectors that preserve their direction whenmultiplied by that matrix,how to use matrix techniques for exact and approximatedata fitting, and

https://doi.org/10.1201/9781032664088-1


how to use alternate basis vectors to extract useful orimportant features from data.
While this book does show how to perform many vector andmatrix operations and manipulations by hand, the emphasisis on the meaning and application of the techniques.Techniques to perform these operations are always shownin Python using common Python data science libraries.



1.1 Who is this book for?Although this book is generally designed for scientists andengineers, it should be accessible to anyone who knows:
algebra and trigonometry,some computer programming language (knowing Pythonis helpful, but not required), andcomplex numbers (minimal knowledge, in Chapter 6only).

This book is written by an engineer with degrees in bothelectrical and computer engineering. This book and itscompanion, Foundations of Data Science with Python, werewritten to provide the main textbooks for a 4-credit,semester-long course for engineers, taught in theDepartment of Electrical and Computer Engineering at theUniversity of Florida. These books are intended to be abroad introduction to data science, but they are alsodesigned to replace courses in Engineering Statistics and
Computational Linear Algebra.
1.2 Why learn linear algebra from this book?This book focuses on the most fundamental techniques oflinear algebra as they are applied in engineering and thesciences, with a special emphasis on applications to datascience. Rather than emphasizing hand manipulation and



theory, this book focuses on how to use Python libraries towork with vectors and matrices and how to use thesetechniques for data science and engineering applications.Using the computer to perform linear algebra not onlyrepresents how linear algebra is used in practice but alsoallows us to work with real data sets that are too large formanipulation by hand to be practical. In addition, the use ofcomputer techniques allows us to better visualize data andthe effects of linear algebra techniques.Interactive flashcards and self-assessment quizzes areprovided on the book's website and linked throughout thebook to help learners master the material and check theirunderstanding. The entire set of interactive materials canbe accessed on the book's website at la4ds.net.The interactive materials use spaced repetition to helpreaders retain knowledge as they progress through thebook. Starting with Section 2.7, the interactive chapterreviews also give a random subset of review problems fromearlier chapters. Research shows that spaced repetitionimproves the retention of material.The online materials also include a list of “take-aways”that help summarize the important points from eachchapter.
1.3 Brief Introduction to Data Science

Terminology

http://la4ds.net/


This book focuses on introducing the use of linear algebratechniques for data science. This section reviews some ofthe basic terminology used when discussing data:
DEFINITION
dataCollections of measurements, characteristics, orfacts about a group.
A simple definition of data science is:
DEFINITION
data scienceThe process of extracting meaning from data.
Data consists of data points:
DEFINITION
data pointA collection of one or more pieces of informationcollected about a single individual or entity.
Each data point may contain variables and features:
DEFINITION



variablesParticular characteristics, measurements, or factsthat make up a data point.
featuresIndividual pieces of information in a data set.While variables typically represent unprocessed orraw data, features can include both variables andprocessed versions of the variables.

In the machine-learning (ML) literature, the term feature isoften used for both raw and processed data, especially ifthe data are used as the input for some ML process.Variables and features may be either quantitative or
qualitative:

DEFINITION
quantitative dataNumeric data. Quantitative data may be eitherdiscrete (such as the number of people in a family)or continuous (such as grade point average).
qualitative dataNon-numeric data. Qualitative variables aregenerally non-numeric categories that data maybelong to (such as hair color). Some categoriesmay have an order associated with them, but theorder does not imply a numeric nature to the



categories. For example, a survey question mayhave responses from Strongly Disagree toStrongly Agree.
Linear algebra is focused on the application ofmathematical techniques to quantitative variables.

Examples of quantitative variables:

heightweightyearly incomecollege GPAmiles driven commuting to worktemperaturewind speedpopulation
Readers interested in qualitative variables and statisticaltests involving such variables can refer to the book

Foundations of Data Science with Python, also by John M.Shea.
Terminology review and self-assessment questionsInteractive flashcards to review the terminology introducedin this section and self-assessment questions are available



at la4ds.net/1-3, which can also be accessed using this QRcode:

http://la4ds.net/1-3


1.4 What topics from linear algebra does this
book cover?This book provides an introduction to some of the mostimportant concepts in linear algebra for data science:

Chapter 2 covers vectors and vector operations, with aspecial emphasis on correlation and projection. Vectorcorrelation provides a measure of how similar twovectors are, and vector projection is used in alternaterepresentations that extract important information fromdata.Chapter 3 covers the fundamentals of matrices andmatrix operations, with emphasis on understandingmatrix-vector multiplication as transforming vectorsfrom one vector space to another vector space. Theconcepts of determinant and eigenvalue-eigenvectorpairs are introduced based on this linear transformationviewpoint.Chapter 4 examines the application of matrices tosolving systems of linear equations. It explores differentcases that arise in systems of linear equations, andmultiple approaches are presented to solve suchsystems of equations.Chapter 5 covers the common problem of finding thebest linear or polynomial fit for a set of data.Techniques are given to find exact polynomial fits forsmall data sets and approximate polynomial fits for



larger data sets. An application to multiple linearregression is shown.Chapter 6 introduces the concept of representing datausing different bases. Here, a basis is a minimal set ofvectors that can be linearly combined to produce everyvector in some set. The concepts of universal and set-specific bases are introduced, and an algorithm to find aset-specific basis is given. Three different types of basesare applied to problems in signal processing, digitalcommunications, and dimensionality reduction.
Self-assessment questionsInteractive self-assessment questions are available atla4ds.net/1-4, which can also be accessed using this QRcode:

http://la4ds.net/1-4


1.5 What topics from linear algebra does this
book not cover?This book focuses on introducing some of the mostfundamental ideas and operations in linear algebra for usein data science. However, the field of linear algebra isbroad, and this book does not cover many important topics.A few important omissions include:

I do not provide much discussion of vector spaces andespecially do not cover the row space or column spaceof a matrix, nor the associated null spaces.Matrix decompositions, in which a matrix is written as aproduct of other matrices with special properties, are avery important concept in linear algebra. GilbertStrang, one of the premier educators on linear algebra,considers there to be seven fundamental matrixdecompositions. This book only focuses on one:eigendecomposition, which can only be applied tocertain square matrices. I briefly touch on three othersthat are closely related to the material covered in thisbook: the LU, QR, and SVD decompositions.I have omitted most discussion of computational issues,such as the complexity and accuracy of matrixoperations carried out using a computer.Many data science problems involve sparse matrices, inwhich the majority of the entries in the matrices arezeros. Because of the importance of sparse matrices in



big data problems, there are special ways to efficientlystore and operate on sparse matrices.
Self-assessment questionsInteractive self-assessment questions are available atla4ds.net/1-5, which can also be accessed using this QRcode:

1.6 Extremely Brief Introduction to Jupyter
and PythonThe purpose of this section is to briefly introduce users toJupyter and a few core concepts from Python that will beneeded to use Python for linear algebra. The content hereshould be treated as an introduction to explore further andis not meant to be comprehensive. There are a broadvariety of tutorials on the web for both of these topics, andlinks are provided for users who need additionalinstruction.If you are already familiar with Jupyter and/or Python 3,feel free to skip ahead. Similarly, if you are using this as a

http://la4ds.net/1-5


companion to the book Foundations of Data Science with
Python, you will find most of the material in this sectionredundant, with the exception of the information onPyTorch.
1.6.1 Why Jupyter notebooks?According to the Project Jupyter web page(https://jupyter.org), “The Jupyter Notebook is an open-source web application that allows you to create and sharedocuments that contain live code, equations, visualizationsand narrative text. Uses include: data cleaning andtransformation, numerical simulation, statistical modeling,data visualization, machine learning, and much more”.The reasons that Jupyter notebook was chosen for thisbook include:

Jupyter notebooks can integrate text, mathematics,code, and visualization in a single document, which isvery helpful when conveying information about data. Infact, this book and Foundations of Data Science with
Python were written together in a series of over 140Juypter notebooks.Jupyter notebooks allow for an evolutionary approach tocode development. Data processing can start as smallblocks of code that can then be modified and evolved tocreate more complex workflows.Jupyter notebooks are commonly used in the datascience field.

https://jupyter.org/


1.6.2 Why Python?Python is a general-purpose programming language thatwas originally created by Guido van Rossum and ismaintained and developed by the Python SoftwareFoundation. Python was chosen for this book for manyreasons:
Python is very easy to learn. Python has a simplesyntax that is very similar to C, which many engineersand scientists will be familiar with. It is also easy totransition to Python from MATLAB scripting, whichmany engineers will be familiar with.
Python is an interpreted language, which meansthat code can be run directly with immediate feedbackand without having to go through extra steps ofcompiling programs.
Python interpreters are freely available and easy to
install. In addition, Python and Jupyter are available onall major operating systems, including Windows,MacOS, and Linux.
Python is popular for data science and machine
learning. Python is widely used for data science andmachine learning in both industry and universities.
Python has rich libraries for linear algebra and
data science. Python has many powerful libraries fordata science and machine learning. In addition, Pythonhas powerful libraries for a broad array of tasks beyond



the field of data science, which makes learning Pythonhave additional benefits.
1.6.3 How to Get Started with Jupyter and PythonPython and Jupyter are often packaged together in a
software distribution, which is a collection of relatedsoftware packages. The creators of several Python softwaredistributions include additional Python software librariesfor scientific computing. This book assumes the use of theAnaconda distribution, which its creators bill as “Theworld's most trusted open ecosystem for sourcing, building,and deploying data science and AI initiatives” 1.Anaconda's Individual Edition is freely available todownload from the Anaconda website athttps://www.anaconda.com/products/individual. Choosethe proper download based on your computer's operatingsystem. You may also have to select a version of Python.This book is based on Python 3, and any version of Pythonthat starts with the number 3 and is at least as large as 3.6should work with the code included in this book. Forinstance, as of July 2024, the Anaconda distributionincluded Python version 3.12.
_________________ 1https://www.anaconda.com/, retrieved July 19, 2024.⏎

WARNING

https://www.anaconda.com/products/individual
https://www.anaconda.com/


Python version 2 or Python versions after 3may have syntax changes that cause thecode in this book to not run withoutmodification.

After downloading, install Anaconda however you usuallyinstall software (for instance, by double-clicking on thedownloaded file). Anaconda will install Python and manyuseful modules for data science, as well as Jupyternotebook and JupyterLab.
Note:
The term “Jupyter notebook” refers to a file format (with
.ipynb extension), while “Jupyter Notebook” (with acapital N) refers to an application with a web interfaceto work with those files. To help avoid confusion, I willwrite Jupyter notebook file or simply notebook wheneverreferring to such a file, and we will use JuypterLab asthe web application for opening and working with suchfiles.
As of July 2024, JupyterLab “is a next-generation web-based user interface for Project Jupyter” (from



https://jupyterlab.readthedocs.io/en/stable/). The JupyterNotebook application offers a simple interface for workingwith notebooks and a limited number of other file types.JupyterLab has a more sophisticated interface and caninclude many different components, such as consoles,terminals, and various editors. The interface for workingwith notebooks is similar in both, and most users will beable to use them interchangeably.
1.6.4 Getting OrganizedWe are almost ready to start using Jupyter and Python.Before you do that, I recommend you take a minute to thinkabout how you will organize your files. Learning linearalgebra for data science requires actually working withvectors, matrices, and data and performing analyses. Thiswill result in you generating a lot of Jupyter notebook files,as well as some data files. I suggest that you create a folderfor this linear algebra book (or for the course if you areusing this as a course textbook). This folder should beeasily accessible from your home directory because that isthe location where JupyterLab will open by default if youuse the graphical launcher. You may wish to add additionalstructure underneath that folder. For instance, you maywant to create one folder for each chapter or each project.If you create separate folders for the data, I suggest youmake them subfolders of the one containing the notebooksthat access that data.An example layout is shown in Fig. 1.1

https://jupyterlab.readthedocs.io/en/stable/


Fig. 1.1:  Example directory structure for organizing filesfor working through the examples and exercises in thisbook. ⏎
1.6.5 Getting Started in JupyterLet's begin exploring JupyterLab using an existingnotebook:
1) Download a Jupyter notebook file

We will use the file “jupyter-intro.ipynb”, which isavailable at the website for Foundations of Data Science
with Python:

https://www.fdsp.net/notebooks/jupyter-intro.ipynb
If your browser displays the notebook as text, you will needto tell it to save it as a file. You can usually do this by right-

https://www.fdsp.net/notebooks/jupyter-intro.ipynb


clicking or control-clicking in the browser window andchoosing to save the page as a file. For instance, in Safari14, choose the “Save Page As…” menu item. Be sure toname your file with a .ipynb ending.
Hint: If your file was saved to your default Downloadsfolder, be sure to move it to an appropriate folder in your

linear-algebra folder to keep things organized!
2) Start JupyterLab

JupyterLab can be started from the Anaconda-Navigatorprogram that is installed with the Anaconda distribution.Start Anaconda-Navigator, scroll to find JupyterLab, andthen click the Launch button under JupyterLab. JupyterLabshould start up in your browser.
Alternative for command-line users: From the commandprompt, you can start JupyterLab by typing jupyter lab(provided the Anaconda bin directory is on the commandline search path). Because setting this up is specialized toeach operating system and command shell, the details areomitted. However, details of how to set up the path forAnaconda can be found at many sites online.Your JupyterLab should open to a view that lookssomething like the one in Fig. 1.2.



Fig. 1.2:  The JupyterLab interface. ⏎
WARNING

If you have used JupyterLab before, it maynot look like this – it will pick up where youleft off!

The JupyterLab interface has many different parts:



1. The menu bar is across the very top of theJupyterLab app. I will introduce the use of menuslater in this lesson.
2. The left sidebar occupies the left side below themenu bar. It includes several different tabs, whichyou can switch between by clicking the various iconson the very far left of the left sidebar. In Fig. 1.2, thefolder icon ( ) is highlighted, which indicates thatthe File Browser is selected. For this book, we willuse the left sidebar only to access the File Browser ().
3. The main work area is to the right of the leftsidebar. The main work area will usually showwhatever document you are working on. However, ifyou have not opened any document yet, it will showyou different types of notebooks that you can openand other tools that you can access. To start acompletely new Jupyter notebook file that can runPython 3 code, you could click on the Python 3 iconunder Notebooks. For now, you do not need to do that.

Detailed documentation for JupyterLab is available athttps://jupyterlab.readthedocs.io/.
3) Navigate to the downloaded notebook

https://jupyterlab.readthedocs.io/


Use the File Browser ( ) in the left sidebar ofJupyterLab to navigate to the downloaded file.
If the File Browser ( ) is not already showing your
files, click on the folder icon ( ) on the very left-hand
side of the window to switch to it.

Navigation using the file browser should be similar tonavigating in most file selection boxes:
Single-click on items to select them.Double-click on a folder to navigate into it.Double-click on a file to open it.As you navigate into folders, the current path (relative toyour starting path) is shown above the file list. You cannavigate back out of a folder by clicking on the parentfolder's name in the current path.

If you downloaded the file jupyter-intro.ipynb to the
chapter1 subdirectory of the data-science directory, whichlies in your home directory, then you would:

Double-click on the linear-algebra folder.Double-click on the chapter1 folder.Double-click on the file jupyter-intro.ipynb.
The file jupyter-intro.ipynb should open in the main workarea.



1.6.6 Learn the Basics of JupyterLabAfter opening the jupyter-intro.ipynb notebook, take aminute to scroll through the notebook before interactingwith it. Note that the notebook includes formatted text,graphics, mathematics, and Python programming code.Although this book focuses on using Python code for linearalgebra, I provide information on the other featuresbecause they are useful for documenting and explainingyour work.
Notebook structureJupyter notebooks are subdivided into parts called cells.Each cell can be used for different purposes; we will usethem for either Python code or for Markdown. Markdown isa simple markup language that allows the creation offormatted text with math and graphics. Code cells aresubdivided into Input and Output parts. Click on any part ofthe intro.ipynb notebook to select a cell. The selected cellwill be indicated by a color bar along the entire left side ofthe cell.
JupyterLab interface modesThe JupyterLab user interface can be in one of two modes,and these modes affect what you can do with a cell:

In Edit Mode, the focus is on one cell, which will beoutlined in color (blue on my computer with the default



theme), and the cursor will contain a blinking cursorindicating where typed text will appear.In Command Mode, you cannot edit or enter text into acell. Instead, you can navigate among cells and usekeyboard shortcuts to act on them, including runningcells, selecting groups of cells, andcopying/cutting/pasting or deleting cells.There are several ways to switch between modes:
In Command Mode, here are two ways to switch to Edit

Mode and begin editing a cell:
Double-click on a cell.Select a cell using the cursor keys and then press.

In Edit Mode, here are two ways to switch to Command
Mode:

Press . The current cell is not evaluated, but it willbe selected in Command Mode.If editing a cell that is not the last cell in the notebook,press +  to evaluate the current cell andreturn to Command Mode. (If you are in the last cell ofthe notebook, +  will evaluate thecurrent cell, create a new cell below it, and remain in
Edit Mode in the newly created cell.)

Enter

Esc

Shift Enter

Shift Enter



More on cellsIn Edit Mode, code or Markdown can be typed into a cell.Remember that each cell has a cell type associated with it.The cell type does not limit what can be entered into a cell.The cell type determines how a cell is evaluated. Whena cell is evaluated, the contents are parsed by either aMarkdown renderer (for a Markdown cell) or the Pythonkernel (for a Code cell). A kernel is a process that can runcode that has been entered in the notebook. JupyterLabsupports different kernels, but we will only use a Pythonkernel. Cells may be evaluated in many different ways.Here are a few of the typical ways that we will use:
Most commonly, we will evaluate the current cell bypressing +  or +  on thekeyboard. This will always evaluate the current cell. Ifthis is the last cell in the notebook, it will also insert anew cell below the current cell, making it easy tocontinue building the notebook.It is also possible to evaluate a cell using the toolbar atthe top of the notebook. Use the triangular “play”button (pointed to by the red arrow in the image in Fig.1.3) to execute the currently selected cell or cells.Sometimes we wish to make changes in the middle of anexisting notebook. To evaluate the current cell andinsert a new cell below it, press +  on thecomputer keyboard.

Shift Enter Shift Return

Alt Enter



Cells can also be run by some of the commands in the
Kernel menu in the JupyterLab menu. For example, it isalways best to reset the Python kernel and run all thecells in a notebook from top to bottom before sharing aJupyter notebook with someone else (for example,before submitting an assignment). To do this, click onthe Kernel menu and choose the Restart Kernel and Run All
Cells… menu item.

Fig. 1.3:  Image of Jupyter interface indicating location of“play” button for executing cells. ⏎
If you enter Markdown into a Code cell or Python into aMarkdown cell, the results will not be what you intend. Forinstance, most Markdown is not valid Python, and so ifMarkdown is entered into a Code cell, a syntax error will bedisplayed when the cell is evaluated. Fortunately, you canchange the cell type afterward to make it evaluateproperly.
!

Important!New cells, including the starting cell of a newnotebook, start as Code cells.



Cells start as Code cells, but we often want to enterMarkdown instead. We also may wish to switch a
Markdown cell back to a Code cell. There are three easyways to change the cell type:

As seen in Fig. 1.4, you can use the drop-down menu atthe top of the notebook to set the cell type to Code,
Markdown, or Raw.If you are in command mode, you can use a keyboardshortcut to change the type of a selected cell. Thestandard keyboard shortcuts are  for Markdown and for Code.
If you are not in command mode, you can still use akeyboard shortcut, but you will need to press

+  first, and then press either  for
Markdown or  for Code.

m

y

Control m m

y



Fig. 1.4:  Picture of JupyterLab interface showing the celltype drop-down menu. ⏎
Intro to Markdown in JupyterThis book primarily focuses on explaining linear-algebratechniques and their application to analyzing data usingPython libraries. However, it is helpful to not only do themathematical and data manipulation but also to documentyour results. Markdown can be used to add text, heading,mathematics, and other graphics.The example notebook jupyter-intro.ipynb demonstratesthe main features of Markdown. Recall that you can double-click on any cell in the notebook to see the Markdownsource. The jupyter-intro.ipynb notebook illustrates thefeatures of Markdown listed below. A tutorial on how tocreate each of these in Markdown is given online atfdsp.net/1-6.
1. Headings are written like # Heading, where more # canbe added for subheadings.
2. Text and paragraphs. Paragraphs are indicated by blanklines.
3. Emphasis can be added to text using asterisks, withsingle asterisks indicating *italics* and double asterisksindicating **bold**.

http://fdsp.net/1-6


4. Bulleted lists can be created by putting items after anasterisk followed by a space: * my list item.
5. Numbered lists can be created by putting items after anumber, a period, and a space: 1. my numbered item.
6. Links can be created by putting the link text in squarebrackets, followed by the link URL in parentheses, like[Example link](http://google.com)
7. Images are created in a similar way to URLs, excepthave an exclamation point (!) before the squarebrackets: ![Image example]my_image.jpg.
8. Math can be entered using LaTeX notation.

A good reference for Markdown syntax is MarkdownGuide: https://www.markdownguide.org/extended-syntax/.
Getting Notebooks into and out of JupyterLabThere are several ways to get notebooks into JupyterLab:

As previously mentioned, you can use the File Browser( ) to navigate to the current location of a file. Notethat you will be constrained to only navigating to files inthe directory in which Jupyter was started or in anysubdirectory below that. One disadvantage of thisapproach is that your work will be saved wherever thatfile currently resides. For instance, if you havedownloaded a notebook from the internet into your

http://google.com/
https://www.markdownguide.org/extended-syntax/


Downloads folder, your work on that notebook will remainin the Downloads folder.You can use drag-and-drop to copy any file into adirectory that you are currently browsing usingJupyterLab's File Browser ( ). To do this:
– Open the File Browser ( ) in Jupyter andnavigate to the directory where you want to work.– In your operating system's file manager (e.g.,Windows Explorer or Mac Finder), open the foldercontaining the file you want to copy.– Position and resize the folder and your webbrowser's window so you can see bothsimultaneously.– Click and hold on the Jupyter notebook file that youwant to move. Then drag it onto the file list area ofthe File Browser ( ).
– When the Jupyter notebook is over JupyterLab's File

Browser ( ) panel, the outline of the File
Browser panel will change to indicate that it isready for you to drop the file. Release the mousebutton or trackpad to copy the file into the selecteddirectory.– Note that this makes a copy of the file from its
original location.



As an alternative to drag-and-drop, you can click on theupload icon (an arrow with a line under it) at the verytop of the File Browser ( ) panel. This will bring upa file selector that you can use to copy a file fromanywhere on your computer.
You can save your work by choosing Save Notebook inJupyterLab's File menu or by pressing the keyboardsequence listed next to that item in the menu. When youmanually save your work in this way, Jupyter actually savestwo copies of your work: it updates the .ipynb file that yousee in the file list, and it also updates a hidden checkpointfile. When you are editing or running your notebook file,Jupyter will also autosave your work periodically – thedefault is every 120s. When Jupyter autosaves, it onlyupdates the .ipynb file. If Jupyter crashes or you quit itwithout saving your notebooks, your last autosaved workwill be what you see in the .ipynb files. However, you canalways revert to the version you purposefully saved byusing the Revert Notebook to Checkpoint item in the File menu.When starting new Jupyter notebooks, their initial namewill be “Untitled.ipynb”. You can easily rename yournotebook in a couple of ways. First, you can choose the

Rename Notebook… option from the file menu. As an alternative,you can right-click on the notebook in the left-hand File
Browser ( ) panel and choose Rename. In both cases, besure to change only the part of the notebook name that is in



front of the .ipynb extension. Jupyter uses that file extensionto recognize Jupyter notebook files.
!

Important!When you are finished working with a Jupyternotebook, I recommend you perform thefollowing steps:
1. First, from the Kernel menu, choose Restart

Kernel and Run All Cells… This will clear theprevious output from your work and rerunevery cell from the top down.
2. Check over your notebook carefully to makesure you have not introduced any errors orproduced any unexpected results fromhaving executed cells out of order or fromdeleting cells or their contents. Byperforming these first two steps, you helpmake sure that someone else loading yournotebook file will be able to reproduce yourwork.
3. Check the notebook file name and update itif necessary.
4. Save the notebook.
5. Choose Close and Shutdown Notebook fromJupyter's File menu.



6. If you are finished working in JupyterLab,then choose Shut Down from JupyterLab's Filemenu.
Another common workflow in JupyterLab is to use anexisting notebook as a starting point for a new notebook.Again, there are several ways to do this:
If you already have the existing notebook open, then youcan save it under a new name by choosing Save Notebook
As… from Jupyter's File menu and giving the notebook anew name. Note that after you use this option, the
notebook that is open in the main work area will be
the notebook with the new name. You will no longer
be working on the original notebook.You can also duplicate a notebook by right-clicking on thenotebook's name in the File Browser ( ) panel on theleft-hand side and choosing Duplicate. A copy of thenotebook will be created with the name of the existingnotebook appended with a suffix like -Copy1 before the
.ipynb.

Jupyter magicsCode cells can also contain special instructions intended forJupyterLab itself, rather than the Python kernel. These arecalled magics, and a brief introduction to Jupyter magics is



available at the website for Foundations of Data Science
with Python at fdsp.net/1-6.
1.6.7 Getting Started in PythonIn this section, I want to introduce a few Python conceptsthat will be used throughout the following chapters. A moregeneral introduction to Python is available online atfdsp.net/1-6. For users who want to learn more aboutPython, the following resources are recommended:

A Whirlwind Tour of Python(https://jakevdp.github.io/WhirlwindTourOfPython/) byJake VanderPlas is a free eBook that covers all the majorsyntax and features of Python.Learn Python for Free(https://scrimba.com/learn/python) is a free 5-houronline introduction to Python (signup required).The Python documentation includes a Python Tutorial:https://docs.python.org/3/tutorial/.
Python is an interpreted language, which means thatwhen any Code cell in a Jupyter notebook is evaluated, thePython code will be executed. Any output or errormessages will appear in a new output portion of the cellthat will appear just after the input portion of the cell (thatcontains the Python code). At the bottom of the jupyter-

intro.ipynb notebook, there is an empty cell where you can

http://fdsp.net/1-6
http://fdsp.net/1-6
https://jakevdp.github.io/WhirlwindTourOfPython/
https://scrimba.com/learn/python
https://docs.python.org/3/tutorial/


start entering Python code. If there is not already an emptycell there, click on the last cell and press Alt-Enter.First, Python variables are dynamically typed, meaningthat you do not have to specify what type of data theycontain. Python variable names must start with a letter andconsists of alpha-numeric characters and underscores (_).You can create a Python variable by assigning to it:
x = 10

If we just want to see the value of a variable, we canevaluate a Jupyter cell containing the variable's name:
x

10

More generally, many Python statements return results,and if the last command in a cell returns results, these willappear in a special output part of the cell.We often want to combine some fixed text and somevariable output. To do this, we will use Python's print()command with f-strings, which were added to Python inversion 3.6. An f-string is a special string that is created byprefixing the first string-delimiter with the letter f. Any



part of an f-string contained within curly braces {} will beevaluated before the string is used. For instance,
print(f'The square of x is {x**2}')

The square of x is 100

Lists, Tuples, and Zero-based IndexingWe will often be creating Python representations of twotypes of linear algebra objects, vectors and matrices, thatcan be stored as indexed sets of numbers. We will often usea Python list object to pass the numbers that make up avector or matrix to whichever class that we are using torepresent that vector or matrix. A list is an ordered,mutable store of information; mutable means that thecontents of a list can be changed. A Python list is indicatedby enclosing the members in square brackets [ ], with itemsseparated by commas. For example, the following codecreates a list with four elements and then evaluates thatlist:
c = [1, 2, 4, 8]

c



[1, 2, 4, 8]

Elements in a list can be retrieved by passing the elementindex in square brackets after the variable name. Computerlanguages can usually be partitioned based on how theyindex the first element in a variable that has multipleelements. Python uses zero-based indexing, which meansthat the first element in an object with n elements hasindex 0, and the last element has index n− 1. The followingcode prints the first element (at index 0) and the lastelement (at index 3):
print(c[0], c[3])

1 8

Ranges of elements can be selected using [a:b] notation,where a is the first element to be selected and b-1 is the lastelement to be selected (so that [0:n] selects every elementin a length n object. For example, if we use the rangeselector [1:3]] on c, we get:
print(c[1:3])



[2, 4]

More details and examples involving indexing are given inSection 2.1.The Python tuple data type is closely related to the listtype. Like lists, tuples are ordered collections of data, andindexing works in the same way. Unlike lists, tuples are
immutable, which means that their contents cannot bechanged after creation. A tuple is indicated in Python byenclosing its members in parentheses (). If there is onlyone element in a tuple, that element must be followed by acomma to distinguish that the parentheses are used toindicate a tuple rather than to indicate mathematical orlogical grouping. In this book, tuples are primarily used forpassing collections of parameters to certain functions.Although lists could be used for this purpose, tuples aremore common, and so I have chosen to stick with thatconvention. Here is a tuple version of the list c:
ctup = (1, 2, 4, 8)

ctup

(1, 2, 4, 8)



The following shows what happens when we use a rangeof the form [3:], which means from index 3 to the end.Since there are no members beyond index 3, a tuple withonly one member is returned:
ctup[3:]

(8,)

Numerical Operations with NumPyAlmost all of our work on linear algebra will utilize theNumPy (usually pronounced “Numb Pie”) module, whichcontains many numerical functions. To use a module, youmust import it into your Python working environment. Wewill use the standard convention of importing the NumPymodule into the np namespace as follows:
import numpy as np

To call a function from a namespace, we type the name ofthe namespace, followed by a period, followed by the nameof the thing you are trying to access. For instance, thevalue of π is a constant object named pi in NumPy. Nowthat we have imported NumPy, we can access that value:



print(np.pi)

3.141592653589793

NumPy has many typical mathematical functions, whichwe can call using the np namespace:
np.sin(np.pi / 4)

0.7071067811865475

The NumPy class that we will use to represent vectorsand matrices is the ndarray, or simply NumPy array. We cancreate a NumPy array from our list c by passing it as thesole argument to the function np.array():
cn = np.array(c)

cn

array([1, 2, 4, 8])



NumPy arrays also use zero-based indexing, and we canretrieve elements from a NumPy array using the same typeof square-bracket notation as for lists:
cn[1:3]

array([2, 4])

We will use NumPy arrays instead of Python lists becauseNumPy arrays have operators that work like vector andmatrix operators, and NumPy offers many functions forworking with matrices.
Linear Algebra Operations in PyTorchPyTorch is an alternative to NumPy for most of the workconsidered in this book. PyTorch is a popular library formachine learning (ML), and many ML algorithms build onlinear algebra techniques. Unlike NumPy, PyTorch is notinstalled by default in Anaconda. PyTorch can be installedfrom the QT Console (available from the AnacondaNavigator app) or from a terminal as:
conda install pytorch::pytorch



From within JupyterLab, you can install PyTorch byrunning a code cell with the command above prependedwith an exclamation mark:
!conda install pytorch::pytorch

The installed library is called torch when importing, and theequivalent to NumPy's ndarray is PyTorch's tensor object. Wecan create a Python tensor from our list c as follows:
import torch

 

 

ct = torch.tensor(c)

ct

tensor([1, 2, 4, 8])

PyTorch tensor indexing is zero-based and works thesame as for NumPy arrays:
ct[1:3]

tensor([2, 4])



Choosing Between NumPy Arrays and PyTorch
TensorsBoth NumPy arrays and PyTorch tensors can representvectors and matrices, and they share many similaroperations. However, they are often used for differentpurposes and have different advantages:

NumPy arrays are designed for efficient numericalcomputing and data analysis. The key advantage ofNumPy arrays is their simplicity and wide support in thedata science ecosystem.PyTorch tensors are specifically designed for machinelearning, particularly deep learning. The main advantageof PyTorch tensors is their support of advanced featuresused in machine learning, such as the ability to runoperations on GPUs.
!

Important!For the linear algebra concepts covered in thisbook, both NumPy arrays and PyTorch tensorswork equally well. I primarily present examplesusing NumPy arrays because they are simplerand more widely used in basic data science.However, I also include information on carryingout the same operations using PyTorch tensors,and more details are included on the book'swebsite at la4ds.net.

http://la4ds.net/


Converting Between Arrays and Tensors

To convert a NumPy array to a PyTorch tensor:
torch.tensor(numpy_array)To convert a PyTorch tensor to a NumPy array:
torch_tensor.numpy()

Objects and MethodsPython variables are more powerful than variables in manylanguages because they are actually objects. Python is anobject-oriented programming language. This book does notgenerally use an object-oriented approach; however, youwill need to know some fundamentals about objects and
classes:

Objects are special data types that have associated
properties and methods to work on those objects.Properties are values that are associated with an object.Properties of an object are accessed by giving thevariable/object name, adding a period, and thenspecifying the property name. Methods are similar tofunctions, except they are specialized to the object towhich they belong. Methods are called by giving thevariable/object name, adding a period, specifying themethod name, and then adding parentheses, with anyarguments provided in parentheses.A class is a template for an object that defines anobject's properties and methods.



For example, NumPy arrays and vectors have a variety ofmethods. We can call the sum() method of the NumPyvector cn that we created previously:
cn.sum()

15

Loading and Analyzing Data in PandasBecause this book focuses on the application of linearalgebra to data science, we will have the need to load,display, and perform some basic operations on data sets.Although we can load data files directly into NumPy arrays,I instead show how to load data through Python's Pandaslibrary. Pandas is widely used for storing and manipulatingsmall datasets, and Pandas is used for this in thecompanion book, Foundations of Data Science with Python.We will import the Pandas library into the pd namespace:
import pandas as pd

Pandas is for working with tabular data, i.e., data thatcan be tabulated into rows and columns. We will generallystore such data in a Pandas dataframe. A dataframe issimilar to a spreadsheet or a database table. It is a two-



dimensional structure in which each row corresponds to asingle data point. Each column stores one variable orfeature. Like tables in spreadsheets or databases, thecolumns can be labeled, and the rows can be indexed byconsecutive integers or by the data in one of the columns.Pandas has a read_csv() function for reading comma-separated values (CSV) files or tab-separated values (TSV)files, it has a read_excel() function for reading MicrosoftExcel files, and it has many other functions for reading datafrom other statistical software, such as SAS and SPSS,along with functions to read many other file types. Thefollowing code reads a CSV file and stores its contents as aPandas Dataframe object called brfss. Then the first fiverows are displayed by using the head() method of theDataframe class.
brfss = pd.read_csv('https://www.fdsp.net/data/brfss21-

hw.csv')

brfss.head()

HTIN4 WEIGHT2
0 59.0 72.0
1 65.0 170.0
2 64.0 195.0
3 71.0 206.0
4 75.0 195.0

https://www.fdsp.net/data/brfss21-hw.csv


We can select data from a particular column by puttingcolumn name in square brackets after the variable namefor the dataframe: brfss['HTIN4'].head()
HTIN4

0 59.0
1 65.0
2 64.0
3 71.0
4 75.0

When accessing one column of a Pandas dataframe, theresult is a Pandas Series object. A Pandas Series is similar toa Python list, but each item has its own index value, and the
Series has many of the same methods as a dataframe. We willintroduce additional Pandas methods and functions as weneed them later in the book.
Self-assessment questionsInteractive self-assessment questions are available atla4ds.net/1-6, which can also be accessed using this QRcode:

http://la4ds.net/1-6




1.7 Chapter SummaryThis chapter introduced the topics that will be covered inthis book, as well as JuypterLab and Python, which are twoof the main tools used throughout the book. JupyterLab isused to provide a computational notebook environment.These notebooks can combine programming code, text,graphics, and mathematics. We will use these to performnumerical operations, analyze data, and present results.Python is used because it is widely adopted by the datascience and machine learning communities, as well asbeing a general-purpose programming language. Pythonhas well-developed libraries for data science and manyother applications, and we introduced a few of the librariesthat we will use throughout this book.
Access a list of key take-aways for this chapter, along withinteractive flashcards and quizzes at la4ds.net/1-7, whichcan also be accessed using this QR code:

http://la4ds.net/1-7


2
Vectors and Vector Operation

DOI: 10.1201/9781032664088-2
Vectors provide a way to collect and operate on multiple pieces ofnumerical data. In this chapter, I define vectors and introducedifferent ways to visualize vector data. Then I introduce the mostcommon vector operations and their properties. The chapter endswith a discussion of vector projection, which introduces concepts ofhow we can approximate a vector as a scaled version of anothervector. This builds the foundation for our work on transformingdata in Chapter 6. Throughout, the concepts are demonstratedthrough examples using Python and the NumPy library.
2.1 Introduction to VectorsLet's begin by providing a simple definition of a vector:

DEFINITION
vectorAn ordered collection of numbers that has anaccompanying set of mathematical operations.

Vectors are often used to represent quantities in two-dimensional orthree-dimensional Euclidean (regular geometric) space, in which

https://doi.org/10.1201/9781032664088-2


case we can consider vectors to have both magnitude and direction.However, this book takes a much broader view of vectors. Vectorsare used throughout science and engineering as a way to store andoperate on collections of numerical phenomena. From a datascience perspective, we will use vectors to store data points or datafeatures.We can consider vectors to be a collection of numbers indexedalong a single axis. In Chapter 3, we will consider similarmathematical objects (matrices and tensors) for which thecollections are indexed across multiple axes. We will call thenumber of indices the order:
DEFINITION
orderThe number of axes used to index the contents of amathematical object, such as a vector, matrix, or tensor.

Thus, all vectors are of order one. For tensors, the order is alsosometimes called the rank (although rank has another meaning thatis covered in Section 4.2) or degree.
To distinguish between vectors and single numerical values, wecall the latter scalars:
DEFINITION
scalarA single numerical value.

Scalars are considered to be of order zero. As previouslymentioned, vectors that represent quantities in Euclidean space canbe considered to have both magnitude and direction, whereas a



scalar has only a magnitude and sign. We will generally be dealingwith scalars and vector components that come from the real line,which we denote by the symbol R.
!

NotationIn this text, vectors are written as bold, lowercase letters,such as u, whereas scalars are written as non-bold,lowercase letters, such as c. In handwriting, vectorsshould be written as lowercase letters that areunderlined.
In other books, vectors are sometimes indicated using aone-barbed, right-pointing arrow over the letter, like ⇀ u,especially for geometric vectors that represent amagnitude and direction in Euclidean space.

Vectors are usually represented mathematically as a column ofnumbers enclosed in large square brackets, like

(2.1)
To save space, we can also write a column vector like
u = [0.75,−1, 1.75, 2.5]

⊤, where the superscript ⊤ indicates that thevector should be “transposed” from a row to a column.
Example 2.1: Vector in NumPy  ⏎

We can create a Python object that represents u usingNumPy's array class. For convenience of discussion, we will

u = .

0.75

−1

1.75

2.5



refer to either the mathematical object or it's Pythonrepresentation as a vector. To create a Python vector u, we canpass a Python list of numbers to np.array():
import numpy as np

 

 

u = np.array([ 0.75, -1, 1.75, 2.5])

u

array([ 0.75, -1.   ,   1.75,   2.5 ])

In NumPy, the number of dimensions of the array correspondsto the order of the mathematical object that the arrayrepresents. We can get the order of u using the ndim property:
u.ndim

1

Example 2.2: Vector in PyTorch

PyTorch's tensor class is very similar to NumPy's array class interms of both methods and operators. Thus, we can create a
tensor object to represent u by either passing a list to



torch.tensor or by passing it a NumPy array object. Thus, we cancreate a PyTorch tensor to represent u as follows:
import torch

 

 

u2 = torch.tensor(u)

u2

tensor([ 0.7500, -1.0000,   1.7500,   2.5000], dtype=torch.float64)

As with NumPy, the order of the PyTorch tensor can beretrieved using the ndim property of the tensor class:
u2.ndim

1

Note:
For most of the mathematical operations considered in this book,NumPy arrays and PyTorch tensors have the same methods andoperators. Thus, I will only present the NumPy version. ThePyTorch code is included on the book's website.
A vector consists of components or elements:



DEFINITION
component (vector),

element (vector)One of the numerical values that make up the vector.
We will later generalize vectors to allow the components to bevariables that represent numbers.For a vector u, we will denote its ith component by ui. Here, i iscalled the index of the component. Consistent with the use of zero-based indexing in Python, we will take the index of the first elementas 0. However, the reader should be aware that in general mathapplications, the first index is often taken as 1.

Example 2.3: Accessing a Component of a Vector in
NumPy

For the vector u = [0.75,−1, 1.75, 2.5]

⊤ from Example 2.1,
u

2

= 1.75.In NumPy, particular components of arrays can be retrievedusing indexing, in which an index or set of indices is specifiedin square brackets following a vector variable. For instance, wecan retrieve component 2 of the NumPy vector u as shown inthe following:
u[2]

1.75



Example 2.4: Accessing a Component of a Vector in
PyTorch  ⏎

Retrieving a particular component of a vector is slightlydifferent in PyTorch because indexing into a PyTorch tensoralways returns a tensor. Consider the following example:
u2[2]

tensor(1.7500, dtype=torch.float64)

If we want to retrieve the value of that single-item tensor, wecan use the item() method:
u2[2].item()

1.75

Note that the item() method of a PyTorch tensor only workson tensors with one element.
Example 2.5: NumPy Indexing by List



If the index is a list or vector of values, the result will be avector. For instance, we can retrieve elements 1 and 2 of u asfollows:
u[[1,2]]

array([-1.   ,   1.75])

Example 2.6: NumPy Indexing by Range

We can also specify a range of consecutive indices as a:b, butremember that in Python, the upper end of the range is notincluded in that range. Thus, to get elements 1 and 2 usingrange notation, we need to do the following:
u[1:3]

array([-1.   ,   1.75])

Another useful way to index vectors by range is to specify a
step. The step is provided as the third component of a range(after a second colon). Note that if no value is provided for thefirst two components of a range, then the range is assumed togo over all values of the vector. Thus, we can get every secondelement of u, starting from element 0, as follows:



u[::2]

array([0.75, 1.75])

It is often helpful to find out how many elements a vectorcontains:
DEFINITION
size (vector),

dimension (vector)The number of components a vector contains.
WARNING

The size, or dimension, of a vector is also called the
length in some books, but this may lead toconfusion because it is generally not equal to thelength of the vector in Euclidean space.

Example 2.7: Size of a Vector in NumPy

The dimension of the vector u from Examples 2.1–2.4 is 4.



We will determine the size of a NumPy vector using the sizeproperty of a NumPy vector: u.size or NumPy's np.size()function: np.size(u).
np.size(u)

4

More generally, we can find the size of any NumPy array acrosseach of its indices using the shape property:
u.shape

(4,)

Example 2.8: Size of a Vector in PyTorch

PyTorch does not a have a torch.size() function, but we candetermine the size of a PyTorch tensor using that tensor's size()method or shape property:
u2.size()



torch.Size([4])

u2.shape

torch.Size([4])

Both of these techniques return the same result. The result is a
Torch.Size object, but it can be treated the same as a tuple forour purposes.

A vector of size n is called an n-dimensional vector, or simply an
n-vector. The set of all n-vectors whose components can be any realnumber (i.e., each x

i

∈ R) is denoted by Rn.
Terminology review and self-assessment questionsInteractive flashcards to review the terminology introduced in thissection and self-assessment questions are available at la4ds.net/2-1, which can also be accessed using this QR code:

2.2 Visualizing Vectors

http://la4ds.net/2-1


Vectors are often visualized as displacements from a point, meaningan indication of movement from some starting point to an endingpoint. If no starting point is given, then the displacement ismeasured from the origin.We are only going to plot 2-vectors in this book. For 2-vectors, thecomponents of the vectors are interpreted as representing x and ydisplacements:

One of the most common ways to illustrate 2-vectors is to draweach 2-vector as an arrow from the origin to the coordinates givenin the vector. This is a special case of a quiver plot:
DEFINITION
quiver plotA (two-dimensional) plot that illustrates one or morevectors as arrows that are typically specified by a location,which determines the coordinates of the tail of the vector,and some specification of the direction and magnitude ofthe vector. If no location is provided, then the origin (0, 0)is used.
In some applications, quiver plot is used to refer to plots wherethe vectors' locations are at points in a grid, and the vectorsindicate some magnitude and direction associated with thatlocation. For instance, such plots are used to illustrate fluid flowsover surfaces. I will use the term quiver plot to refer to any plotthat illustrates vectors as arrows.

a = [ ].

a

x

a

y



!
The PlotVec LibraryTo make it easier to create plots of vectors as arrows, Ihave created a library of functions for plotting vectorscalled PlotVec and made it available via the PythonPackage Index (PyPI), which is a standard repository fordistributing Python libraries across distributions. To installPython packages via PyPI, you can use the pip command,which is a text-based (not graphical) command. In mostcases, you can run pip commands from within JupyterLabby prefixing them with an exclamation point. To install thePlotVec library from within JupyterLab, you can run thefollowing command in any code cell:

!pip install plotvec

If plotvec is already installed, you can upgrade to the latestversion as follows:
!pip install -U plotvec

If you have trouble, you can review additional informationon installing libraries via pip athttps://packaging.python.org/en/latest/tutorials/installing-packages/.
In all future sections that rely on the plotvec() function, Iwill assume that the plotvec module has been installed.

The PlotVec library contains two functions for plotting vectors,
plotvec() and plotvecR(). I will include parentheses after the function

https://packaging.python.org/en/latest/tutorials/installing-packages/


names to help distinguish them from the library name. Bothfunctions have essentially the same purpose: plot one or morevectors as arrows. By default, the plotvec() function enforces anequal aspect ratio on the vector plot, which means that a unit oflength will occupy the same amount of visual space in both thehorizontal and vertical directions. This is often useful when tryingto illustrate the relation among multiple vectors; however, we donot need to enforce equal aspect ratios for the plots in this section.We could pass the keyword argument square_aspect_ratio=False to
plotvec(); however, a more concise alternative is to use the function
plotvecR(), which uses a rectangular aspect ratio by default.Assuming that you have installed the PlotVec library, import the
plotvecR() function into your global namespace:
from plotvec import plotvecR

Example 2.9: Plotting a Vector with plotvecR()

Consider the vector a = [2, 3]

⊤. We can visualize this vectorusing the following interpretation. Since no initial location isspecified, start at the origin. Then move 2 in the x direction (tothe right) and 3 in the y direction (up). We draw an arrow from(0,0) to (2,3) to represent this Vector:
a = np.array([2, 3])

plotvecR(a)



Using this type of visualization, the vector has a direction andmagnitude, as previously mentioned. The direction can bemeasured as the angle of the vector measured from the orientationof the positive x-axis, and the magnitude can be measured as thelength of the vector. When plotted as an arrow, the vector isconsidered to have a tail and head:
DEFINITION
tail (vector)The tail of a vector is the starting point of a vector (theinitial point from which the displacement is measured).
DEFINITION
head (vector)



The head of a vector is the ending point of a vector (thepoint at which the vector terminates after the specifieddisplacement from the tail).
For our example, the tail is at the origin (0, 0). Thus, thedisplacement of (2, 3) results in the coordinates of the head of thevector being the same as the displacement: (2, 3). Thus, we drawthe vector as an arrow from the tail at (0, 0) to the head at (2, 3),with the tip of the arrow at the head.
Example 2.10: Plotting Two Vectors with Tails at

the Origin

Let's create a second vector. The plotvecR() function canhandle plotting multiple vectors:
b = np.array([1, -2])

plotvecR(a, b)



Exercise: Create another vector c, and plot it with a and b. Varythe coordinates of c and see how that changes the figure.
Terminology review and self-assessment questionsInteractive flashcards to review the terminology introduced in thissection and self-assessment questions are available at la4ds.net/2-2, which can also be accessed using this QR code:

http://la4ds.net/2-2


2.3 ApplicationsVectors are used in many different ways. Below are some of theways that vectors are used, along with an example of each type ofuse:
Geometrical features, such as location in space or
displacements between locationsMost of the target audience of this book will already be familiarwith this use from physics classes. Vectors can be used to representphysical features of dynamical systems, such as position, velocity,and acceleration in two- or three-dimensional Euclidean space.In Fig. 2.1, the vectors shown as arrows with solid lines representthe movement of a robot in a plane during two consecutive periods.The robot starts at the origin, which is the tail of the blue vector. Ittravels to the head of the blue vector during period 1. Its startingposition in period 2 is the same as the ending position in period 1,so the tail of vector 2 is located at the head of vector 1. The head ofvector 2 is the position of the robot at the end of period 2. Thearrow shown with a dashed line indicates the vector from therobot's initial position to its final position; later we will show thatthis vector is the sum of the two movement vectors.



Fig. 2.1:  Two solid arrows represent vectors indicating movementof a robot over two consecutive periods. Dashed arrow representsvector pointing to final position of robot. ⏎
Multi-dimensional numerical dataWe often represent a data set as a table. For instance, each rowmay represent one data point, and each column may represent onefeature. If all of the data features are numeric or encoded asnumerical values, then we can use vectors to represent such data indifferent ways. For instance, each data point can be represented asa vector, or the observed values for a particular feature can berepresented as a vector.

Example 2.11: Vector Representations and Plots of
Heights and Weights



“The Behavioral Risk Factor Surveillance System (BRFSS) isthe nation's premier system of health-related telephone surveysthat collect state data about U.S. residents regarding theirhealth-related risk behaviors, chronic health conditions, anduse of preventive services”:https://www.cdc.gov/brfss/index.html.The BRFSS 2021 survey contains over 400,000 records andover 300 variables. It takes a long time to load and work withthe full set of survey results, so I have extracted data for twovariables to analyze. The variables are as follows, and Iperformed data cleaning for each variable as described:
HTIN4: A computed variable that lists height in inches.Invalid responses (“Don't know/Not sure”, “Refused”, or“Not asked or Missing”) have been dropped.
WEIGHT2: The reported weight in pounds. Again, I havedropped invalid responses, as above.Even after cleaning, the resulting data set has over 391,000data points.We can load the cleaned height and weight data into aPandas dataframe called brfss, as we did in Section 1.6.7. Here,I again show how to load the CSV data into a dataframe anddisplay the first five rows:

import pandas as pd

 

 

brfss = pd.read_csv('https://www.fdsp.net/data/brfss21-hw.csv')

brfss.head()

https://www.cdc.gov/brfss/index.html
https://www.fdsp.net/data/brfss21-hw.csv


HTIN4 WEIGHT2
0 59.0 72.0
1 65.0 170.0
2 64.0 195.0
3 71.0 206.0
4 75.0 195.0

Because the data occupies a two-dimensional table, we candecompose it into vectors in two different ways: we can treateach row (i.e., data point) as a vector or each column (i.e.,feature) as a vector. Let's start by treating each row as a 2-vector and generate a plot of these vectors. Because it would behard to see and interpret over 391,000 arrows representing allof the rows, let's plot the arrow representations for the first 50rows. In the following code, I use a for loop to iterate over thefirst 50 rows and call plotvec() for each one:
from plotvec import plotvec

 

 

for i in range(50):

  plotvec(brfss.iloc[i], color_offset=2*i, square_aspect_ratio=False,

          newfig=False)

plt.xlim(0,80)

plt.ylim(0,350)

plt.xlabel('Height (in)')

plt.ylabel('Weight (lbs)');



Do you notice any trend in the arrows? We expect them all topoint up and to the right because both height and weight arepositive quantities. However, you should notice an additionaltrend that most of the arrows point in the same generaldirection. This might indicate that these two features are notindependent of each other. Intuitively, you may guess that, as ageneral trend, taller people are more likely to be heavier thanshorter people.If we want to visualize more of the data, then plotting thevectors as arrows is probably not the best approach. Whenplotting data with two numerical features, it is much morecommon to plot each data point as a single point in the plane,where one of the features acts as the x-coordinate and theother feature acts as the y-coordinate. Equivalently, we canthink that each point is located at the head of the



corresponding vector in the arrow plot. Such a plot is called a
scatter plot:
DEFINITION
scatter plotA (two-dimensional) scatter plot takes a sequence of two-dimensional data points (x

0

, y

0

), (x
1

, y

1

), …, (x
n−1

, y

n−1

)and plots symbols (called markers) that represent thelocations of the points in a rectangular region of a plane.
With the exception of plotting vectors, we will use theMatplotlib library to create plots. In fact, even PlotVec usesMatplotlib to create quiver plots. The most common way tomake plots in Matplotlib is to use the PyPlot submodule, whichprovides many plotting commands that are similar to those inMATLAB. It is usually imported as plt:

import matplotlib.pyplot as plt

The function plt.scatter() can be used to create two-dimensional scatter plots. Instead of accepting a sequence of ntwo-dimensional data points, which might result in a largenumber of inputs, plt.scatter() expects one n-vector of x-coordinates and one n-vector of y-coordinates.Thus, an alternative way to represent our two-dimensionalheight and weight data is to represent each feature by onevector. We can extract all of the height data as a Pandas Seriesobject by passing the column name ‘HTIN4’ as the index:



brfss[‘HTIN4’]. If we need this data as a NumPy vector, we canconvert it using the Pandas Series .to_numpy() method, like
brfss[‘HTIN4’].to_numpy(). However, for the purposes of passingthis data to plt.scatter(), that is not necessary because
plt.scatter() can directly accept the Pandas Series.Even when using a scatter plot, plotting every data pointmakes a plot that is very large in size when saved as a pdf.Instead, we downsample to every 100th point, using the rangenotation ::100. We apply this to both the ‘HTIN4’ column as theindependent (x-axis) data and the ‘WEIGHT2’ column as thedependent (y-axis) data. The following code generates thescatter plot:

plt.scatter(brfss['HTIN4'][::100], brfss['WEIGHT2'][::100], 4, 

alpha=0.7)

plt.xlabel('Height (in)')

plt.ylabel('Weight (lbs)')



Note that I have used the functions plt.xlabel() and plt.ylabel()to add appropriate x-axis and y-axis labels, respectively.The scatter plot shows a similar trend to what we saw in theprevious quiver plot. The general trend is that larger heightsare generally associated with larger weights.
Time-series dataMany data sets consists of observations of some phenomena overtime, and these are called time-series data:

DEFINITION
time-series dataData that is collected over time, usually at regularintervals. Each data point is associated with a timestamp



indicating when the data was collected.
For instance, the daily closing price of a stock over the past yearcan be represented by a vector. Some other examples of time-seriesdata include weather and climate data.Is the climate changing? That is a complicated question that isoutside of the scope of this book, but we can try to answer it on asmall scale. Since I live in Florida, let's consider the researchquestion, “Is the annual temperature changing over time in Miami-Dade County, Florida?”

Example 2.12: Annual Temperature Data for Miami-
Dade County

Let's start by loading the annual temperature data for Miami-Dade County from the National Oceanic and AtmosphericAdministration:
# Alternate site for accessing data:

# df = pd.read_csv('https://www.fdsp.net/data/miami-weather.csv', 

skiprows=4)

df=pd.read_csv('https://www.ncei.noaa.gov/access/monitoring/climate-

at-a-glance/'

               + 'county/time-series/FL-086/tavg/ann/5/'

               + '1895-2022.csv?

base_prd=true&begbaseyear=1895&endbaseyear=2022',

               skiprows=4)

df.head()

Date Value Anomaly
0 189512 73.6 −1.1

https://www.fdsp.net/data/miami-weather.csv
https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/


Date Value Anomaly
1 189612 73.9 −0.8
2 189712 74.6 −0.1
3 189812 74.4 −0.3
4 189912 74.7 −0.0

The Value column contains the annual temperature. The Datecolumn contains the year followed by a two-digit month code,which can be ignored because this is annual data. Let's create aseparate column for the year:
df['Year'] = df['Date'] // 100

df.head()

Date Value Anomaly Year
0 189512 73.6 −1.1 1895
1 189612 73.9 −0.8 1896
2 189712 74.6 −0.1 1897
3 189812 74.4 −0.3 1898
4 189912 74.7 −0.0 1899

The following code generates a scatter plot showing the annualtemperature (on the y-axis) as a function of the year (on the x-axis):
plt.scatter(df['Year'], df['Value'], 15)

plt.xlabel('Year')

plt.ylabel('Annual temperature ($^\circ$F)')



The results seem to show an even stronger relation betweenannual temperature and year than the relationship betweenheight and weight seen in the BRFSS data.
Distributional dataVectors may be used to indicate distributions or allocations acrosscategories. For example, an investor's current net worth acrossdifferent categories (such as stocks, bonds, and real estate) can berepresented as a vector. In some cases, we are interested in theproportional allocations, which we can get by dividing the un-normalized distributions by the sum of the entries in the vector.

Example 2.13: Composition of the Dow Jones
Industrial Average



The Dow Jones Industrial Average (DJIA) is a stock marketindex that is based on the prices of 30 major companies tradedon the New York Stock Exchange or NASDAQ exchange. Thisindex is computed by adding the trading prices of the 30companies and then dividing by a factor that is used tocompensate for stock splits. The following code loads the priceand weight information for the 30 DJIA stocks as of November26, 2024. (This data was retrieved from SlickCharts Dow JonesCompanies: https://www.slickcharts.com/dowjones):
dow = pd.read_csv('https://www.fdsp.net/data/dowjones-112624.csv')

dow.head()

Company Symbol Weight Price
0 UnitedHealthGroupIncorporated

UNH 8.315803 606.79
1 Goldman SachsGroup Inc. GS 8.277370 605.50
2 Home DepotInc. HD 5.884052 429.52
3 Microsoft Corp MSFT 5.748436 427.99
4 Caterpillar Inc CAT 5.568073 407.83

Here, the Weight is the proportion of the index that each stockrepresents, expressed as a percentage. Stocks with higherprices make up more of the index. Let's extract the Weightcolumn as a vector (unlike the previous examples, where weextracted the rows as vectors). Although not necessary forplotting the weights, it is more obvious that the weights can be

https://www.slickcharts.com/dowjones
https://www.fdsp.net/data/dowjones-112624.csv


considered as a vector of proportional data if we extract theminto a NumPy vector. The best way to do this is to use the
to_numpy() method of the Pandas dataframe and Series, as shownin the following:

weights = dow['Weight'].to_numpy()

np.round(weights, 1)

array([8.3, 8.3, 5.9, 5.7, 5.6, 5.5, 4.7, 4.3, 4.2, 4.1, 4. , 3.6, 

3.4,

       3.2, 3.2, 3.1, 2.8, 2.4, 2.2, 2.1, 2.1, 1.9, 1.8, 1.6, 1.4, 

1.2,

       1.1, 0.9, 0.8, 0.6])

We can immediately observe that the index is heavily weightedtoward the top few stocks. For instance, if we sum the top fiveweights, we get:
np.sum(weights[:5])

33.793734

Thus, the five stocks with the highest prices represent over athird of the index.When plotting proportions, it is most common to use eitherbar charts or pie charts. However, there have been many issues



identified with pie charts – see, for example, “Why youshouldn't use pie charts”:https://scc.ms.unimelb.edu.au/resources/data-visualisation-and-exploration/no_pie-charts. In particular, people are notgood at estimating proportions from angles. Therefore, I willuse a bar chart to illustrate proportional data:
DEFINITION
bar chart,
bar graphMost commonly used with categorical data for which eachcategory has an associated quantity or measurement, a baris drawn for each category, where the height or width ofthe bar is proportional to the associated quantity ormeasurement.
The following code generates a bar chart that shows theproportion of the index that each of the top 5 stocks represents:

plt.bar(dow[:5]['Symbol'], dow[:5]['Weight'])

plt.xlabel('Stock Symbols')

plt.ylabel('Proportion (%)')

plt.title('Proportion of Dow Jones Industrial Average; Top 5 Stocks');

https://scc.ms.unimelb.edu.au/resources/data-visualisation-and-exploration/no_pie-charts


Terminology review and self-assessment questionsInteractive flashcards to review the terminology introduced in thissection and self-assessment questions are available at la4ds.net/2-3, which can also be accessed using this QR code:

2.4 Special Vectors

http://la4ds.net/2-3


Below are several types of vectors that are common enough to havetheir own names and notations.
DEFINITION
zero vectorA vector of all zeros.

We will denote the zero vector of size n by 0
n

. For example,

We can create a zero vector in NumPy by passing the desired sizeto np.zeros(). Thus we can create a Numpy representation of 0
5

 as
zeros5 = np.zeros(5)

print(zeros5)

[0. 0. 0. 0. 0.]

DEFINITION
ones vectorA vector of all ones.

0

5

= .

0

0

0

0

0



We will denote the ones vector of size n by 1
n

. We can create aones vector in NumPy by passing the desired vector size to
np.ones():
np.ones(5)

array([1., 1., 1., 1., 1.])

DEFINITION
standard unit vectorA vector with all of its components equal to zero, exceptone element that is equal to one.

For a given size n, we denote the standard unit vector with element
i equal to 1 by e

i

.For example, the three standard unit vectors of dimension 3 are:

(2.2)
In NumPy, we can create a standard unit vector by creating azeros vector of the same size and then setting one desiredcomponent to 1. For instance, we can create a NumPyrepresentation of e

2

 as
e2 = np.zeros(3)

e

0

= , e

1

= , ande

2

= .

1

0

0

0

1

0

0

0

1



e2[2]=1

print(e2)

[0. 0. 1.]

Terminology review and self-assessment questionsInteractive flashcards to review the terminology introduced in thissection and self-assessment questions are available at la4ds.net/2-4, which can also be accessed using this QR code:

2.5 Vector OperationsOne of the main reasons to use vectors is that they enable simplenotation for, and implementation of, a variety of mathematicaloperations for collections of numerical data. In this section, weconsider these operations and their visualization.Let's start by loading the plotvec() function and visualizing twovectors,

import numpy as np

a = [2, 3]

⊤

, and

b = [1,−2]

⊤

.

http://la4ds.net/2-4


from plotvec import plotvec

 

 

a = np.array([2, 3])

b = np.array([1, -2])

 

 

plotvec(a, b,

        labels = ['$\mathbf{a} = [ 2,3]^T$',

                     '$\mathbf{b} = [ 1, -2]^T$'],

        legendloc='upper left', square_aspect_ratio=False)

2.5.1 Vector AdditionVector addition is one of the easiest operations because it is justcomponent-wise addition:



DEFINITION
addition (vectors)The sum of n vectors a and b is a vector a + b such thatany component i of the vector sum is the sum of the ithcomponents of a and b; i.e.

(a + b)

i

= a

i

+ b

i

, i = 0, 1,… ,n− 1.

We can visualize the sum of a series of vectors as thedisplacement achieved from the consecutive (chained)displacement of the vectors, where the head of each vector servesas the tail of the next vector in the series. The plotvecR() functionwill chain vectors in this way if given the keyword argument
chain=True:
plotvecR(a, b, chain=True)



The plotvecR() function can also plot the vector from the original tailto the final head if we specify the plotsum=True parameter:
plotvecR(a, b, chain=True,   plotsum=True)



For NumPy vectors, the addition operator + performs vectoraddition. Let c be the vector sum of a and b. Then:
c = a + b

c

array([3, 1])

Since vector addition is just scalar addition for each component,and scalar addition is commutative (is unaffected by order), vectoraddition is also commutative. We can check this for our examplevectors:



b + a

array([3, 1])

Compare the dashed line above, representing the result of“chaining” vectors a and b with the plot of a+b shown in thefollowing figure; I set the limits of the axes to be the same as for thechained vectors:
import matplotlib.pyplot as plt

 

 

plotvecR(a + b)

plt.xlim(-1, 4)

plt.ylim(-1, 4)



Note that if we change the order of the chained vectors, we stillget the same vector from the origin to the head of the secondvector. The following figure shows the result when we first drawvector b and then chain a onto the head of b:
plotvecR(b, a, newfig=False, chain=True, plotsum=True)



We can sometimes use Python lists in place of NumPy vectors.However, the + operator will not do component-wise addition onPython lists:
g = [1, 2]

h = [-3, 4]

print(g + h)

[1, 2, -3, 4]

(The + operator concatenates lists.)
2.5.1.1 Properties of Vector Addition



Because vector addition is component-wise scalar addition, itinherits many of its properties from scalar addition:
Commutative: a+ b = b+ a

Associative: (a+ b) + c = a+ (b+ c)

Identity: The zero vector is the identity for vector addition:
a+ 0 = a

2.5.2 Sum of Elements of a VectorIn data science, we often want to sum the data contained in avector. If u is a n-vector, then mathematically, the sum of theelements of u would be written as

(Later in this section, we will introduce another approach forfinding the sum using a type of vector-vector multiplication.)In Python, we can get the sum of the elements in u using np.sum()or the built-in sum() method of a NumPy vector:
u = np.array( [1, -3, 4, 10] )

np.sum(u)

12

u.sum()

n−1

∑

i=0

u

i

.



12

2.5.3 Scalar-Vector Multiplication (Scaling)In scalar-vector multiplication, a vector is multiplied by a scalar (anumber). This is achieved by multiplying every component of thevector by the scalar:
DEFINITION
multiplication (scalar-vector)Given a vector u and a scalar α, define αu such that eachcomponent i of αu is given by (αu)

i

= αu

i

. Thus,
αu = α[u

0

,u

1

,… ,u

n−1

]

⊤

= [αu

0

,αu

1

,… ,αu

n−1

]

⊤

.

In NumPy, we can multiply a scalar by a vector using the usual *multiplication symbol:



a1 = 0.5 * a

print(f'a = {a},   0.5*a = {a1}')

plotvecR(a, a1, labels=['$\mathbf{a}$', '$0.5 \mathbf{a}$'])

a = [2 3],   0.5*a = [1.   1.5]

b1 = 3 * b

print(f'b = {b},   3*b = {b1}')

 

 

# I swapped the order so that the vector b will not



# be hidden by the vector 3b

plotvecR(b1, b, labels=['3$\mathbf{b}$', ' $\mathbf{b}$'])

b = [ 1 -2],   3*b = [ 3 -6]

Note that multiplying a vector by a positive scalar yields anoutput vector that is in the same direction as the original
vector, but its length has been changed in a way that depends onthe value of the scalar. Let's consider the effect of negative scalars:



a2 = -0.5 * a

print(f'a = {a},   -0.5*a = {a2}')

plotvecR(a, a2, labels=['$\mathbf{a}$', '$-0.5 \mathbf{a}$'])

a = [2 3],   -0.5*a = [-1.   -1.5]

b2 = -3 * b

print(f'b = {b},   -3*b = {b2}')

plotvecR(b, b2, labels=['$\mathbf{b}$', '-3$\mathbf{b}$'] )



b = [ 1 -2],   -3*b = [-3   6]

Multiplying by a negative scalar yields a vector that is in the
opposite direction as the original vector. The length of the newvector is controlled by the scalar's magnitude (i.e., absolute value).For either scalar with magnitude 0.5, the new vector is shorter thanthe original vector. For either scalar with magnitude 3, the newvector is longer than the original vector.In general, if u is a vector and α is a scalar, then:

if |α| < 1, then αu will be shorter than u,if |α| = 1, then αu will be the same length as u, andif |α| > 1, then αu will be longer than u.The details of how to show this have to wait until we define thelength of a vector later in this section.



In NumPy, scalar-vector multiplication is considered to be
broadcasting:

DEFINITION
broadcasting (NumPy)In NumPy, broadcasting occurs in operations involving twoarrays of different shapes. The smaller array is broadcastacross the larger array by repeating values in the smallerarray in such a way that the shapes of the two arrays willmatch.
In this instance, the scalar is treated as an array with a singleelement. Under broadcasting, the scalar is repeated to match thesize of the vector, and then the two vectors are multipliedcomponent-wise. (This type of multiplication of vectors is called aHadamard product and is discussed more below.)Readers interested in learning more about broadcasting can readthe NumPy documentation on broadcasting:https://numpy.org/doc/stable/user/basics.broadcasting.html.

Properties of Scalar MultiplicationSince scalar-vector multiplication is component-wise multiplicationby a scalar, it inherits the properties below from normalmultiplication of real scalars.
If u and v are vectors of the same size, and α is a real scalar, thenthese properties hold:

Commutative: αu = uα. It does not matter whether themultiplying scalar is on the right or left of the vector.

https://numpy.org/doc/stable/user/basics.broadcasting.html


Associative: If α and β are scalars, then (αβ)u = α(βu). Ifmultiplying by two scalars, we will get the same result if we dothe scalar-scalar multiplication first or the scalar-vectormultiplication first.
Distributive over scalar addition: (α+ β)u = αu+ βu and
u(α+ β) = uα+ uβ

Distributive over vector addition: α(u+ v) = αu+ αv

2.5.4 Vector SubtractionWe can combine vector addition and scalar-vector multiplication todefine vector subtraction. We define b− a as b+ (−1)a, whichyields

If we let c = b− a, then we can also write b = a+ c, so c is thevector that needs to be added to a for the result to be b. Forexample, Fig. 2.2 shows the relations for some example vectors a, b, and b− a.

b− a =

n−1

∑

i=1

(b

i

− a

i

).



Fig. 2.2:  Figure showing the relation among example two-vectors aand b and the difference vector b− a. ⏎
The vector a− b is the negative of the vector b− a. Thus bothhave the same length. The closer that a and b are to each other, thesmaller the length of the difference will be.

2.5.5 Component-wise Vector Multiplication: The Hadamard
ProductComponent-wise multiplication of vectors is also known as theHadamard or Schur product:

DEFINITION
component-wise multiplication (vectors),
Hadamard product (vectors),



Schur product (vectors)Given n-vectors u and v, the Hadamard product or Schur
product is denoted u⊙ v and is the n-vector given bycomponent-wise multiplication of u and v,

u⊙ v = [u

0

v

0

,u

1

v

1

,… ,u

n−1

v

n−1

].

Because there are different types of vector multiplication, weneed different symbols to distinguish among them. Here we use thesymbol ⊙ to indicate component-wise multiplication. (Note that thesymbol ∗ that is used for multiplication in many computerlanguages is not used to indicate multiplication in writtenmathematics.) When printing from Python, we can use the Unicodecharacter 2299. Here we define a string odot containing thisUnicode character:
odot = '\u2299'

Then we can use f-strings to write out a product like u⊙ y as
print(f'u {odot} v')

u ⊙ v

Component-wise multiplication is relatively uncommon inmathematics; in fact, there is no standard notation for thisoperation. However, it is a useful building block for otheroperations and is easy to implement in NumPy. Somewhatconfusingly, even though ∗ is not used to indicate multiplication in



written mathematics, the standard Python multiplication operator *performs component-wise multiplication:
g = np.array( [1, 2] )

h = np.array( [-3, 4] )

print(f'g {odot} h = {g * h}')

g   h = [-3   8]

Properties of Hadamard ProductBecause the Hadamard product is just a collection of pairwisescalar multiplications across all the elements in two vectors, it takeson properties of scalar multiplication, such as being commutativeand distributive across addition:
Commutative: a⊙ b = b⊙ a

Associative with scalar multiplication: (γa) ⊙ b = γ(a⊙ b)

Distributive across vector addition: (a+ b) ⊙ c = a⊙ c+ b⊙ c

Special cases:

Example 2.14: Hadamard Product with a 0 Vector

The Hadamard product of any vector with the zeros vector isthe zeros vector:
c= np.array([5,7,9])

z3 = np.zeros(3, dtype=int)



 

 

print(f'c {odot} z3    = {c * z3}')

c ⊙ z3   = [0 0 0]

Example 2.15: Hadamard Product with 1s Vector

The Hadamard product of a vector u with the ones vectorreturns the vector u:
ones3 = np.ones(3, dtype=int)

 

 

print(f'c {odot} ones3 = {c * ones3}')

c ⊙  ones3 = [5 7 9]

Example 2.16: Hadamard Product with a Standard
Unit Vector

Recall that the standard unit vector e
i

 is a vector thatcontains all 0s, except for a single 1 in position i. Thus, theHadamard product of a vector u with e
i

 consists of all zeros,except it will take the value ui in position i:



e2= np.array([0,1,0])

 

 

print(

f'c {odot} e2 = {c * e2}')

c ⊙  e2 = [0 7 0]

Example 2.17: Hadamard Product of a Vector with
Itself

If we take the Hadamard product of a vector u with itself,element i of the result is simply u
i

⋅ u

i

= u

2

i

. Thus, the result isa vector containing the squares of the elements in u:
print(f'c = {c}')

print(f'c {odot} c = {c * c}')

c = [5 7 9]

c ⊙ c = [25 49 81]

We can also get the squares of the elements by using the **operator on a NumPy vector. It will perform element-wiseexponentiation:



print(f'c ** 2 = {c ** 2}')

c ** 2 = [25 49 81]

2.5.6 Vector-Vector Multiplication: Dot ProductThe most common form of multiplication between vectors is calledthe inner product or dot product. The input is two vectors of thesame length, and the output is a scalar:
DEFINITION
dot product,
inner product (vectors)Given n-vectors u and v, the dot product or inner productis denoted u ⋅ v or u⊤

v and is the scalar value given bymultiplying corresponding components and summing themup:
u ⋅ v =

n−1

∑

i=0

u

i

v

i

.

Inner product is a concept that can be applied more broadly than tojust vectors and can also be denoted using other notation, such as
⟨u,v⟩.We use the ⋅ symbol (a “dot”) for the dot product to distinguish itfrom component-wise multiplication, which uses ⊙. To print the“dot” sign in Python, we can use the Unicode character 0xB7. Let'screate a variable called dot that contains this unicode value:



dot = '\u00B7'

The following will print the equivalent of u ⋅ v in Python:
print(f'u{dot}v')

x · y

Example 2.18: Implementing Dot Product in
NumPy

The dot product combines two of the operations wepreviously discussed: component-wise multiplication, followedby summing up the elements. The following code computes thedot product using these two operations:
g = np.array( [1, 2] )

h = np.array( [-3, 4] )

 

 

gh = g * h

 

 

g_dot_h = np.sum(gh)

 

 

print(f'g{dot}h   = {g_dot_h}')



g · h  = 5

We can perform the dot product directly using Python's matrixmultiply operator, which uses the @ (read “at”) symbol.
Example 2.19: Dot Product of NumPy Vectors Using

@ Operator

Here is an example of computing the dot product using the @operator:
print(f'g{dot}h   = {g @ h}')

g · h  = 5

2.5.7 Properties of Dot ProductBecause dot product is just the Hadamard product followed by asummation operation, it inherits all of the properties of theHadamard product:
Commutative: a ⋅ b = b ⋅ a

Associative with scalar multiplication: (γa) ⋅ b = γ(a ⋅ b)

Distributive across vector addition: (a+ b) ⋅ c = a ⋅ c+ b ⋅ c

Special examples:

Example 2.20: Dot Product with 0 Vector



The Hadamard product of any vector with the zeros vector isthe zeros vector, so the dot product is the sum over the zerosvector, which is zero:
c= np.array([5,7,9])

z3 = np.zeros(3, dtype=int)

 

 

print(f'c{dot}z3 = {c @ z3}')

c · z3 = 0

Example 2.21: Inner Product with 1s Vector

The Hadamard product of a vector u with the ones vectorreturns u, so the dot product with the ones vector returns thesum of the elements in u:

ones3 = np.ones(3, dtype=int)

 

 

print(f'c {dot} ones3 = {c @ ones3}')

print(f'sum(c) = {np.sum(c)}')

1 ⋅ u =

n−1

∑

i=0

u

i

.



c · ones3 = 21

sum(c) = 21

Example 2.22: Dot Product with a Standard Unit
Vector

The Hadamard product of a vector u with the standard unitvector e
i

 returns a vector of all zeros, except that element i willbe ui. Thus, the dot product is simply ui:
e2 = np.array([0,1,0])

 

 

print( f'c{dot}e2 = {c @ e2}')

c · e2 = 7

Example 2.23: Averaging

We can use the dot product to compute the average value ofthe elements in a n-vector by dotting the vector with a vectorwhose elements are all 1/n,
u = (

1

n

)1 ⋅ u = [1/n, 1/n,… , 1/n] ⋅ u.



In the following code, I compute the average using the dotproduct and compare it with the average computed using the
np.mean() function:

div3 = np.ones(3)/3

print(div3)

[0.33333333 0.33333333 0.33333333]

print(f'The dot product of c with a vector of (1/3) values is {div3 @ 

c:.3f}')

print(f'The average of the values in c using np.mean() is {np.mean(c): 

.3f}')

The dot product of c with a vector of (1/3) values is 7.000

The average of the values in c using np.mean() is   7.000

Example 2.24: Dot Product of a Vector with Itself:
Sum of Squares

Recall that the Hadamard product of a vector u with itself is avector of the squares of the elements in u. Then the dot productof a vector with itself is the sum of the squares of the elementsin the vector:
u ⋅ u =

n−1

∑

i=0

u

2

i

.



Let's try this out using our example vector, c:
print(f'c = {c}')

print(f'c {odot} c = {c * c}')

print(f'c{dot}c = {c @ c}')

c = [5 7 9]

c ⊙ c = [25 49 81]

c · c = 155

Taking the inner product of a mathematical object with itself iscommon enough that mathematicians have introduced a specialname and notation for it:
DEFINITION
norm squaredFor a mathematical object u with an inner productoperator ⟨, ⟩, the norm squared is denoted by ∥ u ∥

2 anddefined as
∥ u ∥

2

= ⟨u,u⟩.

For vectors, the inner product operation is the dot product, and thenorm squared of a vector u is ∥ u ∥

2

= u ⋅ u.
2.5.8 Length or Magnitude of a Vector



Consider again the vector a = [2, 3]

⊤, shown in Fig. 2.3(a). Then ais the hypotenuse of a right triangle with sides 2 and 3, as shown inFig. 2.3(b). Let ℓ
a

 denote the length of a. By the Pythagoreantheorem,

Long Description for Figure 2.3
Fig. 2.3:  Example vector a and its interpretation as the hypotenuseof a right triangle with sides determined by its coordinates. ⏎

or

For any 2-vector b = [b

0

, b

1

], the same mathematical approach willgive the length ℓ
b

 as

ℓ

2

a

= 2

2

+ 3

2

,

ℓ

a

=

√

2

2

+ 3

2

.

ℓ

b

=

√

b

2

0

+ b

2

1

.



The argument inside the square root is simply the norm-squared of
b, so we can write

which we can simplify to
The length of the vector b is the norm of b. The norm of anymathematical object that has an associated inner product operationis defined below:
DEFINITION
normFor a mathematical object u with an inner productoperator ⟨, ⟩, the norm is denoted by ∥ u ∥ and defined as

‖

u

‖

=

√

⟨u,u⟩.

For an n-vector b, the norm is

which is the length of the vector, even if b has more than twodimensions.
Example 2.25: Norm of Example Vector

ℓ

b

=

√

∥ b ∥

2

,

ℓ

b

=∥ b ∥.

∥b

∥

=

√

b ⋅ b

=

n−1

∑

i=0

b

2

i

,



Let's start by computing the length of a by working with theindividual elements of a :

print(f'|a| = {np.sqrt(a[0]**2 + a[1]**2): .2f}')

|a| =   3.61

Now, let's use the dot product to find the norm of a:
print(f'||a|| = {np.sqrt(a @ a): .2f}')

||a|| =   3.61

Finding the norm of a vector is a relatively common operation,so NumPy has a norm operator in the np.linalg module:
print(f'||a|| = {np.linalg.norm(a): .2f}')

||a|| =   3.61

When using PyTorch tensors to represent vectors, use the
torch.linalg.vector_norm() function to find the vector norm. However,



this function only works on floating point or complex tensors. If youtry to use it on a tensor with integer values it will throw an error:
import torch

a2 = torch.tensor(a)

torch.linalg.vector_norm(a2)

--------------------------------------------------------------------

-------

RuntimeError                              Traceback (most recent 

call last)

Cell In[90], line 3

      1 import torch

      2 a2 = torch.tensor(a)

----> 3 torch.linalg.vector_norm(a2)

 

 

RuntimeError: linalg.vector_norm: Expected a floating point or 

complex tensor

as input. Got Long

You can easily convert a PyTorch integer tensor to a float tensorby multiplying it by 1.0 to resolve this issue:
torch.linalg.vector_norm(1.0 * a2)

tensor(3.6056)



Example 2.26: Norm of Scaled Vector

Now recall our examples of scaling a by multiplying it by aconstant. Let w = γa, where γ is some constant. For example,we previously considered γ = 0.5:
a1 = 0.5 * a

plotvec(a, a1, labels=['$\mathbf{a}$', '$0.5 \mathbf{a}$'])



For an arbitrary vector a, we can calculate the length of γa as



For our example, the length of 0.5a is 0.5 ∥ a ∥. Let's check:
w = 0.5*a

print(f'||a|| = {np.linalg.norm(a)}')

print(f'||0.5a|| = {np.linalg.norm(w)}')

||a|| = 3.605551275463989

||0.5a|| = 1.8027756377319946

We can see that the norm of 0.5a is one-half the norm of a.
Normalizing a VectorConsider what happens if we divide a vector by its norm:

where the second line follows from the fact that 1/ ∥ a ∥ is aconstant, so we can factor it out of the norm. We say that ~a is a unit
vector:

∥ γa ∥ =

√

γa ⋅ γa

=

√

γ

2

a ⋅ a

= |γ|

√

a ⋅ a

= |γ| ∥ a ∥.

∥

~

a ∥ =

a

∥ a ∥

=

1

∥ a ∥

∥a∥

= 1,



DEFINITION
unit vectorA vector v is a unit vector if ∥ v ∥= 1.

2.5.9 Distance between VectorsWe define the distance between two n-vectors as follows:
DEFINITION
distance between vectorsThe distance between two n-vectors a and b is the norm ofthe difference between the vectors,

d (a,b) =

∥

a− b

∥

=

∥

b− a

∥

.

Terminology review and self-assessment questionsInteractive flashcards to review the terminology introduced in thissection and self-assessment questions are available at la4ds.net/2-5, which can also be accessed using this QR code:

2.6 Vector Correlation and Projection

http://la4ds.net/2-5


In this section, I introduce some important math related torepresenting one vector in terms of another vector. In Chapter 6,we generalize this to the problem of representing a vector given acollection of other vectors.
2.6.1 Vector CorrelationIn the field of Statistics, Pearson's correlation is a metric thatquantifies the extent that two features can be characterized by alinear relationship. It is a bounded metric that takes a maximumabsolute value of 1, when either of the features can be calculated asa linear function of the other. When the sign of Pearson'scorrelation coefficient is positive, the two features “move together”:larger values of one of the features is generally associated withlarger values of the other feature. When the sign of Pearson'scorrelation coefficient is negative, the opposite is true.We would like to develop a correlation metric for vectors that issimilar to Pearson's correlation for data. Ideally, we would likevector correlation to satisfy the following:

The vector correlation is 1 when the vectors point in the samedirection.The vector correlation is -1 when the vectors point in theopposite direction.The vector correlation is 0 when the vectors are orthogonal insome sense.
To find such a relation, we start with an observation aboutvectors in R2. Consider again the vectors a, b, and b− a in Fig. 2.2.To simplify the notation, let c = b− a. Let θ denote the anglebetween a and b. Then the Law of Cosines provides a relation forsolving for ∥ c ∥2:



∥ c ∥

2

=∥ a ∥

2

+ ∥ b ∥

2

−2 ∥ a ∥∥ b ∥ cos θ.

(2.3)
We can also use the properties of the norm-squared and dot productto write

(2.4)
Comparing (2.3) and (2.4), we see that

a ⋅ b =∥ a ∥ ∥ b ∥ cos θ,

(2.5)
where θ is the angle between a and b. (The case where θ = 0 has tobe handled separately, but the result is the same.)Now note the following properties of cos θ:

cos θ = 1 if θ = 0; i.e., if a and b point in the exact samedirection.
cos θ = −1 if θ = π; i.e., if a and b point in the exact oppositedirection.
cos θ = 0 if θ = ±π/2; i.e., if a and b are orthogonal(perpendicular).

Rewriting (2.5), we have
cos θ =

a ⋅ b

∥ a ∥ ∥ b ∥

.

∥ c ∥

2

= (b− a) ⋅ (b− a)

= b ⋅ b− b ⋅ a− a ⋅ b+ a ⋅ a

=∥ a ∥

2

+ ∥ b ∥

2

−2a ⋅ b.



(2.6)
We use this to define a vector correlation metric that holds for any
n-vectors:

DEFINITION
correlation (vectors),
cosine similarityThe correlation between n-vectors a and b is

r =

a ⋅ b

∥ a ∥ ∥ b ∥

.

It is sometimes called cosine similarity.
Using (2.6), we can define the angle between two vectors as shownin the following definition.

DEFINITION
angle between vectorsThe angle between n-vectors a and b is

θ = cos

−1

(

a ⋅ b

∥ a ∥ ∥ b ∥

).

This formula for the angle holds for n-vectors even if n > 2.Note that if the vectors are orthogonal, then θ = ±90

∘. But wecan see that cos θ = 0 occurs if and only if a ⋅ b = 0. Thus, we define
orthogonal vectors as:



DEFINITION
orthogonal vectorsVectors a and b are orthogonal if and only if

a ⋅ b = 0.

A special case of orthogonal vectors is if the vectors also haveunit norm. Then the vectors are called orthonormal:
DEFINITION
orthonormal vectorsVectors a and b are orthonormal if and only if

a ⋅ b = 0

and ∥ a ∥=∥ b ∥= 1.
Vector correlation has properties that are similar to those ofPearson's correlation, but the connection is actually much deeperthan that. First, let's write vector correlation in terms of thearithmetic operations on the elements of a and b:

If we treat a and b as vectors of data features, the Pearson'scorrelation coefficient is defined as

r =

∑

i

a

i

b

i

√

∑

i

a

2

i

√∑

j

b

2

j

.



For the special case ¯a =

¯

b = 0, this simplifies to

So, vector correlation and Pearson's correlation have the sameexact form if the elements of each vector average to zero. (This willoccur if we subtract off the average of the elements of each vectorbefore calculating the vector correlation.)
2.6.2 Projecting a Vector Onto Another VectorConsider the problem of taking a vector b and writing it as a linearcombination of some known vectors a

0

,a

1

,a

m−1

. Then one of thefirst goals might be to determine how much of the vector b is in thedirection of each representation vector a
i

.Consider the example vectors b and a
i

 shown in Fig. 2.4. If wewant to determine how much of b is in the direction of a
i

, we candraw a vector along a
i

 and define the error as the length of the linefrom the head of that vector to the head of b. Three such error linesare shown as the red dotted and solid lines in Fig. 2.5. Frominspection, the shortest error line is the one that is orthogonal to a
i

,which is shown by the solid line.

ρ

ab

=

Cov(a,b)

σ

a

σ

b

=

1

N−1

∑

i

(a

i

− a)(b

i

− b)

√

1
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∑

i

(a
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√

1
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∑
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i
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.



Fig. 2.4:  Example vector b and a representation vector a
i

. ⏎



Fig. 2.5:  Example vector b and a representation vector a
i

, alongwith three error lines. ⏎
Then it is easiest to determine the length of the vector along thedirection of a

i

 that minimizes the error vector if we rotate thevector a
i

 onto the x-axis, as shown in Fig. 2.6. Then from the righttriangle, we see b

i

=∥ b ∥ cos θ. We call this length the scalar
projection of b onto a

i

. If |θ| > 90

∘, then the scalar projection willbe negative. This occurs if b needs to be represented in terms of
−a

i

.



Fig. 2.6:  Example vector b and a representation vector a
i

, rotatedto make it easier to see the length of the vector along a
i

 thatminimizes the error to b. ⏎
Compare the formula for bi with b ⋅ a

i

=∥ b ∥ ∥ a

i

∥ cos θ. Then wecan rewrite the formula for bi as
b

i

=

b ⋅ a

i

∥ a

i

∥

.

We use this form in our definition of scalar projection:



DEFINITION
scalar projectionGiven n-vectors a and b, the scalar projection of b onto ahas magnitude equal to the length of the vector in thedirection of a that minimizes the error to b. The sign ispositive if that component of b is in the same direction as
a and negative if not. It is given by

b ⋅ a

∥ a ∥

.

We can rewrite the formula for the scalar projection bi as
b

i

= b ⋅ (

a

i

∥ a

i

∥

).

Let ~a = a/ ∥a∥. Then from Section 2.5.8, ~a is a unit vector. Thus,we can also write the scalar projection of b onto a
i

 as b ⋅

~

a

i

.The vector projection is the vector in the direction of a
i

 that haslength equal to the scalar projection b ⋅

~

a

i

. Since ~a
i

 is a unit vectorin the direction of a
i

, then the vector projection is simply

DEFINITION
vector projection

(b ⋅

~

a

i

)

~

a

i

= b ⋅ (

a

i

∥ a

i

∥

)(

a

i

∥ a

i

∥

)

=

b ⋅ a

i

∥

a

i

∥

2

a

i

.



Let a and b be n-dimensional vectors. Then the vector
projection of b onto a, denoted proj

a

b, is the vector in thedirection of a that minimizes the error to b. It is given by
proj

a

b =

b ⋅ a

∥a∥

2

a.

Example 2.27: Vector Projection in NumPy

Let a = [5, 2]

⊤ and b = [3, 4]

⊤. Find proj
a

b. Let's start bycreating these vectors in NumPy and plotting them using
plotvec().

import numpy as np

from plotvec import plotvec

 

 

a = np.array([5, 2])

b = np.array([3, 4])

 

 

plotvec(a, b)



Using (Equation 2.6), we can calculate the angle between thesevectors as follows:
from numpy.linalg import norm

print(f'{np.rad2deg(np.arccos(a @ b / norm(a) / norm(b))) :.1f} 

degrees')

31.3 degrees



Let's find and visualize the projection of b onto a. First, let'sfind ~a; in Python, I will label it a_t. Then, let's plot ~a on top ofthe vectors a and b:
import matplotlib.pyplot as plt

 

 

a_t = a / norm(a)

plotvec(a, b, alpha=0.7)

plotvec(at, newfig=False, color_offset=2, width=0.015)

 

 

plt.annotate('unit $a$', (a_t[0], a_t[1] - 0.25))



Then the scalar projection of b onto ~a is
spb = b @ a / norm(a)

spb

4.270992778072193



To get the (vector) projection, proj
a

b, we just need to multiply
~

a by the scalar projection:
vpb = spb * a_t

vpb

array([3.96551724, 1.5862069 ])

plotvec(a, b, alpha=0.7)

plotvec(vpb, newfig=False, color_offset=2, width=0.02)

 

 

plt.annotate('$\operatorname{proj}_\mathbf{a}\mathbf{b}$',

             (vpb[0], vpb[1] - 0.25))



As expected, the error line from the vector projection to b isorthogonal to a:
plotvec(a, b, vpb)

plt.plot([vpb[0], b[0]], [vpb[1], b[1]], color='C4', 

linestyle='dashed');



Example 2.28: Vector Projection with Vectors
Pointing Away from Each Other

Here is an example vector g whose projection onto a is in theopposite direction of a:
a=np.array([5, 2])

g=np.array([-3, -6])

 



 

plotvec(a, g)

The scalar projection of g onto a is
spg = g @ a / norm(a)



spg

-5.0137741307804005

Since g points in the direction of −a instead of a, the scalarprojection is negative. The vector projection proj
a

g is
vpg = spg * a_t

vpg

array([-4.65517241, -1.86206897])

These vectors and the vector projection of g onto a are shownbelow. The error line from g to the projection of g onto a is alsoshown as a dashed line. As expected, the error vector isorthogonal to a.
plotvec(a, g, vpg)

plt.plot([vpg[0], g[0]], [vpg[1], g[1]], color='C4', 

linestyle='dashed');



Vector correlation is used to solve the larger problem ofrepresenting a vector (or set of vectors) in terms of some othergiven or derived vectors in Chapter 6.
Terminology review and self-assessment questionsInteractive flashcards to review the terminology introduced in thissection and self-assessment questions are available at la4ds.net/2-6, which can also be accessed using this QR code:

http://la4ds.net/2-6




2.7 Chapter SummaryIn this chapter, I introduced vectors and showed how to visualizethem using quiver plots. Several applications for vector data wereintroduced to show the data science perspective, where vectors arenot geometric in nature and instead are used to represent orderedcollections of variables or features. In such cases, I showed thatvectors may also be illustrated using other types of plots, such asscatter and bar plots. Special vectors were introduced andtechniques for creating these vectors in NumPy were given. Thenthe most common vector operations were introduced anddemonstrated using NumPy. Finally, vector correlation, scalarprojection, and vector projection were defined. Vector correlationwas used to find the representation of a vector in terms of someother given vector, to minimize the norm of the error.
Access a list of key take-aways for this chapter, along withinteractive flashcards and quizzes at la4ds.net/2-7, which can alsobe accessed using this QR code:

http://la4ds.net/2-7


3
Matrices and Operations

DOI: 10.1201/9781032664088-3
In Chapter 2, I introduced vectors and their operations. In this chapter, Iintroduce another important type of mathematical object in linearalgebra, matrices. If vectors are collections of numbers with a singleindex (i.e., order 1) that have specific mathematical operations, thenmatrices are collections of numbers with two indices (order 2) that havetheir own set of mathematical operations. We will often use matrices tocollect multiple vectors and enable simpler and more efficient numericaloperations. This chapter focuses on defining matrices, introducingspecial types of matrices, and defining mathematical operationsinvolving matrices.
3.1 Introduction to Matrices and TensorsIn Chapter 2, we used vectors to store collections of variables orfeatures. However, what if we want to operate on multiple data points ormultiple features simultaneously? This will require a mathematicalobject that can store data in more than one dimension. We will use
tensors or matrices for this purpose:

DEFINITION
tensorA mathematical object that can be represented by an indexedcollection of numbers, where the number of indices (i.e., the

https://doi.org/10.1201/9781032664088-3


order) can be greater than 1.
DEFINITION
matrixA tensor of order two; a matrix can be visualized as a two-dimensional array of numbers.

The plural of “matrix” is “matrices”. In this book, we will focus our studyon matrices. In many data science applications, the numeric data weencounter can be represented as a matrix.Like a vector, a matrix has components or elements that can bereferenced by their indices. The mathematical notation for a matrix is atwo-dimensional table of its elements, enclosed in large square brackets.I will use bold, capital letters for arrays. For example,

We often describe a matrix in terms of the number of rows and columnsit has. A matrix with m rows and n columns is called an m× n matrix.Throughout this book, in NumPy, and in most mathematical literature,rows are counted or indexed before columns.
Creating Matrices in NumPy

Note:
NumPy has two different data types called array (or ndarray) and
matrix, but the array type is more general and the one most commonlyused in data science and signal processing. For a detailed discussionfrom the NumPy help pages, seehttps://numpy.org/devdocs/user/numpy-for-matlab-users.html#array-or-matrix-which-should-i-use.

W = .

0 1 2 3

0 1 4 9

0 1 8 27

https://numpy.org/devdocs/user/numpy-for-matlab-users.html#array-or-matrix-which-should-i-use


If you don't want to read that whole section, I will extract a bit of textfrom the “Short answer” subsection:
“Use arrays.”

Thus, in this text, I only use the array type, and I will use the terms
array and matrix interchangeably when referring to two-dimensionalarrays.
We can represent a matrix using a Numpy array by calling np.array()with the argument being a list of lists. The outer list contains the rows,and each row is passed as a list containing the components that make upthat row. It sounds more confusing than it is in practice!
Example 3.1: Representing a Matrix Using a NumPy

Array

Let's make a NumPy version of the matrix above. We will usewhite space to make the call to np.array() more intelligible byputting each row of the matrix on a separate line. Recall thatelements in a list must be separated by commas. Then we can createthe NumPy array representation of W as follows:
import numpy as np

 

 

W = np.array([[0, 1, 2, 3],

              [0, 1, 4, 9],

              [0, 1, 8, 27]])

print(W)

[[ 0   1   2   3]



 [ 0   1   4   9]

 [ 0   1   8 27]]

Here, I have put the different rows of the matrix on different rows ofthe Python code. This is not required but is allowed in Python, and itmakes the Python version of the array much easier to interpret. Thisconvention will be used throughout this book.
Matrix and Array IndexingIn mathematical notation, we can refer to an element of a matrix using alowercase, non-bold form of the array name with a subscript in the form
i,j, where i is the row and j is the column. To be consistent with the restof the text and with NumPy indexing, we use zero-based indexing. Forexample, w

1,2

= 4. The ith column of the matrix W is a vector, and wecan denote it by w
∗i

. Here, the ∗ symbol is in the row index and can beinterpreted as a “wildcard”, indicating that we take entries in any row of
W that are in column i. Because matrices are often interpreted ascollections of column vectors, the ith column is also denoted w

i

, and Iuse this shorter notation in the rest of the text. The kth row of W is alsoa vector, and I denote it by w
i∗

, indicating entries in row i and anycolumn.
Example 3.2: Array Indexing in NumPy

Array indexing in NumPy is performed by putting the indices insquare brackets after the variable name for the array. So we can getthe element w
1,2

 as
print( W[1, 2] )



4

If a single index is used in square brackets with an array, it will beinterpreted as the row index, and all of the columns of that row willbe returned as a vector (i.e., the example below returns w
2∗

):
print( W[2] )

[ 0   1   8 27]

!
Important!Note the inconsistency between mathematical conventionsand NumPy/PyTorch conventions:

Mathematically, for a matrix W, the notation w
2

 refers to
column 2 of W.For a NumPy array or PyTorch tensor W, the notation W[2]returns row 2 of W.

If you find this confusing, one solution is to always use theother mathematical notation for rows, w
2∗

 and always use thefollowing alternative way of referencing a row inNumPy/PyTorch: W[2,:]. The : entry with no surroundingnumbers indicates the entire range of columns.
To access column 3 of W, we can use W[:,3], which indicates to use allrows and column 3. Note the similarity to the alternativemathematical notation for column 3, w

∗3

.



print( W[:,3] )

[ 3   9 27]

In general, we can specify a range of rows or columns in the form
a:b, where a represents a starting index, and b represents a stoppingindex (that, as usual, will not be included). In Python, this is called
slicing. For instance, we can get the components in columns 1 and 2of row 1 as follows:

print( W[1, 1:3] )

[1 4]

If we use a range of the form a:, where the stopping index isomitted, the range goes to the end of that row or column. Forexample, we can get all the values in column 2 from row 1 to theend as follows:
print( W[1:, 2] )

[4 8]

If we use a range of the form :b, where the starting index is omitted,then the range starts at the beginning of the row or column. We can



retrieve the elements in the first three columns of row 2 as follows:
print( W[2, :3] )

[0 1 8]

We can use ranges of rows and columns at the same time to select asubarray. For example,
print( W[1:3, 1:3] )

[[1 4]

 [1 8]]

Finally, we can also pass lists of indices to pick out selectedelements. For instance, if we want to retrieve the elements at (0, 3)and (1, 2), we could pass two lists of indices: first, the two rowindices and, second, the two column indices:
print( W[[0,1], [3,2]] )

[3 4]

WARNING



When we create slices of a NumPy array or PyTorchtensor, or when we set a variable equal to an array ortensor, it does not create a new array/tensor. It justgives an alternative way to access the original object.This alternative way of accessing the original array/tensor is called a
view.

Example 3.3: Effects of Changing Elements in a View of
an Array

Let's illustrate that slicing a NumPy array creates a view bymaking a variable V that is the 2 × 2 submatrix in the upper right-hand corner of W. We can use negative values to index from the endof the rows:
V = W[:2, -2:]

print(V)

[[ 2 -1]

 [-1   9]]

Now, let's replace the negative values in V with zeros:
V[0,1] = 0

V[1,0] = 0

 



 

print(V)

[[2 0]

 [0 9]]

Now let's inspect the values in W:
print(W)

[[ 0   1   2   0]

 [ 0   1   0   9]

 [ 0   1   8 27]]

The values in W were updated when we changed the values in Vbecause V was a view of W. We will also get a view if we try to createa copy of W by assigning it to a variable Z:
Z = W

W[0, 0] = 100

print(Z)

[[100    1   2    0]

 [   0   1   0    9]

 [   0   1   8   27]]



Because W and Z are views into the same NumPy array, changing avalue in W also changes that value in Z (and vice versa). To create avariable that is an independent copy of the NumPy array pointed toby W, call the copy() method on the array W when assigning it to a newvariable:
U = W[:2, :2].copy()

print(U)

[[100    1]

 [   0   1]]

U[0,0] = 0

print('U=',U)

print()

print('W=', W)

U= [[0 1]

 [0 1]]

 

 

W= [[100       1       2        0]

 [   0     1       0       9]

 [   0     1       8   27]]

For PyTorch tensors, use the clone() method to make a copy.
3.1.1 Some Special Types of Matrices



We will often encounter matrices that have the same number of rowsand columns; i.e., we have an m×m matrix. This is called a square
matrix:

DEFINITION
square matrixA matrix for which the number of rows equals the number ofcolumns.
A slice that comes up somewhat frequently is one along the diagonalelements of an m×m square matrix from element 0,0 to element

m− 1,m− 1. This is called the main diagonal:
DEFINITION
main diagonalFor an m×m matrix, the main diagonal or principal diagonalis the vector of m elements at the indices k,k for
k = 0, 1,… ,m− 1.

The NumPy function np.diag() performs two different operations,depending on the form of its argument:
When its argument is a two-dimensional array, it returns a vector ofthe elements on the main diagonal. (More generally, it can be passedanother argument to select other diagonals.)When its argument is a vector (i.e., a one-dimensional array), itreturns a square two-dimensional array that has the elements of theargument along its main diagonal and that has zero for its otherelements. The corresponding matrix is called a diagonal matrix:
DEFINITION
diagonal matrix



A square matrix for which the only nonzero components arealong the main diagonal.
Let's illustrate this with some examples. First, I give an examplematrix U, and np.diag(U) is used to extract the elements on its maindiagonal:
U = np.array([[1, 2, 3],

              [2, 3, 4],

              [3, 4, 5]])

print(np.diag(U))

[1 3 5]

Now let's create a diagonal matrix:
np.diag([7, 9, 11])

array([[ 7,   0,   0],

       [ 0,   9,   0],

       [ 0,   0, 11]])

When using PyTorch to create a diagonal matrix from a vector of itsdiagonal elements, we can use the torch.diag() function, but the inputmust be a PyTorch tensor:
torch.diag( torch.tensor([7, 9, 11]) )



tensor([[ 7,   0,   0],

        [ 0,   9,   0],

        [ 0,   0, 11]])

Some non-diagonal matrices have nonzero components either only inthe main diagonal and above or only in the main diagonal and below.These are called triangular matrices, and they come in two varieties:
DEFINITION
upper triangular matrixA square m×m matrix is an upper triangular matrix if its onlynonzero elements are in the main diagonal and above; in otherwords, the only nonzero elements are those at positions k,l thatsatisfy l ≥ k.
DEFINITION
lower triangular matrixA square m×m matrix is a lower triangular matrix if its onlynonzero elements are in the main diagonal and below; in otherwords, the only nonzero elements are those at positions k,l thatsatisfy l ≤ k.
DEFINITION
triangular matrixA square m×m matrix (two-dimensional array) that is anupper triangular matrix or lower triangular matrix.
To illustrate this, let's start with a non-triangular square NumPy array,

V:



V = np.array([[ 1.1, 1.2, 1.3],

              [ 2.1, 2.2, 2.3],

              [ 3.1, 3.2, 3.3]])

print(V)

[[1.1 1.2 1.3]

 [2.1 2.2 2.3]

 [3.1 3.2 3.3]]

We can use the function np.triu() to create an upper triangular matrixwith the elements along the main diagonal and above:
print(np.triu(V))

[[1.1  1.2  1.3]

 [0.   2.2  2.3]

 [0.   0.   3.3]]

We can use the function np.tril() to create a lower triangular matrixwith the elements along the main diagonal and below:
print(np.tril(V))

[[1.1 0.   0. ]

 [2.1 2.2 0. ]

 [3.1 3.2 3.3]]



3.1.2 Special MatricesThere are several special matrices that are commonly defined and willsimplify our notation later. NumPy offers functions to create versions ofthese as NumPy arrays. The first of these is the zeros matrix:
DEFINITION
zeros matrixA matrix of all zeros.
We will denote the zero matrix of size m× n by 0

m,n

. For example,

We can create a zeros matrix in NumPy by passing the desireddimensions as a tuple to np.zeros(). Thus, we can create a Numpyrepresentation of 0
2,5

 as follows:
zeros2_5 = np.zeros( (2,5), dtype=int )

print(zeros2_5)

[[0 0 0 0 0]

 [0 0 0 0 0]]

(Note that in the example above and the following ones, I have set thedata type for the matrix elements to int so that the output is easier toparse. However, in most cases, it is best to just use the default, which isfloat.)
DEFINITION
ones matrix

0

2,5

= [ ].

0 0 0 0 0

0 0 0 0 0



A matrix of all ones.
We will denote the ones matrix of dimension m× n by 1

m,n

. We cancreate a ones matrix in NumPy by passing the desired dimensions as atuple to np.ones(). For example, to create a ones matrix with four rowsand three columns:
np.ones( (4,3), dtype=int )

array([[1, 1, 1],

       [1, 1, 1],

       [1, 1, 1],

       [1, 1, 1]])

Another common matrix that consists only of 0s and 1s is the identity
matrix:

DEFINITION
identity matrixA diagonal matrix in which the off-diagonal entries are all zeroand the diagonal entries are all equal to 1. The m×m identitymatrix is denoted I

m

. If I
j,k

 denotes the entry in row j andcolumn k, then I
j,k

= 1 if j = k and I
j,k

= 0 if j ≠ k.
We could create an identity matrix in NumPy using np.ones() and

np.diag(). However, the identity matrix is common enough that NumPyprovides the command np.eye() to create one. When passed a singleargument, it will create an identity matrix with the number of rows andcolumns equal to its argument:



I5=np.eye(5, dtype=int)

I5

array([[1, 0, 0, 0, 0],

       [0, 1, 0, 0, 0],

       [0, 0, 1, 0, 0],

       [0, 0, 0, 1, 0],

       [0, 0, 0, 0, 1]])

In the next section, we introduce operations that involve matrices andscalars, vectors, and other matrices.
Terminology review and self-assessment questionsInteractive flashcards to review the terminology introduced in thissection and self-assessment questions are available at la4ds.net/3-1,which can also be accessed using this QR code:

3.2 Matrix OperationsThere are a wide variety of mathematical operations that are definedbetween two matrices or between a matrix and either a vector or ascalar. In this section, I introduce many of the most important matrixoperations. I leave one of the most important and complicated to its ownsection: general matrix-matrix multiplication is covered in Section 3.4.

http://la4ds.net/3-1


3.2.1 Matrix Addition and SubtractionOne of the simplest matrix operations to define is addition of twomatrices of the same dimensions:
DEFINITION
addition (matrices)For m× n matrices A and B, the sum A+B is defined as theelementwise sum:

Matrix addition in NumPy uses the usual + operator:
import numpy as np

 

 

A = np.array([[1, 2],

               [3, 4]])

B = np.array([[1, -1],

               [1, -1]])

print(A + B)

[[2 1]

 [4 3]]

Similarly, matrix subtraction is denoted A−B and defined byelementwise subtraction,

A+B = .

a

0,0

+ b

0,0

a

0,1

+ b

0,1

… a

0,n−1

+ b

0,n−1

a

1,0

+ b

1,0

a

1,1

+ b

1,1

… a

1,n−1

+ b

0,n−1

⋮ ⋮ … ⋮

a

m−1,0

+ b

m−1,0

a

m−1,1

+ b

m−1,1

… a

m−1,n−1

+ b

m−1,n−1



Matrix subtraction with NumPy arrays uses the usual - operator:
print(A - B)

[[0 3]

 [2 5]]

Matrix addition and subtraction are only formally defined if thedimensions of the two arrays are identical. However, NumPy will allowaddition or subtraction between a matrix and an array that matches inone of the corresponding dimensions (i.e., between a m× n matrix anda m× 1 vector or 1 × n vector) by repeating the vector to match thedimensions of the array via broadcasting.
Properties of Matrix AdditionBecause matrix addition is component-wise scalar addition, it inheritsmany of its properties from scalar addition:

Commutative A+B = B+A

Associative: (A+B) +C = A+ (B+C)

Identity: The additive identity is the zero matrix: A+ 0 = 0+A = A.
NumPy/PyTorch Only: Matrix-Scalar Addition and SubtractionAddition and subtraction between a matrix and a scalar is not usuallydefined mathematically. However, NumPy will broadcast scalar addition

A−B = .

a

0,0

− b

0,0

a

0,1

− b

0,1

… a

0,n−1

− b

0,n−1

a

1,0

− b

1,0

a

1,1

− b

1,1

… a

1,n−1

− b

0,n−1

⋮ ⋮ … ⋮

a

m−1,0

− b

m−1,0

a

m−1,1

− b

m−1,1

… a

m−1,n−1

− b

m−1,n−1



or subtraction across all of the elements of a matrix. Thus, if c is ascalar, then A+ c is defined as

Subtraction is defined similarly. Examples are below:
A = np.array([[1, 2],

                [3, 4]])

print(A + 10)

print()

print(A - 1)

[[11 12]

 [13 14]]

 

 

[[0 1]

 [2 3]]

3.2.2 Scalar-Matrix MultiplicationA matrix may be left-multiplied or right-multiplied by a scalar with thesame result: each element in the matrix is multiplied by the scalar. Wecan consider this to be broadcasting the scalar multiplication across theelements of the array. Thus,

A+ c = .

a

0,0

+ c a

0,1

+ c … a

0,n−1

+ c

a

1,0

+ c a

1,1

+ c … a

1,n−1

+ c

⋮ ⋮ … ⋮

a

m−1,0

+ c a

m−1,1

+ c … a

m−1,n−1

+ c



Properties of Scalar MultiplicationSince scalar multiplication is component-wise multiplication by ascalar, it inherits the properties below from normal multiplication of realvalues.If A is a vector and c is a real scalar, then these properties hold:
Commutative: cA = Ac. It does not matter whether the multiplyingscalar is on the right or left of the vector.
Associative: If b and c are scalars, then (bc)A = b(cA). If multiplyingby two scalars, we will get the same result if we do the scalar-scalarmultiplication first or the scalar-matrix multiplication first.
Distributive over scalar addition: (b+ c)A = bA+ cA and
A(b+ c) = Ab+Ac.
Distributive over matrix addition: c(A+B) = cA+ cB.

3.2.3 Dot Product as Matrix MultiplicationWe will build up to general matrix multiplication by starting with the dotproduct of two n-vectors. Recall from Section 2.5.6 that for n-vectors uand v,
u ⋅ v =

n−1

∑

i=0

u

i

v

i

.

As mentioned in Section 2.1, vectors are usually written as columns ofnumbers. When we are working only with vectors and scalars, then wecan treat the vectors as one-dimensional objects. However, if we want toperform operations involving matrices and vectors, then we will treat

cA = Ac = .

ca

0,0

ca

0,1

… ca

0,n−1

ca

1,0

ca

1,1

… ca

1,n−1

⋮ ⋮ … ⋮

ca

m−1,0

ca

m−1,1

… ca

m−1,n−1



the vectors as occupying one dimension of a two-dimensional matrix.The usual convention, which is followed in this book, is that a vector is asingle-column matrix. We call such a vector a column vector. Forinstance, the vector u can be written as

Note also that the dot product of u and v can be written in two forms.Until now, we have used the form u ⋅ v, but the dot product can also bewritten as u⊤

v, which looks like this:

(3.1)
where the last line comes from the definition of the dot product.The vector u⊤ is the transposed version of the column vector u, whichresults in u⊤ being a row vector. We use (3.1) to define multiplicationbetween a row vector and a column vector. It is the same as the dotproduct: the elements are multiplied component-wise, and the resultsare summed. In NumPy the @ operator must be used between the twovectors to perform multiplication. For instance, the code belowmultiplies the row vector w = [ ] by the column vector
z = [ ]

⊤

.

w = np.array( [[ 1,   2, 4 ]] )

z = np.array( [[ 2, -2, 1 ]] ).T

u = .

u

0

u

1

⋮

u

n−1

u

⊤

v = [ ]

= u

0

v

0

+ u

1

v

1

+…+ u

n−1

v

n−1

,

u

0

u

1

…u

n−1

v

0

v

1

⋮

v

n−1

1 2 4

2 −2 1



 

 

print(w @ z)

[[2]]

3.2.4 Matrix-Vector MultiplicationA matrix can be used to store a collection of n-vectors by storing thevectors as either the rows or columns of the matrix. More generally,given a matrix, we can interpret that matrix as a collection of row orcolumn vectors. In this section, I motivate matrix-vector multiplicationby showing how matrix-vector multiplication enables efficientmultiplication between a vector and multiple other vectors. Matrix-vector multiplication is usually just indicated by juxtaposing the matrixand vector to be multiplied. For example, in the discussion below, weconsider multiplying the matrix M by the vector u. The product iswritten Mu.In all multiplication involving matrices, order is important, and thisholds when we have the product of a matrix and a vector. Thus,
Mu ≠ uM, and generally one of these products is not even defined. Forthe product Mu, we say that u is left-multiplied by M. Matrix-vectormultiplication has two different interpretations, each of which willprovide useful insights about matrices later. We will refer to these as the
row interpretation and column interpretation.
Row Interpretation of Matrix-Vector MultiplicationIf we have a p× q matrix M and a q × 1 column vector u, where the kthrow of M is denoted by m

k∗

, then



Here, the horizontal lines are shown to help indicate that m
k∗

 is a rowvector.The ith component of the result vector is the dot product of the ith rowof M with the vector u. Each element of the output vector is a linearcombination of the elements in u, and we say that left-multiplication by
M is a linear transformation applied to u.
Computation of Matrix-Vector Product by HandTo compute a matrix-vector product by hand, the usual approach is tostart at the top of the matrix and iterate down the rows. For each row,we compute the dot product with u, which means that we just multiplythe elements in the row by the elements in u and sum.Let's illustrate this using a concrete example. Consider the product

Let the result of product be denoted by z. From our previous work, weknow the product of a 3 × 2 matrix and 2 × 1 is a 3 × 1 vector. Each rowof the input matrix results in one entry in the output vector, and eachentry in the output vector depends on only one row in the input matrix.Starting with the first row of the matrix, we compute the dot productof the row with the column vector as follows: work simultaneouslyacross the row of the matrix and down the column of the vector,computing the products of the corresponding elements, and then sum allthose products. The first two elements to be multiplied are shown below:

Mu = u = .

m

0∗

m

1∗

⋮

m

p−1∗

m

0∗

⋅ u

m

1∗

⋅ u

⋮

m

p−1∗

⋅ u

[ ].

3 4

−1 2

2 3

2

−1



Then the next two elements are multiplied and added to the firstelement to get the first element of the output vector:

Proceeding to the second row, we simultaneously proceed across theelements in the row and down the elements in the vector, compute theproducts, and then sum them:



Finally, we conduct the same procedure using the last row of thematrix:

The final result follows:



Let's check our work using NumPy. As with vector-vectormultiplication, we use the @ sign for matrix-vector multiplication:
M = np.array([[3, 4],

               [-1, 2],

               [2, 3]])

u = np.array([[2],

               [-1]])

print(M @ u)

[[ 2]

 [-4]

 [ 1]]

Note that I explicitly made the vector u to be a column vector, and theresult is also a column vector. If you instead use a one-dimensional formfor the vector, NumPy will compute the product in the same way, but theresult will be returned as a one-dimensional vector:
u2 = np.array([2, -1])

print(M @ u2)

[ 2 -4   1]

The procedure described above for calculating the matrix-vectorproduct generalizes to any size matrix and any size vector, provided thatthe number of columns of the matrix is equal to the number of rows (i.e.,the size) of the column vector.
Column Interpretation of Matrix-Vector Multiplication



There is another interpretation of matrix-vector multiplication that isuseful. Consider the form of the output vector:

Look at the first term in each of the summations. If we collect all thoseterms into a vector, we have the column vector u
0

m

0

. If we do that foreach of the terms in the summation, we can rewrite the product as

Thus, the result vector is a linear combination of the columns of M,where the coefficients are the values in the corresponding positions inthe vector u.Let's confirm that we get the same answer for the matrix-vectorproduct Mu by implementing this approach in Python. Recall that the
ith column of the NumPy array M is M[:,i]. Then using the columninterpretation of matrix-vector multiplication, the product Mu is
u[0]*M[:,0] + u[1]*M[:,1]

array([ 2, -4,   1])

To find the matrix-vector product Mu using the column interpretationby hand, first write the product as a linear combination of the columnsof M, where the coefficients are the corresponding entries in u. For ourexample, this is the result:
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Next, carry out all the scalar-vector multiplications, and finally add thescaled vectors:

3.2.5 Application of Matrix-Vector Multiplication: Feature
ExtractionLet's show how matrix multiplication can be used for feature extraction:

DEFINITION
feature extractionThe process of creating new features from raw data, often withthe intent of reducing the number of features.
We will show how to perform feature extraction using the Iris data set,which contains data about flowers from three different Iris species. Thisis one of the oldest and most famous data sets for classificationproblems (where the goal is to infer the correct class from a data point'sfeatures). This is a relatively simple data set, and we are going tosimplify it more for the purposes of this section. The data set is fromRobert Fisher's paper “The use of multiple measurements in taxonomicproblems”, Annual Eugenics, 7, Part II, 179–188 (1936).The Iris data set can be loaded from a Python library called scikit-

learn, which contains many data sets and tools for machine learning. We
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can load the data set as follows:
from sklearn import datasets

 

 

iris = datasets.load_iris()

According to the DESCR property of the scikit-learn iris data set object:
This is perhaps the best known database [sic] to be found in the pattern 

recognition literature. Fisher's paper is a classic in the field and is 

referenced frequently to this day…. The data set contains 3 classes of 50 

instances each, where each class refers to a type of iris plant.

(To see the full description, run print(iris[‘DESCR’]) after loading theIris data set.) The DESCR property also explains the features present inthe data set:
print(iris['DESCR'][:500])

.. _iris_dataset:

 

 

Iris plants dataset

--------------------

 

 

**Data Set Characteristics:**

 

 

    :Number of Instances: 150 (50 in each of three classes)



    :Number of Attributes: 4 numeric, predictive attributes and the class

    :Attribute Information:

        - sepal length in cm

        - sepal width in cm

        - petal length in cm

        - petal width in cm

        - class:

                   - Iris-Setosa

                   - Iris-Versicolour

                   - Iris-Virginica

As the description indicates, each data point contains four features,which are labeled in iris[‘feature_names’]. The data itself is contained in
iris[‘data’]:
print(iris['feature_names'])

print(iris['data'][:5])

['sepal length (cm)', 'sepal width (cm)',

 'petal length (cm)', 'petal width (cm)']

[[5.1  3.5  1.4 0.2]

 [4.9  3.   1.4 0.2]

 [4.7  3.2  1.3 0.2]

 [4.6  3.1  1.5 0.2]

 [5.   3.6  1.4 0.2]]

(An Iris flower consists of similarly colored sepals and petals, but thesepals are longer and have a bulb shape that is wider than the petals, asis indicated by the data.)Each data point is also associated with its correct classification orclassification target. The iris[‘target’] member contains the numerical



classification target, and iris[‘target_names’] contains the description ofeach class, which in this case are three different types of Irises:
iris['target'], iris['target_names']

(array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

        0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

        2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

        2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]),

 array(['setosa', 'versicolor', 'virginica'], dtype='<U10'))

The first 50 elements are of class 0, the next 50 are of class 1, and thefinal 50 are of class 2. We will use this fact when plotting the data.The usual goal when working with this data set is to determine aclassification function that maps from the four-dimensional data to thethree classes. Here, we simplify the problem to just the first two classesand the first two features:
class01 = np.where(iris['target']<2)[0]

 

 

R = iris.data[class01][:,:2]

target2 = iris.target[class01]

The reduction to two features (sepal length and sepal width) allows usto plot the data as points using a scatter plot, as shown in Fig. 3.1. Thecode to generate this figure is online at la4ds.net/3-2.

http://la4ds.net/3-2


Fig. 3.1:  Plot of first two classes and first two features of Iris data set. ⏎
The plot of the data in Fig. 3.1 shows that these two features arealmost sufficient to distinguish between these two classes: data in thelower-right of the plot correspond to Versicolor, whereas data in theupper left correspond to Setosa. In fact, if we rotated the data by 40∘counter-clockwise, we could distinguish between the classes using onlythe first feature. This feature can be created using by projecting eachdata point onto the vector ~x = [cos 40

∘

, − sin 40

∘

]

⊤. I am going to createthat as a 2 × 1 column vector in NumPy:
x40cw = np.array([[ 0.76604444],

                  [-0.64278761]])



If we let the data point i be the column vector d
i

, then the R matrixhas rows that are the transpose of these data vectors:

We can choose any row of R with indexing and perform featureextraction by carrying out matrix multiplication between that 1 × 2 row
d

⊤

i

 and the 2 × 1 column vector x. For instance, here is row 2 times thefeature extraction vector:
R[2] @ x40cw

array([1.54348852])

The power of matrix multiplication is that it can do all of these row-times-vector multiplications with a single operation. If we multiply the
100 × 2 matrix R by the 2 × 1 feature-extraction vector ~x, then we get a
100 × 1 column vector:

Here, the horizontal lines are again used to indicate that the d⊤

i

 are rowvectors. Thus, we can perform the feature extraction with just the singlecommand:
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new_feature = R @ x40cw

For reference, let's print out the shapes of these three vectors. Here Iam showing them in the form that allows matching up with the equation
R

~

x = f ,

where f  is the vector containing the extracted features:
print( f'{R.shape} x {x40cw.shape} = {new_feature.shape}')

(100, 2) x (2, 1) = (100, 1)

The inner two dimensions have to agree for the dot product to work, andthese two dimensions are reduced to a single value for each of the otherdimensions. Thus, the dimension of the result is determined by the outertwo dimensions, which, in this case, is (100, 1). In fact, this result holdsfor all multiplication involving matrices. If A has dimensions k× ℓ and
B has dimensions ℓ ×m, then AB is a matrix with dimensions k×m.Now let's visualize the data to make sure that we achieved our goal offeature extraction. The following code plots the values of the newfeature and shows each class. I have used a random model to choose the
y-values in the graph because otherwise too many of the data points areoverlapping and hard to see.
import scipy.stats as stats

import matplotlib.pyplot as plt

 

 

# use random values for the y data so the

# individual points are easier to see



N = stats.norm(0.6, 0.05)

ypos = N.rvs(100)

 

 

plt.figure(figsize=(6,3))

 

 

# Plot the remaining points

plt.scatter(new_feature[:50], ypos[:50],

            color='C0', alpha=0.6,

            marker='o', facecolor='none')

plt.scatter(new_feature[50:-1], ypos[50:-1],

            color='C1', alpha=0.8,

            marker='x')

 

 

plt.xlabel('Feature');

plt.ylim(0.2,1.2);

plt.yticks([]);

plt.gca().spines['left'].set_visible(False)

Let's study this type of matrix-vector multiplication a bit more to buildup some additional knowledge about it. Suppose we let D be the matrixwhose columns are the data vectors,



where I have added the vertical bars to help convey the sense that eachof the d
i

 is a column vector. Then the matrix-vector product D⊤~

x looksvery similar to the dot product d⊤

i

~

x and is equal to the vector of dotproducts of the columns of D with the vector ~x:

Terminology review and self-assessment questionsInteractive flashcards to review the terminology introduced in thissection and self-assessment questions are available at la4ds.net/3-2,which can also be accessed using this QR code:

3.3 Matrix-Vector Multiplication as a Linear
TransformationWe start by defining a vector space:

DEFINITION
vector space

D = ,

| | |
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A vector space consists of a set of vectors and scalars, alongwith addition and multiplication operators, such that the resultof any scalar-vector multiplication and any addition of vectorsin the vector space results in a vector contained in that vectorspace.
We say that a vector space is closed under scalar multiplication andvector addition. In this book, the multiplication and addition operatorswill always be the standard operators for real vectors and scalars andwill not be explicitly listed when discussing vector spaces. Until Chapter6, we only consider Euclidean vector spaces:

DEFINITION
Euclidean vector spaceA Euclidean vector space of dimension n is denoted Rn andcontains all real n-vectors.
Consider an n-vector u and an m× n matrix M. Then v =Mu is an

m-vector, where each component of v is a linear combination of thecomponents of u. Since we can do this for any u ∈ Rn and for each u,
Mu ∈ R

m, we call this a linear transformation:
DEFINITION
linear transformation (from Rn to Rm)Let M be an m× n real matrix. For any vector u ∈ Rn,
v =Mu has components that are a linear combination of thecomponents of u, and v ∈ Rm. We say that M is a linear
transformation from Rn to Rm.

One of the most common linear transformations is from a vector spaceto the same vector space; i.e., if M is a n× n square matrix, then boththe input and output vectors belong to Rn. However, the output vector



can have a completely different length and point in a completelydifferent direction than the input vector. Moreover, we will see that theeffect of multiplying by M is different depending on the direction inwhich the vector u is pointing. On the other hand, it doesn't reallydepend on the length ∥ u ∥ because we can write the vector u as
u =∥ u ∥

~

u, where ~u is a unit vector. Then

so different lengths ∥ u ∥ just change the result proportionately. Thus, itis sufficient to understand how M affects different vectors by studyingits effect on the unit vectors.Let's visualize this effect in 2-D space for the following matrix:
M = np.array([[0.5, -4],

              [-2,   3]])

We will use the function transform_unit_vecs() from the PlotVec libraryto visualize the effect of this matrix on unit vectors. By default, thisfunction creates 16 unit vectors, evenly spaced around the unit circle, asinput vectors. It then left-multiplies each of these vectors by thespecified matrix and calculates the 16 output vectors. The input vectorsare plotted on the left, and the output vectors are plotted on the right:
from plotvec import transform_unit_vecs

transform_unit_vecs(M)

Mu =M ∥ u ∥

~

u

=∥ u ∥ (M

~

u),



The result is that the original unit vectors experience a combination ofrotation, stretching, and flipping (since the order of the colors aroundthe circle is reversed, and that cannot be achieved with just a rotation).Let's investigate this in more detail by considering a couple of examples.Consider first the unit vector u
0

= [1, 0]

⊤, which lies on the x-axis. Thecorresponding output vector is
u0= np.array([1,0])

 

 

v0 = M @ u0

v0

array([ 0.5, -2. ])

Since the input vector lies on the positive x-axis, the angle of rotation isequal to the angle of the output vector from the x-axis. This angle caneasily be calculated (in degrees) using trigonometry as



np.rad2deg(np.arctan2(v0[1], v0[0]))

-75.96375653207353

The input and output vectors are shown in Fig. 3.2. Although the inputvector's length is 1, the output vector's length is
np.linalg.norm(v0)

2.0615528128088303



Fig. 3.2:  Transformation of the unit vector x = [1, 0]

⊤ by the matrix M.
⏎

If we instead consider the input vector u
1

= [0, 1]

⊤, which correspondsto a unit vector on the positive y-axis, the output is
u1= np.array([0,1])

 

 



v1 = M @ u1

v1

array([-4.,   3.])

The angle of rotation is the difference between the angle of the outputvector from the x-axis and the angle (in degrees) of the input vectorfrom the x-axis (the latter of which we know is 90∘):
np.rad2deg(np.arctan2(v1[1], v1[0])) - np.rad2deg(np.arctan2(u1[1], u1[0]))

53.13010235415598

The input and output vectors in this case are shown in Fig. 3.3. We seethat not only are the vectors rotated by different amounts– they are evenrotated in different directions! In addition, the amount of scaling isdifferent. Again, the input vector length is 1, while the output vector'slength is
np.linalg.norm(v1)

5.0



Fig. 3.3:  Transformation of the unit vector y = [1, 0]

⊤ by the matrix M.
⏎

ExerciseLet w be a unit vector that is at angle ϕ from the positive x-axis. Try tomodify the angle phi in the following code to:
1. Find a value of phi such that the output vector and the input vectorare at the same angle. Make note of that value of phi and the lengthof the output vector.



2. Find a value of phi such that the output vector is in the oppositedirection of the input vector (i.e., the angle between the vectors is
±180

∘). Make note of that value of phi and the length of the outputvector.
# input vector angle (in degrees)

phi = 90

 

 

# create the input vector

phi_rad = np.deg2rad(phi)

w = np.array( [ np.cos(phi_rad), np.sin(phi_rad) ] )

 

 

# find output vector

z = M @ w

 

 

# find rotation from linear tranform and length of output vector

print('Rotation between input and output:',

         f'{np.rad2deg(np.arctan2(z[1], z[0]))   - 

np.rad2deg(np.arctan2(w[1], w[0])):

.2f}')

print(f'Length of output vector: {np.linalg.norm(z): .2f}')

Rotation between input and output:   53.13

Length of output vector:   5.00

You should have been able to find values of phi that satisfy each ofthese requirements. (In fact, there are two values in (−180

∘

, 180

∘

] thatwill satisfy each of these requirements because if phi satisfies the



requirement, so does phi ±180∘). The unit vectors you found are called
eigenvectors of the matrix M. We study eigenvectors in more detail inSection 3.6.Now consider how a linear transformation affects a region of space. Tovisualize this, we will represent a set of vectors within a region by pointslocated at the head of those vectors (as we did in Section 2.3). We willuse the function transform_field() from the PlotVec library to show thepoints before and after the linear transformation (multiplication by M).The transform_field() function generates a field of points in a squareregion (by default, the square of side 6 that is centered at the origin).This is shown in the plot on the left. The plot on the right shows howthose points are transformed when they are treated as vectors and left-multiplied by M.
from plotvec import transform_field

transform_field(M, preserve_axes=False)

Because points in a given direction are rotated, flipped, and scaled bythe same amount, the result is that the points in the square have beenstretched out in space (notice the different ranges of the axes) to form aparallelogram.



In 2-D space, a linear transformation will always map the points in asquare region into a parallelogram, except for some degenerate cases inwhich the parallelogram reduces to a line. Because the scaling factorsare identical regardless of the distance of the input points from theorigin, the ratio of the area of the output parallelogram to the inputsquare is a fixed constant that depends on the matrix M. The ratio ofthese areas is the absolute value of the determinant of M. Thedeterminant and its computation are discussed more in Section 3.5. InNumPy, the determinant function is part of the linear algebra libraryand can be called as np.linalg.det():
print(f'{np.abs( np.linalg.det(M) ):.2f}')

6.50

Since the area of the input rectangle is 6 × 6 = 36, the area of theparallelogram is 36 × 6.5 = 234.
Terminology review and self-assessment questionsInteractive flashcards to review the terminology introduced in thissection and self-assessment questions are available at la4ds.net/3-3,which can also be accessed using this QR code:

3.4 Matrix Multiplication

http://la4ds.net/3-3


Linear transformations are a powerful tool in feature extraction, as wesaw with the Iris data set. However, in most applications, we do not wishto project the data onto only one vector, which creates only one feature.We may want to extract multiple features for a high-dimensional dataset by projecting it onto many different vectors. We could iterate overthe set of vectors and compute the matrix-vector product for each one,but fortunately we do not have to do that. Matrix-matrix multiplication(we will just call this matrix multiplication) can be used to perform all ofthe products in a single operation.Matrix multiplication can be defined as an extension of matrix-vectormultiplication as follows:
DEFINITION
multiplication (matrix),
matrix productThe product of matrices A and B is written AB and is definedif the inner dimensions of these matrices agree; that is, if A is a
k× ℓ matrix and B is an ℓ ×m matrix. In that case, the outputis a k×m matrix C = AB, where the k,mth entry of C is givenby c

k,m

= a

k∗

⋅ b

m

 (the dot product of the kth row of A with the
mth column of B).

To understand the definition of matrix multiplication better, let's seehow to compute a matrix product by hand.
3.4.1 Computation of Matrix Product by HandThe algorithm for computing a matrix product by hand is very similar tothe algorithm for computing a matrix-vector product. Just as in matrix-vector multiplication, we iterate down the rows. However, in matrix-vector multiplication, we compute one dot product for each row. Inmatrix multiplication, for each row in the left-hand matrix, we computedot products with each of the columns in the right-hand matrix. Let's



extend our previous example to multiply our 3 × 2 matrix M by a 2 × 2matrix N, where

The product, which we will denote as W, has the outer dimensions ofthe two matrices, × 2 by 2 × ; thus, W is a 3 × 2 matrix. We canwrite the matrix product as

As before, we start with the first row (row 0) of the left matrix in thematrix product. We begin by computing the output-matrix element w
0,0by computing the dot product of row 0 of the left matrix with column 0of the right matrix. Since column 0 is the same as the vector used in ourprevious matrix-vector example, the result is the same:

To compute the element w
0,1

, we compute the dot product of row 0 ofthe left matrix with column 1 of the right matrix:

N = [ ].

2 1
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The components w
1,0

 and w
2,0

 will be the same as the dot products ofrows 1 and 2, respectively, of M with the vector y, so in each of thefollowing visual representations, we include both those computations aswell as the corresponding element w
1,1

 or w
2,1

. Starting with row 1 of M, we compute the dot products of that row with each of the columns of Uto get w
1,0

 and w
1,1

 as shown:

Finally, row 2 is used to compute w
2,0

 and w
2,1

:



The resulting matrix product values are:

Matrix multiplication in Python also uses the @ sign, and we can checkour work easily using NumPy:
M = np.array([[3, 4],

               [-1, 2],

               [2, 3]])

V = np.array([[2, 1],

               [-1, -2]])

print(M @ V)

[[ 2 -5]



 [-4 -5]

 [ 1 -4]]

Knowing how to perform matrix multiplication by hand is a useful skillfor engineers and scientists and will be helpful to data scientistslearning how machine learning algorithms work. However, in mostcases, a computer or calculator should be used for computing suchproducts to avoid errors in carrying out the many computations.
3.4.2 Properties of Matrix MultiplicationNote from the above discussion that the i,jth output element is alwaysthe dot product of the ith row of the left matrix with the jth column ofthe right matrix. Then consider arbitrary matrices A and B, where Ahas dimensions k× ℓ and B has dimensions ℓ ×m, the output is the
k×m matrix with the following form:

!
Important!

Order Matters!Note that order is very important in matrix multiplication. Ingeneral, AB ≠ BA. In fact, in many cases, one of theseproducts may be defined while the other is not definedbecause matrix multiplication requires that the innerdimensions of the matrices agree.
For instance, consider the matrices M and V in the example above.The matrix product VM is not defined because V is 2 ×  and M is
× 2, so the inner dimensions (shown boxed) do not agree. If we try toperform this multiplication in NumPy, it throws an error:
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V @ M

-------------------------------------------------------------------------

--

ValueError                                Traceback (most recent call 

last)

Cell In[6], line 1

----> 1 V @ M

 

 

ValueError: matmul: Input operand 1 has a mismatch in its core dimension 

0,

with gufunc signature (n?,k),(k,m?)->(n?,m?) (size 3 is different from 2)

Even if the dimensions allow the order to be swapped, the product ABis generally not equal to BA. For instance, let's append another columnto V to create a 2 × 3 matrix, Q:
new_col = np.array([[-4, 3]]).T

Q = np.hstack( (V, new_col))

print(Q)

[[ 2   1 -4]

 [-1 -2   3]]

Then not only is MQ ≠ QM, but the dimensions of the product evendiffer:
The ordered dimensions for MQ, with the outer dimensions boxed,are × 2 and 2 × . The product MQ will have dimension 3 × 3.3 3



The ordered dimensions for QM, with the outer dimensions boxed,are × 3 and 3 × . The product MQ will have dimension 2 × 2.
Let's use NumPy to compute these products:
print("MQ = ")

print(M @ Q)

print()

 

 

print("QM = ")

print(Q @ M)

MQ =

[[ 2 -5      0]

 [-4 -5 10]

 [ 1 -4      1]]

 

 

QM =

[[-3 -2]

 [ 5   1]]

Multiplication with the Identity MatrixIf we left- or right-multiply any matrix A by an appropriately-sizedidentity matrix, the result is the matrix A. Examples are shown belowusing NumPy:
print('M = ')

print(M, '\n')

 

2 2



 

print('MI = ')

print( M @ np.eye(2, dtype=int), '\n' )

 

 

print("IM = ")

print( np.eye(3, dtype=int) @ M   )

M =

[[ 3   4]

 [-1   2]

 [ 2   3]]

 

 

MI =

[[ 3   4]

 [-1   2]

 [ 2   3]]

 

 

IM =

[[ 3   4]

 [-1   2]

 [ 2   3]]

Multiplication and TransposeRecall again the form of the product AB, where A has dimensions k× ℓand B has dimensions ℓ ×m,



If we take transposes of A and B, then the matrix product is notgenerally defined because A⊤ is ℓ × k and B⊤ is m× ℓ. Moreover, theproduct A⊤

B

⊤ would now be equivalent to multiplying the columns of
A with the rows of B, which would be very different than multiplyingthe rows of A with the columns of B.However, consider the product B⊤

A

⊤. The ordered dimensions agree:
m× ℓ and ℓ × k, and the dimensions of the product will be m× k. Therows of B⊤ are the columns of B, and the columns of A⊤ are the rowsof A. Dot product commutes (does not care about order), so eachproduct of a row of B⊤ and a column of A⊤ is one of the components in
AB. We can write the product B⊤

A

⊤ as dot products of the rows of Aand columns of B as

Thus, the transpose of a product of matrices is the product of thetransposes of those individual matrices in reverse order.
3.4.3 Application of Matrix Multiplication to Rotating Data
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Recall the 40∘ rotation vector we used for feature extraction in Section3.2.4, the vector ~x = [cos 40

∘

, − sin 40

∘

]

⊤. We can create a vector at 90∘to this vector as ~
y = [sin 40

∘

, cos 40

∘

]

⊤. If we stack these vectors into thecolumns of a matrix, then it will be an orthogonal matrix:
DEFINITION
orthogonal matrixA (real) square matrix whose columns are a set of orthonormalvectors.
To check if a matrix is an orthogonal matrix, we just need to confirmthat the product of any two columns is equal to 0 and the product of anycolumn with itself is equal to 1. Note that the rows of U⊤ are thecolumns of U. Thus, we can efficiently find all the products between allpairs of columns using matrix multiplication of the form U⊤

U. Formatrix U to be orthogonal, the equivalent conditions for U⊤

U are:
all of the off-diagonal elements of U⊤

U, which correspond to dotproducts of two different columns, should be zero, andall of the diagonal elements of U⊤

U, which correspond to dotproducts of columns with themselves, should be one.
If U is an orthogonal matrix, then U⊤

U = I. Note that U⊤

U is equalto UU⊤ because the transpose of I is still I. So, we can check whether amatrix is an orthogonal matrix by checking whether UU⊤

= I.Let's check whether the matrix of rotation vectors is an orthogonalmatrix:
cos40 = np.cos( np.deg2rad(40) )

sin40 = np.sin( np.deg2rad(40) )

 

 

x40cw = np.array([[cos40, -sin40]]).T



y40cw = np.array([[sin40, cos40]]).T

 

 

U = np.hstack( (x40cw, y40cw) )

Here we used np.hstack() to horizontally stack the column vectors into amatrix. Note that np.hstack()'s argument is a tuple containing thevectors or matrices to be horizontally stacked together.Let's calculate U⊤

U and UU⊤ for this matrix:
print(np.round(U.T @ U, 10), '\n')

print(np.round(U @ U.T , 10))

[[1. 0.]

 [0. 1.]]

 

 

[[ 1. -0.]

 [-0.   1.]]

We see that either check confirms that U is an orthogonal matrix. Infact, this is a special type of orthogonal matrix called a rotation matrix.It is easy to see the effect of this rotation matrix as a lineartransformation by looking at the output of transform_field(U,

preserve_axes=False), which is shown in Fig. 3.4. I have fixed the axislimits to be equal. The output field of points is a rotated version of theinput field of points.



Fig. 3.4:  Visualization of linear transformation of points for the matrix
U created from rotated basis vectors. ⏎
Gram MatrixIn our test for an orthogonal matrix, we found the inner products of allpairs of columns of U. We can apply this same calculation to any matrix
A to get the Gram matrix:

DEFINITION
Gram matrixFor a matrix A, the Gram matrix is the matrix whose i,jth entryis the dot product of columns i and j of A. The Gram matrix canbe calculated as A⊤A.
Let A be a k×m matrix, and let ai denote the ith column of A. Thenthe Gram matrix has the following form:



Since dot product is commutative, we see that the i,jth element andthe j,ith element of the Gram matrix are equal. The Gram matrix is a
symmetric matrix:

DEFINITION
symmetric matrixA matrix M is symmetric if the i,jth element is equal to the j,ithelement for any valid i and j. Equivalently, M⊤

=M.
Let's compute the Gram matrix for the matrix M that we have beenusing in our examples:
print(M.T @ M)

[[14 16]

 [16 29]]

We see that the Gram matrix is symmetric, as expected. Note that theGram matrix of N =M

⊤ is not the same as the Gram matrix of Mbecause it is equivalent to finding the inner products of all of the rowsof M.
N = M.T

print(N.T @ N)

A

⊤

A = .

a

0

⋅ a

0

a

0

⋅ a

1

… a

0

⋅ a

m−1

a

1

⋅ a

0

a

1

⋅ a

1

… a

1

⋅ a

m−1

⋮ ⋮ ⋮

a

m−1

⋅ a

0

a

m−1

⋅ a

1

… a

m−1

⋅ a

m−1



[[25   5 18]

 [ 5   5   4]

 [18   4 13]]

Example Using Real Data: Extracting Multiple FeaturesLet's see how to use matrix multiplication to extract multiple featuressimultaneously. For simplicity, I will again use the Iris data but nowcreate two features by projecting the data onto each of the orthogonalvectors ~x and ~y from the example above.If we want to get both features for the rotated data, we can usematrix-vector multiplication twice, as shown in the code below:
from sklearn import datasets

iris = datasets.load_iris()

class01 = np.where(iris['target']<2)[0]

R = iris.data[class01][:,:2]

 

 

new_feature0 = R @ x40cw

new_feature1 = R @ y40cw

However, we could instead compute both features simultaneously usingmatrix multiplication as
new_features = R @ U

print(new_features[:5])

[[1.65707001 5.95937235]

 [1.82525493 5.44779261]

 [1.54348852 5.47244398]



 [1.53116283 5.33156077]

 [1.5161868  5.97169803]]

If we compare with the outputs of the separate dot products, we seethat the results are the same. In general, the matrix multiplicationversion will be faster because it can take advantage of vectorizedcomputations in the microprocessor and has the additional benefit thatthe results are stored together in a single NumPy array.
print(new_feature0[:5])

print()

print(new_feature1[:5])

[[1.65707001]

 [1.82525493]

 [1.54348852]

 [1.53116283]

 [1.5161868 ]]

 

 

[[5.95937235]

 [5.44779261]

 [5.47244398]

 [5.33156077]

 [5.97169803]]

Terminology review and self-assessment questionsInteractive flashcards to review the terminology introduced in thissection and self-assessment questions are available at la4ds.net/3-4,which can also be accessed using this QR code:

http://la4ds.net/3-4


3.5 Matrix Determinant and Linear TransformationsIn Section 3.2.4, we found that an n× n square matrix can be seen as alinear transformation from Rn to Rn. I showed by example that such alinear transformation stretches or compresses space, and I claimed thatthe amount of that stretch is related to a property of square matricescalled the determinant:
DEFINITION
determinantFor a square matrix M, the determinant is a scalar value that isrelated to how M stretches or compresses space if it is used asa linear transformation. The determinant of M is denoted by

detM or |M|. The determinant may be positive, negative, orzero.
Note that I did not include a formula for the determinant. That isbecause there is no simple formula for the determinant of general n× nmatrices. In this section, I will only teach you how to find thedeterminant for 2 × 2 matrices by hand. There is also a simple approachfor finding the determinant of 3 × 3 matrices, but in most cases,determinants should be found using computers or calculators. In a latersection, I will show you how to find the determinant for any matrix byfinding a related matrix that is in upper triangular form.Finding the determinant for a 2 × 2 matrix is easy: multiply thediagonal elements and subtract the product of the off-diagonal elements,



as shown below:

We can use the NumPy function np.linalg.det() or the PyTorch function
torch.linalg.det()to calculate the determinant of arrays or tensors,respectively. If we have a SymPy Matrix object, we can call the det()method. I give examples for NumPy and SymPy below.Below I show several examples of 2 × 2 matrices and show how tocalculate the determinant for each. Each determinant is checked usingNumPy. Then I use a plot to show how each matrix translates auniformly spaced set of points in a rectangle of 2-D space to another 2-Dspace. Finally, I discuss the interpretation of the determinant withrespect to how the matrix transforms points in 2-D space.For each of the matrices, I plot the location of the points shown in Fig.3.5 after the linear transformation. We again use the plot_field()function from the PlotVec library that takes a square field of points andplots the points after a linear transformation. Fig. 3.5 shows the defaultfield of points at the input, which is the output of plot_field() with thedefault matrix parameter, which is I

2

, a 2 × 2 identity matrix. The code togenerate all of the plots of fields of points is available online atla4ds.net/3-5. Note that the area of the input field of points is
[3 − (−3)] [(3 − (−3)] = 36.

http://la4ds.net/3-5


Fig. 3.5:  Field of points uniformly spaced over the region
[−3, 3] × [−3, 3]. ⏎

Example 3.4: Multiplication by a Diagonal Matrix with
Components Greater than 1

Let's start with a simple case: a diagonal matrix with positivecomponents that are greater than 1:

The transformed field of points is shown in Fig. 3.6, where therange of the axes was increased to accommodate the transformedfield of points. The new field is still a rectangle, with lower-leftcorner (-6, -15) and upper-right corner (6, 15), and no rotation ofthe points has occurred. The x-coordinates have been expanded by afactor of 2, and the y-coordinates have been expanded by a factor of

M

1

= [ ].

2 0

0 5



5, corresponding to the components on the diagonal of M
1

: adiagonal matrix individually scales the x- and y-coordinates.

Fig. 3.6:  Field of points after transformation by diagonal matrixwith components greater than 1. ⏎
The area of the region is 12 × 30 = 360, which is 10 times largerthan the area of the original field. The determinant calculation isshown below:

Long Description Unnumbered Figure 1



The determinant is equal to the factor by which the lineartransformation changed the area of the field of points. Let's checkusing NumPy:
M1 = np.diag([2,5])

print(M1)

print()

print(f'|M1| = {np.linalg.det(M1): .1f}')

[[2 0]

 [0 5]]

 

 

|M1| =    10.0

Example 3.5: Multiplication by a Diagonal Matrix with
Positive Components Smaller than 1

Now consider a diagonal matrix with positive components that aresmaller than 1:

Fig. 3.7 shows the field of points after the linear transformation. Thelinearly transformed points fit in a small subregion of the originalarea. As expected from our previous example, the x- and y-components are individually scaled by the correspondingcomponents of the diagonal matrix. Thus, the field is scaled by 0.2 inthe x-dimension and 0.5 in the y-dimension. The ratio of theresulting area to the area of the original field of points is 0.1, whichis the determinant of M
2

:

M

2

= [ ].

0.2 0

0 0.5



Long Description Unnumbered Figure 2

Fig. 3.7:  Field of points after transformation by diagonal matrixwith positive components that are smaller than 1. ⏎
Let's check using NumPy:

M2 = np.diag([0.2, 0.5])

print(f'|M2| = {np.linalg.det(M2):.2f}')



|M2| = 0.10

Example 3.6: Multiplication by a Diagonal Matrix with
Positive and Negative Components

Next consider what happens if one of the elements is negative.Consider the matrix

The field of transformed points is shown in Fig. 3.8. If you comparethe colors of the points in the original field of points with those inthe transformed field, it should be obvious the field of points hasbeen flipped in the y direction (i.e., around the x-axis). The factor of-0.5 results in each positive y-component at the input being mappedto a negative value at the output, and each negative y-component atthe input being mapped to a positive value at the output.

M

3

= [ ].

0.2 0

0 −0.5



Fig. 3.8:  Field of points after transformation by diagonal matrixwith positive and negative components with magnitudes smallerthan 1. ⏎
The area is still scaled by 0.1, which is the absolute value of thedeterminant, 0.2 ⋅ (−0.5) − 0 ⋅ 0 = −0.1. We can verify usingNumPy:

M3 = np.diag([0.2, -0.5])

print(f'|M3| = {np.linalg.det(M3):.2f}')

|M3| = -0.10

Example 3.7: Multiplication by an Orthogonal Matrix



Now let's consider the orthogonal matrix U from Section 3.4:
U = np.array([[ 0.76604444,   0.64278761],

              [-0.64278761,   0.76604444]])

The transformed field of points is shown in Fig. 3.9. From the figure,it appears that the linear transformation using U does not scale thearea of the field of points but only rotates it by 40∘ clockwise.

Fig. 3.9:  Field of points after transformation by an orthogonalmatrix. ⏎
If the area of the field of points is unchanged, the determinantshould be 1. The determinant of this matrix is

(0.76604444)

2

− (0.64278761)(−0.64278761) = 1. Let's check usingNumPy:



print(f'Determinant of U matrix: {np.linalg.det(U):.1f}')

Determinant of U matrix: 1.0

This is a general property that we will prove later: The determinant
of an orthogonal matrix is 1.

Example 3.8: General Linear Transformation

Consider again the matrix used to demonstrate a lineartransformation of a field of points in Section 3.3. This lineartransformation rotates, scales, and flips the points in the field,transforming the original square region into a parallelogram, asshown in Fig. 3.10. It can be shown that the area of theparallelogram is equal to the product of the absolute value of thedeterminant and the area of the original region, which is shownbelow:

Long Description Unnumbered Figure 3



Fig. 3.10:  Field of points after transformation by a general matrix.
⏎

We can confirm this using NumPy:
M5 = np.array( [[0.5, -4],

                [ -2,   3]] )

np.linalg.det(M5)

print(f'determinant of matrix M5 = {np.linalg.det(M5):.1f}')

determinant of matrix M5 = -6.5

Thus the area of the parallelogram is equal to 36 |−6.5| = 234.



Example 3.9: Transformation by a Singular Matrix

Consider the following matrix and its determinant:
M6 = np.array([[1, -2],

              [2,   -4]])

print(f'determinant of matrix M6 = {np.linalg.det(M6):.1f}')

determinant of matrix M6 = 0.0

M6 is said to be singular:
DEFINITION
singular (matrix)A square matrix M is singular if detM = 0.
The other matrices in our examples are nonsingular:
DEFINITION
nonsingular (matrix)A square matrix M is nonsingular if detM ≠ 0.
Let's plot the field of transformed points to see the effect ofmultiplication by a singular matrix:

plot_field(M6, preserve_axes=False)



The rectangular region of points has been mapped to a linesegment. The output points all lie along a single dimension withinthe two-dimensional output space. In general, a lineartransformation that can be represented using a singular matrix willmap to a lower dimensional subspace within the output space. I willprovide additional interpretation of what it means for a matrix to besingular/nonsingular in Section 4.2.
3.5.1 Properties of the DeterminantThe determinant has many useful properties, but here are a few of themost important ones:
1. The determinant of an identity matrix is 1.2. The determinant of a matrix and the determinant of the

transpose of a matrix are the same: detM ⊤

=detM.



3. The determinant of a matrix product is the product of the
determinants: det (AB) = (det A) (det B).4. For a triangular matrix, the determinant is the product of the
elements on the main diagonal. This property is useful for findingthe determinant without any special formula because we will showhow to put any matrix in upper-triangular form in Section 4.1.

Terminology review and self-assessment questionsInteractive flashcards to review the terminology introduced in thissection and self-assessment questions are available at la4ds.net/3-5,which can also be accessed using this QR code:

3.6 Eigenvalues and EigenvectorsConsider a square n× n matrix M that can be interpreted as a lineartransformation from Rn

→ R

n. As shown in Section 3.3, a matrix M cantransform different vectors in different ways. In particular, we can seefrom the output of the transform_unit_vecs() command in Section 3.3 thatfor a two-dimensional space, vectors at different angles are scaled androtated by different amounts.For a nonsingular matrix, we can find output-vectors at every angle.Since we can create input vectors at every angle, there may be someinput vectors for which the output vectors are at the same angle as theinput vectors. If u is such a vector, then Mu should be in the samedirection as u but may have a different length. Equivalently, Mu shouldbe a scaled version of u. Mathematically, such a vector would satisfy

http://la4ds.net/3-5


Mu = λu for some real constant λ. We call such a vector an eigenvectorof M:
DEFINITION
eigenvectorGiven a square n× n matrix M, a non-zero n-vector u is an

eigenvector of M if there exists a real constant λ such that
Mu = λu

(3.2)
for some real constant λ.

Here, eigen is the German word for own, meaning that for a givenmatrix, such vectors are special characteristics of that matrix. Any value
λ that satisfies this equation for some eigenvector u is called an
eigenvalue of M:

DEFINITION
eigenvalueGiven a square n× n matrix M, a constant λ is an eigenvalueof M if there exists a non-zero vector u such that

Mu = λu.

!
Important!There may be multiple vectors u that satisfy (3.2), so we add asubscript i to distinguish them. Each eigenvector u

i

 has anassociated eigenvalue λi to satisfy (3.2). It is best to think ofthem as an eigenvector-eigenvalue pair, (u
i

,λ

i

).



Suppose that (u
i

,λ

i

) are an eigenvector-eigenvalue pair of a matrix M. Consider a vector cu
i

, where c is a constant. Then

Thus, cu
i

 is also an eigenvector of M with the same eigenvalue λi. Froma geometric perspective, this makes sense because cu
i

 is in the same (orexact opposite) direction as u
i

, and so we expect a linear transformationto affect it in the same way. Because of this, when we calculate andreport eigenvectors, we typically report the eigenvectors that have unitnorm; we will call these the unit eigenvectors. But you should keep inmind that any scaled version of a unit eigenvector of a matrix is also aneigenvector of that matrix. If (u
i

,λ

i

) are a unit eigenvector andeigenvalue pair, then −u
i

 is also a unit eigenvector with eigenvalue λi,and so we only report one of u
i

 and −u

i

 when reporting uniteigenvectors. The choice of which one is reported depends on theimplementation for finding the eigenvectors.NumPy has two commands to find the (unit) eigenvector-eigenvaluepairs of a matrix. Both commands are part of NumPy's linalg module1.For convenience, we will import this module as la. The most generalmethod works for arbitrary square matrices and can be called as
la.eig(). For real symmetric matrices (or more generally complexmatrices that are Hermitian – i.e., have complex-conjugate symmetry),the la.eigh() function is faster and more accurate. Both la.eig() and
la.eigh() return an object that has two components:
1. The first output is a vector of the eigenvalues. We will use λ todenote the vector of eigenvalues and Λ to denote a diagonal matrixwhose diagonal elements are the eigenvalues. However, in Python,lambda is reserved keyword, and so I will use lam for the eigenvaluevector.

M (cu

i

) = cMu

i

= cλ

i

u

i

= λ

i

(cu

i

).



2. The second output is a matrix with unit eigenvectors in its columns.It is called the modal (pronounced moh-dull) matrix, and is usuallydenoted by U.
_________________ 1PyTorch has equivalent commands that are part of PyTorch's linalg module. ⏎

DEFINITION
modal matrixFor a square matrix M, the modal matrix is a matrix whosecolumns are the unit eigenvectors of M.

The outputs are aligned in the sense that the ith entry of the eigenvaluevector corresponds to the ith column of the modal matrix.Let's practice using NumPy to find the eigenvalues and eigenvectorsof a matrix with an example:
Example 3.10: Eigenvectors and Eigenvalues of a 2 × 2

Matrix  ⏎

In Section 3.3, a matrix M
5

 was used to study the effect of alinear transformation. That section included an exercise in whichyou were asked to experimentally find the orientations of unitvectors that produced output vectors at the same angles. Thevectors at these orientations are the eigenvectors of that matrix.The code below shows how to check your results by finding theeigenvectors using la.eig():
import numpy.linalg as la

 

 

M5 = np.array([ [0.5, -4],

               [-2,     3] ])



lam5, U5 = la.eig(M5)

lam5, U5

(array([-1.34232922,    4.84232922]),

 array([[-0.90828954,    0.67752031],

        [-0.41834209, -0.73550406]]))

Let's confirm that the columns of the returned modal matrix (storedin the variable U5) are eigenvectors of M
5

. Let u
0

 and u
1

 denote thecolumns of U
5

. Then we first compute the output vectors Mu
0

 and
Mu

1

:
out0 = M5 @ U5[:, 0]

out0

array([1.21922359, 0.56155281])

out1 = M5 @ U5[:, 1]

out1

array([ 3.28077641, -3.56155281])

Now we can check to see if the output vectors are scaled versions of
u

0

 and u
1

. To test this, we can perform element-wise division on thevectors and check whether the output is of the form c1 for someconstant c. Let's start with the first output vector:



out0 / U5[:, 0]

array([-1.34232922, -1.34232922])

Not only is the output a scaled version of the input, it is equal to
λ

0

u

0

, where λ0 is the eigenvalue that corresponds to eigenvector u
0. Let's check for input vector u

1

:
out1 / U5[:, 1]

array([4.84232922, 4.84232922])

We can see that the output can be written as λ
1

u

1

.
Fig. 3.11 illustrates how the eigenvectors of the matrix M

5

 relate tohow that matrix linearly transform space2. The left subplot shows aninput field of points on the rectangle with x-values and y-values from -1to 1. Overlaid on this subplot are the unit eigenvectors for M
5

 that wefound above. For each eigenvector, the closest point to the origin that isin the general direction of that eigenvector, while being beyond thehead of that eigenvector, is marked with an ‘x’. The right subplot showsthe field of points after the linear transformation from multiplying by
M

5

. The output field of points is overlaid by each eigenvector of M
5scaled by its corresponding eigenvalue. For each input point in the leftsubplot that is marked with ‘x’, the corresponding output point ismarked with ‘x’ in the right subplot. It can be seen from the figure thatthe colors of the points in the directions of the eigenvectors are the



same in each plot. The points along the eigenvector with a negativeeigenvalue end up in an orientation that is flipped opposite of the origin.The negative eigenvalue indicates that the matrix M
5

 results in not justrotation and stretching, but also flipping of the points in space. Themagnitudes of the eigenvalues show how much the field of points isstretched along the corresponding eigenvectors.

Fig. 3.11:  Field of points before and after linear transformation bymatrix M
5

. Input field is overlaid with unit eigenvectors; output field isoverlaid with unit eigenvectors scaled by corresponding eigenvalues. ⏎
_________________ 2The code to create this figure is online at la4ds.net/3-6 ⏎We can solve Equation 3.2 for the eigenvalues and eigenvectors, but todo so requires understanding how to solve systems of linear equations.We introduce the necessary techniques in Chapter 4 and show how toapply them in Section 6.4 to:

solve for the eigenvalues and eigenvectors of a matrix,factor certain matrices in terms of their modal matrix and thediagonal matrix of eigenvalues,

http://la4ds.net/3-6


calculate the determinant from the eigenvalues and determinewhether a matrix is singular based on its eigenvalues, anduse the eigenvectors to represent data in a way that allows us toidentify the most important information conveyed by that data.
Terminology review and self-assessment questionsInteractive flashcards to review the terminology introduced in thissection and self-assessment questions are available at la4ds.net/3-6,which can also be accessed using this QR code:

http://la4ds.net/3-6


3.7 Chapter SummaryThis chapter introduced matrices, special types of matrices, andmathematical operations involving matrices. In particular, I showed thatmatrix-vector and matrix-matrix multiplication generalize and extendthe dot product. I showed how matrix-vector multiplication can be usedfor feature extraction. I also introduced the concept of matrixmultiplication as a linear transformation between vector spaces. Iintroduced the determinant of a matrix, which quantifies how much amatrix stretches or compresses space when used as a linear transform,and we considered multiple examples to understand these concepts inmore detail. Finally, I introduced the concepts of eigenvectors andeigenvalues of a matrix, showed how to find them using NumPy, andshowed how to interpret them.
Access a list of key take-aways for this chapter, along with interactiveflashcards and quizzes at la4ds.net/3-7, which can also be accessedusing this QR code:

http://la4ds.net/3-7


4
Solving Systems of Linear
Equations

DOI: 10.1201/9781032664088-4
Linear equations are often used to represent the relationshipsamong different variables or features. When we have multiplelinear equations describing such relationships, the set ofequations is called a system of linear equations. In this chapter, Ishow how to use matrix techniques to solve systems of linearequations. I also introduce matrix inverses and their properties.

https://doi.org/10.1201/9781032664088-4


4.1 Working with Systems of Linear Equations
Using Matrices and Vectors – Part 1Matrices are very useful for working with systems of linearequations. They allow us to write such equations concisely and tosolve them efficiently. Let's use some examples to motivate ourwork.Let's start with this simple equation:

y = 4x− 2.

This is the equation for the line shown in Fig. 4.1.





Fig. 4.1:  The line given by y = 4x− 2. ⏎
When we plot a line to represent that equation, what we arereally illustrating is the solution set for that equation:
DEFINITION
solution set (equation/system of equations)Given an equation, the solution set is the set of all pointsthat satisfy the equation. For a system of equations, thesolution set is the set of all points that simultaneouslysatisfy all of the equations.
The equation of this line is a linear equation:
DEFINITION
linear equationA polynomial in one or more variables, in which all thevariables have degree 1. If the variables are

x

0

,x

1

,… ,x

n−1

, then a linear equation in the variablescan be written as
n−1

∑

i=0

a

i

x

i

= c,

for some real constants a
i

, i = 0, 1,… ,n− 1 and c. Suchan equation specifies a line in n-dimensional Euclideanspace.
Note: Linear vs. Affine



Technically, what we call linear equations do not satisfy therequirement for a function to be linear unless the constantterm is 0. When the constant term is nonzero, such equationsare said to be affine. However, we will use the usualconvention of referring to these as linear equations.
Now suppose that we have two different equations for lines in2-D space, as shown in the following equations:

The lines representing these equations are shown in Fig. 4.2. Ascan be seen from the figure, the lines intersect at the point (1, 2).Another way to interpret this is that the point (1, 2) is the onlypoint that satisfies both these equations. When interpretedtogether like this, we call the two equations a system of linear
equations:

y = 3 − x

y = 4x− 2.





Fig. 4.2:  Two linear equations. ⏎
DEFINITION
system of linear equationsA collection of linear equations on a common n-dimensional space (typically Rn) that are interpretedtogether, typically with the purpose of finding the subsetof the space that satisfies all of the equationssimultaneously.
A system of linear equations can be written concisely usingmatrices and vectors. To do this, we have to allow vectors (and,more generally, matrices) to contain variables. Let's see how thisworks by writing each of the linear equations above as the dotproduct of a coefficient vector and a variable vector. Start byrewriting the equations with the variables on the left-hand side:

Create a variable vector [x, y]T . Then the first equation can bewritten as

and the second equation has the same form,

x+ y = 3

−4x+ y = −2

[ ] [ ] = 3,1 1

x

y

[ ] [ ] = −2.−4 1

x

y



We have two dot products involving the same right-hand vector,and we can express these concisely using matrix-vectormultiplication as

Now consider a general system of m equations in n variables
x

0

,x

1

,… ,x

n−1

:

The ith equation can be written as a dot product of the form

Let A be the coefficient matrix

and let

[ ] [ ] = [ ].

1 1
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be a vector of variables. Let

Then we can write this system of linear equations concisely as
Ax = b.

We will call the vector b the result vector, but it is also sometimesreferred to as simply the right-hand side.
4.1.1 Types of Solution SetsGiven a system of linear equations represented by Ax = b, anumerically valued vector v is a solution to the system of linearequations if the system holds for x = v; i.e.,

Av = b.

Such a solution is not necessarily unique, nor does every systemof linear equations necessarily have any solutions. In general, thesolution set of a system of linear equations may consist of:
one unique solution,many solutions, or

x =

⎡

⎢

⎣

x

0

x

1

⋮

x

n−1

⎤

⎥

⎦

b = .
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⎣

b

0

b

1

⋮

b

m−1

⎤

⎥

⎦



no solutions.
Let's build some intuition about these different cases, startingwith two-dimensional examples. We have already seen anexample of a system of equations with one solution, so in thefollowing examples, we consider systems with many or nosolutions:
Example 4.1: System of Linear Equations with

Many Solutions

Consider the equations

To plot these, let's rewrite each equation in the form
y = mx+ b, which we do by first moving the x variable termsto the right-hand side:

Next, divide the first equation by -1 and the second equationby 3 to get

Both equations define the same line, as shown in Fig. 4.3.The solution to each equation is the set of points shown alongthe line in the figure. Thus, any of the points on the line

2x− y = −3

−6x+ 3y = 9.

−y = −2x− 3

3y = 6x+ 9.

y = 2x+ 3

y = 2x+ 3.



y = 2x+ 3 is a valid solution to the system of equations.There are an infinite number of such solutions.





Fig. 4.3:  Example of two linear equations that have manysolutions. ⏎
Example 4.2: System of Linear Equations with No

Solutions

Consider the equations

Writing these in slope-intercept form, we have

These equations have the same slopes but different y-intercepts. A graph of the lines that represent the solutions tothese equations is shown in Fig. 4.4.

2x− y = −3

2x− y = 0.

y = 2x− 3

y = 2x+ 0.





Fig. 4.4:  Plot of two linear equations with no solutions. ⏎
Because these lines have the same slopes, they are paralleland thus never intersect. Thus, there are no points that cansimultaneously solve these equations. We say that this systemof equations is inconsistent:

DEFINITION
inconsistent (system of equations)A system of equations is inconsistent if there are nopoints that simultaneously satisfy all of the equations.
Example 4.3: Another System of Linear Equations

with No Solutions

Consider the set of equations shown below:

A graph of these lines is shown in Fig. 4.5.

x+ y = 3

−4x+ y = −2

6x+ y = 3.





Fig. 4.5:  Graph of system of three linear equations with nosolution. ⏎
This set of equations has no solution because the three setsof lines do not intersect at a common point. If we take anytwo lines, then they intersect at a single point. The first twoequations are the same as in our original two-equationexample, and thus intersect at (1, 2). From the graph, we seethat the first and third equations intersect at (0, 3), and thesecond and third intersect (0.5, 0).Since there is no common intersection, there is no solutionto this set of equations. This system is overdetermined:

DEFINITION
overdetermined (system of equations)A system of equations is overdetermined if there aremore equations than unknowns.
An overdetermined system of equations will often beinconsistent and have no solutions (unless some equations can bewritten as linear combinations of the other equations – we explorethis more in Section 4.2).
Example 4.4: Three-Dimensional System with

Many Solutions

Consider the set of equations
x

1

+ x

2

= 1

x

2

+ x

3

= 2.



This system of equations is underdetermined:
DEFINITION
underdetermined (system of equations)A system of equations is underdetermined if there arefewer equations than unknowns.
A system of underdetermined equations always has an
infinite number of solutions.

To see that this is true for this set of equations, suppose wechoose any value of x1. Then we are left with two equations intwo unknowns, and we can find a solution to the set ofequations. Since we can do this for every value of x1, thereare an infinite number of solutions. Fig. 4.6 shows thesolutions to the linear equations for three different values of
x1: when x

1

= −1, when x
1

= 0, and when x
1

= 2. When x1 isfixed to a particular value, then the first equation can be putin the form x
2

= c for some constant value c that depends onthe value to which x1 has been fixed. If we plot these twoequations with x2 on the horizontal axis and x3 on the verticalaxis, then the first equation is a vertical line for each value of
x1.



Fig. 4.6:  Example solution sets for system ofunderdetermined equations in three variables. ⏎
Fig. 4.6 shows the vertical lines that correspond to the firstequation for each of the three different values of x1. It alsoincludes the line for the second equation. From the figure, wesee that this system of equations has a unique solution for

each different value of x
1

. This system of equations has adifferent solution for each value of x1 and therefore has aninfinite number of solutions. Some of the solutions,corresponding to the three values of x1 listed above, are
(2,−1, 3), (0, 1, 1), and (−1, 2, 0).



4.1.2 Solving Systems of Linear Equations through Row
OperationsIn the remainder of this section, we will consider systems of nlinear equations in n variables with a single unique solution. Wewill solve such a system and learn how we can apply matrixtechniques to facilitate solving the system. Consider the system ofthree equations in three variables shown below:

This is an example of a critically determined system ofequations:
DEFINITION
critically determined (system of equations)A system of equations is critically determined if thenumber of equations equals the number of unknowns.

Such a system can be solved algebraically by using linearcombinations of the equations to eliminate variables. Let's seeone example of how this can be done and how this connects withoperations to the matrix representation.Consider first eliminating the variable x0 from the secondequation. We can do this by multiplying the first row by 1/2 andadding it to the second equation:

4x

0

− 3x

2

= −1

−2x

0

+ 3x

1

+ x

2

= −4

3x

1

− 4x

2

= −15.



Consider the effect of this operation on the system of equationsexpressed in matrix form, Ax = b. The original form of thesystem of equation is

Let's define the corresponding coefficients matrix A and resultsvector b as variables using NumPy:
# Be sure to include a decimal point after one of the numbers so 

that we are

# not restricted to integer values when we start manipulating this 

array

A = np.array([[   4.,   0,   -3],

              [   -2,   3,    1],

              [    0,   3,   -4]])

 

 

b= np.array([[-1.],

             [-4 ],

             [-15]])

− 2x

0

+ 3x

1

+ x

2

= −1

+

1

2

[ 4x

0

−3x

2

= −4 ]

gives 3x

1

−

1

2

x

2

= −

9

2

.

= .

⎡

⎢

⎣

4 0 −3

−2 3 1

0 3 −4

⎤

⎥

⎦

⎡

⎢

⎣

x

0

x

1

x

2

⎤

⎥

⎦

⎡

⎢

⎣

−1

−4

−15

⎤

⎥

⎦



The operation of adding 1/2 of the first equation to the secondequation can be implemented by
adding 1/2 of row 0 of A to row 1 of A, andadding 1/2 of row 0 of b to row 1 of b.

Let A2 and b2 be the modified matrix and vector:
A2 = A.copy()

A2[1] = A2[1] + 0.5* A2[0]

 

 

print(A2)

[[ 4.   0.   -3. ]

 [ 0.   3.   -0.5]

 [ 0.   3.   -4. ]]

b2 = b.copy()

b2[1] = b2[1] + (1/2)* b2[0]

print(b2)

[[ -1. ]

 [ -4.5]

 [-15. ]]



Comparing the matrix equation with A2 and b2 to the algebraicequation, we see that they are the same. It is tedious to have tomanipulate the rows of A and b separately. To simplify our work,we can concatenate the columns of these matrices into an
augmented matrix:

DEFINITION
augmented matrixFor a system of linear equations that can be expressed inmatrix form Ax = b, the augmented matrix (A|b) is thematrix created by concatenating the columns of A and b. It is used to simplify the simultaneous manipulation of
A and b, which is usually done to simplify solving thissystem of equations.

Let the augmented matrix be denoted by (A|b), which, from theoriginal form of our example system of equations, is

We use a vertical bar to indicate the boundary between theportion of the matrix corresponding to A and that correspondingto b.NumPy provides the np.hstack() command to horizontally stackmatrices and vectors with the same number of rows. Let's refer tothe augmented matrix in Python as Ab. The starting form of Ab isthus

.

⎡

⎢

⎣

[rrr|r]4 0 −3 −1

−2 3 1 −4

0 3 −4 −15

⎤

⎥

⎦



Ab= np.hstack( (A,b) )

print(Ab)

[[   4.   0.   -3.   -1.]

 [ -2.    3.    1.   -4.]

 [   0.   3.   -4. -15.]]

Then we can perform the equivalent manipulation as above asfollows:
Ab[1] = Ab[1] + 1/2*Ab[0]

print(Ab)

[[   4.   0.   -3.     -1. ]

 [   0.   3.   -0.5   -4.5]

 [   0.   3.   -4.    -15. ]]

Adding a linear combination of rows to another is one exampleof a row operation.
!

Important!Linear operations on the rows change the form of thesystem of linear equations but do not change thesolution set.



After this first row, we can eliminate the variable x1 from thethird equation by subtracting the second equation from the thirdequation. Equivalently, we can subtract row 1 of the augmentedmatrix from row 2:
Ab[2] = Ab[2] - Ab[1]

print(Ab)

[[   4.   0.   -3.    -1. ]

 [   0.   3.   -0.5   -4.5]

 [   0.   0.   -3.5 -10.5]]

The equivalent set of equations is

After these manipulations, the augmented matrix shown aboveis said to be in row echelon form:
DEFINITION
row echelon form (REF)A matrix is in row echelon form if

1. The first nonzero entry in each row, called the
leading coefficient, is to the right of the leadingcoefficient in any row above it, and

4x

0

− 3x

2

= −1

3x

1

+ (−0.5)x

2

= −4.5

−3.5x

2

= 10.5.



2. Any all-zero rows are at the bottom of the matrix;any rows with nonzero coefficients appear above theall-zero rows.
Note:
Some books require the leading coefficients to be 1 for amatrix to be in row echelon form.
LU Decomposition
The REF form of (A|b) is an upper triangular matrix; let's callit U to distinguish it from the matrix (A|b) that we startedwith. Since we created this upper triangular matrix usinglinear combinations of the rows, there must be a matrix L suchthat LU is equal to the original matrix (A|b). It can be shownthat the matrix L is a lower-triangular matrix.The form LU is called the LU decomposition or LU
factorization of (A|b). If row swaps are required to get amatrix in REF form, then the matrix can be factored as PLU,where P is a permutation matrix, which performs row swaps.The (P)LU-factorization of a matrix can be found using SciPy's
scipy.linalg.lu() function. Links to additional resources for theLU-decomposition are available at la4ds.net/4-1.
We can solve the system of equations for our example byiteratively solving the equations from bottom to top, where ateach step, we substitute the values of the variables found in theprevious step.

http://la4ds.net/4-1


We start by solving the last equation for x2, which we can do bydividing the equation by −3.5:

We can perform the equivalent operation on the augmentedmatrix by dividing the last row by −3.5:
Ab[2] = Ab[2] / -3.5

Ab

array([[ 4. ,   0. , -3. , -1. ],

       [ 0. ,   3. , -0.5, -4.5],

       [-0. , -0. ,   1. ,   3. ]])

Multiplying (or dividing) a row by a constant is a second type ofrow operation.We can use the solution to equation 2 (the last equation) tosolve the next-to-last equation in two different ways. In the firstapproach, we substitute the -3 for x2 in equation 1 to reduce thatequation to one unknown:

−3.5x

2

= −10.5

x

2

=

−10.5

−3.5

= 3.

3x

1

+−0.5x

2

= −4.5

3x

1

+−0.5(3) = −4.5

3x

1

+ = −3(by adding 1.5 to each side)

x

1

= −1(dividing both sides by 3)



That approach is not simple to apply to our augmented matrix.The second approach is to add a weighted version of equation 2to equation 1 to eliminate the variable x2 in equation 1. If wemultiply equation 2 by 0.5 and then add it to equation 1, the x2coefficient will be eliminated. In algebra, this looks like

If we add 1/2 of row 2 to row 1 of Ab, we get the equivalentresult:
Ab[1] = Ab[1] + 0.5*Ab[2]

Ab

array([[ 4.,   0.,  -3., -1.],

       [ 0.,   3.,   0., -3.],

       [-0.,  -0.,   1.,  3.]])

Then by dividing row 1 by 3, we can get that x
1

= −1:
Ab[1] = Ab[1] / 3

Ab

array([[ 4.,   0., -3., -1.],

3x

1

+ − 0.5x

2

= −4.5

+ 0.5( x

2

= 3)

gives 3x

1

= −3.



       [ 0.,   1.,   0., -1.],

       [-0., -0.,    1.,   3.]])

We can see that the same strategy will work for row 0. We caneliminate the x2 variable by adding row 2 multiplied by 3:
Ab[0] = Ab[0] + 3*Ab[2]

Ab

array([[ 4.,   0.,   0.,   8.],

       [ 0.,   1.,   0., -1.],

       [-0., -0.,    1.,   3.]])

Dividing row 0 by 4 yields the solution:
Ab[0] = Ab[0]/4

Ab

array([[ 1.,   0.,   0.,   2.],

       [ 0.,   1.,   0.,  -1.],

       [-0., -0.,    1.,   3.]])

So x
0

= 2.Note that the portion of Ab that corresponds to the coefficientmatrix is an identity matrix. This matrix is said to be in reduced
row echelon form:



DEFINITION
reduced row echelon form (RREF)A matrix is in reduced row echelon form if it is in rowechelon form and:

1. The leading coefficients are all 1.2. For any column containing a leading coefficient, thatleading coefficient is the only nonzero value in thatcolumn.
Note:
The fact that the matrix is already in row echelon form impliesthat all of the coefficients below a leading coefficient (in thesame column) are zero. Condition 2 implies that all of thecoefficients above a leading coefficient are also zero.
Any matrix may be put into row echelon form through rowoperations. In addition to the row operations described above, wecan also swap the rows representing any pair of equations (calleda row swap). Thus, we can define row operations as follows:
DEFINITION
row operations (matrix)The following operations on the rows of a matrix arecalled row operations:



1. Adding any linear combination of the other rows to arow2. Multiplying or dividing a row by a constant3. Swapping two rows
For an augmented matrix that represents a system of linearequations, row operations do not change the solution set. Inaddition, the RREF is unique. As in our example, we can performrow operations to find the solution of a system of linear equations(when a unique solution exists).
Gaussian elimination, or Gauss-Jordan elimination is analgorithm to systematically put a matrix in row-reduced echelonform:
DEFINITION
Gaussian elimination,
Gauss-Jordan eliminationA systematic algorithm for transforming a matrix intoreduced row echelon form. The algorithm iterates downthe rows, performing row operations to get the matrixinto row echelon form with leading coefficients equal to1. The algorithm then iterates back up the rows toeliminate any variables above a leading coefficientthrough adding an appropriate linear combination of thelower row with that leading coefficient.
The basic method of Gaussian elimination follows the exampleabove. Readers who wish to learn how to perform Gaussianelimination by hand can find many tutorials online. Instead of



performing Gaussian elimination by hand, we will use Python.NumPy does not have a method to find the RREF of a NumPyarray. Instead, we can use another useful library called SymPy,which has a Matrix class with an rref() method. We start byimporting the Matrix class and making our augmented matrix intoa SymPy Matrix object:
from sympy import Matrix

 

 

Ab2 = np.hstack( (A,b) )

M = Matrix(Ab2)

To get the reduced row-echelon form of the matrix M, we cancall M.rref(). By default M.rref() returns the RREF of M and a tupleof pivot columns. For our purpose, we will only use the RREF, sowe can pass the keyword argument pivots=False to suppress thatoutput:
M.rref(pivots=False)

Example 4.5: Solving Two Equations in Two
Unknowns Using RREF  ⏎

Let's return to the original set of equations that we startedwith in this section:

⎡

⎢

⎣

1 0 0 2.0

0 1 0 −1.0

0 0 1 3.0

⎤

⎥

⎦



These equations are shown in Fig. 4.2.Let's formulate these as a matrix equation and solve. Thematrix equation form is:

Then the augmented matrix is
Ab2 = np.array([

     [ 1, 1, 3],

     [-4, 1, -2]

])

We can use SymPy to find the RREF for Ab2:
M2 = Matrix(Ab2)

M2.rref(pivots=False)

                       [1    0    1]

                       [0    1    2]

The solution is x = 1, y = 2, which matches the intersectionof the two lines in Fig. 4.2.

y = 3 − x

y = 4x− 2.

[ ] [ ] = [ ].

1 1

−4 1

x

y

3

−2



4.1.3 Calculating the Determinant of a Matrix using Row
Echelon FormRecall from Section 3.5 that there is no simple formula for thedeterminant of a general n× n matrix. However, one of the usefulproperties of the determinant is that the determinant of atriangular matrix is the product of the diagonal elements. Let R

Abe the REF form of A found using only linear combinations of therows. Then it can be shown that det A =det R

A

. Sometimes wecan simplify the mathematics of finding the REF by swappingrows of the matrix. If row swaps are also used in finding the REFand there are a total of k row swaps, then det A = (−1)

k

det R

A

.However, if the rows are also scaled, then the determinant willalso be affected by these scaling factors. Such scaling iscommonly used to make the first non-zero entry be 1 or to makethem integer (such as can occur with SymPy's echelon_form()method). I am not going to consider this case because it is largelyirrelevant. The only reason to use the REF to find the determinantis if a computational tool is not available, and in this case, you cancalculate the determinant before applying any row scaling.
Example 4.6: Determinant of a 3 × 3 Matrix

Consider the matrix A from above. Based on the REF wefound for (A|b), an REF form of A is

Thus det A = (4)(3)(−3.5) = −42. Let's check by usingNumPy to compute the determinant of the original A matrix:

.

⎡

⎢

⎣

4 0 −3

0 3 −0.5

0 0 −3.5

⎤

⎥

⎦



import numpy.linalg as la

la.det(A)

-42.00000000000001

4.1.4 SummaryFor the two examples of solving a system of equations throughmatrix operations, the number of equations was equal to thenumber of variables (i.e., the system was not overdetermined orunderdetermined), and there was a single solution. In the nextsection, we consider other cases that can occur with systems oflinear equations.
Terminology review and self-assessment questionsInteractive flashcards to review the terminology introduced inthis section and self-assessment questions are available atla4ds.net/4-1, which can also be accessed using this QR code:

http://la4ds.net/4-1


4.2 Working with Systems of Linear Equations
Using Matrices and Vectors – Part 2In Section 4.1, we introduced systems of linear equations andshowed examples of solving critically determined systems (with nequations in n variables) for which the system has a uniquesolution. In this section, we consider some other cases that wemay encounter with systems of linear equations.

4.2.1 Overdetermined Systems of Linear EquationsRecall that an overdetermined system of equations has moreequations than unknowns. Consider the following system ofequations:

The first three equations are the same as the three-equationsystem of equations that we solved via the RREF in the previoussection. Now there is an additional equation, for a total of 4equations in 3 variables. Thus, this is an overdetermined set ofequations.Let's see what the implications of this are, starting withcreating the augmented matrix for the matrix equation:
import numpy as np

 

 

Ab = np.array([[ 4.,      0,   -3,   -1],

4x

0

− 3x

2

= −1

−2x

0

+ 3x

1

+ x

2

= −4

3x

1

− 4x

2

= −15

x

1

+ 3x

2

− 3x

2

= −10



               [ -2,      3,    1,   -4],

               [     0,   3,   -4,  -15],

               [     1,   3,   -3,  -10]])

The RREF for this matrix is:
from sympy import Matrix

M = Matrix(Ab)

M.rref(pivots=False)

The first three rows of the RREF are exactly the same as whenwe considered the system consisting of the first three equations.The final row of the RREF is all zeros and corresponds to

This equation is always true and provides no information aboutthe variables. From the first three rows, we get the same solutionas when we considered the system of three equations: x
0

= 2,
x

1

= −1, and x
2

= 3. So, the fourth equation seemingly had noimpact. Let's see why this occurred.Consider if we add the first three equations together. We get
2x

0

+ 6x

1

− 6x

2

= −20.

⎡

⎢

⎣

1 0 0 2.0

0 1 0 −1.0

0 0 1 3.0

0 0 0 0

⎤

⎥

⎦

0 ⋅ x

0

+ 0 ⋅ x

1

+ 0 ⋅ x

2

= 0

0 = 0.



Compare that with the fourth equation: the fourth equation isequal to 1/2 times the sum of the first three equations. We saythat the fourth equation is a linear combination of the other threeequations.It will be easier to express the concept of a linear combinationin terms of the equivalent rows of the augmented matrix:
DEFINITION
linear combinationFor a matrix M, row m

k∗

 is a linear combination of theother rows if there are constants ci such that
m

k∗

=∑

i≠k

c

i

m

i∗

.

An equivalent definition applies to columns.
Let (A|b)

i∗

 denote the ith row of the augmented matrix. Thenfor this augmented matrix, we have
(A|b)

3∗

=

1

2

(A|b)

0∗

+

1

2

(A|b)

1∗

+

1

2

(A|b)

2∗

.

The fact that we are expressing (A|b)
3∗

 in terms of the otherrows is a choice that arose from the order of equations. It is notunique. We could rewrite the linear combination to express any ofthe rows in terms of the other three rows. For instance, if wesolve for 1
2

(A|b)

0∗

, we get
1

2

(A|b)

0∗

= (A|b)

3∗

−

1

2

(A|b)

1∗

−

1

2

(A|b)

2∗

(A|b)

0∗

= 2(A|b)

3∗

− (A|b)

1∗

− (A|b)

2∗

.



Let's check this expression using Python:
print(f'{"Ab[0] =":>24} {Ab[0]}')

print(f'{"2Ab[3] - Ab[1] -Ab[2] =":>24} {2*Ab[3] - Ab[1] -Ab[2]}')

                Ab[0] = [ 4.   0. -3. -1.]

2Ab[3] - Ab[1] -Ab[2] = [ 4.   0. -3. -1.]

When some row of a matrix can be written as a linearcombination of the other rows of the matrix, the rows of thematrix are linearly dependent:
DEFINITION
linearly dependent (vectors)A set of vectors {a

0

,a

1

,… ,a

k−1

} are linearly dependentif any of these vectors can be written as a linearcombination of the other. An equivalent condition is thatthere exist nonzero constants β
0

,β

1

,… ,β

k−1

 such that
β

0

a

0

+ β

1

a

1

+…+ β

k−1

a

k−1

= 0.

Using the second condition, we can show that for any of thelinearly dependent vectors, any of the vectors can be written as alinear combination of the other vectors.A set of vectors that are not linearly dependent are called
linearly independent:

DEFINITION



linearly independent (vectors)A set of vectors that is not linearly dependent. For a setof vectors {a

0

,a

1

,… ,a

k−1

} and scalar variables
β

0

,β

1

,… ,β

k−1

, the only solution to the equation
β

0

a

0

+ β

1

a

1

+…+ ta

k−1

a

k−1

= 0

is if β
0

= β

1

=… = β

k−1

= 0.
The maximum number of linearly independent columns of amatrix is always equal to the maximum number of linearlyindependent rows of a matrix. We call this number the rank of thematrix:
DEFINITION
rank (of a matrix)Given a matrix M, the rank is equal to the maximumnumber of linearly independent columns (or,equivalently, the maximum number of linearlyindependent rows). It is denoted by rankM.
The maximum possible rank for a m× n matrix is min (m,n). Ifa matrix has the maximum possible rank, it is said to be full rank:
DEFINITION
full rank (matrix)A matrix with the maximum possible rank, which is equalto the minimum of the number of rows and the numberof columns.



In general, it can be difficult to tell if a set of vectors arelinearly independent by inspection. A special case is a set of twononzero vectors: they are linearly independent unless they arescaled versions of each other. Fortunately, NumPy has functionsthat can help us determine whether a set of vectors is linearlyindependent. The first step is to stack the vectors into either therows or the columns of a matrix. Vectors are usually treated ascolumn vectors and thus stacked in the columns of a matrix.We can use two different functions or methods to get the rankof a matrix, depending on whether we are using SymPy or onlyNumPy. If we are using SymPy, then the Matrix object has a rankmethod. Thus, the rank of the SymPy matrix M is
M.rank()

3

NumPy and PyTorch have equivalent functions called
np.linalg.matrix_rank() and torch.linalg.matrix_rank() that returnthe rank of a matrix. I use NumPy in the examples below. Forconvenience of typing, we will import np.linalg as la. Then we canget the rank of the augmented matrix Ab for this example asfollows:
import numpy.linalg as la

 

 

la.matrix_rank(Ab)



3

Since the rank is three, but there are four rows and fourcolumns, this matrix is not full rank. We say it is rank deficient:
DEFINITION
rank deficient (matrix)A matrix that is not full rank: its rank is smaller than themaximum possible.
For a square matrix, the determinant is related to a matrix'srank:
!

Important!A square matrix A is full-rank if and only if it isnonsingular, meaning det A ≠ 0.
Let's check for Ab:
la.det(Ab)

0.0

The matrix Ab has zero determinant, so it is a singular matrix anddoes not have full rank.



Example 4.7: Overdetermined System with No
Solutions

Linear equations can be overdetermined without any of theequations being linearly combinations of the others. Forexample, consider this system of equations from the previoussection:

The graph of these equations is shown in Fig. 4.5. Thegraph shows that this set of equations is inconsistent andthus has no solution. The augmented matrix for this set ofequations is
Ab2 = np.array([

     [1, 1, 3],

     [-4, 1, -2],

     [6, 1, 3]

])

Then the RREF is
M2 = Matrix(Ab2)

M2.rref(pivots=False)

x+ y = 3

−4x+ y = −2

6x+ y = 3.



At first, this may look reasonable, but remember that thisaugmented matrix represents the following linear equation inmatrix form

In particular, the equation corresponding to the last row ofthe coefficient matrix and last row of the results vector is

which is a contradiction. Thus, there is no solution to thissystem of equations.The rank of the augmented matrix is
M2.rank()

3

la.matrix_rank(Ab2)

⎡

⎢

⎣

1 0 0

0 1 0

0 0 1

⎤

⎥

⎦

[ ] = .

⎡

⎢

⎣

1 0

0 1

0 0

⎤

⎥

⎦

x

y

⎡

⎢

⎣

0

0

1

⎤

⎥

⎦

0 ⋅ x+ 0 ⋅ y = 1

⇒ 0 = 1,



3

This matrix is full rank. We can confirm this by checking thatthe determinant is nonzero:
print(f'{la.det(Ab2):.2f}')

-25.00

However, we only have two unknowns. When the rank of theaugmented matrix exceeds the number of unknowns, thesystem of equations will be inconsistent.
An overdetermined set of equations could also have an infinitenumber of solutions if a sufficient number of those equations arelinearly dependent. In that case, the rank of the matrix will besmaller than the number of unknowns.

4.2.2 Underdetermined Systems of Linear EquationsAn underdetermined system of equations has fewer equationsthan unknowns.
Example 4.8: Underdetermined System of

Equations in Three Variables

Consider the following system of linear equations from theprevious section:



The number of equations, and hence the maximum possiblevalue of the rank of the augmented matrix, is 2, whereas thenumber of unknowns is 3. When the matrix rank is smallerthan the number of equations, the system will always have aninfinite number of solutions.Let's confirm by computing the matrix rank with NumPy:
Ab3 = np.array([ [1, 1, 0, 2],

                 [0, 1, 1, 2] ])

la.matrix_rank(Ab3)

2

This is a full rank matrix. The RREF for this matrix is
M3 = Matrix(Ab3)

M3.rref(pivots=False)

[               ]

    1   0   −1 0

    0   1   1 2

x

1

+ x

2

= 1

x

2

+ x

3

= 2



We are left with two linear equations in three unknowns.These two equations describe a line in three dimensions, andthus there are an infinite number of solutions.
4.2.3 Critically Determined Systems of EquationsFor a critically determined system of equations, the number ofequations is equal to the number of unknowns. The rank of theaugmented matrix is less than or equal to the number ofequations. Even when the system is critically determined, we maystill have no solutions, one solution, or an infinite number ofsolutions.

Example 4.9: Critically Determined System with
No Solutions  ⏎

In Section 4.1.1, we showed that this system of equations isinconsistent:

A graph of the lines that represent the solutions to theseequations is shown in Fig. 4.4. For these equations, the rankof the augmented matrix is
M4 = Matrix([ [2, -1, -3],

              [2, -1,   0] ])

M4.rank()

2x− y = −3

2x− y = 0.



2

which is equal to the number of variables. In this case, therewill not be an infinite number of solutions, but we still have tocheck the RREF to see if there is a solution:
M4.rref(pivots=False)

[ ]

Again, the last equation corresponds to 0 = 1, so there is nosolution to this system.
For the case of critically determined systems of linearequations, it is more common to find the rank of the coefficientsmatrix A instead of the augmented matrix (A|b). There areseveral reasons for this.First, for the system to have a unique solution, rank(A) must beequal to the number of variables. If not, then we can perform rowoperations on the augmented matrix to get all zeros in thecoefficients portion of the augmented matrix in all but rank(A)rows. Then there are two possibilities:

1. For every row with all zeros coefficients, there is a zero in theresults portion of the row. Thus, these rows correspond to theequation 0 = 0, which is always true. Thus, these rows can beignored; they correspond to rows in the original A matrix that

1 −

1

2

0

0 0 1



can be expressed as linear combinations of other rows. Sincewe have fewer equations in the RREF than we have unknowns,the system has an infinite number of solutions.2. For some row with all zero coefficients, there is a nonzerovalue in the results portion of that row. Such a rowcorresponds to an equation of the form 0 = c, where c ≠ 0,which is always false. In this case, the equations areinconsistent, and there is no solution.
In either case, if rank(A) is smaller than the number ofvariables, then there is not a unique solution. For a criticallydetermined system, the number of columns of A (correspondingto the number of variables) is equal to the number of rows of A(corresponding to the number of equations), and A is a squarematrix. Thus, A must be full rank for the system to have a uniquesolution.Let's check rank(A) for Example 4.9:
A4 = M4[:2,:2]

A4.rank()

1

We see that the rank is 1, but we have two variables. Thus, A isnot full rank, and we do not have a unique solution. By using therank of A instead of the rank of (A|b), we were able to identifythat the system did not have a unique solution without having tofind the RREF.



Secondly, for a critically determined system of equations, the Amatrix will be square, and we can easily check if A is full rank(i.e., nonsingular) by checking if its determinant is nonzero.A third reason for using the rank of the coefficients matrix isthat it gives an answer that does not depend on the results vector
b. In many scenarios, we are interested in finding solutions to asystem of linear equations for which the coefficients matrixdepends on the structure of some system and is fixed, but theresults vector varies over time. If A is of full rank, we can find thesolution for x regardless of the values in b.

Example 4.10: Critically Determined System with
Infinite Solutions

Consider again the following equations first introduced inSection 4.1.1:

In Section 4.1.1, we showed that the solution set to bothequations is the same line, as shown in Fig. 4.3. In addition,we showed that the second equation is equal to the firstequation multiplied by −3; equivalently the first equation isequal to the second equation divided by -3. The two equationsare linearly dependent; therefore, we expect the matrix rankwill only be 1. Let's check:
M5 = Matrix([ [2, -1, -3],

2x− y = −3

−6x+ 3y = 9



              [-6, 3,   9] ])

M5.rank()

1

The RREF for this matrix is
M5.rref(pivots=False)

[ ]

We see that we are left with one equation in two unknowns,and thus the solution is all of the points that satisfy thisequation. There are an infinite number of such solutions,corresponding to all of the points in the line shown in thefigure.The rank of the coefficients matrix is
A5 = M5[:2,:2]

A5.rank()

1

1 −

1

2

−

3

2

0 0 0



Again, we see that A5 is not full rank, and therefore thissystem of equations does not have a unique solution. Insteadof finding the rank, we could have checked the determinant.The SymPy Matrix class has a method for computing thedeterminant:
A5.det()

0

Since the determinant is zero, A5 is singular and cannot be offull rank.
Example 4.11: Critically Determined System in

Two Unknowns with a Unique
Solution

Consider again the following system of equations fromSection 4.1:

A plot of the solution sets for these equations is show inFig. 4.2. The rank and determinant of the coefficients matrixare shown below:

x+ y = 3

−4x+ y = −2



A6 = np.array([ [ 1, 1],

                [-4, 1] ])

 

 

print(f'rank: {la.matrix_rank(A6)}')

print(f'determinant: {la.det(A6): .1f}')

rank: 2

determinant:   5.0

The coefficients matrix is full rank, and this is confirmed bythe nonzero determinant. We found that the solution was
(1, 2) in Section 4.1.
Example 4.12: Critically Determined System in

Three Unknowns with One Solution

In Section 4.1.2, we solved the system

using row operations to find the RREF.Let's check the rank and determinant of the A matrix:
A7 = np. array([ [4, 0, -3],

4x

0

− 3x

2

= −1

−2x

0

+ 3x

1

+ x

2

= −4

3x

1

− 4x

2

= −15



                 [-2, 3, 1],

                 [0, 3, -4] ])

 

 

print(f'rank: {la.matrix_rank(A7)}')

print(f'determinant: {la.det(A7): .1f}')

rank: 3

determinant: -42.0

This matrix has full rank and is nonsingular. We found thesolution to be (2,−1, 3) in Section 4.1.2.
4.2.4 SummaryIn this section, we considered examples of many different types ofsituations that can occur with overdetermined, underdetermined,and critically determined systems of linear equations. Iintroduced the concepts of linear combinations of equations androws/columns of matrices, and I explained how these define therank of a matrix. Then I showed how the rank of the coefficientsmatrix or augmented matrix can help us determine whether asystem of equations has a unique solution.
Terminology review and self-assessment questionsInteractive flashcards to review the terminology introduced inthis section and self-assessment questions are available atla4ds.net/4-2, which can also be accessed using this QR code:

http://la4ds.net/4-2


4.3 Matrix Inverses and Solving Systems of Linear
EquationsConsider again the problem of solving a critically-determinedsystem of linear equations in matrix form,

Ax = b.

We have previously shown how to solve such a system using thereduced row echelon form (RREF). One problem with solving asystem of linear equations using the RREF is that if b changes,then we have to find the RREF again. Or do we?Suppose that A is a square matrix with full rank (i.e., isnonsingular). Then the system of equations has a unique solution.The row operations needed to transform A into the identitymatrix do not depend on the results vector at all. Therefore, allwe need to do to solve the system of equations for different b is tokeep track of how the sequence of row operations affect b. Let'sdo this for the two-dimensional example that has a uniquesolution, which we previously solved using SymPy to find theRREF of the augmented matrix in Example 4.5. Here, we will findthe RREF step-by-step to see what insight it gives to the generalproblem.
Example 4.13: Tracking Row Operations Used to



Solve a Two Variable System

The following equations have a unique solution:

The augmented matrix is
import numpy as np

 

 

A = np.array([

  [1, 1],

  [-4, 1]])

 

 

b= np.array([

  [3],

  [-2]])

 

 

Ab = np.hstack( (A,b) )

To get the RREF, the first step is to add 4 times row 0 to row1:
Ab[1] += 4*Ab[0]

x+ y = 3

−4x+ y = −2



Ab

array([[ 1,   1,   3],

       [ 0,   5, 10]])

Note that this changed the result vector from [3, −2]

T  to
[3, 10]

T , where the change in b1 is attributable to adding 4times row 0 to row 1. The entry b0 is unchanged. We canimplement the effect of the row operation on the b vectorusing matrix multiplication as

Let's verify this
np.array([

  [1, 0],

  [4, 1]]) @ b

array([[ 3],

       [10]])

The second row operation to get the augmented matrix inRREF form is to multiply row 1 by 1/5, which yields

[ ]b.

1 0

4 1



Ab[1] = Ab[1] / 5

Ab

array([[1, 1, 3],

       [0, 1, 2]])

Again, we can implement this operation using matrixmultiplication. Let's first show this matrix multiplication asoccurring separately from the previous one:

Let's verify that this works:
np.array([

    [1, 0],

    [0, 1/5]]) @ \

np.array([

    [1, 0],

    [4, 1]]) @ \

b

array([[3.],

       [2.]])

[ ] [ ]b.

1 0

0 1/5

1 0

4 1



Finally, we need to subtract row 1 from row 0:
Ab[0] -= Ab[1]

Ab

array([[1, 0, 1],

       [0, 1, 2]])

Implementing this as a matrix, we get the following:

Let's check:
np.array([

    [1, -1],

    [0, 1]]) @ \

np.array([

    [1, 0],

    [0, 1/5]]) @ \

np.array([

    [1, 0],

    [4, 1]]) @ \

b

[ ] [ ] [ ]b.

1 −1

0 1

1 0

0 1/5

1 0

4 1



array([[1.],

       [2.]])

We can carry out all the matrix multiplications, except for themultiplication with b, to find a single matrix that multiplies b.That matrix is
np.array([

  [1, -1],

  [0, 1]]) @ \

np.array([

  [1, 0],

  [0, 1/5]]) @ \

np.array([

  [1, 0],

  [4, 1]])

array([[ 0.2, -0.2],

       [ 0.8,   0.2]])

Thus, the answer for any b is equal to
b.

⎡

⎢

⎣

1/5 −1/5

4/5 1/5

⎤

⎥

⎦



There is an easy way to find the matrix that pre-multiplies bduring the Gaussian Elimination process. Instead of applyingGaussian Elimination to (A|b), consider what happens if weperform Gaussian Elimination on (A|I).Below, we perform the same three row operations describedabove, but now we perform them using the (A|I) matrix. First,add 4 times row 0 to row 1.
AI = np.hstack ( (A, np.eye(2)) )

AI[1] += 4* AI[0]

AI

array([[1., 1., 1., 0.],

       [0., 5., 4., 1.]])

The submatrix in the rightmost two columns, which was I
2before the row operations, is now the same matrix we foundpreviously for multiplying b in the first step.Now divide row 1 by 5:

AI[1] /= 5

AI

array([[1. , 1. , 1. , 0. ],

       [0. , 1. , 0.8, 0.2]])



The submatrix in the right two columns is now equal to theproduct of the two matrices that we found through the first twosteps above.Finally, subtract row 1 from row 0:
AI[0] -= AI[1]

AI

array([[ 1. ,   0. ,   0.2, -0.2],

       [ 0. ,   1. ,   0.8,   0.2]])

The submatrix in the right three columns is exactly the matrixwe need to multiply b to solve this equation.Let's temporarily call this matrix C:
C = AI[:, 2:]

C

array([[ 0.2, -0.2],

       [ 0.8,   0.2]])

Let's see what happens if we use this matrix to left-multiply A:
np.round(C @ A, 10)



array([[ 1., -0.],

       [ 0.,   1.]])

We get the identity matrix! We created this matrix to implementthe effects of the row operations to transform A into an identitymatrix, so when we apply it to A, we get the identity matrix. Wecall this the inverse of A:
DEFINITION
inverse (of a matrix)Given a n× n square matrix
A, the inverse matrix (if it exists) is an n× n matrixdenoted A−1, such that

A

−1

A = I.

For a square matrix A, the inverse will exist if A has full rank.In this case, we say that A is invertible:
DEFINITION
invertible (matrix)A square matrix A is invertible if its inverse A−1 exists;this corresponds to A having full rank, which is true if Ais nonsingular.
!

Important!



If A is an n× n matrix with full rank, we can find theinverse matrix by putting (A|I

n

) into RREF. The inverseis the submatrix consisting of columns n to 2n− 1.
Example 4.14: Inverse of a 3 × 3 Matrix and Use in

Solving System of Three Equations in
Three Variables  ⏎

Let's test this with our three-dimensional system ofequations with a unique solution:

A2 = np. array([

  [4, 0, -3],

  [-2, 3, 1],

  [0, 3, -4]])

 

 

AI2 = np.hstack( (A2, np.eye(3)) )

from sympy import Matrix

 

 

M2 = Matrix(AI2)

M2r = M2.rref(pivots=False)

4x

0

− 3x

2

= −1

−2x

0

+ 3x

1

+ x

2

= −4

3x

1

− 4x

2

= −15



Thus, the inverse matrix is
A2inv = M2r[:,3:]

A2inv

Let's check
A2inv @ A2

This confirms that the matrix A2inv is the inverse of A2. We canget the solution to the system of equations by multiplying
A2inv by the results vector b:

b2 = np.array([

  [-1],

  [-4],

  [-15]])

 

⎡

⎢

⎣

0.357142857142857 0.214285714285714 −0.214285714285714

0.19047619047619 0.380952380952381 −0.0476190476190476

0.142857142857143 0.285714285714286 −0.285714285714286

⎤

⎥

⎦

⎡

⎢

⎣

1.0 0 0

0 1.0 0

0 0 1.0

⎤

⎥

⎦



 

A2inv @ b2

This matches the answer we previously found.
In general, for a critically determined system of equations withmatrix A, where A has full rank, we can solve the system by left-multiplying both sides by A−1:

We can find the inverse of a square, full-rank matrix usingNumPy's np.linalg.inv() function or PyTorch's torch.linalg.inv()function. Note that PyTorch's method requires a tensor of floats,so multiply an integer tensor by 1.0 if necessary. Here is anexample using NumPy:
import numpy.linalg as la

 

 

print('A =\n', A)

print('A^(-1) =\n', la.inv(A))

 

⎡

⎢

⎣

2.0

−1.0

3.0

⎤

⎥

⎦

Ax = b

A

−1

Ax = A

−1

b

Ix = A

−1

b

x = A

−1

b.



 

print()

print('A2 = \n', A2)

print('A2^(-1) = \n', la.inv(A2))

A =

 [[ 1        1]

 [-4     1]]

A^(-1) =

 [[ 0.2 -0.2]

 [ 0.8        0.2]]

 

 

A2 =

 [[ 4        0 -3]

 [-2     3        1]

 [ 0     3 -4]]

A2^(-1) =

 [[ 0.35714286         0.21428571 -0.21428571]

 [ 0.19047619          0.38095238 -0.04761905]

 [ 0.14285714          0.28571429 -0.28571429]]

When using a SymPy Matrix, we can use the inv() method to getthe inverse. One advantage is that the inverse is often expressedin a nicer form (using fractions instead of reals):
M = Matrix(A)

M.inv()



[ ]

M2 = Matrix(A2)

M2.inv()

4.3.1 More on Determinants and InversesAs previously mentioned, for a square matrix to be full rank, itmust be nonsingular. Thus, a simple criterion for a square matrixto be invertible is:
!

Important!
A matrix is invertible (full rank) if and only if its
determinant is nonzero.

To see one reason this is true, recall that the determinant of amatrix product is the product of the determinants. Suppose that
A is invertible but the determinant of A is zero. Then

where the last step follows from the facts that the determinant ofthe identity matrix is 1 and the product of zero and anything is

1

5

−

1

5

4

5

1

5

⎡

⎢

⎣

5

14

3

14

−

3

14

4

21

8

21

−

1

21

1

7

2

7

−

2

7

⎤

⎥

⎦

det (A

−1

A) = det (A

−1

)det (A)

det (I) = det (A

−1

)(0)

1 = 0,



zero. Thus, this leads to a contradiction.The same relation implies that if det A ≠ 0, then
det A

−1

=

1

det A

.

When using the determinant to check if A is invertible, be awarethat the results from NumPy may be subject to numerical errorsfrom floating point operations in the computer. For example,consider the following coefficients matrix:
A3 = np.array([

  [4, -4, -1],

  [12, 4, -7],

  [4, 12, -5]])

la.det(A3)

-2.8421709430404045e-14

The value returned is nonzero, but that is due to computationalerrors. The matrix is not invertible, as we can see from its RREF:
M3 = Matrix (A3)

M3.rref(pivots=False)

⎡

⎢

⎣

1 0 −

1

2

0 1 −

1

4

0 0 0

⎤

⎥

⎦



Another advantage of using SymPy's Matrix object is thatdeterminants are calculated using fractions and do not sufferfrom the same types of computational errors:
M3.det()

0

4.3.2 Special CasesI recommend you use computational tools to find matrix inverseswhen required.
!

Important!You should always check the determinant of a matrix tobe sure the matrix is nonsingular before trying to invertit.
For students that are not allowed to use a computer on anexam, many scientific calculators can calculate matrix inverses.However, it is helpful to know how to find the matrix inverse insome special cases:

1. General Full-rank 2 × 2 MatricesFor a 2 × 2 matrix A of the form

the inverse is
A = [ ],

a b

c d



The relation can be summarized as follows:
swap the entries on the diagonal,
negate the entries off the diagonal, and
divide by the determinant of the original matrix.

2. Diagonal MatricesA diagonal matrix is invertible if and only if all of the entries onthe diagonal are nonzero; otherwise, the determinant is zero. Fora diagonal matrix A of the form

the inverse is the diagonal matrix of inverses,

3. Orthogonal MatricesIf U is an orthogonal matrix, then its columns are orthogonal,which implies that
U

T

U = I.

A

−1

=

1

det A

[ ].

d −b

−c a

A = ,

⎡

⎢

⎣

a

00

0 … 0

0 a

11

… 0

⋮ ⋮ ⋱ ⋮

0 0 … a

n−1,n−1

⎤

⎥

⎦

A

−1

= .

⎡

⎢

⎣

1/a

00

0 … 0

0 1/a

11

… 0

⋮ ⋮ ⋱ ⋮

0 0 … 1/a

n−1,n−1

⎤

⎥

⎦



Thus, for an orthogonal matrix, its inverse is equal to itstranspose: U−1

= U

T .
4.3.3 Properties of InverseThree simple properties of matrix inverses are:
1. Inverse works on either side: Recall that matrixmultiplication is not generally commutative. Even for squarematrices A and B of the same size, AB is not generally equalto BA. However, if A is a square matrix with inverse A−1

,then A−1

A = AA

−1

= I.2. Inverse of matrix transpose: If A is a square matrix withinverse A−1, then (AT

)

−1

= (A

−1

)

T .3. Inverse of a matrix product: If A and B are invertiblematrices, then (AB)−1 = B−1

A

−1.
4.3.4 Summary and DiscussionIn this section, I introduced matrix inverses and showed how theycan be used to solve systems of linear equations. Finding thematrix inverse using RREF requires on the order of n3 operationsfor an n× n matrix, but more efficient algorithms can reduce thiscomplexity to less than n2.4. Using the matrix inverse is apractical method to solve small systems of equations, especially ifthe solution has to be found for multiple result vectors. Inpractical systems with large matrices, it is generallyrecommended to avoid using the matrix inverse for this purpose.The reasons for this are:
1. Finding the matrix inverse can be more complex than directmethods of solving the equations.



2. Using the matrix inverse is more likely to result in largernumerical errors than direct methods of solving the equations.3. Many practical matrix equations are sparse and can be storedefficiently, but the matrix inverse is not sparse and thereforemay require too much storage space. In addition, operationswith that matrix will be inefficient because the data cannot bekept in the CPU cache.
Terminology review and self-assessment questionsInteractive flashcards to review the terminology introduced inthis section and self-assessment questions are available atla4ds.net/4-3, which can also be accessed using this QR code:

4.4 Application to Eigenvalues and EigenvectorsWe can use the information covered in the previous sections toshow how to solve by hand for the eigenvalues and eigenvectorsof a matrix. I also show how to decompose a non-singular matrixinto a matrix product involving the modal matrix and the matrixwith the eigenvalues on its diagonal. We also investigate therelationship between the determinant and the eigenvalues.
4.4.1 Solving for Eigenvalues and Eigenvectors

http://la4ds.net/4-3


Consider again equation (3.2), which defines an eigenvector-eigenvalue pair, and rewrite it slightly as shown:
(4.1)

(4.2)
Recall from the column interpretation of matrix multiplicationin Section 3.2.4 that a matrix-vector product can be interpretedas a linear combination of the columns of the matrix, where thelinear coefficients are the components of the vector. Thus, eacheigenvector specifies a linear combination of the columns of

M− λI that add to give the zero vector. This implies that thecolumns are linearly dependent. So M− λI is not full rank and isa singular matrix. Singular matrices have determinant zero, andany eigenvalue λ must satisfy
det (M− λI) = 0.

In practice, it is often more convenient to multiply the argumentof the determinant by -1, which does not change the solution. Thisis called the characteristic equation:
DEFINITION
characteristic equation,
characteristic polynomial

Mv = λu

⇒Mu− λu = 0

⇒ (M− λI)u = 0.



Given a n× n matrix M, the characteristic equation or
characteristic polynomial is

det (λI−M) = 0,

(4.3)
which is a polynomial equation in terms of λ that can beused to solve for the eigenvalues (λ).

Although we will generally use NumPy to find the eigenvector-eigenvalue pairs of a matrix, solving for the eigenvalues of a 2 × 2matrix is relatively easy, as shown in the following example:
Example 4.15: Finding Eigenvalues Using the

Characteristic Equation

Consider finding the eigenvalues of the matrix M
5

. Thenthe argument of the determinant in the characteristicequation is

The determinant of the resulting matrix can be calculated bytaking the product of the diagonal elements and subtractingthe product of the off-diagonal elements:

[ ]− [ ] = [ ].

λ 0

0 λ

1/2 −4

−2 3

λ− 1/2 −4

−2 λ− 3

(λ− 1/2) (λ− 3) − (−4)(−2) = 0

λ

2

− 3.5λ+ 1.5 − 8 = 0

λ

2

− 3.5λ− 6.5 = 0.



We can then solve for the eigenvalues using the quadraticformula:
a = 1

b = -3.5

c = -6.5

 

 

print(f'Eigenvalue 1: {(-b - np.sqrt(b**2 -4*a*c))/(2*a) : .2f}')

Eigenvalue 1: -1.34

This value matches the first eigenvalue from la.eig(). Notethat I chose to use the smaller of the solutions as the onecalled “Eigenvalue 1” here because it matches up with theorder of the solutions from la.eig(). However, in general, theeigenvalues are not inherently ordered, and I could havecalled the larger solution as “Eigenvalue 1”.Let's check the other solution to the quadratic equation:
print(f'Eigenvalue 2: {(-b + np.sqrt(b**2 -4*a*c))/(2*a) : .2f}')

Eigenvalue 2:   4.84



As expected, the result is equal to the second eigenvaluereported by la.eig().
When performing the calculations by hand for 2 × 2 matrices, amuch faster approach to finding the eigenvalues is given inSection 4.4.4.Now let's consider the problem of finding the eigenvectorsgiven that we have the eigenvalues. Recall that eigenvalues andeigenvectors come in pairs. Thus, we solve for the ith eigenvector,

u

i

, by substituting the ith eigenvalue, λi into (4.2) and solving
(M− λ

i

I)u

i

= 0.

(4.4)
But we know from our previous work that the matrix M− λ

i

I issingular. Let's check for our example:
Example 4.16: Determinant of Matrix in

Characteristic Equation for 2 × 2

Matrix

Consider again the the matrix M
5

, for which we found theeigenvalues in Example 4.14. The eigenvalues areapproximately λ
0

≈ −1.34 and λ
1

≈ 4.84. Our previous worksays that the matrix M
5

− λ

i

I is singular and so should havedeterminant zero. The code below verifies this using theeigenvalues lam0 and lam1 found above:
la.det(M5 - lam0*np.eye(2)),   la.det(M5 - lam1*np.eye(2))



(-1.2070945703753258e-15, -9.641907759346243e-16)

The equations given by (4.4) for each i are alwaysunderdetermined. This makes sense because we know that if u isan eigenvalue of a matrix M, then cu is also an eigenvector of Mfor any c ≠ 0. To solve (4.4), we just need to add anotherconstraint on u
i

. Ideally, we would use ∥ u ∥= 1 because weusually want to get the unit-norm eigenvectors; however, that is anonlinear constraint because it can be written in terms of thenorm-squared as
∑

k

(u

i,k

)

2

= 1.

Instead, we can use a linear constraint of our choice on the valuesof the eigenvector, provided the choice is linearly independent ofthe other linear equations to be solved. For this example, Isuggest to use
∑

k

u

i,k

= 1.

Mathematically, we can replace the last row of M− λ

i

I with arow of ones and replace the last entry in the zero vector on therighthand side of (4.4) with a 1. Call the solution for thisconstraint ~

u

i

. After solving, we can find the unit-normeigenvector as u
i

=

~

u

i

/ ∥

~

u

i

∥. Let's demonstrate this using ourexample:
Example 4.17: Calculation of Eigenvectors for

Example 2 × 2 Matrix



Consider again the matrix from Example 4.14. The codebelow calculates N
0

=M− λ

0

I, changes the last row toones, and then solves for u
0

 using the matrix inverse:
N0 = M5 - lam0*np.eye(2)

N0[1] = np.ones(2)

u0t = la.inv(N0) @ np.array( [[0, 1]] ).T

u0t

array([[0.68465844],

       [0.31534156]])

Let's confirm that this is an eigenvector. If it is, then if weperform component-wise division of the projected vector bythe original vector, each of the elements of the results vectorshould be the eigenvalue:
print(f'lambda 0 = {lam0:.3g}')

M5 @ v0t / v0t

lambda 0 = -1.34

array([[-1.34232922],



       [-1.34232922]])

We can create a unit-norm eigenvector by dividing theeigenvector we found by its own norm:
u0t / la.norm(u0t)

array([[0.90828954],

       [0.41834209]])

Let's compare with the eigenvectors found via np.eig(). Recallthat the eigenvectors are the columns of the modal matrix,which we found in using np.eig() in Example 3.10. The outputfor this matrix is:
U

array([[-0.90828954,   0.67752031],

       [-0.41834209, -0.73550406]])

The eigenvector we found is the negative of the eigenvectorin the first column of the modal matrix. This can happen,since both are unit-norm eigenvectors for λ0.



4.4.2 EigendecompositionSuppose we have an n× n matrix M with n known eigenvectors
u

i

, i = 0, 1,… ,n− 1. Now consider (4.1) again. Rather thancomputing the left-hand side for each eigenvector, we cancompute the product of M with all of the eigenvectors using thematrix product MU, where U is the modal matrix. Similarly, wecan compute the right-hand side of (4.1) for all of theeigenvectors as ΛU, where Λ is the diagonal matrix ofeigenvalues:

Then the relation becomes
MU = ΛU.

(4.5)
Let's check that the two sides are equal for our example matrix:

Example 4.18: Checking Eigenvector Equality
Using the Modal Matrix:

Consider again the Python matrix M5, whose modal matrix U5and eigenvalue vector lam5 we found in Example 3.10. Thenthe following code computes first the left-hand and then theright-hand side of (4.5) using Python:

Λ = .

⎡

⎢

⎣

λ

0

0 0 … 0

0 λ

1

0 … 0

⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 ⋯ λ

n−1

⎤

⎥

⎦



M5 @ U5

array([[ 1.21922359,   3.28077641],

       [ 0.56155281, -3.56155281]])

U5 @ np.diag(lam5)

array([[ 1.21922359,   3.28077641],

       [ 0.56155281, -3.56155281]])

The two outputs are equal, as expected.
Now suppose that we have a matrix M that satisfies (4.5) andthat has linearly independent eigenvectors. Then U has full rank,and its inverse U−1 exists. Right-multiplying both sides of theequation above by U−1 yields a way to express M in terms of Uand Λ:

This is called the eigendecomposition of M:
DEFINITION
eigendecomposition,
matrix diagonalization

M = UΛU

−1

.



Suppose M is a real n× n matrix with modal matrix Uand eigenvalue matrix Λ. If U has full rank, then the
eigendecomposition (also known as the diagonalization)of M is the factorization

M = UΛU

−1

.

Example 4.19: Eigendecomposition of Example
2 × 2 Matrix  ⏎

Let's confirm that eigendecomposition works for our 2 × 2example matrix, M
5

:
Lam5 = np.diag(lam5)

 

 

U5 @ Lam5 @ la.inv(U5)

array([[ 0.5, -4. ],

       [-2. ,   3. ]])

The result is the original matrix M
5

.
We will use eigendecomposition in Section 6.4 to find analternate representation for data that allows us to extract theportions of the data that are “most important” in a certain sense.

4.4.3 Relating Eigenvalues to Matrix Determinant



Let M be a n× n matrix that has eigendecomposition
where U has the same dimensions as M (i.e., M has neigenvectors). One of the properties of the determinant is that thedeterminant of the product of matrices is the product of thedeterminants, so
Another property of the determinant is that

Thus, we can write

where the last step follows from the fact that the determinant of adiagonal matrix is the product of its diagonal elements.
Example 4.20: Calculating Determinant of a

Matrix from Its Eigenvalues

Consider again our 2 × 2 example matrix M
5

 whoseeigenvalues we have calculated using NumPy and stored inthe variable lam. We can easily calculate the determinant by

M = UΛU

−1

,

detM = (det U) (det Λ) (det U

−1

).

det U

−1

=

1

det U

.

detM = (det U)(

1

det U

) (det Λ)

=det Λ

=

n−1

∏

i=0

λ

i

,



hand as shown in Section 3.5. The result is
(0.5)(3) − (−4)(−2) = −6.5. Let's check the product ofeigenvalues and the result from la.det():

np.prod(lam), la.det(M5)

(-6.499999999999999, -6.499999999999999)

The results agree, although there is some smallcomputational error.
So, if a matrix has an eigendecomposition, then its determinantis equal to the product of its eigenvalues. In particular:
A matrix is singular if and only if its determinant is zero. Thus,a matrix is singular if and only if it has a zero eigenvalue.A matrix is nonsingular if and only if its determinant isnonzero. Thus, a matrix is nonsingular if and only if all of itseigenvalues are nonzero.

4.4.4 Matrix Trace and a Fast Way to Find Eigenvalues of a
2 × 2 MatrixAlthough eigenvalues should generally be found using computertechniques, like np.eig(), students are occasionally asked to findthem by hand for small matrices. In Section 4.4.1, we showed howto find the eigenvalues of a matrix by solving the characteristicequation (4.3). However, for an m×m matrix, this will mean



solving an mth degree polynomial. For the case of a 2 × 2 matrix,it is relatively easy to solve the resulting quadratic, but there isan easier way, which I originally learned from Grant Sanderson(the creator of the YouTube channel 3Blue1Brown,https://www.youtube.com/c/3blue1brown). I will introduce thetechnique in the same way that Grant does in the video “A quicktrick for computing eigenvalues — Chapter 15, Essence of linearalgebra” (https://www.youtube.com/watch?v=e50Bj7jn9IQ). Westart with defining a very simple operation called matrix trace:
DEFINITION
trace (matrix)The trace of a m×m matrix M, denoted tr(M), is thesum of the elements on its main diagonal:

tr(M) =

m−1

∑

k=0

m

k,k

.

An interesting property of the matrix trace is that the trace of amatrix is equal to the sum of its eigenvalues. Consider a 2 × 2matrix M, and let the eigenvalues be denoted λ0 and λ1. Then
m

00

+m

11

= λ

0

+ λ

1

.

It will be convenient to divide both sides by 2, which implies thatthe average value (mean) of the diagonal elements is equal to theaverage value (mean) of the eigenvalues. Let m denote this value:
m =

m

00

+m

11

2

=

λ

0

+ λ

1

2

.

https://www.youtube.com/c/3blue1brown
https://www.youtube.com/watch?v=e50Bj7jn9IQ


Recall also that the determinant of a matrix is equal to theproduct of the eigenvalues, det (M) = λ

0

λ

1

, which we call p.Then by matching terms in the solution of the characteristicequation, Sanderson shows that for a 2 × 2 matrix, theeigenvalues satisfy
λ = m±

√

m

2

− p.

The eigenvalues are symmetric around the mean of the diagonalelements of the matrix, and the spread depends on that mean andthe determinant of the matrix.
Example 4.21: Solving for Eigenvalues Using

Trace and Determinant of a 2 × 2

Matrix

Consider again the matrix M
5

. In Example 4.19, we showedthat p =detM
5

= −6.5. The trace is (M
5

) = 0.5 + 3 = 3.5, so
m = 1.75. Then the eigenvalues are

which match the values we previously found.
Terminology review and self-assessment questionsInteractive flashcards to review the terminology introduced inthis section and self-assessment questions are available atla4ds.net/4-4, which can also be accessed using this QR code:

1.75 +

√

(1.75)

2

− (−6.5) ≈ 4.84, and

1.75 −

√

(1.75)

2

− (−6.5) ≈ −1.34,

http://la4ds.net/4-4


4.5 Approximate Solutions to Inconsistent Systems
of Linear EquationsConsider again the three inconsistent linear equations shown inFig. 4.7. These can be written in the matrix form

(4.6)
[ ] = .

⎡

⎢

⎣

1 1

−4 1

6 1

⎤

⎥

⎦

x

y

⎡

⎢

⎣

3

−2

3

⎤

⎥

⎦



Fig. 4.7:  Graph of system of three linear equations with nosolution. ⏎
More generally, consider the problem of finding the solution to aset of equations of the form

Ax = b,

where A is a tall matrix:
DEFINITION
tall matrixAn m× n matrix A is tall if m > n; i.e., the number ofrows is greater than the number of columns.



Similarly, we can define a wide matrix:
DEFINITION
wide matrixAn m× n matrix A is wide if n > m; i.e., the number ofcolumns is greater than the number of rows.

For a matrix equation Ax = b:
If A is tall, then the system of equations is overdetermined andgenerally has no solution. Since A is not square, it does nothave an inverse.If A is wide, then the system of equations is underdeterminedand generally has many solutions. Again, since A is not square,it does not have an inverse.If A is square, then the system of equations is criticallydetermined. A has an inverse if the equations are linearlyindependent.

To understand how we can find a “good” compromise solutionto a tall matrix, let's start by rewriting the matrix equation asfollows:
Ax− b = 0.

If there is no solution to the left-hand side that yields all zeros, wecan define the error as e(x) = Ax− b and try to find a solutionthat minimizes the error in some sense. Since the result of
Ax− b can consist of both positive and negative errors, wecannot just add up the values. Instead, we will use our usual



approach of minimizing the squared error. Since we have a vectorof values, we will use the norm-squared of the error:
∥e(x)

∥

2

=

∥

Ax− b

∥

2

.

(4.7)
The solution that minimizes (4.7) is called the least-squaressolution.Recall that e(x) is a vector, and let e

i

(x) denote the ithcomponent of the error. Then the total squared error is
∥

e(x)

∥

2

=

n−1

∑

i=0

[e

i

(x)]

2

.

(4.8)
Example 4.22: Finding the Least-Squares Solution

to Three Equations in Two Variables

Consider finding the least-squares solution to (4.6). Using(4.7) and (4.8), we can write the squared error as
(x+ y− 3)

2

+ (−4x+ y+ 2)

2

+ (6x+ y− 3)

2

.

(4.9)
Thus, we want to find the values of x and y that minimize thismultinomial. Let's start by visualizing the squared error as afunction of x and y. To do this, in Fig. 4.8, I have plotted thesolution sets to the three linear equations, and I have overlaidthis with a heatmap that shows the squared error from (4.9).For each point (x, y) in the figure, the squared error from(4.9) is shown as a color, where every color maps to a



numerical value. The relation between colors and values isshown in the color bar at the right of the figure. Theminimum values are shown in yellow, and the yellow ellipticalregion is centered around approximately (0.5, 0.8).

Fig. 4.8:  Plot of three inconsistent linear equations overlaidwith contour plot of squared error from the point to theselines. ⏎
We could use scipy.optimize.minimize() to search for asolution or NumPy's np.argmin() function to search a grid forthe approximate value, but we can also find the exact valueusing calculus, as shown below.



The value of x that minimizes 
∥

e(x)

∥

2 can be found by takingthe derivatives of this equation with respect to each of thevariables xi and setting them equal to zero:

In the language of multi-dimensional calculus, we can express thisconcisely using gradient notation
Without going into details of the matrix calculus, the gradient of

e(x) is
∇e(x) = 2A

T

(Ax− b).

Note the similarity of this form to the derivative of the single-dimensional error, (ax− b)

2:
d

dx

(ax− b)

2

= 2a(ax− b).

Setting the gradient equal to zero and distributing, we have

These are called the normal equations, and the left sidecontains the Gram matrix, AT

A, which was introduced in Section3.4. Note that the Gram matrix is a square matrix, and it isinvertible if the columns of A are linearly independent. If theGram matrix is invertible, then we can solve for the vector x thatminimizes the squared error as1

∂

∂x

i

e(x) = 0, i = 0, 1,… ,n− 1.

∇e(x) = 0.

A

T

Ax −A

T

b = 0

⇒ A

T

Ax = A

T

b



^

x = (A

T

A)

−1

A

T

b.

This the least-squares (LS) solution.
For the example shown in Fig. 4.8, the LS solution can befound as shown below.

A = np.array([

     [1,   1],

     [-4, 1],

     [6,   1]

])

 

 

b = np.array([3, -2, 3])

 

 

xLS = la.inv(A.T @ A) @ A.T @ b

print(xLS)

[0.5   0.83333333]

This result matches the value found from the contour plot.
The matrix (AT

A)

−1

A

T  is called the pseudoinverse of A:1As with other equations in this book involving matrix inverses, the normal equationsare usually solved via other more numerically stable methods. ⏎



DEFINITION
pseudoinverse,
Moore-Penrose pseudoinverseFor an m× n matrix real A with m > n (i.e., A is tall)and linearly independent columns, the Moore-Penrose

pseudoinverse of A is denoted by A† and given by
A

†

= (A

T

A)

−1

A

T

.

Example 4.23: Calculating the Pseudoinverse
Using NumPy

The following code calculates the pseduoinverse for thecoefficients matrix of (4.6) using the definition and directlyusing the pinv() function from NumPy's linear algebramodule1:
_________________ 1PyTorch has an equivalent torch.linalg.pinv() function. ⏎

print( la.inv(A.T @ A) @ A.T)

print( np.round(la.pinv(A), 10) )

[[ 0.           -0.1         0.1       ]

 [ 0.33333333   0.43333333   0.23333333]]

[[ 0.           -0.1         0.1       ]

 [ 0.33333333   0.43333333   0.23333333]]



This process of finding x is called ordinary least squares:
DEFINITION
ordinary least squares (OLS)Consider an over-constrained system of linear equationsof the form Ax = b, where A and b are known constantmatrices. Ordinary least squares (OLS) gives the valuefor x that minimizes the norm of the error vector

∥ Ax− b ∥

2. If A† (the Moore-Penrose inverse for A)exists, then the OLS solution x is given by
x̂ = A

†

b.

pseduoinverse of a wide matrix
If A is a wide matrix with linearly independent rows, then thepseudoinverse is defined as A†

= A

T

(AA

T

)

−1. This form isnot used in this book but is included here for reference.
Terminology review and self-assessment questionsInteractive flashcards to review the terminology introduced inthis section and self-assessment questions are available atla4ds.net/4-5, which can also be accessed using this QR code:

http://la4ds.net/4-5




4.6 Chapter SummaryThis chapter focused on the application of matrix techniques tosystems of linear equations. We saw that a system of linearequations can have no solution, one solution, or an infinitenumber of solutions. I demonstrated how to use matrixtechniques to determine when a system of linear equations willhave a unique solution and different approaches to solve for thesolution(s). Finally, I showed how to find the least-squaressolution to a system of over-constrained linear equations. InChapter 5, I show the application of these techniques to problemsin data fitting, including polynomial fitting and linear regression.
Access a list of key take-aways for this chapter, along withinteractive flashcards and quizzes at la4ds.net/4-6, which can alsobe accessed using this QR code:

http://la4ds.net/4-6


5
Exact and Approximate Data
Fitting

DOI: 10.1201/9781032664088-5
A common task in data science is finding a polynomial thatrepresents the relation between variables in a dataset.Such representations provide information about howdifferent factors affect each other and can be used to makepredictions about scenarios that are different than thosethat have already been observed. In this chapter, I showhow to use the techniques from Chapter 4 to find apolynomial fit to a dataset. Both exact and approximatedata-fitting techniques are considered, and an applicationto linear regression is shown.
5.1 Exact Data Fitting with PolynomialsConsider the problem of finding a polynomial that passesthrough a set of n data points, where each data point is apoint (x

i

, y

i

) ∈ R

2 (the real plane). For example, consider

https://doi.org/10.1201/9781032664088-5


finding a polynomial to fit the four data points shown inFig. 5.1. If the data points are in the solution set for thepolynomial, then we say that the polynomial fits the data.For example, Fig. 5.2 shows several different polynomialsthat fit this data. The process of finding such a polynomialfrom a set data points is called polynomial fitting. When thepolynomial fits the data exactly, it is called polynomial
interpolation.

Fig. 5.1:  Four data points in the real plane that are to be fitwith a polynomial. ⏎



Long Description for Figure 5.2
Fig. 5.2:  Four data points with different polynomials thatfit the data. ⏎

We will show that if we have a unique set of xi, then wecan always find a polynomial of degree less than or equal to
n− 1 that can fit the n data points exactly. Let thepolynomial be

p(x) = c

0

+ c

1

x+ c

2

x

2

+… c

n−1

x

n−1

.

To find a polynomial that fits the data, we want to solve forthe coefficients c
0

, c

1

,… , c

n−1

 such that the output of thepolynomial for each input xi is the corresponding value yi:



The ith equation looks like
(5.1)

At first glance, this may seem to be a set of nonlinearequations. But that is not the case, because all of the valuesfor xi and yi are known. Thus, the powers of xi are all
deterministic constants. For each i, (5.1) is a linearequation in the variables c

0

, c

1

,… c

n−1

. Since we have ndata points, this results in a system of n linear equationsthat we can put in the form
Here, the coefficient matrix A is given by

p(x

0

) = y

0

p(x

1

) = y

1

⋯

p(x

n−1

) = y

n−1

.

y

i

= c

0

+ c

1

y

i

+ c

2

y

2

i

+… c

n−1

y

n−1

i

.

Ac = y.

A = .

1 x

0

x

2

0

x

3

0

⋯ x

n−1

0

1 x

1

x

2

1

x

3

1

⋯ x

n−1

0

⋮ ⋮ ⋮ ⋮ ⋱ ⋯

1 x

n−1

x

2

n−1

x

3

n−1

⋯ x

n−1

0



The vector of variables c consists of the values of ci that weare trying to find,

The results vector is

Provided that the set of xi points is unique, the matrix Awill have full rank and thus be invertible. Therefore, we canfind the coefficients of the polynomial to fit the data as
c = A

−1

y.

Let's demonstrate this using the example data from Fig.5.1:
Example 5.1: Exact Polynomial Fit for Four

Data Points  ⏎

The data values in Fig. 5.1 are (1, 3), (2,−1), (3, 2),and (4, 1). Start by creating x and y vectors from the

c =

c

0

c

1

⋮

c

n−1

.

y = .

y

0

y

1

⋮

y

n−1



data. When we create the x vector, we want to makesure it is a two-dimensional NumPy array, so that wecan use np.hstack() to stack the powers of x into thecoefficients matrix A:
import numpy as np

 

 

x=np.array([[ 1, 2, 3, 4 ]]).T

y=np.array([[ 3, -1, 2, 1 ]]).T

Since we have 4 data points, we need four powers of x,from 0 to 3, in our A matrix:
A=np.hstack((x**0, x**1, x**2, x**3))

A

array([[ 1,   1,   1,   1],

       [ 1,   2,   4,   8],

       [ 1,   3,   9,  27],

       [ 1,   4,  16,  64]])



We can check whether A is invertible using thedeterminant:
import numpy.linalg as la

 

 

print(f'{la.det(A):.1f}')

12.0

Then the coefficients of the polynomial to fit this dataare given by A−1

y, which yields
c = la.inv(A) @ y

print(c.T)

[[ 25.   -34.66666667   14.5   -1.83333333]]

The polynomial of degree 3 that fits this data is(approximately) 25 − 34.67x+ 14.5x

2

− 1.83x

3. Let'splot this polynomial with our data:



import matplotlib.pyplot as plt

 

 

fig = plt.figure()

ax = fig.add_subplot(111)

 

 

# Plot the data

ax.scatter(x, y);

 

 

# Draw the polynomial

xl =np.linspace(-0.2, 4.2, 100)

y3 = 25 - 34.667*xl + 14.5*xl**2 - 1.8333*xl**3

 

 

plt.plot(xl, y3, 'C1')

 

 

ax.set_xlim(0.5, 4.25);

ax.set_ylim(-3, 6.5);

ax.spines['bottom'].set_position('zero');



Example 5.2: Fitting Four Data Points with a
Quadratic Polynomial

What happens if we try to fit the data from Example5.1 with a quadratic polynomial instead of a cubic? Thematrix of powers of the x-coordinates (the A matrix) inthis case will consist of the first three columns of the Amatrix from Example 5.1:
A2=A[:, :3]

A2



array([[ 1,   1,   1],

       [ 1,   2,   4],

       [ 1,   3,   9],

       [ 1,   4,  16]])

From the dimensions of A2, we know that the rank ofthis matrix is at most 3. We can use NumPy to verifythat its rank is equal to 3:
la.matrix_rank(A2)

3

We now have four equations in three unknowns. Let'screate the augmented matrix and see if these equationsare consistent:
from sympy import Matrix

 

 

Ab2 = np.hstack( (A2, y) )



M2 = Matrix(Ab2)

M2.rref(pivots=False)

The last equation corresponds to 0 = 1, so theequations are not consistent, and there is no solution.We need a third-order polynomial to fit this dataexactly.
The problem we will encounter with real data is that evenif the data follows a low-order polynomial trend, noise inthe data will require using a polynomial with the sameorder as the data to find an exact fit. Thus, in Section 5.2,we consider how to find a good polynomial fit to data whenthe polynomial order does not allow an exact fit.Before we leave the topic of exact fits, let's also see whathappens if the data can be fitted with a lower-orderpolynomial.
Example 5.3: Polynomial Fit When Data Can

be Fit with Lower Order
Polynomial

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



Suppose our data consists of the following points:
(1, 3), (2, 8), (3, 15), and (4, 24), as shown in Fig. 5.3.These data points are not linear, but it is hard to tellwhat order polynomial is required to fit them. Let's seewhat happens if we fit this data with a third-orderpolynomial. First, note that our A matrix is unchanged– the only part of the equation that changes is theresults vector. Let's call the new results vector y

2

. It is
y2 = np.array([[3, 8, 15, 24]]).T

Fig. 5.3:  Second example dataset consisting of four datapoints in the real plane. ⏎



Then the third-order interpolating polynomial is
np.round(la.inv(A) @ y2, 10).T

array([[0., 2., 1., 0.]])

This is the polynomial 2x+ x

2. So, a quadratic issufficient to fit this data. Let's plot it and check:
plt.scatter(x, y2)

plt.plot(xl, 2*xl + xl**2, 'C1');



5.1.1 Summary and DiscussionIn this section, I showed how to use linear algebra to findan exact polynomial fit to a sequence of points in the realplane. Given a set of n data points with different xi, Ishowed how to find an interpolating polynomial of degreeless than or equal to n− 1 that fits the data exactly. Sincethe coefficients matrix A created in this process is fullrank, the interpolating polynomial is unique. Then you maybe wondering — the beginning of this section shows manydifferent polynomials interpolating the same four datapoints. If the interpolating polynomial is unique, how canthis be? The answer is that I took some creative liberty. Tocreate these different example polynomials, I first added



additional points outside the plotted area. I then fitted thelarger datasets with higher-order polynomials. The goal ofshowing these different plots was to motivate thediscussion of polynomial fitting.In the next section, I show how to find a polynomial toapproximately fit a set of data points when the order of thepolynomial is smaller than the number of data points.
Terminology review and self-assessment questionsInteractive flashcards to review the terminology introducedin this section and self-assessment questions are availableat la4ds.net/5-1, which can also be accessed using this QRcode:

5.2 Approximate Data FittingIn Section 5.1, we showed that we can fit a dataset with npoints with a polynomial of degree n− 1. However, weoften want to fit the data with a lower-order polynomial,which can be more useful for describing the relation amongthe data and for making predictions. To illustrate this, let's

http://la4ds.net/5-1


compare COVID-19 rates to gross domestic product (GDP)per capita for the 50 US states. I have created a CSV file athttps://www.fdsp.net/data/covid-merged.csv that for eachstate contains:
state: the state's name,
cases: the number of COVID-19 cases through April 30,2020,
population: the US Census Bureau population estimatepublished in December 2019,
gdp: the GDP as of the fourth quarter of 2019 asreported by the US Department of Commerce, and
urban: the Urban Index, which is the percentage of thestate's population that lives in urban areas, asdetermined by the US Census Bureau, as of 2010.

Fig. 5.4 shows a plot of normalized COVID rates versusGDP for the 50 states. The x-axis is the GDP per capita,reported in 1000s of dollars ($K), and the y-axis is theCOVID rate per 1000 residents.

https://www.fdsp.net/data/covid-merged.csv


Fig. 5.4:  Covid rates for GPD per capita for the 50 states ofthe USA. ⏎
It is numerically challenging to find the correctpolynomial coefficients for the exact fit using the approachpresented in Section 5.1 because of computational errors.To see why such a fit would not be particularly useful evenif we could find it, consider the first 10 data points and thecorresponding 9th-degree interpolation polynomial, whichare shown in Fig. 5.5. This polynomial is not useful becauseit doesn't provide a meaningful description of the relationamong the data and can't be useful to make reasonablepredictions – it produces negative and highly nonmonotonicpredictions of the normalized COVID-19 rates. Instead, we



want to figure out how to find a good approximatepolynomial fit with a lower-order polynomial.

Fig. 5.5:  First 10 points of COVID rate and GDP data withninth order polynomial fit. ⏎
Before considering the general polynomial fittingproblem, we start with a common problem encountered instatistics in which the data is fit with a linear equation.

5.2.1 Application to Linear RegressionConsider the relation between GDP per capita and COVIDrates shown in Fig. 5.4. We often want to understandwhether there is a relationship between two variables orfeatures in a dataset, and one of the simplest ways todetermine if data are related is to determine the best line



of fit and see if the slope is nonzero. This is called linear
regression and if the line of fit is chosen to minimize thetotal squared error to the data, this is called ordinary least
squares (OLS). We can use the equations for solving for thelinear least-squares solution from Section 4.5 to find theOLS solution to the linear regression problem.In linear regression, we usually classify the variables aseither explanatory variables or response variables. Wegenerally consider only one response variable at a time andclassify the regression based on the number of explanatoryvariables:

DEFINITION
simple linear regressionLinear regression with one explanatory variableand one response variable.
DEFINITION
multiple linear regressionLinear regression with multiple explanatoryvariables and a single response variable.
Consider first the simple linear regression problem. Wewish to find an equation y = mx+ b that best matches theobserved data (y

i

,x

i

), where m is the slope of the line and
b is the y-intercept. Let x and y be vectors of the observed



explanatory and response values; note that the order of thedata in the vectors matters to the extent that xi and yi mustbe a single observed pair of values. Let's let c
1

= [mb]

T  bea vector of coefficients, which we wish to solve for. Thenthe resulting linear equations can be written in matrix formas
where 1 is a ones-vector of the same length as x and y.This is usually an overdetermined set of equations. Let
A

1

= [x1]. Then we will find the least-squares solution tominimize ∥ A
1

c

1

− y ∥. Comparing to Equation 4.7, we seethat the OLS solution is A†

1

y. Let's demonstrate this withan example.
Example 5.4: Simple Linear Regression

Between GDP and COVID Rates

Consider again the data on state COVID rates andGDP per capita shown in Fig. 5.4. Let's find the OLSline of fit for this data. Let's start by importing the rawdata and computing the COVID rates per 1000 peopleand GDP per capita in thousands of dollars:
import pandas as pd

covid = pd.read_csv( 'https://www.fdsp.net/data/covid-

merged.csv' )

y = [ ]c

1

,x 1

https://www.fdsp.net/data/covid-merged.csv


 

 

covid['gdp_norm'] = covid['gdp'] / covid['population'] * 

1000;

covid['cases_norm'] = covid['cases'] / covid['population'] * 

1000

To apply the least-square techniques described above,let's set up the variables x, y, and A
1

 described abovefor this dataset. We are interested in whether GDP (asocioeconomic factor) affects COVID rates, so we set xto the GDP values. The COVID rates are the responsedata, so we assign them to y. The variable A
1

 iscreated as a matrix that contains the explanatory data
x and a vector of 1s. Because the COVID data istreated as a row vector, it is most convenient tovertically stack the two vectors with np.vstack() andthen transpose the resulting matrix:

x = covid['gdp_norm']

y =   covid['cases_norm']

A1 = np.vstack( (x ,

                  np.ones_like(x)

                 ) ).T

A1[:5]



array([[47.06126732,   1.   ],

       [74.73866953,   1.   ],

       [52.07219899,   1.   ],

       [43.93804236,   1.   ],

       [81.11414283,   1.   ]])

Then the coefficient vector can be computed as follows:
c1 = la.pinv(A1) @ y

print(c1)

[ 0.13790867 -5.8341525 ]

Let's plot the data with the OLS line of fit:
m = c1[0]

b = c1[1]

y_fit1 = m*x + b

 

 

plt.scatter(x, y)

plt.xlabel("GDP per capita ($K)")



plt.ylabel("Covid rate per 1000 residents");

 

 

plt.plot(x, y_fit1, color='C1');

The positive slope indicates that there is a positiveassociation between GDP and COVID rates.The squared error is
la.norm(y - y_fit1)**2



354.30246867168444

Let's see if we can reduce that error rate by usingmultiple linear regression, where we will use more thanone explanatory variable. Let x
0

,x

1

,… ,x

k−1

 be vectors,where vector x
i

 is the data for explanatory variable i. Then
A

k

 will be
Then the OLS solution to 

y = A

k

c

 is 
c = A

†

k

y

. Let's testthis with an example:
Example 5.5: Multiple Linear Regression

with COVID Data

Consider again the COVID dataset, but now let'sconsider two explanatory variables. Let x
0

 be thenormalized GDP data, and let x
1

 be the urban indexdata. Then we can create the matrix A
2

 as show below:
A2 = np.vstack( (covid['gdp_norm'],

                 covid['urban'],

                 np.ones_like(covid['urban'])

                ) ).T

A2[:5]

A

k

= [ ].x

0

x

1

… 1



array([[47.06126732, 59.04   ,   1.   ],

       [74.73866953, 66.02   ,   1.   ],

       [52.07219899, 89.81   ,   1.   ],

       [43.93804236, 56.16   ,   1.   ],

       [81.11414283, 94.95   ,   1.   ]])

Then the solution of the OLS problem is:
c2 = la.pinv(A2) @ y

c2

array([ 0.10879662,   0.04307567, -7.19829654])

The values in c2 are the coefficients of the best linearfit and should be interpreted as:

Let's calculate the predicted values and find thenorm-squared of the error vector:
ecovid = Acovid @ xcovid - bcovid

Normalized COVID Rate ≈

0.109(Normalized GDP) + 0.0431(Urban Index) − 7.20.



la.norm(ecovid)**2

340.84175401395896

By using two explanatory variables, the squared errorbetween the data and the predicted values is reducedfrom approximately 354.3 to 340.8.
As usual, there is an easy way to implement simple ormultiple linear regression using one of the common Pythondata science libraries, scikit-learn. We will import the

LinearRegression() function from the sklearn.linearsubmodule. LinearRegression returns an object with methodsto perform tasks like fitting the model to the data (in thiscase, performing OLS) and calculating predicted valuesusing the fitted model. When using LinearRegression(), it willalready include a constant term, so we only need to passthe first two columns of Ak to the fit() method:
from sklearn.linear_model import LinearRegression

 

 

lr = LinearRegression()

lr.fit(Ak[:, :2], y);



The coefficients and constant term of the linear fit aregiven by
lr.coef_, lr.intercept_

(array([0.10879662, 0.04307567]), -7.198296541829917)

These match the ones we found using NumPy.
5.2.2 Finding an Approximate Polynomial Fit to DataNow consider the problem of trying to find a polynomial
p(x) to fit a sequence of data points
(x

0

, y

0

), (x

1

, y

1

), ,… , (x

n−1

, y

n−1

). In Section 5.1, weshowed how to find an exact fit with a polynomial of degree
n− 1. However, if we wish to fit the data with a polynomialof degree m < n− 1, we may need to find an approximatefit. As before, we will use squared error as our measure of“good” and try to minimize the total squared error betweenthe approximation and the data. Thus, if our polynomial fitis p(x), then we want to choose the coefficients of p(x) tominimize

∑

i

[y

i

− p(x

i

)]

2

.

(5.2)



Let's reformulate this to better reveal the nature of theproblem. Let n be the number of data points, and let m < nbe the degree of the polynomial that we want to use toapproximate the data. Then the polynomial is of the form
p(x) = c

0

+ c

1

x

1

+ c

2

x

2

+… c

m−1

x

m−1. We can calculateall of the polynomial values using the matrix equation

Let x = [x

0

,x

1

,… ,x

n−1

]

T . Then we can write the leftmatrix in this equation concisely as A
m

= [1xx

2

…x

m−1

],where we use xi to denote

Letting y = [y

0

, y

1

,… , y

n−1

]

T , we can rewrite (5.2) as
∥ A

m

c− y ∥

2

.

Note that A
m

c− y is a linear equation, even though p(x)is a polynomial; this is because it is linear in the

.

1 x

0

x

2

0

…x

m−1

0

1 x

1

x

2

1

…x

m−1

1

… … … ⋱ …

1 x

n−1

x

2

n−1

…x

m−1

n−1

c

0

c

1

c

2

…

c

m−1

x

i

= .

x

i

0

x

i

1

⋮

x

i

n−1



coefficients of the polynomial. Thus, this is exactly thesame type of ordinary least-squares problem that weencountered in Section 4.5. Provided the Gram matrix
A

T

m

A

m

 is invertible, the solution is 
c = A

†

m

y

. (If the Grammatrix is not invertible, the rows of A
m

 are linearlydependent, and the size of the A
m

 matrix can be reducedby dropping a row and hence reducing the order of thepolynomial by 1. This can be repeated until the Grammatrix is invertible.)Let's apply this to find a low-order polynomial fit to theCOVID data shown at the beginning of this section:
Example 5.6: Polynomial Fits to COVID and

GDP Data

Let's start by approximating our data using aquadratic polynomial. This can be considered
polynomial regression. In simple linear regression inSection 5.2.1, we created a matrix A

1

 whose columnsconsisted of the data and a ones vector. Another way tointerpret this matrix is A
1

= [x

1

x

0

] powers of ourinput data. Here, we will use per-capita GDP as theinput variable. Unlike Section 5.1, the matrix of powersof xi will not be square because we will only include
m+ 1 columns, where m is the desired degree of thepolynomial. To approximate the data by a quadratic, wewill use the matrix A

2

 given by



We begin by creating this matrix as a NumPy array. Thefunction make_power_matrix() below takes as input a vectorand a maximum degree. It returns a matrix whose columnsare consecutive powers of the input vector, from degree 0up to the specified degree1.
_________________ 1This function uses basic NumPy techniques for clarity. Many people use the
PolynomialFeatures class from scikit-learn for generating this type of matrix; anexample is given online at la4ds.net/5-2. ⏎
def make_power_matrix(xdata, degree):

  """stack the powers of the xdata into columns

        of a matrix to use in finding LS solution

 

 

  inputs:

    xdata:     column vector of input data

    degree: maximum degree to raise data to

 

 

  output:

 

A

2

= .

1 x

0

x

2

0

1 x

1

x

2

1

⋮ ⋮ ⋮

1 x

n−1

x

2

n−1

http://la4ds.net/5-2


 

    power_matrix: matrix whose columns are the powers of 

xdata from 0 to degree

  """

 

 

  # Convert to ndarray, for instance for Pandas Series

  if type(xdata) != np.ndarray:

    xdata = np.array(xdata)

 

 

  # If passed a vector, convert to column array

  if len(xdata.shape) == 1:

    xdata = xdata[:, np.newaxis]

 

 

  # Initialize the first column

  power_matrix = np.ones_like(xdata)

 

 

  # Then consecutively add the powers

  for i in range(1,degree+1):

    power_matrix = np.hstack( (power_matrix, xdata**i) )

 

 

  return power_matrix

The first five rows of the A2 matrix are shown below:



A2 = make_power_matrix(covid['gdp_norm'], 2)

print(A2[:5])

[[1.00000000e+00 4.70612673e+01 2.21476288e+03]

 [1.00000000e+00 7.47386695e+01 5.58586872e+03]

 [1.00000000e+00 5.20721990e+01 2.71151391e+03]

 [1.00000000e+00 4.39380424e+01 1.93055157e+03]

 [1.00000000e+00 8.11141428e+01 6.57950417e+03]]

Let's confirm that the columns of A2 are linearlyindependent by checking that the determinant of its Grammatrix is nonzero:
la.det(A2.T @ A2)

495814305459.11523

Then the LS solution for the coefficients of the quadraticis given by A†

2

y, which is calculated as follows:
c2 =la.pinv(A2) @ covid['cases_norm']

print(c2)



[ 2.00857605e+01 -6.91061062e-01   6.39882763e-03]

The resulting quadratic is approximately
p(x) = 20.1 − 0.691x+ 0.0064x

2. The resulting fit is shownin Fig. 5.6. Code to generate this plot is available online atla4ds.net/5-2. The quadratic fit is nonmonotonic — itdecreases and then increases. Several possibleexplanations for this are:
It may be some real phenomenon that causes this in thedata.It may be because of randomness of the data.It may because of limitations with such a low-order fit.

http://la4ds.net/5-2


Fig. 5.6:  Least-squares quadratic fit to COVID data. ⏎
The squared error is easily calculated by substituting thissolution back into the equation 

∥A

2

c− y

∥

2:
la.norm(A2 @ c2 - covid['cases_norm'])**2

295.2365377484128

This is the lowest squared error that we have achievedyet. Since the overall trend seems from the graph to be thatthe normalized COVID rates increase with normalized



GDPs, let's see if a higher-order polynomial fits the databetter. The following code determines the cubic (third-order) least-squares fit. The resulting curve is shown withthe data in Fig. 5.7.

Long Description for Figure 5.7
Fig. 5.7:  Least-squares cubic fit to COVID data. ⏎
A3 = make_power_matrix(covid['gdp_norm'], 3)

c3 =la.pinv(A3) @ covid['cases_norm']

print(c3)

[-6.59326652e+01   3.48324894e+00 -5.92229731e-02   



3.34328413e-04]

The cubic polynomial shows an interesting trend in that itis basically flat for most values of the percentage of GDPper capita, but then increases when the GDP per capitaexceeds $75K. It has the deficiency that it goes negative forsmall values of the Urban Index. However, those values areoutside the range of the data, so this is not necessarily asevere problem. Let's check the error achieved by the cubicpolynomial fit:
la.norm(A2 @ c2 - covid['cases_norm'])**2

260.6011960010392

The error has been reduced again from 295 for thequadratic fit to 260.6 for the cubic fit. The error will alwaysdecrease if we increase the order of the polynomial fit, butthe resulting polynomial may not be useful as a model forthe data, as we have seen before. The graph below showsthe error as a function of the degree of the polynomial fordegrees up to 18:
errors = []

max_deg=18



for deg in range(1,max_deg):

  Ax = make_power_matrix(covid['gdp_norm'], deg)

  cx =la.pinv(Ax) @ covid['cases_norm']

  ex = la.norm(Ax @ cx - covid['cases_norm'])**2

  errors +=   [ex]

 

 

plt.plot(range(1,max_deg), errors);

 

 

plt.xlabel('Degree of polynomial fit')

plt.ylabel('Norm squared of error');



Beyond this point, numerical errors make the polynomialapproximation process break down. But we can see that upthrough degree 18, there is little gain in using a polynomialfit with degree greater than 4. This is typical behavior, andthis transition from a steep decrease in error to a moregradual one (an “elbow in the curve”) is often used toselect the degree of fit.
Terminology review and self-assessment questionsInteractive flashcards to review the terminology introducedin this section and self-assessment questions are availableat la4ds.net/5-2, which can also be accessed using this QRcode:

http://la4ds.net/5-2


5.3 Chapter SummaryThis chapter focused on problems of finding polynomials tofit a set of data points. We started with showing how to finda polynomial to exactly fit a set of data points by solving asystem of linear equations, provided the degree of thepolynomial is sufficiently large. Then we considered aspecial case where the number of data points is usuallymuch larger than the polynomial degree: linear regression.We showed how to use ordinary least squares to find thesolution that minimizes the total squared error from thepolynomial to the data. Then we applied the same approachto approximate polynomial fitting/polynomial regression.
Access a list of key take-aways for this chapter, along withinteractive flashcards and quizzes at la4ds.net/5-3, whichcan also be accessed using this QR code:

http://la4ds.net/5-3


6
Transforming Data

DOI: 10.1201/9781032664088-6
This chapter focuses on techniques to represent data in differentways. I will show how to represent a group of vectors usinganother set of universal or specific vectors, called a basis. We willinvestigate one important application of this, which istransforming time-domain signals into the frequency domain. I willalso discuss techniques to represent a group of vectors by a set ofvectors with lower dimensionality. We will investigate applicationsof this to the reception of communication signals in noise and todimensionality reduction.
6.1 Representing a Vector Using Projections:

Spanning Sets and BasesAs shown in Section 2.6.2, vector projection allows us todetermine how to represent an arbitrary n-vector b in terms of areference vector a. Then given a sufficient set of reference n-vectors a
0

,a

1

,…, we should be able to reconstruct the originalvector in terms of its vector projections proj
a

0

b, proj

a

1

b,… . Let'suse an example to demonstrate some conditions in which this ispossible.

https://doi.org/10.1201/9781032664088-6


In Section 3.4.3, we showed how matrix multiplication can beused to rotate a set of data points in two-dimensional space. Let'sdelve deeper into this idea of representing a vector using arotated set of axes to build the basic concepts we need for generalvector representations. Let's start by formalizing the way weusually represent a vector in two- or three-dimensional Euclideanspace. Any vector in these spaces can be written as a sum ofscaled versions of unit vectors from the standard basis:
DEFINITION
standard basisIn a Euclidean vector space, the standard basis consistsof a set of unique vectors whose components are all zerosexcept for a single 1. For the real plane, R2, the standardbasis is

{e

x

= [1, 0], e

y

= [0, 1]},

and for three-dimensional Euclidean space, R3, thestandard basis is
{e

x

= [1, 0, 0], e

y

= [0, 1, 0], e

z

= [0, 0, 1]}.

It is worth noting two important properties of the vectors in anystandard basis. Below, we show the properties for R3 as anexample.
1. They are normal vectors: ∥ e

x

∥=∥ e

x

∥=∥ e

z

∥= 12. They are mutually orthogonal, meaning that any pair of vectorsis orthogonal. In R3, e
x

⋅ e

y

= 0, e
x

⋅ e

z

= 0, and e
y

⋅ e

z

= 0.



Any set of vectors satisfying these two properties is called an
orthonormal set:

DEFINITION
orthonormal set (of vectors)A set of vectors {a

0

,a

1

,… ,a

n−1

} is an orthonormal set ifand only if:
1. The vectors are all normal; i.e., ∥ a

i

∥= 1 for all
i = 0, 1,… ,n− 1.2. The vectors are mutually orthogonal; i.e., a

i

⋅ a

j

 forall i ≠ j in 0, 1,… ,n− 1.
We can interpret the components of an arbitrary vector as thecoefficients of a linear combination of the standard basis vectors.For example, if w = [a, b], then w = ae

x

+ be

y

.
Example 6.1: Representation of Vector Using

Standard Basis Vectors

Consider the vector w = [2, 1.5]. Fig. 6.1 shows our usualplot of w along with two vectors showing w = 2e

x

+ 1.5e

y

.Note also that the vectors 2e
x

 and 1.5e
y

 are the vectorprojections of w onto e
x

 and e
y

:
import numpy as np

from numpy.linalg import norm

 

 



w = np.array([2, 1.5])

ex = np.array([1, 0])

ey = np.array([0, 1])

 

 

wpx = w@ex * ex / norm(ex)**2

print(f'Projection of z onto e_x = {wpx}')

 

 

wpy = w@ey * ey / norm(ey)**2

print(f'Projection of z onto e_y = {wpy}')

Projection of z onto e_x = [2. 0.]

Projection of z onto e_y = [0. 1.5]



Fig. 6.1:  Representation of w = [2, 1.5] as linear combination ofstandard basis vectors e
x

 and e
y

. ⏎
Suppose we create new axes represented by unit vectors e

x,θand e
y,θ

 that are rotated θ degrees from the standard basis.
Example 6.2: Standard Basis Vectors Rotated 60∘

Counter-Clockwise

If we rotate the standard unit vectors by 60∘ counter-clockwise, the resulting unit vectors are shown in Fig. 6.2.



From trigonometry, we can see that the unit vectors for theaxes are

Fig. 6.2:  Vectors from rotating standard unit vectors by 60∘counter-clockwise. ⏎
Then for the particular case of 60∘, we define:

theta_r = np.deg2rad(60)

ex60 = np.array([   np.cos(theta_r), np.sin(theta_r)])

ey60 = np.array([ -np.sin(theta_r), np.cos(theta_r)])

 

 

e

x,θ

= [cos θ sin θ]

e

y,θ

= [cos (θ+ 90

∘

) sin (θ+ 90

∘

)]

= [− sin θ cos θ].



print(f'x-axis rotated by 60 deg CCW = {ex60}')

print(f'y-axis rotated by 60 deg CCW = {ey60}')

x-axis rotated by 60 deg CCW = [0.5          0.8660254]

y-axis rotated by 60 deg CCW = [-0.8660254    0.5         ]

Note that rotating the axes does not change the fact that theyare an orthonormal set. First, let's check that they are stillnormal vectors:
norm(ex60), norm(ey60)

(1.0, 1.0)

Now let's check that they are still orthogonal:
np.round(ex60 @ ey60, 10)

-0.0

Now lets consider what happens if we transform a vector byprojecting it onto a rotated set of axes, e
x,θ

 and e
y,θ

.



Example 6.3: Projection of Vector onto Axes
Rotated 60∘ CCW

The projection of the vector w = [2, 1.5] onto e
x,60

∘  and e
y,60

∘is
wpx = w @ ex60

wpy = w @ ey60

 

 

print(f'The scalar projections of w onto the rotated axes: {wpx:.2f}, 

{wpy:.2f}')

The scalar projections of w onto the rotated axes: 2.30, -0.98

Now let's visualize the vector projections onto these axes. Therotated axis vectors are shown as thin, black, non-transparentvectors, and the projections are shown as thicker, colored,and partially transparent vectors:
wx = wpx * xp

wy = wpy * yp

plotvec(xp, yp, width=0.005, colors=['k', 'k'])

plotvec(wx, wy, newfig=False, width=0.02, color_offset=3, alpha=0.7)

plt.xlim([-2, 2])

plt.ylim([-1, 2]);



Finally, let's make a figure that shows the representationsbefore and after rotation. The figure below shows:
1. The original vector w as a thin non-transparent vector.2. The linear combination of the vector projections of wonto the rotated axes. This second vector is shown as athicker, semi-transparent arrow.

The result shows that the linear combination of the vectorprojections onto the rotated axes completely reconstructs theoriginal vector w.
plotvec(w, width=0.005, colors=['k'])



plotvec(wx + wy, newfig=False, width=0.02, color_offset=3, alpha=0.7)

We can confirm this by checking the norm of the error vector,which is the difference between the original vector and thesum of the vector projections:
e = w - (wx + wy)

print(f'The energy in the error vector is {norm(e) : .3f}')



The energy in the error vector is 0.000

In the results above, we still show w and the sum of the vectorprojections on the original axes. To translate w to the rotatedaxes, we create a new vector w
θ

 for which the components are thescalar projections of w onto the rotated axes:
Example 6.4: Projection onto Rotated Axes

Let w
60

 be the vector whose components are the scalarprojections of w onto e
x,60

∘  and e
y,60

∘:
w60 = np.array([wpx, wpy])

If we plot w
60

 and w on the same axes, then w
60

 is equivalentto a 60∘ clockwise rotation of w. (In other words, when weproject onto a basis that is rotated 60∘ counter-clockwise fromthe standard basis, the resulting vector representation isequivalent to a 60∘ clockwise rotation of the original vector.)
plotvec(w, w60, labels=['$\mathbf{w}$', '$\mathbf{w}_{60}$'])

plt.xlim([-1, 3])

plt.ylim([-1.5, 2])

(-1.5, 2.0)



We can confirm this using our formula for the angle betweentwo vectors:
theta = np.arccos(w60 @ w / norm(w) / norm(w60))

print(f'theta = {np.rad2deg(theta): .2g}')

theta =   60



The representation of w using the rotated axes has the samelength as the original vector w:
print(f'Length of w = {norm(w) : .2f}')

print(f'Length of w projected onto rotated axes = {norm(w60) : .2f}')

Length of w = 2.50

Length of w projected onto rotated axes = 2.50

Any vector in R2 can be represented using these new axes –we can simply rotate a vector by 60∘ clockwise to find itsrepresentation on the rotated axes.
We say that S = {e

x,θ

, e

y,θ

} is a spanning set for R2 (or say that
S  spans R2):

DEFINITION
spanning set (vector space)A set of vectors S = {x

0

,x

1

,… ,x

n−1

} is a spanning setfor a vector space V if every vector in V can berepresented as a linear combination of the vectors in S.
Note that we cannot remove either of the vectors from S  andstill be able to represent everything in R2. For example, we needboth rotated axis vectors to represent w. We say that S  is

minimal:



DEFINITION
minimal (spanning set)A spanning set S  for a vector space V is minimal if theremoval of any member of S  would stop it from being aspanning set for V.

An equivalent condition for a spanning set to be minimal is thatthe vectors in the spanning set are linearly independent.A minimal spanning set is also called a basis:
DEFINITION
basis (vector space)A set of vectors S  is a basis for a vector space V if S  isa minimal spanning set for V.

The plural of basis is bases (pronounced “base-ease”).We can always find a basis that is an orthonormal set, and sucha basis is called an orthonormal basis:
DEFINITION
orthonormal basis (for set of vectors)A set of vectors S  is an orthonormal basis for a set ofvectors V  if

1. S  is an orthonormal set, and2. S  is a minimal spanning set for V .



There are generally multiple bases for any vector space V, butthey all have the same cardinality:
DEFINITION
cardinality (set)The cardinality of a set S  is denoted |S | and is equal tothe number of elements in the set.

We will only consider the cardinality for finite sets. The cardinalityof a basis for a vector space V is called its dimension:
DEFINITION
dimension (vector space)The dimension of a vector space V, denoted dimV, is thecardinality of a basis for V.
For Rn, one basis is B

n

= {e

0

, e

1

,… , e

n−1

}, where each e
i

 istaken to be the n-vector that consists of all zeros except for a 1 inposition i. Thus, the dimension of Rn is |B
n

| = n. Even whenlimiting to real n-vectors, there are infinitely many other vectorspaces other than Rn. One common way to form such a vectorspace is to specify a set of vectors V  and then specify the vectorspace V as the span of V :
DEFINITION
span (set of vectors)



Given a set of vectors V , the span of V , denoted span(V )is the vector space that consists of all linearcombinations of the vectors in V .
I.e., if |V | = n, then span(V ) contains every vector of the form
c

0

v

0

+ c

1

v

1

+…+ c

n−1

v

n−1

 for all v
i

∈ V  and all real constants
ci. By definition, V  is a spanning set for span(V ). If V  is a set oflinearly independent vectors, then V  is a basis for span(V ).

Example 6.5: Another Basis for R3

Consider the set V = {[1, 1, 0]

⊤

, [1, 0, 1]

⊤

, [0, 1, 1]

⊤

}. Thesevectors are linearly independent, and thus V  is a basis for
span(V ). Note that dim span(V ) = 3, span(V ) ⊂ R

3, and
dimR

3

= 3. It can be shown that V  is a basis for R3

= 3.
Example 6.6: Example of a Vector Space of 3-

Vectors Other Than R3

Consider the set W = {[1, −1, 0]

⊤

, [1, 0,−1]

⊤

}. Thesevectors are linearly independent, and thus W  is a basis for
span(W ). Since |W | = 2, span(W ) is a vector space ofdimension 2 and thus cannot be equal to R3.It is also easy to see that there are vectors in R3 that are notin span(W ), such as [1, 0, 0]⊤, [0, 1, 0]⊤, and [0, 0, 1]⊤. In fact, itcan be shown that if we interpret the vectors as points inthree-dimensional space, then span(W ) is the plane definedby {(x, y, z) ∣ x+ y+ z = 0}, which is shown in Fig. 6.3. Aninteractive version of this plot is available at la4ds.net/6-1.

http://la4ds.net/6-1


Fig. 6.3:  The three dimensional vector space with basis
{[1,−1, 0]

⊺

, [1, 0,−1]

⊺

} can be viewed as the plane shown, whichcorresponds to the solution set of x+ y+ z = 0. ⏎
6.1.1 Applications of Alternative BasesAlternative bases are useful for many different purposes in datascience and engineering:
1. Alternative bases can be used to provide an alternativeinterpretation of data in terms of features such as frequency.2. Alternative bases can be used when we want to detect signalsembedded in noise by projecting the noisy signal into thosedimensions that enhance the signal components and suppressthe noise.



3. Alternative bases can be used when we want to reduce thedimensionality of a set of vectors. Instead of throwing awaysome particular elements of a vector, we can find a basis thatcaptures the most important features of a set of vectors,resulting in a smaller number of elements in a lossyrepresentation. This can be useful for:
1. Plotting high-dimensional data by projecting the data ontoa basis that reduces the data to 3 dimensions or fewer.2. Applying two-dimensional statistical techniques (like 2-Dregression) to high-dimensional data.3. Reducing the complexity of statistical methods, signalprocessing techniques, or machine learning algorithms byeliminating redundant or irrelevant information.4. Performing data compression by preserving the mostimportant information and discarding the least importantinformation.

I will demonstrate these in the following sections. In the nextsection, I show how an alternative basis constructed from complexsinusoids can be used to find the frequency content of time-domain vectors.
Terminology review and self-assessment questionsInteractive flashcards to review the terminology introduced in thissection and self-assessment questions are available at la4ds.net/6-1, which can also be accessed using this QR code:

http://la4ds.net/6-1


6.2 Universal Bases and the Discrete Fourier
TransformThere are two fundamental types of bases for sets of vectors:

1. Universal bases can represent every vector in a Euclideanvector space, Rn. For example, the rotated axis vectors used inthe last section can represent every vector in R2.2. Set-specific bases can represent every vector in the span of aspecified set but generally cannot represent every real vectorof the same size.
Why do we not always use a universal basis?
Recall that the cardinality of a basis is the dimensionality of thevector space that it can represent. The dimensionality of theEuclidean vector space Rn is n, and so n basis vectors arerequired. However, suppose we have a set S  of n-vectors,where the cardinality is m < n. Then the dimensionality of
span(S ) is at most m, and thus fewer than n basis vectors arerequired. If m is much smaller than n, this can make asignificant difference in computation. In Section 6.14, I showhow using a smaller basis can help distinguish a signal fromnoise in a digital communication system.



In this section, we consider a particular universal basis madeout of sinusoids. This type of basis is often applied to time-seriesdata. When time-series data is represented using sinusoidal basisfunctions, the representation characterizes the frequency contentof the signal. This frequency representation is useful in manyapplications, including:
1. Audio: the frequency representation can be used to analyze ormanipulate the frequency content of speech or music signals.For instance, the frequency representation can be used forequalization, pitch shifting, or noise removal.2. Financial data: the frequency representation can be used toidentify patterns in price changes of stocks or commodities.3. Mechanical signals: time-series data from mechanicalsystems, such as an engine, turbine, or machine, can be usedto identify vibrations.4. Biological data: time-series data, such as electrical signalsfrom the brain or heart, can be analyzed to detect medicalproblems.
6.2.1 Sinusoidal BasisLet's begin by generating a set of sinusoidal basis vectors. We cangenerate such a set as the rows of a special matrix called aDiscrete Fourier Transform (DFT) matrix. We will show how togenerate a DFT matrix using NumPy and how to interpret it usingplots. Readers who want to understand the math behind DFTmatrices can refer to the Wikipedia page:https://en.wikipedia.org/wiki/DFT_matrix.The DFT matrix for length-64 vectors can be created usingNumPy functions1 as follows:

https://en.wikipedia.org/wiki/DFT_matrix


import numpy as np

 

 

dft_len = 64

dft =   np.fft.fft(np.eye(dft_len), norm='ortho')

print(np.round(dft, 4))

[[0.125 +0.j     0.125 +0.j        0.125 +0.j   … 0.125 +0.j

  0.125 +0.j     0.125 +0.j    ]

 [0.125 +0.j     0.1244-0.0123j 0.1226-0.0244j … 0.1196+0.0363j

  0.1226+0.0244j 0.1244+0.0123j]

 [0.125 +0.j     0.1226-0.0244j 0.1155-0.0478j … 0.1039+0.0694j

  0.1155+0.0478j 0.1226+0.0244j]

 …

 [0.125 +0.j     0.1196+0.0363j 0.1039+0.0694j … 0.0793-0.0966j

  0.1039-0.0694j 0.1196-0.0363j]

 [0.125 +0.j     0.1226+0.0244j 0.1155+0.0478j … 0.1039-0.0694j

  0.1155-0.0478j 0.1226-0.0244j]

 [0.125 +0.j     0.1244+0.0123j 0.1226+0.0244j … 0.1196-0.0363j

  0.1226-0.0244j 0.1244-0.0123j]]

_________________ 1The equivalent function in PyTorch is torch.fft.fft(). ⏎
A few comments

The function name fft stands for fast Fourier transform,which is a fast technique for computing the DFT when thesize is a power of 2. The term FFT is commonly used to



refer to the DFT and np.fft.fft() works even when thelength is not a power of 2.There are two instances of “fft” in the function callbecause the fft() function is part of NumPy's fft module.The norm=‘ortho’ keyword argument is to make thesesinusoids have unit norm. The standard FFT does not givevectors with unit norm and instead requires differentnormalization in the inverse FFT (IFFT) function.Most entries in the DFT matrix consist of the sum ordifference of two components, one of which has a “j” atthe end. This is because these DFT entries are complexnumbers. Python uses the suffix j on a numeric value toindicate an imaginary number. (The letter j is typicallyused for this purpose by electrical engineers because i isused to denote current in a circuit.)
We can interpret the complex entries of a given row of the DFTmatrix as follows:
The real parts are samples of a cosine function at somefrequency.The imaginary parts are samples of the negative of a sinefunction at the same frequency.

The frequencies increase with the row number for the first half ofthe rows, and then decrease during the second half of the rows.Examples of these sinusoids are shown in Fig. 6.4, which includesseparate plots of the real and imaginary components of rows 0, 1,and 4 of the FFT matrix2.



Long Description for Figure 6.4
Fig. 6.4:  Plots of the real and imaginary components of FFTvectors 0, 1, and 4. ⏎
_________________ 2Code to create this plot is available at la4ds.net/6-2 ⏎Let's confirm that all of the rows have unit norm:
np.linalg.norm(dft, axis=1)

array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 

1., 1.,

       1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 

1., 1.,

       1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 

http://la4ds.net/6-2


1., 1.,

       1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])

The frequencies are such that all of the sinusoids at all of thefrequencies are orthogonal, and this results in the complexvectors being orthogonal. For complex vectors a and b, the innerproduct is defined as a ⋅ b

∗, where the elements of b∗ are thecomplex conjugates of the elements in b. Then if we take any tworows, we will get an inner product of zero:
np.round(dft[0]@np.conj(dft[4]), 10), np.round( 

dft[1]@np.conj(dft[4]), 10)

((-0+0j), 0j)

Let's start by analyzing the frequency content of a simple signalbefore using the DFT to analyze real data.
Example 6.7: DFT of Square Wave

We can generate a square wave signal using
scipy.signal.square(). Below I generate a length-64 squarewave with four cycles (I chose the parameters to get exactlyfour cycles, starting with half a cycle):

import scipy.signal

offset=4

t = np.linspace(0, 8*(64+offset)/64*np.pi, 64+offset)[offset:]



sq = scipy.signal.square(t)

 

 

plt.plot(sq);

plt.title('Length-64 square wave with 4 cycles');

We can determine the frequency content of this wave bymultiplying its vector representation by the rows of the DFTmatrix. Let's do a few frequency components individuallybefore automating the process. Row 0 is a DC signal, so itdetermines any DC component in the signal:
sq @ dft[0]



0j

Because we want to look at the scalar projection with manydifferent rows, let's make a function to print out the scalarprojections given a list of rows. If the result is very small, let'sprovide an option to suppress the output:
def print_projections(signal, dft_matrix, rows, suppression_threshold 

= 0):

 ''' print the scalar projection between the signal vector

      and the rows of the dft matrix   '''

 for row in rows:

    proj = sq @ dft[row]

    if abs(proj) > suppression_threshold :

      print(f'scalar projection of row {row}: {proj:.2f}')

Here are the values for rows 1 and 2:
print_projections(sq, dft, [1, 2])

scalar projection of row 1: 0.00-0.00j

scalar projection of row 2: 0.00+0.00j

Interestingly, all of these scalar projections are 0. This isbecause the waveform does not contain any of those low



frequencies. Now consider the scalar projection with rows 3and 4:
print_projections(sq, dft, [3, 4], suppression_threshold = 0.05)

scalar projection of row 4: 5.03+1.00j

Although the scalar projection with row 3 is zero, the scalarprojection with row 4 is not. For real data, each row k in theDFT has a “partner” at 64-k such that if we take twice the realpart of the scalar projection onto row k, we get the combinedeffect of these two rows. The result is a sinusoid that could beconsidered a very crude approximation of the square wave:
plt.plot(sq)

plt.plot(2*np.real(dft[4]@sq * dft[4]));



Now let's find what other projections are nonzero for the firsthalf of the DFT functions:
print_projections(sq, dft, range(5, 32), suppression_threshold=0.05)

scalar projection of row 12: -1.50-1.00j

scalar projection of row 20: 0.67+1.00j

scalar projection of row 28: -0.20-1.00j

Every 8th frequency component has a nonzero frequencycomponent. The code below combines different numbers ofprojections. The approximation is plotted versus the originalsquare wave after each new vector projection is added:



fig, axs = plt.subplots(1, 3, figsize=(8,4) )

 

 

approximation = 2 * np.real(np.conj(dft[4]) @ sq * dft[4])

 

 

rows=[4]

 

 

for i, row in enumerate([12,20, 28]):

  approximation += 2 * np.real(np.conj(dft[row]) @ sq * dft[row])

 

 

  ax = axs[i]

  ax.plot(sq)

  ax.plot(approximation)

  rows += [row]

  ax.set_title(f'Square wave & approximation\nusing rows {rows}')

 

 

plt.tight_layout()



Long Description Unnumbered Figure 1
The original square wave is completely reconstructed fromthe sum of the vector projections, as we can verify bychecking the norm of the error signal:

np.round(np.linalg.norm(sq - approximation), 10)

0.0

The scalar projections can all be found simultaneously usingmatrix multiplication. Let v be an n-vector, and let F
n

 be the
n× n DFT matrix. Then we can get the DFT of v is

V = F

n

v.

(6.1)



Note that we use an uppercase V for the frequency domainrepresentation, and a lowercase v for the time domain signal.Equation 6.1 is called the analysis equation of the DFT:
DEFINITION
analysis equationLet v be an n-vector from some set of vectors V , and let

B be a m× n matrix whose rows are the basis for V .Then the DFT of v is given by the analysis equation,
V = Bv.

The analysis equation may be written in other forms, dependingon the application, but always corresponds to projecting thevector that is to be represented onto each of the basis vectors.The DFT can be found even more efficiently using the FastFourier Transform (FFT) when the length of the vector is a powerof 2. We can get the DFT projections directly using NumPy usingthe np.fft.fft() function as follows:
np.round(np.fft.fft(sq, norm='ortho'), 5)

array([ 0.     +0.j,   0.   +0.j,   0.   +0.j,   0.   +0.j,

        5.02734+1.j,   0.   +0.j,   0.   +0.j,   0.   +0.j,

        0.     +0.j,   0.   +0.j,   0.   +0.j,   0.   +0.j,

       -1.49661-1.j,   0.   +0.j,   0.   +0.j,   0.   +0.j,

        0.     +0.j,   0.   +0.j,   0.   +0.j,   0.   +0.j,

        0.66818+1.j,   0.   +0.j,   0.   +0.j,   0.   +0.j,



        0.     +0.j,   0.   +0.j,   0.   +0.j,   0.   +0.j,

       -0.19891-1.j,   0.   +0.j,   0.   +0.j,   0.   +0.j,

        0.     +0.j,   0.   +0.j,   0.   +0.j,   0.   +0.j,

       -0.19891+1.j,   0.   +0.j,   0.   +0.j,   0.   +0.j,

        0.     +0.j,   0.   +0.j,   0.   +0.j,   0.   +0.j,

        0.66818-1.j,   0.   +0.j,   0.   +0.j,   0.   +0.j,

        0.     +0.j,   0.   +0.j,   0.   +0.j,   0.   +0.j,

       -1.49661+1.j,   0.   +0.j,   0.   +0.j,   0.   +0.j,

        0.     +0.j,   0.   +0.j,   0.   +0.j,   0.   +0.j,

        5.02734-1.j,   0.   +0.j,   0.   +0.j,   0.   +0.j])

I will demonstrate how to use this function to analyze thefrequency content in a real biological signal in the followingexample.
Example 6.8: Analyzing Frequency Content of ECG

Data

An electrocardiogram (ECG) is a record of the heart'selectrical activity. The file fdsp.net/data/ecg.csv contains theECG data for a healthy adult. ECGs often contain data formultiple channels, but this contains data only from a singlelead (the I lead). Let's start by loading this data and looking atthe head of the dataframe:
import pandas as pd

 

 

ecg_df = pd.read_csv('https://fdsp.net/data/ecg.csv', header=None, 

skiprows=2)

http://fdsp.net/data/ecg.csv
https://fdsp.net/data/ecg.csv


ecg_df.rename(columns={0 : 'ecg'}, inplace=True)

ecg_df.head()

      ecg

0 -41.920

1 -44.644

2 -47.030

3 -49.050

4 -50.681

This is supposed to be time-series data, but the time stampsare missing. However, the first line of this file says: Sample
Rate,512.242 hertz, which means that 512.242 samples weretaken per second. Thus the time between samples (inseconds) is

1 / 512.242

0.0019522022793913817

We can assign a time to each ECG sample and plot versustime as shown below:
ecg_df = ecg_df.assign(time = lambda x: x.index / 512.242)

 



 

plt.plot(ecg_df['time'], ecg_df['ecg'])

plt.xlabel('time (s)')

plt.ylabel('ECG signal strength ($\mu V$)');

There are some amplitude variations that were probablycaused by movement (these ECG results are from a smartwatch). Let's zoom in on a few cycles to get a better idea ofwhat the ECG data looks like:
s_min = 1370

s_max = 2665

plt.plot(ecg_df['time'].iloc[s_min:s_max], 

ecg_df['ecg'].iloc[s_min:s_max])



plt.xlabel('time (s)')

plt.ylabel('ECG signal strength ($\mu V$)');

From this plot, we can clearly see the repeating structure ofthe ECG data. Each cycle of the ECG signal lastsapproximately 0.8s (from a visual inspection), implying aheart rate in beats per minute of approximately:
60/0.8

75.0



If we want to estimate the heart rate across this data frame,we have a couple of options. We could try to write a functionto 1) find the peaks, 2) find the differences between adjacentpeaks, and 3) average those differences. However, the time-varying nature of the peaks may make this challenging. As analternative, we can transform the data into the frequencydomain as follows:
ecg = ecg_df['ecg']

ECG = np.fft.fft(ecg)

Again, I have used capital letters to indicate that ECG is afrequency-domain representation of ecg. ECG is complex, but ifwe plot its magnitude-squared, the result is proportional tothe power at each frequency. The power at each frequency iscalled the power spectral density:
DEFINITION
power spectral density (of a vector)For a n-vector x with DFT X, the power spectral densityis the power at each frequency component and is givenby

P [k] =

1

n

X[n]

2

.

In the plots and analysis that follow, we are only interested inthe relative power at different frequencies, so I am going to



omit the normalization term 1/n. Let's start by plotting thepower spectral density for the whole ECG vector.
plt.plot(abs(ECG)**2);

plt.title('Magnitude-squared of DFT of ECG data');

First, note the symmetry in the PSD. As before, only the firsthalf of the DFT data is needed to capture all of the frequencyinformation for a real vector.Second, two issues make this plot hard to use:
1. The dependent variable in this plot is the index of the rowsof the DFT matrix, not frequency.



2. The larger PSD values are concentrated at the lowerfrequency indices, and we can't really see what is going onwhen plotting the full range.
To plot against frequency, we can use a helper functioncalled np.fft.fftfreq() to return a vector of frequencies. Itsarguments are the length of the DFT vectors and the timeseparation between samples. Since we have 512.242samples/second, the time separation is the inverse of thatvalue. We can create a vector of frequencies and plot the firstfew hundred components of the DFT versus frequency asfollows:

f = np.fft.fftfreq(len(ecg), 1/512.242)

 

 

plt.plot(f[:400], 1/len(ECG) * np.abs(ECG[:400])**2)

plt.title('Power spectral density for ECG signal');



Note:
In most real applications, we would estimate the PSD byaveraging over multiple time windows of the signal – see thedocumentation for scipy.signal.ShortTimeFFT() for details.However, we will see that the simple technique shown hereworks well for this example.

Let's zoom in on the portion of the ECG signal that containsthe frequency with the highest power:
plt.plot(f[:80], np.abs(ECG[:80])**2)



plt.title('Power spectral density for ECG signal');

We can get the exact index of the peak using the argmax()method:
peak_pos = (ECG[:400]**2).argmax()

peak_pos

36



and the corresponding frequency is:
f[peak_pos]

1.2000203032472179

This frequency is in Hertz. This frequency corresponds to theheart rate during the ECG, which is approximately 1.2beats/second, or 72 beats per minute.For a periodic non-sinusoidal signal, the DFT will containharmonics at multiples of the base frequency. Thus, in thepower spectral density, we see peaks not only at 1.2 Hz butalso at 2.4 Hz, 3.6 Hz, and 4.8 Hz. Those other peaks arerelated to the same 1.2 Hz electrical signal that is driving thebeating of the heart at 72 beats/minute. Although we will notpursue further analysis of the ECG signal in this book, someresearch articles do look at the power spectral density at thelower frequencies below the heartbeat.
The DFT introduced in this section is one example of a universalbasis that is commonly used because it is a powerful and simpletechnique for transforming a time-domain signal into a frequency-domain representation.

Terminology review and self-assessment questionsInteractive flashcards to review the terminology introduced in thissection and self-assessment questions are available at la4ds.net/6-2, which can also be accessed using this QR code:

http://la4ds.net/6-2


6.3 Set-Specific Bases: The Gram-Schmidt
AlgorithmIn the previous section, we showed one example of universal basesthat consist of complex sinusoids: the rows of DFT matrices. Theadvantage of a universal basis is that it can represent every vectorin some vector space Rn

. The disadvantage is that the cardinalityof a universal basis in Rn is always n.In this section, we consider finding a set-specific basis and showthat such a basis can have a much smaller cardinality than auniversal basis. Let's motivate the general approach using anexample.
Example 6.9: Finding a Set-Specific Basis for Four

8-Vectors  ⏎

Consider the vectors S
a

= {s

0

, s

1

, s

2

, s

3

}, where

These vectors are from R8, so a universal basis for span(S
a

)would consist of 8 vectors. We know that S
a

 is a spanning set

s

0

= [ ],

s

1

= [ ],

s

2

= [ ], and

s

3

= [ ].

1 1 1 1 −1 −1 −1 −1

0 2 2 0 0 −2 −2 0

1 −1 −1 1 −1 1 1 −1

2 0 0 2 −2 0 0 −2



for span(S
a

), and this implies that dim(span(S

a

)) ≤ |S

a

| = 4. Let's see if we can find a basis for span(S
a

).Let f
i

 be the ith basis vector. We iterate through the signalsone-by-one. We will end up with different bases depending onthe order in which we iterate over the signals, but for thisexample, we will iterate over them in numerical order.
Signal s

0We start with s

0

 and create the basis vector f

0

 bynormalizing it:
import numpy as np

from numpy.linalg import norm

 

 

s0 = np.array([1,    1,   1,   1, -1, -1, -1, -1])

f0= s0 / norm(s0)

print(f0)

[ 0.35355339   0.35355339   0.35355339   0.35355339 -0.35355339 

-0.35355339

 -0.35355339  -0.35355339]

Note that ∥ s

0

∥

2

= 8, so it is easier to see f
0

 mathematically as

Then the projection of s
0

 onto f
0

 is
f

0

=

1

√

8

[ ].1 1 1 1 −1 −1 −1 −1



Let's check numerically:
s0 @ f0

2.82842712474619

Signal s
1To find a second basis vector, we start by finding the scalarprojection of s

1

 onto the basis vector f
0

:
s1 = np.array( [ 0,   2,   2,   0,   0, -2, -2,   0] )

 

 

s1 @ f0

2.82842712474619

⟨s

0

, f

0

⟩ = ⟨s

0

,

s

0

∥ s

0

∥

⟩

=

1

∥ s

0

∥

⟨s

0

, s

0

⟩

=

∥ s

0

∥

2

∥ s

0

∥

=∥ s

0

∥

=

√

8 ≈ 2.828.



Then the part of s
1

 that cannot be represented by f
0

 can befound by subtracting the vector projection of s
1

 onto f
0

 fromthe vector s
1

:
e1 = a1 - (a1 @ f0) * f0

print(e1)

[-1.   1.   1. -1.   1. -1. -1.   1.]

which has norm
norm(e1)

2.8284271247461903

Since the error signal has a nonzero norm, we need anotherbasis function that is orthogonal to f
0

. Fortunately, the errorsignal is always orthogonal to the previous basis functions.Let's check for this example:
np.round(e1 @ f0, 10)

0.0



Then to create our second basis vector, we can simplynormalize the error vector e
1

:
f1 = e1 / norm(e1)

print(f1)

[-0.35355339   0.35355339    0.35355339 -0.35355339   0.35355339 

-0.35355339

 -0.35355339   0.35355339]

As with f
0

 it is easier to write this mathematically as

The projection of s
1

 onto f
1

 is
s1 @ f1

2.8284271247461907

which is the norm of e
1

.
Signal s

2Note that it turns out that we could also write

f

1

=

1

√

8

[ ].−1 1 1 −1 1 −1 −1 1



f

1

= −

1

√

8

s

2

.

Another way to interpret this is that s
2

 is in the (opposite)direction of f
1

. Thus, s
2

 should be orthogonal to f
0

 and so thescalar product of s
2

 with f
0

 should be zero:
s2 = np.array( [1, -1, -1,   1, -1,   1,   1, -1] )

 

 

s2 @ f0

0.0

We can see that we can write s
2

= −

√

8f

1

, which matches theresult from the numerical projection,
print(-(f1 * np.sqrt(8)))

print( s2.astype(float))

[ 1. -1. -1.   1. -1.   1.   1. -1.]

[ 1. -1. -1.   1. -1.   1.   1. -1.]

There is no remaining error, so we do not need any new basisfunction.



Signal s
3Last, we try to represent s

3

. The scalar projection of s
3

 onto
f

0

 is
s3 =np.array( [ 2,   0,   0,   2, -2,   0,   0, -2] )

 

 

s3 @ f0

2.82842712474619

and the scalar projection of s
3

 onto f
1

 is
s3 @ f1

-2.8284271247461894

The error signal can be calculated by subtracting the sum ofthe vector projections from s
3

,
e3 = s3 - ( (s3 @ f0)*f0 + (s3 @ f1)*f1 )

np.round(e3, 10)



array([ 0.,   0.,   0.,   0., -0., -0., -0., -0.])

Since the error signal is the zeros vector, we do not need tocreate a new basis vector.
Signal Set DimensionalityTwo basis vectors are sufficient to represent all the signalsin S

a

. In the context of communications, we say that thedimension of this signal set is 2. (More generally, thedimension of the vector space span(S

a

) is two.) Incomparison, a universal basis would require 8 basis vectors.
6.3.1 Signal Space RepresentationGiven a signal set S , every signal in S  can be expressed as alinear combination of the vectors in our orthonormal basis. Ifthere are N basis functions f

0

, f

1

,… , f

N−1

, then we can write
s

i

=

N−1

∑

k=0

s

ik

f

k

.

Here, each coefficient of the linear combination is given by thescalar projection of s
i

 onto the basis f
k

, which is s
ik

= s

i

⋅ f

k

. Thengiven a particular basis, each signal can be represented by avector of the coefficients that multiply the basis function,
–

s

i

= [s

i,0

, s

i,1

,… , s

i,N−1

]. The vector –s
i

 is called the signal-space
representation of s

i

:
DEFINITION
signal-space representation



If S  is a set of vectors over Rn with orthonormal basis
F = {f

0

, f

1

,… , f

N−1

}, where
s

i

=

N−1

∑

k=0

s

ik

f

k

,

then the vector –s
i

= [s

i,0

, s

i,1

,… , s

i,N−1

] is the signal-
space representation of s

i

.
We will use S  to denote the set of signal-space representations.

Note:
The signal-space representations depend on the orthonormalbasis used to represent the signals, and the basis is not unique.However, we will see soon that the properties of the signal-space representation do not depend on the choice of basis.
To understand this better, let's apply it to our example 4-arysignal set:
Example 6.10: Signal Space Representation for

Example 4-ary Signal Set

Consider again the 4 signal vectors from Example 6.9 alongwith the orthonormal basis we found, F = {f

0

, f

1

}. Then thesignal-space representation for s
i

 is
–

s

i

= [s

i

⋅ f

0

, s

i

⋅ f

1

].

Even though the original vectors were of length 8, thesignal-space representations are of length 2, because all ofthe signals can be represented as linear combinations of two



basis functions. Since the new representation occupies onlytwo dimensions, we can now plot these vectors. The result isshown in Fig. 6.5.



Fig. 6.5:  Signal-space representation for set of four vectors from
R

8. ⏎
6.3.2 Properties of Signal-Space RepresentationsAn important feature of signal-space representations is that theypreserve the most important aspects of the original signal set.Consider a set of signals S  and corresponding signal-spacerepresentations S .Then the signal-space representations have the followingproperties:
1. Inner-product preserving:

For alli, k, ⟨s

i

, s

k

⟩ = ⟨

–

s

i

,

–

s

k

⟩.

2. Norm preserving:

∥s

i

∥

=

∥

–

s

i

∥

.

3. Distance preserving:

For alli, k,

∥

s

i

− s

k

∥

=

∥

–

s

i

−

–

s

k

∥

.

Properties 2 and 3 follow directly from Property 1. Theseproperties ensure that our signal-space representation ismeaningful. For instance, in our plot of the vectors using thesignal-space representation, the lengths of the vectors are thenorms of the original vectors, and we can measure the distancebetween vectors as the length of a vector connecting the heads ofthose vectors.Let's check properties 2 and 3 for our example vectors:



Example 6.11: Checking Norm- and Distance-
Preserving Property of Signal-Space
Representation

Consider the signals and their signal-space representationsfrom Example 6.9. The following Python code compares thenorms of the signals to the norms of their correspondingsignal-space representations:
print('Property 2: Norm Preserving\n')

print(' i | Norm of original vector | Norm of signal-space rep')

print('-'*55)

 

 

for i in range(4):

  print(f'{i:^3}|{norm(A[i]):^25.1f}|{norm(Areps[i]):^25.1f}')

Property 2: Norm Preserving

 

 

 i | Norm of original vector | Norm of signal-space rep

-------------------------------------------------------

 0 |           2.8            |          2.8

 1 |           4.0            |          4.0

 2 |           2.8            |          2.8

 3 |           4.0            |          4.0

The following code compares the distances between all theoriginal signal vectors, d

ij

=∥ s

i

− s

j

∥, to the distances



between their signal-space representations, –
d

ij

=∥

–

s

i

−

–

s

j

∥

:
print('Property 3:\n')

print(' i, k | Dist for original vectors | Dist for signal-space 

reps')

print('-'*62)

for i in range(4):

  for k in range(0,4):

    print(f'{i:>2}, {k:<2}|{norm(A[i] - A[k]):^27.1f}|'

            +f'{norm(Areps[i] - Areps[k]):^27.1f}')

  print()

Property 3:

 

 

 i, k | Dist for original vectors | Dist for signal-space reps

--------------------------------------------------------------

 0, 0 |            0.0            |            0.0

 0, 1 |            2.8            |            2.8

 0, 2 |            4.0            |            4.0

 0, 3 |            2.8            |            2.8

 

 

 1, 0 |            2.8            |            2.8

 1, 1 |            0.0            |            0.0

 1, 2 |            6.3            |            6.3

 1, 3 |            5.7            |            5.7

 



 

 2, 0 |            4.0            |            4.0

 2, 1 |            6.3            |            6.3

 2, 2 |            0.0            |            0.0

 2, 3 |            2.8            |            2.8

 

 

 3, 0 |            2.8            |            2.8

 3, 1 |            5.7            |            5.7

 3, 2 |            2.8            |            2.8

 3, 3 |            0.0            |            0.0

6.3.3 Gram-Schmidt ProcessThe procedure we conducted above for finding an orthonormalbasis will work for any set of vectors. It is called the Gram-Schmidt Process, and the general algorithm is shown below:Given indexed vectors s
0

, s

1

,… , s

K−1

.
1. Let i = 0. Let F = () be the ordered collection of basis vectors(initialized to empty).2. For j = 0,… , |F | − 1: calculate the scalar projection of s

i

 ontoeach of the basis vectors: s
ij

= s

i

⋅ f

j

.3. Calculate the error vector e
i

, which is the part of s
i

 that isorthogonal to all the basis vectors up to this point:
e

i

= s

i

− (s

i0

f

0

+ s

i1

f

1

+…).4. If ∥ e

i

∥= 0, then s
i

 can be completely represented in terms ofthe basis vectors in F . Increment i (i.e., i = i+ 1) and go tostep 2.5. Else normalize the error vector to create a new basis vector,
f

|F |

= e

i

/

∥

e

i

∥

 and go to step 2.



In practice, step 4 needs to be modified to check if 
∥

e

i

∥

< ϵbecause limits of floating-point arithmetic often result in valuesthat should be zero returning some small value instead.
6.3.4 Dimensionality and Linear IndependenceThe dimension of a set of signals is the same as the maximumnumber of linearly independent vectors in the set. We previouslyshowed that we can find the maximum number of linearlyindependent vectors by stacking the vectors into the columns (orrows) of a matrix and using np.linalg.matrix_rank(). Let's check thiswith our example set of four 8-vectors:

Example 6.12: Dimensionality of Set of 8-Vectors
Using Matrix Rank

Let's create a matrix S whose columns are the vectors
s

0

, s

1

, s

2

, s

3

 from Example 6.9. As we've seen before, NumPytreats vectors like the row of a matrix, so stacking themhorizontally with np.hstack() will result in one long vector.Instead, we stack them vertically using np.vstack() and thentranspose the result to end up with the vectors in columns:
S = np.vstack((s0, s1, s2, s3)).T

S

array([[ 1,   0,   1,   2],

       [ 1,   2,  -1,   0],

       [ 1,   2,  -1,   0],

       [ 1,   0,   1,   2],



       [-1,   0,  -1,  -2],

       [-1,  -2,   1,   0],

       [-1,  -2,   1,   0],

       [-1,   0,  -1,  -2]])

Then the matrix rank is:
np.linalg.matrix_rank(S)

2

Since the maximum rank of an 8 × 4 matrix is min (8, 4) = 4,this matrix is rank deficient.
If a matrix has full rank, then we can find a basis for thecolumns of the matrix using the NumPy command np.linalg.qr(),which gives the QR decomposition of the matrix. If the input is amatrix M, then the output is M = Q ⋅R, where Q has orthogonalcolumns that are a basis for M.However, if the matrix is rank deficient, the QR decompositionmay not yield the minimum number of orthogonal basis functions.In general, it is better to use the SciPy function scipy.linalg.orth()to find a basis for the columns. The resulting basis vectors are inthe columns of the returned matrix.
Example 6.13: Finding a Basis Using

scipy.linalg.orth()



We can find a basis for our example by passing the S matrixas the sole argument of scipy.linalg.orth():
import scipy.linalg

Q = scipy.linalg.orth(S)

print(Q)

[[-0.35355339  -0.35355339]

 [ 0.35355339  -0.35355339]

 [ 0.35355339  -0.35355339]

 [-0.35355339  -0.35355339]

 [ 0.35355339   0.35355339]

 [-0.35355339   0.35355339]

 [-0.35355339   0.35355339]

 [ 0.35355339   0.35355339]]

To make this easier to compare with the basis we found usingthe Gram-Schmidt algorithm, let's take the transpose andmultiply by √
8

. Below that matrix, we will print the basisfunctions that we previous found, also scaled up by √
8

.
print(np.sqrt(8) * Q.T)

[[-1.  1.  1. -1.   1.   -1.  -1.   1.]

 [-1. -1. -1. -1.    1.   1.   1.   1.]]



print(np.sqrt(8) * f0)

print(np.sqrt(8) * f1)

[ 1.   1.   1.  1.  -1. -1. -1.  -1.]

[-1.   1.   1. -1.   1. -1. -1.   1.]

The first column of Q is the same as f
1

, and the secondcolumn of Q is the same as −f
0

. Bases are not unique, but wecan see that they are very similar in this case.In Fig. 6.6, I show the representation we found using theGram-Schmidt procedure and the representation using thebasis from scipy.linalg.orth(). The second representation isequivalent to a 90∘ clockwise rotation of the first. Althoughthe representations are different, the norms and distances arethe same using either representation.



Long Description for Figure 6.6
Fig. 6.6:  Two signal-space representations of the four signals fromExample 6.9, based on two different bases. ⏎

Example 6.14: Detecting Communication Signals

Modern wireless communication systems use digitalcommunications, in which one or more bits of information areused to select a communication waveform to send. Quadraturephase-shift keying (QPSK) is a common signaling scheme thatis used in both WiFi wireless local area networks and incellular communication systems, such as LTE and 5G. QPSKconveys two bits in each signaling interval. In its simplestform, the waveforms for QPSK look like:

( ) ( )



Here, A and ω control the amplitude and frequency,respectively, of the signal; p(t) is a signal that limits theduration of the signal to one bit time.These signals are shown in Fig. 6.7 for A = 1, ω = 2π, and

Long Description for Figure 6.7
Fig. 6.7:  Example of four QPSK digital modulation signals. ⏎

s

0

(t) = A cos(ωt+

π

4

)p(t) s

1

(t) = A cos(ωt−

π

4

)p(t)

s

2

(t) = A cos(ωt+

3π

4

)p(t) s

3

(t) = A cos(ωt−

3π

4

)p(t).

p(t) = {

1, 0 ≤ t ≤ 1

0, otherwise.



A digital receiver samples the received signal at multiplesamples per symbol. In the absence of noise, the sampledsignals are shown below for a sampling rate of 10samples/symbol. The following code creates an array forwhich column i contains the samples of signal i:
phases = [np.pi/4, -np.pi/4, 3*np.pi/4, -3*np.pi/4]

 

 

signals = np.zeros((10, 4))

t2 = np.linspace(0+1/20, 1+1/20, 10)

for signum in range(4):

  signals[:,signum] = np.cos(2*np.pi*t2 + phases[signum])

These vector signals are shown with each component's valueplotted as a dot versus its index in Fig. 6.8. We can find abasis for these signals using scipy.linalg.orth():
sig_basis = scipy.linalg.orth(signals)

print(sig_basis)

[[ 4.26401433e-01  7.45228750e-16]

 [ 3.26642448e-01 -3.03012985e-01]

 [ 7.40438317e-02 -4.64242827e-01]

 [-2.13200716e-01 -4.08248290e-01]

 [-4.00686280e-01 -1.61229842e-01]

 [-4.00686280e-01   1.61229842e-01]



 [-2.13200716e-01   4.08248290e-01]

 [ 7.40438317e-02   4.64242827e-01]

 [ 3.26642448e-01   3.03012985e-01]

 [ 4.26401433e-01   8.39150995e-16]]

Long Description for Figure 6.8
Fig. 6.8:  Vectors representing four different QPSK symbols. ⏎

The signals have dimension 2, and the basis functions foundare essentially sampled cosine and sine waves, as shown inFig. 6.9.



Fig. 6.9:  Basis vectors for QPSK signal vectors. ⏎
Signal-space representations are commonly used forcommunication signals. For one- and two-dimensional signalsets, we often illustrate the signals by showing their signal-space representations as points on a line or plane. These arecalled signal constellations. A signal constellation for thissignal set is shown in Fig. 6.10. In most books on digitalcommunications, the basis is chosen such that theconstellation points are at ±45

∘

, ±135

∘.



Fig. 6.10:  Signal constellation for QPSK. ⏎
One of the big advantages of using this signal-spacerepresentation is that it can be used to make decisions abouta noisy signal. The thermal noise in receivers results in thesamples of the received signals being corrupted by noise froma Normal (i.e., Gaussian) distribution. Let's create and plot anexample of receiving the signal s

2

(t) in the presence ofthermal noise:



import scipy.stats as stats

np.random.seed(7)

 

 

N = stats.norm(0, 1)

noise = N.rvs(10)

r = signals[:,2] + noise

plt.scatter(range(10), r)

plt.title('Received samples of signal $s_2(t)$ in presence of thermal 

noise');

The purpose of a receiver is to take the received noisysamples and decide which signal was sent. From looking at



the plot of the example noisy signal, it seems unclear how thisdecision should be made. From a visual comparison of thesamples of the received signal and the possible transmittedsignals, it seems difficult to know which signal was sent. Toenable us to make a decision, let's project the received signalonto our basis:
r0 = r @ sig_basis[:,0]

r1 = r @ sig_basis[:,1]

print(f'The signal space representation of r is [{r0 : .3g},{r1 : 

.3g})']

The signal space representation of r is [-0.831, 0.544]

This creates a received vector r. Fig. 6.11 shows the signalconstellation along with the signal-space projection of thereceived signal (the × mark annotated with r). The plot showsthat r is closest to the signal-space representation s
2

, and sothat is the best decision.



Fig. 6.11:  QPSK signal constellation (dots) with example noisyreceived signal's signal-space representation (×). ⏎
The following code calculates the part of the received signalthat lies within the signal space and the part of the receivedsignal that lies outside of the signal space:

fig, axs = plt.subplots(1, 2, figsize=(8,4) )



 

 

axs[0].scatter(range(10), (r0*sig_basis[:,0] + r1*sig_basis[:,1]))

axs[0].set_title('Parts of received signal within the signal space');

 

 

axs[1].scatter(range(10), r - (r0*sig_basis[:,0] + 

r1*sig_basis[:,1]))

axs[1].set_title('Parts of received signal outside of signal space');

 

 

plt.tight_layout()

Note that the part of the signal that lies within the signalspace looks quite similar to s
2

, which corresponds to theoptimal decision. Moreover, the part of the signal that liesoutside the signal space corresponds to noise, and this noiseis effectively removed from the signal by projecting thereceived signal into the signal space. Because all of the parts



of the received signal that contain information about thetransmitted signal are preserved in the signal-spacerepresentation, an optimal decision can be made.
In the next section, we look at a simple example of how analternative basis can be used in classification when we do nothave a model for the data.

Terminology review and self-assessment questionsInteractive flashcards to review the terminology introduced in thissection and self-assessment questions are available at la4ds.net/6-3, which can also be accessed using this QR code:

6.4 Alternative Bases via EigendecompositionConsider again the problem of feature extraction, which wasoriginally introduced in Section 3.2.5. In that section, we showedhow we can use matrix-vector multiplication to rotate a two-dimensional data set to extract a feature that can be used forclassifying data as belonging to one of two classes. However, themethod introduced there was ad hoc (literally, “for this”) – it doesnot provide a general method to solve other problems, and it is notnecessarily optimal in any sense. In this section, we develop a

http://la4ds.net/6-3


more systematic approach to address this issue by leveraging ourknowledge of bases and eigendecomposition.From our previous work on eigenvalues and eigenvectors, weknow that if an n× n matrix M has n linearly independenteigenvectors, then the matrix can be written as M = UΛU

−1.Then we can also diagonalize the matrix M as

This might be a useful property if it somehow allows us to use theeigenvalues to extract the information down to a simpler form.One issue is that matrices do not even have eigenvalues andeigenvectors unless they are square, which is generally not thecase for most data sets. For instance, the Iris data set consideredin Section 3.2.5 consists of 150 data points, each of which has fourfeatures, so we can represent it by a 150 × 4 or 4 × 150 matrix.Rather than try to decompose the data directly, let's consider amatrix that measures the variation and dependence among thedifferent features of the data and see whether we can use thatinformation to find a new basis for representing the data. The firststep in measuring “variation” of the data is to find some point thedata is varying around. We will use the average (mean) of eachfeature as the point around which we measure the variation. If wecollect the means into a vector, it is called the mean vector:
DEFINITION
mean vector (data),
sample mean

U

−1

MU = U

−1

(UΛU

−1

)U

= (U

−1

U)Λ (U

−1

U)

= IΛI

= Λ.



Consider an m× n matrix of data D, where each columnrepresents a data point and each row represents afeature. Then the mean vector is the average of thecolumns,
d =

1

n

n−1

∑

k=0

d

k

.

Example 6.15: Mean Vector for Iris Data

Let's load the Iris data from scikit-learn and compute themean vector. Since the default in scikit-learn is that the datapoints are in rows of the data matrix, we will transpose thatdata and store it into a variable called DIris. Then we will use
np.mean() to compute the average. By default np.mean()computes the average of all of the data. To average byfeature, we use the keyword argument axis=1 to indicate toaverage over the different data points, which are in thecolumns (axis 1):

from sklearn import datasets

 

 

iris = datasets.load_iris()

DIris   = iris.data.T

 

 

np.mean(DIris, axis=1)



array([5.84333333, 3.05733333, 3.758, 1.19933333])

The ith entry in the vector is the average value of the data forfeature i. It is important to note that different features havedifferent averages. This may be inherent in the type of feature(for instance, in this example the features correspond tomeasurements of different parts of the Iris plant) or it mayalso be caused by other factors, such as choice of unit. Forinstance, all of these Iris measurements are in units of cm, butif one of them was measured in mm, then the mean for thatfeature would be 10 times higher than if it had been measuredin cm. In addition, measurements like this may be subject tooffsets based on how the measurements were conducted. Forinstance, features 0 and 3 are sepal length and petal length;different data sets might vary on whether the length wasmeasured to the stem or to the end of the sepal/petal afterremoval. Later, we will consider ways to remove some ofthese effects from our data.
Once we have the mean vector, we can calculate the variationsof the features away from their means. Let's start with thesimplest of these, which is called the variance. It is simply theaverage squared distance of the data for a feature from the meanfor that feature:
DEFINITION
variance (data),
sample variance



Consider an m× n matrix of data D, where each columnrepresents a data point and each row represents afeature. Let the mean vector be denoted 
d

, and let theaverage of the ith feature be denoted –d
i

. Then the(unbiased) variance (or sample variance) of feature i is
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Note that the division by n− 1 in this definition is different thanthe usual average of dividing by n. Some variance definitions usedivision by n. But dividing by n− 1 gives a nice property calledunbiasedness, and so we will use division by n− 1 in this book.
Example 6.16: Variance of Iris Data

Consider again the Iris data stored in the NumPy array
DIris. We can get the variance for all of the features using theNumPy function np.var(), but we need to pass several keywordarguments to get the desired result. As with np.mean(), weneed to specify to only average over the columns using thekeyword argument axis=1. To use the divisor of n− 1, we needto specify the keyword argument ddof=1, where ddof stands for“delta degrees of freedom”, specifying how much smaller than
n the divisor should be. Thus, the variances are:

np.var(DIris, axis=1, ddof=1)



array([0.68569351, 0.18997942, 3.11627785, 0.58100626])

In Section 3.2.5, we introduced the concept of featureextraction. A simpler approach is called feature selection:
DEFINITION
feature selectionIn feature selection, only a subset of the features presentin the data are used or preserved.
Feature selection and feature extraction are two approachesused for dimensionality reduction:
DEFINITION
dimensionality reductionThe process of going from a high-dimensional data set toa lower-dimensional representation of that data set,usually with the goal of preserving as much importantinformation as possible from the original data set.
The variance can give us insight into which features should bepreserved if we use feature selection. If the variance of a featureis low, then, in general, that feature can be well approximated byits mean. On the other hand, features with large variance take onmuch more diverse values. To preserve the greatest amount ofinformation about the data, we should generally preserve thosefeatures with high variance if using feature selection.



Variance does not tell the whole story because a data set myhave features that have high variance but where the features arehighly dependent on each other. For instance, we may be able touse one feature to accurately predict the values of the otherfeatures. This motivates using a feature-extraction approach thatcan extract the most important information from the inputfeatures. To do so, we need information not only on the varianceof the features but also measures of the dependence among thefeatures. A common statistic that is used for this is ageneralization of the variance called covariance:
DEFINITION
covariance (data),
sample covarianceConsider an m× n matrix of data D, where each columnrepresents a data point and each row represents afeature. Let the mean vector be denoted 

d

, and let theaverage of the data for the ith feature be denoted –d
i

.Then the (unbiased) covariance (or sample covariance)between feature i and feature j is
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In general, larger covariances (relative to the variances)indicate that the features are more related to each other in thesense that one variable can be well predicted using a linearpredictor based on the other variable. If the covariance betweentwo features is zero, we say that those features are uncorrelated.



For our purposes, if two features are uncorrelated, it means thatwe cannot use a linear function of one feature to estimate theother feature – that will not give us any additional informationabout the feature being estimated. Additional interpretation isoutside the scope of this book, but readers are referred to
Foundations of Data Science with Python, also by John M. Shea.All of the covariances among the features can be calculatedefficiently using matrix operations, but for our purposes, we willuse np.cov(). No keyword arguments are necessary because thedefault divisor for this function is already n− 1. The results is a
covariance matrix where entry i,j is the covariance betweenfeatures i and j. The i,ith entry of the covariance matrix is thevariance of feature i. Let's test this on the Iris data:

Example 6.17: Covariance of Iris Data Features

The covariance matrix for the Iris data set is:
K = np.cov(DIris)

K

array([[ 0.68569351, -0.042434,    1.27431544,   0.51627069],

       [-0.042434,   0.18997942,  -0.32965638,  -0.12163937],

       [ 1.27431544, -0.32965638,  3.11627785,   1.2956094 ],

       [ 0.51627069, -0.12163937,   1.2956094,   0.58100626]])

Let's start with some observations that are specific to thisexample:



The diagonal of the covariance matrix contains thevariances we previously found with np.var().Some pairs of features have much larger covariances thanothers. For instance, the covariance between features 0and 1 is approximately -0.04, whereas the covariancebetween features 2 and 3 is approximately 1.30.
We can see some properties generalize to any covariancematrix:
Properties of Covariance Matrices

The diagonal of a covariance matrix corresponds to thevariances.A covariance matrix is square and symmetric.Unlike variance, covariances can be positive or negative.Positive covariance indicate that the features “tend to movein the same direction”, whereas negative features “tend tomove in opposite directions”.
In the following, we consider only a special case of covariancematrices, where the determinant is strictly positive. In this case,an n× n covariance matrix will have n positive eigenvalues, andthe modal matrix U will be an orthogonal matrix. Recall that foran orthogonal matrix, UT

U = U, so U−1

= U

T . Thus, acovariance matrix K can be factored as K = UΛU

T . In addition,for data matrix D with covariance matrix K, it can be shown thatthe covariance matrix of ~D = U

T

D is



Thus, the resulting data become uncorrelated, and the variancesof the transformed data are equal to the eigenvalues of K. We saythat we decorrelated the data through this linear transform.Let's test this using the Iris data:
Example 6.18: Decorrelating the Iris Data  ⏎

Let's start by finding the eigendecomposition of thecovariance matrix for the Iris data and printing out theeigenvalues. Because the covariance matrix is symmetric, it isbest to use the la.eigh() function to find theeigendecomposition:
lam, U = la.eigh(K)

lam

array([0.02383509, 0.0782095 , 0.24267075, 4.22824171])

Now let's transform the data by left-multiplying by UT  andcalculate the covariance matrix of the transformed data:
Dt = U.T @ DIris
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np.round(np.cov(Dt), 3)

array([[ 0.024, -0.    , -0.    , -0.    ],

       [-0.   ,   0.078, -0.    , -0.    ],

       [-0.   , -0.    ,   0.243,   0.   ],

       [-0.   , -0.    ,   0.   ,   4.228]])

We can see that the off-diagonal elements of the transformeddata are all zero, and the diagonal elements equal theeigenvalues of the covariance matrix. Note that the largestvariance after the transformation, 4.228, is bigger than thelargest variance in the original data, 3.116. Similarly, thesmallest variance after the transformation, 0.024, is smallerthan the smallest variance in the original data, 0.190.
This approach of left-multiplying the data by the transpose ofthe modal matrix of the covariance matrix can be considered to bea form of the discrete Karhunen-Loève Transform (KLT). In fact,the KLT results in some even more useful properties:
The KLT achieves the projection with the largest variancepossible for projection onto a unit-norm vector. The resultingvariance is the largest eigenvalue of the covariance matrix.If we consider maximizing the remaining variances byprojecting onto unit-norm vectors that are orthogonal to theones previously found, the resulting variances will be theeigenvalues in decreasing order.



The above properties result in the minimum possible varianceachievable by projection onto a unit-norm vector beingachieved by the KLT and equal to the minimum eigenvalue.
These properties are very useful for dimensionality reductionbecause we can preserve features that have as large a variance aspossible over all features that can be created with orthogonallinear projections of the data, and the resulting features will beuncorrelated. Let's apply this concept to visualize the Iris data:

Example 6.19: 2-D Visualization of the 4-D Iris
Data

The Iris data set has four features (dimensions), so there isno way to directly visualize the data using a scatter plot.However, if we transform the data as shown in Example 6.18,we can then drop the two features with very low variancesand make a scatter plot of the remaining features. The resultis shown in Fig. 6.12, where I have used different markers todistinguish the different classes present in the data. Feature 3has the largest variance and is clearly the most useful indistinguishing between the different classes.



Fig. 6.12:  Scatter plot of data using two features with largestvariance at output of KLT. ⏎
Note that the KLT has projected the data in such a way thatwe can easily distinguish between the ‘setosa’ and ‘versicolor’classes using KLT feature 3 – the KLT has created a featurethat achieves the same goal as the ad hoc approach weshowed in Section 3.2.5, but using an approach that can begeneralized to arbitrary data sets. Feature 3 can also be usedto perform most of the distinction between the ‘versicolor’ and‘viriginica’ classes, but more sophisticated classifiers that useboth features 2 and 3 will perform better.

The combined approach of decorrelation and dropping low-variance data is called principal components analysis (PCA):



DEFINITION
principal components analysis (PCA)A dimensionality reduction technique that consists of

1. calculating the sample covariance matrix, K,2. performing eigendecomposition on K to get theeigenvalue vector λ and the modal matrix U,3. projecting the data matrix D onto the columns of themodal matrix as UT

D, resulting in uncorrelated datawith covariance matrix Λ, and4. dropping some number of output features with thelowest variance.
One problem with directly applying KLT to the data covariancematrix is that it is sensitive to the absolute magnitudes of thefeatures. Features with higher variance are more likely to play animportant role in the output features. However, the variances ofan input feature can be easily changed just by expressing it indifferent units (for instance, if the sepal width in the Iris data setwere recorded in mm or μm instead of cm, the variance would bemuch larger). To overcome this, we often standardize the databefore applying PCA (or other machine-learning algorithms):
DEFINITION
standardizationThe process by which numerical data is transformed suchthat each feature has mean zero and variance one.



We will use the StandardScaler class from scikit-learn's
preprocessing class to standardize data. Note that this class isbased on the biased covariance estimator, so we will pass thekeyword argument ddof=0 when checking the covariance matrix ofthe output. Let's illustrate the use of this object and test this onthe Iris data.

Example 6.20: Standardization of the Iris Data

To standardize the Iris data, we must first instantiate anobject with the StandardScaler class. Then we can use theobject's fit_transform() method to standardize the data.Because the scikit-learn methods expect data to be in rows,we will transpose the Iris data in the argument of that methodand again on the method's output:
from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

Ds = scaler.fit_transform(DIris.T).T

 

 

np.mean(Ds, axis=1), np.cov(Ds, ddof=0)

(array([-1.69031455e-15, -1.84297022e-15, -1.69864123e-15, 

-1.40924309e-15]),

 array([[ 1.        , -0.11756978,   0.87175378,   0.81794113],

        [-0.11756978,   1.       , -0.4284401 , -0.36612593],



        [ 0.87175378, -0.4284401 ,   1.        ,   0.96286543],

        [ 0.81794113, -0.36612593,   0.96286543,   1.        ]]))

The transformed data has zero mean vector and unitvariances.
We can apply the KLT to the standardized data in the same waythat we did when the data is not standardized. However, the usualway to perform PCA on standardized data is using a differenttransform called the singular value decomposition (SVD):
DEFINITION
singular value decomposition (SVD)Every real m× n (i.e., not just square) matrix M can befactored as

M = UΣV

T

,

(6.2)
where U and V are orthogonal matrices, and Σ is a m× nmatrix with the only non-zero entries on the main diagonal.The values on the diagonal of Σ are called singular values,and they are similar to eigenvalues of square matrices.
For standardized data, we can get the same effect as KLT byapplying the transformation UT

S

D to the data, where U
S

 is the leftsingular-vector matrix from the SVD.
Example 6.21: Two Approaches to KLT of

Standardized Iris Data



Let's decorrelate the standardized Iris data in two differentways. First, we use eigendecomposition of the covariancematrix:
Ks = np.cov(Ds)

lams, Us = la.eigh(Ks)

lams

array([0.02085386, 0.14774182, 0.9201649 , 2.93808505])

np.round(np.cov(Us.T @ Ds), 3)

array([[ 0.021,  -0.    ,   0.   ,   0.   ],

       [-0.   ,   0.148 ,   0.   ,  -0.   ],

       [ 0.   ,   0.    ,   0.92 ,   0.   ],

       [ 0.   ,  -0.    ,   0.   ,   2.938]])

We see that the data is decorrelated, and the variances areequal to the eigenvalues of the covariance matrix. We couldagain use this in PCA and plot the highest variancecomponents, but the result looks similar to that when the datais not standardized. Thus, this is left as an exercise for thereader.Now let's apply the SVD to the data and then use the U
Smatrix to transform the standardized data:



Usvd, Ssvd, Vsvd = la.svd(Ds)

 

 

np.round(np.cov(Usvd.T @ Ds), 3)

array([[ 2.938,   0.   ,  -0.    ,   0.   ],

       [ 0.   ,   0.92 ,   0.    ,   0.   ],

       [-0.   ,   0.   ,   0.148 ,  -0.   ],

       [ 0.   ,   0.   ,  -0.    ,   0.021]])

The data is again decorrelated, and the variances are equal tothe eigenvalues of the covariance matrix. However, theordering of the output features is changed from that usingeigendecomposition of the covariance matrix.
When using NumPy's la.svd(), the singular values are sorted indescending order. This makes it easy to apply PCA by preservingthe first features in the data. (For la.eigh(), the eigenvalues are inincreasing order, and the eigenvalues for la.eig() are notnecessarily ordered.)As simple as KLT/PCA is, we can also perform it directly usingthe PCA class from scikit-learn's decomposition module.
Example 6.22: Performing KLT/PCA Using scikit-

learn

The code below shows how to apply PCA by creating anobject of the PCA class and then transforming the data usingthe fit_transform() method. Keep in mind that if each column



corresponds to a data point, then the data matrix needs to betransposed at the input and output of this method.
from sklearn.decomposition import PCA

 

 

pca = PCA()

Ds_pca = pca.fit_transform(Ds.T).T

np.round(np.cov(Ds_pca), 3)

array([[ 2.938,   0.     ,   0.    ,   0.   ],

       [ 0.   ,   0.92   ,  -0.    ,  -0.   ],

       [ 0.   ,   -0.    ,   0.148 ,  -0.   ],

       [ 0.   ,   -0.    ,  -0.    ,   0.021]])

The result matches that from using the SVD, and is equivalentto the result from using the modal matrix of the covariancematrix.
Terminology review and self-assessment questionsInteractive flashcards to review the terminology introduced in thissection and self-assessment questions are available at la4ds.net/6-4, which can also be accessed using this QR code:

http://la4ds.net/6-4




6.5 Chapter SummaryIn this chapter, I introduced the concepts of universal and set-specific bases for collections of vectors and showed the power ofprojecting data onto different bases. First, I showed how to createa sinusoidal basis for n-vectors using the DFT matrix, and weapplied this to determine the frequency of a person's heartbeatcaptured from an electrocardiogram (ECG). Next, I showed how tofind a set-specific basis using the Gram-Schmidt procedure, andwe investigated the application of this to determining thetransmitted signal from a noisy received signal in a digitalcommunication system. Finally, I showed how we can transform adata set to make the features uncorrelated and to identify themaximum-variance features that can be created using linearcombinations of the input features. This is often used in principalcomponents analysis (PCA), which is a dimensionality reductiontechnique. Multiple approaches to achieve this were shown usingeigendecomposition, singular-value decomposition, and the PCAclass from scikit-learn. We applied PCA to visualize the four-dimensional Iris data set by plotting the two features with highestvariance after decorrelation.
Access a list of key take-aways for this chapter, along withinteractive flashcards and quizzes at la4ds.net/6-5, which can alsobe accessed using this QR code:

http://la4ds.net/6-5
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