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Preface

Linear algebra plays a vital role in studying different types of real-world
problems to study the behavior of the issues. A definition of linear algebra
that might be a part of algebra is concerned with equations of the first degree.
Thus, at the fundamental level, it involves the discussion of matrices and
determinants and the solutions of systems of linear equations, which have
a wide application in further discussion of this subject. Linear algebra is a
subject that has found the broadest range of applications in all branches of
mathematics, physical and social sciences, and engineering. It has a more
significant application in information sciences and control theory.

This book begins with a detailed discussion of matrix operation, its
properties, and its applications in finding the solution of linear equations and
determinants.

This textbook entitled Linear Algebra with Its Applications is intended to
study matrices, vector spaces, eigenvalue, eigenvectors, linear transformation
methods, inner product spaces, diagonalizations, applications to conics and
quadrics, canonical forms, and least squares problems. This book contains 11
chapters.

Chapter 1 discusses the properties of matrices and matrix operations
needed to study solutions of systems of linear equations and determinants.
Chapter 2 discusses the system of linear equations and its solution using
the Gaussian elimination method, the Gauss–Jordan elimination method,
and LU decomposition methods, and the definitions of determinants with
their properties and Crammer’s rule. In contrast, Chapter 3 starts with a
discussion of vector spaces in n-dimensional vector spaces that include the
properties of a vector space and subspaces, linear combinations and span-
ning a vector space, finitely generated vector spaces, linear dependence and
independence, basis and dimensions, rank, sum and intersection of subspaces,
direct sums of subspaces, and more than two subspaces. Chapter 4 discusses
the properties of eigenvalues and eigenvectors and some properties of inner
product spaces, including the Gram–Schmidt orthogonalization process and
QR-factorization. Chapter 5 discusses linear transformation, which includes

xi



xii Preface

Range and Kernel of transformation, one-to-one and invertible transforma-
tions, ordination representation of vectors, change of basis, isomorphism,
transformations in computer graphics, and fractal pictures of nature. Chapter
6 discusses inner product spaces that include the Cauchy–Schwarz inequal-
ity, orthogonal complements, orthogonal sets and bases, projection of one
vector onto another vector, orthogonal matrix theorem, the Gram–Schmidt
orthogonalization process, projection of a vector onto a subspace, distance
of a point from a subspace, and QR-factorization. Chapter 7 discusses the
matrix representation of linear transformations along with the importance
of matrix representation, visualization of the matrix representation, and the
relation between matrix representations.

In contrast, Chapter 8 covers the diagonalizations that include minimal
polynomials, the Cayley–Hamilton theorem, power of a matrix, diagonal
matrix representation of a linear operator, diagonalization of matrices, diago-
nalization of symmetric matrices, and orthogonal diagonalization. Chapter
9 discusses the application to conics and quadrics that covers quadratic
forms, conics, quadrics, definite quadratic form, bilinear form, matrix rep-
resentation of bilinear forms, symmetric and skew-symmetric bilinear form,
symmetric bilinear forms and quadratic forms, eigenvalues of congruent
matrices, Sylvester’s law of inertia, skew-symmetric bilinear form, and the
application to the reduction of quadrics. Chapter 10 discusses the canonical
forms that include triangularizable matrices, block triangular matrices, block
diagonalization, Hermitian matrices, unitary matrix, Schur’s theorem, spec-
tral theorem, normal matrices, nilpotent operators, Jordan canonical form,
rational canonical form, minimum polynomial and Jordan canonical form,
Jordan normal form, properties of Jordan matrix, and minimum polynomial
of Jordan normal form While the last chapter, Chapter 11, discusses the least
square problems that cover approximation of functions, Fourier approxima-
tion, least square solutions, least square curves, eigenvalues by iteration and
connectivity of networks, the power method for an n × n matrix, difficulties
in the solution of the system of equations, the condition number of a matrix,
and the coding theory.

This book is based on syllabi of linear algebra prescribed for under-
graduate and postgraduate mathematics students in different institutions and
universities in India and abroad. This book will be helpful for competitive
examinations as well.

I welcome constructive criticisms, views, and suggestions from the
reviewers and readers for further improvement.
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1
Matrices

This chapter discusses the classification, properties of matrices, and matrix
operations needed to study the solution of linear equations and elementary
matrices. It introduces the operations of addition and multiplications for
matrices and defines the algebraic properties of these operations. The powers
of matrices and inverses of matrices are also described. These tools lead to
different methods for solving linear systems and insights into their behavior.
It lays the foundation for using matrices to define functions called linear
transformations or vector spaces. The reader will identify how matrices are
used in various applications. They are applied in archaeology to determine
the chronological order of artifacts, cryptography to ensure security, and
demography to predict population movement. The inverse of a matrix is
used in a model for analyzing the interdependence of economics. Wassily
Leontief received a Nobel Prize for his work in this field. This model is now
a standard tool for investigating economic structures ranging from cities and
corporations to states and countries. Throughout these discussions, we shall
be conscious of numerical implications in finding the need for efficiency and
accuracy in implementing matrix models.

1.1 Introduction to Linear Equations: The Beginning
of Algebra

To find the history of linear algebra, it is essential that, first, we determine
what linear algebra is.

Linear algebra is the branch of mathematics that generally deals with
linear equations such as a1x1 + a2x2 + . . .+ anxn = b, linear maps such as
(x1, x2, . . . , xn) �→ a1x1 + a2x2 + . . . + anxn, and their representation in
vector space and through matrix representations.

1



2 Matrices

Linear algebra applies to almost all areas of mathematics. For instance,
linear fundamental algebra defines the necessary objects such as lines, planes,
and rotations through geometrical representation. It is also used in most
sciences and engineering because it allows many natural phenomena to model
and efficiently compute such models. It is also the study of a particular
algebraic structure called a vector space. Secondly, it is the study of linear
sets of equations and their transformation properties. Finally, it is the branch
of mathematics that investigates the properties of finite-dimensional vector
space and linear mapping between such spaces and plays a central role
in modern mathematics, essential in engineering and physical, social, and
behavioral science.

This chapter shall introduce one of the vital parts of linear algebra, i.e., a
matrix or a rectangular array of numbers and the standard matrix operations
that are generally used in dealing with a linear system of equations. Matrices
often come across in many engineering, physical, mathematics, and social
sciences when data is given in the tabular form.

1.2 Matrices

An m × n matrix A is a rectangular order of real or complex numbers with
m−rows and n−columns.

We shall write aij for the number that appears in the ith row and the jth
column of A. This is called the (i, j) entry of A.

The extended form of the matrix A can be written as⎡
⎢⎢⎢⎣

a11 a12 . . . a1n
a21 a22 . . . a2n

. . . . . .
... . . .

an1 an2 . . . ann

⎤
⎥⎥⎥⎦ or as [aij ]m×n .

Here, the subscripts m and n tell us the corresponding number of rows
and columns of the matrix A.

1.3 Power of the Matrix

LetA be an n×nmatrix. Then themth power ofA is defined by the equations
A0 = In and Am+1 = AmA, wherem is a non-negative integer.

Note: We do not need pursuit to determine the negative powers at this
junction.



1.4 The Inverse of a Square Matrix 3

Example 1.1:

If A =

[
0 1
−1 0

]
, then the power of matrix can be expressed as

A2 =

[ −1 0
0 −1

]
, A3 =

[
0 −1
1 0

]
, and A4 =

[
1 0
0 1

]
= I2.

Note: The higher power of A does not take precedence over new matrices.

1.3.1 Symmetric and skew-symmetric matrices

A matrix A is called symmetric, when A = AT , i.e., it equals its transpose.
On the other hand, if AT equals −A, then the matrix A is said to be

skew-symmetric.

For example, the matrices

[
a b
b c

]
and

[
0 a
−a 0

]
respectively are the

symmetric and skew-symmetric matrices.

Note:

(i) Symmetric and skew-symmetric matrices must be square matrices.
(ii) Symmetric matrices can be reduced to a diagonal matrix in a real sense.

1.4 The Inverse of a Square Matrix

An n × n square matrix A is said to be invertible if |A| �= 0 and there is an
n× n matrix B such that AB = In = BA.

If a matrix A is invertible, then B is called an inverse of A.
A matrix that is not invertible is called a singular matrix, while an invertible
matrix is a non-singular matrix.

Theorem 1.1:
An n× n square matrix has at most one inverse.

Proof:
Let us consider an n × n square matrix A that has two inverses B1 and

B2.
Then AB1 = AB2 = I = B1A = B2A.
The objective of the proof is to examine the product (B1A)B2.
Since B1A = I , (B1A)B2 equals IB2 = B2.
On the other hand, by the associative law,

B1(AB2) equals B1I = B1

. Therefore, B1 = B2.



4 Matrices

Note: A−1 is the unique inverse of an invertible matrix A.

Theorem 1.2:

(i) If the matrix A is invertible, then A−1 is also invertible and
(
A−1

)−1
=

A.
(ii) If A and B are invertible matrices of the same size, then their product

AB is also invertible and

(AB)−1 = B−1A−1.

Proof:

(i) Indeed, we have A.A−1 = I = A−1A, which show that A is an inverse
of A−1.
Since A−1 cannot have more than one inverse, its inverse must be A.

(ii) To prove the assertion, we need only to check thatB−1A−1 is an inverse
of AB.

Now (AB)
(
B−1A−1

)
= A

(
BB−1

)
A−1.

Upon using the associative law, it equals AIA−1 = AA−1 = I .
Similarly,

(
B−1A−1

)
(AB) = I .

Since the inverses are unique, (AB)−1 = B−1A−1.

Lemma 1.1:
Let A be anm× n matrix and let B be an n× p matrix.

Then (AB)T = BTAT , (1.1)

and if α and β are scalars,

then (αA+ βB)T = αAT + βBT . (1.2)

Proof:
From definition: (

(AB)T
)
ij
= (AB)ji

=
∑
k

AjkBki

=
∑
k

(
BT
)
ik

(
AT
)
kj

=
(
BTAT

)
ij
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(αA+ βB)T

)
ij
= (αA+ βB)ji

= (αA)ji + (βB)ji

= α(A)ji + β(B)ji = α
(
AT
)
ij
+ β

(
BT
)
ij

= αAT + βBT

Definition 1.1:

Let A be a m × n matrix. Then AT denotes the n ×m matrix, which is
defined as follows:

(
AT
)
ij
= Aji.

The transpose of a matrix has the following essential property.
There is a particular matrix called I and defined by Iij = δij .
Here δij is the Kronecker symbol defined by

δij =

{
1 , If i = j
0 , If i �= j

.

It is said to be an identity matrix because it is a multiplicative identity in
the following sense.

Lemma 1.2:

Suppose A is an m× n matrix and In is an n× n identity matrix. Then
AIn = A. Next, if Im is an m × m identity matrix, then it follows that
ImA = A.

Proof:
(AIn)ij =

∑
k

Aikδkj = Aij

and so AIn = A.
The other case is left as an exercise.

Theorem 1.3:

Let us consider an n× n matrix A. Then

(1) Ar.As = Ar+s.
(2) (Ar)s = Ars.
(3) A0 = In.
(4) Ar.As = A · · ·A

r times
A · · ·A
s times

= A · · ·A
r+s times

= Ar+s.

Here r and s are non-negative integers.
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Theorem 1.4:
Let A be an m × n matrix and 0mn be the zero matrices. Let B be an

n× n square matrix, and 0n and In be the zero and identity matrices. Then

(1) A+ 0mn = 0mn +A = A.
(2) B0n = 0nB = 0n.
(3) BIn = InB = B.

Example 1.2:

Let A =

[
2 1 −3
4 5 8

]
and B =

[
2 1
−3 4

]
.

We see that

A+ 023 =

[
2 1 −3
4 5 8

]
+

[
0 0 0
0 0 0

]
=

[
2 1 −3
4 5 8

]

B02 =

[
2 1
−3 4

] [
0 0
0 0

]
=

[
0 0
0 0

]
= 02

BI2 =

[
2 1
−3 4

] [
1 0
0 1

]
=

[
2 1
−3 4

]
= B.

Similarly, 023 +A = A, 02B = 02, and I2B = B.

1.5 Idempotent and Nilpotent Matrices

Definition 1.2:
An n×n square matrix A is said to be idempotent, if A2 = A. Moreover,

a square matrixA is said to be nilpotent of order p if there is a positive integer
such that Ap = 0.

The least integer p such that Ap = 0 is called the degree of nilpotency of
the matrix.

1.5.1 Elementary matrices

We now introduce a beneficial class of matrices called elementary matrices.
An elementary matrix can be obtained from the identity matrix In through a
single elementary row operation.

Illustration: Consider the following three-row operations T1, T2, . . . T3 on
I3 (one representing each kind of row operation). They lead to the three
elementary matrices E1, E2, and E3.
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Elementary row operation Corresponding elementary matrix

T1: Interchange rows 2 and 3 of I3 E1 =

⎡
⎣ 1 0 0

0 0 1
0 1 0

⎤
⎦

T2: Multiply row 2 of I3 by 5 E2 =

⎡
⎣ 1 0 0

0 5 0
0 0 1

⎤
⎦

T3: Add two times rows of I3 to row 2 E3 =

⎡
⎣ 1 0 0

2 1 0
0 0 1

⎤
⎦

Consider I3 =

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦.

Remark:

Suppose we want to perform a row operation T on am×nmatrix A. Let
E be the elementary matrix obtained from In through the operation T . This
row operation can be performed by multiplying A by E.

Example 1.3:

Let A =

⎡
⎣ a1 a2 a3

b1 b2 b3
c1 c2 c3

⎤
⎦be a 3× 3matrix.

Consider the three-row operation as stated above.
Let us show that the corresponding elementary matrices can indeed be

used to perform these operations.
Interchange rows 2 and 3 of I3:⎡

⎣ 1 0 0
0 0 1
0 1 0

⎤
⎦
⎡
⎣ a1 a2 a3

b1 b2 b3
c1 c2 c3

⎤
⎦ =

⎡
⎣ a1 a2 a3

c1 c2 c3
b1 b2 b3

⎤
⎦ .

Multiply row 2 by 5 of I3:⎡
⎣ 1 0 0

0 5 0
0 0 1

⎤
⎦
⎡
⎣ a1 a2 a3

b1 b2 b3
c1 c2 c3

⎤
⎦ =

⎡
⎣ a1 a2 a3

5b1 5b2 5b3
c1 c2 c3

⎤
⎦ .

Add twice of row 1 to row 2 of I3:⎡
⎣ 1 0 0

2 1 0
0 0 1

⎤
⎦
⎡
⎣ a1 a2 a3

b1 b2 b3
c1 c2 c3

⎤
⎦ =

⎡
⎣ a1 a2 a3

b1 + 2a1 b2 + 2a2 b3 + 2a3
c1 c2 c3

⎤
⎦ .
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Remark:

Every elementary matrix is square and invertible.

Theorem 1.5:

If A and B are row equivalent matrices and A is invertible, then B is
invertible.

1.6 Elementary Matrices

An elementarymatrix can be obtained from an n×n identity matrix I in one
of three ways.

(1) Interchange i and j rows, i.e., i ↔ j, where i �= j.
(2) Insert a scalar α as the (i, j) entry of the matrix, where i �= j.
(3) Put a non-zero scalar α in the (i, i) position.

Definition 1.3:

An elementary matrix E can be obtained from an n× n identity matrix I
through a single elementary row operation.

Let us perform a row operation T on an n×nmatrixA. Let the elementary
matrix E be obtained from the operation T . These row operations can be
achieved by multiplying the matrix A by the elementary matrix E.

Note: Every elementary matrix E is square and invertible.

Theorem 1.6:

If A and B are row equivalent matrices and invertible, then the matrix B
is invertible.

Proof:

Assume that the matrices A and B are row equivalent. Then there exists
a sequential row operation T1, T2, · · · , Tn such that

B = Tn.Tn−1 · · ·T1 (A) .

Let E1, E2, · · · , En be the elementary matrices of these operations.
Thus, B = En.En−1 · · ·E1A.
The matrices A,E1, E2, · · · , En are all invertible.
Repeatedly applying the property of matrix inverse of a product to the

following expression, we get
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A−1E1
−1E2

−1 . . . En
−1 = (E1A)

−1E2
−1 . . . En

−1

= (E2E1A)
−1E3 − 1 . . . E−1

n

= (EnEn−1 . . . E2E1A)
−1 = B−1

Thus, the matrix B is invertible, and its inverse is given by

B−1 = A−1E1
−1E2

−1 · · ·En
−1.

Theorem 1.7:

Let A be an n × n matrix; then there exist elementary n × n matrices
E1, E2, · · · , Ek such that the matrix EkEk−1 · · ·E1A is in reduced echelon
form.

Example 1.4:
Let us consider the matrix

A =

[
0 1 2
2 1 0

]
.

Upon applying the row operations R1 ↔ R2,
(
1
2

)
R1 , R1 −

(
1
2

)
R2

successively, the matrix A can be put in reduced row echelon form B as

A →
[
2 1 0
0 1 2

]
→
[
1 1

2 0
0 1 2

]
→
[
1 0 −1
0 1 2

]
= B.

Hence, E3E2E1A = B,

where E1 =

[
0 1
1 0

]
, E2 =

[
1
2 0
0 1

]
, E3 =

[
1 −1

2
0 1

]
.

Theorem 1.8:
The following statements are equivalent for an n × n square matrix A,

i.e.,

(1) The matrix A is invertible.
(2) The system AX = 0 has only a trivial solution.
(3) The matrix In is the reduced row echelon form of the matrix A.
(4) The matrix A is a product of elementary matrices.

Proof:
Here we shall establish the logical implication, i.e.,
(1) → (2) , (2) → (3) , (3) → (4), and (4) → (1), which serve to

establish the equivalence of the above four statements.
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If the matrix A is invertible, i.e., if (1) holds, then A−1 exists.
Thus, upon multiplying A−1 on both sides of the equation AX = 0, i.e.,

A−1AX = A−1.0,

we find X = A−1.0 = 0, which is the trivial solution of the linear system.
Thus, statement (2) holds.
If the homogenous system AX = 0 has only a trivial solution, i.e., (2)

holds, then it implies that the number of pivots of the matrix A in reduced
row echelon form is n.

Since the matrixA is square, the matrix’s reduced row echelon form must
imply that (3) holds.

If the matrix In is the reduced row echelon form of the matrix A, i.e.,
(3) holds, then Theorem 1.7 shows that there are k elementary matrices
E1, E2, · · · , Ek such that

EkEk−1 · · ·E1A = In.

Since the elementary matrices E1, E2, · · · , Ek are invertible, so is
EkEk−1, · · · , E1 and thus A = (EkEk−1 · · ·E1)

−1 = E1
−1E2

−1 · · ·Ek
−1.

Thus, (4) is true.
Finally, since a product of elementary matrices is always invertible,

statement (iv) implies (1).

1.7 Finding the Inverse of a Matrix

An important application of this idea is that it can be used as an efficient
method to determine the inverse of a matrix that is invertible.

This section describes an efficient method to compute the inverse of an
invertible matrix. For example, assume that the n × n square matrix A is
invertible. Then there exist elementary matrices E1, E2 · · ·Ek of order n×n
such that EkEk−1 · · ·E1A = In.

Therefore,
A−1 = InA−1

= (EkEk−1 · · ·E1A)A
−1

= (EkEk−1 · · ·E1) In
.

This implies that the row operations that reduce the matrix A to its
reduced row echelon form will automatically transform In to A−1 and it is
the crucial observation that enables us to compute A−1.
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The procedure for computing the inverse, i.e., A−1 starts with the par-

titioned matrix

[
A
... In

]
, puts it in reduced row echelon form. Thus, if the

matrix A is invertible, then the reduced row echelon form will be

[
In

...A−1

]
.

Remark:
If the matrix A is not invertible, then it will be absurd to reach a reduced

row echelon form of the matrix, which implies that the procedure will disclose
the non-invertibility of a matrix A.

Example 1.5:
Determine the inverse of the matrix

A =

⎡
⎣ 2 −1 0

−1 2 −1
0 −1 2

⎤
⎦ .

Solution:

Let us consider the partitioned matrix

[
A
...I3

]
. Upon using the elementary

row operations as described above, the partitioned matrix

[
A
...I3

]
in reduced

row echelon form,⎡
⎢⎢⎣

2 −1 0
... 1 0 0

−1 2 −1
... 0 1 0

0 −1 2
... 0 0 1

⎤
⎥⎥⎦⇒

⎡
⎢⎢⎣

2 −1
2 0

... 1
2 0 0

−1 2 −1
... 0 1 0

0 −1 2
... 0 0 1

⎤
⎥⎥⎦

⇒

⎡
⎢⎢⎣

1 −1
2 0

... 1
2 0 0

0 3
2 −1

... 1
2 1 0

0 −1 2
... 0 0 1

⎤
⎥⎥⎦⇒

⎡
⎢⎢⎣

1 −1
2 0

... 1
2 0 0

0 1 −2
3

... 1
3

2
3 0

0 −1 2
... 0 0 1

⎤
⎥⎥⎦

⇒

⎡
⎢⎢⎣

1 0 −1
3

... 2
3

1
3 0

0 1 −2
3

... 1
3

2
3 0

0 −1 4
3

... 1
4

1
2

3
4

⎤
⎥⎥⎦⇒

⎡
⎢⎢⎣

1 0 0
... 3

4
1
2

1
4

0 1 0
... 1

2 1 1
2

0 0 1
... 1

4
1
2

3
4

⎤
⎥⎥⎦ .

This is in reduced row echelon form.



12 Matrices

Thus, the inverse of the matrix is

A−1 =

⎡
⎣ 3

4
1
2

1
4

1
2 1 1

2
1
4

1
2

3
4

⎤
⎦ .

This can be verified by checking AA−1 = I3 = A−1A.

1.8 Applications

1.8.1 Color model

A color model in the context of graphics is a method of implementing
colors. Numerous models are used in practice, such as the RGB model
(red, green, and blue) used in computer monitors and on a television screen.
An RGB computer signal can be converted to a Y IQ television signal
using what is known as an NTSC encoder (NTSC stands for National
Television System Committee). The conversion is accomplished using the
matrix transformations⎡

⎣ Y
I
Q

⎤
⎦ =

⎡
⎣ .299 .587 .114

.596 −.275 −.321

.212 −.523 .311

⎤
⎦
⎡
⎣ R

G
B

⎤
⎦ .

Let us look at the RGB model for Microsoft word. The default text color
is black. Let us find theRGB value for black, change the text color to purple,
and find the RGB values. On the right of the toolbar of Microsoft word,
observe A−∇

. The bar under the A is black, indicating the current text color.

Point the cursor at this bar. It shows the font color (RGB (0,0,0)). The RGB
setting for black is (0,0,0). To change the color, select the sequence "∇ →
More colours→ Customs. A spectrum of colors is displayed. Select a purple
hue. The corresponding RGB values are seen to be R = 213, g = 77, B =
187. The bar under A has changed to purple, and any text entered at the
keyboard is purple. The range of values for each of R, G, and B is 0−255,
the set of numbers represented by a byte on a computer (note that 28 = 256).
You are asked to use the matrix transformation to find the range of Y, I, and
Q values in the following exercises.

If we enter theRGB values for black, namelyR = 0, G = 0, B = 0, into
the preceding transformation, we find that Y = 0, I = 0, Q = 0. Black has
the same RGB and Y IQ values. The RGB values R = 213, g = 77, B =
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187 for purple become Y = 130.204, I = 45.746, Q = 63.042. These are the
Y IQ values that would be used to duplicate this purple color on a television
screen.

A signal is converted from a television screen to a computer monitor using
the inverse of the above matrix.⎡

⎣ R
G
B

⎤
⎦ =

⎡
⎣ .299 .587 .114

.596 −.275 −.321

.212 −.523 .311

⎤
⎦
⎡
⎣ Y

I
Q

⎤
⎦ .

That is, ⎡
⎣ R

G
B

⎤
⎦ =

⎡
⎣ 1 .956 .620

1 −.272 −.647
1 −1.108 1.705

⎤
⎦
⎡
⎣ Y

I
Q

⎤
⎦ .

1.8.2 Cryptography

In the previous application, we talked about two different ways that colors
are coded. We now turn our attention to coding messages. Cryptography is
the process of coding and decoding messages. The word comes from the
Greek “Kryptos” meaning “hidden.” The technique can be traced back to the
ancient Greeks. Today governments use sophisticated methods of coding and
decoding messages. One code that is extremely difficult to break uses a large
invertible matrix to encode a message. The receiver of the message decodes it
using the inverse of the matrix. This first matrix is called the encoding matrix,
and its inverse is called the decoding matrix.

We illustrate the method for a 3× 3 matrix.
Let the message be BUY IBM STOCK

and the encoding matrix be

⎡
⎣ −3 −3 −4

0 1 1
4 3 4

⎤
⎦.

We assign a number to each letter of the alphabet. For convenience, let us
associate each letter with its position in the alphabet. A is 1, B is 2, and so on.
Let a space between words be denoted by the number 27. The digital form of
the message is

B U Y − I B M − S T O C K
2 21 25 27 9 2 13 27 19 20 15 3 11

.
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Since we will use a 3 × 3 matrix to encode the message, we break the
digital message up into a sequence of 3× 1 column matrices as follows:⎡

⎣ 2
21
25

⎤
⎦ ,
⎡
⎣ 27

9
2

⎤
⎦ ,
⎡
⎣ 13

27
19

⎤
⎦ ,
⎡
⎣ 20

15
3

⎤
⎦ ,
⎡
⎣ 11

27
27

⎤
⎦ .

Observe that adding two spaces at the end of the message to complete the
last matrix was necessary. We now put the message into code by multiplying
each of the above column matrices by the encoding matrix. This can be
conveniently done by writing the given column matrices as a matrix column
and pre-multiplying that matrix by the encoding matrix. We get⎡

⎣ −3 −3 −4
0 1 1
4 3 4

⎤
⎦
⎡
⎣ 2 27 13 20 11

21 9 27 15 27
25 2 19 3 27

⎤
⎦

=

⎡
⎣ −169 −116 −196 −117 −222

46 11 46 18 54
171 143 209 137 233

⎤
⎦ .

The columns of this matrix give the encoded message. The message is
transmitted in the following linear form:

−169, 46, 171,−116, 11, 143,−196, 46, 209,−117, 18, 137,−222, 54, 233.

To decode the message, the receiver writes this string as a sequence of
3×1 column matrices and repeats the technique using the inverse of the
encoding matrix. The inverse of this encoding matrix, the decoding matrix is⎡

⎣ 1 0 1
4 4 3
−4 −3 −3

⎤
⎦ .

Thus, to decode the message⎡
⎣ 1 0 1

4 4 3
−4 −3 −3

⎤
⎦
⎡
⎣ −169 −116 −196 −117 −222

46 11 46 18 54
171 143 209 137 233

⎤
⎦

=

⎡
⎣ 2 27 13 20 11

21 9 27 15 27
25 2 19 3 27

⎤
⎦ .
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The columns of this matrix written in linear form give the original
message.

2 21 25 27 9 2 13 27 19 20 15 3 11
B U Y − I B M − S T O C K

.

Exercises

1. A =

⎡
⎢⎢⎢⎣

λ1 0 · · · 0
0 λ2 · · · 0
...

...
...

...
0 0 · · · λn

⎤
⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎣

μ1 0 · · · 0
0 μ2 · · · 0
...

...
...

...
0 0 · · · μn

⎤
⎥⎥⎥⎦.

Compute (a) AB (b) BA (c) A−1, if it exists.
An n × n matrix A is said to be nilpotent if An = 0 for some positive

integer n. The smallest positive integer n for which An = 0 is called the
degree of nilpotence of A.

2. Check whether the following matrices are nilpotent. In the case of
nilpotent matrices, find the degree of nilpotence.

(a)

⎡
⎢⎢⎣

0 0 0 0
α 0 0 0
β1 β2 0 0
γ1 γ2 γ3 0

⎤
⎥⎥⎦ (b)

⎡
⎢⎢⎣

0 1 2 −1
0 0 1 2
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦.

(c)

⎡
⎣ 1 5 −2

1 2 −1
3 6 −3

⎤
⎦ (d)

⎡
⎣ 1 −3 −4

−1 3 −4
1 −3 −4

⎤
⎦.

3. If A and B are square matrices of the same order, then prove that

(a) A2 −B2 = (A−B) (A+B)AB = BA

(b) A2 ± 2AB +B2 = (A±B)2

4. Denote the matrix A =

⎡
⎣ α11 α12 α13

α21 α22 α23

α31 α32 α33

⎤
⎦.

as A =

[
A11 A12

A21 A22

]
,

where
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A11= the matrix [α11]. A12 = [α11, α12],

A21 =

[
α21

α31

]
, A22 =

[
α22 α23

α32 α33

]
.

Similarly, define B, B11,. . . .by replacing αij by βij . Then prove that

A+B =

[
A11 +B11 A12 +B12

A21 +B21 A22 +B22

]

and AB =

[
A11B11 +A12B12 A11B12 +A12B22

A21B11 +A22B21 A21B12 +A22B22

]
.

5. If α, β are any scalars, then prove that A2 − (α+ β)A + αβI =
(A− αI) (A− βI), where A is any square matrix of order n and
I = In.

6. If α, β are scalars such that A = αB + βI , then prove that AB = BA.
7. A square matrix A is said to be involutory if A2 = I . Prove that

the matrices

[
1 α
0 −1

]
and

[
1 0
α −1

]
are involutory for all scalars α.

Determine all 2× 2involutory matrices.
8. Let p (x) = α0 + α1x + · · · + αnx

n be a polynomial of degree n, and
A be a square matrix of order m. Then the matrix polynomial p (A) is
defined as

p (A) = α0I + α1A+ · · ·+ αnA
n, where I = Im.

If f (x) = 7x2 − 3x+ 5 , g (x) = 3x3 − 2x2 + 5x− 1

A =

[
1 2
−1 3

]
, B =

[ −1 1
1 −2

]
, evaluate

(a) f (A) (b) g (A)

(c) f (B) (d) g (B)

(e) f (2A+ 3B) (f) g (3A− 7B).

9. Using matrix methods, solve the following system of linear equations:

(a)
x+ 2y = 3
y = 1

(b)
αx+ βy = a
βx = b

(c)
x− 2z = 3
2x+ y = 2
x+ 2z = 3
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10. If A and B are two non-singular matrices of the same order, then prove
that AB is non-singular and (AB)−1 = B−1A−1.

11. Prove that the following matrices are non-singular and find their
inverses:

(a)

[
1 2
−1 0

]
(b)

⎡
⎣ 1 0 0

2 1 0
3 4 2

⎤
⎦

(c)

⎡
⎣ 1 −1 2

3 0 1
0 1 −1

⎤
⎦ (d)

⎡
⎢⎢⎣

1 −1 2 3
0 2 1 1
1 3 1 −1
1 1 −1 0

⎤
⎥⎥⎦

(e)

⎡
⎢⎢⎣

2 2 1 1
0 2 1 1
0 0 1 1
0 0 1 0

⎤
⎥⎥⎦

12. Find the values of α and β for which the following matrix is invertible.
Find the inverse when it exists.

⎡
⎣ α β 0

0 α β
β 0 α

⎤
⎦ .
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2
System of Linear Equations

and Determinants

This chapter discusses the system of linear equations and its solution using
the Gaussian elimination method, Gauss-Jordan elimination method and LU
decomposition methods, the definitions of determinants, their properties, and
Crammer’s rule. Linear algebra is a branch of mathematics that plays a
central role in modern mathematics and is essential to engineers and phys-
ical, social, and behavioral scientists. When mathematics is used to solve a
problem, it often becomes necessary to find a solution to a so-called system
of linear equations to study methods for solving such equations. This chapter
introduces methods for solving linear equations and looks at some of the
solutions’ properties. It is essential to know the solutions to a given system
of equations and why they are the solutions. If the system describes some
real-life situation, then understanding the behavior of the solutions can lead
to a better understanding of the circumstances. Associated with every square
matrix is a number called its determinant. The determinant of a matrix is
a tool used in many branches of mathematics, science, and engineering.
At the same time, the method of Gauss-Jordan elimination enables us to
find the inverse of a specific matrix. For example, it does not give us an
algebraic formula for the inverse of an arbitrary matrix, a formula that can
be used in theoretical work. Determinants provide us with such procedures.
Furthermore, criteria for when specific systems of linear equations have
unique, none, or many solutions can be stated in terms of determinants. In
this chapter, the determinant is defined, and its properties are developed.

2.1 Introduction

Let us consider a general system ofm-linear equations in n-variables

c11x1 + c12x2 + · · ·+ c1nxn = b1
c21x1 + c22x2 + · · ·+ c2nxn = b2
...

. (2.1)

19
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cm1x1 + cm2x2 + · · ·+ cmnxn = bm

Upon using the matrix notation, eqn (2.1) can be expressed as follows:⎡
⎢⎢⎢⎣

c11x1 + c12x2 + · · ·+ c1nxn
c21x1 + c22x2 + · · ·+ c2nxn
...
cm1x1 + cm2x2 + · · ·+ cmnxn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

b1
b2
...
bm

⎤
⎥⎥⎥⎦ . (2.2)

If the left-hand side of eqn (2.2) can be written as a product of the matrix
coefficients A and a column matrix of unknown variables X , i.e., AX and
the right-hand side of the column matrix of constants isB, then the system of
the linear equation can be expressed as⎡

⎢⎢⎢⎣
c11 c12 · · · c1n
c21 c22 · · · c2n
...

...
. . .

...
cm1 cm2 · · · cmn

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x1
x2
...
xn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

b1
b2
...
bm

⎤
⎥⎥⎥⎦ . (2.3)

Thus, we can write the above system of equations (2.3) in matrix form as

AX = B.

2.2 Elementary Transformation and Row Operations

Elementary transformation can be used to change a system of linear equations
into another system of linear equations that has the same solution. Elementary
transformation is used to solve the system of linear equations by eliminating
the unknown variables.

In a matrix, the operations involved in elementary transformation are
called elementary row operations.

The following table distinguishes the differences between elementary
transformations and row operations.

Elementary transformation Row operations
Interchange of two equations Interchange of two rows of a matrix
A non-zero constant is multiplying
on both sides of an equation

Multiply the elements of the row by
a non-zero constant

A multiple of one equation adds
to another equation.

A multiple of the elements of one row adds to
the corresponding elements of another row
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The equations related to elementary transformations are called equivalent
systems, whereas the matrices associated with elementary row operations are
called row equivalent matrices.

Remark: The elementary transformations preserve the solutions of a system
of linear equations since the order of the equations does not alter the solution.

Example 2.1:
Solve the system

x1 + x2 + x3 = 2

2x+ 3x2 + x3 = 3

x− x2 − 2x3 = −6

Solution:

Elementary transformation:

Step-I:

Eliminate x from the second and third equations, i.e.,
Eqn (2) + (−2) × Eqn (1)
Eqn (3) + (−1) × Eqn (1)

x1 + x2 + x3 = 2

x2 − x3 = −1.

2x2 − 3x3 = −8

Step-II:

Eliminate y from the first and third equations, i.e., Eqn (1) + (−1) ×
Eqn (2)

x1 + 2x3 = 2

x2 − x3 = −1.

− 5x3 = −10

Eliminate z from the first and second equations

x1 = −1
x2 = 1
x3 = 2

.
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Matrix method: ⎡
⎣ 1 1 1 2

2 3 1 3
1 −1 −2 −6

⎤
⎦

≈ R2 + (−2)R1

R3 + (−1)R1

⎡
⎣ 1 1 1 2

0 1 −1 −1
0 −2 −3 −8

⎤
⎦

≈ R1 + (−1)R2

R3 + (2)R2

⎡
⎣ 1 1 1 2

0 1 −1 −1
0 0 −5 −10

⎤
⎦

≈
(
−1

5

)
R3

⎡
⎣ 1 0 2 3

0 1 −1 −1
0 0 1 2

⎤
⎦

≈ R1 + (−2)R3

R2 +R3

⎡
⎣ 1 0 0 −1

0 1 0 1
0 0 1 2

⎤
⎦

⇒
x = −1
y = 1
z = 2

.

Example 2.2:
Solve the system

x1 − 2x2 + 4x3 = 12

2x1 − x2 + 5x3 = 18.

− x1 + 3x2 − 3x3 = −8

Solution:

⎡
⎣ 1 −2 4 12

2 −1 5 18
−1 3 −3 −8

⎤
⎦ ≈ R2 + (−2)R1

R3 +R1

⎡
⎣ 1 −2 4 12

0 3 −3 −6
0 1 1 4

⎤
⎦

≈
(
1

3

)
R2

⎡
⎣ 1 −2 4 12

0 1 −1 −2
0 1 1 4

⎤
⎦ ≈ R1 + (2)R2

R3 + (−1)R2

⎡
⎣ 1 0 2 8

0 1 −1 −2
0 0 2 6

⎤
⎦
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≈ 1

2
R3

⎡
⎣ 1 0 2 8

0 1 −1 −2
0 0 1 3

⎤
⎦ ≈ R1 + (2)R3

R2 +R3

⎡
⎣ 1 0 0 2

0 1 0 1
0 0 1 3

⎤
⎦

x1 = 2 , x2 = 1 , x3 = 3

2.3 Row Echelon Form and Reduced Row Echelon Form

Definition 2.1:
A matrix A is said to be in row echelon form if:

1. Any zero-element rows are present in the matrix, which are grouped at
the bottom of the matrix.

2. The first non-zero element of each row is 1, which is called the leading
1.

3. All the elements below a leading 1 are zero. The leading 1 of each
row after the first is positioned to the right side of the leading 1 of the
previous row.

Example 2.3:⎡
⎣ 1 −1 2

0 1 2
0 0 1

⎤
⎦
⎡
⎣ 1 3 −6 4

0 0 1 3
0 0 0 0

⎤
⎦
⎡
⎣ 1 4 6 2 5 2

0 0 1 2 3 4
0 0 0 0 1 6

⎤
⎦ .

Now we will discuss the reduced echelon form in a more general form.

Definition 2.2:
A matrix is in a row-reduced echelon form, if:

1. Any zero-element rows are present in the matrix, which are grouped at
the bottom of the matrix.

2. The first non-zero elements of each row is 1. This element is called
leading 1.

3. The leading 1 of each row after the first is positioned to the right of the
leading 1 of the previous row.

4. The other elements in a column that contains a leading 1 are zero.

Example 2.4:⎡
⎣ 1 0 8

0 1 2
0 0 0

⎤
⎦
⎡
⎣ 1 0 0 7

0 1 0 3
0 0 1 9

⎤
⎦
⎡
⎣ 1 4 0 0

0 0 1 0
0 0 0 1

⎤
⎦
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⎢⎢⎣

1 2 0 3 0 4
0 0 1 2 0 7
0 0 0 0 1 6
0 0 0 0 0 0

⎤
⎥⎥⎦
⎡
⎣ 1 2 0 4

0 0 0 0
0 0 1 3

⎤
⎦
⎡
⎣ 1 2 0 3 0

0 0 3 4 0
0 0 0 0 1

⎤
⎦

⎡
⎢⎢⎣

1 7 0 8
0 1 0 3
0 0 1 2
0 0 0 0

⎤
⎥⎥⎦ .

The difference between a row-reduced echelon form (RREF) and a
reduced echelon form (REF) is that the element above and below a leading 1
is zero in a row-reduced echelon form (RREF) while only the element below
the leading 1 need to be zero in a reduced echelon form (REF).

Remark: The row-reduced echelon form of a matrix is unique, and the Gauss-
Jordan elimination method is a meaningful systematic way to arrive at the
row-reduced echelon form. In contrast, the Gauss-Jordan elimination method
can be used to arrive at the reduced echelon form.

2.4 Solving Linear Systems via Gaussian Elimination

This section discusses an essential part of linear algebra, i.e., linear system
of equation, and determines the solution properties of the linear system of
equations.

Non-homogenous linear system: Let us consider a system of m linear
equations in n unknowns x1, x2, · · · , xn:

c11x1 + c12x2 + · · ·+ c1nxn = b1
c21x1 + c22x2 + · · ·+ c2nxn = b2
. . . . . . . . .
cm1x1 + cm2x2 + · · ·+ cmnxn = bn

. (2.4)

The column vector defines the solution of the linear system, i.e.,⎡
⎢⎢⎢⎣

x1
x2
...
xn

⎤
⎥⎥⎥⎦ .
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That satisfies all the equations of the system (2.4) and is called the general
solution of the linear system (2.4). A linear system having a solution is
consistent, whereas no solution is said to be inconsistent.

2.4.1 The Homogenous Case

Theorem 2.1:
A homogenous system of linear equations in n-variables

c11x1 + c12x2 + · · ·+ c1nxn = 0
c21x1 + c22x2 + · · ·+ c2nxn = 0
. . . . . .
cm1x1 + cm2x2 + · · ·+ cmnxn = 0

always has the solution x1 = 0, x2 = 0, · · · , xn = 0. This solution is called
the trivial solution.

Example 2.5:
x+ 2y − 5z = 0
−2x− 3y + 6z = 0

.

This system has the solution x = 0, y = 0, z = 0, i.e., which is a trivial
one.

Theorem 2.2:
A homogenous system of linear equations that has more variables than

equations has many solutions. One of these solutions is the trivial solution.

Example 2.6:
Let us consider the system[

1 2 −5 0
−2 −3 6 0

]
≈
[
1 0 3 0
0 1 −4 0

]
x+ 3z = 0

y − 4z = 0

⇒ x = −3z
y = 4z

⇒ z = r , x = −3r , y = 4r.

⇒ For r = 0, it implies that x = y = z = 0.
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2.4.2 The non-homogenous case

If A is the coefficient matrix of a system AX = B having n-equations in
n-variables, then it has a unique solution, and it is row equivalent to In.

⇒ [A : B] ≈ [In : X]

[A : B1B2 · · ·Bn] ≈ [In : X1X2 · · ·Xn]

It is leading to the solutions X1, X2, · · · , Xn.

2.5 Criteria for Consistency and Uniqueness

2.5.1 Gaussian elimination

This section introduces another elimination method called the Gaussian
elimination method.

Gaussian elimination:

(1) First, write down the augmented matrix [A : B] of the system of linear
equations AX = B.

(2) Find an echelon form of the augmented matrix [A : B] using elementary
row operations. This is done by creating leading 1s and then zeros below
each leading 1, column by column, starting with the first column.

(3) Represent the system of linear equations corresponding to the echelon
form.

(4) Use back substitution to arrive at the solution.

Remark:
An essential feature of Gauss elimination is that it constitutes a practical

algorithm for solving linear systems, which can easily be implemented in
standard programming languages.

Example 2.7:
Solve the system

x1 + 2x2 + 3x3 + 2x4 = −1

−x1 − 2x2 − 2x3 + x4 = 2

2x1 + 4x2 + 8x3 + 12x4 = 4

using the Gauss elimination method.
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Solution:

≈ R2 +R1

R3 + (−2)R1

⎡
⎣ 1 2 3 2 −1

0 0 1 3 1
0 0 2 8 6

⎤
⎦

≈ R3 + (−2)R2

⎡
⎣ 1 2 3 2 −1

0 0 1 3 1
0 0 0 2 4

⎤
⎦

≈ 1

2
R3

⎡
⎣ 1 2 3 2 −1

0 0 1 3 1
0 0 0 1 2

⎤
⎦ .

The corresponding system of equation is

x1 + 2x2 + 3x3 + 2x4 = −1

x3 + 3x4 = 1

x4 = 2.

By back substitutions, we get x3 = 1− 6 = −5

x1 + 2x2 = 10 ⇒ x1 = −2x2 + 10.

Let x2 = r. Then, the systems have many solutions.
The solutions are

x1 = −2r + 10, x2 = r, x3 = −5, x4 = 2.

Example 2.8:

x1 + 2x2 + 3x3 + 2x4 = −1

− x1 − 2x2 − 2x3 + x4 = 2

2x1 + 4x2 + 8x3 + 12x4 = 4.

The back substitutions can also be performed using matrices.
The final matrix is then the reduced echelon form of the systems.

2.5.2 Gauss-Jordan elimination

The Gauss-Jordan method of solving a linear equation system using matrices
involves creating specific matrices. These numbers are developed systemati-
cally, column by column.
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The Gauss-Jordan elimination is used to solve the n-equations in n-
variables with a unique solution.

That is, [A : B] ≈ [In : X] can be used for a system that gives a unique
solution.

Now we will discuss the method in its more general form where the
number of equations can differ from the number of unknowns. There can be
a unique solution, many solutions, or no solution to this system of equations.

Gauss-Jordan elimination:

(1) First, write down the augmented matrix [A : B] of the system of linear
equations AX = B.

(2) Derive the reduced echelon form of the augmented matrix [A : B] using
elementary row operation. This is done by creating leading 1s and then
zeros above and below each leading 1, column by column, starting with
the first column.

(3) Represent the system of equations corresponding to the reduced echelon
form. This reduced system gives the solution to the system.

Example 2.9:
Determine the reduced echelon form of the following matrix:⎡

⎣ 0 0 2 −2 2
3 3 −3 9 12
4 4 −2 11 12

⎤
⎦

using the Gauss elimination method.

Solution:

Step-I:⎡
⎣ 0 0 2 −2 2

3 3 −3 9 12
4 4 −2 11 12

⎤
⎦ ≈ R1 ↔ R2

⎡
⎣ (3) 3 −3 9 12

0 0 2 −2 2
4 4 −2 11 12

⎤
⎦ .

This non-zero element is called a pivot.

Step-II:
Create a 1 in the pivot location by multiplying the pivot row by 1

Pivot

≈ 1

3
R1

⎡
⎣ 1 1 −1 3 4

0 0 2 −2 2
4 4 −2 11 12

⎤
⎦ .
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Step-III:
Create zero elsewhere in the pivot column by adding suitable multiples of

the pivot row to all other rows of the matrix

≈ R3 + (−4)R1

⎡
⎣ 1 1 −1 3 4

0 0 2 −2 2
0 0 2 −1 −4

⎤
⎦ .

Step-IV:
Cover the pivot row and all rows above it.
Repeat Step-I and Step-II for the remaining submatrix.
Repeat Step-III for the whole matrix. Continue this until the reduced

echelon form (REF) is reached.⎡
⎣ 1 1 −1 3 4

0 0 2 −2 2
0 0 2 −1 −4

⎤
⎦ =

⎡
⎣ 1 1 −1 3 4

0 0 (2pivot) −2 2
0 0 2 −1 −4

⎤
⎦

≈ 1

2
R2

⎡
⎣ 1 1 −1 3 4

0 0 1 −1 1
0 0 2 −1 −4

⎤
⎦

≈ R1 +R2

R3 + (−2)R2

⎡
⎣ 1 1 0 2 5

0 0 1 −1 1
0 0 0 (1Pivot) −6

⎤
⎦

≈ R1 + (−2)R3

R2 +R3

⎡
⎣ 1 1 0 0 17

0 0 1 0 −5
0 0 0 1 −6

⎤
⎦ ,

which is in reduced echelon form (REF).

Theorem 2.3:

If the number of pivots in echelon form is less than the number of
unknowns in a homogenous system, then the linear system has a non-trivial
solution.

Note:

If the number of pivots is r, then the n − r non-pivotal unknowns can
be given arbitrary values, and there will be a non-trivial solution whenever
n− r > 0.
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On the other hand, if n = r, none of the unknowns can be given arbitrary
values; it provides a unique solution, namely the trivial one.

Corollary 2.1:
A homogenous linear system ofm-equations in n unknowns always have

a non-trivial solution, ifm < n.
If r is the number of pivots, then r ≤ m < n.

Example 2.10:
For which value of t, the following homogenous system has a non-trivial

solution?
6x1 − x2 + x3 = 0
tx1 + x3 = 0
x2 + tx3 = 0

.

Solution:
Let us proceed to put the linear system in echelon form by applying to it

successively the operations
1
6 ×eqn. (1) , eqn (2)− t×eqn (1) eqn (2) ↔ eqn (3) and eqn (3)− t

6 ×
eqn (2).

x1 −
(
1
6

)
x2 +

(
1
6

)
x3 = 0

x2 + tx3 = 0(
1− t

6 − t2

6

)
x3 = 0

.
The number of pivots will be less than 3, i.e., r = 3.
Now as x3 �= 0, implies, 1− t

6 − t2

6 = 0, i.e., t = 2 or t = −3.
are the only values of t, which gives the number of unknowns for which

the linear system has a non-trivial solution.

Example 2.11:
Consider a linear system

x1 + 3x2 + 3x3 + 2x4 = 1
2x1 + 6x2 + 9x3 + 5x4 = 5
−x1 − 3x2 + 3x3 = 5

.

The augmented matrix here is⎡
⎢⎢⎣

1 3 3 2
... 1

2 6 9 5
... 5

−1 −3 3 0
... 5

⎤
⎥⎥⎦ .
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Now we can convert it into row echelon form⎡
⎢⎢⎣

1 3 3 2
... 1

0 0 1 1
3

... 1

0 0 0 0
... 0

⎤
⎥⎥⎦ .

Since the bottom right-hand entry of the matrix is 0, the linear system is
consistent.

Thus, the linear system corresponding to the last matrix is

x1 + 3x2 + 3x3 + 2x4 = 1
x3 +

1
3x4 = 1

0 = 0
.

Thus, the general solution given by back substitution is

x1 = −2− s− 3r, x2 = r , x3 = 1− s

3
, x4 = s,

where r and s are arbitrary scalars.

Theorem 2.4:
Let us consider a linear system AX = B having n-unknowns with

augmented matrix [A : B]. Then we have the following:

(1) The system AX = B is consistent if and only if the matrices A and
[A : B] have the same number of pivots in row echelon form.

(2) Suppose the system AX = B is consistent and r denotes the number of
pivots of matrix A in row echelon form. Then the n − r unknowns that
correspond to columns of matrix A not containing a pivot can be given
arbitrary values. Thus, the system has a unique solution.

Proof:
Let the linear system be consistent. The row echelon form of the aug-

mented matrix must have only zero entries in the last column below the final
pivot, but this is just the condition forA and [A : B] to have the same number
of pivots.

Finally, suppose the linear system is consistent. In that case, the unknowns
corresponding to columns that do not contain pivots may be given arbitrary
values, and the remaining unknowns can be found by back substitution.
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Comparison of Gaussian and Gaussian-Jordan elimination:

The method of Gaussian elimination is, in general, more efficient than the
Gaussian-Jordan elimination, in that it involves fewer operations of addi-
tion and multiplications. It is during the back substitution that Gaussian
elimination picks up this advantage.

2.6 Method of LU Decomposition

Definition 2.3:
Let us consider a square matrix A that can be factored into an upper

triangular matrix product and a lower triangular matrix. This factorization
is called LU decomposition of the matrix A.

Remark:
Not every matrix has an LU decomposition, and when it exists, it is

not unique. The method that now introduces can solve a system of linear
equations if the matrix A has an LU decomposition.

Method of LU decomposition:
Let AX = B be a system of n-equation in n-variables where the matrix

A has LU decomposition,

i.e., A = LU.

The system thus can be written as

LUX = B.

The method involves writing this system as two subsystems, one of which
is lower triangular and the other upper triangular

UX =Y

LY =B.

Observe that substituting for Y from the first equation into the second
gives the original system

LUX = B.

In practice, we first solve LY = B for Y and then solve UX = Y to get
the solution X .
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2.7 Construction of an LU Decomposition of a Matrix

(1) Use row operations to arrive at an upper triangular matrix U .
(2) The operations must involve the addition of multiples of rows to rows.

In general, if row interchanges are required to arrive at U , then an LU
form does not exist.

(3) The diagonal elements of the lower triangular matrix L are 1s. The non-
zero elements of L correspond to the row operations.

(4) The row operation Rk + cRj implies that lkj = −c.

2.7.1 Solution of matrix equation AX = B using LU
decomposition

(1) Find the LU decomposition of the matrix A. (If the matrix A has no LU
decomposition, then the method is not applicable.)

(2) Use forward substitution to solve LY = B.
(3) Use back substitution to solve UX = Y .

Example 2.12:
Solve the following system of equations

x1 − 3x2 + 4x3 = 12
−x1 + 5x2 − 3x3 = −12
4x1 − 8x2 + 23x3 = 58

using LU decomposition.

Solution: ⎡
⎣ 1 −3 4

−1 5 −3
4 −8 23

⎤
⎦ ≈ R2 +R1

R3 − 4R1

⎡
⎣ 1 −3 4

0 2 1
0 4 7

⎤
⎦

≈ R3 − 2R2

⎡
⎣ 1 −3 4

0 2 1
0 0 5

⎤
⎦ .

These row operations lead to the following LU decomposition of A:

A =

⎡
⎣ 1 0 0

−1 1 0
4 2 1

⎤
⎦
⎡
⎣ 1 −3 4

0 2 1
0 0 5

⎤
⎦ .
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We again solve the given system LUX = B by solving the two
subsystems LY = B and UX = Y .

LY = B ⇒
⎡
⎣ 1 0 0

−1 1 0
4 2 1

⎤
⎦
⎡
⎣ y1

y2
y3

⎤
⎦ =

⎡
⎣ 12

−12
58

⎤
⎦ .

This lower triangular system has the solution

x1 = 1, x2 = −1, x3 = 2.

Thus, the solution to the given system is

x1 = 1, x2 = −1, x3 = 2.

Theorem 2.5:
Let A be anm× n matrix and c be a non-zero scalar.

(1) If a matrix B is obtained from A by multiplying the elements of a row
(column) by α, then |B| = α |A|.

(2) If a matrix B is obtained from A by interchanging two rows (column),
then |B| = − |A|.

(3) If a matrix B is obtained from A by adding multiple rows (column) to
another row (column), then |B| = |A|.

Proof:
Let matrix B be obtained by multiplying the kth row of A by c.
The kth row of B is thus αck1αck2 · · ·αckn.
Expand |B| in terms of this row,

|B| = αck1Ck1 + αck2Ck2 + · · ·+ αcknCkn

= α (ck1Ck1 + ck2Ck2 + · · ·+ cknCkn)
= α |A|

.

The corresponding result for columns is obtained by expanding the matrix
B in terms of the kth column.

Definition 2.4:
A square matrix A is said to be singular if |A| = 0. A is non-singular

if |A| �= 0. The following theorem gives information about some of the
circumstances under which we can expect a matrix to be singular.

Theorem 2.6:
Let A be a square matrix. A is singular if:
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(1) All the elements of the row (column) are zero.
(2) Two rows (columns) are equal.
(3) Two rows (columns) are proportional.

(Note that (2) is a particular case of (2.7.1), but we list it to give it specific
emphasis.)

Proof:

(1) Let all the elements of the kth row of A be zero. Expand |A| in terms of
the kth row:

|A| = ck1Ck1 + ck2Ck2 + · · ·+ cknCkn

= 0Ck1 + 0Ck2 + · · ·+ 0Ckn

= 0
.

The corresponding results can be seen to hold for columns by expanding
the determinant in terms of the columns of zeros.

(2) Interchange the equal rows of A to get a matrix B, which is equal to A;
thus, |B| = |A|.
We know that interchanging two rows of a matrix negates the determi-

nants.
Thus, |B| = − |A|.
The two results |B| = |A| and |B| = − |A| combine to give |A| = − |A|.
Thus, 2 |A| = 0, implying that |A| = 0.
The proof for columns is similar.

Example 2.13:
Show that the following matrices are singular.

(1) A =

⎡
⎣ 2 0 −7

3 0 1
−4 0 9

⎤
⎦ , (2) B =

⎡
⎣ 2 −1 3

1 2 4
2 4 8

⎤
⎦ .

Solution:
All the elements in columns C2 of A are zero.
Thus, |A| = 0 .
Observe that every element in row R3 of B is twice the corresponding

element in row R2.
We write (R3) = 2 (R2).
Since R2 and R3 are proportional,

|B| = 0.
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The following theorem tells us how determinants interact with various
matrix operations.

Theorem 2.7:
Let A and B be n× n matrices and α be a non-zero scalar.

(1) Determinant of a scalar multiples: |αA| = αn |A|.
(2) Determinant of a product: |AB| = |A| |B|.
(3) Determinant of a transpose:

∣∣AT
∣∣ = |A|.

(4) Determinant of an inverse:
∣∣A−1

∣∣ = 1
|A| .

Proof of (1):
Each row of αA is a row of A multiplied by α.
Upon applying Theorem 2.5(1), to each of the n-rows of αA, it becomes

|αA| = αn |A|

Proof of (4):
Since AA−1 = In.

Thus,
∣∣AA−1

∣∣ = |In| Implies |A| ∣∣A−1
∣∣ = 1

Upon using (2), It finds
∣∣A−1

∣∣ = 1

|A| .

Example 2.14:
If A and B are square matrices of the same size, with A being singular,

then prove that AB is also singular. Is the converse true?

Solution:
The matrix A is singular.
Thus, |A| = 0. Applying the properties of determinants, we get

|AB| = |A| |B| = 0 .

Therefore, the matrix AB is singular.
We now investigate the converse:
Does AB being singular mean that A is singular?

We get
|AB| = 0 ⇒ |A| |B| = 0

⇒ |A| = 0 or |B| = 0
.

Since the product AB is singular, it implies that either A or B is singular
(we do not exclude the possibility of both being singulars). The converse is
not valid.
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Example 2.15:
Let S be the set of 2 × 2 singular matrices. Prove that S is not closed

under addition but is closed under scalar multiplication.

Solution:
To prove that S is not closed under addition, one example will suffice.

Let A =

[
1 1
1 1

]
and B =

[
1 2
2 4

]
.

Then |A| = 0 and |B| = 0 imply that both matrices A andB are singular.

Their sum is A+B =

[
2 3
3 5

]
.

Observe that |A+B| = 1 �= 0 , and A+B is non-singular.
Thus, S is not closed under addition.
To prove that S is closed under scalar multiplication, we have to consider

the general case.
Let α be a scalar and C be a singular matrix.
Thus, |C| = 0 and then |αC| = α2 |C| = 0. The matrix αC is also

singular.
Therefore, S is closed under scalar multiplication.
This example illustrates the closure properties under addition and scalar

multiplication and with independent conditions.
It is possible to have one condition hold without the other holding.
Row operations can be used in a systematic manner similar to the Gauss-

Jordan elimination to compute determinants. We lead up this method with a
discussion of the determinants of upper triangular matrices.

2.8 Determinants and Matrix Inverses

We have introduced the concept of the determinant, discussed various ways
of computing determinants, and looked at the algebraic properties of deter-
minants. We shall now see how a determinant can give information about the
inverse of a matrix and solutions to equation systems.

First, it introduces some necessary definitions for developing a formula
for the inverse of a non-singular matrix.

Definition 2.5:
Let A be an n × n matrix and Cij be the co-factor of cij . The matrix

whose (i, j) th elements is Cij is called the matrix of co-factors of A.
The transpose of this matrix A is called the adjoint of A and is denoted

by adj (A).
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⎢⎢⎣

C11 C12 · · · C1n

C21 C22 · · · C2n

· · · · · · · · · · · ·
Cn1 Cn2 · · · Cnn

⎤
⎥⎥⎦Matrix of co-factors.

⎡
⎢⎢⎣

C11 C21 · · · Cn1

C12 C22 · · · Cn2

· · · · · · · · · · · ·
C1n C2n · · · Cnn

⎤
⎥⎥⎦ Adjoint matrix.

The following theorem provides a formula to determine the inverse of a
non-singular matrix.

Theorem 2.8:
Let A be a square matrix with |A| �= 0. Then the matrix A is invertible

with

A−1 =
1

|A|adj (A) .

Proof:
Consider the matrix product A.adj (A).
The (i, j)th element of this product is
(i, j)th element = (row i of A) × column j of adj (A))

= [ci1, ci2, · · · , cin]

⎡
⎢⎢⎢⎣

Cj1

Cj2
...
Cjn

⎤
⎥⎥⎥⎦

= ci1Cj1 + ci2Cj2 + · · ·+ cinCjn

.

If i = j, this is the expansion of |A| in terms of the ith row.
If i �= j, then it expands the determinants of a matrix in which the jth

row of matrix A has been replaced by the ith row of A, a matrix having two
identical rows.

Therefore (i, j) th element =

{ |A| , if i = j
0 , if i �= j

.

The product A.adj (A) is thus a diagonal matrix with the diagonal
elements all being |A|. Factor out all the diagonal elements to get |A| In.

Thus, A.adj (A) = |A| In.
Since |A| �= 0 , we can rewrite this equation as A.

(
1
|A| . adj (A)

)
= In.
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Similarly, it can be shown that(
1

|A| . adj (A)
)

.A = In.

Thus, A−1 = 1
|A| . adj (A), thus proving the theorem.

The necessity of this result lies in that it gives us a formula for the inverse
of an arbitrary non-singular matrix that can be used in theoretical work. The
Gauss-Jordan algorithm presented earlier is much more efficient than that
formula for computing the inverse of a specific matrix. However, the Gauss-
Jordan method cannot be used to describe the inverse of an arbitrary matrix.

The following theorem complements the previous one. It tells us that the
non-singular matrices are the only matrices that have inverses.

Theorem 2.9:
A square matrix A is invertible, iff |A| �= 0.

Proof:
Assume that A is invertible.
Thus, AA−1 = In.
This implies that

∣∣AA−1
∣∣ = |In|.

Properties of determinant give |A| ∣∣A−1
∣∣ = 1.

Thus, |A| �= 0.
Conversely, Theorem 2.8 tells us that if |A| �= 0.
Then matrix A is invertible.
The inverse of A, i.e., A−1, exists if and only if |A| �= 0.

Example 2.16:
Determine which of the following matrices are invertible:

(1) A =

[
1 −1
3 2

]
. (2) B =

[
4 2
2 1

]

(3) C =

⎡
⎣ 2 4 −3

4 12 −7
−1 0 1

⎤
⎦ (4) D =

⎡
⎣ 1 2 −1

−1 1 2
2 8 0

⎤
⎦ .

Solution:
Compute the determinant of each matrix and apply the previous theorem.

We get



40 System of Linear Equations and Determinants

(1) |A| = 5 �= 0 implies that A is invertible.
(2) |B| = 0 implies that B is singular. Thus, the inverse does not exist.
(3) |C| = 0 implies that C is singular. Therefore, the inverse does not exist.
(4) |D| = 2 �= 0 implies that D is invertible.

Example 2.17:
Determine the inverse of the matrix

A =

⎡
⎣ 2 0 3

−1 4 −2
1 −3 5

⎤
⎦ .

Solution:
The determinant, i.e., |A| is computed and found to be 25. Thus, the

inverse of A exists.
We find that

adj (A) =

⎡
⎣ 14 −9 −12

3 7 1
−1 6 8

⎤
⎦ .

The inverse of matrix A gives

A−1 =
1

25
adj (A) =

⎡
⎢⎣

14
25

−9
25

−12
25

3
25

7
25

1
25

−1
25

6
25

8
25

⎤
⎥⎦ .

2.9 Determinants and Systems of Linear Equations

Next, we discuss the relationship between the existence and uniqueness of the
solution to a system of n-linear equations in n-variables and the determinants
of the system’s coefficients.

Theorem 2.10:
Let AX = B be a system of n-linearly independent in n-variables. If

|A| �= 0, then there is a unique solution. If |A| = 0, there may be many or no
solutions.

Proof:
If |A| �= 0, we know that A−1 exists and that there is then a unique

solution given by X = A−1B.
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If |A| = 0, then the determinant of every matrix including the reduced
echelon form of A is zero. Which implies the reduced echelon form of A is
not In. Thus the solution to the system AX = B is not unique.

The following systems of equations show that there may be many or no
solutions.

x1 − 2x2 + 3x3 = 1
3x1 − 4x2 + 5x3 = 3
2x1 − 3x2 + 4x3 = 2

x1 + 2x2 + 3x3 = 3
2x1 + x2 + 3x3 = 3
x1 + x2 + 2x3 = 0

Many solutions No solutions.

x1 = r , x2 = 2r , x3 = r.

Example 2.18:
Check the uniqueness of solutions of the following system of equations:

3x1 + 3x2 − 2x3 = 2
4x1 + x2 + 3x3 = −5
7x1 + 4x2 + x3 = 9

.

Solution:
The determinant of the matrix of coefficients gives∣∣∣∣∣∣

3 3 −2
4 1 3
7 4 1

∣∣∣∣∣∣ = 0.

Thus, the system does not have a unique solution.
We now introduce a Crammer rule result to solve a system of n-linear

equations in n-variables with a unique solution.
This rule is of theoretical importance in that it gives us a formula for the

solution of a system of equations.

2.10 Crammer’s Rule

Theorem 2.11 (Crammer’s rule):
Let AX = B be a system of n-linear equations in n-variables such that

|A| �= 0. Then the system has a solution given by

x1 =
|A1|
|A| , x2 =

|A2|
|A| , · · · , xn =

|An|
|A| ,
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which is unique and Ai is the matrix obtained by replacing the column i of A
with B.

Proof:
Since |A| �= 0, the solution to the system AX = B is unique and is given

by

X = A−1B =
1

|A|adj (A)B

xi. The ith element of X is given by

xi =
1
|A| [row i of adj (A)]×B

= 1
|A| [c1i, c2i, · · · , cni]

⎡
⎢⎢⎢⎣

b1
b2
...
bn

⎤
⎥⎥⎥⎦

= 1
|A| (b1c1i + b2c2i + · · ·+ bncni)

.

The expression in parenthesis is the co-factor expansion of |Ai| in terms
of the ith column.

Thus, xi =
|Ai|
|A| .

Example 2.19:
Use Crammer’s rule and solve the following system of equations:

x1 + 3x2 + x3 = −2
2x1 + 5x2 + x3 = −5
x1 + 2x2 + 3x3 = 6

.

Solution:
The matrix of coefficients A and column matrix of constants B are

A =

⎡
⎣ 1 3 1

2 5 1
1 2 3

⎤
⎦ and B =

⎡
⎣ −2

−5
6

⎤
⎦.

It is found that |A| = −3 �= 0.
Thus, Crammer’s rule can be applied, and we get

A1 =

⎡
⎣ −2 3 1

−5 5 1
6 2 3

⎤
⎦ , A2 =

⎡
⎣ 1 −2 1

2 −5 1
1 6 3

⎤
⎦ , A3 =

⎡
⎣ 1 3 −2

2 5 −5
1 2 6

⎤
⎦ ,
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giving
|A1| = −3 , |A2| = 6 , |A3| = −9 .

Crammer’s rule now gives

x1 =
|A1|
|A| =

−3

−3
= 1 , x2 =

|A2|
|A| =

6

−3
= −2, x3 =

|A3|
|A| =

−9

−3
= 3.

The unique solution is

x1 = 1 , x2 = −2 , x3 = 3.

Example 2.20:
Find the values of λ for which the following system of the equation has

non-trivial solutions. Find the solutions for each value of λ:

(λ+ 2)x1 + (λ+ 4)x2 = 0
2x1 + (λ+ 1)x2 = 0

.

Solution:
This system is a homogenous system of linear equations.
The above system is a homogenous system of linear equations. Thus, it

has a trivial solution. But according to Theorem 2.10, there is the possibility
of other solution, if the determinants of the matrix of coefficients is zero.

Equating this determinant to zero, we get∣∣∣∣ λ+ 2 λ+ 4
2 λ+ 1

∣∣∣∣ = 0

(λ+ 2) (λ+ 1)− 2 (λ+ 4) = 0

λ2 + λ− 6 = 0

(λ− 2) (λ+ 3) = 0

The determinant is zero if λ = −3 or λ = 2 results in the system.
λ = −3 results in the system

x1 + x2 = −2
2x1 − 2x2 = 0

⇒ x1 = r , x2 = r.

This system has many solutions.
λ = 2 results in the system

4x1 + 6x2 = 0
2x1 + 3x2 = 0

.
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This system has many solutions

x1 = −3r

2
, x2 = r.

2.11 Curve Fitting, Electrical Network, and Traffic Flow

Systems of linear equations are used in such diverse fields as electrical
engineering, economics, and traffic analysis. We now discuss applications in
some of these fields.

2.11.1 Curve fitting

The following problem occurs in different branches of the sciences. A set
of data points (x1, y1) , (x2, y2) , · · · , (xn, yn) is given, and it is necessary to
find a polynomial whose graph passes through the points. The points are often
measurements in an experiment. The x-coordinates are called base points. It
can be shown that if the base points are all distinct, then a unique polynomial
of degree n− 1 (or less)

y = a0 + a1x+ · · ·+ an−2x
n−2 + an−1x

n−1

can be fitted to the points (see Figure 2.1).

Figure 2.1 Curve fitting with a set of data points.

The coefficients a0, a1, · · · , an−2, an−1 of the appropriate polynomial
can be found by substituting the points into the polynomial equation and
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then solving a system of linear equations. (It is usual to write the polynomial
in terms of ascending powers to find these coefficients. The columns of the
matrix of coefficients of the system of equations then often follow a pattern.
More will be said about this later.)

We now illustrate the procedure by fitting a polynomial of degree two, a
parabola to a set of three such data points.

Example 2.21:
Determine the equation of the polynomial of degree two whose graph

passes through the points (1, 6) (2, 3) (3, 2).

Solution:
Observe that in this example, we are given three points, and we want to

find a polynomial of degree two (not less than the number of data points). Let
the polynomial be

y = a0 + a1x+ a2x
2.

We give three points and shall use these three sets of information to
determine the three unknowns a0, a1, and a2, substituting

x = 1, y = 6;x = 2, y = 3;x = 3.y = 2.

In turn, the polynomial leads to the following system of three linear
equations in a0, a1, and a2.

a0 + a1 + a2 = 6
a0 + 2a1 + 4a2 = 3
a0 + 3a1 + 9a2 = 2

.

Solve this system using the Gauss-Jordan elimination⎡
⎣ 1 1 1 6

1 2 4 3
1 3 9 2

⎤
⎦ ≈ R2 + (−1)R1

R3 + (−1)R1

⎡
⎣ 1 1 1 6

0 1 3 −3
0 2 8 −4

⎤
⎦

≈ R1 + (−1)R2

R3 + (−2)R2

⎡
⎣ 1 0 −2 9

0 1 3 −3
0 0 2 2

⎤
⎦

≈
1
2R3

⎡
⎣ 1 0 −2 9

0 1 3 −3
0 0 1 1

⎤
⎦

≈ R1 + (2)R3

R2 + (−3)R3

⎡
⎣ 1 0 0 11

0 1 0 −6
0 0 1 1

⎤
⎦ .
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We get a0 = 11, a1 = −6, a2 = 1. The parabola that passes through
these points is y = 11− 6x+ x2 (see Figure 2.2).

Figure 2.2 Fitted parabola with a set of data points.

2.12 Electrical Network Analysis

Systems of linear equations are used to determine the currents through various
branches of electrical networks. The following two laws, which are based on
experimental verification in the laboratory, lead to the equations.

Kirchhoff’s law:

1. Junction:
All the current flowing into a junction must flow out of it.

2. Paths:
The sum of the IR terms (I denotes current and R denotes resistance) in

any direction around a closed path is equal to the total voltage in the path in
that direction.

Example 2.22:
Consider the electrical network of Figure 2.3. Let us determine the

currents through each branch of this network.

Solution:
The batteries are of 8 and 16 volts. The following convention is used in

electrical engineering to indicate the terminal of the battery out of which the
current flows.
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Figure 2.3 Electrical network diagram.

The resistances are one 1-ohm, one 4-ohms, and two 2-ohms. The current
entering each battery will be the same as that leaving it.

Let the currents in the various branches of the above circuit be I1, I2,
and I3. Kirchhoff’s law refers to junctions and closed paths. There are two
junctions in this circuit, namely points B and D. There are three closed
paths: ABDA, CBDC, and ABCDA. Apply the laws to the junctions and
paths.

Junctions:

Junction B:
I1 + I2 = I3.

Junction D:
I3 = I1 + I2.

These two equations result in a single linear equation

I1 + I2 − I3 = 0 .

Paths:

Path ABDA:
2I1 + 1I3 + 2I1 = 8.

Path CBDC:
4I2 + 1I3 = 16 .
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It is not necessary to look further at paths ABCDA.We now have a system
of three linear equations in three unknowns I1, I2, and I3. Path ABCDA, in
fact, leads to an equation that is a combination of the last two equations; there
is no new information.

The problem thus reduces to solving the following system of three linear
equations in three variables:

I1 + I2 − I3 = 0
4I1 + I3 = 8
4I2 + 1I3 = 16

.

Using the method of the Gauss-Jordan elimination, we get⎡
⎣ 1 1 −1 0

4 0 1 8
0 4 1 16

⎤
⎦

≈
R2 + (−4)R1

⎡
⎣ 1 1 −1 0

0 −4 5 8
0 4 1 16

⎤
⎦

≈(−1
4

)
R2

⎡
⎣ 1 1 −1 0

0 1 −5
4 −2

0 4 1 16

⎤
⎦

≈ R1 + (−1)R2

R3 + (−4)R2

⎡
⎣ 1 0 1

4 2
0 1 −5

4 −2
0 0 6 24

⎤
⎦

≈(
1
6

)
R3

⎡
⎣ 1 0 1

4 2
0 1 −5

4 −2
0 0 1 4

⎤
⎦

≈ R1 +
(−1

4

)
R3

R2 +
(
5
4

)
R3

⎡
⎣ 1 0 0 1

0 1 0 3
0 0 1 4

⎤
⎦

.

The currents are I1 = 1, I2 = 3, I3 = 4. The units are amps. The solution
is unique, as is to be expected in this physical situation.

Example 2.23: in the Figure 2.4
Determine the currents through the various branches of the electrical

network in the figure. This example illustrates how one has to be conscious
of direction in applying law 2 for closed circuits.
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Solution:

Junction:

Junction B:
I1 + I2 = I3.

Junction D:
I3 = I1 + I2.

Giving
I1 + I2 − I3 = 0.

Paths:

Path ABCDA:
1I1 + 2I3 = 12.

Path ABDA:
1I1 + 2 (−I2) = 12 + (−16) .

Figure 2.4 Electrical network diagram.

Observe that we have selected the direction ABDA around this last path.
The current along the branch BD in this direction is −I2, and the voltage is
−16. We now have three equations in the three variables I1, I2, and I3.

I1 + I2 − I3 = 0
I1 + 2I3 = 12
I1 − 2I2 = −4

.

Solving these equations, we get
I1 = 2, I2 = 3, I3 = 5amps.
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In practice, electrical networks can involve many resistances and circuits;
determining currents through branches involves solving large equations on a
computer.

2.12.1 Traffic flow

Network analysis, as we saw in the previous discussion, plays an essential
role in electrical engineering. In recent years, the concepts and tools of
network analysis have been found to be helpful in many other fields, such as
information theory and the study of the transportation system. The following
analysis of traffic flow mentioned in the introduction illustrates how linear
equations with many solutions can arise in practice.

Consider the typical road network of Figure 2.5. It represents an area of
downtown Jacksonville, Florida. The streets are all one-way, with the arrows
indicating the direction of traffic flow. The traffic is measured in vehicles
per hour (vph). The figures in and out of the network given here are based
on mid-week peak traffic hours, 7−9 a.m. and 4−6 p.m. Let us construct a
mathematical model that can be used to analyze the flow with x1, C, x4 in the
network.

Assume that the following traffic law applies.

All traffic entering an intersection must leave that intersection.
This conservation of flow constraint (compare it to Kirchoff’s laws for

electrical networks) leads to linear equations.
These are by intersection:

Figure 2.5 Traffic flow model.
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A: Traffic in = x1 + x2; Traffic out = 400 + 225. Thus, x1 + x2 = 625.
B: Traffic in = 350 + 125; Traffic out = x1 + x4. Thus, x1 + x4 = 475.
C: Traffic in = x3 + x4; Traffic out = 600 + 300. Thus, x3 + x4 = 900 .
D: Traffic in = 800 + 250; Traffic out = x2 + x3. Thus, x2 + x3 = 1050.

The following system of linear equations describes the constraints on the
traffic:

x1 + x2 = 625
x1 + x4 = 475
x3 + x4 = 900
x2 + x3 = 1050

.

The method of Gauss-Jordan elimination is used to solve this system of
equations. The augmented matrix and reduced echelon form of the preceding
system are as follows:⎡

⎢⎢⎣
1 1 0 0 625
1 0 0 1 475
0 0 1 1 900
0 1 1 0 1050

⎤
⎥⎥⎦ ≈ · · · ≈

⎡
⎢⎢⎣

1 0 0 1 475
0 1 0 −1 150
0 0 1 1 900
0 0 0 0 0

⎤
⎥⎥⎦ .

The system of equations that corresponds to this reduced echelon form is

x1 + x4 = 475
x2 − x4 = 150
x3 + x4 = 900

.

Expressing each leading variable in terms of the remaining variable, we
get

x1 = −x4 + 475
x2 = x4 + 150
x3 = −x4 + 900

.

As was perhaps to be expected, the system of equations has many solu-
tions. There are many traffic flows possible. One does have a certain amount
of choice at an intersection. Let us now use this mathematical model to arrive
at information. Suppose it becomes necessary to perform road work on the
stretch DC of Monroe Street. It is desirable to have as small a flow x3 as
possible along this trench of road. The flows can be controlled along various
branches using traffic lights. What is the minimum value of x3 along DC
that would not lead to traffic congestion? We use the preceding system of
equations to answer this question.

All traffic flows must be non-negative (a negative flow would be inter-
preted as traffic moving in the wrong direction on a one-way street). The third
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equation tells us that “x3” a minimum and will be as large as possible, as
long as it does not go above 900. The most significant value of x4 that can be
without causing negative values of x1 or x2 is 475. Thus, the smallest value
of x3 is −475 + 900 or 425. Any road works on Monroe should allow for at
least 425 vph.

In practice, networks are much faster than the one discussed here, leading
to larger systems of linear equations that are handled on computers. Various
values of variables can be fed in, and different scenarios created.

Exercises

1. If A is a square matrix of order n and α a scalar, then prove that
det (αA) = αn detA.

2. Let A be a skew-symmetric matrix of odd order. Then prove that
detA = 0.

3. For a triangular matrix A, prove that detA is the product of its diagonal
entries.

4. Prove that∣∣∣∣∣∣
1 α α2

1 β β2

1 δ δ2

∣∣∣∣∣∣ = (α− β)

∣∣∣∣∣∣
0 1 α+ β
1 β β2

1 δ δ2

∣∣∣∣∣∣
= (α− β) (β − δ) (δ − α)

∣∣∣∣∣∣
0 1 α+ β
0 0 1
1 δ δ2

∣∣∣∣∣∣
.

5. Without expanding, prove that

(a)

∣∣∣∣∣∣
1 1 3
2 9 1
4 11 7

∣∣∣∣∣∣ = 0.

(b)

∣∣∣∣∣∣
b+ c 1 a
c+ a 1 b
b+ a 1 c

∣∣∣∣∣∣ = 0.

(c)

∣∣∣∣∣∣
a b c
x y z
p q r

∣∣∣∣∣∣ =
∣∣∣∣∣∣
y b q
x a p
z c r

∣∣∣∣∣∣ =
∣∣∣∣∣∣
x y z
p q r
a b c

∣∣∣∣∣∣.
(d)

∣∣∣∣∣∣
x y z
x2 y2 z2

yz zx xy

∣∣∣∣∣∣ =
∣∣∣∣∣∣

1 1 1
x2 y2 z2

x3 y3 z3

∣∣∣∣∣∣.
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(e)

∣∣∣∣∣∣
a+ b b+ c c+ a
p+ q q + r r + p
x+ y y + z z + x

∣∣∣∣∣∣ = 2

∣∣∣∣∣∣
a b c
p q r
x y z

∣∣∣∣∣∣.
(f)

∣∣∣∣∣∣
x x+ 3 x+ 6

x+ 1 x+ 4 x+ 7
x+ 2 x+ 5 x+ 8

∣∣∣∣∣∣ = 0.

(g)

∣∣∣∣∣∣
4 7 10
10 13 16
20 23 26

∣∣∣∣∣∣ = 0.

(h)

∣∣∣∣∣∣
1 a a2 − bc
1 b b2 − ca
1 c c2 − ab

∣∣∣∣∣∣ = 0.

(i)

∣∣∣∣∣∣
x− y y − z z − x
y − z z − x x− y
z − x x− y y − z

∣∣∣∣∣∣ = 0.

6. Without expanding, prove that∣∣∣∣∣∣
1 yz y + z
1 zx z + x
1 xy x+ y

∣∣∣∣∣∣ =
∣∣∣∣∣∣

1 1 1
x y z
x2 y2 z2

∣∣∣∣∣∣ .
7. Prove that

(a)

∣∣∣∣∣∣
1 x x2

1 y y2

1 z z2

∣∣∣∣∣∣ = (x− y) (y − z) (z − x).

(b)

∣∣∣∣∣∣
1 x yz
1 y zx
1 z xy

∣∣∣∣∣∣ = (x− y) (y − z) (z − x).

(c)

∣∣∣∣∣∣∣∣
x+ a b c d
a x+ b c d
a b x+ c d
a b c x+ d

∣∣∣∣∣∣∣∣
= x3 (x+ a+ b+ c+ d).

8. If ω1, ω2, and ω3 are the three cube roots of unity, then prove that∣∣∣∣∣∣
x1 x2 x3
x3 x1 x2
x2 x3 x1

∣∣∣∣∣∣ =
3∏

i=1

(
x1 + x2ωi + x1ω

2
i

)
.

This determinant is called a circulant of the third order. Write down a
circulant of order n. Write also its value.
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9. (a) Prove that the equation of a circle through three points
(x1, y1) , (x2, y2), and (x3, y3) is given by∣∣∣∣∣∣∣∣

x2 + y2 x y 1
x21 + y21 x1 y1 1
x22 + y22 x2 y2 1
x23 + y23 x3 y3 1

∣∣∣∣∣∣∣∣
= 0.

(b) Determine the equations of the sphere passing through the points
(x1, y1, z1) , (x2, y2, z2) , (x3, y3, z3), and (x4, y4, z4) in the determinant
form.

10. Solve the equation ∣∣∣∣∣∣
x+ a b c
c x+ b a
a b x+ c

∣∣∣∣∣∣ = 0.

11. Without expanding, prove that∣∣∣∣∣∣∣∣
1 + a 1 1 1
1 1 + b 1 1
1 1 1 + c 1
1 1 1 1 + d

∣∣∣∣∣∣∣∣
= abcd

(
1 +

1

a
+

1

b
+

1

c
+

1

d

)
.

12. If A and B are square matrices of order n, then prove that

det
(
ATB

)
= det

(
ABT

)
= det

(
ATBT

)
= det (AB) .

13. If A is a square matrix, then prove that det (An) = (detA)n for all
positive integers n.

14. Prove that the determinant of an idempotent matrix is either 0 or 1.
15. Evaluate detA, if A is a nilpotent matrix.
16. Prove that

(a)

∣∣∣∣∣∣
1 a a2

1 b b2

1 c c2

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
3 a+ b+ c a2 + b2 + c2

a+ b+ c a2 + b2 + c2 a3 + b3 + c3

a2 + b2 + c2 a3 + b3 + c3 a4 + b4 + c4

∣∣∣∣∣∣.

(b)

∣∣∣∣∣∣
0 z y
z 0 x
y x 0

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
y2 + z2 xy xz

xy z2 + x2 yz
zx yz x2 + y2

∣∣∣∣∣∣.

(c)

∣∣∣∣∣∣
2yz − x2 z2 y2

z2 2zx− y2 x2

y2 x2 2xy − z2

∣∣∣∣∣∣ =
∣∣∣∣∣∣
x y z
y z x
z x y

∣∣∣∣∣∣
2

.
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17. Prove that

∣∣∣∣∣∣
α11 α12 α13

α21 α22 α23

α31 α32 α33

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
A11 A12 A13

A21 A22 A23

A31 A32 A33

∣∣∣∣∣∣, where Aij is the

co-factor of αij.

18. Use Crammer’s rule (if applicable) to find the solutions of the following
system of linear equations:

(a)
3x+ y = 1
5x+ 2y = 3

.

(b)
2x− 3y = 7
x+ 4y = 1

.

(c)
x+ 2y + 3z = 3
2x− z = 4
4x+ 2y + 2z = 5

.

(d)
x− y + 2z = 1
2x+ 2z = 3
3x+ y + 3z = 7

.

(e)
x+ y + 2z = 3
2x+ 2y + 2z = 7
3x+ 4y + 3z = 2

.

19. Reduce the following matrices to row-reduced echelon form:

(a)

⎡
⎣ 1 −1 1

3 −1 2
3 1 1

⎤
⎦ (b)

⎡
⎣ 3 2 3 1

4 3 5 2
2 1 1 0

⎤
⎦

(c)

⎡
⎣ 1 2 3 4 −1

4 1 5 −6 10
2 0 2 −2 2

⎤
⎦ (d)

⎡
⎢⎢⎣

1 3 2 0
2 0 1 1
1 2 3 0
3 −1 0 1

⎤
⎥⎥⎦

(e)

⎡
⎢⎢⎣

−1 1 1 0
1 −1 1 1
0 1 2 −1
1 1 0 −2

⎤
⎥⎥⎦ (f)

⎡
⎣ 1 2 0 0

1 1 −1 2
0 2 1 −1

⎤
⎦

(g)

⎡
⎢⎢⎣

3 1 −1
1 2 3
4 0 1
1 5 3

⎤
⎥⎥⎦ (h)

⎡
⎢⎢⎣

0 6 6 1
−8 7 2 3
−3 2 1 1
1 1 −1 0

⎤
⎥⎥⎦
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(i)

⎡
⎢⎢⎣

1 0 7 9
5 2 2 10
3 −2 3 11
2 −1 3 8

⎤
⎥⎥⎦.

20. Solve the following systems of linear equations by using the row-
reduced method:

(a)
2x− 3y = 1
2x− y + z = 2
3x+ y − 2z = 1

(b)
y − 2z = 3
3x+ z = 4
x+ y + z = 1

(c)
x− y + z = 0
2x+ y − 3z = 1
−x+ y + 2z = −1

(d)
x− y + 3z = 1
2x+ y − z = 2
3x− y + 2z = 2

(e)
x+ y − 2z = 3
3x+ y − z = 8
2x− y + z = 0

.

21. Determine whether the following systems of linear equations are consis-
tent. Discuss the solution completely in the case of consistent systems.

(a)

x1 − x2 + 2x3 + 3x4 = 1
2x1 + 2x2 + 2x4 = 1
4x1 + x2 − x3 − x4 = 1
x1 + 2x2 + 3x3 = 1

(b)

x1 + 2x2 + 4x3 + x4 = 4
2x1 − x3 + 3x4 = 4
x1 − 2x2 − x3 = 0
3x1 + x2 − x3 − 5x4 = 7

(c)
2x1 + x3 − x4 + x5 = 2
x1 + x3 − x4 + x5 = 1
12x1 + 2x2 + 8x3 + 2x5 = 12

(d)
x1 + 2x2 − x3 − 2x4 = 0
2x1 + 4x2 + 2x3 + 4x4 = 4
3x1 + 6x2 + 3x3 + 6x4 = 6
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(e)

x1 − x3 = 1
2x1 + x2 + x3 = 2
x2 − x3 = 3
x1 + x2 + x3 = 4
2x2 − x3 = 0

(f)

x1 + 2x3 = 1
2x1 + x2 + 2x3 = 1
x2 − 2x3 = 1
x1 + x2 = 1
x1 − x2 + 4x3 = 1

(g)

2x1 + x2 + x3 + x4 = 2
3x1 − x2 + x3 − x4 = 2
x1 + 2x2 − x3 + x4 = 1
6x1 + 2x2 + x3 + x4 = 5

(h)

x1 + 3x2 − 3x3 + 2x4 = 1
4x1 + x2 − 2x3 + x4 = 1
6x1 + 5x2 + 10x3 + 3x4 = 15
x1 + 2x2 + 3x3 + x4 = 6

(i)

x1 − 2x2 − x3 = −1
2x1 − x3 − 3x4 = 1
3x1 + x2 − x3 − 5x4 = 1
2x1 + 3x3 + x4 = 0

(j)

3x1 + 6x2 + 3x3 + 6x4 = 5
x1 + 2x2 − x3 − 2x4 = −1
3x1 + 6x2 + x3 + 2x4 = 3
x1 + 2x2 + 2x3 + 4x4 = 3

(k)

x1 − x3 = 2
x1 + x2 + 2x3 = 4
x1 + x2 − 2x3 = 4
x1 + x2 + x3 = 4
x1 + 3x2 − x3 = 8

(l)

2x1 + x2 + 2x3 = 1
x1 + x2 = 0
x1 − 2x2 + 6x3 = 3
x1 − 2x3 = 1
x1 − x2 + 4x3 = 2
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(m)
x1 + x2 − x3 − 6x4 + 6x5 = −19
x1 + 7x4 − 7x5 = 28
2x2 − 3x3 + 18x4 − 4x5 = 24

(n)
x1 − 3x2 + x3 − x4 = 7
2x1 + 4x2 − x3 + 6x4 = −6
2x1 + x2 + x4 = 0

.



3
Vector Spaces

This chapter introduces the notion of an abstract vector space with its typical
features. Vector spaces occur in various branches of mathematics and have
many applications in science and engineering. In this chapter, we generalize
the concept of vector space Rn and examine its underlying algebraic struc-
ture. Any set with this structure has the same mathematical properties as Rn

and will be called a vector space. The results that were developed for the
vector space Rn will also apply to such spaces. We shall, for example, find
that specific spaces of matrices and functions have the same mathematical
properties as the vector space Rn. The concepts of linear independence,
spanning set, basis, linear transformations, and dimension will be extended
to these spaces.

Standard features of vector spaces:
The typical features of a vector spaceV are:

(1) It consists of a non-empty set of objects, including zero, called vectors,
and zero is called a “zero” vector.

(2) The addition of two vectors gives another vector.
(3) Multiplication of a vector by a scalar gives a vector.
(4) It requires a field to perform the operations.

3.1 Field

A field generally consists of scalars, usually R or C, and accordingly the
vector space will be called real or complex vector space depending on
whether the field is R or C.

3.2 Vector Spaces

The vector space Rn is a set of n vectors on which two operations, namely
addition and scalar multiplication, have been defined.

A vector space is also said to be a linear space.

59
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3.3 The Notion of a Vector Space

Definition 3.1:
A vector space V is a set of elements called vectors having addition and

scalar multiplication operation onV.
The vector spaceV satisfies the following conditions:
Let u, u1, u2, u3 ∈ V and k1&k2 are scalars over the field F .

Closure axiom:

(1) If the sum u1 + u2 exists and is an element of V, then V is said to be
closed under the operation addition.

(2) If ku1 is a component of V, then V is said to be closed under the
operation scalar multiplication.

Addition axiom:

(3) u1 + u2 = u2 + u1 (Commutative).
(4) u1 + (u2 + u3) = (u1 + u2) + u3 (Associative).
(5) There exists an element u ofV called the zero-vector denoted as 0v such

that u+ 0v = u.
(6) For every element u ∈ V, there exists a part called the negative of u

denoted by −u such that u+ (−u) = 0v.

Scalar multiplication axiom:

(7) k (u1 + u2) = ku1 + ku2.
(8) (k1 + k2)u1 = k1u1 + k2u1.
(9) k1(k2u1) = (k1k2)u1.
(10) 1u = u.

The two most common sets of scalars used in vector spaces are real
numbers and complex numbers.

Examples of vector space:
The vector space V over R or C is then called real and complex vector

space.

Vector space of matricesMmn:
The set of realm× n matricesMmn is a vector space over R.

Vector spaces of functions:

(1) The set of all functions f (x) form a vector space over R.
(2) All functions defined on real numbers with pointwise addition and scalar

multiplication operations are a vector space.
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(3) The complex vector space Cn over C.

Theorem 3.1:
Let u be a vector and 0v the zero-vector defined on a vector spaceV. Let

k ∈ F be any scalar and 0 the zero scalars. Then

(1) 0u = 0v.
(2) c0v = 0v.
(3) (−1)u = −u.
(4) If ku = 0, then either k = 0 or u = 0.

Proof:
0u+ 0u = (0 + 0)u (Axiom− 8)

= 0u
.

Add the −ve of 0u, namely −0u, to both sides of this equation:

(0u+ 0u) + (−0u) = 0u+ (−0u)

⇒ 0u+ (0u+ (−0u)) = 0, (Axiom:(4)&(5))

⇒ 0u+ 0v = 0v (Axiom:(6))

⇒ 0u = 0v (Axiom:(5))

(−1)u+ u = (−1)u+ 1u (Axiom:(10))

= [(−1) + 1]u ( Axiom:(8))

= 0u = 0v ( Property of Scalar 0)

Thus (−1)u is the negative of u. (Axiom: vi)

3.4 Subspaces

Definition 3.2:
Let U be a non-empty subset of a vector space V. If U satisfies the

operations of addition and scalar multiplication of a vector space V over a
field F , thenU is said to be a subspace ofV.

That is, the non-empty subset U is a subspace of a vector space if it is
closed under the operation of addition and scalar multiplication.

The non-empty subset U then acquires the other properties of vector
space from the vector spaceV.

Generally, a vector subspace is itself a vector space contained within a
larger vector space.
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Example 3.1:
Let us consider a linear homogenous system AX = 0 in n−unknowns

defined over some field F.
Let S denote the set of all solutions in n−column vectorsX of the linear

system AX = 0 over the field F. Then S is a subset of Rn, and it indeed
contains the zero vector.

Now since S satisfies all the operations of addition and scalar multiplica-
tion of a vector space V over a field F, so S is said to be a vector subspace
of Rn.

Vector addition:
IfX1 andX2 are the solutions of the linear systemAX = 0 and k is any

scalar, then
A (X1 +X2) = AX1 +AX2 = 0.

Thus, X1 +X2 belongs to S.

Scalar multiplication:
LetX1 ∈ S and k ∈ F be any scalar.
Then

A (kX1) = k (AX1) = 0.

Thus, kX1 belongs to S.
Hence, S is a subspace of the vector spaceV = Rn.

Remark:
This subspace S is called the solution space of the homogenous linear

systemAX = 0, also known as the null space of the matrix A.

Example 3.2:
Let us consider the subset W of R3 consisting of vectors of the form

(a, a, b), where the first two components are the same, i.e.,

W = {(a, a, b) : a, b ∈ R} .
If we add two such vectors (a, a, b) and (c, c, d), we get a vector

(a+ c, a+ c, b+ d) with identical first components.
If we multiply (a, a, b) by a scalar k, we get (ka, ka, kb), again a vector

with identical first components.
⇒ W is closed under addition and scalar multiplication.
Hence,W is a subspace of R3.
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Example 3.3:
Consider the subsetW of R3 consisting of vectors of the form

(
a, a2, b

)
,

where the second component is the square of the first, i.e.,

W =
{(

a, a2, b
)
: a, b ∈ R

}
.

On adding two such vectors
(
a, a2, b

)
and

(
c, c2, d

)
, we get(

a+ c, a2 + c2, b+ d
)
.

The second component of the vector is not a square of the first.
⇒ The vector is not inW.
⇒W is not closed under addition.
Hence,W is not a subspace of R3.

Example 3.4:
Prove thatD22 the set of 2× 2 diagonal matrices forms a subspace of the

vector spaceV = M22.

Solution:

Vector addition:
Let

u1 =

[
a 0
0 b

]
, u2 =

[
p 0
0 q

]
.

We get

u1 + u2 =

[
a 0
0 b

]
+

[
p 0
0 q

]

=

[
a+ p 0
0 b+ q

]
∈ U

.

Since u1 + u2 ∈ U is a diagonal matrix,U is closed under addition.

Scalar multiplication:
Let k be a scalar.

We get ku1 = k

[
a1 0
0 b1

]
=

[
ka1 0
0 kb1

]
.

This implies that ku1 ∈ U, since ku1 is a 2× 2 diagonal matrix.
Thus, U is closed under scalar multiplication.
Hence,U is a subspace ofM22.

Example 3.5:
Let Pn (x) denote the set of all real polynomial functions having

deg ≤ n. Then Pn (x) forms a vector space under the operation of addition
and multiplication on polynomial Pn (x) in a pointwise manner.
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Theorem 3.2:
LetU ⊂ V be a subspace of a vector spaceV. ThenU contains the zero

vector 0v ofV.

Proof:
Let U ⊂ V and u ∈ U be an arbitrary vector in U and 0v ∈ V be the

zero vector of V.
Let 0 ∈ F be the zero scalars.
As we know, 0u = 0v (asU is closed under scalar multiplication).
So, it implies that 0v is inU.

Remark:
This theorem tells us, for example, that all subspaces of R3 containing

the zero vector, i.e., (0,0,0), which means that all subspaces of a three-
dimensional space pass through the origin. This theorem can sometimes be
used as a quick check to show that any subsets cannot be subspaces.

That is, if a given subset does not contain the zero vector 0v, then it cannot
be a subspace of a vector spaceV.

Example 3.6:
Let U = {(a, a, a+ 2) : a ∈ RR} and U ⊂ V. Then show that U is not

a subspace of R3.

Solution:
First, we check about the presence of zero vector in U, i.e., whether

(0, 0, 0) is in U or not.
For this, we have to check whether there a value of a for which

(a, a, a+ 2) is (0, 0, 0).
On equatingU to 0v = (0, 0, 0), we get

(a, a, a+ 2) = (0, 0, 0) .

On equating the corresponding components, it gives
a = 0 and a+ 2 = 0 ⇒ a = −2.
This implies that this system of the equation has no solution.
Thus, 0v = (0, 0, 0) is not an element of U. Hence, U is not a subspace

ofV = R3.
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3.5 Linear Combinations

Definition 3.3:
Let v1, v2, · · · , vn be vectors in a vector spaceV. Then the vector v ∈ V

is a linear combination of the vectors v1, v2, · · · , vn; if there exist scalars
c1, c2, · · · , cn, such that v = c1v1,+c2v2 + · · ·+ cn, vn.

Example 3.7:
The vector (7, 3, 2) is a linear combination of the vectors (1, 3, 0) and

(2,−3, 1) because it can be written as a linear combination of the vectors
(1, 3, 0) and (2,−3, 1), i.e., (7, 3, 2) = 3 (1, 3, 0) + 2 (2,−3, 1).

Example 3.8:
The vector (3, 4, 2) is not a linear combination of the vectors (1, 1, 0)

and (2, 3, 0) because there are no values of c1 and c2 for which the vector
(3, 4, 2) can be expressed as a linear combination of (1, 1, 0) and (2, 3, 0),
i.e., (3, 4, 2) �= c1 (1, 1, 0) + c2 (2, 3, 0) is true.

3.6 Spanning a Vector Space

Definition 3.4:
Let v1, v2, · · · , vm be a set of m vectors in a vector space V. If every

vector v ∈ V can be expressed as a linear combination of the set of vectors
v1, v2, · · · , vm, then these vectors v1, v2, · · · , vm span the vector space V.

Example 3.9:
The vectors (1, 0, 0) , (0, 1, 0), and (0, 0, 1) span R3. Since any arbitrary

vector (a, b, c) ofR3 can be expressed as a linear combination of these vectors
(1, 0, 0) , (0, 1, 0), and (0, 0, 1) , i.e.,

(a, b, c) = a (1, 0, 0) + b (0, 1, 0) + c (0, 0, 1) .

It implies the set of vectors (1, 0, 0) , (0, 1, 0), and (1, 1, 1) also spans
R3, as (a, b, c) can be expressed as a linear combination of the set of vectors
(1, 0, 0) , (0, 1, 0), and (1, 1, 1) , i.e.,

(a, b, c) = (a− c) (1, 0, 0) + (b− c) (0, 1, 0) + c (1, 1, 1) .

But the vectors (1, 0, 0) , (0, 2, 0), and (3, 4, 0) do not span R3 because
any vector (a, b, c) ∈ R3 cannot be written as a linear combination of these
vectors (1, 0, 0) , (0, 2, 0), and (3, 4, 0).
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Similarly, the vectors (1, 1, 0) and (0, 0, 1) span the subspace R3 that
consists of vectors of the form (a, a, b) because we can write (a, a, b) =
a (1, 1, 0) + b (0, 0, 1).

Example 3.10:
Show that the vectors (1, 2, 0) , (0, 1,−1), and (1, 1, 2) span R3.

Solution:
Next, we determine whether any arbitrary vector of R3 can be expressed

as a linear combination of the given vectors (1, 2, 0) , (0, 1,−1), and (1, 1, 2).
Let (x, y, z) be an arbitrary element of R3.
We have to determine whether we can write

(x, y, z) = c1 (1, 2, 0) + c2 (0, 1,−1) + c3 (1, 1, 2)
⇒ (x, y, z) = (c1 + c3, 2c1 + c2 + c3,−c2 + 2c3)

.

Thus,

c1 + c3 = x, 2c1 + c2 + c3 = y,−c2 + 2c3 = z.

Using Gauss-Jordan elimination, it is found that

c1 = 3x− y − z, c2 = −4x+ 2y + zc3 = −2x+ y + z.

Hence, the vectors (1, 2, 0) , (0, 1,−1), and (1, 1, 2) span R3.

3.7 Generating a Vector Space

Theorem 3.3:
Let v1, v2, · · · , vm be a set of vectors in a vector space V. Let U be the

set consisting of all linear combination of the vectors v1, v2, · · · , vm. ThenU
is a subspace ofV spanned by these vectors v1, v2, · · · , vm.

That is, the set U is said to be the vector subspace of a vector space V
generated by v1, v2, · · · , vm, and it is denoted as Span [v1, v2, · · · , vm].

Proof:
Let u1 = a1v1+a2v2+ · · ·+amvm and u2 = b1v1+ b2v2+ · · ·+ bmvm

be any arbitrary elements ofU. Then

u1 + u2 = (a1v1 + a2v2 + · · ·+ amvm) + (b1v1 + b2v2 + · · ·+ bmvm)
= (a1 + b1) v1 + (a2 + b2) v2 + · · ·+ (am + bm) vm

.

It implies that u1 + u2 is a linear combination of v1, v2, · · · , vm.
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It implies that u1 + u2 ∈ U is inU.
Thus, U is closed under vector addition.
Let k be an arbitrary scalar. Then

ku1 = k (a1v1 + a2v2 + · · ·+ amvm)
= ka1v1 + ka2v2 + · · ·+ kamvm

,

is a linear combination of v1, v2, · · · , vm.
It implies that ku1 is inU.
Thus, U is closed under scalar multiplication.
It implies thatU is a subspace ofV.
By the definition of U, since every vector in the vector space U can be

written as a linear combination of v1, v2, · · · , vm,
thus, v1, v2, · · · , vm is in Span U.

Example 3.11:
Let v1 and v2 be two vectors in the vector space R3.
The subspace Span [v1 , v2] generated by v1 and v2 is the set of all vectors

of the form c1v1 + c2v2, as shown in Figure 3.1.
In general, this space is the plane defined by the vectors v1 and v2. Now if

v1 and v2 are collinear, then the vector space will be the line defined by these
vectors.

Figure 3.1 Spanning of vectors.
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Example 3.12:
Let v1 and v2 be any two vectors that span a subspace of a vector space

U of a vector space V. Let k1 and k2 be non-zero scalars. Then show that
k1v1 and k2v2 also span U.

Solution:
Let v ∈ U be a vector inU.
Since v1, v2 ∈ SpanU, there exist scalars a1 and a2
such that v = a1v1 + a2v2.
However, we can write

v =
a1
k1

(k1v1) +
a2
k2

(k2v2) .

Thus, the vectors k1v1 and k2v2 are also in SpanU.

3.8 Finitely Generated Vector Spaces

A vector space V is finitely generated if there is a finite subset
{v1, v2, · · · , vk} of V such that v = 〈v1, v2, · · · , vk〉, i.e., if every vector
v ∈ V can be expressed as a linear combination of vectors v1, v2, · · · , vk
and so has the form c1v1 + c2v2 + · · ·+ ckvk, for some scalar ci.

On the other hand, the vector spaceV is infinitely generated if there is no
finite subset present inV that generates the vector space V.

Example 3.13:
Show that the Euclidean spaceRn forms a finitely generated vector space,

i.e., Rn is finitely generated.

Proof:
LetX1, X2, ...,Xn be the column vectors of the identity matrix In in Rn.

IfA =

⎡
⎢⎢⎢⎣

a1
a2
...
an

⎤
⎥⎥⎥⎦ is any vector inRn, thenA = a1X1+a2X2+· · ·+anXn.

This implies that the column vectorsX1, X2, · · · , Xn generate the vector
space Rn, and, therefore, this vector space Rn is finitely generated.

Contrarily, one does not have to look far for infinitely generated vector
spaces.
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Example 3.14:
Show that the vector space P (X) = {p (x) : x ∈ RR} of all real

polynomials is infinitely generated.

Proof:
It can be proved by the method of proof by contradiction. Let us sup-

pose that the vector space P (X) is finitely generated with polynomials
p1 (x) , p2 (x) , · · · , pk (x), and let us look for a contradiction.

Let us assume that pi (x) �= 0, for all i = 1, 2, · · · , k.
Let m be the largest of their degrees. Then the degree of any linear

combination of p1 (x) , p2 (x) , · · · , pk (x) certainly cannot exceed m. But
this means that xm+1 is not such a linear combination.

Therefore, p1 (x) , p2 (x) , · · · , pk (x) do not generate P (X), and we
have grasped a contradiction.

Hence proved.

3.9 Linear Dependence and Independence

Definition 3.5:

1. The set of vectors {v1, v2, · · · , vm} in a vector space V is linearly
dependent if there exist scalars c1, c2, · · · , cm, not all zero such that
c1v1 + c2v2 + · · ·+ cmvm = 0v.

2. The set of vectors {v1, v2, · · · , vm} in a vector space V is said to be
linearly independent if c1v1 + c2v2 + · · · + cmvm = 0v implies c1 =
c2 = · · · = cm = 0, i.e., all c′is = 0.

Example 3.15:
The set {(1, 0, 0) , (0, 1, 0) , (0, 0, 1)} is said to be linearly independent in

R3, since

c1 (1, 0, 0) + c2 (0, 1, 0) + c3 (0, 0, 1) = (0, 0, 0)

can only be satisfied if c1 = 0, c2 = 0 and c3 = 0.

Example 3.16:
Consider the set {(1, 2, 3) , (5, 1, 0) , (2, 0, 0)}.
The identity c1 (1, 2, 3) + c2 (5, 1, 0) + c3 (2, 0, 0) = (0, 0, 0) leads to

c1 = 0, c2 = 0 and c3 = 0.
It implies that the vectors (1, 2, 3) , (5, 1, 0), and (2, 0, 0) are linearly

independent in R3.
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Example 3.17:
Consider the set {(4, 1, 0) , (2, 1, 3) , (0, 1, 2)}. It can be seen that

1. (4, 1, 0)− 2 (2, 1, 3) + 3 (0, 1, 2) = (0, 0, 0) .

Thus, the vectors (4, 1, 0) , (2, 1, 3), and (0, 1, 2) are linearly dependent inR3.

Theorem 3.4:
A set consisting of more than one vector in a vector space V is linearly

dependent if and only if it is possible to express one of the vectors as a linear
combination of other vectors inV.

Proof:
Let us consider the set {v1, v2, ..., vm} to be linearly dependent. There-

fore, there exist scalars c1, c2, · · · , cm, not all zeros, such that

c1v1 + c2v2 + · · ·+ cmvm = 0v.

Let us assume c1 �= 0.
Then the proceeding identity can be rewritten as

v1 =

(
−c2
c1

)
v2 + · · ·+

(
−cm

c1

)
vm.

Thus, v1 is a linear combination of v2, · · · , vm.

Conversely:
Assume that v1 is a linear combination of v2, · · · , vm; therefore, there

exist scalars d2, d3, · · · , dm such that

v1 = d2v2 + · · ·+ dmvm.

Rewrite this equation as

1.v1 + (−d2) v2 + · · ·+ (−dm) vm = 0v.

Thus, the set {v1, v2,+ · · ·+ vm} is linearly dependent.
Linear dependence of {v1, v2}:

The set {v1, v2} is linearly dependent if and only if it is possible to write
any one vector as a scalar multiple of the other vector.

Let v2 = cv1; then it implies that v1, v2 are collinear.
On the other hand, the set {v1, v2} is linearly independent if it is not

possible to express one vector as a multiple of the other, as shown in
Figure 3.2.
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Figure 3.2 Dependency of Vectors.

Theorem 3.5:
Any set of vectors in a vector space V that contains the zero vector 0v is

linearly dependent.

Proof:
Let us consider the set {0v, v2, · · · , vm}, which contains the zero vector.
Let us examine the identity by considering the linear combinations of

0v, v2, · · · , vm, i.e.,

c10v + c2v2 + · · ·+ cmvm = 0v,

which shows that the identity is valid for
c2 = · · · = cm = 0 and c1 �= 0 (i.e., not all zero).
Thus, the set of vectors 0v, v2, · · · , vm are linearly dependent.

Theorem 3.6:
Let us consider the set {v1, v2, · · · , vm} to be linearly dependent in a

vector spaceV. Any collection of vectors inV that consists of v1, v2, · · · , vm
will also be linearly dependent.

Proof:
Let the set {v1, v2, · · · , vm} be linearly dependent; so there exist scalars

c1, c2, · · · , cm, not all zero such that c1v1 + c2v2 + · · ·+ cmvm = 0v.
Consider the extended set of n vectors {v1, v2, · · · , vm, vm+1, · · · , vn}

that contains the given vectors v1, v2, · · · , vm.
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With the choices of scalars, not all zero, namely c1, c2, · · · , cm, 0, 0..0,
such that

c1v1 + c2v2 + · · ·+ cmvm + 0.vm+1 + · · ·+ 0.vn = 0v,

which implies {v1, v2, · · · , vm, vm+1, · · · , vn} are linearly dependent.

Example 3.18:

Show that the vectors

[ −1
2

]
,

[
1
2

]
,

[
2
−4

]
are linearly dependent

on R2.

Solution:
Consider the linear combination of the vectors

c1

[ −1
2

]
+ c2

[
1
2

]
+ c3

[
2
−4

]
=

[
0
0

]
,

where c1, c2, and, c3 are any scalars.
This is equivalent to the homogenous linear system

−c1 + c2 + 2c3 = 0
2c1 + 2c2 − 4c3 = 0.

As the number of unknowns is higher than the number of equations, this
system has a non-trivial solution.

Hence, the vectors are linearly dependent.
The following theorem discusses more the linear dependency of column

vectors in a matrix equation.

Theorem 3.7:
Let C1, C2, · · · , Cm be vectors in the vector space Rn. Put A =[

C1
...C2

... · · · ...Cm

]
, as n × m matrix. Then the vectors C1, C2, · · · , Cm are

linearly dependent if and only if the number of pivots of A in row echelon
form is fewer than m.

Proof:
Let us consider the identity

k1C1 + k2C2 + · · ·+ kmCm = 0,

where k1, k2, · · · , km are scalars.
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On equating the entries of the vectors on the left side of the equation to
zero, it finds that this equation is similar to the homogenous linear system

A

⎡
⎢⎢⎢⎣

k1
k2
...
km

⎤
⎥⎥⎥⎦ = 0.

Thus, the condition of the non-trivial solution k1, k2, · · · , km is that the
number of pivots is fewer than m, i.e., n < m. Hence, this is the case for the
set of column vectors to be linearly dependent as the number of row vectors
n is less than the number of column vectors, i.e., m.

3.10 Properties of Bases

Theorem 3.8:
Let the vectors v1, v2, · · · , vn span a vector space V. Then each vec-

tor v ∈ V can be expressed uniquely as a linear combination of these
vectors v1, v2, · · · , vn if and only if the vectors v1, v2, · · · , vn are linearly
independent.

Proof:
Let us consider that the vectors v1, v2, · · · , vn are linearly independent.

Let v ∈ V be a vector inV.
Since the vectors v1, v2, · · · , vn span the vector space, we can express a

vector v ∈ V as a linear combination of v1, v2, · · · , vn.
Let us consider that v can be described as a linear combination of these

vectors in more than one way.
Suppose that we can write
v = c1v1 + c2v2 + · · ·+ cnvn and v = d1v1 + d2v2 + · · ·+ dnvn.
Then

c1v1 + c2v2 + · · ·+ cnvn = d1v1 + d2v2 + · · ·+ dnvn.

It implies that

(c1 − d1) v1 + (c2 − d2) v2 + · · ·+ (cn − dn) vn = 0v.

Since v1, v2, · · · , vn are linearly independent, it implies that

c1 − d1 = 0 , c2 − d2 = 0, · · · , cn − dn = 0,
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which implies that

c1 = d1, c2 = d2, · · · , cn = dn.

Thus, it can be concluded that there is only one way of expressing v as a
linear combination of the vectors v1, v2, · · · , vn.
Conversely:

Let v be a vector in V. Let us assume that v can be written in only one
way as a linear combination of the vectors v1, v2, · · · , vn.

Note that
0v1 + 0v2 + · · ·+ 0vn = 0v.

This must be the only way that 0v can be written as a linear combination
of v1, v2, · · · , vn.

Thus, c1v1 + c2v2 + · · · + cnvn = 0v can only be satisfied when c1 =
0 , c2 = 0, · · · , cn = 0.

Hence, it implies that v1, v2, · · · , vn are linearly independent.

3.11 Basis and Dimensions

Definition 3.6:
A finite set of vectors {v1, v2, · · · , vn} is a basis for a vector space V if

the set {v1, v2, · · · , vn} spansV and is linearly independent.
That is, each vector v ∈ V can be expressed particularly as a linear

combination of the vectors v1, v2, · · · , vn in a basis.

Example 3.19:
The set {(1, 0, 0) , (0, 1, 0) , (0, 0, 1)} spans R3 and is linearly indepen-

dent. It implies that it is a standard basis for R3.

Example 3.20:
The set {(1, 2, 0) , (1, 1,−2) , (0, 1,−1)} also spans R3 and is linearly

independent and implies that it is a basis for R3.

Example 3.21:
The set

{
x2 + 1, 3x− 1,−4x+ 1

}
spans P2 and is linearly independent.

It is a basis for P2.

Theorem 3.9:
Let {v1, v2, ..., vn} be a basis for a vector space V. If {w1, w2, · · · , wm}

is a set of more than n-vectors inV, then this set is linearly dependent.
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Proof:
Consider the identity

c1w1 + c2w2 + · · ·+ cnwm = 0v. (3.1)

We shall show that values of c1, c2, · · · , cm not all zeros exist, satisfying
the identity. Thus, it is proved that the vectors are linearly dependent.

The set {v1, v2, · · · , vn} is a basis for V. Thus, each of the vectors
w1, w2, ..., wm can be expressed as a linear combination of v1, v2, ..., vn.

Let
w1 = a11v1 + a12v2 + · · ·+ a1nvn
w2 = a21v1 + a22v2 + · · ·+ a2nvn
· · ·
wm = am1v1 + am2v2 + · · ·+ amnvn

.

Substituting for w1, w2, · · · , wm in eqn (3.1), we get

c1 (a11v1 + a12v2 + ...+ a1nvn) + c2 (a21v1 + a22v2 + · · ·+ a2nvn)
+...+ cn (am1v1 + am2v2 + · · ·+ amnvn) = 0v

.

Rearranging, we get

v1 (c1a11 + c2a21 + ...+ cnam1) + v2 (c1a12 + c2a22 + · · ·+ cnam2)
+ · · ·+ vn (c1a1n + c2a2n + · · ·+ cnamn) = 0v

.

Since v1, v2, ...vn are linearly independent, this identity can only be
satisfied if all the coefficients v1, v2, ...vn are zero. Thus,

c1a11 + c2a21 + · · ·+ cnam1 = 0
c1a12 + c2a22 + · · ·+ cnam2 = 0
· · ·
c1a1n + c2a2n + ...+ cnamn = 0

.

Thus, finding c′is that satisfy eqn (3.1) reduces the solution to this system
of n−equations inm−variables.

Since m > n, the number of variables is greater than the number of the
equation. We know that such a system of the homogenous equation has many
solutions. There are, therefore, non-zero values of c′is that satisfies eqn (3.1).

Thus, the set {w1, w2, · · · , wm} is linearly dependent.

Theorem 3.10:
Let V be a vector space. All bases for a vector space V have the same

number of vectors.
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Proof:
Suppose {v1, v2, · · · , vn} and {w1, w2, · · · , wm} are two bases for a

vector space V. Then, if we assume {v1, v2, · · · , vn} as a basis for V
and {w1, w2, · · · , wm} as a set of linearly independent vectors in V, then
Theorem 3.9 tells us thatm ≤ n.

Conversely:
Let us assume {w1, w2, · · · , wm} as a basis for V and {v1, v2, · · · , vn}

as a set of linearly independent vectors then n ≤ m.
Thus, n = m, which proves that both the bases of V consist of the same

number of vectors.

Definition 3.7:
The dimension of a vector space defines the number of basis vectors

present in a vector space V, i.e. if a vector space V has a basis consisting
of n−vectors, then the dimension of the vector space V is said to be n.

Note: dim (V) for the dimension ofV.

Example 3.22:
Consider the set of vectors {(1,−2, 3) , (2, 3, 1)} in R3.
The vectors (1,−2, 3) and (2, 3, 1) generate a subspace U of R3

consisting of all vectors of the form

v = k1 (1,−2, 3) + k2 (2, 3, 1) .

Thus, the vectors (1,−2, 3) and (2, 3, 1) span this subspaceU of R3.
Similarly, the second vector (2, 3, 1) is not a scalar multiple of the first

vector (1,−2, 3); so these vectors are linearly independent.
Thus, {(1,−2, 3) , (2, 3, 1)} forms a basis forV.
Hence, dim (U) = 2.

Theorem 3.11:

(1) The origin (0, 0, 0) is a subspace of R3, and hence the dimension of this
subspace is zero.

(2) The one-dimensional subspaces of the vector space R3 are the lines
through the origin.

(3) The two-dimensional subspaces of the vector space R3 are the planes
through the origin.

Proof:

(1) LetU be the set consisting of a single element {(0, 0, 0)}, i.e., the zero
vector ofV = R3.
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Let k ∈ F be an arbitrary scalar.
Since (0, 0, 0) + (0, 0, 0) = (0, 0, 0)
and k (0, 0, 0) = (0, 0, 0),
it implies that the set U is closed under the operation of addition and
scalar multiplication.
Thus, U is a subspace of R3.
Hence, the dimension of this subspaceU is defined to be zero.

(2) Let {u} be a basis for a one-dimensional subspaceU of R3.
Each vector u inU is thus of the form cu, for some scalar c.
These vectors form a line that passes through the origin.

(3) Let {u1, u2} be a basis for a two-dimensional subspaceU of R3.
Since {u1, u2} is a basis of V = R3, every vector in U is of the form
c1u1 + c2u2 and thusU is a plane through the origin (0, 0, 0), as shown
in Figure 3.3

Figure 3.3 One- and two-dimensional subspace of R3.

Theorem 3.12:
LetV be an n-dimensional vector space.

(1) If U = {u1, u2, · · · , un} is a set of n-linearly independent vectors in
V, thenU is a basis for vector spaceV.

(2) If U = {u1, u2, · · · , un} is a set of n-vectors that span the vector space
V, thenU is a basis for vector spaceV.

Theorem 3.13:
Let us consider an n-dimensional vector space V. Let {v1, v2, · · · , vm}

be a set of m linearly independent vectors in the vector space V,
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where m < n. Then there exist vectors vm+1, vm+2, · · · , vn such that
{v1, v2, · · · , vm, vm+1, vm+2, · · · , vn} is a basis ofV.

Proof:
Sincem < n, {v1, v2, · · · , vm} cannot be a basis of V.
Thus, there exists a vector vm+1 inV, which does not lie in the subspace

generated by v1, v2, · · · , vm.
The set {v1, v2, · · · , vm, vm+1} will be linearly independent.
Now ifm+ 1 = n, then {v1, v2, · · · , vm, vm+1} is a basis of V.
Ifm+1 < n, there will be a vector vm+2 that does not lie in the subspace

generated by {v1, v2, · · · , vm, vm+1, vm+2}.
If m+ 2 = n, then {v1, v2, · · · , vm, vm+1, vm+2} is a basis for V.
One thus continues adding vectors until a basis is found.

3.12 Rank

Definition 3.8:
Let A be a m × n matrix. The rows of the matrix A may be

outlined as row vectors R1, R2, · · · , Rm and the columns as column
vectors C1, C2, · · · , Cn. Each row vector Ri, (i = 1, 2, · · · , n) will have
n−components, and each column vector will have m−components. The
row vectors Ri, (i = 1, 2, · · · , n) will span a subspace of the vector
space V = Rn called the row space of A, while the column vectors
Cj , (j = 1, 2, · · · ,m) will span a subspace called the column space A.

Example 3.23:
Consider the matrix

A =

⎡
⎣ 1 −2 1 0

3 −4 1 6
5 3 −1 2

⎤
⎦ .

Solution:
Let us consider the row vectors of the matrixA are

R1 = (1,−2, 1, 0)
R2 = (3,−4, 1, 6)
R3 = (5, 3,−1, 2)

.

The row vectorsR1, R2 and R3 span a subspaceU ofV = R4 called the
row space of the matrixA. Similarly, the column vectors C1, C2, C3 and C4
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of the matrixA are

C1 =

⎡
⎣ 1

3
5

⎤
⎦ , C2 =

⎡
⎣ −2

−4
3

⎤
⎦ , C3 =

⎡
⎣ 1

1
−1

⎤
⎦ , C4 =

⎡
⎣ 0

6
2

⎤
⎦ .

These column vectors C1, C2, C3 and C4 span a subspaceU ofV = R4

called the column space of the matrixA.

Theorem 3.14:
The row space and the column space of a matrix A have the same

dimension.

Proof:
Let the row vectors of A be R1, R2, · · · , Rm and the ith vector be Ri =

(ai1, ai2, · · · , ain).
Let r be the dimension of the row space, and the vectors v1, v2, · · · , vr

form a basis for the row space.
Let the jth vector of this set be vj = (dj1, dj2, · · · , djn).
Each of the row vectors of the matrix A is a linear combination of

v1, v2, · · · , vr.
Let

R1 = c11v1 + c12v2 + · · ·+ c1rvr
R2 = c21v1 + c22v2 + · · ·+ c2rvr
· · ·
Rm = cm1v1 + cm2v2 + · · ·+ cmrvr

.

Equating the ith components of the vectors on the left and right, we get

a1i = c11d1i + c12d2i + · · ·+ c1rdri
a2i = c21d1i + c22d2i + · · ·+ c2rdri
· · ·
ami = cm1d1i + cm2d2i + · · ·+ cmrdri

.

This may be written as⎡
⎢⎢⎢⎣

a1i
a2i
...
ami

⎤
⎥⎥⎥⎦ = d1i

⎡
⎢⎢⎢⎣

c11
c21
...
cm1

⎤
⎥⎥⎥⎦+ d2i

⎡
⎢⎢⎢⎣

c12
c22
...
cm2

⎤
⎥⎥⎥⎦+ · · ·+ dri

⎡
⎢⎢⎢⎣

c1r
c2r
...
cmr

⎤
⎥⎥⎥⎦ ,

which implies that each column vector of A lies in a space spanned by a
single set of r vectors.
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Sincer is the dimension of the row space of A, we get

dim (ColumnSpace of A) ≤ dim (Row Space of A) .

By similar reasoning, we can show that

dim (Row Space of A) ≤ dim (ColumnSpace of A) .

Combining these two results, we see that

dim (Row Space of A) = dim (ColumnSpace of A) .

Definition 3.9:
The dimension of the row space and the column space of a matrix A is

called the Rank ofA. The Rank ofA is denoted as Rank(A) or ρ (A).

Example 3.24:
Find the Rank of the matrix

A =

⎡
⎣ −1 2 3

1 1 −2
2 −5 8

⎤
⎦ .

Solution:
Rank (A) = 3.

Note: It is not applicable in a higher-order matrix.

Theorem 3.15:
The non-zero row vectors of a matrix A are in reduced echelon form

(REF), a basis for the row space of the matrix A. Therefore, Rank A is the
number of non-zero row vectors.

Proof:
LetA be am×nmatrix with its non-zero row vectors beR1, R2, · · · , RL.
Let us consider the identity
k1R1 + k2R2 + · · ·+ kLRL = 0̄, where k1, k2, · · · , kL are scalars.
The first non-zero element of R1 is one, and is the only one, of the row

vectors to have a non-zero number.
Thus, upon adding the vectors k1R1, k2R2, · · · , kLRL, we get a vector

whose first component is k1.
On equating this vector to zero, we get k1 = 0.
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The identity then reduces to

k2R2 + · · ·+ kLRL = 0̄.

The first non-zero element of R2 is 1, and it is the only one of these
remaining row vectors with a non-zero number in this component. Thus, k2 =
0. Similarly, k3, k4, · · · , kL are all zero.

The vectors R1, R2, · · · , RL are therefore linearly independent. These
vectors span the row space of A. Thus, R1, R2, · · · , RL form a basis for the
row space of the matrixA.

The dimension of the row space is L. Thus, the Rank of A is L, i.e., the
number of non-zero row vectors inA.

Example 3.25:
Find the Rank of the matrix

A =

⎡
⎢⎢⎣

1 −2 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦ .

Solution:
The matrix A is in reduced echelon form. Here the three non-zero

row vectors, namely (1,−2, 0, 0) , (0, 0, 1, 0) , and (0, 0, 0, 1), form a basis
for the row space of A. Therefore, by Theorem 3.15, the row vectors
(1,−2, 0, 0) , (0, 0, 1, 0) and (0, 0, 0, 1) form a basis for the row space of
the matrixA.

Hence, Rank(A) = 3.

Theorem 3.16:
Let us consider two row equivalent matrices A and B. Then the row

equivalent matrices A and B have the same row space, i.e., Rank(A) =
Rank (B).

Proof
Since A and B are row equivalent matrices, the rows of the matrix B

can be obtained from the rows of A through a sequence of elementary row
operations. This implies that each row of the matrixB is a linear combination
of the rows of the matrixA. Thus, the row space of the matrixB is contained
in the row space of the matrixA.
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Similarly, the rows of the matrix A can be obtained from the rows of the
matrix B through a sequence of elementary row operations, which results in
the row space of A being equal to the row space of B, which shows that
the row spaces of A and B are similar. Since the row spaces of matrices
are equal to their Ranks, the Rank of both matrices B must be equal, which
implies Rank(A) = Rank (B).

Theorem 3.17:
Let E be the reduced echelon form (REF) of a matrix A. If the non-zero

row vectors of E form a basis for the row space of the matrix A, then the
Rank ofA is the number of non-zero row vectors in E.

Example 3.26:
Determine a basis for the row space of the following matrix

A =

⎡
⎣ 1 2 3

2 5 4
1 1 5

⎤
⎦

and hence find its Rank.

Solution:
Upon using the elementary row operations on the matrix A to get the

reduced echelon form (REF) of the matrixA, we get⎡
⎣ 1 2 3

2 5 4
1 1 5

⎤
⎦ ≈

⎡
⎣ 1 2 3

0 1 −2
0 −1 2

⎤
⎦ ≈

⎡
⎣ 1 0 7

0 1 −2
0 0 0

⎤
⎦ .

As the two vectors (1, 0, 7) and (0, 1,−2) form a basis for the row space
ofA, Rank(A) = 2.

Example 3.27:
Determine a basis for the subspaceU ofV = R4 spanned by the vectors

(1, 2, 3, 4) , (−1,−1,−4,−2) , (3, 4, 11, 8).

Solution:
Here we construct a matrix A by considering these vectors as their row

vectors, i.e.,

A =

⎡
⎣ 1 2 3 4

−1 −1 −4 −2
3 4 11 8

⎤
⎦ .
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Upon using the elementary row operation on the matrix A, the reduced
echelon form of the matrix can be obtained as follows:⎡

⎣ 1 2 3 4
−1 −1 −4 −2
3 4 11 8

⎤
⎦ ≈

⎡
⎣ 1 2 3 4

0 1 −1 2
0 −2 2 −4

⎤
⎦

≈
⎡
⎣ 1 0 5 0

0 1 −1 2
0 0 0 0

⎤
⎦

.

It can be seen from the reduced echelon form of the matrix that the
non-zero vectors of this reduced echelon form, namely, (1, 0, 5, 0) and
(0, 1,−1, 2), form a basis for the subspaceU of R4.

Hence, the dimension of this subspaceU is 2, i.e., dimU = 2.

Theorem 3.18:
Consider a non-homogenous linear system of equations AX = B having

m-linear equations in n-unknown variables.

(1) If ρ [A : B] = ρ (A) = r = n, then the solution of AX = B is unique.
(2) If ρ [A : B] = ρ (A) = r �= n, then the system AX = B has infinitely

many solutions.
(3) If ρ [A : B] �= ρ (A), then the solution of AX = B does not exist.

Proof:
Let us consider the system of equationAX = B.
The system can be written as

x1

⎡
⎢⎢⎢⎣

a11
a21
...
am1

⎤
⎥⎥⎥⎦+ x2

⎡
⎢⎢⎢⎣

a12
a22
...
am2

⎤
⎥⎥⎥⎦+ ......+ xn

⎡
⎢⎢⎢⎣

a1n
a2n
...
amn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

b1
b2
...
bm

⎤
⎥⎥⎥⎦ .

That is,
ā1x1 + ā2x2 + ...+ ānxn = b̄. (3.2)

Thus, the existence and uniqueness of the solution depend upon whether
b̄ can be written as a linear combination of ā1, ā2, ..., ān or this combination
is unique or not.

Let us now look at three possibilities that can arise.
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(1) Since the matrix of coefficient and augmented matrix Ranks are the
same, b̄ must be linearly dependent on ā1, ā2, · · · , ān.
Furthermore, since the Rank is n, the vectors are linearly independent
and form a basis for the column space of the augmented matrix.
Therefore, eqn (3.2) has a unique solution. Thus, the solution to the
system is unique.

(2) Since the Ranks of the matrix of coefficients and the augmented matrix
are the same, b̄ must be linearly dependent on ā1, ā2, · · · , ān.
However, since the vectors are linearly dependent, b̄ can therefore
be expressed in more than one way as a linear combination of
ā1, ā2, · · · , ān.
Thus, eqn (3.2) has many solutions, which implies that the solutions to
the systems exist but are not unique.

(3) Since the Rank of the augmented matrix is not equal to the Rank of the
coefficient, it implies that b̄ is linearly dependent of ā1, ā2, · · · , ān.
Thus, eqn (3.2) has no solution, which implies that a solution to the
system does not exist.

Geometrical interpretation:

(1) If ā1, ā2, · · · , ān are a basis for V and b̄ lies in V, then the solution is
unique.

(2) If ā1, ā2, · · · , ān are linearly dependent and b̄ lies in V, then there are
many solutions.

(3) If b̄ does not lie inV, then there is no solution.
(4) Space spanned by the column vectors of A, ā1, ā2, · · · , ān, as shown in

Figure 3.4.

Figure 3.4 Geometrical interpretation of solutions toAX = B.
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Summary of results:

Theorem 3.19:
LetA be an n×nmatrix. Then the following statements are equivalent.

(1) The matrixA is non-singular, i.e., |A| �= 0.
(2) The matrixA is invertible.
(3) The matrixA is a row equivalent to an identity matrix In.
(4) The non-homogenous system of linear equationsAX = B has a unique

solution.
(5) The Rank of a matrixA is n, i.e., Rank(A) = n.
(6) The column vectors of the matrixA form a basis for V = Rn.

Example 3.28:
Verify the summary of results as in Theorem 3.19 for the matrix A, i.e.,

A =

⎡
⎣ 1 −1 −2

2 −3 −5
−1 3 5

⎤
⎦ .

3.13 Sum and Intersection of Subspaces

Let U1 and U2 be the subspaces of a vector space V. Then these two
subspaces U1 and U2 can be combined in a natural way to form a new
subspace of V. The first one is the intersection of both these subspaces, i.e.,
U1
⋂

U2, the set of all vectors belonging to both U1 andU2.
The second one is the union of both these subspaces, i.e., U1

⋃
U2 that

can be formed fromU1 andU2 is not generally closed under addition. So, it
may not be a subspace.

Finally, the subspace we are looking for is the sum U1 +U2 defined as
the set of all form vectorsU1 +U2 = {u+ v : u ∈ U1, v ∈ U2}.
Theorem 3.20:

Let U1 and U2 be the subspaces of a vector space V. Then their
intersectionU1

⋂
U2 and the sum U1 +U2 are also the subspaces of V.

Proof:
Both U1 and U2 are closed under the operations of vector addition and

scalar multiplication and contain the zero vector. Hence, their intersection
U1
⋂

U2 also has the zero vector and is closed under vector addition and
scalar multiplication operations.
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Thus, U1
⋂

U2 is a subspace of a vector spaceV.
Similarly, it can be checked forU1 +U2.
Since both U1 and U2 contains the zero vector, clearly U1 +U2

contains the zero vector, since 0v + 0v = 0v.
Now, if u1, u2 and w1, w2 are vectors inU1 andU2 respectively and k is

any scalar, then

(u1 + w1) + (u2 + w2) = (u1 + u2) + (w1 + w2) ∈ U1 +U2

and c (u1 + w1) = cu1 + cw1 ∈ U1 +U2.
This implies that U1 +U2 is closed under the operations of vector

addition and scalar multiplication; so U1 +U2 is a subspace of the vector
spaceV.

Example 3.29:

Let us consider the subspaces U1 =

⎡
⎢⎢⎣

a
b
c
0

⎤
⎥⎥⎦ and U2 =

⎡
⎢⎢⎣

0
d
e
f

⎤
⎥⎥⎦ of R4

respectively. Here, a, b, c, d, e and f are arbitrary scalars.
Then their intersection U1

⋂
U2 consists of all vectors of the form⎡

⎢⎢⎣
0
b
c
0

⎤
⎥⎥⎦.

While U1 +U2 equals V = R4, Since every vector in R4 can be
expressed as the sum of a vector inU1 and a vector in U2.

Theorem 3.21:
Let U1 and U2 be the subspaces of a finitely generated vector space V.

Then dim (U1 +U2) = dim (U1) + dim (U2)− dim (U1
⋂

U2).

Proof:
If U1 = 0v, then obviously
U1 +U2 = U2 andU1

⋂
U2 = 0v.

Here, the formula is undoubtedly true, when U2 = 0v.
Let us assume thatU1 �= 0,U2 �= 0
and putm = dim (U1) and n = dim (U2).
Consider the first case, whereU1

⋂
U2 = 0v.

Let {u1, u2, · · · , um} and {w1, w2, · · · , wn} be bases of U1 and U2

respectively.



3.13 Sum and Intersection of Subspaces 87

Then the vectors u1, u2, · · · , um, w1, w2, · · · , wn indeed generate
U1 +U2.

These vectors are also linearly independent; for if there is a linear relation
between them, say

k1u1 + k2u2 + · · ·+ kmum + l1w1 + l2w2 + · · ·+ lnwn = 0,

then

k1u1 + k2u2 + · · ·+ kmum = (−l1)w1 + (−l2)w2 + · · ·+ (−ln)wn.

A vector that belongs to both U1, U2 and to U1
⋂

U2, is the zero
subspace. Therefore, this vector must be the zero vector 0v.

Consequently, all the ki and lj must be zero since ui are linearly indepen-
dent, as is wj . Thus, the vectors u1, u2, · · · , um, w1, w2, · · · , wn form a basis
forU1 +U2.

So
dim (U1 +U2) = m+ n = dim (U1) + dim (U2)

(sinceU1
⋂

U2 = 0v).
Next, let us consider the case whereU1

⋂
U2 �= 0v.

Let us choose a basis forU1
⋂

U2, say (z1, z2, · · · , zr).
SinceA linearly independent subset of finitely generated vector spaceV,

is contained in some basis ofV.
So, the basis for U1

⋂
U2 can be extended to bases of U1 and of U2,

say
{z1, z2, · · · , zr, ur+1, ur+2, · · · , um} and {z1, z2, · · · , zr, wr+1, wr+2,

· · · , wn} respectively.
Now the vectors

z1, z2, · · · , zr, ur+1, ur+2, · · · , um, wr+1, wr+2, · · · , wn

generate U1 +U2; for which we can express any vector of U1 or U2 in
terms of them.

Next, to prove that they are linearly independent, let us consider the linear
relation, i.e.,

r∑
i=1

kizi +
m∑

j=r+1

kjuj +
n∑

k=r+1

lkwk = 0 ,

where ki, kj , and lk are scalars.
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Then,
n∑

k=r+1

lkwk =

r∑
i=1

(−ki) zi +

m∑
j=r+1

(−kj)uj ,

belongs to bothU1,U2 and so to U1
⋂

U2.
Thus, the vector

∑
lkwk can be expressible as a linear combination of the

zi and uj since these vectors are known to form a basis ofU1
⋂

U2.
However, z1, z2, · · · , zr, wr+1, wr+2, · · · , wn are linearly independent.

Therefore, all the lj are zero, and our linear relation becomes

r∑
i=1

kizi +

m∑
j=r+1

kjuj = 0.

But since the vectors z1, z2, · · · , zr, ur+1, ur+2, · · · , um are linearly
independent, it implies that kj and ki are also zero, which establishes the
linear dependence.

We thus conclude that the set of vectors
z1, z2, · · · , zr, ur+1, ur+2, · · · , um, wr+1, wr+2, · · · , wn forms a basis

ofU1 +U2.
Hence,

dim (U1 +U2) = r + (m− r) + (n− r) = m+ n− r
= dim (U1) + dim (U2)− dim (U1

⋂
U2)

.

Example 3.30:
Consider that U1 and U2 subspaces of the vector space V = R10 have

dimensions 6 and 8 respectively. Then, find the smallest possible dimension
ofU1

⋂
U2.

Solution:
Since dim

(
R10
)
= 10 andU1 +U2 is a subspace of R10, its dimension

cannot exceed 10.
Therefore, by the previous theorem

dim (U1
⋂

U2) = dim (U1) + dim (U2)− dim (U1 +U2)
≥ 6 + 8− 10 = 4

.

Thus, the dimension of U1
⋂

U2 is at least 4.
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3.14 Direct Sums of Subspaces

Let U1 and U2 be two subspaces of a vector space V. Then the vector
space V is said to be the direct sum of U1 and U2, i.e., V = U1 ⊕U2,
ifV = U1 +U2 orU1

⋂
U2 = 0.

A consequence of the definition:
LetV be a vector space. Then each vector v ∈ V has a unique expression

of the form v = u+ w, where u ∈ U1 and w ∈ U2.
Indeed, if there are two such expressions, i.e.,
v = u1 + w1 = u2 + w2 with ui ∈ U1 and wi ∈ U2.
Then u1−u2 = w2−w1 which belongs toU1

⋂
U2 = 0; hence, u1 = u2

and w1 = w2.

Example 3.31:
Let U1 denote the subset of the vector space V = R3 consisting of all

vectors of the form

⎡
⎣ a

b
0

⎤
⎦ and letU2 be the subset of all vectors of the form

⎡
⎣ 0

0
c

⎤
⎦, where a, b, c are arbitrary scalars.

ThenU1 andU2 are the subspaces of the vector spaceV = R3.
Besides,
U1 +U2 = V = R3 andU1

⋂
U2 = 0.

Hence, R3 = U1 ⊕U2.

Theorem 3.22:
Let V be a finitely generated vector space and U1 and U2 be subspaces

of the vector spaceV such thatV = U1 ⊕U2.
Then

dim (V) = dim (U1) + dim (U2) .

This follows from the theorem that dim (U1
⋂

U2) = 0.

3.15 Direct Sums of More Than Two Subspaces

The direct sum of subspaces can be extended to an arbitrary number of
subspaces.

LetU1,U2, · · · ,Uk be subspaces of a vector space V.
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Let us define the sum of these subspacesU1 +U2 + · · ·+Uk as the set
of all vectors of the form u1 + u2 + · · ·+ uk, ui ∈ Ui.

This implies that it forms a subspace ofV.
The vector space V is said to be the direct sum of the subspaces

U1,U2, · · · ,Uk, i.e.,V = U1 ⊕U2 ⊕ ...⊕Uk.
If the following holds

(1) V = U1 +U2 + · · ·+Uk

(2) For each i = 1, 2, · · · , k, the intersection ofUi with the sum of all other
subspacesUj,j �= i equals zero.

These are equivalent to desiring that each element ofV can be expressible
in an exclusive way as a sum of the form u1 + u2 + · · · + uk, where each
ui ∈ Ui.

The practical approach of a direct sum is that it generally allows us to
express a vector space as a direct sum of subspaces that are, in some sense,
simpler.

3.16 Generating a Basis for a Direct Sum of Two
Subspaces

Let us consider an n-dimensional vector space V = Rn defined over a field
F and suppose a specifically ordered basis.

Assume that the vectors u1, u2, · · · , ur and w1, w2, · · · , ws are generat-
ing the subspaces ofU1 andU2 respectively.

Claim: To determine bases for the subspaces U1 +U2 and U1
⋂

U2 and
hence to compute their dimension.

Initially the problem is to be translated to the vector space Fn.
Associate with each ui and wj , its coordinate column vectors Ci and

Dj with respect to the given ordered basis of V. Then C1, C2, · · · , Cr and
D1, D2, · · · , Ds generates respective subspaces U1 andU2 of Fn.

From these bases U1 and U2, the bases for U1 +U2 and U1
⋂

U2 can
be find out.

So here let us assume that V = Fn and let us take the case of U1
⋂

U2

first.
LetA be the matrix whose columns are u1, u2, · · · , ur. Also let B be the

matrix whose columns are w1, w2, · · · , ws.

ThenU1 +U2 is defined the column space of the matrix M = [A
...B].

A basis for U1 +U2 can therefore be found by putting M in reduced
column echelon form and deleting the zero columns.
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Next, consider the case ofU1
⋂

U2.
Here for scalars ki and lj , every element of U1

⋂
U2, can be expressed

as
k1u1 + k2u2 + · · ·+ krur = l1w1 + l2w2 + · · ·+ lsws.

Equivalently, k1u1 + k2u2 + · · ·+ krur + (−l1)w1 + (−l2)w2 + · · ·+
(−ls)ws = 0.

Now, this equation asserts that the vector⎡
⎢⎢⎢⎢⎢⎢⎢⎣

k1
...
kr
−l1
...

−ls

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
belongs to the null space of

[
A
...B

]
.

A method for finding a basis for the null space of a matrix is described
in an earlier section. To complete the process, read off the first r entries of

each vector based on the null space of

[
A
...B

]
and take these entries to be

k1, k2, · · · , kr. The resulting vectors form a basisU1
⋂

U2.

Example 3.32:

Let M =

⎡
⎢⎢⎣

1 0 2 1
2 1 5 2
2 −2 −1 −1
1 1 5 3

⎤
⎥⎥⎦ and U1 and U2 be the subspaces of

V = R4 generated by the columns C1, C2 andC3 , C4 of M respectively.
Find a basis forU1 +U2.

Solution:
Upon applying the procedure for finding a basis of the column space of

the matrixM by using the method of reduced echelon form, we obtain⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
3 −1

3 −2
3 0

⎤
⎥⎥⎦ .

The first three columns of this matrix form a basis of U1 +U2.
Hence, dim (U1 +U2) = 3.
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Example 3.33:
Determine a basis of U1

⋂
U2, where U1 and U2 are the subspaces of

V = R4 generated by columns C1, C2 and by C3 , C4 of M respectively.
Here the matrixM is defined as

M =

⎡
⎢⎢⎣

1 0 2 1
2 1 5 2
2 −2 −1 −1
1 1 5 3

⎤
⎥⎥⎦ .

Solution:
Upon following the above procedure, here the matrixM is in reduced row

echelon form, i.e., ⎡
⎢⎢⎣

1 0 0 −1
0 1 0 −1
0 0 1 1
0 0 0 0

⎤
⎥⎥⎦ .

From this, a basis for the null spaceM can be read off as described in the
preceding paragraph. In our case, the basis has a single element.⎡

⎢⎢⎣
1
1
−1
1

⎤
⎥⎥⎦ .

Therefore, a basis forU1
⋂

U2 is obtained by taking the linear combina-
tion of the generating vectors of U1 corresponding to the scalars in the first
two rows of this vector, that is to say

1.

⎡
⎢⎢⎣

1
2
2
1

⎤
⎥⎥⎦+ 1.

⎡
⎢⎢⎣

0
1
−2
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1
3
0
2

⎤
⎥⎥⎦ .

Thus, dim (U1
⋂

U2) = 1.

Example 3.34:
Determine the bases for the sum and intersection of the subspaces

U1 and U2 of P4 (R) generated by the respective sets of polynomials{
1 + 2x+ x3 , 1− x− x2

}
and
{
x+ x2 − 3x3 , 2 + 2x− 2x3

}
.
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Here the first step is to translate the problem to R4, by writing down the
coordinate columns of the given polynomials concerning the standard ordered
basis 1, x, x2, x3 of P4 (R).

Arrange as the columns of a matrix. These are

A =

⎡
⎢⎢⎣

1 1 0 2
2 −1 1 2
0 −1 1 0
1 0 −3 −2

⎤
⎥⎥⎦ .

Let U∗
1 and U∗

2 be the subspaces of R4 generated by the coordinate
columns of the polynomials that generate U1 and U2, that is, by columns
C1, C2 and by C3 , C4 of the matrixA, respectively.

Now find bases for U1
∗ +U2

∗ and U1
∗⋂U2

∗ just as in the previous
example. It emerges that U1

∗ +U2
∗, which is just the column space of A,

has a basis ⎡
⎢⎢⎣

1
0
0
−3

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0
1
0
2

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0
0
1
−5

⎤
⎥⎥⎦ .

On writing down the polynomials with these coordinate vectors, we
obtain the basis

1− 3x3, x+ 2x3, x2 − 5x3 forU1
∗ +U2

∗.
In the case ofU1

⋂
U2, the procedure is to find a basis for U1

∗⋂U2
∗.

This turns out to consist of the single vector⎡
⎢⎢⎣

1
1
1

−1

⎤
⎥⎥⎦ .

Finally, read off that polynomial as

1.
(
1 + 2x+ x3

)
+ 1.

(
1− x− x2

)
= 2 + x− x2 + x3

which forms a basis ofU1
⋂

U2.

Exercises

1. Determine whether the vector (8, 0, 5) is a linear combination of the
vectors (1, 2, 3) , (0, 1, 4), and (2,−1, 1).
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2. Determine whether the vector (4, 5, 5) is a linear combination of the
vectors (1, 2, 3) , (−1, 1, 4), and (3, 3, 2).

3. Consider the vectors (−1, 5, 3) and (2,−3, 4) in R3. Let U =
Span [(−1, 5, 3) , (2,−3, 4)]. Then U will be a subspace of R3 consist-
ing of all vectors of the form c1 (−1, 5, 3) + c2 (2,−3, 4).

4. Determine whether the matrix

[ −1 7
8 −1

]
is a linear combination of[

1 0
2 1

]
,

[
2 −3
0 2

]
, and

[
0 1
2 0

]
in the vector space M22 of 2 × 2

matrices.
5. Show that the function f (x) = 4x2 + 3x − 7 lies in the space

Span {g, h} generated by g (x) = 2x2 − 5 and h (x) = x+ 1.
6. Determine whether the set {(1, 2, 0) , (0, 1,−1) , (1, 1, 2)} is linearly

independent in R3.
7. Show that the set

{
x2 + 1, 3x− 1,−4x+ 1

}
is linearly independent in

P2.
8. Show that the set {x+ 1, x− 1,−x+ 5} is linearly dependent in P1 .
9. Let the set {v1, v2} be linearly independent. Prove that {v1+v2, v1−v2}

is also linearly independent.
10. Prove that the set {(1, 3,−1) , (2, 1, 0) , (4, 2, 1)} is a basis for R3.
11. Determine a basis for the column space of the following matrix A =⎡
⎣ 1 1 0

2 3 −2
−1 −4 6

⎤
⎦.

12. Let U1, U2, U3 be subspaces of the vector space V = R5, which consists
of all vectors of the form⎡
⎢⎢⎢⎢⎣

0
0
a
0
0

⎤
⎥⎥⎥⎥⎦,
⎡
⎢⎢⎢⎢⎣

0
b
0
c
0

⎤
⎥⎥⎥⎥⎦,
⎡
⎢⎢⎢⎢⎣

d
0
0
0
e

⎤
⎥⎥⎥⎥⎦ respectively, where a, b, c, d, e are arbitrary

scalars.
Then V = R5 = U1 ⊕ U2 ⊕ U3. Find the bases for the sum and
intersection of subspaces U1, U2, U3.



4
Eigenvalues and Eigenvectors

This chapter discusses the properties of eigenvalues and eigenvectors
along with some properties of inner product spaces. It also includes the
Gram−Schmidt orthogonalization process and QR-factorization. Eigenvalues
and eigenvectors are particular scalars and vectors associated with matrices.
They can be expressed in terms of determinants. Many numerical meth-
ods make use of eigenvalues and eigenvectors. We shall use eigenvalues
and eigenvectors to make long-term predictions of populations in analyzing
oscillating systems and in studying the connectives of road networks.

4.1 Introduction

Eigenvalues and eigenvectors are particular scalars and vectors associated
with matrices. These are used in many branches of the natural and social
sciences and engineering.

General applications of eigenvectors are:

(1) To rank pages in the search engine Google.
(2) To use in demography to predict long-term trends.
(3) To use meteorology with an example of weather prediction for Tel Aviv.
(4) To study the oscillating system.

We commence our discussion with the definition of an eigenvalue and
eigenvector.

Definition 4.1:
Let us consider an n × n square matrix A. Then a scalar λ is said to

be an eigenvalue of the matrix A, if there exists a non-zero vector X ∈ Rn

such AX = λX . The vector X is called an eigenvector corresponding to the
eigenvalue λ.

95
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The eigenvectors and eigenvalues have an actual application in the study
of linear differential equations, the system of linear recurrence relation, the
Markov process, and many more fields of study.

Let us look at the geometrical significance of an eigenvector that corre-
sponds to a non-zero eigenvalue.

Geometrical significance:
The vector AX is in the same or opposite direction as X depending on the

sign of λ.

Figure 4.1 Direction of eigen vector X with vector AX.
X is an eigenvector of A. AX is in the same or opposite direction as X.

4.2 Computation of Eigenvalues and Eigenvectors of a
Matrix

Let λ be an eigenvalue and X be the corresponding eigenvector of an n × n
matrix A.

Thus,
AX = λX ,whereX ∈ Rn. (4.1)

Eqn (4.1) may be rewritten as

AX − λX = 0v
⇒ (A− λIn)X = 0v

. (4.2)

This matrix equation (4.2) represents a system of homogenous linear
equations having the matrix of coefficient (A− λIn).

Eqn (4.2) implies either
|A− λIn| = 0 or X = 0v .
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Since the eigenvectors are defined to be the non-zero vectors, the nontriv-
ial solutions to this system (5.2.2) can only exist if the matrix of the coefficient
is singular, i.e.,

|A− λIn| = 0. (4.3)

Eqn (4.3) is called the characteristic equation of the matrix A.
Upon solving eqn (4.3),
i.e., |A− λIn| = 0 for λ.
It leads to all the eigenvalues of A.
Next, on expanding the determinant |A− λIn|, we get a polynomial

in λ called the characteristic polynomial of A. Then by substituting back
the eigenvalues into the equation (A− λIn)X = 0v , we can find the
corresponding eigenvectors.

4.3 Properties of the Characteristic Polynomials,
Eigenvalues, and Eigenvectors

Let us consider an n× n-matrix A = [aij ]. The matrixM = A− λIn can be
obtained by substituting λ down the diagonal of the matrix A.

Here, In is the identity matrix of order n and λ is an intermediate to be
determined.

The determinant of A− λIn,
i.e., Δ(λ) = det (A− λIn)

is a polynomial in λ of degree n called the characteristic polynomial of the
matrix A.

The characteristic polynomial of degrees 2 and 3:
There are elementary formulas for the characteristic polynomial of

matrices of order 2 and 3.

(1) Let us consider A =

[
a11 a12
a21 a22

]
. Then

Δ(λ) = λ2 − (a11 + a22) .λ+ det (A)
= λ2 − tr (A) .λ+ det (A)

,

where tr (A) denotes the trace of A, which is the sum of the diagonal
elements of the matrix A.

(2) Suppose

A =

⎡
⎣ a11 a12 a13

a21 a22 a23
a31 a32 a33

⎤
⎦ .
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Then

Δ(λ) = λ3 − tr (A) .λ2 + (A11 + A22 + A33)λ− det (A) ,

where A11 ,A22 and A33 denote, respectively, the cofactors of the diagonal
elements a11 , a22 and a33.

It can be written in the following form:

Δ(λ) = λ3 − S1λ
2 + S2λ− S3,

where
S1 = tr (A), S2 = (A11 + A22 + A33) and S3 = det (A).

Note: Each Sk is the sum of all principal minors of the matrix A of order k.

The characteristic polynomial of an n× n matrix:
Next, let us discuss the characteristic polynomial of an n× n matrix A.
LetΔ(λ) denote the characteristic polynomial of A and it can be defined

as

Δ(λ) =

⎡
⎢⎢⎢⎣

a11 − λ a12 · · · a1n
a21 a22 − λ · · · a2n
...

...
...

...
an1 an2 · · · ann − λ

⎤
⎥⎥⎥⎦ .

Here, upon recalling the definition of a determinant, the term Δ(λ) with
the highest degree in λ can be expressed as.

The term Δ(λ) with the highest degree in λ arises from the product
(a11 − λ) (a22 − λ) · · · (ann − λ)and is clearly (−λ)n.
The terms of degree (n− 1) can also be obtained from the same product.
Thus, the coefficient of λn−1 is

(−1)n−1 (a11 + a22 + · · ·+ ann) ,

where the sum of the diagonal entries of the matrix A can be termed as the
trace of A:

i.e., tr (A) = a11 + a22 + · · ·+ ann
implies that the coefficient of λn−1can be expressed of the form
tr (A) (−λ)n−1.

The constant term Δ(λ) can be found by simply putting λ = 0 in
Δ(λ) = det (A− λIn), i.e., by merely evaluating det (A).

Hence, the characteristic polynomial Δ(λ) of the matrix A can be
summarized by the formula

Δ(λ) = (−λ)n + tr (A) (−λ)n−1 + · · ·+ det (A) .
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The other coefficient in the characteristic polynomials is not so easy to
express, but they are signified as sub-determinants det (A).

For example:
If we take the case of λn−2, then the terms in λn−2 can be summarized in

two ways:
Either from the product
(a11 − λ) (a22 − λ) · · · (ann − λ) or from products like

−a12 a21 (a33 − λ) , · · · , (ann − λ) .

Such a typical expression to the coefficient of λn−2 is

(−1)n−2 (a11a22 − a12a21) = (−1)n−2

∣∣∣∣ a11 a12
a21 a22

∣∣∣∣ .
From this, it is apparent that the term of degree (n− 2) in Δ(λ) is just

(−λ)n−2 times the sum of all the 2× 2 determinants of the form∣∣∣∣ aii aij
aji ajj

∣∣∣∣, where i < j.

Example 4.1:
Determine the eigenvalues and eigenvectors of the matrix

A =

[
2 −1
2 4

]
.

Solution:
Consider a 2× 2 matrix

A =

[
2 −1
2 4

]
. (4.4)

Let X =

[
x1
x2

]
be a column vector.

The case for the vector X =

[
x1
x2

]
to be an eigenvector of A is that

AX = λX, for some scalarλ ∈ R. (4.5)

Eqn (4.5) is equivalent to

(A− λI2)X = 0v , (4.6)
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which asserts that X is a solution of the linear system,
i.e., [

2− λ −1
2 4− λ

] [
x1
x2

]
=

[
0
0

]
. (4.7)

For non-trivial solutions x1 and x2 of eqn (4.7), the determinant of the
coefficient matrix A− λI2 must vanish,

i.e., ∣∣∣∣ 2− λ −1
2 4− λ

∣∣∣∣ = 0, (4.8)

which implies
λ2 − 6λ+ 10 = 0. (4.9)

Upon solving eqn (4.9), the roots of this quadratic equation (4.9) can be
obtained as λ1 = 3 +

√−1 and λ2 = 3 − √−1, which are the eigenvalues
of the matrix A. The corresponding eigenvectors of eqn (4.6) can be found by
using these values of λ in the equations

(A− λI2)X = 0v , i.e., (A− λ1I2)X = 0 and (A− λ2I2)X = 0.
Now for the case of λ = λ1, we get

(A− λ1I2)X = 0

⇒
(−1−√−1

)
x1 − x2 = 0

2x1 +
(
1−√−1

)
x2 = 0

. (4.10)

Thus, the general solution of system (4.10) is
x1 =

k
2

(−1 +
√−1

)
and x2 = k, where k is an arbitrary scalar.

Therefore, the eigenvectors of A associated with the eigenvalue λ1 are the
non-zero vectors of the form

k

[
(−1+

√−1)
2
1

]
.

Similarly, the eigenvectors for the eigenvalue λ = λ2 = 3 − √−1 can
also be found in vector form as

l

[
(−1−√−1)

2
1

]
,

where l �= 0.
These two vectors, jointly with the zero vector, form a one-dimensional

subspace of R2.
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Theorem 4.1:
Let λ be an eigenvalue of an n × n matrix A. The set of all eigenvectors

analogous to the eigenvalue λ, together with the zero vector 0v , is a subspace
of Rn. This subspace is called the eigenspace of the eigenvalue λ.

Proof:
Let X be the set of all eigenvectors of the matrix A corresponding to the

eigenvalues λ, together with the zero vector 0v.
To show that the set X is a subspace, we have to show that X is closed

under the operation of vector addition and scalar multiplication.
Let X1 and X2 be two eigenvectors in X and let λ be a scalar.
Then AX1 = λX1 and AX2 = λX2.
This gives

AX1 + AX2 = λX1 + λX2

⇒ A (X1 + X2) = λ (X1 + X2) .

Thus, X1 + X2 is an eigenvector corresponding to X.
Hence, X is closed under the operation of vector addition.
Further, since

AX1 = λX1,

then for any scalar c,

⇒ cAX1 = cλX1

⇒ A (cX1) = λ (cX1)
.

Therefore, cX1 is also an eigenvector corresponding to the eigenvalue λ.
Thus, X is closed under scalar multiplication.
Hence, X is a subspace of Rn called the eigenspace of the eigenvalue λ.

Remark: An eigenvalue λ is said to be of multiplicity k if the eigenvalue
occurs as k times repeated roots of the characteristic equation.

Example 4.2:
Let λ1, λ2, · · · , λn be the eigenvalues and X1,X2, · · · ,Xn be the cor-

responding eigenvectors of an n × n matrix A. Prove that if c �= 0, then
the eigenvalues of cA are cλ1, cλ2, · · · , cλn with corresponding eigenvectors
X1,X2, · · · ,Xn.

Note: Every characteristic polynomial of a real matrix may not have real
eigenvalues in R, while the complex matrices always have all their eigen-
values and eigenvectors in C.
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Example 4.3:

Let us consider a matrix A =

[
0 1
−1 0

]
whose characteristic polyno-

mial is λ2+1, which implies that it has no real roots. Thus, the matrix has no
real eigenvalues in R.

However, if the matrix A is complex, its characteristic equation will have
n complex roots, some of which may be equal.

Let us define a theorem for the eigenvalue and eigenvectors of a matrix
defined on a complex field C.

Theorem 4.2:
Let A be an n× n complex matrix. Then

(1) The eigenvalues of the matrix A are precisely the n roots of the
characteristic polynomial det (A− λIn).

(2) The eigenvectors of the matrix A associated with an eigenvalue λ are the
non-zero vectors in the null space of the matrix A− λIn.

Example 4.4:
Find the eigenvalues and eigenvectors of the matrix

A =

[
2 −1
−2 4

]
.

Solution:
The characteristic polynomial of the matrix

A =

[
2 −1
−2 4

]
is

∣∣∣∣ 2− λ −1
−2 4− λ

∣∣∣∣ = λ2 − 6λ+ 10.

The eigenvalues of the matrix A are the roots of the characteristic
equation, i.e.,

λ2 − 6λ+ 10 = 0,

which gives
λ1 = 3 +

√−1 and λ2 = 3−√−1 .
The eigenspaces of λ1 and λ2 are generated by the vectors

r

[
(−1+

√−1)
2
1

]
and s

[
−(1+

√−1)
2
1

]
, respectively.
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Example 4.5:
Determine the eigenvalues of the upper triangular matrix

A =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n
0 a22 · · · a2n
...

...
...

...
0 0 · · · ann

⎤
⎥⎥⎥⎦ .

Solution:
The characteristic polynomial of the upper triangular matrix A is⎡

⎢⎢⎢⎣
a11 − λ a12 · · · a1n

0 a22 − λ · · · a2n
...

...
...

...
0 0 · · · ann − λ

⎤
⎥⎥⎥⎦ ,

which, by definition, equals

(a11 − λ) (a22 − λ) · · · (ann − λ) .

Thus, the eigenvalues of the matrix A are, therefore, just the diagonal
entries of the upper triangular matrix, i.e., a11, a22, · · · , ann.
Example 4.6:

Find the eigenspace of the matrix

A =

⎡
⎣ 2 −1 −1

−1 2 −1
−1 −1 0

⎤
⎦ .

Solution:
Consider a 3× 3 matrix

A =

⎡
⎣ 2 −1 −1

−1 2 −1
−1 −1 0

⎤
⎦ .

The characteristic polynomial of this matrix A is∣∣∣∣∣∣
2− λ −1 −1
−1 2− λ −1
−1 −1 −λ

∣∣∣∣∣∣ = −λ3 + 4λ2 − λ− 6.
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It can be easily guessed that a root of this cubic polynomial is λ = −1.
Divide the polynomial by λ + 1 using long division so that we get the

quotient
−λ2 + 5λ− 6 = − (λ− 2) (λ− 3) .

Thus, the characteristic polynomial of the matrix A can be entirely fac-
torized as − (λ+ 1) (λ− 2) (λ− 3), and the eigenvalues of the matrix A are
−1,−2 and 3.

The corresponding eigenvectors can be found by solving the equation
(A+ I3)X = 0, (A− 2I3)X = 0, and (A− 3I3)X = 0
for different eigenvalues λ.
Upon solving the above equations, we can obtain that the respective

eigenvectors X, which are the non-zero scalar multiples of the vectors, as

k1

⎡
⎣ 1

1
2

⎤
⎦ , k2

⎡
⎣ 1

1
−1

⎤
⎦ and k3

⎡
⎣ 1

−1
0

⎤
⎦.

Hence, the eigenspaces of λ are generated by these three vectors

k1

⎡
⎣ 1

1
2

⎤
⎦ , k2

⎡
⎣ 1

1
−1

⎤
⎦, and k3

⎡
⎣ 1

−1
0

⎤
⎦, where each has dimension 1.

In general, one can prove by considering the properties of characteristic
polynomials that the following statement is true.

Corollary 4.1:
Let us consider an n × n square matrix A. Then the eigenvalue product

is equal to the determinant of the matrix A, and the sum of the eigenvalues
equals the trace of A.

Theorem 4.3:
Let us consider an n× n square matrix A over the complex field C. Then

the matrix A has at least one eigenvalue.

Theorem 4.4:
Suppose X1,X2, · · · ,Xn are the non-zero eigenvectors of a matrix A

belonging to distinct eigenvalues λ1, λ2, · · · , λn. Then the eigenvectors
X1,X2, · · · ,Xn are linearly independent.

Theorem 4.5:
IfΔ(λ) is the characteristic polynomial of an n× n matrix A, which is a

product of n-distinct factors, say

Δ(λ) = (λ− a11) (λ− a22) · · · (λ− ann) .
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Then the matrix A is similar to the diagonal matrix D =
diag (a11, a22, · · · ann).
Definition 4.2:

Let λ be an eigenvalue of a matrix A. Then the algebraic multiplicity of
the eigenvalue is defined as the multiplicity of the characteristic polynomial
of the matrix A.

The geometric multiplicity of the eigenvalue λ is defined as the dimension
of its eigenspace, i.e., dimEλ.

Theorem 4.6:
The geometric multiplicity of an eigenvalue λ of a matrix A does not

exceed its algebraic multiplicity, i.e., G.M ≤ A.M .

Theorem 4.7:
The eigenvalues λ of a real symmetric matrix A are all real.

4.4 Cayley-Hamilton Theorem

Theorem 4.8 (Cayley-Hamilton theorem):
A matrix A satisfies its own characteristic equation.

Proof:
Let P = A− λIn and

ΔP (λ) = detP
= p0 + p1λ+ p2λ

2 + · · ·+ pn−1λ
n−1 .

Consider the adjoint of the matrix P as adj P. By the definition of
determinant, there is an n × n matrix whose entries are polynomials in λ
of degree at most n− 1; so we have

adjP = P0 + P1λ+ P2λ
2 + · · ·+ Pn−1λ

n−1,

for some n× n matrices P0,P1,P2, · · · ,Pn−1.
Since, by definition, for every n× n matrix A, we have

A. adjA = (detA) In = adjA.A.

So here we have
P.adjP = (detP) In,

which implies

(detP) In = P. adjP

= (A− λIn) .adjP
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= A. adjP− λIn. adjP.

We have the polynomial identity

p0In + p1Inλ+ p2Inλ
2 + · · ·+ pnInλ

n = AP0 + AP1λ+ AP2λ
2 + · · ·+

APn−1λ
n−1 − P0λ− P1λ

2 − P2λ
3 − · · · − Pn−1λ

n.

On equating the coefficient of like powers, we obtain

p0In = AP0

p1In = AP1 − P0
...
pn−1In = APn−1 − Pn−2

pnIn = −Pn−1

On multiplying the first equation on the left by A0 = In and similarly the
second equation by A, the third equation by A2 and so on, we obtain

p0In = AP0

p1A = A2P1 − AP0
...
pn−1An−1 = AnPn−1 − An−1Pn−2

pnAn = −AnPn−1

.

Adding these equations together, we obtainΔA (A) = 0.

Note: The Cayley-Hamilton theorem is quite significant, stating that an n×n
matrix should satisfy a polynomial equation of degree n.

4.5 Google, Demography, and Weather Prediction

We now look at applications of eigenvectors. We discuss the role of eigenval-
ues and eigenvectors play in Google.

4.5.1 The Google search engine

Google is a web search engine that was developed by Lary Page and Sergey
Brin, when they were graduate students at Stanford University. There are
usually a huge number of webpages that correspond to a specific query.
Google finds pages that match that query and lists them in the order of
their page rank. Page rank in Google is a primary way of deciding a page’s
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importance to a given query. We now see that page rank is calculated from
the eigenvector of a very large matrix A (2.7× 2.7billion in 2002).

Let n be the number of pages that Google examines in a search; number
these pages from 1 to n. In searching the web page to page, Google finds that
some pages have outgoing links whereas other pages do not (are dead ends).
Let p be the fraction of the total number of pages searched that have outgoing
links. An n× n matrix G is defined as follows:

gij =

{
1if there is a link frompage i to page j
0otherwise

(G is, in fact, the adjacency matrix of the digraph having pages as vertices
and links as arcs.) Let cj be the sum of the elements in the jth column of G.
Then A is an n× n matrix defined by

aij = p

(
gij
cj

)
+

(
1− p

n

)
.

Google usually takes p = 0.85. A theorem in linear algebra called the
Perron−Frobiniuous theorem guarantees a matrix having the largest eigen-
value 1 with the corresponding eigenspace of dimension 1. Let x be an
eigenvector corresponding to λ = 1. Normalize x such that

∑
xi = 1. The

element s of this normalized vector is the Google page rank.
The determinant method introduced in this section can be used for finding

eigenvectors of small matrices but is not practical for large matrices and most
certainly not for a matrix of the size encountered in a Google search. The
Google company has not revealed how it calculates the eigenvector x of this
very large matrix A, but it is generally believed that it is based on the power
method.

More in-depth information on page rank can be found in

1. The World’s Largest Matrix Computations by Cleve Moler, MATLAB
News and Notes, October 2002, Pages 12−13.

2. Google Page Rank Explained by Phil Craven, www.webworkshop.net/
agerank.html.

Long-term prediction:
We now discuss how eigenvalues and eigenvectors can be used to

predict the long-term behavior of certain Markov chains. Applications in
demography and weather prediction are given.

Let us return to the population movement model where we found
that a sequence of vectors could describe annual population distributions

http://www.webworkshop.net/agerank.html
http://www.webworkshop.net/agerank.html


108 Eigenvalues and Eigenvectors

x0, x1 (= Px0) , x2 (= Px1) , x3 (= Px2) , · · · , P is a matrix of transition
probabilities that takes us from one vector in the sequence to the following
vector. Such a sequence (or chain) of vectors called a Markov chain of
particular interest are Markov chains called regular Markov chains where
the sequence x0, x1, x2, · · · converges to some fixed vector x where Px = x.
The population movement would then be in a “steady state,” with the total
city population and total suburban population remaining constant after that.
We then write

x0, x1, x2, · · · → x.

Since such a vector x satisfies Px = x, it would be an eigenvector
corresponding to eigenvalue 1. Knowledge of the existence and value of
such a vector would give us information about the long-term behavior of the
population distribution.

A particular class of Markov chains has these desired properties. We
now define this class, discuss their properties, and apply the results to our
population movement model to make long-term predictions.

Definition 4.3:
The transition matrix P of a Markov chain is said to be regular if all the

components’ power is positive. The chain is then called a regular Markov
chain.

For example:

A =

[
0.3 0.6
0.7 0.4

]
is regular because all the elements are positive.

B =

[
0.7 1
0.3 0

]
is regular, because B2=

[
0.79 0.7
0.21 0.3

]
.

C =

[
0.4 0
0.6 1

]
is not regular, because

C2=

[
0.16 0
0.84 1

]
C3=

[
0.064 0
0.936 1

]
.....

The element in row 1, column 2, will always be zero.
The following theorem, which we do not prove, leads to information

about the long-term behavior of Markov chains.

Theorem 4.9:
Consider a regular Markov chain having an initial vector x0 and transition

matrix P. Then
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1. x0, x1, x2, · · · → x where x satisfies Px = x. Thus, x is an eigenvector
of P corresponding to λ = 1.

2. P,P2,P3, · · · → Q, where Q is a stochastic matrix. The columns of Q
are all identical, each being an eigenvector of P corresponding to λ = 1.

Let us now apply this theorem to population movement.

4.5.2 Population prediction

Example 4.7:
Determine the long-term trends in population movements between US

cities and suburbs.

Solution:
We remind the reader of the model that was developed earlier. The

population of US cities and suburbs in 2007 were described by the following
vector x0 (in units of one million), and Markov chains give the populations in
the following years with the transition matrix P.

InitialFrom
Populations city suburb to

x0 =

[
82
163

]
city

suburb
,P =

[
0.96 0.01
0.04 0.99

]
city

suburb

.

Observe that all the elements of P are positive. Therefore, the chain is
regular, and the preceding theorem results can be applied to give the long-
term trends. The theorem tells us that P will have an eigenvalue of 1 and that
the steady-state vector x is a corresponding eigenvector. Thus,

Px = x
⇒ (P− I2) x = 0

⇒
[
0.96− 1 0.01
0.04 0.99− 1

] [
x1
x2

]
= 0

.

This leads to the system of equations

−0.04x1 + 0.01x2 = 0
0.04x1 − 0.01x2 = 0

.

Giving x2 = 4x1. The solution to this system of equations is x1 = r, x2 =
4r where r is a scalar. Thus, the eigenvectors of P that correspond to λ = 1
are non-zero vectors of the form

r

[
1
4

]
.
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The steady-state vector x will be a vector of this form. Let us assume that
there is no total annual population change over the years. Therefore, the sums
of the elements of x and x0 are equal.

r + 4r = 82 + 163
r = 49

.

The steady-state vector is thus

x =

[
49
196

]
.

This implies the following long-term prediction:
US cities populations→ 49 million.
US suburban populations →196 million.
The above theorem gives further information about long-term population

trends. Each column of the matrix Q is an eigenvector corresponding to the
eigenvalue 1. Let

Q =

[
s s
4s 4s

]
.

Since Q is a stochastic matrix, the sum of the elements in each column is
1. Thus,

s+ 4s = 1
s = 0.2

.

We get (exhibiting the elements to two decimal places for ease of reading)

P P2 P3 Q[
0.96 0.01
0.04 0.99

]
,

[
0.92 0.02
0.08 0.98

]
,

[
0.89 0.03
0.11 0.97

]
· · · →

[
0.2 0.2
0.8 0.8

]
.

Let us interpret these results. We focus on the (2, 1) element in each
matrix, and a similar interpretation will apply to the other elements. We get
the sequence

0.04, 0.08, 0.11, · · · → 0.8.

These are the probabilities of moving from city to suburbia in one year,
two years, three years, etc. The probability gradually increases approaching
0.8. Q is thus the long-term transition matrix of the model. It gives the long-
term probabilities of living in a city or suburbia.

(from)
city suburb (to)

Q =

[
0.2 0.2
0.8 0.8

]
city

suburb

.
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Observe that the long-term probability of living in the city is 0.2, while the
long-term probability of living in suburbia is 0.8. These probabilities are inde-
pendent of initial locations. The long-term probabilities being independent of
the initial state are a characteristic of regular Markov chains.

We now discuss an interesting application of Markov chains in a model
that describes rainfall in Tel Aviv.

4.5.3 Weather in Tel Aviv

Example 4.8:1

The probabilities used were based on daily rainfall data in Tel Aviv
(Nahami Street) for the 27 years from 1923 to 1950. Days were classified
as wet or dry according to whether or not there had been recorded at least
0.1 mm of precipitations in the 24 hours from 8 a.m. to 8 a.m. the following
day. A Markov chain was constructed for each of the months from November
through April, these months constituting the rainy season. We discuss the
chain developed for November. The model assumes that the probability of
rainfall on any day depends only on whether the previous day was wet or dry.
The statistics accumulated over the years for November were

A given day Following day
Wet 117 out of 195
Dry 80 out of 615

Thus, the probability of a wet day following a wet day is 117
195 = 0.6.

The probability of a wet day following a dry day is 80
615 = 0.13. These

probabilities lead to the following transition matrix for the weather pattern
in November.

(A given day)
wet dry

P =

[
0.6 0.13
0.4 0.87

]
wet
dry

(following day)
.

On any given day in November, one can use P to predict the weather
on a future day in November. For example, if today a Wednesday is wet, let
us compute the probability that next Saturday will be dry. Saturday is three
days; hence, the various probabilities for the weather on Saturday will be

1K. R. Gabriel and J. Nemann have developed a Markov chain model for daily rainfall
occurrence at Tel Aviv, Quart J. R. Met. Soc., 88(1962), 90−95.
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given by the elements of P3. It can be shown that (exhibiting the elements to
two decimal places for ease of reading)

(Today −Wednesday)
wet dry

P3 =

[
0.32 0.22
0.68 0.78

]
wet
dry

(Saturday)

If today is wet, the probability of Saturday being dry is 0.68.
Observe that P, the matrix of transition probabilities, is regular. Eigen-

vectors can thus be used to obtain long-term weather predictions. The
eigenvectors of P corresponding to the eigenvalue 1 are found to be non-zero
vectors of the form

r

[
0.325
1

]
.

The column vectors of the long-term transition matrix Q will be eigen-
vectors of this type, whose components add up to 1, since Q is stochastic.
Therefore, 0.325r + r = 1 giving r = 0.75(to 2 decimal places). Thus,

Q =

[
0.25 0.25
0.75 0.75

]
.

We can interpret this matrix as follows:

(Today)
wet dry[
0.32 0.22
0.68 0.78

]
wet
dry

(day in the distant future)
.

This implies the following weather forecast for Tel Aviv in November.
Long-range forecast for Tel Aviv in November:

0.25 probility wet
0.75 probability dry

.

4.5.4 Weather in Belfast

Example 4.9:
A matrix model for weather in Belfast, Northern Ireland, is given by

William J. Stuart in Introduction to Numerical Solution of Markov Chains
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(Princeton University Press, 1994, 6). Three weather conditions are consid-
ered rainy (R), cloudy (C), and sunny (S).

The matrix describes daily changes.

(A given day)
R C S

P =

⎡
⎣ 0.8 0.15 0.05

0.7 0.2 0.1
0.5 0.3 0.2

⎤
⎦ R

C
S

(following day)
.

Thus, for example, if today is cloudy, the probability that tomorrow is
sunny is 0.3. The eigenvectors corresponding to the eigenvalue 1 are found to
be of the form

r

⎡
⎣ 1

1
1

⎤
⎦ .

Using r = 1
3 leads to the stochastic matrix that describes the long-term

forecast,

(today)
R C S

Q =

⎡
⎢⎢⎢⎢⎢⎢⎣

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

⎤
⎥⎥⎥⎥⎥⎥⎦

R

C

S

(day in the distant future)
.

There is the same probability for any future day in Belfast to be rainy,
cloudy, or sunny.

Exercises

1. Determine the eigenvalues and the corresponding eigenspaces for the
following matrices:

(a)

[
3 1
6 2

]
(b)

[
0 −1
1 0

]
(c)

[
0 3
2 −1

]

(d)

⎡
⎣ 3 2 4

2 0 2
4 2 3

⎤
⎦ (e)

⎡
⎣ 1 0 0

2 1 0
3 2 0

⎤
⎦ (f)

⎡
⎣ 0 i i

i 0 i
i i 0

⎤
⎦
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(g)

⎡
⎢⎢⎣

3 2 1 0
0 1 0 1
0 2 −1 0
0 0 0 1

2

⎤
⎥⎥⎦.

2. Diagonalize the matrices of (b), (c), and (g) in problem 1.

3. Find the characteristic polynomial of the matrix⎡
⎢⎢⎣

1 0 0 0
−1 i 0 0
2 1

2 −i 0
1
3 −i π −1

⎤
⎥⎥⎦, diagonalize the matrix, if possible.

4. If λ is an eigenvalue of the matrix A, prove that
(a) λ2 is an eigenvalue of A2.
(b) λn is an eigenvalue of An.
(c) αλ is an eigenvalue of αA , where α is a scalar.
(d) g (λ) is an eigenvalue of g (A), where g is a polynomial.

5. If X is an eigenvector of A corresponding to the eigenvalue λ, prove that
(a) X is an eigenvector of An corresponding to the eigenvalue λn.
(b) X is an eigenvector of g (A) corresponding to the eigenvalue g (λ).

6. Prove that λ = 0 is an eigenvalue of the matrix A iff A is singular.

7. If λ is an eigenvalue of the matrix A, prove that
(a) λ is also an eigenvalue of AT .
(b) 1

λ is an eigenvalue of A−1, if A is non-singular.

8. If X is an eigenvector of A corresponding to the eigenvalue λ, prove that
(a) X need not be an eigenvector of AT corresponding to the eigenvalue
λ.
(b) X is an eigenvector of A−1 (if A is non-singular) corresponding to
the eigenvalue 1

λ .

9. Prove that the eigenvalues of a triangular matrix are its diagonal
elements.



5
Linear Transformation

This chapter discusses an integral part of this subject, i.e., linear trans-
formations, including the range and Kernel of transformation, one-to-one
and invertible transformation, coordinate representation, change of basis,
isomorphism, matrix of linear transformations, visualization of the matrix
representation, and relation between matrix representation. The significance
of vector spaces arises from the fact that we can pass from one vector space
to another by means of functions that possess a particular property called
linearity. These functions are called linear transformations.

This chapter aims to familiarize the students with the fundamental prop-
erties of linear transformations. A topic such as a Kernel, range, and rank
nullity theorem are presented here. Linear transformations, range and Kernel,
are used to give the reader a geometrical picture of the sets of solutions
to systems of linear operations, both homogenous and non-homogenous.
The rank nullity theorem and its consequences are presented in detail. The
theory developed so far is applied to operator equations and, in particular,
to differential equations. This application discloses that the solution space
of the nth-order homogenous linear ordinary differential equations is an
n-dimensional subspace of n-times continuously differentiable functions.

5.1 The Idea of a Linear Transformation

Definition 5.1:
Let V and W be vector spaces defined over the same field of scalar F .

Let v1 and v2 be vectors inV and let k be a scalar.
A linear transformation (or linear mapping) from V to W is a function

T : V → W that is said to be linear. If

T (v1 + v2) = T (v1) + T (v2) .

T (kv) = k T (v) .

For all v1, v2 ∈ V and k ∈ F.

115
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Shortly, the transformation T is necessary to act linearly on the sum and
scalar multiples of the vectors inV. If T : V → V is a linear transformation,
then we shall say that T defines a linear identity operator onV.

The operation of addition and scalar multiplication preserves under a
linear transformation.

Example 5.1:

(1) LetV andW be two vector spaces defined over the same field F .
Then the transformation that sends every vector V into the zero vector
inW is called a zero linear transformation. It is denoted by 0w or 0.

(2) The transformation Iv : V → V terms as the linear identity operator on
V.

Example 5.2:
Prove that the transformation T : R2 → R2 defined by
T (x1, x2) = (2x1, x1 + x2) is linear.

Example 5.3:
Let Pn (R) be the vector space of the real polynomial function deg ≤

n. Show that the following transformation T : P2 → P1 defined by
T
(
ax2 + bx+ c

)
= (a+ b)x+ c is linear.

Theorem 5.1:
Let T : V → W be a linear transformation. Let 0v and 0w be the zero

vectors of V and W. Then T (0v) = 0w, i.e., a linear transformation T maps
a zero vector into a zero vector.

Proof:
Let T : V → W be a linear transformation.
Let v ∈ V, w ∈ W, and T (v) = w.
Let 0 be the zero scalars.
Since 0.0u = and 0.v = 0v and T is linear, so we get

T (0v) = T (0.v) = 0.T (v) = 0.w = 0w.

5.2 The Range and Kernel of Transformation

Definition 5.2:
The vector sets in V that mapped into the zero vector in W under the

transformation T : V → W are called the Kernel of T, denoted by Ker (T).
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Kernel
All vectors inV that are mapped into 0.

Range
All vectors inW that are images of vectors inV.

Figure 5.1 The Range and Kernel of Transformation.

Similarly, the vector sets in W that are the images of vectors in V are
called the range of T. The range of T is denoted by Range (T), as shown
Figure 5.1

Theorem 5.2:
Let T : V → W be a linear transformation. Then

(1) The Ker (T) is a subspace ofV.
(2) The Range (T) is a subspace ofW.

Proof:
We know that the Ker (T) is non-empty since it contains the zero vector

inV.
To prove that the Kernel is a subspace of V, it remains to show that it is

closed under addition and scalar multiplications.
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Closure under addition:
Let v1, v2 ∈ Ker (T).
Thus, T (v1) = 0w and T (v2) = 0w.
Now by using the linearity of T, we get

T (v1 + v2) = T (v1) + T (v2) = 0w + 0w = 0w.

This implies that the vector v1 + v2 maps into the zero vector 0w in W.
Thus,

v1 + v2 ∈ Ker (T) .

Let us now show that theKer (T) is closed under scalar multiplication.
Let k ∈ F be a scalar.
Again, using the linearity of T, we get
T (kv1) = kT (v1) = k.0w = 0w, which implies that the vector kv1 maps

into the zero vector 0w inW.
Thus, kv1 ∈ Ker (T).
Since the Ker (T) is closed under addition and scalar multiplication

operations, Ker (T) is a subspace ofV.
The previous theorem tells us the range is non-empty since it contains the

zero vector of V.
To prove that the range is a subspace of V, it remains to show that it is

closed under addition and scalar multiplications.
Let w1 and w2 be elements of Range (T).
Thus, there exist vectors v1 and v2 in the domainV such that

T (v1) = w1 and T (v2) = w2

.
Using the linearity of T ,

T (v1 + v2) = T (v1) + T (v2) = w1 + w2.

The vector w1 + w2 is the image of v1 + v2.
Thus, w1 + w2 is in the range.
Let k be a scalar. By the linearity of T ,

T (kv1) = kT (v1) = kw1.

The vector kw1 is the image of kv1. Thus, kw1 is in the range.
Since the range is closed under addition and scalar multiplication,

Range (T) is a subspace ofW, as shown in Figure 5.2.
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Example 5.4:
Determine the Ker (T) and Range (T) of the linear operator

T (x1, x2, x3) = (x1, x2, 0).

Solution:
Here, T : R3 → R3. So the Ker (T ) and Range (T) will both be

subspaces of R3.

Kernel of T:
Since the Ker (T) is the subset that maps into the zero vector (0, 0, 0) of

R3, we see that

T (x1, x2, x3) = (x1, x2, 0) = (0, 0, 0) .

If x1 = 0 and x2 = 0 , thenKer (T) is the set of all vectors of the form
(0, 0, x3).

Geometrically, Ker (T) is the set of all vectors that lie on the z axis, as
shown in Figure 5.2.

Projection: f (x1, x2, x3) = (x1, x2, 0)

Figure 5.2 Range of T and Kernel of T.
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Range:
The Range (T) is the set of all vectors of the form (x1, x2, 0). Thus,

Range (T) = {(x1, x2, 0)}.
It implies Range (T) is the set of all vectors that lie in the xy-plane.

5.3 One-to-One Transformation and Inverse
Transformation

An element in the range of a transformation may be the image of a single
component or multiple elements in the domain.

Definition 5.3:
A linear transformation T : V → W is said to be one to one if each

element in the rangeW is the image of just one component of the domainV.
The transformation T is said to be one to one if T (v1) = T (v2) implies

v1 = v2, as shown in Figure 5.3.

T is one to one

T is not one to one

Figure 5.3 One to one transformation.
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Example 5.5:
A linear transformation T : V → W defined by

(1) T (x) = 2x is one to one.
(2) T (x) = x2 is not one to one.

Theorem 5.3:
A linear transformation T : V → W is said to be one to one if and only

if the Ker (T) is a zero vector.

Proof:
Let us consider that the linear transformation T : V → W is one to one.

Claim:
The Ker (T) consists of all the vectors in V that map into zero vector of

W.
Since the linear transformation T : V → W is one to one, the Ker (T)

must consist of a single vector.
Still, we identify that the zero vector must be in the Ker (T).
Thus, the Ker (T) is the zero vector.
Conversely, let us suppose that the Ker (T) is the zero vector.
Let v1 and v2 be vectors inV such that

T (v1) = T (v2) .

Using the linear property of T, we get

T (v1)− T (v2) = 0w

⇒ T (v1 − v2) = 0w.

Thus, v1 − v2 is in the Ker (T).
But the Ker (T) is a zero vector. Therefore,

v1 − v2 = 0w

⇒ v1 = v2.

Thus, the linear transformation T : V → W is one to one.

Theorem 5.4:
Let T : V → W be a linear transformation. Then

dim (ker (T)) + dim (range (T)) = dim domain (T) .
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Proof:
Let us assume that the Kernel consists of more than the zero vector and

that it is not the whole ofV.
Let v1, v2, . . . , vm be a basis for ker (T).
Add vectors vm+1, vm+2, . . . , vn to this set to give a basis v1, v2, . . . , vn

for V.
We shall show that T (vm+1) ,T (vm+2) , . . . ,T (vn) form a basis for the

range.
Thus, the theorem is proved.
Let v ∈ V be a vector inV.
Then the vector v can be expressed as a linear combination of the basis

vectors v1, v2, . . . , vn as follows:

v = a1v1 + a2v2 + · · ·+ amvm + am+1vm+1 + am+2vm+2 + · · ·+ anvn.

Thus,

T (v) = T (a1v1 + a2v2 + · · ·+ amvm + am+1vm+1

+am+2vm+2 + · · ·+ anvn) .

The linearity of T gives

T (v) = a1T (v1) + a2T (v2) + · · ·+ amT (vm)
+am+1T (vm+1) + am+2T (vm+2) + · · ·+ anT (vn)

.

Since v1, v2, . . . , vm are in the Kernel, this reduces to

T (v) = am+1T (vm+1) + am+2T (vm+2) + · · ·+ anT (vn) ,

which implies that T (v) represents an arbitrary vector in the range of T.
Thus, the vectors T (vm+1) ,T (vm+2) , . . . ,T (vn) span the range of T.
It remains to prove that these vectors T (vm+1) ,T (vm+2) , . . . ,T (vn)

are also linearly independent.
Consider the identity:

bm+1T (vm+1) + bm+2T (vm+2) + · · ·+ bnT (vn) = 0w,

where b′is are scalars. (i = m+ 1,m+ 2, ...., n).
The linearity of T implies that

T (bm+1vm+1 + bm+2vm+2 + · · ·+ bnvn) = 0w.
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This means that the vectors bm+1vm+1 + bm+2vm+2 + · · ·+ bnvn are in
the Kernel. Thus, it can be expressed as a linear combination of the basis of
the Kernel.

Let

bm+1vm+1 + bm+2vm+2 + · · ·+ bnvn = c1v1 + c2v2 + · · ·+ cmvm.

⇒bm+1, bm+2, . . . , bn are all zero.
⇒T (vm+1) ,T (vm+2) , . . . ,T (vn) are linearly dependent.
⇒ The set of vectors T (vm+1) ,T (vm+2) , . . . ,T (vn) is a basis for the

range.
Hence proved.

Theorem 5.5:
The linear transformation T : Rn → Rn defined by T (X) = AX is one

to one if and only if the matrix A is non-singular.

Proof:
Let us consider the linear transformation T : Rn → Rn to be one to one.
Thus, Ker (T) = 0w.
Hence, the rank nullity theorem implies dim (RangeT) = n.
It implies that the n columns of the matrix A are linearly independent.
Thus, the Rank is n, and hence the matrix A is non-singular, i.e., |A| �= 0.

Conversely:
Assume that the matrix A is non-singular, i.e., |A| �= 0.
This implies that the Rank of A is n.
Since the Rank of A is n, it implies that the n column vectors of the matrix

A are linearly independent.
Thus, dim (RangeT) = n.
Hence, the rank nullity theorem implies that Ker(T) = 0w.
This implies that the linear transformation T : Rn → Rn is one to one.

Remark:
A linear transformation T : Rn → Rn defined by T (X) = AX with

|A| �= 0 is said to be a non-singular transformation.

Example 5.6:
Determine whether the linear transformations TA and TB defined by the

following matrices are one to one or not.

(1) A =

⎡
⎣ 1 −2 5 7

0 1 9 8
0 0 1 3

⎤
⎦
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(2) B =

⎡
⎣ 2 0 −1

3 4 2
0 7 5

⎤
⎦.

Solution:
Since the rows of the matrix A are linearly independent.
It implies that Rank (A) = 3.
⇒dim (Range (TA)) = 3.
Now the domain of TA is R4.
So, it implies that dim domain (TA) = 4.
Thus, by the rank nullity theorem, dim (ker (TA)) = 1.
And since dim (ker (TA)) �= 0,
it implies that the Kernel is not the zero vector.
Thus, the mapping is not one to one.
Since |B| = −9 �= 0,
⇒ the matrix B is non-singular;
⇒ the transformation TB is one to one.

Theorem 5.6:
Let T : V → W be a one-to-one linear transforma-

tion. If the set {v1, v2, . . . , vn} is linearly independent in V, then
{T (v1) ,T (v2) , . . . ,T (vn)} is linearly independent in W, that is, one-to-
one linear transformation preserves linear independence.

Proof:
Let us consider the identity

a1T (v1) + a2T (v2) + · · ·+ anT (vn) = 0w,

having scalars a1, a2, . . . , an ∈ F.
Since the transformation T : V → W is linear, it may be written as

T (a1v1 + a2v2 + · · ·+ anvn) = 0w.

Since the transformation T is one to one, the Kernel is the zero vector,
i.e., 0w. Therefore,

a1v1 + a2v2 + · · ·+ anvn = 0w.

But the set {v1, v2, . . . , vn} is linearly independent.
Thus, a1 = 0 , a2 = 0, . . . , an = 0.
⇒The set {T (v1) ,T (v2) , . . . ,T (vn)} is linearly independent.
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5.4 Invertible Linear Transformation

Definition 5.4:
Let T : Rn → Rn be a linear transformation. Then the linear transfor-

mation T is said to be invertible, if there is a linear transformation S : Rn →
Rn, such that S (T (v)) = v and T (S (v)) = v for every vector v in Rn.

Remark:
If such a transformation S exists, then it is unique and linear.

Theorem 5.7:
Let T : Rn → Rn be a linear transformation. Then the transformation T

is invertible if and only if it is non-singular.

Proof:
Assume that T is invertible, So, by definition, there is a transformation S

such that T (S (u)) = u for every vector u in Rn.
Let S (u) = v imply that there is a vector v such that T (v) = u for every

vector u in Rn.
⇒ The range of T is thus Rn.
⇒Ker(T) is the zero vector.
⇒ The transformation T is one to one.
⇒ The transformation T is non-singular.

Conversely:
Assume that the transformation T is non-singular.
Let the standard matrix of T be A.
Since T is non-singular, A is invertible.
Thus, A−1 (Au) = u and A

(
A−1u

)
= u, for every vector u in Rn.

Let S be the linear transformation with the standard matrix A−1.
Then S (T (u)) = u and T (S (u)) = u.
⇒ The transformation S is invertible of T.
⇒ The transformation T is invertible.

Properties of invertible linear transformation:
Let T : X → AX be a linear transformation defined by T (u) = Au. Then

the following statements are equivalent.

(1) The transformation T is invertible.
(2) The transformation T is non-singular (|A| �= 0).
(3) The transformation T is one to one.
(4) The Kernel of the transformation T is the zero vector.
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(5) The range of the transformation T is Rn.
(6) The inverse transformation T−1 is linear.
(7) The matrix defines the inverse transformation T−1 is A−1.

Example 5.7:
Let us consider the linear transformation T : R2 → R2 defined by

T (x, y) = (3x+ 4y, 5x+ 7y) .

(1) Prove that the linear transformation T is invertible and find the inverse
of the linear transformation T.

(2) Find the pre-image of the vector (x, y) where (x, y) = (1, 2).

Solution:

(1) Let the linear transformation T be defined by

T
([

x
y

])
=

[
3x+ 4y
5x+ 7y

]
.

We find the images of the vectors on the standard basis

T
([

1
0

])
=

[
3
5

]
,T
([

0
1

])
=

[
4
7

]
.

These are the columns of the standard matrix A of T.
We find that A is invertible, proving that T has an inverse.

A =

[
3 4
5 7

]
,A−1 =

[
7 −4
−5 3

]
.

A−1 is the standard matrix of T−1, and we get

T−1

([
x
y

])
=

[
7 −4
−5 3

] [
x
y

]
=

[
7x− 4y
−5x+ 3y

]
.

Writing in row form for convenience

T−1 (x, y) = (7x− 4y,−5x+ 3y) .

(2) The pre-image of (1, 2)will be T−1 (1, 2), i.e., T−1 (1, 2) = (−1, 1), as
shown in Figure 5.4.
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Figure 5.4 Image and Preimage of transformation.

5.5 Transformation and Systems of Linear Equations

Linear transformations and the concepts of Kernel and the range of a linear
transformation play an essential role in analyzing linear equations.

We find that they enable us to visualize the set of solutions.

Set of all solutions to AX = Y. If Y is not in the range (all vectors mapped into Y), then
there is no solution.

Figure 5.5 Transformation of Systems of Linear Equations.
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A system ofm-linear equations in n-variables can be written in the matrix
form AX = Y, where A is anm×nmatrix, which is the matrix of coefficient
of the system, as shown in Figure 5.5.

The set of solutions is the set of all X’s that satisfy this equation.
We now have an exquisite way of looking at this solution set.
Let T : Rn → Rm be the linear transformation defined by the matrix A.
The system of the equation can now be written as T (X) = AX = Y.
It implies that the set of solutions is thus the set of vectors in Rn that are

mapped by T into the vector Y. If Y is not in the range of T, then the system
has no solution.
Homogenous system:

Theorem 5.8:
The set of solutions to a homogenous system AX = 0v of n-linear

equations in n-variables is a subspace of Rn.

Proof:
Let T : Rn → Rn be a linear transformation defined by T (X) = AX.
The set of solution vectors X is the set of vectors in Rn mapped by the

linear transformation T into the zero vector 0v.
The set of solutionsX is the Kernel of the transformation T and thus forms

a subspace.

Example 5.8:
Solve the following homogenous system of linear equations.

x1 + 2x2 + 3x3 = 0
−x2 + x3 = 0

x1 + x2 + 4x3 = 0
.

Interpret the set of solutions X as a subspace. Then, sketch the subspace
of solutions.

Solution:
Using the Gauss elimination method, we get⎡

⎣ 1 2 3 0
0 −1 1 0
1 1 4 0

⎤
⎦ ≈

⎡
⎣ 1 2 3 0

0 −1 1 0
0 −1 1 0

⎤
⎦

≈
⎡
⎣ 1 2 3 0

0 1 −1 0
0 −1 1 0

⎤
⎦ ≈

⎡
⎣ 1 0 5 0

0 1 −1 0
0 0 0 0

⎤
⎦.
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Thus,

x1 + 5x3 = 0

x2 − x3 = 0

⇒ x1 = −5x3 , x2 = x3.

On assigning the value r to x3, an arbitrary solution is thus

x1 = −5r , x2 = r , x3 = r.

The solutions of the system are vectors of the form (−5r , r , r).
These vectors (−5r , r , r) form a one-dimensional subspace ofR3 having

a basis (−5, 1, 1).
This subspace is the Kernel of the transformation T defined by the matrix

of coefficient A of the system, as shown in Figure 5.6.⎡
⎣ 1 2 3

0 −1 1
1 1 4

⎤
⎦ .

Figure 5.6 Subspace of solutions.

Non-homogenous system:
We now find that the set of solutions to a non-homogenous system of

linear equations does not form a subspace.
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Let AX = Y,(Y �= 0) be a non-homogenous system of linear equations.
Let X1 andX2 be solutions.
Thus,

AX1 = Y andAX2 = Y.

⇒ AX1 + AX2 = 2Y

⇒ A (X1 + X2) = 2Y.

Therefore, X1 + X2 does not satisfy AX = Y.
⇒ It is not a solution.
The set of solutions is not closed under addition.
⇒ It is not a subspace.

Remarks:
The set of solutions to a non-homogenous system is not itself a subspace.

The collection can be obtained by sliding a specific subspace.

Theorem 5.9:
Let us consider a non-homogenous system AX = Y of m-linear equa-

tions in n-variables. Suppose there is a particular solution X1 of the non-
homogenous system. Every other solution of AX = Y is expressed in the
form X = z + X1, where z is an element of the Kernel of the transformation
T and the solution are unique if the Kernel T consists of the zero vector
only.

Proof:
Let X1 be a solution to the non-homogenous system AX = Y.
Then AX1 = Y and let X be an arbitrary solution of AX = Y.
On equating both the systems AX1 and AX, we get

AX1 = AX
⇒ AX − AX1 = 0w
⇒ A (X − X1) = 0w
⇒ T (X − X1) = 0w

.

Thus, X − X1 ∈ Ker (T) and call it z.

⇒ X − X1 = z
⇒ X = z + X1

.

Note that this solution is unique if and only if the value of z is 0v, that is,
if the Ker (T) is the zero vector.
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Remark:
This result implies that the set of solutions to a non-homogenous system

of the linear equation AX = Y can be generated from the Kernel of the
transformation defined by the matrix of coefficient and a particular solution
X1. If we take any vector z in the Kernel and add X1 to it, then we get a
solution.

Geometrically:
It means that the set of solutions is obtained by sliding the Kernel in the

direction and distance defined by the vector X1, as shown in Figure 5.7.

Set of solutions to AX=Y.

Figure 5.7 Set of solutions to AX = Y.

Example 5.9:
Solve the following system of linear equations and sketch the set of

solutions:

x1 + 2x2 + 3x3 = 11

−x2 + x3 = −2

x1 + x2 + 4x3 = 9

Solution:
Using the Gauss-Jordan elimination method, we get⎡

⎣ 1 2 3 11
0 −1 1 −2
1 1 4 9

⎤
⎦ ≈

⎡
⎣ 1 2 3 11

0 −1 1 −2
0 −1 1 −2

⎤
⎦

≈
⎡
⎣ 1 2 3 11

0 1 −1 2
0 −1 1 −2

⎤
⎦ ≈

⎡
⎣ 1 0 5 7

0 1 −1 2
0 0 0 0

⎤
⎦
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⇒ x1 + 5x3 = 7
x2 − x3 = 2

⇒ x1 = −5x3 + 7
x2 = x3 + 2

.

Hence, the solution set is (−5r + 7, r + 2, r).
Here, we separate the part involving the parameter r from the constant

part. Thus, the part involving r will be in the Kernel of the transformation T
defined by T (X) = AX, while the continual part will be a particular solution
X1 to AX = Y.

(−5r + 7, r + 2, r) = r (−5, 1, 1) + (7, 2, 0) .

The Kernel of the mapping defined by the matrix of the coefficient is
indeed the vectors of the form r (−5, 1, 1). It can also be verified that (7, 2, 0)
is indeed a particular solution to the given system. The set of solutions can be
represented geometrically by sliding the Kernel, namely the line defined by
the vector (−5, 1, 1), in the direction and distance determined by the vector
(7, 2, 0), as shown in Figure 5.8.

Figure 5.8 Set of solutions to system of linear equations.

Many systems:
Consider several linear systems of homogenous equations

AX = Y1
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AX = Y2

AX = Y3

.....
AX = Yn

.

All systems are having the same matrix of coefficient A. Let T be the lin-
ear transformation defined by the matrix coefficient A and let X1,X2,X3, . . .
be particular solutions to these systems.

Then the sets of the solution to these systems are

Ker (T) + X1

Ker (T) + X2

Ker (T) + X3

......

.

These sets are parallel sets, each being the Ker (T) that is translated by
the amounts X1,X2,X3, . . .

Thus, for example, the solutions to the systems

x1 + 2x2 + 3x3 = a1

−x2 + x3 = a2

x1 + x2 + 4x3 = a3

will all be straight lines parallel to the line defined by the vector (−5, 1, 1).

5.6 Coordinate Representation

This section discusses the relationship between coordinate system and bases.
We have found that a linear transformation can be represented by a matrix
relative to a standard basis. We shall see that there is a matrix representation
relative to every basis. It will be interesting to find diagonal representation,
if possible, and determine the basis (or coordinate system) for which this
applies.

Eigenvalues and eigenvectors play an essential role in these discussions.
These techniques will enable us to find the most suitable coordinate system
for discussing physical situations such as vibrating string.

5.6.1 Coordinate vectors

We have discussed various types of vector spaces, the vector spaces Rn, the
space of matrices, and the space of functions.
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This section shall find how we can use vectors in Rn called coordinate
vectors to describe vectors in any real finite-dimensional vector spaces.

This discussion concludes that all finite-dimensional vector spaces are in
some mathematical sense the same as Rn.

Definition 5.5:
Let V be a vector space with a basis B = {u1, u2, . . . , un}, and let u be

a vector inV.
We know that there exist scalars a1, a2, . . . , an such that

u = a1u1 + a2u2 + · · ·+ anun.

The column vector VB =

⎡
⎢⎢⎢⎣

a1
a2
...
an

⎤
⎥⎥⎥⎦ is called the coordinate vector of V

relative to this basis. The scalars a1, a2, . . . , an are called the coordinates of
V relative to the basis.

Remark:
Here we shall use a column vector form for coordinate vectors rather than

row vectors.

Example 5.10:
Find the coordinate vectors of ū = (4, 5) relative to the following bases

B and Br of R2.

(1) The standard basis B = {(1, 0) , (0, 1)}.
(2) Br = {(2, 1) , (−1, 1)}.
Solution:

By observation, we see that

(4, 5) = 4 (1, 0) + 5 (0, 1) .

Thus, VB =

[
4
5

]
.

The given representation ofU is, in fact, relative to the standard basis.
Let us now find the coordinate vector ofV relative to Br, which is not the

standard basis.
Let (4, 5) = a1 (2, 1) + a2 (−1, 1).
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Thus,

(4, 5) = (2a1, a1) + (−a2, a2)

= (2a1 − a2, a1 + a2)

Comparing components leads to the following system of equations:

2a1 − a2 = 4

a1 + a2 = 5

This system has a unique solution a1 = 3 , a2 = 2.

Thus, VBr =

[
3
2

]
.

These coordinate vectors have geometrical interpretation, as shown in
Figure 5.9.

Denote the basis vectors as follows:

u1 = (1, 0) , u2 = (1, 0) and

u′1 = (2, 1) , u′2 = (−1, 1) .

We can write

u = 4u1 + 5u2 and u = 3u′1 + 2u′2

.Geometrical representation:

u = 4u1 + 5u2
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u = 3u′
1 + 2u′

2

Figure 5.9 Coordinate vectors relative to Basis.

In general, a linear equation system has to be solved to find a coordinate
vector relative to another basis. However, coordinate vectors can efficiently
compute relative to an orthonormal basis.

Example 5.11:
If B = {u1, u2, . . . , un} is an orthonormal basis for a vector space V,

then an arbitrary vector v inV can be expressed as

v = (v.u1)u1 + (v.u2)u2 + · · ·+ (v.un)un.

Thus, the coordinate vector is

VB =

⎡
⎢⎢⎢⎣

v.u1
v.u2
...
v.un

⎤
⎥⎥⎥⎦ .

Example 5.12:
Find the coordinate vector of (2,−5, 10) relative to the orthonormal basis,

B =

{
(1, 0, 0) ,

(
0,

3

5
,
4

5

)
,

(
0,

4

5
,−3

5

)}
.
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Solution:
We get

(2,−5, 10) . (1, 0, 0) = 2

(2,−5, 10) .

(
0,

3

5
,
4

5

)
= 5

(2,−5, 10) .

(
0,

4

5
,−3

5

)
= −10.

Thus, VB =

⎡
⎣ 2

5
−10

⎤
⎦.

Note:
There are occasions when bases other than orthonormal bases better fit

the situation. It becomes necessary to know how coordinate vectors relative
to different bases are related.

This is the topic of our subsequent discussion.

5.7 Change of Basis

Let B = {u1, u2, . . . , un} and Br = {u′1, u′2, . . . , u′n} be bases for a vector
space V. A vector u in V will have coordinate vectors VB and VBr relative
to these bases. We now discuss the relationship between VB and VBr .

Let the coordinate vectors of u1, u2, . . . , un relative to the basis Br =
{u′1, u′2, . . . , u′n} be (u1)Br

, (u2)Br
, . . . , (un)Br

.
The matrix P having these vectors as columns plays a central role in our

discussion. It is called the transition matrix from the basis B to the basis Br.

Transition matrix:

P =
{
(u1)Br

, (u2)Br
, . . . , (un)Br

}
.

Theorem 5.10:
Let B = {u1, u2, . . . , un} and Br = {u′1, u′2, . . . , u′n} be bases for a

vector space V. If u is a vector in V having coordinate vectors VB and VBr

relative to these bases, then VBr = PVB. Here P is the transition matrix from
B to Br, that is, P =

{
(u1)Br

, (u2)Br
, . . . , (un)Br

}
.

Proof:
Since {u′1, u′2, . . . , u′n} is the basis for V, each of the vectors

u1, u2, . . . , un ofV can be expressed as a linear combination of these vectors.
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Let
u1 = c11u

′
1 + c21u

′
2 + · · ·+ cn1u

′
n

u2 = c12u
′
1 + c22u

′
2 + · · ·+ cn2u

′
n

.........................................
un = c1nu

′
1 + c2nu

′
2 + · · ·+ cnnu

′
n

.

If u = a1u1 + a2u2 + · · ·+ anun, then we get

u = a1u1 + a2u2 + · · ·+ anun
= a1 (c11u

′
1 + c21u

′
2 + · · ·+ cn1u

′
n) + a2 (c12u

′
1 + c22u

′
2 + · · ·+ cn2u

′
n)

+ · · ·+ an (c1nu
′
1 + c2nu

′
2 + · · ·+ cnnu

′
n)

= (a1c11 + a2c12 + · · ·+ anc1n)u
′
1 + (a1c21 + a2c22 + · · ·+ anc2n)u

′
2

+ · · ·+ (a1cn1 + a2cn2 + · · ·+ ancnn)u
′
n

.

The coordinate vector ofV relative to Br can therefore be written as

VBr =

⎡
⎢⎢⎢⎣

a1c11 + a2c12 + · · ·+ anc1n
a1c21 + a2c22 + · · ·+ anc2n
...
a1cn1 + a2cn2 + · · ·+ ancnn

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

c11, c12, . . . , c1n
c21, c22, . . . , c2n
...
cn1, cn2, . . . , cnn

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

a1
a2
...
an

⎤
⎥⎥⎥⎦

=
[
(u1)Br

, (u2)Br
, . . . , (un)Br

]
VB

.

Example 5.13:
Consider the bases B = {(1, 2) , (3,−1)} and Br = {(1, 0) , (0, 1)}of

R2. If u is a vector in B such that VB =

[
3
4

]
, then find VBr .

Solution:
We express the vectors of B in terms of the vector of Br to get the

transition matrix, i.e.,

(1, 2) = 1 (1, 0) + 2 (0, 1)
(3,−1) = 3 (1, 0)− 1 (0, 1)

.

The coordinate vectors of (1, 2) and (3,−1) are

[
1
2

]
and

[
3
−1

]
.
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The transition matrix P is thus

P =

[
1 3
2 −1

]
.

(Observe that the columns of P are the vectors of the basis B.)
We get

VBr =

[
1 3
2 −1

] [
3
4

]
=

[
15
2

]
.

Let B and Br be bases for a vector space. We now see that the transition
matrices from B to Br and Br to B are related.

Theorem 5.11:
Let B and Br be bases for a vector space V and let P be the transition

matrix from the bases B to Br, then the transition matrix P is invertible and
the transition matrix from Br to B is P−1.

Proof:
Let u be a vector in V having column coordinate vectors and relative to

the bases B and Br.
Given P is a transition matrix from B to Br, and let Q be the transition

matrix from Br to B. Then we know that

VBr = PVB and VB = QVBr

.
We can combine these equations in two ways.
On substituting VB from the second equation into the first, and similarly

substituting forVBr from the first into the second, we get

VBr = PQVBr
and VB = QPVB

.
Since these results hold for all values ofVB andVBr , we have that

PQ = QP = I

⇒ Q = P−1.

The following example introduces a beneficial technique for finding the
transition matrix from one basis to another if neither basis is the standard
basis.
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Example 5.14:
Consider the bases B = {(1, 2) , (3,−1)} and Br = {(3, 1) , (5, 2)} of

R2. Then, find the transition matrix from B to Br, if V is a vector such that

VB =

[
2
1

]
and findVBr .

Solution:
Let us use the standard basis S = {(1, 0) , (0, 1)} as an intermediate basis.
The transition matrix P from B to S and the transition matrix Pr from Br

to S are

P =

[
1 3
2 −1

]
,Pr =

[
3 5
1 2

]
.

The transition matrix from S to Br will be (Pr)
−1.

The transition matrix from B to Br is (Pr)
−1 P.

Thus, the transition matrix from B to Br is[
3 5
1 2

]−1 [
1 3
2 −1

]
=

[
2 −5
−1 3

] [
1 3
2 −1

]
=

[ −8 11
5 −6

]

⇒ UBr =

[ −8 11
5 −6

] [
2
1

]
=

[ −5
4

]
.

Remark from the last theorem of isomorphism:
Every real finite-dimensional vector space V is isomorphic to Rn for

some value of n. Thus, every real finite-dimensional vector space is identical
from the algebraic viewpoint to Rn.

Example 5.15:
Prove that the linear map T : V3 → V3 defined by T (e1) = e1 − e2,

T (e2) = 2e2 + e3, and T (e3) = e1 + e2 + e3 is neither one-one nor onto.
Since [e1, e2, e3] = V3,

R (T) = [T (e1) ,T (e2) ,T (e3)]
= [e1 − e2, 2e2 + e3, e1 + e2 + e3]
= [e1 − e2, 2e2 + e3]

.

Because e1+e2+e3 is a linear combination of e1−e2 and 2e2+e3, now
we see that e1− e2 and 2e2+ e3 are LI. So, dim R (T) = 2. Therefore, R (T)
is a proper subset of V3. Hence, T is not onto.

To prove that T is not one-one, we check N (T).N (T) consists of those
vectors (x1, x2, x3) in V3 for which

T (x1, x2, x3) = 0



5.7 Change of Basis 141

or T (x1e1 + x2e2 + x3e3) = 0
or x1T (e1) + x2T (e2) + x3T (e3) = 0.

Because T is linear,

(x1 + x3,−x1 + 2x2 + x3, x2 + x3) = (0, 0, 0) ,

i.e., x1 + x3 = 0 , x2 + x3 = 0 and −x1 + 2x2 + x3 = 0 .
Solving these, we get x1 = x2 = −x3. Therefore,

N (T) = {(x1, x1,−x1) : x1 is an arbitrary scalar} = [(1, 1,−1)] .

Hence, the linear map is not one-one.

Example 5.16:
Let T : V4 → V3 be a linear map defined by
T (e1) = (1, 1, 1) , T (e2) = (1,−1, 1) ,T (e3) = (1, 0, 0) , T (e4) =

(1, 0, 1), and then verify that

r (T) + n (T) = dimU (= V4) = 4.

We know that R (T) = [(1, 1, 1) , (1,−1, 1) , (1, 0, 0) , (1, 0, 1)].
(1, 1, 1) , (1,−1, 1) , (1, 0, 0) and (1, 0, 1) are LD, because a set of four

vectors of V3(dimV3 = 3) is always LD. We find that

(1, 0, 1) =
1

2
(1, 1, 1) +

1

2
(1,−1, 1) + 0 (1, 0, 0) .

Hence, we can discard the vector (1, 0, 1), so that

R (T) = [(1, 1, 1) , (1,−1, 1) , (1, 0, 0)] .

To check whether (1, 1, 1) , (1,−1, 1), and (1, 0, 0) are LI, we suppose

α1 (1, 1, 1) + α2 (1,−1, 1) + α3 (1, 0, 0) = 0 = (0, 0, 0)

or (α1 + α2 + α3, α1 − α2, α1 + α2) = (0, 0, 0).
Solving this, we get α1 = 0 = α2 = α3. Hence, (1, 1, 1) , (1,−1, 1), and

(1, 0, 0) are LI and
dimR (T) = r (T) = 3.

Now to find N (T), we suppose that T (u) = 0 = (0, 0, 0). If

u = (x1, x2, x3, x4) = x1e1 + x2e2 + x3e3 + x4e4.

Then T (x1, x2, x3, x4) = T (x1e1 + x2e2 + x3e3 + x4e4) = (0, 0, 0).
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Or (x1 + x2 + x3 + x4, x1 − x2, x1 + x2 + x4) = (0, 0, 0).
Solving this, we get x1 = x2 = −x4

2 x3 = 0. So N (T) contains
the vectors of the form (x1, x1, 0,−2x1), i.e., N (T) = [(1, 1, 0,−2)]. So
n (T) = dimN (T) = 1. Hence, r (T)+n (T) = 3+1 = 4 and the theorem
is verified.

The inverse of a linear transformation:

Example 5.17:
Prove that the linear map T : V3 → V3 defined by
T (e1) = e1+e2, T (e2) = e2+e3 ,T (e3) = e1+e2+e3 is non-singular,

and find its inverse.
First, let us find the value of T at a general element u = (x1, x2, x3):

T (x1, x2, x3) = T (x1e1 + x2e2 + x3e3)
= (x1 + x3, x1 + x2 + x3, x2 + x3)

.

If T (x1, x2, x3) = 0, then

x1 + x3 = 0, x1 + x2 + x3 = 0, x2 + x3 = 0.

Solving these, we get x1 = 0 = x2 = x3.
So N (T) = {0v3} and hence T is one to one. It follows that T is also

onto. Hence, T is non-singular and T−1 exists.
Now we shall give two methods to find the inverse T−1, which are also

linear, one-one, and onto map from V3 to V3 .

Method-I:
We have T (e1) = e1 + e2 , T (e2) = e2 + e3 , T (e3) = e1 + e2 + e3.

Therefore,

e1 = T−1 (e1 + e2) = T−1 (e1) + T−1 (e2)
e2 = T−1 (e2 + e3) = T−1 (e2) + T−1 (e3)
e3 = T−1 (e1 + e2 + e3) = T−1 (e1) + T−1 (e2) + T−1 (e3)

.

Because T−1 is linear, one-one, and onto, solving these three equations
for T−1 (e1),T−1 (e2),T−1 (e2), we get

T−1 (e1) = e3 − e2 = (0,−1, 1)
T−1 (e2) = e1 + e2 − e3 = (1, 1,−1)
T−1 (e3) = e3 − e1 = (−1, 0, 1)

.
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Now we extend T−1 linearly and obtain

T−1 (x1, x2, x3) = T−1 (x1e1 + x2e2 + x3e3)
= x1T−1 (e1) + x2T−1 (e2) + x3T−1 (e3)
= (x2 − x3, x2 − x1, x1 − x2 + x3)

.

Method 2:
Let T−1 (x1, x2, x3) = (y1, y2, y3). Then

T (y1, y2, y3) = (x1, x2, x3)
or T (y1e1 + y2e2 + y3e3) = (x1, x2, x3)
or y1T (e1) + y2T (e2) + y3T (e3) = (x1, x2, x3)
or (y1 + y3) e1 + (y1 + y2 + y3) e2 + (y2 + y3) e3 = (x1, x2, x3)
or (y1 + y3, y1 + y2 + y3, y2 + y3) = (x1, x2, x3).

This gives y1 + y3 = x1 , y1 + y2 + y3 = x2 and y2 + y3 = x3.
Solving these, we get y1 = x2−x3 , y2 = x2−x1 and y3 = x1−x2+x3.
So T−1 (x1, x2, x3) = (x2 − x3, x2 − x1, x1 − x2 + x3).

5.8 Isomorphism

Let T : U → V be a linear transformation. The linear transformation T is
one to one if each element in the range T corresponds to just one domain
component T.

If every element of V is the image of a component of U, then the
transformation T is said to be onto.

Let T be a one-to-one linear transformation ofU on toV; then T is called
an isomorphism.U andV are called isomorphic vector spaces.

Theorem 5.12:
Let V be a real vector space with basis {u1, u2, . . . , un}. Let u be an

arbitrary element ofV with coordinate vector

⎡
⎢⎢⎢⎣

a1
a2
...
an

⎤
⎥⎥⎥⎦ relative to this basis.

The following transformation T is an isomorphism ofV on to Rn defined
by

T (u) =

⎡
⎢⎢⎢⎣

a1
a2
...
an

⎤
⎥⎥⎥⎦ .
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Proof:
First, to show that the transformation T is one to one.
For it, if T (v1) = T (v2), then it implies that v1 = v2.

Let T (v1) =

⎡
⎢⎢⎢⎣

a1
a2
...
an

⎤
⎥⎥⎥⎦ and T (v2) =

⎡
⎢⎢⎢⎣

a1
a2
...
an

⎤
⎥⎥⎥⎦.

Thus, v1 = a1u1 + a2u2 + · · ·+ anun
and v2 = a1u1 + a2u2 + · · ·+ anun.
This implies that v1 = v2.
Thus, the linear transformation T is one to one.
We now prove that the linear transformation T is onto by showing that

every element of Rn is the image of some elementV.

Let

⎡
⎢⎢⎢⎣

b1
b2
...
bn

⎤
⎥⎥⎥⎦ be an element of Rn.

Then

T (b1u1 + b2u2 + · · ·+ bnun) =

⎡
⎢⎢⎢⎣

b1
b2
...
bn

⎤
⎥⎥⎥⎦ .

Thus,

⎡
⎢⎢⎢⎣

b1
b2
...
bn

⎤
⎥⎥⎥⎦ is the image of the vector b1u1 + b2u2 + · · ·+ bnun.

Therefore, the linear transformation T is onto.
Since the transformation T is linear, one-one, and onto, the linear

transformation implies that the transformation is isomorphism.

5.9 Transformations in Computer Graphics

Computer graphics is the field that analyzes the creation and manipulation
of pictures with the help of computers. The effect of computer graphics
is going through in many homes through video games; its applications in
industry, research, and business are vast and are ever-expanding. Architects
employ computer graphics to explore designs; molecular biologists display
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and manipulate pictures of molecules to gain insight into their structures.
Pilots are competent using graphics flight simulators, and transportation
engineers use computer-generated transforms in their planning work to refer
to a few applications.

The manipulation of pictures in computer graphics is carried out using a
sequence of transformations. Matrices define rotations, reflections, dilations,
and contractions. A sequence of such transformations can be carried out by
a single transformation described by the product of the matrices. Inappro-
priately, translation as it now stands uses matrix addition, and any sequence
of transformation involving translations cannot be combined in this manner
into a single matrix. However, if coordinates called homogenous coordinates
are used to describe points in a plane, translation can also be accomplished
through matrix multiplication. Any sequence of these transformations can be
described in terms of a single matrix. In homogenous coordinates, the third
component of 1 is added to each coordinate and rotation, reflection, dila-
tion/contraction, and translation R, F, D, and T are defined by the following
matrices.

x R F⎡
⎣ x

y
1

⎤
⎦ A =

⎡
⎣ cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎤
⎦ B =

⎡
⎣ 1 0 0

0 −1 0
0 0 1

⎤
⎦

point rotation reflection

D T

C =

⎡
⎣ r 0 0

0 r 0
0 0 1

⎤
⎦ E=

⎡
⎣ 1 0 h

0 1 k
0 0 1

⎤
⎦

dilation/contraction translation
(r > 0)

.

Thus, a dilation D followed by a translation T and then a rotation R
would be defined by R◦T◦D (x) = AEC (x). A single matrix AEC would
characterize the composite transformation R◦T◦D.

Some programming languages determine subroutines for rotation, trans-
lation, and dilation/contraction that can be used to move pictures on the
screen. The subroutines convert screen coordinates into homogenous coor-
dinates and use the matrices that define these transformations in homogenous
coordinates to carry out this movement.

We now demonstrate how the transformations are used to rotate a
geometrical figure about a point other than the origin.



146 Linear Transformation

Example 5.18:
Determine the matrix that illustrates a rotation of points in a plane through

an angle θ about a point P (h, k). Use this typical result to find the matrix
that describes a rotation of the points through an angle of π

2 about the point
(5, 4). Determine the image of the triangle having the following vertices
A (1, 2) ,B (2, 8), and C (3, 2) under this rotation (Figure 5.10).

Solution:
The rotation about P can be accomplished by a sequence of three of the

above transformations:

(1) A translation T1 that takes P to the origin O.
(2) A rotation R about the origin through an angle θ.
(3) A translation T2 that takes back O to P.

Rotation about P

Figure 5.10 Rotation about P.

The matrices that determine these transformations are as follows:

T1 R T2⎡
⎣ 1 0 −h

0 1 −k
0 0 1

⎤
⎦

⎡
⎣ cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎤
⎦

⎡
⎣ 1 0 h

0 1 k
0 0 1

⎤
⎦ .

The rotation RP about P can be accomplished as follows:
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RP

⎛
⎝
⎡
⎣ x

y
1

⎤
⎦
⎞
⎠ = T2

◦R◦T1

⎛
⎝
⎡
⎣ x

y
1

⎤
⎦
⎞
⎠

=

⎡
⎣ 1 0 h

0 1 k
0 0 1

⎤
⎦
⎡
⎣ cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎤
⎦×

⎡
⎣ 1 0 −h

0 1 −k
0 0 1

⎤
⎦
⎡
⎣ x

y
1

⎤
⎦

=

⎡
⎣ cos θ − sin θ −h cos θ + k sin θ + h

sin θ cos θ −h sin θ − k cos θ + k
0 0 1

⎤
⎦
⎡
⎣ x

y
1

⎤
⎦ .

Let h = 5, k = 4, and θ = π
2 , to get the specific matrix that describes the

rotation of the plane through an angle π
2 about the point P (5, 4), as shown in

Figure 5.10.
For example, let h = 5 , k = 4 , and θ = π

2 . The rotation matrix is

M =

⎡
⎣ 0 −1 9

1 0 −1
0 0 1

⎤
⎦ .

To find the images of the vertices of the triangles, write these vertices in
columns form as homogenous coordinates and multiply byM . On performing
the matrix multiplications, we get

A A′ B B′ C C′⎡
⎣ 1

2
1

⎤
⎦→

⎡
⎣ 7

0
1

⎤
⎦

⎡
⎣ 2

8
1

⎤
⎦→

⎡
⎣ 1

1
1

⎤
⎦

⎡
⎣ 3

2
1

⎤
⎦→

⎡
⎣ 7

2
1

⎤
⎦ .

The triangle with vertices A (1, 2) ,B (2, 8) ,C (3, 2) is transformed into
triangles with vertices A′ (7, 0) ,B′ (1, 1) ,C′ (7, 2) (Figure 5.10).

5.10 Fractal Pictures of Nature

Computer graphics systems positioned on traditional Euclidean geometry are
suitable for creating pictures of artificial objects such as machinery, building
and airplanes. Images of such objects can be formed using circles, lines, and
so on. However, these techniques are not suitable for constructing images of
natural objects such as trees, animals, and landscapes. In the words of math-
ematician Benoit B. Mandelbrot, “Clouds are not spheres, mountains are not
cones, Coastlines are not circles, and bark is not smooth nor does lightning
travelling in straight lines.” However, nature does get on its abnormality in
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an abruptly orderly fashion; it is full of shapes that repeat themselves on
different scales within the same object. In 1975, Mandelbrot introduced a
new geometry called fractal geometry that can be used to characterize natural
phenomena. A fractal is an appropriate label for irregular and fragmented
self-similar shapes. Fractal objects include structures nested within one
another. Each smaller structure is a miniature, though not necessarily identical
version of the larger form. The story behind the word fractal is appealing.
Mandelbrot came across the Latin adjective fractus from the verb frangere to
break in his son’s Latin book. The resonance of the foremost English cognates
fracture and fraction seemed appropriate, and he coined the word fractal!

We now discuss the methods developed by a research team at the Georgia
Institute of Technology to form images of natural objects using fractals. These
fractal images of nature are created using affine transformations. The figure
shows a fractal image of the fern being gradually generated. Let us see how
this is done.

Figure 5.11 A fractal image of the fern.

Consider the following four affine transformations T1, . . . ,T4 and asso-
ciated probabilities p1, . . . , p4 with these transformations

T1

([
x
y

])
=

[
0.86 0.03
−0.03 0.86

] [
x
y

]
+

[
0
1.5

]
, p1 = 0.83

T2

([
x
y

])
=

[
0.2 −0.25
0.21 0.23

] [
x
y

]
+

[
0
1.5

]
, p2 = 0.08

T3

([
x
y

])
=

[ −0.15 0.27
0.25 0.26

] [
x
y

]
+

[
0
0.45

]
, p3 = 0.08
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T4

([
x
y

])
=

[
0 0
0 0.17

] [
x
y

]
+

[
0
0

]
, p4 = 0.01 .

The following algorithm is used on a computer to produce the images of
the form.

1. Let x = 0, y = 0.
2. Use a random generator to select one of the affine transformations Ti

according to the given probabilities.
3. Let (x′, y′) = Ti (x, y).
4. Plot (x′, y′).
5. Let (x, y) = (x′, y′).
6. Repeat steps 2, 3, 4, and 5 twenty thousand times.

As step 4 is executed, each of the twenty thousand times, the image of the
fern gradually appears.

Each affine transformation Ti involves six parameters a , b , c, d, e, f
and a probability pi as follows:

Ti

([
x
y

])
=

[
a b
c d

] [
x
y

]
+

[
e
f

]
, pi.

The affine transformation corresponding probabilities that generate a
fractal are written as rows of a matrix called an iterated function system (IFS).
The IFS for the fern is as follows:

IFS for a fern
T a b c d e f p⎡

⎢⎢⎣
1 0.86 0.03 −0.03 0.86 0 1.5 0.83
2 0.2 −0.25 0.21 0.23 0 1.5 0.08
3 −0.15 0.27 0.25 0.26 0 0.45 0.08
4 0 0 0 0.17 0 0 0.01

⎤
⎥⎥⎦

.

The appropriate affine transformation that produces a given fractal object
is found by determining the transformation that maps the objects (called the
attractor) into various disjoint images, the union of which is the whole fractal.
A theorem called the collage theorem guarantees that the transformations
could be grouped into an IFS that produces that fractal.

Different probabilities do not generally lead to different images, but they
affect the rate at which the image is produced. Appropriate probabilities are

pi =
area of the image under transformation Ti

area of image of object
.
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These techniques are very valuable because they can be used to produce an
image to any desired degree of accuracy using a highly compressed dataset.
A fractal image containing infinitely many points whose organization is
too complicated to describe directly can be reproduced using mathematical
formulas.

Exercises

1. Let U and V be vector spaces over the same field of scalars and T be
a map from U to V . Then prove that T is linear iff T (αu1 + u2) =
αT (u1) + T (u2) for all u1, u2 ∈ U and scalar α.

2. Which of the following maps are linear?

(a) T : V1 → V3 defined by T (x) = (x, 2x, 3x).
(b) T : V1 → V3 defined by T (x) =

(
x, x2, x3

)
.

(c) T : V2
C → V3

C defined by T (x, y) = (x+ α, y, 0) , α �= 0.
(d) T : V2 → V2 defined by T (x, y) = (2x+ 3y, 3x− 4y).
(e) T : V3 → V3 defined by T (x, y, z) =

(
x2 + xy, xy, yz

)
.

(f) T : V3 → V2 defined by T (x, y, z) = (x, y).
(g) T : V2

C → V2
C defined by T (x, y) = (y, x).

(h) T : V3 → V2 defined by T (x, y, z) = (x+ y + z, 0) .
(i) T : P → P defined by T (P) = p2 + p.
(j) T : P → P defined by T (p) (x) = xp (x) + p (1).
(k) T : C [0, 1] → V2 defined by T (f) = (f (0) , f (1)).
(l) T : P → P defined by T (p) (x) = 2 + 3x+ 7x2p (x).

(m) T : P → P defined by T (p) (x) = p (0) + xp′ (0) + x2

2! p
′′ (0).

(n) T : C(n) (a, b) → C (a, b) defined by T (f) = a0f + a1f
′ + · · ·+

anf
(n), ai’s are fixed scalars.

(o) T : C(2) (a, b) → C (a, b) defined by T (f) =
(
3x2 + 4

)
f ′′ +

(7x+ 3) f ′ + (3x+ 5) f .
(p) T : P → P defined by T (p) = p (0).
(q) T : P → P defined by T (p) = p′.

3. Determine whether there exists a linear map in the following cases and
where it does exist give the general formula.

(a) T : V2 → V2 such that T (1, 2) = (3, 0) and T (2, 1) = (1, 2).
(b) T : V2 → V2 such that T (2, 1) = (2, 1) and T (1, 2) = (4, 2).
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(c) T : V2 → V2 such that T (0, 1) = (3, 4), T (3, 1) = (2, 2) and
T (3, 2) = (5, 7).

(d) T : V3 → V3 such that T (0, 1, 2) = (3, 1, 2) and T (1, 1, 1) =
(2, 2, 2).

(e) T : P3 → P3 such that T (1 + x) = 1 + x,T (2 + x) = x + 3x2

and T
(
x2
)
= 0.

(f) T : P4 → P3 such that T (1 + x) = 1,T (x) = 3 and T
(
x2
)
= 4.

(g) T : V C
2 → V C

2 such that T (i, i) = (1 + i, 1).

4. Determine a non-zero linear transformation T : V2 → V2, which maps
all the vectors on the line x = y on to the origin.

5. Determine a linear transformation, T : V2 → V2, which maps all the
vectors on the line x+ y = 0 on to themselves (T �= I).

6. Let T : V2
C → V2

C be defined by T (α1 + iβ1, α2 + iβ2) = (α1, α2),
and then prove or disprove that T is linear.

7. Prove that a linear transformation on a one-dimensional vector space is
nothing but multiplication by a fixed scalar.

Range and Kernel:
8. Determine the range of the following linear transformations. Also, find

the rank of T, where it exists.

(a) T : V2 → V2 defined by T (x1, x2) = (x1 + x2, x1).
(b) T : V2 → V3 defined by T (x1, x2) = (x1, x1 + x2, x2).
(c) T : V3 → V3 defined by T (x1, x2, x3)

=
(
1
2x1 + x2 + x3, x1 − 1

3x2, x3
)
.

(d) T : V3 → V3 defined by T (x1, x2, x3) = (x1, x3, x2).
(e) T : V4 → V3 defined by T (x1, x2, x3, x4)

= (x1 − x4, x2 + x3, x3 − x4).
(f) T : V3 → V4 defined by T (x1, x2, x3)

= (x1, x1 + x2, x1 + x2 + x3, x3).
(g) T : V4 → V4 defined by T (x1, x2, x3, x4)

=
(
3x1 + 2x2, x1 − x3,

1
3x1 − x4, x2

)
.

(h) T : P → P defined by T (p) (x) = xp (x).
(i) T : P → P defined by T (p) (x) = xp′ (x).
(j) T : P → P defined by T (p) (x) = p′′ (x)− 2p (x).
(k) T : C (0, 1) → C (0, 1) defined by T (f) (x) = f (x) sinx.
(l) T : C(1) (0, 1) → C (0, 1) defined by T (f) (x) = f ′ (x) ex.
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9. Determine the Kernel of the linear transformations of problem 1(a)−(i).
Also, find the nullity of T, where it exists.

10. Let T : V → W be a linear map and U be a subspace of V . Define
T (U) = {w ∈ W : w = T (u) for some u ∈ U}. Then prove that
T (U) is a subspace ofW .

11. Let T : V → W be a linear map and W1 be a subspace of W . Then
prove that the set {v ∈ V : T (v) ∈ W1 } is a subspace of V .

12. Let α11, α12, . . . , α1n, α21, . . . , α2n, . . . , αp1, . . . , αpn be any pn fixed
scalars. Let T : Vn → Vp be a linear map defined by T (ei) =
(α1i, α2i, . . . , αpi) , i = 1, 2, . . . , n. Then prove that
T is not one-one if p < n.
T is onto
when p = n and (α11, . . . , αp1) , (α12, . . . , αp2) , ..., (α1p, . . . , αpp) are
LI.

13. Find a linear transformation T : V3 → V3 such that the set of all vectors
(x1, x2, x3) satisfying the equation 4x1 − 3x2 + x3 = 0 is the Kernel of
T.

14. Find a linear transformation T : V3 → V3 such that the set of all vectors
(x1, x2, x3) satisfying the equation 4x1 − 3x2 + x3 = 0 is the range of
T.

15. Pick out the maps in problem 1 that are
(a) one-one (b) onto (c) one-one and onto.

16. Let U be a vector space of dimension n and T : U → V be linear and
onto map. Then prove that T is one-one iff dimV = n.

17. If T : U → V is a linear map, where U is finite-dimensional, prove that
(a) n (T) ≤ dimU (b) r (T) ≤ min (dimU, dimV )

18. Let Z be a subspace of a finite-dimensional vector space U and V a
finite-dimensional vector space. Then prove that Z will be the Kernel of
a linear map T : U → V iff dimZ ≥ dimU − dimV .

19. LetR,S, and T be three linear maps from V3 to V3 defined by the values
in the given table. Determine which of them are non-singular and in each
such case find the inverse.
Value at e1 e2 e3
Linear map
R e1 + e2 e1 − e2 + e3 3e1 + 4e3
S e1 − e3 e2 e1 + e2 − 7e3
T e1 − e2 + e3 3e1 − 5e3 3e1 − 2e3
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20. Show each of the following maps is non-singular and find its inverse:

(a) T : V2 → V2 defined by T (x1, x2) = (α1x1, α2x2) where α1 and
α2 are both non-zero.

(b) T : V3 → V3 defined by T (x1, x2, x3)
= (x1 + x2 + x3, x3 + x2, x3).

(c) T : P2 → P2 defined by T
(
α0 + α1x+ α2x

2
)
= (α0 + α1) +

(α1 + 2α2)x+ (α0 + α1 + 3α2)x
2.

21. Let U be the subset {p ∈ P : p (0) = 0} of P.
Then prove that the derivativeD is a non-singular linear map from U to
P and the integral (I (p) (x)) =

∫ x
0 p (x) dx is its inverse.

22. Let T : U → V be a non-singular linear transformation. Then prove that(
T−1
)−1

= T.

The spaceL (U, V ):
23. Let the linear maps T : V2 → V2 and S : V2 → V2 be defined by

T (x1, x2) = (x1 + x2, 0)
S (x1, x2) = (2x1, 3x1 + 4x2)

Determine the linear maps (a) 2S + 3T and (b) 3S − 7T.
24. Let the linear maps T : V3 → V and S : V3 → V3 be defined by

T (x1, x2, x3) = (2x1 − 3x2, 4x1 + 6x2, x3)

S (e1) = e2 − e3 , S (e2) = e1 , S (e3) = e1 + e2 + e3.

Determine the linear maps
(a) S + T (b) 3S − 2T (c) αS and find their values at (x1, x2, x3).

25. Prove that the set of all linear maps from V2 to V2, which maps the
vectors on the line x+y = 0 onto the origin, is a subspace of L (V2, V2).

26. Let U be a subspace of a vector space V . Then prove that the set of all
linear transformations from V to V that vanish on U is a subspace of
L (V, V ).
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6
Inner Product Spaces

This chapter discusses the generalization process of the algebraic properties
toRn, i.e., extending the concepts of dot products of two vectors to the norm,
the angle between vectors, and the distance between points in general vector
spaces.

This study will enable us to discuss the magnitude of orthogonal functions
and approximate functions by polynomials, a technique used to implement
functions on calculations and computers.

It will no longer be restricted to Euclidean geometry and create geome-
tries on Rn, such as introducing the geometry of special relativity and
discussing the implication of this theory for space travel by looking at a
voyage to the star Alpha Centauri.

6.1 Inner Product Spaces

The primary objective of this section is to generalize the scalar product Rn

to a general vector space with a mathematical symbol, i.e., an inner product.
Later on, it can define the norm, angle, and distance for a general vector space.
An inner product space can be defined on a vector space V with the definition
of the inner product.

The following example illustrates another inner product on R2.

Definition 6.1:
An inner product defined on a real vector space V is a function that

associates a number denoted by 〈u, v〉 each pair of vectors of V.
It satisfies the following conditions for vectors u, v, and w, for any scalar

k, i.e.,

155
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Symmetry axiom: 〈u, v〉 = 〈v, u〉
Addition axiom: 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉
Homogeneity axiom: 〈ku, v〉 = k 〈u, v〉
Positive-definite axiom: 〈u, u〉 ≥ 0 and 〈u, u〉 = 0 if and only if u = 0.

Example 6.1:
Let u = (x1, x2) , v = (y1, y2), and w = (z1, z2) be arbitrary vectors in

R2. Prove that 〈u, v〉 defined by 〈u, v〉 = x1y1 + 4x2y2 is an inner product
on R2. Determine the inner product of the vectors (−2, 5) and (3, 1).

Solution:
Upon using the axioms of inner product space, we can check the inner

product of the vectors on R2. Let us consider the following hypotheses:

Axiom 1:
〈u, v〉 = x1y1 + 4x2y2 = y1x1 + 4y2x2 = 〈v, u〉

Axiom 2:

〈u+ v, w〉 = 〈(x1, x2) + (y1, y2) , (z1, z2)〉
= 〈(x1 + y1, x2 + y2) , (z1, z2)〉
= (x1 + y1) z1 + 4 (x2 + y2) z2

= x1z1 + y1z1 + 4x2z2 + 4y2z2

= x1z1 + 4x2z2 + y1z1 + 4y2z2

= 〈(x1, x2) , (z1, z2) 〉+ 〈(y1, y2) , (z1, z2)〉
= 〈u, v〉+ 〈v, w〉 .

Axiom 3:

〈cu, v〉 = 〈c (x1, x2) , (y1, y2)〉
= 〈(cx1, cx2) , (y1, y2)〉
= cx1y1 + 4cx2y2

= c (x1y1 + 4x2y2) = c 〈u, v〉 .
Axiom 4:

〈u, u〉 = 〈(x1, x2) , (x1, x2)〉
= x1

2 + 4x2
2 ≥ 0

Further, x12 + 4x2
2 = 0 if and only if x1 = 0 and x2 = 0.



6.1 Inner Product Spaces 157

That is u = 0v. Thus, 〈u, u〉 ≥ 0 and 〈u, u〉 = 0 if and only if u = 0v.
Hence, the four inner product axioms are satisfied, so 〈u, v〉 = x1y1 +

4x2y2 forms an inner product on R2.
The inner product of the vectors (−2, 5) and (3, 1) is

〈(−2, 5) , (3, 1)〉
= (−2× 3) + 4 (5× 1)
= 14

Now we illustrate the inner products on the real vector spaces of matrices
and functions.

Example 6.2:
Consider the vector spaceM22 of 2× 2 matrices.
Let u and v be defined as follows by the arbitrary matrices defined as

follows

u =

[
a1 b1
c1 d1

]
, v =

[
a2 b2
c2 d2

]
.

Prove that the following function forms an inner product on M22, where
the inner product is defined by 〈u, v〉 = a1a2+b1b2+c1c2+d1d2. Determine

the inner product of the matrices

[
2 −3
0 1

]
and

[
5 2
9 0

]
.

Solution:
We shall verify hypotheses 1 and 3 of an inner product, leaving axioms 2

and 4 for the readers to check.

Axiom 1:

〈u, v〉 = a1a2 + b1b2 + c1c2 + d1d2

= a2a1 + b2b1 + c2c1 + d2d1

= 〈v, u〉

Axiom 2:
Let k be a scalar. Then

〈ku, v〉 = ka1a2 + kb1b2 + kc1c2 + kd1d2

= k (a1a2 + b1b2 + c1c2 + d1d2) = k 〈u, v〉
Next, the computation of the inner product on the matrices gives
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2 −3
0 1

]
,

[
5 2
9 0

]〉
= (2× 5) + (−3× 2) + (0× 9) + (1× 0)
= 4

.

Example 6.3:
Consider the vector space Pn (R) of polynomials of deg ≤ n.
Let f1 and f2 be elements of Pn. Prove that the following function defines

an inner product on Pn, i.e., 〈f1, f2〉 =
∫ 1
0 f1 (x) f2 (x) dx.

Determine the inner product of the polynomials f1 (x) = x2+2x−1 and
f2 (x) = 4x+ 1.

Solution:
Here, hypotheses 1 and 2 of an inner product have been verified, leaving

hypotheses 3 and 4 for the readers to check.

Axiom 1:

〈f1, f2〉 =
∫ 1

0
f1 (x) f2 (x) dx

=

∫ 1

0
f2 (x) f1 (x) dx

= 〈f2, f1〉 .

Axiom 2:

〈f1 + f2, f3〉 =
∫ 1

0
[f1 (x) + f2 (x)] f3 (x) dx

=

∫ 1

0
f1 (x) f3 (x) dx+

∫ 1

0
f2 (x) f3 (x) dx

= 〈f1, f3〉+ 〈f2, f3〉 .
Next, the inner product of the function

f1 (x) = x2 + 2x− 1 and f2 (x) = 4x+ 1 gives〈
x2 + 2x− 1 , 4x+ 1

〉
=

∫ 1

0

(
x2 + 2x− 1

)
(4x+ 1) dx

=

∫ 1

0

(
4x3 + 9x2 − 2x− 1

)
dx = 2.
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6.1.1 Norm of a vector

The norm of a vector v = (x1, x2, . . . , xn) in Rn can be expressed in terms
of the dot product as follows:

‖(x1, x2, . . . , xn)‖ =
√
x12 + x22 + · · ·+ xn2

=
√
(x1, x2, . . . , xn) (y1, y2, . . . , yn)

To obtain the norm of a vector in a general inner product space, these
definitions can be generalized using the inner product in place of the dot
product. It has sufficient applications in numerical work, although it does
not necessarily have geometric interpretations.

Definition 6.2:
Let V be an inner product space. The norm of a vector u is defined by

‖u‖ =
√〈u, u〉 where the norm is denoted by ‖u‖.

Example 6.4:
Consider the vector space Pn (R) of polynomials with an inner product is

defined by 〈f1, f2〉 =
∫ 1
0 f1 (x) f2 (x) dx,

where the norm of the function f (x) is defined by

‖f‖ =
√

〈f, f〉 =
√∫ 1

0
[f (x)]2 dx.

Find the norm of the functionf (x) = 5x2 + 1.

Solution:
Upon using the definition of norm, we get

∥∥5x2 + 1
∥∥ =

√∫ 1

0
[5x2 + 1]2 dx

=

√∫ 1

0
(25x4 + 10x2 + 1) dx

=

√
28

3
.

Thus, the norm of f (x) is
√

28
3 .
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6.2 Angle Between Two Vectors

Generally, the angle between vectors can be found using the dot product of
vectors in Rn, but here we generalize this to define an angle for a real vector
space, using the inner product in place of the dot product.

The angle θ between vectors u and v in Rn is defined by

Cosθ =
u.v

‖u‖ ‖v‖ .

Definition 6.3:
Let V be a real inner product space. The angle θ between two non-zero

vectors u1 and u2 inV can be defined by Cosθ = 〈u1,u2〉
‖u1‖‖u2‖ .

Example 6.5:
Consider the inner product space Pn (R) of polynomials with an inner

product defined by 〈f1, f2〉 =
∫ 1
0 f1 (x) f2 (x) dx and the angle between

f1 and f2 is defined by Cosθ = 〈f1,f2〉
‖f1‖‖f2‖ , where f1 and f2 are non-zero

functions. Then determine the angle between the functions f1 (x) = 5x2 and
f2 (x) = 3x.

Solution:
We get

〈f1, f2〉 =
∫ 1

0

(
5x2
)
(3x) dx

=

∫ 1

0

(
15x3

)
dx =

15

4
.

‖f1‖ =
∥∥5x2∥∥

=

√∫ 1

0
[5x2]2 dx.

=
√
5

‖f2‖ = ‖3x‖

=

√∫ 1

0
[3x]2 dx.

=
√
3
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These give

Cosθ =
15

4
√
5
√
3

=

√
15

4
(θ = 14.48◦) .

6.3 Orthogonal Vectors

LetV be an inner product space inRn. Then the two non-zero vectors u1 and
u2 in an inner product spaceV are said to be orthogonal if 〈u1, u2〉 = 0.

Example 6.6:
Show that the functions f1 (x) = 3x−2 and f2 (x) = x are orthogonal in

the space of polynomials Pn (R) with an inner product defined by 〈f1, f2〉 =∫ 1
0 f1 (x) f2 (x) dx .

Solution:
The inner product gives

〈3x− 2, x〉 =
∫ 1

0
(3x− 2) (x) dx

=
[
x3 − x2

]1
0
= 0.

Hence, the functions f1 and f2 are orthogonal in this inner product space.

6.4 Distance

The next task is to extend the Euclidean concept of distance from a gen-
eral vector space to an inner product space with the help of a norm. It is
also helpful in numerical mathematics to discuss the distance between two
functions.

Definition 6.4:
Let V be an inner product space defined with the vector norm defined by

‖u‖ =
√〈u, u〉.

The distance between two vectors (points) u1 and u2 is denoted by
d (u1, u2) and is defined by

d (u1, u2) = ‖u1 − u2‖
(
=
√
〈u1 − u2, u1 − u2〉

)
.
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Example 6.7:
Consider the inner product Pn (x) of polynomials. Determine which of

the functions f2 (x) = x2−3x+5 or f3 (x) = x2+4 is closest to f1 (x) = x2.

Solution:
We compute the distances between f1 and f2 and between f1 and f3 using

the definition as

[d (f1, f2)]
2 = 〈f1 − f2, f1 − f2〉
= 〈3x− 5, 3x− 5〉

=

∫ 1

0
(3x− 5)2 dx = 13

[d (f1, f3)]
2 = 〈f1 − f3, f1 − f3〉
= 〈−4,−4〉

=

∫ 1

0
(−4)2 dx = 16

Thus, d (f1, f2) =
√
13 and d (f1, f3) = 4.

The distance between f1 and f3 is 4, and as we might suspect, f2 is closer
than f3 to f1.

In practice, relative distances between functions are often more significant
than absolute distances.

Example 6.8:
Consider f1 (t) = 3t − 5 and f2 (t) = t2 in the polynomial space P (t)

with an inner product defined by 〈f1, f2〉 =
∫ 1
0 f1 (t) f2 (t) dt.

Then find (a) 〈f1, f2〉 and (b) find ‖f1‖ and ‖f2‖.

6.5 Cauchy-Schwarz Inequality

Theorem 6.1 (Cauchy-Schwarz Inequality):
Let u1 and u2 be any two vectors defined on an inner product space V
i.e., 〈u1, u2〉2 ≤ 〈u1, u2〉 〈u1, u2〉 or |〈u1, u2〉| ≤ ‖u1‖ ‖u2‖.
The following examples examine the application of inequality for differ-

ent cases.

Example 6.9:
Consider any real number a1, a2, a3, . . . , b1, b2, b3, . . . . Then by the

Cauchy−Schwarz inequality, we can write
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(a1b1 + a2b2 + · · ·+ anbn)
2

≤ (a12 + a2
2 + · · ·+ an

2
) (

b1
2 + b2

2 + · · ·+ bn
2
) .

That is, 〈u1, u2〉2 ≤ ‖u1‖2 ‖u2‖2, where u1 = (ai) , u2 = (bi) .
Let f1 and f2 be continuous functions defined on the unit interval [0, 1].
Then by the Cauchy−Schwarz inequality, we find

[∫ 1

0
f1 (x) f2 (x) dx

]2
≤
∫ 1

0
f2
1 (x) dx

∫ 1

0
f2
2 (x) dx.

That is, (〈f1, f2〉)2 ≤ ‖f1‖2 ‖f2‖2.
Next, we will discuss the basic properties of the norm where for the proof

of the third property, it requires the Cauchy−Schwarz inequality.

Theorem 6.2:
LetV be an inner product space. Then the norm in an inner product space

V satisfies the following properties:
[N1] ‖u‖ ≥ 0 and ‖u‖ = 0 if and only if u = 0.

[N2] ‖ku‖ = |k| ‖u‖
[N3] ‖u1 + u2‖ ≤ ‖u1‖ + ‖u2‖ .

The third property [N3] is called the triangle inequality because if we
view u1 + u2 as the side of the triangle formed with sides u1 and u2, then
this triangle inequality states that the length of one side of a triangle cannot
be greater than the sum of the lengths of the other two sides.

Example 6.10:
Consider vectors u1 = (2, 3, 5) and u2 = (1,−4, 3) in R

3.
Then 〈u1, u2〉 = 2− 12 + 15 = 5

‖u1‖ =
√
4 + 9 + 25 =

√
38

‖u2‖ =
√
1 + 16 + 9 =

√
26.

Then the angle θ between u1 and u2 is given by Cosθ = 5√
38

√
26
.

Note that θ is an acute angle, since Cosθ is positive.
Let f1 (x) = 3x − 5 and f2 (x) = x2 in the polynomial space P2 (R)

with an inner product
〈f1, f2〉 =

∫ 1
0 f1 (x) f2 (x) dx.
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It gives 〈f1, f2〉 = −11
12 , ‖f1‖ =

√
13, ‖f2‖ = 1

5

√
5.

Then the angel θ between f1 and f2 is given by

Cosθ =
−11

12(√
13
) (

1
5

√
5
) = − 55

12
√
13

√
5
.

Note that the angle θ is obtuse, since Cosθ is negative.

6.6 Orthogonal Complements

Let V be an inner product space and S ⊆ V. Then the orthogonal comple-
ment of S, denoted by S⊥, consists of those vectors in V that are orthogonal
to every vector u ∈ S, i.e.,

S⊥ = {v ∈ V : 〈v, u〉 = 0 for every u ∈ S} .
In particular, for a given vector u inV, we have

u⊥ = {v ∈ V : 〈v, u〉 = 0 } .
That is, u⊥ consists of all vectors in V that are orthogonal to the given

vector u.

6.6.1 Subspace

We show that S⊥ is a subspace of an inner product space V.
Clearly, 0 ∈ S⊥, since 0 is orthogonal to every vector in V.
Now suppose u1, u2 ∈ S⊥. Then, for any scalars a and b and any vector

u ∈ S, we have

〈au1 + bu2, u〉 = a 〈u1, u〉+ b 〈u2, u〉
= a.0 + b.0 = 0

Thus, au1 + bu2 ∈ S⊥ and therefore S⊥ is a subspace of V.

Proposition 6.1:
Let S be a subset of inner product space V . Then S⊥ is a subspace of V.

Example 6.11:
Find a basis for the subspace u⊥ of R3, where u = (1, 3,−4).
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Solution:
Note that u⊥ consists of all vectors v = (x1, x2, x3) such that 〈u, v〉 = 0

or x1 + 3x2 − 4x3 = 0.
The free variables are x2 and x3.
Set x2 = 1, x3 = 0 to obtain the solution v1 = (−3, 1, 0).
Set x2 = 0, x3 = 1 to obtain the solution v2 = (4, 0, 1).
Thus, the vectors v1, v2 form a basis for the solution space of the equation

and form a basis for u⊥.

Remark:
SupposeU is a subspace ofV. Then bothU andU⊥ are subspaces ofV.

Theorem 6.3:
Let U be a subspace of V. Then V is the direct sum of U and U⊥, that

is,V = U⊕U⊥.

Definition 6.5:
A basis that forms an orthogonal set is said to be an orthogonal basis.

Similarly, a basis that includes an orthonormal set is said to be an orthonormal
basis.

Note:
The standard bases of Rn are orthonormal.

Standard bases:
The following standard bases

R2 : {(1, 0) (0, 1)}
R3 : {(1, 0, 0) (0, 1, 0) (0, 0, 1)}
Rn : {(1, 0, 0, . . . 0) (0, 1, 0, . . . 0) ...... (0, 0, . . . 1)}

form an orthonormal base.

6.7 Orthogonal Sets and Bases

Consider a set S = {u1, u2, . . . , ur : ui �= 0} defined on an inner product
spaceV. Then the set S is said to be orthogonal if each pair of vectors (ui, uj)
in S are orthogonal, and the set S is said to be orthonormal if S is orthogonal
and each vector in S has a unit length, i.e.,

Orthogonal: 〈ui, uj〉 = 0 for i �= j.

Orthonormal: 〈ui, uj〉 =
{

0 for i �= j
1 for i = j

.
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Theorem 6.4 (Pythagoras):
Suppose {u1, u2, . . . , ur} is an orthogonal set vector. Then
‖u1 + u2 + · · ·+ ur‖2 = ‖u1‖2 + ‖u2‖2 + · · ·+ ‖ur‖2.

Example 6.12:
Let E = {e1, e2, e3} = {(1, 0, 0) , (0, 1, 0) , (0, 0, 1)} be the usual basis

of Euclidean space R3.
Since〈e1, e2〉 = 〈e2, e3〉 = 〈e1, e3〉 = 0 and 〈e1, e1〉 = 〈e2, e2〉 =

〈e3, e3〉 = 1.
So it implies that E forms an orthonormal basis of R3, which is the usual

basis of Rn for every n.

Example 6.13:
Let V = C [−π, π] be the vector space of continuous functions defined

on the interval −π ≤ x ≤ π with inner product defined by

〈f1, f2〉 =
∫ π

−π
f1 (x) f2 (x) dx.

Then {1, cosx, cos 2x, cos 3x, . . . , sinx, sin 2x, . . .} is an example of an
orthogonal set in the vector space V, and it has essential applications in the
Fourier series expansion.

Theorem 6.5:
Let us consider V to be an inner product space. Let {u1, u2, . . . , un}

be an orthonormal basis for V and v ∈ V be a vector in V. Then the vector
v ∈ V can be written as a linear combination of these basis vectors as follows,
i.e., v = (v.u1)u1 + (v.u2)u2 + · · ·+ (v.un)un.

Proof:
Since {u1, u2, . . . , un} is a basis, then there exist scalars k1, k2, . . . , kn

such that v = k1u1 + k2u2 + · · ·+ knun.
We shall show that k1 = v.u1, k2 = v.u2, . . . , kn = v.un.
Let ui be the ith base vector. On taking the dot product on each side of

this equation with ui and using the properties of the dot products, we get

v.ui = (k1u1 + k2u2 + . . .+ knun) .ui

= k1u1.ui + k2u2.ui + . . .+ knun.ui

The vectors u1, u2, . . . , un are mutually orthogonal,
i.e., uj .ui = 0 unless j = i.
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Thus, v.ui = kiui.ui.
Furthermore, since the basis is orthonormal uj .ui = 1, therefore v.uj =

kj .
Thus, letting i = 1, 2, . . . , n, we get

k1 = v.u1, k2 = v.u2, . . . , kn = v.un.

Hence, we can write v = (v.u1)u1 + (v.u2)u2 + · · ·+ (v.un)un.

Example 6.14:
Show that the following vectors u1 = (1, 0, 0) , u2 =

(
0, 35 ,

4
5

)
, u3 =(

0, 45 ,−3
5

)
form an orthonormal basis for R3.

Express the vector v = (7,−5, 10) as a linear combination of these
vectors u1 = (1, 0, 0) , u2 =

(
0, 35 ,

4
5

)
, u3 =

(
0, 45 ,−3

5

)
.

Solution:
We get

v.u1 = (7,−5, 10) . (1, 0, 0) = 7

v.u2 = (7,−5, 10) .

(
0,

3

5
,
4

5

)
= 5

v.u3 = (7,−5, 10) .

(
0,

4

5
,−3

5

)
= −10

⇒ (7,−5, 10) = 7. (1, 0, 0) + 5.

(
0,

3

5
,
4

5

)
− 10

(
0,

4

5
,−3

5

)
.

6.8 Projection of One Vector onto Another Vector

LetV andU be vectors in Rn with angles α between them.
The vector OĀ indicates the vector v’ momentum in the direction of U,

as shown in Figure 6.1(c)(a),(b) and (c).
We call the projection of v onto u. Let us find an expression for OĀ; we

see that
A = OBCosα = ‖v‖Cosα

= ‖v‖
(

v
‖v‖ ,

u
‖u‖
)

= v. u
‖u‖

.

The unit vector u
‖u‖ defines the direction of the vector OĀ.

Thus, OĀ =
(
v. u

‖u‖
)

u
‖u‖ = v.u

u.uu.

This expression for projection also holds if α > 90◦.
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Figure 6.1(a) Projection of One Vector onto Another Vector for α = 90◦.

Projection of v onto u OĀ = v.u
u.u

u.

Figure 6.1(b) Projection of One Vector onto Another Vector for α > 90◦.

In this case, the projection is opposite to u, and the sign of v.u
u.u is negative.

Figure 6.1(c) Projection of One Vector onto Another Vector for α < 90◦.
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Definition 6.6:
The projection of a vector v onto a non-zero vector u in Rn is denoted by

Projuv and is defined by Projuv = v.u
u.uu.

Example 6.15:
Determine the projection of the vector v = (6, 7) onto the vector u =

(1, 4).

Solution:
For these vectors, we get

v.u = (6, 7) . (1, 4) = 6 + 28 = 34

u.u = (1, 4) . (1, 4) = 1 + 16 = 17.

Thus, Projuv = v.u
u.uu = 34

17 (1, 4) = (2, 8).
The projection of v onto u is (2, 8).
Suppose the vector v = (6, 7) represents a force acting on a body located

at the origin (0, 0). Then Projuv = (2, 8) is the component of the force in
the direction of the vector u = (1, 4).

Physically, the projection vector (2, 8) is the effect of the force in that
direction. We now discuss a method for constructing an orthonormal basis
from a given basis. The technique uses vector projection.

Theorem 6.6:
Let {u1, u2, u3, . . . , un} be an orthogonal basis of an inner product space

V. Then for any v ∈ V, it can be expressed as

v =
〈v, u1〉
〈u1, u1〉u1 +

〈v, u2〉
〈u2, u2〉u2 + · · ·+ 〈v, un〉

〈un, un〉un.

Remark:
The scalar ki =

〈v,ui〉
〈ui,ui〉 is called the Fourier c-efficient of v with respect

to ui as it is analogous to a coefficient in the Fourier series of a function.

Theorem 6.7:
Let us consider the vectors u1, u2, u3, . . . , ur form an orthogonal set of

non-zero vectors in an inner product spaceV. Let v ∈ V be any vector inV.
Define v′ = v − (k1u1 + k2u2 + k3u3 + · · ·+ krur),

where k1 =
〈v,u1〉
〈u1,u1〉 , k2 =

〈v,u2〉
〈u2,u2〉 , . . . , kr =

〈v,ur〉
〈ur,ur〉 .

Then v′ is orthogonal to u1, u2, . . . , ur.
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Note:
Each ki in the above theorem is the component (Fourier coefficient) of v

along the given ui.

Remark 1:
The projection of a vector v ∈ V along a subspace U of V is defined as

v = U⊕U⊥.
Hence, v may be expressed uniquely in the form v = u+u′, where u ∈ U

and u′ ∈ U⊥.

Remark 2:
We define v to be the projection of v along U and denote it by

Proj (v,U). If U = span (u1, u2, . . . , ur), where u′is form an orthogonal
set, then Proj (v,U) = k1u1+k2u2+ . . .+krur, where ki is the component
of v along ui.

Example 6.16:
Show that the set

{
(1, 0, 0) ,

(
0, 35 ,

4
5

)
,
(
0, 45 ,−3

5

)}
is orthonormal.

Solution:
First, to show that each pair of vectors in this set is orthogonal.

(1, 0, 0) .

(
0,

3

5
,
4

5

)
= 0

(1, 0, 0) .

(
0,

4

5
,−3

5

)
= 0(

0,
3

5
,
4

5

)
.

(
0,

4

5
,−3

5

)
= 0.

This implies that the vectors{
(1, 0, 0) ,

(
0, 35 ,

4
5

)
,
(
0, 45 ,−3

5

)}
are orthogonal.

Next, to show that each vector in the set is a unit vector.
Now,

‖(1, 0, 0)‖ =
√
12 + 02 + 02 = 1∥∥∥∥

(
0,

3

5
,
4

5

)∥∥∥∥ =
√
02 +

(
3

5

)2

+

(
4

5

)2

= 1

∥∥∥∥
(
0,

4

5
,−3

5

)∥∥∥∥ =
√
02 +

(
4

5

)2

+

(
−3

5

)2

= 1.
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Thus, the vectors are unit and orthogonal.
Hence, the set

{
(1, 0, 0) ,

(
0, 35 ,

4
5

)
,
(
0, 45 ,−3

5

)}
thus forms an orthonor-

mal set.

Theorem 6.8:
Let us consider an inner product space V. An orthogonal set of non-zero

vectors inV is linearly independent.

Proof:
Let {v1, v2, . . . , vm} be an orthogonal set of non-zero vectors in an inner

product spaceV.
Let us examine the identity k1v1 + k2v2 + · · ·+ kmvm = 0v.
We shall show that k1 = 0, k2 = 0, . . . , km = 0 implies the vectors are

linearly independent.
Let vi be the vector of the orthogonal set.
Let us take the dot product of each side of this equation and use the dot

products’ properties. We get

(k1v1 + k2v2 + · · ·+ kmvm) .vi = 0v.vi

⇒ (k1v1.vi + k2v2.vi + · · ·+ kmvm.vi) = 0v.

Since the vectors v1, v2, . . . , vm are mutually orthogonal,
i.e., vj .vi = 0 unless j = i.
Thus, kivi.vi = 0.
Now since vi is a non-zero vector, vi.vi �= 0.
Thus, ki = 0.
Letting i = 1, 2, . . . ,m, we get k1 = 0, k2 = 0, . . . , km = 0, which

proves that the vectors are linearly independent.

6.9 Orthogonal Matrix Theorem

Theorem 6.9:
Let us consider an n× n square matrix A. Then the following statements

are equivalent:

(1) The matrix A is orthogonal.
(2) The column vectors of the matrix A forms an orthonormal set.
(3) The row vectors of the matrix A forms an orthonormal set.

Proof:
Assume that the matrix A is orthogonal.
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Thus, A−1 = AT implies ATA = I and AAT = I .
Let P = ATA. Then Pij is the dot product of row vector i of AT and

column vector j of A.
Since row i of AT is column i of A, this means that Pij is the product of

column vectors i and j of A.
Since P is the identity matrix{

Pij = 1 , if i = j
Pij = 0 , if i �= j

,

it implies that the column vectors of the matrix A thus form an orthonormal
set.

Similarly, if we start with P = AAT , we can show that the row vectors
of the matrix A form an orthonormal set. By using these arguments in the
reverse direction, it can be shown that the converse is true.

Orthonormality of rows or columns implies that A is orthogonal.

6.10 Properties of the Orthogonal Matrix

Theorem 6.10:
If A is an orthogonal matrix, then |A| = ±1 and A−1 is an orthonormal

matrix.

Proof:
Since A−1 = AT , we have AAT = I .
By the properties of determinants,∣∣AAT

∣∣ = 1
⇒ |A| . ∣∣AT

∣∣ = 1
⇒ |A| . |A| = 1

⇒ |A|2 = 1

.

Thus, |A| = ±1.
The row vectors of A form an orthonormal set and also the columns of

AT form an orthonormal set.
Since A−1 = AT , this means that the columns of A−1 form an

orthonormal set.
The previous theorem now implies that A−1 is an orthogonal set.
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6.11 The Gram–Schmidt Orthogonalization Process

Theorem 6.11:
Let V be an inner product space. Let {v1, v2, . . . , vn} be a basis for the

inner product space V. Then the set of vectors {u1, u2, . . . , un} defined as
follows are orthogonal, as shown in Figure 6.2.

To obtain an orthonormal basis for V normalizing each of the vectors
u1, u2, . . . , un.

u1 = v1
u2 = v2 − Proju1

v1
u3 = v3 − Proju1

v3 − Proju2
v3

.............................
un = vn − Proju1

vn − Proju2
vn − · · · − Projun−1

vn

Figure 6.2 Gram–Schmidt Orthogonalization Process.

Example 6.17:
Show that the set of vectors {(1, 2, 0, 3) , (4, 0, 5, 8) , (8, 1, 5, 6)} are

linearly independent and form a basis for a three-dimensional subspace V
of R4. Hence, construct an orthonormal basis for V.

Solution:
Let v1 = (1, 2, 0, 3) , v2 = (4, 0, 5, 8) , v3 = (8, 1, 5, 6).
We now use the Gram−Schmidt process to construct an orthogonal set

{u1, u2, u3} from these vectors.
Let u1 = v1 = (1, 2, 0, 3).
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Let

u2 = v2 − Proju1
v2

= v2 − (v2, u1)

(u1, u1)
u1

= (4, 0, 5, 8)− (4, 0, 5, 8) (1, 2, 0, 3)

(1, 2, 0, 3) (1, 2, 0, 3)
(1, 2, 0, 3)

= (4, 0, 5, 8)− 2 (1, 2, 0, 3)

= (2,−4, 5, 2)

Let

u3 = v3 − Proju1
v3 − Proju2

v3 = v3 − (v3, u1)

(u1, u1)
u1 − (v3, u2)

(u2, u2)
u2

= (8, 1, 5, 6)− (8, 1, 5, 6) (1, 2, 0, 3)

(1, 2, 0, 3) (1, 2, 0, 3)
(1, 2, 0, 3)

− (8, 1, 5, 6) (2,−4, 5, 2)

(2,−4, 5, 2) (2,−4, 5, 2)
(2,−4, 5, 2)

= (8, 1, 5, 6)− 2 (1, 2, 0, 3)− 1 (2,−4, 5, 2)

= (4, 1, 0,−2)

Thus, the set {(1, 2, 0, 3) , (2,−4, 5, 2) , (4, 1, 0,−2)} is an orthogonal
basis for V.

Let us now compute the norm of each vector and then normalize the
vectors to get an orthonormal basis. We get

‖(1, 2, 0, 3)‖ =
√

12 + 22 + 02 + 32 =
√
14

‖(2,−4, 5, 2)‖ =

√
22 + (−4)2 + 52 + 22 = 7

‖(4, 1, 0,−2)‖
√

42 + 12 + 02 + (−2)2 =
√
21.

Upon using these values, we can normalize the vectors to arrive at the
following orthonormal basis for V :{(

1√
14

,
2√
14

, 0,
3√
14

)
,

(
2

7
,
−4

7
,
5

7
,
2

7

)
,

(
1√
21

,
1√
21

, 0,
1√
21

)}
.
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6.12 Projection of a Vector onto a Subspace

We have defined the projection of a vector onto another vector. We now
extend this concept to the projection of a vector onto a subspace. The
projection of a vector onto a subspace tells us “how much” of the vector
lies in the subspace.

Let O �A be the projection of a vector v onto a vector u in Rn. See
Figure 6.3(a).

Figure 6.3(a) Orthogonal subspace.

Let W be the one-dimensional subspace of Rn consisting of all vectors
that lie on the line defined by u. Note that the projection of v onto any vector u
that lies in this subspace isO �A. Thus, we can determine the vector projection
of v onto the subspaceW, written projwv, to beO �A. The simplest expression
for O �A is obtained by taking u to be a unit vector. We then get

projwv = O �A = (v.u)u (u is a unit vector).

Definition 6.7:
If W is a subspace of dimension, we extend this projection concept by

expressing the projection of v onto W as a linear combination of the vectors
of an orthonormal basis ofW as follows.

Let W be a subspace of Rn. Let {u1, u2, . . . , um} be an orthonormal
basis for W. If v is a vector in Rn, the projection of v onto W is denoted by
projwv and is defined by projwv = (v.u1)u1+(v.u2)u2+ · · ·+(v.um)um.

See Figure 6.3(b)



176 Inner Product Spaces

Figure 6.3(b) Orthogonal subspace.

We say that a vector v is orthogonal to subspace W if v is orthogonal to
every vector in W. The following theorem tells us that if we have a vector v
in Rn and if W is a subspace of Rn, then we can decompose v into a vector
that lies in the subspaceW and a vector that is orthogonal toW.

Theorem 6.12:
Let W ⊂ Rn be a subspace of Rn. Every vector v ∈ Rn can be written

uniquely in the form v = w + w⊥, where w ∈ W and w⊥ is orthogonal to
W. Then the vector w and w⊥ are w = Projwv and w⊥ = v − Projwv.

See Figure 6.3(c)

Figure 6.3(c) Orthogonal subspace.

Proof:
Observe that w + w⊥ = projwv + (v−projwv) = v.
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Further projwv is inW. Let us now show that (v−projwv) is orthogonal
to W. Let {u1, u2, . . . , um} be an orthonormal basis for W. We first show
that (v−projwv) is orthogonal to each of these base vectors of W. We will
then be able to show that (v−projwv) is orthogonal to an arbitrary vector in
W. We get

ui. (v−projwv) = ui. (v − (v.u1)u1 − (v.u2)u2 − · · · − (v.um)um)

= ui.v − ui. (v.u1)u1 − ui. (v.u2)u2 − · · · − ui. (v.um)um

= ui.v − (v.u1) (ui.u1)− (v.u2) (ui.u2)− · · · − (v.um) (ui.um)

= ui.v − (v.ui) (ui.ui) , since ui.uj = 0 unless i = j

= ui.v − v.ui, since ui.ui = 1

= 0

Thus, (v−projwv) is orthogonal to each of the base vectors of W.
Let w′ = c1u1 + c2u2 + · · ·+ cmum be an arbitrary vector inW. We get

w′. (v−projwv) = (c1u1 + c2u2 + · · ·+ cmum) . (v−projwv)

= c1u1. (v−projwv) + · · ·+ cmum. (v−projwv)

= 0

Thus, (v−projwv) is orthogonal to W.
The proof of uniqueness is omitted.

Example 6.18:
Let us consider a vector v = (3, 2, 6) ∈ R3. Let W ⊂ R3 be the

subspace of R3 consisting of all vectors of the form (a, b, b), i.e., W =
{(a, b, b) : a, b ∈ RR}. Decompose the vector v ∈ R3 into the sum of a
vector that lies inW and a vector orthogonal to W.

Solution:
Let us consider an orthonormal basis forW.
With the choice of arbitrary vectors of W, the vector (a, b, b) can be

written as
(a, b, b) = a (1, 0, 0) + b (0, 1, 1) .

It implies that the set {(1, 0, 0) , (0, 1, 1)} spans W and is linearly
independent.

Thus, it forms a basis forW, and hence the vectors are orthogonal.
Now normalize each vector (1, 0, 0) and (0, 1, 1) to get an orthonormal

basis {u1, u2} forW, where u1 = (1, 0, 0) , u2 =
(
0, 1√

2
, 1√

2

)
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We get

w = Projwv = (v.u1)u1 + (v.u2)u2

= ((3, 2, 6) , (1, 0, 0)) (1, 0, 0) +

(
(3, 2, 6)

(
0,

1√
2
,
1√
2

))(
0,

1√
2
,
1√
2

)
= (3, 0, 0) + (0, 4, 4)

= (3, 4, 4)

and

w⊥ = v − Projwv

= (3, 2, 6)− (3, 4, 4)

= (0,−2, 2)

Thus, the desired decomposition of v can be expressed as

(3, 2, 6) = (3, 4, 4) + (0,−2, 2) .

Thus, it shows that the vector (3, 4, 4) lies inW, and the vector (0,−2, 2)
is orthogonal toW.

6.13 Distance of a Point from a Subspace

Here we discuss the distance of a point from a subspace in Rn.
Let X = (x1, x2, . . . , xn) be the point in Rn, W be a subspace of Rn,

andY = (y1, y2, . . . , yn) be a point inW.
It is natural to define the distance ofX fromW, denoted to be d (X,W),

i.e., the minimum of the distance from X to the points of W and it can be
expressed as d (X,W) = min {d (x, y)}, for all points y in W.

Now we will find d (X,W) in terms of its projection.
Next, let us write X − Y = (X − ProjwX) + (ProjwX −Y), a

decomposition of the vectorX −Y into the sum of a vector (X − ProjwX)
that is orthogonal toW, and a vector (ProjwX −Y) that lies in W.

Thus, the Pythagorean theorem gives

‖X −Y‖2 = ‖X − ProjwX‖2 + ‖ProjwX −Y‖2 .
Therefore, ‖X −Y‖ (which is equal to d (X,Y)) has a minimum value

‖X − ProjwX‖; when ProjwX −Y = 0; i.e., whenY = ProjwX .
Hence, d (X,W) = ‖X − ProjwX‖, as shown in Figure 6.4.
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Figure 6.4 Distance of a Point from a Subspace.

Note:
A point from a subspace is the distance of the point from its projection in

the subspace.

Remark:
ProjwX is the closest point to X in the subspace W.

Example 6.19:
Determine the distance of the point X = (4, 1,−7) of R3 from the

subspaceW consisting of all vectors of the form (a, b, b).

Solution:
From the previous example, it is found that the set {u1, u2} is an

orthonormal basis forW, where u1 = (1, 0, 0) , u2 =
(
0, 1√

2
, 1√

2

)
.

Next, we compute ProjwX.

ProjwX = (X.u1)u1 + (X.u2)u2

= ((4, 1,−7) . (1, 0, 0)) (1, 0, 0)

+

(
(4, 1,−7) .

(
0,

1√
2
,
1√
2

))(
0,

1√
2
,
1√
2

)
= (4, 0, 0) + (0,−3,−3) = (4,−3,−3)

Thus,

‖X − ProjwX‖ = ‖(4, 1,−7)− (4,−3,−3)‖
= ‖(0, 4,−4)‖ =

√
32

Hence, the distance fromX toW is
√
32.
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6.14 QR-Factorization

Theorem 6.13:
Let us consider a realm×nmatrixA with rank n. Then the matrixA can

be written as a product, i.e., A = QR, where Q is a real orthogonal matrix
and R is a real n × n upper triangular matrix having positive entries on its
principal diagonal.

Proof:
Let V denote the column space of the matrix A, forming a subspace of

the Euclidean inner product space Rm. Since the matrix A has a rank n, it
implies that the n column vectors, i.e., X1, X2, . . . , Xn of the matrix A are
linearly independent and form a basis of the column spaceV.

Hence, the Gram−Schmidt process can be applied to these basis vectors
X1, X2, . . . , Xn to produce an orthonormal basis of V sayY1,Y2, . . . ,Yn.

Now upon using the Gram−Schmidt procedure, these vectorsYi have the
form

Y1 = b11X1

Y2 = b12X1 + b22X2

· · · · · · · · ·
Yn = b1nX1 + b2nX2 + · · ·+ bnnXn ,

(6.1)

where bij are real numbers with bii > 0, i.e., positive.
Upon solving eqn (6.1) for X1, X2, . . . , Xn by back-substitution proce-

dure, we get a linear system of the same general form:

X1 = r11Y1

X2 = r12Y1 + r22Y2

· · · · · · · · ·
Xn = r1nY1 + r2nY2 + · · ·+ rmnYn ,

(6.2)

where rij are real numbers with rii > 0, i.e., positive.
Thus, eqn (6.2) can be expressed in matrix form as

A = [X1, X2, . . . , Xn]

= [Y1,Y2, . . . ,Yn]

⎡
⎢⎢⎢⎣

r11 r12 · · · r1n
0 r22 · · · r2n

· · · ... · · · ...
0 0 · · · rmn

⎤
⎥⎥⎥⎦ .

The columns of the m × n matrix, i.e., Q = [Y1,Y2, . . . ,Yn] form an
orthonormal basis since they constitute an orthonormal basis of Rm while
the matrix R = {rij}m,n is an upper triangular matrix.
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Similarly, the most important case of this theorem is when the matrix
A is a non-singular square matrix, then the matrix Q is n × n matrix, and
equivalently it has the property

QTQ = In.

It just to say that QT = Q−1.
A square matrixA such that AT = A−1 is called an orthogonal matrix.

Remark:
Orthogonal matrices play an essential role in the study of the canonical

form of matrices.

Example 6.20:
Determine the factorization of the following matrix in the QR factorized

form A =

⎡
⎣ 1 1 2

1 2 3
1 1 1

⎤
⎦.

The method is to apply the Gram−Schmidt process to the columns
X1, X2, X3 of the matrix A, which are linearly independent and form a basis
for the column space of A.

This yields an orthonormal basis {Y1,Y2,Y3}, where

Y1 =
1√
3

⎡
⎣ 1

1
1

⎤
⎦ =

1√
3
X1

Y2 =
1√
6

⎡
⎣ −1

2
−1

⎤
⎦ =

2
√
6

3
X1 +

√
6

2
X2

Y3 =
1√
2

⎡
⎣ 1

0
−1

⎤
⎦ = −3

√
2

2
X2 +

√
2X3 .

Upon back-substitution, we obtain the equations

X1 =
√
3Y1

X2 =
4
√
3

3
Y1 +

√
6

3
Y2

X3 =
2√
3
Y1 +

√
6

2
Y2 +

√
2

2
Y3.
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Therefore, A = QR, where

Q =

⎡
⎢⎣

1√
3

− 1√
6

1√
2

1√
3

2√
6

0
1√
3

− 1√
6

− 1√
2

⎤
⎥⎦ and R =

⎡
⎢⎣

√
3 4√

3
2
√
3

0
√
6
3

√
6
2

0 0
√
2
2

⎤
⎥⎦.

Example 6.21:

Consider the matrixA =

⎡
⎣ 1 1 0

1 0 1
0 1 1

⎤
⎦ with the vectors

X1 =

⎡
⎣ 1

1
0

⎤
⎦ , X2 =

⎡
⎣ 1

0
1

⎤
⎦ , X3 =

⎡
⎣ 0

1
1

⎤
⎦, where X1, X2, X3 are

column vectors.

u1 = X1 =

[
1
1
0

]
,

Y1 =
u1
‖u1‖ =

X1

‖X1‖

=
1√
2

[
1
1
0

]
=

⎡
⎣ 1√

2
1√
2
0

⎤
⎦

u2 = X2 − (X2.e1) e1

=

[
1
0
1

]
− 1√

2

⎡
⎣ 1√

2
1√
2
0

⎤
⎦ =

[ 1
2−1
2
1

]

Y2 =
u2
‖u2‖

=
1√
3
2

[ 1
2−1
2
1

]
=

⎡
⎢⎣

1√
6

− 1√
6

2√
6

⎤
⎥⎦

u3 = X3 − (X3.e1) e1 − (X3.e2) e2

=

[
0
1
1

]
− 1√

2

⎡
⎣ 1√

2
1√
2
0

⎤
⎦− 1√

6

⎡
⎢⎣

1√
6

− 1√
6

2√
6

⎤
⎥⎦ =

⎡
⎢⎣

− 1√
3

1√
3
1√
3

⎤
⎥⎦
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Y3 =
u3
‖u3‖ =

⎡
⎢⎣

− 1√
3

1√
3
1√
3

⎤
⎥⎦ .

Thus,

Q =

[
e1
...e2

...........
...en

]

=

⎡
⎢⎣

1√
2

1√
6

− 1√
3

1√
2

− 1√
6

1√
3

0 2√
6

1√
3

⎤
⎥⎦

and

R =

⎡
⎣ X1.e1 X2.e1 X3.e1

0 X2.e2 X3.e2
0 0 X3.e3

⎤
⎦

=

⎡
⎢⎣

2√
2

1√
2

1√
2

0 3√
6

1√
6

0 0 2√
3

⎤
⎥⎦ .

Example 6.22:
Orthonormalize the set of linearly independent vectors (1, 0, 1, 1)

(−1, 0,−1, 1) (0,−1, 1, 1) ofV4.
Let v1 = (1, 0, 1, 1). Then

v2 = (−1, 0,−1, 1)− (−1, 0,−1, 1) . (1, 0, 1, 1)

3
(1, 0, 1, 1)

=

(
−2

3
, 0,−2

3
,
4

3

)

v3 = (0,−1, 1, 1)− (0,−1, 1, 1) . (1, 0, 1, 1)

3
(1, 0, 1, 1)

− (0,−1, 1, 1) .
(−2

3 , 0,−2
3 ,

4
3

)
24
9

(
−2

3
, 0,−2

3
,
4

3

)

=

(
−1

2
,−1,−1

2
, 0

)
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The resulting orthogonal set is

(1, 0, 1, 1) ,

(
−2

3
, 0,−2

3
,
4

3

)
,

(
−1

2
,−1,−1

2
, 0

)
.

The corresponding orthonormal set is(
1√
3
, 0,

1√
3
,
1√
3

)
,

(
− 1√

6
, 0,− 1√

6
,
2√
6

)
,

(
− 1√

3
,− 2√

3
,− 1√

3
, 0

)
.

Example 6.23:
Find an orthonormal basis of P3 [−1, 1] starting from the basis{

1, x, x2, x3
}
and use the inner product defined by f.g =

∫ 1
−1 f (t) g (t) dt.

We take v1 = 1.
Then

v2 = x− x.1

2
1

= x−
(
1

2

∫ 1

−1
tdt

)
= x

v3 = x2 − x2.1

2
1− x2.x

2
3

x

= x2 −
(
1

2

∫ 1

−1
t2dt

)
−
(
3

2
x

∫ 1

−1
t3dt

)

= x3 − 1

3

v4 = x3 − x3.1

2
1− x3.x

2
3

x− x3.
(
x2 − 1

3

)
2
5

(
x2 − 1

3

)

= x3 − 3

5
x

Thus, the orthogonal basis is
{
1, x, x2 − 1

3 , x
3 − 3

5x
}
.

To get the corresponding orthonormal basis, we divide these by the
respective norm and get{

1√
2
,

√
3√
2
x,

3
√
5

2
√
2

(
x2 − 1

3

)
,
5
√
7

2
√
2

(
x3 − 3

5
x

)}
.
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Exercises

1. Determine the inner product u.v in the following cases:

(a) u = (1,−1) , v = (2, 3)
(b) u = (1, 2, 3) , v = (3, 0, 2)
(c) u = (−1, 1, 2, 4) , v = (1, 2,−1, 1).

2. In an inner product space, show that

(a) If v.u = 0 for all u ∈ V , then v = 0.
(b) If v.u = w.u for all u ∈ V , then v = w.

3. Show that an inner product can be defined on V2 by

(x1, x2) . (y1, y2) =
(x1 − x2) . (y1 − y2)

4
+

(x1 + x2) . (y1 + y2)

4
.

In this inner product space, calculate
(a) e1.e2 (b) (1,−1) . (1, 1).

4. Prove that all the eigenvalues of a symmetric matrix are real.
5. Let the set {v1, v2, . . . , vn} be L.D. What happens when the

Gram−Schmidt process of orthogonalization is applied to it?
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7
Matrix Representation of Linear

Transformations

Matrices form a vital tool in the study of finite-dimensional vector spaces.
Hereafter though, for convenience, we deal with real vectors and the real
vector space Vn, all our definitions, unless otherwise restricted, will also
apply to complex vectors and the complex vector space V C

n .
We have developed much mathematics around the concept of a basis.

In this chapter, we discuss the relationship between coordinate systems and
bases. We have found that a linear transformation can be represented by a
matrix relative to a standard basis. We shall find a matrix representation
relative to every basis. If possible, it will be of interest to find diagonal
representations and determine the basis (or coordinate systems) to which
this applies. Eigenvalues and eigenvectors play an essential role in these
discussions. This technique will enable us to find the most suitable coordinate
systems for discussing physical situations such as vibrating strings.

We shall define remarkable structure-preserving transformations between
various types of vector spaces. We shall find that even though the elements
of specific vector spaces such as Rn and Pn differ in appearance, their
mathematical properties have much in common. It means that any results we
develop for Rn can be applied to all such vector spaces.

7.1 Matrix Representation of Linear Transformations

Previously, we have seen that a matrix A can define a linear transformation
T : Rn → Rm.

This section introduces a way of representing a linear transformation
between general vector spaces by a matrix.

Theorem 7.1:
Let T : U → V be a linear transformation. Let {u1, u2, · · · , un} be

a basis for U. The linear transformation T is defined by its effects on the

187
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base vectors, namely by T (u1) ,T (u2) , · · · ,T (un) and the range of T is
spanned by {T (u1) ,T (u2) , · · · ,T (un)}.
Proof:

Let u be an element of U. Then, since {u1, u2, · · · , un} is a basis for U,
there exist scalars a1, a2, · · · , an such that u = a1u1 + a2u2 + · · ·+ anun.

The linearity of T gives

T (u) = T (a1u1 + a2u2 + · · ·+ anun)

= a1T (u1) + a2T (u2) + · · ·+ anT (un) .

Therefore, T (u) is known,
if {T (u1) ,T (u2) , · · · ,T (un)} are known.

Further, T (u) may be interpreted as an arbitrary element in
the range of T and can be expressed as a linear combination of
{T (u1) ,T (u2) , · · · ,T (un)}.

Thus, {T (u1) ,T (u2) , · · · ,T (un)} spans the range of T.

Example 7.1:
Consider the linear transformation T : R3

R → R2 defined as follows
on basis vectors of R3. Find T (1,−2, 3).

T (1, 0, 0) = (3,−1)
T (0, 1, 0) = (2, 1)
T (0, 0, 1) = (3, 0)

.

Solution:
Since T is defined on basis vectors of R3, it is specified on the whole

space.
To findT (1,−2, 3), express the vector (1,−2, 3) as a linear combination

of the basis vectors and use the linearity of T.

T (1,−2, 3) = T (1 (1, 0, 0)− 2 (0, 1, 0) + 3 (0, 0, 1))

= 1.T (1, 0, 0)− 2.T (0, 1, 0) + 3.T (0, 0, 1)

= 1. (3,−1)− 2. (2, 1) + 3. (3, 0)

= (8,−3) .

We have seen that a linear transformationT : Rn → Rm can be defined
by a matrix A as T (U) = AU.

Here A = {T (e1) ,T (e2) , · · · ,T (en)}.
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Note that the matrix A is constructed by finding the effects of T in each
of these standard basis vectors Rn.

These ideas can be extended to a linear transformation T : U → V
between general vector spaces.

We shall represent the element of U and V by coordinate vectors and T
by a matrix A that defines a transformation of coordinate vectors.

As forRn, the matrixA is constructed by finding the effects ofT on basis
vectors.

Theorem 7.2:
Let U and V be two vector spaces with bases B = {u1, u2, · · · , un}

and Br = {v1, v2, · · · , vm} and T : U → V a linear transformation.
If v ∈ U is a vector in U with an image T (v), having coordinate
vectors ā and b̄ relative to these bases, then b̄ = Aā, where A ={
T (u1)Br

,T (u2)Br
, · · · ,T (un)Br

}
.

The matrix A has thus defined a transformation of coordinate vectors of
U in the same way asT transforms the vectors ofU (as shown in Figure 7.1).

Figure 7.1 Matrix Representation of Linear Transformations.

The matrix A is called the matrix representation of T (or matrix of T)
concerning the bases B and Br.

Proof:
Let u = a1u1 + a2u2 + · · ·+ anun.
Using the linearity of T, we can write

T (u) = T (a1u1 + a2u2 + · · ·+ anun)

= a1T (u1) + a2T (u2) + · · ·+ anT (un) .



190 Matrix Representation of Linear Transformations

Let the effect of T on the basis vectors ofU be

T (u1) = c11v1 + c12v2 + · · ·+ c1mvm
T (u2) = c21v1 + c22v2 + · · ·+ c2mvm
...
T (un) = cn1v1 + cn2v2 + · · ·+ cnmvm

.

Thus,

T (u) = a1 (c11v1 + c12v2 + · · ·+ c1mvm)

+ a2 (c21v1 + c22v2 + · · ·+ c2mvm) + · · ·
+ an (cn1v1 + cn2v2 + · · ·+ cnmvm)

= (a1c11 + a2c21 + · · ·+ ancn1) v1

+ (a1c12 + a2c22 + · · ·+ ancn2) v2 + · · ·
+ (a1c1m + a2c2m + · · ·+ ancnm) vm.

The coordinate vector of T (u) is therefore

b̄ =

⎡
⎢⎢⎢⎣

(a1c11 + a2c21 + · · ·+ ancn1)
(a1c12 + a2c22 + · · ·+ ancn2)
...
(a1c1m + a2c2m + · · ·+ ancnm)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

c11 c21 .....cn1
c12 c22 · · · cn2
...
c1mc2m · · · cnm

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

a1
a2
...
an

⎤
⎥⎥⎥⎦

=
[
T (u1)Br

· · ·T (un)Br

]
.

Example 7.2:
Let T : U → V be a linear transformation. T and is defined relative to

bases B = {u1, u2, u3} and Br = {v1, v2} ofU andV as follows:

T (u1) = 2v1 − v2
T (u2) = 3v1 + 2v2
T (u3) = v1 − 4v2

.

Find the matrix representation of T concerning these bases and use this
matrix to determine the image of the vector u = 3u1 + 2u2 − u3.

Solution:
The coordinate vectors of T (u1), T (u2), and T (u3) are[

2
−1

]
,

[
3
2

]
and

[
1

−4

]
.
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These vectors make up the columns of the matrix of the transformation
T.

A =

[
2 3 1
−1 2 −4

]
.

Let us now find the image of the vector u = 3u1 + 2u2 − u3 using this
matrix.

The coordinate vector ofU is ā =

⎡
⎣ 3

2
−1

⎤
⎦.

We get Aā =

[
2 3 1
−1 2 −4

]⎡⎣ 3
2
1

⎤
⎦ =

[
11
5

]
.

It implies that T (u) has a coordinate vector

[
11
5

]
.

Thus, T (u) = 11v1 + 5v2.

Example 7.3:
Consider the linear transformation T : R3 → R2 defined by

T (x1, x2, x3) = (x1 + x2, 2x3). Then, find the matrix of the transformation

T concerning the bases {u1, u2, u3} and
{
u1

′
, u2

′
}
of R3 and R2.

Here u1 = (1, 1, 0) , u2 = (0, 1, 4) , u3 = (1, 2, 3)

u′1 = (1, 0) , u′2 = (0, 2) .

Use this matrix to find the image of the vector u = (2, 3, 5).

Solution:
We find the effect of T on the basis vector of R3.

T (u1) = T (1, 1, 0)

= (2, 0)

= 2. (1, 0) + 0. (0, 2)

= 2.u′1 + 0.u′2
T (u2) = T (0, 1, 4)

= (1, 8)

= 1. (1, 0) + 4. (0, 2)

= 1.u′1 + 4.u′2
T (u3) = T (1, 2, 3)
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= (3, 6)
= 3. (1, 0) + 3. (0, 2)
= 3.u′1 + 3.u′2.

The coordinate vectors of T (u1), T (u2), and T (u3) are thus[
2
0

]
,

[
1
4

]
and

[
3
3

]
.

These vectors form the column of the matrix ofT, i.e.,A =

[
2 1 3
0 4 3

]
.

Let us now use A to find the image of the vector u = (2, 3, 5).
We determine the coordinate vector ofU.
It can be shown that

u = (2, 3, 5) = 3 (1, 1, 0) + 2 (0, 1, 4) − (1, 2, 3)

= 3u1 + 2u2 + (−1)u3.

The coordinate vector ofU is thus ā =

⎡
⎣ 3

2
−1

⎤
⎦.

The coordinate vector of T (u) is

b̄ = Aā =

[
2 1 3
0 4 3

]⎡⎣ 3
2
−1

⎤
⎦ =

[
5
5

]
.

Therefore,

T (u) = 5.u′1 + 5.u′2
= 5 (1, 0) + 5 (0, 2)

= (5, 10) .

We can check this result directly using the definition

T (x, y, z) = (x+ y, 2z) .

For u = (2, 3, 5), it gives T (u) = T (2, 3, 5) = (5, 10).

7.2 Importance of Matrix Representation

We saw that every real finite-dimensional vector space is isomorphic to Rn.
This means that any such vector space can be discussed in terms of the
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appropriate vector space Rn. Moreover, a matrix can now represent every
linear transformation, i.e., all the theoretical mathematics of these vector
spaces and their linear transformation can be undertaken in vector spaces Rn

and matrices.
A second reason is a computational one. The elements ofRn and matrices

can be manipulated on computers. Thus, general vector spaces and their linear
transformation can be discussed on computers through these representations.

Example 7.4:
Consider the linear transformation T : P2 → P1 defined by

T
(
ax2 + bx+ c

)
= (a+ b)x− c.

Find the matrix of T concerning the bases {u1, u2, u3} and
{u′1, u′2} on P2 and P1, where
u1 = x2 , u2 = x , u3 = 1 and u′1 = x, u′2 = 1.
Use this matrix to find the image of u = 3x2 + 2x− 1.

Solution:
Consider the effect of T on each basis vector of P2.

T (u1) = T
(
x2
)
= x = 1.x+ 0. (1) = 1.u′1 + 0.u′2

T (u2) = T (x) = x = 1.x+ 0. (1) = 1.u′1 + 0.u′2
T (u3) = T (1) = −1 = 0.x+ (−1) . (1) = 0.u′1 + (−1) .u′2.

The coordinate vectors of T
(
x2
)
,T (x), and T (1) are[

1
0

]
,

[
1
0

]
and

[
0
−1

]
.

The matrix of T is thus A =

[
1 1 0
0 0 −1

]
.

Let us now use T to find the image of u = 3x2 + 2x− 1.
The coefficient vector of U relative to the basis

{
x2, x, 1

}
is ā =⎡

⎣ 3
2
−1

⎤
⎦.

So, we get b̄ = Aā =

[
1 1 0
0 0 −1

]⎡⎣ 3
2
−1

⎤
⎦ =

[
5
1

]
.

Therefore, T (u) = 5u′1 + 1u′2 = 5x+ 1.
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We visualize the way this matrix representation works in Figure 7.2. The
top half of the figure shows the linear transformation T of P2 to P1. The
bottom half is analogous to the top half, with A defining a transformation of
the coordinate vectors of P2 into the coordinate vectors of P1 according to

[
1 1 0
0 0 −1

]⎡⎣ a
b
c

⎤
⎦ =

[
a+ b
−c

]
.

The bottom half is a coordinate representation of the top half.

Figure 7.2 Matrix Representation of Linear Transformations.

7.3 Visualization of the Matrix Representation

The top half of Figure 7.2 shows the linear transformationT ofP2 toP1. The
bottom half is analogous to the top half with A′ defining a transformation of
the coordinate vectors of P2 into the coordinate vectors of P1 according to

[
1 1 0
0 0 −1

]⎡⎣ a
b
c

⎤
⎦ =

[
a+ b
−c

]
.

The bottom half is a coordinate representation of the top half.

Example 7.5:
Let D = d

dx be the operation of taking the derivative. D is a linear
operator on P2. Find the matrix of D concerning the basis

{
x2, x, 1

}
of P2.
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Solution:
We examine the effects of D on the basis vectors.

D
(
x2
)
= 2x = 0.x2 + 2.x+ 0.(1)

D (x) = 1 = 0.x2 + 0.x+ 1.(1)

D (1) = 0 = 0.x2 + 0.x+ 0.(1).

The matrix of D is thus

A =

⎡
⎣ 0 0 0

2 0 0
0 1 0

⎤
⎦ .

The matrix A defines a linear operator that is analogous to D on P2, as
shown in Figure 7.3

We have D
(
ax2 + bx+ c

)
= 2ax+ b

and

⎡
⎣ 0 0 0

2 0 0
0 1 0

⎤
⎦
⎡
⎣ a

b
c

⎤
⎦ =

⎡
⎣ 0

2a
b

⎤
⎦.

Figure 7.3 Matrix Representation of Linear Transformations.

7.4 Relation between Matrix Representation

At this time, we discuss how the matrix representation of linear opera-
tors relative to different bases is related. A transformation called similarity
transformation plays a crucial role in this discussion.



196 Matrix Representation of Linear Transformations

Definition 7.1:
Let there be two square matrices A and B of the same size. The matrix

B is then said to be similar to the matrix A if there is an invertible matrix C
such that B = C−1AC.

The transformation of the matrix A into the matrix B in this manner is
called similarity transformation. We now find that the matrix representations
of a linear operator relative to two bases are similar matrices.

Theorem 7.3:
Let V be a vector space with bases B and Br, and P be the transition

matrix from Br to B. If T is a linear operator on V having matrices A and
Ar concerning the first and second bases, thenA′ = P−1AP.

Proof:
Consider a vector u ∈ V. Let its coordinate vectors relative to B and Br

be a and ar.
The coordinate vectors of T (u) are Aā and Arār.
As P is the transition matrix from Br to B,
ā = Pā′ and Aā = P (A′ā′).
The second equation may be rewritten as

P−1Aā = A′ā′.

Substituting ā = Pā′ into this equation gives

P−1APā′ = A′ā′.

The effect of the matrices P−1AP and A′ as transformations on an
arbitrary coordinate vector ār is the same.

Thus, these matrices are equal.

Example 7.6:
Consider the linear operatorT (x, y) = (2x, x+ y) onR2. Then, find the

matrix of T concerning the standard basis B = {(1, 0) , (0, 1)} of R2.
Use the transformation A′ = P−1AP to determine the matrix A′

concerning the basis B′ = {(−2, 3) , (1,−1)}.
Solution:

The effect of the linear transformation T on the vectors of the standard
basis is

T (1, 0) = (2, 1) = 2 (1, 0) + 1 (0, 1)

T (0, 1) = (0, 1) = 0 (1, 0) + 1 (0, 1) .
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The matrix of the transformation T relative to the standard basis is

A =

[
2 0
1 1

]
.

We now find that P is the transition matrix from B′ to B. Write the
vectors of B′ in terms of those of B.

(−2, 3) = −2 (1, 0) + 3 (0, 1)
(1,−1) = 1 (1, 0)− 1 (0, 1)

.

The transition matrix is P =

[ −2 1
3 −1

]
.

Therefore,

A′ = P−1AP =

[ −2 1
3 −1

]−1 [
2 0
1 1

] [ −2 1
3 −1

]

=

[
1 1
3 2

] [
2 0
1 1

] [ −2 1
3 −1

]

=

[ −3 2
−10 6

]
.

Exercises
Determine the matrix (T : B1, B2) for the given linear transformation T

and the bases B1 and B2.

1. T : V2 → V2 defined by T (x, y) = (−x,−y)
(a) B1 = {e1, e2} B2 = {(1, 1) , (1,−1)}
(b) B1 = {(1, 1) , (1, 0)} B2 = {(2, 3) , (4, 5)}

2. T : V3 → V2 T (x, y, z) = (x+ y, y + z)
(a) B1 = {(1, 1, 1) , (1, 0, 0) , (1, 1, 0)} , B2 = {e1, e2}
(b) B1 =

{(
1, 1, 23

)
, (−1, 2,−1) ,

(
2, 3, 12

)}
, B2 =

{
(1, 3) ,

(
1
2 , 1
)}

.

3. T : V4 → V5 defined by

T (x1, x2, x3, x4) = (2x1 + x2, x2 − x3, x3 + x4, x1, x1 + x2 + 3x3 + x4)

B1 = {(1, 2, 3, 1) , (1, 0, 0, 1) , (1, 1, 0, 0) , (0, 1, 1, 1)}
B2 = {e1, e2, e3, e4, e5}

4. D : Pn → Pn defined by D (p) = p′

B1 = B2 =
{
1, x, x2, x3, · · · , xn}
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5. T : P4 → P4 defined by T (p) (x) =
∫ x
1 p′ (t) dt

(a) B1 = B2 =
{
1, x, x2, x3, x4

}
.

(b) B1 =
{
1, x, x2, x3, x4

}
,

B2 =
{
x− 1, x+ 1, x2 − x4, x3 + x4, x2 + x

}
.

6. T : P2 → P3 defined by T (p) (x) = xp (x)
(a) B1 =

{
1, 1 + x, 1− x+ x2

}
, B2 =

{
1, 1 + x, x2, 2x− x3

}
(b) B1 =

{
1, x, x2

}
, B2 =

{
1 + x, (1 + x)2 , (1 + x)3 , 1− x

}
.

The linear map associated with a matrix:
For each given matrix A and bases B1 and B2, determine a linear
transformation T : Vn → Vm such that A = (T : B1, B2).

7.

A =

⎡
⎣ 1 1 2 3

1 0 1 −1
1 2 0 0

⎤
⎦ .

(a) B1 and B2 are standard bases for V4 and V3 respectively.
(b) B1 = {(1, 1, 1, 2) (1,−1, 0, 0) (0, 0, 1, 1) (0, 1, 0, 0)}

B2 = {(1, 2, 3) (1,−1, 1) (2, 1, 1)}
8.

A =

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ .

(a) B1 = B2 = {e1, e2, e3}.
(b)

B1 = {(1, 1, 1) (1, 0, 0) (0, 1, 0)}
B2 = {(1, 2, 3) (1,−1, 1) (2, 1, 1)} .

(c)
B1 = {(1, 2, 3) (1,−1, 1) (2, 1, 1)}
B2 = {(1, 1, 1) (1, 0, 0) (0, 1, 0)} .

9.

A =

[
1 −1 2
3 1 0

]
(a) B1 and B2 are standard bases for V3 and V2 respectively.

(b)
B1 = {(1, 1, 1) (1, 2, 3) (1, 0, 0)}
B2 = {(1, 1) (1,−1)}

(c)
B1 = {(1,−1, 1) (1, 2, 0) (0,−1, 0)}
B2 = {(1, 0) (2,−1)} .
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10.

A =

⎡
⎣ 1 2

0 1
−1 3

⎤
⎦

(a) B1 and B2 are standard bases for V2 and V3 respectively.

(b)
B1 = {(1, 1) (−1, 1)}
B2 = {(1, 1, 1) (1,−1, 1) (0, 0, 1)} .

(c)
B1 = {(1, 2) (−2, 1)}
B2 = {(1,−1,−1) (1, 2, 3) (−1, 0, 2)} .

11. If

[
cos θ − sin θ
sin θ cos θ

]
is the matrix of a linear mapT : V2 → V2 relative

to the standard bases, then find the matrix ofT−1 relative to the standard
bases.

Linear operations inMm×n:
In Problems 12−15, determine αA + βB for the given scalars α and β
and the matrices A and B.

12.

A =

[
1 2 3
−1 1 1

]
, B =

[
1 0 1
2 1 −1

]
.

(a) α = 2, β = 7 (b) α = 3, β = −2.

13.

A =

[
1 2
3 1

]
, B =

[
1 0
2 −1

]
.

(a) α = 3, β = 5 (b) α = 2, β = −3.

14.

A =

⎡
⎣ 1 2 3 4

−1 1 1 1
3 1 2 0

⎤
⎦ , B =

⎡
⎣ 3 −1 2 0

1 5 7 3
2 1 0 1

⎤
⎦

(a) α = 2, β = −6 (b) α = 3, β = 5
(c) α = −7, β = 3.

15.

A =

⎡
⎣ 1 −1 1

2 −3 −1
3 2 0

⎤
⎦ , B =

⎡
⎣ 1 0 2

0 1 1
3 1 −1

⎤
⎦

(a) α = 7, β = −5 (b) α = 1
2 , β = 2

3

(c) α = 1
3 , β = 4

5 .
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16. Let T1,T2 : U → V be two linear maps. Let B1, B2 be ordered bases
forU andV, respectively. Then prove that

(α1T1 + α2T2 : B1, B2) = α1 (T1 : B1, B2) + α2 (T2 : B1, B2) .

17. Let S,T : V3 → V4 be defined as

S (x1, x2, x3) = (x1 + x2, x1 − 2x2 + x3, x2 + 3x3, x1 + x3)
T (x1, x2, x3) = (x1 + 2x2, x1 − x2, 3x2 + x3, x1 + x2 + x3)

.

Determine the matrix of 3S − 4T relative to the standard bases by two
different methods.

18. Let S,T : P3 → P4 be defined as

(S (p)) (x) =
(
x2 − 1

)
p′ (x)

(T (p)) (x) = (3x+ 2) p (x)− ∫ x1 p′ (t) dt.

Determine the matrix of 4S + 2T relative to the ordered bases B1 ={
1, x, x2, x3

}
and B2 =

{
(1− x) , (1 + x) , (1− x)2 , (1− x)3 , x

4

2

}
by two different methods.

19. Let B1 = {u1, u2, ....., un} and B2 = {v1, v2, ....., vn} be the ordered
bases for the vector spaces U and V, respectively. Define Ti,j :
U → V,1 ≤ i ≤ m, 1 ≤ j ≤ n such that

Ti,j (uk) =

{
0 if k �= i
vj if k = i

.

Then prove that
(a) (Ti,j : B1, B2) = Ei,j

(b) {Ti,j} is a basis of L (U,V).

20. Define T : M2,2 → M2,3 such that

T

[
α11 α12

α21 α22

]
=

[
α11 + α12 0 α12 + α22

α12 α21 + α22 0

]
.

Prove that T is linear and determine its matrix relative to the standard
bases forM2,2 andM2,3.

21. Repeat Problem 9 for T : M2,3 → M2,2 defined as

T

[
α11 α12

α21 α22

]
=

[
α11 + α12 0 α12 + α22

α12 α21 + α22 0

]
.
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22. Let V be the subspace of Cm (−∞,∞) spanned by the functions
sinx, cosx, sinx cosx, sin2 x, cos2 x. Determine the dimension of V
and prove that the differential operator Dn maps V into itself for every
positive integer n ≤ m.
Determine the matrix of (a) 2D+3 (b) 3D2−D+4 relative to the basis
ofV obtained from the given spanning set ofV.

23. Find the range, kernel, rank, and nullity of the following matrices:

(a)

⎡
⎣ 1 3 2

−1 7 2
1 0 1

⎤
⎦ (b)

[
1 −1 2
3 −2 5

]

(c)

⎡
⎣ 2 0 1

7 1 2
3 −1 1

⎤
⎦ (d)

⎡
⎢⎢⎣

2 3 1 2 0
0 3 −1 2 1
1 −3 2 4 3
2 3 0 3 0

⎤
⎥⎥⎦

(e)

⎡
⎢⎢⎣

1 −1 1 0
2 3 −1 1
1 5 2 0
0 0 1 1

⎤
⎥⎥⎦ (f)

⎡
⎣ −1 1 1

3 1 −1
2 2 1

⎤
⎦

24. Prove that the following matrices are non-singular and find their
inverses:

(a)

[
1 2
−1 0

]
(b)

⎡
⎣ 1 0 0

2 1 0
3 4 2

⎤
⎦

(c)

⎡
⎣ 1 −1 2

3 0 1
0 1 −1

⎤
⎦ (d)

⎡
⎢⎢⎣

1 −1 2 3
0 2 1 1
1 3 1 −1
1 1 −1 0

⎤
⎥⎥⎦

(e)

⎡
⎢⎢⎣

2 2 1 1
0 2 1 1
0 0 1 1
0 0 1 0

⎤
⎥⎥⎦

25. Find the values of α and β for which the following matrix is invertible.
Find the inverse when it exists.⎡

⎣ α β 0
0 α β
β 0 α

⎤
⎦
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26. Prove the following:

(a) If two rows of a matrix are interchanged, then the rank does not
change.

(b) If a row of a matrix is multiplied by a non-zero scalar, then the rank
does not change.



8
Diagonalizations

This chapter discusses the diagonalization process that includes minimal
polynomials, Cayley−Hamilton theorem, and diagonal matrix representation
of a linear operator. It also consists of the diagonalization of matrices,
diagonalization of symmetric matrices, and orthogonal diagonalization.

A self-contained illustration of the role of linear transformation in com-
puter graphics is presented. The bases of the space define these isomorphisms.
Different bases also lead to other matrix representations of linear transforma-
tion. The vital aspect of eigenvalues and eigenvectors and minimal polyno-
mials in finding diagonal representations is discussed. These techniques are
used to arrive at the normal modes of oscillating systems.

8.1 Minimal Polynomials

Let us consider an n×n square matrixA. Let I(A) denote the collection of all
polynomials f(t) for which the matrixA is a root, i.e., for which f(A) = 0.

The Cayley−Hamilton theorem states that, the characteristic polynomial
Δ(λ) of A belongs to the non-empty set I (A). Let m (λ) denote the monic
polynomial of the lowest degree in I (A). (Such a polynomial m (λ) exists
and is unique.) We shall call m (λ) the minimal polynomial of the matrix A,
providedm (λ) will satisfy specific properties of the minimal polynomial.

Monic polynomial: If the polynomial’s leading coefficient equals one, then
the polynomial f (λ) is monic.

Definition 8.1:
Let us consider an n × n square matrix A defined over a field F . Then

the monic polynomial is a minimal polynomial of the matrix A, if the monic
polynomial m (λ) of least degree satisfies its characteristic equation, i.e.,
m (A) = 0.

Theorem 8.1:
Let f (λ) be a polynomial of the matrixA such that f (A) = 0. Then the

minimal polynomial m (λ) divides f (λ).

203
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Proof:
By Euclidean division, let there be polynomials q (λ) and r (λ) such that

f (λ) = m (λ) . q (λ) + r (λ), with r (λ) = 0
or

deg r (λ) < degm (λ).

Now by hypothesis, we know that f (A) = 0, and by definition m (A) = 0,
it implies that r (A) = 0.

Consequently, let us assume r (A) = 0.
Then by the definition of m (λ), deg r (λ) cannot be smaller than

degm (λ); so we must have r (λ) = 0.
It follows that
f (λ) = m (λ) q (λ) impliesm (λ) divides f (λ).

Corollary 8.1:
The minimum polynomial m (λ) of a matrix A divides the characteristic

polynomialΔ(λ).

Note: It is immediate from the above analogy that every zero of the minimal
polynomials m (λ) is zero of the characteristic polynomials Δ(λ). The
converse is also true.

Theorem 8.2:
The minimum polynomialm (λ) and the characteristic polynomialΔ(λ)

have the same zeros.

Proof:
Suppose that λ is a zero ofΔ(λ). Then λ is an eigenvalue, and a non-zero

vectorX such thatAX = λX.
Let g (λ) = a0 + a1λ+ · · ·+ akλ

k.
We then have

g (A)x = a0x+ a1Ax+ · · ·+ akA
kx

= a0x+ a1λx+ · · ·+ akλ
kx

=
(
a0 + a1λ+ · · ·+ akλ

k
)
x

= g (λ)x.

It happens whence g (λ) is an eigenvalue of g (A).
Thus, g (λ) is a zero of the characteristic equation for g (A).
Now, if we take g (λ) to bem (λ), then for every zero λ ofΔ(λ), we have

thatm (λ) is a zero of the characteristic polynomial of m (A), i.e.,
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Δm(A) (λ) = C0 (λ)

= det (−λIn)

= (−1)n λn.

Since the only zeros of this characteristic polynomial are 0, we have
mA (λ) = 0 a zero ofmA (λ).

8.2 Cayley–Hamilton Theorem

Theorem 8.3 (Cayley−Hamilton Theorem):
Let us consider an n × n square matrix A over the field of complex

numbers. If Δ(λ) is the characteristic polynomial of the matrix A, then
Δ(A) = 0 and hence the minimal polynomials of the matrix A divide the
characteristic polynomial of the matrixA.

Proof:
Let us consider an n×nmatrixA over the field of complex numbers and

let the matrix be similar to an upper triangular matrix U .
Since the matrix A is similar to an upper triangular matrix U , by

definition, we have C−1AC = U , where C is an invertible matrix.
Since the matrices A and U are similar, they have the same minimal

polynomial and the same characteristic polynomials.
Therefore, for the proof of the Cayley−Hamilton theorem, it is sufficient

to prove the hypothesis of the theorem for the triangular matrix U .
As we know, the characteristic polynomial of a triangular matrix U is

(a11 − λ) (a22 − λ) · · · (ann − λ) , and hence the direct matrix multiplica-
tion gives

(a11I − U) . (a22I − U) · · · (annI − U) = 0.

That satisfies the characteristic equation.
Again, the upper triangular matrices have the same characteristic matrix

and the same minimal polynomials since the matricesA and T are equivalent
matrices. So, it can be concluded that the minimal polynomial of the matrix
A divides the characteristic polynomial of the matrix A.

Hence proved.

Note: Certain essential features of the matrix can be obtained from the
minimal polynomial, but that cannot be obtained from the characteristic
polynomial.
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Example 8.1:
Find the minimal polynomial of the matrix

A =

⎡
⎣ 1 0 1

0 2 1
−1 0 3

⎤
⎦ .

Solution:
The characteristic polynomial of the matrix

A =

⎡
⎣ 1 0 1

0 2 1
−1 0 3

⎤
⎦ is

Δ(λ) = (λ− 2)3 .

SinceA− 2I3 �= 0 and (A− 2I3)
2 �= 0,

we have m (λ) = Δ (λ), i.e., the minimum polynomial m (λ) and the
characteristic polynomial Δ(λ) have the same zeros.

Example 8.2:
Find the minimal polynomial of the matrix

A =

⎡
⎣ 5 −6 −6

−1 4 2
3 −6 −4

⎤
⎦ .

Solution:
For the matrix

A =

⎡
⎣ 5 −6 −6

−1 4 2
3 −6 −4

⎤
⎦ ,

we have the characteristic polynomial

Δ(λ) = (λ− 1) (λ− 2)2 .

By Theorem 8.3, the minimum polynomial is therefore either
(λ− 1), (λ− 2), (λ− 1) (λ− 2) or (λ− 1) (λ− 2)2.
Since (A− I3) (A− 2I3) = 0, it follows that the minimal polynomial of

the matrixA is
m (λ) = (λ− 1) (λ− 2) .
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Example 8.3:
Find the minimal polynomial m (λ) of the matrix

A =

⎡
⎣ 2 2 −5

3 7 −15
1 2 −4

⎤
⎦ .

Solution:
Here we have

tr (A) = 2 + 7− 4 = 5

A11 +A22 +A33 = 2− 3 + 8 = 7

|A| = 3.

Hence, the characteristic polynomial ofA is

Δ(λ) = λ3 − 5λ2 + 7λ− 3

= (λ− 1)2 (λ− 3) .

Since the minimal polynomial m (λ) must divide the characteristic
polynomial Δ(λ), this implies that each irreducible factor of Δ(λ), i.e.,
(λ− 3) and (λ− 1)must also be a factor of theminimal polynomialm (λ).

Thus, the minimal polynomial m (λ) of A is precisely one of the
following:

f (λ) = (λ− 3) (λ− 1) and g (λ) = (λ− 3) (λ− 1)2.
Since λ is a root of the matrix A, by the Cayley−Hamilton theorem, we

find
g (A) = Δ (A) = 0.

Hence, we need the only test f (λ). We have

f (A) = (A− I) (A− 3I)

=

⎡
⎣ 1 2 −5

3 6 −15
1 2 −5

⎤
⎦
⎡
⎣ −1 2 5

3 4 −15
1 2 −7

⎤
⎦

=

⎡
⎣ 0 0 0

0 0 0
0 0 0

⎤
⎦

.

Thus,

f (λ) = m (λ) = (λ− 3) (λ− 1)
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= λ2 − 4λ+ 3

is the minimal polynomial of the matrixA.

Example 8.4:
Determine the minimal polynomial of the following matrix:

A =

⎡
⎣ 2 1 1

0 2 0
0 0 2

⎤
⎦ .

Solution:
The characteristic equation of the matrixA is

(A− 2I3)
2 = 0

and the characteristic polynomial ofA is (λ− 2)2.
Since the minimal polynomial m (λ) must divide the characteristic poly-

nomial (λ− 2)2, there arise two possibilities, i.e., either m (λ) = λ − 2 or
m (λ) = (λ− 2)2.

However, since A − 2I �= 0, the polynomial m (λ) cannot be equal to
λ− 2.

Thus, the minimal polynomial of the matrix A is, therefore,
m (λ) = (λ− 2)2, which is the characteristic polynomial of A.

Example 8.5:
Determine the minimal polynomial of a diagonal matrix D.

Solution:
Let d11, d22, · · · , drr be the distinct diagonal entries of the diagonal

matrix D.
Again, the diagonal matrix D satisfies the characteristic equation, i.e.,

(D − d11I) · · · (D − drrI) = 0.

This implies that the characteristic polynomial of D

(λ− d11) (λ− d22) · · · (λ− drr) .

Since the minimal polynomial divides the characteristic polynomial, i.e.,
the product

(λ− d11) (λ− d22) · · · (λ− drr) ,



8.2 Cayley–Hamilton Theorem 209

it must be a factor of the product of certain of the factors λ −
dii , (i = 1, 2, · · · , r). However, we cannot discard that every one of these
factors is from the products of the form D − djjI for j �= i is not zero since
dii �= djj , if j �= i. Thus, it observes that the minimal polynomial of the
diagonal matrix D is the product of all the factors that are

(λ− d11) (λ− d22) · · · (λ− drr) .

The following statements discuss some more about the minimal
polynomials.

Lemma 8.1:
Similar matrices have the same minimal polynomials.

Proof:
Since we know that similar matrices describe the same linear operator,

it implies that their minimal polynomial also equalizes the linear operator’s
minimal polynomial.

Note: Using this result, we can find the minimal polynomial of any diagonal-
izable complex matrix.

Example 8.6:
Determine the minimal polynomial of the matrix

A =

[
1 2
2 1

]
.

Solution:
Here the matrixA is similar to a diagonal matrix, i.e.,

D =

[
3 0
0 −1

]
and the characteristic polynomial of the matrix A is

(λ− 3) (λ+ 1).
Thus, the minimal polynomial of the given matrix A is

(λ− 3) (λ+ 1) .

Note: The characteristic polynomial alone cannot tell us that if a matrix is
diagonalizable or not. Next, we will discuss that there is a connection between
the characteristic polynomial and the minimal polynomials.

Example 8.7:

Consider the matrices I2 andA =

[
1 1
0 1

]
.
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It can be seen that both the matrices I2 and A have the characteristic
polynomial (λ− 1)2, but the first matrix I2 is diagonalizable while the second
matrixA is not.

Thus, it implies that the characteristic polynomial alone cannot express to
us whether a matrix is diagonalizable or not.

Similarly, if we consider the minimal polynomial of both matrices,
then the two matrices have different minimal polynomials, i.e., (λ− 1) and
(λ− 1)2 respectively.

Thus, it can be concluded from this example that the minimum polyno-
mial can determine whether a matrix is diagonalizable or not. In contrast, the
characteristic polynomial alone cannot tell us about the diagonalizability of a
matrix.

Theorem 8.4:
Let us consider an n×n square matrixA defined over the field of complex

numbers C. Then the matrix A is said to be diagonalizable if and only if the
minimal polynomial of the matrix A splits into a product of n-distinct linear
factors.

Proof:

Necessary part:
Suppose the matrix A is diagonalizable. So by definition, there exists an

invertible matrix C such that C−1AC = D is a diagonal matrix.
Since the matrices A and D are similar, they have the same minimal

polynomials.
Let d11, d22, · · · , drr be the diagonal entries of the diagonal matrix D.
Then it shows that the minimal polynomial of the matrix D is

(λ− d11) (λ− d22) · · · (λ− drr), which is a product of distinct linear fac-
tors.

Sufficient part:
Suppose that the matrixA has a minimal polynomial, i.e.,

m (λ) = (λ− d11) (λ− d22) · · · (λ− drr) ,

where d11, d22, · · · , drr are the distinct diagonal elements of the matrix D.
Now let us define gi (λ) to be the polynomial obtained from the minimal

polynomialm (λ) by deleting the factor λ− dii; thus,

gi (λ) =
1

λ− dii
.
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Upon using the method of partial fractions and with the use of constants
b1, b2, · · · , br, we write

1

m (λ)
=

r∑
i=1

bi
λ− dii

.

Upon multiplying both sides of this equation bym (λ), we obtain

1 = b1g1 + b2g2 + · · ·+ brgr by the definition of gi (λ).

Upon introducing the linear operator T : Rn → Rn on the complex vector
space Rn defined by T (X) = AX, it follows from the above equation that

b1g1 (T )+b2g2 (T )+ · · ·+brgr (T ) = I , where I is the identity function
and hence

X = b1g1 (T )X+ b2g2 (T )X+ · · ·+ brgr (T )X, for any vector X.
Let Ui denote the set of all elements of the form gi (T )X with X ∈ Rn.
Then Ui forms a subspace, and the above equation X tells us that

X = b1U1 + b2U2 + · · ·+ brUr , Where X ∈ Rn,

which implies that Rn = U1 ⊕ U2 ⊕ · · · ⊕ Ur.
Next, since the vector space Rn is the direct sum of the subspace Ui, it

implies that the intersection of a Ui and the sum of the remaining Uj with
j �= i is zero.

To examine why this is valid, letX be a vector in the intersection.
We need to observe that gi (T ) gj (T ) = 0 if i �= j.
Each factor λ− dkk is existing in the polynomial gigj .
Thus, gk (T )X = 0, for all k.
Now sinceX =

∑n
k=1 bkgk (T )X

it follows thatX = 0.
Hence, the vector space Rn is the direct sum

Rn = U1 ⊕ U2 ⊕ · · · ⊕ Ur.

Now the impact of T on vectors in vi is simply to multiply them by dii,
since

(T − dii) gi (T ) = f (T ) = 0 .

Thus, if we select the bases for each subspace U1, U2, · · · , Ur and
combine them to form a basis, then a diagonal matrix will be represented.

Consequently, the matrixA is similar to a diagonal matrix.
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Example 8.8:

Show that the matrixA =

⎡
⎣ 2 1 1

0 2 0
0 0 2

⎤
⎦ is not diagonalizable.

Solution:

The matrixA =

⎡
⎣ 2 1 1

0 2 0
0 0 2

⎤
⎦ has a minimal polynomial (λ− 2)2.

Since the minimal polynomial is not a product of distinct linear factors,
the matrix cannot be diagonalized.

Example 8.9:
Consider an n× n upper triangular matrix.
The matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

μ 1 0 · · · 0 0
0 μ 1 · · · 0 0
0 0 μ · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · μ 1
0 0 0 · · · 0 μ

⎤
⎥⎥⎥⎥⎥⎥⎦

has minimum polynomial (λ− μ)n. This is because (A− λI)n = 0, but
(A− λI)n−1 �= 0.

Hence, the matrix A is diagonalizable if and only if n = 1, whereas the
characteristic polynomial of the matrixA equals (μ− λ)n.

Theorem 8.5:
A square matrix A is invertible if and only if the constant term in its

characteristic polynomial Δ(λ) is not zero.

Proof:

Necessary part:
LetA be a square matrix.
By definition, we know that a scalar λ is an eigenvalue of A if and only

if det (A− λIn) = 0 .
If the matrix A is invertible, then 0 is not an eigenvalue of the matrix A,

which implies that 0 is not a zero of the characteristic polynomials Δ(λ).
Thus, the constant term in the characteristic polynomial Δ(λ) is then

non-zero.
Hence proved.
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Sufficient part:
Suppose that the constant term of the characteristic polynomial Δ(λ) of

the matrixA is non-zero.
Then by the Cayley−Hamilton theorem, we have that Δ(A) = 0,

which, by theorem, can be reported in the form A [P (A)] = In for some
polynomial P (A).

Hence, the matrixA is invertible.

Example 8.10:

Show that the matrixA =

⎡
⎣ 1 1 1

0 1 1
0 0 1

⎤
⎦ is invertible and

hence find its inverse, i.e.,A−1.

Solution:
The characteristic polynomial of the matrix

A =

⎡
⎣ 1 1 1

0 1 1
0 0 1

⎤
⎦

is Δ(λ) = (λ− 1)3.
Since the constant term in the characteristic polynomial of A is not zero,

the matrixA is invertible.
Thus, upon applying the Cayley−Hamilton theorem, we have

0 = (A− I3)
3 = A3 − 3A2 + 3A− I3 ,

which gives
A
(
A2 − 3A+ 3I3

)
= I3,

which implies

A−1 = A2 − 3A+ 3I3 =

⎡
⎣ 1 −1 0

0 1 −1
0 0 1

⎤
⎦ .

Remark 8.1:
Let A = [aij ] be a triangular matrix of order n. Then the characteristic

polynomial |A− λI| of the matrix A is a triangular matrix with diagonal
entries aii − λ and hence

Δ(λ) = det (A− λI)
= (a11 − λ) (a22 − λ) ......... (ann − λ)

.
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It implies that the roots of Δ(λ)are the diagonal elements ofA. ��
Similar matrices: The matrices P and Q are said to be similar if there is an
invertible matrix C such that Q = CPC−1.

The following result indicates some properties of similar matrices.

Theorem 8.6:
Similar matricesA and B have the same eigenvalues.

Proof:
LetA and B be similar matrices.
Thus, by definition, there exists an invertible matrix C such that

B = C−1AC.

The characteristic polynomial of the matrix B is det (B− λI).
Substituting forB and using the multiplicative properties of determinants,

we get

det (B− λI) = det
(
C−1AC − λI

)
= det

(
C−1 (A− λI)C

)
= det

(
C−1

)
det (A− λI) det (C)

= det (A− λI) det
(
C−1

)
det (C)

= det (A− λI) (det (C))−1 det (C)

= det (A− λI) det
(
C−1C

)
= det (A− λI) det (I)

= det (A− λI) .

This implies that the characteristic polynomial of the matrices A and B
is identical.

Hence, the eigenvalues ofA andB are the same, i.e., the matricesA and
B have the same eigenvalues.

Note 1: On the other hand, one cannot expect that similar matrices have the
same eigenvectors.

Generally, the condition of a column vector X to be an eigenvector of
B = C−1AC with eigenvalue λ is

(
CAC−1

)
X = λX, which is equivalent

toA
(
C−1X

)
= λ

(
C−1X

)
.

Thus, X is an eigenvector of B = C−1AC if and only if C−1X is an
eigenvector ofA.
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Recall that over the field C of complex numbers, this equation has
n−roots, some of which may be repeated.

Note 2: If λ1, λ2, · · · , λk are the distinct roots (eigenvalues) of a matrix A,
then the characteristic polynomial of the matrix Acan be factorized in the
form

(−1)n (λ− λ1)
r1 (λ− λ2)

r2 · · · (λ− λk)
rk , where we call r1, r2, · · · ,

rk are the algebraic multiplicities of the eigenvalues λ1, λ2, · · · , λk.

Example 8.11:
Consider the linear mapping T : R3 → R3, defined by T (X) = AX,

where the function T is relative to the natural ordered basis of R3.
The matrix of the transformation T (X) = AX is defined by

A =

⎡
⎣ 0 1 1

1 0 1
1 1 0

⎤
⎦ .

Determine the algebraic multiplicity of the matrixA.

Solution:
The characteristic polynomial of the matrixA is

det (A− λI3) = det

⎡
⎣ −λ 1 1

1 −λ 1
1 1 −λ

⎤
⎦

= − (λ+ 1)2 (λ− 2)

.

This implies that the eigenvalues of the matrixA are −1 and 2.
Hence, it implies that the algebraic multiplicity of −1 and 2 are 2 and 1,

respectively.

Example 8.12:
Find the eigenvalues, and their algebraic multiplicities of the linear

mapping T : R3 → R3 are given by

(1) T (x1, x2, x3) = (x1 + 2x2 + 2x3, 2x2 + x3,−x1 + 2x2 + 2x3).
(2) T (x1, x2, x3) = (x2 + x3, 0, x1 + x2).

Example 8.13:

Consider a 2 × 2 matrix A =

[
0 1
−1 0

]
. Determine the algebraic

multiplicity of the matrixA over R and over C.
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Solution:
We have

det (A− λI2) = det

[ −λ 1
−1 −λ

]
= λ2 + 1

.

Since the characteristic polynomial λ2 + 1 has no real roots, it implies
that the matrixA has no real eigenvalues over R.

Still, if we consider the matrix A as a matrix over the complex field
C, then the matrix A has two eigenvalues, namely i and −i, each being of
algebraic multiplicity 1.

Example 8.14:
Determine the algebraic multiplicity of the matrix

A =

⎡
⎣ −3 1 −1

−7 5 −1
−6 6 −2

⎤
⎦ over C.

Solution:
The characteristic polynomial of the matrix A can be computed as

follows:
det (A− λI3) = − (2 + λ) (4− λ) (−2− λ)

= (2 + λ)2 (4− λ)
.

This shows that the eigenvalues of the matrix A are 4 and −2, which are
of algebraic multiplicity 1 and 2, respectively.

Definition 8.2:
A square matrixA is diagonalizable if there is an invertible matrixC such

that D = C−1AC is a diagonal matrix.

Theorem 8.7:
LetA be an n× n matrix.

(1) If the matrix A has n−linearly independent eigenvectors, then the
matrixA is diagonalizable.

(2) If the matrix A is diagonalizable, then the matrix A has n−linearly
independent eigenvectors.

Proof:

(1) Let the matrix A have n−eigenvalues, i.e., λ1, λ2, λ3, · · · , λn (which
need not be distinct) with corresponding linearly independent eigenvec-
tors X1,X2,X3, · · · ,Xn.
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LetC be the matrix havingX1,X2,X3, · · · ,Xn as column vectors, i.e.,
C = [X1,X2,X3, · · · ,Xn].
Since

AX1 = λ1X1

AX2 = λ2X2

, · · · ,
AXn = λnXn

.

Matrix multiplication in terms of columns gives

AC = A [X1,X2,X3, · · · ,Xn]
= [AX1,AX2,AX3, · · · ,AXn]
= [λ1X1, λ2X2, λ3X3, · · · , λnXn]

= [X1,X2,X3, · · · ,Xn]

⎡
⎢⎣

λ1 0 0

0
. . . 0

0 0 λn

⎤
⎥⎦

= C

⎡
⎢⎣

λ1 0 0

0
. . . 0

0 0 λn

⎤
⎥⎦

.

Since the columns of C are linearly independent, it implies that the
matric C is non-singular.

Thus, C−1AC =

⎡
⎢⎣

λ1 0 0

0
. . . 0

0 0 λn

⎤
⎥⎦.

Therefore, if a matrix A has n−linearly independent eigenvectors,
then the eigenvectors can be used as the column of a matrix C that
diagonalizes the matrixA.
The diagonal matrix D has the eigenvalues of A as its diagonal
elements.

(2) The converse is proved by retracing the above steps.
Commence with the assumption thatC is a matrix [X1,X2,X3, · · · ,Xn]
that diagonalizes the matrixA.
Thus, there exist scalars γ1, γ2, · · · , γn such that

C−1AC =

⎡
⎢⎢⎢⎣

γ1 0 · · · 0
0 γ2 · · · 0
...

...
. . .

...
0 0 · · · γn

⎤
⎥⎥⎥⎦ .
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Retracing these steps, we arrive at a conclusion that

AX1 = γ1X1

AX2 = γ2X2

, · · · ,
AXn = γnXn

.

Thus, [X1,X2,X3, · · · ,Xn] are the eigenvectors ofA.
Since the matrix C is non-singular, these vectors (column vectors of C)
are linearly independent.
Thus, if an n × n matrix A is diagonalizable, then it has n−linearly
independent eigenvectors.

Example 8.15:

(1) Show that the following matrix A is diagonalizable.
(2) Find the diagonal matrix D that is similar to A.
(3) Determine the similarity transformation that diagonalizesA, where

A =

[ −4 −6
3 5

]
.

Note: If the matrixA is similar to a diagonal matrixD under the transforma-
tion C−1AC, then it can be shown that Ak = CDkC−1.

These results can be used to compute the power of a matrix, i.e., Ak.
Let us derive this result and then apply it.
Since the matrixA is similar to the diagonal matrix D, D = C−1AC,

which implies

Dk =
(
C−1AC

)k
=
(
C−1AC

) (
C−1AC

)
, · · · , (C−1AC

)
= C−1AkC

.

This leads toAk = CDkC−1.

Example 8.16:
ComputeA9 for the following matrixA

A =

[ −4 −6
3 5

]
.

This technique is used in solving an equation called the difference
equation.
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Example 8.17:

Show that the following matrixA =

[
5 −3
3 −1

]
is not diagonalizable.

Remark 8.2:
Not every matrix is diagonalizable.

Remark 8.3:
The eigenspace of the above 2×2matrixA is one-dimensional, but it does

not have two linearly independent eigenvectors. So, it implies the matrix A
is not diagonalizable.

Example 8.18:

FindAn, whereA =

[
1
4

1
20

3
4

19
20

]
.

Solution:
The eigenvalues ofA are the roots of the equation(

1

4
− λ

)(
19

20
− λ

)
− 3

80
= 0.

It can easily be checked that this reduces to

(5λ− 1) (λ− 1) = 0,

which implies that the eigenvalues of matrixA are 1
5 and 1.

Hence, it follows that the matrix A is diagonalizable and that an
eigenvector associated with the eigenvalue λ1 =

1
5 is[

1
20

1
5 − 1

4

]
=

[
1
20

− 1
20

]

and that an eigenvector associated with the eigenvalue λ2 = 1 is[
1
20

1− 1
4

]
=

[
1
20

3
4

]
.

Thus, it can assert that the matrix C =

[
1 1

−1 15

]
is invertible and is

such that

C−1AC =

[
1
5 0
0 1

]
,
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which implies

C−1 =
1

16

[
15 −1
1 1

]
.

Next, we can computeAn

i.e., An = C

[
1
5 0
0 1

]
C−1.

We have

An = 1
16

[
1 1

−1 15

] [
1
5n 0
0 1

] [
15 −1
1 1

]

= 1
16

[
1 1

−1 15

] [
15
5n − 1

5n

1 1

]

= 1
16

[
1 + 15

5n 1− 1
5n

15
(
1− 1

5n

)
15 + 1

5n

] .

Note: If there is a 2 × 2 matrix A (non-diagonal) whose eigenvalues
are not distinct, then in this case, we can say that the matrix A is not
diagonalizable.

Similarly, suppose there is only one eigenvalue for a 2 × 2 matrix A.
In that case, the characteristic equation (A− λI2)X = 0 of the matrix
reduces to a single equation, which results in the dimension of the solution
space 2 − 1 = 1, which implies there cannot exist two linearly independent
eigenvectors.

Next, o find the high powers of a matrix A.

8.3 Power of a Matrix

For this case, we can proceed differently,

If A =

[
a b
c d

]
, then the characteristic polynomial ofA is

Δ(λ) = λ2 − (a+ d)λ+ ad− bc.

Observe now that

A2 =

[
a2 + bc b (a+ d)
c (a+ d) bc+ d2

]

= (a+ d)

[
a b
c d

]
− (ad− bc)

[
1 0
0 1

]
= (a+ d)A− (ad− bc) I2

,

and we see that Δ(A) = 0 .
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Next for n ≥ 2, consider the Euclidean division of λn by Δ(λ).
Since the polynomialΔ(λ) is of degree 2, we have

λn = Δ(λ) .q (λ) + α1λ+ α2. (8.1)

By substituting the matrix A for λ in this polynomial identity, it obtains,
by the above observation,

An = α1A+ α2I2.

Now we can determine α1 andα2 as follows.
Upon differentiating eqn (8.1) and substituting the value of λ (the single

eigenvalue ofA) for X,
we obtain nλn−1 = α1 (since Δ(λ) = 0).

Also, substituting λ for X in eqn (8.1) and again using f (λ) = 0, we
obtain

λn = α1λ+ α2 = nλn + α2

which implies α2 = (1− n)λn.
It now follows thatAn = nλn−1A+ (1− n)λnI2.

Example 8.19:
Consider the n× n trigonal matrix

An =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2 1 0 0 · · · 0 0
1 2 1 0 · · · 0 0
0 1 2 1 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · 2 1
0 0 0 0 · · · 1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Let an = detAn.
Upon using Laplace expansion along the first row, it obtains

an = 2an−1 − det

⎡
⎢⎢⎢⎢⎢⎣

1 1 0 0 · · · 0
0 2 1 0 · · · 0
0 1 2 1 · · · 0
...

...
...

... · · · ...
0 0 0 0 · · · 2

⎤
⎥⎥⎥⎥⎥⎦

= 2an−1 − an−2

.
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Expressing this recurrence relation in the usual way as a system of
difference equations, we find

an = 2an−1 − bn−1

bn = an−1 .

Here we consider the system asXn = AXn−1,

whereX =

[
an
bn

]
andA =

[
2 −1
1 0

]
.

Now det (A− λI2) = λ (λ− 2) + 1 = (λ− 1)2

and so the matrixA has the single eigenvalue 1 of algebraic multiplicity 2.
Next, we can computeAn as in the above:

An = nA+ (1− n) I2 =

[
n+ 1 −n
n 1− n

]
.

Consequently, we have[
an
bn

]
= An−2

[
a2
b2

]
=

[
n− 1 −n+ 2
n− 2 3− n

] [
3
2

]
=

[
n+ 1
n

]
.

Hence, we see that detAn = an = n+ 1.

8.4 Diagonal Matrix Representation of a Linear Operator

Let us now see how to find a diagonal matrix representation of a linear
operator T , if one exists.

A diagonal matrix representation is usually the representation that pro-
vides most information in applications.

Let T be a linear operator on a vector space V of dimension n.
LetB be a basis for V and letA be the matrix representation of T relative

to the basis B.
The matrix representation of T relative to another basisB′ can be obtained

using a similarity transformation A′ = P−1AP , where P is the transition
matrix from the basis B′ to the basis B.

Suppose the matrix A has n eigenvalues λ1, λ2, · · · , λn with n-
corresponding linearly independent eigenvectorsX1,X2, · · · ,Xn.

If P = [X1,X2, · · · ,Xn], then we know that A′ is the diagonal matrix,

A′ =

⎡
⎢⎣

λ1 0 0

0
. . . 0

0 0 λn

⎤
⎥⎦ .
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The coordinate vectors B′ relative to B are the eigenvectors
X1,X2, · · · ,Xn.

For a reason stated earlier, it is desirable to use an orthogonal transforma-
tion, if possible, to arrive at this basisB′, which provides the diagonal matrix
A′.

Example 8.20:
Consider the linear operator T (x, y) = (3x+ y, x+ 3y) onR2. Find a

diagonal matrix representation of T . Determine the basis for this representa-
tion and give a geometrical representation of T .

Solution:
Let us start by finding the matrix representationA relative to the standard

basis B = {(1, 0) , (0, 1)} of R2.
We get

T (1, 0) = (3, 1) = 3 (1, 0) + 1 (0, 1)

T (0, 1) = (1, 3) = 1 (1, 0) + 3 (0, 1) .

The coordinate vectors of T (1, 0) and T (0, 1) relative to B are[
3
1

]
and

[
1
3

]
.

The matrix representation of T relative to the standard basis B is thus

A =

[
3 1
1 3

]
.

The matrixA has the following eigenvalues and eigenvectors:

λ1 = 4 ,X1 = r

[
1
1

]
and λ2 = 2 ,X2 = s

[ −1
1

]
.

The following matrixAr is thus a diagonal matrix representation of T

Ar =

[
λ1 0
0 λ2

]
=

[
4 0
0 2

]
.

Let us now find the basis Br, which gives this representation. Observe
that A is a symmetric matrix. Then select the unit orthogonal eigenvectors
for the coordinate vectors of Br relative to B.

The transition matrix from B to Br will then be orthogonal, and the
geometry will be preserved.
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Let Br =
{(

1√
2
, 1√

2

)
,
(
− 1√

2
, 1√

2

)}
.

Note that the basis Br is obtained from the basis B by rotation through
π
4 .

Geometrical representation:
The standard basis B defines an XY-coordinate system. Let the basis B′

illustrate a X ′Y ′P ′Q′R′ coordinate system.
The figure shows that the matrix A′ tells us that T is scaling in the

X ′Y ′ coordinate system with factor 4 in the direction and factor 2 in the
Y ′-direction, as shown in Figure 8.1.

Thus, for example, T maps the square PQRO into the rectangle
P ′Q′R′O.

This example illustrates a situation that frequently arises in physics and
engineering.

Theorem 8.8:
The eigenvectors corresponding to distinct eigenvalues are linearly inde-

pendent.

Proof:
The proof can be done by induction.

Figure 8.1 Coordinate Representations.
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If a linear transformation T : V → V has only one eigenvalue λ, and if
X is a corresponding eigenvector, then since X �= 0, we know that {X} is
linearly independent.

For the inductive step, assume that every set of n-eigenvectors that
corresponds to n-distinct eigenvalues is linearly independent.

Let X1,X2, · · · ,Xn+1 be the eigenvectors that correspond to distinct
eigenvalues λ1, λ2, · · · , λn+1.

For any n scalars a1, a2, · · · , an, an+1, if we have

a1x1 + a2x2 + · · ·+ anxn + an+1xn+1 = 0v (8.2)

Then applying the linear transformation T and using the fact that

T (Xi) = λiXi,

we obtain

a1λ1X1 + a2λ2X2 + · · ·+ anλnXn + an+1λn+1Xn+1 = 0v. (8.3)

Now take eqn 8.2 and 8.3 to get

a1 (λ1 − λn+1)X1 + a2 (λ2 − λn+1)X2 + · · ·+ an (λn − λn+1)Xn = 0v.

By the induction hypothesis and the fact that λ1, λ2, · · · , λn+1 are
distinct, we deduce that a1 = a2 = · · · = an = 0.

It now follows that an+1Xn+1 = 0, whence since Xn+1 �= 0, we also
have an+1 = 0. Hence, the eigenvectors X1,X2, · · · ,Xn+1 are linearly
independent, and the result follows.

8.5 Diagonalization of Matrices

Definition 8.3:
A linear transformation T : V → V said to be diagonalizable if there is

an ordered basis (vi)n of V concerning which the matrix of T is diagonal.
Thus, the linear transformation T is diagonalizable if and only if there exists
an ordered basis (vi)n of V such that

T (v1) = λ1v1
T (v2) = λ2v2
...
T (vn) = λnvn

.
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In this case, the λ′
is are the eigenvalues of the mapping T .

We can, thus, assert the following theorem.

Theorem 8.9:
A linear transformation T : V → V is diagonalizable if and only if the

vector space V has a basis consisting of eigenvectors of T . ��
Note: Here, it can be considered matrices that are not diagonalizable.

For example: Consider a 2× 2 matrixA =

[
1 1
0 1

]
.

Here if the matrix A is diagonalizable, then it would be similar to the
identity matrix I2.

Since both the eigenvalues of the matrixA are equal to 1 and C−1AC =
I2, for some, invertible matrix C implies that the last equation gives A =
CI2C

−1 = I2, which is not true.
An exciting feature of the above theorem is that it finds an invertible

matrix C that diagonalizes the matrixA.
For this, it is enough to find a set of linearly independent eigenvectors of

A that can be considered to form the columns of the invertible matrix C.

Example 8.21:
Determine an invertible matrix C that diagonalizes the matrix

A =

[
2 −1
2 4

]
.

Solution:
The eigenvalues of the matrix A are 3 +

√−1 and 3 − √−1 and hence
the eigenvectors ofA are

C =

[
(−1+

√−1)
2

−(1+
√−1)
2

1 1

]
.

That diagonalizes the matrix A, i.e., in the form of an invertible matrix
C.

Then by the previous theorem, it can be written as

C−1AC =

[
3 +

√−1 0
0 3−√−1

]
.��

The following section shows that the linear transformation T : V → V
is diagonalizable if the geometric and algebraic multiplicities coincide for
every eigenvalue.



8.5 Diagonalization of Matrices 227

Theorem 8.10:
Let V be an n-dimensional vector space. If λ1, λ2, · · · , λm, the eigen-

values of a linear mapping T : V → V and their geometric multiplicities
d1, d2, · · · , dm satisfy the inequality d1 + d2 + · · · + dm ≤ n, if and only if
the linear mapping T is diagonalizable.

Proof:
Let Bi be a basis of the eigenspace Eλi

, for each i.
Let us observe first that
v1 + v2 + · · ·+ vm = 0v, where each vi ∈ Bι.
Then certainly each vi = 0, since by Theorem 8.8, the eigenvectors

corresponding to distinct eigenvalues are linearly independent.
We next observe that

⋃m
i=1Bι is linearly independent.

IfB = {ei1, ei2, · · · , eidi} and vi = μi1ei1+μi2ei2+· · ·+μidieidi ∈ Bι,
Then

∑k
i=1 vi = 0 gives each vi = 0, whence all the coefficient μij = 0.

Since the B′
ιs are pairwise disjoint, it observes that

d1 + d2 + · · ·+ dm =

∣∣∣∣∣
m⋃
i=1

Bι

∣∣∣∣∣ ≤ n.

Finally, equality occurs if the vector space V has n-linearly independent
eigenvectors, i.e., by Theorem 8.9, if and only if the transformation T is
diagonalizable. ��
Theorem 8.11:

Let T : V → V be a linear mapping and λ be an eigenvalue of T . Then
the geometric multiplicity of the eigenvalue λ is less than or equal to the
algebraic multiplicity of λ, i.e., G.M ≤ A.M .

Proof:
Let T : V → V be a linear transformation.
Let {e1, e2, · · · , ek} be a basis of Eλ and extend this to a basis B =

{e1, e2, · · · , en} of V .
Thus, the matrix of the linear transformation T relative to the basis B is

of the form

M =

[
λIk C
0 D

]
.

This implies that the characteristic polynomial of the matrix M is of the
form (λ−X)d p (X), where p (X) is a polynomial of degree n− k. Thus, it
follows that the value of k is less than or equal to the algebraic multiplicity
of λ. ��
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It can be deduced from the above that the following necessary and
sufficient condition for a linear transformation T : V → V is said to be
diagonalizable.

Theorem 8.12:
The following statements are equivalent:

(1) The linear transformation T : V → V is diagonalizable.
(2) For every eigenvalue λ of the linear transformation T , the geometric

multiplicity (G.M) of the eigenvalue λ coincides with the algebraic
multiplicity (A.M) of λ.

Proof:
As we know, the sum of the algebraic multiplicities of the eigenvalues is

the degree of the characteristic polynomial, namely n = dimV . The result,
therefore, follows from Theorems 8.10 and 8.11. ��
Example 8.22:

Show that the matrixA =

⎡
⎣ −3 1 −1

−7 5 −1
−6 6 −2

⎤
⎦ is not diagonalizable.

Solution:
The matrixA has only two distinct eigenvalues, namely 4 and −2, where

the algebraic multiplicity of −2 is 2.
To determine the eigenspace E−2 for λ = −2, we solve
(A+ 2I3)X = 0v, i.e.,

i.e.,

⎡
⎣ −1 1 −1

−7 7 −1
−6 6 0

⎤
⎦
⎡
⎣ x1

x2
x3

⎤
⎦ =

⎡
⎣ 0

0
0

⎤
⎦.

Upon using the reduced echelon form of the matrix, the corresponding
system of the linear equation reduces to

x1 − x2 = 0
x3 = 0

,

which gives the rank of the coefficient matrix A is 2. Consequently, the
solution space of the matrix is of dimension 3− 2 = 1.

Thus, the eigenvalue −2 is of geometric multiplicity 1.
Hence, by Theorem 8.10, it follows that the matrix A is not diagonaliz-

able. ��
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Example 8.23:

Show that the matrixA =

⎡
⎣ 1 −3 3

3 −5 3
6 −6 4

⎤
⎦is diagonalizable.

Solution:
The characteristic polynomial of the matrixA is

|A− λI3| = (4− λ) (λ+ 2)2 .

This implies that the eigenvalues of the matrix A are 4 and −2, having
respective algebraic multiplicities of 1 and 2.

Next, to determine the eigenspace E−2 for λ = −2, for which we solve

(A+ 2I3)X = 0,

i.e., ⎡
⎣ 3 −3 3

3 −3 3
6 −6 6

⎤
⎦
⎡
⎣ x1

x2
x3

⎤
⎦ =

⎡
⎣ 0

0
0

⎤
⎦ .

Upon using the reduced echelon form of the matrix, the corresponding
system of equations reduces to

x1 − x2 + x3 = 0,

which implies that the coefficient matrixA is of rank 1.
So, the dimension of the solution space is 3− 1 = 2.
Thus, the eigenvalue λ = −2 is of geometric multiplicity 2.
Similarly, for the eigenvalue λ = 4, since its algebraic multiplicity is 1,

by Theorem 8.11, it follows that its geometric multiplicity of λ = 4 is also 1.
Hence, it follows that the matrixA is diagonalizable. ��

Example 8.24:

Let us consider any two linearly independent eigenvectors

⎡
⎣ 1

1
0

⎤
⎦
⎡
⎣ 1

0
−1

⎤
⎦,

in E−2 that correspond to the eigenvalue −2 and constitute a basis for E−2.
Similarly, let us consider any single non-zero vector⎡
⎣ 1

1
2

⎤
⎦ in E4 that fits the eigenvalue 4 and forms a basis for E4.
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Then, clearly, these three eigenvectors⎡
⎣ 1

1
0

⎤
⎦ ,

⎡
⎣ 1

0
−1

⎤
⎦ and

⎡
⎣ 1

1
2

⎤
⎦ are linearly independent.

Upon using these eigenvectors together, we can obtain an invertible
matrix C, i.e.,

C =

⎡
⎣ 1 1 1

1 0 1
0 −1 2

⎤
⎦ ,

and this is such that

C−1AC =

⎡
⎣ −2 0 0

0 −2 0
0 0 4

⎤
⎦ .��

Example 8.25:
For each of the matricesA given by

(a)A =

⎡
⎣ 1 0 1

0 1 0
1 0 1

⎤
⎦ (b)A =

⎡
⎣ −2 5 7

1 0 −1
−1 1 2

⎤
⎦

(c)A =

⎡
⎣ −3 −7 19

−2 −1 8
−2 −3 10

⎤
⎦ and (d)A =

⎡
⎣ −4 0 −3

1 3 1
4 −2 3

⎤
⎦.

Find an invertible matrix C such that C−1AC is diagonal.

Theorem 8.13:
LetA be a 2× 2 matrix defined by

A =

[
a1 a2
a3 a4

]
, which has distinct eigenvalues λ1, λ2.

Then the matrixA is diagonalizable.
When a2 �= 0, there exists an invertible matrix C such that

C−1AC =

[
λ1 0
0 λ2

]
is the matrix

C =

[
a2 a2

λ1 − a1 λ2 − a1

]
.

Proof:
The first statement is immediate from Theorems 8.7 and 8.8. With The-

orems 8.7 and 8.8, it can be easily proved that if a matrix A has distinct
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eigenvalues, then the matrix A is diagonalizable. Thus, the first statement is
proved.

For the second statement, let us observe that

det

[
a1 − λ a2
a3 a4 − λ

]
= λ2 − (a1 + a4)λ+ a1a4 − a2a3,

where the eigenvalues of the matrixA are

λ1 =
1

2

{
(a1 + a4) +

√
(a1 − a4)

2 + 4a2a3

}

λ2 =
1

2

{
(a1 + a4)−

√
(a1 − a4)

2 + 4a2a3

}
.

Let us consider the column matrix X1 as: X1 =

[
a2

λ1 − a1

]
, in which,

by hypothesis a2 �= 0, we have[
a1 a2
a3 a4

] [
a2

λ1 − a1

]
=

[
a2λ1

ca2 + a4 (λ1 − a1)

]
= λ1

[
a2

λ1 − a1

]
.

The final equality results from the fact that

λ1 (λ1 − a1)− a3a2 − a4 (λ1 − a1) = λ1
2 − (a1 + a4)λ1 + a1a4 − a2a3

= 0
.

This implies thatX1 is an eigenvector associated with the eigenvalue λ =
λ1.

Similarly, one can show that

X2 =

[
b
λ2 − a

]
is the eigenvector associated with the eigenvalue λ =

λ2.
Upon using these eigenvectors X1 and X2 together, the required invert-

ible matrix C can be obtained. ��

8.6 Diagonalization of Symmetric Matrices

The diagonalization of a matrix is related to its eigenvectors. The follow-
ing theorem summarizes the properties of eigenvalues and eigenvectors of
symmetric matrices and paving the way for their diagonalization results.

Theorem 8.14:
LetA be an n× n matrix.
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(1) All the eigenvalues ofA are real numbers.
(2) The dimension of an eigenspace of A is the multiplicity of the eigen-

value as a root of the characteristic equation.
(3) The eigenspaces of the matrixA are orthogonal.
(4) The matrixA has n-linearly independent eigenvectors. ��
Example 8.26:

Consider a symmetric matrix A =

⎡
⎣ 5 4 2

4 5 2
2 2 2

⎤
⎦. Verify the above

theorem forA.

8.7 Orthogonal Diagonalization

If a matrix Q is orthogonal, then Q−1 = QT ; thus, if such a matrix is used in
a similarity transformation, then the transformation becomes D = QTAQ.

These types of computation, of course, is easier to compute thanQ−1AQ.
This is important if one is performing computations by hand, but not

essential when using a computer.

Note: There is a role of similarity transformation in going from one coor-
dinate system to another. Similarity transformation involving an orthogonal
matrix is the transformation that is used to relate orthogonal coordinate
systems (coordinate systems where the axes are at right angles).

Definition 8.4:
An n × n square matrix A is orthogonally diagonalizable, if there is an

orthogonal matrix Q such that QTAQ = D is a diagonal matrix.

Remark 8.4:
The set of orthogonally diagonalizable matrices is, in fact, the set of

symmetric matrices.

Theorem 8.15:
Let A be an n × n square matrix. Then the matrix A is orthogonally

diagonalizable if and only if the matrixA is symmetric.

Proof:
Suppose that the matrixA is symmetric. The following steps can be taken

to construct an orthogonal matrix Q such that QTAQ is orthogonal.
From the previous theorem, it can be ensured that this algorithm can be

carried out.
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(1) First, to find a basis for each eigenspace of the matrix A.
(2) Then to find an orthonormal basis for each eigenspace by using the

Gram−Schmidt process.
(3) Let Q be an orthogonal matrix whose columns are orthogonal vectors.
(4) The matrix QTAQ = D will be the diagonal matrix.

Conversely:
Assume that the matrix A is orthogonally diagonalizable. Thus, there

exists an orthogonal matrix Q such thatA = QDQT .
Upon using the properties of transpose, we get

AT =
(
QDQT

)T
=
(
QT
)T

(QD)T

= QDQT

= A.

Hence, the matrixA is symmetric.

Example 8.27:
Orthogonally diagonalize the following symmetric matrixA:

A =

[
1 −2
−2 1

]
.

Solution:
The eigenvalue and the corresponding eigenspaces of this matrix are as

follows:

λ1 = −1 , v1 =

{
s

[
1
1

]}
and λ2 = 3 , v2 =

{
r

[ −1
1

]}
.

Since the matrixA is symmetric, it can be diagonalized to give

D =

[
−1 0

0 3

]
.

Let us determine the transformation.
The eigenspaces v1 and v2 are to be expected orthogonally.
Use a unit vector in each eigenspace as columns of an orthogonal

matrix Q.
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We get Q =

[
1√
2

− 1√
2

1√
2

1√
2

]
.

The orthogonal transformation that leads to D is

QTAQ =

[
1√
2

1√
2

− 1√
2

1√
2

][
1 −2

−2 1

][
1√
2

− 1√
2

1√
2

1√
2

]
.

Now we apply these tools to the study of matrix representations of linear
operators.



9
Application to Conics and Quadrics

This chapter discusses the applications of conics and quadrics and the canoni-
cal form of matrices that include some vital discussion such as bilinear forms,
Sylvester’s law of inertia.

In this chapter, we shall use the concept of an orthogonal matrix to reduce
a real symmetric matrix to the diagonal form by a similarity transforma-
tion. This chapter starts with the discussion of quadratic forms, conics, and
quadrics. It includes some vital discussion such as bilinear forms, eigenval-
ues of congruent matrices, Sylvester’s law of inertia, and skew-symmetric
bilinear form.

9.1 Quadratic Forms

A quadratic form q in the set of real variables x1, x2, . . . , xn is a polynomial
in x1, x2, . . . , xn with real coefficients in which every term has degree 2.

For example, a statement a1x12 + 2a2x1x2 + a3x
2
2 is a quadratic form in

x1 and x2.
Quadratic forms arise in many contexts.

For example:
The equation of a conic in the plane and a quadratic surface in three-

dimensional space involves quadratic forms.
We commence by noticing that a quadratic form q = a1x1

2+2a2x1x2+
a3x

2
2 in x1 and x2 can be expressed as a product of these matrices, namely

q = [x1 x2]

[
a1 a2
a2 a3

] [
x1
x2

]
=

[
x1
x2

]T [
a1 a2
a2 a3

] [
x1
x2

]
.

Primarily, any quadratic form q in x1, x2, . . . , xn can be expressed in this
form.

Let the equation give the quadratic form

235
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q =
∑∑∑n

i=1

∑∑∑n
j=1 aijxixj , where aij are real numbers.

By context A = [aij ]n,n and expressing X for the column vector with
entries x1, x2, . . . , xn. We look from the definition of the matrix product that
the quadratic form q may be described in the form

q = XTAX.

This implies that the real matrixA can determine the quadratic form q.
Now, we consider that the matrixA is symmetric. SinceXTAX is scalar,

the quadratic form q may equally well be expressed as

(
XTAX

)T
= XTATX.

Thus,
q = 1

2

(
XTAX +XTATX

)
= XT

(
1
2

(
A+AT

))
X

.

It follows that the symmetric matrix A can replace the matrix
1
2

(
A+AT

)
.

Note:

(1) The matrix combined with a quadratic form is symmetric.
(2) A quadratic form q can be described in terms of square only.

9.2 Conics

Let us consider a conic, which is a curve defined in the two-dimensional plane
with an equation of the second degree of the form

a1x
2 + 2a2xy + a3y

2 + a4x+ a5y + a6 = 0, (9.1)

where the coefficients a1, a2, a3, a4, a5, and a6 are all real numbers.
Eqn (9.1) can be expressed in matrix form as

XTAX + [a4 a5]X + a6 = 0, (9.2)

whereX =

[
x
y

]
andA =

[
a1 a2
a2 a3

]
,

which is a quadratic form in x and y that is involved in this conic.
Next, let us apply the spectral theorem to examine its effect on the

equation of conic (9.1).
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Let Q be a real orthogonal matrix such that

QTAQ =

[
a1

′
0

0 a′3

]
, where entries a1

′
and a′3 are the eigenvalues of

the matrixA.
Let us put X′ = QTX and let the entries of X ′ be x′ and y′. Then X =

QX′ and the equation of the conic takes the form:

(
X ′)T [ a1

′
0

0 a3
′

]
X ′ + [a4 a5]QX ′ + a6 = 0. (9.3)

Or, equivalently, the equation can be expressed as

a1
′
x′2 + a3

′
y′2 + a4

′
x′ + a5

′
y′ + a6 = 0,

for specific real numbers, a4
′
and a5

′
.

Therefore, the advantage of changing to the new variables x′, y′ is that
there is no “cross term” x′y′ in the quadratic form.

Geometrical interpretation:
Geometrically, it corresponds to a rotation of axes x and y to a new set of

coordinates x′ and y′.
Any 2×2 real orthogonal matrix represents either a rotation or a reflection

in R2; however, no reflection will arise in the present instance.

Example 9.1:
Determine the conic of the equation defined by the quadratic equation

x2 + 4xy + y2 + 3x+ y − 1 = 0.

Solution:
The matrixA associated with the quadratic form of the equation

x2 + 4xy + y2 isA =

[
1 2
2 1

]
.

The eigenvalues of the matrix A can be found to be 3 and −1, and the

orthogonal matrix Q = 1√
2

[
1 −1
1 1

]
can diagonalize the matrixA.

Putting X′ = QTX, where X ′ has entries x′ and y′, then X = QX′ and
we find that

x = 1√
2
(x′ − y′)

y = 1√
2
(x′ + y′) .

So we have θ = π
4 , and the rotation of axes found for this conic is through

an angle π
4 in an anticlockwise direction.
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Now upon substituting the value of x and y in the equation of the conic,
it obtains

3x′2 − y′2 + 2
√
2x′ −

√
2y′ − 1 = 0,

which shows that the conic is a hyperbola.
Next, to find the standard form, we put the equation in a complete square

in x′ and y′, i.e.,

3

(
x′ +

√
2

3

)2

−
(
y′ +

1√
2

)2

=
7

6
.

Thus, the equation of the hyperbola in standard form is

3x′′2 − y′′2 =
7

6
,

where the values of x′′ and y′′ are defined as

x′′ = x′ +
√
2
3

y′′ = y′ + 1√
2

.

This represents a hyperbola having a center (x′, y′), where
x′ = −

√
2
3 and y′ = − 1√

2
.

Thus, the hyperbola center in xy-coordinates form is
(
1
6 ,−5

5

)
, and the

axes of the hyperbola are defined by the lines x′′ = 0 and y′′ = 0,
i.e., x− y = 1 and x+ y = −2

3 .

9.3 Quadrics

A quadric is an equation of surface defined on a three-dimensional space,
having degree 2 of the form

a1x
2+a2y

2+a3z
2+2a4xy+2a5yz+2a6zx+a7x+a8y+a9z+a10 = 0.

Let us consider a symmetric matrixA, defined by

A =

⎡
⎣ a1 a4 a6

a4 a2 a5
a6 a5 a3

⎤
⎦ .

Then the equation of the quadric can be expressed in the form
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XTAX + [a7 a8 a9]X + a10 = 0,

where X is the column with entries x, y, z.
From analytical geometry, a quadric is one of the following surfaces,

i.e., a hyperboloid, an ellipsoid, a paraboloid, a cylinder, and a cone (or a
degenerate form).

So, just as conic, this quadric class can also be obtained by a rotation
to principal axes. For finding a real orthogonal matrix Q, It must satis-
fies QTAX = D, where D is a diagonal matrix with diagonal entries
a1_, a2_, a3_, say.

Let us substitute X ′ = QTX , Then it obtains X = QX ′ and XTAX =
(X ′)T DX ′.

Thus, the quadric equation becomes(
X ′)T DX ′ + [a7 a8 a9]QX ′ + a10 = 0,

which is similar to

a1
′
x′2 + a′2y

′2 + a′3z
′2 + a′7x

′ + a′8y
′ + a′9z

′ + a10 = 0.

Here a′1, a′2, a′3 are the eigenvalues of the matrix A, while a′7, a′8, a′9 are
specific real numbers.

By accomplishing the squares in x′, y′, z′ as necessary, we can get the
quadric equation in standard form and then it will be desirable to recognize
its type and position. The last step illustrates the translation of axes.

Example 9.2:
Determine the quadric surface of the equation

x2 + y2 + z2 + 2xy + 2yz + 2zx− x+ 2y − z = 0. (9.4)

The matrixA of the suitable quadric form of eqn (9.4) is

A =

⎡
⎣ 1 1 1

1 1 1
1 1 1

⎤
⎦ .

If we write the equation of the quadric in matrix form, then it will take
the form as

XTAX + [−1 2 − 1]X = 0.

Next, we can continue to diagonalize the matrix A using an orthogonal
matrix Q. Upon finding the eigenvalues of the matrix A, the eigenvalues
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of the matrix A can be obtained as 0, 0, and 3 with the corresponding
eigenvectors⎡
⎢⎣

1√
2

− 1√
2

0

⎤
⎥⎦ ,

⎡
⎢⎢⎣

0

1√
2

− 1√
2

⎤
⎥⎥⎦, and

⎡
⎢⎢⎣

1√
3
1√
3
1√
3

⎤
⎥⎥⎦.

Here the eigenvalue λ = 0 obtains the first two eigenvectors that generate
the eigenspace.

Next, to identify an orthonormal basis of this subspace, this can be done
either by guessing such a basis or by applying the Gram−Schmidt procedure,
which turns out to be

1√
2

⎡
⎣ 1

−1
0

⎤
⎦ ,

1√
6

⎡
⎣ 1

1
−2

⎤
⎦ .

Therefore, the matrix A can be diagonalized by the orthogonal matrix Q
as

Q =

⎡
⎢⎢⎣

1√
2

1√
6

1√
3

− 1√
2

1√
6

1√
3

0 − 2√
6

1√
3

⎤
⎥⎥⎦ .

The matrix Q illustrates a rotation of axes.
PutX′ = QTX; then X = QX ′ and

XTAX =
(
X ′)T (QTAQ

)
X ′ =

(
X ′)T DX ′,

where D is the diagonal matrix with diagonal entries 0, 0, and 3.
Hence, the equation of the quadric is obtained as(

X ′)T DX ′ + [−1 2 − 1]QX ′ = 0

or z′2 = 1√
2
x′ − 1√

6
y′ = 0.

This represents a parabolic cylinder whose axis is in line with the
equations

y′ =
√
3x′ , z′ = 0.

9.4 Definite Quadratic Form

Let us assume a quadratic form q = XTAX in real variables x1, x2, . . . , xn,
whereA is a real symmetric matrix.
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In some applications, it is the sign of the quadratic form q that is impor-
tant. The quadratic form q is said to be positive definite, if q > 0 whenever
X �= 0. Similarly, the quadratic form q is called negative definite if q < 0,
whenever X �= 0. The quadratic form q is said to be indefinite, if q can have
both positive and negative values.

For example:

Positive-definite quadratic form:
Here, the expression 3x2 + 2y2 is positive unless x = 0 and y = 0; so

this is a positive definite quadratic form.

Negative definite quadratic form:
Here, the expression −3x2 − 2y2 is negative definite since the term is

negative unless x = 0 and y = 0. Otherwise, the form 3x2 − 2y2 can take
both positive and negative values; so it is an indefinite quadratic form.

One can quickly obtain the nature of the quadratic form if it contained
only the squared term, just as done in the above examples. However, it is
not possible to determine the nature of the problem by simple investigation
in general. In symmetric matrices, the diagonalization process reduces the
problem to a quadratic form whose matrix is diagonal and includes only
squared terms. From this, it is evident that it is the signs of the eigenvalues of
the matrix that are prominent. The conclusive result is as follows.

Theorem 9.1:
Let us consider a real symmetric matrix A and the quadratic form q =

XTAX . Then

(1) The quadratic form q is positive definite if and only if all the eigenvalues
of the matrixA are positive.

(2) The quadratic form q is said to be negative definite if and only if all the
eigenvalues of the matrixA are negative.

(3) The quadratic form q is indefinite if and only if all the eigenvalues of
the matrixA have both positive and negative eigenvalues.

Proof:
Let there exist a real orthogonal matrix Q such that QTAQ = D is

diagonal, with diagonal entries λ1, λ2, . . . , λn, say.
Let us put X ′ = QTX; then X = QX ′ and

q = XTAX
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=
(
X ′)T (QTAQ

)
X ′

=
(
X ′)T DX ′.

This implies that the quadratic form q takes the form q = λ1x
′2
1 +

λ2x
′2
2 + · · ·+ λnx

′2
n , where x′1, x′2, . . . , x′n are the entries of X ′.

Thus, the quadratic form q in x′1, x′2, . . . , x′n involves only squares.
Next, it can be observed that as X varies over all the non-zero vectors of

Rn, so does X ′ = QTX .
This is since QT = Q−1 is invertible. Therefore, q > 0 for all X �= 0 if

and only if q > 0 for allX′ �= 0.
Similarly, one can find that it is sufficient to discuss the behavior of the

quadratic form q in x′1, x′2, . . . , x′n. Still, the quadratic form qwill be positive
definite as such a form precisely, when λ1, λ2, . . . , λn λ′

is > 0, for i =
1, 2, . . . , n and similarly for negative definite and indefinite.

Thus, since λ1, λ2, . . . , λn are the eigenvalues of the matrix A, it proves
the statement of the theorem.

Hence proved. ��
Next, let us discuss the crucial case of a quadratic form q in two variables

x and y, say, q = a1x
2 + 2a2xy + a3y

2.
The associated symmetric matrix is

A =

[
a1 a2
a2 a3

]
.

Let the eigenvalues of the symmetric matrix A be μ1 and μ2. Then, we
have the relationship det (A) = μ1μ2,tr (A) = μ1 + μ2 and hence

μ1μ2 = a1a3 − a2
2 and μ1 + μ2 = a1 + a3.

The quadratic form q is said to be positive definite if and only if the
eigenvalues μ1 and μ2 are both positive. It happens precisely when a1a3 >
a2

2 and a1 > 0, and these conditions are indeed necessary (by Theorem 9.1).
If the eigenvalues μ1, μ2 are both positive, then the coefficients a1 > 0,

a3 > 0, and a1a3 > a2
2. Then it shows that a1 and a3 are of the same

sign.
Similarly, it can also be argued that the conditions a1a3 > a2

2 and a1 < 0
will be for the matrixA to be negative definite.

Finally, the quadratic form q is said to be indefinite, if and only if a1a3 <
a2

2. The condition for the quadratic form q to be indefinite is that μ1 and
μ2 are of opposite signs, i.e., μ1μ2 < 0. Therefore, we have the following
results.
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Corollary 9.1:
Let us consider the quadratic form q = a1x

2 +2a2xy+ a3y
2 in x and y.

Then

(1) The quadratic form q is positive definite if and only if a1a3 > a2
2 and

a1 > 0.
(2) The quadratic form q is negative definite if and only if a1a3 > a2

2 and
a1 < 0.

(3) The quadratic form q is indefinite if and only if a1a3 < a2
2.

Example 9.3:
Let the quadratic form q be defined by q = −2x2 + xy − 3y2.
Here a1 = −2 , a2 =

1
2 , a3 = −3

Since a1a3 > a2
2 and a1 < 0, it implies that the quadratic form Q is

negative definite.
Similarly, one can consider the quadratic forms in three or more variables;

for it, one must use (Theorem 7.1) to decide on definiteness.

Example 9.4:
Let q = −2x2 − y2 − 2z2 + 6zx be a quadratic form in x, y, z.
The coefficient matrix of the quadratic form can be defined as

A =

⎡
⎣ −2 0 3

0 −1 0
3 0 −2

⎤
⎦ .

Since the matrix’s eigenvalues A are −5, −1, and 1, the quadratic form
q is said to be indefinite.

Next, we discuss the criterion for a matrix to be positive definite.

Theorem 9.2:
Let us consider a real symmetric matrix A. Then the symmetric matrix

A is said to be positive definite if and only if there is an invertible matrix
A = CTC.

Proof:
Let us consider that the matrix C is invertible and A = CTC.
Then the quadratic form q = XTAX can be rewritten as

q = XT
(
CTC

)
X

= XTCTCX
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= (CX)T CX

= ‖CX‖2 .
Now, ifX �= 0, then it implies CX �= 0 (since the matrixC is invertible).
Thus, it means ‖CX‖ is positive, if X �= 0.
Hence, it observes that the quadratic form q is positive implies that the

real symmetric matrixA is positive definite.
Conversely, let us consider that the real symmetric matrix A is positive

definite, implying that all the matrix eigenvaluesA are positive.
Then there exists a real orthogonal matrix Q such that QTAQ = D

is diagonal, having diagonal entries d11, d22, . . . , dnn say, and these are the
eigenvalues of the matrixA and all d′iis are positive.

Now define
√
D to be the real diagonal matrix having its diagonal entries

as
√
d11,

√
d22, . . . ,

√
dnn.

Then it has
A =

(
QT
)−1

DQT

= QDQT .

Since QT = Q−1, it becomes

A = Q
(√

D
√
D
)
QT

=
(√

DQT
)T (√

DQT
) .

Finally, let us put C =
√
DQT , and it can be observed that the matrix C

is invertible, since both Q and
√
D are invertible.

9.5 Bilinear Form

A bilinear form can be defined as a scalar-valued linear function of two vector
variables: an inner product described in a real vector space V. Thus, there is
a close network between the bilinear forms and quadratic forms.

Let us consider a vector spaceV defined over a field F.
Let V ×V = {(u, v) : u, v ∈ R}.
Then a bilinear form defined on a vector space V is a function φ : V ×

V → F.
That is to say, a rule that assigns to each pair of vectors (u, v), a scalar

that satisfies φ (u, v) the following requirements:

(1) φ (u1 + u2, v) = φ (u1, v) + φ (u2, v).
(2) φ (u, v1 + v2) = φ (u, v1) + φ (u, v2).
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(3) φ (ku, v) = kφ (u, v).
(4) φ (u, kv) = kφ (u, v).

These must hold for all vectors u, u1, u2, v, v1, v2 inV and for all scalars
k in F. If φ (u, v) satisfies all the above four properties, then φ (u, v) is said
to be linear in both the variables u and v.

As cited, an inner product 〈.〉 on a real vector space is a bilinear form φ in
which φ 〈u, v〉 = 〈u, v〉 and a bilinear form φ 〈u, v〉 arises whenever a square
matrix is given, which is shown by this example.

For example:
LetA be a n× n matrix over a field F and φ : Fn ×Fn → F defined by

the rule φ (X,Y) = XTAY is a bilinear form on Fn.
It is a typical bilinear form on finite-dimensional vector spaces, which we

will state further.

9.6 Matrix Representation of Bilinear Forms

Let us consider a bilinear form φ : V×V → F defined on an n-dimensional
vector space V over a field F. Let B = {v1, v2, ....., vn} be an ordered basis
ofV and represent cij to be the scalar φ (vi, vj).

Thus, the function φ can be associated with the n× n matrixA = {aij}.
Next, let u, v ∈ V and
u =

∑∑∑n
i=1 αivi and v =

∑∑∑n
j=1 βjvj .

Then the coordinate vectors of the vectors u and v can be defined for the
given basis B are

[u]B =

⎡
⎢⎣

b1
...
bn

⎤
⎥⎦ and [v]B =

⎡
⎢⎣

c1
...
cn

⎤
⎥⎦ .

Upon using the linear properties of φ, the function φ (u, v) can be
calculated in terms of the matrixA as

φ (u, v) = φ

(
n∑∑∑

i=1

αivi,

n∑∑∑
j=1

βjvj

)

=

n∑∑∑
i=1

αiφ

(
vi,

n∑∑∑
j=1

βjvj

)

=

n∑∑∑
i=1

n∑∑∑
j=1

αiφ (vi, vj)βj.



246 Application to Conics and Quadrics

Since φ (vi, vj) = cij , it becomes

φ (u, v) =

n∑
i=1

n∑
j=1

αicijβj .

From this, the fundamental equation can be obtained as

φ (u, v) = ([u]B)
T A [v]B .

Thus, the linear form φ is defined concerning the basis B by the n × n
matrix A whose (i, j) entry is φ (vi, vj), where the value of φ can be
calculated using the above rule, especially if φ is a bilinear form on Fn, with
the standard basis, then φ (X,Y ) = XTAY .

Conversely, let us begin with a matrixA and define φ by

φ (u, v) = ([u]B)
T A [v]B .

Then it can be easily verified that a function φ is a bilinear form on the
vector spaceV and that the matrix representing the function φ concerning the
basis B is A.

Now let us consider another ordered basisB′, and we will check the effect
of B′ upon the matrixA.

Let C be an invertible matrix that describes the change of basis from B′
to B, i.e., B′ → B. Thus, [u]B = C [u]B′ .

And it obtains

φ (u, v) = (C [u]B′)
T A (C [v]B′)

= ([u]B′)
T (CTAC

)
[v]B′ .

This demonstrates that the matrix CTAC describes the function φ with
respect to the basis B′. ��

Here, we find a new relationship between the matrices that have arisen. It
can be defined that a matrix B is said to be congruent to a matrix A, if there
exists an invertible matrix C such that B = CTAC.

There is some correlation between congruence and similarity, but matri-
ces need not be congruent in analogous general, nor are congruent matrices
identical. The point that has appeared from the preceding discussion is that
matrices representing the same bilinear form (concerning different vector
space bases) are congruent. This result is to be correlated because the matrices
representing the same linear transformation are similar.
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The conclusion of the last few paragraphs outlines the following funda-
mental theorem.

Theorem 9.3:
Let V be an n-dimensional vector space and φ be a bilinear form on V

over F .

(1) Let B be an ordered basis of V defined by B = {v1, v2, . . . , vn}. Let
us define an n × n matrix A whose (i, j) entry is φ (vi, vj); then the
bilinear form φ is defined by φ (u, v) = ([u]B)

T A [v]B.
Here, A is the n × n matrix representing the function φ concerning the
ordered basis B.

(2) If there is another ordered basis B, then the bilinear form φ is repre-
sented concerning the ordered basis B′ by the matrix CTAC, and C is
an invertible matrix defining the change of basis B′ → B.

(3) Conversely, if A is any n × n matrix defined over the field F, then a
bilinear form φ onV is determined by the rule as

φ (u, v) = ([u]B)
T A [v]B .

The matrixA represents it concerning the basis B.

9.7 Symmetric and Skew-symmetric Bilinear Form

A bilinear form φ defined on a real or complex vector spaceV is symmetric if
its values are unaltered by reversing the arguments, i.e., if φ (u, v) = φ (v, u),
for all u and v.

Similarly, a bilinear form φ is said to be skew-symmetric if φ (u, v) =
−φ (v, u) and is always true.

For example, any real inner product on an inner product space V is
a symmetric bilinear form; otherwise, the structure φ is defined by the
rule

φ

([
x1
x2

]
,

[
y1
y2

])
= x1y2 − x2y1,

which is an example of a skew-symmetric bilinear form defined on R2.

Note:
There are connections with symmetric and skew-symmetric matrices.
The following theorem discusses it further.
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Theorem 9.4:
Let V be a finite-dimensional vector space and φ be a bilinear form

defined on V. Let the matrix A represent the function φ concerning to
some basis of V. Then the function φ is said to be symmetric if and only
if the matrix A is symmetric, and the equivalent statement is also valid for
skew-symmetric bilinear forms.

Proof:
Let us consider the matrixA to be symmetric and [u]T A [v] to be scalar;

then we have

φ (u, v) = [u]T A [v] =
(
[u]T A [v]

)T
= [v]T AT [u] = [v]T A [v]

= φ (v, u) .

Thus, φ is symmetric.
Conversely, assume that the function φ is symmetric and let B =

{v1, v2, . . . , vn} be the ordered basis ofV. Then

aij = φ (vi, vj) = φ (vj , vi) = aji ,

which implies that the matrixA is symmetric.
The proof of the skew-symmetric case is also related to the symmetric

case.

9.8 Symmetric Bilinear Forms and Quadratic Forms

Let φ be a bilinear form on Rn defined by

φ (X,Y ) = XTAY.

Then the bilinear form φ determines a quadratic form q, where

q = φ (X,X) = XTAX.

Conversely, if q is a quadratic form in x1, x2, . . . , xn, then an equivalent
symmetric bilinear form φ on Rn can be defined by means of the rule

φ (X,Y ) =
1

2
{q (X + Y )− q (X)− q (Y )} ,

where X and Y are the column vectors consisting of x1, x2, . . . , xn and
y1, y2, . . . , yn.
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To show the function φ (X,Y ) is bilinear, first, we express q (X) as
q (X) = XTAX where the matrixA is symmetric.
Then

φ (X,Y ) =
1

2

{
(X + Y )T A (X + Y )−XTAX − Y TAY

}
=

1

2

(
XTAY + Y TAX

)
= XTAY.

Since XTAY = Y TAX , this shows that φ (X,Y ) is bilinear.

Theorem 9.5:
A bijection arises between the set of quadratic forms in x1, x2, . . . , xn

and the set of symmetric bilinear form on Rn. ��
We would suppose to get important information about symmetric bilinear

forms by utilizing the spectral theorem from experience. In fact, what is
obtained is a canonical or standard form for such bilinear conditions.

Theorem 9.6:
Let φ be a symmetric bilinear form defined on an n-dimensional real

vector spaceV. Then there exists a basis B ofV such that

φ (u, v) = u1v1 + u2v2 + · · ·+ ukvk
−uk+1vk+1 − uk+2vk+2 − · · · − uLvL

where u1, u2, . . . , un and v1, v2, . . . , vn are the entries of the coordinate
vectors [u]B and [v]B respectively, and k and L are integers satisfying
0 ≤ k ≤ L ≤ n.

Proof:
Let a matrixA represent the bilinear form φ concerning some basisB′ of

V. Then the matrixA is symmetric. Thus,QTAQ = D is diagonal for some
orthonormal matrix Q, having diagonal entries d1, d2, . . . , dn, and these are
the eigenvalues of the matrixA.

Suppose that the first k diagonal entries are non-negative, i.e.,
d1, d2, . . . , dk > 0 while dk+1, dk+2, . . . , dL < 0 and dL+1 = dL+2 = · · · =
dn = 0 by altering the eigenvectors, if necessary.

Let E be the n×n diagonal matrix whose diagonal matrix entries are the
real numbers

1√
d1

,
1√
d2

, . . . ,
1√
dk

,
1√

(−dk+1)
, . . . ,

1√
(−dL)

, 1, . . . , 1.
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Then

(QE)T A (QE) = ET
(
QTAQ

)
E

= EDE =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

IK
... 0

... 0

· · · ... · · · ... · · ·
0

... −IL−K
... 0

· · · ... · · · ... · · ·
0

... 0
... 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= S

.

It implies that the matrix QE is invertible, and its inverse finds out a
change of basis from B′ to B say. Then the bilinear form φ will be shown by
the matrix S concerning the basis B.

This implies that φ (u, v) = ([u]B)
T S [v]B.

Hence, on multiplying the matrices together, the result follows.

Example 9.5:
Determine the canonical form of the symmetric bilinear form on R2

defined by φ (x, y) = x1y1 + 2x1y2 + 2x2y1 + x2y2.
The matrix of the bilinear form φ concerning the standard basis can be

expressed as

A =

[
1 2
2 1

]
.

The matrix A has eigenvalues 3 and − 1 and can be diagonalized by the
matrix

Q =
1√
2

[
1 −1
1 1

]
.

Upon putting X ′ = QTX and Y ′ = QTY , we find

φ (X,Y ) = XTAY

=
(
X ′)T QTAQY ′

=
(
X ′)T [ 3 0

0 −1

]
Y ′

so that φ (X,Y ) = 3x1
′
y1

′ − x2
′
y2

′
.

Here x1
′
= 1√

2
(x1 + x2) and x2

′
= 1√

2
(−x1 + x2) with the corre-

sponding formulas in y.
Next, to obtain the canonical form of the bilinear form φ,



9.10 Sylvester’s Law of Inertia 251

put x1
′′
=

√
3x1

′
, y1

′′
=

√
3y1

′
and x2

′′
= x2

′
, y2

′′
= y2

′
.

Then φ (X,Y) = x1
′′
y1

′′ − x2
′′
y2

′′
, which is the canonical form.

9.9 Eigenvalues of Congruent Matrices

Since the congruent matrices describe the same symmetric bilinear form, it
expects that such congruent matrices must have some common properties as
that of similar matrices. Still, similar matrices possess the same eigenvalues,
whereas this is not true in congruent matrices.

For example:
The eigenvalues of the matrix[
2 0
0 −3

]
are 2 and −3,

whereas the congruent matrix[
1 0
1 1

] [
2 0
0 −3

] [
1 1
0 1

]
=

[
2 2
2 −1

]

has eigenvalues −2 and 3.

Remark:
It is well known that, although the numbers of positive and negative eigen-

values are alike for each matrix, the eigenvalues of the congruent matrices are
different.

9.10 Sylvester’s Law of Inertia

Theorem 9.7 (Sylvester’s law of inertia):
Let us consider an n×n real symmetricAmatrix andC an invertible n×n

matrix. Then the matricesA andCTAC have an equal number of eigenvalues
and have the same number of negative, positive, and zero eigenvalues.

Proof:
First, let us assume that the matrixC is invertible. It is possible to express

QR factorization, Q a real orthogonal matrix, and R a real upper triangular
with positive diagonal entries obtained using the Gram−Schmidt process.

The objective of the criterion of the theorem is to get a continuous chain
of matrices that leads C to an orthogonal matrix Q.

The point of this is that QTAQ = Q−1AQ; indeed, it has the same
eigenvalues as the matrixA (since Q is an orthogonal matrix).
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Define
C (t) = tQ+ (1− t)C, where 0 ≤ t ≤ 1.
Thus, C (0) = C, while C (1) = Q.
Now note U = tI + (1− t)R,
so that C (t) = QU .
Next, as U is an upper triangular matrix, its diagonal entries are t +

(1− t) rii; so these cannot be zero 0 ≤ t ≤ 1, since rii > 0 and 0 ≤ t ≤ 1.
Hence, the matrix U is invertible, while the matrix Q is absolutely

invertible since it is orthogonal.
It observes that C (t) = QU is invertible.
Thus, det (C (t)) �= 0.
Let us considerA (t) = C (t)T AC (t).
So, it implies that det (A (t)) = det (A) . det (C (t))2 �= 0.
(Since det (C (t)) �= 0 and detC (t)T = detC (t).)
It shows that the matrixA (t) cannot have zero eigenvalues.
As t goes from 0 to 1, the eigenvalues of A (0) = CTAC gradually shift

to those ofA (1) = QTAQ, that is, to those of A.
But in this method, no eigenvalue can alter its sign because the eigenval-

ues that occur are a continuous function of t, and they are never zero.
Therefore, the numbers of negative and positive eigenvalues of CTAC

equal to those ofA. ��
Note:

To check whether A is singular, we have to analyze the matrix A + εI,
which may be a concept of perturbation ofA. NowA+ εI will be invertible
only if ε is sufficiently small and positive.

Suppose we consider det (A+ xI) as a polynomial of a degree n that
vanishes for at most n-values of x.

Thus, the prior disagreement shows that the conclusion is valid forA+εI
also. If ε is small and positive, then take the limit as ε → 0 and we can deduct
the results for the matrixA. ��
Remark:

The theorem shows that the bilinear form uniquely determines the number
of negative and positive signs in the canonical form. Moreover, it does not
depend on the particular choice of the basis.

Example 9.6:

Show that the matrices A =

[
2 1
1 2

]
and B =

[
1 2
2 1

]
are not

congruent.
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Solution:
The eigenvalues of the matrix A are 1 and 3, while the matrix B has the

eigenvalues 3 and −1. So, by Theorem 9.7, the matrices A and B cannot be
congruent.

9.11 Skew-symmetric Bilinear Form

We have observed that obtaining a canonical form for a symmetric bilinear
form on a real vector space V is possible. Next, the discussion extends to
skew-symmetric bilinear forms in the light of congruent matrices.

The following theorem yields a solution to the problem.

Theorem 9.8:
Let φ be a skew-symmetric bilinear form defined on an n-dimensional

vector space V over the field F, where F is either R or C. Then
there is an ordered basis B of the vector space V with the form
{u1, v1, u2, v2, . . . , uk, vk, w1, . . . , wn−2k}, where 0 ≤ 2k ≤ n such that
φ (ui, vi) = 1 = −φ (vi, ui) , i = 1, 2, . . . , k and φ vanishes on all other
pairs of basis elements.

Before going to the proof of the theorem, let us first examine the con-
sequence of this theorem. Upon using the basis as provided by the above
theorem, the bilinear form φ can be represented by the matrix

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 · · · 0 0
... 0 · · · 0

−1 0 · · · 0 0
... 0 · · · 0

· · · · · · · · · · · · · · · ... · · · · · · · · ·
0 0 · · · 0 1

... 0 · · · 0

0 0 · · · −1 0
... 0 · · · 0

· · · · · · · · · · · · · · · ... · · · · · · · · ·
0 0 · · · 0 0

... 0 · · · 0

· · · · · · · · · · · · · · · ... · · · · · · · · ·
0 0 · · · 0 0

... 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The number of blocks of the type

[
0 1

−1 0

]
allows us to derive an

important conclusion about the skew-symmetric matrices.
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Corollary 9.2:
Every skew-symmetric matrix A defined over the field F (where F is

either R or C ) is congruent to a matrixM with the above form. ��
The bilinear form φ given by φ (X,Y) = XTAY is skew-symmetric and

is represented concerning a suitable basis by a type matrix M. Hence, the
matrixA must be congruent to a matrixM with the above form.

Proof of Theorem 9.8:
Let y1, y2, . . . , yn be any basis of a vector spaceV.
If φ (yi, yj) = 0 for all i and j, then φ (u, v) = 0 for all vectors u and v.
So φ is the zero bilinear form, and the zero matrices represent it. This is

the case for k = 0.
Assume that φ (yi, yj) �= 0 for some i and j. Since we can reorder the

basis, we may suppose that φ (y1, y2) = a �= 0.
Then φ

(
a−1y1, y2

)
= a−1φ (y1, y2) = a−1a = 1 .

Now replace y1 by a−1y1; the effect is to make φ (y1, y2) = 1, and of
course φ (y2, y1) = −1, since φ is skew-symmetric.

Next put bi = φ (y1, yi), where i > 2.
Then

φ (y1, yi − by2) = φ (y1, yi)− bφ (y1, y2)

= b− b = 0.

It implies that the basis can also be altered by replacing yi by yi − by2,
for i > 2.

Since this does not disturb linear independence, we have a basis for the
vector spaceV. The effect of this substitution is to make

φ (y1, yi) = 0 for i = 3, . . . , n.
Next, we have to focus on the feasibility that φ (y2, yi) may be non-zero

when i > 2.
Let c = φ (y2, yi). Then

φ (y2, yi + cy1) = φ (y2, yi) + cφ (y2, y1)

= c+ (−c)

= 0.

This implies that the later step should be to replace yi by yi + cy1, where
i > 2. Again, we have to notice that y1, y2, . . . , yn will still form a basis
for the vector space V. Also, there is an introductory observation that this
replacement will not nullify what we have already been attained; the idea is
that when i > 2,
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φ (y1, yi + cy1) = φ (y1, yi) + cφ (y1, y1) = 0 .

We have now reached the stage where φ (y1, y2) = 1 = −φ (y2, y1) and
also φ (y1, yi) = 0 = φ (y2, yi) for all i > 2.

Here, we rename the first two basis elements by noting u1 = y1 and
v1 = y2.

Till now, the matrix defining φ has the form⎡
⎢⎢⎢⎢⎢⎣

0 1
... 0 0

−1 0
... 0 0

· · · · · · ... · · · · · ·
0 0

... B

⎤
⎥⎥⎥⎥⎥⎦ .

The matrixB is a skew-symmetric matrix having n−2 rows and columns;
the above argument can be repeated for the subspace with basis {y3, . . . , yn}.
It can be observed by induction that there is a basis for this subspace
concerning which φ can be expressed by a matrix of the appropriate form.
Indeed, let u2, u3, . . . , uk, v2, v3, . . . , vk, w1, w2, . . . , wn−2k be this basis. A
basis V is obtained by adjoining the basis elements u1 and v1, concerning
which a matrix of the required form represents the bilinear form.

Example 9.7:
Determine a canonical form of the skew-symmetric matrix

A =

⎡
⎣ 0 0 2

0 0 −1
−2 1 0

⎤
⎦ .

For this, we can execute the procedure signified in the proof of the
theorem.

Solution:
Let{e1, e2, e3} be the standard basis of R3. Then the matrix A finds out

a skew-symmetric bilinear form φ with the properties

φ (e1, e3) = 2 = −φ (e3, e1)
φ (e3, e2) = 1 = −φ (e2, e3)
φ (e1, e2) = 0 = φ (e2, e1)

.

First, let us alter the basis, i.e., {e1, e3, e2}; this is necessary since
φ (e1, e2) = 0, whereas φ (e1, e3) �= 0.
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Now change {e1, e3, e2} by
{
1
2e1, e3, e2

}
and note that

φ

(
1

2
e1, e3

)
= 1 = −φ

(
e3,

1

2
e1

)
.

Next since φ (e3, e2) = 1, we replace e2 by

e2 + φ (e3, e2)
1

2
e1 =

1

2
e1 + e2.

Similarly, by noting that

φ

(
1

2
e1,

1

2
e1 + e2

)
= 0 = φ

(
e3,

1

2
e1 + e2

)
.

It implies that the procedure is now achieved.
Now the bilinear form φ can be represented concerning a new ordered

basis
{
1
2e1, e3,

1
2e1 + e2

}
by the matrixM, i.e.,

M =

⎡
⎣ 0 1 0

−1 0 0
0 0 0

⎤
⎦ ,

which is in canonical form.
Now the replacement of basis from

{
1
2e1, e3,

1
2e1 + e2

}
to the standard

ordered basis can be represented by the matrix

C =

⎡
⎣ 1

2 0 1
2

0 0 1
0 1 0

⎤
⎦ .

It can be easily verified that CTAC = M, the canonical form of the
matrixA, can be predicted by the proof of Theorem 9.8.

9.12 Application to the Reduction of Quadrics

Example 9.8:
Reduce the quadric

[x y z]

⎡
⎣ 7 −1 −10

−1 7 10
−10 10 −2

⎤
⎦
⎡
⎣ x

y
z

⎤
⎦ = 36 to its principal axes. Note

that when this equation is written in full, it takes the form
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7x2 + 7y2 − 2z2 + 20yz − 20zx− 2xy = 36.

According to the preceding discussion, we need to reduce the matrix

A =

⎡
⎣ 7 −1 −10

−1 7 10
−10 10 −2

⎤
⎦ to the diagonal form.

The eigenvalues ofA are 6,−12, and 18. The corresponding eigenvectors
are (1, 1, 0) , (1,−1, 2), and (1,−1,−1).

Hence, the normalized eigenvectors are(
1√
2
, 1√

2
, 0
)
,
(

1√
6
,− 1√

6
, 2√

6

)
, and

(
1√
3
,− 1√

3
,− 1√

3

)
.

These three vectors give the following orthogonal matrix:

H =

⎡
⎢⎣

1√
2

1√
6

1√
3

1√
2

− 1√
6

− 1√
3

0 2√
6

− 1√
3

⎤
⎥⎦

Hence,

HTAH =

⎡
⎢⎢⎢⎣

1√
2

1√
2

0

1√
6

− 1√
6

− 2√
6

1√
3

− 1√
3

− 1√
3

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

7 −1 −10

−1 7 10

−10 10 −2

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

1√
2

1√
6

1√
3

1√
2

− 1√
6

− 1√
3

0 2√
6

− 1√
3

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

6 0 0

0 −12 0

0 0 18

⎤
⎥⎥⎥⎦

is the required diagonal matrix.
So, the equation of the quadric referred to its axes is

6x2 − 12y2 + 18z2 = 36

or x2

6 − y2

3 + z2

2 = 1.
This is a hyperboloid of one sheet.
We shall conclude this chapter with another example where the matrix

does not possess distinct eigenvalues. Though we have not developed the
necessary theory for this, the following example shows that reducing diagonal
form is possible even in such a case.
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Example 9.9:

Reduce the matrixA =

⎡
⎣ 1 2 −2

2 1 2
−2 2 1

⎤
⎦ to the diagonal form and hence

reduce the quadric
x2 + y2 + z2 + 4yz − 4zx+ 4xy = 27 (9.5)

to its principal axes.
The eigenvalues of the matrix A are 3, 3, and −3. Note that in this case,

3 is a repeated eigenvalue that depends on the fact that the matrix has distinct
eigenvalues, and cannot be applied. However, an orthogonal matrix can be
obtained by looking at the eigenvectors corresponding to 3 and −3.

The eigenvectors corresponding to the eigenvalue 3 are given by⎡
⎣ −2 2 −2

2 −2 2
−2 2 −2

⎤
⎦
⎡
⎣ x

y
z

⎤
⎦ =

⎡
⎣ 0

0
0

⎤
⎦ .

This gives only one equation: x− y + z = 0.
The solution set of this is the subspace {(y − z, y, z) : y, z ∈ R} of V3.

We can choose two linearly independent vectors in this two-dimensional
space by giving suitable values to y and z. Taking y = 1 and z = 1, we
get (0, 1, 1) and taking y = 1 and z = 2, we get (−1, 1, 2). Since these
two are linearly independent, we have only to orthogonalize them. Using the
Gram−Schmidt process, we get two orthogonal vectors

(0, 1, 1)and
(
−1,−1/2,

1/2

)
.

Normalizing them, we get(
0, 1
/√

2,
1/√

2

)
and
(
−
√
2/√

3,−1/√
6,
1/√

6

)
.

The third eigenvector is the one that corresponds to the eigenvalue −3
and is (1,−1, 1).

Normalizing this vector, we get
(
1/√

3,−1/√
3,
1/√

3

)
. Without check-

ing, we can say that this will be orthogonal to the two eigenvectors corre-
sponding to 3 because the eigenvectors corresponding to distinct eigenvalues
are orthogonal. Thus, we have the orthogonal matrix

H =

⎡
⎢⎣ 0 −

√
2/√

3
1/√

3
1/√

2 −1/√
6 −1/√

3
1/√

2
1/√

6
1/√

3

⎤
⎥⎦ .
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Hence,

HTAH

=

⎡
⎢⎢⎢⎢⎣

0 1/√
2

1/√
2

−
√
2/√

3 −1/√6
1/√

6

1/√
3 −1/√3

1/√
3

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

1 2 −2
2 1 2

−2 2 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

0 −
√
2/√

3
1/√

3

1/√
2 −1/√6 −1/√3

1/√
2

1/√
6

1/√
3

⎤
⎥⎥⎥⎥⎦

.

=

⎡
⎣ 3 0 0

0 3 0
0 0 −3

⎤
⎦

Thus, the quadric (9.5) reduces to

3x2 + 3y2 − 3z2 = 27

i.e., x2

9 + y2

9 − z2

9 = 1.
It may be noted here that eqn (9.5) can be written as

[x y z]

⎡
⎣ 1 2 −2

2 1 2
−2 2 1

⎤
⎦
⎡
⎣ x

y
z

⎤
⎦ = 27.

Exercises

1. Reduce the following matrices to diagonal form:

(a)

⎡
⎣ 5 1 1

1 5 −1
1 −1 5

⎤
⎦

(b)

⎡
⎣ 6 4 −2

4 12 −4
−2 −4 13

⎤
⎦

(c)

⎡
⎣ 4 3 3

3 0 −1
3 −1 3

⎤
⎦.

2. Reduce the following conics to their principal axes:

(a) 7x2 + 52xy − 32y2 = 180.
(b) 17x2 + 312xy + 108y2 = 900.
(c) 145x2 + 120xy + 180y2 = 900.
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10
Canonical Forms

This chapter discusses the applications of special matrices such as block
diagonal and triangular matrices, symmetric and Hermitian matrices, Schur’s
theorem, spectral theorem, Jordan and rational canonical form of special
matrices. This chapter starts with some special types of matrices, including
some essential theorems such as Schur’s theorem, spectral theorem, and some
crucial canonical and normal forms such as Jordan canonical form rational
canonical form and minimum polynomial of Jordan normal form.

10.1 Triangularizable Matrices

Not every complex square matrix is diagonalizable, but it is always similar
to an upper triangular matrix, and this type of consequence leads to many
applications. For example, let us consider an n × n square matrix A that is
defined over a field F . Then the square matrixA is triangularizable over the
field F , if there is an invertible matrix C over F such that C−1AC = U is
upper triangular. In other words, the invertible matrix C triangularizes the
matrixA.

Note: Upon using the fact, similar matrices have the same eigenvalues. It
implies that the eigenvalues of the matrix A are the diagonal entries of the
triangular matrix T . Hence, a necessary condition that a square matrix A
is triangularizable is that the matrix A has n-eigenvalues in the field F .
This condition is ever satisfied when F = Cn, which we are interested in
discussing in the following section.

Theorem 10.1:
Every n× n square matrixA over Cn is triangularizable.

Proof:
Let us consider an n × n square complex matrix A. Upon using the

method of induction, we will show that the matrixA is triangularizable.

261
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If n = 1, the matrixA is then upper triangular.
We shall employ the induction method for n > 1 and consider that the

result is valid for square matrices with n− 1 rows.
As we know, a matrix A has at least one eigenvalue λ in the field of

the complex number, having an associated eigenvector X . Since X �= 0, it
is possible to adjoin the vectors to X to produce a basis of Cn, i.e., X =
X1, X2, · · · , Xn.

Next, upon using the left multiplication of the matrix’s vectors,
it gives rise to a linear operator L on Cn. Now concerning the
basis{X1, X2, · · · , Xn}, the linear operator Lwill be represented by a matrix

with the particular form as B1 =

[
λ A2

0 A1

]
, where A1 andA2 are the

complex matrices, A1 having n − 1 rows and columns. The logic for the
specific form is that L (X1) = AX1 = λX1, since X1 is an eigenvector
ofA.

Here, the matrices A and B1 are similar since they represent the same
linear operator L; suppose that, indeed B1 = C1

−1AC1, where C1 is an
invertible n× n matrix.

Upon using the induction axiom, there is an invertible matrix C2 with
n− 1 rows and columns, such that B2 = C2

−1A1C2 is an upper triangular.

Write C = C1

[
1 0
0 C2

]
.

Since the matrix C is the product of invertible matrices, C is invertible.
Upon using the matrix computation, it shows that C−1AC equals[
1 0
0 C−1

2

] (
C1

−1AC1

) [ 1 0
0 C1

]
=

[
1 0
0 C−1

2

]
B1

[
1 0
0 C2

]
.

Upon replacing the matrix B1 by

[
λ A2

0 A1

]
and multiplying the

matrices together, we get

C−1AC =

[
λ A2C2

0 C2
−1A1C2

]
=

[
λ A2C2

0 B2

]
.

This shows that this matrix is upper triangular. Hence, the theorem is
proved.

We can use the proof of the theorem as a procedure for triangularizing a
matrix.
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Example 10.1:

Triangularize the 2× 2 matrixA =

[
1 1
−1 3

]
.

Solution:
It can be observed that the characteristic equation of the matrix A is

|A− λI| = λ2 − 4λ + 4 = 0, which gives two eigenvalues λ1, λ2 and both
the eigenvalues λ1 and λ2 are equal, i.e., λ1 = λ2 = 2.

For λ = 2, and upon solving (A− 2I2)X = 0, we find all the

eigenvectors ofA that are scalar multiples of X1 =

[
1
1

]
.

Thus, the matrix A is not diagonalizable since the eigenvalues are not
distinct.

Let L be the linear operator defined onR2 arising from left multiplication
byA.

Adjoin a vector X2 to X1 to get a basis

B2 = {X1, X2} of R2, say, X2 =

[
0
1

]
.

Denote byB1 the standard basis ofR2. Then the change of basisB1 → B2

is defined by the matrix

C1 =

[
1 0

−1 1

]
.

Therefore, the matrixA that represents L concerning the basis B2 is

C1AC1
−1 =

[
2 1
0 2

]
.

Hence, C = C1
−1 =

[
1 0
1 1

]
triangularizes the matrixA.

Jordan block:

Consider the following two r-square matrices, where a �= 0:

J (μ : r) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

μ 1 0
... 0 0

0 μ 1
... 0 0

. · · · . · · · . .

0 0 0
... μ 1

0 0 0
... 0 μ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
and
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A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

μ a 0
... 0 0

0 μ a
... 0 0

. . . . . . . . . .

0 0 0
... μ a

0 0 0
... 0 μ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

The matrix J (μ : r) is called a Jordan block having μ′s on the diagonal,
1’s on the super diagonal, and 0’s elsewhere.

It can be shown that Δ(λ) = (λ− μ)r is both the characteristic and
minimal polynomial of both the matrices J (μ : r) andA.

Let us consider an arbitrary monic polynomial

f (λ) = λn + an−1λ
n−1 + · · ·+ a1λ+ a0.

Let us consider an n-square matrixC (f)with 1’s on the sub-diagonal, the
negative of the coefficients in the last column, and 0’s elsewhere as follows:

C (f) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0
... 0 −a0

1 0
... 0 −a1

0 1
... 0 −a2

. · · · . · · · .
0 0 . 1 −an−1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Then C (f) is called the companion matrix of the polynomial f (λ).
Moreover, the minimal polynomial m (λ) and characteristic polynomial

Δ(λ) of the companion matrix C (f) are equal to the original polynomial
f (λ).

10.2 Block Triangular Matrices

Let us consider a block triangular matrix M , i.e., M =

[
A1 B
0 A2

]
, where

the diagonal elementsA1 and A2 are square matrices.
Then the characteristic polynomials M − λI is also a block triangular

matrix, whereA1 − λI andA2 − λI are the diagonal blocks ofM − λI .
Thus,

|M − λI| =
[
A1 − λI B

0 A2 − λI

]
= |A1 − λI| . |A2 − λI|

.
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This implies that the characteristic polynomial of the block triangular
matrixM is the characteristic polynomial of the diagonal blocksA1 and A2.

Theorem 10.2:
LetM be a block triangular matrix with diagonal blocksA1,A2, · · · ,Ar.

Then the characteristic polynomial of the block triangular matrix M is the
product of the characteristic polynomial of the diagonal blocks A′

is, that
is,

Δm (λ) = ΔA1 (λ)ΔA2 (λ) · · ·ΔAr (λ) .

Example 10.2:
Consider the block triangular matrix

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

9 −1
... 5 7

8 3
... 2 −4

. . . . . . .

0 0
... 3 6

0 0
... −1 8

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

having diagonal blocks

A1 =

[
9 −1
8 3

]
andA2 =

[
3 6
−1 8

]
.

Here, tr (A1) = 9 + 3 = 12, |A1| = 27 + 8 = 35 and so

ΔA1 (λ) = λ2 − 12λ+ 35
= (λ− 5) (λ− 7)

.

Similarly, tr (A2) = 3 + 8 = 11 and |A2| = 24 + 6 = 30

and
ΔA2 (t) = λ2 − 11λ+ 30

= (λ− 5) (λ− 6)
.

Accordingly, the characteristic polynomial of the block triangular matrix
M is the product

Δm (λ) = ΔA1 (λ)ΔA2 (λ)

= (λ− 5)2 (λ− 6) (λ− 7)
.
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10.3 Block Diagonalization

Theorem 10.3:
LetM be a block diagonal matrix with diagonal blocksA1,A2, · · · ,Ar.

Then the minimal polynomial of the block diagonal matrixM corresponds to
the least common multiple (LCM) of the minimal polynomial of the diagonal
blocksAi.

Remark: It can be noted that this theorem can be applied to block diagonal
matrix M although the previous related theorem on characteristic polynomial
can be applied to block triangular matrices.

Example 10.3:
Determine the characteristic polynomial Δ(λ) and the minimal polyno-

mialm (λ) of the block diagonal matrix

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 5
... 0 0

... 0

0 2
... 0 0

... 0

. . . .
... . . . .

... .

0 0
... 4 2

... 0

0 0
... 3 5

... 0

. . . .
... . . . .

... .

0 0
... 0 0

... 7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= diag (A1,A2,A3)

whereA1 =

[
2 5
0 2

]
,A2 =

[
4 2
3 5

]
, andA3 = [7].

Then the characteristic polynomials Δ(λ) can be expressed as the prod-
uct of Δ1 (λ),Δ2 (λ), and Δ3 (λ), where Δ1 (λ), Δ2 (λ), and Δ3 (λ) are the
characteristic polynomialsA1,A2, andA3.

It can be shown that

Δ1 (λ) = (λ− 2)2

Δ2 (λ) = (λ− 2) (λ− 7)
Δ3 (λ) = (λ− 7)

.

Thus, Δ(λ) = (λ− 2)2 (λ− 7)2 (as expected, degΔ (λ) = 5).
Similarly, the minimal polynomial m1 (λ), m2 (λ), and m3 (λ) of the

diagonal blocks A1,A2, andA3 respectively correspond to the character-
istic polynomials Δ1 (λ),Δ2 (λ), and Δ3 (λ), that is,
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m1 (λ) = (λ− 2)2

m2 (λ) = (λ− 2) (λ− 7)
m3 (λ) = (λ− 7)

.

But m (λ) is equal to the least common multiple of the minimal polyno-
mialm1 (λ), m2 (λ), andm3 (λ).

Thus, the minimal polynomial m (λ) ofM can be written as

m (λ) = (λ− 2)2 (λ− 7) .

10.4 Hermitian Matrices

This section will discuss the orthogonality of Hermitian matrices with the
help of eigenvalues and eigenvectors by keeping special regard to real
symmetric matrices.

Definition 10.1:
An n × n square complex matrix A is said to be Hermitian, if A = A∗.

Generally, the Hermitian matrices are the complex analogue of real symmet-
ric matrices. The eigenvalues and eigenvectors of such Hermitian matrices
have significant properties, which are usually not taken over by complex
matrices. There is a noteworthy indication about Hermitian matrices’ par-
ticular behavior because their eigenvalues are consistently real, while the
eigenvectors become orthogonal.

Note 1: If A and B are n× n complex matrices, then (AB)∗ = B∗A∗.

Theorem 10.4:
Let us consider a Hermitian matrixA. Then

(1) The eigenvalues of the Hermitian matrixA are all real.
(2) The eigenvectors of the Hermitian matrix A associated with distinct

eigenvalues are orthogonal.

Proof:
Let us consider a Hermitian matrix A. Let λ be an eigenvalue of the

matrixA having its associated eigenvector be X such that

AX = λX. (10.1)

Upon proceeding with the complex transpose on both sides of eqn (10.1)
and using the fact for complex matrices and from Note 1, i.e., (AX)∗ =
(λX)∗, we obtain

X∗A = λ̄X∗, sinceA = A∗. (10.2)



268 Canonical Forms

Now on multiplying X on both sides of eqn (10.2), we obtain

X∗AX = λ̄X∗X = λ̄||X||2, (sinceX∗X = ||X||2).
ButA.
Thus, it implies that the scalar X∗AX corresponds to its complex conju-

gate, which meansX∗AX is real, which indicates λ̄||X||2 is real. Now since
the lengths are always real, it can be deduced that λ̄ and hence λ is real.

Hence, part (i) of the theorem is proved.
Next, let us prove part (ii).
Let X1 and X2 be two eigenvectors of Hermitian matrices A associated

with distinct eigenvalues λ1 and λ2.
Thus, AX1 = λ1X1 and AX2 = λ2X2,

which implies that

X2
∗AX1 = X2

∗ (λ1X1) = λ1X2
∗X1.

Similarly, it can be proved that

X1
∗AX2 = λ2X1

∗X2.

However, by Note 1 again,

(X1
∗AX2)

∗ = X2
∗A∗X1 = X2

∗AX1 .

Therefore,

(λ2X1
∗X2)

∗ = (X1
∗AX2)

∗ = λ1X2
∗X1

or λ2X2
∗X1 = λ1X2

∗X1 (since λ2 is real).

⇒ (λ1 − λ2)X2
∗X1 = 0,

which implies X2
∗X1 = 0, since λ1 �= λ2.

Thus, X1 and X2 are orthogonal. ��

10.5 Unitary Matrix

Let us consider an n × n unitary matrix A and {X1, X2, · · · , Xm} a set of
m linearly independent eigenvectors of the matrix A, where m is chosen as
large as desired.

Upon multiplying Xi by 1
||Xi|| , it produces a unit vector, which implies

that each Xi is a unit vector.
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By Theorem 10.4, {X1, X2, · · · , Xm} forms an orthonormal set. Now, if
we write U = {X1, X2, · · · , Xm} as an n× mmatrix, then the matrix U has
the property

AU = A [X1, X2, · · · , Xm]
= [AX1, AX2, · · · , AXm]
= [λ1X1, λ2X2, · · · , λmXm]

,

where λ1, λ2, · · · , λm are the eigenvalues corresponding to the eigenvectors
X1, X2, · · · , Xm.

Hence,

AU = A [X1, X2, · · · , Xm]
= [AX1, AX2, · · · , AXm]
= [λ1X1, λ2X2, · · · , λmXm]

= [X1, X2, · · · , Xm]

⎡
⎢⎢⎢⎣

λ1 0 · · · 0
0 λ2 · · · 0

· · · · · · . . . · · ·
0 0 · · · λm

⎤
⎥⎥⎥⎦

= UD

.

Here, the matrix D is a diagonal matrix with its diagonal entries as
λ1, λ2, · · · , λr.

The columns of the unitary matrix U model is an orthonormal set,
i.e., U ∗ U = Ir.
So, for an n × n unitary matrix U , we shall have U−1 = U∗. (Primarily

r ≤ n, but here the case is for r = n.)
Thus, U∗AU = D and hence the matrixA is diagonalized by the unitary

matrix U . ��
Remark: A matrix A can be diagonalized by a unitary matrix U , if there
exist n mutually orthogonal eigenvectors ofA.

There is always a question in mind whether there are always many linearly
independent eigenvectors for a matrix A, which we will discuss in detail in
the next section.

10.6 Schur’s Theorem

Theorem 10.5 (Schur’s theorem):
Let us consider an arbitrary n × n square complex matrix A. Then there

exists a unitary matrix U that U∗AU is upper triangular.
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Moreover, if a real symmetric matrixA of order n exists, then the unitary
matrix U can be chosen as a real and orthogonal matrix.

Proof:
Let us consider an n× n square matrixA.
The proof of the theorem can be obtained by the method of induction

for n.
Indeed, if n = 1, then the matrixA is an upper triangular matrix.
Let us consider the case for n > 1. For n > 1, let λ1 be an eigenvalue of

the matrix A having the associated eigenvector as X1, where the vector X1

can be chosen to be a unit vector in Cn.
Now since X1 is a linearly independent subset of Rn, we can adjoin

vectors to the unit vector X1 to form a basis of Rn. Then an orthonormal
basis X1, X2, · · · , Xn of Rn is obtained by applying the Gram−Schmidt
procedure, where X1 will be on this basis.

Let U0 denote the matrix [X1, X2, · · · , Xn]; then U0 is unitary since its
column vectors form an orthonormal set.

Now U∗
0AX1 = U∗

0 (λ1X1) = λ1 (U
∗
0X1).

Also

{
X∗

i X1 = 0 , if i > 1
= 1 , if i = 1

Hence,

U∗
0AX1 = λ1

⎡
⎢⎢⎢⎣

X∗
1X1

X∗
2X2

...
X∗

nX1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

λ1

0
...
0

⎤
⎥⎥⎥⎦ .

Now since

U∗
0AU0 = U∗

0A [X1, X2, · · · , Xn]
= [U∗

0AX1, U
∗
0AX2, · · · , U∗

0AXn]
.

We analyze that

U∗
0AU0 =

[
λ1 B
0 A1

]
,

where the matrix A1 is a having n − 1 rows and columns, and the matrix B
is an (n− 1) row vector.

Similarly, upon applying the induction hypothesis on n, there exists a
unitary matrix U1 that U∗

1A1U1 = T1 is upper triangular that results U2,
which is a unitary matrix.

Now write

U2 =

[
1 0
0 U1

]
, which is a unitary matrix.
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Then put U = U0U2. This is also unitary, since U∗U = I , i.e.,

U∗U = (U0U2)
∗ U0U2

= U2
∗U0

∗U0U2

= U∗
2 (U

∗
0U0)U2 = U∗

2U2 = I
.

Finally,

U∗AU = (U0U2)
∗A (U0U2)

= U2
∗U0

∗AU0U2

= U∗
2 (U

∗
0AU0)U2

= U∗
2

[
λ1 B
0 A1

]
U2 =

[
λ1 BU1

0 U∗
1A1U1

] ,

which show that

U∗AU =

[
λ1 BU1

0 T1

]
,

which is an upper triangular matrix as needed. ��
If A is a real and symmetric matrix, then there exists a real orthogonal

matrixQ such thatQTAQ diagonal. Since here the eigenvalues of the matrix
A are real, it implies that the matrixA has a real eigenvector.

Next, we will establish the spectral theorem based on the diagonalization
of Hermitian matrices.

10.7 Spectral Theorem

Theorem 10.6 (spectral theorem):
Let A be a Hermitian matrix. Then there exists a unitary matrix U that

U∗AU is diagonal. If the matrix A is real and symmetric, then the unitary
matrix U can be real and orthogonal.

Proof:
Let A be a Hermitian matrix, then by Theorem 10.5, there is a unitary

matrix U such that U∗AU = T is an upper triangular matrix.
Then T ∗ = U∗A∗U = U∗AU = T . It implies that T is Hermitian.
But T is an upper triangular matrix and T ∗ is lower triangular. So the only

way that the matrices T and T ∗ can be equal, if all the off-diagonal entries of
the matrix T are zero, is if T is diagonal.

Thus, since U∗AU = T , U∗AU is diagonal.
Similarly, the proof can be done for the case when the matrix A is real

and symmetric.
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Corollary 10.1:
Let us consider an n × n Hermitian matrix A. Then there exists an

orthonormal basis of Rn that consists entirely of eigenvectors of the Hermi-
tian matrixA. If the Hermitian matrixA is real, then there is an orthonormal
basis of Rn consisting of all the eigenvectorsA.

Proof:
Let A be a n × n Hermitian matrix. Then by Theorem 10.6, a unitary

matrix U exists such that U∗AU = D is diagonal. Here the diagonal entries
of D are d11, d22, · · · , dnn say.

If X1, X2, · · · , Xn are the columns of the unitary matrix U , then the
equation AU = UD implies that AXi = diiXi for i = 1, 2, · · · , n.

Thus,Xi are the eigenvectors of the Hermitian matrix, and asU is unitary,
they form an orthonormal basis of Rn. ��

The same altercation can be taken if the Hermitian matrixA is real.

Remark: An n×n Hermitian matrix always has ample eigenvectors to form
an orthonormal basis of Rn.

Note: This case will also be applicable if all the eigenvalues of the matrix A
are not distinct.

The following statement discusses an efficient method of diagonalizing
an n× n Hermitian matrixA using a unitary matrix.

Procedure: For any eigenvalue λ, first, we find a basis for the analo-
gous eigenspace. Then we apply the Gram−Schmidt procedure to obtain
an orthonormal basis of each eigenspace. These bases are then united
to form an orthonormal set {X1, X2, · · · , Xn}. Thus, by Corollary 10.1,
{X1, X2, · · · , Xn} will form a basis of Rn.

Similarly, if the unitary matrix U has column vectors X1, X2, · · · , Xn,
then the matrix U is Hermitian and U∗AU is diagonal, as shown in Theorem
10.5.

The same procedure can also be effective for the case of real symmetric
matrices.

Example 10.4:
Determine a real orthogonal matrix that diagonalizes the real symmetric

matrix

A =

[
1 2
2 1

]
.
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Solution:
The characteristic equation of the matrix A is |A− λI| = 0, which

gives the eigenvalues of the matrixA as 3 and −1. Hence, the corresponding

eigenvectors are

[
1
1

]
and

[ −1
1

]
, respectively.

Since the eigenvectors

[
1
1

]
and

[ −1
1

]
of A are orthogonal, an

orthonormal basis of R2 can be obtained by replacing it with the unit

eigenvectors 1√
2

[
1
1

]
and 1√

2

[ −1
1

]
, respectively.

Thus, an orthogonal matrix Q = 1√
2

[
1 −1
1 1

]
can be obtained from

which it predicts that QTAQ =

[
3 0
0 −1

]
.

(It can be easily verified by matrix multiplication.)
Hence, the matrixA is diagonalizable. ��

Example 10.5:
Determine a unitary matrix U that diagonalizes the Hermitian matrix

A =

⎡
⎢⎣

3
2

i
2 0

− i
2

3
2 0

0 0 1

⎤
⎥⎦, where i = √−1.

Solution:
The characteristic equation of the matrixA is |A− λI| = 0, which gives

the eigenvalues of the matrixA as 1, 2, 1, and the associated unit eigenvectors
ofA can be found to be⎡

⎢⎣
− i√

2
1√
2

0

⎤
⎥⎦ ,

⎡
⎢⎣

1√
2

− i√
2

0

⎤
⎥⎦ ,

⎡
⎣ 0

0
1

⎤
⎦ .

Upon using the associated unit eigenvectors, a unitary matrix U can be
obtained as

U =
1√
2

⎡
⎣ −i 1 0

1 −i 0

0 0
√
2

⎤
⎦ .
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Therefore,

U∗AU =

⎡
⎣ 1 0 0

0 2 0
0 0 1

⎤
⎦ .

Hence, the matrixA is diagonalizable. ��

10.8 Normal Matrices

Every n × n Hermitian matrix A has the characteristic that there is an
orthonormal basis of Rn consisting of the eigenvectors of the Hermitian
matrix A. It is also noticed that this property directly leads to the matrix A
being diagonalized by a unitary matrix U , namely the matrix whose columns
are the vectors of the orthonormal basis.

Now we shall analyze what other matrices have this applicable property.
A square matrix A over Rn is said to be normal, if it commutes with its

complex transpose
i.e., A∗A = AA∗.
Indeed, for a real matrix, this asserts that the square matrix A commutes

with its transpose AT . Hermitian matrices are real and normal, for if A =
A∗, then indeed, the matrixA commutes with the matrixA∗.

The following section will find the conjunction between the normal
matrices and discuss eigenvectors’ existence that forms an orthonormal basis.

Theorem 10.7:
Let us consider an n × n complex matrix A. Then the matrix A is

normal if and only if there is an orthonormal basis of Rn consisting of the
eigenvectors of the matrixA.

Proof:
Let us consider that the eigenvectors of the matrixA form an orthonormal

basis of Rn. Then by spectral theorem, there exists a unitary matrix U such
that U∗AU = D is diagonal.

This gives
A = UDU∗(... U∗ = U−1).

Next, we show that the matrix A commutes with its complex transpose
through a direct computation, i.e.,

AA∗ = (UDU∗) (UDU∗)∗

= UDU∗UD∗U∗
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= UD (U∗U)D∗U∗

= UDD∗U∗

and in a similar manner

A∗A = (UDU∗)∗ UDU∗
= UD∗U∗UDU∗
= UD∗ (U∗U)DU∗
= UD∗DU∗

.

But as we know that the diagonal matrices ever commute, so DD∗ =
D∗D.

It givesA∗A = AA∗. Thus, the matrixA is normal.

Conversely, if the matrix A is normal, it shows that there is an orthonor-
mal basis consisting entirely of the matrix’s eigenvectorsA.

If A is an n × n complex matrix, then from Theorem 10.5 (Schur’s
theorem), we know a unitary matrix U that U∗AU = T is upper triangular.

The following observation is to show that the upper triangular matrix T
is also normal.

It can also be established by a direct computation, i.e.,

T ∗T = (U∗AU)∗ (U∗AU)
= U∗A∗UU∗AU
= U∗A∗ (UU)∗AU
= U∗ (A∗A)U

.

Similarly, we can write TT ∗ = U∗ (AA∗)U .
Now since the matrix A is normal, i.e., A∗A = AA∗. Thus, it follows

that T ∗T = TT ∗.
Now let us equate the (1, 1) entries of T ∗T and TT ∗, which yields the

equation
|t11|2 = |t11|2 + |t12|2 + · · ·+ |t1n|2 ,

which implies that t12, · · · , t1n are all zero.
By considering the (2, 2) , (3, 3) , · · · , (n, n) entries of T ∗T and TT ∗, we

notice that all the other off-diagonal entries of the matrix T vanish. Thus, the
upper triangular matrix T is diagonal.

Finally, as AU = UT , the columns of the unitary matrix U are the
eigenvectors of the matrix A, and they form an orthonormal basis of Rn

where U is unitary.
Hence proved. ��
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Note: Complex unitary matrices or Hermitian are necessarily normal, as are
real symmetric and real orthogonal matrices. A unitary matrix can therefore
diagonalize any matrix of these types.

10.9 Nilpotent Operators

A linear operator T : V → V is said to be nilpotent if Tn = 0v for a positive
integer n. If T k = 0v but T k−1 �= 0v, then the index of nilpotency of the
linear operator T is k.

Analogously: A square matrix A is said to be nilpotent of an index n, if
An = 0 for some positive integer n.

If Ak = 0 butAk−1 �= 0, thenA is said to be nilpotent of an index k.
Similarly, if we find the minimum polynomial of a nilpotent operator T

(or matrix A), then it is of an index k, i.e., m (λ) = λk and 0 is its only
eigenvalue.

Example 10.6:
Consider the following two r-square matrices:

N = N (r) =

⎡
⎢⎢⎢⎢⎣

0 1 0 . . . 0 0
0 0 1 . . . 0 0
. . . . . . . . . . . .
0 0 0 . . . 0 1
0 0 0 . . . 0 0

⎤
⎥⎥⎥⎥⎦ and

J (μ) =

⎡
⎢⎢⎢⎢⎣

μ 1 0 . . . 0 0
0 μ 1 . . . 0 0
. . . . . . . . . . . .
0 0 0 . . . μ 1
0 0 0 . . . 0 μ

⎤
⎥⎥⎥⎥⎦ .

The first matrixN = N (r) is called a Jordan nilpotent block that consists
of 1’s above the diagonal (called the super diagonal) and 0’s elsewhere. Thus,
N = N (r) is said to be a nilpotent matrix of an index r.

Similarly, the second matrix J (μ) is called a Jordan block belonging to
the eigenvalue λ that consists ofμ′s on the diagonal, 1’s on the super diagonal,
and 0’s elsewhere.

It can be observed that J (λ) = μI +N .
Next, we will prove that any linear operator T can be decomposed into

the sum of a scalar operator and a nilpotent operator. ��
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Theorem 10.8:
Let us consider a nilpotent operator T : V → V of an index k. Then

the nilpotent operator T has a block diagonal matrix representation. Each
diagonal entry is Jordan nilpotent block N , and there is at least one N of
order k, and all others are of order ≤ k. The nilpotent operator can uniquely
determine the numberN of each possible order T . The total numberN of all
orders is equal to the nullity of T .

The validation of the theorem demonstrates that the number of N order i
is equal to 2mi −mi+1 −mi−1, wheremi is the nullity of T i.

10.10 Jordan Canonical Form

A linear operator T : V → V can be set in Jordan canonical form if its
characteristic and minimal polynomial can be factored into products of linear
polynomials. This is always true when the base field k is a complex C.

The base field k can always be extended to a field where the characteristic
and the minimal polynomial do factor into linear factors.

The following theorem characterizes the Jordan canonical form J of a
linear operator T .

Theorem 10.9:
Let T : V → V be a linear operator. The characteristic and the minimal

polynomials of T are
Δ(λ) = (λ− μ1)

n1 (λ− μ2)
n2 · · · (λ− μr)

nr and m (λ) =
(λ− μ1)

m1 (λ− μ2)
m2 · · · (λ− μr)

mr , respectively.
Here, the μ′

is are different scalars. Then the operator T has a block
diagonal matrix description J in which every diagonal entry is a Jordan block
Jij = J (μi).

For every μij , the analogous Jij has the subsequent properties.
There is at least one Jij of ordermi; all other Jij are of order ≤ mi.
The sum of the orders of Jij is ni.
The number of Jij is equal to the geometric multiplicity of λi.
The number Jij of each possible order is uniquely determined by T .

Example 10.7:
Let us consider that the characteristic and minimal polynomials of a linear

operator T are respectively
Δ(λ) = (λ− 2)4 (λ− 5)3 and m (λ) = (λ− 2)2 (λ− 5)3.
Then the Jordan canonical form of T is one of the following block

diagonal matrices, i.e.,
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diag

⎛
⎝[ 2 1

0 2

]
,

[
2 1
0 2

]
,

⎡
⎣ 5 1 0

0 5 1
0 0 5

⎤
⎦
⎞
⎠ or

diag

⎛
⎝[ 2 1

0 2

]
, [2] , [2] ,

⎡
⎣ 5 1 0

0 5 1
0 0 5

⎤
⎦
⎞
⎠ .

The first matrix occurs when the operator T has two independent eigen-
vectors that belong to the eigenvalue 2. In contrast, the second matrix appears
when the operator T has three independent eigenvectors belonging to the
eigenvalue 2.

10.11 Rational Canonical Form

Rational canonical form exists when the minimal polynomials cannot be
factored into linear polynomials.

(Note: This is not the case for the Jordan canonical form.)

Theorem 10.10:
Let T : V → V be a linear operator including the minimal polynomial

m (λ) = (f1 (λ))
m1 , (f2 (λ))

m2 , · · · , (fs (λ))ms ,

where fi (λ) are discrete monic irreducible polynomials. Then the operator T
has a unique block diagonal matrix description

M = diag (c11 , c12 , · · · , c1r, · · · cs1, cs1, · · · csr) ,
where c′ijs are the companion matrices of the polynomials (fi (λ))

nij , and

m1 = n11 ≥ n12 ≥ · · · ≥ n1r, · · · ,ms = ns1 ≥ ns2 ≥ · · · ≥ nsr.

The above matrix representation T is called its rational canonical form,
where the polynomials (fi (λ))

nij are called the elementary divisors T .

Example 10.8:
Let T : V → V be a vector space over the rational field Q and dim V =

8. Letm (λ) be the minimal polynomials of T defined by

m (λ) = f1 (λ) .f2 (λ)
2

=
(
λ4 − 4λ3 + 6λ2 − 4λ− 7

)
(λ− 3)2 .
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Since dimV = 8, the characteristic polynomial of T is

Δ(λ) = f1 (λ) .f2 (λ)
4 .

The rational canonical form M of the linear operator T is having one
block of the companion matrix f1 (λ) and the other block of the companion
matrix f2 (λ)

2.
There are two possibilities:

diag
[
c
(
λ4 − 4λ3 + 6λ2 − 4λ− 7

)
, c(λ− 3)2, c(λ− 3)2

]
diag

[
c
(
λ4 − 4λ3 + 6λ2 − 4λ− 7

)
, c(λ− 3)2, c(λ− 3), c(λ− 3)

]
.

That is,

(a) diag

⎛
⎜⎜⎝
⎡
⎢⎢⎣

0 0 0 7
1 0 0 4
0 1 0 −6
0 0 1 4

⎤
⎥⎥⎦ ,
[
0 −9
1 6

]
,

[
0 −9
1 6

]⎞⎟⎟⎠

(b) diag

⎛
⎜⎜⎝
⎡
⎢⎢⎣

0 0 0 7
1 0 0 4
0 1 0 −6
0 0 1 4

⎤
⎥⎥⎦ ,
[
0 −9
1 6

]
, [3], [3]

⎞
⎟⎟⎠.

10.12 Minimum Polynomial and Jordan Canonical Form

This section discusses one of the most famous results in linear algebra, known
as the Jordan normal form of a matrix. That is no less than a canonical form
that applies to any squared complex matrix.

Jordan’s normal form is usually presented as the climax of a series of
difficult theorems; however, the approach adopted here, which is due to
Filippov, is quite simple and depends on the only elementary fact about vector
spaces.

We begin by establishing the essential concept of the minimum polyno-
mial.

10.12.1 Jordan normal form

This section discusses the Jordan normal form for a square complex matrix.
The essential components used in these specific complex matrices are called
Jordan blocks of the matrix.
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In general, an n× n Jordan block is a matrix of the form

J =

⎡
⎢⎢⎢⎢⎢⎢⎣

μ 1 0 0 · · · 0 0
0 μ 1 0 · · · 0 0
0 0 μ 1 · · · 0 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · μ 1
0 0 0 0 · · · 0 μ

⎤
⎥⎥⎥⎥⎥⎥⎦
,

for any scalar μ.
Thus, J is an upper triangular n × n matrix with constant diagonal

entries, a super diagonal of 1’s and zeros else, whereby the minimum and
characteristic polynomial of J are (λ− μ)n and (μ− λ)n, respectively.

10.12.2 Properties of Jordan matrix

Next, we will discuss some crucial property of the matrix J . Let
X1, X2, · · · , Xn be the vectors of the standard basis of Rn. Then the matrix
multiplication illustrates that

JX1 = λX1 and JXi = λXi +Xi − 1 where 1 < i ≤ n.
If there is any n×n complex matrixA, we shall call a sequence of vectors

X1, X2, · · · , Xn in Rn a Jordan stringA.
If the matrix A satisfies the equation AX1 = λX1 and AXi = λXi +

Xi−1, where λ is a scalar, and 1 < i ≤ r, then every Jordan block determines
a Jordan string of length n.

Let us consider that there is a basis of Cn that consists of Jordan strings
for the matrix A and group the basis elements in the same string. Then the
linear operator on Rn given by T (X) = AX representing the basis of Jordan
strings by a Jordan matrix, which has Jordan blocks down the diagonal as:

N =

⎡
⎢⎢⎣

J1 0 · · · 0
0 J2 · · · 0
· · · · · · · · · · · ·
0 0 · · · Jk

⎤
⎥⎥⎦ .

Here Ji is a Jordan block with μ′
is (say) as the diagonal elements.

Thus, we conclude that the matrix A is similar to a matrix N , called
the Jordan normal form of A where the diagonal elements λi of N are the
eigenvalues ofA.

Next, we can show that every square matrix A has a Jordan normal form
with the construction of the Jordan string.
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Note: Every square complex matrix is similar to a matrix in Jordan normal
form.

Remark: Every complex matrix is similar to an upper triangular matrix
having zeros above the super diagonal.

Example 10.9:
Find the Jordan normal form of

A =

⎡
⎣ 3 1 0

−1 1 0
0 0 2

⎤
⎦

Solution:
The eigenvalues of the matrixA are 2,2, and 2.
So, we can define

B = A− 2I =

⎡
⎣ 1 1 0

−1 −1 0
0 0 0

⎤
⎦

A single vectorX =

⎡
⎣ 1

−1
0

⎤
⎦ generates the column spaceC of the matrix

B.
Since AX = 2X , X is a Jordan string of length 1 for the matrix A.
Also, the null space N of the matrix B is developed byX , and the vector

is

⎡
⎣ 0

0
1

⎤
⎦.

Thus,D = C
⋂

N = C is developed by the vectorX . The next step is to

express X in the form BY , so that we can have Y =

⎡
⎣ 1

0
0

⎤
⎦. Therefore, the

second basis element is Y .

Eventually, by putting Z =

⎡
⎣ 0

0
1

⎤
⎦, the set {X,Z} forms a basis for N .

Thus, BX = 0, BY = X , and BZ = 0 and hence AX = 2X,AY =
2Y +X, and AZ = 2Z.

It can be now apparent that {X,Y, Z} is a basis of C3 consisting of the
two Jordan string X,Y, andZ. Thus, the Jordan form of A has two blocks
and is
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N =

⎡
⎢⎢⎢⎢⎢⎣

2 1
... 0

0 2
... 0

· · · · · · ... · · ·
0 0

... 2

⎤
⎥⎥⎥⎥⎥⎦ .

Next, we establish a network between a matrix and its transpose, an
application of Jordan form.

Theorem 10.11:
Every n× n square complex matrix is similar to its transpose.

Proof:
Let us consider a square matrix A with complex entries and write N for

the normal form of the matrixA.
Thus, C−1AC = N for some invertible matrix C.
Now NT = CTAT (CT )−1 implies that NT is similar to AT .
For the proof of the theorem, it is sufficient to prove that N and NT are

similar matrices. Here we can use the transitive property of similarity, i.e., if
P is similar to Q, and Q is similar to R, then P is similar to R.

Due to the block decomposition of N , it is sufficient to prove that any
Jordan block J is similar to its transpose. But it can be observed directly.
Indeed, if the permutation matrix P has a line of 1’s from top right to bottom
left, then the matrix multiplication shows that P−1JP = JT .

Another use of the Jordan form is to check which matrices meet a given
polynomial equation.

Example 10.10:
Determine up to similarity all n× n complex matrices A that satisfy the

equationA2 = I .

Solution:
Let N be the Jordan normal form of the matrix A and N = C−1AC.

Then N2 = C−1A2C.
Thus, A2 = I , if and only if N2 = I .
Since N consists of a string of Jordan blocks down the diagonal, we only

have to decide which Jordan block J can satisfy J2 = I . This is quickly
done.

Indeed, the diagonal entries of J will have to be 1 or −1. Moreover, the
matrix multiplication affirms that J2 �= I if J has two or more rows.
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Thus, the block J must be 1×1, which implies thatN is a diagonal matrix
with all its diagonal entries equal to +1 or −1.

After reordering the rows and columns, we obtain a matrix of the form

N =

[
Ir 0
0 −Is

]
where r + s = n.

Therefore, A2 = I if and only if the matrix A is similar to a matrix with
the form of N .

Note: We analyse the relationship between Jordan’s normal form and the
minimum and characteristic polynomials in the outcomes. The knowledge
of the Jordan form will enable us to write down the minimum polynomial
directly. Using the method of Example 10.10, one can obtain the Jordan form,
which provides an organized way of computing the minimum polynomials.

10.13 Minimum Polynomial of Jordan Normal Form N

Let us consider a complex matrix A whose eigenvalues μ1, μ2, · · · , μr are
distinct. There is an analogous Jordan block in the Jordan normal formN for
each μi, which have μi on their principal diagonals say Ji1, Ji2, · · · , JiLi and
let nij be the number of rows of Jij .

Since A and N are similar matrices, of course, they have the same
minimum and characteristic polynomials.

Now Jij is an nij × nij upper triangular matrix with μi on the principal
diagonal; so its characteristic polynomial is (μi − λ)nij . Thus, the charac-
teristic polynomial Δ(λ) of N is the product of all of these polynomials,
i.e.,

Δ(λ) =
r∏

i=1

(μi − λ)mi , wheremi =

Li∑
j=1

nij .

Here the minimum polynomial is slightly harder to find. However, if there
is any polynomial f , it is readily seen that f(Jij) the matrix blocks of the
matrix f(N) down the principal diagonal and zeros elsewhere.

Thus, f(N) = 0 if and only if all the f(Jij) = 0.
Hence, the minimum polynomial ofN is the least commonmultiple of the

minimum polynomials of the blocks Jij . But we have seen that the minimum
polynomial of the Jordan block Jij is (λ− μi)

nij .
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So it observes that the minimum polynomial of N is f =∏n
i=1 (λ− μi)

ki , where ki is larger than the nij for j = 1, 2, · · · , L.
These outcomes extend the method of computing minimum polynomials

from Jordan normal form.

Theorem 10.12:
Let A be an n × n complex matrix and let λ1, λ2, · · ·λr be the discrete

eigenvalues of A. Then the characteristic and minimum polynomial of the
matrixA are

∏n
i=1 (μi − λ)mi7 and

∏n
i=1 (λi − μ)ki respectively, wheremi

is the sum of the number of columns in Jordan blocks with eigenvalue μi and
ki being the number of columns in the larger such Jordan block.

Example 10.11:
Determine the minimum polynomial of the matrix

A =

⎡
⎣ 3 1 0

−1 1 0
0 0 2

⎤
⎦ .

Solution:
The Jordan form of the matrixA is

N =

⎡
⎢⎢⎢⎢⎢⎣

2 1
... 0

0 2
... 0

· · · · · · ... · · ·
0 0

... 2

⎤
⎥⎥⎥⎥⎥⎦ .

Here the only eigenvalue is 2, and two Jordan blocks have 2 and 1
columns. The minimum polynomial ofA is, therefore (λ−2)2, and of course,
the characteristic polynomial is (2− λ)3.

Exercises

1. If H is orthogonal, prove that detH = ±1.
2. If U is unitary, prove that | detU | = 1.
3. If U is unitary, show that Ū , UT , and Uk (k being a positive integer) are

also unitary.
4. If H is orthogonal, show that HT and Hk (a positive integer) are also

orthogonal.
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5. Show that

[
0 1
1 0

]
,

[
0 −i
i 0

] [
1 0
0 −1

]
are unitary, involutory, as

well as Hermitian.
6. Prove that if U is unitary and U∗AU and U∗BU are both diagonal

matrices, then AB = BA. Is this result true if U is replaced by a real
orthogonal matrix H?

7. Let T be the linear operator on V3 defined by T (x, y, z) = (x′, y′, z′),
where x′ = x cosφ− y sinφ, y′ = x sinφ+ y cosφ, z′ = z, concerning
a Cartesian coordinate system. Prove that T is given by an orthogonal
matrix.
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11
Least Square Problems

This chapter discusses the approximation of functions, least square problems
having their vital application in numerical analysis.

The chapter closes with a discussion of the approximation of functions
and the use of pseudo inverse to determine least square curves for given data.

11.1 Approximation of Functions

Many problems in the physical sciences and engineering involve approximat-
ing a given function by polynomials or trigonometric functions.

For example:
It may be necessary to approximate f(x) = ex by a linear function

g(x) = a + bx, over the interval [0, 1] or by a trigonometric function of
the form h(x) = a+ b sinx+ c cosx over the interval [−π, π].

Furthermore, the approximating functions by polynomials are central to
software development since computers can only evaluate polynomials. Other
functions are evaluated through polynomial approximation.

We now introduce the technique for approximating functions.
Let C[a, b] be the inner product space of continuous functions over

the interval [a, b] with an inner product 〈f, g〉 =
∫ b
a f(x)g(x)dx and

geometrically defined by the inner product.
LetW be the subspace of C[a, b]. Suppose f is in C[a, b], but outsideW,

and we want to find the best approximation that lies in W.
We define the “best” approximation to be the function g in W such that

the distance ‖f − g‖ between f and g is minimum.

Definition 11.1:
Let C[a, b] be the vector space of continuous functions defined over the

interval [a, b]. Let f be an element of C[a, b] andW be a subspace of C[a, b].
Then the function g in W such that

∫ b
a [f(x) − g(x)]2dx is a minimum is

called the least square approximation to f .

287
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This approximation is called the least square approximation since this
distance formula is based on squares.

We now give a method for finding the least squares approximation g(x).
We can appreciate extending geometrical structure and results from Rn to
more abstract surrounding.

We know that if x is a point in Rn and u is a subspace of Rn, then the
element of u that is closest to X is ProjuX. Therefore, it is beneficial also to
imagine functions as geometrical vectors. For example, Figure 11.1 with this
picture in mind, the analogous result for the function space is as follows.

The least squares approximation to f in the subspace W is g = Projwf .
We build on the definition of ProjuX to get an expression for ProjuX. If

u1, u2, . . . , um is an orthonormal basis for U , then we know that

ProjuX = (X · u1)u1 + (X · u2)u2 + . . .+ (X · um)um

Let {g1, g2, . . . , gn} be an orthonormal basis for W. Replacing the dot
product of Rn by the inner product of the function space, we get

Projwf = (f · g1) g1 + (f · g2) g2 + . . .+ (f · gn) gn.

Figure 11.1 Least squares approximation to f in the subspaceW .

Example 11.1:
Find the least square linear approximation to f(x) = ex over the interval

[−1, 1].
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Solution:
Let the linear approximation g(x) = a + bx be an element of C[−1, 1],

and g(x) be an element of the subspace P1[−1, 1], where P1[−1, 1] is the set
of polynomials of degree less than or equal to 1 over [−1, 1]. Then the set
{1, x} is a basis for P1[−1, 1].

We get 〈1, x〉 = ∫ 1−1(1 · x)dx = 0.
Thus, the functions are orthogonal.
The magnitudes of these vectors are given by

‖1‖2 =
∫ 1

−1
(1 · x)dx = 2 and ‖x‖2 =

∫ 1

−1
(x · x)dx =

2

3

Thus, the set
{

1√
2
,
√

3
2x
}
is an orthonormal basis for P1[−1, 1].

We now get

Projwf = (f · g1) g1 + (f · g2) g2

=

∫ 1

−1

(
ex
√

1

2

)
dx

√
1

2
+

∫ 1

−1

(
ex
√

3

2
x

)
dx

√
3

2
x

=
1

2

(
e− e−1

)
+ 3e−1x

The least square linear approximation to f(x) = ex over the interval
[−1, 1] is

g(x) =
1

2

(
e− e−1

)
+ 3e−1x.

This gives g(x) = 1.18 + 1.1x to two decimal places.
In this example, we have found the linear approximation to f in P1[−1, 1],

where the higher degree polynomial approximation can be found in the space
Pn[−1, 1] of polynomials of degree less than or equal to n.

An orthogonal basis has to be constructed in Pn[−1, 1] by applying the
Gram−Schmidt orthogonalization process to arrive at the approximation. The
orthogonal functions found in this manner are called Legendre polynomials.

The first six Legendre polynomials are

1, x, x2 − 1

3
, x3 − 3

5
x, x4 − 6

7
x2 +

3

35
, x5 − 10

9
x3 +

5

21
x.

We next look at approximations of functions in terms of trigonometric
functions. Such approximations are widely used in heat conduction, electro-
magnetism, electric circuits, and mechanical vibrations. The initial work in
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Figure 11.2 Least square linear approximation to f(x) = ex.

this area was undertaken by Jean Baptiste Fourier, a French mathematician
who developed the methods to analyze conduction in an insulated bar. In
addition, the approximation is often used in discussing solutions to partial
differential equations that describe physical situations.

11.2 Fourier Approximation

Let f be a function in C[−π, π] with an inner product
〈f, g〉 =

∫ π
−π f(x)g(x)dx, and geometry defined by this inner

product.
Let us find the least square approximation of f in the space T [−π, π] of

trigonometric polynomials spanned by the sets
{1, cosx, sinx, . . . , cosnx, sinnx}, where n is a positive integer.
It can be shown that the vectors 1, cosx, sinx, . . . , cosnx, sinnx are

mutually orthogonal in this space.
The magnitude of these vectors is given by

‖1‖2 =
∫ π

−π
(1.1)dx = 2π
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‖ cosnx‖2 =
∫ π

−π
(cosnx · cosnx)dx = π

‖ sinnx‖2 =
∫ π

−π
(sinnx · sinnx)dx = π.

Thus, the following set is an orthonormal basis for T [−π, π].

{g0, g1, . . . , g2n}

=

{
1√
2π

,
1√
π
cosx,

1√
π
sinx, . . . ,

1√
π
cosnx,

1√
π
sinnx

}
.

Let us use this orthonormal basis in the following formula to find the least
square approximation g to f .

g(x) = ProjT f

= 〈f, g0〉 g0 + 〈f, g1〉 g1 + · · ·+ 〈f, g2n〉 g2n.
We get

g(x) =

〈
f,

1√
2π

〉
1√
2π

+

〈
f,

1√
π
cosx

〉
1√
π
cosx

+ . . .+

〈
f,

1√
π
sinnx

〉
1√
π
sinnx.

Let us introduce the following convenient notation:

a0 =

〈
f,

1√
2π

〉
1√
2π

=

∫ π

−π

(
f(x)

1√
2π

)
dx

1√
2π

=
1

2π

∫ π

−π
f(x)dx

ak =

〈
f,

1√
π
cos kx

〉
1√
π

=

∫ π

−π

(
f(x)

1√
π
cos kx

)
dx

1√
π

=
1

π

∫ π

−π
f(x)cos kxdx
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bk =

〈
f,

1√
π
sin kx

〉
1√
π

=

∫ π

−π

(
f(x)

1√
π
sin kx

)
dx

1√
π
.

=
1

π

∫ π

−π
f(x)sin kxdx

The trigonometric approximation of f(x) can now be written as

g(x) = a0 +

n∑
k=1

(akcos kx+ bksin kx) ,

where g(x) is called the nth-order Fourier approximation of f(x). The
coefficients a0, a1, b1, . . . , an, bn are called Fourier coefficients.

As n increases, this approximation naturally becomes an increasingly
better approximation in the sense that ‖f − g‖ gets smaller.

The infinite sum g(x) = a0 +
∑∞

k=1 (ak coskx+ bk sinkx) is known as
the Fourier series of f on the interval [−π, π].

Example 11.2:
Find the fourth-order Fourier approximation to f(x) = x over the interval

[−π, π].

Solution:
Using the above Fourier coefficient with f(x) = x and using integration

by parts, we get

a0 =
1

2π

∫ π

−π
f(x)dx

=
1

2π

∫ π

−π
x · dx

=
1

2π

[
x2

2

]π
−π

= 0

ak =
1

π

∫ π

−π
f(x) · cos kxdx

=
1

π

∫ π

−π
(x · cos kx)dx

=
1

π

[
x

k
sin kx+

1

k2
cos kx

]π
−π

= 0
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bk =
1

π

∫ π

−π
f(x) · sin kxdx

=
1

π

∫ π

−π
(x · sin kx)dx

=
1

π

[
−x

k
cos kx+

1

k2
sin kx

]π
−π

=
2(−1)k+1

k

The Fourier approximation of f is

g(x) =
n∑

k=1

2(−1)k+1

k
sin kx.

Taking k =1,2,3,4, we get the fourth-order approximation

g(x) = 2

(
sinx− 1

2
sin 2x+

1

3
sin 3x− 1

4
sin 4x

)

11.3 Least Square Solutions

Here we derive the method of finding a polynomial that best fits the given data
points, which is extremely important to the natural sciences, social sciences,
and engineering.

We have seen that a system AX = Y of n−equations in n−variables,
where A is invertible, has a unique solution X = A−1Y; however, AX = Y
is a system of n−equations inm−variables, n > m. The system does not, in
general, have a solution and is said to be overdetermined. Here the matrix A
is not square, and for such a system,A−1 does not exist.

We shall introduce a matrix called the pseudo inverse of A, denoted
Pinv(A), leading to a least square solutionX = Pinv(A) for an overdeter-
mined system. Of course, this is not a good solution but is, in some sense, the
closest we can get to a reasonable explanation for the system.

We shall see an application of overdetermined systems in finding curves
that “best” fit data.

Definition 11.2:
LetA be a matrix. The matrix

(
ATA

)−1
AT is called the pseudo inverse

ofA and is denoted as Pinv(A)Y .
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Remark:
We have seen that not every matrix has an inverse. Similarly, not every

matrix has a pseudo inverse. The matrixA has a pseudo inverse, if
(
ATA

)−1

exists.

Example 11.3:
Find the pseudo inverse of

A =

⎡
⎣ 1 2

−1 3
2 4

⎤
⎦

Solution:
We compute the pseudo inverse ofA in stages:

ATA =

[
1 −1 2
2 3 4

]⎡⎣ 1 2
−1 3
2 4

⎤
⎦

=

[
6 7
7 29

]
(
ATA

)−1
=

1

|ATA|Adj
(
ATA

)
=

1

125

[
29 −7
−7 6

]

Pinv(A) =
(
ATA

)−1
AT

=
1

125

[
29 −7
−7 6

] [
1 −1 2
2 3 4

]
.

=
1

25

[
3 −10 6
1 5 2

]

Next, we use the concept of pseudo inverse further to extend our
understanding of systems of linear equations.

Let AX = Y be a system of n−linear equations in m−variables with
n > m, whereA is of rankm.

Multiply each side of this matrix equation byAT to getATAX = ATY .
The matrixATA can be shown to be invertible for such a system.
Multiply each side of this equation by

(
ATA

)−1
to get

X =
[(
ATA

)−1
AT
]
Y = Pinv(A)Y
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This value of X is called the least square solution to the system of
equations.

AX=Y X=Pinv(A)Y
System Least square solution

Let AX = Y be a system of n−linear equations in m−variables with
n > m, whereA is of rankm. This system has a least square solution.

If the system has a unique solution, the least square solution is that unique
solution. If the system is overdetermined, the least square solution is the
closest solution to get a valid solution. The system cannot have a matrix
solution.

Example 11.4:
Find the least square solution of the following overdetermined system of

equations:

x+ y = 6

− x+ y = 3 and sketch.

2x+ 3y = 9

Solution:
The matrix of coefficients is

A =

⎡
⎣ 1 1

−1 1
2 3

⎤
⎦ and Y =

⎡
⎣ 6

3
9

⎤
⎦

The column vectors ofA are linearly independent. Thus, the rank ofA is
2.

This system has a least square solution.
We compute Pinv(A).

ATA =

[
1 −1 2
1 1 3

]⎡⎣ 1 1
−1 1
2 3

⎤
⎦

=

[
6 6
6 11

]
(
ATA

)−1
=

1∣∣ATA
∣∣ Adj

(
ATA

)
=

1

30

[
11 −6
−6 6

]
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Pinv(A) =
(
ATA

)−1
AT

=
1

30

[
11 −6
−6 6

] [
1 −1 2
2 3 4

]
.

=
1

30

[
5 −17 4
0 12 6

]
The least square solution is

Pinv(A)Y =
1

30

[
5 −17 4
0 12 6

]⎡⎣ 6
3
9

⎤
⎦ .

=

[
1/2
3

]

The least square solution is the point p
(
1
2 , 3
)
as in Figure 11.3.

Figure 11.3 Least square solution of the following overdetermined system.
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11.4 Least Square Curves

Many branches of science and business use equation based on data that has
been determined from experimental results. It is more straightforward in
finding a unique polynomial of degree two that passes through three data
points. However, too much data in many applications leads to an equation
that can exactly fit all the data. One then uses the equation of a line or curve
that, in some sense, “best” fit the data.

For example:
Suppose the data consists of the points (x1, y1) , (x2, y2) , . . . , (xn, yn) as

shown in Figure 11.4 (a). These points lie approximately on a line. We would
want the equation of the line that best fit these points. On the other hand, the
points might closely fit a parabola, as shown in Figure 11.4 (b). We would
then want to find the parabola that most closely fits these points.

Many criteria can be used for the “best” fit in such cases. The one that has
generally been found to be most satisfactory is called the least square line or
curve found by solving an overdetermined system of equations.

The least squares line and curve is such that

d21 + d22 + · · ·+ d2n in Figure 11.4 is minimum.

In the previous section, we discussed the least square approximations to
functions. This discussion is the discrete analogue of that problem. In the



298 Least Square Problems

Figure 11.4 Least square approximations to functions.

function situation, we have to find a curve of a specific type that best fitted a
continuous set of data points over a given interval (the graph of the function).
Here we want the “best” fit to a discrete set of data points over a given interval.
Although the techniques that we develop to arrive at results are different, look
for certain similarities in concepts in the two situations. In both cases, the best
results are the one obtained by minimizing certain squares. Hence the term
“least square.”

We now illustrate how to fit a least squares polynomial to given data. The
method involves constructing a system of linear equations. The least squares
solution to this system of equations gives the coefficients of the polynomial.
We shall justify the technique after seeing how it works.

Example 11.5:
Find the least square line for the following data points (1,1), (2,2,4),

(3,3,6), (4,4).

Solution:
Let the equation of the line be y = a + bx. Substituting for these points

into the equation of the line, we get the overdetermined system

a+ b = 1

a+ 2b = 2.4

a+ 3b = 3.6

a+ 4b = 4
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We find the least square solution. The matrix of coefficientA and column
vector Y as follows:

A =

⎡
⎢⎢⎣

1 1
1 2
1 3
1 4

⎤
⎥⎥⎦ and Y =

⎡
⎢⎢⎣

1
2.4
3.6
4

⎤
⎥⎥⎦ .

It can be shown that

Pinv(A) =
(
ATA

)−1
AT

=
1

20

[
20 10 0 −10
−6 −2 2 6

]
.

The least square solution is

[(
ATA

)−1
AT
]
Y =

1

20

[
20 10 0 −10
−6 −2 2 6

]⎡⎢⎢⎣
1
2.4
3.6
4

⎤
⎥⎥⎦

=

[
0.2
1.02

]

Thus,
a = 0.2, b = 1.02.

The equation of the least square line for this data is y = 0.2 + 1.02x.

Figure 11.5 Best fit to a discrete set of data points.
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This is the line that is generally considered to be the line of best fit for
these points.

Example 11.6:
Find the least squares parabola for the following data points (1,7), (2,2),

(3,1), (4,3).

Solution:
Let the sequence of the parabola be

y = a+ bx+ cx2

Substituting these points into the equation of the parabola, we get the
system

a+ b+ c = 7

a+ 2b+ 4c = 2

a+ 3b+ 9c = 1

a+ 4b+ 16c = 3

We find the least square solution. The matrix of coefficientsA and column
vector Y are as follows:

A =

⎡
⎢⎢⎣

1 1 1
1 2 4
1 3 9
1 4 16

⎤
⎥⎥⎦ and Y =

⎡
⎢⎢⎣

7
2
1
3

⎤
⎥⎥⎦ .

It can be shown that

Pinv(A) =
(
ATA

)−1
AT

=
1

20

⎡
⎣ 45 −15 −25 15

−31 23 27 −19
5 −5 −5 5

⎤
⎦

The least square solution is

[(
ATA

)−1
AT
]
Y =

1

20

⎡
⎣ 45 −15 −25 15

−31 23 27 −19
5 −5 −5 5

⎤
⎦
⎡
⎢⎢⎣

7
2
1
3

⎤
⎥⎥⎦ .

=

⎡
⎣ 15.25

−10.05
1.75

⎤
⎦
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Thus, a = 15.25, b = −10.05, c = 1.75.
The equation of the least square parabola for these data points is

y = 15.25− 10.05x+ 1.75x2.

We illustrate this parabola in Figure 11.6.

Figure 11.6 Least square line.

11.5 Eigenvalues by Iteration and Connectivity of
Networks

Numerical technique exists for evaluating certain eigenvalues and eigenvec-
tors of various types of matrices. Here we present an iterative method called
the power method. It can be used to determine the eigenvalue with the most
significant absolute value (if it exists) and a corresponding eigenvector for
specific matrices.

In many applications, one is only interested in the dominant eigenvalue.
Applications in geography and history that illustrates the importance of the
dominant eigenvalue will be given.

Definition 11.3:
LetA be a square matrix with eigenvalues λ1, λ2, . . . , λn. The eigenvalue

λi is said to be a dominant eigenvalue if

|λi| > |λk| , k �= i.
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The eigenvectors corresponding to the dominant eigenvalue are called the
dominant eigenvectors ofA.

Example 11.7:
LetA be a square matrix with eigenvalues −5,−2, 1&3. Then −5 is the

dominant eigenvalue since

| − 5| > | − 2|, | − 5| > |1| and | − 5| > |3|.
Let B be a square matrix with eigenvalues −4,−2, 1&4. There is no

dominant eigenvalues
Since | − 4| = |4|.
The power method for finding a dominant eigenvector is based on the

following theorem.

Theorem 11.1:
Let A be an n × n matrix having n− linearly independent eigenvectors

and a dominant eigenvalue. Furthermore, let x◦ be any non-zero column
vector in R

n having a non-zero component in the direction of a dominant
eigenvector.

Then the sequence of vectors
x1 = Ax0, x2 = Ax1, . . . , xk = Axk−1, . . . , will approach a dominant

eigenvector ofA.

Proof:
Let the eigenvalues of the matrix A be λ1, λ2, . . . , λn with λ1 being the

dominant eigenvalue.
Let y1, y2, . . . , yn be corresponding linearly independent eigenvectors.

These eigenvectors will form a basis for Rn.
Thus, there exist scalars a1, a2, . . . , an such that

x0 = a1y1 + a2y2 + . . . .+ anyn, where a1 �= 0

We get

xk = Axk−1 = A2xk−2 = · · · = Akx0

= Ak [a1y1 + a2y2 + · · ·+ anyn]

=
[
a1A

ky1 + a2A
ky2 + · · ·+ anA

kyn

]
=
[
a1 (λ1)

k y1 + a2 (λ2)
k y2 + · · ·+ an (λn)

k yn

]

= (λ1)
k

[
a1y1 + a2

(
λ2

λ1

)k

y2 + · · ·+ an

(
λn

λ1

)k

yn

]
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Since
∣∣∣ λi
λ1

∣∣∣ < 1 for i = 2, 3, . . ., then
(

λi
λ1

)k
will approach 0 as k

increases and the vector xk will approach (λ1)
k a1y1, a dominant eigenvector.

The following theorem tells us how to determine the eigenvalue cor-
responding to a given eigenvector. Once a dominant eigenvector has been
found, the dominant eigenvalue can be determined by applying these results.

Theorem 11.2:
Let X be an eigenvector of a matrix A. The corresponding eigenvalue is

given by

λ =
AX.X

X.X
.

This quotient is called the Rayleigh quotient.

Proof:
Since λ is the eigenvalue corresponding to X , AX = λX ,

AX ·X
X ·X =

λX ·X
X ·X =

λ(X ·X)

X ·X = λ.

If Theorem 11.2 as it now stands is used to compute a dominant eigenvec-
tor, the components of the vectors may become very large, causing significant
round-off errors to occur. This problem is overcome by dividing each element
by the absolute value of its most potent component and then using it (a
vector in the same direction as Xi) in the following iteration. We refer to
this procedure as scaling the vector.

We now summarize the power method.

11.5.1 The power method for an n× n matrix

Select an arbitrary non-zero column vectorX0 having n−components.

Iteration I:
Compute AX0.

Scale AX0 to get X1.

Compute AX1·X1
X1·X1

.

Iteration II:
Compute AX1.

Scale AX1 to get X2.

Compute AX2·X2
X2·X2

and so on.
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Then X0, X1, X2, . . . converges to a dominant eigenvector, and
AX1·X1
X1·X1

, AX2·X2
X2·X2

, . . . converges to the dominant eigenvalue if the matrix A
has n−linearly independent eigenvectors and X0 has a non-zero component
in the direction of a dominant eigenvector.

Remark:
Since n × n symmetric matrices have n−linearly independent eigenvec-

tors, the method can thus be applied to find the dominant eigenvalue of a
symmetric matrix.

Example 11.8:
Find the dominant eigenvalue and a dominant eigenvector of the follow-

ing symmetric matrix: ⎡
⎣ 5 4 2

4 5 2
2 2 2

⎤
⎦ .

Solution:

LetX0 =

⎡
⎣ 1

−2
3

⎤
⎦ be an arbitrary column vector with three components.

Computation is carried out to nine decimal places. We display the results,
rounded to three decimal places for clarity of viewing.

Table 11.1 Dominant eigenvalue and a dominant eigenvector.
Iteration AX Scaled vectors 〈X.AX〉

〈X.X〉

1

⎡
⎣ 3

0
4

⎤
⎦ X1 =

⎡
⎣ 0.75

0
1

⎤
⎦ 5

2

⎡
⎣ 5.75

5
3.5

⎤
⎦ X2 =

⎡
⎣ 1

0.870
0.609

⎤
⎦ 9.889

3

⎡
⎣ 9.696

9.565
4.957

⎤
⎦ X3 =

⎡
⎣ 1

0.987
0.511

⎤
⎦ 9.999

4

⎡
⎣ 0.997

9.955
4.996

⎤
⎦ X4 =

⎡
⎣ 1

0.999
0.501

⎤
⎦ 10

5

⎡
⎣ 0.997

0.996
5

⎤
⎦ X5 =

⎡
⎣ 1

1
0.5

⎤
⎦ 10
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Thus, after five iterations, we arrived at the dominant eigenvalue of 10

with a corresponding eigenvector

⎡
⎣ 1

1
0.5

⎤
⎦. These results agree with the

previous discussion, where we computed the eigenvalues and eigenvectors
of this matrix using determinants.

This method has the same advantage as the Gauss−Seidel iterative
method. Any error in the computation only means that a new arbitrary vector
has been introduced at that stage. Thus, the procedure is very accurate. The
only round-off errors that occur are those that arise in the final iteration.
However, the method has the disadvantage that it may converge only very
slowly for large matrices.

11.6 Difficulties in the Solution of the System of Equations

In earlier chapters, we have discussed different approaches such as
Gauss−Jordan, Gaussian, and LU decomposition for finding the solution
of the system of linear equations and its applications to various real-world
problems.

The matrix of coefficients A and the matrix of constants B in a system
of the equation AX = B often derive from measurements and are unknown
exactly. As a result, minor flaws in the elements of these matrices can matter
significant errors in the solution, dominant to very imprecise results.

This section will review ways of appraising such effects and ways of
reducing them.

11.6.1 The condition number c(A) of a matrix

Non-singular matrices have shown a significant aspect in our discussion
in this course. Here we introduce the notion of a condition number of a
non-singular matrix A. This number is described in terms of a norm (or
magnitude) ‖A‖ of the matrix.

Definition 11.4:
Let A be a non-singular matrix. The condition number of a matrix A is

denoted and defined as c(A). If c(A) is small, then the matrixA is said to be
well-conditioned. If c(A) is large, then the matrix A is ill-conditioned.

Let us now examine how c(A) can be used to demonstrate the accuracy
of the solution of a system of equation AX = B.
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Suppose the matrix equation AX = B illustrates a given experiment
where the elements of A and B derive from the measurement. Such data
depends on the efficiency of instruments and are hardly exact.

Let the slight error inA be described by a matrixE and the corresponding
errors in X expressed by e.

Thus, (A+ E)(X + e) = B.
If we prefer proper norms for the vectors and matrices, then it can be

demonstrated that ‖e‖
‖X + e‖ ≤ c(A)

‖E‖
‖A‖ .

Thus, if c(A) is small, errors can only be minor errors, and the results are
exact. Therefore, the system of equations is said to be well-behaved.

Contrarily, if c(A) is large, then there is the prospect that minor errors
in A can outcome significant errors in X leading to unreliable results. Thus,
such a system of equations is ill-conditioned.

Note:
A significant value of c(A) is an indication, not an assurance of a

substantial error in the solution.
If there is an identity matrix I , then

c(I) = 1 and c(A) ≥ 1

.
Thus, 1 is a lower bound for condition numbers.
We can intuitively assume the system IX = B as being a well-behaved

system.
The smaller c(A), then in some impression, the closer A is to I, and the

better behaved the system AX = B becomes. But, on the other end of the
scale, the larger c(A), the closer A is to be singular, and the problem can
arise.

The definite value of c(A) will, indeed, depend upon the norm used for
A. A norm that is generally used is the so-called I−norm

‖A‖ = max {|a1j |+ |a2j |+ · · ·+ |anj |} for j = 1, 2, . . . , n.

This norm is the most significant number resulting from adding up the
absolute values of elements in each column.

Other norms are more reliable but less efficient.
This norm is a good compromise of reliability and efficiency.
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Example 11.9:
A natural question to ask is “How large is large for a condition number?”

If c(A) is written in the form c(A) ≈ 0.d × 10k, then the above inequality
implies that

‖e‖
‖X + e‖ ≤ 10k

‖E‖
‖A‖ .

This inequality gives the following rule of thumb.
If c(A) ≈ 0.d× 10k, then the components of X can usually be expected

to have k a fewer significant digit of accuracy than the element of A.
Thus, for example:
If c(A) ≈ 100 =

(
0.1× 103

)
, and the components of A are known to

five-digit precision, the components of X may have only two-digit accuracy.
Much, therefore, depends upon the accuracy of the measurements and the
desired accuracy of the solution. c(A) = 100 would, however, be considered
significant by any standard.

A similar relationship involving c(A) exists between errors in the matrix
of constants B and the resulting errors in the solution X . Clarify these ideas
in the following example.

Example 11.10:
The following system of equations describes a specific experiment. First,

let us show that this system is sensitive to changes in the coefficients and the
constants on the right.

34.9x1 + 23.6x2 = 234

22.9x1 + 15.6x2 = 154

The exact solution is x1 = 4 and x2 = 4.

Solution:
Let us compute the condition number.
The matrix of coefficient and its inverse are

A =

[
34.9 23.6
22.9 15.6

]
andA−1 =

[
3.9 −5.9

−5.725 8.725

]
We get

‖A‖ = max{(34.9 + 22.9), (23.6 + 15.6)}
= max{57.8, 39.2} = 57.8∥∥A−1
∥∥ = max{(3.9 + 5.725), (5.9 + 8.725)}
= max{9.625, 14.625} = 14.625
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Thus,
c(A) = ‖A‖ ∥∥A−1

∥∥
= 57.8× 14.625 = 845.325

The number is enormous.
The system is ill-conditioned, and the solution may not be reliable.
Let us change the coefficient of x1 in the first equation from 34.9 to 34.8.

The new system has a solution x1 = 6.5574, x2 = 0.2459. The system is also
sensitive to small changes in constant terms. For example: changing the first
constant term from 234 to 235 gives a new explanation of x1 = 7.9, x2 =
−1.725.

Note:
What does one do in a case like this to get meaningful results? If possible,

the problem should be reformulated in terms of a well-behaved system of
equations. If this is not possible, then one should attempt to derive more
accurate data with more precise data. Finally, the system should be solved
on a computer using double-precision arithmetic, applying techniques that
minimize errors during computational called round-off errors.

Example 11.11:
Find the condition number of the following matrices. Then, decide

whether a system of linear equations defined by such a matrix of the
coefficient is well-behaved.

(a)A =

⎡
⎣ 1 1 −1

4 0 1
0 4 1

⎤
⎦ (b) B =

⎡
⎣ 1 1 1

1 2 4
1 3 9

⎤
⎦.

Solution:

(a) The inverse is found to be

A−1 =

⎡
⎢⎣

1
6

5
24 − 1

24

1
6 − 1

24
5
24

−2
3

1
6

1
6

⎤
⎥⎦ .

We get

‖A‖ = max{(1 + 4 + 0), (1 + 0 + 4), (1 + 1 + 1)} = 5∥∥A−1
∥∥ = max

{(
1

6
+

1

6
+

2

3

)
,

(
5

24
+

1

24
+

1

6

)
,

(
1

24
+

5

24
+

1

6

)}
= 1
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Thus, c(A) = ‖A‖ ∥∥A−1
∥∥ = 5.

This value is considered small, and the system is thus well-behaved.
(b) This example is of the ill-conditioned system and illustrates the possi-

bility of constructing an alternative system that is not ill-conditioned.
The inverse ofA is found.

A−1 =

⎡
⎣ 3 −3 1

−2.5 4 −1.5
0.5 −1 0.5.

⎤
⎦

We get

‖A‖ = max{(1 + 1 + 1), (1 + 2 + 3), (1 + 4 + 9)} = 14∥∥A−1
∥∥ = max{(3 + 2.5 + 0.5), (3 + 4 + 1), (1 + 1.5 + 0.5)} = 8

Thus, c(A) = ‖A‖ ∥∥A−1
∥∥ = 112.

This is a large number. The system is ill-conditioned.

11.7 Coding Theory

Messages are sent electronically as sequences of 0’s and 1’s. Errors can
occur in messages due to noise or interference. For example, the message
(1, 1, 0, 1, 1, 0, 1) could be sent, and the message (1, 1, 0, 1, 1, 0, 1) might
be received. An error has occurred in the fifth entry. We shall now look at
methods that are used to detect and correct such errors.

The scalars for a vector space can be sets other than real or complex
numbers. The requirement is that the scalars form an algebraic field. A field is
a set of elements with two operations that satisfy certain axioms. Readers who
go on to take a course in modern algebra will study fields. In this example,
we shall use the field {0,1} of scalars having only these two elements with
operations of addition and multiplication defined as follows:

0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 0

0.0 = 0, 0.1 = 0, 1.0 = 0, 1.1 = 1

Let V7 be the vector space of seven-tuples of 0’s and 1’s over this field
of scalars where addition and scalar multiplication are defined in the usual
component-wise manner. For example

(1, 0, 0, 1, 1, 0, 1) + (0, 1, 1, 1, 0, 0, 1)

= (1 + 0, 0 + 1, 0 + 1, 1 + 1, 1 + 0, 0 + 0, 1 + 1)

= (1, 1, 1, 0, 1, 0, 0)
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0(1, 0, 0, 1, 1, 0, 1) = (0.1, 0.0, 0.0, 0.1, 0.1, 0.0, 0.1) = (0, 0, 0, 0, 0, 0, 0)

1(1, 0, 0, 1, 1, 0, 1) = (1.1, 1.0, 1.0, 1.1, 1.1, 1.0, 1.1) = (1, 0, 0, 1, 1, 0, 1)

Since each vector in V7 has seven components and each of these com-
ponents can be either 0 or 1, there are 27 vectors in this space. The
four-dimensional subspace of V7 having basis

{(1, 0, 0, 1, 1, 0, 1), (0, 1, 0, 0, 1, 0, 1), (0, 0, 1, 0, 1, 1, 0), (0, 0, 0, 1, 1, 1, 1)}
is called a Hamming code and is denoted C7,4. The vector in C7,4 can be used
as a message. Each vector in C7,4 can be written as

vi = a1(1, 0, 0, 0, 0, 1, 1) + a2(0, 1, 0, 0, 1, 0, 1) + a3(0, 0, 1, 0, 1, 0, 1)

+ a4(0, 0, 0, 1, 1, 1, 1).

Since each of the four scalars a1, a2, a3, a4 can take one of the values 1 or
0, we have 24 that is 16 vectors in C7,4. The hamming code can thus be used
to send sixteen different messages v1, v2, . . . , v16. The reader is asked to list
these vectors in the following exercises.

When an error occurs in one location of a transmitted message, the
resulting incorrect vector lies in V7 outside the subspace C7,4. It can prove
that there is precisely one vector in C7,4 that differs from this incorrect
vector in one location. Thus, the error can be detected and corrected. For
example, suppose the received vector is (1, 0, 1, 1, 0, 1). This vector cannot
be expressed as a linear combination of the above base vectors; it is not in
C7,4. There is a single vector in C7,4 that differs from this vector in one entry,
namely (1, 0, 1, 0, 1, 0, 1). The corrected message is (1, 0, 1, 0, 1, 0, 1). The
Hamming code is called an error-correcting code because of this facility to
detect and correct errors.

Let us look at the geometry underlying this code. The distance between
two vectors u and w in V7 is denoted d(u,w) and is defined to be the number
of components that differ in u and w. Thus, for example,

d((1, 0, 0, 1, 0, 1, 1)(1, 1, 0, 0, 1, 1, 1)) = 3.

The second, fourth, and fifth components of these vectors differ. A sphere
of radius 1 about a vector in V7 contains all those vectors that differ in
one component from the vector. It can be shown that the spheres of radii
1 centered at the vectors of C7,4 will be disjoint and that every element of V7

lies in one such sphere (Figure 11.7).
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Hamming Code {v1, v2, . . . , v16}
Incorrect message u; correct message vi
Figure 11.7 Least square parabola.

Thus, if a vector u is received that is not in C7,4, it will be in a single
sphere having a center vi − the correct message. In practice, electrical circuits
called gates are used to test whether the received message is in C7,4 and if it
is not, to determine the center of the sphere in which it lies, giving the correct
message.

Other error detecting codes exist. The Golay code, for example, is a 12-
dimensional subspace of V23 that is denoted C23,12. The code space has 212

elements that can be used to represent 4096 messages. This code can detect
and correct errors in one, two, or three locations. It can represent that the
spheres of radii 3 centered at the vectors of C23,12 are disjoint and that every
element of V23 lies in one such sphere. If a received vector u has an error
in one, two, or three locations, it will lie in a sphere centered at the correct
message vi and vi.

A good introduction to coding theory can be found in A Common-sense
Approach to the Theory of Error-correcting Codes by Benjamin Arazi, The
MIT Press, 1988.
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