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Linear Algebra is intended primarily as an undergraduate textbook but is written 
in such a way that it can also be a valuable resource for independent learning. The 
narrative of the book takes a matrix approach: the exposition is intertwined with 
matrices either as the main subject or as tools to explore the theory. Each chapter 
contains a description of its aims, a summary at the end of the chapter, exercises, 
and solutions. The reader is carefully guided through the theory and techniques 
presented which are outlined throughout in ‘How to…’ text boxes. Common mis-
takes and pitfalls are also pointed out as one goes along. 

Features

•	 Written to be essentially self-contained

•	 Ideal as a primary textbook for an undergraduate course in linear algebra

•	 Applications of the general theory which are of interest to disciplines outside 
of mathematics, such as engineering
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Preface

This is a first course in Linear Algebra. It grew out of several courses given
at Instituto Superior Técnico, University of Lisbon, and is naturally shaped
by the experience of teaching. But, perhaps more importantly, it also imparts
the feedback of generations of students: the way they felt challenged and the
challenges they set in turn.

This is a book on Linear Algebra which could also be easily described
as a book about matrices. The opening chapter defines what a matrix is,
establishes the basics, while the following chapters build on it to develop the
theory and the closing chapter showcases special types of matrices present in
concrete applications – for example, life sciences, statistics, or the internet.

The book aims at conciseness and simplicity, for it is intended as an un-
dergraduate textbook which also allows for self-learning. In this trait, it sum-
marises the theory throughout in ‘How to. . . ’ text boxes and makes notes
of common mistakes and pitfalls. Every aspect of the content is assessed in
exercise and solution sections.

The narrative of the book is intertwined with matrices either as the main
subject or tools to explore the theory. There is not a chapter where they are
not present, be it in the forefront or the background. As it happens, each of
the first five chapters is anchored on a particular number or numbers, in this
order: the rank of a matrix, its determinant, the dimension of a vector space,
the eigenvalues of a matrix, and the dimensions of the null space and the image
of a linear transformation. The sixth chapter is about real and complex inner
product spaces. Chapters 7 and 9 are applications of the theory and solutions
to the exercises, respectively, whilst Chapter 8 is an appendix consisting of
the proofs of some results relegated to a later stage, as not to impair the flow
of the exposition.

Notwithstanding the simplicity goal of the presentation voiced above, the
book ventures a few times into more advanced topics that, given the mostly
self-contained nature of the book, call for more involved proofs. However,
it is the reader’s choice to avoid these topics at first (or even definitely),
if so wished. This will not be an impediment to the understanding of the
fundamentals of Linear Algebra.

At the end of each chapter, the respective contents are briefly highlighted
in the very synthetic ‘At a Glance’ sections, which will mostly make sense
for those who read the theory, solved the corresponding exercises, and, in the

xi
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end, learned it well enough as to understand the meaningful droplets these
sections consist of.

Finally, I wish to express my gratitude to all my students, without whom
this particular book could not be.

Lisboa, December 2021



Symbol Description

Ā The conjugate of a matrix
A

|A| The determinant of A
adjA The adjugate matrix of A
[Aij ] The submatrix of A

obtained by deleting row i
and column j

Bc The standard basis of
Mn(K)

C The complex numbers
cofA The matrix of cofactors of

A
C(x, λ) The set of vectors in a

Jordan chain corresponding
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detA The determinant of A
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En The standard basis of Kn
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matrices of order n

Mn(K) The set of square matrices
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N(T ) The null space of the linear
transformation T

nul(A) The nullity of matrix A

nul(T ) The dimension of the null
space of the linear
transformation T

Pij Elementary matrix

Pn The space of real
polynomials of degree less
than or equal to n

R The real numbers

rank (A) The rank of matrix A

rank (T ) The rank of the linear
transformation T

σ(T ) The spectrum of the linear
transformation T
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U + V The sum of subspaces U
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U and V
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Chapter 1

Matrices

1.1 Real and Complex Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Matrix Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
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1.4 Elementary Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.4.1 LU and LDU factorisations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
1.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
1.6 At a Glance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

This first chapter is about matrices, the link binding all the subjects presented
in this book. After defining what a matrix is, we will move on into its properties
by developing a toolkit to work with, namely, Gaussian and Gauss–Jordan
eliminations, elementary matrices, and matrix calculus.

As said in the preface, almost every chapter has a particularly outstanding
number associated. In this chapter, this number is the rank of a matrix: it will
be used to classify systems of linear equations and decide if a matrix has an
inverse, for example, and, mostly, the whole chapter will revolve around it.

1.1 Real and Complex Matrices

In what follows, K = R,C, and the elements of K are called numbers or
scalars.

A k × n matrix or a matrix of size k × n over K is an array

a11 a12 . . . a1j . . . a1n
a21 a22 . . . a2j . . . a2n
...

...
...

...
ai1 ai2 . . . aij . . . a1n
...

...
...

...
ak1 ak2 . . . akj . . . akn


(1.1)

of scalars in K having k rows and n columns. Each number aij , for all indices
i = 1, . . . , k and j = 1, . . . , n, is called an entry of the matrix. The indices
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2 Linear Algebra

i and j correspond, respectively, to the number of the row and the number of
the column where the entry-ij, i.e., the scalar aij is located.

The rows of the matrix are numbered from 1 to k, starting from the top,
and the columns of the matrix are numbered from 1 to n, starting from the
left.

A matrix whose entries are real numbers is called a real matrix or a
matrix over R, and a matrix whose entries are complex numbers is called a
complex matrix or a matrix over C.

Example 1.1 The entry-23 of[
1 −2 5 1
2 −1 7 3

]
is the scalar which is located in row 2 and column 3, that is, a23 = 7. This
matrix has two rows and four columns and therefore is a 2× 4 matrix.

The sets of k × n matrices over R,C, and K are denoted, respectively, by
Mk,n(R), Mk,n(C), and Mk,n(K). When k = n, the notation is simplified to
Mn(R), Mn(C), and Mn(K), respectively.

In the matrix (1.1) above, the i th-row is

li =
[
ai1 ai2 . . . aij . . . a1n

]
,

and the j th-column is

cj =



a1j
a2j
...
aji
...

akj


.

Example 1.2 In Example 1.1, the first row of the matrix is

l1 =
[
1 −2 5 1

]
,

and the second row is
l2 =

[
2 −1 7 3

]
.

Columns 1, 2, 3, and 4 of this matrix are, respectively,

c1 =

[
1
2

]
, c2 =

[
−2
−1

]
, c3 =

[
5
7

]
, c4 =

[
1
3

]
.
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The matrix (1.1) can also be presented as [aij ] i=1,...,k

j=1,...,n
, or simply as [aij ],

whenever the matrix size is clear from the context.
The matrix is said to be

(a) a rectangular matrix if k ̸= n;

(b) a square matrix if k = n, and in this case, the matrix is called a square
matrix of order n (or k);

(c) a column matrix or column vector if n = 1;

(d) a row matrix or row vector if k = 1.

For reasons that will become apparent in Chapter 3, in most cases, column
vectors will be referred to as vectors.

In what follows, a row of a matrix whose entries consist only of zeros will
be called a zero row. A zero column is defined similarly.

Definition 1 A matrix A = [aij ] is in row echelon form or is a row
echelon matrix if the following two conditions hold.

(i) There are no zero rows above non-zero rows.

(ii) If li and li+1 are non-zero consecutive rows of A, then the first non-zero
entry of row li+1 is situated (in a column) to the right of (the column
of) the first non-zero entry of li.

The first non-zero entry in each row of a row echelon matrix is called a
pivot.

Example 1.3 Consider the matrices

A =

1 −2 3 0 9
0 0 4 0 −2
0 0 0 6 −7

 , B =


0 1 0 4 5
0 0 0 8 2
0 0 0 7 −1
0 0 0 0 0

 , C =


1 0 0 4
0 0 0 0
0 1 0 8
0 0 1 1


Matrix A is in row echelon form and its pivots are 1, 4, and 6. The matrices
B and C are not row echelon matrices because matrix B does not satisfy
condition (ii) and matrix C does not satisfy condition (i) of Definition 1.

In the next section, we shall make use of matrices to solve systems of linear
equations. A key tool to be used in the process is the concept of an elementary
operation performed on the rows of a matrix, thereby obtaining a new matrix.

Definition 2 There exist three kinds of elementary row operations:

(i) exchanging two rows, i.e., exchanging row li with row lj, with i ̸= j;
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(ii) replacing row li by αli, where α is a non-zero scalar;

(iii) replacing row li by li + αlj, where α is a scalar and i ̸= j;

The scalars α in this definition lie in the same field as the entries in the matrix.
For simplicity, in what follows elementary row operations may also be

called elementary operations.

Example 1.4 The three types of elementary operations will be illustrated with
the real matrix

A =

3 1 −1 2
1 −1 2 2
1 1 1 3

 .

The first elementary operation to be performed is of type (i). We exchange
rows 1 and 3 of matrix A, obtaining matrix B:

A =

1 1 1 3
1 −1 2 2
3 1 −1 2


l1↔l3

//

3 1 −1 2
1 −1 2 2
1 1 1 3

 = B.

To illustrate an elementary operation of type (ii), now we replace the second
row l2 of matrix A by −3l2, obtaining matrix C:

A =

1 1 1 3
1 −1 2 2
3 1 −1 2


−3l2

//

 3 1 −1 2
−3 3 −6 −6
1 1 1 3

 = C.

Finally, row l3 will be replaced by the new row l3 + 2l1, i.e.,

A =

1 1 1 3
1 −1 2 2
3 1 −1 2


l3+2l1

//

1 1 1 3
1 −1 2 2
5 3 1 8

 = M,

i.e., l3 of M is

l3 =
[
a31 + 2a11 a32 + 2a12 a33 + 2a13 a34 + 2a14

]
.

Hence we have obtained three new matrices, B,C, and M , by acting on the
rows of A with the operations described above. Symbolically,

A
l1↔l3

// B, A
−3l2

// C, A
l3+2l1

// M.
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A linear equation is an equation which can be presented in the form

a1x1 + a2x2 + · · ·+ an−1xn−1 + anxn = b, (1.2)

where a1, a2, . . . , an−1, an, b are scalars and x1, x2, . . . , xn−1, xn are the vari-
ables or the unknowns. A system of linear equations is a conjunction of
linear equations 

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

ak1x1 + ak2x2 + · · ·+ aknxn = bk

.

Equation (1.2) is said to be a homogeneous equation if b = 0. Similarly,
the system above is called a homogeneous system if b1 = b2 = · · · = bk = 0.
Equations and systems are otherwise called non-homogeneous.

Solving a system of linear equations consists in determining the set of all
n-tuples (x1, x2, . . . , xn) of n scalars which satisfy all the equations in the
system. This set is called the solution set or the general solution of the
system.

The set consisting of all n-tuples (x1, x2, . . . , xn) of real numbers (respec-
tively, of complex numbers) will be denoted by Rn (respectively, Cn). That
is, for a positive integer n,

Rn = {(x1, x2, . . . , xn) : x1, x2, . . . , xn ∈ R},

Cn = {(x1, x2, . . . , xn) : x1, x2, . . . , xn ∈ C}.

Two systems of linear equations are said to be equivalent if they have
the same solution set. Systems are classified according to the nature of their
solution set. A system of linear equations is said to be:

(a) consistent, if its solution set is non-empty;

(b) inconsistent, if its solution set is the empty set, i.e., the system is not
solvable.

We shall see in Proposition 1.3 that in case (a) the system either has a unique
solution or has infinitely many solutions.

A homogeneous system of linear equations is always consistent.

In fact, such a system possesses, at least, the trivial solution, that is, the
solution where all the variables take the value 0.
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The system of linear equations above is associated with the following ma-
trices

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

ak1 ak22 . . . akn

 Coefficient matrix, (1.3)

b =


b1
b2
...
bk

 Column vector of independent terms, (1.4)

[A|b] =


a11 a12 . . . a1n b1
a21 a22 . . . a2n b2
...

...
...

...
ak1 ak22 . . . akn bk

 Augmented matrix.

(1.5)
The augmented matrix may also be presented without the vertical separation
line, i.e.,

[A|b] =


a11 a12 . . . a1n b1
a21 a22 . . . a2n b2
...

...
...

...
ak1 ak22 . . . akn bk

 .

Consider the following system of linear equations
x+ y + z = 3

x− y + 2z = 2

2x+ y − z = 2

. (1.6)

The system’s augmented matrix is

[A|b] =

1 1 1 3
1 −1 2 2
2 1 −1 2

 .

If an elementary operation is performed on the augmented matrix [A|b], the
new matrix thus obtained is the augmented matrix of an equivalent system

of linear equations.

This fact will be used to ‘simplify’ the augmented matrix in order to ob-
tain a system equivalent to the given one but easier to solve. The aim is to
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reduce the augmented matrix [A|b] to a row echelon matrix using elementary
operations according to a method called Gaussian elimination.

The Gaussian elimination (GE) is a step-by-step method which is ap-
plied to a matrix and consists in:

1. placing all the zero rows below the non-zero rows, by exchanging the
necessary rows;

2. choosing a row with a non-zero entry situated in a column as far left
as possible in the matrix and making this row the first row, by possibly
exchanging rows;

3. using the first row and elementary operations to place zeros in all the
entries of the matrix in the rows below and in the same column as the
column of the chosen entry;

4. repeating the preceding steps descending a row, i.e., considering only
the rows below the first row;

5. repeating the steps above descending another row, i.e., considering only
the rows below row 2;

6. keeping on repeating these steps as many times as necessary until ob-
taining a row echelon matrix.

In short, the Gaussian elimination is an specific sequence of elementary
row operations whose final goal is to obtain a row echelon matrix.

The Gaussian elimination is now applied to the augmented matrix of sys-
tem (1.6):  1O 1 1 3

1 −1 2 2
2 1 −1 2


l2−l1
l3−2l1

//

1 1 1 3
0 −2 1 −1
0 −1 −3 −4

 · · ·

· · ·
l2↔l3

//

1 1 1 3
0 -1O −3 −4
0 −2 1 −1


l3−2l2

//

1 1 1 3
0 −1 −3 −4
0 0 7 7

 .

The elementary operations appearing below the arrows are:

� l2 − l1 indicates that row 1 multiplied by −1 has been added to row 2,
and l3 − 2l1 indicates that row 1 multiplied by −2 has been added to
row 3;
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� l2 ↔ l3 indicates that rows 2 and 3 have been exchanged;

� l3 − 2l2 indicates that row 2 multiplied by −2 has been added to row 3.

Notice that in the points above and throughout this book we use the fol-
lowing notation: when indicating an elementary operation of type (iii), the
first row to be written is the one to be modified.

The matrix 1 1 1 3
0 −1 −3 −4
0 0 7 7


is a row echelon matrix and the augmented matrix of the system of linear
equations 

x+ y + z = 3

−y − 3z = −4
7z = 7

. (1.7)

Moreover, 
x+ y + z = 3

x− y + 2z = 2

2x+ y − z = 2

⇐⇒


x+ y + z = 3

−y − 3z = −4
7z = 7

.

Beginning to solve the system by the simplest equation, i.e., the third equation,
we have z = 1. Substituting z by its value in the second equation, we get

−y − 3 = −4,

that is, y = 1. Finally, using the first equation and the values of y and z
already obtained, we have

x+ 1 + 1 = 3

and, hence, x = 1. It immediately follows that the solution set S of system
(1.7) or, equivalently, of system (1.6) is S = {(1, 1, 1)}. Hence, we conclude
that the system (1.6) is consistent and has a unique solution.

Observe that, once the row echelon augmented matrix is obtained, we
begin solving the system from the bottom equation up, and we keep as-
cending in the system until the top equation is reached. This is called back
substitution.
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How to solve a system of linear equations

Summing up, recall that we solve a system of linear equations in three
steps:

1. the system’s augmented matrix [A|b] is obtained;

2. matrix [A|b] is reduced to a row echelon matrix R using Gaussian
elimination or, symbolically,

[A|b]
GE
// R;

3. the system corresponding to matrix R is solved (using back
substitution).

In system (1.6), we have

[A|b] =

1 1 1 3
1 −1 2 2
2 1 −1 2


GE
//

1 1 1 3
0 −1 −3 −4
0 0 7 7

 = R.

Consider now the following system of linear equations
x− y − 2z + w = 0

2x− 3y − 2z + 2w = 3

−x+ 2y − w = −3
. (1.8)

Applying Gaussian elimination to the augmented matrix of system (1.8), we
have

[A|b] =

 1 −1 −2 1 0
2 −3 −2 2 3
−1 2 0 −1 −3


l2−2l1
l3+l1

//

1 −1 −2 1 0
0 −1 2 0 3
0 1 −2 0 −3



l3+l2

//

1 −1 −2 1 0
0 −1 2 0 3
0 0 0 0 0

 .

Hence, the system (1.8) is equivalent to{
x− y − 2z + w = 0

−y + 2z = 3
⇐⇒

{
x = 4z − w + 3

y = 2z − 3
. (1.9)
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It is obvious from (1.9) that the system (1.8) does not have a unique
solution. In fact, fixing (any) values for z and w, the values of x and y are
immediately determined. Hence, here the variables z, w can take any real
values and, once fixed, determine the values of the remaining variables. We
can say that z, w are the independent variables or free variables, whilst
x, y are the dependent variables.

As before, we used back substitution in (1.9) and expressed the variables
corresponding to the columns with pivots in terms of the variables correspond-
ing to the columns without pivots in the coefficient matrix. This will be the
rule throughout the book.

How to choose the dependent and the independent variables

In a consistent system:

� the dependent variables are those whose columns correspond to
columns having pivots;

� the independent variables are the remaining ones, i.e., those whose
columns correspond to columns without pivots.

A system of linear equations having a unique solution does not possess
independent variables and, therefore, all its variables are dependent variables.

According to this rule, in (1.8) the dependent variables are x, y, and the
independent variables are z, w. The solution set S of system (1.8) is

S = {(x, y, z, w) ∈ R4 : x = 4z + w − 3 ∧ y = 2z − 3}

and, consequently, the system has infinitely many solutions.
For example, if we set z = 2, w = 0, then (x, y, z, w) = (5, 1, 2, 0) is a

particular solution of system (1.8). Another solution can be obtained set-
ting, for example, z = −1, w = 2. In this case, we have that (x, y, z, w) =
(−5,−5,−1, 2) is the solution corresponding to z = −1, w = 2. Hence, when-
ever we fix particular values of z, w, we obtain a particular solution of system
(1.8).

The way dependent and independent variables are chosen is decisive in
how the solution set is obtained. That is, the number of pivots appearing
after Gaussian elimination plays a crucial role in the system’s solution.

Could it happen that, starting with the a given system and depending on
the calculations, one might end up with a different number of pivots?

Fortunately, the answer is no, as will be shown in Proposition 1.2.
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Consider now the system
x+ y − 2z = 1

−x+ y = 0

y − z = 0

. (1.10)

Using Gaussian elimination to solve (1.10), we have

[A|b]=

 1 1 −2 1
−1 1 0 0
0 1 −1 0


l2+l1

//

1 1 −2 1
0 2 −2 1
0 1 −1 0


l3− 1

2 l2

//

1 1 −2 1
0 2 −2 1
0 0 0 − 1

2


︸ ︷︷ ︸

R

.

Hence, 
x+ y − 2z = 1

−x+ y = 0

y − z = 0

⇐⇒


x+ y − 2z = 1

2y − 2z = 1

0 = − 1
2

.

It follows that the system is inconsistent and its solution set is S = ∅.
Observe that the key fact for this system to be inconsistent is that the

matrix R has a pivot in a column corresponding to that of the independent
terms in the augmented matrix (see the grey entry above).

Gaussian elimination has been used so far to reduce augmented matrices
of systems of linear equations to row echelon matrices. However, this process
can be used outside the setting of systems of linear equations. In fact, we can
use Gaussian elimination to reduce any matrix to a row echelon matrix, which
we shall need often to do.

Definition 3 A k×n matrix A is said to be in reduced row echelon form
or in canonical row echelon form if the following three conditions hold:

(i) A is a row echelon matrix;

(ii) the pivots in A are all equal to 1;

(iii) in each column having a pivot, all remaining entries are equal to zero.

Example 1.5 Let A and B be the matrices

A =

1 −2 3 9
0 0 4 −2
0 0 0 6

 , B =

1 0 −7 0 4
0 1 8 0 5
0 0 0 1 1

 .

Matrix A is a row echelon matrix but is not in reduced row echelon form
because it does not satisfy conditions (ii) and (iii). Matrix B is a matrix in
reduced row echelon form.
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The Gauss–Jordan elimination is a method devised to reduce a given ma-
trix to reduced row echelon form using elementary operations. It is a step-by-
step method whose first part is Gaussian elimination.

The Gauss–Jordan elimination method (GJE) applied to a matrix A
consists in

1) reducing A to a row echelon matrix using Gaussian elimination;

2) (a) using the right hand side most pivot (hence the bottom pivot) and
the necessary elementary operations to put zeros in all entries in
the same column as the pivot (hence the entries in the rows above
the pivot);

(b) repeating 2) (a) ascending one row, i.e., considering only the rows
above that of the pivot in 2) (a);

(c) repeating the process ascending one more row, i.e., considering only
the rows above that of the pivot in 2) (b);

(d) keeping on ascending in the matrix until reaching the first row
(that is, until obtaining a matrix such that in each column having
a pivot, the pivot is the only non-zero entry);

3) performing the necessary elementary operations in order to obtain a
matrix where all pivots are equal to 1.

Example 1.6 We apply now the Gauss–Jordan elimination to the matrix
1 −2 0 2
− 1

2 0 1 2
−1 −1 2 0
0 −3 2 2


in order to obtain a matrix in reduced row echelon form. We have

1 −2 0 2
− 1

2 0 1 2
−1 −1 2 0
0 −3 2 2


l2+ 1

2
l1

l3+l1

//


1 −2 0 2
0 −1 1 3
0 −3 2 2
0 −3 2 2

 l3−3l2
l4−3l2

//


1 −2 0 2
0 −1 1 3
0 0 −1 −7
0 0 −1 −7

 · · ·

· · ·
l4−l3

//


1 −2 0 2
0 −1 1 3
0 0 −1 −7
0 0 0 0

 l2+l3

//


1 −2 0 2
0 −1 0 −4
0 0 −1 −7
0 0 0 0

 · · ·

· · ·
l1−2l2

//


1 0 0 10
0 −1 0 −4
0 0 −1 −7
0 0 0 0

 (−1)l3
(−1)l2

//


1 0 0 10
0 1 0 4
0 0 1 7
0 0 0 0

 .
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It should be noted that

� In the Gauss–Jordan elimination, 2) and 3) do not have necessarily to
be performed in that order (i.e., first 2) and then 3)). It might be more
convenient to make a pivot equal to 1 (or possibly all pivots) before
completing 2), or even before point 2).

� In 2) and 3), it is not allowed to exchange rows.

� Gauss–Jordan elimination can also be used to solve systems of linear
equations (see Example 1.8).

A common mistake. Halfway through the Gauss–Jordan elimination going
from top to bottom when it was supposed to do a down-up elimination. Con-
sequence: spoiling the matrix and wasting the work done so far. The first part
of Gauss–Jordan elimination requires a up-down elimination which ends when
a row echelon matrix is obtained. Then it must be followed by an down-up
elimination to obtain a reduced row echelon form. One must not mix these
two eliminations.

When reducing a matrix A to row echelon form using elementary opera-
tions, the final matrix may vary depending on the operations chosen and on
the order under which they were applied to A. However, if the final matrix is
in reduced row echelon form, then this matrix is always the same, depending
neither on the operations nor on the sequence in which they were performed.

Proposition 1.1 Let A be a k×n matrix over K and let R,R′ be reduced row
echelon matrices obtained from A through elementary row operations. Then
R = R′.

Proof This proposition is proved in §8.1.

Proposition 1.1 allows us to make the following definition.

Definition 4 The reduced row echelon form or the canonical row ech-
elon form of a matrix A is the matrix in reduced row echelon form obtained
from A through elementary row operations.

In Example 1.6, the matrix
1 0 0 10
0 1 0 4
0 0 1 7
0 0 0 0


is the reduced row echelon from of

1 −2 0 2
− 1

2 0 1 2
−1 −1 2 0
0 −3 2 2

 .
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As noted above, when reducing a matrix to a row echelon matrix through
elementary operations, this row echelon matrix is not uniquely determined.
However, the number of pivots is.

Proposition 1.2 Let A be a k × n matrix over K and let R and R′ be row
echelon matrices obtained from A using elementary row operations. Then, the
number of pivots of R and of R′ coincide.

Observe that in this proposition and, for that matter, also in Proposition
1.1, it is not required that R and R′ be obtained using Gaussian elimination.
R and R′ are just row echelon matrices obtained from A applying elementary
operations in no particular order.

Proof Applying Gauss–Jordan elimination to the matrices A,R, and R′,
by Proposition 1.1, we obtain the same reduced row echelon matrix M . Notice
that the Gauss–Jordan elimination forces both the number of pivots in R and
the number of pivots in M to coincide. Similarly, the number of pivots in R′

and M must also coincide. Hence, the result follows.

We are now ready to make one of the crucial definitions in the book.

Definition 5 The rank of a k × n matrix A is the number of pivots of any
row echelon matrix obtained from A using elementary operations. The rank of
A is denoted by rank (A).

Example 1.7 Let A be the matrix

A =

 1 −1 1 0
−1 1 −1 0
3 −3 6 −3

 .

Using Gaussian elimination, 1 −1 1 0
−1 1 −1 0
3 −3 6 −3


l2+l1
l3−3l1

//

1 −1 1 0
0 0 0 0
0 0 3 −3


l2↔l3

//

1 −1 1 0
0 0 3 −3
0 0 0 0

 .

Hence, since the last matrix is a row echelon matrix having two pivots, we
conclude that the rank of matrix A is rank (A) = 2.
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How to calculate the rank of a matrix A

1. Reduce the matrix A to a row echelon matrix R using Gaussian
elimination;

2. the rank of A is the number of pivots in R, i.e.,

rank (A) = rank (R) = number of pivots of R.

At this point, we have encountered already both consistent and inconsis-
tent systems, and are in a position to obtain a general classification in terms
of the ranks of the matrices associated with the systems.

Given a system with augmented matrix [A|b], either

rank (A) = rank ([A|b]) or rank (A) ̸= rank ([A|b]).

In the latter case, the only possibility is rank (A) < rank ([A|b]), and it follows
that the system is inconsistent. This means that a pivot appears in the column
corresponding to the vector b of independent terms. This in turn corresponds
to having an equation where the coefficients of all variables are zero whereas
the independent term is non-zero.

In fact, recalling the inconsistent system (1.10), we saw that

rank (A) < rank (R) = rank ([A|b]),

since an extra pivot appeared in the column corresponding to the independent
terms.

On the other hand, if rank (A) = rank ([A|b]) then the columns of the
pivots correspond to (some or all of) those in the matrix A. It follows that
the system is consistent and either

rank (A) = number of columns of A (1.11)

or
rank (A) < number of columns of A. (1.12)

In case (1.11), the system has a unique solution. In case (1.12), the system
has infinitely many solutions and, if A is a k × n matrix, then the number of
independent variables is n− rank (A).

We summarise this discussion in the proposition below.

Proposition 1.3 Let [A|b] ∈ Mk,n+1(K) be the augmented matrix of a system
of linear equations. Then the following assertions hold.

(i) If rank (A) < rank ([A|b]), then the system is inconsistent.
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(ii) If rank (A) = rank ([A|b]), then the system is consistent. In this case,
the number of independent variables coincides with n− rank (A), i.e.,

number of independent variables = n− rank (A).

Example 1.8 Consider the system whose coefficient matrix A and vector b
of independent terms are, respectively,

A =

1 0 0
0 1− i −2i
0 1 1− i

 , b =

 0
1− i
1

 .

Hence, we see that this is the case of a system in three complex variables, say,
z1, z2, z3, having three equations.

Applying Gaussian elimination to the system’s augmented matrix [A|b],
we have

[A|b] =

1 0 0 0
0 1− i −2i 1− i
0 1 1− i 1

 l2↔l3 //

1 0 0 0
0 1 1− i 1
0 1− i −2i 1− i



l3−(1−i)l2//

1 0 0 0
0 1 1− i 1
0 0 0 0


︸ ︷︷ ︸

R

.

Since the pivots in the matrix R are the grey entries, we conclude that
rank (A) = rank ([A|b]) = 2. Hence, the system is consistent and

number of independent variables = 3− rank (A) = 1.

Just by looking at the matrix R, we know that there is one independent
variable which, according to the rules previously established, is z3, since z1, z2
correspond to the columns having pivots.

Observe that R is a reduced row echelon matrix and, therefore, the solution
of the system can be read directly in R. Indeed, without back substitution, we
have immediately that {

z1 = 0

z2 = (i− 1)z3 − 1
,

from which follows that the solution set of the system is

S = {(0, (i− 1)z3 − 1, z3) : z3 ∈ C}.
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How to solve a system of linear equations (continued)

� Use either Gaussian elimination or Gauss–Jordan elimination to re-
duce the system’s augmented matrix to a row echelon matrix or a
reduced row echelon matrix, respectively.

� If the system is consistent, the dependent variables are those corre-
sponding to the columns having pivots, and the independent variables
are those corresponding to the columns without pivots.

� The system’s solution set S can be presented in several ways. We give
below an example of some possibilities for presenting the solution set
of system (1.8).

(a) S = {(x, y, z, w) ∈ R4 : x = 4z + w − 3 ∧ y = 2z − 3}
(b) S = {(4z + w − 3, 2z − 3, z, w) : z, w ∈ R}
(c) S = {(x, y, z, w) ∈ R4 : x = 4t + s − 3, y = 2t − 3, z = t, w =

s (t, s ∈ R)}
(d) S = {(4t+ s− 3, 2t− 3, t, s) : t, s ∈ R}

1.2 Matrix Calculus

We have seen how matrices can be used as tools to solve systems of linear
equations. But matrices stand alone in their own right and are not just useful
in applications. In fact, in this section, we will pay close attention to the set
Mk,n(K) of k×n matrices over K and will define three operations on this set.
Namely, the addition of matrices, the multiplication of a matrix by a scalar
and the multiplication of two matrices.

We start with the definition of addition of two matrices. It is worth noticing
that one can only add matrices having the same size. Roughly speaking, the
sum of matrices A and B is a matrix A + B whose entry-ij (A + B)ij is the
sum of the corresponding entries in A and B. More precisely,

Definition 6 The addition, +, on Mk,n is the operation

+ : Mk,n(K)×Mk,n(K)→ Mk,n(K)

(A,B) 7→ A+B

defined, for A = [aij ], B = [bij ] and i = 1, . . . , k, j = 1, . . . n, by (A + B)ij =
aij + bij.
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Example 1.9 Let A and B be the 3× 4 real matrices

A =

 1 −2 3 7
0 0 4 −2
−3 0 0 6

 B =

−1 0 4 5
−2 3 11 2
0 6 7 −1

 .

The sum A + B of these two matrices is a real 3 × 4 matrix each entry of
which is calculated by adding the homologous entries of A and B, i.e.,

A+B =

 0 −2 7 12
−2 3 15 0
−3 6 7 5

 .

Definition 7 The multiplication by a scalar, µ, on Mk,n is the operation

µ : K×Mk,n(K)→ Mk,n(K)

(α,A) 7→ αA

defined, for A = [aij ], α ∈ K and i = 1, . . . , k, j = 1, . . . n, by (αA)ij = αaij.

Example 1.10 Letting A be the matrix of Example 1.9, the matrix 2A is
obtained by multiplying all the entries of A by the scalar 2, i.e.,

2A =

 2 −4 6 14
0 0 8 −4
−6 0 0 12

 .

The next two propositions collect essential properties of these operations.

Proposition 1.4 The following assertions hold, for all matrices A,B,C in
Mk,n(K).

(i) A+B = B +A, i.e., the addition of matrices is commutative.

(ii) A+(B+C) = (A+B)+C, i.e., the addition of matrices is associative.

(iii) There exists a unique additive identity, 0, i.e.,

A+ 0 = A = 0 +A.

(iv) There exists a unique matrix −A ∈ Mk,n, called the additive inverse
of A, such that

A+ (−A) = 0 = (−A) +A.

Proof The commutativity (i) and associativity (ii) follow easily from the
commutativity and associativity of the addition in K, and it is obvious that
the (unique) additive identity is the k × n zero matrix.

It is immediate that, given A = [aij ], its additive inverse is −A = [−aij ].
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Proposition 1.5 The following assertions hold, for all matrices A,B in
Mk,n(K) and α, β ∈ K.

(i) α(A+B) = αA+ αB, i.e., the multiplication by a scalar is distributive
relative to the addition of matrices.

(ii) (αβ)A = α(βA).

(iii) (α+ β)A = αA+ βA.

(iv) 1A = A.

Proof These assertions are an immediate consequence of the correspond-
ing properties of the scalars in K.

We define now the multiplication of a matrix by a column vector.

Definition 8 Let A be k × n over K and let b be the n× 1 column vector

b =



b11
·
·
·
bj1
·
·
·

bn1


with entries in K. The product Ab of A and b

Ab =



a11 a12 . . . a1j . . . a1n
a21 a22 . . . a2j . . . a2n
...

...
...

...
ai1 ai2 . . . aij . . . ain
...

...
...

...
ak1 ak2 . . . akj . . . akn





b11
b21
·
·
bj1
·
·
·

bn1


=



c11
·
·
·
ci1
·
·
·

ck1


,

the k × 1 column vector Ab whose entry (Ab)i1 is defined, for all indices
i = 1, . . . , k, by

(Ab)i1 = ai1b11 + ai2b21 + · · ·+ aijbj1 + · · ·+ ainbn1 =

n∑
j=1

aijbj1. (1.13)
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It is possible to multiply A and b only if the number of columns of A
coincides with the number of rows of b.

Example 1.11 Consider the matrices

A =

[
2 −1 5
−4 6 3

]
b =

 7
−2
1

 ,

of size 2 × 3 and 3 × 1, respectively. We can calculate the product Ab, since
the number of columns of A equals the number of rows of b. Using Definition
8, Ab is the 2× 1 column vector

Ab =

[
2 −1 5
−4 6 3

] 7
−2
1

 =

[
21
−37

]
.

Observe that, row 1 of Ab is calculated using row 1 of A and the column
vector b as shown below

2× 7 + (−1)× (−2) + 5× 1 = 21.

Analogously, row 2 of Ab is calculated using row 2 of A and the column vector
b, obtaining

−4× 7 + 6× (−2) + 3× 1 = −37.

To calculate row i of Ab, we need row i of matrix A and the column vector
b, as shown in (1.13).

Going back to the general definition of Ab, observe that

Ab=



a11 a12 . . . a1j . . . a1n

a21 a22 . . . a2j . . . a2n

...
...

...
...

ai1 ai2 . . . aij . . . ain

...
...

...
...

ak1 ak2 . . . akj . . . akn





b11
b21
·
·
bj1
·
·
·

bn1


=



a11b11 + a12b21 + · · ·+ a1nbn1

·
·
·

ai1b11 + ai2b21 + · · ·+ ainbn1

·
·
·

ak1b11 + ak2b21 + · · ·+ aknbn1


.
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Hence,

Ab = b11



a11
·
·
·
ai1
·
·
·

ak1


+ b21



a12
·
·
·
ai2
·
·
·

ak2


+ · · ·+ bn1



a1n
·
·
·

ain
·
·
·

akn


= b11c1 + b21c2 + · · ·+ bn1cn,

(1.14)

where c1, c2, . . . , cn are the columns of A.

Definition 9 Let A =
[
c1 c2 . . . cn

]
be a k×n matrix over K. A linear

combination of the columns of A is any (column) vector which can be
expressed as

α1c1 + α2c2 + · · ·+ αncn,

where α1, α2, . . . , αn are scalars in K.

Hence, we have shown in (1.14) that Ab is a linear combination of the
columns of A. This fact is so important that it is worth making a note of it
in the proposition below.

Proposition 1.6 Let A =
[
c1 c2 . . . cn

]
be a k × n matrix over K and

let

b =



b11
b21
·
·
bj1
·
·
·

bn1


be an n × 1 column vector. Then the product Ab is a linear combination of
the columns of A. More precisely,

Ab = b11c1 + b21c2 + · · ·+ bn1cn.

We are now ready to multiply two matrices.
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Definition 10 Given matrices A of size k × p and B of size p × n over K,
the product

AB = [(AB)ij ] i=1,...,k

j=1,...,n

=



a11 a12 . . . a1l . . . a1p
a21 a22 . . . a2l . . . a2p
...

...
...

...
ai1 ai2 . . . ail . . . aip
...

...
...

...
ak1 ak2 . . . akl . . . akp





b11 b12 . . . b1j . . . b1n
b21 b22 . . . b2j . . . b2n
...

...
...

...
bl1 bl2 . . . blj . . . bln
...

...
...

...
bp1 bp2 . . . bpj . . . bpn


,

is the k × n matrix such that, for all indices i, j, the entry-ij of AB is

(AB)ij = ai1b1j + ai2b2j + · · ·+ ailblj + · · ·+ aipbpj =

p∑
l=1

ailblj . (1.15)

Hence, if li is the row i of A and cj is the column j of B, then (AB)ij = licj .
By a slight abuse of notation, here we identify the 1× 1 matrix [(AB)ij ] with
the scalar (AB)ij .

It is possible to multiply two matrices A and B only if the number of
columns of A coincides with the number of rows of B.

Example 1.12 Let A and B be the matrices

A =

[
2 −1 5
−4 6 3

]
B =

 7 0 −1
−2 1 0
1 0 −3

 ,

of size 2 × 3 and 3 × 3, respectively. Observe that we can multiply these two
matrices since the number of columns of A equals the number of rows of B. It
follows that the product AB is the 2× 3 matrix

AB =

[
2 −1 5
−4 6 3

] 7 0 −1
−2 1 0
1 0 −3

 =

[
21 −1 −17
−37 6 −5

]
.

The entry-11 of AB was calculated using row 1 of A and column 1 of B:

2× 7 + (−1)× (−2) + 5× 1 = 21.

The entry-12 of AB was calculated using row 1 of A and column 2 of B:

2× 0 + (−1)× 1 + 5× 0 = −1.
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The entry-13 of AB was calculated using row 1 of A and column 3 of B:

2× (−1) + (−1)× 0 + 5× (−3) = −17.

Analogously, row 2 of AB was calculated using row 2 of A and all columns
of B.

It can easily be seen from (1.13) and (1.15) that

Entry-ij of AB is the product of row i of A and column j of B.

Exercise. Let A be a k × n matrix and let
[
b11 b12 . . . b1n

]
be a row

vector. Show that[
b11 b12 . . . b1n

]
A = b11l1 + b12l2 + · · ·+ b1nln,

where l1, l2, . . . , ln are the rows of A.

The next proposition describes the product of two matrices both by
columns (cf. Proposition 1.7 (i)) and by rows (cf. Proposition 1.7 (ii)).

Proposition 1.7 Let A ∈ Mk,p(K) and B ∈ Mp,n(K) be matrices such that
a1,a2, . . . ,ak are the rows of A and b1,b2, . . . ,bn are the columns of B.
Then,

(i)
AB =

[
Ab1 | Ab2 | · · · | Abn

]
;

(ii)

AB =


a1B
a2B
...

akB

 .

Proof Assertion (i) is a consequence of (1.15). The proof of (ii) is left as
an exercise.

The next proposition collects properties of matrix multiplication.

Proposition 1.8 Let A,B,C be matrices over K of appropriate sizes and let
α ∈ K. The following assertions hold.

(i) A(BC) = (AB)C, i.e., the multiplication of matrices is an associative
operation.
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(ii) Matrix multiplication is distributive relative to matrix addition, i.e.,

(A+B)C = AC +BC

A(B + C) = AB +AC

(iii) α(AB) = (αA)B = A(αB)

Proof Assertions (ii) and (iii) are left as exercises. We prove now asser-
tion (i).

Let A =
[
aij
]
, B =

[
bij
]
, and C =

[
cij
]
be k×m,m×p and p×n matrices,

respectively. Since both A(BC) =
[
dij
]
and (AB)C =

[
eij
]
are k×n matrices,

it only remains to show that, for all i = 1, . . . k, j = 1, . . . , n, the entries dij
and eij coincide.

The entry dij is calculated by multiplying row i of A and column j of BC
which, in turn, is the product of B and column j of C. That is,

[
ai1 ai2 . . . aim

]
B


c1j
c2j
...
c1p


 =

[
ai1 ai2 . . . aim

]

∑p

s=1 b1scsj∑p
s=1 b2scsj

...∑p
s=1 bpscsj

 .

Hence

dij =

m∑
r=1

(
p∑

s=1

airbrscsj

)
.

On the other hand, eij is the product of row i of AB and column j of C, i.e.,

([
ai1 ai2 . . . aim

]
B
)

c1j
c2j
...
c1p



=
[∑m

r=1 airbr1
∑m

r=1 airbr2 . . .
∑m

r=1 airbrm
]

c1j
c2j
...
cpj

 .

It follows that

eij =

p∑
s=1

(
m∑
r=1

airbrscsj

)
which, by the commutativity and associativity of scalar addition, yields finally

eij =

m∑
r=1

(
p∑

s=1

airbrscsj

)
= dij .
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Unlike matrix addition, matrix multiplication is not a commutative
operation.

For example, [
0 1
1 0

] [
1 2
3 4

]
=

[
3 4
1 2

]
,

whereas [
1 2
3 4

] [
0 1
1 0

]
=

[
2 1
4 3

]
.

Matrix multiplication allows us to write systems of linear equations in a
more compact manner. Consider a system having k linear equations, n vari-
ables x1, x2, . . . , xn, and let A be the coefficient matrix (hence, A is a k × n
matrix). Let b be the column vector of independent terms and define the
column vector of variables by

x =


x1

x2

...
xn

 .

With this notation, this system can be presented as the matrix equation

Ax = b. (1.16)

Example 1.13 As an example, we write the matrix equation associated with
the system {

x+ y + z = 3

x− y + 2z = 2.

In this case, we have the following matrix equation Ax = b

[
1 1 1
1 −1 2

]
︸ ︷︷ ︸

A

xy
z


︸︷︷︸

x

=

[
3
2

]
︸︷︷︸
b

.

Solving the system can now be reformulated as solving the matrix equation
(1.16). As we saw, Ax is a linear combination of the columns of A, hence:

Proposition 1.9 Let A and b be, respectively, a k × n matrix and an k × 1
vector over the field K. The equation Ax = b is solvable if and only if b is a
linear combination of the columns of A.
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If the system under consideration is homogeneous, that is, b is a k×1 zero
vector, then the matrix equation corresponding to this system is

Ax = 0. (1.17)

This homogeneous equation is always solvable since it has, at least, the trivial
solution x = 0.

Matrices can be partitioned into blocks and, as long as the sizes of the
blocks and the partitions are compatible, it is possible to devise a block mul-
tiplication. For example, let

A =

1 2 3 4
1 2 3 4

1 2 3 4

 =

[
A11 A12

A21 A22

]
and

B =


1 0 −1 0 0 0
0 1 0 −1 0 0

−1 0 0 0 1 0
0 −1 0 0 0 1

 =

[
B11 B12 B13

B21 B22 B23

]
.

Using this block partition of matrices A and B, we have

AB =

[
A11 A12

A21 A22

] [
B11 B12 B13

B21 B22 B23

]
and it is not difficult to see that one can multiply the blocks as if they were
numbers, i.e.,

AB =

[
A11B11 +A12B21 A11B21 +A12B22 A11B13 +A12B23

A21B11 +A22B21 A21B12 +A22B22 A21B13 +A22B23

]
.

Hence

AB =

[
A11 −A12 −A11 A12

A21 −A22 −A21 A22

]
=

−2 −2 −1 −2 3 4
−2 −2 −1 −2 3 4

−2 −2 −1 −2 3 4

 .

Finally, we have

AB =

−2 −2 −1 −2 3 4
−2 −2 −1 −2 3 4
−2 −2 −1 −2 3 4

 .

Block multiplication may be rather convenient as it may both simplify con-
siderably the calculations involved and make them more transparent. Propo-
sition 1.7 (i) is an example of block multiplication (and so is (ii) of the same
proposition).
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If we now divide A into its columns and B into its rows, then AB coincides
with the sum

AB =
[
a1 | a2 | . . . | ap

]

b1

b2

...
bp

 = a1b1 + a2c2 + · · ·+ apcp.

The following example is a concrete illustration of this way of calculating the
product.

Example 1.14 Consider the matrices

A =

[
1 2 −1
1 2 −1

]
B =

3 4
5 6
7 8

 .

Then

AB =

[
1
1

] [
3 4

]
+

[
2
2

] [
5 6

]
+

[
−1
−1

] [
7 8

]
=

[
6 8
6 8

]
.

The next proposition summarises the above discussion and, with respect
to Proposition 1.7, gives a third possible way of calculating the product of two
matrices other than the definition (1.15).

Proposition 1.10 Let A ∈ Mk,p(K) and B ∈ Mp,n(K) be matrices such that
a1,a2, . . . ,ap are the columns of A and b1,b2, . . . ,bp are the rows of B.
Then,

AB =
[
a1 | a2 | . . . | ap

]

b1

b2

...
bp

 = a1b1 + a2c2 + · · ·+ apcp.

Proof Exercise.

We end this section outlining four ways in which the product of two ma-
trices can be calculated.
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How to multiply two matrices

Given a k × p matrix A and a p × n matrix B, the product AB is a
k × n matrix which can be determined as follows.

� By entry: entry-ij of AB is the product of row i of A and column j
of B (see (1.15)).

� By column: column j of AB coincides with a linear combination of
the columns of A whose coefficients are the entries of column j of B
(see Proposition 1.7 (i)).

� By row: row i of AB coincides with a ‘linear combination’ of the rows
of B whose coefficients are the entries in row i of A (see Proposition
1.7 (ii)).

� By column-row: AB is a sum of all the products aibi of columns ai
of A and rows bi of B (see Proposition 1.10).

When we restrict ourselves to considering square matrices of a fixed order,
it is always possible to calculate the product of any two such matrices and
obtain a matrix having the same size. In particular, we can multiply a matrix
by itself as many times as desired.

Definition 11 Let A be a square matrix of order k and let n ∈ N0 be a
non-negative integer. The power n of A is defined recursively by

A0 = Ik, An = AAn−1 (n ≥ 1)

In other words, when n is a positive integer, An is the product of n factors
equal to A:

An = AA · · ·A︸ ︷︷ ︸
n

.

Proposition 1.11 Let A be a square matrix and let n,m ∈ N0.

(i) An+m = AnAm

(ii) (An)m = Anm

Proof The assertions are an immediate consequence of the associativity
of the multiplication of matrices.

Definition 12 Let A be a matrix over K of size k×n. The transpose matrix
of A is the n× k matrix defined by (AT)ij = aji.



Matrices 29

Example 1.15 The transpose matrix AT of the 4× 3 matrix

A =


1 3 2
1 −1 2
1 1 −1
9 8 7


is the 3× 4 matrix

AT =

1 1 1 9
3 −1 1 8
2 2 −1 7

 .

The transposition of a matrix A can be described in a nutshell as obtaining
a new matrix whose rows are the columns of the initial matrix, i.e., row j of

AT is column j of A.

It is thus defined an operation T : Mk,n → Mn,k which satisfies the
properties listed in the next proposition.

Proposition 1.12 Let A,B be matrices over K with appropriate sizes and
let α ∈ K. Then,

(i) (AT)T = A

(ii) (A+B)T = AT +BT

(iii) (αA)T = αAT

(iv) (AB)T = BTAT

It is worth noticing that properties (ii) and (iii) above can be seen in an
informal manner as, respectively, “the transpose of a sum is the sum of the
transposes” and “the transpose of a product is the product of the transposes
in the reverse order”.

A common mistake. An often overlooked fact is that, when calcu-
lating the transpose of the product of a certain number of matrices,
one must reverse the order. More precisely, according to Proposition 1.12 (iv),
if A1, A2, . . . , Am are matrices over the same field having appropriate sizes,
then

(A1A2 . . . Am)T = AT
m . . . AT

2 A
T
1 .
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Proof We only prove (iv). Let A be a k × p and let B be a p× n matrix.
Then (AB)T is an n×k matrix whose entry ((AB)T )ij coincides with (AB)ji,
by definition. Hence

((AB)T )ij = (AB)ji =
[
aj1 aj2 . . . ajp

]

b1i
b2i
...
bpi



=
[
b1i b2i . . . bpi

]

aj1
aj2
...

ajp


= (BTAT )ij .

Definition 13 Let A be an n× n matrix over K. The matrix A is said to be
a symmetric matrix if A = AT or, equivalently, if aij = aji, for all indices
i, j = 1, . . . , n. The matrix A is said to be an anti-symmetric matrix if
A = −AT or, equivalently, if aij = −aji, for all indices i, j = 1, . . . , n.

Given a matrix A = [aij ] of order n, the main diagonal or, simply, the
diagonal of A consists of the n entries aii, where i = 1, . . . , n. The anti-
diagonal of A consists of the n entries aij such that i+ j = n+ 1.

Example 1.16 Consider the following matrices

A =

 1 2 −3
2 4 5
−3 5 −6

 B =

 0 2 −3
−2 0 5
3 −5 0

 .

Matrix A is symmetric while B is an anti-symmetric matrix. The diagonal of
A is in bold and the anti-diagonal of B is in grey.

The following consequences of Definition 13 are noteworthy.

� The diagonal of an anti-symmetric matrix is null, i.e., all its entries are
equal to zero.

� The diagonal of a symmetric matrix is ‘like a mirror’ reflecting the entries
on both sides of the diagonal.

� When finding the transpose of a square matrix, the diagonal entries
remain unchanged.

� Any square matrix A can be decomposed into a sum of a symmetric
matrix with an anti-symmetric matrix:

A = 1
2 (A+AT) + 1

2 (A−AT).
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Exercise. Show that, given a square matrix A, the matrix A + AT is sym-
metric and the matrix A−AT is anti-symmetric.

Definition 14 Let A = [aij ] be a square matrix of order n. The trace of A
is the sum of all entries in the diagonal of A, i.e.,

trA =
n∑

i=1

aii.

For example, considering the matrices A,B in Example 1.16, we have that
trA = −1 and trB = 0 (indeed, the trace of an anti-symmetric matrix is
always zero).

Proposition 1.13 Let A,B be square matrices of order n over K and let α
be a scalar. Then,

(i) tr(A+B) = trA+ trB;

(ii) tr(αA) = α trA;

(iii) trA = trAT;

(iv) tr(AB) = tr(BA).

Proof Assertions (i)–(iii) are immediate.
(iv) By Proposition 1.12 (iv) and (iii) of this proposition, we have

tr(AB) = tr((AB)T ) = tr(BTAT ).

It is now enough to show that (AB)ii = (BTAT )ii, for i =, . . . , n. But

(AB)ii =

n∑
r=1

airbri =

n∑
r=1

briair = (BTAT )ii,

as required.

Although matrix multiplication is not a commutative operation, it might
happen that two particular matrices A,B commute, that is, AB = BA. For
example, if B = A, or if A is any n×n matrix and B is the n×n zero matrix,
it is clear that AB = 0 = BA.

In the next section, we will see a square matrix of order n which commutes
with all square matrices of the same order. This is the identity matrix.
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1.3 Matrix Inverses

Definition 15 A square matrix A = [aij ] is said to be a diagonal matrix
if aij = 0 whenever i ̸= j. In other words, A is a diagonal matrix if all its
off-diagonal entries are equal to 0.

For example, the matrices

A =

[
1 0
0 −3

]
B =

0 0 0
0 2 0
0 0 9

 C =

0 0 0
0 0 0
0 0 0

 D =

1 0 0
0 1 0
0 0 1


are all diagonal matrices.

The identity matrix of order n, In, is the n×n diagonal matrix whose
diagonal entries are all equal to 1. The identity matrix will be named I when-
ever its size is clear from the context.

Matrix D above is the identity matrix of order 3, i.e., D = I3.

Proposition 1.14 Let A be an n×k matrix and let B be a k×n matrix over
the same field, and let In be the identity matrix. Then,

(i) InA = A;

(ii) BIn = B.

Proof Exercise.

Multiplication of any two matrices in Mn(K) is always possible, and the
resulting product is again a square matrix of order n. Moreover, in Mn(K), by
Proposition 1.14, In is the multiplicative identity, that is, for all A ∈ Mn(K),

AI = A = IA. (1.18)

Observe that I is the unique n × n matrix satisfying (1.18). Indeed, if one
supposes that J is an n×nmatrix such that, for allA ∈ Mn(K),AJ = A = JA,
then JI = I and also, by (1.18), JI = J . Hence J = I.

Definition 16 Let A be a square matrix of order n over the field K. A matrix
B over K is called an inverse of A if

AB = I = BA. (1.19)

Observe that, by (1.19), if such a matrix B exists then B must be a square
matrix of order n.

Lemma 1.1 Let A ∈ Mn(K) be a matrix. If there exists a matrix B satisfying
Definition 16, then B is unique.
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Proof Suppose that B,C ∈ Mn(K) are inverses of A. Then

B(AC) = BI = B and (BA)C = IC = C.

Since matrix multiplication is associative, we have B(AC) = (BA)C. It fol-
lows that B = C.

This lemma allows us to define the (unique) inverse matrix A−1 of A,
in case it exists. A matrix is said to be invertible or non-singular if it has
an inverse and is called singular, otherwise.

Example 1.17 It is not difficult to find the inverses of the matrices below.

(a) Observing that the product of the identity matrix (of any order) with
itself is again the identity matrix, we have[

1 0
0 1

]−1
=

[
1 0
0 1

]
.

This shows that the identity matrix of order 2 is invertible and is its own
inverse. Clearly, the same applies to the identity matrix of any order.

(b) Consider now the matrix A = 2I. Since

(2I)
1

2
I = I =

1

2
I(2I),

we see that

A−1 =

[
2 0
0 2

]−1
=

(
2

[
1 0
0 1

])−1
=

[
1
2 0
0 1

2

]
.

Proposition 1.15 Any square matrix having a zero row or a zero column is
not invertible.

Proof Suppose that A is an n×n matrix whose row li = 0. Then, row i of
the product AB of the matrix A and any matrix B is a zero row. Consequently,
it is impossible to have AB equal to the identity matrix and, therefore, A is
singular.

Let now the column j of A be null. It follows that the column j of BA,
where B is any n× n matrix, is also a zero column. Hence, it is not possible
for BA to be the identity from which follows that A is not invertible.

Proposition 1.16 Let A be an n×n invertible matrix over K and let b be an
n×1 column vector over the same field K. Then the system of linear equations
Ax = b has the unique solution x = A−1b.



34 Linear Algebra

Proof Let A−1 be the inverse of A and consider the system Ax = b. Then,
multiplying both members of this equality on the left by A−1, it follows that

A−1(Ax) = A−1b ⇔ (A−1A)x = A−1b

⇔ Ix = A−1b

⇔ x = A−1b.

Hence, the system is consistent and has the unique solution x = A−1b.

In Example 1.17, we found the inverses of two exceptionally simple matri-
ces. We need however to devise a method to obtain the inverse of any matrix,
should it exist. That is precisely what we will do next, using a concrete matrix
as a model.

Consider the matrix

A =

[
1 −2
−1 1

]
.

We aim to find whether this matrix is invertible and, in the affirmative situ-
ation, find its inverse. That is, we need to find, if possible, a matrix

B =

[
x1 x2

y1 y2

]
such that AB = I and BA = I.

Starting with equation AB = I, we have

A

[
x1 x2

y1 y2

]
=

[
1 0
0 1

]
.

Hence, we must solve the systems

A

[
x1

y1

]
=

[
1
0

]
A

[
x2

y2

]
=

[
0
1

]
.

Observing that both systems have the same matrix of coefficients, we will solve
them simultaneously using the Gauss–Jordan elimination method. Thus,[

1 −2 1 0
−1 1 0 1

]
l2+l1

//
[
1 −2 1 0
0 −1 1 1

]
l1−2l2

//
[
1 0 −1 −2
0 −1 1 1

]
· · ·

· · ·
−l2
//
[
1 0 −1 −2
0 1 −1 −1

]
.

Recall that the grey column corresponds to the system with variables x2, y2,
whereas the adjacent column corresponds to the system with variables x1, y1.



Matrices 35

Keeping this in mind, it follows that the unique matrix B satisfying equation
AB = I is

B =

[
−1 −2
−1 −1

]
.

At this point, we know that, if A is invertible, then B has to be its inverse.
Hence, to end our search for the inverse of A, it only remains to show that
BA = I. We only have to calculate the product BA and see that it equals I.
Hence,

A−1 =

[
−1 −2
−1 −1

]
.

The calculations above can be summed up as follows. In order to find the
inverse of

A =

[
1 −2
−1 1

]
,

1. we solved the systems of linear equations AB = I using Gauss–Jordan
elimination:

[A|I] =
[
1 −2 | 1 0
−1 1 | 0 1

]
GJE
//
[
1 0 | −1 −2
0 1 | −1 −1

]
= [I|B];

2. we verified that BA = I;

3. we concluded that A−1 = B.

Point 2. above can be avoided, as is shown in the proposition below.

Proposition 1.17 Let A,B be square matrices of order n over K and let I
be the identity matrix of order n. Then, AB = I if and only if BA = I.

Proof This result will be proved further on in the book (cf. Proposition
1.20),

Finally, the general procedure to obtain the inverse of a square matrix A,
should it exist, is summarised in the box below.

How to calculate the inverse of an invertible matrix A

Let A be an n× n matrix and let I be the n× n identity matrix.
The matrix [A|I] is reduced to the matrix [I|A−1], using Gauss–Jordan

elimination. Symbolically,

[A|I]
GJE
// [I|A−1]
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The next proposition lists some relevant properties of the inverse of a
matrix.

Proposition 1.18 Let A,B be order k invertible matrices over K, let α ∈ K
be a non-zero scalar and let n ∈ N0. Then A−1, AB, An, αA, and AT are
invertible matrices such that

(i) (A−1)−1 = A;

(ii) (AB)−1 = B−1A−1;

(iii) (An)
−1

= (A−1)
n
;

(iv) (αA)−1 = 1
αA
−1;

(v) (AT)−1 = (A−1)T.

Informally, (v) can be seen as expressing the fact that “the inverse of the
transpose is the transpose of the inverse”.

A common mistake. As observed in (ii) above, calculating the inverse of the
product of invertible matrices requires reversing the order of multiplication.
That is, if A1, A2, . . . , Am are n × n invertible matrices over the same field,
then

(A1A2 . . . Am)−1 = A−1m . . . A−12 A−11 .

Proof We prove only (ii), the remaining assertions are left as an exercise.
Directly evaluating (B−1A−1)(AB) and keeping in mind that matrix mul-

tiplication is an associative operation , we have

(B−1A−1)(AB) = B−1(A−1A)B = B−1IB = B−1B = I.

It now follows from Proposition 1.17 that B−1A−1 is the inverse matrix of
AB.

We have defined already the non-negative powers of a square matrix (see
Definition 11). We extend now the definition to negative powers of invertible
matrices by means of Proposition 1.18 (iii). In fact, this proposition allows for
unequivocally defining the integer powers of an invertible matrix A.

Definition 17 Let A be an invertible matrix of order k and let n ∈ N be a
positive integer. The power −n of A is defined by

A−n = (An)−1 = (A−1)n.

Proposition 1.19 Let A be an invertible matrix and let r, s ∈ Z.

(i) Ar+s = ArAs

(ii) (Ar)s = Ars

Proof Exercise.
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1.4 Elementary Matrices

This section is devoted to the elementary matrices and to their outstand-
ing role amongst the invertible matrices. We shall see that they are generators
of the invertible matrices inasmuch as any such matrix is a product of elemen-
tary matrices. In broad strokes, an elementary matrix of order n is a matrix
obtained from the identity through a single elementary operation (hence the
name). Since there are three types of elementary operations, we get three
types of elementary matrices.

Definition 18 A square matrix of order n is said to be an elementary ma-
trix if it coincides with one of the matrices Pij, Eij(α), Di(α) below.

� Pij (with i < j): the matrix that is obtained from the identity matrix (of
order n) by exchanging rows i and j;

� Eij(α) (with i ̸= j) : the matrix that is obtained from the identity matrix
by adding to row i row j multiplied by α ∈ K;

� Di(α) (with α ̸= 0): the matrix that is obtained from the identity matrix
multiplying row i by α.

The three types of elementary are illustrated below. The rows and columns
i are coloured light grey and the rows and columns j are coloured dark grey.

Pij =



1 0 · · · 0 · · · 0 · · · 0
0 1 · · · 0 · · · 0 · · · 0
...

...
. . .

...
...

...
0 0 · · · 0 · · · 1 · · · 0
...

...
...

. . .
...

...
0 0 · · · 1 · · · 0 · · · 0
...

...
...

...
. . .

...
0 0 · · · 0 · · · 0 · · · 1



Eij(α) =



1 0 · · · 0 · · · 0 · · · 0
0 1 · · · 0 · · · 0 · · · 0
...

...
. . .

...
...

...
0 0 · · · 1 · · · α · · · 0
...

...
...

. . .
...

...
0 0 · · · 0 · · · 1 · · · 0
...

...
...

...
. . .

...
0 0 · · · 0 · · · 0 · · · 1


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Di(α) =



1 0 · · · 0 · · · 0 · · · 0
0 1 · · · 0 · · · 0 · · · 0
...

...
. . .

...
...

...
0 0 · · · α · · · 0 · · · 0
...

...
...

. . .
...

...
0 0 · · · 0 · · · 1 · · · 0
...

...
...

...
. . .

...
0 0 · · · 0 · · · 0 · · · 1


Given an n × p matrix A over K, we describe next how these elementary

matrices act on A when multiplied on the left. Hence all elementary matrices
considered must be of order n, obviously.

� A′ = PijA: the matrix A′ is obtained by exchanging rows i and j of A,
i.e., in the pre-established notation,

A
li↔lj

// A′ = PijA

� A′ = Eij(α)A: the matrix A′ is obtained from A adding to row i row j
multiplied by α, i.e.,

A
li+αlj

// A′ = Eij(α)A

� A′ = Di(α)A: the matrix A′ is obtained multiplying row i of A by α,
i.e.,

A
αli

// A′ = Di(α)A

It is a simple exercise to see that the results above are true. It is however
desirable that one convinces oneself that the results do hold.

Having reached this point, we see that performing an elementary opera-
tion on a matrix A amounts to multiplying A on the left by the appropriate
elementary matrix. Summing it all up in a sort of
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Dictionary

Elementary operation Elementary matrix

A
li↔lj

// A′ PijA = A′

A
li+αlj

// A′ Eij(α)A = A′

A
αli

// A′ Di(α)A = A′

Example 1.18 We examine now under this new light of elementary matrices
the calculations we made to find the inverse matrix of

A =

[
1 −2
−1 1

]
.

The elementary operations that were performed on matrix [A|I] correspond to
the following sequential multiplications by elementary matrices:

Elementary operations

l2 + l1

l1 + (−2)l2

(−1)l2

Multiplication by elementary matrices

[
E21(1)A | E21(1)I

]
[
E12(−2)E21(1)A | E12(−2)E21(1)I

]
[
D2(−1)E12(−2)E21(1)A | D2(−1)E12(−2)E21(1)I

]
Hence

D2(−1)E12(−2)E21(1)A = I D2(−1)E12(−2)E21(1)I = A−1

(cf. §1.3). It follows that A−1 is a product of elementary matrices, i.e.,

A−1 = D2(−1)E12(−2)E21(1).

A common mistake. One should keep in mind that, in the Gaussian elimi-
nation or in the Gauss-Jordan elimination, the elementary matrices are always
sequentially multiplied on the left.

All elementary matrices are invertible and their inverses are also elemen-
tary matrices. It is left as an exercise to see that
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Inverses of elementary matrices

(Pij)
−1 = Pij

(Eij(α))
−1 = Eij(−α)

(Di(α))
−1 = Di

(
1

α

)
Next we prove Proposition 1.17 whose statement we recall. Before, however,
we make a note of a simple but useful fact to be applied in the proof of this
proposition.

The reduced row echelon form of an invertible matrix is the identity matrix.

(Why?)

Proposition 1.20 Let A,B be n×n matrices over K and let I be the identity
matrix of order n. Then AB = I if and only if BA = I.

Proof Suppose initially that AB = I, and let E1, E2, . . . , Ek be elementary
matrices such that E1E2 . . . EkA is the reduced row echelon form of A. The
reduced row echelon form of A cannot have any zero row. In fact, should it
have a zero row, so would the matrix

E1E2 . . . EkAB = E1E2 . . . EkI.

But this is impossible since E1E2 . . . EkI is a product of invertible matrices
and, by Proposition 1.18 (ii), is itself invertible. It follows that

E1E2 . . . EkA︸ ︷︷ ︸
I

B = E1E2 . . . Ek.

That is, B is a product of invertible matrices and, hence, is invertible. Multi-
plying on the right both members of the equality AB = I by B−1, we have

(AB)B−1 = IB−1 ⇐⇒ A = B−1.

Hence, by the definition of inverse matrix, we have AB = BA = I.
Exchanging the roles of the matrices A and B in the above reasoning, we

can show similarly that BA = I implies AB = I.

Proposition 1.21 Let A be a square matrix of order n over K. Then A is
invertible if and only if rank (A) = n.
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Proof We must prove the implications

rank (A) = n ⇒ A is invertible

and
A is invertible ⇒ rank (A) = n.

We begin by proving the first implication. Suppose that A is a square matrix
of order n having rank n. Then, by Proposition 1.3 (ii), the systems of linear
equations

A


x11

x21

...
xn1

 =


1
0
...
0

 A


x12

x22

...
xn2

 =


0
1
...
0

 . . . A


x1n

x2n

...
xnn

 =


0
0
...
1


are consistent and each one of them has a unique solution. Hence, there exists
an n× n matrix B such that AB = I. By Proposition 1.20, it follows that A
is invertible.

As to the second implication, we shall prove equivalently that

rank (A) ̸= n ⇒ A is not invertible.

If rank (A) < n, then, by Proposition 1.3 (ii), each of the systems above is
either inconsistent or consistent with dependent variables. If some system is
inconsistent, then A is not invertible. If on the other hand the remaining
situation occurs, i.e., all systems are consistent, we would have infinitely many
solutions, contradicting the uniqueness of the inverse matrix (see Lemma 1.1).

The following theorem gives necessary and sufficient conditions for a square
matrix to be invertible. This is the first of four sets of conditions that will
appear in this book.

Theorem 1.1 (Necessary and sufficient conditions of invertibility (I))
Let A be a square matrix of order n over K. The following assertions are equiv-
alent.

(i) A is invertible.

(ii) rank (A) = n.

(iii) A is a product of elementary matrices.

(iv) A can be transformed in the identity matrix by elementary operations.

(v) The reduced row echelon form of A is the identity matrix.

(vi) The homogeneous system of linear equations Ax = 0 admits only the
trivial solution.
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(vii) Given a column vector b of size n × 1, the system of linear equations
Ax = b is consistent and has a unique solution.

Before the proof of this theorem, observe that (iii) is a very striking asser-
tion. It says, in other words, that

Any invertible matrix, and hence all invertible matrices, can be expressed
as products of elementary matrices. In this sense, elementary matrices are
‘generators’ of the invertible matrices.

Proof We shall show that

(i)⇒ (ii)⇒ (iii)⇒ (iv)⇒ (v)⇒ (vi)⇒ (vii)⇒ (i).

The equivalence between (i) and (ii) has been proved already (cf. Proposi-
tion 1.21).

(ii) ⇒ (iii) Let R be the reduced row echelon form of A. Then there exist
elementary matrices E1, E2, . . . , Ek such that E1E2 . . . EkA = R.

Since by definition rank (A) = rank (R), we have rank (R) = n. It follows
that R = I and E1E2 . . . EkA = I. Multiplying on the left both members of
this equality sequentially by E1

−1, E2
−1, . . . , Ek

−1,

A = Ek
−1 · · ·E2

−1E1
−1.

Hence we see that A is a product of elementary matrices.
(iii) ⇒ (iv) Since A is a product of elementary matrices, hence invert-

ible matrices, A is itself invertible (cf. Proposition 1.18). It now follows from
Proposition 1.21 that rank (A) = n. Hence the reduced row echelon form of A
is the identity matrix.

(iv)⇒ (v) This implication is obvious. (It is an equivalence, in fact.)
(v)⇒ (vi) Suppose that the reduced row echelon of A is the identity matrix.

Then there exist elementary matrices E1, E2, . . . , Ek such that

E1E2 . . . EkA = I.

Multiplying both members of the equation Ax = 0 by E1E2 . . . Ek,

E1E2 . . . EkA︸ ︷︷ ︸
I

x = 0 ⇐⇒ x = 0.

(vi) ⇒ (vii) We show firstly that, for each column vector b, the system
Ax = b is consistent.

Suppose that, on the contrary, there exists b such that Ax = b is inconsis-
tent. Hence, by Proposition 1.3, we must have rank (A) < n and, consequently,
the homogeneous system Ax = 0 has infinitely many solutions which contra-
dicts the initial assumption.
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We see next that the system Ax = b has a unique solution. Suppose that
x1,x2 are solutions of Ax = b. Then

Ax1 = Ax2 ⇐⇒ A(x1 − x2) = 0.

Since we assumed that the homogeneous system only admits the trivial solu-
tion, then

x1 − x2 = 0 ⇐⇒ x1 = x2.

(vii)⇒ (i) We want to show that A is invertible, that is, we want to show
that there exists a matrix B such that AB = I (cf. Proposition 1.20). In other
words, we must show that the n systems below are all consistent 1:

Ax =


1
0
...
0
0

 Ax =


0
1
...
0
0

 . . . Ax =


0
0
...
0
1


But this is exactly what assertion (vii) guarantees, since whichever vector b
might be considered the system Ax = b is consistent (and has a unique solu-
tion). Hence A is invertible, as required.

1.4.1 LU and LDU factorisations

A square matrix A = [aij ] of order n is said to be upper triangular if,
for all i, j = 1, . . . , n with j < i, then aij = 0. Hence in an upper triangular
matrix A all entries below the diagonal are equal to zero, i.e.,

A =


a11 a12 · · · · · · a1n
0 a22 · · · · · · a2n
0 0 a33 · · · a3n
...

...
. . .

...
0 0 · · · 0 ann

 .

Similarly, a matrix A = [aij ] of order n is said to be lower triangular if, for
all i, j = 1, . . . , n with i < j, then aij = 0. Hence in a lower triangular matrix
all entries above the diagonal are equal to zero. For example, any elementary
matrix Eij(α) can be upper triangular or lower triangular and each elementary
matrix Di(α) is both upper and lower triangular.

Proposition 1.22 A product of two n × n upper triangular matrices
(respectively, lower triangular matrices) is an n × n upper triangular matrix
(respectively, a lower triangular matrix).

1Notice that, if these n systems are simultaneously consistent, then each one of them
has a unique solution, given the uniqueness of the inverse matrix (cf. Lemma 1.1).
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Morevorer, if an n × n upper (respectively, lower) triangular matrix A is
invertible, then its inverse A−1 is also upper (respectively, lower) triangular.

Proof We prove the proposition only in the case of upper triangular matri-
ces. The proof for lower triangular matrices is similar (or use transposition).

Suppose that A,B are n×n upper triangular matrices. By Proposition 1.6
(ii), for each j = 1, . . . , n, column j of AB is a linear combination of the
columns of A whose coefficients are the entries in column j of B.

Since B is also upper triangular, it follows that column j of AB is a linear
combination of the first j columns of A. To see this, observe that in column j
of B, all entries in rows j + 1, . . . , n coincide with zero.

Since each of the first j columns of A has zeros below row j, it follows that
the same occurs in column j of AB.

Suppose now that A is an invertible upper triangular matrix. By Theorem
1.1 (v), the reduced row echelon form of A is the identity. Observe that this
immediately implies that all diagonal entries of A are non-zero.

Since A is already upper triangular, to reduce it to the identity matrix,
one uses Gauss–Jordan elimination where the Gaussian elimination is not
required.

It follows that the elementary operations needed correspond to multiplica-
tions by upper triangular elementary matrices E1, E2, . . . Ek. More precisely,

E1E2 . . . EkA = I, A−1 = E−1k E−12 . . . E−11 .

Since E−11 , E−12 , . . . E−1k are upper triangular, it follows from the first part of
this proposition, that A−1 is also an upper triangular matrix.

We have seen that applying Gaussian elimination to a given matrix A
amounts to successively multiplying A on the left by elementary matrices.
Since this process involves ‘descending’ in the matrix A, whenever matrices of
type Eij(α) are used, they must be lower triangular.

Notice that, if A is an n×n square matrix, Gaussian elimination transforms
A in an upper triangular matrix U .

Suppose also that no exchange of rows is used in obtaining U . Then, there
exists an integer k such that

EkE2 . . . E1A = U,

where E1, E2, . . . , Ek are all lower triangular elementary matrices. Hence

A = E−11 . . . E−12 E−1k U.

Since each inverse matrix is also a lower triangular elementary matrix, it
follows, by Proposition 1.22, that there exists a lower triangular matrix L
such that

A = LU.
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Notice that if a matrix A (be it square or not) can be reduced to row
echelon form without row exchange, then this reduction can be done using
only the type (iii) operations of Definition 2.

Example 1.19 Let A be the matrix

A =

1 1 −1
2 0 3
0 2 −2


for which we want to find a LU factorisation. Gaussian elimination gives

E32(1)E21(−2)A =

1 1 −1
0 −2 5
0 0 3


︸ ︷︷ ︸

U

,

from which follows that

A = E21(2)E32(−1)︸ ︷︷ ︸
L

U,

where

L =

1 0 0
2 1 0
0 −1 1

 .

We can now summarise this discussion in the following result.

Proposition 1.23 Let A be an n × n matrix which can be reduced to a row
echelon matrix without row exchange. Then, there exist an upper triangular
matrix U and a lower triangular matrix L, whose entries lii = 1, for all
i = 1, . . . , n, such that A = LU . Moreover, if A is invertible then the matrices
L and U are unique.

Proof It only remains to show the uniqueness part of the proposition.
Let A = L1U1 and A = L2U2 be factorisations of A. Since A,L1, L2 are

invertible matrices, then U1, U2 must also be invertible. If follows that L−12 L1 =
U2U

−1
1 . Hence, L−12 L1 and U2U

−1
1 must be diagonal matrices. However, for

all i = 1, . . . , n,
(L1)ii = 1 = (L2)ii = (L−12 )ii,

from which follows that L−12 L1 = I = U2U
−1
1 . Consequently, it must be the

case that L2 = L1 and U2 = U1, concluding the proof.
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How to obtain a LU factorisation of a square matrix

Let A be a square matrix which can be reduced to a row echelon form
without exchanging rows.

1. Reduce A to a row echelon form U using Gaussian elimination. That
is, find (lower triangular) elementary matrices E1, E2, . . . , Ek of type
Eij(α) such that

EkE2 . . . E1A = U,

where U is an upper triangular matrix.

2. Construct a lower triangular matrix L = [lij ] such that, for all i =
1, . . . , n,

(a) lii = 1;

(b) for j < i, the entry lij = −α, whenever Eij(α) is used in the
Gaussian elimination in 1., and lij = 0 otherwise.

3. Then A = LU .

Suppose that A is a square matrix whose reduction to row echelon form
does not require row exchange. Similarly to Example 1.19, when looking for a
LU factorisation of A, the resulting matrix L has all its diagonal entries equal
to 1, since we can choose to use only elementary matrices of type Eij(α). Notice
also that each entry-ij below the diagonal of L is either the additive inverse
of the multiplier α, if a matrix Eij(α) was used in the Gaussian elimination,
or is otherwise zero.

As is clear in Example 1.19, the diagonal entries of matrix U are not
necessarily equal to 1. We can nevertheless obtain a factorisation of A where
U has all its non-zero diagonal entries equal to 1 by means of a suitable
diagonal matrix D.

Example 1.20 Considering matrix U of Example1.19, we have

U =

1 1 −1
0 −2 5
0 0 3

 =

1 0 0
0 −2 0
0 0 3


︸ ︷︷ ︸

D

1 1 −1
0 1 −5/2
0 0 1


︸ ︷︷ ︸

U ′

,

yielding

A = LDU ′ =

1 0 0
2 1 0
0 −1 1


︸ ︷︷ ︸

L

1 0 0
0 −2 0
0 0 3


︸ ︷︷ ︸

D

1 1 −1
0 1 −5/2
0 0 1


︸ ︷︷ ︸

U ′

.
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Corollary 1.1 Let A be an invertible n × n matrix which can be reduced
to a row echelon matrix without row exchange. Then, there exist uniquely a
lower triangular matrix L = [lij ], an upper triangular matrix U = [uij ], and a
diagonal matriz D such that A = LDU with lii = 1 = uii, for all i = 1, . . . , n.

Proof By Proposition 1.23, there exists a unique factorisation A = LU
with U upper triangular and L lower triangular with lii = 1. Let D be the
diagonal matrix whose entries dii = uii, for all i = 1, . . . , n. Then

A = LU = LDU ′,

u
′

ii = 1, for all i = 1, . . . , n, and the uniqueness of L and U implies that of D
and U ′.

How to obtain the LDU factorisation of an invertible matrix

Let A be an invertible matrix which can be reduced to a row echelon
form without exchanging rows.

1. Calculate the unique factorisation A = LU , as described before.

2. Then A = LDU ′ where D is the diagonal matrix with entries dii =
uii, for all i = 1, . . . , n, and

U ′ = D1(u
−1
11 )D2(u

−1
22 ) . . . Dn(u

−1
nn)U.

The LU factorisation can be used to solve systems of linear equations in
two simpler steps. Suppose that we want to solve the system Ax = b. If one
has a LU factorisation of A, then

Ax = L Ux︸︷︷︸
y

= b.

One can solve firstly Ly = b, by forward substitution, and then Ux = y,
by back substitution, as shown in the example below.

Example 1.21 Consider the matrix A of Example 1.19 and its LU factori-
sation. We shall make use of A = LU to solve the system

Ax =

1 1 −1
2 0 3
0 2 −2

x1

x2

x3

 =

 1
0
−1


in two steps. In the first step, we solve the system

Ly =

1 0 0
2 1 0
0 −1 1

y1y2
y3

 =

 1
0
−1

 .
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Using forward substitution, we have y1 = 1,

y2 = −2y1 = −2

and
y3 = y2 − 1 = −3.

In the second step, we have

Ux =

1 1 −1
0 −2 5
0 0 3

x1

x2

x3

 =

 1
−2
−3

 .

Using back substitution, it follows that x3 = −1,

x2 = −1

2
(−5x3 − 2) = −3

2

and

x1 = −x2 + x3 − 1 =
3

2
− 1− 1 = −1

2
.

1.5 Exercises

EX 1.5.1. Find which of the equations are linear.

(a)
√
12x1 + x2 − 8−

1
7x3 = 10 (b) − x1 + x1x2 + 2x3 = 0

(c) v − π =
√
eu+ e

2
3 z − 2πw (d) y

1
7 − 6x+ z = 5

1
4

EX 1.5.2. Use Gaussian elimination or Gauss–Jordan elimination to solve
the homogeneous systems of linear equations below.

(a)


2x1 + 3x2 = 0

− 2x1 − 2x2 − 6x3 = 0

− x2 − x3 = 0

(b)

{
−10x1 +2x2−2x3+2x4= 0

2x1+2x2+2x3+2x4= 0

(c)


2ix+ 2iy + 4iz = 0

w − y − 3z = 0

2w + 3x+ y + z = 0

− 2iw + ix+ 3iy − 2iz = 0
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EX 1.5.3. Without any calculations, find which of the homogeneous systems
might have non-trivial solutions. (It is allowed to write the coeffi-
cient matrix of the sytems.)

(a)


x1 − 3x2 + 5x3 − x4 = 0

3x1 + x2 − 10x3 + x4 = 0

x1 + x2 + x3 − 11x4 = 0

(b)


a11x1 + a12x2 + a13x3 = 0

a21x1 + a22x2 + a23x3 = 0

a31x1 + a32x2 + a33x3 = 0

a41x1 + a42x2 + a43x3 = 0

(c)

{
− 2v + 3u = 0

6u− 4v = 0
(d)


20x+ 3y − z = 0

− 10y − 8z = 0

10y + 4z = 0

EX 1.5.4. Use Gaussian elimination or Gauss–Jordan elimination to solve
the non-homogeneous systems of linear equations below.

(a)


x+ 2y − 3z = −1
− 3x− 3y − 6z = −24
3

2
x− 7

2
y + z = 5

(b)


8x1 + x2 + 4x3 = −1
− 2x1 + 5x2 + 2x3 = 1

x1 + x2 + x3 = 0

(c)


− v +

3

2
w =

1

2

2u+ 2v + w =
5

3
6u+ 12v − 6w = −4

(d)


2w + 4x− 2y = 8

− 3x+ 3y = −9
− 2u− 4v − w − 7x = −7
2w + 6x− 4y = 14

EX 1.5.5. For each of the sets listed, find a system of linear equations whose
solution set is that set.

(a) {(1, 2, 3)}
(b) {(1, 2, t) : t ∈ R}
(c) {(y,−3y, y) : y ∈ R}
(d) {(x, 2x− z − w, z) : x, z, w ∈ R}

EX 1.5.6. Which of the 3 × 3 matrices are row echelon matrices? Which
matrices are in reduced row echelon form? What is the rank of
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each matrix?

(a)

3 0 0
0 3 0
0 0 3

 (b)

2 0 0
0 2 0
0 0 0

 (c)

0 1 + i 0
0 0 12i
0 0 0


(d)

1 0 0
0 0 −1
0 0 0

 (e)

0 5 0
3 0 0
0 0 0

 (f)

1 6 0
0 1 0
0 0 0


(g)

1 + i 0 0
0 0 0
0 0 1− i

 (h)

0 0 0
0 0 0
0 0 0

 (i)

0 2 0
0 1 0
0 0 0


(j)

2 1 0
0 −2 + i 0
0 1 + 5i 1 + i

 (k)

20 −10 0
0 0 −60
0 0 2

 (l)

2 10 0
0 −1 20
0 0 0


EX 1.5.7. Find the reduced row echelon form and the rank of the matrix

A =

1 1 1 2 0
2 1 2 2 1
1 1 2 1 0

 .

EX 1.5.8. Let

Aα =

 1 1 0
0 α α
−1 0 α2

 and consider the system Aα

xy
z

 =

00
β

 ,

where α, β ∈ R. Determine the rank of Aα in terms of α. Clas-
sify the systems for all α, β ∈ R and, whenever the systems are
consistent, indicate the number of independent variables.

Solve the systems when α = 2, β ∈ R.

EX 1.5.9. Discuss the solutions of the homogeneous system Aαx = 0 in terms
of α, where

Aα =


0 1 1 1
1 1 −1 1
4 4 −α2 α2

2 2 −2 α

 .

EX 1.5.10. If possible, calculate A+ B, B + C, 2A, AB, BA, CB, trB, and
trC for

A =

 1 −2
4 1√
2 3

 B =

1 √
3 0

2 −1 1
π 2 −1

 C =

6 0 0
0 −4 0
0 0 10


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EX 1.5.11. Let A and B be the matrices

A =

 1 0 1
2 −7 1
−1 −1 1

 B =

−1 0 −1
1 −1 1
1 1 −1

 .

a) Find the entry-(23) and the second column of AB.

b) Calculate (A−B)T and its trace.

EX 1.5.12. Let A,B,C, and D be matrices such that

A is a 1× 3 matrix B is a 3× 1 matrix

C is a 1× 3 matrix D is a 3× 3 matrix

Choose the correct assertion.

A) The size of (A+ C)A is 1× 3.

B) The trace of A might be zero.

C) (5CB)T = 5CTBT .

D) D(CBA+ C)T is a 3× 1 matrix.

EX 1.5.13. Find the 3 × 3 anti-symmetric matrix A = [aij ] such that, for all
j < i,

aij = i− j.

EX 1.5.14. Find a rank one symmetric matrix A such that24
8


is a column of A.

EX 1.5.15. Find an expression for An, where A =

[
0 −i
i 0

]
.

EX 1.5.16. Fill in the entries of the matrix

A =

−1 2 . . .
0 1 . . .
1 . . . . . .


such that rank (A) = 2 and (−1,−1, 1) is a solution of Ax = 0.
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EX 1.5.17. Use Gauss–Jordan elimination to find the inverse, if possible, of
the following matrices.

(a)

[
1 2
4 7

]
(b)

[
−3 4
6 5

]
(c)

[
6 −3
−4 2

]

(d)

 3 1 2
4 0 5
−1 3 −4

 (e)

−1 0 −4
2 0 1
−4 0 −9

 (f)

2 2 2
6 7 7
6 6 7



(g)


1 1 1 1
0 3 3 3
0 0 5 5
0 0 0 7

 (h)


0 0 0 0
4 0 2

5 −9
−8 17 2 1

3
−1 13 4 2


EX 1.5.18. For

A =

[
1 2
0 1

]
,

find A3, A−3, A2 − 2A+ I, and (A− I)2. Solve the equation

A−1X(A+ I)2 = A+AT.

EX 1.5.19. Find the elementary operation and the corresponding elementary
matrix needed to obtain the identity matrix from each of the fol-
lowing matrices.

(a)

[
1 0
5 1

]
(b)

1 0 0
0 1 0
0 0 −3

 (c)


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 (d)


1 0 0 0
0 1 0 0
0 − 1

2 1 0
0 0 0 1


EX 1.5.20. Find elementary matrices E1 and E2 such that the matrix

A =


1 0 0 0
0 −5 0 −1
0 0 1 0
0 0 0 1


is such that A = E1E2. Write A−1 as a matrix product, using E1

and E2.

EX 1.5.21. Let A be a 3× 3 real matrix such that

A = E1E2R,

where R is a rank-2 row echelon matrix, and

E1 = D3(−1) E2 = E21(3).

Find all the correct assertions in the following list.
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I. A = E2R.

II. A ia an invertible matrix.

III. A has a single zero row.

IV. The system of linear equations

Ax =
[
0
0
1

]
might be consistent.

A) II e III B) I e II e III C) I e IV D) I e III

EX 1.5.22. Show that the only matrices which commute with all n × n ma-
trices are the n× n scalar matrices, that is, matrices which are
multiples of the identity matrix.

EX 1.5.23. Find the LU and LDU decompositions of

A =

 4 −8 20
−20 45 −105
−12 44 −79

 .

Use the LU decomposition to solve the system Ax = b with b =
(12,−65,−56).

1.6 At a Glance

In a nutshell, this chapter is about the introduction of an object, the
matrix, and of the development of a toolkit to effectively extract knowledge
about the object, which will be put to use in the following chapters.

Matrices are crucial in the book, and several fundamental notions related
with matrices were established here and will be relied upon in the remainder
of the book, notably, the rank and the inverse of a matrix. To be determined,
both rank and inverse lean on two methods known as Gaussian elimination
and Gauss–Jordan elimination. These methods aim at finding, respectively,
a row echelon form and the (unique) reduced row echelon form of a matrix.
Gaussian and Gauss–Jordan eliminations will be used extensively throughout
the book and matrices are mostly what this book is about.

We know now how to operate with matrices (addition, multiplication by
a scalar, and multiplication) and to do elementary operations by means of
elementary matrices. In fact, invertible matrices are exactly the products of
elementary matrices.

In this chapter, matrices were applied to the solution of systems of lin-
ear equations via Gaussian elimination or Gauss–Jordan elimination. These
eliminations led to the LU and the LDU factorisations of matrices involv-
ing the products of diagonal, lower triangular, and upper triangular matrices.
Matrices of all these types will play a decisive role in what follows.
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In the previous chapter, we learned how to calculate the rank of a given
matrix. This is a remarkable number whose importance we have only begun
to unveil. It is indeed outstanding that we can use it to classify systems of
linear equations and to determine the invertibility of matrices (see Proposition
1.3 and Theorem 1.1).

Still in this trait, the present chapter is entirely devoted to another striking
number: the determinant of a square matrix. Here we shall see how to use it
to decide about the invertibility of a matrix, calculate matrix inverses and
solve systems of linear equations (Cramer’s rule). The influential role of the
determinant does not stop here however since it will be absolutely essential in
Chapter 4 and, as a consequence, will be in the background of the following
chapters.

Chapter 2 presents two approaches to calculate the determinant, either
axiomatically or through formulas (Leibniz’s and Laplace’s). The axiomatic
approach seems at first glance to be the most detached from ‘reality’. In fact, it
is quite the opposite as it boils down to using Gaussian elimination to calculate
the determinant and, in this way, being the most time-saving process.

2.1 Axiomatic Definition

As said above, we wish to assign a number, the determinant, to each square
matrix of a given size. Hence, if we fix the size of the matrices, say n × n
matrices, and A is an n × n matrix over K, we shall define the determinant,
detA, of the matrix A as a scalar in K. In other words, we have a function
defined from Mn(K) to K assigning to each matrix A the number detA.

A word of advice: if seeing a function defined using axioms rather than
formulas causes some anxiety, then the reader is advised to go firstly to §2.2,
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where this function is defined in a traditional way, and then come back to §2.1.
In the end, however, it will be apparent that the easiest way of calculating the
determinant is that of the present section.

Definition 19 The determinant function

det : Mn(K)→ K
A 7→ detA

is the only function satisfying the following axioms:

(Ax1) det I = 1;

(Ax2) det(PijA) = −detA (with i ̸= j, i, j = 1, . . . , n);

(Ax3) Given α ∈ K and i ∈ {1, . . . , n},

det

 ...
αli
...

 = α det

 ...
li
...



det



l1
...

li−1

li+l′i
li+1

...
ln

 = det


l1
...

li−1

li
li+1

...
ln

+ det



l1
...

li−1

l′i
li+1

...
ln

 ,

where li, l
′
i are matrix rows. The number detA is called the determinant of

the matrix A.

Notice that, in (Ax3), α may take the value 0.
Axiom (Ax1) is clear enough, it says that the determinant of the n × n

identity matrix is 1. Axiom (Ax2) tells you that if two rows of a matrix A
are exchanged then the determinant changes sign or, equivalently, detA is
multiplied by −1. Axiom (Ax3) establishes that if one has two matrices

A =


l1
...

li−1

li
li+1

...
ln

 , B = det



l1
...

li−1

l′i
li+1

...
ln

 (2.1)
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whose rows coincide except possibly for row i, then one can construct a new
matrix

C = det



l1
...

li−1

li+l′i
li+1

...
ln

 (2.2)

whose rows coincide with those of A and B, except possibly for row i which is
the sum of the corresponding rows of A and B, one has that the determinant
detC of the matrix C satisfies

detC = detA+ detB. (2.3)

It is not obvious that these axioms define a function or even that this
function is uniquely defined. In fact, this is the case: there exists a unique
function satisfying (Ax1)–(Ax3) in Definition 19. The existence and unique-
ness of the determinant function will be shown in due course (see Sections
2.2 and 8.2), but first we want to make clear that we can calculate the de-
terminant of any given matrix just by abiding to the rules (Ax1)–(Ax3) above.

Notation. In what follows, the determinant of A may be denoted by detA
or |A|.

Example 2.1 Firstly consider the 1× 1 matrix A = [α], where α ∈ K. Then,
by (Ax3),

det[α] = α det[1].

It now follows from (Ax1) that

det[α] = α det[1] = α1 = α.

Example 2.2 Now let A be a diagonal matrix. Repeatedly using (Ax3),

detA = det


a11 0 0 · · · 0
0 a22 0 · · · 0
0 0 a33 · · · 0
...

...
...

. . .
...

0 0 0 · · · ann

 = a11 det


1 0 0 · · · 0
0 a22 0 · · · 0
0 0 a33 · · · 0
...

...
...

. . .
...

0 0 0 · · · ann

 =

= a11a22 det


1 0 0 · · · 0
0 1 0 · · · 0
0 0 a33 · · · 0
...

...
...

. . .
...

0 0 0 · · · ann

 = a11a22a33 . . . ann det


1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

 .

Hence, applying now (Ax1),
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det


a11 0 0 · · · 0
0 a22 0 · · · 0
0 0 a33 · · · 0
...

...
...

. . .
...

0 0 0 · · · ann

 = a11a22a33 . . . ann det I

= a11a22a33 . . . ann1

Hence
detA = a11a22a33 . . . ann.

Summarising both examples,

The determinant of a diagonal matrix is the product of its diagonal entries.

Proposition 2.1 Let A be a square matrix over K. The following hold.

(i) If A has two equal rows then |A| = 0.

(ii) If A has a zero row then |A| = 0.

(iii) The determinant remains unchanged if one replaces row li of A by li +
αlj, where i ̸= j, α ∈ K.

Notice that Proposition 2.1 (iii) refers to an elementary operation and
asserts that for this particular operation the determinant does not change.
Hence now we know that, whenever doing Gaussian elimination, this type of
operation leaves unchanged the determinant of the initial matrix.

Proof (i) If A is a matrix such that its rows i and j (with i ̸= j) are
equal, then A = PijA and, consequently,

detA = det(PijA).

On the other hand, by Axiom (Ax2), det(PijA) = − detA. It then follows that

detA = det(PijA) = −detA.

Hence
detA = −detA⇔ 2 detA = 0⇔ detA = 0.

(ii) Let li be a zero row of matrix A and let A′ be the matrix obtained from
A by multiplying row li by α = 0. By Axiom (Ax3), we have

detA = detA′ = α detA = 0detA = 0.
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(iii) Consider the matrix

A =



l1
...
li
...
lj

...
ln


.

Using Axiom (Ax3), we have

det



l1
...

li−1

li+αlj
li+1

...
lj

...
ln


= det



l1
...

li−1

li
li+1

...
lj

...
ln


+ det



l1
...

li−1

αlj
li+1

...
lj

...
ln



= det



l1
...

li−1

li
li+1

...
lj

...
ln


+ α det



l1
...

li−1

lj
li+1

...
lj

...
ln


.

Observing that the last matrix has two equal rows, assertion (i) of this propo-
sition yields

det



l1
...

li−1

li+αlj
li+1

...
lj

...
ln


= det



l1
...

li−1

li
li+1

...
lj

...
ln


+ 0 = detA,

which ends the proof.

If A is an upper triangular matrix, two possibilities can occur: either (1)
all diagonal entries of A are non-zero or (2) some diagonal entry of A is equal
to zero.

In the first case, the Gauss-Jordan elimination process applied to A will
yield a diagonal matrix, this being done using elementary operations of type
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(iii) only (see Definition 2). Hence

A =


a11 a12 · · · a1n
0 a22 · · · a2n
...

...
. . .

...
0 0 · · · ann

 GJE
//


a11 0 · · · 0
0 a22 · · · 0
...

...
. . .

...
0 0 · · · ann


Observe that here we stopped the Gauss–Jordan elimination before changing
all pivots to 1. By Proposition 2.1 (iii), we have now

detA =


a11 a12 · · · a1n
0 a22 · · · a2n
...

...
. . .

...
0 0 · · · ann

 = det


a11 0 · · · 0
0 a22 · · · 0
...

...
. . .

...
0 0 · · · ann

 = a11a22 · · · ann.

In case (2), let akk be the first from below zero entry in the diagonal.
Using only elementary operations of type (iii) in Definition 2 and the (non-
zero) entries ann, . . . , ak+1,k+1, we can change row k into a zero row (see the
grey rows in the matrices below).

A =



a11 a12 · · · a1k a1,k+1 · · · a1n
0 a22 · · · a2k a2,k+1 · · · a2n
...

...
. . .

...
...

...
0 0 · · · 0 ak,k+1 · · · akn
0 0 · · · 0 ak+1,k+1 · · · ak+1,n

...
...

...
...

. . .
...

0 0 · · · 0 0 · · · ann


GJE
//

A =



a11 a12 · · · a1k 0 · · · a1n
0 a22 · · · a2k 0 · · · a2n
...

...
. . .

...
...

...
0 0 · · · 0 0 · · · 0
0 0 · · · 0 ak+1,k+1 · · · 0
...

...
...

...
. . .

...
0 0 · · · 0 0 · · · ann


Observing that, by Proposition 2.1 (iii), the elementary operations used do
not change the determinant,
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detA = det



a11 a12 · · · a1k 0 · · · a1n
0 a22 · · · a2k 0 · · · a2n
...

...
. . .

...
...

...
0 0 · · · 0 0 · · · 0
0 0 · · · 0 ak+1,k+1 · · · 0
...

...
...

...
. . .

...
0 0 · · · 0 0 · · · ann


= 0.

Hence, the analysis done of (1) and (2) above yields

The determinant of an upper triangular matrix is the product of its diag-
onal entries:

det


a11 a12 · · · a1n
0 a22 · · · a2n
...

. . .
...

0 · · · 0 ann

 = a11a22 · · · ann.

The axioms of the determinant function together with Proposition 2.1
describe completely how the elementary operations change the determinant.
On the other hand, any square matrix can be reduced to an upper triangular
matrix by Gaussian elimination. These two observations combined, make it
clear that we have now all the knowledge required to calculate the determinant
of a matrix.

Example 2.3 Let A be the matrix 3 −3 −3
0 1 −1
−1 0 0

 .

The determinant of A is

|A| =

∣∣∣∣∣∣
3 −3 −3
0 1 −1
−1 0 0

∣∣∣∣∣∣ = 3

∣∣∣∣∣∣
1 −1 −1
0 1 −1
−1 0 0

∣∣∣∣∣∣︸ ︷︷ ︸
|B|

= 3

∣∣∣∣∣∣
1 −1 −1
0 1 −1
0 −1 −1

∣∣∣∣∣∣ =

= 3

∣∣∣∣∣∣
1 −1 −1
0 1 −1
0 0 −2

∣∣∣∣∣∣ = 3(−2) = −6.
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Notice that matrix A is obtained from matrix B by multiplying row 1 by 3 (see
(Ax2)).

How to calculate the determinant of a square matrix using
Gaussian elimination

Let A be a square matrix. To obtain the value of detA, we proceed as
follows.

1. Reduce A to a row echelon matrix, i.e., an upper triangular matrix,
A′ using Gaussian elimination and calculate the determinant of A′.

2. Calculate detA, keeping track of how the elementary operations in
1. force detA to differ from detA′.

Example 2.4 In this example we obtain the formula of the determinant of a
2× 2 matrix. Let A be the matrix over K,

A =

[
a b
c d

]
.

We shall calculate detA by considering separately the cases a ̸= 0 and a = 0.

� a ̸= 0

By Gaussian elimination,[
a b
c d

]
l2− c

a l1

//
[
a b
0 d− c

ab

]
.

Hence

|A| =
∣∣∣∣a b
c d

∣∣∣∣ = ∣∣∣∣a b
0 d− c

ab

∣∣∣∣ = ad− bc.

� a = 0

A =

[
0 b
c d

]
L1↔L2

//
[
c d
0 b

]
,

We have

|A| =
∣∣∣∣0 b
c d

∣∣∣∣ = − ∣∣∣∣c d
0 b

∣∣∣∣ = −cb = ad− bc.

In summary,

|A| =
∣∣∣∣a b
c d

∣∣∣∣ = ad− bc.
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It is now clear what the determinants of elementary matrices will be:

� detPij = −1 (by (Ax2) in Definition 19);

� detEij(α) = 1 (by Proposition 2.1 (iii));

� detDi(α) = α (by (Ax3) in Definition 19).

Proposition 2.2 Let A be a n × n matrix and let E be a n × n elementary
matrix. Then

|EA| = |E||A|.

Proof Let A be a square matrix. Recalling how A is changed when it is
multiplied on the left by the three types of elementary matrices, we have

|PijA| = −|A| = |Pij ||A|,

|Eij(α)A| = |A| = |Eij(α)||A|,

and
|D(α)A| = α|A| = |D(α)||A|,

as required.

We are now able to charaterise the invertibility of a matrix in terms of its
determinant. This leads to the necessary and sufficient condition of invertibil-
ity in the next theorem.

Theorem 2.1 (Necessary and sufficient condition of invertibility
(II)) Let A be a square matrix of order n. The following assertions are equiv-
alent.

(i) A is invertible.

(ii) |A| ≠ 0.

Proof (i) ⇒ (ii) Suppose that A invertible. Then, by Theorem 1.1, there
exist elementary matrices E1, . . . , Ek such that

A = E1E2 · · ·Ek.

Hence, by Proposition 2.2,

|A| = |E1||E2| · · · |Ek|

and, since the determinant of each of the elementary matrices is non-zero, it
finally follows that |A| ≠ 0.

(ii) ⇒ (i) We shall prove equivalently that

A not invertible⇒ |A| = 0.
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Suppose then that A is singular. By Theorem 1.1, we know that rankA < n
and that, consequently, the reduced row echelon form R of matrix A has, at
least, one zero row.

It is also the case that there exist elementary matrices E1, . . . , Em such
that

E1E2 · · ·EmA = R.

By Propositions 2.1, 2.2, we have

|E1||E2| · · · |Em||A| = |R| = 0.

Since the determinants of the elementary matrices are all different from zero,
it follows that |A| = 0.

Proposition 2.3 Let A and B be square matrices of order n. Then

|AB| = |A||B|.

Proof Suppose initially that A is non-singular. Hence, by Theorem 1.1,
there exist elementary matrices E1, . . . , Em such that A = E1E2 · · ·Em. It
follows, by Proposition 2.2, that

|AB| = |E1E2 · · ·EmB|
= |E1||E2 · · ·EmB|
= |E1||E2| · · · |Em||B|
= |E1E2 · · ·Em||B|
= |A||B|.

If A is singular, then its reduced row echelon form R has a zero row (see
Theorem 1.1). That is, there exist elementary matrices E1, . . . , Er such that

|E1E2 · · ·ErAB| = |RB| = 0,

since RB has a zero row (see Proposition 2.1 (ii)). By Proposition 2.2,

|E1E2 · · ·ErAB| = |E1||E2| · · · |Er|︸ ︷︷ ︸
̸=0

|AB| = 0.

Since |A| = 0 (see Theorem 2.1), we have

0 = |AB| = |A||B|,

as required.

An easy consequence of this proposition is the following result.

Corollary 2.1 Let A be an invertible n× n matrix. Then

|A−1| = |A|−1.
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Proof By Proposition 2.3,

|AA−1| = |A||A−1|,

from which follows that

1 = |I| = |AA−1| = |A||A−1| ⇐⇒ |A−1| = 1

|A|
.

Lemma 2.1 Let E be an elementary matrix of order n. Then |ET| = |E|.

Proof If E is an elementary matrix of the form Pij or Di(α), the assertion
is immediate, since these matrices are symmetric. On the other hand, if the
matrix E is of the form Eij(α), then

Eij(α)
T = Eji(α)

and, therefore,
|Eij(α)

T| = |Eji(α)| = 1 = |Eij(α)|.

Proposition 2.4 Let A be a square matrix of order n. Then

|AT| = |A|.

Proof If A is non-singular, then, by Theorem 1.1, there exist elementary
matrices E1, . . . , Em such that A = E1E2 · · ·Em. It follows, by Proposition
2.3 and Lemma 2.1, that

|AT| = |(E1E2 · · ·Em)T|
= |ET

m · · ·ET
2 E

T
1 |

= |ET
m| · · · |ET

2 ||ET
1 |

= |Em| · · · |E2||E1|
= |E1||E2| · · · |Em|
= |E1E2 · · ·Em|
= |A|.

If A is singular, then matrix AT is also singular (see Proposition 1.12 (i)
and Proposition 1.18 (v)). Hence, by Theorem 2.1, we have

|AT| = 0 = |A|.

Observe that any lower triangular matrix can be obtained as the trans-
posed matrix of an upper triangular matrix and that transposition does not
change the determinant, as seen in Proposition 2.4. This leads immediately to
the next proposition.
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Proposition 2.5 Let A = [aij ] be an n × n upper triangular (respectively,
lower triangular) matrix. Then,

|A| =
n∏

i=1

aii.

An immediate corollary of Propositions 2.1, 2.5 is the following ‘column’-
version of Proposition 2.1 (i),(ii).

Corollary 2.2 Let A be a square matrix. The following assertions hold.

(i) If A has two equal columns then |A| = 0.

(ii) If A has a zero column then |A| = 0.

2.2 Leibniz’s Formula

We already know how to calculate the determinant of any n × n matrix
A, albeit not having an explicit expression to do so. As seen before, basically
we just have to know the determinant of the identity matrix I (which is equal
to 1) and make a careful use of Gaussian elimination. That is, we reduce A
to an upper triangular matrix U , whose determinant is the product of its
diagonal entries, and keep a record of how Gaussian elimination changes the
determinant of U to get the determinant of A.

We have defined the determinant function axiomatically and it might seem
that we could have stopped there. However, there are two important details
that we have overlooked on purpose: the existence and the uniqueness of the
determinant function. As to the latter, we postpone its analysis to the Ap-
pendix. As to the former, the existence of a function that satisfies the axioms
(Ax1)–(Ax3) will be dealt with in this section. We give below the definition
of the determinant as a ‘proper’ function through a formula, the Leibniz’s for-
mula of the determinant. We will show that this function satisfies the axioms
(Ax1)–(Ax3). Once this is done, the existence part is settled and out of the
way.

Definition 20 Let S = (1, . . . , n). A permutation p : S → S of S is a(ny)
bijection from S onto itself. An n × n permutation matrix is a matrix P
such that each row and each column of P have exactly one non-zero entry
which is equal to 1.

Notice that the total number of permutations of S is n! Observe also that a
permutation matrix is what you obtain by ‘scrambling’ the rows of the identity
matrix.
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Example 2.5 Let S = (1, 2, 3). There are 6 = 3! permutations of S:

p1 = (1, 2, 3), p2 = (1, 3, 2), p3 = (2, 1, 3),

p4 = (2, 3, 1), p5 = (3, 1, 2), p6 = (3, 2, 1).

For example, 1 0 0
0 0 1
0 1 0


︸ ︷︷ ︸

P1

12
3

 =

13
2

 = p2

and 0 1 0
0 0 1
1 0 0


︸ ︷︷ ︸

P2

12
3

 =

23
1

 = p4.

The matrices P1 and P2 are permutation matrices. To obtain the identity I
from matrix P1, one needs to make a single row exchange between rows 2 and
3. The rows of P2 must be exchanged twice to obtain I. A possibility is row 2
↔ row 3 followed by row 2 ↔ row 1. One could also opt for row 1 ↔ row 3
followed by row 2 ↔ row 3.

As this example suggests, to obtain a permutation of S, we multiply the

vector
[
1 . . . n

]T
, corresponding to S, by an appropriate permutation ma-

trix.

Definition 21 A permutation of S = (1, . . . , n) is said to be even if the
number of row exchanges in the corresponding matrix P required to obtain the
identity is even. A permutation is odd if the number of row exchanges in the
corresponding matrix P required to obtain the identity is odd.

The sign sign(p) of a permutation p is +1, if the permutation is even, and
is −1 if the permutation is odd.

Clearly, the definition of the parity of the permutation could be equivalently
expressed in terms of the number of exchanges between the position of the
elements in the permutation to obtain S. We saw in Example 2.5 that, in gen-
eral, the exchanges can be done in more than one way. However, it is possible
to show that the parity remains unchanged.

Let A = [aij ] be a n× n matrix and let PS be the set of all permutations
of S. The Leibniz’s formula for the determinant of A is

detA =
∑
p∈PS

sign(p)a1p(1)a2p(2) . . . anp(n). (2.4)

Notice that each summand in (2.4) is a product of n entries such that no
column or row is shared by two different entries.
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Example 2.6 We recalculate the determinant of the matrix

A =

 3 −3 −3
0 1 −1
−1 0 0

 .

of Example 2.3. We have that the permutations p1, p4, p5 are even and corre-
spond to the products

a11a22a33 = 0, a12a23a31 = −3, a13a21a32 = 0.

The rest of the permutations are odd

a13a22a31 = 3, a12a21a33 = 0, a11a23a32 = 0.

By Leibniz’s formula,

detA = (0− 3 + 0)− (3 + 0 + 0) = −6.

Proposition 2.6 The function defined on Mn(K) by (2.4) satisfies (Ax1)–
(Ax3)

Proof The determinant of the identity matrix I = [uii] is

det I =
∑
p∈PS

sign(p)u1p(1)u2p(2) . . . unp(n) = +u11u22 . . . unn = 1

which shows that (Ax1) holds.
As to (Ax2), suppose that two rows of A, say, i and j are exchanged,

obtaining a new matrix A′. Hence, for each p ∈ PS and the corresponding
summand in (2.4), we have a new permutation associated with A′, which is

a1p′(1)a2p′(2) . . . aip′(i) . . . ajp′(j) . . . anp′(n),

with p′(i) = p(j), p′(j) = p(i) and p′(k) = p(k), for k ̸= i, j. Moreover, all
permutations p′ are obtained in this way. Then,

detA′ =
∑

p′∈PS

sign(p′)a1p′(1)a2p′(2) . . . aip′(i) . . . ajp′(j) . . . anp′(n).

But p coincides with p′ except for the extra exchange between p(i) and p(j).
Consequently, the parity of the permutations change and we have

sign(p′) = −sign(p).
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It follows that

detA′ =
∑

p′∈PS

sign(p′)a1p′(1)a2p′(2) . . . aip′(i) . . . ajp′(j) . . . anp′(n)

=
∑

p′∈PS

sign(p′)a1p(1)a2p(2) . . . aip(j) . . . ajp(i) . . . anp(n)

=
∑
p∈PS

−sign(p)a1p(1)a2p(2) . . . aip(i) . . . ajp(j) . . . anp(n)

= −detA.

Finally, we tackle (Ax3). It is clear that the formula (2.4) satisfies the first
equality in (Ax3). Now, let A = [aij ], B = [bij ], and C = [cij ] be matrices as
in (2.1), and (2.2). Then

detC =
∑
p∈PS

sign(p)c1p(1)c2p(2) . . . cip(i) . . . cnp(n)

=
∑
p∈PS

sign(p)c1p(1)c2p(2) . . . (aip(i) + bip(i)) . . . cnp(n)

=
∑
p∈PS

sign(p)c1p(1)c2p(2) . . . aip(i) . . . cnp(n)

+
∑
p∈PS

sign(p)c1p(1)c2p(2) . . . bip(i) . . . cnp(n)

=
∑
p∈PS

sign(p)a1p(1)a2p(2) . . . aip(i) . . . anp(n)

+
∑
p∈PS

sign(p)b1p(1)b2p(2) . . . bip(i) . . . bnp(n)

= detA+ detB,

as required.

It is now clear that there exists a determinant function, i.e., a function
that satisfies (Ax1)–(Ax3). This was shown by using Leibniz’s formula for the
determinant. As said before, this way of calculating the determinant is useful,
at least to show that there exists in fact a determinant function, but is far
from being practical when it comes to actual calculations. It will never be
used in the remainder of the book, apart from proving Laplace’s formula in
the next section.
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2.3 Laplace’s Formula

In this section, we present yet another formula, the Laplace’s formula of
the determinant function. This formula is particularly useful when we need to
calculate determinants of (small) matrices whose entries have parameters (see
Chapter 4). However, due to the quantity of multiplications involved when
we deal with large matrices, this is not an effective way of calculating the
determinant.

Definition 22 Let A be a square matrix of order n. Let [Aij] be the submatrix
of A obtained by deleting row i and column j. The minor-ij Mij and the
cofactor-ij Cij are defined by

Mij = det[Aij ], Cij = (−1)i+jMij .

Theorem 2.2 (Laplace’s formula with expansion along row i)
Let A be a square matrix of order n and let li be a row of A. Then,

|A| =
n∑

j=1

aijCij . (2.5)

Proof This proof follows closely §11.3 of [13]. Given a matrix A, we know
that, by (2.4),

detA =
∑
p∈PS

sign(p)a1p(1)a2p(2) . . . aip(i) . . . anp(n). (2.6)

Notice that, if li is some fixed row of A, then each summand has a single entry
from li.

Consider firstly the permutations p ∈ PS such that p(1) = 1 and denote
by P ′S this subset of permutations. That is to say, we are speaking of all the
summands of the form a11a2p(2) . . . aip(i) . . . anp(n). In this case, the sum of all
this summands gives∑

p∈P ′S

sign(p)a11a2p(2) . . . aip(i) . . . anp(n) = a11
∑
q∈S1

sign(q)a2q(2) . . . anq(n)

= a11M11

= a11(−1)1+1M11

= a11C11

where S1 is the set of permutations of the ordered set (2, . . . , n) and i = 1 =
p(1) = j.
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Consider now the general case where p(i) = j and, therefore, we have all
summands in (2.6) containing the entry aij as a factor. Let B be the matrix

B =



ai1 ai2 · · · ain
a11 a12 · · · a1n
...

ai−1,1 ai−1,2 · · · ai−1,n
ai+1,1 ai+1,2 · · · ai+1,n

...
an1 an2 · · · ann


.

We have that detB = (−1)i−1 detA, since we exchanged rows i − 1 many
times. Now exchange columns in B such that we obtain the matrix

B′ =



aij ai1 ai2 · · · ain
a1j a11 a12 · · · a1n
...

ai−1,j ai−1,1 ai−1,2 · · · ai−1,n
ai,+1j ai+1,1 ai+1,2 · · · ai+1,n

...
anj an1 an2 · · · ann


.

It follows that

detA = (−1)i−1 detB = (−1)i−1(−1)j−1 detB′ = (−1)i+j detB′.

Notice that, since transposition does not modify the determinant, when two
columns are exchanged, as with rows, the determinant is multiplied by −1.

We have shown above that

detB′ = aij det[B
′
11] + σ,

where σ is the sum of all the summands in the Leibniz’s formula for detB′,
which do not have aij as a factor and [B′11] is the submatrix of B′ obtained
by deleting row 1 and column 1 of B′. Observing that

det[B′11] = Mij ,

it follows that

detA = aij(−1)i+jMij + µ = aijCij + µ,

where µ is the sum of all summands in (2.6) which do not contain aij as a
factor. This ends the proof.
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Example 2.7 We apply formula (2.5) of Theorem 2.2 to find the determinant
of

A =

1 0 2
3 0 −1
1 3 1

 ,

fixing row 3, i.e., i = 3. It follows

|A| =

∣∣∣∣∣∣
1 0 2
3 0 −1
1 3 1

∣∣∣∣∣∣ = a31C31 + a32C32 + a33C33

= 1(−1)3+1

∣∣∣∣0 2
0 −1

∣∣∣∣+ 3(−1)3+2

∣∣∣∣1 2
3 −1

∣∣∣∣+ 1(−1)3+3

∣∣∣∣1 0
3 0

∣∣∣∣
= 0− 3(1× (−1)− 2× 3) + 0

= 21

As is clear in this example, (2.5) is a recursive formula that in each step
decreases the order of the minors involved until one has only 2× 2 minors to
calculate. Moreover, given that transposition does not change the determinant,
it is only natural that a Laplace’s formula exist with expansion along a column.

Corollary 2.3 (Laplace’s formula with expansion along column j)
Let A be a square matrix of order n and let cj be a column of A. Then,

|A| =
n∑

i=1

aijCij . (2.7)

Proof Exercise. (Hint: use the fact that transposition does not change the
determinant.)

Example 2.8 We re-calculate the determinant of Example 2.7 using an ex-
pansion along column 2.

|A| =

∣∣∣∣∣∣
1 0 2
3 0 −1
1 3 1

∣∣∣∣∣∣ = a12C12 + a22C22 + a32C32

= 0× (−1)1+2

∣∣∣∣3 −1
1 1

∣∣∣∣+ 0× (−1)2+2

∣∣∣∣1 2
1 1

∣∣∣∣
+ 3× (−1)3+2

∣∣∣∣1 2
3 −1

∣∣∣∣
= 0 + 0− 3× (1× (−1)− 2× 3)

= 21

It is clear from Examples 2.7 and 2.8 that a right choice of the row or the
column may simplify considerably the calculations.
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How to calculate the determinant of a n× n matrix A by
recursion

1. Choose a row or a column with as many zeros as possible.

2. Calculate detA using either (2.5) or (2.7), depending on your choice
of a row or a column, respectively.

3. Apply the process described in 1. and 2. to the n− 1× n− 1 deter-
minants obtained.

4. Keep on repeating the process until obtaining 2 × 2 determinants,
which you can then calculate directly (see Example 2.4).

Definition 23 Let A be a n × n matrix. The matrix of cofactors of A is
the n× n matrix cofA defined by

cof A = [Cij ]i,j=1,...,n.

The adjugate matrix of A is the matrix adj A defined by

adjA = (cof A)T.

Proposition 2.7 Let A be a square matrix of order n. The following hold.

(i)
A adjA = (detA)I = (adjA)A.

(ii) If detA ̸= 0, then the inverse matrix of A is

A−1 =
1

detA
adjA.

Proof (i) We calculate firstly the diagonal entries of A adjA. The entry-ii
is

(A adjA)ii =

n∑
j=1

aijCij .

It then follows from Theorem 2.2 that

(A adjA)ii = detA.

On the other hand, an off-diagonal entry (A adjA)ik, with i ̸= k,

(A adjA)ik =

n∑
j=1

aijCkj = 0,

since this is the determinant of a matrix whose rows i and k coincide.
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The equality (adjA)A = (detA)I can be proved similarly.
(ii) If detA ̸= 0 then, by Theorem 2.1, A is invertible. The fact that in

this case

A−1 =
1

detA
adjA

is a direct consequence of (i).

How to calculate the inverse of a 2× 2 matrix

Let A be the matrix A =

[
a b
c d

]
, where a, b, c, d ∈ K and detA ̸= 0.

By Proposition 2.7, we have

A−1 =
1

ad− bc

[
d −b
−c a

]
.

Hence, we have now a simple formula to calculate the inverse of a 2 × 2
square matrix which might come in handy (and actually does). No Gaussian
elimination is required!

Let Ax = b be a system of linear equations with n equations, n unknowns
and exactly one solution. As we know, this means that A is an invertible
(real or complex) matrix or, in other words, detA ̸= 0. Cramer’s rule gives a
formula which uses the determinant to find the solution of this type of system
of linear equations.

Suppose then that we have the following system
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

an1 an2 . . . ann



x1

x2

...
xn

 =


b1
b2
...
bn

 .

That is,

x1


a11
a21
...

ak1

+ x2


a12
a22
...

ak2

+ · · ·+ xi


a1i
a2i
...

ani

+ · · ·+ xn


a1n
a2n
...

ann

 =


b1
b2
...
bn

 .

It follows, for all i = 1, . . . , n, that

x1


a11
a21
...

ak1

+ x2


a12
a22
...

ak2

+ · · ·+


xia1i − b1
xia2i − b2

...
xiani − bn

+ · · ·+ xn


a1n
a2n
...

ann

=

0
0
...
0

 . (2.8)
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We begin by supposing that b ̸= 0. Notice that, in this case, x ̸= 0. Hence,
there exists r with 1 ≤ r ≤ n for which xr ̸= 0. It follows from equality (2.8)
that column r of

B =


a11 a12 . . . xia1i − b1 . . . a1n
a21 a22 . . . xia2i − b2 . . . a2n
...

...
...

...
an1 an2 . . . xiani − bn . . . ann


is a linear combination of the remaining columns. In other words, using only
elementary operations of type (iii) in Definition 2, row r in BT can be trans-
formed into a zero row, yielding |B| = |BT | = 0. Hence,

xi det


a11 a12 . . . a1i . . . a1n

a21 a22 . . . a2i . . . a2n

...
...

...
...

an1 an2 . . . ani . . . ann

− det


a11 a12 . . . b1 . . . a1n

a21 a22 . . . b2 . . . a2n

...
...

...
...

an1 an2 . . . bn . . . ann

=0.

Finally, we have Cramer’s rule

xi =

det


a11 a12 . . . b1 . . . a1n
a21 a22 . . . b2 . . . a2n
...

...
...

...
an1 an2 . . . bn . . . ann


detA

. (2.9)

Observe that this formula also holds for b = 0, since, in this case, the
determinant in the numerator of (2.9) has a zero column and, therefore, is
null.

Example 2.9 Solve the system of linear equations
x+ y + z = 3

x− y + 2z = 2

2x+ y − z = 2

.

Using Cramer’s rule,

x =

det

3 1 1
2 −1 2
2 1 −1


det

1 1 1
1 −1 2
2 1 −1

 =
7

7
= 1,



76 Linear Algebra

y =

det

1 3 1
1 2 2
2 2 −1


det

1 1 1
1 −1 2
2 1 −1

 = 1,

z =

det

1 1 3
1 −1 2
2 1 2


det

1 1 1
1 −1 2
2 1 −1

 = 1.

2.4 Exercises

EX 2.4.1. Use Gaussian elimination to calculate the determinant of

A =

 6 −12 18
−3 1 4
6 7 −1


EX 2.4.2. Let A and B be 3× 3 matrices such that

detA = 3 and detB = −3.

Complete:

det(−2A−3) = −−−−, det
((

ABT
)2)

= −−−−,

det(E32(−2)D3(2)P34A) = −−−−.

EX 2.4.3. Let A be a 4×4 matrix such that |A| = −2. Consider the following
assertions.

I) The diagonal entries of A might be all equal to zero.

II) |(2A)−1| = −1/32.
III) |(2A)−1| = −1/4.
IV) |(−AT )2| = 4.

The complete list of correct assertions is

A) I, III, IV B) I, II C) I, II, IV D) III, IV
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EX 2.4.4. Consider the matrices

A =


5 3 2 1
b 4 d 0
a 6 c 0
0 2 0 0

 B =

[
a b
−c −d

]
.

where a, b, c, d ∈ R. Suppose that detA = 20. Find detB.

EX 2.4.5. Use Laplace’s rule to calculate the determinant of

A =


1 2 0 1
5 2 30 1
0 0 6 7
30 60 1 29


EX 2.4.6. Consider the matrix

A =


−2 −3 9 1
−2 5 13 3
0 0 1 0
−4 −1 −4 0


and the matrix B = E23(−1)AE34(−5). Consider also the follow-
ing assertions.

I) B is invertible.

II) det(B) = 52 .

III) det( 12B)−1 = − 2
3 .

IV) B−1 = E23(1)A
−1 E34(5) .

The complete list of correct assertions is

A) I, II B) I, II, IV C) III, IV D) II, IV

EX 2.4.7. Determine

adj

1 −1 −1
0 1 0
0 0 1

 .

EX 2.4.8. Find the cofactor C14 and the entry (A−1)41 of the inverse matrix
of

A =


15 3 6 −4i
−15 1 1 30i
15 3 7 20i
15 3 8 12i

 .



78 Linear Algebra

EX 2.4.9. Use Cramer’s rule to solve the system
8x1 − 6x3 = −4
− x1 + 3x2 − x3 = −4
2x1 − x2 = −2

EX 2.4.10. Let Aα and bα,β be the matrices

Aα =

 1 α+ i 2
−1 1 −2
0 α+ i 1

 bα,β =

β0
α

 ,

where α, β ∈ C.

(a) Find all α ∈ C for which Aα is not invertible.

(b) With α = −i and β = 1, use Cramer’s rule to find the solution of
the system Aαx = bα,β .

EX 2.4.11. Let

A =

a2 3 0
5 0 a
a2 a 0

 ,

where a is a real number. Answer the following questions without
calculating A−1, should it exist.

(a) Find all a for which A is invertible.

(b) Whenever A is invertible, find the entry-23 of A−1.

EX 2.4.12. Show that the determinant of a 3 × 3 matrix A satisfies Sarrus’
rule: the determinant of A is a sum of all products of entries
having the same shade in (a) minus the sum of all products of
entries having the same shade in (b).

(a)
a11 a12 a13 a11 a12
a21 a22 a23 a21 a22
a31 a32 a33 a31 a32

(b)
a11 a12 a13 a11 a12
a21 a22 a23 a21 a22
a31 a32 a33 a31 a32
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2.5 At a Glance

The determinant is a K-valued function defined on the square matrices in
Mn(K). It can be calculated either using Gaussian elimination or a formula,
Leibniz’s or Laplace’s. Easiest to calculate is the determinant of a triangular
matrix for it is the product of its diagonal entries.

Matrix multiplication is not commutative but |AB| = |BA|. Moreover, the
determinant is invariant under transposition.

The determinant can be used as a test for invertibility since invertible
matrices are those having a non-zero determinant, and the inverse can be
calculated by means of determinants.

Cramer’s rule gives an explicit formula to obtain the solution of a system
of linear equations as quotients of determinants, under the constraint that the
system has a square coefficient matrix and a unique solution.
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If one were to be asked what matrices, polynomials, and vectors have in com-
mon, the first answer to spring to mind would be ‘nothing’. This chapter is
about proving this answer wrong.

What links matrices, polynomials, and vectors is the concept of vector
space. We shall see how far reaching it is to look at these apparently far re-
moved entities through the lens of this abstract concept.

Mathematics is the art of giving the same name to different things.
Henri Poincaré

Matrices profit from being regarded as vectors but this is a symbiotic
relation: the analysis of vector spaces relies heavily on matrix techniques.
Although this chapter might look at first as totally different in nature from
the previous ones, we will see that vector spaces and matrices are definitely
entangled. This entanglement is so strong that we will introduce in §3.4 four
fundamental vector spaces associated with any given matrix . Their relevance
is such that these vector spaces will be present in all of the remainder of the
book.

To remain true to our purpose, the outstanding number in this chapter is
the dimension of a vector space, of which much of the theory revolves around.
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3.1 Vector Spaces

A vector space over K or a linear space over K is a non-empty set
V endowed with the operations of addition + and scalar multiplication µ

addition + : V × V → V

(u,v) 7→ u+ v

scalar multiplication µ : K× V → V

(α,u) 7→ αu

satisfying, for all u,v,w ∈ V and α, β ∈ K,

(i) u+ v = v + u

(ii) u+ (v +w) = (u+ v) +w

(iii) There exists an element 0 in V , called the additive identity, such that

u+ 0 = u = 0+ u

(iv) Given u ∈ V , there exists an element −u ∈ V , called the additive
inverse of u, such that

u+ (−u) = 0 = (−u) + u

(v) α(u+ v) = αu+ αv

(vi) (αβ)u = α(βu)

(vii) (α+ β)u = αu+ βu

(viii) 1u = u

When K = R (respectively, K = C), V is also called a real vector space
(respectively, a complex vector space).

An element of a vector space is said to be a vector or point. Axioms
(i),(ii) say, respectively, that the addition of vectors is commutative and asso-
ciative. We can also see in (v) and (vii) that the multiplication by a scalar is
distributive relative to the addition of vectors and that the multiplication by
a vector is distributive relative to the addition of scalars.

The additive identity is unique: if 0 and 0̃ were additive identities, then,
by (iii) above,

0 = 0+ 0̃ = 0̃.
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Notice also that, given u ∈ V , we have 0u = 0. Observe that

u = 1u = (1 + 0)u = 1u+ 0u = u+ 0u.

Adding the vector −u to both members of the equality u = u+0u, it follows
that 0u = 0.

Similarly, the additive inverse of a vector u is unique. In fact, should there
exist vectors u1,u2 such that

u+ u1 = 0 = u+ u2,

then
u1 = u1 + (u+ u2) = (u1 + u) + u2 = u2.

Moreover, −u = (−1)u, since

u+ (−1)u = (1 + (−1))u = 0

Consider again the set

Kn = {(a1, a2, . . . , an) : a1, a2, . . . , an ∈ K}

consisting of the n-tuples of scalars. We shall use throughout the following
notation for u ∈ Kn:

u = (a1, a2, . . . , an) or u =


a1
a2
...
an

 .

Although less frequently, we shall also use

[u] =


a1
a2
...
an

 .

For all u,v ∈ Kn and α ∈ K, define addition and scalar multiplication by

u+ v =


a1
a2
...
an


︸ ︷︷ ︸

u

+


b1
b2
...
bn


︸ ︷︷ ︸

v

=


a1 + b1
a2 + b2

...
an + bn



αu =


αa1
αa2
...

αan

 .
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y

x

(a1 + b1, a2 + b2)

(a1, a2)
(b1, b2)

vu

u+ v

(αa1, αa2)

αu

FIGURE 3.1: Addition and multiplication by a scalar for R2-plane vectors.

It is easily checked that, when endowed with these two operations, Kn is a
vector space over K. That is, these operations satisfy Axioms (i)–(viii). We
shall see in §3.3 that Kn, although being a concrete example of a vector space
over K, captures the essence of these spaces and will act as a model and a
source of insight for the general spaces.

At this point, it is worthwhile noting that the vectors of Rn are a natural
generalisation of the R2-plane vectors and the R3-space vectors. The same
applying to the operations of addition and scalar multiplication. Figure 3.1
illustrates these operations on the R2-plane.

Example 3.1 Let A be a k×n matrix over K and let Ax = 0 be the associated
homogeneous system of linear equations. The solution set S ̸= ∅ of this system
is contained in Kn and, together with the restriction of the addition and scalar
multiplication of Kn, is itself a real vector space.

To see this, we begin by showing that S is closed for the addition of vectors
and scalar multiplication, that is, given x,y, z ∈ S and α ∈ R, the vectors
x+ y, αz lie in S. In fact,

A(x+ y) = Ax+Ay = 0, A(αz) = αAz = 0,

which shows that x + y, αz ∈ S, i.e., the vectors x + y, αz are solutions of
Ax = 0.

The above ensures that addition of vectors and scalar multiplication are
well-defined in S. Notice also that 0 ∈ Kn lies in S (Ax. (iii)) and that, for
each x ∈ S, its additive inverse −x = (−1)x lies in S (Ax. (iv)).

It would remain to show that Axioms (i),(ii), and (v)–(viii) are satisfied.
But that we know for granted, since the operations on S are the restrictions
of those in Kn.
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Exercise 3.1 Show that the following are real vector spaces.

a) The set Mk,n(R) of real k×n matrices with the usual addition of matrices
and multiplication of a matrix by a scalar.

b) The set Pn of real polynomials

p(t) = a0 + a1t+ · · ·+ ant
n, a0, a1, . . . , an ∈ R

of degree less that or equal to n with the usual addition of real functions
and multiplication of a function by a scalar.

c) The set P of real polynomials (of any degree) with the usual addition of
real functions and multiplication of a function by a scalar.

d) The set C([a, b]) of continuous real functions on the real interval [a, b],
with a < b, endowed with the usual addition of real functions and mul-
tiplication of a function by a scalar.

Example 3.2 The solution set of the homogeneous system[
i −i 0

−1 + i 1− i 0

]
︸ ︷︷ ︸

A

x1

x2

x3

 =

[
0
0

]

is the vector space S= {(x1, x2, x3) ∈ C3 : x1 = x2}. Notice that S is con-
tained in C3, yet another vector space.

Exercise 3.2 Show that the following are complex vector spaces.

a) The set Mk,n(C) of real k×n matrices with the usual addition of matrices
and multiplication of a matrix by a scalar.

b) The set Pn of real polynomials

p(t) = a0 + a1z + · · ·+ anz
n, a0, a1, . . . , an ∈ C

of degree less that or equal to n with the usual addition of complex func-
tions and multiplication of a function by a scalar.

c) The set P of complex polynomials (of any degree) with the usual addition
of complex functions and multiplication of a function by a scalar.

Examples 3.1 and 3.2 outline a particularly relevant kind of subset in a
vector space V , that that together with the restriction of the operations on V
is itself a vector space.

Definition 24 A non-empty subset S of a vector space V over K is said to be
a vector subspace or a linear subspace of V if, together with the restriction
of vector addition and scalar multiplication on V , S is itself a vector space
over K.
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Proposition 3.1 Let S be a non-empty subset of a vector space V over K
which is closed for the vector addition and scalar multiplication in V , i.e.,
for u,v ∈ S, α ∈ K, the vectors u + v ∈ S and αu lie in S. Then S is a
subspace of V.

Proof Exercise (follow Example 3.1).

Notice that with this proposition we have an equivalent definition of sub-
space. Indeed, a subspace of V could be equivalently defined as a non-empty
substet of V which is closed for vector addition and scalar multiplication.

Example 3.3 Examples of subspace of R2 are

a) {(0, 0)}, b) a line through {(0, 0)}, c) R2.

Observe that all of the sets a)–c) contain the point (0, 0).

Can you find more subspaces of R2? Try.

Proposition 3.2 Let S be a subspace of a vector space V over K. Then the
zero vector 0 lies in S.

Proof Let u be a vector in S (observe that, by definition, S ̸= ∅). Since
S is a subspace, then 0u ∈ S, i.e., 0u = 0 ∈ S.

A consequence of Proposition 3.2 is that any subset of V which does not
contain the zero vector cannot be a subspace. For example, it is immediate
that the line of equation y = 2 is not a subspace of R2 (see Figure 3.2).

How to see if a subset is a subspace

Let S be a non-empty subset of a vector space V.

1. Check if 0 ∈ S. If it does not, then S is not a subspace.

2. If 0 ∈ S, then take two arbitrary vectors u,v ∈ S and an arbitrary
scalar α and verify whether u + v ∈ S and αu ∈ S (as in Example
3.1). If both conditions are satisfied, then S is a subspace. If at least
one of them fails, then S is not a subspace.

We shall see further on that R2 does not possess any subspaces apart from
those in Example 3.3 (cf. Example 3.13). But that requires developing further
the theory of vector spaces which, at this point in the book, is not mature
enough to answer with confidence the (apparently) simple question
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y

x

uv

u+ v

2u

y = 2

FIGURE 3.2: The straight line y = 2 is neither closed for the multiplication
by scalars nor for the addition of vectors.

Which subsets of R2 are subspaces?

3.2 Linear Independence

Definition 25 Let u1,u2, . . . ,uk be vectors in a vector space V over K. A
linear combination of u1,u2, . . . ,uk is any vector which can be presented
as

α1u1 + α2u2 + · · ·+ αkuk,

where α1, α2, . . . , αk are saclars.
The set span{u1,u2, . . . ,uk} consisting of all linear combinations of

{u1,u2, . . . ,uk} is called the span of the vectors u1,u2, . . . ,uk, i.e.,

span{u1,u2, . . . ,uk} = {α1u1 + α2u2 + · · ·+ αkuk : α1, α2, . . . , αk ∈ R}.

Proposition 3.3 Let u1,u2, . . . ,uk be vectors in a vector space V over K.
Then the set span{u1,u2, . . . ,uk} is a vector subspace of V.

Proof We must show that span{u1,u2, . . . ,uk} is a (non-empty) set
closed under vector addition and scalar multiplication. We start by showing
that span{u1,u2, . . . ,uk} is closed for vector addition.
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Let u,v be vectors in span{u1,u2, . . . ,uk}, i.e, there exist scalars
α1, α2, . . . , αk and β1, β2, . . . , βk such that

u = α1u1 + α2u2 + · · ·+ αkuk,

and
v = β1u1 + β2u2 + · · ·+ βkuk.

Hence, using the properties of the operations + and µ,

u+ v = (α1u1 + α2u2 + · · ·+ αkuk) + (β1u1 + β2u2 + · · ·+ βkuk)

= (α1 + β1)︸ ︷︷ ︸
γ1

u1 + (α2 + β2)︸ ︷︷ ︸
γ2

u2 + · · ·+ (αk + βk)︸ ︷︷ ︸
γk

uk.

Consequently, there exist scalrs γ1, γ2, . . . , γk such that

u+ v = γ1u1 + γ2u2 + · · ·+ γkuk,

from which follows that u + v lies in span{u1,u2, . . . ,uk}. In other words,
span{u1,u2, . . . ,uk} is closed under vector addition.

Now let α be a scalar and let u = α1u1+α2u2+ · · ·+αkuk be a vector in
span{u1,u2, . . . ,uk}. Then, using once again the properties of the operations
+ and µ,

αu = α(α1u1 + α2u2 + · · ·+ αkuk)

= α(α1u1) + α(α2u2) + · · ·+ α(αkuk)

= (αα1)u1 + (αα2)u2 + · · ·+ (ααk)uk.

Hence, αu is a linear combination of u1,u2, . . . ,uk. Hence αu ∈
span{u1,u2, . . . ,uk}, as required.

Example 3.4 The span of each of the sets below is R2:

a) {(1, 0), (0, 1)};

b) {(1, 1), (−1, 0)};

c) {(1, 1), (−1, 0), (2, 3)}.

This is clear for the set in a). We show now that the span of the set in
b) is R2.

We must prove that any vector (a1, a2) ∈ R2 is a linear combination of
(1, 1), (−1, 0). That is, there must exist α, β ∈ R such that[

a1
a2

]
= α

[
1
1

]
+ β

[
−1
0

]
.
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This equality corresponds to the system of linear equations whose augmented
matrix is

[A|b] =
[
1 −1 a1
1 0 a2

]
.

Since

rank
(
[A|b]

)
= rank

([
1 −1 a1
1 0 a2

])
= rank (A)

this system is consistent, that is, (a1, a2) lies in span{(1, 1), (−1, 0)}. Solving
the system, we get the unique solution α = a2 and β = a2 − a1.

In c), the linear combination in question is[
a1
a2

]
= α

[
1
1

]
+ β

[
−1
0

]
+ γ

[
2
3

]
,

corresponding to the augmented matrix

[A|b] =
[
1 −1 2 a1
1 0 3 a2

]
.

This system is consistent but no longer does it have a unique solution. In fact,
all linear combinations of (1, 1), (−1, 0), (2, 3) with coefficients α = −γ+ a1−
a2, β = −γ + a2, γ ∈ R coincide with (a1, a2).

Exercise 3.3 Show that the span of each of the sets in Example 3.4 is C2. Is
this surprising?

A set {u1,u2, . . . ,uk} of vectors in a vector space V is said to span V or
to be a spanning set for V if

V = span{u1,u2, . . . ,uk}.

The sets in Example 3.4 are spanning sets for R2. In a similar vein, it is
easily seen that

{(1, 0, . . . , 0), (0, 1, 0, . . . , 0), (0, 0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1)}

is a spanning set for Rn (and also for Cn).

Example 3.5 The straight line in R3 defined by the equations y = −x, z = x
is spanned by the single vector {(1,−1, 1)}.

On the other hand, the plane S in R3 with equation y = x needs two vectors
to be spanned. For example, a spanning set for this plane is {(1, 1, 0), (0, 0, 1)}.
In fact, any vector u in S is of the form u = (a, a, b), for some a, b ∈ R. Hence,

u = a(1, 1, 0) + b(0, 0, 1).

Given a vector space V , we have seen that it is possible to have several
sets which span V. Moreover, as suggested by Example 3.4, some spanning
sets are minimal. The sets in a) and b) span R2 in a more ‘economical’ way
than the set in c). This set has one vector too many.

At this point, we are left with some questions.
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(i) Can one always find a spanning set for V ?

(ii) How does one select the minimal spanning sets (avoiding redundancy)?

(iii) If, say, two vectors span V , do any two vectors span V ?

Question (iii) has a clear No for an answer. Already we can see this in the
discussion above. For example, to span a plane in R3 (containing (0, 0, 0)) we
need two vectors but they must not be colinear. To span R3 we need three
vectors but none of them can be in the plane (or the line) spanned by the
other two, i.e., the three vectors must not be coplanar.

The point seeming to be that, when selecting a spanning set, we must be
sure not to include a vector which is already in the space spanned by the
remaining vectors (as this vector does not bring anything new to the set of
linear combinations of the other vectors). This still vague idea is conveyed
precisely by the notion of linear independence.

Definition 26 A subset {u1,u2, . . . ,uk} of a vector space V over K is said
to be a linearly independent set, or that the vectors u1,u2, . . . ,uk are
linearly independent, if

α1u1 + α2u2 + · · ·+ αkuk = 0 ⇒ α1 = α2 = · · · = αk = 0. (3.1)

In the definition, we could have used an equivalence instead of the implication.
In fact, if we set α1 = α2 = · · · = αk = 0, it is clear that

α1u1 + α2u2 + · · ·+ αkuk = 0.

It is evident from the definition that

any subset of V containing the zero vector cannot be linearly independent

because the linear combination whose coefficients are all equal to the scalar 0
except for that of the vector 0, which can be any given non-zero number, will
coincide with 0.

Why condition (3.1) conveys the idea that span{u1,u2, . . . ,uk} loses
something if any single vector is removed from the set might not be clear at
first. However, before illuminating this part (postponed until Theorem 3.1),
we shall explore firstly linear independence per se.

Example 3.6 The vectors (1, 0, 1), (0,−1, 1), (1, 1, 1) ∈ R3 are linearly inde-
pendent. In other words,

α1

10
1

+ α2

 0
−1
1

+ α3

11
1

 =

00
0


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only when α1 = α2 = α3 = 0. This means that the homogeneous system1 0 1
0 −1 1
1 1 1

α1

α2

α3

 =

00
0


must admit the trivial solution (α1, α2, α3) = (0, 0, 0) only. For this to hold,

rank

1 0 1
0 −1 1
1 1 1


must be equal to 3 which is the case. Hence the vectors (1, 0, 1), (0,−1, 1),
(1, 1, 1) are linearly independent.

Exercise 3.4 Show that the sets in Example 3.4 a), b), and Exercise 3.3 a),
b) are linearly independent and that the set in c) of the same examples is not
linearly independent. Check that removing any single vector from the sets in
Example 3.4 c) and Exercise 3.3 c) makes the new set a linearly independent
set which still spans R2 or C2, respectively.

Definition 27 A subset {u1,u2, . . . ,uk} of a vector space V which is not lin-
early independent is called linearly dependent or the vectors u1,u2, . . . ,uk

are called linearly dependent vectors.

The vectors in Example 3.4 c) are linearly dependent.
The next proposition generalises the ‘behaviour’ appearing in Example 3.6

and Exercise 3.4.

Proposition 3.4 Let u1,u2, . . . ,uk be vectors in Kn. The vectors u1,u2, . . . ,
uk are linearly independent if and only if

rank
([
u1 | u2 | . . . | uk

])
= k.

Proof Let

A =
[
u1 | u2 | . . . | uk

]
, x =


α1

α2

...
αk

 .

The vectors u1,u2, . . . ,uk are linearly independent if, and only, if the equa-
tion Ax = 0 admits the trivial solution only. That is, if and only if the corre-
sponding homogeneous system has a unique (trivial) solution. Consequently,
u1,u2, . . . ,uk are linearly independent if and only if

rank
([
u1 | u2 | . . . | uk

])
= k.

An important consequence of this proposition is the next corollary.
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Corollary 3.1 Let u1,u2, . . . ,uk be vectors in Kn. If k > n, then the vectors
u1,u2, . . . ,uk are linearly dependent.

Proof The rank of the matrix A =
[
u1 | u2 | . . . | uk

]
can never

be k, since rankA ≤ n < k. It follows from Proposition 3.4 that u1,u2, . . . ,uk

are linearly dependent.

How to find if a set of vectors in Kn is linearly independent or
linearly dependent

Let u1,u2, . . . ,uk be vectors in Kn.

1. Build the matrix whose columns consist of these vectors, i.e.,

A =
[
u1 | u2 | . . . | uk

]
,

and use Gaussian elimination to find its rank;

2. If rankA = k, then the vectors are linearly independent, otherwise
they are linearly dependent.

Theorem 3.1 Let V be a vector space and let u1,u2, . . . ,uk be vectors in
V. The vectors u1,u2, . . . ,uk are linearly dependent if and only if one of the
vectors is a linear combination of the others.

Proof We show firstly that, if some vector in {u1,u2, . . . ,uk} is a linear
combination of the others, then u1,u2, . . . ,uk are linearly dependent.

Suppose, without loss of generality, that there exist scalars α2, . . . , αk such
that u1 is a linear combination of the other vectors, i.e.,

u1 = α2u2 + · · ·+ αkuk.

Then
(−1)︸︷︷︸
̸=0

u1 + α2u2 + · · ·+ αkuk = 0,

which shows that u1,u2, . . . ,uk are linearly dependent.
Conversely, suppose now that u1,u2, . . . ,uk are linearly dependent, i.e.,

for some scalars α1, . . . , αk, not all equal to zero,

α1u1 + α2u2 + · · ·+ αkuk = 0. (3.2)

Suppose, without loss of generality, that α1 ̸= 0. It follows from (3.2) that

u1 = −α2

α1
u2 − · · · −

αk

α1
uk. (3.3)
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Hence, u1 is a linear combination of the other vectors, which ends the proof.

Suppose that u1 is a linear combination of u2, . . . ,uk and let v be a vector
in the space span{u1,u2, . . . ,uk}, i.e., for some scalars β1, β2, . . . , βk,

v = β1u1 + β2u2 + · · ·+ βkuk.

Using (3.3), we have

β1u1 + β2u2 + · · ·+ βkuk = β1

(
−α2

α1
u2 − · · · −

αk

α1
uk

)
+ β2u2 + · · ·+ βkuk

=

(
−α2

α1
β1 + β2

)
u2 + · · ·+

(
−αk

α1
β1 + βk

)
uk,

from which follows that

span{u1,u2, . . . ,uk} = span{u2, . . . ,uk}. (3.4)

Hence the span remains unchanged if one eliminates from the spanning set
a vector which is already a linear combination of the others. In other words,
if one is to choose a minimal set to span a vector space, one needs to focus
on linearly independent sets. The next section is devoted to this kind of sets,
those linearly independent sets that span a vector space V.

3.3 Bases and Dimension

A crucial notion is that of a basis of a vector space. Intuitively, a basis
can be thought of as a system of coordinate axes with respect to which the
vectors are described, much like what happens in R2 or R3, for example.
Roughly speaking, the number of axes in the system is the dimension of the
space.

Definition 28 A basis B of a vector space V is a (any) linearly independent
set that spans V.

Example 3.7 Here are some examples of basis of R2.

a) The set E2 = {(1, 0), (0, 1)} is a basis of R2, said the standard basis
of R2.

b) The set B = {(1, 1), (−1, 0)} is another basis of R2.

c) Another basis of R2 is B1 = . . . (find one).
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y

x

u

(2, 3)

(2, 0)

(0, 3)

b2

b1

3b1

FIGURE 3.3: The coordinate vectors of u = (2, 3) relative to the standard
basis and relative to B = (b1, b2) with b1 = (1, 1), b2 = (−1, 0).

Exercise 3.5 Express the vector (2, 3) as a linear combination of the vector
of the basis B in b) above.

Solution. One wants to find α1, α2 ∈ R such that

α1

[
1
1

]
+ α2

[
−1
0

]
=

[
2
3

]
.

This leads to solving the system whose augmented matrix is[
1 −1 2
1 0 3

]
,

yielding α1 = 3 e α2 = 1 (see Figure 3.3).

The subset En = {(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1)} of Rn is the
standard basis of Rn.

Example 3.8

a) The set B = {(1,−i), (1, 2i)} is a basis of C2. Since

rank

[
1 1
−i 2i

]
︸ ︷︷ ︸

A

= 2,
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by Proposition 3.4, the vectors (1,−i), (1, 2i) are linearly independent.
Moreover, given (a, b) ∈ C2, the system

A

[
α
β

]
=

[
a
b

]
is clearly consistent, showing that {(1,−i), (1, 2i)} spans C2.

b) The set E3 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} is a basis of C3.

More generally, the set En = {(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1)}
is the standard basis of Cn.

Theorem 3.2 Let B = {b1, b2, · · · , bk} be a basis of a vector space V over
K. Then every vector in V is uniquely expressed as a linear combination of
the vectors of the basis B.

Proof Let u ∈ V and let α1, α2, . . . , αk, β1, β2, . . . , βk scalars such that

u = α1b1 + α2b2 + · · ·+ αkbk,

and
u = β1b1 + β2b2 + · · ·+ βkbk.

Subtracting the corresponding members of the equalities above, we have

0 = u− u = α1b1 + α2b2 + · · ·+ αkbk − (β1b1 + β2b2 + · · ·+ βkbk).

Hence, using the properties of the operations + and µ,

(α1 − β1)b1 + (α2 − β2)b2 + · · ·+ (αk − βk)bk = 0.

Since the set {b1, b2, · · · , bk} is a basis of V , the vectors b1, b2, · · · , bk are
linearly independent and, therefore,

α1 − β1 = α2 − β2 = · · · = αk − βk = 0,

i.e.,
α1 = β1, α2 = β2, . . . , αk = βk,

as required.

Let B = (b1, b2, · · · , bk) be an ordered basis of a vector space V and let

u = α1b1 + α2b2 + · · ·+ αkbk
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be a vector in V. Then the coordinate vector of u relative to the basis B is
the vector uB (ou (u)B) in Kk defined by

uB = (α1, α2, · · · , αk).

Whenever writing the coordinate vector of u as a column, we shall adopt the
notation

uB =


α1

α2

...
αk

 or [u]B =


α1

α2

...
αk

 .

Example 3.9 The coordinate vectors of (2, 3) ∈ R2 relative to the basis B =
((1, 1), (−1, 0)) and to the standard basis E2 = ((1, 0), (0, 1)) are, respectively,
(2, 3)B = (3, 1) e (2, 3)E2 = (2, 3). What about (2, 3)B1

for B1 in Example 3.7
c)?

How to calculate the coordinates of a vector in Kn relative to a
basis

Let (b1, b2, . . . , bn) be a basis of Kn, and let x be a vector in Kn. To
calculate the coordinate vector xB = (α1, α2, . . . , αn) of x relative to the
basis B, i.e., to calculate the coefficients of the linear combination

x = α1b1 + α2b2 + · · ·+ αnbn

1) Solve the system whose augmented matrix is
[
b1 b2 . . . bk x

]
;

2) The coordinate vector xB = (α1, α2, . . . , αn) ∈ Kn is the (unique)
solution of the system in 1) above.

Example 3.10 Find a basis for the subspace of R3

S = span{(1, 1, 0), (0, 0, 1)}.

Find also a vetor equation, parametric equations and cartesian equations for
S.

By Proposition 3.4, we know that the vectors in S are linearly independent
if and only if

rank

1 0
1 0
0 1

 = 2.

Since the rank of the matrix is indeed 2, we can conclude that the vectors are
linearly independent. That is, the set S = {(1, 1, 0), (0, 0, 1)} is a basis for S.
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Hence, the vectors (x, y, z) in S are linear combinations of the vectors in
the basis of S. In other words, the vectors (x, y, z) of S satisfy the vector
equation of S

(x, y, z) = t(1, 1, 0) + s(0, 0, 1), (3.5)

where t, s ∈ R.
The parametric equations of S can be immediately obtained from (3.5):

x = t

y = t

z = s

where t, s are real parameters.
Cartesian equations can be obtained in the following way. Let (x, y, z)

be an arbitrary vector of S. This vector is a linear combination of the basis
vectors of S and, therefore, the set

{(1, 1, 0), (0, 0, 1), (x, y, z)}

is linearly dependent (cf. Theorem 3.1). That is, (x, y, z) ∈ S if and only if
the matrix

A =

1 0 x
1 0 y
0 1 z


has rank less than 3. (Hence rankA must be equal to 2.) Keeping this in mind,
we reduce A to a row echelon form using Gaussian elimination:1 0 x

1 0 y
0 1 z


L2−L1

//

1 0 x
0 0 −x+ y
0 1 z


L2↔L3

//

1 0 x
0 1 z
0 0 −x+ y



Observe that A must be the augmented matrix of a consistent system. In fact,
when consistent, it has a unique solution, given the linear independence of
the two first columns of A. It follows that −x + y must coincide with 0.
Hence we obtain the cartesian equation x = y for the plane S. In this very
simple example, this equation could be obtained just by ‘looking at’ the set
{(1, 1, 0), (0, 0, 1)}. However, it served to illustrate a general method to solve
this kind of problem.

Proposition 3.5 Let B = (b1, b2, · · · , bk) be a basis of a vector space V over
K. Given any vectors u,v ∈ V and a scalar α, then

(u+ v)B = uB + vB (αu)B = αuB. (3.6)

Moreover, the function T : V → Kk, defined by T (u) = uB, is bijective.
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Proof The proof of (3.6) is left as an exercise. The function T is surjective
because, given a vector (α1, α2, . . . , αk) ∈ Kk, the vector u ∈ V defined by
u = α1b1 + α2b2 + · · ·+ αkbk is such that

T (u) = uB = (α1, α2, . . . , αk).

Suppose now that u,v ∈ V are such that T (u) = T (v). Then, by (3.6), we
have

T (u) = T (v)⇔ T (u− v) = 0Kk ⇔ T (u− v) = (0, 0, . . . , 0︸ ︷︷ ︸
k

).

Hence
T (u− v) = (u− v)B = (0, 0, . . . , 0︸ ︷︷ ︸

k

),

from which follows that

u− v = 0b1 + 0b2 + · · ·+ 0bk = 0V .

Consequently, u = v. Thus it has been shown that

T (u) = T (v)⇒ u = v,

that is, T is injective.

Given a basis B = (b1, b2, · · · , bk) of a vector space V over K, let T be
the function defined by

T : V → Kk

u 7→ uB

which sends each vector u ∈ V to its coordinate vector uB relative to the
basis B. By Proposition 3.5, T transforms vector sums in vector sums and
transforms scalar multiplication in scalar multiplication.
Functions between vector spaces having this two properties are called linear
transformations and will be the subject of Chapter 5.

Proposition 3.6 Let B = (b1, b2, · · · , bk) be a basis of a vector space V
over K and let u1, . . . ,up be vectors in V. The vectors u1, . . . ,up are linearly
independent if and only if the vectors (u1)B, . . . , (up)B in Kk are linearly
independent.

Proof Since the function u 7→ uB is bijective (cf. Proposition 3.5),

α1u1 + · · ·+ αpup = 0V (3.7)
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if and only if
(α1u1 + · · ·+ αpup)B = 0Kk .

By Proposition 3.5, we have

α1(u1)B + · · ·+ αp(up)B = 0Kk . (3.8)

It follows that (3.7) has a unique solution (i.e., α1 = · · · = αp = 0) if and only
if the same applies to (3.8). Hence, u1, . . . ,up ∈ V are linearly independent
if and only if (u1)B, . . . , (up)B ∈ Rk are linearly independent.

3.3.1 Matrix spaces and spaces of polynomials

Up to this point and although our definitons are general, in practical terms
we have been focusing on Kn. It is now the time to see what we get when
addressing these concepts in more general vector spaces.

The ordered standard basis of the space Mk,n(K) of the k×n real matri-
ces is the ordered set consisting of the real k×n matrices having all entries but
one equal to zero which takes value 1; the ordering is such that the non-zero
entry in the first matrix is entry-11 and it ‘circulates’ along the lines from left
to right.

For example, in the case of M2(K), the standard basis is

Bc =
([

1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

])
.

Given a matrix A = [aij ], we have

A =

[
a11 a12
a21 a22

]
= a11

[
1 0
0 0

]
+ a12

[
0 1
0 0

]
+ a21

[
0 0
1 0

]
+ a22

[
0 0
0 1

]
.

Hence it is clear that A is a linear combination of the vectors, i.e., of the
matrices, in Bc. It is also easy to see that Bc is a linearly independent set. In
fact,

α1

[
1 0
0 0

]
+ α2

[
0 1
0 0

]
+ α3

[
0 0
1 0

]
+ α4

[
0 0
0 1

]
=

[
0 0
0 0

]
,

yields α1 = α2 = α3 = α4 = 0, which shows that Bc is linearly independent.
We see that Bc is a basis of M2(K) and that, for a matrix A as above, the

coordinate vector ABc
of A relative to the basis Bc is (a11, a12, a21, a22) which

lies in K4. We have then that any matrix

A =

[
a11 a12
a21 a22

]
has an image in K4 according to

T : M2(K)→ K4

A 7→ AB = (a11, a12, a21, a22).

Observe that Proposition 3.5 guarantees that T is bijective.
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Example 3.11 Find a basis B for the subspace S of M2(R) spanned by the
matrices

A =

[
1 1
1 1

]
B =

[
1 1
1 0

]
C =

[
0 0
0 −5

]
.

Find also the coordinate vector AB of A relative to the basis B.

We need to decide whether the set {A,B,C} is linearly independent be-
cause, if this were the case, {A,B,C} would be a basis, i.e., a linearly in-
dependent set which spans the space. On the other hand, we know that a set
of matrices in M2(R) is linearly independent if and only if their coordinate
vectors relative to the standard basis is a linearly independent set in R4 (cf.
Proposition 3.6). Hence we shall see if the vectors

ABc = (1, 1, 1, 1), BBc = (1, 1, 1, 0), CBc = (0, 0, 0,−5)

are linearly independent. We use Gaussian elimination to reduce
[[ABc

] [BBc
] [CBc

]] to a row echelon matrix:
1 1 0
1 1 0
1 1 0
1 0 −5

→

1 1 0
0 0 0
0 0 0
0 −1 −5

→


1 1 0
0 −1 −5
0 0 0
0 0 0

 .

We see that AB = (1, 1, 1, 1), BB = (1, 1, 1, 0) are linearly independent, whilst
CB = (0, 0, 0,−5) lies in the span{AB, BB}. Consequently, a basis of S is
B = (A,B).

The coordinate vector AB is

AB =

([
1 1
1 1

])
B
= (1, 0).

Notice that no calculations are required to obtain this coordinate vector since
A = 1A+ 0B.

Observe that to solve this problem, we transferred it to a problem in R4,
a ‘copy/ mirror image’ of M2(R) obtained using the coordinate vector of each
matrix relative to the standard basis. A crucial fact is that this copy is 1-to-1
and onto.
This is a trait of the book: whenever possible, we shall convert problems in
some general real vector space (respectively, complex vector space) having a
basis with n vectors in problems in Rn (respectively, Cn) using Proposition
3.6. That is to say, transferring the problem from the space to its space of
coordinate vectors relative to the given basis.

Let Pn, and let

p(t) = ao+a1t+a2t
2+· · ·+an−1t

n−1+ant
n, ao, a1, a2, . . . , an−1, an ∈ R.

denote the generic polynomial.
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The standard basis of Pn is the ordered set Pn = (1, t, . . . , tn). As
we have seen for matrix spaces, each polynomial p(t) = ao + a1t + a2t

2 +
· · ·+ an−1t

n−1 + ant
n has an image in Rn consisting of the coordinate vector

(ao, a1, a2, . . . , an−1, an) of p(t) relative to the basis Pn.

Example 3.12 Find a basis for the subspace S of P3 spanned by X =
{1, 1 + t, 1 + t+ t2, 1 + t+ t2 + t3}.

Similarly to Example 3.11, we shall resort to the coordinate vectors of the
polynomials relative to the basis P3. We obtain the matrix

1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1


which is already a row echelon matrix having rank 4.

Hence the set X is linearly independent and, therefore, a basis of S. We
shall see later that this forces S to coincide with P3 (see Theorem 3.5 (i)).

3.3.2 Existence and construction of bases

Lately we have seen how important bases are: they act as a ‘system of
coordinates’ with respect to which the space is described. This even allows for
treating any space having a basis with n vectors like Kn (cf. §3.3.1).

One might ask however whether this is always possible. Given a space,
does it always have a basis? And if it has two bases, say, is there a relation
between their cardinality?

The next two theorems answer these questions for spaces having a spanning
set. But before going into that, it should be pointed out that not all spaces
have a spanning set, that is, a finite set whose span coincides with the space.
For example, if one considers the set P of real polynomials, it is impossible to
find such a set for P. (Why?)

Theorem 3.3 Every vector space over K with a spanning set has a basis.

Here we adopt the convention that the empty set ∅ is a basis of V = {0}.

Proof The case V = {0} holds trivially. Let V ̸= {0} and let X be a span-
ning set of V. We show next that X contains a maximal linearly independent
set Y , that is, any other subset of X which contains Y properly is linearly
dependent.

Let y1 be a non-zero vector in X, and observe that {y1} is linearly inde-
pendent. Now two situations can occur: either (a) every other vector of X lies
in the subspace spanned by y1, or (b) we can find y2 ∈ X such that {y1,y2}
is linearly independent.
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In the case (a), Y = {y1}. In case (b), one keeps adjoining vectors of X
to {y1,y2}, one at a time, until obtaining a linearly independent set Y which
cannot be enlarged, either because there are no more vectors in X, or because
all the remaining vectors in X\Y lie in spanY (see Theorem 3.1).

Let now Y ⊆ X be a maximal linearly independent set. It follows by the
above reasoning that every x ∈ X is a linear combination of the elements of Y .
Hence, we have that each element of V is a linear combination of the elements
of X, which are in turn all linear combinations of the vectors in Y . It follows
that Y spans V (see (3.4)) and, being linearly independent, is a basis of V.

Theorem 3.4 Let B1 e B2 be bases of a vector space V over K. Then B1 and
B2 have the same cardinality.

Proof Suppose, without loss of generality, that

k = #B1 < #B2 = n.

Since every vector in B2 is in the span of B1, one can construct a k×n matrix
A whose columns are the coordinate vectors of the vectors in B2 relative to
basis B1. It follows that rank (A) ≤ k < n. Hence, by Propositions 3.4 and
3.6, B2 is a linearly dependent set, yielding a contradiction.

The dimension of a vector space V , denoted by dimV , is the cardinality
of a (any) basis of V.

For example, the standard basis En of Rn has n vectors, from which we
see that dimRn = n. Obviously, we have also dimCn = n.

Going back to the examples in §3.3.1, we have that dimM2(R) = 4,
dimPn = n+ 1, and dimS = 2, where S is the subspace in Example 3.11.

Now we know that any vector space with a spanning set has always a
basis but also that not every vector space has a spanning set. We make here a
distinction between these spaces: a vector space with a spanning set is called
a finite dimensional vector space, whilst those vector spaces without such
a set are called infinite dimensional. In the sequel, all vector spaces are
supposed to be finite dimensional unless stated otherwise.

Recapping: now that we know that a finite dimensional vector space always
possesses a basis (and, therefore, infinitely many basis, if V ̸= {0}), it would
be desirable to have a way to find it (them). This will be accomplished in
Theorem 3.5 below which gives a way of obtaining bases from subsets of
vectors in V.

We begin with the following lemma.

Lemma 3.1 Let X = {u1,u2, · · · ,uk} be a linearly independent set of Kk.
Then X is a basis of Kk.
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Proof It is enough to show that X spans Kk, i.e, to show that, for all
v = (c1, c2, . . . , ck) ∈ Kk, there exist α1, α2, . . . , αk ∈ K such that

v = α1u1 + α2u2 + · · ·+ αkuk.

But the system of linear equations

[
u1 | u2 | · · · | uk

]

α1

α2

...
αk

 =


c1
c2
...
ck

 ,

is consistent (and has a unique solution), since rank (
[
u1 | u2 | · · · | uk

]
) =

k (compare with Proposition 3.4).
It has thus been shown that each vector v ∈ Rk is a linear combination of

u1,u2, · · · ,uk, i.e., X spans Kk.

Theorem 3.5 Let V be a vector space over K of positive dimension k.

(i) Any k linearly independent vectors span V (i.e., form a basis of V ).

(ii) Any subset of V containing m vectors, with m > k, is linearly dependent.

(iii) Any linearly independent subset of V consisting of p vectors, where p <
k, is contained in a basis of V.

(iv) Any subset spanning V contains a basis of V.

Informally, we can say that (iii) asserts that any linearly independent sub-
set of V can be ‘augmented’ to yield a basis of V. Similarly, it is stated in (iv)
that any subset that spans V can be cut down in order to obtain a basis of V.

Proof Let B = (b1, b2, · · · , bk) be a basis of V.
(i) Let X = {u1,u2, · · · ,uk} be a linearly independent set of vectors in

V. By Proposition 3.6, the set {(u1)B, (u2)B, · · · , (uk)B} is a linearly inde-
pendent subset of Kk. Hence, by Lemma 3.1, the set

{(u1)B, (u2)B, · · · , (uk)B}

is a basis of Kk.
Let v = α1b1 + α2b2 + · · ·+ αkbk be a vector of V. We want to show that

v lies in spanX. Then, since ((u1)B, (u2)B, · · · , (uk)B) is an ordered basis
of Kk, the vector (α1, α2, . . . , αk) ∈ Kk is a linear combination of the vectors
(u1)B, (u2)B, · · · , (uk)B. That is,

vB = (α1, α2, . . . , αk) = β1(u1)B + β2(u2)B + · · ·+ βk(uk)B.
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Hence, by Proposition 3.5,

vB = β1(u1)B + β2(u2)B + · · ·+ βk(uk)B

= (β1u1 + β2u2 + · · ·+ βkuk)B

Using Proposition 3.5 again, we have

v = β1u1 + β2u2 + · · ·+ βkuk,

as required.
(ii) Let X = {u1,u2, · · · ,um} be a subset of V and suppose that X is

linearly independent. It follows that Xk = {u1,u2, · · · ,uk} is also linearly
independent.1

Assertion (i) of this theorem guarantees that Xk is a basis of V , from
which follows that all vectors uk+1, . . . ,um lie in the span of the basis Xk.
Consequently, by Theorem 3.1, the set X is linearly dependent, contradicting
the initial hypothesis of X being linearly independent. We have thus shown
that X is a linearly dependent set.

(iii) Let X consist of a linearly independent subset of V having p vectors
and let B be a basis of V. Let {u1, . . . ,ur} be a maximal subset of vectors in
B such that {u1, . . . ,ur} ∪X is linearly independent.

We claim that r = k − p. Observe that, if this is the case, then
{u1, . . . ,ur} ∪ X is a linearly independent set of k vectors which, by (i) of
this theorem, spans V. In other words, {u1, . . . ,ur} ∪X is a basis of V.

We show now that r = k − p. Clearly r ≤ k − p, since otherwise, by (ii)
above, {u1, . . . ,ur} ∪X would be linearly dependent.

Suppose that r < k − p. Then the cardinality of {u1, . . . ,ur} ∪ X is
less than k. It is also the case that, by Theorem 3.1, B\{u1, . . . ,ur} ⊆
span({u1, . . . ,ur} ∪X). Hence, as in (3.4),

V = span({u1, . . . ,ur} ∪X),

from which follows that dimV = r < k, yielding a contradiction.
(iv) Let X be a subset of V which spans V. We claim that there exists a

linearly independent subset Y of X with k elements. Observe that, since Y is
linearly independent then, by (ii) of this theorem, it cannot have more than k
elements.

Suppose that this was not the case, i.e, any linearly independent
set Y ⊆ X has less than k elements. Let r = max{#Y : Y ⊆
X, Y is linearly independent} and let Yr be a linearly independent set con-
tained in X consisting of r elements. It follows that any other element of X
lies in spanYr and, therefore, spanYr = spanX = V . Hence, Yr is a basis of
V , which contradicts the hypothesis of dimV = k > r.

Proposition 3.7 Every subspace of a vector space V with dimV = k has
dimension less than or equal to k.

1Observe that any subset of a linearly independent set is necessarily also lineraly inde-
pendent because, if it were not then. . . (Exercise).



Vector Spaces 105

Proof Let S be a subspace of V. If S = {0}, then the assertion holds
trivially.

Suppose now that S ̸= {0}, and let y1 ∈ S be a non-zero vector. Then the
set y1 is linearly independent. Two situations can occur: either (a) every other
vector of S lies in the subspace spanned by y1 or (b) we can find y2 ∈ S such
that {y1,y2} is linearly independent. Now we only have to continue mimicking
the proof of Theorem 3.3 to get the desired conclusion. Notice that, by Theorem
3.5 (ii), any linearly independent subset of S contains k vectors, at most.

Example 3.13 We are now in a position to classify the subspaces of R2.
Since dimR2 = 2, we know, by Theorem 3.5 (ii), that any linearly independent
subset of R2 has, at most, two vectors. Hence, given a subspace S of R2, its
basis can have zero vectors, one vector or two vectors, being S, respectively,
{(0, 0)}, a straight line through (0, 0), or R2. Notice that, by Theorem 3.5 (i),
any two linearly independent vectors span R2.

Example 3.14 This example is an application of Theorem 3.5 (iv).
Find a basis of the subspace S of R3 spanned by

X = {(1, 2, 6), (1, 1, 1), (2, 3, 7), (0, 1, 5)}.

The vectors (1, 2, 6), (1, 1, 1), (2, 3, 7), (0, 1, 5) are linearly dependent be-
cause, since the dimension of R3 is equal to 3, any set with four vectors cannot
be linearly independent (cf. Theorem 3.5 (ii)). Observe that, if these vectors
were linearly independent, the dimension of R3 would have to be greater than
or equal to 4, which is impossible.

Since X spans S, Theorem 3.5 (iv) guarantees that the set

{(1, 2, 6), (1, 1, 1), (2, 3, 7), (0, 1, 5)}

contains a basis of S. We must then find a maximal linearly independent
subset of X, in the sense that it is not strictly contained in another linearly
independent set contained in X.

Having in mind Proposition 3.4, we reduce the matrix1 1 2 0
2 1 3 1
6 1 7 5

 (3.9)

to a row echelon matrix. We have then1 1 2 0
2 1 3 1
6 1 7 5

→
1 1 2 0
0 −1 −1 1
0 −5 −5 5

→
 1 1 2 0

0 −1 −1 1
0 0 0 0


Observing that the pivots (in grey) are located in the first and second columns,
Proposition 3.4 yields that (1, 2, 6), (1, 1, 1) are linearly independent.
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On the other hand, using the row echelon matrix above, we know that the
homogeneous system associated with the matrix (3.9) has two free variables.
Denoting by (α, β, γ, δ) the elements of the solution set of this system, we have
that the free variables are γ and δ.

If, for example, we let γ = 1 and δ = 0, then there exist α1, β1 ∈ R such
that

α1(1, 2, 6) + β1(1, 1, 1) + (2, 3, 7) + 0(0, 1, 5) = 0.

Hence
α1(1, 2, 6) + β1(1, 1, 1) + (2, 3, 7) = 0,

which shows that (2, 3, 7) is a linear combination of (1, 2, 6), (1, 1, 1).
Analogously it could be shown that (0, 1, 5) is a linear combination of

(1, 2, 6), (1, 1, 1), being enough to set γ = 0 and δ = 1.
We conclude thus that the set {(1, 2, 6), (1, 1, 1)} is a basis of S.

It follows from the solution of this problem that a vector equation for S is

(x, y, z) = t(1, 2, 6) + s(1, 1, 1),

with t, s ∈ R, and that parametric equations of S are
x = t+ s

y = 2t+ s

z = 6t+ s,

with t, s ∈ R. Find a cartesian equation of S (see Example 3.10).

Example 3.15 This is an example of application of Theorem 3.5 (iii).
Show that it is possible to obtain a basis of R4 containing {v1,v2,v3},

where

v1 = (1,−1,−2, 2) v2 = (−3, 5, 5,−6) v3 = (1,−1, 0, 2).

We begin by reducing the matrix
[
v1 | v2 | v3

]
to row echelon form:

1 −3 1
−1 5 −1
−2 5 0
2 −6 2

→

1 −3 1
0 2 0
0 −1 2
0 0 0

→

1 −3 1
0 2 0
0 0 2
0 0 0


By Proposition 3.4, we see that the vectors {v1,v2,v3} are linearly indepen-
dent. Theorem 3.5 (iii) guarantees it is possible to add vectors to this set in
order to construct a basis for R4.

Having in mind the location of the grey pivots, we see that, for example,
adding e4 of the standard basis of R4 to the set {v1,v2,v3}, we shall have a
matrix 

1 −3 1 0
2 −6 2 0
−1 5 −1 0
−2 5 0 1


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whose rank is necessarily 4. Notice that, in the above Gaussian elimination,
all elementary operations used leave the fourth column unchanged.

Now by Proposition 3.4 and Theorem 3.5 (i), we have immediately that
{v1,v2,v3, e4} is a basis of R4.

3.4 Null Space, Row Space, and Column Space

Although this book has been written in the spirit of binding together
matrices and any other concept developed, it might be the case that this
section shows it like no other. Here we shall define four fundamental subspaces
associated with each matrix, definitely ‘entangling’ matrices and vector spaces.
These are the null space, the row space, and the column space of a matrix
and the null space of its transpose.

Definition 29 The null space N(A) of a k × n matrix A over K is the
solution set of the homogeneous system of linear equations Ax = 0.

We proved in Example 3.1 the following proposition.

Proposition 3.8 Let A be a k × n matrix over K. The null space

N(A) = {x ∈ Kn : Ax = 0}

is a vector subspace of Kn.

Example 3.16 Part I: The null space of A.
Consider the matrix

A =

1 1 2 2
1 2 1 1
2 3 3 3

 .

To find the null space N(A), we must solve the homogeneous system Ax = 0.
Reducing A to a row echelon matrix through Gaussian elimination, one has1 1 2 2

1 2 1 1
2 3 3 3

→
1 1 2 2
0 1 −1 −1
0 1 −1 −1

→
1 1 2 2
0 1 −1 −1
0 0 0 0

 .

The solution set of Ax = 0 is then

N(A) = {(x, y, z, w) ∈ R4 : x = −3z − 3w, y = z + w}.

Since, for all (x, y, z, w) ∈ N(A), we have
x
y
z
w

 =


3z − 3w
z + w
z
w

 =


3z
z
z
0

+


−3w
w
0
w

 = z


3
1
1
0

+ w


−3
1
0
1

 ,
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it follows that N(A) = span{(3, 1, 1, 0), (−3, 1, 0, 1)}. Hence, a basis of N(A)
is {(3, 1, 1, 0), (−3, 1, 0, 1))}, since this set is linearly independent. We have
now that dimN(A) = 2.

Notice that the way we constructed the spanning vectors of N(A) makes
them automatically linearly independent due to the ‘strategic’ placement of
zero in each vector. In fact, the only way to span the zero vector is by mak-
ing z = 0 = w. Hence, when finding a basis for N(A), if the method above
is used, then one does not have to verify whether the spanning vectors are
linearly independent: they always are.

We can extrapolate from this example that, given a matrix A, the dimen-
sion of N(A) coincides with the number of independent variables of the system
Ax = 0.

The nullity nul(A) of a matrix A is the dimension of its null space.

Definition 30 Let A be a k × n matrix over K. The row space L(A) of A
is the subspace of Kn spanned by the rows of A. Supposing that A is presented
in terms of its rows, i.e.,

A =


l1
l2
...
lk

 , lT1 , l
T
2 , . . . , l

T
k ∈ Kn ,

we have

L(A) = {α1l
T
1 + α2l

T
2 + · · ·+ αkl

T
k : α1, α2, . . . , αk ∈ K}

The column space C(A) of A the subspace of Kk by the columns of A.
Supposing A presented in terms of its columns, i.e.,

A =
[
c1 c2 · · · cn

]
(c1, c2, . . . , ck ∈ Kk) ,

then
C(A) = {β1c1 + β2c2 + · · ·+ βncn : β1, β2, . . . , βn ∈ K}

Proposition 3.9 Let A be a k×n matrix over K and let B be a matrix which
is obtained from A through a single elementary operation. Then the row space
of B coincides with the row space of A.

Proof Consider the matrix

A =


l1
l2
...
lk

 (lT1 , l
T
2 , . . . , l

T
k ∈ Kn) ,
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The row space L(A) of A is the subspace of Kn spanned by the vectors
lT1 , l

T
2 , . . . , l

T
k ∈ Kn, i.e.,

L(A) = {α1l
T
1 + α2l

T
2 + · · ·+ αkl

T
k : α1, α2, . . . , αk ∈ K}.

If B is obtained by exchanging two rows of A, e.g., li ↔ lj, it is obvious that
L(A) = L(B).

Suppose now that B is obtained by multiplying row li of A by the scalar
α ̸= 0, i.e.,

A
αli

// B .

A linear combination of the rows of B is a vector of the form

α1l
T
1 + α2l

T
2 + · · ·+ αi(αl

T
i ) + · · ·+ αkl

T
k ,

from which follows that

α1l
T
1 + α2l

T
2 + · · ·+ αi(αl

T
i ) + · · ·+ αkl

T
k

= α1l
T
1 + α2l

T
2 + · · ·+ (αiα)l

T
i + · · ·+ αkl

T
k . (3.10)

It is now clear that (3.10) is also a linear combination of the rows of A. Hence
we showed that L(B) ⊆ L(A).

Conversely, let x be a vector in L(A). That is,

x = α1l
T
1 + α2l

T
2 + · · ·+ αil

T
i + · · ·+ αkl

T
k .

However,

α1l
T
1 + α2l

T
2 + · · ·+ αil

T
i + · · ·+ αkl

T
k

= α1l
T
1 + α2l

T
2 + · · ·+ αi

α
(αlTi ) + · · ·+ αkl

T
k , (3.11)

which shows that L(A) ⊆ L(B), since the vector (3.11) lies in L(B).
Finally, suppose that B is obtained from A by replacing row li by li +αlj,

where i ̸= j and α is a scalar. Observing that

α1l
T
1 + α2l

T
2 + · · ·+ αi(l

T
i + αlTj ) + · · ·+ αjl

T
j + · · ·+ αkl

T
k

= α1l
T
1 + α2l

T
2 + · · ·+ αlTi + · · ·+ (α+ αj)l

T
j + · · ·+ αkl

T
k

and using a reasoning similar to that above, it is easy to see that L(A) = L(B).

Proposition 3.10 The non-zero rows of a row echelon matrix are linearly
independent.
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Proof Let R be m×n row echelon matrix which we supposed presented in
terms of its rows, i.e.,

R =


l1
l2
...
lm

 , lT1 , l
T
2 , . . . , l

T
m ∈ Kn ,

and consider the equality

α1l
T
1 + α2l

T
2 + · · ·+ αkl

T
k = 0, α1, α2, . . . , αk ∈ K, (3.12)

where k ≤ m is the index of the bottom most non-zero row of R. If a1j is
the first non-zero entry of l1, since R is a row echelon matrix, we have that
a2j = a3j = · · · = akj = 0 (i.e, all entries of R in the j column are zero).
Hence, for (3.12) to hold it is necessary that α1 = 0. Thus we obtain

α2l
T
2 + · · ·+ αkl

T
k = 0, α2, . . . , αk ∈ K. (3.13)

The submatrix consisting only of the rows l2, . . . , lk is also a row echelon
matrix to which we can apply again the preceding reasoning, concluding that
α2 = 0. Repeating this procedure sufficiently many times, we have

α1 = α2 = · · · = αk = 0

and, therefore, the rows of R are linearly independent.

Example 3.17 Part II: The row and column spaces of A.
Consider again the matrix

A =

1 1 2 2
1 2 1 1
2 3 3 3


and its reduction to a row echelon matrix done in Part I (see Example 3.16).

By Proposition 3.9, the row space of A and the row space of any matrix
obtained from A using elementary operations coincide. Hence the row space of1 1 2 2

0 1 −1 −1
0 0 0 0


is the row space L(A) of A. Observing that, on the other hand, the non-zero
rows of a row echelon matrix are linearly independent (cf. Proposition 3.10),
we have that the set {(1, 1, 2, 2), (0, 1,−1,−1)} is a basis of L(A).

The set consisting of the columns of A corresponding to the dependent vari-
ables (i.e., the columns corresponding to pivots) is linearly independent. Notice
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that, if one considers the matrix A′ obtained by removing the grey columns of
A, this matrix is a row echelon matrix. Hence, since the number of columns is
equal to the number of pivots, the homogeneous system A′x = 0 admits only
the trivial solution. Since A′x is a linear combination of the columns of A′, it
is now clear que that the columns of A′ are linearly independent.

On the other hand, if one adds any of the grey columns to the columns of
A′, i.e., any columns corresponding to an independent variable, this new set
is linearly dependent. In fact, these columns form an augmented matrix of a
system which is consistent and has a unique solution, showing that this grey
column is a linear combination of the columns of A′. We can now conclude
that {(1, 1, 2), (1, 2, 3)} is a basis of C(A).

We have finally that

dimL(A) = number of pivots = rank (A) = dimC(A)

dimN(A) = number of independent variables

= number of columns− number of pivots

= number of columns− rank (A),

from which follows that

dimN(A) + dimL(A) = number of columns.

A common mistake. When choosing the columns in the basis of C(A), one
must go back to the original matrix. One has to choose the columns in matrix
A corresponding to those having pivots in the row echelon matrix. It is a
common mistake to select those of the row echelon matrix. This is wrong.

How to find bases for the spaces associated with a matrix

Let A be a k × n matrix over K.

1. Use Gaussian elimination to reduce A to a row echelon matrix R.

2. The set of the rows of R having pivots is a basis of the row space
L(A).

3. The set of the columns of A corresponding to those in R having pivots
is a basis of C(A).

4. Solve the system Rx = 0. Find a basis for this solution set (cf.
Example 3.16). This is also a basis of N(A).

One has only to reduce A to a row echelon matrix!
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In 2., above, alternatively, one could go back to A and choose the corre-
sponding rows. However, this might be tricky if row exchange was involved
in the Gaussian elimination. Moreover, the rows of A are more ‘complicated’
than those of R, since the latter have more zero entries, in general. Hence,
there is nothing to be gained from going back to A. Why do it then?

Proposition 3.11 Let A be a k × n matrix over K. Then,

(i) dimN(A) = n− rank (A);

(ii) dimL(A) = rank (A);

(iii) dimC(A) = rank (A).

Proof (i) The dimension of the null space is the number of independent
variables in Ax = 0 and, consequently, coincides with n− rank (A).

(ii) This is a consequence of Propositions 3.9 and 3.10.
(iii) Removing from A the columns corresponding to those without pivots

in the row echelon matrix, we obtain a matrix A′ whose columns are linearly
independent, since he system A′x = 0 has only the trivial solution. It is also
the case that these columns correspond exactly to the maximum number of
linearly independent columns in A, yielding dimC(A) = rank (A).

The next theorem is an immediate consequence of this proposition.

Theorem 3.6 (Rank-nullity theorem) Let A be a k × n matrix over K.
Then,

n = dimN(A) + dimL(A) = nul(A) + rank (A) (3.14)

Example 3.18 Find the spaces N(A), L(A), C(A), and check that Theorem
3.6 holds for

A =

[
1 i 0
−i 1 2i

]
.

We begin by finding N(A). Solving the homogeneous system Ax = 0, we
have

A =

[
1 i 0
−i 1 2i

]
l2+il1

//
[
1 i 0
0 0 2i

]
. (3.15)

The null space is, therefore,

N(A) = {(x1, x2, x3) ∈ C3 : x1 = −ix2, x3 = 0}.

Hence, every vector (x1, x2, x3) ∈ N(A) can be written as

(x1, x2, x3) = (−ix2, x2, 0) = x2(−i, 1, 0)
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from which follows that
BN(A) = {(−i, 1, 0)}

is a basis of N(A). Consequently, dimN(A) = 1.
Using (3.15), we see that

L(A) = L({(1, i, 0), (0, 0, 2i)}), C(A) = L({(1,−i), (0, 2i)},

and that bases for these spaces are

BL(A) = {(1, i, 0), (0, 0, 2i)}, BC(A) = {(1,−i), (0, 2i)}.

Hence, dimL(A) = 2 = dimC(A).
We see now that Theorem 3.6 holds, since

number of columns ofA︸ ︷︷ ︸
3

= dimN(A)︸ ︷︷ ︸
1

+dimL(A)︸ ︷︷ ︸
2

.

Corollary 3.2 Let A be a k × n matrix over K. Then,

k = dimN(AT ) + dimC(A),

rank (A) = rank (AT ), and

n− k = dimN(A)− dimN(AT ).

Proof Applying Theorem 3.6 to AT , we have

k = dimN(AT ) + dimL(AT ) = dimN(AT ) + dimC(A),

since L(AT ) = C(A). The remaining assertions are immediate, since, by
Proposition 3.11, dimL(A) = rank (A) = dimC(A).

The next example shows how the row space of a matrix can be used to
obtain a basis of a subspace of Kn.

Example 3.19 We want to show that the vectors

v1 = (1, 2,−1,−2, 1), v2 = (−3,−6, 5, 5,−8), v3 = (1, 2,−1, 0, 4)

are linearly independent and to find a basis of R5 containing these vectors.

The vectors v1,v2,v3 are linearly independent if and only if the rows of
the matrix  1 2 −1 −2 1

−3 −6 5 5 −8
1 2 −1 0 4


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are also linearly independent. Using Gaussian elimination, 1 2 −1 −2 1
−3 −6 5 5 −8
1 2 −1 0 4

→
1 2 −1 −2 1
0 0 2 −1 −5
0 0 0 2 3


︸ ︷︷ ︸

R

,

from which follows that v1,v2,v3 are linearly independent and, therefore, the
set

{(1, 2,−1,−2, 1)︸ ︷︷ ︸
u1

, (0, 0, 2,−1,−5)︸ ︷︷ ︸
u2

, (0, 0, 0, 2, 3)︸ ︷︷ ︸
u3

}

is a basis of span{v1,v2,v3}. Notice that here we applied Proposition 3.9.
Since the pivots of R are situated in the columns 1, 3, and 4, it is

clear that {u1,u2,u3, (0, 1, 0, 0, 0), (0, 0, 0, 0, 1)} is a basis of R5. Hence,
{v1,v2,v3, (0, 1, 0, 0, 0), (0, 0, 0, 0, 1)} is also a basis of R5.

How to find a basis for the space spanned by a set of vectors
using the row space of a matrix

Let u1,u2, . . . ,uk be vectors in Kn.

1. Construct the matrix whose rows consist of these vectors, i.e.,

A =


uT
1

uT
2
...
uT
k

 .

Observe that the vectors are column vectors and that to obtain row
vectors one has, therefore, to use transposition.

2. Use Gaussian elimination to reduce A to a row echelon matrix R.

3. A basis of span{u1,u2, . . . ,uk} = L(A) = L(R) is formed by the
rows of R with pivots.

Alternatively, we could use Proposition 3.4 to find a maximal subset of
linearly independent vectors of {u1,u2, . . . ,uk}, that is, beginning with a
matrix B whose columns are u1,u2, . . . ,uk (see also Example 3.10). But this
is more complicated inasmuch as we have always to go back to the initial
matrix B to get our answers. Again, why complicate things?

The next theorem characterises matrix invertibility in terms of the its null
space, row space, and column space.
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Theorem 3.7 (Necessary and sufficient conditions of invertibility
(III)) Let A square matrix of order n with entries in K. The following asser-
tions are equivalent.

(i) A is invertible.

(ii) N(A) = {0}.

(iii) The rows of A are linearly independent.

(iv) The rows of A are a basis of Kn.

(v) dimL(A) = n.

(vi) The columns of A are linearly independent.

(vii) The columns of A are a basis of Kn.

(viii) dimC(A) = n.

Proof The equivalence (i) ⇔ (ii) has already been proved (cf. Theorem
1.1).

(ii) ⇔ (v) The null space N(A) coincides with {0} if and only if the
homogeneous system Ax = 0 is consistent and has a unique solution. Hence
N(A) = {0} if and only if rankA = n and, therefore, if and only if dimL(A) =
n.

The equivalences (iii) ⇔ (iv) ⇔ (v) are immediate. Observing that
L(AT ) = C(A) and that A is invertible if and only if AT is invertible (cf.
Proposition 1.18 (v)), it is obvious that(i) ⇔ (vi) ⇔ (vii) ⇔ (viii).

3.4.1 Ax = b

Let A be a matrix over K of size k × n. Let x0 be a solution of the ho-
mogeneous system Ax = 0 and let xp be a particular solution of the system
Ax = b. In other words, we are supposing that x0,xp are vectors in Kn such
that

Ax0 = 0 Axp = b.

Example 3.20 Consider the system of linear equations

[
1 −1 0
−2 2 0

]
︸ ︷︷ ︸

A

x1

x2

x3

 =

[
1
−2

]
.

The solution set of Ax = 0 is {(x1, x2, x3) ∈ R3 : x1 = x2}. Hence, for
example, x0 = (3, 3,−17) is a solution of Ax = 0.
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Check that xp = (1, 0, 3) is a solution of the non-homogeneous system.

The vector x = x0 + xp is a solution of Ax = b because

Ax = A(x0 + xp)

= Ax0 +Axp

= 0+ b

= b.

Conversely, it is easy to see that any solution of Ax = b has this form. In fact,
if x1 is a solution of Ax = b, we have

A(x1 − xp) = Ax1 −Axp

= b− b

= 0,

from which follows that x′0 = x1−xp is a solution of the homogeneous system
Ax = 0. Hence, we have once again that x1 = x′0 + xp, that is, x1 is the sum
of a solution of the homogeneous system with the particular solution xp of
Ax = b.

We can thus conclude that the solution set S of Ax = b can be presented
as

S = xp +N(A),

where
xp +N(A) := {xp + x : x ∈ N(A)}

(see Figure 3.4).

Proposition 3.12 Let A be a k × n matrix over K and let b be a k × 1
vector. The system Ax = b is consistent if and only if b ∈ C(A). Moreover,
if Ax = b is consistent, then its solution set S is

S = xp +N(A),

where xp a particular solution of Ax = b.

Proof Since Ax is a linear combination of the columns of A, that is, Ax
lies in C(A), it is clear that the system is consistent if and only if b lies in
C(A).

The remaining assertion has just been proved above.

3.5 Sum and Intersection of Subspaces

In this section we construct new spaces out of old ones.
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x1

x2

x3

N(A)

S

xp

FIGURE 3.4: The solution set S is obtained adding the particular solution
xp = (1, 0, 3) to the solution set of the homogeneous system.

Definition 31 Let U and W be subspaces of a vector space V over K. The
sum of the subspaces U and W , denoted U +W , is defined by

U +W = {x+ y : x ∈ U ∧ y ∈W}.

Proposition 3.13 Let U and W be subspaces of a vector space V. Then U+W
and U ∩W are vector subspaces of V.

Proof Notice that U+W and U∩W are non-empty sets. Let α be a scalar
and let z ∈ U +W . Then there exist x ∈ U and y ∈ W such that z = x+ y
and

αz = α(x+ y) = αx+ αy.

Since αx ∈ U and αy ∈ W , it follows that αz ∈ U + W . Hence, U + W is
closed under scalar multiplication.
To see that U + W is closed for vector addition, let z1 and z2 be vectors in
U +W . Then there exist x1,x2 ∈ U and y1,y2 ∈ W such that z1 = x1 + y1

and z2 = x2 + y2. Hence

z1 + z2 = x1 + y1 + x2 + y2

= (x1 + x2) + (y1 + y2),

which shows that U +W is closed for the operation +.
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As to showing that U ∩W is a subspace, we begin with the scalar multipli-
cation. If x ∈ U ∩W then αx ∈ U , αx ∈ W and, therefore, U ∩W is closed
under scalar multiplication.

Let x,y ∈ U ∩W , then x+y ∈ U and x+y ∈W . Hence, x+y ∈ U ∩W ,
from which follows that U ∩W is closed for vector addition.

Example 3.21 Find bases for U + W and U ∩ W , where U is the plane
x+ 2y + z = 0 and W = span{(1,−1, 1), (0, 0, 1)}.

Solution. The cartesian equation of U leads toxy
z

 = y

−21
0

+ z

−10
1

 ,

from which follows that a basis for U is

BU =


−21

0

 ,

−10
1

 .

Hence U+W = span{(1,−1, 1), (0, 0, 1), (−2, 1, 0), (−1, 0, 1)}. To obtain a ba-
sis of U+W , we only have to find a maximal set of linearly independent vectors
contained in span{(1,−1, 1), (0, 0, 1), (−2, 1, 0), (−1, 0, 1)}. It is easy to see
that we can find three linearly independent vectors and, therefore, U+W = R3.

A cartesian equation for W is x+y = 0 and, consequently, U ∩W consists
of the vectors in R3 such that{

x+ 2y + z = 0

x+ y = 0
.

Hence, a basis for U ∩W is BU∩W = {(−1, 1,−1)}.

Theorem 3.8 Let U and W be subspaces of a finite dimensional vector space
V. Then

dimU + dimW = dim(U +W ) + dim(U ∩W ).

Proof Let BU∩W be a basis of the intersection. Then, by Theorem 3.5 (iii),
we can find bases BU and BW such that BU∩W ⊆ BU , BW . Hence, BU ∪BW

is a basis for BU+W . It is clear that BU ∪ BW is a spanning set for U +W .
We show now that BU ∪BW is linearly independent. Let

BU ∪BW = {u1, . . . ,ur,v1, . . . ,vm,w1, . . .wk},

where {u1, . . . ,ur} ⊆ U\(U ∩W ), {v1, . . . ,vm} ⊆ U ∩W , and {w1, . . .wk} ⊆
W\(U ∩W ).

If
r∑

i=1

αiui +

m∑
j=1

βjvj +

k∑
l=1

γlwl = 0, (3.16)
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then
r∑

i=1

αiui +
m∑
j=1

βjvj = −
k∑

l=1

γlwl,

from which follows that −
∑k

l=1 γlwl ∈ U . Consequently,
∑k

l=1 γlwl ∈ U ∩W
is a linear combination of {v1, . . . ,vm}, yielding that

∑k
l=1 γlwl = 0, since

the set {v1, . . . ,vm,w1, . . .wk} is the linearly independent set BW . It now
follows that all scalars in (3.16) are 0 and, therefore, BU ∪ BW is linearly
independent.

Notice that
#BU+W = #BU +#BW −#BU∩W ,

since the vectors in BU∩W appear twice in #BU +#BW . Now, it is immediate
that

dimU + dimW = dim(U +W ) + dim(U ∩W ).

Definition 32 Let V be a vector space and let U,W be subspaces of V. The
space V is said to be a direct sum of U and W if V = U +W and U ∩W =
{0}. We denote by

V = U ⊕W

the direct sum of U and W .

The sum U +W = R3 in Example 3.21 is not a direct sum. However, if U
is the plane x = 0 and W is the straight line x = y = z, then R3 = U ⊕W .

Example 3.22 Prove that, in a direct sum V = U ⊕W , each x ∈ V decom-
poses uniquely as x = u+w, with u ∈ U,w ∈W .

Solution. Suppose that x = u+w and x = u′ +w′. Then, u+w = x =
u′ +w′. It follows that

u− u′ = w −w′

and, consequently, u−u′ = 0 = w−w′, since U ∩W = {0}. That is, u = u′

and w = w′.

3.6 Change of Basis

Sometimes a problem becomes more tractable if one chooses an appropriate
basis for the space in question. In the problem tackled in Example 5.12 of
Chapter 5, we will see that it is more convenient to use a particular basis of
R2 and then go back to the standard basis. Is there, however, an easy way to
relate the coordinate vectors in both bases? The answer is yes. We will justify
our answer in this section.
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Let V be a vector space over K of dimension k, let B1 and B2 be bases
of V and let u ∈ V be a vector. One might ponder whether there exists a
relation between the coordinate vectors uB1 ,uB2 ∈ Kk of u relative to B1
and B2, respectively. We shall see that there exists a matrix linking these two
coordinate vectors making it easy to ‘pass’ from one basis to the other.

Consider the bases B1 =
(
b1, b2, · · · , bk

)
and B2 of V. We have that

u = α1b1 + α2b2 + · · ·+ αkbk.

Hence, by Proposition 3.5,

(u)B2
= (α1b1 + α2b2 + · · ·+ αkbk)B2

= (α1b1)B2
+ (α2b2)B2

+ · · ·+ (αkbk)B2

= α1(b1)B2
+ α2(b2)B2

+ · · ·+ αk(bk)B2
.

This equality can also be written in a matrix form as

uB2
=
[
(b1)B2 | (b2)B2 | · · · | (bk)B2

]

α1

α2

...
αk

 .

That is,
uB2

=
[
(b1)B2 | (b2)B2 | · · · | (bk)B2

]︸ ︷︷ ︸
MB2←B1

uB1
.

The matrix whose columns are the coordinate vectors of the vectors of
basis B1 relative to the basis B2 is called the change of basis matrix from
basis B1 to basis B2, and is denoted by MB2←B1

. Hence,

uB2 = MB2←B1uB1 .

Example 3.23 Consider the basis B = ((1, 1), (−1, 0)) and the standard ba-
sis E2 = (e1, e2) of R2. Use the change of basis matrix MB←E2 to find the
coordinate vector (2, 3)B (cf. Figure 3.3).

We have just seen that[
2
3

]
B
=
[
(e1)B (e2)B

]︸ ︷︷ ︸
MB←E2

[
2
3

]
.

Hence we have to find the coordinate vectors (e1)B, (e2)B, that is, solve the
systems whose augmented matrices are[

1 −1 1
1 0 0

]
,

[
1 −1 0
1 0 1

]
.
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Since the coefficient matrices are the same, to save time we shall solve them
simultaneously. Then, using Gauss–Jordan elimination, we have

[
1 −1 1 0
1 0 0 1

]
l2−l1

//
[
1 −1 1 0
0 1 −1 1

]
l1+l2

//
[
1 0 0 1
0 1 −1 1

]
.

We have now that

MB←E2 =

[
0 1
−1 1

]
,

from which follows that [
2
3

]
B
=

[
0 1
−1 1

] [
2
3

]
=

[
3
1

]
.

The next proposition asserts that the change of basis matrix is unique.
More precisely,

Proposition 3.14 Let V be a vector space over K of dimension n and let
B1,B2 be bases of V. Then, there exists uniquely a matrix M such that, for all
x ∈ V , xB2 = MxB1 .

Proof We prove the uniqueness part, since the existence has been taken
care of in the discussion above.

Suppose that, for all x ∈ V ,

xB2 = MxB1 = M ′xB1 .

It follows that (M −M ′)xB1
= 0.

Choosing xB1
= (1, 0, . . . , 0), we see that the first column of M and M ′

coincide. Letting xB1 be any vector in En, we will obtain the uniqueness of the
change of basis matrix.

Example 3.24 Consider the ordered basis B =
(
(0, 1, 0), (1, 0, 1), (2, 1, 0)

)
of

R3. Find the change of basis matrix from the standard basis of R3 to the basis
B.

Setting E3 = (e1, e2, e3), the change of basis matrix MB←E3 is

MB←E3 =
[
(e1)B (e2)B (e3)B

]
.

We must find the coordinate vectors of e1, e2, and e3 relative to B. That is,
we will solve three systems of linear which we will do simultaneously, as above.
Hence, 0 1 2 1 0 0

1 0 1 0 1 0
0 1 0 0 0 1

→
1 0 1 0 1 0
0 1 2 1 0 0
0 1 0 0 0 1

→ . . .
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· · · →

1 0 1 0 1 0
0 1 2 1 0 0
0 0 −2 −1 0 1

→
1 0 0 −1/2 1 1/2
0 1 0 0 0 1
0 0 −2 −1 0 1

→ . . .

· · · →

1 0 0 −1/2 1 1/2
0 1 0 0 0 1
0 0 1 1/2 0 −1/2

 .

It follows that

MB←E3 =

−1/2 1 1/2
0 0 1

1/2 0 −1/2

 .

How to find the coordinate vectors after a change of basis

Let V be a vector of dimension k over K and let B1 =
(
b1, b2, · · · , bk

)
and B2 =

(
u1,u2, · · · ,uk

)
be a basis of V.

1. Find the change of basis matrix MB2←B1
as follows:

(a) for each vector bi, with i = 1, . . . , k, determine the scalars

α
(i)
1 , . . . , α

(i)
k ∈ K such that

bi = α
(i)
1 u1 + · · ·+ α

(i)
k uk;

(b) the coordinate vector (bi)B2 of each bi relative to basis B2 is

(bi)B2
=


α
(i)
1
...

α
(i)
k

 ;

(c) build the change of basis matrix

MB2←B1 =
[
(b1)B2

· · · (bk)B2

]
.

2. If x is a vector in V , then

xB2 =
[
(b1)B2

· · · (bk)B2

]︸ ︷︷ ︸
MB2←B1

xB1 .

Given a vector space V with dimV = k and two bases B1,B2 of V ,
the change of basis matrix MB2←B1 is always non-singular. In fact, since
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rank (MB2←B1
) = k (cf. Proposition 3.4 and Proposition 3.6), this matrix

is invertible. Hence, using the equality

uB2
= MB2←B1

uB1
,

we have
uB1

=
(
MB2←B1

)−1
uB2

.

By Proposition 3.14, we obtain

MB1←B2
= (MB2←B1

)−1.

Example 3.25 Consider the ordered basis B =
(
(0, 1, 0)︸ ︷︷ ︸

b1

, (1, 0, 1)︸ ︷︷ ︸
b2

, (2, 1, 0)︸ ︷︷ ︸
b3

)
of

R3. Find the change of basis matrix from B to the standard basis of R3.

The matrix ME3←B is

ME3←B =
[
(b1)E3 (b2)E3 (b3)E3

]
=

0 1 2
1 0 1
0 1 0

 .

Observe that we can now easily obtain MB←E3 . Indeed, we need only to cal-
culate the inverse of MB←E3 , that is, MB←E3 = (ME3←B)

−1 (compare with
Example 3.24).

When calculating a change of basis matrix between two bases, one should
ponder which change of basis matrix is the easiest to obtain. If there is one,
then find that change of basis matrix first and calculate its inverse, if neces-
sary.

3.7 Exercises

EX 3.7.1. Which vectors are a linear combination of u = (0,−1, 1) e v =
(−1,−3, 1)?

(a) (1, 1, 1)

(b) (−6,−2,−10)
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(c) (0, 2, 5
2 )

(d) (0, 0, 0)

EX 3.7.2. Consider the vectors u = ( 23 ,
1
3 ,

4
3 ), v = ( 13 ,

−1
3 , 1) and w =

(1, 2
3 ,

5
3 ). Write each of the following vectors as a linear combi-

nation of u,v, and w.

(a) (−3,− 7
3 ,−5)

(b) (2, 11
3 , 2)

(c) (0, 0, 0)

(d) ( 73 ,
8
3 , 3)

EX 3.7.3. Let

v1 = (−3, 1,−5,−2) v2 = (−2, 0, 4, 2) v3 = (6, 3, 0, 9)

be vectors in R4. Find which of the vectors below lie in
span{v1,v2,v3}.

(a) (−2,−3, 7,−3)
(b) (0, 0, 0, 0)

(c) (2, 2, 2, 2)

(d) (−6, 3,−6, 1)

EX 3.7.4. Find which of the subsets of R2,R3, and R4 below are vector sub-
spaces when endowed with the vector addition and multiplication
of vectors by scalars induced by those of the relevant vector space.

(a) {(0, a) : a ∈ R}
(b) {(a, 1) : a ∈ R}
(c) {(a, b, c) ∈ R3 : b = a− c}
(d) {(a, b, c) ∈ R3 : a, b, c ∈ N}
(e) {(a, b, c, d) ∈ R4 : b = a− c+ d}

EX 3.7.5. Find which of the subsets below are vector subspaces when en-
dowed with the vector addition and multiplication of vectors by
scalars induced by those of the relevant Rn.

(a) span{(−1, 0, 1)} ∪ {(x, y, z) ∈ R3 : x− y = z}
(b) span{(−1, 0, 1)} ∪ {(x, y, z) ∈ R3 : x− y = −z}
(c) {(x, y, z) ∈ R3 : x+ z = 3 + y}
(d) {(x, y, z) ∈ R2 : xz = 0}
(e) {(x, y, z) ∈ R3 : x = y ∧ z + x = 2}
(f) {(x, y, z, w) ∈ R4 : x+ 2z − w = 0 ∧ x− 2y − w = 0}
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EX 3.7.6. Show that Mk,n(R),Pn,P, and C[a, b] (with a < b) are real vector
spaces and Mk,n(C) is a complex vector space.

EX 3.7.7. Consider the following subsets of the space P2 of the real polyno-
mials of degree less than or equal to 2:

(a) {3at2 − at+ 3a : a ∈ R}
(b) {−5at2 − 3t2 + 3a− 4: a ∈ R}
(c) {at2 − 2at2 + 3a : a ∈ R}
(d) {−5at+ 3a− 1: a ∈ R}

Which of the subsets above are vector subspaces of P2?

EX 3.7.8. Suppose that C2 is endowed with the operations

� (x, y) + (x′, y′) = (x+ x′, y + y′) for (x, y), (x′, y′) ∈ C2

� α(x, y) = (αy,−αx) for (x, y) ∈ C2 and α ∈ C

Is C2 a vector space together with this operations?

EX 3.7.9. Which of the sets below are linearly independent? Find a basis for
the subspace spanned by each of the sets.

(a) {(1,−1, 0), (0, 0, 2)}
(b) {(2, 4, 12), (−1,−1,−1), (2, 4, 12), (0, 1, 5)}
(c) {(1, 2, 3, 4), (0, 0, 0, 0), (0, 1, 1, 0)}
(d) {(1 + i, 2i, 4− i), (2 + 2i, 4i, 8− 2i)}
(e) {(1, 2, 6, 0), (3, 4, 1, 0), (4, 3, 1, 0), (3, 3, 1, 0)}

EX 3.7.10. Consider the subspace

W = {(x, y, z) ∈ R3 : x− 2y + 3z = 0}.

(a) Find an ordered basis B for W and dimW .

(b) Show that the vector v = (−4,−1, 2) lies in W , and determine the
coordinate vector (v)B of v relative to B.

EX 3.7.11. Consider the subspace of C4

W = {(x, y, z, w) ∈ C4 : −4y + z = 0 ∧ x− y + z = w ∧ x = w}

(a) Find an ordered basis B of W . What is dimW?

(b) Does the vector v = (1, 0, 0, 1) lie in W? If it does, find the coordi-
nate vector vB of v relative to B.
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EX 3.7.12. Let W be the subspace of R4 spanned by the vectors u =
(1, 0, 0, 1), v = (2, 2, 0, 1), and w = (4, 2, 0, 3).

(a) Show that S = {u,v,w} is not a basis for W .

(b) Determine a basis BW for W and its dimension.

(c) Find vector, parametric and cartesian equations for W .

EX 3.7.13. Add a vector of the standard basis of C3 to the set S =
{(−i, 2i, 3i), (1,−2,−2)} to form a basis of C3.

EX 3.7.14. Consider the vectors v1 = (1, 0,−2, 1),v2 = (−3, 0, 2,−1) in R4.
Add vectors of the standard basis of R4 to S = {v1,v2} in order
to form a basis of R4.

EX 3.7.15. Let A be the matrix

A =


1 1 −1 1
0 −1 3 0
−1 0 −2 0
0 −1 3 1

 .

(a) Determine bases for the null space, the row space, and column space
of A.

(b) Verify the solution (a) using the Rank-nullity Theorem.

(c) If C is an invertible 4 × 4 matrix, what is the dimension of the
null space of CAT ? What is the dimension of the column space of
CAT ?

EX 3.7.16. Determine a basis and the dimension of each of the spaces
N(A), L(A), and C(A) where

A =


1 1 0
−3i i 0
0 0 0
1 −1 0

 .

EX 3.7.17. Let A be a real square matrix such that its column space is

C(A) = {(x, y, z) ∈ R3 : x+ y + z = 0 ∧ x− y = z}.

(a) Is the system

A

xy
z

 =

 2
1
−1


consistent?
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(b) Suppose that B is a square matrix whose null space is

N(B) = span{(1, 1, 1), (1,−1− 1)}.

If (1, 2, 3) is a particular solution of

B

xy
z

 =

 0
−1
1

 ,

what is the solution set of this system?

(c) Consider the matrix B above. What is the minimum value of
dimN(BTB)?

EX 3.7.18. Consider the subspaces of R4

U = span{(6, 6, 2,−4), (1, 1, 1, 0)},

V = {(x, y, z, w) ∈ R4 : − x = 2y}.

(a) Find a basis BU∩V for the subspace U ∩ V .

(b) What is the dimension of R4 + (U ∩ V )?

EX 3.7.19. Let U and W be the subspaces of C4

U = span{(0, 0, 3− i, 0), (1− 2i, 0, 0, 1− 2i)},

W = {(x, y, z, w) ∈ R4 : ix+ 2y − z − iw = w − x ∧ x− w = 0}.

Find a basis and the dimension of each of the subspaces U ∩W
and U +W . Verify that the formula

dimU + dimW = dim(U ∩W ) + dim(U +W )

holds.

EX 3.7.20. Write the polynomial 5+ 9t+3t2 +5t3 as a linear combination of
p1 = 2 + t+ t2 + 4, p2 = 1− t+ 3t3, and p3 = 3 + 2t+ 5t3.

EX 3.7.21. Find if the subsets of polynomials are linearly independent or lin-
early dependent.

(a) {1 + 2t, t2 − 1 + t, t}.
(b) {1 + t− t2 + t3, 2t+ 2t3, 1 + 3t− t2 + 3t3}.
(c) {t5 − t4, t2, t3 − 2}.

EX 3.7.22. Let B = ( 13 −
1
3 t,

1
3 + 2

3 t) be an ordered basis of the vector space
P1 of the real polynomials of degree less than or equal to 1. Find
the coordinate vectors (3− 2t)B and (3− 2t)P1

.
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EX 3.7.23. Let B = (t3, 1 + t, t+ t2, 2− 2t) be a basis of P3 and let S be the
subspace of P3 tal que

{(p(t))B : p(t) ∈ S} = {(x, y, z, w) ∈ R4 : x+ y + z = 0},

where (p(t))B is the coordinate vector of the polynomial p(t) rel-
ative to B.
Find a basis BS for S and the coordinate vector (3 + t2 − 2t3)BS

.

EX 3.7.24. Write

M =

[
−9 −7
4 0

]
as a linear combination of

A =

[
2 1
4 1

]
, B =

[
1 −1
3 2

]
, C =

[
3 2
5 0

]
.

EX 3.7.25. Consider the matrices[
0 4
−2 −2

] [
−1 1
3 2

] [
2 0
4 1

]
.

Find which matrices are a linear combination of the matrices
above.

(a)

[
−8 6
−8 −1

]
(b)

[
0 0
0 0

]
(c)

[
0 6
8 3

]
(d)

[
5 −1
1 7

]
EX 3.7.26. Find the coordinate vectors of

A =

[
1− 2i 1 + 2i
−1− i 2

]
relative to the basis B = (A1, A2, A3, A4) of M2(C) where

A1 =

[
−i i
0 0

]
, A2 =

[
1 1
0 0

]
, A3 =

[
0 0

1 + i 0

]
, A4 =

[
0 0
0 1− i

]
.
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EX 3.7.27. Let

B =

([
2 −2
0 0

]
,

[
0 1
1 0

]
,

[
1 1
0 0

]
,

[
0 0
0 1

])
be a basis of M2(R). Let S be the subspace of M2(R) such that

{AB : A ∈ S} = {(x, y, z, w) ∈ R4 : x+ z − w = 0},

where AB is the coordinate vector of matrix A relative to B. Find
a basis BS for S.

EX 3.7.28.

(a) Find the change of basis matrix MB←E2 from the standard basis of
R2 to the basis B =

(
(− 1

2 , 0), (−
1
2 ,

1
2 )
)
. Find the coordinate vector

(1, 1)B.

(b) Find the change of basis matrix ME2←B′ from the basis B′ =(
( 12 , 1), (−1,

1
2 )
)
to the standard basis.

(c) Use the matrices above to obtain MB←B′ .

EX 3.7.29. Let B =
(
(0, 1

2 , 0), (
1
2 , 0,

1
2 ), (1,

1
2 , 0)

)
be an ordered basis of R3.

(a) Find the change of basis matrix MB←E3 .

(b) Use the matrix above to find v such that vB =
[

2
−2
4

]
.

(c) Find MB′←B, where B′ =
(
(− 1

2 , 0,−
1
2 ), (1,

1
2 , 0), (0,

1
2 , 0)

)
.

(d) Use the two change of basis matrices to determine MB′←E3 .

EX 3.7.30. Let B be an ordered basis of the space P1 consisting of the real
polynomials of degree less than or equal to 1. Let

MB←P1
=

[
3 1
−1 5

]
be the change of basis matrix from the standard basis P1 to basis
the B.

(a) Find (1− t)B.

(b) Determine the basis B.

EX 3.7.31. Let S be the subspace of the space V consisting of 2 × 2 upper
triangular real matrices having zero trace. Find a basis BS of S
and a basis B of V containing BS . Determine the change of basis
matrix MB1←B, where B1 is the basis of V

B =

([
−2 0
0 2

]
,

[
0 1
0 0

]
,

[
1 0
0 0

])
.
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3.8 At a Glance

A vector space over the field of scalars K is a non-empty set endowed
with two operations, addition and scalar multiplication, satisfying some fixed
axioms. Examples of vector spaces are Rn,Cn,Mk,n(K), and Pn. Elements of
a vector space are called vectors.

In EX 3.7.8 we give an example of a set which satisfies all but one of these
axioms imposed on the operations. Although the property that is not verified
seems innocent enough, the ending result is that we do not have a vector space
in this case. In other words, all axioms matter.

Important subsets of a vector space are its subspaces, that is, non-empty
subsets that are closed under addition and scalar multiplication.

Two crucial concepts pervade the theory of vector spaces: linear combina-
tion and linear independence. Some vector spaces have a spanning set, that is,
a finite subset of vectors such that every vector in the space is a linear combi-
nation of those vectors. Some vector spaces do not have a spanning set, e.g.,
the space P of real polynomials. These are called infinite dimensional vector
spaces, as opposed to the former which are called finite dimensional
vector spaces. In the book, we deal almost exclusively with finite dimensional
vector spaces.

Minimal spanning sets must be linearly independent and they are called
bases of the vector space. All bases of a vector space have the same number
of vectors called the dimension of the space.

The dimension classifies finite dimensional vector spaces in the sense that
an n dimensional vector space over K can be essentially identified with Kn,
from a purely algebraic point of view. More precisely, vectors can be given by
their coordinates relative to a basis, thereby allowing for an ‘identification’ of
an n dimensional vector space over K with Kn.

Each matrix has four vector subspaces associated: its null space, row space,
and column space, and the null space of its transpose. These spaces are fun-
damental in the analysis of the properties of the matrix. The Rank-nullity
Theorem gives a formula relating the dimensions of these spaces. The general
solution of a system of linear equations is obtained in terms of a particular
solution and the null space of the coefficient matrix of the system.

In a vector space, coordinates relative to two different bases can be related
through the so-called change of basis matrix.
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This chapter is about the spectrum of a matrix. The spectrum is a set of
numbers, called the eigenvalues, each of which has an associated eigenspace
containing the eigenvectors. The so-called generalised eigenvectors allow for
establishing a similarity relation between the matrix in hand and a particular
upper triangular matrix which, in some cases, is in fact diagonal. By means
of this similarity relation, both matrices share many properties which might
be easier to come by analysing the triangular matrix instead of the general
matrix we started with.

The spectrum of a matrix is extremely important in applications such as
Quantum Mechanics, Biology, or Atomic Physics, to name a few. The appli-
cations in Chapter 7 will be mostly related with the spectra of matrices.

4.1 Spectrum of a Matrix

Definition 33 Let A be a square matrix in Mn(K). A non-zero vector x ∈ Kn

is said to be an eigenvector of A if there exists λ ∈ K such that

Ax = λx. (4.1)

Under these conditions, λ is called an eigenvalue of A associated with x.
The spectrum of A, denoted by σ(A), is the set of eigenvalues of matrix A.
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To find the spectrum of A, it is necessary to solve the equation (4.1) or,
equivalently, to solve

(A− λI)x = 0. (4.2)

Since we want to find λ ∈ K for which there exist non-zero vectors x
satisfying (4.1), the homogeneous system (4.2) must have non-zero solutions.
Hence, the coefficient matrix A− λI must be singular. By Theorem 2.1, this
holds if and only if the determinant det(A− λI) is equal to zero.

The polynomial p(λ) = det(A − λI) has degree n and is called the char-
acteristic polinomyal of A. The equation

det(A− λI) = 0 (4.3)

is the characteristic equation. The eigenvalues of matrix A are, therefore,
the roots of the characteristic polynomial of A.

Given an eigenvalue λ, the eigenspace E(λ) associated with the eigen-
value λ is the solution set of (4.2). In other words, E(λ) is the null space of
A− λI, i.e.,

E(λ) = N(A− λI).

Example 4.1 Find the spectrum and bases for the eigenspaces of

A =

 0 −1 0
−1 0 0
0 0 −1

 .

We begin by finding the eigenvalues of A. The characteristic polynomial of A
is

p(λ) = det(A− λI) =

∣∣∣∣∣∣
−λ −1 0
−1 −λ 0
0 0 −1− λ

∣∣∣∣∣∣ = (−1− λ)

∣∣∣∣−λ −1
−1 −λ

∣∣∣∣
= (−1− λ)(λ2 − 1) = (−1− λ)2(1− λ).

The roots of p(λ) = (−1−λ)2(1−λ), that is, the solutions of the characteristic
equation (4.3) are λ1 = 1 and λ2 = −1, being the latter a double root. Hence,
the eigenvalues of A are λ1 = 1 and λ2 = −1, and the spectrum of A is
σ(A) = {−1, 1}.

The eigenspace E(1) consists of 0 and the eigenvectors corresponding the
eigenvalue λ1 = 1 and, therefore, E(1) is the null space N(A − I) of A − I.
Using Gaussian elimination to solve the corresponding homogeneous system,
we have

A− I =

−1 −1 0
−1 −1 0
0 0 −2

→
−1 −1 0

0 0 0
0 0 −2

→
−1 −1 0

0 0 −2
0 0 0

 .
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x
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AuAv = v

FIGURE 4.1: Vectors u and v in the eigenspaces E(−1) and E(1), respec-
tively, and the vectors Au and Av.

The eigenspace E(1) is the solution set associated with the matrix A− I and,
therefore,

E(1) = {(x, y, 0) ∈ R3 : x = −y}.

The eigenspace E(1) is, consequently, the straight line satisfying the equations
z = 0, x = −y. Observe that E(1) is the solution set of a consistent system
having a single independent variable.

The eigenspace E(−1) consists of (0 and) the eigenvectors associated with
the eigenvalue λ2 = −1, i.e., E(−1) = N(A + I). Similarly to what has been
done above, we have

A+ I =

 1 −1 0
−1 1 0
0 0 0

→
1 −1 0
0 0 0
0 0 0

 ,

yielding
E(−1) = {(x, y, z) ∈ R3 : x = y}.

The eigenspace E(−1) is the plane x = y corresponding to the solution of a
consistent system having two independent variables (see Figure 4.1).

If λ is an eigenvalue, then the eigenspace E(λ) is always the solution set
of a consistent system with, at least, one independent variable. Indeed, E(λ)
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is the solution set of a homogeneous, hence consistent, system. On the other
hand, by the very definition of eigenvalue, the system (4.2)must have non-zero
solutions, that is, (4.2) has infinitely many solutions (cf. Proposition 1.3). It
follows, that there exists, at least, one independent variable.

Definition 34 Let λ be an eigenvalue of a square matrix A of order n over
K. The algebraic multiplicity ma(λ) of λ is the multiplicity of λ as a root
of the characteristic polynomial p(λ). The geometric multiplicity mg(λ) of
λ is the dimension of the eigenspace E(λ).

In Example 4.1, we have

Eigenvalue ma(λ) mg(λ)
λ1 = 1 1 1
λ2 = −1 2 2

Although in this example the algebraic and geometric multiplicities of each
eigenvalue do coincide, this is not the case in general (see Example 4.4).

Proposition 4.1 Let λ be an eigenvalue of a matrix. Then, the geometric
multiplicity of λ is less than or equal to its algebraic multiplicity.

We will discuss the proof of this in Corollary 4.6 (see §4.4).

4.2 Spectral Properties

Proposition 4.2 Let A be a square matrix of order n over K, let

p(λ) = a0 + a1λ+ · · ·+ an−1λ
n−1 + (−1)nλn

be the characteristic polynomial of A, and let λ1, . . . , λn be the eigenvalues of
A (possibly repeated). The following hold.

(i) |A| = λ1λ2 · · ·λn.

(ii) an−1 = (−1)n−1 trA.

(iii) trA =
∑n

i=1 λi.

Proof (i) Let

p(λ) = (λ1 − λ)(λ2 − λ) · · · (λn − λ) (4.4)

be the characteristic polynomial of A (where the roots may not be all distinct).
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Observing that
p(0) = |A− 0I| = |A|

and letting λ = 0 in (4.4), we have

|A| = λ1λ2 · · ·λn.

(ii) This will be shown by induction. For n = 1, the statement is clear.
Suppose now that n ≥ 2 and that the assertion holds for n− 1. Let A = [aij ]
be an n × n matrix and let p(λ) = |A − λI| be its characteristic polynomial.
Hence, using the Laplace’s expansion along the first row, we have

p(λ) = (a11 − λI) det[(A− λI)11] +

n∑
j=2

a1jC1j .

Recall that [(A − λI)11] is the n − 1 × n − 1 matrix obtained by deleting the
first row and the first column of A − λI. It then follows from the induction
hypothesis that the coefficient corresponding to λn−1 is

a11(−1)n−1 − (−1)n−2 tr[A11] = (−1)n−1 trA.

Assertion (iii) follows immediately from (4.4) and assertion (ii).

A useful fact to keep in mind is that, for an n × n matrix A over K with
characteristic polynomial

p(λ) = (λ1 − λ)r1(λ2 − λ)r2 · · · (λk − λ)rk , (4.5)

where λ1, λ2, . . . , λk are all distinct, we have

r1 + r2 + · · ·+ rk = n.

Before the next proposition, we need to make a definition.

Definition 35 Given a k × n complex matrix A, define the k × n matrix Ā
by Āij = Aij. In other words, the entries of Ā are the complex conjugates of
the entries of A.

Example 4.2 Let A be the matrix

A =

[
1 + i −2 −5 + 3i
7 6 1− 2i

]
.

The matrix Ā is

Ā =

[
1− i −2 −5− 3i
7 6 1 + 2i

]
.
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Proposition 4.3 Let A be a square matrix of order n and let p be a positive
integer. Then, the following hold.

(i) The characteristic polynomial of A coincides with the characteristic poly-
nomial of AT .

(ii) If λ ∈ σ(A) and x is an eigenvector associated with λ, then λp ∈ σ(Ap)
and x is a eigenvector associated with λp.

(iii) If A ∈ Mn×n(C) is a matrix with real entries, then λ ∈ σ(A) if and only
if λ̄ ∈ σ(A). Moreover,

E(λ̄) = {x̄ : x ∈ E(λ)}.

Proof (i) Let pAT (λ) and pA(λ) the be characteristic polynomials of AT

and A, respectively. Since the determinant remains unchanged by transposition
(cf. Proposition 2.4), we have

pAT (λ) = |AT − λI| = |(A− λI)T | = |A− λI| = pA(λ),

as required.
(ii) Let λ be a eigenvalue of A and let x be a vector in the eigenspace E(λ).

The result is trivially true for p = 1. We shall prove the remaining cases by
induction.

Suppose then that (ii) holds for p−1, with p ≥ 2, that is, Ap−1x = λp−1x.
Then,

Apx = A(Ap−1x) = A(λp−1x) = λp−1Ax = λpx.

(iii) Given λ ∈ K,x ∈ Kn, we have A = λx if and only if

Ax = λx.

But λx = λ̄x̄ and, since the entries of A are real numbers,

Ax = Āx̄ = Ax̄.

It follows that A = λx if and only if

Ax̄ = λ̄x̄.

Moreover, for each λ ∈ σ(A),

E(λ̄) = {x̄ : x ∈ E(λ)}.

Assertion (iii) above can be expressed in an informal (but catchy) way
as ‘complex eigenvalues of matrices with real entries always come in pairs: a
number and its conjugate’.
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Definition 36 A complex square matrix A = [aij ] is said to be a hermitian
matrix if A = ĀT.

The diagonal entries of a hermitian matrix are real numbers.

Proposition 4.4 Let A be a hermitian matrix. Then, the spectrum σ(A) is
a subset of R.

Proof Let λ be an eigenvalue of A and let x = (x1, x2, . . . , xn) be an
eigenvector of A associated with λ, that is, Ax = λx. Then

(Ax)T = (λx)T ⇒
(Ax)T = λxT ⇒

xTA
T
= λxT .

Since A is hermitian, we have

xTA = λxT .

Multiplying both members of this equality by x on the right,

xTAx = λxTx⇒
xT (λx) = λxTx⇒
λxTx = λxTx⇒

λ(x2
1 + x2

2 + · · ·+ x2
n) = λ(x2

1 + x2
2 + · · ·+ x2

n).

Hence
(λ− λ) (x2

1 + x2
2 + · · ·+ x2

n)︸ ︷︷ ︸
̸=0

= 0,

from which follows that λ = λ, that is, λ ∈ R.

An immediate consequence of this proposition is the following result.

Corollary 4.1 The spectrum of a real symmetric matrix is a non-empty sub-
set of R.

Example 4.3 When A is a real matrix, there is no guarantee that the char-
acteristic polynomial has a factorisation over R as that of (4.5). For example,
the characteristic polynomial of

A =

[
0 −1
1 0

]
is p(λ) = λ2 + 1 which has no real roots. This matrix has no real eigen-
values (see EX 5.8.13).
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How to find the spectrum and eigenspaces of a matrix

Let A be an n × n matrix. To obtain the spectrum σ(A) and the
eigenspaces proceed as indicated below.

1. Find the roots of the characteristic polynomial |A − λI|. In other
words, determine a factorisation

|A− λI| = (λ1 − λ)r1(λ2 − λ)r2 · · · (λk − λ)rk .

The spectrum σ(A) = {λ1, λ2, . . . , λk}. The algebraic multiplicity of
each λi, for i = 1, . . . , k, is ri.

2. For each λi, with i = 1, . . . , k, find the null space N(A − λiI), that
is, solve the homogeneous system A−λiI = 0. The eigenspace E(λi)
is this solution set.

3. For each λi, find a basis BE(λi) of E(λi). The geometric multiplicity
mg(λi) of the eigenvalue λi is dimE(λi), that is,mg(λi) is the number
of vectors in BE(λi).

The invertibility of matrices has been characterised in every chapter so
far and this chapter will not be an exception. The next theorem provides a
necessary and sufficient condition for a matrix to be non-singular in terms of
its spectrum.

Theorem 4.1 (Necessary and sufficient conditions of invertibility
(IV)) Let A be a square matrix over K. The following assertions are equiva-
lent.

(i) A is invertible.

(ii) 0 /∈ σ(A).

Proof By Theorem 3.7 (ii), A is non-singular if and only if N(A) = {0}.
Since N(A) = N(A− 0I), it is immediate that A is non-singular if and only
if 0 /∈ σ(A).

It is worth noticing that, whenever 0 is an eigenvalue of a matrix A, that
is, whenever 0 ∈ σ(A), the null space of A coincides with the eigenspace E(0):

E(0) = N(A− 0I) = N(A).

This simple (albeit important) fact, already implicit in the proof above, is
strangely often overlooked. The reader ought to keep it in mind.
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4.3 Similarity and Diagonalisation

We begin here the discussion of similarity mentioned at the beginnig of
this chapter.

Definition 37 Let A and B be real (resp., complex) n×n matrices. B is said
to be similar to A if there exists an invertible matrix S such that

B = S−1AS

or, equivalently, if
SB = AS.

It is easy to see that B is similar to A if and only if A is similar to B. Con-
sequently, to simplify one says simply that A and B are similar matrices.

Theorem 4.2 Let A and B be n× n similar matrices.

(i) |A| = |B|.

(ii) A is invertible if and only if B is invertible.

(iii) The characteristic polynomial pA(λ) of A coincides with the character-
istic polynomial pB(λ) of B.

(iv) trA = trB.

(v) σ(A) = σ(B) and the corresponding algebraic multiplicities (respectively,
geometric multiplicities) of each eigenvalue coincide.

(vi) dimN(A) = dimN(B).

(vii) rankA = rankB.

Proof (i) Since A and B are similar, we have |B| = |S−1AS|. Hence, by
Propositon 2.3 and Corollary 2.1,

|B| = |S−1||A||S| = |A||S−1||S| = |A|.

(ii) By (i), we know that |A| ≠ 0 if and only if |B| ≠ 0. Hence, A is
invertible if and only if B is invertible.

(iii) We have

pB(λ) = |B − λI| = |S−1AS − λI| = |S−1AS − λS−1IS|.

Hence
pB(λ) = |S−1(A− λI)S| = |A− λI| = pA(λ).

(iv) This is a direct consequence of (iii) and Proposition 4.2 (ii).
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(v) By (iii), it is clear that σ(A) = σ(B). It is also clear that the algebraic
multiplicities coincide.

As to the geometric multiplicities of λ ∈ σ(A) = σ(B), notice that, if x is
a vector such that Bx = λx, i.e., x is a eigenvector of B associated with the
eigenvalue λ, then

λx = Bx = S−1ASx.

Hence,
λSx = ASx,

which shows that Sx is an eigenvector of A associated with λ. In fact, x is
eigenvector of B associated with λ if and only if Sx is an eigenvector of A
associated with the eigenvalue λ.

It follows that

EA(λ) = {y ∈ Kn : y = Sx,x ∈ EB(λ)}.

Here EA(λ) and EB(λ) are the eigenspaces of A and B, respectively, corre-
sponding to the eigenvalue λ.

It is easy to see that a subset B = {x1,x2, . . . ,xk} of EB(λ) is linearly
independent if and only if the subset B′ = {Sx1, Sx2, . . . , Sxk} of EA(λ) is
linearly independent. It now follows that B is a basis of EB(λ) if and only if B′
is a basis of EA(λ), which proves the equality of the geometric multiplicities,
as required.

(vi) By (v), 0 ∈ σ(A) if and only if 0 ∈ σ(B). Hence, if both matrices are
invertible, then N(A) = {0} = N(B).

The only other possibility, is 0 being an eigenvalue of both A and B. In
this case, letting EA(0) and EB(0) denote, respectively, the eigenspace of A
and B corresponding to 0, by (v), we have

dimN(A) = dimEA(0) = dimEB(0) = dimN(B).

(vii) This follows immediately from (vi) observing that, by Theorem 3.6
and Proposition 3.11,

rank (A) = n− dimN(A) = n− dimN(B) = rank (B).

Exercise 4.1 Let D be the diagonal matrix over K

D =

d1 0 0
0 d2 0
0 0 d3

 .

Find the eigenvalues and eigenspaces of D. (Take into account that the diag-
onal entries in the matrix might not be all distinct.)
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As it can be extrapolated from the exercise above, the spectrum of a diag-
onal matrix D can be easily determined: it consists of the diagonal entries of
D. Although finding the spectrum of a general matrix A is not usually easy,
it sometimes helps knowing when A is ‘comparable’ with a diagonal matrix.

Definition 38 An n × n matrix A over K is said to be diagonalisable if
there exist a diagonal matrix D and an invertible matrix S such that

D = S−1AS

or, equivalently, if
SD = AS.

Under these conditions, S is said to be a diagonalising matrix for A.

As one can see from the definition, A shares many features with D, for
example, the characteristic polynomial and, hence, the spectrum (see Theorem
4.2).

Theorem 4.3 Let A be a square matrix of order n over K. The following are
equivalent.

(i) A is diagonalisable.

(ii) A has n linearly independent eigenvectors.

(iii) There exists a basis of Kn consisting entirely of eigenvectors of A.

Before embarking in the proof of the theorem, it is worth taking some time
to ponder its statement. Assertions (i) and (iii) are clear enough, however as-
sertion (ii) might cause some misunderstanding.

A common mistake. Assertion (ii) does not mean that A has exactly n
eigenvectors which are linearly independent. It says that, amongst the eigen-
vectors of A, one can extract a linearly independent subset having n eigen-
vectors.

An n × n matrix over K has either no eigenvectors in Kn (e.g., Example
4.3) or infinitely many (Why?).

Example 4.4 The spectrum of the matrix

A =

[
i 1
0 i

]
is σ(A) = {i} and the corresponding eigenspace is E(i) = {(z, 0) : z ∈ C}.

Obviously, this matrix has infinitely many eigenvectors but any two eigen-
vectors are linearly dependent. In other words, this matrix does not satisfy the
conditions of Theorem 4.3.
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Exercise 4.2 Find two linearly independent eigenvectors for[
−i 1
0 i

]
.

We prove Theorem 4.3 next.

Proof We show firstly that (ii) implies (i). Suppose that A has n linearly
independent eigenvectors v1,v2, . . . ,vn in Kn. Let S be the non-singular ma-
trix

S =
[
v1 v2 · · · vn

]
.

Then

AS = A
[
v1 v2 · · · vn

]
=
[
Av1 Av2 · · · Avn

]
=

=
[
v1 v2 · · · vn

]

λ1 0 0 · · · 0 0
0 λ2 0 · · · 0 0

...
...

...
0 0 0 · · · 0 λn

 = SD,

as required.
We show now that (i) implies (ii). Suppose then that A is diagonalisable.

It follows that AS = SD, where

S =
[
v1 | v2 | · · · | vn

]
.

Observe that, since S is invertible, its columns are linearly independent vectors
in Kn. We have

AS =
[
v1 | v2 | · · · | vn

]

λ1 0 0 · · · 0 0
0 λ2 0 · · · 0 0
...

...
...

0 0 0 · · · 0 λn


⇐⇒

A
[
v1 | v2 | · · · | vn

]
=
[
λ1v1 | λ2v2 | · · · | λnvn

]
⇐⇒

[
Av1 | Av2 | · · · | Avn

]
=
[
λ1v1 | λ2v2 | · · · | λnvn

]
.



Eigenvalues and Eigenvectors 143

Hence,
Av1 = λ1v1, Av2 = λ2v2, . . . , Avn = λnvn,

from which follows that A has n linearly independent eigenvectors.
The equivalence between (ii) and (iii) is obvious (see Theorem 3.5 (i)).

We are now able to identify which matrices are diagonalisable and which
are not. For example, Theorem 4.3 gives us a clear answer: the matrix in Ex-
ample 4.4 is not diagonalisable whilst that in Example 4.2 is a diagonalisable
matrix.

Example 4.5 We shall show that

A =

[
0 −1
−1 0

]
is diagonalisable and shall see how this helps calculate the power A2020.

A simple calculation yields that the eigenvalues of A are ±1:

eigenvalue ma(λ) mg(λ)
λ1 = 1 1 1
λ2 = −1 1 1

The eigenspace E(1) is the straight line x = −y and the eigenspace E(−1)
is the straight line x = y. Choosing two linearly independent vectors, say,
v1 = (−1, 1) ∈ E(1) e v2 = (1, 1) ∈ E(−1), Theorem 4.3 guarantees that A is
diagonalisable and that[

1 0
0 −1

]
︸ ︷︷ ︸

D

=

[
−1 1
1 1

]−1
︸ ︷︷ ︸

S−1

[
0 −1
−1 0

]
︸ ︷︷ ︸

A

[
−1 1
1 1

]
︸ ︷︷ ︸

S

.

The proof of Theorem 4.3 is constructive and, for that reason, provides a
way of constructing S. One has just to find the required number of linearly
independent eigenvectors and build a matrix whose columns are those vectors,
in no particular order. However, having done that, one has to be sure that, in
each column of D, the diagonal entry is the eigenvalue corresponding to the
eigenvector in the same column of S.

The diagonalising matrix S is a possible solution amongst many others,
since S depends on the chosen eigenvectors.

To find A2020, we begin by calculating A2:

A2 = (SDS−1)2 = SDS−1S︸ ︷︷ ︸
I

DS−1 = SD2S−1.
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Generalising this process, it is easily seen that A2020 = SD2020S−1. Hence,

A2020 =

[
−1 1
1 1

] [
1 0
0 −1

]2020 [−1 1
1 1

]−1
=

[
−1 1
1 1

]
︸ ︷︷ ︸

S

[
12020 0
0 (−1)2020

]
︸ ︷︷ ︸

D

[
−1/2 1/2
1/2 1/2

]
︸ ︷︷ ︸

S−1

=

[
1 0
0 1

]
.

This is a very simple case for which would be very easy to find A2020 with-
out using diagonalisation, since A = −P12. However, this serves the purpose
of illustrating a general process that is very useful when calculating powers of
(more complicated) matrices.

Collecting the insight given by this example:

Proposition 4.5 Let A,B be matrices over K such that A = SBS−1, for
some non-singular matrix S, and let n ∈ N. Then,

An = SBnS−1.

Proof Exercise.

A difficulty that may occur when diagonalising a matrix is how to choose
the eigenvectors in order for them to be linearly independent, as required in
Theorem 4.3. The next proposition helps overcoming this difficulty.

Proposition 4.6 Let v1,v2, . . . ,vn be eigenvectors of a square matrix A of
order k and let λ1, λ2, . . . , λn be the corresponding eigenvalues, all distinct.
Then v1,v2, . . . ,vn are linearly independent.

Proof The assertion is trivially true for n = 1. Let 1 < n and consider the
eigenvectors v1,v2, . . . ,vn and the corresponding eigenvalues λ1, λ2, . . . , λn,
all distinct.

Suppose that the assertion holds for v1,v2, . . . ,vn−1, i.e., the eigen-
vectors v1,v2, . . . ,vn−1 are linearly independent. We want to show that
v1,v2, . . . ,vn−1,vn are also linearly independent.

Suppose that, on the contrary, the vector vn is a linear combination of the
remaining eigenvectors. Observe that there is no loss of generality with this
assumption. We have then that there exist scalars α1, α2, . . . , αn−1 such that

vn = α1v1 + α2v2 + · · ·+ αn−1vn−1.
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It follows that

Avn = λnvn

⇐⇒
A(α1v1 + α2v2 + · · ·+ αn−1vn−1) = λn(α1v1 + α2v2 + · · ·+ αn−1vn−1)

⇐⇒
α1λ1v1 + α2λ2v2 + · · ·+ αn−1λn−1vn−1 = λn(α1v1 + α2v2 + · · ·+ αn−1vn−1)

Hence,

α1(λn − λ1)v1 + α2(λn − λ2)v2 + · · ·+ αn−1(λn − λn−1)vn−1 = 0

Since the eigenvectors v1,v2, . . . ,vn−1 are linearly independent, we have
α1(λn − λ1) = 0

α2(λn − λ2) = 0
...

αn−1(λn − λn−1) = 0 .

Since there exists at least one scalar αi ̸= 0, it follows that λn = λi, contra-
dicting the initial assumption of all the eigenvalues being distinct.

Corollary 4.2 Let A be an n×n matrix over K having n distinct eigenvalues.
Then A is diagonalisable.

Proof This is an immediate consequence of Theorem 4.3 and Proposition
4.6.

Proposition 4.7 Let λ1, λ2, . . . , λp be eigenvalues, all distinct, of a square
matrix A of order k, and let BE(λ1),BE(λ2), . . . ,BE(λp) be bases of the corre-
sponding eigenspaces. Then BE(λ1) ∪ BE(λ2) ∪ · · · ∪ BE(λp) is a linearly inde-
pendent set.

Proof For i = 1, 2, . . . , p, let BE(λi) = {v
(i)
1 ,v

(i)
2 , . . .v

(i)
ri } be a basis of the

eigenspace E(λi). We want to show that the set

B = {v(1)
1 ,v

(1)
2 , . . .v(1)

r1 } ∪ {v
(2)
1 ,v

(2)
2 , . . .v(2)

r2 } ∪ · · · ∪ {v
(p)
1 ,v

(p)
2 , . . .v(p)

rp }

is linearly independent.

Suppose, without loss of generality, that v
(1)
1 is a linear combination of the

remaining vectors:

v
(1)
1 = α

(1)
2 v

(1)
2 + · · ·+ α(1)

r1 v(1)
r1︸ ︷︷ ︸

u1

+α
(2)
1 v

(2)
1 + α

(2)
2 v

(2)
2 + · · ·+ α(2)

r2 v(2)
r2︸ ︷︷ ︸

u2

+

+ · · ·+ α
(p)
1 v

(p)
1 + α

(p)
2 v

(p)
2 + · · ·+ α(p)

rp v(p)
rp︸ ︷︷ ︸

up

.
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where, for some i = 2, . . . , p, the vector ui is non-zero. Observe that, other-

wise, v
(1)
1 would lie in the span of {v(1)

2 , . . .v
(1)
r1 }, which is impossible.

We have

Av
(1)
1 = Au1 +Au2 + · · ·+Aup,

from which follows that

λ1(u1 + u2 + · · ·+ up) = λ1u1 + λ2u2 + · · ·+ λpup.

Hence,
(λ1 − λ2)u2 + · · ·+ (λ1 − λp)up = 0. (4.6)

The non-zero vectors in {u1,u2, . . . ,up} are eigenvectors corresponding to
distinct eigenvalues. It follows from Proposition 4.6 that they are linearly in-
dependent.

Since there exists in (4.6) at least one i ∈ {2, . . . , p} such that ui ̸= 0, the
eigenvalue λ1 coincides with the eigenvalue λi, which contradicts the initial
assumption of all eingenvalues being distinct.

Proposition 4.8 Let A be a square matrix of order n over C. The following
are equivalent.

(i) A is a diagonalisable matrix.

(ii) For all eigenvalues λ of A, the algebraic multiplicity of λ coincides with
the geometric multiplicity of λ.

Proof We begin by showing that (i)⇒(ii). Suppose that A is diagonalis-
able and that λ1, λ2, . . . , λp are the eigenvalues of A. Then, the matrix A is
similar to a diagonal matrix D having in the diagonal the eigenvalues, repeated
according to their algebraic multiplicity (cf. the proof of Theorem 4.3). Hence,
for all i = 1, 2, . . . , p, the geometric multiplicity mg(λi) satisfies

mg(λi) = dimN(A− λiI)

= dimN(D − λiI) (by Theorem 4.2)

= n− rank (D − λiI) (by Theorem 3.6)

= n− (n−ma(λi))

= ma(λi),

where ma(λi) is the algebraic multiplicity of λi.
We show now that (ii)⇒(i). Let λ1, λ2, . . . , λp be the eigenvalues of A and

suppose that, for all i = 1, 2, . . . , p, we have mg(λi) = ma(λi) = ri. Notice
that

r1 + r2 + · · ·+ rp = n.
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For i = 1, 2, . . . , p, let {v(i)
1 ,v

(i)
2 , . . .v

(i)
ri }, a basis of the eigenspace E(λi). We

shall show that the set defined by

B = {v(1)
1 ,v

(1)
2 , . . .v(1)

r1 } ∪ {v
(2)
1 ,v

(2)
2 , . . .v(2)

r2 } ∪ · · · ∪ {v
(p)
1 ,v

(p)
2 , . . .v(p)

rp }

is a basis of Kn (cf. Teorema 4.3). Observing that B has n elements, it suffices
to show that B is linearly independent. But this follows immediately from
Proposition 4.7.

Given a matrix, as pointed out previously, the algebraic and geometric
multiplicities of an eigenvalue might not coincide. In fact, if this happens for
each of the eigenvalues, by Proposition 4.8, the matrix is necessarily diagonal-
isable.

How to diagonalise a matrix

Let A be an n× n matrix over K.

1. Find the eigenvalues and bases for the eigenspaces of A. If the sum of
the dimensions of the eigenspaces is n (meaning that A has n linearly
independent eigenvectors), then A is diagonalisable. Otherwise, it is
not.

2. If A is diagonalisable, then let λ1, λ2, . . . , λp be the distinct eigenval-
ues of A.

For all i = 1, 2, . . . , p, let {v(i)
1 ,v

(i)
2 , . . .v

(i)
ri } be a basis of the

eigenspace E(λi). Build the n×n matrix S whose columns consist of
the vectors in these bases arranged by juxtaposition, in no particular
order.

3. Build the diagonal matrix D whose diagonal entry in any column j
coincides with the eigenvalue corresponding to the eingenvector in
the column j of S.

4. Now we have A = SDS−1.

We end this section with an important result about similarity which is a
weaker version of a theorem known as Schur’s Triangularisation Theorem1.
We will prove next that any complex square matrix is similar to an upper
triangular matrix.

Theorem 4.4 (Schur’s triangularisation theorem) Let A be a k × k
complex matrix. Then, A is similar to a k × k upper triangular matrix whose
diagonal consists of the k (not necessarily distinct) eigenvalues of A.

1Schur’s Triangularisation Theorem states that any n×n complex matrix is similar to an
upper triangular matrix and the similarity matrix might be chosen to be a unitary matrix.
The definition of unitary matrix is given in Chapter 6.
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Proof We will prove the result by induction on the size of the matrix. If
n = 1, then the result holds trivially. Suppose now that the result holds for n×n
matrices. Let A be an n+ 1× n+ 1 matrix with eigenvalues λ1, . . . , λn, λn+1.

Let u be an eigenvector in Cn+1 corresponding to the eigenvalue λn+1 and
let B = {u,b1, . . . ,bn} be a basis of Cn+1 including u. Let N be the matrix
whose columns are the vectors of B, i.e.,

N =
[
u b1 . . . bn

]
.

It follows that

AN =
[
Au Ab1 . . . Abn

]
=
[
λn+1u Ab1 . . . Abn

]
,

that is

N−1AN =



λn+1 ∗ . . . ∗

0 ∗ . . . ∗
0 ∗ . . . ∗
...

...
...

...
0 ∗ . . . ∗


,

where the lower right hand corner B of A is an n×n matrix such that σ(B) =
{λ1, . . . , λn}.

By the induction hypothesis, there exists an n+1×n+1 invertible matrix
M such that

1 0

0 B

M = M



1 0

0 λ1 ∗ . . . ∗
0 0 λ2 . . . ∗
...

...
...

. . . ∗
0 0 0 . . . λn


.

Hence,

M−1N−1ANM =



λn+1 ∗ ∗ . . . ∗

0 λ1 ∗ . . . ∗
0 0 λ2 . . . ∗
...

...
...

. . . ∗
0 0 0 . . . λn


︸ ︷︷ ︸

U

.

Finally, A = (NM)U(NM)−1, where U is an upper triangular matrix having
the n eigenvalues of A in the diagonal.
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Summing up: Theorem 4.4 states that, given a complex square matrix A,
there exist an upper triangular matrix U and an invertible matrix S such that

S−1AS = U.

It is then obvious that both A and U must have the same eigenvalues which
appear in the diagonal of U . Notice also that the proof above can be done in
a way that equal eigenvalues in the diagonal of U are grouped together.

4.4 Jordan Canonical Form

Diagonalising matrices is a fine thing. It simplifies life in many ways, most
notably when calculating matrix powers. Unfortunately, not all matrices are
diagonalisable. However, we have a next best thing. The aim of this section
is to show how any given complex matrix A is similar to an upper triangular
matrix with a ‘lot’ of zero entries, said a Jordan canonical form of A, which
is ‘almost’ a diagonal matrix. To do this, we need firstly to collect some back-
ground and will do just that in the following two subsections. We will digress
through nilpotent matrices and generalised eigenvectors.

This section develops a considerable amount of theory to justify the exis-
tence of a Jordan canonical form for any given complex matrix. Notwithstand-
ing the possible ‘dryness’ of these proofs, Example 4.10 is a rather pedestrian
walk through the construction of a Jordan canonical form and gives a hands
on guide to the problem.

4.4.1 Nilpotent matrices

We want to consider here matrices which have a particular behaviour:
those for which there exists a power, depending on the matrix in hand, which
is the zero matrix. For example, if

A =

0 1 0
0 0 1
0 0 0

 ,

then you can see for yourself that A2 ̸= 0 but A3 = 0. Obviously, for any
p ≥ 3, we have Ap = 0. This matrix A has many zero entries but this is not a
requirement to display this behaviour. In fact,

A =

 5 15 10
−3 −9 −6
2 6 4


is such that A2 = 0.
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Definition 39 A square matrix A over K is said to be nilpotent if there
exists a positive integer p such that Ap = 0.

As we see, this is all about the null space of some power of a matrix being
the whole space. It is worth making a note of a simple fact about the null
spaces of matrix powers:

Given an n× n matrix B,

{0} = N(B0) ⊆ N(B) ⊆ N(B2) ⊆ · · · ⊆ N(Bp) ⊆ N(Bp+1) ⊆ . . .

In fact, if, for some non-negative integer p, we take any vector x ∈ N(Bp),
then

Bp+1x = B(Bpx) = B0 = 0.

We have then that the null spaces of the powers of an n× n matrix form
an ascending chain of subspaces of Kn which grows with the exponent of the
power.

Does it ever stop? Well, it must, since none of (the dimensions of) these
null spaces can go ‘past’ (the dimension of) Kn. More precisely,

Proposition 4.9 Let B be an n × n matrix over K. Then, there exists an
integer p with 0 ≤ p ≤ n such that, for all j ∈ N,

N(Bp) = N(Bp+j) = N(Bn).

Proof Suppose that for all p with 0 ≤ p ≤ n, N(Bp) ̸= N(Bp+1). Then,

dimN(Bp+1) ≥ dimN(Bp) + 1.

It follows that, under these circumstances,

dimN(Bn+1) ≥ n+ 1 > dimKn

which is impossible.
Hence, at this point, we have an integer p, with 0 ≤ p ≤ n, for which

N(Bp) = N(Bp+1). We will show now that

N(Bp) = N(Bp+1) = N(Bp+2) = N(Bp+3) = . . . ,

that is, after the power Bp the null spaces of the larger powers stabilise. Con-
trarily, suppose that there exists a positive integer r such that

N(Bp+r) ⊊ N(Bp+r+1).
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Hence, there exists a vector x such that

Bp+rx ̸= 0 and Bp+r+1x = 0.

But then
Bp(Brx) ̸= 0 and Bp+1(Brx) = 0,

which shows that Brx lies in the null space of Bp+1 but not in the null space
of Bp. This however yields a contradiction, since N(Bp) = N(Bp+1).

The proposition we just proved has the following immediate consequence.

Corollary 4.3 Let A be an n× n nilpotent matrix. Then An = 0.

Corollary 4.4 The only eigenvalue of a (real or complex) nilpotent matrix is
zero.

Proof Let A be an n× n nilpotent matrix over K. If A = 0, the assertion
holds trivially.

Suppose now that A ̸= 0. We must show that σ(A) = {0}. We begin by
showing that, if λ is an eigenvalue of A, then λ = 0.

Let λ be an eigenvalue of A. Then, there exists a non-zero x ∈ Kn such
that Ax = λx. By Corollary 4.3, it follows that

0 = Anx = λnx,

yielding that λ = 0.
It remains to show that σ(A) ̸= ∅, which might not happen only for real

matrices (see Example 4.3). Since A ̸= 0 and An = 0, by Proposition 4.9,
there exist a non-zero vector x /∈ N(A) and a positive integer 1 < j ≤ n such
that

0 = Anx = Ajx and Aj−1x ̸= 0.

But, in this case,
A(Aj−1x) = 0,

showing that Aj−1x is an eigenvector of A with the associated eigenvalue 0.

Exercise 4.3 Let A,B,C be the block upper triangular matrices

A =

0 A12 A13

0 A22 A23

0 0 A33

 , B =

B11 B12 B13

0 0 B23

0 0 B33

 , C =

C11 C12 C13

0 C22 C23

0 0 0

 .

Show that ABC = 0. Here we suppose that the sizes of the blocks are compati-
ble for the multiplication purpose. (Solving this exercise will help you to better
understand the proof of the next theorem.)
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We prove next the Cayley–Hamilton Theorem as a consequence of Theorem
4.4. Firstly, we make a definition: for a polynomial q(λ) = a0 + a1λ+ a2λ

2 +
· · ·+ anλ

n, given a square matrix A, define q(A) by

q(A) = a0I + a1A+ a2A
2 + · · ·+ anA

n.

Corollary 4.5 (Cayley–Hamilton Theorem) Let A be a complex square
matrix and let p(λ) be its characteristic polynomial. Then p(A) = 0.

Proof In this proof, we write I for the identity matrices of any order.
Let p(λ) = (λ − λ1)

n1(λ − λ2)
n2 . . . (λ − λp)

np , where λ1, λ2, . . . , λp are all
distinct, be the characteristic polynomial of A. By Theorem 4.4, there exists an
upper triangular matrix U and an invertible matrix S such that A = S−1US.
Moreover, U can be chosen to be

U =



U1 ∗ . . . . . . . . . . . . ∗
U2 ∗ . . . . . . . . . ∗

. . .

Uj ∗ . . . ∗
. . .

Up


, (4.7)

where, for j = 1, . . . , p, the block Uj is an nj × nj upper triangular matrix
whose diagonal entries coincide with λj. It follows from Corollary 4.3 that
(Uj − λjI)

nj = 0. Hence,

(U − λjI)
nj =



∗ ∗ . . . . . . . . . . . . ∗
∗ ∗ . . . . . . . . . ∗

. . .

0 ∗ . . . ∗
. . .

∗


,

where the 0 in the diagonal corresponds to the block Uj. Consequently, we have

p(U) = (U − λ1I)
n1(U − λ2I)

n2 . . . (U − λpI)
np = 0

(see Exercise 4.3). Since,

(A− λ1I)
n1(A− λ2I)

n2 . . . (A− λpI)
np

= S−1(U − λ1I)
n1(U − λ2I)

n2 . . . (U − λpI)
npS,

we have that
p(A) = S−1p(U)S = 0.
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Definition 40 A square matrix is said to be strictly upper triangular if
it is upper triangular and has a null diagonal.

A strictly upper triangular n × n matrix is nilpotent (notice that p(λ) =
(−1)nλn) but we can say more.

Lemma 4.1 A complex nilpotent matrix is similar to a strictly upper trian-
gular matrix.

Proof This is an immediate consequence of Theorem 4.4, since the only
eigenvalue of a nilpotent matrix is 0.

Proposition 4.10 A complex square matrix is nilpotent if and only if its only
eigenvalue is 0.

Proof We already know that if an n × n matrix A is nilpotent, then its
spectrum coincides with {0} (see Corollary 4.4).

Conversely, suppose that σ(A) = {0}. In other words, p(λ) = (−1)nλn. By
the Cayley–Hamilton Theorem (see Corollary 4.5),

0 = p(A) = (−1)nAn,

showing that A is nilpotent.

This result cannot be extended to real matrices.

A real matrix with the single eigenvalue 0 which is not nilpotent

The spectrum over the reals of

A =


0 0 0

0 0 1
0 −1 0


is {0} and this matrix is not nilpotent. In fact, Ape3 ̸= 0 whichever the
positive integer p (check it yourself). Here e3 = (0, 0, 1) is the third vector
of the standard basis of R3, as usual.

Definition 41 Let A be an n× n matrix over K. A subspace S of Kn is said
to be A-invariant or invariant under A if, for all x ∈ S, Ax ∈ S.

Proposition 4.11 Let A be a square matrix over K and let p(λ) be a poly-
nomial over K. Then, the null space and the column space of p(A) are A-
invariant.
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Proof Let x lie in N(p(A)). Then,

p(A)Ax = A(p(A)x) = A0 = 0

and, consequently, Ax ∈ N(p(A)).
Suppose now that x ∈ C(p(A)). Then, for some vector y in Kn,

Ax = A(p(A)y) = p(A)(Ay) ∈ C(p(A)).

We turn now to ponder over the column space of an n× n matrix A.

Given an n× n matrix A,

Kn = C(A0) ⊇ C(A) ⊇ C(A2) ⊇ · · · ⊇ C(Ap) ⊇ C(Ap+1) ⊇ . . .

Observe that, fixing some non-negative integer p and any given vector
y ∈ C(Ap+1), there exists x ∈ Kn such that

y = Ap+1x = Ap(Ax︸︷︷︸
z

).

That is, y = Apz and, therefore, lies in C(Ap).
Does this descending chain of subspaces stabilise? Yes, of course. Why?

Well, {0} is a lower bound, obviously! But, we can say more. On one hand we
have, by the Rank-nullity Theorem (see Theorem 3.6),

n = dimN(Ap) + dimC(Ap),

on the other hand we have a smallest non-negative integer p such that
N(Ap) = N(An). That is, p is the smallest integer stabilising the null spaces
of the powers of A and, consequently, the formula above ‘freezes’ the dimen-
sion of C(Ap) and of the column spaces of powers beyond. Hence, we have
established a counterpart of Proposition 4.9 for column spaces.

Proposition 4.12 Let A be an n × n matrix over K. Then, there exists an
integer p with 0 ≤ p ≤ n such that, for all j ∈ N,

C(Ap) = C(Ap+j) = C(An).

Notice that the smallest numbers p for which Proposition 4.9 and
Proposition 4.12 hold are the same.
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Suppose that A is such that N(A) ∩ C(A) = {0}, then, by Theorem 3.8,

dim(N(A)+C(A)) = dimN(A)+dimC(A)−dim(N(A)∩C(A)) = n−0 = n.

Under this circumstance, it follows that

Kn = N(A)⊕ C(A).

However, it is not always the case that N(A)∩C(A) = {0}. A simple counter-
example is

A =

[
1 1
−1 −1

]
,

for which
N(A) = C(A) = {(a,−a) : a ∈ R}.

There is however a way of bypassing this.

Proposition 4.13 Let A be an n× n matrix. The following hold.

(i) N(An) ∩ C(An) = {0}.

(ii) N(An)⊕ C(An) = Kn.

Proof (i) Suppose that on the contrary there exists y ̸= 0 such that

Any = 0 and y = Anx,

where x is some vector in Kn. Hence,

0 = Any = A2nx

from which follows that x lies in the null space of A2n but not in N(An). But
this is impossible, since it contradicts Proposition 4.9.

(ii) This is a consequence of (i), as discussed above.

The splitting of Kn by the null space and the column space of a
power of a matrix

Given any n× n matrix A,

N(An)⊕ C(An) = Kn.
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4.4.2 Generalised eigenvectors

Suppose that B is an n × n matrix. Did you notice that Proposition 4.9
forces the existence of a subspace of vectors x ∈ Kn to satisfy Brx = 0, for
some non-negative integer r which depends on x? (We are referring to the
subspace N(Bn).) Surely it suffices to impose r = n. But we may find that
this holds for r < n, depending on the vectors x in N(Bn). Hence, given a
non-zero x ∈ N(Bn), should it exist, there is a smallest r such that

Brx = 0 and Br−1x ̸= 0.

Hold this thought when reading the next definition.

Definition 42 Let A be an n×n matrix over K and let λ ∈ K be an eigenvalue
of A. A non-zero vector x ∈ Kn is said to be a generalised eigenvector of
A associated with λ if there exists k ∈ N such that

(A− λI)kx = 0. (4.8)

The order of the generalised eigenvector x is the smallest k ∈ N such that
x ∈ N(A− λI)k.

Notice that (4.8) is the same as requiring that x lie in the null space
N(A− λI)k of the matrix (A− λI)k and, consequently, in all the null spaces
of higher powers of A−λI. Hence the definition of the order of the generalised
eigenvector as the smallest k for which (4.8) holds. In other words, x is a
generalised eigenvector of order k of A, associated with λ, if

(A− λI)kx = 0 and (A− λI)k−1x ̸= 0. (4.9)

It follows that, in these conditions,

� x is a vector in N((A− λI)k) but not in N((A− λI)k−1).

� (A− λI)k−1x is a eigenvector of A associated with the eigenvalue λ.

The vector sequence

(A− λI)k−1x, (A− λI)k−2x, . . . , (A− λI)x, x (4.10)

is called a Jordan chain of length k associated with λ. Denote by C(x, λ)
the set consisting of the k vectors of the Jordan chain (4.10), i.e.,

C(x, λ) =
{
(A− λI)k−1x︸ ︷︷ ︸

u1

, (A− λI)k−2x︸ ︷︷ ︸
u2

, . . . , (A− λI)x︸ ︷︷ ︸
uk−1

, x︸︷︷︸
uk

}
.
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Example 4.6 We are going to determine a generalised eigenvector x of order
2 of the matrix

A =

2 1 1
0 2 1
0 0 1

 ,

and the corresponding Jordan chain. Calculations similar to those done pre-
viously in this chapter yield that the characteristic polynomial of A is

p(λ) = (2− λ)2(1− λ).

Consequently, the spectrum of A is σ(A) = {1, 2}. Both eigenvalues have geo-
metric multiplicity equal to 1, and it is easy to see that bases for the eigenspaces
are BE(2) = {(1, 0, 0)} and BE(−1) = {(0,−1, 1)}.

We want to find a generalised eigenvector x of order 2, i.e., to find an
eigenvalue λ (which will be 1 or 2) such that

u1 = (A− λI)x u2 = x.

Hence, u1 must be an eigenvector but u2 cannot be an eigenvector. The only
possibility corresponds to the eigenvalue 2. In other words, we have to solve
the equation

(A− 2I)x =

10
0

 .

(What would have happened if you were to choose u1 = (0,−1, 1)? Try it.)
The solution set of this non-homogeneous system consists of the vectors

x = t

10
0

+

01
0

 (t ∈ R). (4.11)

Choosing, for example, t = 0, we have that (0, 1, 0) is a generalised eigenvector
of order 2.

We have now that the Jordan chain is

(1, 0, 0), (0, 1, 0)

and that, therefore, C((0, 1, 0), 2) = {(1, 0, 0), (0, 1, 0)}.
Notice that the set of generalised eigenvectors {(1, 0, 0), (0, 1, 0), (0,−1, 1)}

is a basis of R3.

Given a matrix A ∈ Mn(K), let G(λ) be the set consisting of 0 and all
the generalised eigenvectors (of any order) of A associated with λ. This set is
in fact a subspace of Kn called the generalised eigenspace of A associated
with the eigenvalue λ. (It is an easy exercise to show that G(λ) is closed under
vector addition and scalar multiplication. See EX 4.5.9.)
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A clarifying reminder:

An eigenvector is a generalised eigenvector of order 1.

The eigenspace E(λ) and the generalised eigenspace G(λ) correspond-
ing to a given eigenvalue λ satisfy E(λ) ⊆ G(λ).

Hence, we have here a slight abuse of notation: when the generalised eigen-
vectors consist only of eigenvectors proper (as was the case for λ = 1 in Ex-
ample 4.6), then G(λ) is what we called E(λ) in Section 4.1. But once we keep
this in mind, there will be no source of confusion.

Another question is how are we to find a method to determine the gener-
alised eigenspaces? Or Jordan chains? In Example 4.6, we were advised from
the start about the order of the generalised eigenvector. What if we were not?
Do two distinct generalised eigenvectors in the same generalised eigenspace
have necessarily the same order?

These are important questions that need to be answered. Proposition 4.14
below is a first but crucial step towards the answers.

Proposition 4.14 Let A be a square matrix of order n over K and let λ ∈ K
be an eigenvalue of A. Then

G(λ) = N((A− λI)n).

Moreover, if x ∈ G(λ) is a generalised eigenvector of order k, then 1 ≤ k ≤ n.

Proof Let x ̸= 0 lie in N((A−λI)n). Then, there exists a positive integer
k for which (A − λI)kx = 0. Indeed, it suffices to take k = n. Hence, x is a
generalised eigenvector in G(λ).

Conversely, suppose that x ∈ G(λ). Then, x lies in the null space of some
power of A− λI. Hence, by Proposition 4.9, x ∈ N(A− λI)n.

By the definition of order of a generalised eigenvector, we have finally that
this order must be at most equal to n.

Observe that, by Propositions 4.11 and 4.14,

Any generalised eigenspace of a matrix A is A-invariant.

Example 4.7 Let us revisit Example 4.6 under the new light of this proposi-
tion. We have that

(A− 2I)3 =

0 1 1
0 0 1
0 0 −1

3

=

0 0 0
0 0 1
0 0 −1


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and

(A− I)3 =

1 1 1
0 1 1
0 0 0

3

=

1 3 3
0 1 1
0 0 0

 .

Hence,
G(2) = N(A− 2I)3 = {(x, y, 0) : x, y ∈ R}

and
G(1) = N(A− I)3 = {(0,−z, z) : z ∈ R}.

Observe that G(1) must consist of eigenvectors only because it has dimension
1 and that the generalised eigenvectors (of order higher than 1), therefore, lie
all of them in G(2). Compare with what we found in Example 4.6.

Notice also that
G(1) ∩G(2) = {0}

and
G(1) +G(2) = R3.

In other words,
G(1)⊕G(2) = R3.

A way of determining the generalised eigenspaces

Let A be an n× n matrix over K. To obtain its generalised eigenspaces:

1. Find the spectrum σ(A) of A;

2. For each λ ∈ σ(A), determine the null space N(A− λI)n;

3. The corresponding generalised eigenspace is G(λ) = N(A− λI)n.

Now we have sorted out a way to find the generalised eigenspaces. We
have then answered the question ‘How can we find the generalised eigenvectors
systematically?’ Answer: proceed as indicated above. It so happens that we do
not want to find the generalised eigenvectors per se, we want rather use a well-
chosen few Jordan chains to complete our program of ‘almost’ diagonalising
every complex matrix.

One of the questions still pending about the order is ‘Do two distinct
generalised eigenvectors in the same generalised eigenspace have necessarily
the same order?’ This is a No.

For example, consider the matrix
1 1 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 1 1
0 0 0 0 1

 . (4.12)
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Its only eigenvalue is 1. A basis for the eigenspace is

BE(1) = {(1, 0, 0, 0, 0), (0, 0, 1, 0, 0)}.

We can verify that (1, 1, 1, 0, 0) is a generalised eigenvector of order 2 and that
(1, 1, 1, 1, 1) is a generalised eigenvector of order 3.

But even more obvious than this example is that

all vectors in a Jordan chain are generalised eigenvectors, each one having
a different order.

Exercise 4.4 Find the Jordan chains of the generalised eigenvectors above.
Verify that the set consisting of these Jordan chains is a basis of R5.

4.4.3 Jordan canonical form

As seen in Example 4.6, we found a basis of R3 consisting only of gen-
eralised eigenvectors. In particular, the vectors in each of the Jordan chains
in the example were linearly independent. In turns out that this is a general
result.

Proposition 4.15 Let A be a matrix in Mn(K), let λ ∈ K be an eigenvalue
of A and let x be a generalised eigenvector of order k of A associated with the
eigenvalue λ. Then, the vectors in the Jordan chain

(A− λI)k−1x, (A− λI)k−2x, . . . , (A− λI)x, x

are linearly independent.

Proof Let k and x be as above and let

(A− λI)k−1x︸ ︷︷ ︸
u1

, (A− λI)k−2x︸ ︷︷ ︸
u2

, . . . (A− λI)x︸ ︷︷ ︸
uk−1

, x︸︷︷︸
uk

.

If k = 1, then the set {u1} is linearly independent, since u1 ̸= 0. Hence,
the proposition is proved for k = 1.

Let now k > 1, let p be an integer such that 1 ≤ p < k and consider the
set Sp = {u1, . . . ,up}. Observe that, if p = 1, it can be shown similarly to the
above paragraph that S1 is linearly independent. We wish to show that, fixing
p and assuming that Sp is linearly independent, then

Sp+1 = {u1, . . . ,up,up+1}

is also linearly independent.
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If {u1, . . . ,up,up+1} were linearly dependent, then there would exist scalars
α1, . . . , αp, αp+1, not all equal to zero, such that

α1u1 + · · ·+ αpup + αp+1up+1 = 0.

Notice that, under these conditions, αp+1 ̸= 0, since otherwise {u1, . . . ,up}
would be linearly dependent, contradicting the hypothesis.

Hence, we have

αp+1(A− λI)pup+1 = −α1(A− λI)pu1 − · · · − αp(A− λI)pup.

Observe that, for 1 ≤ j ≤ p,

(A− λI)puj = (A− λI)p(A− λI)k−jx = (A− λI)k+(p−j)x = 0,

since k + (p− j) ≥ k (compare with (4.9)). Moreover,

(A− λI)pup+1 = (A− λI)p+k−(p+1)x = (A− λI)k−1x ̸= 0

(see (4.9)). It follows that

αp+1 (A− λI)pup+1︸ ︷︷ ︸
̸=0

= −α1 (A− λI)pu1︸ ︷︷ ︸
=0

− · · · − αp (A− λI)pup︸ ︷︷ ︸
=0

,

which cannot be.

In fact, generalised eigenvectors corresponding to different eigenvalues are
also linearly independent. To be precise:

Lemma 4.2 Let x1,x2, . . . ,xp be generalised eigenvectors of a square ma-
trix A of order n and let λ1, λ2, . . . , λp be the corresponding eigenvalues, all
distinct. Then x1,x2, . . . ,xp are linearly independent.

We had already a similar result for eigenvectors. Compare this lemma with
Proposition 4.6.

Proof Let α1, α2, . . . , αp be scalars such that

α1x1 + α2x2 + · · ·+ αpxp = 0.

Let k1 be the order of the generalised eigenvector x1. Then, we have

0 = α1(A− λ1I)
k1−1(A− λ2I)

n . . . (A− λpI)
nx1

+ α2(A− λ1I)
k1−1(A− λ2I)

n . . . (A− λpI)
nx2

+ · · ·+ αp(A− λ1I)
k1−1(A− λ2I)

n . . . (A− λpI)
nxp.

Observing that all the matrix powers commute, it follows from Proposition
4.14 that

0 = α1(A− λ2I)
n . . . (A− λpI)

n(A− λ1I)
k1−1x1 + 0+ · · ·+ 0. (4.13)
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Notice that
(A− λ1I)(A− λ1I)

k1−1x1 = 0,

from which follows that

A(A− λ1I)
k1−1x1 = λ1(A− λ1I)

k1−1x1.

Consequently, given any non-negative integer r and λ ∈ K,

(A− λI)r(A− λ1I)
k1−1x1 = (λ1 − λ)r(A− λ1I)

k1−1x1.

Using this in (4.13),

α1(λ1 − λ2)
n . . . (λ1 − λp)

n (A− λ1I)
k1−1x1︸ ︷︷ ︸

̸=0

= 0.

Hence, α1 = 0. Repeating this reasoning sufficiently many times, we will have
that α1, α2, . . . , αp = 0, as required.

We begin here a series of results which will lead us to reach our aim of
showing that any given complex matrix is similar to some Jordan canonical
form.

Proposition 4.16 Let A be a matrix in Mn(C), let λ1, λ2, . . . , λp ∈ C be all
the distinct eigenvalues of A and let

p(λ) = (λ1 − λ)n1(λ2 − λ)n2 . . . (λp − λ)np

be its characteristic polynomial. Then, for all j = 1, . . . , p, dimG(λj) = nj

and, for any generalised eigenvector x ∈ G(λj), the order of x is less than or
equal to nj. Moreover,

Cn = G(λ1)⊕G(λ2)⊕ · · · ⊕G(λp) (4.14)

In (4.14), we are taking a direct sum of finitely many subspaces. This is a
generalisation of our definition in Chapter 3 of the direct sum of two subspaces.
For details, see Section 8.3 of the Appendix.

Proof It is clear that, once we prove that dimG(λj) = nj, any generalised
eigenvector x ∈ G(λj) must have order at most nj, since its Jordan chain
consists of linearly independent vectors. We prove now that dimG(λj) = nj.

We know, by Proposition 4.14, that G(λj) = N(A − λjI)
n. On the other

hand, as in (4.7), we know that (A− λjI)
n is similar to the upper triangular

matrix

(U − λjI)
n =



(U1 − λjI)
n ∗ . . . . . . . . . ∗

. . .

(Uj − λjI)
n ∗ . . . ∗

. . .

(Up − λjI)
n

 ,
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Notice that (U − λjI)
n has all diagonal entries different from zero, except for

the nj diagonal entries of (Uj −λjI)
n, which are equal to 0. Since the strictly

upper triangular matrix Uj − λjI satisfies

0 = (Uj − λjI)
nj = (Uj − λjI)

n,

it follows that the null space of (U − λjI)
n has dimension nj. Hence, by The-

orem 4.2 (vi),
dimG(λj) = dimN(A− λjI)

n = nj .

Since
∑p

j=1 dimG(λj) = n, by Proposition 8.3 (ii), it suffices to show that
with n > 1 the only vector lying in any given generalised eigenspace G(λj)
and also in the sum of the other generalised eigenspaces is 0. That is, we
must show that, given any j = 1, . . . , p,

G(λj)
⋂ ∑

l∈{1,2,...,p}\{j}

G(λj) = {0}.

To simplify the notation, we prove only for j = 1, but the proof is easily
generalised for any j. Let x1 ∈ G(λ1) be such that

x1 = x2 + · · ·+ xp,

where x2 + · · · + xp ∈
∑

l∈{1,2,...,p}\{j}G(λj). Re-writing the above equality,
we have

x1 − x2 − · · · − xp = 0.

It now follows from Lemma 4.2 that all these vectors must coincide with 0.

We can now make the following note:

Algebraic multiplicity versus geometric multiplicity

The algebraic multiplicity of an eigenvalue λ coincides with the dimen-
sion of the corresponding generalised eigenspace G(λ).

The geometric multiplicity of an eigenvalue λ coincides with the dimen-
sion of the corresponding eigenspace E(λ).

Now we are finally able to prove Proposition 4.1 for complex matrices.

Corollary 4.6 Let A be a complex matrix with an eigenvalue λ. Then the
algebraic multiplicity of λ is greater than or equal to its geometric multiplicity.

Proof Let A be a complex matrix. By Proposition 4.16,

ma(λ) = dimG(λ) ≥ dimE(λ) = mg(λ).
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Example 4.8 Let x ∈ Kn be a generalised eigenvector of order k of an n×n
matrix A associated with the eigenvalue λ and let

(A− λI)k−1x︸ ︷︷ ︸
u1

, (A− λI)k−2x︸ ︷︷ ︸
u2

, . . . , (A− λI)x︸ ︷︷ ︸
uk−1

, x︸︷︷︸
uk

.

be the corresponding Jordan chain. Since, for all j = 2, . . . k,

uj−1 = (A− λI)uj

= Auj − λuj ,

we have
Auj = uj−1 + λuj . (4.15)

If, for example, x were a generalised eigenvector of order n, then

A
[
u1|u2| . . . |un

]
=
[
Au1|Au2| . . . |Aun

]
(4.16)

A
[
u1|u2| . . . |un

]
=
[
u1|u2| . . . |un

]


λ 1 0 . . . 0

0 λ 1
. . . 0

0 0 λ
. . . 0

...
...

...
. . . 1

0 0 . . . 0 λ


︸ ︷︷ ︸

Jn(λ)

, (4.17)

where Jn(λ) is an n × n matrix. The matrix Jn(λ) is said to be a Jordan
block of degree n. (If n = 1, J1(λ) = [λ].)

If S =
[
u1|u2| . . . |un

]
, then (4.17) becomes

Jn(λ) = S−1AS, (4.18)

since, by Proposition 4.15, S is invertible.

An n× n matrix J is said to be a Jordan canonical form if

J =


Jn1(λ1)

Jn2
(λ2)

. . .

Jnp
(λp)

 , n1+n2+· · ·+np = n,

where the positive integers n1, n2, . . . , np may not be all distinct and the
scalars λ1, λ2, . . . , λp may also be repeated.
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Example 4.9 The matrix 
1 1 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 1 1
0 0 0 0 1


of (4.12) is a 5× 5 Jordan canonical form consisting of two Jordan blocks

J2(1) =

[
1 1
0 1

]
and

J3(1) =

1 1 0
0 1 1
0 0 1


of degree 2 and degree 3, respectively.

It is worth making a note of the following facts.

The spectrum of a Jordan block Jn(λ) consists of the single eigenvalue
λ whose algebraic multiplicity is n and geometric multiplicity is 1.

Exercise 4.5 Consider the Jordan block

J3(λ) =

λ 1 0
0 λ 1
0 0 λ

 .

Which vectors in C3 are generalised eigenvectors of order 3? Can a single
Jordan chain be a basis of C3? If yes, find such a basis.

Solution. We are looking for a vector x = (a, b, c) for which (J3−λI)2x ̸=
0. (Notice that (J3 − λI)3 = 0.) Calculations yield that the generalised eigen-
vectors of order 3 are {(a, b, c) ∈ C3 : c ̸= 0}. Consider, for example, the vector
(1, 1, 1). Its Jordan chain is

(1, 0, 0), (1, 1, 0), (1, 1, 1),

which is a basis of C3. In fact, the Jordan chain of any generalised eigenvector
of order 3 consists of three linearly independent vectors and, consequently,
forms a basis of C3.

Equality (4.18) is reminiscent of the diagonalisation of matrices. In fact,
it amounts to saying that, in this particular case, A is similar to the Jordan
block Jn(λ). It is not always true that a given matrix A is similar to a single
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Jordan block. However, we will see that any complex matrix A is similar to a
Jordan canonical form.

In Proposition 4.16, we saw that, given an n×n complex matrix, Cn is the
direct sum of its generalised eigenspaces. This hints (at the very least!) at the
possibility of Cn having a basis consisting entirely of generalised eigenvectors.
But even better, we can have a basis consisting of Jordan chains only. We are
going to prove this, starting with nilpotent matrices.

The proofs of the next two results are inspired by those in [4].

Lemma 4.3 Let A be an m ×m nilpotent complex matrix. Then there exist
generalised eigenvectors x1,x2, . . . ,xp such that

B = C(x1, 0) ∪ C(x2, 0) ∪ · · · ∪ C(xp, 0)

is a basis of Cm.

Proof We prove this by induction on the size n × n of the matrix. If
n = 1, then A is the 1 × 1 zero matrix and, therefore, the result is obvious
since E(0) = C.

Assume now that the lemma holds for all sizes less than or equal to n. Let
A be a square matrix of order n+ 1, and suppose that A ̸= 0. (If A = 0, then
E(0) = Cn+1 and, hence, the result would hold trivially.)

Let B1 be a basis of the column space of A and let B be a basis of Cn+1

containing B1 (see Theorem 3.5 (iii)).
Let S be a matrix whose first columns are the vectors of B1 followed by the

remaining vectors of B. Since C(A) is A-invariant,

AS = S

[
B C
0 D

]
,

where B is a r × r nilpotent matrix such that 1 ≤ r ≤ n. Notice that r is the
number of vectors in B1.

By the induction hypothesis, there exist vectors y1,y2, . . . ,yp ∈ Cr such
that

CB(y1, 0) ∪ CB(y2, 0) ∪ · · · ∪ CB(yp, 0) (4.19)

is a basis of Cr. Here the subscript B emphasises the fact that these Jordan
chains are taken with respect to matrix B. Consider the vectors w1,w2, . . . ,wp

in C(A) such that

[w1]B1
= y1, [w2]B1

= y2, . . . , [wp]B1
= yp.

In other words, for each i = 1, 2, . . . , p, we have

wi = S

[
yi

0

]
. (4.20)
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Notice that, given a positive integer k,

Akwi = AkS

[
yi

0

]
= S

[
B C
0 D

]k [
yi

0

]
= S

[
Bk 0
0 0

] [
yi

0

]
.

Consequently, for all i = 1, 2, . . . , p, we have that wi is a generalised eigen-
vector whose Jordan chain C(wi, 0) has the same length of CB(yi, 0).

Since, for all i = 1, 2, . . . , p, the vectors wi lie in the column space of A,
there exists xi ∈ Cn+1 such that wi = Axi. Moreover, since the set (4.19) is
linearly independent, it is easily seen using (4.20) that

C(w1, 0) ∪ C(w2, 0) ∪ · · · ∪ C(wp, 0) (4.21)

is also linearly independent. Consider, for all i = 1, 2, . . . , p, the Jordan chain
C(xi, 0), whose length is that of C(wi, 0) plus 1.

We prove next that the union of the Jordan chains

C(x1, 0) ∪ C(x2, 0) ∪ · · · ∪ C(xp, 0) (4.22)

is a linearly independent set. Consider a linear combination of these vectors
equal to 0. Multiplying this linear combination by A on the left, one gets a
linear combination of (4.21) , which forces all the coefficients in the former
linear combination to be equal to 0, except possibly the coefficients of

Ak1x1, A
k2x2, . . . , A

kpxp,

where, for for all i = 1, 2, . . . , p, the number ki is the order of the chain
C(wi, 0). However these coefficients correspond to the set consisting of

Ak1−1w1, A
k2−1w2, . . . , A

kp−1wp,

which is linearly independent, since (4.21) is linearly independent.
Let

C(x1, 0) ∪ C(x2, 0) ∪ · · · ∪ C(xp, 0) ∪ {z1, z2, . . . , zl} (4.23)

be a basis of Cn+1 (see Theorem 3.5 (iii)). Notice that there exist vectors vi

in the span of (4.22) such that, for each j = 1, 2, . . . , l,

Azj = Avj ,

since the set (4.21) spans C(A).
For all j = 1, 2, . . . , l, define up+j by up+j = zj − vj, and observe that

Aup+j = 0.

In other words, each of the vectors up+j is an eigenvector of A. Moreover,

C(x1, 0) ∪ C(x2, 0) ∪ · · · ∪ C(xp, 0) ∪ {up+1,up+2, . . . ,up+l}

is a linearly independent set which spans Cn+1, since its cardinality is that of
(4.23). This ends the proof.
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Theorem 4.5 (Jordan canonical form) Let A be a matrix in Mn(C).
Then, A is similar to a Jordan canonical form

J =


Jn1

(µ1)

Jn2
(µ2)

. . .

Jnl
(µl)

 , n1+n2+· · ·+nl = n,

where {µ1, µ2, . . . , µl} = σ(A).

Notice that the positive integers n1, n2, . . . , nl might not be all distinct
and the scalars µ1, µ2, . . . , µl might also be repeated.

Proof Let λ1, λ2, . . . , λp be the (all distinct) eigenvalues of A. By (4.14),

Cn = G(λ1)⊕G(λ2)⊕ · · · ⊕G(λp),

and, by Proposition 4.11, each of these summands is A-invariant. Conse-
quently, if one constructs a matrix S whose columns are formed by the juxta-
position of the bases of these summands, then

AS = SM,

where M is a block upper triangular matrix where the size of each block in M
equals the dimension of the respective generalised eigenspace. It follows that

(A− λ1I)S = S(M − λ1I).

If x ∈ G(λ1), then

S−1(A− λ1I)S

[
xB1

0

]
= (M − λ1I)

[
xB1

0

]
=

[
M1 − λ1I 0

0 0

] [
xB1

0

]
,

where B1 is the basis of G(λ1) formed by the columns of S lying in G(λ1),
and M1 is the block of M corresponding to this generalised eigenspace. Here,
to simplify the notation, we denote by I the identity irrespective of the size of
the matrix in hand.

It follows that M1−λ1I is a r1×r1 nilpotent matrix. By Lemma 4.3, there
exists a basis of Cr1 consisting of Jordan chains associated with M1 − λ1I.

Notice that, if

(M1 − λ1I)
k1−1u, (M1 − λ1I)

k1−1u, . . . , (M1 − λ1I)u,u, (u ∈ Cr1)

is a Jordan chain associated with M1 − λ1I, then

(A− λ1I)
k1−1x, (A− λ1I)

k1−2x, . . . , (A− λ1I)x,x
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is a Jordan chain for A, where

x = S

[
u
0

]
.

A reasoning similar to this can be applied to each of the generalised
eigenspaces, leading to the construction of a basis of Cn consisting of Jordan
chains. Let S be the matrix whose columns are formed by the juxtaposition of
these chains associated with the matrix A. As in Example 4.8, we have that
AS = SJ , where

J =


Jn1(µ1)

Jn2
(µ2)

. . .

Jnl
(µl)

 ,

{µ1, µ2, . . . , µl} = σ(A), and n1 + n2 + · · ·+ nl = n. The proof is complete.

Notice that an eigenvalue appears in the diagonal of the Jordan canonical
form as many times as its algebraic multiplicity.

Exercise 4.6 Find a Jordan canonical form of the matrix in Example 4.6
and the corresponding similarity matrix.

Solution. We already know that (0, 1, 0) is a generalised eigenvector of order
2 whose Jordan chain is u1 = (1, 0, 0),u2 = (0, 1, 0). Hence, A = SJS−1 with

J =

2 1 0
0 2 0
0 0 1

 , S =

1 0 0
0 1 −1
0 0 1

 .

Example 4.10 Find a Jordan canonical form and a corresponding similarity
matrix for

A =


1 0 0 0 0
1 1 0 0 0
1 0 0 −1 0
−1 0 1 2 0
0 1 0 1 1

 .

It is easily obtained that the characteristic polynomial of A is p(λ) = (1−λ)5.
Calculations will yield that a basis for the eigenspace E(1) = N(A− I) is

BE(1) = {(0,−1,−1, 1, 0), (0, 0, 0, 0, 1)}.

Since the the geometric multiplicity is 2 and the dimension of the eigenspace
of any Jordan block is 1, we have that the Jordan canonical form must have
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two Jordan blocks. Hence, the only two possibilities are

J =


1 0 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
0 0 0 0 1

 or J =


1 1 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 1 1
0 0 0 0 1

 ,

apart from the relative position of the Jordan blocks. Since we have

(A− I)2 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 1 1 0


and (A− I)3 = 0, it follows that we have a Jordan chain of length 3. Conse-
quently,

J =


1 1 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 1 1
0 0 0 0 1


is the only possibility.

To construct a Jordan chain of length 3, we need a vector in the null space
of (A− I)3 that does not lie in the null space of (A− I)2. On the other hand,
to get a Jordan chain of length 2, we need a vector in N((A − I)2) which is
not an eigenvector.

We start by finding a basis of N((A − I)2). We choose a basis contain-
ing BE(1) = {(0,−1,−1, 1, 0), (0, 0, 0, 0, 1)} to make things easier. Hence, a
possible basis is

BN((A−I)2) =
{
(1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0,−1,−1, 1, 0), (0, 0, 0, 0, 1)

}
.

Picking a(ny) vector from the basis which is not an eigenvector, for example,
x = (1, 0, 0, 0, 0), we have the Jordan chain of length 2

u1 = (A− I)x = (0, 1, 1,−1, 0), u2 = (1, 0, 0, 0, 0).

Choosing now a vector which is not a linear combination of the vectors of
BN((A−I)2), for example, y = (0, 0, 0, 1, 0) = v3, we have

v2 = (A− I)y = (0, 0,−1, 1, 1), v1 = (A− I)v2 = (0, 0, 0, 0, 1).

Hence,

S =


0 1 0 0 0
1 0 0 0 0
1 0 0 −1 0
−1 0 0 1 1
0 0 1 1 0

 .
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Finally,

A = SJS−1 =


0 1 0 0 0
1 0 0 0 0
1 0 0 −1 0
−1 0 0 1 1
0 0 1 1 0



1 1 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 1 1
0 0 0 0 1




0 1 0 0 0
1 0 0 0 0
1 0 0 −1 0
−1 0 0 1 1
0 0 1 1 0


−1

.

4.5 Exercises

EX 4.5.1. Consider the matrix

A =

 1 2 −3
0 −1 1
−1 −1 2


Find which of the vectors below are eigenvectors of A. For those
that are, find the corresponding eigenvalue.

a) (5,−1,−4) b) (1,−1,−1) c) (0, 0, 0) d) (1,−1, 0) e) (−1,−1,−1)

EX 4.5.2. Verify if λ = 12 is an eigenvalue of10 4 16
−6 0 14
0 0 6

 .

If it is, find a corresponding eigenvector.

EX 4.5.3. Determine the characteristic polynomial, the spectrum, and a ba-
sis for the eigenspace for each of the following matrices.

a)

[
−3i 0
−8i i

]
b)

 10 0 2
2 2 0
−14 2 0


EX 4.5.4. Which matrices are hermitian? For those which are, determine

their spectrum (use technology).

a)

[
i −8
−8 i

]
b)

 10 0 1 + i
0 2 3

1− i 3 7

 c) A =

 2 −3 + 2i 1
−3− 2i −1 1

1 1 −5

 .
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EX 4.5.5. Diagonalise

A =

 1 2 2
−1 −2 −1
1 1 0


and calculate A21.

EX 4.5.6. Let v be an eigenvector of an invertible matriz A corresponding
to an eigenvalue λ. Show that the same vector v is an eigenvector
of A−1 corresponding to the eigenvalue λ−1.

EX 4.5.7. Let A be a matrix with an eigenvector v corresponding to an
eigenvector λ. Show that λ3 is an eigenvalue of A3 and that v is
an eigenvector of A3 corresponding to λ3.

EX 4.5.8. Consider the matrix

A =

[
1 b
−b −1

]
,

where b is a real number. Suppose that 0 ∈ σ(A) and that B is a
2× 2 matrix. Consider the following assertions:

I) dimN(A) = 1;

II) 0 ∈ σ(BA);

III) A is diagonalisable;

IV) A is not invertible.

Select all the correct assertions.

A) II, III B) I, IV C) I, III, IV D) I, II, IV

EX 4.5.9. Let A be a square matrix and let λ be an eigenvector of A. Show
thatG(λ) is closed under vector addition and scalar multiplication.

EX 4.5.10. Prove directly that (Jn(λ)− λI)n = 0. Do not use any properties
presented in Section 4.4.

EX 4.5.11. Determine which matrices are
a) a Jordan block b) a Jordan canonical form.

(i) 
5 1 0 0 0 0
0 5 1 0 0 0
0 0 5 0 0 0
0 0 0 −2 1 0
0 0 0 0 4 0
0 0 0 0 0 2


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(ii) 
5 1 0 0 0 0
0 5 1 0 0 0
0 0 5 0 0 0
0 0 0 −2 0 0
0 0 0 0 −2 0
0 0 0 0 0 4


(iii) 

5 1 0 0 0 0
0 5 1 0 0 0
0 0 5 0 0 0
0 0 0 −2 0 0
0 0 0 0 4 0
0 0 0 0 0 −2


(iv) 

3 1 0 0
0 3 1 0
0 0 3 0
0 0 0 1


EX 4.5.12. Determine all Jordan canonical forms whose characteristic poly-

nomial is
p(λ) = (−2− λ)2(1− λ).

EX 4.5.13. Find a Jordan canonical form J and an invertible matrix S such
that J = S−1AS for each of the matrices A below.

a) A =

[
2 2
−2 −2

]
b) A =

3 1 1
0 3 2
0 0 1

 c) A =


3 −3 1 1
0 1 1 1
0 0 3 1
0 0 0 3

 .

4.6 At a Glance

The spectrum σ(A) of a square matrix A consists of the roots of its char-
acteristic polynomial p(λ) = |A − λI|. These roots are called the eigenvalues
of A.

The eigenspace E(λ) corresponding to the eigenvalue λ is the solution set
of the homogeneous system of linear equations (A− λI)x = 0. The non-zero
vectors in E(λ) are eigenvectors of A.
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The algebraic multiplicity of an eigenvalue λ is, by definition, the multi-
plicity of that eigenvalue as a root of the characteristic polynomial of A. The
dimension of E(λ) is called the geometric multiplicity of λ.

A matrix A is diagonalisable if it is similar to a diagonal matrix, that is,
A = SDS−1, for some diagonal matrix D and invertible matrix S. A complex
matrix is diagonalisable if and only if the geometric and algebraic multiplicities
coincide for each eigenvalue. If this is the case, then it is very easy to calculate
any power of A, for in these circumstances, An = SDnS−1.

Not all matrices are diagonalisable but, given a complex matrix A, it is
always possible to find an upper triangular matrix J similar to A. That is,
A = SJS−1, where J is a Jordan canonical form of A.

The columns of the similarity matrix S are juxtapositions of correspond-
ing Jordan chains. A Jordan chain corresponding to some eigenvalue con-
sists of the so-called generalised eigenvectors. The dimension of a generalised
eigenspace equals the algebraic multiplicity of the corresponding eigenvalue.
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The most significant functions between vector spaces are those which respect
the linear structure inasmuch as they map sums of vectors to sums of their
images and scalar multiplication of a vector to scalar multiplication of its
image. These are the so-called linear transformations.

Linear transformations are intrinsically bound together with matrices. As
will be shown in the sequel, once we fix bases both in the domain and the
codomain of a linear transformation, there exists a one-to-one correspondence
between linear transformations and a space of matrices. This runs so deep
that one can think of linear transformations as matrices and vice-versa. This
interchanging might come in very handy: linear transformations will benefit
from our accumulated knowledge of matrices and, conversely, the theory of
matrices might also gain from perceiving them as linear transformations.

The most relevant numbers here are the dimensions of the null space and
the image of a linear transformation. The formula linking these dimensions is
a very important result called the Rank-nullity Theorem (Theorem 5.2).
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5.1 Linear Transformations

Definition 43 Let U and V be vector spaces over K. A function T : U → V
is called a linear transformation if, for all x,y ∈ U and α ∈ K,

T (x+ y) = T (x) + T (y), (5.1)

T (αx) = αT (x). (5.2)

In other words, a function T : U → V is a linear transformation if it is
additive (5.1) and homogeneous (5.2). As usual, U is the domain of T and V
is its codomain.

Proposition 5.1 Let U and V be vector spaces over K and let T : U → V be
a linear transformation. Then

T (0U ) = 0V ,

where 0U is the zero vector in U and 0V is the zero vector in V .

Proof Let x be a vector in U . Hence, by (5.1),

T (x) = T (x+ 0U ) = T (x) + T (0U ),

from which follows that T (0U ) = 0V .

Example 5.1 Find which of the following functions are linear transforma-
tions.

a) T : R2 → R2 is a reflection relative to the x-axis.

b) T : R3 → R3 is an orthogonal projection on the xy-plane.

c) T : R2 → R2 is a translation by the vector u = (1, 0).

The function T in a) is defined, for all x = (x1, x2) in R2, by

T (x1, x2) = (x1,−x2).

Checking whether this is a linear transformation consists of verifying if both
equalities (5.1) and (5.2) hold. Beginning with (5.2), let α be a real number
and let (x1, x2) be a vector in R2. Then,

T (α(x1, x2)) = T (αx1, αx2)

= (αx1,−αx2)

= α(x1,−x2)

= αT (x1, x2),

which shows that (5.2) holds.
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Now let x = (x1, x2),y = (y1, y2) ∈ R2. We have

T ((x1, x2) + (y1, y2)) = T (x1 + y1, x2 + y2)

= (x1 + y1,−(x2 + y2))

= (x1,−x2) + (y1,−y2)
= T (x1, x2) + T (y1, y2).

Hence,(5.1) holds, yielding finally that T is a linear transformation on R2.

Observing that the function T in b) is defined, for all x = (x1, x2, x3) ∈ R3,
by

T (x1, x2, x3) = (x1, x2, 0)

and proceeding analogously to a) above, it is easy to see that T is a linear
transformation.

In case c) the analytic expression of T is T (x1, x2) = (x1 + 1, x2), from
which we see that T (0, 0) = (1, 0). Hence, T (0, 0) ̸= (0, 0), contradicting
Proposition 3.2. Consequently, the function T is not a linear transformation.

Example 5.2 The image of a line segment.
Consider the triangle whose vertices are a = (0, 0), b = (1, 1), and c = (2, 0).
We are going to see how this triangle is mapped through the linear transfor-
mation T : R2 → R2 satisfying T (b) = (2, 1) e T (c) = (1, 0) (see Figure
5.1).

Let x be a point lying in the line segment with end points b and c. Then,

x = c+ α(b− c), α ∈ [0, 1], (5.3)

from which follows that

T (x) = T (c) + α(T (b)− T (c)), α ∈ [0, 1].

Hence, every point in this line segment is mapped by T onto the line segment
connecting the images T (b) and T (c). Similarly, it is easily seen that the same
holds for the two remaining line segments connecting a and b and a and c,
respectively. It now follows that the image of the triangle is a triangle whose
vertices are (0, 0), (2, 1), (1, 0). Observe that, by Proposition 3.2, T (a) = (0, 0).

A comment is in order: at this point is not clear why fixing the image of
the two given points b = (1, 1) and c = (2, 0), we have a linear transformation
satisfying these data, or indeed whether it is unique. However, there exists a
unique linear transformation which satisfies these requirements as we will see
later (see §5.2).
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b

T (a) = a c

T (b)

T (c)

FIGURE 5.1: The image of a triangle.

What we saw in (5.3), allows for us to conclude that:

A line segment connecting two points is mapped through a linear trans-
formation onto the line segment which connects the images of those points.

Example 5.3 Show that the function T : M2(C) → C defined, for all A ∈
M2(C), by T (A) = tr(A), is a linear transformation.

As before, we must verify that (5.1) and (5.2) hold. Let A,B be matrices
in M2(C). Then, by Proposition 1.13 (i),

T (A+B) = tr(A+B) = trA+ trB = T (A) + T (B).

Hence,(5.1) holds. Considering now (5.2), let α ∈ C and let A be a matrix in
M2(C). Then, by Proposition 1.13 (ii),

T (αA) = tr(αA) = α trA = αT (A),

which concludes the proof that T is a linear transformation.

How to find if a function is a linear transformation

Let U and V be vector spaces over K and let T : U → V be a function.
To see whether T is a linear transformation take the following two steps.

1. Check whether T (0U ) = 0V . If this is not true, then T is not a
linear transformation and you can stop here. On the other hand, if
T (0U ) = 0V , then one cannot conclude anything: T might or might
not be a linear transformation. Proceed to step 2 below.

2. Verify, as in Examples 5.1, 5.3, if (5.1), (5.2) hold. If both hold, then
T is a linear transformation. If at least one of them fails, then T is
not a linear transformation.
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Exercise 5.1 Let A be a k × n matrix over K. Show that the function
T : Kn → Kk defined, for all x ∈ Kn by Tx = Ax is a linear transforma-
tion.

5.2 Matrix Representations

Let T : Kn → Kk be a linear transformation and let En = (e1, e2, . . . , en)
be the ordered standard basis of Kn and Ek the ordered standard basis of Kk.
Then, for x = (x1, x2, . . . , xn), we have

T (x) = T (x1e1 + x2e2 + · · ·+ xnen) = x1T (e1) + x2T (e2) + · · ·+ xnT (en).

Denoting by [x] the vector column version of a vector x,

[T (x)] =
[
[T (e1)] | [T (e2)] | . . . | [T (en)]

]︸ ︷︷ ︸
matrix associated with T


x1

x2

...
xn

 . (5.4)

Observe that, given a vector u ∈ Rm, we have that [u] = [u]Em , where
[u]Em is the coordinate vector of u relative to the basis Em. Hence, we can
now rewrite (5.4) as

[T (x)]Ek =
[
[T (e1)]Ek | [T (e2)]Ek | . . . | [T (en)]Ek

]︸ ︷︷ ︸
[T ]Ek,En

[x]En (5.5)

That is,
[T (x)]Ek = [T ]Ek,En [x]En , (5.6)

where [T ]Ek,En is a k × n matrix called the matrix of T relative to the
standard bases of the domain Kn and codomain Kk. In what follows
this matrix might be denoted simply by [T ].

Example 5.4 Find the matrix which represents each of the linear transfor-
mations below relative to the relevant standard basis.

a) The reflection relative to the x-axis in R2 (see Figure 5.2).

b) The orthogonal projection on the xy-plane in R3 (see Figure 5.3).

c) The counter-clockwise rotation in R2 around (0, 0) by an angle θ (see
Figure 5.4). Find also an analytic expression for this linear transforma-
tion.
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x

y

u

T (u)

FIGURE 5.2: Reflection relative to the x-axis.

x

y

z

u

T (u)

FIGURE 5.3: Orthogonal projection on the xy-plane.
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x

y

u

T (u) θ

FIGURE 5.4: Counter-clockwise rotation around (0, 0) by an angle θ.
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The linear transformation in a) is defined on R2 and, therefore, we are
looking for the matrix [T ]E2,E2 which represents T relative to the standard
basis of R2. By (5.5),

[T ]E2,E2 =
[
T (e1)]E2 | [T (e2)]E2

]
=
[
T (e1)] | [T (e2)]

]
.

We need then calculate T (1, 0) and T (0, 1). The vector (1, 0) is fixed by T and
T (0, 1) = (0,−1). Hence

[T ] =

[
1 0
0 −1

]
.

Consequently, given a vector (x, y) ∈ R2,

T (x, y) =

[
1 0
0 −1

] [
x
y

]
=

[
x
−y

]
. (5.7)

In (5.7) we made a slight abuse of notation as to be completely precise one
should have written [T (x, y)] instead of T (x, y). However we shall adopt this
throughout to simplify the notation.

Analogously, we have in b)

[T ]E3,E3 =
[
T (e1)]E3 | [T (e2)]E3 | [T (e3)]E3

]
=

1 0 0
0 1 0
0 0 0

 .

Hence, for (x, y, z) ∈ R3,

T (x, y, z) =

1 0 0
0 1 0
0 0 0

xy
z

 =

xy
0

 .

The columns of the matrix [T ] associated with the rotation T in c) are the
images of the vectors of the standard basis E2. Since T (1, 0) = (cos θ, sin θ)
and T (0, 1) = (− sin θ, cos θ), we have

[T ] =

[
cos θ − sin θ
sin θ cos θ

]
.

Hence, for all x = (x1, x2) ∈ R2,

T (x) = [T ]

[
x1

x2

]
=

[
cos θ − sin θ
sin θ cos θ

] [
x1

x2

]
=

[
x1 cos θ − x2 sin θ
x1 sin θ + x2 cos θ

]
.

An analytic expression is

T (x1, x2) = (x1 cos θ − x2 sin θ, x1 sin θ + x2 cos θ).
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We are now ready to make a general statement about the matrix repre-
sentation of a linear transformation relative to fixed bases in its domain and
codomain.

Theorem 5.1 Let U and V be vector spaces over K with dimU = n, dimV =
k, let B1 = (b1, b2, . . . , bn) be a basis of U and B2 be a basis of V and let
T : U → V be a linear transformation. Then, there exists uniquely a k × n
matrix [T ]B2,B1

such that, for all x ∈ U ,

[T (x)]B2
= [T ]B2,B1

xB1
,

where xB1
is the coordinate vector of x relative to the basis B1 and [T (x)]B2

is the coordinate vector of T (x) relative to the basis B2. Moreover,

[T ]B2,B1 =
[
[T (b1)]B2

| [T (b2)]B2
| . . . | [T (bn)]B2

]
. (5.8)

The matrix [T ]B2,B1
is called the matrix of T relative to the basis B1 of

the domain and the basis B2 of the codomain.

Proof Let x be a vector in U such that its coordinate vector (x)B1
=

(α1, α2, . . . , αn). Then

T (x) = T (α1b1 + α2b2 + · · ·+ αnbn)

and, by Proposition 3.5,

(Tx)B2 = T ((α1b1 + α2b2 + · · ·+ αnbn))B2

= α1(T (b1))B2 + α2(T (b2))B2 + · · ·+ αn(T (bn))B2 .

It follows that

[Tx]B2 =
[
[T (b1)]B2

| [T (b2)]B2
| . . . | [T (bn)]B2

]

α1

α2

...
αn

 ,

which shows that
[T (x)]B2 = [T ]B2,B1xB1 .

Suppose now that A is a k × n matrix such that [T (x)]B2
= AxB1

. Then,
for all i = 1, . . . , n,

0 = [T (bi)]B2
− [T (bi)]B2

= [T ]B2,B1
(bi)B1

−A(bi)B1
= ([T ]B2,B1

−A)



0
...
0
1
0
...
0


,
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where the entry equal to 1 in the column vector lies in row i. Hence, for all
i = 1, . . . , n, the columns i of both matrices [T ]B2,B1

and A coincide, yielding
that [T ]B2,B1 = A.

Observe that by means of Theorem 5.1, to the linear transformation

T : U → V

x 7→ T (x)

corresponds another linear transformation

S : Kn → Kk

y 7→ Ay,

where A = [T ]B2,B1
(cf. Exercise 5.1). This linear transformation maps the

coordinate vectors of the vectors in U relative to the basis B1 to the coordinate
vectors of their images relative to the basis B2.

Example 5.5 Let T : P2 → P1 be the linear transformation p 7→ Dp, where
Dp is the derivative of the polynomial p. Find the matrix associated with T
relative to the standard bases of P2 and P1. Use this matrix to calculate the
image of the polynomial p(t) = 1− 2t+ 3t2.

Using (5.8),

[T ]P1,P2
=
[
(D1)P1 (Dt)P1 (Dt2)P1

]
=
[
(0)P1

(1)P1
(2t)P1

]
=

[
0 1 0
0 0 2

]
.

To obtain the image of p(t) = 1− 2t+ 3t2 using this matrix, we have

[T (1− 2t+ 3t2)]P1
=

[
0 1 0
0 0 2

] 1
−2
3

 =

[
−2
6

]
,

from which follows that T (1− 2t+ 3t2) = −2 + 6t.

How to find the matrix of a linear transformation

Let T : U → V be a linear transformation and let B1 and B2 be bases
of U and V , respectively.

1. Find the images of the vectors in the ordered basis B1 of U .

2. Find the coordinate vectors of these images relative to the ordered
basis B2.

3. Construct a matrix whose columns are these vectors respecting the
order of B1. This matrix is [T ]B2,B1

.
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A comment: Now it is clear how we can guarantee the existence and unique-
ness of a linear transformation in Example 5.2 just by giving the image of two
vectors. Indeed we can because these two vectors form a basis of R2.

5.3 Null Space and Image

Definition 44 Let U and V be vector spaces over K and let T : U → V
be a linear transformation. The null space or kernel N(T ) of the linear
transformation T is the subspace of U defined by

N(T ) = {x ∈ U : T (x) = 0V }.

The image I(T ) of the linear transformation T is the subspace of V defined
by

I(T ) = {T (x) ∈ V : x ∈ U}.

In other words, the null space is the subset of U consisting of the vectors
in the domain mapped by T to the zero vector of V , and the image of T is
the subset of V consisting of the images of all the vectors in U .

Exercise 5.2 Verify that, given a linear transformation T : U → V , the sets
N(T ) and I(T ) are subspaces of U and V , respectively.

5.3.1 Linear transformations T : Kn → Kk

We begin by finding a way of calculating the null space and image of a
linear transformation T : Kn → Kk. We have

N(T ) = {x ∈ Kn : T (x) = 0Kk}.

Let A = [T ]Ek,En be the matrix of T relative to the standard bases of Kn and
Kk. Then,

T (x) = 0 if and only if Ax = 0.

Hence,
N(T ) = N(A).

That is, the null space of T is the null space of the matrix A which represents
T when one considers the standard bases in the domain and codomain.

As to the image I(T ), we have by definition that

I(T ) = {T (x) ∈ Kk : x ∈ Kn}.



186 Linear Algebra

Observing that
[T (x)] = Ax,

the image I(T ) is found by obtaining all the linear combinations Ax of the
columns of A, i.e.,

I(T ) = C(A).

Hence,
I(T ) = span({T (e1), T (e2), . . . , T (en)}),

which shows that {T (e1), T (e2), . . . , T (en)} is a spanning set for I(T ), al-
though not necessarily a basis of I(T ).

Example 5.6 Find the null spaces and the images of the the linear transfor-
mations of Example 5.4.

In a), the null space of the matrix [T ] is {(0, 0)} and, hence N(T ) =
{(0, 0)}.

The image I(T ) is the subspace generated by the columns of [T ]. Since this
corresponds to the vectors (1, 0), (0,−1), it follows that I(T ) = R2. The image
of this linear transformation coincides with the codomain R2, that is, T is a
surjective function. Indeed, it is also an injective function.

Similarly, in b) we have that N(T ) coincides with the z-axis and the image
I(T ) is the xy-plane, which shows that T is neither surjective nor injective.

As to c), observe that

det[T ] = cos2 θ + sin2 θ = 1

and, consequently, the matrix is invertible. Hence, N(T ) = N([T ]) = {(0, 0)}.
Maybe it is not so easy to justify that I(T ) = R2. The next theorem will help.

Let T be a linear transformation. The nullity of T , nul(T ), is the dimen-
sion of its null space and the rank of T , rank (T ), is the dimension of its
image.

Theorem 5.2 (Rank-nullity theorem) Let T : Kn → Kk be a linear trans-
formation. Then

n = nul(T ) + rank (T ).

Before proving the result, we apply it to c) in Example 5.6. We have that

2 = dimN(T ) + dim I(T ) = 0 + dim I(T ),

yielding that I(T ) is a subspace having dimension 2 within R2. Hence, the
only possibility is I(T ) = R2, that is, T is surjective.
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Proof Let A be the k × n matrix of T relative to the bases En and Ek.
Then, by Proposition 3.11 and Theorem 3.6,

n = dimN(A) + rank (A)

= dimN(A) + dimC(A)

= dimN(T ) + dim I(T ) ,

which concludes the proof.

5.3.2 Linear transformations T : U → V

Let U and V be vector spaces over K, let B1 = (u1,u2, . . . ,un) be a basis
of U and let B2 = (v1,v2, . . . ,vk) be a basis of V . Let T : U → V be a linear
transformation. We are now interested in devising a way to determine the null
space and the image of such a general linear transformation by means of its
representing matrix relative to the bases of the domain and the codomain,
as we did in §5.3.1, for the particular kind of linear transformations under
scrutiny in that part of the book.

Tackling firstly the null space of T : U → V , we are then interested in
determining the vectors x ∈ U such that T (x) = 0. If A = [T ]B2,B1

is the
matrix of T relative to the bases of the domain and codomain, we have

T (x) = 0 if and only if [T (x)]B2 = 0.

It follows that T (x) = 0 if and only if

A[x]B1
= 0,

where this equality corresponds to determining the null space of A. Hence,
once N(A) ⊆ Kn is determined, we have the coordinate vectors relative to the
basis B1 of the vectors in the null space N(T ) of the linear transformation T ,
i.e.,

N(T ) = {α1u1 + α2u2 + · · ·+ αnun : (α1, α2, . . . , αn) ∈ N(A)} ⊆ U. (5.9)

Example 5.7 Find the null space of the linear transformation of Example
5.5.

The null space of

[T ] =

[
0 1 0
0 0 2

]
is

N([T ]) = {(α, 0, 0) : α ∈ R}.
Hence, the polynomials in N(T ) are those of the form

p(t) = α+ 0t+ 0t2,

i.e., N(T ) consists of the polynomials of degree 0.
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As defined before, the image I(T ) of T : U → V is the subspace of V
defined by

I(T ) = {T (x) : x ∈ U}.

Consequently, given the matrix

[T (x)]B2
= A[x]B1

of T , we want to obtain all the linear combinations A[x]B1
of the columns of

A. In other words, the set of the coordinate vectors relative to the basis B2 of
the images of the vectors in U coincides with the column space C(A). Observe
that C(A) ⊆ Kk. Then

I(T ) = {α1v1 + α2v2 + · · ·+ αkvn : (α1, α2, . . . , αk) ∈ C(A)}.

Example 5.8 Find the image I(T ) of the linear transformation of
Example 5.5.

Now we have

C([T ]) = C

([
0 1 0
0 0 2

])
= R2.

It follows that

I(T ) = {α11 + α2t : (α1, α2) ∈ R2} = P1.

How to find the null space and the image of a linear
transformation

Let T : U → V be a linear transformation, let B1,B2 be bases of U and
V , respectively, and let A be the matrix representing T relative to these
bases.

1. Find the null space and the column space of A.

2. Find all the vectors in U whose coordinate vectors lie in N(A): this
is the null space of T .

3. Find all the vectors in V whose coordinate vectors lie in C(A): this
is the image of T .
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5.4 Isomorphisms and Rank-nullity Theorem

An isomorphism is a particularly important type of linear transformation,
the word coming from the ancient Greek: equal (iso) form (morph). An iso-
morphism between two spaces means that as linear spaces they can be thought
of as being the ‘same’. Without explicitly saying it, we have been dealing with
isomorphisms since Chapter 3. Indeed, the linear transformation which maps
each vector in a space of dimension n to its coordinate vector in Kn is an
isomorphism. And how convenient it might be replacing general vectors by its
coordinates in Kn, as we already experienced!

We have seen linear transformations that are injective or surjective as
functions. Now we define formally the concepts of injective and surjective
linear transformations, which amount exactly to being so as functions.

Definition 45 A linear transformation T : U → V between vector spaces U, V
over K is said to be injective if, for all x,y ∈ U ,

x ̸= y ⇒ T (x) ̸= T (y)

or, equivalently, if
T (x) = T (y)⇒ x = y.

Notice that
T (x) = T (y)

if and only if
T (x− y) = 0⇔ x− y ∈ N(T ).

Hence,we see that
T (x+N(T )) = {T (x)},

where we define x+N(T ) by

x+N(T ) = {x+ z : z ∈ N(T )}.

That is to say, any vector in U which differs from x by a vector in N(T ) is
mapped under T to the image of x.

We have proved the following proposition.

Proposition 5.2 Let U, V be a vector spaces over K and let T : U → V be a
linear transformation. Then T is injective if and only if N(T ) = {0}.

Definition 46 A linear transformation T : U → V between vector spaces U, V
over K is said to be surjective if I(T ) = V . If T is injective and surjective,
then T is called a bijective linear transformation or an isomorphism be-
tween the space U and V . In this case, U and V are said to be isomorphic
vector spaces.
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Example 5.9 The reflection a) in Example 5.4 is an isomorphism, the pro-
jection b) is not, and the rotation c) is an isomorphism.

Proposition 5.3 Let U be a vector space over K and let B = (b1, b2, . . . , bn)
be a basis of U . The linear transformation T : U → Kn defined by

x 7→ (x)B

is an isomorphism.

Proof See Proposition 3.5.

We shall now state a more general version of Theorem 5.2 valid for any
linear transformation between vector spaces.

Theorem 5.3 (Rank-nullity theorem) Let U, V be vector spaces over K,
let dimU = n and let T : U → V a linear transformation. Then.

n = nul(T ) + rank (T ).

Proof Let B1,B2 be bases of U and V , respectively, and let A = [T ]B2,B1
.

By Proposition 5.3, N(T ) and N(A) are isomorphic and, hence, have the same
dimension. Similarly, I(T ) and C(A) are isomorphic and, therefore, have the
same dimension.

It follows from Theorem 5.2 that

dimN(T ) + dim I(T ) = dimN(A) + dimC(A) = n.

Proposition 5.4 Let T : U → V be a linear transformation between vector
spaces U, V over K such that dimU = n = dimV . The following are equiva-
lent.

(i) T is injective.

(ii) T is surjective.

(iii) T is an isomorphism.

Proof We show firstly that (i ) ⇒ (ii). Suppose that T is injective. Then,
by Theorem 5.3,

n = dimN(T ) + dim I(T )

from which follows that n = 0+dim I(T ). Hence, I(T ) = V , i.e., T is surjec-
tive.

Suppose now that T is surjective. Then,

n = dimN(T ) + n,

yielding that dimN(T ) = 0. Hence, (ii) ⇒ (iii).
The implication (iii) ⇒ (i) is clear. The proof is concluded.
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This proposition tells us that for a linear transformation T between vector
spaces of the same dimension n, either T is both surjective and injective or
is neither. Hence, when checking if such a transformation is an isomorphism,
it suffices to determine if it is injective or surjective. It is not necessary to go
the extra length of verifying both properties.

This is not so for linear transformations between spaces of dif-
ferent dimensions.

Exercise 5.3 Give examples of linear transformations which are (i) injective
but not surjective, (ii) surjective but not injective.

5.5 Composition and Invertibility

Let U , V , and W be vector spaces over K and let T : U → V and S : V →
W be linear transformations. Let ST be the composite function defined by

ST : U →W

x 7→ S(T (x)) .

That is,

U
T //

ST   

V

S
��

W

Proposition 5.5 Let U , V , and W be vector spaces over K and let T : U → V
and S : V → W be linear transformations. Then the function ST : U → W is
a linear transformation.

Proof Exercise.

Suppose that U, V, and W are vector spaces over K whose dimensions are

dimU = n, dimV = p, and dimW = k

and let BU , BV , and BW be bases of U, V, and W , respectively. Let A =
[T ]BV ,BU

and B = [S]BW ,BV
be the matrices of the linear transformations

T, S relative to the fixed bases in U, V,W . We have, for all x ∈ U ,

[(ST )(x)]BW
= [S(T (x))]BW

= B[(T (x))]BV

= BA[x]BU
.
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Hence, the matrix [ST ]BW ,BU
of the linear transformation ST relative to the

basis BU in the domain and the basis BW in the codomain is

[ST ]BW ,BU
= BA.

We have just proved the following proposition.

Proposition 5.6 Let U , V , and W be vector spaces over K and let T : U → V
and S : V →W be linear transformations. Then, the matrix [ST ]BW ,BU

of the
linear transformation ST relative to the basis BU in the domain and the basis
BW in the codomain is

[ST ]BW ,BU
= [S]BW ,BV

[T ]BV ,BU
.

In other words, given two linear transformations T and S and bases in
their domains and codomains, the matrix of the composite ST relative to the
relevant bases is the product of the matrices of T and S in the same order.
That is, if A = [T ]BV ,BU

and B = [S]BW ,BV
, then

[ST ]BW ,BU
= BA.

Composition of linear transformations corresponds to matrix multiplica-
tion (in an appropriate order) of the matrices associated with those linear
transformations.

In terms of the coordinate vectors, we have the scheme

Kn A //

BA=[ST ]BW ,BU !!

Kp

B
��

Kk

[x]BU

� A //



BA=[ST ]BW ,BU &&

[T (x)]BV_

B

��
[S(T (x))]BW

Example 5.10 Let T be a reflection relative to the x-axis in R2 and let S be
a counter-clockwise rotation around the origin in R2 by an angle θ = π

2 . Find:

a) the matrix of ST relative to the standard basis E2;

b) an analytic expression for ST .

a) The matrices of T and S relative to the standard basis of R2 are

[T ] =

[
1 0
0 −1

]
, [S] =

[
0 −1
1 0

]
.
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Hence,

[ST ] =

[
0 −1
1 0

] [
1 0
0 −1

]
=

[
0 1
1 0

]
b) As to the analytic expression of the composite transformation, we have

ST (x, y) =

[
0 1
1 0

] [
x
y

]
=

[
y
x

]
,

that is, ST (x, y) = (y, x).

Let U, V be vector spaces over K and let BU ,BV be the corresponding
bases. Let T : U → V be an isomorphism, i.e., T is a bijective linear trans-
formation. Observe that, by Theorem 5.3, dimU = dimV . Consequently, the
matrix [T ]BV ,BU

is a square matrix. Under this circumstances, it is possible
to define the inverse function T−1 of T by

T−1 : V → U

y 7→ x,

where y = T (x).

Proposition 5.7 Let U, V be vector spaces over K and let T : U → V be an
isomorphism. Then T is invertible and T−1 is a linear transformation.

Proof Since T is bijective, the function T−1 is well-defined. In fact, T−1

is additive and homogeneous because

T−1(y1 + y2) = T−1(T (x1) + T (x2))

= T−1(T (x1 + x2))

= x1 + x2 = T−1(y1) + T−1(y2),

and
T−1(αy) = T−1(αT (x)) = T−1(T (αx)) = αx = αT−1(y).

Here y,y1,y2 ∈ V are arbitrary and such that y = T (x),y1 = T (x1),y2 =
T (x2), for some x,x1,x2 ∈ X, and α ∈ K.

Let B = [T−1]BU ,BV
be the matrix of T−1 relative to the bases BU of the

codomain U and BV of the domain V and let A = [T ]BV ,BU
the matrix of T

relative to the same bases. We have, for all x ∈ U , that

[(T−1T )(x)]BU
= [T−1(Tx)]BU

= [T−1]BU ,BV
[(Tx)]BV

= [T−1]BU ,BV
[T ]BV ,BU

[x]BU

= BA[x]BU
.

Observing that T−1T is the identity IU on U , i.e, the linear transformation
which assigns to each x ∈ U the image IU (x) = x, it follows that BA = I.
Hence, we have the following.
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Proposition 5.8 Let U, V be vector spaces over K and let BU , and BV be
bases of U and V , respectively. Let T : U → V be an isomorphism. Then, the
matrix of T−1 relative to the bases BU and BV is

[T−1]BU ,BV
=
(
[T ]BV ,BU

)−1
. (5.10)

The matrix associated with the inverse T−1 of a linear transformation T
is the inverse of the matrix associated with T .

Example 5.11 Let U be the subspace of the real polynomials P2 defined by

U = {a1t+ a2t
2 : a1, a2 ∈ R},

and let T : U → P1 be the linear transformation which assigns to each polyno-
mial its derivative. Find the matrix of T−1 relative to the basis BU = (t, t2)
of U and the standard basis of P1.

Solution: The matrix of T relative to this bases is

[T ]P1,BU
=

[
1 0
0 2

]
.

Notice that we were informed that T was invertible to start with and, conse-
quently, did not have to check this. However, we can see it by ourselves now,
since [T ]P1,BU

is an invertible matrix.
It now follows that

[T−1]BU ,P1 =

[
1 0
0 1

2

]
,

yielding

[T−1(b0 + b1t)]BU
= [T−1]BU ,P1

[
b0
b1

]
=

[
b0
1
2b1

]
.

Hence, T−1(b0 + b1t) = b0t+
1
2b1t

2.

We have been integrating!

The next exercise suggests a different way of proving (5.10).

Exercise 5.4 Let T : U → V be an isomorphism between the vector spaces
U, V and consider the inverse linear transformation

T−1 : V → U

y 7→ x ,

where y = Tx.
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a) Denoting by A the matrix [T ]BV ,BU
and supposing that dimU = n, show

that A is a n×n invertible matrix. (Hint: use Theorem 3.6 and Theorem
5.3.)

b) Use a) and the equality y = Tx to write x as a function of y and
conclude that [T−1]BU ,BV

= A−1.

5.6 Change of Basis

Sometimes we have to choose the bases carefully in order for the matrix
associated with a linear transformation to be easily determined or, at least,
as easily as possible (see Example 5.12). A change of basis might then be in
order. But how do matrices of a given linear transformation relate with each
other?

We begin to tackle this question with linear transformations on Kn.
Let T : Kn → Kn be a linear transformation and let B = (b1, b2, . . . , bn)

be a basis of Kn.
Given a vector x in Kn, the coordinate vector of the image of x can be

determined both using the matrix A = [T ]En,En and the matrix B = [T ]B,B.
We have

[T (x)]En = A[x]En , [T (x)]B = B[x]B.

On the other hand, we can see in the scheme below that [T (x)]En also can
be calculated using B and the change of basis matrices between En and B. In
fact,

[
T (x)

]
En

= M−1B←En [T (x)]B

= M−1B←EnB[x]B

= M−1B←EnBMB←En [x]En

[x]En
� A //

_

MB←En
��

[T (x)]EnOO
MEn←B

_
[x]B

�
B
// [T (x)]B

Hence
A = M−1B←EnBMB←En .

Example 5.12 Let T : R2 → R2 be the reflection relative to the straight line
whose equation is y = 2x. Find an analytic expression for T .

If you try to determine the matrix [T ]E2,E2 of the linear transformation T
relative to the standard basis, you will be faced with difficulties. Indeed, you
will need to find the images T (1, 0), T (0, 1) and this is by no means immediate.
However, there are vectors whose images are particularly easy to find.
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For example, all vectors lying in the line y = 2x are unchanged by the
linear transformation. Hence, e.g., T (1, 2) = (1, 2).

If one looks at the straight line that goes through the origin and is per-
pendicular to the one given before, then again we have an immediate way of
finding the images of the vectors lying in that straight line. That is the case
of the vector (−2, 1), and we have T (−2, 1) = (2,−1).

If we choose the basis B = ((1, 2), (−2, 1)) of R2, then

[T ]B,B =

[
1 0
0 −1

]
,

since

T (1, 2) = 1(1, 2) + 0(−2, 1), T (−2, 1) = 0(1, 2)− 1(−2, 1).

It follows that

[
T (x, y)

]
E2

= M−1B←E2 [T ]B,BMB←E2

[
x
y

]
= ME2←B

[
1 0
0 −1

]
M−1E2←B

[
x
y

]
=

[
1 −2
2 1

] [
1 0
0 −1

] [
1 −2
2 1

]−1 [
x
y

]
=

[
1 −2
2 1

] [
1 0
0 −1

] [
1/5 2/5
−2/5 1/5

]−1 [
x
y

]
= 1/5

[
−3x+ 4y
4x+ 3y

]
Finally, we have that

T (x, y) =

(
−3

5
x+

4

5
y,

4

5
x+

3

5
y

)
.

Consider now the general case of an arbitrary vector space U endowed with
two bases B1 = (b1, b2, . . . , bn) and B2 = (v1,v2, . . . ,vn) and let A = [T ]B1,B1

and B = [T ]B2,B2
. A reasoning similar to that above yields

[
T
]
B1,B1

= MB1←B2 [T ]B2,B2MB2←B1

MB1←B2
= M−1B2←B1

[x]B1

� A //
_

MB2←B1
��

[T (x)]B1OO
MB1←B2

_
[x]B2

�
B
// [T (x)]B2
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Hence

[T (x)]B1 = M−1B2←B1
[T (x)]B2

= M−1B2←B1
B[x]B2

= M−1B2←B1
BMB2←B1

[x]B1

from which follows that

A = M−1B2←B1
BMB2←B1

. (5.11)

Example 5.13 Let U be the subspace of the 2 × 2 complex matrices having
null trace, and let T : U → U be the transposition. Consider the bases of U

B1 =

([
1 0
0 −1

]
,

[
0 1
0 0

]
,

[
0 0
1 0

])
,

B2 =

([
i 0
0 −i

]
,

[
0 −i
i 0

]
,

[
0 i
i 0

])
.

Suppose that A = [T ]B1,B1
and B = [T ]B2,B2

. Then,

A =

1 0 0
0 0 1
0 1 0

 , B =

1 0 0
0 −1 0
0 0 1

 .

Check that

A = M−1B2←B1
BMB2←B1 =

i 0 0
0 i

2 − i
2

0 − i
2 − i

2

−1 B
i 0 0
0 i

2 − i
2

0 − i
2 − i

2

 .

In (5.11), we proved the following result.

Proposition 5.9 Let U be a vector space over K, let T : U → U be a linear
transformation and let B1,B2 be bases of U . Then, the matrices [T ]B1,B1

and
[T ]B2,B2

are similar.

To end this section, we tackle finally the general case where T : U → V is
a linear transformation whose domain and codomain do not have to coincide.

Let U, V be vector spaces over K, let B1 and B′1 be bases of U and let B2
and B′2 be bases of V .

Analogously to what has been done so far in this section, we have

[
T
]
B2,B1

= MB2←B′2 [T ]B′2,B′1MB′1←B1

[x]B1

� A //
_

MB′1←B1
��

[T (x)]B2OO
MB2←B′2

_
[x]B′1

�
B
// [T (x)]B′2

where A = [T ]B2,B1 and B = [T ]B′2,B′1 .
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It follows that

[T (x)]B2
= MB2←B′2 [T (x)]B′2
= MB2←B′2B[x]B′1
= MB2←B′2BMB′1←B1

[x]B1

Hence
A = MB2←B′2BMB′1←B1

.

How to relate the matrices of a linear transformation in
different bases

Let U, V be vector spaces over K, let B1 and B′1 be bases of U and let
B2 and B′2 be bases of V . Consider a linear transformation T : U → V . If
A = [T ]B2,B1 and B = [T ]B′2,B′1 , then

� Determine the change of basis matrices MB′1←B1
and MB2←B′2 .

� We have
A = MB2←B′2BMB′1←B1

.

Given one of the matrices A or B, one can use this equality to obtain
the other.

� Determine one (the easiest) of these matrices, should you not have
one of them to start with. One can now obtain the other matrix using
the above equality.

5.7 Spectrum and Diagonalisation

We can extend to linear transformations what was done for matrices in
Chapter 4. Not at all a surprise! Indeed, we saw already that there exists a
bijection between linear transformations and matrices. To be precise, if B1,B2
are bases of U and V , respectively, and dimU = n,dimV = k, then the
mapping

T (U, V ) ∋ T 7→ [T ]B2,B1 ∈Mk,n(K),

where T (U, V ) = {T : U → V : T is a linear transformation}, is a bijection.
In fact, this mapping is itself a linear transformation. Notice that the set
{T : U → V : T is a linear transformation} is a vector space over K.



Linear Transformations 199

Proposition 5.10 Let U, V be vector spaces over K and let B1,B2 be bases
of U and V , respectively. Let T, S be linear transformations from U to V , let
A and B be the matrices representing T and S relative to the bases B1,B2,
and let α ∈ K. Then:

(i) T + S and αT are linear transformations;

(ii) [T + S]B2,B1
= A+B and [αT ]B2,B1

= αA.

Moreover, {T : U → V : T is a linear transformation} is a vector space over
K.

Proof Exercise. Here, for x ∈ U and α ∈ K, we define as usual (T +
S)(x) = T (x) + S(x) and (αT )(x) = αT (x).

Definition 47 Let U be a vector space over K and let T : U → U be a linear
transformation. A non-zero vector x ∈ U , is called an eigenvector of T if
there exists λ ∈ K such that

T (x) = λx.

Under these conditions, λ is called the eigenvalue of A associated with x.

The spectrum of T , denoted by σ(T ), is the set of eigenvalues of the linear
transformation T .

For an eigenvalue λ, the eigenspace E(λ) corresponding to the eigenvalue
λ is the null space of the linear transformation T −λI, where I is the identity
map on U . That is,

E(λ) = N(T − λI).

Given a basis B of U and the matrix A = [T ]B,B of T relative to the basis
B, we have

T (x)− λx = 0 if and only if (A− λI)[x]B = 0 .

Hence,
σ(T ) = σ(A),

and

E(λ) = {x ∈ U : (x)B ∈ N(A− λI)}.

We have just proved the following.

Proposition 5.11 Let U be a vector space over K, let B be a basis of U and
let T : U → U be a linear transformation. If A = [T ]B,B is the matrix of T
relative to the basis B, then σ(T ) = σ(A), and

E(λ) = {x ∈ U : (x)B ∈ N(A− λI)}.
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Example 5.14 Find the eigenvalues and the eigenvectors of the reflection
relative to the straight line in R2 whose cartesian equation is y = x.

Solution: The matrix of this reflection relative to the basis B =
((1, 1), (1,−1)) of R2 is

A =

[
1 0
0 −1

]
.

Hence, σ(T ) = σ(A) = {−1, 1}. The eigenspaces are E(−1) = {(x,−x) : x ∈
R} and E(1) = {(x, y) ∈ R2 : y = x}.

To determine the spectrum of T , it does not matter which basis we use:
different bases correspond to similar matrices which, as we know, share a lot
of things, namely, their spectrum, the algebraic and geometric multiplicities
of the eigenvalues, and the characteristic polynomial, for example (see Propo-
sition 5.9 and Theorem 4.2).

Given the ‘identification’ of linear transformations and matrices alluded
to at the beginning of this section, concepts existing for matrices can and are
transferred to linear transformations.

We define in an obvious way the characteristic polynomial of a linear
transformation T : U → U , the algebraic and geometric multiplicities of
its eigenvalues and will not repeat ourselves.

We will however speak of the diagonalisation of a linear transformation
by means of an example. Not all linear transformations are diagonalisable but
the one below is.

Example 5.15 Diagonalise the reflection of Example 5.14. In other words,
find a basis of R2 for which the matrix representing the reflection is a diagonal
matrix. Find an analytic expression for this linear transformation.

Solution: We know already from Example 5.14 the eigenvalues and
eigenspaces of T . In fact, we know also that

[T ]B,B =

[
1 0
0 −1

]
is the matrix of T relative to the basis B = ((1, 1), (1,−1)) of eigenvectors.
According to what we saw when diagonalising matrices in Chapter 4,

[T ]E2,E2 =

[
1 1
1 −1

] [
1 0
0 −1

] [
1 1
1 −1

]−1
=

[
1 1
1 −1

] [
1 0
0 −1

] [
1
2

1
2

1
2 − 1

2

]
.

Hence,

T (x, y) = [T ]E2,E2

[
x
y

]
=

[
0 1
1 0

] [
x
y

]
,

and we have T (x, y) = (y, x).
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We end this section with

A word of caution: Not all linear transformations have a non-empty spec-
trum. For example, a counter-clockwise rotation around the origin of R2 by
an angle θ may or may not have eigenvalues. If one chooses an angle θ = π

2 ,
it does not, but if θ = π, then the spectrum is {−1} (see EX 5.8.13).

5.8 Exercises

EX 5.8.1. Are the following functions linear transformations?

a) T : R2 → R3, T (x, y) = (2x− y, x, y − x)

b) T : C3 → C3, T (z1, z2, z3) = (−iz2, (5− 3i)z3 − z2, 3z1)

c) T : R3 → R3, T (x, y, z) = (x, x+ y + z, 2x− 1)

d) T : C2 → C2, T (z1, z2) = (z2, (2− i)z1)

e) T : M2(K)→ K, T (A) = tr(AB2), with B = E21(−5).
f) T : P3 → P2, T is the derivative

g) T : M2,3(R)→ P2,

T (A) =
∑

i=1,2,j=1,2,3

aij +
[
1 1

]
A

11
1

 t+ a11t
2

EX 5.8.2. Find the matrix representing T in Exercises EX 5.8.1 a) and b)
relative to the standard bases. Find their null spaces and images.
Are they isomorphisms?

EX 5.8.3. Let S : R2 → R2 be the clockwise rotation around the origin by
an angle θ = π

2 , and let T : R2 → R2 be the linear transformation
such that

[T ]E2,E2 =

[
−1 1
1 −1

]
.

Find the null space and the image of the composite linear trans-
formation TS. Verify that the Rank-nullity Theorem holds. Is this
transformation an isomorphism?

EX 5.8.4. Consider the linear transformation T : R2 → R2 defined by
T (x, y) = (3x + y,−x + 3y). Is T invertible? If it is, find the
matrix representing T−1 relative to the standard basis.

EX 5.8.5. Let T : R2 → R2 be a linear transformation such that T (x, y) =
( 32x−

1
2y, x). LetB = ((1,−1), (1, 1)) be a basis of R2. Find [T ]E2,B .
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EX 5.8.6. Let T : V → R2 be the linear transformation defined by T (x, y) =
(−9x,−6x), where V is the straight line 2x = y in R2. Find a
matrix representing T relative to basis of your choice. Find the
null space and the image of T . Is T injective or surjective?

EX 5.8.7. Let T : M2(R)→M2(R) be defined by T (A) = AT . Find [T ]Bs,Bs

and, use the appropriate change of basis matrices to determine
[T ]B,B , where Bs is the standard basis and

B =

([
1 1
0 0

]
,

[
0 1
−1 0

]
,

[
0 0
1 1

]
,

[
0 0
0 1

])
.

EX 5.8.8. Let T : P2 →M2(R) be a linear transformation such that

[T ]B,P2
=


1 −1
1 −1
1 −1
−1 1

 ,

where B = (t− 1, t). Find the null space and the image of T .

EX 5.8.9. Let T : P2 → P2 be the derivative, i.e, T (p) = p′. Let B = (1+t, t−
t2, 1) be a basis of P2. Find [T ]B,B using [T ]P2,P2

and appropriate
change of basis matrices.

EX 5.8.10. Let U and V be real vector spaces such that dimU = n and
dimV = k with n ≤ k.

True or false?

a) A linear transformation on U is surjective if and only if it is an
isomorphism.

b) A linear transformation on V is an isomorphism if and only if it is
injective.

c) k − n is the dimension of the null space of any surjective linear
transformation from V to U .

d) k − n is the dimension of the null space of any surjective linear
transformation from U to V .

e) If n = k, then U and V are isomorphic.

f) If n < k, then U is isomorphic to a subspace of V .

g) If n < k, then U is isomorphic to a unique subspace of V .

EX 5.8.11. Let U be a vector space over K and let T : U → U be a linear
transformation. A subspace W of U is called an invariant sub-
space of T if T (W ) ⊆ W. Show that the subspaces {0}, U and
the eigenspaces of T , should they exist, are examples of invariant
subspaces of T .
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EX 5.8.12. Let T : R3 → R3 be the orthogonal projection on the plane z = 0.
Find the spectrum and the eigenspaces of T . Find the invariant
subspaces of T .

EX 5.8.13. Let T, S : R2 → R2 be, respectively, the counter-clockwise rotation
around the origin by an angle θT = π

2 and θS = π.

a) Find the spectra and the eigenspaces of T and S.

b) If A is the matrix that represents T relative to the standard basis,
find σ(A) ⊆ C and bases for the eigenspaces.

EX 5.8.14. Consider the linear transformations T1, T2 : M2(R) → M2(R) de-
fined by

T1(A) =
A+AT

2
T2(A) =

A−AT

2
.

(a) Find the matrices representing T1 and T2 relative to the standard
basis Bs.

(b) Find the spectra and the eigenspaces of these linear transforma-
tions.

EX 5.8.15. Show that the only linear transformation T : Mn(C)→ C satisfy-
ing (i) T (AB) = T (BA), for all A,B ∈Mn(C), and (ii) T (I) = n
is the trace.

5.9 At a Glance

A linear transformation is an additive and homogeneous function between
vector spaces. In other words, it transforms sums of vectors in sums of their
images and multiplication of vectors by scalars in multiplication of their images
by scalars.

Fixing bases in the domain U and codomain V , a linear transformation T
is represented relative to these bases by a k × n matrix A. Here we assume
that the dimension of the domain is n and of the codomain is k. The image
of x ∈ U is then calculated as [T (x)]BV

= AxBU
.

We have thus an induced linear transformation fromKn toKk given by z 7→
Az. If we understand this transformation, then we understand T . Moreover,
if k = n, then the eigenvalues of A and T coincide, and A and T are only
diagonalisable simultaneously.

N(A) consists of the coordinate vectors of the vectors in the null space
N(T ) and C(A) consists of the coordinate vectors of the vectors in the image
I(T ). The null space N(T ) is isomorphic as a vector space to N(A), and the
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same applies to I(T ) and C(A). As a consequence, T is invertible or, in other
words, an isomorphism, if and only if A is invertible.

The fundamental formula linking these spaces is

n = dimN(T ) + dim I(T ).

If dimU = dimV , then T is neither surjective nor injective or is both
simultaneously.

If U = V , then N(T ) and I(T ) are subspaces of U . If N(T )∩ I(T ) = {0},
then, by means of the formula above, the transformation splits U into the
direct sum U = N(T )⊕ I(T ).

Matrices representing T relative to different bases are similar.
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Up to here we have been dealing with purely algebraic structures. For example,
we do not have just yet a notion of distance between elements of a vector
space, and implicitly we are overlooking the geometric aspects of spaces. We
will fix that in this chapter by introducing the inner product spaces. Unlike the
previous chapters where we have treated simultaneously the real and complex
vector spaces, here we treat the real and complex inner products separately.
This is because the definitions of these inner products are different in an
essential manner.

6.1 Real Inner Product Spaces

Definition 48 Let V be a real vector space. A real function

⟨·, ·⟩ :V × V → R
(x,y) 7→ ⟨x,y⟩

is said to be an inner product if, for all x,y, z ∈ V and α ∈ R,

(i) ⟨x,y⟩ = ⟨y,x⟩;

(ii) ⟨αx,y⟩ = α⟨x,y⟩;
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(iii) ⟨x+ y, z⟩ = ⟨x, z⟩+ ⟨y, z⟩;

(iv) ⟨x,x⟩ ≥ 0 ∧ (⟨x,x⟩ = 0⇒ x = 0).

A real vector space V endowed with a inner product is said to be a real inner
product space.

If one considers the zero vector 0, by (ii) above,

⟨0,0⟩ = ⟨00,0⟩ = 0⟨0,0⟩ = 0.

Hence, (iv) could be equivalently replaced by

⟨x,x⟩ ≥ 0 ∧ (⟨x,x⟩ = 0⇔ x = 0). (6.1)

A function f : V × V → R satisfying, for all x,y, z ∈ V and α ∈ R,

(a) ⟨x, αy⟩ = α⟨x,y⟩;

(b) ⟨αx,y⟩ = α⟨x,y⟩;

(c) ⟨x+ y, z⟩ = ⟨x, z⟩+ ⟨y, z⟩.

is said to be a bilinear function, meaning that it is linear separately in each
variable.

We see that an inner product is a bilinear function which, because it also
satisfies (i) in Definition 48, is said to be a symmetric bilinear function.
Condition (iv) further classifies this symmetric bilinear function as positive
definite.

Example 6.1 The usual scalar products in R2 and R3 are examples of inner
products. Recall that, for vectors x = (x1, x2),y = (y1, y2) on the plane R2,
the scalar product is defined by

⟨x,y⟩ = ∥x∥∥y∥ cos θ
= x1y1 + x2y2,

where θ ∈ [0, π] is the angle between the vectors x and y and ∥ · ∥ denotes the
norm of a vector (see Figure 6.1).

If we consider now vectors x = (x1, x2, x3),y = (y1, y2, y3) in space, then
we have

⟨x,y⟩ = ∥x∥∥y∥ cos θ
= x1y1 + x2y2 + x3y3.

Here again θ ∈ [0, π] is the angle between the vectors x and y in R3 and
∥ · ∥ denotes the norm. It is an easy exercise to verify that all conditions of
Definition 48 are satisfied by both scalar products.

In both cases, the norm of a vector x satisfies

∥x∥ =
√
⟨x,x⟩.
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θ

FIGURE 6.1: Vectors in R2 or R3 with an angle θ between them.

Generalising in the obvious way the above example to Rn, we define next
an inner product on this space.

Definition 49 Let x = (x1, . . . , xn),y = (y1, . . . , yn) ∈ Rn. The inner prod-
uct ⟨x,y⟩ is defined by

⟨x,y⟩ = x1y1 + x2y2 + · · ·+ xnyn (6.2)

or, alternatively,
⟨x,y⟩ = yTx = xTy.

We shall refer to Rn together with this inner product as the real Euclidean
space Rn.

Analogously, to the plane and space cases, we define the norm of a vector
x by

∥x∥ =
√
⟨x,x⟩ =

√
x2
1 + x2

2 + · · ·+ x2
n.

Also generalising what is usual in the plane and space, the distance
d(x,y) between the points x,y ∈ Rn is defined by

d(x,y) = ∥x− y∥.

Exercise 6.1 Show that (6.2) is an inner product in Rn.

The next example deals with an inner product on a matrix space.

Example 6.2 For A = [aij ], B = [bij ] in the space M2(R) of the 2 × 2 real
matrices, define the inner product

⟨A,B⟩ = tr(BTA)

=

2∑
i,j=1

aijbij .

Observe that, for the standard basis Bc of M2×2(R), we have

⟨A,B⟩M2(R) = ⟨ABc
, BBc

⟩R4 ,



208 Linear Algebra

x1

x2

•

•
(3, 0)

1
9x

2
1 +

1
4x

2
2 = 1

(0, 2)

FIGURE 6.2: Ellipse depicting the points at distance 1 from (0, 0) with
respect to the inner product of Exercise 6.2.

where ABc
, BBc

∈ R4 are, respectively, the coordinate vectors of A and B
relative to the standard basis Bc of M2(R). Hence, the inner product defined
above respects the isomorphism A 7→ ABc existing between M2(R) and R4.

It is worth noticing that, since

tr(BTA) = tr(ATB),

one could alternatively have defined the inner product by

⟨A,B⟩ = tr(ATB),

as some authors do.

Exercise 6.2 Show that

⟨(x1, x2), (y1, y2)⟩ = 1
9x1y1 +

1
4x2y2

defines an inner product in R2 and, for this inner product, find the circle C
centered at (0, 0) and with radius 1, i.e.,

C = {(x1, x2) ∈ R2 : ∥(x1, x2)∥ = 1}.

Solution. It is easily seen that this function satisfies all the conditions in
Definition 48. To find the circle C, we have to determine which points (x1, x2)
lie at a distance 1 from (0, 0), that is,

1 = ∥(x1, x2)∥2 = ⟨(x1, x2), (x1, x2)⟩ = 1
9x

2
1 +

1
4x

2
2.

Hence, the points at distance 1 from (0, 0) lie in an ellipse (see Figure 6.2).
This exercise illustrates how the geometry of a space can be changed by

endowing it with different inner products. Here, the ‘usual’ circle has been
changed into an ellipse.
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Building on what is known for the Euclidean space, we define the norm of
a vector in an (any) inner product space.

Definition 50 Let V be a real inner product space with inner product ⟨·, ·⟩
and let x ∈ V . The norm of x is defined by

∥x∥ =
√
⟨x,x⟩. (6.3)

The distance d(x,y) between x,y ∈ V is defined by

d(x,y) = ∥x− y∥.

Proposition 6.1 Let V be a real inner product space and let the norm of a
vector be defined as in (6.3). Then the function defined by

∥ · ∥ :V → R
x 7→ ∥x∥

is such that, for all x,y ∈ V, α ∈ R,

(i) ∥x∥ ≥ 0, and ∥x∥ = 0 if and only if x = 0;

(ii) ∥αx∥ = |α|∥x∥;

(iii)
∥x+ y∥ ≤ ∥x∥+ ∥y∥. Triangle inequality (6.4)

We prove (i) and (ii) here and leave the proof of (iii) for later, as we shall use
in its proof another inequality, the Cauchy–Schwarz inequality, that will be
proved in the sequel.

Proof (i) It is clear that ∥x∥ ≥ 0, from the very definition of norm (cf.
Definition 50). Moreover, by (6.1), we have that ⟨x,x⟩ = 0 if and only if
x = 0.

(ii) By Definition 48 (ii), for x ∈ V, α ∈ R,

∥αx∥ =
√
⟨αx, αx⟩ =

√
α2⟨x,x⟩ = |α|

√
⟨x,x⟩ = |α|∥x∥,

as required.

Exercise 6.3 Let V be an inner product space. Show that for all x,y, z ∈ V ,

(i) d(x,y) ≥ 0, and d(x,y) = 0 if and only if x = y;

(ii) d(x,y) = d(y,x)

(iii) d(x, z) ≤ d(x,y) + d(y, z).

Hint: use Propositin 6.1.
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In R2 and R3, we have, for any vectors x,y and the usual scalar product
that,

⟨x,y⟩ = ∥x∥∥y∥ cos θ,

yielding
|⟨x,y⟩| ≤ ∥x∥∥y∥,

since | cos θ| ≤ 1. It turns out that this inequality holds in every inner product
space.

Theorem 6.1 (Cauchy–Schwarz inequality) Let V be a real inner prod-
uct space and let x,y ∈ V . Then

|⟨x,y⟩| ≤ ∥x∥∥y∥ (6.5)

and
|⟨x,y⟩| = ∥x∥∥y∥ (6.6)

if and only if {x,y} is a linearly dependent set.

Proof The theorem holds trivially if y = 0. Suppose now that y ̸= 0.
Then, for α ∈ R and x,y ∈ V ,

0 ≤ ⟨x− αy,x− αy⟩ = ⟨x,x⟩ − α⟨x,y⟩ − α⟨y,x⟩+ α2⟨y,y⟩ (6.7)

= ⟨x,x⟩ − α⟨x,y⟩ − α
(
⟨x,y⟩ − α∥y∥2

)
. (6.8)

If we set

α =
⟨x,y⟩
∥y∥2

,

then

0 ≤ ⟨x,x⟩ − ⟨x,y⟩
2

∥y∥2
− ⟨x,y⟩
∥y∥2

(
⟨x,y⟩ − ⟨x,y⟩

∥y∥2
∥y∥2

)
,

that is,

0 ≤ ⟨x,x⟩ − ⟨x,y⟩
∥y∥2

⟨x,y⟩.

Hence,
0 ≤ ∥x∥2∥y∥2 − ⟨x,y⟩2

from which follows that
⟨x,y⟩2 ≤ ∥x∥2∥y∥2.

Taking square roots,
|⟨x,y⟩| ≤ ∥x∥∥y∥

which proves (6.5).
We show now that

|⟨x,y⟩| = ∥x∥∥y∥ (6.9)
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FIGURE 6.3: Triangle inequality: the shortest distance between P and Q is
the length of the straight line segment connecting these points.

if and only if the vectors x,y are linearly dependent. If x = αy or y = αx,
a direct substitution shows that (6.6) holds. If, on the other hand, (6.6) holds
and y ̸= 0, then going back retracing our steps from (6.9) to (6.8), (6.7), we
have that

x− ⟨x,y⟩
∥y∥2

y = 0,

which shows that x,y are linearly dependent.

Having proved Theorem 6.1, we are now ready to prove the triangle in-
equality.

Proof of Proposition 6.1 (iii). Let x,y be vectors in V . Then,

∥x+ y∥2 = ⟨x+ y,x+ y⟩
= ⟨x,x⟩+ 2⟨x,y⟩+ ⟨y,y⟩
= ∥x∥2 + 2⟨x,y⟩+ ∥y∥2

≤ ∥x∥2 + 2|⟨x,y⟩|+ ∥y∥2

≤ ∥x∥2 + 2∥x∥∥y∥+ ∥y∥2 ← using Cauchy–Schwarz inequality

= (∥x∥+ ∥y∥)2.

Hence,
∥x+ y∥ ≤ ∥x∥+ ∥y∥,

concluding the proof.

Proposition 6.2 (Parallelogram law) Let x,y be vectors in a real inner
product space V . Then,

∥x+ y∥2 + ∥x− y∥2 = 2(∥x∥2 + ∥y∥2).
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FIGURE 6.4: Parallelogram law.

Proof For x,y ∈ V , we have

∥x+ y∥2 + ∥x− y∥2 = ⟨x+ y,x+ y⟩+ ⟨x− y,x− y⟩
= 2⟨x,x⟩+ 2⟨y,y⟩+ 2⟨x,y⟩ − 2⟨x,y⟩
= 2∥x∥2 + 2∥y∥2,

as required.

Up to now, our approach to inner product spaces has been coordinate free.
It is now the time to make use of the fact that vector spaces do have bases
and see how they interact with the inner product.

Let V be a real inner product space and let B = (b1, b2, . . . , bn) be a basis
of V . For x,y ∈ V such that the coordinate vectors of x and y relative to B
are, respectively, xB = (α1, α2, . . . , αn) and yB = (β1, β2, . . . , βn), we have

⟨x,y⟩ = ⟨α1b1 + α2b2 + · · ·+ αnbn, β1b1 + β2b2 + · · ·+ βnbn⟩
= β1⟨b1, b1⟩α1 + β1⟨b2, b1⟩α2 + . . . β1⟨bn, b1⟩αn+

+ β2⟨b1, b2⟩α1 + β2⟨b2, b2⟩α2 + . . . β2⟨bn, b2⟩αn+

...

+ βn⟨b1, bn⟩α1 + βn⟨b2, bn⟩α2 + . . . βn⟨bn, bn⟩αn

=
[
β1 β2 . . . βn

]

⟨b1, b1⟩ ⟨b2, b1⟩ . . . ⟨bn, b1⟩
⟨b1, b2⟩ ⟨b2, b2⟩ . . . ⟨bn, b2⟩

...
...

. . .
...

⟨b1, bn⟩ ⟨b2, bn⟩ . . . ⟨bn, bn⟩


︸ ︷︷ ︸

G


α1

α2

...
αn

 .

Hence, given an inner product on a real vector space V with dimV = n
and a basis B of V , it is possible to find an n× n real matrix
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G =


⟨b1, b1⟩ ⟨b2, b1⟩ . . . ⟨bn, b1⟩
⟨b1, b2⟩ ⟨b2, b2⟩ . . . ⟨bn, b2⟩

...
...

. . .
...

⟨b1, bn⟩ ⟨b2, bn⟩ . . . ⟨bn, bn⟩

 (6.10)

such that
⟨x,y⟩ = yT

BGxB.

This matrix G = [gij ], where for all i, j = 1, . . . , n, we have gij = ⟨bj , bi⟩, is
said to be the Gram matrix of the set of vectors {b1, b2, . . . , bn}.

Definition 51 A real symmetric matrix of order n is said to be a positive
definite matrix if, for all non-zero vectors x ∈ Rn,

xTAx > 0.

The proof of the following proposition is left as an exercise.

Proposition 6.3 Let V be a real inner product space of dimension n and let
B = (b1, b2, . . . , bn) be a basis of V . Let x,y be vectors in V . Then, there
exists uniquely an n× n real matrix G such that

⟨x,y⟩ = yT
BGxB, (6.11)

where xB,yB are, respectively, the coordinate vectors of x,y relative to the
basis B. Moreover, the matrix G is symmetric and positive definite, that is,
for x ̸= 0,

xT
BGxB > 0. (6.12)

Exercise 6.4 Consider the Euclidean space R2 and its standard basis E2.
Find the Gram matrix of E2. What is the Gram matrix if now one considers
an inner product ⟨·, ·⟩1 which is that of Exercise 6.2? Calculate ⟨(1, 2), (3, 1)⟩1
using this latter matrix.

Solution. An easy application of (6.10) leads to the Gram matrix

G =

[
1 0
0 1

]
,

in the first case. For the second inner product, we have

G =

[
1
9 0
0 1

4

]
.

It follows that

⟨(1, 2), ((3, 1)⟩1 =
[
3 1

] [ 1
9 0
0 1

4

] [
1
2

]
= 5

6
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Proposition 6.4 Let A be a real matrix of order n. The following are equiv-
alent.

(i) The expression
⟨x,y⟩ = yTAx

defines an inner product on Rn.

(ii) A is a real positive definite matrix.

Proof We prove only that (i) implies (ii) and leave the other implication
as an easy exercise.

We see now that A is symmetric. For i, j = 1, . . . , n,

⟨ei, ej⟩ = eTj Aei = aji, ⟨ej , ei⟩ = eTi Aej = aij .

Hence, aij = aji and, therefore, A is symmetric. On the other hand, given
x ∈ Rn,

xTAx = ⟨x,x⟩ ≥ 0

and equals 0 only when x = 0.

We saw in Chapter 4 that real symmetric matrices have real eigenvalues
(see Corollary 4.1). We can say more.

Proposition 6.5 A real symmetric matrix is positive definite if and only if
its eigenvalues are positive numbers.

For another result on real positive definite matrices, see Corollary 6.3.

Proof Suppose that A is a positive definite matrix. Let λ be an eigenvalue
of A and let x be and associated eigenvector. Then

0 < xTAx = λxTx = λ∥x∥2,

from which follows that λ > 0. The proof of the converse is postponed until
§6.4.

An immediate consequence of this proposition is that a positive definite matrix
is invertible as its spectrum does not contain 0. In other words, the null space
of such a matrix is {0}. In the same trait, we can conclude that Gram matrices
are invertible matrices.

6.2 Complex Inner Product Spaces

As said at the beginning of this chapter, the real and complex inner prod-
ucts differ in an essential way. We shall see that in the definition below.
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Definition 52 Let V be a complex vector space. A complex function

⟨·, ·⟩ :V × V → C
(x,y) 7→ ⟨x,y⟩

is said to be an inner product if, for all x,y, z ∈ V and α ∈ C,

(i) ⟨x,y⟩ = ⟨y,x⟩;

(ii) ⟨αx,y⟩ = α⟨x,y⟩;

(iii) ⟨x+ y, z⟩ = ⟨x, z⟩+ ⟨y, z⟩;

(iv) ⟨x,x⟩ ≥ 0 ∧ (⟨x,x⟩ = 0⇒ x = 0).

A complex vector space V endowed with a inner product it is said to be an
complex inner product space.

Considerations similar to those leading to (6.1) yield that (iv) can be
equivalently replaced by

⟨x,x⟩ ≥ 0 ∧ (⟨x,x⟩ = 0⇔ x = 0). (6.13)

We see that, apart from the inner product of two vectors being now a
complex number, the remaining difference between real and complex inner
products is condition (i) above.

By conditions (i) and (ii),

⟨x, αy⟩ = ⟨αy,x⟩ = α⟨y,x⟩ = α⟨y,x⟩ = α⟨x,y⟩,

yielding that the inner product is conjugate linear in the second variable.
A function f : V × V → C satisfying, for all x,y, z ∈ V and α ∈ R,

(a) ⟨αx,y⟩ = α⟨x,y⟩;

(b) ⟨x, αy⟩ = ᾱ⟨x,y⟩;

(c) ⟨x+ y, z⟩ = ⟨x, z⟩+ ⟨y, z⟩.

is said to be a sesquilinear function, meaning that it is linear in the first
variable and linear by ‘half’ in the second variable.

Hence, a complex inner product is a sesquilinear function which, because
it also satisfies condition (iv), is a positive definite sesquilinear function.

Similarly to §6.1, we define the norm of a vector x ∈ Cn by

∥x∥ =
√
⟨x,x⟩, (6.14)

and the distance between x,y ∈ Cn by

d(x,y) = ∥x− y∥. (6.15)
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Example 6.3 There is a usual inner product on Cn. Namely, for vectors
x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) in Cn, define

⟨x,y⟩ = x1y1 + x2y2 + · · ·+ xnyn.

Consequently, we have
⟨x,y⟩ = yTx.

It follows from (6.14),

∥x∥2 = ⟨x,x⟩ = x1x̄1 + x2x̄2 + · · ·+ xnx̄n,

that is,
∥x∥ =

√
⟨x,x⟩ =

√
|x1|2 + |x2|2 + · · ·+ |xn|2

The space Cn together with this inner product is said to be the complex
Euclidean space.

The norm defined by (6.14) is a non-negative real function defined on V
such that, for all x,y ∈ V, α ∈ C,

(i) ∥x∥ ≥ 0, and ∥x∥ = 0 if and only if x = 0;

(ii) ∥αx∥ = |α|∥x∥;

(iii)
∥x+ y∥ ≤ ∥x∥+ ∥y∥. Triangle inequality (6.16)

Showing that (i)–(iii) are properties of the norm can be done similarly to the
real case. In fact, the fundamental Cauchy–Schwarz inequality and parallelo-
gram law do hold also in this setting and we make a note of this in the next
theorem, whose proof can be easily adapted from the corresponding real case.

Theorem 6.2 Let V be a complex inner product space. The following hold.

(i) For x,y ∈ V ,

|⟨x,y⟩| ≤ ∥x∥∥y∥ (Cauchy–Schwarz inequality)

and
|⟨x,y⟩| = ∥x∥∥y∥

if and only if {x,y} is a linearly dependent set.

(ii) For x,y ∈ V ,

∥x+ y∥2 + ∥x− y∥2 = 2(∥x∥2 + ∥y∥2). (Parallelogram law)
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In a complex inner product space V one can also make a coordinate ap-
proach to the inner product. We shall also get a Gram matrix corresponding
to a fixed basis of V .

If B = (b1, b2, . . . , bn) is a basis of V , then, given x,y ∈ V such that
xB = (α1, α2, . . . , αn) and yB = (β1, β2, . . . , βn), we have

⟨x,y⟩ = ⟨α1b1 + α2b2 + · · ·+ αnbn, β1b1 + β2b2 + · · ·+ βnbn⟩
= β1⟨b1, b1⟩α1 + β1⟨b2, b1⟩α2 + . . . β1⟨bn, b1⟩αn+

+ β2⟨b1, b2⟩α1 + β2⟨b2, b2⟩α2 + . . . β2⟨bn, b2⟩αn+

...

+ βn⟨b1, bn⟩α1 + βn⟨b2, bn⟩α2 + . . . βn⟨bn, bn⟩αn

=
[
β1 β2 . . . βn

]

⟨b1, b1⟩ ⟨b2, b1⟩ . . . ⟨bn, b1⟩
⟨b1, b2⟩ ⟨b2, b2⟩ . . . ⟨bn, b2⟩

...
...

. . .
...

⟨b1, bn⟩ ⟨b2, bn⟩ . . . ⟨bn, bn⟩


︸ ︷︷ ︸

G


α1

α2

...
αn

 .

Hence, we can find a unique n× n complex matrix

G =


⟨b1, b1⟩ ⟨b2, b1⟩ . . . ⟨bn, b1⟩
⟨b1, b2⟩ ⟨b2, b2⟩ . . . ⟨bn, b2⟩

...
⟨b1, bn⟩ ⟨b2, bn⟩ . . . ⟨bn, bn⟩


such that

⟨x,y⟩ = yT
BGxB.

The matrix G = [gij ], where, for all i, j = 1, . . . , n, we have gij = ⟨bj , bi⟩, is
said to be the Gram matrix of the set of vectors {b1, b2, . . . , bn}.

Definition 53 A hermitian matrix A of order n is said to be positive def-
inite if, for all non-zero vectors x ∈ Cn,

xTAx > 0.

Similarly to the real case, the next proposition, whose proof is left as an
exercise, collects some properties of the Gram matrix.

Proposition 6.6 Let V be a complex inner product space of dimension n and
let B = (b1, b2, . . . , bn) be a basis of V . Let x,y in be vectors in V . Then, there
exists uniquely an n× n complex matrix G such that

⟨x,y⟩ = yT
BGxB, (6.17)
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where xB,yB are, respectively, the coordinate vectors of x,y relative to the
basis B. Moreover, G is a hermitian positive definite matrix, i.e., for x ̸= 0,

xT
BGxB > 0. (6.18)

The next two results are a counterpart of Proposition 6.4 and Proposition
6.5 for the complex inner product. Their proofs are an easy adaptation to
the complex setting of those propositions and, for this reason, are left as an
exercise.

Proposition 6.7 Let A be a complex n× n matrix. The following are equiv-
alent.

(i) The expression
⟨x,y⟩ = yTAx

defines an inner product in Cn.

(ii) A is a positive definite matrix.

The next proposition can be proved similarly to Proposition 6.5.

Proposition 6.8 A hermitian matrix is positive definite if and only if its
eigenvalues are positive numbers.

This proposition shows that, when one considers a complex inner product
space V , the Gram matrix corresponding to some basis of V is an invertible
matrix.

6.3 Orthogonal Sets

This section is concerned with an intrinsically geometric notion: that of
the angle between vectors. More to the point, a particular emphasis is given
to vectors which are, in some sense, ‘perpendicular’ to each other.

Here, real and complex inner product spaces will be treated simultaneously.
For this reason, we shall mostly refer to either as inner product spaces.

Definition 54 Let x,y be non-zero vectors in a real inner product space V .
The angle between x and y is 0 ≤ θ ≤ π such that

cos θ =
⟨x,y⟩
∥x∥∥y∥

.

Notice that the Cauchy–Schwarz inequality guarantees that | cos θ| ≤ 1
and, therefore, the angle is well-defined.
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Exercise 6.5 Find the angle θ between the vectors (1, 1,−1, 0), (0, 0, 0, 1) in
the Euclidean space R4.

Solution. Using Definition 54,

cos θ =
⟨(1, 1,−1, 0), (0, 0, 0, 1)⟩
∥(1, 1,−1, 0)∥∥(0, 0, 0, 1)∥

=
0√
3
= 0.

Hence θ = π
2 .

Definition 55 Let x,y be vectors in a real or complex inner product space
V . The vector x is said to be orthogonal to the vector y, denoted by x ⊥ y,
if ⟨x,y⟩ = 0.

Since clearly x is orthogonal to y if and only if y is orthogonal to x, we
say simply that the vectors x,y are orthogonal.

In Exercise 6.5, we found that the vectors (1, 1,−1, 0), (0, 0, 0, 1) in R4 are
orthogonal, i.e., (1, 1,−1, 0) ⊥ (0, 0, 0, 1).

Although we defined the angle between vectors only in real inner product
spaces, the notion of orthogonality is valid in both real and complex inner
product spaces. In the real case, two vectors are orthogonal if the angle be-
tween them is π

2 .

Exercise 6.6 Which vectors are orthogonal to (1, 1, 0), in the Euclidean space
R3?

Solution. We want to find the vectors (x, y, z) ∈ R3 such that

0 = ⟨(x, y, z), (1, 1, 0)⟩ =
[
1 1 0

] xy
z

 = x+ y.

Hence the vectors orthogonal to (1, 1, 0) are those in the plane whose cartesian
equation is x+ y = 0.

Theorem 6.3 (Pythagorean theorem) Let x and y be orthogonal vectors
in an inner product space V over K. Then,

∥x+ y∥2 = ∥x∥2 + ∥y∥2.

Proof Let x,y be vectors in V such that x ⊥ y. We have

∥x+ y∥2 = ⟨x+ y,x+ y⟩
= ⟨x,x⟩+ ⟨y,y⟩+ ⟨x,y⟩+ ⟨y,x⟩
= ⟨x,x⟩+ ⟨y,y⟩ = ∥x∥2 + ∥y∥2.



220 Linear Algebra

6.3.1 Orthogonal complement

We define next the notion of a vector orthogonal to a set.

Definition 56 Let V be an inner product space and let X be a subset of V . A
vector x is said to be orthogonal to X, denoted by x ⊥ X, if x is orthogonal
to all elements in X.

For example, in Exercise 6.6 we saw that (1, 1, 0) is orthogonal to the plane
having the equation x+ y = 0.

Definition 57 Let W be a subspace of a real or complex inner product space

V . The orthogonal complement W⊥ of the subspace W is defined by

W⊥ = {x ∈ V : x ⊥W}.

The orthogonal complement W⊥ contains always the zero vector.

Exercise 6.7 Find the orthogonal complement of the straight line U spanned
by (1, 1, 0).

Solution. We want to find the vectors (x, y, z) ∈ R3 such that, for all α ∈ R,
(x, y, z) ⊥ α(1, 1, 0). Hence,

0 = ⟨α(1, 1, 0), (x, y, z)⟩ = α⟨(1, 1, 0), (x, y, z)⟩ = α(x+ y)

from which follows that the orthogonal complement U⊥ of U is the plane with
equation x+ y = 0.

Proposition 6.9 Let V be an inner product space and let W ⊆ V be a sub-
space. The orthogonal complement W⊥ of W is a subspace of V .

Proof We need to show that W⊥ is closed under vector addition and scalar
multiplication. Let x,y be vectors in W⊥ and let w ∈W . Then

⟨x+ y,w⟩ = ⟨x,w⟩+ ⟨y,w⟩ = 0 + 0 = 0,

which shows that x+ y ∈W⊥.
Now let α ∈ K. Then

⟨αx,w⟩ = α⟨x,w⟩ = α0 = 0.

We have shown that W⊥ ̸= ∅ is closed under vector addition and scalar mul-
tiplication thus concluding the proof that W⊥ is a subspace of V .

Proposition 6.10 Let V be an inner product space, let W ⊆ V be a subspace
and let {x1, . . . ,xk} be a spanning set for W . Then y ∈ V is orthogonal to
W if and only if y is orthogonal to the set {x1, . . . ,xk}.
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Proof It is clear that, if y ∈ V is orthogonal to W , then it is also orthog-
onal to {x1, . . . ,xk}. We show now that the converse also holds.

Suppose that y is orthogonal to {x1,x2, . . . ,xk} and let w ∈ W .
Since {x1,x2, . . . ,xk} is a spanning set for W , it follows that there exist
α1, . . . , αk ∈ K with

w = α1x1 + · · ·+ αkxk.

Hence
⟨w,y⟩ = α1⟨w,x1⟩+ · · ·+ αk⟨w,xk⟩ = 0,

which shows that y is orthogonal to all vectors in W .

The next result is an immediate corollary of this proposition.

Corollary 6.1 Let V be an inner product space and let W ⊆ V be a subspace.
Then, x ∈ V is orthogonal to W if and only if it is orthogonal to a basis of
W .

Example 6.4 Find the orthogonal complement of the plane W in R3 with
cartesian equation x = y.

Using Corollary 6.1, it suffices to find a basis of W and all the vectors in
R3 orthogonal to that basis. The set {(1, 1, 0), (0, 0, 1)} is a basis of W and
(x, y, z) is orthogonal to this basis if and only if

⟨(x, y, z), (1, 1, 0)⟩ =
[
1 1 0

]xy
z

 = 0

⟨(x, y, z), (0, 0, 1)⟩ =
[
0 0 1

]xy
z

 = 0.

Hence, we have to solve the homogeneous system of linear equations

[
1 1 0
0 0 1

]xy
z

 =

[
0
0

]
.

It follows that W⊥ is the straight line of which we give three possible sets of
equations {

x = −y
z = 0

cartesian equations

or
(x, y, z) = t(−1, 1, 0) (t ∈ R) vector equation
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W

W⊥

• 0

FIGURE 6.5: A plane W in R3, its orthogonal complement W⊥ and a
straight line perpendicular to the plane W .

or 
x = −t
y = t

z = 0

(t ∈ R) parametric equations

A common mistake. It is frequent that the orthogonal complement of a
plane in R3 (containing (0, 0, 0)), is confused with a (any) straight line per-
pendicular to that plane. Observe that, as seen in Proposition 6.9, the orthog-
onal complement is itself a subspace. Hence the orthogonal complement must
contain (0, 0, 0).

The orthogonal complement of a plane in R3 is the straight line
perpendicular to the plane which goes through (0, 0, 0).
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How to find the orthogonal complement of a subspace of the
Euclidean space Kn

Let W be a subspace of the Euclidean space Kn with dimW = k.
To determine the orthogonal complement of W⊥ follow the next steps.

1. Find a basis {b1, . . . , bk} of W .

2. Solve the homogeneous system of linear equations
b1

T

...

bk
T


︸ ︷︷ ︸

k×n

x1

...
xn


︸ ︷︷ ︸
n×1

=

0...
0


︸︷︷︸
k×1

.

3. W⊥ is the solution set of this system:

W⊥ = N



b1

T

...

bk
T


 . (6.19)

Notice that, when dealing with Rn, the bar over the vectors is irrele-
vant.

Observe that, since W⊥ is the null space of

A =


b1

T

...

bk
T


whose rank is rank (A) = k, by Proposition 3.11 (i),

dimW⊥ = n− rank (A) = n− k.

Hence,
dimW + dimW⊥ = n. (6.20)

We shall come back to this equality in Lemma 6.1.

Proposition 6.11 Let W be a subspace of an inner product space V . Then,
W ∩W⊥ = {0}.

Proof Suppose that x is a vector lying in W ∩ W⊥. Then, x must be
orthogonal to itself, i.e., x ⊥ x. Hence

0 = ⟨x,x⟩ = ∥x∥2,

and we have that x = 0.
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Lemma 6.1 Let V be an n-dimensional inner product space, let W be a sub-
space of V and let W⊥ be its orthogonal complement. Then, if BW and BW⊥
are basis of W and W⊥, respectively, then BW ∪ BW⊥ is a basis of V and

dimW + dimW⊥ = n. (6.21)

Proof We show firstly that B = BW ∪ BW⊥ is a linearly independent
set. Let BW = {b1, . . . , bk} and BW⊥ = {u1, . . . ,ur}. Consider the linear
combination

k∑
i=1

αibi +

r∑
j=1

βjuj = 0.

We must show that, for i = 1, . . . , k and j = 1, . . . , r, all the scalars αi, βj are
zero. Observe that the above equality is equivalent to

k∑
i=1

αibi =

r∑
j=1

−βjuj .

It follows from Proposition 6.11 that

k∑
i=1

αibi = 0 =

r∑
j=1

−βjuj .

Since both sets BW ,BW⊥ are linearly independent, we have finally that, for
i = 1, . . . , k and j = 1, . . . , r, all the scalars αi = 0 and βj = 0.

To finish the proof, it suffices to show that r = n− k. Since B is a linearly
independent set, by Theorem 3.5 (ii), we already know that r + k ≤ n.

Suppose that r < n − k. We show next that, in this case, it is possible to
find a non-zero vector v ∈ W ∩W⊥. Observe that, by Proposition 6.11, this
is a contradiction.

We want to find all the vectors v ∈ V such that v ⊥ W and v ⊥ W⊥.
Hence, by Corollary 6.1, we want to find the solutions of the problem{

⟨v, bi⟩ = 0, i = 1, . . . , k

⟨v,uj⟩ = 0, j = 1, . . . , r.

If B′ is a basis of V , this can be written in terms of the coordinate vectors
relative to B′ as the homogeneous system of linear equations

[b1]
T
B′

...
[bk]

T
B′

[u1]
T
B′

...
[ur]

T
B′


︸ ︷︷ ︸

A

GvB′ = 0,
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where G is the Gram matrix relative to the basis B′. Observe that, when V
is a real inner product space, the bar over the first matrix is not relevant: it
does not change anything, since the conjugate of a real number is that same
number.

One can re-write the equation above as Ax = 0, where x := GvB′ lies in
Kn.

Since B is linearly independent, that is, the rows of the (k+ r)× n matrix
A are linearly independent, rank (A) = k + r (see Exercise 6.8 below). In
other words, the null space N(A) has dimension n− k− r ≥ 1. Consequently,
N(A) ̸= {0}. Hence, we have a non-zero solution v of our initial problem.
That is,

v ∈W ∩W⊥ ̸= {0},

contradicting Proposition 6.11. It follows that r = n− k, as required.

Exercise 6.8 Let B be a complex matrix. Show that rank (B) = rank (B).

Proposition 6.12 Let W be a subspace of an inner product V and let
W⊥⊥ := (W⊥)⊥. Then, W⊥⊥ = W .

Proof It is clear from the definition that W ⊆ W⊥⊥. Suppose now that
dimV = n and dimW = k. Hence, by (6.21),

k = dimW ≤ dimW⊥⊥ = n− (n− k) = k.

It follows that W is a subspace of W⊥⊥ having the same dimension. Conse-
quently, W = W⊥⊥.

Theorem 6.4 Let V be an inner product space and let W be a subspace of
V . Then, for x ∈ V , there exist uniquely xW ∈W and xW⊥ ∈W⊥ such that

x = xW + xW⊥ . (6.22)

Notice that this theorem implies that every subspace W induces a splitting
of V into a sum of two subspaces, that is, V = W +W⊥.

Proof By Lemma 6.1, we know that any x ∈ V is a linear combination
of the vectors of the basis B = BW ∪ BW⊥ . It follows that

x =

k∑
i=1

αibi +

n−k∑
j=1

βjuj = xW + xW⊥ , (6.23)

where we use the same notation as in the proof of Lemma 6.1. It only remains
to prove that this decomposition of x relative to W and W⊥ is unique. Suppose
that x = xW +xW⊥ and x = x′W +x′W⊥ , for some x′W ∈W and x′W⊥ ∈W⊥.
Then,

0 = (xW − x′W ) + (xW⊥ − x′W⊥).
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By the Pythagorean Theorem 6.3,

0 = ∥xW − x′W ∥2 + ∥xW⊥ − x′W⊥∥
2

from which follows that

xW − x′W = 0 = xW⊥ − x′W⊥ .

Hence, xW = x′W and xW⊥ = x′W⊥ , proving the uniqueness part of the
theorem.

Theorem 6.4 tells us that V is the direct sum of a(ny) subspace W of V
and its orthogonal complement W⊥, that is,

V = W ⊕W⊥. (6.24)

We aim now at finding a formula to calculate the parts xW and xW⊥ of
a given vector x in an inner product space V . To that effect, it is convenient
to choose bases of W and W⊥ ‘easy’ to deal with. Having this in mind, we
begin with a crucial notion, that of an orthogonal set.

Definition 58 A subset X of an inner product space V is said to be an or-
thogonal set if, given any x,y ∈ X with x ̸= y, then x ⊥ y.

Examples of orthogonal sets in R2 are the standard basis E2,
{(1, 2), (−2, 1)}, {(1, 2), (−2, 1), (0, 0)}, any set having a single element and
the empty set.

Observe also, as hinted in the previous paragraph, that the zero vector 0
in an inner product space V is orthogonal to any vector and, hence, whenever
included in an orthogonal set, the new set is still an orthogonal set.

Exercise 6.9 Can you propose an answer (even if not a formal one) to the
next questions?

a) Let X ⊆ R2 be an orthogonal set not containing (0, 0). How many vec-
tors, at most, lie in X?

b) Let X ⊆ R3 be an orthogonal set not containing (0, 0, 0). How many
vectors, at most, lie in X?

Proposition 6.13 Let V be an inner product space and let X = {v1, . . . ,vk}
be an orthogonal subset of V not containing 0. Then, X is a linearly indepen-
dent set.

Proof We must show that, given α1, . . . , αk ∈ K,

α1v1 + · · ·+ αkvk = 0⇒ α1, . . . , αk = 0.
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Suppose then that α1v1 + · · · + αkvk = 0. Since X is an orthogonal set, for
any j ∈ {1, . . . , k}, we have

⟨α1v1 + · · ·+ αkvk,vj⟩ = α2
j∥vj∥2 = 0.

Hence, since vj ̸= 0, it follows that αj = 0, concluding the proof.

An obvious consequence of this proposition is that in an inner product
space V , with dimV = n, any orthogonal subset of V consisting of n non-zero
vectors is a basis of V .

Now we are ready to answer the questions in Exercise 6.9. How many are
they?
We can say confidently that: a) 2; b) 3.

The proof of the following corollary is left as an exercise.

Corollary 6.2 Let V be an inner product space of dimension n and let X =
{v1, . . . ,vk} be an orthogonal subset of V not containing 0. Then k ≤ n.
Moreover, if k = n, then X is a basis of V .

The form of the orthogonal complements of the subspaces associated with
a real matrix are given in the next result.

Proposition 6.14 Let A be a n×k real matrix and let Rn and Rk be endowed
with the usual inner products (6.2). Then the following hold.

(i) L(A)⊥ = N(A).

(ii) N(A)⊥ = L(A).

(iii) C(A)⊥ = N(AT).

(iv) N(AT)⊥ = C(A).

Proof (i) Since the rows of A are a spanning set for L(A), by Proposition
6.10, the orthogonal complement of L(A) consists of the solution set of the
system Ax = 0. In other words, L(A)⊥ = N(A).

(ii) By Proposition 6.12 and (i) of this proposition, we have

N(A)⊥ = L(A)⊥⊥ = L(A).

(iii) Observing that C(A) = L(AT ), by (i) of this proposition,

C(A)⊥ = L(AT )⊥ = N(AT ).

(iv) Using (iii) of this proposition and Proposition 6.12,

N(AT )⊥ = C(A)⊥⊥ = C(A).
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6.3.2 Orthogonal projections

We saw in the previous section that an orthogonal set of non-zero vectors
in an inner product space V is linearly independent and, therefore, if it has
enough vectors then it is, in fact, a basis of V . At this point, we are interested
in analysing precisely those bases which are also orthogonal sets.

Definition 59 Let V be an inner product space. A basis B of V is said to be an
orthogonal basis if B is an orthogonal set and is said to be an orthonormal
basis if B is an orthogonal basis whose vectors are all norm one vectors.

For example, the standard basis En = (e1, . . . , en) of Kn is an orthonormal
basis, since its vectors are pairwise orthogonal and, for all j = 1, . . . , n, ∥ej∥ =
1.

A key feature of an orthogonal basis is how simple it is to calculate the
coordinates of any vector relative to said basis. Let x be a vector in the inner
product space V and let B = (b1, . . . , bn) be an ordered orthogonal basis of
V . Suppose that the coordinate vector of x relative to B is

xB = (α1, . . . , αn),

that is,
x = α1b1 + · · ·+ αnbn.

Since B is an orthogonal set, we have, for i = 1, . . . , n,

⟨x, bi⟩ =
n∑

j=1

⟨αjbj , bi⟩ = αi∥bi∥2.

Hence, for i = 1, . . . , n,

αi =
⟨x, bi⟩
∥bi∥2

. (6.25)

Moreover, if B is an orthonormal basis, then we have even a simpler formula
to calculate the coordinate vector of x. For all i = 1, . . . , n,

αi = ⟨x, bi⟩. (6.26)

Example 6.5 Find the coordinate vector of (1, 2, 3) relative to the orthogonal
basis B = ((1, 1, 0), (0, 0, 1), (1,−1, 0)) of R3.

Let (1, 2, 3)B = (α1, α2, α3). Then, by (6.25), we have

α1 =
⟨(1, 2, 3), ((1, 1, 0)⟩

2
=

3

2
;

α2 =
⟨(1, 2, 3), ((0, 0, 1)⟩

1
= 3;
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y

x

projy x

FIGURE 6.6: Orthogonal projection of x on y.

α3 =
⟨(1, 2, 3), ((1,−1, 0)⟩

2
= −1

2
.

Hence, (1, 2, 3)B = ( 32 , 3,−
1
2 ).

When dealing with orthogonal basis, as we have seen, it is very easy to obtain
the coordinates of any given vector. However, one might ask ‘Does an inner
product space always possess an orthogonal basis?’ The answer is ‘Yes’. We
shall see how to construct such a basis in §6.3.3. For the moment, we shall
keep on developing the properties of an inner product space assuming that it
has an orthogonal basis.

At this point, an observation is in order. We can get an orthonormal basis
out of an orthogonal one. Indeed, let B = {b1, . . . , bn} be an orthogonal basis
of V . Then, for i = 1, . . . , n, by a property of the norm

1

∥bi∥
bi =

1

∥bi∥
∥bi∥ = 1.

Hence, the set

B′ =
{

1

∥b1∥
b1, . . . ,

1

∥bn∥
bn

}
is an orthonormal basis of V .

If we apply this to the orthogonal basis of Example 6.5, we have that the
basis

B′ = (( 1√
2
, 1√

2
, 0), (0, 0, 1), ( 1√

2
,− 1√

2
, 0))

is an orthonormal basis of R3.
Summing up:

An orthogonal basis can be transformed into an orthonormal basis.

Now we know that orthonormal bases are easy to come by, provided we
have orthogonal bases to start with.
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Definition 60 Let V be an inner product space and let x and y be vectors in
V , with y ̸= 0. The orthogonal projection of x on y is the vector defined
by

projy x =
⟨x,y⟩
∥y∥2

y.

(Compare with (6.25), and check that this is exactly what we have in R2 and
R3 for the usual inner product.)

Let W be a k-dimensional subspace of V and let

BW = {b1, . . . , bk}, BW⊥ = {u1, . . . ,un−k}

be orthogonal bases for W and W⊥, respectively. Then, by (6.23),

x =

k∑
i=1

αibi︸ ︷︷ ︸
xW

+

n−k∑
j=1

βjuj︸ ︷︷ ︸
x

W⊥

.

Hence, by (6.25), we have that

x =

k∑
i=1

⟨x, bi⟩
∥bi∥2

bi︸ ︷︷ ︸
xW

+

n−k∑
j=1

⟨x,uj⟩
∥uj∥2

uj︸ ︷︷ ︸
x

W⊥

. (6.27)

In other words,

x = projb1
x+ · · ·+ projbk

x︸ ︷︷ ︸
xW

+proju1
x+ · · ·+ projun−k

x︸ ︷︷ ︸
x

W⊥

.

Definition 61 Let V be an inner product space, let W be a subspace of V
and let x ∈ V . We define the orthogonal projection projW x of the vector
x on W by projW x = xW .

Hence, we have

x = projb1
x+ · · ·+ projbk

x︸ ︷︷ ︸
projW

+proju1
x+ · · ·+ projun−k

x︸ ︷︷ ︸
proj

W⊥

. (6.28)

It is worth to point out three facts which are consequences of the definitions
of orthogonal projections:
(i) In the extreme case W = {0}, the orthogonal projection projWx of any
given vector x is 0;
(ii) If W is spanned by a single non-zero vector y, then

projWx = projy x,
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W

W⊥

•0

x
xW⊥

xW

FIGURE 6.7: Decomposition of a vector x ∈ R3 as a sum of orthogonal
projections.

according to (6.28). Hence, for a 1-dimensional subspace W , the orthogonal
projection xW of x on W is, in fact, the orthogonal projection of x on the
basis vector y (see Definition 60);
(iii) If W is a subspace of V

x = projW x+ projW⊥ x (6.29)

Example 6.6 Let W be the plane in the Euclidean space R3 whose cartesian
equation is x = y. Find projW (1, 2, 3) and projW⊥(1, 2, 3).

We begin by determining projW⊥(1, 2, 3). Notice that dimW = 2 and, by
Lemma 6.1,

dimW⊥ = 3− 2 = 1.

To use (6.27) and (6.29), we need to find an orthogonal basis of W⊥ which is
easy since any set having a single element is an orthogonal set.

Observe that, for (x, y, z) ∈W ,xy
z

 = x

11
0

+ z

00
1

 .
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Hence, a basis of W is

BW = {(1, 1, 0), (0, 0, 1)}.

Since

W⊥ = N

([
1 1 0
0 0 1

])
(cf. (6.19)), it follows that one basis of W⊥ is BW⊥ = {(1,−1, 0)}. This is of
course an orthogonal basis and, therefore,

projW⊥(1, 2, 3) =
⟨(1, 2, 3), (1,−1, 0)⟩

2
(1,−1, 0) =

(
−1

2
,
1

2
, 0

)
.

Finally, we have

projW (1, 2, 3) = (1, 2, 3)−
(
−1

2
,
1

2
, 0

)
=

(
3

2
,
3

2
, 3

)
.

In this particularly simple example, the basis of W is also an orthogonal
basis.

How to find the orthogonal decomposition of a vector relative to
a subspace

Let V be an inner product space, let W be a subspace of V and let
BW = {b1, . . . , bk} be an orthogonal basis of W . Given a vector x in V , to
obtain the orthogonal projections projW x and projW⊥ x:

1. Calculate projW x using (6.27), i.e.,

projW x =

k∑
i=1

⟨x, bi⟩
∥bi∥2

bi;

2. projW⊥ x = x− projW x;

3. Finally x = projW x+ projW⊥ x.

Consider the Euclidean space Rn. Suppose that the subspace W ⊆ Rn is
endowed with an orthonormal basis (b1,b2, . . . ,bk). Then, given x ∈ Rn,

projW x = ⟨x,b1⟩b1 + ⟨x,b2⟩b2 + · · ·+ ⟨x,bk⟩bk.

Let B be the n×k matrix whose columns are the vectors b1,b2, . . . ,bk. Then
the equality above can be seen as a linear combination of the columns of B
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whose coefficients are, respectively, bT
1 x, . . . ,b

T
k x. It follows that we can write

the equality as
projW x = BBTx.

In other words, one can construct a linear transformation, the projection PW

onto the subspace W , PW : Rn → Rn defined by

PW (x) = BBTx = b1b
T
1 x+ b2b

T
2 x+ · · ·+ bkb

T
k x, (6.30)

where, for each i ∈ {1, 2, . . . , k}, the n × n matrix bib
T
i is a matrix corre-

sponding to the projection onto the subspace spanned by bi. Each of these
matrices has rank 1, since its columns are multiples of the first column.

Notice that the second equality in (6.30) reiterates that the orthogonal
projection ontoW is the sum of the orthogonal projections on the basis vectors
(see (6.28)).

Exercise 6.10 Show that the linear transformation PW : Rn → Rn is such
that P 2

W = PW and PT
W = PW . That is, the matrix

A :=

k∑
i=1

bib
T
i

corresponding to the linear transformation PW is symmetric (AT = A) and
idempotent (A2 = A).

A real or complex matrix A such that A2 = A is said to be idempotent .
Matrix A above corresponds to the orthogonal projection onto W .

Exercise 6.11 Let W be a subspace of the Euclidean space Cn with a or-
thonormal basis (b1,b2, . . . ,bk). Show that the projection PW : Cn → Cn onto
the subspace W is given by the hermitian idempotent matrix

A := BB
T
=

k∑
i=1

bib
T

i , (6.31)

where B is the n × k matrix whose columns are, respectively, b1,b2, . . . ,bk.
This matrix is hermitian and idempotent: it corresponds to the orthogonal
projection onto W .

In (6.31), for each i ∈ {1, 2, . . . , k}, the n × n matrix bib
T

i is a matrix
corresponding to the projection onto the subspace spanned by bi. Each of
these matrices have rank 1, since we have again that each column is obtained
by multiplying the first column by a complex number.

In the How to determine the matrix of the orthogonal projection onto
a subspace box of Section 7.1, we give a formula for the projection matrix
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W

W⊥

•0

∥ projW⊥ x∥x
projW⊥ x

projW x

∥projW x∥

FIGURE 6.8: Best approximation of a vector x of R3 in a plane W and in
the straight line W⊥.

corresponding to the orthogonal projection onto a subspace, given a (not nec-
essarily orthonormal) basis of this subspace.

In applications, it is sometimes necessary to find which is the element of a
subspace W of an inner product space V that is the closest to a given vector
x ∈ V (see Section 7.1). We show next that such a best approximation of x
exists in W and shall devise a way to calculate it.

Let W be a subspace of an inner product space V and let x ∈ V . Given
y ∈W , the distance between x and y satisfies, by Theorem 6.3,

d(x,y)2 = ∥x− y∥2 = ∥projW x+ projW⊥ x− y∥2

= ∥projW⊥ x︸ ︷︷ ︸
∈W⊥

+(projW x− y)︸ ︷︷ ︸
∈W

∥2

= ∥projW⊥ x∥2 + ∥(projW x− y)∥2.

It follows that the element y ∈ W closest to x is that which annihilates
∥(projW x− y)∥, that is, y = projW x.
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Definition 62 Let V be an inner product space and let W ⊆ V be a subspace.
For x in V , the best approximation of x in W is projW x.

The distance of the point x to the subspace W is

d(x,W ) = ∥projW⊥ x∥.

Example 6.7 Using Example 6.6, the best approximation of (1, 2, 3) in W is

projW (1, 2, 3) =

(
3

2
,
3

2
, 3

)
and

d((1, 2, 3),W ) =

(
−1

2
,
1

2
, 0

)
=

√
1

4
+

1

4
=

√
2

2
.

Similarly, the best approximation of (1, 2, 3) in W⊥ is

projW⊥(1, 2, 3) =

(
−1

2
,
1

2
, 0

)
and

d((1, 2, 3),W⊥) =

(
3

2
,
3

2
, 3

)
=

√
9

4
+

9

4
+ 9 =

√
54

2
.

Alternatively, using Theorem 6.3,

d((1, 2, 3),W⊥)2 = ∥x∥2 −

(√
2

2

)2

= 14− 2

4
,

and we have again

d((1, 2, 3),W⊥) =

√
54

2
.

6.3.3 Gram–Schmidt process

The formula to calculate a projection of a vector on a subspace (cf. Defini-
tion 61) needs that we have an orthogonal basis of that subspace. In Example
6.6, we luckily avoided this because W⊥ was a 1-dimensional subspace where,
therefore, all bases are orthogonal.

We shall derive a method to transform a basis into an orthogonal basis.
This is will be done using the so-called Gram–Schmidt Process. This method
will be motivated with a concrete example.

Let X = {(−1, 0, 1, 0), (1,−2, 0,−1), (0, 0, 1, 1)} be a spanning set of a
subspace S of the Euclidean space R4, and consider the problem of finding a
orthonormal basis B for S. The tougher question is to find an orthogonal basis,
since we saw how to obtain an orthonormal basis from any given orthogonal
basis (see Section 6.3.2).
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b1

u2

b2

projb1 x

FIGURE 6.9: Step 1 – orthogonal projection of u2 on b1.

Hence, we will first solve the problem of finding an orthogonal basis
B′ = {b1, b2, b3} of S. Observe that X is linearly independent (although not
orthogonal) and, therefore, B′ must have also three vectors.

Set the notation:

u1 = (−1, 0, 1, 0), u2 = (1,−2, 0,−1), u3 = (0, 0, 1, 1).

Step 1. Choose a (any) vector from X, say, u1 = (−1, 0, 1, 0), and set it
as the first vector of the new basis: b1 = u1 = (−1, 0, 1, 0).

Step 2. Let b2 = u2 − proju1
u2. Notice that

span{b1, b2} = span{b1,u2} = span{u1,u2}.

It is easily seen that the first equality holds (hint: proju1
u2 is spanned by

u1). The second equality is obvious.
Observe that, by Theorem 6.4, b2 lies in (span{b1})⊥. Hence, {b1, b2} is

an orthogonal basis of span{u1,u2}.
Since

proju1
u2 =

⟨u2,u1⟩
∥u1∥2

u1 = − 1
2u1 = − 1

2 (−1, 0, 1, 0),

we have that

b2 = (1,−2, 0,−1)− ( 12 , 0,−
1
2 , 0) = (12 ,−2,

1
2 ,−1)

(check that b1 ⊥ b2).
By now, probably it is already clear from Figure 6.10 the way things are

going.
Step 3. Let

b3 = u3 − projspan{b1,b2} u3 = u3 − (projb1
u3 + projb2

u3).

Notice that
span{b1, b2, b3} = span{b1, b2,u3} = S

and that, by Theorem 6.4, b3 lies in (span{b1, b2})⊥. We have
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b3

u3W

projW u3

b1

b20

FIGURE 6.10: Step 2 – orthogonal projection of u3 on W = span{b1, b2}.

b3 = u3 − (projb1
u3 + projb2

u3)

= u3 −
(
⟨u3, b1⟩
∥b1∥2

b1 +
⟨u3, b2⟩
∥b2∥2

b2

)
= ( 6

11 ,−
2
11 ,

6
11 ,

10
11 ).

Hence, the set B′ = {b1, b2, b3} is an orthogonal basis of S. Consequently,

B =
{

1√
2
(−1, 0, 1, 0), 2

11 (
1
2 ,−2,

1
2 ,−1),

1
176 (6,−2, 6, 10)

}
is an orthonormal basis for S.
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Gram–Schmidt process

Let V be an inner product space and let S be a subspace of V spanned
by a linearly independent subset X = {u1,u2,u3, . . . ,uk−1,uk} of V . To
obtain a orthogonal basis {b1, b2, b3, . . . , bk−1, bk} of S, proceed as follows.

1. Fix a(ny) vector, say, b1 = u1.

2. The second vector of the new basis is

b2 = u2 − projb1
u2,

that is, remove from u2 its component along b1 (already spanned by
b1).

3. The next vector b3 coincides with u3 minus its projection on the
subspace spanned by b1, b2, that is

b3 = u3 − (projb1
u3 + projb2

u3)

4. Continue this process up to the last vector

bk = uk − (projb1
uk + projb2

uk + · · ·+ projbk−1
uk).

An orthonormal basis of S is{
1

∥b1∥
b1,

1

∥b2∥
b2,

1

∥b3∥
b3, . . . ,

1

∥bk−1∥
bk−1,

1

∥bk∥
bk

}
.

6.4 Orthogonal and Unitary Diagonalisation

Definition 63 A matrix S in Mn(R) is said to be an orthogonal matrix
if SST = I.

If S is an orthogonal matrix, then S and ST are inverses of each other. By
Proposition 1.17, we have that a matrix S is orthogonal if and only if

SST = I = STS.

Proposition 6.15 Let S be a matrix in Mn(R). Then the following are equiv-
alent.

(i) S is an orthogonal matrix.
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(ii) STS = I.

(iii) SST = I.

(iv) The columns of S are an orthonormal basis of Rn.

(v) The rows of S are an orthonormal basis of Rn.

Proof The equivalence between (i), (ii), and (iii) has been proved above.
Notice that

(STS)ij = cTi cj = ⟨ci, cj⟩,

where ci, cj are, respectively, the columns i and j of S. Hence, (ii) yields that
⟨ci, cj⟩ = 0, for i ̸= j, and

⟨ci, ci⟩ = ∥ci∥2 = 1.

It follows that the columns of S form an orthonormal set having n vectors
which, therefore, are an orthonormal basis of Rn. Similarly (iv) implies (ii).

We prove likewise that (v) holds if and only if (iii) holds, one has only to
consider equality SST = I and use a similar reasoning.

Definition 64 A real square matrix is said to be orthogonally diagonal-
isable, if there exist a diagonal matrix D and an orthogonal matrix S such
that D = STAS.

If a real matrix A is orthogonally diagonalisable, then

AT = (SDST )T = SDST = A,

that is, A is a real symmetric matrix. In fact, the converse is also true. Before
proving this, we need an auxiliary result.

We already know that the spectrum of a real symmetric matrix is a non-
empty set of real numbers (see Corollary 4.1). Now we add something about
its eigenspaces.

Lemma 6.2 Let A be a real symmetric matrix and let x1,x2 be eigenvectors
of A associated with distinct eigenvalues λ1, λ2, respectively. Then, x1 ⊥ x2.

Proof Let λ1, λ2 and x1,x2 be as above. Then,

⟨x1, Ax2⟩ = (Ax2)
Tx1 = xT

2 A
Tx1 = xT

2 Ax1 = ⟨Ax1,x2⟩ = λ1⟨x1,x2⟩.

However, since ⟨x1, Ax2⟩ = λ2⟨x1,x2⟩, we have

(λ1 − λ2)⟨x1,x2⟩ = 0.

Hence, ⟨x1,x2⟩ = 0.



240 Linear Algebra

Theorem 6.5 A real square matrix is orthogonally diagonalisable if and only
if it is symmetric.

Proof It only remains to prove that, if A is symmetric, then A is orthog-
onally diagonalisable. We prove this by induction on the size of the matrix.

If A is 1 × 1, the result holds trivially. Suppose now that A is an n × n
matrix, with n ≥ 2, and that the assertion holds for all square matrices of
order n− 1.

Let λ be an eigenvalue of A and let x be a norm one eigenvector corre-
sponding to λ.

Let B = {x} ∪ B⊥ be an orthonormal basis of Rn, where B⊥ is a basis of
span{x}⊥. Then, given a vector y in B⊥,

⟨Ay,x⟩ = xTAy = xTATy = (Ax)Ty = λ(x)Ty = λ⟨x,y⟩ = 0.

Hence, the matrix S1 whose columns consist of the vectors of B is orthogonal
and such that

ST
1 AS1 =

[
λ 0
0 M

]
.

Since A is symmetric, M is an n− 1×n− 1 symmetric matrix. Hence, by the
induction hypothesis, there exists an n− 1× n− 1 orthogonal matrix N such
that M = ND1N

T . In other words,

ST
1 AS1 =

[
1 0
0 N

] [
λ 0
0 D1

] [
1 0
0 N

]T
.

Notice that [
1 0
0 N

]
is an orthogonal matrix. It now follows that

A = S1

[
1 0
0 N

] [
λ 0
0 D1

] [
1 0
0 N

]T
ST
1 ,

where

S = S1

[
1 0
0 N

]
is an orthogonal matrix.

Corollary 6.3 Let A be a real positive definite matrix. Then, there exists a
non-singular matrix B such that A = BBT .

Proof By the above theorem, we know that A is orthogonally diagonal-
isable: A = SDST , for some orthogonal matrix S and a diagonal matrix
with positive diagonal entries. Setting D

1
2 as the matrix whose entries are the

square roots of the corresponding entries of D, we have

A = SD
1
2D

1
2ST = (SD

1
2 )(SD

1
2 )T .
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Hence, A = BBT , where B = SD
1
2 .

We prove now the remaining implication in Proposition 6.5.

Proof of Proposition 6.5 continued. Conversely, let A be a real sym-
metric matrix with positive eigenvalues only. By Theorem 6.5, a real sym-
metric matrix is diagonalisable and the diagonalising matrix S is such that
S−1 = ST . Hence, given a non-zero x ∈ Rn,

xTAx = xTSDSTx.

Let D′ be the diagonal matrix whose entries are the square root of the corre-
sponding entries of D. Then,

xTAx = (STx)TD′D′STx = (D′STx)T (D′STx) = ⟨D′STx, D′STx⟩,

that is,
xTAx = ∥D′STx∥2 > 0,

as required.

If A is orthogonally diagonalisable, then

D =


λ1

λ2

. . .

λn

 , (6.32)

where the diagonal entries of D are the n eigenvalues of A, and if S =[
u1 u2 . . . un

]
is the diagonalising orthogonal matrix, then

A = SDST = λ1u1u
T
1 + λ2u2u

T
2 + · · ·+ λnunu

T
n .

Moreover, {u1,u2, . . . ,un} is an orthonormal basis of Rn consisting of the
eigenvectors u1,u2, . . . ,un corresponding to the eigenvalues λ1, λ2, . . . , λn, re-
spectively. We have just proved an important theorem:

Theorem 6.6 (Spectral decomposition – real symmetric matrices) Let
A be a real symmetric matrix. Then, A has a spectral decomposition

A = λ1u1u
T
1 + λ2u2u

T
2 + · · ·+ λnunu

T
n ,

where λ1, λ2, . . . , λn are the eigenvalues of A corresponding, respectively, to
the orthonormal set of eigenvectors u1,u2, . . . ,un.

Notice that the matrices u1u
T
1 ,u2u

T
2 , . . . ,unu

T
n are n× n projection ma-

trices onto the subspaces spanned, respectively, by u1,u2, . . . ,un (cf. (6.30)).
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Exercise 6.12 Find the spectral decomposition of

A =

5 1 1
1 5 1
1 1 5

 = SDST

Solution. We need to find first the eigenvalues of A. Since the sum of the
entries of each row is 7, we have

A

11
1

 = 7

11
1

 .

Hence, λ1 = 7 is an eigenvalue and has an associated eigenvector

11
1

. On

the other hand, if λ2, λ3 are the other eigenvalues, then

λ2 + λ3 = trA− 7 = 15− 7 = 8, λ2λ3 = 1
7 |A| = 16.

Solving these equations, gives λ2 = λ3 = 4.
To determine the remaining eigenvectors, we need to solve the system (A−

4I)x = 0. We know already that the two eigenvectors we need to construct S
are orthogonal to (1, 1, 1), which means that they lie in the plane having the
cartesian equation x+ y + z = 0. Then, one possible eigenvector is (−1, 1, 0).

Now we need to find a vector satisfying x + y + z = 0, which is also
orthogonal to (−1, 1, 0). One possibility is (−1,−1, 2).

Hence,

A =


1√
3
− 1√

2
− 1√

6

1√
3

1√
2
− 1√

6

1√
3

0 2√
6


7 0 0
0 4 0
0 0 4




1√
3

1√
3

1√
3

− 1√
2

1√
2

0

− 1√
6
− 1√

6
2√
6

 .

Finally, we arrive to the spectral decomposition of A:

A = 7


1√
3

1√
3

1√
3

[ 1√
3

1√
3

1√
3

]
+ 4


− 1√

2

1√
2

0

[− 1√
2

1√
2

0
]

+ 4


− 1√

6

− 1√
6

2√
6

[− 1√
6
− 1√

6
2√
6

]
,

that is

A = 7


1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

+ 4


1
2 − 1

2 0

− 1
2

1
2 0

0 0 0

+ 4


1
6

1
6 − 2

6

1
6

1
6 − 2

6

− 2
6 − 2

6
4
6

 .
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Hence,

A = 7


1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

+ 4


2
3 − 1

3 − 1
3

− 1
3

2
3 − 1

3

− 1
3 − 1

3
2
3

 .

Observe that these matrices are symmetric and idempotent as they should be,
since they correspond to orthogonal projections (onto the eigenspaces).

This exercise served two purposes: one was to show how to obtain an or-
thogonal diagonalisation/spectral decomposition of a real symmetric matrix,
the other was to use an alternative way of calculating the eigenvalues bypassing
the (often not so easy) problem of determining the roots of the characteristic
polynomial.

Real symmetric matrices have been characterised as exactly those that
are orthogonally diagonalisable. A counterpart for complex matrices refers to
those that can be diagonalised by unitary matrices.

Definition 65 A matrix S in Mn(C) is said to be a unitary matrix if

SS
T
= I.

Proposition 6.16 Let S be a matrix in Mn(C). Then the following are equiv-
alent.

(i) S is a unitary matrix.

(ii) S
T
S = I.

(iii) SS
T
= I.

(iv) The columns of S are an orthonormal basis of Cn.

(v) The rows of S are an orthonormal basis of Cn.

The proof of this proposition is left as an easy exercise (see the proof of
Proposition 6.15).

Definition 66 A complex square matrix is said to be unitarily diagonal-
isable, if there exist a diagonal matrix D and an unitary matrix S such that

D = S
T
AS.

It is easy to see that, if D is real, then A is hermitian.
The next result refers to the orthogonality of the eigenspaces of a hermitian

matrix. The proof is an easy adaptation of that of Lemma 6.2.
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Lemma 6.3 Let A be a hermitian matrix and let x1,x2 be eigenvectors of A
associated with distinct eigenvalues λ1, λ2, respectively. Then, x1 ⊥ x2.

Theorem 6.7 A hermitian matrix is unitarily diagonalisable.

Proof This proof is similar to that of Theorem 6.5.

Corollary 6.4 Let A be a complex positive definite matrix. Then, there exists

a non-singular matrix such that A = BB
T
.

Proof Exercise.

Finally, we can present the spectral decomposition for hermitian matrices:

Theorem 6.8 (Spectral decomposition – hermitian matrices) Let A
be a hermitian matrix. Then, A has a spectral decomposition

A = λ1u1u
T
1 + λ2u2u

T
2 + · · ·+ λnunu

T
n ,

where λ1, λ2, . . . , λn are the eigenvalues of A corresponding, respectively, to
the orthonormal set of eigenvectors u1,u2, . . . ,un.

Notice once again that the matrices u1u
T
1 ,u2u

T
2 , . . . ,unu

T
n are n× n pro-

jection matrices onto the subspaces spanned, respectively, by u1,u2, . . . ,un

(cf. (6.31)).

How to do a spectral decomposition

Let A be a n× n real symmetric (respectively, hermitian) matrix.

1. Find the eigenvalues λ1, λ2, . . . , λn of A, possibly repeated.

2. Find a corresponding orthonormal set of eigenvectors u1,u2, . . . ,un.

3. A spectral decomposition of A is

A = λ1u1u
T
1 + λ2u2u

T
2 + · · ·+ λnunu

T
n ,

if A is real, or

A = λ1u1u
T
1 + λ2u2u

T
2 + · · ·+ λnunu

T
n ,

if A is complex.
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6.5 Singular Value Decomposition

The orthogonal diagonalisation of real symmetric matrices can be extended
to rectangular matrices, in some sense. The departing point being a very sim-
ple fact:

If A is a k × n real matrix, then ATA is an n× n real symmetric matrix.

Then, the spectrum of ATA, besides being a non-empty subset of real
numbers (see Corollary 4.1), consists only of non-negative numbers. In fact, if
λ is an eigenvalue of ATA and v ∈ Rn is an associated eigenvector, then

0 ≤ ⟨Av, Av⟩ = (Av)TAv = vTATAv = λvTv = λ∥v∥2,

from which follows that λ ≥ 0.
Suppose that {v1,v2, . . . ,vn} is an orthonormal basis of Rn consisting of

eigenvectors of ATA . Then, given i ∈ {1, 2, . . . , n},

∥Avi∥ =
√
⟨Avi, Avi⟩ =

√
λi∥vi∥2 =

√
λi, (6.33)

where λi ∈ σ(ATA) is the eigenvalue associated with vi.
We have also that, given i, j ∈ {1, 2, . . . , n} with i ̸= j,

⟨Avi, Avj⟩ = vT
j A

TAvi = λi⟨vi,vj⟩ = 0.

Define, for all i ∈ {1, 2, . . . , n}, the non-negative real number σi =
√
λi, called

a singular value of the matrix A.
Let σ1 ≥ σ2 ≥ · · · ≥ σr > 0, be all the non-zero singular values, repeated

as many times as the corresponding algebraic multiplicities.
Setting, for all i ∈ {1, 2, . . . , r},

ui =
1

∥Avi∥
Avi =

1

σi
Avi,

we see that {u1,u2, . . . ,ur} is an orthogonal subset of the column space C(A)
of matrix A. Indeed, {u1,u2, . . . ,ur} is an orthonormal basis of C(A), since

C(A) = span
(
{Avi : i = 1, 2, . . . , r} ∪ {Avi : i = r + 1, . . . , n}

)
= span

(
{Avi : i = 1, 2, . . . , r} ∪ {0}

)
= span{Avi : i = 1, 2, . . . , r}.

Let {u1,u2, . . . ,ur,ur+1, . . . ,uk} be an orthonormal basis of Rk contain-
ing the orthonormal basis of C(A) defined above. Then,

A
[
v1 v2 . . . vn

]︸ ︷︷ ︸
V

=
[
u1 u2 . . . uk

]︸ ︷︷ ︸
U

[
D 0
0 0

]
︸ ︷︷ ︸

Σ

, (6.34)
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where D is the diagonal matrix

D =


σ1

σ2

. . .

σr

 .

Hence, we can now make a note of this singular value decomposition of
A.

Theorem 6.9 (Singular value decomposition – real matrix) Let A be
a k×n real matrix. Then there exist a k×k orthogonal matrix U and an n×n
orthogonal matrix V such that

A = UΣV T ,

where U, V , and the k × n matrix Σ are as in (6.34).

Example 6.8 We are going to obtain a singular value decomposition of

A =

1 −1
0 1
1 1

 .

The eigenvalues of

ATA =

[
2 0
0 3

]
are λ1 = 3 and λ2 = 2. Hence, the singular values of A are

√
3 = σ1 > σ2 =√

2. Norm one eigenvectors of ATA are, for example, v1 = (0, 1), v2 = (1, 0).
We have that

u1 =
1

∥Av1∥
Av1 =

1√
3
(−1, 1, 1), u2 =

1

∥Av2∥
Av2 =

1√
2
(1, 0, 1).

A norm one vector orthogonal to u1,u2 is, for example, u3 = 1√
6
(−1,−2, 1).

Finally, the singular value decomposition sought is

A =

−
1√
3

1√
2
− 1√

6
1√
3

0 − 2√
6

1√
3

1√
2

1√
6


√3 0

0
√
2

0 0

[0 1
1 0

]
.

As always, there is a counterpart for complex matrices. Let A be a k × n
complex matrix and let

λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0
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be all the eigenvalues of the hermitian matrix A
T
A (possibly repeated). Notice

that, similarly to what we did for real matrices above, it is easily seen that
these eigenvalues are all non-negative.

Let {v1,v2, . . . ,vn} be an orthonormal basis of Cn consisting of eigenvec-
tors such that, for all i = 1, 2, . . . , n,

A
T
Avi = λivi.

The singular values of A are defined by

σi =
√
λi, i = 1, 2, . . . , n.

Let σ1 ≥ σ2 ≥ . . . σr > 0 be all the non-zero singular values (possibly
repeated), and define, for all i = 1, 2, . . . , r,

ui =
1

∥vi∥
Avi =

1

σi
Avi.

Define the unitary matrices

U =
[
u1 u2 . . . uk

]
, V =

[
v1 v2 . . . vn

]
, (6.35)

where {u1,u2, . . . ,ur,ur+1, . . . ,uk} is an orthonormal basis of Ck.

Theorem 6.10 (Singular value decomposition – complex matrix) Let
A be a k × n complex matrix. Then there exist a k × k unitary matrix U and
an n× n unitary matrix V such that

A = UΣV
T
,

where U, V are as in (6.35) and the k × n matrix Σ is as in (6.34).

Proof Exercise.

Example 6.9 We are going to obtain a singular value decomposition of

A =

[
0 1 i
−i 0 0

]
.

The eigenvalues of

A
T
A =

1 0 0
0 1 i
0 −i 1


are λ1 = 2, λ2 = 1, and λ3 = 0. An eigenvector corresponding to λ1 = 2 is
v1 = (0, i, 1), an eigenvector corresponding to λ2 = 1 is v1 = (1, 0, 0), and
eigenvector corresponding to λ3 = 0 is v3 = (0,−i, 1).

We obtain u1 = (i, 0),u2 = (0,−i). The singular value decomposition of
A is then

A =

[
i 0
0 −i

] [√
2 0 0
0 1 0

]0 − i√
2

1√
2

1 0 0
0 i√

2
1√
2

 .
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How to do a singular value decomposition

Let A be a k × n real (respectively, complex matrix).

1. Determine the eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0

of the real symmetric matrix ATA (respectively, hermitian matrix

A
T
A). In the list above, each eigenvalue is repeated as many times

as its algebraic multiplicity.

2. The singular values σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0 of A are the square
roots of the eigenvalues:

σ1 =
√

λ1 ≥ σ2 =
√

λ2 ≥ · · · ≥ σn =
√

λn ≥ 0 (6.36)

3. Find an orthonormal basis (v1,v2, . . . ,vn) of Rn (respectively, Cn)

consisting entirely of eigenvectors of ATA (respectively, A
T
A) and

such that, for all i = 1, 2, . . . , n, the vector vi is an eigenvector corre-
sponding to λi. Construct the n×n matrix V =

[
v1 v2 . . . vn

]
.

4. Let σ1 ≥ σ2 ≥ · · · ≥ σr > 0 be all the non-zero singular values in
(6.36). For all i = 1, 2, . . . , r, define the vectors in Rk (respectively,
Ck) by

ui =
1

σi
Avi =

1

∥Avi∥
Avi.

5. Obtain an orthonormal basis of Rk (respectively, Ck) contain-
ing the vectors in 4. That is, construct an orthonormal basis
(u1,u2, . . . ,ur,ur+1, . . . ,uk). (Of course, if r = k to start with, one
does not have to do anything and can ignore this part.) Construct
the k × k matrix U =

[
u1 u2 . . . uk

]
.

6. Construct a k × n matrix Σ, whose first r diagonal entries are
σ1, σ2, . . . , σr, in this order. Fill the remaining entries in with ze-
ros.

7. The singular value decomposition of A is

A = UΣV T , if A is a real matrix,

and
A = UΣV

T
, if A is a complex matrix.
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6.6 Affine Subspaces of Rn

The theory developed up to here is mostly concerned with subspaces of
a vector space which, as we know, always go through the zero vector. For
example, we know how to obtain the cartesian equations of straight lines and
planes in space which contain (0, 0, 0). What if we consider straight lines and
planes in R3 which do not contain (0, 0, 0)?

Here we present briefly a way to obtain equations for this type of sets
and of their counterparts in Rn which relies on the Euclidean inner product
structure.

Definition 67 Let S be a subset of the Euclidean space Rn. S is said to be
an affine subspace of dimension k if there exists p in Rn and a subspace
W , with dimW = k, such that

S = p+W. (6.37)

If k = 0, 1, 2, n−1, the affine subspace S is said to be a point, a straight
line, a plane, and a hyperplane, respectively.

Affine subspaces can be thought of intuitively as subspaces which were
‘moved away’ from the origin 0. Notice however that subspaces of Rn are
particular cases of affine subspaces.

Given x = (x1, x2, . . . , xn) in S, there exists y em W such that

x = y + p

or, equivalently,
y = x− p. (6.38)

The equality (6.38) shows that we can find a vector equation, cartesian equa-
tions or parametric equations for S using the corresponding equations of W .
Indeed, it suffices to replace y by x− p in those equations.

Example 6.10 Find a vector equation, cartesian equations, and parametric
equations for the straight line S going through (0, 0, 1) and having the direction
of (1, 1, 1).

We have that S = (0, 0, 1) + W , where W is the 1-dimensional subspace
with basis {(1, 1, 1)}. Hence, any (x1, x2, x3) ∈ S satisfiesx1

x2

x3

 =

00
1

+ t

11
1

 ,
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p

W

y
0

x

•0

S

FIGURE 6.11: The affine subspace S = p+W .

for some t ∈ R. This is a vector equation for S which yields the parametric
equations for S 

x1 = 1

x2 = 1

x3 = 1 + t (t ∈ R).
Finally, since W has the cartesian equations y1 = y2 = y3, it follows that

x1 = x2 = x3 − 1

are cartesian equations for S.

Analogously, one can use W⊥ to obtain equations for S which in some
circumstances might be more convenient. If BW⊥ = (b1, b2, . . . , bn−k) is a
basis of the orthogonal complement of W , we have x−p ∈W or, equivalently,

bT
1

bT
2

...

bT
n−k


︸ ︷︷ ︸
(n−k)×n


x1 − p1
x2 − p2

...
xn − pn


︸ ︷︷ ︸

n×1

=


0
0
...
0


︸︷︷︸

(n−k)×1

,

where p = (p1, p2, . . . , pn) and x = (x1, x2, . . . , xn). Observe that in this case
dimW = k. Letting A be the matrix

A =


bT
1

bT
2

...

bT
n−k

 ,
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we have the homogeneous system of linear equations

A(x− p) = 0.

or, equivalently, the system of linear equations

Ax = Ap.

Hence, from a vector equation, cartesian equations or parametric equations of
N(A), one can obtain the corresponding equations for S.

Example 6.11 Find a vector equation, cartesian equations, and parametric
equations of the plane containing the point p = (1, 2, 0) and which is perpen-
dicular to the straight line containing p and whose direction is n = (5, 1,−2).

Let W be the subspace (of dimension 2) such that n ⊥ W . A cartesian
equation for W is

5y1 + y2 − 2y3 = 0.

Since S = p+W , we have, for (x1, x2, x3) ∈ S,

(x1, x2, x3) = (1, 2, 0) + (y1, y2, y3).

Hence,
5(x1 − 1) + (x2 − 2)− 2x3 = 0

from which follows that
5x1 + x2 − 2x3 = 7

is a cartesian equation for S.
From this equation we have that x2 = −5x1 + 2x3 + 7. Hence,x1

x2

x3

 = t

 1
−5
0

+ s

02
1

+

07
0

 (s, t ∈ R)

is a vector equation for S. Hence, the parametric equations are
x1 = t

x2 = −5t+ 2s+ 7

x3 = s (s, t ∈ R).

Continuing with this idea of establishing a parallel between affine subspaces
and subspaces, we tackle now the distance from a point to an affine subspace.
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Let S = p+W and let q be a point in Rn. Given x in S,

d(q,x) = ∥q − x∥
= ∥(q − p) + (p− x︸ ︷︷ ︸

−y∈W

)∥

= ∥(q − p)− y∥
= d(q − p,y).

The minimum value of this distance d(q − p,y) is attained when y =
projW (q − p), as we have seen in §6.3.3; y is the best approximation of q
in S. Naturally, this suggests the next definition.

Definition 68 Let S = p+W be an affine subspace of an inner product space
V , where p ∈ V and W ⊆ V is a subspace. The distance of the point q to
the affine subspace S is

d(q, S) = d(q − p,W ) = ∥ projW⊥(q − p)∥. (6.39)

Example 6.12 Calculate the distance of (3, 2,−1) to the plane S of Example
6.11.

In this case S = p + W , where p = (1, 2, 0) and W has the cartesian
equation

5x+ y − 2z = 0.

Recall that this equation was obtained using the fact that a basis of W⊥ is
{(5, 1, 2)}. Notice that just by looking at the previous equation we would arrive
to the same conclusion:

⟨(x, y, z), (5, 1,−2)⟩ = 5x+ y − 2z = 0,

showing again that a basis of W⊥ is {(5, 1, 2)}.
Using (6.39),

d((3, 2,−1), S) = ∥ projW⊥((3, 2,−1)− (1, 2, 0))∥ = ∥projW⊥((2, 0,−1)∥.

We have

projW⊥((2, 0,−1) =
⟨(2, 0,−1), (5, 1, 2)⟩
∥(2, 0,−1)∥2

(2, 0,−1) = 8

∥(2, 0,−1)∥2
(2, 0,−1).

Hence

d((3, 2,−1), S) = 8

∥(2, 0,−1)∥2
∥(2, 0,−1)∥ = 8

∥(2, 0,−1)∥
=

8√
5
.
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6.7 Exercises

EX 6.7.1. For the vectors u = (4, 1, 0,−2) and v = (2,−1, 0, 3) in R4, calcu-
late:

(a) ∥u+ v∥
(b) ∥u∥+ ∥v∥
(c) ∥ − 3u∥
(d) 1

∥v∥v

(e)
∥∥∥ 1
∥v∥v

∥∥∥
(f) ∡(u,v)

(g) d(u,v)

EX 6.7.2. Find two norm one vectors orthogonal to (1, 1,−2) and
(−2, 3,−1).

EX 6.7.3. Verify that the Cauchy–Schwarz inequality holds for (1, 1, 2) and
(2, 1, 3). Verify also that the parallelogram law holds for the same
vectors.

EX 6.7.4. Consider the usual inner product in C2. Find proj(1,2)(−i,−i).

EX 6.7.5. Use the Gram–Schmidt process to find an orthonormal basis for
the subspace spanned by {(−2, 2,−2, 2), (1, 1, 3,−1), (0, 0, 0, 1)}.

EX 6.7.6. Find a basis and cartesian equations for the orthogonal comple-
ment of the subspace W = {(x, y, z) : y + 2z = 0, x − y = z} of
R3.

EX 6.7.7. Let S be the subspace of R4 defined by S = L{(2, 1, 1, 0)}. Find
the distance of u = (1, 1, 1, 1) to S⊥. Determine the matrix corre-
sponding to the orthogonal projection onto S, and u1 ∈ S,u2 ∈
S⊥ such that u = u1 + u2.

EX 6.7.8. Consider the subspace

S = L
{(

4
3 , 1,−1

)
, (0,−1, 1)

}
of R3. Suppose that R3 is endowed

with the inner product ⟨·, ·⟩ whose Gram matrix of the vectors of
the standard basis E3 is

G =

 3 −2 1
−2 2 0
1 0 2

 .

(a) Show that
{(

4
3 , 1,−1

)
, (0,−1, 1)

}
is an orthogonal basis of S.
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(b) Find the norms ∥
(
4
3 , 1,−1

)
∥, ∥(0,−1, 1)∥.

(c) For the vector u = (1,−1,−1), determine u1 ∈ S and u2 ∈ S⊥

such that
u = u1 + u2 .

EX 6.7.9. Let A be a 3 × 4 real matrix such that its column space is the
subspace of R3 consisting of the vectors (x, y, z) satisfying the
equation x + z = 0. Find a basis of C(A)⊥ and a vector lying in
N(AT ).

EX 6.7.10. Let W be the subspace of C4 defined by W = {(x, y, z, w) ∈ C4 :
ix + iy + iz = 0}, and let p = (1, 0,−1, 0) be a vector in W .
Considering the usual inner product on C4, find:

(a) dim(W⊥)

(b) d(p,W⊥)

(c) an orthonormal basis of W⊥

EX 6.7.11. Let A a real square matrix such that its column space is

C(A) = {(x, y, z) ∈ R3 : x+ y + z = 0 ∧ x− y = z}.

(a) Is the system

A

xy
z

 =

 2
1
−1


consistent?

(b) If (1, 2, 3) is a particular solution of

AT

xy
z

 =

 0
−1
1

 ,

what is the solution set of this system?

EX 6.7.12. Consider the points P0 = (1, 0,−1, 0) P1 = (0, 1, 0, 0) P2 =
(1, 1, 1, 0) in R4.

(a) Find cartesian and parametric equations of the straight line con-
taining P0 and parallel to u = (0,−1,−3, 0).

(b) Find a cartesian equation for the plane containing P0 and perpen-
dicular to the straight line which contains P0 and is parallel to
n = (1, 0, 1, 0).

(c) Find a cartesian equation and parametric equations of the plane
defined by P0, P1, and P2. Find a normal vector to that plane.

(d) Calculate the distance of (1, 1, 0, 0) to the same plane.
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EX 6.7.13. Let U be the subspace of M2(R) consisting of the anti-symmetric
matrices. Consider the real function on M2(R) defined, for A,B ∈
M2(R) by

⟨A,B⟩ = tr(BTA), (6.40)

where tr is the trace.

(a) Show that (6.40) defines an inner product.

(b) Find orthonormal bases for U and U⊥ and their dimension.

(c) Find the orthogonal projections of

[
3 3
−3 6

]
on U and U⊥.

(d) Which is the anti-symmetric matrix closest to

[
3 3
−3 6

]
? Find the

distance of

[
3 3
−3 6

]
to U .

EX 6.7.14. Find the orthogonal complement of the subspace L{−3(t + 1)2}
of P2 for the inner product

⟨a0 + a1t+ a2t
2, b0 + b1t+ b2t

2⟩ = a0b0 + a1b1 + a2b2.

EX 6.7.15. Find an orthogonal diagonalisation for1 1 1
1 1 1
1 1 1

 .

EX 6.7.16. Let A be an n× n unitary matrix. For x,y ∈ Cn, show that:

(a) ⟨Ax, Ay⟩ = ⟨x,y⟩
(b) ∥Ax∥ = ∥x∥
(c) σ(A) ⊆ {λ ∈ C : |λ| = 1}

EX 6.7.17. Find an unitary diagonalisation for7 0 0
0 − 1

3
2
3 + 2

3 i
0 2

3 −
2
3 i

1
3

 .

and its spectral decomposition.

EX 6.7.18. Let A be an n × n complex matrix such that there exists a or-
thonormal basis of Cn consisting exclusively of eigenvectors of A.
Prove that, if σ(A) ⊆ R, then A is a hermitian matrix.

EX 6.7.19. Find a singular value decomposition of[
3 2 2
2 3 −2

]
.
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6.8 At a Glance

A real or complex vector space V can be endowed with an inner product,
with respect to which each vector has a norm.

The inner product is given by a positive definite matrix, the Gram matrix
with respect to the basis of V . The Gram matrix depends on the basis.

By means of the inner product, one defines the distance between two points
in the space, the angle, and the notion of orthogonal vectors.

Any subspace W of V leads to a direct sum V = W ⊕ W⊥, yielding a
unique splitting of each vector in V into two summands, one from W and the
other from the orthogonal complement W⊥ of W .

The orthogonal projection of x ∈ V on W is given, with respect to an
orthonormal basis of V , by a projection matrix A: projW x = Ax. The ma-
trix A is idempotent and symmetric (respectively, hermitian) if V is a real
(respectively, complex) vector space.

It is always possible to have an orthonormal basis, since any basis can be
transformed into one using the Gram–Schmidt process. Nevertheless, there is
a formula for the projection matrix considering any given basis (see the How
to determine the matrix of the orthogonal projection onto a subspace in §7.1).

Real symmetric matrices and hermitian matrices are diagonalisable: in the
former case, the diagonalising matrix can be chosen to be orthogonal and
unitary, in the latter.

Real symmetric matrices and hermitian matrices have a spectral decom-
position.

A real (respectively, complex) positive definite matrix A is the product of

two non-singular matrices A = BBT (respectively, A = BB
T
).

The singular values of a real (respectively, complex) k × n matrix A are

the square roots of the eigenvalues of ATA (respectively A
T
A).

The singular values allow for a factorisation of A = UΣV T (respectively,

A = UΣV
T
), where U, V are orthogonal (respectively, unitary) and Σ is a

k × n matrix having the non-zero singular values of A in its diagonal.
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In this chapter, we introduce some types of matrices via examples, the latter
chosen from applications of Linear Algebra. Each section is a brief introduction
to a special type of matrix always motivated by the analysis of a concrete
problem. The main purpose is to highlight some particular matrices arising in
applications rather than explore profoundly each application itself. To do so
would be beyond the scope of this book.

7.1 Least Squares Solutions

It is often the case that in applications we are faced with inconsistent
systems of linear equations. Under these circumstances, it is not so much
the case of finding a solution but of finding a ‘solution’ as close to the ideal
situation (which would be having an exact solution) as possible. In this brief
introduction to the problem, projection matrices are prominent, and we will
obtain a formula for a projection matrix on a subspace.

Suppose that we want to solve the system Ax = b, where A is some k×n
real matrix but b does not lie in the column space of A. The best we can do
is to find a point b̂ in C(A) closest to b and then solve Ax = b̂.

We know how to determine b̂: it is the orthogonal projection of b on C(A)

(cf. the best approximation in Chapter 6). This orthogonal projection b̂ is, of
course, a linear combination of the columns of A. That is,

b̂ = Ax̂
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for some x̂ ∈ Rn. The vector x̂ is a least squares solution of the problem
Ax = b.

By our discussion of the best approximation in Chapter 6,

b− b̂ = b−Ax̂ ⊥ C(A) = N(AT )⊥.

It follows that
AT (b−Ax̂) = 0,

i.e.,
ATAx̂ = ATb. (7.1)

Example 7.1 Find the least squares solution of the system 1 1
−1 0
0 −1

[x
y

]
=

12
3

 .

Notice that the columns of A span the plane x+y+z = 0 and that (1, 2, 3)
does not lie in this plane.

By (7.1), we have to solve the system

[
1 −1 0
1 0 −1

] 1 1
−1 0
0 −1

[x̂
ŷ

]
=

[
1 −1 0
1 0 −1

]12
3

 .

Hence, [
2 1
1 2

] [
x̂
ŷ

]
=

[
−1
−2

]
,

yielding the least squares solution (0,−1). The error vector is

e = b− b̂ =

12
3

− 0

 1
−1
0

− (−1)

 1
0
−1

 =

22
2

 .

The error is ∥e∥ =
√
22 + 22 + 22 = 2

√
3.

If the n× n matrix ATA in (7.1) is invertible, then

x̂ = (ATA)−1ATb

and
b̂ = Ax̂ = A(ATA)−1AT︸ ︷︷ ︸

P

b.

The k × k matrix P is the projection matrix onto C(A). In fact, P is a
projection since P is symmetric and P 2 = P :
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PT = (A(ATA)−1AT )T = A((ATA)−1)TAT

= A((ATA)T )−1TAT

= A(ATA)−1AT = P ;

P 2 = (A(ATA)−1AT )(A(ATA)−1AT ) = A((ATA)−1ATA)(ATA)−1AT

= A((ATA)T )−1AT = P.

Proposition 7.1 Let A be a k × n matrix. ATA is invertible if and only if
the columns of A are linearly independent.

Proof We show firstly that N(ATA) = N(A). Since it is clear that
N(A) ⊆ N(ATA), it remains to show that N(A) ⊇ N(ATA).

Suppose the x ∈ N(ATA). Then,

xT ATAx︸ ︷︷ ︸
0

= ⟨Ax, Ax⟩ = ∥Ax∥2 = 0

which shows that x ∈ N(A).
On the other hand, ATA is invertible only when N(ATA) = {0}. However,

since N(A) = N(ATA), it follows that ATA is invertible if and only if N(A) =
{0}. But N(A) = {0} if and only if rank (A) coincides with the number of its
columns. Hence, ATA is invertible if and only if the columns of A are linearly
independent.

Summing it up: if the columns of A are a basis of C(A), then we obtain a
matrix P corresponding to the orthogonal projection onto C(A).

How to determine the matrix of the orthogonal projection onto
a subspace

Let W be a subspace of Rn.

1. Construct a matrix A whose columns are a (not necessarily orthog-
onal) basis of W .

2. The projection matrix is P = A(ATA)−1AT .

3. Given y in Rn, the orthogonal projection projW y of y on W is

projW y = Py = A(ATA)−1ATy.
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Example 7.2 We want to find the straight line that, in some sense, best fits
the points (1, 2), (2, 5), (3, 3), (4, 8). More precisely, we want to determine a
straight line y = ĉ+ m̂x which gives a least squares solution of the problem

1 1
1 2
1 3
1 4

[ cm
]
=


2
5
3
8

 .

We have

[
ĉ
m̂

]
=

[1 1 1 1
1 2 3 4

]
1 1
1 2
1 3
1 4



−1 [

1 1 1 1
1 2 3 4

]
2
5
3
8

 .

The solution is (ĉ, m̂) = ( 12 ,
8
5 ) from which follows that the best fitting straight

line is y = 1
2 + 8

5x.

7.2 Markov Chains

We begin with a very simple example. Consider a physical system consist-
ing of a single particle which may be at any given time in one of two different
states 1 and 2 with a certain probability. Denote by pij , for i, j = 1, 2, the
probability of the particle making a transition from state j to state i. If we
let p11 = 0.6, then

p21 = 0.4 = 1− 0.6,

since the particle either stays in state 1 or moves to state 2. Suppose further
that the particle when in state 2 stays there with probability p22 = 0.7. Hence
we must have

p12 = 0.3 = 1− 0.7.

Consider a matrix P built with these data

P =

[
0.6 0.3
0.4 0.7

]
,

where column 1 corresponds to the probabilities of the particle moving or
staying when in state 1 and, similarly, column 2 corresponds to state 2.

We are describing here a process where the probability of the system being
in some state at a given observation time tm only depends on which state it
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was at the previous observation time tm−1. This is an example of what is
called a Markov chain.

In the present case, since the Markov chain has only two states, we have
a 2× 2 matrix P . In general, if one has a Markov chain with n possible states
then we have an n × n transition matrix P = [pij ] whose entries are non-
negative and such that the sum of the entries in any given column is equal
to 1. In other words, the n × n matrix P is such that, for all i, j = 1, . . . , n,
pij ≥ 0 and

n∑
i=1

pij = 1.

This type of matrix is called a Markov matrix, a stochastic matrix, or a
probability matrix. The transition matrix of a Markov chain is, therefore,
a Markov matrix.

Suppose that the initial state of our system is 1 and consider the corre-
sponding initial state vector

x0 =

[
1
0

]
,

i.e., the particle is in state 1 with probability 1 and has zero probability of
being in state 2. It follows from probability theory that the state vector of the
next observation is

x1 = Px0 =

[
0.6 0.3
0.4 0.7

] [
1
0

]
=

[
0.6
0.4

]
.

Hence, the particle will be in state 1 with 0.6 probability and in state 2 with
0.4 probability.

Similarly, the following observation x2 satisfies

x2 = Px1 = P 2x0 =

[
0.6 0.3
0.4 0.7

]2 [
1
0

]
=

[
0.48
0.52

]
and, in general,

xk = P kx0.

In a general Markov chain associated with an n×n Markov matrix P , each
state vector x0,x1, . . . ,xk, . . . is calculated according to

x1 = Px0, x2 = P 2x0, . . . xk = P kx0, . . .

where x0 is the initial state vector. Notice that, in a generic state vector

xj =


x1j

x2j

...
xnj

 ,
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the sum of all its entries equals 1, since x1j is the probability of the system
being in state 1 at observation j, x2j is the probability of the system being in
state 2 at observation j, etc. An n× 1 vector whose entries are non-negative
and add up to 1 is said to be a probability vector.

In the example that we have been analysing, one can verify that, for k ≥ 6,

xk ≈
[
0.428
0.571

]
, (7.2)

if only three decimal places are considered. Hence this system seems to be
approaching a steady state. In other words, what seems to be happening is
that

limxn ≈
[
0.428
0.571

]
.

The behaviour displayed in this example does not always occur, for a
Markov chain may not approach a steady state.

Example 7.3 If we have the 2× 2 transition matrix

P =

[
0 1
1 0

]
and an initial state vector x0 =

[
0.2
0.8

]
, then the system oscillates between the

state vectors

x1 =

[
0.8
0.2

]
, x2 =

[
0.2
0.8

]
.

A Markov chain might not approach a steady state.

A steady-state vector of a Markov matrix P is a probability vector x
such that Px = x.

In other words, this steady-state vector x, should it exist, is an eigenvector
of P associated with the eigenvalue 1, besides being a probability vector.

If P is an n × n Markov matrix, then the sum of the entries of each row
in PT equals 1. Hence,

PT


1
1
...
1

 =


∑n

j=1 pj1∑n
j=1 pj2
...∑n

j=1 pjn

 =


1
1
...
1

 .

It follows that 1 ∈ σ(PT ). Since σ(PT ) = σ(P ) (see Proposition 4.3 (i)), the
Markov matrix itself has an eigenvalue equal to 1.
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Proposition 7.2 A Markov matrix P has always the eigenvalue λ = 1 and
a steady-state vector.

Proof See EX 7.6.5.

� Is there always a steady-state vector? Yes, as this proposition shows.

� Can there be more than one steady-state vector? Yes.

Example 7.4 Suppose that a drunkard is walking along a wooden pier with a
sea endpoint (1), a cotton candy stall (2), and a photo booth (3). Last Winter’s
weather damaged the pier. The endpoint (1) railing is broken and at a short
distance from the photo booth the wood is damaged and having a hole (4)
directly above the beach. These positions (1)–(4) are located in this order. If
the drunkard reaches (2) or (3), he will leave to the neighbouring points with
equal probability. On the other hand, if the drunkard reaches (1) or (4), he will
fall off the pier or be trapped in the hole. His random walk might be described
by the transition matrix

P =


1 0.5 0 0
0 0 0.5 0
0 0.5 0 0
0 0 0.5 1

 .

It is clear that any probability vector

x =


a
0
0

1− a

 (7.3)

is a steady-state vector. If one seeks to find systematically the steady-state
vectors, one has to solve the homogeneous system (P − I)x = 0 and choose
the probability vectors in the null space N(P−I). We will find that the solution
consists exactly of the vectors in (7.3).

The increasing powers of P tend (by entry) to the matrix

Q =


1 2/3 1/3 0
0 0 0 0
0 0 0 0
0 1/3 2/3 1


(see EX 7.6.6 and EX 7.6.7).

� Given a system does it follow that whatever the initial state, the system
will approach a steady-state vector? No. As is evident from Example 7.3,
whatever the initial state vector x0 we start with, the system will always
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oscillate between x0 and x1 = Px0. In this case, the only steady-state
vector is

e =

[
0.5
0.5

]
and, unless x0 coincides with e, the system will never converge to it.

We have seen that a Markov chain may have one or several steady-state
vectors. However, having said that, it has also become clear that a Markov
chain may not approach any steady-state vector.

One is naturally led to ponder:

� How to decide whether a Markov chain approaches a steady-state vector?

We end this section with a brief discussion of this question.

An n× n Markov matrix P is said to be regular if there exists a positive
integer k such that all entries of P k are positive, i.e., for all i, j = 1, . . . , n,
(P k)ij > 0. A Markov chain whose transition matrix is regular is said to be a
regular Markov chain

The proof of the next theorem can be found in [9]. The matrix limit in the
next theorem is defined as the limit of each entry.

Theorem 7.1 If P is an n× n regular Markov matrix, then

P k →
[
q q . . . q

]
,

where q is an n× 1 probability vector.

Under the circumstances of Theorem 7.1, notice that, given a probability
vector x, the limit of the sequence (P kx) is[

q q . . . q
]
x = (x11 + x21 + · · ·+ xn1)q = q. (7.4)

Observe that the equality above does not depend on x. Moreover, given the
uniqueness of the limit, q is the unique steady-state vector of P . In fact, if
r is a steady-state vector of P , then P kr = r. However, by (7.4), P kr → q,
yielding that r = q.

Summing up:

Proposition 7.3 If P is a regular Markov matrix, then it has a unique
steady-state vector q and, whatever the initial state vector x0 is, P kx0 → q.

Getting back to our initial example,

P =

[
0.6 0.3
0.4 0.7

]
is a regular Markov matrix. To obtain the steady-state vector we ought to
solve the equation (P − I)x = 0 or calculate limP k.

We opt to solve the equation. A basis of E(1) is {(3/4, 1)} whose vector is
not a probability vector. But, since 3/4 + 1 = 7/4, the steady-state vector is
(3/7, 4/7) (see EX 7.6.8).
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FIGURE 7.1: Links between pages in a 4-page web.

7.2.1 Google matrix and PageRank

It is reasonable that the importance of each internet page should be mea-
sured in terms of the relative frequency (overall the existing pages) it is visited
by a random surfer. If one accounts for the links between pages and the prob-
ability of leaving a given page to another, one can model a web by means of
a Markov matrix. If there were a steady-state vector for this matrix, then its
entries would display the relative time spent visiting each page, allowing for
a measure of the relevance of any given webpage.

We describe next the PageRank algorithm of webpage classification using
the 4-page web in Figure 7.1. Suppose that the transition matrix corresponding
to this example is

P =


1 1/3 0 1/2
0 0 0 1/2
0 1/3 1 0
0 1/3 0 0

 .

Observe that the non-zero entries in each column have the same value. This
will be always the case for this type of transition matrices.

A surfer reaching pages 1 and 3 stays there, since no links to other pages
exist. These are dangling pages. Hence, this matrix cannot have a unique
steady-state vector, as, for any non-negative a ≤ 1, the vector

x =


a
0

1− a
0


is a steady-state vector. This matrix P modelling our web is not a regular
Markov matrix.

We see that, if we are to find a unique steady-state vector, an adjustment
has to be made. The adjustment is that we assume that, when reaching this
type of pages, the surfer stays there or goes to the remaining pages with equal
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probability. Hence, we get a new Markov matrix

P1 =


1/4 1/3 1/4 1/2
1/4 0 1/4 1/2
1/4 1/3 1/4 0
1/4 1/3 1/4 0

 .

It is still the case that some zeros appear in the columns of the adjusted matrix
P1.

In order to ensure that we have a regular Markov matrix modelling the
web, it is desirable to avoid zero entries. In particular, one case where this
occurs is when two pages form a cycle. That is to say, when there are pages
i, j such that there is a link from i to j and a link from j to i and no other
links connect these pages to others.

The adjustment used is that the random surfer will move using the links
from a given page with equal probability p and will pick any page of the
web with probability 1− p. We get a transition matrix G, called the Google
matrix,

G = pP1 + (1− p)Q

= p


1/4 1/3 1/4 1/2
1/4 0 1/4 1/2
1/4 1/3 1/4 0
1/4 1/3 1/4 0

+ (1− p)


1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4

 .

Rumour has it that Google uses p = 0.85. If we do the same, then

G = 0.85


1/4 1/3 1/4 1/2
1/4 0 1/4 1/2
1/4 1/3 1/4 0
1/4 1/3 1/4 0

+ 0.15


1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4

 .

The steady-state vector, i.e., the probability vector lying in the eigenspace
E(1) of this matrix is

q ≈


0, 314
0, 245
0, 220
0, 220

 .

Hence, we have a webpage ranking: the most important page is 1 followed by
page 2, and next we have pages 3 and 4 of equal importance.

7.3 Population Dynamics

In 1945, P.H. Leslie published the paper [11] on how matrices could be
used to predict the evolution of populations. This Leslie matrix model, to
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be described below, only considers the female individuals of the population
under study.

For example, suppose one has a population of human females divided into
5-year age groups: group g1 corresponds to females whose age lies in [0, 5[, g2
corresponds to ages in [5, 10[, etc. Obviously, the number n of groups depends
on the maximum age in the female population under study and on the time
spanned by each group.

Suppose also that we monitor this population every five years, that is,
t0 = 0, t1 = 5, t2 = 10, . . . , tk = 5k, . . . .

The Leslie matrix model requires that the interval between consecutive
observations have the same length as each age group.

Let

x(0) =


x1(0)
x2(0)

...
xn(0)


be the initial age distribution vector displaying the number of females in
each age group at time t0 = 0 and let x(tk) be the number of females in each
group at time tk, i.e., the age distribution vector at time tk.

During a 5-year time span, it is expected to have deaths, births and aging
in each age group. Hence, for i = 1, . . . , n, let bi denote the expected number
of daughters born to a female in the age group i between the times tk and
tk+1, and let si be the proportion of females in the group gi at time tk that
are expected to be in the group gi+1 at time tk+1.

Notice that, for each i, the number of daughters bi ≥ 0 and 0 < si ≤ 1,
since we assume that the survival rate is never equal to zero, that is, not every
female in the group dies between tk and tk+1.

It follows that

x1(tk+1) = x1(tk)b1 + x2(tk)b2 + · · ·+ xn(tk)bn (7.5)

and, for i = 2, . . . , n,
xi(tk+1) = si−1xi−1(tk) (7.6)

In other words, if we consider the matrix

L =


b1 b2 . . . . . . bn
s1 0 0 0 0
0 s2 0 0 0

0 0
. . . 0 0

0 0 0 sn−1 0

 , (7.7)
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we have
x(tk+1) = Lx(tk)

and, in general, for k = 0, 1, 2, . . . ,

x(tk) = Lkx(0), (7.8)

where the matrix L in (7.7) is the Leslie matrix.

Example 7.5 H. Bernadelli in 1941 [5] considered a population of beetles
divided into three 1-year groups. The behaviour of this population is very sim-
ple: in the first year 1

2 of the females survives and in the second year 1
3 of the

females survives. In the third year, the females give birth to an average of 6
females each. After reproduction, the females die.

The Leslie matrix corresponding to this case is

L =

0 0 6
1
2 0 0
0 1

3 0

 .

Suppose one starts with 600 females in each age group. Then, we have the
following population distribution in years 1, 2, and 3

x(1) =

0 0 6
1
2 0 0
0 1

3 0

600600
600

 =

3600300
200

 ,

x(2) =

0 0 6
1
2 0 0
0 1

3 0

2 600600
600

 =

0 2 0
0 0 3
1
6 0 0

600600
600

 =

12001800
100

 ,

x(3) =

0 0 6
1
2 0 0
0 1

3 0

3 600600
600

 =

1 0 0
0 1 0
0 0 1

600600
600

 =

600600
600

 .

Similarly, we will have in years 4, 5, and 6

x(4) =

3600300
200

 , x(5) =

12001800
100

 , x(6) =

600600
600

 .

We have here the so-called population waves: every 3-year period one ob-
serves the same population distribution. Notice that this behaviour does not
depend on the particular initial age distribution vector x(0). In fact, since
L3 = I, we will have always a 3-year cycle for this population.
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Example 7.6 Consider now a female animal population whose life ex-
pectancy is 4 years. Let this population be divided into two age groups g1, g2
of 0 up to 2 years and from 2 to 4 years, respectively. Suppose that 50% of
the females in group g1 dies within each 2-year time span and each female is
expected to give birth to 2 daughters whereas in g2 each female gives birth to
4 daughters. Suppose that this animal population starts off with 30 individuals
in g1 and 10 in the age group g2.

We have now the Leslie matrix

L =

[
2 4
1
2 0

]
and the age distribution vectors

x(2) = Lx0 = L

[
30
10

]
=

[
100
15

]
,

x(4) = L2x0 =

[
260
50

]
, x(6) = L3x0 =

[
720
130

]
, x(8) = L4x0 =

[
1960
360

]
.

In this case we see a steady population growth.

In Bernadelli’s example, it is clear that the population behaves in cycles.
In Example 7.6, however, one may only infer that there might be a population
growth in the long term. It would be desirable to have a clearer picture of the
future.

As it happens, a crucial tool to answer our questions is the spectrum of
the Leslie matrix. The characteristic polynomial of the Leslie matrix (7.7) is

p(λ) = (−1)n
(
λn − b1λ

n−1 − b2s1λ
n−2 − b3s1s2λ

n−3 − · · · − bns1s2 . . . sn−1
)

(7.9)
(see EX 7.6.12). Hence, for λ ̸= 0,

p(λ) = (−1)nλn

(
1− b1

λ
− b2s1

λ2
− b3s1s2

λ3
− · · · − bns1s2 . . . sn−1

λn

)
It follows that λ ̸= 0 is a root of p(λ) if and only if

b1
λ

+
b2s1
λ2

+
b3s1s2
λ3

+ · · ·+ bns1s2 . . . sn−1
λn

= 1. (7.10)

It is a routine exercise in real function calculus to see that there exists a unique
positive λ1 satisfying (7.10). Hence, we have that λ1 > 0 is a root of p(λ). In
fact, λ1 is a simple root (see EX 7.6.12).

One can check directly that the vector

x1 =
[
1 s1

λ1

s1s2
λ2
1

s1s2s3
λ3
1

· · · s1s2s3...sn−1

λn−1
1

]T
(7.11)

is an eigenvector associated with the eigenvalue λ1.
Summing up:
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Theorem 7.2 The Leslie matrix L in (7.7), has a unique positive eigenvalue
λ1 with algebraic multiplicity 1 and such that there exists an eigenvector x1

in E(λ1) whose entries are all positive.

The eigenvalue λ1 of L is said to be the dominant eigenvalue if, for
λ ∈ σ(L)\{λ1}, we have |λ| < λ1.

It is not always the case that a Leslie matrix has a dominant eigen-
value. For example, the spectrum of the matrix in the Bernadelli’s example is

{1, −1±i
√
3

2 }. This matrix has no dominant eigenvalue.
On the other hand, the Leslie matrix of Example 7.6, whose spectrum is

{1±
√
3}, has a dominant eigenvalue λ1 = 1 +

√
3.

Criteria do exist to determine whether a Leslie matrix has a dominant
eigenvalue but their analysis is beyond the scope of this book.

Our aim now is to show how the existence of a dominant eigenvalue helps
to understand the long-term behaviour of the population. We assume in what
follows that the Leslie matrix is diagonalisable, as is the case in the two pre-
vious examples.

Let the Leslie matrix (7.7) be diagonalisable, let λ1, . . . , λn be its eigen-
values, possibly repeated, and let S be a diagonalising matrix whose first
column consists of the vector x1 in (7.11). The eigenvalue λ1 is assumed to be
dominant. It follows that

L = S


λ1 0 . . . 0
0 λ2 0 0

0 0
. . . 0

0 0 . . . λn

S−1.

Then, for time tk, we have

x(tk) = Lkx0 = S


λk
1 0 . . . 0
0 λk

2 0 0

0 0
. . . 0

0 0 . . . λk
n

S−1x(0)

= λk
1S


1 0 . . . 0

0 (λ2

λ1
)k 0 0

0 0
. . . 0

0 0 . . . (λn

λ1
)k

S−1x(0).
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Since λ1 is dominant and the first column of S is x1,

lim
k→∞

(
1
λk
1
x(tk)

)
= S


1 0 . . . 0
0 0 0 0

0 0
. . . 0

0 0 . . . 0

S−1x(0) = αx1, (7.12)

for some scalar α. Hence, we have the approximation

x(tk) ≈ αλk
1x1. (7.13)

Similarly, we also have
x(tk−1) ≈ αλk−1

1 x1. (7.14)

It follows that
x(tk) ≈ λ1x(tk−1), (7.15)

that is, the proportion of females in consecutive age groups is (approximately)
constant for a sufficiently large time.

We see that

(i) if λ1 < 1, the population will decrease,

(ii) if λ1 = 1, the population will stabilise,

(iii) if λ1 > 1, the population will increase.

Example 7.6 (continued). As seen before, the spectrum of this Leslie
matrix is

{
1±
√
3
}
and λ1 = 1 +

√
3 is dominant.

Since the matrix is diagonalisable, we can apply the results above and
can confidently say that the population is going to steadily increase (see
EX 7.6.11).

7.4 Graphs

In this section, we give a short introduction to simple graphs, the main
goal being to present, albeit briefly, a particular type of a symmetric matrix,
the adjacency matrix, whose entries are either 0 or 1. We begin again with an
example.

Suppose you have an archipelago of five islands some of which, possibly
not all, are connected by bridges. Name the islands from 1 to 5, and consider
Figure 7.2 where each line segment represents a bridge linking two islands.
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1 2 3

4 5

FIGURE 7.2: Graph of islands and bridges.

This is what is called a graph. In this example, each island is a vertex
and each bridge is a line segment called an edge of the graph.

Formally, a graph is an ordered pair G = (V,E) where

V = {v1, v2, . . . , vn}

is a non-empty (finite) set of vertices and E ⊆ {{vi, vj} : i, j = 1, . . . , n} is
a subset consisting of edges, i.e., consisting of two-element subsets {vi, vj}
which lie in E whenever there is an edge connecting the vertices i, j.

In our example, we have V = {1, 2, 3, 4, 5} and

E =
{
{1, 2}, {2, 3}, {2, 4}, {2, 5}, {3, 4}, {3, 5}

}
.

Hence, there is a total of six bridges linking the five islands.
You might ask yourself: How many ways are there of going, say, from 1 to

5? Or, what way is more efficient inasmuch as it has less bridges to cross?

We shall answer this questions by means of the adjacency matrix. The
adjacency matrix A = [aij ] of the graph G is an n × n matrix whose
columns and rows are associated with the vertices and such that aij = 1, if
there is an edge between vertices vi, vj , and aij = 0, otherwise.

In other words, if vi, vj are adjacent vertices, i.e., there is an edge which
they belong to, then aij = 1 = aji, otherwise aij = 0 = aji. An edge joining
vi, vj is said to be incident to vi and vj .

The graph in Figure 7.2, has the adjacency matrix

A =


0 1 0 0 0
1 0 1 1 1
0 1 0 1 1
0 1 1 0 0
0 1 1 0 0

 .

Notice that A is a symmetric matrix and that the diagonal entries of A are
all zero, since no loop is permitted from a vertex to itself. We are considering
simple graphs: no loops and no more than one edge connecting two vertices.

The sum of the entries in a row i equals the number of edges connecting
vertex i to other vertices. The same can be said for column i. This number
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is called the degree deg(vi) of the vertex vi. In our case, island 1 has degree
deg(1) = 1 whilst island 2 has degree deg(2) = 4, for example.

A walk in a graph G is a sequence (v0, v1, v2, v3, . . . , vk) of vertices (pos-
sibly repeated) and edges

({v0, v1}, {v1, v2}, . . . , {vk−1, vk})

which belong to G. The walk is said to start at v0 and end at vk. A path in a
graph G is a walk whose sequence of vertices consists of distinct terms. Here
it is allowed to have v0 = vk, in which case we have a closed path.

The length of the walk is the number k ≥ 0 of edges. In what follows, for
simplicity, we refer to walks and paths only specifying its sequence of vertices.

For example, the graph of Figure 7.2 has a path of length 2 consisting of
the sequence of vertices 4, 2, 3 and a walk 4, 2, 3, 2, 3 of length 4. The endpoints
of both path and walk are the same: the start is 4 and the end is 3. Another
path is 3, 5, 2, 1. This path has length 3.

In general, it is a more efficient way to go from an island to an other
taking a path rather than a walk. The most efficient way is the shortest path
connecting them.

The next theorem tells us how many walks there are connecting two ver-
tices.

Theorem 7.3 Let A = [aij ] be the n × n adjacency matrix of a graph G
having n vertices. The number of walks of positive length k between vertices

i, j is the entry-ij a
(k)
ij of the matrix Ak.

Proof The theorem will be proved by induction. Let i, j = 1, . . . , n. If
k = 1, by the definition of the adjacency matrix A, aij is either 0 or 1. This
means that there is no edge or exactly one edge, respectively, connecting the
vertices i and j. Consequently, the assertion holds when k = 1.

Assume now that the statement is true for k. We will prove that it also
holds for k + 1.

Let l
(k)
ir be the number of k-length walks from vi to vr, where r = 1, . . . , n.

The k + 1-length walks from vi to vj are all of k-length walks from vi to
vr followed by all walks of length 1 from vr to vj. Hence, by the induction

hypothesis, the number l
(k+1)
ij of walks from vi to vj is

l
(k+1)
ij =

n∑
r=1

l
(k)
ir l

(1)
rj =

n∑
r=1

a
(k)
ir l

(1)
rj .

Since we have shown above that l
(1)
rj = arj, it follows that

l
(k+1)
ij =

n∑
r=1

a
(k)
ir a

(1)
rj = a

(k+1)
ij ,

as required.
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In our example, we have

A2 =


1 0 1 1 1
0 4 2 1 1
1 2 3 1 1
1 1 1 2 2
1 1 1 2 2

 , A3 =


0 4 2 1 1
4 4 6 6 6
2 6 4 5 5
1 6 5 2 2
1 6 5 2 2

 .

Hence, if we consider islands 2 and 3, we have one walk of length 1 linking
them, two walks of length 2 and 6 walks of length 3 (see EX 7.6.15).

Now that we can count the walks connecting two vertices, we shall see next
that every walk contains a path.

Proposition 7.4 Let G = (V,E) be a graph and let v, v′ ∈ V . If there exists
a walk from v to v′, then there exists a path from v to v′. Moreover, the length
of the path is less than or equal to the length of the walk.

Proof Consider the set consisting of all the walks from v to v′ (of any
given length) and observe that there must be a minimum length walk in this
set.

If the walk has length 1, then the walk is itself a path. Suppose now that this
minimum length walk has length k ≥ 2. We want to show that this walk is a
path. Suppose that, on the contrary, this walk is not a path. Consequently, there
exist vertices vr and vr+m, with m ̸= 0 and vr = vr+m. Then, if we remove
from the walk all the vertices vr+1, . . . , vr+m and the edges linking them, we
obtain a strictly shorter length walk from v to v′. But this is a contradiction,
since we assumed that our initial walk was the minimum length walk. The
remaining assertion of the theorem is obvious.

For example, there is exactly one path between islands 1 and 2: this path
has length 1. There are two paths between islands 1 and 3 of length 3 (see
EX 7.6.15).

A subset of vertices of a graph G is said to be a clique if (i) the subset
contains three vertices, at least; (ii) any two distinct vertices are adjacent; (iii)
the subset is not contained in any strictly larger subset of vertices satisfying
(ii).

For example, the island-bridge graph contains the cliques {2, 3, 4} and
{2, 3, 5}. Identifying these cliques was easy because our graph is small. It would
be desirable, however, to have a systematic way of identifying the vertices lying
in cliques. Why might this be of help? For example, if the edges of a graph
identify the similarly politically inclined in a group of people, say, politicians
voting a law, you might have an educated guess about whether the law will
pass or not.
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Corollary 7.1 Let A = [aij ] be the n × n adjacency matrix of a graph G =
(V,E) having n vertices v1, v2, . . . , vn. A vertex vi belongs to a clique if and

only if the entry-ii of the matrix A3 is non-zero, i.e., a
(3)
ii ̸= 0.

Proof Suppose a
(3)
ii ̸= 0. By Theorem 7.3, we know that a

(3)
ii is the number

of walks of length 3 from vi to itself. Any walk of length 3 having the same
vertex vi as endpoints, needs to have another two distinct vertices, say, vj , vr.
It follows that {vi, vj , vr} form a clique or are a subset of a clique.

Conversely, suppose there is a clique containing vi. By the definition of
clique, there exist distinct vertices vj , vr such that aij , ajr, ari ̸= 0. It follows

that a
(3)
ii ≥ aijajrari ̸= 0.

We see that in our island-bridge graph, matrix A3 indicates that the islands
2, 3, 4, 5 belong to cliques, as expected, while this is not the case for island 1.

7.5 Differential Equations

The aim of this section is to introduce the exponential of a square matrix.
This will be motivated by and then applied to the solution of differential
equations.

Let
x′(t) = cx(t) (7.16)

be a linear differential equation over the reals. It is known that its set of
solutions consists of all the functions x(t) : R→ R such that

x(t) = αect,

where α is a(ny) real constant. Suppose that we increase the ‘complexity’ of the
problem: we have now the system of (first-order) linear differential equations{

x′1(t) = −x1(t) + x2(t)

x′2(t) = 5x1(t) + 3x2(t)
(7.17)

in the unknowns x1(t), x2(t) : R→ R.
This system can be re-written in matrix form as[

x′1(t)
x′2(t)

]
=

[
−1 1
5 3

] [
x1(t)
x2(t)

]
(7.18)

or, more compactly,
x′ = Ax, (7.19)

where A is the matrix above and the derivative of a vector (or matrix) is to
be calculated by entry. Here the dependence on t is omitted to simplify the
notation.
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Can we still mimic in some way the solution of (7.16) to solve the system
(7.17)? In other words, is it possible to give a meaning to the exponential eA

of a matrix A such that a solution of (7.19) can be constructed somehow using
the exponential?

If one were to define the exponential of a matrix A by generalising what
is known for the exponential function over R, one would naturally be led to
write

eA = I +A+
1

2!
A2 +

1

3!
A3 + · · ·+ 1

n!
An + · · · =

∞∑
n=0

1

n!
An. (7.20)

Although, each term of the formal power series is meaningful, does the series
converge? And what does convergence even mean?

Let us begin by calculating the matrix powers for our example. The matrix
A is diagonalisable and

A =

[
−1 1
1 5

] [
−2 0
0 4

] [
−1 1
1 5

]−1
(see EX 7.6.18). It follows that

An =

[
−1 1
1 5

] [
(−2)n 0

0 4n

] [
−1 1
1 5

]−1
and

k∑
n=0

1

n!
An =

[
−1 1
1 5

][∑k
n=0

1
n! (−2)

n 0

0
∑k

n=0
1
n!4

n

] [
−1 1
1 5

]−1
.

When k →∞, we have that this matrix product tends by entry to[
−1 1
1 5

]
︸ ︷︷ ︸

S

[∑∞
n=0

1
n! (−2)

n 0
0

∑∞
n=0

1
n!4

n

] [
−1 1
1 5

]−1
︸ ︷︷ ︸

S−1

= S

[
e−2 0
0 e4

]
S−1.

In general, let A be a n×n diagonalisable matrix with (possibly repeated)
eigenvalues {λ1, λ2, . . . , λn}. Then

A = S diag(λ1, λ2, . . . , λn)S
−1,

where diag(λ1, λ2, . . . , λn) is a diagonal matrix whose diagonal consists of
the eigenvalues of A repeated as many times as the corresponding algebraic
multiplicities, and S is a diagonalising matrix (see Theorem 4.3 and the ‘How
to diagonalise a matrix’ box).
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A reasoning similar to that above yields that the exponential eA of the
matrix A is

eA = S diag(eλ1 , eλ2 , . . . , eλn)S−1.

It follows that the exponential of tA, where t ∈ R, is

etA = I + tA+
1

2!
(tA)2 +

1

3!
(tA)3 + · · ·+ 1

n!
(tA)n + . . .

=

∞∑
n=0

1

n!
(tA)n = S

( ∞∑
n=0

1

n!
(tD)n

)
S−1.

Hence
etA = S diag(eλ1t, eλ2t, . . . , eλnt)S−1, (7.21)

i.e.,
etA = SetDS−1. (7.22)

Notice that
(etA)′ = AetA

(see EX 7.6.19). Hence, given a(ny) n× 1 vector c, we have

(etAc)′ = (etA)′c = AetAc

from which follows that,
x(t) = etAc (7.23)

is a solution of the system of linear differential equations

x′ = Ax.

It is possible to show that, in fact, any solution of this system is of the form
(7.23). Moreover, since

x(0) = e0c = c,

we have that fixing the initial conditions at t = 0 determines a unique solution.
(Observe that e0 = I.) It follows that this unique solution is

x(t) = etAx(0). (7.24)

Example 7.7 Consider the system of linear differential equations
x′ = 2x+ z

y′ = −y
z′ = x+ 2z

which we want to solve with the initial conditions x(0) = −1, y(0) = 1, z(0) =
2. We begin by writing the system in matrix formx′y′

z′

 =

2 0 1
0 −1 0
1 0 2


︸ ︷︷ ︸

A

xy
z

 .
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This 3× 3 matrix is diagonalisable:

A =

0 1 1
1 0 0
0 −1 1

−1 0 0
0 1 0
0 0 3

0 1 1
1 0 0
0 −1 1

−1 .
By (7.22),

etA =

0 1 1
1 0 0
0 −1 1

e−t 0 0
0 et 0
0 0 e3t

0 1 1
1 0 0
0 −1 1

−1

etA =

e−t
01
0

 et

 1
0
−1

 e3t

10
1

 0 1 0
1/2 0 −1/2
1/2 0 1/2

 . (7.25)

Hence

etA =
1

2

 et + e3t 0 −et + e3t

0 2e−t 0
−et + e3t 0 et + e3t

 .

Using the initial conditions,xy
z

 =
1

2

 et + e3t 0 −et + e3t

0 2e−t 0
−et + e3t 0 et + e3t

−11
2

 =
1

2

−3et + e3t

2e−t

3et + e3t

 ,

i.e.,
x(t) = − 3

2e
t + 1

2e
3t, y(t) = e−t, z(t) = 3

2e
t + 1

2e
3t.

In (7.25), the right hand side of the equality consists of a product of two
matrices. Notice that the columns of the first matrix are formed by eigenvec-
tors of Amultiplied by certain ‘weights’. Each column shows a pairing between
the eigenvector and the corresponding eigenvalue inasmuch as the weight is
a exponential in whose exponent appears this eigenvalue. This behaviour can
be seen in general.

Let A be an n × n diadonalisable matrix such that A = SDS−1 and
consider the system (7.19). By (7.22) and (7.24), we have

x(t) = etAx(0) = SetDS−1x(0)

and, therefore,

x(t) =
[
eλ1tx1 eλ2tx2 . . . eλntxn

]

α1

α2

...
αn


︸ ︷︷ ︸
S−1x(0)

,
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where x1,x2, . . . ,xn are the eigenvectors used to diagonalise this matrix. In
other words, the solution of the initial value problem is a linear combination
of the column vectors

eλ1tx1, eλ2tx2, . . . , eλntxn.

We can apply this to solve the system of Example 7.7 in an alternative
way. We know now that the solution has the formx(t)y(t)

z(t)

 = α1e
−t

01
0

+ α2e
t

 1
0
−1

+ α3e
3t

10
1

 .

Using the initial conditions at t = 0,−11
2

 = α1

01
0

+ α2

 1
0
−1

+ α3

10
1

 ,

we have α1 = 1, α2 = − 3
2 , α3 = 1

2 . Hence,

x(t) = − 3
2e

t + 1
2e

3t, y(t) = e−t, z(t) = 3
2e

t + 1
2e

3t.

Summing up: the solution is a linear combination of n weighted eigen-
vectors of A – any n linearly independent eigenvectors will do. The specific
linear combination is obtained by forcing the solution to satisfy the initial
conditions.

7.6 Exercises

EX 7.6.1. Show that the spectrum of a projection matrix is a non-empty
subset of {0, 1}. Find the corresponding eigenspaces.

EX 7.6.2. Find the projection matrix onto the the subspace W of R4 such
that

W = {(x, y, z, w) ∈ R4 : x+ y − z = 0, z = w}.

EX 7.6.3. Find the straight line that best fits the points (2, 4), (3, 5), (7, 9).

EX 7.6.4. Show that the product of two Markov matrices is a Markov matrix.
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EX 7.6.5. Prove Proposition 7.2. Hint: Show that, given an n× n stochastic
matrix, if Ax = x then

n∑
i=1

n∑
j=1

|(Ax)ij | ≤
n∑

i=1

|xi1|

and that the equality holds if and only if the entries in x have the
same sign.

EX 7.6.6. For the Markov matrix of Example 7.4, calculate P k with k =
0, 1, 2, . . . , 10.

EX 7.6.7. Calculate the steady-state vectors of the Markov matrices P,Q in
Example 7.4. Does this contradict Proposition 7.3? Why?

EX 7.6.8. Calculate the steady-state vector of

P =

[
0.6 0.3
0.4 0.7

]
and compare with (7.2).

EX 7.6.9. Let

P =


0 0 0 0 0
1/2 1 0 1/2 1/2
1/2 0 1 0 0
0 0 0 0 1/2
0 0 0 1/2 0


be the transition matrix of a 5-page web. Draw this web, find its
Google matrix and rank its pages.

EX 7.6.10. Consider a female animal population whose life expectancy is 10
years. Let this population be divided in two age groups g1, g2 of 0
up to 5 years and from 5 to 10 years, respectively. Suppose that
20% of the females in group g1 dies within each time span of 5
years and each female is expected to give birth to 2 daughters
whereas in g2 each female gives birth to 4 daughters.

Suppose that this animal population starts off with 30 individuals
in g1 and 20 in the age group g2.

Find the Leslie matrix and the age distribution vectors x(5),x(10).
How many females are in g1 and g2 after 15 years?

EX 7.6.11. Consider a female animal population whose life expectancy is 4
years. Let this population be divided in two age groups g1, g2 of
0 up to 2 years and from 2 to 4 years, respectively. Suppose that
50% of the females in group g1 dies within each 2-year time span
and each female is expected to give birth to 2 daughters whereas
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in g2 each female gives birth to 4 daughters. Suppose that this
animal population starts off with 30 individuals in g1 and 10 in
the age group g2.

Find the Leslie matrix and the age distribution vectors from x(2)
to x(8). Determine the dominant eigenvalue λ1 and calculate the
same distribution vectors with the approximation formula. How is
the population expected to behave?

EX 7.6.12. Show that the equality (7.9) holds and that there exists only one
λ1 > 0 satisfying (7.10). Hint: show that the real function f(λ) on
the left hand side of (7.10) is decreasing, that limλ→0+ f(λ) = +∞
and that limλ→+∞ f(λ) = 0.

EX 7.6.13. Show that λ1 in the previous exercise is a simple root of p(λ).
Hint: recall that a root a of a polynomial q(t) is simple if and only
if q′(a) ̸= 0.

Show that λ1 is a simple root of p(λ). Hint: recall that a root a of
a polynomial q(t) is simple if and only if q′(a) ̸= 0.

EX 7.6.14. Suppose that

L =

0 1 1
1
2 0 0
0 1

5 0

 .

is the Leslie matrix of some female population. How many age
groups are there? What is the approximate proportion of the num-
ber of females in two consecutive age groups for large enough time?
Is the population going to increase eventually? Why?

EX 7.6.15. For the island-bridge example of §7.4, find the walks of length 2
and 3 connecting islands 1 and 3. Which of them are paths?

EX 7.6.16. Draw the simple graph whose adjacency matrix is
0 1 0 0 1 0
1 0 1 1 0 1
0 1 0 0 1 0
0 1 0 0 1 0
1 0 1 1 0 1
0 1 0 0 1 0


and find the degree of its vertices.

EX 7.6.17. Consider the graph
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a b c

d

Find the adjacency matrix, the vertices lying in cliques and those
cliques having b. Find the paths whose start point is b and endpoint
is d.

EX 7.6.18. Calculate eA with

A =

[
−1 1
5 3

]
.

EX 7.6.19. Let A be a n× n diagonalisable matrix. Show that

(etA)′ = AetA.

EX 7.6.20. Solve the system of differential equations{
x′ = 3x+ 5y

y′ = x− y

with x(0) = 1, y(0) = 1.

EX 7.6.21. Solve the initial value problem x′ = Ax with

A =

2 −2 2
0 0 1
0 0 1

 , x(0) =

10
0

 .

7.7 At a Glance

Special matrices were introduced in this chapter in connection with appli-
cations of Linear Algebra:

� The projection matrix (least squares solutions/minimisation of error) –
a matrix corresponding to an orthogonal projection onto a subspace of a
real vector space for a fixed basis. It can be calculated through a formula
using a matrix whose columns are the mentioned basis.
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� The stochastic matrix (Markov chains) – a real square matrix whose
entries are non-negative and such that the sum of the entries in each
column equals 1. The spectrum of a stochastic matrix contains 1. The
probability eigenvectors associated with the eigenvalue 1 might indicate
that the system modelled by the matrix reaches equilibrium eventually.

� The Google matrix (PageRank) – a particular type of a stochastic ma-
trix, it has always a (probability) eigenvector associated with the eigen-
value 1 whose entries rank the webpages the matrix models.

� The Leslie matrix (evolution of populations) – a real square matrix

L =


b1 b2 . . . . . . bn
s1 0 0 0 0
0 s2 0 0 0

0 0
. . . 0 0

0 0 0 sn−1 0

 , (7.26)

where b1, b2, . . . bn ≥ 0 and 0 < s1, s2, . . . , sn−1 ≤ 1. Under some circum-
stances, L has a dominant eigenvalue whose value indicates the evolution
of a population in the long run.

� The adjacency matrix (graphs) – a real square matrix whose entries are
either 0 or 1 which models the edges linking the vertices of a simple
graph. It allows for determining the number of walks between two ver-
tices and identifying vertices lying in cliques in the graph, for example.

� The exponential of a matrix (differential equations) – the matrix eA is
obtained using the spectrum of A. It can be used to solve differential
equations.

The author wishes to thank J. Teixeira and M.J. Borges for Example 7.7,
EX 7.6.20, and EX 7.6.21.
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8.1 Uniqueness of Reduced Row Echelon Form

We prove here the uniqueness of the reduced row echelon form of a matrix.
This proof is essentially that in [16].

Proposition 8.1 Let A be a k×n matrix over K and let R,R′ be reduced row
echelon matrices obtained from A through elementary row operations. Then
R = R′.

Proof This result will be proved by induction on the the number of columns
n of the matrix. The result is clear enough for n = 1. Let A be an k×n matrix
with n > 1, and suppose now that the result holds for all number of columns
less than or equal to n− 1.

If R,R′ are reduced row echelon forms of A, then, by the induction hypothe-
sis, their first n−1 columns must be equal. Indeed, if we remove the last column
of all three matrices, thus obtaining k×n−1 matrices, say, An−1, Rn−1, R

′
n−1,

respectively, then Rn−1, R
′
n−1 are reduced row echelon forms of An−1. Hence,

Rn−1 = R′n−1.
It follows that R,R′ may differ only in the nth column. Suppose, then, that

they differ in row i, that is, rin ̸= r′in.
Let x be a vector such that Ax = 0. Then, we have also that Rx = 0 = R′x.

Consequently, (R−R′)x = 0 from which follows that xn = 0, since ri,n ̸= r′in,
as assumed above. This forces both columns n of R and R′ to have a pivot
(equal to 1), since otherwise xn would be an independent variable. However,
since Rn−1 − R′n−1 = 0, we have finally that these pivots must be located in
the same row. This yields a contradiction, since it forces R = R′ which we
assumed to be different.
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8.2 Uniqueness of Determinant

Proposition 8.2 There exists a unique function f : Mn(K) → K such that,
for all A ∈Mn(K),

(Ax1) f(I) = 1;

(Ax2) f(PijA) = −f(A) (with i ̸= j, i, j = 1, . . . , n);

(Ax3) Given α ∈ K and i ∈ {1, . . . , n},

f

 ...
αli
...

 = αf

 ...
li
...



f





l1
...

li−1

li+l′i
li+1

...
ln



 = f




l1
...

li−1

li
li+1

...
ln



+ f





l1
...

li−1

l′i
li+1

...
ln



 ,

where li, l
′
i are matrix rows.

Proof This proof is inspired by that of [2, Theorem 3.2]
Let g : Mn(K)→ K be a function defined, for all A ∈Mn(K), by

g(A) = f(A)− detA,

where detA is the function given by the Leibniz’s formula (see §2.2, (2.4)).
Suppose firstly that A is invertible and that we reduce A to the identity

I, the reduced row echelon form of A, using elementary operations. Then, by
(Ax2), (Ax3), and Proposition 2.1 (iii),

g(A) = c(f(I)− det I),

where c ̸= 0 is a scalar which accounts for the changes in the determinant
brought along by the elementary operations. Since

f(I) = 1 = det I,

if follows that g(A) = 0, i.e., the functions f and det coincide on the invertible
matrices.

If A is not invertible, then its reduced row echelon form has a zero row.
Hence, by Proposition 2.1 (i),

f(A) = 0 = detA.
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Notice that Proposition 2.1 must hold also for f , since we used only the Axioms
(Ax1)− (Ax3) in its proof.

The proof is complete.

8.3 Direct Sum of Subspaces

In Chapter 3, we defined the direct sum of two subspaces. Here we gener-
alise this to a finite number of subspaces.

Let V be a vector space over K and let S1, S2, . . . , Sk be subspaces of V .
Define the sum

∑k
i=1 Si of these subspaces by

k∑
i=1

Si = {x1 + . . .x2 + · · ·+ xk : xi ∈ Si, i = 1, 2, . . . , k}.

The set
∑k

i=1 Si is itself also a subspace of V . This sum is said to be a direct
sum S1 ⊕ S2 ⊕ · · · ⊕ Sk if, for all i = 1, 2, . . . , k,

Si ∩
∑

l∈{1,2,...,k}\i

Sl = {0}. (8.1)

Notice that this definition is exactly that we presented in Chapter 3 when
referring to the direct sum of two subspaces.

Proposition 8.3 Let V be a vector space over K with dimV = n, and let
S1, S2, . . . , Sk be subspaces of V . Then the following are equivalent.

(i) V = S1 ⊕ S2 ⊕ · · · ⊕ Sk.

(ii)
∑k

i=1 dimSi = n and, for all i = 1, 2, . . . , k,

Si ∩
∑

l∈{1,2,...,k}\i

Sl = {0}. (8.2)

(iii) V =
∑k

i=1 Si and, for all x ∈ V , the decomposition

x = x1 + . . .x2 + · · ·+ xk

is unique, with xi ∈ Si, for all i = 1, . . . , k.

Proof We begin by showing that (i) implies (ii). Observe that, by (8.1)
the union of the bases of all subspaces is a linearly independent set. Indeed,
if it were not, then some non-zero vector spanned by one of the bases would
be a linear combination of the vectors in the bases of the remaining spaces,
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contradicting (8.1). Since V =
∑k

i=1 Si, it follows that the union of these bases

spans a subspace of dimension n and, hence,
∑k

i=1 dimSi = n.
To see that (ii)⇒ (iii), consider that, given some x in V, we have

x1 + . . .x2 + · · ·+ xk = x = z1 + . . . z2 + · · ·+ zk,

with xi, zi ∈ Si, for all i = 1, . . . , k. Then,

(x1 − z1) + (x2 − z2) + · · ·+ (xk − zk) = 0.

But by (8.2), each of the summands must coincide with 0, yielding the unique-
ness of the decomposition. Consequently, the union of the bases of all subspaces
is a linearly independent set from which follows the remaining assertion.

Suppose now (iii) holds. To show that this implies (i), if suffices to show
that (8.1) holds. Suppose, on the contrary, that, for some i, there existed a
non-zero x ∈ Si ∩

∑
l∈{1,2,...,k}\i Sl. But then

0 = x−
∑

l∈{1,2,...,k}\i

xl,

yielding two different ways of decomposing 0, which cannot be.
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Solutions
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9.1 Solutions to Chapter 1

EX 1.5.1 (a) and (c) are linear equations, (b) and (d) are not linear equations.
EX 1.5.2 The solution sets are:

(a) {(0, 0, 0)}

(b) {(− 1
3x3,− 2

3x3 − x4, x3, x4) : x3, x4 ∈ R}

(c) {(w, x, y, z) : x = −w ∧ y = w ∧ z = 0 (w ∈ C)}

EX 1.5.3 The systems a) and c) have non-trivial solutions. System c) might
have only the trivial solution or non-trivial solutions, depending on its coeffi-
cients aij .
EX 1.5.5

(a)


x = 1

y = 2

z = 3

(b)

{
x = 1

y = 2

(c)

{
3x+ y = 0

y + 3z = 0
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(d) 2x− y − z − w = 0

EX 1.5.4 The solution sets are:

(a) The solution set is S = {(3, 1, 2)}.

(b) S = {(− 1
7 −

3
7x3,

1
7 −

4
7x3, x3) : x3 ∈ R}.

(c) S = ∅.

(d) S = {(−6− 2v − 3y, v,−2− y, 3 + y, y) : v, y ∈ R}.

EX 1.5.6

(a) Yes (it is a row echelon matrix); Yes (it is in reduced row echelon form);
rank 3.

(b) Yes; Yes; 2.

(c) Yes; Yes; 2.

(d) Yes; Yes; 2.

(e) No; No; 2.

(f) Yes; No; 2.

(g) No; No; 2.

(h) Yes; Yes; 0.

(j) No; No; 1.

(k) No; No; 3.

(l) No; No; 2.

(m) Yes; No; 2.

EX 1.5.7 1 0 0 1 1
0 1 0 2 −1
0 0 1 −1 0

 ,

rank (A)=3.
EX 1.5.8 rank (Aα) = 2 when α = −1, 0, 1 and rank (Aα) = 3 otherwise.

If α = 0, then the systems are consistent and have one independent vari-
able.

If α = ±1 and β = 0, then the systems are consistent and have one
independent variable.

If α = ±1 and β ̸= 0, then the systems are inconsistent.
If α ∈ R\{−1, 0, 1}, then the systems are consistent and have no indepen-

dent variable.
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EX 1.5.9 The system is always consistent, since it is homogeneous.
If α ̸= 2 and α ̸= −2, then the system has only the trivial solution

(0, 0, 0, 0).
If α = 2, then the system has two free variables and the solution set is

S = {(2z,−z − w, z, w) : z, w ∈ R} .

If α = −2, , then the system has one free variable and the solution set is

S = {(2z,−z, z, 0) : z ∈ R} .

EX 1.5.10

B + C =

7 √
3 0

2 −5 1
π 2 9

 , 2A =

 2 −4
8 2

2
√
2 6

 ,

AB =

 1 + 4
√
3 −2 +

√
3

−2 +
√
2 −2

π + 8−
√
2 −2π − 1

 , CB =

 6 6
√
3 0

−8 4 −4
10π 20 −10

 ,

trB = −1, trC = 12. The remaining operations are not possible.
EX 1.5.11

a) (AB)23 = −10 and the column 2 of AB is

18
2

 .

b)

(A−B)T =

2 1 −2
0 −6 −2
2 0 2

 , tr((A−B)T ) = −2.

EX 1.5.12 The correct assertion is D.
EX 1.5.13

A =

0 −1 −2
1 0 −1
2 1 0

 .

EX 1.5.14

A =

2 4 8
4 8 16
8 16 32

 .

EX 1.5.15 If n is even, i.e., n = 2k, with k ∈ N0, then

An = A2k = (−1)k
[
i 0
0 i

]
.

If n is odd, i.e.,n = 2k + 1, with k ∈ N0, then

An = A2k+1 = (−1)kA.
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EX 1.5.16

A =

−1 2 1
0 1 1
1 −2 −1

 .

EX 1.5.17

(a)

[
−7 2
4 −1

]

(b) − 1
39

[
5 −4
−6 −3

]
(c) Not invertible.

(d)


3
2 −1 − 1

2

− 11
10 1 7

10

− 6
5 1 2

5


(e) Not invertible.

(f)


7
2 −1 0

0 1 −1
−3 0 1



(g)


1 − 1

3 0 0

0 1
3 − 1

5 0

0 0 1
5 − 1

7

0 0 0 1
7


(h) Not invertible.

EX 1.5.18

A3 =

[
1 6
0 1

]
, A−3 =

[
1 −6
0 1

]
, A2 − 2A+ I = (A− I)2 =

[
0 0
0 0

]
,

X =

[
3/2 −3/2
1/2 −1/2

]
.

EX 1.5.19

(a) Elementary operation: L2−5L1 Elementary matrix: E21(3) =
[

1 0
−5 1

]
(b) Elementary operation: − 1

3L3 Elementary matrix: D3(− 1
3 ) =[

1 0 0
0 1 0
0 0 − 1

3

]
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(c) Elementary operation: L2 ↔ L4 Elementary matrix: P24 =

[
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

]
(d) Elementary operation: L3 + 1

2L2 Elementary matrix: E32(
1
2 ) =[1 0 0 0

0 1 1 0
0 1

2 1 0
0 0 0 1

]
EX 1.5.20

E1 = E24(−1) =


1 0 0 0
0 1 0 −1
0 0 1 0
0 0 0 1

 E2 = D2(−5) =


1 0 0 0
0 −5 0 0
0 0 1 0
0 0 0 1



A−1 = D2(−5)−1E24(−1)−1 =


1 0 0 0
0 −1/5 0 0
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

D2(−1/5)


1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

E24(1)

=


1 0 0 0
0 −1/5 0 −1/5
0 0 1 0
0 0 0 1


EX 1.5.21 D).
EX 1.5.22 Let A = [aij ] be a matrix such that, for all n× n matrices B we
have AB = BA. It follows immediately that A is an n× n matrix.

Let B = Eii, where Eii the matrix having all entries equal to zero except
for the entry-ii which is equal to 1. Then,

LA
i = EiiA = AEii = CA

i ,

where LA
i is a matrix whose row i is the row i of A and whose remaining rows

are zero rows, and CA
i is a matrix with zero columns except for the ith column

which is that of A. Hence, since the only possibly non-zero entry in common
in both matrices is aii, all the remaining entries in both matrices are equal to
zero. Letting i vary one gets that A is a diagonal matrix.

Suppose now that B = Pij . Then

PijA = APij ,

from which follows that, for all i, j = 1, . . . , n, aii = ajj . Recall that the
operation PijA interchanges the rows i and j of A whilst the operation APij

swaps the columns i and j of A. Hence, A = αI.
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EX 1.5.23

A =

 1 0 0
−5 1 0
−3 4 1

4 0 0
0 5 0
0 0 1

1 4 1
0 1 −5
0 0 1

 =

 1 0 0
−5 1 0
−3 4 1

4 16 4
0 5 −25
0 0 1

 ,

x = (1,−1, 0).

9.2 Solutions to Chapter 2

EX 2.4.1 detA = −912.
EX 2.4.2 det(−2A−3) = −8/27, det

((
ABT

)2)
= 81, det(E32(−2)D3(2)

P34A) = −6.
EX 2.4.3 C)
EX 2.4.4 detB = −10.
EX 2.4.5 104.
EX 2.4.6 A).
EX 2.4.7 1 1 1

0 1 0
0 0 1

 .

EX 2.4.8 C14 = 60; (A−1)41 = i 15
480 .

EX 2.4.9 x1 = −28/11, x2 = −34/11, x3 = −30/11.
EX 2.4.10 (a) α = −1− i; (b) x = (1, 1, 0).
EX 2.4.11 (a) a ∈ R\{0, 3}; (b) 1

a−3 .

9.3 Solutions to Chapter 3

EX 3.7.1 (a), (b), and (d).
EX 3.7.2

(a) (−3,− 7
3 ,−5) = −2u+ v − 2w

(b) (2, 11
3 , 2) = 4u− 5v + 1w

(c) (0, 0, 0) = 0u+ 0v + 0w

(d) ( 73 ,
8
3 , 3) = 0u− 2v + 3w



Solutions 295

EX 3.7.3 (a), (b), and (d).
EX 3.7.4 (a), (c), and (e).
EX 3.7.5 (b) and (f).
EX 3.7.6 We show firstly that Pn, together with the usual addition of poly-
nomials and multiplication of a polynomial by a scalar, is a real vector space.
Clearly, axioms (i) and (ii) are verified since the addition is commutative and
associative. On the other hand, the zero polynomial p(t) = 0 is the additive
identity, showing that axiom (iii) is satisfied.

Let p(t) = a0+a1t+a2t
2+· · ·+ant

n be a generic polynomial. The additive
inverse of p(t) is p(t) = −a0 − a1t− a2t

2 − · · · − ant
n which settles (iv).

(v) Let α be a real number and let q(t) = b0 + b1t+ b2t
2 + · · ·+ bnt

n be a
polynomial. Then

α(p+ q)(t) = α(a0 + a1t+ a2t
2 + · · ·+ ant

n + b0 + b1t+ b2t
2 + · · ·+ bnt

n)

= α(a0 + a1t+ a2t
2 + · · ·+ ant

n) + α(b0 + b1t+ b2t
2 + · · ·+ bnt

n)

= αp(t) + αq(t).

Axioms (vi) and (vii) are shown to hold similarly and it is obvious that
(viii) also holds since 1p(t) = p(t). Hence Pn is a real vector space.

We can show similarly that P is a real vector space. Propositions 1.4 and
1.5 show that Mn,k(K) is a vector space over K.

The addition of continuous real functions on [a, b] is commutative, associa-
tive and has the zero function on [a, b] as the additive identity. The additive
inverse of a function f(t) is −f(t) and 1f(t) = f(t).

If f, g are functions on [a, b] and α, β ∈ R, then

α(f + g)(t) = α(f(t) + g(t)) = αf(t) + αg(t),

(αβ)f(t) = α(βf(t))

and
(α+ β)f(t) = αf(t) + βf(t).

Hence C([a, b]) is a real vector space.
EX 3.7.7 (a) and (c).
EX 3.7.8 These operations satisfy all axioms of a vector space except for
1u = u, where u ∈ C2. Hence C2 is not a vector space for these operations.
EX 3.7.9

(a) It is linearly independent and a basis is {(1,−1, 0), (0, 0, 2)}

(b) It is linearly dependent and a basis is {(2, 4, 12), (−1,−1,−1)}

(c) It is linearly dependent and a basis is {(1, 2, 3, 4), (0, 1, 1, 0)}

(d) It is linearly dependent and a basis is {(1 + i, 2i, 4− i)}

(e) It is linearly dependent and a basis is {(1, 2, 6, 0), (3, 4, 1, 0), (4, 3, 1, 0)}
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EX 3.7.10

(a) A possible basis is B = ((2, 1, 0), (−3, 0, 1)) and dimW = 2.

(b) (v)B = (−1, 2).

EX 3.7.11

(a) A possible basis is B =
(
(i, 0, 0, i)

)
and dimW = 1.

(b) vB = (−i).

EX 3.7.12

(a) These vectors do not form a basis for W because they are linearly de-
pendent. For example, w = 2u+ v.

(b) BW = {u,v}, dimW = 2.

(c) Vector equation:

(x, y, z, w) = t(1, 0, 0, 1) + s(2, 2, 0, 1), t, s ∈ R.

Parametric equations:
x = t+ 2s

y = 2s

z = 0

w = t+ s t, s ∈ R

.

Cartesian equations:

W = {(x, y, z, w) ∈ R4 : z = 0 ∧ −2x+ y + 2w = 0}.

EX 3.7.13 Add, for example, the vector (1, 0, 0).
EX 3.7.14 For example, the vectors (0, 0, 1, 0), (0, 0, 0, 1) can be adjoined
to S to form a basis of R4. A way to see this is observing that the subspace
spanned by S is defined by the cartesian equations

z + 2w = 0 ∧ y = 0,

which are not satisfied by (0, 0, 1, 0), (0, 0, 0, 1).
EX 3.7.15

(a)
BN(A) = {(−2, 3, 1, 0)},

BL(A) = {(1, 1,−1, 1), (0,−1, 3, 0), (0, 0, 0, 1)},

BC(A) = {(1, 0,−1, 0), (1,−1, 0,−1), (1, 0, 0, 1)}.
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(b) 4 = dimN(A) + dimL(A) = 1 + 3.

(c)
x ∈ N(MAT ) ⇐⇒ MATx = 0.

Hence

x ∈ N(MAT ) ⇐⇒ M−1MATx = 0 ⇐⇒ ATx = 0 ⇐⇒ x ∈ N(AT ).

We have

4 = dimN(AT )+dimL(AT ) = dimN(AT )+dimC(A) = dimN(AT )+3

from which follows that N(MAT ) = dimN(AT ) = 1. Consequently,
dim(MAT ) = 4− 1 = 3.

EX 3.7.16

BN(A) = {(0, 0, 1)}, dimN(A) = 1.

BL(A) = {(1, 1, 0), (−3, 1, 0)}, dimL(A) = 2.

BC(A) = {(1,−3, 0, 1), (1, 1, 0,−1)}, dimC(A) = 2.

EX 3.7.17

(a) No because (2, 1,−1) /∈ C(A).

(b) The solution set is

{(x, y, z) ∈ R3 : (x, y, z) = t(1, 1, 1) + s(1,−1,−1) + (1, 2, 3) ∀t ∈ R}.

(b) dimN(BTB) ≥ 2.

EX 3.7.18

(a) BU∩V = {(0, 0, 1, 1)}.

(b) dim(R4 + (U ∩ V )) = 4.

EX 3.7.19

BU+W = {(0, 0, 3− i, 0), (1− 2i, 0, 0, 1− 2i), (0, 1, 2, 0)}, dim(U +W ) = 3.

BU∩W = (1− 2i, 0, 0, 1− 2i), dim(U ∩W ) = 1.

Since dimU = 2 = dimW , the formula holds.
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EX 3.7.20 5 + 9t+ 3t2 + 5t3 = 3p1 − 4p2 + p3.
EX 3.7.21 (a) Linearly independent, (b) linearly dependent, (c) linearly
independent.
EX 3.7.22 (3− 2t)B = (8, 1) and (3− 2t)P1 = (3,−2).
EX 3.7.23 A possible basis is

BS = (1 + t− t3, t+ t2 − t3, 2− 2t)

and (3− 2t3 + t2)BS
= (1, 1, 1).

EX 3.7.24 M = −2A+B − 2C.
EX 3.7.25 The only matrix which does not lie in the space spanned by the
given matrices is that of (d).
EX 3.7.26 AB = (2, 1,−1, 1 + i).
EX 3.7.27 A possible basis is

B =

([
−1 3
0 0

]
,

[
0 1
1 0

]
,

[
2 −2
0 1

])
.

EX 3.7.28

(a) MB←E2 =
[−1 −1

0 1

]
(2, 2)B = (−4, 2)

(b) ME2←B′ =
[
1 −2
2 1

]
(c) MB←B′ =

[−3 1
2 1

]
EX 3.7.29

1. MB←E3 =

−1 2 1
0 0 2
1 0 −1


2. v = (v)E3 = (12, 12,−4)

3. MB′←B =
[
0 −1 0
0 0 1
1 0 0

]
4. MB′←E3 = MB′←BMB←E3 =

[
0 0 −2
1 0 −1
−1 2 1

]
EX 3.7.30 a) (2,−6), b) B = ( 5

16 + 1
16 t,−

1
16 + 3

16 t).
EX 3.7.31 A possible solution is

BS =

([
−1 0
0 1

]
,

[
0 1
0 0

])
, B =

([
−1 0
0 1

]
,

[
0 1
0 0

]
,

[
1 0
0 0

])
.

MB1←B =


1
2 0 0

0 1 0

0 0 1


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9.4 Solutions to Chapter 4

EX 4.5.1

a) Yes (eigenvalue −3)

b) No.

c) No.

d) Yes (eigenvalue 1)

e) Yes (eigenvalue 0)

EX 4.5.2 It is: eigenvector (1,−1, 0).
EX 4.5.3

a) p(λ) = (−3i−λ)(i−λ); eigenvalues are −3i, i; bases {(1, 2)} and {(0, 1)}.
b) p(λ) = (4− λ)3; basis {(1, 1,−3)}.

EX 4.5.4 a) No; b) yes; c) yes, d) no, and e), f), g) yes.
EX 4.5.5

A = SDS−1, D =

1 0 0
0 −1 0
0 0 −1

 , S =

−2 1 1
1 −1 0
−1 0 −1

 ; A21 = A.

EX 4.5.8 D).
EX 4.5.10 Hint: Let Ei,j be the matrix whose entries are all zero except
for the entry-ij which is equal to 1. Begin by showing that

Jn(λ)− λI =

n−1∑
i=1

Ei,i+1

and

(Jn(λ)− λI)2 =

n−2∑
i=1

Ei,i+1Ei+1,i+2 =

n−2∑
i=1

Ei,i+2.

Generalise for (Jn(λ)− λI)p, with 1 < p < n, and show that

(Jn(λ)− λI)n−1 = E1,n.

Then obtain the result.
EX 4.5.11 (i) No, no; (ii) no, yes; (iii) no, yes; (iv) no, yes.
EX 4.5.12 Up to a permutation of blocks:[−2 0 0

0 −2 0
0 0 1

]
,
[−2 1 0

0 −2 0
0 0 1

]
.

EX 4.5.13 a) J = [0 1
0 0] , S =

[
−1 − 1

2
1 0

]
;

b)J =
[
3 1 0
0 3 0
0 0 1

]
, S =

[
1 0 0
0 1 −1
0 0 1

]
; c) J =

[
1 0 0 0
0 3 1 0
0 0 3 1
0 0 0 3

]
, S =

[
3
2 1 0 0
1 0 −1 −1
0 0 −2 −1
0 0 0 −2

]
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9.5 Solutions to Chapter 5

EX 5.8.1 a) Yes, b) yes, c) no, d) no, and e), f), g) yes.
EX 5.8.2

a)

 2 −1
1 0
−1 1

 , b)

 0 −i 0
0 −1 5− 3i
−3 0 0

 .

a) N(T ) = {(0, 0)}, I(T ) = span{(2, 1,−1), (−1, 0, 1)}, not an isomorphism;
b) N(T ) = {(0, 0, 0)}, I(T ) = C3, it is an isomorphism.
EX 5.8.3 N(TS) = {(x, y) ∈ R2 : x = −y} = I(TS). This transformation
is not an isomorphism.

EX 5.8.4 T is invertible and [T−1]E2,E2 =

[
3
10

−1
10

1
10

3
10

]
.

EX 5.8.5 [T ]E2,B =

[
2 1
1 1

]
.

EX 5.8.6 Considering the basis B = {(1, 2)},

[T ]E2,B =

[
−9 0
−6 0

]
.

N(T ) is the straight line x = 0, and I(T ) is the straight line y = 2
3x. T is

neither injective nor surjective.
EX 5.8.7

[T ]E2,E2 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 ,

[T ]B,B = MB←E2 [T ]E2,E2ME2←B =


1 0 0 0
−1 −1 1 0
0 0 1 0
0 0 0 1

 .

EX 5.8.8 N(T ) = {−a+ 2at : a ∈ R},

I(T ) =

{[
a a
a −a

]
: a ∈ R

}
.

EX 5.8.9

[T ]B,B = MB←E2 [T ]P2,P2MP2←B =

0 −2 0
0 0 0
1 3 0

 .

EX 5.8.10 a) True, b) true, c) true, d) false, e) true, f) true, g) false.
EX 5.8.12 σ(T ) = {0, 1}, E(0) is the straight line x = 0 = y, E(1) is the
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plane z = 0. The invariant subspaces are {(0, 0, 0)}, the eigenspaces and any
straight line contained in the plane z = 0.
EX 5.8.13 a) σ(T ) = ∅; σ(S) = {−1}, E(−1) = R2. b) σ(A) =
{±i}, BE(i) = {(i, 1)}, BE(−i) = {(−i, 1)}.
EX 5.8.14 a)

[T1]Bs,Bs =


1 0 0 0
0 1

2
1
2 0

0 1
2

1
2 0

0 0 0 1

 , [T2]Bs,Bs =


1 0 0 0
0 1

2 − 1
2 0

0 − 1
2

1
2 0

0 0 0 1

 ;

b) σ(T1) = {0, 1} = σ(T2);

ET1
(1) = span

{[
1 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]}
(symmetric matrices),

ET1(0) = span

{[
0 −1
1 0

]}
(skew-symmetric matrices),

ET2
(1) = span

{[
0 −1
1 0

]}
(skew-symmetric matrices),

ET2
(0) = span

{[
1 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]}
(symmetric matrices).

9.6 Solutions to Chapter 6

EX 6.7.1

(a)
√
37

(b)
√
21 +

√
14

(c) 3
√
21

(d)
(

2√
14
,− 1√

14
, 3√

14

)
(e) 1

(f) arccos 1√
14
√
21

(g)
√
33
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EX 6.7.2 1√
3
(1, 1, 1),− 1√

3
(1, 1, 1).

EX 6.7.4 i(− 3
5 ,−

6
5 ).

EX 6.7.5 { 14 (−2, 2,−2, 2),
1√
2
(0, 1, 1, 0), 1√

12
(1,−1, 1, 3)}.

EX 6.7.6 Basis: {(0, 1, 2), (1, 2, 5)); equation x+ 2y − z = 0.

EX 6.7.7 d(u, S⊥)=
√

8
3 ;


2
3

1
3

1
3 0

1
3

1
6

1
6 0

1
3

1
6

1
6 0

0 0 0 0

 ; u1=
2
3 (2, 1, 1, 0),u2=

1
3 (−1, 1, 1, 3).

EX 6.7.8 (a) ⟨
(
4
3 , 1,−1

)
, (0,−1, 1)⟩ = 0; (b) ∥

(
4
3 , 1,−1

)
∥ = 2/

√
3 and

∥(0,−1, 1)∥ = 2; (c) u1 = (7/3, 1,−1) and u2 = (−4/3,−2, 0).
EX 6.7.9 (1, 0, 1), (1, 0, 1).
EX 6.7.10 (a) dim(W⊥) = 1; (b) d(p,W⊥) =

√
2; (c)(1/

√
3, 1/
√
3, 1/
√
3, 0).

EX 6.7.11

(a) No because (2, 1,−1) /∈ C(A).

(b) The solution set is

{(x, y, z) ∈ R3 : (x, y, z) = t(1, 1, 1) + s(1,−1,−1) + (1, 2, 3) ∀t, s ∈ R}.

EX 6.7.12 (a) Parametric equations: x = 1, y = −t, z = −1 − 3t, w =
0 t ∈ R; cartesian equations: x=1, 3y-z=1, w=0. (b) x + z = 0, w = 0. (c)
Parametric equations: x = 1, y = −t, z = −1 − 3t, w = 0 t ∈ R; cartesian
equations: x = 1−α, y = α+β, x = 1−α,w = 0α, β ∈ R. (d) x+2y− z = 2,
w=0; (1, 2,−1, 0). (e) 1√

6
.

EX 6.7.13 (b) dimU = 1,dimU⊥ = 3; (c) orthonormal bases of U and

U⊥ are, respectively,

{[
0 1√

2

− 1√
2

0

]}
and

{[
0 1√

2
1√
2

0

]
,

[
1 0
0 0

]
,

[
0 0
0 1

]}
;

(d) projU

[
3 3
−3 6

]
=

[
0 3
−3 0

]
, projU⊥ =

[
3 0
0 6

]
; (e)

[
0 3
−3 0

]
; (d)

√
45.

EX 6.7.14 {(−2a− b) + at+ bt2 : a, b ∈ R}.
EX 6.7.151 1 1

1 1 1
1 1 1

 =

−
1√
2
− 1√

6
1√
3

0 2√
6

1√
3

1√
2

−1√
6

1√
3


0 0 0
0 0 0
0 0 3


−

1√
2

0 1√
2

− 1√
6

2√
6
− 1√

6
1√
3

1√
3

1√
3

 .

.
EX 6.7.17 A = UDU

T
,

D =

7 0 0
0 1 0
0 0 −1

 , U =

1 0 0
0 1√

3
1+i√

3

0 1−i√
3
− 1√

3

 ;

A = 7

1 0 0
0 0 0
0 0 0

+

0 0 0
0 1

3
1+i
3

0 1−i
3

2
3

−
0 0 0
0 2

3
−1−i

3
0 −1+i

3
1
3


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EX 6.7.19

[
3 2 2
2 3 −2

]
=

[
1√
2

1√
2

1√
2
− 1√

2

] [
5 0 0
0 3 0

] 1√
2

1√
2

0
1

3
√
2
− 1

3
√
2

4
3
√
2

2
3 − 2

3 − 1
3

 .

9.7 Solutions to Chapter 7

EX 7.6.1 For a projection matrix P ̸= 0, I, the eigenspaces are E(1) =
C(A), E(0) = N(A). Here P = A(ATA)−1AT .
EX 7.6.2

1

5


3 −2 1 1
−2 3 1 1
1 1 2 2
1 1 2 2


EX 7.6.3 y = −22/7 + 12/7x.
EX 7.6.4 Let P,Q be two n×n Markov matrices. Obviously P,Q has posi-
tive entries only. It remains to show that the sum of the entries in any column
equals 1. Fixing column j,

n∑
i=1

(PQ)ij =

n∑
i=1

n∑
k=1

pikqkj =

n∑
k=1

n∑
i=1

pikqkj =

n∑
k=1

qkj

n∑
i=1

pik =

n∑
k=1

qkj = 1.

EX 7.6.7 The steady-state vectors of both matrices are (a, 0, 0, 1−a), a ∈ R.
There is no contradiction as these matrices are not regular Markov matrices
and, therefore, are not forced to have unique steady-state vectors.
EX 7.6.8 The steady-state vector is (3/7, 4/7).
EX 7.6.9

1

��

// 2
OO

3 4 oo // 5

__

G = 0.85


0 1/5 1/5 0 0

1/2 1/5 1/5 1/2 1/2
1/2 1/5 1/5 0 0
0 1/5 1/5 0 1/2
0 1/5 1/5 1/2 0

+ 0.15


1/5 1/5 1/5 1/5 1/5
1/5 1/5 1/5 1/5 1/5
1/5 1/5 1/5 1/5 1/5
1/5 1/5 1/5 1/5 1/5
1/5 1/5 1/5 1/5 1/5

 ;
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steady-state vector

q ≈


0, 11
0, 33
0, 16
0, 20
0, 20

 ;

ranking of pages: 2,4–5,3,1.
EX 7.6.10 The Leslie matrix for this population is

L =

[
2 4
0.8 0

]
.

After 5, 10 and 15 years, one has the age distribution vectors

x(5) =

[
2 4
0.8 0

] [
30
20

]
=

[
140
24

]
,

x(10) =

[
2 4
0.8 0

]2 [
30
20

]
=

[
2 4
0.8 0

] [
140
24

]
=

[
376
112

]
,

x(15) =

[
2 4
0.8 0

]3 [
30
20

]
=

[
2 4
0.8 0

] [
376
112

]
=

[
1200

113100.8

]
.

After 15 years, there are 1200 females aged below 5 years and approximately
113, 101 aged between 5 and 10 years.
EX 7.6.11 We have now the Leslie matrix

L =

[
2 4
1
2 0

]
and the age distribution vectors

x(2) = Lx0 = L

[
30
10

]
=

[
100
15

]
,

x(4) = L2x(0) =

[
260
50

]
, x(6) = L3x(0) =

[
720
130

]
, x(8) = L4x(0) =

[
1960
360

]
.

The dominant eigenvalue is λ1 = 1 +
√
3 and, therefore, the population will

increase. Using the approximate formula, we have

x(2) = (1 +
√
3)x(0) =

[
81.9
27.3

]
,

x(4) = (1 +
√
3)2x(0) =

[
223.9
74.6

]
, x(6) = (1 +

√
3)3x(0) =

[
611, 8
203.9

]
,

x(8) = (1 +
√
3)4x(0) =

[
1672, 3
557, 1

]
.
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EX 7.6.14 We have three age groups. The dominant eigenvalue λ1 ≈ 0, 79
is the approximate proportion of females in two consecutive age groups in the
long run. The population decreases, since λ1 < 1.
EX 7.6.15 Islands 1 and 3: walk of length 2 is {1, 2}, {2, 3}; walks of length
3 are ({1, 2}, {2, 4}, {4, 3}), ({1, 2}, {2, 5}, {5, 3}); all walks are paths.
EX 7.6.16

1 2 3

4 5 6

deg(1) = 2 = deg(3) = deg(4) = deg(6),deg(2) = 4 = deg(5).
EX 7.6.17

A =


0 1 0 1
1 0 1 1
0 1 0 1
1 1 1 0

 , A3 =


2 5 2 5
5 4 5 5
2 5 2 5
5 5 5 4

 ,

All vertices lie in cliques. Cliques having b: {a, b, d} and {b, c, d}. Paths :
({b, a}, {a, d}); ({b, d}); ({b, c}, {c, d}).
EX 7.6.18

eA =

[
−1 1
1 5

] [
−2 0
0 4

] [
−5/6 1/6
1/6 1/6

]
=

[
−1 1
5 3

]
.

EX 7.6.19

(etA)′ = S
(
diag(eλ1t, eλ2t, . . . , eλnt)

)′
S−1

= S diag(λ1e
λ1t, λ2e

λ2t, . . . , λne
λnt)S−1

= S diag(λ1, λ2, . . . , λn) diag(e
λ1t, eλ2t, . . . , eλnt)S−1

= S diag(λ1, λ2, . . . , λn)S
−1S diag(λ1e

λ1t, λ2e
λ2t, . . . , λne

λnt)S−1

= AetA.

EX 7.6.20 x(t) = − 2
3e
−t + 5

3e
4t, y(t) = 2

3e
−t + 1

3e
4t.

EX 7.6.21

x(t) =

e2t0
0

 .
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angle, 218

basis
orthogonal basis, 228
orthonormal basis, 228
standard, 99

best approximation, 235, 252
bilinear function, 206

positive definite, 206
symmetric, 206

Cauchy–Schwarz inequality, 210, 216
Cayley–Hamilton Theorem, 152
characteristic equation, 132
characteristic polynomial, 132

determinant, 56
function, 56
Sarrus’ rule, 78

distance, 207, 215
distance to a subspace, 235
distance to an affine subspace,

252

eigenspace, 132
eigenvalue, 131

dominant, 270
eigenvector, 131
elementary row operations, 3
Euclidean space, 207, 216

Gauss–Jordan elimination (GJE), 12
Gaussian elimination (GE), 7
generalised eigenspace, 157
generalised eigenvector, 156

order, 156
graph, 272

adjacent vertices, 272

clique, 274
closed path, 273
degree of a vertex, 273
edge, 272
incident edge, 272
path, 273
vertex, 272
walk, 273

hermitian matrix
positive definite, 217

hyperplane, 249

inner product, 205, 215
complex inner product space,

215
real inner product space, 206

Jordan block, 164
degree, 164

Jordan canonical form, 164
Jordan chain, 156

length, 156

least squares, 258
error vector, 258

least squares solution, 258
Leslie matrix model, 266

population waves, 268
linear equation, 5

unknowns, 5
variables, 5

linear space, 82
linear subspace, 85
linear transformation, 176

characteristic polynomial, 200
codomain, 176
composition, 191
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diagonalisation, 200
domain, 176
eigenspace, 199
eigenvalue, 199
eigenvector, 199
image, 185
invariant subspace, 202
kernel , 185
null space , 185
nullity, 186
rank, 186
spectrum, 199

linearly dependent set, 91
linearly independent set, 90

Markov chain, 261
regular, 264

matrix, 1
orthogonal, 238
size, 1
transpose, 28
unitary, 243
addition, 17
additive inverse, 18
adjacency, 272
adjugate, 73
anti-diagonal of a matrix, 30
anti-symmetric, 30
canonical row echelon form, 11
change of basis, 120
cofactor, 70
column, 1
column space, 108
column vector, 3
complex matrix, 2
diagonal, 32
diagonal of a matrix, 30
diagonalisable, 141
diagonalising, 141
elementary, 37
entry, 1
exponential, 276, 277
Google, 266
Gram matrix, 213, 217
hermitian, 137

idempotent, 233
identity, 32
inverse, 32, 33
invertible, 33
Leslie matrix, 268
linear combination of columns,

21
lower triangular, 43
Markov, 261
matrix multiplication, 22
minor, 70
multiplication by a column

vector, 19
multiplication by a scalar, 18
nilpotent, 150
non-singular, 33
null space, 107
nullity, 108
of cofactors, 73
order, 3
orthogonally diagonalisable, 239
permutation matrix, 66
pivot, 3
positive definite, 213
power of a matrix, 28, 36
probability, 261
rank, 14
real matrix, 2
rectangular, 3
reduced row echelon form, 11, 13
regular, 264
row, 1
row echelon form, 3
row echelon matrix, 3
row space, 108
row vector, 3
similar, 139
singular, 33
spectrum, 131
stochastic, 261
strictly upper triangular, 153
symmetric, 30
trace, 31
transition, 261
unitarily diagonalisable, 243
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upper triangular, 43
zero column, 3
zero row, 3

matrix equation, 25
multiplicity

algebraic, 134
geometric, 134

norm, 207, 215

orthogonal projection
on a vector, 230
on a subspace, 230

orthogonal set, 226

parallelogram law, 211, 216
permutation, 66

even, 67
odd, 67
sign, 67

plane, 249
point, 249
Pythagorean theorem, 219

Rank-nullity Theorem, 112
reflection, 176

scalars, 1
Schur’s Theorem, 147
sesquilinear function, 215

positive definite, 215
singular value, 245
singular value decomposition, 246
singular values, 247
spectral decomposition, 241, 244
straight line, 249
subspace, 85

A-invariant, 153
affine subspace, 249
cartesian equations, 97
direct sum, 119
finite direct sum, 287
finite sum, 287
parametric equations, 97
sum of subspaces, 117
vector equation, 97

system of linear equations, 5
augmented matrix, 6
back substitution, 8
coefficient matrix, 6
column vector of independent

terms, 6
consistent, 5
dependent variables, 10
equivalent systems, 5
forward substitution, 47
free variables, 10
general solution, 5
homogeneous, 5
inconsistent, 5
independent variables, 10
non-homogeneous, 5
particular solution, 10
solution set, 5
trivial solution, 5

theorem
Rank-nullity Theorem, 186, 190

translation, 176

vector, 82
coordinate, 96
linear combination, 87
linearly dependent, 91
linearly independent, 90
orthogonal, 219
probability, 262
span, 87
state, 261
steady-state, 262
vector orthogonal to a set, 220

vector space, 82
addition, 82
additive identity, 82
additive inverse, 82
basis, 93
complex, 82
dimension, 102
finite dimensional, 102
infinite dimensional, 102
ordered basis, 95
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point, 82
real, 82
scalar multiplication, 82

spanning set, 89
standard basis, 93, 94
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