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Introduction

Let L be a complete ultrametric field and let A be a Banach L-algebra

of functions defined in an ultrametric space E, with values in L, satisfy-

ing certain properties (bounded continuous functions, Lipschitz functions,

differentiable functions, analytic functions of several kinds). We examine

algebraic properties and topologic properties they satisfy, gathering various

results obtained during the last 50 years. Many properties are linked to the

multiplicative spectrum of the algebras.

Admissible algebras (denoted by S) are Banach algebras of functions on

an ultrametric space E whose spectral semi-norm is the norm of uniform

convergence, where each closed open subset has a characteristic function

and any function is invertible if and only if its minimum is strictly positive.

Particularly, the algebra of bounded continuous function from E to L is

admissible. We show the role of sticked ultrafilters and obtain an equivalence

relation whose classes characterize the maximal ideals. A prime ideal is

contained in a unique maximal ideal. A prime ideal of S is a maximal ideal if

and only if it equals its closure with respect to the uniform convergence. That

notion particularly applies to continuous functions. Two main topologies are

defined on an algebra S: the classical topology and the spectral topology

defined by the spectral semi-norm. Each ultrafilter on E defines a maximal

ideal of the algebra S and two ultrafilters define the same maximal ideal if

and only if they are sticked. On an admissible algebra S, a kind of Bezout–

Corona theorem works and that shows the role of filters concerning all ideals

of S. Given a prime ideal, its closure with respect to the classical topology

of S is a maximal ideal. If the field L is perfect, then all maximal ideals of

S are of codimension 1.

Every continuous multiplicative semi-norm of an algebra S has a kernel

that is a maximal ideal and each maximal ideal of S is the kernel of a

xi
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unique continuous multiplicative semi-norm (which is not true in certain

ultrametric Banach algebras, details in what follows). The multiplicative

spectrum appears as a compactification of the space E and the Shilov

boundary of S is equal to the multiplicative spectrum of S. The stone

space St(E) is defined as usual and appears as a compactification of E that

actually, is homeomorphic to the multiplicative spectrum.

If the field L is perfect, then all maximal ideals of S are of codimension 1.

Every continuous multiplicative semi-norm of an algebra S has a kernel that

is a maximal ideal and each maximal ideal of S is the kernel of a unique

continuous multiplicative semi-norm (which is not true in certain ultrametric

Banach algebras).

On an admissible algebra S, a kind of Bezout–Corona theorem works and

that shows the role of filters concerning all ideals of S. The Shilov boundary

of an algebra S is equal to its multiplicative spectrum. The Stone space of E

is a compactification of E which is equivalent to the multiplicative spectrum

of S.

Next, we define a class of algebras T , called compatible algebras, which is

similar but a bit different from the admissible algebras: instead of assuming

that characteristic functions of clopen sets belong to the algebra, here

we assume that the characteristic functions of uniformly open sets belong

to the algebra. Contiguous ultrafilters are defined (sticked ultrafilters are

contiguous). Then in a compatible algebra, maximal ideals are characterized

by classes of contiguous ultrafilters. A Bezout–Corona theorem applies as in

admissible algebras. Here again, each continuous multiplicative semi-norms

of an algebra T has a kernel that is a maximal ideal and each maximal

ideal of T is the kernel of a unique continuous multiplicative semi-norm, the

multiplicative spectrum of T appears also as a compactification of the space

E and the Shilov boundary of T is equal to the multiplicative spectrum of

T . A Stone space of T is defined by considering now the set of uniformly

open subsets of E instead of the clopen subsets.

Let B be the set of bounded uniformly continuous functions from E to

L, let L be the set of bounded Lipschitz functions from E to L, let D be

the subset of L of derivable functions in E and let E be the subset of L of

functions such that for every a ∈ E, f(x)−f(y)
x−y has limit when x and y tend to

a separately. All these sets are Banach algebras with respect to good norms,

the norm of uniform convergence on E is the spectral norm of these algebras,

all are compatible algebras and every maximal ideal of finite codimension in

one of these algebras is of codimension 1. If E has no isolated point, in L, the
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invertible elements are the ones that have no zero and are not topological

divisors of zero.

We denote by K an algebraically closed complete ultrametric field (that

might be an algebraic closure of L). Many properties of ultrametric Banach

algebras are proven with help of an ultrametric holomorphic functional

calculus, which requires to use circular filters which make a tree for a certain

order and is provided with the topology of pointwise convergence. Several

topologies are examined on the set of multiplicative semi-norms on an algebra

of analytic elements.

Next, we have to recall properties of T -filters and T -sequences, with many

applications such as the problem of multbijectivity of K-Banach algebras

(which depends on the valuation of the field K) and the non-injectivity of

the p-adic Fourier transform.

Then various properties of spectral semi-norms are recalled. If a field

extension E of the ground field K admits a semi-multiplicative norm and two

distinct continuous absolute values, then the completion of E with respect

to its norm is a ring with divisors of zero.

The Hensel Lemma is recalled with its long proof. The definition and

the main algebraic properties of affinoid algebras are recalled. Given an

affinoid algebra A, it is a Noetherian Jacobson ring, every maximal ideal

is of finite codimension and when it is reduced, its spectral semi-norm is a

norm equivalent to the Banach norm. Properties of restricted power series are

recalled, such as factoriality (Salmon’s theorem) and Krasner–Tate algebras

are characterized.

The last section is dedicated to prove this famous property: if the

multiplicative spectrum of a unital commutative L-Banach algebra admits

a partition in two open closed subsets, then each admits an associated

idempotent which is proven to be unique. The property is first recalled in an

affinoid algebra and then is generalized to all unital commutative L-Banach

algebras (this was stated by B. Guennebaud in his unpublished thesis but

the proof was very long).

I am very grateful to Bertin Diarra for many pieces of advice in that

work as in previous ones.
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Chapter 1

Basic Properties in Algebra

1.1. Properties in commutative algebra

In this first chapter, we have to collect several classical results in commuta-

tive algebra that will be indispensable when studying affinoid algebras.

Definitions and notations: Throughout the chapter, B will denote a

unital commutative ring with unity, IE will denote a field and A will be a

unital commutative IE-algebra.

Given an ideal I of B, we call radical of I the ideal of the x ∈ B such

that xn ∈ I for some n ∈ N
∗. We call nilradical of B the radical of {0}, i.e.,

the intersection of all prime ideals of B and Jacobson radical the intersection

of all maximal ideals of B. Moreover, B is said to be reduced if its nilradical

is equal to {0}, and semi-simple if its Jacobson radical is equal to {0}.
Moreover, B is called a Jacobson ring if every prime ideal of B is equal to

the intersection of all maximal ideals that contain it.

Max(B) is the set of all maximal ideals of B. Henceforth, Maxa(A) will

denote the subset of Max(A) which consists of all maximal ideals M such

that A
M is a finite extension of IE and Max1(A) will denote the subset of

Maxa(A) which consists of all maximal ideals M such that A
M = IE.

We will denote by X (A, IE) the set of IE-algebra homomorphisms from A

onto IE, and by X (A) the set of all IE-algebra homomorphisms from A onto

various fields A
M when M ∈ Max(A). Given x ∈ A, we denote by spA(x) the

set of λ ∈ E such that x − λ is not invertible in A, and by saA(x) the set

of λ ∈ E which are images of x by IE-algebra homomorphisms from A onto

algebraic extensions of IE. So, in particular, when IE is algebraically closed,

we have spA(x) = saA(x) = {χ(x) | χ ∈ X (A, IE)}.
When there is no risk of confusion on the IE-algebra A, we will only write

sp(x) instead of spA(x) and sa(x) instead of saA(x).

1
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Propositions 1.1.1–1.1.3 are classical in commutative algebra.

Proposition 1.1.1. Let I1, . . . , In be ideals of B such that Ik+Il = B ∀k �= l.

Then B
I1···In is isomorphic to B

I1
× · · · × B

In
.

Lemma 1.1.2. Let B be a Noetherian integral domain. Then B is factorial

if and only if for every irreducible element f of B, the ideal fB is prime.

Lemma 1.1.3. Let B be factorial and let f ∈ B. The ideal fB is equal to

its radical if and only if any factorization of f into irreducible factors admits

no factors with a power q > 1.

Proposition 1.1.4. Let F be a field which is an integral ring extension of

B. Then B is a field.

Proposition 1.1.5. Suppose that for every x ∈ B \ {0}, the quotient ring
B
xB is Noetherian. Then B is Noetherian.

Proof. Let I be an ideal of B. Let t ∈ I, t �= 0 and let B̃ = B
tB . Then tB

is also an ideal of I, and I
tB is an ideal of B

tB . For every x ∈ B, we denote

by x̃ its class in B
tB . Since B̃ is Noetherian, we find x1, . . . , xq ∈ I such that

I
tB = B̃x̃1 + · · · + B̃x̃q. Then tB +

∑q
i=1 xiB is an ideal of B included in

I. Let x ∈ I. Since x̃ belongs to I
tB , we can find a1, . . . , aq ∈ B such that

x̃ =
∑q

i=1 ãix̃i. Therefore x − ∑q
i=1 ãix̃i ∈ tB, and then is equal to some

ta, with a ∈ B. Thus, x = tb +
∑q

i=1 aixi, and then I ⊂ tB +
∑q

i=1Axi.

Since by definition I contains tB +
∑q

i=1Axi, this finishes showing that I

is finitely generated, and thereby A is Noetherian. �

Proposition 1.1.6 is a consequence of Kronnecker’s Theorem.

Proposition 1.1.6. Let B be an entire commutative ring with unity u, let

B′ be an integrally closed subring B containing u of B, and let x ∈ B, be

integral over B′. Then, the minimal polynomial of x over the field of fractions

of B′ belongs to B′[X].

Notations: Let B′ be an integrally closed subring of B containing the

unity of B and let x ∈ B be integral over B′. Then, the minimal polynomial

of x over B′ will be denoted by irr(x,B′). Hence by Proposition 1.1.6,

irr(x,B′) ∈ B′[X].

Proposition 1.1.7. Let B be an integral domain which is integrally closed

and let R ⊃ B be a unital commutative ring which is integral over B. Let

x ∈ B and let irr(x,B) = xn +
∑n−1

i=0 aix
i. Then x is invertible in R if and

only if a0 is invertible in B.
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Proof. We have xn +
∑n−1

i=0 aix
i = 0. If a0 is invertible in B, then

x(
∑n−1

i=0 ai(a0)
−1xn−i−1) = −1, hence x is invertible in R. Now, suppose that

x is invertible in R, and let u = x−1. Then u satisfies 1 +
∑n

i=1 an−iu
i = 0.

Let P (X) = irr(u,B). Since B is integrally closed, x is of degree n over

the field of fractions of B, and so is u, hence P divides the polynomial

G(X) = 1 +
∑n

i=1 an−iX
i, and is of same degree. Consequently G = a0P ,

and therefore P (0) = 1
a0
, which shows that a0 is invertible in B. �

Notation and definition: We will call a Luroth F-algebra a IE-algebra

of the form IE[h, x], with h ∈ IE(x) and x transcendental over F. Given

h(x) = P (x)
Q(x) ∈ IE(x), we call degree of h the number deg(P ) − deg(Q), and

we will denote it by deg(h). Lemma 1.1.8 is immediate.

Lemma 1.1.8. Let B = IE[h, x] be a Luroth IE-algebra. For every pole α of

h, x− α is invertible in B.

Corollary 1.1.9. Let hj =
Pj(x)
Qj(x)

∈ F (x), (1 ≤ j ≤ n), with Pj and Qj

relatively prime. Let B = F [h1, . . . , hn, x]. Then
1

Qj(x)
belongs to B for all

j = 1, . . . , n.

Propositions 1.1.10 and 1.1.12 are classical in commutative algebra [7].

Theorem 1.1.10. The set of prime ideals of B is inductive with respect to

relation ⊃.

Corollary 1.1.11. Every prime ideal of B contains a minimal prime ideal.

Theorem 1.1.12. If B is Noetherian it has finitely many minimal prime

ideals.

Lemma 1.1.13 is immediate.

Lemma 1.1.13. Let I be an ideal of A and let A′ = A
I . Let θ be the canonical

surjection of A onto A′. The maximal ideals of A′ are the θ(M) whenever M
runs through maximal ideals of A containing I. Moreover, the maximal ideals

of codimension 1 of A′ are the θ(M) whenever M runs through maximal

ideals of codimension 1 of A containing I.

Lemma 1.1.14. Let S be a subset of X (A). If there exists an idempotent u

of A satisfying χ(u) = 1 ∀χ ∈ S, and χ(u) = 0 ∀χ ∈ X (A) \ S, then it is

unique.
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Proof. Suppose there exist two idempotents u and u′ satisfying χ(u) =

χ(u′) = 1 ∀χ ∈ S, and χ(u) = χ(u′) = 0 ∀χ ∈ X (A) \ S. We notice that

(1) (u− u′)(1− u− u′) = 0.

Let χ ∈ S. Then χ(u′) = 1, hence χ(1 − u′) = 0, and therefore χ(1 −
u − u′) = χ(−u) = −1. Now, let χ ∈ X (A) \ S. Since χ(u′) = 0, we have

χ(1 − u − u′) = χ(1) = 1. Consequently, χ(1 − u − u′) �= 0 whenever χ ∈
X (A), and therefore 1 − u − u′ is invertible in A. Hence by (1) we have

u− u′ = 0. �

Lemma 1.1.15. Let A be a IE-algebra having finitely many minimal prime

ideals P1, . . . ,Pq, and for each j = 1, . . . , q, let θj be the canonical surjection

from A onto A
Pj
. Then for every x ∈ A, sp(x) =

⋃q
j=1 sp(θj(x)).

Proof. For each j = 1, . . . , q, we put Aj =
A
Pj

. Given χ ∈ X (Aj) then χ◦θj
belongs to X (A). In particular this is true when χ(θj(x)) ∈ E. Therefore,

we have
⋃q

j=1 sp(θj(x)) ⊂ sp(x). Conversely, let φ ∈ X (A). By Corollary

1.1.11 Ker(φ) contains at least one minimal prime ideal Ph. Consequently, φ

factorizes in the form χ ◦ θh, with χ ∈ X (Aj). Particularly this is true when

χ(x) ∈ IE. Consequently, sp(x) ⊂ ⋃q
j=1 sp(θj(x)). �

Normalization lemma is classical.

Theorem 1.1.16 (Normalization lemma). Let A be a finite type

F-algebra. There exists a finite algebraically free set {y1, . . . , ys} ⊂ A such

that A is finite over F[y1, . . . , ys].

When studying Krasner–Tate algebras, we will consider universal

generators.

Definitions: Let A be a IE-algebra. An element x ∈ A will be said to be

spectrally injective if, for every λ ∈ sp(x), x−λ belongs to a unique maximal

ideal. Moreover, x will be called a universal generator if, for every λ ∈ sp(x),

(x− λ)A is a maximal ideal.

Lemma 1.1.17 is immediate by considering the fields of fractions of A

and B.

Lemma 1.1.17. Let A be a IE-algebra finite over a IE-algebra B. For all

x ∈ X (B), there exists χ̂ ∈ X (A) satisfying χ̂(x) = χ(x) ∀x ∈ B.

Definition: An element a �= 0 of a ring R will be called divisor of zero if

there exists b ∈ R, b �= 0 such that ab = 0.
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Theorem 1.1.18. Let A be a IE-algebra without divisors of zero, admitting

a spectrally injective element x. Let B be an integrally closed IE-subalgebra

of A containing x and the unity of A such that is finite over B. Assume that

all maximal ideals of A and B have codimension 1. Then for every y ∈ B, we

have spB(y) = spA(y) and x is a spectrally injective element of B. Moreover,

for every M ∈ Max(A), M ∩ B belongs to Max(B) and the mapping φ

from Max(A) into Max(B) defined as φ(M) = M∩ B is an injection from

Max(A) into Max(B). Further, assume that B is semi-simple and let p be

the characteristic of IE: either p = 0, then A = B, or p �= 0, and then for

every y ∈ A, irr(y,B) is of the form Xpt − f, f ∈ B.

Proof. Since the unity of A lies in B it is easily seen that for each maximal

ideal M of A, the IE-algebra homomorphism from A to F whose kernel is

M has a restriction to B which is surjective on IE, so M∩ B is a maximal

ideal of B. We will deduce that the mapping φ is injective. Indeed, let M1

and M2 be two different maximal ideals of A, and let λ1, λ2 ∈ IE be such

that x− λ1 ∈ M1, x− λ2 ∈ M2. Then x− λ1 lies in M1 ∩B, but does not

lie in M2, hence M1 ∩B �= M2 ∩B, thereby φ is injective. The mapping is

also surjective: let J be a maximal ideal of B and let χ ∈ X (B) admit J for

kernel, then by Lemma 1.1.17, there exists χ̂ ∈ X (A) whose restriction to

B is equal to χ and therefore J = Ker(χ̂) ∩ B = φ(Ker(χ̂)). Consequently

spA(y) = spB(y) ∀y ∈ B. Then it is clear that x is spectrally injective in

B: given λ ∈ spB(x) = spA(x), then there is a unique maximal ideal M
of A which contains x − λ and then φ(M) is the unique maximal ideal

of B which contains x − λ. We now suppose that B is semi-simple. Let

y ∈ A \B, let B′ = B[y] and let P (X) =
∑n

j=0 fjX
j = irr(y,B). Then x is

a spectrally injective element of B′. Let χ ∈ X (B). Since φ is bijective there

exists a unique χ̂ ∈ X (A) whose restriction to B is equal to χ. Consequently,

the polynomial G(X) =
∑n

j=0 χ(fj)X
j admits a unique zero α of order n.

Therefore we have χ(fj) = (−α)j
(
n

j

)
∀j = 0, . . . , n − 1, and in particular

χ(fn−1) = −nα. Suppose p does not divide n. Since this is true for all

χ ∈ X (B) and since the Jacobson radical of B is null, this shows

fj =

(
n

j

)(−fn−1

n

)j ∀j = 1, . . . , n− 1.

Consequently,

G(X) =
(
X − fn−1

n

)n
,
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therefore n = 1. Thus, if p = 0 then B = A. Similarly, if p divides n, we can

see that P is of the form Xpt − f, f ∈ B. �

1.2. Tree structure

Trees will be very helpful when studying multiplicative semi-norms on

polynomials and rational functions in one variable. Most of results given

here were published in [11, 26]. In this chapter, we define a basic notion of

tree such that, given a strictly increasing function from the tree to R+, this

function provides the tree with a distance.

Definition: Let E be a set equipped with an order relation ≤. Then E

will be called a tree if:

(i) For every a, b ∈ E there exists sup(a, b) ∈ E.

(ii) For every a ∈ E and b, c ∈ E satisfying a ≤ b, a ≤ c, then b and c are

comparable with respect to the order ≤.

Theorem 1.2.1. Let (E, ≤) be a tree and let f be a strictly increasing

function from E to R. For all a, b ∈ E we put σ1(a, b) = (f(sup(a, b)) −
min(f(a), f(b)) and σ2(a, b) = 2f(sup(a, b)) − f(a) − f(b). Then σ1 and σ2
are two equivalent distances such that σ1 ≤ σ2 ≤ 2σ1. Moreover, if b, c ∈ E

satisfy a ≤ b, a ≤ c and if σj(a, b) = σj(a, c) for some j, then b = c.

Proof. It is easily seen that σj(a, b) ≥ 0 ∀a, b ∈ E, (j = 1, 2) and that

σj(a, b) = 0 if and only if a = b (j = 1, 2) because f is strictly increasing. It is

clear that σ1 ≤ σ2 so the same properties hold for σ2. Now, let a, b, c ∈ E. By

definition of both σ1 and σ2 it is obviously seen that they satisfy σj(a, b) =

σj(b, a). Thus, it only remains us to check the triangular inequality.

Since E is a tree, sup(a, b) and sup(b, c) are comparable. For instance,

suppose first sup(b, c) ≥ sup(a, b). Then it is easily seen that sup(b, c) =

sup(a, b, c) ≥ sup(a, c), and therefore we obtain

(2.1) σ1(a, b) + σ1(b, c) ≥ f(sup(a, b)) − f(a) + f(sup(b, c)) − f(b) ≥
f(sup(b, c)) − f(a) ≥ f(sup(a, c)) − f(a).

(2.2) σ1(a, b) + σ1(b, c) ≥ f(sup(a, b)) − f(a) + f(sup(b, c)) − f(c) ≥
f(sup(b, c)) − f(c) ≥ f(sup(a, c)) − f(c).

In the same way, suppose now sup(b, c) ≤ sup(a, b). Then we obtain

(2.3) σ1(a, b) + σ1(b, c) ≥ f(sup(a, b)) − f(a) + f(sup(b, c)) − f(b) ≥
f(sup(a, b)) − f(a) ≥ f(sup(a, c)) − f(a).
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(2.4) σ1(a, b) + σ1(b, c) ≥ f(sup(a, b)) − f(a) + f(sup(b, c)) − f(c) ≥
f(sup(a, b)) − f(c) ≥ f(sup(a, c)) − f(c).

So, by (2.1),(2.2) whenever sup(b, c) ≥ sup(a, b) and by (2.3), (2.4) whenever

sup(b, c) ≥ sup(a, b), we obtain σ1(a, b) + σ1(b, c) ≥ σ1(a, c). This finishes

proving that σ1 is a distance. �

We now consider σ2. We first suppose again sup(b, c) ≥ sup(a, b). Then

σ2(a, b)+σ2(b, c) = 2f(sup(a, b))−f(a)−f(b)+2f(sup(b, c))−f(b)−f(c) =
2f(sup(a, b, c)) − f(a) − f(c) + 2f(sup(a, b)) − 2f(b) ≥ 2f(sup(a, b, c)) −
f(a) − f(c) ≥ 2f(sup(a, c)) − f(a) − f(c) = σ2(a, c). And in the same way,

when sup(b, c) ≥ sup(a, b) then σ2(a, b) + σ2(b, c) = 2f(sup(a, b, c))− f(a)−
f(c)+2f(sup(b, c))−2f(b) ≥ 2f(sup(a, b, c))−f(a)−f(c) ≥ 2f(sup(a, c))−
f(a)− f(c) = σ2(a, c). This finishes proving that σ2 is also a distance. Next,

it is easily seen that the two distances are equivalent because they satisfy

σ1(a, b) ≤ σ2(a, b) ≤ 2σ1(a, b). Now, suppose a ≤ b and a ≤ c, and σj(a, b) =

σj(a, c) for some j. Since E is a tree, b and c are comparable. Without loss

of generality we can assume b ≤ c. Then we have σj(a, b) = j(f(b) − f(a)),

σj(a, c) = j(f(c)−f(a)), (j = 1, 2), hence f(b) = f(c). But since f is strictly

increasing, that means b = c.

Definitions: Let E be a tree and let f be a strictly increasing mapping

from E into R. We will call metric topology associated to f on E the topology

defined by the distances introduced in Theorem 1.2.1. The distance denoted

by σ1 in Theorem 1.2.1 will be called supremum distance associated to f

and this denoted by σ2 in Theorem 1.2.1 will be called the whole distance

associated to f .

A topological space E is said to be pathwise connected or arcwise

connected if for every a, b ∈ E there exists a continuous mapping φ from

an interval [α, β] into E such that φ(α) = a, φ(β) = b. Theorem 1.2.2 is

classical in basic topology.

Theorem 1.2.2. An arcwise connected topological space is connected.

Theorem 1.2.3. Let (E, ≤) be a tree and let f be a strictly increasing

function from E to R. Let a, b ∈ E be such that a ≤ b and {f(x) | a ≤
x ≤ b} = [f(a), f(b)]. Then there exists a mapping from [f(a), f(b)] into E

bicontinuous with respect to the metric topology of E associated to f.

Proof. For each r ∈ [f(a), f(b)], we denote by ψ(r) the unique x ∈ E such

that a ≤ x and f(x)−f(a) = r. Let σ1 be the supremum distance associated
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to f . Then we have σ1(ψ(r), ψ(s)) = r− s ∀r, s ∈ [f(a), f(b)], which clearly

shows that ψ is bicontinuous. �

Theorem 1.2.4. Let (E, ≤) be a tree and let f be a strictly increasing

function from E to R. If for all a, b ∈ E such that a ≤ b, the equality

{f(x) | a ≤ x ≤ b} = [f(a), f(b)] holds, then E is arcwise connected with

respect to its metric topology associated to f.

Proof. Indeed, let a, b ∈ E and let s = sup(a, b). By Theorem 1.2.3,

there exists a bicontinuous mapping φ1 from [f(a), f(s)] into E such that

φ1(f(a)) = a, φ1(f(s)) = s and a bicontinuous mapping φ2 from [f(b), f(s)]

into E such that φ1(f(b)) = b, φ1(f(s)) = s. Then we can obviously define

a bicontinuous mapping ψ from an interval [α, β] into E such that ψ(α) =

a, ψ(β) = b. �

1.3. Ultrametric absolute values

In this chapter, we have to recall many basic definitions and results about

valuations in ultrametric fields. Most of them were given in [26, 28] with full

proofs. Here, when we state one with some additional considerations, it is

followed by a new proof.

Notations: Throughout the book, L will denote a field equipped with a

non-trivial ultrametric absolute value | . | which is complete for this absolute

value and K will be an algebraically closed complete ultrametric field with

a non-trivial ultrametric absolute value | . |. It is convenient and useful to

define the valuation v associated to the absolute value | . |. Let ω ∈]1,+∞[

and let log be the real logarithm function of base ω. We put v(x) = − log |x|,
and v is named the valuation associated to the absolute value | . |.

The Archimedean absolute value defined on R will be denoted by | . |∞.

Lemmas 1.3.1 and 1.3.2 are classical, and proven in the same way regardless

the absolute value.

Lemma 1.3.1. Let IE be a field equipped with two ultrametric absolute values

whose associated valuations are v and w, respectively. They are equivalent if

and only if there exists r > 0 such that w(x) = rv(x) whenever x ∈ IE.

Lemma 1.3.2. Let IE be a field equipped with an ultrametric absolute value.

Let V be an IE-vector space of finite dimension equipped with two norms.

These two norms are equivalent in each one of these two cases:

IE is complete,

The dimension of V is one.
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Theorem 1.3.3 is an easy corollary.

Theorem 1.3.3. Let F be an algebraic extension of L, equipped with two

absolute values extending this of L. These absolute values are equal.

We will sometimes use Hahn–Banach’s Theorem for non-Archimedean

vector spaces.

Theorem 1.3.4. Let F be a L-vector space which is complete for two norms

‖ . ‖ and ‖ . ‖′ such that ‖x‖ ≤ C‖x‖′ ∀x ∈ F, where C is a positive constant.

Then the two norms are equivalent.

Notation: The set of x ∈ L such that |x| ≤ 1 will be denoted by UL, and

the set of x ∈ L such that |x| < 1 will be denoted by ML.

Lemma 1.3.5. UL is a local subring of L whose maximal ideal is ML.

Lemma 1.3.6. Let B be a unital commutative ring equipped with an absolute

value | . | such that |x| ≤ 1 ∀x ∈ B, and such that every x satisfying |x| = 1

is invertible in B. The set of x ∈ B such that |x| < 1 is the unique maximal

ideal of B. Let F be the field of fractions of B. Then the absolute value of B

has continuation to F and B = UF.

Definitions and notations: We call a valuation ring a unital commuta-

tive ring equipped with an absolute value | . | such that |x| ≤ 1 ∀x ∈ B,

and such that every x satisfying |x| = 1 is invertible in B, and then the

maximal ideal of B is called the valuation ideal of B. In the field L, UL is

called the valuation ring of L. The maximal ideal ML of UL is called the

valuation ideal and the field L =
UL

ML

is called the residue class field of L.

For any a ∈ L, the residue class of a will be denoted by a. If D is a set in L

we put |D| = {|x| | x ∈ D}, and v(D) = {v(x) | x ∈ D}.
The characteristic of L is named the residue characteristic of L and will

be denoted by p. We put L
∗ = L \ {0}. Then |L∗| is a subgroup of the

multiplicative group (R∗
+, .). The image of L∗ by the valuation v associated

to L is then a subgroup of the additive group (R,+) called the valuation

group of L. The valuation of L is said to be discrete if its valuation group

is a discrete subgroup of R. Else, the valuation group is dense in R, and

then the valuation is said to be dense. The field L will be said to be strongly

valued if at least one of the two sets |L|, L, is not countable. If L is not

strongly valued it will be said to be weakly valued.

Let a ∈ L and let r be a positive number. We denote by d(a, r) the disk

{x ∈ L | |x−a| ≤ r} and by d(a, r−) the disk {x ∈ L | |x−a| < r}. Moreover

we denote by C(a, r) the circle {x ∈ L | |x− a| = r}.
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Lemma 1.3.7 is well known.

Lemma 1.3.7. If L is algebraically closed, its valuation group is dense in R.

Remark 1. The most classical example of an ultrametric complete alge-

braically closed field is the field Cp (one can find a description in [28,

Chapter 8, 41]). Then Cp is weakly valued. Now, consider a field L with a

dense valuation, and let A be the L-algebra B of bounded analytic functions

in d(0, 1−), equipped with the norm of uniform convergence in d(0, 1−). It is
known and easily seen that {‖f‖ | f ∈ B} = [0,+∞[. Therefore, its field of

fractions is strongly valued. When p �= 0 it is useful to take ω = p.

Theorems 1.3.8 and 1.3.9 are well known (proofs are given in [28,

Theorems 5.4 and 5.14]).

Theorem 1.3.8. Let F be an algebraic extension of L. There exists a unique

ultrametric absolute value on F extending this of L. Moreover, given x ∈ F,

P (X) = irr(x,F) and q = deg(P ), then |x| = q
√|P (0)|.

Theorem 1.3.9. Let F be an algebraically closed field equipped with a non-

trivial ultrametric absolute value. The completion of F is algebraically closed.

Example. Cp is the completion of an algebraic closure of the field Qp,

the completion of Q with respect to the p-adic absolute value. Then Cp

is algebraically closed.
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Chapter 2

Norms, Semi-norms and
Multiplicative Spectrum

2.1. A metric on the set of the semi-norms bounded

by the norm

Definitions and notations: Let L be a field equipped with an absolute

value denoted | . |.
Let (E, ‖ . ‖) be a normed L-vector space, let E0 be the unit ball of E,

let S be the set of semi-norms of E bounded by the norm, equipped with

topology of pointwise convergence and let T be a closed subset of S with

respect to the topology of pointwise convergence.

Given φ, ψ ∈ T , we put Θ(φ,ψ) = sup{|φ(x)− ψ(x)|∞, x ∈ E0}. Given

φ ∈ T , f1, . . . , fq ∈ E and ε ∈ R
∗
+, we denote by W(φ, f1, . . . , fq, ε) the

neighborhoods of φ: {ζ ∈ T | ∣∣φ(fj)− ζ(fj)
∣∣
∞ ≤ ε, j = 1, . . . , q}.

Moreover, we denote by IB(φ, ε) the ball {ζ ∈ T | Θ(φ, ζ) ≤ ε}.
Given f1, . . . , fq ∈ E0, we put ω(f1, . . . , fq) = max(1, ‖f1‖, . . . , ‖fq‖).
By Tykhonov’s Theorem [6, paragraph 9, n. 5, Theorem 3], we have

Lemma 2.1.1.

Lemma 2.1.1. Let g be a function from D to R+. Then the set of functions

from D to R+ bounded by g is compact with respect to the topology of

pointwise convergence.

Corollary 2.1.2. S and T are compact with respect to the topology of

pointwise convergence.

Lemma 2.1.3 is immediate.

Lemma 2.1.3. Θ is a distance on T .

11
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Now we given two subsets U, V of T , we put Θ(U, V ) = inf{Θ(φ,ψ) φ ∈
U, ψ ∈ V }.
Lemma 2.1.4. Let φ ∈ T , let f1, . . . , fq ∈ E. There exists t ∈ R+ such that,

for all ε > 0 and ψ ∈ W(φ, f1, . . . , fq, ε), W(φ, f1, . . . , fq, tε) contains the

ball B(ψ, ε
ω(f1,...,fq

).

Proof. Let b ∈ L and s ∈ R+ satisfy ω(f1, . . . , fq) ≤ |b| ≤ sω(f1, . . . , fq)

and for each j = 1, . . . , q, set gj =
fj
b . Then ‖gj‖ ≤ 1 ∀j = 1, . . . , q. Let ζ ∈

IB(ψ, ε
ω(f1,...,fq)

). Then for every g ∈ E0, we have
∣∣∣ψ(g)− ζ(g)

∣∣∣
∞

≤ ε
ω(f1,...,fq)

and particularly,
∣∣∣ψ(gj) − ζ(gj)

∣∣∣
∞

≤ ε
ω(f1,...,fq)

hence
∣∣∣ψ(bgj) − ζ(bgj)

∣∣∣
∞

=∣∣∣|b|(ψ(gj)− ζ(gj))
∣∣∣
∞

≤ |b|( ε
ω(f1,...,fq)

) ≤ sε. Thus,
∣∣∣ψ(fj)− ζ(fj)

∣∣∣
∞

≤ sε ∀j =
1, . . . , q. But now, by hypothesis we have

∣∣∣ψ(fj)−φ(fj)
∣∣∣
∞

≤ ε ∀j = 1, . . . , q,

hence
∣∣∣ζ(fj)−φ(fj)

∣∣∣
∞

≤ (s+1)ε ∀j = 1, . . . , q. Then putting t = s+1, that

ends the proof. �

Theorem 2.1.5. Let (φn)n∈N be a Cauchy sequence in T , with respect to

the metric Θ. Then the sequence has a unique cluster with respect to the

topology of pointwise convergence and it converges in T to this cluster with

respect to the topology of pointwise convergence.

Proof. Since the sequence (φn)n∈N is a Cauchy sequence, there exists

σ(ε) ∈ N, such that Θ(φm, φn) ≤ ε ∀m,n ∈ N such that m ≥ σ(ε), n ≥ σ(ε).

Next, since T is compact, the sequence admits a cluster φ ∈ T . Let us fix

ε > 0 and f1, . . . , fq ∈ E. There exists T (ε) ∈ N, with T (ε) ≥ σ(ε) such that

φT (ε) ∈ W(φ, f1, . . . , fq, ε) and hence, by Lemma 2.1.4, there exists t > 0 such

that IB(φT (ε), ε) is included in W(φ, f1, . . . , fq, tε). But then all terms φn with

n ≥ T (ε) satisfy Θ(φT (ε), φn) ≤ ε, hence they all lie in W(φ, f1, . . . , fq, tε).

This holds for every finite set f1, ..., fq of E and for every ε > 0, hence the

sequence (φn)n∈N converges to φ with respect to the topology of pointwise

convergence. �

Theorem 2.1.6. T is complete with respect to the distance Θ.

Proof. Let (φn)n∈N be a Cauchy sequence in T , with respect to the metric

Θ. By Theorem 2.1.5, the sequence converges to a limit φ with respect

to the topology of pointwise convergence. Suppose that the sequence does

not converge to φ with respect to the distance Θ. Then we can extract

a subsequence (φs(m)∈N) of the sequence (φn) and find λ > 0 such that
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Θ(φ, φs(m)) ≥ λ ∀m ∈ N. Thus, without loss of generality, we can assume

that the sequence (φn)n∈N is such that Θ(φ, φn) ≥ λ ∀n ∈ N. Let σ ∈ N

be such that Θ(φn, φm) ≤ λ
3 ∀m, n ∈ N such that m ≥ S, n ≥ σ.

Thus, we have Θ(φ, φσ) ≥ λ but Θ(φσ , φn) ≤ λ
3 ∀n ≥ σ. On the other

hand, there exists f ∈ E0 such that |φ(f) − φσ(f)|∞ ≥ 5λ
6 . But since

Θ(φn, φσ) ≤ λ
3 ∀n ≥ σ, this implies |φ(f)− φn(f)|∞ ≥ λ

2 ∀n ≥ σ. And since

the sequence (φn) converges to φ with respect to the pointwise convergence,

we must have |φ(f)− φn(f)|∞ ≤ λ
3 when n is big enough, which contradicts

|φ(f) − φn(f)|∞ ≥ λ
2 . That finishes proving that the sequence (φn)n∈N

converges to φ with respect to the metric Θ and this proves that T is

complete with respect to the distance Θ. �

Theorem 2.1.7. Let U, V be two compact subsets of T with respect to the

pointwise topology, making a partition of T . Then Θ(U, V ) > 0.

Proof. Suppose Θ(U, V ) = 0. There exists a sequence (φn)n∈N of U and a

sequence (ψn)n∈N of V such that limn→∞Θ(φn, ψn) = 0. Since U and V are

compact with respect to the pointwise topology, the sequence (φn)n∈N has a

cluster point φ in U with respect to the pointwise topology.

Let W(φ, f1, . . . , fq, ε) be a neighborhood of φ in U with respect to

the pointwise topology. There exists a rank L ∈ N such that φL ∈
W(φ, f1, . . . , fq, ε) and there are infinitely many n ∈ N, n ≥ L, such

that φn ∈ W(φ, f1, . . . , fq, ε). Particularly, we can find M ≥ L such that

φM ∈ W(φ, f1, . . . , fq, ε) and that Θ(φM , ψM ) ≤ ε
ω(f1,...,fq)

. But then, by

Lemma 2.1.4, there exists t > 0 such that Vφ, f1, . . . , fq, tε) contains the ball
IB(φM ,

ε
ω(f1,...,fq)

). That holds for every ε > 0 and for every f1, . . . , fq ∈ E,

therefore we have infinitely many indicesm such that |φ(fj)−ψm(fj)|∞ ≤ tε.

Consequently, φ is a cluster point of the sequence (ψn)n∈N. But since V is

compact with respect to the pointwise topology, V is closed and hence φ lies

in V , a contradiction since U ∩ V = ∅. This ends the proof. �

2.2. L-productal vector spaces

Definitions and notations: Recall that L denotes a complete ultrametric

field. A normed L-vector space E will be said to be L-productal if every

L-subspace of IE, equipped with the topology defined by its norm, is

homeomorphic to L
n, equipped with the product topology.

Throughout this chapter, A will denote a unital commutative L-algebra

denoted by 1.
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Let us recall that a semi-norm (resp., a norm) of L- algebra is a semi-

norm (resp., a norm) of L-linear space ϕ that satisfies ϕ(x.y) ≤ ϕ(x) ϕ(y).

Moreover, ϕ is said to be semi-multiplicative if ϕ(xn) = ϕ(x)n whenever

x ∈ A and ϕ is said to be multiplicative if ϕ(x.y) = ϕ(x) ϕ(y) whenever

x, y ∈ A.

In particular, a multiplicative norm is just an absolute value extending

that of L (when identifying the unity with 1 in L).

Given a semi-norm of L-algebra ϕ, we will denote by Ker(ϕ) the set of

the x ∈ A such that ϕ(x) = 0. A normed L-vector space E will be said to

be L-productal if every L-subspace of E, equipped with the topology defined

by its norm, is homeomorphic to L
n, equipped with the product topology.

Lemma 2.2.1. Let E be a finite dimensional normed L-vector space. Then

E is homeomorphic to L
n if and only if for every x ∈ E, there exists φ ∈ E′

satisfying φ(x) 	= 0. Moreover, if E is homeomorphic to L
n, then E′ = E∗.

Proof. If E is homeomorphic to L
n for every x ∈ E, there obviously exists

φ ∈ E′ satisfying φ(x) 	= 0 because, given u ∈ E, u 	= 0, we can take a basis

(ej)1≤j≤n of E such that u = e1 and such that ‖∑n
j=1 λjej‖ ≤ max1≤j≤n |λj |,

and then, in the dual basis (φj)1≤j≤n of the basis (ej), we check that φ1
satisfies |φ1(

∑n
j=1 λjej)| = |λ1| ≤ ‖∑n

j=1 λjej‖. �

Conversely, we assume that for every x ∈ E, there exists φ ∈ E′ satisfying
φ(x) 	= 0. We will show the existence of a basis of E∗ consisting of elements

of E′. Let n be the dimension of E. By hypothesis, we can find φ1 ∈ E′,
φ1 	= 0. Suppose we have already constructed φ1, . . . , φm ∈ E′, linearly

independent, withm < n. Then the intersection of them hyperplans Ker(φj)

is not reduced to the null subspace. Hence, there exists u ∈ ⋂m
j=1Ker(φj),

with u 	= 0. By hypothesis, there exists φm+1 ∈ E′ such that φm+1(u) 	= 0.

Then, since φj(u) = 0 ∀j = 1, . . . ,m, and φm+1 	= 0, we easily check that

φ1, . . . , φm+1 are linearly independent. Thus, by induction, we can obtain

φ1, . . . , φn ∈ E′ which are linearly independent. Consequently, this is a

basis of E∗ and therefore E∗ = E′. Now, consider the mapping ψ from

E into Ln defined as ψ(x) = (φ1(x), . . . , φn(x)). We can easily check that

ψ is an isomorphism from E onto Ln, and is continuous by definition

because so are the φj . We have to check that ψ−1 is also continuous. By

considering the bidual of E we can obtain a basis {e1, . . . , en} of E such that

{φ1, . . . , φn} is the dual basis of {e1, . . . , en}. Let M = max1≤j≤n ‖ej‖. Let
(λ1, . . . , λn) ∈ Ln and let x =

∑n
j=1 λjej . Then ψ(x) = (λ1, . . . , λn), hence
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ψ−1(λ1, . . . , λn) = x, and therefore ‖ψ−1(λ1, . . . , λn)‖ ≤ M max1≤j≤n |λj |.
Thus, ψ−1 is continuous.

Corollary 2.2.2. A normed L-vector space E is L-productal if and only if

for every x ∈ E, there exists φ ∈ E′ satisfying φ(x) 	= 0.

Proof. If E is L-productal, obviously for every x ∈ E, there exists

φ ∈ E′ satisfying φ(x) 	= 0. Conversely, if for every x ∈ E, there exists

φ ∈ E′ satisfying φ(x) 	= 0, this property is true in each finite-dimensional

L-subspace F of dimension n of E, and proves that F is homeomorphic

to L
n. �

Lemma 2.2.3. Let E be a L-productal normed L-vector space and let q ∈
N
∗. Then Eq, equipped with the product topology, is L-productal.

Proof. Let W be a subspace of Eq of finite dimension n. For each

h = 1, . . . , q, we denote by Eh the subspace of Eq consisting of the (x1, ...xq)

such that xj = 0 ∀j 	= h and we put Wj = W ∩ Ej . Then W is the

direct sum of the Wj, and for each j = 1, . . . , q, Wj has finite dimension

nj. Let n =
∑q

j=1 nj. By hypothesis, Wj is homeomorphic to L
nj . Let

‖ . ‖ be the norm of E, let ‖ . ‖ be the product norm on Eq defined

as ‖(x1, . . . xq)‖ = max1≤j≤q ‖xj‖. Now, in each subspace Wj, we denote

by let | . |j the norm induced by L
nj on Wj. Thus, there exist positive

constants A and B such that A|aj |j ≤ ‖aj‖ ≤ B|aj|j ∀aj ∈Wj,∀j = 1, . . . , q.

But since Eq is equipped with the product topology, given a ∈ W , a

is of the form
∑q

j=1 aj , with aj ∈ Wj, (j = 1, . . . , q), and therefore

we have Amax1≤j≤q ‖aj‖ ≤ ‖a‖ ≤ Bmax1≤j≤q ‖xj‖. But it is seen that

max1≤j≤q ‖xj‖ is a norm equivalent to the product norm on L
n, and this

lets us conclude that L
q, equipped with the norm ‖ . ‖, is homeomorphic

to L
q. �

Lemma 2.2.4. F be a subfield of L such that L is a F -productal F -vector

space with respect to its absolute value. Then, every L-productal L-vector

space is F -productal.

Proof. Let E be a L-productal L-vector space. Then E is a F -vector space.

Let W be a F -subspace of finite dimension over E and let {e1, . . . , eq} be

a basis of W . Let V be the L-subvector space generated by {e1, . . . , eq} in

E. By hypothesis, W is homeomorphic to L
q. But since L is F -productal,

by Lemma 2.2.3 so is Lq. Hence V is F -productal, and therefore, so is every

F -subspace of V , hence so is W . �



March 25, 2022 8:34 Banach Algebras of Ultrametric Functions 9.61in x 6.69in b4542-ch02 page 16

16 Banach Algebras of Ultrametric Functions

Before ending this chapter, we can also recall this immediate and classical

lemma:

Lemma 2.2.5. Let (En)n∈N be a sequence of Banach L-vector spaces and

let E be the L-vector space of sequences (an)n∈N such that limn→∞ ‖an‖ = 0.

Then E is a Banach L-vector space with respect to the norm ‖(an)n∈N‖ =

supn∈N ‖an‖.

2.3. Multiplicative semi-norms

The idea of studying systematically the multiplicative semi-norms of an

ultrametric normed algebra is due to Bernard Guennebaud [31, 32]. This

theory found many applications in the study of analytic elements and

actually gave the good explanation of several basic properties [21, 22].

More generally, this is also true in ultrametric Banach algebras, where

multiplicative semi-norms play a role somewhat similar to that of maximal

ideals in complex Banach algebras [8, 39]. Next, Vladimir Berkovich also

used the set of multiplicative semi-norms in order to reconstruct Tate’s

Theory [3, 44]. In [10], Kamal Boussaf showed the existence of a Shilov

boundary for the norm of an algebra of analytic elements and described it

with help of circular filters that characterize multiplicative semi-norms. In

[3], V. Berkovich showed the existence of a Shilov boundary for the spectral

semi-norm of an affinoid algebra. This chapter is aimed at proving, in the

general case, the existence of a Shilov boundary for a semi-multiplicative

semi-norm of a L-algebra, i.e., the existence of a closed subset F of the

set of continuous multiplicative semi-norms, minimal for inclusion, such

that for every x ∈ A, there exists ϕ ∈ F satisfying ϕ(x) = ‖x‖. Such a

process was outlined by B. Guennebaud in his unpublished Thèse d’Etat

[32] and our way widely takes from it. However, certain intermediate results

were missing, or suffered a lack of rigor, while hypotheses and definitions

were often confusing. Besides, there was a confusion between two different

problems: on one hand, finding a “Shilov boundary” for a semi-multiplicative

function defined on a semi-group, inside a set of multiplicative functions, and

on the other hand, finding a “Shilov boundary” for a semi-multiplicative

semi-norm defined on an algebra, inside a set of multiplicative semi-norms.

Here, we have reconstructed the framework of the proof and only considered

the problem of a Shilov boundary for a semi-multiplicative semi-norm [25].

Definitions and notations: Throughout this chapter, IE will denote a field

equipped with a non-trivial absolute value | . | which makes it complete,
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hence is either R or C, or the field L equipped with a non-trivial ultrametric

absolute value for which it is complete.

Given setsX, Y we will denote by F(X,Y ) the set of mappings fromX to

Y . LetD a be subset of IE and let F be a IE-vector space of bounded functions

from D to IE. In the sequel, we will denote by ‖ . ‖D the norm of uniform

convergence onD. TheR-vector space F(D,R) is equipped with the topology

of pointwise convergence: the filter of neighborhoods of ϕ ∈ F(D,R) admits

as a generating system the family of sets W(ϕ, a1, . . . , an, ε) = {ψ ∈
F(D,R) | |ψ(ai) − ϕ(ai)|∞ ≤ ε}, with a1, . . . , an ∈ D and ε > 0. Given a

topological spaceD we denote by G(D,R) the algebra of continuous functions
from D into R.

We call semi-group a set equipped with an associative internal law and

of a neutral element for this law, and we will denote by B, B′ semigroups.

In this chapter, we will denote by A (resp., A′) a unital commutative

IE-algebra.

Now, let θ be a function from D to R+ and let B(D, θ) be the subset

of F(D,R) consisting of the functions f from D to R+ such that f(x) ≤
θ(x) ∀x ∈ D.

Let μ ∈ F(B,R+). The function μ will be said to be submultiplicative

(resp., multiplicative) if μ(xy) ≤ μ(x)μ(y) ∀x, y ∈ B (resp., μ(xy) =

μ(x)μ(y) ∀x, y ∈ B). And μ will be said to be semi-multiplicative if

μ(xn) = μ(x)n ∀x ∈ B,∀n ∈ N
∗.

Let S be a subsemi-group of B. A submultiplicative function θ on B will

be said to be S-multiplicative if θ(xy) = θ(x)θ(y) ∀x, y ∈ S.

Let us recall that a semi-norm (resp., a norm) of IE-algebra defined on

A is a semi-norm (resp., a norm) of IE-linear space ϕ that satisfies ϕ(x.y) ≤
ϕ(x) ϕ(y) ∀x, y ∈ A. Given a semi-norm of IE-algebra ϕ, we will denote by

Ker(ϕ) the set of the x ∈ A such that ϕ(x) = 0. Henceforth, we will denote

by ‖ . ‖ (resp., ‖ . ‖′) a IE-algebra semi-norm on A (resp., A′).
We will denote by SM(A) the set of non-identically zero semi-

multiplicative semi-norms of A, by Mult(A) the set of non-identically zero

multiplicative semi-norms of A, by Multm(A) the set of the ϕ ∈ Mult(A) such

that Ker(ϕ) ∈ Max(A), by Mult1(A) the set of the ϕ ∈ Mult(A) such that

Ker(ϕ) ∈ Max1(A) and by Multa(A) the set of the ϕ ∈ Mult(A) such that

Ker(ϕ) is a maximal ideal of algebraic codimension and by Mult′(A) the set

of multiplicative norms of A [26, 28, 32]. Let A be equipped with a topology

T of IE-vector space. We will denote by SM(A,T ) (resp., Mult(A,T ),

resp., Mult′(A,T ), resp., Multm(A,T ), resp. Mult1(A,T ),) the set of the

ϕ ∈ SM(A) (resp., ϕ ∈ Mult(A), resp. ϕ ∈ Mult′(A), resp., ϕ ∈ Multm(A),
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resp., ϕ ∈ Mult1(A)) that are continuous with respect to the topology T .

Particularly, if the topology T on A is defined by a norm or a semi-norm ‖ . ‖,
we will denote by SM(A, ‖ . ‖) (resp., Mult(A, ‖ . ‖), resp. Mult′(A, ‖ . ‖),
resp., Multm(A, ‖ . ‖), resp., Mult1(A, ‖ . ‖)) the set SM(A,T ) (resp.,

Mult(A,T ), resp., Mult′(A,T ), resp., Multm(A,T ), resp., Mult1(A,T )).

Given ϕ ∈ Mult(A, ‖ . ‖) we denote by Ker(ϕ) the set of x ∈ A such that

ϕ(x) = 0.

By Corollary of Lemma 2.1.1, we have this obvious corollary.

Corollary 2.3.1. Mult(A, ‖ . ‖) is compact with respect to the topology of

pointwise convergence.

Proof. Indeed, Mult(A, ‖ . ‖) is a closed subset of the product of the sets

{φ(x)‖φ ∈ Mult(A, ‖ . ‖) whenever x runs in A. �

Statements of Lemma 2.3.2 are classical, and come from properties in

commutative algebra and in topological vector spaces theory.

Lemma 2.3.2. Let ϕ be a semi-norm of IE-algebra of A. Then Ker(ϕ) is an

ideal of A. If ϕ is multiplicative, Ker(ϕ) is a prime ideal of A.

Let I be an ideal of A, let A′ be the quotient IE-algebra A
I and let Φ be

the canonical homomorphism from A onto A′. Let ϕ′ be the mapping from A′

to R+ defined as ϕ′(Φ(x)) = inf{ϕ(t)| Φ(t) = Φ(x)}. Then ϕ′ is a IE-algebra

semi-norm on A′. If ϕ is ultrametric, so is ϕ′. Moreover, if ϕ is a norm, and

if I is closed with respect to ϕ, then ϕ′ also is a norm.

Lemma 2.3.3 is Lemma 1.7 in [28].

Lemma 2.3.3. If A is a L-algebra, every element of SM(A) is ultrametric.

Lemmas 2.3.4 is obvious.

Lemma 2.3.4. Let S be a subset of SM(A). If sup{ϕ(x) | ϕ ∈ S} is point-

wise bounded, then the mapping φ defined on A by φ(x) = sup{ϕ(x) | ϕ ∈ S},
belongs to SM(A).

Lemma 2.3.5. Both Mult(A) and SM(A) are closed in F(A,R+) with

respect to the topology of pointwise convergence.

Proof. Let φ belong to the closure of Mult(A) (resp., of SM(A)) in

Mult(A) and let ε be > 0. Let x, y ∈ A and let λ ∈ L, let n ∈ N and

let m = max(|x|, |y|, |λx|). There exists ψ ∈ Mult(A) such that max(|φ(x)−
ψ(x)|∞, |φ(xn)− ψ(xn)|∞, |φ(y) − ψ(y)|∞, |φ(λx) − ψ(λx)|∞, |λ|) < ε. Then

|φ(λx) − |λ|φ(x)|∞ ≤ |φ(λx) − ψ(λx)|∞ + |ψ(λx) − |λ|φ(x)|∞ ≤ ε(1 + |λ|).
Since ε is arbitrary, we have φ(λx) = |λ|φ(x). In the same way, φ(x + y) ≤
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ψ(x + y) + ε ≤ max(ψ(x), ψ(y)) + ε ≤ max(φ(x), φ(y)) + 2ε. Consequently,

φ(x+y) ≤ max(φ(x), φ(y)). Thus, φ is an ultrametric semi-norm of L-vector

space. Now, suppose first that φ belongs to the closure of Mult(A). Then

|φ(xy) − φ(x)φ(y)|∞ ≤ |φ(xy) − ψ(xy)|∞ + |ψ(x)ψ(y) − φ(x)ψ(y)|∞ +

|φ(x)ψ(y)− φ(x)φ(y)|∞ ≤ ε(1 + 2m+ ε), therefore |φ(xy)|∞ = |φ(x)φ(y)|∞.

This finishes showing that φ belongs to Mult(A). Consequently, Mult(A)

is closed in F(A,R+). Now, assume that φ belongs to the closure of

SM(A). Similarly, |φ(xn) − φ(x)n|∞ ≤ |φ(xn) − ψ(xn)|∞ + |ψ(x)n −
φ(x)n|∞ ≤ 2ε therefore |φ(xn)|∞ = |φ(x)n|∞. Consequently, SM(A) is closed

in F(A,R+). �

Lemma 2.3.6. Let A be equipped with a semi-norm ‖ . ‖ of IE-algebra and

let ϕ ∈ SM(A). If ϕ belongs to SM(A, ‖ . ‖) then ϕ(x) ≤ ‖ x ‖ whenever

x ∈ A.
Moreover, if ϕ ∈ Mult(A, ‖ . ‖), then Ker(ϕ) is a prime closed ideal of A.

Proof. Suppose that for some x ∈ A we have ϕ(x) > ‖ x ‖. Since the

absolute value IE is not trivial, it contains a subgroup of the form {an | n ∈
Z}, with a ∈ R∗

+, a > 1. We can find q ∈ N such that q log(‖x‖) < log a ≤
log(ϕ(x)), thereby there exists λ ∈ IE such that ‖xq‖ < λ ≤ ϕ(xq). Putting

t = xq

λ , we have ϕ(t) ≥ 1 > ‖t‖, and therefore ϕ is not continuous. �

The second assessment is immediate.

Corollary 2.3.7. Let A be equipped with a semi-norm ‖ . ‖ of IE-algebra.

Then Mult(A, ‖ . ‖) is closed in F(A,R+).

Proof. Indeed, by Lemma 2.3.5, Mult(A) is closed in F(A,R). But

consider φ in the closure of Mult(A, ‖ . ‖). Let x ∈ A and let ε be > 0.

There exists ψ ∈ Mult(A, ‖ . ‖) such that φ(x) ≤ ψ(x) + ε ≤ ‖x‖+ ε, hence

finally φ(x) ≤ ‖x‖. �

2.4. Shilov boundary

Definitions and notations: A set F equipped with an order relation ≤ is

said to be well ordered with respect to the inverse order ≥ if every subset of

F admits a maximum element, and then the order ≥ is called a good order..

Let ≥ be a good order on the set F and let x ∈ F . If there exists y < x, we

call follower of x the element sup{y ∈ F | y < x}. If there exists z ∈ F such

that x is the follower of z, then z is called precedent of x.
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Let A be equipped with a IE-algebra semi-multiplicative semi-norm ‖ . ‖.
A subset F of Mult(A, ‖ . ‖) will be called a boundary for (A, ‖ . ‖) if for

every x ∈ A, there exists ψ ∈ F such that ψ(x) = ‖x‖. A closed boundary

(with respect to the topology of pointwise convergence on A) is called Shilov

boundary for (A, ‖ . ‖) if it is the smallest of all closed boundaries for (A, ‖ . ‖)
with respect to inclusion.

Let S be a subsemi-group of B. A sub-multiplicative function θ on A

will be said to be S-multiplicative if θ(xy) = θ(x)θ(y) ∀x, y ∈ S. Let μ be a

S-multiplicative function such that μ(s) 	= 0 ∀s ∈ S. We will denote by μS

the function defined in A by μS(x) = inf{μ(sx)μ(s) | s ∈ S}.
Let N be a subset of F(B,R+). Then N will be said to be constructible

if it satisfies the following three properties:

(i) N is well ordered with respect to the order ≥.

(ii) For all μ ∈ N whose follower is μ′ (with respect to the good order ≥),

there exists a subsemi-group S of (A, .) such that μ is S-multiplicative

and such that μ′ = μS .

(iii) For every μ ∈ N having no precedent, μ is equal to inf{ν ∈ N | μ < ν}.

Let θ, ν be semi-multiplicative functions on B. Then ν will be said to be

constructible from μ if there exists a constructible set N admitting μ as its

first element and ν as its last element, with respect to the good order on N .

We will denote by Min(B, θ) the set of multiplicative functions φ ∈
B(B, θ) which are constructible from θ and by Z(B, θ) the set of the φ ∈
B(B, θ) which are constructible from θ. Given a subsemigroup S of B we

will denote by Z(B,S, θ) the set of φ ∈ Z(B, θ) which are S-multiplicative.

Lemma 2.4.1 is obvious, and comes from the definition of constructible

sets.

Lemma 2.4.1. Let X be a constructible subset of F(B,R+) and let ζ =

inf{φ ∈ X}. Then X ∪{ζ} is a constructible subset of F(B,R+). Let ψ ∈ X

and let Y be a subset of X such that inf(Y ) ≥ ψ. Then inf(Y ) belongs to X.

Lemma 2.4.2. Let S be a subsemi-group of (A, .) and let θ be a S-

multiplicative IE-algebra semi-norm on A. Then θS also is a S-multiplicative

IE-algebra semi-norm on A.

Proof. We have to show that θ is an IE-algebra semi-norm. Let

x, y ∈ A, and let ε be > 0. We can find s, t ∈ S such that
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θ(sx)
θ(s) < θS(x) + ε, θ(ty)

θ(t) < θS(y) + ε. On the other hand, since θ is a IE-

algebra semi-norm and is S-multiplicative, we check that

θS(x+ y) ≤ θ(st(x+ y))

θ(st)
≤ θ(stx) + θ(sty)

θ(st)
≤ θ(t)θ(sx) + θ(s)θ(by)

θ(s)θ(t)

=
θ(sx)

θ(s)
+
θ(ty)

θ(t)
. (2.4.1)

Consequently, we have θS(x+y) ≤ θS(x)+θS(y)+2ε. Since ε is arbitrary,

we have proven that θS(x+ y) ≤ θS(x) + θS(y). Next,

θS(xy) ≤ θ(stxy)

θ(st)
≤
(θ(sx)
θ(s)

)(θ(ty)
θ(t)

)
≤ (θS(x) + ε)(θS(y) + ε)

hence θS(xy) ≤ θS(x)θS(y). Thus, we have proven that θS is an IE-algebra

semi-norm. Then, it is obviously seen that it is S-multiplicative in the same

way as θ. �

Proposition 2.4.3. Let N be a totally ordered family of IE-algebra semi-

norms of A and let φ be the function defined on A as φ(x) = inf{ϕ(x) | ϕ ∈
N}. Then φ is a IE-algebra semi-norm.

Proposition 2.4.4. Let ‖ . ‖ be a semi-multiplicative IE-algebra semi-norm

of A. Then every element of Z(A, ‖ . ‖) is a IE-algebra semi-norm.

Proof. Suppose Proposition 2.4.4 is not true. Let φ ∈ Z(A, ‖ . ‖) which is

not a IE-algebra semi-norm. Let T be a constructible set admitting ‖ . ‖ as

first element and φ as last element. Since T is well ordered, the subset S of

the ψ ∈ T which are not IE-algebra semi-norms admits a maximum element

θ. If θ admits a precedent ξ, then there exists a subsemigroup S such that ξ

is S-multiplicative and satisfies θ = ξS . But by hypothesis ξ is a IE-algebra

semi-norm, and by Lemma 2.4.2 so is θ, a contradiction. Consequently, θ

has no precedent, and then we have θ = inf{ψ ∈ T | θ < ψ}. But T is all

ordered. Therefore, by Proposition 2.4.3, θ is a IE-algebra semi-norm because

so are all ψ ∈ T such that θ < ψ. �

Corollary 2.4.5. Let ‖ . ‖ be a semi-multiplicative IE-algebra semi-norm of

A. Then Min(A, ‖ . ‖) is included in Mult(A, ‖ . ‖).
Lemma 2.4.6. Let S be a subsemi-group of B and let θ ∈ F(B,R+) be

S-multiplicative. There exists f ∈ Min(B, θ) such that f(x) = θ(x) ∀x ∈ S.

Proof. Let H be the set of constructible subsets of Z(B,S, θ). Clearly,

Z(B,S, θ) is not empty, hence H isn’t either. On H we denote by � the
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order relation defined as N � N ′ if N is a beginning section of of N ′. Then
H is inductive for its order. Let N0 be a maximal element of H and let

f0 = inf{σ | σ ∈ N0}. Clearly f0 lies in Z(B,S, θ). The family G of subsemi-

groups J ⊃ S such that f0 is J-multiplicative and satisfies f(s) 	= 0 ∀s ∈ J is

an inductive family with respect to inclusion. Let T0 be a maximal element

of G. Suppose T0 	= B \Ker(f0) and let x ∈ B \ (T0 ∪Ker(f0). Let T1 be the

subsemi-group generated by x and T0. Then f0 is not T1-multiplicative. But

since f0 is sub-multiplicative and since T0 is maximal, there exists t ∈ T0
such that f0(tx) < f0(t)f0(x), hence f

T0
0 	= f0. On the other hand, since fT00

obviously is S-multiplicative, fT00 belongs to Z(B,S, θ). Hence, we can check

that N0∪{fT00 } is a constructible subset of Z(B,S, θ), a contradiction to the

hypothesis “N0 is maximal”. Consequently, T0 = B \Ker(f0). Thus, f0 is T0-

multiplicative. On the other hand, f0 trivially satisfies f(xy) ≤ f(x)f(y) =

0 ∀x ∈ Ker(f0), y ∈ B, hence f(xy) = f(x)f(y) ∀x ∈ Ker(f0), y ∈ B.

This finishes proving that f0 is B-multiplicative, and therefore belongs to

Min(B, θ). Finally, by definition, all elements of Z(B,S, θ) satisfies f(x) =

θ(x) ∀x ∈ S, so f0 is the f we looked for. �

Theorem 2.4.7. Let ‖ . ‖ be a semi-multiplicative IE-algebra semi-norm of

A. Then Min(A, ‖ . ‖) is not empty and is a boundary for (A, ‖ . ‖).
Proof. Let x ∈ A and let Sx be the subsemigroup generated by x in A.

Since ‖ . ‖ is semi-multiplicative, ‖ . ‖ is obviously Sx-multiplicative. Hence

by Lemma 2.4.6, there exists f ∈ Min(A, ‖ . ‖) such that f(x) = ‖x‖, and
by Corollary 2.4.5, Min(A, ‖ . ‖) is included in Mult(A, ‖ . ‖), hence it is a

boundary for (A, ‖ . ‖). �

Notation: Let γ be a semi-group homomorphism from B into B′. We will

denote by γ the mapping from F(B′,R) into F(B,R) defined by γ(φ) =

φ ◦ γ, ∀φ ∈ F(B′,R).

Lemma 2.4.8. Let γ be a semi-group homomorphism from B into B′

and let θ (resp., θ′) be semi-multiplicative functions such that θ = θ′ ◦ γ.
The restriction of γ to Z(B′, θ′) is a surjection onto Z(B, θ). Moreover,

Min(B, θ) ⊂ γ(Min(B′, θ′)).

Proof. Suppose Proposition 2.4.8 is not true. Then, there exists ν ∈
Z(B, θ) such that ν 	= φ ◦γ ∀φ ∈ Z(B′, θ′). Let T be a constructible ordered

set admitting θ as first element and ν as last element. Let S be the set of

φ ∈ T such that φ 	= ν ′◦γ ∀ν ′ ∈ Z(B′, θ), let ψ be the maximum element of S,
and let N be the set of φ ∈ T which are of the form φ′◦γ, with φ′ ∈ Z(B′, θ′)
and satisfy φ ≥ ψ. Let Q be the family of constructible subsets of Z(B′, θ′)
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admitting θ′ as a first element, consisting of φ′ such that φ′ ◦ γ ∈ N . Then

Q is inductive. Let X be a maximal element of Q and let ζ = inf{φ ∈ X}.
By Lemma 2.4.1, X ∪ {ζ} is a constructible subset of Z(B′, θ′). In T , we

notice that inf{ξ ◦ γ ∈ T | ξ ∈ X} = ζ ◦ γ, hence of course ψ ≤ ζ ◦ γ. Then,
since ψ ∈ T , by Lemma 2.4.1, ζ ◦ γ belongs to T , and therefore belongs to

N . But then, by Lemma 2.4.1, X ∪ {ζ} belongs to Q, hence ζ ∈ X because

X is maximal. Consequently, ζ ◦ γ > ψ, and hence, ζ ◦ γ has follower ν such

that ψ ≤ ν. Let S be a sub-semigroup of B such that ν = (ζ ◦ γ)S and let

ν ′ = ζγ(S). Then ν = ν ′ ◦ γ. On the other hand, ν ′ is the follower of ζ in

the set X ′ = X ∪ {ν ′}, hence X ′ is a constructible set, so X ′ clearly belongs

to Q, a contradiction with the hypothesis X maximal. This proves that for

every ν ∈ Z(B, θ) there exists ν ′ ∈ Z(B′, θ′) such that ν = ν ′ ◦ γ.
Now, we can show that Min(B, θ) ⊂ γ(Min(B′, θ′)). Let ζ ∈ Min(B, θ).

As we just showed, there exists ξ ∈ Z(B′, θ′) such that ζ = ξ ◦ γ. Let

Y = γ(B)\ξ−1(0). Then Y is a subsemi-group of (B′, .) and we can check that

ξ is Y -multiplicative. By Lemma 2.4.6, there exists ζ ′ ∈ Min(B′, ξ) such that

ζ ′(x) = ζ(x) ∀x ∈ Y , hence ζ = ζ ′◦γ. But of course Min(B′, ξ) ⊂ Min(B′, θ′),
hence f belongs to γ(Min(B′, θ′)). �

We must recall two classical results [6].

Theorem 2.4.9 (Urysohn). Let D be a compact and let α, β be two

different points of D. There exists a continuous mapping f from D into R+

such that f(α) = 0 and f(β) = 1.

Lemma 2.4.10. Let D be a compact. The Gelfand mapping θ from D into

X (G(D,R),R) defined as θ(a) = φa, with φa(f) = f(a), f ∈ G(D,R)
actually is a bijection from D onto X (G(D,R),C) and the mapping θ defined

as θ(a) = |φa|, with φa(f) = |f(a)|, f ∈ G(D,R) is a bijection from D onto

Mult(G(D,R), ‖ . ‖D).
Lemma 2.4.11. Let D be a compact, and let φ be the mapping from D into

Mult(G(D,R), ‖ . ‖D) defined by φ(α)(f) = |f(α)|∞. Then φ is a bijection

from D onto Mult(G(D,R), ‖ . ‖D) which is equal to Min(G(D,R), ‖ . ‖D).
Proof. By Lemma 2.4.10, the mapping φ fromD into Mult(G(D,R), ‖ . ‖D)
defined as φ(a) = ψa, with ψa(f) = |f(a)| f ∈ G(D,R), is a bijection from

D onto Mult(G(D,R), ‖ . ‖D). By Corollary 2.4.5, Min(G(D,R), ‖ . ‖D)
is included in Mult(G(D,R), ‖ . ‖D), so we just have to show that

Mult(G(D,R), ‖ . ‖D) ⊂ Min(G(D,R), ‖ . ‖D). Let α ∈ D, and let us show

that φ(α) belongs to Min(G(D,R), ‖ . ‖D). Let S = {f ∈ G(D,R) | |f(α)|∞ =

‖f‖D =1}. Then S is a subsemi-group of G(D,R) and the norm ‖ . ‖D is
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S-multiplicative, hence by Lemma 2.4.6, there exists ζ ∈Min(G(D,R), ‖ . ‖D)
such that ζ(f) = 1 ∀f ∈ S. But there exists β ∈ D such that φ(β) = ζ, hence

|f(β)|∞ = 1. Consequently, for every f ∈ G(D,R) such that |f(α)|∞ = 1, f

must also satisfy |f(β)|∞ = 1. Since D is compact, by Theorem 2.4.9, this

implies α = β hence φ(α) belongs to Min(G(D,R), ‖ . ‖D). �

Theorem 2.4.12. Let ‖ . ‖ be a semi-multiplicative IE-algebra semi-norm

of A. Then there exists a Shilov boundary for (A, ‖ . ‖) which is the closure

of Min(A, ‖ . ‖) in Mult(A, ‖ . ‖) [25].
Proof. By Corollary 2.4.5 and Theorem 2.4.7, Min(A, ‖ . ‖) is not empty,

is included in Mult(A, ‖ . ‖) and is a boundary for (A, ‖ . ‖). Now, let F be

a closed boundary for (A, ‖ . ‖) and let H be the multiplicative semi-group

(G(F,R), .). Since F is a closed subset of Mult(A, ‖ . ‖), by Lemma 2.4.1, it

is a compact. Let γ be the mapping defined on A, taking values in G(F,R),
as γ(x)(α) = α(x), α ∈ F . Let x ∈ A.

On the one hand, by Lemma 2.3.6, every element ψ of Mult(A, ‖ . ‖) by
definition satisfies ‖x‖ ≥ sup{ψ(x) | ψ ∈ F}. On the other hand, since F is

a boundary for (A, ‖ . ‖) there exists ϕ ∈ F such that ‖x‖ = sup{ψ(x) | ψ ∈
F}, and consequently, ‖γ(x)‖F = ‖x‖.

Now, since ‖ . ‖F ◦ γ = ‖ . ‖ and since γ is a semi-group homomorphism

from (A, .) into (G(F,R), .), we can apply Lemma 2.4.8 and we have

Min(A, ‖ . ‖) ⊂ γ(Min(G(F,R), ‖ . ‖F )). Let ν ∈ Min(A, ‖ . ‖). So, there
exists ψ ∈ Min(G(F,R), ‖ . ‖F ) such that ν = ψ◦γ. Now, let φ be the mapping

from F into Mult(G(F,R), ‖ . ‖F ) defined as φ(α)(f) = |f(α)|∞, f ∈ G(F,R).
By Lemma 2.4.11, φ is a bijection from F onto Min(G(F,R), ‖ . ‖F ).
Consequently, ψ ◦ γ is of the form φ(α). Finally, for every x ∈ A we have

ν(x) = γ(φ(α)(x) = (φ(α) ◦ γ)(x) = |γ(x)(α)|∞ = |α(x)|∞ = α(x), because

by definition α lies in Mult(A, ‖ . ‖). Thus, ν belongs to F . Therefore

Min(A, ‖ . ‖) is included in F and then the closure of Min(A, ‖ . ‖) is the

smallest of all closed boundaries for (A, ‖ . ‖). �

Corollary 2.4.13. Let ‖ . ‖ be a semi-multiplicative L-algebra semi-norm

of A. For every x ∈ A, there exists ϕ ∈ Mult(A, ‖ . ‖) such that ϕ(x) = ‖x‖.

2.5. Spectral semi-norm

We shall recall the basic properties of continuous multiplicative semi-norms

in an ultrametric normed algebra: the set of continuous multiplicative

semi-norms is compact for the topology of pointwise convergence, and its

superior envelope is a semi-multiplicative semi-norm called the spectral
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semi-norm [8, 31]. Applying Section 2.4, we will show that the set of

continuous multiplicative semi-norms admits a Shilov boundary.

Notations: Throughout the chapter, L will denote a complete field with

respect to a non-trivial ultrametric absolute value, and we will denote by

(A, ‖ . ‖), (A′, ‖ . ‖′) a unital commutative normed L-algebra. We will show

the existence of a spectral semi-norm equal to the supremum of continuous

multiplicative semi-norms [31].

φ will be a L-algebra homomorphism from A into A′ and we will denote

by ∗φ the mapping from Mult(A′) into Mult(A) defined as ∗φ(ϕ) = ϕ ◦ φ.

Lemma 2.5.1. For every subset W of Mult(A, ‖ . ‖) the mapping φ defined

on A by φ(x) = supϕ∈W ϕ(x) belongs to SM(A, ‖ . ‖). Moreover, if A has a

unity u, and if ϕ is not identically 0, then ϕ(λu) = |λ| whenever λ ∈ L.

Proof. Given W ⊂ SM(A, ‖ . ‖), clearly we have supϕ∈W ϕ(x) ≤ ‖x‖, and
therefore supϕ∈W ϕ(x) belongs to SM(A, ‖ . ‖). Finally, let u be the unity

in A. Either ϕ(u) = 0 and then ϕ(x) = 0 whenever x ∈ A, or ϕ(u) = 1 and

then we have ϕ(λu) = |λ|ϕ(u) = |λ| whenever λ ∈ L. �

Lemma 2.5.2 is obvious.

Lemma 2.5.2. Let φ be a L-algebra homomorphism from A into another

unital commutative L-algebra A′. For each ϕ ∈ Mult(A′), ϕ ◦ φ belongs to

Mult(A).

Lemma 2.5.3. If φ is surjective then ∗φ is injective. If φ is an isomorphism,

then ∗φ is a homeomorphism from Mult(A′) onto Mult(A) with respect to

topologies of pointwise convergence on both sets.

Proof. Suppose φ is surjective and let ϕ1, ϕ2 ∈ Mult(A′) be such that
∗φ(ϕ1) = ∗φ(ϕ2). Then ϕ1(φ(f)) = ϕ2(φ(f)) ∀f ∈ A. But since φ is

surjective we have ϕ1(g) = ϕ2(g) ∀g ∈ A′, hence ϕ1 = ϕ2.

Now suppose that φ is an isomorphism. It is obviously seen that

(∗φ)−1 = ∗(φ−1) and that ∗φ transforms the filter of neighborhoods of any

ϕ ∈ Mult(A′) into this of ϕ ◦ φ in Mult(A). �

Lemma 2.5.4. Let A be a direct product A1 × · · · × Aq whose norm is

the product norm of the norm ‖ . ‖j of algebras Aj , respectively. Then the

mapping Ξ defined on
⋃q
j=1Mult(Aj) as Ξ(ψj)(x1, . . . xq) = ψj(xj) is a

bijection from
⋃q
j=1Mult(Aj) onto Mult(A, ‖ . ‖).
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Proof. By Lemma 2.5.3 it is an injection. Putting u1 = (1, 0, . . . , 0), . . . ,

uq = (0, . . . , 0, 1), for each j = 1, . . . , q, we check that for every ϕ ∈
Mult(A, ‖ . ‖) we have ϕ(uk) = 1 for a certain k and ϕ(uj) = 0 ∀j 	= k.

Consequently such a ϕ is of the form Ξ(ψk), which shows that this mapping

is surjective onto Mult(A, ‖ . ‖).
Lemma 2.5.5 is immediate. �

Lemma 2.5.5. Let φ be continuous. The restriction of ∗φ∗ to Mult(A′, ‖ . ‖′)
takes values in Mult(A, ‖ . ‖).
Notation: In the hypothesis of Lemma 2.5.5 we will denote by ∗φ∗ the

restriction of ∗φ to Mult(A′, ‖ . ‖′).
Recall that Mult(A, ‖ . ‖) is equipped with the topology of pointwise

convergence [6, 28, 32], which means that a basic neighborhood of some

ψ ∈ Mult(A, ‖ . ‖) is a set of the form W(ψ, f1, . . . , fq, ε), with fj ∈ A and

ε > 0 and this is the set of φ ∈ Mult(A, ‖ . ‖) such that |ψ(fj)− φ(fj)|∞ ≤
ε ∀j = 1, . . . , q.

Theorem 2.5.6. Suppose that A′ is a dense L-subalgebra of A and assume

that φ is continuous. Then ∗φ is injective. Moreover if φ is injective and

bicontinuous, then ∗φ∗ is a homeomorphism from Mult(A′, ‖ . ‖′) onto

Mult(A, ‖ . ‖).
Proof. Let A′′ = φ(A). Let ϕ1, ϕ2 ∈ Mult(A, ‖ . ‖) satisfy ϕ1 ◦φ = ϕ2 ◦φ.
Then ϕ1(φ(f)) = ϕ2(φ(f)) ∀f ∈ A, hence ϕ1(g) = ϕ2(g) ∀g ∈ A′′. But since
A′′ is dense in A, and since ϕ1, ϕ2 are continuous with respect to the norm

of A′, we conclude that ϕ1(g) = ϕ2(g) ∀g ∈ A′, hence ϕ1 = ϕ2.

Now, suppose φ is a bicontinuous injection from A into A′. Let ψ ∈
Mult(A, ‖ . ‖). We can define ϕ ∈ Mult(A′′, ‖ . ‖′) as ϕ(φ(f)) = ψ(f) and

extend by continuity the definition of ϕ to A′. Since φ is bicontinuous from

(A, ‖ . ‖) onto (A′′, ‖ . ‖′), ϕ belongs to Mult(A′′, ‖ . ‖′) and therefore its

expansion to A′ belongs to Mult(A′, ‖ . ‖′). Thus, ∗φ∗ is a bijection from

Mult(A′, ‖ . ‖′) onto Mult(A, ‖ . ‖). We will check that ∗φ∗ is bicontinuous.

Let ϕ ∈ Mult(A′, ‖ . ‖′) and let ψ = ϕ ◦ φ. Let V(ϕ ◦ φ, f1, . . . , fn, ε) be

a neighborhood of ϕ ◦ φ. In Mult(A′, ‖ . ‖′), W(ψ, φ ◦ f1, . . . , φ ◦ fn, ε) is

a neighborhood of ψ whose image by ∗φ∗ is just W(ϕ ◦ φ, f1, . . . , fn, ε).
Consequently ∗φ∗ is continuous.

Conversely, let W(ϕ, g1, . . . , gn, ε) be a neighborhood of ϕ. Since the

multiplicative semi-norms are ultrametric and since A′′ is dense in A′ we
can find g′1, . . . , g′n ∈ A′′ such that W(ϕ, g1, . . . , gn, ε) = W(ϕ, g′1, . . . , g′n, ε).
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Each g′i is of the form φ(fi) (1 ≤ i ≤ n), so W(ϕ ◦ φ, f1, . . . , fn, ε) =

(∗φ∗)−1(W(ϕ, g′1, . . . , g′n, ε)), which finishes proving that (∗φ∗)−1) also is

bicontinuous. �

Notation: When A′ is a dense L-subalgebra of A henceforth, we will

consider that Mult(A, ‖ . ‖) and Mult(A′, ‖ . ‖) are equal.

Theorem 2.5.7. For every x ∈ A the sequence
(‖ xn ‖ 1

n
)
n∈N has a limit

denoted by ‖ x ‖sp, satisfying ‖x‖sp ≤ ‖x‖ ∀x ∈ A and the mapping f defined

in A as f(x) = ‖ x ‖sp belongs to SM(A, ‖ . ‖ ) and is ultrametric. Moreover

‖ x ‖sp < 1 if and only if limn→∞ ‖xn‖ = 0.

Proof. The statement is well known and proven, for instance, in [28] as

Theorem 1.13 when the semi-norm ‖ . ‖ is a norm. Actually the proof holds

all the same when it is just a semi-norm. �

By Theorem 2.4.12, we have Corollary 2.5.8.

Corollary 2.5.8. There exists a Shilov boundary for (A, ‖ . ‖sp) which is

included in Mult(A, ‖ . ‖) and is equal to the closure of Min(A, ‖ . ‖sp) in

Mult(A, ‖ . ‖).
Theorem 2.5.9. Let f ∈ A. Then ‖f‖sp = 0 if and only if limn→∞
‖(λf)n‖ = 0 ∀λ ∈ L.

Proof. If ‖f‖sp = 0, then of course ‖λf‖sp = 0, hence limn→∞ ‖(λf)n‖ =

0 ∀λ ∈ L. Now, suppose limn→∞ ‖(λf)n‖ = 0 ∀λ ∈ L. Suppose ‖f‖sp 	= 0,

and let λ ∈ E be such that |λ| > 1
‖f‖sp . Then limn→∞ ‖(λf)n‖sp = +∞,

which contradicts the hypothesis limn→∞ ‖(λf)n‖ = 0. �

Definition: (A, ‖ . ‖) will be said to be uniform if the norm ‖ . ‖ is

equivalent to ‖ . ‖sp.
In the same way as in Archimedean analysis, we must also mention this

proposition:

Proposition 2.5.10. ‖ . ‖ and ‖ . ‖sp are two equivalent norms on A if and

only if there exists C ∈ R+ such that ‖x2‖ ≤ C‖x‖2 ∀x ∈ A. And they are

equal if and only if ‖xn‖ ≤ ‖x‖n ∀n ∈ N∗, ∀x ∈ A.

Theorem 2.5.11. Let ‖ . ‖ be a norm of L-algebra on A. Then ‖ . ‖ is

semi-multiplicative if and only if the semi-norm ‖ . ‖sp associated to ‖ . ‖ is

equal to ‖ . ‖).
On the other hand, if A is complete for its norm, then for every x ∈ A

satisfying ‖x‖sp < 1, 1 − x is invertible in A, the set of invertible elements
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in A is open, each maximal ideal M of A is closed. Finally, for every φ ∈
X (A,L), the mapping |ψ| from A into R+ defined as |φ|(x) = |φ(x)| belongs
to Mult(A, ‖ . ‖sp.
Proof. By Theorem 2.5.7, if ‖ . ‖sp is the L-algebra norm, then it is semi-

multiplicative. Conversely, if the L-algebra norm is semi-multiplicative, it is

equal to ‖ . ‖sp because ‖ xn ‖ 1
n = ‖x‖ for every x ∈ A. �

Now assume that A is complete. Let x ∈ A satisfy ‖x‖sp < 1. By

Theorem 2.5.7, we have limn→∞ xn = 0 and then the series
∑∞

n=0 x
n

converges in A to a limit S that obviously satisfies S(1 − x) = 1. As a

consequence, the set of invertible elements in A is open. Since a maximal ideal

is either closed or dense, here each maximal ideal of A is closed. Moreover,

for every λ ∈ L satisfying ‖x‖sp < |λ|, 1− x
λ is invertible in A.

Now, |ψ| obviously belongs to Mult(A). Assume that |ψ(x)| > ‖ x ‖sp
for some x ∈ A. Let λ = ψ(x) ∈ L and let y = 1 − x

λ
. Then ψ(y) = 0,

hence 1 − x

λ
∈ Ker(ψ). But |λ| > ‖ x ‖sp hence ‖x

λ
‖sp < 1, so 1 − x

λ
is invertible. This just contradicts 1− x

λ
∈ Ker(ψ). Finally let φ ∈ X (A,L).

Then |φ(x)| ≤ ‖ x ‖sp for every x ∈ A, hence |φ| ∈ Mult(A, ‖ . ‖sp
)
.

Theorem 2.5.12 was given in several works [26, 28].

Theorem 2.5.12. Let F be a field extension of L equipped with a L-algebra

semi-norm ‖ . ‖. Then ‖ . ‖ is a L-algebra norm and there exists a unique

ultrametric absolute value ϕ on F extending that of L, such that ϕ(x) ≤ ‖x‖
whenever x ∈ F.

Theorem 2.5.13 is an immediate consequence ([26, Theorem 6.5]).

Theorem 2.5.13. Let (A, ‖ . ‖) be complete. For every maximal ideal M of

A, there exists ϕ ∈ Mult(A, ‖ . ‖) such that Ker(ϕ) = M, ϕ is of the form

|χ|, with χ ∈ A and | . | an absolute value on the field χ(A) expanding that

of L.

Remark 1. As shown in [9, 23, Theorem 40.5] there exist uniform

ultrametric Banach unital commutative algebras without divisors of zero,

admitting no continuous absolute values and therefore, there exist Banach

ultrametric unital commutative algebras admitting closed prime ideal which

are not the kernel of any continuous multiplicative semi-norm. Thus, as far

as ultrametric Banach algebras are concerned, Theorem 2.5.13 is specific to

maximal ideals, in the general case.
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Corollary 2.5.14. Given x ∈ A, then |sp(x)| ⊂ {φ(x) |φ∈Multm(A, ‖ . ‖)}.

Theorem 2.5.15. Let F,G be a partition of Multm(A, ‖ . ‖) and suppose

that there exists an idempotent u such that φ(u) = 1 ∀φ ∈ F and φ(u) =

0 ∀φ ∈ G. Then u is unique satisfying these relations.

Proof. Let φ ∈ F . By Theorem 2.5.13, φ is of the form |χ| with χ ∈ X (A),

the field image of A by χ being equipped with an absolute value extending

that of L. Since χ(u) must be equal to 0 or 1, we have χ(u) = 1. And similarly,

if φ ∈ G, it is of the form |χ| with χ ∈ X (A), and of course χ(u) = 0.

Consequently, by Lemma 1.1.14, u is unique to satisfy χ(u) = 1 ∀χ ∈ F ,

χ(u) = 0 ∀χ ∈ G. �

Proposition 2.5.16 is classical (in particular, we can obtain it by Proposition

2.2.1).

Proposition 2.5.16. Let A be a normed L-algebra whose norm ‖ · ‖ is

ultrametric, let r ∈]0,+∞[ and let B be the set of the series
∑∞

n=0 anx
n

such that limn→∞ ‖an‖rn = 0. Then B, equipped with the multiplication of

series, is a unital algebra which contains A and admits 1 for unity. Let ‖ · ‖r
be defined on B by ‖∑∞

n=0 anx
n‖r = supn∈N ‖an‖rn. Then ‖ · ‖r is a norm

of L-algebra on B. Moreover, if the norm of L is multiplicative, then so is

‖ . ‖r. Further, if A is complete, then so is B.

Theorem 2.5.17. Given ϕ ∈ Mult(A), ϕ belongs to Mult(A, ‖ . ‖) if and

only if it satisfies ϕ(t) ≤ ‖t‖sp whenever t ∈ A, and we have Mult(A, ‖ . ‖) =
Mult(A, ‖ . ‖sp). Further, for every t ∈ A we have

‖t‖sp = sup{ϕ(t) | ϕ ∈ Mult(A, ‖ . ‖)}

and there exists ϕ ∈ Mult(A, ‖ . ‖) such that ϕ(t) = ‖t‖sp [30].

Proof. Since ‖t‖sp ≤ ‖t‖ for all t ∈ A, each ϕ ∈ Mult(A) satisfying

ϕ(t) ≤ ‖t‖sp whenever t ∈ A, obviously belongs to Mult(A, ‖ . ‖). Conversely,
suppose that ϕ ∈ Mult(A) satisfies ϕ(t) > ‖t‖sp for certain t ∈ A. As

in the proof of Lemma 2.5.1, there exists q ∈ N
∗ and λ ∈ E such that

ϕ(t)q > |λ| > ‖t‖qsp. Let u = t
λ . Then we have ‖u‖sp < 1 < ϕ(u),

hence by Theorem 2.5.7, limn→∞ un = 0, whereas limn→∞ ϕ(un) = +∞.

This shows ϕ /∈ Mult(A, ‖ .‖). As a consequence, we have Mult(A, ‖ . ‖) =
Mult(A, ‖ . ‖sp). The last statements come from Corollary 2.5.8. �
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Corollary 2.5.18. Let F be a complete field extension of L equipped with a

L-algebra norm ‖ . ‖. Then there exists an ultrametric absolute value ϕ on

F extending that of L, such that ϕ(x) ≤ ‖x‖ whenever x ∈ A.

Corollary 2.5.19. Let (A, ‖ . ‖) be a Banach L algebra. For every maximal

ideal M, there exists ϕ ∈ Mult(A, ‖ . ‖) such that Ker(ϕ) = M and ϕ is

of the form |χ| where χ is a homomorphism from A to the field A
M , with

an absolute value | . | defined by |χ|, extending the one of L. Moreover, if

M is of codimension 1, then this absolute value is the one defined on L and

coincides with the quotient norm of the norm ‖ . ‖ of T .

2.6. Topological divisors of zero

Now, we shall state an easy characterization of the Shilov boundary, taking

from what was made on C. Throughout the chapter, L is a complete

ultrametric field and A is a commutative unital Banach L-algebra.

Theorem 2.6.1. The Shilov boundary S for A is equal to the set of the ψ ∈
Mult(A, ‖ . ‖) such that for every neighborhood U of ψ in Mult(A, ‖ . ‖), there
exists θ ∈ U and g ∈ A satisfying ‖g‖sp = θ(g) and γ(g) < ‖g‖sp ∀γ ∈ S \U .

Proof. Let ψ belong to the Shilov boundary for A and suppose that there

exists a neighborhood U of ψ in Mult(A, ‖ . ‖) such that for every g ∈ A,

we have ‖g‖sp = sup{γ(g) | γ ∈ S \ U}. Without loss of generality, we may

assume that U is open in Mult(A, ‖ . ‖), hence S \ U is compact and is

a closed subset of Mult(A, ‖ . ‖). Thus, S \ U is a closed boundary which

does not contain ψ, and therefore is strictly included in S, a contradiction.

This shows that for all neighborhood U of ψ in Mult(A, ‖ . ‖), there exists

θ ∈ U ∩ S and g ∈ A satisfying ‖g‖sp = θ(g) and γ(g) < ‖g‖sp ∀γ ∈ S \ U .

Now, suppose that ψ ∈ Mult(A, ‖ . ‖) is such that for all neighborhood U
of ψ in Mult(A, ‖ . ‖), there exists θ ∈ U∩S and g ∈ A satisfying ‖g‖sp = θ(g)

and γ(g) < ‖g‖sp ∀γ ∈ S\U . Thus, given any neighborhood U of ψ, S admits

at least one point in U and since S is closed, ψ belongs to S. �

The following basic lemma will help us prove Theorem 2.6.3.

Lemma 2.6.2. Let a, b, ω, σ, u,w ∈ R
∗
+ satisfy u < w and σ < ω. There exist

t ∈ N and d ∈ Z such that a− tw < dσ < −b− tw + ω and dσ < −b− tu.

Theorem 2.6.3 is an application of Theorem 2.6.1.

Theorem 2.6.3. Let β > 1 satisfy β > inf{|x| | |x| > 1}. Let S be the Shilov

boundary for A and let ψ ∈ Mult(A, ‖ . ‖). Let U be a neighborhood of ψ and
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letM ∈ R
∗
+. There exists h ∈ A and γ ∈ U such that M < γ(h) = ‖h‖ < βM

and γ(h) < ‖h‖sp ∀γ ∈ S \ U .
Proof. Without loss of generality we may assume that U is open. Hence

S \ U is closed. By Theorem 2.6.1, there exists γ ∈ U and g ∈ A satisfying

‖g‖sp = γ(g) and θ(g) < ‖g‖sp ∀θ ∈ S \ U . Since S \ U is closed, it is

compact, hence sup{θ(g) | θ ∈ S \ U} < ‖g‖sp. Let m = sup{θ(g) | θ ∈
S \ U}. By hypothesis, there exists α ∈ E satisfying 1 < |α| < β. Putting

a = logM, b = − log ε, u = logm, w = log(‖g‖), ω = log β, σ = log |α|,
then thanks to Lemma 2.6.2 we can find t ∈ N and d ∈ Z such that M <

‖αdgt‖ < βM and |α|dmt < ε. Now we can put h = αdgt, and we check that

M < ‖h‖ = γ(h) < βM and θ(h) < ε ∀θ ∈ S \ U . �

Definitions and notations: An element x ∈ A different from 0 will be

called a topological divisor of zero if infy∈A,1≤‖y‖ ‖xy‖ = 0.

Given f ∈ A, we will denote by ZA(f) the set of φ ∈ Mult(A, ‖ . ‖) such
that φ(f) = 0. However, when there is no risk of confusion on the algebra,

we shall only write Z(f) instead of ZA(f).
On a complex Banach algebra, it is known that the topological divisors of

zero are the elements f ∈ A such that there exists an element φ of the Shilov

boundary satisfying φ(f) = 0 [15]. Here we mean to extend this property to

ultrametric algebras

Theorem 2.6.4. Let A be uniform and let S be the Shilov boundary for

(A, ‖ . ‖). An element f ∈ A is a topological divisor of zero if and only if

there exists ψ ∈ S such that ψ(f) = 0.

Proof. Let S be the Shilov boundary for (A, ‖ . ‖). Let f ∈ A be a

topological divisor of zero and let (Un)n∈N be a sequence in A such that

‖Un‖ > m > 0 ∀n ∈ N and limn→∞ ‖fUn‖ = 0. Since A is uniform, its

norm is equal to ‖ . ‖sp, so for every n ∈ N, we can find φn ∈ S such that

φn(Un) = ‖Un‖. Let φ be a point of adherence of the sequence (φn)n∈N. Thus,
φ belongs to S. On the other hand, we have φn(fUn) ≥ mφn(f) ∀n ∈ N.

But by hypothesis limn→∞ ‖fUn‖ = 0, hence limn→∞ φn(fUn) = 0, hence

limn→∞ φn(f) = 0. Suppose φ(f) 	= 0 and let l = φ(f). Therefore, we can

find t ∈ N such that

(1) φn(f) <
l
2 ∀n ≥ t.

But since φ is a point of adherence of the sequence (φn) with respect to

the topology of pointwise convergence, we can find k ∈ N, k > t, such that

|φ(f)− φk(f)| < l
2 , hence by (1) we check that φ(f) < l, a contradiction.
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Conversely, let f ∈ A and assume that there exists ψ ∈ S such that

ψ(f) = 0. Let us fix n ∈ N and let U be a neighborhood of ψ such that

φ(f) ≤ 1
n ∀φ ∈ U . Let β > 1 satisfy β > inf{|x| | |x| > 1}. By Theorem

2.6.3, there exists Un ∈ A and γ ∈ U such that 1 < γ(Un) = ‖Un‖ < β and

γ(Un) <
1
n ∀γ ∈ S \ U . We check that if φ ∈ U then φ(fUn) ≤ β

n and if

φ ∈ S \ U then φ(fUn) ≤ ‖f‖
n . Consequently, by putting M = max(‖f‖, β),

we have φ(fUn) ≤ M
n ∀φ ∈ S, hence ‖fUn‖ ≤ M

n , which finishes showing

that f is a topological divisor of zero. �

Corollary 2.6.5. Let A be uniform and let S be the Shilov boundary for

(A, ‖ . ‖). There exists no topological divisor of zero if and only if all elements

of S are absolute values.

Corollary 2.6.6. Let A be uniform. If A has no continuous absolute values,

then there exist topological divisors of zero.

Remark 2. In any ring having divisors of zero, there exist no absolute

values. In [9], it was shown that certain Krasner algebras have no divisor of

zero but admit no continuous absolute value. However, as we will see, among

affinoid algebras, every affinoid algebra having no divisor of zero admits at

least one absolute value.

Theorem 2.6.7 is easy.

Theorem 2.6.7. Let f ∈ A. If f is not a divisor of zero, then f is a

topological divisor of zero if and only if fA is not closed.

Proof. Let φ be the linear mapping from A to fA defined as φ(x) =

xf . Since f is not a divisor of zero, φ is a continuous L-vectorial space

isomorphism from A to fA. First, suppose that f is not a topological divisor

of zero. Then there exists m > 0 such that m‖x‖ ≤ ‖xf‖ ≤ ‖x‖‖f‖.
Therefore, fA is provided with two equivalent norms: on one hand, the

norm induced by A, and on the other hand the norm ||| . ||| defined on fA

as |||xf ||| = ‖f‖. Since fA is obviously complete for the last one, it is also

complete for the first, hence fA is closed in A.

Conversely suppose that fA is closed in A. Then φ is a continuous

L-Banach space isomorphism from A onto fA. Hence, by Hahn–Banach’s

Theorem, φ is bicontinuous, therefore {x ∈ A | ‖sf‖ ≤ 1} is bounded, which

proves that f is not a topological divisor of zero. �

Corollary 2.6.8. Let f ∈ A. If fA is not closed, then f is a topological

divisor of zero.
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Theorem 2.6.9. Let A be uniform and let S be the Shilov boundary for

(A, ‖ . ‖). Let f ∈ A. Let T (f) be the closure of the interior of Z(f) in

Mult(A, ‖ . ‖). If (Z(f) ∩ S) \ T (f) 	= ∅, then the ideal fA is not closed.

Proof. Let β > 1 satisfy β > inf{|x| | x ∈ L, |x| > 1} and let φ ∈ (Z(f)∩
S)\T (f). We shall construct a sequence of pairs (Un, ψn) of A×Mult(A, ‖ . ‖)
satisfying β(n−1) < ‖Un‖ < βn, β(n−1) < ψn(Un) < βn and ψj /∈ Um for

every j < m ≤ n, whenever n ∈ N.

Suppose for each j = 1, . . . , n we have already constructed pairs (Uj , ψj)

of A×Mult(A, ‖ . ‖) and neighborhoods Uj of φ satisfying Uj ∈ A such that

βj−1 < ‖Uj‖ < βj , βj−1 < ψj(Uj) < βj and ψj /∈ Um for all j < m ≤ n.

Since φ /∈ T , we can take a neighborhood Un+1 of φ included in Un \
{ψ1, . . . , ψn} such that Un+1∩T (f) = ∅ and such that θ(f) ≤ 1

(n+1)βn+1 ∀θ ∈
Un+1. By Theorem 2.6.3, there exists γ ∈ Un+1 and Un+1 ∈ A such that βn <

‖Un+1‖ = γ(Un+1) < β(n+1) and θ(Un+1) ≤ 1
n+1 ∀θ ∈ Mult(A, ‖ . ‖) \ Un+1.

If γ(f) 	= 0, we just put ψn+1 = γ.

Suppose now that γ(f) = 0. We can obviously find a neighborhood W of

γ included in Un+1 such that βn < ‖Un+1‖ = θn+1(Un+1) < β(n+1) ∀θ ∈ W.

Since Un+1 ∩ T (f) = ∅ we can obviously find ψn+1 ∈ W \ Z(f) such that

ψn+1(f) 	= 0. Thus, we have defined Un+1, ψn+1,Un+1 such that the finite

sequence (Uj , ψj ,Uj) satisfies Uj ∈ A βj−1 < ‖Uj‖ < βj , βj−1 < ψj(Uj) < βj

and ψj /∈ Um for all j < m ≤ n+ 1.

We can check that θ(fUn) ≤ 1
n ∀θ ∈ S, hence ‖fUn‖ ≤ 1

n . This is true

for each n ∈ N, hence the series
∑∞

n=0 fUn converges in A to an element

h which obviously belongs to the closure of fA in A. Now, suppose that

fA is closed. There exists g ∈ A such that h = fg. For every n ∈ N we

put an = ψn(f). Hence an > 0 ∀n ∈ N. Next, we notice that ψn(fUn) >

anβ
(n−1), and that ψn(fUj) ≤ an‖Uj‖ < β(n−1) ∀j ≤ n. Moreover, since

ψn /∈ Us ∀s > n, we have ψn(fUs) ≤ an‖Us‖ ≤ an
s ∀s > n. Thus, we have

ψn(fUn) > ψn(fUj) ∀j 	= n, hence ψn(
∑∞

j=1 fUj) = ψn(fUn) > anβ
(n−1).

But since ψ(fg) = anψn(g), we obtain ψn(g) > β(n−1). This is true for every

n ∈ N, and is absurd because ψn(g) ≤ ‖g‖. This shows that fA is not closed

and finishes the proof of Theorem 2.6.9. �

Proposition 2.6.10. Let E be a normed L-vector space which also is a A-

module. Let t ∈ ML. Let E1 be a A0-submodule defining the topology of E.

Assume that there exists e1, . . . , eq ∈ E1 such that E1 =
∑q

i=1A0ei + tE1.

Let φ be the mapping from Aq into E defined as φ(t1, . . . , tq) =
∑q

i=1 tiei.

Then φ is surjective and E is finite over A.
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Proof. Let y ∈ E1. We can write y in the form
∑q

i=1 f1,iei + ty1, with

f1,i ∈ A0 and y1 ∈ E1, and in the same way, we can write y1 =
∑q

i=1 f2,iei+

ty2, with f2,i ∈ A0, and y2 ∈ E1. By induction, it clearly appears that for

every m ∈ N
∗, we obtain y =

∑q
i=1(

∑m
j=1 fm,it

m−1)ei + tmym. And since all

terms fj,i lie in A0, and all yj lie in E1, each series
∑m

j=1 fm,it
m−1 converges

in the Banach algebra A to an element fi. Then, since each set tmE1 is

closed, y −∑q
i=1 fiei lies in tmE1 for all m ∈ N

∗. Therefore, y =
∑q

i=1 fiei.

Consequently φ(Aq) contains E1 and therefore φ is surjective on E. Moreover,

E is finite over A. �

Proposition 2.6.11. Let F be a normed A-algebra which is a A-module

whose completion is finite over A. Then F is complete.

Proof. Let E be the completion of F , and let e1, . . . , eq ∈ F be such

that E =
∑q

i=1Aei. Let φ be the canonical surjection from Aq onto E :

φ(a1, . . . , aq) =
∑q

i=1 aiei. On Aq we can define the product norm of Aq:

|||(a1, . . . , aq)||| = max1≤i≤q ‖ai‖. Putting then c = max1≤i≤q ‖ei‖, we have

|||(a1, . . . , aq)||| ≥ c‖φ(a1, . . . , aq)‖. Thus, φ is continuous, hence Ker(φ) is

closed and therefore E is equipped with the quotient norm ‖ . ‖′ of ||| . |||.
Then, E is complete for the norm ‖ . ‖′. On the other hand, given f ∈ Aq,

we have ‖φ(f)‖′ = infx∈Ker(φ) |||f + x||| ≥ c infx∈Ker(φ) ‖φ(f + x)‖. But since
φ(f + x) = φ(f), we check that ‖φ(f)‖′ ≥ c‖φ(f)‖. Thus, E is complete

for both norms ‖ . ‖ and ‖ . ‖′ and therefore by Hahn–Banach’s theorem

(Theorem 1.3.4), the two norms are equivalent. By definition, φ is open with

respect to the norm ‖ . ‖′ on E. Consequently
∑q

i=1A0ei is a A0-submodule

E1 that defines the topology of E. Since F is dense in E, each ei is of the

form fi + thi, with hi ∈ E1. Therefore E1 is included in
∑q

i=1A0fi + tE1,

and then by Proposition 2.6.10, we have E =
∑q

i=1A0fi ⊂ F . �

Corollary 2.6.12. Let A be Noetherian and let F be a complete normed

A-algebra which is a finite A-module. Then every A-submodule of F is closed.

Proof. Indeed, since A is Noetherian and since F is finite, F is Noetherian,

hence any A-submodule E has a finite closure in F , hence by Proposition

2.6.11 is closed. �

Corollary 2.6.13. Let A be Noetherian. Every ideal of A is closed.

Proof. Indeed, the closure of an ideal I is of finite type, and therefore, I

is closed. �

Corollary 2.6.14. Let A be Noetherian and let f ∈ A. If f is not a divisor

of zero, then it is not a topological divisor of zero.
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Proof. Indeed, if f were a topological divisor of zero, fA wouldn’t be

closed, what is impossible since A is Noetherian. �

Corollary 2.6.15. Let A be Noetherian and let f ∈ A. Any topological

divisor of zero of A actually is a divisor of zero.

Notation: Given a normed L-algebra E and some χ ∈ X (E), we denote

by IBE(χ, r) the set of the ζ ∈ X (E) such that |χ(x) − ζ(x)| ≤ r ∀x ∈ E,

‖x‖ ≤ 1.

Lemma 2.6.16. Let A be a normed L-algebra, let χ ∈ X (A) and let

f1, . . . fq ∈ A and let λ = inf1≤j≤q 1
‖fj‖ . Then {γ ∈ X (A) | |γ| ∈

WA(|χ|, f1, . . . , fq, r)} contains IBA(χ, rλ).

Proof. Let us take γ ∈ IBA(χ, λr). For each j = 1, . . . , q, we have | |γ(fj)|−
|χ(fj)| |∞ ≤ |γ(fj) − χ(fj)|∞ ≤ ‖fj‖ ‖γ − χ‖ ≤ r. Thus, |γ| belongs to

WA(χ, f1, . . . , fq, r). �

Theorem 2.6.17. Let A be an entire Banach K-algebra and let B be a finite

integral extension of A. For each χ ∈ X (B), we denote by χ̂ its restriction

to A. Then, by providing X (A) (resp., X (B)) with the uniform convergence

norm on the unit ball of A (resp., B), the mapping φ from X (B) to X (A)

defined as φ(χ) = χ̂ is open.

Proof. By induction, we can easily reduce ourselves to the case when B is

of the form A[x]. Let r be > 0 and let P (X) = Xd+ ad−1X
d−1 + · · ·+ a0 be

the minimal polynomial of x over A. Let us fix χ ∈ X (B) and let α = χ(x).

Then we have αd + χ(ad−1)α
d−1 + · · · + χ(a0) = 0. Let α1, . . . , αd be the

zeros of the polynomial Xd + χ(ad−1)X
d−1 + · · · + χ(a0), with α = α1.

Let K be an ultrametric algebraically closed extension of L By results on

the continuity of the zeros, [1, 28, 34], there exists s > 0 such that, if a

polynomial Q(X) = Xd+bd−1X
d−1+· · ·+b0 ∈ K[X] satisfies |bj−χ(aj)| ≤ s,

the zeros βj (1 ≤ j ≤ d), once correctly ordered, satisfy |αj − βj | ≤ r. Now,

let γ ∈ X (A) satisfy ‖γ − χ̂‖A0 ≤ s. So, we have |γ(aj) − χ̂(aj)| ≤ s, and

therefore, the polynomial Xd + γ(ad−1)X
d−1 + · · · + γ(a0) admits a zero

β ∈ K such that |β−α| ≤ r. Then γ admits a continuation γ to B such that

γ(x) = β. Thus, we have γ = φ(γ̂), which proves that φ(IBA(χ, r)) contains

IBB(φ(χ), s)). Consequently, φ is open. �
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Chapter 3

Admissible L-Algebras

3.1. Definition of admissible L-algebras

Definitions and notations: Recall that throughout the book, L denotes

a complete valued field with respect to an ultrametric absolute value | . | and
henceforth, E denotes a metric space whose distance δ is ultrametric. Given

a ∈ E and r > 0, we denote by B(a, r) the closed ball {x ∈ E|δ(a, x) ≤ r}.
Henceforth, we will denote by C the L-Banach algebra of bounded

continuous functions from E to L equipped with the norm of uniform

convergence ‖ . ‖0 on E.

We denote by | . |∞ the Archimedean absolute value of R.

Given a subset H of E, we denote by H the closure of H in E and the

function u defined on E by u(x) = 1 if x ∈ H and u(x) = 0 otherwise, is

called the characteristic function of H.

A subset of a topological space is said to be clopen if it is open and

closed.

We will denote by IB(E) the Boolean ring of clopen subsets of E with

respect to the two classical laws Δ and ∩.
Let us recall this obvious lemma.

Lemma 3.1.1. Let F be a subset of E and let u be its characteristic

function. Then u is continuous if and only if F is clopen.

The following lemma is also clear since each ball of L is clopen.

Lemma 3.1.2. Let f be a continuous function from E to L and let M > 0.

Given M > 0, the sets E1 = {x ∈ E |f(x)| ≥M} and E2 = {x ∈ E |f(x)| ≤
M} are clopen.

Proof. Let a ∈ E1. Since f is continuous and E is ultrametric, there exists

r > 0 such that |f(x)| = |f(a)| ∀x ∈ B(a, r), hence E1 is open. And given a

37
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converging sequence (an)n∈N of limit a ∈ E such that |f(an)| ≥M , obviously

|f(a)| ≥M . �

Corollary 3.1.3. Let f be a continuous function from E to L, let M > 0

and let h > 0. Then {x ∈ E |
∣∣∣|f(x)| −M

∣∣∣
∞

≤ h} is clopen.

Definition and notations: Throughout the book, we will denote by C
the Banach L-algebra of all bounded continuous functions from E to L and

by S a L-subalgebra of C.
The Banach L-algebra C of all bounded continuous functions from E to

L is equipped with the norm ‖ . ‖0.
Recall the following:

Proposition 3.1.4. Let T be a unital commutative Banach L-algebra of

bounded continuous functions from E to L. Then ‖f‖0 ≤ ‖f‖sp ≤ ‖f‖ ∀f ∈
T . Moreover, given f ∈ T satisfying ‖f‖sp < 1, then limn→+∞ ‖fn‖ = 0.

Proof. The norm ‖ . ‖0 is power multiplicative and classically it is bounded

by the norm ‖ . ‖ of T , it is then bounded by ‖ . ‖sp. The last claim is

immediate. �

Definition and notations: Let (S, ‖ . ‖) be a L-subalgebra of C. We

say that (S, ‖ . ‖) is semi-admissible if it is a Banach algebra satisfying the

following two properties:

(1) For every f ∈ S such that inf{|f(x)| |x ∈ E} > 0, f is invertible in S.

(2) For every O ∈ IB(E), the characteristic function of O belongs to S.

Moreover, the semi-admissible algebra S will be called admissible if it

satisfies:

(3) ‖f‖0 = ‖f‖sp ∀f ∈ S [15].

Given a subset X of S, we call spectral closure of X denoted by spcl(X)

the closure of X with respect to the semi-norm ‖ . ‖sp and X will be said to

be spectrally closed if X = spcl(X). Moreover, X will be said to be uniformly

closed if it is closed with respect to the uniform norm and we call uniform

closure of X the closure of X with respect to the semi-norm ‖ . ‖0.
Remark 1. Given an admissible L-algebra (S, ‖ . ‖), the norm ‖ . ‖ is not

supposed to be the uniform convergence norm on E.

Lemma 3.1.5. Given two subsets A and B of E such that δ(A,B) > 0,

there exist a clopen subset F such that A ⊂ F and B ⊂ E \ F .
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Proof. Let δ(A,B) = r > 0 then take F = ∪a∈AB(a, r). The set F is

clopen since F contains the ball < b(x, r) whenever x ∈ F . And clearly

A ⊂ F and B ⊂ E \ F . �

Let f ∈ C be such that inf{|f(x)| | x ∈ E} > 0, it is clear that 1
f belongs

to C. On the other hand, C is complete with respect to the uniform norm,

then we have the following statement:

Proposition 3.1.6. The Banach L-algebra C is admissible.

The following Theorem 3.1.7 shows another example of admissible algebra

which is a bit less immediate. In Theorem 3.1.11, we can see that in various

cases, this algebra is strictly included in C.

Lemma 3.1.7. Let (Oi)i=1,...,n be a finite cover of E with clopen sets. Then

there exists a finite cover (Bj)j=1,...,p of E where the sets Bj are not empty,

clopen, pairwise disjoint and such that every Bj is contained in some Oi.

Proof. To the system (Oi)i=1,...,n, let us associate the system (O′
i)i=1,...,2n

where O′
i = Oi if 1 ≤ i ≤ n and O′

i = X\Oi−n otherwise. For every x ∈ E

define Ix = {i ∈ {1, . . . , n} : x ∈ O′
i} and consider the following equivalence

relation on E: x(R)y if and only if Ix = Iy. For any x ∈ E the equivalence

class of x is equal to ∩i∈IxO′
i and it is clopen since so are the O′

i. Then the

equivalence classes (Bj)j=1,...,p satisfy the expected properties. �

Theorem 3.1.8. Let T be the L-subalgebra of C generated by the character-

istic functions of all clopen sets of E and let T be its closure in C (for the

uniform convergence ‖ . ‖0 on E). Then T is admissible.

Proof. One just has to prove Property (2) in the definition of a semi-

admissible algebra.

First, we check that if g ∈ T is such that inf{|g(x)| : x ∈ E} = m > 0

then 1
g ∈ T . Since g ∈ T there exists a finite cover (Oi)i=1,...,n of E with

clopen sets and scalars (λi)1≤i≤n in L such that g =
∑n

i=1 λiui where ui is

the characteristic function of the clopen Oi. Using the preceding lemma we

get a finite cover (Bj)j=1,...,p of E where the sets Bj are not empty, clopen,

pairwise disjoint and such that every Bj is contained in some Oi. Then

there exist scalars (βj)1≤j≤p in L such that g =
∑p

j=1 βjej where ej is the

characteristic function of the clopen Bj . For every j we get |βj | ≥ m > 0,
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then it is clear that

1

g
=

p∑
j=1

1

βj
ej and

1

g
∈ T .

Now consider any f ∈ T such that inf{|f(x)| : x ∈ E} = m > 0. For

every ε > 0 such that ε < 1
m we have εm2 < m and we can consider some

g ∈ T such that ‖f − g‖0 ≤ εm2. Since εm2 < m, we get |f(x)| = |g(x)| for
every x ∈ E and then inf{|g(x)| : x ∈ E} = m.

Next 1
g ∈ T and we have for every

x ∈ E:

∣∣∣∣ 1

f(x)
− 1

g(x)

∣∣∣∣ = |f(x)− g(x)|
|f(x)g(x)| ≤ ‖f − g‖0

m2
≤ ε.

This proves that 1
f ∈ T , which ends the proof. �

Corollary 3.1.9. The algebra T defined in Theorem 3.1.8 is the L-algebra

of the continuous functions f from E to L such that the closure of f(E) in

L is compact. In particular when L is locally compact or E is compact then

T = C.
In order to prove Theorem 3.1.11, we must recall the following classical

proposition.

Proposition 3.1.10. The field L is locally compact if and only if its valua-

tion group is discrete and its residue class field is finite [1 , Proposition 2.3.3].

Theorem 3.1.11. Suppose that E contains a sequence (an)n∈N such that

infn �=m(δ(an, am)) > 0 and that L is not locally compact. Then G is strictly

included in C.
Proof. We put s = infn �=m(δ(an, am)). Suppose first that the valuation

group of L is dense. We can consider a partition of E by an infinite family

of balls dE(bi, s
−).

Suppose first that the valuation group of L is dense. Then we can define

a bounded mapping ψ from E into L such that ψ(x) is constant in each ball

dE(bi, s
−), such that |ψ(an)− ψ(am)| ≥ 1 and such that |ψ(x)| ≥ 1 ∀x ∈ E.

Particularly, |ψ(x)| takes infinitely many values. Suppose that T is dense

in C. Following the same process as in the proof of Theorem 1.1.6, we can

construct a function g ∈ T such that |ψ(x)| = |g(x)| = λj ∀x ∈ E. But

|ψ(x)| then only takes finitely many values, a contradiction.

Similarly, suppose now that the residue class field of L is infinite. Let

us consider a sequence of distinct disks (d(μn, 1
−))n∈N in the unit circle and
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and put Bn = d(μn, 1
−). Now, consider a sequence of balls dE(an, s

−) in E
and an element f of C constant in dE(an, s) and such that f(an) belongs to

Bn. Suppose that f is in the closure of T . Then there exists g ∈ T such that

|f(x) − g(x)| < 1 for any x ∈ E. In particular, we get that g(an) ∈ Bn for

every n. Thus, g should take infinitely many values, a contradiction. �

Theorem 3.1.12. Suppose that E has no isolated points. Let S be an

admissible Banach L-algebra complete with respect to the norm ‖ . ‖0. An
element of S having no zero in E is a topological divisor of zero if and only

if it is not invertible.

Proof. It is obvious that an invertible element of S is not a topological

divisor of zero. Now, consider an element f ∈ T that is not invertible. Then

infx∈E |f(x)| = 0. Therefore, there exists a sequence of disks (dE(an, rn))n∈N
with limn→∞ rn = 0, such that |f(x)| ≤ 1

n , ∀x ∈ dE(an, rn), ∀n ∈ N
∗. For

each n ∈ N, let hn be the characteristic function of dE(an, rn). Then hn
belongs to T and satisfies ‖hn‖0 = 1 ∀n ∈ N

∗. On the other hand, we have

‖fhn‖0 ≤ 1
n , hence limn→+∞ fhn = 0. �

3.2. Sticked ultrafilters

Definitions and notations: Let F be a filter on E. Given a function f

from E to L admitting a limit along F , we will denote by limF f(x) this

limit.

Given a filter F on E, we will denote by I(F , S) the ideal of the f ∈ S

such that limF f(x) = 0. Notice that the unity does not belong to I(F , S),
so I(F , S) 
= S.

Given a ∈ E, we will denote by I(a, S) the ideal of the f ∈ S such that

f(a) = 0 and by I ′(a, S) the ideal of the f ∈ S such that there exists an

open neighborhood G of a such that f(x) = 0 ∀x ∈ G.

We will denote by Max(S) the set of maximal ideals of S and by MaxE(S)

the set of maximal ideals of S of the form I(a, S), a ∈ E.

Given a set F , we will denote by U(F ) the set of ultrafilters on F .

Two ultrafilters U , V on E will be said to be sticked if for every closed

subsets H ∈ U , G ∈ V, we have H ∩G 
= ∅.
We will denote by (R) the relation defined on U(E) as U(R)V if U and

V are sticked [14, 27].

Throughout this chapter, we will denote by S a semi-admissible

L-algebra.
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Remark 2. Relation (R) is not the equality between ultrafilters, even when

the ultrafilters are not convergent. In [33], Labib Haddad introduced the

following equivalence relation (H) on ultrafilters. Given two ultrafilters U , V
we write U(H)V if there exists an ultrafilter W such that every closed set G

lying in W also lies in U and similarly, every closed set G lying in W also lies

in V. So, Relation (H) is clearly thinner than Relation (R). However, it is

shown that two ultrafilters U , V satisfying U(H)V may be distinct without

converging.

The following lemma is classical [6].

Lemma 3.2.1. Given U ∈ U(E) and a subset X of E, then either X ∈ U
or (E \X) ∈ U .

Theorem 3.2.2.

(1) if F and G are disjoint closed subsets of E then there exists a clopen O

such that F ⊂ O and G ⊂ (E \O).

This is the case when δ(F,G) > 0.

(2) If U and V are ultrafilters on E then they are sticked if and only if they

contain the same clopen sets.

In particular if U , V are not sticked, there exist disjoint clopen subsets

H and J of E such that H ∈ U , H /∈ V and J ∈ V, G /∈ U .

Proof. (1) For each x ∈ F take rx > 0 such that d(x, r−x )∩G = ∅ and define

the open set O =
⋃
x∈F d(x, r

−
x ). We clearly have F ⊂ O and G ⊂ E\O. Let

us prove that O is closed. Let y ∈ O. For every n ∈ N
∗, there exists xn ∈ F

such that d(y, 1n
−
) ∩ d(xn, r−xn) 
= ∅, then let yn ∈ d(y, 1n

−
) ∩ d(xn, r−xn).

First, assume that inf{rxn : n ∈ N
∗} = m > 0. Take n ∈ N

∗ such

that 1
n < m. Since the distance is ultrametric we then have: d(y, 1n

−
) =

d(yn,
1
n

−
) ⊂ d(yn, r

−
xn) = d(xn, r

−
xn). Finally y ∈ O.

Assume now that inf{rxn : n ∈ N
∗} = 0. There exists a subsequence

(xnk
)k such that (rxnk

)k tends to 0. Then we immediately get that (xnk
)k

tends to y since (ynk
)k tends to y. So y ∈ F = F and again y ∈ O.

(2) If U and V are sticked then for every clopen O ∈ U we necessarily

have O ∈ V. Otherwise, using the preceding lemma the clopen E \O is in V
so U and V cannot be sticked. Conversely, if U and V contain the same clopen

sets then using the preceding property (1), for every closed sets F ∈ U and

G ∈ V we necessarily get F ∩ G 
= ∅, otherwise taking a clopen O such in

(1) we have O ∈ U and O /∈ V since E \O ∈ V.
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In particular, if U and V are not sticked then taking some clopen H in

U which is not in V, we have (E \H) ∈ V and putting J = E \H, H and J

are clopen sets satisfying the expected property. �

Corollary 3.2.3. Let U , V be two ultrafilters on E that are not sticked.

There exist clopen subsets H ∈ U , J ∈ V and f ∈ S such that f(x) = 1 ∀x ∈
H, f(x) = 0 ∀x ∈ J .

Lemma 3.2.4 is classical.

Lemma 3.2.4. Let U be an ultrafilter on E. Let f be a bounded function

from E to L. The function |f | from E to R+ defined as |f |(x) = |f(x)|
admits a limit along U . Moreover, if L is locally compact, then f(x) admits

a limit along U .
Recall that for any normed L-algebra (B, ‖ . ‖), the closure of an ideal of

B is an ideal of B. Lemmas 3.2.5 and 3.2.6 are immediate.

Lemma 3.2.5. The spectral closure of an ideal of S is an ideal of S.

Lemma 3.2.6. Let X ⊂ S be spectrally closed. Then X is closed with respect

to the norm of S. Let Y ⊂ S be uniformly closed. Then it is spectrally closed.

Now we can recall a classical result known in ultrametric analysis as in

Archimedean analysis.

Proposition 3.2.7. Every maximal ideal M of S is spectrally closed.

Proof. By Lemma 3.2.5, the spectral closure spcl(M) of M is an ideal.

If M is not spectrally closed, then spcl(M) = S, hence there exists

t ∈ S such that 1 − t ∈ M and ‖t‖sp < 1. Consequently, by Proposition

3.1.4, limn→+∞ ‖tn‖ = 0, therefore the series (
∑∞

n=0 t
n) converges and

(
∑∞

n=0 t
n)(1− t) = 1 and hence the unity belongs to M, a contradiction. �

Proposition 3.2.8 now is easy.

Proposition 3.2.8. Given an ultrafilter U on E, I(U , S) is a prime ideal.

Moreover, I(U , S) is uniformly closed and hence is spectrally closed and

closed for the topology of S.

Proof. Since U is an ultrafilter, it is obvious that I(U , S) is prime. Indeed,

given f ∈ S, by Lemma 3.2.4, |f(x)| admits a limit along U and hence,

if f, g ∈ S are such that limU f(x)g(x) = 0, then either limU f(x) = 0 or

limU g(x) = 0, hence either f or g belongs to I(U , S).
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Let us now check that I(U , S) is uniformly closed. Indeed let g in the

closure of I(U , S) with respect to ‖ . ‖0, let b = limU |g(x)| and suppose

b > 0. There exists f ∈ I(U , S) such that ‖f − g‖0 < b and then

b =
∣∣ lim

U
|f(x)| − lim

U
|g(x)|∣∣∞ ≤ lim

U
|f(x)− g(x)| ≤ ‖f − g‖0 < b,

a contradiction showing that I(U , S) is uniformly closed. Therefore, it is

spectrally closed and closed for the topology of S. �

The following Theorem 3.2.9 is proved in [14].

Theorem 3.2.9. Let U , V be two ultrafilters on E. Then I(U , S) = I(V, S)
if and only if U and V are sticked.

Proof. First, if U and V are not sticked, by Corollary 3.2.3, we have

I(U , S) 
= I(V, S). Now, suppose that U , V are sticked. By Theorem 3.2.2,

then they contain the same clopen sets. But for every f ∈ S and ε > 0 the set

Lε = {x ∈ E : |f(x)| ≤ ε} is clopen and we have: f ∈ I(U , S) ⇐⇒ ∀ε> 0,

Lε ∈ U and hence Lε ∈ V. Consequently, ∀ε > 0, Lε ∈ V and hence f belongs

to I(V, S). Thus, I(U , S) ⊂ I(V, S) and similarly, I(V, S) ⊂ I(U , S),
therefore I(V, S) = I(U , S) �

Corollary 3.2.10. Relation (R) is an equivalence relation on U(E).

Theorem 3.2.11 looks like certain Bezout–Corona statements [28].

Theorem 3.2.11. Let f1, . . . , fq ∈ S satisfy infx∈E(max1≤j≤q |fj(x)|) > 0.

Then there exist g1, . . . , gq ∈ S such that
∑q

j=1 fj(x)gj(x) = 1 ∀x ∈ E.

Proof. Let M = infx∈E(max1≤j≤q |fj(x)|). Let Ej = {x ∈ E | |fj(x)| ≥
M}, j = 1, . . . , q and let Fj =

⋃j
m=1Em, j = 1, . . . , q. Let g1(x) =

1
f1(x)

∀x ∈
E1 and g1(x) = 0 ∀x ∈ E \E1. Since |f1(x)| ≥M ∀x ∈ E1, |g1(x)| is clearly
bounded. By Lemma 3.1.2, each Ej is obviously clopen and so is each Fj .

And since S is semi-admissible, g1 belongs to S.

Suppose now we have constructed g1, . . . , gk ∈ S satisfying∑k
j=1 fjgj(x) = 1 ∀x ∈ Fk and

∑k
j=1 fjgj(x) = 0 ∀x ∈ E \ Fk. Let gk+1 be

defined on E by gk+1(x) = 1
fk+1(x)

∀x ∈ Fk+1 \ Fk and gk+1(x) =

0 ∀x ∈ E \ (Fk+1 \ Fk). Since Fk and Fk+1 are clopen, so is E \
(Fk+1 \ Fk) and consequently, gk+1 is continuous. Similarly as for g1, since

|fk+1(x)| ≥ M ∀x ∈ Ek+1, |gk+1(x)| is clearly bounded, hence gk+1

belongs to S. Now we can check that
∑k+1

j=1 fjgj(x) = 1 ∀x ∈ Fk+1 and∑k
j=1 fjgj(x) = 0 ∀x ∈ E \ Fk+1. So, by a finite induction, we get functions

g1, . . . , gq ∈ S such that
∑q

j=1 fjgj(x) = 1 ∀x ∈ E, which ends the proof. �
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Notation: Let f ∈ S and let ε > 0. We set D(f, ε) = {x ∈ E | |f(x)| ≤ ε}.
Corollary 3.2.12. Let I be an ideal of S different from S. The family of sets

{D(f, ε), f ∈ I, ε > 0} generates a filter FI,S on E such that I ⊂ I(FI,S, S).

3.3. Maximal and prime ideals of S

Except Theorem 3.3.7 and its corollaries, most of the results of this

paragraph were given in [13] for the algebra C.
Theorem 3.3.1. Let M be a maximal ideal of S. There exists an ultrafilter

U on E such that M = I(U , S). Moreover, M is of codimension 1 if and only

if every element of S converges along U . In particular if U is convergent,

then M is of codimension 1.

Proof. Indeed, by Corollary 3.2.12, we can consider the filter FM,S and

we have M ⊂ I(FM,S, S). Let U be an ultrafilter thinner than FM,S . So,

we have M ⊂ I(FM,S, S) ⊂ I(U , S). But since M is a maximal ideal,

either M = I(U , S), or I(U , S) = S. But obviously, I(U , S) 
= S, hence

M = I(U , S).
Now assume that M is of codimension 1 and let χ be the L-algebra

homomorphism from S to L admitting M for kernel. Let f ∈ S and let

b = χ(f). Then f − b belongs to the kernel of M, hence limU f(x)− b = 0

that is limU f(x) = b therefore every element of S converges along U .
Conversely if every element of S admits a limit along U then the

mapping χ which associates to each f ∈ S its limit along U is a L-algebra

homomorphism from S to L admitting M for kernel, therefore M is of

codimension 1.

In particular, if U converges to a point a, then each f in S converges to

f(a) along U . �

By Lemma 3.2.4 and Theorem 3.3.1, the following corollary is immediate.

Corollary 3.3.2. Let L be a locally compact field. Then every maximal ideal

of S is of codimension 1.

Remark 3. If L is locally compact, a maximal ideal of codimension 1 of S is

not necessarily of the form I(U , S) where U is a Cauchy ultrafilter. Suppose

that E admits a sequence (an)n∈N such that either it satisfies |an − am| =
r ∀n 
= m, or the sequence |an+1 − an| is strictly increasing. Let U be an

ultrafilter thinner than the sequence (an)n∈N.

Consider now a function f ∈ S. Since L is locally compact, f(x)

does converge along U to a point b ∈ L. In that way, we can define a



March 25, 2022 8:34 Banach Algebras of Ultrametric Functions 9.61in x 6.69in b4542-ch03 page 46

46 Banach Algebras of Ultrametric Functions

homomorphism χ from S onto L as χ(g) = limU g(x) and therefore L is

the quotient S
Ker(χ) . So, I(U , S) is a maximal ideal of codimension 1.

Notation: Following notations of [14], we will denote by Y(S)(E) the set

of equivalence classes on U(E) with respect to Relation (R).

By Theorem 3.2.9, we can get Corollary 3.3.3.

Corollary 3.3.3. Let M be a maximal ideal of S. There exists a unique

H ∈ Y(S)(E) such that M = I(U , S) for every U ∈ H.

Conversely, Theorem 3.3.4 now characterizes all maximal ideals of S.

Theorem 3.3.4. Let U be an ultrafilter on E. Then I(U , S) is a maximal

ideal of S.

Proof. Let I = I(U , S) and let M be a maximal ideal of S containing I.

Then, by Theorem 3.3.1, there exists an ultrafilter V such that M =

I(V, S). Suppose now I(U , S) 
= I(V, S). Then, U and V are not sticked.

Consequently, by Theorem 3.2.2, there exists a clopen subset F ∈ V that

does not belong to U and hence its characteristic function u ∈ S belongs to

I(U , S) but does not belong to I(V, S). Thus, u belongs to I but does not

belong to M, a contradiction to the hypothesis. �

Definition: A field IE is said to be perfect if every algebraic extension of

IE is algebraically separable.

By Corollary 3.3.3 and Theorem 3.3.4, we can derive the following

Corollary 3.3.5.

Corollary 3.3.5. The mapping that associates to each maximal ideal M of

S the class with respect to (R) of ultrafilters U , such that M = I(U , S), is
a bijection from Max(S) onto Y(S)(E).

Remark 4. Let F be a Cauchy filter on E admitting a limit limit a ∈ E

and let M = I(F , S). Then every function f ∈ S converges to a limit θ(f)

along F and M is a maximal ideal of codimension 1. Indeed, let f ∈ S. Since

f is continuous, then f(x) converges to a point θ(f) = f(a) in L. Consider

now the mapping θ from S into L: it is an algebra morphism whose kernel is

M and whose image is L. Consequently, S
M = L, therefore M is a maximal

ideal of codimension 1.

Notations: For any subset F of E, we denote by uF its characteristic

function. Let M be a maximal ideal of S and let U ∈ U(E) be such

that M = I(U , S). By Theorems 3.2.9, we can define the set OM of all
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clopen subsets of E which belong to U . We then denote by CM the set

{uE\L | L ∈ OM} and by JM the set of all functions f ∈ S which are equal

to 0 on some L ∈ OM.

Given a ∈ E, we will denote by I ′(a, S) the ideal of the functions f ∈ S

equal to 0 on an open subset of E containing a.

Theorem 3.3.6. Let M be a maximal ideal of S.

(1) JM is an ideal of S containing CM,

(2) JM is the ideal of S generated by CM and JM = {fu | f ∈ S, u ∈ CM},
(3) If P is a prime ideal of S contained in M, then JM ⊂ P.

(4) If M = I(a, S), then I ′(a, S) = JM.

Proof. (1) Let us check that JM is an ideal of S. Let f, g ∈ JM. So,

there exist F , G ∈ OM such that f(x) = 0 ∀x ∈ F , g(x) = 0 ∀x ∈ G, hence

f(x)− g(x) = 0 ∀x ∈ F ∩G. Since F ∩G belongs to OM, f − g lies in JM.

And obviously, for every h ∈ S, we have h(x)f(x) = 0 ∀x ∈ F , hence fh lies

in JM.

Next, JM contains CM because given F ∈ OM, the set E \ F is clopen,

then uE\F belongs to S and is equal to 0 on F .

(2) Notice that if f ∈ S and u ∈ CM, then by 1) fu belongs to JM.

Conversely, if f ∈ JM and F ∈ OM are such that f(x) is equal to 0 on F ,

then uE\F belongs to CM and f = fuE\F . This proves that JM = {fu | f ∈
S, u ∈ CM} and that JM is the ideal generated by CM.

(3) It is sufficient to prove that CM is included in P. Indeed, let U ∈ U(E)

be such that M = I(U , S) and let F ∈ OM. Then, F ∈ U and uF /∈ M. So,

uF /∈ P. But uF .uE\F = 0. Thus, uE\F belongs to P since P is prime.

(4) Just notice that JM is the set of all functions in S which are equal

to 0 on some clopen containing a and that each open neighborhood of a

contains a disk B(a, r), which is clopen. �

Corollary 3.3.7. Let U be an ultrafilter on E and let P be a prime ideal

included in I(U , S). Let F ∈ U be clopen and let H = E \ F . Then the

characteristic function u of H belongs to P.

Theorem 3.3.8. Let M be a maximal ideal of S. The uniform closure of

JM is equal to M.

Proof. Let f ∈ M = I(U , S). Then for every ε > 0 the set F = D(f, ε)

belongs to U and F is clopen. Therefore, F belongs to OM and the

characteristic function u of E \ F lies in CM, so that fu ∈ JM. But

f(x) − uf(x) = 0 ∀x /∈ F and |f(x) − uf(x)| = |f(x)| ≤ ε ∀x ∈ F , so
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‖f −uf‖0 ≤ ε. Hence M is the uniform closure of JM since, by Proposition

3.2.7, M is spectrally closed, hence uniformly closed. �

Corollary 3.3.9. Let P be a prime ideal contained in a maximal ideal M.

Then M is the uniform closure of P.

Corollary 3.3.10. The uniform closure of a prime ideal of S is a maximal

ideal of S and a prime ideal of S is contained in a unique maximal ideal

of S.

Corollary 3.3.11. A prime ideal of S is a maximal ideal if and only if it is

uniformly closed.

Using Property 4 of Theorem 3.3.6 we get Corollary 3.3.12.

Corollary 3.3.12. The uniform closure of I ′(a, S) is I(a, S).
Corollary 3.3.13. Let M be a maximal ideal of S. Then:

(1) M is the spectral closure of JM and the spectral closure of any prime

ideal contained in M;

(2) a prime ideal is maximal if and only if it is spectrally closed.

3.4. Maximal ideals of finite codimension for admissible algebras

The main results of this paragraph were already obtained in [14]. We recall

them with all proofs in order to make easy the conclusions of this paragraph.

Notations: Let H be a finite algebraic extension of L equipped with the

absolute value which extends that of L and let t = [H : L]. Let Ce be equal

to the H-algebra of the bounded continuous functions from E into H and

Ĉ = H⊗L C. Since H is of finite dimension over L, one obtains an immediate

identification of Ce with Ĉ.
The following Theorem 3.4.2 holds on all complete valued fields and is

proven in [14, Lemma 7.2]. First we must state Lemma 3.4.1.

Lemma 3.4.1. Let H be of the form H = L[a]. Let f ∈ Ce. Then f is of the

form
∑t−1

j=0 a
jfj, j = 0, . . . , t− 1, with fj ∈ C.

Theorem 3.4.2. Let T = C. Suppose there exists a morphism of L-algebra,

χ from T onto H. Then χ has continuation to a surjective morphism χ̂ of

H-algebra from T̂ to H.
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Proof. Suppose first that H is of the form L[a]. Let f , g ∈ T̂ . Then by

Lemma 3.4.1, f is of the form
∑t−1

j=0 a
jfj, j = 0, . . . , t − 1 and g is of the

form
∑t−1

j=0 a
jgj , j = 0, . . . , t− 1, where the fj and the gj are functions from

E to L.

We can now define χ̂ on T̂ as χ̂(f) =
∑t−1

j=0 a
jχ(fj). Then obviously, χ̂

is L-linear. On the other hand, for each q ∈ N, aq is of the form Pq(a) where

Pq ∈ K[x], deg(Pq) ≤ t−1. Then χ̂(aq) = χ̂(Pq(a)) = Pq(χ̂(a)) = Pq(a) = aq.

Next,

χ̂(fg) = χ̂

⎛
⎝
⎛
⎝t−1∑
j=0

ajfj

⎞
⎠
⎛
⎝ t−1∑
j=0

ajgj

⎞
⎠
⎞
⎠ = χ̂

⎛
⎜⎝ ∑

0≤m≤t−1
0≤n≤t−1

am+nfmgn

⎞
⎟⎠

=
∑

0≤m≤t−1
0≤n≤t−1

am+nχ(fm)χ(gn) =

⎛
⎝t−1∑
j=0

ajχ(fj)

⎞
⎠
⎛
⎝t−1∑
j=0

ajχ(gj)

⎞
⎠

= χ(f)χ(g).

Thus, the extension of χ is proved whenever H is of the form L[a]. It is then

immediate to check that χ̂ is surjective: since T̂ is a H-algebra, it contains

the field H and every morphism χ̂ from T̂ obviously satisfies χ̂(c) = c ∀c ∈ H.

Consider now the general case. We can obviously write H in the form

L[b1, . . . , bq]. Writing Hj for the extension L[b1, . . . , bj ] we have Hj =

Hj−1[bj].

By induction on j, using the preceding just proved result, we get that for

each j = 1, . . . , q, χ has continuation to a surjective morphism of Hj-algebra,

χ̂j , from Hj ⊗ T onto Hj. Taking j = q ends the proof. �

We are now able to prove that maximal ideals of finite codimension of

S are of codimension 1 in two cases: when S = A and when the field K is

perfect.

Theorem 3.4.3. Every maximal ideal M of finite codimension of C is of

codimension 1.

Proof. Let H be the field C
M and let C′ be the H-algebra of bounded

continuous functions from E to H. Then C′ is semi-admissible. Now, let χ be

the L-algebra morphism from C onto H whose kernel is M. Let g ∈ C and

let b = χ(g) ∈ H. By Theorem 3.4.2, χ admits an extension to a morphism

χ̂ from C′ to H. Now, since S′ is semi-admissible and since the kernel of χ̂

is a maximal ideal M̂ of C′, there exists an ultrafilter U on E such that
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M̂ = I(U , C′). Then we have χ̂(g − b) = 0, hence g − b belongs to M̂,

therefore limU g(x)− b = 0 i.e., limU g(x) = b. But since g ∈ C, g(x) belongs
to L for all x ∈ E. Therefore, since L is complete, b belongs to L. But by

definition χ is a surjection from C onto H, hence every value b of H is the

image of some f ∈ C and hence it lies in L, therefore L = H. �

Theorem 3.4.3 can be generalized to all semi-admissible algebras

equipped L is a perfect field [13].

Definition and notation: Given a field IE of characteristic p 
= 0, we

denote by IE
1
p the extension of IE containing all pth-roots of elements of IE.

Let L be a subfield of K.

Henceforth, for the rest of this chapter, the field L is supposed

to be perfect.

Proposition 3.4.4. Let H = L[a] be a finite extension of L of degree t,

equipped with the unique absolute value extending that of L and let a2, . . . , at
be the conjugates of a over L, with a1 = a. Let Ŝ = H ⊗L S and let g =∑t−1

j=0 a
jfj, fj ∈ S be such that infE |g(x)| > 0. For every k = 1, . . . , t, let

gk =
∑t−1

j=0 a
j
kfj, fj ∈ S. Then

∏t
k=1 gk belongs to S and

∏t
k=2 gk belongs

to Ŝ.

Proof. Since H = L[a1] and since L is perfect, the extension N =

L[a1, . . . , at] is of the form

N = L[a1][a2, . . . , at] = H[a2, . . . , at]

and N is a normal extension of L and of H, respectively.

Thus, assuming that a1, . . . , as belong to H, we have H = L[a1, . . . , as]

and N = L[a1 . . . , as, as+1, . . . , at] = L[a1, . . . , as][as+1, . . . , at] = H[as+1,

. . . , at].

Let G be the Galois group of N over L and put G′ = {σ ∈ G : σ(x) =

x,∀x ∈ H} where the extension N over H is Galoisian, whose Galois group

G(N |H)= is G′. The subfield H of N then corresponds to the subgroup G′

of G through the Galois correspondence.

Now, given σ ∈ G, set σ(g) =
∑t−1

j=0(σ(a))
jfj. Let F =

∏t
k=1 gk =∏

σ∈G σ(g). Then F belongs to S if and only if for every τ ∈ G, τ(F ) = F .

Now, we have

τ(F ) =
∏
σ∈G

τ ◦ σ(g) =
∏
ζ∈G

ζ(g) = F,

therefore F belongs to S.
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On the other hand, the roots ai, for s + 1 ≤ i ≤ t, are conjugate over

H. Therefore, if s+ 1 ≤ i ≤ t, there exists θ ∈ G′ such that ai = θ(as+1). It

follows that gi =
∑t−1

j=0 a
j
ifj =

∑t−1
j=0 θ(as+1)

jfj = θ(
∑t−1

j=0 a
j
s+1fj)= θ(gs+1).

Let P =
∏t
i=s+1 gi =

∏
θ∈G′ θ(gs+1). Then P belongs to Ŝ if and only

if τ(P ) = P ∀τ ∈ G′. Now, we have τ(P ) =
∏
θ∈G′ τ ◦ θ(gs+1) =∏

ζ∈G′ ζ(gs+1) = P, therefore P belongs to Ŝ. Consequently, since
∏s
i=2 gi

belongs to Ŝ, one gets that (
∏s
i=2 gi) ·P =

∏t
i=2 gi is an element of Ŝ, which

ends the proof. �

We can now establish the following Proposition 3.4.5.

Proposition 3.4.5. Let H = L[a] be a finite extension of L of degree t,

equipped with the unique absolute value extending that of L and let a2, . . . , at
be the conjugates of a over L, with a1 = a. Let Ŝ = H⊗L S and let g ∈ Ŝ be

such that infsE |g(x)| > 0. Then g is invertible in Ŝ.

Proof. Let g =
∑t

j=0 a
jfj, fj ∈ S and for every k = 1, . . . , t, let gk =∑t

j=0 a
j
kfj, fj ∈ S. Then, by Proposition 3.4.4,

∏t
k=1 gk belongs to S and

in the same way,
∏t
k=2 gk belongs to Ŝ. Now, since infE |g(x)| is a number

m > 0, we have |∏t
k=1 gk| ≥ mt because in H, we have |gk(x)| = |g1(x)| ∀k =

1, 2, . . . , t, ∀x ∈ E. Consequently,
∏t
k=1 gk is invertible in S. Thus, there

exists f ∈ S such that
∏t
k=1 gk.f = 1. But since, by Proposition 3.4.4,∏t

k=2 gk belongs to Ŝ, one sees that
∏t
k=2 gk.f is an element of Ŝ. Hence

g = g1 is invertible in Ŝ with inverse g−1 =
∏t
k=2 gk.f �

Definition and notation: In the following Proposition 3.4.7 and in the

theorems we will have to consider the tensor product norm [16]. We remind

here some general facts. Let H be a complete valued field extension of L and

A be a unital, ultrametric L-Banach algebra. Given z ∈ H⊗L A, we put

‖z‖⊗ = inf

{
max
i∈I

|bi|.‖xi‖ |
∑
i∈I

bi ⊗K xi = z, Infinite

}
.

This norm ‖ . ‖⊗ will be called the (projective) tensor product norm. It is an

ultrametric norm.

In any unital L-algebra B, let 1B be the unity of B. Then for b ∈ H

and x ∈ B, one has ‖b ⊗ x‖⊗ = |b|.‖x‖. In particular for any b ∈ H, (resp.,

x ∈ B), one has ‖b⊗ 1B‖⊗ = |b| (resp., ‖1L ⊗x‖⊗ = ‖x‖.) Hence one has an

isometric identification of H (resp., B) with H⊗L 1B (resp., 1H ⊗L B).

Furthermore, one verifies that with the tensor norm, the tensor product

H⊗LB, of the two unital L-algebras K and B is a normed unital L-algebra.
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It is also a unital H-algebra (obtained by extension of scalars). The

completion H⊗̂LB of H⊗LB with respect to the tensor product norm ‖ . ‖⊗
(called the topological tensor product) is a unital L-Banach algebra as well

as a H-Banach algebra.

Now assume that H is of finite dimension d over L. Fix a L-basis (ej)1≤j≤d
of H. It is readily seen that any z ∈ H ⊗L B can be written in the unique

form z =
∑d

j=1 ej ⊗ yj and ‖z‖⊗ = ‖∑d
j=1 ej ⊗ yj‖⊗ ≤ max1≤j≤d |ej |.‖yj‖.

On the other hand, given b =
∑d

j=1 βjej ∈ H, let us consider the

norm ‖b‖1 = max1≤j≤d |βj |.|ej |. One has |b| ≤ ‖b‖1 and since H is finite

dimensional, there exists α > 0 such that αmax1≤j≤d |βj |.|ej | ≤ |b| ≤
max1≤j≤d |βj |.|ej |. Considering the dual basis (e′j)1≤j≤d of (ej)1≤j≤d and the

continuous linear operators e′j ⊗ idB of H⊗LB into L⊗LB = B, one proves

that αmax1≤j≤d |ej |.‖yj‖ ≤ ‖z‖⊗ ≤ max1≤j≤d |ej |.‖yj‖ = ‖z‖1.
This means that the norms ‖ . ‖⊗ and ‖ . ‖1 of H ⊗L B are equivalent.

One immediately sees that H ⊗L B equipped with the norm ‖z‖1 =

max1≤j≤d |ej |‖yj‖ is isomorphic to the product L-Banach space Bd and

then it is complete. It follows that (H ⊗L B, ‖ . ‖⊗) is complete and

H⊗L B = H⊗̂LB.

One then has the following Theorem 3.4.6 contained in [13, Theorem

3.6].

Theorem 3.4.6. If H is a finite extension of L and B is a unital

commutative L-Banach algebra, then with the tensor product norm ‖ . ‖⊗,
the tensor product H⊗LB of the L-algebras H and B is a L-Banach algebra

as well as a Banach algebra over H.

Taking B = S, we can now conclude.

Proposition 3.4.7. Let H = L[a] be a finite extension of L of degree t,

equipped with the unique absolute value extending that of L. Then the algebra

Ŝ = H ⊗L S equipped with the tensor product norm ‖ ‖⊗, is complete.

Moreover, Ŝ can be identified with the Banach H-algebra of functions f from

E to H of the form f =
∑t−1

j=0 a
jfj with fj ∈ S and Ŝ is a semi-admissible

H-algebra.

Proof. By construction, Ŝ is the set of functions f =
∑t−1

j=0 a
jfj with

fj ∈ S. Since each fj is continuous, so is f . By Theorem 3.4.6, Ŝ is a Banach

H-algebra. Next, given a clopen subset D of E, the characteristic function

u of D exists in S and hence it belongs to Ŝ. Finally, given an element

g ∈ Ŝ such that infx∈E |g(x)| > 0, by Proposition 3.4.5, g is invertible in Ŝ.

Therefore, Ŝ is semi-admissible. �
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Theorem 3.4.8. Let H be a finite extension of L of degree t, equipped

with the unique absolute value extending that of L and let Ŝ = H ⊗L S be

equipped with the tensor product norm. Then Ŝ is a semi-admissible Banach

H-algebra.

Proof. By definition, H is of the form L[b1, . . . , bq] with L[b1, . . . , bj ]

strictly included in L[b1, . . . , bj+1], j = 1, . . . , q − 1. Put Hj = L[b1,

. . . , bj], j = 1, . . . , q and Ŝj = Hj ⊗L S. Suppose we have proved that Ŝj is

semi-admissible for some j < q. Next, since Hj+1 = Hj[bj+1], by Proposition

3.4.7, Ŝj+1 is semi-admissible. Therefore, by induction, Ŝq = Ŝ is a semi-

admissible Banach H-algebra. �

Theorem 3.4.9. Let M be a maximal ideal of finite codimension of S. Then

M is of codimension 1.

Proof. Let H be the field S
M and let Ŝ = H ⊗L S be equipped with the

tensor product norm. By Theorem 3.4.8, Ŝ is semi-admissible. Now, let χ

be the morphism from S onto H whose kernel is M. Let g ∈ S and let

b = χ(g) ∈ H. By Theorem 3.4.2, χ admits an extension to a morphism χ̂

from Ŝ to H. But since Ŝ is semi-admissible and since the kernel of χ̂ is a

maximal ideal M̂ of Ŝ, by Theorem 3.3.1, there exists an ultrafilter U on

E such that M̂ = I(U , S). Take g ∈ S and let b = χ(g). Then we have

χ̂(g − b) = 0, hence g − b belongs to M̂, therefore limU g(x) − b = 0, i.e.,

limU g(x) = b. But since g ∈ S, g(x) belongs to L for all x ∈ E. Therefore,

since L is complete, b belongs to L. But by definition χ is a surjection from

S onto H, hence every value b of H actually lies in L and hence L = H. �

3.5. Multiplicative spectrum of admissible algebras

Notation: Let A be a normed L-algebra. We denote by Υ(A) the set of

L-algebra homomorphisms from A to L.

Particularly, considering the algebra S, we denote by MultE(S, ‖ . ‖) the
set of continuous multiplicative semi-norms of T whose kernel is a maximal

ideal of the form I(a, S), a ∈ E.

Let us recall that in S, we have ‖ . ‖0 ≤ ‖ . ‖sp and that if S is admissible,

then ‖ . ‖0 = ‖ . ‖sp. Theorem 3.5.1 is classical [26, 28].

Theorem 3.5.1. For each f ∈ S, ‖f‖sp = sup{φ(f) | φ ∈ Mult(S, ‖ . ‖)}.
For every χ ∈ Υ(S), we have |χ(f)| ≤ ‖f‖sp ∀f ∈ S.

More notations: For any ultrafilter U ∈ U(E) and any f ∈ S, |f(x)| has a
limit along U since f is bounded. Given a ∈ E we denote by ϕa the mapping
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from S to R defined by ϕa(f) = |f(a)| and for any ultrafilter U ∈ U(E), we

denote by ϕU the mapping from S to R defined by ϕU (f) = limU |f(x)| (see
Lemma 3.2.4). These maps belong to Mult(S, ‖ . ‖) since ‖ . ‖0 ≤ ‖ . ‖sp ≤
‖ . ‖. Particularly, the elements of MultE(S, ‖ . ‖) are the ϕa, a ∈ E.

Proposition 3.5.2. Let a ∈ E. Then I(a, S) is a maximal ideal of S of

codimension 1 and ϕa belongs to Mult1(S, ‖ . ‖). Conversely, for every

algebra homomorphism χ from S to L, its kernel is a maximal ideal of

the form I(a, S) with a ∈ E and χ is defined as χ(f) = f(a), while

ϕa(f) = |χ(f)|.
Theorem 3.5.3. Let U be an ultrafilter on E. Then ϕU belongs to the closure

of MultE(S, ‖ . ‖), with respect to the topology of Mult(S, ‖ . ‖).
Proof. Let ψ = ϕU , take ε > 0 and let f1, . . . , fq ∈ S. There exists H ∈ U
such that |ψ(fj) − |fj(x)| |∞ ≤ ε ∀x ∈ H, ∀j = 1, . . . , q. Therefore, taking

a ∈ H, we have |ϕa(fj) − ψ(fj)|∞ ≤ ε ∀j = 1, . . . , q which shows that ϕa
belongs to the neighborhood W of ψ of the form {φ |ψ(fj) − φ(fj)|∞ ≤
ε ∀j = 1, . . . , q} and this proves the claim. �

Remark 5. In E, we call monotonous distances sequence a sequence (an)n∈N
of E such that the sequence δ(an, an+1)n∈N is strictly monotonous. We call

constant distances sequence a sequence (an)n∈N of E such that δ(an, am) is

constant when n, m are big enough and n 
= m. According to Remark 3,

if L is locally compact and E admits monotonous distances sequences or

constant distances sequences, we can define ϕU ∈ Mult1(S, ‖ . ‖) which does

not belong to MultE(S, ‖ . ‖).
Theorem 3.5.4. For each φ ∈ Mult(S, ‖. ‖), Ker(φ) is a prime spectrally

closed ideal.

Proof. Let φ ∈ Mult(S, ‖. ‖) and let f belong to the spectral closure of

Ker(φ). There exists a sequence (fn)n∈N of Ker(φ) such that limn→∞ ‖fn −
f‖sp = 0. By Theorem 3.5.1, since φ(g) ≤ ‖g‖sp ∀g ∈ S, we have

limn→∞ φ(fn − f) = 0. But φ(fn) = 0 ∀n ∈ N, hence it follows that

φ(f) = limn→+∞ φ(fn − f) = 0. Therefore, f belongs to Ker(φ), which

means that spcl(Ker(φ)) = Ker(φ). �

By Theorem 3.5.4 and Corollary 3.3.14, we have the following Corollary

3.5.5.

Corollary 3.5.5. Then Mult(S, ‖ . ‖) = Multm(S, ‖ . ‖).
Theorem 3.5.6 is classical [26, Theorem 6.15].
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Theorem 3.5.6. Let A be a commutative unital ultrametric Banach L-

algebra. For every maximal ideal M of A, there exists φ ∈ Multm(S, ‖ . ‖)
such that M = Ker(φ).

Recall that a unital commutative Banach L-algebra is said to be

multbijective if every maximal ideal is the kernel of only one continuous

multiplicative semi-norm.

Remark 6. There exist some rare cases of ultrametric Banach algebras that

are not multbijective [21, 23].

Theorem 3.5.7. Suppose that S is admissible. Then S is multbijective.

Precisely if ψ ∈ Mult(S, ‖ . ‖) and Ker(ψ) = M then ψ = ϕU for every

ultrafilter U such that M = I(U , S).
Proof. Let ψ ∈ Multm(S, ‖ . ‖), let M = Ker(ψ) and U be an ultrafilter

such that M = I(U , S).
Let f ∈ S. Notice that if f ∈ M then ψ(f) = ϕU (f) = 0. Now we assume

that f /∈ M. So ψ(f) and ϕU (f) are both strictly positive. We prove that

they are equal.

First let ε > 0 and consider the set L = {x ∈ E : |f(x)| ≤ ϕU (f) +
ε}. This set belongs to U and by Lemma 3.1.2, it is clopen. Therefore, its

characteristic function u lies in S. We have ϕU (u) = 1. Consequently, we can

derive that ψ(u) = 1 because u is idempotent and does not belong to M.

Therefore, ψ(uf) = ψ(f) and ϕU (uf) = ϕU (f). By Theorem 3.5.1, we have

ψ(f) = ψ(uf) ≤ ‖uf‖sp = ‖uf‖0 because S is admissible. But by definition

of L we have: ‖uf‖0 ≤ ϕU (f) + ε. Therefore, ψ(f) ≤ ϕU (f) + ε. This holds

for every ε > 0. Consequently we may conclude that ψ(f) ≤ ϕU (f) for every
f ∈ S.

We prove now the inverse inequality. We have ϕU (f) > 0, so consider the

set W = {x ∈ E : |f(x)| ≥ ϕU (f)
2 }. This is a clopen set which belongs to U .

Let w be the characteristic function ofW and put g = wf+(1−w). We have

ϕU (w) = 1 and ϕU (1−w) = 0 so w /∈ M and 1−w ∈ M. Since M = Ker(ψ)

we then have ψ(1 − w) = 0 and ψ(w) = 1 because w is idempotent. Finally

ψ(g) = ψ(f) and ϕU (g) = ϕU (f).
On the other hand, we can check that |g(x)| ≥ min

(
1, ϕU (f)

2

)
for all

x ∈ E, hence g is invertible in S. Putting h = 1
g , using the first inequality

yet proved, we have

ψ(f) = ψ(g) =
1

ψ(h)
≥ 1

ϕU (h)
= ϕU (g) = ϕU (f).

That concludes the proof. �
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Remark 7. Thus, if S is admissible, Mult(S, ‖ . ‖) can be identified to

Mult(S, ‖ . ‖0).
Corollary 3.5.8. For every φ ∈ Mult(S, ‖ . ‖) there exists a unique H ∈
Y(S)(E) such that φ(f) = limU |f(x)| ∀f ∈ S, ∀U ∈ H.

Moreover, the mapping IJ that associates to each φ ∈ Mult(S, ‖ . ‖) the

unique H ∈ YR(E) such that φ(f) = limU |f(x)| ∀f ∈ S, ∀U ∈ H, is a

bijection from Mult(S, ‖ . ‖) onto Y(S)(E).

By Theorem 3.5.7, since each element φ ∈ Mult(S, ‖ . ‖) is of the form

ϕU , Corollary 3.5.9 is immediate from Theorem 3.5.7.

Corollary 3.5.9. MultE(S, ‖ . ‖) is dense in Mult(S, ‖ . ‖).
Proof. Indeed, Mult(S, ‖ . ‖) = Multm(S, ‖ . ‖) and, since S is multbijec-

tive, every element element of Mult(S, ‖ . ‖) is of the form ϕU with U an

ultrafilter on E. �

Theorem 3.5.10. The topological space E, equipped with its distance δ, is

homeomorphic to MultE(S, ‖ . ‖) equipped with the restricted topology from

that of Mult(S, ‖ . ‖).
Proof. For every a ∈ E, put Z(a) = ϕa, take f1, . . . , fq ∈ S and ε > 0. We

set W ′(ϕa, f1, . . . , fq, ε) = W(ϕa, f1, . . . , fq, ε)∩MultE(S, ‖ . ‖). Considering
the natural topology on E, the filter of neighborhoods of a admits for basis

the family of disks B(a, r), r > 0. We will show that it is induced through the

mapping Z by the filter admitting for basis the family of neighborhoods of ϕa
in Mult(S, ‖ . ‖). Indeed, take r ∈]0, 1[ and let u be the characteristic function

of B(a, r). Then W ′(ϕa, u, r) is the set of ϕb such that |ϕa(u)−ϕb(u)|∞ < r.

But since r < 1, we can see that this is satisfied if and only if b ∈ B(a, r).

Therefore the topology induced on E by Mult(S, ‖ . ‖) is thinner than its

metric topology.

Conversely, take some neighborhood W ′(ϕa, f1, . . . , fq, ε) of ϕa in

MultE(S, ‖ . ‖). For each j = 1, . . . , q, the set of the x ∈ E such that

|ϕx(fj) − ϕa(fj)|∞ ≤ ε is the set of the x such that
∣∣∣|fj(x)| − |fj(a)|

∣∣∣
∞

≤
ε. But now, since each fj is continuous, the set of the x such that∣∣∣|fj(x)| − |fj(a)|

∣∣∣
∞

≤ ε ∀j = 1, . . . , q is a neighborhood of a in E. Con-

sequently, the metric topology of E is thinner than the topology induced by

MultE(S, ‖ . ‖) and that finishes proving that the two topological spaces are

homeomorphic. �

Corollary 3.5.11. Mult(S, ‖ . ‖) is a compactification of the topological

space E.
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Notation: Let X ⊂ Mult(S, ‖ . ‖). We denote by X̃ the subset of the

a ∈ E such that ϕa ∈ X.

By Theorem 3.5.10, we can state this corollary.

Corollary 3.5.12. If X, Y are two clopen subsets of Mult(S, ‖ . ‖) making

a partition, then X̃, Ỹ are two clopens of E making a partition of E.

Corollary 3.5.13. If X, Y are two open closed subsets of Mult(S, ‖ . ‖)
making a partition, there exist idempotentsu, v ∈ S such that φ(u) = 1,

φ(v) = 0,∀φ ∈ X, φ(u) = 0, φ(v) = 1,∀φ ∈ Y .

Theorem 3.5.14. Let φ = ϕU ∈ Multm(S, ‖ . ‖), with U an ultrafilter on

E, let K be the field S
Ker(φ) and let θ be the canonical surjection from S onto

K. Then, the mapping ‖ . ‖′ defined on K by ‖θ(f)‖′ = φ(f) ∀f ∈ S, is the

quotient norm ‖ . ‖′ of ‖ . ‖0 defined on K and is an absolute value on K.

Moreover, if Ker(φ) is of codimension 1, then this absolute value is the one

defined on L and coincides with the quotient norm of the norm ‖ . ‖ of S.

Proof. Let M = Ker(ϕU ). Let t ∈ K and let f ∈ S be such that θ(f) = t.

So, ‖t‖′ ≥ limU |f(s)|. Conversely, take ε > 0 and let V = {x ∈ E : |f(x)| ≤
limU |f(s)|+ ε}. By Lemma 3.1.2, the set V is clopen and belongs to U . The
characteristic function u of E \ V belongs to M and so does uf . But by

construction, (f − uf)(x) = 0 ∀x ∈ E \ V and (f − uf)(x) = f(x) ∀x ∈ V .

Consequently, ‖f − uf‖0 ≤ limU |f(s)|+ ε and therefore ‖t‖′ ≤ ‖f − uf‖0 ≤
limU |f(s)|+ ε. This finishes proving the equality ‖θ(f)‖′ = limU |f(s)| and
hence the mapping defined by |θ(f)| = φ(f), f ∈ S is the quotient norm

‖ . ‖′ of ‖ . ‖0. Then it is multiplicative, hence it is an absolute value on K.

Now, suppose that M is of codimension 1. Then K is isomorphic to L

and its absolute value ‖ . ‖′ is continuous with respect to the topology of

L, hence it is equal to the absolute value of L. Finally consider the quotient

norm ‖ . ‖q of the norm ‖ . ‖ of S: that quotient norm of course bounds the

quotient norm ‖ . ‖′ which is the absolute value of L. If f ∈ S and b = θ(f),

we have f − b ∈ M and ‖θ(f)‖q ≤ ‖b‖ = |b| = |θ(f)| = ‖θ(f)‖′, which ends

the proof. �

Corollary 3.5.15. Let φ ∈ Mult(S, ‖ . ‖), let K be the field S
Ker(φ) and let

θ be the canonical surjection from S onto K. Then, the mapping defined on

K by |θ(f)| = φ(f),∀f ∈ S is the quotient norm ‖ . ‖′ of ‖ . ‖0 on K and is

an absolute value on K. Moreover, if Ker(φ) is of codimension 1, then this

absolute value is the one defined on L and coincides with the quotient norm

of the norm ‖ . ‖ of S.
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Remark 8. It is not clear whether an algebra S can admit a prime closed

ideal P (with respect to the norm ‖ . ‖) which is not a maximal ideal. If it

admits such a prime closed ideal, then it is not the kernel of a continuous

multiplicative semi-norm since Mult(S, ‖ . ‖) = Multm(S, ‖ . ‖). In such a

case, the quotient algebra by P has no continuous absolute value extending

that of L, although it has no divisors of zero. Such a situation can happen

in certain ultrametric Banach algebras [9].

By Theorem 2.4.12, we have Theorem 3.5.16 [25].

Theorem 3.5.16. Every normed L-algebra admits a Shilov boundary.

Notation: Given a normed L-algebra G, we denote by Shil(G) the Shilov

boundary of G.

Lemma 3.5.17. Let us fix a ∈ E. For every r > 0, let Z(a, r) be the set of

multiplicative semi-norms ϕU , with U ∈ U(E), such that dE(a, r) belongs to

U . The family {Z(a, r) |r ∈]0, 1[} forms a basis of the filter of neighborhoods

of ϕa.

Proof. Let W(ϕa, f1, . . . , fq, ε) be a neighborhood of ϕa in Mult(S, ‖ . ‖).
There exists r > 0 such that, whenever δ(a, x) ≤ r we have |fj(x)− fj(a)| ≤
ε ∀j = 1, . . . , q and therefore, clearly, |ϕU (fj)−ϕa(fj)|∞ ≤ ε ∀j = 1, . . . , q for

every U containing dE(a, r). Thus, Z(a, r) is included in W(ϕa, f1, . . . , fq, ε).

Conversely, consider a set Z(a, r) with r ∈]0, 1[, let u be the characteristic

function of dE(a, r) and consider W(ϕa, u, r). Given ψ = ϕU ∈ W(ϕa, u, r),

we have |ψ(u) − ϕa(u)|∞ ≤ r. But |ψ(u) − ϕa(u)|∞ = |ψ(u) − 1|∞ =

|limU |u(x)| − 1|∞. If dE(a, r) belongs to U , then limU |u(x)| = 1 and there-

fore |limU |u(x)| − 1|∞ = 0. But if dE(a, r) does not belong to U , then

limU |u(x)| = 0 and therefore |limU |u(x)| − 1|∞ = 1. Consequently, since

r < 1, W(ϕa, u, r) is included in Z(a, r), which finishes proving that the

family of Z(a, r), r ∈]0, 1[ is a basis of the filter of neighborhoods of ϕa. �

Theorem 3.5.18. The Shilov boundary of S is equal to Mult(S, ‖ . ‖) [12,

14, 27].

Proof. We will show that for every a ∈ E, ϕa belongs to Shil(S). So,

let us fix a ∈ E and suppose that ϕa does not belong to Shil(S). Since

Shil(S) is a closed subset of Mult(S, ‖ . ‖), there exists a neighborhood of ϕa
that contains no element of Shil(S). Therefore, by Lemma 3.5.11, there exists

s > 0 such that Z(a, s) contains no element of Shil(S). Now, let D = dE(a, s)

and let u be the characteristic function of D. Since any φ ∈ Mult(S, ‖ . ‖)
satisfies either φ(u) = 1 or φ(u) = 0, there exists θ ∈ Shil(S) such that
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θ(u) = ‖u‖sp = 1. Then, θ is of the form ϕU , with U ∈ U(E) and U does not

contain D. But since u(x) = 0 ∀x ∈ E\D, we have θ(u) = 0, a contradiction.

Consequently, for every a ∈ E, ϕa belongs to Shil(S) which is a closed subset

of Mult(S, ‖ . ‖) and since, by Corollary 3.5.9, MultE(S, ‖ . ‖) is dense in

Mult(S, ‖ . ‖), then Shil(S) is equal to Mult(S, ‖ . ‖). �

3.6. The Stone space IB(E) for admissible algebras

Here, we can show that for the algebra C of continuous bounded functions

from E to L, the Banaschewski compactification of E is homeomorphic to

Mult(C, ‖ . ‖0).
Recall that we denote by IB(E) the Boolean ring of clopen subsets of

E equipped with the laws Δ for the addition and ∩ for the multiplication.

As usually called the Stone space of the Boolean ring IB(E) is the space

St(E) of non-zero ring homomorphisms from IB(E) onto F2, equipped with

the topology of pointwise convergence. This space is a compactification of E

and is called the Banaschewski compactification of E (see, for example, [26]

for further details).

For every U ∈ U(E), we denote by ζU the ring homomorphism from

IB(E) onto the field of 2 elements F2 defined by ζU (O) = 1 for every O ∈
IB(E) that belongs to U and ζU(O) = 0 for every O ∈ IB(E) that does not

belong to U .
Particularly, given a ∈ E, we denote by ζa the ring homomorphism from

IB(E) onto F2 defined by ζa(O) = 1 for every O ∈ IB(E) that contains a and

ζa(O) = 0 for every O ∈ IB(E) that does not contain a.

Remark 9. Let St′(E) be the set of ζa, a ∈ E. The mapping that associates

ζa ∈ E to a ∈ E defines a surjective mapping from E onto St′(E). That

mapping is also injective because given a, b ∈ E, there exists a clopen

subset F such that a ∈ F and b /∈ F .

By Corollary 3.5.8, we have a bijection Ψ fromMult(S, ‖ . ‖) onto Y(S)(E)

associating to each φ ∈ Mult(S, ‖ . ‖) the unique H ∈ Y(S)(E) such that

φ(f) = limU |f(x)|, U ∈ H, f ∈ S, i.e., φ = ϕU for every U ∈ H.

On the other hand, let us take some H ∈ Y(S)(E) and ultrafilters U , V
in H. Since U ,V own the same clopen subsets of E, we have ζU = ζV and

hence we can define a mapping Ξ from YR(E) into St(E) which associates to

each H ∈ YR(E) the Boolean homomorphism ζU independent from U ∈ H.

Lemma 3.6.1. Ξ is a bijection from YR(E) onto St(E).
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Proof. Indeed, let H,K ∈ Y(S)(E) and suppose that H 
= K. Take

ultrafilters U ∈ H and V ∈ K. They are not sticked, therefore by Theorem

3.2.2, there exists clopens L ∈ H, M ∈ K such that H ∩ K = ∅. Then,
Ξ(H) 
= Ξ(K), which proves the injectivity.

Now, let us check that Ξ is surjective. Let θ ∈ St(E). Since θ is a ring

homomorphism for the Boolean laws, the family of clopen sets X satisfying

θ(X) = 1 generates a filter F . Let U ∈ U(E) be thinner than F and let H
be the class of U with respect to (R). We will check that θ = Ξ(H) = ζU .
Let O be a clopen subset that belongs to U . Then E \ O does not belong

to U and therefore it does not belong to F , so θ(E \ O) = 0, consequently

θ(O) = 1. And now, let O be a clopen subset that does not belong to U .
Then O does not belong to F , hence θ(O) = 0, which ends the proof. �

Notations: We put Π = Ξ◦IJ and hence Π is a bijection from Mult(S, ‖ . ‖)
onto St(E). Notice that for every ultrafilter U , (ϕU ) is the class H of U with

respect to (R) and Ξ(H) = ζU so Π(ϕU ) = ζU .

Theorem 3.6.2. Π is a homeomorphism once St(E) and Mult(S, ‖ . ‖) are
equipped with topologies of pointwise convergence.

Proof. Recall that for any U ∈ U(E), a neighborhoods basis of ϕU in

Mult(S, ‖ . ‖) is given by the family of sets of the form W(ϕU , f1, . . . , fq, ε)
with f1, . . . , fq ∈ S, ε > 0 and

W(ϕU , f1, . . . , fq, ε) = {ϕV |
∣∣∣ limU |fj(x)| − lim

V
|fj(x)|

∣∣∣
∞

≤ ε, j = 1, . . . , q }.

On the other hand, for any U ∈ U(E), a neighborhood basis for ζU in St(E)

is given by the family of sets V (ζU , O1, . . . , Oq) where O1, . . . , Oq belong to

IB(E) and

V (ζU , O1, . . . , Oq) = {ζV | ζU(Oj) = ζV(Oj), j = 1, . . . , q}.
Notice also that if F belongs to IB(E) and if u is its characteristic

function, then for any U ∈ U(E), we have ζU (F ) = 1 if and only if F ∈ U ,
i.e., if and only if limU |u(x)| = 1. Otherwise, both ζU (F ) and limU |u(x)| are
equal to 0. Therefore, the relation∣∣∣ limU |u(x)| − lim

V
|u(x)|

∣∣∣
∞

≤ 1

2

holds if and only if ζU (F ) = ζV(F ). Recall that for every U ∈ U(E) we have

Π(ϕU ) = ζU .
We will show that Π is continuous. Consider O1, . . . , Oq ∈ IB(E), U ∈

U(E) and the neighborhood V (ζU , O1, . . . , Oq) of ζU . From the preceding
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remark, ζV belongs to V (ζU , O1, . . . , Oq) if and only if for every j = 1, . . . , q,

ζU (Oj) = ζV(Oj), i.e., if for every j = 1, . . . , q,∣∣∣ limU |uj(x)| − lim
V

|uj(x)|
∣∣∣
∞

≤ 1

2
,

i.e., if ϕV belongs to W(ϕU , u1, . . . , uq, 12). Consequently, this proves that Π
is continuous. We can now deduce that Π is a homeomorphism because it is

a continuous bijection between compact spaces [6]. �

Corollary 3.6.3. The space St(E) is a compactification of E which is

equivalent to the compactification Mult(S, ‖ . ‖).
Remark 10. For an admissible algebra S, the Banaschewski compact-

ification St(E) coincides with the Guennebaud–Berkovich multiplicative

spectrum.
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Chapter 4

Compatible Algebras

4.1. Definition of compatible algebras

In this chapter and in the next ones, we will consider compatible algebras,

as we did with admissible algebras, and we will make a study comparable to

this in Sections 4.1–4.5.

Given a subset F of L such that F �= ∅ and F �= L, we call codiameter

of F the number δ(F,L \ F ). If F = ∅ or F = L, we say that its codiameter

is infinite. The set F will be said to be uniformly open if its codiameter is

strictly positive.

Recall that E is a metric space. We will denote by G(E) the family

of uniformly open subsets of E. In Section 3.6 of Chapter 3, dealing with

the Banaschewski compactification of E we considered the Boolean ring of

clopen sets of E (with the usual addition Δ and multiplication ∩). Here we

will consider the Boolean ring of uniformly open sets. Actually, we have the

following lemmas that are easily checked:

Lemma 4.1.1. Given two uniformly open subsets F, G, then F ∪G, F ∩G,
E \G, FΔG are uniformly open.

Corollary 4.1.2. G(E) is a Boolean ring with respect to the addition Δ and

the multiplication ∩.
Lemma 4.1.3. Given two subsets A and B of E, there exists a uniformly

open subset F such that A ⊂ F and B ⊂ E \ F if and only if δ(A,B) > 0.

Lemma 4.1.4. Let f be a uniformly continuous function from E to K and

let M > 0.

(1) If D is a uniformly open subset of K, then so is the set F = {x ∈
E | f(x) ∈ D}.

63
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(2) Given M > 0, the sets E1 = {x ∈ E | |f(x)| ≥ M} and E2 = {x ∈
E |f(x)| ≤M} are uniformly open.

Corollary 4.1.5. Let f be a uniformly continuous function from E to K,

let M > 0 and let h > 0. Then {x ∈ E |
∣∣∣|f(x)| −M

∣∣∣
∞

≤ h} is uniformly

open.

We can easily derive the following the Lemma.

Lemma 4.1.6. Let F be a subset of E and let u be its characteristic

function. The three following statements are equivalent:

(1) F is uniformly open,

(2) u is Lipschitz,

(3) u is uniformly continuous.

Definitions and notations: We denote by B the algebra of bounded

uniformly continuous functions from E to L.

We will call semi-compatible algebra a unital Banach L-algebra T of

uniformly continuous bounded functions f from E to L satisfying the two

following properties:

(1) every function f ∈ T such that infx∈E |f(x)| > 0 is invertible in S,

(2) for every subset F ⊂ E, the characteristic function of F belongs to T if

and only if F is uniformly open,

Moreover, a semi-compatible algebra T will be said to be compatible if

it satisfies

(3) the spectral semi-norm of T is equal to the norm ‖ . ‖0.
Remark 1. B equipped with the norm ‖ . ‖0 is easily seen to be compatible.

Throughout the following sections, we will denote by T a semi-

compatible L-algebra.

More definitions and notations: Two ultrafilters U , V on E are said

to be contiguous if for every H ∈ U , J ∈ V, we have δ(H,J) = 0. We

shall denote by (S) the relation defined on U(E) as U(S)V if U and V are

contiguous.

The following lemma is immediate.

Lemma 4.1.7. Let U , V be two sticked ultrafilters. Then U and V are

contiguous.

Remark 2. The contiguity relation on ultrafilters on E is a particular case

of the relation on ultrafilters defined by Labib Haddad and in other terms by



March 25, 2022 8:34 Banach Algebras of Ultrametric Functions 9.61in x 6.69in b4542-ch04 page 65

Compatible Algebras 65

Pierre Samuel in a uniform space. This relation on a uniform space actually

is an equivalence relation.

Remark 3. Two contiguous ultrafilters are not necessarily sticked. Suppose

L has dense valuation, let (an)n∈N, (bn)n∈N be two sequences of the disk

d(0, 1) of L such that |an| < |an+1|, |an| = |bn|, an �= bn, limn→+∞ |an| =
1, limn→+∞ an − bn = 0. For every n ∈ N, set An = {an, an+1, . . .}, Bn =

{bn, bn+1, . . .}. Then each An, each Bn is a closed set of L and δ(An, Bn) ≤
|aq − bq| ∀q ≥ n, hence δ(An, Bn) = 0. Consider now an ultrafilter F on N.

It defines an ultrafilter U thinner than the sequence (an) and an ultrafilter

V thinner than the sequence (bn) which are contiguous. But clearly an �=
bm∀n, m ∈ N and hence An ∩ Bm = ∅ ∀n,m ∈ N, which proves that the

ultrafilters U and V are not sticked.

Lemma 4.1.8 is classical.

Lemma 4.1.8. Let U be an ultrafilter on E. Let f be a bounded function

from E to L. The function |f | from E to R+ defined as |f |(x) = |f(x)|
admits a limit along U . Moreover, if L is locally compact, then f(x) admits

a limit along U .
The following lemmas are immediate:

Lemma 4.1.9. The spectral closure of an ideal of T is an ideal of T .

Lemma 4.1.10. If a subset Y of T is spectrally closed, it is closed with

respect to the norm ‖ . ‖ of T .

Lemma 4.1.11. Every maximal ideal M of T is spectrally closed.

Proof. By Lemma 4.1.9, the spectral closure spcl(M) of M is an ideal. If

M is not spectrally closed, then spcl(M) = T, hence there exists t ∈ T such

that 1 − t ∈ M and ‖t‖sp < 1. Consequently, limn→+∞ ‖tn‖ = 0, therefore

the series (
∑∞

n=0 t
n) converges and (

∑∞
n=0 t

n)(1− t) = 1 and hence the unity

belongs to M, a contradiction. �

Lemma 4.1.12 is now easy.

Lemma 4.1.12. Given an ultrafilter U on E, I(U , T ) is a prime ideal.

Moreover, I(U , T ) is closed with respect to the norm ‖ · ‖0 and then is

spectrally closed.

Proof. Since U is an ultrafilter, it is straightforward that I(U , T ) is prime.

Let us now check that I(U , T ) is closed with respect to the norm ‖ . ‖0. Indeed
let g belong to the closure of I(U , S) with respect to ‖ . ‖0, let b = limU |g(x)|
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and suppose b > 0. There exists f ∈ I(U , T ) such that ‖f − g‖0 < b and

then

b =
∣∣ lim

U
|f(x)| − lim

U
|g(x)|∣∣∞ ≤ lim

U
|f(x)− g(x)| ≤ ‖f − g‖0 < b,

a contradiction showing that I(U , T ) is closed with respect to the norm

‖ . ‖0. Therefore, since ‖ . ‖0 ≤ ‖ . ‖sp, it is closed with respect to the norm

‖ . ‖sp. �

By Lemma 4.1.3, we have the following lemma.

Lemma 4.1.13. Let U , V be ultrafilters on E. Then U and V are not

contiguous if and only if there exists a uniformly open set H ∈ U such

that E \H ⊂ V.
Corollary 4.1.14. Let U ,V be ultrafilters on E. Then U and V are

contiguous if and only if they contain the same uniformly open sets.

Corollary 4.1.15. Relation (S) is an equivalence relation on U(E).

Theorem 4.1.16. Let U , V be ultrafilters on E. Then I(U , T ) = I(V, T ) if
and only if U and V are contiguous.

Proof. Suppose that U , V are not contiguous. By Lemma 4.1.13, there

exists a uniformly open set H ∈ U such that E \ H ∈ V. Then the

characteristic function u of H belongs to I(V, T ) and does not belong to

I(U , T ).
Conversely, suppose that I(U , T ) �= I(V, T ). Without loss of generality,

we can assume that there exists f ∈ I(U , T ) \ I(V, T ). Then limV |f(x)| is
a number l > 0. There exists L ∈ V such that

∣∣∣|f(x)| − l
∣∣∣
∞
< l

3 ∀x ∈ L and

then |f(x)| ≥ 2l
3 ∀x ∈ L. Therefore, by Lemma 4.1.4, the set L′ = {x ∈

E | |f(x)| ≥ 2l
3 } is a uniformly open set that belongs to V. But the set

H = {x ∈ E | |f(x)| ≤ l
3} is a uniformly open set of U since limU |f(x)| = 0

and clearly H ∩ L′ = ∅. Consequently, U and V are not contiguous. �

Now we can obtain a Bezout–Corona statement for semi-compatible

algebras similar to Theorem 3.2.11 of Chapter 3:

Theorem 4.1.17. Let f1, . . . , fq ∈ T satisfy infx∈E(max1≤j≤q |fj(x)|) > 0.

Then there exist g1, . . . , gq ∈ T such that
∑q

j=1 fj(x)gj(x) = 1 ∀x ∈ E.

Proof. Let M = infx∈E(max1≤j≤q |fj(x)|). Let Ej = {x ∈ E | |fj(x)| ≥
M}, j = 1, . . . , q and let Fj =

⋃j
m=1Em, j = 1, . . . , q. Let g1(x) =

1
f1(x)

∀x ∈
E1 and g1(x) = 0 ∀x ∈ E \E1. Since |f1(x)| ≥M ∀x ∈ E1, |g1(x)| is clearly
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bounded. By Lemma 4.1.4 each Ej is uniformly open and so is each Fj . And

since T is semi-compatible, g1 belongs to T .

Suppose now we have constructed g1, . . . , gk ∈ T satisfying∑k
j=1 fjgj(x) = 1 ∀x ∈ Fk and

∑k
j=1 fjgj(x) = 0 ∀x ∈ E \ Fk. Let gk+1 be

defined on E by gk+1(x) = 1
fk+1(x)

∀x ∈ Fk+1 \ Fk and gk+1(x) =

0 ∀x ∈ E \ (Fk+1 \ Fk). Since Fk and Fk+1 are uniformly open, so is

E \ (Fk+1 \Fk) and consequently, gk+1 is uniformly continuous. Similarly as

for g1, since |fk+1(x)| ≥ M ∀x ∈ Ek+1, |gk+1(x)| is clearly bounded, hence

gk+1 belongs to T . Now we can check that
∑k+1

j=1 fjgj(x) = 1 ∀x ∈ Fk+1 and∑k
j=1 fjgj(x) = 0 ∀x ∈ E \ Fk+1. So, by a finite induction, we get functions

g1, . . . , gq ∈ T such that
∑q

j=1 fjgj(x) = 1 ∀x ∈ E, which ends the proof. �

Notation: Let f ∈ T and let ε > 0. We set D(f, ε) = {x ∈ E | |f(x)| ≤ ε}.
Corollary 4.1.18. Let I be an ideal of T different from S. The family of sets

{D(f, ε), f ∈ I, ε > 0} generates a filter FI,T on E such that I ⊂ I(FI,T , T ).

4.2. Maximal and prime ideals of T

Theorem 4.2.1. Let M be a maximal ideal of T . There exists an ultrafilter

U on E such that M = I(U , T ). Moreover, M is of codimension 1 if and

only if every element of T converges along U . In particular if U is convergent,

then M is of codimension 1.

Proof. Indeed, by Corollary 4.1.18, we can consider the filter FM,T and

we have M ⊂ I(FM,T , T ). Let U be an ultrafilter thinner than FM,T . So,

we have

M ⊂ I(FM,T , T ) ⊂ I(U , T ).
But since M is a maximal ideal, either M = I(U , T ), or I(U , T ) = T . And

obviously, I(U , T ) �= T , hence M = I(U , T ). �

Now assume that M is of codimension 1 and let χ be the L-algebra

homomorphism from T to L admitting M for kernel. Let f ∈ T and let

b = χ(f). Then f − b belongs to the kernel of M, hence limU f(x)− b = 0,

hence limU f(x) = b and every element of T converges along U .
Conversely if every element of T admits a limit along U then the

mapping χ which associates to each f ∈ T its limit along U is a L-algebra

homomorphism from T to L admitting M for kernel.

In particular if U converges to a point a then each f in T converges to

f(a) along U .
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By Lemma 4.1.8 and Theorem 4.2.1, the following corollary is immediate.

Corollary 4.2.2. Let L be locally compact. Then every maximal ideal of T

is of codimension 1.

Remark 4. If L is locally compact, a maximal ideal of codimension 1 of

T is not necessarily of the form I(U , S) for some Cauchy ultrafilter U , as
shown in [12].

Notation: We will denote by Y(T )(E) the set of equivalence classes on

U(E) with respect to the relation (S).
By Theorem 4.1.16, we can get Corollary 4.2.3.

Corollary 4.2.3. Let M be a maximal ideal of T . There exists a unique

H ∈ Y(T )(E) such that M = I(U , T ) for every U ∈ H.

Now, the following theorem together with Theorem 4.2.1 characterizes

all maximal ideals of T .

Theorem 4.2.4. Let U be an ultrafilter on E. Then I(U , T ) is a maximal

ideal of T .

Proof. Let I = I(U , T ) and let M be a maximal ideal of T containing I.

Then by Theorem 4.2.1, there exists an ultrafilter V such that M = I(V, T ).
Suppose now I(U , T ) �= I(V, T ). Then, U and V are not contiguous.

Consequently, by Corollary 4.1.14, there exists a uniformly open subset

F ∈ V that does not belong to U and hence its characteristic function u ∈ T

belongs to I(U , T ) but does not belong to I(V, T ). Thus, u belongs to I but

does not belong to M, a contradiction to the hypothesis. �

By Corollary 4.2.3 and Theorem 4.2.4, we can derive Corollary 4.2.5.

Corollary 4.2.5. The mapping that associates to each maximal ideal M of

T the class with respect to (S) of ultrafilters U , such that M = I(U , T ), is a
bijection from Max(T ) onto Y(T )(E).

The following theorem is quite easy.

Theorem 4.2.6. Let F be a Cauchy filter on E and let M = I(F , T ). Then
every function f ∈ T converges to a limit θ(f) along F and M is a maximal

ideal of codimension 1.

Notations: For any subset F of E, we denote by uF its characteristic

function. Let M be a maximal ideal of T and let U ∈ U(E) be such that

M = I(U , T ). By Theorem 4.1.16 and Corollary 4.1.14, we can define the
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set OM of all uniformly open subsets of E which belong to U . We denote

by CM the set {uE\H | H ∈ OM} and by JM the set of all functions f ∈ T

which are equal to 0 on some F ∈ OM.

Given a ∈ E, we denote by I(a, T ) the ideal of the f ∈ T such that

f(a) = 0 and by I ′(a, T ) the ideal of the f ∈ such that there exists an open

neighborhood G of a such that f(x) = 0 ∀x ∈ G.
Theorem 4.2.7. Let M be a maximal ideal of T .

(1) JM is an ideal of T containing CM,

(2) JM is the ideal of T generated by CM and JM = {fu | f ∈ T, u ∈ CM},
(3) If P is a prime ideal of T contained in M, then JM ⊂ P,
(4) if M = I(a, T ), then I ′(a, T ) = JM.

Proof.

(1) Let us check that JM is an ideal of T . Let f, g ∈ JM. So, there exist

F, G ∈ OM such that f(x) = 0 ∀x ∈ F, g(x) = 0 ∀x ∈ G, hence

f(x) − g(x) = 0 ∀x ∈ F ∩ G. Since F ∩ G belongs to OM, f − g lies

in JM. And obviously, for every h ∈ T , we have h(x)f(x) = 0 ∀x ∈ F ,

hence fh lies in JM.

Next, JM contains CM because givenH ∈ OM, the set E\H is uniformly

open then uE\H belongs to S and is equal to 0 on L.

(2) Notice that if f ∈ T and u ∈ CM, then by 1) fu belongs to JM.

Conversely, if f ∈ JM and H ∈ OM are such that f(x) is equal to

0 on L, then uE\H belongs to CM and f = fuE\H . This proves that

JM = {fu | f ∈ S, u ∈ CM} and that JM is the ideal generated by CM.

(3) It is sufficient to prove that CM is included in P. Indeed, let U ∈ U(E)

be such that M = I(U , T ) and let H ∈ OM. Then H ∈ U and uH /∈ M.

So, uH /∈ P. But uH .uE\H = 0. Thus, uE\H belongs to P since P is

prime, which concludes the proof.

(4) Each open neighborhood of a contains a disk that also is a uniformly

open neighborhood of a, which ends the proof. �

Corollary 4.2.8. Let U be an ultrafilter on E and let P be a prime ideal

included in I(U , S). Let H ∈ U be uniformly open and let B = E \H. Then

the characteristic function u of B belongs to P.

Recall that for any normed K-algebra (G, ‖ . ‖), the closure of an ideal

of G is an ideal of G.
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Theorem 4.2.9. The closure of JM with respect to the norm ‖ . ‖0 is equal

to M.

Proof. Let f ∈ M = I(U , T ). Then for every ε > 0 the set F = D(f, ε)

belongs to U and F is uniformly open. Therefore, F belongs to OM and

the characteristic function u of E \ F lies in CM, so that fu ∈ JM. But

f(x) − uf(x) = 0 ∀x /∈ F and |f(x) − uf(x)| = |f(x)| ≤ ε ∀x ∈ F , so

‖f − uf‖0 ≤ ε and hence M is the closure of JM with respect to the norm

‖ . ‖0 since, by Proposition 4.1.12, M is closed with respect to the norm

‖ . ‖0. �

Corollary 4.2.10. Let P be a prime ideal contained in M. Then M is the

closure of P with respect to ‖ . ‖0.

Corollary 4.2.11. The closure with respect to ‖ . ‖0 of a prime ideal of

T is a maximal ideal of T and a prime ideal of T is contained in a unique

maximal ideal of T .

Corollary 4.2.12. A prime ideal of T is a maximal ideal if and only if it

is closed with respect to ‖ . ‖0.
If M = I(a, T ), then JM = I ′(a, T ). Therefore we have the following

Corollary:

Corollary 4.2.13. The closure of I ′(a, T ) with respect to ‖ . ‖0 is I(a, T ).

Remark 5. I(a, T ) is not necessarily the closure of I ′(a, T ) in T with

respect to the norm ‖ . ‖ of T .

Corollary 4.2.14. (1) M is the spectral closure of JM and the spectral

closure of any prime ideal is contained in M;

(2) A prime ideal is maximal if and only if it is spectrally closed.

4.3. Multiplicative spectrum of T

Definitions and notations: Let A be a normed L-algebra. Let us recall

that in A, we have ‖ . ‖0 ≤ ‖ . ‖sp and that if A is compatible, then ‖ . ‖0 =

‖ . ‖sp.
For any ultrafilter U ∈ U(E) and any f ∈ S, |f(x)| has a limit along U

since f is bounded. Then we denote by ϕU the mapping from T to R defined

by ϕU (f) = limU |f(x)|. Given a ∈ E we denote by ϕa the mapping from T

to R defined by ϕa(f) = |f(a)|. These maps belong to Mult(T, ‖ . ‖) since
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‖ . ‖0 ≤ ‖ . ‖sp ≤ ‖ . ‖. Particularly, the elements of MultE(T, ‖ . ‖) are the

ϕa, a ∈ E.

Proposition 4.3.1. Let a ∈ E. Then I(a, T ) is a maximal ideal of T of

codimension 1 and ϕa belongs to Mult1(T, ‖ . ‖).

Moreover, for every algebra homomorphism χ from T to L, its kernel is

a maximal ideal of codimension 1 of the form I(U , T ) with U ∈ U(E) and χ

is defined as χ(f) = limU f(x), while ϕU (f) = |χ(f)|.

Proof. The first part is clear. The second comes from the proof of Theorem

4.2.1: actually we proved that if M is of codimension 1 then every f ∈ T

has a limit along U and limU f(x) = χ(f). �

The following Proposition 4.3.2 is immediate.

Proposition 4.3.2. Let U be an ultrafilter on E. Then ϕU belongs to the

closure of MultE(T, ‖ . ‖).

Remark 6. According to Remark 4, if K is locally compact we have

Max1(T ) �= MaxE(T ) and hence Mult1(T, ‖ . ‖) �= MultE(T, ‖ . ‖) because

given a maximal ideal I(U , T ) which does not belong to MaxE, we can define

ϕU ∈ Mult(T, ‖ . ‖) which does not belong to MultE(T, ‖ . ‖).

Given a normed L-algebra A and φ ∈ Mult(A, ‖ · ‖), it is well known

that Ker(φ) is a prime closed ideal, with respect to the norm ‖ . ‖ of A.

Actually we have the following proposition:

Proposition 4.3.3. For each φ ∈ Mult(T, ‖. ‖), Ker(φ) is a maximal ideal.

Proof. Let φ ∈ Mult(T, ‖. ‖) and let f belong to the spectral closure of

Ker(φ). There exists a sequence (fn)n∈N of Ker(φ) such that limn→∞ ‖fn −
f‖sp = 0. By Theorem 2.5.17 of Chapter 2, since φ(g) ≤ ‖g‖sp ∀g ∈ T , we

have limn→∞ φ(fn − f) = 0. But φ(fn) = 0 ∀n ∈ N, hence φ(fn − f) = φ(f)

and hence φ(f) = 0. Therefore, f belongs to Ker(φ), which means that

K̃er(φ) = Ker(φ). Therefore, by Theorem 4.2.4, Ker(φ) is a maximal ideal

of T . �

Corollary 4.3.4. Mult(T, ‖ . ‖) = Multm(T, ‖ . ‖).

Theorem 4.3.5. T is multbijective. Precisely if ψ ∈ Mult(T, ‖ . ‖) and

Ker(ψ) = M then ψ = ϕU for every ultrafilter U such that M = I(U , T ).
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Proof. Let ψ ∈ Multm(T, ‖ . ‖), let M = Ker(ψ) and U be an ultrafilter

such that M = I(U , T ). We shall prove that ψ = ϕU .
Let f ∈ T . Notice that if f ∈ M then ψ(f) = ϕU (f) = 0. Now we assume

that f /∈ M. So ψ(f) and ϕU (f) are both strictly positive.

First, take ε > 0 and consider the set F = {x ∈ E : |f(x)| ≤ ϕU (f) + ε}.
This set belongs to U and by Lemma 4.1.4, it is uniformly open. Therefore,

its characteristic function u lies in T , so we have ϕU (u) = 1. Consequently,

we can derive that ψ(u) = 1 because u is idempotent and does not belong

to M. Therefore ψ(uf) = ψ(f) and ϕU (uf) = ϕU (f). By Theorem 2.5.11

of Chapter 2, we have ψ(f) = ψ(uf) ≤ ‖uf‖sp = ‖uf‖0 because T is

compatible. But by definition of F we have: ‖uf‖0 ≤ ϕU (f) + ε. Therefore,

ψ(f) ≤ ϕU (f)+ε. This holds for every ε > 0. Consequently we may conclude

that ψ(f) ≤ ϕU (f) for every f ∈ F .

We now prove the inverse inequality. We have ϕU (f) > 0, so consider

the set W = {x ∈ E : |f(x)| ≥ ϕU (f)
2 }. Again this is a uniformly open

set which belongs to U . Let w be the characteristic function of W and put

g = wf + (1 − w). We have ϕU (w) = 1 and ϕU (1 − w) = 0 so w /∈ M and

1 − w ∈ M. Since M = Ker(ψ) we then have ψ(1 − w) = 0 and ψ(w) = 1

because w is idempotent. Finally ψ(g) = ψ(f) and ϕU (g) = ϕU (f).
On the other hand, we can check that |g(x)| ≥ min

(
1, ϕU (f)

2

)
for all

x ∈ E, hence g is invertible in T . Putting h = 1
g , using the first inequality

yet proved, we have

ψ(f) = ψ(g) =
1

ψ(h)
≥ 1

ϕU (h)
= ϕU (g) = ϕU (f).

That concludes the proof. �

Remark 7. It follows from the previous theorem that for a compatible

algebra T , two ultrafilters on E that are not contiguous define two distinct

continuous multiplicative semi-norms on T , this particularly applies to the

algebra B of all uniformly continuous functions.

Corollary 4.3.6. For every φ ∈ Mult(T, ‖ . ‖) there exists a unique H ∈
Y(T )(E) such that φ(f) = limU |f(x)| ∀f ∈ T, ∀U ∈ H.

Moreover, the mapping Ψ that associates to each φ ∈ Mult(T, ‖ . ‖) the

unique H ∈ YR(E) such that φ(f) = limU |f(x)| ∀f ∈ T, ∀U ∈ H, is a

bijection from Mult(T, ‖ . ‖) onto Y(T )(E).

Assuming that T is compatible, since by Theorem 4.3.5 and Corollary

4.3.4, each element φ ∈ Mult(T, ‖ . ‖) is of the form ϕU , Corollary 4.3.7 is

obvious.



March 25, 2022 8:34 Banach Algebras of Ultrametric Functions 9.61in x 6.69in b4542-ch04 page 73

Compatible Algebras 73

Corollary 4.3.7. MultE(T, ‖ . ‖) is dense in Mult(T, ‖ . ‖).
Theorem 4.3.8. The topological space E, equipped with its distance δ, is

homeomorphic to MultE(T, ‖ . ‖) equipped with the restricted topology from

that of Mult(T, ‖ . ‖).
Proof. The proof is similar to the one of Theorem 3.5.10 of Chapter 3 but

with however some difference.

For every a ∈ E, put Z(a) = ϕa, take f1, . . . , fq ∈ T and ε > 0. We set

W ′(ϕa, f1, . . . , fq, ε) = W(ϕa, f1, . . . , fq, ε)∩MultE(T, ‖ . ‖). Considering the

natural topology on E, the filter of neighborhoods of a admits for basis the

family of disks B(a, r), r > 0. We will show that it is induced through the

mapping Z by the filter admitting for basis the family of neighborhoods of ϕa
in Mult(T, ‖ . ‖). Indeed, take r ∈]0, 1[. Since B(a, r) is obviously uniformly

open, its characteristic function u belongs to T .

Then W ′(ϕa, u, r) is the set of ϕb such that |ϕa(u) − ϕb(u)|∞ < r. But

since r < 1, we can see that this is satisfied if and only if b ∈ B(a, r).

Therefore the topology induced on E by Mult(T, ‖ . ‖) is thinner than its

metric topology.

Conversely, take some neighborhood W ′(ϕa, f1, . . . , fq, ε) of ϕa in

MultE(T, ‖ . ‖). For each j = 1, . . . , q, the set of the x ∈ E such that

|ϕx(fj)− ϕa(fj)|∞ ≤ ε is the set of the x such that
∣∣∣|fj(x)| − |fj(a)|

∣∣∣
∞

≤ ε.

But now, since each fj is continuous, the set of the x such that
∣∣∣|fj(x)| −

|fj(a)|
∣∣∣
∞

≤ ε ∀j = 1, . . . , q is a neighborhood of a in E. Consequently,

the metric topology of E is thinner than the topology induced by

MultE(T, ‖ . ‖) and that finishes proving that the two topological spaces are

homeomorphic. �

Corollary 4.3.9. Mult(T, ‖ . ‖) is a compactification of the topological

space E.

Notation: Let X ⊂ Mult(S, ‖ . ‖). As in Section 3.5 of Chapter 3, we

denote by spcl(X) the subset of the a ∈ E such that ϕa ∈ X.

By Theorem 4.3.8, we can state this corollary.

Theorem 4.3.10. If X, Y are two open closed subsets of Mult(T, ‖ . ‖)
making a partition, then spcl(X), spcl(Y ) are two uniformly open subsets of

E making a partition of E.

Proof. As in Corollary 3.5.12, spcl(X), spcl(Y ) are two clopens of E

making a partition of E. Suppose that spcl(X) is not uniformly open. Then

there exists a sequence (an)n∈N of spcl(X) and a sequence (bn)n∈N of spcl(Y )
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such that limn→+∞ an − bn = 0. Since both X and Y are closed, hence com-

pact, we can extract from the sequence (ϕ(an))n∈N a converging subsequence,

hence up to an extraction, we can assume that limn→+∞ ϕ(an) = ψ ∈ X . �

Now, consider a neighborhood of ψ in Mult(T, ‖ . ‖): W(ψ, f1, . . . , fq, ε)

with f1, . . . , fq ∈ T and ε > 0. Since the elements of T are uniformly

continuous, there is η > 0 such that |fj(x)−fj(y)| ≤ ε ∀j = 1, . . . , q, ∀x, y ∈
E such that |x − y| ≤ η. Then, there exists a rank N such that |an −
bn| ≤ η ∀n ≥ N , therefore |fj(an) − fj(bn)| ≤ ε ∀j = 1, . . . , q, hence∣∣∣|fj(an)| − |fj(bn)|

∣∣∣
∞

≤ ε ∀j = 1, . . . , q and hence |ϕan(fj) − ϕbn(fj)|∞ ≤
ε ∀j = 1, . . . , q, ∀n ≥ N .

Next, there exists a rank M such that |ϕbn(fj) − ψ(fj)|∞ ≤ ε ∀j =

1, . . . , q. Putting P = max(N,M) we see that for every n≥P we have

|ϕbn(fj) − ψ(fj)|∞ ≤ 2ε ∀j = 1, . . . , q and therefore ϕbn ∈ W(ψ, f1,

. . . , fq, 2ε), which proves that limn→+∞ ϕbn = ψ. Consequently, ψ belongs

to Y , a contradiction.

Corollary 4.3.11. If X, Y are two open closed subsets of Mult(T, ‖ . ‖)
making a partition, then there exist idempotents u, v ∈ T such that φ(u) =

1, ψ(u) = 0, φ(v) = 0, ψ(v) = 1 ∀φ ∈ X, ψ ∈ Y .

Theorem 4.3.12. Let φ = ϕU ∈ Multm(T, ‖ . ‖), with U an ultrafilter on

E, let K be the field T
Ker(φ) and let θ be the canonical surjection from T onto

the field K. Then, the mapping defined on K by |θ(f)| = φ(f) ∀f ∈ T, is the

quotient norm ‖ . ‖′ of ‖ . ‖0 defined on K and is an absolute value on K.

Moreover, if Ker(φ) is of codimension 1, then this absolute value is the one

defined on L and coincides with the quotient norm of the norm ‖ . ‖ of T .

Proof. Let M = Ker(ϕU ). Let t ∈ K and let f ∈ T be such that θ(f) = t.

So, ‖t‖′ ≥ limU |f(s)|. Conversely, take ε > 0 and let V = {x ∈ E : |f(x)| ≤
limU |f(s)|+ ε}. By Lemma 4.1.4, the set V is uniformly open and belongs to

U . The characteristic function u of E \V belongs to M and so does uf . But

by construction, (f−uf)(x) = 0 ∀x ∈ E \V and (f−uf)(x) = f(x) ∀x ∈ V .

Consequently, ‖f − uf‖0 ≤ limU |f(s)|+ ε and therefore ‖t‖′ ≤ ‖f − uf‖0 ≤
limU |f(s)|+ ε. This finishes proving the equality ‖θ(f)‖′ = limU |f(s)| and
hence the mapping defined by |θ(f)| = φ(f), f ∈ T is the quotient norm

‖ . ‖′ of ‖ . ‖0. Then it is multiplicative, hence it is an absolute value on K.

Now, suppose that M is of codimension 1. Then K is isomorphic to L

and its absolute value ‖ . ‖′ is continuous with respect to the topology of L,

hence it is equal to the absolute value of L. Finally, consider the quotient

norm ‖ . ‖q of the norm ‖ . ‖ of T : that quotient norm of course bounds the
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quotient norm ‖ . ‖′ which is the absolute value of L. If f ∈ T and b = θ(f),

we have f − b ∈ M and ‖θ(f)‖q ≤ ‖b‖ = |b| = |θ(f)| = ‖θ(f)‖′, which ends

the proof. �

Remark 8. Here we can make the same remark as in Chapter 3: It is not

clear whether an algebra T can admit a prime closed ideal P (with respect to

the norm ‖ . ‖) which is not a maximal ideal. If it admits such a prime closed

ideal P, then it is not the kernel of a continuous multiplicative semi-norm

because Mult(T, ‖ . ‖) = Multm(T, ‖ . ‖). Such a situation may happen as

noticed in Remark 8 of Chapter 3.

Lemma 4.3.13. Let us fix a ∈ E. For every r > 0, let Z(a, r) be the set of

ϕU , U ∈ U(E), such that B(a, r) belongs to U . The family {Z(a, r) |r ∈]0, 1[}
makes a basis of the filter of neighborhoods of ϕa.

Proof. Let W(ϕa, f1, . . . , fq, ε) be a neighborhood of ϕa in Mult(T, ‖ . ‖).
There exists r > 0 such that, whenever δ(a, x) ≤ r we have |fj(x)− fj(a)| ≤
ε ∀j = 1, . . . , q and therefore, clearly, |ϕU (fj)−ϕa(fj)|∞ ≤ ε ∀j = 1, . . . , q, for

every U containing B(a, r). Thus, Z(a, r) is included in W(ϕa, f1, . . . , fq, ε).

Conversely, consider a set Z(a, r) with r ∈]0, 1[, let u be the characteristic

function of B(a, r) and consider W(ϕa, u, r). Given ψ = ϕU ∈ W(ϕa, u, r),

we have |ψ(u) − ϕa(u)|∞ ≤ r. But |ψ(u) − ϕa(u)|∞ = |ψ(u) − 1|∞ =

|limU |u(x)| − 1|∞. If B(a, r) belongs to U , then limU |u(x)| = 1 and there-

fore |limU |u(x)| − 1|∞ = 0. But if B(a, r) does not belong to U , then

limU |u(x)| = 0 and therefore |limU |u(x)| − 1|∞ = 1. Consequently, since

r < 1, W(ϕa, u, r) is included in Z(a, r), which finishes proving that the

family of Z(a, r), r ∈]0, 1[ is a basis of the filter of neighborhoods of ϕa. �

We now have a result for compatible algebras that is similar to this for

admissible algebras.

Theorem 4.3.14. The Shilov boundary of T is equal to Mult(T, ‖ . ‖) [14].
Proof. We will show that for every a ∈ E, ϕa belongs to Shil(T ). So, let

us fix a ∈ E and suppose that ϕa does not belong to Shil(T ). Since Shil(T )

is a closed subset of Mult(T, ‖ . ‖), there exists a neighborhood of ϕa that

contains no element of Shil(T ). Therefore, by the Lemma 4.3.13, there exists

s > 0 such that Z(a, s) contains no element of Shil(T ). Now, let D = B(a, s),

let u be the characteristic function of D. Since any φ ∈ Mult(T, ‖ . ‖)
satisfies either φ(u) = 1 or φ(u) = 0, there exists θ ∈ Shil(T ) be such that

θ(u) = ‖u‖sp = 1. Then, θ is of the form ϕU , with U ∈ U(E) and U does not

contain D. But since u(x) = 0 ∀x ∈ E\D, we have θ(u) = 0, a contradiction.
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Consequently, for every a ∈ E, ϕa belongs to Shil(T ) which is a closed subset

of Mult(T, ‖ . ‖) and since, by Corollary 4.3.7, MultE(S, ‖ . ‖) is dense in

Mult(T, ‖ . ‖), Shil(T ) is equal to Mult(T, ‖ . ‖). �

4.4. The Stone space of G(E)

It was proved in Section 3.6 of Chapter 3 and in [12] that for the

algebra C of continuous bounded functions from E to L, the Banaschewski

compactification of E is homeomorphic to Mult(C, ‖ . ‖0). Here we get some

similar version for compatible algebras.

Let P(E) be the set of non-zero ring homomorphisms from G(E) onto

the field F2 equipped with the topology of pointwise convergence. This is the

Stone space of the Boolean ring G(E) and hence it is a compact space. Thus,

we have similar properties as those shown by IB(E): thus, IB(E) is equipped

with a structure of ring whose addition is Δ and the multiplication is
⋂
.

For every U ∈ U(E), we denote by ζU the ring homomorphism from

G(E) onto F2 defined by ζU (O) = 1 for every O ∈ G(E) that belongs to U
and ζU (O) = 0 for every O ∈ G(E) that does not belong to U .

Particularly, given a ∈ E, we denote by ζa the ring homomorphism from

G(E) onto F2 defined by ζa(O) = 1 for every O ∈ G(E) that contains a and

ζa(O) = 0 for every O ∈ G(E) that does not contain a.

Remark 9. Let P ′(E) be the set of ζa, a ∈ E. The mapping that associates

ζa to any a ∈ E defines a surjective mapping from E onto P ′(E). That

mapping is also injective because given a, b ∈ E, there exists a uniformly

open subset F such that a ∈ F and b /∈ F .

By Corollary 4.3.6, we have a bijection Y fromMult(T, ‖ . ‖) onto Y(T )(E)

associating to each φ ∈ Mult(T, ‖ . ‖) the unique H ∈ Y(T )(E) such that

φ(f) = limU |f(x)|, U ∈ H, f ∈ T , i.e., φ = ϕU for every U ∈ H.

On the other hand, let us take some H ∈ Y(T )(E) and ultrafilters U , V
in H. Since U ,V own the same uniformly open subsets of E, we have ζU = ζV
and hence we can define a mapping Ξ from YT (E) into P(E) which associates

to each H ∈ YT (E) the ζU such that U ∈ H.

Lemma 4.4.1. Ξ is a bijection from Y(T )(E) onto P(E).

Proof. Indeed, Ξ is clearly injective by Corollary 4.1.14. Now, let us check

that Ξ is surjective. Let θ ∈ P(E). Since θ is a ring homomorphism for

the Boolean laws, the family of uniformly open sets X satisfying θ(X) = 1

generates a filter F . Let U ∈ U(E) be thinner than F and let H be the
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class of U with respect to T . We will check that θ = Ξ(H) = ζU . Let O
be a uniformly open subset that belongs to U . Then E \O does not belong

to U and therefore it does not belong to F , so θ(E \ O) = 0, consequently

θ(O) = 1. And now, let O be a uniformly open subset that does not belong

to U . Then O does not belong to F , hence θ(O) = 0, which ends the

proof. �

Notations: We put Z =Ξ ◦Y and hence Z is a bijection from

Mult(T, ‖ . ‖) onto P(E). Notice that for every ultrafilter U , IJ(ϕU ) is

the class H of U with respect to (T ) and Ξ(H) = ζU so Φ(ϕU ) = ζU .

Theorem 4.4.2. Z is a homeomorphism once P(E) and Mult(T, ‖ . ‖) are
equipped with topologies of pointwise convergence.

Proof. Recall that for any U ∈ U(E), a neighborhoods basis of ϕU in

Mult(T, ‖ . ‖) is given by the family of sets of the form W(ϕU , f1, . . . , fq, ε)
with f1, . . . , fq ∈ T , ε > 0 and

W(ϕU , f1, . . . , fq, ε) = {ϕV |
∣∣∣ limU |fj(x)| − lim

V
|fj(x)|

∣∣∣
∞

≤ ε, j = 1, . . . , q}.

On the other hand, for any U ∈ U(E), a neighborhood basis for ζU in P(E)

is given by the family of sets V (ζU , O1, . . . , Oq) where O1, . . . , Oq belong to

G(E) and

V (ζU , O1, . . . , Oq) = {ζV | ζU(Oj) = ζV(Oj), j = 1, . . . , q}. �

Notice also that if F belongs to G(E) and if u is its characteristic

function, then for any U ∈ U(E), we have ζU(F ) = 1 if and only if F ∈ U ,
i.e., if and only if limU |u(x)| = 1. Otherwise, both ζU(F ) and limU |u(x)| are
equal to 0. Therefore, the relation

∣∣∣ limU |u(x)| − lim
V

|u(x)|
∣∣∣
∞

≤ 1

2

holds if and only if ζU (F ) = ζV(F ). Recall that for every U ∈ U(E) we have

Z(ϕU ) = ζU .
We will show that Z is continuous. Consider O1, . . . , Oq ∈ G(E), U ∈

U(E) and the neighborhood V (ζU , O1, . . . , Oq) of ζU . From the preceding

remark, ζV belongs to V (ζU , O1, . . . , Oq) if and only if for every j = 1, . . . , q,

ζU (Oj) = ζV(Oj), i.e., if for every j = 1, . . . , q,

∣∣∣ limU |uj(s)| − lim
V

|uj(x)|
∣∣∣
∞

≤ 1

2
,
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i.e., if ϕV belongs to W(ϕU , u1, . . . , uq, 12). Consequently, this proves that Z
is continuous.

We will now prove that Z−1 is also continuous. Consider f1, . . . , fq ∈ S,

ε > 0, U ∈ U(E) and the neighborhood W(ϕU , f1, . . . , fq, ε) which is

obviously
⋂q
j=1W(ϕU , fj, ε). Let us fix i ∈ {1, . . . , q}. Put ai = limU |fi(x)|

and Oi = {x ∈ E |
∣∣∣|fi(x)| − ai

∣∣∣
∞

≤ ε
2}. By Lemma 4.1.4, Oi is

uniformly open and of course it belongs to U . Thus, we have V (ζU , Oi) =

{ζV | Oi ∈ V}. Now let V ∈ U(E) be such that Oi ∈ V and put

O′
i = {x ∈ E |

∣∣∣ |fi(x)| − limV |fi(x)|
∣∣∣
∞

≤ ε
2}. Then O′

i is uniformly open

also and it belongs to V. Therefore, Oi ∩ O′
i belongs to V. Take x ∈

Oi ∩ O′
i. We have

∣∣∣ |fi(x)| − ai

∣∣∣
∞

≤ ε
2 and

∣∣∣ |fi(x)| − limV |fi(x)|
∣∣∣
∞

≤ ε
2 ,

so
∣∣∣limV |fi(x)| − ai

∣∣∣
∞

≤ ε and hence ϕV belongs to W(ϕU , fi, ε). This

holds for every i = 1, . . . , q. Therefore, we can conclude that if ζV
belongs to V (ζU , O1, . . . , Oq), which is

⋂q
i=1 V (ζU , Oi), then ϕV belongs to⋂q

i=1 W(ϕU , fi, ε) which is W(ϕU , f1, . . . , fq, ε). This finishes proving that

Z−1 is continuous too, and hence is a homeomorphism.

Corollary 4.4.3. The space P(E) is a compactification of E which is

equivalent to the compactification Mult(T, ‖ . ‖).

Remark 10. For a compatible algebra T , the compactification P(E)

coincides with the Guennebaud-Berkovich multiplicative spectrum of T . This

is not the Banaschewski compactification, which corresponds to the Stone

space associated to the Boolean ring of clopen sets of E.

4.5. About the completion of E

Notations: We denote by E the completion of E and by δ the continua-

tion of δ to E. We then identify E with a dense subset of E.

The following theorem is well known.

Theorem 4.5.1. Every uniformly continuous function f from E to L has a

unique extension to a uniformly continuous function f from E to L and we

have ‖f‖0 = ‖f‖0.

Notations: We denote by T the set of functions f, f ∈ T . Given f ∈ T ,

we put ‖f‖ = ‖f‖.
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We have the following proposition.

Proposition 4.5.2. The normed L-algebra (T , ‖ . ‖) is isomorphic to

(T, ‖ . ‖) and it is semi-compatible with respect to E. Moreover, if T is

compatible, so is T .

Proof. Obviously (S, ‖ . ‖) is isomorphic to (S, ‖ . ‖) and therefore it is a

Banach L-algebra. Now we prove that it is semi-compatible.

(1) Take f ∈ T such that inf
E
{|f(x)| | x ∈ E} > 0. Then infE{|f(x)| | x ∈

E} > 0 and hence f is invertible in T . Now, if g ∈ T and fg = 1, then

fg = 1 hence f is invertible in T .

(2) Let F be a subset of E and let u be its characteristic function. Obviously,

if u ∈ T , then, using Lemma 4.1.6, F is uniformly open in E since u is

uniformly continuous.

Assume now that F is uniformly open in E. Put F = F ∩ E. If

F = ∅, then F = ∅ and u = 0. Next, if F �= ∅, then F �= ∅ because

F is open and E is dense in E. So, we have E \ F = (E \ F ) ∩ E and

δ(F,E \ F ) ≥ δ(F ,E \ F ) > 0. Therefore, F is uniformly open in E,

hence its characteristic function u′ lies in S. But u′ is the restriction of

u to E and u is uniformly continuous. Consequently, by Theorem 2.1.1

of Chapter 2, u = u′ and hence u belongs to T .

(3) Suppose now that T is compatible. Clearly, the spectral norm on T is

induced by this of T and hence is ‖ . ‖0. Therefore T is compatible. �

Remark 11. Thus, every result obtained in Chapter 3 also holds for the

algebra (T , ‖ . ‖). Particularly, we have Corollary 4.5.3.

Corollary 4.5.3. The mapping which associates to every M ∈ Max(S) the

equivalence class H ∈ Y(R)(E) such that M = I(U , S) for all U ∈ H, is a

bijection from Max(S) onto Y(R)(E).

On another hand, the algebras (T, ‖ . ‖) and (T , ‖ . ‖) are isometric

and so are (T, ‖ . ‖0) and (T , ‖ . ‖0). Therefore, the mapping from Max(T )

to Max(T ) which associates to each maximal ideal M of T the ideal M =

{f | f ∈ M} is bijective and the idealsM andM are isometric. Furthermore,

since (T, ‖ . ‖) is multbijective, so is (T , ‖ . ‖) and Mult(T , ‖ . ‖) can be

identified with Mult(T, ‖ . ‖).
Notice that any ultrafilter U on E generates an ultrafilter U on E and

for any f ∈ T , we have limU |f(x)| = limU |f(x)|. Thus, for each ultrafilter U
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on E, the ideal I(U , T ) corresponds to the ideal I(U , T ) of T . Then, using
results of Chapter 3 concerning T , we have the following theorem.

Theorem 4.5.4. For each maximal ideal M of T .

(1) There exists an ultrafilter U on E such that M = I(U , T ),
(2) There exists a unique equivalence class H of Y(T )(E) such that U belongs

to H if and only if M = I(U , T ).
By Corollary 4.5.3 and Theorem 4.5.4, we get Corollary 4.5.5.

Corollary 4.5.5. The mapping from Y(T )(E) to Y(T )(E) that associates to

the equivalence class of any ultrafilter U in Y(R)(E) the equivalence class of

U in Y(R)(E) is bijective. In particular every ultrafilter of E is contiguous in

E to a certain ultrafilter U of E.

4.6. Algebras B, L, D, E
As recalled in Section 4.3, we denote by B the Banach K-algebra of bounded

uniformly continuous functions from E to L. Next, we denote by L the set of

bounded Lipschitz functions from E to L. Whenever E is a subset of L, we

denote by D the subset of L of derivable functions in E and by E the subset

of L of functions such that for every a ∈ E, f(x)−f(y)x−y has limit when x and

y tend to a separately. Following [14] the functions of E are called strictly

differentiable [29].

Given f ∈ L, we put ‖f‖1 = supx,y∈E
x �=y

|f(x)−f(y)|
δ(x,y) and ‖f‖ =

max(‖f‖0, ‖f‖1). In particular, if f ∈ D, then ‖f‖1 = supx,y∈E
x �=y

|f(x)−f(y)|
|x−y| .

Remark 12. If E ⊂ L, then E ⊂ D ⊂ L ⊂ B.
As noticed in Chapter 3, (B, ‖ . ‖0) is a semi-compatible algebra. Here

we will carefully study algebras L, D and E .
Nest, we can derive that L, D and E also are Banach algebras. First we

will prove that so is L and then we will show that D and E are closed in L
when E ⊂ L.

Theorem 4.6.1. B is a Banach L-algebra with respect to the norm ‖ . ‖0.
L, D and E are Banach L-algebras with respect to the norm ‖ . ‖.
Proof. The statement concerning B is immediate. Next, it is easily checked

that | . ‖ is a L-algebra norm on L,D, E . Let us check that these algebras

are L-Banach algebras.
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Let (fn)n∈N be a Cauchy sequence of L. Take ε > 0 and let N(ε) ∈ N be

such that ‖fn−fm‖ ≤ ε ∀m, n ≥ N(ε). Since ‖fn−fm‖0 ≤ ε ∀m, n ≥ N(ε),

the sequence (fn)n∈N converges with respect to the norm ‖ . ‖0 to a function

g such that ‖fn− g‖0 ≤ ε ∀n ≥ N(ε). On the other hand, since the sequence

(fn)n∈N is a Cauchy sequence for the norm ‖ . ‖1, then for all x, y ∈ E, such

that x �= y, we have

|fn(x)− fm(x)− (fn(y)− fm(y))|
δ(x, y)

≤ ε ∀m,n ≥ N(ε)

and therefore, fixing n and passing to the limit on m, for all x, y ∈ E, such
that x �= y we get

|fn(x)− g(x) − (fn(y)− g(y))|
δ(x, y)

≤ ε ∀ n ≥ N(ε).

This is true for all x, y ∈ E, x �= y and shows that fn − g belongs to L.
Consequently, g also belongs to L. Particularly we notice that ‖g−fn‖1 ≤ ε,

hence ‖g − fn‖ ≤ ε. Thus, the sequence (fn)n∈N does converge to g in L. �

Suppose now that E ⊂ L and let us show that D is closed in L. Take a

sequence (fn)n∈N converging to a limit f ∈ L and let us show that f belongs

to D. As noticed above, since the sequence (fn)n∈N is a Cauchy sequence

with respect to the norm ‖ . ‖1, the sequence (f ′n)n∈N is a Cauchy sequence

with respect to the norm ‖ . ‖0. Let h be its limit for this norm. This limit

is then bounded in E. We will show that f is derivable and that f ′ = h. Fix

a ∈ E and ε > 0. For all x ∈ E and for every n ∈ N, we have

∣∣∣f(x)− f(a)

x− a
− h(a)

∣∣∣
=
∣∣∣f(x)− f(a)− (fn(x)− fn(a))

x− a
+
fn(x)− fn(a)

x− a

−f ′n(a) + f ′n(a)− h(a)
∣∣∣

≤ max
(∣∣∣f(x)− f(a)− (fn(x)− fn(a))

x− a

∣∣∣, ∣∣∣fn(x)− fn(a)

x− a

−f ′n(a)
∣∣∣, |f ′n(a)− h(a)|

)

≤ max
(
‖f − fn‖,

∣∣∣fn(x)− fn(a)

x− a
− f ′n(a)

∣∣∣, ‖f ′n − h‖0
)
.
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We can fix N ∈ N such that ‖f − fN‖ ≤ ε and ‖f ′N − h‖0 ≤ ε. Then there

exists r > 0 such that, for all x ∈ B(a, r), we have

∣∣∣fN (x)− fN (a)

x− a
− f ′N(a)

∣∣∣ ≤ ε

and thus, we have

∣∣∣f(x)− f(a)

x− a
− h(a)

∣∣∣ ≤ ε.

This proves that f ′(a) = h(a). Therefore f is derivable and f ′ = h.

A similar proof shows that E also is closed in D.

Remark 13. Concerning D, one can ask why we do not consider a norm of

the form ‖f‖d = max(‖f‖0, ‖f ′‖0) instead of the above norm ‖ . ‖ where

‖ . ‖1 is defined with the help of the Lipschitz inequality. Indeed, ‖ . ‖d is a

norm of K-algebra. But the problem is that the algebra D is not complete

with respect to that norm, in the general case. The example given in [29]

(Remark 2) shows that we can’t obtain a Banach algebra in that way because

a sequence that converges with respect to that norm may have a limit which

is not derivable at certain points.

Remark 14. Now, suppose that every non-empty circle C(0, r) has at least

two classes and consider a function f derivable in E and a a point of E \E.

Then in general, f is not derivable at a, as the following example shows. Let

E be the set {x ∈ K | 0 < |x| ≤ 1} and let (an)n∈N be a sequence in E such

that

|an| < |an−1|, lim
n→+∞ |an| = 0.

For each n ∈ N, put rn = |an|. Let g be the function defined on E by

g(x) = an ∀x ∈ d(an, r
−
n ) and

g(x) = 0 ∀x ∈ E \
( ∞⋃
n=1

d(an, r
−
n )

)
.

We can check that g is derivable and Lipschitz in E. But g(0) = 0 and

g is not derivable at 0. Indeed, let (bn)n∈N be a sequence of E such that
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|bn| = |bn − an| = rn ∀n ∈ N. Now,

g(an)− g(0)

an − 0
= 1 ∀n ∈ N,

whereas

g(bn)− g(0)

bn − 0
= 0 ∀n ∈ N,

which shows that g(x)−g(0)
x has no limit at 0. Therefore, g is not derivable in

E. In the same way, we can show that g is strictly differentiable in E but

not in E.

Theorem 4.6.2. An element of B,L,D, E is invertible if and only if

inf{|f(x)| | x ∈ E} > 0.

Proof. Suppose that inf{|f(x)| | x ∈ E} > 0 and put g(x) = 1
f(x) . Let us

first show that f belongs to L (resp., to B). Indeed, let m = inf{|f(x)| | x ∈
E}. Then

|g(x) − g(y)|
δ(x, y)

=
|f(y)− f(x)|

|f(x)f(y)|δ(x, y) ≤ |f(y)− f(x)|
m2δ(x, y)

,

which proves that g belongs to L (resp., to B). Similarly, if f ∈ D (resp.,

f ∈ E), then g belongs to D (resp., to E). �

Theorem 4.6.3. In each algebra B,L, D, E , the spectral norm ‖ . ‖sp is

‖ . ‖0.
Proof. Concerning B, by definition its norm is ‖ . ‖0. Now, take f ∈ L
and n ∈ N. Without loss of generality, we can suppose that ‖f‖0 ≥ 1. We

have

‖fn‖ = max
(
‖fn‖0, sup

x,y∈E,x �=y
|(f(x))n − (f(y))n|

δ(x; y)

)
.

We notice that |(f(x))n − (f(y))n| ≤ |f(x)− f(y)|(‖f‖0)n−1 and hence

sup
x,y∈E,x �=y

|(f(x))n − (f(y))n|
δ(x; y)

≤ (‖f‖0)n−1 sup
x,y∈E,x �=y

|(f(x))− (f(y))|
δ(x; y)

= (‖f‖0)n−1‖f‖1.
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Consequently, we have

‖f‖0 ≤ ‖f‖sp ≤ n
√

‖f‖1(‖f‖0)
n−1
n .

Then when n tends to +∞, we get ‖f‖sp = ‖f‖0 ∀f ∈ L. This is then true

in D and E too. �

Theorem 4.6.4. The L-algebras B,L,D, E are compatible algebras.

Proof. Let T be one of the algebras B,L,D, E . By Lemma 4.1.6, the

characteristic function of an open set belongs to T if and only if it is uniformly

open. Next, by Theorem 4.6.2, an element of B,L,D, E admitting a strictly

positive low bound admits an inverse. And finally, by Theorem 4.6.3, its

spectral norm is ‖ . ‖0. �

4.7. Particular properties of the algebras B,L,D, E
A first specific property of the algebras B,L,D, E concerns maximal ideals

of finite codimension: they are of codimension 1.

Notations: Throughout this section, F will denote a finite algebraic

extension of L, equipped with the absolute value extending that of L. For

convenience, we will denote here by T one of the algebras B,L,D, E and by

T ∗ the F-algebra of bounded uniformly continuous functions (resp., Lipschitz

functions, resp. derivable functions, resp. strictly differentiable functions)

from E to F.

Remark 15. By definition, T ∗ is compatible.

Lemmas 4.7.1 and 4.7.2 are basic results in algebra.

Lemma 4.7.1. Let F be of the form L[a] of degree d equipped with the

absolute value which extends that of L. Let f ∈ T ∗. Then f is of the form∑d−1
j=0 a

jfj, j = 0, . . . , d− 1, with fj ∈ T . So, T ∗ is isomorphic to T ⊗ F.

Lemma 4.7.2. Let F be equipped with the absolute value which extends that

of L. Suppose there exists a morphism of L-algebra, χ, from T to F. Then χ

has continuation to a surjective morphism of F-algebra χ∗ from T ∗ onto F.

Proof. Let d = [F : L]. Suppose first that F is of the form L[a]. By Lemma

4.7.1, any f in T ∗ is of the form
∑d−1

j=0 a
jfj, j = 0, . . . , d− 1 where the fj

are functions from E to L. We then set χ∗(f) =
∑d−1

n=0 ajχ(fj). Then χ
∗ is

obviously surjective onto F.
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Consider now the general case. We can obviously write F in the form

L[b1, . . . , bq]. Then we have L[b1, . . . , bj ] = L[b1, . . . , bj−1][bj ]. By induction

on j, using the just proved preceding result we get that for each j = 1, . . . , q,

χ has continuation to a surjective morphism of L[b1, . . . , bj ]-algebra χ
∗
j , from

(T ⊗ L[b1, . . . , bj ]) onto L[b1, . . . , bj ]. Taking j = q ends the proof. �

We can now state the following theorem whose proof is similar to that of

Theorem 3.4.9 of Chapter 3 but here concerns algebras B,L,D, E . Actually,
that result may be generalized to all semi-compatible algebras, equipped

that K is a perfect field, a hypothesis that we can avoid here.

Theorem 4.7.3. Every maximal ideal of T of finite codimension is of

codimension 1.

Proof. Let M be a maximal ideal of finite codimension of T and let F

be the field T
M . Now, let χ be the quotient morphism from T over F whose

kernel is M and let T ∗ be defined as above, relatively to the field F. By

Lemma 4.7.2, χ admits an extension to a surjective morphism χ∗ from T ∗

to F. Since the kernel of χ∗ is a maximal ideal M∗ of T ∗, there exists an

ultrafilter U on E such that M∗ = I(U , T ∗).
Let g ∈ T and let b = χ(g) ∈ L. Then we have χ∗(g− b) = 0, hence g− b

belongs to M∗, therefore limU g(x)− b = 0, i.e., limU g(x) = b. But since

g ∈ T , g(x) belongs to L for all x ∈ E. Therefore, since L is complete, b

belongs to L. But by definition χ is a surjection from T onto F, hence every

value b of F is the image of some g ∈ T and hence it lies in L, therefore

F = L. �

Remark 16. In [6], it is shown that in the algebra of bounded analytic

functions in the open unit disk of a complete ultrametric algebraically closed

field, any maximal ideal which is not defined by a point of the open unit disk

is of infinite codimension. Here, we may ask whether the same holds. In the

general case, no answer is obvious. We can only answer a particular case.

Theorem 4.7.4. Let M = I(U , T ) be a maximal ideal of T where U is an

ultrafilter on E. If U is a Cauchy filter, then M is of codimension 1. Else,

M is of infinite codimension.

Proof. Suppose first that U is a Cauchy ultrafilter. Let f ∈ T . Then f is

uniformly continuous, hence f(x) converges along U because L is complete.

Consequently, by Theorem 4.2.1, M is of codimension 1.

Now, suppose that U is not a Cauchy filter and consider the iden-

tical function g defined on E. Then g has no limit on U , therefore by
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Theorem 4.2.1, M is not of codimension 1. But then by Theorem 4.7.3,

M is not of finite codimension. �

Corollary 4.7.5. Suppose E is complete. Then Max1(T ) = MaxE(T ).

Remark 17. Consider φ ∈ Mult(L, ‖ . ‖), let M = Ker(φ). By theorem

4.3.4, all compatible algebras satisfy Mult(T, ‖ . ‖) = Multm(T, ‖ . ‖). Now,
let θ be the canonical surjection from L onto L

M . By Theorem 4.3.12, the

quotient norm of the quotient field L
M is just the quotient norm of uniform

convergence norm ‖ . ‖0 and is equal to the absolute value of L. In the case

of a maximal ideal of infinite codimension, we can’t apply Hahn–Banach’s

Theorem and there is no reason to think that the quotient norm is equivalent

to the absolute value defined as |θ(f)| = limU |f(x)|.
Theorem 4.7.6. Suppose that E has no isolated points. Then an element of

an algebra L is a topological divisor of zero if and only if it is not invertible.

Proof. It is obvious that an invertible element of L is not a topological

divisor of zero.

Now, consider an element f ∈ B or f ∈ L that is not invertible. By

Theorem 4.6.2, we have infx∈E |f(x)| = 0. Therefore, there exists a sequence

of disks (B(an, rn))n∈N with limn→∞ rn = 0, such that |f(x)| ≤ 1
n , ∀x ∈

B(an, rn), ∀n ∈ N∗.
Since the points an are not isolated, for every n ∈ N we can fix bn ∈

B(an, rn) such that bn �= an.

For each n ∈ N∗, let tn = δ(an, bn) and hn be the characteristic function

of B(an, tn). Notice that 0 < tn ≤ rn so limn→∞ tn = 0. Now hn belongs to

L, hence to B and clearly satisfies

(1)
|hn(x)− hn(y)|

δ(x, y)
≤ 1

tn
∀x, y ∈ E, x �= y.

Then concerning B, we just have ‖fhn‖0 ≤ 1
n and hence f is a divisor of

zero.

Suppose now f ∈ L. We notice that |hn(an)−hn(bn)|
δ(an,bn)

= 1
tn

hence

(2) ‖hn‖1 =
1

tn
∀n ∈ N∗.

Let l ∈ L be such that |l| ∈]0, 1[. Since the valuation on L is not trivial, for

each n ∈ N, we can find an element τn ∈ L such that |l|tn≤ |τn| ≤ tn. We
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put wn = τnhn for all n ∈ N. Then clearly we have

(3) ‖wn‖0 = |τn|‖hn‖0 = |τn| ≤ tn,

and by (2), we have

(4) |l| ≤ ‖wn‖1 = |τn|
tn

≤ 1.

Hence

(5) |l| ≤ ‖wn‖ ≤ max(1, |τn|) ∀n ∈ N∗.

Consider now the sequence (fwn)n∈N∗ . By (3), we have ‖fwn‖0 ≤ tn‖f‖0,
hence

(6) lim
n→∞ ‖fwn‖0 = 0.

Furthermore for all x, y ∈ E, we have

|f(x)wn(x)− f(y)wn(y)|
δ(x, y)

≤ max

(
|f(x)|. |wn(x)− wn(y)|

δ(x, y)
, |wn(y)|. |f(x) − f(y)|

δ(x, y)

)

and by (3) it is easily seen that

(7) |wn(y)|. |f(x) − f(y)|
δ(x, y)

≤ tn‖f‖1.

On the other hand, if x ∈ B(an, rn), we have : |f(x)| ≤ 1
n , hence by (4),

(8) |f(x)|. |wn(x)− wn(y)|
δ(x, y)

≤ 1

n
,

and by (7) and (8), we obtain

(9)
|f(x)wn(x)− f(y)wn(y)|

δ(x, y)
≤ max

(
1

n
, tn‖f‖1

)
.

Similarly, since x and y play the same role, if y belongs to B(an, rn), we

obtain the same inequality.
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Suppose now that neither x nor y belongs to B(an, rn). Then wn(x) =

wn(y) = 0, therefore

(10)
|f(x)wn(x)− f(y)wn(y)|

δ(x, y)
≤ tn‖f‖1.

Consequently, by (9) and (10) we have proved that ‖fwn‖1 ≤
max( 1n , tn‖f‖1). Hence limn→∞ ‖fwn‖1 = 0 and by (6) limn→∞ ‖fwn‖ = 0

which, together with (5), finishes proving that f is a divisor of zero in L and

this ends the proof of Theorem 4.7.6.

Finally, we can prove this last result: given a ∈ E, I(a,L) is not

necessarily the closure of I ′(a,L), while by Corollary 4.2.13, it is its spectral

closure. �

Proposition 4.7.7. Suppose that the set E is included in an ultrametric

field F and contains a disk d(0, R) of the field F. There exists f ∈ I(0,L)
that does not belong to the closure of I ′(0,L) with respect to the norm ‖ . ‖
of L.
Proof. Let ω ∈ F be such that 0 < |ω| < 1. For every n ∈ N, set rn =

|ω|−n, let an ∈ C(0, rn), let Fn = d(an, r
−
n ) and let H =

⋃∞
n=1 Fn. Let f

be the function defined in E as f(x) = 0 ∀x ∈ E \H and f(x) = an ∀x ∈
Fn, n ∈ N.

We notice that f belongs to L. Indeed, let x, y ∈ E with x �= y. If

f(x) �= f(y), then at least one of the points x and y belongs to H. Suppose

that y ∈ H.

Suppose first that x /∈ H. Then f(x) = 0 and y belongs to some disk

d(an, r
−
n ) and hence |f(y)| = |an| = rn, whereas |x − y| ≥ rn, therefore∣∣∣ f(x)−f(y)x−y
∣∣∣ ≤ 1.

Suppose now that x and y belong to H. Say, x belongs to d(am, r
−
m)

and y belongs to d(an, r
−
n ) with m < n since f(x) �= f(y). Then

|f(x)| = rm < rn = |f(y)|, hence |f(x) − f(y)| = |f(y)| = rn and

|x − y| = |y| = rn therefore
∣∣∣f(x)−f(y)x−y

∣∣∣ ≤ 1. Thus, we have checked that∣∣∣ f(x)−f(y)x−y
∣∣∣ ≤ 1 ∀x, y ∈ E, x �= y. That finishes proving that f belongs to L.

Now, by construction, we can see that f belongs to I(0,L). However, we
will check that f does not belong to the closure of I ′(0,L). Let h ∈ I ′(0,L).
There exists a disk d(0, rq) such that h(x) = 0 ∀x ∈ d(0, rq). Consequently,

f(x) − h(x) = f(x) ∀x ∈ d(0, rq). But we notice that f(x) = 0 ∀x ∈
C(0, rq) \ Fq. So, when x belongs to Fq and y belongs to C(0, rq) \ Fq, we
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have
∣∣∣f(x)−f(y)x−y

∣∣∣ = 1, therefore ‖f − h‖ ≥ ‖f − h‖1 ≥ 1. This proves that

I(0,L) is not the closure of I ′(0,L) with respect to the norm ‖ . ‖. �

4.8. A kind of Gelfand transform

A Gelfand transform is not easy on ultrametric Banach algebras, due to

maximal ideals of infinite codimension. However, here we can obtain a kind of

Gelfand transform under certain hypotheses on the multiplicative spectrum

in order to find again an algebra of bounded Lipschitz functions on some

ultrametric space.

Notations: Let (A, ‖ . ‖) be a commutative unital Banach L-algebra which

is not a field. Let X (A,L) be the set of algebra homomorphisms from A

onto L and let λA be the mapping from A×A to R+ defined by λA(χ, ζ) =

sup{|χ(f)− ζ(f)| | ‖f‖ ≤ 1}.
Given χ ∈ X (A,L), we denote by |χ| the element of Mult(A, ‖ . ‖) defined

as |χ|(f) = |χ(f)|, f ∈ A. Given D ⊂ X (A,L), we put |D| = {|χ|, χ ∈ D}.
The following Lemma is easily checked.

Lemma 4.8.1. λA is an ultrametric distance on X (A,L) such that

λA(χ, ξ) ≤ 1 ∀χ, ξ ∈ A.

Definitions: The algebra (A, ‖ . ‖) will be said to be L-based if it satisfies

the following:

(a) Mult1(A, ‖ . ‖) is dense in Mult(A, ‖ . ‖),
(b) the spectral semi-norm ‖ . ‖sp is a norm,

(c) for every uniformly open subset D of X (A,L) with respect to λA,

the closures of |D| and |X (A,L) \ D| are disjoint open subsets of

Mult(A, ‖ . ‖).

Proposition 4.8.2. Let (A, ‖ . ‖) be a unital commutative algebra satisfying

properties (a) and (b) above. Then the algebra A is algebraically isomorphic

to an algebra G of bounded Lipschitz functions from the ultrametric space

F = (X (A,L), λA) to L. Identifying A with G, the following are true:

(i) the spectral norm ‖ . ‖sp of A is equal to the uniform convergence norm

‖ . ‖0 on F .

(ii) every f ∈ A such that inf{|χ(f)| : χ ∈ X (A,L)} > 0 is invertible in A.
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(iii) there exists a constant c ≥ 1 such that the Lipschitz semi-norm defined

as

‖f‖1 = sup
({ |f(x)− f(y)|

λA(x, y)

∣∣∣ x, y ∈ F, x �= y
})

satisfies ‖f‖1 ≤ c‖f‖ for all f ∈ A and the topology defined by ‖ . ‖
on A is at least as strong as the topology induced by the norm ‖ . ‖L of

the Banach L-algebra L of all bounded Lipschitz functions from F to L,

where ‖f‖L = max(‖f‖0, ‖f‖1), f ∈ L.
Proof. We first show that A is isomorphic to a sub-L-algebra of the algebra

of bounded functions from F to L. For each f ∈ A and χ ∈ F , we put

f◦(χ) = χ(f) and then we define a bounded function f◦ from F to L. Let

us check that this mapping G associating to each f ∈ A the function f◦

is injective. Indeed, G is obviously an algebra homomorphism whose kernel

is the intersection J of all maximal ideals of codimension 1. But thanks

to Properties (a), (b) and to Theorem 2.5.17 of Chapter 2, we can check

that J = (0). Consequently G is injective and hence A is isomorphic to a

subalgebra of the algebra of bounded functions from F to L. Hencefore we

will identify an element f of A with the function it defines on F .

Let us now show that every g ∈ A is Lipschitz, with respect to the

distance λA. Let χ, ζ ∈ F and let g ∈ A be such that ‖g‖ ≤ 1. Then we

have

|χ(g)− ζ(g)| ≤ sup{|χ(f)− ζ(f) | ‖f‖ ≤ 1} = λA(χ, ζ).

Now in general, take g ∈ A and ν ∈ L such that |ν| ≥ ‖g‖. Let h = g
ν .

Then |χ(h)− ζ(h)| ≤ λA(χ, ζ) hence |χ(g)− ζ(g)| ≤ |ν|λA(χ, ζ), therefore g
is Lipschitz.

Consequently, A can be identified with a L-subalgebra of bounded

Lipschitz functions from the ultrametric space F to L.

We will now show that the statements (i)–(iii) are true. Thanks to

Property (a) and Theorem 2.5.17 of Chapter 2, it is immediately seen that

the spectral norm ‖ . ‖sp of A is the uniform convergence norm ‖ . ‖0 on F

hence (i) is true.

Let us now show that whenever |χ(f)| ≥ m > 0 for all χ ∈ X (A,L),

then f is invertible in A. Indeed, suppose that f is not invertible. Then there

exists a maximal ideal M that contains f . By Theorem 2.5.17 of Chapter 2,

there exists φ ∈ Mult(A, ‖ . ‖) such that M = Ker(φ) and then φ(f) = 0.

Given r > 0, let us denote again by W(φ, f, r) the neighborhood of φ: {ψ ∈
Mult(A, ‖ . ‖) | |ψ(f)− φ(f)|∞ ≤ r}. Now Mult1(A, ‖ . ‖) is just the set of
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|χ|, χ ∈ X (A,L). Thus, since Mult1(A, ‖ . ‖) is dense in Mult(A, ‖ . ‖), there
exists a sequence χn of X (A,L) such that for every n ∈ N, |χn| belongs to the
neighborhood W(φ, f, 1n) and hence, φ(f) = limn→+∞ |χn(f)|, i.e., φ(f) =

limn→+∞ χn(f) = 0, a contradiction because |χ(f)| ≥ m ∀χ ∈ X (A,L).

Consequently, f is invertible in A, i.e., (ii) holds.

Finally let us prove (iii). Let f ∈ A. Notice that if ‖f‖ ≤ 1 then for every

x, y ∈ F with x �= y we have, by definition of λA,
|f(x)−f(y)|
λA(x,y) ≤ 1 and hence

‖f‖1 ≤ 1.

Suppose first that the valuation of L is dense. Take ε > 0 and ν ∈ L such

that ‖f‖
|ν| ≤ 1 and ‖f‖ ≤ |ν| ≤ ‖f‖+ ε. Then

∥∥∥ fν
∥∥∥ ≤ 1 and hence

∥∥∥fν
∥∥∥
1
≤ 1,

i.e., ‖f‖1 ≤ |ν| and ‖f‖1 ≤ ‖f‖ + ε. This holds for all ε > 0 and hence we

have ‖f‖1 ≤ ‖f‖.
Suppose now that L has a discrete valuation. Let μ = sup{|x| | x ∈

L, |x| < 1} and take ν ∈ L such that |ν| = μ.

If ‖f‖ = 1 then ‖f‖1 ≤ ‖f‖. If ‖f‖ < 1 then we can find n ∈ N such

that μn+1 ≤ ‖f‖ ≤ μn. Hence putting g = f
νn , we have μ ≤ ‖g‖ ≤ 1 and

hence ‖g‖1 ≤ 1. Therefore, ‖g‖1
‖g‖ ≤ ‖g‖1

μ ≤ 1
μ . But

‖g‖1
‖g‖ = ‖f‖1

‖f‖ hence ‖f‖1
‖f‖ ≤ 1

μ

which finishes proving ‖f‖1
‖f‖ ≤ c, with c = 1

μ ≥ 1. Consequently, we have

‖f‖1 ≤ c‖f‖ for all f ∈ A such that ‖f‖ ≤ 1.

If ‖f‖ > 1 then there exists n ∈ N such that ‖f‖ ≤ 1
μn+1 . Putting h =

νn+1f we have ‖h‖ ≤ 1 hence ‖h‖1 ≤ c‖h‖ which gives again ‖f‖1 ≤ c‖f‖.
Finally ‖f‖1 ≤ c‖f‖ for every f ∈ A.

On the other hand, by Theorem 2.5.7 of Chapter 2, we have ‖f‖sp ≤
‖f‖ ∀f ∈ A, hence ‖f‖ ≥ max(‖f‖sp, 1c‖f‖1) ≥ 1

c max(‖f‖0, ‖f‖1) for all

f ∈ A, which proves that the norm ‖ . ‖ of A is at least as strong as the

norm of the Banach L-algebra of all bounded Lipschitz functions on F . That

finishes proving (iii). �

Theorem 4.8.3. Let E be a complete ultrametric space equipped with its

distance δ and let T be a Banach algebra of bounded Lipschitz functions

form E to L. Let Z be the mapping from E into X (T,L) that associates

to each point a ∈ E the element of X (T,L)(T ) whose kernel is I(a, T ).
Then Z is a bijection from E onto X (T,L)(T ). Moreover, we have δ(a, b) ≥
λT (a, b) ∀a, b ∈ E.

Proof. Z obviously is an injection from E into X (T,L)(T ). Now, let

χ ∈ X (T,L)(T ) and let M = Ker(χ). By Theorem 4.2.1, there exists an

ultrafilter U on E such that Ker(χ) = I(U , T ). Since M is of codimension 1
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and since E is complete, by Theorem 4.2.1 again, U converges in E to a

point c ∈ E. Consequently, Z is surjective. �

Now we will show that δ(a, b) ≥ λT (a, b) ∀a, b ∈ E. Let us take

a, b ∈ E, with a �= b and consider λT (a, b) = sup{|f(a) − f(b)|,
‖f‖ ≤ 1}. Recall that we have defined the Lipschitz semi-norm ‖f‖1 as

‖f‖1 = sup{ |f(x)−f(y)|
δ(x,y) , x �= y}. For every f ∈ T such that ‖f‖ ≤ 1, by

definition of the norm ‖ . ‖, we have ‖f‖1 ≤ ‖f‖ and hence ‖f‖1 ≤ 1,

therefore |f(a)− f(b)| ≤ δ(a, b). Consequently, δ(a, b) ≥ λT (a, b).

Corollary 4.8.4. Let E be a complete ultrametric space equipped with its

distance δ and let T be a Banach algebra of bounded Lipschitz functions form

E to L. Every uniformly open subset of X (A,L) with respect to λT is also a

uniformly open subset of E with respect to the distance δ of E.

Theorem 4.8.5. Let E be a complete ultrametric space equipped with its

distance δ and let T be the Banach algebra of all bounded Lipschitz functions

form E to L. Then T is a L-based algebra.

Proof. By Corollary 4.7.5, Mult1(T, ‖ . ‖) = MultE(T, ‖ . ‖). By

Theorems 4.6.4, T is compatible, hence by Corollary 4.3.7, Mult1(T, ‖ . ‖)
is dense in Mult(T, ‖ . ‖). Next, ‖ . ‖0 is a norm equal to ‖ . ‖sp. So,

Properties (a) and (b) are satisfied.

Consider now a uniformly open subset D of E with respect to λT .

Identifying E with X (T,L)(T ), by Corollary 4.8.4, D is also uniformly open

with respect to δ. Consequently, since T is compatible, the characteristic

function u of D belongs to T and we have infx∈D |u(x)| = 1, supx/∈D |u(x)| =
0, which ends the proof. �

Notations: Let (A, ‖ . ‖) be a L-based algebra. We will denote by Ã the

algebra of all bounded Lipschitz functions from the space E = (X (A,L), λA)

to L and we denote by ‖ . ‖˜ the norm ‖ , . , ‖˜= max(‖ . ‖0, ‖ . ‖1̃ ) where

‖f‖1̃ = sup{ |f(x)−f(y)|
λA(x,y) x, y ∈ E x �= y} for every f ∈ Ã.

Theorem 4.8.6. Let E be a complete ultrametric space equipped with its

distance δ and let T be the L-based algebra of all bounded Lipschitz functions

from E to L equipped with the norm ‖ . ‖ = max(‖ . ‖0, ‖ . ‖1). Then the

algebras T and T ˜are isomorphic and the norms ‖ . ‖ and ‖ . ‖˜are equivalent.
Moreover |x− y| ≥ λA(x, y) ∀x, y ∈ E. Further, if E is bounded, then there

exists a constant M ≥ 1 such that |x − y| ≤ MλT (x, y) ∀x, y ∈ E and the

distances δ and λA are equivalent on E.
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Proof. Identifying E with X (T,L)(T ), by Theorem 4.8.3, we have |b−a| ≥
λT (a, b) for all a and b in E and consequently, if f ∈ T ˜ then f ∈ A and

‖f‖1 ≤ ‖f‖1̃ for all f ∈ T . Furthermore, by Theorem 4.8.2, T is algebraically

isomorphic to a sub-algebra of T ˜and, considering T as a sub-algebra of T ,̃

there exists a constant c ≥ 1 such that ‖f‖1˜≤ c‖f‖ for all f ∈ T . We

conclude that the algebras T and T ˜are isomorphic and for every f ∈ T

we finally have : ‖f‖ ≤ ‖f ‖̃ ≤ c‖f‖, which proves that these norms are

equivalent.

Let us now suppose that E is bounded, say |x| ≤M ∀x ∈ E, withM ≥ 1,

and show that MλA(x, y) ≥ |x − y| ∀x, y ∈ E. Take a, b ∈ E with a �= b

and set r = |a − b|. Let u be the characteristic function of B(a, r). Thus, b

does not belong to B(a, r). Let α ∈ L be such that |α| = min(r, 1) and set

h = αu. Now, ‖u‖1 = 1
r .

Suppose first r = |a − b| ≥ 1. We have ‖u‖ = ‖u‖0 = 1 hence ‖h‖ = 1.

Then λA(a, b) ≥ |h(a) − h(b)| = |u(a)− u(b)| = 1.

Suppose now r = |a − b| < 1. We have ‖u‖ = ‖u‖1 = 1
r hence ‖h‖ = 1.

Then λA(a, b) ≥ |h(a)−h(b)| = r|u(a)−u(b)| = r. Consequently, λA(a, b) ≥
|a−b|. Therefore, gathering the two inequalities, we get λA(a, b) ≥ min(1, |a−
b|) and sinceM ≥ 1,MλA(a, b) ≥ min(M, |a−b|). But |a−b| ≤M , therefore

min(M, |a− b|) ≥ |a− b| and hence MλA(a, b) ≥ |a− b|, which by Theorem

4.8.3, completes the proof. �

Remark 18. By Lemma 4.8.1, we have λA(x, y) ≤ 1 ∀x, y ∈ A. Therefore,

if E is not bounded with respect to the absolute value of L, there exists no

M > 0 such that MλA(x, y) ≥ |x− y| ∀x, y ∈ A.



January 19, 2018 9:17 ws-book961x669 Beyond the Triangle: Brownian Motion...Planck Equation-10734 HKU˙book page vi

This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank



March 25, 2022 8:35 Banach Algebras of Ultrametric Functions 9.61in x 6.69in b4542-ch05 page 95

Chapter 5

Circular Filters and Tree Structure

5.1. Infraconnected sets

Infraconnected sets were introduced in order to provide a class of sets as

wide as possible, aimed at playing the same role as connected sets do in

complex analysis towards holomorphic functions. We will see that for many

things, this class of sets is quite satisfactory. Many proofs of results given in

this chapter can be found in [28, Chapter 1].

Definitions and notations: Throughout the chapter the valuation of L

is supposed to be dense. Let a ∈ L and let r1 and r2 such that 0 < r1 < r2.

We will denote by Γ(a, r1, r2) the annulus {x ∈ L| r1 < |x − a| < r2} and

by Λ(a, r1, r2) the annulus {x ∈ K| r1 ≤ |x− a| ≤ r2}.
We know that if b ∈ d(a, r) then d(b, r) = d(a, r). In the same way if

b ∈ d(a, r−) then d(b, r−) = d(a, r−). Moreover, given two disks T and T ′

such that T ∩ T ′ �= ∅ then either T ⊂ T ′ or T ′ ⊂ T .

Of course the following three statements are equivalent:

(i) d(a, r) = d(a, r−),
(ii) C(a, r) = ∅,
(iii) r /∈ | L |.
Moreover, the disks d(b, r−) included in C(a, r) (resp., in d(a, r)) are the

disks d(b, r−) such that b ∈ C(a, r) (resp., in d(a, r)). They are called the

classes of C(a, r) (resp., of d(a, r)).

Henceforth D will denote a subset of L.

The closure of D is denoted by D and the interior of D is denoted by
◦
D.

We put diam(D) = sup{|x − y| |x ∈ D, y ∈ D} and diam(D) is named

the diameter of D.

95
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If D is bounded of diameter R we denote by D̃ the disk d(a,R) for any

a ∈ D. If D is not bounded we put D̃ = L.

Given a point a ∈ L we put δ(a,D) = inf{|x− a| |x ∈ D}. Then δ(a,D)

is named the distance of a to D.

Lemma 5.1.1. D̃ \D admits a unique partition of the form (Ti)i∈I , where
each Ti is a disk of the form d(ai, r

−
i ) with ri = δ(ai,D).

Definition: Such disks d(ai, r
−
i ) are called the holes of D.

Example 1. The holes of a disk d(a, r−) with r ∈ | L | are the classes of

C(a, r).

Example 2. The unique hole of L \ d(0, 1−) is d(0, 1−).
Example 3. The holes of L \ d(0, 1) are the disks d(a, 1−) with a ∈ d(0, 1).

Definitions: A set D is said to be infraconnected if for every a ∈ D, the

mapping Ia from D to R+ defined by Ia(x) = |x − a| has an image whose

closure in R+ is an interval. In other words, a set D is not infraconnected

if and only if there exist a and b ∈ D and an annulus Γ(a, r1, r2) with

0 < r1 < r2 < |a − b| such that Γ(a, r1, r2) ∩ D = ∅. In such a situation,

Γ(a, r1, r2) is called an empty-annulus of D.

D is said to be strongly infraconnected if for every hole T = d(a, r−)
with r ∈ | L |, there exists a sequence (xn)n∈N in D such that |xn − a| =

|xn − xm| = r whenever n �= m.

Lemma 5.1.2. If D is infraconnected of diameter R ∈ R (resp., +∞) then

Ia(D) = [0, R] (resp., Ia(D) = [0,+∞[).

Lemma 5.1.3. Let D be strongly infraconnected. Let a ∈ D and let r ∈ | L |
be such that r < diam(D). There exists a sequence (xn)n∈N in D such that

|xn − a| = |xn − xm| = r whenever n �= m.

Corollary 5.1.4. A strongly infraconnected set is infraconnected.

Lemma 5.1.5. Let D be infraconnected and let α belong to a hole T of

diameter ρ. The closure of the set {|x − α| |x ∈ D} is an interval whose

lower bound is ρ.

Theorem 5.1.6. Let A and B be two infraconnected subsets of L such that

A ∩B �= ∅. Then A ∪B is infraconnected.

Notation: Let RD be the relation defined in D as xRDy if there exists an

infraconnected subset of D containing both x, y.
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Corollary 5.1.7. The relation RD is an equivalence relation.

Definition: The equivalence classes with respect to RD are called the

infraconnected components.

Examples: (1) d(0, 1−) ∪ d(1, 1−) is infraconnected. Its holes are the disks

d(α, 1−) with |α| = |α− 1| = 1.

(2) Let r ∈]0, 1[ and let D = d(0, 1−)∪d(1, r). Then D is not infraconnected,

its infraconnected components are d(0, 1−) and d(1, r). The holes of D are

the disks d(α, 1−) with |α| = |α − 1| = 1 and the disks d(α, |α − 1|−) with

r < |α− 1| < 1.

Definition and notation: We call an empty-annulus of D an annulus

Γ(a, r1, r2) such that

(i) r1 = sup{|x− a| |x ∈ D, |x− a| < r2},
(ii) r2 = inf{ |x− a| |x ∈ D, |x− a| > r1}.
The set d(a, r1) ∩ D will be denoted by ID(Γ(a, r1, r2)) while the set

(L \ d(a, r−2 )) ∩ D will be denoted by ED(Γ(a, r1, r2)). When there is no

risk of confusion about the set D we will just write I(Γ(a, r1, r2)) (resp.,

E(Γ(a, r1, r2))) instead of ID(Γ(a, r1, r2)) (resp., ED(Γ(a, r1, r2))).
Remark 1. By definition, D is not infraconnected if and only if it admits

an empty annulus.

Remark 2. If a set D admits an empty annulus Γ(a, r1, r2), then

{I(Γ(a, r1, r2)), E(Γ(a, r1, r2))} is a partition of D.

Examples: Let r ∈]0, 1[, let D = d(0, r)∪ d(1, 1−) and let D′ = d(0, r−)∪
d(1, r). Then Γ(0, r, 1) is an empty annulus of D and also of D′. In the same

way Γ(1, r, 1) is also an empty annulus of D′.

Notation: Let O(D) be the set of empty annuli of D. Given F1 and F2 ∈
O(D), it is easily seen that I(F1) ⊂ I(F2) is equivalent to E(F1) ⊃ E(F2). We

will denote by ≤ the relation defined on O(D) by F1 ≤ F2 if I(F1) ⊂ I(F2).

It is easily seen that ≤ is an order relation on O(D).

Theorem 5.1.8. Let A and B be infraconnected subsets such that Ã = B̃.

Then A ∪B is infraconnected.

Proof. Let Ã = d(a, r) and A ∪ B = X. Suppose that X is not

infraconnected and let Γ(c, r1, r2) be an empty annulus of X, with c ∈ X

and 0 < r1 < r2 ≤ r. Then there exist a, b ∈ X such that |c − a| ≤
r1, |c− b| ≥ r2. Since both A and B are infraconnected, either a ∈ A, b ∈ B
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or a ∈ B, b ∈∈ A. Thus, without loss of generality, we can suppose that

a ∈ A, b ∈ B. But then, there exists no x ∈ A \ d(0, r−2 ), as we just saw.

Consequently, diam(A) < r2, a contradiction. That finishes proving that X

is infraconnected. �

Notation: We will denote by ≤ the order relation defined on O(D) by

F1 <≤ F2 if ID(F1) ⊂ ID(F2).

The following Lemmas 5.1.9 and 5.1.10 are easily seen.

We will denote by < the order relation defined by F1 < F2 if F1 ≤ F2

and F1 �= F2.

The following Lemmas 5.1.9 and 5.1.10 are easily seen.

Lemma 5.1.9. Let F1 and F2 be two empty annuli of D. The following

assertions are equivalent:

(i) F1 and F2 are not comparable with respect to the order ≤,
(ii) I(F1) ⊂ E(F2),

(iii) I(F2) ⊂ E(F1),

(iv) I(F1) ∩ I(F2) = ∅.
Lemma 5.1.10. Let F ∈ O(D) and let x ∈ I(F ) (resp., x ∈ E(F )). The
infraconnected component of x is included in I(F ) (resp., in E(F )). If F ′ ∈
O(D) is such that F < F ′ then I(F ′) ∩ E(F ) �= ∅.
Corollary 5.1.11. Let F be an empty annulus of D. The family of the empty

annuli G of D such that G ≥ F is totally ordered.

We will also need Lemma 5.1.12 in [23, Lemma 8.12; 28].

Lemma 5.1.12. Let a ∈ D̃, let ρ be the distance from a to D and let R

be such that ρ ≤ R ≤ diam(D). For j = 1, . . . , q let αj ∈ d(a,R) and let

r′j , r
′′
j ∈ R+ be such that r′j < R < r′′j . Then

⋂q
j=0(Γ(αj , r

′
j , r

′′
j ) ∩D) �= ∅.

Sets having finitely many infraconnected components are characterized

in [23, 28].

Theorem 5.1.13. Let Y (D) be the set of empty annuli of D. Then D

has finitely many infraconnected components if and only if it has finitely

many empty annuli. Moreover, if so does D, then one of the infraconnected

components is A0 =
⋂
F∈Y (D) E(F ) while the others are of the form Ai =

I(Fi)
⋂(⋂

F<Fi
E(F )

)
, with Fi ∈ O(D).
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Definitions: A bounded closed infraconnected subset A of L is said to be

affinoid if it has finitely many holes and if diam(A) and each diameter of

any hole lies in |L|. More generally, a set A is said to be affinoid if it is a

finite union of infraconnected affinoid sets.

From Theorem 5.1.13, Lemma 5.1.14 is easily proven.

Lemma 5.1.14. A finite union and a finite intersection of affinoid subsets

of L (which is not empty) is affinoid.

Theorem 5.1.15. Let A be a unital commutative ultrametric normed

L-algebra. Suppose that A has an element u such that sp(u) admits an

empty annulus Γ(a, r1, r2). Then there exist ψ1, ψ2 ∈ Mult(A, ‖ . ‖) such

that ψ1(t) = r1, ψ2(t) = r2.

Proof. By definition, r1 = sup{|λ| | λ ∈ sp(u) |λ| < r2}, and r2 =

inf{|λ| | λ ∈ sp(u) |λ| > r1}. Consequently, both r1, r2 lie in the closure

of {ψ(u) | ψ ∈ Mult(A, ‖ . ‖)}, which, is a closed subset of R. Since

Mult(A, ‖ . ‖) is compact, there exist ψ1, ψ2 ∈ Mult(A, ‖ . ‖) such that

ψ1(t) = r1, ψ2(t) = r2. �

5.2. Monotonous filters

Monotonous filters are indispensable to understand the behavior of rational

functions, and all kinds of analytic functions. Circular filters which are closely

linked to monotonous filters, will be introduced in Section 5.3. Most of proofs

of results given in this chapter can be found in [28, Chapter 2].

Definitions and notations: Throughout Section 5.2, L is a complete

ultrametric field whose valuation is dense and D is a subset of L. According

to classical definitions, we call basis of a filter F a subset B of F such that

every element of F contains an element of B. A filter F is said to be secant

with D if the family of sets {B ∩D | B ∈ F} is a filter. When a filter F is

secant with a subset D of L, the filter {B∩D | B ∈ F} is called intersection

of F with D, and denoted by F ∩D.

A filter F is said to be secant with another filter G if for every X ∈ F
and Y ∈ G, then X ∩ Y �= ∅ and the two filters F , G are said to be secant.

In such a case, the filter generated by the X ∩ Y, X ∈ F , Y ∈ G is called

intersection of F and G.
A filter F on L is said to be thinner than a filter G if every element of G

belongs to F . In such a case, G will also be said to be less thin than F .
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A sequence (un)n∈N in L will be said to be thinner than a filter G if so

is the filter defined by the sets Aq = {un|n ≥ q} (q ∈ N). In such a case, G
will also said to be less thin than the sequence (un)n∈N.

A sequence (un)n∈N in L will be said to be an increasing distances

sequence (resp., a decreasing distances sequence) if the sequence |un+1 − un|
is strictly increasing (resp., decreasing) and has a limit � ∈ R

∗
+.

The sequence (un)n∈N will be said to be a monotonous distances sequence

if it is either an increasing distances sequence or a decreasing distances

sequence.

A sequence (un)n∈N in L will be said to be an equal distances sequence

if |un − um| = |um − uq| whenever n,m, q ∈ N such that n �= m �= q.

In the same way, a sequence of holes (Tn)n∈N of D with Tn = d(an, r
−
n )

and Tm ∩ Tn = ∅ ∀m,n ∈ N, will be called an increasing distances (resp., a

decreasing distances, resp., an equal distances) holes sequence, if the sequence

(an)n∈N is an increasing distances (resp., a decreasing distances, resp., an

equal distances) sequence. And an increasing distances (resp., a decreasing

distances) will be called a monotonous distance holes sequence.

Let a ∈ D̃ andR ∈ R
∗
+ be such that Γ(a, r,R)∩D �= ∅ whenever r ∈]0, R[

(resp., Γ(a,R, r) ∩D �= ∅ whenever r > R). We call an increasing (resp., a

decreasing) of center a and diameter R, on D the filter F on D that admits

for basis the family of sets Γ(a, r,R) ∩ D (resp., Γ(a,R, r) ∩ D). For every

sequence (rn)n∈N such that rn < rn+1 (resp., rn > rn+1) and limn→∞ rn = R,

it is seen that the sequence Γ(a, rn, R)∩D (resp., Γ(a,R, rn)∩D) is a basis

of F . Such a basis will be called a canonical basis. We call a decreasing

filter with no center, of canonical basis (Dn)n∈N and diameter R > 0, on

D a filter F on D that admits for basis a sequence (Dn)n ∈ N in the form

Dn = d(an, rn) ∩ D with Dn+1 ⊂ Dn, rn+1 < rn, limn→∞ rn = R, and⋂
n∈Nd(an, rn) = ∅.
Given an increasing (resp., a decreasing) filter F on D of center a and

diameter r we will denote by PD(F) the set {x ∈ D| |x− a| ≥ r} (resp., the

set {x ∈ D| |x− a| ≤ r} and by BD(F) the set {x ∈ D| |x− a| < r} (resp.,

the set {x ∈ D| |x− a| > r}. When there is no risk of confusion we will only

write P(F) instead of PD(F), and B(F) instead of BD(F). Besides BD(F)

will be named the body of F and PD(F) will be named the beach of F .

We call a monotonous filter on D a filter which is either an increasing

filter or a decreasing filter (with or without a center). Given a monotonous

filter F we will denote by diam(F) its diameter.

The field L is said to be spherically complete if every decreasing filter on

L has a center in L. The field Cp for example is known not to be spherically



March 25, 2022 8:35 Banach Algebras of Ultrametric Functions 9.61in x 6.69in b4542-ch05 page 101

Circular Filters and Tree Structure 101

complete [28, Theorem 5.23]. However, every algebraically closed complete

ultrametric field admits a spherically complete algebraically closed extension

(see, for example, [28, Chapter 7]).

Theorem 5.2.1. Let (un)n∈N be a bounded sequence in L. Either we may

extract a convergent subsequence or we may extract a monotonous distances

subsequence or we may extract an equal distances subsequence from the

sequence (un)n∈N.

Lemma 5.2.2. Let (an)n ∈ N be an increasing distances (resp., a decreasing

distances) sequence in D. There exists a unique increasing (resp., decreasing)

filter F on D such that the sequence (an)n ∈ N is thinner than F . Moreover,

given a monotonous filter F on D, there exists a unique monotonous filter

G on L inducing F .

Lemma 5.2.3. Let D be infraconnected. Let F be an increasing filter (resp.,

a decreasing filter) on L, of center α ∈ D̃ and diameter R ≤ diam(D) (resp.,

R < diam(D)) such that α does not belong to a hole of diameter ρ ≥ R

(resp., ρ > R). Then F is secant with D and induces on D an increasing

filter (resp., a decreasing filter) of center α and diameter R, on D.

Definitions: Let F be an increasing (resp., a decreasing) filter of center

a and diameter R on D. Then F is said to be pierced if for every r ∈]0, R[,
(resp., r < R), Γ(a, r,R) (resp., Γ(a,R, r)) contains some hole Tm of D.

A decreasing filter with no center F on D is said to be pierced if for

every m ∈ N, D̃m \ D̃m+1 contains some hole Tm of D.

Remarks. The definition of a pierced filter with no center also applies to

a decreasing filter with a center and then is equivalent to the one given just

above for such a filter.

If F is an increasing (resp., a decreasing) filter of center a, of

diameter R, then F is pierced if and only if there exists a sequence of

holes (Tn)n∈N of D such that δ(a, Tn) < δ(a, Tn+1), (resp., δ(a, Tn) >

δ(a, Tn+1)), limn→∞δ(a, Tn) = R.

Given a Cauchy filter F on D, of limit a in L, we will call a canonical

basis of F a sequence Dm in the form d(a, rm)∩D with 0 < rm < rm+1 and

limm→∞rm = 0. The filter F is said to be pierced if for every m ∈ N, D̃m

contains some hole of D.

Let a ∈ D̃. Let (Tm,i)1≤i≤s(m)m∈N
be a sequence of holes of D which

satisfies δ(a, Tm,i) = dm (1 ≤ i ≤ hm), dm < dm+1 (resp., dm > dm+1),

limm→∞ dm = S > 0.
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The sequence (Tm,i)1≤i≤s(m)m∈N
is called a quasi-increasing (resp., a

quasi-decreasing) distances holes sequence that runs the increasing (resp.,

decreasing) filter of center a, of diameter S.

Now let (Tm,i)1≤i≤s(m)m∈N
be a sequence of holes of D that satisfies

δ(Tm+1,j , Tm,i) = dm (1 ≤ i ≤ s(m), 1 ≤ j ≤ s(m + 1)), dm >

dm+1, limm→∞ dm = R > 0, where the filter F of basis Dm = d(am, dm)∩D
is a decreasing filter with no center. The sequence (Tm,i)1≤i≤s(m)m∈N

is called

a quasi-decreasing distances holes sequence that runs F .

In each case, the sequence (dm)m∈N is called monotony of the sequence

(Tm,i)1≤j≤s(m+1), m∈N.
Summarizing these definitions, an increasing (resp., decreasing) distances

holes sequence that runs an increasing (resp., decreasing) filter F will be just

named an increasing (resp., decreasing) distances holes sequence and the

filter F will be named the increasing (resp., decreasing) filter associated to

the sequence (Tm,i)1≤i≤s(m)m∈N
. The diameter of F will be called the diameter

of the sequence (Tm,i)1≤i≤s(m)m∈N
. If F has a center a, a will be named the

center of the sequence (Tm,i)1≤i≤s(m)m∈N
. If F has no center, the sequence

(Tm,i) will be called a decreasing distances holes sequence with no center.

Let (Tm,i)1≤i≤s(m)m∈N
be a monotonous distances holes sequences

and for every (m, i)1≤i≤s(m)m∈N
let ρm,i = diam(Tm,i). The number

inf1≤i≤s(m)m∈N
ρm,i will be called piercing of the sequence (Tm,i)1≤i≤s(m)m∈N

.

If a monotonous distances holes sequence has a piercing ρ > 0, it will

be said to be well pierced. If a monotonous filter F is run by a well pierced

monotonous holes sequence, F will be said to be well pierced.

In each case the sequence of circles C(a, dm) when F has center a (resp.,

C(am+1, dm) when F has no center) will be said to run the filter F , and to

carry the monotonous distances holes sequence (Tm,i)1≤i≤s(m)m∈N
.

A monotonous distances holes sequences (Tm,i)1≤i≤s(m)m∈N
will be said

to be pointwise if s(m) = 1 for all m ∈ N.

Moreover, a sequence of holes (Tm)m∈N of D will be called a Cauchy

sequence of holes of limit a ∈ L if limm→∞ δ(a, Tm) = 0. Such a sequence

will be said to run the Cauchy filter of basis {d(a, r) ∩D|r > 0}.
Let (Tm)m∈N be a monotonous distances holes sequence or an equal

distances holes sequence. We will call superior gauge of the sequence the

number lim supm→∞ diam(Tm).

As an obvious consequence of Theorem 5.2.1, we have Theorem 5.2.4.

Theorem 5.2.4. Let (Tn)n∈N be a bounded sequence of holes of D. Either

we may extract from the sequence (Tn)n∈N a subsequence which converges
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in L, or we may extract a monotonous distances holes sequence or we may

extract an equal distances holes sequence.

Lemma 5.2.5 is also obvious.

Lemma 5.2.5. Let (Tm)m∈N be a monotonous distances holes sequence.

Then the superior gauge s of the sequence satisfies s ≤ r.

Definition: Given a monotonous filter F , we will call superior gauge of

F the upper bound of all superior gauges of monotonous holes sequences

running F .

From the definition, Lemma 5.2.6 is immediate again.

Lemma 5.2.6. Let F be an increasing (resp., decreasing) filter on D of

center a, of diameter r, of superior gauge s. For every ε > 0, there exists a

hole T of D included in Γ(a, r, r+ε) (resp., Γ(a, r−ε, r)) such that diam(T ) >

s− ε.

Let F be a decreasing filter on D with no center, of diameter r, of superior

gauge s. For every ε > 0, there exists a hole T of D included in in a disk

d(a, r + ε) such that diam(T ) > s− ε.

Notation: From now on, to the end of the chapter, γ denotes the

homographic function b+ 1
x−a with a, b ∈ L.

Proposition 5.2.7. Let α ∈ L, r > 0 and let a ∈ L be such that |a−α| <
r. Then γ(C(α, r)) = C(b, −1

r ).

Proof. We may assume b = 0 and then the proof is immediate. �

Corollary 5.2.8. Let α ∈ L, r1, r2 ∈]0,+∞[ with |a − α| < r1 < r2. Then

γ(Γ(α, r1, r2)) = Γ
(
b, 1
r2
, 1
r1

)
.

Corollary 5.2.9. Let F be the an increasing (resp., a decreasing) filter of

center α and diameter R > |a−α|, on L \ {a}. Then γ(F) is the decreasing

(resp., increasing) filter of center b and diameter 1
R .

Lemma 5.2.10. Let α ∈ L be such that |α− a| �= r. Then

γ(C(α, r)) = C
(
γ(α),

r

|a− α|2
)
.

Corollary 5.2.11. Let α ∈ L and r, r′ ∈]0,+∞[ be such that 0 < r < r′ <
|a − α|. Then we have γ(Γ(α, r, r′)) = Γ

(
γ(α), r

|a−α|2 ,
r′

|a−α|2
)
, γ(d(α, r)) =

d
(
γ(α), r

|a−α|2
)
, γ(d(α, r−)) = d

(
γ(α),

(
r

|a−α|2
)−)

.
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Corollary 5.2.12. Let F be the increasing (resp., decreasing) filter of center

α and diameter R on L \ {a} with |a− α| > R. Then γ(F) is an increasing

(resp., a decreasing) filter of center γ(α), of diameter R
|a−α|2 on L \ {b}.

Corollary 5.2.13. Let F be a decreasing filter with no center, of canonical

basis (Dn)n∈N on L \ {a} such that a /∈ D0. Then γ(F) is a decreasing filter

with no center, of canonical basis (γ(Dn))n∈N on L \ {b}.
Theorem 5.2.14. We suppose a ∈ D. Let D′ = γ(D). Let F be a filter on

D which is either a monotonous filter or a Cauchy filter. Then F is pierced

if and only if γ(F) is a pierced filter on D′.

5.3. Circular filters

Definitions and notations: Throughout Chapter 5, the complete field L

is supposed to have a dense valuation. D will denote a subset of L. Let a ∈ D̃,

let ρ = δ(a,D) and let R ∈]0,+∞[ be such that ρ ≤ R ≤ diam(D). We call

circular filter of center a and diameter R on L the filter F which admits as

a generating system the family of sets Γ(α, r′, r′′) with α ∈ d(a,R), r′ < R <

r′′, i.e., F is the filter which admits for basis the family of sets of the form⋂q
i=1Γ(αi, r

′
i, r

′′
i )) with αi ∈ d(a,R), r′i < R < r′′i (1 ≤ i ≤ q, q ∈ N).

For reasons that will appear when characterizing the absolute values of

L(x), a decreasing filter with no center, of canonical basis (Dn)n∈N is also

be called a circular filter on L with no center, of canonical basis (Dn)n∈N .

Finally the filter of neighborhoods of a point a ∈ L is called circular

filter of the neighborhoods of a on L. It will also be named circular filter of

center a and diameter 0 or Cauchy circular filter of limit a. A circular filter

on L will be said to be large if it has diameter different from 0 and to be

punctual if it is a cauchy circular filter.

Given a circular filter F , its diameter will be denoted by diam(F) and

the set of its centers is denoted by Q(F). So, if F is a circular filter of center

a and diameter r, then Q(F) = d(a, r).

Given a circular filter F on L, an infraconnected affinoid subset B of

L will be called F-affinoid if it belongs to F . Thus, in particular, if F has

center a and diameter r, a F affinoid either is a disk d(a, s), with s ∈ |L|, or
is of the form d(a, r′′) \⋃q

i=1 d(ai, r
′−), with r′, r′′ ∈ |L|, r′ < r < r′′, and

|ai − aj| = r ∀i �= j.

Lemma 5.3.1 is easily checked.

Lemma 5.3.1. Let F , G be two different circular filters. Then F is not

secant with G. Moreover, if Q(F) �= ∅, then Q(F) �= Q(G).
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Definitions and notations: We call circular filter on D the filter induced

on D by a circular filter on L secant with D.

The set of circular filters on L secant with D will be denoted by Φ(D).

In the same way, the set of large circular filters on L secant with D will be

denoted by Φ′(D).

Thus, by definition, every circular filter on D is induced by a unique

circular filter on L. Given a circular filter F on D induced by a circular filter

G on L, we will denote by Q(F) the set of its centers in L, i.e., Q(G).
Given a circular filter F on D, induced by a circular filter G on L, we

shall call F-affinoid any G-affinoid.

Lemma 5.3.2. Let F be a circular filter. Then F admits a basis consisting

of the family of all F-affinoids. If F does not admit a countable basis, it

has a center and its diameter belongs to |L|. If F has no center and is

secant with an affinoid subset E of L then E lies in F . If F has center

a and diameter r, then an affinoid set E lies in F if and only if satisfy

E ∩ (L \ d(a, r)) �= ∅, E ∩ d(b, r−) �= ∅ ∀b ∈ d(a, r).

Proof. By definition, a circular filter with no center has a countable basis,

and of course so does a Cauchy circular filter. In both cases, it admits a

basis consisting of a family of disk which are F-affinoid sets. Now, consider

a circular filter of center a and diameter r. Therefore, F admits for basis the

family of annuli d(a, r + 1
n \ (⋃q

i=1 d(ai, (r − 1
n)

−) where the ai are centers

of F satisfying |ai − aj| = r. In particular, if r /∈ |L| we have q = 1 and we

obtain a basis of the form Γ(a, r − 1
n , r +

1
n) which is countable.

Now, suppose that F is secant with an affinoid subset E of L. Let

(An)n∈N be a canonical basis of F . Since each An admits common points

with E, each is included in Ẽ, and therefore it is included in E if and only

if it contains no hole of E. But since F has no center,
⋂∞
n=0An = ∅, hence

there exists q ∈ N such that An ⊂ E ∀n ≥ q, and therefore E ∈ F .

Now suppose that F has center a and diameter r. If E ∈ F , it obviously

satisfies E∩(L\d(a, r)) �= ∅, E∩d(b, r−) �= ∅ ∀b ∈ d(a, r). Now, suppose that

E satisfies E ∩ (L \ d(a, r)) �= ∅, E ∩ d(b, r−) �= ∅ ∀b ∈ d(a, r). Since E has

finitely many holes, on one hand there exists s > r such that Γ(a, r, s) ⊂ E,

and on the other hand, all classes of d(a, r) are included in E, except finitely

many: d(bj , r
−), 1 ≤ j ≤ n. And for each j = 1, . . . , n, there exists rj < r

such that Γ(bj, rj , r) ⊂ E. Finally, E contains the set d(a, s) \⋃n
j=1 d(bj , rj)

which obviously lies in F . �
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Remarks. By Lemma 5.3.2, it is easily seen that there exist circular filters

without countable basis if and only if the residue class field of L is not

countable.

The following Proposition 5.3.3 is just a translation of the definitions.

Proposition 5.3.3. Let F be an increasing filter (resp., a decreasing filter)

of center a and diameter r, on D. Then the circular filter of center a and

diameter r on L is secant with D and is the only circular filter on D less

thin than F .

Conversely let F be a circular filter of center a and diameter r on D,

secant with d(a, r−) (resp., L \ d(a, r)). Then the increasing filter (resp.,

decreasing filter) of center a and diameter r on L is secant with D and less

thin than F .

Definition: Let F be an increasing filter (resp., a decreasing filter) of

center a and diameter r, on D. Then the circular filter of center a and

diameter r will be called circular filter associated to F .

Proposition 5.3.4 is immediate (and is [28, Proposition 2.17]).

Proposition 5.3.4. Let D be infraconnected, let a ∈ D̃ and let S be the

closure of {|x − a| |x ∈ D} in R. For every r ∈ S the circular filter F of

center a and diameter r on L is secant with D.

Lemma 5.3.5. Let F be a circular filter secant with two disks d(a, r) and

d(b, s). Then either d(a, r) ⊂ d(b, s) or d(b, s) ⊂ d(a, r).

Proof. Let R = δ(d(a, r), d(b, s)). Suppose that none of the two inclusions

is satisfied. Then d(a, r) ∩ d(b, s) = ∅. But since F is secant with d(a, r),

then diam(F) ≤ r, and therefore F is not secant with C(a,R), in particular

neither is it with d(b, s). �

Corollary 5.3.6. Let D be infraconnected, and let d(a, r−) be a hole of D.

Then, the circular filter of center a and diameter r on L is secant with D.

Proposition 5.3.7. Let (an)n∈N be a sequence in L that is either a

monotonous distances sequence or a constant distances sequence. Then there

exists a unique circular filter on L less thin than the sequence (an).

Proof. By [28, Proposition 2.18] we know that there exists a unique

circular filter on L less thin than the sequence (an). By definition, this filter

is secant with the set {an | n ∈ N}, hence with D. �
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Corollary 5.3.8. Let (an)n∈N be a bounded sequence in L. Then there exists

a subsequence (ant)t∈N and a unique circular filter F on L less thin than the

subsequence (ant)t∈N.

Proof. Since the sequence (an)n∈N is bounded, by Theorem 5.2.1, we

can extract either a monotonous distances subsequence or a constant

distances subsequence, or a converging subsequence. In all cases, once such

a subsequence is chosen, there exists a unique circular filter F on L less thin

than the subsequence. �

Lemma 5.3.9. Let (an)n∈N, (bn)n∈N be two sequences such that |an−bn| <≤
t < r ∀n ∈ N. Suppose that the sequence (an)n∈N is thinner than a circular

filter F of diameter r. Then the sequence (bn)n∈N also is thinner than F .

Proof. We can find a F-affinoid B, whose codiameter s is strictly superior

to t. Then if an belongs to B, so does bn. Now, when n is big enough,

all an belong to B and hence so do all bn. And since F admits a basis of

F-affinoids with a codiameter s > t, we see that the sequence (bn)n∈N is

thinner than F . �

Remark. If F is the circular filter of center a and diameter r, it is not

secant with C(a, r) if and only if r /∈ |L|.
Definitions and notations: A circular filter F on L will be said to be

(a,r)-approaching if it is secant with the circle C(a, r), or if it is the circular

filter of center a and diameter r.

A circular filter F on L will be said to be D-bordering if it is secant with

both D and L \D. In the same way, a circular filter on D will be said to be

D-bordering if it is induced by a D-bordering circular filter on L.

If D is bounded, F will be said to be D-peripheral, or to be peripheral

to D if Q(F) = D̃.

Finally, a circular filter F will be said to be strictly D-bordering if either

it is D-peripheral, or it is peripheral to some hole of D.

Proposition 5.3.10. Let D be closed and infraconnected and let F be a

circular filter on L. If every element of F contains infinitely many holes of

D, then F is D-bordering. Conversely, if F is D-bordering but not strictly

D-bordering, then every element of F contains infinitely many holes of D

and then, either D admits a monotonous pierced filter thinner than F , or F
has a center a and D admits an equal distances holes sequence (Tn)nN such

that δ(Tn, Tm) = δ(Tn, a) = diam(F) for all m �= n.
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Proof. Suppose that every element of F contains infinitely many holes

of D. Then F is obviously secant with L \ D. Let A ∈ F be affinoid and

let s = diam(F). Suppose that A ∩ D = ∅. If D ⊂ L \ Ã, then every hole

of D has empty intersection with A, a contradiction. But then, since D is

infraconnected, there exists a hole T = d(a, r−) of A such that D ⊂ T . Since

A is affinoid, r belongs to |L|, hence there exists another affinoid B ∈ F ,

with a hole d(a, s−), with s > r, thereby D̃ ∩ B = ∅, and finally every hole

of D has empty intersection with B, a contradiction again. Thus, F is also

secant with D, and therefore F is D-bordering.

Conversely, consider a D-bordering filter F which is not strictly D-

bordering. Let s = diam(F). Let A ∈ F be affinoid and let a ∈ A ∩ (L \D).

Since D is closed, a belongs to a hole T = d(a, r−) of D. Since A ∩D �= ∅,
A is not included in d(a, r−). We will show that there exists B ∈ F such

that B ⊂ A and T ∩B = ∅. For any r′ ∈]0, r[ the set B = A \ d(a, r′) is an
affinoid set that also belongs to F . Since T is not included in B, then B

must contain another hole of D. Thus, by induction we can construct a

strictly decreasing sequence (Am)m∈N of affinoid sets such that each Am
contains a hole Sm which is not included in Am+1. Thus, every element of

F contains infinitely many holes of D. More precisely, suppose that D does

not admit a monotonous pierced filter thinner than F . If F had no center, it

would be a not pierced decreasing filter, and therefore would admit a basis

consisting of a sequence of disks (Dn)n∈N included in D, a contradiction

to the hypothesis: every element of F contains infinitely many holes of D.

Consequently, F admits a center a. Let r = diam(F). By Proposition 5.2.4,

we can extract from the sequence (Sm)m∈N a subsequence (Tn)n∈N which is

either a monotonous distances holes sequence, or an equal distances holes

sequence. Consider the sequence (Bn)n∈N defined as Bn =
⋃∞
j=n Tj. This

sequence is the basis of a filter thinner than F . If the sequence (Tn)n∈N is

a monotonous distances holes sequence, then the sequence (Bn)n∈N defined

as Bn =
⋃∞
j=n Tj is the basis of a filter thinner than a monotonous filter

G thinner than F and such that the filter induced by G on D is pierced, a

contradiction to the hypothesis. Consequently, the sequence (Tn)n∈N is an

equal distances holes sequence of center b: δ(Tn, Tm) = l = δ(b, Tn) ∀n �= m.

If l < r, (resp., l > r), there exists an annulus Γ(b, r′, r′′) ∈ F such that

Tn ⊂ d(b, r′) (resp., Tn ⊂ K \ d(b, r′′)), and therefore Tn ∩ Γ(b, r′, r′′) = ∅.
But since the sequence (Bn) is a basis of a filter thinner than F , each Bn
has a non-empty intersection with Γ(b, r′, r′′). Consequently, l = r = δ(a, Tn)

∀n ∈ N. �

Lemma 5.3.11. Let D be an affinoid subset of L. Then the set of D-

bordering filters is finite.
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Proof. If D is infraconnected, it has finitely many holes. And if it is not

infraconnected, it has finitely many infraconnected components D1, . . . ,Dq,

hence the set of its D-bordering filters is the union of the sets ofDj-bordering

filters, 1 ≤ j ≤ q. �

Lemma 5.3.12. Let F be a circular filter on L and let a ∈ L. There exists

a unique r > 0 such that F is (a, r)-approaching. Moreover, for every s >

diam(F) there exists a unique disk E of the form d(b, s) which belongs to F .

Proof. Let ρ = diam(F). If a is a center of F , then F is (a, ρ)-approaching.

Suppose now a is not a center of F . Then we can find a disk D ∈ F which

does not contain a: let r = δ(a,D). Then F is secant with C(a, r). Let

s > diam(F). If F has a center a, then F is secant with d(a, s). Now,

suppose that F has no center. By definition of the circular filters with no

center, there exists a disk d(b, r) ∈ F such that r < s. Then d(b, s) obviously

belongs to F . Moreover, in both cases, any disk d(b, s) other than d(a, s) has

empty intersection with d(a, s), hence F is not secant with d(b, s). �

Lemma 5.3.13. Let F be a filter admitting a basis (Ai)i∈J consisting of

infraconnected affinoid sets. There exists at least one circular filter G secant

with F .

Proof. Suppose first that
⋂
i∈J Ãi = ∅. Then (Ãi)i∈J is a basis of a circular

filter with no center G which actually is equal to F . Suppose now that⋂
i∈J Ãi �= ∅ and let a ∈ ⋂i∈J Ãi. Let r = inf i∈J diam(Ai). Then the circular

filter of center a and diameter r is clearly secant with F , which ends the

proof. �

Lemma 5.3.14. Let G be a circular filter on L of center a and diameter r

and let F be a filter secant with G, admitting a basis (Ai)i∈J consisting of

infraconnected affinoid sets. Either F is less thin than G, or F is secant with

another circular filter G′.

Proof. Since F is secant with G, for each i ∈ J we have Ai ∩ C(a, r) �= ∅
and diam(Ai) ≥ r. Suppose that F is not less thin than G. Then there exists

an affinoid infraconnected set B ∈ G which does not contain Ai, whenever

i ∈ J . Let s = inf i∈J diam(Ai).

Suppose first that G has no center. Then we can assume that B is a

disk d(b, λ), with λ ∈]r, s]. Let t ∈]r, s[∩|L|. Since the Ai are infraconnected

and affinoid, for each i ∈ J and for every class D of C(b, t) except at most

for finitely many, D is included in Ai. Consequently, F is secant with the

circular filter G′ of center b and diameter t.
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Suppose now that G has center a. Since B has finitely many holes, either

s > r, or there exists a hole T = d(b, ρ) of B such that T ∩ Ai �= ∅ ∀i ∈ J .

Suppose first that s > r. Let t ∈]r, s[∩|L|. Similarly to the previous case,

since the Ai are infraconnected and affinoid, for each i ∈ J and for every

class D of C(a, t) except at most for finitely many, D is included in Ai.

Consequently, F is secant with the circular filter G′ of center a and diameter

t. Similarly, suppose now that there exists a hole T = d(b, ρ) of B such

that T ∩ Ai �= ∅ ∀i ∈ J . We can find t ∈]ρ, r[∩|L| and then all classes

of C(b, t) except at most finitely many are included in Ai whenever i ∈ J .

Consequently, F is secant with the circular filter G′ of center b and diameter t,

which ends the proof. �

5.4. Tree structure and metric on circular filters

In this chapter, we will show that the set of circular filters is equipped with

a tree structure as defined in Section 1.2 of Chapter 1, and that the diameter

here is an increasing function with values in R, defining distances associated

to this structure, as shown in [26, Chapter 11]. The first remarks on that

tree structure are due to Motzkin [38]. The field L is a complete ultrametric

field equipped with a dense ultrametric absolute value.

Circular filters and monotonous filters are filters on the field L or on an

infraconnected subset D of L.

Definitions and notations: Given two circular filters F and G, F is

said to surround G if either G is secant with Q(F), or if F = G. Similarly, a

circular filter F is said to surround a monotonous filter G if it surrounds the

circular filter associated to G. A monotonous filter F is said to surround a

circular filter G if its associated circular filter surrounds G, and F is said to

surround a monotonous filter G if the circular filter associated to F surrounds

the circular filter associated to G.
We will denote by � the relation on the set of circular filters defined as

F � G if G surrounds F and by ≺ the relation defined as F ≺ G if F � G
and F �= G.

By definition of the relation �, Lemma 5.4.1 is then immediate.

Lemma 5.4.1. Let F ,G be two circular filters such that Q(F) �= ∅ and

Q(G) �= ∅. Then F � G if and only if Q(F) ⊂ Q(G).
Corollary 5.4.2. Let F ,G be two circular filters such that F � G. Then

diam(F) ≤ diam(G). Moreover, F = G if and only if diam(F) = diam(G).
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Theorem 5.4.3. The relation � is an order relation on Φ(L) and ≺ is the

strict order associated to this order relation.

Proof. Indeed, the relation is reflexive by definition. Let F ,G,H be 3

circular filters. Suppose that F � G and G � F . If F �= G, then by definition

Q(F) �= ∅, Q(G) �= ∅, F is secant with Q(G) and G is secant with Q(F).

Consequently, Q(F) = Q(G) and therefore by Corollary 5.4.2, F = G.
Finally, suppose that F � G and G � H, with F �= G �= H. Then F is

secant with Q(G), hence with Q(H) and therefore F � H. �

Theorem 5.4.4. Let D be infraconnected and let F ∈ Φ(D). Then F is a

minimal element in Φ(D) if and only if:

either it is punctual,

or it has no center,

or Q(F) ∩D = ∅.
Proof. On one hand it is easily seen that if F is punctual, or has no

center, then it is minimal in Φ(L), and therefore in Φ(D). Suppose now that

Q(F) ∩ D = ∅. Suppose that G ∈ Φ(D) satisfies G ≺ F . Then G is secant

with Q(F), and has a diameter strictly inferior to the diameter r of F , hence

there exists a disk d(b, s) ∈ G, with s < r. Consequently, d(b, s) ⊂ Q(F).

Since d(b, s) ∩D = ∅, we see that G is not secant with D. �

Now, let F ∈ Φ(D) be minimal in Φ(D). Suppose that F is not punctual

and has a center a, and let r = diam(F). If Q(F) ∩ D �= ∅, then for any

a ∈ Q(F) ∩ D, of course F surrounds the filter of neighborhoods of a, a

contradiction to the hypothesis ”F minimal in Φ(D)”. Thus, Q(F)∩D = ∅.
Lemma 5.4.5. Let F ,G be two circular filters such that Q(F) ∩Q(G) �= ∅.
Then F and G are comparable for �.

Proof. Since Q(F) ∩ Q(G) �= ∅, and since both Q(F), Q(G) are disks, we

can suppose for instance Q(F) ⊂ Q(G). Then F is secant with Q(G), hence
F � G. �

Theorem 5.4.6. Let F be a circular filter on L and let s > diam(F). There

exists a unique circular filter on L, of diameter s, surrounding F .

Proof. By Lemma 5.3.12, there exists a unique disk d(b, s) such that F is

secant with this disk. Then the circular filter G of center b and diameter

s obviously surrounds F . Conversely, let H be another circular filter of

diameter s, surrounding H. Since s > diam(F), F is secant with Q(H)

which is of the form d(b, s), hence H = G. �
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Proposition 5.4.7. Let F , G be two circular filters surrounding a certain

circular filter. Then F and G are comparable with respect to �.

Proof. Suppose that both F , G surrounds H. If F = H, then G just

surrounds F . Now suppose that both F , G strictly surrounds H. Then H is

secant with both Q(F) and Q(G). But by Lemma 5.3.5, either Q(F) ⊂ Q(G)
or Q(G) ⊂ Q(F), hence by Lemma 5.4.5, F and G are comparable. �

By Proposition 5.3.4, we obtain Theorem 5.4.8

Theorem 5.4.8. Let D be infraconnected, let F be a circular filter on L

secant with D and let r ∈]diam(F),diam(D)[. The unique circular filter of

diameter r surrounding F is secant with D.

Proof. By Lemma 5.3.12, there exists a unique disk d(a, r) F is secant

with. By Proposition 5.3.4, the circular filter of center a and diameter r is

secant with D, and on the other hand, by Theorem 5.4.6, this is the unique

circular filter of diameter r surrounding F . �

Proposition 5.4.9. Let F , G be two circular filters on L which are not

comparable for the relation �. There exist disks F ∈ F and G ∈ G such that

F ∩G = ∅. Moreover, given F ′ ∈ F , G′ ∈ G such that F ′ ∩G′ = ∅, we have

δ(F,G) = δ(F ′, G′) > max(diam(F),diam(G)).
Proof. Suppose first that both F , G have no center. Then F (resp., G)
admits a canonical basis D (resp., E) consisting of a decreasing family of

disks. But since the two filters are not secant, we can obviously find F ∈ D
and G ∈ E such that F ∩G = ∅.

Suppose now that F has centers and let d(a, r) = Q(F). If all disksG ∈ G
contain d(a, r), then G surrounds F , hence we can find a disk G = d(b, u) ∈ G
which does not contain d(a, r). Of course, if G ⊂ d(a, r), then F surrounds

G, hence G ∩ d(a, r) = ∅. Consequently, we have |a− b| > r and u < |a− b|.
Let s ∈]r, |a − b|[. Then the disk F = d(a, s) belongs to F and is such that

F ∩G = ∅.
Since F is a filter, we have F ∩ F ′ �= ∅, hence either F ⊂ F ′, or F ′ ⊂ F .

In the same way, G ∩ G′ �= ∅, hence either G ⊂ G′, or G′ ⊂ G. Without

loss of generality, we can assume that F ⊂ F ′. If G ⊂ G′, then our claim

is obvious. Suppose now that G′ ⊂ G. If F ′ ∩ G �= ∅, then either G ⊂ F ′,
therefore G ⊂ G′, a contradiction, or F ′ ⊂ G, hence F ⊂ G, a contradiction

again. Consequently, we have F ′ ∩ G = ∅. Putting l = δ(F ′, G) we have

|a−b| = l ∀a ∈ F ′, b ∈ G, hence in particular, δ(F,G) = δ(F ′, G′) = l. Then

we notice that l > diam(F ) > diam(F) and l > diam(G) > diam(G). �



March 25, 2022 8:35 Banach Algebras of Ultrametric Functions 9.61in x 6.69in b4542-ch05 page 113

Circular Filters and Tree Structure 113

Notations: Let F , G be two circular filters which are not comparable for

� and let F ∈ F , G ∈ G be disks such that F ∩ G = ∅. By Proposition

5.4.9, δ(F,G) does not depend on the choice of disks F, G satisfying these

properties, so we can put π(F ,G) = δ(F,G) with F, G disks such that

F ∈ F , G ∈ G, F ∩G = ∅.
Theorem 5.4.10. Let D be infraconnected and let F ,G ∈ Φ(D). There

exists sup(F , G) ∈ Φ(D) and it is the unique circular filter of diameter

π(F ,G) which surrounds both F , G.
Proof. The claim is trivial when the two filters are comparable for �. So

we assume they are not. Let l = π(F ,G). By Theorem 5.4.6, there exists

a unique circular filter S ∈ Φ(L) of diameter l surrounding F . Then S has

centers. Let Q(S) = d(a, l). Then by Proposition 5.4.9, G contains disks

included in d(a, l) and therefore is secant with d(a, l), hence S surrounds

G. We will check that S is the smallest element of the set of filters on L

surrounding both F and G. Indeed, let H be a circular filter surrounding

F and G. Then both F and G are secant with Q(H). Let d(b, s) = Q(H).

Consider disks F = d(α, ρ) ∈ F and G = d(β, ν) ∈ G such that F ∩ G = ∅.
Since F ∩ d(b, s) �= ∅ and G ∩ d(b, s) �= ∅, and since F ∩ G = ∅, it is easily

seen that both F, G are included in d(b, s), hence s ≥ l. But since both S,
H surround F , by Proposition 5.4.7, they are comparable for �. Then, since

l ≤ s, H surrounds S, and therefore S is the smallest element of the set of

filters on L surrounding both F and G.
Now, suppose that both F , G are secant with D. Then d(α, ρ) ∩D �= ∅,

and d(β, ν) ∩ D �= ∅, hence S which is the circular filter of center α and

diameter l = |α− β| is secant with D because D is infraconnected. �

Theorem 5.4.11. Let D be infraconnected. Φ(D) is a tree with respect to

the order � and the mapping diam is strictly increasing from Φ(D) to R+.

Proof. This is an obvious consequence of Theorems 5.4.3, 5.4.4, 5.4.10 and

Proposition 5.4.7. �

Notation: Let F , G be two circular filters and let S = sup(F ,G). We put

δ(F ,G) = max(diam(S) − diam(F), diam(S) − diam(G)) and δ′(F ,G) =

2diam(S)− diam(F) − diam(G).
Remarks. (1) Particularly, if F � G, we have δ(F ,G) = diam(G) −
diam(F).

(2) If F and G are two circular filters reduced to two points a and

b respectively, then δ(F ,F) = |a − b| = δ(a, b). Thus, δ appears as a

continuation of the classical distance on L to Φ(L).
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According to Lemma 1.2.1 of Chapter 1, we can state Corollary 5.4.12

Corollary 5.4.12. δ is the supremum distance associated to the mapping

diam defined on the tree Φ(L) and δ′ is the whole distance associated to the

mapping diam defined on the tree Φ(L) and they satisfy

δ(F ,G) ≤ δ′(F ,G) ≤ 2δ(F ,G).
Definition: We will call metric-topology or δ-topology the topology defined

on Φ(D) by these two equivalent distances.

Lemma 5.4.13 is immediate and will be useful.

Lemma 5.4.13. Let F be a circular filter and let B ∈ F be infracon-

nected and affinoid. Let G1, . . . ,Gn be the B-bordering filters and let μ =

min1≤j≤n(δ(G,Gj)). For every G ∈ Φ(K) such that δ(G,F) < μ, B lies in G.
Proof. Every disk d(a, r) with a ∈ B and r < μ is clearly included in B.

Consequently, G′ is secant with B. Now, suppose that B /∈ G′. Then G′ is
B-bordering, and therefore is one the Gj (1 ≤ j ≤ n), a contradiction to th

hypothesis δ(G,F) < μ. Hence B lies in G′. �

Theorem 5.4.14. Every bounded monotonous sequence of Φ(L) has a limit

with respect to the δ-topology.

Proof. Let (Fn)n∈N be a bounded monotonous sequence of circular filters,

and for each n ∈ N, let rn = diam(Fn). Without loss of generality, we can

obviously assume that the sequence is strictly monotonous. Consequently,

for each n ∈ N, each filter Fn has a center. Let l = limn→∞ rn. Suppose

first that it is a decreasing sequence. For each n ∈ N we can find a center

an /∈ d(an+1, rn+1). Thus, the sequence (an)n∈N is such that the sequence

(|an+1 − an|)n∈N is strictly decreasing. Hence by Proposition 5.3.7, there

exists a unique circular filter F less thin than the sequence (an)n∈N of radius

l. And then, we check that the sequence (Fn)n∈N converges to F with respect

to the metric topology. If the sequence is increasing, it is easily seen that the

sequence converges to the circular filter of center a1 and diameter l. �

Theorem 5.4.15 ([26]). Φ(L) is complete with respect to the δ-topology.

Proof. Let (Fn)n∈N be a Cauchy sequence with respect to the δ-topology.

For every m,n ∈ N, let Sm,n denote sup(Fm,Fn). Next, for each n ∈ N,

let rn = diam(Fn), let sn = supm≥n{diam(Sn,m)}. We will show that the

sequence d(an, sn)n∈N is decreasing with respect to inclusion. Indeed, let

m, t > n. Both Sn,t,Sn,m are secant with d(an, sn) and surround Fn, hence
are comparable with respect to �. Then, sup(Sn,t,Sn,m) is secant with



March 25, 2022 8:35 Banach Algebras of Ultrametric Functions 9.61in x 6.69in b4542-ch05 page 115

Circular Filters and Tree Structure 115

d(an, sn), and surrounds Fn, Fm, Ft, hence surround Sm,t. Consequently,
Sm,t is secant with d(an, sn). Now, let us fix t > n. This true for all

m ≥ t, hence diam(Sm,t) ≤ sn ∀m ≥ t, and therefore sm ≤ sn. Thus,

for every n ∈ N, let let Gn be the circular filter of center an and diameter sn.

The sequence (Gn)n∈N is then decreasing with respect to the order � and

therefore, by Theorem 5.4.14, has a limit G with respect to the δ-topologies.

Let s = limn→∞ sn. Since the sequence (Fn)n∈N is a Cauchy sequence, and

since by definition of the distance δ, we have δ(Fn,Sn,m) ≤ δ(Fn,Fm), it
is clear that limn→∞ sn − rn = 0. Consequently, limn→∞ δ(Fn,G) = 0 and

therefore the Cauchy sequence has limit G. �

Theorem 5.4.16. Let B be a totally ordered subset of Φ(L). Then B admits

an infimum T with respect to the order �. Further, a subset A of Φ(L)

admits a supremum with respect to the order � if and only if it is bounded

with respect to δ.

Proof. Let B be a totally ordered subset of Φ(L) and let r =

inf{diam(G) | G ∈ B}. We can see that all sequences (Gn)n∈N of B satisfying

limn→∞ diam(Gn) = r are Cauchy sequences and admit the same limit T .

Therefore, T is clearly the infimum of B with respect to �. Now, let A

be a subset of Φ(L). If it admits a supremum with respect to the order

�, it is obviously bounded. Conversely, assume that A is bounded. We

can clearly find a disk d(b, s) such that all elements of A is secant with

d(b, s). Consequently, the circular filter of center b and diameter s surrounds

all elements of A. Now, by Proposition 5.4.7, the set A∗ of circular filters

surrounding all elements of A is totally ordered and therefore admits an

infimum S and we have G � S for every G ∈ A. Consequently, S is the

supremum of A. �
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Chapter 6

Rational Functions and Circular Filters

6.1. Rational functions and algebras R(D)

Notations: Recall that K denotes an algebraically closed complete ultra-

metric field and we put K
∗ = K \ {0}. Next, D will be an infinite subset

of K.

Rational functions without poles in a set D of the field K are the only

material we handle to define a kind of holomorphic functions in D. But first,

we have to know perfectly the properties of rational functions, with regards

to the ultrametric structure of K.

Given a function f from D to K, we put ‖f‖D = sup{|f(x)| | x ∈ D} ∈
[0,+∞] and we denote by R(D) (resp., Rb(D)) the K-algebra of all rational

functions h ∈ K(x) with no pole in D (resp., the K-algebra of all rational

functions h ∈ K(x) with no pole in D which are bounded in D).

Given a bounded closed subset of K, we denote by H(D) the completion

of R(D) with respect to the norm ‖ . ‖D of uniform convergence on D

[19, 35, 23].

We will now define the antivaluation on K and on K[x]. The antivaluation

is the opposite of the classical valuation defined on these sets, but is easier to

follow computations than the classical valuation [28]. Thus, throughout the

book, given a ∈ K, we put Ψ(a) = log(|a|) and given P (x) =
∑q

n=0 anx
n ∈

K[x], and μ ∈ R, we put Ψ(P, μ) = sup0≤j≤qΨ(an) + nμ. We then

denote by ν+(P, μ) the biggest of the integers j such that Ψ(aj) + jμ =

sup0≤j≤q Ψ(an)+nμ and by ν−(P, μ) the smallest of the integers j such that

P (aj) + jμ = sup0≤j≤q Ψ(an) + nμ.

Next, given h = P
q ∈ K(x) with P, Q ∈ K[x], we put Ψ(h) = Ψ(P ) −

Ψ(Q).

117
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By results of [23, Chapters 4, Lemmas 4.4, 4.6, 4.8, Theorem 4.11 and

Corollaries 4.12 and 4.13], we have the following lemmas.

Lemma 6.1.1. Let P (x) ∈ K[x]. Let r ∈ R+ and let a ∈ K be such

that |a| ≤ r. Then |P (x)| has a limit ϕa,r(P ) when |x − a| approaches r
but remains different from r. Moreover, if P (x) =

∑n
j=0 αj(x − a)j , then

ϕa,r(P ) = max0≤j≤n |αj |rj = ‖P‖d(a,r). Thus, ϕa,r belongs to Mult(K[x])

and has continuation to K(x). Moreover, given h ∈ K(x), if r ∈ |K|, then
ϕa,r(h) ∈ |K|.

Corollary 6.1.2. Let P (x) =
∑n

j=0 αjx
j ∈ K[x]. Then Ψ(P, log r) =

log(ϕ0,r(P )).

Lemma 6.1.3. Let h ∈ K(x) and let r ∈ R+. For every a ∈ d(0, r) we have

lim |x−a|→r
|x−a|�=0

|h(x)| = ϕa,r(h). Let x ∈ C(0, r). If h has no zeros (resp., no poles)

in the class of x in d(0, r) then |h(x)| ≥ ϕ0,r(h) (resp., |h(x)| ≤ ϕ0,r(h)). If

h has neither any zeros nor any poles in the class of x inside d(0, r), then

|h(x)| = ϕ0,r(h).

Corollary 6.1.4. Let h ∈ K(x) \ {0}. We have Ψ(h(x)) = Ψ(h,Ψ(x)) for

every x ∈ K such that h has no zero α satisfying |x − α| < |x| and no pole

β satisfying |x− β| < |x|.
Theorem 6.1.5 ([30]). For every large circular filter F on K, for every

rational function h(x) ∈ K(x), |h(x)| has a limit ϕF (h) along the filter F . If

F has center 0 and diameter r, then ϕF (h) = |h|(r).
Lemma 6.1.6. Let h ∈ K(x) \ {0}. The function in μ Ψ(h, .) is continuous

and piecewise affine and has at each point μ a left-side derivative Ψ′l(h, μ)
and a right-side derivative Ψ′r(h, μ). Moreover, if h ∈ K[x], then Ψ′l(h, μ) =
ν−(h, μ), and Ψ′r(h, μ) = ν+(h, μ).

Let ν ∈ R.

If d(0, ων) contains s zeros and t poles of h, (taking multiplicities into

account), and if C(0, ων) contains neither any zero nor any pole, then Ψ(h, .)

has a derivative equal to s− t at ν.

If C(0, ων) contains s zeros and t poles of h (taking multiplicities into

account), then we have Ψ′r(h, ν)−Ψ′l(h, ν) = s− t. Moreover, if the function

Ψ(h, μ) is not derivable at ν, then ν lies in Ψ(K).

Lemma 6.1.7. Let h ∈ K(x) \ {0} have s zeros and t poles in d(0, r)

(taking multiplicities into account), and have neither any zero nor any pole
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in Γ(0, r, r′). Then in Γ(0, r, r′), Ψ(h(x)) is of the form A+(s− t)Ψ(x), with

A = log(ϕ0,r(h)).

Corollary 6.1.8. Let h ∈ K(x) \ {0}. If d(0, r1) contains s zeros and t

poles of h (taking multiplicities into account) and if Γ(0, r1, r2) contains

neither any zero nor any pole of h, then |h(x)| =
( |x|
r2

)s−t
ϕ0,r2(h) =( |x|

r1

)s−t
ϕ0,r1(h) ∀x ∈ Γ(0, r1, r2).

Theorem 6.1.9. Let h ∈ K(x) \ {0}. If r ∈ |K|, then ϕ0,r(h) lies in |K|.
Conversely, if h has s zeros and t poles in d(0, r), if s �= t with ϕ0,r(h) ∈ |K|,
then r lies |K|.

Proof. The direct claim is an immediate consequence of Lemma 6.1.7. So

we will show the converse claim and suppose that ϕ0,ρ(h) ∈ |K| and that

s �= t. If h admits zeros or poles in C(0, r) then of course r lies in |K|. So,
we assume that h has neither any zero nor any pole in C(0, r). Therefore,

we can find ρ ∈]0, r[∩|K| such that h has neither any zero nor any pole

in Λ(0, ρ, r), hence h admits exactly s zeros and t poles in d(0, ρ). And by

Lemmas 6.1.3 and 6.1.8 we have ϕ0,r(h) = ϕ0,ρ(h)
(
r
ρ

)s−t
. But since ρ ∈ |K|

and since s− t �= 0, by the direct claim it is clear that ρs−t

ϕ0,r(h)
also lies in |K|,

and so does r. �

Notation: Henceforth, we denote by U the disk d(0, 1) in K. Given a disk

A = d(a, r) or A = d(a, r−), we put ϕA = ϕa,r.

Theorem 6.1.10. Let h ∈ K(x) satisfy deg(h) > 0. Then the set h−1(U) =

{x ∈ K | |h(x)| ≤ 1} is affinoid.

Proof. Let D = h−1(U) and let h = P
Q , with P, Q ∈ K[x] relatively

prime, and of course deg(P ) > deg(Q). We first notice that D is bounded.

Let Γ(a, l′, l′′), with a ∈ D, be an empty annulus of D. Suppose that h has

no zeros and no poles in d(a, l′). There exists l > l′ such that h admits no

zeros and no poles in all d(a, l), hence by Lemma 6.1.2, |h(x)| is constant

in all d(a, l), hence |h(x)| = |h(a)| ≤ 1 ∀x ∈ d(a, l), thereby d(a, l) ⊂ D,

a contradiction. Thus, for each empty annulus F of D, I(F ) contains at

least a zero or a pole of h. Consequently, D admits finitely many empty

annuli and therefore by Theorem 5.1.13, D has finitely many infraconnected

components.

Let E be an infraconnected component of D, of diameter r, and let

a ∈ E. Let t (resp., s) be the number of poles (resp., zeros) of h inside Ẽ.
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Since E is infraconnected, the circular filter of center a and diameter r

is secant with E and thereby ϕa,r(h) ≤ 1. It is also secant with K \ Ẽ,

hence ϕa,r(h) ≥ 1, therefore ϕa,r(h) = 1. On the other hand, we have

s− t > 0 because if s− t ≤ 0, then by Lemma 6.1.7, there exists r′ > r

such that |h(x)| = ϕa,r(h) ∀x ∈ Γ(a, r, r′), a contradiction to the hypothesis

D ⊂ d(a, r). Consequently, by Lemma 6.1.7, the equality ϕa,r(h) = 1 implies

r ∈ |K|.
Similarly, consider now a hole T = d(b, ρ−) of E. Let l = ϕb,ρ(h). Since

E is infraconnected, the circular filter of center b and diameter ρ is secant

with E and thereby ϕb,ρ(h) ≤ 1. It is also secant with T , hence ϕb,ρ(h) ≥ 1,

therefore ϕb,ρ(h) = 1. Then by Lemma 6.1.3, T contains at least one pole

of h. Thus, E has finitely many holes. Moreover, since |h(x)| > 1 ∀x ∈ T , by

Lemma 6.1.8, inside T the number of poles of h is strictly bigger than the

number of zeros. Consequently by Lemma 6.1.7, ρ lies in |K|. �

Theorem 6.1.11. Let D be affinoid. There exists h ∈ R(D) such that

deg(h) > 0, h(D) = U, D = h−1(U).

Proof. Suppose first that D is infraconnected. Then D is of the form

d(a, r0)\
⋃n
j=1 d(bj , r

−
j ), with |bi−bj | ≥ max(ri, rj), ∀i �= j, bj ∈ d(a, r0) rj ≤

r0 ∀j = 1, . . . , n, rj ∈ |K| ∀j = 0, . . . , n. For each j = 0, . . . , n, we can

take λj ∈ K such that |λj | = rj. Let h(x) = x−a
λ0

+
∑n

j=1
λj
x−bj . Outside

d(b−j, r−j ), we have | λj
x−bj | ≤ 1, inside d(b−j, r−j ), we have | λj

x−bj | > 1. Inside

d(a, r0) we have |x−aλ0 | ≤ 1, outside d(a, r0) we have |x−aλ0 | > 1. Consequently,

we check that |h(x)| ≤ 1 if and only if x ∈ D, so we have constructed

h when D is infraconnected. Moreover, by construction, we check that

lim|x|→∞ |h(x)| = +∞, so deg(h) > 0.

We now consider the general case and denote by D1, . . . ,Dq the

infraconnected components of D. For each i = 1, . . . , q, there exists hi ∈
R(Di) such that |h(x)| ≤ 1 if and only if x ∈ Di. We then put g =

∑n
i=1

1
hi

and h = 1
g . We can easily check that |g(x)| ≥ 1 if and only if x ∈ D. Moreover,

we notice that for each i = 1, . . . , n we have lim|x|→∞ |hi(x)| = +∞, hence

lim|x|→∞ |g(x)| = 0, therefore lim|x|→∞ |h(x)| = +∞. So, deg(h) > 0 and h

satisfies our claim. �

According to [23, Theorem 9.3] we have Theorem 6.1.12.

Theorem 6.1.12. Rb(D) = R(D) if and only if D is closed and bounded.

Moreover, if D is closed and bounded, ‖ . ‖D is a semi-multiplicative

ultrametric norm of K-algebra on Rb(D).
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6.2. Pointwise topology on Mult(K[x])

As we saw in Section 2.3 of Chapter 2, Mult(K[x]) is equipped with

the topology of pointwise convergence. On the other hand, according to

Section 5.3 of Chapter 5, circular filters are equipped with a distance. Now,

we will see that the circular filters characterize the multiplicative semi-norms

on K[x]. Thus, Mult(K[x]) admits three topologies that we shall compare.

Notation: We denote by Ω the mapping from Φ(K) into Mult(K[x])

defined as Ω(F) = ϕF .
Throughout the section, D will denote a subset of K and UD will denote

the topology of uniform convergence on D.

The characterization of all absolute values on K(x) is given in [30, 32,

23]. According to [23, Theorems 4.14], we have this theorem.

Theorem 6.2.1. (Garandel–Guennebaud). The mapping M from Φ(K)

into Mult(K[x]) defined as Ω(F) = ϕF is a bijection. Moreover, the

restriction Ω′ of Ω to Φ′(K) is a bijection from Φ′(K) onto the set of

multiplicative norms on K[x], and therefore onto the set of multiplicative

norms on K(x). Moreover, if F has center a and diameter r, then ϕF (h) =
ϕa,r(h) ∀h ∈ K(x).

Definitions: A multiplicative semi-norm on K[x] defined by a punctual

circular filter of limit a will be called a punctual multiplicative semi-norm

and will be denoted by ϕa.

Remarks. The punctual multiplicative semi-norm ϕa is just of the form

φ(P ) = |P (a)|, with a ∈ K. In a field F which is complete but not

algebraically closed, such asQp, we have to consider the (algebraically closed)

completion G of an algebraic closure. Then every element ψ of Mult(G[x]) has

a restriction to F [x] which obviously belongs to Mult(F [x]). And conversely,

every element of Mult(F [x]) admits extensions to Mult(G[x]). Therefore, we

have a surjection from the set of circular filters on G onto Mult(F [x]). But

this surjection is not injective: if a and b are conjugate over F , the circular

filters of centers a and b and of same diameter r define the same absolute

values on F [x].

Theorem 6.2.2. Mult1(K[x]) = Multa(K[x]) = Multm(K[x]) is dense in

Mult(K[x]) with respect to the topology of pointwise convergence.

Proof. It is well known that all maximal ideals of K[x] have codimension 1,

hence Multa(K[x]) = Multm(K[x]). Now, let ϕF ∈ Mult(K[x]). Let

P1, . . . , Pn ∈ K[x] and let ε > 0. For each j = 1, . . . , n, there exists Ej ∈ F
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such that |Pj(x)− ϕF (Pj)|∞ ≤ ε ∀x ∈ Ej. Let E = ∩nj=1Ej . Then E lies in

F and we have |Pj(x)−ϕF (Pj)|∞ ≤ ε ∀x ∈ E, which shows that ϕa belongs

to the neighborhood W(ϕF , P1, . . . , Pn, ε) for every a ∈ E. �

Theorem 6.2.3. Let D be infraconnected, closed, bounded. Then

Mult(R(D), ‖ . ‖D) is sequentially compact with respect to the topology of

pointwise convergence.

Proof. Let (ψn)n∈N be a sequence of Mult(R(D), ‖ . ‖D). Since

Mult(R(D), ‖ . ‖D) is compact, the sequence (ψn)n∈N admits a point of

adherence ϕF . Let r = diam(F). If F has no center, or if it has a center and

if r /∈ |K|, by Lemma 5.3.2 of Chapter 5, it has a countable basis, hence there

does exist a subsequence of the sequence (ψn)n∈N converging to ϕF . Now
suppose that F has a center a and that r ∈ |K|. Suppose that we can extract

from the sequence (ψn) a subsequence (ψmt)t∈N, with ψmt = ϕFt , (t ∈ N),

such that for a certain fixed b ∈ d(a, r), each Ft is (b, rt)-approaching with

rt �= r. Consider now x − b. For convenience, we put φt = ψmt (t ∈ N). By

hypothesis we can reextract from this sequence (φt)t∈N a new subsequence

(φtq )q∈N such that limq→∞ φtq (x − b) = ϕF (x− b). This clearly proves that

limq→∞ rtq = r, whereas rtq �= r. Consequently, for every element A of F
we can find a rank s ∈ N such that Fts is secant with A. Therefore, for

every ε > 0 and for every f ∈ R(D), we can find a rank s ∈ N such that

|φts(f)− ϕF (f)|∞ ≤ ε, hence the sequence (φts) converges to ϕF .
Finally, suppose that we cannot find b ∈ d(a, r) and a subsequence

(ψmt)t∈N, with ψmt = ϕFt , (t ∈ N), such that for a certain fixed b ∈ d(a, r),

each Ft be (b, rt)-approaching with b and diameter rt �= r. We first notice

that there exists r′ > r such that none of the ϕFt is secant with Γ(a, r, r′). In
the same way, for every c ∈ d(a, r), there exists ρ(c) ∈]0, r[ such that none

of the φFt is secant with Γ(a, ρ, r). Let (ct)t∈N be a sequence in d(a, r) such

that |cj − ck| = r ∀j �= k. We can easily construct a decreasing sequence of

affinoid sets (At)t∈N of the form At = d(a, r′)\(⋃t
j=1 d(cj , ρ(cj)

−)
)
. For each

t ∈ N, let εt = min(1t , r
′ − r, r− ρ(c1), . . . , r− ρ(ct)). By hypothesis, for each

t ∈ N, there exists nt ∈ N such that |ψnt(x− ct)−ϕF (x− ct)|∞ < εt, hence,

putting ψnt = ϕFt , we can see that Ft is secant with d(a, r′) but is not secant
secant with Γ(a, r, r′) and is not secant with

⋃t
j=1 d(cj , r

−). Consequently,
Ft is secant with a class of d(a, r) different from all d(cj , r) ∀j = 1, . . . , t. So,

we can construct a sequence (bt)t∈N such that |bj − a| = |bj − bk| = r ∀j �= k

and such that Ft is secant with d(bt, r−). �

Now, let f ∈ R(D). For each t ∈ N, since Ft is secant with d(bt, r−), we
can find at ∈ d(bt, r

−) such that |ψnt(f)−|f(at)||∞ < εt. Then the sequence
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(at)t∈N is thinner than F , and therefore limt→∞ |f(at)| = ϕF (f). But of

course limt→∞ |f(at)| = limt→∞ ψnt(f), so the sequence (ψnt) converges to

ϕF again.

Notations: In Section 5.4 of Chapter 5, the set of circular filters was

equipped with an order relation � that makes it a tree, and we have denoted

by ≺ the strict order associated to �. On the other hand, we can apply to

Mult(K[x]) the usual order ≤ on functions with values in R as ϕF ≤ ϕG if

ϕF (P ) ≤ ϕG(P ) ∀P ∈ K[x], and we denote by < the strict order associated

to ≤, as ϕF < ϕG if ϕF (P ) ≤ ϕG(P ) ∀P ∈ K[x] and ϕF �= ϕG .

Theorem 6.2.4. Let ϕF , ϕG ∈ Mult(K[x]). Then ϕF < ϕG if and only if

F ≺ G.
Proof. Let F ,G ∈ Φ(K). Suppose first that they satisfy F ≺ G and let

s = diam(G). By Corollary 5.4.2 of Chapter 5, F is secant with a disk d(a, r)

strictly included in d(b, s). Let P ∈ K[x]. We have ϕF (P ) ≤ ‖P‖d(a,r) ≤
‖P‖d(a,s) = ϕG(P ) ∀P ∈ K[x]. Now, let Q(x) = x − a. Then ϕF (Q) ≤
‖Q‖d(a,r) = r and ϕG(Q) = ‖Q‖d(a,s) = s, hence ϕF (Q) < ϕG(Q). Suppose

that F and G are not comparable with respect to �. By Proposition 5.4.9 of

Chapter 5, there exist disks F = d(a, r) ∈ F and G = d(b, s) ∈ G such that

F ∩ G = ∅ and δ(F,G) > max(diam(F),diam(G)). Consider P (x) = x − a

and Q(x) = x − b. Then ϕF (P ) ≤ ‖P‖F = r and ϕG(P ) = ‖P‖G = |b − a|,
hence ϕF (P ) < ϕG(P ). In the same way, ϕG(Q) ≤ ‖P‖G = s and ϕF (Q) =

‖P‖F = |b−a|, hence ϕG(Q) < ϕF (Q). Thus, neither ϕF ≤ ϕG nor ϕG ≤ ϕF
is true whenever F and G are not comparable. This finishes proving that

ϕF < ϕG if and only if F ≺ G. �

Corollary 6.2.5. Ω is a strictly increasing bijection from Φ(K) onto

Mult(K[x]) and Ω−1 is a strictly increasing bijection from Mult(K[x]) onto

Φ(K).

Corollary 6.2.6. Let D be closed. The restriction of M to the set of F ∈
Φ(K) which are not converging to a point of K \D is a bijection from this

set onto Mult(R(D)).

According to [30, Theorem 10.4] we have Theorem 6.2.7.

Theorem 6.2.7. (Garandel). Let F be a large circular filter on K. Then

ϕF belongs to Mult(R(D),UD) if and only if F is secant with D.

Corollary 6.2.8. The mapping from Φ(D) to Mult(R(D)) which associates

to each circular filter F secant with D the multiplicative semi-norm ϕF , is
a bijection from Φ(D) onto Mult(R(D),UD).
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Definitions and notations: According to Section 1.2 of Chapter 1, the

function diam defines two equivalent distances on the set of circular filters, in

particular δ(F ,G) = diam(sup(F ,G)−min(diam(F),diam(G)). Henceforth,
we will apply this distance to Mult(K[x]) and to Mult(R(D),UD) as well

as to Φ(K) or Φ(D) by putting δ(ϕF , ϕG) = δ(F ,G). Thus, Mult(K[x]) and

Mult(R(D),UD) are equipped with a metric topology defined by δ.

Given h = P
Q ∈ K(x), with P, Q ∈ K[x], we put deg(h) = deg(P ) −

deg(Q), and deg(h) will be called the algebraic degree of h.

Theorem 6.2.9. Let ϕF ∈ Mult(K(x)). Let f ∈ K(x), and let ε > 0. There

exists an affinoid subset E of K of diameter l > diam(F), which belongs

to F , such that | |f(x)| − ϕF (f)|∞ ≤ ε, ∀x ∈ E.

Proof. If F has no center, there exists a disk d(a, l) ∈ F , with r ∈ |K|,
containing neither zeros nor poles of f , therefore by Lemma 6.1.3, |f(x)| is
a constant equal to ϕF (f) in d(a, r), so our claim is obvious. Now, suppose

that F is the circular filter of center a and diameter r. Let A1, . . . , Aq be the

classes of d(a, r) containing at least one zero or one pole of f . By Lemma

6.1.3, |f(x)| is a constant equal to ϕF (f) in d(a, r) \
(⋃q

j=1Aj

)
. Consider a

class Aj = d(aj , r
−), and let sj (resp., tj) be the number of zeros (resp., poles)

of f inside Aj , and let s0 (resp., t0) be the number of zeros (resp., poles) of

f in all d(a, r). Let ρ ∈]0, r[∩|K| be such that
∣∣( r
ρ

)sj−tj − 1)
∣∣ϕF (f) ≤ ε ∀j =

0, . . . , q. Let l = r2

ρ and let E = d(a, l) \ ⋃q
j=1 d(aj , ρ

−). By Lemmas 6.1.7

and Corollary 6.1.8, we can check that the inequality | |f(x)| −ϕF (f)|∞ ≤ ε

holds in all E. Since ρ < r, E is an affinoid set which belongs to F . Moreover,

by definition, l > diam(F). �

Theorem 6.2.10. Let D be a closed bounded set and ϕF ∈ Mult(R(D),

‖ . ‖D). There exists a basis of neighborhoods of ϕF in Mult(R(D), ‖ . ‖D),
with respect to the topology of pointwise convergence, consisting of the family

of sets of the form Mult(R(E ∩D), ‖ . ‖E∩D), where E is a F-affinoid.

Proof. Let f1, . . . , fq ∈ R(D) and consider a neighborhood W

of ϕF : we will show that it contains a neighborhood of the form

Mult(R(E ∩D), ‖ . ‖E∩D), where E is a F-affinoid. Indeed, by Lemma

6.2.9, there exist affinoid sets Ej ∈ F , (1 ≤ j ≤ q) such that | |fj(x)| −
ϕF (fj)|∞ ≤ ε ∀x ∈ Ej (1 ≤ j ≤ q). Then

⋂q
j=1Ej is an infraconnected

affinoid set which belongs to F . We can put E =
⋂q
j=1Ej . So, we have an

affinoid set F such that | |fj(x)| − ϕF (fj)|∞ ≤ ε ∀x ∈ Ej (1 ≤ j ≤ q),
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and therefore | |ψ(fj)| − ϕF (fj)|∞ ≤ ε ∀x ∈ Ej (1 ≤ j ≤ q), ∀ψ ∈
Mult(R(E ∩D), ‖ . ‖E∩D). Now, by Lemma 5.3.2 of Chapter 5, F contains

a F-affinoid E. Then Mult(R(E), ‖ . ‖E) is a neighborhood of ϕF in

Mult(K(x)) and Mult(R(E ∩D), ‖ . ‖E∩D) is a neighborhood of ϕF in

Mult(R(D), ‖ . ‖D). �

Corollary 6.2.11. Let ϕF ∈ Mult(K[x]). There exists a basis of neigh-

borhoods of ϕF in Mult(K[x]) consisting of the family of sets of the form

Mult(R(E), ‖ . ‖E), where E is a F-affinoid.

Corollary 6.2.12. Mult(K[x]) is locally compact and locally sequentially

compact.

Proof. Let ϕF ∈ Mult(K[x]) and let E be an affinoid set such

that Mult(R(E), ‖ . ‖E) is a neighborhood of ϕF in Mult(K[x]). Then

Mult(R(E), ‖ . ‖E) is a compact neighborhood of ϕF . Moreover, it is a

sequentially compact neighborhood. �

Remark 1. In general, the metric Θ studied in Section 2.1 of Chapter 2,

defines a topology that is not equivalent to the pointwise topology on

Mult(A, ‖ . ‖) as the following example shows.

Let L = K and let A be the Banach K-algebra H(d(0, 1)) provided

with the norm of uniform convergence on d(0, 1). Let r ∈ |K|∩]0, 1[ and

for each n ∈ N
∗, set rn = n

√
r. We know that A is the algebra of analytic

elements on d(0, 1) [1, 35] and for every s ∈]0, 1], the mapping defined on

A as ψ(f) = lim|x|→s,|x|	=s |f(x)| belongs to Mult(A, ‖ . ‖) [3, 30, 32]. Then
it is well known and easily checked that the norm of uniform convergence

φ = ‖ . ‖ on d(0, 1) admits the sets {ψs | s ≤ 1} as a basis of neighborhoods

with respect to the pointwise topology [28, 30].

Now, let φn be the element of Mult(A, ‖ . ‖) defined by φn(f) =

lim|x|→rn,|x|	=rn |f(x)|. Then the sequence (φn)n∈N tends to ‖ . ‖ when n

goes to +∞, with respect to the pointwise convergence on Mult(A, ‖ . ‖).
However, let Pn(x) = xn, n ∈ N∗ and consider φ(Pn) − φn(Pn) = 1 −

(rn)
n = 1− r. Since Pn lies in A0 for every n ∈ N, we have Θ(φ, φn) ≥ 1− r

and hence φn does not tend to φ with respect to the metric Θ.

6.3. Topologies on Mult(K[x])

In Section 5.4 of Chapter 5, we defined the δ-topology on Φ(K) and we

showed that Φ(K) is complete with respect to this metric. In Section 6.2,

we saw that Φ(K) is in bijection with Mult(K[x]) which is equipped with
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the topology of pointwise convergence. Henceforth, thanks to this one to

one correspondence, we will consider that both Φ(K) and Mult(K[x]) are

equipped with both topologies.

Definition and notations: We will denote by Σ(D) the set of ϕF ∈
Mult(K[x]) such that F is D-bordering, and by Σ0(D) the set of ϕF ∈
Mult(K[x]) such that F is strictly D-bordering.

Theorem 6.3.1. Let D be closed and bounded. Then the boundary of

Mult(R(D), ‖ . ‖D) inside Mult(K[x]), with respect to the topology of

pointwise convergence, is equal to Σ(D).

Proof. Let F be D-bordering. Let W be a neighborhood of ϕF in

Mult(K[x]). By Theorem 6.2.10, there exists an affinoid set E ∈ F such

that Mult(R(E), ‖ . ‖E) ⊂W . Since E∩ (K\D) �= ∅, for all a ∈ E∩ (K\D),

ϕa belongs to Mult(R(E), ‖ . ‖E), which shows that ϕF belongs to the closure

of Mult(K[x]) \Mult(R(D), ‖. ‖D). Hence,

Σ(D) ⊂ Mult(K[x]) \Mult(R(D), ‖ . ‖D).

Conversely, let ϕF ∈ Mult(R(D), ‖ . ‖D) belong to the closure of

Mult(K[x]) \ Mult(R(D), ‖ . ‖D) in Mult(K[x]). Let E ∈ F be an affinoid

set. Then Mult(R(E), ‖ . ‖E) is a neighborhood of ϕF , hence it contains an

open neighborhood W of ϕF . Therefore,

W ∩ (Mult(K[x]) \Mult(R(D), ‖ . ‖D)) �= ∅.

Moreover, W ∩ (Mult(K[x]) \ Mult(R(D), ‖ . ‖D)) is open in Mult(K[x])

because so are W and Mult(K[x]) \ Mult(R(D), ‖ . ‖D). Since

Multa(K[x]) is dense inside Mult(K[x]), there exists ϕa ∈ (Multa(K[x]) \
Mult(R(D), ‖ . ‖D)) ∩ Mult(R(E), ‖ . ‖E). Consequently, a lies in E,

which proves that F is secant with K \ D. Therefore, the boundary of

Mult(R(D), ‖ . ‖D) inside Mult(K[x]) is included in Σ(D), and finally these

two sets are equal. �

Theorem 6.3.2. Let D be closed, bounded and infraconnected. Then Σ0(D)

is included in the boundary of Mult(R(D), ‖ . ‖D) inside Mult(K[x]), with

respect to the δ-topology. Moreover, the boundary of Mult(R(D), ‖ . ‖D)
inside Mult(K[x]), with respect to the δ-topology, is equal to Σ(D) if and only

if for every ϕG ∈ Σ(D) \ Σ0(D), there exists either a monotonous distances

holes sequence or an equal distances holes sequence which is thinner than G,
whose superior gauge is equal to its diameter.
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Proof. Let D̃ = d(a, r), with a ∈ D. Let ϕG ∈ Σ(D). Suppose first that G
is the peripheral of D, hence ϕG lies in the closure of {ϕa,s | s > r} for both

topologies, hence it lies in the closure of Mult(K[x])\Mult(R(D), ‖ . ‖D) for
both topologies. In the same way, ϕG lies in the closure of {ϕa,s | 0 ≤ s ≤ r}
for both topologies. But since D is infraconnected, for every s ∈ [0, r], the

circular filter of center a and diameter s is secant with D, and then, by

Corollary 6.2.8, ϕa,s belongs to Mult(R(D), ‖ . ‖D). Consequently, ϕG lies

in the closure of Mult(R(D), ‖ . ‖D) for both topologies. This shows that

ϕG belongs to the boundary of Mult(R(D), ‖ . ‖D) inside Mult(K[x]) with

respect to the δ-topology.

Similarly, suppose now that G is the peripheral of a hole T = d(b, l−)
of D. Then ϕG lies in the closure of {ϕb,s | s < l} for both topologies,

hence it lies in the closure of Mult(K[x]) \ Mult(R(D), ‖ . ‖D) for both

topologies. In the same way, ϕG lies in the closure of {ϕa,s | l ≤ s ≤ r}
for both topologies. But since D is infraconnected, for every s ∈ [l, r], the

circular filter of center b and diameter s is secant with D, and then, by

Corollary 6.2.8, ϕb,s belongs to Mult(R(D), ‖ . ‖D). Consequently, ϕG lies in

the closure of Mult(R(D), ‖ . ‖D) for both topologies and therefore belongs

to the boundary of Mult(R(D), ‖ . ‖D) inside Mult(K[x]) with respect to the

δ-topology.

Now, let ϕG ∈ Σ(D) \ Σ0(D). Let r = diam(G). Suppose first that there

exists a monotonous holes sequence, or an equal distances holes sequence,

thinner than G, whose superior gauge is equal to its diameter. Let (Dn)n∈N be

a basis of G consisting of affinoid sets. Then of course limn→∞ diam(Dn) = r.

Thus, there exists a monotonous distances holes sequence or an equal

distances holes sequence, (Tn)n∈N such that limn→∞ diam(Tn) = r, and

Tn ⊂ Dn ∀n ∈ N. For each n ∈ N, let Tn = d(bn, r
−
n ), let sn = diam(Dn)

and λn = δ(ϕG , ϕbn,rn). Assume first that the monotonous sequence (Tn)

is decreasing. Since the circular filter Fn peripheral of Tn is secant with

Dn, we have diam(sup(Fn,G)) ≤ sn. Consequently, by definition of the

distance δ, we can check that λn ≤ max(sn − rn, sn − r), and finally

limn→∞ λn = 0. Hence G is a point of adherence of the sequence (Fn)
with respect to the δ-topology, and therefore belongs to the closure of

Mult(K[x]) \ Mult(R(D), ‖ . ‖D) inside Mult(K[x]). Since it belongs to

Mult(R(D), ‖ . ‖D), it belongs the boundary of Mult(R(D), ‖ . ‖D) inside

Mult(K[x]) with respect to the δ-topology. Assume now that the sequence

(Tn) is an increasing holes sequence, or an equal distances holes sequence.

Then each filter Fn is surrounded by G. Consequently, λn = r − rn, and

therefore the conclusion is immediate.
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Finally, suppose now that there exist neither any monotonous holes

sequence nor any equal distances holes sequence whose superior gauge is

equal to its diameter. Then, we can find λ < r and an affinoid set B ∈ G
such that every hole of D included in B has a diameter ρ ≤ λ. Let

B = d(a, s0) \
⋃q
j=1 d(aj , s

−
j ) and let ϕF ∈ Mult(K[x]) \Mult(R(D), ‖ . ‖D).

Either F is secant with K \ (d(a, r0)
⋃(⋃

≤j≤q d(aj , r
−
j )
)
), and then we check

that δ(G,F) ≥ min0≤j≤q |r − sj|∞, or it is secant with a hole Tk included

in B, and then δ(G,F) ≥ r − λ. Thus we have proven that for every

ϕF ∈ Mult(K[x]) \Mult(R(D), ‖ . ‖D), we have

δ(G,F) ≥ min( min
0≤j≤q

|r − sj |∞, |r − λ|∞).

This finishes proving that ϕG does not belong to the boundary of

Mult(R(D), ‖ . ‖D) inside Mult(K[x]) with respect to the δ-topology. �

Theorem 6.3.3. Let D be a closed bounded set. The topology of pointwise

convergence is weaker than the δ-topology on Mult(R(D), ‖ . ‖D). If at least
one large circular filter on K is secant with D, then Mult(R(D), ‖ . ‖D)
is not compact for the δ-topology. However, on a totally ordered subset of

Mult(R(D), ‖ . ‖D) the two topologies are equal.

Proof. Let ϕF ∈ Mult(R(D), ‖ . ‖D). First we will show that every

neighborhood of ϕF , with respect to the pointwise convergence topology,

which is of the form Mult(R(E ∩ D), ‖ . ‖E∩D), where E is an affinoid

set, contains a neighborhood of ϕF with respect to the δ-topology. Let

r = diam(F), and let l be the maximum of the diameters of holes of E.

For every G ∈ Mult(R(D), ‖ . ‖D) such that δ(F ,G) ≤ r − l, then G is

secant with E, and therefore lies in Mult(R(E ∩D), ‖ . ‖E∩D). This shows

that Mult(R(E ∩ D), ‖ . ‖E∩D) is a neighborhood of ϕF with respect to

the δ-topology. But by Theorem 6.2.10, the family of neighborhoods of ϕF ,
for the pointwise convergence topology inside Mult(R(D), ‖ . ‖D), of the

form Mult(R(E ∩ D), ‖ . ‖E∩D), with E an affinoid set, forms a basis of

neighborhoods of ϕF for the pointwise convergence topology: this shows

that every neighborhood of ϕF for the pointwise convergence topology

is a neighborhood of ϕF for the δ-topology, and therefore, the pointwise

convergence topology is weaker than the δ-topology.

Suppose that at least one large circular filter F is secant with D.

There exists a sequence (an) in D which is thinner than F , and we

know that the sequence ϕan converges to ϕF with respect to the topol-

ogy of pointwise convergence. On the other hand, the sequence satisfies

limn→∞ |an+1 − an| = diam(F). But since δ(ϕa, ϕb) = |a − b|, the sequence
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ϕan satisfies limn→∞ δ(ϕan+1 , ϕan) = diam(F), and therefore it has no limit

in Mult(R(D), ‖ . ‖D). Consequently, if D admits at least one large circular

filter, the pointwise convergence topology is strictly weaker than the δ-

topology.

Suppose now that a subset S of Mult(R(D), ‖ . ‖D) is totally ordered

with respect to the order �. Let ϕF ∈ Mult(R(D), ‖ . ‖D) and consider a

neighborhood of ϕF with respect to the δ-topology, of the form

B = {ψ ∈ Mult(R(D), ‖ . ‖D) | δ(ψ,ϕF ) ≤ ε}.
Let r = diam(F). If F = inf(S), we denote by E the unique disk in K

of diameter r + ε, such that F is secant with E, and we put s = r − ε.

Else, since there exists F0 ∈ S such that F0 ≺ F , we put r0 = diam(F0)

and consider a disk d(b, s) of diameter s ∈]max(r0, r − ε), r[ such that F0 is

secant with d(b, s) and we denote by E the annulus Γ(b, s, r + ε). Now, in

all cases, consider ϕG ∈ S ∩ (Mult(R(E ∩D), ‖ . ‖E∩D)). Thus, G is secant

with d(b, r+ ε), hence diam(G) ≤ r+ ε. If F ≺ G then r ≤ diam(G) ≤ r+ ε,

hence of course G lies in B. Now suppose G ≺ F , hence F0 ≺ G ≺ F ,

hence s ≤ diam(G) ≤ r, and therefore G lies in B again. This proves that

(Mult(R(E∩D), ‖ . ‖E∩D))∩S is included in B, which obviously shows that

the two topologies are equal on S. �

Corollary 6.3.4. The topology of pointwise convergence is weaker than the

δ-topology on Mult(K[x]). However, on a totally ordered subset of Mult(K[x])

the two topologies are equal.

Remarks. Since the topology of pointwise convergence is weaker than the

δ-topology, the boundary of Mult(R(D), ‖ . ‖D) inside Mult(K[x]), with

respect to the δ-topology is obviously included in the boundary of

Mult(R(D), ‖ . ‖D) inside Mult(K[x]), with respect to the topology of

pointwise convergence. The equivalence does not hold in the general case.

By Theorem 5.4.15 of Chapter 5, the following Theorem 6.3.5 is

immediate.

Theorem 6.3.5. Let D be a closed and bounded subset of K. Then

Mult(R(D), ‖ . ‖D) is complete with respect to the distance δ.

Proposition 6.3.6. Let (ϕFn)n∈N , (ϕGn)n∈N be sequences in Mult(R(D),

‖ . ‖D) such that the sequence (ϕFn)n∈N converges to a limit ϕT ∈
Mult(R(D), ‖ . ‖D) with respect to the topology of pointwise convergence.

Suppose that limn→∞ δ(Fn,Gn) = 0. Then the sequence (ϕGn)n∈N also con-

verges to T with respect to the topology of pointwise convergence.
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Proof. Let r = diam(T ), B ∈ T be a T -affinoid, let B = d(a, r′′) \⋃q
i=1 d(ai, r

′) where the ai are centers of T satisfying |ai − aj| = r∀i �= j.

Let ε = 1
2 min(r′′ − r, r − r′), let s′′ =]r, r + ε[∩|K|, s′ ∈]r − ε, r[∩|K|

and let A = d(a, s′′) \⋃q
i=1d(ai, s

′). According to hypotheses, we can find a

rank N such that Fn is secant with A and δ(Fn,Gn) < ε ∀n ≥ N . Then, by

Lemma 5.4.13 of Chapter 5, each Gn is secant with B for all n ≥ N . Thus,

given any F-affinoid B, there exists a rank N ∈ N such that all ϕGn belong

to Mult(R(B), ‖ . ‖B) whenever n ≥ N . �

Remarks. We can now make a short comparison between the three

topologies defined on Mult(H(D), ‖ . ‖D) in the particular and very simple

case when D is the disk d(0, 1).

In Section 2.1 of Chapter 2, given a normed K-algebra we introduced a

distance Θ on Mult(A, ‖ . ‖). We can now ask how to compare Θ and δ.

The question is quite complicated in the general case. In a particular case,

we can see that Θ and δ satisfy Θ(φ,ψ) ≥ δ(φ,ψ) but define not equivalent

topologies. Let D be the disk d(0, 1) and let φ = ϕF , ψ = ϕG , suppose that

diam(F) = r, diam(G) = s with r ≤ s and for simplicity, suppose that 0 is

a center of F and that G is secant with a circle C(0, t), with r ≤ t. Then we

can check that δ(φ,ψ) = t − r. On the other hand, since x belongs to the

unit ball of R(D) and since φ(x) = r, ψ(x) = t, we have
∣∣∣φ,ψ

∣∣∣
∞

≥
∣∣∣t− r

∣∣∣
∞
,

therefore, Θ(φ,ψ) ≥ δ(φ,ψ).

Now, suppose t = 1 and let us fix n ∈ N and consider ψ(xn) − φ(xn) =

1−rn hence Θ(φ,ψ) ≥ 1−rn. That holds for all n ∈ N and hence Θ(φ,ψ) ≥ 1.

But δ(F ,G) = 1− r. That holds for every r < 1 and hence the ratio Θ(φ,ψ)
δ(φ,ψ)

is unbounded on Mult(H(D), ‖ . ‖D), which proves that Θ and δ are not

equivalent.

However, on this example, consider the sequence (φn)n∈N defined as φn =

ϕd(0,r,n), where (rn)n∈N is a sequence of ]0, 1[ of limit 1. The sequence (φn) is

strictly ordered for the order of circular filters, hence the pointwise topology

is equivalent to the δ-topology on this sequence, but the Θ-topology is not

equivalent with both.

In conclusion, by Corollary 6.3.4 and by this remark, the δ-topology

is not equivalent to the pointwise topology and the Θ-topology is neither

equivalent to the δ-topology nor to the pointwise topology.

Theorem 6.3.7. ([11]). Let S be a locally compact subset of Mult(K[x])

with respect to the pointwise convergence topology and let T be the set
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of circular filters H such that ϕH ∈ S. The following statements are

equivalent:

(i) S is connected with respect to the topology of pointwise convergence.

(ii) S is arcwise connected with respect to the topology of pointwise

convergence.

(iii) S is connected with respect to the δ-topology.

(iv) S is arcwise connected with respect to the δ-topology.

(v) There exists no annulus A together with filters F , G ∈ T such that F
be secant with I(A), G be secant with E(A), and none of circular filters

H ∈ T be secant with A.

Proof. First, (iv) trivially implies (iii) and (ii) trivially implies (i). Next,

by Corollary 6.3.4, it is obviously seen that (iv) implies (ii) and that (iii)

implies (i). Consequently, (iv) implies (i). We can also easily check that

(i) implies (v). Indeed, suppose that (v) is not true. Thus there exists an

annulus A = Γ(a, r, s) together with F , G ∈ T such that F is secant

with I(A), G is secant with E(A), but none of the circular filters H are

secant with A whenever H ∈ T . Let E be the set of ϕH, H ∈ T such that

H is secant with d(a, r), and let F be the set of ϕH, H ∈ T such that

H is secant with K \ d(a, s−). Then E, F are two subsets of S closed in

Mult(K[x]) for the topology of pointwise convergence, and make a partition

of S, therefore S is not connected with respect to the topology of pointwise

convergence. Consequently, (i) implies (v). Thus, it only remains us to prove

that (v) implies (iv). The mapping diam defined on Φ(K) is strictly increasing

by Corollary 5.4.2 of Chapter 5. Let F , G ∈ T be such G surrounds F , let

r = diam(F), s = diam(G). Let l ∈ [r, s]. Let R be the unique circular filter

of diameter l surrounding F . By Theorem 6.2.11, every neighborhood of ϕR,
with respect to the topology of pointwise convergence, contains a set of the

form Mult(R(E), ‖ . ‖E), with E an affinoid subset of K, and such a set

contains an annulus of the form Γ(a, l− ε, l). But by hypothesis, there exists

B ∈ T secant with Γ(a, l − ε, l). Consequently, every neighborhood of ϕR
with respect to the topology of pointwise convergence contains elements of

S, and therefore (since S is locally compact), R belongs to T . Consequently,

the mapping diam satisfies {diam(H) | F � H � G} = [diam(F),diam(G)].
Hence we can apply Theorem 1.2.4 of Chapter 1 which shows that S is

arcwise connected with respect to the δ-topology. This finishes proving that

(v) implies (iv). �
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Corollary 6.3.8. Let D be a closed bounded set. The following statements

are equivalent

(i) Mult(R(D), ‖ . ‖D) is connected with respect to the topology of pointwise

convergence.

(ii) Mult(R(D), ‖ . ‖D) is arcwise connected with respect to the topology of

pointwise convergence.

(iii) Mult(R(D), ‖ . ‖D) is connected with respect to the δ-topology.

(iv) Mult(R(D), ‖ . ‖D) is arcwise connected with respect to the δ-topology.

(v) D is infraconnected.

Notation: Let D be a closed bounded infraconnected subset of K and let

f ∈ H(D). We denote by ∗f the mapping from Mult(H(D), ‖ . ‖) to K

defined by ∗f(φ) = φ(f).

Theorem 6.3.9. Let D be a closed bounded infraconnected subset of K

and let f ∈ H(D). Then ∗f is continuous with respect to the δ-topology

on Mult(H(D), ‖ . ‖) and the absolute value on K.

Proof. Let φ,ψ ∈ Mult(H(D), ‖ . ‖). We know that φ is of the form ϕF
and ψ is of the form ϕG . When φ and ψ are close enough, one surrounds the

other, hence when ϕF tends to ϕG , then ϕF (f) tends to ϕG(f), which ends

the proof. �
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Analytic Elements and T -Filters

7.1. Analytic elements

Let us briefly recall that analytic elements where introduced by Marc Krasner

in order to define a general notion of holomorphic functions in sets which

are not just disks: indeed, when two disks have a non-empty intersection,

this which has the biggest radius contains the other. As a consequence, it is

hopeless to cover a set (which is not a disk) with a chained family of disks.

But, according to Runge’s Theorem, complex holomorphic functions may be

viewed as uniform limits of rational functions. Marc Krasner adopted this

point of view to defining holomorphic functions in a set D [35].

Definition and notation: Throughout this chapter and all the next ones,

K is an algebraically closed field complete for an ultrametric absolute value

and D is an infinite subset of K.

By definition, the set H(D) is equipped with the topology of uniform

convergence on D for which it is complete and every f ∈ H(D) defines a

function on D which is the uniform limit of a sequence (hn)n∈N in R(D).

Thus, given another set D′ containing D, the restriction to D of elements

of H(D′) enables us to consider that H(D′) is included in H(D). Here, we

will only consider bounded analytic elements, and we will denote by Hb(D)

the set of the elements f ∈ H(D) bounded on D. Then Hb(D) is clearly a

K-vector subspace of H(D) and is closed in H(D). Moreover, ‖ . ‖D is a

K-algebra norm on Rb(D), hence its continuation to Hb(D) is a K-algebra

norm that makes Hb(D) a Banach K-algebra. If D is unbounded, we will

denote by H0(D) the set of the f ∈ H(D) such that lim |x|→+∞
x∈D

f(x) = 0.

According to Theorem 2.5.6 of Chapter 2 and Corollary 6.2.8 of

Chapter 6, it is obviously seen that each element ϕF of Mult(R(D), ‖ . ‖D)

133



March 25, 2022 8:35 Banach Algebras of Ultrametric Functions 9.61in x 6.69in b4542-ch07 page 134

134 Banach Algebras of Ultrametric Functions

has a unique continuation to Mult(H(D), ‖ . ‖D) and will be denoted by

ϕF again. Particularly, when F is the circular filter of center a and diameter

r, we will also denote by ϕa,r the continuation of ϕa,r to Mult(H(D), ‖ . ‖D).
Thus, we identify Mult(H(D), ‖ . ‖D) to Mult(R(D), ‖ . ‖D), and there-

fore all properties already proven in Mult(R(D), ‖ . ‖D) also hold in

Mult(H(D), ‖ . ‖D).
Theorem 7.1.1 is well known [28, Chapter 11].

Theorem 7.1.1. Hb(D) is a Banach K-subalgebra of K
D. The following

four conditions are equivalent:

(i) Hb(D) = H(D),

(ii) H(D) is a topological K-vector space,,

(iii) (H(D), ‖ . ‖D) is a K-Banach algebra,,

(iv) D is closed and bounded.

If these conditions are satisfied, then ‖ . ‖D is a semi-multiplicative norm.

Corollary 7.1.2. Let D be a closed and bounded subset of K. The norm

‖ . ‖D is the spectral norm of H(D).

The following two lemmas are classical and easy.

Lemma 7.1.3. R(D) is a full K-subalgebra of H(D).

Lemma 7.1.4. Let f ∈ H(D) be such that infx∈D|f(x)| > 0. Then f−1

belongs to H(D). Moreover if D is closed and bounded, an element g ∈ h(D)

belongs to H(D) if and only if infx∈D|g(x)| > 0.

Let g, h ∈ H(D) satisfy |g(x)| = 1 for all x ∈ D and ‖h−1‖D > ‖g−1‖D.
Then we have ‖hg − 1‖D = ‖h− 1‖D
Lemma 7.1.5. Let a ∈ K\D and let f ∈ R(D) be such that |f(a)| > ‖f‖D.
Then 1

x−a belongs to the closure of K[f, x] in H(D).

Proof. Let A be the closure of K[f, x] in H(D). Since A is a Banach

K-algebra, f(a) − f is invertible in A, hence of course in H(D). But by

Lemma 7.1.4, its inverse g actually belongs to R(D). Now, since a is clearly a

zero of f(a)−f , it is a pole of g. Consequently, by Lemma 1.1.8 of Chapter 1,
1

x−a belongs to K[g, x] which is included in A. �

Lemma 7.1.6. Let α ∈ D \D and let f ∈ H(D) be such that there exists

n ∈ N such that (x− α)nf ∈ H(D ∪ {α}). There exists a unique q ∈ N such

that (x − α)qf ∈ H(D ∪ {α}) and such that the value of (x − α)qf at α is

not zero.
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Definitions and notations: In the hypothesis of Lemma 7.1.6 of

Chapter 7, f is said to be meromorphic at α and to admit α as a pole of

order q.

Let D ⊂ K be infraconnected closed and bounded, and let T be a hole

of D. Let f ∈ H(D). Then f will be said to be meromorphic in T if there

exist finitely many points (ai)(1≤i≤n) in T such that f has continuation to

an element of H((D ∪ T ) \ {ai| 1 ≤ i ≤ n}).
Let f be meromorphic in T , and belong to H(D ∪ T ) \ {ai| 1 ≤ i ≤ n}).

For each i = 1, . . . , n if f /∈ H((D∪T )\{ah |h �= i}) then ai is a pole of f as

an element of H((D ∪ T ) \ {aj |1 ≤ j ≤ n}). Let qi be its order. Then ai will

be called a pole of f of order qi in T . The polynomial P (x) =
∏n
i=1(x− ai)

qi

will be called the polynomial of the poles of f in T .

Let d(bi, r
−
i ))i∈I be the family of holes of D. We will denote by

H ′(D, (bi)i∈I) the K-subvector space of H(D) consisting of the f ∈ H(D \
(
⋃
i∈I d(bi, r

−
i )) admitting each bi as a pole of order 0 or 1 and having no

other poles in any hole d(bi, r
−
i ).

Lemma 7.1.7 is immediate.

Lemma 7.1.7. Let D be closed bounded and infraconnected, let T be a hole

of D, and let f ∈ H(D). If f is meromorphic in T, the polynomial P of

the poles of f in T satisfies Pf ∈ H(D ∪ T ). Conversely, if there exists a

polynomial Q such that Qf lies in H(D ∪ T ) then f is meromorphic in T .

Theorem 7.1.8 is in [28, Theorem 14.6].

Theorem 7.1.8. Let r ∈ R
∗
+, let F be the circular filter of center 0 and

diameter r on K, and let E = d(0, r). Then H(E) is the set of the power

series f(x) =
∑∞

n=0 anx
n such that limn→∞ |an|rn = 0 and we have ‖f‖E =

maxn∈N |an|rn = ϕF (f) = ‖f‖C(0,r). For every α ∈ E, H(E) is also equal to

the set of the series f(x) =
∑∞

n=0 bn(x− α)n such that limn→∞ |bn|rn = 0.

Let B = K \ d(0, r−). Then H(B) is the set of the Laurent series

f(x) =
∑∞

n=0
an
xn such that limn→∞ |an|r−n = 0 and we have ‖f‖B =

maxn∈N |an|r−n = ϕF (f) = ‖f‖C(0,r).

For every α ∈ d(0, r−), H(B) is also equal to the set of the series f(x) =∑∞
n=0

bn
(x−α)n such that limn→∞ |bn|r−n = 0.

By Theorem 7.1.8, we have Theorem 7.1.9.

Theorem 7.1.9. Let α ∈ D and r ∈ R
∗
+ be such that d(α, r) ⊂ D. Let f ∈

H(D). In d(α, r), f(x) is equal to a power series of the form
∑∞

n=0 an(x−α)n
such that limn→∞ |an|rn = 0. If f(α) = 0 and if f(x) is not identically zero

in d(α, r), then there exists a unique integer q ∈ N
∗ such that an = 0 for
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every n < q and aq �= 0 and α is an isolated zero of f in d(α, r). Moreover,

there exists g ∈ H(D) such that f(x) = (x− α)qg(x).

As a consequence of Theorems 7.1.8 and 7.1.9, we can deduce Theorem

7.1.10.

Theorem 7.1.10. The characteristic of K is supposed equal to 0. Let f ∈
H(d(0, r−) and for every j = 0, . . . , n let aj =

f(j)(0)
j! . Then f is equal to the

power series
∑∞

n=0 anx
n, and ‖f‖d(0,r−) = supn∈N |an|. Moreover, for every

q ∈ N, f is of the form
∑q

j=0 ajx
j + xng, with g ∈ H(M) and ‖f‖d(0,r−) =

max(|a0|, |a1|, . . . |an−1|rn−1, ‖xng‖d(0,r−)).

We must also recall [28, Theorem 18.12].

Theorem 7.1.11. If K has characteristic 0, then an element f ∈ H(d(0, r))

has a derivative identically equal to 0 if and only if it is equal to a constant.

If K has a characteristic p �= 0, then an element f ∈ H(d(0, r)) has a

derivative identically equal to 0 if and only if there exists g ∈ H(d(0, r)) such

that f(x) = (g(x))p.

Definitions and notations: Let f ∈ H(D), let α ∈
◦
D, let r > 0 be such

that d(α, r) ⊂ D and let f(x) =
∑∞

n=q bn(x− α)n whenever x ∈ d(α, r), with

bq(α) �= 0, and q > 0. Then α is called a zero of multiplicity order q, or more

simply, a zero of order q. In the same way, q will be named the multiplicity

order of α.

An element f ∈ H(D) is said to be quasi-invertible if it factorizes in the

form Pg with P ∈ K[x] all zeros of which lie
◦
D, and g ∈ H(D) invertible in

H(D).

Theorem 7.1.12. Let D be closed and bounded and let f ∈ H(D) be quasi-

invertible. There exists h ∈ R(D) such that |f(x)| = |h(x)| ∀x ∈ D.

Proof. Since f is quasi-invertible, there exists a polynomial P whose zeros

lie in D, and an invertible element g in H(D) such that f = Pg. Let m =

infx∈D |g(x)|. Since g is invertible, we have m = 1
‖ 1
g
‖D , hence m > 0, and

then we can find l ∈ R(D) such that ‖g − l‖D < m. Consequently, we have

|g(x)| = |l(x)| ∀x ∈ D and we obtain h by putting h = Pl. Moreover, if

r ∈ |K|, then ϕ0,r(h) ∈ |K|. Conversely, if s �= t and if ϕ0,r(h) ∈ |K|, then
r ∈ |K|. �

The following Theorem 7.1.13 is [28, Theorem 15.1] and is stated in [34]

for quasi-connected sets.
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Theorem 7.1.13 (M. Krasner). Let D be bounded (resp., unbounded) and

infraconnected and let f ∈ Hb(D). There exists a unique sequence of holes

(Tn)n∈N∗ of D and a unique sequence (fn)n∈N in H(D) such that f0 ∈ H(D̃)

(resp., f0 ∈ K), fn ∈ H0(K \ Tn) (n > 0), limn→∞ ‖fn‖D = 0 and

(i) f =
∑∞

n=0 fn and ‖f‖D = supn∈N ‖fn‖D.
Moreover for every hole Tn = d(an, r

−
n ), we have

(ii) ‖fn‖D = ‖fn‖K\Tn = ϕan,rn(fn) ≤ ϕan,rn(f) ≤ ‖f‖D.

If D is bounded and if D̃ = d(a, r) we have

(iii) ‖f0‖D = ‖f0‖D̃ = ϕa,r(f0) ≤ ϕa,r(f) ≤ ‖f‖D.
If D is not bounded then |f0| = lim |x|→∞

x∈D
|f(x)| ≤ ‖f‖D.

Let D′ = D̃ \ (⋃∞
n=1 Tn). Then f belongs to H(D′) (resp., Hb(D

′)) and

its decomposition in H(D′) is given again by (i) and then f satisfies ‖f‖D′ =

‖f‖D.
Corollary 7.1.14. Let D be closed and infraconnected. Let (Ti)i∈I be the

family of holes of D. Let J be a subset of D and let L = I \ J. Let

E = D
⋃(⋃

i∈J Ti
)
and let F = D

⋃(⋃
i∈L Ti

)
. Then we have H(D) =

H0(E) ⊕ H(F ), and for each g ∈ H0(E), h ∈ H(F ), we have ‖g + h‖D =

max(‖g‖E , ‖h‖F ).
Theorem 7.1.15. Let D be closed and infraconnected. Then Σ0(D) is a

minimal boundary for (H(D), ‖ . ‖D).
Proof. By Theorem 7.1.13, it is a boundary for (H(D), ‖ . ‖D). Conversely,
let B be a boundary included in S0(D). Let D̃ = d(a, r). Considering (x−a)
we can see that ϕa,r must belong to B because if φ ∈ Σ0(D) \ {ϕa,r} we

have φ(x − a) < r = ‖x − a‖D. In the same way, let T = d(α, ρ−) and

let h = 1
x−α . Then we can see that for every φ ∈ S0(D) \ {ϕα,ρ} we have

φ(h) < 1
ρ = ‖h‖D. Consequently, S0(D) = B and therefore is a minimal

boundary for (H(D), ‖ . ‖D). �

Lemma 7.1.16. Let D be infraconnected and suppose that H(D) contains

a dense Luroth K-algebra K[h, x]. Then each hole of D contains at least one

pole of h.

Proof. Let B be the closure of K[h, x] in H(D) and let T1, . . . , Tq be the

holes ofD containing at least one hole ofD and letD′ = D̃ \⋃q
j=1 Tj. Clearly

K[h, x] is included in H(D′). But since each hole of D′ is a hole of D, and
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since D̃′ = D̃, by Corollary 7.1.15 H(D′) is a closed K-subalgebra of H(D).

Consequently D = D′. �

The Mittag–Leffler theorem suggests some new definitions.

Definitions and notations: Let f ∈ Hb(D). We consider the series∑∞
n=0 fn obtained in Theorem 7.1.13, whose sum is equal to f in H(D),

with f0 ∈ H(D̃), fn ∈ H(K \ Tn) \ {0} whereas the Tn are holes of D. Each

Tn will be called a f -hole and fn will be called the Mittag–Leffler term of f

associated to Tn, whereas f0 will be called the principal term of f .

For each f -hole T of D, the Mittag–Leffler term of f associated to T will

be denoted by fT whereas the principal term of f will be denoted by f0.

The series
∑∞

n=0 fn will be called the Mittag–Leffler series of f on the

infraconnected set D.

More generally, let E be an infraconnected set and f ∈ H(E). According

to [28, Theorem 11.5], f is of the form g + h with g ∈ R(K \ (E \ E)), and

h ∈ Hb(E), and such a decomposition is unique, with respect to an additive

constant. For every hole T of E, we will denote by fT the Mittag–Leffler

term of h associated to T , and fT will still be named the Mittag–Leffler

term of f associated to T .

Corollary 7.1.17. Let D be infraconnected. Let f ∈ Hb(D) let (Tn)n∈N∗ be

the sequence of the f -holes, with Tn = d(an, ρ
−
n ), let f0 = f0, and fn = fTn

for every n ∈ N
∗. Let D̃ = d(a, s), (resp., D̃ = K). There exists q ∈ N such

that ‖f‖D = ‖fq‖D. If q ≥ 1 then ‖f‖D = ϕaq ,rq(f) = ϕaq ,rq(fq). If q = 0

and if D is bounded (resp., is not bounded), then ‖f‖D = ϕa,s(f) = ϕa,s(f0)

(resp., ‖f‖D = |f0|). Further, given a hole T of D, if f belongs to Hb(D),

and if g belongs to H0(K \ T ) and satisfies f − g ∈ H(D ∪ T ), then fT is

equal to g.

Corollary 7.1.18. Let D be infraconnected. Let f ∈ Hb(D). There exists a

large circular filter F with center α ∈ D̃ secant with D such that ϕF (f) =
‖f‖D. If D is bounded, there exists a D-bordering filter F such that ϕF (f) =
‖f‖D.
Corollary 7.1.19. Let f ∈ H(d(0, 1−)) and let (d(αm, 1

−))m∈N∗ be the

family of the f-holes. Then f is of the form

(1)

∞∑
n=0

an,0x
n +

∑
m,n∈N∗

an,m
(x− αm)n
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with limn→∞ an = 0, limn→∞ |an,m| = 0 whenever m ∈ N
∗ and limm→∞(

supn∈N∗ |an,m|
)
= 0. Moreover f satisfies ‖f‖d(0,1−) = supm,n∈N∗ |an,m|.

Conversely, every function of the form (1), with the αm satisfying |αm| =
|αj−αm| = 1 whenever m �= j, belongs to H(d(0, 1−)). The norm ‖ . ‖d(0,1−)

is multiplicative and equal to ϕ0,1.

Theorem 7.1.20 is proven as [28, Corollary 15.6].

Theorem 7.1.20. Let r1, r2 ∈ R+ satisfy 0 < r1 < r2. Then

H(Λ(0, r1, r2)) is equal to the set of Laurent series
∑+∞

−∞ anx
n with

limn→−∞ |an|rn1 = limn→∞ |an|rn2 = 0 and we have ‖∑+∞
−∞ anx

n‖Λ(0,r1,r2) =
max

(
supn≥0 |an|rn1 , supn<0 |an|rn2

)
.

Notations: Let D be a closed bounded infraconnected containing the

circle C(0, r) and let f ∈ H(D) and let f(x) =
∑+∞

−∞ anx
n. Generalizing

notations introduced with rational functions, we denote by ν+(f, log(r) the

biggest of the integers l such that |al|rl = supn∈Z |an|rn and by ν−(f, log(r)
the smallest of the integers l such that |al|rl = supn∈Z |an|rn.

Let D be closed bounded infraconnected. For every a ∈ D we will denote

by I(a) the ideal of the f ∈ H(D) such that f(a) = 0.

Theorem 7.1.21. Let D be closed bounded infraconnected. The mapping φ

from D into the set of ideals of H(D) defined by φ(a) = I(a) is a bijection

from D onto Max1(H(D)).

Finally, we can notice that analytic elements define uniformly continuous

functions, in a closed bounded set.

Theorem 7.1.22. Let D be closed and bounded and let f ∈ H(D). Then f

is uniformly continuous on D.

Proof. Let h ∈ R(D). Since h has finitely many poles, we can find r0 > 0

such that for all a ∈ D, d(a, r0) contains no poles of h. LetM = ‖h‖D. Thus,
by Corollary 7.1.19, for all a ∈ D, we have

sup
k≥1

∣∣∣h(k)(a)
k!

∣∣∣rk0 ≤ sup
k≥0

∣∣∣h(k)(a)
k!

∣∣∣rk0 ≤ ‖h‖d(a,r0) ≤M.

Consequently, for every r ∈]0, r0], we have

sup
k≥1

∣∣∣h(k)(a)
k!

∣∣∣rk ≤ sup
k≥1

(∣∣∣h(k)(a)
k!

∣∣∣rk0
( r
r0

)k) ≤M
r

r0
.
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Thus, we can see that h(d(a, r)) ⊂ d(h(a),M r
r0
), which proves that h is

uniformly continuous on D. Then, so is every element of H(D), as uniform

limits of uniformly continuous functions on D. �

7.2. Properties of the function Ψ for analytic elements

Throughout this chapter D is infraconnected.

The function Ψ(f, μ) was defined for rational functions in Section 6.3

of Chapter 6. Here we will generalize that function to analytic elements.

Its interest is to transform the multiplicative property of the norm | . |
into an additive property. Overall, Ψ is piecewise affine. Long ago, such a

function was first defined in classical works such as the valuation function

of an analytic element [1, 23] denoted by v(f, μ). However, the function

v(f, μ) has the inconvenient of being contravariant: μ = − log(|x|) and

v(f,− log(|x|)) = − log(|f |(r)). Here we will change both senses of variation:

Ψ(f, μ) = −v(f,−μ).
Among applications, we can show that a set E is infraconnected if and

only if for all f ∈ H(E), f(E) is infraconnected and that an analytic element

converges along a monotonous filter F if and only if f ′ is vanishing along F .

Notations: For every a ∈ D̃, we put z(a) = log(δ(a,D)) if δ(a,D) > 0

and z(a) = −∞ if δ(a,D) = 0. We denote by S the diameter of D, with

S = +∞ if D is not bounded.

Let a ∈ D̃ and let F be a circular filter of center a and diameter r ∈
[δ(a,D), S] ∩ R. Then F is secant with D and then defines an element DϕF
of Mult(H(D),UD).

Consider a disk d(a, r−). We denote by A(d(a, r,− )) the algebra of

power series
∑∞

n=0 an(x− a)n converging in d(a, r−)). Consider an annu-

lus Γ(a, r, t). We denote by A(Γ(a, r, t)) the algebra of Laurent series∑∞
−∞ an(x− a)n converging in Γ(a, r, t). Consider a set K \ d(a, r). We

denote by A(K \ d(a, r) the algebra of series
∑0

−∞ an(x− a)n converging

in K \ d(a, r).
For every f ∈ H(D) such that DϕF (f) �= 0 we put Ψa(f, log r) =

log
(
DϕF (f)

)
. Next, for an f ∈ H(D) such that DϕF (f) = 0 we put

Ψa(f, log r) = −∞.

When a = 0 for simplicity we just put Ψ(f, μ) = Ψ0(f, μ).

In the same way, consider an annulus Γ(0, r, t) and f ∈ A(Γ(0, r, t)). Then

for any s ∈]r, t[, f belongs toH(C(0, s), so we can put consider Ψ(f, log(s)) =

log(|f |(s)). If we consider f ∈ A(a, r−), so much the more, we can consider

Ψa(f, �) for each � < log(r).
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Remarks. Let f(x) =
∑+∞

−∞ anx
n ∈ H(C(0, r)) for some r > 0. Then

we have Ψ(f, log r) = log
(
C(0,r)ϕ0,r(f)

)
= log ‖f‖C(0,r) = supn∈ZΨ(an) +

n log r.

Throughout the chapter, D is a subset of K. Here we shall go back to

the basic properties of analytic elements which are transmitted by rational

functions.

Proposition 7.2.1 is classical and given in [28, Proposition 20.3].

Proposition 7.2.1. Let a ∈ D̃, let r ∈ [δ(a,D),diam(D)], and let f ∈
H(D). If ϕa,r(f) �= 0 the equality |f(x)| = ϕa,r(f) holds in all classes of

C(a, r) except maybe in finitely many ones.

Proposition 7.2.2. Let a ∈ D̃, let μ ∈ [ζ(a), log(S)] ∩ R and let f, g ∈
H(D). Then Ψa(f + g, μ) ≤ max(Ψa(f, μ),Ψa(g, μ)) and when Ψa(f, μ) >

Ψa(g, μ), then Ψa(f + g, μ) = Ψa(f, μ). Moreover, Ψa(fg, μ) = Ψa(f, μ) +

Ψa(g, μ).

Let r, t ∈]0, +∞[ be such that r ≤ t. Let f ∈ H(D) be such that

Ψa(f, μ) is bounded in [log(r), log(t)]. Then Ψa(f, μ) is continuous and

piecewise affine in [log(r), log(t)]. Further, there exists h ∈ R(D) such that

Ψa(f, μ) = Ψa(h, μ) ∀μ ∈ [log(r), log(t)].

Inside D ∩ Γ(a, r, t), the relation Ψ(f(x)) = Ψa(f,Ψ(x− a)) holds in all

classes of all circles C(a, s), except maybe in finitely many classes of finitely

many circles C(a, s).

Moreover, if Γ(a, r, t) ⊂ D, the function Ψa(f, μ) is convex in [log r, log t].

Proof. Without loss of generality, we can assume a = 0. The first

statements concerning operations and inequalities come directly from those

of multiplicative semi-norms Dϕ. Now, suppose that Ψ(f, μ) is bounded in

[log(r), log(t)], hence there exists ε > 0 such that Ψ(f, μ) > log ε ∀μ ∈
[log r, log t].

Let h ∈ R(D) satisfy ‖f − h‖D < ε. Particularly, for every circular filter

F secant with D, we have DϕF (f − h) < ε and particularly Dϕa,ρ(f − h) <

ε ∀ρ ∈ [r, t] i.e., Ψ(f − h, μ) < log(ε) < Ψ(f, μ) ∀μ ∈ [log r, log t].

Consequently, Ψ(f, μ) = Ψ(h, μ) ∀μ ∈ [log r, log t]. Now, the function

Ψ(h, μ) is continuous, piecewise in [log r, log t] and so is Ψ(f, μ). Moreover,

if Γ(a, r, t) ⊂ D, the function Ψ(h, μ) is convex in [log r, log t], hence so is

Ψ(f, μ).

By Lemma 7.2.1, the relation Ψ(h(x)) = Ψa(h,Ψ(x − a)) holds in all

classes of all circles C(a, s), except maybe in finitely many classes of finitely

many circles C(a, s). Therefore, the same relation holds for f . �
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Proposition 7.2.3. Let a ∈ D and let f ∈ H(D) satisfy f(a) �= 0. There

exists μ◦ ∈ R such that Ψa(f, μ) = Ψ(f(a)) whenever μ ≤ μ◦. Let r ∈ R
∗
+,

let G = C(0, r) and let f and g ∈ H(G) satisfy ‖f − g‖G < ‖f‖G. Then we

have ν+(f, log r) = ν+(g, log r), ν−(f, log r) = ν−(g, log r).

Proof. Indeed let us take r > 0 such that |f(x)− f(a)| < |f(a)| whenever
x ∈ d(a, r)∩D hence |f(x)| = |f(a)| whenever x ∈ d(a, r)∩D and therefore

Ψa(f, μ) = Ψ(f(a)) whenever μ ≤ log(r).

Let f(x) =
∑+∞

−∞ anx
n and let g(x) =

∑+∞
−∞ bnx

n. From the hypothesis

we see that ‖f‖G = ‖g‖G. By [28, Corollary 14.9], we have

(1) supn∈Z |an|rn = ‖f‖G = supn∈Z |bn|rn
and ‖f − g‖G = supn∈Z |an − bn|rn.
Let s = ν−(f, log r) and let t = ν+(f, log r). We see that |as − bs|rs ≤

‖f − g‖G < ‖f‖G = |as|rs hence
(2) |bs| = |as|.
In the same way we have

(3) |at| = |bt|.
Now for every n < s and for every n > t we have |an|rn < |as|rs = ‖f‖G
hence |bn|rn < ‖f‖7. Finally by (1), (2), (3) we see that ν−(g, log r) =

s, ν+(g, log r) = t. �

We can now derive Corollary 7.2.4

Corollary 7.2.4. Let f(x) ∈ H(Γ(0, r1, r2)) (resp., f(x) ∈ H(Λ(0, r1, r2)))

(with 0 < r1 < r2) and let
∑+∞

−∞ anx
n be its Laurent series. The function

μ → Ψ(f, μ) is bounded in ] log r1, log r2[ (resp., in [log(r1), log(r2)]) and

equal to supn∈Z(Ψ(an)+nμ). Next, we have Ψ(f(x)) ≤ Ψ(f,Ψ(x)) whenever

x ∈ Γ(0, r1, r2) (resp., whenever x ∈ Λ(0, r1, r2)) and the equality holds in

all of Γ(0, r1, r2) (resp., un all of Λ(0, r1, r2)) except in finitely many classes

of finitely many circles C(0, r) (r1 < r < r2) (resp., r1 ≤ r ≤ r2). The right

side derivative (resp., the left side derivative) of the function Ψ(f, .) at μ is

equal to ν+(f, μ) (resp., to ν−(f, μ)). Moreover, if the function in μΨ(f, μ)

is not derivable at μ, then μ lies in Ψ(K).

Further, the function Ψ(f, .) is convex in ] log r1, log r2[ (resp., in

[log r1, log r2]). Next, given another g ∈ H(Γ(0, r1, r2)), (resp., g ∈
H(Λ(0, r1, r2))) the functions ν+ and ν− satisfy ν+(fg, μ) = ν+(f, μ) +

ν+(g, μ), ν−(fg, μ) = ν−(f, μ) + ν−(g, μ). Further, the function ν+(f, .) is
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continuous on the right and the function ν−(f, .) is continuous on the left at

each point μ. They are continuous at μ if and only if they are equal.

Proposition 7.2.5. Let a ∈ D̃ and let f ∈ H(D). If f(a) �= 0, there exists

s > 0 such that Ψ(f, μ) = Ψ(f(a)) ∀μ ≤ s. Let b ∈ D be such that |a− b| = r

and d(b, r−) ⊂ D, Then we have Ψb(f, μ) = Ψa(f, μ) ∀μ ≤ Ψ(b− a).

Proof. Since f(a) �= 0, the first statement is immediate since |f(x)| is a

constant inside a disk of center a. Next, the relation Ψa(f, μ) = Ψb(f, μ)

when Ψ(a − b) ≤ μ is true for every f ∈ R(D), hence by (2), is obviously

generalized to every f ∈ H(D). �

Proposition 7.2.6. Let μ ∈ R and let f(x) =
∑+∞

−∞ anx
n ∈ H(C(0, θμ)).

Then Ψ(f, μ) is equal to supn∈ZΨ(an) + nμ and we have Ψ(f(x)) ≤ Ψ(f, μ)

for all x ∈ C(0, θμ). Moreover, the equality holds in every class except in

finitely many classes where f admits zeros. Further, if ν+(f, μ) = ν−(f, μ),
then Ψ(f(x)) = Ψ(f, μ) whenever x ∈ C(0, θμ).

If h ∈ H(C(0, θμ)) satisfies Ψ(f − h, μ) < Ψ(f, μ), then ν+(f, μ) =

ν+(h, μ) and ν−(f, μ) = ν−(h, μ).

Proof. Let G = C(0, θμ), let s = ν−(f, μ) and let t = ν+(f, μ).

By the Remark above Ψ(f, μ) is obviously equal to supn∈Z(Ψ(an) + nμ).

Let x ∈ C(0, θμ). The inequality Ψ(f(x)) ≤ Ψ(f, μ) is true because

Ψ(f, μ) = log ‖f‖G ≥ Ψ(f(x)). Finally by Proposition 7.2.2, the equality

holds in all the classes except in finitely many. If ν+(f, μ) = ν−(f, μ) then

Ψ(asx
s) = Ψ(as) + sμ > Ψ(anx

n) whenever n �= s hence Ψ(f(x)) = Ψ(f, μ).

Now, let h ∈ H(G) satisfy Ψ(f − h, μ) < Ψ(f, μ) and let h(x) =∑+∞
−∞ bnx

n. We have Ψ(an − bn) + nμ < Ψ(as) + sμ whenever n ∈ Z hence

Ψ(bs) = Ψ(as), Ψ(bt) = Ψ(at), Ψ(bn) + nμ < Ψ(as) + sμ whenever n < s

and n > t and Ψ(bn) + nμ ≤ Ψ(as) + sμ whenever n ∈ [s, t], hence finally

ν+(h, μ) = ν+(f, μ) and ν−(h, μ) = ν−(f, μ). �

Corollary 7.2.7. Let f(x) =
∑+∞

−∞ anx
n ∈ A(Γ(0, r1, r2)) (with 0 <

r1 < r2). The function μ → Ψ(f, μ) defined in ] log r1, log r2[ is equal

to supn∈Z(Ψ(an) + nμ). Next, we have Ψ(f(x)) ≤ Ψ(f,Ψ(x)) whenever

x ∈ Γ(0, r1, r2) and the equality holds in all of Γ(0, r1, r2) except in finitely

many classes of each circle C(0, r) (r1 < r < r2). The right side derivative

(resp., the left side derivative) of the function Ψ(f, .) at μ is equal to ν+(f, μ)

(resp., to ν−(f, μ)). Moreover, if the function in μ Ψ(f, μ) is not derivable

at μ, then μ lies in Ψ(K).
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Further, the function Ψ(f, .) is convex in ] log r1, log r2[. Next, given

another g ∈ A(Γ(0, r1, r2)) the functions ν+ and ν− satisfy

ν+(fg, μ) = ν+(f, μ) + ν+(g, μ), ν−(fg, μ) = ν−(f, μ) + ν−(g, μ).

Moreover, the function ν+(f, .) is continuous on the right and the function

ν−(f, .) is continuous on the left at each point μ. They are continuous at μ

if and only if they are equal.

Proof. All statements hold in all annuli Γ(0, r′, r′′) with r1 < r′ < r′′ < r2
because the restriction of f to Γ(0, r′, r′′) belongs to H(Γ(0, r′, r′′)). �

Proposition 7.2.8. Let μ ∈ R and let f, g ∈ H(C(0, θμ)). Then ν+(fg, μ) =

ν+(f, μ) + ν+(g, μ) and ν−(fg, μ) = ν−(f, μ) + ν−(g, μ).

Proof. By Proposition 7.2.3, the relations are obvious when f and g ∈
R(C(0, θμ)) because there is an annulus Γ(0, r1, r2) ⊃ C(0, θμ) such that

f, g ∈ R(Γ(0, r1, r2)). Now we may obviously extend them to H(C(0, θμ)) by

taking h and � ∈ R(C(0, θμ)) such that Ψ(f − h, μ) < Ψ(f, μ) and Ψ(g −
�, μ) < Ψ(g, μ). �

Proposition 7.2.9. Let r1, r2 ∈ R and let f, g ∈ A(Γ(0, r1, r2)) having no

zero in Γ(0, r1, r2) and satisfying ν(f, μ) �= ν(g, μ), ∀μ ∈] log r1, log r2[. Then
both ν+(f + g, μ) and ν−(f + g, μ) are equal either to ν(f, μ) or to ν(g, μ).

Proof. Let μj = log(rj), j = 1, 2. Since both f, g have no zero in

Γ(0, r1, r2), ν(f, μ) is a constant integer s and ν(g, μ) is a constant integer

t �= s. Consequently, Ψ(f, μ) is of the form a+sμ, Ψ(g, μ) is of the form b+tμ,

therefore the two functions in μ can coincide at most at one point in [μ1, μ2].

So, by Proposition 7.2.2, we have Ψ(f + g, μ) = max(Ψ(f, μ),Ψ(g, μ)) for all

μ ∈ [log(r1), log(r2)] except maybe at all point. But then, by continuity, the

equality holds in all [log(r1), log(r2)].

Let us fix μ0 ∈]μ1, μ2[. Suppose Ψ(f + g, μ) = Ψ(f, μ) in a neighborhood

]μ1, μ2[ of μ0. Then of course, ν(f+g, μ0) = ν(f, μ0). Suppose now that Ψ(f+

g, μ) = Ψ(f, μ) in a left neighborhood ]μ1, μ0] of μ0 and Ψ(f+g, μ) = Ψ(g, μ)

in a right neighborhood [μ0, μ2[ of μ0, which implies Ψ(f, μ) > Ψ(g, μ) ∀μ ∈
]μ1, μ0[ and Ψ(f, μ) < Ψ(g, μ) ∀μ ∈]μ0, μ2[. Then we have ν(f + g, μ) =

ν(f, μ)∀μ ∈]μ1, μ0[ and ν(f + g, μ) = ν(g, μ)∀μ ∈]μ0, μ2[. Consequently,

since ν+ is continuous on the left and ν− is continuous on the right, we can

check that both ν+(f + g, μ0) and ν
−(f + g, μ0) are equal either to ν(fμ0)

or to ν(g, μ0). �
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Theorem 7.2.10. Let f ∈ A(K \ d(0, R)). There exists q ∈ N such that

lim
r→+∞ |f |(r)rq = +∞.

Proof. Let s ∈]R,+∞[ be such that ν+(f, log s) = ν−(f, log s) and let τ =

ν+(f, log s). Thus, Ψ(f, μ) has a derivative at log s equal to τ . Consequently,

since by Proposition 7.2.2, Ψ(f, μ) is convex, we have Ψ(f, μ)−Ψ(f, log s) ≥
τ(μ − log s). Therefore,

lim
μ→+∞[Ψ(f, μ) + (1− τ)μ] = +∞,

i.e., limr→+∞ |f |(r)r(1−τ) = +∞. Finally we can take q = max(0, 1 − τ). �

Definitions: Let f ∈ H(D). Then f is said to be quasi-minorated if for

every sequence (an)n∈N of D such that f(an) �= 0 ∀n ∈ N, limn→∞ f(an) = 0

either we may extract a subsequence that converges in K or we may extract

a subsequence (anq)q∈N such that limq→∞ |anq | = +∞.

Let F be an increasing filter of center a and diameter r. Then f is

said to be strictly vanishing along F if Ψa(f, μ) > −∞ ∀μ < log(r) and

Ψa(f, log(r)) = ∞.

Now, let F be a decreasing filter of center a and diameter r. A symmetric

definition applies: f is said to be strictly vanishing along F if Ψa(f, μ) >

−∞ ∀μ > log(r) and Ψa(f, log(r)) = ∞.

Finally, F be a decreasing filter of diameter r, with no center inK. We can

just take a center a in a spherical completion of K and then get to the same

definition. However, another method consists of taking a decreasing distances

sequence (an)n∈N thinner than F . Consider the sequence (rn)n∈N defined as

rn = |an − an+1|. Then the we have Ψan(f, μ) = Ψan+1(f, μ) ∀μ > log(rn)

and hence we can define ΨF (f, μ) = Ψan(f, μ) ∀μ > log(rn). �

Proposition 7.2.11. Let D be bounded and let f ∈ H(D) be not identically

zero. Then f is not quasi-minorated if and only if there exists a monotonous

filter F such that f is strictly vanishing along F .

Proof. On one hand, if f is strictly vanishing along a monotonous filter F ,

then obviously, f is not quasi-minorated. On the other hand, suppose that

f is not quasi-minorated and let (an)n∈N be a sequence such that f(an) �=
0 ∀n ∈ N, limn→∞ f(an) = 0 and such that one can’t extract any converging

subsequence from that sequence. Then, one can extract from that sequence

a monotonous distances subsequence which, by definition, is thinner than a

monotonous filter F which defines ϕF and hence we have ϕF (f) = 0. Thus, f

is vanishing along F . Now, suppose that f is not strictly vanishing along F .
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Suppose for instance that F is increasing. For convenience suppose a1 = 0.

Let s = diam(F). There exists r ∈]0, s] such that Ψ(f, μ) > −∞ ∀μ < log(r)

and Ψ(f, log(r) = −∞), hence f is strictly vanishing along the increasing

filter of center 0 and diameter r.

Suppose now that F is decreasing. A symmetric proof holds when F is

decreasing and with a center. If F has no center, we can take a center in

a spherically complete extension and make the same proof. We can also

consider the second definition of an element strictly decreasing along a

decreasing filter with no center and use the definition of ΨF . �

7.3. Holomorphic properties on infraconnected sets

Throughout the chapter,D is a subset of K. Here we shall go back to the basic

properties of analytic elements which are transmitted by rational functions.

Theorems 7.2.1 and 7.2.3 are proven in [28, Chapter 22].

Theorem 7.3.1. Let f ∈ H(C(0, r)) (resp., f ∈ H(d(0, r))). The number of

zeros of f in C(0, r) (resp., in d(0, r)) is equal to ν+(f, log r)− ν−(f, log r),
(resp., ν+(f, log r)), taking multiplicities into account.

Corollary 7.3.2. Let f ∈ H(C(0, r)) have t zeros in C(0, r).

Let q = ν+(f, log r)− ν−(f, log r). Then r = t

√∣∣∣ aq
aq+t

∣∣∣.
Theorem 7.3.3. Let f =

∑+∞
−∞ anx

n ∈ H(C(0, r)) have no zero in C(0, r).

Let t = ν+(f, log r). Then we have ν+(f, log r) = ν−(f, log r) and Ψ(f(x)) =

Ψ(f, log r) = Ψ(at) + t log r whenever x ∈ C(0, r).

Corollary 7.3.4. Let f ∈ H(Γ(0, r, s)) have no zero in Γ(0, r, s) and be

equal to a Laurent series
∑+∞

−∞ anx
n ∀x ∈ Γ(0, r, s). Assume that there

exists an integer m ∈ Z
∗ such that |am|ρm > |an|ρn ∀n �= m, ∀ρ ∈]r, s[.

If m > 0, we have f(Γ(0, r, s)) = Γ(0, |am|rm, |am|sm), and if m < 0, we

have f(Γ(0, r, s)) = Γ(0, |am|sm, |am|rm).
Theorem 7.3.5. Let f(x) =

∑∞
n=0 anx

n ∈ H(d(0, r)). The number of zeros

of f in d(0, r) is ν+(f, log(r)) (taking multiplicity into account).

Theorem 7.3.6 will be useful when considering restricted power series.

Theorem 7.3.6. Let f(x) =
∑∞

n=0 anx
n ∈ H(U). Then f is invertible in

H(U) if and only if |a0| > supn>0 |an|. And f is irreducible in H(U) if and

only if |a0| ≤ |a1|, |a1| > supn>1 |an|.
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Proof. If |a0| > supn>0 |an|, by Theorem 7.3.6, f is obviously invertible in

H(U). Else, by Lemma 7.3.1, f admits at least one zero, and therefore is not

invertible. Precisely, let q be the unique integer such that |aq| = supn∈N |an|.
If q = 1, then by Theorem 7.2.2, f has exactly one zero α, and since it

is quasi-invertible, it is of the form (x − α)g, with g invertible, hence f

is irreducible. If q > 1, since f admits q zeros, f factorizes in the form∏q
j=1(x−aj)g(x), whereas g ∈ H(U) has no zeros, and therefore is invertible

and hence f is not irreducible. �

Proposition 7.3.7. Let D, D′ be closed bounded subsets of K, and let f ∈
H(D) be such that f(D) ⊂ D′. Let g ∈ H(D′). Then g ◦ f belongs to H(D).

Homomorphisms between K-algebras H(D) are characterized in [28,

Proposition 11.6 and Theorem 11.7]. Here, for convenience, we will restrict

the statement to the case of closed bounded sets.

Proposition 7.3.8. Let D, D′, D′′ be closed bounded subsets of K and let

γ ∈ H(D′) satisfy γ(D′) ⊂ D. Let φγ be the mapping from H(D) into H(D′)
defined as φγ(f) = f ◦γ. Then φγ is a K-algebra homomorphism from H(D)

into H(D′) continuous with respect to the topology of uniform convergence

on D for H(D) and on D′ for H(D′). If γ ∈ H(D′) and h ∈ H(D′′) satisfy
γ(D′) = D and h(D′′) = D′, then φh ◦ φγ = φγ◦h.

If γ is a bijection from D′ onto D and if
−1
γ ∈ H(D) then φγ is a K-

algebra isomorphism from H(D) onto H(D′) bicontinuous with respect to

the topology of uniform convergence on D for H(D) and on D′ for H(D′),
satisfying

(
φγ
)−1

= φγ−1 .

By Propositions 7.3.8, we can easily deduce Corollary 7.3.9.

Corollary 7.3.9. Let φγ be an isomorphism from H(D) onto H(D′), with

γ ∈ H(D′). Then γ is a bijection from D′ onto D such that
−1
γ ∈ H(D).

Definition: Let D be open. An element f of H(D) is said to be strictly

injective if it is injective and such that f ′ has no zero in D.

According to [28, Theorems 27.1 and 27.2], we have these statements.

Theorem 7.3.10. Let K have characteristic zero. Let f ∈ H(D) be injective

in D. Then f is strictly injective.

Theorem 7.3.11. Let a ∈ K, r ∈ R+, let f(x) =
∑∞

n=0 an(x − a)n ∈
H(d(a, r)), and let s = supn≥1 |an|rn be > 0. Then the following statements

are equivalent:
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(α) |a1| > |an|rn−1 whenever n > 1,

(β) |f(x)− f(y)| = |x− y||a1| whenever x, y ∈ d(a, r),

(γ) f is strictly injective in d(a, r).

Moreover when conditions (α), (β), (γ) are satisfied, then we have s = |a1|r
and |f ′(x)| = |a1| whenever x ∈ d(a, r).

Theorem 7.3.12 is proven in [28, Theorem 26.1 and Corollary 26.2].

Theorem 7.3.12. Let f(x) =
∑∞

n=0 an(x − a)n ∈ H(d(a, r)) and let

s = supn≥1 |an|rn. Then f(d(a, r)) = d(a0, s), f(d(a, r
−)) = d(a0, s

−), and
Ψa(f − a0, log r) = log s.

Theorem 7.3.13 is proven in [28, Chapter 27, Corollary 27.6].

Theorem 7.3.13. Let f ∈ H(d(a, r)) be strictly injective and let d(b, s) =

f(d(a, r)). Then f−1 belongs to H(d(b, s)).

Theorem 7.3.14 is proven in [28, Chapter 11 (Proposition 11.15)].

Theorem 7.3.14. Let D have an empty annulus A. Let w1, w2 be the

functions defined on D by w1(x) = 1, w2(x) = 0 if x ∈ I(A) and w1(x) =

0, w2(x) = 1 if x ∈ E(A). Then w1 and w2 belong to H(D).

As an immediate consequence, we have Corollaries 7.3.15 and 7.3.16.

Corollary 7.3.15. If D has infinitely many infraconnected components then

H(D) is not Noetherian.

Corollary 7.3.16. If D has finitely many infraconnected components

D1, . . . ,Dq. Then H(D) = H(D1)× · · · ×H(Dq).

Theorem 7.3.17. Let D be a closed bounded infraconnected subset of K and

let f ∈ H(D). Then f(D) is infraconnected.

Proof. Let R = diam(D) (with eventually D = +∞). Let E = f(D) and

suppose that E is not infraconnected. Then E admits an empty annulus

Γ(a, r′, r′′). Without loss of generality, we can suppose a = 0. Let A =

I(Γ(a, r′, r′′)) and B = E(Γ(a, r′, r′′)). By Theorem 7.3.14, the characteristic

function u of A and the characteristic function u of B belong to H(E). In D,

we have u ◦ f(x) = 1 whenever x ∈ D such that f(x) ∈ A and u ◦ f(x) = 0

whenever x ∈ D such that f(x) ∈ B. Let g = u ◦ f . Then g∗ is continuous in

Mult((H(D), ‖ . ‖) and hence g∗(ϕ) only takes values 1 and 0. Suppose first

that there exists s > 0 such that g∗(0,sϕ) = 0 and let t = inf{s 0,sϕ(g) = 0}.
Since by Theorem 6.3.9, g∗ is continuous on Mult(H(D), ‖ . ‖), g∗(0,tϕ)
should be equal to both 0 and 1, a contradiction.
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Suppose now that g∗(0,sϕ) = 1 ∀s ≤ R. Let b ∈ D be such that f(b) ∈ B

and let q = |b|. Then we have b,qϕ(g) =0,q ϕ(g) = 1, but b,sϕ(g) is obviously

null when s is small enough. So we can put t = inf{s b,sϕ(g) = 1} and by

continuity we have b,tϕ(g) = 0}, a contradiction again. Consequently, the

hypothesis “E not infraconnected” is wrong and this proves the claim. �

Theorem 7.3.18. Let D be closed and bounded. If an ideal contains a quasi-

invertible element, then it is generated by a polynomial whose zeros belong

to
◦
D.

Proof. Let J be an ideal of H(D) that contains a quasi-invertible element

f , and let J0 be the set of polynomials that belong to J . Then J0 is an ideal

of K[x] and hence is a principal ideal, generated by a polynomial T whose

zeros belong to D. By hypothesis f factorizes in H(D) in the form Pg with g

invertible in H(D) and P (x) ∈ K[x], all the zeros of P lying inside
◦
D. Since

fg−1 belongs to J , obviously P belongs to J0. Hence T divides P and then

all the zeros of T lie in D ∩
◦
D. We will show that J = TH(D).

It is clearly seen that J0 is an ideal of K[x], hence there exists T (x) ∈ K[x]

such that J0 = T (x)K[x].

Let α1, . . . , αq be the zeros of T . Now we suppose that there exists some

h ∈ J \ TH(D). Then we can find r > 0 such that d(αi, r) ⊂ D, whenever

i = 1, . . . , q. Let G =
⋃q
i=1 d(αi, r) and let D′ = D ∪ G. Since the zeros of

T lie in G there exists λ > 0 such that |T (x)| ≥ λ whenever x ∈ D \ G.
Now since D is closed and bounded, there exists b ∈ K such that ‖b�‖D < λ.

We put φ = T + b�. Clearly outside G, we have |φ(x)| ≥ λ. Next in each

disk d(αi, r), φ has finitely many zeros, hence in D′, φ has finitely many

zeros, all of them in G. Hence it factorizes in the form Q(x)W (x) with

W ∈ H(D′),W (x) �= 0 whenever x ∈ D′ and Q a polynomial whose zeros

belong to G. Since W has no zero in G, |W (x)| has a strictly positive lower

bound in G and another non-zero lower bound in D′ \ G because |Q(x)|
is obviously bounded in D′. Finally W has a non-zero lower bound in D′,
therefore it is invertible in H(D′). Hence Q belongs to J . But then T divides

Q in K[x]. Since T + b� is equal to WQ, then T divides T + b�, and �, and

h too. This contradicts the hypothesis h ∈ J \ TH(D), and finishes proving

that T generates J . �

Proposition 7.3.19. Let F be a pierced filter on D, let (Tn)n∈N be a

sequence of holes of D that runs F and let D∗ = K \ (
⋃∞
n=0 Tn). Let

g1, . . . , gq ∈ Hb(D
∗) be vanishing along F , with g1 properly vanishing.
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For every x ∈ D∗ let S(x) = sup1≤i≤q |gi(x)| and let F be the ideal generated

by g1, . . . , gq in Hb(D
∗), and let F be its closure in Hb(D).

There exists a sequence (zn)n∈N in D, thinner than F such that g1(zn) �=
0 and an element T ∈ F such that limn→∞

|T (zn)|
S(zn)

= +∞.

Proof. Without loss of generality we may assume F to be a decreasing

filter or a Cauchy filter. Indeed if F is an increasing filter of center α of

diameter R, let T (b, ρ) be a hole of D included in d(α,R−), let γ(x) = 1
x−b ,

and let D′ = γ(D). Then D′ admits a decreasing pierced filter F ′, image

of F , by γ. Hence we will assume F to be a decreasing pierced filter or a

Cauchy pierced filter.

Without loss of generality we may clearly assume D = D∗. Since the gj
are bounded, we may obviously assume ‖gj‖D ≤ 1 whenever j = 1, . . . , q. Let

R = diam(F) and let (xm)m∈N be a sequence in D thinner than F such that

g1(am) �= 0 whenever m ∈ N, with |xm+2 − xm+1| < |xm+1 − xm|. Since F is

pierced, there exists a subsequence (xmq )q∈N of the sequence (xm) together

with a sequence of holes (Tq)q∈N of D such that

Tq ⊂ d(xmq+1 , dmq ) \ d(xmq+2 , dmq+1).

Hence without loss of generality we may assume that we have a sequence

of holes (Tm)m∈N of D such that Tm ⊂ d(xm+1, dm) \ d(xm+2, dm+1).

We put Dm = d(xm+1, dm) ∩ D and An = D2n+1 \ D2n+3. For each n,

let un ∈ An be such that |g1(un)| ≥ ‖g1‖An

(
n
n+1

)
. For each j = 1, . . . , t,

let M j
n = ‖gj‖An and let Mn = max1≤j≤tM

j
n. Since g1(xm) �= 0 we have

Mn > 0 whenever n ∈ N, and since ‖gj‖D ≤ 1 for all j, we have Mn ≤ 1

whenever n ∈ N.

We will construct a sequence (Un) in Hb(D) satisfying

(1) |Un(x)| ≤ 1
n+1 whenever x ∈ D \ An.

(2)
√
Mn

(
n+1
n

)
> ‖g1Un‖An >

√
Mn.

For every n ∈ N, let Tn = d(βn, ρ
−
n ), un = x2n+2, an = βn+1, bn =

βn+2, cn = β2n+3 and let εn ∈ d(0, 1n). Let us fix n ∈ N. It is seen that

|un − an| > |un − bn|, hence there exists qn ∈ N such that

(3) |εn|
∣∣∣un−anun−bn

∣∣∣qn g(un) > √
Mn

and of course there exists q′n such that

(4)
(
d2n+1

d2n+2

)qn (d2n+3

d2n+2

)q′n
< 1
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We put hn(x) = εn

(
x−an
x−bn

)qn (x−cn
x−bn

)q′n
.

Then by (4) we see that:

when |x− cn| > d2n+1 we have |hn(x)| = |εn| < 1
n

when |x−cn| ≤ d2n+3 we have |x−an| = |an−cn| = d2n+1 and |x−bn| =
|bn − cn| = d2n+2 hence |hn(x)| ≤ |εn|

(
d2n+1

d2n+2

)qn(d2n+3

d2n+2

)q′n
< 1

n .

But now we notice that x belongs to D \ An if and only if x satisfies:

either |x − cn| > d2n+1 or |x − cn| ≤ d2n+3, hence we have proven that

|hn(x)| < 1
n whenever x ∈ D \ An. This shows hn satisfies (1).

When x ∈ An, i.e., when d2n+3 < |x − cn| < d2n+1, we see that

‖g1hn‖An ≥ |g1(un)hn(un)| hence by (3) we have ‖g1hn‖An ≥ √
Mn. Hence

there trivially exists λn ∈ d(0, 1) such that
(
n+1
n

)√
Mn > |λng1hn|An >√

Mn.

Now we put Un = λnhn, and we see that Un satisfies (1) and

(2). In particular we have ‖g1Un‖D ≤ max
(√

Mn

(
n+1
n

)
, ‖g1‖Dn+1

)
hence

limn→∞ ‖g1Un‖D = 0. Let T =
∑∞

n=0 g1Un. By definition T belongs to F

because for every t ∈ N, g
∑t

n=0 Un belongs to F .

By (2) there exists a sequence (zn))n∈N in D satisfying zn ∈ An and

(5)
√
Mn < |g1(zn)U(zn)| < Mn

(
n+1
n

)

hence we have

(6) |Un(zn)| >
√
Mn

|g1(zn)| ≥ 1√
Mn

because |g1(zn)| ≤Mn.

Besides when j �= n, zn belongs to D \ Aj hence by (1) and (6) we

have |Uj(zn)| < 1
j+1 <

1√
Mn

< |Un(zn)| whenever j �= n. Hence we see that

|T (zn)| = |g1(zn)Un(zn)| whenever n ∈ N. But then, by (5) we see that

|T (zn)|
S(zn)

= |T (zn)|
Mn

> 1√
Mn

. Thus, we have limn→∞
|T (zn)|
S(zn)

= +∞ and this

finishes the proof of Proposition 7.3.19. �

Notation: For any integer n ∈ N we will denote by Qn(D) the set of

the quasi-invertible elements f ∈ H(D) that have exactly n zeros, taking

multiplicity into account, and by Q(D) the set
⋃∞
n=0 Qn(D).
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7.4. T -filters and T -sequences

The behavior of analytic elements is linked to the existence of certain

pierced filters, called T -filters [17, 20, 23]. This has a strong implication on

ultrametric spectral theory.

Notations: In all of this chapter, D denotes an infraconnected closed set

of diameter S ∈ R+. Let a ∈ D̃, let r ∈]δ(a,D), S] ∩ |K| and let (Ti)i∈I be

the set of the holes of D included in C(a, r). We will denote by T (D, a, r)

the set
⋃
i∈I Ti.

For every q ∈ N we will denote by S(D, a, r, q) the set of the monic

polynomials P of degree q whose zeros lie in T (D, a, r).

Let a ∈ D̃. Let r ∈ [δ(a,D),diam(D)] ∩ |K| and let q ∈ N. We put

γD(a, r, q) = rq infP∈S(D,a,r,q)
∥∥∥ 1
P

∥∥∥
D
.

For every q ∈ N we will denote by Q(D, a, r, q) the set of the monic

polynomials P of degree q whose zeros lie in T (D, a, r).

Lemma 7.4.1. Let D = d(a, r−) \ d(a, ρ−), with 0 < ρ0 < r. Then

γD(a, r, q) =
(
r
ρ

)q
.

Proof. Indeed, for each monic polynomial P of degree q, having all its

zeros in d(a, ρ−) we have
∥∥∥ 1
P

∥∥∥
D
= 1

ρq . �

Lemma 7.4.2. Let a ∈ D̃, let r ∈ [δ(a,D),diam(D)]∩ |K|, let q ∈ N and let

P ∈ Q(D, a, r, q). Let (Tj)1≤j≤� be the holes of D included in C(a, r) which

contain at least one zero of P . For every j = 1, . . . , � let Tj = d(aj , r
−
j ), and

let tj be the number of zeros of P in Tj (taking multiplicities into account).

Then we have

∥∥∥ 1
P

∥∥∥
D
=
∥∥∥ 1
P

∥∥∥
D∩C(a,r)

=
1

inf1≤j≤�
(
r
tj
j

∏
1≤m≤�
m�=j

|am − aj|tm
) .

Proof. Let D′ = K \ (⋃�
j=1 Tj), let λ = 1

min1≤j≤�D
ϕj(P ) . It is seen that 1

P

belongs to H0(D
′) and then by Theorem 7.1.13, we have

∥∥ 1
P

∥∥
D′= λ. But

then, we see that
∥∥∥ 1
P

∥∥∥
D′
≥
∥∥∥ 1
P

∥∥∥
D
≥
∥∥∥ 1
P

∥∥∥
D∩C(a,r)

≥ λ and therefore we have

(1)
∥∥∥ 1
P

∥∥∥
D
= λ. Now, it is easily seen that Dϕj(x − α) = rj when α ∈ Tj ,

and that Dϕj(x − α) = |α − aj| when α /∈ Tj so that we have Dϕj(P ) =

r
tj
j

∏
1≤m≤�
m�=j

|am − aj|tm . Finally by (1) the conclusion is clear. �
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Notation: Let a ∈ D̃. Let r ∈ [δ(a,D),diam(D)] ∩ |K| and let q ∈ N. We

put γD(a, r, q) = rq infP∈Q(D,a,r,q)

∥∥ 1
P

∥∥
D
.

Let D be bounded, of diameter r and included in a disk d(a, r−). Let
W (d, q) be the set of monic polynomials whose zeros lie in d(a, r−) \D. We

denote by ϑ(D, q) the number rq infP∈W (D,q)

∥∥ 1
P

∥∥
D
.

The following Lemma 7.4.3 is shown in [23, Proposition 34.1].

Lemma 7.4.3. Let D be bounded, of diameter r, and included in a disk

d(a, r−). Let ψ be defined as ψ(x) = αx + β, and let D′ = ψ(D). Then for

every q ∈ N we have ϑ(D′, q) = ϑ(D, q).

Corollary 7.4.4. Let a ∈ D̃, let r ∈ [δ(a,D),diam(D)] ∩ |K| and let q ∈ N.

Let (Ti)i∈I be the set of the holes of D included in C(a, r) with Ti = d(ai, r
−
i ).

Then we have

γD(a, r, q)

=
rq

sup
{
inf1≤j≤�

(
r
tj
ij

∏
1≤m≤�
m �=ij

|am − aij |tm
)∣∣∣1 ≤ � ≤ q, (i1, . . . , i�) ∈ I�,

∑�
j=1 tj = q

} .

Moreover, for every ε > 0, there exist classes Gj , (1 ≤ j ≤ t) of C(a, r), and

integers qj, (1 ≤ j ≤ t) such that
∑t

j=1 qj = q, and max1≤j≤t ϑ(Gj∩D, qj) ≤
γD(a, r, q) + ε.

Proposition 7.4.5. Let a ∈ D and r ∈ [δ(a,D)],diam(D)] ∩ |K|. Let f ∈
R(D) and let s (resp., t) be the number of zeros (resp., of the poles) of f

inside C(a, r) (taking multiplicities into account). We suppose s ≤ t and put

q = t− s. If C(a, r)∩D �= ∅ then we have ‖f‖D∩C(a,r) ≥ Dϕa,r(f)γD(a, r, q).

Proof. Let f = P
Qg where P and Q are monic polynomials whose zeros

lie in C(a, r) while g ∈ R(D) has neither any zero nor any pole in C(a, r).

We know that |g(x)| = Dϕa,r(g) for all x ∈ C(a, r). Hence without loss of

generality we may assume g = 1. If P = 1 the inequality we want to prove

is obvious. Thus, the inequality is already proven when s = 0(∀t).
Now, given m,n ∈ N, withm ≤ n, we assume the inequality proven when

s ≤ m, t ≤ n, and s ≤ t and will prove it when s = m+1, t = n+1. Indeed,

suppose s = m + 1, t = n + 1. Let E be the set of the couples (ξ, η) such

that ξ is a zero of P , and η is a zero of Q. Now let (α, β) ∈ E be such that

|α− β| = inf{|ξ − η| | (ξ, η) ∈ E}. Let u(x) = x−α
x−β and let f(x) = h(x)u(x).

We will show

(1) ‖f‖D∩C(a,r) ≥ ‖h‖D∩C(a,r).
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We notice

(2) Dϕa,r(u) = 1.

First we suppose that ‖h‖D∩C(a,r) = Dϕa,r(h). We have Dϕa,r(f) =

Dϕa,r(h) hence ‖f‖D∩C(a,r) ≥ Dϕa,r(f) = ‖h‖D∩C(a,r).

Now we suppose that Dϕa,r(h) < ‖h‖D∩C(a,r). Let D
′ = D∩C(a, r). It is

seen that Dϕa,r(h) = D′ϕD′(h) and then, there exists a hole T = d(b, ρ−) of
D∩C(a, r) which contains at least one zero of Q, such that D∩C(a,r)ϕb,ρ(h) =

‖h‖D∩C(a,r). Actually T is a hole of D included in C(a, r) because it contains

a pole of h. Hence we may assume that b is just a pole of h. We will show

(3) Dϕb,ρ(u) ≥ 1.

By definition of (α, β) we have

(4) |α− b| ≥ |α− β|.
If α ∈ d(b, ρ−) then β also belongs to d(b, ρ−) and we have Dϕb,ρ(u) = 1.

If α /∈ d(b, ρ−):

either |b− β| > |α− β| while ρ ≤ |b− β| and then we have Dϕb,ρ(u) = 1,

or |b−β| = |α−β| while |b−α| = |β−α| and then we have Dϕb,ρ(u) = 1

again,

or |b− β| < |α− β| and then we have Dϕb,ρ(u) > 1.

Thus, (3) is now proven in all the cases. Hence we have

‖f‖D∩C(a,r) ≥ Dϕb,ρ(h) = ‖h‖D∩C(a,r)

and this finishes showing (1). But now h clearly has m zeros and n poles in

C(a, r). Hence it satisfies the inequality

‖f‖D∩C(a,r) ≥ Dϕa,r(h)γD(a, r, q)

and therefore by (1) and (2) we have

‖f‖D∩C(a,r) ≥ Dϕa,r(h)Dϕa,r(u)γD(a, r, q).

We have now proven the inequality when s = m+1, t = n+1. Therefore,

we can check that the inequality announced in Proposition 7.4.5 is proven

for every couple (s, t). Since the inequality is true for (0, t− s), it is true for

(1, t − s+ 1), . . . , (s, t). This ends the proof of Proposition 7.4.5. �

Definitions and notations: Let F be an increasing filter on D of center

a ∈ D̃ and diameter S. The filter F will be called an increasing T -filter
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if there exists a sequence of circles (Σm)m∈N with Σm = C(a, dm) (m ∈ N)

such that limm→∞ dm = S and dm < dm+1 together with a sequence of

natural integers (qm)m∈N satisfying

lim
m→∞ γD(a, dm, qm)

m−1∏
j=1

(
dj
dm

)qj
= 0. (T.1)

Given an increasing filter F of center a and diameter S, we denote by

B(F) the set {x ∈ D | |x− a| < S} and by P(F) the set D \ B(F).

Given a decreasing filter F of center a and diameter S, we denote by

B(F) the set {x ∈ D | |x − a| > S} and by P(F) the set D \ B(F). Given

an decreasing filter F with no center and diameter S, we put B(F) = D.

A decreasing filter F will be called a decreasing T -filter if it admits a

basis (Dm)m∈N with Dm = d(am, dm) ∩D \ (⋂m∈N d(am, rm)
)
together with

a sequence of natural integers (qm)m∈N such that, putting Σm = C(am, dm),

the sequences (am)m∈N, (dm)m∈N, (qm)m∈N satisfy

lim
m→∞ γD(a, dm, qm)

m−1∏
j=1

(
dm
dj

)qj
= 0. (T.2)

In particular, this definition holds when F is a decreasing filter of center a

and diameter S, and then we can take am = a for every m ∈ N.

Another way to define T -filters consists of introducing T -sequences.

We will call a weighted sequence a sequence (Tm,i, qm,i) 1≤i≤s(m)
m∈N

with

(Tm,i) 1≤i≤s(m)
m∈N

a monotonous distances holes sequence and (qm,i) 1≤i≤s(m)
m∈N

a

sequence of integers.

If a weighted sequence (Tm,i, qm,i) (1 ≤ i ≤ k(m),m ∈ N) is increasing

(resp., decreasing) we call monotony the sequence (dm)m∈N defined by

dm = δ(Tm,1, Tm−1,1) (resp., dm = δ(Tm,1, Tm+1,1) and we call piercing the

sequence (ρm,i)1≤i≤k(m),m∈N defined by ρm,i = diam(Tm,i).

A weighted sequence (Tm,i, qm,i) 1≤i≤s(m)
m∈N

will be said to be idempotent if

qm,i = 0 or 1 for all (m, i), (1 ≤ i ≤ s(m), m ∈ N).

All definitions given about monotonous distances holes sequences will

apply in the same way to weighted sequences: a weighted sequence

(Tm,i, qm,i) 1≤i≤s(m)
m∈N

will be said “to be something” (or “to satisfy a certain

property”) if “so is” (or “so does”) the monotonous distances holes sequence

(Tm,i) 1≤i≤s(m)
m∈N

.
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In particular, the diameter, the monotony, the piercing of the

monotonous distances holes sequence (Tm,i) 1≤i≤s(m)
m∈N

will be called, respec-

tively, the diameter, the monotony, the piercing of the weighted sequence

(Tm,i, qm,i) 1≤i≤s(m)
m∈N

.

Now let (Tm,i, qm,i) 1≤i≤s(m)
m∈N

be an increasing (resp., decreasing) weighted

sequence of monotony (dm)m∈N, associated to F and for every (i,m), (1 ≤
i ≤ s(m),m ∈ N), let Tm,i = d(am,i, ρ

−
m,i) and let qm =

∑s(m)
i=1 qm,i.

The weighted sequence will be said to be a T -sequence if it satisfies

lim
m→∞

(
sup

1≤j≤s(m)

[( dm
ρm,j

)qm,j ∏
i�=j

1≤i≤s(m)

( dm
|am,i − am,j |

)qm,i
]m−1∏
n=1

( dn
dm

)qn)
= 0

(T.3)

resp.,

lim
m→∞

(
sup

1≤j≤s(m)

[( dm
ρm,j

)qm,j
∏
i�=j

1≤i≤s(m)

( dm
|am,i − am,j |

)qm,i
]m−1∏
n=1

(dm
dn

)qn
)

= 0).

(T.4)

We will call subsidence of a T -sequence (Tm,i, qm,i) defined as above, the

number

sup
m∈N

(
sup

1≤j≤s(m)

[
log
( dm
ρm,j

)qm,j

+
∑
i�=j

1≤i≤s(m)

log
( dm
|am,i − am,j|

)qm,i

]

−
m−1∑
n=1

∣∣∣log
(
dn
dm

)qn∣∣∣
∞

)

Given a T -sequence (Tm,i, qm,i) 1≤i≤s(m)
m∈N

, a monotonous filter F will be

said to admit the T -sequence (Tm,i, qm,i) 1≤i≤s(m)
m∈N

if it is associated to the

monotonous distances holes sequence (Tm,i) 1≤i≤s(m)
m∈N

.

Remark. Given a T -sequence (Tm,i, qm,i) 1≤i≤s(m)
m∈N

, for every t ∈ N, the

weighted sequence (Tm,i, qm,i) 1≤i≤s(m)
m≥t

is a T -sequence again.

Lemma 7.4.6. Let (Tm,i, qm,i) 1≤i≤s(m)
m∈N

be an increasing (resp., decreasing)

weighted sequence, let qm =
∑s(m)

i=1 qm,i and let (C(am, dm))m∈N be a sequence

of circles that runs the weighted sequence. The weighted sequence is a

T -sequence if and only if there exists a sequence of monic polynomials
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(Qm)m∈N such that for each (m, i)1≤i≤s(m), Qm admits exactly a zero of

order qm,i in Tm,i and has no other zero in K, satisfying further

lim
m→∞

((
ϕam,dm(Qm)

∥∥ 1

Qm

∥∥
C(am,dm)∩D

)m−1∏
n=1

(
dn
dm

)qn)
= 0

(
resp.,

lim
m→∞

((
ϕam,dm(Qm)

∥∥ 1

Qm

∥∥
C(am,dm)∩D

)m−1∏
n=1

(
dm
dn

)qn)
= 0.

)

Lemma 7.4.7. Let F be a monotonous filter on D. Then F is a T -filter if

and only if there exists a T -sequence associated to F .

Proposition 7.4.8. Let F be an increasing (resp., decreasing) T -filter of

center α and diameter r. Let h(x) = 1
x−a , let D

′ = h(D) and F ′ = h(F).

If |a− α| < r, F ′ is a decreasing (resp., increasing) T -filter of center α and

diameter 1
r . If |a− α| ≥ r, F ′ is an increasing (resp., decreasing) T -filter of

center h(α) and diameter r
|a−α|2 .

Proposition 7.4.9. Let D admit a T -sequence (Tm,i, qm,i)1≤i≤k(m), m∈N,
and let (Vm,j)1≤j≤l(m), m∈N be a monotonous distance holes sequence of an

infraconnected set E ⊂ D such that for every (m, i), 1 ≤ i ≤ k(m), m ∈ N,

Tm,i is included in certain hole Vm,j of E. For every (m, j)(1 ≤ j ≤ l(m)),

we denote by Tm,j the set of the (m, i) such that Tm,i is included in Vm,j and

we put sm,j =
∑

(m,i)∈Tm,j
qm,i when Tm,j �= ∅, and sm,j = 0 when Tm,j = ∅.

Then the weighted sequence (Vm,j , sm,j)1≤j≤l(m), m∈N is a T -sequence of E.

Lemma 7.4.10 is elementary.

Lemma 7.4.10. Let (dm)m∈N be a strictly monotonous sequence of

limit r. Then limm→∞
∑m−1

j=0 | log dm − log dj |∞ = +∞ if and only if∑∞
j=0 | log r − log dj |∞ = +∞.

Theorem 7.4.11 is an immediate application of Lemma 7.4.10.

Theorem 7.4.11. Let (Tm)m∈N be a well pierced monotonous distances

holes sequence of monotony (dm)m∈N of diameter r. There exists an idem-

potent T -sequence (Tm, un)m∈N if and only if
∑∞

j=0 | log r − log dj |∞ = +∞.

Lemma 7.4.12 is elementary.

Lemma 7.4.12. Let E be a set which is not countable and let f be a function

from D into R+. There exists a sequence (xm)m∈N in E and λ > 0 such that

f(xm) ≥ λ for all m ∈ N.
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Theorem 7.4.13, roughly, was proven separately and simultaneously by

Motzkin and Robba [38, 40], and by the author in March 1969 [23, 20]

(however, Motzkin–Robba’s claim was not stated in terms of T -filters, but

in terms of sequences of holes that look like T -sequences [43]).

Theorem 7.4.13. Let F be a monotonous filter on D. Let f ∈ H(D) be

strictly vanishing along F . Then F is a T -filter.

Proof. Let us suppose F to be increasing, of center a and diameter S.

With no loss of generality we may assume a = 0. Let λ = logS. There exists

ξ < λ such that Ψ(f, μ) > −∞ whenever μ ∈ [ξ, λ] whereas Ψ(f, λ) = −∞.

Let r satisfy log(r) = |ξ|. Hence the function Ψ(f, .) is bounded in every

interval [η, ξ] and therefore the equality Ψ(f(x)) = Ψ(f,Ψ(x)) holds in all of

D ∩ Γ(0, r, S) but inside finitely many classes of circles Cm = C(0, rm) with

rm < rm+1, limm→∞ rm = S.

We fix m ∈ N and take r′, r′′ satisfying r ≤ r′ < rm < r′′ < S. If

D∩Cm �= ∅ we put θm = ‖f‖D∩Cm and ifD∩Cm = ∅ we put θm = Dϕ0,rm(f).

Since Ψ(f, μ) is bounded in [log r′, log r′′] by a constant M we may find

h ∈ R(D) such that log(‖h− f‖D) < M . Hence we have

(1) Dϕ0,rm(f) = Dϕ0,rm(h)

and if D ∩ Cm �= ∅ we have

(2) ‖h‖Cm∩Dm = ‖f‖Cm∩Dm = θm.

Let (Tm,i)1≤i≤s(m) be the holes ofD inside Cm which contain at least as many

poles as many zeros and, for each one, let qm,i be the difference between the

number of the poles and the number of the zeros (taking multiplicities into

account). Let qm =
∑s(m)

i=1 qm,i. Then we know that

(3) Ψ′l(h, log rm)−Ψ′r(h, log rm) ≥ qm.

By Relation (1) we have

(4) θm ≥ γD(0, rm, qm)Dϕ0,rm(h)

when D ∩Cm �= ∅ and θm = Dϕ0,rm(h) when D ∩ Cm = ∅.

Hence Relation (4) is true anyway. In terms of valuations (4) is equiva-

lent to log θm ≥ log γD(0, rm, qm) + Ψ(f, log rm). Now by (3) we see that

Ψ(f, log rm) ≤ Ψ(f, log rm−1)− qm−1(log rm − log rm−1).
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Hence by induction we can easily obtain Ψ(f, log rm) ≥ Ψ(f, log r1) +∑m−1
j=1 qj(log rm − log rj) and finally − log θm ≤ log γD(0, rm, qm) +∑m−1
j=1 qj(log rm − log rj). Since f is vanishing along F , we have

limm→∞(− log θm) = +∞ hence

lim
m→∞

(
− log γD(0, rm, qm) +

m−1∑
j=1

qj(log rm − log rj)
)
= +∞.

This just shows F to be an increasing T -filter. A symmetric reasoning is

made when F is a decreasing filter equipped with a center.

Now let F be decreasing with no center. Let K̂ be a spherical completion

of K. Then in K̂ we denote by (d(αj , ρj))j∈J the family of the holes of D and

we put d(a, r) = D̃ and D̂ = d̂(a, r) \ (⋃j∈J d̂(αj , ρ
−
j )
)
.

In K̂, F has a center a. Then the filter F̂ of center a and diameter S on

D̂ is a T -filter because f belongs to the algebra H
K̂
(D̂) of analytic elements

on D̂, with coefficients in K and is strictly vanishing along F̂ . Hence there

exists a decreasing T -sequence (T̂m,i,mq,i) 1≤i≤s(m)
m∈N

of center a and diameter

R that runs F̂ . But for each (m, i), T̂m,i ∩ K is a hole Tm,i of D, and then,

the weighted sequence (Tm,i, mq,i) 1≤i≤s(m)
m∈N

is a T -sequence of D. �

Corollary 7.4.14. Let f ∈ H(D) be such that f(a) �= 0 and Dϕa(r) = 0.

Then f is strictly vanishing along an increasing T -filter of center a and

diameter s ∈]0, r].

In [23, Chapter 37] it is shown that given a monotonous filter F on an

infraconnected set D, there exist elements H(D) strictly vanishing along F
if and only if F is a T -filter. Moreover, by [23, Theorem 37.2], we have this

theorem.

Theorem 7.4.15. Let F be a T -filter on D, let (Tm,i, mq,i) 1≤i≤s(m)
m∈N

be a

T -sequence associated to F . Let D′ = K \ (⋃ 1≤i≤s(m)
m∈N

Tm,i
)
, and for every

(m, i), let am,i ∈ Tm,i. Let F ′ be the T -filter on D′ associated to the T -

sequence (Tm,i, qm,i). Let α ∈ B(F ′). There exists g ∈ H(D′) satisfying these

properties:

(i) g is meromorphic in Tm,i, admits am,i as a pole of order at most qm,i
and has no other pole in Tm,i,

(ii) g is strictly vanishing along F ′ and equal to zero in PD′(F ′),
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(iii) for every circular filter G different from F and secant with B(F ′),
D′ϕG(g) is different from 0,

(iv) g(α) �= 0.

Proof. Without loss of generality we may obviously assume D′ = D hence

F ′ = F . Besides we may assume F to be decreasing because an increasing

filter of center a can be obtained by an inversion of center a of a decreasing

filter of center a.

Actually the biggest difficulty happens when F has no center. Hence we

do not suppose F to have a center (although it might have one). Indeed,

here we have to construct the element f as a limit of rational functions with

coefficients in K. If we take an origin in K̂, we work with a variable in K̂ so

that it is not clear how to obtain rational functions with coefficients in K.

For this reason we will perform a sequence of change of origin. (However, the

proof becomes much easier to understand by assuming that F has center 0

and avoiding these changes of variable).

Let R be the diameter of F and let (dm) be the monotony of the T -

sequence (Tm,i, qm,i). For every m ∈ N, let qm =
∑s(m)

i=1 qm,i, and let Cm =

C(bm, dm). Let Gm = C̃m ∩D, let Dm = Gm \ P(F) and let bm = am+1,1.

The sequence (Dm) is a canonical basis of F . We will construct f satisfying

(1) Ψbm(f, μ) > −∞ whenever μ > logR,

(2) ‖f‖Gm < 1
m .

Then f will clearly be strictly vanishing along F and equal to zero in all

of P(F). Let us suppose we have defined increasing sequences of integers

(h(n))n∈N and (�(n))n∈N satisfying h(n) < �(n) < �(n) + 1 = h(n + 1).

Now, for every m ∈ N, let Qm =
∏s(m)
i=1 (x − am,i)

qm,i . Let λm =

(dm)
qm
∥∥ 1
Qm

∥∥
Cm∩D and for every n ∈ N let En =

∏�(n)
m=h(n)Qm. Since the

weighted sequence (Tm,i, qm,i) is a T -sequence we have

(3) limm→∞ λm
∏m−1
j=1

(
dm
dj

)qj
= 0.

Let an ∈ Gh(n+2) and let Xn = x − an. Clearly we have |Xn| ≤ dh(n) if

and only if x ∈ G̃h(n). We notice that as an ∈ Λh(n+2), (x ∈ Dh(n+1) \
Dh(n+2)) is equivalent to (dh(n+2) < |Xn| ≤ dh(n+1), Xn ∈ An). In particular

(x ∈ Dm \Dm+1) is equivalent to (dm+1 < |Xn| ≤ dm, Xn ∈ An) whenever
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m≤ �(n+1). We set En(x)=Un(Xn) and develop Un :Un(Xn)=A0,n+ · · ·
+Aτ(n),nX

τ(n)
n with

(4) τ(n) = deg(Un) = deg(En) =
∑�(n)

m=h(n) qm.

Before going on, we notice this property. For every integer e ≤ τ(n), we

denote by j(e) the unique integer such that

qh(n) + · · ·+ qj(e)−1 ≤ τ(n)− e < qh(n) + · · ·+ qj(e).

Now putting β(e) = τ(n)− e− (qh(n) + · · ·+ qj(e)−1), we have β(e) ≥ 0 and

(5) |Ae,n| ≤
(
dh(n)

)qh(n) · · · (dj(e)−1

)qj(e)−1
(
dj(e)

)β(e)
.

Indeed this comes from the fact that Ae,n is a sum of products of τ(n) − e

zeros of Un (taking multiplicities into account). Hence |Ae,n| is bounded by

the product of the τ(n) − e “biggest” zeros of Un. If βm is a zero of Qm,

then βm − am is a zero of Um and then satisfies |βm − am| = dm. Thus, we

obtain (5).

We are now going to introduce a sequence of rational functions Fn which

will be involved in the construction of f . Let (σ(n))n∈N and (τ(n))n∈N be

sequences of integers satisfying 0 < σ(n) < τ(n)

(6) qh(n) + · · · + qt(n)−1 < τ(n) − σ(n) ≤ qh(n) + · · · + qt(n), and let αn =

τ(n)− σ(n)− (qh(n) + · · ·+ qt(n)−1).

Let Sn(Xn) = Aσ(n)+1,nX
σ(n)+1
n + · · · + Aτ(n),nX

τ(n)
n , Gn(Xn) = Sn(Xn)

Un(Xn)

Fn(x) = Gn(Xn) and fn =
∏n
i=1 Fi.

Let us put φ(n) = τ(n)− σ(n), n ∈ N. We will prove that the sequence

fn converges in H(D). The biggest problem consists of finding for |1−Fn(x)|
a good upper bound on D \Dh(n) while |Fn(x)| is equal to 1. We will show

(7) |1− Fn(x)| ≤
(
dh(n)

|x−an|
)φ(n)

≤
(

dh(n)

dh(n−1)

)φ(n)
whenever x ∈ D \Dh(n).

We will prove (7). Let e1, e2 be such that 0 ≤ e1 < e2 < τ(n). When

|Xn| > dh(n) we have

(8) |Xn|e1(dh(n))qh(n) · · · (dj(e1)−1)
qj(e1)−1 .(dj(e1))

β(e1)

< |Xn|e2 .(dh(n))qh(n) · · · (dj(e2)−1)
qj(e2)−1(dj(e2)−1)

β(e2).

(Indeed by hypothesis the dm are less than |Xn|. Since the sum of the powers

of |Xn| and that of the dm are equal in the two members, the bigger member
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is the right one, which has the bigger power in Xn). Hence by (8) and (5)

we see that when |Xn| > dh(n), for every e ≤ σ(n) we have

|Xn|e|Ae,n| < |Xn|e(d�(n))qh(n) · · · (dj(e)−1)
qj(e)−1(dj(e))

β(e)

≤ |Xn|σ(n)(dh(n))qh(n) · · · (dt(n)−1)
qt(n)−1(dt(n))

αn .

This shows that |(Un − Sn)(Xn)| ≤ sup0≤e≤σ(n) |Ae,n||Xn|� ≤ |Xn|σ(n)
(dh(n))

qh(n) · · · (dt(n)−1)
qt(n)−1(dt(n))

αn whenever |Xn| > dh(n). But as

dm < dh(n) whenever m = h(n) + 1, . . . , t(n), we see that

|(Un − Sn)(Xn)| ≤ |Xn|σ(n)(dh(n))τ(n)−σ(n).
On the other hand, we have |Un(Xn)| = |Xn|τ(n) whenever |Xn| > dh(n)
because the zeros of Un do belong to d(0, dh(n)).

So, we have finally proven |1 − Gn(Xn)| ≤
(dh(n)

|Xn|
)φ(n)

whenever |Xn| >
dh(n) and this completes the proof of Relation (7).

Now we will give |Sn(Xn)| an upper bound when |Xn| ≤ dh(n). By (3)

we know that

|Xn|e|Ae,n| ≤ |Xn|e(dh(n))qh(n) · · · (dj(e)−1)
qj(e)−1 .(dj(e))

β(e).

But all the terms in Sn have an index e ≥ σ(n) + 1. Hence we have

|Xn|e|Ae,n| ≥ |Xn|σ(n)+1|Xn|e−σ(n)−1d
qh(n)

h(n) · · · (dj(e)−1)
qj(e)−1 .(dj(e))

β(e).

Now, as |Xn| ≤ dh(n) and dm < dh(n) for all m = h(n) + 1, . . . , j(e) we

see that |Xn|e|Ae,n| ≤ |Xn|σ(n)+1(dh(n))
τ(n)−σ(n)−1 for every e ≥ σ(n) + 1.

Finally when |Xn| ≤ dh(n) we have

|Sn(Xn)| ≤ |Xn|σ(n)+1(dh(n))
τ(n)−σ(n)−1.

So much the more, we have Relation (9)

(9) |Sn(Xn)| ≤ |Xn|σ(n)(dh(n))τ(n)−σ(n)

whenever |Xn| ≤ dh(n).

We are now going to give |Un(Xn)| a lower bound when |Xn| ≤ dh(n),

with Xn + an ∈ D. Let An = {Xn | Xn + an ∈ D}. For m = h(n), . . . , �(n),

let Vm(Xn) = Qm(x). Then Un(Xn) =
∏�(n)
m=h(n) Vm(Xm). We consider the

Vj(Xn) when dm+1 < |Xn| ≤ dm with h(n) ≤ m ≤ �(n) and h(n) ≤ j ≤ �(n).

Obviously we have

(10) |Vj(Xn)| = |Xn|qj when j > m and

(11) |Vj(Xn)| = (dj)
qj when j < m.
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Moreover, we have

(12) |Vm(Xn)| ≥ (dm)qm

λm

because |Vm(Xn)| = (dm)
qm when |Xn| < dm and

|Vm(Xn)| ≥ (dm)qm

λm
when |Xn| = dm (Xn ∈ An).

We will study |Fn(x)| when x ∈ Dh(n) \ Dh(n+1), i.e., dh(n+1) < |Xn| ≤
dh(n), Xn ∈ An. By (10)–(12) we obtain

(13) |Un(Xn)| ≥ |Xn|q�(n)+···+qm+1 (dh(n))
qh(n) ···(dm)qm

λm
,

whenever dm+1 < |Xn| ≤ dm (with h(n) ≤ m ≤ �(n)).

Then by (9) and (12) we see that

|Gn(Xn)| ≤
|Xn|σ(n)(dh(n))τ(n)−σ(n)λm

|Xn|q�(n)+···+qm+1(dh(n))
qh(n) · · · (dm)qm

.

This may also be written

|Gn(Xn)| ≤
λm|Xn|τ(n)|Xn|qh(n)+···+qmdτ(n)−σ(n)h(n)

|Xn|qh(n)+···+q�(n)|Xn|τ(n)−σ(n)(dh(n))qh(n) · · · (dm)qm
.

Since the diameter of F is equal to R, and since Since τ(n) =
∑�(n)

j=h(n) qj
we have

|Gn(Xn)| ≤ λm

m∏
j=h(n)

( |Xn|
dj

)qj(dh(n)
|Xn|

)τ(n)−σ(n)

≤ λm

m∏
j=h(n)

( |Xn|
dj

)qj(dh(n)
R

)τ(n)−σ(n)
.

In particular when dm+1 < |Xn| ≤ dm we obtain

|Gn(Xn)| ≤ λm
∏m
j=h(n)

(
dm
dj

)qj(dh(n)

R

)τ(n)−σ(n)
.

Finally, we have proven Relation (14)

(14) |Fn(x)| ≤ λm
∏m
j=h(n)

(
dm
dj

)qj(dh(n)

R

)τ(n)−σ(n)
,

whenever x ∈ Dm \Dm+1 with h(n) ≤ m ≤ �(n).
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Now we consider |Fn(x)| when x ∈ Dh(n+1) \ Dh(n+2), i.e., dh(n+2) <

|Xn| ≤ dh(n+1), Xn ∈ An. It is seen that for every j = h(n), . . . , �(n) we

have |Vj(Xn)| = (dj)
qj and then we have

(15) |Un(Xn)| =
∏�(n)
j=h(n)(dj)

qj .

Now let us suppose dm+1 < |Xn| ≤ dm with h(n) ≤ m ≤ �(n). By (9)

we have again |Sn(Xn)| ≤ |Xn|σ(n)(dh(n))τ(n)−σ(n), hence by (15) we see that

|Gn(Xn)| ≤ 1 whenever |Xn| ≤ dh(n+1) hence

(16) |Fn(X)| ≤ 1 whenever x ∈ Gh(n+1).

Besides, since |Xn| ≤ dm we have |Sn(Xn)| ≤ d
σ(n)
m d

τ(n)−σ(n)
h(n) . Hence by (15)

we have

|Gn(Xn)| ≤
d
σ(n)
m d

τ(n)−σ(n)
h(n)∏�(n)

j=h(n) d
qj
j

=

�(n)∏
j=h(n)

(dm
dj

)qj(dh(n)
dm

)τ(n)−σ(n)

≤
�(n)∏

j=h(n)

(dm
dj

)qj(dh(n)
R

)τ(n)−σ(n)
.

Finally we have proven (17).

(17) |Fn(x)| ≤
(∏�(n)

j=h(n)

(
dm
dj

)qj)(dh(n)

R

)τ(n)−σ(n)

whenever x ∈ Dm \Dm+1, for every m = h(n + 1), . . . , �(n+ 1).

We are now able to construct the Fn just by defining the sequences

h(n) and σ(n). For convenience we will use φ(n) = �(n) − σ(n), and then

it is equivalent to define the sequences h(n) and �(n). Let us suppose these

sequences (h(n))n∈N and (φ(n))n∈N are already defined up to the rank N ,

satisfying for every n ≤ N the following relations (18)–(20)

(18)
(
dh(n−1)+1

dh(n−1)

)φ(n)
< 1

n ,

(19)
(
dh(n)

s

)φ(n)
< 2,

(20) λm
∏m
j=h(n−1)

(
dm
dj

)qj
< 1

4n whenever m ≥ h(n).
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Thus, we know that �(N − 1) = h(N)− 1, and we want to choose φ(N + 1)

and �(N) satisfying (18)–(20). Of course, we can find φ(N + 1) big enough

to satisfy

(21)
(
dh(N)+1

dh(N)

)φ(N+1)
< 1

N+1 .

Next, as limm→∞ dm = R there does exist a rank M > N such that

(22)
(
dm
R

)φ(N+1)
< 2 whenever m ≥M .

Finally by hypothesis we have limm→∞ λm
∏m
j=h(N)

(
dm
dj

)qj = 0, hence there

exists a rank M ′ ≥M such that

(23) λm
∏m
j=h(N)

(
dm
dj

)qj
< 1

8(N+1) whenever m ≥M ′.

We take h(N + 1) = M ′ and then by (21)–(23) we see that (18)–(20) are

satisfied at the rank N + 1. In order to begin the recurrence we can take

h(0) = 1, σ(0) = 0, �(1) = 1 and then the sequences are defined for all n ∈ N.

As it was announced above, we put fn =
∏n
i=1 Fi and we will show that

the sequence (fn)n∈N converges in H(D) to the element f announced in the

theorem.

Let n > 0. We will study |fn(x)| in these 3 cases:

(α) x ∈ D \Gh(n), (β) x ∈ Gh(n+1), (γ) x ∈ Gh(n) \Gh(n+1).

(α) By (17) we have |Fn(x)| ≤ 1 hence |fn(x)| ≤ |fn−1(x)| ≤ 1.

(β) By (16) we notice that for every j ≤ n, we have |Fj(x)| ≤ 1. Next, by

(17) we have |Fn(x)| ≤
∏�(n)
j=h(n)

(dh(n+1)

dj

)qj(dh(n)

s

)φ(n)
and then by (19) and

(20) we see that |Fn(x)| ≤ 1
2(n+1) . So, by (α) applied to fn−1, we obtain (24)

|fn(x)| ≤ 1
2(n+1) .

(γ) Letm ∈ N be such that x ∈ Dm\Dm+1. (Obviouslym ∈ [h(n), �(n)].)

We know that |fn(x)| ≤ |Fn−1(x)Fn(x)|, and by (17) we have

|Fn−1(x)Fn(x)| ≤ λm

m∏
j=h(n−1)

(dm
dj

)qj(dh(n−1)

R

)φ(n−1)(dh(n)
R

)φ(n)

hence by (19) and (20) we see that |Fn−1(x)Fn(x)| ≤ 1
n , hence |fn(x)| ≤ 1

n .

Thus, after studying the cases (α), (β), (γ), we have proven that ‖fn‖D ≤
‖f0‖D and that

(25) ‖fn‖Dh(n)
≤ 1

n .
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Hence we have obtained

(26) ‖fn+1 − fn‖Dh(n)
≤ 1

n .

Now when x ∈ D \ Dh(n) by (7) we have |1 − Fn(x)| ≤
( dh(n)

dh(n−1)

)φ(n)
and

therefore |1− Fn(x)| ≤
(dh(n−1)+1

dh(n−1)

)φ(n)
. Hence by Relation (18) we have

(27) |1− Fn(x)| < 1
n whenever x ∈ D \Dh(n).

Finally by (26) and (27) we have ‖fn+1 − fn‖D ≤ 1
n sup(‖f1‖D, 1) and this

shows that the sequence converges to a limit f in H(D).

By construction it is clear that for each hole Tm,i, the sequence
(
(x −

am,i)
qm,ifn

)
n∈N converges in H(D ∪ Tm,i), hence f admits am,i as a unique

pole of order ≤ qm,i. Next, by (16) and (25) it is seen that ‖fj‖Dh(n)
≤ 1

n

whenever j ≥ n, hence ‖f‖Dh(n)
≤ 1

n and therefore f is vanishing along F
whereas f(x) is equal to zero in all of P(F). Thus, (i) is satisfied.

We check that (ii) and (iii) are satisfied. Indeed by (7) we have |Fj(x)| = 1

whenever j > n and x ∈ K \Dh(n), hence we have |fn(x)| = |fj(x)| = |f(x)|
whenever j > n and x ∈ K \Dh(n). This shows that Statements (ii) and (iii)

are satisfied.

Finally, if f(α) = 0, since D′ is open, f factorizes in H(D′) in the form

(x − α)qg(x) with g(α) �= 0, and then it is immediately seen that g also

satisfies (i), (ii), (iii), and further, satisfies (iv). This finishes the proof of

Theorem 7.4.15. �

Corollary 7.4.16. Let F be a monotonous filter on D. There exist elements

of H(D) strictly vanishing along F if and only if F is a T -filter.

The following purely arithmetical Lemma 7.4.17 is proven in [23] and

in [43].

Lemma 7.4.17. Let (Tm,i, qm,i)1≤i≤km be a T -sequence of diameter r,

of piercing ρ > 0, and let A ∈]0,+∞[. There exists a T -sequence

(Tm,i, um,i) 1≤i≤km
m∈N

with um,i ≤ qm,i (whenever i = 1, . . . , km,m ∈ N) whose

subsidence ν satisfies ν ≤ A+ 3 log( rρ).

Lemma 7.4.18. Let (Tm,i, qm,i)1≤i≤km be a T -sequence of diameter r,

of piercing ρ > 0, and let A ∈]0,+∞[. There exists a T -sequence

(Tm,i, um,i) 1≤i≤km
m∈N

with um,i ≤ qm,i (whenever i = 1, . . . , km,m ∈ N) whose

subsidence ν satisfies ν ≤ A+ 3 log( rρ).
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Proof. For every i = 1, . . . , km,m ∈ N, we put ρm,i = diam(Tm,i), and take

bm,i ∈ Tm,i. Let (dm)m∈N be the monotony of the T -sequence (Tm,i, qm,i),

let λ be its subsidence, and for each m ∈ N, let qm =
∑km

j=1 qm,j, let

em = max1≤i≤km
(
dm
ρm,i

)qm,i∏
j �=i

1≤j≤km

(
dm

|bm,i−bm,j |
)qm,j

, and let θm = log em −∑m
j=1 qj| log dm − log dj |∞. Then we have

(1) limm→+∞ θm = −∞, and

(2) λ = supm∈N θm.

For every couple (m, i) 1≤i≤km
m∈N

we put tm,i = Int(Aλ qm,i) and um,i =
A
λ qm,i −

tm,i. By Lemma 7.4.17, there exists a family of integers (vm,i)1≤i≤km all equal

to 0 or 1, satisfying

(3) either 0 ≤ vm,i − um,i < 1 or vm,i = 0.

(4) 0 ≤∑km
i=1 vm,i −

∑km
i=1 um,i < 1

and

(5) max
1≤i≤km

( ∑
j �=i

1≤j≤km

vm,j log
( dm
|bm,j − bm,i|

))

≤ max
1≤i≤km

( ∑
j �=i

1≤j≤km

um,j log
( dm
|bm,j − bm,i|

))
+ 2 log

(dm
ρ

)
.

Let sm,i = tm,i + vm,i (1 ≤ i ≤ km,m ∈ N), let sm =
∑km

i=1 sm,i and let

e′m = max
1≤i≤km

[( dm
ρm,i

)sm,i ∏
j �=i

1≤j≤km

( dm
|bm,j − bm,i|

)sm,j
]
.

By (3) we notice that (tm,i + vm,i) log
(
dm
ρm,i

)

≤ (tm,i + um,i) log
( dm
ρm,i

)
+ log

(dm
ρ

)

and then by (5) we have

log e′m ≤ max
1≤i≤km

[
(tm,i + um,i) log

( dm
ρm,i

)

+
∑
j �=i

1≤j≤km

(tm,j + um,j) log
( dm
|bm,j − bm,i|

)
+ 3 log

(dm
ρ

)]
.
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Hence we obtain

(6) log e′m ≤ A
λ log em + 3 log

(
dm
ρ

)
.

We will check that the weighted sequence (Tm,i, sm,i) 1≤i≤km
m∈N

is a

T -sequence of subsidence ≤ A+ 3 log
(
r
ρ

)
. Indeed, by (4) we have

sm ≥
km∑
i=1

tm,i +

km∑
i=1

um,i =
A

λ
qm, hence

m∑
j=1

sj

∣∣∣log(dm
dj

)∣∣∣
∞

≥ A

λ

m∑
j=1

qj

∣∣∣log(dm
dj

)∣∣∣
∞

and then by (6) we obtain

(7) log em−
m∑
j=1

sj

∣∣∣log(dm
dj

)∣∣∣
∞

≤ A

λ

(
log em−

m∑
j=1

qj

∣∣∣log(dm
dj

)∣∣∣
∞

)
+3 log

(r
ρ

)

Now by (1) it is clear that limm→∞
(
log e′m −∑m

j=1 sj

∣∣∣log(dmdj
)∣∣∣

∞

)
= −∞

and therefore the weighted sequence we deal with is a T -sequence. Besides

by hypothesis we have log em−∑m
j=1 qj

∣∣∣log(dmdj
)∣∣∣

∞
≤ λ, hence by (7) the

subsidence of the T -sequence (Tm,i, sm,j) is clearly bounded by A+3 log
(
r
ρ

)
.

�

Lemma 7.4.19. is immediate.

Lemma 7.4.19. Let α1, . . . , αq ∈ K \ {0} and let Q(x) =
∏q
j=1(1 − x

αj
) =∑q

j=0 ajx
j. Let m = min1≤j≤q |αj |. Then |aj | ≤ 1

mj whenever j = 0, . . . , q.

Proposition 7.4.20. Let D admit an increasing (resp., a decreasing) T -

sequence (Tmi , qmi)1≤i≤km,m∈N of piercing ρ > 0, of center α and diameter r.

Let D′ = K\
(⋃

1≤i≤km,m∈N Tm,i
)
. Let F be the T -filter on D′ associated

to this T -sequence. For each (m, i) (1 ≤ i ≤ km,m ∈ N), let bm,i ∈ Tm,i and

let ε ∈]0,+∞[. There exists φε ∈ I0(F), meromorphic on each hole Tm,i,

satisfying further:

(i) |φε(x)− 1| ≤ ε ∀x ∈ D ∩ d(α, r(1 − ε) (resp., ∀x ∈ D ∩ d(α, r
1−ε)

−),
(ii) ‖Φε‖D′ ≤ ( rρ)

3 + r3ε,

(iii) bm,i is a pole of φε of order um,i ≤ qm,i and φε has no pole different

from bm,i in Tm,i whenever i = 1, . . . , km, m ∈ N.
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Proof. We will follow the proof of Proposition 7.4.15 step to step, assuming

further the sequence (Tm,i, qm,i) 1≤i≤km
m∈N

to have piercing ρ > 0 and making

φε satisfy the strong conditions (a) and (b). Without loss of generality we

may clearly assume α = 0. If the Theorem is proven when the T -sequence is

increasing, it is immediately generalized to the case when it is decreasing by

considering the set E = { 1
x | x ∈ D \{0}}. So we will assume the T -sequence

to be increasing without loss of generality.

For each (m, i) 1≤i≤km
m∈N

, we put ρm,i = diam(Tm,i) and for each m ∈ N we

denote by C(0, dm) the circle of center 0 that contains the holes (Tm,i)1≤i≤km .
Given any N ∈ N, we know that the family (Tm,i, qm,i) 1≤i≤km

m≥N
also is a T -

sequence. Therefore we may assume dm ≥ r(1− ε) whenever m ∈ N without

loss of generality. Let q ∈ N satisfy (U0) (
d0
d1
)q ≤ ε.

By Lemma 7.4.18, there clearly exists a T -sequence (Tm,i, um,i) 1≤i≤km
m>q

whose subsidence λ is inferior or equal to log(( rρ )
3 + r3ε) with um,i ≤ qm,i

for all (m, i). For every m ∈ N we put um =
∑km

i=1 um,i, and

em = sup
1≤i≤km

( dm
ρm,i

)um,i ∏
j �=i

1≤j≤km

( dm
|bm,j − bm,i|

)um,j

.

Since (Tm,i, um,i) 1≤i≤km
m∈N

is a T -sequence, for every h ∈ N we have

(1) limm→∞
(
em
∏m
j=h

(
dj
dm

)uj)
= 0,

and for all m ≥ q we have

(2) log
(
em
∏m
j=q

(
dj
dm

)uj) ≤ log
((

r
ρ

)3
+ r3ε

)
.

By induction we will construct sequences of integers s(n), �(n), w(n)

satisfying:

(Un)
(d�(n)
ds(n)

)w(n)
<

ε

n+ 1
,

(Vn)
( r

ds(n−1)

)w(n−1)( r

ds(n)

)w(n)
em

m∏
j=s(n−1)+1

( dj
dm

)uj
<

ε

n+ 1
,

whenever m ≥ s(n).

Let us suppose we have already defined these three sequences up to the

rank n. We will construct them a the rank n+ 1 in this way.
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First we choose �(n+1) such that em
∏m
j=�(n)

(
dj
dm

)uj
< ε

n+1 for all m ≥
�(n + 1). Then we can choose w(n + 1) such that

(
d�(n+1)

d�(n+1)+1

)w(n+1)
< ε

n+2 .

By (1) we can choose s(n + 1) > max(�(n + 1), s(n) + 1 + w(n)) satisfying

(Vn+1).

Now it just remains to define s(n), �(n), w(n) for n = 1 and n = 2,

satisfying (U2) and (V2) in order to define the sequences for all n ∈ N. We

take �(1) > q, satisfying em
∏m
j=q+1

(
dj
dm

)uj
< ε

2 whenever m ≥ �(1). Then

we can choose w(1) such that
(

d�(1)
d�(1)+1

)w(1)
< ε

2 . Next we take s(1) > �(1)

satisfying

(3)
(

r
ds(1)

)w(1)∏m
j=q+1

(
dj
dm

)uj
<
(
ε
2

)
whenever m ≥ s(1).

By (1), we can choose �(2) such that em
∏m
j=�(2)

(
dj
dm

)uj
< ε

3 whenever m >

�(2).

Hence we can choose w(2) satisfying (U2) and finally s(2) > �(2)

satisfying (V2). Thus, the sequences s(n), �(n), w(n) are now defined for all

n, satisfying (Un) and (Vn), for all n ≥ 2.

For every m ∈ N we put Qm :=
∏km
i=1

(
1− x

bm,i

)um,i

and for each n ∈ N
∗

we put Hn(x) :=
∏s(n+1)
m=s(n)+1Qm and t(n) = deg(Hn). We can develop Hn(x)

in the form
∑t(n)

h=0 an,h x
h (with an,0 = 1). Since t(n) =

∑s(n+1)
m=s(n)+1 um and

since s(n + 1) > s(n) + w(n), it is seen that t(n) > w(n). Now we put

Gn(x) :=
∑w(n)

h=0 an,hx
h, and let Rn(x) :=

Gn(x)
Hn(x)

. Thus, Rn is defined when

n > 0. It only remains to define R0. Let P (x) =
∏q
m=1

(
1 − x

bm,1

)
and

let H0(x) = P (x)
∏s(1)
m=q+1Qm(x). We can develop H0(x) =

∑t(0)
h=0 a0,h x

h.

We put G0(x) =
∑q

h=0 a0,h x
h and R0(x) = G0(x)

H0(x)
. By Lemma 7.4.19, we

notice the relation (Xn) |Gn(x)| ≤ max
(
1,
( |x|
ds(n)

)w(n))
whenever x ∈ D,

whenever n ∈ N
∗.

Next, we check that (Q0) |R0(x) − 1| ≤ ε whenever x ∈ D ∩ d(0, d0).

Indeed we have

|R0(x)− 1| =
∣∣∣∣
∑t(0)

h=q+1 a0,h x
h

H0(x)

∣∣∣∣.
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But |H(x)| ≥ 1 for all x ∈ D ∩ d(0, d0) because H0 has no zero in d(0, d1) .

Besides, by Lemma 7.4.19, we see that

∣∣∣
t(0)∑

h=q+1

a0,hx
h
∣∣∣ ≤ max

q+1≤h≤t(0)
|x|h
(d1)h

≤ max
q+1≤h≤t(0)

(d0
d1

)h
=
(d0
d1

)q+1

Hence finally by (U0) we obtain |R0(x) − 1| ≤ ε for every x ∈ D ∩ d(0, d1).
In the same way we will prove the relations (Qn) |Rn(x)− 1| ≤ ε

n+1 for all

x ∈ D ∩ d(0, d�(n)).
Indeed as Hn(x) has no zero in d(0, (ds(n)+1)

−), we have (Tn)|Hn(x)| = 1

for all x ∈ d(0, d�(n)) ∩D′.
Next, by applying Lemma 7.4.19 to Hn we have |an,h| ≤ 1

(ds(n)+1)h

whenever h = 0, . . . , t(n), and therefore when x ∈ d(0, d�(n)) we obtain

|Hn(x)−Gn(x)| =
∣∣∣

t(n)∑
h=w(n)+1

an,hx
h
∣∣∣ ≤ max

w(n)+1≤h≤t(n)

( d�(n)

ds(n)+1

)h

=
( d�(n)

ds(n)+1

)w(n)+1 ≤
(d�(n)
ds(n)

)w(n)( ds(n)

ds(n)+1

)w(n)
.

But by (Un) we have
(
d�(n)

ds(n)

)w(n)
≤ ε

n+1 and therefore by (Tn), we have

proven (Qn) (n ∈ N). Besides, by (Xn), we notice that |Gn(x)| ≤ 1 whenever

x ∈ d(0, ds(n)). So, we have (Sn) |Rn(x)| ≤ 1 for all x ∈ D∩d(0, ds(n)). Now
we put fn(x) =

∏n
j=0Rj(x). We will prove Relations (Rn,k), k = 1, . . . , n

n ∈ N.

(Rn,k)|fn(x)| ≤ ε
k+1 whenever x ∈ D \d(0, ds(k)), whenever k = 1, . . . , n.

Let us suppose Relations (Rn,k) when n ≤ N are already proven and let

us show them for n = N+1. Since (RN,k) is satisfied, it is seen that it directly

implies (RN+1,k) for k ≤ N . Hence it just remains to prove (RN+1,N+1).

First we suppose x ∈ D \ d(0, ds(N+2)). Then we have

|HN+1(x)| =
s(N+2)∏

j=s(N+1)+1

( |x|
dj

)uj ≥
s(N+2)∏

j=s(N+1)+1

(ds(N+2)

dj

)uj

and therefore by Relation (XN+1) we obtain

|RN+1(x)| ≤
( r

ds(N+1)

)w(N+1)
s(N+2)∏

j=s(N+1)+1

( dj
ds(N+2)

)uj
.
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Thus, by (2) we have |RN+1(x)| ≤ ε
N+2 and therefore by (RN,N ) Relation

(α)|∏N+1(x)|≤ε
N+2 holds for all x ∈ D such that |x| > ds(N+2).

We now suppose ds(N+1) ≤ |x| ≤ ds(N+2). Actually, for convenience and

more generally, we suppose ds(N+1) ≤ |x| < ds(N+2)+1. For example, let

dm ≤ |x| < dm+1 with s(N + 1) ≤ m < s(N + 2). It is seen that

1

|HN+1(x)| ≤ em

m∏
j=s(N+1)+1

( dj
|x|
)uj

,

and

|RN+1(x)| ≤ em

( r

ds(N+1)

)w(N+1)
m∏

j=s(N+1)+1

( dj
|x|
)uj

.

Then we have

|Rn(x)RN+1(x)| ≤
( r

ds(N)

)w(N)( s(N+1)∏
j=s(N)+1

( dj
dm

)uj)
em

( r

ds(N+1)

)w(N+1)

×
( m∏
j=s(N+1)+1

( dj
dm

)uj)

= em

( r

ds(N)

)w(N)( r

ds(N+1)

)w(N+1)
m∏

j=s(N)+1

( dj
dm

)uj
.

But then by (VN+1) this is inferior or equal to ε
N+2 by (VN+1) because

m > s(N + 1). Hence, as |fN−1(x)| < 1, we have proven that Relation (α)

finally holds for all x ∈ D such that |x| ≥ ds(N+1). This just proves Relation

RN+1,N+1.

Thus, it just remains to establish R1,1 in order to start the recurrence.

This means |R0(x)R1(x)| ≤ ε
2 whenever x ∈ D \ d(0, ds(1)) and this is also

equivalent to∣∣∣∣∣
(G0(x)

P (x)

)( 1∏s(1)
m=q+1Qm(x)

)(
G1(x)∏∞

m=s(1)+1Qm(x)

)∣∣∣∣∣ ≤
ε

2
,

whenever x ∈ D such that |x| > ds(1). By construction, the coefficients of

G0 are the coefficients of H0 of same index when this index runs from 0 to

q. But by construction H0 admits a unique zero in each circle C(0, dm) for

1 ≤ m ≤ q and no other zero in K. Then it is easily seen that we have
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(4)
∣∣∣G0(x)
P (x)

∣∣∣ ≤ 1
ρ whenever x ∈ D,

and in particular

(5)
∣∣∣G0(x)
P (x)

∣∣∣ = 1 whenever x ∈ D \ d(0, dq).
Hence finally we have

|R0(x)R1(x)| = |G1(x)|∣∣∣∏s(1)
m=q+1Qm(x)

∣∣∣
whenever x ∈ D \ d(0, dq).

We first consider the case |x| > ds(2). Then we have

1∣∣∏s(2)
j=q+1Qj(x)

∣∣ ≤
s(2)∏
j=q+1

( dj
ds(2)

)uj
,

hence

(6) |G1(x)|∣∣∏s(2)
m=q+1Qm(x)

∣∣ ≤
(

r
ds(1)

)w(1)∏s(2)
j=q+1

(
dj
ds(2)

)uj
.

Now it just remains to consider x ∈ D when ds(1) ≤ |x| ≤ ds(2). Say dm ≤
|x| < dm+1, with s(1) ≤ m ≤ s(2). We see that

1∣∣∏s(2)
m=q+1Qm(x)

∣∣ ≤
( m∏
j=q+1

( dj
dm

)uj)
em

hence

(7) |G1(x)|∣∣ s(2)∏
m=q+1

Qm(x)
∣∣ ≤ em

(
r

ds(1)

)w(1) m∏
j=q+1

(
dj
dm

)uj
.

Thus, by (3), (6), (7) we have |R0(x)R1(x)| ≤ ε
2 for all x ∈ D such that

|x| > ds(1). This proves (R1,1) and finishes proving all the relations (Rn,k).

Now by Relations (Qn) and (Rn,k) it is easily seen that the sequence (fn)n∈N
converges in H(D) to an element φε satisfying

(8) |φε(x)−R0(x)| ≤ ε for all x ∈ D ∩ d(0, d0) and
(Gn) |φε(x)| = |fn(x)| whenever x ∈ D ∩ d(0, ds(n)).
By construction, it is seen that φε does satisfy Condition (iii) in Proposition

7.4.20. Next, by Relations (Qn) and (8), we obtain

(9) |φε(x)− 1| ≤ ε whenever x ∈ D ∩ d(0, d0)
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and therefore |φε(x) − 1| ≤ ε whenever x ∈ D ∩ d(0, r(1 − ε)), which is just

Condition (i) in Proposition 7.4.20.

Now we only have to check Condition (ii). By Relations (Gn) and (Rn,k)

true for n ≥ 1, we have |φε(x)| < 1 when |x| > ds(1) and therefore it just

remains to show |φε(x)| ≤ ( rρ)
3 + r3ε when x ∈ D′ ∩ d(0, ds(1)). Actually

by Relations (Sn) and then by (4) it is seen that |Hn(x)| ≤ r
ρ whenever

x ∈ D′∩d(0, dq) and therefore |φε(x)| ≤ r3(ε+ 1
ρ3
) whenever x ∈ D′∩d(0, dq).

Now let x ∈ D′ satisfy dq ≤ |x| ≤ ds(1). We still have |Rn(x)| = 1 for all

n ≥ 1 and then by (5) we obtain

|R0(x)| = 1∣∣∏s(1)
m=q+1Qm(x)

∣∣ .
For example, let x ∈ D′ satisfy dm ≤ |x| < dm with q + 1 ≤ m ≤ s(1). Then

|R0(x)| ≤ em
∏m
j=q+1

(
dj
dm

)uj
, and therefore by (3) we see that |R0(x)| ≤

r3

ρ3 + r3ε. This finishes showing that φε satisfies (b), and this ends the proof

of Proposition 7.4.20. �

Corollary 7.4.21. Let D have an increasing (resp., a decreasing) T -

sequence t(Tm,i, qm,i) 1≤i≤km
m∈N

of piercing ρ > 0, of center α and diameter

r. Let D′ = K \ (⋃ 1≤i≤km
m∈N

Tm,i
)
. Let F be the T -filter on D′ associated to

this T -sequence. For each (m, i) (1 ≤ i ≤ km, m ∈ N), let bm,i ∈ Tm,i.

Let ε ∈]0,+∞[. There exists ψε ∈ I0(F), meromorphic on each hole Tm,i,

satisfying further ψε(x) = 1 whenever x ∈ P(F) and

(a) |ψε(x)| ≤ ε whenever x ∈ D∩d(α, r(1−ε))
(
resp., x ∈ D\d

(
α,
(

r
1−ε
)−))

(b) ‖ψε‖D ≤
(
r
ρ

)3
+ r3ε

(c) bm,i is a pole of ψε of order um,i ≤ qm,i.

Proof. In Proposition 7.4.20, we just take ψε = 1− φε. �

7.5. Examples and counter-examples

Throughout the chapter, D is a closed bounded infraconnected subset of

K. We give examples of T -filters and T -sequences. We construct a closed

infraconnected set whose interior is empty, which admits no T -filter.

We remember that a monotonous distances holes sequence (Tm,i) 1≤i≤h(m)
m∈N

is said to be simple if h(m) = 1 whenever m ∈ N. A simple monotonous

distances holes sequence will be denoted by (Tm)m∈N.
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When a monotonous distances holes sequence is simple, it is much easier

to determine whether there exists a T -sequence (Tm, qm)m∈N. Indeed if

(σm)m∈N is a sequence of circles that run the sequence (Tm)m∈N, then putting

σm = C(am, dm) and ρm = diam(Tm) we have γD(am, dm, q) =
(
dm
ρm

)q
for

every q ∈ N. Hence a weighted sequence (Tm, qm)m∈N is a T -sequence if and

only if

lim
m→∞

(
−qm| log dm − log ρm|∞ +

m−1∑
j=0

qj| log dm − log dj |∞
)

= +∞.

Notations: In Theorems 7.5.1, 7.5.6 and Corollaries 7.5.4, 7.5.5, (Tm)m∈N
is a simple monotonous distances holes sequence of monotony (dm)m∈N and

diameter r with ρm = diam(Tm). Moreover, denoting by σm the circle

C(am, dm), (m ∈ N), the sequence (σm)m∈N is a sequence of circles that

runs the sequence (Tm)m∈N.

Theorem 7.5.1. If dm = ρm is satisfied for infinitely many m, then there

exists a sequence (qm)m∈N such that (Tm, qm)m∈N is a T -sequence.

Proof. Indeed without loss of generality we may assume dm = ρm for

every m ∈ N, just by considering the subsequence of the Tm such that

dm = ρm. Then we have γD(am, dm, qm) = 1 whenever qm, whence we can

take a sequence qm such that
∑∞

j=0 qj| log dm − log dj |∞ = +∞, which ends

the proof. �

Lemma 7.5.2. Let (un)n∈N be a strictly decreasing sequence of limit 0

in ]0,∞[, and let (qn) n ∈ N be sequence of natural integers such that∑
n∈N qnun = +∞. Then we have limn→∞

∑n
j=0 qj(uj − un) = +∞.

Proof. Let B ∈ R+, and let N ∈ N be such that
∑N

j=0 qjuj ≥ 2B. Let

q =
∑N

j=0 qj, and let t ∈ N be such that t > N and ut <
B
q . Now let m ∈ N

satisfy m ≥ t. We have

m∑
j=0

qj(uj − um) ≥
N∑
j=0

qj(uj − um) ≥
N∑
j=0

qj(uj − ut) =

N∑
j=0

qjuj − qut.

But we have qut ≤ B, hence
∑m

j=0 qj(uj − um) ≥ B. This ends the proof. �

In Proposition 7.5.3, the implication “(1) implies (2)” is due to Motzkin

and Robba [40].
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Proposition 7.5.3. Let (un)n∈N be a strictly decreasing sequence of limit

0 in ]0,∞[, and let (θn)n ∈ N be a sequence in ]0,+∞[. If there exists a

sequence of natural integers (qn)n ∈ N such that

(1) lim
n→∞

n∑
j=0

qj(uj − un)− qnθn = +∞,

then we have

(2)

∞∑
n=0

un
θn

= +∞.

Conversely, if (2) is satisfied and if the sequences (un)n∈N, (θn)n∈N satisfy

at least one of these 2 additional conditions:

(α) the sequence (θn)n∈N is bounded,

(β)
∑∞

n=0 un < +∞,

then there exists a sequence of natural integers (qn)n∈N satisfying (1).

Proof. First we suppose the existence of a sequence of integers (qn)n∈N
satisfying (1) and will deduce that

∑∞
m=0

um
θm

= +∞. For each m ∈ N, we

put φm =
∑m

j=1 qj(uj −um)− qmθm. By hypothesis we have limm→+∞ φm =

+∞. Since limm→∞ φm = +∞ there exists N ∈ N such that qmθm <∑m−1
j=1 qj(uj − um) whenever m > N and then with greater reason we have

(3) qmθm <
∑m−1

j=1 qjuj .

Now since qmθm =
∑m

j=1 qj(uj − um) − φm, we have qm+1θm+1 =∑m
j=1 qj(uj − um+1)− φm+1 =

∑m−1
j=1 qj(uj − um) + qm(um − um+1)− φm+1

and therefore qm+1θm+1 <
∑m−1

j=1 qjuj + qmum − φm+1.

Now we can write

m∑
j=1

qjuj =

(
m−1∑
j=1

qjuj

)[
1 +

qmum∑m−1
j=1 qjuj

]

and then by (3) we have

(4)
∑m

j=1 qjuj <
(∑m−1

j=1 qjuj

)[
1 + um

θm

]
.
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Since limm→∞ φm = +∞ there exists N ∈ N such that φm > 0 whenever

m > N . By induction on m, from (4) we have

m∑
j=1

qjuj <
( N∑
j=1

qjuj

)( m∏
j=N

(
1 +

uj
θj

))
,

and therefore we obtain

(5) qmθm <
(∑N

j=1 qjuj

)(∏m
j=N

(
1 +

uj
θj

))
− φm∀m > N.

Since θm ≥ 0 wheneverm ∈ N and since limm→∞ φm = +∞ one sees that

limm→∞
∏∞
j=N

(
1 +

uj
θj

)
= +∞ and therefore the series

∑∞
m=0

um
θm

diverges.

Conversely, now we suppose that (2) is satisfied together with one of the

hypothesis α), β) and we will show that there exists a sequence of integers

(qn)n∈N satisfying (1).

First, we assume

(6) θn ≤ λ for every n ∈ N.

Then we put qn = int( 1
θn

+ 1). By (2), we see

(7)
∑∞

n=0 qnun = +∞,

and by (6) we have

(8) qnθn ≤ λ+ 1 for all n ∈ N.

But by Lemma 7.5.2, (7) shows that limn→+∞
∑n

j=0 qj(uj − un) = +∞,

hence by (8) we finally obtain

(9) limn→+∞
∑n

j=0 qj(uj − un)− qnθn = +∞.

Now, we stop assuming the sequence (θn)n∈N to be bounded, but we

suppose

(10)
∑∞

n=0 un < +∞.

Let J be the subset of the n ∈ N such that θn > 1. Clearly by (10) we

have
∑

n∈J
un
θn
< +∞, hence

∑
n∈N\J

un
θn

= +∞. Therefore we can consider

an increasing bijection φ from N onto N \ J such that (uφ(s))s∈N, (θφ(s))s∈N
satisfy

∑∞
s=0

uφ(s)
θφ(s)

= +∞. So, we define a sequence of integers (qφ(s))s∈N
satisfying lims→+∞

∑s
j=0 qφ(j)(uφ(j) − uφ(s))− qφ(s)θφ(s) = +∞. Finally, we

put qn = 0 for every n ∈ J , and then the sequence (qn)n∈N is defined

for every n ∈ N, and clearly satisfies (9) again. This finishes the proof of

Proposition 7.5.3. �
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Corollary 7.5.4. If the sequence (Tm, qm)m∈N is a T -sequence, then we have

+∞∑
m=0

| log r − log dm|∞
log dm − log ρm

= +∞.

Conversely, if

+∞∑
m=0

| log r − log dm|∞
log dm − log ρm

= +∞

and if
∑∞

m=0 | log r − log dm|∞ < +∞ and ρm < dm for all m, then there

exists a sequence (qm)m∈N such that the weighted sequence (Tm, qm)m∈N is a

T -sequence.

Proof. Indeed, we put un = | log r − log dn|∞, and θn = log r − log ρn,

(n ∈ N), and we apply Lemma 7.5.3 to these sequences. �

Proposition 7.5.5. If
∑∞

m=0 | log r − log dm|∞ < +∞ and if lim infn→∞
(log dm− log ρm) > 0, then there exists no sequence of integers (qn)n∈N such

that (Tm, qm)m∈N is a T -sequence.

Proof. Indeed, as above, we put un = | log r − log dn|∞, and θn = log r −
log ρn, (n ∈ N). It is easily seen that

+∞∑
m=0

| log r − log dm|∞
log dm − log ρm

<∞,

hence by Corollary 7.5.4, there exists no T sequence of the form (Tm, qm)m∈N.
�

Remark 1. In Proposition 7.5.3, we would like to have a genuine reciprocal

to the first claim, without assuming one of the additional conditions (α),

or (β). Actually, if the sequence (θn)n∈N is not bounded, and if
∑∞

n=0 un =

+∞, it is far from clear whether (2) implies the existence of a sequence

(qn)n∈N satisfying (1). However, this example shows that there is little hope

to generalize the reciprocal.

For every n ∈ N, we put un = 1√
n
and θn = 3

√
n+ 1. Then (2) is clearly

satisfied. Now, we can check that the sequence (qn)n∈N defined as qn = 1

whenever n ∈ N
∗ does not satisfy (1). Indeed we have

∑n
j=1 uj ≤ 2

√
n+ 1,

hence
n∑
j=1

uj − un − θn <
n∑
j=1

uj − θn ≤ −√
n+ 1.



March 25, 2022 8:35 Banach Algebras of Ultrametric Functions 9.61in x 6.69in b4542-ch07 page 179

Analytic Elements and T -Filters 179

Remark 2. In particular, if
∑∞

m=0 | log r − log dm|∞ < +∞ and if

lim supm→∞
(ρm
r

)
< 1 then there is no T -sequence (Tm, qm)m∈N.

Proposition 7.5.6. We have limm→∞
∑m−1

j=0 | log dm − log dj|∞ = +∞ if

and only if
∑∞

j=0 | log r − log dj|∞ = +∞.

Proof. We just have to show that
∑∞

j=0 | log r − log dj |∞ = +∞ implies

limm→∞
∑m−1

j=0 | log dm − log dj |∞ = +∞. We put um = | log r − log dm|∞
and then, by Lemma 7.5.2, we have | log dm − log dj |∞ = um − uj because

both log dm − log dj , log r− log dm have the same sign for j < m. Hence the

conclusion is clear. �

Remark. The condition lim infm→∞ ρm > 0 is not required provided the

sequence (dm)m∈N satisfies good conditions.

Proposition 7.5.7. There exist simple T -sequences (Tm, qm)m∈N with

lim
m→∞ diam(Tm) = 0.

Proof. Let dm satisfy
∑∞

j=0 | log r − log dj |∞ = +∞ and let ρm satisfy

log ρm = −1

2

m∑
j=0

| log dm − log dj|∞.

By Theorem 7.5.6, we know that limm→∞
∑m−1

j=0 | log dm − log dj|∞ = +∞
hence limm→∞ ρm = 0. However, it is seen that

lim
m→∞

(
−(log dm − log ρm) +

m−1∑
j=0

| log dm − log dj |∞
)

= +∞,

hence the weighted sequence (Tm, 1)m∈N is a T -sequence. �

Theorem 7.5.8. If K is separable, there exist closed infraconnected sets

whose interiors are empty, which admit no T -filter.

Proof. We construct a set D ⊂ d(0, 1), by defining its holes first. Since K

is separable we can take an injective sequence S = (as)s∈N dense in d(0, 1).

Let ρs = p(2
s) and let τs = d(as, ρ

−
s ) (s ∈ N). We can easily construct a

sequence of natural integers (s(n))n∈N satisfying

(1) s(n) > s(n− 1)

(2) τs(n) ∩ τs(j) = ∅ whenever j �= n

(3) ai ∈
⋃n
j=0 τs(j) whenever i �= 0, . . . , s(n).



March 25, 2022 8:35 Banach Algebras of Ultrametric Functions 9.61in x 6.69in b4542-ch07 page 180

180 Banach Algebras of Ultrametric Functions

Indeed let s0 = 0, assume the s(j) already obtained up to j = n,

satisfying (1), (2), (3) and let us define s(n + 1). We take for s(n + 1) the

lowest integer m such that τm
⋂(⋃n

j=0 τs(j)

)
= ∅. Such an integer s(n+ 1)

is easily seen to exist because we can find m ∈ N such that the distance

from am to
⋃n
j=0 τs(j) is strictly superior to ρm. Then (1) and (2) are now

satisfied up to the rank n + 1. Let i ∈ N ∩ [s(n) + 1, s(n + 1) − 1]. Since τi
has a not empty intersection with one τs(j) for a certain j ≤ n, and since the

sequence (ρs)s∈N is strictly decreasing, obviously we have τi ⊂ τs(j). Then

(3) is clearly satisfied for i ≤ s(n + 1) − 1, and then also for i ≤ s(n + 1)

because as(n+1) ∈ τs(n+1).

We put an = αs(n), Tn = τs(n), rn = ρs(n). Clearly
⋃∞
n=0 Tn is dense

in d(0, 1) because by (3) it contains all the as. We fix N ∈ N. We will

first show that for every ε > 0, there exists N ′ > N such that rN < ε

and τN ′ ⊂ C(aN , rN ). Indeed C(aN , rN ) is not included in any Tn because

otherwise, we should have TN ⊂ Tn. Since rN ∈ |K|, there exist infinitely

many Tm included in C(aN , rN ), one of them has a radius rm < ε, and we may

call N ′ this m. By induction we shortly define a convergent subsequence of

the sequence (an)n∈N whose terms belong to C(aN , rN ). Indeed C(aN ′ , rN ′)

contains a TN ′′ such that rN ′′ < ε2 whereas TN ′′ ⊂ C(aN ′ , rN ′) ⊂ C(aN , rN ),

and so on.

Let D be the set of the limits of the convergent subsequences of the

sequence (an)n∈N. By definition D is closed and included in d(0, 1). Moreover

the Tn appear to be the holes of D. Indeed D obviously has an empty

intersection with each Tn because Tn ∩ Tm = ∅ for every n �= m. Next,

each Tn is included in d(0, 1) and C(an, rn) contains points of D, hence

D̃ = d(0, 1). But then the distance from Tn to D is just rn and therefore

Tn is a hole of D. Finally we check that D has no hole other than the Tn.

Indeed let α ∈ d(0, 1) \⋃∞
n=1 Tn. Since

⋃
n∈N∗ Tn is dense in d(0, 1), there

exists a subsequence of the sequence (Tn)n∈N∗ which converges to α, hence

α is the limit of a subsequence of the sequence (an)n∈N, hence α ∈ D. Thus,

if α ∈ d(0, 1) \D, α belongs to a certain TN and then this finishes proving

that every hole of D is a Tn.

Now it is easily seen that D is infraconnected. Indeed let α ∈ D and

let r ∈ |K|. Since ⋃n∈N∗ Tn is dense in d(0, 1), there exists N ∈ N such that

TN ∩C(α, r) �= ∅. Since α belongs to TN , TN is obviously included in C(α, r),

hence we have rN < r, and we know that C(aN , rN ) contains points of D

which obviously belong to C(α, r), hence C(α, r)∩D �= ∅. We check that D

has empty interior because by definition every point α ∈ D is the limit of a

subsequence of the sequence (an)n∈N no term of which belong to D.
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Now we will show that D has no T -filter. Indeed assume D to have a

T -filter F , of diameter r. We know that even if F is decreasing with no

center in K, it admits a center α in K̂. With no loss of generality we may

assume F to be decreasing. Then there exists a T -sequence (Um, um)m∈N∗

associated to F where each Um is a hole of D, whose diameter is denoted

by σm, and where um belongs to N
∗, whereas the distance dm from Um to

α satisfies dm+1 ≤ dm, limm→∞ dm = r and dm < r whenever m ∈ N
∗. By

relation (4) in the definition of the T -sequences it is easily checked that our

T -sequence (Um, um)m∈N∗ must satisfy

(4) limn→∞
[(

dn
σn

)un∏n−1
j=1

(
dn
dj

)uj]
= 0.

We put λn = log σn. Then by (4) we have

lim
n→∞

(
un

(
log r + λn

)
+
(n−1∑
j=1

uj

)(
log r − log d1

))
= +∞

hence there obviously exists a positive constant C such that

(5) un

(
log r + λn

)
≤ C

∑n−1
j=1 uj .

Since limm→∞ rm = 0 and since the sequence (Un)n∈N appears to be a

reordered subsequence of the sequence Tn it is clearly seen that limn→∞ λn =

+∞. Then there exists a positive constant B such that un(log r+λn) ≤ Bλn
whenever n ∈ N

∗ and then by (5) there exists a positive constant A such

that

(6) unλn ≤ A
∑n−1

j=1 uj .

By applying (6) at the rank n− 1 we have

un−1 ≤ A

λn−1

n−2∑
j=1

uj

hence by (6) at the rank n we obtain

un ≤ A

λn

(n−2∑
j=1

uj

)(
1 +

A

λn−1

)

and then by an immediate downing induction we have

un ≤ Au1
λn

(n−1∏
j=1

(
1 +

A

λj

))
.
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We now consider the sequence (ωn)n∈N defined as

ωn = log
( 1

λn

n−1∏
j=1

(
1 +

A

λj

))
= − log λn +

n−1∑
j=1

log
(
1 +

A

λj

)
.

It is seen that

(7) ωn ≤ − log λn +A
∑n−1

j=1
1
λj
.

Now, by construction of D, every Un is a certain Tm, hence every λj is of

the form 2m while the sequence n→ λn is injective, hence

n−1∑
j=1

1

λj
≤
∑
m∈N∗

1

2m
= 1.

Therefore, by (7) we see that limn→∞ ωn = −∞, hence un = 0 when n is big

enough. This contradicts the hypothesis un ∈ N
∗ and finishes proving that

D has no T -filter and this ends the proof of Theorem 7.5.8. �

Lemma 7.5.9. Let E be a set which is not countable and let f be a function

from D into R+. There exists a sequence (xm)m∈N in E and λ > 0 such that

f(xm) ≥ λ for all m ∈ N.

Proof. We assume that such a λ and such a sequence (xm)m∈N do not

exist. Hence for every q ∈ N
∗, the set Aq of the x ∈ E such that f(x) ≥ 1

q is

finite. But E is clearly equal to
⋃∞
q=1Aq and therefore E is countable. �

Theorem 7.5.10. Let K be strongly valued. Let a ∈ D̃ be such that δ(a,D) <

diam(D). We assume that for every r ∈]δ(a,D), diam(D)[∩|K|, each class of

C(a, r) contains at least one hole of D. Then for each r ∈]δ(a,D),diam(D)]

there exists on D an increasing idempotent T -sequence and a decreasing

idempotent T -sequence of center a and diameter r.

Proof. Let r ∈]δ(a,D),diam(D)]. We will construct an increasing idem-

potent T -sequence (Tn)n∈N of D, of center a and diameter r.

Let J =]δ(a,D),diam(D)[∩|K|, and let (rn)n∈N, (r′n)n∈N be sequences

of J satisfying rn < r′n < rn+1, limn→∞ rn = r. By hypothesis, either the

residue class field K of K is not countable, or |K| is not.
First, we suppose that |K| is not countable. Let n be fixed. By Lemma

7.5.9, there exists ρn > 0 together with an infinite family of circles C(a, r),

with rn < r < r′n, every one of them contains at least one hole of diameter

bigger than ρn. Let qn ∈ N satisfy

(1)
(
rn
r′n

)qn r′n+1

ρn+1
< 1

n+1 .
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Thus, we have defined the sequences (ρn)n∈N, (qn)n∈N. Now, for each

n ∈ N, we put tn =
∑n

h=1 qh. From above, we can clearly find qn circles

C(a, dm)tn≤m<tn+1 , with rn < dm < dm+1 < r′n, which all contain at

least one hole Tm of diameter bigger than ρn. Then by definition, Tm is

included in C(a, dm) while Th∩C(a, dm) = ∅ whenever h �= m. Besides when

tn ≤ m < tn+1, by hypothesis we have diam(Tm) ≥ ρn. Thus, by (1) the

weighted sequence (Tm, 1) is seen to satisfy

dm
diam(Tm)

m∏
j=1

dj
dm

≤ 1

n
whenever tn ≤ m < tn+1.

This shows that we have

lim
m→∞

dm
diam(Tm)

∏ dj
dm

= 0

and therefore the weighted sequence (Tm, 1) is an idempotent T -sequence.

Now we suppose that the residue class field K is not countable. By

Lemma 7.5.9, for each n ∈ N, there exist ρn > 0 together with an infinite

family of classes of C(a, rn), such that each contains at least one hole of

diameter bigger than ρn. In the same way as the previous case, for each

n ∈ N, we take qn ∈ N satisfying (1) again and then, we have defined the

sequences (ρn)n∈N, (qn)n∈N. For each n ∈ N, we put tn =
∑n

h=1 qh. Then in

C(a, rn), we can clearly find qn different classes such that each contains at

least one hole of diameter bigger than ρn. Let (Tm)tn≤m<tn+1 be these holes.

Thus, by definition, we have

(2) δ(Tj , Th) = rn whenever h, j such that tn ≤ h < tn+1, tn ≤ j < tn+1,

h �= j.

By (2), it is easily checked that γD(a, rn, qn) ≤ rn
ρn
. Therefore the weighted

sequence (Tm, 1)m∈N is an idempotent T -sequence because by (1) we have

γD(a, rn, qn)

n∏
j=1

( rj
rn

)qj ≤ 1

n
.

Symmetrically, we can prove the existence of a decreasing idempotent T -

sequence of center a and diameter r: in the proof, we just have to replace

(1) by

(1)′
(
r′n
rn

)qn rn+1

ρn+1
< 1

n+1 .

This finishes the proof of Theorem 7.5.10. �
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Lemma 7.5.11. Put s = diam(D) and let D admit a partition of the form

(B(Fi))i∈I where each Fi is an increasing T -filter, and assume that D has

no other T -filter. Let G be the D-peripheral circular filter. Then I(Fi) =

I(G) ∀i ∈ I.

Proof. Let i ∈ I be fixed, let ai be a center of Fi, and let ri = diam(Fi).
Let f ∈ I(Fi), so we have ϕai,ri(f) = 0. Suppose there exists r > ri such

that ϕai,r(f) > 0. Let u = inf{r | ϕai,r(f) > 0}. Then f is strictly vanishing

along the decreasing filter of center ai and diameter u, so this filter is a T -

filter, a contradiction to the hypothesis. Consequently, we have ϕai,s(f) = 0,

and therefore I(Fi) ⊂ I(G).
Now, let f ∈ {I(G), so we have ϕai,r(f) = 0. Suppose that ϕai,ri(f) > 0.

Since ϕai,r(f) = 0, we can consider u = inf{r | ϕai,r(f) = 0}. Then f is

strictly vanishing along the increasing filter of center ai and diameter u, so

this filter is a T -filter, a contradiction to the hypothesis. Consequently, we

have ϕai,ri(f) = 0, and therefore I(Fi) = I(G). �

Corollary 7.5.12. Let a ∈ D and r > 0 such that D ∩ d(a, r−) admit a

partition of the form (B(Fi))i∈I where each Fi is an increasing T -filter,, and

assume that every other T -filter on D∩ d(a, r−) surrounds all the Fi. Then,
I(Fi) = I(Fj) ∀i, j ∈ I.

Definitions and notations: If F is a circular filter on D, of center a and

diameter r, we will denote by Q(F ,D) the set d(a, r) ∩D. If F is a circular

filter with no center, we put Q(F ,D) = ∅.
Given a monotonous filter F , we will denote by tcfF the unique circular

filter less thin than F .

A circular filter F will be said to surround a circular filter G (resp.,

a monotonous filter G) if G is secant with Q(F ,D), or if G = F (resp.,

G = tcfF).

A monotonous filter F will be said to surround a circular filter (resp., a

monotonous filter) G if F̌ surrounds G (resp., tcfF surrounds tcfG).
A monotonous filter or a circular filter F will be said to strictly surround a

monotonous or a circular filter G if F surrounds G and if diam(F) �= diam(G).
A partition (Ai)i∈I of D will be said to be T -optimal if for each i ∈ I,

there exists an increasing T -filter Fi on D which is not surrounded by any

increasing T -filter different from Fi, such that Ai = B(Fi).
If D admits a T -optimal partition B(Fi)i∈I , this partition will be said to

be T -specific if for every decreasing T -filter G on D there exists h ∈ I such

that G is secant with B(Fh)).
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A circular filter F on D will be said to be distinguished if it satisfies the

following two statements:

(i) Either Q(F ,D) is empty, or it admits a T -specific partition.

(ii) Either Q(F ,D) = D, or D admits a decreasing T -filter thinner than F .

Let F be a distinguished circular filter on D such that Q(F ,D) �= ∅
and let B(Fi)i∈I be the T -specific partition of Q(F ,D). The family of the

increasing T -filters (Fi)i∈I will be called the T -family of F , and the Fi (i ∈ I)

will be called the increasing T -filters of F .

A distinguished circular filter F on D will be said to be regular if either

Q(F ,D) = ∅, or Q(F ,D) �= ∅, and all the increasing T -filters of F have the

same diameter.

A distinguished circular filter F on D that is not regular will be said to

be irregular.

Theorem 7.5.14 will be useful in strongly valued fields. We first need to

notice some basic results. We need to notice this basic lemma.

Lemma 7.5.13. Let L be a metric space whose distance is denoted by σ and

let (Ai)i∈I be a family of closed subsets of L. If there exists r > 0 such that

σ(Ai, Aj) ≥ r for every i, j ∈ I, such that i �= j, then
⋃
i∈I Ai is closed in L.

Theorem 7.5.14. If K is strongly valued, every distinguished circular filter

is regular. If K is weakly valued, there exist closed bounded infraconnected sets

with an irregular distinguished circular filter (in particular, we can construct

a closed bounded infraconnected set with an irregular distinguished circular

filter of diameter 1 included in d(0, 1−)).

Proof. First we suppose K strongly valued and we suppose that D admits

an irregular distinguished circular filter F of diameter t. Hence Q(F ,D)

admits a T -specific partition B(Fi)i∈I with a certain Fh of diameter s ∈]0, t[.
Let a be a center of Fh. For every � ∈]s, t[∩|K|, for every b ∈ C(a, �) ∩ D,

b belongs to a certain set of the form B(Fj) included in B(a, �) because by

hypothesis we have B(Fj)∩ B(Fh) = ∅. Hence d(b, �−) does contain holes of

D. This way, we see that for every � ∈]s, t[∩|K|, every class of B(a, �) contains
at least one hole of D. Therefore, by Theorem 7.5.10, D admits an increasing

and a decreasing T -filter of center a and diameter �, a contradiction to the

hypothesis “F distinguished”.

Now we supposeK weakly valued and we will construct an infraconnected

set E with an irregular distinguished circular filter.
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First, we will construct a model of sets B(u) for u ∈]0, 1[ that will be

used in the construction of E. Let (an)n∈N be a sequence in K satisfying for

all n ∈ N
∗

(1) u√
n+1

< v(an) ≤ u√
n
.

We notice that the sequence v(an)n∈N is strictly decreasing, and obviously

positive. Next, for every n ∈ N, we put ρn = ω
−u

√
n

2 , Tn = d(an, ρ
−
n ), and

N(u) = d(0, 1−) \
(⋃∞

n=0 Tn

)
. Thus, by definition, the only holes of N(u)

which are included in d(0, 1−) are the Tn and then N(u) admits a simple

pierced filter T of center 0 and diameter 1. We are going to check that T is

a T -filter. For each n ∈ N, we put dn = |an|. By (1) we check

(2)
∑n−1

j=1 log
(
dn
dj

)
≥∑n−1

j=1
u√
j+1

− nu√
n
≥ u(

√
n− 2

√
2).

Hence we have

n−1∑
j=1

log
(dn
dj

)
− log

(dn
ρn

)
≥ u(

√
n− 2

√
2)− u√

n
+
u
√
n√
2

and then by (2) it is seen that

lim
n→∞

(n−1∑
j=1

log
(dn
dj

)
− log

(dn
ρn

))
= +∞.

Since T is a simple increasing filter, this is sufficient to prove that it is a

T -filter.

Now for j = 1, . . . , q let ej ∈ Tnj with the Tnj not necessarily all different,

and let P (x) =
∏q
j=1(x− ej). We want to consider

∥∥∥ 1
P

∥∥∥
<B(u)

.

First, we assume that at least one index � satisfies n� ≥ q, and then

clearly we have

log
∥∥ 1
P

∥∥
N(u)

≥ ∥∥ 1

x− e�

∥∥
N(u)

= − log(ρn�
) ≥ u

√
q

2

Now we assume that nj < q for all j = 1, . . . , q. Then when |x| ≤ |aq| we have
|P (x)| ≤ |aq|q hence log

∥∥ 1
P

∥∥
N(u)

≥ uq log(dq) ≥ u
√
q. Thus, in both cases we

have proven log
∥∥ 1
P

∥∥
N(u)

≥ u
√
q

2 . As a consequence we have

(3) ϑ(B(u), q) ≥ u
√
q

2 .
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Now since |K| is countable, there exists a bijection b from |K| onto

N. For every r ∈ |K| we put φ(r) = 4b(r), and B(r) = b(r)φ(r). It is

seen that B is injective. The set E we want to construct should satisfy

log(γE(0, r, q)) ≥ B(r)
√
q for every r ∈]12 , 1[∩|K| and q ∈ N. We fix r ∈

]0, 12 [∩|K|. Since K is countable we can find a sequence (βn)n∈N∗ in C(0, r)

such that the family of disks (d(βn, r
−))n∈N makes a partition of C(0, r).

For each n ∈ N
∗ we put ψn,r(x) = βn(1 + x). For every u ∈]0, 1[ it is

seen that the set ψn,r(B(u)) is an infraconnected subset of d(βn, r
−) which

admits an increasing T -filter of center βn and diameter r.

Now we put An,r = ψn,r(B(2n+2B(r))), (n ∈ N), Er =
⋃
n∈NAn,r, and

finally I =]12 , 1[∩|K|, and E =
⋃
r∈I Er. Then E is obviously bounded.

Besides, by Lemma 7.5.13, it is clearly closed because δ(Ar,n, Ar′,n′) ≥ 1
2

for all (r, n) �= (r′, n′).
Finally we check that E is infraconnected. Let a ∈ E, and let (n, r) be

the couple such that a ∈ Ar,n. If u ∈]0, r[∩|K|, there exists x ∈ An,r such

that |x − a| = u. If u ∈ [r, 1[∩|K|, then any x ∈ An,u satisfies |x − a| = u.

We fix r ∈ I, q ∈ N and ε > 0. We will study γE(0, r, q). By Corollary 7.4.4

we can find indices n1, . . . , nk ∈ N together with strictly positive integers

q1, . . . qk satisfying

(4)
∑k

j=1 qj = q, and

(5) log(γE(0, r, q)) + ε ≥ log(ϑ(Ar,nj ,j ))

By Lemma 7.4.3, we know that for every s ∈ N we have ϑ(Ar,n, s) =

ϑ(B(2n+2B(r)), s). Hence by (3) we have

(6) ϑ(Ar,n, s) ≥ 2n+1B(r)
√
s.

Hence by (5), (6), we obtain

(7) log(γE(0, r, q)) + ε ≥ 2nj+1√qjB(r) whenever j = 1, . . . , k.

From (7) we can deduce

k∑
j=1

2−nj−1
( log(γE(0, r, q)) + ε

B(r)

)2≥
k∑
j=1

qj = q.

But since ni �= nj whenever i �= j, we have
∑k

j=1 2
−nj−1 <

∑∞
n=0 2

−n−1 = 1.

So we obtain q ≤
(
log(γE(0,r,q))+ε

B(r)

)2
. Actually ε was chosen arbitrarily, hence

we have

(8) q ≤
(
log(γE(0,r,q))

B(r)

)2
.
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Now, we will show that the circular filter G of center 0 and diameter 1 is

an irregular distinguished circular filter on E. For each couple (n, r) ∈ N× I
we denote by Fn,r the increasing T -filter of An,r, that obviously defines a

T -filter on E. Clearly the family (B(Fn,r))(n,r)∈N×I makes a partition of

E. Hence, to prove that G is an irregular distinguished circular filter, it is

sufficient to show that this partition is T -specific, i.e., none of the Fn,r is

surrounded by any T -filter F ′ �= Fn,r.
Indeed suppose that certain Fn,ρ is surrounded by a T -filter F ′ �= Fn,ρ

and let r = diam(F ′). If F ′ is decreasing then P(F ′) = d(0, r), hence 0 is a

center of F ′. If F ′ is increasing and different from Fn,ρ, then B(F ′) contains
B(Fn,ρ) and has a diameter ρ < r, hence 0 is a center of F ′. Thus, we have

checked that F ′ is a T -filter of center 0 and diameter r.

First we will suppose F ′ increasing. Hence E admits an increasing T -

sequence of center 0 and diameter r. Let C(0, rm) be a sequence of circles

carrying this T -sequence. So, there exists a sequence of strictly positive

integers (qm)m∈N such that

lim
m→∞(− log(γE(0, rm, qm))) +

m−1∑
j=0

qj log
(rm
rj

)
= +∞.

Let a = − log r0. Trivially we have a
∑m−1

j=0 qj ≥ log(γE(0, rm, qm)) and

therefore by (8) we obtain

(9) a
∑m−1

j=0 qj ≥ √
qm B(rm).

For every m ∈ N we put h(m) = sup0≤j<m qj. By (9) we have am h(m) ≥√
qm B(rm) hence

(10) qm ≤
(
am h(m)
B(rm)

)2
.

Let m ∈ N be fixed. Let w0, . . . , ws be the ranks such that h(wj) = qwj with

w0 = h(m), w1 = h(m− 1) and w(s) = h(0). By (10) each h(wj) satisfies

h(wj) ≤
(2a wj h(wj−1)

B(rwj)

)2
(1 ≤ j ≤ s).

For convenience we put σ(m) = B(rm) (m ∈ N), and θ(n) = 2n (n ∈ N). By

induction on Relations (10) we shortly obtain:

(11) qm ≤
(

m
σ(m)

)2∏s
j=1

(
2a wj

σ(wj)

)θ(j+1)
.
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Now we notice that wj < m for every j = 1, . . . , s and that
∑s

j=0 2
j+1 ≤ 2m

because s ≤ m. So by (11) we have

(12) qm ≤ (am)θ(m+2)

σ(m)2
for every m ∈ N.

Let (τm)m∈N be the sequence defined in N as τm = b(rm) . Since the mapping

b is injective, so is the sequence (τm)m∈N. Therefore, as it takes values in N,

it is seen that the inequality τm ≥ m holds for infinitely many indices. Hence

there exists a subsequence (τmt)t∈N such that τmt ≥ mt whenever t ∈ N.

For convenience we put ν(t) = mt. By (12) we obtain

qν(t) ≤
(aν(t))θ(ν(t)+2)

τ(ν(t))2
≤ (aν(t))θ(ν(t)+2)

(ν(t))2φ(ν(t))
.

Since the sequence (ν(t))t∈N goes to +∞, it is seen that qν(t) = 0 when

t is big enough and then this contradicts the definition of the qm. So this

finishes proving that E does not admit any increasing T -sequence of center

0. Symmetrically, we can show that E does not admit any decreasing T -

sequence of center 0. Hence we have proven that the distinguished circular

filter is irregular. �

Remark. Cp is weakly valued. Indeed, the valuation group of Cp is

isomorphic to Q and by [28, Theorem 5.11], the residue class field of Cp

is an algebraic closure of lFp, and therefore is countable.

7.6. Characteristic property of T -filters

Throughout this chapter, D is infraconnected.

We will prove that there exist elements strictly vanishing along a

monotonous filter F if and only if F is a T -filter. It is quite easy to show that

a pierced filter admitting strictly vanishing elements is a T -filter (Proposition

7.6.1). The big problem consists of proving that given any T -filter, there do

exist analytic elements strictly vanishing along it (Theorem 7.6.2, [20, 23]).

Proposition 7.6.1, roughly, was proven separately and simultaneously by

E. Motzkin and Ph. Robba [40], and by the author in March 1969 [20, 23]

(however, Motzkin–Robba’s claim was not stated in terms of T -filters, but

in terms of sequences of holes that look like T -sequences).

Proposition 7.6.1. Let F be a monotonous filter on D. Let f ∈ H(D) be

strictly vanishing along F . Then F is a T -filter.

Proof. Let us supposeF to be increasing, of center a and diameter S. With

no loss of generality we may assume a = 0. Let λ = log S. There exists ν < λ
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such that Ψ(f, μ) > −∞ ∀μ ∈]ν, λ[ while Ψ(f, λ) = −∞. Let log(r) = ν.

Hence the function Ψ(f, .) is bounded in every interval [ν, ξ] with ξ ∈]ν, λ[
and therefore by Proposition 7.2.2, the equality Ψ(f(x)) = Ψ(f,Ψ(x)) holds

in all ofD∩Γ(0, r, S) but inside finitely many classes of circles Cm = C(0, rm)

with rm < rm+1, limmto∞ rm = S.

We fix m ∈ N and take r′, r′′ satisfying r ≤ r′ < rm < r′′ < S. If

D∩Cm �= ∅ we put θm = ‖f‖D∩Cm and ifD∩Cm = ∅ we put θm = Dϕ0,rm(f).

Since Ψ(f, μ) is bounded in [log r′, log r′′] by a constant M we may find

h ∈ R(D) such that log(t‖h− f‖D) < −M . Hence we have

(1) Dϕ0,rm(f) = Dϕ0,rm(h)

and if D ∩ Cm �= ∅ we have

(2) ‖h‖Cm∩Dm = ‖f‖Cm∩Dm = θm.

Let (Tm,i)1≤i≤s(m) be the holes ofD inside Cm which contain at least as many

poles as many zeros and, for each one, let qm,i be the difference between the

number of the poles and the number of the zeros (taking multiplicities into

account). Let qm =
∑s(m)

i=1 qm,i. Then we know that

(3) Ψ′l(h, log rm)−Ψ′r(h, log rm) ≥ qm.

By Proposition 7.4.5 and by Relation (1) we have

(4) θm ≥ γD(0, rm, qm)Dϕ0,rm(h)

when D ∩Cm �= ∅ and θm = Dϕ0,rm(h) when D ∩ Cm = ∅.
Hence Relation (4) is true anyway. In terms of valuations (4) is equiv-

alent to log θm ≥ log γD(0, rm, qm) + Ψ(f, log rm). Now by (3) we see that

Ψ(f, log rm) ≥ Ψ(f, log rm−1)− qm−1(log rm − log rm−1). Hence by induc-

tion we can easily obtain

Ψ(f, log rm) ≥ Ψ(f, log r1)−
m−1∑
j=1

qj(log rm − log rj),

and finally − log θm ≤ log γD(0, rm, qm) +
∑m−1

j=1 qj(log rm − log rj).

Since f is vanishing along F , we have limm→∞(log θm) = −∞ hence

limm→∞ log γD(0, rm, qm)−
∑m−1

j=1 qj(log rm− log rj) = −∞. This just shows

F to be an increasing T -filter. A symmetric reasoning is made when F is a

decreasing filter equipped with a center.

Now let F be decreasing with no center. Then in K̂ we denote by

(d(αj , ρj))j∈J the family of the holes of D and we put d(a, r) = D̃ if D
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is bounded. If D is bounded (resp., unbounded), in K̂ we put

D̂ = d̂(a, r) \
(⋃
j∈J

d̂(αj , ρ
−
j )
) (

resp., D̂ = K̂ \
(⋃
j∈J

d̂(αj , ρ
−
j )
))
.

In K̂, F has a center a. Then the filter F̂ of center a and diameter S on

D̂ is a T -filter because f belongs to H
K̂
(D̂) and is strictly vanishing along

F̂ . Hence there exists a decreasing T -sequence (T̂m,i, mq,i) 1≤i≤s(m)
m∈N

of center

a and diameter R that runs F̂ . But for each (m, i), T̂m,i ∩ K is a hole

Tm,i of D, and then, by Remark in Chapter 7.6. the weighted sequence

(Tm,i, mq,i) 1≤i≤s(m)
m∈N

is a T -sequence of D. �

Corollary 7.6.2. Let F be a monotonous filter on D. There exist elements

of H(D) strictly vanishing along F if and only if F is a T -filter.

7.7. Applications of T -filters

We will apply T -filters for characterizing the main algebraic properties of

the algebras H(D): Noetherian algebras H(D), existence of divisors of zero.

We will also characterize the property for a set E in K to be analytic (i.e.,

if an analytic element is equal to zero inside a disk, it is identically zero

everywhere) [20, 38, 40].

Notation: Throughout the chapter, D is an infraconnected closed and

bounded subset of K.

By Propositions 7.2.11, 7.6.1 and 7.6.2, Lemma 7.7.1 is immediate:

Proposition 7.7.1. Let b ∈ D, l > 0 and let f ∈ H(D) satisfy f(b) �= 0

and Dϕb,l = 0. There exists an increasing T -filter F of center b and diameter

t ∈]0, l[ such that f is strictly vanishing along F and satisfies Dϕb,s(f) > 0

for every s ∈]0, t[.
Let a ∈ D̃ and let r, s ∈ R satisfy δ(a,D) ≤ r ≤ s ≤ diam(D). There

exists f ∈ H(D) satisfying Dϕa,s(f) > 0, Dϕa,r(f) = 0, (resp., Dϕa,r(f) >

0, Dϕa,s(f) = 0) if and only if there exists an increasing (resp., a decreasing)

T -filter of center a and diameter t ∈]r, s], (resp., t ∈ [r, s[ ). Moreover, if f

satisfies Dϕa,s(f) > 0, Dϕa,r(f) = 0, (resp., Dϕa,s(f) = 0, Dϕa,r(f) > 0)

then there exists an increasing (resp., a decreasing) T -filter F of center a and

diameter t ∈]r, s], (resp., t ∈ [r, s[) such that f is strictly vanishing along F .
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Theorem 7.7.2. Let f ∈ H(D) \ {0}. Then f is not quasi-minorated if

and only if there exists a T -filter F on D such that f is strictly vanishing

along F .

Proof. Suppose f ∈ H(D) is not quasi-minorated. Then by Proposition

7.2.11, f is strictly vanishing along a monotonous filter. And by Theorem

7.4.13, this filter is a T -filter. �

Corollary 7.7.3. Let D be open A non-zero element of H(D) is quasi-

invertible if and only if it is not strictly vanishing along a T -filter.

Corollary 7.7.4. Every non-zero element of H(D) is quasi-minorated if

and only if D has no T -filter.

Theorem 7.7.5. Every non-zero element of H(D) is quasi-invertible if and

only if D is open, with no T -filter.

Proof. Suppose that D is open with no T -filter. By Theorem 7.7.1, every

non-identically zero element is quasi-minorated. Therefore the set of its zeros

is finite. But then, since D is open, it is quasi-invertible. Now, suppose that

D ha a T -filter: there exist elements that are not quasi-minorated and hence,

are not quasi-invertible. Finally, suppose that D is not open and let a be

a point of D that us not interior to D. Without loss of generality, we can

suppose that a = 0. Then any quasi-minorated element vanishing at 0 is not

quasi-invertible. �

Theorem 7.7.6. Let A be an infraconnected subset of D not reduced to a

single point and let b ∈ D \ A. Let f ∈ H(D) satisfy f(u) = 0 for all u ∈ A

and f(b) �= 0. Then, f is strictly vanishing along a T -filter F on D such

that A ⊂ P(F) and b ∈ B(F).

Proof. Let a ∈ A, let r = diam(A), and let � = |a − b|. Since A is not

reduced to a single point, we have r > 0.

First suppose � ≤ r. Since A is infraconnected, we have Dϕb,�(f) =

Aϕb,�(f) = 0. But since f(b) �= 0, there does exists t ∈]0, �] such that

Dϕb,s(f) > 0 for all s ∈]0, t[, and Dϕb,t(f) = 0. Hence, f is strictly vanishing

along the increasing filter F of center b and diameter t, and therefore A is

included in P(F).

Now, suppose � > r. If Dϕa,�(f) = 0 then Dϕb,�(f) = 0 hence there

exists an increasing T -filter F of center b and diameter t ∈]0, �], so we have

A ⊂ P(F). Hence it only remains to consider the case Dϕa,�(f) > 0. But

then, there exists t ∈ [r, �[ such that Dϕa,s(f) > 0 for all s ∈]t, �[ and
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Dϕa,t(f) = 0. Hence f is strictly vanishing along a decreasing T -filter F of

center a and diameter t, and therefore A is included in P(F). �

Corollary 7.7.7. Let D have no T -filter. Let a ∈ D and let r ∈ R
∗
+. Let

f ∈ H(D) satisfy f(x) = 0 whenever x ∈ d(a, r)∩D . Then f is identically 0.

Theorem 7.7.8. Let D have a unique T -filter F and let f ∈ H(D), f �= 0,

be vanishing along F . Then f is strictly vanishing along F and satisfies

f(x) = 0 whenever x ∈ P(F).

Proof. Since f is not quasi-minorated, by Theorem 7.7.1, there exists a

T -filter G such that f is strictly vanishing along G. But F is the unique

T -filter of D, hence F = G. Now let D′ = P(F) and let f̃ be the restriction

of f to D′. Let G be the circular filter on D less thin than F . Then G is

secant with D′, and we have D′φG(f̃) = 0. Hence f̃ is not quasi-minorated

in H(D′) and then f̃ is either strictly vanishing along a T -filter of D′, or
identically zero. But since D has no T -filter other than F ,D′ has no T -filter
hence by Corollary 7.7.7, we have f(x) = 0 whenever x ∈ D′.

Analytic sets were introduced by Krasner, Motzkin and Robba. They

were characterized in [20, 40]. �

Theorem 7.7.9. Let E be a subset of K. Then E is analytic if and only if

E is infraconnected such that any T -filter F on E satisfies P(F) = ∅.

Proof. If E is not infraconnected, it admits an empty annulus Γ(a, r′, r”)
and then by Theorem 7.3.14, H(E) contains the characteristic function of

I(Γ(a, r′, r”)) = d(a, r′)∩E, hence clearly D is not analytic. Now let D have

a T -filter F with a not empty beach.

We first suppose F increasing, of center a and diameter S. By Theorem

7.7.2, there exists f ∈ H(E) strictly vanishing along F such that f(x) = 0

whenever x ∈ P(F). Now let b ∈ D such that |a − b| ≥ S and let s ∈]0, S[.
We have d(b, s)∩D ⊂ P(F) and therefore f(x) = 0 whenever x ∈ d(b, s)∩D,

while f is not identically zero in d(a, S−). Hence E is not analytic.

We now suppose F is decreasing and has diameter S. Since P(F) �= ∅, F
admits a center a ∈ D and then by Theorem 7.7.2, there exists f ∈ H(E)

strictly vanishing along F , such that f(x) = 0 whenever x ∈ d(a, S) ∩D.

Now reciprocally, we suppose E not to be analytic. There exist f ∈
H(D), a, b ∈ E and r > 0 such that f(b) �= 0, and f(x) = 0 whenever

x ∈ d(a, r) ∩ D. Hence by Proposition 7.7.6, there exists a T -filter F such

that d(a, r) ⊂ P(F). �
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T -filters let us characterize the algebras H(E) which are principal ideal

rings.

Theorem 7.7.10. Let E be a closed and bounded subset of K. The following

five properties (a), (b), (c), (d), (e) are equivalent.

(a) Every ideal of H(E) is generated by a polynomial whose zeros belong

to
◦
E.

(b) H(E) is a principal ideal algebra with no idempotent different from 0

and 1.

(c) H(E) is a Noetherian algebra with no idempotent different from 0 and 1.

(d) E is infraconnected, with no T -filter and E is open.

(e) Every element of H(E) is quasi-invertible.

Proof. Obviously (a) implies (b) and (b) implies (c). Next, by Theorem

7.3.19, (e) implies (a). We check that (d) implies (e) by Theorem 7.7.5. Hence

we only have to show that (c) implies (d). For this, we suppose that (d) is

not satisfied.

First, if E is not infraconnected by Theorem 7.3.14, H(E) admits

idempotents other than 0 and 1 whence obviously (c) is not satisfied.

Henceforth, we assumeE to be infraconnected. If E is not open, E admits

a pierced Cauchy filter F . Let a be its limit. Since E is closed, a belongs

to E, hence x − a is not quasi-invertible. Now we suppose that E admits

a T -filter F . Thus, E admits a pierced filter F with elements f ∈ H(E)

properly vanishing along F . Let H be the ideal of the f ∈ H(E) such that

limF f(x) = 0. We will prove that H is not of finite type. Indeed, suppose

that H is of finite type and let g1, . . . , gq be a system of generators. By

Proposition 7.3.19 there exists f ∈ H and a sequence zn in E thinner than

F satisfying

(α) g1(zn) �= 0 whenever n ∈ N, and

(β) limn→∞
( |f(zn)|
max1≤i≤q |gi(zn)|

)
= +∞.

For every n ∈ N let tn = max1≤i≤q |gi(zn)|. Since H admits g1, . . . , gq
as a system of generators, there exist h1, . . . , hq ∈ H(E) such that f =

g1h1 + · · · + gqhq, which is impossible since the hi are bounded. Therefore

we have proven that H is not of finite type. This finishes showing that (c)

implies (d). This ends the proof of Theorem 7.7.10. �

Theorem 7.7.11. Let E be a closed and bounded subset of K. The following

statements are equivalent.
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(a) Every ideal of H(E) is principal.

(b) H(E) is Noetherian

(c) E is open, has finitely many infraconnected components, and each one

has no T -filter.

Besides, when Statements (a), (b), (c) are satisfied, the algebra H(E) is

isomorphic to the direct product H(E1) × · · · × H(Eq) with E1, . . . , Eq the

infraconnected components of E.

Proof. As (a) implies (b), we first suppose (b) to be satisfied and will

show (c). Obviously H(E) has finitely many idempotents, hence it has

finitely many empty annuli. Therefore, E has finitely many infraconnected

components, E1, . . . , Eq. Then by Theorem 7.3.14, for each i = 1, . . . , q the

characteristic function ui of Ei belongs to H(E). But for each i = 1, . . . , q,

H(Ei) is isometrically isomorphic to uiH(E). Besides by definition the

(ui)1≤i≤q consists of a system of idempotents such that uiuj = 0 whenever

i �= j and
∑n

i=1 ui = 1. Hence H(E) is isometrically isomorphic to the

direct product u1H(E) × · · · × uqH(E). Thus, finally, we see that H(E) is

isometrically isomorphic to H(E1) × · · · × H(Eq). Obviously, each algebra

H(Ei) must be Noetherian. But then, since Ei is infraconnected, H(Ei) has

no idempotent other than 0 and 1, and then, by Theorem 7.7.10, Ei is open

and Ei has no T -filter. Hence we have shown that E is open, that E has

finitely many infraconnected components and that each one has no T -filter.

Thus, we have shown (c) is satisfied. Further, we have seen that Statements

(a), (b), (c), do imply that H(E) is isomorphic to H(E1)× · · · ×H(Eq).

Now we suppose (c) satisfied and denote by Ei, (1 ≤ i ≤ q), the

infraconnected components of E. Hence every algebra H(Ei) is a principal

ideal algebra because Ei has no T -filter and Ei is open. Besides, by Theorem

7.3.14, for each i = 1, . . . , q, the characteristic function ui of Ei belongs to

H(E). As previously, the (ui)1≤i≤q consists of a system of idempotents such

that uiuj = 0 whenever i �= j and
∑n

i=1 ui = 1. Hence H(E) is isometrically

isomorphic to the direct product H(E1)× · · · ×H(Eq). Therefore, it is seen

that every ideal of H(E) is principal and therefore (a) is satisfied. This ends

the proof of Theorem 7.7.11. �

Now we will characterize the sets E such that H(E) is an algebra with

no divisors of zero.

Definition: Two monotonous filters F1,F2 will be said to be complemen-

tary if P(F1) ∪ P(F2) = D.
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Theorem 7.7.12. Let E be a subset of K. There exist f and g ∈ H(E) not

identically equal to zero such that fg is identically zero if and only if: either

E is not infraconnected, or E has two complementary T -filters.

Proof. If E is not infraconnected, it admits an empty annulus Γ(a, r′, r′′)
and then the characteristic functions u of I(Γ(a, r′, r′′)) (resp., w = 1− u of

E(Γ(a, r′, r′′s))) belong to H(E) and satisfy uw = 0 though they both are

not identically zero.

If E is infraconnected with two complementary T -filters F1,F2, there

exists f1 (resp., f2) strictly vanishing along F1 (resp., F2) and identically

equal to zero in P(F1) (resp., P(F2)) hence we have f1(x)f2(x) = 0 whenever

x ∈ P(F1) ∪ P(F2) hence whenever x ∈ E.

Now we suppose E infraconnected and we suppose that there exist f1 and

f2 not identically equal to zero such that f1(x)f2(x) = 0 whenever x ∈ D.

Let a1 ∈ E be such that f1(a1) �= 0 and let a1 ∈ E be such that f2(a2) �= 0.

Let r = |a1 − a2|.
We first suppose that Eϕa1,r(f1) = 0. Then by Corollary 7.4.14, there

exists an increasing T -filter F1 of center a1 and diameter s ∈]0, r] such that

f1 is strictly vanishing along ϕa1,l(f1) �= 0, hence we have Eϕa1,l(f2) = 0.

If Eϕa2,r(f2) = 0, then f2 is strictly vanishing along an increasing T -filter

F2 of center a2 and diameter t ∈]0, r] and we have P(F1) ∪ P(F2) = D.

If Eϕa2,r(f2) �= 0, as Eϕa2,r(f2) = Eϕa1,r(f2), at the same time we have

Eϕa1,l(f2) = 0 and Eϕa1,r(f2) �= 0. Let t be the supremum of the set of

the ξ ≤ r such that Eϕa1,ξ(f2) = 0. Then f2 is strictly vanishing along a

decreasing T -filter F2 of center a1 and diameter t. Hence we have P(F1) ∪
P(F2) = E.

We now suppose that Eϕa1,r(f1) �= 0, hence Eϕa2,r(f1) �= 0 and then

we have Eϕa2,r(f2) = 0. Since f2(a2) �= 0 there exists l ∈]0, r[ such

that Eϕa2,l(f2) �= 0. Let s be the infimum of the set of the l such that

Eϕa,l(f2) = 0. We see that f2 is strictly vanishing along an increasing T -filter

F2 of center a2 and diameter s and then we have Eϕa2,l(f1) = 0 whenever

l ∈]0, s[ hence f is strictly vanishing along a decreasing T -filter F1 of center

a2 and diameter t ∈ [s, r]. Finally we have P(F1)∪P(F2) = D. This ends the

proof. �

Corollary 7.7.13. Let E be a closed and bounded subset of K. The algebra

H(E) has no divisor of zero if and only if E is infraconnected with no pair

of complementary T -filters.

Theorem 7.7.14. Let F be a T -filter on D that admits no T -filter

complementary to F . Then I(F) = I0(F).
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Proof. Of course we suppose P(F) �= ∅. For instance, suppose F
decreasing, and let r = diam(F). Suppose that there exists f ∈ I(F)\I0(F),

and let a ∈ P(F) be such that f(a) �= 0. Since we have Dϕa,r(f) = 0,

by Lemma 7.7.1, D admits an increasing T -filter of center a and diameter

s ∈]0, r], which is obviously complementary to F . In the same way, if

F is increasing, we perform a symmetric proof. This ends the proof of

Theorem 7.7.14. �

As consequences of Theorems 7.7.9, 7.7.10, and Corollary 7.7.13, we have

Corollaries 7.7.15, and 7.7.16.

Corollary 7.7.15. If H(D) has no non-trivial idempotent and is

Noetherian, then D is analytic. If D is analytic, then H(D) has no divisors

of zero.

Corollary 7.7.16. If H(D) is Noetherian and has no divisors of zero, then

it is a principal ideal ring.

As a consequence of Theorem 7.5.14, we can give an answer to the

question whether there exist K-Banach algebras that are not multbijective.

Theorem 7.7.17. Let K be weakly valued. By Theorem 7.5.14, there exists a

closed bounded infraconnected subset D admitting an irregular distinguished

circular filter F such that D = Q(F). Let (Fi)i∈Jbe the T -family of F and

for each i ∈ J, let bi be a center of Fi and let ri be its diameter. Then, for

all i, j ∈ J such that |bi− bj | > max(ri, rj), ϕbi,ri and ϕbj ,rj are two distinct

multiplicative semi-norms admitting I(F) for kernel.

Proof. On the one hand, ϕbi,ri and ϕbj ,rj obviously are two distinct

multiplicative semi-norms admitting I(F) for kernel. On the other hand,

I(F) is a maximal ideal of H(D) because every a ∈ D belongs to a set

B(Fi) and hence I(F) is not included in I(a). �

7.8. The p-adic Fourier transform

Notation: Here, we assume K = Cp. For every integer s ∈ N, As will

denote the multiplicative group of the ps-th roots of 1, and A =
⋃
s∈NAs

will denote the multiplicative group of all the psth roots of 1 for any s ∈ N.

We define rs ∈]0, 1[ by

− log rs =
1

ps−1(p − 1)
(s ∈ N

∗).



March 25, 2022 8:35 Banach Algebras of Ultrametric Functions 9.61in x 6.69in b4542-ch07 page 198

198 Banach Algebras of Ultrametric Functions

Following classical results in p-adic analysis [23], for every s ∈ N
∗ we have

(a) As \ As−1 ⊂ C(1, rs),

(b) given any primitive psth root α of 1, then As =
⋃p−1
j=0 α

jAs−1,

(c) given any α ∈ As, the mapping θ defined in As by θ(x) = x − α is an

isometric bijection from As onto As.

Given n such that 1 < n < s, we denote by φs,n the canonical surjection

from As onto
As
An

.

Lemma 7.8.1 is easily deduced from Properties (a), (b), (c).

Lemma 7.8.1. Let n, s ∈ N satisfy 0 < n < s. The quotient group As
An

is

equipped with a distance η defined by ηφs,n(x), φs,n(y)) = |x − y| whenever
x, y ∈ As.

Notations: In As \ As−1 there exists a subset Es,n isometric to As
An
,

satisfying diam(Es,n) = rs−1, such that Es,n has ps−n elements.

Given two topological groups (A,+) and (B, ∗) we denote by Hom(A,B)

the group of the continuous homomorphisms from A into B.

Lemma 7.8.2. Let γ ∈ As. The group homomorphism φγ from (Z,+) into

(C∗
p, ·) defined as φγ(n) = γn is continuous with respect to the p-adic absolute

value on Z and on C
∗
p. Then φγ has continuation to a continuous group

homomorphism from (Zp,+) into (C∗
p, ·)

Proof. Indeed we have φγ(n) = 1 when |n| < p−s, hence the group

homomorphism φγ is continuous at 0 and therefore is continuous. As a

consequence, by continuity φγ has continuation to a continuous group

homomorphism from (Zp, ·) into (C∗
p, ·). �

Notation: Given γ ∈ A, we will denote by ψ∗
γ the unique continuous group

homomorphism from (Zp,+) into (C∗
p, ·) such that φ∗γ(n) = γn whenever

n ∈ Z.

Lemma 7.8.3. The mapping Y from A into Hom((Zp,+), (C∗
p, ·)) defined

as Y (γ) = φ∗γ is a group isomorphism.

Proof. First, we check that Y is injective. Indeed, if γ ∈ Ker(Y ) then

we have γn = 1 whenever n ∈ Z hence γ = 1. Second, we check that Y is

surjective. Let θ ∈ Hom((Zp,+), (C∗
p, ·)) and let γ = θ(1). It is seen that

θ(n) = γn whenever n ∈ Z, therefore by continuity we have θ = φ∗γ . �

Notations: In order to simplify the notations, henceforth we put γn =

φ∗γ(n) for all n ∈ Zp. Let R denote the filter of the complementaries of the
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finite subsets of A. Let L1(A) denote the Cp-Banach vector space of the

functions f from A into Cp such that limR f(x) = 0, equipped with the

norm ‖ · ‖ of uniform convergence on A.

Given f, g ∈ L1(A), the series
∑

λ∈A(f(λ) g(γλ
−1) is seen to converge.

We denote by f ∗ g the mapping from A into C
∗
p defined by f ∗ g(γ) =∑

λ∈A f(λ) g(γλ
−1). Thus, ∗ is a convolution on L1(A).

Lemma 7.8.4. L1(A) is equipped with a structure of Cp-Banach algebra

whose multiplication is ∗.
Proof. First, we check that f ∗ g belongs to L1(A) whenever f, g ∈ L1(A).

Indeed let ε ∈]0,+∞[. Every finite subset of A is clearly included in a

finite subgroup of A. Hence there exists a finite subgroup B of A such

that |f(λ)| ‖G‖ ≤ ε and |g(λ)| ‖f‖ ≤ ε whenever λ ∈ A \ B. Hence when

γ ∈ A \ B we see that either λ ∈ A \ B or γ λ−1 ∈ A \ B and then we

have |f(λ) g(γλ−1)| ≤ ε whenever λ ∈ A. This shows that limR f ∗ g(γ) = 0.

Thus, ∗ is an internal law in L1(A). Finally, formal calculations show that

L1(A) is a Cp-algebra with this law as a multiplication. �

Notation: Let B(Zp,Cp) be the Banach algebra of the continuous

functions from Zp into Cp. For every f ∈ L1(A), let F(f) be the mapping

from Zp into C
∗
p defined as

F(f)(n) =
∑
γ∈Γ

f(γ)γn.

Lemma 7.8.5. For all f ∈ L1(A), F(f) belongs to B(Zp,Cp).
Proof. Let u ∈ Zp. Let ε ∈]0,+∞[ and let As be a subgroup of A such

that |f(γ)| ≤ ε whenever γ ∈ A \ As. It is seen that γ(pq) = 1 whenever

γ ∈ As and q ≥ s. As a consequence we have γn = γu for all γ ∈ As when

|n − u| ≤ 1
ps and therefore |f(n) − f(u)| ≤ supγ∈A\As

|f(γ)| ≤ ε. Thus, we

have checked that F(f) ∈ B(Zp,Cp). �

Definition: For all f ∈ B(Zp,Cp), F(f) will be named the Fourier

Transform of f with respect to Zp.

The problem on whether F is injective was asked by Bernard de Mathan

and simultaneously got two different solutions in 1973 [2, 20]. Actually,

Yvette Amice showed this problem to be equivalent to a problem of T -filter.

Notations: Let ρ ∈]0, p− 1
(p−1) [ and let Dρ = Cp \ (

⋃
γ∈A d(γ, ρ)). Let G be

the increasing filter of center 1 and radius 1 on Dρ. By Properties (a), (b), the

set As \As−1 consists of (p−1)ps−1 points γ satisfying Ψ(γ−1) = − 1
ps−1(p−1)
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and −Ψ(γ−λ) ≥ 1
(p−1) whenever γ, λ ∈ A. Thus, it is seen that G is a pierced

filter of piercing ρ.

Theorem 7.8.6 (Y. Amice). If there exists an idempotent T -sequence

associated to G, then F is not injective.

Proof. We assume that there exists an idempotent T -sequence associated

to G. We notice that P(G) = Cp \ d(1, 1−). Since the d(γ, r−) are the only

holes of Dr, by Theorem 7.4.15, there exists g ∈ H(Dr), strictly vanishing

along G, equal to 0 in all of P(G), meromorphic on each hole d(γ, r−),
admitting each γ ∈ A as a pole of order 1 or 0 and having no other pole in

d(γ, r−). Hence g is of the form
∑

γ∈A
aγ

1−γx with limR aγ = 0, and certain

aλ �= 0. So we have

(1)
∑

γ∈A
aγ

1−γx =
∑

γ∈A aγ
∑∞

n=0(γx)
n.

Further, when x ∈ d(0, 1−), the series

∑
γ∈A

aγ

∞∑
n=0

(γx)n

is clearly equal to

∞∑
n=0

(∑
γ∈A

aγγ
n
)
xn.

This is a power series that by (1) is identically equal to zero, whenever

x ∈ d(0, r−). Hence we have

(2)
∑

γ∈A aγ γ
n = 0 for all n ∈ N.

Now, let f ∈ B(Zp,Cp) be defined as f(n) =
∑

γ∈A aγ γ
n. Since certain

aγ are different from zero, f is not identically zero. But by (2) we see that

F (f)(n) = 0 for all n ∈ N. Actually N is dense in Zp, and therefore we see

that f is identically zero in Zp. This ends the proof of Theorem 7.8.6. �

Theorem 7.8.7. G admits an idempotent T -sequence.

Proof. For each m ∈ N
∗, we put Sm = C(1, rm) ∩ D, we denote by

um the integral part of logm, and we put qm = pm−1−um. We know that

Am \ Am−1 ⊂ Sm and then by Lemma 7.8.1, Em,um has qm elements. Let

Em,um = (αm,j)1≤j≤qm, let ρ ∈]0, 1p [ and for every j = 1, ..., qm let Tm,j =

d(αm,j , ρ
−). We will prove the weighted sequence (Tm,j , 1)1≤j≤qm , m ∈ N to

be an idempotent T -sequence. For each m ∈ N
∗, let Qm be the qm-degree
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monic polynomial whose zeros are the (αm,j)1≤j≤qm, each one being a

simple zero, and let λm = ‖ 1
Qm

‖Sm(rm)
qm . We will prove the sequence

(λm) to be bounded. By Lemma 7.8.3, there exists α ∈ Em,um such

that ‖ 1
Qm

‖Sm = ϕα,ρ

(
1
Q

)
. Obviously we have (rm)

qm = ϕα,rm(Qm) hence

‖ 1
Qm

‖Sm (rm)
qm =

ϕα,rm (Qm)
ϕα,ρ(Qm) and therefore λm ≤ ϕα,rm (Qm)

ϕα,ρ(Qm) . In terms of

valuations we obtain

(1) log λm ≤ Ψα(Qm, log rm)−Ψα(Qm, log ρ).

We will compute Ψα(Qm, log rm)−Ψα(Qm, log ρ). We may put it in the form

(2)
(∑m

h=um+1Ψα(Qm, log rh) − Ψα(Qm, log rh−1)
)

+ Ψα(Qm, log rum) −
Ψα(Qm, log ρ)

Since Em,um is isometric to the quotient group Am
Aum

, it is seen thatQm admits

exactly ph−um zeros (taking multiplicities into account) inside d(α, rh) and

therefore we have

Ψα(Qm, log rh)−Ψα(Qm, log rh−1) = (log rh − log rh−1)p
h−1−um.

But actually

log rh − log rh−h =
1

p− 1

( 1

ph−1
− 1

ph

)
= − 1

ph−1
.

So we have

(3) Ψα(Qm, log rh)−Ψα(Qm, log rh−1) = p−um−1.

Next, since α is the only zero of Qm in d(α, r−um) we have

(4) Ψα(Qm, log rum)−Ψα(Qm, log ρ) = log(rum)− log(ρ)

= − log ρ− 1
(p−1)pum−1 .

Hence by (2), (3), (4) we obtain

(5) Ψα(Qm, log rm)−Ψα(Qm, log ρ)

= (m− um − 1)p−um−1 − log ρ− 1
(p−1)pum−1 .

Actually by definition we have pum−1 > m and then by (5) we obtain

(6) Ψα(Qm, log rm)−Ψα(Qm, log ρ) < log ρ+ 1.
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Thus, by (1) and (6), the sequence (λm) is clearly bounded. Then, bt

Lemma 7.4.6, it is seen that the weighted sequence (Tm,j , 1)1≤j≤qm,m∈N is a

T -sequence if and only if

(7) limm→∞
(∏m

j=1

(
rj
rm

)qj)
= 0.

For convenience we consider

Bm =

m∑
j=1

qj(log rm − log rj) =

m∑
j=1

pj−uj
( 1

(p− 1)(pj−1)
− 1

(p− 1)pm−1

)

=
1

p− 1

( m∑
j=1

p−uj+1 − pj−uj

pm−1

)
.

By definition we have pj < j hence

(8)
∑m

j=1 p
−uj+1 > p

∑m
j=1

1
j .

Besides, it is seen that

(9)
∑m

j=1
pj−uj

pm−1 <
∑m

j=1 p
j−m+1 < 1

p−1 .

Thus, by (8) and (9), we see that limm→∞Bm = +∞ and therefore (7) is

true. This ends the proof of Theorem 7.8.7. �

Corollary 7.8.8. F is not injective.
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Holomorphic Functional Calculus

8.1. Analytic elements on classic partitions

Classic partitions let us generalize the notion of holes for a subset D of K,

relatively to a disk containing D. So, we can generalize algebras of analytic

elements, a notion introduced in [22, 26].

Definitions: Given a closed set S ⊂ K, we call a classic partition of S a

partition of S of the form
(
d(bj , r

−
j )
)
j∈J . The disks d(bj , r

−
j ) are called the

holes of the partition.

Let O be a classic partition of d(a, r). A closed infraconnected set E

included in d(a, r), will be said to be a sub-O-set if every hole of E is a hole

of O. Moreover, a sub-O-set E will be called a O-set if Ẽ = d(a, r).

A weighted sequence (Tm,i, qm,i)1≤i≤km, m∈N of any O-set will be called

a weighted sequence of O. In particular, a T -sequence of any O-set will be

called a T -sequence of O, and an idempotent weighted sequence of any O-set

will be called an idempotent weighted sequence of O.

Let a ∈ K and r > 0, let S be a closed subset of d(a, r), and let O =(
d(bj , r

−
j )
)
j∈I be a classic partition of d(a, r) \ S. An annulus Γ(b, r′, r′′)

included in d(a, r) \ S will be said to be O-minorated if there exists λ > 0

such that rj ≥ λ for every j ∈ I such that d(bj , r
−
j ) ⊂ Γ(b, r′, r′′).

Remarks. Given a set D ⊂ K, the set D̃ \ D admits a unique classic

partition
(
d(bj , r

−
j )
)
j∈J such that rj = z(bj ,D) ∀j ∈ J , and then the disks

d(bj , r
−
j ) (j ∈ J) are just the holes of D. This partition will be called the

natural partition of D̃ \D.

Theorem 8.1.1 ([36]). Let O = (d(αj , r
−
j ))j∈J be a classic partition of the

annulus Γ(a, r′, r′′). There exists h ∈ J and a O-minorated annulus of the

form Γ(αh, rh, ρ) included in Γ(a, r′, r′′).

203
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Proof. Suppose the claim is false. Without loss of generality we can assume

a = 0. For every i ∈ J , we put Ti = d(αi, r
−
i ). Since our claim is false,

for every ε > 0, we can find an index i ∈ J such that ri < ε. Let us fix

ε > 0, and let h ∈ J be such that rh < min(ε, r′) and Let sh ∈]rh, rh + ε[.

Then Γ(αh, rh, sh) is included in Γ(a, r′, r′′) and is not included in any hole

Ti. Consequently, Γ(αh, rh, sh) admits a classic partition of the form Oh =

(Ti)i∈Jh , with Jh ⊂ J . Since our claim is false, we can find another index k ∈
Jh such that rk <

ε
2 . In this way, by induction we can construct a sequence

(in)nN of J such that Tin+1 ⊂ Γ(ain , rin , rin + ε
2n ) and rin < ε

2n ∀n ∈ N.

The sequence (αin) is a Cauchy sequence whose limit α obviously lies in

Γ(0, r′, r′′). Hence α belongs to a certain hole Tl. Therefore, when n is big

enough then αin lies in Tl, a contradiction to the definition of O. �

Proposition 8.1.2 is almost obvious.

Proposition 8.1.2. Let S ⊂ d(a, r) and let O be a classic partition of

d(a, r) \ S admitting a O-minorated annulus Γ(b, r′r′′). For all ρ ∈]r′, r′′[,
there exists an increasing idempotent T -sequence of O of center b and

diameter ρ, together with a decreasing idempotent T -sequence of O of same

center and diameter.

By a similar proof of Theorem 7.5.10 of Chapter 7, here we can state

Proposition 7.1.3.

Proposition 8.1.3. Let K be strongly valued. Let S be a bounded set

included in a disk d(a, r), and let O be a classic partition of d(a, r) \ S. We

assume that for every r ∈]δ(a, S),diam(S)[∩|K|, each class of C(a, r), except

maybe finitely many ones, contains at least one hole of O. Then for each

r ∈]δ(a, S),diam(S)] there exists in O an increasing idempotent T -sequence

and a decreasing idempotent T -sequence of center a and diameter r.

Corollary 8.1.4. Let K be strongly valued. Let O = (d(bj , r
−
j ))j∈J be

a classic partition of the annulus Γ(a, r′, r′′) and let s ∈]r′, r′′[. Then O
admits an increasing idempotent T -sequence and a decreasing idempotent

T -sequence of center a and diameter s.

Corollary 8.1.5. Let K be strongly valued. Let S be a countable set,

included in a disk d(a, r) and let O be a classic partition of d(a, r) \ S.
For every l ∈]0, r[, O admits an increasing and a decreasing idempotent

T -sequence of center a and diameter l.

Notations: Let D be a compact subset of Mult(K[x)) and let D = {a ∈
K | ϕa ∈ D}. The K-algebra R(D) is equipped with the semi-multiplicative



March 25, 2022 8:35 Banach Algebras of Ultrametric Functions 9.61in x 6.69in b4542-ch08 page 205

Holomorphic Functional Calculus 205

norm ‖ . ‖D defined as ‖h‖D = sup{ψ(h) | ψ ∈ D}. Then we check that

‖h‖D ≥ ‖h‖D ∀h ∈ R(D).

Notations: Let E be a closed subset of the disk d(a, r) and let D be a

closed subset of E. Let O = (d(bi, r
−
i )i∈J) be a classic partition of d(a, r)\E.

Let D = ω(W (D,O)). Then on R(D) we put ‖ . ‖D,O = ‖ . ‖D.
We will denote by H(D,O) the completion of K(x) for the norm ‖ . ‖D,O.

In particular, if D = ∅, we denote by H(O) the completion of K(x) for the

norm ‖ . ‖O.
If D = ∅, we just put ‖h‖O = sup{φ(h) | φ ∈ Φ(O)}. If O is the

partition of holes of an infraconnected bounded set D, then by definition we

have ‖f‖D,O = ‖f‖D ∀f ∈ R(D).

Each ψ ∈ Mult(R(D), ‖ . ‖D,O) has continuation to H(D,O) and will be

denoted by ψ again.

We denote by ω the mapping from W (D,O) into Mult(H(D,O),

‖ . ‖D,O), defined as ω(F) = D,OϕF ,

By Lemma 2.3.4 of Chapter 2, we have Lemma 8.1.6.

Lemma 8.1.6. Let V = d(a, r), let E be a closed subset of V , let D be a

closed subset of E and let O be a classic partition of V \ E. Then ‖ . ‖D,O
is a semi-multiplicative norm of K-algebra on R(D).

Remark. Any K-algebra H(D,O) is a uniform Banach K-algebra.

Lemma 8.1.7. Let D be a bounded closed infraconnected subset of K and let

(Ti)i∈J be the family of holes of D. Let O = (Ti)i∈J . Then ‖ . ‖D,O = ‖ . ‖D.
Proof. Let Ti = d(bi, r

−
i ), (i ∈ J) be a hole of O, hence a hole of D.

Since D is infraconnected, the circular filter Fi of center bi and diameter

ri is secant with D, therefore ϕFi(f) ≤ ‖f‖D ∀f ∈ R(D), so the claim is

obvious. �

Lemma 8.1.8. Let O be a classic partition of a disk d(a, r), and let D be a

sub-O-set. Then we have ‖h‖D ≤ ‖h‖O for every h ∈ R(D). Moreover, if D

is a O-set, then ‖h‖D = ‖h‖O for every h ∈ R(D).

Proof. Let h ∈ R(D). By Theorem 7.1.15 of Chapter 7, there exists a D-

bordering filter F such that ‖h‖D = ϕF . And ϕF is either ϕa,r(h), or some

ϕb,ρ(h), where d(b, ρ
−) is a hole of D. But since D is sub-P-set, in all cases,

ϕF belongs to Mult(R(O), ‖ . ‖O). Consequently, we have ‖h‖D ≤ ‖h‖O.
Now, suppose that D is a O-set. Given a hole d(b, ρ−) of O, this hole is

a hole of D because D is a O-set. And since D is infraconnected, this hole
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defines a circular filter secant with D. Therefore, we have ϕb,ρ(h) ≤ ‖h‖D,
and consequently ‖h‖O ≤ ‖h‖D. �

Corollary 8.1.9. Let O be a classic partition of a disk d(a, r), and let E be

a O-set. Then H(E) is isometrically isomorphic to a K-subalgebra of H(O).

Henceforth, given a classic partition O of a disk d(a, r), and a sub-O-set

E, we will consider H(E) as a K-subalgebra of H(O).

8.2. Holomorphic properties on partitions

Throughout this chapter D is a closed bounded subset of the disk d(a, r).

Given a classic partition, we have a Mittag–Leffler theorem which generalizes

the well known Mittag–Leffler theorem for analytic elements on an infracon-

nected set (7.1.13) of Chapter 7. Next, properties of T -filters also apply to

analytic elements on partitions.

Theorem 8.2.1. Let O be a classic partition of d(a, r)\D. Let f ∈ H(D,O).

There exists a unique sequence of holes (Tn)n∈N∗ of O and a unique sequence

(fn)n∈N in H(D,O) such that f0 ∈ H(d(a, r)), fn ∈ H0(K \ Tn) (n > 0),

limn→∞ fn = 0 satisfying

(i) f =
∑∞

n=0 fn and ‖f‖D,O = supn∈N ‖fn‖D,O.

Moreover for every hole Tn = d(an, r
−
n ), we have

(ii) ‖fn‖D,O = ‖fn‖K\Tn = ϕan,rn(fn) ≤ ϕan,rn(f) ≤ ‖f‖D,O.
(iii) ‖f0‖D,O = ‖f0‖D̃ = ϕa,r(f0) ≤ ϕa,r(f) ≤ ‖f‖D,O.

Let D′ = d(a, r) \ (
⋃∞
n=1 Tn). Then f belongs to H(D′) and its

decomposition in H(D′) is given again by (i) and then f satisfies ‖f‖D′ =

‖f‖D,O.
Proof. Suppose first that f lies in R(D). Without loss of generality, we

may denote by T1, . . . , Tq the holes of O that contain poles of f . Let E =

d(a, r)\⋃q
j=1 Tj. Then E is a O-set. Since E is infraconnected, we can apply

Theorem 7.1.13 of Chapter 7, that gives all statements above. Now, consider

f ∈ H(D,O) and let (hm)m∈N be a sequence in R(D) converging to f in

H(D,O). The set of holes of O containing at least one pole of one term hm
of this sequence is obviously countable and may be defined as a sequence

(Tn)n∈N∗ . Thus, each hm has a unique decomposition h =
∑∞

n=0 hm,n, with

hm,0 ∈ H(d(0, r)), and hm,n ∈ H0(K \ Tn) ∀n ∈ N∗. So, similarly to the

classical proof of the Mittag–Leffler Theorem for infraconnected sets, for
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any m, q ∈ N, we have ‖hm−hq‖D,O = supn∈N(‖hm,n−hq,n‖D,O) and then,

for each fixed n ∈ N∗, (resp., n = 0) the sequence (hm,n)m∈N converges in

H0(K \ Tn) (resp., in H(d(a, r))) to a limit fn. We check that the series∑∞
n=0 hn converges to f in H(D,O), and satisfies all statements above. �

Corollary 8.2.2. Let (Ti)i∈I be the family of holes of D. Let J be a subset

of I and let L = I \J. Let E = D
⋃(⋃

i∈J Ti
)
and let F = K \⋃i∈L Ti. Then

we have H(D) = H(E) ⊕ H0(F ), and for each g ∈ H0(E), h ∈ H(F ), we

have ‖g + h‖D = max(‖g‖E , ‖h‖F ).
Definitions and notation: Let f ∈ H(D,O). We consider the series∑∞

n=0 fn obtained in Theorem 8.2.1, whose sum is equal to f in H(D,O),

with f0 ∈ H(D̃), fn ∈ H(K\Tn)\{0} and with Tn holes of O. Each Tn will be

called a f -hole and fn will be called the Mittag–Leffler term of f associated

to Tn, whereas f0 will be called the principal term of f . For each f -hole T

of O, the Mittag–Leffler term of f associated to T will be denoted by fT
whereas the principal term of f will be denoted by f0. The series

∑∞
n=0 fn

(with fn = fTn ∀n ∈ N∗) will be called the Mittag–Leffler series of f on

(D,O).

Let E be a closed subset of the disk d(a, r) and let D be a closed subset

of E. Let O = (d(bi, r
−
i )i∈J) be a classic partition of d(a, r) \ E. We will

denote by W (D,O) the set of circular filters F on K such that all elements

B ∈ F contain points of D or holes of O. In particular, if D = ∅, we just

put W (O) =W (∅,O).

Similarly to what was done with sets Mult(H(D), ‖ . ‖D), here we have

a Garandel–Guennebaud’s theorem for algebras H(D,O).

Theorem 8.2.3. Let E be a closed set such that D ⊂ E ⊂ d(a, r),

and let O be a classic partition of d(a, r) \ E. For every F ∈ W (D,O),

the multiplicative semi-norm ϕF defined on R(D) extends by continuity

to an element D,OϕF of Mult(H(D,O), ‖ . ‖D,O) such that D,OϕF (f) =

limF |f(x)| whenever f ∈ R(D). Moreover, the mapping ω from W (D,O)

into Mult(H(D,O), ‖ . ‖D,O), defined as ω(F) = D,OϕF , is a bijection.

Notations: Let E be a closed set such that D ⊂ E ⊂ d(a, r), and let

O be classic partition of d(a, r) \ E. As we did in Mult(H(D), ‖ . ‖D),
in order to avoiding a too heavy notation, the extension D,OϕF of ϕF to

Mult(H(D,O), ‖ . ‖D,O) will just be denoted by ϕF . Similarly, if F is the

circular filter of center a and diameter ρ, then ϕa,ρ will still denote the

extension of ϕa,ρ to (H(D,O), ‖ . ‖D,O).
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Let O = (d(bi, r
−
i ))i∈J be a classic partition of d(a, r)\D. We will denote

by R′(D,O, (bi)i∈J) (resp., R′′(D,O, (bi)i∈J)) the K-subvector space of R(D)

consisting of the h ∈ R(D) of the form
∑

i∈I
λi
x−bi , with I a finite subset of

J (resp.,
∑

i∈L
λi
x−bi +

μi
(x−bi)2 ). The completion of R′(D,O, (bi)i∈J ) (resp.,

R′′(D,O, (bi)i∈J)) is a Banach K-subvector space of H(D,O) that we will

denote by H ′(D,O, (bi)i∈J ) (resp., H ′′(D,O, (bi)i∈J )).
By Theorem 8.2.1, Proposition 8.2.4 is immediate.

Proposition 8.2.4. Let O = (d(bi, r
−
i )i∈J) be a classic partition of d(a, r) \

D. Then H ′(D,O, (bi)i∈J) (resp., H ′′(D,O, (bi)i∈J )) is equal to the set

of f ∈ H(D,O) of the form
∑

i∈I
λi
x−bi , (resp.,

∑
i∈I

λi
x−bi +

μi
(x−bi)2 ) with

I a countable subset of J, and limH
|λi|
ri

= 0, whereas H is the filter of

complements of finite subsets of I.

Proposition 8.2.5 will be useful in the following chapters.

Proposition 8.2.5. Let O = (d(bi, r
−
i )i∈J) be a classic partition of d(a, r) \

D, and suppose that O admits an increasing (resp., a decreasing) idempotent

T -sequence (Tn) of center b and diameter l. Let s ∈]0, l[ (resp., s ∈]l, r[) and
let ε ∈]0, 1[. There exists f ∈ H ′(D,O, (bi)i∈J ) satisfying

(i) |ψ(f − 1)|∞ < ε ∀ψ ∈ Mult(H(D,O), ‖ . ‖D,O) such that ψ(x − b) ≤ s

and ψ(f) = 0 ∀ψ ∈ Mult(H(D,O), ‖ . ‖D,O) such that ψ(x− b) ≥ l,

(ii) ψ(f) �= 0 ∀ψ ∈ Mult(H(D,O), ‖ . ‖D,O) \ Multa(H(D,O), ‖ . ‖D,O)
such that s < ψ(f) < l.

(resp., (i) ψ(f−1) ≤ ε ∀ψ ∈ Mult(H(D,O), ‖ . ‖D,O) such that ψ(x− b) ≥ s

and ψ(f) = 0 ∀ψ ∈ Mult(H(D,O), ‖ . ‖D,O) such that ψ(x − b) ≤ l,

(ii) ψ(f) �= 0 ∀ψ ∈ Mult(H(D,O), ‖ . ‖D,O) \ Multa(H(D,O), ‖ . ‖D,O)
such that l < ψ(f) < s).

Proof. We set E = K \ (
⋃∞
n=0Tn). Since the sequence (Tn, 1)n∈N is an

idempotent T -sequence of E, of center b and diameter l, by Theorem 7.4.13

of Chapter 7, there exists f ∈ H(E), strictly vanishing along the increasing

(resp., decreasing) T -filter of center b and diameter l, meromorphic on each

hole Tn and admitting each bn as a pole of order at most one, and having

no other pole, satisfying further

|f(x)| = 1 for all x ∈ D ∩ d(b, s),
f(x) = 0 for all x ∈ D \ d(b, l−) (resp., |f(x)− 1| ≤ ε for all x ∈ D \ d(b, s−),
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f(x) = 0 for all x ∈ D ∩ d(b, l)), and for every circular filter G of diameter

u < l, secant with d(b, l−), ϕG(g) �= 0. Moreover, by Theorem 8.2.1 for each

hole Tn, fTn is of the form λn
x−bn , so all claims are shown. �

Corollary 8.2.6. Let O be a classic partition of d(a, r) \D, and suppose

that O admits a O-minorated annulus Γ(b, r′, r′′). Let l, ρ′, ρ′′ ∈]r′, r′′[ satisfy
ρ′ < l < ρ′′. There exist f, g ∈ H(D,O) satisfying:

on one hand ψ(f) = 1 ∀ψ ∈ Mult(H(D,O), ‖ . ‖D,O) such that ψ(x−b) ≤ ρ′

and ψ(f) = 0 ∀ψ ∈ Mult(H(D,O), ‖ . ‖D,O) such that ψ(x − b) ≥ l, on the

other hand ψ(g) = 1 ∀ψ ∈ Mult(H(D,O), ‖ . ‖D,O) such that ψ(x− b) ≥ ρ′′

and ψ(g) = 0 ∀ψ ∈ Mult(H(D,O), ‖ . ‖D,O) such that ψ(x− b) ≤ l).

Lemma 8.2.7. Let K be strongly valued, let O be a classic partition of

d(a, r) and let F , G ∈ W (O), F �= G. There exists f ∈ H(O) such that

ϕF (f) = 0, ϕG(f) �= 0.

Proof. Suppose first that F and G are not comparable with respect to �.

Then, by Proposition 5.4.9 of Chapter 5, we can find disks d(b, l) ∈ F
and d(c,m) ∈ G such that d(b, l) ∩ d(c,m) = ∅. Let t = |b − c|. Then by

Proposition 5.4.9 of Chapter 5 again, we have t > max(l,m), hence, denoting

by O′ the set of holes of O included in Γ(b, l, t), this annulus admits O′ as a
classic partition.

Suppose now that F and G are comparable with respect to �. So, we

can suppose that G surrounds F . Let ρ = diam(F), t = diam(G) and let

l ∈]ρ, t[. By Lemma 5.3.12 of Chapter 5, there exists a unique disk d(b, l)

which belongs to F , and then denoting by O′ the set of holes of O included

in Γ(b, l, t), this annulus admits O′ as a classic partition.

Now, in both situations, we take s ∈]l, t[. By Corollary 8.1.4, O admits an

increasing idempotent T -sequence and a decreasing idempotent T -sequence,

both of center b and diameter s. Therefore, the conclusion comes from

Proposition 8.2.5. �

Theorem 8.2.8. Let K be strongly valued and let O be a classic partition

of d(a, r). Then Multm(H(O), ‖ . ‖O) = Mult(H(O), ‖ . ‖O).

Proof. Let ψ ∈ Mult(H(O, ‖ . ‖O) and let M be a maximal ideal of H(O)

containing Ker(ψ). Then ψ is of the form ϕF , with F ∈W (O). On the other

hand, by Theorem 2.5.13 of Chapter 2, there exists φ ∈ Multm(H(O), ‖ . ‖O)
such that Ker(φ) = M, and φ is of the form ϕG , with G ∈ W (O).

Suppose G �= F . Then by Lemma 8.2.7, there exists g ∈ H(O) such that
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ϕF (g) = 0, and ϕG(g) �= 0, a contradiction to the hypothesis Ker(ψ) ⊂ M.

Consequently, M = Ker(ψ). �

8.3. Shilov boundary for algebras (H(D),O)

In Section 2.3 of Chapter 2, we proved that, given a unital commutative

ultrametric Banach K-algebra A, a Shilov boundary does exist for (A, ‖ . ‖sp).
However, this existence is abstract and doesn’t let us determine its nature.

When we consider a Banach K-algebra H(D), we are able to describe very

precisely its Shilov boundary by using the characterization of multiplicative

semi-norms by circular filters.

Definitions and notations: Throughout Section 8.3, D is a closed and

bounded subset of the disk d(a, r) andO = (d(bi, r
−
i )i∈J) is a classic partition

of d(a, r) \D.

A circular filter F will be said to be strictly O-bordering if it is peripheral

to a hole of O or of d(a, r). A circular filter O will be said to be O-bordering

if either it is strictly O-bordering or all elements B ∈ F contain holes of O.

We will denote by Σ(O) the set of ϕF ∈ Mult(K[x]) such that F is O-

bordering and by Σ0(O) the set of ϕF ∈ Mult(K[x]) such that F is strictly

O-bordering.

Lemma 8.3.1. Let O be a classic partition of d(a, r) \D. A circular filter

F on K which is O-bordering but not strictly O-bordering is secant with

d(a, r) \D but not secant with any hole of O. Moreover, Σ0(O) is dense in

Σ(O).

Proof. Let O = (d(bi, r
−
i )i∈J) and let ϕF ∈ Σ(O) \ Σ0(O). Then every

element of F contains holes of O, hence is secant with d(a, r) \D. Suppose

that F is secant with a hole T = d(b, ρ−) of O. Since F is not the peripheral

of T it is secant with a disk d(c, s) ⊂ d(b, ρ−) with s < ρ, and of course it has

elements B of diameter l ∈]s, ρ[ that contain no hole ofO, a contradiction. So,

F is not secant with any hole of O. Now, let h1, . . . , hn ∈ R(D,O), let ε > 0.

Since F admits a basis of affinoids sets, we can find an affinoid set E ∈ F such

that | |hj(x)|−ϕF (hj)|∞ < ε ∀x ∈ E,∀j = 1, . . . , n. Then there exists a hole

T of O included in E. Consequently, |ϕT (hj)− ϕF (hj)|∞ < ε ∀j = 1, . . . , n.

This shows that Σ0(O) is dense in Σ(O). �

Theorem 8.3.2. Let O be a classic partition of d(a, r) \D. Then Σ(O) is

equal to the boundary of Mult(H(D, ‖ . ‖D,O) inside Mult(K[x]).
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Proof. The proof roughly follows the same way as this of Theorem 6.3.1

of Chapter 6. Let O = (d(bi, r
−
i )i∈J). Since Σ0(O) is dense inside Σ(O),

and since the boundary of Mult(H(D, ‖ . ‖D,) inside Mult(K[x]) is obviously

closed, it is sufficient to show that Σ0(O) is included in this boundary. Let

ϕF ∈ Σ0(O). If F is the peripheral of d(a, r), it is obvious that ϕF belongs to

the closure of the subset of Mult(K[x]) \Mult(H(D,O), ‖ . ‖D,O) consisting
of all ϕG such that G is secant with K \d(a, s) for some s > r. Consequently,

we are led to assume that F is the peripheral of certain hole d(bj , r
−
j ) of O,

and then symmetrically, it is also obvious that ϕF belongs to the closure of

Mult(K[x]) \Mult(H(D,O), ‖ . ‖D,O) inside Mult(K[x]).

Conversely, let ϕF ∈ Mult(H(D,O), ‖. ‖D,O) belong to the closure of

Mult(K[x]) \ Mult(H(D,O), ‖. ‖D,O) in Mult(K[x]). If ϕF is the periph-

eral of d(a, r), it obviously belongs to Σ(O). So, we can suppose it

is not the peripheral of d(a, r). We can find an affinoid set E ∈ F
such that E ⊂ d(a, r). Then Mult(H(E), ‖ . ‖E) is a neighborhood of

ϕF , hence it contains an open neighborhood W of ϕF . Therefore, W ∩
(Mult(K[x]) \ Mult(H(D,O), ‖. ‖D,O)) �= ∅. Moreover, W ∩ (Mult(K[x]) \
Mult(H(D,O), ‖. ‖D,O)) is open in Mult(K[x]) because so are W and

Mult(K[x]) \ Mult(H(D,O), ‖. ‖D,O). Since Multa(K[x]) is dense inside

Mult(K[x]), there exists

ϕa ∈
(
Multa(K[x]) \Mult(H(D,O), ‖. ‖D,O)

)
∩Mult(H(E), ‖ . ‖E).

Consequently, a lies in E \ D. But since E ⊂ d(a, r), a must belong

to Y , which proves that F is secant with Y . Therefore the boundary of

Mult(H(D,O), ‖. ‖D,O) inside Mult(K[x]) is included in Σ(O), and finally

these two sets are equal. �

Theorem 8.3.3. Let O = (d(bi, r
−
i )i∈J) be a classic partition of d(a, r) \D.

Then Σ(O) is the Shilov boundary for (H(D,O), ‖ . ‖D,O).
Proof. First, we notice that Σ(O) is closed inside Mult(K[x]) because it

is the boundary of Mult(H(D,O), ‖ . ‖D,O). By Theorem 8.2.1, it is easily

seen that Σ0(O) is a boundary for H(D,O).

Now, we will show that Σ(O) is the smallest closed boundary. Suppose

it is not the smallest. Then, there exists another closed boundary S which

does not contain Σ(O). Since S is closed, and since Σ0(O) is dense in Σ(O)

there exists ψ ∈ Σ0(O)\S. Let G be the strictly O-bordering filter such that

ψ = ϕG . Thus, ψ is of the form ϕb,s.

Since S is closed there exists an affinoid set E of the form d(b, s′′) \⋃q
j=1 d(cj , s

′), with s′ < s < s′′ such that Mult(H(E), ‖ . ‖E)E ∩ S = ∅.
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This means that for every ϕF ∈ S, F is not secant with E. Suppose first

that s = r. Consider g(x) =
∏q
j=1(x − cj). Then ϕG(h) = rq, and for every

ϕF ∈ S we can check that ϕF (g) ≤ s′q, a contradiction to the hypothesis “S

is a boundary”.

Consequently we have s < r, and therefore, since ϕG ∈ Σ0(D), the disk

d(b, s−) is a hole of O. Let h(x) =
∏q

j=1(x−cj)
(x−b)q+1 . Then ϕG(h) = 1

s and for

every ϕF ∈ S we can check that ϕF (h) = max( s
′
s2
, 1
s′′ ) <

1
s , a contradiction

to the hypothesis “S is a boundary”. Thus, we have proven that any closed

boundary must contain Σ(O), and this finishes proving that Σ(O) is the

Shilov boundary for H(D,O). �

Theorem 8.3.4 was given in [10].

Theorem 8.3.4 (K. Boussaf). Σ(D) is the Shilov boundary for

(H(D), ‖ . ‖D).
Proof. By Theorem 6.3.1 of Chapter 6, Σ(D) is the boundary of

Mult(R(D), ‖ . ‖D) inside Mult(K[x]), hence similarly, is the boundary

of Mult(H(D), ‖ . ‖D) inside Mult(K[x]), and hence it is closed inside

Mult(K[x]).

Suppose first that D is infraconnected. By considering the natural

partition O of D̃ \D, we have Σ(O) = Σ(D), so we can apply Theorem 8.3.3

showing that Σ(D) is the Shilov boundary of H(D). Now, we shall consider

the general case.

First, we check that Σ(D) is a boundary. Let h ∈ R(D). If there exists

an infraconnected component E of D such that ‖h‖D = ‖h‖E , then as we

have seen, there exists ϕF ∈ Σ(E) such that ϕF (h) = ‖h‖D, and since of

course ϕF ∈ Σ(D), hence ‖h‖D is reached in Σ(D). Now, suppose that there

exists no infraconnected component E of D such that ‖h‖D = ‖h‖E . Then
there exists a sequence (Dn)n∈N of infraconnected components of D such

that ‖h‖Dn > ‖h‖D − 1
n . Consequently, for each n ∈ N, we can take a point

an ∈ Dn such that |h(an)| > ‖h‖D− 1
n . By Theorem 5.2.1 of Chapter 5, from

the sequence (an) we can extract a subsequence which is either a monotonous

distances sequence, or an equal distances sequence, or a Cauchy sequence.

Here, as D is closed, if we could extract a Cauchy sequence, there would

exist a ∈ D such that |h(a)| = ‖h‖D, which is excluded. Hence, we can

extract a subsequence which is either a monotonous distances sequence, or

an equal distances sequence. So, without loss of generality, we can assume

that the sequence (an) is either a monotonous distances sequence, or an equal

distances sequence, and therefore by Proposition 5.3.7 of Chapter 5, there

exists a large circular filter G less thin than the sequence (an). Then G is
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obviously secant with D and satisfies ϕG(h) = ‖h‖D. But by hypothesis, G is

not secant with any infraconnected component because for each component

E of D we have ‖h‖D > ‖h‖E . Consequently, G is secant with K \ D, and

therefore belongs to Σ(D). This shows that Σ(D) is a boundary.

Let Σ1(D) be the set of ϕF ∈ Σ(D) which are B-bordering for one of

the infraconnected components B of D. We will show that Σ1(D) is dense

in Σ(D). Let ϕF ∈ Σ(D). If F is secant with one of the infraconnected

components B of D, by definition F is D-bordering, hence ϕF ∈ Σ(D).

Now, suppose that F is not secant with any infraconnected component of

D. Consider an affinoid set E ∈ F . Then E ∩D �= ∅, hence there exists an

infraconnected component B of D such that E ∩ B �= ∅. If B ⊂ Ẽ then the

peripheral of B is clearly secant with E, hence ϕF ∈ Σ(D). Now, suppose

that B is not included in Ẽ. Then, Ẽ ⊂ B̃, but since E ∩ K\ �= ∅, there
exists a hole T = d(b, r−) of B included in Ẽ and then, ϕb,r belongs to

Σ1(D), and is secant to E. This shows that Mult(H(E), ‖ . ‖E)∩Σ1(D) �= ∅,
and consequently Σ1(D) is dense inside Σ(D).

Suppose now that Σ(D) is not the smallest boundary. So, there exists a

boundary S which does not contain Σ(D). More precisely, since S is closed

there exists ϕH ∈ Σ1(D)\S. Then H has center b ∈ B and diameter s. Since

S is closed there exists an affinoid set E of the form d(b, s′′) \⋃q
j=1 d(cj , s

′),
with s′ < s < s′′, |ci − cj | = |ci − b| = s ∀i �= j and such that for every

ϕF ∈ S, F is not secant with E.

Suppose first that H is the peripheral of an infraconnected component

B of D. There exists an annulus Γ(b, z′, z′′) included in K \ D such that

s < z′ < z′′ < q
√
sqs′′. Let c ∈ Γ(b, z′, z′′), let l = |c| and h(x) =

∏q
j=1(x−cj)
(x−c)q+1 .

Then we have ϕH(h) = sq

lq+1 . Now, let ϕF ∈ S be such that F is secant with

d(b, s). Since F is not secant with E, we check that ϕF (h) ≤ s′q
lq+1 < ϕH(h).

And now, let ϕF ∈ S be such that F is not secant with d(b, s). Since F is

not secant with E, it can’t be secant with d(b, s′′). Consequently, we have

ϕF (h) ≤ 1
s′′ <

sq

lq+1 = ϕH(h).
Thus, if H is the peripheral of an infraconnected component B of D, we

are led to a contradiction, and this shows that H is just the peripheral of

a hole T = d(b, s−) of an infraconnected component B of D. Since B is an

infraconnected component of D, there exists an annulus Γ(c, z′, z′′) included
in K \ D such that s′ < z′ < z′′ < s with c ∈ d(b, s−). So, T = d(c, s−).

Let a ∈ Γ(c, z′, z′′), let l = |a− c| and let h(x) =
∏q

j=1(x−cj)
(x−a)q+1 . Then we have

ϕH(h) = 1
s . Now, let ϕF ∈ S. If F is secant with C(c, s), since F is not

secant with E, we check that ϕF (h) ≤ s′
s2
< ϕH(h). And if F is secant with
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K \ d(c, s), it must be secant with K \ d(c, s′′−), and then we check that

ϕF (h) ≤ 1
s′′ <

1
s = ϕH(h). Finally, suppose that F is secant with d(c, s−).

Then one of the cj lies in d(c, s) and we can assume c = c1. Therefore, F must

be secant with d(c1, s
′−), and we check that ϕF (h) ≤ s′sq−1

lq+1 < 1
s = ϕH(h).

This finishes showing that ϕF (h) < ϕH(h) for every ϕF ∈ S, and therefore

we can conclude that any closed boundary must contain Σ(D). Consequently,

Σ(D) is a Shilov boundary of H(D). �

Remarks. A boundary is not necessarily closed. Let (an)n∈N∗ be sequence

of K such that |an+1 < |an| < 1, limn→∞ |an| = r > 0, and let D =

{x ∈ K | |x| < 1, |x − an| ≥ |an| ∀n ∈ N∗}. For every n ∈ N∗, let Fn
be the circular filter of center an and diameter |an|, let φn = ϕFn , let G
be the circular filter of center 0 and diameter 1, and let G′ be the circular

filter of center 0 and diameter r, let ψ = ϕG , and let ψ′ = ϕG′ . Clearly,

Σ0(D) = {φn | n ∈ N∗} ∪ {ψ}, and then by Theorem 7.1.15 of Chapter 7,

this is a boundary for (H(D), ‖ . ‖D). On the other hand by Theorem 8.3.4,

the Shilov boundary for (H(D), ‖ . ‖D) is Σ(D) = {φn | n ∈ N∗} ∪ {ψ, ψ′}.
But Σ0(D) is not closed because ψ′ is the limit of the sequence (φn) inside

Mult(H(D), ‖ . ‖D), with respect to the topology of simple convergence. One

can ask whether Σ0(D) is equal to Min(H(D), ‖ . ‖D).
By Theorems 5.3.1, 5.3.2 of Chapter 5 and 8.3.4, we can state

Theorem 8.3.5.

Theorem 8.3.5. Let D be closed bounded and have finitely many infracon-

nected components. The three following sets are equal:

Σ(D),

The boundary of Mult(H(D), ‖ . ‖D) inside Mult(K[x]) with respect to

the topology of simple convergence,

The Shilov boundary for (H(D), ‖ . ‖D).
Proof. Theorem 8.3.6 is just a corollary of Corollary 8.3.5 when D is

infraconnected. Now, suppose that D has finitely many infraconnected

components D1, . . . ,Dq. Since by Corollary 7.3.16, H(D) = H(D1) × · · · ×
H(Dq), and the theorem holds for each algebra H(Dj), so we can easily see

that the Shilov boundary of H(D) is equal to the union of Shilov boundaries

of all algebras H(Dj), 1 ≤ j ≤ q, hence the conclusion follows. �

More precisely, we can state Corollary 8.3.6.

Corollary 8.3.6. Let D be closed bounded having finitely many D-bordering

filters. The four following sets are equal:
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Σ(D),

The boundary of Mult(H(D), ‖ . ‖D) inside Mult(K[x]) with respect to

the topology of simple convergence,,

The boundary of Mult(H(D), ‖ . ‖D) inside Mult(K[x]) with respect to

the δ-topology,,

The Shilov boundary for (H(D), ‖ . ‖D).
Proof. If D has finitely many D-bordering filters, then it has finitely many

infraconnected components. �

Remark. In particular, Corollary 8.3.6 applies to H(D) when D is an

affinoid set.

8.4. Holomorphic functional calculus

Holomorphic functional calculus is well known and helpful in complex

Banach algebra. We can also define it, from the spectrum of an element x,

by considering first the rational functions without poles in sp(x). Now,

considering an ultrametric Banach K-algebra A, thanks to specific ultramet-

ric properties given in Lemma 8.4.1, this calculus has continuation from a

Banach algebra of the form H(sp(x),O) to A, where O is a natural partition

defined by the norm of A. This calculus will let us solve several problems in

spectral theory and about idempotents. The holomorphic functional calculus

was first defined in [22, 26].

Notation: In all this chapter, A is a unital commutative Banach K-algebra

whose norm ‖ . ‖ is ultrametric.

Lemma 8.4.1. Let x ∈ A be invertible and let b ∈ K be such that |b| < 1
‖x−1‖ .

Then x− b is invertible and satisfies ‖(x− b)−1‖ = ‖x−1‖.
Proof. By hypothesis, we have |b| < 1

‖x−1‖sp , hence limn→∞ ‖(bx−1)n‖ = 0.

Consequently, the series
∑∞

n=0

(
b
x

)n
is converging in A. Then we check

that (x − b)
∑∞

n=0(b
nx−n−1) = 1. Now since ‖bx−1‖ < 1, we have

‖x−1‖ > ‖bnx−n−1‖ ∀n ∈ N∗. But since ‖ . ‖ is ultrametric, we have

‖∑∞
n=0 b

nx−n−1‖ = ‖x−1‖, and therefore ‖(x− b)−1‖ = ‖x−1‖. �

Corollary 8.4.2. Let x ∈ A and for each b ∈ K\sp(x), let ρ(b) = 1
‖(x−b)−1‖ .

Then ρ(a) = ρ(b) whenever a, b ∈ K \ sp(x) such that |a − b| < 1
‖(x−b)−1‖ .

Let r ≥ ‖x‖sp. Then d(0, r) \ sp(x) admits a classic partition of the form

(d(b, ρ(b)−))b∈d(0,r)\sp(x), with d(b, ρ(b)−) = d(a, ρ(a)−) whenever a, b ∈ K \
sp(x) such that |a− b| < 1

‖(x−b)−1‖ .
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Definitions and notations: Let x ∈ A, let a ∈ K and let r ∈ [‖x −
a‖sp, ‖x‖], with r > ‖x − a‖sp if A is not uniform. We will call x-normal

partition of center a and diameter r a classic partition O = (d(bi, r
−
i )i∈J) of

d(a, r) \ sp(x) satisfying 1
‖(x−bi)−1‖ = ri ∀i ∈ J .

In the same way, we will call x-spectral partition of center a and

diameter r a classic partition O = (d(bi, r
−
i )i∈J) of d(a, r) \ sp(x) satisfying

1
‖(x−bi)−1‖sp = ri ∀i ∈ J .

A x-normal (resp., x-spectral) partition will be said to be centered if it

has center a ∈ s̃p(x).

A x-spectral partition of center a will be said to be wide if it has a

diameter r > ‖x − a‖sp. We will call strict x-spectral partition the unique

centered x-spectral partition of diameter ‖x‖sp. Then, if A is uniform, the

strict x-spectral partition is a x-normal partition too.

Let r = ‖x − a‖ and let O = (d(bi, r
−
i )i∈J ) be a centered x-normal

partition of d(a, r) \ sp(x). Then x ∈ A will be said to have bounded normal

ratio if the family
{ ‖(x−bi)−1‖

‖(x−bi)−1‖sp | i ∈ J
}

is bounded. The K-algebra A will

be said to have bounded normal ratio if every element of A has bounded

normal ratio.

Theorem 8.4.3. Let t ∈ A. There exists a unique homomorphism Ht from

R(sp(t)) into A such that Ht(P ) = P (t) for all P ∈ K[X]. Moreover, Ht

is injective if and only if S(t) �= 0 for every polynomial S ∈ K[X] different

from 0. For every h ∈ R(sp(t)), we have sp(h(t)) = h(sp(t)) and sa(h(t) =

h(sa(t)).

Proof. Let D = sp(t). We may obviously define Ht from K[x] to A as

Ht(P ) = P (t). Now let Q ∈ K[X] have its zeros in K \ D. Then Q(t) is

invertible in A, so we may extend to R(D) the definition of Ht, as Ht(
P
Q) =

P (t)Q(t)−1, for all rational function P
Q ∈ R(D) (with (P,Q) = 1). The

uniqueness of Ht is then obvious. Next, Ker(Ht) is an ideal of R(D) which

is obviously generated by a polynomial G. Then G = 0 if and only there is

no polynomial S ∈ K[X] different from 0, such that S(t) = 0.

Now, let h = P
Q ∈ R(sp(t)), (with (P,Q) = 1). Let λ ∈ sp(t)), and

let χ ∈ X (A,K) be such that χ(h(t)) = λ. Then χ(h(t)) = h(λ), hence

h(sp(t)) ⊂ sp(h(t)). Conversely, let μ ∈ sp(h(t)), let χ ∈ X (A,K) be such

that χ(h(t)) = μ, and let α = χ(t). Then, we have χ(P (t)) − μχ(Q(t)) = 0,

hence α is a zero of the polynomial P (X) − μQ(X). Therefore α lies in K

because K is algebraically closed. But then, as t − α belongs to the kernel
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of χ, α lies in sp(t). Hence we have sp(h(t)) = h(sp(t)). Finally, sa(h(t)) =

{χ(h(t)) | χ ∈ X (A,K)} = {h(χ(t)) | χ ∈ X (A,K)} = h(sa(t)). �

Remarks. When the homomorphism Ht defined in Theorem 8.4.3 is

injective, the K-subalgebra B = Ht(R(sp(t))) is isomorphic to R(sp(t)),

and in fact is the full subalgebra generated by t in A. So, in such a case, we

will consider R(sp(t)) as a K-subalgebra of A.

Definition and notation: Let t ∈ A. In this chapter and in the sequel

we will denote by Ht the canonical homomorphism from R(sp(t)) into A

defined in Theorem 8.4.3, and we will call it the canonical homomorphism

associated to t. Meanwhile, when it is injective, we will currently confound

a rational function h ∈ R(sp(t)) with its image Ht(h).

Given ψ ∈ Mult(A, ‖ . ‖) we will put ψt = ψ ◦ Ht. Thus, we have

ψt(P ) = ψ(P (t)) ∀P ∈ K[x].

We will put σA(t) = {φt | φ ∈ Mult(A, ‖ . ‖)}, and when there is no risk

of confusion on the algebra A, we will put σ(t) instead of σA(t).

Lemma 8.4.4. Let t ∈ A. Then σA(t) is a compact in Mult(K[x]). Let

a ∈ sp(t), let s = ‖t − a‖sp, let b ∈ d(a, s) \ sp(t) and let r = 1∥∥∥ 1
t−b

∥∥∥
sp

. Let

ψ ∈ Mult(A, ‖ . ‖) and let F be the circular filter such that ψt = ϕF . Then
F is secant with d(a, s) \ d(b, r−).
Proof. The mapping which associates to each φ ∈ Mult(A, ‖ . ‖) its image

φt ∈ Mult(K[x]) is clearly continuous, hence σA(t) is compact. By definition

of ψt, it is obvious that F is secant with d(a, s). Next, it is clear that ψt(t−
b) ≥ r, hence F is secant with d(a, s) \ d(b, r−). �

Theorem 8.4.5. Let t ∈ A and let O be a t-spectral partition. Ht satisfies

‖Ht(f)‖sp = ‖Ht(f)‖σ(t) ≤ ‖f‖sp(t),O for all f ∈ R(sp(t),O).

Proof. The equality ‖Ht(f)‖sp = ‖Ht(f)‖σ(t) is obvious and just comes

from the definition of σ(t). Let D = sp(t), let a ∈ sp(t), let r0 = ‖f − a‖sp.
Let ψ ∈ Mult(A, ‖ . ‖sp) and let F be the circular filter such that ϕF = ψt.

Let (d(bj , rj))1≤j≤n be the family of holes of O containing at least one pole

of f and for each j = 1, . . . , n, let Fj be the circular filter of center bj and

diameter rj . Finally, let F0 be the circular filter of center a and diameter

r0. According to Theorem 8.2.1 f is of the form
∑n

j=0 fj, with f0 ∈ K[x]

and fj ∈ R0(K \d(bj , r−j )), and we have ‖h‖sp(t),O = max0≤j≤n ‖hj‖D,O. For
each j = 1, . . . , n, since by Lemma 8.4.4, F is secant with K \ d(bj , r−j ), we
have ϕF (hj) ≤ ϕbj ,rj(hj). Similarly, as F is secant with d(a, r0), we have
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ϕF (h0) ≤ ϕa,r0(h0). Consequently, we obtain ψ(h(t)) ≤ ‖h‖D,O. This is true
for all ψ ∈ Mult(A, ‖ . ‖), and therefore by Theorem 2.5.17 of Chapter 2, we

obtain ‖f(t)‖sp ≤ ‖f‖D,O. �

Remark. Particularly, Theorem 8.4.5 is true whenO is the strict t-spectral

partition.

Theorem 8.4.6. Let t ∈ A and let O be a t-normal partition. Ht is

continuous and has continuation to H(sp(t),O). Moreover, if A is uniform,

then Ht is continuous as a mapping from (R(sp(t)), ‖ . ‖σ(t)) to A and

has continuation to H(σ(t)) and to H(sp(t),O). So, it satisfies ‖Ht(f)‖ =

‖f‖σ(t) ≤ ‖f‖sp(t),O for all f ∈ H(sp(t),O).

Proof. The claim about H(σ(t)) is immediate and comes from Theo-

rem 8.4.5. Now, let O = (d(bi, r
−
i )i∈J) be a t-normal partition of diameter r.

Let D = sp(t). Let T = d(a, ρ−) be a hole of O. It is easily checked that

∥∥∥Ht

( 1

(t− a)k

)∥∥∥ ≤
∥∥∥Ht(

1

t− a
)
∥∥∥k = (1

ρ

)k
=
(∥∥∥ 1

t− a

∥∥∥
D,O

)k

=
∥∥∥ 1

(t− a)k

∥∥∥
D,O

.

Now, let h ∈ R(D), let T1, . . . , Tq be the h-holes of O and let
∑q

n=0 gn
be the Mittag–Leffler series of h on (D,O), with gn = hTn ∀j = 1, . . . , q.

Then we have ‖Ht(gj)‖ ≤ ‖h‖D,O for each j = 1, . . . , q.

Finally, we check that there exists a constant L ≥ 1 such that ‖tn‖ ≤ Lrn.

Indeed, if A is uniform, we just take L = 1. And if A is not uniform,

then we have r > ‖t‖sp, hence limn→∞
‖tn‖
rn = 0. Thus, we have shown

the existence of L in all cases. Consequently, in H(D,O), we check that

‖Ht(gj)‖ ≤ L‖gj‖D,O for each j = 0, . . . , q. But by Theorem 8.2.1, we

have ‖h‖D,O = max0≤j≤q ‖gj‖D,O. Therefore, we conclude ‖Ht(h)‖ ≤
L‖h‖D,O, which finishes proving that Ht is continuous. Consequently, it

has continuation to H(D,O). If A is uniform, we can take L = 1, hence

‖Ht(h)‖ ≤ ‖h‖D,O. �

Corollary 8.4.7. Let t ∈ A, let O be a t-normal partition, and let ψ ∈
Mult(A, ‖ . ‖). Then ψt belongs to Mult(R(sp(t),O), ‖ . ‖D,O).
Definitions and notations: Let x ∈ A, let a ∈ sp(x), let s = ‖x − a‖sp.
An annulus Γ(a, r′, r′′) ⊂ d(b, s) will be said to be x-clear if there exist

ψ′, ψ′′ ∈ Mult(A, ‖ . ‖) such that ψ′(x − a) = r′, ψ′′(x − a) = r′′, and
ψ(x− a) /∈]r′, r′′[ ∀ψ ∈ Mult(A, ‖ . ‖).
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Remarks. If Γ(a, r′, r′′) is a x-clear annulus, in particular we have

Γ(a, r′, r′′) ∩ sp(x) = ∅. But the converse is not true.

Theorem 8.4.8. Let t ∈ A. If there exists a t-clear annulus, then both

Mult(A, ‖ . ‖) and σ(t) are not connected. Moreover, there exists a t-clear

annulus if and only if σ(t) is not connected.

Proof. Suppose first that there exists a t-clear annulus Γ(a, r, s). Let F =

{φ ∈ Mult(A, ‖ . ‖) | φ(x− a) ≤ r} and let G = {φ ∈ Mult(A, ‖ . ‖) | φ(x−
a) ≥ s}. Then, F and G are two closed subsets making a partition of

Mult(A, ‖ . ‖), hence Mult(A, ‖ . ‖) is not connected. Moreover, the sets

Ft = {φt | φ ∈ F} and Gt = {φt | φ ∈ G} are two closed subsets of

σ(t) making a partition of σ(t), hence σ(t) is not connected. Conversely,

suppose now that σ(t) is not connected. By Theorem 6.3.7 of Chapter 6,

there exists an annulus Ξ = Γ(a, r0, s0) together with filters F , G ∈ T

such that F ∈ Ω−1(σ(t)) secant with I(Ξ), G ∈ Ω−1(σ(t)) secant with

E(Ξ), such that none of circular filters H ∈ Ω−1(σ(t)) is secant with Ξ.

Now, let r = sup{φ(t − a), | φ ∈ Mult(A, ‖ . ‖) φ(t − a) ≤ r0} and

s = inf{φ(t − a), φ ∈ Mult(A, ‖ . ‖) φ(t − a) ≥ s0}. Then, Γ(a, r, s) is a

t-clear annulus. �

Lemma 8.4.9 is obvious.

Lemma 8.4.9. Let x ∈ A, let a ∈ sp(x), let Γ(a, r′, r′′) be a x-clear annulus.

For all s′, s′′ ∈]r′, r′′[ such that s′ < s′′, for every ψ ∈Mult(A, ‖ . ‖), Ω−1(ψx)

is not secant with Γ(a, s′, s′′).

Notation: Let φ ∈ Mult(A, ‖ . ‖) and let x ∈ A. We will denote by φx
the element of Mult(R(sp(x), ‖ . ‖sp(x) defined as φx(h) = φ(h(x)) ∀h ∈
R(sp(x)).

Theorem 8.4.10. Let x ∈ A, let a ∈ sp(x), let s = ‖x−a‖sp, let D = sp(x)

and let O be the strict x-spectral partition. The equality ‖h(x)‖sp = ‖h‖D,O
holds for every h ∈ R(sp(x)) if and only if there exists no x-clear annulus.

Proof. Suppose first that there exists a x-clear annulus Γ(a, r′, r′′) and let

Γ(a, s′, s′′) ⊂ Γ(a, r′, r′′) be such that Ω−1(φx) is not secant with Γ(a, s′, s′′),
whenever φ ∈ Mult(A, ‖ . ‖), while there exists φ′, φ′′ ∈ Mult(A, ‖ . ‖) such
that Ω−1(φ′x) is secant with K\d(a, r′′−) and Ω−1(φ′′x) is secant with d(a, r′).
Let r ∈]s′, s′′[∩|K|, let b ∈ C(a, r) and let f(x) = x−a

(x−b)2 . We can easily

check that ‖f‖sp ≤ max( s
′
r2
, 1
s′′ ) <

1
r . Now, by definition of O, it is clear that

d(b, r−) belongs to O, therefore ‖f‖D,O ≥ ϕb,r(f) =
1
r : this shows that the

two norms are not equal when there exists a x-clear annulus.
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Conversely, we now suppose that there exists no x-clear annulus. Let

h ∈ R(D). By Theorem 8.4.5, we have

‖h(x)‖sp ≤ ‖h‖D,O (8.4.1)

Let T = d(b, r−) be a hole of O containing a pole of h and let F be

the circular filter of center b and diameter r. We will show that there exists

ψ ∈ Mult(A, ‖ . ‖) such that ψx = ϕF . Indeed, suppose that it is not true. By
definition of O, we have r = inf{ξ(x−b) | ξ ∈ Mult(A, ‖ . ‖)}. Consequently,
either there exists ζ ∈ Mult(A, ‖ . ‖) such that ζ(x− b) = r, or there exists a

sequence (ζn)n∈N such that ζn(x− b) > r and limn→∞ ζn(x− b) = r. If there

exists a sequence (ζn)n∈N such that ζn(x− b) > r and limn→∞ ζn(x− b) = r,

then the sequence (ζn)n∈N admits a cluster ψ in Mult(A, ‖ . ‖) such that

ψ(x− b) = r and then, since ζn(x− b) > r ∀n ∈ N, we can see that ψx = ϕF .
Now, we just suppose that there exists ζ ∈ Mult(A, ‖ . ‖) such that

ζ(x − b) = r. Let G be the circular filter such that ζx = ϕG . Since we

suppose that G �= F , then G is secant with a class d(c, r−) of C(b, r) and

has a diameter ρ < r. Then by Lemma 5.3.12 of Chapter 5, we can find

a disk d(c, l) which belongs to G, with ρ < l < r. Since there exists no x-

clear annulus, for every n ∈ N∗ there exists ζn ∈ Mult(A, ‖ . ‖) such that

r − 1
n < ζn(x − c) < r. Therefore, the sequence (ζn)n∈N admits a cluster ψ

in Mult(A, ‖ . ‖) such that ψx is the limit of the sequence ((ζn)x)n∈N, and
thereby we have again ψx = ϕF .

So, we have proven in all cases that there exists ψ ∈ Mult(A, ‖ . ‖) such
that ψx = ϕF . Let F0 be the circular filter of center a and diameter s. Let

(d(bj , rj))1≤j≤n be the family of holes of O containing at least one hole of h

and for each j = 1, . . . , n, let Fj be the circular filter of center bj and diameter

rj . As we just saw, for every j = 1, . . . , n, there exists ψj ∈ Mult(A, ‖ . ‖)
such that (ψj)x = ϕFj .

In the same way, we can easily show that there exists ψ0 ∈ Mult(A, ‖ . ‖)
such that (ψ0)x = ϕF0 . Consequently, we have ‖h‖sp ≥ max0≤j≤n ϕFj (h). On

the other hand by Theorem 8.2.1, we know that max0≤j≤n ϕFj (h) = ‖h‖D,O,
hence by (8.4.1) we obtain ‖h(x)‖sp = ‖h‖D,O. �

Theorem 8.4.11. Let t ∈ A have bounded normal ratio and let O be a wide

t-spectral partition of diameter r. Let (d(bi, r
−
i ))i∈J be the family of holes of

O. The restriction of Ht to (R′(sp(t), (bi)i∈J ), ‖ . ‖sp(t),O) is a continuous

K-linear mapping and has continuation to H ′(s(t), (bi)i∈J),O).

Proof. Let D = sp(t). Let f ∈ (R′(sp(t),O, (bi)i∈J). Let f0+
∑∞

n=1 fTn be

the Mittag–Leffler series of f on O. For each n ∈ N∗, let bn ∈ Tn. Then fTn is



March 25, 2022 8:35 Banach Algebras of Ultrametric Functions 9.61in x 6.69in b4542-ch08 page 221

Holomorphic Functional Calculus 221

of the form λn
x−bn . Since t has bounded normal ratio, there exists a constant B

such that ‖fTn‖D,O ≤ B‖Ht(fTn)‖ ∀n ∈ N∗. Finally, let f0 =
∑q

m=0 amx
m.

By hypothesis, we have limm→∞ |am|rm = 0. If ‖t‖sp = ‖t‖, then r = ‖x‖,
hence ‖Ht(f0)‖ ≤ ‖f0‖D,O. Now, if ‖t‖sp < ‖t‖, then r > ‖t‖sp, hence

there exists a constant C such that ‖tm‖ < Crm ∀m ∈ N, and therefore,

‖Ht(f0)‖ ≤ C‖f0‖D,O. Thus, putting Q = max(B,C), we have ‖Ht(f)‖ ≤
Q‖f‖D,O ∀f ∈ (R′(sp(x), (bi)i∈J). �

By Lemma 5.3.12 of Chapter 5, we have Lemma 8.4.12.

Lemma 8.4.12. Let t ∈ A be such that S(t) �= 0 for every polynomial

S ∈ K[X] different from 0. Let a ∈ K, let φ ∈ Mult(A, ‖ . ‖) and let

r = φ(t− a). Then Ω−1(φt) is (a, r)-approaching.

Proposition 8.4.13. Let t ∈ A be such that the mapping Ht is injective.

Let a ∈ K \ sp(t), and let r = ‖(t− a)−1‖−1
sp . There exists θ ∈ Mult(A, ‖ . ‖)

whose restriction to R(sp(t)) has a circular filter (a, r)-approaching.

Proof. We consider R(sp(t)) as a K-subalgebra of A. Let φt ∈
Mult(A, ‖ . ‖). If Ω−1(φt) is secant with a disk d(a, ρ) for some ρ ∈]0, r[,
then clearly we have φt(t − a) ≤ ρ hence φt((t− a)−1) > 1

r and therefore

‖(t− a)−1‖sp > 1
r which contradicts the hypothesis. So Ω−1(φt) is secant

with K \ d(a, r−).
Suppose that there exists ρ > r such that, for every φ ∈ Mult(A, ‖ . ‖),

Ω−1(φ) is not secant with d(a, ρ). Clearly we have φ(t − a) ≥ ρ for all φ ∈
Mult(A, ‖ . ‖) and therefore ‖(t−a)−1‖sp < 1

r , a contradiction. Consequently,

for each n ∈ N∗ we can find φn ∈ Mult(A, ‖ . ‖) such that Ω−1((φn)t) is secant

with d(a, r + 1
n). And since it is also secant with K \ d(a, r−), finally, it is

secant with Γ(a, r, r + 1
n). Since Mult(A, ‖ . ‖) is compact, we can take a

point of adherence θ of the filter associated to the sequence (φm)m∈N. So, for
every m ∈ N, there exists qm ∈ N such that |φqm(t)− θ(t)|∞ ≤ 1

m . Since this

is true for all m ∈ N, and since limn→∞ φn(t− a) = r, we have θ(t− a) = r,

thereby Ω−1(θ(t)) is (a, r)-approaching. �
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Chapter 9

Spectral Properties in Uniform Algebras

9.1. Spectral properties

The chapter is first devoted to present several semi-multiplicative semi-norms

and compare them to the spectral semi-norm. We introduce properties (o),

(p), (q), (r), (s) which will keep the same meaning throughout the book.

Most of results in this chapter were stated in [26]. Next, we consider two

kinds of Gelfand transform in an ultrametric K-algebra: one is similar to

the definition in complex analysis, but does not show strong properties. The

other is more sophisticated and shows certain specific properties linked to

circular filters.

Notation: Let us recall that K denotes an algebraically closed field

complete for a non-trivial ultrametric absolute value. Throughout the

chapter, (A, ‖ . ‖) will be a unital commutative normed K-algebra.

Let us recall that by Corollary 2.5.9 of Chapter 2, we have ‖x‖sp =

sup{ϕ(x) | ϕ ∈ Mult(A, ‖ . ‖)}.
We can define several other semi-multiplicative semi-norms:

‖x‖sa = sup{ϕ(x) |ϕ ∈ Multa(A, ‖ . ‖)},
‖x‖sm = sup{ϕ(x) | ϕ ∈ Multm(A, ‖ . ‖)},
Moreover, we put τ(x) = sup{|λ| |λ ∈ sp(x) ∪ {0}}.
Remark 1. In certain cases, sp(x) might be empty (for instance in a field

extension of K). This is why τ(x) involves sp(x) ∪ {0}.
Proposition 9.1.1. τ(x) ≤ ‖x‖sm∀x ∈ A. If all maximal ideals of A are of

codimension 1, then τ equals ‖ . ‖sm.

223
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Proof. Let λ ∈ sp(x). There exists a homomorphism χ from A to an

extension of K such that χ(x) = λ, hence |λ| ≤ ‖x‖sm. This is true for every
λ such that |λ| ≤ τ(x), therefore τ(x) ≤ ‖x‖sm.

Suppose now that all maximal ideals of A are of codimension 1. Take

x ∈ A. For every λ ∈ sp(x), there exists a maximal ideal M such that

x − λ ∈ M , M is the kernel of a homomorphism χ from A to K such that

χ(x) = λ, therefore |λ| = |χ(x)| ≤ ‖x‖sm. �

Remark 1. If A has maximal ideals of infinite codimension, τ is not

necessarily a semi-norm. Suppose that A admits a unique maximal ideal of

infinite codimension and no other maximal ideal. Let χ be a homomorphism

from A onto an extension of K, let x ∈ A be such that χ(x) ∈ K and let y ∈ A

be such that χ(y) /∈ K. Then τ(x) = |χ(x)| but τ(x+ y) = τ(x − y) = 0. If

τ were a semi-norm, we should have τ(2x) = 0. But if K has characteristic

different from 2, we have τ(2x) �= 0.

Proposition 9.1.2 is immediate from Theorems 2.5.11, 2.5.15 and

Corollary 2.5.8 of Chapter 2.

Proposition 9.1.2. Assume Max1(A) �= ∅. Then ‖x‖sa = sup{|χ(x)| | χ ∈
X (A,K)} ∀x ∈ A.

Notation: In A we denote by (o), (p), (q), (r), (s) these properties:

(o) ‖x‖sa = τ(x) ∀x ∈ A,

(p) ‖x‖sa = ‖x‖sp ∀x ∈ A,

(q) τ(x) = ‖x‖sp ∀x ∈ A,
(r) ‖x‖sa = ‖x‖sm ∀x ∈ A,

(s) ‖x‖sm = ‖x‖sp ∀x ∈ A.
Thus, by definition, Property (p) implies Properties (o), (q), (r). Next, (s)

and (r) implies (o).

Proposition 9.1.3. Assume that A satisfies Property p). Then A is semi-

simple if and only if ‖ . ‖sp is a norm.

Theorem 9.1.4. Let A be complete, let ‖ . ‖Asp be its spectral semi-norm and

let B be a unital commutative normed K-algebra whose spectral semi-norm

‖ . ‖Bsp satisfies Property (q). Then every K-algebra homomorphism φ from

A to B satisfies ‖φ(x)‖Bsp ≤ ‖x‖Asp ∀x ∈ A.

Proof. Suppose that for certain x ∈ A we have ‖φ(x)‖Bsp > ‖x‖Asp and let

y = φ(x). Then there exists λ ∈ spB(φ(x)) such that |λ| > ‖x‖Asp. Then
by Theorem 2.5.11 of Chapter 2, λ − x is invertible in A, hence φ(λ − x)
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is invertible in B. But φ(λ − x) = λ − y, a contradiction to the hypothesis

λ ∈ spB(φ(x)). �

Corollary 9.1.5. Assume A is complete, let B be a uniform unital com-

mutative normed K-algebra satisfying Property (q) and let φ be a K-algebra

homomorphism from A to B. Then φ is continuous.

By Theorems 2.5.11 of Chapter 2 and 9.1.4 we have Corollary 9.1.6.

Corollary 9.1.6. Let A be complete. Let F be a set and let B be a K-

subalgebra with unity of the algebra of bounded functions from F to K

equipped with the norm ‖ . ‖F . Then every K-algebra homomorphism φ from

A to B is continuous and satisfies ‖φ(f)‖F ≤ ‖f‖sp ∀f ∈ A.

Notations: In A we have defined two kinds of “Gelfand transform” GA

and GMA (see Section 6.4 of Chapter 6). The first one is similar to that in

complex analysis and was already used in C.5, consisting of associating to

each element f of A the mapping f0 from X (A,K) to K defined as f0(χ) =

χ(f), (χ ∈ X (A,K)).

The second one, denoted byGMA consists of associating to each element

f of A the mapping f∗ from Mult(A, ‖ . ‖) to Mult(K[x]) defined by

f∗(φ)(P ) = φ(P ◦ f), (P ∈ K[x]).

As in complex analysis, Propositions 9.1.7–9.1.9 are immediate.

Proposition 9.1.7. GA is injective if and only if the intersection of all

maximal ideals of codimension 1 is null.

Proposition 9.1.8. X (A,K) being equipped with the topology of pointwise

convergence, for every f ∈ A, f0 belongs to C(X ((A,K),K).

Proposition 9.1.9. C(X ((A,K),K) being equipped with the norm of uni-

form convergence, GA satisfies ‖f0‖ = ‖f‖sa for every f ∈ A.

Theorem 9.1.10. Assume that A satisfies Property p). Then C(X (A,K),K)

being equipped with the norm of uniform convergence, then GA is an isometry

if and only if ‖x2‖ = ‖x‖2 ∀x ∈ A.

Proof. Suppose ‖x2‖ = ‖x‖2 is true for all x ∈ A, let x ∈ A and let ρ =
‖x‖sp
‖x‖ . Then we check that

‖x2n‖sp
‖x2n‖ = ρ(2

n) hence ‖x‖sp = ρlimn→∞ ‖xn‖ 1
n ,

and therefore ρ = 1. So, GA is an isometry. The converse is trivial. �
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Theorem 9.1.11. Assume that A satisfies Property (p). The following two

properties are equivalent on A:

A is semi-simple and GA(A) is closed in C(X (A,K),K),

A is uniform.

Proof. First, suppose that A is uniform. Let x belong to the Jacobson

radical of A. In particular, x belongs to the intersection of maximal ideals of

codimension 1 of A. So, we have ‖x‖sa = 0, so, by Property (p), ‖x‖sp = 0,

and therefore x = 0, hence A is semi-simple. Let h belong to the closure of

GA(A) in C(X (A,K),K). Since C(X (A,K),K) is equipped with the norm

of uniform convergence, we just have to consider a sequence f0n of GA

converging to h. Thus, ‖h − f0n‖ = sup{|χ(fn) − h(χ)| |χ ∈ X (A,K)}. The
sequence (fn)n∈N is a Cauchy sequence in A, with respect to ‖x‖sp = 0,

and therefore with respect to the norm of A because A is uniform. Let

f = limn→∞ fn. Then we can check that f0 = limn→∞ f0n in C(X (A,K),K)

and therefore h = f0.

Conversely, suppose that A is semi-simple and that GA(A) is closed in

C(X (A,K),K). Since A is semi-simple and satisfies Property (p), ‖ . ‖sa is a

norm equal to ‖x‖sp. Consider a Cauchy sequence (fn) with respect to the

norm ‖ . ‖sp. Then the sequence (f0n) is a Cauchy sequence in C(X (A,K),K),

and has a limit h which actually lies in GA(A) because GA(A) is closed in

C(X (A,K),K). Hence, there exists f ∈ A such that f0 = h. Consequently, f

is the limit of the sequence (fn) with respect to the norm ‖ . ‖sp. Thus, A is a

K-algebra complete for both ‖ . ‖sp and ‖ . ‖. And since ‖x‖sp ≤ ‖x‖ ∀x ∈ A,

by Hahn–Banach’s Theorem the two norms are equivalent. �

Now we will examine the mapping GMA.

Theorem 9.1.12. Given f ∈ A, the mapping f∗ from Mult(A, ‖ . ‖)
to Mult(K[x]) is continuous with respect to the topology of pointwise

convergence.

Proof. Let G = f∗(φ). By Theorem 6.2.10 of Chapter 6, the family of

sets Mult(H(E), ‖ . ‖E), where E is an infraconnected affinoid subset of K

lying in G, makes a basis of neighborhoods of ϕG . So, we take an arbitrary

G-affinoid B and will show that there exists a neighborhood W of φ inside

Mult(A, ‖ . ‖) whose image by f∗ is included in Mult(H(B), ‖ . ‖B). If G has

center b and diameter r > 0, we can take an arbitrary G-affinoid B of the

form d(b, r + ε) \
(⋃q

j=1 d(bj , (r − ε−)
)
, and if G has no center and but has

diameter r, or is a Cauchy filter, we can take an arbitrary G-affinoid B of

the form d(b, r + ε). Putting b = b0, we consider now the neighborhood of φ
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W = {ψ ∈ Mult(A, ‖ . ‖) | |ψ(f − bj) − φ(f − bj)| ≤ ε, (0 ≤ j ≤ q)}. Then
we can check that f∗(W) ⊂ Mult(H(B), ‖ . ‖B), which proves the claim. �

Lemma 9.1.13 is immediate.

Lemma 9.1.13. Let χ ∈ X (A,K) and let f ∈ A. Then f∗(|χ|) = ϕχ(f).

Proof. Let F be the circular filter such that ϕF = f∗(|χ|). Then ϕF clearly

belongs to Multm(K[x]) and F is the Cauchy filter of neighborhoods of χ(f)

because ϕF (P ) = |P (χ(f))| ∀P ∈ K[x]. �

Theorem 9.1.14. Assume that A is uniform and that the intersection of

maximal ideals of codimension 1 is null. Then GMA is injective.

Proof. Suppose f∗ = g∗ and f �= g. let r = ‖f − g‖. Since the intersection
of maximal ideals of codimension 1 is null, there exists (χ ∈ X (A,K)

such that χ(g − f) �= 0. By Lemma 9.1.13, we have f∗(|χ|) = ϕχ(f) and

g∗(|χ|) = ϕχ(g). But since f
∗ = g∗, we have f∗(|χ|) = g∗(|χ|). Let F be the

circular filter such that ϕF = f∗(|χ|) = g∗(|χ|). Then ϕF clearly belongs to

Multm(K[x]) and F is the Cauchy filter of neighborhoods of χ(f) because

ϕF (P ) = |P (χ(f))|. Similarly, it is the Cauchy filter of neighborhoods of

χ(g). Consequently, χ(f) = χ(g), hence χ(f − g) = 0, a contradiction to the

hypothesis. �

Theorem 9.1.15. Let A be uniform. Let φ ∈ Mult(A, ‖ . ‖), let f, g ∈
A be such that f∗(φ) �= g∗(φ). Let ϕF = f∗(φ), ϕG = g∗(φ). Then

diam(sup(F ,G)) = φ(f − g).

Proof. Suppose that f∗(φ) �= g∗(φ). Let r = diam(F), s = diam(G).
Suppose first that F ≺ G, hence r < s. Let us take l ∈]r, s[. By Lemma 5.3.12

of Chapter 5, there exists a unique disk d(a, l) which belongs to F Then a is a

center of G. Thus, we have φ(f−a) ≤ l, φ(g−a) = s, hence, by Lemma 2.3.3

of Chapter 2, φ(g − f) = s = diam(sup(F ,G)).
Now, suppose that F and G are uncomparable. Let Σ = sup(F ,G). By

Proposition 2.4.9 of Chapter 5, we can find disks F = d(a, r′) ∈ F , G =

d(b, s′) ∈ G such that δ(F,G) = λ(F ,G) = |a − b| = diam(sup(F ,G)). Of

course we have |b − a| > r′ and |b − a| > s′. Then, φ(g − a) = |b − a| and
φ(f − a) < |b − a|, hence φ(g − f) = |b − a|, and therefore φ(g − f) =

diam(sup(F ,G)). �

Corollary 9.1.16. Let A be uniform. Let φ ∈ Mult(A, ‖ . ‖), let f, g ∈ A.

Let ϕF = f∗(φ), ϕG = g∗(φ). Then δ(f∗(φ), g∗(φ))) ≤ φ(f − g) ≤ ‖f − g‖.
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Notation: Given φ ∈ Mult(A, ‖ . ‖), we will denote by Zφ the mapping

from A into Mult(K[x]) defined as Zφ(f) = f∗(φ).

Corollary 9.1.17. Let A be uniform. The family of functions Zφ, φ ∈
Mult(A, ‖ . ‖) is uniformly equicontinuous with respect to the δ-topology on

Mult(K[x]).

Corollary 9.1.18. Let A be uniform. Each function Zφ, φ ∈ Mult(A, ‖ . ‖)
is continuous with respect to the topology of pointwise convergence on

Mult(K[x]).

Lemma 9.1.19. Let x ∈ A be such that τ(x) < ‖x‖, let r = τ(x) and let s =

‖x‖. There exists φ ∈ Mult(A, ‖ . ‖) and a numbers S > 0 and an affinoid

F which belongs to the filter F = Ω−1(φx), such that diam(Ω−1(ψx)) ≥ σ,

for all ψ ∈ Mult(A, ‖ . ‖) such that Ω−1(ψx) ∈ Φ(F ).

Proof. We assume lemma is not true. Let O be the strict x-spectral

partition, let m ∈]r, s[ and let φ0 ∈ Mult(A, ‖ . ‖) be such that Ω−1((φ0)x)

is secant with Γ(0,m, s). Let F0 = Ω−1((φ0)x) and let s0 = diam(F0).

Suppose we have already constructed a finite sequence (φn)n∈N for n = 0,

. . . , q, satisfying diam(Ω−1((φn)x)) <
s
n and δ(Ω−1((φn)x),Ω

−1((φn+1)x)) <
2s
n+1 . Let Fn = Ω−1((φn)x). Since the lemma is supposed to be false, there

exists no affinoid F ∈ F such that Fn is the only circular filter of the form

Ω−1(ψx), ψ ∈ Mult(A, ‖ . ‖), which is secant with F .

Suppose that we can’t find φn+1 ∈ Mult(A, ‖ . ‖) such that the filter

Fn+1 = Ω−1((φn+1)x)) satisfies diam(Fn+1) <
s

n+1 , and δ(Fn+1,Fn) < 2s
n+1 .

This means that for every ψ ∈ Mult(A, ‖ . ‖) such that δ(Ω−1(ψx),Fn) <
2s
n+1 , we have diam(Ω−1(ψx)) ≥ 1

n . Let F be the unique disk of diameter
2s
n+1 such that Fn ∈ Φ(F ). Then for all G ∈ φ(F ) we have δ(F ,G) ≤ 2s

n+1 ,

hence hence diam(Ω−1(ψx)) ≥ s
n+1 for all ψ ∈ Mult(A, ‖ . ‖) such that

Ω−1(ψx) ∈ Φ(F ), which proves the conclusion. Thus, since we have supposed

that the conclusion is false, we can find φn+1 ∈ Mult(A, ‖ . ‖) such that the

filter Fn+1 = Ω−1((φn+1)x)) satisfies diam(Fn+1) <
s

n+1 , and δ(Fn+1,Fn) <
2s
n+1 . And this is true for all n ∈ N, hence the sequence ((φn)x)n∈N is a

Cauchy sequence with respect to the δ-topology. Consequently, its limit in

Mult(K[x]) is of the form ϕα, with α ∈ Γ(0, r, s). On the other hand, since

Mult(A, ‖ . ‖) is compact for the topology of pointwise convergence, the

sequence (φn)n∈N admits a point of adherence θ with respect to the topology

of pointwise convergence. Consequently, θx is a point of adherence of the

sequence ((ψn)x)n∈N. Next, since Mult(K[x]) is sequentially compact, we can
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extract from the sequence (ψn)x a subsequence converging to θx with respect

to the topology of pointwise convergence. Thus, without loss of generality,

we can assume that the sequence (ψn)x converges to θx with respect to the

topology of pointwise convergence in Mult(K[x]). But since the sequence

(ψn)x converges to ϕα for the δ-topology, so much the more does it converge

to ϕα for the topology of pointwise convergence, hence ϕα = θx. Thus,

θα is punctual, a contradiction to the fact that α /∈ sp(x). Consequently,

our hypothesis “the conclusion is false” is wrong, and this finishes proving

Lemma 9.1.19. �

9.2. Uniform K-Banach algebras and properties (s) and (q)

Notations: Throughout this chapter, A is a unital commutative ultramet-

ric Banach K-algebra, whose norm is ‖ . ‖. As in Section 8.4 of Chapter 8,

given t ∈ A we denote by Ht the canonical morphism associated to t.

The question whether semi-norms ‖ . ‖sp and ‖ . ‖sm are equal is an

old one. Actually, when K is weakly valued, there exist unital commutative

ultrametric Banach K-algebras where the semi-norm ‖ . ‖sp is strictly

superior to the semi-norm ‖ . ‖sm for certain elements. But if we assume

that ‖ . ‖sp is a norm and that A is complete for this norm, then we can

prove the equality (see [24, 36]). In Corollary 9.2.13, we find again a theorem

due to B. Guennebaud stating that the completion of a field with respect

to a semi-multiplicative norm, admitting at least two continuous absolute

values, has divisors of zero. In particular, this shows why Corollary 4.3.4 in

[3] is wrong.

Lemma 9.2.1. Let t∈A have bounded normal ratio and let O=(d(ai,

ri)i∈J be a wide t-spectral partition. The restriction of Ht to R′(sp(t),
O, (ai)i∈J ) and R′′(sp(t),O, (ai)i∈J) are continuous.

Proof. The restriction of Ht to R
′(sp(t),O, (ai)i∈J) is obviously continu-

ous. Next, we check that the family of
{ ‖(x− bj)

−2‖
‖(x− bj)−2‖sp |i ∈ J

}
is bounded

because on one hand ‖(x − bj)
−2‖sp =

(‖(x − bj)
−1‖sp

)2
and on the other

hand ‖(x− bj)
−2‖ ≤ (‖(x− bj)

−1‖)2. �

Lemma 9.2.2. Let t ∈ A. Assume that Ker(Ht) �= {0}. Then ‖t‖sp = ‖t‖sm.
Moreover, if A �= K, then A has divisors of zero.

Proof. Let D = sp(t) and let B = Ht(R(D)). Then Ker(Ht) is an ideal of

R(D) generated by a monic polynomial G(x) =
∏q
i=1(x−ai). Since G(t) = 0,
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for every ψ ∈ Mult(A, ‖ . ‖), we have ψ(G(t)) = 0, hence there exists an

integer l(ψ) ∈ {1, . . . , q} such that ψ(t − al(ψ)) = 0, hence ψ(t) = |al(ψ)|.
Then, t−al(ψ) lies in Ker(ψ) and therefore belongs to a maximal ideal M of

A. But by Theorem 2.5.13 of Chapter 2, there exists θψ ∈ Multm(A, ‖ . ‖)
such that Ker(θψ) = M. Hence we have θψ(t) = |al(ψ)| = ψ(t). Thus, we

have shown that ψ(t) ≤ ‖t‖sm. But this is true for every ψ ∈ Mult(A, ‖ . ‖).
Consequently by Theorem 2.5.17 of Chapter 2, we have ‖t‖sp = ‖t‖sm, which
proves the first statement.

Next, we notice that Ker(Ht) admits a generator G(x) ∈ K[x] whose

zeros lie in D. If deg(G) = 1, then t lies in K (considered as a K-subalgebra

of A), and obviously we have ψ(t) = |t| ∀ψ ∈ Mult(A, ‖ . ‖), and therefore,

sup{|λ| | λ ∈ D} = ‖t‖sp. Now, if deg(G) > 1, then Ker(Ht) is not prime,

hence A contains divisors of zero, so the second statement is trivial. �

Theorem 9.2.3 ([24]). Let t ∈ A have bounded normal ratio. Then ‖t‖sp =

‖t‖sm.

Proof. Let D = sp(t). We put r = ‖t‖sp, r′ = ‖t‖sm and we suppose

r′ < r. If ‖t‖ = ‖t‖sp we put u = r, and if ‖t‖ > ‖t‖sp we take u ∈]r, ‖t‖[. Let
B = Ht(R(D)). By Lemma 9.2.1, we can assume that Ker(Ht) = {0}. Hence
B is isomorphic to R(D). Let O be a wide t-spectral partition of diameter

u, and for convenience, we put ‖ . ‖t = ‖ . ‖D,O. Let (d(ai, ri)), (i ∈ J) be

the family of holes of O and let B = Ht(R
′(D,O, (ai)i∈J)).

By Theorem 8.4.6 of Chapter 8, the restriction V ′
t ofHt to R

′(D, (ai)i∈J ))
is continuous once R′(D,O, (ai)i∈J)) is equipped with the norm ‖ . ‖t. There-
fore, V ′

t has continuation to a continuous K-vector space homomorphism

from H ′(D,O, (ai)i∈J ) into the closure B of B in A. We will still denote it

by V ′
t .

Let s′ ∈]r′, r[. The annulus Γ(0, s′, r), admits a partition by a subfamily

S of holes of O. Hence by Theorem 8.1.1 of Chapter 8, Γ(0, s′, r), contains
a O-minorated annulus Γ(b, ρ, υ). Of course, we may choose υ as close to

ρ as we want. Particularly, if |b| > ρ, we take υ ∈]ρ, |b|[. Next, we take

λ ∈]ρ, υ[. Clearly b does not lie in D. Let rb =
1

‖(x−b)−1‖sp . By Lemma 8.4.12

of Chapter 8, there exists θ ∈ Mult(A, ‖ . ‖) such that Ω−1(θ) is (b, rb)-

approaching. In fact, by definition, we have rb ≤ ρ, hence C(b, rb) is included

in d(b, ρ), hence Ω−1(θ) is secant with d(b, ρ). On the other hand, there

certainly exists φ ∈ Mult(A, ‖ . ‖) such that Ω−1(φ) is (b, r)-approaching.

Then by Propositions 8.2.5 of Chapter 8, there exist f, g ∈ H ′(D,O, (ai)i∈J)
satisfying:
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ψ(f) = 1 for all ψ ∈ Mult(H(D,O), ‖ . ‖D,O) such that ψ(t − b) > υ, and

ψ(f) = 0 for all ψ ∈ Mult(H(D,O), ‖ . ‖D,O) such that ψ(t− b) ≤ λ,

ψ(g) = 1 for all ψ ∈ Mult(H(D,O), ‖ . ‖D,O) such that ψ(t − b) < ρ, and

ψ(g) = 0 for all ψ ∈ Mult(H(D,O), ‖ . ‖D,O) such that ψ(t− b) ≥ λ.

We put F = Ht(f), and G = V ′
t (g). Though Ht is not supposed to

be continuous on all H(D,O, (ai)i∈J), it is continuous on H ′(D,O, (ai)i∈J ).
Given φ ∈ Mult(A, ‖ . ‖), we will denote by φt the K-vector space semi-norm

defined on R(D) +H ′(D,O), ‖ . ‖D,O.
Suppose first |b| ≤ ρ. It is seen that for every ψ ∈ Multm(A, ‖ . ‖), we

have ψ(t) ≤ r′, hence ψt(x) ≤ r′. Consequently, ψt(g) = 1, and therefore

ψ(G) = 1, hence G is invertible in A. On the other hand, Ω−1(φt) is (0, r)-

approaching, hence φt(g) = 0, and therefore φ(G) = 0, a contradiction to

the conclusion “G is invertible in A”.

Finally, suppose |b| > ρ. in the same way we have d(0, r′) ⊂ K \ d(b, λ),
and therefore, ψ(F ) = 1 for all ψ ∈ Multm(A, ‖ . ‖), and ψ(F ) = 0 for all ψ

such that Ω−1(ψt) is secant with d(b, λ). So, F is invertible. But Ω−1(θt) is

secant with d(b, λ) and therefore, θ(F ) = 0, a contradiction to the property

“F invertible”. �

Corollary 9.2.4. If A has bounded normal ratio, then A satisfies

Property (s).

Corollary 9.2.5. If A is uniform, then A satisfies Property (s).

Corollary 9.2.6. If A has bounded normal ratio and has no maximal ideals

of infinite codimension, then A satisfies Property (p).

Corollary 9.2.7. If A is uniform and has no maximal ideals of infinite

codimension, then A satisfies Property (p).

Corollary 9.2.8. If A is uniform then its Jacobson radical is null.

Proposition 9.2.9. Let t ∈ A have bounded normal ratio and assume that

there exist ψ′, ψ′′ ∈ Mult(A, ‖ . ‖) and r, r′, r′′ such that ψ′(t) ≤ r′ < r <

r′′ ≤ ψ′′(t) and Γ(0, r′, r′′) ∩ sp(t) = ∅. Then A has divisors of zero.

Proof. Let D = sp(t), and let B = Ht(R(D)). Let O = (d(ai, r
−
i ))i∈J )

be a wide t-spectral partition. The annulus Γ(0, r, r′) admits a partition

by a subfamily S of holes of O. Hence by Theorem 8.1.1 of Chapter 8,

Γ(0, r, r′) contains a O-minorated annulus Γ(b, ρ, υ). Moreover, we notice

that there exists at least one element φ of Mult(A, ‖ . ‖) such that Ω−1(φt)

is secant with d(b, ρ). Indeed, if t − b is not invertible, this is obvious.
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Now, suppose that t − b is invertible. Since Γ(b, ρ, υ) admits a partition by

holes of the t-spectral partition, according to Corollary 8.4.2 of Chapter 8,

we have ‖(t − b)−1‖−1 ≤ ρ and by and Lemma 8.4.12 of Chapter 8, there

exists φ ∈ Mult(A, ‖ . ‖) such that Ω−1(φt) is secant with d(b, ρ). Then by

Corollary 8.2.6 of Chapter 8, there exist f, g ∈ H ′(D,O, (ai)i∈J ) satisfying
fg = 0 and ψ′

t(f) = φt(g) = 1. By Theorem 8.4.6 of Chapter 8, we know

that Ht is continuous on R′′(D,O, (ai)i∈J). And by Proposition 8.2.4 of

Chapter 8, fg belongs to H ′′(O, (ai)i∈J). Consequently, Ht(f)Ht(g) = 0.

But ψ′(Ht(f)) = φ(Ht(f)) = 1 hence Ht(f), Ht(g) are divisors of zero

in A. �

Theorem 9.2.10. Let A have no divisors of zero and let t ∈ A have bounded

normal ratio and be such that sp(t) �= ∅. Then τ(t) = ‖t‖sp.
Proof. Suppose τ(t) < ‖t‖sp. Since sp(t) �= ∅ there obviously exist ψ1 ∈
Mult(A, ‖ . ‖) such that ψ1(t) = τ(t) and by Corollary 2.5.8 of Chapter 2,

there exists ψ2 ∈ Mult(A, ‖ . ‖) such that ψ2(t) = ‖t‖sp. Putting r1 = ψ1(t)

and r2 = ψ2(t), we have Γ(0, r1, r2) ∩ sp(t) = ∅. Hence by Proposition 9.2.8,

A has divisors of zero, a contradiction. �

Corollary 9.2.11. Let A be uniform and have no divisors of zero, and be

such that sp(t) �= ∅ ∀t ∈ A. Then A satisfies Property (q).

Corollary 9.2.12. Let B be a unital commutative uniform ultrametric

Banach K-algebra without divisors of zero, such that spB(t) �= ∅ ∀t ∈ B

and let φ be a K-algebra homomorphism from A to B. Let ‖ . ‖Asp (resp.,

‖ . ‖Bsp) be the spectral norm of A (resp., B). Then φ satisfies ‖φ(x)‖Bsp ≤
‖φ(x)‖Asp ∀x ∈ A.

Thanks to Proposition 9.2.9, Guennebaud’s theorem [32] on the comple-

tion of a field which is a normed K-algebra having more than one continuous

absolute value, appears as a simple corollary.

Theorem 9.2.13. Let F be a field extension of K equipped with a semi-

multiplicative norm and admitting two different continuous absolute values.

Then the completion of F has divisors of zero.

Proof. Let A be the completion of F , with respect to its norm. It is a

uniform Banach K-algebra such that Mult′(A, ‖ . ‖) contains at least the

expansions ψ1, ψ2 of two different continuous absolute values defined on F .

Let t ∈ F be such that ψ1(t) < ψ2(t). As an element of F , the spectrum of t

is empty, hence it is also empty as an element of A. Putting r1 = ψ1(t), r2 =

ψ2(t), we can apply Proposition 9.2.9, therefore A has divisors of zero. �
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Remarks. In [3, proof of Corollary 4.3.4], the completion of a field for a

spectral norm (denoted by H(Σ)) is assumed to be a field, which is not true.

However, Theorem 9.2.14 shows that, even in a uniform K-algebra,

Properties (s) and (q) are not equivalent.

Theorem 9.2.14. There exists a uniform unital commutative Banach K-

algebra satisfying Property (s) but not Property (q).

Proof. Let l ∈]0, 1[, let D = d(0, l−) and let O be the classic partition of

d(0, 1) that consists of d(0, l−) and of the disks d(a, |a|−) for a ∈ d(0, 1) and

l ≤ |a| ≤ 1. For every h ∈ R(D), we have ‖h‖O = sup{ϕ0,r(h), | l ≤ r ≤ 1}.
Let A be the completion of R(D) for the norm ‖ . ‖O. By construction, A is

complete for its norm ‖ . ‖sp. Consequently, by Corollary 9.2.5, it satisfies

Property s). On the other hand, for every λ ∈ K \ d(0, l), x− λ is invertible

in R(D), hence in A. Consequently, we have τ(x) < ‖x‖sp. So, A does not

satisfy Property (q). �

Theorem 9.2.15. Let A be a Banach K-algebra having a bounded normal

ratio, such that sp(x) is infraconnected for all x ∈ A. Then A satisfies

Property (q).

Proof. Since sp(x) is infraconnected for all x ∈ A, we can see that

Ker(Hx) = {0} ∀x /∈ K. Suppose there exists t ∈ A such that τ(t) < ‖t‖.
Let r′ = τ(t), let r′′ = ‖t‖ and let O = (d(ai, r

−
i ))i∈J ) be a wide t-spectral

partition. By Theorem 8.1.1 of Chapter 8, there exists a O-minorated annu-

lus Γ(a, s′, s′′) included in Γ(0, r′, r′′), and by Corollary 8.4.2 of Chapter 8,

and Lemma 8.4.12 of Chapter 8, there exists φ ∈ Mult(A, ‖ . ‖) such that

Ω−1(φt) is secant with d(a, s
′). Let r ∈]s′, s′′[. Suppose first Γ(a, s′, s′′) admits

0 as a center. Since Γ(0, s′, s′′) is a O- minorated annulus, we can find an

increasing distances holes sequence (T ′
n)n∈N of O of center 0 and diameter r

such that the weighted sequence (Tn, 1)n∈N makes a T -sequence. The T -filter

of center 0 and diameter r will be denoted by F . Let D = d(0, r′′)\⋃n∈N Tn.
Since D is clearly a O-set, H(D) is a K-subalgebra of H(sp(t),O, (ai)i∈J ).
Now, we denote by D′ the set D ∪ (K \ d(0, r). Hence Hb(D

′) is a Banach

K-subalgebra of H(D). Let R′(D′) = Rb(D
′) ∩ R′((sp(t),O, (ai)i∈J) and

H ′(D′) = Hb(D
′) ∩ H ′((sp(t),O, (ai)i∈J). Particularly, by Theorem 8.4.11

of Chapter 8, the canonical homomorphism Ht is defined and continuous

on H ′(D′). Then, by Theorem 7.4.15 of Chapter 7, there exists f ∈ H(D),

meromorphic in each hole Tn, admitting an in Tn as a unique pole, having

order at most 1, such that |f(c)| = 1 ∀c ∈ d(0, s′), f(c) = 0 ∀c ∈ D\d(0, r−).

Thus, we see that f belongs to H ′(D′). Let F = Ht(f). Since r
′′ > r, there
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exists ψ ∈ Mult(A, ‖ . ‖) such that ψ(t) > r, hence ψ(Ht(f)) = 0, hence F

belongs to a maximal ideal containing Ker(ψ), and therefore 0 belongs to

sp(F ). On the other hand for every c ∈ sp(x), we have |f(c)| = 1, hence

sp(F ) ∩C(0, 1) �= ∅. Actually, we will show that sp(F ) ⊂ C(0, 1) ∪ {0}, i.e.,
F − l is invertible for all l ∈ K such that 0 < |l| < 1.

Let l ∈ K be such that 0 < |l| < 1 and suppose that F − l is not

invertible in A. Let ζ ∈ X (A) be such that ζ(F − l) = 0. Let M = Ker(ζ),

and let Ω = A
M . Let φ ∈ Mult(A, ‖ . ‖) be such that Ker(φ) = M. Then φ

defines an element φt of Mult(R(D)) which of course is of the form ϕG , with
G a circular filter on K. Moreover, in Rb(D

′), the norm ‖ . ‖D′ obviously

satisfies ‖h‖D′ ≥ ‖h‖sp(t),O, hence the restriction of ϕG to R′(D′) is clearly

continuous with respect to the norm ‖ . ‖D′ and has extension to H ′(D′). So,
in particular, we have φt(f − l) = 0, hence limG f(x)− l = 0, and therefore G
is not secant with d(0, s′)∪ (K\d(0, r)). In particular, G �= F . But since F is

the only T -filter on D′, this implies that G is a Cauchy filter on D′, of limit

a, hence we have ζ(t) = a, a contradiction to the hypothesis sp(t) ⊂ d(0, r′).
Consequently, F − l is invertible in A for all l ∈ K such that 0 < |l| < 1, and

therefore sp(F ) is not infraconnected.

We have a symmetric proof when 0 is not a center of Γ(a, s′, s′′). Then
Γ(a, s′, s′′) is included in a class of C(0, |a|), therefore s′′ < |a|. Indeed,

consider u = 1
t−a . We can check that sp(u) ⊂ C(0, 1

|a|), and since there

exists ψ ∈ Mult(A, ‖ . ‖) such that Ω−1(ψt) is secant with d(a, r′), we have

ψ(t−a) ≤ s′′, hence ψ(u) ≥ 1
s′′ >

1
|a| . Consequently, we check that τ(u) ≤ 1

|a| ,
and ‖u‖ > 1

s′′ , so we are led to the same situation with u instead of t. �

9.3. Properties (o) and (q) in uniform Banach K-algebras

We shall show that in a uniform Banach K-algebra, Property (o) implies

Property (q). Conversely, we shall see that Property (q) doesn’t imply

Property (o).

Notation: Throughout this chapter, A is a unital commutative ultrametric

Banach K-algebra. Several results come from [26].

Lemma 9.3.1. Let x ∈ A be such that τ(x) < ‖x‖. There exists φ ∈
Mult(A, ‖ . ‖), a number υ > 0 and an affinoid set F which belongs to the

filter F = Ω−1(φx), such that diam(Ω−1(ψx)) ≥ υ, for all ψ ∈ Mult(A, ‖ . ‖)
such that Ω−1(ψx) ∈ Φ(F ).

Proof. We assume that Lemma 9.3.1 is not true. Let r = τ(x) and let

s = ‖x‖, let m ∈]r, s[, let O be the strict x-spectral partition, and let
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φ0 ∈ Mult(A, ‖ . ‖) be such that Ω−1((φ0)x) is secant with Γ(0,m, s). Let

F0 = Ω−1((φ0)x) and let s0 = diam(F0).

Suppose we have already constructed a finite sequence (φn)n∈N
for n = 0, . . . , q, satisfying diam(Ω−1((φn)x)) < s

n+1 and δ(Ω−1((φn)x),

Ω−1((φn+1)x)) <
2s
n+1 . Let Fn = Ω−1((φn)x). Since the Lemma is supposed

to be false, there exists no affinoid F ∈ Fn such that Fn is the only circular

filter of the form Ω−1(ψx), ψ ∈ Mult(A, ‖ . ‖), which be secant with F .

Suppose that we can’t find φn+1 ∈ Mult(A, ‖ . ‖) such that the filter

Fn+1 = Ω−1((φn+1)x)) satisfies diam(Fn+1) <
s

n+2 , and δ(Fn+1,Fn) < 2s
n+1 .

This means that for every ψ ∈ Mult(A, ‖ . ‖) such that δ(Ω−1(ψx),Fn) <
2s
n+1 , we have diam(Ω−1(ψx)) ≥ 1

n+1 . Let F be the unique disk of diameter
2s
n+1 such that Fn ∈ Φ(F ). Then for all G ∈ Φ(F ) we have δ(F ,G) ≤
2s
n+1 , hence diam(Ω−1(ψx)) ≥ s

n+1 for all ψ ∈ Mult(A, ‖ . ‖) such that

Ω−1(ψx) ∈ Φ(F ), which proves the conclusion of the lemma. Thus, since we

have supposed that the conclusion is false, we can find φn+1 ∈ Mult(A, ‖ . ‖)
such that the filter Fn+1 = Ω−1((φn+1)x)) satisfies diam(Fn+1) < s

n+2 ,

and δ(Fn+1,Fn) < 2s
n+1 . And this is true for all n ∈ N, hence the

sequence ((φn)x)n∈N is a Cauchy sequence with respect to the δ-topology.

Consequently, its limit in Mult(K[x]) is of the form ϕα, with α ∈ Γ(0, r, s). On

the other hand, since Mult(A, ‖ . ‖) is compact for the topology of pointwise

convergence, the sequence (φn)n∈N admits a a cluster θ with respect to

the topology of pointwise convergence. Consequently, θx is a cluster of the

sequence ((ψn)x)n∈N. Next, since Mult(K[x]) is sequentially compact, we can

extract from the sequence (ψn)x a subsequence converging to θx with respect

to the topology of pointwise convergence. Thus, without loss of generality,

we can assume that the sequence (ψn)x converges to θx with respect to the

topology of pointwise convergence in Mult(K[x]). But since the sequence

(ψn)x converges to ϕα with respect to the δ-topology, by Theorem 6.3.3 of

Chapter 6, so much the more does it converges to ϕα for the topology of

pointwise convergence, hence ϕα = θx. Thus, θα is punctual, a contradiction

to the fact that α /∈ sp(x). Consequently, our hypothesis “the conclusion is

false” is wrong. �

Theorem 9.3.2. If A does not satisfy Property (q), then GMA is not

injective.

Proof. Suppose that A does not satisfy Property (q) and let x ∈ A be

such that τ(x) < ‖x‖. Consider now the strict x-spectral partition O of

d(0, s)(x). Let r = τ(x) and let s = ‖x‖. By Lemma 9.3.1, there exists
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φ ∈ Mult(A, ‖ . ‖), a number υ > 0 and an affinoid set F which belongs to the

filter F = Ω−1(φx), such that diam(Ω−1(ψx)) ≥ υ, for all ψ ∈ Mult(A, ‖ . ‖)
such that Ω−1(ψx) ∈ Φ(F ). Whether or not F has a center, we are going

to construct an element G ∈ A such that, given ψ ∈ Mult(A, ‖ . ‖), either
φ(G) = 0, or diam(Ω−1(ψx)) ≥ υ.

Suppose first that F has no center. By Lemma 5.3.12 of Chapter 5,

there exists disks d(a, t) ∈ F , d(a, l) ∈ F included in F , with l < t. By

Proposition 8.2.5 of Chapter 8, there exists g ∈ H(sp(x),O) such that

ϕG(g) = 1 ∀G ∈ Φ(d(a, l)) and ϕG(g) = 0 ∀G ∈ Φ(d(0, s) \ d(a, t−)).
Suppose now that F has center a and diameter m. Without loss of

generality we can assume that F is of the form d(a,m+ ε) \⋃q
j=1 d(aj , (m−

ε)−), with m+ε < s when m < s. For each j = 1, . . . , q, by Proposition 8.2.5

of Chapter 8, there exists gj ∈ H(sp(x),O) such that ϕG(gj) = 1 ∀G secant

with d(0, s)\d(a,m)− and ϕG(gj) = 0 ∀G secant with d(aj ,m−ε). Moreover,

if m = s we put g0 = 1, and if m < s, by Proposition 8.2.4 of Chapter 8,

there exists g0 ∈ H(sp(x),O) such that ϕG(g) = 1 ∀G secant with d(a,m) and

ϕG(g) = 0 ∀G secant with d(0, s) \ d(a, (m+ ε)−). Then we put g =
∏q
j=0 gj .

In both cases, we now put G = Hx(g) and we can check that given

ψ ∈ Mult(A, ‖ . ‖), either φ(G) = 0, or diam(Ω−1(ψx)) ≥ υ. Let ξ ∈ K satisfy

‖ξG‖ < υ and let y = x+ξG. Then ‖y−x‖ < υ. Consider ψ ∈ Mult(A, ‖ . ‖),
let ϕR = x∗(ψ), ϕT = y∗(ψ). If ψ(G) = 0, then ψ(y − x) = 0, hence

by Theorem 9.1.15 we have x∗(ψ) = y∗(ψ). And now, if ψ(G) �= 0, then

we can see that ψ(y − x) < υ ≤ diam(R) ≤ diam(sup(R,T )), therefore

x∗(ψ) = y∗(ψ) again. Consequently, x∗(ψ) = y∗(ψ) ∀ψ ∈ Mult(A, ‖ . ‖).
However, x �= y because φ(G) �= 0. �

Corollary 9.3.3. Let A be uniform, having at least one maximal ideal

of codimension 1 and such that the intersection of all maximal ideals of

codimension 1 is equal to {0}. Then A satisfies Property (q).

Proof. In Theorem 9.1.14 we saw that GMA is injective, hence by

Theorem 9.3.2, A satisfies Property (q). �

Theorem 9.3.4. Let A be uniform and satisfy Property (o) and

Max1(A) �= ∅. Then A satisfies Property (p).

Proof. Suppose A does not satisfy Property (p), hence it does not satisfy

Property (q). Let t ∈ A be such that τ(t) < ‖t‖. Since Max1(A) �= ∅ we

have sp(t) �= ∅. Taking α ∈ sp(t), we notice that τ(t − α) = τ(t), and
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‖t − α‖ = ‖t‖. So, without loss of generality, we can assume 0 ∈ sp(t).

Let s = ‖t‖, let r = τ(t), and let O be the strict t-spectral partition. There

exists a O-minorated annulus Γ(b, r′, r′′) included in Γ(0, r, s).

Suppose 0 is (resp., is not) a center of Γ(b, r′, r′′). We can find in

Γ(0, r′, r′′) (resp., in Γ(b, r′, r′′)) an increasing (resp., a decreasing) idem-

potent T -sequence (Tn)n∈N of center 0 (resp., of center b) and diameter

ρ ∈]r′, r′′[ whose holes are holes of O. Consider the O-set D admitting each

Tn as a hole, and no other holes. We notice that D admits a unique T -filter

F run by the T -sequence (Tn)n∈N. By Theorem 7.4.13 of Chapter 7, there

exists f ∈ H(D) such that ϕ0,ρ(f) = 0, |f(a)| = 1∀a ∈ d(0, r′) (resp.,

f(a) = 1 ∀a ∈ d(0, s) \ d(0, r′′)), f(a) = 0 ∀a ∈ d(0, s) \ d(0, ρ−), (resp.,
f(a) = 0 ∀a ∈ d(b, ρ)), and such that f does not vanish along any large

circular filter secant with d(0, r) (resp., with d(0, s)\d(b, ρ)). Then, since the
Tn are the only holes of D, D admits no T -filter different from F . Therefore,

for every λ ∈ K
∗, f − λ is quasi-invertible.

On the other hand, since D is a O-set, H(D) is a K-subalgebra of

H(sp(t),O). And since A is uniform, Ht is defined and continuous on

H(D). For every ψ ∈ Mult(A, ‖ . ‖) we put ψt = Ht ◦ ψ. Since s > ρ

we can find ψ ∈ Mult(A, ‖ . ‖) such that ψt has a filter secant with

d(0, s) \ d(0, ρ−) (resp., since Γ(b, r′, r′′) is not included in any hole of O,

we can find ψ ∈ Mult(A, ‖ . ‖) such that ψt has a filter secant with d(0, r′)).
Consequently, we have ψ(Ht(f)) = 0. Let F = Ht(f): we see that F is not

invertible in A.

Now, let χ ∈ X (A,K). Since A is uniform, χ ◦ Ht defines a character

χt ∈ X (H(D),K) which, by hypothesis, satisfies χt(x) ≤ r, hence sa(Ht(f))

is included in C(0, 1). Let α ∈ K be such that < |α| < 1. Since D has no

T -filter except F , we notice that f −α is not vanishing along any T -filter of

D and therefore by Corollary 7.7.3 of Chapter 7, f − α is quasi-invertible,

hence it is of the form P (x)h, with P a polynomial and h an invertible

element of H(D). Let g = Ph and let G = Ht(g). Suppose that G is not

invertible in A. Let θ ∈ X (A,K) be such that θ(G) = 0. Then θ(P (t)) = 0,

hence θ(t) is one of the zeros of P , and therefore lies in sp(t). Consequently,

we have θ(t) ≤ r, hence |θt(f)| = 1, hence |θ(F )| = 1 and therefore we

check that |θ(G)| = 1 a contradiction. Thus, we see that G is invertible in A.

Then, sa(G) ⊂ C(0, 1), but α belongs to sp(G) because F is not invertible

in A. And since G is invertible in A, sa( 1
G) is also included in C(0, 1), but

1
α belongs to sp( 1

G). Thus, we have
∥∥∥ 1
G

∥∥∥
sa

= 1, but τ( 1
G) ≥ | 1α | > 1, a

contradiction to Property (o). �
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On the other hand, we will prove that there exist uniform Banach

ultrametric unital commutative K-algebras satisfying Property (q), but not

Property (o).

According to Theorems 9.1.4 and 9.3.4 we have Corollary 9.3.5.

Corollary 9.3.5. Let B be a uniform normed unital commutative K-algebra

satisfying Property (o) and let φ be a K-algebra homomorphism from A to B.

Let ‖ . ‖Bsp be the norm of B and let ‖ . ‖Asp be the spectral semi-norm of A.

Then φ is continuous and satisfies ‖φ(x)‖Bsp ≤ ‖x‖Asp ∀x ∈ A.

Definitions and notations: Let E be a unital commutative ultrametric

normed K-algebra. Let n ∈ N and let ‖ . ‖0 be the norm of E. The IE-algebra

of polynomials in n variables E[X1, . . . ,Xn] is equipped with the Gauss norm

||| . ||| defined as |||∑i1,...,in
ai1,...,inX

i1
1 , . . . ,X

in
n ||| = supi1,...,in ‖ai1,...,in‖0. By

Proposition 2.5.16 of Chapter 2, the norm is a K-algebra norm and if the

norm of E is multiplicative, this norm ||| . ||| is known to be a multiplicative

norm of K-algebra.

Further, by Proposition 2.5.16 of Chapter 2, if E is complete, the comple-

tion of E[X1, . . . ,Xn] with respect to this norm, denoted by E{X1, . . . ,Xn},
consists of the set of power series in n variables

∑
i1,...,in

ai1,...,inX
i1
1 · · ·Xin

n

such that limi1+···+in→∞ ai1,...,in = 0. The elements of such an algebra are

called the restricted power series in n variables.

Henceforth, in this chapter we denote by M the disk d(0, 1−) and by A

the K-algebra H(M){Y }. We denote by x the identical mapping on M , we

fix r ∈]0, 1[, we put t = 1−xY and we denote by S the multiplicative subset

generated in A by the t− a, a ∈ d(0, r−).
We denote by B the K-algebra S−1A. Finally, we denote by T (r) the set

of ψ ∈ Mult(A, ‖ . ‖) such that ψ(X) ≥ r.

Lemma 9.3.6. Let P ∈ E[Y ] and let Q(Y ) = P (1 − Y ). Then |||P ||| =
|||Q‖|.
Proof. Let P (Y ) =

∑n
j=0 ajY

j and let Q(Y ) =
∑n

j=0 bjY
j . Then each bj

is of the form (−1)j
∑n

k=j

(
i

j

)
ak. Hence |bj | ≤ |||P ||| and thereby |||Q||| ≤

|||P |||. But on the other hand P (Y ) = Q(1 − Y ), hence |||P ||| ≤ |||Q|||,
consequently the equality holds. �

Lemma 9.3.7. Let ψ ∈ T (r) and let h = f
g ∈ B, with f ∈ A, g ∈ S.

Then 0 /∈ ψ(S). The mapping ψ∗ defined in B by ψ∗
(
f
g

)
= ψ(f)

ψ(g) belongs
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to Mult(B). Further, the mapping φ from B to [0,+∞] defined as φ(h) =

supψ∈T (r) ψ
∗(h) belongs to SM(B).

Proof. First, we will show that φ(h) < +∞. We can write g in the form∏n
j=1(t − aj)

qj , aj ∈ d(0, r−), qj ∈ N
∗. We set q =

∑n
j=1 qj. Since ψ(t) ≥

r, clearly ψ(t − aj) = ψ(t), and hence we have ψ(g) ≥ rq. Consequently,

ψ∗
(
f
g

)
≤ ψ(f)

rq ≤ ‖f‖
rq , and therefore φ(h) ≤ ‖f‖

rq . Thus, φ ∈ SM(B). On the

other hand, since the norm ‖ . ‖M of H(M) is an absolute value, we can find

in T (r) a multiplicative norm which obviously lies in T (r). Consequently φ

is a norm. �

Notations: Henceforth, ‖ . ‖r will denote the norm defined on B in

Lemma 9.3.7 and B̂ will denote the completion of B with respect to this

norm. Then by definition, B̂ is a unital commutative uniform ultrametric

Banach K-algebra.

Given a normed K-algebra E, we will denote by E{{Y }}r the set

of Laurent series with coefficients in E such that limn→+∞ an = 0, and

limn→−∞ ‖an‖rn = 0.

In K[Y ] (resp., in K{Y }) we will denote by K[Y ]0 (resp., K{Y }0) the

ideal of polynomials (resp., of series) f such that f(0) = 0. And we put

W = H(M) +K{Y }0.
Lemmas 9.3.8 and 9.3.9 are immediate.

Lemma 9.3.8. W is the direct sum of the K-vector spaces H(M) and

K{Y }0, and is equipped with the product norm ‖ . ‖ defined as ‖g + h‖ =

max(‖g‖M , ‖h‖), with g ∈ H(M) and h ∈ K{Y }0.
Lemma 9.3.9. B ⊂ H(M){t}{1

t }r ⊂ B̂.

Lemma 9.3.10. For every a ∈ C(0, 1), (a − xY )A is a maximal ideal of

infinite codimension of A. Moreover, we have sa(xY ) =M, sp(xY ) = U .

Proof. Let N = sa(xY ) and let D = sp(xY ). Since |||xY ||| = 1, sp(xY )

is obviously included in U . On the other hand D is clearly included in M

because given a ∈ M , the homomorphism χa,1 from A to K defined as

χa,1(
∑∞

j=0 fjY
j) =

∑∞
j=0 fj(a) satisfies χa,1(xY ) = a. Consequently, we have

M ⊂ N ⊂ D ⊂ U. (9.3.1)

Let a ∈ U \M and consider the ideal I generated by a − xY . Clearly I ∩
H(M) = {0}. Consequently the canonical surjection θ from A onto the

algebra A′ = A
I induces an injection from H(M) to A′.
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We will show that A
I is just the completion of the field of fractions F of

H(M). Since the norm of A is multiplicative, I is obviously closed in A, hence

A′ is equipped with the quotient norm, which makes it a Banach K-algebra.

Let a ∈ M . In A′, we have θ(x) =
(
θ
(
Y
a

)−1)
, and

∥∥∥θ(Ya
)∥∥∥ ≤

∣∣∣∣∣∣∣∣∣Ya
∣∣∣∣∣∣∣∣∣ = 1,

and similarly ‖θ(x)‖ ≤ 1, hence ‖θ(x)‖ =
∥∥∥θ(Ya

)∥∥∥ = 1. Consequently, the

series
∑∞

j=0
bn

(θ(x))n+1 converges in K for every a ∈ M , which proves that

θ(b − x) is invertible in A′ and admits for inverse
∑∞

j=0
bn

(θ(x))n+1 . Thus, A
′

contains a field isomorphic to F and we will confound it with F , due to the

fact that the restriction of θ to H(M) may be considered as the identity.

In the field F , it is clearly seen that the relation ‖(θ(x− b))−1‖ =

‖(θ(x− b))‖−1 holds for all b /∈ M because x − b is invertible in H(M),

and that ||| . ||| is an absolute value. Consider now b ∈ M . Indeed,

(θ(b − x)−1) =
∑∞

j=0
bn

(θ(x))n+1 =
∑∞

j=0 b
n
(
θ
(
Y
a

))n+1
, which proves

that ‖(θ(b− x)−1)‖ ≤ 1. So, actually, ‖(θ(b− x)−1)‖ = 1, and of course

‖θ(b− x)‖ = 1 because |||b−x||| = 1. Thus, the norm of A′ induces on F the

continuation of the absolute value of H(M). Since θ(H(M)[Y ]) ⊂ F , then F

is dense in A′, hence A′ is the completion of F with respect to its absolute

value. Therefore, I is a maximal ideal of infinite codimension. Thus, given

a ∈ U \M , then a belongs to D\N , hence U \M = D\N , and consequently,

by (1), L =M , and D = U . �

Theorem 9.3.11 ([24]). B̂ is a unital commutative ultrametric uni-

form Banach K-algebra without divisors of zero, satisfying Property (q)

but not Property (o). Moreover, it is equal to the set of Laurent series∑+∞
−∞ anY

n, with an ∈ W, limn→+∞ an = 0, limn→−∞ ‖an‖rn = 0, and we

have ‖∑+∞
−∞ anY

n‖ = max(supn≥0 ‖an‖, supn<0 ‖an‖rn).
Proof. First, we will show that B̂ does not satisfy Property (o). Let t = 1−
xY . By Lemma 9.3.10, we have spA(xY ) = U, saA(xY ) =M . Consequently,

we can see that saA(t) = d(1, 1−). Let χ ∈ X (A,K). For all g ∈ S, we notice

that χ(g) �= 0. Thus, χ has continuation to a K-algebra homomorphism χ̃

from B to K defined as χ̃
(
f
g

)
= χ(f)

χ(g) ∀f ∈ A, g ∈ S. Since |χ| clearly lies in

T (r), χ̃ is continuous with respect to the norm ‖ . ‖ of B, therefore χ̂ has

continuation to a K-algebra homomorphism χ̂ from B̂ to K. Consequently,

saA(xY ) ⊂ saB̂(xY ). But of course, the inverse inequality is true because

A ⊂ B̂, so we have sa
B̂
(xY ) =M , thereby

∥∥∥1
t

∥∥∥B̂
sa

= 1. (9.3.2)
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Now, let χ ∈ X (A,K) satisfy

|χ(t)| ≥ r (9.3.3)

By (9.3.3) we have χ(g) �= 0 ∀g ∈ S, therefore it has continuation to a

K-algebra homomorphism from B̂ to χ(A) = K. Thus, we have proven that

sp
B̂
(t) ⊃ Λ0, r, 1). But since B is a K-subalgebra of B̂, we have the inverse

inclusion, and consequently, the equality holds. Hence spB̂

(
1
t

)
= Λ(0, 1, 1r )

thereby sup
{
0, |λ| λ ∈ spB̂

(
1
t

)}
= 1

r . Thus, by (9.3.2) we can see that B̂

does not satisfy Property (o).

Now, we will show that B̂ has no divisors of zero, and first we will prove

that B is the K-vector space of the power series f of the form
∑∞

n=0 ant
n,

with an ∈W, limn→+∞ an = 0, ‖f‖ = supn≥0 ‖an‖.
Let h ∈ H(M) and let j ∈ N

∗. Considering the power series of h at 0,

by Theorem 8.1.9 of Chapter 8, we can write h =
∑n−1

j=0 ajx
j + xng, with

g ∈ H(M), and then we have ‖h‖M = (|a0|, . . . |an−1|, ‖g‖M ). Consequently,

h(x)Y k =

k−1∑
j=0

ajx
jY k + (xY )kg =

k−1∑
j=0

(aj)(xY )j(Y k−j) + (xY )kg.

So, we can write

hY k =

k−1∑
j=0

aj(1− t)jY k−j + (1− t)kg. (9.3.4)

Now consider the polynomial P (Z) =
∑k−1

j=0 ajY
k−jZj ∈ K[Y ]0[Z] and let

Q(Z) = P (1−Z). By Lemma 9.3.6, we have |||Q||| = |||P ||| sup0≤j≤k−1 |aj |.
Putting Q(Z) =

∑k−1
j=0 bj(Y )Zj , we get

|||Q(Z)||| = sup
0≤j≤k−1

‖bj(Y )‖ = sup
0≤j≤k−1

|aj |. (9.3.5)

Consequently, we obtain

∥∥∥∥
k−1∑
j=0

aj(1− t)jY k−j
∥∥∥∥ =

∥∥∥∥
k−1∑
j=0

bj(Y )Zj
∥∥∥∥ = |||Q||| = |||P ||| = sup

0≤j≤k−1
|aj |.

And finally,

‖Q(Y )‖ = max(|a0|, . . . , |ak−1|). (9.3.6)
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On the other hand, we have |||g(1 − Z)j||| = |||gY j ||| = ‖g‖. But since

‖1− t‖ = 1, in A we obtain

‖g(1 − t)j‖ = ‖g‖. (9.3.7)

By (9.3.4) we deduce that hY j = Q(t) + (1 − t)jg, g ∈ H(M), Q(Z) ∈
K[Y ]0[Z]. And by (9.3.5)–(9.3.7) we obtain

‖h‖ = max(‖Q(t)‖, ‖(1− t)jg‖). (9.3.8)

Now, consider f =
∑+∞

j=0 fjY
j ∈ A. For each j ∈ N, fjY

j is of the

form Qj(t) + gjSj(t), with Qj(Z) ∈ K[Y ]0[Z], gj ∈ H(M), Sj(Z) ∈ K[Z],

satisfying further

|||Qj ||| ≤ ‖fj‖. (9.3.9)

and

|||gj ||| ≤ ‖fj‖. (9.3.10)

Consequently, we have

|||Qj(Z) + gjSj ||| ≤ ‖fj‖. (9.3.11)

By (9.3.9), the series
∑∞

j=0Qj(Z) is clearly converging in K{Y }0{Z} to a

limit
∑∞

j=0 λj(Y )Zj. In the same way, by (9.3.10) the series
∑∞

j=0 gjSj(t)

converges in H(M){Z} to a limit
∑∞

j=0 μjZ
j. Moreover, by (9.3.9) and

(9.3.10), we can see that supj∈N ‖λj‖ ≤ ‖f‖ and supj∈N ‖μj‖ ≤ ‖f‖.
On the other hand we have ‖f‖ ≤ max(supj≥0 ‖λj‖, supj≥0 ‖μj‖), thereby
‖f‖ = max(supj≥0 ‖λj‖, supj≥0 ‖μj‖). Putting aj = λj + μj , we have

‖aj‖ = max(‖λj‖, ‖μj‖). This shows A to be the set of series G =
∑+∞

0 ant
n

with coefficients aj ∈ Λ, satisfying limn→+∞ an = 0, ‖G‖ = supn≥0 ‖an‖.
Now, we will show that B̂ is the set T of series G =

∑+∞
−∞ ant

n,

with coefficients aj ∈ W , satisfying lim
n→+∞ an = 0, lim

n→−∞ ‖an‖rn = 0, and

‖G‖ = supn≥0 ‖an‖. Since
∥∥∥1
t

∥∥∥ = 1
r , it is seen that T ⊂ B̂. Given a ∈

d(0, r−), we notice that 1
t−a =

∑+∞
n=0

an

tn+1 belongs to T . So, by Lemma 9.3.9,

B is included in T , and therefore T is dense in B̂.
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Since the norm of H(M) is an absolute value, on H(M)[Z] we can

consider the two absolute values ψ0, ψ1 defined by

ψ0

⎛
⎝ q∑
j=0

ajZ
j

⎞
⎠ = sup

0≤j≤q
‖aj‖ψ1

⎛
⎝ q∑
j=0

ajZ
j

⎞
⎠ = sup

0≤j≤q
‖aj‖rj

(aj ∈ H(M), 0 ≤ j ≤ q). These two absolute values have contin-

uation to H(M)[Z, 1
Z ], so this apply to H(M)[t, 1t ]. But Y = 1−t

x

does belong to H(M)[t, 1t ]. Therefore, we can consider the restric-

tions ψ′
0, ψ′

1 of ψ0, ψ1 to H(M)[Y ]. Thus, by hypothesis we have

ψ′
i(Y ) =

ψ′
i(1−t)
ψ′i(x) = ψ′(1− t) = 1 (i = 0, 1). Then given

∑q
k=0 bkY

k H(M)[Y ],

we have ψ′
i(
∑q

k=0 bkY
k) ≤ sup0≤k≤q ‖bk‖ (i = 0, 1). Consequently, ψ′(f) ≤

‖f‖ ∀f ∈ H(M)[Y ], hence each ψ′
i has continuation to an absolute value ψ′′

i

defined on A, and actually belongs to Mult(A, ‖ . ‖) (i = 0, 1). On the other

hand, we notice that each ψ′′
i belongs to T (r), and therefore has extension

ψ′′′
i to B and B̂ (i = 0, 1). In particular we have

ψ′′′
i (f) ≤ ‖G‖ ∀G ∈ B̂ (i = 0, 1). (9.3.12)

Now, let l =
∑+∞

−∞ ant
n ∈ T . By (9.3.12), we can check that ‖G‖ ≥

ψ0(G) = supn≥0 ‖an‖ and ‖G‖ ≥ ψ1(G) = supn>0 ‖an‖rn. Thus, we have

‖G‖ = max(supn≥0 ‖an‖, supn<0 ‖an‖rn). Consequently, T is complete for

the norm ‖ . ‖ and therefore is equal to B̂.

Let F be the field of fractions of H(M) and let f0 be its completion

with respect to the absolute value ‖ . ‖M of H(M) extended to F . Then, F 0

is equipped with an absolute value that we still denote by ‖ . ‖M . We can

consider F 0+K{Y }0 as aK-vector space equipped with the norm ‖ . ‖ defined
as it follows: given g ∈ F̂ , h ∈ K{Y }0, we set ‖g + h‖ = max(‖g‖M , ‖h‖).
Let J be the K-vector space consisting of all series

∑+∞
−∞ ant

n an ∈∈ F 0 +

K{Y }0){{t}}r . It is equipped with the norm defined by

∥∥∥
+∞∑
−∞

ant
n
∥∥∥ = max(sup

k≥0
‖ak‖, sup

k<0
‖ak‖rk).

Thus, B̂ is a K-subvector space of J which actually is included in F 0{{t}}r
because so is K{Y }, due to the fact that Y = 1−t

x and
∥∥∥ 1
x

∥∥∥ = 1. Since both

the multiplication of B̂ and its norm are induced by those of F 0{{t}}r , B̂
is a K-subalgebra of F 0{{t}}r , and therefore B̂ is an integral domain and
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hence it has no divisor of zero. But the norm of B̂ is semi-multiplicative,

and therefore B̂ is uniform, hence by Corollary 9.2.11, B̂ satisfies

Property (q). �

9.4. Properties (o) and (q) and strongly valued fields

In Section 9.3, we saw that in a commutative uniform Banach K-algebra,

Property (o) implies Property (q). Here we examine whether this remains

true when the algebra is not supposed to be uniform. Actually, this is

depending on the ground field [24]: if it is strongly valued, then the property

is always true. If it is weakly valued, counter-examples show that the

property sometimes doesn’t hold.

Notation: Throughout the chapter, A is a commutative ultrametric

Banach K-algebra with unity.

By Theorem 7.5.14 of Chapter 7, we have Theorem 9.4.1.

Theorem 9.4.1. If K is weakly valued, there exist unital commutative

ultrametric Banach K-algebra, without divisors of zero, all maximal ideals

of which have codimension 1, satisfying property (o) but neither Property (q)

nor Property (s).

Theorem 9.4.2. Let K be strongly valued. Then A satisfies Property (s).

Proof. Suppose Property (s) is not satisfied. So, there exists t ∈ A

such that ‖t‖sp > ‖t‖sm, and therefore, there exists ψ0 ∈ Mult(A, ‖ . ‖)
such that ψ0(t) > ‖t‖sm. Let r = ‖t‖sm and u = ψ0(t). Thus, sp(t) is

included in d(0, r). Let O be a t-normal partition. By Corollary 8.1.5 of

Chapter 8, there exists an increasing idempotent T -sequence (Tn)n∈N of

center 0 and diameter u with all Tn included in the annulus Γ(0, r, u).

Therefore, by Proposition 8.2.5 of Chapter 8, there exists f ∈ H(D,O)

such that ψ(f) = 1 ∀ψ ∈ Mult(H(D,O), ‖ . ‖D,O) such that ψ(t) ≤ r,

and ψ(f) = 0 ∀ψ ∈ Mult(H(D,O), ‖ . ‖D,O) such that ψ(t) ≥ u. Let M
be a maximal ideal of A containing Ker(ψ0), and let φ ∈ Mult(A, ‖ . ‖)
such that Ker(φ) = M. Since O is a t-normal partition, by Theorem 8.3.6

of Chapter 8, we have a canonical continuous morphism Ht from H(D,O)

into A. Let F = Ht(f). Then, ψ0(F ) = 0, and therefore φ(F ) = 0. But since

φ ∈ Multm(A, ‖ . ‖), we have φ(t) ≤ r. Let φ̃ = φ◦Ht. Then φ̃(F ) = 0. Now,

φ̃ is of the form ϕF and F is secant with d(0, r), so we have φ̃(f) = 1, and

therefore φ̃(F ) = 1, a contradiction. �
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Proposition 9.4.3. Assume K is strongly valued. Suppose there exists

t ∈ A, ψ1, ψ2 ∈ Mult(A, ‖ . ‖) such that ψ1(t) < ψ2(t) and Γ(0, ψ1(t),

ψ2(t)) ∩ sp(t) = ∅. Then A admits divisors of zero and A contains elements

whose spectrum is not infraconnected. Moreover, if ψ1(t) = τ(t), then A

does not satisfy Property (o) and the intersection of all maximal ideals of

codimension 1 is not null.

Proof. Let D = spA(t). We put r1 = ψ1(t), r2 = ψ2(t). Let s ∈
]‖t‖sp, ‖t‖[. Let O be a t-normal partition of diameter s. Let r ∈]r1, r2[.
By Corollary H.1.5, there exist an increasing T -sequence and a decreasing

T -sequence of center 0 and diameter r, and therefore by Propositions 8.2.5

of Chapter 8, there exist f, g ∈ H(D,O) such that:

ψt(f) = 1 ∀ψ ∈ Mult(H(D,O), ‖ . ‖D,O) satisfying ψt(t) ≤ r1, and

ψt(f) = 0 ∀ψ ∈ Mult(H(D,O), ‖ . ‖D,O) satisfying ψt(t) ≥ r, (9.4.1)

ψt(f) �= 0 ∀ψ ∈ Mult(A, ‖ . ‖) \Multa(A, ‖ . ‖) such that

r1 < ψt(f) < r, (9.4.2)

ψt(g) = 1 ∀ψ ∈ Mult(H(D,O), ‖ . ‖D,O) such that ψ(t) ≥ r2 and

ψt(g) = 0 ∀ψ ∈ Mult(H(D,O), ‖ . ‖D,O) such that ψ(t) ≤ r. (9.4.3)

Thus, fg = 0. Since O is a t-normal partition, by Theorem 8.4.6 of

Chapter 8, we have the canonical continuous morphism Ht from H(D,O)

into A. Now, Ht is defined on H(D,O). Let F = Ht(f), G = Ht(g). Let Fj
be the circular filter of (ψj)t (j = 1, 2). Then F1 is secant with d(0, r1), hence

(ψ1)t(f) = 1, and therefore ψ1(F ) = 1. In the same way, F2 is secant with

d(0, s) \ d(0, r−), hence (ψ2)t(g) = 1, and therefore ψ2(G) = 1. Thus, both

F,G are different from 0 though FG = 0 and therefore A contains divisors

of 0.

Now, we will show that spA(F ) is not infraconnected. Consider l ∈
d(0, 1−)\{0}, and suppose that F − l is not invertible in A. Let ζ ∈ X (A) be

such that ζ(F− l) = 0. Let M = Ker(ζ). Let φ ∈ Mult(A, ‖ . ‖) be such that

Ker(φ) = M. Then φ defines an element φt of Mult(R(D, ‖ . ‖D) which of

course is of the form ϕG , with G a circular filter on K. But since 0 < |l| < 1,

by (9.4.1) we can see that G is not secant with d(0, s1) and is not secant

with K \ d(0, r−) either. Consequently, G approaches a circle C(0, u), with

s1 < u < r. But by (9.4.2) we can see that ϕG ∈ Multa(A, ‖ . ‖), hence there
exists χ ∈ X (A,K) such that ϕG = |χ|, therefore |χ(t)| ≤ s1, a contradiction.
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Consequently, F − l is invertible in A for all l ∈ K such that 0 < |l| < 1, and

therefore sp(F ) is not infraconnected.

Now, suppose that τ(t) = ψ1(t) and let χ ∈ X (A,K). Then |χ(t)| ≤
τ(t) = s1, hence χ(G) = 0, therefore G belongs to the intersection of all

maximal ideals of codimension 1. So, this intersection is not null.

Since (ψ2)t(f) = 0, F is not invertible in A, hence 0 ∈ spA(F ). Consider
l ∈ d(0, 1−)\{0}, and let y = 1

F−l . Thus, we have spA(F−l) ⊂ C(0, 1)∪{−l}
and spA(y) ⊂ C(0, 1) ∪

{
1
−l
}
. More precisely, since F is not invertible in A,

−l does belong to spA(F − l), and consequently, 1
−l does belong to spA(y).

Hence we have τ(y) = 1
|l| . However, for every χ ∈ X (A,K), χ(t) lies in D,

hence χ(x) belongs to d(0, s1), and therefore |χ(F )| = |f(χ(t))| = 1, thereby

|χ(y)| = 1. Consequently, we have ‖y‖sa = 1, which proves that Property (o)

is not satisfied. �

Corollary 9.4.4. Assume K is strongly valued. Suppose there exists t ∈ A

such that sp(t) is not infraconnected. Then A admits divisors of zero.

Proof. Let Γ(a, r1, r2) be an empty annulus of spA(t). By Theorem 5.1.15

of Chapter 5, there exists ψ1, ψ2 ∈ Mult(A, ‖ . ‖) such that r1 = ψ1(t), r1 =

ψ2(t). So, we can apply Theorem 9.4.3. �

Theorem 9.4.5. Assume K is strongly valued. There exists t ∈ A, ψ1, ψ2 ∈
Mult(A, ‖ . ‖) such that ψ1(t) < ψ2(t) and Γ(0, ψ1(t), ψ2(t)) ∩ sp(t) = ∅ if

and only if A contains elements whose spectrum is not infraconnected.

Proof. Suppose that there exists t ∈ A, ψ1, ψ2 ∈ Mult(A, ‖ . ‖) such that

ψ1(t) < ψ2(t) and Γ(0, ψ1(t), ψ2(t)) ∩ sp(t) = ∅. Then by Proposition 9.4.3,

A admits an element u such that sp(u) is not infraconnected. Conversely, if

A admits an element u such that sp(u) is not infraconnected, sp(u) admits

an empty annulus Γ(a, r1, r2) and then by Lemma 5.1.15 of Chapter 5, there

exist ψ1, ψ2 ∈ Mult(A, ‖ . ‖) such that ψ1(t) = r1, ψ2(t) = r2. �

Theorem 9.4.6. Assume K is strongly valued and let A be such that

Max1(A) �= ∅. If A satisfies one of the following four conditions bellow,

then A satisfies Property (q).

(i) Property (o),

(ii) A has no divisors of zero,

(iii) sp(x) is infraconnected for every x ∈ A,

(iv) the intersection of all maximal ideals of codimension 1 is null.

Proof. We assume that A does not satisfies Property (q), and will show

that A does not satisfy the four properties at the bottom of Theorem 9.4.6.
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Let t ∈ A be such that τ(t) < ‖t‖sp. Let s1 = τ(t), let s2 = ‖t‖sp. Both s1, s2
lie in the closure of {φ(t) | φ ∈ Mult(A, ‖ . ‖) }, hence there exists ψ1 ∈
Mult(A, ‖ . ‖) such that ψ1(t) = s1, and by Theorem 2.5.17 of Chapter 2,

there exists ψ2 ∈ Mult(A, ‖ . ‖) such that ψ2(t) = s2. By hypothesis we have

Γ(0, s1, s2) ∩ sp(t) = ∅ hence by Proposition 9.4.3, A has divisors of zero,

the intersection of all maximal ideals of codimension 1 is not null, spA(t) is

not infraconnected. Thus, there exists an element f �= 0 which belongs to

the intersection of all maximal ideals of codimension 1, hence ‖f‖sa = 0, but

τ(f) > 0 which ends the proof. �

9.5. Multbijective Banach K-algebras

Definition and notation: Throughout this chapter, A is a unital com-

mutative ultrametric Banach K-algebra.

In Theorem 2.5.13 of Chapter 2, we saw that the mapping from

Multm(A, ‖. ‖) into Max(A) associating to each ψ ∈ Multm(A, ‖. ‖) its

kernel, is surjective. The natural question coming next, is whether the

mapping is also injective. The answer was given in [21, 23].

Remarks. In C, it is well known that every maximal ideal of a C-Banach

algebra is the kernel of one and only one multiplicative semi-norm, and that

every multiplicative semi-norm has a kernel which is a maximal ideal.

When K is strongly valued, we have a different answer. First we can

establish this theorem.

Theorem 9.5.2. Let K be strongly valued, and let F be a field extension of

K which is an ultrametric normed K-algebra admitting two different absolute

values continuous for this norm of F . Then the completion of F is a Banach

K-algebra which admits divisors of zero.

Proof. Let F̂ be the completion of F . Let ψ1, ψ2 be two different

continuous absolute values. They have continuation to F̂ : ψ̂, φ̂. Now, we

can find x ∈ F such that ψ1(x) < ψ2(x). Since ψ and φ are continuous

absolute value on F , on K they coincide with the absolute value of K, hence

x /∈ K. We put r1 = ψ1(x), r2 = ψ2(x). Since x does not belong to K, we

have sp(x) = ∅. Consequently, by Theorem 9.4.3 F̂ has divisors of zero. �

As a consequence, we obtain Theorem 9.5.3.

Theorem 9.5.3. If K is strongly valued, then A is multbijective.

Proof. Suppose K is strongly valued. Let M be a maximal ideal of A, and

suppose there exist ψ1, ψ2 ∈ Multm(A, ‖ . ‖) such that Ker(ψ1) = Ker(ψ2) =

M. Let F = A
M . Thus, the field F admits two different absolute values | . |j
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quotients of ψj , respectively, (j = 1, 2) which by hypothesis, are continuous

for the norm of F quotient of the norm of A. Since F is a Banach K-algebra

for its quotient norm, by Theorem 9.5.2 we are led to a contradiction. �

By Theorem 7.5.14 we have Corollary 9.5.4.

Corollary 9.5.4. There exist non-multbijective unital commutative ultra-

metric Banach K-algebras if and only if K is weakly valued.

Remarks. Counter-examples of non-multbijective Banach K-algebras are

very hard to construct, and seem to be a very strange case. It would be

interesting to obtain sufficient conditions to prevent this kind of problem.

We notice that our counter-example is an algebra of analytic elements H(D).

Hence in particular, Multm(H(D), ‖ . ‖D) is dense in Mult(H(D), ‖ . ‖D).
Consequently, density does not imply multbijectivity. However, we are not

able to construct a Noetherian non-multbijective ultrametric Banach K-

algebra. So, we can ask whether Noetherian ultrametric Banach K-algebras

are multbijective, no mater what the field.

Theorem 9.5.5. Let K be strongly valued, let ψ ∈ Mult(A, ‖ . ‖) and

suppose that the set of maximal ideals containing Ker(ψ) is countable. Then

ψ belongs to Multm(A, ‖ . ‖).
Proof. Let J = Ker(ψ), let B = A

J and let θ be the canonical surjection

from A onto B. Then Max(B) = θ(Max(A)) is countable. Suppose that

J /∈ Max(A). Let M be a maximal ideal of A containing J and let

M′ = θ(M). Then B admits an absolute value ψ′ such that ψ = ψ′ ◦ θ.
Moreover, there exists (a unique) φ ∈ Multm(A, ‖ . ‖) such that Ker(φ) = M.

Let φ′ ∈ Multm(B, ‖ . ‖′) be such that Ker(φ′) = M′. Since M �= J , M′ is
not null. Let t ∈ M′ \ {0}: we have φ′(t) = 0, ψ′(t) �= 0. Let D = sp(t), and

let l = ψ′(t) and let S be a t-normal partition. Since Max(B) is countable,

so is D. We notice that 0 lies in D and that none of the classes of the

circles C(0, r), with 0 < r < ‖t‖ can meet D, except at most a countable

subfamily. Consequently, by Theorem 7.5.10 of Chapter 7, S admits an

increasing idempotent T -sequence of center 0 and diameter l. Therefore, by

Proposition 8.2.5 of Chapter 8, there exists f ∈ H(D,S) such that f(0) = 1

and ϕ(f) = 0 ∀ϕ ∈ Mult(H(D,S), ‖ . ‖D,S) such that φ(t) ≥ l. Since O is

a t-normal partition, by Theorem 2.4.6 of Chapter 8, we have a canonical

continuous morphism Ht from H(D,S) into A. Let F = Ht(f), let L = B
M′

and let Ω be the canonical surjection from B onto L. Then Ω is continuous

with respect to the quotient topologies of B and L. And since t ∈ M′,
we have Ω(Ht(x)) = 0 and therefore, Ω(Ht(f)) = f(0) = 1. Consequently,
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F �= 0. Next, as ψ′(t) = l, ψ′ defines on H(sp(t),S) an element ψ′
t such

that ψ′
t(x) = l, hence ψ′

t(f) = 0 and therefore ψ′(F ) = 0, a contradiction

to the fact that ψ′ is an absolute value on B. �

9.6. Polnorm on algebras and algebraic extensions

Throughout this section is designed to help us prove that a reduced affinoid

algebra is complete for its spectral norm. In particular, this will be useful in

characteristic p �= 0.

Notations: Given a field IE of characteristic p �= 0, we denote by IE
1
p the

extension of IE containing all pth-roots of elements of IE. Let L be a subfield

of K.

Let B be a unital commutative L-algebras without divisors of zero and

let A be a L-subalgebra of B containing the unity of B, equipped with a

L-algebra semi-multiplicative semi-norm ψ.

Let P (X) =
∑q

j=0 ajX
j ∈ A[X] be monic. We put S(P,ψ) =

max0≤j<q(ψ(aj))
1

q−j . When there is no risk of confusion on the L-algebra

semi-multiplicative semi-norm ψ of A, we will only write S(P ) instead of

S(P,ψ). In particular, when the monic polynomial P belongs to L[X], then

S(P ) will denote max0≤j<q(|aj |(
1

q−j
)
).

Now, suppose that B is integral over A. The function ‖ . ‖Apol defined on

B as ‖y‖Apol = S(irr(y,A), ψ) will be called the A-polnorm of B.

Theorem 9.6.1 is well known in fields theory.

Theorem 9.6.1. Every field of characteristic 0 is perfect. A field IE of

characteristic p �= 0 is perfect if and only if IE = IE
1
p .

Lemma 9.6.2. Let B be equipped with a L-algebra semi-multiplicative semi-

norm ψ. Let P (X) ∈ A[X] and let b ∈ B satisfy P (b) = 0. Then S(P,ψ) ≥
ψ(b).

Proof. Let P (X) =
∑q

j=0 ajX
j and suppose ψ(b) > S(P ). Thus, we have

ψ(aj) < ψ(b)q−j , hence ψ(ajb
j) ≤ ψ(aj)ψ(b)

j < ψ(b)jψ(b)q−j = ψ(b)q

whenever j = 0, . . . , q − 1. Consequently, S(
∑q−1

j=0 ajX
j) < ψ(bq). But by

Lemma 2.3.3 of Chapter 2, ψ is ultrametric. But since P (b) = 0 we have

ψ(
∑q−1

j=0 ajb
j) = ψ(bq), a contradiction. �

Lemma 9.6.3 is almost classical and comes from the behavior of

polynomials in an algebraically closed complete ultrametric field recalled

in Corollary 6.2.6 and Theorem 6.2.7 of Chapter 6.
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Lemma 9.6.3. Let P (X) =
∑q

j=0 ajX
j ∈ K[X] be monic and let α1, . . . , αq

be its zeros in K. Then max1≤j≤q |αj | = S(P ).

Proof. Let {|α1|, . . . , |αq|} = {r1, . . . , rh}, with rj < rj+1 (1 ≤
j < h). For each j = 1, . . . , h, let mj be the number of zeros of P

inside C(0, rj), let tj = N+(P,− log(rj)), and sj = N−(P,− log(rj)).

On one hand, by Corollary 7.3.2 of Chapter 7, we have mj = tj −
sj (1 ≤ j < h) and log(rj) =

1
tj−sj (log(|asj | − log(|atj )). In particular

log(rh) =
1
mh

log(|ash |) = max1≤j<h log(|αj |). But since N−(P,− log(rh)) =

sh and N+(P,− log(rh)) = q, by definition we have rqh = |ash |(rh)s−h ≥
|aj |(rh)j 1 ≤ j < q, hence 1

q−j log(|aj |) ≤ log(|ash |) ≤ rh = 1
q−sh log(|ash |)

∀j = 0, . . . , q − 1. Consequently max1≤j<q log(|αj |) = 1
q−sh log(|ash |) ≥

1
q−j log(|aj |) ∀j = 0, . . . , q − 1, therefore S(P ) = max0≤j≤q |αj |. �

Proposition 9.6.4. Let A be integrally closed such that B is finite over A.

Let T be a set of L-algebra homomorphisms from A into K such that, for

each t ∈ A, there exists ξt ∈ T satisfying |ξt(t)| = sup{|χ(t)| | χ ∈ T }. Let
H be the set of L-algebra homomorphisms from B to K whose restrictions

to A belong to T . On B we put ‖x‖ = sup{|χ(x)| | χ ∈ H}. Let y ∈ B and

let P = irr(y,A). Then S(P, ‖ . ‖) = ‖y‖. Moreover there exists ζ ∈ H such

that |ζ(y)| = ‖y‖.

Proof. By Lemma 2.3.4 of Chapter 2, the function ‖ . ‖ defined on B is

a L-algebra semi-multiplicative semi-norm. Therefore, by Lemma 9.6.1, we

have S(P, ‖ . ‖) ≥ ‖y‖.
We will prove the opposite inequality. Let P (X) =

∑q
j=0 ajX

j ∈ A[X]

and let h ∈ {0, . . . , q − 1} be such that S(P, ‖ . ‖Asp) = q−h
√

‖ah‖A. By

hypothesis there exists ξ ∈ T such that |ξ(ah)| = ‖ah‖. Let f(X) =∑q
j=0 ξ(aj)X

j ∈ L[X]. Then, of course, S(f, | . |) = S(P, ‖ . ‖) because

|ξ(aj)| ≤ ‖aj‖ ∀j = 0, . . . , q. Let α1, . . . , αq be the zeros of f in K. By

Lemma 9.6.3, we have max1≤j≤q |αj | = S(f, | . |). Let β be a zero of f in

K such that |β| = S(f, | . |). Let φ be the homomorphism from A[X]

into K defined as φ(
∑q

j=0 cjX
j) =

∑q
j=0 ξ(cj)β

j and let θ be the canonical

surjection from A[X] onto A[y]. Since P (X)A[X] ⊂ Ker(φ), φ factorizes in

the form ξ◦θ, and then ξ is a L-algebra homomorphism from A[y] into K such

that ξ(y) = β. Then by Lemma 1.1.17 of Chapter 1, ξ has continuation to a

L-algebra homomorphism ξ̌ from B to K. Thus, ξ̌ satisfies S(P, ‖ . ‖) = |ξ̌(y)|,
and of course |ξ̌(y)| ≤ ‖y‖, hence S(P, ‖ . ‖) = |ξ̌(y)|, which finishes proving

our claim. �



March 25, 2022 8:35 Banach Algebras of Ultrametric Functions 9.61in x 6.69in b4542-ch09 page 251

Spectral Properties in Uniform Algebras 251

Corollary 9.6.5. Let B be finite over A and let A be integrally closed and

equipped with a semi-multiplicative norm ‖ . ‖ such that for each t ∈ A there

exists a L-algebra homomorphism χ from A into K satisfying ‖t‖ = |χ(t)|.
Then the A-polnorm of B is a semi-multiplicative norm.

Theorem 9.6.6. Let F be an algebraic extension of L. The L-polnorm of

F is a L-algebra semi-multiplicative norm.

Proof. We can consider that K is the complete algebraic closure of L.

Now let x ∈ F , let P = irr(x,L) and let α1, . . . , αq be the zeros of P

in K. By Lemma 9.6.3, we have max1≤j≤q |αj | = S(P, | . |). Let G be the

Galois group of F over L. Thus, considering F as a subfield of K, we have

S(P, | . |) = maxg∈G |g(x)| and then we can easily check that this is a semi-

multiplicative L-algebra norm. �

Theorem 9.6.7. Let L be perfect and let K be the complete algebraic closure

of L. Then K is L-productal.

Proof. Let IE be a finite field extension of L and let Tr be the trace

function of IE over L. Then Tr is obviously continuous with respect to the

L-polnorm on K. Since L is perfect, IE is a separable extension of L, hence

for every a ∈ IE, a �= 0, there exists b ∈ IE such that Tr(ab) �= 0. Now

consider the L-linear mapping φ from IE into L defined by φ(x) = Tr(xb).

We have φ(a) �= 0, hence by Corollary 2.3.1 of Chapter 2, K is L-productal.

�

Proposition 9.6.8. Let IE be an algebraic extension of L and let F be an

algebraic extension of IE. If the L-polnorm on F is multiplicative, IE being

normed with this absolute value, then the L-polnorm and the IE-polnorm

coincide on F.

Proof. Let ‖ . ‖Lpol (resp., ‖ . ‖IEpol) be the L-polnorm (resp., IE-polnorm)

on F. Since ‖ . ‖IEpol is obviously a semi-multiplicative L-algebra norm, by

Lemma 9.6.2, we have ‖x‖Lpol ≥ ‖x‖IEpol ∀x ∈ F. Next, ‖ . ‖Lpol induces on IE

the L-polnorm of IE because given x ∈ IE, its minimal polynomial over L is

the same, whether we consider x as an element of IE or as an element of F.

Consider now the L-polnorm of F: since it is a L-algebra norm, it satisfies

‖xy‖Lpol ≤ ‖x‖Lpol‖y‖Lpol∀ λ ∈ L, x ∈ F, hence ‖ . ‖Lpol is a mapping ψ from

F to R+ satisfying ψ(x + y) ≤ max(ψ(x), ψ(y)), ψ(xy) ≤ ψ(x)ψ(y) and

ψ(xn) = ψ(x)n ∀n ∈ N
∗, ∀x, y ∈ F . Consequently, by Lemma 9.6.2, we have

‖x‖IEpol ≥ ‖x‖Lpol. �
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Proposition 9.6.9. Let L have characteristic p > 0. For every n ∈ N, the

L-polnorm of L
1
pn is an absolute value extending this of L.

Proof. Since the L-polnorm is a L-algebra norm, we just have to check

that it is multiplicative. On the other hand, by induction, it is sufficient to

show the claim when n = 1. Let x, y ∈ L
1
p . By hypothesis, irr(x,L) is of

the form Xp − a, irr(y,L) is of the form Xp − b, with a, b ∈ L \L 1
pn . Thus,

we have ‖x‖Lpol = p
√|a|, ‖y‖Lpol = p

√|b|. Now, (xy)p = ab, hence irr(xy,L)

divides Xp − ab, and is of the form Xp − c. Hence c = ab, and thereby,

‖xy‖Lpol = p
√|ab| = ‖x‖Lpol‖y‖Lpol. �

Theorem 9.6.10. Let L have characteristic p > 0. If L
1
p is L-productal with

respect to the L-polnorm, then so is the algebraic closure of L.

Proof. Let L∞ =
⋃∞
n=1 L

1
pn , and let Ω be an algebraic closure of L contain-

ing L
∞. Then by Theorem 9.6.1 L

∞ is perfect, and by Proposition 9.6.9, the

L-polnorm is an absolute value that continues this of L. By Theorem 9.6.7,

since L
∞ is perfect, K is L

∞- productal with respect to the L
∞-polnorm.

But by Proposition 9.6.8, the L
∞-polnorm is equal to the L-polnorm on K.

Consequently K is L∞-productal with respect to the L-polnorm which is an

absolute value on L
∞. Hence by Lemma 2.3.3 of Chapter 2, K is L-productal

with respect to the L-polnorm. �
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Algebras Topologically of Finite Type

10.1. Hensel lemma

Hensel lemma is indispensable in many works on polynomials and restricted

series on ultrametric fields.

Definition and notations: Recall that L denotes a complete field

equipped with a non-trivial ultrametric absolute value | . |.
Let E be a unital commutative ultrametric normed L-algebra. Let

n ∈ N and let ‖ . ‖0 be the norm of E. The IE-algebra of polynomials in

n variables E[X1, . . . ,Xn] is equipped with the Gauss norm ‖ . ‖ defined as

‖∑i1,...,in
ai1,...,inX

i1
1 · · ·Xin

n ‖ = supi1,...,in ‖ai1,...,in‖0. By Proposition 2.5.16

of Chapter 2, this norm is a L-algebra norm. In particular, if the norm of E

is multiplicative, so is the norm ‖ . ‖.
We denote by E{X1, . . . ,Xn} the set of power series in n variables∑

i1,...,in
ai1,...,inX

i1
1 · · ·Xin

n such that limi1+···+in→∞ ai1,...,in = 0. The ele-

ments of such an algebra are called the restricted power series in n

variables, with coefficients in E. Hence by definition E[X1, . . . ,Xn] is dense

in E{X1, . . . ,Xn}. By Proposition 2.5.16 of Chapter 2, if E is complete,

E{X1, . . . ,Xn} is just the completion of E[X1, . . . ,Xn]. Particularly, when

E = L, L{X1, . . . ,Xn} is denoted Tn.

The Gauss norm ‖ . ‖ defined on E[X1, . . . ,Xn] obviously has con-

tinuation to E{X1, . . . ,Xn}. For convenience, given F (X1, . . . ,Xn) ∈
E{X1, . . . ,Xn} we put Ψ

(
F (X1, . . . ,Xn)

)
= log

(
‖F (X1, . . . ,Xn)‖

)
.

Throughout the chapter, A will denote a unital commutative L-algebra

equipped with an absolute value | . | which extends that of L and satisfies

{|t| | x ∈ A} = |L| and we put again Ψ(t) = log(|t|). We then denote by A0

the subring {t ∈ A | |x| ≤ 1} of A and byMA the prime ideal {t ∈ A | |t| < 1}

253
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of A0. Moreover, we denote by U the subring of L {x ∈ L |x| ≤ 1} and by

M its maximal ideal {x ∈ L |x| < 1}.
Let V = {f ∈A{X1, . . . ,Xn} | ‖f‖≤ 1} and letN = {f ∈A{X} | ‖f‖< 1}.

Given f ∈ V we will denote by a the residue class of a in V
N .

Given f =
∑∞

n=0 anx
n ∈ A{x}, here we will denote by J(f) the biggest

of the integers m such that |am| = ‖f‖.
Lemmas 10.1.1 and 10.1.2 are immediate.

Lemma 10.1.1. M =MU, N =MW, W
N = U

M [x].

Lemma 10.1.2. Let f ∈ A{x} be such that ‖f‖ = 1. Then J(f) = deg(f).

Lemma 10.1.3. Let f, g ∈ A{x}. Then J(fg) = J(f) + J(g).

Proof. Suppose first that Ψ(f) = Ψ(g) = 0. Let q = J(f), t = J(g). By

Lemma 10.1.1, in U
M [x], f is a polynomial of degree q, g is a polynomial of

degree t, hence fg is a polynomial of degree q+t, which shows the statement.

Now consider the general case. Since {|t| | t ∈ A} = |L| we can find λ ∈ L

such that Ψ(λf) = Ψ(λg) = 0, so we are led to the same conclusion. �

Lemma 10.1.4. Let P ∈ A[x] and let D ∈ U [x] be monic. Let Q,R ∈ A[x]

satisfy P = DQ + R and deg(R) < deg(D). Then we have Ψ(Q) ≤ Ψ(P )

and Ψ(R) ≤ Ψ(P ).

Proof. We can clearly assume P �= 0. Then, by multiplying P by a suitable

constant λ ∈ L, we can also assume Ψ(P ) = 0. Since D is monic, the

Euclidean division of P byD is clearly possible in U [x], and thereforeQ is the

quotient, R is the rest of this division, due to the fact that deg(R) < deg(D).

So we have Ψ(Q) ≤ 0, Ψ(R) ≤ 0 because both Q, R belong to U [x]. �

Theorem 10.1.5. Let A be complete with respect to | . |. Let f ∈ A{x} and

let D ∈ U [x] be monic. There exists a unique pair (g,R) ∈ A{x}×A[x] such
that f = Dg + R, and deg(R) < deg(D). Moreover, we have Ψ(g) ≤ Ψ(f)

and Ψ(R) ≤ Ψ(f).

Proof. Since A is complete, then so is A{x} with respect to the norm ‖ . ‖.
Consider the mapping φ, defined on A[x], which associates to each P ∈ A[x]

the quotient Q in the division by D. By Lemma 10.1.4, φ is continuous with

respect to the absolute value ‖ . ‖. Since A{x} is complete and since A[x] is

dense in A{x}, then φ has continuation to a mapping φ̂ from A{x} to A{x}
such that Ψ(φ̂(f)) ≤ Ψ(f). In the same way, consider the mappings θ defined

on A[x] which associates to each P ∈ A[x] the rest R in the division of P

by D. By Lemma 10.1.4, θ is continuous, therefore it can be continuously
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extended to a mapping θ̂ from A{x} to A[x] such that Ψ(θ̂(f)) ≤ Ψ(f) and

deg(θ̂(f)) < deg(D). Thus, by putting g = φ̂(f) and R = θ̂(f) we have

proven the existence of the pair (g,R).

Now, suppose we have another pair (h, S) ∈ A{x} ×A[x] such that f =

Dh+S, and deg(S) < deg(D). Then D(h−g) = R−S. Since D is monic, by

Lemma 10.1.3 we have J(D(h−g)) ≥ deg(D), while J(R−S) ≤ deg(D)−1,

a contradiction. Hence h = g, S = R. �

Corollary 10.1.6. Let A be complete with respect to | . |. Let f ∈ A{x} and

let D ∈ U [x] be monic. If D divides f in A{x} then it divides f in A[x].

Notation: Given a ring B and g, h ∈ B[x], I(g, h) will denote the ideal

generated by g and h in B[x].

Lemma 10.1.7. Let g, h ∈ U [x] be monic, such that I(g, h) = U
M [x] and let

q ∈ N be such that q < deg(g) + deg(h). There exist S,W ∈ L[x] satisfying

Ψ(Sg +Wh− xq) < 0, Ψ(S) ≤ 0, Ψ(W ) ≤ 0, deg(S) < deg(h), deg(W ) <

deg(g).

Proof. Since I(g, h) = U
M [x], there exists ϕ and φ ∈ L[x] such that ϕg +

φh = 1, deg(ϕ) < deg(h), deg(φ) < deg(g). Let B,E ∈ U [x] satisfy

B = ϕ, E = φ, deg(B) = deg(ϕ), deg(E) = deg(φ). Thus we have

Bg + Eh− 1 = 0, i.e.,

Ψ(Bg + Eg − 1) < 0. (10.1.1)

Moreover, Ψ(B) = 0. We now consider the Euclidean division of Bxq by h

and Exq by g, respectively. We obtain Bxq = B0h+S and Exq = E0g+W .

By Lemma 10.1.4, we have max(Ψ(S),Ψ(B0)) ≤ Ψ(Bxq) = 0. Next, by

hypothesis we have

deg(S) < deg(h), (10.1.2)

and

deg(W ) < deg(g). (10.1.3)

Let F = Bg+Eh−1. Then we have Bxq = (B0+E0)gh+Sg+Wh−xq .
Since q < deg(g) + deg(h), by (10.1.2) and (10.1.3) we see that deg(Sg +

Wh−xq) < deg(g)+deg(h) and therefore Sg+Wh−xq is just the remainder

of the Euclidean division of Fxq by gh. But then, by Lemma 10.1.4, we have

Ψ(Sg+Wh−xq) ≤ Ψ(Fxq) = Ψ(F ). And by (10.1.1) and by definition of F

it is seen that Ψ(F ) < 0. This finishes proving that Ψ(Sg+Wh−xq) < Ψ(xq).

�
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Notations: Let g, h ∈ U [x] be monic and satisfy I(g, h) = U
M [x]. We

will denote by E(g, h) the set of constants λ ∈ R+ such that, for every

polynomial Q ∈ L[x] satisfying deg(Q) < deg(g) + deg(h), there exist

F,G ∈ L[x] satisfying Ψ(Fg + Gh − Q) ≤ Ψ(Q) + λ, Ψ(F ) ≤ Ψ(Q),

Ψ(G) ≤ Ψ(Q), deg(F ) < deg(h), deg(G) < deg(g).

Lemma 10.1.8. Let g, h ∈ U [x], be monic and satisfy I(g, h) = U
M [x], and

let d = deg(g) + deg(h). Then E(g, h) is a non-empty interval whose lower

bound is 0. Moreover, given λ ∈ E(g, h) and monic polynomials φ, θ ∈ U [x]

such that Ψ(g − φ) ≤ λ, Ψ(h− θ) ≤ λ, then E(φ, θ) = E(g, h).

Proof. We can apply Lemma 10.1.7 to each polynomial Qn = xn for every

n = 0, . . . , d − 1. Thus, we have polynomials Sn,Wn satisfying Ψ(Sng +

Wnh − xn) < 0, Ψ(Sn) ≤ 0, Ψ(Wn) ≤ 0, deg(Sn) < deg(h), deg(Tn) <

deg(g). We put λn = Ψ(Sng + Wnh − xn), (0 ≤ n ≤ d − 1). Now

let Q =
∑d−1

n=0 anx
n, let S =

∑d−1
n=0 anSn, W =

∑d−1
n=0 anWn and let

λ = min0≤n≤d−1 λn. Clearly we have

Ψ(Sg +Wh−Q) ≤ max
0≤n≤d−1

(Ψ(an) + λn) ≤ max
0≤n≤d−1

Ψ(an)

+ max
0≤n≤d−1

λn = Ψ(Q) + λ.

But trivially: Ψ(S) ≤ max
0≤n≤d−1

Ψ(an),Ψ(S) ≤ Ψ(Q),

deg(W ) ≤ max
0≤n≤d−1

(deg(Sn)) < deg(h),

deg(W ) ≤ max
0≤n≤d−1

(deg(Wn)) < deg(h).

So, λ lies in E(g, h). Then it is obviously seen that E(g, h) is a non-empty

interval, and that its lower bound is 0.

Now, let y ∈ E(g, h) and let φ, θ ∈ U [x] be monic and satisfy Ψ(g−φ) <
y, Ψ(h− θ) < y. Since Ψ(S) ≤ Ψ(Q), Ψ(W ) ≤ Ψ(Q), it is easy to see that

Ψ(S(g−φ)+W (h−θ) < y+Ψ(Q), and therefore Ψ(Sφ+Wθ−Q) < y+Ψ(Q).

This shows that y ∈ E(φ, θ), and therefore E(g, h) ⊂ E(φ, θ). But similarly

we have E(φ, θ) ⊂ E(g, h). �

Lemma 10.1.9. Let A be complete and let f(x) =
∑∞

j=0 ajx
j ∈ A{x} be

such that ‖f‖ = |aq| = 1, with J(f) = q. Let g, h ∈ U [x] be monic and

satisfy I(g, h) = U
M [x]. Let λ ∈ E(g, h). There exist monic polynomials

S, W ∈ L[x] satisfying Ψ(Sg +Wh− f) ≤ λ+Ψ(f),deg(S) < deg(g),

deg(W ) ≤ max(deg(h), q − deg(g)),Ψ(S) ≤ Ψ(f), Ψ(W ) ≤ Ψ(f).
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Proof. By Theorem 10.1.5, we consider the Euclidean division of f by

gh : f = �gh +Q1. Hence deg(Q1) < deg(g) + deg(h). By Theorem 10.1.5,

we have

Ψ(Q1) ≤ Ψ(f), (10.1.4)

Ψ(�) ≤ Ψ(f). (10.1.5)

By Lemma 10.1.8, there exist S1,W1 ∈ L[x] satisfying

Ψ(S1g +W1 h−Q1) ≤ Ψ(Q1) + λ(g, h), (10.1.6)

Ψ(S1) ≤ Ψ(Q1), (10.1.7)

Ψ(W1) ≤ Ψ(Q1), (10.1.8)

deg(S1) < deg(h), (10.1.9)

deg(W1) < deg(g). (10.1.10)

Now we put S = S1 + �h, W = W1. So we have Sg +Wh − f = S1 +

�gh+W1h−�gh−Q1 and therefore by (10.1.6) we obtain Ψ(Sg+Wh−f) ≤
Ψ(Q1) + λ. Hence by (10.1.4) we obtain

Ψ(Sg +Wh− f) ≤ Ψ(f) + λ. (10.1.11)

By (10.1.4), (10.1.8) it is seen that

Ψ(W ) ≤ Ψ(f). (10.1.12)

Next, we have Ψ(h) = 0, hence by (10.1.5) we see that

Ψ(�h) ≤ Ψ(f). (10.1.13)

But by (10.1.7) we have Ψ(S1) ≤ Ψ(f) and therefore by (10.1.13) we obtain

Ψ(S) ≤ Ψ(f). (10.1.14)

Finally, by definition we have deg(�) = deg(f)− deg(gh) and therefore

deg(W ) ≤ max (deg(S1), deg(�h)) ≤ max (deg(h), q−deg(g)). (10.1.15)

Thanks to (10.1.10), (10.1.11), (10.1.12), (10.1.14), (10.1.15). �

Theorem 10.1.10 (Hensel lemma). A is supposed to be complete. Let

f ∈ A{x} be such that ‖f‖ = 1 and such that f splits in U
M [x] in the form

γη with I(γ, η) = U
M [x]. There exists a unique pair (g, h) ∈ A[x] × A{x}

such that g is monic and satisfies f = gh, g = γ, h = η, deg(g) = deg(γ).
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Proof. We can obviously take monic polynomials g0, h0 ∈ U [x] such that

g0 = γ, h0 = η. We put ν = Ψ(f − g0h0), and take τ ∈ E(g0, h0) satisfying

τ ≥ ν. We will construct sequences (gn)n∈N, (hn)n∈N in L[x] satisfying for all

n ≥ 0:

(in) Ψ(f − gnhn) ≤ (n + 1)τ ,

(iin) Ψ(gn − gn−1) ≤ nτ, Ψ(hn − hn−1) ≤ nτ ,

(iiin) deg(hn) ≤ deg(f)− deg(g0), deg(gn) = deg(g0),

(ivn) gn = γ, hn = η,

(vn) τ ∈ E(gn, hn),

(vin) gn is monic.

First we put f1 = f − g0h0. We notice that deg(f1) = deg(f). We now

apply Lemma 10.1.9, to the case when (Q, g, h) = (f1, g0, h0): there exist

S1,W1 ∈ A[x] satisfying

deg(W1) < deg(g0),

deg(S1) < deg(f)− deg(g0), (10.1.16)

Ψ(S1) ≤ τ, (10.1.17)

Ψ(W1) ≤ τ, (10.1.18)

Ψ(S1g0 +W1h0 − P1) ≤ τ +Ψ(P1). (10.1.19)

Next we put g1 = g0+W1, h1 = h0+S1. We check that (i1), (ii1), (iii1), (iv1)

are satisfied. Moreover, by (10.1.17) and (10.1.18), and by Lemma 10.1.8, τ

lies in E(g1, h1), hence v1 is satisfied.

Now we suppose we have already constructed pairs (gm, hm) satisfying

(im), (iim), (iiim), (ivm), (vm) for every m = 0, . . . , n. Then we put fn+1 =

f − gnhn. We can apply Lemma 10.1.9 to the case when (Q, g, h) is equal to

(fn+1, gn, hn). So, we can obtain Sn+1,Wn+1 ∈ A[x] satisfying

Ψ(Sn+1gn +Wn+1hn − fn+1) ≤ τ +Ψ(fn+1), (10.1.20)

deg(Wn+1) < deg(gn), (10.1.21)

deg(Sn+1) ≤ max(deg(hn), deg(fn+1)− deg(gn)),

(10.1.22)

Ψ(Sn+1) ≤ Ψ(fn+1), Ψ(Wn+1) ≤ Ψ(fn+1).

(10.1.23)
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By (10.1.20), and by vn) we obtain

Ψ(Sn+1gn +Wn+1hn − fn+1) ≤ (n+ 2)τ. (10.1.24)

Now we put gn+1 = gn +Wn+1, hn+1 = hn + Sn+1. We check that

f − gn+1hn+1 = (fn+1 − hnWn+1 − gnSn+1)− Sn+1Wn+1

= fn+1 − hWn+1 − gn+1Sn+1 + (hn+1 − hn)Wn+1

+(gn+1 − gn)Sn+1 + Sn+1Wn+1.

By (10.1.21) we notice that Gm+1 is monic, hence vin+1) is satisfied.

By iim) true for m ≤ n, we notice that

Ψ(gn − gn+1) ≤ (n+ 1)τ, Ψ(hn − hn+1) ≤ (n + 1)τ (10.1.25)

which gives (iin+0), and by (10.1.23) and (10.1.24), we obtain (in+1)v(f −
gn+1hn+1) ≥ (n + 2)τ . Relations (iiin+1), (ivn+1) are easily checked. By

(10.1.25) and by Lemma 10.1.8, Relation (vn+1) is also clear. Therefore the

sequences (gn)n∈N, (hn)n∈N satisfying (in), (iin), (iiin), (ivn), (vn) are now

constructed. Since A is complete, the A-module Fq[x] of the polynomials of

degree m ≤ q is obviously complete with respect to the Gauss norm. Then

by Relations iin) both sequences (gn)n∈N, (hn)n∈N converge in Fq[x]. We

put g = limn→∞ gn, h = limn→∞ hn. Clearly by (iiin) we have deg(g) =

deg(g0) = deg(γ). By ivn) we have g = γ, h = η, and finally by in) we have

Ψ(f − gh) = −∞ hence f = gh.

Thus, we have shown the existence of the pair (g, h). Now, since g is a

monic polynomial, the equality f = gh appears to be the Euclidean division

of f by g. Consequently, such a pair is unique. �

Corollary 10.1.11. A is supposed to be complete. Let f(x) =
∑∞

j=0 ajx
j ∈

A{x} and let q = J(f). If aq is invertible in A then f is associated to a

monic polynomial P ∈ U [x] of degree q, in A{x}.

10.2. Definitions of affinoid algebras

Affinoid algebras were introduced by John Tate in [44] who called them

algebras topologically of finite type. As this last name suggests, such an

algebra is the completion of an algebra of finite type for a certain norm.

We will recall definitions about algebras topologically of finite type, now

mainly called affinoid algebras [3–5, 44].
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Definitions and notations: Recall that throughout the book, L is a

complete ultrametric field and here A, B are unital commutative ultrametric

Banach L-algebras.

Recall that U = d(0, 1), M = d(0, 1−) and the residue class field of L

is L.
Let (E, ‖ . ‖) be a normed L-vector space which also is a A-module.

The norm of E will be called a A-quasi-algebra-norm if it satisfies ‖af‖ ≤
‖a‖‖f‖ ∀a ∈ A, ∀f ∈ E. If E is equipped with such a A-quasi-algebra-norm,

(E, ‖ . ‖) will be called a A-quasi-algebra-normed A-module.

A U -submodule E1 of A will be said to define the topology of E if it is a

bounded neighborhood of zero, i.e., if there exist r, s ∈]0,+∞[ with r < s

such that {x ∈ E| ‖x‖ ≤ r} ⊂ E1 ⊂ {x ∈ E| ‖x‖ ≤ s}.
We will denote by E0 (resp., A0) the U -submodule of the x ∈ E (resp.,

x ∈ A) such that ‖x‖ ≤ 1.

Given n ∈ N, the algebra L{X1, . . . ,Xn} is called a topologically pure

extension of L of dimension n and is denoted by Tn. By definition, an algebra

Tm is included in Tn for all n > m and the Gauss norm of Tm is induced by

this of Tn. Such a Gauss norm on Tn will be just denoted by ‖ . ‖.
Let B be a unital commutative Banach A-algebra. B is said to be a A-

affinoid algebra if it is isomorphic to a quotient of any algebra of the form

A{X1, . . . ,Xn} by one of its ideals.

Let t1, . . . , tn ∈ B such that ‖tj‖ ≤ 1 and let φ be the L-algebra

homomorphism from A{X1, . . . ,Xn} into B defined as φ(F (X1, . . . ,Xn)) =

F (t1, . . . , tn). We will denote by A{t1, . . . , tn} its image i.e., the set of sums of

series in t1, . . . , tn whose coefficients tend to 0 along the filter of complements

of finite subsets of Nn.

Remarks. (1) The quotient of a topologically pure extension Tn is a

L-affinoid algebra.

(2) If A is a L-affinoid algebra and if B is a quotient of A, then B is a

L-affinoid algebra.

(3) By definition, given f =
∑

i1,...,in
ai1,...,inX

i1
1 · · ·Xin

n ∈ Tn, there are

finitely many coefficients ai1,...,in such that |ai1,...,in | = ‖f‖. Consequently,
‖f‖ lies in |L| for every f ∈ Tn.

(4) Let f(X) =
∑∞

i=0 aiX
i ∈ U{X} = (T1)0 and let q = N+(f, 0).

Consider the residue class L-algebra A = (T1)0
M(T1)0

. In A we denote by f the

residue class of f(X). Then f is the polynomial
∑q

i=0 aiX
i.

(5) Since the Gauss norm on Tn is multiplicative, it is obviously equal

to the associated semi-norm ‖ . ‖sp.
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Lemma 10.2.1. Let L = K, let f1, . . . , fm ∈ T1. There exists α ∈ UK such

that |fj(α)| = ‖fj‖ ∀j = 1, . . . ,m.

Proof. Indeed, for each j = 1, . . . ,m the equality |fj(x)| = ‖fj‖ holds in

all classes of UK except in finitely many ones. Consequently, all equalities

|fj(x)| = ‖fj‖ hold in all classes of UK except in finitely many. �

Proposition 10.2.2. Let A, B be L-affinoid algebras such that B is

A-affinoid. Suppose that B0
MB0

is finite over A0
MA0

. Then B is finite over A.

Proof. By hypothesis,A is the quotient of certain L-algebra A{T1, . . . , Tr},
and therefore is of the form A{t1, . . . , tr}. Let λ ∈ M, λ �= 0. For each

t ∈ B0, here we denote by t̃ the residue class of t in B0
λB0

. Thus, we have
B0
λB0

= A0
λA0

[t̃1, . . . , t̃r]. Now, by hypothesis for each i = 1, . . . , r, there exists

a polynomial Pi(T ) = T qi + fqi−1T
qi−1+ · · ·+ f0, with fi ∈ A0, and Pi(ti) ∈

MB0. Let Pi(ti) = xigi, with xi ∈ M , and gi ∈ B0. Now, we can choose

li ∈ N such that xlii ∈ λA0, and thus Pi(ti)
li lies in λB0, hence P i(t̃i)

li =

0. Therefore, B0
λB0

is finite over A0
λA0

, and finally, by Proposition 2.6.10 of

Chapter 2, B is finite over A. �

Lemma 10.2.3. Let A be a L-affinoid algebra which is a quotient of a

topologically pure extension L{X1, . . . ,Xn} of L by an ideal. Let θ be the

canonical surjection, and for each i = 1, . . . , n, we put ti = φ(Xi). Then

U{t1, . . . , tn} defines the topology of A.

Proof. By definition, U{t1, . . . , tn} is included in B0. So we just have to

check that U{t1, . . . , tn} is a neighborhood of 0 in B. Let λ ∈]0, 1[ and let

f ∈ B satisfy ‖f‖ ≤ λ. Since λ < 1, by definition of the quotient norm of B,

there exist F ∈ U{X1, . . . ,Xn} such that φ(F ) = f . Hence f = F (t1, . . . , tn)

lies in U{t1, . . . , tn}, and therefore U{t1, . . . , tn} is a neighborhood of 0

in B. �

Theorem 10.2.4. Suppose the topology of A is defined by a U -algebra

A1. Let y1, . . . , ys ∈ A1 be such that their residue classes in A1
MA1

be

algebraically independent over L. Then the canonical homomorphism φ from

L{Y1, . . . , Ys} into a A defined as φ(Yj) = yj, (1 ≤ j ≤ s) is an isomorphism

from L{Y1, . . . , Ys} onto a closed subalgebra of A.

Proof. Let F (Y1, . . . , Ys) ∈ L{Y1, . . . , Ys} be such that F (y1, . . . , ys) ∈ A1.

Suppose that F (Y1, . . . , Ys) /∈ U{Y1, . . . , Ys}. Since ‖F‖ lies in |L|, there
exists λ ∈ M such that ‖λF‖ = 1. Let P = λF . Then the residue class P

of P in L[X1, . . . ,Xs] is different from 0, but satisfies P (y1, . . . , ys) = 0 in
A1
MA1

, a contradiction. Consequently, F (Y1, . . . , Ys) belongs to U{Y1, . . . , Ys},
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and therefore φ is open. Hence, φ is a bicontinuous isomorphism from

L{Y1, . . . , Ys} onto a closed L-subalgebra of A. �
Proposition 10.2.5. A is a L-affinoid algebra if and only if it is a finite

extension of a topologically pure extension of L of the form T [y1, . . . , yq]

where T is a topologically pure extension and y1, . . . , yq are elements of

A such that max1≤j≤q ‖yj‖ ≤ 1, so that A is isomorphic to a quotient of

L{X1, . . . ,Xn, Y1, . . . , Yq}.
Proof. First suppose that A is a finite extension of a topologically

pure extension of L, say A = L{X1, . . . ,Xn}[y1, . . . , yq]. Without loss of

generality, we may clearly assume that max(|y1|, . . . , |yq|) ≤ 1. Then the

canonical homomorphism φ from L[X1, . . . ,Xn, Y1, . . . , Yq] into A defined

by φ(Xi) = Xi ∀i = 1, . . . , n, and φ(Yj) = yj ∀j = 1, . . . , q, is clearly

continuous with respect to the Gauss norm on L[X1, . . . ,Xn, Y1, . . . , Yq] and

extends by continuity to a homomorphism φ̂ from L{X1, . . . ,Xn, Y1, . . . , Yq}
into A. Then φ̂ is surjective by construction, so A is a quotient of

L{X1, . . . ,Xn, Y1, . . . , Yq}.
Conversely, we now assume that A is a L-affinoid algebra, and suppose

that A is a quotient of a topologically pure extension T = L{X1, . . . ,Xn} of

L. Let θ be the canonical surjection, and for each i = 1, . . . , n, let ti = φ(Xi).

Then by Lemma 10.2.3, the U -algebra U{t1, . . . , tn} defines the topology

of T . Now, consider the residue algebra T1
MT1

, and for each i = 1, . . . , n,

let τi be the residue class of ti in T1
MT1

. Then T1
MT1

= L[τ1, . . . , τn]. By

Theorem 1.1.16 of Chapter 1, we can choose ξ1, . . . ξs ∈ T1
MT1

such that T1
MT1

be finite over L[ξ1, . . . , ξs]. For each i = 1, . . . , s, we can choose yi ∈ T1
whose residue class is ξi. Let E = L{y1, . . . , ys}. By Proposition 10.2.4, E

is a topologically pure extension of L. Now, putting E0 = U{y1, . . . , ys}, we
can see that T1

MT1
is finite over E0

ME0
, and therefore, by Proposition 10.2.2, A

is finite over E. �
Proposition 10.2.6. Let A be a L-affinoid algebra without divisors of zero

of the form L{Y }[x], with x integral over L{Y } and ‖x‖ ≤ 1 and let F (x) =

irr(x,L{Y }). Then A is isomorphic to both L{Y }[X]
F (X)L{Y }[X] and to L{Y,X}

F (X)L{Y,X} .

Proof. By Theorem 10.2.5, A is isomorphic to a quotient of L{Y,X} by

a prime ideal I that contains F . Hence A is isomorphic to a quotient of

the L-algebra L{Y,X}
F (X)L{Y,X} , hence there exists a surjective homomorphism φ

from L{Y,X}
F (X)L{Y,X} onto A. On the other hand, there exists an obvious injective

homomorphism θ from the L-algebra D = L{Y }[X]
F (X)L{Y }[X] , which is isomorphic

to A, into B inducing the identity on L{Y }. �
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Theorem 10.2.7. Suppose that L = K. Let f ∈ Tn. Then f is invertible in

Tn if and only if |f((0))| > ‖f − f((0))‖.
Proof. If |f((0))| > ‖f − f((0))‖, f is invertible by Theorem 2.5.11. Now

suppose |f((0))| ≤ ‖f − f((0))‖. Since sp(f) = d(f(0), ‖f − f(0)‖), it is seen
that 0 belongs to sp(f), hence f is not invertible. �

10.3. Salmon’s theorem

The chapter is designed to show that topologically pure extensions are

factorial, a theorem due to Paolo Salmon [42].

Definitions and notations: Recall that U = d(0, 1), M = d(0, 1−) and

the residue class field of L is L. Here, Tn denotes the topologically pure

extension L{X1, . . . ,Xn} and we put Vn = {x ∈ Tn | ‖x‖ ≤ 1}.
Let f(X1, . . . ,Xn) ∈ Tn. We denote by f the residue class of f in Vn

MLVn
.

Then f is said to be k-regular if it is of the form cg with c ∈ L and g ∈ Vn
such that g is monic as a polynomial in Xk.

Lemma 10.3.1. Let P, Q ∈ Vn[Y ] be monic polynomials associated to each

other in Tn{Y }. Then P = Q.

Proof. By hypothesis there exists u invertible in Tn{Y } such that Q = uP .

Without loss of generality, we can assume that P and Q belong to K[X].

So, by Theorem 10.2.7, u is of the form l + h with l ∈ L, h ∈ Tn{Y } and

‖h‖ < |l|. Since the Gauss norm is multiplicative, and since both P, Q are

monic, we have ‖P‖ = ‖Q‖ = 1 and then ‖u‖ = |l| = 1. Suppose P �= Q.

Since both P , Q are monic and associated in Vn
MLVn

[Xn], they have same

degree, and therefore we check that l = 1 = u. Consequently, u is of the

form 1+f , with f ∈ Tn{Y } and ‖f‖ < 1. Therefore, Pf = Q−P . Let λ ∈ L

be such that ‖λ(P −Q)‖ = 1. Then the degree in Y of λ(P −Q) is at most

q − 1. But since P is monic, and since ‖λfP‖ = 1, the degree in Y of λPf

is at least q, a contradiction. Hence P = Q. �

Lemma 10.3.2. Let f ∈ Tn be n-regular. There exists one and only one

monic polynomial P ∈ Un−1[Xn] associated to f in Tn.

Proof. Since f is n-regular of order q, it is of the form
∑∞

j=0 ajX
j
n, with

aj ∈ Un−1 and aq invertible in Un−1. Hence by Corollary 10.1.11 f is

associated in Tn to a monic polynomial inXn. Suppose we can find two monic

polynomials P and Q associated to f in Tn. In particular, Q is associated to

P in Tn. Without loss of generality we can clearly assume that both P, Q

belong to Vn. Then by Lemma 10.3.1, they are equal. �
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Definition: Let f ∈ Tn be k-regular. The unique monic polynomial P ∈
U{X1, . . . ,Xk−1,Xk+1, . . . ,Xn}[Xk], associated to f in Tn will be called the

k-canonical associate to f .

Let f ∈ Tn be k-regular and let f = cg with g the k-canonical associate

to f . By definition, the degree q of g in Xk is such that |a0,...,0,q,0,...,0 − 1| <
1, |aj1,...,jk−1,q,jk+1,...,jn | < 1 ∀(j1, . . . , jn−1) �= (0, . . . , 0), and |aj1,...,jn | < 1

whenever jn > q. The integer q will be called the k-order of f .

Theorem 10.3.3. Let f ∈ Tn be k-regular of k-order q. There exists

a unique monic polynomial P (Xk) ∈ L{X1, . . . ,Xk−1,Xk+1, . . . ,Xn}[Xk]

which is associated to f in Tn. Moreover, the degree of P in Xk is q.

Proof. Without loss of generality, we can obviously assume that k = n,

what we do for convenience. We put Tn−1 = E and Y = Xn. Without

loss of generality, we can also assume that the coefficient a0,...,0,q of Y in f

is 1. Let q be the n-order of f . In E{Y } f is of the form
∑∞

j=0 fjY
j with

limj→∞ fj = 0, ‖fj‖ ≤ 1 ∀j ∈ N, fq = 1 and ‖fj‖ < 1 ∀j > q. Then f is

a monic polynomial Π of degree q, hence by Corollary 10.1.11, there exists

Q ∈ E[Y ] such that Q = f and h ∈ E{Y } such that h = 1 and f = Qh. Since

Q = f , the coefficient l of Y q in Q is of the form 1+ε with ‖ε‖ < 1, therefore

by Theorem 2.5.11 of Chapter 2, Q is invertible in the Banach L-algebra

Tn. In the same way, since h = 1, h is invertible in Tn. Consequently, the

q-degree monic polynomial P = l−1Q is associated to f in Tn.

Now, we will show such a factorization is unique. Let wS be another

factorization of f , with w invertible in Tn and S a monic polynomial in

E[Y ]. Thus in E[Y ] P and S are two monic polynomials associated to each

other. Consequently, by Lemma 10.3.1, they are equal and this shows the

uniqueness of the polynomial P . �

Theorem 10.3.4. Let f ∈ Tn be k-regular of k-order q and factorize in Tn
in the form f1f2. Then, each fj is k-regular of order qj (j = 1, 2), such that

q = q1 + q2.

Proof. Without loss of generality, we can assume that f, f1, f2 lie

in Vn and that f is monic of degree q. Then f = f1f2. Putting qj =

deg(fj(Xk)), (j = 1, 2), we have q = q1 + q2. Since f is monic, each f j
has a coefficient of degree qj in Xk which is constant, hence each fj is k-

regular, of k-order qj. �

Theorem 10.3.5. Let f ∈ Un−1[Xn] be monic and irreducible in Tn−1[Xn].

Then it is irreducible in Tn−1{Xn}.
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Proof. Suppose f is not irreducible in Tn. By Theorem 10.3.4, there exists

n-regular elements f1, f2 ∈ Tn such that f = f1f2, and therefore by Theorem

10.3.3, there exists a unique monic polynomial g1(Xn) ∈ Tn−1[Xn] associated

to f1 in Tn and a unique monic polynomial g2(Xn) ∈ Tn−1[Xn] associated

to f2 in Tn. Then g1g2 is a monic polynomial in Xn and is associated to

f hence it is equal to f , a contradiction to the hypothesis: f irreducible in

Tn−1[Xn]. �

Notations: In Nn we will denote by On the order relation defined as it

follows: given (i1, . . . , in), (j1, . . . , jn) ∈ Nn, we put (i1, . . . , in) < (j1, . . . , jn)

if for certain t ≤ n we have it−1 < jt−1 and im = jm ∀m = t, . . . , n,

and we put (i1, . . . , in) ≤ (j1, . . . , jn) if either (i1, . . . , in) < (j1, . . . , jn) or

(i1, . . . , in) = (j1, . . . , jn). Then this relation is a total order relation in Nn.

Proposition 10.3.6. Let h ∈ Vn be such that in h, the coefficient of maximal

index, with respect to On is equal to 1. There exists a L-automorphism θ of

Tn preserving Vn, such that θ(h) is a monic polynomial in Xn.

Proof. Let (k1, . . . , kn) be the maximum index (with respect to On)

whose coefficient in h is not 0. We can clearly find t2, . . . , tn ∈ N such

that h(X1,X2 +Xt2
1 , . . . ,Xn +Xtn

1 ) is a monic polynomial in X1 of degree

k1 + k2t2 + · · · + kntn. Let φ be the L-algebra endomorphism defined in

L[X1, . . . Xn] as φ(f) = f(X1,X2 + Xt2
1 , . . . ,Xn + Xtn

1 ). Then we can

check that φ is a L-algebra automorphism of L[X1, . . . Xn]. Moreover, it

also induces on L[X1, . . . ,Xn] a L-algebra automorphism, so it satisfies

‖φ(f)‖ = ‖f‖. Therefore φ has continuation to Tn and preserves Vn. Now,

let ω be the L-algebra automorphism of Tn defined as ω(f(X1, . . . ,Xn)) =

f(Xn,X2, . . . ,Xn−1,X1). Then ω◦φ is a continuous L-algebra automorphism

θ of Tn such that θ(h) is a monic polynomial in Xn. �

Theorem 10.3.7 ([42]). Tn is factorial for every n ∈ N.

Proof. We assume the theorem true for every n < m, and will prove it

when n = m. For convenience we put E = Tn−1. Let g be an irreducible

element of Tn. We will prove that gTn is a prime ideal of Tn. Without

loss of generality we can obviously assume that g belongs to Vn and that

in g the coefficient of maximal index, with respect to On, is equal to 1.

Consequently, by Proposition 10.3.6, there exists a L-algebra automorphism

θ of Tn preserving Vn, such that θ(g) is a monic polynomial in Xn. Thus,

without loss of generality, we can also assume that g is a monic polynomial

in Xn. Then, by Theorem 10.3.2, g is associated to a monic polynomial



March 25, 2022 8:35 Banach Algebras of Ultrametric Functions 9.61in x 6.69in b4542-ch10 page 266

266 Banach Algebras of Ultrametric Functions

P (Xn) ∈ Un−1[Xn]. Let q = deg(P ). Suppose that P admits a factorization

in Un−1[Xn] in the form Q1Q2, with Qi(Xn) =
∑qi

j=0 aj,iX
j
n (i = 1, 2). Then

q1 + q2 = q and aq1aq2 = 1. Since g is irreducible in Tn, so is P , hence one of

the Qi is invertible in Tn. Both polynomials Qi

aqi
are monic and Q1Q2

aq1aq2
divides

P in Tn. Now, we consider Tn as E{Xn}. By Theorem 10.3.3, there exists

only one monic polynomial in Xn associated to a n-regular series such as P .

Hence one of the polynomials Qi
aqi

is equal to 1, and therefore P is irreducible

in E[Xn].

Now, suppose that P divides a product f1f2 in E{Xn} with f1, f2 ∈
E{Xn}. And according to Theorem 10.1.5, let Ri be the rest of the Euclidean

division of fi by P (i = 1, 2) in E{Xn}. Then P divides R1R2 in B. But

by Theorem 10.1.5, the Euclidean division in E[Xn] is induced by the one

in E{Xn}. Consequently, P divides R1R2 in E[Xn]. And since, by induction

hypothesis, E is factorial, so is E[Xn]. Consequently P must divide one of

the Ri, say R1, in E[Xn]. But since deg(R1) < q, of course R1 = 0, hence

P divides f1, and therefore generates a prime ideal in E[Xn] and so does

g in E{Xn}. Thus every irreducible element of Tn generates a prime ideal,

and consequently, by Lemma 1.1.2 of Chapter 1, we know that E{Xn} is

factorial, hence the theorem holds when m = n. �

Corollary 10.3.8. Tn is Noetherian and every ideal of Tn is closed.

As consequence of the division, preparation theorems and Noether

normalization, Tn is that an analog of Hilbert’s Nullstellensatz is valid: the

radical of an ideal is equal to the intersection of all maximal ideals containing

this ideal [5].

Theorem 10.3.9 (Nullstellensatz for Tn). Let I be an ideal of Tn. The

radical of I is equal to the intersection of all maximal ideals containing I.
Corollary 10.3.10. Let I be a prime ideal ideal of Tn. Then I is equal to

the intersection of all maximal ideals containing I.

10.4. Algebraic properties of affinoid algebras

We shall recall the proofs of many classical algebraic properties of L-affinoid

algebras such as Noetherianness, finite codimension of maximal ideals and

other easy spectral properties [44].

Notations: As previously, we just denote bu U the unit ball of L and

by M the disk d(0, 1−). Moreover, we denote by Un the unit ball of Ln.

Throughout the chapter, A is a L-affinoid algebra.
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Let us first notice Lemma 10.4.1 that is immediate.

Lemma 10.4.1. If B a A-affinoid algebra, then B is a L-affinoid algebra.

Theorem 10.4.2. A is Noetherian, every ideal is closed. Furthermore, each

maximal ideal of A is of finite codimension.

Proof. By Corollary 10.3.8, every topologically pure extension Tn is

Noetherian, hence so is any quotient of Tn, i.e., any L-affinoid algebra.

Consequently, by Corollary 2.6.13 of Chapter 2, every ideal is closed.

Finally, consider a maximal ideal M of B. Then, B
M is a field F and

a L-affinoid algebra. Thus, F is finite over a topologically pure extension

L{X1, . . . ,Xq}, and then L{X1, . . . ,Xq} is a field. But such a ring is never

a field except when q = 0. Hence, F is a finite field extension of L and hence

M is of finite codimension. �

Corollary 10.4.3. Let B = Tn[y1, . . . , yq] be finite over a topologically pure

extension Tn. Then B is isomorphic to a L-affinoid algebra of the form
Tn{Y1,...,Yq}

I where I is an ideal of Tn{Y1, . . . , Yq} such that Tn ∩ I = {0}.
Corollary 10.4.4. In A there are finitely many minimal prime ideals.

Corollary 10.4.5. Let A admit an idempotent u. Then uA is a L-affinoid

algebra admitting u for unity.

Theorem 10.4.6. A is multbijective.

Proof. Let M be maximal ideal of A. Then the field M = A
M is a finite

extension of L, Hence it admits a unique absolute value | . | expansion of

the absolute value of L. Let χ be the canonical morphism from M onto A.

Then |χ| is the unique continuous multiplicative semi-norm on A admitting

M for kernel, which ends the proof. �

Theorem 10.4.7. For all α ∈ Un and f ∈ Tn, we put χα(f) = f(α). The

mapping φ from Un into X (Tn) defined as φ(α) = χα is a bijection.

Proof. Indeed φ is an injection from Un into X (Tn). Now, let γ ∈ X (Tn),

and let Tn = L{X1, . . . ,Xn}. By Theorem 10.4.2, γ takes values in L. For

every j = 1, . . . , n, let αj = ϕ(Xj), and let α = (α1, . . . , αn). Then we see

that γ = χα. �

Corollary 10.4.8. Let χ ∈ X (Tn−1) and let α ∈ U . There exists χ̂ ∈ X (Tn)

such that χ̂(h) = χ(h) ∀h ∈ Tn−1, and χ̂(Xn) = α.
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Proposition 10.4.9. The following three properties are equivalent:

(i) |χ(f)| < 1 ∀χ ∈ X (A),

(ii) In A{Y }, 1− fY is invertible,

(iii) ‖f‖sp < 1.

Proof. Let us show that (i) implies (ii). By Lemma 10.4.1, A{Y } is a

L-affinoid algebra. Next, by definition, we have ‖Y ‖ = 1. Let χ ∈ X (A{Y }).
Then |χ(fY )| < 1, hence χ(1− fY ) �= 0. Consequently, by Theorem 10.4.2,

1− fY does not belong to any maximal ideal of A{Y }, which proves (ii).

Let us show that (ii) implies (iii). Since 1−fY is invertible, its inverse is

a series
∑∞

n=0 gnY
n, with gn ∈ A and limn→∞ gn = 0. Since (1− fY )g = 1,

we check that g0 = 1, and gn+1 = fgn, ∀n ∈ N. Consequently, gn = fn, and

limn→∞ fn = 0, hence by Theorem 2.5.7 of Chapter 2, ‖f‖sp < 1.

Finally, we check that that (iii) implies (i): by Theorem 2.5.17, of

Chapter 2, we have |χ(f)| ≤ ‖f‖sp. �

Theorem 10.4.10. Every L-affinoid algebra owns Property (p).

Proof. Suppose a L-affinoid algebra A does not own Property p), and let

f ∈ A be such that ‖f‖sa < ‖f‖sp. We can find power f t of f such that

the interval ]‖f t‖sa, ‖f‖sp[ contains some |λ| ∈ |L|. So we can assume that

‖f‖sa < |λ| < ‖f‖sp and we have
∥∥∥fλ
∥∥∥
sa
< 1 <

∥∥∥ fλ
∥∥∥
sp
, hence Condition (i) is

satisfied but Condition (iii) is not, a contradiction. �

Lemma 10.4.11. Let I be an ideal of Tn, and let A = Tn
I . Let θ be the

canonical surjection from Tn onto A. Let φ ∈ Mult(Tn, ‖ . ‖). There exists

ϕ ∈ Mult(A, ‖ . ‖) such that φ = ϕ ◦ θ if and only if I ⊂ Ker(θ).

Proof. Let ‖ . ‖ be the Gauss norm on Tn, and let ‖ . ‖q be the quotient

L-algebra norm of A. Let f ∈ Tn. Suppose that I ⊂ Ker(θ). For every t ∈ I
we have θ(f) = θ(f + t) hence φ(f) = φ(f + t). Therefore, we can put

ϕ(θ(f)) = φ(f).

Conversely, if ϕ is of the form φ◦θ, with φ ∈ Mult(A, ‖ . ‖), then Ker(ϕ)

obviously contains I. �

Lemma 10.4.12. Let A be a L-affinoid algebra, let I be an ideal of A, let

B = A
I and let ‖ . ‖q be the quotient norm of B. Then Mult(B, ‖ . ‖q) is

homeomorphic to the subset of Mult(A, ‖ . ‖) consisting of the φ such that

I ⊂ Ker(φ).
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Proof. Let θ be canonical surjection from A onto B and let ψ be the

mapping from Mult(B, ‖ . ‖q) into Mult(A, ‖ . ‖) defined by ψ(ϕ) = ϕ ◦ θ.
Then ψ is an injection because given ϕ1 and ϕ2 ∈ Mult(B, ‖ . ‖q) such

that ϕ1 ◦ θ = ϕ2 ◦ θ we have ϕ1(θ(x)) = ϕ2(θ(x) ∀x ∈ A, hence ϕ1(u)) =

ϕ2(u) ∀u ∈ B. Now, let φ ∈ Mult(A, ‖ . ‖) be such that I ⊂ Ker(φ) and

let J = Ker(φ). Let x ∈ A. Then θ(x) lies in B. Given x, y ∈ A such that

θ(x) = θ(y) we have x − y ∈ I, hence x − y ∈ J , therefore φ(x) = φ(y).

Consequently, we can put ϕ(θ(x)) = φ(x), i.e., ϕ(u) = φ(x) whenever θ(x) =

u. Consequently, ψ is a surjection, and hence an bijection fromMult(B, ‖ . ‖q)
onto the subset of Mult(A, ‖ . ‖) consisting of the φ such that I ⊂ Ker(φ).

The homeomorphism is then immediate. �

Theorem 10.4.13. Suppose that L = K. For all x ∈ Tn there exists χ ∈
X (Tn) such that |χ(x)| = ‖x‖sp.

Proof. Let U be the disk d(0, 1) in K. Since the Gauss norm on Tn satisfies

‖ . ‖ = ‖ . ‖sp, we are reduced to show that for every f ∈ Tn there exists χ ∈
X (Tn) such that |χ(f)| = ‖f‖. We will proceed by induction. When n = 1,

by Theorem 7.3.5 of Chapter 7, there exists α ∈ U such that |f(α)| = ‖f‖.
Consequently, the mapping χα ∈ X (T1) defined as χα(g) = g(α) (g ∈ T1)

satisfies |χα(f)| = ‖f‖sp. Now, suppose we have already proven the following

property.

(Qn): For every n ≤ q, given any f1, . . . , fm ∈ Tn, there exists χ ∈ X (Tn)

such that |χ(fj)| = ‖fj‖ ∀j = 1, . . . ,m. Consider f1, . . . , fm ∈ Tq+1.

We can write each fh in the form
∑∞

k=0 gk,hX
k
q+1, with gk,h ∈ Tq. There

obviously exists N ∈ N such that ‖gk,h‖ < ‖fh‖ whenever k ≥ N,

whenever h = 1, . . . ,m. Now by the induction hypothesis we can find

χ ∈ X (Tq) such that
∣∣χ(∏0≤k≤N, 1≤h≤m gk,h)

∣∣ = ∥∥∏0≤k≤N, 1≤h≤m gk,h
∥∥.

And since both χ, ‖ . ‖ are multiplicative, and obviously satisfy |χ(gk,h)| ≤
‖gk,h‖ ∀k = 0, . . . , N, ∀h = 1, . . . ,m, it is clear that |χ(gk,h)| =

‖gk,h‖ ∀k = 0, . . . , N, ∀h = 1, . . . ,m. For each h = 1, . . . ,m, consider

φh(X) =
∑∞

k=0 χ(gk,h)X
k which obviously lies in T1. Since the property

holds for n = q, there exists χ ∈ X (T1) such that χ(φh) = ‖φh‖.
Putting α = χ(X), we have |φh(α)| = ‖φh‖ ∀h = 1, . . . ,m. Therefore,

we can clearly give χ an extension to an element χ̂ ∈ X (Tq+1) defined

as χ̂(
∑∞

k=0(gk)X
k
q+1) =

∑∞
k=0 χ(gk)α

k, and this homomorphism χ̂ satisfies

‖fh‖ = |χ̂(fh)| ∀h = 1, . . . ,m. Thus, we have proven the property when

n = q + 1, and therefore our claim holds for all K-algebra Tn. �
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Notations: In this chapter, and in the following, given f(X1, . . . ,Xn) ∈
Tn, we will write f in the form

∑
(i)∈Nn a(i)X

(i), where (i) = (i1, . . . , in), and

where X(i) means Xi1
1 · · ·Xin

n . The set of indices Nn is equipped with this

external law from N × Nn to Nn: given q ∈ N and (i) = (i1, . . . , in) ∈ Nn,

q.(i) will mean (qi1, . . . , qin). We will denote by (u) the unit index (i1, . . . , in)

when i1 = · · · = in = 1, and by (0) the zero of Nn.

Lemma 10.4.14. Suppose that L = K. Let f ∈ Tn. Then sp(f) is the disk

d(f((0)), ‖f − f((0))‖).
Proof. Without loss of generality, we can assume that f((0)) = 0. Let

r = ‖f‖. Of course sp(f) ⊂ d(0, r). Then f is of the form
∑

(j)∈Nn b(j)X
(j),

and there exists (k) ∈ Nn such that ‖b(k)‖ = ‖f‖. Since f((0)) = 0, at least

one of the coordinates of (k) is not 0. For convenience we can assume that

(k) is of the form (k1, . . . , kn), with kn > 0. Now, we can write Tn in the form

Tn−1{Y }, and put f =
∑∞

n=0 anY
n. Let l = kn. So, we have ‖f‖ = ‖al‖.

Let α ∈ d(0, r). Since l > 0, we have ‖f − α‖ = ‖f‖ = ‖al‖. By Theorem

10.4.13, there exists χ ∈ X (Tn−1) such that |χ(al)| = ‖al‖. Let P (Y ) =∑∞
n=0 χ(an)Y

n − α ∈ K{Y }. Clearly ‖P‖ = |χ(al)| = r, hence by Theorem

10.3.5 of Chapter 7, P has its zeros in d(0, r). Now, by Corollary 10.4.8 there

exists χ̂ ∈ X (Tn) such that χ̂(h) = χ(h) ∀h ∈ Tn−1, and χ̂(Y ) = α. Then

χ̂(f) = α. �

We will now show that a L-affinoid algebra is a finite extension of a

topologically pure extension.

Proposition 10.4.15. Let E be a normed L-vector space which also is a

A-module. Let t ∈ML. Let E1 be a A0-submodule defining the topology of E.

Assume that there exists e1, . . . , eq ∈ E1 such that E1 =
∑q

i=1A0ei + tE1.

Let φ be the mapping from Aq into E defined as φ(t1, . . . , tq) =
∑q

i=1 tiei.

Then φ is surjective and E is finite over A.

Proof. Let y ∈ E1. We can write y in the form
∑q

i=1 f1,iei + ty1, with

f1,i ∈ A0 and y1 ∈ E1, and in the same way, we can write y1 =
∑q

i=1 f2,iei+

ty2, with f2,i ∈ A0, and y2 ∈ E1. By induction, it clearly appears that for

every m ∈ N∗, we obtain y =
∑q

i=1(
∑m

j=1 fm,it
m−1)ei + tmym. And since all

terms fj,i lie in A0, and all yj lie in E1, each series
∑m

j=1 fm,it
m−1 converges

in the Banach algebra A to an element fi. Then, since each set tmE1 is

closed, y −∑q
i=1 fiei lies in tmE1 for all m ∈ N∗. Therefore, y =

∑q
i=1 fiei.

Consequently φ(Aq) contains E1 and therefore φ is surjective on E. Moreover,

E is finite over A. �
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10.5. Jacobson radical of affinoid algebras

Proposition 10.5.1. Let A = Tn[x1, . . . , xq] be a L-affinoid algebra without

divisors of zero. Let φ ∈ Mult′(Tn, ‖ . ‖). There exists ψ ∈ Mult′(A, ‖ . ‖)
whose restriction to Tn is φ.

Proof. Let F be the completion of the field of fractions of Tn with respect

to φ. Then x1, . . . , xq are algebraic over F . Let A′ = F [x1, . . . , xq]. Then A

is isomorphic to a subring of A′ through an isomorphism which induces the

identity on Tn. By Theorem 1.3.8 of Chapter 1, there exists a unique absolute

value ψ extending that of F to A′ and then, considering A as included in A′,
ψ defines on A an absolute value ψ extending φ. Let m = max1≤i≤q ψ(xi),
let λ ∈ L be such that |λ| ≤ 1

m , and let yi = λxi (1 ≤ i ≤ q). Let θ be

the canonical surjection from Tn{X1, . . . ,Xq} onto A inducing the identity

on Tn and such that θ(Xi) = yi (1 ≤ i ≤ q). Since ψ(yi) ≤ 1, and since φ

belongs to Mult(Tn, ‖ . ‖), ψ ◦ θ clearly satisfies

ψ ◦ θ(Y ) ≤ ‖Y ‖ ∀Y ∈ Tn{X1, . . . ,Xq}. (10.5.1)

Now, let t ∈ A. By definition ‖t‖ = inf{‖Y ‖ | θ(Y ) = t}. So, given Y ∈
Tn{X1, . . . ,Xq} such that θ(Y ) = t, we have ψ(t) = ψ◦θ(Y ), which obviously

does not depend on the Y such that θ(Y ) = t. So, by (10.5.1), considering

such a Y we obtain ψ(t) ≤ inf{‖Y ‖ | θ(Y ) = t} = ‖t‖, and therefore ψ is

continuous and belongs to Mult(A, ‖ . ‖). �

Remarks. Such a continuous absolute value extending φ to A is not

unique, due to the fact that elements which are conjugate over the field

of fractions E of A are not always conjugate over F . For example suppose

that A = Tn[x, y] and that x and y are conjugate over E but not over F .

Thus, we can have several isomorphism from A onto subrings of A′, so we

can have ψ(x) �= ψ(y) and then φ may admit two different expansions to A:

φ1, φ2, satisfying φ2(x) = φ1(y). Such a situation will be illustrated later by

an example of a Krasner–Tate algebra.

Corollary 10.5.2. A L-affinoid algebra without divisors of zero, admits

continuous absolute values.

Corollary 10.5.3. Every prime ideal of a L-affinoid algebra A is the kernel

of at least one continuous multiplicative semi-norm of A.

Remarks. As previously noticed, there exist Krasner algebras H(D)

without divisors of zero, admitting no continuous absolute values [9, 23]

and therefore in certain unital Banach ultrametric commutative L-algebras,

certain closed prime ideals are not the kernel of any continuous multiplicative
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semi-norm. Nevertheless, as long as Krasner algebras H(D) are concerned,

it is uneasy to construct a counter-example of an algebra H(D) without

divisors of zero admitting no continuous absolute value. Here, we see that

such counter-examples don’t exist among affinoid L-algebras.

Remarks. Let A be a L-affinoid algebra. Since each maximal ideal M is

of finite codimension, the field E = A
M admits a unique absolute value | . |

expanding this of L and each character χ from A onto E defines a unique

element φ of Mult(A, Vert . ‖) as φ(x) = |χ(x)|.
Theorem 10.5.4 (Guennebaud). Let A be a L-affinoid algebra. Then

Multm(A, ‖ . ‖) is dense inside Mult(A, ‖ . ‖). Let B be a L-algebra of

finite type. Then Mult(B) is locally compact and Multm(B) is dense inside

Mult(B).

Proof. Let us fix ψ ∈ Mult(B) and let F = [x1, . . . , xn] be a finite

generating subset of B over L such that ψ(xj) < 1 ∀j = 1, . . . , n. Let θ

be the canonical surjection from L[X1, . . . ,Xn] onto B such that θ(Xj) =

xj , (1 ≤ j ≤ n). Then θ has continuation to a continuous morphism θ̂ from

L{X1, . . . ,Xn} onto a L-affinoid algebra B̂ quotient of L{X1, . . . ,Xn} and

B̂ is a Banach L-algebra with respect to the quotient norm that we denote

by ‖ . ‖F . Let T (ψ) be the set of finite subsets of generators F of B such

that ψ(x) ≤ 1 ∀x ∈ F .

Until the end of the proof, given a subset S of Mult(B, ‖ . ‖F ), S will

denote the closure of S in Mult(B, ‖ . ‖F ).
We shortly check that the family of compact subsets {Multm(B, ‖ . ‖F ),

F ∈ T (ψ)} is a basis of a filter because given F, G ∈ T (ψ),

(Multm(B, ‖ . ‖F )) ∩ (Multm(B, ‖ . ‖G)) contains Multm(B, ‖ . ‖F∪G). Let
Y =

⋂
F∈T (ψ) Multm(B, ‖ . ‖F ). Then Y is not empty. For every x ∈ B̂,

we put ν(x) = sup{ϕ(x)| ϕ ∈ Y }. Then we have ν(x) ≤ inf{‖x‖F | F ∈
T (ψ)} ∀x ∈ B̂. But inf{‖x‖F | F ∈ T (ψ)} = ψ(x) ∀x ∈ B̂. Consequently:

ν(x) ≤ ψ(x) ∀x ∈ B̂. (10.5.2)

Now, we fix x ∈ B̂ such that ν(x) < 1. Since Y is compact, we

can easily construct in Mult(B) an open neighborhood W of Y such that

ϕ(x) < 1 ∀ϕ ∈ W . Suppose that for every F ∈ T (ψ), Multm(B, ‖ . ‖F ) is

not included in W . Then the family of compact sets Multm(B, ‖ . ‖F )\W is

a basis of a filter because (Multm(B, ‖ . ‖F ) \ W ) ∩ (Multm(B, ‖ . ‖G) \
W ) contains Multm(B, ‖ . ‖F∪G) \ W . But since W is open, each set

Multm(B, ‖ . ‖F ) (F ∈ T (ψ)) is a compact and therefore the intersection

S is not empty. And since W is open, we have S ∩W = ∅, a contradiction.
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Hence, there exists J ∈ T (ψ) such that Multm(B, ‖ . ‖J) ⊂W . Consequently,

‖x‖J < 1, and therefore, ψ(x) < 1. Thus ν(x) < 1 implies ψ(x) < 1.

Consequently, since, by Lemma 10.5.1 of Chapter 2, ψ and ν are two semi-

multiplicative semi-norms, we can conclude that ψ(x) ≤ ν(x). So, by (10.5.2)

the two semi-norms are equal. As a consequence, ψ lies in Y . Then, for every

F ∈ T (ψ), ψ lies in Multm(B, ‖ . ‖F ). Since Multm(B, ‖ . ‖F ) is a subset of

Multm(B), this finishes proving that Multm(B) is dense in Mult(B).

Now, since A is a quotient of a topologically pure extension Tn =

L{X1, . . . ,Xn} by an ideal J , we have a canonical homomorphism θ from Tn
onto A and then, putting xn = θ(Xn), we can consider the algebra of finite

type B = L[x1, . . . , xn] which is dense in A. Putting F = {x1, . . . , xn}, the
norm of A is equivalent to ‖ . ‖F . We now take φ ∈ Mult(A, ‖ . ‖). As we just
saw above, since φ is an element of Mult(B, ‖ . ‖F ), it lies in Multm(B, ‖ . ‖F ).
But by Theorem 2.5.6 of Chapter 2, Mult(B, ‖ . ‖F ) and Mult(A, ‖ . ‖F ) are
homeomorphic. Therefore, Multm(B, ‖ . ‖F ) and Multm(A, ‖ . ‖F ) also are

homeomorphic. Thus, all elements of Multm(B, ‖ . ‖F ) have continuation to

elements of Multm(A, ‖ . ‖F ), and finally φ lies in Multm(A, ‖ . ‖). �

Theorem 10.5.5. The nilradical of a L-affinoid algebra A is equal to its

Jacobson radical.

Proof. Let R be the Jacobson radical and let x ∈ R. Let J be a prime

ideal of A, let B = A
R and let θ be the canonical surjection from A onto

B. Since B has no divisors of zero different from 0, by Corollary 10.5.2 it

admits a continuous absolute value φ, hence φ ◦ θ lies in Mult(A, ‖ . ‖). Let
ψ = φ ◦ θ. Since Multm(A, ‖ . ‖) is dense in Mult(A, ‖ . ‖), for all ε > 0 we

can find ζε ∈ Multm(A, ‖ . ‖) such that |ζε(x) − ψ(x)|∞ ≤ ε. But since x

belongs to R, by hypothesis we have ζε(x) = 0. Consequently ψ(x) = 0. But

since φ is an absolute value of B, Ker(ψ) is equal to J . Thus, x belongs to

J , and therefore R is equal to the nilradical of A. �

Corollary 10.5.6. The semi-norm ‖ . ‖sp is a norm if and only if A is

reduced.

Theorem 10.5.7. A L-affinoid algebra A is a Jacobson ring.

Proof. Let J be a prime ideal of A and let θ be the canonical homomor-

phism from A onto the quotient algebra B = A
J . Since B has no divisors of

zero, its nilradical is {0}, and since it is a L-affinoid algebra, the intersection

of all its maximal ideals also equals {0}. But the maximal ideals of B are

the images by θ of the maximal ideals of A containing J . Consequently, we
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have

J = θ−1(0) = θ−1

⎛
⎝ ⋂

H∈Max(B)

H
⎞
⎠ =

⋂
H∈Max(B)

θ−1(H) =
⋂

J⊂N ,N∈Max(A)

N .

Thus, J is equal to the intersection of all maximal ideals that contain it. �

Theorem 10.5.8. Suppose that L = K. Let A be a L-affinoid algebra and

let f ∈ A. If the interior of Z(F ) is not empty, then either f = 0 or f is a

divisor of zero.

Proof. Suppose that the interior of Z(f) is not empty and that f is not

identically zero. There exists a ball IBTn(φ, r) ⊂ Z(f). Since Multm(A, ‖ . ‖)
is dense in Mult(A, ‖ . ‖), there exists χ X (A) and a ball B(|χ|, r) ⊂ Z(f).

Suppose first that A is Tn. Now, each character is characterized by a

point (x1, . . . , xn) of Un and hence χ is characterized by a point (α1, . . . , αn).

Consequently, there exists a ball d((α1, . . . , αn), r) = {(λ1, . . . , λn) ∈
K | |λj − αj | ≤ r} ⊂ Un such that f(X) = 0 ∀X ∈ d((α1, . . . , αn), r).

Now, we can conclude that f is identically zero. Indeed, this is obvious if

n = 1 and then we can generalize by induction on n. This is a contradiction

and hence ends the proof when f ∈ Tn.

Consider now the general case and let A be a finite ring extension of

Tn. Let O be the interior of Z(f). For each χ ∈ X (A), we denote by χ̂ its

restriction to Tn. By Theorem 10.5.4, there exists χ ∈ X (A) such that |χ|
lies in O. Given ζ ∈ X (Tn) and ρ > 0, we denote by BTn(ζ, ρ) the ball of the

η ∈ X (Tn) such that |η(X)−ζ(X)| ≤ ρ ∀X ∈ Un. Then, there exists r ∈]0, 1[
such that IBTn(|χ̂|, r) ⊂ {|σ̂| | σ ∈ X (A), |σ| ∈ O } and we can fix ρ > 0

such that |χ| ∈ O ∀χ̂ ∈ BTn(ζ, ρ). Therefore, σ(f) = 0 for all σ̂ ∈ X (Tn)

such that σ ∈ BA(χ, r). For each j = 1, . . . , n, we put χ(Xj) = αj . Now,

for each (ξ1, . . . , ξn) ∈ d((α1, . . . , αn), ρ), we can find γ ∈ X (Tn) such that

γ(Xj) = ξj ∀j = 1, . . . , n and of course γ belongs to BTn(χ̂, ρ).

On the other hand, we denote by P (X) = Xd + ad−1X
d−1 + · · · + a0 ∈

Tn[X] the minimal polynomial of f over Tn. Since P (f) = 0, for every

φ ∈ O we have φ(P (f)) = 0 together with φ(f) = 0 ∀φ ∈ IBA(|χ|, r).
Particularly, we have σ(a0) = 0 for all σ ∈ IBA(|χ|, r). But since a0 lies in

Tn, actually we obtain σ̂(a0) = 0 ∀σ ∈ BTn(χ, ρ), hence a0(ξ1, . . . , ξn) =

0 ∀(ξ1, . . . , ξn) ∈ d((α1, . . . , αn), ρ) and consequently, a0 = 0. Thus, we have

f(fd−1 + ad−1f
d−2 + · · ·+ a1) = 0. But fd−1 + ad−1f

d−2 + · · ·+ a1 may not

be identically zero because P is the minimal polynomial of f . Consequently,

both f and fd−1 + ad−1f
d−2 + · · ·+ a1 are divisors of zero. �
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10.6. Spectral norm of affinoid algebras

In Section 10.5, we saw that if A is reduced, its spectral semi-norm is a norm.

Then it is a natural question to ask whether A is uniform. The answer is

quite easy and was soon given in [44] when the characteristic p of L is 0. It

is much more difficult when p �= 0.

Notations: Throughout the chapter and in the next one we denote by

A a L-affinoid algebra and by p the characteristic of L. Next, considering

Zn as a Z-module, for all (i) = (i1, . . . , in) ∈ Z, and q ∈ Z we put

q(i) = (qi1, . . . , qin). Let f(Y1, . . . , Yn) = ai1,...,inY
i1
1 · · · Y in

n ∈ Tn. We put

(Y ) = (Y1, . . . , Yn), (Y )(i) = (Y i1
1 , . . . , Y in

n ) and f(Y1, . . . , Yn) =
∑

(i)∈Nn ∈
a(i)(Y )(i).

For each n ∈ N∗ we denote by Ln the field of fractions of Tn and A

is a L-affinoid algebra. By Corollary 10.4.4 A has finitely many minimal

prime ideals S1, . . . ,Sl. For each j = 1, . . . , l, we denote by Aj the L-affinoid

algebra A
Sj
, by θj the canonical surjection from A onto Aj , and by ‖ . ‖sp,j

the spectral norm of Aj.

Theorem 10.6.1. Let A be reduced. For every f ∈ A, we have ‖f‖sp =

max(‖θj(f)‖sp,j).
Proof. By Theorem 10.4.10, we have ‖f‖sp = supλ∈spA(f) |λ|, and

‖θj(f)‖sp,j = supλ∈spAj
(θj(f)) |λ|, (j = 1, . . . , l). But by Lemma 1.1.15 of

Chapter 1, spA(f) =
⋃l
j=1 spAj(θj(f)). So, our claim is obvious. �

Theorem 10.6.2. For all x ∈ A there exists χ ∈ X (A) such that |χ(x)| =
‖x‖sp. Moreover, if A is an integral domain finite over Tn, then for all f ∈ A,

we have S(irr(f, Tn)) = ‖f‖sp.
Proof. Let f ∈ A. First, we will show that there exists χ ∈ X (A) such

that |χ(x)| = ‖x‖sp. When A is a topologically pure extension, the statement

is proven in Theorem 10.4.13. �

Here we first consider a L-affinoid algebra A without divisors of zero.

There exists a topologically pure extension Tn such that A is a finite over

Tn. By Lemma 1.1.18 of Chapter 1, every χ ∈ X (Tn) admits at least one

extension to an element of X (A). By Theorem 10.4.10, the spectral norm

‖ . ‖sp of A satisfies ‖f‖sp = sup{|χ(f)| | χ ∈ X (A)}. On the other hand,

by Proposition 9.6.4 of Chapter 9, we have sup{|χ(f)| | χ ∈ X (A)} =

S(irr(f, Tn)) and there exists χ ∈ X (A) such that |χ(f)| = sup{|χ(f)| | χ ∈
X (A)}. Consequently, there exists χ ∈ X (A) such that |χ(f)| = ‖f‖sp. Thus,
our claim is now proven when A is an integral domain.
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We now consider the case when A is just reduced. By Theorem 10.6.1,

we have max1≤j≤l(‖θj(f)‖sp,j) = ‖f‖sp. Thus, ‖f‖sp lies in |L|. Let λ ∈ L

be such that |λ| = ‖f‖sp and let g = f
λ . So, ‖g‖sp = 1. By Theorem 10.4.7,

if |χ(g)| < 1 ∀χ ∈ X (A) then ‖g‖sp < 1, hence there exists χ ∈ X (A) such

that |χ(g)| = 1, and therefore |χ(f)| = ‖f‖sp.
We can immediately generalize this property when A is not reduced.

Indeed, by Theorem 10.4.10, we have sup{|χ(f)| |χ ∈ X (A)} = ‖f‖sp ∀f ∈A.
Now, consider the nilradical R of A, let B = A

R , and let φ be the canonical

surjection of A onto B. Then, we have sup{|χ(f)| |χ ∈ X (A)} = sup{|χ ◦
φ(f)| |χ ∈ X (B)}. SinceB is reduced, the property holds for B, and therefore

also holds for A.

Theorem 10.6.3. The algebraic closure of Ln is Ln-productal with respect

to ‖ . ‖Ln
pol.

Proof. If p = 0, the claim comes from Theorems 9.6.1 and 9.6.7 of

Chapter 9. So, we suppose p �= 0. By Theorem 9.6.10 of Chapter 9, it is

sufficient to prove that L
1
p
n is Ln-productal. For each k = 1, . . . , n, we put

Yk =
p
√
Xk and Y = (Y1, . . . , Yn). So, we have Y

p.(u) = X, and more generally

Y jp.(u) = Xj.(u). Let g ∈ L
1
p . Then g is of the form

∑p−1
j=0

aj
bj
Y j.(u), with

aj , bj ∈ Tn ∀j = 1, . . . , n. And gp =
∑p−1

j=0
(aj )

pY jp.(u)

(bj)p
=
∑p−1

j=0
(aj )

pXj.(u)

(bj)p
. Let

b =
∏p−1
j=0 bj and for each j = 0, . . . , p−1 we set cj =

b
bj
, which belongs to Tn.

Then (bg)p =
∑p−1

j=1(ajcj)
pXj.(u). Now, for each j = 0, . . . , p − 1, ajcj is of

the form
∑

(i)∈Nn λ(i),jX
i, with λ(i),j ∈ L, hence (ajcj)

p =
∑

(i)∈Nn λ(i),jX
i

and thereby bpgp =
∑

(i)∈Nn, 0≤j≤p−1 λ
p
(i),jX

p.(i)+j.(u).

Next, it is clear that the mapping ω from Nn × {0, . . . , p − 1} into Nn

defined as ω((i), j) = p.(i) + j.(u) is an injection. Consequently, we have

‖bpgp‖ = max{|λp(i),j | (i) ∈ Nn, 0 ≤ j ≤ p− 1}. On the other hand,

max{|λp(i),j | (i) ∈ Nn, 0 ≤ j ≤ p− 1} = max
0≤j≤p−1

(max{|λp(i),j | (i) ∈ Nn})

= max
0≤j≤p−1

‖ajcj‖p

hence ‖gp‖ = max0≤j≤p−1

(‖ajcj‖p
‖b‖p

)
. Since ‖ . ‖ is an absolute value on Tn,

finally we have ‖gp‖ = max0≤j≤p−1

(∥∥∥ajbj
∥∥∥)p. But ‖g‖Ln

pol = p
√‖gp‖, hence

‖g‖Ln
pol = max0≤j≤p−1

(∥∥∥ajbj
∥∥∥). Thus, L

1
p
n is Ln-productal with respect to

‖ . ‖Ln
pol. �
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Theorem 10.6.4. Let A be reduced. Then the norm of Banach L-algebra of

A is equivalent to the norm ‖ . ‖sp.

Proof. First we suppose that A is an integral domain. Let Tn be a

topologically pure extension of L such that A is finite over Tn. As a finite

Tn-module, A admits a basis {e1, . . . , eq}. Putting M = max1≤j≤q ‖ej‖, an
element f =

∑q
j=1 ajej ∈ A, with aj ∈ Tn ∀j = 1, . . . , q, satisfies

‖f‖ ≤M max
1≤j≤q

‖aj‖. (10.6.1)

Let Ln be the field of fractions of Tn. Of course {e1, . . . , eq} is also a basis of

Ln[x1, . . . , xq] as a Ln-vector space. By Theorem 10.6.3, the algebraic closure

of Ln is Ln-productal with respect to ‖ . ‖Ln
pol. So we have a constant V > 0

such that

‖f‖Ln
pol ≥ V max

1≤j≤q
‖aj‖. (10.6.2)

Thus, by (10.6.1), (10.6.2) and by Theorems 10.6.2, we obtain V max1≤j≤q
‖aj‖ ≤ ‖f‖Ln

pol = ‖f‖ = ‖f‖sp ≤M max1≤j≤q ‖aj‖. Thereby, ‖ . ‖sp is clearly

equivalent to ‖ . ‖ on A.

We now consider the general case, when A is reduced but not necessarily

an integral domain. Let B =
∏m
j=1

A
Sj
. Let φ be the L-algebra homomorphism

from A into B defined as φ(x) = (θ1(x), . . . , θm(x)). Since A is reduced, the

intersection of all prime ideals is null, and therefore,
⋂m
j=1 Sj = ∅. Thus, φ is

injective and consequently, B is equipped with a structure of finite A-module

whose external law is defined as follows: given g ∈ A, (f1, . . . , fm) ∈ B, then

g(f1, . . . , fm) is defined as (θ1(g)f1, . . . , θm(g)fm). Then, as a A-submodule,

A itself is isomorphic to the A-submodule of B consisting of the g(f1, . . . , fm)

where fj = 1 ∀j = 1, . . . ,m. Each L-algebra Aj is a L-affinoid algebra

without divisors of zero, hence is complete for its own spectral norm ‖ . ‖sp,j,
and of course, B is obviously complete for the product L-algebra norm

defined as ‖(f, . . . , fm)‖B = max1≤j≤m ‖fj‖sp,j.
On the other hand, the norm ‖ . ‖B , B is equipped with, is a

A-quasi-algebra-norm because for each j = 1, . . . ,m, we have ‖θj(g)fj‖sp,j ≤
‖θj(g)‖sp,j‖fj‖sp,j ≤ ‖g‖sp‖fj‖sp,j ≤ ‖g‖‖fj‖sp,j. Consequently, since B is

finite over A, by Corollary 10.6.13 of Chapter 2, every A-submodule of B is

closed with respect to its norm ‖ . ‖B . In particular, as a A-submodule, A

is closed in B with respect to ‖ . ‖B .
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Now, given f ∈ A, we have ‖f‖sp ≥ max1≤j≤m ‖θj(f)‖sp,j . The inequality
actually is an equality. Indeed, according to Theorem 10.6.2, we can find

χ ∈ X (A) such that |χ(f)| = ‖f‖sp, and there does exist an index h such that

Sh ⊂ Ker(χ), so χ factorizes in the form χh ◦ θh, hence ‖θ(f)‖sp,h ≥ ‖f‖sp,
so we get ‖f‖sp = max1≤j≤m ‖θj(f)‖sp,j.

Finally, it is easily seen that the spectral norm ‖ . ‖Bsp of B is just the

product norm B has been equipped with, because X (B) =
∏m
j=1X (Aj).

Thus, we have max1≤j≤m ‖θj(f)‖sp,j = ‖(θ1(f), . . . , θm(f))‖Bsp, and there-

fore, the spectral norm ‖ . ‖sp of A is induced by that of B. Consequently, A

is complete for both norm ‖ . ‖sp and ‖ . ‖, and therefore, by Theorem 1.3.4

of Chapter 1, the two norms are equivalent. �

Corollary 10.6.5. A reduced affinoid algebra is uniform.

Theorem 10.6.6. Let A be reduced and let f ∈ A be such that s̃p(f) = U .

Then the closure of L[f ] in A is equal to L{f}. Let g ∈ A be such that

‖f − g‖sp < 1. Then s̃p(g) = U . Moreover, if g ∈ L{f}, then L{f} = L{g}.

Proof. Suppose first that A is reduced, and therefore admits ‖ . ‖sp as its

norm. The restriction of the norm to L[f ] is the Gauss norm. Indeed, let

P (X) ∈ L[X], let ‖ . ‖ be the Gauss norm on L[X] and let F be the circular

filter of center 0 and diameter 1. Then by Lemma 4.1.1 of Chapter 4, we have

‖P‖ = limF |P (x)|. On the other hand ‖P (f)‖sp = supλ∈sp(f) |λ|. But since
s̃p(f) = U , F is secant with s̃p(f), therefore limF |P (x)| = supλ∈sp(f) |λ|,
thereby we get the equality. Consequently, the closure of L[f ] in A is equal

to L{f}. Now, consider g ∈ A such that ‖f−g‖sp < 1. Then sp(g) is included

in U , as sp(f). And since diam(sp(f)) = 1, we have diam(sp(g)) = 1, hence

of course s̃p(g) = U .

Now, suppose g ∈ L{f}, hence g is of the form
∑∞

m=0 bmf
m, with |b0 −

1| < 1, |bm| < 1 ∀m ∈ N. Without loss of generality, we can clearly assume

that b0 = 1. Thus, g is of the form f+h(f), with h(Y ) ∈ L{Y }, and ‖h‖ < 1.

Let l(Y ) = Y +h(Y ). Since L{Y } is identical to H(U), and since ‖h‖ < 1, it

clearly satisfies the hypothesis of Theorem 7.3.11 of Chapter 7, hence l(Y )

is a strictly injective analytic element in U , making a bijection from U onto

U . Consequently we can apply Theorem 7.3.13 of Chapter 7 showing that,

if we put Z = l(Y ), then Y is a strictly injective function in Z, hence of the

form Z + t(Z), with t ∈ L{Z} and ‖t‖ < 1. Consequently, applying this to

f , we see that f belongs to L{g}. �



March 25, 2022 8:35 Banach Algebras of Ultrametric Functions 9.61in x 6.69in b4542-ch10 page 279

Algebras Topologically of Finite Type 279

10.7. Spectrum of an element of an affinoid algebra

Notations: Throughout Section 10.7 we assume that the groundfield is K.

Keeping notations introduced in Section 10.5, here we put ‖(i1, . . . , in)‖∞ =

max(|i1|∞, . . . , |in|∞). In Kn, (0) denotes (0, . . . , 0).

Proposition 10.7.1. Let F (X) =
∑q

i=0 fiX
i ∈ Tn[X] be monic and

irreducible in Tn[X]. The set of λ ∈ K such that F (λ) is not invertible

is an affinoid subset of K.

Proof. For each i = 0, . . . , q, we put fi =
∑

(j)∈Nn a(j),iT
(j). So, F (X) is

of the form
∑

(j)∈Nn b(j)(X)T (j), whereas each b(j) lies in K[X] and satisfies

deg(b(j)) < q ∀(j) �= (0), and deg(b(0)) = q because F is monic. Moreover,

since F is irreducible, we notice that there exist no α ∈ K such that b(j)(α) =

0 ∀(j) ∈ Nn. Further, since lim‖(j)‖∞→+∞ a(j),i = 0 ∀i = 0, . . . , q, we have

lim‖(j)‖∞→+∞ ‖b(j)‖ = 0. For every λ ∈ K we put B(λ) = sup(j)∈Nn |b(j)(λ)|.
By Theorem 10.4.15, F (λ) is not invertible in Tn if and only if |b(0)(λ)| ≤
sup(j)�=(0) |b(j)|. Let D = {λ ∈ K | |b(0)(λ) ≤ sup(j)�=(0) |b(j)(λ)]} and

let s = sup(j)�=(0) ‖b(j)‖. We first notice that D is bounded. Indeed, let

d(0, ρ) be a disk containing all zeros of b(0), and let r = max(ρ, s, 1). Let

λ ∈ K be such that |λ| > r. Since all zeros of b(0) lie in d(0, r) and since

b(0) is monic, by Corollary 6.1.8 of Chapter 6, we have |b(0)(λ)| = |λ|q.
On the other hand, for each (j) �= (0), if t = deg b(j), we have the

basic inequality |b(j)(λ)| ≤ ‖b(j)‖.|λ|t ≤ ‖b(j)‖.|λ|q−1 because |λ| > 1.

Consequently, |b(j)(λ)| ≤ s|λ|q−1 < |λ|q, hence λ /∈ D. This shows that

D ⊂ d(0, r).

Now, we will show that there exists a finite subset S of Nn \(0) such that

sup(j)�=(0) |b(j)(λ)| = sup(j)∈S |b(j)(λ)| ∀ λ ∈ D. Indeed, suppose this is not

true. There exist injective sequences (λm)m∈N in D and (km)m∈N in Nn

such that sup(j)�=(0) |b(j)(λm)| = |b(k)m(λm)| ∀ m ∈ N. Since D is bounded,

by Proposition 5.3.7 of Chapter 5, we can extract from the sequence (λm) a

subsequence thinner than a circular filter F . Thus, without loss of generality,

we can directly assume for convenience that the sequence (λm) itself is

thinner than F . Since the sequence ((k)m) is injective, by definition of Tn
we have limm→→∞ ‖b(k)m‖ = 0, therefore ϕF (b(0)) = 0, hence ϕF is not an

absolute value on K[X]. Consequently, by Theorem 6.2.1 of Chapter 6, F
is the filter of neighborhoods of a point a ∈ D, hence b(0)(a) = 0. But as

we noticed above there exists (h) ∈ Nn such that b(h)(a) �= 0, hence the

inequality |b(h)(x)| > |b(0)(x)| holds in a neighborhood of a, a contradiction
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to the hypothesis: sup(j)�=(0) |b(j)(λm)| = |b(k)m(λm)| ∀ m ∈ N. Thus we have

proven this existence of S.

Now, for each (j) ∈ S, we set D(j) = {λ ∈ K | |b(0)(λ)| ≤ |b(j)(λ)|}.
Then D =

⋃
(j)∈S D(j). Since deg(b(0)) > deg(b(j)) ∀(j) �= (0), by Theorem

6.1.10 of Chapter 6, each set D(j) is affinoid and therefore by Lemma 5.1.14

of Chapter 5 so is D. �
Theorem 10.7.2 is proven in [37] in another way.

Theorem 10.7.2. For all x ∈ A, sp(x) is an affinoid subset of K.

Proof. Assume that A is finite over Tn and let x ∈ A. First, suppose

that A is an integral domain and set F (X) =
∑q

i=0 fiX
i = irr(x, Tn). For

each i = 0, . . . , q, we put fi =
∑

(j)∈Nn a(j),iY
(j), P (X) =

∑q
i=0 a(0),iX

i and

Q(X) = F (X) − P (X). Now let λ ∈ K and Gλ(X) = irr(x − λ, Tn). One

checks that Gλ(0) = F (λ), so by Proposition 1.1.7 of Chapter 1, x − λ is

invertible in A if and only if F (λ) is invertible in Tn. Thus, sp(x) is equal to

the set of λ ∈ K such that F (λ) is not invertible, and then by Proposition

10.7.1, this set is affinoid.

We now suppose that A is not necessarily an integral domain. By

Corollary 10.4.4 A admits finitely many minimal prime ideals, P1, . . . ,Pk.
For each j = 1, . . . , k, let Aj =

A
Pj

and let θj be the canonical surjection from

A to Aj . Each algebra Aj is a K-affinoid algebra without divisors of zero,

hence sp(θj(x)) is an affinoid set. Then by Lemma 1.1.15 of Chapter 1, we

have sp(x) =
⋃k
j=1 sp(θj(x)), and therefore by Lemma 5.1.14 of Chapter 5,

sp(x) is an affinoid set. So our claim is proven in the general case. �

10.8. Topologically separable fields

When the field K is separable (in the topological meaning) we can prove

that, given a K-affinoid algebra A, the topology of pointwise convergence on

Mult(A, ‖ . ‖) is metrizable and we construct an equivalent metric, a study

first made by Mainetti [36]. Of course, such a metric defines a topology

weaker than this defined by δ in the case of one variable, as it was seen in

Section 6.2 of Chapter 6.

Remarks. By construction, Cp is obviously separable. A field which is

separable is weakly valued. But a weakly valued field is not necessarily

separable. For instance, it is known that the spherical completion of a Cp is

not separable, but is weakly valued as Cp.

Notation: In this chapter, the algebraically closed field K is supposed to

be separable, i.e., to have a dense countable subset that we will denote by
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S, and we will denote by S[Z1, . . . , Zq] the set of polynomials in q variables

with coefficients in S such that S[x1, . . . , xq] is dense in A (the xj are not

supposed to be algebraically independent).

As in previous chapters, we denote by ‖ . ‖ the Gauss norm on an algebra

of polynomials K[Y1, . . . , Yq] and on K{Y1, . . . , Yq}. In order to avoiding any

confusion, ‖ . ‖a will denote the norm of K-affinoid algebra of A.

Lemma 10.8.1. A admits a dense countable subset of the form

S[x1, . . . , xq], with ‖xj‖a ≤ 1 ∀ j = 1, . . . , q.

Proof. Since A is a K-affinoid algebra, it is of the form Tm[y1, . . . , yt]

with Tm = K{Y1, . . . , Ym}. Consequently, the K-algebra of finite type

K[Y1, . . . , Ym, y1, . . . , yt] is dense in A, and of course S[X1, . . . ,Xm, y1, . . . , yt]

is dense in K[Y1, . . . , Ym, y1, . . . , yt], hence in A. By hypothesis the Yj satisfy

‖Yj‖a = 1 ∀ j = 1, . . . ,m and of course we can take the yj such that

‖yj‖a = 1 ∀ j = 1, . . . , t. �

Lemma 10.8.2 is now immediate.

Lemma 10.8.2. There exists a sequence (Pn)n∈N∗ in S[Z1, . . . , Zq] satisfy-

ing Pn = Zn, ∀n = 1, . . . , t, such that, given Q ∈ K[x1, . . . , xq] and ε > 0,

there exists m ∈ N such that ‖Q− Pm‖ < ε and degh(Q) = degh(Pm) ∀h =

1, . . . , q.

Definitions and notations: Henceforth, we consider x1, . . . , xq ∈ A and

a sequence (Pn(Z1, . . . , Zq))n∈N∗ in S[Z1, . . . , Zq] satisfying Pn = Zn ∀n ≤ q,

such that, given Q ∈ K[Z1, . . . , Zq] and ε > 0, there exists m ∈ N such

that ‖Q(Z1, . . . , Zq)−Pm(Z1, . . . , Zq)‖ < ε (with respect to the Gauss norm

in K[Z1, . . . , Zq]) and degh(Q(Z1, . . . , Zq)) = degh(Pm(Z1, . . . , Zq)) ∀h =

1, . . . , q. Such a sequence will be called a a S-appropriate sequence of

K[Z1, . . . , Zq].

Now, we fix b ∈ K such that |b| < 1 and given φ,ψ ∈ Mult(A, ‖ . ‖) we

put D(φ,ψ) =
∑∞

n=1 |b|nmin(|φ(Pn(x1, . . . , xq))− ψ(Pn(x1, . . . , xq))|∞, 1).
D obviously is a distance on Mult(A, ‖ . ‖a). We will call D the metric

associated to the sequence (Pn)n∈N∗ and to x1, . . . , xq.

In Mult(A, ‖ . ‖a) an open ball of center φ and diameter r will be denoted

by B(φ, r).

Theorem 10.8.3. Let (Pn)n∈N∗ be a S-appropriate sequence of K[Z1,

. . . , Zq]. Let D be the metric associated to the S-appropriate sequence

(Pn)n∈N∗. Then D is a distance on Mult(A, ‖ . ‖a) which defines the topology

of pointwise convergence.
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Proof. Let φ ∈ Mult(A, ‖ . ‖a) and let ε ∈ ]0, 1[. In order to show

the statement, we will first show that B(φ, ε) contains a certain neigh-

borhood W(φ,Q1(x1, . . . , xq), . . . , Qs(x1, . . . , xq), η). Let s ∈ N be such that∑∞
n=s+1 |b|n < ε

2 and let η = ε(1−|b|)
2|b|s+1 . Let ψ ∈ V(φ, P1(x1, . . . , xq), . . . ,

Ps(x1, . . . , xq), η). Clearly, on one hand, we have

∞∑
n=s+1

|b|nmin |(φ(Pn(x1, . . . , xq))− ψ(Pn(x1, . . . , xq))|∞, 1)

≤
∞∑

n=s+1

|b|n =
|b|s+1

1− |b| <
ε

2

and on the other hand

s∑
n=1

|b|nmin |(φ(Pn(x1, . . . , xq))− ψ(Pn(x1, . . . , xq))|∞, 1) ≤ η

s∑
n=1

|b|n =
ε

2
.

Consequently, D(φ,ψ) < ε, therefore W(φ, P1(x1, . . . , xq), . . . , Ps(x1, . . . ,

xq), η) is included in B(φ, ε). Thus, a ball of center φ, with respect to D, is a

neighborhood of φ with respect to the topology of pointwise convergence,

and therefore is an open set with respect to the topology of pointwise

convergence, so the topology defined by the semi-distance D is weaker (in

the large sens) than the topology of pointwise convergence.

Conversely, we now consider a neighborhood W(φ,Q1(x1, . . . , xq), . . . ,

Qt(x1, . . . , xq), ε), with Qj ∈ A and ε ∈]0, 1[ and we will look for a ball

B(φ, η) included in W(φ,Q1(x1, . . . , xq), . . . , Qt(x1, . . . , xq), ε).

By hypothesis, the sequence (Pn(Z1, . . . , Zq))n∈N is dense in K[Z1, . . . ,

Zq], with respect to the Gauss norm, hence the sequence Pn(x1, . . . , xq)n∈N
is dense in K[x1, . . . , xq] and in A with respect to the norm ‖ . ‖a of A.

Consequently, for each j = 1, . . . , t there exists nj ∈ N∗ such that

‖Pnj (x1, . . . , xq)−Qj(x1, . . . , xq)‖a < ε

3
. (10.8.1)

Let m = max(n1, . . . , nt) and let η = ε|b|m
3 . Let ψ ∈ B(φ, η).

Then we have
∑m

n=1 |b|n|φ(Pn(x1, . . . , xq))− ψ(Pn(x1, . . . , xq))|∞ < η. In

particular for each n = 1, . . . ,m we obtain |b|n|φ(Pn(x1, . . . , xq)) −
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ψ(Pn(x1, . . . , xq))|∞ < η, and therefore

|φ(Pn(x1, . . . , xq))− ψ(Pn(x1, . . . , xq))|∞ <
η

|b|n ≤ ε

3
∀n = 1, . . . ,m.

(10.8.2)

Now, by (10.8.1) we know that |φ(Pnj (x1, . . . , xq)) − φ(Qj(x1, . . . ,

xq))|∞ ≤ ε
3 and |ψ(Pnj (x1, . . . , xq)) − ψ(Qj(x1, . . . , xq))|∞ ≤ ε

3 ∀j =

1, . . . , t and therefore by (10.8.2) and by Lemma 10.8.2, we can get

|ψ(Qj(x1, . . . , xq))− φ(Qj(x1, . . . , xq))|∞ < ε ∀j = 1, . . . , t.

Thus, B(φ, η) is included in W(φ,Q1, . . . , Qt, ε) and hence the two

topologies are equal on Mult(A, ‖ . ‖a). �

Notation: Given tow subsets X, Y of Mult(A, ‖ . ‖a), as usual, we put

D(X,Y ) = inf{D(φ,ψ) |φ ∈ X, ψ ∈ Y }.
Corollary 10.8.4. Mult(A, ‖ . ‖a) is metrizable and sequentially compact. If

X, Y are two disjoint compact subsets of Mult(A, ‖ . ‖a), then D(X,Y ) > 0.

Then, being compact with respect to a metric, Mult(A, ‖ . ‖a) is

complete.

Corollary 10.8.5. Mult(A, ‖ . ‖a) is complete with respect to the dis-

tance D.

10.9. Krasner–Tate algebras

In this section, we consider a Banach K-algebra which is isomorphic to both

a K-algebra of analytic elements H(D) and a K-affinoid algebra. Such a

Banach K-algebra is called a Krasner–Tate algebra [18]. The issue is to

characterize Krasner–Tate algebras among algebras H(D) on one hand and

among affinoid algebras on the other hand.

Notation: Henceforth, for each ideal J of Tn, we denote by Z(J ) the set

of maximal ideals of Tn containing J and similarly, for every h ∈ Tn, we put

Z(h) = Z(hTn).

Theorem 10.9.1. Let P, Q ∈ K[X] be relatively prime polynomials. Then

the ideal (P (X) − Y Q(X))K{Y,X} of K{Y,X} is equal to its radical.

Proof. By Theorem 10.3.7, K{Y,X} is factorial. Suppose its factorization

into irreducible factors contains a factor g with a power q > 1. Then g

divides ∂(P (X)−Y Q(X))
∂Y = −Q(X). Consequently, g divides both P and Q

in K{Y,X}. Let M be a maximal ideal of K{Y,X} such that g ∈ M and
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let χ ∈ X (K{Y,X}) be such that Ker(χ) = M. Let χ(X) = α. Then we

have χ(P (X)) = P (α) = 0, χ(Q(X)) = Q(α) = 0, a contradiction to the

hypothesis “P and Q relatively prime”. This shows that P (X)−Y Q(X) has

no multiple irreducible factors in its decomposition. But since, by Theorem

10.3.7, K{Y,X} is factorial, then the ideal (P (X) − Y Q(X))K{Y,X} of

K{Y,X} is equal to its radical. �

Theorem 10.9.2. Let D be affinoid. Let P, Q ∈ K[X] be rela-

tively prime polynomials such that deg(P ) > deg(Q), P
Q ∈ R(D),

P
Q(D) = U,

(
P
Q

)−1
(U) = D. Then the K-algebra H(D) is isomorphic to the

K-affinoid algebra K{Y,X}
(P (X)−Y Q(X))K{Y,X} which is also isomorphic to K{h}[x],

with h = P (x)
Q(x) .

Proof. Since deg(P ) > deg(Q), in H(D) x is integral over K[h] and

satisfies P (x) − hQ(x) = 0. Now, since spH(D)(h) = h(D) = U , the norm

‖ . ‖D induces the Gauss norm on K[h]. So, by Theorem 10.6.6, the closure

of K[h] in H(D) is isometrically isomorphic to T1 that we can denote here by

K{h}. Without loss of generality we can obviously assume that ‖x‖D ≤ 1.

Thus, in H(D), x is integral over K{h} and satisfies P (x)− hQ(x) = 0. Let

B = K{h}[x]. By Corollary 10.4.3, B is a K-affinoid algebra isomorphic to

a quotient of K{Y,X} by an ideal I that contains P (X) − Y Q(X) and the

canonical surjection θ from K{Y,X} onto B satisfies θ(Y ) = h, θ(X) = x.

On the other hand, by definition B is a K-subalgebra of H(D). For every

a ∈ K \ D since |h(a)| > ‖h‖D, by Theorem 10.2.7, h(a) − h is invertible

in B, hence R(D) ⊂ B ⊂ H(D). In particular spB(x) = spH(D)(x) = D.

We notice that H(D) is reduced, hence so is B. Consequently, I is equal to

its radical and therefore, by Theorem 10.6.4, B is complete for its spectral

norm. But since spB(x) = spH(D)(x) we can easily deduce that the spectral

norm of B is induced by the norm ‖ . ‖D. Indeed, given χ ∈ X (B), since

χ(x) ∈ D, χ has continuation by continuity to H(D), and therefore belongs

to X (H(D)), hence for all f ∈ B, the spectral norm ‖ . ‖Bsp of B satisfies

‖f‖Bsp = ‖f‖D. Therefore, since R(D) ⊂ B, we have B = H(D).

Since P (X) − Y Q(X) ∈ I, of course Z(I) ⊂ Z(P (X) − Y Q(X)). Now,

consider a maximal ideal M which contains I and let χ ∈ X (K{Y,X})
be such that Ker(χ) = M. Let χ(X) = α, χ(Y ) = β. Since x − a is

invertible whenever a /∈ D, we see that α lies in D, and then χ(Y ) = h(α),

thereby P (α) − h(α)Q(α) = 0, hence P (X) − Y Q(X) belongs to M.

Consequently, we have Z(I) = Z(P (X − Y Q(X)). Therefore, the ideals

(P (X)− Y Q(X))K{Y,X} and I have the same radical. Thus, on one hand,
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by Proposition 10.9.1, (P (X) − Y Q(X))K{Y,X} is equal to its radical, on

the other hand, since H(D) is reduced, I also is equal to its radical, hence

(P (X) − Y Q(X))K{Y,X} = I. �

Theorem 10.9.3. A K-algebra H(D) is a Krasner–Tate algebra if and only

if D is affinoid.

Proof. Indeed, ifH(D) is a Krasner-Tate algebra, then by Theorem 10.7.2,

sp(x), i.e., D, is affinoid. Conversely, suppose that D is affinoid. By Theorem

6.1.11 of Chapter 6 there exists h ∈ R(D) such that h(D) = U, D =

h−1(U), with h = P
Q , P, Q relatively prime and such that deg(P ) > deg(Q).

Consequently, Theorem 10.9.2 shows that H(D) is a Krasner–Tate algebra

isomorphic to K{Y,X}
(P−Y Q)K{Y,X} . �

Theorem 10.9.4. Let D be affinoid and let f ∈ H(D). Then f(D) is equal

to sp(f) and is affinoid.

Proof. Indeed by Theorem 10.9.3, H(D) is a K-affinoid algebra, hence by

Theorem 10.7.2 sp(f) is an affinoid subset of K. Next, since by Theorem

10.4.2, all maximal ideals are of finite codimension, hence here are of

codimension 1, we have sp(f) = f(D).

Another way to describe Krasner–Tate algebras H(D) when the set D

is not infraconnected consists of focusing on the infraconnected components

of D, in order to show a product of Krasner–Tate algebras. �

Theorem 10.9.5. Let D be affinoid and let D1, . . . ,Dq be its infraconnected

components. For every j = 1, . . . , q, let Pj , Qj ∈ K[X] be relatively prime

and satisfy:

Pj
Qj

∈ R(Dj),
Pj
Qj

(Dj) = U,
(Pj
Qj

(Dj)
)−1

(U) = Dj . (10.9.1)

Let I =
∏q
j=1(Pj − Y Qj)K(Y,X). Then H(D) is isomorphic to K{Y,X}

I .

Proof. Without loss of generality we can obviously assume that ‖x‖D ≤ 1.

For each j = 1, . . . , q, we denote by Ij the ideal (Pj − Y Qj)K{Y,X} of

K{Y,X}. By Theorem 7.7.11, H(D) is isomorphic to the K-algebra H(D1)×
· · ·×H(Dq). Each set Dj is an infraconnected set, hence by Theorem 10.9.2,

H(Dj) is isomorphic to the Krasner–Tate algebra without divisors of zero
K{Y,X}

Ij
. On the other hand, since Dk∩Dl = ∅ ∀k �= l, we have Z(Ik+Il) = ∅,

therefore Ik + Il = K{Y,X} ∀k �= l. Consequently, by Proposition A.1.1, the
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direct product

K{Y,X}
(P1 − Y Q1)K{Y,X} × · · · × K{Y,X}

(Pq − Y Qq)K{Y,X} (10.9.2)

is isomorphic to K{Y,X}
I , which completes the proof. �

Remarks. Given a Krasner–Tate algebra K{Y,X}
(P−Y Q)K{Y,X} , the form shown in

Theorem 10.9.3 is not the only one possible. Indeed, consider the K-affinoid

algebra A = K{Y,Z}
(Z3+4Z2Y+5ZY 2+2Y 3+Z+1)K{Y,Z} . Now, let X = Z + Y . Then

A becomes K{Y,X}
[(X3+X+1−Y (−X2+1)]K{Y,X} . Thus, A appears as a Krasner–Tate

algebra H(D) where D = h−1(U) with h = x3+x+1
−x2+1

. Now, consider the

affinoid algebra B = K{Y,Z}
(Z2−Y Z)K{Y,Z} . Apparently, it looks like a Krasner–

Tate algebra, except that the polynomials P = Z2 and Q = Z are not

relatively prime. Of course, B has divisors of zero. Putting X = Y − Z,

we obtain B = K{Y,X}
(XY )K{Y,X} , so we can check that such a K-algebra has no

idempotent different from 0 and 1. Suppose B is a Krasner–Tate algebra

H(D). Since B has n non-trivial idempotent, D is infraconnected, hence by

Theorem 10.4.2, we know that B is not Noetherian. Consequently, it can’t

be a Krasner–Tate algebra.

Lemma 10.9.6. Let A = K{Y1,...,Yn}
I be a K-affinoid algebra without divisors

of zero such that the field of fractions of A is a pure degree one transcendental

extension K(t) of K. Let θ be the canonical surjection from K{Y1, . . . , Yn}
onto A. For each j = 1, . . . , n, let yj = θ(Yj) = hj(t), with hj(t) ∈ K(t). If

t belongs to A, then sp(t) contains no poles of hj and no points a such that

h′j(a) = 0 ∀j = 1, . . . , n.

Proof. Suppose that t ∈ A and let D = sp(t). Suppose that for some

k ∈ {1, . . . , n}, hk admits a pole b in D. Let hk = P (t)
Q(t) , with P, Q

relatively prime and let χ ∈ X (A) be such that χ(t) = b. Then χ(P (t)) =

χ(yk)χ(Q(t)) = χ(yk)Q(b) = 0, a contradiction to the hypothesis: P, Q

relatively prime. Consequently no poles of the hj lie in sp(t), whenever

j = 1, . . . , n. On the other hand let F (Y1, . . . , Yn) ∈ K{Y1, . . . , Yn} be such

that t = F (y1, . . . , yn). Consider the mapping G from sp(t) into Kn defined

as G(α) = F (h1(α), . . . , hn(α)). Then G is the identical mapping on sp(t).

If there exists α ∈ sp(t) such that h′j(α) = 0 ∀j = 1, . . . , n, then we have

G′(α) = 0, a contradiction since G is the identical mapping on sp(t). �
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Theorem 10.9.7. The K-affinoid algebra A = K{X,Y }
(Y 2−X3)K{X,Y } is an integral

domain but is not integrally closed.

Proof. Let θ be the canonical surjection from K{X,Y } onto A, let x =

θ(X), y = θ(Y ). Suppose that A is has divisors of zero. Since by Theorem

10.3.7, K{X,Y } is factorial, there exist non-invertible elements f1, f2 ∈
K{X}[Y ] such that f1f2 = Y 2 − X3. Then, by Theorem 10.3.3, each fj
is associated in K{X,Y } to a monic polynomial in Y , Pj(Y ). Since both

Pj are not invertible in K{X,Y }, each Pj is of the form Y + Sj(X), with

Sj(X) ∈ K{X}. Consequently, we have Y 2−X3 = Y 2+Y (S1(X)+S2(X))+

S1(X)S2(X), hence by identification, S2 = −S1, and S2
1 = X3. But X3 is

not a square in K{X} because it has a zero of order 3 at 0. Consequently we

are led to a contradiction proving that Y 2 −X3 is irreducible in K{X,Y },
and therefore A is an integral domain.

Suppose now that A is integrally closed. Let B = K[x, y]. The field of

fractions of B is clearly the field K(u) with u = y
t . And since u is integral

over B, it belongs to A. On the other hand, both x, y are not invertible in A,

hence neither is u. But putting x = g(u), y = h(u) we have g′(u) = h′(u) = 0,

a contradiction with regards to Lemma 10.9.6. �

Corollary 10.9.8. The K-affinoid algebra A = K{X,Y }
(Y 2−X3)K{X,Y } is not a

Krasner–Tate algebra.

Proof. Indeed, a Krasner–Tate algebra without divisors of zero is a

principal ideal ring. �

Proposition 10.9.9 will be useful in further consideration in Section 10.10.

Proposition 10.9.9. Let r ∈]0, 1[∩|K|, let E = d(0, r), F = d(1, r) and

let D = E ∪ F . Let u be the characteristic function of E in H(D), and

A = H(D)
ux2H(D) . Then A is a non-reduced K-affinoid algebra containing a dense

Luroth K-algebra.

Proof. Since D is an affinoid subset of K, H(D) is a K-affinoid algebra,

hence so is A. Let θ be the canonical surjection of H(D) onto A. Then, θ(ux)

is a nilpotent element of A, hence A is not reduced. But since H(D) is a

Krasner–Tate algebra, it is of the form K{h}[x], with h ∈ K(x),deg(h) > 0,

and h(D) = U, D = h−1(U), so K[h, x] is a dense K-subalgebra of H(D). Let

τ = θ(h), ξ = θ(x). Then Ker(θ) ∩K{h} is equal to {0}, and so is Ker(θ) ∩
K[h, x]. Consequently, K[τ, ξ] is a Luroth K-subalgebra of A isomorphic to

K[h, x], and is dense in A. �
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10.10. Associated idempotents

Theorem 10.10.6, stated in [6], corresponds in ultrametric Banach algebras

to a well known theorem in complex Banach algebras: if the spectrum of

maximal ideals admits a partition in two open closed subsets U and V with

respect to the Gelfand topology, there exist idempotents u and v such that

χ(u) = 1 ∀χ ∈ U, χ(u) = 0 ∀χ ∈ V and χ(v) = 0 ∀χ ∈ U, χ(v) = 1 ∀χ ∈ V .

In an ultrametric Banach algebra, it is impossible to have a similar

result because partitions in two open closed subsets for the Gelfand topology

on the spectrum of maximal ideals then makes no sense, due to the total

disconnectedness of the spectrum. B. Guennebaud first had the idea to

consider the set of continuous multiplicative semi-norms of an ultrametric

Banach algebra, denoted by Mult(A, ‖ . ‖) instead of the spectrum of

maximal ideals, an idea that later suggested Berkovich theory [3].

Definition: We call affinoid variety the multiplicative spectrum

Mult(B, ‖ . ‖) of a L-affinoid algebra B.

Let X be an affinoid variety and let FX be the contravariant functor

which assigns to each affinoid subvariety Mult(B, ‖ . ‖) its affinoid algebra

B and to each inclusion Mult(B′, ‖ . ‖) ⊂ Mult(B, ‖ . ‖) of affinoid subsets

the corresponding restriction homomorphism from B to B′. Then FX is a

presheaf on X.

We must recall Tate’s acyclicity Theorem in the form given by Berkovich

[3] where affinoid varieties are considered in the multiplicative spectrum of

a L-affinoid algebra and its topology is the pointwise convergence topology.

Let (A, ‖ . ‖) be a L-Banach algebra, let X = Mult(A, ‖ . ‖) and let

{Ui 1 ≤ i ≤ n} be a finite covering of X by finitely many affinoid varieties,

with Mult(Ai, | . ‖i) = Ui, 1 ≤ i ≤ n. Then A =
⋂n
i=1Ai.

That is summarized by Theorem 10.10.1.

Theorem 10.10.1 ([3]). Let (A, ‖ . ‖) be a L-Banach algebra, let X =

Mult(A, ‖ . ‖) and let FX = (Ui)i∈I be a finite covering by affinoid

subvarieties of X. Then the covering is FX -acyclic.

Proposition 10.10.2. Let A be an entire L-affinoid algebra. Then

Mult(A, ‖ . ‖) is connected.

Proof. Suppose that U = Mult(A, ‖ . ‖) is not connected. It then admits

a partition in two disjoint compact subsets U1, U2, hence by Theorem

10.10.1, there exist L-affinoid algebras (A1, ‖ . ‖1) and (A2, ‖ . ‖2) such

that Mult(A1, ‖ . ‖1) = U1 and Mult(A2, ‖ . ‖2) = U2.

Then A1 is the quotient of A through a surjective morphism γ1 and A2

is the quotient of A through a surjective morphism γ2. Given f ∈ A, set
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f1 = γ1(f), f2 = γ2(f). Then, we have ‖f‖ = sup{φ(f) | φ ∈ U1 ∪ U2},
‖f1‖1 = sup{φ(f1) φ ∈ U1} and ‖f2‖2 = sup{φ(f2) φ ∈ U2}.

Consider now the L-algebra A1 × A2 provided with the norm ‖ . ‖∗
defined by ‖(f1, f2)‖∗ = max(‖f1, ‖1, ‖f2‖2). Then we have

‖(f1, f2)‖∗ = max(sup{φ(f1), φ ∈ U1, sup{φ(f2)|, φ ∈ U2)

= sup{φ(f), φ ∈ U1 ∪ U2} = ‖f‖
which proves that ‖f‖ = ‖(f1, f2)‖∗. Consequently, A and A1 × A2 are

isomorphic, a contradiction to the hypothesis ”A entire”. �

Lemma 10.10.3. Let A be a L-affinoid algebra of Jacobson radical R and

let w ∈ R. The equation x2 − x+ w = 0 has a solution in R.

Proof. Since A is L-affinoid, by Theorem 10.5.5, w is nilpotent, hence we

can consider the element

u = −1

2

+∞∑
n=1

(
1
2

n

)
(−4w)n.

Now we can check that (2u− 1)2 = 1− 4w and then u2 − u+ w = 0. �

Proposition 10.10.4 ([39]). Let A be a L-affinoid algebra of Jacobson

radical R and let w ∈ A be such that w2−w ∈ R. There exists an idempotent

u ∈ A such that w − u ∈ R.

Proof. We will roughly follow the proof known in complex algebra [8]. Let

r = w2 − w. We first notice that 1 + 4r = (2w − 1)2. Next, r
1+4r belongs to

R hence by Lemma 10.10.3, there exists x ∈ R such that x2 − x+ r
1+4r = 0,

hence

((2w − 1)x)2 − (2w − 1)2x+ r = 0.

Now set s = (2w − 1)x. Then s belongs to R, as x. Then we obtain

s2 − (2w − 1)s+ r = 0.

Let us now put u = w − s and compute u2:

(w − s)2 = w2 − 2ws + s2 = w + r − 2ws + s2.

But s2 = −r + (2w − 1)s, hence finally:

(w + s)2 = w − r + 2ws + r − (2w − 1)s = w + s.

Thus, u is an idempotent such that u− w ∈ R. �
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Proposition 10.10.5. Let A be a K-affinoid algebra such that Mult(A, ‖ . ‖)
admits a partition in two compact subsets U, V . There exists an idempotent

u ∈ A such that φ(u) = 1 ∀φ ∈ U and φ(v) = 0 ∀φ ∈ V and an idempotent

v such that φ(u) = 0 ∀φ ∈ U and φ(v) = 1 ∀φ ∈ V .

Proof. Suppose first that A is reduced. By Corollary 10.5.6, the spectral

semi-norm is then a norm. By Corollary 10.3.5, A has finitely many minimal

prime ideals: P1, . . . , Pn. For every i = 1, . . . , n, the algebra Ai = A
Pi

is an affinoid K-algebra that has no divisor of zero. Let ‖ . ‖i be its

affinoid norm. By Proposition 10.10.2, Mult(Ai, ‖ . ‖i) is connected, hence

for every i = 1, . . . , n, Mult(Ai, ‖ . ‖i) either is homeomorphic to a

subset of U or is homeomorphic to a subset of V . Suppose for instance,

Mult(Ai, ‖ . ‖i) is homeomorphic to a subset of U for every i = 1, . . . , r. Set

P =
⋂r
i=1 Pi, Q =

⋂n
i=r+1 Pi.

Suppose that P and Q are included in a same maximal ideal M. Then

there exists ψ ∈ Mult(A, ‖ . ‖) such that ker(ψ) = M and there exist

i ∈ {1, . . . , r}, j ∈ {r+1, . . . , n} such that Pi ⊂ M, Pj ⊂ M. Therefore,

ψ belongs to U ∩ V , which contradicts U
⋂
V = ∅. Consequently, P and Q

are not included in a same maximal ideal and hence P +Q = A. Therefore,

there exist u ∈ P and v ∈ Q such that u + v = 1 and hence φ(u) = 0

∀φ ∈ U, φ(1− u) = 0 ∀φ ∈ V . Now, we have χ(u) = 0 ∀χ ∈ X (A) such that

|χ| ∈ U and χ(1 − u) = 0 ∀χ ∈ X (A) such that |χ| ∈ V , therefore χ(u) =

1 ∀χ ∈ X (A) such that |χ| ∈ V . Consequently, χ(u) = χ(u2) ∀χ ∈ X (A),

hence χ(u − u2) = 0 ∀χ ∈ X (A) and hence ‖u − u2‖sp = 0. But since the

spectral semi-norm of A is a norm, we have u = u2, hence u is an idempotent

such that φ(u) = 0 ∀φ ∈ U and φ(u) = 1 ∀φ ∈ V .

We can easily generalize when A is no longer supposed to be reduced.

Let R be the Jacobson radical of A and let B = A
R . Let θ be the canonical

surjection from A onto B. Every φ ∈ Mult(A, ‖ . ‖) is of the form ϕ ◦ θ with

ϕ ∈ Mult(B, ‖ . ‖). Let U ′ = {ϕ ∈ Mult(B, ‖ . ‖)} be such that ϕ ◦ θ ∈ U

and let V ′ = {ϕ ∈ Mult(B, ‖ . ‖)} be such that ϕ ◦ θ ∈ V . Then U ′ and V ′

are two compact subsets making a partition of Mult(B, ‖ . ‖). Therefore, B
has an idempotent e such that ϕ(e) = 1 ∀ϕ ∈ U ′ and ϕ(e) = 0 ∀ϕ ∈ V ′. Let
w ∈ A be such that θ(w) = e. Then we can check that φ(w) = 1 ∀φ ∈ U and

φ(w) = 0 ∀φ ∈ V . But by Proposition 10.10.4, there exists an idempotent

u ∈ A such that u − w ∈ R. Then χ(u) = χ(w) ∀χ ∈ X (A) and hence

φ(u) = φ(w) ∀φ ∈ Mult(A, ‖ . ‖) because, by Theorem 10.5.4, Multm(A, ‖ . ‖)
is dense in Mult(A, ‖ . ‖). Similarly, there exists an idempotent v ∈ A such

that φ(v) = 1 ∀φ ∈ V and φ(v) = 0 ∀φ ∈ U . �
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Proposition 10.10.6. Let A be a commutative unital L-Banach algebra and

assume that Mult(A, ‖ . ‖) admits a partition in two compact subsets X, Y .

Suppose that there exist two idempotents u and e such that |ζ(u)| = |ζ(e)| =
1 ∀ζ ∈ X (A) such that |ζ| ∈ X and ζ(u) = ζ(e) = 0 ∀ζ ∈ X (A) such that

|ζ| ∈ Y . Then u = e.

Proof. Let ζ ∈ X (A) be such that |ζ| ∈ X. Since |ζ(u)| = |ζ(e)| = 1,

we have ζ(u) = ζ(e) = 1 hence ζ(u − e) = 0. Now, if |ζ| ∈ Y , we have

ζ(u) = ζ(e) = 0, hence ζ(u− e) = 0. Consequently, ζ(u− e) = 0 ∀ζ ∈ X (A)

and hence u− e belongs to the Jacobson radical of A. Put e = u+ r. Since

e2 = e, we have (u+ r)2 = u+ 2ur + r2.

Suppose r �= 0.Then 2u + r = 0. If L is of characteristic 2, we then

have r = 0. Now suppose that L is not of characteristic 2. Let ζ ∈ X (A) be

such that |ζ| ∈ X. We have (ζ(u))2 = ζ(u) and |ζ(u)| = 1, hence ζ(u) = 1

therefore 2 + ζ(r) = 0. But since r lies in the Jacobson radical, ζ(r) = 0,

hence 2 = 0, a contradiction that finishes proving that r = 0. �

Proposition 10.10.7 may be found in [32] with a proof explained in a

different way.

Proposition 10.10.7. Let A be a unital commutative ultrametric L-Banach

algebra and assume that Mult(A, ‖ . ‖) admits a partition in two compact

subsets (X, Y ). There exists a L-affinoid algebra B included in A, admitting

for norm this of A, such that Mult(B, ‖ . ‖) admits a partition (X ′, Y ′)
where the canonical mapping Υ from Mult(A, ‖ . ‖) to Mult(B, ‖ . ‖) satisfies
Υ(X) ⊂ X ′, Υ(Y ) ⊂ Y ′.

Proof. Since X and Y are compact sets such that X∩Y = ∅, we can easily

define a finite covering of open sets (Xi)1≤i≤n of X such that Xj∩Y = ∅ ∀i =
1, . . . , n, where the Xi are in the form W(fi, xi,1, . . . , xi,mi , εi) with xi,j ∈ A.

Let A∗ be the finite type L-subalgebra generated by all the xi,j, 1 ≤ j ≤
mi, 1 ≤ i ≤ n. Consider the image of Mult(A, ‖ . ‖) in Mult(A∗, ‖ . ‖) through
the mapping Υ that associates to each φ ∈ Mult(A, ‖ . ‖) its restriction to

A∗ and let X∗ = Υ(X), Y ∗ = Υ(Y ). Since X and Y are compact sets in

Mult(A, ‖ . ‖), so are X∗ and Y ∗ in Mult(A∗, ‖ . ‖). Moreover, X ∩ Y = ∅
implies X∗ ∩ Y ∗ = ∅.

Let W be a neighborhood of X∗ ∪ Y ∗ in Mult(A∗, ‖ . ‖) which is

the union of two disjoint neighborhoods X ′ of X and Y ′ of Y . Let

φ ∈ Mult(A∗, ‖ . ‖) \ W . Then φ does not belong to Υ(Mult(A, ‖ . ‖).
Consequently, there exists a L-algebra of finite type A∗(φ) containing A∗

such that the image of Mult(A∗(φ), ‖ . ‖) in Mult(A∗, ‖ . ‖) do not contain φ.
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Now, Mult(A∗(φ), ‖ . ‖) is a compact subset of Mult(A∗, ‖ . ‖). Consequently,
there exists a neighborhood of φ in Mult(A∗, ‖ . ‖) \W .

In the same way, since Mult(A∗, ‖ . ‖) \ W is compact, there exist

φ1, . . . , φq ∈ Mult(A∗, ‖ . ‖) \ W and neighborhoods V (φi), 1 ≤ i ≤ q

of φi (1 ≤ i ≤ q), included in Mult(A∗, ‖ . ‖) \ W making a covering of

Mult(A∗, ‖ . ‖) \W .

Let E be the L-algebra of finite type generated by the A∗(φi), (1 ≤ i ≤
q). Then E is a L-subalgebra of A of finite type which contains A∗ and hence

is equipped with the L-algebra norm ‖ . ‖ of A. Moreover, by construction,

Mult(E, ‖ . ‖) is equal toW = X ′∪Y ′ and we have Υ(X) ⊂ X ′, Υ(Y ) ⊂ Y ′.
The image of Mult(E, ‖ . ‖) in Mult(A∗, ‖ . ‖) is then contained in W and

E is a L-subalgebra of A of finite type which contains A∗, hence is equipped
with the L-algebra norm ‖ . ‖ of A.

Let {x1, . . . , xN} be a finite subset of the unit ball of E such that

L[x1, . . . , xN ] = E. Let T be the topologically pure extension L{X1, . . . ,XN}
and consider the canonical morphism G from L[X1, . . . ,XN ] equipped with

the Gauss norm, into E, equipped with the norm ‖ . ‖ of A, defined as

G(F (X1, . . . ,XN )) = F (x1, . . . , xN ). Since by hypotheses, ‖xj‖ ≤ 1 ∀j =

1, . . . , N , then G is a continuous mapping from from L[X1, . . . ,XN ] equipped

with the Gauss norm, into E, equipped with the norm ‖ . ‖ of A. It

then has expansion to a continuous morphism Ĝ from T into A. Since,

by Theorem 10.3.2, all ideals of T are closed, we can consider the closed

ideal I of the elements F ∈ T such that Ĝ(F ) = 0. Then Ĝ(T ) is the

L-affinoid algebra B = T
I containing E and included in A. By construction,

the L-affinoid norm of B is the restriction of the norm ‖ . ‖ of A. Since E is by

construction dense in B, we have Mult(B, ‖ . ‖) = Mult(E, ‖ . ‖) = X ′ ∪ Y ′.
Consequently, (X ′, Y ′) is a partition of Mult(B, ‖ . ‖) and by construction,

we have Υ(X) ⊂ X ′, Υ(Y ) ⊂ Y ′, which ends the proof. �

We can now conclude.

Theorem 10.10.8. Let A be a unital commutative ultrametric Banach

L-algebra such that Mult(A, ‖ . ‖) admits a partition in two compact subsets

(X, Y ). There exist a unique idempotent u ∈ A such that φ(u) = 1 ∀φ ∈ X

and φ(u) = 0 ∀φ ∈ Y and a unique idempotent v ∈ A such that φ(v) =

1 ∀φ ∈ Y and φ(v) = 0 ∀φ ∈ X.

Proof. By Proposition 10.10.7, there exists a L-affinoid algebra B and

a continuous morphism G from B to A such that Mult(B, ‖ . ‖) admits

a partition in two compact subsets (X ′, Y ′) and such that the canonical

mapping Ĝ from Mult(A, ‖ .‖) to Mult(B, ‖ . ‖) satisfy Ĝ(X) ⊂ X ′,
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Ĝ(Y ) ⊂ Y ′. Now, by Proposition 10.10.5, there exist idempotents u′, v′ ∈ B

such that φ(u′) = 1 ∀φ ∈ X ′ and φ(u′) = 0 ∀φ ∈ Y ′. Consequently, putting
u = G(u′), v = G(v′), we have φ(u) = 1 ∀φ ∈ X, φ(u) = 0 ∀φ ∈ Y and

φ(v) = 0 ∀φ ∈ X, φ(v) = 1 ∀φ ∈ Y . The unicity follows from Proposition

10.10.6. That ends the proof. �

Corollary 10.10.9. Let A be a unital commutative ultrametric Banach L-

algebra such that Mult(A, ‖ . ‖) admits a partition in two compact subsets

(X, Y ). Then A is isomorphic to a direct product of two Banach L-algebras

AX × AY such that Mult(AX , ‖ . ‖) = X and Mult(AY , ‖ . ‖) = Y . There

exists a unique idempotent u ∈ A such that φ(u) = 1 ∀φ ∈ X, φ(u) = 0 ∀φ ∈
Y and then AX = uA, AY = (1− u)A.

Corollary 10.10.10. Let A be a unital uniform Banach K-algebra admitting

an element x such that sp(x) has an empty-annulus Γ(a, r, s). There exist

a unique idempotent e ∈ A such that ζ(e) = 1 ∀ζ ∈ X (A) such that |ζ(x −
a)| ≤ r and ζ(e) = 0 ∀ζ ∈ X (A) such that |ζ(x − a)| ≥ s and a unique

idempotent u ∈ A such that ζ(u) = 1 ∀ζ ∈ X (A) such that |ζ(x − a)| ≥ s

and ζ(u) = 0 ∀ζ ∈ X (A) such that |ζ(x− a)| ≤ r.
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de l’Université de Clermont II, Série Math., Fasc. 22, 1–37 (1984).
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tramails. Annales de la Faculté des Sciences de Clermont, 44(7), 3–80 (1972).

[34] Krasner, M. Nombre d’extensions d’un degré donn’e d’un corps p-adique.
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A

(0, r)-approaching, 231

A-quasi-algebra-norm, 260

A-quasi-algebra-normed A-module,
260

A-module, 33
(a, r)-approaching, 221

absolute value, 57, 74

admissible, 38, 53, 55
admit α as a pole of order q, 135

admitting two different continuous
absolute values, 232

affinoid, 99, 120, 126, 131, 211, 228, 280,
284–285

affinoid algebra, 32, 259–260, 268,
288

affinoid subset, 279–280

affinoid subvariety, 288
affinoid variety, 288

affinoids sets, 210, 215, 234, 280

algebra of finite type, 273
algebraic degree, 124

algebraic extension, 9

algebraically closed complete ultrametric
field, 117

algebraically closed field complete, 133
algebraically independent over L, 261
algebras (H(D),O), 210

analytic elements, 16, 133, 193
applications of T -filters, 191

arcwise connected, 7, 8, 131

associated idempotents, 288

automorphism, 265

B

B-bordering filters, 114
(b, rb)-approaching, 230
Banach L-algebra, 292
Banach algebra of the continuous

functions from Zp into Cp, 199
Banaschewski compactification, 59, 61, 63,

76
basis, 99
basis of the filter of neighborhoods, 75
beach, 100
Bezout–Corona statement, 66
bicontinuous isomorphism, 262
bidual, 14
bijection, 123
body, 100
Boolean laws, 60
Boolean ring, 59, 63
boundary, 127
bounded Lipschitz functions, 80
bounded normal ratio, 220, 229–230,

232–233
bounded uniformly continuous functions,

80

C

canonical, 101
canonical homomorphism associated to t,

217
canonical morphism associated to t, 229
canonical surjection, 34, 268–269, 271
Cauchy filter, 68
Cauchy sequence, 12, 81
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Cauchy sequence of holes of limit, 102

characteristic function, 5, 39, 69

characteristic property of T -filters, 189

circular filter associated to F , 106

circular filter of center a and diameter R,
104

circular filter of the neighborhoods, 104

circular filter on D, 105

circular filter surrounding, 113

circular filters, 16, 104, 110, 112, 217, 228

classes, 95

classic partition, 203, 209, 211, 215

clopen, 37, 44

clopen sets, 42

closed and bounded, 134

closed bounded infraconnected sets, 185

cluster, 235

cluster point, 13

codiameter, 63, 107

codimension 1, 45, 53, 67, 71, 84–86, 236

compact subsets, 13, 18, 272

compact for the topology of pointwise
convergence, 228

compactification, 56, 61, 78

comparable, 111

compatible, 64, 72, 79, 84

compatible algebras, 63, 86

complete field extension, 30

complete valued field, 37

completion of F , 247

completion of K(x) for the norm ‖ . ‖D,O,
205

complex Banach algebra, 31

conjugates, 50

constant distances sequence, 106–107

constructible from μ, 20

constructible ordered set, 22

constructible subset, 23

contiguous, 64, 66

continuity of the zeros, 35

continuous absolute values, 271

continuous morphism, 292

convergent, 67

converging subsequence, 107

D

δ-topology, 114, 127–128, 130, 215, 228,
235

‖ . ‖D of uniform convergence on D,
117

D-bordering filter F , 107, 205, 214
D-peripheral, 107
D-peripheral circular filter, 184
decreasing distances sequence, 100
decreasing T -filter, 155
decreasing filter F of center a and

diameter S, 155
decreasing filter with no center, 100
decreasing idempotent T -sequence, 204
define the topology, 260
dense, 91, 272
dense countable subset, 280
dense in Σ(O), 210
derivable functions, 80–81, 83
diameter, 95
diameter r, 216
diameter of the sequence, 102
discrete valuation, 91
distance, 7, 13, 92, 281
distance δ, 56, 129
distances holes sequence, 102
distances holes sequence (Tm,i) 1≤i≤h(m)

m∈N

,

174
divisors of zero, 4, 32, 34, 232, 245, 247,

271
dual basis, 14

E

IE-algebra homomorphisms, 1
empty-annulus, 96, 97, 99, 119, 293
entire Banach K-algebra, 35
equal, 127
equal distances sequence, 100, 126–127
equivalence relation, 97
Euclidean division, 255, 259
every prime ideal, 271
examples and counter-examples, 174
extension, 269

F

f is strictly injective in d(a, r), 148
F-affinoid, 104–105, 124
F-algebra, 4
F -productal F -vector space, 15
FX -acyclic, 288
factorial, 2, 265
filter, 100
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filter of neighborhoods, 17
filter of piercing, 200
finite codimension, 85–86, 267
finite extension, 51, 270
finitely many minimal prime ideals, 267,

280
Fourier Transform of f with respect to Zp,

199
function Ψ for analytic elements, 140

G

G admits an idempotent T -sequence, 200
G is a pierced, 200
Galois correspondence, 50
Galois group, 50
Garandel–Guennebaud’s, 207
Gauss norm, 253, 259–260, 278, 282
Gelfand mapping, 23
Gelfand transform, 89, 223
good order, 19
Guennebaud, 272
Guennebaud–Berkovich multiplicative

spectrum, 61, 78

H

H(D) the completion of R(D), 117
H(E) is principal, 195
Hahn–Banach’s theorem, 9, 32, 34, 226
Hensel lemma, 253
Hilbert’s Nullstellensatz, 266
holes, 96
holes of the partition, 203
holomorphic functions, 95, 117
homeomorphism, 26–27
hyperplans, 14

I

idempotent, 3, 57, 155
idempotent weighted sequence, 203
idempotent T -sequence, 237
increasing distances sequence, 100, 233
increasing T -filter, 184
increasing filter F of center a and

diameter S, 155
increasing idempotent T -sequence, 204
induction hypothesis, 269
infimum, 115
infraconnected affinoid subset, 226
infraconnected closed set, 152

infraconnected components, 95–98, 109,
111–113, 119–120, 132, 233, 285

injective, 23, 90
injective sequences, 279
integral domain, 280, 287
integral domain finite over Tn, 275
integrally closed, 287
intersection, 99
irreducible, 264
irregular, 185
irregular distinguished circular filter, 185
integral domain, 287

J

Jacobson radical, 5, 273
Jacobson ring, 1, 273

K

K-affinoid algebra, 283, 287, 290
K-algebra of analytic elements, 283
K-Banach algebra, 134
k-canonical associate to f , 264
k-order of f , 264
k-regular, 263
KrasnerTate algebras, 283, 285, 287

L

Luroth F-algebra, 3
L-affinoid algebra B, 292
L-affinoid algebra of Jacobson radical R,

289
L-algebra norm, 292
L-Banach algebra, 291
L-based algebra, 89, 92
L-productal, 13, 15, 251
Ln-productal, 276
L-subalgebra generated by all the xi,j , 291
Lipschitz, 64, 90
Lipschitz inequality, 82
Lipschitz semi-norm, 92
local subring, 9
locally compact field, 45, 272

M

maximal element, 22
maximal ideal, 1, 28, 45–48, 54, 58, 71, 85
maximal ideal M of finite codimension, 49
maximal ideal of T , 68
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maximal ideal of finite codimension, 53
maximal ideals of codimension, 3
meromorphic at α, 135
metric on circular filters, 110
metric topology, 7–8, 56, 73, 114, 124
metrizable, 280, 283
minimal polynomial, 2, 35
minimal prime ideal, 3
Mittag–Leffler series of f , 138
Mittag–Leffler theorem, 206
monic, 255
monic and irreducible, 264
monic polynomials, 256, 258, 263
monotonous distances sequence, 54, 100,

106–107, 126
monotonous filter, 100, 110
monotonous distances holes sequence, 127
monotony, 102, 155
multbijective, 55, 71, 79, 247, 267
multbijective Banach K-algebras, 247
multiplicative, 14, 74, 260
multiplicative group of the ps-th roots of

1, 197
multiplicative semi-norms, 16
multiplicative spectrum, 53
multiplicity order of α, 136

N

n-regular, 263
natural partition, 203
neighborhood, 54, 126, 211
neighborhoods basis, 77
nilradical, 273, 276
no divisors of zero, 232
Noether normalization, 266
Noetherian, 2, 34, 266
non-multbijective, 248
non-trivial ultrametric absolute value,

8
norm, 117, 282
Nullstellensatz for Tn, 266

O

O-minorated annulus, 230
O-minorated annulus Γ(a, s′, s′′), 233
O-bordering, 210
one maximal ideal, 236
open sets, 291
order relation, 111

P

p-adic Fourier transform, 197
partition, 57
pathwise connected, 7
perfect, 46, 50
perfect field, 85
peripheral, 127, 211
piecewise affine, 140
pierced filters, 152
piercing of the sequence, 102, 155
point of adherence, 31
pointwise bounded, 18
pointwise convergence, 13, 60, 77, 122,

280
pointwise topology, 121, 130
pole of f of order qi in T , 135
polnorm on algebras, 249
precedent, 19, 21
presheaf, 288
prime, 2
prime ideal, 18–19, 47–48, 58, 69–70
prime spectrally closed ideal, 54
product norm, 15
properties (o) and (q), 229, 234
properties (o) and (q) and strongly valued

fields, 244
property (p), 268
punctual, 104, 111
punctual multiplicative semi-norm,

121

Q

quasi-decreasing, 102
quasi-increasing, 102
quasi-invertible, 136, 237
quasi-minorated, 145, 192
quotient norm, 57, 74, 261

R

ρ, 200
R(D), 117
rational functions without poles, 117
reduced affinoid algebra, 278
regular, 185
residue characteristic, 9
residue class field, 9, 40, 260
restricted power series in n variables,

238
right-side derivative, 118
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S

S-appropriate sequence, 281
S-multiplicative, 17, 20, 24
Salmon’s theorem, 263
secant, 99, 113
secant with another filter, 99
semi-admissible, 38, 44, 49–50
semi-compatible algebra, 64, 79
semi-multiplicative, 14, 17, 120
semi-multiplicative semi-norms,

273
semi-multiplicative norm, 134, 232
semi-norm ‖ . ‖sp, 260
semi-simple, 224, 226
sequences of holes, 158
sequentially compact, 122, 125, 283
set of semi-norms, 11
Shilov boundary, 16, 20, 24–25, 30, 33, 58,

75, 210–211, 215
Shilov boundary for H(D,O), 212
simple, 174
spectral closure, 38, 43, 48, 65
spectral norm, 83, 275
spectral properties, 223
spectral semi-norm, 24, 223
spectrally closed, 38, 43, 44
spectrally injective, 4–5
spectrum, 279
spherically complete, 100
sticked ultrafilters, 41
stone space, 59, 76
stone space of the Boolean ring, 59
strictly vanishing along F , 145
strict t-spectral partition, 218, 237
strict x-spectral partition, 216, 228, 234
strictly O-bordering, 210
strictly differentiable, 80, 83
strictly increasing bijection, 113, 123,

131
strictly injective, 147, 278
strictly vanishing along F , 145
strongly valued, 9, 204, 245, 247
submultiplicative, 17
subsidence, 156
superior envelope, 24
superior gauge, 103
supremum distance, 7, 114
surjective morphism, 84
surrounding, 111–112, 131

surround a circular filter, 110
surrounds all the Fi, 184
surround a monotonous filter, 110

T

Θ-topology, 130
T -family, 185
T -filters and T -sequences, 152
T -optimal, 184
T -sequence, 156–158
T -specific, 184
tensor product norm, 51–52
theorem for algebras H(D,O),

207
there exists a T -filter F , 192
thinner, 99–100
topological K-vector space, 134
topological divisors of zero, 30–32, 34,

86
topologically pure extension, 260, 270
topologically separable fields, 280
topology of pointwise convergence, 11–12,

18, 31, 128, 225, 228, 235, 281
topology of simple convergence, 215
totally ordered family, 21
totally ordered subset, 115
tree, 113
tree structure, 6, 110
two compact subsets, 291–293
two idempotents u and e, 291
Tykhonov’s Theorem, 11

U

u = e, 291
ultrafilters, 46, 54, 66, 69
ultrametric, 215
ultrametric absolute value, 37
ultrametric norm, 120
ultrametric spectral theory, 152
uniform, 31–33, 226, 275, 278
uniform closure, 38, 48
uniform convergence norm, 17, 86, 90,

133
uniformly closed, 38, 43
uniformly continuous function, 63, 74
uniformly equicontinuous, 228
uniformly open, 63, 72, 76–77
unique idempotent, 292
unique maximal ideal, 70
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unital commutative IE-algebra, 1
universal generator, 4
Urysohn, 23

V

valuation group, 9, 40
valuation ideal, 9
valuation ring, 9

W

weakly valued, 9, 244, 248
weighted sequence, 155, 203

well ordered, 19, 21
whole distance, 7, 114
wide t-spectral partition, 229
wide t-spectral partition of diameter r,

220
without divisors of zero, 244

X

x-clear, 218
x-clear annulus, 219
x-normal partition of center a and

diameter r, 216
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