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	“The only way to learn mathematics is to do mathematics.”

Quote attributed to Paul Halmos

For the student
Embracing Halmos’s quote above, this textbook provides you (the student) with
opportunities to domathematics: to perform experiments and grapple with problems;
to formulate, test, and revise conjectures; to develop theories that bring coherence to
observed results; and to express understanding using precise mathematical language.
In essence, you get to experience mathematics as a mathematician does.

As its title suggests, this textbook is a friendly introduction to abstract algebra, a
study of algebraic structures and relationships. I hope you’ll not only read the textbook,
but actively engagewith it. As you work through the examples or exercises, you should
seek patterns, make bold conjectures, and try proving them. Create your own examples
to further your understanding. Ask your own questions. Have fun!

For the instructor
This textbook is intended to be used in a first-semester course in abstract algebra. Stu-
dents should have completed Calculus I and II, not because they need the calculus
content, but to acquire enough mathematical experience and maturity to handle the
abstraction and proof writing that are part of the textbook. Familiarity with matrices is
helpful, but not required. (Chapter 7 contains a brief introduction to matrices and cov-
ers matrix concepts that are needed in the textbook.) Prior proof-writing experience is
not expected. In fact, an underlying goal of the textbook is to guide students toward
writing clear and precise mathematical proofs. To support this goal, the textbook in-
cludes “Proof know-how,” frequent, context-specific, short tips on proof writing.

Paul Halmos once said, “A good stack of examples, as large as possible, is indis-
pensable for a thorough understanding of any concept.” Following this advice, almost
all concepts in this textbook are introduced through concrete examples. Ideas are fore-
shadowed, revisited, and developed over time. For instance, in an exercise about mod-
ular arithmetic (in Chapter 4), students compute the order of unitsmodulo 𝑝 andmake
conjectures about these orders. Eight chapters later (in Chapter 12), the notion of the
order of a group element is formally defined. By then, students have seen enough ex-
amples so that the concept feels familiar.

xi



xii Preface

Abstract algebra often acts as a “gateway” to upper-level mathematics courses and
to a successful completion of amathematicsmajor. But it can seem impenetrable due to
its (seemingly) theoretic nature. By taking amore concrete approach to the subject and
by allowing students to develop their own understanding of the material, this textbook
makes abstract algebra more accessible to more students.

Below, we highlight the pedagogical features of this textbook.
“Under the hood” perspective. This textbook provides students access to the

“under the hood” work that mathematicians do. Rather than starting with a gen-
eral theorem or definition (i.e., a finished product), the textbook lets students in on
how that finished product is developed. In Chapter 13, for instance, we consider the
cyclic group ⟨𝑔⟩ generated by a group element 𝑔 of order 12. We compute the product
𝑔9 ⋅ 𝑔7 = 𝑔9+7 = 𝑔4 in ⟨𝑔⟩ and notice how this is just like the sum 9 + 7 = 4 in ℤ12.
Indeed, multiplication in ⟨𝑔⟩ feels like addition in ℤ12. In Chapter 16, we build on this
observation to motivate the definition of a group isomorphism. By providing access
to the mathematical thinking that goes into the finished product, this textbook helps
students make sense of the concepts in abstract algebra.

“How did you come up with that?” This is a question that I often get from
abstract algebra students, especially when it comes to proof writing. Students can typ-
ically follow a proof that is presented to them, but they struggle with deriving the key
steps on their own. This textbook addresses this issue through in-depth analyses of the
proofs. In the proof of Theorem 19.14, for instance, there is a tricky step of coming up
with an element ℎ = 𝑎−1𝑔. Here’s an excerpt from the “Proof know-how” following
the proof:

Coming up with the element ℎ = 𝑎−1𝑔 employed the familiar “working back-
wards” technique. Our goal was to show that 𝑔 = 𝑎ℎ for some ℎ ∈ 𝐻, so we
solved this equation for ℎ by left-multiplying each side by 𝑎−1, which yielded
ℎ = 𝑎−1𝑔. As before, this process of solving for ℎ is scratch work and does not
belong in the proof. Instead, the focus of the argument is showing that 𝑔 = 𝑎ℎ
for ℎ = 𝑎−1𝑔.

Students, even mathematics majors, often have a (false) impression of the subject, that
mathematicians produce new ideas out of thin air by writing down a theorem and
effortlessly proving it. This textbook teaches students not only the content, but also
the skills and know-how to do mathematics and create new ideas on their own.

Experience before formality. Providing students with concrete experiences is at
the heart of this textbook, accomplished through example-driven expositionwhere the-
oretical concepts are introduced through examples. This approach makes the content
more accessible to more students.

A key feature of this textbook is the set of exercises at the end of each chapter, in
which students work on examples that lead to or reveal certain patterns. After working
on such exercises, students are often asked tomake a conjecture and/or prove a general-
ization. I tell my students that the role of the proof is not to convince, but to understand
and explain. In other words, they shouldn’t try to prove any theorem that they don’t
already believe is true. And this belief typically comes from concrete experiences that
lead to the statement of the theorem. This is another instance of how, through this
textbook, students experience mathematics as a mathematician does. Again, such an
experience has the effect of making the subject more accessible to more students.
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Accessible but still rigorous content. In this textbook, certain choices were
madewith the aim ofmaking the content as accessible as possible, while still maintain-
ing the mathematical rigor. For instance, we define a polynomial 𝑓(𝑥) to be factorable
when 𝑓(𝑥) = 𝑝(𝑥) ⋅ 𝑞(𝑥) with deg 𝑝(𝑥), deg 𝑞(𝑥) < deg 𝑓(𝑥). (In other words, 𝑓(𝑥) is
a product of “smaller” polynomials.) Otherwise, we say that 𝑓(𝑥) is unfactorable. This
treatment is a bit unorthodox in a couple of ways. First, we use the terms factorable and
unfactorable, rather than the more commonly used reducible and irreducible. Second,
a more typical approach is to define irreducible polynomials as satisfying the following
property: If 𝑓(𝑥) = 𝑝(𝑥) ⋅ 𝑞(𝑥), then deg 𝑝(𝑥) = 0 or deg 𝑞(𝑥) = 0; and otherwise, 𝑓(𝑥)
is said to be reducible. In this textbook, this property of irreducible (or unfactorable)
polynomials is proved in Theorem 30.8.

These decisions about polynomials weremade because the approachwe takemore
closely resembles students’ prior experiences with polynomials. In fact, many of the
topics that we cover (e.g., polynomials, integers, the commutative law, putting on socks
and shoes, to name a few) are already familiar to students. Whenever possible, we build
on students’ existing knowledge to make the content more accessible.

Note about rings
In this textbook, a ring will contain the multiplicative identity element by definition.
(For instance, we do not consider the set 2ℤ of even integers to be a ring.) We do so
for two reasons. First, we wanted our definition of a ring to closely mimic what we
observe in the ring of integers ℤ. Second, every relevant example of a ring that we
examine contains the multiplicative identity.

Road map
There are 37 chapters in the textbook. Depending on your students’ background and/or
the structure of your algebra course, here are some suggested road maps:
• Chapters 1 through 25 cover group theory. If students have had prior experience
with proof writing, you may choose to omit Chapters 1 and 2. Similarly, students
may have already studied the notion of divisibility (of integers), particularly if they
have taken an introductory number theory course. In such a case, Chapter 3 may
be skipped as well. I recommend not skipping Chapter 4 on modular arithmetic,
however, since many group-theoretic concepts are introduced in that chapter.

• Chapter 7 contains a brief introduction tomatrices and coversmatrix concepts that
are needed in the textbook. If your students have had a linear algebra course, then
Chapter 7 may be omitted or assigned to the students to read on their own as a
refresher.

• Chapters 26 through 37 cover ring theory, with an emphasis on polynomial rings.
It is possible to end the course with Chapter 35, where we complete the proof of
Theorem 35.1 (i.e., 𝐹[𝑥]/⟨𝑔(𝑥)⟩ is a field if and only if 𝑔(𝑥) is unfactorable).

• Chapters 36 and 37 guide the students to prove Theorem 35.1 again using the no-
tion of maximal ideals. It is a lovely proof, so I recommend its inclusion in your
course, if time permits.
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Unit I: Preliminaries

This book is about algebraic structures called groups and rings. We’ll also be proving
various facts about groups and rings, which is amathematician’s way of understanding
and explaining what they observe and why those observations are true. The first three
chapters provide preliminary knowledge needed for our exploration throughout the
book. Chapter 1 introduces the notion of proofs and some foundational proof-writing
techniques. Chapter 2 deals with sets and subsets, which are central to our study, since
groups and rings are sets that are equipped with an operation or two. (We’ll say much
more about this later.) Chapter 3 is about divisibility (e.g., 4 is a divisor of 24), which
will be a useful and recurring tool as we study the properties of groups and rings.

Below is a taste of what you’ll be able to accomplish in this unit:

• Prove that 𝑛 is odd if and only if 𝑛2 is odd. (Here, 𝑛 is an integer.)

• Learn how to show that two sets are equal, i.e., they contain the same elements.

• Understand why consecutive integers such as 451 and 452 are relatively prime, i.e.,
their greatest common divisor is 1. (Note: It’s because 451 ⋅ (−1) + 452 ⋅ 1 = 1.)

1





1
Introduction to Proofs

In mathematics, a proof is a series of logical arguments that explains why something
is true. The goal of this opening chapter is to begin to understand how to write mathe-
matical proofs. In particular, wewill introduce various proof-writing techniqueswhich
will be used throughout the textbook. Note that many of the proofs in the chapter in-
volve the set of integers, which includes the counting numbers (1, 2, 3, 4, . . . ), their
negatives (−1, −2, −3, −4, . . . ), and zero (0).

1.1 Proving an implication
Consider the following statement: If 𝑛 is an odd integer, then 𝑛2 is odd. To better un-
derstand this statement, we look at a few examples:

• If 𝑛 = 7 is odd, then 𝑛2 = 49 is also odd.

• If 𝑛 = 213 is odd, then 𝑛2 = 45,369 is also odd.

• If 𝑛 = −1,081 is odd, then 𝑛2 = 1,168,561 is also odd.

The importance of these examples cannot be overstated. Concrete examples help us
make sense of an abstract statement. Sometimes, they provide insight into why the
statement is true. But, as we will see shortly, writing a proof is different from creating
examples.

Before proceeding, let’s be more precise about what it means for an integer to be
odd (and also even). Notice that 7 is odd, because 7 = 2 ⋅ 3 + 1; i.e., when we put 7 into
groups of two, there is a remainder of 1. However, 10 is even, because 10 = 2 ⋅ 5; i.e.,
10 can be put into groups of two without a remainder.

Definition 1.1 (Odd and Even). Let 𝑛 be an integer. Then:

• 𝑛 is odd when 𝑛 = 2𝑘 + 1 for some integer 𝑘.

• 𝑛 is even when 𝑛 = 2𝑘 for some integer 𝑘.
3



4 Chapter 1. Introduction to Proofs

Example 1.2. We categorize the following integers as odd or even:
• 213 = 2 ⋅ 106 + 1 so that 213 is odd.

• −1,081 = 2 ⋅ (−541) + 1 so that −1,081 is odd.

• −314 = 2 ⋅ (−157) so that −314 is even.

• 0 = 2 ⋅ 0 so that 0 is even.

Now, back to our statement: If 𝑛 is an odd integer, then 𝑛2 is odd. This is an example
of an implication, i.e., an “if . . . , then . . . ” statement. The if-part is called the hypothesis
(“𝑛 is an odd integer”) and the then-part is called the conclusion (“𝑛2 is odd”). To prove
an implication, we take the following steps:

Proof know-how. To prove an implication:
(1) Assume that the hypothesis is true.

(2) Show that the conclusion is true.

Equipped with this know-how, let’s brainstorm how to write this proof. Our initial
step is to assume that the hypothesis is true, which means that the first sentence of the
proof should be: Assume 𝑛 is an odd integer. Our eventual goal is to show that the
conclusion is true, which means that the last sentence of the proof should be: Thus,
𝑛2 is odd. What about the second sentence of the proof? We know that 𝑛 is odd, so
Definition 1.1 suggests that we write: Then 𝑛 = 2𝑘 + 1 for some integer 𝑘.

We now have 𝑛 = 2𝑘 + 1, but how do we proceed from here? Knowing this next
step is often the most difficult part of proof writing. A useful tip is to look ahead at our
goal, which, in this proof, is to show that 𝑛2 odd. Hence, we compute 𝑛2 = (2𝑘+1)2 =
4𝑘2+4𝑘+1 and show that the expression 4𝑘2+4𝑘+1 can be written as 2⋅(integer)+1.
Then, we can conclude that 𝑛2 is odd.

Without further ado, here are the first theorem and proof of this book!

Theorem 1.3. If 𝑛 is an odd integer, then 𝑛2 is odd.

Proof. Assume 𝑛 is an odd integer. Then 𝑛 = 2𝑘 + 1 for some integer 𝑘. Therefore,
𝑛2 = (2𝑘 + 1)2 = 4𝑘2 + 4𝑘 + 1 = 2 ⋅ (2𝑘2 + 2𝑘) + 1.

Hence, 𝑛2 = 2 ⋅ (2𝑘2 + 2𝑘) + 1, where 2𝑘2 + 2𝑘 is an integer. Thus, 𝑛2 is odd. ■

Proof know-how. In the proof above, we start with an arbitrary odd integer 𝑛, rather
than a specific one like 7, 213, or −1,081. Here, “arbitrary” means we are not making
any assumptions about 𝑛, other than that it is an odd integer. Then we proved that 𝑛2
is odd. Because the theorem is true for an arbitrary odd integer, we may conclude that
it is true for all odd integers.

1.2 Proof by cases
Consider the statement: If 𝑛 is an integer, then 𝑛2 + 𝑛 is even. As before, we begin by
creating some concrete examples. Since the only assumption about 𝑛 is that it is an
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integer, we consider the cases where (1) 𝑛 is odd and (2) 𝑛 is even:

• If 𝑛 = 7 (i.e., 𝑛 is odd), then 𝑛2 + 𝑛 = 56 is even.

• If 𝑛 = 213 (i.e., 𝑛 is odd), then 𝑛2 + 𝑛 = 45,582 is even.

• If 𝑛 = 10 (i.e., 𝑛 is even), then 𝑛2 + 𝑛 = 110 is even.

• If 𝑛 = −314 (i.e., 𝑛 is even), then 𝑛2 + 𝑛 = 98,282 is even.

These examples suggest a proof technique called proof by cases. In this method,
we split the given scenario into multiple cases and then prove the statement for each
case. It is important that the cases considered cover all the possibilities. For instance,
if 𝑛 is an integer, then the cases (1) 𝑛 is odd and (2) 𝑛 is even would suffice, since every
integer is either odd or even.

Theorem 1.4. If 𝑛 is an integer, then 𝑛2 + 𝑛 is even.

Proof. Assume 𝑛 is an integer. We consider the two cases: (1) 𝑛 is odd and (2) 𝑛 is
even.

Case (1). Suppose 𝑛 is odd, so that 𝑛 = 2𝑘 + 1 for some integer 𝑘. Then
𝑛2 + 𝑛 = (2𝑘 + 1)2 + (2𝑘 + 1) = 4𝑘2 + 6𝑘 + 2 = 2 ⋅ (2𝑘2 + 3𝑘 + 1),

where 2𝑘2 + 3𝑘 + 1 is an integer. Thus, 𝑛2 + 𝑛 is even.
Case (2). Suppose 𝑛 is even, so that 𝑛 = 2𝑘 for some integer 𝑘. Then

𝑛2 + 𝑛 = (2𝑘)2 + 2𝑘 = 4𝑘2 + 2𝑘 = 2 ⋅ (2𝑘2 + 𝑘),
where 2𝑘2 + 𝑘 is an integer. Thus, 𝑛2 + 𝑛 is even. ■

Remark. Notice how Theorem 1.4 is a statement about all integers. We prove it by
showing that it is true for an arbitrary integer 𝑛. In fact, the first sentence of the proof,
“Assume 𝑛 is an integer,” may be considered as a shorthand for “Assume 𝑛 is an arbi-
trary integer.”

Next, consider the statement: If 𝑛 is an integer, then 𝑛2 + 1 is not a multiple of 3.
As we examine some concrete examples, observe that when an integer 𝑛 is divided by
3, the possible remainders are 0, 1, or 2. (Note: For a more in-depth discussion of
remainders, see Theorem 12.16.)

• If 𝑛 = 12 = 3 ⋅ 4 + 0 (i.e., remainder = 0), then 𝑛2 + 1 = 145 is not a multiple of 3.

• If 𝑛 = 13 = 3 ⋅ 4 + 1 (i.e., remainder = 1), then 𝑛2 + 1 = 170 is not a multiple of 3.

• If 𝑛 = 14 = 3 ⋅ 4 + 2 (i.e., remainder = 2), then 𝑛2 + 1 = 197 is not a multiple of 3.

In the above calculation, 145 is not a multiple of 3, because 145 = 3 ⋅ 48 + 1. In other
words, when we divide 145 by 3, there is a non-zero remainder. Similar arguments can
be made to explain why neither 170 nor 197 is a multiple of 3. These three examples
suggest the three cases that we consider in the proof below.

Theorem 1.5. If 𝑛 is an integer, then 𝑛2 + 1 is not a multiple of 3.
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Proof. Assume 𝑛 is an integer. When 𝑛 is divided by 3, the possible remainders are 0,
1, or 2.

Case (1). The remainder is 0, so that 𝑛 = 3 ⋅ 𝑞 + 0 for some integer 𝑞. Then
𝑛2 + 1 = (3𝑞)2 + 1 = 9𝑞2 + 1 = 3 ⋅ (3𝑞2) + 1.

Hence, when we divide 𝑛2 + 1 by 3, there is a remainder of 1. Thus, 𝑛2 + 1 is not a
multiple of 3.

Case (2). The remainder is 1, so that 𝑛 = 3 ⋅ 𝑞 + 1 for some integer 𝑞. Then
𝑛2 + 1 = (3𝑞 + 1)2 + 1 = 9𝑞2 + 6𝑞 + 2 = 3 ⋅ (3𝑞2 + 2𝑞) + 2.

Hence, when we divide 𝑛2 + 1 by 3, there is a remainder of 2. Thus, 𝑛2 + 1 is not a
multiple of 3.

Case (3). The remainder is 2. (This case is left for you as an exercise at the end of
the chapter.) ■

1.3 Contrapositive
Consider the statement: If 𝑛2 is odd, then 𝑛 is odd. (Here, 𝑛 is an integer.) To prove it,
we might start by assuming the hypothesis, i.e., 𝑛2 is odd. Then 𝑛2 = 2𝑘 + 1 for some
integer 𝑘. We wish to show that 𝑛 is odd, but we’re stuck, since solving 𝑛2 = 2𝑘+ 1 for
𝑛 requires us to take the square root of 2𝑘 + 1. Yikes!

We will introduce a new proof technique to handle a statement like the following:
If 𝑛2 is odd, then 𝑛 is odd. But first, consider these four implications:

(a) If I live in Tokyo, then I live in Japan.

(b) If I live in Japan, then I live in Tokyo.

(c) If I don’t live in Tokyo, then I don’t live in Japan.

(d) If I don’t live in Japan, then I don’t live in Tokyo.

Statement (a) is true, because Tokyo is a city inside Japan. For the same reason, state-
ment (d) is also true; i.e., if I live outside of Japan, then I can’t possibly live in Tokyo.
However, statements (b) and (c) are false, because I could be living in Osaka, for ex-
ample.

Note how (d) is obtained from (a) by swapping the hypothesis and conclusion and
negating both of them; and (a) is obtained from (d) in the same way. Thus, (a) and
(d) are said to be contrapositives of each other. Similarly, (b) and (c) are contrapositive
pairs. The key fact about contrapositives is that they are equivalent; i.e., proving one
ensures that the other must be true also.

Here, to negate a statement means to write down its opposite. Thus, when we
negate “I live in Tokyo,” we obtain its negation: “I don’t live in Tokyo.” Observe that if a
statement is true, then its negation is false; and if a statement is false, then its negation
is true.

Example 1.6. When 𝑛 = 7, then the statement “𝑛 is odd” is true, and its negation “𝑛
is not odd” is false. Moreover, when 𝑛 = 6, the statement “𝑛2 is odd” is false, and its
negation “𝑛2 is not odd” is true.



1.4. Proof by contradiction 7

Back to our statement: If 𝑛2 is odd, then 𝑛 is odd. Since it’s difficult to prove this
implication directly, we can prove its contrapositive: If 𝑛 is not odd, then 𝑛2 is not odd;
or more succinctly:

Theorem 1.7. If 𝑛 is even, then 𝑛2 is even.

Proof. Given in the exercises. ■

Proof know-how. Proving “If 𝑝, then 𝑞” is exactly the same as proving the contra-
positive: “If not 𝑞, then not 𝑝.” (Choose the easier one!) Here, 𝑝 and 𝑞 are statements
such as “𝑛 is odd.”

Example 1.8. Let 𝐴𝐵𝐶𝐷 be a quadrilateral, and consider the statement: If 𝐴𝐵𝐶𝐷 is a
rectangle, then 𝐴𝐵𝐶𝐷 is a square. This statement is false, since there exist rectangles
that are not squares. The contrapositive is: If 𝐴𝐵𝐶𝐷 is not a square, then 𝐴𝐵𝐶𝐷 is not
a rectangle. This is also false for the same reason; i.e., even if 𝐴𝐵𝐶𝐷 is not a square, it
can still be a rectangle. As expected, the statement and contrapositive have the same
truth value (they are both false), as they are equivalent.

1.4 Proof by contradiction
Proof by contradiction is another technique for proving an implication, i.e., an “if . . . ,
then . . . ” statement. Here are the steps of this proof method:

(1) Assume that the hypothesis is true (as usual).

(2) Also assume that the conclusion is false, or equivalently, that the negation of the
conclusion is true.

(3) Obtain a contradiction, i.e., an absurd outcome. This would indicate that the con-
clusion couldn’t have been false, and so it must be true.

Consider the statement: If 𝑛2 is even, then 𝑛 is even. Let’s prove this using proof by
contradiction. To start, we assume that the hypothesis is true, which means that the
first sentence of the proof should be: Assume 𝑛2 is even. Next, we must assume that
the negation of the conclusion is true: Assume 𝑛 is not even, i.e., 𝑛 is odd. To complete
the proof, we must obtain a contradiction. Knowing which contradiction to derive is
typically the most challenging aspect of proof by contradiction. Here, we will show
that 𝑛2 is odd (because 𝑛 is odd), which contradicts our assumption that 𝑛2 is even.

Theorem 1.9. Let 𝑛 be an integer. If 𝑛2 is even, then 𝑛 is even.

Proof. Assume 𝑛2 is even. Also assume for contradiction that 𝑛 is odd. Since 𝑛 is odd,
Theorem 1.3 implies that 𝑛2 is odd. But this contradicts the fact that 𝑛2 is even. Hence,
𝑛 cannot be odd. Thus, 𝑛 is even. ■

Proof know-how. In a proof by contradiction, we make two assumptions: (1) The
hypothesis is true and (2) the negation of the conclusion is true. The phrase “for con-
tradiction” (as seen in the above proof) is often usedwith the negation of the conclusion
to differentiate between these two assumptions.
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Here is another example. Note that a rational number is a fraction of the form 𝑚
𝑛

where𝑚 and 𝑛 are integers (and 𝑛 is non-zero, since we cannot divide by zero).

Theorem 1.10. If 𝑟 is a rational number, then 𝑟2 ≠ 2.

Proof. Assume 𝑟 is a rational number. Also assume for contradiction that 𝑟2 = 2. Let
𝑚 and 𝑛 be integers such that 𝑟 = 𝑚

𝑛 is a reduced fraction; i.e.,𝑚 and 𝑛 do not share a
common factor greater than 1. Then 𝑟2 = 2 implies 𝑚2

𝑛2 = 2, so that 𝑚2 = 2𝑛2. Thus
𝑚2 is even. Then 𝑚 is even by Theorem 1.9, so that 𝑚 = 2𝑘 for some integer 𝑘. But
2𝑛2 = 𝑚2 = (2𝑘)2 = 4𝑘2, so that 2𝑛2 = 4𝑘2. Dividing both sides of 2𝑛2 = 4𝑘2 by 2
yields 𝑛2 = 2𝑘2. Thus, 𝑛2 is even and so 𝑛 is even. Now,𝑚 and 𝑛 are both even, which
implies that they have a common factor of 2. However, this contradicts the fact that𝑚
and 𝑛 do not share a common factor greater than 1. Hence, 𝑟2 cannot equal 2. Thus,
𝑟2 ≠ 2. ■

Remark. Proof by contradiction is different from proving the contrapositive of a given
statement. The contrapositive of the above theorem is “If 𝑟2 = 2, then 𝑟 is not a rational
number.” This is not what we proved in the sample proof above.

1.5 If and only if
In this chapter, we studied these two implications:

• If 𝑛 is odd, then 𝑛2 is odd.

• If 𝑛2 is odd, then 𝑛 is odd.

Each is obtained from the other by swapping the if-part and the then-part. Thus, each
is called the converse of the other. (Careful: They’re not contrapositives of each other.
Why not?) As a shorthand, we can combine the two and write: 𝑛 is odd if and only if
𝑛2 is odd. So, when you’re asked to prove an “if and only if” statement, you’ll have to
prove two implications.

Example 1.11. Here is another pair of statements that are converses of each other:

• If I live in Tokyo, then I live in Japan. (True)

• If I live in Japan, then I live in Tokyo. (False)

As you can see, an implication can be true even though its converse is false.

Example 1.12. Similar to Example 1.11, below is a pair of statements that are con-
verses of each other where one is true and the other is false.

• If 𝑛 is positive, then 𝑛2 is positive. (True)

• If 𝑛2 is positive, then 𝑛 is positive. (False)

The first implication is true, but the second one is false. With 𝑛 = −3, we see that even
though 𝑛2 = 9 is positive, 𝑛 = −3 is not positive.
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1.6 Counterexample
Consider the statement: If 𝑛 is prime, then 2𝑛 − 1 is prime. As usual, let’s create some
concrete examples by letting 𝑛 take on the values of the first few prime numbers.

• If 𝑛 = 2, then 22 − 1 = 3 is prime.

• If 𝑛 = 3, then 23 − 1 = 7 is prime.

• If 𝑛 = 5, then 25 − 1 = 31 is prime.

• If 𝑛 = 7, then 27 − 1 = 127 is prime.
So far, so good. But does this mean that the statement is true? Not necessarily. In order
for the statement to be true, the expression 2𝑛 − 1must be prime for every prime 𝑛. In
other words, if we can find just one counterexample, i.e., an example that invalidates
the statement, then we can conclude that the statement is false. Here is a counterex-
ample: 𝑛 = 11 is prime (which satisfies the hypothesis), but 211 − 1 = 2,047 = 23 ⋅ 89
is not prime (which fails the conclusion). Thus, the implication is false.

Proof know-how. To show that an implication is false, we only need to find one coun-
terexample. Thus, disproving an implication (when it’s false) tends to be easier than
proving one (when it’s true).

Example 1.13. Consider the statement: If 𝑛 is an odd prime, then 𝑛+2 is prime. Many
values of 𝑛 serve as valid examples of this statement, as shown below:
• If 𝑛 = 3, then 𝑛 + 2 = 5 is prime.

• If 𝑛 = 11, then 𝑛 + 2 = 13 is prime.

• If 𝑛 = 101, then 𝑛 + 2 = 103 is prime.
However, the statement is false because we can find a counterexample: 𝑛 = 7 is an
odd prime (which satisfies the hypothesis), but 𝑛 + 2 = 9 is not prime (which fails the
conclusion).

Exercises
1. Prove: Let𝑚 and 𝑛 be integers. If𝑚 is odd and 𝑛 is even, then𝑚+ 𝑛 + 3 is even.

2. Prove: Let𝑚 and 𝑛 be integers. If𝑚 and 𝑛 are both odd, then𝑚𝑛 is odd.
(This exercise is referenced in Chapter 2, Exercise #17.)

3. Consider the statement: If 𝑛 is an odd integer, then 𝑛 is a prime number. Which
value of 𝑛 is a counterexample showing that the statement is false? Explain.
• 𝑛 = 13.
• 𝑛 = 15.

4. Consider the statement: If 𝑛 is an odd integer, then 𝑛 = 4𝑘 + 1 for some integer 𝑘.
Give a counterexample to show that this is false. Explainwhy your counterexample
invalidates the statement.
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5. Consider the statement: If 𝑛 ≠ 4𝑘 + 1 for any integer 𝑘, then 𝑛 is an even integer.
Give a counterexample to show that this is false. Explainwhy your counterexample
invalidates the statement.

6. Consider the statement: If 𝑛 is not amultiple of 4, then 𝑛2 is not amultiple of 4. Give
a counterexample to show that this is false. Explain why your counterexample
invalidates the statement.

7. Consider the statement: If 𝑛2 is amultiple of 4, then 𝑛 is amultiple of 4. Give a coun-
terexample to show that this is false. Explainwhy your counterexample invalidates
the statement.

8. Consider the statement: 𝑛2 + 𝑛 + 11 is a prime for all positive integers 𝑛.

(a) Rewrite the statement in the form of an implication (i.e., “If . . . , then . . . ”).
(b) Show that the statement is false by exhibiting a counterexample.

9. Prove: If 𝑛 is an integer, then 5𝑛2 − 𝑛 + 2 is even.

10. Complete Case (3) in the proof of Theorem 1.5.

11. Consider the statement: If 𝑛 is even, then 𝑛 + 2 is even.

(a) Write the converse of this statement. Is the converse true? Why or why not?
(b) Write the contrapositive of this statement. Is the contrapositive true? Why or

why not?

12. Consider the statement: If 𝑛 is a multiple of 6, then 𝑛 is a multiple of 3.

(a) Write the converse of this statement. Is the converse true? Why or why not?
(b) Write the contrapositive of this statement. Is the contrapositive true? Why or

why not?

13. Consider the statement: If𝑚 and 𝑛 are both even, then𝑚+ 𝑛 is even.

(a) Write the converse of this statement. Is the converse true? Why or why not?
(b) Write the contrapositive of this statement. Is the contrapositive true? Why or

why not?

14. (a) Come up with a true implication whose converse is false.
(b) Write the contrapositive of your implication in part (a). Is the contrapositive

true? Explain.

15. Consider the statement: If𝑚 and 𝑛 are integers, then 4𝑚 + 6𝑛 ≠ 1.

(a) What is the hypothesis of this implication?
(b) Write down the negation of its conclusion.
(c) Suppose𝑚 = 17 and 𝑛 = −10. Is 4𝑚 + 6𝑛 even or odd?
(d) Choose your own integers𝑚 and 𝑛. Is 4𝑚 + 6𝑛 even or odd?

16. Prove: If𝑚 and 𝑛 are integers, then 4𝑚 + 6𝑛 ≠ 1. (See Exercise #15.)
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17. Consider the statement: If 𝑥 is rational and 𝑦 is irrational, then 𝑥 + 𝑦 is irrational.
Note: The definition of a rational number was given prior to Theorem 1.10. More-
over, an irrational number is a (real) number that is not rational.

(a) First, create an example that illustrates this statement.
(b) What is the hypothesis of this implication?
(c) Write down the negation of its conclusion.
(d) Suppose 𝑥 = 3

5 and 𝑥 + 𝑦 = 6
7 . Find the value of 𝑦. Is 𝑦 rational or irrational?

(e) Repeat part (d), but with 𝑥 = 1
7 and 𝑥 + 𝑦 = 3

10 .

18. Prove: If 𝑥 is rational and 𝑦 is irrational, then 𝑥 + 𝑦 is irrational. (See Exercise
#17.)

19. Prove: If 𝑛 is an even integer, then 𝑛2 is even.
Recall: This is the contrapositive of “If 𝑛2 is odd, then 𝑛 is odd.” When proving an
implication, it is often easier to prove the contrapositive instead.

20. Prove: If 𝑛 is an odd integer, then 𝑛2 = 8𝑘 + 1 for some integer 𝑘.
Hint: Theorem 1.4may be useful. If you use the theorem in your proof, you should
cite it like this: “By Theorem 1.4, [blah blah blah].”

21. Prove: If 𝑥 and 𝑦 are positive numbers, then√𝑥 + 𝑦 ≠ √𝑥 + √𝑦.

22. Prove: If 𝑛 + 1 pigeons are placed in 𝑛 holes, then there is a hole containing at
least two pigeons.
Note: This is often called the “Pigeonhole principle”.

23. (Challenge) Prove: Let 𝑛 be a positive integer. If 2𝑛 −1 is prime, then 𝑛 is prime.





2
Sets and Subsets

Sets and subsets play a critical role in the study of abstract algebra. A set is a collection
of things (called elements) such as numbers or people. And a subset is a set whose
elements are all contained in another set. For example, the set of all people in Tokyo is
a subset of the set of all people in Japan.

In this chapter, we will learn how to work with sets in a mathematical setting. For
instance, we’ll see how to describe sets using mathematical symbols. We will examine
the set of integers, arguably the most important example in this textbook. We will also
introduce the notion of closure and how to show that two sets are equal. Both concepts
will be revisited often when we study groups and rings later in the textbook.

2.1 What is a set?
In mathematics, a set is a collection of objects (such as numbers, people, etc.) that are
different from each other. For example,

{Sarah, Elizabeth, Anita, Ryota}
is the set of people in my family. The members of a set are called elements. Notice how
a set is defined by listing its elements in between curly brackets {⋯}, and the elements
are separated by commas. In a set, the order in which the elements are listed does not
matter. Thus, the set {Anita, Elizabeth, Ryota, Sarah} is the same as the one written
above, since they contain the same elements.

Example 2.1. Consider the sets 𝑆 = {2, 4, 6, 8} and 𝑇 = {1, 2, 3, 4, 5, 6, 7, 8, 9}. Note
how every element of 𝑆 is also contained in 𝑇. Thus, we say that 𝑆 is a subset of 𝑇.
However, 𝑇 is not a subset of 𝑆. For instance, 3 is an element of 𝑇 but not of 𝑆.

Definition 2.2 (Subset). Let 𝑆 and 𝑇 be sets. We say 𝑆 is a subset of 𝑇, denoted 𝑆 ⊆ 𝑇,
if every element of 𝑆 is also contained in 𝑇.

Example 2.3. Any set 𝑆 is a subset of itself, i.e., 𝑆 ⊆ 𝑆, because every element of 𝑆 is
also contained in 𝑆.

13
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Example 2.4. The empty set is a set containing no element. It is often denoted ∅ or { }.
The empty set is a subset of any set 𝑆; i.e., ∅ ⊆ 𝑆.

Example 2.5. A set need not contain the same “type” of elements. For instance, here
is a set that contains both numbers and people:

{Sarah, 1, 2, Elizabeth, 3, 4, Anita, 5, 6, Ryota, 7, 8}.

That being said, almost all examples of sets in this textbookwill contain the same “type”
of elements.

Example 2.6. Recall that the elements of a set must be different from each other.
In other words, duplicate elements are not counted in a set. For instance, the set
{1, 1, 2, 2, 3, 3} is the same as the set {1, 2, 3}. Both sets are said to contain three ele-
ments.

2.2 Set of integers and its subsets
Recall from Chapter 1 that the set of integers includes the counting numbers (1, 2, 3, 4,
. . . ), their negatives (−1, −2, −3, −4, . . . ), and zero (0). This set is denoted by ℤ, which
stands for the German word Zahlen (“numbers”). In other words,

ℤ = {. . . , −4, −3, −2, −1, 0, 1, 2, 3, 4, . . .}.

Unlike the sets we encountered in Section 2.1, ℤ is an infinite set; i.e., it contains infin-
itely many elements.

We use the shorthand 3 ∈ ℤ to say that 3 is an element of ℤ (or 3 is contained in
ℤ). We also write 2

5 ∉ ℤ to say that 25 is not an element of ℤ (or
2
5 is not contained in ℤ).

Example 2.7. We have 2
5 ,

8
5 ∉ ℤ. But their sum 2

5 +
8
5 = 2 is an element of ℤ. Compare

this with the notion of closure, which is discussed in Section 2.3.

Example 2.8. Consider the following subset of ℤ:

𝐴 = {3, 5, 7, . . . , 17, 19}.

Suppose you were asked to write down all of its elements. You might say

𝐴 = {3, 5, 7, 9, 11, 13, 15, 17, 19},

i.e., the set of odd integers between 3 and 19. But it turns out that

𝐴 = {3, 5, 7, 11, 13, 17, 19},

i.e., the set of primes between 3 and 19. You would be justified in thinking that this is
unfair, since the ellipsis (. . . ) left some ambiguity about the remaining elements of the
set.

Example 2.8 invokes a need for a more precise way to describe a set, which we will
examine below.
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Example 2.9. Consider the following subset of ℤ:

𝐵 = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97}.

Set 𝐵 contains all primes less than 100, which is more descriptive (and succinct!) than
listing all of its elements. Like set 𝐵, we will often consider a set of elements that satisfy
a certain property. Here is a way to describe set 𝐵 symbolically:

𝐵 = {𝑛 ∈ ℤ | 2 ≤ 𝑛 ≤ 100 and 𝑛 is prime}.

The “𝑛 ∈ ℤ” tells us where the elements of set 𝐵 come from; i.e., it implies that 𝐵 is a
subset of ℤ. The symbol | means “such that.” But be careful: This symbol should be
used as “such that” inside {⋯} only. The property that must be satisfied by all elements
of 𝐵 is “2 ≤ 𝑛 ≤ 100 and 𝑛 is prime.” For example, 45 ∉ 𝐵, because it is not prime; and
101 ∉ 𝐵, because it is greater than 100.

Example 2.10. Consider the set 𝑆 = {𝑛 ∈ ℤ | 0 < 𝑛 < 25 and 𝑛 is a multiple of 3}.
Hence, 𝑆 contains integers 𝑛with the property that 0 < 𝑛 < 25 and 𝑛 is a multiple of 3.
If we list all of its elements, we have 𝑆 = {3, 6, 9, 12, 15, 18, 21, 24}. Note that 𝑆 ⊆ ℤ.

Example 2.11. Consider the set 𝑇 = {𝑛 ∈ ℤ | 0 < 4𝑛 − 1 < 20}, which is also a subset
of ℤ. To find the elements of 𝑇, consider the following calculations:

• With 𝑛 = 1, we have 4 ⋅ 1 − 1 = 3, which is between 0 and 20.

• With 𝑛 = 2, we have 4 ⋅ 2 − 1 = 7, which is between 0 and 20.

• With 𝑛 = 3, we have 4 ⋅ 3 − 1 = 11, which is between 0 and 20.

• With 𝑛 = 4, we have 4 ⋅ 4 − 1 = 15, which is between 0 and 20.

• With 𝑛 = 5, we have 4 ⋅ 5 − 1 = 19, which is between 0 and 20.

Note that the condition 0 < 4 ⋅ 2 − 1 < 20 does not imply that 4 ⋅ 2 − 1 ∈ 𝑇. Rather, we
have 2 ∈ 𝑇. Thus, when we list the elements of 𝑇, we obtain 𝑇 = {1, 2, 3, 4, 5}.

Example 2.12. An important subset of ℤ is the set of natural numbers, denoted ℕ,
containing the positive integers. Thus, ℕ = {𝑛 ∈ ℤ | 𝑛 > 0} = {1, 2, 3, 4, . . .}. We will
use both ℤ and ℕ throughout the textbook.

2.3 Closure
Any two elements in ℤ can be added together to obtain another element of ℤ. For
example, given 3, 7 ∈ ℤ, we find that their sum 3 + 7 = 10 is also an element of ℤ.
More generally, we have the following: If 𝑎, 𝑏 ∈ ℤ, then 𝑎 + 𝑏 ∈ ℤ. Therefore, we say
that the set ℤ is closed under addition.

Similarly, ℤ is closed under multiplication. For instance, given −4, 6 ∈ ℤ, we see
that their product−4⋅6 = −24 is also in ℤ. More generally, we have the following: If 𝑎,
𝑏 ∈ ℤ, then 𝑎 ⋅ 𝑏 ∈ ℤ. However, ℤ is not closed under division. As a counterexample,
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note that 5, −3 ∈ ℤ, but 5 ÷ (−3) ∉ ℤ. This concept of closure is depicted by the figure
below:

Closure is an important property of a set and operation that will play a prominent role
in our study of groups and rings later in the textbook.

Example 2.13. Consider the following subset of ℤ:

3ℤ = {𝑛 ∈ ℤ | 𝑛 = 3𝑘 where 𝑘 ∈ ℤ}.

Therefore, 3ℤ contains all integer multiples of 3; i.e.,

3ℤ = {. . . , −12, −9, −6, −3, 0, 3, 6, 9, 12, . . .}.

We claim that 3ℤ is closed under addition; i.e., the sum of any two elements of 3ℤ is
also contained in 3ℤ. For instance, we have 15, 24 ∈ 3ℤ. Their sum is 15 + 24 = 39,
which is also an element of 3ℤ.

Digging further into Example 2.13, we see that 15 ∈ 3ℤ, because 15 = 3 ⋅5, and we
see that 24 ∈ 3ℤ, because 24 = 3⋅8. Their sum is 15+24 = 3⋅5+3⋅8 = 3⋅(5+8) = 3⋅13 so
that 15+24 is also amultiple of 3. Using this example as a guide, we prove the following
theorem.

Theorem 2.14. The set 3ℤ is closed under addition.

Proof. Assume𝑚, 𝑛 ∈ 3ℤ. Then𝑚 = 3𝑘 and 𝑛 = 3𝑗 where 𝑘, 𝑗 ∈ ℤ. We have

𝑚+ 𝑛 = 3𝑘 + 3𝑗 = 3(𝑘 + 𝑗) ∈ 3ℤ,

since 𝑘 + 𝑗 ∈ ℤ. Thus,𝑚+ 𝑛 ∈ 3ℤ. ■

Proof know-how. The statement “the set 𝑆 is closed under addition” is synonymous
with the implication “if 𝑚, 𝑛 ∈ 𝑆, then 𝑚 + 𝑛 ∈ 𝑆.” Thus, to show that 𝑆 is closed
under addition:

(1) Assume𝑚, 𝑛 ∈ 𝑆.

(2) Show that𝑚+ 𝑛 ∈ 𝑆.

Here, addition can be replaced by another operation that 𝑆 permits.



2.4. Showing set equality 17

Before proceeding, we give two more remarks about the proof of Theorem 2.14.

• In the second sentence, you should not write, “Then 𝑚 = 3𝑘 and 𝑛 = 3𝑘 where
𝑘 ∈ ℤ.” That would imply that𝑚 and 𝑛 are equal (since they’re both equal to 3𝑘),
which is not necessarily true.

• In the third sentence of the proof, you should notwrite, “Wehave𝑚+𝑛 = 3(𝑘+𝑗) =
3𝑘 + 3𝑗 ∈ 3ℤ.” (The explanation is left for you as an exercise at the end of the
chapter.)

Example 2.15. Similarly to 3ℤ, we can define the set 2ℤ = {𝑛 ∈ ℤ | 𝑛 = 2𝑘 where 𝑘 ∈
ℤ}, which contains all integer multiples of 2 (or all even integers). Likewise, we can
define 6ℤ = {𝑛 ∈ ℤ | 𝑛 = 6𝑘 where 𝑘 ∈ ℤ} that contains all integer multiples of 6.

More generally, fix an integer𝑚. Then𝑚ℤ = {𝑛 ∈ ℤ | 𝑛 = 𝑚𝑘 where 𝑘 ∈ ℤ} is the
set of all integer multiples of𝑚.

Example 2.16. Let’s look at a couple of extreme cases for the set𝑚ℤ:

• When𝑚 = 1, we have𝑚ℤ = ℤ.

• When𝑚 = 0, we have 0ℤ = {0}, i.e., the set with just one element 0.

2.4 Showing set equality
Example 2.17. Consider the following subset of ℤ:

𝐶 = {𝑛 ∈ ℤ | 𝑛 ∈ 2ℤ and 𝑛 ∈ 3ℤ}.

Thus, set𝐶 contains all integers that aremultiples of both 2 and 3. For example, 18 ∈ 𝐶,
because 18 = 2 ⋅ 9 and 18 = 3 ⋅ 6. However, 20 ∉ 𝐶. Although 20 is a multiple of 2, it
is not a multiple of 3. Other elements of set 𝐶 include 6, 12, 24, 30, . . . , as well as their
negatives (and also 0). We conjecture that 𝐶 = 6ℤ.

Remark. In mathematics, a conjecture is a statement that is not yet proven but that
we suspect is true based on some initial evidence. When used as a verb, “to conjecture”
means “to make a conjecture.”

In Example 2.17 above, we claimed that 𝐶 = 6ℤ. But how can we prove it? More
generally, how can we prove that two sets are equal, i.e., that they contain the same
elements?

Proof know-how. To show that sets 𝑆 and 𝑇 are equal, we must show two things: (1)
𝑆 ⊆ 𝑇, i.e., 𝑆 is a subset of 𝑇, and (2) 𝑇 ⊆ 𝑆, i.e., 𝑇 is a subset of 𝑆. To show that 𝑆 ⊆ 𝑇,
we recall that 𝑆 ⊆ 𝑇 means that every element of 𝑆 is an element of 𝑇. Written as an
implication, this becomes: If 𝑛 ∈ 𝑆, then 𝑛 ∈ 𝑇. Thus, to prove 𝑆 ⊆ 𝑇, we assume that
𝑛 ∈ 𝑆 and then show that 𝑛 ∈ 𝑇. Below is a visual depiction of 𝑆 ⊆ 𝑇.
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Proving that 𝑇 ⊆ 𝑆 is done similarly, with the roles of 𝑆 and 𝑇 swapped.

Below, we will prove that 6ℤ ⊆ 𝐶. The proof of 𝐶 ⊆ 6ℤ is left as an exercise at the
end of this chapter. Thus, we conclude that 𝐶 = 6ℤ.

Now, proving 6ℤ ⊆ 𝐶 is the same as proving: If 𝑛 ∈ 6ℤ, then 𝑛 ∈ 𝐶. Thus, the
first sentence of the proof should be: Assume 𝑛 ∈ 6ℤ. Our goal is to show that 𝑛 ∈ 𝐶,
so the last sentence should be: Therefore, 𝑛 ∈ 𝐶. To proceed with the rest of the proof,
let’s look at an example. Suppose 𝑛 = 30. We know that 30 ∈ 6ℤ, because 30 is a
multiple of 6; i.e., 30 = 6 ⋅ 5. But a multiple of 6 is also a multiple of 2, because 6 itself
is a multiple of 2. More precisely, we have 30 = 6 ⋅ 5 = (2 ⋅ 3) ⋅ 5 = 2 ⋅ (3 ⋅ 5). Similarly,
30 = 6 ⋅ 5 = (3 ⋅ 2) ⋅ 5 = 3 ⋅ (2 ⋅ 5), so that 30 is a multiple of 3. Therefore, 30 ∈ 𝐶,
because it is a multiple of both 2 and 3.

In this example, there is nothing special about 𝑛 = 30. The same argument can be
made with 30 = 6⋅5 replaced by anymultiple of 6, i.e., 𝑛 = 6⋅𝑘 (where 𝑘 is an integer).
Now, we’re ready for the proof.

Theorem 2.18. Let 𝐶 = {𝑛 ∈ ℤ | 𝑛 ∈ 2ℤ and 𝑛 ∈ 3ℤ}. Then 6ℤ ⊆ 𝐶.

Proof. Assume 𝑛 ∈ 6ℤ. We must show that 𝑛 ∈ 𝐶. Then 𝑛 = 6 ⋅ 𝑘 for some integer
𝑘. We have 𝑛 = 6 ⋅ 𝑘 = (2 ⋅ 3) ⋅ 𝑘 = 2 ⋅ (3 ⋅ 𝑘), so that 𝑛 ∈ 2ℤ. Similarly, 𝑛 = 6 ⋅ 𝑘 =
(3 ⋅ 2) ⋅ 𝑘 = 3 ⋅ (2 ⋅ 𝑘), so that 𝑛 ∈ 3ℤ. Thus, 𝑛 ∈ 2ℤ and 𝑛 ∈ 3ℤ. Therefore, 𝑛 ∈ 𝐶. ■

Proof know-how. The second sentence of the proof says, “Wemust show that 𝑛 ∈ 𝐶.”
(We could also write, “Wewill show that 𝑛 ∈ 𝐶.”) Although not required, it is a helpful
way to state the goal of the proof and indicate where the proof is headed. Be careful,
though: Wemust notwrite “Therefore, 𝑛 ∈ 𝐶” as the second sentence, sincewe haven’t
shown that yet.

Exercises
1. Find all subsets of the set {Sarah, Elizabeth, Anita, Ryota}. (Don’t forget the empty

set!)

2. List the elements of the following subsets of ℤ:

(a) {𝑛 ∈ ℤ | 𝑛 = 1
𝑛 }.

(b) {𝑛 ∈ ℤ | 𝑛2 = 𝑛}.
(c) {𝑛 ∈ ℤ | 𝑛 < 100 and√𝑛 is an integer}.
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3. List the elements of the following subsets of ℤ. If a subset contains infinitely many
elements, then list some of its elements and use the ellipsis (. . . ) appropriately.

(a) {𝑛 ∈ ℤ | 𝑛3 is odd}.
(b) {𝑛 ∈ ℤ | 𝑛 = 𝑘2 where 𝑘 ∈ ℤ}.
(c) {𝑛 ∈ ℤ | 2 < 3𝑛 + 1 < 20}.

4. Describe each subset of ℤ using the notation {𝑛∈ℤ∣some property satisfied by 𝑛}.
Note: For parts (a) and (b), you may assume that the patterns you expect continue
to hold.

(a) {0, 5, 10, 15, 20, 25, . . .}.
(b) {. . . , −19, −15, −11, −7, −3, 1, 5, 9, 13, 17, 21, . . .}.
(c) {3, 7, 11, 19, 23, 31, 43, 47, 59, 67, 71, 79, 83}.

5. Describe each subset of ℤ using the notation {𝑛∈ℤ∣some property satisfied by 𝑛}.
(a) The set of all positive multiples of 7.
(b) The set of all negative multiples of 4.
(c) The set of all 2-digit positive integers that end with a 3.

6. Suppose 𝑆 = {𝑛 ∈ ℤ | some property satisfied by 𝑛}. Find “some property satisfied
by 𝑛” so that:
(a) 𝑆 = ℤ.
(b) 𝑆 = ∅.

7. Let 𝑆 be a subset of ℤ. Define precisely what it means for 𝑆 to be closed under
addition.

8. Consider the set ℚ = {𝑚𝑛 | 𝑚, 𝑛 ∈ ℤ, 𝑛 ≠ 0}.
(a) Write down a few elements of this set.
(b) Choose two elements of ℚ and add them together. Is the sum still in ℚ?
(c) Repeat part (b) with a few more pairs of elements in ℚ.

9. Prove: The set ℚ = {𝑚𝑛 | 𝑚, 𝑛 ∈ ℤ, 𝑛 ≠ 0} is closed under addition.
Note: First work through Exercise #8 above. Also, be careful: 37 +

2
5 ≠

3+2
7+5 .

10. Fix an integer𝑚. Prove that𝑚ℤ is closed under addition.

11. Elizabeth and Anita wrote the following proof of Theorem 2.14:

There is a (subtle) logical error in their proof. Find it and fix it.

12. Prove: The set 3ℤ is closed under multiplication.
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13. Consider the statement: If 𝑟 ∈ ℤ and 𝑎 ∈ 5ℤ, then 𝑟 ⋅ 𝑎 ∈ 5ℤ.
(a) Create an example that illustrates this statement.
(b) Prove the statement.

14. (a) Prove: 12ℤ ⊆ 4ℤ, i.e., 12ℤ is a subset of 4ℤ. (This exercise is referenced in
Exercise #20a.)

(b) Give a counterexample to show that 4ℤ ⊆ 12ℤ is false.

15. Consider the statement: If 𝑅 ⊆ 𝑆 and 𝑆 ⊆ 𝑇, then 𝑅 ⊆ 𝑇. (Here, 𝑅, 𝑆, and 𝑇 are
sets.)

(a) Create an example that illustrates this statement.
(b) Prove the statement.

16. Let 𝑆 and 𝑇 be sets. For each statement, if it’s true, prove it; if it’s false, give a
counterexample.

(a) If 𝑛 ∈ 𝑆 and 𝑆 ⊆ 𝑇, then 𝑛 ∈ 𝑇.
(b) If 𝑛 ∈ 𝑇 and 𝑆 ⊆ 𝑇, then 𝑛 ∈ 𝑆.

17. Prove: Let 𝐶 = {𝑛 ∈ ℤ | 𝑛 ∈ 2ℤ and 𝑛 ∈ 3ℤ}. Then 𝐶 ⊆ 6ℤ.
Note: Combined with 6ℤ ⊆ 𝐶 (Theorem 2.18), we conclude that 𝐶 = 6ℤ.
Hint: Chapter 1, Exercise #2 may be useful for this proof.

18. Consider the statement: Fix an integer𝑚. Then𝑚ℤ = (−𝑚)ℤ.
(a) Create an example that illustrates this statement.
(b) Prove the statement.

19. Let 𝑆 and 𝑇 be sets. Define their intersection, denoted 𝑆∩𝑇, to be the set containing
elements that are in both 𝑆 and 𝑇. For instance, we saw in Example 2.17 that
2ℤ ∩ 3ℤ = 6ℤ.
(a) Find a value of𝑚 such that 4ℤ ∩ 5ℤ = 𝑚ℤ.
(b) Find a value of𝑚 such that 7ℤ ∩ 10ℤ = 𝑚ℤ.
(c) Find a value of𝑚 such that 10ℤ ∩ 15ℤ = 𝑚ℤ.
(d) Any conjectures?

20. (a) In Exercise #14, you showed that 12ℤ ⊆ 4ℤ. Compute 12ℤ ∩ 4ℤ.
(b) Find a pair of sets 𝑆 and 𝑇 such that 𝑆 ⊆ 𝑇. Then compute 𝑆 ∩ 𝑇.
(c) Repeat part (b) with another pair of sets 𝑆 and 𝑇.
(d) What conjecture do you have?

21. Prove: Let 𝑆 and 𝑇 be sets. If 𝑆 ⊆ 𝑇, then 𝑆 ∩ 𝑇 = 𝑆.

22. Find sets 𝑅, 𝑆, and 𝑇 with the following properties:
• There is no element that is in all three sets.
• 𝑅 ∩ 𝑆, 𝑅 ∩ 𝑇, and 𝑆 ∩ 𝑇 are all not the empty set.
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Divisors

In the first two chapters, we examined various properties of the set of integers ℤ. For
instance, given an integer 𝑛, we considered its parity, i.e., whether it is odd or even.
We also saw that ℤ is closed under addition and multiplication. We then explored the
various subsets of ℤ.

In this chapter, we will study the notion of divisors, which indicates how a pair
of integers relate to one another. For example, we say 4 is a divisor of 24, which is
synonymouswith saying 24 is amultiple of 4. Divisors play an important role in various
topics in this textbook, including (but certainly not limited to) modular arithmetic,
order of a group element, and Lagrange’s theorem.

3.1 Divisor
The following mean the same thing:
• 24 is a multiple of 4.
• 4 is a divisor of 24.

Digging a bit deeper, we know that 4 is a divisor of 24 (or synonymously, 24 is amultiple
of 4), because 24 = 4 ⋅ 6. Moreover, we write 4 ∣ 24 as a shorthand for “4 is a divisor of
24.”

Example 3.1. We know that 7 is a divisor of 91, because 91 = 7 ⋅ 13. As a shorthand,
we write 7 ∣ 91. However, 7 is not a divisor of 32 (shorthand: 7 ∤ 32), since there is no
integer 𝑘 such that 32 = 7 ⋅ 𝑘.

Generalizing from these examples, we obtain the following.

Definition 3.2. Let 𝑑, 𝑛 ∈ ℤ. We say that 𝑑 is a divisor of 𝑛 when 𝑛 = 𝑑 ⋅ 𝑘 for some
integer 𝑘. We write 𝑑 ∣ 𝑛 as a shorthand for “𝑑 is a divisor of 𝑛.”

Remark. As discussed above, the notation 4 ∣ 24 is a statement which says “4 is a
divisor of 24.” This should not be confused with 24

4 , which is a (rational) number that
is equal to 6.

21
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Example 3.3. Here are some divisor relations involving the integer 0:

• 17 is a divisor of 0 (i.e., 17 ∣ 0), because 0 = 17 ⋅ 0.

• 0 is not a divisor of 17 (i.e., 0 ∤ 17), because there is no integer 𝑘 such that 17 = 0⋅𝑘.

• 0 is a divisor of 0 (i.e., 0 ∣ 0), because 0 = 0 ⋅ 23. Here, 23 can be replaced by any
integer. Observe that 0 ∣ 0 is a true statement, while the expression 0

0 is undefined.

Our next goal is to prove the statement: If 𝑎 ∣ 𝑏 and 𝑏 ∣ 𝑐, then 𝑎 ∣ 𝑐. (Here, 𝑎, 𝑏,
𝑐 ∈ ℤ.) As usual, we begin by writing down the first and last sentences of the proof.
Here is the first sentence, wherewe assume the hypothesis: Assume 𝑎 ∣ 𝑏 and 𝑏 ∣ 𝑐. Our
last sentence is the conclusion: Thus, 𝑎 ∣ 𝑐. For the steps in between, let’s consider an
example where 𝑎 = 4, 𝑏 = 12, and 𝑐 = 60. Then 4 ∣ 12, because 12 = 4 ⋅ 3. Also 12 ∣ 60,
because 60 = 12 ⋅ 5. Combining these two, we obtain 60 = 12 ⋅ 5 = (4 ⋅ 3) ⋅ 5 = 4 ⋅ (3 ⋅ 5),
which implies that 4 ∣ 60. The proof is obtained by replacing 4, 12, and 60 with 𝑎, 𝑏,
and 𝑐.

Theorem 3.4. Let 𝑎, 𝑏, 𝑐 ∈ ℤ. If 𝑎 ∣ 𝑏 and 𝑏 ∣ 𝑐, then 𝑎 ∣ 𝑐.

Proof. Assume 𝑎 ∣ 𝑏 and 𝑏 ∣ 𝑐. We must show that 𝑎 ∣ 𝑐. First, 𝑎 ∣ 𝑏 implies 𝑏 = 𝑎 ⋅ 𝑘
for some integer 𝑘. Likewise, 𝑏 ∣ 𝑐means 𝑐 = 𝑏 ⋅ 𝑗 for some 𝑗 ∈ ℤ. Then,

𝑐 = 𝑏 ⋅ 𝑗 = (𝑎 ⋅ 𝑘) ⋅ 𝑗 = 𝑎 ⋅ (𝑘 ⋅ 𝑗),

so that 𝑐 = 𝑎 ⋅ (𝑘 ⋅ 𝑗), where 𝑘 ⋅ 𝑗 is an integer. Thus, 𝑎 ∣ 𝑐 as desired. ■

Proof know-how. The last sentence of the above proof includes the phrase “as de-
sired.” Although not required, this is a common way of ending the proof by emphasiz-
ing that what was intended to be proved has been proved.

3.2 GCD theorem
The following example introduces the notion of a common divisor and the greatest
common divisor.

Example 3.5. Let 𝑎 = 12 and 𝑏 = 18. Then 𝑑 = 3 is a common divisor of 𝑎 and 𝑏,
because 𝑑 ∣ 𝑎 and 𝑑 ∣ 𝑏 (i.e., 𝑑 is a divisor of both 𝑎 and 𝑏). The list of all common
divisors of 𝑎 = 12 and 𝑏 = 18 includes ±1, ±2, ±3, and ±6. Of these common divisors,
6 is the greatest (or the largest). Therefore, the greatest common divisor of 𝑎 and 𝑏 is 6,
written gcd(𝑎, 𝑏) = 6.

Definition 3.6. Let 𝑎, 𝑏 ∈ ℤ. An integer 𝑑 is the greatest common divisor of 𝑎 and 𝑏,
written 𝑑 = gcd(𝑎, 𝑏), if it satisfies the following properties:

• 𝑑 > 0 (i.e., 𝑑must be positive).

• 𝑑 ∣ 𝑎 and 𝑑 ∣ 𝑏 (i.e., 𝑑 is a divisor of both 𝑎 and 𝑏).

• If 𝑒 ∣ 𝑎 and 𝑒 ∣ 𝑏, then 𝑑 ≥ 𝑒 (see remark below).
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Remark. The third property in the above definition means, “If 𝑒 is a common divisor
of 𝑎 and 𝑏, then 𝑑 is at least as large as 𝑒.” This ensures that 𝑑 is the greatest common
divisor of 𝑎 and 𝑏. Some textbooks, especially those in number theory, use “if 𝑒 ∣ 𝑎 and
𝑒 ∣ 𝑏, then 𝑒 ∣ 𝑑” as its third property. We will use the version in Definition 3.6, since it
emphasizes how 𝑑 is the greatest among the common divisors of 𝑎 and 𝑏.

Example 3.7. Let 𝑎 = 10 and 𝑏 = 27. Then gcd(10, 27) = 1. We say that 10 and
27 are relatively prime, since their gcd is 1. Neither 10 nor 27 is a prime number, but
“relatively prime” means that they do not share any common divisor except for ±1.

On the surface, the next example seems unrelated to the notion of divisors. But it
plays an important role in the theorems that we will prove in the rest of this chapter
and beyond.

Example 3.8. Again, let 𝑎 = 10 and 𝑏 = 27. Consider the equation 10𝑥 + 27𝑦 = 1.
This equation has an integer solution; i.e., we can find integers 𝑥 and 𝑦 that satisfy the
equation. With 𝑥 = −8 and 𝑦 = 3, we have 10 ⋅ (−8)+ 27 ⋅ 3 = −80+81 = 1. Note that
(𝑥, 𝑦) = (−8, 3) is not the only integer solution to this equation. For instance, we have
10 ⋅ 19 + 27 ⋅ (−7) = 1, so that (𝑥, 𝑦) = (19, −7) is another integer solution.

Examples 3.7 and 3.8 suggest the following theorem. Its proof is given much later
in the textbook (in Chapter 35), using future concepts such as rings and principal ideals.
If you’d rather not wait that long, however, there’s also a more accessible proof in Ap-
pendix A.

Theorem 3.9 (GCD theorem). Let 𝑎, 𝑏 ∈ ℤ. If gcd(𝑎, 𝑏) = 1, then there exist integers 𝑥
and 𝑦 such that 𝑎𝑥 + 𝑏𝑦 = 1.

The utility of the GCD theorem is that it allows us to convert a conceptual relation-
ship between 𝑎 and 𝑏, namely that 𝑎 and 𝑏 are relatively prime, to a concrete equation,
namely 𝑎𝑥 + 𝑏𝑦 = 1. As we will see in the next section, the equation 𝑎𝑥 + 𝑏𝑦 = 1 is
much easier to use in a proof involving divisors.

Example 3.10. Let 𝑎 = 5 and 𝑏 = 8. Then gcd(5, 8) = 1, and thus by the GCD
theorem, we expect to find an integer solution to the equation 5𝑥+8𝑦 = 1. Indeed, we
have 5 ⋅ (−3) + 8 ⋅ 2 = 1, so that (𝑥, 𝑦) = (−3, 2) is an integer solution. We also have
5 ⋅ 13 + 8 ⋅ (−8) = 1, so that (𝑥, 𝑦) = (13, −8) is another integer solution.

Example 3.11. Let 𝑎 = 10 and 𝑏 = 34. Then gcd(10, 34) = 2. The GCD theorem
does not make any conclusion when gcd(𝑎, 𝑏) ≠ 1. But we can see that the equation
10𝑥 + 34𝑦 = 1 does not have an integer solution. If 𝑥 and 𝑦 were integers, then 10𝑥 +
34𝑦 = 2 ⋅ (5𝑥 + 17𝑦) is a multiple of 2, and thus it cannot be equal to 1. You will work
on a generalization of this example as an exercise at the end of the chapter.

3.3 Proofs involving the GCD theorem
In this section, we will prove a pair of theorems whose hypotheses include the condi-
tion gcd(𝑎, 𝑏) = 1. Recall that the GCD theorem allows us to convert this to a more
usable form, i.e., the equation 𝑎𝑥 + 𝑏𝑦 = 1.
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Example 3.12. Consider the statement: If 𝑎 ∣ 𝑏𝑐, then 𝑎 ∣ 𝑐. (Here, 𝑎, 𝑏, 𝑐 ∈ ℤ.) This
statement is false. As a counterexample, suppose 𝑎 = 4, 𝑏 = 6, 𝑐 = 2, so that 𝑏𝑐 = 12.
We have 4 ∣ 12 (i.e., 𝑎 ∣ 𝑏𝑐) but 4 is not a divisor of 2 (i.e., 𝑎 ∤ 𝑐).

Example 3.13. We can salvage the statement in Example 3.12 by adding the condition
gcd(𝑎, 𝑏) = 1. We thus obtain: If 𝑎 ∣ 𝑏𝑐 and gcd(𝑎, 𝑏) = 1, then 𝑎 ∣ 𝑐. We will soon
see that this is a true statement. A possible example is 𝑎 = 4, 𝑏 = 5, 𝑐 = 12, so that
𝑏𝑐 = 60. We have 4 ∣ 60 and gcd(4, 5) = 1; and 4 ∣ 12, as desired.

Let’s brainstorm how to prove the statement: If 𝑎 ∣ 𝑏𝑐 and gcd(𝑎, 𝑏) = 1, then
𝑎 ∣ 𝑐. Our hypotheses are 𝑎 ∣ 𝑏𝑐 and gcd(𝑎, 𝑏) = 1, which translate to 𝑏𝑐 = 𝑎𝑘 and
𝑎𝑥 + 𝑏𝑦 = 1, respectively. Our goal is to show that 𝑐 = 𝑎 ⋅ (some integer), from which
we can conclude 𝑎 ∣ 𝑐. We might be tempted to divide both sides of 𝑏𝑐 = 𝑎𝑘 by 𝑏 to
obtain 𝑐 = 𝑎 ⋅ 𝑘𝑏 . However,

𝑘
𝑏 may not be an integer. Also, the equation 𝑎𝑥 + 𝑏𝑦 = 1

(which was derived from gcd(𝑎, 𝑏) = 1) should play a role in the proof, since we saw
in Example 3.12 that the statement is false without the condition gcd(𝑎, 𝑏) = 1.

Our goal 𝑐 = 𝑎⋅(some integer) involves the integers 𝑎 and 𝑐. The equation 𝑏𝑐 = 𝑎𝑘
already has 𝑎 and 𝑐 in it. But 𝑎𝑥 + 𝑏𝑦 = 1 only involves 𝑎, so we must somehow
introduce 𝑐 into it. We accomplish this by multiplying both sides of 𝑎𝑥 + 𝑏𝑦 = 1 by 𝑐,
which yields 𝑎𝑐𝑥 + (𝑏𝑐)𝑦 = 𝑐. Upon substituting 𝑏𝑐 = 𝑎𝑘, we obtain 𝑎𝑐𝑥 + (𝑎𝑘)𝑦 = 𝑐,
from which we can conclude that 𝑐 is a multiple of 𝑎.

Theorem 3.14. Let 𝑎, 𝑏, 𝑐 ∈ ℤ. If 𝑎 ∣ 𝑏𝑐 and gcd(𝑎, 𝑏) = 1, then 𝑎 ∣ 𝑐.

Proof. Assume 𝑎 ∣ 𝑏𝑐 and gcd(𝑎, 𝑏) = 1. Then 𝑏𝑐 = 𝑎𝑘 for some integer 𝑘, and there
exist 𝑥, 𝑦 ∈ ℤ with 𝑎𝑥 + 𝑏𝑦 = 1. Multiplying both sides of 𝑎𝑥 + 𝑏𝑦 = 1 by 𝑐, we
obtain 𝑎𝑐𝑥 + (𝑏𝑐)𝑦 = 𝑐. Then substituting 𝑏𝑐 = 𝑎𝑘 yields 𝑎𝑐𝑥 + (𝑎𝑘)𝑦 = 𝑐, and thus
𝑎 ⋅ (𝑐𝑥 + 𝑘𝑦) = 𝑐 where 𝑐𝑥 + 𝑘𝑦 is an integer. Therefore, 𝑎 ∣ 𝑐. ■

Remark. The key to the proof above is to multiply both sides of 𝑎𝑥 + 𝑏𝑦 = 1 by 𝑐. It
may seem that the step was pulled out of thin air, and that’s what makes proof writing
a creative, challenging, and sometimes frustrating endeavor. Coming up with such
insights is not an easy task. It requires lots of practice writing proofs, perseverance,
and even luck. But you’re not alone. Even mathematicians with decades of experience
can and often do struggle deriving a key step to a proof.

Example 3.15. Consider the statement: If 𝑎 ∣ 𝑐 and 𝑏 ∣ 𝑐, then 𝑎𝑏 ∣ 𝑐. (Here, 𝑎, 𝑏,
𝑐 ∈ ℤ.) This statement is false. As a counterexample, suppose 𝑎 = 4, 𝑏 = 6, 𝑐 = 12, so
that 𝑎𝑏 = 24. We have 4 ∣ 12 and 6 ∣ 12 (i.e., 𝑎 ∣ 𝑐 and 𝑏 ∣ 𝑐), but 24 is not a divisor of
12 (i.e., 𝑎𝑏 ∤ 𝑐).

Example 3.16. We can salvage the statement in Example 3.15 by adding the condition
gcd(𝑎, 𝑏) = 1. We thus obtain: If 𝑎 ∣ 𝑐, 𝑏 ∣ 𝑐, and gcd(𝑎, 𝑏) = 1, then 𝑎𝑏 ∣ 𝑐. This is
now a true statement, which we will verify shortly. A possible example is 𝑎 = 4, 𝑏 = 5,
𝑐 = 60, so that 𝑎𝑏 = 20. Note that 4 ∣ 60, 5 ∣ 60, and gcd(4, 5) = 1; and 20 ∣ 60, as
desired.

Here is the theorem that we studied in Example 3.16. Notice how its proof uses
the same insight as in the proof of Theorem 3.14, namely, multiplying both sides of
𝑎𝑥 + 𝑏𝑦 = 1 by 𝑐. (Experience helps!)
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Theorem 3.17. Let 𝑎, 𝑏, 𝑐 ∈ ℤ. If 𝑎 ∣ 𝑐, 𝑏 ∣ 𝑐, and gcd(𝑎, 𝑏) = 1, then 𝑎𝑏 ∣ 𝑐.

Proof. Assume 𝑎 ∣ 𝑐, 𝑏 ∣ 𝑐, and gcd(𝑎, 𝑏) = 1. Then 𝑐 = 𝑎𝑘 and 𝑐 = 𝑏𝑗 where 𝑘
and 𝑗 are integers. Moreover, there exist 𝑥, 𝑦 ∈ ℤ with 𝑎𝑥 + 𝑏𝑦 = 1. Multiplying both
sides of 𝑎𝑥 + 𝑏𝑦 = 1 by 𝑐 yields 𝑎𝑐𝑥 + 𝑏𝑐𝑦 = 𝑐. Substitute 𝑐 = 𝑏𝑗 and 𝑐 = 𝑎𝑘 to obtain
𝑐 = 𝑎(𝑏𝑗)𝑥 + 𝑏(𝑎𝑘)𝑦 = 𝑎𝑏 ⋅ (𝑗𝑥 + 𝑘𝑦). Thus, 𝑎𝑏 is a divisor of 𝑐. ■

To conclude this chapter, we will prove the converse of the GCD theorem, obtained
by swapping the if-part and the then-part. Thus, the statement we will prove is: If there
exist 𝑥, 𝑦 ∈ ℤ with 𝑎𝑥 + 𝑏𝑦 = 1, then gcd(𝑎, 𝑏) = 1. (Here, 𝑎, 𝑏 ∈ ℤ.) One strategy is
to prove the contrapositive of this statement, and you will do this as an exercise at the
end of the chapter.

But here, we will take a more direct approach. Hence, we begin by assuming that
𝑎𝑥 + 𝑏𝑦 = 1 where 𝑥 and 𝑦 are integers. Our goal is to show that gcd(𝑎, 𝑏) = 1.
We proceed by letting 𝑑 = gcd(𝑎, 𝑏), and so we must show that 𝑑 = 1. This seemingly
simple step of assigning a name/variable 𝑑 to gcd(𝑎, 𝑏) can facilitate our thinking. Here
is a brief outline that summarizes the key steps of the proof:

• Since 𝑑 = gcd(𝑎, 𝑏) is a common divisor of 𝑎 and 𝑏, we have 𝑑 ∣ 𝑎 and 𝑑 ∣ 𝑏.

• Then we show that 𝑑 is a divisor of 𝑎𝑥 + 𝑏𝑦.

• But 𝑎𝑥 + 𝑏𝑦 = 1, and thus 𝑑 is a divisor of 1. Then, 𝑑 = 1 or 𝑑 = −1 (i.e., the only
divisors of 1).

• By the definition of gcd, 𝑑 is positive. Hence, 𝑑must be 1.

Theorem 3.18 (Converse of the GCD theorem). Let 𝑎, 𝑏 ∈ ℤ. If there exist 𝑥, 𝑦 ∈ ℤ
with 𝑎𝑥 + 𝑏𝑦 = 1, then gcd(𝑎, 𝑏) = 1.

Proof. Assume there exist 𝑥, 𝑦 ∈ ℤ with 𝑎𝑥 + 𝑏𝑦 = 1. Let 𝑑 = gcd(𝑎, 𝑏), noting that
𝑑 > 0 by the definition of the gcd. Then 𝑑 ∣ 𝑎 and 𝑑 ∣ 𝑏, so that 𝑎 = 𝑑𝑘 and 𝑏 = 𝑑𝑗 for
some integers 𝑘 and 𝑗. Substituting these into 𝑎𝑥 + 𝑏𝑦 = 1, we get (𝑑𝑘)𝑥 + (𝑑𝑗)𝑦 = 1,
and thus 𝑑 ⋅ (𝑘𝑥+ 𝑗𝑦) = 1. Hence, 𝑑 is a positive divisor of 1, which implies that 𝑑 = 1.
Therefore, gcd(𝑎, 𝑏) = 1. ■

Example 3.19. Let 𝑎 = 31,415,926 and 𝑏 = 31,415,927. Then 𝑎⋅(−1)+𝑏⋅1 = 1, so that
𝑎𝑥 + 𝑏𝑦 = 1 has an integer solution (𝑥, 𝑦) = (−1, 1). By Theorem 3.18, we conclude
that gcd(𝑎, 𝑏) = 1.

Exercises
1. Determine if each of these is true or false. Explain your reasoning.

(a) 17 ∣ 17.
(b) 1 ∣ 17.
(c) 17 ∣ 1.
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2. Let 𝑛 be an integer.

(a) Explain why 𝑛 ∣ 𝑛.
(b) Explain why 1 ∣ 𝑛.

3. Prove: Let𝑚 and 𝑛 be positive integers. If𝑚 ∣ 𝑛 and 𝑛 ∣ 𝑚, then𝑚 = 𝑛.

4. Explain why gcd(0, 0) does not exist.

5. Find each of the following:

(a) gcd(4, 12).
(b) gcd(20, 80).
(c) gcd(17, 85).
(d) gcd(𝑎, 𝑎𝑘) where 𝑎, 𝑘 ∈ ℤ. (Assume that 𝑎 ≠ 0.)

6. Find each of the following. Explain your reasoning.

(a) gcd(0, 17).
(b) gcd(0, 314).
(c) gcd(0, 𝑛) where 𝑛 is a positive integer.

7. Compute and compare each pair of GCDs:

(a) gcd(12, 30) and gcd(12, 18).
(b) gcd(156, 228) and gcd(156, 72).
(c) gcd(35, 21) and gcd(14, 21).
(d) gcd(182, 52) and gcd(130, 52).

Based on these examples, what conjectures do you have?

8. Computations in Exercise #7 illustrate how

gcd(𝑎, 𝑏) = gcd(𝑎, 𝑏 − 𝑎) and gcd(𝑎, 𝑏) = gcd(𝑎 − 𝑏, 𝑏).

(a) Appendix A explains why these relationships are true. For now, use these
relationships to come up with a procedure for finding gcd(𝑎, 𝑏).

(b) Use your procedure in part (a) to find gcd(391, 582) and tofind gcd(873, 3,642).

9. Consider the statement:

Let 𝑎, 𝑏, 𝑐 ∈ ℤ. If 𝑎 ∣ 𝑐 and 𝑏 ∣ 𝑐, then 𝑎𝑏 ∣ 𝑐.

Show that this is false by exhibiting a counterexample. Be sure to explain why your
counterexample invalidates the statement.

10. Consider the statement: Let𝑚, 𝑛, 𝑎, 𝑏 ∈ ℤ. If𝑚 ∣ 𝑎 and 𝑛 ∣ 𝑏, then𝑚𝑛 ∣ 𝑎𝑏.

(a) Create an example to illustrate this statement.
(b) Prove the statement.

11. Prove: Let 𝑑,𝑚, 𝑛 ∈ ℤ. If 𝑑 ∣ 𝑚 and 𝑑 ∣ 𝑛, then 𝑑 ∣ (𝑚 + 𝑛).
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12. Let𝑚, 𝑛 ∈ ℤ and consider the statement: If 𝑛 ∣ 𝑚, then𝑚ℤ ⊆ 𝑛ℤ.
(a) Create an example to illustrate this statement.
(b) Prove the statement.

(This exercise and Exercise #13 below are referenced in Chapter 31.)

13. Prove: Let𝑚, 𝑛 ∈ ℤ. If𝑚ℤ ⊆ 𝑛ℤ, then 𝑛 ∣ 𝑚.
Note: This is the converse of the statement in Exercise #12.

14. For each pair of integers 𝑎 and 𝑏, determine whether or not 𝑎𝑥 + 𝑏𝑦 = 1 has an
integer solution. If it does, then find at least three integer solutions (𝑥, 𝑦). If it
doesn’t, then explain why not.

(a) 𝑎 = 7, 𝑏 = 10.
(b) 𝑎 = 8, 𝑏 = 10.
(c) 𝑎 = 15, 𝑏 = 21.
(d) 𝑎 = 15, 𝑏 = 16.

15. Find all integer solutions to 7𝑥 + 10𝑦 = 1. How do you know that you’ve found
them all?

16. Prove: Let 𝑎, 𝑏 ∈ ℤ. If gcd(𝑎, 𝑏) ≠ 1, then 𝑎𝑥 + 𝑏𝑦 = 1 does not have an integer
solution.
Note: You must prove this statement as it’s stated and not work with its contra-
positive, which is Theorem 3.18. Example 3.11 should help.

17. Explain why gcd(3𝑛 + 2, 5𝑛 + 3) = 1 for any integer 𝑛.

18. Explain why gcd(𝑛, 𝑛 + 1) = 1 for any integer 𝑛.

19. Prove: Let 𝑎, 𝑏, 𝑐 ∈ ℤ. If gcd(𝑎, 𝑏) = 1 and 𝑐 ∣ 𝑎, then gcd(𝑐, 𝑏) = 1.

20. Let 𝑎 and 𝑏 be consecutive odd integers (e.g., 43 and 45). Show that gcd(𝑎, 𝑏) = 1.
Hint: Let 𝑑 = gcd(𝑎, 𝑏) so that 𝑑 ∣ 𝑎 and 𝑑 ∣ 𝑏. Then show that 𝑑 ∣ 2.

21. Prove: 3, 5, 7 is the only “prime triple,” i.e., three consecutive odd integers that are
all prime.





Unit II: Examples of Groups

The next few chapters are devoted to examples of groups:

• In Chapter 4, we will study integers modulo 𝑛, a number system in which we add
and multiply as if we’re using a clock. For example, if it’s currently 9:00 AM and 5
hours pass, then it will be 2:00 PM.

• We will explore symmetries in Chapter 5. These are motions of a square (or other
regular polygons) that, when applied to the square, place the square in the same
space that it originally occupied.

• In Chapter 6, we will investigate permutations, which are functions on the set
{1, 2, 3, . . . , 𝑛} that “shuffle” these numbers. Historically, permutations paved the
way for the development of group theory.

• Finally, in Chapter 7, we will studymatrices, which are rectangular arrays of num-
bers that play an important role in many areas of mathematics (including abstract
algebra, of course).

Our main goal is to identify features that are common to these seemingly different
sets of objects. Indeed, these concrete examples introduce the fundamental notion of
“group properties,” which include (1) closure, (2) associative law, (3) identity, and (4)
inverses. Other essential ideas such as the order of a group element and subgroups
are also foreshadowed through these examples. By the time the concept of a group is
formally defined in Chapter 8, we hope it will feel familiar to you!

Here is a taste of what you’ll be able to accomplish in this unit:

• Very quickly determine which elements in ℤ35 have multiplicative inverses. For
example, 8 has a multiplicative inverse in ℤ35, i.e., an element 𝑥 such that 8 ⋅ 𝑥 = 1
(mod 35).

• Very quickly determine whether or not a 2 × 2 matrix with entries in ℤ10 has a
multiplicative inverse.

• Understandwhy (𝛼⋅𝛽)−1 = 𝛽−1 ⋅𝛼−1 by drawing an analogy to the act of putting on
and taking off your socks and shoes. (Here, 𝛼 and 𝛽 could be a pair of symmetries,
permutations, or matrices.)
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4
Modular Arithmetic

If it’s currently 7:00 AM, what time will it be in 2,000 hours? Since there are 24 hours
in a day and 2,000 = 24 ⋅ 83 + 8, we see that 2,000 hours equal 83 days and 8 hours.
Thus, it will be 3:00 PM. This scenario is an illustration ofmodular arithmetic, which is
the focus of this chapter. We will work with number systems such as ℤ7, which, along
with ℤ, are perhaps the most important examples in this textbook.

4.1 Number system ℤ7
Consider the set ℤ7 = {0, 1, 2, 3, 4, 5, 6}. We will be using this and related number
systems throughout the book. Unlike the set of integers ℤ, our set ℤ7 contains finitely
many elements (7 of them, in fact). To add, subtract, and multiply in ℤ7, we use the
following picture called the ℤ7 clock:

Example 4.1. These sums are computed in ℤ7:
• To compute 1 + 3, start at 1 on the ℤ7 clock and move 3 units clockwise (see the
left figure below). We land on 4, so that 1 + 3 = 4 in ℤ7.

• To compute 5 + 4, start at 5 on the ℤ7 clock and move 4 units clockwise (see the
center figure below). We land on 2, so that 5 + 4 = 2 in ℤ7.

• To compute 2− 6, start at 2 on the ℤ7 clock and move 6 units counterclockwise (see
the right figure below). We land on 3, so that 2 − 6 = 3 in ℤ7.

31
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Example 4.2. To find−3 in ℤ7, we view−3 as 0−3. Thus, we start at 0 on the ℤ7 clock
and move 3 units counterclockwise. We land on 4, so that −3 = 4 in ℤ7.

Example 4.3. We can also multiply in ℤ7. For instance, 3 ⋅ 5 = 15. To find what 15
equals in ℤ7, we can view 15 as 0 + 15. To compute this sum, start at 0 on the ℤ7 clock
and move 15 units clockwise. You should land on 1. Try it! Thus, 3 ⋅ 5 = 15 = 1 in ℤ7.

Example 4.4. To find 3,258 in ℤ7, we start at 0 on the ℤ7 clock and move 3,258 units
clockwise. Every movement by 7 units brings us back to 0. Since 3,258 = 7 ⋅ 465 + 3,
moving 3,258 units yields 465 full revolutions around the ℤ7 clock, plus 3 more units.
Thus, 3,258 = 3 in ℤ7.

Example 4.5. To find −3,258 in ℤ7, we note that 3,258 = 3 (Example 4.4) and that
−3 = 4 (Example 4.2). Combining these, we obtain −3,258 = −3 = 4 in ℤ7.

When we find 3,258 = 3 in ℤ7, we say that 3,258 has been simplified or reduced to
3 in ℤ7. Here, recall that 3,258 = 7 ⋅ 465 + 3, so that 3 is the remainder when dividing
3,258 by 7.

Example 4.6. We have 10,000 = 7 ⋅1,428+4, so that 10,000 = 4 in ℤ7. In other words,
10,000 is reduced to 4 in ℤ7. Again, we observe that 4 is the remainder when dividing
10,000 by 7.

Example 4.7. To find 2101 in ℤ7, we begin by computing smaller powers of 2:
21 = 2, 22 = 4, 23 = 8 = 1, 24 = 16 = 2, 25 = 32 = 4, 26 = 64 = 1, . . . .

The successive powers of 2 form a pattern: 2, 4, 1, 2, 4, 1, . . . . In particular, we see
that 2𝑛 = 1 in ℤ7 whenever the exponent 𝑛 is a multiple of 3. Thus, we have 299 = 1,
2100 = 2, and 2101 = 4 in ℤ7.

Remark. Here is a word of caution about notation. As a shorthand for “−3 = 4 inℤ7,”
we might be tempted to write “−3 = 4 ∈ ℤ7.” After all, the symbol ∈ stands for “in.”
However, this is an incorrect use of ∈, which is actually a shorthand for “is an element
of.” When we write “−3 = 4 in ℤ7” (see Example 4.2), the word “in” refers to the fact
that the equality −3 = 4 is taking place in the number system ℤ7. We do notmean to
say that 4 is an element of the set ℤ7, which is what “−3 = 4 ∈ ℤ7” would indicate.

4.2 Equality in ℤ7
Example 4.8. Consider the integers 𝑎 = 16 and 𝑏 = 30. We will determine whether
or not 𝑎 = 𝑏 in ℤ7. One way to do this is to simplify (or reduce) each of 𝑎 and 𝑏 in
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ℤ7. As in Example 4.3, we can view 16 as 0 + 16. Then start at 0 on the ℤ7 clock and
move 16 units clockwise. You should land on 2. Similar work shows that 30 = 2 in ℤ7.
Therefore, 𝑎 = 𝑏 in ℤ7.

Alternatively, observe that 30 = 16 + 7 ⋅ 2. Adding multiples of 7 does not change
the location of a number on theℤ7 clock. Thus, we determined that 𝑎 = 𝑏 inℤ7 without
first simplifying 𝑎 and 𝑏.

Example 4.9. In each pair of 𝑎 and 𝑏 below, we determine whether or not 𝑎 = 𝑏 in ℤ7:
• 𝑎 = 24 and 𝑏 = 45: YES, because 45 is 21 = 7 ⋅ 3more than 24.

• 𝑎 = 3,258 and 𝑏 = 3,288: NO, because the difference between 𝑎 and 𝑏 is 30, which
is not a multiple of 7.

• 𝑎 = −710 and 𝑏 = −731: YES, because −731 is 21 = 7 ⋅ 3 less than −710.

• 𝑎 = 98,765,123,4𝟎𝟔 and 𝑏 = 98,765,123,4𝟕𝟔: YES, because 𝑏 is 70 = 7 ⋅ 10 more
than 𝑎.

Examples 4.8 and 4.9 suggest the following generalization.

Definition 4.10 (Equality inℤ𝑚). Let 𝑎, 𝑏 ∈ ℤ. Then 𝑎 = 𝑏 inℤ7 whenever 7 ∣ (𝑎−𝑏),
i.e., 7 is a divisor of 𝑎 − 𝑏. More generally, 𝑎 = 𝑏 in ℤ𝑚 whenever𝑚 ∣ (𝑎 − 𝑏).

Example 4.11. Consider the statement: Let 𝑚 ∣ 𝑛. If 𝑎 = 𝑏 in ℤ𝑛, then 𝑎 = 𝑏 in ℤ𝑚.
This statement is true, as we’ll prove soon. For an example, suppose𝑚 = 4 and 𝑛 = 24
so that𝑚 ∣ 𝑛. Let 𝑎 = 59 and 𝑏 = 11, whence 𝑎 = 𝑏 in ℤ24 (both reduce to 11 in ℤ24);
and we have 𝑎 = 𝑏 in ℤ4 (both reduce to 3 in ℤ4), as desired.

We now brainstorm how to prove the statement: Let 𝑚 ∣ 𝑛. If 𝑎 = 𝑏 in ℤ𝑛, then
𝑎 = 𝑏 in ℤ𝑚. We start the proof by assuming the hypotheses, namely: Assume 𝑚 ∣ 𝑛
and 𝑎 = 𝑏 in ℤ𝑛. Our goal, or the last sentence of the proof, is: Thus, 𝑎 = 𝑏 in ℤ𝑚. For
the intermediate steps, we revisit Example 4.11 for insights. We have 59 = 11 in ℤ24,
because 59 − 11 = 48 = 24 ⋅ 2; i.e., 24 is a divisor of 59 − 11. We also have 4 ∣ 24, as
24 = 4 ⋅ 6. Combining these, we see that

59 − 11 = 24 ⋅ 2 = (4 ⋅ 6) ⋅ 2 = 4 ⋅ (6 ⋅ 2),
which implies that 4 is a divisor of 59 − 11. Therefore, 59 = 11 in ℤ4.

Theorem 4.12. Let𝑚 ∣ 𝑛. If 𝑎 = 𝑏 in ℤ𝑛, then 𝑎 = 𝑏 in ℤ𝑚.

Proof. Assume 𝑚 ∣ 𝑛 and 𝑎 = 𝑏 in ℤ𝑛. Then 𝑛 ∣ (𝑎 − 𝑏) so that 𝑎 − 𝑏 = 𝑛𝑘 for
some 𝑘 ∈ ℤ. Moreover, 𝑚 ∣ 𝑛 implies that 𝑛 = 𝑚𝑗 for some 𝑗 ∈ ℤ. Therefore,
𝑎 − 𝑏 = 𝑛𝑘 = (𝑚𝑗)𝑘 = 𝑚(𝑗𝑘), where 𝑗𝑘 is an integer. Hence,𝑚 ∣ (𝑎 − 𝑏). Thus, 𝑎 = 𝑏
in ℤ𝑚. ■

Example 4.13. The converse of Theorem 4.12 is false. With𝑚 ∣ 𝑛, the condition 𝑎 = 𝑏
in ℤ𝑚 does not imply 𝑎 = 𝑏 in ℤ𝑛. As a counterexample, let 𝑚 = 4 and 𝑛 = 24 again,
and consider 𝑎 = 11 and 𝑏 = 3. Then 𝑎 = 𝑏 in ℤ4 (both reduce to 3 in ℤ4), but 𝑎 ≠ 𝑏
in ℤ24 (both are already reduced in ℤ24).
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4.3 Multiplicative inverses
We saw in Example 4.3 that 3 ⋅ 5 = 1 in ℤ7. Because of this, we say that 3 and 5 are
multiplicative inverses of each other in ℤ7. (Note: This is analogous to 3 ⋅ 1

3 = 1 and
1
5 ⋅ 5 = 1 with the real numbers.) The element 0 ∈ ℤ7 does not have a multiplicative
inverse, because 0 ⋅ 𝑥 = 0 for all 𝑥 ∈ ℤ7. However, all other elements of ℤ7 have
multiplicative inverses. The inverse pairs (i.e., pairs 𝑎 and 𝑏 such that 𝑎 ⋅ 𝑏 = 1) are

1 ⋅ 1 = 1, 2 ⋅ 4 = 1, 3 ⋅ 5 = 1, 6 ⋅ 6 = 1.
The multiplicative inverse of 6 is itself. Thus, we say that 6 is a self-inverse. Similarly, 1
is a self-inverse.

Definition 4.14 (Multiplicative inverse). Let 𝑎, 𝑏 ∈ ℤ𝑚. We say that 𝑎 and 𝑏 are
multiplicative inverses of each other if 𝑎⋅𝑏 = 1 in ℤ𝑚. Together, 𝑎 and 𝑏 form an inverse
pair. If 𝑎 ⋅ 𝑎 = 1 in ℤ𝑚, then the element 𝑎 is said to be a self-inverse.

Example 4.15. Let’s switch gears and consider a new number system ℤ5 =
{0, 1, 2, 3, 4}, where the computation is done on the ℤ5 clock:

In ℤ5, all elements except 0 havemultiplicative inverses. The inverse pairs are 1⋅1 = 1,
2 ⋅ 3 = 1, and 4 ⋅ 4 = 1 (which means that 1 is a self-inverse, and so is 4).

Example 4.16. Now consider ℤ15 = {0, 1, 2, 3, . . . , 12, 13, 14} (fifteen elements),
where the computation is done on the ℤ15 clock. Let’s find the elements in ℤ15 that
have multiplicative inverses:

• 0 does not have a multiplicative inverse, because 0 ⋅ 𝑥 = 0 for all 𝑥 ∈ ℤ15.

• We have 1 ⋅ 1 = 1, 4 ⋅ 4 = 1, 11 ⋅ 11 = 1, and 14 ⋅ 14 = 1. Thus, 1, 4, 11, and 14 are
self-inverses.

• Other inverse pairs are: 2 ⋅ 8 = 1 and 7 ⋅ 13 = 1.
The remaining elements of ℤ15 do not have multiplicative inverses. Consider 3 ∈ ℤ15,
for instance. The only multiples of 3 in ℤ15 are 0, 3, 6, 9, 12, and so there is no element
𝑥 ∈ ℤ15 such that 3 ⋅ 𝑥 = 1. Therefore, the elements of ℤ15 with multiplicative inverses
are 1, 2, 4, 7, 8, 11, 13, 14.

Example 4.17. Here is one reason whymultiplicative inverses are useful. Suppose we
want to solve the equation 7 ⋅ 𝑥 = 9 in ℤ15. We might divide both sides by 7 to obtain
𝑥 = 9

7 . However,
9
7 is not an element in ℤ15, nor is division a valid operation in ℤ15.

Since there are only 15 elements in ℤ15, we could substitute each of them for 𝑥 and see
if any of them satisfies the equation.
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Alternatively, recall from Example 4.16 that 7 and 13 form an inverse pair; i.e.,
7 ⋅ 13 = 1 and 13 ⋅ 7 = 1. We multiply both sides of 7 ⋅ 𝑥 = 9 by 13 to obtain

13 ⋅ (7 ⋅ 𝑥) = 13 ⋅ 9 ⟹ (13 ⋅ 7) ⋅ 𝑥 = 13 ⋅ 9
⟹ 1 ⋅ 𝑥 = 13 ⋅ 9
⟹ 𝑥 = 13 ⋅ 9.

Thus, 𝑥 = 13 ⋅ 9 = 117 = 12 in ℤ15. (You should verify that 7 ⋅ 12 = 9 in ℤ15.) Here,
multiplying by 13 has the same effect as dividing by 7, but in a way that is still valid in
ℤ15.

Remark. In the example above, the symbol⟹ denotes an implication. For instance,
13 ⋅ (7 ⋅ 𝑥) = 13 ⋅ 9 ⟹ (13 ⋅ 7) ⋅ 𝑥 = 13 ⋅ 9

is a shorthand for “If 13 ⋅ (7 ⋅ 𝑥) = 13 ⋅ 9 is true, then (13 ⋅ 7) ⋅ 𝑥 = 13 ⋅ 9 is also true.”

In ℤ7 and ℤ5, we found that every non-zero element has a multiplicative inverse.
But this was not the case in ℤ15. In general, we ask the question: Which elements
in ℤ𝑚 have multiplicative inverses? To find patterns and make conjectures, here are
additional data (try to find inverse pairs for each ℤ𝑚):

ℤ𝑚 Elements with multiplicative inverses
ℤ5 1, 2, 3, 4
ℤ6 1, 5
ℤ7 1, 2, 3 ,4, 5, 6
ℤ8 1, 3, 5, 7
ℤ10 1, 3, 7, 9
ℤ15 1, 2, 4, 7, 8, 11, 13, 14
ℤ21 1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20

What’s going on here? Looking at ℤ15, for instance, we see that the elements with
multiplicative inverses are precisely those that are relatively prime to 15. In otherwords:

• If gcd(𝑎, 15) = 1, then 𝑎 has a multiplicative inverse in ℤ15.

• If gcd(𝑎, 15) ≠ 1, then 𝑎 does not have a multiplicative inverse in ℤ15.

Example 4.18. In ℤ35, does 8 have a multiplicative inverse? What about 10? Applying
the conjecture we found by examining ℤ15, we have:
• Since gcd(8, 35) = 1, we believe 8 has a multiplicative inverse in ℤ35. (In fact,
8 ⋅ 22 = 1 in ℤ35.)

• Since gcd(10, 35) ≠ 1, we believe 10 does not have a multiplicative inverse in ℤ35.

And there is nothing special about ℤ15 or ℤ35 here. This conjecture is true in any
ℤ𝑚, which we will prove soon. Here is the generalization:
Conjecture (first draft). Let 𝑎 ∈ ℤ𝑚.
• If gcd(𝑎,𝑚) = 1, then 𝑎 has a multiplicative inverse in ℤ𝑚.

• If gcd(𝑎,𝑚) ≠ 1, then 𝑎 does not have a multiplicative inverse in ℤ𝑚.
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The contrapositive of the second statement is: If 𝑎 has a multiplicative inverse in ℤ𝑚,
then gcd(𝑎,𝑚) = 1. So, these two statements can be combined into one “if and only
if” statement, namely:

Conjecture (second draft). Let 𝑎 ∈ ℤ𝑚. Then 𝑎 has a multiplicative inverse in ℤ𝑚 if
and only if gcd(𝑎,𝑚) = 1.

We also introduce a notation that will be used often:

𝑈𝑚 = {𝑎 ∈ ℤ𝑚 | 𝑎 has a multiplicative inverse in ℤ𝑚}.

In other words, 𝑈𝑚 is the subset of elements in ℤ𝑚 that have multiplicative inverses.
For example,

𝑈7 = {1, 2, 3, 4, 5, 6},
𝑈8 = {1, 3, 5, 7},
𝑈15 = {1, 2, 4, 7, 8, 11, 13, 14}.

Remark. We use the notation 𝑈𝑚, because an element of ℤ𝑚 with a multiplicative
inverse (such as 7 ∈ ℤ15) is called a unit. In fact, the set 𝑈𝑚 is often called the “group
of unitsmodulo 𝑚.” Here, “modulo 𝑚” indicates that the computation is done in ℤ𝑚,
i.e., by using the ℤ𝑚 clock. The word “group” will be described in much more depth
later in this book.

Using this new notation, we state our conjecture as follows:

Theorem 4.19 (Multiplicative inverses in ℤ𝑚). Let 𝑎 ∈ ℤ𝑚. Then 𝑎 ∈ 𝑈𝑚 if and only
if gcd(𝑎,𝑚) = 1.

Since this theorem is an “if and only if” statement, there are two implications we
must prove:

(a) If 𝑎 ∈ 𝑈𝑚, then gcd(𝑎,𝑚) = 1.

(b) If gcd(𝑎,𝑚) = 1, then 𝑎 ∈ 𝑈𝑚.

Below, we will prove implication (a). As usual, we begin with the hypothesis: Assume
𝑎 ∈ 𝑈𝑚. Starting with this hypothesis, we repeatedly unravel its meaning. First, 𝑎 ∈
𝑈𝑚 means that 𝑎 has a multiplicative inverse in ℤ𝑚; and that means 𝑎𝑥 = 1 in ℤ𝑚 for
some 𝑥 ∈ ℤ𝑚; and that means 𝑚 is a divisor of 𝑎𝑥 − 1; and so on. Eventually, we will
show that the equation 𝑎𝑥+𝑚𝑦 = 1 has an integer solution (𝑥, 𝑦). Then Theorem 3.18
(the converse of the GCD theorem) implies that gcd(𝑎,𝑚) = 1.

The proof of implication (b) is left as an exercise at the end of this chapter.

Proof. Assume 𝑎 ∈ 𝑈𝑚. Then, 𝑎 has amultiplicative inverse inℤ𝑚. Thus, there exists
𝑥 ∈ ℤ𝑚 such that 𝑎𝑥 = 1 in ℤ𝑚. Hence, 𝑚 ∣ (𝑎𝑥 − 1), so that 𝑎𝑥 − 1 = 𝑚𝑘 for some
𝑘 ∈ ℤ. Rewriting this equation, we obtain 𝑎𝑥 + 𝑚(−𝑘) = 1. Thus gcd(𝑎,𝑚) = 1 by
Theorem 3.18. ■
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Exercises
1. Compute each of the following in ℤ7. Simplify your result as much as possible.

(a) 5 + 6. (b) 6 ⋅ 6. (c) 3 − 5. (d) 53. (e) 57,298.

2. (a) Describe all integers 𝑛 such that 𝑛 = 0 in ℤ7.
(b) Describe all integers 𝑛 such that 𝑛 = 2 in ℤ7.

3. For each pair 𝑎 and 𝑏, determine whether or not 𝑎 = 𝑏 in ℤ7.

(a) 𝑎 = 124 and 𝑏 = 152.
(b) 𝑎 = 51 and 𝑏 = 38.
(c) 𝑎 = 300 and 𝑏 = 312.
(d) 𝑎 = 400,000 and 𝑏 = 400,070.

4. (a) Describe all integers 𝑛 such that 𝑛 = 0 in ℤ9.
(b) Consider the following method for reducing the integer 𝑛 = 4,189,536 in ℤ9:
4,189,536
= 4 ⋅ 𝟏𝟎6 + 1 ⋅ 𝟏𝟎5 + 8 ⋅ 𝟏𝟎4 + 9 ⋅ 𝟏𝟎3 + 5 ⋅ 𝟏𝟎2 + 3 ⋅ 𝟏𝟎1 + 6 ⋅ 𝟏𝟎0

= 4 ⋅ 𝟏6 + 1 ⋅ 𝟏5 + 8 ⋅ 𝟏4 + 9 ⋅ 𝟏3 + 5 ⋅ 𝟏2 + 3 ⋅ 𝟏1 + 6 ⋅ 𝟏0 ← since 10 = 1 in ℤ9
= 4 + 1 + 8 + 9 + 5 + 3 + 6
= 36
= 0.

Based on this, is 9 a divisor of the integer 𝑛 = 4,189,536? Explain your rea-
soning.

(c) Use the method in part (b) to determine if 9 is a divisor of 𝑛 = 573,921, 𝑛 =
123,456, 𝑛 = 234,567.

(d) Describe a general method for determining if 9 is a divisor of an integer 𝑛.

5. Devise a method for determining if 3 is a divisor of an integer 𝑛.

6. Devise a method for determining if 11 is a divisor of an integer 𝑛. (Hint: 10 = −1
in ℤ11.)

7. For each element in ℤ13, find its multiplicative inverse or explain why one does not
exist.

8. Repeat Exercise #7 with ℤ6; with ℤ10; with ℤ16; with ℤ21.

9. For each of these, feel free to use Theorem 4.19.

(a) List the elements of 𝑈20 = {𝑎 ∈ ℤ20 | 𝑎 has a multiplicative inverse in ℤ20}.
There should be 8 of them.

(b) List the elements of 𝑈24.
(c) List the elements of 𝑈𝑝 where 𝑝 is prime.
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10. (a) Consider the set 𝑈7 = {1, 2, 3, 4, 5, 6}. For each 𝑎 ∈ 𝑈7, compute 𝑎6.
(b) For each 𝑎 ∈ 𝑈5, compute 𝑎4.
(c) For each 𝑎 ∈ 𝑈15, compute 𝑎8.
(d) For each 𝑎 ∈ 𝑈20, compute 𝑎8.
(e) For each 𝑎 ∈ 𝑈28, compute 𝑎12.
(f) Any conjectures?
(This exercise is referenced in Chapter 20, Exercise #6(a).)

11. Consider 2 ∈ 𝑈7. The order of 2 refers to the smallest positive exponent 𝑛 such
that 2𝑛 = 1.

(a) Verify that the order of 2 is 3.
(b) Find the order of all other elements in 𝑈7.
(c) Find the order of each element in 𝑈10.
(d) Find the order of each element in 𝑈15.
(e) Any conjectures?

(This exercise is referenced in Chapter 11, Example 12.24, and Section 20.3.)

12. (a) Complete the addition and multiplication tables below for 𝑈10.

+ 1 3 7 9
1
3
7
9

× 1 3 7 9
1
3
7
9

(b) Is 𝑈10 closed under addition? Under multiplication? Why or why not?
(c) Pick any row or column of themultiplication table. Notice anything? Can you

explain it?
(This exercise is referenced in Section 5.2.)

13. Recall that an element 𝑎 ∈ ℤ𝑚 is called a self-inverse if 𝑎 ⋅ 𝑎 = 1 in ℤ𝑚.

(a) Verify that 4 ∈ ℤ5 is a self-inverse.
(b) Verify that 6 ∈ ℤ7 is a self-inverse.
(c) Verify that 9 ∈ ℤ10 is a self-inverse.
(d) Verify that 14 ∈ ℤ15 is a self-inverse.
(e) Explain why𝑚− 1 ∈ ℤ𝑚 is a self-inverse.

14. In ℤ7, compute 6231. Also compute 3146.

15. For each computation below, simplify your answer as much as possible.

(a) 132,000 in ℤ12.
(b) 122,001 in ℤ13.
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16. (a) In ℤ79, verify that the multiplicative inverse of 9 is 44 and that the multiplica-
tive inverse of 5 is 16.

(b) Use the results in part (a) to find the multiplicative inverse of 9 ⋅ 5 in ℤ79.
(c) Create your own example like the one in parts (a) and (b), but this time in

ℤ101.
Tip: In wolframalpha.com, try typing something like multiplicative in-
verse of 9 mod 79.

17. Prove: 𝑈𝑚 is closed under multiplication; i.e., the product of any two elements of
𝑈𝑚 is still in 𝑈𝑚. (This exercise is referenced in Example 8.6.)
Note: Your proof may not use Theorem 4.19. But Exercise #16 above should help!

18. Complete the proof of Theorem 4.19 by proving its implication (b).

19. (a) Find all the elements in 𝑈7.
(b) Find all the elements in 𝑈13.
(c) Find all the elements in 𝑈101.

20. Prove: Let 𝑝 be a prime number. If 𝑎 ∈ ℤ𝑝 with 𝑎 ≠ 0, then 𝑎 ∈ 𝑈𝑝.

21. Consider the equation 𝑥2 − 6𝑥 + 8 = 0.
(a) Working in ℤ, find its solutions. How many are there?
(b) Now let’s work in ℤ15. Substitute the values 𝑥 = 0, 𝑥 = 1, 𝑥 = 2, . . . , 𝑥 = 14

into the equation 𝑥2 − 6𝑥 + 8 = 0. How many solutions did you find?
(c) Elizabeth says,

“In ℤ15, the equation 𝑥2−6𝑥+8 = 0 can be rewritten as 𝑥2+9𝑥+
8 = 0.”

What might she mean, and how does it relate to the solutions you found in
part (b)?

22. A non-zero element 𝑎 of ℤ𝑚 is said to be a zero divisor if there exists a non-zero
element 𝑏 in ℤ𝑚 such that 𝑎𝑏 = 0. For example, 5 is a zero divisor in ℤ20 because
5 ⋅ 8 = 0.
(a) Find all zero divisors in ℤ20.
(b) Find all zero divisors in ℤ12.
(c) Find all zero divisors in ℤ13.
(d) Any conjectures?

23. Consider the statement: If 𝑎 = 𝑏 in ℤ𝑚 and 𝑎 = 𝑏 in ℤ𝑛, then 𝑎 = 𝑏 in ℤ𝑚𝑛. This is
false. Find a counterexample that invalidates the statement.

24. Prove: If 𝑎 = 𝑏 in ℤ𝑚, 𝑎 = 𝑏 in ℤ𝑛, and gcd(𝑚, 𝑛) = 1, then 𝑎 = 𝑏 in ℤ𝑚𝑛.

25. (Some food for thought) Compute
𝑎6 + 𝑎5 + 𝑎4 + 𝑎3 + 𝑎2 + 𝑎 + 1

for each 𝑎 ∈ ℤ7 with 𝑎 ≠ 1. Can you explain what’s going on and why?





5
Symmetries

The set of integers ℤ is an example of a set whose elements can be added to obtain
other elements in the same set (i.e., other integers). Recall that we sayℤ is closed under
addition. The set ℤ together with the addition operation has other useful features. For
instance, the zero element 0 ∈ ℤ has the property that 0 + 𝑎 = 𝑎 and 𝑎 + 0 = 𝑎 for all
𝑎 ∈ ℤ; i.e., when added to any integer, 0 keeps that integer unchanged. The number
systemℤ𝑚, which we explored in Chapter 4, has similar features to those of ℤ. Perhaps
this is not too surprising, since addition in ℤ𝑚 is based on addition in ℤ. (Note: While
multiplication is also a valid operation in ℤ and in ℤ𝑚, we will later see why we are
only considering addition in this context.)

In this chapter, we will study certain motions of squares called symmetries. On the
surface, these symmetries, which are geometric in nature, seem quite different from
the integers, which we typically associate with arithmetic. However, these symmetries
share many of the same useful features enjoyed by ℤ and ℤ𝑚. In fact, the symmetries,
ℤ, and ℤ𝑚 are all examples of groups, which we will formally introduce in Chapter 8.
This process of extracting structural similarities that arise in different contexts is called
abstraction, and it’s what makes mathematics so powerful and beautiful.

5.1 Symmetries of a square
Suppose we take a square and move it in a way so that the square occupies the same
space. In howmanyways can this be done? Wewill study suchmotions in this chapter,
with an emphasis on how those motions interact with each other.

Example 5.1. The motion 𝑟90 is a counterclockwise rotation about the center of the
square by 90∘ (see figure below). Labels on the vertices indicate how the square was
moved. Note how after the rotation, the square takes up the same space as it did before
the rotation.

41
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Definition 5.2. A symmetry of a square is a motion that, when applied to the square,
places the square in the same space that it originally occupied.

Example 5.3. The motion 𝑟0 is a counterclockwise rotation about the center of the
square by 0∘ (see figure below). In other words, this “motion” does notmove the square
at all! While it may seem a bit boring, the motion 𝑟0 will play a critical role in our work
with symmetries.

Example 5.4. The symmetry denoted 𝑑 (for “diagonal”) is a reflection across themain
diagonal of the square (see figure below). Labels on the vertices indicate how the square
was moved. Note how after the reflection, the square takes up the same space as it did
before the reflection.

Example 5.5 (Non-examples). Here are a couple of motions that are not symmetries
of a square. Try drawing pictures to show how the square does not occupy the same
space after applying each of these motions.

• A counterclockwise rotation about the center of the square by 45∘.

• A translation by 2 units to the right. (Assume that the side length of the square is
1 unit.)

In all, there are 8 symmetries of a square:

• 4 rotations: 𝑟0, 𝑟90, 𝑟180, 𝑟270.
Note: The motion 𝑟0 is often denoted 𝜀 and is called the identity.

• 4 reflections: ℎ, 𝑣, 𝑑, 𝑑′, where the axes of reflections are shown below.

Remark. Youmight suggest 𝑟450 as another symmetry, i.e., a full 360∘ rotation followed
by another 90∘. However, we are interested in the net effect of the motion, rather than
themotion itself. Thus, wewill consider 𝑟450 to be equal to 𝑟90, since bothmotions have
the same net effect on the square.
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We let 𝐷4 be the set of symmetries of a square; i.e.,

𝐷4 = {𝜀, 𝑟90, 𝑟180, 𝑟270, ℎ, 𝑣, 𝑑, 𝑑′}.

The set𝐷4 is often called the dihedral group, hence the use of the letter𝐷 in its name. As
described in the beginning of this chapter, our goal is to identify structural similarities
between 𝐷4 and ℤ. To do that, we must equip 𝐷4 with an operation, i.e., a way of
combining symmetries to obtain other symmetries, just aswe can add integers to obtain
other integers. The operation for𝐷4 is composition, as shown in the following example.

Example 5.6. Consider the elements𝑑, 𝑟90 ∈ 𝐷4. To compute𝑑∘𝑟90 (read “𝑑 composed
with 𝑟90”), we apply the composite motion 𝑑 ∘ 𝑟90 onto the square:

This has the same net effect as applying 𝑣 onto the initial square:

Thus, we conclude 𝑑 ∘ 𝑟90 = 𝑣. With 𝑑 ∘ 𝑟90, note how the “inside” function 𝑟90 gets
applied to the square first. This is analogous to (𝑓 ∘ 𝑔)(𝑥) = 𝑓(𝑔(𝑥)), which you may
have seen in a calculus course.

Example 5.7. We compute 𝑟90 ∘ 𝑑 by applying it onto the square. Noting that 𝑑 is the
“inside” function that gets applied to the square first, we use the following diagram:

The net effect is the same as applying ℎ onto the initial square, and thus 𝑟90 ∘ 𝑑 = ℎ.
Comparing with Example 5.6 above, we see that 𝑟90 ∘ 𝑑 ≠ 𝑑 ∘ 𝑟90. This is different from
what we are used to seeing in ℤ, where 𝑎 + 𝑏 = 𝑏 + 𝑎 for all 𝑎, 𝑏 ∈ ℤ.

Example 5.8. The figure below shows the composite motion 𝜀 ∘ 𝑟270 applied onto the
square:

Notice how in the last step, the motion 𝜀 keeps the input square unchanged. The com-
position 𝜀 ∘ 𝑟270 thus has the same net effect as applying just 𝑟270 onto the initial square:

Therefore, we have 𝜀 ∘ 𝑟270 = 𝑟270. We can similarly show that 𝑟270 ∘ 𝜀 = 𝑟270. An
analogous calculation in ℤ is 0 + 𝑎 = 𝑎 and 𝑎 + 0 = 𝑎. In other words, the element
𝜀 ∈ 𝐷4 behaves like 0 ∈ ℤ.
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Example 5.9. The figure below shows the composite motion 𝑟90 ∘𝑟270 applied onto the
square:

Thus, 𝑟90 ∘ 𝑟270 = 𝜀. We can similarly show that 𝑟270 ∘ 𝑟90 = 𝜀. We say that 𝑟90 and
𝑟270 are inverses of each other, because their composition is the identity element 𝜀. An
analogous calculation in ℤ is 𝑎 + (−𝑎) = 0 and (−𝑎) + 𝑎 = 0, where 𝑎 and −𝑎 are
additive inverses of each other.

Example 5.10. Consider the element ℎ ∈ 𝐷4. The figure below shows the computa-
tion of ℎ ∘ ℎ = 𝜀. Thus, ℎ is said to be a self-inverse, because the inverse of ℎ is itself.

5.2 Group properties of 𝐷4
Recall that 𝐷4 = {𝜀, 𝑟90, 𝑟180, 𝑟270, ℎ, 𝑣, 𝑑, 𝑑′} is the set of symmetries of a square. The
composition table for 𝐷4 is shown below. For 𝜎, 𝜏 ∈ 𝐷4, the composition 𝜎 ∘ 𝜏 is the
entry in row 𝜎 and column 𝜏. For example, 𝑑 ∘ 𝑟90 = 𝑣 from Example 5.6 is shown in a
bold font.

∘ 𝜀 𝒓90 𝑟180 𝑟270 ℎ 𝑣 𝑑 𝑑′
𝜀 𝜀 𝑟90 𝑟180 𝑟270 ℎ 𝑣 𝑑 𝑑′
𝑟90 𝑟90 𝑟180 𝑟270 𝜀 𝑑′ 𝑑 ℎ 𝑣
𝑟180 𝑟180 𝑟270 𝜀 𝑟90 𝑣 ℎ 𝑑′ 𝑑
𝑟270 𝑟270 𝜀 𝑟90 𝑟180 𝑑 𝑑′ 𝑣 ℎ
ℎ ℎ 𝑑 𝑣 𝑑′ 𝜀 𝑟180 𝑟90 𝑟270
𝑣 𝑣 𝑑′ ℎ 𝑑 𝑟180 𝜀 𝑟270 𝑟90
𝒅 𝑑 𝒗 𝑑′ ℎ 𝑟270 𝑟90 𝜀 𝑟180
𝑑′ 𝑑′ ℎ 𝑑 𝑣 𝑟90 𝑟270 𝑟180 𝜀

We say that𝐷4 (with the operation ∘) is a group, because it satisfies the following “group
properties.” In an exercise at the end of the chapter, you will verify that ℤ (with the
operation +) is also a group.
(1) 𝐷4 is closed under composition. For any pair of elements 𝜎, 𝜏 ∈ 𝐷4, the compo-

sition 𝜎 ∘ 𝜏 is also in 𝐷4. We can see this from the table above, since every entry in
the table (i.e., all possible compositions) is an element of 𝐷4.

(2) The associative law holds. For any three elements 𝜎, 𝜏, 𝜇 ∈ 𝐷4, we have (𝜎 ∘ 𝜏) ∘
𝜇 = 𝜎 ∘ (𝜏 ∘ 𝜇). For example, suppose our three elements are 𝑟90, ℎ, and 𝑑. Then

(𝑟90 ∘ ℎ) ∘ 𝑑 = 𝑑′ ∘ 𝑑 = 𝑟180 and 𝑟90 ∘ (ℎ ∘ 𝑑) = 𝑟90 ∘ 𝑟90 = 𝑟180,
so that (𝑟90 ∘ ℎ) ∘ 𝑑 = 𝑟90 ∘ (ℎ ∘ 𝑑). In essence, the associative law says that we
can change how the elements are grouped together (no pun intended!) without
changing the result of the composition. We’ll soon see that this law holds for any
three elements in 𝐷4.
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(3) 𝐷4 has an identity element 𝜺 that keeps all elements in𝐷4 unchanged. Note
that 𝜀 ∘ 𝜎 = 𝜎 (the first row of the table) and 𝜎∘ 𝜀 = 𝜎 (the first column of the table)
for all 𝜎 ∈ 𝐷4. As discussed in Example 5.8, this is analogous to the calculation
0 + 𝑎 = 𝑎 and 𝑎 + 0 = 𝑎 in ℤ.

(4) Every element in𝐷4 has an inverse. We saw in Example 5.9 that 𝑟90 and 𝑟270 are
inverses of each other, because 𝑟90 ∘ 𝑟270 = 𝜀 and 𝑟270 ∘ 𝑟90 = 𝜀. From Example 5.10,
ℎ is a self-inverse; i.e., ℎ ∘ ℎ = 𝜀. In an exercise at the end of the chapter, you will
find the inverse of each element in 𝐷4.
Notice how in each row or column of the table, every element of 𝐷4 shows up

exactly once. We saw the same feature in the multiplication table of 𝑈10 in Chapter 4,
Exercise #12. In fact,𝐷4 and𝑈10 also havemany structural similarities, as wewill soon
learn.

5.3 Centralizer
In Chapter 2, we studied various subsets of ℤ. In this section, we will examine an
interesting subset of 𝐷4. Fix ℎ ∈ 𝐷4, i.e., the horizontal reflection. (There is nothing
special about ℎ here. We could have fixed any element of 𝐷4 for this process.) Then
define the set

𝐶(ℎ) = {𝜎 ∈ 𝐷4 | 𝜎 ∘ ℎ = ℎ ∘ 𝜎},
which is called the centralizer of ℎ in 𝐷4. In other words, 𝐶(ℎ) is the set of elements in
𝐷4 that commute with ℎ. The following elements are contained 𝐶(ℎ):
• 𝜀 ∈ 𝐶(ℎ), because 𝜀 ∘ ℎ = ℎ ∘ 𝜀.

• 𝑟180 ∈ 𝐶(ℎ), because 𝑟180 ∘ ℎ = ℎ ∘ 𝑟180.

• ℎ ∈ 𝐶(ℎ), because ℎ ∘ ℎ = ℎ ∘ ℎ.

• 𝑣 ∈ 𝐶(ℎ), because 𝑣 ∘ ℎ = ℎ ∘ 𝑣.
On the other hand, 𝑟90 ∉ 𝐶(ℎ), because 𝑟90 ∘ ℎ ≠ ℎ ∘ 𝑟90. You should verify for
yourself that 𝑟270, 𝑑, and 𝑑′ are also not in 𝐶(ℎ). Therefore, we conclude that 𝐶(ℎ) =
{𝜀, 𝑟180, ℎ, 𝑣}.

Here is the table for 𝐶(ℎ):
∘ 𝜀 𝑟180 ℎ 𝑣
𝜀 𝜀 𝑟180 ℎ 𝑣
𝑟180 𝑟180 𝜀 𝑣 ℎ
ℎ ℎ 𝑣 𝜀 𝑟180
𝑣 𝑣 ℎ 𝑟180 𝜀

Let’s check the group properties for 𝐶(ℎ):
(1) 𝐶(ℎ) is closed under composition. We can see this from the table above, since every

entry in the table (i.e., all possible compositions) is an element of 𝐶(ℎ).

(2) The associative law holds. We’ve already discussed how (𝜎 ∘ 𝜏) ∘ 𝜇 = 𝜎 ∘ (𝜏 ∘ 𝜇) for
any three elements 𝜎, 𝜏, 𝜇 ∈ 𝐷4. Since 𝐶(ℎ) is a subset of 𝐷4 (i.e., any element of
𝐶(ℎ) is an element of 𝐷4), the same must also hold for any three elements in 𝐶(ℎ).
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(3) 𝐶(ℎ) contains the identity element 𝜀.

(4) Every element in 𝐶(ℎ) has an inverse that is also in 𝐶(ℎ). In fact, we can see from
the table above that each element of 𝐶(ℎ) is a self-inverse.

Thus, 𝐶(ℎ) is also a group. And since 𝐶(ℎ) is a subset of 𝐷4, we say that 𝐶(ℎ) is a
subgroup of 𝐷4.

In the table for𝐶(ℎ), we see, for instance, that 𝑟180∘ℎ = ℎ∘𝑟180 and 𝑣∘𝑟180 = 𝑟180∘𝑣.
In fact, such a relationship holds for any pair of elements in𝐶(ℎ). (How canwe tell this
fairly quickly by looking at the table?) This feature of 𝐶(ℎ) is captured by the following
definition.

Definition 5.11 (Commutative group). We say that𝐶(ℎ) is a commutative group, since
𝜎 ∘ 𝜏 = 𝜏 ∘ 𝜎 for all 𝜎, 𝜏 ∈ 𝐶(ℎ).

Commutativity should be a familiar concept. For instance, addition of integers is
commutative, because 𝑎+𝑏 = 𝑏+𝑎 for all 𝑎, 𝑏 ∈ ℤ. However,𝐷4 is a non-commutative
group, because 𝑟90 ∘ 𝑑 ≠ 𝑑 ∘ 𝑟90.

Remark. In mathematics, commutative groups are more commonly referred to as
abelian groups. In this textbook, however, we will continue to use the term “commu-
tative,” since this is likely more familiar to you from your prior experiences.

Example 5.12. Fix the identity element 𝜀 ∈ 𝐷4. Then the centralizer of 𝜀 in𝐷4 is given
by

𝐶(𝜀) = {𝜎 ∈ 𝐷4 | 𝜎 ∘ 𝜀 = 𝜀 ∘ 𝜎}.
But for all 𝜎 ∈ 𝐷4, we have 𝜎∘ 𝜀 = 𝜎 and 𝜀 ∘𝜎 = 𝜎, so that 𝜎∘ 𝜀 = 𝜀 ∘𝜎. Therefore, every
element of 𝐷4 is contained in 𝐶(𝜀), and hence 𝐶(𝜀) = 𝐷4.

For the set𝐶(ℎ), we used its table to verify that every element in𝐶(ℎ)has an inverse
that is also in 𝐶(ℎ). Let’s generalize this observation to 𝐶(𝜏), where 𝜏 is an arbitrary
fixed element of𝐷4. Then the set 𝐶(𝜏) is defined by 𝐶(𝜏) = {𝜎 ∈ 𝐷4 | 𝜎∘𝜏 = 𝜏∘𝜎}.Now
consider an element 𝛼 ∈ 𝐶(𝜏). We will show that 𝛼 has an inverse that is also in 𝐶(𝜏).
To start, we know that 𝛼 ∈ 𝐷4, as 𝐶(𝜏) is a subset of 𝐷4. Since every element in 𝐷4 has
an inverse, 𝛼 must have one as well. Thus, let 𝛽 be the inverse of 𝛼, so that 𝛼 ∘ 𝛽 = 𝜀
and 𝛽 ∘ 𝛼 = 𝜀. We must show that 𝛽 is contained in 𝐶(𝜏).

Theorem 5.13. Fix 𝜏 ∈ 𝐷4. If 𝛼 ∈ 𝐶(𝜏) and 𝛽 is the inverse of 𝛼, then 𝛽 ∈ 𝐶(𝜏).

To prove it, we begin as usual by assuming the hypotheses: Assume 𝛼 ∈ 𝐶(𝜏) and
𝛽 is the inverse of 𝛼. From these, we obtain the following equations:

• 𝛼 ∈ 𝐶(𝜏) ⟹ 𝛼 ∘ 𝜏 = 𝜏 ∘ 𝛼.

• 𝛽 is the inverse of 𝛼 ⟹ 𝛼 ∘ 𝛽 = 𝜀 and 𝛽 ∘ 𝛼 = 𝜀.

The conclusion is 𝛽 ∈ 𝐶(𝜏), which means we must show that 𝛽 ∘ 𝜏 = 𝜏 ∘ 𝛽. Now that
we have expressed the hypotheses and conclusion using equations, which are easier to
manipulate, we are ready to write the proof.
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Proof. Assume𝛼 ∈ 𝐶(𝜏) and 𝛽 is the inverse of𝛼. Since𝛼 ∈ 𝐶(𝜏), we have𝛼∘𝜏 = 𝜏∘𝛼.
Furthermore, 𝛼∘𝛽 = 𝜀 and 𝛽 ∘𝛼 = 𝜀, because 𝛽 is the inverse of 𝛼. We take 𝛼∘𝜏 = 𝜏∘𝛼
and left-compose by 𝛽 on both sides to obtain 𝛽 ∘ (𝛼 ∘ 𝜏) = 𝛽 ∘ (𝜏 ∘ 𝛼). The left side of
this equation simplifies to

𝛽 ∘ (𝛼 ∘ 𝜏) = (𝛽 ∘ 𝛼) ∘ 𝜏 = 𝜀 ∘ 𝜏 = 𝜏,
so that 𝜏 = 𝛽 ∘ (𝜏 ∘ 𝛼). Right-compose by 𝛽 on both sides of this new equation to get
𝜏∘𝛽 = 𝛽∘(𝜏∘𝛼)∘𝛽, whose right side equals 𝛽∘(𝜏∘𝛼)∘𝛽 = (𝛽∘𝜏)∘(𝛼∘𝛽) = (𝛽∘𝜏)∘𝜀 = 𝛽∘𝜏.
Thus, 𝜏 ∘ 𝛽 = 𝛽 ∘ 𝜏, which implies that 𝛽 ∈ 𝐶(𝜏) as desired. ■

Remark. The above proof occurs in 𝐷4, which is non-commutative. Thus, we must
compose on the same side of an equation. For instance, we cannot take 𝛼 ∘ 𝜏 = 𝜏 ∘ 𝛼
and obtain 𝛽 ∘ (𝛼 ∘ 𝜏) = (𝜏 ∘ 𝛼) ∘ 𝛽, i.e., left-compose by 𝛽 on one side of the equation
and right-compose by 𝛽 on the other.

Exercises
1. (a) Compute 𝑣 ∘ 𝑟270 by drawing a figure like the one in Example 5.6.

(b) Compute 𝑟270 ∘ 𝑣 by drawing a figure like the one in Example 5.7.
(c) Verify that 𝑣 ∘ 𝑟270 ≠ 𝑟270 ∘ 𝑣.

2. Verify that ℤ with addition satisfies the four group properties described in Section
5.2.

3. (a) Verify that ℤ7 with addition satisfies the four group properties described in
Section 5.2.

(b) Do the same with ℤ5; with ℤ12; with ℤ20; with ℤ𝑚.

4. Find the inverse of each element in 𝐷4. (Feel free to use the table for 𝐷4.)

5. Fix ℎ ∈ 𝐷4 and let 𝐶(ℎ) be the centralizer of ℎ in 𝐷4. Verify that 𝑟270, 𝑑, 𝑑′ are not
contained in 𝐶(ℎ).

6. Fix 𝑑 ∈ 𝐷4, i.e., the reflection across the main diagonal of the square. The central-
izer of 𝑑 in 𝐷4 is defined by 𝐶(𝑑) = {𝜎 ∈ 𝐷4 | 𝜎 ∘ 𝑑 = 𝑑 ∘ 𝜎}. Find all the elements
of 𝐶(𝑑).

7. The center of 𝐷4 is defined by 𝑍(𝐷4) = {𝜎 ∈ 𝐷4 | 𝜎 ∘ 𝜏 = 𝜏 ∘ 𝜎 for all 𝜏 ∈ 𝐷4}. For
example, we have 𝜀 ∈ 𝑍(𝐷4) because 𝜀 ∘ 𝜏 = 𝜏 ∘ 𝜀 for all 𝜏 ∈ 𝐷4.
Note: The notation 𝑍(𝐷4) originates from the German word Zentrum (“center”).

(a) Describe the set 𝑍(𝐷4) in your own words. How does the center differ from a
centralizer?

(b) Find all the elements of 𝑍(𝐷4).
(c) Recall that 𝐶(𝑟180) = {𝜎 ∈ 𝐷4 | 𝜎 ∘ 𝑟180 = 𝑟180 ∘ 𝜎}. Find all elements of 𝐶(𝑟180).
(d) Elizabeth says, “After doing part (b) of this problem, I could do part (c)without

looking at the composition table for 𝐷4.” Why might she say that?

(This exercise is referenced in Example 11.15.)
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8. Let 𝐷3 denote the set of symmetries of an equilateral triangle. We have

𝐷3 = {𝜀, 𝑟120, 𝑟240, 𝑣, 𝑑, 𝑑′},

where the rotations are counterclockwise and the axes for the reflections are as
shown below.

(a) Construct a composition table for 𝐷3. (This exercise is referenced in Chapter
9, Exercise #20.)

(b) Use the table created to check the group properties for𝐷3. (Note: Technically,
(𝜎 ∘ 𝜏) ∘ 𝜇 = 𝜎 ∘ (𝜏 ∘ 𝜇) should be checked for all 𝜎, 𝜏, 𝜇 ∈ 𝐷3. But you can
just do one example here. To make it interesting, though, choose 𝜎, 𝜏, 𝜇 to be
three different elements of 𝐷3.)

(c) Is 𝐷3 commutative or non-commutative?

9. For 𝑛 ≥ 3, let 𝐷𝑛 denote the set of symmetries of a regular 𝑛-sided polygon.

(a) Describe the elements of 𝐷𝑛. How many are there?
(b) Explain why 𝐷𝑛 is non-commutative. (The operation is composition.)

10. For an element 𝜎 ∈ 𝐷4, the order of 𝜎 refers to the smallest positive exponent 𝑛
such that

𝜎𝑛 = 𝜎 ∘ 𝜎 ∘⋯ ∘ 𝜎⏟⎵⎵⎵⏟⎵⎵⎵⏟
𝑛 copies

= 𝜀.

Find the order of each element in𝐷4. Any conjectures? (This exercise is referenced
in Chapter 11 and Section 20.3.)

11. Find the order of each element in 𝐷7. Any conjectures?

12. Find the order of each element in 𝐷10. Any conjectures?

13. In 𝐷𝑛, explain the following:

(a) Why a rotation composed with a rotation is a rotation.
(b) Why a reflection composed with a reflection is a rotation.
(c) Why a rotation composed with a reflection (in either order) is a reflection.

(This exercise is referenced in Example 23.8.)
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14. Consider the subset 𝐻 = {0, 3, 6, 9} of ℤ12.
(a) Construct an addition table for 𝐻. Here, addition is done in ℤ12.
(b) Use the table created to check the group properties for 𝐻. (Note: You may

simply assume that the associative law for addition holds in ℤ12, i.e., (𝑎+𝑏)+
𝑐 = 𝑎 + (𝑏 + 𝑐) for all 𝑎, 𝑏, 𝑐 ∈ ℤ12.)

(c) Is 𝐻 commutative or non-commutative?

15. Prove: Fix 𝜏 ∈ 𝐷𝑛. Then 𝐶(𝜏) is closed under composition.
Note: In other words, prove the statement: If 𝛼, 𝛽 ∈ 𝐶(𝜏), then 𝛼 ∘ 𝛽 ∈ 𝐶(𝜏).
(This exercise is referenced in Example 23.9.)

16. Prove: 𝑍(𝐷𝑛) is closed under composition.
Note: Here, 𝑍(𝐷𝑛) is the center of 𝐷𝑛, as defined (for 𝐷4) in Exercise #7.

17. Prove: Let 𝛼, 𝛽 ∈ 𝐷𝑛 be inverses of each other. If 𝛼 ∈ 𝑍(𝐷𝑛), then 𝛽 ∈ 𝑍(𝐷𝑛).

18. Draw a figure whose symmetries include only 𝑟0 and 𝑟180.

19. Draw a figure whose symmetries include only 𝑟0, 𝑟90, 𝑟180, and 𝑟270.

20. Draw a figure whose symmetries include only 𝑟0, 𝑟180, ℎ, and 𝑣.

21. Find all symmetries of a tetrahedron. How many are there?

22. Find all symmetries of a cube. How many are there?

23. (Challenge) Recall from Section 5.3 that 𝐶(ℎ) is a subgroup of 𝐷4. This means
that 𝐶(ℎ) is a subset of 𝐷4 that also satisfy the four group properties described in
Section 5.2. Find all subgroups of 𝐷4. How do you know that you’ve found them
all?





6
Permutations

In the last chapter, we studied𝐷4, the set of symmetries of a square. With the operation
∘ (composition), these symmetries satisfy the same group properties that are satisfied
by the set of integers ℤ with addition (and also ℤ𝑚 with addition). In this chapter, we
will examine another example of a group, i.e., a set with an operation that satisfies the
four group properties described in Section 5.2. Specifically, we will study a special type
of functions called permutations. As we did with symmetries, we are interested in how
these permutations interact with each other.

In the history of mathematics, concrete examples of groups preceded the formal
definition of a group. Thus, the approach that we are taking in this textbook mimics
this historical development. In particular, the group of permutations was the first kind
of groups that were studied by mathematicians.

6.1 Permutations of the set {1, 2, 3}
Example 6.1. Let 𝜎 ∶ {1, 2, 3} → {1, 2, 3} be a function defined by

𝜎(1) = 3, 𝜎(2) = 1, 𝜎(3) = 2.
We say that 𝜎 is a permutation of the set {1, 2, 3}; i.e., it “shuffles” the numbers 1, 2,
and 3 so that the outputs 𝜎(1), 𝜎(2), and 𝜎(3) are all different. But a similar function
defined by

𝑓(1) = 3, 𝑓(2) = 1, 𝑓(3) = 1
is not a permutation, since 𝑓(2) and 𝑓(3) are equal.

Remark. In Example 6.1 above, the notation 𝜎 ∶ {1, 2, 3} → {1, 2, 3} means the fol-
lowing:

• The name of the function is 𝜎.

• The inputs into the function are 1, 2, and 3.

• The possible outputs are also 1, 2, and 3.
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Amore general discussion of functions is given in Chapter 15.

Example 6.2. Suppose 𝜏 is a permutation of {1, 2, 3} where 𝜏(1) = 2 and 𝜏(2) = 1.
Since 𝜏(3)must be different from 𝜏(1) and 𝜏(2), we conclude that 𝜏(3) = 3.

Example 6.3. We define 𝛼 to be a permutation of the set {1, 2, 3, 4} given by
𝛼(1) = 2, 𝛼(2) = 3, 𝛼(3) = 4, 𝛼(4) = 1.

Based on the examples above, here is a general definition of a permutation.

Definition 6.4 (Permutation). A function 𝜎 ∶ {1, 2, . . . , 𝑛} → {1, 2, . . . , 𝑛} is called a
permutation of the set {1, 2, . . . , 𝑛} when the outputs 𝜎(1), 𝜎(2), . . . , 𝜎(𝑛) are all differ-
ent. Moreover, the set of all permutations of {1, 2, . . . , 𝑛} is denoted 𝑆𝑛.

Remark. The set 𝑆𝑛 is often called the symmetric group, hence the use of the letter 𝑆
in its name.

Example 6.5. Suppose 𝜎 ∈ 𝑆3; i.e., 𝜎 is a permutation of the set {1, 2, 3}. Then there
are 3 choices for 𝜎(1), since 𝜎(1) can equal either 1, 2, or 3. For 𝜎(2), there are only 2
choices, since 𝜎(2) cannot equal 𝜎(1). And for 𝜎(3), there is only 1 choice left, namely
the number that was not taken up by 𝜎(1) or 𝜎(2). Thus, there are 3!= 3 × 2 × 1 = 6
permutations in the set 𝑆3.

To turn 𝑆𝑛 into a group, we must equip it with an operation, i.e., a way of combin-
ing permutations to obtain other permutations, just as we can add integers to obtain
other integers. As we did with the group of symmetries 𝐷𝑛, we will use the operation
∘ (composition) for 𝑆𝑛.

Example 6.6. Let 𝜎, 𝜏 ∈ 𝑆3 be permutations of {1, 2, 3} given by
𝜎(1) = 3, 𝜎(2) = 1, 𝜎(3) = 2 and 𝜏(1) = 2, 𝜏(2) = 1, 𝜏(3) = 3.

To compute 𝜎 ∘ 𝜏, we apply the composite function to the inputs 1, 2, and 3:
• (𝜎 ∘ 𝜏)(1) = 𝜎(𝜏(1)) = 𝜎(2) = 1.
• (𝜎 ∘ 𝜏)(2) = 𝜎(𝜏(2)) = 𝜎(1) = 3.
• (𝜎 ∘ 𝜏)(3) = 𝜎(𝜏(3)) = 𝜎(3) = 2.

Notice how 𝜏 is the “inside” function that gets applied first to 1, 2, and 3. We observe
that 𝜎 ∘ 𝜏 does indeed shuffle 1, 2, and 3, so it is a permutation. Thus, 𝜎 ∘ 𝜏 ∈ 𝑆3.

Example 6.7. With 𝜎, 𝜏 ∈ 𝑆3 as defined in Example 6.6, let’s compute 𝜏 ∘ 𝜎.
• (𝜏 ∘ 𝜎)(1) = 𝜏(𝜎(1)) = 𝜏(3) = 3.
• (𝜏 ∘ 𝜎)(2) = 𝜏(𝜎(2)) = 𝜏(1) = 2.
• (𝜏 ∘ 𝜎)(3) = 𝜏(𝜎(3)) = 𝜏(2) = 1.

Note how 𝜎 is now the “inside” function. We see that 𝜏 ∘ 𝜎 is a permutation, since it
shuffles the inputs 1, 2, and 3. Thus, 𝜏∘𝜎 ∈ 𝑆3. However, comparing with Example 6.6,
we see that 𝜎 ∘ 𝜏 ≠ 𝜏 ∘ 𝜎, because they shuffle 1, 2, and 3 in different ways. Therefore,
𝑆3 is non-commutative.
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6.2 Group properties of 𝑆𝑛
In this section, we will verify that 𝑆𝑛 (with the operation ∘) satisfies the group prop-
erties. Let’s begin by showing that 𝑆𝑛 is closed under composition. Thus, assume 𝜎,
𝜏 ∈ 𝑆𝑛. We must show that 𝜎 ∘ 𝜏 ∈ 𝑆𝑛, i.e., that the outputs (𝜎 ∘ 𝜏)(1), (𝜎 ∘ 𝜏)(2), . . . ,
(𝜎 ∘ 𝜏)(𝑛) are all different.

Proof know-how. To show that (𝜎∘𝜏)(1), (𝜎∘𝜏)(2), . . . , (𝜎∘𝜏)(𝑛) are all different, show
that any two of them are different. More specifically, consider (𝜎 ∘ 𝜏)(𝑖) and (𝜎 ∘ 𝜏)(𝑗),
where 𝑖, 𝑗 are integers between 1 and 𝑛with 𝑖 ≠ 𝑗. Then show that (𝜎∘𝜏)(𝑖) ≠ (𝜎∘𝜏)(𝑗).

The proof of the following theorem is left for you as an exercise at the end of the
chapter.

Theorem 6.8. 𝑆𝑛 is closed under composition.

To introduce the notion of the identity element and inverses in 𝑆𝑛, consider the
following examples.

Example 6.9. Let 𝜎, 𝛾, 𝜀 ∈ 𝑆3 be given by the following:

• 𝜎(1) = 3, 𝜎(2) = 1, 𝜎(3) = 2.

• 𝛾(1) = 2, 𝛾(2) = 3, 𝛾(3) = 1.

• 𝜀(1) = 1, 𝜀(2) = 2, 𝜀(3) = 3.

Here is the computation of 𝜀 ∘ 𝜎:

• (𝜀 ∘ 𝜎)(1) = 𝜀(𝜎(1)) = 𝜀(3) = 3.

• (𝜀 ∘ 𝜎)(2) = 𝜀(𝜎(2)) = 𝜀(1) = 1.

• (𝜀 ∘ 𝜎)(3) = 𝜀(𝜎(3)) = 𝜀(2) = 2.

Notice how in the last step the permutation 𝜀 keeps the inputs unchanged. Thus, the
composition 𝜀 ∘ 𝜎 shuffles 1, 2, and 3 in the same manner as 𝜎. Therefore, we have
𝜀 ∘𝜎 = 𝜎. We can similarly show that 𝜎∘ 𝜀 = 𝜎 and that these relationships hold with 𝜎
replaced by any other element of 𝑆3. Hence, 𝜀 is the identity element of 𝑆3. Composing
with 𝜀 is analogous to 0 + 𝑎 = 𝑎 and 𝑎 + 0 = 𝑎 in ℤ; i.e., the element 𝜀 ∈ 𝑆3 behaves
like 0 ∈ ℤ.

Here is the generalization of Example 6.9 above. In an exercise, you’ll show that
the element 𝜀 has the property that 𝜀 ∘ 𝛼 = 𝛼 and 𝛼 ∘ 𝜀 = 𝛼 for all 𝛼 ∈ 𝑆𝑛.

Definition 6.10 (Identity permutation). The element 𝜀 ∈ 𝑆𝑛 defined by 𝜀(1) = 1,
𝜀(2) = 2, . . . , 𝜀(𝑛) = 𝑛 is called the identity permutation in 𝑆𝑛.
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Example 6.11. With 𝜎, 𝛾, 𝜀 ∈ 𝑆3 as defined in Example 6.9, consider the following
computations:

• (𝜎 ∘ 𝛾)(1) = 𝜎(𝛾(1)) = 𝜎(2) = 1.

• (𝜎 ∘ 𝛾)(2) = 𝜎(𝛾(2)) = 𝜎(3) = 2.

• (𝜎 ∘ 𝛾)(3) = 𝜎(𝛾(3)) = 𝜎(1) = 3.
Thus, 𝜎∘𝛾 shuffles 1, 2, and 3 in the samemanner as 𝜀, so that𝜎∘𝛾 = 𝜀. We can similarly
show that 𝛾∘𝜎 = 𝜀. We say 𝜎 and 𝛾 are inverses of each other, because their composition
is the identity element 𝜀. This is analogous to 𝑎 + (−𝑎) = 0 and (−𝑎) + 𝑎 = 0 in ℤ.

Definition 6.12 (Inverses in 𝑆𝑛). Let 𝜎, 𝛾 ∈ 𝑆𝑛 such that 𝜎 ∘ 𝛾 = 𝜀 and 𝛾 ∘ 𝜎 = 𝜀. We
say that 𝛾 is the inverse of 𝜎, and we write 𝛾 = 𝜎−1. Similarly, 𝜎 is the inverse of 𝛾, and
we write 𝜎 = 𝛾−1.

We conclude this section by verifying the group properties for 𝑆𝑛 (with the opera-
tion ∘).
(1) 𝑆𝑛 is closed under composition. For any pair of elements 𝜎, 𝜏 ∈ 𝑆𝑛, the compo-

sition 𝜎 ∘ 𝜏 is also in 𝑆𝑛. This is Theorem 6.8.

(2) The associative law holds. For any three elements 𝜎, 𝜏, 𝜇 ∈ 𝑆𝑛, we have (𝜎 ∘ 𝜏) ∘
𝜇 = 𝜎 ∘ (𝜏 ∘ 𝜇). This is justified in Section 6.4.

(3) 𝑆𝑛 has an identity element 𝜀 that keeps all elements in 𝑆𝑛 unchanged. See
Definition 6.10.

(4) Every element in 𝑆𝑛 has an inverse. In Example 6.11, we saw that 𝜎, 𝛾 ∈ 𝑆3 are
inverses of each other, since 𝜎 ∘ 𝛾 = 𝜀 and 𝛾 ∘ 𝜎 = 𝜀. You will generalize this in an
exercise at the end of the chapter.

6.3 Computations in 𝑆𝑛
In this section, we will perform various computations in 𝑆𝑛 that will help us better
understand its group properties. Before proceeding, we introduce a useful notation to
describe these permutations.

Definition 6.13 (Matrix notation). Consider 𝜎 ∈ 𝑆3 defined by 𝜎(1) = 3, 𝜎(2) =
1, 𝜎(3) = 2.We can write 𝜎 inmatrix form like this:

𝜎 = ( 1 2 3
3 1 2 ) .

For a permutation in 𝑆3, the top row is always 1, 2, 3. The bottom row contains the
corresponding outputs.

Example 6.14. We revisit Example 6.6 using this new matrix notation. Thus, let 𝜎,
𝜏 ∈ 𝑆3 be defined by

𝜎 = ( 1 2 3
3 1 2 ) and 𝜏 = ( 1 2 3

2 1 3 ) .
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To compute 𝜎∘𝜏, note that 𝜏 is the “inside” function. To find (𝜎∘𝜏)(1), for instance, we
see that 𝜏maps 1 to 2, and then 𝜎maps 2 to 1. Thus, (𝜎 ∘ 𝜏)(1) = 1. Finding (𝜎 ∘ 𝜏)(2)
and (𝜎 ∘ 𝜏)(3) similarly, we obtain

𝜎 ∘ 𝜏 = ( 1 2 3
1 3 2 ) .

Example 6.15. Let 𝛼 ∈ 𝑆5 be defined by

𝛼 = ( 1 2 3 4 5
4 1 3 5 2 ) .

We begin by finding 𝛼−1, the inverse of 𝛼. The matrix notation tells us that 𝛼(1) = 4.
Since𝛼−1 undoes the effect of𝛼, wemust have𝛼−1(4) = 1. Thus, we have (𝛼−1∘𝛼)(1) =
𝛼−1(𝛼(1)) = 𝛼−1(4) = 1; i.e., 𝛼−1 ∘ 𝛼 maps 1 to 1, just as 𝜀 does. Continuing in this
manner, we obtain

𝛼−1 = ( 1 2 3 4 5
2 5 3 1 4 ) .

We can also obtain 𝛼−1 by swapping the rows of the matrix of 𝛼, which has the effect of
swapping the roles of inputs and outputs of 𝛼. After swapping the rows, we must also
rearrange the columns, so that the new top row would read 1, 2, 3, 4, 5:

𝛼−1 = ( 4 1 3 5 2
1 2 3 4 5 ) ⟹ 𝛼−1 = ( 1 2 3 4 5

2 5 3 1 4 ) .

Example 6.16. Let 𝛼 ∈ 𝑆5 be defined as in Example 6.15, and also let 𝛽 ∈ 𝑆5 be given
by

𝛽 = ( 1 2 3 4 5
1 3 4 5 2 ) .

We wish to find 𝜒 ∈ 𝑆5 such that 𝛼 ∘ 𝜒 = 𝛽.
• We have 𝛼(𝜒(1)) = (𝛼 ∘ 𝜒)(1) = 𝛽(1) = 1. Thus, 𝛼maps 𝜒(1) to 1. We must have
𝜒(1) = 2.

• We have 𝛼(𝜒(2)) = (𝛼 ∘ 𝜒)(2) = 𝛽(2) = 3. Thus, 𝛼maps 𝜒(2) to 3. We must have
𝜒(2) = 3.

• We have 𝛼(𝜒(3)) = (𝛼 ∘ 𝜒)(3) = 𝛽(3) = 4. Thus, 𝛼maps 𝜒(3) to 4. We must have
𝜒(3) = 1.

• We have 𝛼(𝜒(4)) = (𝛼 ∘ 𝜒)(4) = 𝛽(4) = 5. Thus, 𝛼maps 𝜒(4) to 5. We must have
𝜒(4) = 4.

• We have 𝛼(𝜒(5)) = (𝛼 ∘ 𝜒)(5) = 𝛽(5) = 2. Thus, 𝛼maps 𝜒(5) to 2. We must have
𝜒(5) = 5.

Therefore, we conclude that

𝜒 = ( 1 2 3 4 5
2 3 1 4 5 ) .

Below is an alternative approach to finding 𝜒. The equation 𝛼 ∘ 𝜒 = 𝛽 in 𝑆5 is
analogous to 6𝑥 = 17 (let’s view 6 and 17 as real numbers), where 𝛼 and 𝛽 are known
and 𝜒 is the unknown. With 6𝑥 = 17, we can solve for 𝑥 by multiplying both sides
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by 1
6 (i.e., the multiplicative inverse of 6). We obtain

1
6 ⋅ 6𝑥 = 1

6 ⋅ 17, so that 𝑥 = 17
6 .

Analogously, we left-compose both sides of 𝛼 ∘ 𝜒 = 𝛽 by 𝛼−1 to obtain 𝛼−1 ∘ (𝛼 ∘ 𝜒) =
𝛼−1 ∘𝛽, so that𝜒 = 𝛼−1 ∘𝛽. Using thematrix form of 𝛼−1 fromExample 6.15, we obtain

𝜒 = 𝛼−1 ∘ 𝛽 = ( 1 2 3 4 5
2 5 3 1 4 ) ∘ ( 1 2 3 4 5

1 3 4 5 2 ) = ( 1 2 3 4 5
2 3 1 4 5 ) ,

as before. You should verify that 𝛼 ∘ 𝜒 does indeed equal 𝛽.

The next theorem and its proof explain how 𝛼∘𝜒 = 𝛽 implies𝜒 = 𝛼−1 ∘𝛽 using the
group properties of 𝑆𝑛. Also, compare this with how we solved the equation 7 ⋅ 𝑥 = 9
in ℤ15 in Example 4.17.

Theorem 6.17. Let 𝛼, 𝛽, 𝜒 ∈ 𝑆𝑛. If 𝛼 ∘ 𝜒 = 𝛽, then 𝜒 = 𝛼−1 ∘ 𝛽.

Proof. Assume 𝛼 ∘ 𝜒 = 𝛽. Since 𝛼 ∈ 𝑆5, it has an inverse element 𝛼−1 such that
𝛼−1 ∘ 𝛼 = 𝜀. We left-compose both sides of 𝛼 ∘ 𝜒 = 𝛽 by 𝛼−1 to obtain 𝛼−1 ∘ (𝛼 ∘ 𝜒) =
𝛼−1 ∘ 𝛽. Working with the left-hand side of this equation, we obtain

𝛼−1 ∘ (𝛼 ∘ 𝜒) = (𝛼−1 ∘ 𝛼) ∘ 𝜒 (associative law)
= 𝜀 ∘ 𝜒 (𝛼−1 is the inverse of 𝛼)
= 𝜒 (𝜀 is the identity element).

Thus, we obtain 𝜒 = 𝛼−1 ∘ 𝛽 as desired. ■

6.4 Associative law in 𝑆𝑛 (and in 𝐷𝑛)
For groups 𝐷𝑛 and 𝑆𝑛, the operation is function composition. We have claimed—and
verified with concrete examples—that for any three elements 𝜎, 𝜏, 𝜇, we have

(𝜎 ∘ 𝜏) ∘ 𝜇 = 𝜎 ∘ (𝜏 ∘ 𝜇).
Let’s show that this is true in general. We’ll make an argument in 𝑆𝑛, but a similar
argument can be made for 𝐷𝑛 as well. So, suppose 𝜎, 𝜏, 𝜇 ∈ 𝑆𝑛. Then these are per-
mutations of {1, 2, 3, . . . , 𝑛}. To show that (𝜎 ∘ 𝜏) ∘ 𝜇 and 𝜎 ∘ (𝜏 ∘ 𝜇) are equal, we must
show that they “shuffle” the numbers 1, 2, 3, . . . , 𝑛 in the same way. Let’s see where
(𝜎 ∘ 𝜏) ∘ 𝜇 and 𝜎 ∘ (𝜏 ∘ 𝜇)map 1:
• [(𝜎 ∘ 𝜏) ∘ 𝜇](1) = (𝜎 ∘ 𝜏)(𝜇(1)) = 𝜎(𝜏(𝜇(1))).

• [𝜎 ∘ (𝜏 ∘ 𝜇)](1) = 𝜎((𝜏 ∘ 𝜇)(1)) = 𝜎(𝜏(𝜇(1))).
So, the two functions agree on the input 1. There’s nothing special about 1 here, and it
can be replaced by any of the numbers 1, 2, 3, . . . , 𝑛. Therefore, (𝜎 ∘ 𝜏) ∘𝜇 = 𝜎∘ (𝜏 ∘𝜇).

Exercises
1. Find the number of elements in 𝑆4; in 𝑆5; in 𝑆6; in 𝑆𝑛.
2. Define 𝜀, 𝜎, 𝛾, 𝜏, 𝜇, 𝛿 ∈ 𝑆3, respectively, by

( 1 2 3
1 2 3 ) , ( 1 2 3

3 1 2 ) , ( 1 2 3
2 3 1 ) , ( 1 2 3

2 1 3 ) , ( 1 2 3
3 2 1 ) , ( 1 2 3

1 3 2 ) .



Exercises 57

(a) Construct the composition table for 𝑆3.
(b) Use the table created to verify the group properties for 𝑆3.
(c) Is 𝑆3 commutative or non-commutative?
(This exercise is referenced in Chapter 24, Exercise #18.)

3. Here, 𝛾, 𝜏 ∈ 𝑆3 are as defined in Exercise #2.
(a) The centralizer of 𝛾 in 𝑆3 is𝐶(𝛾) = {𝛼 ∈ 𝑆3 | 𝛼∘𝛾 = 𝛾∘𝛼}. Find all the elements

of 𝐶(𝛾).
(b) Find all the elements of 𝐶(𝜏).

4. Here, 𝜎, 𝛾 ∈ 𝑆3 are as defined in Exercise #2.
(a) Construct a composition table for the set 𝐻 = {𝜀, 𝜎, 𝛾}.

∘ 𝜀 𝜎 𝛾
𝜀
𝜎
𝛾

(b) Use the table created to verify the group properties for 𝐻.
(c) Is 𝐻 commutative or non-commutative?

(This exercise is referenced in Chapter 24, Exercise #18.)

5. The center of 𝑆3 is 𝑍(𝑆3) = {𝛼 ∈ 𝑆3 | 𝛼 ∘ 𝛽 = 𝛽 ∘ 𝛼 for all 𝛽 ∈ 𝑆3}. Find all the
elements of 𝑍(𝑆3).

6. Here, 𝜎, 𝜏 ∈ 𝑆3 are as defined in Exercise #2.
(a) Verify that (𝜎 ∘ 𝜏)−1 ≠ 𝜎−1 ∘ 𝜏−1, but (𝜎 ∘ 𝜏)−1 = 𝜏−1 ∘ 𝜎−1.
(b) Draw an analogy between the statement (𝜎 ∘ 𝜏)−1 = 𝜏−1 ∘ 𝜎−1 and the act of

putting on and taking off your socks and shoes.

(This exercise is referenced in Section 8.2.)

7. For an element 𝛼 ∈ 𝑆3, the order of 𝛼 refers to the smallest positive exponent 𝑛
such that

𝛼𝑛 = 𝛼 ∘ 𝛼 ∘⋯ ∘ 𝛼⏟⎵⎵⎵⏟⎵⎵⎵⏟
𝑛 copies

= 𝜀.

Find the order of each element in 𝑆3. Any conjectures? (This exercise is referenced
in Chapter 11 and Section 20.3.)

8. Prove: 𝑆𝑛 is non-commutative for 𝑛 ≥ 3.

9. Let 𝜀 ∈ 𝑆𝑛 be the element defined by 𝜀(1) = 1, 𝜀(2) = 2, . . . , 𝜀(𝑛) = 𝑛. Show that
𝜀 ∘ 𝛼 = 𝛼 and 𝛼 ∘ 𝜀 = 𝛼 for all 𝛼 ∈ 𝑆𝑛.
Note: This shows that 𝜀 ∈ 𝑆𝑛 has the desired behavior as an identity element of
𝑆𝑛.

10. Let 𝜎 ∈ 𝑆𝑛. Explain why there exists 𝛾 ∈ 𝑆𝑛 such that 𝜎 ∘ 𝛾 = 𝜀 and 𝛾 ∘ 𝜎 = 𝜀.
Note: This shows that every element in 𝑆𝑛 has an inverse (which is also in 𝑆𝑛).
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11. Consider the following elements in 𝑆4:

𝛾 = ( 1 2 3 4
2 1 4 3 ) , 𝜎 = ( 1 2 3 4

3 4 1 2 ) , and 𝜏 = ( 1 2 3 4
3 2 4 1 ) .

(a) Compute 𝛾 ∘ 𝜏 and 𝜏 ∘ 𝛾.
(b) Compute (𝛾 ∘ 𝜎) ∘ 𝜏 and 𝛾 ∘ (𝜎 ∘ 𝜏) and verify that they are equal.
(c) Find the inverse of each of these elements.

12. Let 𝛾, 𝜎, 𝜏 ∈ 𝑆4 be defined as in Exercise #11.

(a) Find the order of each of these elements.
(b) Find an element in 𝑆4 of order 4.

13. (a) Can an element of 𝑆4 have order greater than 4? Either find such an element
or explain why not.

(b) Can an element of 𝑆5 have order greater than 5? Either find such an element
or explain why not.

14. Prove: Let 𝜎, 𝜏, 𝜇 ∈ 𝑆𝑛. If 𝜎 ∘ 𝜏 = 𝜎 ∘ 𝜇, then 𝜏 = 𝜇. (This exercise is referenced in
Section 8.2.)

15. Let 𝜎, 𝜏, 𝜇 ∈ 𝑆𝑛. Does 𝜎 ∘ 𝜏 = 𝜇 ∘ 𝜎 imply that 𝜏 = 𝜇? Support your answer.

16. Each motion of a square in 𝐷4 can be viewed as an element of 𝑆4 that shuffles the
vertices of the square. For instance, here is a visual depiction of 𝑟90 ∈ 𝐷4:

Then, 𝑟90 maps vertex 1 to the position that was previously occupied by vertex 4. It
maps vertex 2 to the position thatwas previously occupied by vertex 1, and similarly
for vertices 3 and 4. Thus, 𝑟90 ∈ 𝐷4 corresponds to 𝜎 ∈ 𝑆4 given by

𝜎 = ( 1 2 3 4
4 1 2 3 ) .

(a) For each element in 𝐷4, find a corresponding element in 𝑆4.
(b) Here’s another element of 𝑆4:

𝜏 = ( 1 2 3 4
1 2 4 3 ) .

Either find an element in𝐷4 that corresponds to 𝜏 or explain why none exists.
(c) We’ve seen that 𝐷4 and 𝑆4 have eight and twenty-four elements, respectively.

So not every element in 𝑆4 can have a corresponding element in 𝐷4. Explain
geometricallywhy these sixteen remaining elements of 𝑆4 do not permit a cor-
responding element in 𝐷4.
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17. Let𝐻 be the subset of 𝑆5 defined by𝐻 = {𝜎 ∈ 𝑆5 | 𝜎(3) = 3}. For example, suppose

𝛼 = ( 1 2 3 4 5
4 1 3 5 2 ) and 𝛽 = ( 1 2 3 4 5

1 3 4 5 2 ) .

Then 𝛼 ∈ 𝐻, because 𝛼(3) = 3. But 𝛽 ∉ 𝐻, since 𝛽(3) ≠ 3.
(a) Find several elements of 𝑆5 that are in 𝐻.
(b) Find several elements of 𝑆5 that are not in 𝐻.
(c) Choose two elements in 𝐻 that you found in part (a) and call them 𝜎 and 𝜏.

Compute 𝜎 ∘ 𝜏, 𝜏 ∘ 𝜎, 𝜎−1, and 𝜏−1, and verify that all of these are still in 𝐻.
(d) Repeat part (c) with two more elements in 𝐻.

18. Let 𝐻 = {𝜎 ∈ 𝑆5 | 𝜎(3) = 3}, as defined in Exercise #17. Find the number of
elements in 𝐻.

19. Let 𝐻 = {𝜎 ∈ 𝑆5 | 𝜎(3) = 3}. Prove: 𝐻 is closed under composition.

20. Let 𝐻 = {𝜎 ∈ 𝑆5 | 𝜎(3) = 3}. Prove: If 𝛼 ∈ 𝐻, then 𝛼−1 ∈ 𝐻.

21. Let 𝛼, 𝛽 ∈ 𝑆4 where

𝛼 ∘ 𝛽 = ( 1 2 3 4
3 4 2 1 ) and 𝛽 ∘ 𝛼 = ( 1 2 3 4

2 3 1 4 ) .

Moreover, suppose 𝛽(3) = 1. Find 𝛼 and 𝛽.

22. Prove Theorem 6.8. Be sure to read the discussion before the theorem.

23. (Challenge) In Exercise #4,𝐻 is a subgroup of 𝑆3, because𝐻 is a subset of 𝑆3 that
also satisfies the group properties. Find all subgroups of 𝑆3. How do you know that
you’ve found them all?
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Matrices

This is the last chapter before the concept of a group is formally introduced in Chapter
8. We will explore one more example of a group, namely, the set of matrices, which
are rectangular arrays of numbers. In this textbook, we will work primarily with 2 × 2
matrices with 2 rows and 2 columns. Just like the integers, matrices can be added or
multiplied, and both operations will be considered in our study.

Beyond serving as an example of a group, matrices play an important role in many
areas of mathematics, particularly in a branch of mathematics called linear algebra. If
you have studied linear algebra in the past, some of the concepts in this chapter may
seem familiar.

7.1 Matrix arithmetic
Example 7.1. Consider a pair of 2 × 2 matrices 𝛼 = [ 1 2

3 4 ] and 𝛽 = [ 5 67 8 ]. For an
extra twist, assume that the entries of these matrices are in ℤ10. (Note: An “entry” of a
matrix refers to one of its numbers.) To add these matrices, we add the corresponding
entries. Therefore,

𝛼 + 𝛽 = [ 1 + 5 2 + 6
3 + 7 4 + 8 ] = [ 6 8

0 2 ] .

Note that we reduced the entries in the bottom row; i.e., 3+7 = 0 and 4+8 = 2 in ℤ10.

Example 7.2. Let 𝛼 = [ 1 2
3 4 ] and 𝛽 = [ 5 67 8 ] be the matrices from Example 7.1, again

with the assumption that the entries are in ℤ10. Then the difference 𝛼 − 𝛽 is given by

𝛼 − 𝛽 = [ 1 − 5 2 − 6
3 − 7 4 − 8 ] = [ −4 −4

−4 −4 ] = [ 6 6
6 6 ] .

In the last step, note that −4 = 6 in ℤ10.

To multiply a pair of matrices, we do not multiply the corresponding entries. In-
stead, we perform the process that is described in the next example.

61
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Example 7.3. Let 𝛼 and 𝛽 be the matrices from Example 7.1, with the entries in ℤ10.
The product 𝛼 ⋅ 𝛽 is also a 2 × 2matrix whose entries are computed as follows:
• To compute its entry in the first row / first column, we take the first row from 𝛼
(1 and 2) and the first column from 𝛽 (5 and 7). Thenwe compute their dot product
1 ⋅ 5 + 2 ⋅ 7 = 9 in ℤ10.

• To compute its entry in the first row / second column, we take the first row from
𝛼 (1 and 2) and the second column from 𝛽 (6 and 8). Then we compute their dot
product 1 ⋅ 6 + 2 ⋅ 8 = 2 in ℤ10.

• To compute its entry in the second row / first column, we take the second row
from 𝛼 (3 and 4) and the first column from 𝛽 (5 and 7). Then we compute their dot
product 3 ⋅ 5 + 4 ⋅ 7 = 3 in ℤ10.

• To compute its entry in the second row / second column, we take the second row
from 𝛼 (3 and 4) and the second column from 𝛽 (6 and 8). Then we compute their
dot product 3 ⋅ 6 + 4 ⋅ 8 = 0 in ℤ10.

Thus the product 𝛼 ⋅ 𝛽 is given by

𝛼 ⋅ 𝛽 = [ 1 2
3 4 ] ⋅ [ 5 6

7 8 ] = [ 1 ⋅ 5 + 2 ⋅ 7 1 ⋅ 6 + 2 ⋅ 8
3 ⋅ 5 + 4 ⋅ 7 3 ⋅ 6 + 4 ⋅ 8 ] = [ 9 2

3 0 ] .

Remark. Matrix multiplication is defined in this manner for the following reason. In
linear algebra, matrices are used to represent a type of functions called linear transfor-
mations. And matrix multiplication, as defined in Example 7.3, corresponds to com-
position of linear transformations.

Example 7.4. Once again, let 𝛼 and 𝛽 be the matrices from Example 7.1, with the
entries inℤ10. The calculation below shows that 𝛼⋅𝛽 ≠ 𝛽 ⋅𝛼; i.e., matrix multiplication
is not commutative.

𝛽 ⋅ 𝛼 = [ 5 6
7 8 ] ⋅ [ 1 2

3 4 ] = [ 5 ⋅ 1 + 6 ⋅ 3 5 ⋅ 2 + 6 ⋅ 4
7 ⋅ 1 + 8 ⋅ 3 7 ⋅ 2 + 8 ⋅ 4 ] = [ 3 4

1 6 ] .

Example 7.5. Here is an example of scalarmultiplication, wherewemultiply a number
by a matrix. Again, the entries of the matrix are in ℤ10.

8 ⋅ [ 1 2
3 4 ] = [ 8 ⋅ 1 8 ⋅ 2

8 ⋅ 3 8 ⋅ 4 ] = [ 8 6
4 2 ] .

7.2 Matrix group 𝑀(ℤ10)
To form a group using matrices, we need to put them into a set.

Definition 7.6. Let𝑀(ℤ10) be the set of 2 × 2matrices with entries in ℤ10.

The following observations about 𝑀(ℤ10) are based in part on the examples in
Section 7.1.

• 𝑀(ℤ10) is closed under addition and under multiplication. See Examples 7.1 and
7.3, respectively.
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• Addition in 𝑀(ℤ10) is commutative. You will prove this in an exercise at the end
of the chapter.

• Multiplication in𝑀(ℤ10) is not commutative. See Example 7.4.
• Both addition and multiplication in 𝑀(ℤ10) are associative. See the explanation
below.

Since addition in 𝑀(ℤ10) is based on addition in ℤ10, the associativity of matrix addi-
tion follows from the associativity of addition in ℤ10. For the proof, we consider three
arbitrary matrices 𝛼, 𝛽, 𝛾 ∈ 𝑀(ℤ10) and show that (𝛼 + 𝛽) + 𝛾 = 𝛼 + (𝛽 + 𝛾).

Theorem 7.7. Addition in𝑀(ℤ10) is associative.

Proof. Let 𝛼, 𝛽, 𝛾 ∈ 𝑀(ℤ10)where 𝛼 = [ 𝑎 𝑏
𝑐 𝑑 ], 𝛽 = [ 𝑞 𝑟

𝑠 𝑡 ], 𝛾 = [𝑤 𝑥
𝑦 𝑧 ], and all the entries

shown are in ℤ10. We have

(𝛼 + 𝛽) + 𝛾 = ([ 𝑎 𝑏
𝑐 𝑑 ] + [ 𝑞 𝑟

𝑠 𝑡 ]) + [ 𝑤 𝑥
𝑦 𝑧 ]

= [ 𝑎 + 𝑞 𝑏 + 𝑟
𝑐 + 𝑠 𝑑 + 𝑡 ] + [ 𝑤 𝑥

𝑦 𝑧 ]

= [ (𝑎 + 𝑞) + 𝑤 (𝑏 + 𝑟) + 𝑥
(𝑐 + 𝑠) + 𝑦 (𝑑 + 𝑡) + 𝑧 ]

= [ 𝑎 + (𝑞 + 𝑤) 𝑏 + (𝑟 + 𝑥)
𝑐 + (𝑠 + 𝑦) 𝑑 + (𝑡 + 𝑧) ] ← addition in ℤ10 is associative

= [ 𝑎 𝑏
𝑐 𝑑 ] + [ 𝑞 + 𝑤 𝑟 + 𝑥

𝑠 + 𝑦 𝑡 + 𝑧 ]

= [ 𝑎 𝑏
𝑐 𝑑 ] + ([ 𝑞 𝑟

𝑠 𝑡 ] + [ 𝑤 𝑥
𝑦 𝑧 ])

= 𝛼 + (𝛽 + 𝛾).
Thus, (𝛼 + 𝛽) + 𝛾 = 𝛼 + (𝛽 + 𝛾) as desired. ■

The proof that multiplication in𝑀(ℤ10) is associative is left for you as an exercise.

Example 7.8. Let 𝛼 ∈ 𝑀(ℤ10) where 𝛼 = [ 𝑎 𝑏
𝑐 𝑑 ] with its entries in ℤ10. We have

[ 0 0
0 0 ] + 𝛼 = 𝛼 as shown:

[ 0 0
0 0 ] + 𝛼 = [ 0 0

0 0 ] + [ 𝑎 𝑏
𝑐 𝑑 ] = [ 0 + 𝑎 0 + 𝑏

0 + 𝑐 0 + 𝑑 ] = [ 𝑎 𝑏
𝑐 𝑑 ] = 𝛼.

Similarly, we can show that 𝛼 + [ 0 0
0 0 ] = 𝛼. Therefore, [ 0 0

0 0 ] is the additive identity
element of𝑀(ℤ10). This is analogous to 0 + 𝑎 = 𝑎 and 𝑎 + 0 = 0 in ℤ10.

Example 7.9. Let 𝛼, 𝛽 ∈ 𝑀(ℤ10) where 𝛼 = [ 1 2
3 4 ] and 𝛽 = [ 9 8

7 6 ]. We have

𝛼 + 𝛽 = [ 1 2
3 4 ] + [ 9 8

7 6 ] = [ 1 + 9 2 + 8
3 + 7 4 + 6 ] = [ 0 0

0 0 ] .
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Therefore, 𝛼 + 𝛽 = [ 0 0
0 0 ]. Similarly, we can show that 𝛽 + 𝛼 = [ 0 0

0 0 ]. Therefore, 𝛼 and
𝛽 are additive inverses of each other, since their sum is the additive identity element
[ 0 0
0 0 ].

We conclude this section by verifying the group properties for 𝑀(ℤ10) with addi-
tion.

(1) 𝑀(ℤ10) is closed under addition. For any pair of matrices 𝛼, 𝛽 ∈ 𝑀(ℤ10), their
sum 𝛼 + 𝛽 is also in 𝑀(ℤ10). After all, addition in 𝑀(ℤ10) is based on addition in
ℤ10.

(2) The associative law (for addition) holds. This is Theorem 7.7.

(3) 𝑀(ℤ10) has an additive identity element [ 0 0
0 0 ]. See Example 7.8.

(4) Every element in𝑀(ℤ10) has an additive inverse. In Example 7.9, we saw that
𝛼, 𝛽 ∈ 𝑀(ℤ10) are additive inverses of each other. You will generalize this in an
exercise at the end of the chapter.

7.3 Multiplicative inverses
In Section 7.2, we saw that𝑀(ℤ10) is a groupunder addition. We’ll soon see that𝑀(ℤ10)
with multiplication is not a group, because not every matrix has a multiplicative in-
verse. Nonetheless, multiplication plays an important role in our work with matrices.
In the examples below, we will discuss the notions of identity and inverse when the
matrix operation is multiplication.

Example 7.10. Let 𝜀, 𝛼 ∈ 𝑀(ℤ10) where 𝜀 = [ 1 0
0 1 ] and 𝛼 = [ 𝑎 𝑏

𝑐 𝑑 ] with its entries in
ℤ10. We have

𝜀 ⋅ 𝛼 = [ 1 0
0 1 ] ⋅ [ 𝑎 𝑏

𝑐 𝑑 ] = [ 1 ⋅ 𝑎 + 0 ⋅ 𝑐 1 ⋅ 𝑏 + 0 ⋅ 𝑑
0 ⋅ 𝑎 + 1 ⋅ 𝑐 0 ⋅ 𝑏 + 1 ⋅ 𝑑 ] = [ 𝑎 𝑏

𝑐 𝑑 ] .

Therefore, 𝜀 ⋅ 𝛼 = 𝛼. A similar calculation shows that 𝛼 ⋅ 𝜀 = 𝛼. The matrix 𝜀 is
called the multiplicative identity matrix, because it keeps all the matrices unchanged
via multiplication. This is analogous to multiplying a number by 1; i.e., 1 ⋅ 𝑎 = 𝑎 and
𝑎 ⋅ 1 = 𝑎 in ℤ10.

In ℤ10, we have 3 ⋅ 7 = 1 and 7 ⋅ 3 = 1, where 1 is the multiplicative identity of ℤ10.
Recall that we say 3 and 7 aremultiplicative inverses of each other. Let’s apply the same
concept to matrices in𝑀(ℤ10).

Example 7.11. Let 𝛼, 𝛽 ∈ 𝑀(ℤ10) where 𝛼 = [ 1 2
4 9 ] and 𝛽 = [ 9 8

6 1 ]. We have

𝛼 ⋅ 𝛽 = [ 1 2
4 9 ] ⋅ [ 9 8

6 1 ] = [ 1 ⋅ 9 + 2 ⋅ 6 1 ⋅ 8 + 2 ⋅ 1
4 ⋅ 9 + 9 ⋅ 6 4 ⋅ 8 + 9 ⋅ 1 ] = [ 1 0

0 1 ] .

Therefore, 𝛼 ⋅ 𝛽 = 𝜀. Similarly, we can show that 𝛽 ⋅ 𝛼 = 𝜀. Therefore, 𝛼 and 𝛽 are
multiplicative inverses of each other, since their product is the multiplicative identity
element 𝜀 = [ 1 0

0 1 ].
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Example 7.12. Let 𝛼 ∈ 𝑀(ℤ10) where 𝛼 = [ 6 5
5 6 ]. We have

𝛼 ⋅ 𝛼 = [ 6 5
5 6 ] ⋅ [ 6 5

5 6 ] = [ 6 ⋅ 6 + 5 ⋅ 5 6 ⋅ 5 + 5 ⋅ 6
5 ⋅ 6 + 6 ⋅ 5 5 ⋅ 5 + 6 ⋅ 6 ] = [ 1 0

0 1 ] .

Thus, 𝛼 ⋅ 𝛼 = 𝜀, so that 𝛼 is a self-inverse in𝑀(ℤ10).

Below are examples of matrices in𝑀(ℤ10) that do not havemultiplicative inverses.
Again, this is why𝑀(ℤ10) is not a group under multiplication.

Example 7.13. Let 𝛼 ∈ 𝑀(ℤ10) where 𝛼 = [ 2 3
0 0 ]. Then for 𝛽 ∈ 𝑀(ℤ10) where 𝛽 =

[ 𝑎 𝑏
𝑐 𝑑 ], we have

𝛼 ⋅ 𝛽 = [ 2 3
0 0 ] ⋅ [ 𝑎 𝑏

𝑐 𝑑 ] = [ 2 ⋅ 𝑎 + 3 ⋅ 𝑐 2 ⋅ 𝑏 + 3 ⋅ 𝑑
0 ⋅ 𝑎 + 0 ⋅ 𝑐 0 ⋅ 𝑏 + 0 ⋅ 𝑑 ] = [ 𝑥 𝑦

0 0 ] ,

where 𝑥 = 2 ⋅ 𝑎+ 3 ⋅ 𝑐 and 𝑦 = 2 ⋅ 𝑏+ 3 ⋅ 𝑑. Then 𝛼 ⋅ 𝛽 ≠ 𝜀, since the bottom row of 𝛼 ⋅ 𝛽
will always contain 0 and 0. Thus, 𝛼 does not have a multiplicative inverse in𝑀(ℤ10).

Example 7.14. Let 𝛼 ∈ 𝑀(ℤ10) where 𝛼 = [ 1 2
3 6 ]. Then for 𝛽 ∈ 𝑀(ℤ10) where 𝛽 =

[ 𝑎 𝑏
𝑐 𝑑 ], we have

𝛼 ⋅ 𝛽 = [ 1 2
3 6 ] ⋅ [ 𝑎 𝑏

𝑐 𝑑 ] = [ 1 ⋅ 𝑎 + 2 ⋅ 𝑐 1 ⋅ 𝑏 + 2 ⋅ 𝑑
3 ⋅ 𝑎 + 6 ⋅ 𝑐 3 ⋅ 𝑏 + 6 ⋅ 𝑑 ] .

Now, assume for contradiction that 𝛼 ⋅ 𝛽 = 𝜀. Then, equating the entries in the first
columns of 𝛼 ⋅𝛽 and 𝜀, we obtain 1 ⋅𝑎+2 ⋅ 𝑐 = 1 and 3 ⋅𝑎+6 ⋅ 𝑐 = 0. If we multiply both
sides of 1 ⋅ 𝑎+2 ⋅ 𝑐 = 1 by 3, we get 3 ⋅ 𝑎+6 ⋅ 𝑐 = 3. Comparing that with 3 ⋅ 𝑎+6 ⋅ 𝑐 = 0
yields 3 = 0 in ℤ10, which is a contradiction. Hence, 𝛼 ⋅ 𝛽 cannot be equal to 𝜀. Thus,
𝛼 does not have a multiplicative inverse in𝑀(ℤ10).

7.4 Determinant
In the previous section, we found some matrices in 𝑀(ℤ10) that have multiplicative
inverses and others that do not. How can we determine whether or not a matrix 𝛼 ∈
𝑀(ℤ10) has a multiplicative inverse? And if it does, how can we find its multiplicative
inverse? These questions will be addressed in this section.

Example 7.15. Let 𝛼 ∈ 𝑀(ℤ10) where 𝛼 = [ 𝑎 𝑏
𝑐 𝑑 ] with its entries in ℤ10. If possible,

we’d like to find the multiplicative inverse of 𝛼, i.e., a matrix 𝛽 such that 𝛼 ⋅ 𝛽 = 𝜀 and
𝛽 ⋅ 𝛼 = 𝜀. Consider 𝛽 ∈ 𝑀(ℤ10) where 𝛽 = [ 𝑑 −𝑏

−𝑐 𝑎 ]. Multiplying the two, we obtain

𝛼 ⋅ 𝛽 = [ 𝑎 𝑏
𝑐 𝑑 ] ⋅ [ 𝑑 −𝑏

−𝑐 𝑎 ]

= [ 𝑎 ⋅ 𝑑 + 𝑏 ⋅ (−𝑐) 𝑎 ⋅ (−𝑏) + 𝑏 ⋅ 𝑎
𝑐 ⋅ 𝑑 + 𝑑 ⋅ (−𝑐) 𝑐 ⋅ (−𝑏) + 𝑑 ⋅ 𝑎 ] = [ 𝑎𝑑 − 𝑏𝑐 0

0 𝑎𝑑 − 𝑏𝑐 ] .

(Note: You should verify that 𝛽 ⋅ 𝛼 yields the same result.) The product 𝛼 ⋅ 𝛽 is almost
equal to the multiplicative identity 𝜀 = [ 1 0

0 1 ]. In fact, if 𝑎𝑑 − 𝑏𝑐 = 1, then we do have
𝛼 ⋅ 𝛽 = 𝜀. Example 7.11 illustrates this scenario. With 𝛼 = [ 1 2

4 9 ], we have 𝑎𝑑 − 𝑏𝑐 =
1 ⋅ 9 − 2 ⋅ 4 = 1, so that its multiplicative inverse is given by 𝛽 = [ 𝑑 −𝑏

−𝑐 𝑎 ] = [ 9 −2
−4 1 ] =

[ 9 8
6 1 ], where −2 = 8 and −4 = 6 in ℤ10.



66 Chapter 7. Matrices

Remark. In Example 7.15, it might seem that matrix 𝛽 = [ 𝑑 −𝑏
−𝑐 𝑎 ] was pulled out of

thin air. But here is the thought process involved in finding it. Givenmatrix 𝛼 = [ 𝑎 𝑏
𝑐 𝑑 ],

we want to find its multiplicative inverse (if possible), i.e., a matrix 𝛽 = [𝑤 𝑥
𝑦 𝑧 ] such that

𝛼 ⋅ 𝛽 = 𝜀. Let’s compute 𝛼 ⋅ 𝛽 and set it equal to 𝜀:

[ 𝑎 𝑏
𝑐 𝑑 ] ⋅ [ 𝑤 𝑥

𝑦 𝑧 ] = [ 1 0
0 1 ] .

The matrix 𝜀 has zeros in two entries, in the first row / second column and in the sec-
ond row / first column. The zero in the first row / second column is obtained by the
following dot product: 𝑎 ⋅ 𝑥+𝑏 ⋅ 𝑧 = 0. What could 𝑥 and 𝑧 be? One possibility is to set
𝑥 = 0 and 𝑧 = 0, but then the entry in the second row / second column in the product
would be 𝑐 ⋅ 𝑥 + 𝑑 ⋅ 𝑧 = 𝑐 ⋅ 0 + 𝑑 ⋅ 0 = 0, whereas we’d like to obtain 1 in that entry.

Another option is to set 𝑥 = −𝑏 and 𝑧 = 𝑎, which gives us 𝑎 ⋅ 𝑥 + 𝑏 ⋅ 𝑧 = 𝑎 ⋅ (−𝑏) +
𝑏 ⋅ 𝑎 = 0. (We could have also set 𝑥 = 𝑏 and 𝑧 = −𝑎, but then we would have defined
the determinant of 𝛼 in Definition 7.16 as 𝑏𝑐 − 𝑎𝑑 instead.) Likewise, the zero in the
second row / first column of 𝜀 is obtained by 𝑐 ⋅ 𝑤 + 𝑑 ⋅ 𝑦 = 0, so we can set 𝑤 = 𝑑 and
𝑦 = −𝑐. Therefore, we find that

𝛽 = [ 𝑤 𝑥
𝑦 𝑧 ] = [ 𝑑 −𝑏

−𝑐 𝑎 ] .

As we saw in Example 7.15, this matrix 𝛽 is not quite the inverse of 𝛼, but it gives us a
good starting point.

Example 7.15 above motivates the following definition.

Definition 7.16 (Determinant). Let 𝛼 ∈ 𝑀(ℤ10) where 𝛼 = [ 𝑎 𝑏
𝑐 𝑑 ] with its entries in

ℤ10. The determinant of 𝛼, denoted det 𝛼, is given by det 𝛼 = 𝑎𝑑 − 𝑏𝑐. Note that det 𝛼
is a number in ℤ10.

Example 7.17. Let 𝜀 = [ 1 0
0 1 ] ∈ 𝑀(ℤ10) be the multiplicative identity matrix. Then

det 𝜀 = 1 ⋅ 1 − 0 ⋅ 0 = 1, which is the multiplicative identity element of ℤ10.

Example 7.18. Let 𝛼 ∈ 𝑀(ℤ10), where 𝛼 = [ 𝑎 𝑏
𝑐 𝑑 ] = [ 2 1

5 4 ]. Then det 𝛼 = 2⋅4−1⋅5 = 3.
Motivated by the calculation in Example 7.15, let’s define 𝛽 = [ 𝑑 −𝑏

−𝑐 𝑎 ] = [ 4 −1
−5 2 ] =

[ 4 9
5 2 ], since −1 = 9 and −5 = 5 in ℤ10. From Example 7.15, we know that

𝛼 ⋅ 𝛽 = [ det 𝛼 0
0 det 𝛼 ] = [ 3 0

0 3 ] = 3 ⋅ [ 1 0
0 1 ] ,

so that 𝛼 ⋅ 𝛽 = 3 ⋅ 𝜀, which almost equals the multiplicative identity 𝜀. (If only we could
“divide” by 3. . . .) Noting that 3 and 7 are multiplicative inverses of each other in ℤ10,
let’s consider multiplying 𝛼 not by 𝛽, but by 7 ⋅ 𝛽. Then we would have

𝛼 ⋅ (7 ⋅ 𝛽) = 7 ⋅ (𝛼 ⋅ 𝛽) = 7 ⋅ (3 ⋅ 𝜀) = (7 ⋅ 3) ⋅ 𝜀 = 1 ⋅ 𝜀.
Thus, 𝛼 ⋅ (7 ⋅ 𝛽) = 𝜀, so that 7 ⋅ 𝛽 = 7 ⋅ [ 4 9

5 2 ] = [ 8 3
5 4 ] is the multiplicative inverse of 𝛼.

Let’s verify by actually computing the product of 𝛼 and 7 ⋅ 𝛽:

𝛼 ⋅ (7 ⋅ 𝛽) = [ 2 1
5 4 ] ⋅ [ 8 3

5 4 ] = [ 2 ⋅ 8 + 1 ⋅ 5 2 ⋅ 3 + 1 ⋅ 4
5 ⋅ 8 + 4 ⋅ 5 5 ⋅ 3 + 4 ⋅ 4 ] = [ 1 0

0 1 ] = 𝜀.

We can similarly verify that (7 ⋅ 𝛽) ⋅ 𝛼 = 𝜀.
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In Example 7.18 above, we used the following property of scalar multiplication:
𝛼 ⋅ (7 ⋅ 𝛽) = 7 ⋅ (𝛼 ⋅ 𝛽). Here is the generalization, which you will prove in an exercise
at the end of the chapter. Intuitively, the theorem says that when multiplying a scalar
and two matrices, the scalar 𝑘 can be moved around freely in the product. But we may
not change the order of 𝛼 and 𝛽, since matrix multiplication is not commutative.

Theorem 7.19. Let 𝛼, 𝛽 ∈ 𝑀(ℤ10) and 𝑘 ∈ ℤ10. Then 𝑘 ⋅ (𝛼 ⋅𝛽) = (𝑘 ⋅𝛼) ⋅ 𝛽 = 𝛼 ⋅ (𝑘 ⋅𝛽).

Revisiting Example 7.18, we note the det 𝛼 = 3 having a multiplicative inverse in
ℤ10 was the key to 𝛼 having a multiplicative inverse in𝑀(ℤ10). This is captured in the
following theorem, whose proof is a generalization of the calculation in Example 7.18.

Theorem 7.20. Let 𝛼 = [ 𝑎 𝑏
𝑐 𝑑 ] ∈ 𝑀(ℤ10) and Δ = det 𝛼 ∈ ℤ10. If Δ has a multiplicative

inverse inℤ10, then 𝛼 has amultiplicative inverse in𝑀(ℤ10). Moreover, the multiplicative
inverse of 𝛼 is given by

𝛼−1 = Δ−1 ⋅ [ 𝑑 −𝑏
−𝑐 𝑎 ] ,

where Δ−1 is the multiplicative inverse of Δ in ℤ10.

Proof. Assume Δ = det 𝛼 has a multiplicative inverse in ℤ10, namely Δ−1 ∈ ℤ10.
Then 𝛼−1 = Δ−1 ⋅ [ 𝑑 −𝑏

−𝑐 𝑎 ] is a matrix in𝑀(ℤ10). To prove that 𝛼−1 is the multiplicative
inverse of 𝛼, we must show that 𝛼 ⋅ 𝛼−1 = 𝜀 and 𝛼−1 ⋅ 𝛼 = 𝜀. We have

𝛼 ⋅ 𝛼−1 = [ 𝑎 𝑏
𝑐 𝑑 ] ⋅ (Δ−1 ⋅ [ 𝑑 −𝑏

−𝑐 𝑎 ])

= Δ−1 ⋅ ([ 𝑎 𝑏
𝑐 𝑑 ] ⋅ [ 𝑑 −𝑏

−𝑐 𝑎 ])

= Δ−1 ⋅ [ det 𝛼 0
0 det 𝛼 ]

= Δ−1 ⋅ (Δ ⋅ [ 1 0
0 1 ])

= (Δ−1 ⋅ Δ) ⋅ 𝜀
= 1 ⋅ 𝜀.

Therefore, 𝛼 ⋅ 𝛼−1 = 𝜀. A similar calculation shows that 𝛼−1 ⋅ 𝛼 = 𝜀. ■
The converse of Theorem 7.20 is also true, as you will prove in an exercise at the

end of the chapter. We will state it as a theorem here.

Theorem 7.21 (Converse of Theorem 7.20). Let 𝛼 = [ 𝑎 𝑏
𝑐 𝑑 ] ∈ 𝑀(ℤ10) and Δ = det 𝛼 ∈

ℤ10. If 𝛼 has a multiplicative inverse in 𝑀(ℤ10), then Δ has a multiplicative inverse in
ℤ10.

In practice, the contrapositive of Theorem 7.21 ismore useful; namely: IfΔ = det 𝛼
does not have amultiplicative inverse inℤ10, then 𝛼 does not have amultiplicative inverse
in𝑀(ℤ10).
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Example 7.22 (Example 7.14 revisited). Let 𝛼 ∈ 𝑀(ℤ10) where 𝛼 = [ 1 2
3 6 ]. Then

det 𝛼 = 1 ⋅ 6 − 2 ⋅ 3 = 0, which does not have a multiplicative inverse in ℤ10. Thus, 𝛼
does not have a multiplicative inverse in𝑀(ℤ10).

Example 7.23. Let 𝛼 ∈ 𝑀(ℤ10), where 𝛼 = [ 2 1
3 4 ]. Then det 𝛼 = 2 ⋅ 4 − 1 ⋅ 3 =

5, which does not have a multiplicative inverse in ℤ10. Therefore, 𝛼 does not have a
multiplicative inverse in𝑀(ℤ10).

We end the chapter with a couple of theorems about determinants, which you will
explore (by creating your own examples) and prove in the exercises at the end of this
chapter.

Theorem 7.24. Let 𝛼, 𝛽 ∈ 𝑀(ℤ10). Then det(𝛼 ⋅ 𝛽) = det 𝛼 ⋅ det 𝛽.

In words, Theorem 7.24 says, “The determinant of the product (of matrices) is equal to
the product of the determinants.” In the expression det(𝛼 ⋅ 𝛽), the multiplication takes
place in𝑀(ℤ10); and in det 𝛼 ⋅ det 𝛽, the multiplication occurs in ℤ10.

Theorem 7.25. Let 𝛼 ∈ 𝑀(ℤ10). If its multiplicative inverse 𝛼−1 exists, then det 𝛼 and
det(𝛼−1) are multiplicative inverses of each other in ℤ10.

Remark. Throughout this chapter, we usedℤ10 as the number system inwhich the en-
tries of our matrices exist. But there is nothing special about ℤ10 here. We can replace
ℤ10 with any number system that permits both addition and multiplication. Examples
of such number systems (called rings, which we’ll explore much later in this textbook)
include ℤ𝑚, ℤ, ℚ, ℝ, and more.

Exercises
1. Let 𝛼, 𝛽 ∈ 𝑀(ℤ10)where 𝛼 = [ 2 4

5 6 ] and 𝛽 = [ 8 3
1 7 ]. Compute each of the following:

(a) 𝛼 + 𝛽. (b) 𝛽 + 𝛼. (c) 𝛼 − 𝛽. (d) 𝛽 − 𝛼.

2. Prove: Addition in𝑀(ℤ10) is commutative.

3. Is subtraction in𝑀(ℤ10) commutative? Why or why not?

4. (a) Find 𝛼, 𝛽 ∈ 𝑀(ℤ10) such that 𝛼 ⋅ 𝛽 = 𝛽 ⋅ 𝛼.
(b) Find 𝛼, 𝛽 ∈ 𝑀(ℤ10) such that 𝛼 ⋅ 𝛽 ≠ 𝛽 ⋅ 𝛼.
(c) Anita wonders, “Doesn’t part (a) prove to us that multiplication in𝑀(ℤ10) is

commutative?” How would you respond to her?

5. Let 𝛼, 𝛽, 𝛾 ∈ 𝑀(ℤ10) where 𝛼 = [ 1 2
3 4 ], 𝛽 = [ 5 67 8 ], and 𝛾 = [ 9 0

4 7 ].

(a) Describe how to compute the product (𝛼⋅𝛽)⋅𝛾. Whichmatrices aremultiplied
first?

(b) Describe how to compute the product 𝛼 ⋅ (𝛽 ⋅ 𝛾).
(c) Compute (𝛼 ⋅ 𝛽) ⋅ 𝛾 and 𝛼 ⋅ (𝛽 ⋅ 𝛾), and verify that they are equal.
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6. Prove: Multiplication in𝑀(ℤ10) is associative. (This exercise is referenced in Sec-
tions 10.2 and 10.3.)

7. (a) Let 𝛼 ∈ 𝑀(ℤ10) where 𝛼 = [ 4 7
1 5 ]. Find the additive inverse of 𝛼.

(b) Repeat part (a), but with 𝛼 = [ 8 0
3 9 ].

(c) Repeat part (a), but with 𝛼 = [ 0 0
0 0 ].

8. Prove: Every element in𝑀(ℤ10) has an additive inverse.

9. For each matrix in𝑀(ℤ10) shown below, determine whether or not it has a multi-
plicative inverse. If it does, find the multiplicative inverse. If it does not, explain
why not.

(a) [ 1 5
2 7 ]. (b) [ 2 3

4 6 ]. (c) [ 4 4
3 6 ]. (d) [ 5 2

3 1 ].

10. Let 𝛼, 𝛽 ∈ 𝑀(ℤ10)where 𝛼 = [ 1 4
3 2 ] and 𝛽 = [ 2 1

3 4 ]. Without using the determinant,
explain why each of these matrices does not have a multiplicative inverse. (See
Example 7.14.)

11. Let 𝛼 ∈ 𝑀(ℤ10) whose second row is a constant multiple of the first row. Explain
why 𝛼 does not have a multiplicative inverse.
Note: Consider thematrix 𝛼 = [ 1 4

3 2 ] in Exercise #10, for instance. The second row
(3 and 2) is obtained by multiplying each entry the first row (1 and 4) by the same
number 3.

12. Find five different self-inverses in 𝑀(ℤ10), i.e., matrices 𝛼 ∈ 𝑀(ℤ10) such that
𝛼 ⋅ 𝛼 = 𝜀.

13. (a) Verify that [ 1 1
0 1 ] ∈ 𝑀(ℤ10) has a multiplicative inverse.

(b) For an element 𝛼 ∈ 𝑀(ℤ10)with a multiplicative inverse, the order of 𝛼 refers
to the smallest positive exponent 𝑛 such that

𝛼𝑛 = 𝛼 ⋅ 𝛼 ⋅ ⋯ ⋅ 𝛼⏟⎵⎵⎵⏟⎵⎵⎵⏟
𝑛 copies

= 𝜀,

where 𝜀 = [ 1 0
0 1 ] is themultiplicative identitymatrix. Find the order of [ 1 1

0 1 ] ∈
𝑀(ℤ10).

14. Prove: Let 𝛼 ∈ 𝑀(ℤ10). If there exists a positive integer 𝑛 such that 𝛼𝑛 = 𝜀, then
𝛼 has a multiplicative inverse in𝑀(ℤ10).

15. Let 𝛼, 𝛽 ∈ 𝑀(ℤ10) where 𝛼 = [ 1 5
2 7 ] and 𝛽 = [ 5 2

3 1 ]. Compute each of the following
products/inverses:

(a) (𝛼 ⋅ 𝛽)−1; i.e., first find the product 𝛼 ⋅ 𝛽 and then find its inverse.
(b) 𝛼−1 ⋅ 𝛽−1; i.e., first find the inverses 𝛼−1 and 𝛽−1 and then multiply them.
(c) 𝛽−1 ⋅ 𝛼−1; i.e., this is similar to 𝛼−1 ⋅ 𝛽−1 but in different order.
You should find that (𝛼 ⋅ 𝛽)−1 ≠ 𝛼−1 ⋅ 𝛽−1, but (𝛼 ⋅ 𝛽)−1 = 𝛽−1 ⋅ 𝛼−1. (This exercise
is referenced in Section 8.2.)
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16. Draw an analogy between the equation (𝛼 ⋅ 𝛽)−1 = 𝛽−1 ⋅ 𝛼−1 (from Exercise #15)
and the act of putting on and taking off your socks and shoes.

17. Theorem 7.19 states: Let 𝛼, 𝛽 ∈ 𝑀(ℤ10) and 𝑘 ∈ ℤ10. Then 𝑘 ⋅ (𝛼 ⋅ 𝛽) = (𝑘 ⋅ 𝛼) ⋅ 𝛽 =
𝛼 ⋅ (𝑘 ⋅ 𝛽).
(a) Create an example that illustrates this theorem.
(b) Prove the theorem.

18. Theorem 7.21 states: Let 𝛼 = [ 𝑎 𝑏
𝑐 𝑑 ] ∈ 𝑀(ℤ10) and Δ = det 𝛼 ∈ ℤ10. If 𝛼 has a

multiplicative inverse in𝑀(ℤ10), then Δ has a multiplicative inverse in ℤ10.
(a) Create an example that illustrates this theorem.
(b) Prove the theorem.

19. Theorem 7.24 states: Let 𝛼, 𝛽 ∈ 𝑀(ℤ10). Then det(𝛼 ⋅ 𝛽) = det 𝛼 ⋅ det 𝛽.
(a) Create an example that illustrates this theorem.
(b) Prove the theorem.

20. Theorem 7.25 states: Let 𝛼 ∈ 𝑀(ℤ10). If its multiplicative inverse 𝛼−1 exists, then
det 𝛼 and det(𝛼−1) are multiplicative inverses of each other in ℤ10.
(a) Create an example that illustrates this theorem.
(b) Prove the theorem.

21. In a linear algebra course, students typically work with matrices whose entries are
real numbers. They learn the following theorem: A matrix 𝛼 has a multiplicative
inverse if and only if det 𝛼 ≠ 0. Discuss how this linear algebra theorem is consis-
tent with our Theorems 7.20 and 7.21.

22. (a) Find the number of matrices in𝑀(ℤ10).
(b) Find the number of matrices in𝑀(ℤ7).
(c) Find the number of matrices in𝑀(ℤ12).
(d) Find the number of matrices in𝑀(ℤ𝑚).

23. (Challenge) Find the number of matrices in 𝑀(ℤ10) that have multiplicative in-
verses.



Unit III: Introduction to Groups

Chapter 8 will formally define the notion of a group, which, we hope, will feel familiar
to you. The next several chapters are devoted to articulating and proving properties
that apply to all groups, thereby engaging in abstraction or the process of extracting
structural similarities that arise in different scenarios. (Don’t worry, we’ll still keep
referring back to concrete examples!) For instance, we will see in Chapter 9 that every
group with three elements is essentially the same and that a four-element group can be
categorized into one of two types. Subgroups, which are subsets of groups that happen
to be groups themselves, are introduced in Chapter 11. Two chapters are set aside
for cyclic groups, an important type of groups that is generated by a single element.
For example, the additive group of integers ℤ is cyclic, because every integer can be
expressed as a sum of 1’s or−1’s. Our excursion into cyclic groups will also foreshadow
the notion of an isomorphism, i.e., what it means for two groups to be “the same.”

Here is a taste of what you’ll be able to accomplish in this unit:

• Learn how to prove that a certain group is commutative.

• Given a group element 𝑔, determine which integer exponents 𝑘 satisfy 𝑔𝑘 = 𝜀.

• Prove that a subgroup of a cyclic group is also cyclic.
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8
Introduction to Groups

In the last unit, we explored several important examples of groups:

• The set of integers ℤ with addition.

• The number system ℤ7 with addition.

• The set of symmetries of a square 𝐷4 with composition.

• The set of permutations 𝑆3 with composition.

• The set of 2 × 2matrices𝑀(ℤ10) with addition.

These examples all share common group properties, which we will formalize in this
chapter. We will begin proving statements not just about ℤ7 or 𝑆3, but about a general
group. Thus, our theorems will apply to all groups. But, of course, concrete examples
will continue to ground us in our work.

8.1 Definition of a “group”
Group is one of the two fundamental structures that we will study in this textbook.
(Ring is the other.) To review the group properties, we revisit some computations in
𝑆3, i.e., the set of all permutations of {1, 2, 3}.

Example 8.1. Let 𝜎, 𝛾, 𝜀 ∈ 𝑆3 be given by

𝜎 = ( 1 2 3
3 1 2 ) , 𝛾 = ( 1 2 3

2 3 1 ) , 𝜀 = ( 1 2 3
1 2 3 ) .

In Chapter 6, we saw that 𝜀 ∘ 𝜎 = 𝜎 and 𝜎 ∘ 𝜀 = 𝜎 and that these relationships hold
when 𝜎 is replaced by any element of 𝑆3. In other words, composing with the identity
element 𝜀 is analogous to 0+𝑎 = 𝑎 and 𝑎+0 = 𝑎 in ℤ. We also found that 𝜎∘𝛾 = 𝜀 and
𝛾 ∘ 𝜎 = 𝜀, so that 𝜎 and 𝛾 are inverses of each other. This is analogous to 𝑎 + (−𝑎) = 0
and (−𝑎) + 𝑎 = 0 in ℤ.
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Nowwe articulate the four group properties, i.e., the special features thatmake the
set 𝑆3 together with the operation ∘ (composition) into a group:
1. 𝑆3 is closed under ∘ ; i.e., if 𝜎, 𝜏 ∈ 𝑆3, then 𝜎 ∘ 𝜏 ∈ 𝑆3.

2. The operation ∘ is associative; i.e., (𝜎 ∘ 𝜏) ∘ 𝜇 = 𝜎 ∘ (𝜏 ∘ 𝜇) for all 𝜎, 𝜏, 𝜇 ∈ 𝑆3.

3. 𝑆3 contains an identity element 𝜀 such that 𝜀 ∘ 𝛼 = 𝛼 and 𝛼 ∘ 𝜀 = 𝛼 for all 𝛼 ∈ 𝑆3.

4. Each element 𝜎 ∈ 𝑆3 has an inverse 𝜎−1 ∈ 𝑆3 such that 𝜎∘𝜎−1 = 𝜀 and 𝜎−1∘𝜎 = 𝜀.

Remark. Rather than “𝑆3 with composition is a group,” we often say “𝑆3 is a group
under composition.” These are just two different ways of saying the same thing.

Finally, here is the long-awaited definition.

Definition 8.2 (Group). When a set with an associated operation satisfies the four
properties above, we call that pair (the set and the operation) a group.

In addition to 𝑆3 under composition, we have seen several examples of groups al-
ready. Shown below is a partial list. When naming a group, we should indicate both
the set (e.g., 𝑆3) and the operation (e.g., ∘).
• 𝐷4 (the set of symmetries of a square) under composition.

• ℤ (the set of integers) under addition.

• ℤ35 under addition.

• 𝑈35 under multiplication.

• 𝑀(ℤ10) under addition.

Remark. As a default, we will view the operation of a group asmultiplication. Given
a generic group 𝐺 and its elements 𝑎, 𝑏 ∈ 𝐺, we will refer to their product 𝑎 ⋅ 𝑏, or
more simply 𝑎𝑏. Even for specific groups like 𝑆3 and𝐷4, we will often write 𝛼𝛽 instead
of 𝛼 ∘ 𝛽 and refer to it as a “product,” rather than a “composition.” The one exception
to this rule is when we know that the group operation is addition, such as with ℤ or
ℤ35. In those cases, we will continue to use the additive notation. Given 𝑎, 𝑏 ∈ ℤ, for
instance, wewill write 𝑎+𝑏 and refer to it as a “sum.” Moreover, a group under addition
is always assumed to be commutative. Thus, in such a group, we have 𝑎 + 𝑏 = 𝑏 + 𝑎
for any pair of elements 𝑎 and 𝑏.

Below, we will explain whyℤ35 is a group under addition. This group is fairly large
(with 35 elements), so constructing an addition table to check the group properties does
not seem feasible. Thus, we will take a more general approach. An upside is that the
explanations given below can be applied to ℤ𝑚 as well.

Example 8.3. We verify the group properties for ℤ35 under addition:
(1) ℤ35 is closed under addition. Given 𝑎, 𝑏 ∈ ℤ35, their sum 𝑎+ 𝑏 is still in ℤ35. If the

sum exceeds 34, we can reduce it by subtracting 35. For example, 26 + 17 = 43 =
43 − 35 = 8 in ℤ35.
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(2) Addition in ℤ35 is associative; i.e., (𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐) for all 𝑎, 𝑏, 𝑐 ∈ ℤ35.
After all, addition in ℤ35 is based on addition in ℤ.

(3) The element 0 ∈ ℤ35 is the additive identity, because 0 + 𝑎 = 𝑎 and 𝑎 + 0 = 𝑎 for
all 𝑎 ∈ ℤ35.

(4) Each element 𝑎 ∈ ℤ35 has an additive inverse 35 − 𝑎, which is also in ℤ35. For
example, the additive inverse of 12 is 35− 12 = 23. Note that 12+ 23 = 0 and 23+
12 = 0.

Remark. We saw that 12+23 = 0 inℤ35. Thus, the additive inverse of 12 is 23, and we
write −12 = 23. Also, the additive inverse of 23 is 12, and we write −23 = 12. When
the operation is addition, the additive inverse of 𝑥 is denoted by−𝑥, rather than by 𝑥−1,
which is the notation for multiplicative inverse.

Example 8.4. Just like ℤ35, the set ℤ10 is a group under addition. In ℤ10, we have
3 + 7 = 0. Thus, the additive inverse of 3 is 7, and we write −3 = 7. Note how this is
consistent with our computation on the ℤ10 clock. To find−3 on the ℤ10 clock, we first
view−3 as 0−3. Then, we start at 0 on theℤ10 clock andmove 3 units counterclockwise.
We land on 7, so that −3 = 7 in ℤ10.

Example 8.5. Let ℝ be the set of all real numbers. Below, we verify that ℝ is a group
under addition. Also, we will simply assume that addition in ℝ is closed and associa-
tive.

(1) The set ℝ is closed under addition.

(2) Addition in ℝ is associative.

(3) The additive identity element is 0 ∈ ℝ, as 0 + 𝑎 = 𝑎 and 𝑎 + 0 = 𝑎 for all 𝑎 ∈ ℝ.

(4) Every 𝑎 ∈ ℝ has an additive inverse−𝑎 ∈ ℝ such that 𝑎+(−𝑎) = 0 and (−𝑎)+𝑎 =
0.

Next, we will show that 𝑈35 is a group under multiplication. Recall that

𝑈35 = {𝑎 ∈ ℤ35 | 𝑎 has a multiplicative inverse in ℤ35}.

For example, 4 ⋅ 9 = 1 in ℤ35 so that 4 and 9 are multiplicative inverses of each other
in ℤ35. Thus 4, 9 ∈ 𝑈35. On the other hand, 5 ∉ 𝑈35, because 5 ⋅ 𝑥 ≠ 1 for any 𝑥 ∈ ℤ35.
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Using Theorem 4.19 (i.e., 𝑎 ∈ 𝑈35 if and only if gcd(𝑎, 35) = 1), we can quickly find its
elements:

𝑈35 = {1, 2, 3, 4, 6, 8, 9, 11, 12, 13, 16, 17, 18, 19, 22, 23, 24, 26, 27, 29, 31, 32, 33, 34}.

This group is large enough (with twenty-four elements) that constructing a multipli-
cation table does not seem feasible. As we did with ℤ35, we will take a more general
approach. Again, the upside is that the explanations given below can be applied to 𝑈𝑚
as well.

Example 8.6. We consider 𝑈35 under multiplication:

(1) 𝑈35 is closed under multiplication. Given 𝑎, 𝑏 ∈ 𝑈35, their product 𝑎𝑏 is still in
𝑈35. This is proved (by you!) in Chapter 4, Exercise #17.

(2) Multiplication in 𝑈35 is associative; i.e., (𝑎 ⋅ 𝑏) ⋅ 𝑐 = 𝑎 ⋅ (𝑏 ⋅ 𝑐) for all 𝑎, 𝑏, 𝑐 ∈ 𝑈35.
After all, multiplication in 𝑈35 is based on multiplication in ℤ.

(3) The element 1 is the multiplicative identity, because 1 ⋅ 𝑎 = 𝑎 and 𝑎 ⋅ 1 = 𝑎 for
all 𝑎 ∈ 𝑈35. Moreover, 1 is in 𝑈35, because it has a multiplicative inverse, namely
itself.

(4) By the definition of𝑈35, each element 𝑎 ∈ 𝑈35 has amultiplicative inverse 𝑎−1 such
that 𝑎 ⋅ 𝑎−1 = 1 and 𝑎−1 ⋅ 𝑎 = 1. We must also verify that 𝑎−1 ∈ 𝑈35, i.e., that 𝑎−1
has a multiplicative inverse; it does, since 𝑎 is a multiplicative inverse of 𝑎−1.

Example 8.7. Letℝ∗ = {𝑎 ∈ ℝ | 𝑎 has a multiplicative inverse}. For instance, 3⋅ 13 = 1
so that 3, 13 ∈ ℝ∗. Similarly, 𝜋 ∈ ℝ∗, since it has a multiplicative inverse, namely 1

𝜋 .
In fact, if 𝑎 ∈ ℝ with 𝑎 ≠ 0, then 𝑎 has a multiplicative inverse, namely 1

𝑎 . Thus, the
set ℝ∗ contains all non-zero real numbers. In an exercise at the end of the chapter, you
will explain why ℝ∗ is a group under multiplication.

Example 8.8. The sets ℤ, ℤ7, ℤ35, and ℝ are all groups under addition. However, ℤ is
not a group undermultiplication, because 0 ∈ ℤ does not have amultiplicative inverse.
The same argument (i.e., 0 does not have a multiplicative inverse) can also be used in
ℤ7, ℤ35, and ℝ to explain why none of them is a group under multiplication.

8.2 Essential properties of a group
In this section, we investigate essential properties that are shared by all groups.

Uniqueness of identity and inverse. In ℤ35, which is a group under addition,
the element 0 is the only additive identity. In other words, there is no other element
besides 𝜀 = 0 that satisfies 𝜀 + 𝑎 = 𝑎 and 𝑎 + 𝜀 = 𝑎 for all 𝑎 ∈ ℤ35. Likewise, in the
multiplicative group 𝑈35, the element 1 is the only multiplicative identity, as there is
no other element 𝜀 that satisfies 𝜀 ⋅ 𝑎 = 𝑎 and 𝑎 ⋅ 𝜀 = 𝑎 for all 𝑎 ∈ 𝑈35. Each group
we’ve seen so far has contained only one identity element. Not surprisingly, this is true
in any group.

Theorem 8.9. A group has a unique (i.e., only one) identity element.
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Proof. Assume a group has two identity elements, namely 𝜀1 and 𝜀2. We will show
that these two elements must be the same. Since 𝜀1 is an identity element, it keeps 𝜀2
unchanged uponmultiplication: 𝜀1 ⋅𝜀2 = 𝜀2. But 𝜀2 is also an identity element and thus
keeps 𝜀1 unchanged uponmultiplication: 𝜀1 ⋅ 𝜀2 = 𝜀1. Therefore, 𝜀1 = 𝜀2, since they are
both equal to 𝜀1 ⋅ 𝜀2. ■

As we remarked earlier, we will view the operation of a group as multiplication
as a default. This convention can be seen in the proof above. We also identify a proof
technique that was used in this proof.

Proof know-how. To show that there is a unique element (with some property), as-
sume that there are two such elements. Then show that those two elements must be
the same.

The element 12 ∈ ℤ35 has an additive inverse, namely 23, because 12+23 = 0 and
23 + 12 = 0 in ℤ35. Moreover, 23 is the only additive inverse of 12. There is no other
element 𝑏 ∈ ℤ35 such that 12 + 𝑏 = 0 and 𝑏 + 12 = 0 in ℤ35. Likewise, the element
8 ∈ 𝑈35 has a unique (i.e., only one) multiplicative inverse, namely 22. There is no
other element 𝑏 ∈ 𝑈35 such that 8 ⋅ 𝑏 = 1 and 𝑏 ⋅ 8 = 1. This is also true in any group.

Theorem 8.10. Let 𝐺 be a group. Each element 𝑔 ∈ 𝐺 has a unique inverse in 𝐺.

The proof of this theorem is left for you as an exercise at the end of this chapter.
Because of this theorem, we can refer to the inverse of 𝑔 and refer to it unambiguously
as 𝑔−1.

Socks-shoes property. With 𝜎, 𝜏 ∈ 𝑆3, we saw that (𝜎𝜏)−1 ≠ 𝜎−1𝜏−1, but rather
(𝜎𝜏)−1 = 𝜏−1𝜎−1 (see Chapter 6, Exercise #6). We observed the same phenomenon
with 2 × 2 matrices (see Chapter 7, Exercise #15). We made an analogy between
(𝜎𝜏)−1 = 𝜏−1𝜎−1 and the act of putting on and taking off your socks and shoes:

Think of 𝜎 as putting on your socks and 𝜏 as putting on your shoes. Then 𝜎𝜏
denotes first putting on your socks, followed by putting on your shoes. Now,
(𝜎𝜏)−1 denotes the process of undoing the steps taken in 𝜎𝜏. And to undo 𝜎𝜏,
youmust first take off your shoes (denoted by 𝜏−1) and then take off your socks
(i.e., 𝜎−1). Thus, we have (𝜎𝜏)−1 = 𝜏−1𝜎−1.
The proof of Theorem 8.11 below gives an algebraic justification of the socks-shoes

property. The relationship we prove is (𝑎𝑏)−1 = 𝑏−1𝑎−1, which translates to “the mul-
tiplicative inverse of 𝑎𝑏 is 𝑏−1𝑎−1.” To show this, we multiply 𝑎𝑏 by 𝑏−1𝑎−1 and verify
that the product equals the identity element 𝜀.

Proof know-how. Suppose 𝑥 and 𝑦 are elements of a group. To show that 𝑥−1 = 𝑦
(“the multiplicative inverse of 𝑥 is 𝑦”), we verify that 𝑥 ⋅ 𝑦 = 𝜀 and 𝑦 ⋅ 𝑥 = 𝜀.

Theorem 8.11 (Socks-shoes property). Let 𝑎 and 𝑏 be elements of a group. Then (𝑎𝑏)−1
= 𝑏−1𝑎−1.

Proof. We will show that 𝑎𝑏multiplied by 𝑏−1𝑎−1 (on either side) yields the identity
element. First, on the right: (𝑎𝑏)(𝑏−1𝑎−1) = 𝑎(𝑏𝑏−1)𝑎−1 = 𝑎 𝜀 𝑎−1 = 𝑎𝑎−1 = 𝜀. Here,
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we used the fact that 𝑎−1 and 𝑏−1 are inverses of 𝑎 and 𝑏, respectively, so that 𝑎𝑎−1 = 𝜀
and 𝑏𝑏−1 = 𝜀. Next, we multiply on the left: (𝑏−1𝑎−1)(𝑎𝑏) = 𝑏−1(𝑎−1𝑎)𝑏 = 𝑏−1 𝜀 𝑏 =
𝑏−1𝑏 = 𝜀. Thus, 𝑏−1𝑎−1 is the inverse of 𝑎𝑏, as desired. ■

Remark. In any group, we have (𝑎𝑏)−1 = 𝑏−1𝑎−1. If a group happens to be commu-
tative, then we can further say that 𝑏−1𝑎−1 = 𝑎−1𝑏−1, and hence (𝑎𝑏)−1 = 𝑎−1𝑏−1.

Example 8.12. Let 𝑔 be a group element. We will use the Proof know-how technique
employed in the proof of Theorem 8.11 to show that (𝑔−1)−1 = 𝑔. First, the equation
(𝑔−1)−1 = 𝑔 translates to “the multiplicative inverse of 𝑔−1 is 𝑔.” To show this, wemust
verify 𝑔−1 ⋅ 𝑔 = 𝜀 and 𝑔 ⋅ 𝑔−1 = 𝜀. But these are true by the definition of 𝑔−1. Therefore,
(𝑔−1)−1 = 𝑔 as desired.

Laws of exponents. Let 𝑔 be an element of a group. Below, we will discuss the
meaning of the expression 𝑔𝑛 for different values of the integer exponent 𝑛. First, we
define 𝑔0 to be the identity element of the group; i.e., 𝑔0 = 𝜀.

For 𝑛 > 0, we have
𝑔𝑛 = 𝑔 ⋅ 𝑔 ⋅ ⋯ ⋅ 𝑔⏟⎵⎵⏟⎵⎵⏟

𝑛 copies
.

For instance, 𝑔1 = 𝑔 and 𝑔2 = 𝑔 ⋅ 𝑔. Consider 𝑔3. On the surface, this seems straight-
forward: 𝑔3 = 𝑔 ⋅ 𝑔 ⋅ 𝑔. However, an operation of a group is a binary operation; i.e.,
we multiply/add/combine only two elements at a time. Thus, the expression 𝑔 ⋅ 𝑔 ⋅ 𝑔
actually means either (𝑔 ⋅ 𝑔) ⋅ 𝑔 or 𝑔 ⋅ (𝑔 ⋅ 𝑔). Fortunately, (𝑔 ⋅ 𝑔) ⋅ 𝑔 and 𝑔 ⋅ (𝑔 ⋅ 𝑔) are
equal due to the associative law, so there is no ambiguity in writing 𝑔3 = 𝑔 ⋅ 𝑔 ⋅ 𝑔.

Similarly, 𝑔4 = 𝑔 ⋅ 𝑔 ⋅ 𝑔 ⋅ 𝑔 could mean any one of these expressions:
(𝑔𝑔)(𝑔𝑔), (𝑔(𝑔𝑔))𝑔, ((𝑔𝑔)𝑔)𝑔, 𝑔((𝑔𝑔)𝑔), 𝑔(𝑔(𝑔𝑔)),

where the multiplication symbol ⋅ was removed for simplicity. Again, we use the
associative law to show that these expressions are all equal. For example, we have
𝑔((𝑔𝑔)𝑔) = (𝑔(𝑔𝑔))𝑔,where the larger parentheseswere used to emphasize the regroup-
ing that took place. Thus, just as with 𝑔3 = 𝑔 ⋅ 𝑔 ⋅ 𝑔, there is no ambiguity when we
write 𝑔4 = 𝑔 ⋅ 𝑔 ⋅ 𝑔 ⋅ 𝑔, so we will continue to write expressions such as these.

Next, we demonstrate that the familiar laws of exponents hold with group ele-
ments:

• 𝑔𝑚+𝑛 = 𝑔𝑚 ⋅ 𝑔𝑛.

• (𝑔𝑚)𝑛 = 𝑔𝑚𝑛.

We will prove 𝑔𝑚+𝑛 = 𝑔𝑚 ⋅ 𝑔𝑛 for the case when 𝑚 and 𝑛 are positive. But first, let’s
create an example.

Example 8.13. With𝑚 = 2 and 𝑛 = 3, we have𝑚+ 𝑛 = 5 so that
𝑔2+3 = 𝑔 ⋅ 𝑔 ⋅ 𝑔 ⋅ 𝑔 ⋅ 𝑔⏟⎵⎵⎵⏟⎵⎵⎵⏟

5 copies
= (𝑔 ⋅ 𝑔)⏟
2 copies

⋅ (𝑔 ⋅ 𝑔 ⋅ 𝑔)⏟⎵⏟⎵⏟
3 copies

= 𝑔2 ⋅ 𝑔3.

Theorem 8.14. Let 𝑔 be an element of a group, and let 𝑚, 𝑛 ∈ ℤ with 𝑚, 𝑛 > 0. Then
𝑔𝑚+𝑛 = 𝑔𝑚 ⋅ 𝑔𝑛.



8.2. Essential properties of a group 79

Proof. We have
𝑔𝑚+𝑛 = 𝑔 ⋅ 𝑔 ⋅ ⋯ ⋅ 𝑔⏟⎵⎵⏟⎵⎵⏟

𝑚+ 𝑛 copies
= (𝑔 ⋅ 𝑔 ⋅ ⋯ ⋅ 𝑔)⏟⎵⎵⎵⏟⎵⎵⎵⏟

𝑚 copies

⋅ (𝑔 ⋅ 𝑔 ⋅ ⋯ ⋅ 𝑔)⏟⎵⎵⎵⏟⎵⎵⎵⏟
𝑛 copies

= 𝑔𝑚 ⋅ 𝑔𝑛. ■

The proof of (𝑔𝑚)𝑛 = 𝑔𝑚𝑛 (with𝑚, 𝑛 > 0) is left for you as an exercise at the end of this
chapter.

What if the exponents are negative? Let’s first address a more fundamental ques-
tion: What does an expression like 𝑔−5 mean in a group setting?

Example 8.15 (Meaning of 𝑔−5). Let 𝑔 be an element of a group. Then 𝑔−1 denotes the
multiplicative inverse of 𝑔, but what might 𝑔−5 mean? Two potential candidates are:
• 𝑔−5 = (𝑔−1)5; i.e., first invert 𝑔 and then multiply 𝑔−1 by itself five times.

• 𝑔−5 = (𝑔5)−1; i.e., first multiply 𝑔 by itself five times and then invert 𝑔5.
Not too surprisingly, the two interpretations (𝑔−1)5 and (𝑔5)−1 are equivalent. Applying
the socks-shoes property five times (imagine four layers of socks, followed by shoes),
we have

(𝑔5)−1 = (𝑔 ⋅ 𝑔 ⋅ 𝑔 ⋅ 𝑔 ⋅ 𝑔)−1 = 𝑔−1 ⋅ 𝑔−1 ⋅ 𝑔−1 ⋅ 𝑔−1 ⋅ 𝑔−1 = (𝑔−1)5.
Thus the expression 𝑔−5 may be viewed, without ambiguity, as either (𝑔−1)5 or (𝑔5)−1.

Rather than prove the laws 𝑔𝑚+𝑛 = 𝑔𝑚 ⋅ 𝑔𝑛 and (𝑔𝑚)𝑛 = 𝑔𝑚𝑛 when 𝑚 or 𝑛 (or
possibly both) is negative, we will examine several examples below and in the exercises
at the end of the chapter.

Example 8.16. Let 𝑔 be a group element. We have 𝑔−2 = (𝑔−1)2 = 𝑔−1𝑔−1, so that
𝑔−2 ⋅ 𝑔5 = (𝑔−1𝑔−1)(𝑔𝑔𝑔𝑔𝑔) = 𝑔−1(𝑔−1𝑔)𝑔𝑔𝑔𝑔 = 𝑔−1𝜀𝑔𝑔𝑔𝑔 = (𝑔−1𝑔)𝑔𝑔𝑔 = 𝜀𝑔𝑔𝑔 = 𝑔3.
Here, we used the fact that 𝑔−1𝑔 = 𝜀, since 𝑔−1 is the inverse of 𝑔. Thus, 𝑔−2𝑔5 = 𝑔3,
which verifies the law 𝑔𝑚+𝑛 = 𝑔𝑚 ⋅ 𝑔𝑛 when𝑚 = −2 and 𝑛 = 5.

Example 8.17. Let 𝑔 be a group element. We have

(𝑔2)−3 = ((𝑔2)3)−1 = (𝑔2 ⋅ 𝑔2 ⋅ 𝑔2)−1 = (𝑔6)−1 = 𝑔−6.
Thus, (𝑔2)−3 = 𝑔−6, which verifies the law (𝑔𝑚)𝑛 = 𝑔𝑚𝑛 when𝑚 = 2 and 𝑛 = −3.

Cancellation laws. Because every element of a group has an inverse, we have the
cancellation laws. The theorem and proof below are more or less identical to those
provided for 𝑆𝑛 in Chapter 6, Exercise #14. The right cancellation law (i.e., if 𝑏𝑎 = 𝑐𝑎,
then 𝑏 = 𝑐) can be proved similarly, and it is left for you as an exercise.

Theorem 8.18 (Left cancellation). Let 𝑎, 𝑏, 𝑐 be elements of a group. If 𝑎𝑏 = 𝑎𝑐, then
𝑏 = 𝑐.

Proof. Assume 𝑎𝑏 = 𝑎𝑐 in a group. Multiply both sides of the equation on the left by
𝑎−1 to obtain 𝑎−1(𝑎𝑏) = 𝑎−1(𝑎𝑐). Using the associative law gives (𝑎−1𝑎)𝑏 = (𝑎−1𝑎)𝑐.
Since 𝑎−1𝑎 = 𝜀, we get 𝜀𝑏 = 𝜀𝑐. Finally, 𝜀 keeps all elements of the group unchanged;
i.e., 𝜀𝑏 = 𝑏 and 𝜀𝑐 = 𝑐. Thus, 𝑏 = 𝑐 as desired. ■
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Example 8.19 (Non-example). In ℤ10, we have 2 ⋅ 6 = 2 ⋅ 1, even though 6 ≠ 1. This
does not violate Theorem 8.18, because ℤ10 is not a group under multiplication (it is a
group under addition, though). In fact, 2 does not have a multiplicative inverse; i.e.,
2−1 does not exist in ℤ10.

Example 8.20 (Non-example). Define 𝜎, 𝜏, 𝜇 ∈ 𝑆3, respectively, by

( 1 2 3
3 2 1 ) , ( 1 2 3

1 3 2 ) , ( 1 2 3
2 1 3 ) .

Then we have 𝜎𝜏 = 𝜇𝜎. (We’ll leave the calculation up to you.) It is incorrect to cancel
𝜎 from both sides of the equation and conclude 𝜏 = 𝜇, since the cancellation must
occur on the same side of each expression.

8.3 Proving that a group is commutative
Definition 8.21 (Commutative group). A group 𝐺 is commutative if 𝑎𝑏 = 𝑏𝑎 for all 𝑎,
𝑏 ∈ 𝐺. Otherwise, 𝐺 is non-commutative.

Example 8.22. The groups ℤ35 (under addition) and 𝑈35 (under multiplication) are
commutative. After all, addition and multiplication in these groups are based on ad-
dition and multiplication in ℤ. We’ve also seen that the groups 𝑆3 and 𝐷4 (both under
composition) are non-commutative.

If we’re given a particular group, say ℤ35 or𝑈35, it’s pretty straightforward to deter-
mine whether or not the group is commutative. But oftentimes, we’re given a property
of a group, andwemust prove that the group is commutative. Here’s one such example.

Theorem8.23. Let𝐺 be a group. If (𝑎𝑏)2 = 𝑎2𝑏2 for all𝑎, 𝑏 ∈ 𝐺, then𝐺 is commutative.

Proof. Assume that (𝑎𝑏)2 = 𝑎2𝑏2 for all 𝑎, 𝑏 ∈ 𝐺. Let 𝑎, 𝑏 ∈ 𝐺. We must show that
𝑎𝑏 = 𝑏𝑎. From the given property, we know that (𝑎𝑏)2 = 𝑎2𝑏2. Therefore, (𝑎𝑏)(𝑎𝑏) =
(𝑎𝑎)(𝑏𝑏), so that 𝑎(𝑏(𝑎𝑏)) = 𝑎(𝑎(𝑏𝑏)). Left cancellation gives 𝑏(𝑎𝑏) = 𝑎(𝑏𝑏), and the
associative law yields (𝑏𝑎)𝑏 = (𝑎𝑏)𝑏. Further canceling on the right gives 𝑏𝑎 = 𝑎𝑏, as
desired. ■

Proof know-how. To prove that a group 𝐺 is commutative, let 𝑎, 𝑏 ∈ 𝐺. Then show
that 𝑎𝑏 = 𝑏𝑎.

We’ll start the proof of the next theorem and leave it for you to complete as an
exercise.

Theorem 8.24. Let 𝐺 be a group. If (𝑎𝑏)−1 = 𝑎−1𝑏−1 for all 𝑎, 𝑏 ∈ 𝐺, then 𝐺 is com-
mutative.

Proof. Assume that (𝑎𝑏)−1 = 𝑎−1𝑏−1 for all 𝑎, 𝑏 ∈ 𝐺. Let 𝑎, 𝑏 ∈ 𝐺. We must show
that 𝑎𝑏 = 𝑏𝑎. From the given property, we know that (𝑎𝑏)−1 = 𝑎−1𝑏−1. Taking the
inverse of both sides of this equation, we obtain ((𝑎𝑏)−1)−1 = (𝑎−1𝑏−1)−1.
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[We’ll leave the rest of the details to you as an exercise.]

Therefore, 𝑎𝑏 = 𝑏𝑎 as desired. ■

Proof know-how. If two expressions involving group elements are equal, then their
inverses are equal as well. In the proof above, we have the equality (𝑎𝑏)−1 = 𝑎−1𝑏−1;
i.e., the group elements (𝑎𝑏)−1 and 𝑎−1𝑏−1 are equal. Then their inverses are equal to
each other, and thus we obtain ((𝑎𝑏)−1)−1 = (𝑎−1𝑏−1)−1.

8.4 Non-associative operations
Sincewe’ll beworkingwith groups (and laterwith rings), the operationswe’ll studywill
be associative; e.g., (𝑎+𝑏)+𝑐 = 𝑎+(𝑏+𝑐) for all 𝑎, 𝑏, 𝑐 ∈ ℤ35. Throughout this chapter,
we saw the value of the associative law. For instance, we canwrite 𝑔4 = 𝑔⋅𝑔⋅𝑔⋅𝑔without
ambiguity due to the associative law. As a fun exercise, you might find examples and
proofs in this chapter where associativity was used, both explicitly and implicitly.

Every operation that we have seen thus far has been associative, so it’s easy to take
the property for granted. But non-associative operations exist. A familiar example is
subtraction in ℤ. We have

(15 − 2) − 7 = 13 − 7 = 6 and 15 − (2 − 7) = 15 − (−5) = 20,
so that (15 − 2) − 7 ≠ 15 − (2 − 7).

Another example is exponentiation. Define 𝑎★ 𝑏 = 𝑎𝑏 for 𝑎, 𝑏 ∈ ℕ. We then have
(2 ★ 3) ★ 4 = (23) ★ 4 = 84 = 4,096.

But 2 ★ (3 ★ 4) = 2 ★ (34) = 2 ★ 81 = 281, which ismuch bigger than 4,096. Thus,
(2 ★ 3) ★ 4 ≠ 2 ★ (3 ★ 4).

8.5 Direct product
When we plot points on the coordinate plane, we work with an ordered pair such as
(3, 4), which has 3 as its 𝑥-coordinate and 4 as its 𝑦-coordinate. The point (3, 4) is dif-
ferent from the point (4, 3), which has 4 and 3 as its 𝑥- and 𝑦-coordinates, respectively.
If we restrict ourselves to integer coordinates, some other points on the plane include
(7, −8), (−22, 10), (0, 0), and so on. In the context of abstract algebra, we may view
these points as elements of the direct product ℤ × ℤ. Below are some examples.

Example 8.25. Consider the groups 𝐷4 under composition and ℤ10 under addition.
Their direct product, denoted 𝐷4 ×ℤ10, is the set containing ordered pairs (𝜎, 𝑎)where
𝜎 ∈ 𝐷4 and 𝑎 ∈ ℤ10. Some elements of 𝐷4 ×ℤ10 include (𝑟90, 4), (ℎ, 7), and (𝜀, 0). We
“multiply” two elements of𝐷4×ℤ10 by componentwise operation, i.e., by “multiplying”
each coordinate separately using the respective operations of𝐷4 and ℤ10. For instance,
we have (𝑟90, 4)⋅(ℎ, 7) = (𝑟90∘ℎ, 4+7) = (𝑑′, 1). This computation suggests𝐷4×ℤ10 is
closed, because𝐷4 andℤ10 are closed themselves. Likewise, the fact that the operations
of 𝐷4 and ℤ10 are associative implies that the componentwise operation of 𝐷4 × ℤ10 is
also associative. The identity element of 𝐷4 × ℤ10 is (𝜀, 0), because
(𝜀, 0) ⋅ (𝜎, 𝑎) = (𝜀 ∘ 𝜎, 0 + 𝑎) = (𝜎, 𝑎) and (𝜎, 𝑎) ⋅ (𝜀, 0) = (𝜎 ∘ 𝜀, 𝑎 + 0) = (𝜎, 𝑎)
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for all (𝜎, 𝑎) ∈ 𝐷4 × ℤ10. Lastly, each element of 𝐷4 × ℤ10 has an inverse in 𝐷4 × ℤ10.
For instance,

(𝑟90, 4) ⋅ (𝑟270, 6) = (𝑟90 ∘ 𝑟270, 4 + 6) = (𝜀, 0)
and

(𝑟270, 6) ⋅ (𝑟90, 4) = (𝑟270 ∘ 𝑟90, 6 + 4) = (𝜀, 0)
so that (𝑟90, 4) and (𝑟270, 6) are inverses of each other. Symbolically, we write (𝑟90, 4)−1
= (𝑟270, 6) and (𝑟270, 6)−1 = (𝑟90, 4). Therefore, we conclude that 𝐷4 × ℤ10 is a group
under componentwise operation. A general proof showing that a direct product of two
groups is a group is left for you as an exercise.

When working with direct products, we use the multiplication notation as a de-
fault. (See Example 8.25.) An exception to this rule is when both components are
additive groups, as shown below.

Example 8.26. Consider the direct product ℤ10 × ℤ12. Since both components are
additive groups, the operation of ℤ10 × ℤ12 is componentwise addition. Given (6, 4),
(5, 10) ∈ ℤ10 × ℤ12, we have

(6, 4) + (5, 10) = (6 + 5, 4 + 10) = (1, 2),

where the sums 6 + 5 and 4 + 10 are computed in ℤ10 and ℤ12, respectively. Closure
and associativity in ℤ10 and ℤ12 ensure that these properties hold in ℤ10 × ℤ12. The
additive identity of ℤ10 × ℤ12 is (0, 0), since

(0, 0) + (𝑎, 𝑏) = (0 + 𝑎, 0 + 𝑏) = (𝑎, 𝑏) and (𝑎, 𝑏) + (0, 0) = (𝑎 + 0, 𝑏 + 0) = (𝑎, 𝑏)

for all (𝑎, 𝑏) ∈ ℤ10×ℤ12. Each element ofℤ10×ℤ12 has an additive inverse inℤ10×ℤ12.
For instance,

(3, 8) + (7, 4) = (3 + 7, 8 + 4) = (0, 0) and (7, 4) + (3, 8) = (7 + 3, 4 + 8) = (0, 0)

so that (3, 8) and (7, 4) are additive inverses of each other. We write −(3, 8) = (7, 4)
and −(7, 4) = (3, 8). Thus, the direct product ℤ10 × ℤ12 is a group under component-
wise addition.

Here is a general definition of the direct product.

Definition 8.27 (Direct product). Let 𝐺 and 𝐻 be groups with operations ∗𝐺 and ∗𝐻 ,
respectively. Their direct product is the set 𝐺 × 𝐻 = {(𝑔, ℎ) | 𝑔 ∈ 𝐺, ℎ ∈ 𝐻} with the
componentwise operation where

(𝑔1, ℎ1) ⋅ (𝑔2, ℎ2) = (𝑔1 ∗𝐺 𝑔2, ℎ1 ∗𝐻 ℎ2)

for all (𝑔1, ℎ1), (𝑔2, ℎ2) ∈ 𝐺 × 𝐻.

The following theorem is left for you to prove as an exercise.

Theorem 8.28. If 𝐺 and 𝐻 are groups, then the direct product 𝐺 × 𝐻 is a group under
the componentwise operation.
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Exercises
1. For each element 𝑎 ∈ ℤ35, find its additive inverse.

(a) 𝑎 = 23. (b) 𝑎 = 14. (c) 𝑎 = 21. (d) 𝑎 = 0. (e) 𝑎 = 34.

2. Prove: ℤ𝑚 is closed under addition.

3. Determine if each set with the given operation forms a group. If it does, verify the
group properties. If it doesn’t, describe all group properties that fail.

(a) The set of positive integers with addition.
(b) The set 2ℤ with addition.
(c) The set {𝜀, 𝜎, 𝜏, 𝜇} ⊆ 𝑆4 with composition. Here, 𝜀 is the identity element,

and

𝜎 = ( 1 2 3 4
2 1 3 4 ) , 𝜏 = ( 1 2 3 4

3 2 1 4 ) , 𝜇 = ( 1 2 3 4
4 2 3 1 ) .

(d) The set {0, 2, 4, 6} with addition in ℤ8.
(e) The set {4, 8, 12, 16} with multiplication in ℤ20. (This exercise is referenced

in Chapter 9, Exercise #14e.)
(f) The set {𝑞 ∈ ℚ | 𝑞 > 0}withmultiplication. (Recall thatℚ is the set of rational

numbers.)

4. Recall that 𝑈10 = {𝑎 ∈ ℤ10 ∣ 𝑎 has a multiplicative inverse in ℤ10}.
(a) Find the elements of 𝑈10.
(b) Construct a multiplication table for 𝑈10.
(c) Use the table to verify the group properties for 𝑈10.

Note: You may simply assume that multiplication in 𝑈10 is associative.
(d) Is 𝑈10 commutative or non-commutative?

5. Recall thatℝ is the set of all real numbers and thatℝ∗ = {𝑎 ∈ ℝ | 𝑎 has a multiplic-
ative inverse}.
(a) Explain why ℝ∗ is a group under multiplication. (This exercise is referenced

in Example 9.2.)
Hint: See Example 8.7 for a description of the elements in ℝ∗.

(b) Anita says, “ℝ is kind of like ℤ7. Both are groups under addition, and they’re
almost groups under multiplication.” What might she mean? Name other
additive groups that are like ℝ and ℤ7.

6. We say that 1 is a generator of the additive group ℤ12, because its sums give all
elements in the group, as shown:
1 = 1, 1 + 1 = 2, 1 + 1 + 1 = 3, 1 + 1 + 1 + 1 = 4, . . . , 1 + 1 + ⋯ + 1⏟⎵⎵⎵⏟⎵⎵⎵⏟

12 terms
= 0.

(a) Find all the generators of ℤ12.
(b) Find all the generators of ℤ7.
(c) Find all the generators of ℤ15.
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(d) Find all the generators of ℤ20.
(e) What conjectures do you have?

(This exercise is referenced in Section 9.5 and in Chapter 13.)

7. The quaternion group contains eight elements:

𝐺 = {±[ 1 0
0 1 ] , ±[ 0 1

−1 0 ] , ±[ 1 1
1 −1 ] , ±[ 1 −1

−1 −1 ]} ,

where the entries of these matrices are in ℤ3 (thus, −1 = 2). The operation is
matrix multiplication.

(a) Verify that 𝐺 satisfies the group properties.
(b) Is 𝐺 commutative or non-commutative? How do you know?
(c) Find the order of each element in 𝐺. Any conjectures?

Note: The order of 𝛼 ∈ 𝐺 refers to the smallest positive exponent 𝑛 such that
𝛼𝑛 = 𝛼 ⋅ 𝛼 ⋅ ⋯ ⋅ 𝛼⏟⎵⎵⎵⏟⎵⎵⎵⏟

𝑛 copies
= 𝜀.

8. Consider the set
𝐺 = {[ 𝑎 0

𝑏 𝑎 ] ||| 𝑎, 𝑏 ∈ ℝ, 𝑎 ≠ 0} .

Prove: 𝐺 is a group under matrix multiplication.
Note: You may assume that matrix multiplication is associative. So, you must
show the following:

• 𝐺 is closed under matrix multiplication.
• The identity matrix 𝜀 is in 𝐺.
• For each 𝛼 ∈ 𝐺, its inverse 𝛼−1 is also in 𝐺.

9. Consider the following subsets of 𝑈7 = {1, 2, 3, 4, 5, 6}: 𝐸 = {1, 6}, 𝑆 = {2, 5}, and
𝑇 = {3, 4}. Define the set product of, say, 𝑆 and 𝑇 by

𝑆 ⋅ 𝑇 = {𝑠 ⋅ 𝑡 | 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇}
where the multiplication 𝑠 ⋅ 𝑡 is done in ℤ7. Thus, we have

𝑆 ⋅ 𝑇 = {2, 5} ⋅ {3, 4} = {2 ⋅ 3, 2 ⋅ 4, 5 ⋅ 3, 5 ⋅ 4} = {6, 1, 1, 6} = {1, 6};
i.e., 𝑆 ⋅ 𝑇 contains all possible products of an element in 𝑆 with an element in 𝑇.
Note that sets do not have repetition, and hence {6, 1, 1, 6} = {1, 6}.
(a) Let 𝐺 = {𝐸, 𝑆, 𝑇}. Compute the table for 𝐺, using set multiplication.
(b) Use the table created to verify the group properties for 𝐺.
(c) Is 𝐺 commutative or non-commutative?

(This exercise is referenced in Section 21.1 and Chapter 21, Exercise #3.)

10. Let 𝑔 be an element of a group. Use the associative law to show that these expres-
sions are all equal:

(𝑔𝑔)(𝑔𝑔), (𝑔(𝑔𝑔))𝑔, ((𝑔𝑔)𝑔)𝑔, 𝑔((𝑔𝑔)𝑔), 𝑔(𝑔(𝑔𝑔)).
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11. Prove: Let 𝑔 be an element of a group, and let 𝑚, 𝑛 ∈ ℤ with 𝑚, 𝑛 > 0. Then
(𝑔𝑚)𝑛 = 𝑔𝑚𝑛.

12. Let 𝑔 be an element of a group, and let𝑚, 𝑛 ∈ ℤ.
(a) Suppose𝑚 = 0. Explain why 𝑔𝑚+𝑛 = 𝑔𝑚 ⋅ 𝑔𝑛.
(b) Suppose𝑚 = 0. Explain why (𝑔𝑚)𝑛 = 𝑔𝑚𝑛.
(c) Suppose 𝑛 = 0. Explain why (𝑔𝑚)𝑛 = 𝑔𝑚𝑛.

13. Let 𝑔 be an element of a group. Verify each of the following:
(a) (𝑔−2)3 = 𝑔−6.
(b) (𝑔−2)−3 = 𝑔6.
(c) 𝑔−2 ⋅ 𝑔−3 = 𝑔−5.

14. In 𝑆3, compute 𝜎−5 if
𝜎 = ( 1 2 3

3 1 2 ) .

15. (Right cancellation) Prove: Let 𝑎, 𝑏, 𝑐 be elements of a group. If 𝑏𝑎 = 𝑐𝑎, then
𝑏 = 𝑐.

16. Prove Theorem 8.10.
Note: Avoid using the notation 𝑔−1 in your proof, since 𝑔−1 refers to the unique
inverse of 𝑔; and we’re trying to prove that 𝑔 has a unique inverse.

17. Complete the proof of Theorem 8.24.

18. Prove: Let 𝐺 be a group. If 𝑔−1 = 𝑔 for all 𝑔 ∈ 𝐺, then 𝐺 is commutative.

19. Prove: Let 𝐺 be a group. If 𝑔2 = 𝜀 for all 𝑔 ∈ 𝐺, then 𝐺 is commutative.

20. Create a counterexample to show that division in ℝ∗ is not associative.

21. Prove Theorem 8.28.

22. Consider the direct product 𝑈10 × 𝑈12.
(a) How many elements does 𝑈10 × 𝑈12 contain? Explain how you know.
(b) Compute the products (3, 5) ⋅ (9, 7) and (7, 1) ⋅ (3, 11).
(c) Find the multiplicative identity element of 𝑈10 × 𝑈12.
(d) Find themultiplicative inverse of each of these elements: (3, 5), (9, 7), (7, 1),

(3, 11).
(e) Find all self-inverses in 𝑈10 × 𝑈12.

23. Consider the direct product ℤ15 × ℤ8.
(a) How many elements does ℤ15 × ℤ8 contain? Explain how you know.
(b) Compute the sums (4, 6) + (13, 5) and (6, 6) + (7, 7).
(c) Find the additive identity element of ℤ15 × ℤ8.
(d) Find the additive inverse of each of these elements: (4, 6), (13, 5), (6, 6),

(7, 7).
(e) Find all self-inverses in ℤ15 × ℤ8.
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24. Determine if each of these direct products is commutative or non-commutative.

(a) 𝐷4 × ℤ10. (b) ℤ10 × ℤ12. (c) 𝑈10 × 𝑈12. (d) 𝑆3 × 𝑆3.

25. Prove: Let𝐺 and𝐻 be groups. Then𝐺 and𝐻 are commutative if and only if𝐺×𝐻
is commutative.



9
Groups of Small Size

In Chapter 8, we formally began ourworkwith abstraction, the powerfulmathematical
process of extracting structural similarities that arise in different scenarios. In this
chapter, we will continue with this work, deriving and proving statements that apply
to all groups. (Of course, wewill still rely on concrete examples tomotivate and ground
our work.)

In particular, we will explore groups of small size, ranging from one to four ele-
ments. For instance, we will show that all groups with three elements are essentially
the same. Along the way, we will preview a couple of concepts that we will study in
depth later on, namely, group isomorphism and cyclic groups.

9.1 Smallest group
We begin with the question: What is the smallest possible group, with the fewest num-
ber of elements? By definition, a group must contain at least one element, namely the
identity. Is it possible for a group to contain only the identity element? Let’s verify with
an example.

Example 9.1. Consider the subset {0} of the set of integersℤ. Here is the addition table
for {0}:

+ 0
0 0

Let’s verify the group properties for {0} under addition:
(1) {0} is closed under addition. The only possible sum is 0+ 0 = 0, and this sum is an

element of {0}.
(2) The associative law holds, i.e., (0 + 0) + 0 = 0 + (0 + 0), since both sides are equal

to 0.

(3) {0} has an identity element 0 that keeps all elements in {0} unchanged. Observe
that 0 + 𝑎 = 𝑎 and 𝑎 + 0 = 𝑎 for all 𝑎 ∈ {0} (since 𝑎 ∈ {0} means 𝑎 = 0 in this
scenario).

87
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(4) Every element in {0} has an additive inverse. Specifically, 0 + 0 = 0 implies that 0
is a self-inverse.

Example 9.2. The set {1} is a group under multiplication, which you will verify in an
exercise at the end of the chapter. Here, we view 1 as a real number and {1} as a subset
of

ℝ∗ = {𝑎 ∈ ℝ | 𝑎 has a multiplicative inverse}.

It is possible to view 1 as an integer and {1} as a subset of ℤ. However, because the
operation of {1} is multiplication and ℝ∗ is a group under multiplication (see Chapter
8, Exercise #5a), we prefer to keep the operation the same between the two sets {1} and
ℝ∗. We will say more about this when we study subgroups in depth in Chapter 11.

Example 9.3. Let 𝜀 ∈ 𝑆3; i.e.,

𝜀 = ( 1 2 3
1 2 3 ) .

Then the set {𝜀} is a group under composition. The same is true when 𝜀 ∈ 𝐷4; i.e., 𝜀 is
the “motion” that does not move the square.

Example 9.4. The subset {[ 0 0
0 0 ]} of the set of matrices𝑀(ℤ10) is a group under matrix

addition.

The above examples demonstrate how, while the elements and the operationsmay
differ, all one-element groups are essentially the same. Here is the generalization. The
smallest possible group has just the identity element. Below is the group table for any
one-element group 𝐺 = {𝜀}:

⋅ 𝜀
𝜀 𝜀

In this group, the only possible product is 𝜀 ⋅ 𝜀 = 𝜀. (Recall from Chapter 8 that we
use the multiplicative notation as a default.) Thus the group is certainly closed. The
associative property holds, i.e., (𝜀 ⋅ 𝜀) ⋅ 𝜀 = 𝜀 ⋅ (𝜀 ⋅ 𝜀), since both sides are equal to 𝜀. The
identity element exists, since 𝜀 ⋅𝑎 = 𝑎 and 𝑎⋅ 𝜀 = 𝑎 for all 𝑎 ∈ 𝐺. And 𝜀 is a self-inverse,
so every element in 𝐺 has an inverse.

9.2 Groups with two elements
Next, we consider groups with two elements. As we’ll soon see, all of these groups are
essentially the same.

Example 9.5. Consider the following groups: {1, −1} under multiplication (where we
view 1 and−1 as real numbers), ℤ2 = {0, 1} under addition, and {𝜀, 𝑟180} under ∘ in𝐷4.
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Here are their group tables:

Table for {1, −1}:
⋅ 1 −1
1 1 −1

−1 −1 1

Table for ℤ2:
+ 0 1
0 0 1
1 1 0

Table for {𝜀, 𝑟180}:
∘ 𝜀 𝑟180
𝜀 𝜀 𝑟180
𝑟180 𝑟180 𝜀

The three tables look essentially the same, each involving the identity and the non-
identity element. In each table, the main diagonal entries (i.e., the top left and the
bottom right) contain the identity element, and the other two entries (i.e., the top right
and the bottom left) contain the non-identity element.

Next, we will explain why every two-element group must have a table that looks
like the ones that we saw in Example 9.5. Let 𝐺 = {𝜀, 𝑔} be a two-element group,
where 𝜀 and 𝑔 are the identity and non-identity elements, respectively. Then its table
must have the following form:

𝜀 𝑔
𝜀 𝜀 𝑔
𝑔 𝑔 𝜀

Since 𝜀 is the identity element, we have 𝜀𝑎 = 𝑎 and 𝑎𝜀 = 𝑎 for all 𝑎 ∈ 𝐺. Thus we have
𝜀𝜀 = 𝜀, 𝜀𝑔 = 𝑔, and 𝑔𝜀 = 𝑔, and so we can immediately complete three entries in the
table. The following theorem addresses the remaining entry 𝑔𝑔. (Note: We present
it as a theorem, not necessarily because it’s such an important result, but because it
utilizes a helpful proof technique that we highlight afterwards.)

Theorem 9.6. Let 𝐺 = {𝜀, 𝑔} be a two-element group. Then 𝑔𝑔 = 𝜀.

Proof. The product 𝑔𝑔 must be an element of 𝐺, because the group is closed. Thus,
either 𝑔𝑔 = 𝜀 or 𝑔𝑔 = 𝑔. Suppose for contradiction that 𝑔𝑔 = 𝑔. We also have 𝑔 = 𝑔𝜀,
since 𝜀 is the identity element. Combining 𝑔𝑔 = 𝑔 and 𝑔 = 𝑔𝜀, we obtain 𝑔𝑔 = 𝑔𝜀.
Then left cancellation yields 𝑔 = 𝜀. However, 𝑔 = 𝜀 is a contradiction, since 𝑔 is the
non-identity element of the group. Therefore, we must have 𝑔𝑔 = 𝜀. ■

Proof know-how. A key step in the above proof was to rewrite 𝑔 as 𝑔𝜀, which allowed
us to apply left cancellation. This “inserting the identity” method comes in various
forms (as we will see in future proofs) and can be a helpful proof-writing technique.

Thus, we come to the same conclusion that we made about one-element groups:
While the elements and operations may differ, all two-element groups are essentially
the same.
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9.3 Groups with three elements
In this section, we will show that all three-element groups are essentially the same.

Example 9.7. Consider the following groups:
• ℤ3 = {0, 1, 2} under addition.
• {𝜀, 𝑟120, 𝑟240} under the operation ∘ in 𝐷3.

• {𝜀, 𝜎, 𝜏}under the operation ∘ in𝑆3, where𝜎 = ( 1 2 3
2 3 1 ) and 𝜏 = ( 1 2 3

3 1 2 ).

Their tables are shownbelow. Again, notice how they look essentially the same. Specif-
ically, the identity elements (0, 𝜀, and 𝜀), the first non-identity elements (1, 𝑟120, and 𝜎),
and the second non-identity elements (2, 𝑟240, and 𝜏) can be found in the same locations
in the three tables.

Table for ℤ3:
+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

Table for {𝜀, 𝑟120, 𝑟240}:
∘ 𝜀 𝑟120 𝑟240
𝜀 𝜀 𝑟120 𝑟240
𝑟120 𝑟120 𝑟240 𝜀
𝑟240 𝑟240 𝜀 𝑟120

Table for {𝜀, 𝜎, 𝜏}:
∘ 𝜀 𝜎 𝜏
𝜀 𝜀 𝜎 𝜏
𝜎 𝜎 𝜏 𝜀
𝜏 𝜏 𝜀 𝜎

We will now explain why every three-element group must have a table like the
ones in Example 9.7. Thus, let 𝐺 = {𝜀, 𝑎, 𝑏} be a three-element group, with identity 𝜀
and two non-identity elements 𝑎 and 𝑏. We will build its table in phases. In the first
phase, we can complete the first row and column of the table, since 𝜀𝑥 = 𝑥 and 𝑥𝜀 = 𝑥
for all 𝑥 ∈ 𝐺.

In the second phase, we note that 𝑎𝑏 = 𝜀 and 𝑏𝑎 = 𝜀, which you will prove in an
exercise at the end of the chapter. We state them as a theorem here, since we will use
those results when completing the table.

Theorem 9.8. Let 𝐺 = {𝜀, 𝑎, 𝑏} be a three-element group. Then 𝑎𝑏 = 𝜀 and 𝑏𝑎 = 𝜀.

To complete the table, we must show that 𝑎𝑎 = 𝑏 and 𝑏𝑏 = 𝑎. The following
theoremaddresses 𝑎𝑎 = 𝑏. (Notice the similarity to the proof of Theorem9.6, including
the use of the “inserting the identity” method.) The proof of 𝑏𝑏 = 𝑎 is left for you as
an exercise.

Theorem 9.9. Let 𝐺 = {𝜀, 𝑎, 𝑏} be a three-element group. Then 𝑎𝑎 = 𝑏.

Proof. The product 𝑎𝑎 must be an element of 𝐺, because the group is closed. Thus,
either 𝑎𝑎 = 𝜀, 𝑎𝑎 = 𝑎, or 𝑎𝑎 = 𝑏. Suppose for contradiction that 𝑎𝑎 = 𝜀. By Theo-
rem 9.8, we have 𝑎𝑏 = 𝜀. Hence, 𝑎𝑎 = 𝑎𝑏, since both sides are equal to 𝜀. Then left
cancellation yields 𝑎 = 𝑏, which is a contradiction. Thus, 𝑎𝑎 ≠ 𝜀.

Again for contradiction, suppose 𝑎𝑎 = 𝑎. We also have 𝑎 = 𝑎𝜀, since 𝜀 is the
identity element. Combining 𝑎𝑎 = 𝑎 and 𝑎 = 𝑎𝜀, we obtain 𝑎𝑎 = 𝑎𝜀. Then left
cancellation yields 𝑎 = 𝜀, which is also a contradiction. Thus, 𝑎𝑎 ≠ 𝑎. Therefore, the
only remaining option must be true, namely 𝑎𝑎 = 𝑏. ■
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Phase 1:
𝜀 𝑎 𝑏

𝜀 𝜀 𝑎 𝑏
𝑎 𝑎
𝑏 𝑏

Phase 2:
𝜀 𝑎 𝑏

𝜀 𝜀 𝑎 𝑏
𝑎 𝑎 𝜀
𝑏 𝑏 𝜀

Complete table:
𝜀 𝑎 𝑏

𝜀 𝜀 𝑎 𝑏
𝑎 𝑎 𝑏 𝜀
𝑏 𝑏 𝜀 𝑎

Notice how the table for a general three-element group 𝐺 = {𝜀, 𝑎, 𝑏} is just like
the tables we saw in Example 9.7. Once again, while the elements and operations may
differ, all three-element groups are essentially the same.

9.4 Sudoku property
As we create and study many group tables, we notice a useful property that is shared
by all tables, regardless of the number of elements in the group: In each row or column
of the table, every element of 𝐺 shows up exactly once. We will call this the Sudoku
property, named after a popular number-placement game that is typically played on a
9 × 9 grid. One of the rules of Sudoku (the game) is that each row and each column of
the grid must contain all the digits from 1 to 9 exactly once.

Theorem 9.10 (Sudoku property). Let𝐺 be a group. In each row or column of its group
table, every element of 𝐺 shows up exactly once.

To prove this theorem, we will fix an arbitrary row of the table. Showing that
the property holds for this row will imply that the property holds for all rows. The
argument for columns is left for you as an exercise.

Proof. Let 𝐺 = {𝜀, 𝑎, 𝑏, . . . , 𝑔, . . .}, possibly infinite, and consider the group table for
𝐺:

𝜀 𝑎 𝑏 ⋯ 𝑔 ⋯ 𝑦 ⋯

𝜀
𝑎
⋮
𝑔 𝑔 𝑔𝑎 𝑔𝑏 ⋯ 𝑔𝑔 ⋯ 𝑥 ⋯
⋮

We will fix an arbitrary row 𝑔 and show the following:
(1) The elements in this row are all different.

(2) Every 𝑥 ∈ 𝐺 appears in this row.
Note that claim (1) says every element of𝐺 shows up atmost once in row 𝑔. Meanwhile,
claim (2) says that every element of 𝐺 shows up at least once in row 𝑔. Taken together,
the two claims will imply that every element of 𝐺 shows up exactly once in row 𝑔.

For claim (1), wemust show the following: If 𝑎 ≠ 𝑏, then 𝑔𝑎 ≠ 𝑔𝑏. Wewill show its
contrapositive: If 𝑔𝑎 = 𝑔𝑏, then 𝑎 = 𝑏. This follows immediately from left cancellation.
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For claim (2), we must show that any 𝑥 ∈ 𝐺 appears in row 𝑔. In other words, we must
find an element 𝑦 ∈ 𝐺 such that 𝑥 = 𝑔𝑦. Let 𝑦 = 𝑔−1𝑥, which is in 𝐺 because 𝑔−1,
𝑥 ∈ 𝐺 and 𝐺 is closed. Then 𝑔𝑦 = 𝑔(𝑔−1𝑥) = (𝑔𝑔−1)𝑥 = 𝜀𝑥 = 𝑥 so that 𝑥 = 𝑔𝑦.

Similar arguments show that claims (1) and (2) hold for any column of the table as
well. ■

Proof know-how. In the above proof, we had to find an element 𝑦 ∈ 𝐺 such that
𝑥 = 𝑔𝑦. We showed that 𝑦 = 𝑔−1𝑥 is the desired element. How did we come up with
an expression for 𝑦? Our goal was 𝑥 = 𝑔𝑦, so we worked backwards and solved this
equation for 𝑦 by left-multiplying both sides by 𝑔−1. This “working backwards” process
is part of the scratchwork that is done beforewewrite the proof. Itmust not be included
in the proof itself for a couple of reasons. First, our goal was to prove that 𝑥 = 𝑔𝑦, and
we must not assume what we’re trying to prove. Second, the logical arguments in the
proof must flow forwards, not backwards.

9.5 Groups with four elements
In Section 9.3, we saw that all three-element groups are essentially the same (and like-
wise for all one-element groups and all two-element groups). More formally, we say
that all three-element groups are isomorphic to each other. Later in the textbook, we
will study isomorphic groups in much more depth. But in this section, we will see that
not all four-element groups are the same.

Example 9.11. Consider the following groups:
• ℤ4 = {0, 1, 2, 3} under addition.

• 𝐶 = {1, 𝑖, −1, −𝑖} under multiplication. (Here, 𝑖 is the complex number 𝑖 = √−1,
where 𝑖2 = −1.)

• 𝑈8 = {1, 3, 5, 7} under multiplication modulo 8.
Here are their group tables:

Table for ℤ4:
+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

Table for 𝐶:
∗ 1 𝑖 −1 −𝑖
1 1 𝑖 −1 −𝑖
𝑖 𝑖 −1 −𝑖 1
−1 −1 −𝑖 1 𝑖
−𝑖 −𝑖 1 𝑖 −1

Table for 𝑈8:
∗ 1 3 5 7
1 1 3 5 7
3 3 1 7 5
5 5 7 1 3
7 7 5 3 1

Note how ℤ4 and 𝐶 both have exactly two self-inverses. In group ℤ4, elements
0 and 2 are self-inverses; in group 𝐶, elements 1 and −1 are self-inverses. Moreover,
their group tables look the same. Meanwhile, every element of 𝑈8 is a self-inverse and
its table looks different from the tables of the other two groups.

Recall from Chapter 8, Exercise #6: We say that 1 is a generator of the additive
group ℤ12, because its sums give all elements in the group, as shown:

1 = 1, 1 + 1 = 2, 1 + 1 + 1 = 3, 1 + 1 + 1 + 1 = 4, . . . , 1 + 1 + ⋯ + 1⏟⎵⎵⎵⏟⎵⎵⎵⏟
12 terms

= 0.
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Let’s see if we can find a generator for each four-element group in Example 9.11 above:

• ℤ4 = {0, 1, 2, 3} under addition. We have 1 = 1, 1 + 1 = 2, 1 + 1 + 1 = 3,
1 + 1+ 1+ 1 = 0. Thus, 1 is a generator of ℤ4. You should verify on your own that
3 is also a generator of ℤ4.

• 𝐶 = {1, 𝑖, −1, −𝑖} under multiplication. Since the operation is multiplication, a
generator of 𝐶 is an element whose products give all the elements in the group. We
have 𝑖 = 𝑖, 𝑖 ⋅ 𝑖 = −1, 𝑖 ⋅ 𝑖 ⋅ 𝑖 = −𝑖, 𝑖 ⋅ 𝑖 ⋅ 𝑖 ⋅ 𝑖 = 1. Thus, 𝑖 is a generator of 𝐶. You
should verify on your own that −𝑖 is also a generator.

• 𝑈8 = {1, 3, 5, 7} under multiplication modulo 8. Again, the operation is multipli-
cation. To determine if an element 𝑔 ∈ 𝑈8 is a generator, we multiply 𝑔 by itself
(or compute powers of 𝑔) and see if we obtain all the elements in 𝑈8. Let’s see:

∘ 1𝑘 = 1 for all exponents 𝑘.
∘ 31 = 3, 32 = 1, 33 = 3, 34 = 1, . . . . The powers of 3 alternate between 3 and
1.

∘ 51 = 5, 52 = 1, 53 = 5, 54 = 1, . . . . The powers of 5 alternate between 5 and
1.

∘ 71 = 7, 72 = 1, 73 = 7, 74 = 1, . . . . The powers of 7 alternate between 7 and
1.

Therefore, none of the elements in 𝑈8 is a generator.

Below, we give a definition and examples of a cyclic group, a topic that we will
explore in much more depth later in the textbook.

Definition 9.12 (Cyclic group). A group is said to be cyclic if it has a generator.

Example 9.13. ℤ4 and 𝐶 = {1, 𝑖, −1, −𝑖} are cyclic groups, but 𝑈8 is not cyclic.

You will prove in an exercise that every four-element group resembles either of
the two types given in this section: the cyclic group like ℤ4 (or 𝐶) or the non-cyclic
group like 𝑈8. In other words, while the elements and operations may differ, every
four-element group is isomorphic to either ℤ4 or 𝑈8.

Exercises
1. Let 1 ∈ ℝ∗. Create a multiplication table for {1} and verify that it is a group. (See

Example 9.2.)

2. Let 𝜀 ∈ 𝑆3. Create a composition table for {𝜀} and verify that it is a group.

3. In the problems below, view 0 and 1 as integers.

(a) Create a multiplication table for {0} and verify that it is a group under multi-
plication.

(b) Is {1} a group under addition? Why or why not?
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4. (a) Consider 6 ∈ ℤ10. Create a multiplication table for {6} (the multiplication is
done modulo 10) and verify that it is a group under multiplication.

(b) Find other pairs 𝛼 and𝑚 where 𝛼 ∈ ℤ𝑚 and {𝛼} is a group under multiplica-
tion modulo𝑚.

5. In Example 9.5, we saw that the subset {𝜀, 𝑟180} ⊆ 𝐷4 is a group under composition.
For each non-identity element 𝑔 ∈ 𝐷4, determine if {𝜀, 𝑔} is a group.

6. Find all two-element subsets of 𝑆3 that are a group under composition.

7. Prove Theorem 9.8 without using the Sudoku property (i.e., Theorem 9.10).

8. Prove: Let 𝐺 = {𝜀, 𝑎, 𝑏} be a three-element group. Then 𝑏𝑏 = 𝑎.

9. In the proof of the Sudoku property (i.e., Theorem 9.10), prove that claims (1) and
(2) are true for an arbitrary column of the group table.

10. Let 𝐺 = {𝜀, 𝑎, 𝑏} be a three-element group. We can complete the first row and
column of the table, since 𝜀𝑥 = 𝑥 and 𝑥𝜀 = 𝑥 for all 𝑥 ∈ 𝐺. Complete the rest of
the table using the Sudoku property.

𝜀 𝑎 𝑏
𝜀 𝜀 𝑎 𝑏
𝑎 𝑎
𝑏 𝑏

11. For each three-element group below, determine if it’s cyclic or non-cyclic. If it’s
cyclic, find a generator.

(a) ℤ3 = {0, 1, 2} under addition.
(b) {𝜀, 𝑟120, 𝑟240} under the operation ∘ in 𝐷3.
(c) {𝜀, 𝜎, 𝜏} under the operation ∘ in 𝑆3, where

𝜎 = ( 1 2 3
2 3 1 ) and 𝜏 = ( 1 2 3

3 1 2 ) .

12. Prove that every three-element group is cyclic.

13. This exercise refers to the groups described in Example 9.11.

(a) Verify that 3 is a generator for ℤ4 under addition.
(b) Verify that −𝑖 is a generator for 𝐶 = {1, 𝑖, −1, −𝑖} under multiplication.

14. For each four-element group below, determine if it’s cyclic or non-cyclic. If it’s
cyclic, find a generator.

(a) {𝜀, 𝑟180, ℎ, 𝑣} ⊆ 𝐷4.
(b) 𝑈5 = {1, 2, 3, 4} with multiplication in ℤ5.
(c) 𝑈12 = {1, 5, 7, 11} with multiplication in ℤ12.
(d) {0, 3, 6, 9} with addition in ℤ12.
(e) {4, 8, 12, 16} with multiplication in ℤ20. (See Chapter 8, Exercise #3e.)
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15. Consider the direct product ℤ2 × ℤ2.
(a) Write down the elements of ℤ2 × ℤ2. (Note: There should be four elements.)
(b) Determine if ℤ2 × ℤ2 is cyclic or non-cyclic. If it’s cyclic, find a generator.

16. Repeat Exercise #15 with the direct product 𝑈3 × 𝑈6.

17. Find your own four-element group. (Be sure to specify both the set and the opera-
tion.) Determine if the group is cyclic or non-cyclic. If it’s cyclic, find all generators.

18. Find all four-element subsets of𝐷4 that are a group under composition. Determine
if each group is cyclic or non-cyclic. If it’s cyclic, find all generators. (Group table
for 𝐷4 is in Appendix B.)

19. Consider the groups 𝑈7, 𝑈9, 𝑈14, 𝑈18, and ℤ2 × ℤ3.
(a) Verify that each of these groups has six elements.
(b) Determine if each group is cyclic or non-cyclic. If it’s cyclic, find a generator.
(c) Is every six-element group cyclic? Why or why not?

20. Explain why the group 𝐷3 = {𝜀, 𝑟120, 𝑟240, 𝑣, 𝑑, 𝑑′} is non-cyclic. (Group table
for 𝐷3 is in Chapter 5, Exercise #8a.)

21. Is the group 𝐷4 cyclic or non-cyclic? Explain how you know. (Group table for 𝐷4
is in Appendix B.)

22. Prove that every four-element group resembles either of the two types given in
Section 9.5.

23. (Challenge) Categorize all groups with 5 elements; with 6 elements; and with 7
elements.





10
Matrix Groups

Consider the following word analogy: Kitten is to cat as puppy is to . The answer
is “dog,” since kitten and puppy are young versions of cat and dog, respectively. As in
this example, analogies can help us better understand the relationships between the
words involved. Analogies can also aid in making sense of new ideas (or words, in this
case). For instance, to teach the meaning of the word “Lilliputian” to someone, we
might use the following analogy: Big is to enormous as little is to Lilliputian.

Analogies are a useful tool when learning mathematics, too. In this chapter, we
will consider the following mathematical analogy: ℤ10 is to 𝑈10 as𝑀(ℤ10) is to .
This will help us deepen our understanding of the relationship between the additive
group ℤ10 and the multiplicative group 𝑈10. The analogy will also lead us to a new
group involving 2 × 2matrices.

10.1 Groups ℤ10 and 𝑈10
Consider ℤ10 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. When working with a particular group, we
use only one operation. However, ℤ10 admits both addition and multiplication; i.e.,
ℤ10 is closed under both operations. In fact, ℤ10 is an example of a structure called a
ring, which we will study much later in the textbook.

We’ve seen thatℤ10 is a group under addition. (See Example 8.3 for a justification.)
But is ℤ10 also a group under multiplication? Let’s check the group properties:
(1) ℤ10 is closed under multiplication.
(2) Multiplication in ℤ10 is associative.
(3) The multiplicative identity element is 1 ∈ ℤ10, as 1 ⋅ 𝑎 = 𝑎 and 𝑎 ⋅ 1 = 𝑎 for all

𝑎 ∈ ℤ10.
(4) Not every 𝑎 ∈ ℤ10 has a multiplicative inverse 𝑎−1 ∈ ℤ10 such that 𝑎 ⋅𝑎−1 = 1 and

𝑎−1 ⋅ 𝑎 = 1.
The last group property about inverses fails for ℤ10 with multiplication, as shown in
the example below.

97
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Example 10.1. We will determine which elements of ℤ10 do not have multiplicative
inverses. For instance, 0 ⋅ 𝑥 = 1 is not possible in ℤ10, since 0 ⋅ 𝑥 = 0 for all 𝑥 ∈ ℤ10.
Thus, 0−1 does not exist in ℤ10. Likewise, 5 ⋅ 𝑥 = 1 is not possible in ℤ10, since 5 ⋅ 𝑥 = 0
or 5 for all 𝑥 ∈ ℤ10. Hence 5−1 does not exist in ℤ10. Similar arguments show that 2−1,
4−1, 6−1, and 8−1 also do not exist in ℤ10. We’ll leave these arguments for you to make
in an exercise at the end of the chapter.

Note that remaining elements of ℤ10, namely 1, 3, 7, and 9, do have multiplicative
inverses: 1 ⋅ 1 = 1, 3 ⋅ 7 = 1, and 9 ⋅ 9 = 1 in ℤ10.

We salvage this situation by considering the subset𝑈10 = {𝑎 ∈ ℤ10 | 𝑎 has a multi-
plicative inverse}. In other words, we remove from ℤ10 the elements without multi-
plicative inverses. From Example 10.1, we have 𝑈10 = {1, 3, 7, 9}. We can verify that
𝑈10 is a multiplicative group by building its multiplication table, which you will do in
an exercise at the end of the chapter. More generally, we saw in Example 8.6 that 𝑈𝑚
is a group under multiplication. We will repeat those explanations here, since we will
be referring back to them when we discuss matrix groups in the next section.

(1) 𝑈𝑚 is closed under multiplication. This is proved (by you!) in Chapter 4, Exercise
#17.

(2) Multiplication in 𝑈𝑚 is associative.

(3) The element 1 is the multiplicative identity. Moreover, 1 is in 𝑈𝑚, because it has a
multiplicative inverse, namely itself.

(4) By the definition of𝑈𝑚, each element 𝑎 ∈ 𝑈𝑚 has amultiplicative inverse 𝑎−1 such
that 𝑎 ⋅ 𝑎−1 = 1 and 𝑎−1 ⋅ 𝑎 = 1. We must also verify that 𝑎−1 ∈ 𝑈𝑚, i.e., that 𝑎−1
has a multiplicative inverse; it does, since 𝑎 is a multiplicative inverse of 𝑎−1.

Remark. Both ℤ10 under addition and 𝑈10 under multiplication are commutative
groups.

10.2 Groups 𝑀(ℤ10) and 𝐺(ℤ10)
Recall that 𝑀(ℤ10) is the set of 2 × 2 matrices with entries in ℤ10. Moreover, 𝑀(ℤ10)
admits both addition andmultiplication; i.e.,𝑀(ℤ10) is closed under both operations.
We’ll later see that𝑀(ℤ10) is also a ring.

Example 10.2. We’ll briefly review how to add and multiply in 𝑀(ℤ10). For more
details, see Section 7.1. Let 𝛼, 𝛽 ∈ 𝑀(ℤ10), where 𝛼 = [ 1 2

3 4 ] and 𝛽 = [ 5 67 8 ]. Then

𝛼 + 𝛽 = [ 1 2
3 4 ] + [ 5 6

7 8 ] = [ 1 + 5 2 + 6
3 + 7 4 + 8 ] = [ 6 8

0 2 ]

and

𝛼 ⋅ 𝛽 = [ 1 2
3 4 ] ⋅ [ 5 6

7 8 ] = [ 1 ⋅ 5 + 2 ⋅ 7 1 ⋅ 6 + 2 ⋅ 8
3 ⋅ 5 + 4 ⋅ 7 3 ⋅ 6 + 4 ⋅ 8 ] = [ 9 2

3 0 ] .

Similar to ℤ10, we’ve seen that𝑀(ℤ10) is a group under addition. (See Section 7.2
for a justification.) We now ask the same question that we posed earlier about ℤ10;
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namely, is𝑀(ℤ10) also a group under multiplication? We check the group properties:
(1) 𝑀(ℤ10) is closed under multiplication.

(2) Multiplication in𝑀(ℤ10) is associative. (See Chapter 7, Exercise #6.)

(3) The multiplicative identity element is 𝜀 = [ 1 0
0 1 ], as 𝜀 ⋅ 𝛼 = 𝛼 and 𝛼 ⋅ 𝜀 = 𝛼 for all

𝛼 ∈ 𝑀(ℤ10).

(4) Not every 𝛼 ∈ 𝑀(ℤ10) has a multiplicative inverse 𝛼−1 ∈ 𝑀(ℤ10) such that
𝛼 ⋅ 𝛼−1 = 𝜀 and 𝛼−1 ⋅ 𝛼 = 𝜀.
Similar to ℤ10, the last group property about inverses fails for𝑀(ℤ10) with multi-

plication. For instance, [ 0 0
0 0 ] ⋅ 𝛽 = 𝜀 is not possible in𝑀(ℤ10), since [ 0 0

0 0 ] ⋅ 𝛽 = [ 0 0
0 0 ]

for all 𝛽 ∈ 𝑀(ℤ10). Thus, [ 0 0
0 0 ]

−1 does not exist in𝑀(ℤ10). We also saw in Examples
7.13 and 7.14 that the matrices [ 2 3

0 0 ] and [ 1 2
3 6 ], respectively, do not have multiplicative

inverses in𝑀(ℤ10).
To salvage this situation, we define the subset

𝐺(ℤ10) = {𝛼 ∈ 𝑀(ℤ10) | 𝛼 has a multiplicative inverse}.
In other words, we remove from𝑀(ℤ10) the matrices without multiplicative inverses.
The set 𝐺(ℤ10) is often called the general linear group, hence the use of the letter 𝐺 in
its name. To verify that 𝐺(ℤ10) is a group under multiplication, we begin by proving
closure.

Theorem 10.3. 𝐺(ℤ10) is closed under multiplication.

Proof. Assume 𝛼, 𝛽 ∈ 𝐺(ℤ10). Thus, 𝛼 and 𝛽 have multiplicative inverses 𝛼−1 and
𝛽−1, respectively. We must show that the product 𝛼 ⋅ 𝛽 has a multiplicative inverse. In
other words, we must find a matrix 𝛾 such that (𝛼 ⋅ 𝛽) ⋅ 𝛾 = 𝜀 and 𝛾 ⋅ (𝛼 ⋅ 𝛽) = 𝜀. Noting
that 𝛼−1 and 𝛽−1 exist, let 𝛾 = 𝛽−1 ⋅ 𝛼−1. Then

(𝛼 ⋅ 𝛽) ⋅ 𝛾 = (𝛼 ⋅ 𝛽) ⋅ (𝛽−1 ⋅ 𝛼−1) = 𝛼 ⋅ (𝛽 ⋅ 𝛽−1) ⋅ 𝛼−1 = 𝛼 ⋅ 𝜀 ⋅ 𝛼−1 = 𝛼 ⋅ 𝛼−1 = 𝜀,
and thus (𝛼 ⋅ 𝛽) ⋅ 𝛾 = 𝜀. Similar computation shows that 𝛾 ⋅ (𝛼 ⋅ 𝛽) = 𝜀. Therefore, 𝛼 ⋅ 𝛽
has a multiplicative inverse, namely 𝛾. Hence, 𝛼 ⋅ 𝛽 ∈ 𝐺(ℤ10). ■

Proof know-how. In the above proof, we needed a matrix 𝛾 such that (𝛼 ⋅ 𝛽) ⋅ 𝛾 = 𝜀
and 𝛾 ⋅ (𝛼 ⋅ 𝛽) = 𝜀. We claimed and verified that 𝛾 = 𝛽−1 ⋅ 𝛼−1 is the desired matrix.
How did we come up with an expression for 𝛾? Our goal was (𝛼 ⋅ 𝛽) ⋅ 𝛾 = 𝜀, so we
worked backwards and solved this equation for 𝛾 by first left-multiplying both sides
by 𝛼−1, which yields 𝛽 ⋅ 𝛾 = 𝛼−1 and then left-multiply both sides by 𝛽−1 to obtain
𝛾 = 𝛽−1 ⋅ 𝛼−1. This “working backwards” process of solving for 𝛾 is scratch work and
must not be included in the proof itself. (Compare this with the Proof know-how after
Theorem 9.10.)

Now we are ready to verify that 𝐺(ℤ10) is a group under multiplication:
(1) 𝐺(ℤ10) is closed under multiplication. (See Theorem 10.3 above.)

(2) Multiplication in𝐺(ℤ10) is associative. After all, multiplication in𝐺(ℤ10) is matrix
multiplication, which we showed is associative in Chapter 7, Exercise #6.
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(3) The element 𝜀 = [ 1 0
0 1 ] is the multiplicative identity. Moreover, 𝜀 is in 𝐺(ℤ10),

because it has a multiplicative inverse, namely itself.

(4) By the definition of 𝐺(ℤ10), each element 𝛼 ∈ 𝐺(ℤ10) has a multiplicative inverse
𝛼−1 such that 𝛼 ⋅ 𝛼−1 = 𝜀 and 𝛼−1 ⋅ 𝛼 = 𝜀. We must also verify that 𝛼−1 ∈ 𝐺(ℤ10),
i.e., that 𝛼−1 has a multiplicative inverse; it does, since 𝛼 is a multiplicative inverse
of 𝛼−1.

Remark. 𝑀(ℤ10) under addition is a commutative group, but 𝐺(ℤ10) under multipli-
cation is not.

Wemake one more analogy between𝑈10 and𝐺(ℤ10), and more generally between
𝑈𝑚 and 𝐺(ℤ𝑚). Both groups have a “trick” that allows us to easily determine whether
or not an element is in the group. By definition, 𝑈𝑚 is the set of elements in ℤ𝑚 with
multiplicative inverses. In practice, however, we rely on Theorem 4.19: Let 𝑎 ∈ ℤ𝑚.
Then 𝑎 ∈ 𝑈𝑚 if and only if gcd(𝑎,𝑚) = 1. For example, we find that 8 ∈ 𝑈35 because
gcd(8, 35) = 1. (Note: 8 ⋅ 22 = 1 in ℤ35.) And 10 ∉ 𝑈35 since gcd(10, 35) ≠ 1.

Similarly, 𝐺(ℤ𝑚) is the set of elements in 𝑀(ℤ𝑚) with multiplicative inverses. In
practice, we use the following theorem, derived by combining Theorems 7.20 and 7.21:
Let 𝛼 ∈ 𝑀(ℤ𝑚). Then 𝛼 ∈ 𝐺(ℤ𝑚) if and only if det 𝛼 ∈ 𝑈𝑚. For example, 𝛼 = [ 2 1

5 4 ] ∈
𝐺(ℤ10), because det 𝛼 = 3 ∈ 𝑈10. And 𝛽 = [ 2 1

3 4 ] ∉ 𝐺(ℤ10), since det 𝛽 = 5 ∉ 𝑈10.

10.3 Group 𝑆(ℤ10)
As a way of previewing our work with subgroups in the next chapter, define a new set

𝑆(ℤ10) = {𝛼 ∈ 𝑀(ℤ10) | det 𝛼 = 1}.
The set 𝑆(ℤ10) is often called the special linear group, hence the use of the letter 𝑆 in its
name.

Example 10.4. Let 𝛼, 𝛽, 𝛾 ∈ 𝑀(ℤ10), where 𝛼 = [ 3 2
4 3 ], 𝛽 = [ 7 2

5 3 ], and 𝛾 = [ 8 9
5 6 ]. Then

det 𝛼 = 3 ⋅ 3 − 2 ⋅ 4 = 1, det 𝛽 = 7 ⋅ 3 − 2 ⋅ 5 = 1, and det 𝛾 = 8 ⋅ 6 − 9 ⋅ 5 = 3. Therefore,
𝛼, 𝛽 ∈ 𝑆(ℤ10), but 𝛾 ∉ 𝑆(ℤ10).

We remark that 𝑆(ℤ10) is a subset of 𝐺(ℤ10), which you will prove in an exercise
at the end of the chapter. Below, we will verify that 𝑆(ℤ10) is a group under multipli-
cation, just like 𝐺(ℤ10). In fact, there is nothing special about ℤ10 here. Thus, we will
generalize our argument to 𝑆(ℤ𝑚). Let’s start with closure.

Theorem 10.5. 𝑆(ℤ𝑚) is closed under multiplication.

Proof. Assume 𝛼, 𝛽 ∈ 𝑆(ℤ𝑚). Then det 𝛼 = 1 and det 𝛽 = 1. Thus, det(𝛼 ⋅ 𝛽) =
det 𝛼 ⋅ det 𝛽 = 1 ⋅ 1 = 1. Hence, det(𝛼 ⋅ 𝛽) = 1 so that 𝛼 ⋅ 𝛽 ∈ 𝑆(ℤ𝑚). ■

Now we are ready to verify that 𝑆(ℤ𝑚) is a group under multiplication:
(1) 𝑆(ℤ𝑚) is closed under multiplication. (See Theorem 10.5 above.)

(2) Multiplication in 𝑆(ℤ𝑚) is associative. After all, multiplication in 𝑆(ℤ𝑚) is matrix
multiplication, which we showed is associative in Chapter 7, Exercise #6.
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(3) The element 𝜀 = [ 1 0
0 1 ] is the multiplicative identity. And 𝜀 itself is in 𝑆(ℤ𝑚), be-

cause det 𝜀 = 1.

(4) Let 𝛼 ∈ 𝑆(ℤ𝑚). Since 𝑆(ℤ𝑚) ⊆ 𝐺(ℤ𝑚), we have 𝛼 ∈ 𝐺(ℤ𝑚). We already know that
𝐺(ℤ𝑚) is a multiplicative group, and thus 𝛼−1 exists in 𝐺(ℤ𝑚). We must show that
𝛼−1 is in 𝑆(ℤ𝑚), which you will do in an exercise at the end of the chapter.

Therefore, 𝑆(ℤ𝑚) is a group under multiplication. Since 𝑆(ℤ𝑚) is a subset of the group
𝐺(ℤ𝑚) and they share the same operation (i.e., multiplication), we say that 𝑆(ℤ𝑚) is a
subgroup of 𝐺(ℤ𝑚). We’ll say much more about subgroups in the next chapter.

Exercises
1. (Review) Consider the set 𝑈10 = {1, 3, 7, 9}.

(a) Complete its multiplication table below.
⋅ 1 3 7 9
1
3
7
9

(b) Use the table created to verify the group properties for 𝑈10.

2. Proceed as in Example 10.1 to show that 2−1, 4−1, 6−1, and 8−1 do not exist in ℤ10.

3. (a) Determine the number of elements in 𝑈5; in 𝑈7; in 𝑈13; in 𝑈29; in 𝑈101.
(b) Determine the number of elements in 𝑈𝑝 where 𝑝 is prime. Explain your rea-

soning.

4. (a) Without listing them, find the number of elements in 𝑈35.
(b) Repeat part (a), but with 𝑈39; with 𝑈55; with 𝑈91.
(c) Repeat part (a), but with 𝑈𝑝𝑞 where 𝑝 and 𝑞 are distinct odd primes.

5. (a) Without listing them, find the number of elements in 𝑈27.
(b) Repeat part (a), but with 𝑈25; with 𝑈81; with 𝑈125; with 𝑈343.
(c) Repeat part (a), but with 𝑈𝑚, where𝑚 = 𝑝𝑛 for a prime number 𝑝.

6. For each matrix in𝑀(ℤ10) shown below, determine whether or not it is in 𝐺(ℤ10).

(a) [ 9 5
8 3 ]. (b) [ 8 7

6 4 ]. (c) [ 6 6
7 4 ]. (d) [ 5 8

7 9 ].

7. For each matrix 𝛼 from Exercise #6 that is in 𝐺(ℤ10), find 𝛼−1 and verify that
𝛼 ⋅ 𝛼−1 = 𝜀 and 𝛼−1 ⋅ 𝛼 = 𝜀, where 𝜀 = [ 1 0

0 1 ].

8. Find five matrices in𝑀(ℤ10) that are not in 𝐺(ℤ10).

9. In the proof of Theorem 10.3, show that 𝛾 ⋅ (𝛼 ⋅ 𝛽) = 𝜀.

10. Use Theorem 7.24 (i.e., det(𝛼 ⋅ 𝛽) = det 𝛼 ⋅ det 𝛽) to prove that 𝐺(ℤ10) is closed
under multiplication.
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11. Find the values of𝑚 for which 𝐺(ℤ𝑚) could be defined as 𝐺(ℤ𝑚) = {𝛼 ∈ 𝑀(ℤ𝑚) ∣
det 𝛼 ≠ 0}.

12. (Socks-shoes revisited) Let 𝛼, 𝛽 ∈ 𝑀(ℤ10) where 𝛼 = [ 3 4
5 1 ] and 𝛽 = [ 7 1

0 3 ].

(a) Verify that 𝛼 and 𝛽 are in 𝐺(ℤ10).
(b) Verify that (𝛼 ⋅ 𝛽)−1 ≠ 𝛼−1 ⋅ 𝛽−1, but (𝛼 ⋅ 𝛽)−1 = 𝛽−1 ⋅ 𝛼−1.

13. Let 𝜏 ∈ 𝐺(ℤ10) where 𝜏 = [ 3 0
0 3 ].

(a) Explain why 𝜏 is in 𝐺(ℤ10).
(b) With 𝛼 as in Exercise #12 above, compute the products 𝛼 ⋅ 𝜏 and 𝜏 ⋅ 𝛼.
(c) With 𝛽 as in Exercise #12 above, compute the products 𝛽 ⋅ 𝜏 and 𝜏 ⋅ 𝛽.
(d) Describe what happens when we multiply any matrix by 𝜏.

14. Again, let 𝜏 ∈ 𝐺(ℤ10) where 𝜏 = [ 3 0
0 3 ]. Recall that the set 𝐶(𝜏) = {𝜎 ∈ 𝐺(ℤ10) ∣

𝜎 ⋅ 𝜏 = 𝜏 ⋅ 𝜎} is called the centralizer of 𝜏 in 𝐺(ℤ10). In other words, 𝐶(𝜏) is the set
of elements in 𝐺(ℤ10) that commute with 𝜏. Prove that 𝐶(𝜏) = 𝐺(ℤ10).

15. (a) Find five matrices in 𝑆(ℤ10) other than 𝜀 = [ 1 0
0 1 ].

(b) Find the multiplicative inverse of each matrix in part (a).
(c) Verify that the multiplicative inverses you found in part (b) are also in 𝑆(ℤ10).

16. Prove: 𝑆(ℤ𝑚) ⊆ 𝐺(ℤ𝑚). (This exercise is referenced in Section 11.2.)

17. Let 𝛼 ∈ 𝑆(ℤ𝑚). Since 𝑆(ℤ𝑚) ⊆ 𝐺(ℤ𝑚), we have 𝛼 ∈ 𝐺(ℤ𝑚). We already know that
𝐺(ℤ𝑚) is a multiplicative group, and thus 𝛼−1 exists in 𝐺(ℤ𝑚). Prove that 𝛼−1 is in
𝑆(ℤ𝑚).

18. Define the set 𝐻 = {𝛼 ∈ 𝑀(ℤ10) | det 𝛼 = 3}.

(a) Prove: 𝐻 ⊆ 𝐺(ℤ10).
(b) Is 𝐻 a group under matrix multiplication? Explain why or why not.

19. (Thought experiment) 𝑈10 is a subset of ℤ10, and both are groups. Should 𝑈10
be called a subgroup of ℤ10? Analogously, should 𝐺(ℤ10) be called a subgroup of
𝑀(ℤ10)? Why or why not?

In Exercises #20 through #24 below, let𝐻 be a subset of𝐺(ℤ𝑚) defined by𝐻 = {[ 𝑎 0
0 𝑎 ] ∣

𝑎 ∈ 𝑈𝑚}.

20. Explain why 𝐻 is a subset of 𝐺(ℤ𝑚).

21. Suppose𝑚 = 35 so that 𝐻 is a subset of 𝐺(ℤ35).

(a) Find two elements 𝛼, 𝛽 ∈ 𝐻.
(b) Compute the product 𝛼 ⋅ 𝛽. Verify that 𝛼 ⋅ 𝛽 is in 𝐻.
(c) Compute the inverses 𝛼−1 and 𝛽−1. Verify that these inverses are in 𝐻.
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22. Prove: 𝐻 is a group under matrix multiplication.
Note: You may assume that matrix multiplication is associative. So, you must
show the following:

• 𝐻 is closed under matrix multiplication.
• The identity matrix 𝜀 is in 𝐻.
• For each 𝛼 ∈ 𝐻, its inverse 𝛼−1 is also in 𝐻.

23. For simplicity, let 𝐺 = 𝐺(ℤ𝑚). The center of 𝐺 is defined by 𝑍(𝐺) = {𝜎 ∈ 𝐺 | 𝜎𝜏 =
𝜏𝜎 for all 𝜏 ∈ 𝐺}.
Prove: 𝐻 ⊆ 𝑍(𝐺).

24. With the notations as in Exercise #23, prove that 𝑍(𝐺) ⊆ 𝐻 so that 𝐻 = 𝑍(𝐺).





11
Subgroups

In Section 10.3, we saw that 𝑆(ℤ10) is a subset of 𝐺(ℤ10) and that 𝑆(ℤ10) is a group un-
der multiplication, just like 𝐺(ℤ10). Thus, we say that 𝑆(ℤ10) is a subgroup of 𝐺(ℤ10).
Subgroups play an important role in our study of groups. For instance, we computed
the order of a group element in several earlier exercises (Chapter 4, Exercise #11; Chap-
ter 5, Exercise #10; Chapter 6, Exercise #7). You may have conjectured that the order
of a group element is a divisor of the number of elements in the group. The proof of
this conjecture involves the use of a certain subgroup. This is just one of many ways in
which a subgroup of a group provides useful information about the group itself. Fur-
thermore, subgroups can also be used to create new groups, as we’ll see later when we
study quotient groups.

11.1 Examples of subgroups
Example 11.1. Recall that ℤ8 = {0, 1, 2, 3, 4, 5, 6, 7} is a group under addition. Let
𝐻 = {0, 2, 4, 6} be a subset of ℤ8. The addition table for 𝐻 is shown below:

+ 0 2 4 6
0 0 2 4 6
2 2 4 6 0
4 4 6 0 2
6 6 0 2 4

We verify that 𝐻 is also a group under addition:

(1) 𝐻 is closed under addition, as every entry in the table (i.e., all possible sums) is an
element of 𝐻.

(2) Addition in𝐻 is associative. After all,𝐻 uses addition in ℤ8, which is known to be
associative.

(3) The element 0 ∈ 𝐻 is the additive identity of 𝐻, because 0 + ℎ = ℎ and ℎ + 0 = ℎ
for all ℎ ∈ 𝐻.

105
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(4) Each element ℎ ∈ 𝐻 has an additive inverse, which is also in 𝐻. Note that 2 and 6
are inverse pairs, while 0 and 4 are self-inverses.

Therefore, 𝐻 is also a group, with the same operation as ℤ8.

In the example above, we say that 𝐻 is a subgroup of ℤ8. Here’s the definition.

Definition 11.2 (Subgroup). Let 𝐺 be a group. A subset𝐻 ⊆ 𝐺 is called a subgroup of
𝐺 if 𝐻 is also a group using the operation of 𝐺.

Example 11.3. In Example 9.7, we considered the subset 𝐻 = {𝜀, 𝑟120, 𝑟240} of the
group 𝐷3. Here is the table for 𝐻, using the operation ∘ of 𝐷3:

∘ 𝜀 𝑟120 𝑟240
𝜀 𝜀 𝑟120 𝑟240
𝑟120 𝑟120 𝑟240 𝜀
𝑟240 𝑟240 𝜀 𝑟120

We see that 𝐻 is also a group, with the same operation as 𝐷3. Hence, 𝐻 is a subgroup
of 𝐷3.

Example 11.4 (Non-example). Consider the subset 𝐻 = {0, 2, 6} of the group ℤ8.
Then 𝐻 is not closed under addition, since 2 + 2 = 4 and 4 ∉ 𝐻. Thus, 𝐻 is not a
subgroup of ℤ8. Interestingly, 𝐻 does satisfy the other three group properties.

Example 11.5 (Non-example). Consider 𝑈8 = {1, 3, 5, 7}, which is a group under
multiplication. Although 𝑈8 is a subset of ℤ8, it is not a subgroup of ℤ8, since the
operations of 𝑈8 and ℤ8 are different.

Example 11.6. We’ve seen that 𝐻 = {0, 2, 4, 6} is a subgroup of ℤ8 under addition.
Let’s find all other subgroups of ℤ8. We start with the two extremes: {0}, i.e., the subset
containing just the additive identity element 0, and the group ℤ8 itself. Both of these
are subgroups of ℤ8.

Let 𝐻 be a subgroup of ℤ8. Then 𝐻 must contain the additive identity element 0.
Now suppose 1 ∈ 𝐻. Then since 𝐻 is closed under addition, we must have

1 + 1 ∈ 𝐻, 1 + 1 + 1 ∈ 𝐻, 1 + 1 + 1 + 1 ∈ 𝐻, . . . ,
so that every element of ℤ8 is in 𝐻; i.e., 𝐻 = ℤ8. But we’ve already counted ℤ8 as one
of the subgroups, and thus we can assume that 1 ∉ 𝐻. Similarly, if 3, 5, or 7 is in 𝐻,
then𝐻 = ℤ8. (You’ll show this in an exercise at the end of the chapter.) Thus, we may
also assume that 3, 5, 7 ∉ 𝐻.

Next, let’s see what happens if 2 ∈ 𝐻. Then by closure, 2+2 = 4 and 2+2+2 = 6
are also in 𝐻, which implies 𝐻 = {0, 2, 4, 6}, which we’ve already seen is a subgroup
of ℤ8. Thus, we can now assume that 2 ∉ 𝐻. Similarly, if 6 ∈ 𝐻, then 6 + 6 = 4 and
6 + 6 + 6 = 2 are also in 𝐻, and so 𝐻 = {0, 2, 4, 6} again. Hence, let’s assume that
6 ∉ 𝐻. The only remaining element is 4, from which we obtain 𝐻 = {0, 4}.

In summary, here is the complete list of all subgroups of ℤ8: {0}, {0, 4}, {0, 2, 4, 6},
ℤ8 itself.

In Example 11.6, where we found the subgroups of ℤ8, we started with the two
extremes, namely {0} and ℤ8 itself. Here is a generalization.
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Example 11.7. Let 𝐺 be a group. Then {𝜀}, i.e., the subset containing just the identity
element, is a subgroup of 𝐺. It is often called the trivial subgroup. Moreover, 𝐺 is also
its own subgroup.

Example 11.8 (Diagonal subgroup). Consider the direct product𝑈10 ×𝑈10 = {(𝑎, 𝑏) ∣
𝑎, 𝑏 ∈ 𝑈10}, and define its subset ▵𝑈10 = {(𝑎, 𝑎) | 𝑎 ∈ 𝑈10}. For instance, (3, 3) ∈
▵𝑈10, but (3, 7) ∉ ▵𝑈10. We’ll leave it to you as an exercise at the end of the chapter
to verify that ▵𝑈10 is a subgroup of 𝑈10 × 𝑈10. Note that we call ▵𝑈10 the diagonal
subgroup of 𝑈10 × 𝑈10.

11.2 Subgroup proofs
In Chapter 10, we considered the following sets of matrices:

• 𝐺(ℤ𝑚) = {𝛼 ∈ 𝑀(ℤ𝑚) | 𝛼 has a multiplicative inverse}.

• 𝑆(ℤ𝑚) = {𝛼 ∈ 𝑀(ℤ𝑚) | det 𝛼 = 1}.
When 𝑆(ℤ𝑚) was introduced, we’d already known that 𝐺(ℤ𝑚) is a group under matrix
multiplication. We also found that 𝑆(ℤ𝑚) is a subset of 𝐺(ℤ𝑚), which you showed
in Chapter 10, Exercise #16. Then we verified that 𝑆(ℤ𝑚) is a group under the same
operation as 𝐺(ℤ𝑚). Thus, 𝑆(ℤ𝑚) is a subgroup of 𝐺(ℤ𝑚).

We will revisit the argument that 𝑆(ℤ𝑚) is a group, but this time using the frame-
work of a subgroup. Using this example as a model, we will then describe a general
format for writing a “subgroup proof.” To show that 𝑆(ℤ𝑚) is a subgroup of 𝐺(ℤ𝑚), we
must show the following:

(1) 𝑆(ℤ𝑚) is closed under multiplication: If 𝛼, 𝛽 ∈ 𝑆(ℤ𝑚), then 𝛼 ⋅ 𝛽 ∈ 𝑆(ℤ𝑚).

(2) Since 𝐺(ℤ𝑚) is already known to be a group, its operation is associative. Since
𝑆(ℤ𝑚) inherits the same operation from𝐺(ℤ𝑚), we’re ensured that the operation of
𝑆(ℤ𝑚) is also associative. For this reason, we don’t even have tomention associativity
in a subgroup proof.

(3) Since 𝐺(ℤ𝑚) is a group, it has an identity element 𝜀 where 𝜀 ⋅ 𝛼 = 𝛼 and 𝛼 ⋅ 𝜀 = 𝛼
for all 𝛼 ∈ 𝐺(ℤ𝑚). Because 𝑆(ℤ𝑚) ⊆ 𝐺(ℤ𝑚), this identity element will also keep
all elements in 𝑆(ℤ𝑚) unchanged. Thus, it remains to show that 𝜀 is contained in
𝑆(ℤ𝑚).

(4) We must show the following: If 𝛾 ∈ 𝑆(ℤ𝑚), then 𝛾−1 ∈ 𝑆(ℤ𝑚). Given 𝛾 ∈ 𝑆(ℤ𝑚),
we know that 𝛾 ∈ 𝐺(ℤ𝑚), since 𝑆(ℤ𝑚) is a subset of 𝐺(ℤ𝑚). Also, since 𝐺(ℤ𝑚)
is a group, we know that 𝛾−1 exists in 𝐺(ℤ𝑚). But we have to show that 𝛾−1 is
contained in 𝑆(ℤ𝑚).

Theorem 11.9. 𝑆(ℤ𝑚) is a subgroup of 𝐺(ℤ𝑚).

Proof. We will show that 𝑆(ℤ𝑚) is closed under matrix multiplication. Assume 𝛼,
𝛽 ∈ 𝑆(ℤ𝑚). Then det 𝛼 = 1 and det 𝛽 = 1. Thus, det(𝛼 ⋅ 𝛽) = det 𝛼 ⋅ det 𝛽 = 1 ⋅ 1 = 1.
Hence, det(𝛼 ⋅ 𝛽) = 1 and so 𝛼 ⋅ 𝛽 ∈ 𝑆(ℤ𝑚). Next, note that det 𝜀 = det[ 1 0

0 1 ] = 1 and
thus 𝜀 ∈ 𝑆(ℤ𝑚). Lastly, suppose 𝛾 ∈ 𝑆(ℤ𝑚). Then det 𝛾 = 1. Note that det(𝛾−1) =
(det 𝛾)−1 = 1−1 = 1. Thus 𝛾−1 ∈ 𝑆(ℤ𝑚). ■
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Here is a general format of a subgroup proof:

Proof know-how. In a subgroup proof, we are typically given a group 𝐺 and a subset
𝐻 ⊆ 𝐺. The key here is that𝐺 is already known to be a group. Thus the operation of𝐺,
which is inherited by 𝐻, is known to be associative. And 𝐺 has an identity element 𝜀,
which would serve as an identity element for 𝐻, once we can show that 𝜀 ∈ 𝐻. Lastly,
suppose ℎ ∈ 𝐻. Then since 𝐺 is a group, we know that ℎ−1 exists in 𝐺. It remains to
show that ℎ−1 is in 𝐻.

To summarize, here are the verifications needed to show that 𝐻 is a subgroup of
𝐺. Thus, a subgroup proof has three parts: closure, identity, and inverses.
(1) Closure: If 𝑎, 𝑏 ∈ 𝐻, then 𝑎𝑏 ∈ 𝐻.
(2) (No need to even mention associativity, since 𝐻 inherits the associative operation

from 𝐺.)
(3) Identity: 𝜀 ∈ 𝐻, where 𝜀 is the identity element of 𝐺.
(4) Inverses: If ℎ ∈ 𝐻, then ℎ−1 ∈ 𝐻.

Example 11.10. Let 𝐻 = {[ 𝑎 0
0 𝑎 ] | 𝑎 ∈ 𝑈13}. Examples of matrices in 𝐻 include 𝛼 =

[ 4 0
0 4 ] and 𝛽 = [ 5 0

0 5 ], since 4, 5 ∈ 𝑈13. Notice that det 𝛼 = 4 ⋅ 4 − 0 ⋅ 0 = 3 ∈ 𝑈13,
and thus 𝛼 ∈ 𝐺(ℤ13). Similarly, det 𝛽 = 12 ∈ 𝑈13 so that 𝛽 ∈ 𝐺(ℤ13). More generally,
suppose 𝛾 = [ 𝑎 0

0 𝑎 ] ∈ 𝐻 with 𝑎 ∈ 𝑈13. Then det 𝛾 = 𝑎 ⋅ 𝑎 ∈ 𝑈13, since 𝑈13 is closed
under multiplication. Thus, 𝛾 ∈ 𝐺(ℤ13), which implies that 𝐻 is a subset of 𝐺(ℤ13).

In Theorem 11.11, we will prove that 𝐻 is a subgroup of 𝐺(ℤ13). The following
calculations foreshadow the proof. We have

𝛼 ⋅ 𝛽 = [ 4 0
0 4 ] ⋅ [ 5 0

0 5 ] = [ 4 ⋅ 5 + 0 ⋅ 0 4 ⋅ 0 + 0 ⋅ 5
0 ⋅ 5 + 4 ⋅ 0 0 ⋅ 0 + 4 ⋅ 5 ] = [ 7 0

0 7 ] .

Therefore 𝛼 ⋅ 𝛽 = [ 7 0
0 7 ], which is in 𝐻, since 7 ∈ 𝑈13. To find 𝛼−1, let Δ = det 𝛼 = 3 so

that Δ−1 = 9 (since 3 ⋅ 9 = 1modulo 13). Then,

𝛼−1 = Δ−1 ⋅ [ 4 −0
−0 4 ] = 9 ⋅ [ 4 0

0 4 ] = [ 10 0
0 10 ] .

Thus 𝛼−1 = [ 10 0
0 10 ], which is in 𝐻, since 10 ∈ 𝑈13.

Theorem 11.11. Let𝐻 = {[ 𝑎 0
0 𝑎 ] ∈ 𝐺(ℤ13) | 𝑎 ∈ 𝑈13}. Then𝐻 is a subgroup of 𝐺(ℤ13).

Proof. We will show that𝐻 is closed under matrix multiplication. Assume 𝛼, 𝛽 ∈ 𝐻.
Then 𝛼 = [ 𝑎 0

0 𝑎 ] and 𝛽 = [ 𝑏 0
0 𝑏 ], where 𝑎, 𝑏 ∈ 𝑈13. Thus 𝛼 ⋅ 𝛽 = [ 𝑎⋅𝑏 0

0 𝑎⋅𝑏 ], which is in
𝐻, since 𝑎 ⋅ 𝑏 ∈ 𝑈13. Next, note that 𝜀 = [ 𝑎 0

0 𝑎 ] with 𝑎 = 1 ∈ 𝑈13, and thus 𝜀 ∈ 𝐻.
Lastly, suppose 𝛾 = [ 𝑐 0

0 𝑐 ] ∈ 𝐻, where 𝑐 ∈ 𝑈13. To find 𝛾−1, let Δ = det 𝛾 = 𝑐2 so that
Δ−1 = 𝑐−2, which exists because 𝑐 ∈ 𝑈13. Then

𝛾−1 = Δ−1 ⋅ [ 𝑐 −0
−0 𝑐 ] = 𝑐−2 ⋅ [ 𝑐 0

0 𝑐 ] = [ 𝑐−1 0
0 𝑐−1 ] ,

where 𝑐−1 ∈ 𝑈13. Thus, 𝛾−1 ∈ 𝐻. ■

Remark. In the above proof, we used the fact that 𝑈13 is a multiplicative group. We
stated that 𝑎⋅𝑏 ∈ 𝑈13, because 𝑎, 𝑏 ∈ 𝑈13 (i.e., closure). We also claimed that 𝑐−2 exists
and 𝑐−1 ∈ 𝑈13, since 𝑐 ∈ 𝑈13 (i.e., inverses).
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Example 11.12. Given a group 𝐺 under multiplication, define its subset𝐻 = {𝑔 ∈ 𝐺 |
𝑔2 = 𝜀}. Let’s start by looking at an examplewhere𝐺 = 𝑈16 = {1, 3, 5, 7, 9, 11, 13, 15}.
In this case, the identity element is 𝜀 = 1. We have 12 = 1, 72 = 1, 92 = 1, 152 = 1.
No other element of 𝑈16, when squared, equals 1. Therefore, 𝐻 = {1, 7, 9, 15}.

The multiplication table of 𝐻 is given by

⋅ 1 7 9 15
1 1 7 9 15
7 7 1 15 9
9 9 15 1 7
15 15 9 7 1

Note how (1) the set 𝐻 is closed, (2) multiplication is associative (or observe that 𝐻
inherits the associative operation from 𝑈16), (3) 𝜀 = 1 is contained in 𝐻, and (4) every
element of 𝐻 has an inverse in 𝐻; in this case, the definition of 𝐻 implies that every
element of 𝐻 is a self-inverse. Thus, 𝐻 is a subgroup of 𝑈16. Below, we will prove that
such a subset 𝐻 is always a subgroup, provided that 𝐺 is commutative.

Theorem 11.13. If 𝐺 is a commutative group, then 𝐻 = {𝑔 ∈ 𝐺 | 𝑔2 = 𝜀} is a subgroup
of 𝐺.

Proof. We will first show that𝐻 is closed. Assume 𝑎, 𝑏 ∈ 𝐻. Then 𝑎2 = 𝜀 and 𝑏2 = 𝜀.
Since 𝐺 is commutative, we have (𝑎𝑏)2 = 𝑎2𝑏2 = 𝜀 ⋅ 𝜀 = 𝜀. Hence, (𝑎𝑏)2 = 𝜀 and so
𝑎𝑏 ∈ 𝐻.

Next, note that 𝜀2 = 𝜀 and thus 𝜀 ∈ 𝐻. Lastly, suppose 𝑐 ∈ 𝐻. Then 𝑐2 = 𝜀. Note
that (𝑐−1)2 = (𝑐2)−1 = 𝜀−1 = 𝜀. Thus (𝑐−1)2 = 𝜀 so that 𝑐−1 ∈ 𝐻. ■

Remark. Note how the proofs of Theorems 11.9, 11.11, and 11.13 are quite similar. In
fact, most subgroup proofs will have the same structure as these three proofs.

11.3 Center and centralizer revisited
In this section, wewill re-introduce a couple of important subgroups that we’ve already
seen. We may view our first subgroup as the “commutative part” of a given group 𝐺.

Definition 11.14 (Center). Given a group 𝐺, define the center of 𝐺 by
𝑍(𝐺) = {𝑧 ∈ 𝐺 | 𝑧𝑔 = 𝑔𝑧 for all 𝑔 ∈ 𝐺}.

In other words, 𝑍(𝐺) contains the elements of 𝐺 that commute with all elements of
𝐺. As we noted in Chapter 5, Exercise #7, the use of the letter 𝑍 originates from the
German word Zentrum (“center”).

Example 11.15 (Chapter 5, Exercise #7 revisited). Let’s find the elements of 𝑍(𝐷4),
where 𝐷4 is the group of symmetries of a square. We have 𝜀 ∘ 𝜎 = 𝜎 ∘ 𝜀 (both are equal
to 𝜎) for all 𝜎 ∈ 𝐷4, and thus 𝜀 ∈ 𝑍(𝐷4). We also claim that 𝑟180 ∈ 𝑍(𝐷4). In the
composition table for 𝐷4 (see Appendix B), the row 𝑟180, which contains the elements
of the form 𝑟180 ∘ 𝜎 (where 𝜎 ∈ 𝐷4), and the column 𝑟180, containing elements of the
form 𝜎 ∘ 𝑟180, have the same orderings of their elements. This implies 𝑟180 ∘ 𝜎 = 𝜎 ∘ 𝑟180
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for all 𝜎 ∈ 𝐷4, and thus 𝑟180 ∈ 𝑍(𝐷4). The table also tells us that 𝜀 and 𝑟180 are the only
elements in 𝑍(𝐷4). For instance, we have 𝑟90 ∘ 𝑑 ≠ 𝑑 ∘ 𝑟90. Thus neither 𝑟90 nor 𝑑 is in
𝑍(𝐷4); i.e., if they don’t commute with each other, they certainly don’t commute with
all elements of 𝐷4. Therefore, we conclude that 𝑍(𝐷4) = {𝜀, 𝑟180}.

Example 11.16. If 𝐺 is a commutative group, then 𝑍(𝐺) = 𝐺. The converse is also
true: If 𝑍(𝐺) = 𝐺, then 𝐺 is commutative. You will prove these in an exercise at the
end of the chapter.

To define our second subgroup, we begin by fixing a group element, say ℎ. Then
we consider all elements of the group that commute with ℎ.

Definition 11.17 (Centralizer). Given a fixed element ℎ in a group 𝐺, define the cen-
tralizer of ℎ in 𝐺 by

𝐶(ℎ) = {𝑔 ∈ 𝐺 | 𝑔ℎ = ℎ𝑔}.

Example 11.18. In Section 5.3, we fixed ℎ ∈ 𝐷4, i.e., the reflection of a square about
its horizontal axis. Then we found that 𝐶(ℎ) = {𝜀, 𝑟180, ℎ, 𝑣}. For example, 𝑣 ∈ 𝐶(ℎ),
because 𝑣 ∘ℎ = ℎ ∘𝑣, i.e., 𝑣 commutes with ℎ. Likewise, 𝑟180 ∈ 𝐶(ℎ), because 𝑟180 ∘ℎ =
ℎ ∘ 𝑟180. In fact, we saw in Example 11.15 above that 𝑟180 commutes with all elements
of 𝐷4. Thus, it is expected that 𝑟180 commutes with ℎ. On the other hand, 𝑟90 ∉ 𝐶(ℎ),
because 𝑟90 ∘ ℎ ≠ ℎ ∘ 𝑟90.

As implied above, both 𝑍(𝐺) and 𝐶(ℎ) are subgroups of the group 𝐺. We’ll state
those facts as theorems below. You’ll be asked to prove them in an exercise at the end
of the chapter.

Theorem 11.19. Let 𝐺 be a group. Then 𝑍(𝐺) = {𝑧 ∈ 𝐺 | 𝑧𝑔 = 𝑔𝑧 for all 𝑔 ∈ 𝐺} is a
subgroup of 𝐺.

Theorem 11.20. Let ℎ be a fixed element in a group 𝐺. Then 𝐶(ℎ) = {𝑔 ∈ 𝐺 | 𝑔ℎ = ℎ𝑔}
is a subgroup of 𝐺.

Exercises
1. In each case, explain why 𝐻 is not a subgroup of 𝐺.

(a) 𝐺 = ℤ under addition, 𝐻 = {𝑛 ∈ ℤ | 𝑛 ≥ 0}.
(b) 𝐺 = ℤ10 under addition, 𝐻 = {0, 3, 7}.
(c) 𝐺 = ℤ12 under addition, 𝐻 = 𝑈12.

(d) 𝐺 = 𝑆3 under composition, 𝐻 = {𝜀, 𝜎} where 𝜎 = ( 1 2 3
2 3 1 ).

2. Let 𝐻 be a subgroup of ℤ8. Explain why if 3 ∈ 𝐻, then 𝐻 = ℤ8. Do likewise for
5 ∈ 𝐻 and 7 ∈ 𝐻.
Note: See Example 11.6 for the context surrounding this problem.
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3. Let 𝐻 be a subgroup of 𝐺. For each statement, if it’s true, prove it; if it’s false, give
a counterexample.

(a) If 𝐺 is non-commutative, then 𝐻 is non-commutative.
(b) If 𝐻 is non-commutative, then 𝐺 is non-commutative.

4. Suppose 𝐾 is a subgroup of𝐻 and𝐻 is a subgroup of𝐺. Is 𝐾 a subgroup of𝐺? Why
or why not?

5. Recall the following:

• 𝑀(ℤ10) = the set of 2 × 2matrices with entries in ℤ10.
• 𝐺(ℤ10) = {𝛼 ∈ 𝑀(ℤ10) | 𝛼 has a multiplicative inverse}.

(a) 𝑀(ℤ10) is a group under what operation?
(b) 𝐺(ℤ10) is a group under what operation?
(c) Is 𝐺(ℤ10) a subgroup of𝑀(ℤ10)? Why or why not?

6. In this problem, you’ll work with the group𝐷4. See Appendix B for its group table.
(a) Verify that {𝜀, 𝑟90, 𝑟180, 𝑟270} is a subgroup of 𝐷4.
(b) Verify that {𝜀, 𝑣} is a subgroup of 𝐷4.
(c) (Challenge) Find all subgroups of 𝐷4.

7. Find all subgroups of the additive group ℤ12. (This exercise is referenced in Exam-
ple 14.10.)

8. (a) Find all subgroups of the additive group ℤ7.
(b) Find all subgroups of the additive group ℤ11.
(c) Find all subgroups of the additive group ℤ101.
(d) Any conjectures?

9. Find all subgroups of the additive group ℤ.

10. Let 𝐻 = {[ 𝑎 𝑏
0 𝑎 ] | 𝑎 ∈ 𝑈𝑚, 𝑏 ∈ ℤ𝑚}.

(a) With 𝑚 = 10, find several matrices that are in 𝐻. Verify that they’re also in
𝐺(ℤ10).

(b) Explain why 𝐻 ⊆ 𝐺(ℤ𝑚).
(c) Prove that 𝐻 is a subgroup of 𝐺(ℤ𝑚).

11. Let 𝐻 = {[ 1 0
𝑏 1 ] | 𝑏 ∈ ℤ𝑚}.

(a) With 𝑚 = 10, find several matrices that are in 𝐻. Verify that they’re also in
𝐺(ℤ10).

(b) Explain why 𝐻 ⊆ 𝐺(ℤ𝑚).
(c) Prove that 𝐻 is a subgroup of 𝐺(ℤ𝑚).
(This exercise is referenced in Chapter 14, Exercise #11 and Chapter 16, Exercise
#10.)

12. In the proof of Theorem 11.13, we say: Since 𝐺 is commutative, we have (𝑎𝑏)2 =
𝑎2𝑏2 = 𝜀⋅𝜀 = 𝜀. Elaborate onhow the commutativity of𝐺was used in this sentence.
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13. Let 𝐺 be a group and let 𝐻 and 𝐾 be its subgroups. Define𝑀 = 𝐻 ∩ 𝐾 = {𝑔 ∈ 𝐺 |
𝑔 ∈ 𝐻 and 𝑔 ∈ 𝐾}; i.e., 𝑀 is the intersection of 𝐻 and 𝐾. Prove that 𝑀 is a sub-
group of𝐺. (This exercise is referenced in Chapter 20, Exercise #4 and Chapter 26,
Exercise #20.)

14. Using a counterexample, show that Theorem 11.13 is false when𝐺 is non-commu-
tative.

15. Define the set 𝐻 = {𝛼 ∈ 𝑈20 | 𝛼 = 𝑔2 where 𝑔 ∈ 𝑈20}.

(a) Find the elements of 𝐻.
(b) Verify that 𝐻 is a subgroup of 𝑈20.

16. Prove: If 𝐺 is a commutative group, then 𝐻 = {𝛼 ∈ 𝐺 | 𝛼 = 𝑔2 where 𝑔 ∈ 𝐺} is a
subgroup of 𝐺.

17. Prove: 5ℤ is a subgroup of the additive group ℤ.

18. Consider the additive group ℚ, i.e., the set of rational numbers. Define a subset
𝐻 ⊆ ℚ given by𝐻 = { 34𝑚+ 2

7𝑛 | 𝑚, 𝑛 ∈ ℤ} . Prove that𝐻 is a subgroup ofℚ. (This
exercise is referenced in Chapter 14, Exercise #12.)

19. Consider the set 𝐻 = {5𝑘 | 𝑘 ∈ ℤ}.

(a) Explain why 𝐻 ⊆ ℝ∗ where ℝ∗ = {𝑎 ∈ ℝ | 𝑎 has a multiplicative inverse}.
(b) Find three elements 𝛼, 𝛽, 𝛾 ∈ 𝐻. Verify that 𝛼 ⋅ 𝛽 ∈ 𝐻 and that 𝛾−1 exists and

is in 𝐻.
(c) Prove: 𝐻 is a subgroup of ℝ∗.

20. Let 𝐺 be a group and fix an element ℎ ∈ 𝐺. For each statement, if it’s true, prove
it; if it’s false, give a counterexample.

(a) 𝐶(ℎ) is a subset of 𝑍(𝐺).
(b) 𝑍(𝐺) is a subset of 𝐶(ℎ).

21. Prove: Let 𝐺 be a group. Then 𝐺 is commutative if and only if 𝑍(𝐺) = 𝐺.

22. (a) Prove Theorem 11.19.
(b) Prove Theorem 11.20.

23. Consider the subsets𝐻 = {1, 12} and 𝐾 = {1, 3, 9} of the multiplicative group𝑈13.

(a) Verify that 𝐻 is a subgroup of 𝑈13. Do likewise for 𝐾.
(b) With 𝐻 and 𝐾 as above, compute the set 𝐻𝐾 = {ℎ𝑘 | ℎ ∈ 𝐻, 𝑘 ∈ 𝐾} by

multiplying every element of 𝐻 by every element of 𝐾.
(c) Verify that the set 𝐻𝐾 you found in part (b) is a subgroup of 𝑈13.

24. Let 𝐻 and 𝐾 be subgroups of a commutative group 𝐺. Define 𝐻𝐾 = {ℎ𝑘 | ℎ ∈ 𝐻,
𝑘 ∈ 𝐾}. Prove that 𝐻𝐾 is a subgroup of 𝐺. (This exercise is referenced in Chapter
17, Exercise #21.)
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25. Consider the direct product𝑈10 ×𝑈10 = {(𝑎, 𝑏) | 𝑎, 𝑏 ∈ 𝑈10} and its subset ▵𝑈10 =
{(𝑎, 𝑎) | 𝑎 ∈ 𝑈10}.
(a) Write down the elements of ▵𝑈10.
(b) Create a group table for ▵𝑈10.
(c) Use the table in part (b) to verify that ▵𝑈10 is a subgroup of 𝑈10 × 𝑈10. (See

Example 11.8.)

26. Let 𝐺 be a group. Consider the direct product 𝐺 × 𝐺, and define its subset ▵𝐺 =
{(𝑔, 𝑔) | 𝑔 ∈ 𝐺}. Prove that ▵𝐺 is a subgroup of 𝐺 × 𝐺. (This exercise is referenced
in Chapter 24, Exercise #22.)

27. (Challenge) Prove: For 𝑛 ≥ 3:
• 𝑍(𝐷𝑛) = {𝜀, 𝑟180}, if 𝑛 is even.
• 𝑍(𝐷𝑛) = {𝜀}, if 𝑛 is odd.





12
Order of an Element

In previous exercises, we computed the order of a group element in various settings (in
𝑈7, 𝐷4, 𝑆3, and𝑀(ℤ10), just to name a few). The order is a useful property that tells us
not only about the element itself, but also about the group containing that element.

In this chapter, we will formalize the notion of a remainder in integer division.
For instance, when attempting to divide 263 by 6, we obtain a remainder of 5, because
263 = 6 ⋅ 43 + 5. The remainder will play a prominent role in various proofs, both in
this chapter and beyond.

12.1 Motivating example
Example 12.1. Consider 3 ∈ 𝑈7. Recall that the order of 3 is the smallest positive
exponent 𝑛 such that 3𝑛 = 1. To find it, we must compute the powers of 3, noting that
the calculation is done using the ℤ7 clock. We have 31 = 3, 32 = 9 = 2, 33 = 27 = 6,
34 = 81 = 4. Rather than computing 35 and reducing the result modulo 7, here’s an
alternate approach. We’ve found 34 = 4. Multiplying both sides by 3 gives 35 = 4⋅3 = 5.
Likewise, to find 36, we multiply both sides of 35 = 5 by 3 to get 36 = 5 ⋅ 3 = 1. We’ve
finally found 36 = 1, so that the order of 3 is 6. We may denote this by |3| = 6 or
ord(3) = 6.

Example 12.2. For 2 ∈ 𝑈7, we have 21 = 2, 22 = 4, 23 = 1, 24 = 2, 25 = 4, 26 = 1, . . .
on the ℤ7 clock. Thus, ord(2) = 3. Although 26 = 1, 6 is not the smallest positive
exponent for which 2𝑛 = 1. So, ord(2) ≠ 6.

Definition 12.3 (Order). Let 𝑔 be an element of a group. The order of 𝑔 is the smallest
positive exponent 𝑛 such that 𝑔𝑛 = 𝜀. We often write |𝑔| = 𝑛 or ord(𝑔) = 𝑛.

Example 12.4. In any group, we have 𝜀1 = 𝜀. Thus, the order of 𝜀 is 1. Moreover, if 𝑔
is an element of a group with ord(𝑔) = 1, then 𝑔1 = 𝜀 or simply 𝑔 = 𝜀. Thus, 𝜀 is the
only element of any group with order 1.

115
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Example 12.5. Consider 13 ∈ 𝑈15. To compute the order of 13, we must compute the
powers of 13. For easier calculation, we observe that−2 = 13 inℤ15. Thus, we compute
the powers of −2 instead. We have (−2)1 = −2 = 13, (−2)2 = 4, (−2)3 = −8 = 7,
(−2)4 = 16 = 1. Hence, ord(13) = 4.

Example 12.6. Let 𝑔 be an element of a group with ord(𝑔) = 18. Now let ℎ = 𝑔3. We
claim that ord(ℎ) = 6. To verify this, we must show that ℎ6 = 𝜀 and that 𝑛 = 6 is the
smallest positive exponent such that ℎ𝑛 = 𝜀. First, note that ℎ6 = (𝑔3)6 = 𝑔18. We have
𝑔18 = 𝜀, since 18 is the order of 𝑔. Therefore, ℎ6 = 𝜀.

Next, can there be a positive exponent 𝑛 < 6 such that ℎ𝑛 = 𝜀 ? Let’s try 𝑛 = 4, for
instance. Then ℎ𝑛 = (𝑔3)4 = 𝑔12. But 𝑔12 ≠ 𝜀, since ord(𝑔) = 18; i.e., 𝑚 = 18 is the
smallest positive exponent such that 𝑔𝑚 = 𝜀. We can similarly argue that ℎ𝑛 ≠ 𝜀 when
𝑛 = 1, 2, 3, 4, or 5. Hence, ord(ℎ) = 6, as desired.

Example 12.6 motivates the following theorem and proof.

Theorem 12.7. Suppose 𝑔 is a group element with ord(𝑔) = 𝑛, and let 𝑑 be a positive
integer such that 𝑑 ∣ 𝑛. Then ord(𝑔𝑑) = 𝑛

𝑑 .

Remark. In the theorem statement above, the condition 𝑑 ∣ 𝑛 implies that 𝑛
𝑑 is a

(positive) integer.

Proof. Since 𝑑 ∣ 𝑛, we have 𝑛 = 𝑑𝑘 for some integer 𝑘. Moreover, 𝑘 is positive, since
𝑛 and 𝑑 are positive. We have 𝑛

𝑑 = 𝑘, so we must show that ord(𝑔𝑑) = 𝑘. First, note
that (𝑔𝑑)𝑘 = 𝑔𝑑𝑘 = 𝑔𝑛, as 𝑛 = 𝑑𝑘. We have 𝑔𝑛 = 𝜀, since 𝑛 is the order of 𝑔. Therefore,
(𝑔𝑑)𝑘 = 𝜀.

Next, we will show that 𝑘 is the smallest positive exponent such that (𝑔𝑑)𝑘 = 𝜀. For
contradiction, assume there is a smaller positive exponent𝑚 < 𝑘 such that (𝑔𝑑)𝑚 = 𝜀.
This equation can be written as 𝑔𝑑𝑚 = 𝜀. As 0 < 𝑚 < 𝑘 and 𝑑 is positive, we have
0 < 𝑑𝑚 < 𝑑𝑘. Substituting 𝑛 = 𝑑𝑘 implies 0 < 𝑑𝑚 < 𝑛. But then 𝑔𝑑𝑚 = 𝜀 contradicts
the fact that ord(𝑔) = 𝑛 is the smallest positive exponent such that 𝑔𝑛 = 𝜀.

Therefore, ord(𝑔𝑑) = 𝑛
𝑑 , as desired. ■

Proof know-how. Let 𝑔 be a group element. To prove ord(𝑔) = 𝑛, we must show not
only that 𝑔𝑛 = 𝜀, but also that 𝑛 is the smallest such exponent. The latter can be shown
using proof by contradiction; i.e., suppose for contradiction that there exists a smaller
positive exponent𝑚 < 𝑛 such that 𝑔𝑚 = 𝜀.

Conversely, if we’re given that ord(𝑔) = 𝑛, then we may assume not only 𝑔𝑛 = 𝜀,
but also that there does not exist a positive exponent 𝑚 < 𝑛 such that 𝑔𝑚 = 𝜀, or
equivalently that 𝑔1, 𝑔2, 𝑔3, . . . , 𝑔𝑛−1 ≠ 𝜀.

12.2 When does 𝑔𝑘 = 𝜀 ?
Example 12.8. Consider 3 ∈ 𝑈7. We saw in Example 12.1 that ord(3) = 6 so that
36 = 1modulo 7. To find 348, we note that 6 ∣ 48 where 48 = 6 ⋅ 8. Then, 348 = 36⋅8 =
(36)8 = 18 = 1.

The above example motivates the following theorem.
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Theorem 12.9. Let 𝑔 be an element of a group with ord(𝑔) = 𝑛. If 𝑛 ∣ 𝑘, then 𝑔𝑘 = 𝜀.

Proof. Assume 𝑛 ∣ 𝑘, so that 𝑘 = 𝑛 ⋅ 𝑞 for some integer 𝑞. Since ord(𝑔) = 𝑛, we have
𝑔𝑛 = 𝜀. Thus, 𝑔𝑘 = 𝑔𝑛⋅𝑞 = (𝑔𝑛)𝑞 = 𝜀𝑞 = 𝜀, as desired. ■

Example 12.10. Next, we will compute 3263 where 3 ∈ 𝑈7. This time, we note that
6 ∤ 263; i.e., 6 is not a divisor of 263. When trying to divide 263 by 6, we get a remainder
of 5: 263 = 6 ⋅ 43+ 5. Using laws of exponents, we obtain 3263 = 36⋅43+5 = (36)43 ⋅ 35 =
143 ⋅ 35 = 35 = 5. In particular, 3263 ≠ 1.

Example 12.11. Here’s a (slight) generalization of Example 12.10 above. Let 𝑔 be an
element of a group with ord(𝑔) = 6. Recall that 6 is not a divisor of 263. Specifically,
we have 263 = 6 ⋅ 43 + 5, i.e, a remainder of 5. Thus, 𝑔263 = 𝑔6⋅43+5 = (𝑔6)43 ⋅ 𝑔5 =
𝜀43 ⋅𝑔5 = 𝑔5. Thus, 𝑔263 = 𝑔5. Since ord(𝑔) = 6, there does not exist a positive exponent
𝑚 < 6 such that 𝑔𝑚 = 𝜀. Since 5 < 6, this implies that 𝑔5 ≠ 𝜀, and therefore 𝑔263 ≠ 𝜀.

Before proceeding, let’s dig deeper into the notion of a remainder. When dividing
263 by 6, we get a remainder of 5, because 263 = 6 ⋅ 43 + 5. It’s also true that 263 =
6 ⋅ 42 + 11 and 263 = 6 ⋅ 44 + (−1). But we don’t say that the remainder is 11 or −1.
Indeed, the remainder 𝑟must be less than the divisor (i.e., 𝑟 < 6) and also non-negative
(i.e., 𝑟 ≥ 0). Thus, 𝑟 = 5 is the only possible remainder.

Example 12.12. When dividing 264 by 6, we obtain 264 = 6 ⋅ 44 + 0, or more simply
264 = 6 ⋅ 44. The remainder is 0 and thus 6 is a divisor of 264.

Example 12.13. When dividing−220 by 6, we obtain−220 = 6 ⋅ (−37)+2, so that the
remainder is 2. Notice how the remainder is still less than the divisor and non-negative;
i.e., 0 ≤ 2 < 6.

Example 12.14. Let’s compute 3−220 where 3 ∈ 𝑈7. One approach is to use −220 =
6 ⋅ (−37) + 2 from Example 12.13. Thus, 3−220 = 36⋅(−37)+2 = (36)−37 ⋅ 32 = 1−37 ⋅ 32 =
32 = 2. Here, 1−37 can be viewed as (137)−1 = 1−1 = 1, where 1−1 = 1, because the
multiplicative inverse of 1 is 1 in ℤ7 (or in any ℤ𝑚).

Example 12.15. Here’s a different approach to computing 3−220 where 3 ∈ 𝑈7. We
write 3−220 as (3220)−1. Since 220 = 6 ⋅ 36 + 4, we have 3220 = 36⋅36+4 = (36)36 ⋅ 34 =
136 ⋅ 34 = 34 = 4. Thus, 3−220 = (3220)−1 = 4−1 = 2. Here, 4−1 = 2 (i.e., the
multiplicative inverse of 4 is 2 in ℤ7), because 4 ⋅ 2 = 1 in ℤ7.

The fact thatwe can always find the remainder that’s “just right”may be something
that you’ve taken for granted. It’s a theorem from number theory, which we’ll assume
(without proof) in this textbook.

Theorem 12.16 (Division algorithm in ℤ). Let 𝑎 and 𝑏 be integers, with 𝑏 > 0. Then
there exist 𝑞, 𝑟 ∈ ℤ such that 𝑎 = 𝑏 ⋅ 𝑞 + 𝑟 with 0 ≤ 𝑟 < 𝑏.

We are now ready to fully generalize Examples 12.10 and 12.11. In the statement
of the theorem below, note that 𝑛 ∤ 𝑘 is a shorthand for “𝑛 is not a divisor of 𝑘.”

Theorem 12.17. Let 𝑔 be an element of a group with ord(𝑔) = 𝑛. If 𝑛 ∤ 𝑘, then 𝑔𝑘 ≠ 𝜀.
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Proof. Assume 𝑛 ∤ 𝑘. Then 𝑘 = 𝑛 ⋅ 𝑞 + 𝑟 for some 𝑞, 𝑟 ∈ ℤ with 0 < 𝑟 < 𝑛 (i.e., 𝑟 is a
non-zero remainder). We have 𝑔𝑘 = 𝑔𝑛⋅𝑞+𝑟 = (𝑔𝑛)𝑞 ⋅ 𝑔𝑟 = 𝜀𝑞 ⋅ 𝑔𝑟 = 𝑔𝑟, so that 𝑔𝑘 = 𝑔𝑟.
Since 𝑟 is positive and less than 𝑛 = ord(𝑔), we know that 𝑔𝑟 ≠ 𝜀. Thus 𝑔𝑘 ≠ 𝜀, as
desired. ■

Another way to prove Theorem 12.17 is to prove its contrapositive. The proof will
look slightly different, which we present below.

Proof. Wewill prove the contrapositive, namely: If 𝑔𝑘 = 𝜀, then 𝑛 ∣ 𝑘. Assume 𝑔𝑘 = 𝜀.
By the division algorithm, we can write 𝑘 = 𝑛 ⋅ 𝑞 + 𝑟 for some 𝑞, 𝑟 ∈ ℤ with 0 ≤ 𝑟 < 𝑛.
Wewill show that 𝑟 = 0, so that 𝑘 = 𝑛⋅𝑞. Solving for 𝑟 in 𝑘 = 𝑛⋅𝑞+𝑟, we get 𝑟 = 𝑘−𝑛⋅𝑞.
And since ord(𝑔) = 𝑛, we have 𝑔𝑛 = 𝜀. Thus,

𝑔𝑟 = 𝑔𝑘−𝑛⋅𝑞 = 𝑔𝑘 ⋅ (𝑔𝑛)−𝑞 = 𝜀 ⋅ 𝜀−𝑞 = 𝜀.
Therefore, 𝑔𝑟 = 𝜀. But 𝑟 < 𝑛 and 𝑛 is the smallest positive integer such that 𝑔𝑛 = 𝜀.
Hence, 𝑟 cannot be positive. But 𝑟 ≥ 0, so it follows that 𝑟 = 0. Thus 𝑘 = 𝑛 ⋅ 𝑞, so that
𝑛 ∣ 𝑘 as desired. ■

The second proof of Theorem 12.17 highlights a couple of useful proof techniques:

Proof know-how. To prove that 𝑛 ∣ 𝑘, try to divide 𝑘 by 𝑛 and show that the remainder
is 0. More precisely, we use the division algorithm to write 𝑘 = 𝑛 ⋅ 𝑞 + 𝑟 for some 𝑞,
𝑟 ∈ ℤ with 0 ≤ 𝑟 < 𝑛. Then show that 𝑟 = 0, so that we get 𝑘 = 𝑛 ⋅ 𝑞. In the proof,
we showed that 𝑔𝑟 = 𝜀 where 𝑟 is less than 𝑛 = ord(𝑔). But 𝑛 is the smallest positive
exponent such that 𝑔𝑛 = 𝜀, and thus 𝑟 cannot be positive. This led to the conclusion
that 𝑟 = 0 (since 𝑟 ≥ 0).

Combining Theorem 12.9 and the contrapositive of Theorem 12.17, we obtain the
following “if and only if” theorem. In other words, only ord(𝑔) or its multiples satisfy
𝑔𝑘 = 𝜀.

Theorem 12.18. Let 𝑔 be an element of a group with ord(𝑔) = 𝑛. Then 𝑛 ∣ 𝑘 if and only
if 𝑔𝑘 = 𝜀.

12.3 Conjugates
In this section, we will examine orders of elements in the matrix group 𝐺(ℤ10). Also
embedded in these order calculations is the notion of a conjugate of an element, a con-
cept which we will revisit when studying normal subgroups in Chapter 24.

Example 12.19. Let 𝛼 ∈ 𝐺(ℤ10) where 𝛼 = [ 2 1
5 4 ]. We have

𝛼 = [ 2 1
5 4 ] , 𝛼2 = [ 9 6

0 1 ] , 𝛼3 = [ 8 3
5 4 ] , 𝛼4 = [ 1 0

0 1 ] ,

so that ord(𝛼) = 4. Here, we employed the technique from Example 12.1 when com-
puting the powers of 𝛼. For instance, after finding 𝛼2 = 𝛼 ⋅𝛼, we found 𝛼3 by multiply-
ing 𝛼2 by 𝛼.
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Example 12.20. Let 𝛼 = [ 2 1
5 4 ] ∈ 𝐺(ℤ10) as in Example 12.19 above. Also let 𝛾 =

[ 3 5
1 2 ] ∈ 𝐺(ℤ10) and note that 𝛾−1 = [ 2 5

9 3 ]. Define a new matrix in 𝐺(ℤ10) by 𝛽 =
𝛾 ⋅ 𝛼 ⋅ 𝛾−1; i.e.,

𝛽 = [ 3 5
1 2 ] ⋅ [ 2 1

5 4 ] ⋅ [ 2 5
9 3 ] = [ 9 4

5 7 ] .

Now, let’s compute the order of 𝛽. We have

𝛽 = [ 9 4
5 7 ] , 𝛽2 = [ 1 4

0 9 ] , 𝛽3 = [ 9 2
5 3 ] , 𝛽4 = [ 1 0

0 1 ] ,

so that ord(𝛽) = 4, which is the same as ord(𝛼).

In Example 12.20, we defined 𝛽 = 𝛾 ⋅ 𝛼 ⋅ 𝛾−1. We call 𝛽 a conjugate of 𝛼. Here is a
general definition.

Definition 12.21 (Conjugate element). Let 𝑎 and 𝑏 be elements of a group 𝐺. We say
that 𝑏 is a conjugate of 𝑎 if 𝑏 = 𝑔𝑎𝑔−1 for some 𝑔 ∈ 𝐺.

Remark. In the above definition, we have 𝑏 = 𝑔𝑎𝑔−1 for some 𝑔 ∈ 𝐺. Left-multiplying
by 𝑔−1 and right-multiplying by 𝑔 on both sides of the equation yield 𝑔−1𝑏𝑔 = 𝑎. Letting
ℎ = 𝑔−1 ∈ 𝐺, we have ℎ−1 = (𝑔−1)−1 = 𝑔. Thus, we can rewrite 𝑔−1𝑏𝑔 = 𝑎 as
𝑎 = ℎ𝑏ℎ−1. Hence, if 𝑏 is a conjugate of 𝑎, then 𝑎 is a conjugate of 𝑏. Therefore, we
can unambiguously say that 𝑎 and 𝑏 are conjugates of each other.

Returning to Example 12.20, here is another way to compute 𝛽4, where 𝛽 = 𝛾 ⋅ 𝛼 ⋅
𝛾−1. Notice how the regrouping cancels all the 𝛾 and 𝛾−1 in the interior of the product,
leaving us with just 𝛾 ⋅ 𝛼4 ⋅ 𝛾−1:

𝛽4 = (𝛾 ⋅ 𝛼 ⋅ 𝛾−1)4

= (𝛾 ⋅ 𝛼 ⋅ 𝛾−1) ⋅ (𝛾 ⋅ 𝛼 ⋅ 𝛾−1) ⋅ (𝛾 ⋅ 𝛼 ⋅ 𝛾−1) ⋅ (𝛾 ⋅ 𝛼 ⋅ 𝛾−1)
= 𝛾 ⋅ 𝛼 ⋅ (𝛾−1 ⋅ 𝛾) ⋅ 𝛼 ⋅ (𝛾−1 ⋅ 𝛾) ⋅ 𝛼 ⋅ (𝛾−1 ⋅ 𝛾) ⋅ 𝛼 ⋅ 𝛾−1

= 𝛾 ⋅ 𝛼 ⋅ (𝜀) ⋅ 𝛼 ⋅ (𝜀) ⋅ 𝛼 ⋅ (𝜀) ⋅ 𝛼 ⋅ 𝛾−1

= 𝛾 ⋅ 𝛼4 ⋅ 𝛾−1

You’ll be asked to prove the following generalization in an exercise at the end of the
chapter. Note that the exponent 𝑛 can be either positive or negative (or zero).

Theorem 12.22. Let 𝑎 and 𝑏 be conjugate elements in a group 𝐺, where 𝑏 = 𝑔𝑎𝑔−1 for
some 𝑔 ∈ 𝐺. Then 𝑏𝑛 = 𝑔𝑎𝑛𝑔−1 for any integer 𝑛.

In Example 12.20, the conjugate elements 𝛼 and 𝛽 had the same order. In fact, this
is always true.

Theorem 12.23. Let 𝑎 and 𝑏 be conjugate elements in a group 𝐺, where 𝑏 = 𝑔𝑎𝑔−1 for
some 𝑔 ∈ 𝐺. Then ord(𝑎) = ord(𝑏).
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Proof. Let 𝑚 = ord(𝑎) and 𝑛 = ord(𝑏). We must show that 𝑚 = 𝑛. Since 𝑚 is the
order of𝑎, wehave𝑎𝑚 = 𝜀. ThenTheorem12.22 implies 𝑏𝑚 = (𝑔𝑎𝑔−1)𝑚 = 𝑔⋅𝑎𝑚⋅𝑔−1 =
𝑔 ⋅ 𝜀 ⋅ 𝑔−1 = 𝜀. Therefore 𝑏𝑚 = 𝜀. And since 𝑛 = ord(𝑏), we conclude from Theorem
12.18 that 𝑛 ∣ 𝑚.

Next, let ℎ = 𝑔−1 so that 𝑎 = ℎ𝑏ℎ−1 as shown in the remark after Definition 12.21.
Since 𝑛 is the order of 𝑏, we have 𝑏𝑛 = 𝜀. Thus, we obtain 𝑎𝑛 = (ℎ𝑏ℎ−1)𝑛 = ℎ⋅𝑏𝑛 ⋅ℎ−1 =
ℎ ⋅ 𝜀 ⋅ ℎ−1 = 𝜀, so that 𝑎𝑛 = 𝜀. And since𝑚 = ord(𝑎), we conclude that𝑚 ∣ 𝑛.

Hence, 𝑛 ∣ 𝑚 and𝑚 ∣ 𝑛, where𝑚 and 𝑛 are positive integers (since they’re orders).
Thus,𝑚 = 𝑛. ■

Proof know-how. In the above proof, we let𝑚 = ord(𝑎) and 𝑛 = ord(𝑏). This means
𝑎𝑚 = 𝜀 and 𝑏𝑛 = 𝜀. But the key to the proof is to swap the exponents and show that
𝑎𝑛 = 𝜀 and 𝑏𝑚 = 𝜀. Now, 𝑎𝑛 = 𝜀 allows us to conclude that𝑚 = ord(𝑎) is a divisor of 𝑛.
Similarly, 𝑏𝑚 = 𝜀 implies that 𝑛 = ord(𝑏) is a divisor of𝑚. This “swap the exponents”
technique can be useful when proving that the orders of two elements are equal.

12.4 Order in an additive group
Let 𝑔 be an element of a group. We defined the order of 𝑔 as the smallest positive
exponent 𝑛 such that 𝑔𝑛 = 𝜀. Note that

𝑔𝑛 = 𝑔 ⋅ 𝑔 ⋅ 𝑔 ⋅ ⋯ ⋅ 𝑔⏟⎵⎵⎵⏟⎵⎵⎵⏟
𝑛 terms

entails multiplying 𝑔 by itself 𝑛 times. But what if we have a group whose operation is
addition?

Example 12.24. Consider the additive group ℤ8. Let’s find the order of 2 ∈ ℤ8. Since
the operation is addition, we seek the smallest positive number of times we add 2 to
itself to get the additive identity 0. We have 2+2+2+2 = 0, so that ord(2) = 4. Below,
we compute the order of each element in ℤ8:
• ord(0) = 1, because 0 = 0.
• ord(1) = 8, because 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 0.
• ord(2) = 4, because 2 + 2 + 2 + 2 = 0.
• ord(3) = 8, because 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 = 0.
• ord(4) = 2, because 4 + 4 = 0.
• ord(5) = 8, because 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 = 0.
• ord(6) = 4, because 6 + 6 + 6 + 6 = 0.
• ord(7) = 8, because 7 + 7 + 7 + 7 + 7 + 7 + 7 + 7 = 0.

Consistent with our past conjectures (see, for example, Chapter 4, Exercise #11), for
each 𝑔 ∈ ℤ8, ord(𝑔) is a divisor of 8, where 8 is the number of elements in ℤ8.

In the computation of ord(2) where 2 ∈ ℤ8, we found that 2 + 2 + 2 + 2 = 0 and
thus ord(2) = 4. We can rewrite 2 + 2 + 2 + 2 as 4 ⋅ 2, which motivates the following
definition.
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Definition 12.25 (Order in an additive group). Let 𝑔 be an element of a group whose
operation is addition. The order of 𝑔 is the smallest positive integer 𝑛 such that

𝑛 ⋅ 𝑔 = 𝑔 + 𝑔 + 𝑔 +⋯+ 𝑔⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟
𝑛 terms

= 0.

Example 12.26. Consider 14 ∈ ℤ16. To compute the order of 14, wemust compute the
sums of 14. For easier calculation, we observe that −2 = 14 in ℤ16. Thus, we compute
the sums of −2 instead. We have

8 ⋅ (−2) = (−2) + (−2) + (−2) +⋯+ (−2)⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟
8 terms

= 0,

where 8 is the smallest positive integer with this property. Thus, ord(14) = 8. How is
this related to the fact that ord(2) = 8 ? You’ll find out in an exercise at the end of the
chapter!

12.5 Elements with infinite order
Let 𝑔 be an element of a group. If there is no positive integer 𝑛 such that 𝑔𝑛 = 𝜀 (in a
multiplicative group) or 𝑛 ⋅ 𝑔 = 0 (in an additive group), then we say that 𝑔 has infinite
order. Below are some examples.

Example 12.27. InChapter 8, we saw thatℝ∗ = {𝑎 ∈ ℝ | 𝑎 has a multiplicative inverse}
is a group under multiplication and contains all non-zero elements of ℝ. (Note that ℝ
denotes the set of all real numbers.) Consider 3 ∈ ℝ∗. Then there is no positive integer
𝑛 such that 3𝑛 = 1. Thus, ord(3) is infinite.

Example 12.28. Consider 1 ∈ ℤ, where ℤ is a group under addition. Then there is no
positive integer 𝑛 such that 1 + 1 + 1 +⋯+ 1⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟

𝑛 terms
= 0. Thus, ord(1) is infinite.

In Example 12.27, we saw that in the group ℝ∗, the order of 3 is infinite. This
means 31, 32, 33, 34, . . . will never equal 1. Moreover, all of these powers of 3 are
different from each other. They are real numbers after all, so the value of 3𝑛 gets larger
as 𝑛 increases. Therefore, the only way that 3𝑚 = 3𝑛 in ℝ∗ is when the exponents 𝑚
and 𝑛 are equal. (Contrast this to, say, 3 ∈ 𝑈7 where ord(3) = 6. We saw in Example
12.10 that 3263 = 35, even though the exponents 263 and 5 are unequal.) Here is a
generalization.

Theorem 12.29. Let 𝑔 be an element of a group with infinite order. Then 𝑔𝑘 = 𝑔ℓ if and
only if 𝑘 = ℓ.

Proof. We must prove two implications:

• If 𝑔𝑘 = 𝑔ℓ, then 𝑘 = ℓ.

• If 𝑘 = ℓ, then 𝑔𝑘 = 𝑔ℓ.
The second implication is immediate, so the proof will focus on the first implication.

Assume 𝑔𝑘 = 𝑔ℓ where 𝑘, ℓ ∈ ℤ. Suppose for contradiction that 𝑘 ≠ ℓ, so that
𝑘 > ℓ or ℓ > 𝑘. We will proceed with the case 𝑘 > ℓ. (The argument for the case ℓ > 𝑘
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follows similarly.) We right-multiply both sides of 𝑔𝑘 = 𝑔ℓ by 𝑔−ℓ. Then 𝑔𝑘 ⋅ 𝑔−ℓ =
𝑔ℓ ⋅ 𝑔−ℓ, so that 𝑔𝑘−ℓ = 𝑔ℓ−ℓ. But 𝑔ℓ−ℓ = 𝑔0 = 𝜀, so that 𝑔𝑘−ℓ = 𝜀. Since 𝑘 > ℓ, we have
𝑘 − ℓ > 0. Thus, we have found a positive exponent 𝑘 − ℓ such that 𝑔𝑘−ℓ = 𝜀. This
contradicts the fact that ord(𝑔) is infinite. Therefore, we must have 𝑘 = ℓ. ■

Exercises
1. Find the order of each element in the multiplicative group 𝑈20.

2. In 𝑈26, find ord(25) and ord(23), by writing 25 and 23 as negatives in ℤ26. (See
Example 12.5.)

3. Find the order of each element in the additive group ℤ20.

4. In ℤ26, find ord(25) and ord(24), by writing 25 and 24 as negatives in ℤ26. (See
Example 12.26.)

5. Let 𝑔 be a non-identity group element. Prove that 𝑔 is a self-inverse if and only if
ord(𝑔) = 2.

6. Let 𝑔 be an element of a group with ord(𝑔) = 18. Find each of the following:

(a) ord(𝑔2). (b) ord(𝑔6). (c) ord(𝑔4). (d) ord(𝑔5).

7. Consider 2 ∈ 𝑈23. It turns out that 222 = 1, but ord(2) ≠ 22. Find the order of 2 in
𝑈23.

8. (a) Consider 3 ∈ 𝑈11. Verify that ord(3) = 5.
(b) Find integers 𝑞 and 𝑟 where 312 = 5 ⋅ 𝑞 + 𝑟 with 0 ≤ 𝑟 < 5.
(c) Find integers 𝑞 and 𝑟 where −312 = 5 ⋅ 𝑞 + 𝑟 with 0 ≤ 𝑟 < 5.
(d) Find the value of 3−312 by writing it as (3312)−1 and using the result from part

(b).
(e) Find the value of 3−312 again, this time by using the result from part (c).

9. Let 𝑔 be an element of a group with ord(𝑔) = 5. Find the smallest non-negative
integer 𝑘 such that 𝑔−312 = 𝑔𝑘. Explain your reasoning.

10. Let 𝑔 be an element of a group with ord(𝑔) = 6. (Or just use 𝑔 = 3 in 𝑈7.)

(a) Are 𝑔20 and 𝑔32 equal? Why or why not?
(b) What about 𝑔123,405 and 𝑔123,465? How do you know?
(c) What about 𝑔800 and 𝑔862? How do you know?
(d) What about 𝑔−241 and 𝑔359? How do you know?
(e) What’s going on here? Can you generalize and justify?

(This exercise is referenced in Example 13.11.)
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11. In the multiplicative group 𝑈7:

(a) Verify that 2 and 4 are multiplicative inverses of each other. Compute ord(2)
and ord(4).

(b) Verify that 3 and 5 are multiplicative inverses of each other. Compute ord(3)
and ord(5).

(c) What conjecture do you have?

12. In the multiplicative group 𝑈13:

(a) Find all inverse pairs 𝑔 and 𝑔−1 such that 𝑔 ≠ 𝑔−1 (i.e., 𝑔 is not a self-inverse).
(b) For each pair 𝑔 and 𝑔−1, compute ord(𝑔) and ord(𝑔−1).
(c) What conjecture do you have?

13. Let 𝑔 be a group element with finite order. Prove each of these statements:

(a) ord(𝑔−1) is finite.
(b) ord(𝑔−1) = ord(𝑔).

14. Prove: Let 𝑔 be a group element. If ord(𝑔) is infinite, then ord(𝑔−1) is infinite.

15. Let 𝑎, 𝑏 be elements of a commutative group.

(a) Suppose ord(𝑎) = 3 and ord(𝑏) = 5. Explain why (𝑎𝑏)15 = 𝜀.
(b) Suppose ord(𝑎) = 4 and ord(𝑏) = 9. Explain why (𝑎𝑏)36 = 𝜀.
(c) Suppose ord(𝑎) = 4 and ord(𝑏) = 6. Explain why (𝑎𝑏)24 = 𝜀.
(d) Elizabeth says, “In part (c), I showed (𝑎𝑏)24 = 𝜀. That means ord(𝑎𝑏) = 24.”

Do you agree or disagree with her? Explain your reasoning.

16. Let 𝑎, 𝑏 be elements of a commutative group, each with finite order. Using a coun-
terexample, show that the following statement is false: ord(𝑎𝑏) = ord(𝑎) ⋅ ord(𝑏).

17. Prove: Let 𝑎, 𝑏 be elements of a commutative group. If ord(𝑎) and ord(𝑏) are
finite, then ord(𝑎𝑏) is finite.

18. Prove: Let 𝑎, 𝑏 be elements of a commutative group with 𝑚 = ord(𝑎) and 𝑛 =
ord(𝑏). If gcd(𝑚, 𝑛) = 1, then ord(𝑎𝑏) = 𝑚𝑛.

19. (a) Find all elements 𝑛 ∈ ℤ whose order is finite.
(b) Find all elements 𝑥 ∈ ℝ∗ whose order is finite.

20. Prove: Let 𝑔 be an element of a group with infinite order. If 𝑔𝑛 = 𝜀 where 𝑛 ∈ ℤ,
then 𝑛 = 0.

21. Let 𝑎 and 𝑏 be conjugate elements in a group 𝐺, where 𝑏 = 𝑔𝑎𝑔−1 for some 𝑔 ∈ 𝐺.
Verify that 𝑏−4 = 𝑔𝑎−4𝑔−1 in the following two ways:

(a) By writing 𝑏−4 = (𝑔𝑎𝑔−1)−4 as ((𝑔𝑎𝑔−1)4)−1.
(b) By writing 𝑏−4 = (𝑔𝑎𝑔−1)−4 as ((𝑔𝑎𝑔−1)−1)4.

22. Prove Theorem 12.22. (Note: Be sure to consider the cases 𝑛 > 0, 𝑛 = 0, and
𝑛 < 0.)
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23. Let 𝐺 be a group and let 𝐻 be a subgroup of 𝐺. Fix an element 𝑔 ∈ 𝐺, and define
the set

𝑔𝐻𝑔−1 = {𝑔ℎ𝑔−1 | ℎ ∈ 𝐻}.
Prove that 𝑔𝐻𝑔−1 is a subgroup of 𝐺. (Note: The subgroup 𝑔𝐻𝑔−1 is called a con-
jugate of 𝐻.)
(This exercise is referenced in Chapter 14, Exercise #21 and in Section 24.4.)

24. Let 𝐺 be a group and suppose 𝑧 ∈ 𝐺 is the only element of order 2. Prove that
𝑧 ∈ 𝑍(𝐺).

25. Consider the additive groups ℤ12 and ℤ20 and their direct product ℤ12 × ℤ20.
(a) Find the orders of 3 ∈ ℤ12, 2 ∈ ℤ20, and (3, 2) ∈ ℤ12 × ℤ20.
(b) Find the orders of 9 ∈ ℤ12, 4 ∈ ℤ20, and (9, 4) ∈ ℤ12 × ℤ20.
(c) Find the orders of 1 ∈ ℤ12, 1 ∈ ℤ20, and (1, 1) ∈ ℤ12 × ℤ20.
(d) Find the orders of 2 ∈ ℤ12, 15 ∈ ℤ20, and (2, 15) ∈ ℤ12 × ℤ20.
(e) What conjecture do you have?

26. Prove: Let 𝐺 and𝐻 be groups and consider the direct product 𝐺 ×𝐻. Let (𝑔, ℎ) ∈
𝐺 × 𝐻 where ord(𝑔) = 𝑚 and ord(ℎ) = 𝑛. Then the order of (𝑔, ℎ) is the least
common multiple of𝑚 and 𝑛.



13
Cyclic Groups, Part I

Cyclic groups are an important type of groups that is generated by a single element. Re-
call from Chapter 8, Exercise #6 that 1 is a generator of the additive group ℤ12, because
its sums give all elements in the group, as shown below:

1 = 1, 1 + 1 = 2, 1 + 1 + 1 = 3, 1 + 1 + 1 + 1 = 4, . . . , 1 + 1 + ⋯ + 1⏟⎵⎵⎵⏟⎵⎵⎵⏟
12 terms

= 0.

Thus, we say that ℤ12 is cyclic, because it has a generator.
In the next two chapters, we’ll explore the various properties of cyclic groups. In

this chapter, for instance, we’ll find all the generators ofℤ12, andmore generally ofℤ𝑚.
We’ll also learn that the multiplicative group𝑈13 is not only cyclic but behaves just like
ℤ12. Understanding the relationship between these two groups will prepare us for our
excursion into isomorphism in the next unit.

13.1 Generators of the additive group ℤ12
Example 13.1. We will find all the generators of ℤ12 = {0, 1, 2, 3, . . . , 11}.
• 0 is not a generator of ℤ12, since the sums of 0’s only yield 0, i.e., 0, 0+0, 0+0+0,
and so on.

• We’ve seen that 1 is a generator of ℤ12.

• 2 is not a generator of ℤ12, since the sums of 2’s only yield 0, 2, 4, 6, 8, 10.

• 3 is not a generator of ℤ12, since the sums of 3’s only yield 0, 3, 6, 9.

• 4 is not a generator of ℤ12, since the sums of 4’s only yield 0, 4, 8.

• 5 is a generator of ℤ12. Here are the first few sums of 5’s in ℤ12:
5 = 5, 5 + 5 = 10, 5 + 5 + 5 = 3, 5 + 5 + 5 + 5 = 8, . . . .

You’ll complete this list in an exercise at the end of the chapter to show that every
element of ℤ12 can be expressed as a sum of 5’s.

125
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• 6 is not a generator, since the sums of 6’s only yield 0, 6.

• 7 is a generator of ℤ12. We can verify this by computing the sums of 7’s, but here’s
another approach. Observe that 7 = −5 in ℤ12. Thus, if 5 generates all elements
of ℤ12, then 7 would generate the negatives of all elements of ℤ12, which is equal to
the set ℤ12 itself.

• 8 is not a generator of ℤ12, since the sums of 8’s only yield 0, 8, 4.

• 9 is not a generator of ℤ12, since the sums of 9’s only yield 0, 9, 6, 3.

• 10 is not a generator of ℤ12, since the sums of 10’s only yield 0, 10, 8, 6, 4, 2.

• 11 is a generator of ℤ12, because 11 = −1 where 1 is a generator.

Therefore, the generators ofℤ12 are 1, 5, 7, and 11. Notice how these are precisely the el-
ements ofℤ12 that are relatively prime to 12; i.e., gcd(1, 12) = gcd(5, 12) = gcd(7, 12) =
gcd(11, 12) = 1.

Example 13.2. Next, consider the additive group ℤ15 = {0, 1, 2, 3, . . . , 14}. Based on
our observation from Example 13.1, we suspect that the generators of ℤ15 are 1, 2, 4, 7,
8, 11, 13, 14. Again, these are the elements of ℤ15 that are relatively prime to 15.

For instance, let’s verify that 7 is indeed a generator of ℤ15. If so, then we should
be able to obtain any element of ℤ15, say 3, as a sum of 7’s:

7 + 7 + ⋯ + 7⏟⎵⎵⎵⏟⎵⎵⎵⏟
𝑘 terms

= 3,

so that 𝑘 ⋅ 7 = 3 in ℤ15. We can solve for 𝑘 by multiplying both sides of the equation by
7−1, which is 13 since 7 ⋅ 13 = 1 in ℤ15. This gives 𝑘 = 3 ⋅ 13 = 9, so that

7 + 7 + ⋯ + 7⏟⎵⎵⎵⏟⎵⎵⎵⏟
9 terms

= 3.

Let’s also verify that 6 is not a generator of ℤ15. Suppose for contradiction that it
is. Then we should be able to obtain 1 ∈ ℤ15 as a sum of 6’s:

6 + 6 + ⋯ + 6⏟⎵⎵⎵⏟⎵⎵⎵⏟
𝑘 terms

= 1,

so that 𝑘 ⋅ 6 = 1 in ℤ15. But this implies that 6 has a multiplicative inverse, namely 𝑘,
and hence 6 ∈ 𝑈15. Then Theorem 4.19 would imply that gcd(6, 15) = 1, which is a
contradiction since gcd(6, 15) = 3.

Example 13.2 above motivates the following theorem and proof.

Theorem 13.3. Let 𝑎 ∈ ℤ𝑚. Then 𝑎 is a generator of ℤ𝑚 if and only if gcd(𝑎,𝑚) = 1.

Proof. We must prove two implications:

• If 𝑎 is a generator of ℤ𝑚, then gcd(𝑎,𝑚) = 1.

• If gcd(𝑎,𝑚) = 1, then 𝑎 is a generator of ℤ𝑚.
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We will prove the second implication. The proof of the first implication is left for you
as an exercise.

Assume that gcd(𝑎,𝑚) = 1. Wemust show that 𝑎 is a generator ofℤ𝑚. Thus, given
an element 𝑏 ∈ ℤ𝑚, we must be able to write it as a sum of 𝑎’s. Since gcd(𝑎,𝑚) = 1,
Theorem 4.19 implies that 𝑎 ∈ 𝑈𝑚. Hence, 𝑎 has a multiplicative inverse 𝑎−1 such
that 𝑎 ⋅ 𝑎−1 = 1 and 𝑎−1 ⋅ 𝑎 = 1. Let 𝑘 = 𝑏 ⋅ 𝑎−1 (which is an element of ℤ𝑚) so that
multiplying both sides by 𝑎 yields 𝑘 ⋅ 𝑎 = 𝑏 or, equivalently,

𝑎 + 𝑎 + ⋯ + 𝑎⏟⎵⎵⎵⏟⎵⎵⎵⏟
𝑘 terms

= 𝑏.

Therefore, 𝑎 is a generator of ℤ𝑚, as desired. ■

Proofknow-how. Once again, the “working backwards” techniquewas utilizedwhen
preparing this proof. (See, for comparison, the proof of Theorem 10.3.) Here, we
needed an integer 𝑘 such that 𝑘 ⋅ 𝑎 = 𝑏. Thus, we worked backwards and solved this
equation for 𝑘 by multiplying both sides by 𝑎−1, which yields 𝑘 = 𝑏 ⋅ 𝑎−1. This process
of solving for 𝑘 is scratch work and must not be included in the proof itself.

13.2 Generators of the multiplicative group 𝑈13
Example 13.4. Consider the group 𝑈13 = {1, 2, 3, 4, . . . , 12}. Since its operation is
multiplication, a generator of𝑈13 is an element whose products give all the elements in
the group. We claim that 2 is a generator. To verify, we multiply 2 by itself (or compute
powers of 2) and obtain all the elements of 𝑈13:

21 = 2, 22 = 4, 23 = 8, 24 = 3, 25 = 6, 26 = 12
27 = 11, 28 = 9, 29 = 5, 210 = 10, 211 = 7, 212 = 1.

We also claim that 7 is a generator of 𝑈13. We can verify this by computing the powers
of 7, but here’s another approach. Observe that 7 = 2−1, i.e., 7 is the multiplicative
inverse of 2, since 2 ⋅ 7 = 1modulo 13. Thus, if 2 generates all elements of 𝑈13, then 7
would generate the multiplicative inverses of all elements of 𝑈13, which is equal to the
set 𝑈13 itself.

However, 3 is not a generator of 𝑈13. Taking powers of 3, we find
31 = 3, 32 = 9, 33 = 1, 34 = 3, 35 = 9, 36 = 1, . . . ,

so that the powers of 3 only yield 1, 3, 9.

Example 13.5. Consider the multiplicative group 𝑈7 = {1, 2, 3, 4, 5, 6}. We have
31 = 3, 32 = 2, 33 = 6, 34 = 4, 35 = 5, 36 = 1,

so that 3 is a generator of 𝑈7. Note that 5 = 3−1, since 3 ⋅ 5 = 1 modulo 7. Thus, 5 is
also a generator of 𝑈7, which you will verify in an exercise at the end of the chapter.

Example 13.6. Consider the multiplicative group𝑈12 = {1, 5, 7, 11}. Let’s see if it has
a generator.

• Powers of 1 only yield 1.

• Powers of 5 only yield 1 and 5.
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• Powers of 7 only yield 1 and 7.

• Powers of 11 only yield 1 and 11.
Thus, 𝑈12 does not have an element whose products (or powers) give all the elements
in the group. Therefore, 𝑈12 does not have a generator.

Example 13.7. Here is a non-commutative group 𝐷4 = {𝜀, 𝑟90, 𝑟180, 𝑟270, ℎ, 𝑣, 𝑑, 𝑑′}.
• Powers of 𝜀 only yield 𝜀.
• Powers of 𝑟90 only yield 𝜀, 𝑟90, 𝑟180, 𝑟270. The same is true for powers of 𝑟270.
• Powers of 𝑟180 only yield 𝜀, 𝑟180.
• Powers of each reflection only yield 𝜀 and the reflection itself (e.g., powers of ℎ only
yield 𝜀 and ℎ).

Therefore,𝐷4 does not have a generator and thus is not cyclic. In an exercise at the end
of the chapter, you will prove the following: If a group is cyclic, then it is commutative.
The contrapositive of that statement is: If a group is not commutative, then it is not
cyclic. The group 𝐷4 serves as an example of the contrapositive.

13.3 Matching ℤ12 and 𝑈13
In Example 13.4, we found that 2 and 7 are generators of 𝑈13. Are those the only gen-
erators of𝑈13, or are there more generators? To answer this question, we will not com-
pute the powers of each element in 𝑈13. While that’s a valid approach, it can also get
quite tedious! Instead, we will form a correspondence between ℤ12 and 𝑈13. Then we
will apply our knowledge of the additive group ℤ12 to help us better understand the
multiplicative group 𝑈13.

Once again, here are the powers of the generator 2 in 𝑈13:
21 = 2, 22 = 4, 23 = 8, 24 = 3, 25 = 6, 26 = 12,

27 = 11, 28 = 9, 29 = 5, 210 = 10, 211 = 7, 212 = 1.
Now, rather than writing 𝑈13 = {1, 2, 3, 4, . . . , 12}, we write it as follows:

𝑈13 = { 1, 2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7 }
= { 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 210, 211}

where 20 = 212 = 1 is the multiplicative identity. When we express the elements of
𝑈13 as powers of 2 (its generator), we highlight the correspondence between ℤ12 and
𝑈13. For example, 5 ∈ ℤ12 corresponds to 25 ∈ 𝑈13, which we denote as 5 ↔ 25. More
generally, 𝑘 ∈ ℤ12 corresponds to 2𝑘 ∈ 𝑈13, denoted 𝑘 ↔ 2𝑘.

We just saw that the elements of ℤ12 and𝑈13match up via the correspondence 𝑘 ↔
2𝑘. In the example below, we see that this correspondence respects their operations as
well. Thus, in essence, the two groups are essentially the same. (We will formalize this
notion of sameness soon.)

Example 13.8. In the calculations below, note that 212 = 1 in 𝑈13.
• In ℤ12: 3 + 5 = 8.
In 𝑈13: 23 ⋅ 25 = 28.
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• In ℤ12: 9 + 7 = 16 = 12 + 4 = 0 + 4 = 4.
In 𝑈13: 29 ⋅ 27 = 216 = 212 ⋅ 24 = 1 ⋅ 24 = 24.

• In ℤ12: The additive inverse of 4 is 8. In other words, −4 = 8, because 4 + 8 = 0.
In 𝑈13: The multiplicative inverse of 24 is 28. In other words, (24)−1 = 28, because
24 ⋅ 28 = 1.

To generalize, we have 𝑎 + 𝑏 = 𝑐 in ℤ12 if and only if 2𝑎 ⋅ 2𝑏 = 2𝑐 in 𝑈13.

Example 13.9. Let’s return to our earlier question: What are all the generators of
𝑈13? In Example 13.1, we found that the generators of ℤ12 are 1, 5, 7, 11. Using the
correspondence 𝑘 ↔ 2𝑘 between ℤ12 and 𝑈13, the generators of 𝑈13 should be 21 = 2,
25 = 6, 27 = 11, 211 = 7. We’ve already seen that 2 and 7 are generators of 𝑈13. In
an exercise at the end of the chapter, you will verify that 6 is a generator of 𝑈13. Then,
since 11 = 6−1 (as 6 ⋅ 11 = 1modulo 13), we conclude that 11 is a generator of 𝑈13 as
well.

13.4 Taking positive and negative powers of 𝑔
Example 13.10. Consider the element 4 in 𝑈13 = {1, 2, 3, 4, . . . , 12}. The positive
integer powers of 4 are
41 = 4, 42 = 3, 43 = 12, 44 = 9, 45 = 10, 46 = 1, 47 = 4, 48 = 3, 49 = 12, 410 = 9, . . . .
This sequence of positive powers repeats after 46 = 1. For instance, 411 = 46+5 =
46 ⋅ 45 = 1 ⋅45 = 45, and hence 411 = 45. We also have 40 = 1 by definition. To compute
the negative powers of 4, observe that 4 ⋅ 10 = 1 modulo 13 so that 4−1 = 10 (i.e., the
multiplicative inverse of 4 is 10). Thus, we have

4−1 = 10,
4−2 = (4−1)2 = 102 = 9,
4−3 = (4−1)3 = 103 = 12,
4−4 = (4−1)4 = 104 = 3,
4−5 = (4−1)5 = 105 = 4,
4−6 = (4−1)6 = 106 = 1.

⋮
But these have already been accounted for by the positive powers of 4. Therefore, the
distinct integer powers of 4 are 40, 41, 42, 43, 44, 45, or equivalently, 1, 4, 3, 12, 9, 10.

Example 13.11 (Chapter 12, Exercise #10 revisited). Let 𝑔 be an element of a group
with ord(𝑔) = 6, so that 𝑔6 = 𝜀. For instance, we can use 𝑔 = 4 in 𝑈13 from Example
13.10. Then we have the following equalities/inequalities between the powers of 𝑔:
• 𝑔32 = 𝑔20, because 𝑔32 = 𝑔6⋅2+20 = (𝑔6)2 ⋅ 𝑔20 = 𝜀2 ⋅ 𝑔20 = 𝑔20.
• 𝑔862 ≠ 𝑔800, because the difference of the exponents (i.e., 862 − 800 = 62) is not
divisible by 6. More rigorously, suppose for contradiction that 𝑔862 = 𝑔800. Right-
multiplying both sides by 𝑔−800 yields 𝑔862 ⋅ 𝑔−800 = 𝑔800 ⋅ 𝑔−800, so that 𝑔62 = 𝜀.
Then Theorem 12.18 implies 6 ∣ 62, where ord(𝑔) = 6. This is a contradiction, as 6
is not a divisor of 62. Thus, 𝑔862 ≠ 𝑔800.
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• 𝑔359 = 𝑔−241, because the difference of the exponents (i.e., 359 − (−241) = 600)
is divisible by 6. More rigorously, we have 𝑔359 = 𝑔6⋅100−241 = (𝑔6)100 ⋅ 𝑔−241 =
𝜀100 ⋅ 𝑔−241 = 𝑔−241.

The above example suggests the following theorem and proof.

Theorem 13.12. Let 𝑔 be an element of a group with ord(𝑔) = 𝑛. Then 𝑔𝑘 = 𝑔ℓ if and
only if 𝑛 ∣ (𝑘 − ℓ).

Proof. We must prove two implications:
• If 𝑔𝑘 = 𝑔ℓ, then 𝑛 ∣ (𝑘 − ℓ).
• If 𝑛 ∣ (𝑘 − ℓ), then 𝑔𝑘 = 𝑔ℓ.

We will prove the first implication. The proof of the second implication is left for you
as an exercise.

Assume 𝑔𝑘 = 𝑔ℓ. Right-multiplying both sides by 𝑔−ℓ yields 𝑔𝑘 ⋅ 𝑔−ℓ = 𝑔ℓ ⋅ 𝑔−ℓ, so
that 𝑔𝑘−ℓ = 𝜀. Then, Theorem 12.18 implies 𝑛 ∣ (𝑘 − ℓ) as desired. ■

Remark. Recall that 𝑛 ∣ (𝑘 − ℓ) is equivalent to 𝑘 = ℓ in ℤ𝑛. Therefore, Theorem
13.12 above can be restated as follows: Let 𝑔 be an element of a group with ord(𝑔) = 𝑛.
Then 𝑔𝑘 = 𝑔ℓ if and only if 𝑘 = ℓ in ℤ𝑛.

In Example 13.10, we considered the integer powers of 4 ∈ 𝑈13, where ord(4) = 6.
Then Theorem 13.12 concludes: 4𝑘 = 4ℓ if and only if 𝑘 = ℓ in ℤ6. Thus 40, 41, 42, 43,
44, 45 are precisely the distinct integer powers of 4, since the exponents 0, 1, 2, 3, 4, 5
are precisely the distinct elements of ℤ6. The theorem below generalizes this example,
and its proof is left for you as an exercise at the end of the chapter.

Theorem 13.13. Let 𝑔 be an element of a group with ord(𝑔) = 𝑛. Then the distinct
integer powers of 𝑔 are 𝜀, 𝑔1, 𝑔2, 𝑔3, . . . , 𝑔𝑛−1, where 𝜀 = 𝑔0.

We’ve been talking about “the integer powers of 𝑔” throughout this chapter. Here
is a notation and a definition that generalizes the concept.

Definition 13.14. Let 𝑔 be an element of a multiplicative group. We define ⟨𝑔⟩ to be
the set of all integer powers of 𝑔. Thus, ⟨𝑔⟩ = {𝑔𝑘 | 𝑘 ∈ ℤ}, and we call the set ⟨𝑔⟩ the
cyclic subgroup generated by 𝑔.

Remark. As its name suggests, ⟨𝑔⟩ is a subgroup of𝐺, where𝐺 is the group containing
the element 𝑔. You will prove this in an exercise at the end of the chapter.

Example 13.15. Let 4 ∈ 𝑈13 and recall from Example 13.10 that ord(4) = 6. By
definition, ⟨4⟩ = {4𝑘 | 𝑘 ∈ ℤ} is the set of all integer powers of 4; i.e.,

⟨4⟩ = {. . . , 4−3, 4−2, 4−1, 40, 41, 42, 43, . . .}.
Thus, it may seem that the set ⟨4⟩ contains infinitely many elements. But we saw in
Example 13.10 that 40, 41, 42, 43, 44, 45 are precisely the distinct integer powers of 4.
Therefore, we have

⟨4⟩ = {40, 41, 42, 43, 44, 45} = {1, 4, 3, 12, 9, 10}.



13.5. When the group operation is addition 131

Example 13.16. Let 𝑔 be an element of a multiplicative group with ord(𝑔) = 12. By
Theorem 13.13, the distinct integer powers of 𝑔 are 𝜀, 𝑔1, 𝑔2, 𝑔3, . . . , 𝑔11, where 𝜀 = 𝑔0.
Thus ⟨𝑔⟩ = {𝜀, 𝑔1, 𝑔2, 𝑔3, . . . , 𝑔11}. We have the correspondence 𝑘 ↔ 𝑔𝑘 between ℤ12
and ⟨𝑔⟩. Moreover, ⟨𝑔⟩ behaves like ℤ12. For instance,

𝑔9 ⋅ 𝑔7 = 𝑔9+7 = 𝑔16 = 𝑔12+4 = 𝑔12 ⋅ 𝑔4 = 𝜀 ⋅ 𝑔4 = 𝑔4,
so that 𝑔9 ⋅ 𝑔7 = 𝑔4, which is just like 9 + 7 = 4 in ℤ12. This is the same calculation we
did in Example 13.8, with 𝑔 ∈ ⟨𝑔⟩ instead of 2 ∈ 𝑈13, where 𝑈13 = ⟨2⟩.

The following theorem is a generalization of Examples 13.15 and 13.16. Note how
it’s essentially a restatement of Theorem 13.13 using our new notation ⟨𝑔⟩.

Theorem13.17. Let 𝑔 be an element of a groupwith ord(𝑔) = 𝑛. Then ⟨𝑔⟩ = {𝑔𝑘 | 𝑘 ∈ ℤ}
contains 𝑛 distinct elements; namely ⟨𝑔⟩ = {𝜀, 𝑔1, 𝑔2, 𝑔3, . . . , 𝑔𝑛−1}, where 𝜀 = 𝑔0.

Example 13.18. In Example 13.4, we saw that 2 is a generator of 𝑈13, because every
element of 𝑈13 can be expressed as an integer power of 2. Using our new notation, we
have 𝑈13 = ⟨2⟩. Since 6, 7, 11 are also generators of 𝑈13 (see Example 13.9), we have
𝑈13 = ⟨6⟩ = ⟨7⟩ = ⟨11⟩ as well.

Recall that a group is said to be cyclic if it has a generator. Then Example 13.18
above can be generalized to derive the following definition.

Definition 13.19 (Cyclic group). A group 𝐺 is said to be cyclic if there exists 𝑔 ∈ 𝐺
such that 𝐺 = ⟨𝑔⟩. The element 𝑔 is said to be a generator of 𝐺.

13.5 When the group operation is addition
Howcanwe adapt the notation ⟨𝑔⟩ = {𝑔𝑘 | 𝑘 ∈ ℤ}when the group operation is addition?
At the beginning of this chapter, we saw that 1 is a generator of the additive group ℤ12,
because

1 = 1, 1 + 1 = 2, 1 + 1 + 1 = 3, 1 + 1 + 1 + 1 = 4, . . . , 1 + 1 + ⋯ + 1⏟⎵⎵⎵⏟⎵⎵⎵⏟
12 terms

= 0.

But we can also write this more succinctly as
1 ⋅ 1 = 1, 2 ⋅ 1 = 2, 3 ⋅ 1 = 3, 4 ⋅ 1, . . . , 12 ⋅ 1 = 0,

which gives us the definition ⟨1⟩ = {𝑘 ⋅ 1 | 𝑘 ∈ ℤ}. The other generators of ℤ12 are 5, 7,
and 11. Thus, the additive group ℤ12 is cyclic with ℤ12 = ⟨1⟩ = ⟨5⟩ = ⟨7⟩ = ⟨11⟩. Here
is a generalization.

Definition 13.20. Let 𝑔 be an element of an additive group. We define ⟨𝑔⟩ to be the set
of all integer multiples of 𝑔. Thus, ⟨𝑔⟩ = {𝑘 ⋅ 𝑔 | 𝑘 ∈ ℤ}, and we call the set ⟨𝑔⟩ the cyclic
subgroup generated by 𝑔.

Example 13.21. Consider the element 9 ∈ ℤ12. We begin by finding the order of 9 in
ℤ12:

9 = 9, 9 + 9 = 6, 9 + 9 + 9 = 3, 9 + 9 + 9 + 9⏟⎵⎵⎵⏟⎵⎵⎵⏟
4 terms

= 0,



132 Chapter 13. Cyclic Groups, Part I

so that ord(9) = 4. Based on our work with multiplicative groups, we expect the cyclic
subgroup ⟨9⟩ to contain 4 distinct elements; namely, 0 ⋅ 9 = 0, 1 ⋅ 9 = 9, 2 ⋅ 9 = 6,
3 ⋅ 9 = 3. Indeed, we have

⟨9⟩ = {𝑘 ⋅ 9 | 𝑘 ∈ ℤ}
= {. . . , −4 ⋅ 9, −3 ⋅ 9, −2 ⋅ 9, −1 ⋅ 9, 0 ⋅ 9, 1 ⋅ 9, 2 ⋅ 9, 3 ⋅ 9, 4 ⋅ 9, . . .}
= {. . . , 0, 9, 6, 3, 0, 9, 6, 3, 0, . . .}
= {0, 9, 6, 3}.

Remark. By default, we will assume that the group operation is multiplication; and
we’ll employ the definition ⟨𝑔⟩ = {𝑔𝑘 | 𝑘 ∈ ℤ}. If we know that the operation is addition
(when we’re working with ℤ𝑚, for example), then we’ll use ⟨𝑔⟩ = {𝑘 ⋅ 𝑔 | 𝑘 ∈ ℤ}. The
context should make it clear which definition to use.

Exercises
1. Verify that every element of ℤ12 can be expressed as a sum of 5’s. (See Example

13.1.)

2. Recall from Example 13.2 that 8 is a generator of ℤ15.

(a) Find a positive integer 𝑘 such that

8 + 8 + ⋯ + 8⏟⎵⎵⎵⏟⎵⎵⎵⏟
𝑘 terms

= 11.

(b) Repeat part (a), but this time, express 4 as a sum of 8’s in ℤ15.
(c) Repeat part (a), but this time, express 3 as a sum of 8’s in ℤ15.
(d) Repeat part (a), but this time, express 12 as a sum of 8’s in ℤ15.
(e) How are your answers in parts (a) and (b) related? What about your answers

in parts (c) and (d)? Can you explain what’s going on and why?

3. Complete the proof of Theorem 13.3 by proving its first implication.

4. Let 𝐺 be a group and define the set 𝐻 = {𝑔−1 | 𝑔 ∈ 𝐺}. Prove that 𝐻 = 𝐺.
Note: This theorem is used in Example 13.4. Do you see how?

5. (a) Verify that 5 is a generator of 𝑈7. (See Example 13.5.)
(b) Verify that 3 and 5 are the only generators of 𝑈7.

6. Verify that 6 is a generator of 𝑈13. (See Example 13.9.)

7. (a) Find all the generators of the additive group ℤ18.
(b) Verify that 2 is a generator of 𝑈19.
(c) Using the results from parts (a) and (b), find all the generators of 𝑈19.
(This exercise is referenced in Chapter 14, Exercise #6 and Chapter 18, Exercise
#19.)



Exercises 133

8. Let 𝑔 be an element of a group with ord(𝑔) = 18.
(a) How many distinct elements does ⟨𝑔⟩ = {𝑔𝑘 | 𝑘 ∈ ℤ} contain? Explain how

you know.
(b) Find all the generators of ⟨𝑔⟩.

9. Find the elements of 𝑈16 and verify that 𝑈16 does not have a generator.

10. (a) Find the elements of the group 𝑈3 and determine whether or not 𝑈3 is cyclic.
(b) Repeat part (a) with 𝑈5, 𝑈11, 𝑈17, 𝑈19. (Note: We’ve already seen that 𝑈7 and

𝑈13 are cyclic.)
(c) Repeat part (a) with 𝑈6, 𝑈10, 𝑈14, 𝑈22, 𝑈26, 𝑈34, 𝑈38.
(d) What conjectures do you have?

11. Complete the proof of Theorem 13.12 by proving its second implication.

12. Consider the additive group ℤ12. We’ve seen that ℤ12 = ⟨1⟩, where ⟨1⟩ = {𝑘 ⋅ 1 ∣
𝑘 ∈ ℤ}, i.e., the set of all sums we can make using 1. This means ℤ12 is cyclic with
generator 1.

(a) Compute ⟨𝑚⟩ for all other𝑚 ∈ ℤ12.
(b) Verify that each ⟨𝑚⟩ is a subgroup of ℤ12.
(c) How many different subgroups of ℤ12 did you obtain?
(d) Are there other subgroups of ℤ12 that are not of the form ⟨𝑚⟩? Why or why

not?

13. Consider the multiplicative group 𝑈13. We’ve seen that 𝑈13 = ⟨2⟩, where ⟨2⟩ =
{2𝑘 | 𝑘 ∈ ℤ}, i.e., the set of all products we can make using 2. This means 𝑈13 is
cyclic with generator 2.

(a) Compute ⟨𝑚⟩ for all other𝑚 ∈ 𝑈13.
(b) Verify that each ⟨𝑚⟩ is a subgroup of 𝑈13.
(c) How many different subgroups of 𝑈13 did you obtain?
(d) Are there other subgroups of 𝑈13 that are not of the form ⟨𝑚⟩? Why or why

not?

14. Consider the element 4 in the additive group ℤ30.
(a) Find the elements of the cyclic subgroup ⟨4⟩.
(b) Find all𝑚 ∈ ℤ30 such that ⟨𝑚⟩ = ⟨4⟩.

15. Let 𝑔 be an element of a group with ord(𝑔) = 18.
(a) Find the smallest positive integer 𝑘 such that 𝑔−1 = 𝑔𝑘.
(b) Same as above, butwith 𝑔−1 replaced by each of the following: 𝑔−3, 𝑔532, 𝑔−625.
(c) Is it possible that 𝑔7 = 𝑔12? Why or why not?

16. Let 𝑔 be an element of a multiplicative group 𝐺. Prove that ⟨𝑔⟩ = {𝑔𝑘 | 𝑘 ∈ ℤ} is a
subgroup of 𝐺. (This exercise is referenced in Section 14.1.)

17. Prove Theorem 13.13.
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18. Prove: If a group 𝐺 is cyclic, then 𝐺 is commutative.
Hint: If 𝐺 is cyclic, then it has a generator 𝑔. Thus, we can write 𝐺 = ⟨𝑔⟩.
Note: The converse of this statement is false. See Exercise #19.

19. Give an example of a commutative group that is not cyclic. Explain your reasoning.

20. Fix an element ℎ in a multiplicative group 𝐺. Recall that the centralizer of ℎ in 𝐺
is

𝐶(ℎ) = {𝑔 ∈ 𝐺 | 𝑔ℎ = ℎ𝑔}.
Prove that ⟨ℎ⟩ ⊆ 𝐶(ℎ).

21. Determine whether or not each direct product is cyclic. If it’s cyclic, find a gener-
ator.

(a) ℤ10×ℤ12. (b) ℤ6 × ℤ7. (c) ℤ6 × ℤ8. (d) ℤ12×ℤ20. (e) ℤ12×ℤ35.

22. Consider the direct product ℤ6 × ℤ𝑛.
(a) Find three values of 𝑛 for which ℤ6 × ℤ𝑛 is cyclic.
(b) Find three values of 𝑛 for which ℤ6 × ℤ𝑛 is not cyclic.

23. Repeat Exercise #22, but with ℤ7 × ℤ𝑛.

24. Prove: The direct product ℤ𝑚 × ℤ𝑛 is cyclic if and only if gcd(𝑚, 𝑛) = 1. (This
exercise is referenced in Chapter 14, Exercise #15.)



14
Cyclic Groups, Part II

In this chapter, we will continue our study of cyclic groups, i.e., groups that are gener-
ated by a single element. In particular, we will examine cyclic groups generated by an
element with infinite order. We will compare one such group with the group of inte-
gers ℤ and conclude that the two groups are essentially the same. We will revisit this
notion of sameness when we learn about isomorphism in the next unit.

Themain focus of this chapter, however, is on the subgroups of cyclic groups. These
subgroups have a beautiful structure to them. For example, ℤ12 (a cyclic group with 12
elements) has six subgroups, which are themselves cyclic, with the following number
of elements: 1, 2, 3, 4, 6, 12. (Any conjectures?) By the end of this chapter, we will be
able to precisely describe all the subgroups of any cyclic group.

14.1 Why negative powers are needed
In Example 13.15, we considered 4 ∈ 𝑈13 with ord(4) = 6. We found that ⟨4⟩ =
{4𝑘 | 𝑘 ∈ ℤ} contains just the elements 40, 41, 42, 43, 44, 45, even though the set ⟨4⟩, by
definition, contains all integer powers of 4. In light of this and other similar examples
that we studied in Chapter 13, it’s natural to wonder why the negative powers of 𝑔 are
needed in ⟨𝑔⟩ = {𝑔𝑘 | 𝑘 ∈ ℤ}. The example below answers this question.

Example 14.1. Recall that ℝ∗ = {𝑎 ∈ ℝ | 𝑎 has a multiplicative inverse}. We’ve seen
that ℝ∗ contains all non-zero real numbers and is a group under multiplication. Let𝐻
be the smallest subgroup of ℝ∗ that contains the element 3. By closure, 𝐻 must also
contain 3⋅3 = 9, 3⋅3⋅3 = 27, 34 = 81, and all positive powers of 3. 𝐻must also contain
the multiplicative identity 1. Moreover, 𝐻 must contain the multiplicative inverses of

135



136 Chapter 14. Cyclic Groups, Part II

its elements, i.e., 13 ,
1
9 ,

1
27 ,

1
81 , and so on. Therefore,

𝐻 = {. . . , 1
81 ,

1
27 ,

1
9 ,

1
3 , 1, 3, 9, 27, 81, . . .}

= {. . . , 3−4, 3−3, 3−2, 3−1, 30, 31, 32, 33, 34, . . .}

= {3𝑘 | 𝑘 ∈ ℤ}
= ⟨3⟩,

so that𝐻 = ⟨3⟩, where ⟨3⟩must contain both positive and negative powers of 3 (as well
as 30 = 1).

In Example 14.1 above, we notice that the integer powers of 3 are distinct from
each other. This is because ord(3) is infinite; i.e., there is no positive integer 𝑛 such
that 3𝑛 = 1 in ℝ∗. Then Theorem 12.29 allows us to conclude that 3𝑘 = 3ℓ if and only
if 𝑘 = ℓ in ℤ. Contrast this to the case of 4 ∈ 𝑈13. Since ord(4) = 6, Theorem 13.12
implies that 4𝑘 = 4ℓ if and only if 𝑘 = ℓ in ℤ6.

Before proceeding, we state the result of Chapter 13, Exercise #16 as a theorem.
This theorem explains why we call ⟨𝑔⟩ the cyclic subgroup generated by 𝑔.

Theorem 14.2. Let 𝑔 be an element of a group 𝐺. Then ⟨𝑔⟩ = {𝑔𝑘 | 𝑘 ∈ ℤ} is a subgroup
of 𝐺.

In the cyclic subgroup ⟨3⟩ where 3 ∈ ℝ∗, the negative powers of 3 are the mul-
tiplicative inverses of the positive powers of 3. While the examples below deal with
elements of finite order, they will examine the role that multiplicative inverses play in
cyclic subgroups.

Example 14.3. Consider the elements 4, 10 ∈ 𝑈13. We have 4 ⋅ 10 = 1modulo 13, so
that 4 and 10 aremultiplicative inverses of each other. Wehave ⟨4⟩ = {1, 4, 3, 12, 9, 10}
and ⟨10⟩ = {1, 10, 9, 12, 3, 4}, so that ⟨4⟩ = ⟨10⟩; i.e., the two sets contain the same
elements.

Example 14.4. Consider the elements 3, 7 ∈ 𝑈20. We have 3 ⋅ 7 = 1 modulo 20, so
that 3 and 7 are multiplicative inverses of each other. In an exercise at the end of the
chapter, you will show that ⟨3⟩ = ⟨7⟩.

Here is a generalization, which you will also prove in an exercise.

Theorem 14.5. Let 𝑔 be an element of a group. Then ⟨𝑔⟩ = ⟨𝑔−1⟩.

14.2 Additive groups revisited
In Section 13.5, we adapted the notation ⟨𝑔⟩ = {𝑔𝑘 | 𝑘 ∈ ℤ}when the group operation is
addition. Consider again the additive groupℤ12 and recall that 1 is a generator, because:

1 = 1, 1 + 1 = 2, 1 + 1 + 1 = 3, 1 + 1 + 1 + 1 = 4, . . . , 1 + 1 + ⋯ + 1⏟⎵⎵⎵⏟⎵⎵⎵⏟
12 terms

= 0.

Writing this more succinctly as
1 ⋅ 1 = 1, 2 ⋅ 1 = 2, 3 ⋅ 1 = 3, 4 ⋅ 1 = 4, . . . , 12 ⋅ 1 = 0,
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we obtained the definition ⟨1⟩ = {𝑘 ⋅ 1 | 𝑘 ∈ ℤ}. In other words, ⟨1⟩ includes all integer
multiples of 1, rather than all integer powers of 1. We conclude that ℤ12 is cyclic with
ℤ12 = ⟨1⟩.

For the finite group ℤ12 = ⟨1⟩, we only need positive multiples of 1. But for the
infinite group ℤ, we do need positive and negativemultiples of 1 (as well as 0 ⋅ 1 = 0).
Indeed, we have

ℤ = {. . . , −4, −3, −2, −1, 0, 1, 2, 3, 4, . . .}
= {. . . , −4 ⋅ 1, −3 ⋅ 1, −2 ⋅ 1, −1 ⋅ 1, 0 ⋅ 1, 1 ⋅ 1, 2 ⋅ 1, 3 ⋅ 1, 4 ⋅ 1, . . .}
= {𝑘 ⋅ 1 | 𝑘 ∈ ℤ}
= ⟨1⟩,

so that ℤ = ⟨1⟩. We also have ℤ = ⟨−1⟩ = {𝑘 ⋅ (−1) | 𝑘 ∈ ℤ}, so that 1 and −1 are both
generators of the cyclic group ℤ. Note that Theorem 14.5, when adapted for additive
groups, says ⟨𝑔⟩ = ⟨−𝑔⟩. Thus we would expect ⟨1⟩ = ⟨−1⟩. You should convince
yourself that ℤ has no other generator.

14.3 ⟨3⟩ behaves “just like” ℤ
In Example 14.1, we studied the subgroup ⟨3⟩ of the multiplicative group ℝ∗. Recall
that

⟨3⟩ = {3𝑘 | 𝑘 ∈ ℤ}
= {. . . , 3−4, 3−3, 3−2, 3−1, 30, 31, 32, 33, 34, . . .},

where 30 = 1 is the multiplicative identity. Since these integer powers of 3 are distinct,
we can form a correspondence between ℤ and ⟨3⟩. For instance, 5 ∈ ℤ corresponds to
35 ∈ ⟨3⟩, which we denote 5 ↔ 35. More generally, the elements of ℤ and ⟨3⟩match up
via the correspondence 𝑘 ↔ 3𝑘. The example below shows how this correspondence
also respects the operations of the two groups.

Example 14.6. Wewill illustrate how themultiplicative group ⟨3⟩ behaves just like the
additive group ℤ. To understand what that means, let’s do some calculations in both
groups.

• 317 ⋅ 325 = 317+25 = 342 in ⟨3⟩, which is just like 17 + 25 = 42 in ℤ.

• The multiplicative identity of ⟨3⟩ is 30 = 1, just like how the additive identity of ℤ
is 0.

• The multiplicative inverse of 317 is 3−17 in ⟨3⟩, just like how the additive inverse of
17 is −17 in ℤ.

Soon, we’ll formalize what it means for ⟨3⟩ to behave “just like” ℤ.

Example 14.7. In Section 14.2, we saw that the generators of ℤ are 1 and −1. Using
the correspondence 𝑘 ↔ 3𝑘 between ℤ and ⟨3⟩, the generators of ⟨3⟩ should be 31 = 3
and 3−1 = 1

3 . In an exercise at the end of the chapter, you’ll show that ⟨3⟩ = ⟨ 13 ⟩, so
that 13 is indeed a generator of ⟨3⟩.
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The next example is not about ℤ and ⟨3⟩, but it highlights the notion of sameness
between two groups.

Example 14.8. Consider the additive group ℤ40 and its cyclic subgroup ⟨4⟩ = {𝑘 ⋅ 4 ∣
𝑘 ∈ ℤ}, containing the following elements:

⟨4⟩ = {0 ⋅ 4, 1 ⋅ 4, 2 ⋅ 4, . . . , 9 ⋅ 4}
= {0, 4, 8, 12, 16, 20, 24, 28, 32, 36}.

We will find all the generators of ⟨4⟩. Observe that ord(4) = 10 in ℤ40. Thus, we form
a correspondence between ℤ10 and ⟨4⟩, where 𝑘 ∈ ℤ10 corresponds to 𝑘 ⋅ 4 ∈ ⟨4⟩. This
correspondence also respects the operations of the two groups, i.e., addition modulo 10
and addition modulo 40. Given that ord(4) = 10 in ℤ40 so that 10 ⋅ 4 = 0 in ⟨4⟩, here
are some calculations.

• In ⟨4⟩, we have 5 ⋅ 4+7 ⋅ 4 = (5+7) ⋅ 4 = (10+2) ⋅ 4 = 10 ⋅ 4+2 ⋅ 4 = 0+2 ⋅ 4 = 2 ⋅ 4
so that 𝟓 ⋅ 4 + 𝟕 ⋅ 4 = 𝟐 ⋅ 4, which is just like 5 + 7 = 2 in ℤ10.

• The additive identity of ⟨4⟩ is 0 ⋅ 4 = 0, which is just like how the additive identity
of ℤ10 is 0.

• The additive inverse of 3 ⋅ 4 is 7 ⋅ 4 in ⟨4⟩, just like how the additive inverse of 3 is 7
in ℤ10.

Using Theorem 13.3, the generators of ℤ10 are 1, 3, 7, 9. Thus, the generators of ⟨4⟩
should be 1 ⋅ 4 = 4, 3 ⋅ 4 = 12, 7 ⋅ 4 = 28, and 9 ⋅ 4 = 36.

14.4 Subgroups of cyclic groups
Example 14.9. The additive group ℤ8 is cyclic with generator 1; i.e., ℤ8 = ⟨1⟩. In
Example 11.6, we found all subgroups of ℤ8, namely, {0}, {0, 4}, {0, 2, 4, 6}, and ℤ8.
Moreover, each of these subgroups is cyclic:

• {0} = ⟨0⟩.

• {0, 4} = ⟨4⟩.

• {0, 2, 4, 6} = ⟨2⟩ = ⟨6⟩.

• ℤ8 = ⟨1⟩ = ⟨3⟩ = ⟨5⟩ = ⟨7⟩.

Example 14.10. Consider the cyclic group ℤ12 = ⟨1⟩. Proceeding as in Example
11.6, we can find all subgroups of ℤ12, namely, {0}, {0, 6}, {0, 4, 8}, {0, 3, 6, 9},
{0, 2, 4, 6, 8, 10}, and ℤ12. (See Chapter 11, Exercise #7.) Each of these subgroups
is cyclic as well:

• {0} = ⟨0⟩.

• {0, 6} = ⟨6⟩.

• {0, 4, 8} = ⟨4⟩ = ⟨8⟩.
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• {0, 3, 6, 9} = ⟨3⟩ = ⟨9⟩.

• {0, 2, 4, 6, 8, 10} = ⟨2⟩ = ⟨10⟩.

• ℤ12 = ⟨1⟩ = ⟨5⟩ = ⟨7⟩ = ⟨11⟩.

Example 14.11. Consider the multiplicative group 𝑈13. In Example 13.4, we saw that
𝑈13 is cyclic with generator 2. Moreover, we wrote 𝑈13 in the following manner:

𝑈13 = ⟨2⟩
= { 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 210, 211}
= { 1, 2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7 }.

This highlights the correspondence between ℤ12 and 𝑈13, where 𝑘 ∈ ℤ12 corresponds
to 2𝑘 ∈ 𝑈13. Using the subgroups of ℤ12 from Example 14.10 and the correspondence
𝑘 ↔ 2𝑘, we find the subgroups of 𝑈13. Notice how each subgroup of 𝑈13 is cyclic as
well.

{0} = ⟨0⟩, {20} = ⟨20⟩ = {1},
{0, 6} = ⟨6⟩, {20, 26} = ⟨26⟩ = {1, 12},

{0, 4, 8} = ⟨4⟩, {20, 24, 28} = ⟨24⟩ = {1, 3, 9},
{0, 3, 6, 9} = ⟨3⟩, {20, 23, 26, 29} = ⟨23⟩ = {1, 8, 12, 5},

{0, 2, 4, 6, 8, 10} = ⟨2⟩, {20, 22, 24, 26, 28, 210} = ⟨22⟩ = {1, 4, 3, 12, 9, 10},
ℤ12 = ⟨1⟩, 𝑈13 = ⟨21⟩.

The above examples suggest the following theorem.

Theorem 14.12 (Subgroups of cyclic groups). Let 𝐺 be a cyclic group and let 𝐻 be a
subgroup of 𝐺. Then𝐻 is also cyclic.

The proof of this theorem is rather complicated, so we will give some pre-proof
remarks here. And afterwards, Example 14.13 will illustrate the technical details that
are given in the proof.

• Since 𝐺 is cyclic, it has a generator 𝑔 ∈ 𝐺 such that 𝐺 = ⟨𝑔⟩ = {𝑔𝑘 | 𝑘 ∈ ℤ}.

• If 𝐻 contained only the identity element 𝜀, then 𝐻 is cyclic because 𝐻 = ⟨𝜀⟩.

• Suppose 𝐻 contains a non-identity element, say ℎ ∈ 𝐻 where ℎ ≠ 𝜀. Then ℎ ∈ 𝐺
(since 𝐻 ⊆ 𝐺), so that ℎ can be written as an integer power of 𝑔. Let ℎ = 𝑔𝑘 for
some non-zero integer 𝑘. If 𝑘 is negative, say ℎ = 𝑔−4 for instance, then ℎ−1 =
(𝑔−4)−1 = 𝑔4 is also in 𝐻, because 𝐻 is a subgroup and hence contains inverses of
its elements. Thus, 𝐻 must contain a positive power of 𝑔.

Proof. Suppose 𝐺 is a cyclic group and let 𝐻 be a subgroup of 𝐺. Since 𝐺 is cyclic,
it has a generator 𝑔 ∈ 𝐺 such that 𝐺 = ⟨𝑔⟩ = {𝑔𝑘 | 𝑘 ∈ ℤ}. If 𝐻 contained only the
identity element 𝜀, then 𝐻 is cyclic as 𝐻 = ⟨𝜀⟩ and we’re done with the proof. Thus
we may assume that 𝐻 contains a non-identity element. Then, as discussed in the
pre-proof remarks above, 𝐻 must contain a positive power of 𝑔. Let 𝑚 be the smallest
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positive integer such that 𝑔𝑚 ∈ 𝐻. We show that 𝐻 = ⟨𝑔𝑚⟩ by proving the following
inclusions:

(1) ⟨𝑔𝑚⟩ ⊆ 𝐻: Let 𝑥 ∈ ⟨𝑔𝑚⟩ so that 𝑥 = (𝑔𝑚)𝑘 for some integer 𝑘. We know 𝑔𝑚 ∈ 𝐻.
Thus, (𝑔𝑚)𝑘 is also in𝐻, because𝐻 is closed and contains inverses of its elements.
Thus, 𝑥 ∈ 𝐻 so that ⟨𝑔𝑚⟩ ⊆ 𝐻.

(2) 𝐻 ⊆ ⟨𝑔𝑚⟩: This is left for you to prove as an exercise at the end of the chapter.
Therefore, 𝐻 = ⟨𝑔𝑚⟩, implying that 𝐻 is cyclic with generator 𝑔𝑚. ■

Example 14.13. Let’s illustrate the technical details in the proof of Theorem 14.12
with a concrete example. Suppose𝐺 = 𝑈13 = ⟨2⟩, and let𝐻 = {1, 3, 9} be its subgroup.
With 𝑔 = 2, we have

𝑔1 = 2 ∉ 𝐻, 𝑔2 = 4 ∉ 𝐻, 𝑔3 = 8 ∉ 𝐻, 𝑔4 = 3 ∈ 𝐻.
Thus,𝑚 = 4 is the smallest positive integer such that 𝑔𝑚 ∈ 𝐻.

Since 𝑔4 ∈ 𝐻, we know that 𝑔8 = (𝑔4)2 ∈ 𝐻 and 𝑔0 = 𝑔12 = (𝑔4)3 ∈ 𝐻; i.e., every
integer power of 𝑔4 is also contained in𝐻. This is captured by the set inclusion ⟨𝑔𝑚⟩ ⊆
𝐻.

The proof also shows that only the integer powers of 𝑔4 are contained in 𝐻. In
other words, if 𝑔𝑘 is an element of 𝐻, then 𝑘must be a multiple of 4. This is captured
by the set inclusion 𝐻 ⊆ ⟨𝑔𝑚⟩.

To conclude, we have 𝑔0 = 1, 𝑔4 = 3, 𝑔8 = 9, so that 𝐻 = {1, 3, 9} = {𝑔0, 𝑔4, 𝑔8} =
⟨𝑔4⟩.

Example 14.14. We now know that subgroups of a cyclic group are also cyclic. And if
a cyclic group𝐺 happens to be finite (like ℤ12, for instance), then we can say a bit more
about its subgroups.

• Consider the cyclic group ℤ8 containing eight elements. Recall from Example 11.6
that the subgroups ofℤ8 are {0}, {0, 4}, {0, 2, 4, 6}, andℤ8. The sizes (or numbers of
elements) of these subgroups are 1, 2, 4, and 8, respectively, which are the divisors
of 8.

• Consider the cyclic group ℤ12 containing 12 elements. Recall from Example 14.10
that the subgroups of ℤ12 are {0}, {0, 6}, {0, 4, 8}, {0, 3, 6, 9}, {0, 2, 4, 6, 8, 10},
and ℤ12. The sizes these subgroups are 1, 2, 3, 4, 6, and 12, respectively, which are
the divisors of 12.
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• Consider the cyclic group 𝑈13 containing 12 elements. Recall from Example 14.11
that 𝑈13 has six subgroups, one for each divisor of 12, whose sizes are 1, 2, 3, 4, 6,
and 12.

Here is a generalization, whose proof is beyond the scope of this textbook.

Theorem 14.15 (Subgroups of finite cyclic groups). Suppose𝐺 is cyclic with 𝑛 elements.
Then 𝐺 has a unique subgroup of size 𝑑 for every divisor 𝑑 of 𝑛, and those are the only
subgroups of 𝐺.

Whatmakes the above theorem special is not that the size of a subgroup is a divisor
of the size of the group. In fact, this is true for any group, even those that are not cyclic,
which we will prove later in the textbook. Instead, what distinguishes cyclic groups is
the fact that there is exactly one subgroup of size 𝑑 for each divisor 𝑑 of 𝑛 (where 𝑛 is
the size of the group).

Example 14.16 (Non-example). In Example 13.6, we saw that𝑈12 = {1, 5, 7, 11} is not
cyclic. Observe that𝑈12 has three subgroups of size 2, namely {1, 5}, {1, 7}, and {1, 11}.
Thus, 𝑈12 does not have a unique subgroup of size 𝑑 for every divisor 𝑑 of 4 (where
𝑛 = 4 is the size of 𝑈12).

Exercises
1. Let 3, 7 ∈ 𝑈20. Compute ⟨3⟩ and ⟨7⟩ and show that they are equal. (See Example

14.4.)

2. In Example 14.1, we considered the cyclic subgroup ⟨3⟩ ⊆ ℝ∗. Now consider the
cyclic subgroup ⟨ 13 ⟩ ⊆ ℝ∗. In particular, how do ⟨3⟩ and ⟨ 13 ⟩ compare?

3. Prove Theorem 14.5.

Note: This is a set equality. So you must show ⟨𝑔⟩ ⊆ ⟨𝑔−1⟩ and ⟨𝑔−1⟩ ⊆ ⟨𝑔⟩.

4. (a) Explain why 1 and −1 are the only generators of the cyclic group ℤ.
(b) Explain why 3 and 1

3 are the only generators of the cyclic subgroup ⟨3⟩ ⊆ ℝ∗.

5. Find all subgroups of ℤ18.

6. It turns out that 𝑈19 = ⟨2⟩. (See Chapter 13, Exercise #7.) Find all subgroups of
𝑈19.

7. Find all subgroups of ℤ.

8. Explain why the additive groupℚ is not cyclic. (Here,ℚ denotes the set of rational
numbers.)

9. Explain why the multiplicative group ℝ∗ is not cyclic.
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10. Give an example of a group 𝐺 satisfying the following conditions:

• 𝐺 is not cyclic.
• Every proper subgroup of 𝐺 is cyclic.

Note: A proper subgroup of 𝐺 is a subgroup that is not 𝐺 itself.

11. Suppose 𝐻 = {[ 1 0
𝑏 1 ] | 𝑏 ∈ ℤ𝑚}. We know 𝐻 is a subgroup of 𝐺(ℤ𝑚). (See Chapter

11, Exercise #11.) Now show that 𝐻 is cyclic by finding a generator.

12. Consider the additive group ℚ, i.e., the set of rational numbers. Define a subset
𝐻 ⊆ ℚ given by 𝐻 = { 34𝑚+ 2

7𝑛 | 𝑚, 𝑛 ∈ ℤ} .We know that 𝐻 is a subgroup of ℚ.
(See Chapter 11, Exercise #18.) Now show that 𝐻 is cyclic by finding a generator.

13. Consider the cyclic subgroup ⟨8⟩ ⊆ ℤ30.
(a) Find the elements of ⟨8⟩.
(b) Find all the generators of ⟨8⟩.

14. Consider the cyclic subgroup ⟨8⟩ ⊆ ℤ. (Notice how this is different from Exercise
#13.)

(a) Find the elements of ⟨8⟩.
(b) Find all the generators of ⟨8⟩.

15. Find all the generators of the cyclic group ℤ3 × ℤ4.
Note: We know that ℤ3 × ℤ4 is cyclic from Chapter 13, Exercise #24.

16. Repeat Exercise #15 with ℤ6 × ℤ7.

17. Complete the proof of Theorem 14.12 by showing that 𝐻 ⊆ ⟨𝑔𝑚⟩.
Hint: Let ℎ ∈ 𝐻 so that ℎ = 𝑔𝑘 for some 𝑘 ∈ ℤ. Now show that𝑚 ∣ 𝑘.

18. Consider the group 𝐷4, which contains eight elements.
(a) Anita says, “𝐷4 is non-commutative. So it can’t be cyclic.” What might she

mean?
(b) Demonstrate how 𝐷4 does not have a unique subgroup of size 𝑑 for every di-

visor 𝑑 of 8.

19. Prove: Let 𝐺 be a group with finitely many elements. If 𝑔 ∈ 𝐺, then ord(𝑔) is
finite.
Hint: What can you say about the sequence of elements 𝑔1, 𝑔2, 𝑔3, 𝑔4, . . . ?

20. Prove: Let 𝐺 be a group, and let 𝐻 be a subset of 𝐺 that is nonempty and finite. If
𝐻 is closed using the operation of 𝐺, then 𝐻 is a subgroup of 𝐺.

21. Let 𝐺 be a group, and let 𝐻 be a subgroup of 𝐺. Fix an element 𝑔 ∈ 𝐺, and define
the set

𝑔𝐻𝑔−1 = {𝑔ℎ𝑔−1 | ℎ ∈ 𝐻}.
Prove: If 𝐻 is cyclic, then 𝑔𝐻𝑔−1 is also cyclic.
Recall: We showed in Chapter 12, Exercise #23 that 𝑔𝐻𝑔−1 is a subgroup of 𝐺.
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22. Consider the group ℤ70.
(a) Find the subgroup 𝐻 of ℤ70 with size 7.
(b) Find the subgroup 𝐾 of ℤ70 with size 10.
(c) Verify that 𝐻 ∩ 𝐾 = {𝑔 ∈ ℤ70 | 𝑔 ∈ 𝐻 and 𝑔 ∈ 𝐾} contains just the additive

identity 0.

We make two remarks about the proofs in Exercises #23 and #24:

• They must be proved without invoking Theorem 14.15.

• We will later see that these statements are true even when 𝐺 is not cyclic.

23. Prove: Suppose 𝐺 is cyclic with 𝑛 elements, and let 𝐻 be a subgroup of 𝐺 with𝑚
elements. Then𝑚 is a divisor of 𝑛.

24. Prove: Suppose 𝐺 is a cyclic group, and suppose𝐻 and 𝐾 are subgroups of 𝐺 con-
taining 𝑚 and 𝑛 elements, respectively. If gcd(𝑚, 𝑛) = 1, then 𝐻 ∩ 𝐾 = {𝜀}. (This
exercise is referenced in Chapter 20, Exercise #5.)





Unit IV: Group
Homomorphisms

The next four chapters are devoted to functions from a group to another group. Chapter
15 takes an in-depth look at the notion of functions, including what it means for a
function to be one-to-one and onto. Then we delve into isomorphisms, which act as a
mathematical bridge between a pair of groups and allow us to conclude that they’re
“essentially the same” by matching up their elements and operations. In Chapter 16,
we learn a beautiful result (spoiler alert!) that every cyclic group is isomorphic to ℤ𝑛 if
it’s finite with 𝑛 elements or to ℤ if it’s infinite.

Two chapters are devoted to homomorphisms, which are a generalization of iso-
morphisms. Chapter 18 ends with the following conjecture: A group homomorphism
partitions the domain into equal-sized subsets. This conjecture foreshadows the study
of cosets, which constitutes our final unit on group theory.

Here is a taste of what you’ll be able to accomplish in this unit:

• Learn how to prove that a function is one-to-one and/or onto.

• Prove that an isomorphism preserves orders of group elements. In other words, if
𝜃 ∶ 𝐺 → 𝐻 is an isomorphism, then ord(𝜃(𝑔)) = ord(𝑔) for all 𝑔 ∈ 𝐺.

• Recognize that homomorphisms provide a unifying language to describe familiar
algebraic properties such as the exponent law 𝑔𝑎+𝑏 = 𝑔𝑎 ⋅ 𝑔𝑏 or the distributive law
6(𝑎 + 𝑏) = 6𝑎 + 6𝑏.
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15
Functions

In Section 13.3, we formed a correspondence between the additive group ℤ12 and the
multiplicative group 𝑈13, where 𝑘 ∈ ℤ12 corresponds to 2𝑘 ∈ 𝑈13. (Note that 2 is one
of the generators of 𝑈13.) This correspondence not only matches up the elements of
the two groups but also respects their operations. Thus, we said that the two groups
are essentially the same.

In the next chapter, we’ll study isomorphisms, which more precisely capture this
notion of sameness. Then we’ll explore homomorphisms, which are a generalization of
isomorphisms. Both isomorphisms and homomorphisms are functions, which is the
focus of this chapter. We will examine the various components of a function and what
it means for a function to be one-to-one and onto.

15.1 Domain and codomain
Example 15.1. Consider the function 𝛾 ∶ ℤ12 → ℤ18 where 𝛾(𝑎) = 6𝑎 for all 𝑎 ∈ ℤ12.

• The domain of the function is ℤ12. This is the set of all possible inputs into the
function.

• The codomain of the function is ℤ18. This set contains all outputs (and possibly
other elements).

• The rule of the function is 𝛾(𝑎) = 6𝑎. Here, 𝑎 is in the domain ℤ12 and 𝛾(𝑎) is in
the codomain ℤ18.

For instance, we have 𝛾(5) = 6⋅5 = 30 = 12, where the computation 30 = 12was done
in ℤ18. Similarly, 𝛾(8) = 6 ⋅ 8 = 48 = 12, where the computation 48 = 12 occurs in ℤ18.
Thus, the elements 5 and 8 in the domain ℤ12 both map to the same element 12 in the
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codomain ℤ18. This is depicted in the diagram below:

Example 15.2. Consider the function 𝜑 ∶ ℤ → ℤ5 where 𝜑(𝑎) = 𝑎 (mod 5) for all
𝑎 ∈ ℤ. For instance, we have 𝜑(43) = 3, since 43 = 3 (mod 5). Similarly, 𝜑(−14) = 1,
because −14 = 1 (mod 5). The domain of the function is ℤ and its codomain is ℤ5.
The rule of the function is 𝜑(𝑎) = 𝑎 (mod 5).

The domain and codomain of a function can be the same set, as shown in Example
15.3 below.

Example 15.3. Consider the function 𝑓 ∶ 𝑈35 → 𝑈35 where 𝑓(𝑥) = 3𝑥 for all 𝑥 ∈ 𝑈35.
Here, the domain and codomain are both𝑈35. For instance, we have 𝑓(4) = 3 ⋅ 4 = 12,
where 4 is in the domain and 12 is in the codomain. More generally, 𝑥 ∈ 𝑈35 is in the
domain and 𝑓(𝑥) ∈ 𝑈35 is in the codomain.

15.2 One-to-one function
Example 15.4. Consider again the function 𝑓 ∶ 𝑈35 → 𝑈35 where 𝑓(𝑥) = 3𝑥 for all
𝑥 ∈ 𝑈35. Choose two different inputs from the domain 𝑈35, say 𝑎 = 8 and 𝑏 = 22.
Their corresponding outputs are 𝑓(𝑎) = 24 and 𝑓(𝑏) = 31, which are in the codomain
𝑈35. These outputs are different from each other as well.

In fact, the following is true for all 𝑎, 𝑏 ∈ 𝑈35: If 𝑎 ≠ 𝑏, then 𝑓(𝑎) ≠ 𝑓(𝑏); i.e.,
different inputs map to different outputs. We can verify this by computing 𝑓(𝑥) for every
𝑥 ∈ 𝑈35 and seeing that all the outputs are different. Rather than taking this tedious
approach (after all, there are 24 elements in 𝑈35), we will prove this implication in a
way that can be generalized to other scenarios.

Specifically, we will prove its contrapositive; namely: If 𝑓(𝑎) = 𝑓(𝑏), then 𝑎 = 𝑏.
Assume 𝑓(𝑎) = 𝑓(𝑏), where 𝑎, 𝑏 ∈ 𝑈35. Then 3𝑎 = 3𝑏 in 𝑈35. The multiplica-
tive inverse of 3 is 12, where 3 ⋅ 12 = 1 and 12 ⋅ 3 = 1modulo 35. Multiplying
both sides of the equation 3𝑎 = 3𝑏 by 12, we obtain 12 ⋅ (3𝑎) = 12 ⋅ (3𝑏). Thus
(12 ⋅ 3) ⋅ 𝑎 = (12 ⋅ 3) ⋅ 𝑏, which implies 1 ⋅ 𝑎 = 1 ⋅ 𝑏. Therefore, 𝑎 = 𝑏.

Example 15.4 illustrates the notion of a one-to-one function, which is defined be-
low.

Definition 15.5 (One-to-one function). Let 𝑓 ∶ 𝑆 → 𝑇 be a function from domain 𝑆
to codomain 𝑇. We say 𝑓 is one-to-onewhen it satisfies the following property for all 𝑎,
𝑏 ∈ 𝑆: If 𝑎 ≠ 𝑏, then 𝑓(𝑎) ≠ 𝑓(𝑏).

Below is a picture that depicts a one-to-one function. Again, the key property is that
different elements of the domain map to different elements of the codomain.
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The definition of a one-to-one function contains the following implication: If 𝑎 ≠ 𝑏,
then 𝑓(𝑎) ≠ 𝑓(𝑏). As we saw in Example 15.4, it is often effective to work with the
contrapositive; namely: If 𝑓(𝑎) = 𝑓(𝑏), then 𝑎 = 𝑏.

Proof know-how. To show that 𝑓 is one-to-one:
(1) Assume 𝑓(𝑎) = 𝑓(𝑏), where 𝑎, 𝑏 ∈ 𝑆.
(2) Show that 𝑎 = 𝑏.

Example 15.6. Consider the function 𝜃 ∶ ℝ → ℝ where 𝜃(𝑥) = 5𝑥 − 2 for all 𝑥 ∈ ℝ.
We will prove that this function is one-to-one:

Suppose 𝜃(𝑎) = 𝜃(𝑏), where 𝑎, 𝑏 ∈ ℝ. Then 5𝑎−2 = 5𝑏−2 in the codomainℝ.
Adding 2 to both sides of the equation yields 5𝑎 = 5𝑏. Multiplying both sides
by 1

5 , we obtain 𝑎 = 𝑏 as desired.

Example 15.7 (Non-example). Consider the function 𝛾 ∶ ℤ12 → ℤ18 where 𝛾(𝑎) = 6𝑎
for all 𝑎 ∈ ℤ12. In Example 15.1, we saw that 𝛾(5) = 12 and 𝛾(8) = 12. Thus, different
inputs 5, 8 ∈ ℤ12 both map to the same element 12 in the codomain ℤ18. Hence, 𝛾 is
not one-to-one.

Example 15.8 (Non-example). Consider the function 𝜑 ∶ ℤ → ℤ5 where 𝜑(𝑎) = 𝑎
(mod 5) for all 𝑎 ∈ ℤ. We have 𝜑(7) = 2 and 𝜑(12) = 2. Thus, different inputs 7,
12 ∈ ℤ both map to the same element 2 in the codomain ℤ5. Hence, 𝜑 is not one-to-
one.

Remark. In Examples 15.7 and 15.8, multiple elements of the domain are mapped
to one element in the codomain. Such functions are often called many-to-one func-
tions. This is in contrast to one-to-one functions, in which (at most) one element in the
domain is mapped to one element in the codomain.

15.3 Onto function
In Example 15.1, the codomain of a function was described as follows: This set con-
tains all outputs (and possibly other elements). The parenthetical remark “and possi-
bly other elements” is key to understanding the notion of onto functions. We start with
a non-example, i.e., a function that’s not onto.
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Example 15.9 (Non-example). Consider the function 𝑓 ∶ ℤ8 → ℤ20 where 𝑓(𝑎) = 5𝑎
for all 𝑎 ∈ ℤ8. To find all possible outputs of 𝑓, let’s evaluate the function at every
element of the domain:

• 𝑓(0) = 𝑓(4) = 0.

• 𝑓(1) = 𝑓(5) = 5.

• 𝑓(2) = 𝑓(6) = 10.

• 𝑓(3) = 𝑓(7) = 15.

Not every element of the codomain ℤ20 is “hit” by the function 𝑓. For instance, there
is no input element 𝑎 ∈ ℤ8 such that 𝑓(𝑎) = 1 (i.e., 1 ∈ ℤ20 isn’t “hit” by 𝑓). Thus, we
say that 𝑓 is not an onto function.

Example 15.10. Consider the function𝑓 ∶ 𝑈35 → 𝑈35where𝑓(𝑥) = 3𝑥 for all𝑥 ∈ 𝑈35.
Choose any element from the codomain, say 𝑦 = 11 ∈ 𝑈35. Then, we find an element
from the domain 𝑥 ∈ 𝑈35 such that 𝑓(𝑥) = 𝑦. We have 𝑥 = 27, since 𝑓(27) = 3 ⋅ 27 =
81 = 11 modulo 35. As another example, let 𝑦 = 16 be an element of the codomain
𝑈35. Then 𝑥 = 17 is the desired element from the domain 𝑈35, since 𝑓(17) = 3 ⋅ 17 =
51 = 16 modulo 35. We claim and will prove the following: Given any element 𝑦 in
the codomain 𝑈35, we can find an element 𝑥 in the domain 𝑈35 such that 𝑓(𝑥) = 𝑦. As
in Example 15.4, when we proved that 𝑓 is one-to-one, the multiplicative inverse of 3
will play a role.

Let 𝑦 ∈ 𝑈35 (the codomain). Themultiplicative inverse of 3 is 12, where 3⋅12 =
1 and 12 ⋅ 3 = 1modulo 35. Then let 𝑥 = 12𝑦, which is an element of 𝑈35 (the
domain), since 12, 𝑦 ∈ 𝑈35 and 𝑈35 is closed under multiplication. We now
verify that 𝑓(𝑥) = 𝑦. We have 𝑓(𝑥) = 𝑓(12𝑦) = 3⋅(12𝑦) = (3⋅12)⋅𝑦 = 1⋅𝑦 = 𝑦,
so that 𝑓(𝑥) = 𝑦 as desired.

Proof know-how. When developing the above proof, we used the “working back-
wards” technique that we’ve employed in the past (e.g., the proof of Theorem 13.3).
Here, we wanted to find an element 𝑥 in the domain 𝑈35 such that 𝑓(𝑥) = 𝑦, or equiv-
alently, 3𝑥 = 𝑦. We worked backwards from this goal and solved the equation 3𝑥 = 𝑦
for 𝑥 by multiplying both sides by 3−1 (or 12), which yields 𝑥 = 12𝑦. As we’ve noted
previously, this process of solving for 𝑥 is scratch work andmust not be included in the
proof itself.

Example 15.10 illustrates the notion of an onto function, which is defined below.

Definition 15.11 (Onto function). Let 𝑓 ∶ 𝑆 → 𝑇 be a function from domain 𝑆 to
codomain 𝑇. We say 𝑓 is onto when for every 𝑡 ∈ 𝑇 there exists 𝑠 ∈ 𝑆 such that
𝑓(𝑠) = 𝑡.

Informally, this definition says that every element of the codomain gets “hit” by an onto
function 𝑓.
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Proof know-how. To show that 𝑓 is onto:
(1) Let 𝑡 ∈ 𝑇.
(2) Find 𝑠 ∈ 𝑆 such that 𝑓(𝑠) = 𝑡. This 𝑠 is usually expressed in terms of 𝑡.
(3) (If necessary) Verify that 𝑠 is actually in set 𝑆.
(4) Show that 𝑠 satisfies the desired property, namely 𝑓(𝑠) = 𝑡.
The figure belowdepicts this Proof know-how. Note how the element 𝑡 in the codomain
𝑇 is chosen first, followed by the derivation and verification of the element 𝑠 in the
domain 𝑆.

Example 15.12. Consider the function 𝜃 ∶ ℝ → ℝ where 𝜃(𝑥) = 5𝑥 − 2 for all 𝑥 ∈ ℝ.
We will prove that this function is onto:

Let 𝑦 ∈ ℝ (the codomain). Then let 𝑥 = 1
5 (𝑦 + 2), which is an element of ℝ

(the domain). We now verify that 𝜃(𝑥) = 𝑦. We have
𝜃(𝑥) = 𝜃 ( 15 (𝑦 + 2)) = 5 ⋅ 15 (𝑦 + 2) − 2 = (𝑦 + 2) − 2 = 𝑦,

so that 𝜃(𝑥) = 𝑦 as desired.
We remark that the scratch work for this proof involved solving 𝜃(𝑥) = 𝑦 or 5𝑥−2 = 𝑦
for 𝑥.

Example 15.13 (Non-example). Consider the function𝜑 ∶ ℤ → ℤwhere𝜑(𝑛) = 5𝑛−2
for all 𝑛 ∈ ℤ. The rule of this function is the same as the one in Example 15.12, but
the domain and codomain have been changed from ℝ to ℤ. We claim that there is no
element 𝑛 ∈ ℤ (the domain) such that 𝜑(𝑛) = 0. Suppose for contradiction that such
an integer 𝑛 exists. Then 𝜑(𝑛) = 0; i.e., 5𝑛 − 2 = 0 and thus 5𝑛 = 2. But this implies
that 5 is a divisor of 2, which is a contradiction. Hence, 0 ∈ ℤ (the codomain) isn’t
“hit” by 𝜑, so that 𝜑 is not an onto function.

For the theorem below, consider the functions 𝛼 ∶ 𝑆 → 𝑇, 𝛽 ∶ 𝑇 → 𝑈, and
𝛽 ∘ 𝛼 ∶ 𝑆 → 𝑈. Note that 𝛽 ∘ 𝛼 is a composition of 𝛼 and 𝛽, where (𝛽 ∘ 𝛼)(𝑠) = 𝛽(𝛼(𝑠))
for all 𝑠 ∈ 𝑆. (See the figure below for the visual depiction of 𝛽 ∘ 𝛼.) This is just like
composing symmetries or permutations, which are functions after all.
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Theorem 15.14. Consider the functions 𝛼 ∶ 𝑆 → 𝑇, 𝛽 ∶ 𝑇 → 𝑈, and 𝛽 ∘ 𝛼 ∶ 𝑆 → 𝑈. If
𝛽 ∘ 𝛼 is one-to-one and 𝛼 is onto, then 𝛽 is one-to-one.

Proof. Assume that 𝛽 ∘ 𝛼 is one-to-one and 𝛼 is onto. To prove that 𝛽 is one-to-one,
assume 𝛽(𝑡1) = 𝛽(𝑡2), where 𝑡1, 𝑡2 ∈ 𝑇. We must show that 𝑡1 = 𝑡2. Since 𝛼 is onto,
there exist 𝑠1, 𝑠2 ∈ 𝑆 such that 𝛼(𝑠1) = 𝑡1 and 𝛼(𝑠2) = 𝑡2. Thus, 𝛽(𝑡1) = 𝛽(𝑡2) can be
rewritten as 𝛽(𝛼(𝑠1)) = 𝛽(𝛼(𝑠2)), or equivalently, (𝛽 ∘ 𝛼)(𝑠1) = (𝛽 ∘ 𝛼)(𝑠2). But since
𝛽 ∘𝛼 is one-to-one, we obtain 𝑠1 = 𝑠2. Therefore, 𝑡1 = 𝛼(𝑠1) = 𝛼(𝑠2) = 𝑡2, so that 𝑡1 = 𝑡2
as desired. ■

Proof know-how. The above theorem and its proof highlight how to use the fact that
a function is one-to-one or onto, rather than how to prove it. For instance, we were
given that 𝛼 is onto, and we had elements 𝑡1, 𝑡2 ∈ 𝑇, which is the codomain of 𝛼. Thus,
we could deduce the existence of 𝑠1, 𝑠2 ∈ 𝑆, i.e., the domain of 𝛼, such that 𝛼(𝑠1) = 𝑡1
and 𝛼(𝑠2) = 𝑡2. Likewise, we had shown that (𝛽 ∘ 𝛼)(𝑠1) = (𝛽 ∘ 𝛼)(𝑠2), where 𝑠1, 𝑠2 ∈ 𝑆,
the domain of 𝛽 ∘ 𝛼. Then the given fact that 𝛽 ∘ 𝛼 is one-to-one allows us to conclude
that 𝑠1 = 𝑠2.

15.4 When domain and codomain have the same
size

Given a function 𝑓 ∶ 𝑆 → 𝑇, it may be difficult to prove that 𝑓 is onto, but easier to
show that it’s one-to-one (or vice versa). If the domain and codomain happen to have
the same number of elements, however, then we only need to show one of the two and
obtain the other “for free.”

Example 15.15. Consider a function 𝑓 ∶ 𝑆 → 𝑇 where 𝑆 and 𝑇 each has 5 elements.
Suppose 𝑓 is one-to-one. We claim that 𝑓 is onto. First, let 𝑆 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}. Since 𝑓
is one-to-one, 𝑓(𝑎), 𝑓(𝑏), 𝑓(𝑐), 𝑓(𝑑), 𝑓(𝑒) are 5 different elements in 𝑇. But 𝑇 contains
5 elements, so the set {𝑓(𝑎), 𝑓(𝑏), 𝑓(𝑐), 𝑓(𝑑), 𝑓(𝑒)} is equal to the set 𝑇. Thus, each
element of 𝑇 is equal to one of 𝑓(𝑎), 𝑓(𝑏), 𝑓(𝑐), 𝑓(𝑑), 𝑓(𝑒). Hence, 𝑓 is onto.

Remark. In Example 15.15 above, the set {𝑓(𝑎), 𝑓(𝑏), 𝑓(𝑐), 𝑓(𝑑), 𝑓(𝑒)}, or more gen-
erally {𝑓(𝑠) | 𝑠 ∈ 𝑆}, is called the image of 𝑓.

Example 15.16. Consider a function 𝑓 ∶ 𝑆 → 𝑇 where 𝑆 and 𝑇 each has 5 elements.
Suppose 𝑓 is onto. Then 𝑓 must be one-to-one, for otherwise, we’d end up with a sce-
nario like this, where (at most) 4 elements of 𝑇 are “hit” by the function 𝑓, which
contradicts the fact that 𝑓 is onto.
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Here is a generalization of the above examples.

Theorem 15.17. Consider a function 𝑓 ∶ 𝑆 → 𝑇, where 𝑆 and 𝑇 are finite sets of the
same size. Then 𝑓 is one-to-one if and only if 𝑓 is onto.

Proof. We must prove two implications:

• If 𝑓 is one-to-one, then 𝑓 is onto.

• If 𝑓 is onto, then 𝑓 is one-to-one.

We will prove the first implication. The proof of the second implication is left for you
as an exercise.

Assume 𝑓 is one-to-one. Let 𝑛 be the size of both 𝑆 and 𝑇. Consider the image of
𝑓, namely the set 𝐼 = {𝑓(𝑠) | 𝑠 ∈ 𝑆}. The set 𝐼 contains 𝑛 distinct elements, because 𝑓 is
one-to-one; i.e., the 𝑛 different elements of 𝑆 map to 𝑛 different elements in 𝑇. Thus,
𝐼 ⊆ 𝑇 and both 𝐼 and 𝑇 contain 𝑛 elements, which implies that 𝐼 = 𝑇. To show that 𝑓
is onto, let 𝑡 ∈ 𝑇. Then 𝑡 ∈ 𝐼, because 𝐼 = 𝑇. Thus, 𝑡 = 𝑓(𝑠) for some 𝑠 ∈ 𝑆. Therefore,
𝑓 is onto as desired. ■

Remark. It’s important that 𝑆 and𝑇 are finite. Otherwise, even if 𝑆 and𝑇 are the same
set, the theorem does not hold. For example, consider 𝑓 ∶ ℤ → ℤ where 𝑓(𝑎) = 2𝑎 for
all 𝑎 ∈ ℤ. In an exercise at the end of the chapter, you will explain why 𝑓 is one-to-one,
but not onto. In another exercise, you will find a function 𝑓 ∶ ℤ → ℤ which is onto,
but not one-to-one.

Example 15.18. Consider the function𝑓 ∶ 𝑈35 → 𝑈35where𝑓(𝑥) = 3𝑥 for all𝑥 ∈ 𝑈35.
In Example 15.4, we proved that 𝑓 is one-to-one. Moreover, the domain and codomain
are finite sets of the same size, since they’re the same set 𝑈35. Thus, we may use Theo-
rem 15.17 to immediately conclude that 𝑓 is onto.

Exercises
1. Consider the function 𝛾 ∶ ℤ12 → ℤ18 where 𝛾(𝑎) = 6𝑎 for all 𝑎 ∈ ℤ12.

(a) In Example 15.1, we saw that 𝛾(5) = 12 and 𝛾(8) = 12. Find all 𝑎 ∈ ℤ12 such
that 𝛾(𝑎) = 12.

(b) Find all 𝑎 ∈ ℤ12 such that 𝛾(𝑎) = 6.
(c) For each 𝑏 ∈ ℤ18, find all 𝑎 ∈ ℤ12 such that 𝛾(𝑎) = 𝑏.
(d) Elizabeth says, “𝛾 isn’t one-to-one. It’s actually four-to-one.” What might she

mean?

2. Consider the function 𝑓 ∶ 𝑈35 → 𝑈35 where 𝑓(𝑥) = 3𝑥 for all 𝑥 ∈ 𝑈35. Anita
wonders, “How do we know that 𝑓(𝑥) actually is in the codomain𝑈35 for all inputs
𝑥 ∈ 𝑈35?” How would you respond to her? (In other words, if 𝑥 ∈ 𝑈35, why must
𝑓(𝑥) also be in 𝑈35?)



154 Chapter 15. Functions

3. Consider the function 𝜑 ∶ ℤ → ℤ5 where 𝜑(𝑎) = 𝑎 (mod 5) for all 𝑎 ∈ ℤ.

(a) Find all 𝑎 ∈ ℤ such that 𝜑(𝑎) = 0.
(b) Find all 𝑎 ∈ ℤ such that 𝜑(𝑎) = 1.
(c) For each 𝑏 ∈ ℤ5, find all 𝑎 ∈ ℤ such that 𝜑(𝑎) = 𝑏.

4. Determine if each function is one-to-one. Explain your reasoning.

(a) 𝑓 ∶ ℤ → ℤ where 𝑓(𝑛) = 4𝑛 + 1 for all 𝑛 ∈ ℤ.
(b) 𝑓 ∶ ℝ → ℝ where 𝑓(𝑥) = 𝑥2 for all 𝑥 ∈ ℝ. (Recall that ℝ refers to the set of

all real numbers.)
(c) 𝑓 ∶ 𝑈7 → 𝑈7 where 𝑓(𝑎) = 𝑎3 for all 𝑎 ∈ 𝑈7.
(d) 𝑓 ∶ 𝑈13 → 𝑈13 where 𝑓(𝑎) = 𝑎−1 for all 𝑎 ∈ 𝑈13.

5. For each function in Exercise #4, determine if it is onto. Explain your reasoning.

6. Let 𝑆 = {𝑥 ∈ ℝ | 𝑥 ≥ 0}. Determine if each function is one-to-one. Explain your
reasoning.

(a) 𝑓 ∶ 𝑆 → ℝ where 𝑓(𝑥) = 𝑥2 for all 𝑥 ∈ 𝑆.
(b) 𝑓 ∶ ℝ → 𝑆 where 𝑓(𝑥) = 𝑥2 for all 𝑥 ∈ ℝ.
(c) 𝑓 ∶ 𝑆 → 𝑆 where 𝑓(𝑥) = 𝑥2 for all 𝑥 ∈ 𝑆.

7. For each function in Exercise #6, determine if it is onto. Explain your reasoning.

8. Consider 𝑓 ∶ ℤ → ℤ where 𝑓(𝑎) = 2𝑎 for all 𝑎 ∈ ℤ. Explain why 𝑓 is one-to-one,
but not onto.

9. Describe a function 𝑓 ∶ ℤ → ℤ that is onto, but not one-to-one.

10. Prove: Let 𝐺 be a group and consider the function 𝜃 ∶ 𝐺 → 𝐺 where 𝜃(𝑔) = 𝑔−1
for all 𝑔 ∈ 𝐺. Then 𝜃 is one-to-one and onto. (This exercise is referenced inChapter
16, Exercise #14.)

11. Complete the proof of Theorem 15.17 by proving its second implication.
Hint: Try proving its contrapositive.

12. Let 𝑆 = {𝑎, 𝑏, 𝑐} and 𝑇 = {𝑣, 𝑤, 𝑥, 𝑦, 𝑧}.

(a) Howmany different functions are there with domain 𝑆 and codomain 𝑇? Ex-
plain your reasoning.

(b) How many different functions are there with domain 𝑇 and codomain 𝑆?
Again, explain.

13. Define 𝑆 and 𝑇 as in Exercise #12. How many different onto functions are there
with domain 𝑇 and codomain 𝑆? Explain how you know.

14. Again, let 𝑆 and 𝑇 be as in Exercise #12. Howmany different one-to-one functions
are there with domain 𝑆 and codomain 𝑇? Explain.
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15. Suppose 𝑆 and 𝑇 are sets with𝑚 and 𝑛 elements, respectively.
(a) If𝑚 > 𝑛, can there be a one-to-one function with domain 𝑆 and codomain 𝑇?

Why or why not?
(b) Same as part (a), but with𝑚 < 𝑛.
(c) If𝑚 > 𝑛, can there be an onto function with domain 𝑆 and codomain 𝑇? Why

or why not?
(d) Same as part (c), but with𝑚 < 𝑛.

For Exercises #16 through #20, consider the functions 𝛼 ∶ 𝑆 → 𝑇, 𝛽 ∶ 𝑇 → 𝑈, and
𝛽 ∘ 𝛼 ∶ 𝑆 → 𝑈. (See the narrative surrounding Theorem 15.14 for details.)

16. Prove: If 𝛼 and 𝛽 are one-to-one, then 𝛽 ∘ 𝛼 is one-to-one.

17. Prove: If 𝛼 and 𝛽 are onto, then 𝛽 ∘ 𝛼 is onto.

18. (a) Prove: If 𝛽 ∘ 𝛼 is one-to-one, then 𝛼 is one-to-one.
(b) Use a counterexample to show that this is false: If 𝛽 ∘ 𝛼 is one-to-one, then 𝛽

is one-to-one.

19. (a) Prove: If 𝛽 ∘ 𝛼 is onto, then 𝛽 is onto.
(b) Use a counterexample to show that this is false: If 𝛽 ∘𝛼 is onto, then 𝛼 is onto.

20. Prove: If 𝛽 ∘ 𝛼 is onto and 𝛽 is one-to-one, then 𝛼 is onto.





16
Isomorphisms

Wefirst encountered groups that are essentially the same in Example 9.7, whenwe com-
pared the tables of ℤ3 = {0, 1, 2} under addition and {𝜀, 𝑟120, 𝑟240} under the operation
∘ in 𝐷3. Later in Section 13.3, we concluded that the additive group ℤ12 and the mul-
tiplicative group 𝑈13 are essentially the same, this time by forming the correspondence
between 𝑘 ∈ ℤ12 and 2𝑘 ∈ 𝑈13. In this chapter, we will formalize this notion of same-
ness between groups by introducing isomorphisms.

The following quote by mathematician Henri Poincaré captures the spirit of this
chapter:

Mathematicians do not deal in objects, but in relations among objects; they are
free to replace some objects by others so long as the relations remain unchanged.
Content to them is irrelevant: they are interested in form only.

16.1 Groups ℤ12 and ⟨𝑔⟩: Elements match up
Let’s begin by revisiting an earlier example. Recall that given a group element 𝑔, the
cyclic subgroup ⟨𝑔⟩ is defined by ⟨𝑔⟩ = {𝑔𝑘 | 𝑘 ∈ ℤ}, i.e., the set of all integer powers of
𝑔.
Example 13.16 Let 𝑔 be an element of a multiplicative group with ord(𝑔) = 12. By
Theorem 13.17, the distinct elements of ⟨𝑔⟩ are given by ⟨𝑔⟩ = {𝜀, 𝑔1, 𝑔2, 𝑔3, . . . , 𝑔11},
where 𝜀 = 𝑔0. We thus have the correspondence 𝑘 ↔ 𝑔𝑘 between ℤ12 and ⟨𝑔⟩. More-
over, ⟨𝑔⟩ behaves like ℤ12; e.g.,

𝑔9 ⋅ 𝑔7 = 𝑔9+7 = 𝑔16 = 𝑔12+4 = 𝑔12 ⋅ 𝑔4 = 𝜀 ⋅ 𝑔4 = 𝑔4,
so that 𝑔9 ⋅ 𝑔7 = 𝑔4, which is just like 9 + 7 = 4 in ℤ12.

Thus, we’ve said that the groups ℤ12 and ⟨𝑔⟩ are essentially the same. To make this
notion of sameness more precise, consider the function 𝜃 ∶ ℤ12 → ⟨𝑔⟩where 𝜃(𝑘) = 𝑔𝑘
for all 𝑘 ∈ ℤ12. For instance, 𝜃(7) = 𝑔7.

Remark. The function 𝜃 associates to each 𝑘 ∈ ℤ12 the element 𝑔𝑘 ∈ ⟨𝑔⟩. This is
no different from the correspondence 𝑘 ↔ 𝑔𝑘. But using the language of a function
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here provides a powerful tool that will allow us to derive and prove various features of
groups that are essentially the same.

Wewill prove that 𝜃 is one-to-one and onto. To show that 𝜃 is one-to-one, we begin
by assuming that 𝜃(𝑎) = 𝜃(𝑏), where 𝑎, 𝑏 ∈ ℤ12. Then we show that 𝑎 = 𝑏.

Theorem16.1. Let 𝑔 be an element of amultiplicative groupwith ord(𝑔) = 12. Consider
the function 𝜃 ∶ ℤ12 → ⟨𝑔⟩ where 𝜃(𝑘) = 𝑔𝑘 for all 𝑘 ∈ ℤ12. Then 𝜃 is one-to-one.

Proof. Assume 𝜃(𝑎) = 𝜃(𝑏), where 𝑎, 𝑏 ∈ ℤ12. Then 𝑔𝑎 = 𝑔𝑏, so that Theorem
13.12 implies that 12 ∣ (𝑎 − 𝑏). Thus 𝑎 = 𝑏 in ℤ12, from which we conclude that 𝜃 is
one-to-one. ■

To show that 𝜃 is onto, we let 𝑦 ∈ ⟨𝑔⟩. Then we must find 𝑘 ∈ ℤ12 such that
𝜃(𝑘) = 𝑦. Note that 𝑦 ∈ ⟨𝑔⟩ implies that 𝑦 is an integer power of 𝑔. For example,
suppose 𝑦 = 𝑔1,001. Since 1,001 = 12 ⋅ 83 + 5, we have

𝑔1,001 = 𝑔12⋅83+5 = (𝑔12)83 ⋅ 𝑔5 = 𝜀83 ⋅ 𝑔5 = 𝑔5,
so that 𝑔1,001 = 𝑔5. Hence with 𝑘 = 5 ∈ ℤ12, we have 𝜃(𝑘) = 𝜃(5) = 𝑔5 = 𝑔1,001 = 𝑦.
Here is a generalization, whose proof is left for you as an exercise at the end of the
chapter.

Theorem16.2. Let 𝑔 be an element of amultiplicative groupwith ord(𝑔) = 12. Consider
the function 𝜃 ∶ ℤ12 → ⟨𝑔⟩ where 𝜃(𝑘) = 𝑔𝑘 for all 𝑘 ∈ ℤ12. Then 𝜃 is onto.

Therefore, 𝜃 is both one-to-one and onto. Such a function is called a bijection.
It means that each element of the domain ℤ12 corresponds with exactly one element
of the codomain ⟨𝑔⟩; and conversely, each element of the codomain corresponds with
exactly one element of the domain. This implies that ⟨𝑔⟩ has 12 distinct elements just
like ℤ12, so that the elements in ℤ12 and ⟨𝑔⟩ “match up” as follows:

ℤ12 = { 0, 1, 2, 3, . . . , 10, 11},
⟨𝑔⟩ = {𝑔0, 𝑔1, 𝑔2, 𝑔3, . . . , 𝑔10, 𝑔11} (where 𝑔0 = 𝜀).

For instance, 𝜃(7) = 𝑔7 so that 7 ∈ ℤ12 and 𝑔7 ∈ ⟨𝑔⟩ match up as elements of these
groups. Of course, we had already shown this in Example 13.16. But the bijection
𝜃 does more than just match up the elements of ℤ12 and ⟨𝑔⟩, as we’ll see in the next
section.

16.2 Groups ℤ12 and ⟨𝑔⟩: Operations match up
As in Section 16.1, let 𝑔 be a group element with ord(𝑔) = 12. Consider again the
function 𝜃 ∶ ℤ12 → ⟨𝑔⟩ where 𝜃(𝑘) = 𝑔𝑘 for all 𝑘 ∈ ℤ12. We saw that 𝜃 is a bijection;
i.e., it’s one-to-one and onto. Therefore, 𝜃 allows the elements in ℤ12 and ⟨𝑔⟩ to “match
up” with each other.

We also recall from Example 13.16 that the operations of ℤ12 and ⟨𝑔⟩ match up as
well. For instance, since 12 = 0 in ℤ12 and 𝑔12 = 𝜀 in ⟨𝑔⟩, we have 9 + 7 = 4 in ℤ12,
which is just like 𝑔9 ⋅ 𝑔7 = 𝑔9+7 = 𝑔4 in ⟨𝑔⟩. Addition in ℤ12 feels likemultiplication in
⟨𝑔⟩, and the function 𝜃 can more precisely capture this intuition.



16.2. Groups ℤ12 and ⟨𝑔⟩: Operations match up 159

Using the law of exponents (i.e., 𝑔𝑎+𝑏 = 𝑔𝑎 ⋅ 𝑔𝑏), we have

𝜃(9 + 7) = 𝑔9+7 = 𝑔9 ⋅ 𝑔7 = 𝜃(9) ⋅ 𝜃(7),

so that 𝜃(9 + 7) = 𝜃(9) ⋅ 𝜃(7).
Let’s dig deeper into the equation 𝜃(9 + 7) = 𝜃(9) ⋅ 𝜃(7). As shown in the diagram

below:

• 𝜃(9 + 7)means first add 9 and 7 in ℤ12 and then apply 𝜃 to the sum.

• 𝜃(9) ⋅ 𝜃(7)means first apply 𝜃 to each of 9 and 7 and then multiply them in ⟨𝑔⟩.

Thus, 𝜃(9 + 7) = 𝜃(9) ⋅ 𝜃(7) may be interpreted as follows: It doesn’t matter whether
we first add in ℤ12 and then apply 𝜃, or we first apply 𝜃 to each and then multiply
in ⟨𝑔⟩. The equation more precisely captures the notion that addition in ℤ12 feels like
multiplication in ⟨𝑔⟩.

Here is another way to interpret 𝜃(9+7) = 𝜃(9) ⋅ 𝜃(7). Imagine applying 𝜃 to every
part of the addition table for ℤ12. Thus, 9, 7, and 9 + 7 are mapped to 𝜃(9), 𝜃(7), and
𝜃(9+7), respectively. We want the result to be the multiplication table for ⟨𝑔⟩. For that
to occur, we must have 𝜃(9 + 7) = 𝜃(9) ⋅ 𝜃(7).

As their elements and operations “match up,” we say that the groups ℤ12 and ⟨𝑔⟩
(where ord(𝑔) = 12) are isomorphic and write ℤ12 ≅ ⟨𝑔⟩. It’s a more precise way of
saying that the two groups are essentially the same. Below is a general definition.
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Definition 16.3 (Group isomorphism). Let𝐺 and𝐻 be groups with operations ∗𝐺 and
∗𝐻 . A function 𝜃 ∶ 𝐺 → 𝐻 is an isomorphism if:
• 𝜃 is a bijection (i.e., one-to-one and onto) and
• 𝜃 is operation preserving; i.e., 𝜃(𝑎 ∗𝐺 𝑏) = 𝜃(𝑎) ∗𝐻 𝜃(𝑏) for all 𝑎, 𝑏 ∈ 𝐺.

We say that 𝐺 is isomorphic to 𝐻 and write 𝐺 ≅ 𝐻.

Remark. 𝐺 ≅ 𝐻 means they’re essentially the same group.

We’ve seen that ℤ12 ≅ ⟨𝑔⟩ where ord(𝑔) = 12. Of course, there is nothing special
about 12 here. Thus, we have the following theorem.

Theorem 16.4. Let 𝑔 be an element of a multiplicative group with ord(𝑔) = 𝑛. Consider
the function 𝜃 ∶ ℤ𝑛 → ⟨𝑔⟩ where 𝜃(𝑘) = 𝑔𝑘 for all 𝑘 ∈ ℤ𝑛. Then, 𝜃 is an isomorphism so
that ℤ𝑛 is isomorphic to ⟨𝑔⟩.

Example 16.5. Recall that ℝ is the additive group of all real numbers. Define ℝ>0 =
{𝑟 ∈ ℝ | 𝑟 > 0}, i.e., the set of all positive real numbers. In an exercise, youwill show that
ℝ>0 is a group under multiplication. Define a function 𝛼 ∶ ℝ → ℝ>0 where 𝛼(𝑥) = 3𝑥
for all 𝑥 ∈ ℝ. We verify that 𝛼 is an isomorphism:
• 𝛼 is one-to-one: Assume 𝛼(𝑎) = 𝛼(𝑏)where 𝑎, 𝑏 ∈ ℝ. Then 3𝑎 = 3𝑏. By taking the
log base 3 of both sides of 3𝑎 = 3𝑏, we obtain log3 3𝑎 = log3 3𝑏, which simplifies to
𝑎 = 𝑏.

• 𝛼 is onto: Assume 𝑦 ∈ ℝ>0. Then let 𝑥 = log3 𝑦 ∈ ℝ so that 𝛼(𝑥) = 3𝑥 = 3log3 𝑦 =
𝑦.

• 𝛼 is operation preserving: For 𝑎, 𝑏 ∈ ℝ, we have 𝛼(𝑎 + 𝑏) = 3𝑎+𝑏 = 3𝑎 ⋅ 3𝑏 =
𝛼(𝑎) ⋅ 𝛼(𝑏).

Proof know-how. In Example 16.5 above, we rely on the “working backwards” tech-
nique yet again. To show that 𝛼 is onto, we had to find 𝑥 ∈ ℝ such that 𝛼(𝑥) = 𝑦, or
equivalently, 3𝑥 = 𝑦. Working backwards from this goal, we solved 3𝑥 = 𝑦 for 𝑥 by
taking the log base 3 of both sides. Thus, we found 𝑥 = log3 𝑦. As before, this process
of solving for 𝑥 is scratch work and does not belong in the proof. Instead, the focus of
the proof (that 𝛼 is onto) is showing that 𝛼(𝑥) = 𝑦 for 𝑥 = log3 𝑦.

Example 16.6 (Non-example). Consider the additive groupℝ and define the function
𝑓 ∶ ℝ → ℝ, where 𝑓(𝑥) = 𝑥3 for all 𝑥 ∈ ℝ. Then 𝑓 is a bijection, i.e., it’s one-to-one
and onto, but not operation preserving. (You’ll show these in an exercise at the end of
the chapter.) Thus, 𝑓 is not an isomorphism.

If group 𝐺 is isomorphic to group 𝐻, then they are essentially the same. Thus, if
one of them is commutative, then so is the other. Here is a theorem which captures
that idea. Its converse is also true, but we’ll leave that for you to prove as an exercise at
the end of the chapter.

Theorem 16.7. Let𝐺 and𝐻 be groups with operations ∗𝐺 and ∗𝐻 . Suppose 𝜃 ∶ 𝐺 → 𝐻
is an isomorphism. If 𝐺 is commutative, then𝐻 is commutative.
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Proof. Assume 𝐺 is commutative. To show that 𝐻 is commutative, suppose ℎ1, ℎ2 ∈
𝐻. We must show that ℎ1 ∗𝐻 ℎ2 = ℎ2 ∗𝐻 ℎ1. Since 𝜃 is onto, there exist 𝑔1, 𝑔2 ∈ 𝐺,
such that ℎ1 = 𝜃(𝑔1) and ℎ2 = 𝜃(𝑔2). Therefore,

ℎ1 ∗𝐻 ℎ2 = 𝜃(𝑔1) ∗𝐻 𝜃(𝑔2)
= 𝜃(𝑔1 ∗𝐺 𝑔2) (since 𝜃 is operation preserving)
= 𝜃(𝑔2 ∗𝐺 𝑔1) (since 𝐺 is commutative)
= 𝜃(𝑔2) ∗𝐻 𝜃(𝑔1) (since 𝜃 is operation preserving)
= ℎ2 ∗𝐻 ℎ1.

Thus ℎ1 ∗𝐻 ℎ2 = ℎ2 ∗𝐻 ℎ1 as desired. ■

Proof know-how. In Theorem 16.7 above, we were given that 𝜃 is an isomorphism.
But to say that 𝜃 is an isomorphism means (1) 𝜃 is one-to-one, (2) 𝜃 is onto, and (3) 𝜃
is operation preserving. In a proof, you should specifically refer to one of these three
properties, e.g., “Since 𝜃 is onto,” rather than saying “Since 𝜃 is an isomorphism.” (In
fact, we did not use the fact that 𝜃 is one-to-one in the above proof.) This adds to the
clarity of your argument.

16.3 Elements with infinite order revisited
Now, let 𝑔 be a group element with infinite order. As we saw in Section 12.5, here are
a couple of examples of such an element:

• 1 ∈ ℤ where ℤ is a group under addition.

• 3 ∈ ℝ∗ where ℝ∗ = {𝑎 ∈ ℝ | 𝑎 has a multiplicative inverse} is a group under
multiplication.

We dig deeper into the second example. Consider the following cyclic subgroup of ℝ∗:

⟨3⟩ = {3𝑘 | 𝑘 ∈ ℤ}
= {. . . , 3−4, 3−3, 3−2, 3−1, 30, 31, 32, 33, 34, . . .}.

Then, define a function 𝜃 ∶ ℤ → ⟨3⟩ where 𝜃(𝑘) = 3𝑘 for all 𝑘 ∈ ℤ. We first show that
𝜃 is one-to-one. Suppose 𝜃(𝑎) = 𝜃(𝑏) where 𝑎, 𝑏 ∈ ℤ. Then 3𝑎 = 3𝑏. Since ord(3) is
infinite, Theorem 12.29 implies that 𝑎 = 𝑏, showing that 𝜃 is one-to-one. To prove that
𝜃 is onto, let 𝑦 ∈ ⟨3⟩ so that 𝑦 = 3𝑘 for some integer 𝑘. Then 𝜃(𝑘) = 3𝑘 = 𝑦, and hence
𝜃 is onto.

To show that 𝜃 is operation preserving, let 𝑎, 𝑏 ∈ ℤ. Then
𝜃(𝑎 + 𝑏) = 3𝑎+𝑏 = 3𝑎 ⋅ 3𝑏 = 𝜃(𝑎) ⋅ 𝜃(𝑏)

as desired. We showed that 𝜃 is a bijection and operation preserving, hence an isomor-
phism. In fact, there is nothing special about 3 ∈ ℝ∗ here. Thus, we have the following
theorem.

Theorem 16.8. Let 𝑔 be an element of a multiplicative group with infinite order. Define
𝜃 ∶ ℤ → ⟨𝑔⟩ where 𝜃(𝑘) = 𝑔𝑘 for all 𝑘 ∈ ℤ. Then 𝜃 is an isomorphism so that ℤ is
isomorphic to ⟨𝑔⟩.
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Remark. Theorems 16.4 and 16.8 together categorize all cyclic groups. Given a cyclic
group 𝐺 = ⟨𝑔⟩, where 𝑔 is a generator of 𝐺, we have the following:

• If ord(𝑔) = 𝑛, then ℤ𝑛 is isomorphic to 𝐺.

• If ord(𝑔) is infinite, then ℤ is isomorphic to 𝐺.

16.4 Inverse isomorphisms
Given groups 𝐺 and𝐻, we say that 𝐺 is isomorphic to𝐻 if there exists an isomorphism
𝛼 ∶ 𝐺 → 𝐻, i.e., a bijection that is operation preserving. This means that 𝐺 and 𝐻
are essentially the same group. But this relationship seems a bit one-sided, since in the
isomorphism 𝛼, the domain is𝐺 and the codomain is𝐻. If𝐺 is isomorphic to𝐻, could
we also say that𝐻 is isomorphic to 𝐺? Is there a corresponding isomorphism, say 𝛽, in
which 𝐻 is the domain and 𝐺 is the codomain?

Before answering these questions, let’s look at an example.

Example 16.9. In Example 16.5, we defined a function 𝛼 ∶ ℝ → ℝ>0 where 𝛼(𝑥) =
3𝑥 for all 𝑥 ∈ ℝ. (Note that ℝ>0 is the set of all positive real numbers, which is a
multiplicative group.) We also verified that 𝛼 is an isomorphism. Define a function
𝛽 ∶ ℝ>0 → ℝ where 𝛽(𝑥) = log3 𝑥 for all 𝑥 ∈ ℝ>0. You’ll show in an exercise at
the end of the chapter that 𝛽 is one-to-one and onto. We now show that 𝛽 is operation
preserving. For 𝑎, 𝑏 ∈ ℝ>0, we have 𝛽(𝑎⋅𝑏) = log3(𝑎⋅𝑏) = log3 𝑎+log3 𝑏 = 𝛽(𝑎)+𝛽(𝑏).
Here, log3(𝑎⋅𝑏) = log3 𝑎+log3 𝑏 follows from one of the laws of logarithms. Therefore,
𝛽 is an isomorphism.

Observe that 𝛽 is not just any isomorphism from ℝ>0 to ℝ. It corresponds to 𝛼 in
the following way. Consider the composite function 𝛽 ∘ 𝛼 ∶ ℝ → ℝ. For 𝑥 ∈ ℝ, we
have (𝛽 ∘ 𝛼)(𝑥) = 𝛽(𝛼(𝑥)) = 𝛽(3𝑥) = log3(3𝑥) = 𝑥, so that (𝛽 ∘ 𝛼)(𝑥) = 𝑥. In other
words, 𝛽 ∘ 𝛼 is the identity function from the set ℝ to itself. The figure below depicts
this situation:

Similarly, the composite function 𝛼 ∘ 𝛽 ∶ ℝ>0 → ℝ>0 is the identity function from
the set ℝ>0 to itself. For 𝑥 ∈ ℝ>0, we have (𝛼 ∘ 𝛽)(𝑥) = 𝛼(𝛽(𝑥)) = 𝛼(log3 𝑥) = 3log3 𝑥 =
𝑥, so that (𝛼 ∘ 𝛽)(𝑥) = 𝑥.

Remark. In Example 16.9 above, we say that 𝛽 is an inverse isomorphism of 𝛼 and
we write 𝛽 = 𝛼−1. Conversely, 𝛼 is an inverse isomorphism of 𝛽, which is denoted by
𝛼 = 𝛽−1.
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To generalize, suppose 𝛼 ∶ 𝑆 → 𝑇 is a bijection from set 𝑆 to set 𝑇. We define a
function 𝛽 ∶ 𝑇 → 𝑆 as follows. Let 𝑡 ∈ 𝑇. Since 𝛼 is onto, there exists an element
𝑠 ∈ 𝑆, such that 𝛼(𝑠) = 𝑡. We claim that 𝑠 is the only such element, for if there exists
another element 𝑟 ∈ 𝑆 such that 𝛼(𝑟) = 𝑡, then 𝛼(𝑟) = 𝛼(𝑠) as both are equal to 𝑡. And
since 𝛼 is one-to-one, we deduce that 𝑟 = 𝑠. Thus for each 𝑡 ∈ 𝑇, there exists a unique
element 𝑠 ∈ 𝑆 such that 𝛼(𝑠) = 𝑡. We can then unambiguously define 𝛽(𝑡) = 𝑠.

Proof know-how. In defining the function 𝛽 above, we wanted to show that 𝑠 is the
unique element in 𝑆 such that 𝛼(𝑠) = 𝑡. We accomplished this by assuming that there
are two such elements and showing that those two elements must be the same. (Com-
pare this with the proof of Theorem 8.9, where we showed that a group has a unique
identity element.)

Definition 16.10. Let 𝛼 ∶ 𝑆 → 𝑇 be a bijection from set 𝑆 to set 𝑇. Define a function
𝛽 ∶ 𝑇 → 𝑆 as follows. For each 𝑡 ∈ 𝑇, let 𝛽(𝑡) = 𝑠, where 𝑠 is the unique element in 𝑆
such that 𝛼(𝑠) = 𝑡. Then 𝛽 is said to be an inverse function of 𝛼 and is denoted 𝛽 = 𝛼−1.

Example 16.11. Consider the function 𝛼 ∶ ℝ>0 → ℝ>0 where 𝛼(𝑥) = √𝑥 for all
𝑥 ∈ ℝ>0. You’ll show in an exercise that 𝛼 is a bijection. To define 𝛽 = 𝛼−1, let 𝑡 ∈ ℝ>0

(the codomain of 𝛼). For instance, say 𝑡 = 5. We need to find 𝑠 ∈ ℝ>0 (the domain of
𝛼) such that 𝛼(𝑠) = 𝑡, or equivalently √𝑠 = 5. We have 𝑠 = 25, so that 𝛽(5) = 25. As
another example, let’s say 𝑡 = 𝜋. We must find 𝑠 such that √𝑠 = 𝜋. Then 𝑠 = 𝜋2, so
that 𝛽(𝜋) = 𝜋2. Indeed, we have a formula for 𝛽, namely, 𝛽(𝑡) = 𝑡2 for all 𝑡 ∈ ℝ>0.

Let’s examine the composite function 𝛽 ∘ 𝛼 ∶ ℝ>0 → ℝ>0. For 𝑥 ∈ ℝ>0, we have

(𝛽 ∘ 𝛼)(𝑥) = 𝛽(𝛼(𝑥)) = 𝛽(√𝑥 ) = (√𝑥 )2 = 𝑥,

so that (𝛽 ∘ 𝛼)(𝑥) = 𝑥 for all 𝑥 ∈ ℝ>0. Similarly, (𝛼 ∘ 𝛽)(𝑥) = 𝛼(𝛽(𝑥)) = 𝛼(𝑥2) = √𝑥2 =
𝑥, where√𝑥2 = 𝑥 since 𝑥 is positive. Thus, both 𝛽∘𝛼 and 𝛼∘𝛽 are the identity function
from ℝ>0 to itself.

The function 𝛽 in Definition 16.10 has the properties that we expect based on the
examples that we’ve studied. The proof of the following theorem is left for you as an
exercise.

Theorem 16.12. Let 𝛼 ∶ 𝑆 → 𝑇 be a bijection, and let 𝛽 ∶ 𝑇 → 𝑆 be an inverse function
of 𝛼. Then:

• 𝛽 is a bijection,

• 𝛽 ∘ 𝛼 is the identity function from 𝑆 to itself.

• 𝛼 ∘ 𝛽 is the identity function from 𝑇 to itself.

Now, we’re ready to answer the questions from the beginning of this section.

Theorem 16.13. Let 𝐺 and 𝐻 be groups with operations ∗𝐺 and ∗𝐻 , and suppose 𝛼 ∶
𝐺 → 𝐻 is an isomorphism. Let 𝛽 ∶ 𝐻 → 𝐺 be an inverse function of 𝛼. Then 𝛽 is an
isomorphism.
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Proof. By Theorem 16.12, 𝛽 is a bijection. Thus it suffices to show that 𝛽 is operation
preserving. Let ℎ1, ℎ2 ∈ 𝐻. We must show that 𝛽(ℎ1 ∗𝐻 ℎ2) = 𝛽(ℎ1) ∗𝐺 𝛽(ℎ2). Let
𝑔1 = 𝛽(ℎ1) and 𝑔2 = 𝛽(ℎ2), so that 𝛼(𝑔1) = ℎ1 and 𝛼(𝑔2) = ℎ2. Since 𝛼 is operation
preserving, 𝛼(𝑔1 ∗𝐺 𝑔2) = 𝛼(𝑔1) ∗𝐻 𝛼(𝑔2) = ℎ1 ∗𝐻 ℎ2. Hence, 𝛼 maps 𝑔1 ∗𝐺 𝑔2 ∈ 𝐺
to ℎ1 ∗𝐻 ℎ2 ∈ 𝐻, which implies that 𝛽(ℎ1 ∗𝐻 ℎ2) = 𝑔1 ∗𝐺 𝑔2. But 𝑔1 = 𝛽(ℎ1) and
𝑔2 = 𝛽(ℎ2), so that 𝛽(ℎ1 ∗𝐻 ℎ2) = 𝛽(ℎ1) ∗𝐺 𝛽(ℎ2), as desired. ■

Remark. In the above theorem, we call 𝛽 an inverse isomorphism of 𝛼. Thus, we con-
clude that if 𝐺 is isomorphic to𝐻 via an isomorphism 𝛼, then𝐻 is isomorphic to 𝐺 via
an inverse isomorphism 𝛽. Hence, we can simply say that 𝐺 and 𝐻 are isomorphic to
each other.

Exercises
1. In Example 9.11, we compared the groups ℤ4 = {0, 1, 2, 3} under addition and

𝐶 = {1, 𝑖, −1, −𝑖} under multiplication. Below are their group tables:

Table for ℤ4:

+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

Table for 𝐶:

∗ 1 𝑖 −1 −𝑖
1 1 𝑖 −1 −𝑖
𝑖 𝑖 −1 −𝑖 1
−1 −1 −𝑖 1 𝑖
−𝑖 −𝑖 1 𝑖 −1

(a) Explain how these tables show that ℤ4 is isomorphic to 𝐶.
(b) Find the order of each element ofℤ4 and each element of𝐶. What conjectures

do you have? (This exercise is referenced in Section 17.3.)

2. Prove Theorem 16.2.

3. Define ℝ>0 = {𝑟 ∈ ℝ | 𝑟 > 0}, i.e., the set of all positive real numbers. Explain why
ℝ>0 is a group under multiplication. (See Example 16.5.)

4. Consider the additive groupℝ and define the function 𝑓 ∶ ℝ → ℝwhere 𝑓(𝑥) = 𝑥3
for all 𝑥 ∈ ℝ.
(a) Show that 𝑓 is a bijection; i.e., it’s one-to-one and onto.
(b) Explain why 𝑓 is not operation preserving.

5. Consider the additive group ℤ and define the function 𝑓 ∶ ℤ → ℤ where 𝑓(𝑛) =
𝑛 + 1 for all 𝑛 ∈ ℤ.
(a) Prove: 𝑓 is a bijection.
(b) Explain why 𝑓 is not operation preserving.

6. Consider the function 𝛼 ∶ 𝑈35 → 𝑈35 where 𝛼(𝑥) = 3𝑥 for all 𝑥 ∈ 𝑈35. In Chapter
15, we showed that 𝛼 is a bijection. Explain why 𝛼 is not operation preserving.

7. Consider the function 𝛽 ∶ ℝ>0 → ℝ where 𝛽(𝑥) = log3 𝑥 for all 𝑥 ∈ ℝ>0. Show
that 𝛽 is a bijection; i.e., it’s one-to-one and onto. (See Example 16.9.)
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8. Consider the function 𝛼 ∶ ℝ>0 → ℝ>0 where 𝛼(𝑥) = √𝑥 for all 𝑥 ∈ ℝ>0.

(a) Show that 𝛼 is a bijection. (See Example 16.11.)
(b) Show that 𝛼 is operation preserving.
Thus, we may conclude that 𝛼 is an isomorphism.

9. Consider the additive groups ℤ and 5ℤ. Prove that they are isomorphic by taking
these steps:

• Define a function 𝜃 ∶ ℤ → 5ℤ (or 𝜃 ∶ 5ℤ → ℤ).
• Show that 𝜃 is a bijection.
• Show that 𝜃 is operation preserving.

10. Let 𝐻 = {[ 1 0
𝑏 1 ] | 𝑏 ∈ ℤ𝑚}. In Chapter 11, Exercise #11, we showed that 𝐻 is a

subgroup of 𝐺(ℤ𝑚). Prove that ℤ𝑚 and 𝐻 are isomorphic by taking these steps:

• Define a function 𝜃 ∶ ℤ𝑚 → 𝐻 (or 𝜃 ∶ 𝐻 → ℤ𝑚).
• Show that 𝜃 is a bijection.
• Show that 𝜃 is operation preserving.

11. Fix a matrix 𝛾 ∈ 𝐺(ℤ10). Define a function 𝜃 ∶ 𝐺(ℤ10) → 𝐺(ℤ10) such that 𝜃(𝛼) =
𝛾 ⋅ 𝛼 ⋅ 𝛾−1 for all 𝛼 ∈ 𝐺(ℤ10). Prove that 𝜃 is an isomorphism. (See Example 12.20.)

12. Let 𝐺 be a group and fix an element 𝑔 ∈ 𝐺. Define a function 𝜃 ∶ 𝐺 → 𝐺 such that
𝜃(𝑎) = 𝑔𝑎𝑔−1 for all 𝑎 ∈ 𝐺. Prove that 𝜃 is an isomorphism.
Note: 𝜃 is often called the conjugation function. (See Definition 12.21.)

13. Consider the additive groupℝ and define the function 𝜃 ∶ ℝ → ℝwhere 𝜃(𝑥) = 3𝑥
for all 𝑥 ∈ ℝ.
(a) Show that 𝜃 is an isomorphism.
(b) Change the domain and codomain of 𝜃 fromℝ toℤ. Is 𝜃 still an isomorphism?

Why or why not?

14. Let 𝐺 be a group and consider the function 𝜃 ∶ 𝐺 → 𝐺 where 𝜃(𝑔) = 𝑔−1 for all
𝑔 ∈ 𝐺. We’ve shown that 𝜃 is a bijection. (See Chapter 15, Exercise #10.) Now,
prove that 𝜃 is operation preserving if and only if 𝐺 is commutative.

15. (a) Explain why 𝑈10 is not isomorphic to 𝑈7.
(b) Explain why 𝑈10 is not isomorphic to 𝑈8.

16. Each pair of groups has the same number of elements. Determine whether or not
they’re isomorphic.

(a) ℤ2 × ℤ3 and ℤ6.
(b) ℤ2 × ℤ4 and ℤ8.
(c) ℤ4 × ℤ6 and ℤ3 × ℤ8.

17. Explain why the additive groupℝ is not isomorphic to themultiplicative groupℝ∗.
Hint: If 𝜃 ∶ ℝ → ℝ∗ were an isomorphism, then there exists 𝑟 ∈ ℝ such that
𝜃(𝑟) = −1. Explain why that would lead to a contradiction.
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18. Let 𝑔 be a group element with ord(𝑔) = 18.

(a) Find the order of each element of ℤ18.
(b) Find the order of each element of ⟨𝑔⟩.
(c) What conjectures do you have?

19. Consider the function 𝜃 ∶ ℤ12 → ℤ12 where 𝜃(𝑛) = 4𝑛 for all 𝑛 ∈ ℤ12.

(a) Verify that 𝜃 is operation preserving. (Note that the operation of ℤ12 is addi-
tion.)

(b) Is 𝜃 an isomorphism? Why or why not?

20. Fix 𝑘 ∈ ℤ12 and consider the function 𝜃 ∶ ℤ12 → ℤ12 where 𝜃(𝑛) = 𝑘 ⋅ 𝑛 for all
𝑛 ∈ ℤ12.

(a) Suppose 𝑘 = 5. Verify that 𝜃 is an isomorphism.
(b) For which values of 𝑘 is 𝜃 an isomorphism?
(c) What conjectures do you have?

21. Fix 𝑘 ∈ ℤ𝑚 and consider the function 𝜃 ∶ ℤ𝑚 → ℤ𝑚 where 𝜃(𝑛) = 𝑘 ⋅ 𝑛 for all
𝑛 ∈ ℤ𝑚.

(a) Prove: 𝜃 is an isomorphism if and only if gcd(𝑘,𝑚) = 1.
(b) Prove: Every isomorphism 𝜃 ∶ ℤ𝑚 → ℤ𝑚 has the formula 𝜃(𝑛) = 𝑘 ⋅ 𝑛 with

gcd(𝑘,𝑚) = 1.

22. Consider the function 𝜃 ∶ ℤ12 → ℤ12 where 𝜃(𝑛) = 5𝑛 for all 𝑛 ∈ ℤ12. We verified
in Exercise #20 that 𝜃 is an isomorphism.

(a) Find the order of 1 ∈ ℤ12 (the domain of 𝜃) and the order of 𝜃(1) ∈ ℤ12 (the
codomain of 𝜃).

(b) Find the order of 2 ∈ ℤ12 (the domain of 𝜃) and the order of 𝜃(2) ∈ ℤ12 (the
codomain of 𝜃).

(c) Find the order of 4 ∈ ℤ12 (the domain of 𝜃) and the order of 𝜃(4) ∈ ℤ12 (the
codomain of 𝜃).

(d) What conjectures do you have?

(This exercise is referenced in Section 17.3.)

23. Consider the function 𝜃 ∶ 𝑈13 → 𝑈13 where 𝜃(𝑛) = 𝑛5 for all 𝑛 ∈ 𝑈13.

(a) Elizabeth says, “This is the 𝑈13 version of the function in Exercise #22. So it
should be an isomorphism.” What might she mean?

(b) Verify that 𝜃 is indeed an isomorphism.
Hint: To show that 𝜃 is a bijection, try computing the values 𝜃(1), 𝜃(2), 𝜃(3),
. . . , 𝜃(12).

(This exercise is referenced in Example 17.14.)
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24. Consider the function 𝜃 ∶ 𝑈13 → 𝑈13 where 𝜃(𝑛) = 𝑛5 for all 𝑛 ∈ 𝑈13. We verified
in Exercise #23 that 𝜃 is an isomorphism.
(a) Find the order of 2 ∈ 𝑈13 (the domain of 𝜃) and the order of 𝜃(2) ∈ 𝑈13 (the

codomain of 𝜃).
(b) Find the order of 4 ∈ 𝑈13 (the domain of 𝜃) and the order of 𝜃(4) ∈ 𝑈13 (the

codomain of 𝜃).
(c) Find the order of 3 ∈ 𝑈13 (the domain of 𝜃) and the order of 𝜃(3) ∈ 𝑈13 (the

codomain of 𝜃).
(d) What conjectures do you have?

(This exercise is referenced in Section 17.3.)

25. Prove: Let 𝐺 and 𝐻 be groups with operations ∗𝐺 and ∗𝐻 . Let 𝜃 ∶ 𝐺 → 𝐻 be an
isomorphism. If 𝐻 is commutative, then 𝐺 is commutative.
Note: You may not use the inverse isomorphism 𝜃−1 in your proof.

26. Prove Theorem 16.12.





17
Homomorphisms, Part I

The next two chapters focus on homomorphisms. Given groups 𝐺 and 𝐻, a homomor-
phism 𝜃 ∶ 𝐺 → 𝐻 is a function that is operation preserving, but not necessarily a
bijection. Thus, an isomorphism is a special type of a homomorphism, just as a square
is a special type of a rectangle. Since 𝜃 need not be a bijection, we cannot say that the
elements in 𝐺 and 𝐻 “match up.” Nonetheless, 𝜃 still preserves many essential group
properties including the identity element, inverses, and the order of an element (sort
of). For example, 𝜃maps the identity element of𝐺 to the identity element of𝐻, as we’ll
prove in this chapter.

Homomorphisms will also play a key role in our study of quotient groups in the
next unit. In Chapter 18, we’ll get a sneak preview of that role as we examine how a
homomorphism 𝜃 ∶ 𝐺 → 𝐻 partitions the domain 𝐺 into equal-sized subsets.

17.1 Group homomorphism
Let 𝑔 be a group element with ord(𝑔) = 12. We’ve seen how the groups ℤ12 and ⟨𝑔⟩ are
essentially the same. In particular, their operations match up. For instance, we have
9 + 7 = 4 in ℤ12, which is just like 𝑔9 ⋅ 𝑔7 = 𝑔9+7 = 𝑔4 in ⟨𝑔⟩. Hence, addition in ℤ12
feels likemultiplication in ⟨𝑔⟩.

In Chapter 16, as a way of articulating and understanding this observation more
precisely, we studied the function 𝜃 ∶ ℤ12 → ⟨𝑔⟩ where 𝜃(𝑘) = 𝑔𝑘 for all 𝑘 ∈ ℤ12. We
found that 𝜃 is operation preserving; i.e.,

𝜃(𝑎 + 𝑏) = 𝑔𝑎+𝑏 = 𝑔𝑎 ⋅ 𝑔𝑏 = 𝜃(𝑎) ⋅ 𝜃(𝑏)

for all 𝑎, 𝑏 ∈ ℤ12. The function 𝜃 is an example of a homomorphism, which is defined
below.

Definition 17.1 (Group homomorphism). Let 𝐺 and 𝐻 be groups with operations ∗𝐺
and ∗𝐻 . A function 𝜃 ∶ 𝐺 → 𝐻 is a homomorphism if it is operation preserving; i.e.,
𝜃(𝑎 ∗𝐺 𝑏) = 𝜃(𝑎) ∗𝐻 𝜃(𝑏) for all 𝑎, 𝑏 ∈ 𝐺.

169
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We elaborate on the equation 𝜃(𝑎 ∗𝐺 𝑏) = 𝜃(𝑎) ∗𝐻 𝜃(𝑏). As shown in the diagram
below:

• 𝜃(𝑎 ∗𝐺 𝑏)means first multiply 𝑎 and 𝑏 in 𝐺 and then apply 𝜃 to the product.

• 𝜃(𝑎) ∗𝐻 𝜃(𝑏)means first apply 𝜃 to each of 𝑎 and 𝑏 and then multiply them in 𝐻.

Thus, 𝜃(𝑎∗𝐺 𝑏) = 𝜃(𝑎)∗𝐻 𝜃(𝑏)may be interpreted as follows: It doesn’t matter whether
we first multiply in 𝐺 and then apply 𝜃, or we first apply 𝜃 to each and then multiply
in𝐻. The equation more precisely captures the notion that the operation of 𝐺 feels like
the operation of 𝐻.

Remark. An isomorphism is a special type of a homomorphism that is also a bijec-
tion. In particular, all properties of homomorphisms that we will prove apply to iso-
morphisms as well.

As the example below shows, a homomorphism need not be an isomorphism.

Example 17.2. Consider 𝜑 ∶ ℤ → ℤ5 where 𝜑(𝑎) = 𝑎 (mod 5) for all 𝑎 ∈ ℤ. For
instance, we have

𝜑(26 + 17) = 𝜑(43) = 43 (mod 5) = 3 (mod 5).
Furthermore, 𝜑(26)+𝜑(17) = 26 (mod 5)+17 (mod 5) = 1 (mod 5)+2 (mod 5) = 3
(mod 5). Therefore, 𝜑(26+17) = 𝜑(26)+𝜑(17). In an exercise at the end of the chapter,
you’ll explain why 𝜑(𝑎 + 𝑏) = 𝜑(𝑎) + 𝜑(𝑏) for all 𝑎, 𝑏 ∈ ℤ. In other words, it doesn’t
matter whether we first add in ℤ and then reduce mod 5, or first reduce each mod 5
and then add in ℤ5. Thus, 𝜑 is a homomorphism.

However, 𝜑 is not an isomorphism. An isomorphism is a bijection, i.e., one-to-one
and onto. Thus, the domain and codomain of a bijection must have the same number
of elements. This is not the case in𝜑, where the domainℤ has infinitelymany elements
and the codomain ℤ5 has five elements.

Example 17.3. Consider the function 𝛾 ∶ ℤ12 → ℤ18 where 𝛾(𝑎) = 6𝑎 for all 𝑎 ∈ ℤ12.
For instance, we have 𝛾(7+10) = 𝛾(5) = 6 ⋅5 = 30 = 12. Note here that the sum 7+10
is computed in ℤ12 and the reduction 30 = 12 is done in ℤ18. Moreover, 𝛾(7) + 𝛾(10) =
6 ⋅ 7+ 6 ⋅ 10 = 42+ 60 = 102 = 12, where the reduction 102 = 12 is done in ℤ18. Thus,
𝛾(7 + 10) = 𝛾(7) + 𝛾(10), as both sides are equal to 12 (in ℤ18).
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For 𝑎, 𝑏 ∈ ℤ12, we have 𝛾(𝑎 + 𝑏) = 6(𝑎 + 𝑏) = 6𝑎 + 6𝑏 = 𝛾(𝑎) + 𝛾(𝑏), so that
𝛾(𝑎 + 𝑏) = 𝛾(𝑎) + 𝛾(𝑏). The key step 6(𝑎 + 𝑏) = 6𝑎 + 6𝑏 is due to the distributive law.
Thus, 𝛾 is a homomorphism.

Example 17.4. Consider the function 𝜆 ∶ 𝑈13 → 𝑈13 where 𝜆(𝑎) = 𝑎3 for all 𝑎 ∈ 𝑈13.
For instance, we have

𝜆(5 ⋅ 2) = 𝜆(10) = 103 = 1,000 = 12 and 𝜆(5) ⋅ 𝜆(2) = 53 ⋅ 23 = 125 ⋅ 8 = 1,000 = 12.

Thus, 𝜆(5 ⋅ 2) = 𝜆(5) ⋅ 𝜆(2), as both sides are equal to 12.
For 𝑎, 𝑏 ∈ 𝑈13, we have 𝜆(𝑎 ⋅ 𝑏) = (𝑎 ⋅ 𝑏)3 = 𝑎3 ⋅ 𝑏3 = 𝜆(𝑎) ⋅ 𝜆(𝑏), so that 𝜆(𝑎 ⋅ 𝑏) =

𝜆(𝑎)⋅𝜆(𝑏). The key step (𝑎⋅𝑏)3 = 𝑎3 ⋅𝑏3 is due to an exponent law, which holds because
multiplication in 𝑈13 is commutative. Therefore, 𝜆 is a homomorphism.

Example 17.5. Consider the function 𝛿 ∶ 𝐺(ℤ10) → 𝑈10 where 𝛿(𝛼) = det 𝛼 for
all 𝛼 ∈ 𝐺(ℤ10). Recall that matrices in 𝐺(ℤ10) have multiplicative inverses, and thus
Theorem 7.21 ensures that det 𝛼 ∈ 𝑈10. For a concrete example, let 𝛼, 𝛽 ∈ 𝐺(ℤ10)
where 𝛼 = [ 1 5

2 7 ] and 𝛽 = [ 5 2
3 1 ]. Then 𝛿(𝛼 ⋅ 𝛽) = 𝛿 ([ 0 7

1 1 ]) = det[ 0 7
1 1 ] = 3, and

𝛿(𝛼) ⋅ 𝛿(𝛽) = det[ 1 5
2 7 ] ⋅ det[ 5 2

3 1 ] = 7 ⋅ 9 = 3. Thus, 𝛿(𝛼 ⋅ 𝛽) = 𝛿(𝛼) ⋅ 𝛿(𝛽), as both sides
are equal to 3.

Formatrices𝛼, 𝛽 ∈ 𝐺(ℤ10), we have 𝛿(𝛼⋅𝛽) = det(𝛼⋅𝛽) = det 𝛼⋅det 𝛽 = 𝛿(𝛼)⋅𝛿(𝛽),
so that 𝛿(𝛼 ⋅ 𝛽) = 𝛿(𝛼) ⋅ 𝛿(𝛽). The key property is det(𝛼 ⋅ 𝛽) = det 𝛼 ⋅ det 𝛽; i.e., the
determinant of the matrix product is equal to the product of the determinants. (See
Theorem 7.24.) Thus, 𝛿 is a homomorphism.

These above examples illustrate howhomomorphisms provide a unifying language
to describe familiar algebraic properties. The opening example of this chapter shows
that an exponent law 𝑔𝑎+𝑏 = 𝑔𝑎 ⋅ 𝑔𝑏 can be written as 𝜃(𝑎 + 𝑏) = 𝜃(𝑎) ⋅ 𝜃(𝑏). Similarly,
Examples 17.2 through 17.5 show the following:

• Reduction law 𝑎+𝑏 (mod 5) = 𝑎 (mod 5)+𝑏 (mod 5) can bewritten as𝜑(𝑎+𝑏) =
𝜑(𝑎) + 𝜑(𝑏).

• Distributive law 6(𝑎 + 𝑏) = 6𝑎 + 6𝑏 can be written as 𝛾(𝑎 + 𝑏) = 𝛾(𝑎) + 𝛾(𝑏).

• Exponent law (𝑎𝑏)3 = 𝑎3𝑏3 can be written as 𝜆(𝑎 ⋅ 𝑏) = 𝜆(𝑎) ⋅ 𝜆(𝑏).

• Determinant property det(𝛼𝛽) = det 𝛼⋅det 𝛽 can bewritten as 𝛿(𝛼⋅𝛽) = 𝛿(𝛼)⋅𝛿(𝛽).

Example 17.6. Let 𝐺 and 𝐻 be groups. Consider the function 𝜃 ∶ 𝐺 → 𝐻 where
𝜃(𝑔) = 𝜀𝐻 for all 𝑔 ∈ 𝐺. (Here, 𝜀𝐻 is the identity element of 𝐻.) For 𝑎, 𝑏 ∈ 𝐺, we have
𝜃(𝑎⋅𝑏) = 𝜀𝐻 , since 𝑎⋅𝑏 ∈ 𝐺 by closure and 𝜃maps every element of𝐺 to 𝜀𝐻 . Moreover,
𝜃(𝑎) ⋅ 𝜃(𝑏) = 𝜀𝐻 ⋅ 𝜀𝐻 = 𝜀𝐻 , so that 𝜃(𝑎 ⋅ 𝑏) = 𝜃(𝑎) ⋅ 𝜃(𝑏), as both sides are equal to 𝜀𝐻 .
Hence, 𝜃 is a homomorphism, and it’s typically called the trivial homomorphism.

Example 17.7 (Non-example). Consider the additive groupℝ and define the function
𝑓 ∶ ℝ → ℝ where 𝑓(𝑥) = 𝑥3 for all 𝑥 ∈ ℝ. We have 𝑓(2 + 4) = 𝑓(6) = 63 = 216 and
𝑓(2)+𝑓(4) = 23+43 = 8+64 = 72, so that 𝑓(2+4) ≠ 𝑓(2)+𝑓(4). This counterexample
suffices to show that 𝑓 is not a homomorphism.
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17.2 Properties of homomorphisms
In this section, we will derive and prove various properties of homomorphisms. Recall
that since an isomorphism is a special type of a homomorphism, all properties in this
section also apply to isomorphisms.

We will continue to work with these homomorphisms from Section 17.1:

• 𝜑 ∶ ℤ → ℤ5 where 𝜑(𝑎) = 𝑎 (mod 5) for all 𝑎 ∈ ℤ.

• 𝛾 ∶ ℤ12 → ℤ18 where 𝛾(𝑎) = 6𝑎 for all 𝑎 ∈ ℤ12.

• 𝜆 ∶ 𝑈13 → 𝑈13 where 𝜆(𝑎) = 𝑎3 for all 𝑎 ∈ 𝑈13.

• 𝛿 ∶ 𝐺(ℤ10) → 𝑈10 where 𝛿(𝛼) = det 𝛼 for all 𝛼 ∈ 𝐺(ℤ10).

Example 17.8. We have 𝜑(0) = 0 (mod 5), so that the homomorphism 𝜑 maps the
identity element ofℤ to the identity element ofℤ5. (Note that bothℤ andℤ5 are additive
groups.) Similarly, we have the following:

• 𝛾(0) = 6 ⋅ 0 = 0, where 0 is the additive identity in both ℤ12 and ℤ18.

• 𝜆(1) = 13 = 1, where 1 is the multiplicative identity of 𝑈13.

• 𝛿(𝜀) = 1where 𝜀 = [ 1 0
0 1 ] is the identity matrix in𝐺(ℤ10) and 1 is the multiplicative

identity of 𝑈10.

The calculations in Example 17.8 suggest the following theorem. Note that the
sentence “Let 𝜃 ∶ 𝐺 → 𝐻 be a group homomorphism” means that 𝐺 and𝐻 are groups
and 𝜃 is a homomorphism from 𝐺 to 𝐻.

Theorem 17.9. Let 𝜃 ∶ 𝐺 → 𝐻 be a group homomorphism. Then 𝜃 maps the identity
element of 𝐺 to the identity element of𝐻; i.e., 𝜃(𝜀𝐺) = 𝜀𝐻 .

Proof. In 𝐺, we have 𝜀𝐺 ⋅ 𝜀𝐺 = 𝜀𝐺 . Applying 𝜃 to both sides, we obtain 𝜃(𝜀𝐺 ⋅ 𝜀𝐺) =
𝜃(𝜀𝐺). Since 𝜃 is operation preserving, we have 𝜃(𝜀𝐺 ⋅ 𝜀𝐺) = 𝜃(𝜀𝐺) ⋅ 𝜃(𝜀𝐺), so that
𝜃(𝜀𝐺) ⋅ 𝜃(𝜀𝐺) = 𝜃(𝜀𝐺).

In 𝐻, we have 𝜃(𝜀𝐺) ⋅ 𝜀𝐻 = 𝜃(𝜀𝐺). Thus, 𝜃(𝜀𝐺) ⋅ 𝜃(𝜀𝐺) = 𝜃(𝜀𝐺) ⋅ 𝜀𝐻 , since both are
equal to 𝜃(𝜀𝐺). Then, left cancellation in 𝐻 yields 𝜃(𝜀𝐺) = 𝜀𝐻 as desired. ■

Proofknow-how. Key to this proofwas towrite 𝜀𝐺⋅𝜀𝐺 = 𝜀𝐺 in𝐺 and 𝜃(𝜀𝐺)⋅𝜀𝐻 = 𝜃(𝜀𝐺)
in 𝐻. These applications of the “inserting the identity” technique eventually allowed
us to use left cancellation. (Compare this with the proof of Theorem 9.6.)

Example 17.10. Consider the homomorphism 𝜑 ∶ ℤ → ℤ5 where 𝜑(𝑎) = 𝑎 (mod 5)
for all 𝑎 ∈ ℤ. Observe that 23 and −23 are additive inverses in the domain ℤ, while
𝜑(23) = 3 (mod 5) and 𝜑(−23) = 2 (mod 5) are additive inverses in the codomain ℤ5.
Thus, 𝜑(−23) is the additive inverse of 𝜑(23) in ℤ5, which is written symbolically as
𝜑(−23) = −𝜑(23).

Example 17.11. Consider the homomorphism 𝛿 ∶ 𝐺(ℤ10) → 𝑈10 where 𝛿(𝛼) = det 𝛼
for all 𝛼 ∈ 𝐺(ℤ10). Then 𝛼 = [ 2 1

5 4 ] and 𝛽 = [ 8 3
5 4 ] are multiplicative inverses in the

domain 𝐺(ℤ10). (You should verify that 𝛼 ⋅ 𝛽 = [ 1 0
0 1 ] and 𝛽 ⋅ 𝛼 = [ 1 0

0 1 ].) We have
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𝛿(𝛼) = 3 and 𝛿(𝛽) = 7, which are multiplicative inverses in the codomain 𝑈10, since
3⋅7 = 1modulo 10. Bywriting 𝛼−1 = 𝛽, we see that 𝛿(𝛼−1) is themultiplicative inverse
of 𝛿(𝛼), which is written symbolically as 𝛿(𝛼−1) = 𝛿(𝛼)−1.

In the exercises at the end of the chapter, you will work with similar examples
involving the homomorphisms 𝛾 and 𝜆. For now, here is the generalization based on
Examples 17.10 and 17.11.

Theorem 17.12. Let 𝜃 ∶ 𝐺 → 𝐻 be a group homomorphism. Then 𝜃(𝑔−1) = 𝜃(𝑔)−1 for
all 𝑔 ∈ 𝐺.

Proof. Let 𝑔 ∈ 𝐺. Then 𝑔⋅𝑔−1 = 𝜀𝐺 in𝐺. Applying 𝜃 to both sides, we get 𝜃(𝑔⋅𝑔−1) =
𝜃(𝜀𝐺) and thus 𝜃(𝑔) ⋅ 𝜃(𝑔−1) = 𝜀𝐻 . We can similarly show that 𝜃(𝑔−1) ⋅ 𝜃(𝑔) = 𝜀𝐻 .
Therefore, 𝜃(𝑔−1) is the multiplicative inverse of 𝜃(𝑔) in 𝐻. In other words, 𝜃(𝑔−1) =
𝜃(𝑔)−1 as desired. ■

Proof know-how. In the above proof, the goal was to show that 𝜃(𝑔−1) = 𝜃(𝑔)−1,
which translates to “𝜃(𝑔−1) is the multiplicative inverse of 𝜃(𝑔).” To show this, wemul-
tiplied 𝜃(𝑔) by 𝜃(𝑔−1) and vice versa and verified that the products equal the identity
element 𝜀𝐻 . This approach is similar to the one employed in the proof of the socks-
shoes property, i.e., Theorem 8.11.

Remark. As usual, the above theorems and proofs assume that 𝐺 and 𝐻 are multi-
plicative groups. If one (or both) is an additive group, then the theorem (and its proof)
would have to be adjusted accordingly. For instance, if 𝐺 is multiplicative and 𝐻 is
additive, Theorem 17.12 becomes 𝜃(𝑔−1) = −𝜃(𝑔) for all 𝑔 ∈ 𝐺.

The diagram below summarizes Theorems 17.9 and 17.12. Note that 𝜃(𝑔−1) =
𝜃(𝑔)−1 means it doesn’t matter whether we first invert in 𝐺 and then apply 𝜃, or first
apply 𝜃 and then invert in 𝐻.

Once again, let 𝜃 ∶ 𝐺 → 𝐻 be a group homomorphism. Theorem 17.9 says 𝜃(𝜀𝐺) =
𝜀𝐻 . For any 𝑔 ∈ 𝐺, we have 𝑔0 = 𝜀𝐺 by the definition of 𝑔0 in𝐺. Moreover, 𝜃(𝑔) is some
element of 𝐻 and we have 𝜃(𝑔)0 = 𝜀𝐻 by the definition of taking the 0th power of an
element in 𝐻. Thus, 𝜃(𝜀𝐺) = 𝜀𝐻 can be rewritten as 𝜃(𝑔0) = 𝜃(𝑔)0, and this is true for
all 𝑔 ∈ 𝐺.
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Theorem 17.12 says 𝜃(𝑔−1) = 𝜃(𝑔)−1 for all 𝑔 ∈ 𝐺. Generalizing from these two
examples, we will now show that 𝜃(𝑔𝑘) = 𝜃(𝑔)𝑘 for all integer exponents 𝑘 (both pos-
itive and negative). For instance, suppose 𝑘 = 3. Since 𝜃 is operation preserving, we
have 𝜃(𝑔3) = 𝜃(𝑔 ⋅ 𝑔 ⋅ 𝑔) = 𝜃(𝑔) ⋅ 𝜃(𝑔) ⋅ 𝜃(𝑔) = 𝜃(𝑔)3 for all 𝑔 ∈ 𝐺. Likewise, if 𝑘 is any
positive integer, then

𝜃(𝑔𝑘) = 𝜃(𝑔 ⋅ 𝑔 ⋅ 𝑔 ⋅ ⋯ ⋅ 𝑔⏟⎵⎵⎵⏟⎵⎵⎵⏟
𝑘 terms

) = 𝜃(𝑔) ⋅ 𝜃(𝑔) ⋅ 𝜃(𝑔) ⋅ ⋯ ⋅ 𝜃(𝑔)⏟⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏟
𝑘 terms

= 𝜃(𝑔)𝑘.

Let’s consider a negative exponent. Suppose 𝑘 = −3. Using the interpretation
𝑔−3 = (𝑔−1)3, we have 𝜃(𝑔−3) = 𝜃((𝑔−1)3) = 𝜃(𝑔−1 ⋅ 𝑔−1 ⋅ 𝑔−1). Moreover,

𝜃(𝑔−1 ⋅ 𝑔−1 ⋅ 𝑔−1) = 𝜃(𝑔−1) ⋅ 𝜃(𝑔−1) ⋅ 𝜃(𝑔−1),
since 𝜃 is operation preserving. Using 𝜃(𝑔−1) = 𝜃(𝑔)−1, we obtain

𝜃(𝑔−1) ⋅ 𝜃(𝑔−1) ⋅ 𝜃(𝑔−1) = 𝜃(𝑔)−1 ⋅ 𝜃(𝑔)−1 ⋅ 𝜃(𝑔)−1.
Finally, 𝜃(𝑔)−1 ⋅𝜃(𝑔)−1 ⋅𝜃(𝑔)−1 = (𝜃(𝑔)−1)3 = 𝜃(𝑔)−3, where we used the interpretation
ℎ−3 = (ℎ−1)3 for any element ℎ ∈ 𝐻, with ℎ = 𝜃(𝑔). Putting these altogether gives
𝜃(𝑔−3) = 𝜃(𝑔)−3 as desired.

In an exercise at the end of the chapter, you’ll generalize from the 𝑘 = −3 case
to show that the relationship holds for all negative exponents 𝑘. Thus, we have the
following result.

Theorem 17.13. Let 𝜃 ∶ 𝐺 → 𝐻 be a group homomorphism. Then 𝜃(𝑔𝑘) = 𝜃(𝑔)𝑘 for
all 𝑔 ∈ 𝐺 and 𝑘 ∈ ℤ.

17.3 Order of an element
Suppose 𝜃 ∶ 𝐺 → 𝐻 is a group isomorphism. In Chapter 16, Exercises #1(b), #22, and
#24, we compared the order of an element 𝑔 ∈ 𝐺 and the order of the corresponding
element 𝜃(𝑔) ∈ 𝐻. Here is an example.

Example 17.14. Consider the function 𝜃 ∶ 𝑈13 → 𝑈13 where 𝜃(𝑛) = 𝑛5 for all 𝑛 ∈ 𝑈13.
In Chapter 16, Exercise #23, we showed that 𝜃 is an isomorphism. Let 𝑔 = 4 ∈ 𝑈13
(the domain of 𝜃). We have

41 = 4, 42 = 3, 43 = 12, 44 = 9, 45 = 10, 46 = 1
so that ord(𝑔) = 6. Moreover, 𝜃(𝑔) = 45 = 1,024 = 10, which is an element of the
codomain 𝑈13. To find its order, we compute as follows:

101 = 10, 102 = 9, 103 = 12, 104 = 3, 105 = 4, 106 = 1
which implies ord(𝜃(𝑔)) = 6.

The proof of the following theorem is left to you as an exercise. This result shouldn’t
be too surprising, since𝐺 ≅ 𝐻 (i.e., 𝐺 is isomorphic to𝐻) means that these two groups
are essentially the same. Thus, the corresponding elements 𝑔 ∈ 𝐺 and 𝜃(𝑔) ∈ 𝐻 should
have the same order.

Theorem 17.15. Let 𝜃 ∶ 𝐺 → 𝐻 be a group isomorphism. Then ord(𝜃(𝑔)) = ord(𝑔) for
all 𝑔 ∈ 𝐺.
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What if we have a homomorphism, but not necessarily an isomorphism? Then
ord(𝜃(𝑔)) = ord(𝑔) no longer holds, as we’ll see in the next example. But in what way
is the order of an element still “preserved”?

Example 17.16. Recall the function 𝛾 ∶ ℤ12 → ℤ18 where 𝛾(𝑎) = 6𝑎 for all 𝑎 ∈ ℤ12.
In Example 17.3, we verified that 𝛾 is a homomorphism. We have the following data:

• ord(10) = 6 in ℤ12 and ord(𝛾(10)) = ord(6) = 3 in ℤ18.

• ord(7) = 12 in ℤ12 and ord(𝛾(7)) = ord(6) = 3 in ℤ18.

• ord(8) = 3 in ℤ12 and ord(𝛾(8)) = ord(12) = 3 in ℤ18.

• ord(6) = 2 in ℤ12 and ord(𝛾(6)) = ord(0) = 1 in ℤ18.

In all these cases, we see that ord(𝛾(𝑔)) is a divisor of ord(𝑔).

Theorem 17.17. Let 𝜃 ∶ 𝐺 → 𝐻 be a group homomorphism. Then ord(𝜃(𝑔)) ∣ ord(𝑔)
for all 𝑔 ∈ 𝐺.

Proof. Let 𝑔 ∈ 𝐺. Suppose 𝑚 = ord(𝑔) so that 𝑔𝑚 = 𝜀𝐺 . Then, 𝜃(𝑔)𝑚 = 𝜃(𝑔𝑚) =
𝜃(𝜀𝐺) = 𝜀𝐻 , so that 𝜃(𝑔)𝑚 = 𝜀𝐻 . Thus by Theorem 12.18, the order of 𝜃(𝑔) is a divisor
of𝑚; i.e., ord(𝜃(𝑔)) ∣ ord(𝑔). ■

Proof know-how. In the above proof, we let 𝑚 = ord(𝑔) so that 𝑔𝑚 = 𝜀𝐺 . But the
key to the proof is to apply the exponent𝑚 to the other element, namely 𝜃(𝑔), and show
that 𝜃(𝑔)𝑚 = 𝜀𝐻 . This allows us to conclude that ord(𝜃(𝑔)) is a divisor of𝑚. (Compare
this with the proof of Theorem 12.23.)

Example 17.18. Suppose 𝜃 ∶ 𝑈16 → ℤ5 is a homomorphism. Here’s a fact about the
orders of elements in each group, whose verification is left up to you:

• For 𝑈16 = {1, 3, 5, 7, 9, 11, 13, 15}, we have ord(𝑔) = 1, 2, or 4 for all 𝑔 ∈ 𝑈16.

• For ℤ5 = {0, 1, 2, 3, 4}, we have ord(ℎ) = 1 or 5 for all ℎ ∈ ℤ5.

Let 𝑔 ∈ 𝑈16 and ℎ = 𝜃(𝑔) ∈ ℤ5. Theorem 17.17 implies that ord(ℎ) is a divisor of
ord(𝑔). Then ord(ℎ) ≠ 5, since 5 is not a divisor of 1, 2, or 4. Hence, ord(ℎ) = 1 so that
ℎ = 𝜀𝐻 . Thus, 𝜃(𝑔) = 𝜀𝐻 for all 𝑔 ∈ 𝑈16. We conclude that the only homomorphism
from 𝑈16 to ℤ5 is the trivial homomorphism.

Exercises
1. Consider the function 𝜑 ∶ ℤ → ℤ5 where 𝜑(𝑎) = 𝑎 (mod 5) for all 𝑎 ∈ ℤ.

(a) Explain why 𝜑(𝑎 + 𝑏) = 𝜑(𝑎) + 𝜑(𝑏) for all 𝑎, 𝑏 ∈ ℤ. (See Example 17.2.)
(b) While you’re at it, explain why 𝜑(𝑎 ⋅ 𝑏) = 𝜑(𝑎) ⋅ 𝜑(𝑏) for all 𝑎, 𝑏 ∈ ℤ.

Note: This will be useful when we study ring homomorphisms later in the
textbook.
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2. In Examples 17.3, 17.4, and 17.5, we saw that the functions below are homomor-
phisms. Explain why each is not a bijection, hence not an isomorphism.

(a) 𝛾 ∶ ℤ12 → ℤ18 where 𝛾(𝑎) = 6𝑎 for all 𝑎 ∈ ℤ12.
(b) 𝜆 ∶ 𝑈13 → 𝑈13 where 𝜆(𝑎) = 𝑎3 for all 𝑎 ∈ 𝑈13.
(c) 𝛿 ∶ 𝐺(ℤ10) → 𝑈10 where 𝛿(𝛼) = det 𝛼 for all 𝛼 ∈ 𝐺(ℤ10).

3. Consider the function 𝑓 ∶ 𝐷4 → ℝ∗ where

𝑓(𝜎) = { 1 if 𝜎 is a rotation,
−1 if 𝜎 is a reflection.

Recall that 𝐷4 is the group of symmetries of a square with four rotations and four
reflections and that ℝ∗ = {𝑎 ∈ ℝ | 𝑎 has a multiplicative inverse} is a group under
multiplication. (Group table for 𝐷4 is in Appendix B.)
(a) Compute 𝑓(𝑟180 ∘ 𝑟270) and 𝑓(𝑟180) ⋅ 𝑓(𝑟270) and verify that they are equal.
(b) Compute 𝑓(𝑟90 ∘ 𝑣) and 𝑓(𝑟90) ⋅ 𝑓(𝑣) and verify that they are equal.
(c) Compute 𝑓(𝑑 ∘ ℎ) and 𝑓(𝑑) ⋅ 𝑓(ℎ) and verify that they are equal.
(d) Explain why 𝑓(𝜎 ∘ 𝜏) = 𝑓(𝜎) ⋅ 𝑓(𝜏) for all 𝜎, 𝜏 ∈ 𝐷4. (Thus, 𝑓 is a homomor-

phism.)

(This exercise is referenced in Chapter 18, Exercise #7 and Example 24.18.)

4. Consider 𝛿 ∶ 𝐺(ℤ10) → 𝑈10 where 𝛿(𝛼) = det 𝛼 for all 𝛼 ∈ 𝐺(ℤ10). Let 𝛼 = [ 2 1
5 4 ] ∈

𝐺(ℤ10).
(a) Compute 𝛼−2 in two ways: via the interpretations 𝛼−2 = (𝛼−1)2 and 𝛼−2 =

(𝛼2)−1.
(b) Use the result in part (a) to compute 𝛿(𝛼−2).
(c) Compute 𝛿(𝛼) and use that to compute 𝛿(𝛼)−2.
(d) Compare 𝛿(𝛼−2) with 𝛿(𝛼)−2. Is the outcome surprising?

5. Consider again the homomorphism 𝛿 ∶ 𝐺(ℤ10) → 𝑈10 where 𝛿(𝛼) = det 𝛼 for all
𝛼 ∈ 𝐺(ℤ10). For 𝛽 = [ 4 7

5 1 ] ∈ 𝐺(ℤ10), it turns out that ord(𝛽) = 6 in 𝐺(ℤ10). What
could ord(𝛿(𝛽)) be? Verify by actually computing ord(𝛿(𝛽)) in 𝑈10.

6. Consider the function 𝑓 ∶ ℤ15 → ℤ20 where 𝑓(𝑎) = 4𝑎 for all 𝑎 ∈ ℤ15. Show that
𝑓 is a homomorphism. (This exercise is referenced in Chapter 18, Exercise #8.)

7. Consider again the function 𝑓 ∶ ℤ15 → ℤ20 where 𝑓(𝑎) = 4𝑎 for all 𝑎 ∈ ℤ15. We
showed in Exercise #6 that 𝑓 is a homomorphism. For order computations below,
note that ℤ15 and ℤ20 are additive groups.
(a) Find ord(7) in ℤ15 and ord(𝑓(7)) in ℤ20.
(b) Find ord(6) in ℤ15 and ord(𝑓(6)) in ℤ20.
(c) Find ord(10) in ℤ15 and ord(𝑓(10)) in ℤ20.
(d) Are the above results surprising? Why or why not?

8. Consider the function 𝜃 ∶ ℝ∗ → ℝ∗ where 𝜃(𝑥) = |𝑥| for all 𝑥 ∈ ℝ∗. Here, |𝑥|
denotes the absolute value of 𝑥. Show that 𝜃 is a homomorphism. (This exercise is
referenced in Chapter 18, Exercise #9.)
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9. Consider the homomorphism 𝛾 ∶ ℤ12 → ℤ18 where 𝛾(𝑎) = 6𝑎 for all 𝑎 ∈ ℤ12.

(a) How are 2 and 10 related in the domain ℤ12?
(b) Compute 𝛾(2) and 𝛾(10). How are they related in the codomain ℤ18?
(c) Repeat parts (a) and (b), starting with the pair of elements 4 and 8 in ℤ12.
(d) Are the above results surprising? Why or why not?

10. Consider the homomorphism 𝜆 ∶ 𝑈13 → 𝑈13 where 𝜆(𝑎) = 𝑎3 for all 𝑎 ∈ 𝑈13.

(a) How are 2 and 7 related in the domain 𝑈13?
(b) Compute 𝜆(2) and 𝜆(7). How are they related in the codomain 𝑈13?
(c) Repeat parts (a) and (b), starting with the pair of elements 4 and 10 in the

domain 𝑈13.
(d) Are the above results surprising? Why or why not?

11. Determine all homomorphisms from 𝑈20 to ℤ7.

12. Rewrite the proof of Theorem 17.12, assuming that the operations of 𝐺 and 𝐻 are
multiplication and addition, respectively. In other words, prove that 𝜃(𝑔−1) =
−𝜃(𝑔) for all 𝑔 ∈ 𝐺.

13. Complete the proof of Theorem 17.13 by proving the case 𝑘 < 0.

14. Rewrite the proof of Theorem 17.13, assuming that the operations of 𝐺 and 𝐻 are
both addition. In other words, prove that 𝜃(𝑘 ⋅ 𝑔) = 𝑘 ⋅𝜃(𝑔) for all 𝑔 ∈ 𝐺 and 𝑘 ∈ ℤ.

15. Prove Theorem 17.15.
Hint: Use the “swap the exponents” technique employed in the proof of Theorem
12.23.
Note: When referring to an identity element, you must write 𝜀𝐺 or 𝜀𝐻 , rather than
just 𝜀.

16. Let 𝜃 ∶ 𝐺 → 𝐻 be a group homomorphism that is onto. Consider an element
ℎ ∈ 𝐻 with ord(ℎ) = 𝑛. Prove that there exists an element in 𝐺 with order 𝑛.

17. Let𝐺 and𝐻 be groups and consider the function 𝜃 ∶ 𝐺 → 𝐻. Moreover, suppose𝐺
is commutative. Theorem 16.7 says that if 𝜃 is an isomorphism, then 𝐻 must also
be commutative.

(a) What if 𝜃 is a homomorphism, but not necessarily an isomorphism? Must 𝐻
be commutative then? If so, prove it. If not, provide a counterexample.

(b) Suppose 𝜃 is a homomorphism that’s one-to-one. Must 𝐻 be commutative
then? If so, prove it. If not, provide a counterexample.

(c) Suppose 𝜃 is a homomorphism that’s onto. Must 𝐻 be commutative then? If
so, prove it. If not, provide a counterexample.
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18. Let 𝐺 be a group and consider the function 𝜃 ∶ 𝐺 → 𝐺 where 𝜃(𝑔) = 𝑔 for all
𝑔 ∈ 𝐺.
Note: This function is often called the identity function. Do you see why?
(a) Prove that 𝜃 is a homomorphism.
(b) Is 𝜃 an isomorphism? If so, prove it. If not, explain why not.

19. Prove: Let 𝛼 ∶ 𝐺 → 𝐻 and 𝛽 ∶ 𝐻 → 𝐾 be group homomorphisms. Then 𝛽 ∘
𝛼 ∶ 𝐺 → 𝐾 is also a homomorphism. (This exercise is referenced in Chapter 18,
Exercise #16.)

20. Prove: Let 𝜃 ∶ 𝐺 → 𝐻 be a group isomorphism. If 𝐺 is cyclic with a generator 𝑔,
then 𝐻 is cyclic with a generator 𝜃(𝑔).
Note: In other words, show that if 𝐺 = ⟨𝑔⟩, then 𝐻 = ⟨𝜃(𝑔)⟩.

21. Let 𝐻 and 𝐾 be subgroups of a commutative group 𝐺. Define 𝐻𝐾 = {ℎ𝑘 ∣ ℎ ∈ 𝐻,
𝑘 ∈ 𝐾}, which is a subgroup of 𝐺. (See Chapter 11, Exercise #24.) Consider the
function 𝜃 ∶ 𝐻 ×𝐾 → 𝐻𝐾 where 𝜃((ℎ, 𝑘)) = ℎ𝑘 for all (ℎ, 𝑘) ∈ 𝐻 ×𝐾. Prove each
of these statements:

(a) 𝜃 is an onto homomorphism.
(b) If 𝐻 ∩ 𝐾 = {𝜀}, then 𝜃 is one-to-one (hence an isomorphism).

22. Prove: Let 𝛼 ∶ 𝐺 → 𝐻 and 𝛽 ∶ 𝐺 → 𝐻 be group homomorphisms. Define
𝐾 = {𝑔 ∈ 𝐺 | 𝛼(𝑔) = 𝛽(𝑔)}. Then 𝐾 is a subgroup of 𝐺.
Note: When referring to an identity element, you must write 𝜀𝐺 or 𝜀𝐻 , rather than
just 𝜀.
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Suppose we want to divide the set 𝑈13 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} into 4
equal-sized subsets, with 3 elements each. How would you do it? Here is one pos-
sibility:

{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {10, 11, 12}.
There are many ways to do this, but you might be surprised to learn that there is a
correct answer, at least according to group theory. (And it’s not the one just given!)

The above task motivates the focus of this chapter, as we continue our exploration
into homomorphisms. In particular, we will encounter the kernel and image, two im-
portant subgroups that are associated to each homomorphism. Suppose 𝜃 ∶ 𝐺 → 𝐻
is a group homomorphism. Then the kernel contains the elements of the domain that
are mapped to the identity of the codomain, i.e., elements 𝑔 ∈ 𝐺 such that 𝜃(𝑔) = 𝜀𝐻 .
The image contains the elements of the codomain that are “hit” by the function 𝜃, i.e.,
elements ℎ ∈ 𝐻 such that ℎ = 𝜃(𝑔) for some 𝑔 ∈ 𝐺. Both the kernel and image will
play a key role in the First Isomorphism Theorem in Chapter 25, which culminates our
study of group theory.

18.1 Kernel of a homomorphism
Example 18.1. Consider the homomorphism 𝜆 ∶ 𝑈13 → 𝑈13 where 𝜆(𝑎) = 𝑎3 for all
𝑎 ∈ 𝑈13. Here are the values of 𝜆(𝑎) for each input 𝑎 in the domain 𝑈13:

𝜆(1) = 1,

𝜆(2) = 8,

𝜆(3) = 1,

𝜆(4) = 12,

𝜆(5) = 8,

𝜆(6) = 8,

𝜆(7) = 5,

𝜆(8) = 5,

𝜆(9) = 1,

𝜆(10) = 12,

𝜆(11) = 5,

𝜆(12) = 12.

Define the set 𝐾 = {𝑎 ∈ 𝑈13 | 𝜆(𝑎) = 1}. Thus, 𝐾 is a subset of the domain 𝑈13
consisting of those elements that map to the identity element 1 in the codomain 𝑈13.
We have 𝜆(1) = 𝜆(3) = 𝜆(9) = 1, so that 𝐾 = {1, 3, 9}. As shown in the table below,
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set 𝐾 is closed, 1 ∈ 𝐾, and every element of 𝐾 has an inverse in 𝐾 (i.e., 3 and 9 are an
inverse pair, and 1 is a self-inverse). Thus, 𝐾 is a subgroup of 𝑈13.

⋅ 1 3 9
1 1 3 9
3 3 9 1
9 9 1 3

Example 18.2. Consider the homomorphism 𝜑 ∶ ℤ → ℤ5 where 𝜑(𝑎) = 𝑎 (mod 5)
for all 𝑎 ∈ ℤ. Define 𝐾 = {𝑎 ∈ ℤ | 𝜑(𝑎) = 0}. Thus, 𝐾 is a subset of the domain ℤ
consisting of those elements that map to the identity element 0 in the codomain ℤ5.
Then 𝐾 = 5ℤ, the set of multiples of 5, which is a subgroup of ℤ.

Example 18.3. Consider the homomorphism 𝛿 ∶ 𝐺(ℤ10) → 𝑈10 where 𝛿(𝛼) = det 𝛼
for all 𝛼 ∈ 𝐺(ℤ10). Define 𝐾 = {𝛼 ∈ 𝐺(ℤ10) | 𝛿(𝛼) = 1}. Thus, 𝐾 is a subset of
the domain 𝐺(ℤ10) consisting of those elements that map to the identity element 1
in the codomain 𝑈10. In other words, the set 𝐾 contains matrices in 𝐺(ℤ10) whose
determinant is 1. We saw in Section 10.3 that 𝐾 = 𝑆(ℤ10), which is a subgroup of
𝐺(ℤ10).

Example 18.4 (Non-example). Consider again the homomorphism 𝜆 ∶ 𝑈13 → 𝑈13
where 𝜆(𝑎) = 𝑎3 for all 𝑎 ∈ 𝑈13. This time, define the set 𝐿 = {𝑎 ∈ 𝑈13 | 𝜆(𝑎) = 8}.
Thus, 𝐿 is a subset of the domain 𝑈13 containing elements that map to the element 8
in the codomain 𝑈13. We have 𝜆(2) = 𝜆(5) = 𝜆(6) = 8, so that 𝐿 = {2, 5, 6}. Unlike 𝐾,
the set 𝐿 is not a subgroup of 𝑈13. (We’ll leave it up to you to explain why.)

In each example above, set𝐾 is a subset of the domain consisting of those elements
thatmap to the identity element in the codomain. In the figure below,wehave𝑎, 𝑏 ∈ 𝐾,
because 𝜃(𝑎) = 𝜀𝐻 and 𝜃(𝑏) = 𝜀𝐻 . However, 𝑥 ∉ 𝐾, because 𝜃(𝑥) ≠ 𝜀𝐻 . This subset 𝐾
is called the kernel of the homomorphism.

Definition 18.5 (Kernel of a homomorphism). Let 𝜃 ∶ 𝐺 → 𝐻 be a group homomor-
phism. Define

𝐾 = {𝑎 ∈ 𝐺 | 𝜃(𝑎) = 𝜀𝐻},
where 𝜀𝐻 is the identity element of 𝐻. Then 𝐾 is called the kernel of 𝜃 and is denoted
ker 𝜃.

Theorem 18.6 (Kernel is a subgroup). Let 𝜃 ∶ 𝐺 → 𝐻 be a group homomorphism.
Then 𝐾 = ker 𝜃 is a subgroup of the domain 𝐺.

Proof. Let 𝑎, 𝑏 ∈ 𝐾 so that 𝜃(𝑎) = 𝜀𝐻 and 𝜃(𝑏) = 𝜀𝐻 . Since 𝜃 is operation preserving,
we have 𝜃(𝑎𝑏) = 𝜃(𝑎)𝜃(𝑏) = 𝜀𝐻𝜀𝐻 = 𝜀𝐻 , so that 𝜃(𝑎𝑏) = 𝜀𝐻 . Thus, 𝑎𝑏 ∈ 𝐾 and we
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conclude that 𝐾 is closed. We have 𝜃(𝜀𝐺) = 𝜀𝐻 , and thus 𝜀𝐺 ∈ 𝐾. Finally, 𝜃(𝑎−1) =
𝜃(𝑎)−1 = 𝜀𝐻−1 = 𝜀𝐻 , so that 𝜃(𝑎−1) = 𝜀𝐻 . This implies 𝑎−1 ∈ 𝐾. Hence, 𝐾 is a
subgroup of 𝐺. ■

Proof know-how. In the above proof, we used the definition of the kernel in two
subtly different ways:

• Assuming that 𝑎 ∈ 𝐾 allowed us to conclude that 𝜃(𝑎) = 𝜀𝐻 and to use that fact
in the proof. In essence, we’re applying the following implication: If 𝑔 ∈ 𝐾, then
𝜃(𝑔) = 𝜀𝐻 .

• Showing that 𝜃(𝑎𝑏) = 𝜀𝐻 allowed us to conclude that 𝑎𝑏 ∈ 𝐾. Here, we’re using
the converse of the above implication; namely: If 𝜃(𝑔) = 𝜀𝐻 , then 𝑔 ∈ 𝐾.

The size of the kernel provides information about the behavior of the homomor-
phism. For instance, suppose 𝜃 ∶ 𝐺 → 𝐻 is a group homomorphism with ker 𝜃 = 𝐺;
i.e., the kernel is all of the domain 𝐺. Then every element in 𝐺maps to the identity 𝜀𝐻 .
Thus, 𝜃 is the trivial homomorphism. (See Example 17.6.)

Observe that ker 𝜃 = 𝐺 is the largest possible subgroup of𝐺. On the other extreme
is ker 𝜃 = {𝜀𝐺}, which is the smallest possible subgroup of 𝐺. What can we say about 𝜃
in this case? The following theorem provides the answer.

Theorem 18.7. Let 𝜃 ∶ 𝐺 → 𝐻 be a group homomorphism. Then ker 𝜃 = {𝜀𝐺} if and
only if 𝜃 is one-to-one.

Proof. We must prove two implications:

• If ker 𝜃 = {𝜀𝐺}, then 𝜃 is one-to-one.

• If 𝜃 is one-to-one, then ker 𝜃 = {𝜀𝐺}.

We will prove the second implication. The proof of the first implication is left for you
as an exercise.

Assume 𝜃 is one-to-one. To show that ker 𝜃 = {𝜀𝐺}, we must show that 𝜀𝐺 is the
only element in ker 𝜃. First, we have 𝜃(𝜀𝐺) = 𝜀𝐻 , so that 𝜀𝐺 ∈ ker 𝜃. Next, consider
𝑔 ∈ ker 𝜃. Then 𝜃(𝑔) = 𝜀𝐻 . Thus, 𝜃(𝑔) = 𝜃(𝜀𝐺), as both are equal to 𝜀𝐻 . But since 𝜃
is one-to-one, we obtain 𝑔 = 𝜀𝐺 . Hence, 𝜀𝐺 is the only element in ker 𝜃, which implies
that ker 𝜃 = {𝜀𝐺}. ■

Proof know-how. In the above proof, we showed that ker 𝜃 is equal to a single-
element set, namely {𝜀𝐺}. More generally, here’s how to show 𝑆 = {𝑥}, i.e., that a
set 𝑆 contains just one particular element 𝑥.

• Verify that 𝑥 ∈ 𝑆, so that the element 𝑥 is actually in the set 𝑆. This shows that
{𝑥} ⊆ 𝑆.

• Show that 𝑥 is the only element in 𝑆. This can be done by assuming that there is a
second element 𝑦 ∈ 𝑆 and showing that 𝑦 = 𝑥. This shows 𝑆 ⊆ {𝑥}. (Compare this
with the proof of Theorem 8.9.)
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18.2 Image of a homomorphism
Example 18.8. Consider again the homomorphism 𝜆 ∶ 𝑈13 → 𝑈13 where 𝜆(𝑎) = 𝑎3
for all 𝑎 ∈ 𝑈13. Now define the set 𝐼 = {𝜆(𝑎) | 𝑎 ∈ 𝑈13}. Thus, 𝐼 is a subset of the
codomain 𝑈13 consisting of all of the actual outputs of the function. In looking at the
calculations shown in Example 18.1, we have the following:
• 𝜆(1) = 𝜆(3) = 𝜆(9) = 1.
• 𝜆(2) = 𝜆(5) = 𝜆(6) = 8.
• 𝜆(4) = 𝜆(10) = 𝜆(12) = 12.
• 𝜆(7) = 𝜆(8) = 𝜆(11) = 5.

Therefore, 𝐼 = {1, 8, 12, 5}. The figure below depicts the set 𝐼.

As shown in the table below, set 𝐼 is closed, 1 ∈ 𝐼, and every element of 𝐼 has an inverse
in 𝐼 (i.e., 5 and 8 are an inverse pair, and 1 and 12 are self-inverses). Thus, 𝐼 is a subgroup
of 𝑈13.

⋅ 1 8 12 5
1 1 8 12 5
8 8 12 5 1
12 12 5 1 8
5 5 1 8 12

Example 18.9. Consider again the homomorphism 𝜑 ∶ ℤ → ℤ5 where 𝜑(𝑎) = 𝑎
(mod 5) for all 𝑎 ∈ ℤ. Define the set 𝐼 = {𝜑(𝑎) | 𝑎 ∈ ℤ}. Thus, 𝐼 is a subset of the
codomain ℤ5 consisting of all of the actual outputs of the function. In fact, every ele-
ment of ℤ5 is “hit” by the function 𝜑, since 𝜑(0) = 0, 𝜑(1) = 1, 𝜑(2) = 2, 𝜑(3) = 3, and
𝜑(4) = 4. Therefore, 𝐼 = ℤ5. Also, note that 𝐼 = ℤ5 is a subgroup of ℤ5 itself.

The set 𝐼 in the above examples is called the image of the homomorphism.

Definition 18.10 (Image of a homomorphism). Let 𝜃 ∶ 𝐺 → 𝐻 be a group homomor-
phism. Define

𝐼 = {𝜃(𝑎) | 𝑎 ∈ 𝐺}.
Then 𝐼 is called the image of 𝜃 and is denoted im 𝜃.
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Remark. Let 𝜃 ∶ 𝐺 → 𝐻 be a group homomorphism. As we saw in Example 18.9, 𝜃
is onto precisely when the image 𝐼 = im𝜃 is equal to the codomain 𝐻.

You will prove the following theorem in an exercise at the end of the chapter.

Theorem 18.11 (Image is a subgroup). Let 𝜃 ∶ 𝐺 → 𝐻 be a group homomorphism.
Then 𝐼 = im𝜃 is a subgroup of the codomain𝐻.

18.3 Partitioning the domain
Let’s return to the question posed at the beginning of this chapter.

Suppose we want to divide the set 𝑈13 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
into 4 equal-sized subsets, with 3 elements each. How would you do it?

Answering this question is the goal of this section.

Example 18.12. Consider yet again the homomorphism 𝜆 ∶ 𝑈13 → 𝑈13 where 𝜆(𝑎) =
𝑎3 for all 𝑎 ∈ 𝑈13. We will use 𝜆 to divide the domain 𝑈13 into 4 equal-sized subsets.
From Example 18.8, the image of 𝜆 is given by im 𝜆 = {𝜆(𝑎) | 𝑎 ∈ 𝑈13} = {1, 8, 12, 5}.

For each element of im 𝜆, we define a corresponding subset of the domain 𝑈13:
ker 𝜆 = 𝐾 = {𝑎 ∈ 𝑈13 | 𝜆(𝑎) = 1} = {1, 3, 9},

𝐿 = {𝑎 ∈ 𝑈13 | 𝜆(𝑎) = 8} = {2, 5, 6},
𝑀 = {𝑎 ∈ 𝑈13 | 𝜆(𝑎) = 12} = {4, 10, 12},
𝑁 = {𝑎 ∈ 𝑈13 | 𝜆(𝑎) = 5} = {7, 8, 11}.

For instance, the subset 𝐿 contains elements of the domain 𝑈13 that map to 8 in the
codomain 𝑈13. We have 𝜆(2) = 𝜆(5) = 𝜆(6) = 8, so that 𝐿 = {2, 5, 6}. Notice that the
domain 𝑈13 has been divided into 4 equal-sized subsets, namely 𝐾, 𝐿, 𝑀, and 𝑁. The
diagram below illustrates this scenario.

In Example 18.12 above, the homomorphism 𝜆 partitions the domain into equal-
sized subsets. Here, “partition” means that the subsets are disjoint (i.e., they don’t
overlap) and that the subsets together cover the entire domain. This alone is not a big
deal, since any function (whether or not it’s a homomorphism) does the same. What
is a big deal is that these subsets are equal-sized. In the next unit, we will see the role
that a homomorphism plays in ensuring that these subsets are equal-sized.
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Example 18.13 (Non-example). Consider the function 𝑓 ∶ ℤ8 → ℤ8 where 𝑓(𝑎) = 𝑎2
for all 𝑎 ∈ ℤ8. We have 𝑓(1+3) = 𝑓(4) = 42 = 0 and 𝑓(1)+𝑓(3) = 12+32 = 1+9 = 2,
so that 𝑓(1 + 3) ≠ 𝑓(1) + 𝑓(3). Thus, 𝑓 is not a homomorphism. Moreover, we have
the following:

• 𝑓(0) = 𝑓(4) = 0.

• 𝑓(1) = 𝑓(3) = 𝑓(5) = 𝑓(7) = 1.

• 𝑓(2) = 𝑓(6) = 4.
Hence, the function 𝑓 divides the domain ℤ8 into 3 subsets:

{𝑎 ∈ ℤ8 | 𝑓(𝑎) = 0} = {0, 4},
{𝑎 ∈ ℤ8 | 𝑓(𝑎) = 1} = {1, 3, 5, 7},
{𝑎 ∈ ℤ8 | 𝑓(𝑎) = 4} = {2, 6}.

These subsets do form a partition of the domain ℤ8, since they do not overlap and
together cover all of ℤ8. However, they are not equal-sized.

18.4 Finding homomorphisms
How many different functions are there from ℤ12 to itself? Consider a function 𝜃 ∶
ℤ12 → ℤ12. Then the output 𝜃(0) could be any element in the codomain ℤ12, so there
are 12 possible values for 𝜃(0). Likewise, there are 12 possible values for 𝜃(1), for 𝜃(2),
for 𝜃(3), . . . , and for 𝜃(11). Altogether, there are 1212 (which is almost 9 trillion!) dif-
ferent functions from ℤ12 to itself.

What if we require that 𝜃 be a homomorphism? First, wemust have 𝜃(0) = 0, since
a homomorphism maps the identity element of the domain to the identity element of
the codomain (Theorem 17.9). As we’ll see in the next example, there are far fewer
than 9 trillion homomorphisms from ℤ12 to itself.

Example 18.14. Let 𝜃 ∶ ℤ12 → ℤ12 be a homomorphism. Furthermore, suppose
𝜃(1) = 4. Since 𝜃 is operation preserving, we have the following:
• 𝜃(2) = 𝜃(1 + 1) = 𝜃(1) + 𝜃(1) = 4 + 4 = 8.

• 𝜃(3) = 𝜃(1 + 1 + 1) = 𝜃(1) + 𝜃(1) + 𝜃(1) = 4 + 4 + 4 = 0.

• 𝜃(4) = 𝜃(1 + 1 + 1 + 1) = 𝜃(1) + 𝜃(1) + 𝜃(1) + 𝜃(1) = 4 + 4 + 4 + 4 = 4.

⋮
In general, for any 𝑛 ∈ ℤ12, we have

𝜃(𝑛) = 𝜃( 1 + 1 + 1 +⋯+ 1⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟
𝑛 terms

)

= 𝜃(1) + 𝜃(1) + 𝜃(1) +⋯+ 𝜃(1)⏟⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⏟
𝑛 terms

= 4 + 4 + 4 +⋯+ 4⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟
𝑛 terms

= 4 ⋅ 𝑛,
so that 𝜃(𝑛) = 4𝑛 for all 𝑛 ∈ ℤ12.
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But there is nothing special about the multiplier 4 in the rule 𝜃(𝑛) = 4𝑛. We could
have replaced 4 with any fixed element of ℤ12, say 𝜃(𝑛) = 7𝑛 for all 𝑛 ∈ ℤ12. Thus, a
homomorphism 𝜃 ∶ ℤ12 → ℤ12 must have the rule 𝜃(𝑛) = 𝑘 ⋅ 𝑛 for all 𝑛 ∈ ℤ12, where
𝑘 is a fixed element of ℤ12. Since there are 12 choices for the multiplier 𝑘, we conclude
that there are 12 different homomorphisms from ℤ12 to itself.

Example 18.15. Now let 𝜃 ∶ ℤ12 → ℤ12 be an isomorphism. Since every isomorphism
is a homomorphism,we know fromExample 18.14 that 𝜃must have the rule 𝜃(𝑛) = 𝑘⋅𝑛
for all 𝑛 ∈ ℤ12, where 𝑘 is a fixed element of ℤ12. Thus, we have 𝜃(1) = 𝑘 ⋅ 1 = 𝑘.
By Theorem 17.15, we also know that ord(𝜃(1)) = ord(1), or equivalently, ord(𝑘) =
ord(1). Because ord(1) = 12, we find that ord(𝑘) = 12 as well. Thus, the possible
values of 𝑘 are 𝑘 = 1, 5, 7, and 11 (i.e., the elements of ℤ12 that have order 12). Hence,
there are only 4 different isomorphisms from ℤ12 to itself.

Example 18.16. Consider the multiplicative group 𝑈18 = {1, 5, 7, 11, 13, 17}. Let
𝜃 ∶ 𝑈18 → 𝑈18 be a homomorphism with ker 𝜃 = {1, 7, 13} and 𝜃(5) = 17. Since the
elements in the kernel map to the identity element of the codomain, we have 𝜃(1) =
𝜃(7) = 𝜃(13) = 1. According to our conjecture from Section 18.3, 𝜃 partitions the
domain 𝑈18 into equal-sized subsets. We know 3 elements of the domain, namely 1, 7,
13, map to 1 in the codomain. Thus, since 𝜃(5) = 17, we conjecture that 3 elements of
the domain map to 17 in the codomain; i.e., 𝜃(5) = 𝜃(11) = 𝜃(17) = 17. This analysis
is depicted in the figure below.

Exercises
1. Consider the homomorphism 𝛾 ∶ ℤ12 → ℤ18 where 𝛾(𝑎) = 6𝑎 for all 𝑎 ∈ ℤ12.

(a) Let 𝐾 = {𝑎 ∈ ℤ12 | 𝛾(𝑎) = 0}. Find the elements of 𝐾.
(b) Is 𝐾 a subset of the domain or the codomain?
(c) Create an addition table for 𝐾 and verify that it’s a subgroup of ℤ12.

2. Consider the homomorphism 𝛿 ∶ 𝐺(ℤ10) → 𝑈10 where 𝛿(𝛼) = det 𝛼 for all 𝛼 ∈
𝐺(ℤ10).

(a) Let 𝐼 = {𝛿(𝛼) | 𝛼 ∈ 𝐺(ℤ10)}. Find the elements of 𝐼.
(b) Is 𝐼 a subset of the domain or the codomain?
(c) Anita says, “The set 𝐼 is all of the codomain 𝑈10, because the function 𝛿 is

onto.” What might she mean?
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3. Consider the homomorphism 𝛾 ∶ ℤ12 → ℤ18 where 𝛾(𝑎) = 6𝑎 for all 𝑎 ∈ ℤ12.
(a) Let 𝐼 = {𝛾(𝑎) | 𝑎 ∈ ℤ12}. Find the elements of 𝐼.
(b) Is 𝐼 a subset of the domain or the codomain?
(c) Create an addition table for 𝐼 and verify that it’s a subgroup of ℤ18.

4. Consider again the homomorphism 𝛾 ∶ ℤ12 → ℤ18 where 𝛾(𝑎) = 6𝑎 for all 𝑎 ∈ ℤ12.
Similar to what we did with 𝜆 in Example 18.12, use 𝛾 to partition the domain ℤ12
into equal-sized subsets.

5. Consider again the homomorphism 𝛿 ∶ 𝐺(ℤ10) → 𝑈10 where 𝛿(𝛼) = det 𝛼 for all
𝛼 ∈ 𝐺(ℤ10).
(a) Proceed as in Example 18.12 and use 𝛿 to partition the domain 𝐺(ℤ10) into

subsets.
(b) How many subsets are there, and how do you describe the matrices in each

subset?
(c) (Challenge) Verify that the subsets created by 𝛿 are equal-sized.

6. Consider again the homomorphism 𝜑 ∶ ℤ → ℤ5 where 𝜑(𝑎) = 𝑎 (mod 5) for all
𝑎 ∈ ℤ.
(a) Proceed as in Example 18.12 and use 𝜑 to partition the domain ℤ into subsets.
(b) How many subsets are there, and how do you describe the integers in each

subset?
(c) The subsets created by 𝜑 have infinitely many elements. But in what sense

are they “equal-sized”?

7. Consider the function 𝑓 ∶ 𝐷4 → ℝ∗ where

𝑓(𝜎) = { 1 if 𝜎 is a rotation,
−1 if 𝜎 is a reflection.

We showed in Chapter 17, Exercise #3 that 𝑓 is a homomorphism.
(a) Find 𝐾 = ker 𝑓 and verify that it’s a subgroup of the domain 𝐷4.
(b) Find 𝐼 = im𝑓 and verify that it’s a subgroup of the codomain ℝ∗.
(c) Proceed as in Example 18.12 and use𝑓 to partition the domain𝐷4 into subsets.
(d) Verify that the subsets created by 𝑓 are equal-sized.

8. Consider the function 𝑓 ∶ ℤ15 → ℤ20 where 𝑓(𝑎) = 4𝑎 for all 𝑎 ∈ ℤ15. We showed
in Chapter 17, Exercise #6 that 𝑓 is a homomorphism. Repeat Exercise #7 above
using this homomorphism.

9. Consider the function 𝜃 ∶ ℝ∗ → ℝ∗ where 𝜃(𝑥) = |𝑥| for all 𝑥 ∈ ℝ∗. Here, |𝑥|
denotes the absolute value of 𝑥. We showed in Chapter 17, Exercise #8 that 𝜃 is a
homomorphism. Repeat Exercise #7 above using this homomorphism.

10. Let 𝑓 ∶ 𝑆 → 𝑇 be a function from set 𝑆 to set 𝑇. (Note: 𝑓 need not be a group
homomorphism.) Supposing that we proceed as in Example 18.12, explain why
the function 𝑓 partitions the domain 𝑆. In other words, explain why the subsets
created by𝑓 are disjoint (i.e., they don’t overlap) and that the subsets together cover
the entire domain 𝑆. (This exercise is referenced in Section 25.1.)
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11. Let 𝜃 ∶ 𝑈16 → 𝑈16 be a homomorphism with ker 𝜃 = {1, 7, 9, 15} and 𝜃(11) = 9.
Find the output values 𝜃(𝑎) for all 𝑎 ∈ 𝑈16.

12. Let 𝜃 ∶ 𝑈13 → 𝑈13 be a homomorphism with ker 𝜃 = {1, 5, 8, 12} and 𝜃(4) =
𝜃(6) = 𝜃(7) = 𝜃(9) = 3. Find the ouput values 𝜃(𝑎) for all 𝑎 ∈ 𝑈13.

13. Complete the proof of Theorem 18.7 by proving its first implication.

14. Prove Theorem 18.11.
Note: When referring to an identity element, you must write 𝜀𝐺 or 𝜀𝐻 , rather than
just 𝜀.

15. Let 𝜃 ∶ 𝐺 → 𝐻 be a group homomorphism. By Theorem 18.11, the set 𝐼 = im𝜃 is
a subgroup of the codomain 𝐻. Below, you’ll show that the image 𝐼 retains some
of the properties of the domain 𝐺.

(a) Prove: If 𝐺 is commutative, then 𝐼 is commutative.
(b) Prove: If 𝐺 is cyclic, then 𝐼 is cyclic.

16. Let 𝛼 ∶ 𝐺 → 𝐻 and 𝛽 ∶ 𝐻 → 𝐾 be group homomorphisms. In Chapter 17, Exercise
#19, you showed that 𝛽 ∘ 𝛼 ∶ 𝐺 → 𝐾 is also a homomorphism.

(a) ker 𝛼 is a subset (in fact, a subgroup) of 𝐺, 𝐻, or 𝐾?
(b) ker 𝛽 ∘ 𝛼 is a subset of 𝐺, 𝐻, or 𝐾?
(c) How are ker 𝛼 and ker 𝛽 ∘ 𝛼 related? Explain.

17. Let 𝜃 ∶ 𝐺 → 𝐻 be a group homomorphism, and let 𝑄 be a subgroup of 𝐻. Define
the set

𝑃 = {𝑎 ∈ 𝐺 | 𝜃(𝑎) ∈ 𝑄}.

(a) Show that 𝑃 is a subgroup of 𝐺.
(b) Anita says, “𝑃 is a more general version of the kernel of 𝜃.” What might she

mean?

(This exercise is referenced in Section 24.4.)

18. (a) Find all homomorphisms from ℤ18 to itself.
(b) Find all isomorphisms from ℤ18 to itself.

19. (a) Find all homomorphisms from 𝑈19 to itself.
(b) Find all isomorphisms from 𝑈19 to itself.
Hint: It turns out that 𝑈19 = ⟨2⟩. (See Chapter 13, Exercise #7.) How does that
help?

20. (a) Find all homomorphisms from ℤ𝑚 to itself.
(b) Find all isomorphisms from ℤ𝑚 to itself.

21. (a) Find all homomorphisms from ℤ to itself.
(b) Find all isomorphisms from ℤ to itself.
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22. Let 𝜃 ∶ ℤ → ℚ be a homomorphism, where ℚ is the additive group of rational
numbers.

(a) Suppose 𝜃(1) = 1
7 . Find the image im 𝜃 = {𝜃(𝑎) | 𝑎 ∈ ℤ}.

(b) Suppose 𝜃(1) = 3
8 . Find im 𝜃.

(c) Suppose 𝜃(1) = − 6
19 . Find im 𝜃.

(d) Explain why 𝜃 cannot be an isomorphism.



Unit V: Quotient Groups

Chapter 19 introduces cosets, which are subsets of a groupwith powerful consequences.
One such result is Lagrange’s theorem, arguably the most important theorem about
groups, which states that (spoiler alert!) if𝐻 is a subgroup of a finite group 𝐺, then the
size of 𝐻 is a divisor of the size of 𝐺.

I often tell students, “If proving Lagrange’s theorem is all that cosets are good for,
then cosets would still hold a special place in group theory.” But there’s so much more
to cosets! Chapter 21 describes howwe can turn a set of cosets into its own group called
the quotient group. After an extensive investigation into quotient groups, we end our
study of group theory in Chapter 25, where we resolve our conjecture (from Chapter
18) about how a homomorphism partitions the domain into equal-sized subsets.

Here is a taste of what you’ll be able to accomplish in this unit:

• Prove that distinct cosets of a subgroup𝐻 forma partition of group𝐺. This becomes
a key ingredient to the proof of Lagrange’s theorem.

• Discover a nifty shortcut for multiplying a pair of cosets. Then learn about normal
subgroups by analyzing when this coset multiplication shortcut fails and when it
works.

• Write lots of proofs involving quotient groups, carefully navigating between group
𝐺 (whose elements have the form 𝑎 ∈ 𝐺) and quotient group𝐺/𝐻 (whose elements
are cosets of the form 𝑎𝐻 ∈ 𝐺/𝐻).
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19
Introduction to Cosets

This chapter introduces a new object called a coset, which is obtained by taking a sub-
group of a group and multiplying each element of the subgroup by a fixed element.
In fact, cosets made a surreptitious appearance in Chapter 18, although they were
disguised enough that you likely did not notice them. Despite their relatively simply
construction, cosets play a powerful role in group theory. We will use them to prove
Lagrange’s theorem in the next chapter. Cosets will also be used to create a new type of
a group called a quotient group, which will be the primary focus of the rest of this unit.

19.1 Multiplicative group example
Example 19.1. Consider the multiplicative group 𝑈13 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12} and its subgroup 𝐻 = {1, 3, 9}. Choose an element 6 ∈ 𝑈13. Then the coset 6𝐻
is obtained bymultiplying each element of𝐻 by 6; i.e., 6𝐻 = {6⋅1, 6⋅3, 6⋅9} = {6, 5, 2}.

Just as we found 6𝐻, let’s compute the coset 𝑎𝐻 for each 𝑎 ∈ 𝑈13. Since there are
12 elements in 𝑈13, we would expect to obtain 12 cosets:

1𝐻 = {1 ⋅ 1, 1 ⋅ 3, 1 ⋅ 9} = {1, 3, 9},
2𝐻 = {2 ⋅ 1, 2 ⋅ 3, 2 ⋅ 9} = {2, 6, 5},
3𝐻 = {3 ⋅ 1, 3 ⋅ 3, 3 ⋅ 9} = {3, 9, 1},
4𝐻 = {4 ⋅ 1, 4 ⋅ 3, 4 ⋅ 9} = {4, 12, 10},
5𝐻 = {5 ⋅ 1, 5 ⋅ 3, 5 ⋅ 9} = {5, 2, 6},
6𝐻 = {6 ⋅ 1, 6 ⋅ 3, 6 ⋅ 9} = {6, 5, 2},

7𝐻 = {7 ⋅ 1, 7 ⋅ 3, 7 ⋅ 9} = {7, 8, 11},
8𝐻 = {8 ⋅ 1, 8 ⋅ 3, 8 ⋅ 9} = {8, 11, 7},
9𝐻 = {9 ⋅ 1, 9 ⋅ 3, 9 ⋅ 9} = {9, 1, 3},
10𝐻 = {10 ⋅ 1, 10 ⋅ 3, 10 ⋅ 9} = {10, 4, 12},
11𝐻 = {11 ⋅ 1, 11 ⋅ 3, 11 ⋅ 9} = {11, 7, 8},
12𝐻 = {12 ⋅ 1, 12 ⋅ 3, 12 ⋅ 9} = {12, 10, 4}.

There are several duplicates in this list of cosets. Recall that in a set, the order in
which the elements are listed does not matter. For instance, 4𝐻 = {4, 12, 10}, 10𝐻 =
{10, 4, 12}, and 12𝐻 = {12, 10, 4} are the same set, because they all contain the same
elements. More generally, these duplicates occur because the cosets 𝑎𝐻 and 𝑏𝐻 can be
equal (i.e., they contain the same elements) even when 𝑎 ≠ 𝑏. For instance, we have
4𝐻 = 10𝐻 = 12𝐻, even though 4, 10, and 12 are distinct elements in 𝑈13.
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Consolidating the duplicates, there are only four distinct cosets within the above
list:

• 1𝐻 = 3𝐻 = 9𝐻 = {1, 3, 9} (original subgroup).

• 2𝐻 = 5𝐻 = 6𝐻 = {2, 5, 6}.

• 4𝐻 = 10𝐻 = 12𝐻 = {4, 10, 12}.

• 7𝐻 = 8𝐻 = 11𝐻 = {7, 8, 11}.
Aside from the original subgroup (i.e., 1𝐻 = 3𝐻 = 9𝐻), none of the other cosets are
subgroups of 𝑈13. In an exercise, you’ll describe which properties of a subgroup are
violated by, say, 4𝐻 = 10𝐻 = 12𝐻.

Below are observations about these cosets, which will be generalized in Section
19.4.

(1) The coset 𝑎𝐻 contains the element 𝑎. For example, 10𝐻 = {4, 10, 12} contains the
element 10.

(2) We have 1𝐻 = 3𝐻 = 9𝐻 = 𝐻, the original subgroup; and 1, 3, 9 are precisely the
elements of 𝐻.

(3) All cosets have the same size, namely the size of 𝐻.

(4) The distinct cosets form a partition of𝑈13. Recall from Section 18.3 that “partition”
means that the distinct cosets do not overlap and together cover all of 𝑈13.

Example 19.2. Consider the group 𝑈20 = {1, 3, 7, 9, 11, 13, 17, 19} and its subgroup
𝐻 = {1, 9}. Howmany distinct cosets do we expect to find? Let’s compute the coset 𝑎𝐻
for each 𝑎 ∈ 𝑈20:

1𝐻 = {1 ⋅ 1, 1 ⋅ 9} = {1, 9},
3𝐻 = {3 ⋅ 1, 3 ⋅ 9} = {3, 7},
7𝐻 = {7 ⋅ 1, 7 ⋅ 9} = {7, 3},
9𝐻 = {9 ⋅ 1, 9 ⋅ 9} = {9, 1},

11𝐻 = {11 ⋅ 1, 11 ⋅ 9} = {11, 19},
13𝐻 = {13 ⋅ 1, 13 ⋅ 9} = {13, 17},
17𝐻 = {17 ⋅ 1, 17 ⋅ 9} = {17, 13},
19𝐻 = {19 ⋅ 1, 19 ⋅ 9} = {19, 11}.

Again, we see duplicates in this list of cosets. For instance, we have 3𝐻 = 7𝐻, even
though 3 and 7 are distinct elements in 𝑈20. Consolidating the duplicates, we obtain
four distinct cosets:

• 1𝐻 = 9𝐻 = {1, 9} (original subgroup).

• 3𝐻 = 7𝐻 = {3, 7}.

• 11𝐻 = 19𝐻 = {11, 19}.

• 13𝐻 = 17𝐻 = {13, 17}.
The observations that we made about the cosets in Example 19.1 apply here as well.
After computing 3𝐻 = {3, 7}, it’s reasonable to suspect that 7𝐻must be the same coset,
because 7𝐻 should contain the element 7. We also have 1𝐻 = 9𝐻 = {1, 9}, the original
subgroup; and 1, 9 are precisely the elements of 𝐻. All the cosets have the same size,
namely 2 elements each. And these four cosets do form a partition of 𝑈20.
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Example 19.3. Consider the group 𝐷4 = {𝜀, 𝑟90, 𝑟180, 𝑟270, ℎ, 𝑣, 𝑑, 𝑑′} and its sub-
group 𝐻 = {𝜀, 𝑑}. Since 𝐷4 and 𝐻 contain 8 and 2 elements, respectively, we would
expect four distinct cosets. (Do you see why?) Referring to Appendix B for the group
table of 𝐷4, we compute the coset 𝑎𝐻 for each 𝑎 ∈ 𝐷4:

𝜀𝐻 = {𝜀 ⋅ 𝜀, 𝜀 ⋅ 𝑑} = {𝜀, 𝑑},
𝑟90𝐻 = {𝑟90 ⋅ 𝜀, 𝑟90 ⋅ 𝑑} = {𝑟90, ℎ},
𝑟180𝐻 = {𝑟180 ⋅ 𝜀, 𝑟180 ⋅ 𝑑} = {𝑟180, 𝑑′},
𝑟270𝐻 = {𝑟270 ⋅ 𝜀, 𝑟270 ⋅ 𝑑} = {𝑟270, 𝑣},

ℎ𝐻 = {ℎ ⋅ 𝜀, ℎ ⋅ 𝑑} = {ℎ, 𝑟90},
𝑣𝐻 = {𝑣 ⋅ 𝜀, 𝑣 ⋅ 𝑑} = {𝑣, 𝑟270},
𝑑𝐻 = {𝑑 ⋅ 𝜀, 𝑑 ⋅ 𝑑} = {𝑑, 𝜀},
𝑑′𝐻 = {𝑑′ ⋅ 𝜀, 𝑑′ ⋅ 𝑑} = {𝑑′, 𝑟180}.

Consolidating the duplicates, we obtain four distinct cosets, as we had expected:

• 𝜀𝐻 = 𝑑𝐻 = {𝜀, 𝑑} (original subgroup).

• 𝑟90𝐻 = ℎ𝐻 = {𝑟90, ℎ}.

• 𝑟180𝐻 = 𝑑′𝐻 = {𝑟180, 𝑑′}.

• 𝑟270𝐻 = 𝑣𝐻 = {𝑟270, 𝑣}.

We will leave it up to you to verify that the observations that we made about the cosets
in Example 19.1 are satisfied in this example as well.

Example 19.4. Consider the matrix group𝐺(ℤ10) = {𝛼 ∈ 𝑀(ℤ10) | 𝛼 has a multiplica-
tive inverse}. Let 𝐻 = 𝑆(ℤ10) = {𝛼 ∈ 𝐺(ℤ10) | det 𝛼 = 1} and recall from Section 10.3
that 𝑆(ℤ10) is a subgroup of 𝐺(ℤ10).

Fix an element 𝜇 = [ 2 1
5 4 ] ∈ 𝐺(ℤ10) with det 𝜇 = 3. To obtain the coset 𝜇𝐻, we

multiply each element of 𝐻 by 𝜇; i.e., 𝜇𝐻 = {𝜇 ⋅ ℎ | ℎ ∈ 𝐻}. For instance, let ℎ = [ 7 2
5 3 ]

with det ℎ = 7 ⋅ 3 − 2 ⋅ 5 = 1, so that ℎ ∈ 𝐻. Thus the following matrix is in the coset
𝜇𝐻: 𝜇 ⋅ ℎ = [ 2 1

5 4 ] ⋅ [ 7 2
5 3 ] = [ 9 7

5 2 ].We note that det(𝜇 ⋅ ℎ) = det [ 9 7
5 2 ] = 9 ⋅ 2 − 7 ⋅ 5 = 3,

and so 𝜇 ⋅ ℎ has determinant 3, just like 𝜇. In fact, you’ll show in an exercise that every
matrix in the coset 𝜇𝐻 has determinant 3.

Conversely, you’ll also show that every matrix with determinant 3 is in the coset
𝜇𝐻. For instance, let 𝛽 = [ 5 71 2 ] and note that det 𝛽 = 5 ⋅ 2 − 7 ⋅ 1 = 3. Let ℎ = [ 3 2

9 3 ]
with det ℎ = 3 ⋅ 3 − 2 ⋅ 9 = 1, so that ℎ ∈ 𝐻. We have 𝜇 ⋅ ℎ = [ 2 1

5 4 ] ⋅ [ 3 2
9 3 ] = [ 5 71 2 ], so

that 𝜇 ⋅ ℎ = 𝛽. Therefore, 𝛽 ∈ 𝜇𝐻 as desired. (How did we come up with the matrix ℎ
here? That’s for you to explore in the exercises!)

19.2 Additive group example
As a default, we assume that an operation of a group is multiplication. But cosets of
additive groups will be particularly important when we study rings later in the book.
So we will take an in-depth look at the additive case in the following examples.

Example 19.5. Consider the additive group ℤ12 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
and its subgroup 𝐻 = {0, 4, 8}. Choose 6 ∈ ℤ12. Then the coset 6 + 𝐻 is obtained by
adding 6 to each element of 𝐻; i.e., 6 + 𝐻 = {6 + 0, 6 + 4, 6 + 8} = {6, 10, 2}. In an
exercise, you’ll compute the coset 𝑎 + 𝐻 for each 𝑎 ∈ ℤ12. You should find that there
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are only four distinct cosets:

• 0 + 𝐻 = 4 + 𝐻 = 8 + 𝐻 = {0, 4, 8} (original subgroup).

• 1 + 𝐻 = 5 + 𝐻 = 9 + 𝐻 = {1, 5, 9}.

• 2 + 𝐻 = 6 + 𝐻 = 10 + 𝐻 = {2, 6, 10}.

• 3 + 𝐻 = 7 + 𝐻 = 11 + 𝐻 = {3, 7, 11}.

Aside from the original subgroup 0 + 𝐻 = 4 + 𝐻 = 8 + 𝐻, none of the other cosets
are subgroups of ℤ12. Notice again that the duplicates occur, because the cosets 𝑎 + 𝐻
and 𝑏 + 𝐻 can be equal (i.e., they contain the same elements) even when 𝑎 ≠ 𝑏. For
instance, 5 + 𝐻 = 9 + 𝐻, even though 5 ≠ 9 in ℤ12.

Here are some observations about these additive cosets. Note how they’re the same
as the observations about the cosets in Example 19.1, but written in the language of
addition.

(1) The coset 𝑎+𝐻 contains the element 𝑎. For example, 10+𝐻 = {2, 6, 10} contains
the element 10.

(2) We have 0 + 𝐻 = 4 + 𝐻 = 8 + 𝐻 = 𝐻, the original subgroup; and 𝐻 = {0, 4, 8}.

(3) All cosets have the same size, namely the size of 𝐻.

(4) The distinct cosets form a partition of ℤ12.

Here is an example of cosets where the group and subgroup have infinitely many
elements.

Example 19.6. Consider the additive group ℤ and its subgroup

𝐻 = 5ℤ = {. . . , −20, −15, −10, −5, 0, 5, 10, 15, 20, . . .}.

As an example, here’s the coset 7 + 𝐻, which is obtained by adding 7 to each element
of 𝐻:

7 + 𝐻 = {7 + ℎ | ℎ ∈ 𝐻}
= {. . . , 7 + (−20), 7 + (−15), 7 + (−10), 7 + (−5),

7 + 0, 7 + 5, 7 + 10, 7 + 15, 7 + 20, . . .}
= {. . . , −13, −8, −3, 2, 7, 12, 17, 22, 27, . . .}.

There are five distinct cosets of 𝐻 in ℤ, as shown:

• ⋯ = −5 +𝐻 = 0 +𝐻 = 5 +𝐻 = 10 +𝐻 = 15 +𝐻 = ⋯ (original subgroup).

• ⋯ = −4 + 𝐻 = 1 + 𝐻 = 6 + 𝐻 = 11 + 𝐻 = 16 + 𝐻 = ⋯.

• ⋯ = −3 + 𝐻 = 2 + 𝐻 = 7 + 𝐻 = 12 + 𝐻 = 17 + 𝐻 = ⋯.

• ⋯ = −2 + 𝐻 = 3 + 𝐻 = 8 + 𝐻 = 13 + 𝐻 = 18 + 𝐻 = ⋯.

• ⋯ = −1 + 𝐻 = 4 + 𝐻 = 9 + 𝐻 = 14 + 𝐻 = 19 + 𝐻 = ⋯.
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The observations made in earlier examples apply here as well. For instance, we
have 7+𝐻 = 12+𝐻, even though 7 and 12 are distinct elements in ℤ. After computing

7 + 𝐻 = {. . . , −13, −8, −3, 2, 7, 𝟏𝟐, 17, 22, 27, . . .},
it’s reasonable to suspect that 12 + 𝐻 must be the same coset, because 12 + 𝐻 should
contain the element 12. We also have ⋯ = −10 + 𝐻 = −5 + 𝐻 = 0 + 𝐻 = 5 + 𝐻 =
10 + 𝐻 = 15 + 𝐻 = ⋯ = 𝐻, the original subgroup; and 0, ±5, ±10, ±15, . . . are the
elements of 𝐻. And these five distinct cosets do form a partition of ℤ.

19.3 Right cosets
In Section 19.1, we considered left cosets of the form 𝑎𝐻, where we multiplied each
element of 𝐻 on the left by 𝑎. We can also consider right cosets 𝐻𝑎, as shown in the
example below.

Example 19.7. Consider again the group 𝑈13 and its subgroup 𝐻 = {1, 3, 9}. The left
coset 6𝐻 is given by 6𝐻 = {6 ⋅ 1, 6 ⋅ 3, 6 ⋅ 9} = {6, 5, 2}, and we have the right coset
𝐻6 = {1 ⋅ 6, 3 ⋅ 6, 9 ⋅ 6} = {6, 5, 2}. Observe that 6𝐻 = 𝐻6; i.e., the left and right cosets
are equal, because 𝑈13 is commutative.

As seen in Example 19.7, the distinction between left and right cosets is irrelevant
in a commutative group. In particular, additive groups are always commutative, so
there is no distinction between the left coset 𝑎+𝐻 and the right coset𝐻+𝑎. Thus, we
will only consider left cosets 𝑎 + 𝐻 with additive groups.

Here is a non-commutative example, where things get a bit more interesting.

Example 19.8. Let 𝐻 = {𝜀, 𝑑} be a subgroup of 𝐷4. Let’s compute and compare the
left coset 𝑟90𝐻 and the right coset 𝐻𝑟90:
• 𝑟90𝐻 = {𝑟90 ⋅ 𝜀, 𝑟90 ⋅ 𝑑} = {𝑟90, ℎ}.
• 𝐻𝑟90 = {𝜀 ⋅ 𝑟90, 𝑑 ⋅ 𝑟90} = {𝑟90, 𝑣}.

Therefore, the left and right cosets are not the same; i.e., 𝑟90𝐻 ≠ 𝐻𝑟90.

Example 19.9. Let 𝐾 = 𝐶(ℎ) = {𝜀, 𝑟180, ℎ, 𝑣} be a subgroup of 𝐷4. (It’s the centralizer
of ℎ in 𝐷4. See Section 5.3.) Let’s compute and compare the left coset 𝑑𝐾 and the right
coset 𝐾𝑑:
• 𝑑𝐾 = {𝑑 ⋅ 𝜀, 𝑑 ⋅ 𝑟180, 𝑑 ⋅ ℎ, 𝑑 ⋅ 𝑣} = {𝑑, 𝑑′, 𝑟270, 𝑟90}.
• 𝐾𝑑 = {𝜀 ⋅ 𝑑, 𝑟180 ⋅ 𝑑, ℎ ⋅ 𝑑, 𝑣 ⋅ 𝑑} = {𝑑, 𝑑′, 𝑟90, 𝑟270}.

Thus we have a coset equality 𝑑𝐾 = 𝐾𝑑, because these sets contain the same four
elements. But this does not imply that we have an element-by-element equality; i.e.,
𝑑𝑘 = 𝑘𝑑 for all 𝑘 ∈ 𝐾. Indeed, we have 𝑑ℎ ≠ ℎ𝑑 and 𝑑𝑣 ≠ 𝑣𝑑, where ℎ, 𝑣 ∈ 𝐾.

You’ll show in an exercise at the end of the chapter that 𝜀𝐾 = 𝐾𝜀, 𝑟90𝐾 = 𝐾𝑟90,
𝑟180𝐾 = 𝐾𝑟180, and so on. In fact, it turns out that 𝑎𝐾 = 𝐾𝑎 for all 𝑎 ∈ 𝐷4, so that left
and right cosets are always equal in this example. But be careful: Coset equality does
not imply element-by-element equality.

Remark. In the next section, we will prove various properties of cosets. The proofs
will be written using left cosets. But for each property about left cosets, an analogous
theorem holds true for right cosets.
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19.4 Properties of cosets
We’ve seen plenty of examples of cosets thus far, and now we’re ready for a general
definition.

Definition 19.10 (Coset). Let 𝐺 be a group, 𝐻 a subgroup of 𝐺, and 𝑎 ∈ 𝐺. Then:
• The set 𝑎𝐻 = {𝑎ℎ | ℎ ∈ 𝐻} is the left coset of 𝐻 generated by 𝑎.
• The set 𝐻𝑎 = {ℎ𝑎 | ℎ ∈ 𝐻} is the right coset of 𝐻 generated by 𝑎.

The element 𝑎 is called the coset representative of 𝑎𝐻 and 𝐻𝑎.

Remark. If 𝐺 is an additive group, then the left and right cosets are 𝑎 + 𝐻 = {𝑎 + ℎ ∣
ℎ ∈ 𝐻} and 𝐻 + 𝑎 = {ℎ + 𝑎 ∣ ℎ ∈ 𝐻}, respectively. Recall that we always have
𝑎 + 𝐻 = 𝐻 + 𝑎, since additive groups are commutative. Given this lack of distinction
between left and right cosets, we will only consider left cosets 𝑎 + 𝐻 with additive
groups.

Below are the first three properties of cosets observed in Examples 19.1 and 19.5.
(The fourth property about how the distinct cosets partition the groupwill be addressed
in the next chapter.) While they are stated in the context of left cosets, as will be typical
of coset theorems, analogous statements are true for right cosets. Each proof is written
for a multiplicative group, and the proofs for an additive group are left for you as an
exercise.

The following example motivates the proof of the first theorem.

Example 19.11. Consider again the group𝑈13 and its subgroup𝐻 = {𝟏, 3, 9}. Since𝐻
is a subgroup, it must contain the identity element 𝟏. Thus the coset 6𝐻 must contain
the element 6 ⋅ 𝟏 or 6; i.e.,

6𝐻 = {6 ⋅ 𝟏, 6 ⋅ 3, 6 ⋅ 9} = {𝟔, 5, 2}.

Theorem 19.12. A coset representative is contained in the coset that it generates. Specif-
ically, let 𝐺 be a group,𝐻 a subgroup of 𝐺, and 𝑎 ∈ 𝐺. Then:
• (Multiplicative) The coset 𝑎𝐻 contains the element 𝑎; i.e., 𝑎 ∈ 𝑎𝐻.
• (Additive) The coset 𝑎 + 𝐻 contains the element 𝑎; i.e., 𝑎 ∈ 𝑎 + 𝐻.

Proof. Since 𝐻 is a subgroup, it contains the identity element 𝜀. Then 𝑎 = 𝑎𝜀 ∈
𝑎𝐻. ■

The next theorem says that the elements of 𝐺 whose cosets are the same as the
original subgroup are precisely those elements that are in 𝐻. Here are some examples
we’ve seen that illustrate the theorem.

Example 19.13.
• For the group 𝑈13 and subgroup 𝐻 = {1, 3, 9}, we have 1𝐻 = 3𝐻 = 9𝐻 = 𝐻, the
original subgroup; and 1, 3, 9 are precisely the elements of 𝐻.

• For the groupℤ12 and subgroup𝐻 = {0, 4, 8}, we have 0+𝐻 = 4+𝐻 = 8+𝐻 = 𝐻,
the original subgroup; and 0, 4, 8 are precisely the elements of 𝐻.
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• For the group 𝐷4 and subgroup 𝐻 = {𝜀, 𝑑}, we have 𝜀𝐻 = 𝑑𝐻 = 𝐻, the original
subgroup; and 𝜀, 𝑑 are precisely the elements of 𝐻.

Theorem 19.14. Let 𝐺 be a group,𝐻 a subgroup of 𝐺, and 𝑎 ∈ 𝐺. Then:
• (Multiplicative) 𝑎𝐻 = 𝐻 if and only if 𝑎 ∈ 𝐻.
• (Additive) 𝑎 + 𝐻 = 𝐻 if and only if 𝑎 ∈ 𝐻.

Proof. We must prove two implications:
• If 𝑎𝐻 = 𝐻, then 𝑎 ∈ 𝐻.
• If 𝑎 ∈ 𝐻, then 𝑎𝐻 = 𝐻.

We will prove the second implication. The proof of the first implication is left for you
as an exercise.

Assume 𝑎 ∈ 𝐻. To prove 𝑎𝐻 = 𝐻, we must show that 𝑎𝐻 ⊆ 𝐻 and 𝐻 ⊆ 𝑎𝐻. We
begin with 𝑎𝐻 ⊆ 𝐻. Let 𝑔 ∈ 𝑎𝐻 so that 𝑔 = 𝑎ℎ for some ℎ ∈ 𝐻. Since 𝑎 and ℎ are
both in 𝐻, we know 𝑎ℎ ∈ 𝐻 by the closure of 𝐻. Then 𝑔 ∈ 𝐻 and thus 𝑎𝐻 ⊆ 𝐻. Next,
we will show 𝐻 ⊆ 𝑎𝐻. Let 𝑔 ∈ 𝐻. To show that 𝑔 ∈ 𝑎𝐻, we must show that 𝑔 = 𝑎ℎ
for some ℎ ∈ 𝐻. Let ℎ = 𝑎−1𝑔, which is in 𝐻, because 𝑎 and 𝑔 are in 𝐻. And we have
𝑎ℎ = 𝑎(𝑎−1𝑔) = (𝑎𝑎−1)𝑔 = 𝑔, so that 𝑔 = 𝑎ℎ ∈ 𝑎𝐻. This shows that 𝐻 ⊆ 𝑎𝐻, so that
𝑎𝐻 = 𝐻. ■

Proof know-how. Proofs about cosets often involve a group element contained in a
coset. Note how the remarks beloware similar to those given after the proof of Theorem
18.6.
• In the first part of the proof, assuming that 𝑔 ∈ 𝑎𝐻 allowed us to conclude that
𝑔 = 𝑎ℎ for some ℎ ∈ 𝐻. In essence, we’re applying the following implication: If
𝑔 ∈ 𝑎𝐻, then 𝑔 = 𝑎ℎ for some ℎ ∈ 𝐻.

• Later in the proof, showing that 𝑔 = 𝑎ℎ for some ℎ ∈ 𝐻 allowed us to conclude
that 𝑔 ∈ 𝑎𝐻. Here, we’re using the converse of the above implication; namely: If
𝑔 = 𝑎ℎ for some ℎ ∈ 𝐻, then 𝑔 ∈ 𝑎𝐻.

Coming up with the element ℎ = 𝑎−1𝑔 employed the familiar “working backwards”
technique. Our goal was to show that 𝑔 = 𝑎ℎ for some ℎ ∈ 𝐻, so we solved this
equation for ℎ by left-multiplying each side by 𝑎−1, which yielded ℎ = 𝑎−1𝑔. As before,
this process of solving for ℎ is scratch work and does not belong in the proof. Instead,
the focus of the argument is showing that 𝑔 = 𝑎ℎ for ℎ = 𝑎−1𝑔.

Theorem 19.15. Let𝐻 be a subgroup of a group 𝐺. Then all the left cosets of𝐻 have the
same size, namely the size of𝐻.

Proof. Let 𝑎 ∈ 𝐺. We will define a bijection from 𝐻 to the coset 𝑎𝐻. This will show
that all cosets of𝐻 have the same size as𝐻. Consider the function 𝑓 ∶ 𝐻 → 𝑎𝐻 where
𝑓(ℎ) = 𝑎ℎ for all ℎ ∈ 𝐻. To show that 𝑓 is one-to-one, suppose 𝑓(ℎ) = 𝑓(𝑘) for some
ℎ, 𝑘 ∈ 𝐻. Then 𝑎ℎ = 𝑎𝑘 and left cancellation would imply ℎ = 𝑘. To show that 𝑓 is
onto, let 𝑎ℎ ∈ 𝑎𝐻 where ℎ ∈ 𝐻. Then 𝑓(ℎ) = 𝑎ℎ. ■

Remark. Even if𝐻were infinite, the above proof is valid. It would show that all cosets
of 𝐻 are infinite, each having a bijection from 𝐻.
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19.5 When are cosets equal?
We have seen that cosets can be equal even when their coset representatives are dif-
ferent. For instance, let’s revisit Example 19.1 with the group 𝑈13 and subgroup 𝐻 =
{1, 3, 9}. We found 2𝐻 = {2, 6, 5} and 6𝐻 = {6, 5, 2}, so that 2𝐻 = 6𝐻, even though
2 ≠ 6 in 𝑈13. But could we have determined that 2𝐻 = 6𝐻 without computing these
cosets? More generally, is there a relationship between the coset representatives 𝑎 and
𝑏 that ensures that the cosets 𝑎𝐻 and 𝑏𝐻 are equal?

To answer these questions, we study an examplewhose operation is addition, since
additive relationships tend to be easier to detect than their multiplicative counterparts.
We revisit Example 19.5 with group ℤ12 and subgroup 𝐻 = {0, 4, 8}. Here is what we
found:
• 0 + 𝐻 = 4 + 𝐻 = 8 + 𝐻 = {0, 4, 8}.
• 1 + 𝐻 = 5 + 𝐻 = 9 + 𝐻 = {1, 5, 9}.
• 2 + 𝐻 = 6 + 𝐻 = 10 + 𝐻 = {2, 6, 10}.
• 3 + 𝐻 = 7 + 𝐻 = 11 + 𝐻 = {3, 7, 11}.

For instance, we have 2 + 𝐻 = 6 + 𝐻, and we seek an additive relationship between
the coset representatives 2 and 6. We do have 2 + 6 = 8, which is contained in the
subgroup 𝐻. Perhaps the rule is: 𝑎 + 𝐻 = 𝑏 + 𝐻 if and only if 𝑎 + 𝑏 ∈ 𝐻. But we
also have 3 + 𝐻 = 11 + 𝐻 where 3 + 11 = 2 (in ℤ12), which is not in 𝐻. Thus, our
conjectured rule does not work in all cases.

Alternatively, wemight try subtracting the coset representatives. For 2+𝐻 = 6+𝐻,
we have 2−6 = 4 (and 6−2 = 4), which is in𝐻. For 3+𝐻 = 11+𝐻, we have 3−11 = 4
and 11 − 3 = 8, and both differences are in 𝐻. Thus, we conjecture the following:

𝑎 + 𝐻 = 𝑏 + 𝐻 if and only if 𝑎 − 𝑏 ∈ 𝐻 and 𝑏 − 𝑎 ∈ 𝐻.
This rule even works with 5 + 𝐻 = 5 + 𝐻, since 5 − 5 = 0 is in 𝐻. We also have
3 + 𝐻 ≠ 10 + 𝐻, and 3 − 10 = 5 and 10 − 3 = 7, neither of which is in 𝐻. Thus, our
conjecture seems promising.

Now let’s translate this conjecture into the language of multiplicative groups. The
expressions 𝑎 − 𝑏 and 𝑏 − 𝑎 could translate to 𝑎 ⋅ 𝑏−1 and 𝑏 ⋅ 𝑎−1. Thus, a conjecture
for multiplicative groups may be

𝑎𝐻 = 𝑏𝐻 if and only if 𝑎 ⋅ 𝑏−1 ∈ 𝐻 and 𝑏 ⋅ 𝑎−1 ∈ 𝐻.
Let’s verify this with the group 𝑈13 and subgroup 𝐻 = {1, 3, 9}. For 2𝐻 = 6𝐻 (i.e.,
𝑎 = 2 and 𝑏 = 6), we note that 2−1 = 7 as 2⋅7 = 1modulo 13 and 6−1 = 11 as 6⋅11 = 1
modulo 13. Thus, 𝑎⋅𝑏−1 = 2⋅6−1 = 2⋅11 = 9 ∈ 𝐻 and 𝑏⋅𝑎−1 = 6⋅2−1 = 6⋅7 = 3 ∈ 𝐻.
We also have 2𝐻 ≠ 4𝐻, and 2 ⋅ 4−1 = 2 ⋅ 10 = 7 and 4 ⋅ 2−1 = 4 ⋅ 7 = 2, neither of which
is in𝐻. (Here, 4−1 = 10, because 4 ⋅ 10 = 1modulo 13.) Thus, the conjecture seems to
work, both in concluding that 𝑎𝐻 = 𝑏𝐻 and that 𝑎𝐻 ≠ 𝑏𝐻.

With the multiplicative case, it’s instructive to test the conjecture with a non-
commutative example. Let’s use the group 𝐷4 and subgroup 𝐻 = {𝜀, 𝑑} from Example
19.3. For 𝑟90𝐻 = ℎ𝐻 (i.e., 𝑎 = 𝑟90 and 𝑏 = ℎ), we have 𝑎 ⋅ 𝑏−1 = 𝑟90 ⋅ ℎ−1 = 𝑟90 ⋅ ℎ = 𝑑′
and 𝑏 ⋅ 𝑎−1 = ℎ ⋅ 𝑟−190 = ℎ ⋅ 𝑟270 = 𝑑′, and yet 𝑑′ ∉ 𝐻. The conjecture fails, but how can
we fix it? In a non-commutative group, the product 𝑎 ⋅ 𝑏−1 does not necessarily equal
𝑏−1 ⋅ 𝑎. Likewise, the products 𝑏 ⋅ 𝑎−1 and 𝑎−1 ⋅ 𝑏 need not be equal.
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As a salvage, therefore, we rewrite 𝑎 ⋅ 𝑏−1 and 𝑏 ⋅ 𝑎−1 as 𝑏−1 ⋅ 𝑎 and 𝑎−1 ⋅ 𝑏, respec-
tively. This change won’t affect commutative groups such as 𝑈13. Hence, our revised
conjecture is

𝑎𝐻 = 𝑏𝐻 if and only if 𝑏−1 ⋅ 𝑎 ∈ 𝐻 and 𝑎−1 ⋅ 𝑏 ∈ 𝐻.
For 𝑟90𝐻 = ℎ𝐻 (i.e., 𝑎 = 𝑟90 and 𝑏 = ℎ), we have 𝑏−1 ⋅ 𝑎 = ℎ−1 ⋅ 𝑟90 = ℎ ⋅ 𝑟90 = 𝑑
and 𝑎−1 ⋅ 𝑏 = 𝑟−190 ⋅ ℎ = 𝑟270 ⋅ ℎ = 𝑑, and 𝑑 ∈ 𝐻. We also have 𝑟90𝐻 ≠ 𝑣𝐻, and
𝑣−1 ⋅ 𝑟90 = 𝑣 ⋅ 𝑟90 = 𝑑′ and 𝑟−190 ⋅ 𝑣 = 𝑟270 ⋅ 𝑣 = 𝑑′, which is not in 𝐻. The revised
conjecture seems to correctly conclude that 𝑎𝐻 = 𝑏𝐻 and that 𝑎𝐻 ≠ 𝑏𝐻.

We now state the revised conjecture as a theorem. The proof is written for a mul-
tiplicative group, and the proof for an additive group is left for you as an exercise.

Theorem 19.16. Let 𝐺 be a group,𝐻 a subgroup of 𝐺, and 𝑎, 𝑏 ∈ 𝐺. Then:
• (Multiplicative) 𝑎𝐻 = 𝑏𝐻 if and only if 𝑏−1 ⋅ 𝑎 ∈ 𝐻 and 𝑎−1 ⋅ 𝑏 ∈ 𝐻.

• (Additive) 𝑎 + 𝐻 = 𝑏 + 𝐻 if and only if 𝑎 − 𝑏 ∈ 𝐻 and 𝑏 − 𝑎 ∈ 𝐻.

Remark. The elements 𝑏−1 ⋅ 𝑎 and 𝑎−1 ⋅ 𝑏 are multiplicative inverses of each other.
(Think socks-shoes.) Thus, they’re both in 𝐻 or neither is in 𝐻. Therefore, Theorem
19.16 could be stated as follows: 𝑎𝐻 = 𝑏𝐻 if and only if 𝑏−1 ⋅ 𝑎 ∈ 𝐻. But, as we
saw above with the group 𝐷4 and subgroup 𝐻 = {𝜀, 𝑑}, we cannot use the conditions
𝑎 ⋅ 𝑏−1 ∈ 𝐻 and 𝑏 ⋅ 𝑎−1 ∈ 𝐻.

Proof. We must prove two implications:

• If 𝑎𝐻 = 𝑏𝐻, then 𝑏−1 ⋅ 𝑎 ∈ 𝐻 and 𝑎−1 ⋅ 𝑏 ∈ 𝐻.

• If 𝑏−1 ⋅ 𝑎 ∈ 𝐻 and 𝑎−1 ⋅ 𝑏 ∈ 𝐻, the 𝑎𝐻 = 𝑏𝐻.
We will prove the second implication. The proof of the first implication is left for you
as an exercise.

Assume 𝑏−1𝑎 ∈ 𝐻 and 𝑎−1𝑏 ∈ 𝐻. To prove 𝑎𝐻 = 𝑏𝐻, we will show that 𝑎𝐻 ⊆ 𝑏𝐻
and 𝑏𝐻 ⊆ 𝑎𝐻.

We start with 𝑎𝐻 ⊆ 𝑏𝐻. Let 𝑔 ∈ 𝑎𝐻 so that 𝑔 = 𝑎ℎ for some ℎ ∈ 𝐻. (We must
show that 𝑔 ∈ 𝑏𝐻). Moreover, since 𝑏−1𝑎 ∈ 𝐻, we have 𝑏−1𝑎 = 𝑗 for some 𝑗 ∈ 𝐻.
Left-multiplying both sides of 𝑏−1𝑎 = 𝑗 by 𝑏, we obtain 𝑎 = 𝑏𝑗. Combining 𝑔 = 𝑎ℎ
and 𝑎 = 𝑏𝑗, we find 𝑔 = 𝑎ℎ = (𝑏𝑗)ℎ = 𝑏(𝑗ℎ) ∈ 𝑏𝐻, where 𝑗ℎ ∈ 𝐻. Therefore, 𝑔 ∈ 𝑏𝐻
so that 𝑎𝐻 ⊆ 𝑏𝐻.

By symmetry, we can deduce that 𝑏𝐻 ⊆ 𝑎𝐻. Hence, we conclude that 𝑎𝐻 = 𝑏𝐻,
as desired. ■

Proof know-how. The above proof contains the sentence, “By symmetry, we can de-
duce that 𝑏𝐻 ⊆ 𝑎𝐻.” This means that the argument for 𝑏𝐻 ⊆ 𝑎𝐻 is identical to that
for 𝑎𝐻 ⊆ 𝑏𝐻, with the roles of 𝑎 and 𝑏 swapped. For instance, the first step in the ar-
gument would be “Let 𝑔 ∈ 𝑏𝐻 so that 𝑔 = 𝑏ℎ for some ℎ ∈ 𝐻.” Rather than repeating
what is essentially the same argument, we invoked the phrase “By symmetry.” This
proof-writing technique is often called proof by symmetry.

In Theorem 19.16, it’s easy to get confused between the conditions 𝑏−1 ⋅𝑎, 𝑎−1 ⋅𝑏 ∈
𝐻 (which is correct) and 𝑎 ⋅ 𝑏−1, 𝑏 ⋅ 𝑎−1 ∈ 𝐻 (which is incorrect). Here’s a mnemonic
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device that can help. Starting with 𝑎𝐻 = 𝑏𝐻, left-multiply both sides by 𝑏−1 to obtain
𝑏−1𝑎𝐻 = 𝑏−1𝑏𝐻, which simplifies to (𝑏−1𝑎)𝐻 = 𝐻. Then Theorem 19.14 implies that
𝑏−1𝑎 ∈ 𝐻. Likewise, starting with 𝑎𝐻 = 𝑏𝐻 and left-multiplying both sides by 𝑎−1
results in 𝑎−1𝑏 ∈ 𝐻. We caution that this is merely a mnemonic for remembering the
correct condition, and it does not constitute a proof of Theorem 19.16. In particular,
the coset equality 𝑏−1𝑎𝐻 = 𝑏−1𝑏𝐻 would require a more rigorous justification in an
actual proof.

Example 19.17. Consider again the additive group ℤ and it subgroup 𝐻 = 5ℤ. Theo-
rem 19.16 implies the following:

𝑎 + 𝐻 = 𝑏 + 𝐻 ⟺ 𝑎− 𝑏 ∈ 𝐻 ⟺ 5 ∣ (𝑎 − 𝑏) ⟺ 𝑎 = 𝑏 in ℤ5.

Here, the symbol ⟺ is a shorthand for “if and only if.” Therefore, the cosets 𝑎 + 𝐻
and 𝑏 + 𝐻 are related in a way that resembles how 𝑎 and 𝑏 are related in ℤ5. We’ll dig
much more into this soon!

Exercises
When working with the group 𝐷4, refer to Appendix B for its group table.

1. Consider the group 𝑈13 and its subgroup 𝐻 = {1, 3, 9}. Then the coset 4𝐻 =
{4, 12, 10} is not a subgroup of 𝑈13. Describe all the group properties that are vio-
lated by 4𝐻.

2. A group 𝐺 has 100 elements and its subgroup 𝐻 has 5 elements. Determine the
number of distinct cosets of 𝐻. Explain your reasoning.

3. Can a group 𝐺 with 100 elements have a subgroup 𝐻 with 12 elements? Why or
why not? (This exercise is referenced in Chapter 20.)

4. Let 𝛼 ∈ 𝑆5 be defined by

𝛼 = ( 1 2 3 4 5
4 1 3 5 2 ) .

Let 𝐻 = ⟨𝛼⟩, i.e., the cyclic subgroup generated by 𝛼. Find the number of distinct
cosets of 𝐻.

5. Let𝐻 = {0, 4, 8} be a subgroup of ℤ12. For each 𝑎 ∈ ℤ12, compute the coset 𝑎+𝐻.
(See Example 19.5.)

6. Let 𝐻 = {0, 5, 10} be a subgroup of ℤ15.

(a) How many distinct cosets of 𝐻 do you expect? Explain your reasoning.
(b) For each 𝑎 ∈ ℤ15, compute the coset 𝑎 + 𝐻.
(c) Verify Theorems 19.12, 19.14, 19.15, and 19.16 using the cosets you computed

in part (b).
(d) Verify that the distinct cosets of 𝐻 form a partition of ℤ15.
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7. Consider the multiplicative group 𝑈28 and its subset 𝐻 = {1, 9, 25}.
(a) Verify that 𝐻 is indeed a subgroup of 𝑈28.
(b) How many distinct cosets of 𝐻 do you expect? Explain your reasoning.
(c) For each 𝑎 ∈ 𝑈28, compute the coset 𝑎𝐻.
(d) Verify Theorems 19.12, 19.14, 19.15, and 19.16 using the cosets you computed

in part (c).
(e) Verify that the distinct cosets of 𝐻 form a partition of 𝑈28.

8. Consider the additive group ℤ and its subgroup 𝐻 = 5ℤ. (See Example 19.6.)
(a) Compute the cosets 12 + 𝐻, −1 + 𝐻, 203 + 𝐻, −25 + 𝐻, and 101 + 𝐻.
(b) Find all distinct cosets of 𝐻.
(c) Verify that the distinct cosets of 𝐻 form a partition of ℤ.

9. Consider the additive group ℤ and its subgroup 𝐻 = 5ℤ. Determine whether or
not the following cosets of 𝐻 are equal.

(a) 436 + 𝐻 and 721 + 𝐻.
(b) −43 + 𝐻 and 111 + 𝐻.
(c) 317 + 𝐻 and 532 + 𝐻.

10. Consider the multiplicative group 𝑈35 and its subset 𝐻 = {1, 8, 22, 29}.
(a) Verify that 𝐻 is indeed a subgroup of 𝑈35.
(b) How many distinct cosets of 𝐻 do you expect? Explain your reasoning.
(c) Without computing these cosets, determine if 11𝐻 = 18𝐻. (Hint: 18 ⋅ 2 = 1

modulo 35.)
(d) Without computing these cosets, determine if 9𝐻 = 13𝐻. (Hint: 9 ⋅ 4 = 1

modulo 35.)
(e) Without computing these cosets, determine if 3𝐻 = 24𝐻. (Hint: 3 ⋅ 12 = 1

modulo 35.)

11. Let 𝐻 = {𝜀, 𝑣} be a subgroup of 𝐷4.
(a) How many distinct cosets of 𝐻 do you expect? Explain your reasoning.
(b) For each 𝑎 ∈ 𝐷4, compute the left coset 𝑎𝐻.
(c) Find a pair of distinct elements 𝑎, 𝑏 ∈ 𝐷4 for which 𝑎𝐻 = 𝑏𝐻. Verify that

𝑏−1 ⋅ 𝑎, 𝑎−1 ⋅ 𝑏 ∈ 𝐻.
(d) Find 𝑎, 𝑏 ∈ 𝐷4 for which 𝑎𝐻 = 𝑏𝐻, but 𝑏 ⋅ 𝑎−1, 𝑎 ⋅ 𝑏−1 ∉ 𝐻.

Note: So, you should be careful when using Theorem 19.16.

12. Write the proofs of Theorems 19.12, 19.14, 19.15, and 19.16 when the group oper-
ations is addition.

13. (a) For Theorem 19.16, give an analogous statement for right cosets.
(b) Using an example, verify that the statement in part (a) correctly concludes

that 𝐻𝑎 = 𝐻𝑏 and that 𝐻𝑎 ≠ 𝐻𝑏.
Note: It’s recommended that you work on Exercise #14 in conjunction with
this one.

(This exercise is referenced in Chapter 20, Exercise #2.)
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14. Again, let 𝐻 = {𝜀, 𝑣} be a subgroup of 𝐷4.

(a) For each 𝑎 ∈ 𝐷4, compute the right coset 𝐻𝑎.
(b) Verify Theorems 19.12, 19.14, 19.15, and 19.16 (that are appropriately restated

for right cosets) using the cosets you computed in part (a).
Note: It’s recommended that you work on Exercise #13 in conjunction with
this one.

(c) True or False: 𝑎𝐻 = 𝐻𝑎 for all 𝑎 ∈ 𝐷4.

(This exercise is referenced in Example 24.14.)

15. Let 𝐾 = 𝐶(ℎ) = {𝜀, 𝑟180, ℎ, 𝑣} be a subgroup of 𝐷4. (See Example 19.9.)

(a) For each 𝑎 ∈ 𝐷4, compute the left and right cosets 𝑎𝐾 and 𝐾𝑎.
(b) Verify that 𝑎𝐾 = 𝐾𝑎 for all 𝑎 ∈ 𝐷4.
(c) True or False: 𝑎𝐾 = 𝐾𝑎 means 𝑎𝑘 = 𝑘𝑎 for each 𝑘 ∈ 𝐾 (i.e., element-by-

element equality).

(This exercise is referenced in Example 24.5.)

16. Repeat Exercise #15 with 𝐾 = {𝜀, 𝑟90, 𝑟180, 𝑟270}. (This exercise is referenced in
Example 24.9 and Chapter 24, Exercise #5.)

17. Consider the group 𝑈13 and its subgroup 𝐻 = {1}.

(a) How many distinct cosets of 𝐻 do you expect?
(b) For each 𝑎 ∈ 𝑈13, compute the coset 𝑎𝐻.
(c) Using your result in part (b), complete this statement: 𝑎𝐻 = 𝑏𝐻 if and only if

.

18. Consider the group 𝑈13 and its subgroup 𝐻 = 𝑈13.

(a) How many distinct cosets of 𝐻 do you expect?
(b) For each 𝑎 ∈ 𝑈13, compute the coset 𝑎𝐻.
(c) Using your result in part (b), complete this statement: 𝑎𝐻 = 𝑏𝐻 if and only if

.

19. Let 𝐺 be a group and 𝐻 its subgroup. Restate Theorem 19.16 for the cases 𝐻 = {𝜀}
and 𝐻 = 𝐺. How do your restatements compare with your answers in Exercises
#17 and #18?

20. Let’s generalize our work from Example 19.4. Consider the matrix group 𝐺(ℤ10)
and its subgroup𝐻 = 𝑆(ℤ10) = {𝛼 ∈ 𝐺(ℤ10) | det 𝛼 = 1}. Define the following two
sets:

• Coset 𝜇𝐻 where 𝜇 is a fixed element 𝜇 = [ 2 1
5 4 ] ∈ 𝐺(ℤ10) with det 𝜇 = 3.

• Set 𝑇 = {𝛽 ∈ 𝐺(ℤ10) | det 𝛽 = 3}, i.e., the set of all matrices in 𝐺(ℤ10) with
determinant 3.

(a) Choose an element of the coset 𝜇𝐻, i.e., a product 𝜇 ⋅ ℎ where ℎ ∈ 𝐻. Show
that this product is in set 𝑇 by showing that it has determinant 3.
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(b) Choose an element of set 𝑇, i.e., a matrix 𝛽 with determinant 3. Show that 𝛽
is in the coset 𝜇𝐻 by finding ℎ ∈ 𝐻 such that 𝛽 = 𝜇 ⋅ ℎ.

Note: You must create examples that are different from the ones we used in Ex-
ample 19.4.

21. Consider the matrix group 𝐺(ℤ10) and its subgroup 𝐻 = 𝑆(ℤ10). Let 𝜇 ∈ 𝐺(ℤ10)
be a fixed element with det 𝜇 = 3, and define 𝑇 = {𝛽 ∈ 𝐺(ℤ10) | det 𝛽 = 3}. Prove
that 𝜇𝐻 = 𝑇. (This exercise is referenced in Section 25.2.)
Note: You must let 𝜇 be a general element of 𝐺(ℤ10) with det 𝜇 = 3, not a specific
one like 𝜇 = [ 2 1

5 4 ].

22. Prove: Let 𝐻 and 𝐾 be subgroups of a group 𝐺. If 𝑎𝐻 ⊆ 𝑏𝐾 for some 𝑎, 𝑏 ∈ 𝐺,
then 𝐻 ⊆ 𝐾.

23. Complete the proof of Theorem 19.14 by proving its first implication.

24. Complete the proof of Theorem 19.16 by proving its first implication.





20
Lagrange’s Theorem

Chapter 19, Exercise #3 asked the following:

Can a group 𝐺 with 100 elements have a subgroup 𝐻 with 12 elements? Why
or why not?

Here is a related question:

Suppose there are lots of eggs and lots of dozen egg cartons, like the one shown
in the figure below. If all the eggs are in cartons and all the cartons are full, can
there be 100 eggs? Why or why not?

The answer to both questions is “No,” and understanding the reason behind it will
be the focus of this chapter. In particular, we will prove Lagrange’s theorem, which
states that if 𝐻 is a subgroup of 𝐺 with #𝐻 and #𝐺 elements, respectively, then #𝐻 is
a divisor of #𝐺. Cosets will play a prominent role in proving this theorem, one of the
most important results about finite groups.

20.1 Motivating Lagrange’s theorem
Let 𝐺 be a finite group, and let 𝐻 be a subgroup of 𝐺. Denote the number of elements
of𝐺 and𝐻 by#𝐺 and#𝐻, respectively. Then Lagrange’s theorem, named after Joseph-
Louis Lagrange, states that#𝐻 is a divisor of#𝐺. In this section, wewill review several
examples that motivate this theorem, highlighting the aspects of those examples that
will play a role in its proof.

205
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Example 20.1. Consider the group 𝑈13 and its subgroup 𝐻 = {1, 3, 9}. In Example
19.1, we computed the cosets 𝑎𝐻 for each 𝑎 ∈ 𝑈13, i.e., 1𝐻, 2𝐻, 3𝐻, . . . , 12𝐻. We
found several duplicates, and after consolidating those duplicates, we found four dis-
tinct cosets:

• 1𝐻 = {1, 3, 9}.

• 2𝐻 = {2, 5, 6}.

• 4𝐻 = {4, 10, 12}.

• 7𝐻 = {7, 8, 11}.

To say that these are the distinct cosets of 𝐻 means that any coset of 𝐻 must be equal
to one of these. For instance, the coset 8𝐻 (which isn’t on the above list) is equal to 7𝐻.
More generally, a coset 𝑎𝐻, where 𝑎 ∈ 𝑈13, must be equal to one of 1𝐻, 2𝐻, 4𝐻, or 7𝐻.

We recall two observations about these distinct cosets that will help in proving
Lagrange’s theorem. First, all cosets of 𝐻 have the same size; namely #𝐻 = 3. In fact,
this was proved in Theorem 19.15.

Second, these distinct cosets form a partition of𝑈13, which means that the distinct
cosets do not overlap and together cover all of𝑈13. This second observation is depicted
in the figure below. Note how each element of 𝑈13 is contained in exactly one of the
distinct cosets.

Example 20.2. Consider the group 𝐷4 and its subgroup 𝐻 = {𝜀, 𝑑}. In Example 19.3,
we found the distinct left cosets of 𝐻, which are listed below along with the distinct
right cosets of 𝐻.

Distinct left cosets of 𝐻:
• 𝜀𝐻 = {𝜀, 𝑑}.

• 𝑟90𝐻 = {𝑟90, ℎ}.

• 𝑟180𝐻 = {𝑟180, 𝑑′}.

• 𝑟270𝐻 = {𝑟270, 𝑣}.

Distinct right cosets of 𝐻:
• 𝐻𝜀 = {𝜀, 𝑑}.

• 𝐻𝑟90 = {𝑟90, 𝑣}.

• 𝐻𝑟180 = {𝑟180, 𝑑′}.

• 𝐻𝑟270 = {𝑟270, ℎ}.

As we observed in Example 19.8, the same coset representative can generate dif-
ferent left and right cosets, such as 𝑟90𝐻 ≠ 𝐻𝑟90. This isn’t too surprising, since 𝐷4 is a
non-commutative group. Nonetheless, all left and right cosets of𝐻 have the same size,
namely #𝐻 = 2, and the number of distinct left cosets equals the number of distinct
right cosets (i.e., there are four of each type). The distinct left cosets of 𝐻 form a par-
tition of 𝐷4, and the distinct right cosets of 𝐻 do so as well. However, the manner in
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which𝐷4 is partitioned differs between the left and right cosets, as shown in the figure
below:

20.2 Proving Lagrange’s theorem
We are now ready to prove Lagrange’s theorem, which says: If 𝐻 is a subgroup of a
finite group𝐺, then#𝐻 is a divisor of#𝐺. (Recall that#𝐻 and#𝐺 denote the number
of elements of𝐻 and𝐺, respectively.) Here are the key ingredients needed for its proof:

(1) All the cosets of 𝐻 have the same size, namely #𝐻. (Proved in Theorem 19.15.)

(2) The distinct cosets of𝐻 form a partition of 𝐺; i.e., they cover all of 𝐺 without over-
lapping.

Let’s see why these two ingredients suffice to prove Lagrange’s theorem. Suppose 𝑔1𝐻,
𝑔2𝐻, 𝑔3𝐻, . . . , 𝑔𝑛𝐻 are the distinct left cosets of 𝐻. The case of 𝑛 = 4, i.e., four distinct
cosets, is shown in the figure below:

Since these cosets form a partition of𝐺, the number of elements in𝐺 equals the sum of
the number of elements in each coset; i.e., #𝐺 = #(𝑔1𝐻) + #(𝑔2𝐻) + #(𝑔3𝐻) + ⋯ +
#(𝑔𝑛𝐻). But all the cosets of 𝐻 have the same size, namely #𝐻, and thus we obtain

#𝐺 = #𝐻 + #𝐻 + #𝐻 + ⋯ + #𝐻⏟⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⏟
𝑛 terms

= 𝑛 ⋅ #𝐻,

where 𝑛 is the number of left cosets of 𝐻. Hence #𝐺 = 𝑛 ⋅ #𝐻, so that #𝐻 is a divisor
of #𝐺.

Remark. A helpful analogy is to think of the cosets of𝐻 as “tiling” the group 𝐺. And
if the cosets of 𝐻 were to tile 𝐺 without any overlap, then it must be the case that #𝐻
is a divisor of #𝐺.
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It remains to show that the distinct cosets of𝐻 form a partition of𝐺. Thus, we will
prove the following:
• Every element of 𝐺 is contained in one of these cosets.

• Distinct cosets of 𝐻 do not overlap with each other.

Remark. Like the theorems in Chapter 19, Theorems 20.3 and 20.4 below are stated
in terms of left cosets. Analogous statements are true for right cosets (which you’ll
prove in an exercise at the end of the chapter), as well as for groups whose operation is
addition.

Theorem 20.3. Let𝐻 be a subgroup of a finite group𝐺, and suppose 𝑔1𝐻, 𝑔2𝐻, 𝑔3𝐻, . . . ,
𝑔𝑛𝐻 are the distinct left cosets of 𝐻. Then every element of 𝐺 is contained in one of these
cosets.

Proof. Consider an element 𝑎 ∈ 𝐺. Then 𝑎 ∈ 𝑎𝐻 by Theorem 19.12. Moreover, 𝑎𝐻
must be equal to one of 𝑔1𝐻, 𝑔2𝐻, 𝑔3𝐻, . . . , 𝑔𝑛𝐻, say 𝑎𝐻 = 𝑔𝑖𝐻. Since 𝑎 ∈ 𝑎𝐻, we have
𝑎 ∈ 𝑔𝑖𝐻 as desired. ■

Next, wewill show that distinct cosets of𝐻 do not overlapwith each other. In other
words, given cosets 𝑎𝐻 and 𝑏𝐻, we must prove the following: If 𝑎𝐻 ≠ 𝑏𝐻, then 𝑎𝐻
and 𝑏𝐻 do not share any common element. Instead, we will prove the contrapositive;
namely: If 𝑎𝐻 and 𝑏𝐻 do share a common element, then 𝑎𝐻 = 𝑏𝐻.

Proof know-how. Why prove the contrapositive? Inequalities such as 𝑎𝐻 ≠ 𝑏𝐻 can
be difficult to work with, since they indicate a lack of something. Instead, the hypothe-
sis of the contrapositive, “𝑎𝐻 and 𝑏𝐻 do share a common element,” gives us something
concrete to use, namely an element common to 𝑎𝐻 and 𝑏𝐻.

Theorem 20.4. Let 𝐻 be a subgroup of a finite group 𝐺. If cosets 𝑎𝐻 and 𝑏𝐻 share a
common element, then 𝑎𝐻 = 𝑏𝐻.

Remark. The last step of the proof below uses Theorem 19.16; i.e., 𝑎𝐻 = 𝑏𝐻 if and
only if 𝑏−1𝑎 ∈ 𝐻.

Proof. Assume 𝑎𝐻 and 𝑏𝐻 share a common element. Let 𝑔 be an element contained
in 𝑎𝐻 and 𝑏𝐻. Thus, 𝑔 = 𝑎ℎ and 𝑔 = 𝑏𝑘 for some ℎ, 𝑘 ∈ 𝐻, so that 𝑎ℎ = 𝑏𝑘. Take
the equation 𝑎ℎ = 𝑏𝑘 and left-multiply by 𝑏−1 and right-multiply by ℎ−1 to obtain
𝑏−1𝑎 = 𝑘ℎ−1. Since ℎ, 𝑘 ∈ 𝐻 and 𝐻 is a subgroup, we have 𝑘ℎ−1 ∈ 𝐻. Hence
𝑏−1𝑎 ∈ 𝐻, from which we conclude 𝑎𝐻 = 𝑏𝐻. ■

Proof know-how. In the above proof, one might wonder how we knew to take the
equation 𝑎ℎ = 𝑏𝑘 and left-multiply by 𝑏−1 and right-multiply by ℎ−1. Our goal was
to show 𝑎𝐻 = 𝑏𝐻. Due to Theorem 19.16, that meant showing 𝑏−1𝑎 ∈ 𝐻. Once we
determined our goal (i.e., show that 𝑏−1𝑎 ∈ 𝐻), the proof boiled down tomanipulating
the equation 𝑎ℎ = 𝑏𝑘 to solve for 𝑏−1𝑎 (and show that it’s in 𝐻).

With its proof complete, we now state Lagrange’s theorem.

Theorem 20.5 (Lagrange’s theorem). Let𝐻 be a subgroup of a finite group𝐺. Then#𝐻
is a divisor of #𝐺.
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Example 20.6. At the beginning of this chapter, we asked, “Can a group 𝐺 with 100
elements have a subgroup𝐻with 12 elements?” The answer is “No,” because 12 is not a
divisor of 100, and thus such a group and subgroup would violate Lagrange’s theorem.

Consider a finite group 𝐺 and its subgroup𝐻. In the proof of Lagrange’s theorem,
we found that#𝐺 = 𝑛⋅#𝐻where 𝑛 is the number of distinct left cosets of𝐻. Therefore,
we concluded that #𝐻 is a divisor of #𝐺. From #𝐺 = 𝑛 ⋅ #𝐻, we obtain the formula
𝑛 = #𝐺

#𝐻 . But we could have proved Lagrange’s theorem using right cosets instead and
derived the same conclusions. Thus, the same formula 𝑛 = #𝐺

#𝐻 also applies to the
number of distinct right cosets of 𝐻.

The above discussion prompts the following definition and theorem.

Definition 20.7 (Index of a subgroup). Let 𝐺 be a group, and let 𝐻 be a subgroup of
𝐺. Then the index of 𝐻 in 𝐺, denoted [𝐺 ∶ 𝐻], is the number of distinct left (or right)
cosets of 𝐻 in 𝐺.

Theorem 20.8. Let𝐻 be a subgroup of a finite group 𝐺. Then [𝐺 ∶ 𝐻] = #𝐺
#𝐻 .

Remark. Using the tiling analogy again, the index tells us how many cosets of 𝐻 are
needed to tile 𝐺.

We end the section with some examples of index calculations.

Example 20.9. In Example 19.1, we considered the group 𝑈13 and its subgroup 𝐻 =
{1, 3, 9}. There are four distinct left cosets of 𝐻, and so [𝑈13 ∶ 𝐻] = 4. Note that
#𝑈13
#𝐻 = 12

3 = 4, which confirms Theorem 20.8.

Example 20.10. In Example 19.6, we computed the distinct cosets of 5ℤ in ℤ. Since
ℤ is an infinite group, Theorem 20.8 does not apply. However, we found five distinct
cosets, so that [ℤ ∶ 5ℤ] = 5.

Example 20.11. In Example 20.2, we considered the group 𝐷4 and its subgroup 𝐻 =
{𝜀, 𝑑}. We found four distinct left cosets and four distinct right cosets, and thus
[𝐷4 ∶ 𝐻] = 4. Note that #𝐷4

#𝐻 = 8
2 = 4, which confirms Theorem 20.8.

20.3 Applications of Lagrange’s theorem
Lagrange’s theorem is a powerful result that can provide many insights into the struc-
ture of finite groups. For instance, here is a conjecture that we had made in earlier
chapters, which can now be proved using Lagrange’s theorem. (See Chapter 4, Exer-
cise #11; Chapter 5, Exercise #10; Chapter 6, Exercise #7.)

Theorem 20.12. Let 𝐺 be a finite group, and let 𝑔 ∈ 𝐺. Then ord(𝑔) is a divisor of #𝐺.

Proof. Let 𝑛 = ord(𝑔). By Theorem 13.17, the cyclic subgroup ⟨𝑔⟩ = {𝑔𝑘 | 𝑘 ∈ ℤ} con-
tains 𝑛 distinct elements; namely ⟨𝑔⟩ = {𝜀, 𝑔1, 𝑔2, 𝑔3, . . . , 𝑔𝑛−1}. Since ⟨𝑔⟩ is a subgroup
of 𝐺, Lagrange’s theorem implies that #⟨𝑔⟩ is a divisor of #𝐺. Thus, 𝑛 = ord(𝑔) is a
divisor of #𝐺, as desired. ■



210 Chapter 20. Lagrange’s Theorem

Example 20.13. Suppose a group 𝐺 contains 𝑝 elements, where 𝑝 is prime. Let 𝑔 ∈ 𝐺
be a non-identity element; i.e., 𝑔 ≠ 𝜀. By Theorem 20.12, ord(𝑔) is a divisor of #𝐺 = 𝑝.
Since 𝑝 is prime, its only positive divisors are 1 and 𝑝. And since 𝑔 ≠ 𝜀, we know that
ord(𝑔) ≠ 1. Thus we must have ord(𝑔) = 𝑝, which implies that the cyclic subgroup
⟨𝑔⟩ contains 𝑝 elements; namely ⟨𝑔⟩ = {𝜀, 𝑔1, 𝑔2, 𝑔3, . . . , 𝑔𝑝−1}. Since 𝐺 also has 𝑝
elements, we have 𝐺 = ⟨𝑔⟩, so that 𝐺 is cyclic with generator 𝑔.

The result of Example 20.13 is summarized in the following theorem.

Theorem 20.14. Let 𝐺 be a group with 𝑝 elements, where 𝑝 is prime. Then 𝐺 is cyclic
with 𝐺 = ⟨𝑔⟩, where 𝑔 is any non-identity element of 𝐺.

The next theorem is a direct consequence of Theorem 20.14. Moreover, its proof
introduces a new proof-writing technique, which is described in the Proof know-how
below. (Note: Recall that 𝐻 ∩ 𝐾 is the intersection of 𝐻 and 𝐾, i.e., the set of elements
that are contained in both subgroups.)

Theorem 20.15. Let 𝐺 be a group with subgroups 𝐻 and 𝐾. Suppose #𝐻 = #𝐾 = 𝑝,
where 𝑝 is prime. Then𝐻 = 𝐾 or𝐻 ∩ 𝐾 = {𝜀}.

Proof know-how. In this theorem, we must prove an “or” statement; i.e., we must
prove that (1) 𝐻 = 𝐾 or (2) 𝐻 ∩ 𝐾 = {𝜀}. Here is a possible approach. We know
that conclusion (2) is either true or false. If it’s true, then we’re done with the proof.
Thus, we will assume that (2) is false and prove that (1) is true. In other words, we will
prove the following implication: If (2) is false, then (1) is true. In the actual proof, we
typically leave out the rationale behind this approach, i.e., about how (2) is either true
or false and we’re done with the proof if (2) is true. Instead, we start right away with
the assumption that (2) is false.

Now, we could also assume that (1) is false and prove that (2) is true, which hap-
pens to be the contrapositive of “if (2) is false, then (1) is true.” In this case, it turns
out that “if (2) is false, then (1) is true” is easier to prove. Like many aspects of proof
writing, a feel for choosing which implication to prove comes with lots of experience.
If you’re not sure which one to prove, try both and see what happens!

Proof. Assume that 𝐻 ∩ 𝐾 ≠ {𝜀}. Hence, there is a non-identity element 𝑔 that is
contained in both 𝐻 and 𝐾. We will show that 𝐻 = 𝐾. Since 𝐻 has 𝑝 elements, Theo-
rem 20.14 implies that it is cyclic with 𝐻 = ⟨𝑔⟩. Likewise, we have 𝐾 = ⟨𝑔⟩. Therefore
𝐻 = 𝐾, as both are equal to ⟨𝑔⟩. ■

Example 20.16. Let 𝐺 be a group with 35 elements. We’ll prove that 𝐺 contains an
element of order 5. Let 𝑔 ∈ 𝐺 be a non-identity element. By Theorem 20.12, ord(𝑔) is a
divisor of #𝐺 = 35. The positive divisors of 35 are 1, 5, 7, and 35. Since 𝑔 ≠ 𝜀, we have
ord(𝑔) = 5, 7, or 35. If ord(𝑔) = 5, then we’re done with our proof. If ord(𝑔) = 35,
then ord(𝑔7) = 5 by Theorem 12.7 and we’re also done.

But what if all 34 non-identity elements of 𝐺 have order 7? We’ll show this isn’t
possible, and thus 𝐺 must have an element of order 5. Suppose 𝑔1 ∈ 𝐺 has order
7. Then the cyclic subgroup ⟨𝑔1⟩ contains 6 non-identity elements, each with order 7.
Next, let 𝑔2 ∈ 𝐺 have order 7, with 𝑔2 ∉ ⟨𝑔1⟩. Then ⟨𝑔2⟩ also contains 6 non-identity
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elements, each with order 7. Moreover, Theorem 20.15 implies that ⟨𝑔1⟩ ∩ ⟨𝑔2⟩ = {𝜀}.
Therefore, elements of order 7 come in disjoint “clumps” of 6 elements. Since 6 is not
a divisor of 34, there cannot be 34 elements of order 7 in 𝐺.

Exercises
1. Consider the group 𝐷4 and its subgroup 𝐻 = {𝜀, 𝑟180, 𝑑, 𝑑′}.

Note: We have 𝐻 = 𝐶(𝑑), i.e., the centralizer of 𝑑 in 𝐷4. Thus, 𝐻 is indeed a
subgroup.

(a) Find [𝐷4 ∶ 𝐻].
(b) Let 𝑎 ∈ 𝐻. Without using the group table for 𝐷4, compute the left coset 𝑎𝐻

and right coset 𝐻𝑎.
(c) Repeat part (b) for 𝑎 ∉ 𝐻. Explain your reasoning.
(d) Explain why 𝑎𝐻 = 𝐻𝑎 for all 𝑎 ∈ 𝐷4.

2. For Theorems 20.3 and 20.4, write analogous statements for right cosets and prove
them.
Note: For Theorem 20.4, you should first complete Chapter 19, Exercise #13.

3. Let𝐺 be afinite group,𝐻 a subgroup of𝐺, and𝐾 a subgroup of𝐻 (thus𝐾 ⊆ 𝐻 ⊆ 𝐺).
Prove that [𝐺 ∶ 𝐾] = [𝐺 ∶ 𝐻] ⋅ [𝐻 ∶ 𝐾].

4. Let 𝐺 be a group, and let 𝐻 and 𝐾 be its subgroups. Define 𝑀 = 𝐻 ∩ 𝐾 = {𝑔 ∈
𝐺 | 𝑔 ∈ 𝐻 and 𝑔 ∈ 𝐾}; i.e., 𝑀 is the intersection of 𝐻 and 𝐾. If #𝐻 = 15 and
#𝐾 = 28, find #𝑀. Explain your reasoning.
Hint: See Chapter 11, Exercise #13.

5. Prove: Suppose 𝐺 is a group and 𝐻 and 𝐾 are subgroups of 𝐺 containing𝑚 and 𝑛
elements, respectively. If gcd(𝑚, 𝑛) = 1, then 𝐻 ∩ 𝐾 = {𝜀}.
Note: Compare with Chapter 14, Exercise #24.

6. Prove each of the following statements.

(a) If the group𝑈𝑚 contains 𝑘 elements, then 𝑎𝑘 = 1 for all 𝑎 ∈ 𝑈𝑚. (See Chapter
4, Exercise #10.)

(b) If a group 𝐺 contains 𝑘 elements, then 𝑔𝑘 = 𝜀 for all 𝑔 ∈ 𝐺.

7. Prove: Let 𝐺 be a group with 𝑘 elements. Suppose gcd(𝑘, 𝑛) = 1. If 𝑔 ∈ 𝐺 and
𝑔𝑛 = 𝜀, then 𝑔 = 𝜀.
Hint: Use Theorem 3.9, i.e., the GCD theorem.

8. Consider the prime number 𝑝 = 3.

(a) Choose an integer 𝑎, compute 𝑎𝑝 − 𝑎, and verify that 𝑝 is a divisor of 𝑎𝑝 − 𝑎.
(b) Repeat part (a) with another integer 𝑎 of your choice.
(c) Repeat part (a) again, this time with a negative integer 𝑎.
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9. (a) Repeat Exercise #8 with prime 𝑝 = 5; with prime 𝑝 = 7; with prime 𝑝 = 11.
(b) Repeat Exercise #8 with one more prime number of your choice.
(c) What conjecture do you have?

10. (Fermat’s little theorem) Let 𝑝 be a prime number. Prove that 𝑝 is a divisor of
𝑎𝑝 − 𝑎 for all 𝑎 ∈ ℤ.

11. Let 𝐺 be a group with 15 elements, and let 𝐻 be a proper subgroup of 𝐺. Explain
why 𝐻 is cyclic.
Note: A proper subgroup of 𝐺 is a subgroup that is not 𝐺 itself.

12. Repeat Exercise #11 for a group 𝐺 with 21 elements; with 33 elements; with 91
elements.

13. Prove: Suppose 𝐺 is a group with 𝑝𝑞 elements, where 𝑝 and 𝑞 are distinct prime
numbers. If 𝐻 is a proper subgroup of 𝐺, then 𝐻 is cyclic.

14. Prove each of the following statements.
(a) If 𝐺 is a group with 27 elements, then there exists an element 𝑔 ∈ 𝐺 with

ord(𝑔) = 3.
(b) Suppose 𝐺 is a group with 𝑝𝑛 elements, where 𝑝 is a prime number and 𝑛 is a

positive integer. Then there exists an element 𝑔 ∈ 𝐺 with ord(𝑔) = 𝑝.
15. Let 𝐺 be a group with 49 elements. If 𝐺 is not cyclic, what can you say about the

order of each element in 𝐺?
16. (a) Repeat Exercise #15 for a group with 25 elements; with 169 elements; with

289 elements.
(b) Write a statement that generalizes part (a). Then prove your statement.

17. Let 𝐺 be a group with 55 elements.
(a) For 𝑔 ∈ 𝐺, find the possible values of ord(𝑔).
(b) Prove: There exists an element of 𝐺 with order 11.

18. Let 𝐺 be a group with 40 elements.
(a) For 𝑔 ∈ 𝐺, find the possible values of ord(𝑔).
(b) Prove: There exists an element of 𝐺 with order 2.

19. Prove: Let 𝐺 be a group with 𝑝 ⋅ 2𝑛 elements, where 𝑝 is an odd prime and 𝑛 is a
positive integer. Then there exists an element 𝑔 ∈ 𝐺 with ord(𝑔) = 2.

20. Prove: Let 𝐺 be a group with 𝑛 elements. If 𝑛 is odd, then 𝐺 has no element of
order 2.

21. Prove: Let 𝐺 be a commutative group with 𝑛 elements. Let 𝑎 be the product of all
elements of 𝐺. If 𝑛 is odd, then 𝑎 = 𝜀.

22. Let𝐺 be a commutative groupwith 21 elements. Consider the function 𝜃 ∶ 𝐺 → 𝐺
where 𝜃(𝑔) = 𝑔16 for all 𝑔 ∈ 𝐺. Show that 𝜃 is an isomorphism.

23. Let 𝐺 be a commutative group with 𝑛 elements. Consider the function 𝜃 ∶ 𝐺 → 𝐺
where 𝜃(𝑔) = 𝑔𝑚 for all 𝑔 ∈ 𝐺. If gcd(𝑚, 𝑛) = 1, then show that 𝜃 is an isomor-
phism.
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Multiplying/Adding Cosets

In Chapter 20, we saw the instrumental role that cosets play in the proof of Lagrange’s
theorem. As noted in the introduction to this unit, I often tell students, “If proving
Lagrange’s theorem is all that cosets are good for, then cosets would still hold a special
place in group theory.” However, cosets can do so much more, and we’ll learn about
their further exploits in the next few chapters.

Given a group 𝐺 and its subgroup𝐻, the distinct cosets of𝐻 form a group called a
quotient group, provided that 𝐻 meets a certain condition (TBA). In this chapter, we’ll
learn the group operation for the quotient group, i.e., how to multiply (or add) cosets.

21.1 Turning a set of cosets into a group
We begin by revisiting Example 19.1. Let 𝐻 = {1, 3, 9} be a subgroup of 𝑈13. The
distinct cosets of 𝐻 are the following:
• 1𝐻 = {1, 3, 9} = 3𝐻 = 9𝐻.
• 2𝐻 = {2, 6, 5} = 6𝐻 = 5𝐻.
• 4𝐻 = {4, 12, 10} = 12𝐻 = 10𝐻.
• 7𝐻 = {7, 8, 11} = 8𝐻 = 11𝐻.

We can use the property 𝑎 ∈ 𝑎𝐻 (Theorem 19.12) and that distinct cosets do not over-
lap (Theorem 20.4) when finding these coset representatives. For instance, once we
compute 2𝐻 = {2 ⋅ 1, 2 ⋅ 3, 2 ⋅ 9} = {2, 6, 5}, then we know that this coset also equals
6𝐻 and 5𝐻, because 6 and 5 are contained in 2𝐻.
Notation. We define 𝑈13/𝐻 (read “𝑈13 mod 𝐻”) to be the set of distinct cosets of 𝐻.
Thus,

𝑈13/𝐻 = {1𝐻, 2𝐻, 4𝐻, 7𝐻}.
Since different coset representatives can generate the same coset (e.g., 2𝐻 = 6𝐻), we
could have written 𝑈13/𝐻 slightly differently, perhaps like this:

𝑈13/𝐻 = {1𝐻, 6𝐻, 10𝐻, 11𝐻}.
213
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It does make sense to use 1𝐻 instead of 3𝐻 or 9𝐻, given that 1 ∈ 𝑈13 is a special
element, namely the multiplicative identity. (We’ll soon see the special role that 1𝐻
plays in 𝑈13/𝐻.) However, using 2𝐻 instead of 6𝐻 is simply a matter of choice.

Here’s a crazy idea: We wish to turn the set 𝑈13/𝐻 into a group. That means we
need an operation, i.e., a way to “multiply” a pair of cosets. For instance, what would
2𝐻 ⋅ 4𝐻 equal? By closure, it would have to equal 1𝐻, 2𝐻, 4𝐻, or 7𝐻. But which one?
To answer this question, we begin by defining what it means to multiply two subsets
of a group. (Recall: This was first defined in Chapter 8, Exercise #9.)

Definition 21.1. Let 𝑆 and 𝑇 be subsets of a group 𝐺. Then the set product of 𝑆 and 𝑇
is the set

𝑆 ⋅ 𝑇 = {𝑠 ⋅ 𝑡 | 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇},

where the multiplication 𝑠 ⋅ 𝑡 is done in 𝐺.

Example 21.2. Let𝐻 = {1, 3, 9} be a subgroup of𝑈13. To compute the set product 2𝐻⋅
4𝐻, we multiply every element of 2𝐻 = {2, 6, 5} by every element of 4𝐻 = {4, 12, 10},
as shown below:

2𝐻 ⋅ 4𝐻 = {2, 6, 5} ⋅ {4, 12, 10}
= {2 ⋅ 4, 2 ⋅ 12, 2 ⋅ 10, 6 ⋅ 4, 6 ⋅ 12, 6 ⋅ 10, 5 ⋅ 4, 5 ⋅ 12, 5 ⋅ 10}
= {8, 11, 7, 11, 7, 8, 7, 8, 11}.

Since 2𝐻 and 4𝐻 contain 3 elements each, it may seem that 2𝐻 ⋅ 4𝐻 would contain 9
elements of 𝑈13. But we see several duplicates in the set product, and duplicate ele-
ments are not counted in a set. After consolidating the duplicates, we obtain 2𝐻 ⋅4𝐻 =
{7, 8, 11}. Therefore, 2𝐻 ⋅ 4𝐻 = 7𝐻.

Example 21.3. Consider again the subgroup 𝐻 = {1, 3, 9} of 𝑈13. Let’s compute the
set product 4𝐻 ⋅ 2𝐻 and compare the result with 2𝐻 ⋅ 4𝐻, which we found in Example
21.2 above:

4𝐻 ⋅ 2𝐻 = {4, 12, 10} ⋅ {2, 6, 5}
= {4 ⋅ 2, 4 ⋅ 6, 4 ⋅ 5, 12 ⋅ 2, 12 ⋅ 6, 12 ⋅ 5, 10 ⋅ 2, 10 ⋅ 6, 10 ⋅ 5}
= {8, 11, 7, 11, 7, 8, 7, 8, 11}
= {7, 8, 11}
= 7𝐻.

We obtain 4𝐻 ⋅ 2𝐻 = 7𝐻, so that 2𝐻 ⋅ 4𝐻 = 4𝐻 ⋅ 2𝐻. Perhaps this was expected, since
multiplication of cosets in this example and in Example 21.2 is based onmultiplication
in 𝑈13, which is commutative. In an exercise at the end of the chapter, you’ll prove
that if a group 𝐺 is commutative, then the corresponding coset multiplication is also
commutative; i.e., 𝑎𝐻 ⋅ 𝑏𝐻 = 𝑏𝐻 ⋅ 𝑎𝐻.
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Example 21.4. For the subgroup𝐻 = {1, 3, 9} of𝑈13, we have the set of distinct cosets

𝑈13/𝐻 = {1𝐻, 2𝐻, 4𝐻, 7𝐻}.

We’ll now see the special role that 1𝐻 plays in coset multiplication. Consider the set
product:

1𝐻 ⋅ 4𝐻 = {1, 3, 9} ⋅ {4, 12, 10}
= {1 ⋅ 4, 1 ⋅ 12, 1 ⋅ 10, 3 ⋅ 4, 3 ⋅ 12, 3 ⋅ 10, 9 ⋅ 4, 9 ⋅ 12, 9 ⋅ 10}
= {4, 12, 10, 12, 10, 4, 10, 4, 12}
= {4, 10, 12}
= 4𝐻.

Therefore, 1𝐻 ⋅ 4𝐻 = 4𝐻. Based on Example 21.3, we also have 4𝐻 ⋅ 1𝐻 = 4𝐻. In an
exercise at the end of the chapter, you’ll show that 1𝐻 ⋅ 𝑎𝐻 = 𝑎𝐻 and 𝑎𝐻 ⋅ 1𝐻 = 𝑎𝐻
for all cosets 𝑎𝐻. Hence, 1𝐻 is the multiplicative identity element of 𝑈13/𝐻.

Example 21.5. Let 𝐻 = {1, 3, 9} be a subgroup of 𝑈13 and consider the set of distinct
cosets

𝑈13/𝐻 = {1𝐻, 2𝐻, 4𝐻, 7𝐻}.
We’ll leave it up to you to verify the following set products: 1𝐻⋅1𝐻 = 1𝐻, 2𝐻⋅7𝐻 = 1𝐻
(and hence 7𝐻 ⋅ 2𝐻 = 1𝐻), and 4𝐻 ⋅ 4𝐻 = 1𝐻. Since 1𝐻 is the multiplicative identity
of 𝑈13/𝐻 (see Example 21.4), we conclude that 2𝐻 and 7𝐻 are an inverse pair and 1𝐻
and 4𝐻 are self-inverses.

After computing all the set products, we obtain the following table for 𝑈13/𝐻 =
{1𝐻, 2𝐻, 4𝐻, 7𝐻} where the operation is coset multiplication:

⋅ 1𝐻 2𝐻 4𝐻 7𝐻
1𝐻 1𝐻 2𝐻 4𝐻 7𝐻
2𝐻 2𝐻 4𝐻 7𝐻 1𝐻
4𝐻 4𝐻 7𝐻 1𝐻 2𝐻
7𝐻 7𝐻 1𝐻 2𝐻 4𝐻

We use this table to verify the group properties for 𝑈13/𝐻.

(1) 𝑈13/𝐻 is closed under coset multiplication. We can see this from the table, since
every entry in the table (i.e., all possible “products”) is an element of 𝑈13/𝐻.

(2) Coset multiplication is associative. See Theorem 21.6 below for a justification.

(3) 𝑈13/𝐻 contains the multiplicative identity element 1𝐻, where 1𝐻 ⋅ 𝑎𝐻 = 𝑎𝐻 (first
row of the table) and 𝑎𝐻 ⋅ 1𝐻 = 𝑎𝐻 (first column of the table) for all 𝑎𝐻 ∈ 𝑈13/𝐻.

(4) Every element in𝑈13/𝐻 has a multiplicative inverse. 2𝐻 and 7𝐻 are multiplicative
inverses of each other, and 1𝐻 and 4𝐻 are self-inverses.

Thus, 𝑈13/𝐻 is a group under coset multiplication.

Remark. The key here is that we are treating each coset 𝑎𝐻 as an element of 𝑈13/𝐻.
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Using the group table, we can compute the order of each 𝑎𝐻 ∈ 𝑈13/𝐻, i.e., the
smallest number of times we multiply 𝑎𝐻 by itself to obtain the multiplicative identity
1𝐻.

• ord(1𝐻) = 1, because (1𝐻)1 = 1𝐻.

• ord(2𝐻) = 4, because (2𝐻)1 = 2𝐻, (2𝐻)2 = 4𝐻, (2𝐻)3 = 7𝐻, and (2𝐻)4 = 1𝐻.

• ord(4𝐻) = 2, because (4𝐻)1 = 4𝐻 and (4𝐻)2 = 1𝐻.

• ord(7𝐻) = 4, because (7𝐻)1 = 7𝐻, (7𝐻)2 = 4𝐻, (7𝐻)3 = 2𝐻, and (7𝐻)4 = 1𝐻.

Therefore, 𝑈13/𝐻 is a cyclic group with generators 2𝐻 and 7𝐻; i.e., 𝑈13/𝐻 = ⟨2𝐻⟩ =
⟨7𝐻⟩.

The theorem below shows that coset multiplication is associative, for any group
𝐺 and its subgroup 𝐻. Note that we must show the set equality (𝑎𝐻 ⋅ 𝑏𝐻) ⋅ 𝑐𝐻 =
𝑎𝐻 ⋅ (𝑏𝐻 ⋅ 𝑐𝐻), which entails showing the set inclusions (𝑎𝐻 ⋅𝑏𝐻) ⋅ 𝑐𝐻 ⊆ 𝑎𝐻 ⋅ (𝑏𝐻 ⋅ 𝑐𝐻)
and 𝑎𝐻 ⋅ (𝑏𝐻 ⋅ 𝑐𝐻) ⊆ (𝑎𝐻 ⋅ 𝑏𝐻) ⋅ 𝑐𝐻.

Theorem 21.6 (Associativity of coset multiplication). Let 𝐺 be a group, 𝐻 a subgroup
of 𝐺, and 𝑎, 𝑏, 𝑐 ∈ 𝐺. Then (𝑎𝐻 ⋅ 𝑏𝐻) ⋅ 𝑐𝐻 = 𝑎𝐻 ⋅ (𝑏𝐻 ⋅ 𝑐𝐻).

Proof. Let (𝛼 ⋅ 𝛽) ⋅ 𝛾 ∈ (𝑎𝐻 ⋅ 𝑏𝐻) ⋅ 𝑐𝐻 where 𝛼 ∈ 𝑎𝐻, 𝛽 ∈ 𝑏𝐻, and 𝛾 ∈ 𝑐𝐻. But 𝛼, 𝛽,
and 𝛾 are elements of 𝐺. So we use the associativity of multiplication in 𝐺 to get

(𝛼 ⋅ 𝛽) ⋅ 𝛾 = 𝛼 ⋅ (𝛽 ⋅ 𝛾) ∈ 𝑎𝐻 ⋅ (𝑏𝐻 ⋅ 𝑐𝐻).

Therefore, (𝑎𝐻 ⋅ 𝑏𝐻) ⋅ 𝑐𝐻 ⊆ 𝑎𝐻 ⋅ (𝑏𝐻 ⋅ 𝑐𝐻). The argument for the other set inclusion
follows similarly. Thus, (𝑎𝐻 ⋅ 𝑏𝐻) ⋅ 𝑐𝐻 = 𝑎𝐻 ⋅ (𝑏𝐻 ⋅ 𝑐𝐻), as desired. ■

21.2 Coset multiplication shortcut
As we saw in Examples 21.2, 21.3, and 21.4, coset multiplication can be a tedious pro-
cess. Fortunately, there is a shortcut. Tomotivate this shortcut, let’s examine the earlier
examples in more depth.

Example 21.7. Consider the subgroup 𝐻 = {1, 3, 9} of 𝑈13. We found the coset prod-
uct 2𝐻 ⋅ 4𝐻 = 7𝐻. But 7𝐻 can be written as 8𝐻 (i.e., they’re the same coset). Thus
2𝐻 ⋅4𝐻 = 8𝐻, where we observe that 2⋅4 = 8 in𝑈13. We also found that 1𝐻 ⋅4𝐻 = 4𝐻,
where 1 ⋅ 4 = 4 in 𝑈13. For the product 4𝐻 ⋅ 4𝐻 = 1𝐻, we observe that 1𝐻 can also be
written as 3𝐻. Hence we have 4𝐻 ⋅ 4𝐻 = 3𝐻, where 4 ⋅ 4 = 3 in 𝑈13.

Example 21.7 above suggests that to find the coset product 𝑎𝐻 ⋅𝑏𝐻 in𝐺/𝐻, we can
simply multiply their coset representatives in 𝐺; i.e., 𝑎𝐻 ⋅ 𝑏𝐻 = (𝑎𝑏)𝐻. The theorem
below is for the case when 𝐺 is commutative, such as 𝐺 = 𝑈13. Its proof is left for you
as an exercise at the end of the chapter.

Theorem 21.8 (Coset multiplication shortcut). Let 𝐺 be a commutative group, 𝐻 a
subgroup of 𝐺, and 𝑎, 𝑏 ∈ 𝐺. Define the coset product by 𝑎𝐻 ⋅ 𝑏𝐻 = {𝛼 ⋅ 𝛽 | 𝛼 ∈ 𝑎𝐻,
𝛽 ∈ 𝑏𝐻}. Then 𝑎𝐻 ⋅ 𝑏𝐻 = (𝑎𝑏)𝐻.
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Example 21.9. Consider again the cosets 2𝐻 = {2, 6, 5} and 4𝐻 = {4, 12, 10} of 𝑈13.
Rather than multiplying every element of 2𝐻 by every element of 4𝐻, we use the coset
multiplication shortcut to compute 2𝐻 ⋅4𝐻. Note that the shortcut applies in this case,
because 𝑈13 is commutative. We have

2𝐻 ⋅ 4𝐻 = (2 ⋅ 4)𝐻 = 8𝐻.
But 8𝐻 = 7𝐻, so that 2𝐻 ⋅ 4𝐻 = 7𝐻 as before.

Remark. In Example 21.9 above, we have the the equality 2𝐻 ⋅ 4𝐻 = (2 ⋅ 4)𝐻. There’s
a subtle distinction between the multiplication symbol ⋅ in each side of the equation.
On the left side, the expression 2𝐻 ⋅ 4𝐻 denotes a product of cosets, i.e., multiplica-
tion in 𝑈13/𝐻. In the expression (2 ⋅ 4)𝐻, the product 2 ⋅ 4 depicts a product of coset
representatives, which occurs in 𝑈13.

Example 21.10 (Non-example). Let’s look at a non-commutative example. Consider
the group 𝐷4 and its subgroup 𝐻 = {𝜀, 𝑣}. To compute the set product 𝑟90𝐻 ⋅ 𝑑′𝐻,
we multiply every element of 𝑟90𝐻 = {𝑟90, 𝑑} by every element of 𝑑′𝐻 = {𝑑′, 𝑟270}, as
shown below:

𝑟90𝐻 ⋅ 𝑑′𝐻 = {𝑟90, 𝑑} ⋅ {𝑑′, 𝑟270}
= {𝑟90 ⋅ 𝑑′, 𝑟90 ⋅ 𝑟270, 𝑑 ⋅ 𝑑′, 𝑑 ⋅ 𝑟270}
= {𝑣, 𝜀, 𝑟180, ℎ}.

Thus, 𝑟90𝐻 ⋅ 𝑑′𝐻 = {𝑣, 𝜀, 𝑟180, ℎ}. But (𝑟90 ⋅ 𝑑′)𝐻 = 𝑣𝐻 = {𝑣, 𝜀}, so we see that
𝑟90𝐻 ⋅𝑑′𝐻 ≠ (𝑟90 ⋅ 𝑑′)𝐻. The coset multiplication shortcut fails! In fact, the set product
𝑟90𝐻 ⋅ 𝑑′𝐻 contains 4 elements, and therefore it’s not even a coset of 𝐻.

Based on Example 21.10 above, it’s natural to ask: Does the coset multiplication
shortcut in 𝐺/𝐻 hold only when 𝐺 is commutative? Not quite. You’ll see in the exer-
cises at the end of this chapter that the shortcut can hold in 𝐷4/𝐻 for some subgroups
𝐻, even though𝐷4 is non-commutative. The precise condition for when the coset mul-
tiplication shortcut holds will be revealed in Chapter 24. Stay tuned!

21.3 Cosets of 𝐻 = 5ℤ in ℤ revisited
Consider the additive group ℤ and its subgroup 𝐻 = 5ℤ. We saw in Example 19.6 that
the distinct cosets of 𝐻 in ℤ are as follows:
• ⋯ = −5+𝐻 = 𝟎+𝑯 = 5+𝐻 = 10 +𝐻 = 15 +𝐻 = ⋯ (original subgroup).

• ⋯ = −4 + 𝐻 = 𝟏+𝑯 = 6 + 𝐻 = 11 + 𝐻 = 16 + 𝐻 = ⋯.

• ⋯ = −3 + 𝐻 = 𝟐+𝑯 = 7 + 𝐻 = 12 + 𝐻 = 17 + 𝐻 = ⋯.

• ⋯ = −2 + 𝐻 = 𝟑+𝑯 = 8 + 𝐻 = 13 + 𝐻 = 18 + 𝐻 = ⋯.

• ⋯ = −1 + 𝐻 = 𝟒+𝑯 = 9 + 𝐻 = 14 + 𝐻 = 19 + 𝐻 = ⋯.

We define ℤ/𝐻 (read “ℤmod 𝐻”) to be the set of distinct cosets of 𝐻. Thus,
ℤ/𝐻 = {0 + 𝐻, 1 + 𝐻, 2 + 𝐻, 3 + 𝐻, 4 + 𝐻}.
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As with 𝑈13/𝐻 in Section 21.1, we could have written ℤ/𝐻 slightly differently, since
different coset representatives can generate the same coset (e.g., 2 +𝐻 = 7+𝐻). Here
is one possibility:

ℤ/𝐻 = {0 + 𝐻, 11 + 𝐻, 7 + 𝐻, −2 + 𝐻, 1049 + 𝐻}.

However, ℤ/𝐻 = {0 + 𝐻, 1 + 𝐻, 2 + 𝐻, 3 + 𝐻, 4 + 𝐻} is a natural choice, as we will
see below.

We will now show that ℤ/𝐻 is an (additive) group under coset addition. To add,
for example, the cosets 2 + 𝐻 and 3 + 𝐻, we add every element of 2 + 𝐻 to those of
3 + 𝐻. Thus, we have

(2 + 𝐻) + (3 + 𝐻)
= {. . . , −13, −8, −3, 2, 7, 12, 17, . . .} + {. . . , −12, −7, −2, 3, 8, 13, 18, . . .}
= {. . . , −25, −20, −15, −10, −5, 0, 5, 10, 15, 20, 25, 30, 35, . . .}
= 0 + 𝐻.

When computing (2+𝐻)+ (3+𝐻), we encounter duplicates, infinitely many of them,
in fact. For instance, the integer 20 in the coset sum is obtained by −13 + 33, −8 + 28,
−3+23, 2+ 18, 7+ 13, and so on, each of which is the sum of an element in 2+𝐻 and
an element in 3 + 𝐻.

You might have noticed that (2 + 𝐻) + (3 + 𝐻) = (2 + 3) + 𝐻. This is true not
only in ℤ/𝐻, but also in any 𝐺/𝐻 where 𝐺 is an additive group. Below is the additive
version of the coset multiplication shortcut (Theorem 21.8). Note that additive groups
are always commutative, so that the shortcut should hold.

Theorem 21.11 (Coset addition shortcut). Let 𝐺 be an additive group,𝐻 a subgroup of
𝐺, and𝑎, 𝑏 ∈ 𝐺. Define the coset sumby (𝑎+𝐻)+(𝑏+𝐻) = {𝛼+𝛽 | 𝛼 ∈ 𝑎+𝐻, 𝛽 ∈ 𝑏+𝐻}.
Then (𝑎 + 𝐻) + (𝑏 + 𝐻) = (𝑎 + 𝑏) + 𝐻.

Proof. To show this set equality, we must show that

(𝑎 + 𝐻) + (𝑏 + 𝐻) ⊆ (𝑎 + 𝑏) + 𝐻 and (𝑎 + 𝑏) + 𝐻 ⊆ (𝑎 + 𝐻) + (𝑏 + 𝐻).

First, let 𝛼 + 𝛽 ∈ (𝑎 +𝐻) + (𝑏 +𝐻), where 𝛼 ∈ 𝑎 +𝐻 and 𝛽 ∈ 𝑏 +𝐻. Thus, 𝛼 = 𝑎 + ℎ
and 𝛽 = 𝑏 + 𝑘 for some ℎ, 𝑘 ∈ 𝐻. Since additive groups are commutative,

𝛼 + 𝛽 = (𝑎 + ℎ) + (𝑏 + 𝑘) = (𝑎 + 𝑏) + (ℎ + 𝑘) ∈ (𝑎 + 𝑏) + 𝐻.

Thus 𝛼 + 𝛽 ∈ (𝑎 + 𝑏) + 𝐻, so that (𝑎 + 𝐻) + (𝑏 + 𝐻) ⊆ (𝑎 + 𝑏) + 𝐻.
Next, let 𝛾 ∈ (𝑎 + 𝑏) + 𝐻 so that 𝛾 = (𝑎 + 𝑏) + ℎ for some ℎ ∈ 𝐻. Then,

𝛾 = (𝑎 + 𝑏) + ℎ = (𝑎 + 0) + (𝑏 + ℎ) ∈ (𝑎 + 𝐻) + (𝑏 + 𝐻).

Thus 𝛾 ∈ (𝑎 + 𝐻) + (𝑏 + 𝐻), so that (𝑎 + 𝑏) + 𝐻 ⊆ (𝑎 + 𝐻) + (𝑏 + 𝐻).
Therefore, (𝑎 + 𝐻) + (𝑏 + 𝐻) = (𝑎 + 𝑏) + 𝐻 as desired. ■

Proof know-how. In the above proof, we showed 𝛾 = (𝑎 + 𝑏) + ℎ = (𝑎 + 0) + (𝑏 + ℎ)
by rewriting 𝑎 as 𝑎 + 0. This “inserting the (additive) identity” technique allowed us
to conclude that 𝛾 is in (𝑎 + 𝐻) + (𝑏 + 𝐻), since 𝑎 + 0 ∈ 𝑎 + 𝐻 and 𝑏 + ℎ ∈ 𝑏 + 𝐻.
(Compare this with the proofs of Theorems 9.6 and 17.9.)
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Using the shortcut, we create a group table for ℤ/𝐻:
+ 0 + 𝐻 1 + 𝐻 2 + 𝐻 3 + 𝐻 4 + 𝐻

0 + 𝐻 0 + 𝐻 1 + 𝐻 2 + 𝐻 3 + 𝐻 4 + 𝐻
1 + 𝐻 1 + 𝐻 2 + 𝐻 3 + 𝐻 4 + 𝐻 0 + 𝐻
2 + 𝐻 2 + 𝐻 3 + 𝐻 4 + 𝐻 0 + 𝐻 1 + 𝐻
3 + 𝐻 3 + 𝐻 4 + 𝐻 0 + 𝐻 1 + 𝐻 2 + 𝐻
4 + 𝐻 4 + 𝐻 0 + 𝐻 1 + 𝐻 2 + 𝐻 3 + 𝐻

Then we use the table to verify the group properties for ℤ/𝐻.
(1) ℤ/𝐻 is closed under coset addition, since every entry in the table is an element of

ℤ/𝐻.

(2) Coset addition is associative. The proof looks similar to that of Theorem 21.6.
You’ll fill in the details in an exercise at the end of the chapter.

(3) ℤ/𝐻 contains the identity element 0 + 𝐻, where (0 + 𝐻) + (𝑎 + 𝐻) = 𝑎 + 𝐻 (first
row of the table) and (𝑎 + 𝐻) + (0 + 𝐻) = 𝑎 + 𝐻 (first column of the table) for all
𝑎 + 𝐻 ∈ ℤ/𝐻.

(4) Every element in ℤ/𝐻 has an additive inverse, because each row (and column) of
the table contains the additive identity element 0 + 𝐻.

Thus, ℤ/𝐻 is a group. To which familiar group is it isomorphic? (Hint: Ignore the
“+𝐻” in the table.)

Exercises
When working with the group 𝐷4, refer to Appendix B for its group table.
1. Let𝐻 = {1, 3, 9} be a subgroup of𝑈13. We saw in Example 21.4 that 1𝐻 ⋅4𝐻 = 4𝐻.

(a) Compute the coset product 1𝐻 ⋅ 1𝐻 by multiplying each element of 1𝐻 by
those of 1𝐻.

(b) Repeat part (a) to compute 1𝐻 ⋅ 2𝐻.
(c) Repeat part (a) to compute 1𝐻 ⋅ 7𝐻.
(d) What conclusion can you make about the element 1𝐻 in 𝑈13/𝐻?

2. Let 𝐻 = {1, 3, 9} be a subgroup of 𝑈13. We saw in Exercise #1 that 1𝐻 ⋅ 1𝐻 = 1𝐻.
(a) Compute the coset 2𝐻 ⋅7𝐻 bymultiplying each element of 2𝐻 by those of 7𝐻.
(b) Repeat part (a) to compute 7𝐻 ⋅ 2𝐻.
(c) Repeat part (a) to compute 4𝐻 ⋅ 4𝐻.
(d) What conclusion can you make about the pair 2𝐻 and 7𝐻? About 4𝐻 itself?

3. In Chapter 8, Exercise #9, we computed set products using the following subsets
of 𝑈7:

𝐸 = {1, 6}, 𝑆 = {2, 5}, 𝑇 = {3, 4}.
One of these is a subgroup of𝑈7 and the other two are cosets of that subgroup. Find
the subgroup (call it 𝐻) and write the other two sets as cosets of 𝐻.
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4. Let 𝐺 be a group, 𝐻 a subgroup of 𝐺, and 𝑎, 𝑏 ∈ 𝐺. Define the coset product by
𝑎𝐻 ⋅ 𝑏𝐻 = {𝛼 ⋅ 𝛽 | 𝛼 ∈ 𝑎𝐻, 𝛽 ∈ 𝑏𝐻}.

Prove: If 𝐺 is commutative, then 𝑎𝐻 ⋅ 𝑏𝐻 = 𝑏𝐻 ⋅ 𝑎𝐻. (See Example 21.3.)

5. Prove Theorem 21.6 when the group operation is addition: Let 𝐺 be an additive
group,𝐻 a subgroup of𝐺, and 𝑎, 𝑏, 𝑐 ∈ 𝐺. Then (𝑎𝐻+𝑏𝐻)+𝑐𝐻 = 𝑎𝐻+(𝑏𝐻+𝑐𝐻).

6. Let 𝐻 = {1, 3, 9} be a subgroup of 𝑈13. Shown below is the table for 𝑈13/𝐻 =
{1𝐻, 2𝐻, 4𝐻, 7𝐻}, where the operation is coset multiplication. Use this table to
verify the coset multiplication shortcut for each pair 𝑎𝐻, 𝑏𝐻 ∈ 𝑈13/𝐻. (See Exam-
ple 21.9.)

⋅ 1𝐻 2𝐻 4𝐻 7𝐻
1𝐻 1𝐻 2𝐻 4𝐻 7𝐻
2𝐻 2𝐻 4𝐻 7𝐻 1𝐻
4𝐻 4𝐻 7𝐻 1𝐻 2𝐻
7𝐻 7𝐻 1𝐻 2𝐻 4𝐻

7. Consider the subgroup 𝑍 = {𝜀, 𝑟180} of 𝐷4. Recall that 𝑍 = {𝑧 ∈ 𝐺 | 𝑧𝑔 = 𝑔𝑧 for all
𝑔 ∈ 𝐷4} is the center of 𝐷4, i.e., the set of elements of 𝐷4 that commute with all
elements of 𝐷4.
(a) Quick! How many distinct left (or right) cosets of 𝑍 are there? Explain how

you know.
(b) For each 𝑎 ∈ 𝐷4, compute the left and right cosets 𝑎𝑍 and 𝑍𝑎.
(c) Verify that 𝑎𝑍 = 𝑍𝑎 for all 𝑎 ∈ 𝐷4.
(d) Elizabeth says, “Since 𝑍 is the center of 𝐷4, it’s not surprising to see that the

left and right cosets were the same in part (c).” What might she mean?

8. In Exercise #7, we found that the distinct left cosets of 𝑍 are 𝐷4/𝑍 = {𝜀𝑍, 𝑟90𝑍,
ℎ𝑍, 𝑑𝑍}.
Note: Using, for example, ℎ𝑍 instead of 𝑣𝑍 (they’re the same coset) is simply a
matter of choice.

(a) Compute the coset product 𝑟90𝑍 ⋅ ℎ𝑍 by multiplying each element of 𝑟90𝑍 by
those of ℎ𝑍. You may not use the coset multiplication shortcut (i.e., Theorem
21.8).

(b) Verify that the product in part (a) is indeed equal to (𝑟90 ⋅ ℎ)𝑍.
(This exercise and Exercise #9 below are referenced in Sections 22.3 and 23.1.)

9. Repeat Exercise #8, but now verify the following:

(a) ℎ𝑍 ⋅ 𝑟90𝑍 = (ℎ ⋅ 𝑟90)𝑍.
(b) 𝜀𝑍 ⋅ 𝑑𝑍 = (𝜀 ⋅ 𝑑)𝑍.
(c) 𝑑𝑍 ⋅ ℎ𝑍 = (𝑑 ⋅ ℎ)𝑍.
Note: The coset multiplication shortcut does hold in𝐷4/𝑍; i.e., 𝑎𝑍⋅𝑏𝑍 = (𝑎𝑏)𝑍 for
all 𝑎𝑍, 𝑏𝑍 ∈ 𝐷4/𝑍, even though 𝐷4 is not commutative (so Theorem 21.8 doesn’t
apply). We’ll soon see why this is true.
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10. Consider again the subgroup 𝑍 = {𝜀, 𝑟180} of 𝐷4.
(a) Complete the group table below:

⋅ 𝜀𝑍 𝑟90𝑍 ℎ𝑍 𝑑𝑍
𝜀𝑍
𝑟90𝑍
ℎ𝑍
𝑑𝑍

(b) Use the table to verify that 𝐷4/𝑍 is a group under coset multiplication.
(c) Is 𝐷4/𝑍 commutative or non-commutative?
(d) Find the order of each 𝑎𝑍 ∈ 𝐷4/𝑍. Is the group cyclic?
(This exercise is referenced in Example 23.2.)

11. Let 𝐻 = {𝜀, ℎ} be a subgroup of 𝐷4. (This exercise is referenced in Exercise #18
below.)

(a) Compute the cosets 𝑟90𝐻 and 𝑑𝐻.
(b) Compute the coset product 𝑟90𝐻 ⋅ 𝑑𝐻 by multiplying each element of 𝑟90𝐻 by

those of 𝑑𝐻.
(c) Does the coset multiplication shortcut work here? What’s going on?!

12. Consider the group 𝐷4 and its subgroup 𝐻 = {𝜀, 𝑟180, 𝑑, 𝑑′}.
Note: We have 𝐻 = 𝐶(𝑑), i.e., the centralizer of 𝑑 in 𝐷4. Thus, 𝐻 is indeed a
subgroup.

(a) Compute the coset product 𝑟90𝐻 ⋅ 𝑑𝐻 by multiplying each element of 𝑟90𝐻 by
those of 𝑑𝐻.

(b) Verify that the product in part (a) is indeed equal to (𝑟90 ⋅ 𝑑)𝐻.

13. Repeat Exercise #12, but now verify the following:

(a) 𝑑𝐻 ⋅ 𝑟90𝐻 = (𝑑 ⋅ 𝑟90)𝐻.
(b) 𝜀𝐻 ⋅ 𝑑𝐻 = (𝜀 ⋅ 𝑑)𝐻.
(c) ℎ𝐻 ⋅ 𝑟270𝐻 = (ℎ ⋅ 𝑟270)𝐻.
Note: Indeed, the coset multiplication shortcut holds in this setting as well. We’ll
see why soon.

14. Consider again the subgroup 𝐻 = {𝜀, 𝑟180, 𝑑, 𝑑′} of 𝐷4.
(a) Create the group table for 𝐷4/𝐻 and verify that it’s a group under coset multi-

plication.
(b) Is 𝐷4/𝐻 commutative or non-commutative?

15. Let 𝐻 = {0, 4, 8} be a subgroup of the (additive) group ℤ12.
(a) Find the distinct left cosets of 𝐻.
(b) Compute the coset sum (2 +𝐻) + (3 +𝐻) by adding each element of 2 +𝐻 to

those of 3 + 𝐻.
(c) Verify that the sum in part (b) is indeed equal to (2 + 3) + 𝐻.
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16. Repeat Exercise #15, but now verify the following:

(a) (3 + 𝐻) + (2 + 𝐻) = (3 + 2) + 𝐻.
(b) (0 + 𝐻) + (3 + 𝐻) = (0 + 3) + 𝐻.
(c) (2 + 𝐻) + (2 + 𝐻) = (2 + 2) + 𝐻.

17. Consider again the subgroup 𝐻 = {0, 4, 8} of ℤ12.
(a) Create the group table for ℤ12/𝐻 and verify that it’s a group under coset addi-

tion.
(b) Find the order of each 𝑎 + 𝐻 ∈ ℤ12/𝐻. Is the group cyclic?

18. We’ve seen examples where the coset multiplication shortcut fails.

(a) With subgroup 𝐻 = {𝜀, 𝑣} of 𝐷4, we saw that 𝑟90𝐻 ⋅ 𝑑′𝐻 ≠ (𝑟90 ⋅ 𝑑′)𝐻. (See
Example 21.10.)

(b) With subgroup 𝐻 = {𝜀, ℎ} of 𝐷4, we saw that 𝑟90𝐻 ⋅ 𝑑𝐻 ≠ (𝑟90 ⋅ 𝑑)𝐻. (See
Exercise #11.)

In each of those cases, verify that the set inclusion (𝑎𝑏)𝐻 ⊆ 𝑎𝐻 ⋅ 𝑏𝐻 still holds.

19. Let 𝐺 be a group (not necessarily commutative), 𝐻 a subgroup of 𝐺, and 𝑎, 𝑏 ∈ 𝐺.
Define the coset product by 𝑎𝐻 ⋅ 𝑏𝐻 = {𝛼 ⋅ 𝛽 | 𝛼 ∈ 𝑎𝐻, 𝛽 ∈ 𝑏𝐻}. Prove that
(𝑎𝑏)𝐻 ⊆ 𝑎𝐻 ⋅ 𝑏𝐻. (This exercise is referenced in the proof of Theorem 23.5. It is
also the statement of Theorem 24.2.)

20. Let 𝐺 be a commutative group, 𝐻 a subgroup of 𝐺, and 𝑎, 𝑏 ∈ 𝐺. Define the coset
product by 𝑎𝐻 ⋅ 𝑏𝐻 = {𝛼 ⋅ 𝛽 | 𝛼 ∈ 𝑎𝐻, 𝛽 ∈ 𝑏𝐻}. Prove that 𝑎𝐻 ⋅ 𝑏𝐻 ⊆ (𝑎𝑏)𝐻. (This
exercise is referenced in Example 24.3.)
Note: Combined with the result of Exercise #19, this shows that 𝑎𝐻 ⋅ 𝑏𝐻 = (𝑎𝑏)𝐻
when 𝐺 is commutative, hence completing the proof of Theorem 21.8.

21. Consider the homomorphism 𝛿 ∶ 𝐺(ℤ10) → 𝑈10 where 𝛿(𝛼) = det 𝛼 for all 𝛼 ∈
𝐺(ℤ10), and let 𝐾 = ker 𝛿 be the kernel of 𝛿; i.e., 𝐾 = {𝛼 ∈ 𝐺(ℤ10) | 𝛿(𝛼) = 1}.
(a) Let 𝛼 = [ 7 2

5 3 ] ∈ 𝐺(ℤ10). Verify that 𝛼 ∈ 𝐾.
(b) Let 𝑔 = [ 2 1

5 4 ] ∈ 𝐺(ℤ10) so that 𝑔 ⋅ 𝛼 is in the left coset 𝑔𝐾. Find 𝛽 ∈ 𝐾 for
which 𝑔 ⋅ 𝛼 = 𝛽 ⋅ 𝑔.

(c) Explain why 𝑔 ⋅ 𝛼 is also contained in the right coset 𝐾𝑔.

22. Let 𝜃 ∶ 𝐺 → 𝐻 be a group homomorphism, and let 𝐾 = ker 𝜃 = {𝑎 ∈ 𝐺 | 𝜃(𝑎)
= 𝜀𝐻}. Show that 𝑔𝐾 = 𝐾𝑔 for all 𝑔 ∈ 𝐺. (This exercise is referenced in Example
24.13.)
Hint: Be careful! 𝜃(𝑔𝑘) = 𝜃(𝑘𝑔) does not necessarily imply that 𝑔𝑘 = 𝑘𝑔.
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Quotient Group Examples

In Chapter 21, we learned how to multiply (or add) a pair of cosets, as well as the coset
multiplication shortcut; namely 𝑎𝐻 ⋅ 𝑏𝐻 = (𝑎𝑏)𝐻. This allowed us to form a new
type of group, called a quotient group, whose elements are cosets. In this chapter, we’ll
formalize the notion of the quotient group. In particular, let𝐺 be a group,𝐻 a subgroup
of𝐺, and𝐺/𝐻 (read “𝐺mod𝐻”) the set of distinct cosets of𝐻. We will show that if the
cosetmultiplication shortcut holds in𝐺/𝐻, then𝐺/𝐻 satisfies the group properties and
thus is a group under coset multiplication. We will begin writing some proofs about
𝐺/𝐻, with more proofs to come in the next chapter (which is aptly named “Quotient
Group Proofs”).

22.1 Quotient group 𝑈13/𝐻 revisited
We begin by reviewing the main example from Chapter 21. Let 𝐻 = {1, 3, 9} be a sub-
group of 𝑈13. The set of distinct cosets of 𝐻 is 𝑈13/𝐻 = {1𝐻, 2𝐻, 4𝐻, 7𝐻}. Moreover,
the set 𝑈13/𝐻 (read “𝑈13 mod𝐻”) turned out to be a group under coset multiplication.
To multiply a pair of cosets such as 2𝐻 = {2, 5, 6} and 7𝐻 = {7, 8, 11}, we multiply
every element of 2𝐻 by every element of 7𝐻, as shown:

2𝐻 ⋅ 7𝐻 = {2, 5, 6} ⋅ {7, 8, 11}
= {2 ⋅ 7, 2 ⋅ 8, 2 ⋅ 11, 5 ⋅ 7, 5 ⋅ 8, 5 ⋅ 11, 6 ⋅ 7, 6 ⋅ 8, 6 ⋅ 11}
= {1, 3, 9, 9, 1, 3, 3, 9, 1}
= {1, 3, 9}
= 1𝐻

Therefore, 2𝐻 ⋅ 7𝐻 = 1𝐻.
Rather than performing this tedious computation, we found the coset multiplica-

tion shortcut; namely, 𝑎𝐻 ⋅ 𝑏𝐻 = (𝑎𝑏)𝐻. In Theorem 21.8, we proved that this shortcut
holds in 𝐺/𝐻 when 𝐺 is commutative (such as when 𝐺 = 𝑈13). Thus, 2𝐻 ⋅ 7𝐻 =
(2 ⋅ 7)𝐻 = 14𝐻 = 1𝐻 as before.

223
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In Section 21.1, we verified that 𝑈13/𝐻 satisfies the group properties under coset
multiplication. In particular, 1𝐻 is its multiplicative identity element, where 1𝐻⋅𝑎𝐻 =
𝑎𝐻 and 𝑎𝐻 ⋅ 1𝐻 = 𝑎𝐻 for all 𝑎𝐻 ∈ 𝑈13/𝐻. Thus, 2𝐻 ⋅ 7𝐻 = 1𝐻 and 7𝐻 ⋅ 2𝐻 = 1𝐻
imply that 2𝐻 and 7𝐻 are multiplicative inverses of each other. In symbols, we write
7𝐻 = (2𝐻)−1; i.e., 7𝐻 is the multiplicative inverse of 2𝐻. Likewise, we write 2𝐻 =
(7𝐻)−1, which says that 2𝐻 is the multiplicative inverse of 7𝐻.

22.2 Quotient group 𝑈37/𝐻
Consider the multiplicative group 𝑈37 = {1, 2, 3, . . . , 35, 36} and its subgroup 𝐻 =
{1, 10, 26}. You will verify in an exercise at the end of the chapter that 𝐻 is equal to
⟨10⟩ = {10𝑘 | 𝑘 ∈ ℤ}, i.e., the cyclic subgroup generated by 10. Thus, 𝐻 is indeed a
subgroup of 𝑈37. Since 𝑈37 and 𝐻 contain 36 and 3 elements, respectively, there are
36
3 = 12 distinct cosets of 𝐻. And as 𝑈37 is commutative, Theorem 21.8 ensures that
the coset multiplication shortcut holds in 𝑈37/𝐻.

Note that in all of the examples in this section, the subgroup 𝐻 of 𝑈37 refers to
𝐻 = {1, 10, 26}.

Example 22.1. Let 4𝐻, 11𝐻 ∈ 𝑈37/𝐻, where 4𝐻 = {4, 3, 30} and 11𝐻 = {11, 36, 27}.
While the shortcut does hold in 𝑈37/𝐻, we’ll find 4𝐻 ⋅ 11𝐻 as a set product, to remind
us of the underlying computation. To ease the calculation somewhat, we will write
some numbers in the cosets 4𝐻 and 11𝐻 using negative values modulo 37; i.e., 4𝐻 =
{4, 3, −7} and 11𝐻 = {11, −1, −10}. Thus, we have
4𝐻 ⋅ 11𝐻 = {4, 3, −7} ⋅ {11, −1, −10}

= {4 ⋅ 11, 4 ⋅ (−1), 4 ⋅ (−10), 3 ⋅ 11, 3 ⋅ (−1), 3 ⋅ (−10), −7 ⋅ 11, −7 ⋅ (−1), −7 ⋅ (−10)}
= {44, −4, −40, 33, −3, −30, −77, 7, 70}
= {7, 33, 34, 33, 34, 7, 34, 7, 33}
= {7, 33, 34}
= 7𝐻.

Therefore, 4𝐻 ⋅ 11𝐻 = 7𝐻. Using the shortcut, we have 4𝐻 ⋅ 11𝐻 = (4 ⋅ 11)𝐻 = 44𝐻 =
7𝐻, which matches the result obtained by a more tedious calculation.

Example 22.2. We compute the set product once more, in order to find 1𝐻 ⋅ 11𝐻. To
ease the calculation somewhat, we’llwrite 1𝐻 = {1, 10, −11} and 11𝐻 = {11, −1, −10}.
1𝐻⋅11𝐻 = {1, 10, −11} ⋅ {11, −1, −10}

= {1⋅11, 1⋅(−1), 1⋅(−10), 10⋅11, 10⋅(−1), 10⋅(−10), −11⋅11, −11⋅(−1), −11⋅(−10)}
= {11, −1, −10, 110, −10, −100, −121, 11, 110}
= {11, 36, 27, 36, 27, 11, 27, 11, 36}
= {11, 27, 36}
= 11𝐻.

Therefore, 1𝐻 ⋅ 11𝐻 = 11𝐻. The shortcut confirms that 1𝐻 ⋅ 11𝐻 = (1 ⋅ 11)𝐻 = 11𝐻.

AsExample 22.2 suggests, 1𝐻 is themultiplicative identity element of𝑈37/𝐻. Next,
let’s consider multiplicative inverses in 𝑈37/𝐻 and how they relate to multiplicative
inverses in 𝑈37.
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Example 22.3. The coset multiplication shortcut implies 2𝐻 ⋅ 19𝐻 = (2 ⋅ 19)𝐻 = 1𝐻,
since 2 ⋅ 19 = 1 in 𝑈37. Thus, 2𝐻 ⋅ 19𝐻 = 1𝐻. Symbolically, we write the following:
• In 𝑈37, 2 ⋅ 19 = 1 implies 2−1 = 19; i.e., the multiplicative inverse of 2 is 19.

• In 𝑈37/𝐻, 2𝐻 ⋅ 19𝐻 = 1𝐻 implies (2𝐻)−1 = 19𝐻; i.e., the multiplicative inverse of
2𝐻 is 19𝐻.

Combining these two, we obtain (2𝐻)−1 = 19𝐻 = 2−1𝐻, so that (2𝐻)−1 = 2−1𝐻.

We use the cosetmultiplication shortcut to “verify” the group properties for𝑈37/𝐻.
Here, we write “verify” (in quotes), since exhibiting a few examples as we do below is
not enough to justify these group properties. For a complete justification, see Section
22.3 below.

(1) 𝑈37/𝐻 is closed under coset multiplication. In Example 22.1 above, we saw that
4𝐻 ⋅ 11𝐻 = (4 ⋅ 11)𝐻 = 44𝐻 = 7𝐻

so that the product of 4𝐻 and 11𝐻 is another element of 𝑈37/𝐻.

(2) Coset multiplication is associative. This was proved in Theorem 21.6.

(3) 𝑈37/𝐻 contains the identity element 1𝐻. In Example 22.2, we saw that 1𝐻 ⋅ 11𝐻 =
(1 ⋅ 11)𝐻 = 11𝐻.

(4) Every element in𝑈37/𝐻 has an inverse. In Example 22.3, we found that 2𝐻 ⋅19𝐻 =
(2 ⋅ 19)𝐻 = 1𝐻, and so the multiplicative inverse of 2𝐻 is 19𝐻; i.e., (2𝐻)−1 = 19𝐻.

22.3 Quotient group 𝐺/𝐻 (generalization)
Let 𝐺 be a group, and let 𝐻 be a subgroup of 𝐺. Suppose that 𝐺/𝐻 (the set of distinct
cosets of𝐻) satisfies the coset multiplication shortcut; i.e., 𝑎𝐻 ⋅𝑏𝐻 = (𝑎𝑏)𝐻 for all 𝑎𝐻,
𝑏𝐻 ∈ 𝐺/𝐻. Then we’ll show that 𝐺/𝐻 is a group under coset multiplication.

(1) 𝐺/𝐻 is closed. Let 𝑎𝐻, 𝑏𝐻 ∈ 𝐺/𝐻, where 𝑎, 𝑏 ∈ 𝐺. Then 𝑎𝐻 ⋅ 𝑏𝐻 = (𝑎𝑏)𝐻. Since
𝐺 is closed, we have 𝑎𝑏 ∈ 𝐺. Thus (𝑎𝑏)𝐻 is the coset of 𝐻 that is generated by the
element 𝑎𝑏 ∈ 𝐺. Therefore, (𝑎𝑏)𝐻 ∈ 𝐺/𝐻, which implies that 𝑎𝐻 ⋅ 𝑏𝐻 ∈ 𝐺/𝐻.
Hence, 𝐺/𝐻 is closed.

(2) Coset multiplication is associative. This was proved in Theorem 21.6.

(3) 𝐺/𝐻 contains an identity. Consider 𝜀𝐻 ∈ 𝐺/𝐻, where 𝜀 is the identity of 𝐺. We
have

𝜀𝐻 ⋅ 𝑎𝐻 = (𝜀𝑎)𝐻 = 𝑎𝐻 and 𝑎𝐻 ⋅ 𝜀𝐻 = (𝑎𝜀)𝐻 = 𝑎𝐻
for all 𝑎𝐻 ∈ 𝐺/𝐻. Thus, 𝜀𝐻 is a multiplicative identity of 𝐺/𝐻.

(4) 𝐺/𝐻 contains inverses of its elements. Let 𝑎𝐻 ∈ 𝐺/𝐻, where 𝑎 ∈ 𝐺. Since 𝐺
is a group, there exists an element 𝑎−1 ∈ 𝐺 such that 𝑎 ⋅ 𝑎−1 = 𝜀 and 𝑎−1 ⋅ 𝑎 = 𝜀.
Thus 𝑎−1𝐻 ∈ 𝐺/𝐻, and

𝑎𝐻 ⋅ 𝑎−1𝐻 = (𝑎 ⋅ 𝑎−1)𝐻 = 𝜀𝐻 and 𝑎−1𝐻 ⋅ 𝑎𝐻 = (𝑎−1𝑎)𝐻 = 𝜀𝐻.
Thus, the multiplicative inverse of 𝑎𝐻 is 𝑎−1𝐻. Symbolically, we write (𝑎𝐻)−1 =
𝑎−1𝐻.
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Proof know-how. An element of 𝐺/𝐻 has the form 𝑎𝐻 where 𝑎 ∈ 𝐺 is the coset
representative. Often, a proof about 𝐺/𝐻 involves working with these coset represen-
tatives (which are elements of 𝐺) and relies on what we know about the group 𝐺. For
instance, when showing that 𝐺/𝐻 is closed, we used the closure of 𝐺 to conclude that
𝑎𝑏 ∈ 𝐺, and hence (𝑎𝑏)𝐻 ∈ 𝐺/𝐻.

We have just proved the following theorem.

Theorem 22.4. Let𝐺 be a group, and let𝐻 be a subgroup of𝐺. If𝐺/𝐻 satisfies the coset
multiplication shortcut, then 𝐺/𝐻 is a group under coset multiplication.

Definition 22.5 (Quotient group). The group𝐺/𝐻 in Theorem 22.4 is called a quotient
group.

Example 22.6. Let 𝐻 = {1, 10, 26} be a subgroup of 𝑈37. Then 𝑈37/𝐻 is a quotient
group containing 36

3 = 12 elements. The key here is that we treat each coset 𝑎𝐻 as an
element of 𝑈37/𝐻.

Example 22.7. Let 𝐺 be a group, and let 𝐻 be its subgroup. Assume 𝐺/𝐻 satisfies the
coset multiplication shortcut. Given 𝑎𝐻 ∈ 𝐺/𝐻 where 𝑎 ∈ 𝐺, we’ll compute (𝑎𝐻)𝑛 for
integer exponents 𝑛.

First, consider a positive value of 𝑛, say 𝑛 = 3. The shortcut implies
(𝑎𝐻)3 = 𝑎𝐻 ⋅ 𝑎𝐻 ⋅ 𝑎𝐻 = (𝑎 ⋅ 𝑎 ⋅ 𝑎)𝐻 = 𝑎3𝐻,

so that (𝑎𝐻)3 = 𝑎3𝐻.
In any group, we define an element raised to the 0th power to be the identity ele-

ment. In 𝐺/𝐻, this implies (𝑎𝐻)0 = 𝜀𝐻, since 𝜀𝐻 is the multiplicative identity of 𝐺/𝐻.
In 𝐺, we have 𝑎0 = 𝜀. Thus, (𝑎𝐻)0 = 𝜀𝐻 = 𝑎0𝐻, so that (𝑎𝐻)0 = 𝑎0𝐻.

With a negative exponent, say 𝑛 = −3, we have
(𝑎𝐻)−3 = ((𝑎𝐻)−1)3

= (𝑎𝐻)−1 ⋅ (𝑎𝐻)−1 ⋅ (𝑎𝐻)−1

= 𝑎−1𝐻 ⋅ 𝑎−1𝐻 ⋅ 𝑎−1𝐻
= (𝑎−1)3𝐻
= 𝑎−3𝐻.

Therefore, (𝑎𝐻)−3 = 𝑎−3𝐻.

Example 22.7 suggests the following theorem, whose proof is left for you as an
exercise.

Theorem 22.8. Let 𝐺 be a group, and let 𝐻 be its subgroup. Assume 𝐺/𝐻 satisfies the
coset multiplication shortcut. Given 𝑎𝐻 ∈ 𝐺/𝐻, we have (𝑎𝐻)𝑛 = 𝑎𝑛𝐻 for all integer
exponents 𝑛.

Here is an example of an additive group. Recall that Theorem 21.11 (i.e., the coset
addition shortcut), which states (𝑎+𝐻)+ (𝑏+𝐻) = (𝑎+𝑏)+𝐻, holds for any additive
group 𝐺 and its subgroup 𝐻, since additive groups are always commutative.
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Example 22.9. Consider the subgroup 𝐻 = {0, 4, 8} of the additive group ℤ12. In
Example 19.5, we found the following distinct cosets of 𝐻:
• 0 + 𝐻 = 4 + 𝐻 = 8 + 𝐻 = {0, 4, 8} (original subgroup).

• 1 + 𝐻 = 5 + 𝐻 = 9 + 𝐻 = {1, 5, 9}.

• 2 + 𝐻 = 6 + 𝐻 = 10 + 𝐻 = {2, 6, 10}.

• 3 + 𝐻 = 7 + 𝐻 = 11 + 𝐻 = {3, 7, 11}.
Thus, ℤ12/𝐻 = {0 + 𝐻, 1 + 𝐻, 2 + 𝐻, 3 + 𝐻}. For instance, (2 + 𝐻) + (3 + 𝐻) =
(2 + 3) + 𝐻 = 1 + 𝐻, since 5 + 𝐻 = 1 + 𝐻. Hence, the coset sum (2 + 𝐻) + (3 + 𝐻) is
contained in ℤ12/𝐻.

The additive identity element of ℤ12/𝐻 is 0 + 𝐻. For all 𝑎 + 𝐻 ∈ ℤ12/𝐻, we have
(0 + 𝐻) + (𝑎 + 𝐻) = (0 + 𝑎) + 𝐻 = 𝑎 + 𝐻

and
(𝑎 + 𝐻) + (0 + 𝐻) = (𝑎 + 0) + 𝐻 = 𝑎 + 𝐻.

For additive inverses inℤ12/𝐻, consider the following. We have (3+𝐻)+(9+𝐻) =
(3 + 9) + 𝐻 = 0 + 𝐻, since 3 + 9 = 0 in ℤ12. Symbolically, we write the following:
• In ℤ12, 3 + 9 = 0 implies −3 = 9; i.e., the additive inverse of 3 is 9.

• In ℤ12/𝐻, (3 + 𝐻) + (9 + 𝐻) = 0 + 𝐻 says −(3 + 𝐻) = 9 + 𝐻; the additive inverse
of 3 + 𝐻 is 9 + 𝐻.

Combining these two, we obtain−(3+𝐻) = 9+𝐻 = −3+𝐻, so that−(3+𝐻) = −3+𝐻.

Example 22.9 above can be generalized as follows, whose proof is left for you as an
exercise.

Theorem 22.10. Let 𝐺 be an additive group, and let 𝐻 be a subgroup of 𝐺. Then 𝐺/𝐻
satisfies the coset addition shortcut and is a group under coset addition.

We end the chapter with the following observation. Theorem 22.4 says:�� ��The coset multiplication shortcut holds in 𝐺/𝐻 ⟹
�� ��𝐺/𝐻 is a quotient group .

Wemight ask, “When does the shortcut hold?” A possible answer is, “When 𝐺 is com-
mutative,” as proved in Theorem 21.8. But in Chapter 21, Exercises #8 and #9, we
saw that the shortcut also holds in 𝐷4/𝑍, where 𝑍 = {𝜀, 𝑟180}, even though 𝐷4 is non-
commutative. So the story is a bit more complicated!

Exercises
1. Consider the subgroup 𝐻 = {0, 4, 8} of the additive group ℤ12. For each 𝑎 ∈ ℤ12,

find and compare the orders of 𝑎 ∈ ℤ12 and 𝑎 + 𝐻 ∈ ℤ12/𝐻. What conjecture do
you have?

2. Consider the subgroup 𝐻 = {1, 3, 9} of the multiplicative group 𝑈13. For each
𝑎 ∈ 𝑈13, find and compare the orders of𝑎 ∈ 𝑈13 and𝑎𝐻 ∈ 𝑈13/𝐻. What conjecture
do you have?
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3. Consider the subgroup 𝐻 = {1, 10, 26} of 𝑈37. Verify that 𝐻 is equal to ⟨10⟩ =
{10𝑘 | 𝑘 ∈ ℤ}, i.e., the cyclic subgroup generated by 10. (This computation is re-
ferred to in Section 22.2.)

4. Consider the subgroup 𝐻 = {1, 10, 26} of 𝑈37.

(a) Find and compare the orders of 6 ∈ 𝑈37 and 6𝐻 ∈ 𝑈37/𝐻.
(b) Repeat part (a) with 34 ∈ 𝑈37 and 34𝐻 ∈ 𝑈37/𝐻. It might help to write 34 as

−3modulo 37.
(c) Repeat part (a) with 4 ∈ 𝑈37 and 4𝐻 ∈ 𝑈37/𝐻.
(d) What conjecture do you have?

5. Consider the subgroup𝐻 = {1, 10, 26} of𝑈37. Let 𝑎 ∈ 𝑈37 with ord(𝑎) = 18. Show
that (𝑎𝐻)18 = 1𝐻. What does this say about the order of 𝑎𝐻 in 𝑈37/𝐻? Explain.

6. Our friends are working on Exercise #4:

Elizabeth: Phew! I just found that ord(4) = 18 in 𝑈37.
Anita: Great! So ord(4𝐻)must be 18 as well, since (4𝐻)18 = 418𝐻 = 1𝐻.
Elizabeth: But do we know if 18 is the smallest positive exponent for 4𝐻 ?
Anita: Sure. If 𝑛 is less than 18, then (4𝐻)𝑛 = 4𝑛𝐻 can’t equal 1𝐻, because 4𝑛 ≠ 1.

How would you respond to Anita?

7. Prove: Consider the subgroup 𝐻 = {1, 10, 26} of 𝑈37. Let 𝑎𝐻 ∈ 𝑈37/𝐻 where
𝑎 ∈ 𝑈37. Then ord(𝑎𝐻) in 𝑈37/𝐻 is a divisor of ord(𝑎) in 𝑈37.

8. Consider the subgroup 𝐻 = {1, 10, 26} of 𝑈37.

(a) Find (15𝐻)−1, i.e., the multiplicative inverse of 15𝐻 in 𝑈37/𝐻.
(b) Find (28𝐻)−1.
(c) Find (3𝐻)−1.

9. Consider the subgroup 𝐻 = {1, 7} of 𝑈16.

(a) Quick! How many distinct left (or right) cosets of 𝐻 are there? Explain how
you know.

(b) Find the quotient group 𝑈16/𝐻.
(c) Create the group table for 𝑈16/𝐻 and verify that it’s a group under coset mul-

tiplication.
(d) Find the order of each 𝑎𝐻 ∈ 𝑈16/𝐻. Is the group cyclic?

10. Consider the subgroup 𝐻 = {1, 9} of 𝑈16.

(a) Find the quotient group 𝑈16/𝐻 and determine if it’s cyclic.
(b) Compare your work in part (a) with Exercise #9. Are you surprised by the

results?
(c) 𝑈16 has another subgroup 𝐾 with two elements. Find it and determine if

𝑈16/𝐾 is cyclic.
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11. Consider the additive group ℚ of rational numbers and its subgroup ℤ.
(a) Describe the elements of ℚ that are contained in the coset 15 + ℤ.
(b) Find all 𝛼 ∈ ℚ such that 𝛼 + ℤ = 1

5 + ℤ.
(c) Find 10 distinct cosets in ℚ/ℤ.
(d) Explain why ℚ/ℤ contains infinitely many cosets.

12. (a) Find the order of 25 + ℤ in ℚ/ℤ.
(b) Find the order of 6

11 + ℤ in ℚ/ℤ.
(c) Find the order of − 3

4 + ℤ in ℚ/ℤ.
(d) Explain why every element of ℚ/ℤ has finite order.

13. Consider the additive group ℝ of real numbers and its subgroup ℤ. Does every
element of ℝ/ℤ have finite order? Explain why or why not.

14. Let 𝐺 be a (multiplicative) group, and let𝐻 be its subgroup. Suppose 𝐺/𝐻 satisfies
the coset multiplication shortcut. Consider a function 𝜃 ∶ 𝐺 → 𝐺/𝐻 where 𝜃(𝑎) =
𝑎𝐻 for all 𝑎 ∈ 𝐺. Prove that 𝜃 is a homomorphism.

Remark. Recall from Section 17.1 that homomorphisms provide a unifying lan-
guage to talk about familiar algebraic properties (e.g., exponent rules, distributive
law, etc.). Here’s another such instance. This time, we described the coset multi-
plication shortcut using the language of homomorphisms.

15. Let 𝜃 be the homomorphism from Exercise #14; i.e., 𝜃 ∶ 𝐺 → 𝐺/𝐻 where 𝜃(𝑎) =
𝑎𝐻 for all 𝑎 ∈ 𝐺.
(a) Explain why 𝜃 is onto.
(b) Is 𝜃 necessarily one-to-one? If so, prove it. If not, provide a counterexample.
(c) Prove: 𝜃 is one-to-one if and only if 𝐻 = {𝜀}.

16. Let𝐺 be a cyclic group, and let𝐻 be a subgroup of𝐺. Explainwhy𝐺/𝐻 satisfies the
coset multiplication shortcut, which in turn implies that 𝐺/𝐻 is a quotient group.

17. Recall from Example 13.4 that 𝑈13 is cyclic with generator 2; i.e., 𝑈13 = ⟨2⟩. With
the subgroup 𝐻 = {1, 3, 9} of 𝑈13, verify that 𝑈13/𝐻 is cyclic with generator 2𝐻.
(This exercise and Exercises #18 and #19 below are referenced in Chapter 23, Ex-
ercise #9.)

18. Observe that ℤ12 is cyclic with generator 1; i.e., ℤ12 = ⟨1⟩. With the subgroup
𝐻 = {0, 4, 8} of ℤ12, verify that ℤ12/𝐻 is cyclic with generator 1 + 𝐻.

19. It turns out that 𝑈37 is cyclic with generator 2; i.e., 𝑈37 = ⟨2⟩. With the subgroup
𝐻 = {1, 10, 26} of𝑈37, is the quotient group𝑈37/𝐻 cyclic? Explain your reasoning.

20. In Example 22.7, we used the interpretation (𝑎𝐻)−3 = ((𝑎𝐻)−1)3 to show that
(𝑎𝐻)−3 = 𝑎−3𝐻. This time, use the interpretation (𝑎𝐻)−3 = ((𝑎𝐻)3)−1 to obtain
the same result.

21. Prove Theorem 22.8.
Hint: When 𝑛 is negative, write it as 𝑛 = −(−𝑛) where −𝑛 is positive.

22. Prove Theorem 22.10.





23
Quotient Group Proofs

Muchof this chapter, including the exercises, focus onproofs involving quotient groups.
These proofs typically involve two groups: (1) group 𝐺 whose elements have the form
𝑎 ∈ 𝐺 and (2) quotient group 𝐺/𝐻 whose elements are cosets of the form 𝑎𝐻 ∈ 𝐺/𝐻.
(Sometimes, the subgroup𝐻 will play a role as well.) Carefully navigating between the
two groups is the key to these proofs. Proof know-hows will provide in-depth analyses
of the proofs, highlighting techniques and tips that can be applied to other proofs.

At the end of the chapter, we will examine how the quotient group 𝐺/𝐻 may be
viewed as a simplified (or collapsed) version of the group𝐺. The simplification process
removes some “clutter” from 𝐺, while still maintaining its essential properties. This
theme will be revisited in Chapter 25, when we study the First Isomorphism Theorem.

23.1 Sample quotient group proofs
The theorems and proofs in this section will involve multiplicative groups. Let 𝐺 be a
group, and let 𝐻 be a subgroup of 𝐺. The coset multiplication shortcut says:

𝑎𝐻 ⋅ 𝑏𝐻 = (𝑎𝑏)𝐻 for all 𝑎𝐻, 𝑏𝐻 ∈ 𝐺/𝐻.
Unless specified otherwise, assume that the shortcut holds in 𝐺/𝐻 so that 𝐺/𝐻 is a
quotient group.

Theorem 23.1. Let 𝐺 be a group, and let 𝐻 be a subgroup of 𝐺. If 𝐺 is commutative,
then 𝐺/𝐻 is commutative.

Proof. Let 𝑎𝐻, 𝑏𝐻 ∈ 𝐺/𝐻, where 𝑎, 𝑏 ∈ 𝐺. We must show that 𝑎𝐻 ⋅ 𝑏𝐻 = 𝑏𝐻 ⋅ 𝑎𝐻.
Since 𝐺 is commutative, we have 𝑎𝑏 = 𝑏𝑎 in 𝐺. Therefore,

𝑎𝐻 ⋅ 𝑏𝐻 = (𝑎𝑏)𝐻 = (𝑏𝑎)𝐻 = 𝑏𝐻 ⋅ 𝑎𝐻.
Thus, 𝑎𝐻 ⋅ 𝑏𝐻 = 𝑏𝐻 ⋅ 𝑎𝐻 as desired. ■

Proof know-how. A recurring theme of this chapter is that a quotient group is a group.
To prove that a group is commutative, we (arbitrarily) choose two elements from the
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group, say 𝛼 and 𝛽, and show that 𝛼𝛽 = 𝛽𝛼. This same approach applies to 𝐺/𝐻 as
well, since 𝐺/𝐻 is a group after all. Thus, we begin with the elements 𝑎𝐻, 𝑏𝐻 ∈ 𝐺/𝐻
and show that 𝑎𝐻 ⋅ 𝑏𝐻 = 𝑏𝐻 ⋅ 𝑎𝐻.

A proof about 𝐺/𝐻, whose elements are cosets, often involves working with coset
representatives, which are elements of 𝐺. The key to the above proof is the equality
𝑎𝑏 = 𝑏𝑎 in 𝐺 (as 𝐺 is commutative), which implies the coset equality (𝑎𝑏)𝐻 = (𝑏𝑎)𝐻
in 𝐺/𝐻. This leads to our desired goal of 𝑎𝐻 ⋅ 𝑏𝐻 = 𝑏𝐻 ⋅ 𝑎𝐻. (Compare with the proof
of the closure of 𝐺/𝐻, shown in Section 22.3.)

Example 23.2. The converse of Theorem 23.1 is: If 𝐺/𝐻 is commutative, then 𝐺 is
commutative. This is false. For a counterexample, consider 𝐷4 and its center 𝑍 =
{𝜀, 𝑟180}. In Chapter 21, Exercise #10, we saw that 𝐷4/𝑍 is a commutative group with 4
elements. However, 𝐷4 is non-commutative.

Example 23.3. Consider the subgroup 𝐻 = {1, 3, 9} of 𝑈13. We first find the order of
4:

41 = 4, 42 = 3, 43 = 12, 44 = 9, 45 = 10, 46 = 1,
so that ord(4) = 6 in 𝑈13. Next, we find the order of 4𝐻:

(4𝐻)1 = 41𝐻 = 4𝐻,
(4𝐻)2 = 42𝐻 = 3𝐻 = 1𝐻.

Therefore, ord(4𝐻) = 2 in𝑈13/𝐻. The key to the above computation is 3𝐻 = 1𝐻. Even
though 3 is not the identity element of 𝑈13, the coset that it generates, namely 3𝐻, is
the identity element of𝑈13/𝐻. Indeed, Theorem 19.14 tells us that 3𝐻 and 9𝐻 are both
equal to 1𝐻, since 3, 9 ∈ 𝐻.

Since 46 = 1 in 𝑈13, we have (4𝐻)6 = 46𝐻 = 1𝐻 in 𝑈13/𝐻. But this does not
necessarily imply that ord(4𝐻) = 6. Instead, (4𝐻)6 = 1𝐻 implies that the order of 4𝐻
is a divisor of 6 (Theorem 12.18). We saw above that ord(4𝐻) = 2, which is indeed a
divisor of 6.

The above example motivates the following theorem.

Theorem 23.4. Let 𝑎 ∈ 𝐺 with finite order. Then ord(𝑎𝐻) in 𝐺/𝐻 is a divisor of ord(𝑎)
in 𝐺.

Proof. Let 𝑛 = ord(𝑎) so that 𝑎𝑛 = 𝜀. Then (𝑎𝐻)𝑛 = 𝑎𝑛𝐻 = 𝜀𝐻. Since (𝑎𝐻)𝑛 = 𝜀𝐻,
Theorem 12.18 implies that ord(𝑎𝐻) is a divisor of 𝑛. ■

Proof know-how. We again highlight the notion that a quotient group is a group.
Thus, any theorem that we’ve proven about a group applies to the quotient group 𝐺/𝐻
as well. In particular, Theorem 12.18 says that if a group element 𝛼 raised to the 𝑛th
power equals the identity element, then ord(𝛼) is a divisor of 𝑛. Applying this to 𝐺/𝐻,
we showed that (𝑎𝐻)𝑛 equals 𝜀𝐻, which is the identity element of 𝐺/𝐻. Thus, we con-
cluded that ord(𝑎𝐻) is a divisor of 𝑛.

While this proof is about the element 𝑎𝐻 ∈ 𝐺/𝐻, we again worked with the coset
representative 𝑎 ∈ 𝐺 and used the knowledge that 𝑎𝑛 = 𝜀 in𝐺. This, in turn, led to the
conclusion that (𝑎𝐻)𝑛 = 𝜀𝐻 in 𝐺/𝐻.
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The next theorem isn’t necessarily about quotient groups, but it foreshadows the
work that we’ll do in the next chapter when we (finally!) address the question: “When
does the coset multiplication shortcut hold?” Let 𝐺 be a group, and let 𝐻 be its sub-
group. Theorem 21.8 states that if 𝐺 is commutative, then the coset multiplication
shortcut holds in 𝐺/𝐻. But in Chapter 21, Exercises #8 and #9, we saw that the short-
cut also holds in 𝐷4/𝑍, where 𝑍 = {𝜀, 𝑟180}, even though 𝐷4 is non-commutative. Here
is a generalization.

Theorem 23.5. Let 𝐺 be a group, 𝑍 = {𝑧 ∈ 𝐺 | 𝑧𝑔 = 𝑔𝑧 for all 𝑔 ∈ 𝐺} the center of 𝐺,
and 𝑎, 𝑏 ∈ 𝐺. Define the coset product by 𝑎𝑍 ⋅ 𝑏𝑍 = {𝛼 ⋅ 𝛽 | 𝛼 ∈ 𝑎𝑍, 𝛽 ∈ 𝑏𝑍}. Then
𝑎𝑍 ⋅ 𝑏𝑍 = (𝑎𝑏)𝑍.

Proof. To prove the set equality 𝑎𝑍 ⋅ 𝑏𝑍 = (𝑎𝑏)𝑍, we must show 𝑎𝑍 ⋅ 𝑏𝑍 ⊆ (𝑎𝑏)𝑍 and
(𝑎𝑏)𝑍 ⊆ 𝑎𝑍 ⋅ 𝑏𝑍. Note that (𝑎𝑏)𝑍 ⊆ 𝑎𝑍 ⋅ 𝑏𝑍 follows immediately from Chapter 21,
Exercise #19. Thus, it suffices to show that 𝑎𝑍 ⋅ 𝑏𝑍 ⊆ (𝑎𝑏)𝑍. Let 𝛼 ⋅ 𝛽 ∈ 𝑎𝑍 ⋅ 𝑏𝑍, where
𝛼 ∈ 𝑎𝑍 and 𝛽 ∈ 𝑏𝑍. Thus, 𝛼 = 𝑎𝑥 and 𝛽 = 𝑏𝑦 where 𝑥, 𝑦 ∈ 𝑍. Since 𝑥 ∈ 𝑍, we have
𝑥𝑏 = 𝑏𝑥, as 𝑥 commutes with every element of 𝐺. Therefore,

𝛼 ⋅ 𝛽 = (𝑎𝑥)(𝑏𝑦) = 𝑎(𝑥𝑏)𝑦 = 𝑎(𝑏𝑥)𝑦 = (𝑎𝑏)(𝑥𝑦),
so that 𝛼⋅𝛽 = (𝑎𝑏)(𝑥𝑦). Moreover, 𝑥𝑦 ∈ 𝑍 by the closure of 𝑍 and so (𝑎𝑏)(𝑥𝑦) ∈ (𝑎𝑏)𝑍.
Thus 𝛼 ⋅ 𝛽 ∈ (𝑎𝑏)𝑍, which implies 𝑎𝑍 ⋅ 𝑏𝑍 ⊆ (𝑎𝑏)𝑍, as desired. ■

In the next theorem and its proof, we work with three groups: the group 𝐺, its
subgroup 𝐻, and the quotient group 𝐺/𝐻. Note that 𝐻 is a subset of 𝐺, so that the
elements of𝐻 (including its identity) are also elements of 𝐺, and the two groups share
the same operation. The quotient group 𝐺/𝐻, however, is a separate group (though
closely related), with different elements and a different operation.

Theorem 23.6. Let 𝐺 be a group, and let 𝐻 be a subgroup of 𝐺. If every element of 𝐻
and 𝐺/𝐻 has finite order, then every element of 𝐺 also has finite order.

Proof. Let 𝑔 ∈ 𝐺. We will show that ord(𝑔) is finite by finding a positive integer
𝑘 such that 𝑔𝑘 = 𝜀. Consider the element 𝑔𝐻 ∈ 𝐺/𝐻, which has finite order. With
𝑛 = ord(𝑔𝐻), we have (𝑔𝐻)𝑛 = 𝜀𝐻, which implies 𝑔𝑛𝐻 = 𝐻. Hence, 𝑔𝑛 ∈ 𝐻 by
Theorem 19.14. Noting that 𝑔𝑛 ∈ 𝐻 has finite order, let𝑚 = ord(𝑔𝑛). Thus, (𝑔𝑛)𝑚 = 𝜀
so that 𝑔𝑛𝑚 = 𝜀. Therefore, ord(𝑔) is finite. ■

Proof know-how. Here, a proof about an element 𝑔 ∈ 𝐺 involves working with the
coset it generates, i.e., 𝑔𝐻 ∈ 𝐺/𝐻, and using what we know about the quotient group
𝐺/𝐻. It is indeed a role reversal between 𝐺 and 𝐺/𝐻 when compared to the proofs of
Theorems 23.1 and 23.4.

Also note that the identity element of 𝐺/𝐻 is 𝜀𝐻 (which equals the subgroup 𝐻),
while the identity element of 𝐻 (and 𝐺) is 𝜀. Observe that 𝜀 ∈ 𝐺 generates the coset
𝜀𝐻 ∈ 𝐺/𝐻.

To close this section, we will present one more proof. Note that by Theorem 23.5,
the coset multiplication shortcut holds in 𝐺/𝑍, and thus 𝐺/𝑍 is a quotient group.

Theorem 23.7. Let 𝐺 be a group, and let 𝑍 be the center of 𝐺. If 𝐺/𝑍 is cyclic, then 𝐺 is
commutative.
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Proof. Assume 𝐺/𝑍 is cyclic with a generator 𝑔𝑍. Let 𝑎, 𝑏 ∈ 𝐺. (We must show that
𝑎𝑏 = 𝑏𝑎.) Then the elements 𝑎𝑍, 𝑏𝑍 ∈ 𝐺/𝑍 are integer powers of 𝑔𝑍; i.e., 𝑎𝑍 = (𝑔𝑍)𝑖 =
𝑔𝑖𝑍 and 𝑏𝑍 = (𝑔𝑍)𝑗 = 𝑔𝑗𝑍 for some integers 𝑖 and 𝑗. Since 𝑎 ∈ 𝑎𝑍 and 𝑎𝑍 = 𝑔𝑖𝑍, we
have 𝑎 ∈ 𝑔𝑖𝑍. Thus 𝑎 = 𝑔𝑖𝑥 for some 𝑥 ∈ 𝑍. Similarly, 𝑏 = 𝑔𝑗𝑦 for some 𝑦 ∈ 𝑍.
Therefore,

𝑎𝑏 = (details are left for you as an exercise) = 𝑏𝑎,
so that 𝑎𝑏 = 𝑏𝑎. Hence, 𝐺 is commutative. ■

Proof know-how. Similar to the proof of Theorem 23.6, this is a proof about elements
𝑎, 𝑏 ∈ 𝐺 that involves working with the cosets they generate, i.e., 𝑎𝑍, 𝑏𝑍 ∈ 𝐺/𝑍. Then
we use what we know about the quotient group 𝐺/𝑍, namely that it’s cyclic. Once we
establish the coset equality 𝑎𝑍 = 𝑔𝑖𝑍, we use the fact that 𝑎 ∈ 𝑎𝑍 (Theorem 19.12) to
deduce that 𝑎 = 𝑔𝑖𝑥 for some 𝑥 ∈ 𝑍.

23.2 Collapsing 𝐺 into 𝐺/𝐻
Example 23.8. Consider the following composition table for 𝐷4:

∘ 𝜀 𝑟90 𝑟180 𝑟270 ℎ 𝑣 𝑑 𝑑′
𝜀 𝜀 𝑟90 𝑟180 𝑟270 ℎ 𝑣 𝑑 𝑑′
𝑟90 𝑟90 𝑟180 𝑟270 𝜀 𝑑′ 𝑑 ℎ 𝑣
𝑟180 𝑟180 𝑟270 𝜀 𝑟90 𝑣 ℎ 𝑑′ 𝑑
𝑟270 𝑟270 𝜀 𝑟90 𝑟180 𝑑 𝑑′ 𝑣 ℎ
ℎ ℎ 𝑑 𝑣 𝑑′ 𝜀 𝑟180 𝑟90 𝑟270
𝑣 𝑣 𝑑′ ℎ 𝑑 𝑟180 𝜀 𝑟270 𝑟90
𝑑 𝑑 𝑣 𝑑′ ℎ 𝑟270 𝑟90 𝜀 𝑟180
𝑑′ 𝑑′ ℎ 𝑑 𝑣 𝑟90 𝑟270 𝑟180 𝜀

The thick lines divide the table into four quadrants:

• The top left quadrant shows that a rotation composed with a rotation is a rotation.

• The top right quadrant shows that a rotation composed with a reflection (in that
order) is a reflection.

• The bottom left quadrant shows that a reflection composed with a rotation (in that
order) is a reflection.

• The bottom right quadrant shows that a reflection composed with a reflection is a
rotation.

In fact, we observed that this is true in all groups 𝐷𝑛 and not just in 𝐷4. (See Chapter
5, Exercise #13.)

Let’s consider the subgroup 𝐻 = {𝜀, 𝑟90, 𝑟180, 𝑟270} of 𝐷4. Then the distinct cosets
of 𝐻 are as follows:

• 𝜀𝐻 = 𝑟90𝐻 = 𝑟180𝐻 = 𝑟270𝐻 = {𝜀, 𝑟90, 𝑟180, 𝑟270}.

• ℎ𝐻 = 𝑣𝐻 = 𝑑𝐻 = 𝑑′𝐻 = {ℎ, 𝑣, 𝑑, 𝑑′}.
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Hence,𝐷4/𝐻 = {𝜀𝐻, ℎ𝐻}where 𝜀𝐻 is the coset containing all the rotations of𝐷4, while
ℎ𝐻 contains all the reflections. Moreover, the table for 𝐷4 illustrates how the coset
multiplication shortcut holds in 𝐷4/𝐻. For instance, the top right quadrant contains
the elements in the set product 𝜀𝐻 ⋅ ℎ𝐻, where we multiply every element of 𝜀𝐻 by
every element of ℎ𝐻. This quadrant contains all reflections, i.e., the elements of the
coset ℎ𝐻, and thus 𝜀𝐻 ⋅ ℎ𝐻 = ℎ𝐻. This equality respects the shortcut, which says
𝜀𝐻 ⋅ ℎ𝐻 = (𝜀 ⋅ ℎ)𝐻 = ℎ𝐻.

Arguing similarly with the other quadrants, the composition table for 𝐷4 can be
collapsed into the following table for the quotient group 𝐷4/𝐻:

⋅ 𝜀𝐻 ℎ𝐻
𝜀𝐻 𝜀𝐻 ℎ𝐻
ℎ𝐻 ℎ𝐻 𝜀𝐻

In this table for𝐷4/𝐻, the four rotations of𝐷4 have been collapsed into a single element
𝜀𝐻 ∈ 𝐷4/𝐻. Similarly, the four reflections have been collapsed into a single element
ℎ𝐻 ∈ 𝐷4/𝐻. The quotient group 𝐷4/𝐻 does not keep track of the individual rotations
and reflections from 𝐷4. But the table for 𝐷4/𝐻 still captures the fact that a rotation
composed with a rotation is a rotation, a reflection composed with a reflection is a
rotation, and a rotation composed with a reflection (in either order) is a reflection.

Remark. For the subgroup 𝐻 = {𝜀, 𝑟90, 𝑟180, 𝑟270} of 𝐷4, we have [𝐷4 ∶ 𝐻] = 2, since
there are two distinct left (and right) cosets of 𝐻. We used the group table of 𝐷4 to
observe that 𝐷4/𝐻 satisfies the coset multiplication shortcut. In the next chapter, we’ll
prove somethingmore general; namely: If [𝐺 ∶ 𝐻] = 2, then𝐺/𝐻 satisfies the shortcut
so that 𝐺/𝐻 is a quotient group.

Example 23.9. Let 𝐻 = {𝜀, 𝑟180, ℎ, 𝑣} be a subgroup of 𝐷4. We have 𝐻 = 𝐶(ℎ) = {𝜎 ∈
𝐷4 | 𝜎 ∘ ℎ = ℎ ∘𝜎}, i.e., the centralizer of ℎ containing the elements of 𝐷4 that commute
with ℎ. (See Section 5.3.) Hence, 𝐻 is indeed a subgroup. The distinct cosets of 𝐻 are
as follows:

• 𝜀𝐻 = 𝑟180𝐻 = ℎ𝐻 = 𝑣𝐻 = {𝜀, 𝑟180, ℎ, 𝑣}.

• 𝑟90𝐻 = 𝑟270𝐻 = 𝑑′𝐻 = 𝑑𝐻 = {𝑟90, 𝑟270, 𝑑′, 𝑑}.

Thus,𝐷4/𝐻 = {𝜀𝐻, 𝑟90𝐻}where the coset 𝜀𝐻 contains the elements of𝐷4 that commute
with ℎ, while 𝑟90𝐻 contains those that don’t. Here is the group table for 𝐷4, with its
elements rearranged to highlight the elements in the cosets 𝜀𝐻 and 𝑟90𝐻:

∘ 𝜀 𝑟180 ℎ 𝑣 𝑟90 𝑟270 𝑑′ 𝑑
𝜀 𝜀 𝑟180 ℎ 𝑣 𝑟90 𝑟270 𝑑′ 𝑑
𝑟180 𝑟180 𝜀 𝑣 ℎ 𝑟270 𝑟90 𝑑 𝑑′
ℎ ℎ 𝑣 𝜀 𝑟180 𝑑 𝑑′ 𝑟270 𝑟90
𝑣 𝑣 ℎ 𝑟180 𝜀 𝑑′ 𝑑 𝑟90 𝑟270
𝑟90 𝑟90 𝑟270 𝑑′ 𝑑 𝑟180 𝜀 𝑣 ℎ
𝑟270 𝑟270 𝑟90 𝑑 𝑑′ 𝜀 𝑟180 ℎ 𝑣
𝑑′ 𝑑′ 𝑑 𝑟90 𝑟270 ℎ 𝑣 𝜀 𝑟180
𝑑 𝑑 𝑑′ 𝑟270 𝑟90 𝑣 ℎ 𝑟180 𝜀
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Again, this table shows how the coset multiplication shortcut holds in 𝐷4/𝐻. For in-
stance, the bottom left quadrant contains the elements in the set product 𝑟90𝐻 ⋅ 𝜀𝐻,
where we multiply every element of 𝑟90𝐻 by every element of 𝜀𝐻. This quadrant con-
tains all the elements of the coset 𝑟90𝐻, and thus 𝑟90𝐻 ⋅ 𝜀𝐻 = 𝑟90𝐻. This equality
respects the shortcut, which says 𝑟90𝐻 ⋅ 𝜀𝐻 = (𝑟90 ⋅ 𝜀)𝐻 = 𝑟90𝐻.

Arguing similarly with the other quadrants, the composition table for 𝐷4 can be
collapsed into the following table for the quotient group 𝐷4/𝐻:

⋅ 𝜀𝐻 𝑟90𝐻
𝜀𝐻 𝜀𝐻 𝑟90𝐻
𝑟90𝐻 𝑟90𝐻 𝜀𝐻

In this table for𝐷4/𝐻, the four elements of𝐻 = 𝐶(ℎ) are collapsed into a single element
𝜀𝐻 ∈ 𝐷4/𝐻. Similarly, the four elements of𝐷4 that don’t commute with ℎ are collapsed
into an element 𝑟90𝐻 ∈ 𝐷4/𝐻. But the table for 𝐷4/𝐻 still captures the following facts:
• An element of𝐷4 that commutes with ℎ composedwith another element that com-
mutes with ℎ is an element that commutes with ℎ. (Also see Chapter 5, Exer-
cise #15.) This is captured by 𝜀𝐻 ⋅ 𝜀𝐻 = 𝜀𝐻.

• An element of 𝐷4 that commutes with ℎ composed with an element that doesn’t
(in either order) is an element that doesn’t commute with ℎ. This is captured by
𝜀𝐻 ⋅ 𝑟90𝐻 = 𝑟90𝐻 ⋅ 𝜀𝐻 = 𝑟90𝐻.

• An element of 𝐷4 that doesn’t commute with ℎ composed with another element
that doesn’t is an element that commutes with ℎ. This is captured by 𝑟90𝐻 ⋅ 𝑟90𝐻 =
𝜀𝐻.

Exercises
Unless specified otherwise, assume that the cosetmultiplication shortcut holds in𝐺/𝐻.
1. Since a quotient group is a group, any property that we know about groups applies

to 𝐺/𝐻 as well. Let’s consider the “socks-shoes,” for example. What goes into the
empty boxes?

(𝑎𝐻 ⋅ 𝑏𝐻)−1 = 𝑏−1 𝐻 ⋅ 𝑎−1 𝐻.
2. Consider the following statement:

If 𝑎𝐻 = 𝑏𝐻 in 𝐺/𝐻, then 𝑎 = 𝑏 in 𝐺.
Is it true or false? If it’s true, prove it. If it’s false, give a counterexample.

3. Let 𝐻 = {1, 3, 9} be a subgroup of 𝑈13, and consider 𝑈13/𝐻 = {1𝐻, 2𝐻, 4𝐻, 7𝐻}.
(a) Find all integers 𝑛 for which (2𝐻)𝑛 = 1𝐻 in 𝑈13/𝐻.
(b) Find all integers 𝑛 for which 2𝑛 ∈ 𝐻.
(c) What conjecture do you have?

4. Prove: Let 𝑔𝐻 ∈ 𝐺/𝐻 and 𝑛 ∈ ℤ. Then (𝑔𝐻)𝑛 = 𝜀𝐻 if and only if 𝑔𝑛 ∈ 𝐻.
5. Suppose [𝐺 ∶ 𝐻] = 𝑛. Show that 𝑔𝑛 ∈ 𝐻 for all 𝑔 ∈ 𝐺.

Recall: [𝐺 ∶ 𝐻] is the number of (left) cosets of 𝐻, which is also the size of 𝐺/𝐻.



Exercises 237

6. Find an additive group 𝐺, a subgroup 𝐻, and an element 𝑎 ∈ 𝐺 such that

𝑎 + 𝐻 ≠ 0 + 𝐻, ord(𝑎 + 𝐻) in 𝐺/𝐻 is finite, and ord(𝑎) in 𝐺 is infinite.

7. Same as Exercise #6, but with a multiplicative group 𝐺.

8. Let𝐺 be a group, and let𝐻 be a subgroup of𝐺. Determine if each statement is true
or false. If it’s true, prove it. If it’s false, give a counterexample.

(a) If 𝐺 and 𝐻 are finite, then 𝐺/𝐻 is finite.
(b) If 𝐺/𝐻 is finite, then 𝐺 and 𝐻 are finite.
(c) If 𝐺 is infinite and 𝐻 is finite, then 𝐺/𝐻 is infinite.

9. Let𝐺 = ⟨𝑔⟩ be a cyclic group, and let𝐻 be a subgroup of𝐺. Prove that𝐺/𝐻 = ⟨𝑔𝐻⟩,
i.e., that 𝐺/𝐻 is cyclic with generator 𝑔𝐻. (See Chapter 22, Exercises #17, #18, and
#19. Also, this exercise is referenced in Example 25.7.)
Hint: We have ⟨𝑔𝐻⟩ ⊆ 𝐺/𝐻 by definition. Thus, it suffices to show the other
inclusion 𝐺/𝐻 ⊆ ⟨𝑔𝐻⟩.

10. Is the converse of Exercise #9 true? In other words, if 𝐺/𝐻 is cyclic, then must 𝐺
also be cyclic? If so, prove it. If not, provide a counterexample.

11. Complete the proof of Theorem 23.7 by filling in the details to establish the equality
𝑎𝑏 = 𝑏𝑎.

12. Let𝐺 be a non-commutative groupwith 343 elements. Let 𝑍 be the center of𝐺 and
assume 𝑍 ≠ {𝜀}. How many elements must 𝑍 contain? Explain your reasoning.

13. Let 𝐺 be a group, and let 𝑍 be the center of 𝐺. Explain why [𝐺 ∶ 𝑍] is not a prime
number.

14. Prove: Let 𝐺 be a finite group (so each 𝑔 ∈ 𝐺 has finite order), and let 𝐻 be a
subgroup of 𝐺. If 𝐺/𝐻 has an element of order 𝑛, then 𝐺 has an element of order
𝑛.

15. (a) Write the contrapositive of the implication in Theorem 23.7.
(b) Explain how 𝐺 = 𝐷4 serves as an example of the contrapositive from part (a).

16. Prove: Let 𝐺 be a commutative group, and let𝐻 be its subgroup. If every element
ℎ ∈ 𝐻 is a square in 𝐻 (i.e., ℎ = 𝑘2 for some 𝑘 ∈ 𝐻) and every element 𝑎𝐻 ∈ 𝐺/𝐻
is a square in 𝐺/𝐻 (i.e., 𝑎𝐻 = (𝑏𝐻)2 for some 𝑏𝐻 ∈ 𝐺/𝐻), then every element of
𝐺 is a square in 𝐺.

17. Prove: Let 𝐺 be a group, and let 𝐻 be its subgroup. Suppose every element of 𝐻
and 𝐺/𝐻 has order 3𝑛 where 𝑛 is a non-negative integer. Then every element of 𝐺
also has order 3𝑛 where 𝑛 ≥ 0.

18. Let 𝐻 be a subgroup of 𝐺 with [𝐺 ∶ 𝐻] = 2. Prove that 𝑎𝐻 = 𝐻𝑎 for all 𝑎 ∈ 𝐺.
(This is the statement of Theorem 24.10.)

19. Let𝐺 be a group, and let𝐻 be a subgroup with [𝐺 ∶ 𝐻] = 8. If 𝑔 ∈ 𝐺 has odd order
(i.e., ord(𝑔) is odd), then 𝑔 ∈ 𝐻.
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20. Let 𝐺 be a group, and let 𝐻 be a subgroup with [𝐺 ∶ 𝐻] = 𝑚. If 𝑔 ∈ 𝐺 has order 𝑛
where gcd(𝑚, 𝑛) = 1, then 𝑔 ∈ 𝐻. (Compare with Exercise #19.)

21. Let𝐻 = {𝜀, 𝑟180, 𝑑, 𝑑′} be a subgroup of𝐷4. Note that𝐻 = 𝐶(𝑑), i.e., the centralizer
of 𝑑 in 𝐷4. Thus, 𝐻 is indeed a subgroup. Proceed as in Examples 23.8 and 23.9 as
follows:

(a) Find the distinct cosets of 𝐻.
(b) Create a group table for 𝐷4, with its elements rearranged to highlight the ele-

ments in the distinct cosets that you found in part (a).
(c) Explain how your table for 𝐷4 shows that the coset multiplication shortcut

holds in 𝐷4/𝐻.
(d) Describe how the table for 𝐷4 can be collapsed into the table for 𝐷4/𝐻. In

particular, what feature of the original group 𝐷4 is still captured by the table
for 𝐷4/𝐻?



24
Normal Subgroups

Let 𝐺 be a group, and let𝐻 be a subgroup of 𝐺. The coset multiplication shortcut says:
𝑎𝐻 ⋅ 𝑏𝐻 = (𝑎𝑏)𝐻 for 𝑎𝐻, 𝑏𝐻 ∈ 𝐺/𝐻.

We proved (in Theorem 22.4) that if the shortcut holds, then 𝐺/𝐻 is a quotient group
under coset multiplication. Thus, the following diagram illustrates what we know so
far: �� ��??? ⟹

�



�
	The CM shortcut

holds in 𝐺/𝐻 ⟹
�



�
	𝐺/𝐻 is

a group .

Aswe’ll learn shortly, themissing piece
�� ��??? turns out to be: “𝐻 is a normal subgroup.”

The goal of this chapter is to understand what it means for a subgroup to be normal
and how that relates to the coset multiplication shortcut. While most of our work with
cosets has involved left cosets, the right cosets will play a prominent role when dealing
with normal subgroups. We’ll also revisit the notion of conjugation, which was first
introduced in Section 12.3.

24.1 How does the shortcut fail and work?
We revisit earlier examples of coset multiplication to see how the shortcut fails and
how it works.

Example 24.1 (Example 21.10 revisited). Let𝐻 = {𝜀, 𝑣} be a subgroup of 𝐷4. We have
𝑟90𝐻 = {𝑟90, 𝑑} and 𝑑′𝐻 = {𝑑′, 𝑟270}, and we compute the set product 𝑟90𝐻 ⋅ 𝑑′𝐻 as
shown:

𝑟90𝐻 ⋅ 𝑑′𝐻 = {𝑟90, 𝑑} ⋅ {𝑑′, 𝑟270}
= {𝑟90 ⋅ 𝑑′, 𝑟90 ⋅ 𝑟270, 𝑑 ⋅ 𝑑′, 𝑑 ⋅ 𝑟270}
= {𝑣, 𝜀, 𝑟180, ℎ}.

Therefore, 𝑟90𝐻 ⋅ 𝑑′𝐻 = {𝑣, 𝜀, 𝑟180, ℎ}, which is not a coset of 𝐻 as it has too many
elements. Since (𝑟90 ⋅ 𝑑′)𝐻 = 𝑣𝐻 = {𝑣, 𝜀}, we have 𝑟90𝐻 ⋅ 𝑑′𝐻 ≠ (𝑟90 ⋅ 𝑑′)𝐻. The coset
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multiplication shortcut fails! But all is not lost. Even though 𝑟90𝐻 ⋅ 𝑑′𝐻 ≠ (𝑟90 ⋅ 𝑑′)𝐻,
we notice that the elements of (𝑟90 ⋅𝑑′)𝐻, namely 𝑣 and 𝜀, are contained in 𝑟90𝐻⋅𝑑′𝐻 =
{𝑣, 𝜀, 𝑟180, ℎ}. Hence, we do have a set inclusion (𝑟90 ⋅ 𝑑′)𝐻 ⊆ 𝑟90𝐻 ⋅ 𝑑′𝐻. In fact, this
inclusion always holds, as shown in the next theorem.

The following theorem is left for you to prove in Chapter 21, Exercise #19.

Theorem 24.2. Let 𝐺 be a group, and let𝐻 be a subgroup of 𝐺. For 𝑎, 𝑏 ∈ 𝐺, define the
coset product by 𝑎𝐻 ⋅ 𝑏𝐻 = {𝛼 ⋅ 𝛽 | 𝛼 ∈ 𝑎𝐻, 𝛽 ∈ 𝑏𝐻}. Then (𝑎𝑏)𝐻 ⊆ 𝑎𝐻 ⋅ 𝑏𝐻.

Next, we analyze situations where coset multiplication does hold.

Example 24.3 (Chapter 21, Exercise #20 revisited). Let 𝐺 be a commutative group, 𝐻
a subgroup of 𝐺, and 𝑎, 𝑏 ∈ 𝐺. We will show that 𝑎𝐻 ⋅ 𝑏𝐻 = (𝑎𝑏)𝐻. Theorem 24.2
ensures (𝑎𝑏)𝐻 ⊆ 𝑎𝐻 ⋅ 𝑏𝐻. Let’s see why the other inclusion 𝑎𝐻 ⋅ 𝑏𝐻 ⊆ (𝑎𝑏)𝐻 is also
true. Suppose 𝛼 ⋅ 𝛽 ∈ 𝑎𝐻 ⋅ 𝑏𝐻, where 𝛼 ∈ 𝑎𝐻 and 𝛽 ∈ 𝑏𝐻. Thus, 𝛼 = 𝑎ℎ and 𝛽 = 𝑏𝑘
for some ℎ, 𝑘 ∈ 𝐻. Since 𝐺 is commutative, we have

𝛼 ⋅ 𝛽 = (𝑎ℎ)(𝑏𝑘) = 𝑎(𝒉𝒃)𝑘 = 𝑎(𝒃𝒉)𝑘 = (𝑎𝑏)(ℎ𝑘) ∈ (𝑎𝑏)𝐻.

Thus, 𝛼 ⋅ 𝛽 ∈ (𝑎𝑏)𝐻 so that 𝑎𝐻 ⋅ 𝑏𝐻 ⊆ (𝑎𝑏)𝐻.

In Example 24.3 above, the key step that allowed us to conclude that 𝛼 ⋅𝛽 ∈ (𝑎𝑏)𝐻
is the equality 𝑏ℎ = ℎ𝑏, where 𝑏 ∈ 𝐺 and ℎ ∈ 𝐻. This requirement can be relaxed a
bit, as shown in the next example.

Example 24.4 (Example 19.9 revisited). Let 𝐻 = {𝜀, 𝑟180, ℎ, 𝑣} be a subgroup of 𝐷4.
We compute and compare the left coset 𝑑𝐻 and the right coset 𝐻𝑑.

• 𝑑𝐻 = {𝑑 ⋅ 𝜀, 𝑑 ⋅ 𝑟180, 𝒅 ⋅ 𝒉, 𝑑 ⋅ 𝑣} = {𝑑, 𝑑′, 𝒓𝟐𝟕𝟎, 𝑟90}.

• 𝐻𝑑 = {𝜀 ⋅ 𝑑, 𝑟180 ⋅ 𝑑, ℎ ⋅ 𝑑, 𝒗 ⋅ 𝒅} = {𝑑, 𝑑′, 𝑟90, 𝒓𝟐𝟕𝟎}.

Thus we have a coset equality 𝑑𝐻 = 𝐻𝑑, because these sets contain the same four
elements. This does not imply that we have an element-by-element equality, i.e., 𝑑𝑘 =
𝑘𝑑 for all 𝑘 ∈ 𝐻. What we can say, which we’ll find useful next, is that an element such
as 𝑑ℎ ∈ 𝑑𝐻 is also contained in the set 𝐻𝑑, since 𝑑𝐻 = 𝐻𝑑. Thus 𝑑ℎ ∈ 𝐻𝑑, which
implies that 𝑑ℎ = 𝑘𝑑 for some 𝑘 ∈ 𝐻. In fact, we have 𝑑ℎ = 𝑣𝑑 where 𝑣 ∈ 𝐻.

Example 24.5. Let𝐻 = {𝜀, 𝑟180, ℎ, 𝑣} be a subgroup of𝐷4, and consider the cosets 𝑟90𝐻
and 𝑑𝐻. We’ll leave it to you to compute the coset product 𝑟90𝐻 ⋅ 𝑑𝐻 and verify that it
equals (𝑟90 ⋅ 𝑑)𝐻. Here, we will analyze why the set inclusion 𝑟90𝐻 ⋅ 𝑑𝐻 ⊆ (𝑟90 ⋅ 𝑑)𝐻
must hold. Consider 𝛼 = 𝑟90𝑣 ∈ 𝑟90𝐻 and 𝛽 = 𝑑𝑟180 ∈ 𝑑𝐻. We then have

𝛼𝛽 = (𝑟90𝑣)(𝑑𝑟180) = 𝑟90(𝒗𝒅)𝑟180 = 𝑟90(𝒅𝒉)𝑟180 = (𝑟90𝑑)(ℎ𝑟180) ∈ (𝑟90 ⋅ 𝑑)𝐻,

where ℎ𝑟180 ∈ 𝐻 by the closure of 𝐻. The key step here is 𝑑ℎ = 𝑣𝑑, where 𝑑 ∈ 𝐷4
and ℎ, 𝑣 ∈ 𝐻. As we saw in Example 24.4 above, a relationship such as 𝑑ℎ = 𝑣𝑑 holds
because 𝑑𝐻 = 𝐻𝑑; i.e., the left and right cosets of 𝐻 generated by 𝑑 are equal. Indeed,
we saw in Chapter 19, Exercise #15 that 𝑔𝐻 = 𝐻𝑔 for all 𝑔 ∈ 𝐷4.
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24.2 Normal subgroups: What and why
The examples from Section 24.1 motivate the following definition and the subsequent
theorem.

Definition 24.6 (Normal subgroup). Let 𝐻 be a subgroup of a group 𝐺. Then 𝐻 is
called a normal subgroup of 𝐺 if 𝑔𝐻 = 𝐻𝑔 for all 𝑔 ∈ 𝐺.

Remark. We often say, “𝐻 is normal in 𝐺,” to mean, “𝐻 is a normal subgroup of 𝐺.”

Why should we care about normal subgroups? Here is the answer:�



�
	𝐻 is a normal

subgroup ⟹
�



�
	The CM shortcut

holds in 𝐺/𝐻 ⟹
�



�
	𝐺/𝐻 is

a group .

In other words, if 𝐻 is a normal subgroup of 𝐺, then the coset multiplication shortcut
holds in 𝐺/𝐻, so that 𝐺/𝐻 is a (quotient) group under coset multiplication. Here is the
theorem, whose proof resembles the calculations we did in Example 24.5.

Theorem 24.7. Let 𝐺 be a group, and let 𝐻 be a subgroup of 𝐺. For 𝑎, 𝑏 ∈ 𝐺, define
the coset product by 𝑎𝐻 ⋅ 𝑏𝐻 = {𝛼 ⋅ 𝛽 | 𝛼 ∈ 𝑎𝐻, 𝛽 ∈ 𝑏𝐻}. If 𝐻 is normal in 𝐺, then
𝑎𝐻 ⋅ 𝑏𝐻 = (𝑎𝑏)𝐻.

Proof. Assume 𝐻 is normal in 𝐺. We will show the set equality 𝑎𝐻 ⋅ 𝑏𝐻 = (𝑎𝑏)𝐻.
First, we know fromTheorem 24.2 that (𝑎𝑏)𝐻 ⊆ 𝑎𝐻⋅𝑏𝐻. (This is always true, whether
or not 𝐻 is a normal subgroup.)

Next, we will show that 𝑎𝐻 ⋅𝑏𝐻 ⊆ (𝑎𝑏)𝐻. Suppose 𝑥 ∈ 𝑎𝐻 ⋅𝑏𝐻 so that 𝑥 = 𝑎ℎ ⋅𝑏𝑘
for some ℎ, 𝑘 ∈ 𝐻. Since 𝐻 is a normal subgroup, we have 𝑏𝐻 = 𝐻𝑏. And since
ℎ𝑏 ∈ 𝐻𝑏, we have ℎ𝑏 ∈ 𝑏𝐻 so that ℎ𝑏 = 𝑏𝑗 for some 𝑗 ∈ 𝐻. Therefore,

𝑥 = 𝑎ℎ ⋅ 𝑏𝑘 = 𝑎(𝒉𝒃)𝑘 = 𝑎(𝒃𝒋)𝑘 = 𝑎𝑏 ⋅ 𝑗𝑘
where 𝑗𝑘 ∈ 𝐻 by the closure of𝐻. Thus, 𝑥 = 𝑎𝑏 ⋅ 𝑗𝑘 ∈ (𝑎𝑏)𝐻 so that 𝑎𝐻 ⋅𝑏𝐻 ⊆ (𝑎𝑏)𝐻.
Therefore, 𝑎𝐻 ⋅ 𝑏𝐻 = (𝑎𝑏)𝐻 as desired. ■

Proof know-how. Remember that 𝑏𝐻 = 𝐻𝑏 does not mean 𝑏ℎ = ℎ𝑏 for all ℎ ∈ 𝐻.
Here’s what we say instead: Given ℎ𝑏 ∈ 𝐻𝑏, we have ℎ𝑏 ∈ 𝑏𝐻 (since 𝑏𝐻 = 𝐻𝑏). Thus,
we can write ℎ𝑏 = 𝑏𝑗 for some 𝑗 ∈ 𝐻.

24.3 Examples of normal subgroups
Example 24.8 (𝐺 and {𝜀} are normal subgroups). Let 𝐺 be a group. Then 𝐺 is its own
subgroup, and you’ll show in an exercise at the end of the chapter that 𝐺 is a normal
subgroup of 𝐺. Moreover, the trivial subgroup {𝜀} is normal in 𝐺. For all 𝑔 ∈ 𝐺, we
have 𝑔{𝜀} = {𝑔} and {𝜀}𝑔 = {𝑔}, so that 𝑔{𝜀} = {𝜀}𝑔.

Example 24.9 (Chapter 19, Exercise #16 revisited). Let 𝐾 = {𝜀, 𝑟90, 𝑟180, 𝑟270} be a
subgroup of 𝐷4. We found that 𝑎𝐾 = 𝐾𝑎 for all 𝑎 ∈ 𝐷4; i.e., all left and right cosets of
𝐾 are equal. More specifically,

𝑎𝐾 = 𝐾𝑎 = {𝐾 if 𝑎 ∈ 𝐾 (i.e., 𝑎 = rotation),
𝐷4 − 𝐾 if 𝑎 ∉ 𝐾 (i.e., 𝑎 = reflection).
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Here, 𝐷4 − 𝐾 is the set of elements in 𝐷4 that are not in 𝐾. In other words, 𝐷4 − 𝐾 =
{ℎ, 𝑣, 𝑑, 𝑑′}, the subset of 𝐷4 containing all reflections.

In Example 24.9 above,𝐾 and𝐷4 contain 4 and 8 elements, respectively. Therefore,
[𝐷4 ∶ 𝐾] = 2. It turns out that a subgroup of index 2 is always a normal subgroup. The
following theorem is left for you to prove in Chapter 23, Exercise #18.

Theorem 24.10 (Index 2 subgroups are normal). Let 𝐺 be a group, and let𝐻 be a sub-
group of 𝐺 with [𝐺 ∶ 𝐻] = 2. Then𝐻 is normal in 𝐺.

Example 24.11 (Commutative groups have normal subgroups). Let 𝐺 be a commuta-
tive group, and let 𝐻 be a subgroup of 𝐺. Then for each 𝑔 ∈ 𝐺, we have 𝑔𝐻 = 𝐻𝑔,
because we have element-by-element equality; i.e., 𝑔ℎ = ℎ𝑔 for all ℎ ∈ 𝐻. Thus, 𝐻 is
normal in 𝐺.

Example 24.12 (Center is a normal subgroup). Let 𝐺 be a group, and let 𝑍={𝑧∈𝐺 |
𝑧𝑔 = 𝑔𝑧 for all 𝑔 ∈ 𝐺}; i.e., 𝑍 is the center of𝐺. (Example: If𝐺 = 𝐷4, then𝑍 = {𝜀, 𝑟180}.)
Then for each 𝑔 ∈ 𝐺, we have 𝑔𝑍 = 𝑍𝑔, because we have element-by-element equality;
i.e., 𝑔𝑧 = 𝑧𝑔 for all 𝑧 ∈ 𝑍. Thus, 𝑍 is normal in 𝐺. For this reason, we often think of
the center 𝑍 as the “commutative part” of group 𝐺.

Example 24.13 (Kernel is a normal subgroup). In Chapter 21, Exercise #22, we proved
the following:

Let 𝜃 ∶ 𝐺 → 𝐻 be a group homomorphism, and let 𝐾 = ker 𝜃 = {𝑎 ∈ 𝐺 | 𝜃(𝑎)
= 𝜀𝐻}. Then 𝑔𝐾 = 𝐾𝑔 for all 𝑔 ∈ 𝐺.

Thus, the kernel of a homomorphism is a normal subgroup of the domain 𝐺.

Example 24.14 (Non-example). Consider again the subgroup 𝐻 = {𝜀, 𝑣} of 𝐷4. We
saw in Example 24.1 that the coset multiplication shortcut fails in 𝐷4/𝐻. Thus, by
the contrapositive of Theorem 24.7, 𝐻 is not a normal subgroup of 𝐷4. And, in fact,
we saw in Chapter 19, Exercise #14 that 𝑟90𝐻 = {𝑟90, 𝑑} and 𝐻𝑟90 = {𝑟90, 𝑑′}, so that
𝑟90𝐻 ≠ 𝐻𝑟90.

24.4 Normal subgroup test
Directly showing that a subgroup is normal (i.e., by showing 𝑔𝐻 = 𝐻𝑔 for all 𝑔 ∈ 𝐺)
can be a tedious task. Fortunately, there’s an “easier” way—in quotes, since nothing is
easy in abstract algebra! The theorem below is often called the normal subgroup test.

Theorem 24.15 (Normal subgroup test). Let 𝐺 be a group, and let 𝐻 be a subgroup of
𝐺. Then𝐻 is normal in 𝐺 if and only if 𝑔𝐻𝑔−1 ⊆ 𝐻 for all 𝑔 ∈ 𝐺.

Remark. Recall from Chapter 12, Exercise #23 that for a fixed 𝑔 ∈ 𝐺, we define
𝑔𝐻𝑔−1 = {𝑔ℎ𝑔−1 | ℎ ∈ 𝐻}. Then 𝑔𝐻𝑔−1 is a subgroup of 𝐺 and is called a conjugate
of 𝐻.
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Proof. We must prove two implications:
• If 𝐻 is normal in 𝐺, then 𝑔𝐻𝑔−1 ⊆ 𝐻 for all 𝑔 ∈ 𝐺.
• If 𝑔𝐻𝑔−1 ⊆ 𝐻 for all 𝑔 ∈ 𝐺, then 𝐻 is normal in 𝐺.

First, assume 𝐻 is normal in 𝐺. Let 𝑔 ∈ 𝐺. We must show that 𝑔𝐻𝑔−1 ⊆ 𝐻. Let
𝑥 ∈ 𝑔𝐻𝑔−1 so that 𝑥 = 𝑔ℎ𝑔−1 for some ℎ ∈ 𝐻. Since 𝐻 is normal in 𝐺, we have
𝑔𝐻 = 𝐻𝑔. And as 𝑔ℎ ∈ 𝑔𝐻, we have 𝑔ℎ ∈ 𝐻𝑔 so that 𝑔ℎ = 𝑘𝑔 for some 𝑘 ∈ 𝐻. Then
𝑥 = (𝑔ℎ)𝑔−1 = (𝑘𝑔)𝑔−1 = 𝑘(𝑔𝑔−1) = 𝑘𝜀 = 𝑘 ∈ 𝐻. Hence, 𝑥 ∈ 𝐻 so that 𝑔𝐻𝑔−1 ⊆ 𝐻.

Next, assume 𝑔𝐻𝑔−1 ⊆ 𝐻 for all 𝑔 ∈ 𝐺. Let 𝑎 ∈ 𝐺. We will show that 𝑎𝐻 = 𝐻𝑎
by showing 𝑎𝐻 ⊆ 𝐻𝑎 and𝐻𝑎 ⊆ 𝑎𝐻. For 𝑎𝐻 ⊆ 𝐻𝑎, suppose 𝑎ℎ ∈ 𝑎𝐻 for some ℎ ∈ 𝐻.
Then 𝑎ℎ𝑎−1 ∈ 𝑎𝐻𝑎−1. But we know that 𝑎𝐻𝑎−1 ⊆ 𝐻, so that 𝑎ℎ𝑎−1 ∈ 𝐻. Thus,
𝑎ℎ𝑎−1 = 𝑘 for some 𝑘 ∈ 𝐻. Right multiplication by 𝑎 yields 𝑎ℎ = 𝑘𝑎 ∈ 𝐻𝑎, so that
𝑎𝐻 ⊆ 𝐻𝑎. A similar argument, whose details we’ll leave for you as an exercise at the
end of the chapter, shows that 𝐻𝑎 ⊆ 𝑎𝐻. Therefore, 𝑎𝐻 = 𝐻𝑎 as desired. ■

Proof know-how. In the first part of the proof, the coset equality 𝑔𝐻 = 𝐻𝑔 allows us
to conclude that 𝑔ℎ = 𝑘𝑔 for some 𝑘 ∈ 𝐻. This is similar to the proof of Theorem 24.7.

In the second part of the proof, we begin with an element 𝑎ℎ ∈ 𝑎𝐻, with an aim
of showing 𝑎ℎ ∈ 𝐻𝑎. We proceed to consider the element 𝑎ℎ𝑎−1, but how did we
know to take that step? We used the “working backwards” technique again. Our goal
was to show that 𝑎ℎ ∈ 𝐻𝑎, i.e., to find some 𝑘 ∈ 𝐻 such that 𝑎ℎ = 𝑘𝑎. We worked
backwards and solved this equation for 𝑘 by right-multiplying both sides by 𝑎−1. We
found 𝑎ℎ𝑎−1 = 𝑘, which suggested that we work with the element 𝑎ℎ𝑎−1 and show
that it’s in 𝐻. As usual, the “working backwards” process of solving for 𝑘 is scratch
work and must not be included in the proof itself.

Remark. The normal subgroup test is an “if and only if” statement, with two impli-
cations:
(1) If 𝐻 is normal in 𝐺, then 𝑔𝐻𝑔−1 ⊆ 𝐻 for all 𝑔 ∈ 𝐺.
(2) If 𝑔𝐻𝑔−1 ⊆ 𝐻 for all 𝑔 ∈ 𝐺, then 𝐻 is normal in 𝐺.
We typically use implication (2): To conclude that 𝐻 is normal in 𝐺, we show that
𝑔𝐻𝑔−1 ⊆ 𝐻 for all 𝑔 ∈ 𝐺. But implication (1) can be used as well: If we already know
that 𝐻 is a normal subgroup, then we can conclude and use the fact that 𝑔𝐻𝑔−1 ⊆ 𝐻
for all 𝑔 ∈ 𝐺. The use of both implications will be demonstrated in the proofs below.

Let 𝐺 = 𝐺(ℤ10), the multiplicative group of invertible 2 × 2matrices with entries
in ℤ10. Consider its subgroup 𝐻 = 𝑆(ℤ10) = {𝛼 ∈ 𝐺(ℤ10) | det 𝛼 = 1}. Theorem
11.9 states that 𝐻 is a subgroup of 𝐺. We will now show that 𝐻 is normal in 𝐺 using
implication (2) of the normal subgroup test.

Theorem 24.16. 𝐻 = 𝑆(ℤ10) is normal in 𝐺 = 𝐺(ℤ10).

Proof. Let 𝑔 ∈ 𝐺. We will show that 𝑔𝐻𝑔−1 ⊆ 𝐻. Let 𝑥 ∈ 𝑔𝐻𝑔−1 so that 𝑥 = 𝑔ℎ𝑔−1
for some ℎ ∈ 𝐻. Noting that det ℎ = 1, we have

det 𝑥 = det(𝑔ℎ𝑔−1) = det 𝑔 ⋅ det ℎ ⋅ (det 𝑔)−1 = det 𝑔 ⋅ 1 ⋅ (det 𝑔)−1 = 1.
Thus, det 𝑥 = 1 so that 𝑥 ∈ 𝐻. Hence, 𝑔𝐻𝑔−1 ⊆ 𝐻, which implies that 𝐻 is normal
in 𝐺. ■
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Proof know-how. In our proofs, we do not need to specify whether we used implica-
tion (1) or implication (2) of the normal subgroup test.

Let 𝜃 ∶ 𝐺 → 𝐻 be a group homomorphism, with 𝐾 = ker 𝜃 = {𝑎 ∈ 𝐺 | 𝜃(𝑎) = 𝜀𝐻}.
We’ve already seen that the kernel 𝐾 is a subgroup of the domain 𝐺. (See Theorem
18.6.) In fact, we’ve also shown that 𝐾 is normal in 𝐺 using the definition of a normal
subgroup. (See Example 24.13.) In an exercise at the end of the chapter, you will re-
prove that 𝐾 is normal in 𝐺, but this time using the normal subgroup test. It is an
important result, and thus we will state it as a theorem here.

Theorem 24.17 (Kernel is a normal subgroup). Let 𝜃 ∶ 𝐺 → 𝐻 be a group homomor-
phism, with 𝐾 = ker 𝜃 = {𝑎 ∈ 𝐺 | 𝜃(𝑎) = 𝜀𝐻}. Then 𝐾 is normal in 𝐺.

Example 24.18. Consider the function 𝑓 ∶ 𝐷4 → ℝ∗ where

𝑓(𝜎) = { 1 if 𝜎 is a rotation,
−1 if 𝜎 is a reflection.

As shown in Chapter 17, Exercise #3, 𝑓 is a homomorphism with kernel 𝐾 = {𝜀, 𝑟90,
𝑟180, 𝑟270}, which gives yet another reason why this subgroup is normal in 𝐷4.

Let 𝜃 ∶ 𝐺 → 𝐻 be a group homomorphism, and let 𝑄 be a subgroup of 𝐻. Define
the set

𝑃 = {𝑎 ∈ 𝐺 | 𝜃(𝑎) ∈ 𝑄}.
This set 𝑃 is called the preimage of 𝑄 and contains the elements of the domain 𝐺 that
map to the elements of 𝑄. In the figure below, we have 𝑝 ∈ 𝑃, because 𝜃(𝑝) ∈ 𝑄; but
𝑔 ∉ 𝑃, since 𝜃(𝑔) ∉ 𝑄. In Chapter 18, Exercise #17, you showed that 𝑃 is a subgroup of
𝐺. Also note that if𝑄 = {𝜀𝐻}, then 𝑃 is the kernel of 𝜃. Thus wemay view the preimage
𝑃 as a generalization of the kernel.

Below, wewill prove that if𝑄 is normal in𝐻, then 𝑃 is normal in𝐺. The proof uses
both implications (1) and (2) of the normal subgroup test. To prove that 𝑃 is normal
in 𝐺, we show 𝑔𝑃𝑔−1 ⊆ 𝑃, just as we did in the proof of Theorem 24.16. This relies on
implication (2). But we also know that𝑄 is normal in𝐻 so that implication (1) ensures
ℎ𝑄ℎ−1 ⊆ 𝑄 for all ℎ ∈ 𝐻. We will use this fact to show that 𝑔𝑃𝑔−1 ⊆ 𝑃.

Theorem 24.19. Let 𝜃 ∶ 𝐺 → 𝐻 be a group homomorphism, and let 𝑄 be a subgroup of
𝐻. Define the set

𝑃 = {𝑎 ∈ 𝐺 | 𝜃(𝑎) ∈ 𝑄}.
If 𝑄 is normal in𝐻, then 𝑃 is normal in 𝐺.
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Proof. Assume 𝑄 is normal in 𝐻. Let 𝑔 ∈ 𝐺. We will show that 𝑔𝑃𝑔−1 ⊆ 𝑃. Let
𝑥 ∈ 𝑔𝑃𝑔−1 so that 𝑥 = 𝑔𝑝𝑔−1 for some 𝑝 ∈ 𝑃. We will show that 𝜃(𝑥) ∈ 𝑄, which will
imply that 𝑥 ∈ 𝑃.

Letℎ = 𝜃(𝑔) ∈ 𝐻 and 𝑞 = 𝜃(𝑝) ∈ 𝑄. Then, 𝜃(𝑥) = 𝜃(𝑔𝑝𝑔−1) = 𝜃(𝑔)⋅𝜃(𝑝)⋅𝜃(𝑔)−1 =
ℎ ⋅ 𝑞 ⋅ ℎ−1, so that 𝜃(𝑥) = ℎ ⋅ 𝑞 ⋅ ℎ−1. Since𝑄 is normal in𝐻, we have ℎ𝑄ℎ−1 ⊆ 𝑄. Thus
ℎ ⋅ 𝑞 ⋅ ℎ−1 ∈ ℎ𝑄ℎ−1 is also an element of 𝑄. Hence 𝜃(𝑥) ∈ 𝑄 so that 𝑥 ∈ 𝑃. Therefore
𝑔𝑃𝑔−1 ⊆ 𝑃 and 𝑃 is normal in 𝐺, as desired. ■

Exercises
When working with the group 𝐷4, refer to Appendix B for its group table.

1. Let 𝐻 = {𝜀, 𝑑} be a subgroup of 𝐷4.

(a) Give an example which shows that the coset multiplication shortcut does not
hold in 𝐷4/𝐻.

(b) Give an example which shows 𝐻 is not normal in 𝐷4.

2. Let 𝐻 = {𝜀, 𝑑}, 𝐾 = {𝜀, 𝑣}, 𝑍 = {𝜀, 𝑟180} be subgroups of 𝐷4.
Note: By Exercise #1(b) and Example 24.14, respectively, 𝐻 and 𝐾 are not normal
in 𝐷4.

(a) Explain why 𝑍 is normal in 𝐷4.
(b) Compute the set product𝐻𝐾 = {𝛼𝛽 | 𝛼 ∈ 𝐻, 𝛽 ∈ 𝐾}. Is𝐻𝐾 a subgroup of𝐷4?

Explain.
(c) Compute the set product 𝑍𝐾, defined similarly. Is 𝑍𝐾 a subgroup of 𝐷4? Ex-

plain.

3. Determine if each statement is true or false. If it’s true, prove it. If it’s false, give a
counterexample.

(a) Let 𝐻 be a normal subgroup of 𝐺. If 𝐻 and 𝐺/𝐻 are commutative, then 𝐺 is
commutative.

(b) If 𝐻 is a normal subgroup of 𝐺 and 𝐾 is a normal subgroup of 𝐻, then 𝐾 is
normal in 𝐺.

4. Let 𝑁 be a normal subgroup of 𝐺 and let𝐻 be a subgroup of 𝐺 (but not necessarily
normal in 𝐺). Define the set product 𝑁𝐻 = {𝑛ℎ | 𝑛 ∈ 𝑁, ℎ ∈ 𝐻}. Prove that 𝑁𝐻 is
a subgroup of 𝐺.

5. Consider the subgroup 𝐾 = {𝜀, 𝑟90, 𝑟180, 𝑟270} of 𝐷4. In this problem, we’ll analyze
why the set inclusion 𝑑𝐾 ⋅ 𝑣𝐾 ⊆ (𝑑𝑣)𝐾 must hold.
Note: Your work from Chapter 19, Exercise #16 will come in handy here.

(a) Find the element ? ∈ 𝐾 such that 𝑟90𝑣 = 𝑣 ? .
(b) Let 𝛼𝛽 ∈ 𝑑𝐾 ⋅ 𝑣𝐾, where 𝛼 = 𝑑𝑟90 ∈ 𝑑𝐾 and 𝛽 = 𝑣𝑟180 ∈ 𝑣𝐾. Using only your

result from part (a), explain why 𝛼𝛽 ∈ (𝑑𝑣)𝐾.
(c) Explain why 𝑑𝐾 ⋅ 𝑣𝐾 ⊆ (𝑑𝑣)𝐾.
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6. Consider again the subgroup 𝐾 = {𝜀, 𝑟90, 𝑟180, 𝑟270} of 𝐷4. In this problem, we’ll
analyze why the set inclusion ℎ𝐾 ⋅ 𝑑′𝐾 ⊆ (ℎ𝑑′)𝐾 must hold.

(a) Find the element ? ∈ 𝐾 such that 𝑟270𝑑′ = 𝑑′ ? .
(b) Let 𝛼𝛽 ∈ ℎ𝐾 ⋅ 𝑑′𝐾, where 𝛼 = ℎ𝑟270 ∈ ℎ𝐾 and 𝛽 = 𝑑′𝑟90 ∈ 𝑑′𝐾. Using only

your result from part (a), explain why 𝛼𝛽 ∈ (ℎ𝑑′)𝐾. Don’t look at the𝐷4 table
again!

(c) Explain why ℎ𝐾 ⋅ 𝑑′𝐾 ⊆ (ℎ𝑑′)𝐾.

7. Let 𝐺 be a group, and let𝐻 = {𝜀, ℎ} be a normal subgroup of 𝐺 with two elements.
Prove that 𝐻 is contained in the center of 𝐺, i.e., that 𝐻 ⊆ 𝑍, where 𝑍 = {𝑧 ∈
𝐺 | 𝑧𝑔 = 𝑔𝑧 for all 𝑔 ∈ 𝐺}.

8. Complete the proof of Theorem 24.15 by showing the set inclusion 𝐻𝑎 ⊆ 𝑎𝐻.
Hint: Use 𝑔𝐻𝑔−1 ⊆ 𝐻 with 𝑔 = 𝑎−1.

9. Prove Theorem 24.17. You must use the normal subgroup test.

10. Let 𝜃 ∶ 𝐺 → 𝐻 be an onto group homomorphism. Let 𝐾 be a subgroup of 𝐺, and
define

𝐽 = {𝜃(𝑘) | 𝑘 ∈ 𝐾}.

(a) Prove: If 𝐾 is normal in 𝐺, then 𝐽 is normal in 𝐻.
(b) Where in your proof did you use the fact that 𝜃 is onto? Explain.

11. Prove: Let 𝐺 be a group, 𝐻 a commutative group, and 𝜃 ∶ 𝐺 → 𝐻 a group homo-
morphism. Suppose 𝑁 is a subgroup of 𝐺 with ker 𝜃 ⊆ 𝑁. Then 𝑁 is normal in
𝐺.

12. Let 𝐻 = {𝜀, 𝑟180, ℎ, 𝑣} be a subgroup of 𝐷4. Compute the coset product 𝑟90𝐻 ⋅ 𝑑𝐻
and verify that it equals (𝑟90 ⋅ 𝑑)𝐻. (See Example 24.5.)

13. Let 𝐺 be a group. Explain why 𝐺 is a normal subgroup of 𝐺. (See Example 24.8.)

14. (a) Let 𝐺 be a group containing 10 elements. Suppose𝐻 is a subgroup of 𝐺 that’s
not normal in 𝐺. How many elements does 𝐻 contain?

(b) Repeat part (a) but with 𝐺 containing 14 elements.
(c) Repeat part (a) but with 𝐺 containing 22 elements.
(d) Generalize your results from parts (a), (b), and (c).

15. Prove: Let𝐻 and𝐾 be normal subgroups of a group𝐺. If𝐻∩𝐾 = {𝜀}, then ℎ𝑘 = 𝑘ℎ
for all ℎ ∈ 𝐻 and 𝑘 ∈ 𝐾.

16. Prove: Let 𝐺 be a group, and let 𝐻 be a normal subgroup of 𝐺. If 𝐻 is cyclic, then
every subgroup of 𝐻 is normal in 𝐺.

17. Prove: Let 𝐺 be a group, and let 𝐻 be a subgroup of 𝐺 with [𝐺 ∶ 𝐻] = 2. If 𝑎,
𝑏 ∉ 𝐻, then 𝑎𝑏 ∈ 𝐻. (See Examples 23.8 and 23.9.)
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18. Define 𝜀, 𝜎, 𝛾, 𝜏, 𝜇, 𝛿 ∈ 𝑆3, respectively, by

( 1 2 3
1 2 3 ) , ( 1 2 3

3 1 2 ) , ( 1 2 3
2 3 1 ) , ( 1 2 3

2 1 3 ) , ( 1 2 3
3 2 1 ) , ( 1 2 3

1 3 2 ) .

Recall: You constructed the group table for 𝑆3 in Chapter 6, Exercise #2.
(a) Verify that 𝐻 = {𝜀, 𝜎, 𝛾} is a subgroup of 𝑆3 (or see Chapter 6, Exercise #4).
(b) Compute the product 𝜀 ⋅ 𝜎 ⋅ 𝛾 ⋅ 𝜏 ⋅ 𝜇 ⋅ 𝛿, using any set of parentheses to pair the

elements. Then verify that the product is not in 𝐻.
(c) Compute the product 𝛾 ⋅𝜇 ⋅ 𝜀 ⋅𝛿 ⋅𝜏 ⋅𝜎, again using any set of parentheses. Then

verify that the product is not in 𝐻.
(d) Multiply all the elements of 𝑆3, using a different order from the products in

parts (b) and (c). Then verify that the product is not in 𝐻.
(e) What conjecture do you have?

19. Let 𝐻 = {𝜀, 𝑟90, 𝑟180, 𝑟270} be a subgroup of 𝐷4.
(a) Compute the product 𝜀 ⋅ 𝑟90 ⋅ 𝑟180 ⋅ 𝑟270 ⋅ℎ ⋅𝑣 ⋅𝑑 ⋅𝑑′, using any set of parentheses

to pair the elements. Then verify that the product is in 𝐻.
(b) Multiply all the elements of 𝐷4, taken in the order of your choice. Verify that

the product is in 𝐻.
(c) Repeat part (b) a couple more times, each time multiplying the elements in

different order.
(d) What conjecture do you have?

20. Repeat Exercise #19 using each of these subgroups of 𝐷4. What conjecture do you
have?

(a) 𝐻 = {𝜀, 𝑟180, ℎ, 𝑣}.
(b) 𝐻 = {𝜀, 𝑟180, 𝑑, 𝑑′}.

21. Let 𝐺 be a group with 2𝑛 elements, and let 𝐻 be a subgroup of 𝐺 with 𝑛 elements.
Let 𝛼 be the product of all the elements of 𝐺, taken in any order. Prove the follow-
ing:

• If 𝑛 is odd, then 𝛼 ∉ 𝐻.
• If 𝑛 is even, then 𝛼 ∈ 𝐻.

22. Prove: Let 𝐺 be a group. Consider the direct product 𝐺 × 𝐺 and its subset ▵𝐺 =
{(𝑔, 𝑔) | 𝑔 ∈ 𝐺}. Then 𝐺 is commutative if and only if ▵𝐺 is normal in 𝐺 × 𝐺.
Note: In Chapter 11, Exercise #26, you showed that ▵𝐺 is a subgroup of 𝐺 × 𝐺.
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First Isomorphism Theorem

In this final chapter on group theory, we will study the First Isomorphism Theorem, a
culminating theorem that brings together many concepts that we’ve explored, includ-
ing isomorphism, homomorphism, kernel, image, cosets, quotient group, just to name
a few. Along the way, we’ll (finally!) answer the question first posed in Section 18.3;
namely: Why does a homomorphism partition the domain into equal-sized subsets?
We will not prove the First Isomorphism Theorem in this textbook, although you’re
encouraged to try. Instead, we will make sense of the theorem using motivating exam-
ples.

To illustrate the power of the First IsomorphismTheorem, wewill build homomor-
phisms (almost) from scratch. For instance, we’ll find all homomorphisms 𝜃 ∶ 𝑈13 →
𝑈13 whose kernel contains four elements. Using the First Isomorphism Theorem, we
can show that there are only two such homomorphisms.

25.1 Familiar homomorphism
We revisit the homomorphism from Example 18.1. Consider 𝜆 ∶ 𝑈13 → 𝑈13 where
𝜆(𝑎) = 𝑎3 for all 𝑎 ∈ 𝑈13. Here are the values of 𝜆(𝑎) for each input 𝑎 in the domain
𝑈13:

𝜆(1) = 1,

𝜆(2) = 8,

𝜆(3) = 1,

𝜆(4) = 12,

𝜆(5) = 8,

𝜆(6) = 8,

𝜆(7) = 5,

𝜆(8) = 5,

𝜆(9) = 1,

𝜆(10) = 12,

𝜆(11) = 5,

𝜆(12) = 12.

Recall that the homomorphism 𝜆 partitions the elements of the domain into sub-
sets, according to the elements in the codomain to which they are mapped:

ker 𝜆 = 𝐾 = {𝑎 ∈ 𝑈13 | 𝜆(𝑎) = 01} = {1, 03, 09},
𝐿 = {𝑎 ∈ 𝑈13 | 𝜆(𝑎) = 08} = {2, 05, 06},
𝑀 = {𝑎 ∈ 𝑈13 | 𝜆(𝑎) = 12} = {4, 10, 12},
𝑁 = {𝑎 ∈ 𝑈13 | 𝜆(𝑎) = 05} = {7, 08, 11}.

249
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For instance, the subset 𝐿 contains elements of the domain 𝑈13 that map to 8 in the
codomain 𝑈13. We have 𝜆(2) = 𝜆(5) = 𝜆(6) = 8, so that 𝐿 = {2, 5, 6}. Note how the
domain 𝑈13 has been divided into 4 equal-sized subsets, namely 𝐾, 𝐿, 𝑀, and 𝑁. The
diagram below illustrates this scenario:

The fact that 𝜆 partitions the domain is not a big deal, since any function, homomor-
phism or not, does the same. (See Chapter 18, Exercise #10.) But the question remains:
Why are these subsets equal-sized?

To answer this question, we consider the kernel of 𝜆; namely 𝐾 = ker 𝜆 = {1, 3, 9}.
As we computed in Example 19.1, the distinct cosets of 𝐾 in 𝑈13 are as follows:

• 1𝐾 = 3𝐾 = 9𝐾 = {1, 3, 9} (original subgroup).

• 2𝐾 = 5𝐾 = 6𝐾 = {2, 5, 6}.

• 4𝐾 = 10𝐾 = 12𝐾 = {4, 10, 12}.

• 7𝐾 = 8𝐾 = 11𝐾 = {7, 8, 11}.

These cosets are precisely the sets 𝐾, 𝐿, 𝑀, and 𝑁 created by the homomorphism 𝜆.
Let’s dig deeper andmake sense of this observation. For example, consider 2 ∈ 𝑈13 (the
domain), and note that 𝜆(2) = 8. Then every element of the coset 2𝐾 = {2, 5, 6} also
maps to 8. In other words, if 𝑎 ∈ 2𝐾, then 𝜆(𝑎) = 8. Furthermore, only the elements
of 2𝐾 map to 8; i.e., if 𝑎 ∉ 2𝐾, then 𝜆(𝑎) ≠ 8. This is equivalent to its contrapositive: If
𝜆(𝑎) = 8, then 𝑎 ∈ 2𝐾.

Example 25.1. Again, consider the homomorphism 𝜆 ∶ 𝑈13 → 𝑈13 where 𝜆(𝑎) = 𝑎3
for all 𝑎 ∈ 𝑈13. Let 𝐾 = ker 𝜆 = {1, 3, 9}. We have 𝜆(7) = 5. Then the elements of
the coset 7𝐾 = {7, 8, 11} also map to 5, and those are the only elements in 𝑈13 (the
domain) that map to 5.

Here is the generalization of the above observation.

Theorem 25.2. Let 𝜃 ∶ 𝐺 → 𝐻 be a group homomorphism with 𝐾 = ker 𝜃. Let 𝑔 ∈ 𝐺
such that 𝜃(𝑔) = ℎ where ℎ ∈ 𝐻. Given 𝑎 ∈ 𝐺, 𝑎 ∈ 𝑔𝐾 if and only if 𝜃(𝑎) = ℎ.
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Proof. We must prove two implications:

• If 𝑎 ∈ 𝑔𝐾, then 𝜃(𝑎) = ℎ.

• If 𝜃(𝑎) = ℎ, then 𝑎 ∈ 𝑔𝐾.

We will prove the first implication. The proof of the second implication is left for you
as an exercise.

Assume 𝑎 ∈ 𝑔𝐾 so that 𝑎 = 𝑔𝑘 for some 𝑘 ∈ 𝐾. Note that 𝜃(𝑘) = 𝜀𝐻 , since 𝑘 is in
the kernel of 𝜃. Thus, 𝜃(𝑎) = 𝜃(𝑔𝑘) = 𝜃(𝑔) ⋅ 𝜃(𝑘) = ℎ ⋅ 𝜀𝐻 = ℎ, as desired. ■

Remark. Theorem 25.2 implies that the cosets of 𝐾 = ker 𝜃 partition the domain in
the sameway that the homomorphism 𝜃 does. This explainswhy the subsets created by
the homomorphism are equal-sized, since we know that all cosets of 𝐾 have the same
size (see Theorem 19.15).

But there’smore! Shownbeloware the group tables for the quotient group𝑈13/𝐾 =
{1𝐾, 2𝐾, 4𝐾, 7𝐾} and the image of the homomorphism im 𝜆 = {𝜆(1), 𝜆(2), 𝜆(4), 𝜆(7)}
= {1, 8, 12, 5}.

Table for 𝑈13/𝐾:
⋅ 1𝐾 2𝐾 4𝐾 7𝐾
1𝐾 1𝐾 2𝐾 4𝐾 7𝐾
2𝐾 2𝐾 4𝐾 7𝐾 1𝐾
4𝐾 4𝐾 7𝐾 1𝐾 2𝐾
7𝐾 7𝐾 1𝐾 2𝐾 4𝐾

Table for im 𝜆:
⋅ 1 8 12 5
1 1 8 12 5
8 8 12 5 1
12 12 5 1 8
5 5 1 8 12

The two tables are essentially the same, with the following correspondences:

• 1𝐾 ∈ 𝑈13/𝐾 corresponds to 𝜆(1) = 1 ∈ im𝜆.

• 2𝐾 ∈ 𝑈13/𝐾 corresponds to 𝜆(2) = 8 ∈ im𝜆.

• 4𝐾 ∈ 𝑈13/𝐾 corresponds to 𝜆(4) = 12 ∈ im𝜆.

• 7𝐾 ∈ 𝑈13/𝐾 corresponds to 𝜆(7) = 5 ∈ im𝜆.

Hence, the two groups are isomorphic; i.e., 𝑈13/𝐾 ≅ im𝜆, where 𝑔𝐾 ∈ 𝑈13/𝐾 corre-
sponds to 𝜆(𝑔) ∈ im𝜆.

25.2 Another homomorphism
Consider the homomorphism 𝛿 ∶ 𝐺(ℤ10) → 𝑈10 where 𝛿(𝛼) = det 𝛼 for all 𝛼 ∈ 𝐺(ℤ10).
Recall that 𝐺(ℤ10) refers to the multiplicative group of invertible 2 × 2 matrices with
entries in ℤ10.
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This homomorphism partitions the domain 𝐺(ℤ10) into four subsets, according
to the elements in the codomain to which they are mapped (i.e., according to their
determinants):

More precisely, the domain 𝐺(ℤ10) has been partitioned into these 4 subsets:
𝐾 = {𝛼 ∈ 𝐺(ℤ10) | det 𝛼 = 1} ⟵ this is ker 𝛿,
𝐿 = {𝛼 ∈ 𝐺(ℤ10) | det 𝛼 = 3},
𝑀 = {𝛼 ∈ 𝐺(ℤ10) | det 𝛼 = 7},
𝑁 = {𝛼 ∈ 𝐺(ℤ10) | det 𝛼 = 9}.

The kernel of this homomorphism is 𝐾 = {𝛼 ∈ 𝐺(ℤ10) | det 𝛼 = 1}. Recall that
this set is often called 𝑆(ℤ10). To find the distinct cosets of 𝐾, define the matrices

𝜎1 = [ 1 0
0 1 ] , 𝜎3 = [ 3 0

0 1 ] , 𝜎7 = [ 7 0
0 1 ] , 𝜎9 = [ 9 0

0 1 ] ,

with determinants 1, 3, 7, and 9, respectively. (Note that𝜎1 = 𝜀.) We showed inChapter
19, Exercise #21 that 𝜎3𝐾 = {𝛼 ∈ 𝐺(ℤ10) | det 𝛼 = 3}; i.e., the coset 𝜎3𝐾 where 𝐾 =
𝑆(ℤ10) and 𝜎3 is a fixed element of 𝐺(ℤ10) with det 𝜎3 = 3 is equal to the set of all
matrices in 𝐺(ℤ10) with determinant 3. We have similar equalities for the cosets 𝜎7𝐾
and 𝜎9𝐾. Therefore, the distinct cosets of 𝐾 are as follows:

𝜎1𝐾 = {𝛼 ∈ 𝐺(ℤ10) | det 𝛼 = 1},
𝜎3𝐾 = {𝛼 ∈ 𝐺(ℤ10) | det 𝛼 = 3},
𝜎7𝐾 = {𝛼 ∈ 𝐺(ℤ10) | det 𝛼 = 7},
𝜎9𝐾 = {𝛼 ∈ 𝐺(ℤ10) | det 𝛼 = 9}.

Once again the cosets of 𝐾 = ker 𝛿 partition the domain 𝐺(ℤ10) in the same way that
the homomorphism 𝛿 does. In particular, we verify that Theorem 25.2 is satisfied by
the homomorphism 𝛿:
• 𝛿(𝜎1) = 1 and elements of the coset 𝜎1𝐾 are precisely those that map to 1.

• 𝛿(𝜎3) = 3 and elements of the coset 𝜎3𝐾 are precisely those that map to 3.

• 𝛿(𝜎7) = 7 and elements of the coset 𝜎7𝐾 are precisely those that map to 7.

• 𝛿(𝜎9) = 9 and elements of the coset 𝜎9𝐾 are precisely those that map to 9.
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In an exercise, youwill create and compare the group tables for𝐺(ℤ10)/𝐾 = {𝜎1𝐾, 𝜎3𝐾,
𝜎7𝐾, 𝜎9𝐾} and im 𝛿 = 𝑈10 = {1, 3, 7, 9}. You’ll see that the two tables are essentially
the same, so that the two groups are isomorphic; i.e., 𝐺(ℤ10)/𝐾 ≅ im𝛿, where 𝑔𝐾 ∈
𝐺(ℤ10)/𝐾 corresponds to 𝛿(𝑔) ∈ im𝛿.

25.3 First Isomorphism Theorem
Finally, here is the First Isomorphism Theorem that generalizes the results of Sections
25.1 and 25.2.

Theorem 25.3 (First Isomorphism Theorem for groups). Let 𝜃 ∶ 𝐺 → 𝐻 be a group
homomorphism with 𝐾 = ker 𝜃. Then 𝐺/𝐾 ≅ im𝜃, where 𝑔𝐾 ∈ 𝐺/𝐾 corresponds to
𝜃(𝑔) ∈ im𝜃.

Remark. There is the Second Isomorphism Theorem, and even third and fourth ones,
depending on the algebraist you talk to. But we will cover only the First Isomorphism
Theorem in this book.

25.4 Finding and building homomorphisms
Example 25.4 (Example 18.16 revisited). Consider the group𝑈18 = {1, 5, 7, 11, 13, 17}.
Let 𝜃 ∶ 𝑈18 → 𝑈18 be a homomorphism with 𝐾 = ker 𝜃 = {1, 7, 13} and 𝜃(5) = 17.
The distinct cosets of 𝐾 are as follows:

• 1𝐾 = 7𝐾 = 13𝐾 = {1, 7, 13}.

• 5𝐾 = 17𝐾 = 11𝐾 = {5, 17, 11}.

Since the elements in the kernel map to the identity element of the codomain, 𝜃(1) =
𝜃(7) = 𝜃(13) = 1. Then Theorem 25.2 implies that the elements of the coset 5𝐾 map to
𝜃(5) = 17. Therefore we obtain 𝜃(5) = 𝜃(17) = 𝜃(11) = 17, and we’ve found the value
of 𝜃(𝑎) for all 𝑎 ∈ 𝑈18. Note also the following:

• Since 17 = 5 ⋅ 7modulo 18, we have 𝜃(17) = 𝜃(5 ⋅ 7) = 𝜃(5) ⋅ 𝜃(7) = 17 ⋅ 1 = 17.

• Since 11 = 5 ⋅ 13modulo 18, we have 𝜃(11) = 𝜃(5 ⋅ 13) = 𝜃(5) ⋅ 𝜃(13) = 17 ⋅ 1 = 17.

Example 25.5. Consider the group 𝑈22 = {1, 3, 5, 7, 9, 13, 15, 17, 19, 21}. Let 𝜃 ∶
𝑈22 → 𝑈22 be a homomorphism with 𝐾 = ker 𝜃 = {1, 21} and 𝜃(3) = 15. We will find
the value of 𝜃(𝑎) for all 𝑎 ∈ 𝑈22. First, the distinct cosets of 𝐾 are as follows:

• 1𝐾 = 21𝐾 = {1, 21}.

• 3𝐾 = 19𝐾 = {3, 19}.

• 5𝐾 = 17𝐾 = {5, 17}.

• 7𝐾 = 15𝐾 = {7, 15}.

• 9𝐾 = 13𝐾 = {9, 13}.
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Since 1, 21 ∈ ker 𝜃, we have 𝜃(1) = 𝜃(21) = 1. We’re given that 𝜃(3) = 15. Since 3
and 19 are in the same coset of 𝐾, Theorem 25.2 ensures 𝜃(3) = 𝜃(19) = 15. Next, we
use the fact that 𝜃 is operation preserving. As 9 = 32 in 𝑈22, we have 𝜃(9) = 𝜃(32) =
𝜃(3)2 = 152 = 5. Thus 𝜃(9) = 5 and Theorem 25.2 implies that 𝜃(9) = 𝜃(13) = 5. In
an exercise at the end of the chapter, you’ll find the remaining values of 𝜃(𝑎).

Example 25.6. Let 𝜃 ∶ 𝑈13 → 𝑈13 be a homomorphism whose kernel 𝐾 = ker 𝜃 has 4
elements. Just this information is enough to completely determine 𝜃.

Note that ker 𝜃 is a subgroup of the domain 𝑈13 (Theorem 18.6). Recall that 𝑈13 is
a cyclic group (with a generator 2). Then Theorem 14.15 implies that𝑈13 has a unique
subgroup of size 4. In Example 14.11, we found that subgroup to be {1, 5, 8, 12}. Thus,
we have 𝐾 = {1, 5, 8, 12}. The distinct cosets of 𝐾 are as follows:

• 1𝐾 = 5𝐾 = 8𝐾 = 12𝐾 = {1, 5, 8, 12}.

• 2𝐾 = 10𝐾 = 3𝐾 = 11𝐾 = {2, 10, 3, 11}.

• 4𝐾 = 7𝐾 = 6𝐾 = 9𝐾 = {4, 7, 6, 9}.

The elements of the kernel, namely 1, 5, 8, 12, all map to 1. Moreover, the First Iso-
morphism Theorem implies that 𝑈13/𝐾 and im 𝜃 are isomorphic. And since 𝑈13/𝐾 =
{1𝐾, 2𝐾, 4𝐾} contains 3 elements, im 𝜃 must also contain 3 elements. But im 𝜃 is a
subgroup of the codomain𝑈13 (Theorem 18.11), and𝑈13 has a unique subgroup of size
3, namely {1, 3, 9}. Therefore, im 𝜃 = {1, 3, 9}.

In the isomorphism 𝑈13/𝐾 ≅ im𝜃, we have the correspondence 1𝐾 ↔ 1 between
the identity elements. And there are two ways in which 2𝐾, 4𝐾 ∈ 𝑈13/𝐾 correspond
with 3, 9 ∈ im𝜃.

• Option 1: 2𝐾 ↔ 3 and 4𝐾 ↔ 9. Therefore, we have

𝜃(1) = 𝜃(5) = 𝜃(8) = 𝜃(12) = 1,
𝜃(2) = 𝜃(10) = 𝜃(3) = 𝜃(11) = 3,
𝜃(4) = 𝜃(7) = 𝜃(6) = 𝜃(9) = 9.

• Option 2: 2𝐾 ↔ 9 and 4𝐾 ↔ 3. Therefore, we have

𝜃(1) = 𝜃(5) = 𝜃(8) = 𝜃(12) = 1,
𝜃(2) = 𝜃(10) = 𝜃(3) = 𝜃(11) = 9,
𝜃(4) = 𝜃(7) = 𝜃(6) = 𝜃(9) = 3.

Thus, there are two possible homomorphisms 𝜃 ∶ 𝑈13 → 𝑈13 whose kernel contains
4 elements. In an exercise, you’ll find a formula for each of these options and verify
that these functions are operation preserving, and hence honest-to-goodness homo-
morphisms.

Example 25.7. This time, let 𝜃 ∶ 𝑈13 → 𝑈13 be a homomorphism whose kernel 𝐾 =
ker 𝜃 has 2 elements. Then 𝐾 = {1, 12}, the unique subgroup of 𝑈13 of size 2. There
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are 6 distinct cosets of 𝐾:

• 1𝐾 = 12𝐾 = {1, 12}.

• 2𝐾 = 11𝐾 = {2, 11}.

• 3𝐾 = 10𝐾 = {3, 10}.

• 4𝐾 = 9𝐾 = {4, 9}.

• 5𝐾 = 8𝐾 = {5, 8}.

• 6𝐾 = 7𝐾 = {6, 7}.

The First Isomorphism Theorem implies that 𝑈13/𝐾 ≅ im𝜃, and thus im 𝜃 also
contains 6 elements. Then im 𝜃 = {1, 3, 4, 9, 10, 12}, the unique subgroup of 𝑈13 of
size 6. Let 𝜑 ∶ 𝑈13/𝐾 → im𝜃 denote the isomorphism that’s ensured by the First
Isomorphism Theorem. To find the rule for 𝜑 (i.e., the correspondence between the
elements of 𝑈13/𝐾 and im 𝜃), observe that 𝑈13 is cyclic and thus 𝑈13/𝐾 is also cyclic.
(See Chapter 23, Exercise #9.) In particular, noting that 𝑈13 = ⟨2⟩, we obtain 𝑈13/𝐾 =
⟨2𝐾⟩. Thus, to determine the isomorphism𝜑, it suffices to determine the value of𝜑(2𝐾).

Now, ord(2𝐾) = 6 in 𝑈13/𝐾 and isomorphisms preserve order (Theorem 17.15).
Hence, 𝜑(2𝐾) ∈ im𝜃 must also have order 6, and im 𝜃 contains 2 elements of order 6,
namely 4 and 10. Each of these choices determines the isomorphism 𝜑, and hence the
homomorphism 𝜃.

• Option 1: 𝜑(2𝐾) = 4; i.e., 2𝐾 ↔ 4. Since 𝜑 is operation preserving, we have the
following:

𝜑(1𝐾) = 𝜑((2𝐾)0) = 𝜑(2𝐾)0 = 40 = 1. Thus, 𝜃(1) = 𝜃(12) = 1 (as expected).
𝜑(2𝐾) = 𝜑((2𝐾)1) = 𝜑(2𝐾)1 = 41 = 4. Thus, 𝜃(2) = 𝜃(11) = 4.
𝜑(3𝐾) = 𝜑((2𝐾)4) = 𝜑(2𝐾)4 = 44 = 9. Thus, 𝜃(3) = 𝜃(10) = 9.
𝜑(4𝐾) = 𝜑((2𝐾)2) = 𝜑(2𝐾)2 = 42 = 3. Thus, 𝜃(4) = 𝜃(9) = 3.
𝜑(5𝐾) = 𝜑((2𝐾)3) = 𝜑(2𝐾)3 = 43 = 12. Thus, 𝜃(5) = 𝜃(8) = 12.
𝜑(6𝐾) = 𝜑((2𝐾)5) = 𝜑(2𝐾)5 = 45 = 10. Thus, 𝜃(6) = 𝜃(7) = 10.

• Option 2: 𝜑(2𝐾) = 10; i.e., 2𝐾 ↔ 10. In an exercise, you’ll determine 𝜃(𝑎) for all
𝑎 ∈ 𝑈13.

Thus, there are two possible homomorphisms 𝜃 ∶ 𝑈13 → 𝑈13 whose kernel contains
2 elements. In an exercise, you’ll find a formula for each of these options and verify
that these functions are operation preserving, and hence honest-to-goodness homo-
morphisms.

Exercises
1. Consider the homomorphism 𝛿 ∶ 𝐺(ℤ10) → 𝑈10 where 𝛿(𝛼) = det 𝛼 for all

𝛼 ∈ 𝐺(ℤ10). In Section 25.2, we saw that 𝐾 = ker 𝛿 is equal to 𝑆(ℤ10) = {𝛼 ∈
𝐺(ℤ10) | det 𝛼 = 1}.

(a) Describe the distinct left cosets of 𝐾 in 𝐺(ℤ10).
(b) Find the image im 𝛿.
(c) The First Isomorphism Theorem says that 𝐺(ℤ10)/𝐾 ≅ im𝛿, where 𝑔𝐾 ∈

𝐺(ℤ10)/𝐾 corresponds to 𝛿(𝑔) ∈ im𝛿. Create group tables for 𝐺(ℤ10)/𝐾 and
im 𝛿 to verify this isomorphism.
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2. Suppose 𝜑 ∶ 𝑈17 → 𝑈17 is a homomorphism with kernel 𝐾 = {1, 4, 13, 16}.
(a) Verify that 𝐾 is indeed a subgroup of the domain 𝑈17.
(b) Find all distinct cosets of 𝐾 in 𝑈17.
(c) Suppose 𝜑(10) = 4. Find all other 𝑎 ∈ 𝑈17 such that 𝜑(𝑎) = 4. How do you

know that you’ve found all such elements?

3. Consider again the homomorphism 𝜑 ∶ 𝑈17 → 𝑈17 with kernel 𝐾 = {1, 4, 13, 16}.
As in Exercise #2, suppose 𝜑(10) = 4.
(a) Find the value of 𝜑(𝑎) for all 𝑎 ∈ 𝑈17.
(b) Find the image im𝜑.
(c) Create the group tables for 𝑈17/𝐾 and im𝜑.
(d) Verify that the two tables in part (c) are essentially the same. How are the

groups 𝑈17/𝐾 and im𝜑 related?
(e) Find a formula for the function 𝜑 and verify that it’s operation preserving, and

hence an honest-to-goodness homomorphism.

4. Consider the homomorphism 𝜑 ∶ ℤ → ℤ5 where 𝜑(𝑎) = 𝑎 (mod 5) for all 𝑎 ∈ ℤ.
(a) Find the kernel 𝐾 = ker 𝜑.
(b) Find all distinct cosets of 𝐾 in ℤ.

Note: Since ℤ is an additive group, these cosets have the form 𝑎 + 𝐾 where
𝑎 ∈ ℤ.

(c) Find the image im𝜑.
(d) Create and compare the group tables for ℤ/𝐾 and im𝜑 to verify that they’re

isomorphic.

5. Use the First Isomorphism Theorem to prove that ℤ/𝑛ℤ ≅ ℤ𝑛. (This exercise is
referenced in Chapter 32, Exercise #21.)

6. Consider the homomorphism 𝛾 ∶ ℤ12 → ℤ18 where 𝛾(𝑎) = 6𝑎 for all 𝑎 ∈ ℤ12.
(a) Find the kernel 𝐾 = ker 𝛾.
(b) Find all distinct cosets of 𝐾 in ℤ12.

Note: Since ℤ12 is an additive group, these cosets have the form 𝑎 + 𝐾 where
𝑎 ∈ ℤ12.

(c) Find the image im 𝛾.
(d) Create and compare the group tables for ℤ12/𝐾 and im 𝛾 to verify that they’re

isomorphic.

7. Let 𝜃 ∶ 𝐺 → 𝐻 be a group homomorphismwith𝐾 = ker 𝜃. For 𝑎, 𝑏 ∈ 𝐺, show that
if 𝜃(𝑎) = 𝜃(𝑏), then 𝑎𝐾 = 𝑏𝐾. You may not use the First Isomorphism Theorem in
your argument.

8. Complete the proof of Theorem 25.2 by proving its second implication.

9. Let 𝜃 ∶ 𝑈20 → 𝑈20 be a homomorphism with kernel 𝐾 = {1, 11} and 𝜃(3) = 13.
(a) Find all distinct cosets of 𝐾 in 𝑈20.
(b) Find the value of 𝜃(𝑎) for all 𝑎 ∈ 𝑈20.
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(c) Create and compare the group tables for 𝑈20/𝐾 and im 𝜃 to verify that they’re
isomorphic.

10. Let 𝜃 ∶ ℤ40 → ℤ40 be a homomorphism with 𝐾 = ker 𝜃 = ⟨5⟩ and 𝜃(17) = 24.

(a) Find all elements in the domain that map to 24.
(b) Find the distinct cosets of 𝐾 in ℤ40.

Note: Since ℤ40 is an additive group, these cosets have the form 𝑎 + 𝐾 where
𝑎 ∈ ℤ40.

(c) Find the value of 𝜃(𝑎) for all 𝑎 ∈ ℤ40.
(d) Create and compare group tables for ℤ40/𝐾 and im 𝜃 to verify that they’re iso-

morphic.

11. Let 𝛾 ∶ 𝑈31 → 𝑈31 be a homomorphism with kernel 𝐾 = {1, 5, 6, 25, 26, 30}.

(a) Find all distinct cosets of 𝐾 in 𝑈31.
(b) Suppose 𝛾(10) = 2. Find all other 𝑎 ∈ 𝑈31 such that 𝛾(𝑎) = 2.
(c) Find the value of 𝛾(𝑎) for all 𝑎 ∈ 𝑈31.
(d) Find the image im 𝛾.
(e) Create and compare the group tables for 𝑈31/𝐾 and im 𝛾 to verify that they’re

isomorphic.

12. (a) Find the ratio of the number of elements in𝐺(ℤ10) to the number of elements
in 𝑆(ℤ10).

(b) (Challenge) Find the number of elements in 𝐺(ℤ10).

13. Complete Example 25.5 by finding the values of 𝜃(𝑎) for 𝑎 = 5, 7, 15, 17.

14. In Example 25.6, we found two possible homomorphisms 𝜃 ∶ 𝑈13 → 𝑈13 whose
kernel has 4 elements.

(a) Find a formula for each of these options.
Hint: Each formula has the form 𝜃(𝑎) = 𝑎𝑘 where 𝑘 is an integer.

(b) Using the formulas in part (a), verify that the functions that we found are
operation preserving, and hence honest-to-goodness homomorphisms.

15. Complete Example 25.7 as follows:

(a) For Option 2, i.e., 𝜑(2𝐾) = 10, find the values of 𝜃(𝑎) for all 𝑎 ∈ 𝑈13.
(b) Find a formula for each of the two possible homomorphisms.
(c) Using the formulas in part (b), verify that the functions that we found are

operation preserving, and hence honest-to-goodness homomorphisms.

16. (a) Find all possible homomorphisms 𝜃 ∶ 𝑈13 → 𝑈13 whose kernel has 3 ele-
ments.

(b) Find a formula for each of the possible homomorphisms you found in part (a).
(c) Using the formulas in part (b), verify that the functions that we found are

operation preserving, and hence honest-to-goodness homomorphisms.
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17. Repeat Exercise #16, but with a kernel containing the following:

(a) 6 elements.
(b) 12 elements.
(c) 1 element. (Be careful! There is more than one possibility!)

18. In Example 25.6, we found two possible homomorphisms 𝜃 ∶ 𝑈13 → 𝑈13 whose
kernel has 4 elements. For each of these, we found a formula (in Exercise #14),
whichweused to verify that the functionwe found is operation preserving. Explain
why these functions are operation preservingwithout using the formulas. Verifying
𝜃(𝑎𝑏) = 𝜃(𝑎) ⋅ 𝜃(𝑏) for all 𝑎, 𝑏 ∈ 𝑈13 is not recommended!

19. Find all homomorphisms 𝜃 ∶ 𝑈16 → 𝑈16 with ker 𝜃 = {1, 7}.

20. (a) Find all homomorphisms 𝜃 ∶ 𝑆3 → ℤ2.
(b) Find all homomorphisms 𝜃 ∶ 𝑆3 → ℤ4.
(c) Find all homomorphisms 𝜃 ∶ 𝑆3 → ℤ8.
(d) Find all homomorphisms 𝜃 ∶ 𝑆3 → ℤ𝑛, where 𝑛 is a power of 2.

21. Prove: Let 𝜃 ∶ 𝐺 → 𝐻 be a group homomorphism. Then the number of elements
in im 𝜃 is a divisor of the number of elements in 𝐺.

22. (a) Let 𝜃 ∶ 𝐺 → 𝐻 be a group homomorphism where 𝐺 and 𝐻 contain 8 and 15
elements, respectively. Explain why 𝜃(𝑔) = 𝜀𝐻 for all 𝑔 ∈ 𝐺.

(b) Repeat part (a), with 𝐺 and 𝐻 containing 10 and 27 elements, respectively.
(c) Repeat part (a), with 𝐺 and 𝐻 containing 21 and 22 elements, respectively.
(d) Repeat part (a), with 𝐺 and 𝐻 containing 𝑚 and 𝑛 elements, respectively,

where gcd(𝑚, 𝑛) = 1.

23. Prove: Let𝐾 be a normal subgroup of a group𝐺. Suppose 𝜑 ∶ 𝐺/𝐾 → 𝐻 is a group
isomorphism. Then there exists an onto homomorphism 𝜃 ∶ 𝐺 → 𝐻 whose kernel
is 𝐾.
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Notice that the set of integers ℤ comes with two operations, namely, addition and mul-
tiplication, and likewise for ℤ12 and ℝ. Thus, rather than focusing on one operation
at a time (i.e., ℤ, ℤ12, and ℝ are all additive groups), we will consider both operations
simultaneously. Hence, we arrive at the study of rings, i.e., sets like ℤ, ℤ12, and ℝ that
have two operations satisfying familiar properties such as 𝑎 ⋅ (𝑏 + 𝑐) = (𝑎 ⋅ 𝑏) + (𝑎 ⋅ 𝑐).
Chapter 27 introduces special kinds of rings called integral domains and fields, which
comewith desirable properties: We can cancel in integral domains andwe can “divide”
(by non-zero elements) in fields.

We also begin our study of polynomial rings, whose elements are familiar objects
such as 𝑓(𝑥) = 2𝑥3 − 4𝑥 + 5. An important underlying theme for the remainder of
the book is the structural similarities between the ring of integers ℤ and the ring of
polynomials whose coefficients are in a field. For example, some polynomials can be
factored into a product of smaller polynomials; e.g., 𝑥2 − 6𝑥 + 8 = (𝑥 − 2)(𝑥 − 4).
Likewise, some integers can be factored into a product of smaller integers; e.g., 15 =
3 ⋅ 5.

Here is a taste of what you’ll be able to accomplish in this unit:

• Prove that 0 ⋅ 𝑎 = 0 in a ring. By definition, 0 is the additive identity; i.e., 0 + 𝑎 = 𝑎
and 𝑎+0 = 𝑎 for all elements 𝑎. There’s nothing in that definition which says how
0 behaves under multiplication.

• Prove that every field is an integral domain, and show that not every integral do-
main is a field.

• Quickly determine whether or not 𝑝(𝑥) = 𝑥3 + 𝑥 + 1 is factorable in ℤ3[𝑥].
(Answer: It is!)
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26
Introduction to Rings

For the remainder of this book, we will study an algebraic structure called a ring, al-
though groups will continue to play a prominent role in our work. Unlike groups,
where we consider one operation for each set (e.g., ℤ under addition, 𝑈5 under multi-
plication), a ring has two operations. In fact, our most familiar example, namely, the
set of integers ℤ, is actually a ring.

This chapter introduces the notion of a ring (with lots of examples, of course). We’ll
see what makes the distributive law, i.e., 𝑎 ⋅ (𝑏 + 𝑐) = (𝑎 ⋅ 𝑏) + (𝑎 ⋅ 𝑐), so special. We’ll
prove familiar formulas such as 0 ⋅ 𝑎 = 0 and −1 ⋅ 𝑎 = −𝑎. Previous examples such as
ℤ, ℤ12, and𝑀(ℤ10) will be revisited, but this time as rings.

26.1 Examples and definition
Example 26.1. In our study of groups, we viewed ℤ as an additive group. The set
ℤ is not a multiplicative group, since most of its elements do not have multiplicative
inverses. For instance, there is no integer 𝑛 such that 5 ⋅ 𝑛 = 1. Thus, 5 does not have
a multiplicative inverse in ℤ; i.e., 5−1 does not exist in ℤ.

Although ℤ is not a multiplicative group, it is still closed under multiplication (i.e.,
𝑎 ⋅ 𝑏 ∈ ℤ for all 𝑎, 𝑏 ∈ ℤ), allowing us to add and multiply in ℤ. The same can be
said about ℤ12 and ℝ. Furthermore, there are properties of these operations that are
common to ℤ, ℤ12, and ℝ. For example, 𝑎 + 𝑏 = 𝑏 + 𝑎 in all three sets. What other
common properties can you find?

We acknowledge that ℤ has two operations: addition and multiplication, denoted
+ and ⋅ , respectively. Here are the essential properties of these operations. Observe
that properties (1) through (5) involve addition, properties (6) through (8) involvemul-
tiplication, and property (9) involves both operations.

(1) ℤ is closed under addition: If 𝑎, 𝑏 ∈ ℤ, then 𝑎 + 𝑏 ∈ ℤ.

(2) Associative law for addition: (𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐) for all 𝑎, 𝑏, 𝑐 ∈ ℤ.
261
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(3) There exists an additive identity 0 ∈ ℤ such that 0 + 𝑎 = 𝑎 and 𝑎 + 0 = 𝑎 for all
𝑎 ∈ ℤ.

(4) For 𝑎 ∈ ℤ, there exists an additive inverse −𝑎 ∈ ℤ such that 𝑎 + (−𝑎) = 0 and
(−𝑎) + 𝑎 = 0.

(5) Commutative law for addition: 𝑎 + 𝑏 = 𝑏 + 𝑎 for all 𝑎, 𝑏 ∈ ℤ.
(6) ℤ is closed under multiplication: If 𝑎, 𝑏 ∈ ℤ, then 𝑎 ⋅ 𝑏 ∈ ℤ.
(7) Associative law for multiplication: (𝑎 ⋅ 𝑏) ⋅ 𝑐 = 𝑎 ⋅ (𝑏 ⋅ 𝑐) for all 𝑎, 𝑏, 𝑐 ∈ ℤ.
(8) There exists a multiplicative identity 1 ∈ ℤ such that 1 ⋅ 𝑎 = 𝑎 and 𝑎 ⋅ 1 = 𝑎 for all

𝑎 ∈ ℤ.
(9) Distributive law: 𝑎 ⋅ (𝑏 + 𝑐) = (𝑎 ⋅ 𝑏) + (𝑎 ⋅ 𝑐) and (𝑏 + 𝑐) ⋅ 𝑎 = (𝑏 ⋅ 𝑎) + (𝑐 ⋅ 𝑎) for all

𝑎, 𝑏, 𝑐 ∈ ℤ.
Note the omission of the commutative law for multiplication (i.e., 𝑎 ⋅ 𝑏 = 𝑏 ⋅ 𝑎 for
all 𝑎, 𝑏 ∈ ℤ), even though this property is satisfied in ℤ. This is intentional and we
will explain why soon. Furthermore, property (9) (i.e., the distributive law) is the only
property that connects addition and multiplication.

These properties define the algebraic structure of a ring.

Definition 26.2 (Ring). A set 𝑅 is called a ring if it has two operations (denoted +
and ⋅ ) satisfying properties (1) through (9) that are satisfied by ℤ.

Remark. According to Definition 26.2 above, the set 2ℤ of even integers is not a ring,
because it does not contain the multiplicative identity element 1. (Note that 2ℤ does
satisfy all other ring properties.) However, many abstract algebra textbooks use a defi-
nition of a ring that does not require the multiplicative identity, which would make 2ℤ
a ring. And in this alternative definition, a ring that contains themultiplicative identity
is called a ring with unity or a ring with identity.

In this textbook, a ring will contain the multiplicative identity by definition. We
do so for two reasons. First, we wanted our definition of a ring to closely mimic what
we observe in the ring ℤ. Second, every relevant example of a ring that we examine
contains the multiplicative identity.

We make some observations about the definition of a ring. Let 𝑅 be a ring. Prop-
erties (1) through (5) say that 𝑅 is a commutative group under addition. Thus, all the
group properties that we’ve proved still apply to 𝑅, as long as we consider its addition
operation. For instance, Theorem 8.9 states that a group has a unique identity element.
Since 𝑅 is an additive group, Theorem 8.9 implies that 𝑅 has a unique additive iden-
tity element 0. It turns out that 𝑅 also has a unique multiplicative identity element 1,
which you’ll prove in an exercise at the end of the chapter. But be careful: You can
not claim that this follows from Theorem 8.9, since 𝑅 is not a multiplicative group, as
0 ∈ 𝑅 does not have a multiplicative inverse.

In a group, we used the symbol 𝜀 to denote the identity element. But a ring contains
two identity elements. To differentiate the two, we use the symbols 0 and 1 to denote
the additive and multiplicative identities, respectively. Given an element 𝑎 ∈ 𝑅, we
use −𝑎 and 𝑎−1 to denote its additive and multiplicative inverses, respectively. Note
that −𝑎 always exists and 𝑎−1 sometimes exists, as shown in the example below.
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Example 26.3. Consider the set ℤ10. We’ll leave it to you as an exercise to verify that
ℤ10 is indeed a ring under addition and multiplication modulo 10. We have 3 + 7 = 0
in ℤ10 so that 3 and 7 are additive inverses of each other. We write −3 = 7 and −7 = 3.
We also have 3 ⋅ 7 = 1 in ℤ10, so that 3 and 7 are multiplicative inverses of each other
as well. We write 3−1 = 7 and 7−1 = 3. However, 5 ⋅ 𝑥 = 1 is not possible in ℤ10, since
5 ⋅ 𝑥 = 0 or 5 for all 𝑥 ∈ ℤ10. Hence, 5−1 does not exist in ℤ10.

Example 26.4 (Examples of rings). Here are some examples of rings, many of which
we’ve seen before:

• ℤ, the set of integers.

• ℚ, the set of rational numbers.

• ℝ, the set of real numbers.

• ℂ, the set of complex numbers of the form 𝑎 + 𝑏𝑖 where 𝑎, 𝑏 ∈ ℝ. (Here, 𝑖 = √−1
so that 𝑖2 = −1.)

• ℤ𝑛 = {0, 1, 2, 3, . . . , 𝑛 − 1} where addition and multiplication are done modulo 𝑛.

Example 26.5 (Polynomial rings). Later, wewill study these polynomial rings in depth.

• ℝ[𝑥] is the set of all polynomials with coefficients in ℝ.

• ℤ𝑝[𝑥] is the set of all polynomials with coefficients in ℤ𝑝. (Here, 𝑝 is a prime num-
ber.)

For example, let 𝑓(𝑥) = 3𝑥4 + 2𝑥3 + 4 and 𝑔(𝑥) = 4𝑥3 + 1 be elements of ℤ5[𝑥]. We
then have

𝑓(𝑥) + 𝑔(𝑥) = (3𝑥4 + 2𝑥3 + 4) + (4𝑥3 + 1) = 3𝑥4 + 𝟔𝑥3 + 𝟓 = 3𝑥4 + 𝟏𝑥3 + 𝟎,
so that 𝑓(𝑥) + 𝑔(𝑥) = 3𝑥4 + 𝑥3. Observe how we reduce the coefficients in ℤ5; i.e.,
6 = 1 for the coefficient of 𝑥3 and 5 = 0 for the constant term. Now we compute their
product:

𝑓(𝑥) ⋅ 𝑔(𝑥) = (3𝑥4 + 2𝑥3 + 4) ⋅ (4𝑥3 + 1)
= 12𝑥7 + 3𝑥4 + 8𝑥6 + 2𝑥3 + 16𝑥3 + 4
= 2𝑥7 + 3𝑥6 + 3𝑥4 + 3𝑥3 + 4.

Notice again that we reduce the coefficients in ℤ5.

Example 26.6. Consider the set ℤ3[𝑖] = {𝑎 + 𝑏𝑖 | 𝑎, 𝑏 ∈ ℤ3}, where 𝑖 = √−1 so that
𝑖2 = −1. Here are some examples that illustrate how to add and multiply in ℤ3[𝑖]:

• (1 + 2𝑖) + (2 + 𝑖) = 3 + 3𝑖 = 0 + 0𝑖 (or just 0), since 3 = 0 in ℤ3.

• (1 + 2𝑖) ⋅ (2 + 𝑖) = 1 ⋅ 2 + 1 ⋅ 𝑖 + 2𝑖 ⋅ 2 + 2𝑖 ⋅ 𝑖
= 2+5𝑖 + 2 ⋅ 𝒊𝟐 = 2+5𝑖 + 2 ⋅ (−𝟏) = 0+5𝑖 = 2𝑖, since 5 = 2 in ℤ3.

Note howwe can replace 𝑖2 with−1 to simplify the product. In an exercise, you’ll verify
that ℤ3[𝑖] is indeed a ring and perform some computations in it.
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By definition, a ring need not be commutative under multiplication. In all of our
examples thus far, multiplication has been commutative. In Example 26.8, we will
see rings with non-commutative multiplication. This distinction is captured in the
following definition.

Definition 26.7 (Commutative/non-commutative ring). A ring𝑅 is called a commuta-
tive ring if its multiplication is commutative; i.e., 𝑎⋅𝑏 = 𝑏⋅𝑎 for all 𝑎, 𝑏 ∈ 𝑅. Otherwise,
𝑅 is called a non-commutative ring.

Remark. By definition, a ring is always commutative under addition.

Example 26.8 (Matrix rings). Consider thematrix rings:
• 𝑀(ℝ) is the set of all 2 × 2matrices with entries in ℝ.
• 𝑀(ℤ𝑛) is the set of all 2 × 2matrices with entries in ℤ𝑛.

In an exercise, you’ll exhibit matrices 𝛼, 𝛽 ∈ 𝑀(ℤ10) such that 𝛼 ⋅ 𝛽 ≠ 𝛽 ⋅ 𝛼, so
that 𝑀(ℤ10) is a non-commutative ring. Similar examples show that 𝑀(ℝ) is non-
commutative, too. In these rings, the additive and multiplicative identities (typically
denoted 0 and 1) are the matrices [ 0 0

0 0 ] and [ 1 0
0 1 ], respectively.

26.2 Fundamental properties
In this section, we’ll prove several familiar algebraic formulas, starting with perhaps
the most interesting one. In the definition of a ring 𝑅, the element 0 is defined as the
additive identity; i.e., 0 + 𝑎 = 𝑎 and 𝑎 + 0 = 𝑎 for all 𝑎 ∈ 𝑅. There is nothing in the
definition that says how 0 behaves undermultiplication. But we know from experience
that 0 ⋅ 𝑎 = 0 and 𝑎 ⋅ 0 = 0. Here’s the theorem and its proof.

Theorem 26.9. In a ring 𝑅, 0 ⋅ 𝑎 = 0 and 𝑎 ⋅ 0 = 0 for all 𝑎 ∈ 𝑅.

Proof. Let 𝑎 ∈ 𝑅. Since 0 is an additive identity, 0+0 = 0. Left-multiplying both sides
by 𝑎, we obtain 𝑎 ⋅ (0+0) = 𝑎 ⋅0. Then use the distributive law to get 𝑎 ⋅0+𝑎 ⋅0 = 𝑎 ⋅0.
Since 𝑎, 0 ∈ 𝑅 and 𝑅 is closed under multiplication, we have 𝑎 ⋅ 0 ∈ 𝑅. Thus 𝑎 ⋅ 0 has
an additive inverse, which we will call 𝑏, where 𝑎 ⋅ 0 + 𝑏 = 0 and 𝑏 + 𝑎 ⋅ 0 = 0. Add 𝑏
to both sides of 𝑎 ⋅ 0+𝑎 ⋅ 0 = 𝑎 ⋅ 0 to obtain (𝑎 ⋅ 0+𝑎 ⋅ 0)+ 𝑏 = 𝑎 ⋅ 0+ 𝑏, and then apply
the associative law to find that 𝑎 ⋅ 0 + (𝑎 ⋅ 0 + 𝑏) = 𝑎 ⋅ 0 + 𝑏. Since 𝑎 ⋅ 0 + 𝑏 = 0, the
above equation becomes 𝑎 ⋅ 0 + 0 = 0, so that 𝑎 ⋅ 0 = 0 as desired.

The argument for 0 ⋅ 𝑎 = 0 follows similarly. We’ll leave the details up to you as an
exercise. ■

Proof know-how. We began the above proof with a key step of writing 0 + 0 = 0.
This is the same “inserting the identity” technique that we saw in proofs about groups
(e.g., the proof of Theorem 9.6). Since a ring is an additive group and also satisfies
many (though not all) group properties under multiplication, the proof techniques
from group theory often transfer well to proofs about rings.

Remark. Due to Theorem 26.9, there is no element 𝑟 ∈ 𝑅 such that 0 ⋅ 𝑟 = 1. Thus,
we’ve proved that 0 does not have a multiplicative inverse in any ring. Hence, a ring is
never a multiplicative group.
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Below are several formulas involving additive inverses. Note that −𝑎 and −𝑏 refer
to additive inverses of 𝑎 and 𝑏, respectively, and −1 denotes the additive inverse of the
multiplicative identity 1.

Theorem 26.10. Let 𝑎 and 𝑏 be elements of a ring. Then:
(a) −(−𝑎) = 𝑎.

(b) −1 ⋅ 𝑎 = −𝑎.

(c) −1 ⋅ −1 = 1.

(d) 𝑎 ⋅ (−𝑏) = −(𝑎 ⋅ 𝑏) and (−𝑎) ⋅ 𝑏 = −(𝑎 ⋅ 𝑏).

(e) (−𝑎) ⋅ (−𝑏) = 𝑎 ⋅ 𝑏.

We’ll prove formulas (a) and (d). The rest are left for you as an exercise at the end
of the chapter.

Proof. First, we prove formula (a). The expression−(−𝑎)means “the additive inverse
of −𝑎.” Observe that the additive inverse of −𝑎 is the element 𝑎, since (−𝑎) + 𝑎 = 0
and 𝑎 + (−𝑎) = 0 by the definition of −𝑎. Therefore, we have −(−𝑎) = 𝑎 as desired.

For formula (d), we’ll prove 𝑎 ⋅ (−𝑏) = −(𝑎 ⋅ 𝑏) and leave the other one for you as
an exercise. We will compute the sum (𝑎 ⋅ 𝑏) + (𝑎 ⋅ (−𝑏)) and show that it equals 0. We
have

(𝑎 ⋅ 𝑏) + (𝑎 ⋅ (−𝑏)) = 𝑎 ⋅ (𝑏 + (−𝑏)) = 𝑎 ⋅ 0 = 0.
Thus (𝑎 ⋅ 𝑏) + (𝑎 ⋅ (−𝑏)) = 0. Since addition in a ring is commutative, we also have
(𝑎 ⋅ (−𝑏))+ (𝑎 ⋅ 𝑏) = 0. Hence, 𝑎 ⋅ (−𝑏) is the additive inverse of 𝑎 ⋅ 𝑏. Symbolically, this
is written 𝑎 ⋅ (−𝑏) = −(𝑎 ⋅ 𝑏), as desired. ■

Proof know-how. In Example 8.12, we proved that (𝑔−1)−1 = 𝑔 for a group element 𝑔.
Formula (a) is simply the additive version of this. (Remember, every ring is an additive
group.) In fact, the argument in Example 8.12 is almost identical to the one given in
the proof above.

For formula (d), we use the additive version of the technique from the proof of
Theorem 8.11. To show that −𝛼 = 𝛽 (i.e., “the additive inverse of 𝛼 is 𝛽”), we verify
that 𝛼+𝛽 = 0 and 𝛽+𝛼 = 0. In the above proof, we apply this technique with 𝛼 = 𝑎⋅𝑏
and 𝛽 = 𝑎 ⋅ (−𝑏).

When we worked with additive groups, we freely used subtraction, even though
we never defined what we mean by 𝑎 − 𝑏 where 𝑎 and 𝑏 are elements of an additive
group. For instance, let 𝐻 be a subgroup of an additive group 𝐺. Then for 𝑎, 𝑏 ∈ 𝐺,
we have 𝑎 + 𝐻 = 𝑏 + 𝐻 if and only if 𝑎 − 𝑏 ∈ 𝐻 and 𝑏 − 𝑎 ∈ 𝐻. We’ll continue to use
subtraction in this manner. But we’ll also define it formally once and for all.

Definition 26.11. Let 𝑎 and 𝑏 be elements of a ring. We define 𝑎−𝑏 to mean 𝑎+(−𝑏).

Example 26.12 (Example 4.1 revisited). When we first introduced ℤ7, here is how we
described the computation of 2−6: Start at 2 on the ℤ7 clock andmove 6 units counter-
clockwise. We land on 3, so that 2 − 6 = 3 in ℤ7.
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Using Definition 26.11, we have 2 − 6 = 2 + (−6). Moreover, −6 = 1 in ℤ7 (i.e., the
additive inverse of 6 is 1), since 6 + 1 = 0 and 1 + 6 = 0. Therefore, 2 − 6 = 2+ (−6) =
2 + 1 = 3, as before.

The proof of the following theorem is left for you as an exercise.

Theorem 26.13. Let 𝑎, 𝑏, 𝑐 be elements of a ring. Then 𝑎 ⋅ (𝑏 − 𝑐) = (𝑎 ⋅ 𝑏) − (𝑎 ⋅ 𝑐) and
(𝑏 − 𝑐) ⋅ 𝑎 = (𝑏 ⋅ 𝑎) − (𝑐 ⋅ 𝑎).

26.3 Units and zero divisors
Example 26.14. Recall that in ℤ10 we have 3 ⋅ 7 = 1 so that 3 and 7 are multiplicative
inverses of each other. We write 3−1 = 7 and 7−1 = 3. Also in ℤ10, it is possible to have
a pair of non-zero elements whose product is zero: 5 ⋅ 2 = 0 and 6 ⋅ 5 = 0, for instance.

The above example motivates the following definitions.

Definition 26.15 (Unit). Let 𝑅 be a ring. An element 𝑢 ∈ 𝑅 is called a unit if it has a
multiplicative inverse 𝑢−1 ∈ 𝑅 such that 𝑢 ⋅ 𝑢−1 = 1 and 𝑢−1 ⋅ 𝑢 = 1.

Definition 26.16 (Zero divisor). Let 𝑅 be a ring. A non-zero element 𝑎 ∈ 𝑅 is called a
zero divisor if there exists a non-zero 𝑏 ∈ 𝑅 such that 𝑎 ⋅ 𝑏 = 0.

Using these new terminologies, we can say that in ℤ10, 3 and 7 are units and 5, 2,
and 6 are zero divisors. (What about the rest of the elements in ℤ10?) In any ring, the
multiplicative identity 1 is a unit, because 1 ⋅ 1 = 1; i.e., it’s a self-inverse under multi-
plication. The additive identity 0 is not a unit, because it does not have a multiplicative
inverse; nor is 0 a zero divisor, since by definition a zero divisor must be non-zero.

Example 26.17. In each ring, we classify thenon-zero elements as a unit, a zero divisor,
or neither.

• In ℤ12: The units are 1, 5, 7, 11, as each is a self-inverse; i.e., 1 ⋅ 1 = 5 ⋅ 5 = 7 ⋅ 7 =
11 ⋅ 11 = 1. The remaining non-zero elements of ℤ12, i.e., 2, 3, 4, 6, 8, 9, 10, are
zero divisors, since 2 ⋅ 6 = 0, 3 ⋅ 4 = 0, 8 ⋅ 9 = 0, and 6 ⋅ 10 = 0.

• In ℤ7: The units are 1, 2, 3, 4, 5, 6. There are no zero divisors in ℤ7.

• In ℤ: The units are 1 and −1, since 1 ⋅ 1 = 1 and (−1) ⋅ (−1) = 1. There are no zero
divisors in ℤ. All other integers are neither a unit nor a zero divisor.

• In ℝ: The units are all non-zero elements of ℝ. There are no zero divisors in ℝ.
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None of the rings in Example 26.17 has an element that is both a unit and a zero
divisor. Here is why.

Theorem 26.18. Let 𝛼 be a non-zero ring element. Then 𝛼 cannot be both a unit and a
zero divisor.

Proof. Assume for contradiction that such an element exists. Let 𝑅 be a ring, and
suppose 𝛼 ∈ 𝑅, 𝛼 ≠ 0, is both a unit and a zero divisor. Thus, there exists 𝛼−1 ∈ 𝑅 such
that 𝛼−1 ⋅ 𝛼 = 1; and there also exists 𝛽 ∈ 𝑅, 𝛽 ≠ 0, such that 𝛼 ⋅ 𝛽 = 0. Multiplying
both sides of 𝛼 ⋅ 𝛽 = 0 on the left by 𝛼−1, we obtain

𝛼−1 ⋅ (𝛼 ⋅ 𝛽) = 𝛼−1 ⋅ 0 ⟹ (𝛼−1 ⋅ 𝛼) ⋅ 𝛽 = 𝛼−1 ⋅ 0 ⟹ 1 ⋅ 𝛽 = 0.

(Note that 𝛼−1 ⋅ 0 = 0 follows from Theorem 26.9.) The last equation 1 ⋅ 𝛽 = 0 implies
that 𝛽 = 0, which contradicts 𝛽 ≠ 0. Thus, such an element 𝛼 does not exist. ■

26.4 Subrings
Analogous to a subgroup of a group is the notion of a subring of a ring. For example,
ℤ is a subring of the ring ℝ, because (1) ℤ is a subset of ℝ and (2) ℤ is a ring using the
same operations as ℝ.

Definition 26.19 (Subring). Let 𝑅 be a ring. A subset 𝑆 ⊆ 𝑅 is a subring of 𝑅 if 𝑆 is a
ring using the operations of 𝑅.

Example 26.20. Consider the following subset of the ring𝑀(ℤ10):

𝑆 = {[ 𝑎 𝑏
𝑏 𝑎 ] | 𝑎, 𝑏 ∈ ℤ10} .

To show that 𝑆 is a subring of𝑀(ℤ10), we must show that 𝑆 satisfies the ring properties
using the operations of𝑀(ℤ10), i.e., matrix addition and multiplication. But 𝑆 inherits
these operations from𝑀(ℤ10), and so we already know, for instance, that 𝛼+𝛽 = 𝛽+𝛼
for all 𝛼, 𝛽 ∈ 𝑆 (because it’s true for all 𝛼, 𝛽 ∈ 𝑀(ℤ10)). So, we do not need to address
this property when proving that 𝑆 is a subring. This is analogous to how we don’t
address associativity when writing subgroup proofs. Thus, among the ring properties
(1) through (9) from Section 26.1, we must show that 𝑆 satisfies the following:

(1) 𝑆 is closed under addition: If 𝑎, 𝑏 ∈ 𝑆, then 𝑎 + 𝑏 ∈ 𝑆.

(3) 𝑆 contains the additive identity of𝑀(ℤ10), namely [ 0 0
0 0 ].

(4) If 𝑎 ∈ 𝑆, then −𝑎 ∈ 𝑆.

(6) 𝑆 is closed under multiplication: If 𝑎, 𝑏 ∈ 𝑆, then 𝑎 ⋅ 𝑏 ∈ 𝑆.

(8) 𝑆 contains the multiplicative identity of𝑀(ℤ10), namely [ 1 0
0 1 ].

Note that since𝑀(ℤ10) is a ring, we already know that 𝑎+𝑏, [ 0 0
0 0 ], −𝑎, 𝑎⋅𝑏, and [ 1 0

0 1 ]
are all in𝑀(ℤ10). Our goal is to show that these elements are contained in 𝑆.
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Proof know-how. Let 𝑅 be a ring. To show that a subset 𝑆 ⊆ 𝑅 is a subring, we must
show the following:

• 𝑆 is closed under both operations.

• 𝑆 contains both identity elements.

• 𝑆 contains the additive inverses of its elements.

Theorem 26.21. Let 𝑆 = {[ 𝑎 𝑏
𝑏 𝑎 ] | 𝑎, 𝑏 ∈ ℤ10}. Then 𝑆 is a subring of𝑀(ℤ10).

Proof. We first show closure. Let 𝛼, 𝛽 ∈ 𝑆 so that 𝛼 = [ 𝑎 𝑏
𝑏 𝑎 ] and 𝛽 = [ 𝑐 𝑑

𝑑 𝑐 ] for some
𝑎, 𝑏, 𝑐, 𝑑 ∈ ℤ10. Then 𝛼 + 𝛽 = [ 𝑎+𝑐 𝑏+𝑑

𝑏+𝑑 𝑎+𝑐 ] and 𝛼 ⋅ 𝛽 = [ 𝑎𝑐+𝑏𝑑 𝑎𝑑+𝑏𝑐
𝑎𝑑+𝑏𝑐 𝑎𝑐+𝑏𝑑 ]. Both 𝛼 + 𝛽 and

𝛼 ⋅ 𝛽 are in 𝑆, so that 𝑆 is closed under addition and multiplication. The additive and
multiplicative identities of𝑀(ℤ10) are [ 0 0

0 0 ] and [ 1 0
0 1 ], respectively. Both have the form

of the matrices in 𝑆 and thus are contained in 𝑆. Lastly, we have −𝛼 = [−𝑎 −𝑏
−𝑏 −𝑎 ] ∈ 𝑆 so

that 𝑆 is a subring of𝑀(ℤ10), as desired. ■

26.5 Group of units
In Chapter 10, we considered the following line of reasoning. We observed that ℤ10
admits both addition and multiplication. (We would now say that ℤ10 is a ring.) Al-
though ℤ10 is an additive group, it is not a group under multiplication, because not
every element of ℤ10 has a multiplicative inverse. For example, 5 ⋅ 𝑥 = 1 isn’t possi-
ble in ℤ10, and thus 5−1 doesn’t exist. We salvaged the situation by defining the subset
𝑈10 = {𝑎 ∈ ℤ10 | 𝑎 is a unit}. (Note: “𝑎 is a unit”means the same as “𝑎has amultiplica-
tive inverse.”) In essence, we removed from ℤ10 the elements without multiplicative
inverses. And we showed that the resulting set 𝑈10 is, indeed, a multiplicative group.

Similarly, we started with the ring 𝑀(ℤ10) and obtained a multiplicative group
𝐺(ℤ10), defined by

𝐺(ℤ10) = {𝛼 ∈ 𝑀(ℤ10) | 𝛼 is a unit}.
These two are examples of something more generally called the group of units.

Definition 26.22 (Group of units). Let 𝑅 be a ring. Then the subset 𝑅∗ = {𝑎 ∈ 𝑅 ∣
𝑎 is a unit} is called the group of units of 𝑅.

Example 26.23. For each ring 𝑅, we find the group of units 𝑅∗.

• If 𝑅 = ℤ10, then 𝑅∗ = 𝑈10.

• If 𝑅 = 𝑀(ℤ10), then 𝑅∗ = 𝐺(ℤ10).

• If 𝑅 = ℤ, then 𝑅∗ = {1, −1}.

• If 𝑅 = ℝ, then 𝑅∗ = ℝ∗ = {𝑎 ∈ ℝ | 𝑎 ≠ 0}, i.e., the set non-zero elements of ℝ.

The proof of the following theorem is similar to the proof showing that 𝐺(ℤ10) is
a multiplicative group (in Section 10.2). We’ll leave the details up to you.
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Theorem 26.24. Let 𝑅 be a ring and define 𝑅∗ = {𝑎 ∈ 𝑅 | 𝑎 is a unit}. Then 𝑅∗ is a
multiplicative group.

Exercises
1. Explain why each 𝑅 is not a ring.

(a) 𝑅 = {0, 1, 2, 3, . . .} with integer addition and multiplication.
(b) 𝑅 = 3ℤ with integer addition and multiplication.
(c) 𝑅 = 𝑈7 with addition and multiplication modulo 7.

2. For each 𝑎 ∈ ℤ10, find −𝑎 and 𝑎−1, or explain why −𝑎 or 𝑎−1 (or possibly both)
doesn’t exist.

(a) 𝑎 = 3. (b) 𝑎 = 4. (c) 𝑎 = 1. (d) 𝑎 = 0. (e) 𝑎 = 9.

3. For each 𝛼 ∈ 𝑀(ℤ10), find−𝛼 and 𝛼−1, or explain why−𝛼 or 𝛼−1 (or possibly both)
doesn’t exist.

(a) 𝛼=[ 4 7
1 7 ]. (b) 𝛼=[ 4 6

1 7 ]. (c) 𝛼=[ 1 0
0 1 ]. (d) 𝛼=[ 0 0

0 0 ]. (e) 𝛼=[ 9 0
0 9 ].

4. Complete the proof of Theorem 26.9 by showing 0 ⋅ 𝑎 = 0.

5. Complete the proof of Theorem 26.10 by proving parts (b), (c), (e) and the formula
(−𝑎) ⋅ 𝑏 = −(𝑎 ⋅ 𝑏) in part (d).

6. Prove Theorem 26.13.

7. Let 𝑎, 𝑏, 𝑐, 𝑑 be elements of a ring. Prove that (𝑎+𝑏)⋅(𝑐+𝑑) = 𝑎⋅𝑐+𝑎⋅𝑑+𝑏⋅𝑐+𝑏⋅𝑑.
Note: Since addition is a binary operation, we add only two elements at a time.
But due to the associative law, there is no ambiguity when we write an expression
such as 𝑎 ⋅ 𝑐 + 𝑎 ⋅ 𝑑 + 𝑏 ⋅ 𝑐 + 𝑏 ⋅ 𝑑.

8. Prove: Let 𝑅 be a ring. Then 𝑅 has a unique (i.e., only one) multiplicative identity
element.
Note: Since 𝑅 is an additive group, Theorem 8.9 implies 𝑅 has a unique additive
identity element.

9. Prove: Let 𝑅 be a ring, and let 𝑎 ∈ 𝑅. If 𝑎 is a unit, then it has a unique multiplica-
tive inverse in 𝑅.
Note: Again, as 𝑅 is an additive group, Theorem 8.10 ensures 𝑎 has a unique ad-
ditive inverse in 𝑅.

10. Find elements 𝑎, 𝑏 ∈ ℤ𝑚 such that 𝑎 and 𝑏 are additive inverses and multiplica-
tive inverses of each other. Note that you must find the modulus 𝑚 as well. (See
Example 26.3.)

11. Verify that each set in Example 26.4 satisfies the ring properties.
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12. Consider the set ℤ3[𝑖] = {𝑎 + 𝑏𝑖 | 𝑎, 𝑏 ∈ ℤ3} where 𝑖 = √−1 so that 𝑖2 = −1. See
Example 26.6 for how to add and multiply in ℤ3[𝑖].
(a) Verify thatℤ3[𝑖] satisfies the ring properties and that its multiplication is com-

mutative.
(b) Find all elements of ℤ3[𝑖]. How many of them are there?
(c) 1 + 2𝑖 ∈ ℤ3[𝑖] has a multiplicative inverse. Find it.
(d) Classify each non-zero element of ℤ3[𝑖] as a unit, a zero divisor, or neither.
(This exercise is referenced in Example 27.14.)

13. (a) Find all zero divisors in ℤ20. Explain your reasoning.
(b) Repeat part (a) with ℤ21.
(c) Repeat part (a) with ℤ17.

14. Let𝑀(ℤ10) be the ring of all 2 × 2matrices with entries in ℤ10.
(a) Come up with examples of a unit in𝑀(ℤ10).
(b) Come up with examples of a zero divisor in𝑀(ℤ10).

15. Is there an element in𝑀(ℤ10) that is neither a unit nor a zero divisor? Why or why
not?

16. Let 𝑆 = {[ 𝑎 𝑎−𝑏
𝑎−𝑏 𝑏 ] | 𝑎, 𝑏 ∈ ℤ10}.

(a) Find a few elements in 𝑆.
(b) Prove that 𝑆 is a subring of𝑀(ℤ10).

17. Let 𝑆 = {[ 𝑎 𝑏
0 𝑎 ] | 𝑎, 𝑏 ∈ ℤ10}.

(a) Find a few elements in 𝑆.
(b) Prove that 𝑆 is a subring of𝑀(ℤ10).

18. Let 𝑆 = {[ 𝑎 𝑏
𝑐 𝑑 ] | 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℤ10 and 𝑎 + 𝑐 = 𝑏 + 𝑑}.

(a) Find a few elements in 𝑆.
(b) Prove that 𝑆 is a subring of𝑀(ℤ10).

19. Come up with another subset 𝑆 like the ones in Exercises #16, #17, and #18. Then
prove that your subset 𝑆 is a subring of𝑀(ℤ10).

20. Let 𝑅 be a ring, and let 𝑆 and 𝑇 be its subrings. Define𝑀 = 𝑆 ∩ 𝑇 = {𝑟 ∈ 𝑅 | 𝑟 ∈
𝑆 and 𝑟 ∈ 𝑇}; i.e.,𝑀 is the intersection of 𝑆 and 𝑇. Prove that𝑀 is a subring of 𝑅.
Hint: How can you use the result of Chapter 11, Exercise #13 to reduce your work
here?

21. Prove Theorem 26.24.

22. Let 𝑅 be a ring. Using the ring properties (1) through (9), but without assuming
property (5) (i.e., the commutative law for addition), prove that 𝑎 + 𝑏 = 𝑏 + 𝑎 for
all 𝑎, 𝑏 ∈ 𝑅.

23. Given a ring 𝑅, define the center of 𝑅 by
𝑍(𝑅) = {𝑧 ∈ 𝑅 | 𝑧 ⋅ 𝑟 = 𝑟 ⋅ 𝑧 for all 𝑟 ∈ 𝑅}.

Prove that 𝑍(𝑅) is a subring of 𝑅.



27
Integral Domains and Fields

The ringsℤ13 andℤ15 are similar inmany respects. They’re bothfinite ringswith 13 and
15 elements, respectively. Each is a commutative ring, which means its multiplication
is commutative; i.e., 𝑎 ⋅ 𝑏 = 𝑏 ⋅ 𝑎 for all of its elements. (Recall that by definition, a ring
is always commutative under addition.) However, ℤ13 and ℤ15 are also very different,
and how they’re different is the focus of this chapter.

For instance, consider the equation 5𝑥 = 10. Inℤ13, this equation has one solution;
namely 𝑥 = 2. However, the same equation has five solutions in ℤ15. Aside from 𝑥 = 2,
we have 5 ⋅ 8 = 10 (mod 15), so that 𝑥 = 8 is another solution in ℤ15. We’ll leave it up
to you to verify that 𝑥 = 5, 11, 14 are also solutions to this equation in ℤ15. Why are
there so many solutions in ℤ15? Let’s find out!

27.1 Integral domains
Example 27.1. Inℤ12, there is a pair of non-zero elementswhose product is zero: 3⋅4 =
0, for instance. Recall that such elements are called zero divisors in ℤ12. Other zero
divisors in ℤ12 include 2, 6, 8, 9, 10. Note that 2 ⋅ 6 = 0, 8 ⋅ 9 = 0, and 6 ⋅ 10 = 0 in ℤ12.

Some rings do not have any zero divisors, whichmotivates the following definition.

Definition 27.2 (Integral domain). A commutative ring is called an integral domain
if it does not contain any zero divisors.

Example 27.3. If 𝑎 and 𝑏 are non-zero integers, then their product 𝑎𝑏 is also non-zero.
Hence, there are no zero divisors in ℤ, which implies that ℤ is an integral domain.

Example 27.4. In the ringℤ13 = {0, 1, 2, . . . , 12}, every non-zero element is a unit, i.e.,
an elementwith amultiplicative inverse. ThenbyTheorem26.18, these units cannot be
zero divisors. Thus, there are no zero divisors in ℤ13, so that ℤ13 is an integral domain.
The same argument shows that the set of real numbersℝ is an integral domain as well.

271
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Example 27.5 (Non-examples). We saw in Example 27.1 that ℤ12 contains zero divi-
sors. Thus, it’s not an integral domain. Likewise, we have 2 ⋅ 5 = 0 in ℤ10 and 5 ⋅ 6 = 0
in ℤ15. Since they have zero divisors, neither ℤ10 nor ℤ15 is an integral domain.

A useful feature of integral domains is cancellation. If 5𝑏 = 5𝑐 in ℤ, for example,
we can conclude that 𝑏 = 𝑐. Here is the generalization.

Theorem 27.6 (Cancellation in an integral domain). Let 𝑎, 𝑏, 𝑐 be elements of an inte-
gral domain 𝑅 and suppose 𝑎 ≠ 0. If 𝑎𝑏 = 𝑎𝑐, then 𝑏 = 𝑐.

Remark. An important assumption in this theorem is that 𝑎 ≠ 0. Otherwise, we could
have a scenario such as 0 ⋅ 4 = 0 ⋅ 5 in ℤ, which does not imply that 4 = 5.

How can we prove this theorem? Observe that it looks just like left cancellation in
groups (Theorem 8.18). Here’s howwe proved it in a group setting: Assuming 𝑎𝑏 = 𝑎𝑐,
we left-multiplied both sides of the equation by 𝑎−1. Unfortunately, the multiplicative
inverse 𝑎−1 need not exist in a ring. For instance, 5−1 does not exist in ℤ. However,
we can subtract 𝑎𝑐 from both sides of the equation. This is a valid step, since addi-
tive inverses always exist in a ring. With this key insight, let’s proceed to the proof of
Theorem 27.6.

Proof. Assume 𝑎𝑏 = 𝑎𝑐. Then 𝑎𝑏 − 𝑎𝑐 = 0 and thus 𝑎 ⋅ (𝑏 − 𝑐) = 0. Since 𝑅 is an
integral domain, 𝑎 ⋅ (𝑏 − 𝑐) = 0 implies that 𝑎 or 𝑏 − 𝑐must be zero. But 𝑎 ≠ 0; hence
𝑏 − 𝑐must equal 0. Thus 𝑏 = 𝑐. ■

Proof know-how. In the above proof, we already know that 𝑅 is an integral domain.
Thus if 𝛼 ⋅ 𝛽 = 0, then we can conclude that either 𝛼 or 𝛽 (or possibly both) must be
zero. Otherwise, 𝛼 and 𝛽 would both be non-zero, making them zero divisors (since
𝛼 ⋅ 𝛽 = 0), which contradicts the fact that 𝑅 is an integral domain. For the above proof,
we apply this technique with 𝛼 = 𝑎 and 𝛽 = 𝑏 − 𝑐.

The Proof know-how above captures an important feature of a ring that we define
here.

Definition 27.7. The following property of a ring 𝑅 is called the zero product property:
Let 𝛼, 𝛽 ∈ 𝑅. If 𝛼 ⋅ 𝛽 = 0, then 𝛼 = 0 or 𝛽 = 0.

Theorem 27.8. Let 𝑅 be a commutative ring. Then 𝑅 is an integral domain if and only
if 𝑅 satisfies the zero product property.

Proof. We must prove two implications:
• If 𝑅 is an integral domain, then 𝑅 satisfies the zero product property.
• If 𝑅 satisfies the zero product property, then 𝑅 is an integral domain.

The first implication was proved in the Proof know-how above. We’ll leave the proof
of the second implication to you as an exercise at the end of the chapter. ■

Example 27.9. Consider the equation 5𝑥 = 10 at the beginning of this chapter. Let’s
view it in ℤ13, which is an integral domain. (See Example 27.4.) Our equation can be
rewritten as 5 ⋅ 𝑥 = 5 ⋅ 2, and 5 ≠ 0 in ℤ13. Therefore, Theorem 27.6 applies and thus
5 ⋅ 𝑥 = 5 ⋅ 2 implies 𝑥 = 2, as expected.
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Example 27.10 (Non-example). Consider again the equation 5𝑥 = 10 or 5 ⋅ 𝑥 =
5 ⋅ 2. Now view it in ℤ15, which is not an integral domain. (See Example 27.5.) Thus,
Theorem 27.6 does not apply. Let’s see what goes wrong if we proceed as in its proof.
Starting with 5⋅𝑥 = 5⋅2, we subtract 5⋅2 from both sides to obtain 5⋅𝑥−5⋅2 = 0. Thus,
5⋅(𝑥−2) = 0. However, since ℤ15 is not an integral domain, we cannot conclude that 5
or 𝑥−2must be zero. In fact, since 5 ⋅ 6 = 0 in ℤ15, we could have 5 ⋅ (8−2) = 5 ⋅ 6 = 0,
so that 𝑥 = 8 is a possible solution to 5𝑥 = 10 in ℤ15. We’ll leave it to you as an exercise
to find other solutions to 5𝑥 = 10 in ℤ15 using the zero divisors 𝛽 of the form 5 ⋅ 𝛽 = 0.

Strange things happen when we’re not in an integral domain, like 5𝑥 = 10 having
five solutions in ℤ15. Here is another interesting occurrence in ℤ15.

Example 27.11 (Non-example). Consider the equation 𝑥2−6𝑥+8 = 0. Factoring the
left-hand side, we obtain (𝑥 − 2) ⋅ (𝑥 − 4) = 0. When viewed in ℤ, an integral domain,
we can conclude via the zero product property that 𝑥−2 = 0 or 𝑥−4 = 0, so that 𝑥 = 2
or 𝑥 = 4 are the only solutions to this equation.

Now, 𝑥 = 2, 4 are solutions in ℤ15 as well. But ℤ15 is not an integral domain; i.e., it
has zero divisors. For instance, we could have (7 − 2) ⋅ (7 − 4) = 5 ⋅ 3 = 0. Thus 𝑥 = 7
is another solution to the equation. We also have (14 − 2) ⋅ (14 − 4) = 12 ⋅ 10 = 0 in
ℤ15, so that 𝑥 = 14 is a solution, too. Thus, the quadratic equation 𝑥2 − 6𝑥 + 8 = 0 has
four solutions in ℤ15: 𝑥 = 2, 4, 7, 14. We’ll leave it to you to verify that there is no other
solution in ℤ15. (Here is one approach: Substitute the remaining 11 values of ℤ15 into
𝑥2 − 6𝑥 + 8.)

27.2 Fields
Example 27.12. In ℤ7 = {0, 1, 2, 3, 4, 5, 6}, all non-zero elements are units; i.e., they
have multiplicative inverses. Note that 1 ⋅ 1 = 1, 2 ⋅ 4 = 1, 3 ⋅ 5 = 1, and 6 ⋅ 6 = 1 in
ℤ7. Similarly, all non-zero elements of ℝ are units. While a ring is never a multiplica-
tive group, since the additive identity element 0 does not have a multiplicative inverse,
examples like ℤ7 and ℝ come awfully close!

Rings like ℤ7 and ℝ, which are almost multiplicative groups, are examples of a
field.

Definition 27.13 (Field). A commutative ring is called a field if every non-zero ele-
ment is a unit.

Examples of a field include ℚ, ℝ, ℂ, ℤ7, and ℤ13. Below are a couple more exam-
ples.

Example 27.14 (Example 26.6 revisited). Consider the set ℤ3[𝑖] = {𝑎 + 𝑏𝑖 | 𝑎, 𝑏 ∈ ℤ3},
where 𝑖2 = −1. In Chapter 26, Exercise #12, you verified that ℤ3[𝑖] is a commutative
ring with 9 elements; namely

ℤ3[𝑖] = {0, 1, 2, 𝑖, 1 + 𝑖, 2 + 𝑖, 2𝑖, 1 + 2𝑖, 2 + 2𝑖}.
It turns out that every non-zero element of ℤ3[𝑖] is a unit. For instance, to find the
multiplicative inverse of 2 + 𝑖 ∈ ℤ3[𝑖], we must find an element 𝑎 + 𝑏𝑖 ∈ ℤ3[𝑖] such
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that (2 + 𝑖) ⋅ (𝑎 + 𝑏𝑖) = 1. The left-hand side of this equation expands to

(2 + 𝑖) ⋅ (𝑎 + 𝑏𝑖) = 2 ⋅ 𝑎 + 2 ⋅ 𝑏𝑖 + 𝑖 ⋅ 𝑎 + 𝑖 ⋅ 𝑏𝑖
= 2𝑎 + (2𝑏 + 𝑎)𝑖 + 𝑏𝑖2

= 2𝑎 + (2𝑏 + 𝑎)𝑖 + 𝑏 ⋅ (−1)
= (2𝑎 − 𝑏) + (2𝑏 + 𝑎)𝑖,

so that (2 + 𝑖) ⋅ (𝑎 + 𝑏𝑖) = (2𝑎 − 𝑏) + (2𝑏 + 𝑎)𝑖. Thus, the equation (2 + 𝑖) ⋅ (𝑎 + 𝑏𝑖) = 1
can be rewritten as (2𝑎− 𝑏) + (2𝑏+ 𝑎)𝑖 = 1+ 0𝑖, from which we obtain 2𝑎− 𝑏 = 1 and
2𝑏 + 𝑎 = 0. Solving this system of equations in ℤ3, we find 𝑎 = 1, 𝑏 = 1. Therefore,
1 + 𝑖 is the multiplicative inverse of 2 + 𝑖.

Proceeding similarly, we can find the multiplicative inverse of every non-zero ele-
ment in ℤ3[𝑖]. (We’ll leave the details for you to complete in Chapter 26, Exercise #12.)
Thus, ℤ3[𝑖] is a field.

Example 27.15. Consider the set ℚ(√2) = {𝑎 + 𝑏√2 | 𝑎, 𝑏 ∈ ℚ}. The following
examples illustrate how to add and multiply in ℚ(√2). For multiplication, note that
√2 ⋅ √2 = 2.

• (2 + 15√2) + (7 − 8√2) = (2 + 7) + (15 − 8)√2 = 9 + 7√2.

• (2 + 15√2) ⋅ (7 − 8√2) = 2 ⋅ 7 + 2 ⋅ (−8√2) + (15√2) ⋅ 7 + (15√2) ⋅ (−8√2)
= 14 + 89√2 + (−120) ⋅ (√2)2

= −226 + 89√2.

In an exercise, you’ll verify that ℚ(√2) is a commutative ring. Furthermore, we claim
that every non-zero element of ℚ(√2) is a unit. To find the multiplicative inverse of
7 + 3√2 ∈ ℚ(√2), for instance, consider the calculation below, where (7 + 3√2) ⋅
(7 − 3√2) = 72 − 32 ⋅ 2 = 31:

1
7 + 3√2

= 1
7 + 3√2

⋅ 7 − 3√2
7 − 3√2

= 7
31 −

3
31√2.

Therefore (7+3√2)⋅( 7
31 −

3
31√2) = 1, so that 7+3√2 and 7

31−
3
31√2 aremultiplicative

inverses of each other in ℚ(√2). We’ll leave it for you in an exercise to generalize this
calculation and show that every non-zero element 𝑎 + 𝑏√2 ∈ ℚ(√2) has a multiplica-
tive inverse. Thus, ℚ(√2) is a field.

Example 27.16 (Non-example). Although ℤ is an integral domain, it is not a field.
Most non-zero integers (except for 1 and −1) are not units, because they don’t have
multiplicative inverses in ℤ.

Cancellation also holds in a field. We’ll leave the proof of the following theorem
to you as an exercise. Here’s a hint: A field is almost a multiplicative group.

Theorem 27.17 (Cancellation in field). Let 𝑎, 𝑏, 𝑐 be elements of a field 𝑅 and suppose
𝑎 ≠ 0. If 𝑎𝑏 = 𝑎𝑐, then 𝑏 = 𝑐.
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Now, ℤ is an integral domain that’s not a field. We’ll examine other such examples
soon. (If you’re curious, the polynomial ringℤ5[𝑥], defined in Example 26.5, is another
integral domain that is not a field. More on this later.) But does there exist a field that’s
not an integral domain? The answer is “No,” as implied by the following theorem.

Theorem 27.18. Every field is an integral domain.

Toprove this theorem,wewill use the second implication of Theorem27.8; namely:
If 𝑅 satisfies the zero product property, then 𝑅 is an integral domain.

Proof. Let 𝑅 be a field. To show that 𝑅 is an integral domain, we will show that 𝑅
satisfies the zero product property. Let 𝛼, 𝛽 ∈ 𝑅 and assume 𝛼 ⋅ 𝛽 = 0. We must show
that 𝛼 = 0 or 𝛽 = 0. Assume that 𝛼 ≠ 0. (We will show that 𝛽 = 0.) The equation
𝛼⋅𝛽 = 0 can be rewritten as 𝛼⋅𝛽 = 𝛼⋅0. Since 𝑅 is a field and 𝛼 ≠ 0, we apply Theorem
27.17 to cancel 𝛼 from 𝛼 ⋅ 𝛽 = 𝛼 ⋅ 0. Thus, 𝛽 = 0 as desired. ■

Proof know-how. In the above proof, we prove an “or” statement; i.e., we must show
that (1) 𝛼 = 0 or (2) 𝛽 = 0. Observe that conclusion (1) is either true or false. If it’s
true, then we’re done with the proof. Thus, we assume that (1) is false and prove that
(2) is true. In the proof itself, though, we leave out the rationale behind this approach
and start right away with the assumption that (1) is false. (Compare this with the proof
of Theorem 20.15.)

To summarize, every field is an integral domain (Theorem 27.18), but not every
integral domain is a field (ℤ, for instance). But it turns out that every finite integral
domain is a field. This is based on the theorem below, whose proof is left for you as an
exercise at the end of the chapter.

Theorem 27.19. Let 𝑅 be a finite ring. If 𝛼 ∈ 𝑅 is a non-zero element, then 𝛼 is a unit or
a zero divisor.

Example 27.20 (Example 26.17 revisited). In a finite ring ℤ12, every non-zero element
is a unit or a zero divisor. The units are 1, 5, 7, 11. The zero divisors are 2, 3, 4, 6, 8,
9, 10. Every non-zero element of ℤ12 has been accounted for. In other words, there’s
no non-zero element of ℤ12 that’s neither a unit nor a zero divisor. (Such “neither”
elements exist in ℤ. For instance, 5 ∈ ℤ is neither a unit nor a zero divisor.)

Using Theorem 27.19, we can prove the following:

Theorem 27.21. Every finite integral domain is a field.

Proof. Let 𝑅 be a finite integral domain. Let 𝛼 ∈ 𝑅 be a non-zero element. Since 𝑅 is
an integral domain, 𝛼 is not a zero divisor. But by Theorem 27.19, a non-zero element
in a finite ring must be a unit or a zero divisor. Since 𝛼 is not a zero divisor, it must be
a unit. Thus 𝑅 is a field, as desired. ■

Proofknow-how. To show that𝑅 is a field, wemust show that every non-zero element
of 𝑅 is a unit. Typically, we accomplish this by considering a non-zero element 𝛼 ∈ 𝑅
and showing that 𝛼 is a unit.
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27.3 Idempotent elements
Example 27.22. Consider 5 ∈ ℤ10. We have 52 = 5, from which we derive the follow-
ing:

52 = 5,
53 = 𝟓𝟐 ⋅ 5 = 𝟓 ⋅ 5 = 5,
54 = 𝟓𝟑 ⋅ 5 = 𝟓 ⋅ 5 = 5,
55 = 𝟓𝟒 ⋅ 5 = 𝟓 ⋅ 5 = 5,

⋮.

Thus we have 5𝑛 = 5 for all positive integer exponents 𝑛.

Example 27.22 motivates the following definition.

Definition 27.23. A ring element 𝑎 is called an idempotent element (or simply an idem-
potent) if 𝑎2 = 𝑎.

Remark. Let 𝑎 be an idempotent in a ring. Then 𝑎𝑛 = 𝑎 for all positive integers 𝑛.
(See Example 27.22.)

Example 27.24. In Example 27.22, we saw that 5 ∈ ℤ10 is an idempotent. In ℤ10, we
also have 02 = 0, 12 = 1, and 62 = 6. Thus, the idempotents in ℤ10 are 0, 1, 5, and 6.
(We’ll leave it to you to verify that no other element of ℤ10 satisfies 𝑎2 = 𝑎.)

Example 27.25. To find the idempotents in ℤ7, let’s see which elements satisfy the
equation 𝑎2 = 𝑎.

𝟎𝟐 = 𝟎, 𝟏𝟐 = 𝟏, 22 = 4, 32 = 2, 42 = 2, 52 = 4, 62 = 1.

Thus, the only idempotents in ℤ7 are 0 and 1.

Example 27.26. To find the idempotents in ℤ8, let’s see which elements satisfy the
equation 𝑎2 = 𝑎.

𝟎𝟐 = 𝟎, 𝟏𝟐 = 𝟏, 22 = 4, 32 = 1, 42 = 0, 52 = 1, 62 = 4, 72 = 1.

Thus, the only idempotents in ℤ8 are 0 and 1.

Example 27.27. In any ring, 02 = 0 and 12 = 1. Thus, the additive identity 0 and the
multiplicative identity 1 are idempotents. Since they are always idempotents, 0 and 1
are often called trivial idempotents.

The following theorem is left for you to prove in an exercise. Note that its converse
is false, since ℤ8 can serve as a counterexample. (See Example 27.26.)

Theorem 27.28. Let 𝑅 be a commutative ring. If 𝑅 is an integral domain, then the only
idempotents of 𝑅 are 0 and 1.
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Example 27.29. The following calculations are done in the ring ℤ30:
• 62 = 6 so that 6 is an idempotent. And 1 − 6 = 25 and 252 = 25. Thus 25 is an
idempotent, too.

• 102 = 10 so that 10 is an idempotent. And 1− 10 = 21 and 212 = 21. Thus 21 is an
idempotent, too.

• 152 = 15 so that 15 is an idempotent. And 1− 15 = 16 and 162 = 16. Thus 16 is an
idempotent, too.

• 12 = 1 so that 1 is an idempotent. And 1 − 1 = 0 and 02 = 0. Thus 0 is an
idempotent, too.

Here is the generalization.

Theorem 27.30. In a ring, if 𝑎 is an idempotent, then 1 − 𝑎 is also an idempotent.

Proof. Assume 𝑎 is an idempotent so that 𝑎2 = 𝑎. Then
(1 − 𝑎)2 = 1 − 2𝑎 + 𝒂2 = 1 − 2𝑎 + 𝒂 = 1 − 𝑎,

so that (1 − 𝑎)2 = 1 − 𝑎. Thus, 1 − 𝑎 is an idempotent. ■

Exercises
1. Consider the following commutative rings: ℤ, ℝ, ℚ, ℤ19, ℤ20.

(a) Determine whether or not each of them is an integral domain.
(b) Determine whether or not each of them is a field.

2. Prove each of these claims about the commutative ring ℤ𝑚.
(a) If 𝑝 is prime, then ℤ𝑝 is a field.
(b) If𝑚 is composite, then ℤ𝑚 is not an integral domain.

3. Consider the ring ℤ5[𝑖] = {𝑎 + 𝑏𝑖 | 𝑎, 𝑏 ∈ ℤ5}. (Here, 𝑖 = √−1 so that 𝑖2 = −1.)
(a) How many elements are in ℤ5[𝑖]? Explain your reasoning.
(b) The element 2 + 3𝑖 ∈ ℤ5[𝑖] is a unit. Find its multiplicative inverse.
(c) The element 𝛼 = 2 + 𝑖 ∈ ℤ5[𝑖] is a zero divisor. Find a non-zero 𝛽 ∈ ℤ5[𝑖]

such that 𝛼 ⋅ 𝛽 = 0.
(d) Is ℤ5[𝑖] an integral domain, a field, or neither?

4. Complete the proof of Theorem 27.8 by proving its second implication.

5. Prove Theorem 27.17.

6. Prove: Let 𝑎 and 𝑏 be elements of an integral domain. If 𝑎2 = 𝑏2, then 𝑎 = 𝑏 or
𝑎 = −𝑏.

7. Using a counterexample, explain how the statement in Exercise #6 is false in a
commutative ring that is not an integral domain.
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8. Prove: Let 𝑎 and 𝑏 be elements of a commutative ring. If 𝑎𝑏 is a zero divisor, then
𝑎 or 𝑏 is a zero divisor.
Note: The Proof know-how after Theorem 27.18 describes how to prove an “or”
statement.

9. Let 𝑆 be a subring of a commutative ring 𝑅 (i.e., 𝑆 ⊆ 𝑅). Determine if each state-
ment is true or false. If it’s true, prove it. If it’s false, give a counterexample.

(a) If 𝑆 is a field, then 𝑅 is a field.
(b) If 𝑅 is a field, then 𝑆 is a field.
(c) If 𝑆 is an integral domain, then 𝑅 is an integral domain.
(d) If 𝑅 is an integral domain, then 𝑆 is an integral domain.

10. Exercise #9(b) happens to be a false statement. (Have you found a counterexam-
ple?) However, Anita thought that it was true and even wrote its proof:

Assume that 𝑅 is a field. Let 𝛼 ∈ 𝑆 be a non-zero element. Since 𝑆 ⊆ 𝑅,
we have 𝛼 ∈ 𝑅. Thus, 𝛼 is a non-zero element in a field 𝑅, which implies
that 𝛼 is a unit. Hence 𝑆 is a field.

Explain the error in this proof.

11. Let 𝑅 be a commutative ring, and let 𝑎, 𝑏 ∈ 𝑅. Determine if each statement is true
or false. If it’s true, prove it. If it’s false, give a counterexample.

(a) If 𝑎 and 𝑏 are zero divisors, then 𝑎 + 𝑏 is a zero divisor. (Assume 𝑎 + 𝑏 ≠ 0.)
(b) If 𝑎 and 𝑏 are zero divisors, then 𝑎 ⋅ 𝑏 is a zero divisor. (Assume 𝑎 ⋅ 𝑏 ≠ 0.)

12. Note: Read Example 27.10 before working on this exercise.
(a) Find all 𝛽 ∈ ℤ15 such that 5 ⋅ 𝛽 = 0 in ℤ15.
(b) Use your work in part (a) to find all solutions to 5𝑥 = 10 in ℤ15.

13. Consider the equation 𝑥2 − 7𝑥 + 12 = 0.
(a) Find all solutions in ℤ13.
(b) Find all solutions in ℤ12.
(c) Find all solutions in ℤ15.
(d) Explain why this equation has only two solutions in an integral domain.

14. Consider ℚ(√2) = {𝑎 + 𝑏√2 | 𝑎, 𝑏 ∈ ℚ}. See Example 27.15 for how to add and
multiply in ℚ(√2).

(a) Verify that ℚ(√2) is a commutative ring.
(b) Find themultiplicative inverse of 8+5√2 ∈ ℚ(√2). Do likewise for 6−3√2 ∈

ℚ(√2).
(c) Prove that ℚ(√2) is a field by showing that every non-zero element of ℚ(√2)

has a multiplicative inverse. (This exercise is referenced in Example 33.10.)

15. (a) Find all elements of ℤ that are self-inverses under multiplication; i.e., 𝑎2 = 1.
(b) Repeat part (a) with ℤ7; with ℤ12; with ℤ16; with ℤ13.
(c) What conjecture do you have?
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16. Determine all elements of an integral domain that are self-inverses under multi-
plication.

17. Let 𝑅 be a commutative ring that satisfies the cancellation property; i.e., if 𝑎𝑏 = 𝑎𝑐
with 𝑎 ≠ 0, then 𝑏 = 𝑐. Prove that 𝑅 is an integral domain.

18. Prove: Every non-zero element of the ring ℤ𝑚 is a unit or a zero divisor.
Remark. This is a special case of Theorem 27.19.

19. Prove Theorem 27.19.

20. Find all idempotents in ℤ12; in ℤ13; in ℤ14; in ℤ15.

21. Prove: If a ring element 𝛼 is both a unit and an idempotent, then 𝛼 = 1.

22. (a) Verify that 3 ∈ ℤ6, 5 ∈ ℤ10, 7 ∈ ℤ14, 9 ∈ ℤ18 are all idempotents.
(b) What conjecture do you have?

23. Prove: If𝑚 is odd, then𝑚 ∈ ℤ2𝑚 is an idempotent.

24. Consider the following statement: If a ring element 𝑎 is an idempotent, then 1−2𝑎
is a self-inverse under multiplication.

(a) Create a few examples to illustrate this statement.
(b) Prove the statement.

25. Prove: Let𝑚 = 2𝑘 where 𝑘 is a positive integer. Then ℤ𝑚 contains only the trivial
idempotents.

26. Prove: Let 𝑅 be a ring in which every element is an idempotent. Then 𝑅 is com-
mutative.





28
Polynomial Rings, Part I

Prior to studying abstract algebra, many students are used to thinking about sets as
containing numbers, or number-like objects. This is true in calculus, which deals with
functions on the set ℝ of real numbers. In linear algebra, we study the vector space
ℝ𝑛, which is the set of vectors or lists of real numbers. In abstract algebra, however, we
study sets whose elements can be objects that are quite different from numbers. (We
also study familiar sets like ℤ and ℝ.) We have examined the group 𝐷4 which contains
symmetries of a square; the group 𝑆3 which contains permutations of the set {1, 2, 3};
and the quotient group 𝐺/𝐻 whose elements are cosets of 𝐻. The power of abstraction
in mathematics lies in its ability to generalize and prove statements that apply to all of
these groups, despite the vastly different types of objects they contain.

We will continue in this theme in the next several chapters and study an impor-
tant family of commutative rings called polynomial rings. In calculus, we work with
polynomials such as 𝑓(𝑥) = 3𝑥4 − 7𝑥2 + 4, and we treat them as functions. In abstract
algebra, we treat polynomials as elements of a ring, although we will still substitute
values into them on occasion (e.g., 𝑓(2) = 3 ⋅ 24 − 7 ⋅ 22 + 4 = 24).

28.1 Examples and definition
Example 28.1. Let ℤ[𝑥] be the set of all polynomials with coefficients in ℤ. Examples
of such polynomials include 𝑓(𝑥)=3𝑥4−7𝑥2+4 and 𝑔(𝑥)=4𝑥2+1. To add polynomials,
we add the like terms, i.e., terms with the same exponent for the variable 𝑥:
𝑓(𝑥) + 𝑔(𝑥) = (3𝑥4 − 7𝑥2 + 4) + (4𝑥2 + 1) = 3𝑥4 + (−7𝑥2 + 4𝑥2) + (4 + 1) = 3𝑥4 − 3𝑥2 + 5.

To multiply polynomials, we use the distribute law repeatedly:
𝑓(𝑥) ⋅ 𝑔(𝑥) = (3𝑥4 − 7𝑥2 + 4) ⋅ (4𝑥2 + 1)

= 3𝑥4 ⋅ (4𝑥2 + 1) − 7𝑥2 ⋅ (4𝑥2 + 1) + 4 ⋅ (4𝑥2 + 1)
= (3𝑥4 ⋅ 4𝑥2 + 3𝑥4 ⋅ 1) + ((−7𝑥2) ⋅ 4𝑥2 + (−7𝑥2) ⋅ 1) + (4 ⋅ 4𝑥2 + 4 ⋅ 1)
= (12𝑥6 + 3𝑥4) + (−28𝑥4 − 7𝑥2) + (16𝑥2 + 4)
= 12𝑥6 + (3𝑥4 − 28𝑥4) + (−7𝑥2 + 16𝑥2) + 4
= 12𝑥6 − 25𝑥4 + 9𝑥2 + 4.

281
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The product 𝑓(𝑥) ⋅ 𝑔(𝑥) can also be computed using an area model shown below.
Note how the terms of 𝑓(𝑥) are placed to the left of the rectangle, while the terms of
𝑔(𝑥) are placed on top. We compute the “area” of each square bymultiplying its “sides.”
For example, the top-left square has area 3𝑥4 ⋅ 4𝑥2 = 12𝑥6. By adding the areas of the
squares, we obtain the total area of the rectangle, i.e., the product 𝑓(𝑥) ⋅ 𝑔(𝑥).

Note that both the sum 𝑓(𝑥)+ 𝑔(𝑥) and the product 𝑓(𝑥) ⋅ 𝑔(𝑥) are in ℤ[𝑥]. You should
convince yourself that ℤ[𝑥] is indeed closed under addition and multiplication.

The additive and multiplicative identities of ℤ[𝑥] are the constant polynomials 0
and 1, respectively. Moreover, every polynomial inℤ[𝑥] has an additive inverse inℤ[𝑥].
For 𝑓(𝑥) = 3𝑥4−7𝑥2+4 ∈ ℤ[𝑥] above, its additive inverse is−𝑓(𝑥) = −3𝑥4+7𝑥2−4,
which is also in ℤ[𝑥]. Note that

𝑓(𝑥) + (−𝑓(𝑥)) = (3𝑥4 − 7𝑥2 + 4) + (−3𝑥4 + 7𝑥2 − 4)
= (3𝑥4 − 3𝑥4) + (−7𝑥2 + 7𝑥2) + (4 − 4)
= 0 + 0 + 0,

so that 𝑓(𝑥) + (−𝑓(𝑥)) = 0. A similar calculation shows that −𝑓(𝑥) + 𝑓(𝑥) = 0.
Although we won’t provide a rigorous proof, it turns out that ℤ[𝑥] is a ring. In fact,

it’s a commutative ring, since 𝛼(𝑥) ⋅ 𝛽(𝑥) = 𝛽(𝑥) ⋅ 𝛼(𝑥) for all 𝛼(𝑥), 𝛽(𝑥) ∈ ℤ[𝑥]. In
an exercise, you’ll compute 𝑔(𝑥) ⋅ 𝑓(𝑥) using the polynomials above and compare the
product to 𝑓(𝑥) ⋅ 𝑔(𝑥).

Example 28.2. The ring of integers ℤ is a subring of ℤ[𝑥]. Here, we’re viewing the
elements of ℤ (such as 0, 1, −3, and 6) as constant polynomials.

Here is the generalization of the above examples.

Definition 28.3 (Polynomial ring). Let 𝑅 be a commutative ring. Then 𝑅[𝑥], called a
polynomial ring, is the set of all polynomials with coefficients in 𝑅. In this context, we
refer to 𝑅 as the coefficient ring.

Remark. An element 𝑓(𝑥) ∈ 𝑅[𝑥] has the form 𝑓(𝑥) = 𝑎𝑛𝑥𝑛+𝑎𝑛−1𝑥𝑛−1+ ⋯ +𝑎1𝑥+
𝑎0, where the coefficients 𝑎𝑖 are in 𝑅. (Note: 𝑛 is a non-negative integer.)
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Generalizing from the example of ℤ[𝑥], here are some key properties of 𝑅[𝑥]. We
emphasize that, by the definition of 𝑅[𝑥], the coefficient ring 𝑅must be commutative.
• 𝑅[𝑥] is also a commutative ring.
• 𝑅 is a subring of 𝑅[𝑥]. (Note: The elements of 𝑅 are the constant polynomials.)

Example 28.4. ℤ5[𝑥] is another example of a polynomial ring, with the coefficient
ring ℤ5. Here, we view ℤ5 as containing the constant polynomials 0, 1, 2, 3, and 4.
Therefore, ℤ5 is a subring of ℤ5[𝑥].

To add and multiply in ℤ5[𝑥], we use the same methods as in ℤ[𝑥], described in
Example 28.1, except that we reduce the coefficients modulo 5. Be careful, though. In
ℤ5[𝑥], we have 7𝑥 = 2𝑥, but𝑥7 ≠ 𝑥2. The key here is thatwe reduce only the coefficients
modulo 5, whereas the exponents are viewed as regular (non-negative) integers.

28.2 Degree of a polynomial
In this section, wewill introduce the degree of a polynomial, which is ameasure of how
“big” the polynomial is. It’s a useful tool that will have numerous applications in our
work with polynomials.

Definition 28.5 (Degree of a polynomial). Let 𝑓(𝑥) be a non-zero polynomial in 𝑅[𝑥],
where 𝑅 is a commutative ring. The degree of 𝑓(𝑥), denoted deg 𝑓(𝑥), is the highest
exponent in 𝑓(𝑥).

Remark. The degree of the zero polynomial 0 ∈ 𝑅[𝑥] is undefined. You’ll see why in
an exercise.

Example 28.6. Consider the polynomial 𝑓(𝑥) = 3𝑥15 + 4𝑥3 + 2 ∈ ℤ[𝑥]. The highest
exponent in 𝑓(𝑥) is 15, and thus we have deg 𝑓(𝑥) = 15.

Example 28.7. Let 𝑓(𝑥) = 3𝑥+7 ∈ ℤ10[𝑥]. Rewriting it as 𝑓(𝑥) = 3𝑥1+7𝑥0 (since 𝑥0
is defined to be 1), we see that the highest exponent in 𝑓(𝑥) is 1. Thus, deg 𝑓(𝑥) = 1.

Here is a generalization of Example 28.7.

Example 28.8. Let 𝑓(𝑥) ∈ 𝑅[𝑥] be a linear polynomial; i.e., 𝑓(𝑥) = 𝑎1𝑥 + 𝑎0 where
𝑎1 ≠ 0. Then 𝑓(𝑥) = 𝑎1𝑥1 + 𝑎0𝑥0, so that deg 𝑓(𝑥) = 1. In other words, all linear
polynomials have degree 1.

Example 28.9. Let 𝑓(𝑥) = 7 ∈ ℝ[𝑥], i.e., a constant polynomial. Since 𝑓(𝑥) = 7𝑥0, we
have deg 𝑓(𝑥) = 0. A similar calculation shows that all non-zero constant polynomials
have degree 0.

Remark. Now that we’ve seen several examples, let’s give a bit more precise for-
mulation of the degree. Let 𝑓(𝑥) ∈ 𝑅[𝑥] be a non-zero polynomial where 𝑓(𝑥) =
𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎1𝑥 + 𝑎0 and 𝑎𝑛 ≠ 0. Then deg 𝑓(𝑥) = 𝑛 and the coeffi-
cient 𝑎𝑛 is called the leading coefficient of 𝑓(𝑥). Since 𝑛 is a non-negative integer, it
follows that deg 𝑓(𝑥) ≥ 0 as well.

Definition 28.10. A polynomial is said to bemonic if its leading coefficient equals 1.
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Example 28.11. Let 𝑓(𝑥), 𝑔(𝑥) ∈ ℤ[𝑥], where 𝑓(𝑥) = 𝑥10 + 7𝑥3 − 2𝑥 + 5 and 𝑔(𝑥) =
4𝑥9 − 18𝑥5 + 3𝑥4. Then 𝑓(𝑥) is monic since its leading coefficient, i.e., the coefficient
of 𝑥10, is 1. However, 𝑔(𝑥) is not monic, since its leading coefficient, i.e., the coefficient
of 𝑥9, is 4.

We’ve seen that the polynomial ring 𝑅[𝑥] is commutative. (Recall that by the def-
inition of 𝑅[𝑥], the coefficient ring 𝑅must be commutative.) We’ll soon see that if 𝑅 is
an integral domain, then so is 𝑅[𝑥]. However, 𝑅[𝑥] is never a field, even if the coeffi-
cient ring 𝑅 is a field. In particular, we’ll show that the polynomial 𝑥 ∈ 𝑅[𝑥] does not
have a multiplicative inverse in 𝑅[𝑥].

Theorem 28.12. Let 𝑅 be a commutative ring. Then the polynomial 𝑥 ∈ 𝑅[𝑥] does not
have a multiplicative inverse in 𝑅[𝑥]. Consequently, 𝑅[𝑥] is not a field.

Proof. Assume for contradiction that 𝑥 ∈ 𝑅[𝑥] does have a multiplicative inverse.
Then there exists 𝑓(𝑥) ∈ 𝑅[𝑥] such that 𝑥 ⋅ 𝑓(𝑥) = 1 and 𝑓(𝑥) ⋅ 𝑥 = 1. Note that 𝑓(𝑥) is
a non-zero polynomial, since if 𝑓(𝑥)were 0, we’d have 𝑥 ⋅ 𝑓(𝑥) = 𝑥 ⋅ 0 = 0 by Theorem
26.9, whereas we know that 𝑥 ⋅ 𝑓(𝑥) = 1.

Since 𝑓(𝑥) is non-zero, 𝑓(𝑥) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎1𝑥 + 𝑎0, where 𝑎𝑛 ≠ 0
and 𝑛 ≥ 0. Thus

𝑥 ⋅ 𝑓(𝑥) = 𝑥 ⋅ (𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎1𝑥 + 𝑎0)
= 𝑎𝑛𝑥𝑛+1 + 𝑎𝑛−1𝑥𝑛 + ⋯ + 𝑎1𝑥2 + 𝑎0𝑥.

Hence, deg(𝑥 ⋅ 𝑓(𝑥)) = 𝑛 + 1 ≥ 1. Then 𝑥 ⋅ 𝑓(𝑥) does not equal 1, since all non-zero
constant polynomials (such as 1) have degree 0. This contradicts 𝑥 ⋅𝑓(𝑥) = 1, and thus
𝑥 cannot have a multiplicative inverse. ■

Proof know-how. In the proof above, we used Theorem 26.9 (i.e., 0 ⋅ 𝑎 = 0 and
𝑎 ⋅ 0 = 0 in any ring) to show that 𝑥 ⋅ 0 = 0 in 𝑅[𝑥]. Here, we highlight the fact that a
polynomial ring is a ring. Thus, any theorem that we’ve proven about a ring applies to
the polynomial ring 𝑅[𝑥] as well. (Compare this with the recurring theme of Chapter
23; namely: A quotient group is a group.)

Proofs about a polynomial often involve writing out its terms. A non-zero polyno-
mial 𝑓(𝑥) ∈ 𝑅[𝑥] can be written as 𝑓(𝑥) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎1𝑥 + 𝑎0, where
𝑎𝑛 ≠ 0 and 𝑛 ≥ 0. Then deg 𝑓(𝑥) = 𝑛.

The next example shows how the degrees of 𝑓(𝑥), 𝑔(𝑥), and 𝑓(𝑥) ⋅ 𝑔(𝑥) are related.

Example 28.13. Consider the polynomials 𝑓(𝑥) = 3𝑥15 + 4𝑥3 + 2 and 𝑔(𝑥) = 6𝑥8 +
5𝑥 + 3.
• In ℤ[𝑥], we have deg 𝑓(𝑥) = 15 and deg 𝑔(𝑥) = 8. Moreover,

𝑓(𝑥) ⋅ 𝑔(𝑥) = (3𝑥15) ⋅ (6𝑥8) + (lower-degree terms)
= (3 ⋅ 6)𝑥15+8 + (lower-degree terms)
= 18𝑥23 + (lower-degree terms)

so that the degree of 𝑓(𝑥) ⋅ 𝑔(𝑥) is 23, which is the sum of deg 𝑓(𝑥) = 15 and
deg 𝑔(𝑥) = 8.

• In ℤ7[𝑥], we have the same result as in ℤ[𝑥]. The only difference is that the highest
degree term of 𝑓(𝑥) ⋅ 𝑔(𝑥) is 4𝑥23 instead of 18𝑥23, because 18 = 4 in ℤ7.
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• Now let’s view these polynomials inℤ9[𝑥]. We still have deg 𝑓(𝑥) = 15 and deg 𝑔(𝑥)
= 8. However,

𝑓(𝑥) ⋅ 𝑔(𝑥)
= (3𝑥15 + 4𝑥3 + 2) ⋅ (6𝑥8 + 5𝑥 + 3)
= (𝟑 ⋅ 𝟔)𝑥15+8 + (3 ⋅ 5)𝑥15+1 + (lower-degree terms)
= 𝟏𝟖𝑥23 + 15𝑥16 + (lower-degree terms)
= 𝟎𝑥23 + 6𝑥16 + (lower-degree terms) ← Reduce coefficients modulo 9
= 6𝑥16 + (lower-degree terms)

so that the degree of 𝑓(𝑥) ⋅ 𝑔(𝑥) is 16, not 23. What happened here? Observe that 3
and 6 are zero divisors in ℤ9. Since 3 ⋅ 6 = 0 in ℤ9, the leading term in 𝑓(𝑥) ⋅ 𝑔(𝑥),
namely 18𝑥23, vanisheswhen its coefficient is reducedmodulo 9. Therefore, unlike
in ℤ[𝑥] and ℤ7[𝑥], the degree of 𝑓(𝑥) ⋅𝑔(𝑥) does not equal the sum of deg 𝑓(𝑥) = 15
and deg 𝑔(𝑥) = 8.

The above example leads to the following theorem.

Theorem 28.14 (Degree of a product). Suppose 𝑅 is an integral domain. Let 𝑓(𝑥),
𝑔(𝑥) ∈ 𝑅[𝑥] with 𝑓(𝑥), 𝑔(𝑥) ≠ 0. Then deg 𝑓(𝑥) ⋅ 𝑔(𝑥) = deg 𝑓(𝑥) + deg 𝑔(𝑥).

Proof. Since 𝑓(𝑥) and 𝑔(𝑥) are non-zero polynomials, we write

𝑓(𝑥) = 𝑎𝑚𝑥𝑚 + 𝑎𝑚−1𝑥𝑚−1 + ⋯ + 𝑎1𝑥 + 𝑎0

and

𝑔(𝑥) = 𝑏𝑛𝑥𝑛 + 𝑏𝑛−1𝑥𝑛−1 + ⋯ + 𝑏1𝑥 + 𝑏0,

where 𝑎𝑚, 𝑏𝑛 ≠ 0. Hence deg 𝑓(𝑥) = 𝑚 and deg 𝑔(𝑥) = 𝑛. The product 𝑓(𝑥) ⋅ 𝑔(𝑥) is
given by

𝑓(𝑥) ⋅ 𝑔(𝑥) = (𝑎𝑚𝑥𝑚) ⋅ (𝑏𝑛𝑥𝑛) + (lower-degree terms)
= (𝑎𝑚 ⋅ 𝑏𝑛)𝑥𝑚+𝑛 + (lower-degree terms).

Since 𝑅 is an integral domain and 𝑎𝑚, 𝑏𝑛 ≠ 0, we have 𝑎𝑚 ⋅ 𝑏𝑛 ≠ 0 as well. Thus
deg 𝑓(𝑥) ⋅ 𝑔(𝑥) = 𝑚 + 𝑛, which equals deg 𝑓(𝑥) + deg 𝑔(𝑥), as desired. ■

Proof know-how. In the above proof, we used the following: If 𝑎𝑚, 𝑏𝑛 ≠ 0, then
𝑎𝑚 ⋅ 𝑏𝑛 ≠ 0. This is the contrapositive of the zero product property (Definition 27.7),
which must hold as 𝑅 is an integral domain.

The above proof shows that the product of two non-zero polynomials is also a non-
zero polynomial. This confirms our earlier claim, which we state as a theorem here.

Theorem 28.15. Let 𝑅 be a commutative ring. If 𝑅 is an integral domain, then 𝑅[𝑥] is
an integral domain.
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28.3 Units and zero divisors
Example 28.16. Let’s find all units in the polynomial ringℤ7[𝑥], i.e., polynomials 𝑓(𝑥)
with multiplicative inverse 𝑔(𝑥) such that 𝑓(𝑥) ⋅ 𝑔(𝑥) = 1. The constant polynomials 1,
2, 3, 4, 5, 6 are units in ℤ7[𝑥], since 1 ⋅ 1 = 1, 2 ⋅ 4 = 1, 3 ⋅ 5 = 1, and 6 ⋅ 6 = 1. Note
that these are precisely the units of the coefficient ring ℤ7.

Could a non-constant polynomial be a unit inℤ7[𝑥] ? The answer is “No,” and here
is the reason why. Let 𝑓(𝑥) ∈ ℤ7[𝑥] be a non-constant polynomial, say with degree
4. Suppose 𝑔(𝑥) ∈ ℤ7[𝑥] is any non-zero polynomial. As the coefficient ring ℤ7 is
an integral domain (in fact, it’s a field), Theorem 28.14 applies. Hence the degree of
𝑓(𝑥) ⋅ 𝑔(𝑥) equals deg 𝑓(𝑥) + deg 𝑔(𝑥), which is at least 4. Then 𝑓(𝑥) ⋅ 𝑔(𝑥) ≠ 1, since
1 is a non-zero constant polynomial and thus has degree 0. Therefore, 𝑓(𝑥) cannot be
a unit in ℤ7[𝑥].

Intuitively, this example shows that a non-constant polynomial is too “big” to be a
unit in ℤ7[𝑥], or in any polynomial ring 𝑅[𝑥] where 𝑅 is an integral domain.

Example 28.17. Since ℤ and ℝ are both integral domains, Example 28.16 implies the
following:
• The only units in ℤ[𝑥] are 1 and −1. These are the units of the coefficient ring ℤ.
• The only units in ℝ[𝑥] are the non-zero real numbers, i.e., the units of ℝ.

Here is the generalization of the above examples, whose proof is left for you as an
exercise.

Theorem 28.18. Let 𝑅 be an integral domain. Then the only units in 𝑅[𝑥] are the units
of 𝑅.

Example 28.19 (Non-example). Consider the polynomial ring ℤ9[𝑥]. Here, the coef-
ficient ring ℤ9 is not an integral domain, because 3 ⋅ 6 = 0 in ℤ9 (thus, 3 and 6 are zero
divisors). We have

(3𝑥 + 1) ⋅ (6𝑥 + 1) = 𝟏𝟖𝑥2 + 𝟗𝑥 + 1 = 𝟎𝑥2 + 𝟎𝑥 + 1 = 1,
where we reduced the coefficients 18 and 9 in ℤ9. Thus (3𝑥 + 1) ⋅ (6𝑥 + 1) = 1, so that
the non-constant polynomials 3𝑥 + 1 and 6𝑥 + 1 are units in ℤ9[𝑥].

The polynomial rings ℤ7[𝑥], ℤ[𝑥], andℝ[𝑥] have coefficient rings that are integral
domains (ℤ7, ℤ, and ℝ, respectively). Thus, Theorem 28.15 applies and we know that
ℤ7[𝑥],ℤ[𝑥], andℝ[𝑥] are also integral domains. In otherwords, these polynomial rings
do not have zero divisors.

Example 28.20 (Non-example). Consider ℤ6[𝑥], where ℤ6 is not an integral domain,
and non-zero polynomials 4𝑥 + 2 and 3𝑥 in ℤ6[𝑥]. We have

(4𝑥 + 2) ⋅ 3𝑥 = 𝟏𝟐𝑥2 + 𝟔𝑥 = 𝟎𝑥2 + 𝟎𝑥 = 0,
where we reduced the coefficients 12 and 6 in ℤ6. Thus (4𝑥+2) ⋅ 3𝑥 = 0, so that 4𝑥+2
and 3𝑥 are zero divisors in ℤ6[𝑥]. Therefore ℤ6[𝑥] is not an integral domain.

Polynomial rings that contain non-constant units like ℤ9[𝑥] or zero divisors like
ℤ6[𝑥] can be suitable for fun and rich mathematical exploration. However, they’re not
conducive to producing the type of elegant results that we’ll seek to develop in our
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study of polynomials. Thus, we want to work with a polynomial ring 𝑅[𝑥] where the
coefficient ring 𝑅 is an integral domain. In fact, 𝑅 being a field is even better (we’ll see
why soon), and thus we’ll work with such polynomial rings (e.g., ℤ7[𝑥] andℝ[𝑥]) most
of the time.

Exercises
1. Let 𝑓(𝑥) = 3𝑥4 − 7𝑥2 + 4 and 𝑔(𝑥) = 4𝑥2 + 1 be elements of ℤ[𝑥].

(a) Compute 𝑔(𝑥)⋅𝑓(𝑥) using the distributive law repeatedly. (See Example 28.1.)
(b) How does your product in part (a) compare with the product 𝑓(𝑥) ⋅ 𝑔(𝑥) from

Example 28.1?

2. Again, let 𝑓(𝑥) = 3𝑥4 − 7𝑥2 + 4 and 𝑔(𝑥) = 4𝑥2 + 1 be elements of ℤ[𝑥].
(a) Compute 𝑔(𝑥) ⋅ 𝑓(𝑥) using the area model. (See Example 28.1.)
(b) After working on part (a), Elizabeth says, “The rectangles for 𝑓(𝑥) ⋅ 𝑔(𝑥) and

𝑔(𝑥) ⋅ 𝑓(𝑥) are the same, with one just rotated on its side.” What might she
mean?

3. Let 𝑓(𝑥) = 2𝑥3 + 2𝑥2 + 1 and 𝑔(𝑥) = 𝑥2 + 2𝑥 + 2 be elements of ℤ3[𝑥].
(a) Compute 𝑓(𝑥) + 𝑔(𝑥) and 𝑔(𝑥) + 𝑓(𝑥). How do the sums compare?
(b) Compute 𝑓(𝑥) ⋅ 𝑔(𝑥) and 𝑔(𝑥) ⋅ 𝑓(𝑥). How do the products compare?
(c) Find−𝑓(𝑥) and−𝑔(𝑥), i.e., the additive inverses of 𝑓(𝑥) and 𝑔(𝑥), respectively.

4. Repeat Exercise #3, but with 𝑓(𝑥) = 4𝑥10 + 3𝑥5 + 2 and 𝑔(𝑥) = 5𝑥8 + 6𝑥4 + 3𝑥2 in
ℤ7[𝑥].

5. Let 𝑓(𝑥), 𝑔(𝑥), ℎ(𝑥) ∈ 𝑅[𝑥] where 𝑅 is a commutative ring. In Example 28.1, we
saw how to use the area model to compute the product 𝑓(𝑥) ⋅ 𝑔(𝑥).
(a) Describe how to use the area model to compute 𝑓(𝑥) ⋅ (𝑔(𝑥) + ℎ(𝑥)).
(b) Describe how to use the area model to compute 𝑓(𝑥) ⋅ 𝑔(𝑥) + 𝑓(𝑥) ⋅ ℎ(𝑥).
(c) Use your answers in parts (a) and (b) to explain why the distributive lawmust

hold in 𝑅[𝑥].

6. Proceed as in Exercise #5, but this time, use the area model to explain why the
associative law for multiplication, i.e., (𝑓(𝑥) ⋅ 𝑔(𝑥)) ⋅ ℎ(𝑥) = 𝑓(𝑥) ⋅ (𝑔(𝑥) ⋅ ℎ(𝑥)),
must hold in 𝑅[𝑥].
Hint: Instead of a rectangle, what geometric shape must you create?

7. Let 𝑓(𝑥), 𝑔(𝑥) ∈ ℤ[𝑥] where
𝑓(𝑥) = 𝑎5𝑥5 + 𝑎4𝑥4 + ⋯ + 𝑎1𝑥 + 𝑎0

and
𝑔(𝑥) = 𝑏5𝑥5 + 𝑏4𝑥4 + ⋯ + 𝑏1𝑥 + 𝑏0.

Write an expression for the coefficient of 𝑥5 in the product 𝑓(𝑥) ⋅ 𝑔(𝑥).

8. (a) Find examples of a monic, non-constant polynomial.
(b) What is a monic, constant polynomial?
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9. Let 𝑓(𝑥) ∈ 𝑅[𝑥] where 𝑅 is a commutative ring (but not necessarily an integral
domain). Prove each statement.
(a) If 𝑓(𝑥) is monic and non-constant, then 𝑓(𝑥) is not a unit in 𝑅[𝑥].
(b) If 𝑓(𝑥) is monic, then 𝑓(𝑥) is not a zero divisor in 𝑅[𝑥].

10. (a) Find the number of non-zero polynomials in ℤ7[𝑥] of degree 5.
(b) Find the number of non-zero polynomials inℤ7[𝑥] of degree less than or equal

to 5.
(c) Find the number of monic polynomials in ℤ7[𝑥] of degree less than or equal

to 5.

11. Find all units in ℤ101[𝑥]. Explain your reasoning.
12. Find all zero divisors in ℤ101[𝑥]. Explain your reasoning.
13. (a) Find five units (other than 1 and 3) in ℤ4[𝑥].

(b) Explain why ℤ4[𝑥] has infinitely many units.
14. (a) Find five zero divisors (other than 2) in ℤ4[𝑥].

(b) Explain why ℤ4[𝑥] has infinitely many zero divisors.
15. Find non-zero polynomials 𝑓(𝑥), 𝑔(𝑥) ∈ ℤ10[𝑥] that satisfy each condition below,

or explain why it’s not possible to satisfy the condition.
(a) deg 𝑓(𝑥) ⋅ 𝑔(𝑥) = deg 𝑓(𝑥) + deg 𝑔(𝑥).
(b) deg 𝑓(𝑥) ⋅ 𝑔(𝑥) < deg 𝑓(𝑥) + deg 𝑔(𝑥).
(c) deg 𝑓(𝑥) ⋅ 𝑔(𝑥) > deg 𝑓(𝑥) + deg 𝑔(𝑥).

16. Our friends are discussing the degree of the constant polynomial 0.
Anita: “Why can’t we say deg(0) = 0 ? The zero polynomial is a constant, right?”
Elizabeth: “But Theorem 28.14 fails if deg(0) = 0.”
What might Elizabeth mean?

17. (a) Find 𝑝(𝑥), 𝑞(𝑥) ∈ ℤ10[𝑥], both with degree 1, such that 𝑝(𝑥) ⋅ 𝑞(𝑥) = 𝑥 + 7.
(b) What if 𝑝(𝑥) and 𝑞(𝑥)must each have degree greater than 1? Do such polyno-

mials exist in ℤ10[𝑥]? If so, find them. If not, explain why not.
18. The converse of Theorem 28.15 states: If 𝑅[𝑥] is an integral domain, then 𝑅 is an

integral domain. (Here, 𝑅 is a commutative ring.) Determine if this converse is
true or false. If it’s true, prove it. If it’s false, provide a counterexample.

19. Prove Theorem 28.18.

20. Let 𝑓(𝑥) = 5𝑥 + 1 ∈ ℤ10[𝑥]. Determine whether or not 𝑓(𝑥) is a unit in ℤ10[𝑥].
Explain your reasoning.

21. The converse of Theorem 28.18 states: If the only units in 𝑅[𝑥] are the units of 𝑅,
then 𝑅 is an integral domain. (Here, 𝑅 is a commutative ring.) Determine if this
converse is true or false. If it’s true, prove it. If it’s false, provide a counterexample.

22. (Challenge)
(a) Find all units in ℤ9[𝑥].
(b) Find all zero divisors in ℤ6[𝑥].
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Chapter 28 introduced polynomial rings, in which polynomials such as 𝑓(𝑥) = 3𝑥4 −
5𝑥3 − 8 are treated as elements of a ring. We added and multiplied polynomials, just as
we do with integers. But we can also evaluate polynomials by substituting values into
them; i.e., treat them like functions as we do in calculus. For instance, by setting 𝑥 = 2,
we obtain 𝑓(2) = 3 ⋅ 24 − 5 ⋅ 23 − 8 = 0. What’s more, the result of this evaluation can
reveal important information about the polynomial 𝑓(𝑥).

It turns out that the ring of integers ℤ and the polynomial ring 𝐹[𝑥] where 𝐹 is
a field (e.g., ℝ[𝑥]) have many structural similarities. For instance, both rings satisfy
the division algorithm. When dividing 5,273 by 6, we get a remainder of 5, because
5,273 = 6 ⋅ 878 + 5. Note that the remainder is less than the divisor and also is non-
negative (i.e., 0 ≤ 5 < 6). We’ll see below that 𝐹[𝑥] satisfies an analogous division
algorithm as well. Starting with this chapter and continuing through the rest of the
book, each chapter endswith a short section called “Big picture stuff”wherewe discuss
the similarities between these two rings.

29.1 Division algorithm in 𝐹[𝑥]
In Chapter 12, we studied the notion of a remainder that we obtain when dividing an
integer by another integer. Here is an example.

Example 29.1. When dividing 5,273 by 6, the remainder is 5 since 5,273 = 6 ⋅ 878+ 5.
We also have 5,273 = 6 ⋅ 877 + 11 and 5,273 = 6 ⋅ 879 + (−1). But we don’t say
that the remainder is 11 or −1. This is because the remainder 𝑟 must be less than the
divisor (i.e., 𝑟 < 6) and also non-negative (i.e., 𝑟 ≥ 0). Thus, 𝑟 = 5 is the only possible
remainder.

We recall the theorem that generalizes the above example.

Theorem 12.16 (Division algorithm in ℤ). Let 𝑎 and 𝑏 be integers, with 𝑏 > 0. Then
there exist 𝑞, 𝑟 ∈ ℤ such that 𝑎 = 𝑏 ⋅ 𝑞 + 𝑟 with 0 ≤ 𝑟 < 𝑏.

289
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The division algorithm in ℤ is a useful theorem, particularly for showing that an
integer is a divisor of another integer. We will soon identify an analogous theorem for
polynomial rings. But first, let’s delve a bit deeper into finding remainders in ℤ.

Example 29.2. To find the quotient and remainder when dividing 5,273 by 6, we use
a technique called “long division,” as shown below.

Therefore, 5,273 = 6 ⋅ 878 + 5. Observe that the remainder 5 is non-negative and less
than the divisor 6, as required by the division algorithm in ℤ.

Example 29.3. Consider 𝑓(𝑥) = 5𝑥4 + 𝑥3 − 3𝑥2 + 4𝑥 − 3 and 𝑔(𝑥) = 𝑥2 + 1 in ℝ[𝑥],
where the coefficient ring ℝ is a field. We use long division to find the quotient and
remainder when dividing 𝑓(𝑥) by 𝑔(𝑥):

Therefore, 𝑓(𝑥) = (𝑥2 + 1) ⋅ 𝑞(𝑥) + (3𝑥 + 5), where 𝑞(𝑥) = 5𝑥2 + 𝑥 − 8 is the quotient.
Note how the degree of the remainder 𝑟(𝑥) = 3𝑥+5 is less than the degree of the divisor
𝑔(𝑥) = 𝑥2 + 1.
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Example 29.4. Consider 𝑓(𝑥) = 4𝑥3 + 5𝑥2 + 2 and 𝑔(𝑥) = 3𝑥2 + 5 in ℤ7[𝑥], where ℤ7
is a field. We divide 𝑓(𝑥) by 𝑔(𝑥) using long division, emphasizing that the coefficients
are computed in ℤ7:

Therefore, 𝑓(𝑥) = (3𝑥2+5) ⋅ 𝑞(𝑥)+ (5𝑥+3), where 𝑞(𝑥) = 6𝑥+4 is the quotient. Note
how the degree of the remainder 𝑟(𝑥) = 5𝑥 + 3 is less than the degree of the divisor
𝑔(𝑥) = 3𝑥2 + 5.

Just as for its counterpart in ℤ, we’ll assume the following theorem without proof.

Theorem29.5 (Division algorithm in 𝐹[𝑥]). Let𝐹 be a field. Suppose𝑓(𝑥), 𝑔(𝑥) ∈ 𝐹[𝑥]
with 𝑔(𝑥) ≠ 0. Then there exist 𝑞(𝑥), 𝑟(𝑥) ∈ 𝐹[𝑥] such that 𝑓(𝑥) = 𝑔(𝑥) ⋅ 𝑞(𝑥)+𝑟(𝑥)with
𝑟(𝑥) = 0 or deg 𝑟(𝑥) < deg 𝑔(𝑥).

Remark. Since the degree of a non-zero polynomial is always non-negative, we do not
need to specify that deg 𝑟(𝑥) ≥ 0 in the above theorem. However, the degree of the zero
polynomial 0 ∈ 𝐹[𝑥] is undefined, so we must write “𝑟(𝑥) = 0 or deg 𝑟(𝑥) < deg 𝑔(𝑥).”
In any case, the key takeaway from the theorem is that the degree of the remainder is
smaller than the degree of the divisor.

To see why the coefficients must be in a field, let’s see how Theorem 29.5 fails
in ℤ[𝑥]. Recall that ℤ is an integral domain but not a field, since not every non-zero
integer has a multiplicative inverse.

Example 29.6 (Non-example). Let 𝑓(𝑥) = 𝑥3 and 𝑔(𝑥) = 2𝑥 in ℤ[𝑥]. The division
algorithmwould imply that there exist 𝑞(𝑥), 𝑟(𝑥) ∈ ℤ[𝑥] such that 𝑥3 = 2𝑥⋅𝑞(𝑥)+𝑟(𝑥),
with either 𝑟(𝑥) = 0 or deg 𝑟(𝑥) < deg 𝑔(𝑥). Since deg 𝑔(𝑥) = 1, we know that 𝑟(𝑥) is
a constant polynomial, possibly 0. So, let 𝑟(𝑥) = 𝑚 for some 𝑚 ∈ ℤ. For the equation
𝑥3 = 2𝑥 ⋅ 𝑞(𝑥) + 𝑟(𝑥) to be true, 𝑞(𝑥) must be a quadratic; i.e., 𝑞(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐
for some integers 𝑎, 𝑏, 𝑐. Thus, we have 𝑥3 = 2𝑥 ⋅ (𝑎𝑥2 + 𝑏𝑥 + 𝑐) + 𝑚, so that 𝑥3 =
2𝑎𝑥3 + 2𝑏𝑥2 + 2𝑐𝑥 + 𝑚. Matching the coefficients of 𝑥3, we get 1 = 2𝑎, which cannot
occur in ℤ.

29.2 Factor theorem
Example 29.7. Let 𝑓(𝑥) = 3𝑥4 − 5𝑥3 − 8 ∈ ℝ[𝑥]. By setting 𝑥 = 2, we obtain 𝑓(2) =
3 ⋅ 24 − 5 ⋅ 23 − 8 = 0. As we’ll soon see, the fact that 𝑓(2) = 0 implies that 𝑥 − 2 is a
factor of 𝑓(𝑥). In an exercise, you will find 𝑞(𝑥) ∈ ℝ[𝑥] such that 𝑓(𝑥) = (𝑥 − 2) ⋅ 𝑞(𝑥).
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Note that the following mean the same thing:
• 𝑓(𝑥) is a multiple of 𝑥 − 2.
• 𝑥 − 2 is a factor of 𝑓(𝑥).

We write (𝑥 − 2) ∣ 𝑓(𝑥) as a shorthand for “𝑥 − 2 is a factor of 𝑓(𝑥).” Here is the
generalization.

Definition 29.8. Let 𝐹 be a field. Suppose 𝑓(𝑥), 𝑔(𝑥) ∈ 𝐹[𝑥]. We say that 𝑔(𝑥) is a
factor of 𝑓(𝑥) when 𝑓(𝑥) = 𝑔(𝑥) ⋅ 𝑞(𝑥) for some 𝑞(𝑥) ∈ 𝐹[𝑥]. We write 𝑔(𝑥) ∣ 𝑓(𝑥) to
mean “𝑔(𝑥) is a factor of 𝑓(𝑥).”

Below is a theorem that generalizes Example 29.7.

Theorem 29.9 (Factor theorem). Let 𝐹 be a field, 𝑎 ∈ 𝐹, and 𝑓(𝑥) ∈ 𝐹[𝑥]. Then
𝑓(𝑎) = 0 if and only if (𝑥 − 𝑎) ∣ 𝑓(𝑥).

Before proving this “if and only if” theorem, we examine one implication: If
(𝑥 − 𝑎) ∣ 𝑓(𝑥), then 𝑓(𝑎) = 0. For instance, suppose 𝑓(𝑥) = (𝑥 − 2) ⋅ 𝑞(𝑥), which
is an equality of two polynomials 𝑓(𝑥) and (𝑥 − 2) ⋅ 𝑞(𝑥) inℝ[𝑥]. Setting 𝑥 = 2 on both
sides of the equation, we get 𝑓(2) = (2−2) ⋅𝑞(2), which equates two real numbers 𝑓(2)
and (2 − 2) ⋅ 𝑞(2) in ℝ. (Here, be careful not to write 𝑓(2) = (2 − 2) ⋅ 𝑞(𝑥); i.e., don’t
forget to set 𝑥 = 2 in the polynomial 𝑞(𝑥) as well.) The factor theorem is one example
of the powerful interplay between ℝ[𝑥] and ℝ and, more generally, between 𝐹[𝑥] and
𝐹.

Proof. We must prove two implications:
• If 𝑓(𝑎) = 0, then (𝑥 − 𝑎) ∣ 𝑓(𝑥).
• If (𝑥 − 𝑎) ∣ 𝑓(𝑥), then 𝑓(𝑎) = 0.

We will prove the first implication. The proof of the second implication is left for you
as an exercise.

Assume 𝑓(𝑎) = 0. By the division algorithm, there exist 𝑞(𝑥), 𝑟(𝑥) ∈ 𝐹[𝑥] such
that

𝑓(𝑥) = (𝑥 − 𝑎) ⋅ 𝑞(𝑥) + 𝑟(𝑥)
with 𝑟(𝑥) = 0 or deg 𝑟(𝑥) < deg(𝑥 − 𝑎). Since deg(𝑥 − 𝑎) = 1, we conclude that 𝑟(𝑥)
is a constant polynomial, possibly 0. Let 𝑟(𝑥) = 𝛼 for some 𝛼 ∈ 𝐹, so that 𝑓(𝑥) =
(𝑥−𝑎) ⋅ 𝑞(𝑥)+𝛼. Solving for 𝛼, we obtain 𝛼 = 𝑓(𝑥)− (𝑥−𝑎) ⋅ 𝑞(𝑥). Substituting 𝑥 = 𝑎
and recalling that 𝑓(𝑎) = 0, we obtain

𝛼 = 𝑓(𝑎) − (𝑎 − 𝑎) ⋅ 𝑞(𝑎) = 0 − 0 ⋅ 𝑞(𝑎) = 0.
Thus 𝛼 = 0, which implies 𝑓(𝑥) = (𝑥 − 𝑎) ⋅ 𝑞(𝑥) and hence (𝑥 − 𝑎) ∣ 𝑓(𝑥). ■

Remark. In the proof above, we have the equation 𝛼 = 𝑓(𝑥)−(𝑥−𝑎)⋅𝑞(𝑥). But 𝛼 is an
element of 𝐹, while 𝑓(𝑥)−(𝑥−𝑎)⋅𝑞(𝑥) is a polynomial in 𝐹[𝑥]. How can they be equal?
When expanding the polynomial𝑓(𝑥)−(𝑥−𝑎)⋅𝑞(𝑥), all of the𝑥’s cancelwith each other
andwe’re left with a constant that equals 𝛼. Thus, the equation 𝛼 = 𝑓(𝑥)−(𝑥−𝑎)⋅𝑞(𝑥)
is telling us that the right-hand side is also a constant polynomial (though perhaps not
as easily detectable). Since all the 𝑥’s cancel anyway, we can set it to any value that we
like without affecting 𝛼. And setting 𝑥 = 𝑎 allowed us to conclude that 𝛼 = 0.
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Proof know-how. For the factor theorem, we prove (𝑥 − 𝑎) ∣ 𝑓(𝑥) by writing 𝑓(𝑥) =
(𝑥 − 𝑎) ⋅ 𝑞(𝑥) + 𝑟(𝑥) and showing 𝑟(𝑥) = 0. More generally, to prove that 𝑔(𝑥) ∣ 𝑓(𝑥),
first write 𝑓(𝑥) = 𝑔(𝑥) ⋅ 𝑞(𝑥) + 𝑟(𝑥) with 𝑟(𝑥) = 0 or deg 𝑟(𝑥) < deg 𝑔(𝑥). Then show
that 𝑟(𝑥) = 0. (Compare this with the Proof know-how following the second proof of
Theorem 12.17.)

Example 29.10. Consider 𝑓(𝑥) = 5𝑥672 + 2𝑥359 + 4𝑥101 + 𝑥77 + 3𝑥23 + 6 in ℤ7[𝑥]. We
have
𝑓(1) = 5 ⋅ 1672 + 2 ⋅ 1359 + 4 ⋅ 1101 + 177 + 3 ⋅ 123 + 6 = 5 + 2 + 4 + 1 + 3 + 6 = 21 = 0,
where the equality 21 = 0 occurs in ℤ7. Thus, 𝑓(1) = 0 so that 𝑥 − 1 is a factor of 𝑓(𝑥).

Let’s also find 𝑓(−1) by setting 𝑥 = −1 in the polynomial 𝑓(𝑥). Since (−1)𝑘 = 1
when 𝑘 is even and (−1)𝑘 = −1 when 𝑘 is odd, we obtain

𝑓(−1) = 5 ⋅ (−1)672 + 2 ⋅ (−1)359 + 4 ⋅ (−1)101 + (−1)77 + 3 ⋅ (−1)23 + 6
= 5 ⋅ 1 + 2 ⋅ (−1) + 4 ⋅ (−1) + (−1) + 3 ⋅ (−1) + 6
= 5 − 2 − 4 − 1 − 3 + 6 = 1

so that 𝑓(−1) = 1. Since 𝑓(−1) ≠ 0, the factor theorem implies that 𝑥 − (−1), or
equivalently 𝑥 + 1, is not a factor of the polynomial 𝑓(𝑥).

Example 29.11. Consider 𝑓(𝑥) = 5𝑥451+11𝑥274+1 inℤ13[𝑥]. Let’s find the remainder
𝑟(𝑥) when 𝑓(𝑥) is divided by 𝑥 − 1. (Performing long division is not recommended!)
By the division algorithm, there exist 𝑞(𝑥), 𝑟(𝑥) ∈ ℤ13[𝑥] such that 𝑓(𝑥) = (𝑥 − 1) ⋅
𝑞(𝑥) + 𝑟(𝑥) with 𝑟(𝑥) = 0 or deg 𝑟(𝑥) < deg(𝑥 − 1). Since deg(𝑥 − 1) = 1, we note
that 𝑟(𝑥) is a constant polynomial, possibly 0. Let 𝑟(𝑥) = 𝛼 for some 𝛼 ∈ ℤ13, so that
𝛼 = 𝑓(𝑥) − (𝑥 − 1) ⋅ 𝑞(𝑥). Setting 𝑥 = 1, we obtain 𝛼 = 𝑓(1) − (1 − 1) ⋅ 𝑞(1) =
𝑓(1) − 0 ⋅ 𝑞(1) = 𝑓(1). Thus, 𝛼 = 𝑓(1) = 5 ⋅ 1451 + 11 ⋅ 1274 + 1 = 5 + 11 + 1 = 17 = 4,
where the equality 17 = 4 occurs in ℤ13. Therefore, the remainder is the constant
polynomial 𝑟(𝑥) = 𝛼 = 4.

Example 29.11 motivates the following theorem, whose proof is left for you as an
exercise.

Theorem 29.12 (Remainder theorem). Let 𝐹 be a field, 𝑎 ∈ 𝐹, and 𝑓(𝑥) ∈ 𝐹[𝑥]. Then
𝑓(𝑎) ∈ 𝐹 is the remainder when 𝑓(𝑥) is divided by 𝑥 − 𝑎.

29.3 Nilpotent elements
Example 29.13. Consider 3 ∈ ℤ81. We have

31 = 3, 32 = 9, 33 = 27, 𝟑𝟒 = 𝟎.
After that, we have

35 = 𝟑𝟒 ⋅ 3 = 𝟎 ⋅ 3 = 0,
36 = 𝟑𝟓 ⋅ 3 = 𝟎 ⋅ 3 = 0,
37 = 𝟑𝟔 ⋅ 3 = 𝟎 ⋅ 3 = 0,

⋮.
Thus, we conclude that 3𝑛 = 0 for all positive integers 𝑛 ≥ 4.



294 Chapter 29. Polynomial Rings, Part II

Example 29.13 motivates the following definition.

Definition 29.14 (Nilpotent). A ring element 𝑟 is said to be nilpotent if 𝑟𝑛 = 0 for some
positive integer 𝑛.

Example 29.15. In Example 29.13, we saw that 3 ∈ ℤ81 is nilpotent. In ℤ81, we also
have 01 = 0, 64 = 0, and 92 = 0, so that 0, 6, and 9 are nilpotent in ℤ81. In an exercise
at the end of the chapter, you’ll find all other nilpotent elements in ℤ81.

Example 29.16. In any ring, 01 = 0. Thus, the additive identity 0 is nilpotent.

Example 29.17. In ℤ, the only nilpotent element is 0. For 𝑎 ≠ 0, we have 𝑎𝑛 ≠ 0 for
all positive integers 𝑛.

Example 29.17 illustrates the following theorem, whose proof is left for you as an
exercise.

Theorem 29.18. Let 𝑅 be an integral domain. Then the only nilpotent element of 𝑅 is 0.

Is the converse of this theorem true? In other words, if the only nilpotent element
of 𝑅 is 0, must 𝑅 be an integral domain? The answer is “No,” as shown in the next
example.

Example 29.19. Consider the following calculations with the non-zero elements of
ℤ6 = {0, 1, 2, 3, 4, 5}.
• 1𝑛 = 1 for all positive integers 𝑛.
• 21 = 2, 22 = 4, 23 = 2, 24 = 4, . . . . Thus, 2𝑛 = 2 or 4 for all 𝑛 ≥ 1.
• 31 = 3, 32 = 3, 33 = 3, 34 = 3, . . . . Thus, 3𝑛 = 3 for all 𝑛 ≥ 1.
• 41 = 4, 42 = 4, 43 = 4, 44 = 4, . . . . Thus, 4𝑛 = 4 for all 𝑛 ≥ 1.
• 51 = 5, 52 = 1, 53 = 5, 54 = 1, . . . . Thus, 5𝑛 = 5 or 1 for all 𝑛 ≥ 1.

Hence, ℤ6 does not have any non-zero nilpotent element, although 3 and 4 are idem-
potents.

Example 29.20. Let 𝑓(𝑥) = 3𝑥 in ℤ9[𝑥]. Then 𝑓(𝑥) is nilpotent, since (3𝑥)2 = 𝟗𝑥2 =
𝟎𝑥2 = 0 in ℤ9[𝑥]. Moreover, 1 − 3𝑥 is a unit in ℤ9[𝑥], since

(1 − 3𝑥) ⋅ (1 + 3𝑥) = 1 ⋅ 1 + 1 ⋅ 3𝑥 − 3𝑥 ⋅ 1 − (3𝑥)2 = 1 − 𝟗𝑥2 = 1 − 𝟎𝑥2 = 1,
so that (1 − 3𝑥) ⋅ (1 + 3𝑥) = 1.

Next, we view 𝑓(𝑥) = 3𝑥 as an element of ℤ27[𝑥]. Then 𝑓(𝑥) is nilpotent, since
(3𝑥)3 = 𝟐𝟕𝑥3 = 𝟎𝑥3 = 0 in ℤ27[𝑥]. And as before, 1 − 3𝑥 is a unit in ℤ27[𝑥], since
(1−3𝑥)⋅(1+3𝑥+9𝑥2) = (we’ll leave the calculations to you) = 1−𝟐𝟕𝑥3 = 1−𝟎𝑥3 = 1,
so that (1−3𝑥)⋅(1+3𝑥+9𝑥2) = 1. In an exercise, you’ll show that the same conclusions
can be made (i.e., 3𝑥 is nilpotent and 1 − 3𝑥 is a unit) when working in ℤ81[𝑥] and in
ℤ𝑚[𝑥] where𝑚 is a power of 3.

Example 29.20motivates the theorem below, whose proof is left for you. (Compare
with Theorem 27.30.)

Theorem 29.21. In a ring, if 𝑎 is nilpotent, then 1 − 𝑎 is a unit.
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Big picture stuff
An important underlying theme for the next several chapters is the myriad structural
similarities between the ring of integers ℤ and the polynomial ring 𝐹[𝑥], where 𝐹 is a
field. In this chapter, we saw the following:

• 𝐹[𝑥] has the division algorithm just as ℤ does.

• The notion of a factor in 𝐹[𝑥] is analogous to the notion of a divisor in ℤ.
We will continue to identify these similarities as we encounter them. Stay tuned!

Exercises
1. (a) Use long division to find the quotient 𝑞 and remainder 𝑟 when dividing 5,696

by 7.
(b) Verify that your result in part (a) satisfies the division algorithm in ℤ.

2. Consider 𝑓(𝑥) = 𝑥3 + 2𝑥 + 1 and 𝑔(𝑥) = 2𝑥 + 3 in ℤ5[𝑥].
(a) Use long division to find the quotient 𝑞(𝑥) and remainder 𝑟(𝑥)when dividing

𝑓(𝑥) by 𝑔(𝑥). Keep in mind that the coefficients are in ℤ5.
(b) Verify that your result in part (a) satisfies the division algorithm in 𝐹[𝑥].

3. Consider again 𝑓(𝑥) = 𝑥3 + 2𝑥 + 1 and 𝑔(𝑥) = 2𝑥 + 3 in ℤ5[𝑥].
(a) Find the quotient 𝑞(𝑥) and remainder 𝑟(𝑥) when dividing 𝑔(𝑥) by 𝑓(𝑥).

Note: This is slightly different from Exercise #2. Long division is not needed!
(b) Verify that your result in part (a) satisfies the division algorithm in 𝐹[𝑥].

4. Consider 𝑓(𝑥) = 𝑥 and 𝑔(𝑥) = 2𝑥 + 1 in ℤ5[𝑥].
(a) Find the quotient 𝑞(𝑥) and remainder 𝑟(𝑥) when dividing 𝑓(𝑥) by 𝑔(𝑥).
(b) Verify that your result in part (a) satisfies the division algorithm in 𝐹[𝑥].

5. Consider 𝑓(𝑥) = 3𝑥3 + 10𝑥2 + 5𝑥 − 4 and 𝑔(𝑥) = 𝑥2 + 2𝑥 − 1 in ℝ[𝑥]. Verify that
𝑔(𝑥) is a factor of 𝑓(𝑥).

6. Let 𝑓(𝑥) = 3𝑥4−5𝑥3−8 ∈ ℝ[𝑥]. Find 𝑞(𝑥) ∈ ℝ[𝑥] such that 𝑓(𝑥) = (𝑥−2) ⋅ 𝑞(𝑥).
(See Example 29.7.)

7. Let 𝑓(𝑥) = 𝑥4 − 3𝑥3 + 𝑥2 + 4𝑥 − 1 ∈ ℝ[𝑥]. Determine which of 𝑥 − 1, 𝑥 + 1, and
𝑥 − 2 is a factor of 𝑓(𝑥).

8. Let 𝑓(𝑥) = 5𝑥672 + 2𝑥359 + 4𝑥101 + 𝑥77 + 3𝑥23 + 6 in ℤ7[𝑥]. In Example 29.10, we
saw that 𝑥 − 1 is a factor of 𝑓(𝑥), but 𝑥 − (−1) is not a factor of 𝑓(𝑥). Determine
whether or not each of 𝑥 − 2, 𝑥 − 3, 𝑥 − 4, and 𝑥 − 5 is a factor of 𝑓(𝑥). (Note that
𝑥 − (−1) is equivalent to 𝑥 − 6 in ℤ7[𝑥].)

9. Consider 𝑓(𝑥) = 3𝑥458 + 2𝑥103 + 4 in ℤ5[𝑥].
(a) Find the remainder when 𝑓(𝑥) is divided by 𝑥 − 1.
(b) Find the remainder when 𝑓(𝑥) is divided by 𝑥 − 2.
(c) Find the remainder when 𝑓(𝑥) is divided by 𝑥 + 1.
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10. In ℤ13[𝑥], define the polynomials

𝑓(𝑥) = 3𝑥4 + 10𝑥3 + 6𝑥2 + 8𝑥 + 11

and
𝑔(𝑥) = 11𝑥4 + 8𝑥3 + 6𝑥2 + 10𝑥 + 3.

(a) Describe how the polynomials 𝑓(𝑥) and 𝑔(𝑥) are related.
(b) Verify that 𝑓(4) = 0 and 𝑔(10) = 0.
(c) Verify that 𝑓(11) = 0 and 𝑔(6) = 0.
(d) How are 4 and 10 related in ℤ13?
(e) How are 11 and 6 related in ℤ13?
(f) What conjecture do you have?

11. Consider 𝑓(𝑥) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 +⋯ + 𝑎1𝑥 + 𝑎0 and 𝑔(𝑥) = 𝑎0𝑥𝑛 + 𝑎1𝑥𝑛−1 +
⋯+𝑎𝑛−1𝑥+𝑎𝑛 in 𝐹[𝑥]where 𝐹 is a field. Let 𝛼 be a non-zero element of 𝐹. Show
that if 𝑓(𝛼) = 0, then 𝑔(𝛼−1) = 0.

12. Complete the proof of Theorem 29.9 by proving its second implication.

13. Prove Theorem 29.12.

14. Prove: Let 𝐹 be a field, 𝑎 ∈ 𝐹, and 𝑓(𝑥) ∈ 𝐹[𝑥]. Then 𝑓(𝑎) = 0 and 𝑓′(𝑎) = 0 if
and only if 𝑓(𝑥) = (𝑥 − 𝑎)2 ⋅ 𝑞(𝑥) for some 𝑞(𝑥) ∈ 𝐹[𝑥].
Note: Here, 𝑓′(𝑥) refers to the derivative of 𝑓(𝑥).
Hint: The product rule from calculus says (𝑝(𝑥)⋅𝑞(𝑥))′ = 𝑝′(𝑥)⋅𝑞(𝑥)+𝑝(𝑥)⋅𝑞′(𝑥).

15. Recall that a ring element 𝑟 is said to be nilpotent if 𝑟𝑛 = 0 for some positive integer
𝑛.

(a) Find all nilpotent elements of ℤ9.
(b) Find all nilpotent elements of ℤ10.
(c) Find all nilpotent elements of ℤ15.
(d) Find all nilpotent elements of ℤ18.
(e) Find all nilpotent elements of ℤ81. (See Example 29.15.)
(f) Any conjectures about which ℤ𝑚 has non-zero nilpotent elements?

16. Prove: ℤ𝑚 has a non-zero nilpotent element if and only if𝑚 is divisible by a square
of a prime.
Note: For example, 𝑚 = 18 is divisible by 9 = 32, which is a square of a prime
𝑝 = 3.

17. Prove: If 𝑎 is a nilpotent element in a ring, then 𝑎𝑛 = 0 for all but finitely many
positive integers 𝑛.

18. (a) Find five nilpotent elements (other than 0 and 2) in ℤ4[𝑥].
(b) Explain why ℤ4[𝑥] has infinitely many nilpotent elements.
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19. (a) Categorize each non-zero element ofℤ12 as a unit, a zero divisor, or a nilpotent
element.
Note: Be careful. These categories are not mutually exclusive.

(b) Repeat part (a) with ℤ18.
(c) Repeat part (a) with ℤ20.
(d) What conjecture do you have?

20. (a) Prove: Let 𝛼 ∈ 𝑅 where 𝑅 is a ring. If 𝛼 is a non-zero nilpotent element, then
𝛼 is a zero divisor.

(b) How about the converse of the statement in part (a)? If it’s true, prove it. If
it’s false, provide a counterexample.

21. Prove Theorem 29.18.

22. In this exercise, you’ll continue the work that we began in Example 29.20.

(a) In ℤ27, verify that (1 − 3𝑥) ⋅ (1 + 3𝑥 + 9𝑥2) = 1.
(b) Inℤ81, verify that 3𝑥 and 1−3𝑥 are a nilpotent element and a unit, respectively.
(c) Repeat part (b), but in ℤ𝑚[𝑥] where𝑚 is a power of 3.

23. Prove Theorem 29.21.

24. Prove: If a ring element 𝛼 is both a nilpotent element and an idempotent, then
𝛼 = 0.

25. Let 𝑅 be a ring with the following property: If 𝛼2 = 0, then 𝛼 = 0 (where 𝛼 ∈ 𝑅).
Show that 0 is the only nilpotent element of 𝑅.
Hint: Suppose 𝑎 ∈ 𝑅 is nilpotent and show that 𝑎 = 0.

26. Let 𝛼 and 𝛽 be nilpotent elements in a commutative ring.
(a) Prove that 𝛼 ⋅ 𝛽 is nilpotent.
(b) (Challenge) Prove that 𝛼 + 𝛽 is nilpotent.





30
Factoring Polynomials

From here on, we will work (mostly) in polynomial rings 𝐹[𝑥] where 𝐹 is a field. Ex-
amples include ℝ[𝑥] and ℤ7[𝑥], but not ℤ9[𝑥] or ℤ[𝑥]. As discussed in Chapter 29,
there are many structural similarities between 𝐹[𝑥] and the ring of integers ℤ. In this
chapter, we will encounter another such similarity by studying the notion of factoring.
For instance, consider the polynomial 𝑓(𝑥) = 𝑥2 − 6𝑥 + 8 in ℝ[𝑥]. We can factor 𝑓(𝑥)
as a product of two “smaller” polynomials, i.e., polynomials of lower degree, like this:
𝑓(𝑥) = (𝑥 − 2) ⋅ (𝑥 − 4). Analogously, we can factor an integer, say 15, into a product
of two smaller integers: 15 = 3 ⋅ 5. And just as 3 and 5 are prime numbers in ℤ, the
factors 𝑥 − 2 and 𝑥 − 4 are what we call unfactorable in ℝ[𝑥].

It turns out that factoring an integer or a polynomial, especially if it’s large, is very
difficult to do. This is a good thing, since the difficulty of factoring large integers iswhat
keeps the internet secure through encryption methods such as the RSA algorithm. For
small enough polynomials, there are techniques to determine if and how they can be
factored, which will be the focus of this chapter.

30.1 Examples and definition
Example 30.1. Wemight say that the polynomial 𝑥2 +1 is unfactorable; i.e., it cannot
be factored. Indeed, it’s true that 𝑥2+1 is unfactorable inℝ[𝑥]. But if wework inℤ5[𝑥],
then

(𝑥 + 2) ⋅ (𝑥 + 3) = 𝑥2 + 5𝑥 + 6 = 𝑥2 + 0𝑥 + 1 = 𝑥2 + 1,

as we reduce the coefficients 5 = 0 and 6 = 1 in ℤ5. Thus, 𝑥2 + 1 = (𝑥 + 2) ⋅ (𝑥 + 3) is
factorable in ℤ5[𝑥]. The lesson here is that we need to specify the polynomial ring in
which we’re working (e.g., ℝ[𝑥] or ℤ5[𝑥]).

Example 30.2. Wemight say that 𝑥2+1 is actually factorable inℝ[𝑥], because 𝑥2+1 =
3 ⋅ ( 13𝑥

2 + 1
3). But this is not a legitimate factorization. When we factor a polynomial,

we must write it as a product of two “smaller” polynomials, i.e., polynomials of lower
degree. However, 13𝑥

2 + 1
3 is not smaller than 𝑥

2 + 1, because they both have degree 2.
299
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These examplesmotivate the following definition. Note how factorable and unfac-
torable polynomials are analogous to composite and prime integers.

Definition 30.3 (Factorable/unfactorable polynomials). Let 𝐹 be a field. Suppose
𝑓(𝑥) ∈ 𝐹[𝑥] with deg 𝑓(𝑥) ≥ 1; i.e., 𝑓(𝑥) is not a constant polynomial.

• We say that 𝑓(𝑥) is factorable in 𝐹[𝑥]when 𝑓(𝑥) = 𝑝(𝑥)⋅𝑞(𝑥) for some 𝑝(𝑥), 𝑞(𝑥) ∈
𝐹[𝑥] with deg 𝑝(𝑥), deg 𝑞(𝑥) < deg 𝑓(𝑥).

• Otherwise, we say that 𝑓(𝑥) is unfactorable in 𝐹[𝑥].

We make a couple of observations about the above definition of factorable. First, the
degree requirement deg 𝑝(𝑥), deg 𝑞(𝑥) < deg 𝑓(𝑥) ensures a legitimate factorization
of 𝑓(𝑥) where the factors 𝑝(𝑥) and 𝑞(𝑥) are “smaller” than 𝑓(𝑥). (See Example 30.2.)
Second, you’ll show in an exercise that deg 𝑝(𝑥) and deg 𝑞(𝑥) are greater than 0, and
thus the factors 𝑝(𝑥) and 𝑞(𝑥)must be non-constant polynomials.

Remark. In mathematics, factorable and unfactorable polynomials are more com-
monly referred to as reducible and irreducible, respectively. In this textbook, however,
we will use the terms “factorable” and “unfactorable,” since these are likely more fa-
miliar to you from your prior experiences with polynomials.

Example 30.4. Let 𝑓(𝑥) = 𝑥2+1 inℤ5[𝑥]. In Example 30.1, we found 𝑥2+1 = (𝑥+2)⋅
(𝑥+3), and so 𝑓(𝑥) is factorable in ℤ5[𝑥]. Note that deg 𝑓(𝑥) = 2, while its factors 𝑥+2
and 𝑥+3have degree 1. Thus, the degree requirement deg(𝑥+2), deg(𝑥+3) < deg 𝑓(𝑥)
is satisfied.

Example 30.5. Let 𝑓(𝑥) = 𝑥2−2 inℝ[𝑥]. We have 𝑥2−2 = (𝑥+√2) ⋅ (𝑥−√2)where
𝑥+√2, 𝑥−√2 ∈ ℝ[𝑥]. Since deg 𝑓(𝑥) = 2 and its factors 𝑥+√2, 𝑥−√2 have degree 1,
the degree requirement is satisfied. Thus we conclude that 𝑓(𝑥) is factorable in ℝ[𝑥].

Example 30.6. Let 𝑓(𝑥) = 𝑥2 + 1 in ℝ[𝑥]. We will show that 𝑓(𝑥) is unfactorable in
ℝ[𝑥]. Assume for contradiction that 𝑓(𝑥) is factorable inℝ[𝑥]. Thus 𝑓(𝑥) = 𝑝(𝑥) ⋅ 𝑞(𝑥)
for some 𝑝(𝑥), 𝑞(𝑥) ∈ ℝ[𝑥] with deg 𝑝(𝑥), deg 𝑞(𝑥) < deg 𝑓(𝑥). Since deg 𝑓(𝑥) =
deg 𝑝(𝑥)+deg 𝑞(𝑥) (Theorem 28.14) and deg 𝑓(𝑥) = 2, we must have deg 𝑝(𝑥) = 1 and
deg 𝑞(𝑥) = 1; i.e., 𝑝(𝑥) and 𝑞(𝑥) are linear polynomials. In an exercise, you’ll show
that since 𝑓(𝑥) is monic, we may assume that its factors 𝑝(𝑥) and 𝑞(𝑥) are monic, too.
Then, 𝑝(𝑥) = 𝑥 + 𝛼 and 𝑞(𝑥) = 𝑥 + 𝛽 where 𝛼, 𝛽 ∈ ℝ. We thus have the factorization
𝑥2 +1 = (𝑥+𝛼) ⋅ (𝑥 + 𝛽). Expanding the right-hand side, we obtain (𝑥 +𝛼) ⋅ (𝑥 + 𝛽) =
𝑥2+(𝛼+𝛽)⋅𝑥+(𝛼⋅𝛽). As this equals 𝑥2+1, we obtain𝛼+𝛽 = 0 and𝛼⋅𝛽 = 1. We’ll leave
it up to you to verify that this systemof equations does not have a solution inℝ, which is
a contradiction. Hence 𝑓(𝑥) cannot be factorable; i.e., it must be unfactorable. (Note:
In the next section, we’ll derive a much quicker way to show that 𝑓(𝑥) is unfactorable
in ℝ[𝑥].)

Example 30.7. Let 𝑓(𝑥) = 𝑥2 +𝑥+1 in ℤ2[𝑥]. We’ll show that 𝑓(𝑥) is unfactorable in
ℤ2[𝑥]. Assume for contradiction that 𝑓(𝑥) is factorable in ℤ2[𝑥]. Similar to Example
30.6, we have 𝑥2+𝑥+1 = 𝑝(𝑥) ⋅ 𝑞(𝑥), where 𝑝(𝑥) and 𝑞(𝑥) have degree 1. But the only
degree 1 polynomials in ℤ2[𝑥] are 𝑥 and 𝑥+1. Therefore, the possibilities for 𝑝(𝑥) and
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𝑞(𝑥) are as follows:
• 𝑝(𝑥) = 𝑥 and 𝑞(𝑥) = 𝑥, which implies 𝑝(𝑥) ⋅ 𝑞(𝑥) = 𝑥2.
• 𝑝(𝑥) = 𝑥 and 𝑞(𝑥) = 𝑥 + 1 (or vice versa), which implies 𝑝(𝑥) ⋅ 𝑞(𝑥) = 𝑥2 + 𝑥.
• 𝑝(𝑥) = 𝑥 + 1 and 𝑞(𝑥) = 𝑥 + 1, which implies 𝑝(𝑥) ⋅ 𝑞(𝑥) = 𝑥2 + 2𝑥 + 1 = 𝑥2 + 1.

Thus 𝑝(𝑥) ⋅ 𝑞(𝑥) never equals 𝑓(𝑥), and hence we have a contradiction. We conclude
that 𝑓(𝑥) cannot be factorable; i.e., it must be unfactorable. (Note: Again, we’ll derive
a much quicker way soon.)

InExample 30.6, we saw that𝑓(𝑥) = 𝑥2+1 is unfactorable inℝ[𝑥]. Thus, if wehave
𝑓(𝑥) = 𝑝(𝑥) ⋅ 𝑞(𝑥)where 𝑝(𝑥), 𝑞(𝑥) ∈ ℝ[𝑥], this cannot be a legitimate factorization of
𝑓(𝑥). Instead, this faux factorization must resemble 𝑥2 + 1 = 3 ⋅ ( 13𝑥

2 + 1
3), where the

factor 3 is a constant polynomial. (See Example 30.2.) The following theorem captures
this observation.

Theorem 30.8. Let 𝐹 be a field. Suppose 𝑓(𝑥) ∈ 𝐹[𝑥] with deg 𝑓(𝑥) ≥ 1. Then 𝑓(𝑥)
is unfactorable if and only if 𝑓(𝑥) satisfies the following property: If 𝑓(𝑥) = 𝑝(𝑥) ⋅ 𝑞(𝑥),
then deg 𝑝(𝑥) = 0 or deg 𝑞(𝑥) = 0.

Remark. Many abstract algebra textbooks use Theorem 30.8 as the definition of an un-
factorable polynomial, and they define factorable polynomials as those that are not un-
factorable. In this textbook, we chose the approach of defining factorable polynomials
first, since it probablymore closely resembles your prior experienceswith polynomials.

Proof. We must prove two implications:
• If 𝑓(𝑥) is unfactorable, then 𝑓(𝑥) satisfies the property.
• If 𝑓(𝑥) satisfies the property, then 𝑓(𝑥) is unfactorable.

We will prove the first implication. The proof of the second implication is left for you
as an exercise.

Assume 𝑓(𝑥) is unfactorable. Further assume that 𝑓(𝑥) = 𝑝(𝑥) ⋅ 𝑞(𝑥) for some
𝑝(𝑥), 𝑞(𝑥) ∈ 𝐹[𝑥]. We must show that deg 𝑝(𝑥) = 0 or deg 𝑞(𝑥) = 0. By Theorem
28.14, deg 𝑓(𝑥) = deg 𝑝(𝑥) + deg 𝑞(𝑥), so that deg 𝑝(𝑥), deg 𝑞(𝑥) ≤ deg 𝑓(𝑥). Note that
deg 𝑝(𝑥) and deg 𝑞(𝑥) cannot both be strictly less than deg 𝑓(𝑥), since that would imply
that 𝑓(𝑥) is factorable. Thus at least one of deg 𝑝(𝑥) or deg 𝑞(𝑥) equals deg 𝑓(𝑥).

Suppose deg 𝑝(𝑥) = deg 𝑓(𝑥). (The argument for the case deg 𝑞(𝑥) = deg 𝑓(𝑥)
follows similarly.) Then deg 𝑓(𝑥) = deg 𝑝(𝑥) + deg 𝑞(𝑥) implies that deg 𝑞(𝑥) = 0 as
desired. ■

30.2 Factorable or unfactorable?
We will consider various ways to determine whether a polynomial is factorable or un-
factorable.

Example 30.9. Consider 𝑓(𝑥) = 2𝑥 − 7 ∈ ℝ[𝑥]. Then 𝑓(𝑥) is unfactorable in ℝ[𝑥].
Intuitively, it is not possible to factor 𝑓(𝑥) into “smaller” factors that are not constants.
Similarly, 4𝑥 + 2 ∈ ℤ7[𝑥] is unfactorable in ℤ7[𝑥], and 𝑎𝑥 + 𝑏 ∈ 𝐹[𝑥] (with 𝑎 ≠ 0) is
unfactorable in 𝐹[𝑥].
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Theorem 30.10. Let 𝐹 be a field. Suppose 𝑓(𝑥) ∈ 𝐹[𝑥] with deg 𝑓(𝑥) = 1. Then 𝑓(𝑥) is
unfactorable in 𝐹[𝑥].

Proof know-how. The proof below demonstrates a common technique for showing
that a polynomial is unfactorable. We will assume 𝑓(𝑥) = 𝑝(𝑥) ⋅ 𝑞(𝑥) where 𝑝(𝑥),
𝑞(𝑥) ∈ 𝐹[𝑥]. Then we will show that deg 𝑝(𝑥) = 0 or deg 𝑞(𝑥) = 0. Then Theorem
30.8 implies that 𝑓(𝑥) is unfactorable.

Proof. Suppose 𝑓(𝑥) = 𝑝(𝑥) ⋅ 𝑞(𝑥) for some 𝑝(𝑥), 𝑞(𝑥) ∈ 𝐹[𝑥]. Since deg 𝑓(𝑥) =
deg 𝑝(𝑥) + deg 𝑞(𝑥) and deg 𝑓(𝑥) = 1, it follows that either deg 𝑝(𝑥) or deg 𝑞(𝑥), which
are non-negative integers, must be 0. Then Theorem 30.8 implies that 𝑓(𝑥) is unfac-
torable. ■

Before proceeding, we introduce a terminology. For example, consider again 𝑓(𝑥)
= 𝑥2 + 1 ∈ ℤ5[𝑥]. Then, 𝑓(3) = 32 + 1 = 10 = 0 in ℤ5 and we call 3 ∈ ℤ5 a root of the
polynomial 𝑓(𝑥). However, 𝑓(4) = 42 + 1 = 17 ≠ 0 in ℤ5, and thus 4 ∈ ℤ5 is not a root
of 𝑓(𝑥). Here is the generalization.

Definition 30.11 (Root of a polynomial). Let 𝐹 be a field, and let 𝑓(𝑥) ∈ 𝐹[𝑥]. We say
that an element 𝛼 ∈ 𝐹 is a root of the polynomial 𝑓(𝑥) if 𝑓(𝛼) = 0.

Example 30.12. Let 𝑓(𝑥) = 4𝑥 + 5 ∈ ℝ[𝑥]. This polynomial has a root, namely
𝛼 = − 5

4 . To verify, note that 𝑓 (−
5
4) = 4 ⋅ (− 5

4) + 5 = −5 + 5 = 0. We found this root
by solving the equation 4 ⋅ 𝛼 + 5 = 0 for 𝛼.

Example 30.13. Consider again 𝑓(𝑥) = 4𝑥+5, but this time in ℤ11[𝑥]. To find its root,
we solve the equation 4 ⋅ 𝛼 + 5 = 0 and obtain 𝛼 = 4−1 ⋅ (−5). In ℤ11, we have 4−1 = 3
since 4 ⋅ 3 = 1, and −5 = 6 since 5 + 6 = 0. Therefore, 𝛼 = 3 ⋅ 6 = 18 = 7 (mod 11).
We verify that 𝑓(7) = 4 ⋅ 7 + 5 = 33 = 0 (mod 11), so that 𝛼 = 7 is indeed a root of
𝑓(𝑥).

Examples 30.12 and 30.13 suggest the following theorem, whose proof is left for
you as an exercise.

Theorem 30.14. Let 𝐹 be a field, and let 𝑓(𝑥) ∈ 𝐹[𝑥]. If deg 𝑓(𝑥) = 1, then 𝑓(𝑥) has a
root.

Example 30.15. Let 𝑓(𝑥) = 𝑥3 + 𝑥 + 1 ∈ ℤ3[𝑥]. Then 𝑓(1) = 3 = 0 so that 1 ∈ ℤ3 is
a root of 𝑓(𝑥). Since 𝑓(1) = 0, the factor theorem implies that 𝑓(𝑥) = (𝑥 − 1) ⋅ 𝑞(𝑥) for
some 𝑞(𝑥) ∈ ℤ3[𝑥]. To conclude that this is a legitimate factorization of 𝑓(𝑥), we must
show that deg(𝑥 − 1) and deg 𝑞(𝑥) are both less than deg 𝑓(𝑥).

We have deg 𝑓(𝑥) = deg(𝑥 − 1) + deg 𝑞(𝑥). Moreover, we know that deg 𝑓(𝑥) = 3
and deg(𝑥 − 1) = 1. Thus, we must have deg 𝑞(𝑥) = 2. Hence deg(𝑥 − 1), deg 𝑞(𝑥) <
deg 𝑓(𝑥), so that 𝑓(𝑥) is factorable in ℤ3[𝑥]. In summary, 𝑓(𝑥) having a root allowed
us to conclude that 𝑓(𝑥) is factorable.

Theorem 30.16. Let 𝐹 be a field, and let 𝑓(𝑥) ∈ 𝐹[𝑥] with deg 𝑓(𝑥) ≥ 2. If 𝑓(𝑥) has a
root 𝛼 ∈ 𝐹, then 𝑓(𝑥) is factorable in 𝐹[𝑥].
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Proof. Assume 𝑓(𝑥) has a root 𝛼 ∈ 𝐹, so that 𝑓(𝛼) = 0. By the factor theorem,
𝑓(𝑥) = (𝑥 − 𝛼) ⋅ 𝑞(𝑥) for some 𝑞(𝑥) ∈ 𝐹[𝑥]. To conclude that this is a legitimate
factorization of 𝑓(𝑥), we must show that deg(𝑥 − 𝛼) and deg 𝑞(𝑥) are both less than
deg 𝑓(𝑥).

First, since deg(𝑥 − 𝛼) = 1 and deg 𝑓(𝑥) ≥ 2, we conclude that deg(𝑥 − 𝛼) <
deg 𝑓(𝑥). Next, note that deg 𝑓(𝑥) = deg(𝑥 − 𝛼) + deg 𝑞(𝑥) = 1 + deg 𝑞(𝑥), since
deg(𝑥 − 𝛼) = 1. Solving for deg 𝑞(𝑥), we obtain deg 𝑞(𝑥) = deg 𝑓(𝑥) − 1, so that
deg 𝑞(𝑥) < deg 𝑓(𝑥). Hence we have 𝑓(𝑥) = (𝑥 − 𝛼) ⋅ 𝑞(𝑥) with deg(𝑥 − 𝛼), deg 𝑞(𝑥) <
deg 𝑓(𝑥). Thus 𝑓(𝑥) is factorable in 𝐹[𝑥]. ■

Proof know-how. To prove that a polynomial 𝑓(𝑥) is factorable, it’s not enough to
show that 𝑓(𝑥) can be written as 𝑓(𝑥) = 𝑝(𝑥) ⋅ 𝑞(𝑥). We must also show that deg 𝑝(𝑥),
deg 𝑞(𝑥) < deg 𝑓(𝑥); i.e., the degree of each factor is less than the degree of 𝑓(𝑥). Only
then can we conclude that 𝑓(𝑥) is factorable.

Remark. In Theorem 30.16, we need the condition deg 𝑓(𝑥) ≥ 2, as the theorem
is false when deg 𝑓(𝑥) = 1. In Example 30.12, we saw that 𝑓(𝑥) = 4𝑥 + 5 ∈ ℝ[𝑥]
has a root, namely 𝛼 = − 5

4 . But we also know from Theorem 30.10 that all degree 1
polynomials are unfactorable.

Example 30.17. Let 𝑓(𝑥) = 5𝑥493+2𝑥314+3𝑥235+𝑥102+6 ∈ ℤ17[𝑥]. Then deg 𝑓(𝑥) =
493, so that deg 𝑓(𝑥) ≥ 2. We have 𝑓(1) = 5+2+3+1+6 = 0 (mod 17), so that 𝛼 = 1
is a root of 𝑓(𝑥). Thus by Theorem 30.16, we conclude that 𝑓(𝑥) is factorable in ℤ17[𝑥].

Next, we seek a tool to determine that 𝑓(𝑥) is unfactorable. Based on Theorem
30.16, we might consider the following:

If 𝑓(𝑥) has no root in 𝐹, then 𝑓(𝑥) is unfactorable in 𝐹[𝑥].
Unfortunately, this statement isn’t true, as shown by the counterexample below.

Example 30.18. Consider 𝑓(𝑥) = 𝑥4 + 3𝑥2 + 2 ∈ ℝ[𝑥]. For all 𝛼 ∈ ℝ, we have 𝛼4 ≥ 0
and 𝛼2 ≥ 0 so that 𝑓(𝛼) ≥ 2. Thus, 𝑓(𝛼) never equals 0, which means that 𝑓(𝑥) has
no root in ℝ. However, we have 𝑓(𝑥) = (𝑥2 + 1) ⋅ (𝑥2 + 2) so that 𝑓(𝑥) is factorable in
ℝ[𝑥]. The fact that 𝑓(𝑥) has no root means 𝑓(𝑥) has no linear factor. However, 𝑓(𝑥)
could still have a factor of degree 2 (or higher), as we found in this example.

Here is how we can salvage the situation we encountered in Example 30.18.

Theorem 30.19. Let 𝐹 be a field, and let 𝑓(𝑥) ∈ 𝐹[𝑥] with deg 𝑓(𝑥) = 2 or 3. If 𝑓(𝑥)
has no root in 𝐹, then 𝑓(𝑥) is unfactorable in 𝐹[𝑥].

Proof. We prove the contrapositive; namely: If 𝑓(𝑥) is factorable in 𝐹[𝑥], then 𝑓(𝑥)
has a root in 𝐹. Assume that 𝑓(𝑥) is factorable in 𝐹[𝑥]. Then, 𝑓(𝑥) = 𝑝(𝑥) ⋅ 𝑞(𝑥)
where 𝑝(𝑥), 𝑞(𝑥) ∈ 𝐹[𝑥] with deg 𝑝(𝑥), deg 𝑞(𝑥) < deg 𝑓(𝑥). We have deg 𝑓(𝑥) =
deg 𝑝(𝑥)+deg 𝑞(𝑥) and deg 𝑓(𝑥) = 2 or 3. Thus deg 𝑝(𝑥) or deg 𝑞(𝑥)must be 1. Suppose
deg 𝑝(𝑥) = 1. (The argument for the case deg 𝑞(𝑥) = 1 follows similarly.) Then by
Theorem 30.14, 𝑝(𝑥) has a root 𝛼 ∈ 𝐹 such that 𝑝(𝛼) = 0. Then 𝑓(𝛼) = 𝑝(𝛼) ⋅ 𝑞(𝛼) =
0 ⋅𝑞(𝛼) = 0, so that 𝛼 is a root of 𝑓(𝑥) as well. Thus, 𝑓(𝑥) has a root in 𝐹 as desired. ■

Remark. In the above proof, we used the fact that deg 𝑓(𝑥) = 2 or 3 to deduce that
deg 𝑝(𝑥) or deg 𝑞(𝑥)must be 1. If deg 𝑓(𝑥) = 3, for instance, then the onlyway to satisfy
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deg 𝑓(𝑥) = deg 𝑝(𝑥) + deg 𝑞(𝑥) with deg 𝑝(𝑥), deg 𝑞(𝑥) < deg 𝑓(𝑥) is either 3 = 1 + 2
(i.e., deg 𝑝(𝑥) = 1) or 3 = 2+1 (i.e., deg 𝑞(𝑥) = 1). A similar argument can be made in
the case of deg 𝑓(𝑥) = 2.

Example 30.20. Consider 𝑓(𝑥) = 𝑥2 + 1 ∈ ℝ[𝑥]. In Example 30.6, we showed
(somewhat painstakingly) that 𝑓(𝑥) is unfactorable in ℝ[𝑥]. Here, we observe that
deg 𝑓(𝑥) = 2 and 𝑓(𝑥) has no root in ℝ, since there is no real number 𝛼 such that
𝛼2 + 1 = 0. By Theorem 30.19, we conclude that 𝑓(𝑥) is unfactorable in ℝ[𝑥].

Example 30.21. Let 𝑓(𝑥) = 𝑥2 − 2. In Example 30.5, we saw that 𝑓(𝑥) is factorable
in ℝ[𝑥]. Now let’s view this polynomial in ℚ[𝑥]. We have deg 𝑓(𝑥) = 2. Moreover,
𝑓(𝑥) has no root in ℚ, since there is no rational number 𝛼 such that 𝛼2 − 2 = 0 or,
equivalently, 𝛼2 = 2. (See Theorem 1.10.) By Theorem 30.19, we conclude that 𝑓(𝑥) is
unfactorable in ℚ[𝑥].

Example 30.22. Let 𝑓(𝑥) = 𝑥2 + 𝑥 + 1 in ℤ2[𝑥]. In Example 30.7, we showed (again,
painstakingly) that 𝑓(𝑥) is unfactorable in ℤ2[𝑥]. Since ℤ2 = {0, 1}, there are only two
candidates for a root of 𝑓(𝑥). We have 𝑓(0) = 1 and 𝑓(1) = 1 in ℤ2, so neither 0 nor
1 is a root of 𝑓(𝑥). Thus 𝑓(𝑥) has degree 2 but no root in ℤ2. By Theorem 30.19, we
conclude that 𝑓(𝑥) is unfactorable in ℤ2[𝑥].

Example 30.23 (Non-example). Let 𝑓(𝑥) = 𝑥4+𝑥2+1 ∈ ℤ2[𝑥]. We have 𝑓(0) = 1 and
𝑓(1) = 1 in ℤ2, so that 𝑓(𝑥) has no root in ℤ2. We might be tempted to conclude that
𝑓(𝑥) is unfactorable in ℤ2[𝑥]. However, Theorem 30.19 does not apply to 𝑓(𝑥), since
deg 𝑓(𝑥) = 4. In fact, 𝑥4+𝑥2+1 = (𝑥2+𝑥+1) ⋅ (𝑥2+𝑥+1), and thus 𝑓(𝑥) is factorable
in ℤ2[𝑥].

Big picture stuff
We again highlight the structural similarity between the ring of integersℤ and the poly-
nomial ring 𝐹[𝑥], where 𝐹 is a field. The focus of this chapter was on factoring of
polynomials, which turns out to have a lot in common with factoring of integers.

Factorable and unfactorable polynomials are similar to composite and prime inte-
gers. A factorable polynomial can be written as a product of two smaller polynomials,
such as 𝑥2 + 1 = (𝑥 + 2) ⋅ (𝑥 + 3) in ℤ5[𝑥]. Analogously, a composite integer can be
written as a product of two smaller integers, such as 15 = 3 ⋅ 5.

It turns out that both ℤ and 𝐹[𝑥] satisfy a fundamental property called “unique
factorization.” In ℤ, for example, there is only one way to factor 15 = 3 ⋅ 5 into a
product of primes. Similarly, in ℤ5[𝑥], 𝑥2 + 1 = (𝑥 + 2) ⋅ (𝑥 + 3) is the only way to
factor 𝑥2 + 1 into a product of unfactorable polynomials. If this does not seem like a
big deal, consider that in ℤ15[𝑥], where the coefficient ring ℤ15 is not a field, we have
𝑥2 + 6𝑥 + 8 = (𝑥 + 2) ⋅ (𝑥 + 4), but also 𝑥2 + 6𝑥 + 8 = (𝑥 + 7) ⋅ (𝑥 + 14). Thus, there
are two different ways to factor 𝑥2 + 6𝑥 + 8 in ℤ15[𝑥].

Exercises
1. In the definition of factorable in Definition 30.3, explain why deg 𝑝(𝑥) and deg 𝑞(𝑥)

must be greater than 0.
2. Prove: Let 𝐹 be a field, and let 𝑓(𝑥) ∈ 𝐹[𝑥]. Assume 𝑓(𝑥) is monic. If 𝑓(𝑥) is

factorable in 𝐹[𝑥], then 𝑓(𝑥) = 𝑝(𝑥) ⋅ 𝑞(𝑥) for some monic 𝑝(𝑥), 𝑞(𝑥) ∈ 𝐹[𝑥] with
deg 𝑝(𝑥), deg 𝑞(𝑥) < deg 𝑓(𝑥).
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3. Complete the proof of Theorem 30.8 by proving its second implication.

4. (a) Let 𝑓(𝑥) = 2𝑥 − 7 ∈ ℝ[𝑥]. Find 𝛼 ∈ ℝ such that 𝑓(𝛼) = 0.
(b) Same as part (a), but with 𝑓(𝑥) = 4𝑥 + 2 ∈ ℤ7[𝑥].
(c) Same as part (a), but with 𝑓(𝑥) = 3𝑥 + 8 ∈ ℤ13[𝑥].

5. Prove Theorem 30.14.

6. Explain what goes wrong in the proof of Theorem 30.16 if deg 𝑓(𝑥) = 1.

7. (a) Find an example of fields 𝑅 and 𝑆 with 𝑅 ⊆ 𝑆 and a polynomial 𝑓(𝑥) ∈ 𝑅[𝑥]
(so that 𝑓(𝑥) ∈ 𝑆[𝑥] also) such that 𝑓(𝑥) is unfactorable in 𝑅[𝑥], but 𝑓(𝑥) is
factorable in 𝑆[𝑥].

(b) Explain whether or not it is possible that 𝑓(𝑥) is factorable in 𝑅[𝑥], but 𝑓(𝑥)
is unfactorable in 𝑆[𝑥].

8. Let 𝑓(𝑥) = 𝑥3 + 𝑥 + 1 ∈ ℤ3[𝑥].

(a) Compute 𝑓(𝛼) for each 𝛼 ∈ ℤ3.
(b) Is 𝑓(𝑥) factorable or unfactorable in ℤ3[𝑥]? Explain your reasoning.

9. Let 𝑓(𝑥) = 𝑥217 + 100 ∈ ℤ101[𝑥].

(a) Find 𝛼 ∈ ℤ101 such that 𝑓(𝛼) = 0.

(b) Is 𝑓(𝑥) factorable or unfactorable in ℤ101[𝑥]? Explain your reasoning.

10. (a) Let 𝑓(𝑥) = 𝑥3 +4 ∈ ℤ5[𝑥]. Write 𝑓(𝑥) as a product of unfactorable polynomi-
als in ℤ5[𝑥].

(b) Repeat part (a) with 𝑓(𝑥) = 𝑥3 + 6 ∈ ℤ7[𝑥].
(c) Repeat part (a) with 𝑓(𝑥) = 𝑥3 + 10 ∈ ℤ11[𝑥].
(d) Repeat part (a) with 𝑓(𝑥) = 𝑥3 + 12 ∈ ℤ13[𝑥].

11. Determine if each polynomial is factorable or unfactorable.

(a) 𝑥3 + 𝑥2 + 𝑥 + 1 in ℝ[𝑥].
(b) 𝑥3 + 2𝑥 + 1 in ℤ3[𝑥].
(c) 𝑥2 + 1 in ℤ7[𝑥].
(d) 𝑥273 + 3𝑥152 + 5𝑥17 + 10 in ℤ19[𝑥].

12. Determine if each polynomial is factorable or unfactorable.

(a) 𝑥100 − 1 in ℝ[𝑥].
(b) 𝑥3 + 𝑥 + 1 in ℤ5[𝑥].
(c) 𝑥2 + 1 in ℤ13[𝑥].
(d) 𝑥1,071 + 10𝑥282 + 4𝑥123 + 2 in ℤ17[𝑥].

13. Explain why each polynomial is factorable in 𝐹[𝑥] where 𝐹 is any field.

(a) 𝑥3 + 𝑥2 + 𝑥 + 1.
(b) 𝑥3 + 𝑥2 + 4.



306 Chapter 30. Factoring Polynomials

14. Consider 𝑓(𝑥) = 𝑥2 + 1 in ℤ3[𝑥]. Show that 𝑓(𝑥) is unfactorable using these two
methods:

(a) Find all polynomials inℤ3[𝑥] of degree 1 and show that the product of any two
of them (including possibly the same two) never equals 𝑓(𝑥). (See Example
30.7.)

(b) Use Theorem 30.19.

Which method do you prefer?

15. In Example 30.22, we saw that 𝑓(𝑥) = 𝑥2 + 𝑥 + 1 is unfactorable in ℤ2[𝑥]. Verify
that 𝑓(𝑥) is the only polynomial in ℤ2[𝑥] of degree 2 that is unfactorable.

16. Find all polynomials in ℤ2[𝑥] of degree 3 that are unfactorable.

17. Consider 𝑓(𝑥) = 𝑥5 + 𝑥4 + 1 in ℤ2[𝑥].

(a) Verify that 𝑓(𝑥) has no root in ℤ2.
(b) Can we conclude that 𝑓(𝑥) is unfactorable in ℤ2[𝑥]? Why or why not?
(c) It turns out that 𝑓(𝑥) is factorable in ℤ2[𝑥]. Find a legitimate factorization

of 𝑓(𝑥); i.e., find polynomials 𝑝(𝑥), 𝑞(𝑥) ∈ ℤ2[𝑥] with deg 𝑝(𝑥), deg 𝑞(𝑥) <
deg 𝑓(𝑥) such that 𝑓(𝑥) = 𝑝(𝑥) ⋅ 𝑞(𝑥).
Hint: Exercise #15 should help.

18. (a) In ℤ5[𝑥], find the number of polynomials of the form 𝑥2 + 𝑏𝑥 + 𝑐, with 𝑏,
𝑐 ∈ ℤ5.

(b) Of the polynomials in part (a), determine how many of them are factorable.
(c) Repeat parts (a) and (b), but in ℤ7[𝑥] and ℤ7.
(d) Repeat parts (a) and (b), but in ℤ13[𝑥] and ℤ13.
(e) Repeat parts (a) and (b), but in ℤ𝑝[𝑥] and ℤ𝑝, where 𝑝 is prime.

19. Let 𝑎 ∈ ℤ𝑝, 𝑎 ≠ 0, where 𝑝 is prime. Prove that 𝑓(𝑥) = 𝑥𝑝 − 𝑎 is factorable in
ℤ𝑝[𝑥].
Hint: We may view 𝑎 as an element of the multiplicative group 𝑈𝑝.

20. Let 𝑓(𝑥) ∈ ℤ2[𝑥] with deg 𝑓(𝑥) ≥ 2. Prove that if 𝑓(𝑥) is unfactorable in ℤ2[𝑥],
then 𝑓(𝑥) has an odd number of non-zero terms.
Note: Example of 𝑓(𝑥) ∈ ℤ2[𝑥] with an odd number of non-zero terms: 𝑓(𝑥) =
𝑥18 + 𝑥11 + 𝑥8 + 𝑥3 + 1. There are five terms, and the coefficients must all be 1.

21. Determine if the converse of the statement in Exercise #20 is true or false. If it’s
true, prove it. If it’s false, provide a counterexample.

22. Consider 𝑓(𝑥) = 𝑥4 − 1 ∈ ℤ5[𝑥].

(a) Elizabeth says, “I can tell right away that 𝑓(𝑥) is factorable.” How might she
know?

(b) Compute the product (𝑥− 1) ⋅ (𝑥− 2) ⋅ (𝑥− 3) ⋅ (𝑥− 4) in ℤ5[𝑥] and verify that
it equals 𝑓(𝑥).
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23. (a) How do you think 𝑥6 − 1 would factor in ℤ7[𝑥]? Verify your conjecture.
(b) How do you think 𝑥10 − 1 would factor in ℤ11[𝑥]? Verify your conjecture.
(c) How do you think 𝑥12 − 1 would factor in ℤ13[𝑥]? Yes, please verify.
(d) What’s going on here? Can you generalize and justify?

24. Prove: Let 𝐹 be a field, 𝑎 ∈ 𝐹 with 𝑎 ≠ 0, and 𝑓(𝑥) ∈ 𝐹[𝑥]. If 𝑓(𝑥) is unfactorable
in 𝐹[𝑥], then 𝑎 ⋅ 𝑓(𝑥) is unfactorable in 𝐹[𝑥].

25. For each odd prime𝑝 < 100, determine if𝑓(𝑥) = 𝑥2+1 is factorable or unfactorable
in ℤ𝑝[𝑥].

26. Let 𝑝 be an odd prime (i.e., 𝑝 > 2), and let 𝑓(𝑥) = 𝑥2 + 1 ∈ ℤ𝑝[𝑥]. Prove each
statement below:

(a) If 𝑝 = 4𝑘 + 3 for some 𝑘 ∈ ℤ, then 𝑓(𝑥) is unfactorable in ℤ𝑝[𝑥].
(b) (Challenge) If 𝑝 = 4𝑘 + 1 for some 𝑘 ∈ ℤ, then 𝑓(𝑥) is factorable in ℤ𝑝[𝑥].





Unit VII: Quotient Rings

In this final unit of the book, we will investigate quotient rings, which are analogous
to quotient groups studied earlier. More specifically, we will focus on quotient rings
formed from polynomial rings 𝐹[𝑥] where 𝐹 is a field. Thus, our quotient rings will
have the form 𝐹[𝑥]/⟨𝑔(𝑥)⟩. (Note: ⟨𝑔(𝑥)⟩ is the principal ideal generated by 𝑔(𝑥). That
notion is explained inChapter 31.) Wewill conjecture and prove a criterion aboutwhen
𝐹[𝑥]/⟨𝑔(𝑥)⟩ is a field, which, continuing our theme about the structural similarities
between ℤ and 𝐹[𝑥], is closely related to how ℤ𝑛 is a field precisely when 𝑛 is prime.

Along the way, we will explore (spoiler alert!) an isomorphism ℝ[𝑥]/⟨𝑥2 + 1⟩ ≅
ℂ, which highlights a beautiful connection between polynomial rings and complex
numbers.

Here is a taste of what you’ll be able to accomplish in this unit:

• Very quickly “reduce” the element (4𝑥5+2𝑥3+4𝑥+1)+⟨𝑥2−1⟩ in ℤ7[𝑥]/⟨𝑥2−1⟩.
• Understand the role that ideals play in making coset multiplication valid in quo-
tient rings.

• Usemaximal ideals to prove the criterion about when 𝐹[𝑥]/⟨𝑔(𝑥)⟩ is a field.
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31
Ring Homomorphisms

A ring homomorphism, the focus of this chapter, is similar to its counterpart in group
theory; i.e., it’s an operation-preserving function. However, the domain and codomain
of a ring homomorphism are (not surprisingly) rings, and thus both addition and mul-
tiplication must be preserved. Because every ring is an additive group, a ring homo-
morphismmay also be viewed as a homomorphism of additive groups. As such, famil-
iar properties from group homomorphisms still hold in this new setting. We will also
revisit the notions of kernel and image in the context of ring homomorphisms.

We’ve seen that the kernel of a group homomorphism is a normal subgroup (Ex-
ample 24.13), which played an integral role in our work with quotient groups. Analo-
gously, we’ll see that the kernel of a ring homomorphism is an ideal. And as we’ll see
in the next chapter, ideals are a necessary ingredient in making quotient rings work.

31.1 Evaluation map
Example 31.1. Consider the function 𝜃 ∶ ℝ[𝑥] → ℝ where 𝜃(𝑓(𝑥)) = 𝑓(2) for all
𝑓(𝑥) ∈ ℝ[𝑥]. This is an example of an evaluationmap, where the input is a polynomial
𝑓(𝑥) and the corresponding output is 𝑓(2), i.e., the value of that polynomial evaluated
at 𝑥 = 2. There is nothing special about 2 here. We could have fixed any real number
at which to evaluate the input polynomial.

We choose inputs 𝑓(𝑥) = 𝑥2 + 1 and 𝑔(𝑥) = 4𝑥 + 5 in ℝ[𝑥], and perform these
computations:

• 𝜃(𝑓(𝑥)+𝑔(𝑥))means first add the polynomials and then evaluate the sum at 𝑥 = 2.
Thus,

𝜃(𝑓(𝑥) + 𝑔(𝑥)) = 𝜃((𝑥2 + 1) + (4𝑥 + 5)) = 𝜃(𝑥2 + 4𝑥 + 6) = 22 + 4 ⋅ 2 + 6 = 18.

• 𝜃(𝑓(𝑥)) + 𝜃(𝑔(𝑥))means first find 𝑓(2) and 𝑔(2) and then add those real numbers.
Thus,

𝜃(𝑓(𝑥)) + 𝜃(𝑔(𝑥)) = 𝑓(2) + 𝑔(2) = (22 + 1) + (4 ⋅ 2 + 5) = 5 + 13 = 18.
311
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• 𝜃(𝑓(𝑥) ⋅ 𝑔(𝑥))means first multiply the polynomials and then evaluate the product
at 𝑥 = 2. Thus,

𝜃(𝑓(𝑥)⋅𝑔(𝑥)) = 𝜃((𝑥2+1)⋅(4𝑥+5)) = 𝜃(4𝑥3+5𝑥2+4𝑥+5) = 4⋅23+5⋅22+4⋅2+5 = 65.

• 𝜃(𝑓(𝑥)) ⋅ 𝜃(𝑔(𝑥))means first find 𝑓(2) and 𝑔(2) and then multiply those real num-
bers. Thus,

𝜃(𝑓(𝑥)) ⋅ 𝜃(𝑔(𝑥)) = 𝑓(2) ⋅ 𝑔(2) = (22 + 1) ⋅ (4 ⋅ 2 + 5) = 5 ⋅ 13 = 65.

Thus, we have 𝜃(𝑓(𝑥)+𝑔(𝑥)) = 𝜃(𝑓(𝑥))+𝜃(𝑔(𝑥)) and 𝜃(𝑓(𝑥)⋅𝑔(𝑥)) = 𝜃(𝑓(𝑥)) ⋅𝜃(𝑔(𝑥)).
In fact, these relationships hold for all 𝑓(𝑥), 𝑔(𝑥) ∈ ℝ[𝑥]. We’ll leave the justification
to you as an exercise.

The relationships in Example 31.1 should feel familiar. We encountered such re-
lationships when we studied group homomorphisms in Chapter 17. With ring homo-
morphisms, however, we require both operations addition andmultiplication to be pre-
served.

Definition 31.2 (Ring homomorphism). Let 𝑅 and 𝑆 be rings. A function 𝜃 ∶ 𝑅 → 𝑆
is a ring homomorphism if 𝜃(𝑎 + 𝑏) = 𝜃(𝑎) + 𝜃(𝑏) and 𝜃(𝑎 ⋅ 𝑏) = 𝜃(𝑎) ⋅ 𝜃(𝑏) for all 𝑎,
𝑏 ∈ 𝑅.

The diagram below shows how addition is preserved by 𝜃. The relationship
𝜃(𝑎 + 𝑏) = 𝜃(𝑎) + 𝜃(𝑏) means it doesn’t matter whether we first add in 𝑅 and then
apply 𝜃 (i.e., 𝜃(𝑎 + 𝑏)), or first apply 𝜃 to each and then add in 𝑆 (i.e., 𝜃(𝑎) + 𝜃(𝑏)).
A similar diagram and interpretation can be made for the multiplicative relationship
𝜃(𝑎 ⋅ 𝑏) = 𝜃(𝑎) ⋅ 𝜃(𝑏), which we’ll leave up to you.

Remark. In Definition 31.2, if we denote the addition operations in𝑅 and 𝑆 by+𝑅 and
+𝑆 , respectively, then 𝜃(𝑎+𝑏) = 𝜃(𝑎)+𝜃(𝑏)would be written 𝜃(𝑎+𝑅 𝑏) = 𝜃(𝑎)+𝑆 𝜃(𝑏).
Given our prior experience with homomorphisms (from group theory), we will simply
write 𝜃(𝑎 + 𝑏) = 𝜃(𝑎) + 𝜃(𝑏) and 𝜃(𝑎 ⋅ 𝑏) = 𝜃(𝑎) ⋅ 𝜃(𝑏).

Example 31.3. The evaluation map 𝜃 ∶ ℝ[𝑥] → ℝ where 𝜃(𝑓(𝑥)) = 𝑓(2) for all
𝑓(𝑥) ∈ ℝ[𝑥] is a ring homomorphism. (See Example 31.1.)

Example 31.4. Consider the function 𝜑 ∶ ℤ → ℤ5 where 𝜑(𝑎) = 𝑎 (mod 5) for all
𝑎 ∈ ℤ. We have
• 𝜑(26 + 17) = 𝜑(43) = 43 (mod 5) = 3 (mod 5) and

• 𝜑(26) + 𝜑(17) = 26 (mod 5) + 17 (mod 5) = 1 (mod 5) + 2 (mod 5) = 3 (mod 5),
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so that 𝜑(26 + 17) = 𝜑(26) + 𝜑(17). Likewise, we have
• 𝜑(26 ⋅ 17) = 𝜑(442) = 2 (mod 5) and

• 𝜑(26) ⋅ 𝜑(17) = 26 (mod 5) ⋅ 17 (mod 5) = 1 (mod 5) ⋅ 2 (mod 5) = 2 (mod 5),
so that 𝜑(26 ⋅ 17) = 𝜑(26) ⋅ 𝜑(17). You’ll show in an exercise at the end of the chapter
that the above relationships hold for all 𝑎, 𝑏 ∈ ℤ (and not just for 26 and 17). Therefore,
𝜑 preserves both operations and hence is a ring homomorphism.

Example 31.5. Consider the function 𝜆 ∶ ℤ10 → ℤ30 where 𝜆(𝑎) = 6𝑎 for all 𝑎 ∈ ℤ10.
We have

• 𝜆(7 + 4) = 𝜆(1) = 6 ⋅ 1 = 6 and

• 𝜆(7) + 𝜆(4) = 6 ⋅ 7 + 6 ⋅ 4 = 66 = 6,
so that 𝜆(7 + 4) = 𝜆(7) + 𝜆(4). Note that the reductions 7 + 4 = 1 and 66 = 6 are done
in ℤ10 and ℤ30, respectively. We also have
• 𝜆(7 ⋅ 4) = 𝜆(8) = 6 ⋅ 8 = 18 and

• 𝜆(7) ⋅ 𝜆(4) = (6 ⋅ 7) ⋅ (6 ⋅ 4) = 1,008 = 18,
so that 𝜆(7 ⋅ 4) = 𝜆(7) ⋅ 𝜆(4). (We’ll leave it up to you to identify where the reductions
take place.)

Now let’s generalize. For 𝑎, 𝑏 ∈ ℤ10, we have 𝜆(𝑎+𝑏) = 6(𝑎+𝑏) = 6𝑎+6𝑏 = 𝜆(𝑎)+
𝜆(𝑏). Therefore, 𝜆(𝑎+𝑏) = 𝜆(𝑎)+𝜆(𝑏) so that 𝜆 preserves addition. For multiplication,
observe first that 𝜆(𝑎 ⋅ 𝑏) = 6(𝑎𝑏). We also have 𝜆(𝑎) ⋅ 𝜆(𝑏) = 6𝑎 ⋅ 6𝑏 = 36(𝑎𝑏) = 6(𝑎𝑏),
since 36 = 6 in ℤ30. Therefore, 𝜆(𝑎 ⋅ 𝑏) = 𝜆(𝑎) ⋅ 𝜆(𝑏). Thus, 𝜆 is a ring homomorphism.

Example 31.6. In Example 26.6, we considered the ring ℤ3[𝑖] = {𝑎 + 𝑏𝑖 | 𝑎, 𝑏 ∈ ℤ3},
where 𝑖 = √−1 so that 𝑖2 = −1. Define the function 𝜃 ∶ ℤ3[𝑖] → ℤ3[𝑖]where 𝜃(𝑎+𝑏𝑖) =
𝑎 − 𝑏𝑖 for all 𝑎 + 𝑏𝑖 ∈ ℤ3[𝑖]. For instance, we have 𝜃(1 + 2𝑖) = 1 − 2𝑖 = 1 + 𝑖, since
−2 = 1 in ℤ3. For 𝑎 + 𝑏𝑖, 𝑐 + 𝑑𝑖 ∈ ℤ3[𝑖], we have

𝜃((𝑎 + 𝑏𝑖) + (𝑐 + 𝑑𝑖)) = 𝜃((𝑎 + 𝑐) + (𝑏 + 𝑑)𝑖)
= (𝑎 + 𝑐) − (𝑏 + 𝑑)𝑖
= (𝑎 − 𝑏𝑖) + (𝑐 − 𝑑𝑖)
= 𝜃(𝑎 + 𝑏𝑖) + 𝜃(𝑐 + 𝑑𝑖),

so that 𝜃((𝑎 + 𝑏𝑖) + (𝑐 + 𝑑𝑖)) = 𝜃(𝑎 + 𝑏𝑖) + 𝜃(𝑐 + 𝑑𝑖). Thus, 𝜃 preserves addition. We’ll
leave it up to you to verify that 𝜃 preserves multiplication as well. Therefore, 𝜃 is a ring
homomorphism. In fact, 𝜃 is a ring isomorphism, as defined below. (We’ll leave that
verification to you, also.)

Definition 31.7 (Ring isomorphism). Let 𝑅 and 𝑆 be rings. A function 𝜃 ∶ 𝑅 → 𝑆 is
a ring isomorphism if 𝜃 is a bijection (i.e., one-to-one and onto) and 𝜃 preserves both
addition and multiplication.

Example 31.8. Consider the function 𝜃 ∶ ℤ2[𝑥] → ℤ2[𝑥] where 𝜃(𝑓(𝑥)) = 𝑓(𝑥)2 for
all 𝑓(𝑥) ∈ ℤ2[𝑥]. For instance, suppose 𝑓(𝑥) = 𝑥2 + 1 ∈ ℤ2[𝑥]. Then

𝜃(𝑓(𝑥)) = (𝑥2 + 1)2 = (𝑥2 + 1) ⋅ (𝑥2 + 1) = 𝑥4 + 𝟐𝑥2 + 1 = 𝑥4 + 𝟎𝑥2 + 1,
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so that 𝜃(𝑓(𝑥)) = 𝑥4 + 1. For 𝑓(𝑥), 𝑔(𝑥) ∈ ℤ2[𝑥], we have
𝜃(𝑓(𝑥) + 𝑔(𝑥)) = (𝑓(𝑥) + 𝑔(𝑥))2

= (𝑓(𝑥) + 𝑔(𝑥)) ⋅ (𝑓(𝑥) + 𝑔(𝑥))
= 𝑓(𝑥) ⋅ 𝑓(𝑥) + 𝑓(𝑥) ⋅ 𝑔(𝑥) + 𝑔(𝑥) ⋅ 𝑓(𝑥) + 𝑔(𝑥) ⋅ 𝑔(𝑥)
= 𝑓(𝑥)2 + 𝟐 ⋅ (𝑓(𝑥) ⋅ 𝑔(𝑥)) + 𝑔(𝑥)2

= 𝑓(𝑥)2 + 𝟎 ⋅ (𝑓(𝑥) ⋅ 𝑔(𝑥)) + 𝑔(𝑥)2

= 𝜃(𝑓(𝑥)) + 𝜃(𝑔(𝑥))
so that 𝜃(𝑓(𝑥) + 𝑔(𝑥)) = 𝜃(𝑓(𝑥)) + 𝜃(𝑔(𝑥)). For multiplication, we have

𝜃(𝑓(𝑥) ⋅ 𝑔(𝑥)) = (𝑓(𝑥) ⋅ 𝑔(𝑥))2

= (𝑓(𝑥) ⋅ 𝑔(𝑥)) ⋅ (𝑓(𝑥) ⋅ 𝑔(𝑥))
= (𝑓(𝑥) ⋅ 𝑓(𝑥)) ⋅ (𝑔(𝑥) ⋅ 𝑔(𝑥))
= 𝑓(𝑥)2 ⋅ 𝑔(𝑥)2

= 𝜃(𝑓(𝑥)) ⋅ 𝜃(𝑔(𝑥)),
so that 𝜃(𝑓(𝑥) ⋅ 𝑔(𝑥)) = 𝜃(𝑓(𝑥)) ⋅ 𝜃(𝑔(𝑥)). Thus, 𝜃 is a ring homomorphism.

Example 31.9. Let 𝑅 and 𝑆 be rings. Define the function 𝜃 ∶ 𝑅 → 𝑆 where 𝜃(𝑟) = 0𝑆
for all 𝑟 ∈ 𝑅. (Here, 0𝑆 denotes the additive identity element of 𝑆.) For 𝑎, 𝑏 ∈ 𝑅,
we have 𝜃(𝑎 + 𝑏) = 0𝑆 = 0𝑆 + 0𝑆 = 𝜃(𝑎) + 𝜃(𝑏), so that 𝜃(𝑎 + 𝑏) = 𝜃(𝑎) + 𝜃(𝑏). For
multiplication, we have 𝜃(𝑎⋅𝑏) = 0𝑆 = 0𝑆 ⋅0𝑆 = 𝜃(𝑎)⋅𝜃(𝑏), so that 𝜃(𝑎⋅𝑏) = 𝜃(𝑎)⋅𝜃(𝑏).
Thus, 𝜃 is a ring homomorphism, often called the trivial homomorphism.

Example 31.10 (Non-example). Consider the determinant function 𝛿 ∶ 𝑀(ℤ10) →
ℤ10 where 𝛿(𝛼) = det 𝛼 for all 𝛼 ∈ 𝑀(ℤ10). For 𝛼, 𝛽 ∈ 𝑀(ℤ10), Theorem 7.24 implies

𝛿(𝛼 ⋅ 𝛽) = det(𝛼 ⋅ 𝛽) = det 𝛼 ⋅ det 𝛽 = 𝛿(𝛼) ⋅ 𝛿(𝛽),
so that 𝛿(𝛼 ⋅𝛽) = 𝛿(𝛼) ⋅ 𝛿(𝛽) and 𝛿 preserves multiplication. (Recall from Example 17.5
that the above calculation shows that the determinant function is a group homomor-
phism from 𝐺(ℤ10) to 𝑈10.)

However 𝛿 fails to preserve addition. As a counterexample, suppose𝛼, 𝛽 ∈ 𝑀(ℤ10),
where 𝛼 = [ 1 2

3 4 ] and 𝛽 = [ 5 67 8 ]. Then 𝛿(𝛼 + 𝛽) = 𝛿 ([ 1 2
3 4 ] + [ 5 67 8 ]) = 𝛿 ([ 6 8

0 2 ]) =
det([ 6 8

0 2 ]) = 2, so that 𝛿(𝛼 + 𝛽) = 2. However, we have 𝛿(𝛼) + 𝛿(𝛽) = det 𝛼 + det 𝛽 =
8 + 8 = 6. Thus, 𝛿(𝛼 + 𝛽) ≠ 𝛿(𝛼) + 𝛿(𝛽), so that 𝛿 does not preserve addition and thus
it’s not a ring homomorphism.

31.2 Properties of ring homomorphisms
Recall that all rings are additive groups. Thus, a ring homomorphism 𝜃 ∶ 𝑅 → 𝑆 may
be viewed as a homomorphism of additive groups. As such, familiar properties from
group homomorphisms still hold.

First, we have 𝜃(0𝑅) = 0𝑆 ; i.e., 𝜃 maps the additive identity of 𝑅 to the additive
identity of 𝑆. This is the additive version of Theorem 17.9.

Example 31.11. Consider the ring homomorphism 𝜆 ∶ ℤ10 → ℤ30 where 𝜆(𝑎) = 6𝑎
for all 𝑎 ∈ ℤ10. (See Example 31.5.) We then have 𝜆(0) = 6 ⋅ 0 = 0, so that the additive
identity 0 ∈ ℤ10 of the domain maps to the additive identity 0 ∈ ℤ30 of the codomain.
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Remark. We must be careful not to assume 𝜃(1𝑅) = 1𝑆 , i.e., that 𝜃 maps the mul-
tiplicative identity of 𝑅 to the multiplicative identity of 𝑆. This isn’t necessarily true.
In the ring homomorphism 𝜆 above, for instance, we have 𝜆(1) = 6 ⋅ 1 = 6, so that
𝜆(1) ≠ 1.

Second, we have 𝜃(−𝑟) = −𝜃(𝑟) for all 𝑟 ∈ 𝑅, so that 𝜃maps additive inverses in 𝑅
to additive inverses in 𝑆. This is the additive version of Theorem 17.12.

Example 31.12. Consider the ring homomorphism 𝜑 ∶ ℤ → ℤ5 where 𝜑(𝑎) = 𝑎
(mod 5) for all 𝑎 ∈ ℤ. (See Example 31.4.) Then 𝜑(−23) = −23 (mod 5) = 2 (mod 5)
and −𝜑(23) = −(3 (mod 5)) = 2 (mod 5), so that 𝜑(−23) = −𝜑(23). In other words,
it doesn’t matter whether you first negate and then reduce mod 5, or first reduce mod
5 and then negate.

Third, we have 𝜃(𝑛⋅𝑟) = 𝑛⋅𝜃(𝑟) for all 𝑟 ∈ 𝑅 and 𝑛 ∈ ℤ. This is the additive version
of Theorem 17.13. Here, the expression 𝑛 ⋅ 𝑟 means the element 𝑟 is added to itself 𝑛
times, and likewise for 𝑛 ⋅ 𝜃(𝑟). If 𝑛 = 3, for instance, we have 𝜃(3 ⋅ 𝑟) = 𝜃(𝑟 + 𝑟 + 𝑟) =
𝜃(𝑟) + 𝜃(𝑟) + 𝜃(𝑟) = 3 ⋅ 𝜃(𝑟), so that 𝜃(3 ⋅ 𝑟) = 3 ⋅ 𝜃(𝑟). Similarly, 𝑛 = −3 is interpreted
as follows:

𝜃(−3 ⋅ 𝑟) = 𝜃((−𝑟) + (−𝑟) + (−𝑟))
= 𝜃(−𝑟) + 𝜃(−𝑟) + 𝜃(−𝑟)
= (−𝜃(𝑟)) + (−𝜃(𝑟)) + (−𝜃(𝑟))
= −3 ⋅ 𝜃(𝑟),

so that 𝜃(−3 ⋅ 𝑟) = −3 ⋅ 𝜃(𝑟).
Fourth, repeated application of 𝜃(𝑎⋅𝑏) = 𝜃(𝑎)⋅𝜃(𝑏) implies 𝜃(𝑟𝑛) = 𝜃(𝑟)𝑛 for 𝑟 ∈ 𝑅,

as long as 𝑛 is a positive integer. With 𝑛 = 3, for instance, we have 𝜃(𝑟3) = 𝜃(𝑟 ⋅ 𝑟 ⋅ 𝑟) =
𝜃(𝑟) ⋅ 𝜃(𝑟) ⋅ 𝜃(𝑟) = 𝜃(𝑟)3. Do you see why 𝑛must be positive in this situation?

31.3 Kernel and image
Just as with group homomorphisms, we define the kernel and image of a ring homo-
morphism. Let’s start with the kernel. Given a group homomorphism 𝜑 ∶ 𝐺 → 𝐻, we
had defined its kernel as

ker 𝜑 = {𝑎 ∈ 𝐺 | 𝜑(𝑎) = 𝜀𝐻},
i.e., the set of elements in the domain 𝐺 that map to the identity element 𝜀𝐻 in the
codomain 𝐻. Now suppose 𝜃 ∶ 𝑅 → 𝑆 is a ring homormorphism. Since the codomain
𝑆 has two identities 0𝑆 and 1𝑆 , there are two natural candidates for ker 𝜃, namely

{𝑟 ∈ 𝑅 | 𝜃(𝑟) = 0𝑆} and {𝑟 ∈ 𝑅 | 𝜃(𝑟) = 1𝑆}.
Aswedid in Section 31.2, wewant to take advantage of the fact that all rings are additive
groups. Thus, we make the following choice for the definition of the kernel in the ring
setting.

Definition 31.13 (Kernel of a ring homomorphism). Let 𝜃 ∶ 𝑅 → 𝑆 be a ring homo-
morphism. The kernel of 𝜃 is the set ker 𝜃 = {𝑟 ∈ 𝑅 | 𝜃(𝑟) = 0𝑆}, where 0𝑆 is the additive
identity of 𝑆.
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The image of a ring homomorphism is defined just like its counterpart in group
theory.

Definition 31.14 (Image of a ring homomorphism). Let 𝜃 ∶ 𝑅 → 𝑆 be a ring homo-
morphism. The image of 𝜃 is the set im 𝜃 = {𝜃(𝑟) | 𝑟 ∈ 𝑅}.

Again, since we may view 𝜃 as a homomorphism of additive groups, we conclude
that ker 𝜃 is an additive subgroup of 𝑅 (Theorem 18.6) and im 𝜃 is an additive subgroup
of 𝑆 (Theorem 18.11). We record this as a theorem about ring homomorphisms.

Theorem 31.15. Let 𝜃 ∶ 𝑅 → 𝑆 be a ring homomorphism. Then ker 𝜃 is an additive
subgroup of the domain 𝑅 and im 𝜃 is an additive subgroup of the codomain 𝑆.

Example 31.16. Consider the ring homomorphism 𝜑 ∶ ℤ → ℤ5 from Example 31.4
where 𝜑(𝑎) = 𝑎 (mod 5) for all 𝑎 ∈ ℤ. Then ker 𝜑 contains integers 𝑎 such that 𝜑(𝑎) =
0; i.e., 𝑎 = 0 (mod 5). These are precisely the multiples of 5, and thus ker 𝜑 = 5ℤ. We
also have im𝜑 = ℤ5, which implies that 𝜑 is onto. Note that ker 𝜑 = 5ℤ and im𝜑 = ℤ5
are additive subgroups of the domain ℤ and codomain ℤ5, respectively.

Example 31.17. Consider the ring homomorphism 𝜆 ∶ ℤ10 → ℤ30 from Example 31.5
where 𝜆(𝑎) = 6𝑎 for all 𝑎 ∈ ℤ10. We have 𝜆(0) = 6 ⋅ 0 = 0, 𝜆(5) = 6 ⋅ 5 = 0, and
𝜆(𝑎) ≠ 0 for all other elements 𝑎 ∈ ℤ10. Thus ker 𝜆 = {0, 5}, which is a subgroup of
the domain ℤ10. Computing 𝜆(𝑎) for each 𝑎 ∈ ℤ10, we see that the distinct outputs of
the function 𝜆 are 0, 6, 12, 18, and 24. Therefore im 𝜆 = {0, 6, 12, 18, 24}, which is a
subgroup of the codomain ℤ30.

Example 31.18. Consider the evaluation map 𝜃 ∶ ℝ[𝑥] → ℝ from Example 31.1,
where 𝜃(𝑓(𝑥)) = 𝑓(2) for all 𝑓(𝑥) ∈ ℝ[𝑥]. Then ker 𝜃 = {𝑓(𝑥) ∈ ℝ[𝑥] | 𝜃(𝑓(𝑥)) = 0}.
For instance, let 𝑝(𝑥) = 𝑥2 + 𝑥 − 6 and 𝑞(𝑥) = 𝑥3 − 7 be elements of ℝ[𝑥]. Then
𝜃(𝑝(𝑥)) = 𝑝(2) = 22 + 2 − 6 = 0, so that 𝑝(𝑥) ∈ ker 𝜃. However, 𝜃(𝑞(𝑥)) = 𝑞(2) =
23 − 7 = 1 ≠ 0, so that 𝑞(𝑥) ∉ ker 𝜃.

In general, a polynomial 𝑓(𝑥) is in ker 𝜃 when 𝜃(𝑓(𝑥)) = 0, i.e., when 𝑓(2) = 0. By
the factor theorem, these are precisely the polynomials that have 𝑥−2 as a factor, such
as 𝑝(𝑥) = 𝑥2+𝑥−6 = (𝑥−2) ⋅ (𝑥+3). We conclude that ker 𝜃 = {(𝑥−2) ⋅ 𝑔(𝑥) | 𝑔(𝑥) ∈
ℝ[𝑥]}, i.e., the set of all polynomial multiples of 𝑥 − 2.

Moreover, im 𝜃 = ℝ, or equivalently, 𝜃 is onto. Given𝑎 ∈ ℝ, let𝑓(𝑥) = (𝑥−2)+𝑎 ∈
ℝ[𝑥]. Then, 𝜃(𝑓(𝑥)) = 𝑓(2) = (2−2)+𝑎 = 𝑎. Thus, every element inℝ (the codomain)
gets “hit” by the function 𝜃.

31.4 Examples and definition of an ideal
Example 31.19. Consider the ring homomorphism 𝜑 ∶ ℤ → ℤ5, where 𝜑(𝑎) = 𝑎
(mod 5) for all 𝑎 ∈ ℤ. We saw in Example 31.16 that ker 𝜑 = 5ℤ. While 5ℤ is an
additive subgroup of the domain ℤ, it is not a subring of ℤ, since 5ℤ does not contain
themultiplicative identity 1. Instead, 5ℤ satisfies what we’ll call the product absorption
property: If 𝑟 ∈ ℤ (the domain) and 𝑎 ∈ 5ℤ, then 𝑟 ⋅ 𝑎 ∈ 5ℤ. For instance, let 𝑟 = 7 and
𝑎 = 10. Then 𝑟 ⋅ 𝑎 = 70, which is in 5ℤ. More generally, suppose 𝑟 ∈ ℤ and 𝑎 ∈ 5ℤ so
that 𝑎 = 5𝑛 for some 𝑛 ∈ ℤ. Then 𝑟 ⋅ 𝑎 = 𝑟 ⋅ 5𝑛 = 5 ⋅ (𝑟𝑛) ∈ 5ℤ, so that 𝑟 ⋅ 𝑎 ∈ 5ℤ.
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Below is a visual depiction of product absorption. It’s as if the element 𝑎 ∈ 5ℤ
absorbs the element 𝑟 ∈ ℤ into the set 5ℤ when they are multiplied together.

Example 31.20. Consider the ring homomorphism 𝜆 ∶ ℤ10 → ℤ30, where 𝜆(𝑎) = 6𝑎
for all 𝑎 ∈ ℤ10. We saw in Example 31.17 that ker 𝜆 = {0, 5}. Observe that {0, 5} is
an additive subgroup of the domain ℤ10, but not its subring. We’ll show that {0, 5}
also satisfies the product absorption property: If 𝑟 ∈ ℤ10 (the domain) and 𝑎 ∈ {0, 5},
then 𝑟 ⋅ 𝑎 ∈ {0, 5}. There are two cases to consider: 𝑎 = 0 or 𝑎 = 5. If 𝑎 = 0, then
𝑟 ⋅ 𝑎 = 0 ∈ {0, 5} for all 𝑟 ∈ ℤ10. If 𝑎 = 5, then 𝑟 ⋅ 𝑎 = 0 for 𝑟 = 0, 2, 4, 6, and 8; and
𝑟 ⋅ 𝑎 = 5 for 𝑟 = 1, 3, 5, 7, and 9. Thus, in either case, 𝑟 ⋅ 𝑎 ∈ {0, 5}.

Example 31.21. Consider the ring homomorphism 𝜃 ∶ ℝ[𝑥] → ℝ from Example 31.1,
where 𝜃(𝑓(𝑥)) = 𝑓(2) for all 𝑓(𝑥) ∈ ℝ[𝑥]. We saw in Example 31.18 that ker 𝜃 =
{(𝑥 − 2) ⋅ 𝑔(𝑥) | 𝑔(𝑥) ∈ ℝ[𝑥]}. That ker 𝜃 is an additive subgroup of ℝ[𝑥] follows from
Theorem 31.15. To verify that ker 𝜃 satisfies the product absorption property, let 𝑓(𝑥) ∈
ℝ[𝑥] and 𝑝(𝑥) ∈ ker 𝜃, so that 𝑝(𝑥) = (𝑥 − 2) ⋅ 𝑔(𝑥) for some 𝑔(𝑥) ∈ ℝ[𝑥]. We have
𝜃(𝑓(𝑥) ⋅ 𝑝(𝑥)) = 𝜃(𝑓(𝑥)) ⋅ 𝜃(𝑝(𝑥)) = 𝑓(2) ⋅ 𝑝(2). But 𝑝(2) = (2− 2) ⋅ 𝑔(2) = 0 ⋅ 𝑔(2) = 0.
Thus, 𝜃(𝑓(𝑥) ⋅ 𝑝(𝑥)) = 𝑓(2) ⋅ 0 = 0, and so 𝑓(𝑥) ⋅ 𝑝(𝑥) is contained in ker 𝜃 as well.

In the above examples, ker 𝜑 = 5ℤ, ker 𝜆 = {0, 5}, andker 𝜃 = {(𝑥−2)⋅𝑔(𝑥) | 𝑔(𝑥) ∈
ℝ[𝑥]} are additive subgroups of the domain and satisfy the product absorption property.
They are examples of an ideal, defined below. As mentioned in the introduction to this
chapter, an ideal of a ring is analogous to a normal subgroup of a group. Thus, ideals
will play a critical role in our work with quotient rings in the next chapter.

Definition 31.22 (Ideal of a ring). A subset 𝐴 of a ring 𝑅 is called an ideal of 𝑅 if the
following are true:
• 𝐴 is an additive subgroup of 𝑅.
• 𝐴 satisfies the product absorption property: If 𝑟 ∈ 𝑅 and 𝑎 ∈ 𝐴, then 𝑟 ⋅ 𝑎 ∈ 𝐴.

Remark. For product absorption, we should say 𝑟 ⋅ 𝑎, 𝑎 ⋅ 𝑟 ∈ 𝐴, since 𝑅 isn’t necessar-
ily commutative. That being said, we’ll mostly work with commutative rings for the
remainder of this textbook. And when 𝑅 is commutative, it’s fine to consider 𝑟 ⋅ 𝑎 ∈ 𝐴
only.

Example 31.23. Let𝑅 be a ring. Then𝑅 itself is an ideal of𝑅. The subset {0} containing
only the additive identity of 𝑅 is also an ideal of 𝑅, and it is called the trivial ideal.

Examples 31.19, 31.20, and 31.21 seem to suggest that the kernel of a ring homo-
morphism is an ideal of the domain. Here is the generalization. Compare this with
Theorem 24.17, which states that the kernel of a group homomorphism is a normal
subgroup of the domain.
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Theorem 31.24 (Kernel is an ideal). Let 𝜃 ∶ 𝑅 → 𝑆 be a ring homomorphism with
𝐾 = ker 𝜃. Then 𝐾 is an ideal of the domain 𝑅.

Proof. By Theorem 31.15, the kernel 𝐾 is an additive subgroup of the domain 𝑅.
Therefore, it suffices to show that 𝐾 satisfies the product absorption property. Assume
𝑟 ∈ 𝑅 and 𝑘 ∈ 𝐾. Then 𝜃(𝑘) = 0𝑆 , and we have 𝜃(𝑟 ⋅ 𝑘) = 𝜃(𝑟) ⋅ 𝜃(𝑘) = 𝜃(𝑟) ⋅ 0𝑆 = 0𝑆 .
Hence, 𝜃(𝑟 ⋅ 𝑘) = 0𝑆 so that 𝑟 ⋅ 𝑘 ∈ 𝐾. A similar argument shows that 𝑘 ⋅ 𝑟 ∈ 𝐾. Thus,
𝐾 is an ideal of 𝑅. ■

Proof know-how. The above proof demonstrates a common technique for showing
that a set𝐾 in a ring𝑅 satisfies the product absorption property. (Note: To prove that𝐾
is an ideal of 𝑅, you must separately show that 𝐾 is an additive subgroup of 𝑅.) Begin
by choosing two elements: 𝑟 ∈ 𝑅 and 𝑘 ∈ 𝐾. Then argue that the product 𝑟 ⋅ 𝑘 is
contained in 𝐾. This argument typically uses the fact that 𝑘 is an element of 𝐾. In the
above proof, for instance, we used the fact that 𝜃(𝑘) = 0𝑆 to show that 𝜃(𝑟 ⋅ 𝑘) = 0𝑆 .

Example 31.25. Thus far, we’ve seen the following examples of an ideal:
• 5ℤ is an ideal of ℤ, where 5ℤ = {5 ⋅ 𝑛 | 𝑛 ∈ ℤ}.
• {0, 5} is an ideal of ℤ10, where {0, 5} = {5 ⋅ 𝑛 | 𝑛 ∈ ℤ10}.
• {(𝑥 − 2) ⋅ 𝑔(𝑥) | 𝑔(𝑥) ∈ ℝ[𝑥]} is an ideal of ℝ[𝑥].

Each is a set of multiples of a particular element in the ring, which motivates the fol-
lowing definition.

Definition 31.26 (Principal ideal). Let 𝑅 be a commutative ring and fix an element
𝑎 ∈ 𝑅. The set ⟨𝑎⟩ = {𝑎 ⋅ 𝑟 | 𝑟 ∈ 𝑅} is called the principal ideal generated by 𝑎; i.e., ⟨𝑎⟩
is the set of all multiples of 𝑎.

Example 31.27. Recall that in the group setting, ⟨𝑎⟩ means the cyclic subgroup gen-
erated by 𝑎, i.e., the set of all integer powers of 𝑎. The meaning of ⟨𝑎⟩ should be clear
from the context.

Example 31.28. Each ideal in Example 31.25 is a principal ideal:
• With 5 ∈ ℤ, we have ⟨5⟩ = {5 ⋅ 𝑟 | 𝑟 ∈ ℤ} = 5ℤ, an ideal of ℤ.
• With 5 ∈ ℤ10, we have ⟨5⟩ = {5 ⋅ 𝑟 | 𝑟 ∈ ℤ10} = {0, 5}, an ideal of ℤ10.
• With 𝑥−2 ∈ ℝ[𝑥], we have ⟨𝑥−2⟩ = {(𝑥−2) ⋅𝑔(𝑥) | 𝑔(𝑥) ∈ ℝ[𝑥]}, an ideal ofℝ[𝑥].

Example 31.29. Let 𝑅 be a ring. In Example 31.23, we noted that 𝑅 itself and {0}
are ideals of 𝑅. These are principal ideals as well, generated by the multiplicative and
additive identities of 𝑅, respectively:
• With 1 ∈ 𝑅, we have ⟨1⟩ = {1 ⋅ 𝑟 | 𝑟 ∈ 𝑅} = 𝑅.
• With 0 ∈ 𝑅, we have ⟨0⟩ = {0 ⋅ 𝑟 | 𝑟 ∈ 𝑅} = {0}.

As its name suggests, a principal ideal ⟨𝑎⟩ = {𝑎 ⋅ 𝑟 | 𝑟 ∈ 𝑅} is indeed an ideal of 𝑅.
The proof of the following theorem is left for you as an exercise.

Theorem 31.30. Let 𝑅 be a commutative ring and fix an element 𝑎 ∈ 𝑅. Then the set
⟨𝑎⟩ = {𝑎 ⋅ 𝑟 | 𝑟 ∈ 𝑅} is an ideal of 𝑅.
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31.5 Ideals in ℤ and in 𝐹[𝑥]
All of the ideals we’ve examined so far have been principal ideals of the form ⟨𝑎⟩ =
{𝑎 ⋅ 𝑟 | 𝑟 ∈ 𝑅}, i.e., the set of all multiples of a fixed element 𝑎 ∈ 𝑅. The next example
shows that not every ideal is principal.

Example 31.31. Let𝐴 be the set of all polynomials inℤ[𝑥]with an even constant term.
For instance, consider 𝑓(𝑥) = 3𝑥101 − 171𝑥52 + 𝑥 + 12 and 𝑔(𝑥) = 5𝑥 − 21, which are
elements of ℤ[𝑥]. The constant terms of 𝑓(𝑥) and 𝑔(𝑥) are 12 (which is even) and −21
(which isn’t even), respectively. Therefore, 𝑓(𝑥) ∈ 𝐴 and 𝑔(𝑥) ∉ 𝐴. In the exercises,
you’ll show that (1) 𝐴 is an ideal of ℤ[𝑥], but (2) 𝐴 is not a principal ideal; i.e., there
does not exist an element 𝛼(𝑥) ∈ ℤ[𝑥] such that 𝐴 = ⟨𝛼(𝑥)⟩.

Example 31.32. We’ve seen that ⟨5⟩ = 5ℤ is an ideal of ℤ. Other ideals of ℤ include
⟨2⟩ = 2ℤ, ⟨12⟩ = 12ℤ, and more generally, ⟨𝑛⟩ = 𝑛ℤ, where 𝑛 is a fixed integer. These
include the two extremes, i.e., the ring ℤ itself, ⟨1⟩ = ℤ, and the trivial ideal ⟨0⟩ = {0}.

It turns out that every ideal of ℤ is principal, as the following theorem states. We’ll
start the proof but will leave it to you as an exercise to finish writing it.

Theorem 31.33. Every ideal of ℤ is a principal ideal.

Proof. Let 𝐴 be an ideal of ℤ. There are two cases to consider; namely: 𝐴 = {0} and
𝐴 ≠ {0}.

If 𝐴 = {0}, then we have 𝐴 = ⟨0⟩ so that 𝐴 is principal.
Thus, assume 𝐴 ≠ {0} so that 𝐴 contains a non-zero element. Further, 𝐴 is an

additive subgroup of ℤ, which means if 𝑎 ∈ 𝐴, then −𝑎 ∈ 𝐴. Therefore, 𝐴 must
contain a positive integer. Let 𝑑 be the smallest positive integer in𝐴. We will show that
𝐴 = ⟨𝑑⟩ by showing 𝐴 ⊆ ⟨𝑑⟩ and ⟨𝑑⟩ ⊆ 𝐴.

Below, we will show that ⟨𝑑⟩ ⊆ 𝐴. The other set inclusion is left to you as an
exercise. Let 𝑛 ∈ ⟨𝑑⟩ so that 𝑛 = 𝑑 ⋅ 𝑟 for some 𝑟 ∈ ℤ. We have 𝑑 ∈ 𝐴, 𝑟 ∈ ℤ, and 𝐴
satisfies the product absorption property, since it is an ideal. Therefore, 𝑛 = 𝑑 ⋅ 𝑟 ∈ 𝐴,
so that ⟨𝑑⟩ ⊆ 𝐴 as desired. ■

In recent chapters, we’ve described themany structural similarities betweenℤ and
the polynomial ring 𝐹[𝑥]where 𝐹 is a field. The following theorem, whose proof is left
for you, captures another such similarity.

Theorem 31.34. Let 𝐹 be a field. Then every ideal of 𝐹[𝑥] is a principal ideal.

Big picture stuff
We continue to highlight the connections between the ring of integers ℤ and the poly-
nomial ring 𝐹[𝑥], where 𝐹 is a field. As Theorems 31.33 and 31.34 indicate, both rings
satisfy the condition that every ideal is principal. More generally, an integral domain
whose ideals are all principal is called a principal ideal domain (or PID). And ℤ and
𝐹[𝑥] are classic examples of a PID.

For another connection, we restate an early observation in the language of princi-
pal ideals. In Chapter 3, Exercises #12 and #13, we proved the following:

Let𝑚, 𝑛 ∈ ℤ. Then 𝑛 ∣ 𝑚 if and only if ⟨𝑚⟩ ⊆ ⟨𝑛⟩.



320 Chapter 31. Ring Homomorphisms

Wewrote𝑚ℤ and 𝑛ℤ in Chapter 3, but we saw in this chapter that those are equivalent
to the principal ideals ⟨𝑚⟩ and ⟨𝑛⟩, respectively. Now, one of the exercises in this chapter
states the following:

Let 𝑓(𝑥), 𝑔(𝑥) ∈ 𝐹[𝑥]. Then 𝑔(𝑥) ∣ 𝑓(𝑥) if and only if ⟨𝑓(𝑥)⟩ ⊆ ⟨𝑔(𝑥)⟩.
The actual proof is in ℝ[𝑥], but the argument remains the same in a more general
setting of 𝐹[𝑥]. Note how these statements are saying the same thing in two different
rings ℤ and 𝐹[𝑥].

Exercises
1. Consider the function 𝜃 ∶ ℤ7[𝑥] → ℤ7 where 𝜃(𝑓(𝑥)) = 𝑓(3) for all 𝑓(𝑥) ∈ ℤ7[𝑥].

Let 𝑓(𝑥) = 2𝑥2 + 5𝑥 + 4 and 𝑔(𝑥) = 6𝑥 + 1 in ℤ7[𝑥].
(a) Verify that 𝜃(𝑓(𝑥) + 𝑔(𝑥)) = 𝜃(𝑓(𝑥)) + 𝜃(𝑔(𝑥)).
(b) Verify that 𝜃(𝑓(𝑥) ⋅ 𝑔(𝑥)) = 𝜃(𝑓(𝑥)) ⋅ 𝜃(𝑔(𝑥)).

2. Let 𝐹 be a field and fix 𝑎 ∈ 𝐹. Define the evaluation map 𝜃 ∶ 𝐹[𝑥] → 𝐹 where
𝜃(𝑓(𝑥)) = 𝑓(𝑎) for all 𝑓(𝑥) ∈ 𝐹[𝑥]. Prove that 𝜃 is a ring homomorphism.

3. Consider the ring ℤ[𝑖] = {𝑎 + 𝑏𝑖 | 𝑎, 𝑏 ∈ ℤ} (with 𝑖 = √−1 so that 𝑖2 = −1) and
the ring𝑀(ℤ) of 2 × 2matrices with entries in ℤ. Define 𝜃 ∶ ℤ[𝑖] → 𝑀(ℤ) where
𝜃(𝑎 + 𝑏𝑖) = [ 𝑎 𝑏

−𝑏 𝑎 ] for all 𝑎 + 𝑏𝑖 ∈ ℤ[𝑖].
(a) Let 𝛼 = 2 + 5𝑖 and 𝛽 = 7 − 𝑖 be a pair of elements in ℤ[𝑖]. Verify that

𝜃(𝛼 + 𝛽) = 𝜃(𝛼) + 𝜃(𝛽) and 𝜃(𝛼 ⋅ 𝛽) = 𝜃(𝛼) ⋅ 𝜃(𝛽).
(b) Show that 𝜃 is a ring homomorphism.
(c) Find all elements in the kernel ker 𝜃.
(d) Describe all elements in the image im 𝜃.

4. Consider the following subset of 𝑀(ℤ10): 𝑆 = {[ 𝑎 𝑏
𝑏 𝑎 ] || 𝑎, 𝑏 ∈ ℤ10} . In Theorem

26.21, we saw that 𝑆 is a subring of 𝑀(ℤ10). Define a function 𝜑 ∶ 𝑆 → ℤ10 such
that 𝜑 ([ 𝑎 𝑏

𝑏 𝑎 ]) = 𝑎 − 𝑏 for all [ 𝑎 𝑏
𝑏 𝑎 ] ∈ 𝑆.

(a) Show that 𝜑 is a ring homomorphism.
(b) Find 5 elements in the kernel ker 𝜑.
(c) Describe all elements in ker 𝜑.
(d) Verify that 𝐾 = ker 𝜑 satisfies the product absorption property:

If 𝜌 ∈ 𝑆 (the domain) and 𝛼 ∈ 𝐾, then 𝜌 ⋅ 𝛼 ∈ 𝐾.
(e) Find all elements in the image im𝜑. Is 𝜑 onto? Why or why not?

5. Define a function 𝜃 ∶ 𝑀(ℤ10) → ℤ10 where 𝜃 ([ 𝑎 𝑏
𝑐 𝑑 ]) = 𝑎 + 𝑑 for all [ 𝑎 𝑏

𝑐 𝑑 ] ∈
𝑀(ℤ10). Determine whether or not 𝜃 is a ring homomorphism. If it is, prove it. If
not, provide a counterexample.

6. Consider the ring ℤ3[𝑖] = {𝑎 + 𝑏𝑖 | 𝑎, 𝑏 ∈ ℤ3}. Define 𝜃 ∶ ℤ3[𝑖] → ℤ3[𝑖] where
𝜃(𝑎+𝑏𝑖) = 𝑎−𝑏𝑖 for all 𝑎+𝑏𝑖 ∈ ℤ3[𝑖]. In Example 31.6, we showed that 𝜃 preserves
addition.

(a) Show that 𝜃 preserves multiplication, so that it’s a ring homomorphism.
(b) Show that 𝜃 is a bijection, so that it’s a ring isomorphism.
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7. Consider the function 𝜃 ∶ ℤ2[𝑥] → ℤ2[𝑥] where 𝜃(𝑓(𝑥)) = 𝑓(𝑥)2 for all 𝑓(𝑥) ∈
ℤ2[𝑥]. In Example 31.8, we showed that 𝜃 is a ring homomorphism.
(a) Find all elements in the kernel ker 𝜃.
(b) Describe all elements in the image im 𝜃.

8. Consider the function 𝜃 ∶ ℤ𝑝[𝑥] → ℤ𝑝[𝑥] where 𝜃(𝑓(𝑥)) = 𝑓(𝑥)𝑝 for all 𝑓(𝑥) ∈
ℤ𝑝[𝑥].
(a) Prove that 𝜃 is a ring homomorphism when 𝑝 = 3.
(b) Repeat part (a) with 𝑝 = 5.
(c) Repeat part (a) with 𝑝 = 7.
(d) Repeat part (a) with any prime 𝑝.

9. Consider the field ℚ(√2) = {𝑎 + 𝑏√2 | 𝑎, 𝑏 ∈ ℚ}. (See Example 27.15.) Define
𝜃 ∶ ℚ(√2) → ℚ(√2)where 𝜃(𝑎+𝑏√2) = 𝑎−𝑏√2 for all 𝑎+𝑏√2 ∈ ℚ(√2). Prove
that 𝜃 is a ring isomorphism.

10. In each case, 𝐴 is an additive subgroup of ring 𝑅. Determine whether or not 𝐴
satisfies the product absorption property (so that𝐴 is an ideal of𝑅). If it does, prove
it. If it doesn’t, give a counterexample showing how 𝐴 does not satisfy product
absorption.

(a) 𝑅 = ℝ; 𝐴 = ℤ.
(b) 𝑅 = ℤ[𝑖]; 𝐴 = {𝑛 + 𝑛𝑖 | 𝑛 ∈ ℤ}. (For the definition of ℤ[𝑖], see Exercise #3.)
(c) 𝑅 = ℤ[𝑖]; 𝐴 = {𝑎 + 𝑏𝑖 | 𝑎, 𝑏 ∈ ℤ, 𝑏 is even}.
(d) 𝑅 = ℤ[𝑥]; 𝐴 is the set of all polynomials with every coefficient divisible by 5.
(e) 𝑅 = ℤ7[𝑥]; 𝐴 is the set of all polynomials with constant term equaling 0.

11. Let 𝐴 be the set of all polynomials in ℤ[𝑥]with an even constant term. (See Exam-
ple 31.31.)

(a) Prove that 𝐴 is an ideal of ℤ[𝑥].
(b) Anita claims 𝐴 = ⟨2⟩, where ⟨2⟩ = {2 ⋅ 𝑓(𝑥) | 𝑓(𝑥) ∈ ℤ[𝑥]}. Do you agree or

disagree? Explain.
(c) Elizabeth claims 𝐴 = ⟨𝑥⟩, where ⟨𝑥⟩ = {𝑥 ⋅ 𝑓(𝑥) | 𝑓(𝑥) ∈ ℤ[𝑥]}. Agree or

disagree? Explain.

(This exercise and Exercises #12 and #13 below are referenced in Example 35.7.
This exercise is also referenced in Chapter 37, Exercise #13.)

12. Let 𝐴 be the set of all polynomials in ℤ[𝑥] with an even constant term. Prove that
𝐴 is not a principal ideal; i.e., there does not exist any 𝛼(𝑥) ∈ ℤ[𝑥] such that 𝐴 =
⟨𝛼(𝑥)⟩.
Hint: Suppose for contradiction that𝐴 = ⟨𝛼(𝑥)⟩ for some𝛼(𝑥) ∈ ℤ[𝑥]. Thatmeans
every element of 𝐴 is a (polynomial) multiple of 𝛼(𝑥). Then what conclusions can
you make about 𝛼(𝑥)?

13. Let 𝐴 be the set of all polynomials in ℤ[𝑥] with an even constant term. Prove that
𝐴 = ⟨𝑥, 2⟩, where ⟨𝑥, 2⟩ = {𝑥 ⋅ 𝑓(𝑥) + 2 ⋅ 𝑔(𝑥) | 𝑓(𝑥), 𝑔(𝑥) ∈ ℤ[𝑥]}. (This exercise
is also referenced in Chapter 36, Exercise #21.)

14. Prove Theorem 31.30.
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15. Prove: Let 𝜃 ∶ 𝑅 → 𝑆 be a ring homomorphism. Suppose 𝐵 is an ideal of 𝑆, and
define the set 𝐴 = {𝑟 ∈ 𝑅 | 𝜃(𝑟) ∈ 𝐵}. Then 𝐴 is an ideal of 𝑅.

16. Prove: Let 𝜃 ∶ 𝑅 → 𝑆 be an onto ring homomorphism. Suppose 𝐴 is an ideal of 𝑅,
and define the set 𝐵 = {𝜃(𝑎) | 𝑎 ∈ 𝐴}. Then 𝐵 is an ideal of 𝑆.

17. Let 𝜃 ∶ 𝑅 → 𝑆 be an onto ring homomorphism.
(a) Prove: 𝜃(1𝑅) = 1𝑆 ; i.e., 𝜃 maps the multiplicative identity of 𝑅 to that of 𝑆.
(b) Using an example, show how the statement in part (a) is false if 𝜃 is not onto.

18. Prove: Let 𝜃 ∶ 𝑅 → 𝑆 be a ring homomorphism. Suppose that the only nilpotent
elements of ker 𝜃 and 𝑆 are 0𝑅 and 0𝑆 , respectively. Then 0𝑅 is the only nilpotent
element of 𝑅.
Hint: Suppose 𝑎 ∈ 𝑅 is nilpotent and show that 𝑎 = 0𝑅.

19. Prove: Let 𝜃 ∶ 𝑅 → 𝑆 be a ring homomorphism, where 𝑅 is a field (and 𝑆 is a ring).
If 𝜃 is not one-to-one, then 𝜃 is trivial; i.e., 𝜃(𝑟) = 0𝑆 for all 𝑟 ∈ 𝑅.

20. Prove: Let 𝑓(𝑥), 𝑔(𝑥) ∈ ℝ[𝑥]. Then 𝑔(𝑥) ∣ 𝑓(𝑥) if and only if ⟨𝑓(𝑥)⟩ ⊆ ⟨𝑔(𝑥)⟩. (This
exercise is referenced in Chapter 36, Exercise #3.)

21. Let 𝐼 and 𝐽 be ideals of a ring 𝑅. Prove each of the following:
(a) 𝐼 + 𝐽 = {𝑖 + 𝑗 | 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽} is an ideal of 𝑅. (This is the statement of Theorem

37.3.)
(b) 𝐼 ∩ 𝐽 = {𝑟 ∈ 𝑅 | 𝑟 ∈ 𝐼 and 𝑟 ∈ 𝐽} is an ideal of 𝑅. (This exercise is referenced

in Chapter 35, Exercise #15.)

22. Prove: Let 𝑅 be a commutative ring. Then the only ideals of 𝑅 are {0} and 𝑅 itself
if and only if 𝑅 is a field.

23. Let𝑆 be the subset ofℝ[𝑥] containing polynomialswhose sumof coefficients equals
zero. For example, 𝑓(𝑥) = 5𝑥4−3𝑥2−6𝑥+4 ∈ 𝑆 because 5+ (−3)+ (−6)+4 = 0.
Prove that 𝑆 = ⟨𝑥 − 1⟩, i.e., the principal ideal generated by 𝑥 − 1.
Note: You must show both 𝑆 ⊆ ⟨𝑥 − 1⟩ and ⟨𝑥 − 1⟩ ⊆ 𝑆.

24. Complete the proof of Theorem 31.33 by showing the set inclusion 𝐴 ⊆ ⟨𝑑⟩.
25. Prove Theorem 31.34.

26. Let 𝑋 ⊆ 𝑅 be a non-empty subset of a ring 𝑅, and define 𝐴 = {𝑎 ∈ 𝑅 | 𝑎 ⋅ 𝑥 =
0 for all 𝑥 ∈ 𝑋}.
(a) Let 𝑅 = ℤ16 and 𝑋 = {2, 4, 8}. Find the set 𝐴.
(b) Let 𝑅 = ℤ16 and 𝑋 = {4, 8}. Find the set 𝐴.
(c) Let 𝑅 = ℤ16 and 𝑋 = {8}. Find the set 𝐴.
(d) Set 𝐴 is called the annihilator of set 𝑋 . Why do you think so?
(e) Prove: 𝐴 is an ideal of 𝑅.



32
Introduction to Quotient Rings

In this chapter, we begin our study of quotient rings, which will be the focus of the rest
of the textbook. As you can imagine, quotient rings are like quotient groups, but with
two operations instead of just one. Here is a quick recap of quotient groups. Given
an additive group 𝐺 and a normal subgroup 𝐻, we formed the quotient group 𝐺/𝐻
which contains the cosets 𝑔 + 𝐻 where 𝑔 ∈ 𝐺. (Note: An additive group is always
commutative; thus its subgroups are always normal.) We add a pair of cosets 𝑎+𝐻 and
𝑏 + 𝐻 using coset addition, i.e., by adding every element of 𝑎 + 𝐻 to every element of
𝑏+𝐻. But we also found a convenient shortcut; namely: (𝑎+𝐻)+(𝑏+𝐻) = (𝑎+𝑏)+𝐻.

Our development of quotient rings will take a similar path. Given a commutative
ring 𝑅 and an ideal 𝐴, we’ll form the quotient ring 𝑅/𝐴 consisting of the cosets 𝑟 + 𝐴
where 𝑟 ∈ 𝑅. (Note: Weuse additive cosets to take advantage of the fact that every ring
is an additive group.) We’ll learn how to add and multiply cosets in this new setting
and the role that the ideals play in making everything fit together. We’ll also revisit the
First Isomorphism Theorem (see Chapter 25) and develop an analogous theorem for
rings.

32.1 From a quotient group to a quotient ring
We begin by reviewing the notion of cosets from group theory. (Suggestion: Re-read
Section 21.3 for a quick refresher.) Consider the additive group ℤ and its subgroup 5ℤ.
Then the cosets of 5ℤ have the form 𝑎 + 5ℤ where 𝑎 ∈ ℤ. Examples of such cosets
include 4,378 + 5ℤ, 85 + 5ℤ, and −23 + 5ℤ.

Recall that different coset representatives can generate the same coset. As we’ll
see below, we have the equality of cosets 4,378 + 5ℤ = 3 + 5ℤ in ℤ/5ℤ, even though
their coset representatives are different; i.e., 4,378 ≠ 3 in ℤ. Below are two important
properties to help us determine when cosets are equal:

• 𝑎 + 5ℤ = 𝑏 + 5ℤ ⟺ 𝑎− 𝑏 ∈ 5ℤ.

• 𝑎 + 5ℤ = 0 + 5ℤ ⟺ 𝑎 ∈ 5ℤ, which is a special case of the above property with
𝑏 = 0.

323
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Wecan “reduce” cosets using these properties. For instance, the division algorithm says
4,378 = 5 ⋅ 873 + 3, so that 4,378 − 3 = 5 ⋅ 873 ∈ 5ℤ. Thus, we conclude 4,378 + 5ℤ =
3+ 5ℤ. Likewise, 85 + 5ℤ = 0+ 5ℤ, because 85 = 5 ⋅ 17 ∈ 5ℤ. (We’ll leave it up to you
as an exercise to reduce −23 + 5ℤ.) Therefore, there are only five distinct cosets of 5ℤ,
and these cosets form the quotient group

ℤ/5ℤ = {0 + 5ℤ, 1 + 5ℤ, 2 + 5ℤ, 3 + 5ℤ, 4 + 5ℤ}
under the operation of coset addition. Coset addition is a rather tedious process (see
Section 32.2 for details), but we found a convenient shortcut; namely: (𝑎 + 5ℤ) +
(𝑏 + 5ℤ) = (𝑎 + 𝑏) + 5ℤ. For example,

(3 + 5ℤ) + (4 + 5ℤ) = (3 + 4) + 5ℤ = 7 + 5ℤ = 2 + 5ℤ.
We’ve seen that ℤ/5ℤ and ℤ5 are isomorphic as additive groups via the correspon-

dence 𝑎 + 5ℤ ↔ 𝑎 (mod 5). But ℤ5 is also a ring, equipped with the multiplication
operation: 3 ⋅ 4 = 2 in ℤ5, for instance. We wish to define multiplication of cosets in
ℤ/5ℤ and turn it into a ring as well. The key is to adapt the shortcut for coset multi-
plication. For example, (3 + 5ℤ) ⋅ (4 + 5ℤ) = 3 ⋅ 4 + 5ℤ = 12 + 5ℤ = 2 + 5ℤ. More
generally, we define coset multiplication in ℤ/5ℤ by (𝑎 + 5ℤ) ⋅ (𝑏 + 5ℤ) = 𝑎 ⋅ 𝑏 + 5ℤ.

Below are some calculations in ℤ/5ℤ:
• (1 + 5ℤ) ⋅ (4 + 5ℤ) = 4 + 5ℤ and (4 + 5ℤ) ⋅ (1 + 5ℤ) = 4 + 5ℤ. We’ll leave it to you
to verify that 1 + 5ℤ is the multiplicative identity of ℤ/5ℤ.

• (2 + 5ℤ) ⋅ (3 + 5ℤ) = 6 + 5ℤ = 1 + 5ℤ and (3 + 5ℤ) ⋅ (2 + 5ℤ) = 6 + 5ℤ = 1 + 5ℤ.
Thus, 2 + 5ℤ and 3 + 5ℤ are multiplicative inverses of each other with

(2 + 5ℤ)−1 = 3 + 5ℤ and (3 + 5ℤ)−1 = 2 + 5ℤ.
In an exercise, you’ll verify that cosetmultiplication inℤ/5ℤ satisfies the ring properties
that are outlined in Definition 26.2. (Note: We already know that ℤ/5ℤ is an additive
group, so that its coset addition satisfies the ring properties.) Thus we conclude that
ℤ/5ℤ is a quotient ring under coset addition and multiplication. We also have a ring
isomorphism ℤ/5ℤ ≅ ℤ5 via the correspondence 𝑎 + 5ℤ ↔ 𝑎 (mod 5). In fact, we can
generalize to obtain a ring isomorphism ℤ/𝑛ℤ ≅ ℤ𝑛. We’ll leave the details up to you
as an exercise.

Definition 32.1 (Quotient ring). Let 𝑅 be a commutative ring, and let 𝐴 be an ideal of
𝑅. The set of cosets 𝑅/𝐴 = {𝑟 + 𝐴 | 𝑟 ∈ 𝑅} is a quotient ring under the operations

(𝑟 + 𝐴) + (𝑠 + 𝐴) = (𝑟 + 𝑠) + 𝐴 and (𝑟 + 𝐴) ⋅ (𝑠 + 𝐴) = 𝑟 ⋅ 𝑠 + 𝐴.

Remark. In the next section, we’ll see the role played by an ideal in a quotient ring.

32.2 Role of an ideal in a quotient ring
Consider again the additive group ℤ and its subgroup 5ℤ. Here are a couple of cosets
of 5ℤ:

2 + 5ℤ = {. . . , −13, −8, −3, 2, 7, 12, 17, . . .},
3 + 5ℤ = {. . . , −12, −7, −2, 3, 8, 13, 18, . . .}.

Recall that the coset 2+5ℤ is obtained by adding 2 to each element of 5ℤ, and the coset
3 + 5ℤ is found similarly. The coset sum is defined as follows:

(2 + 5ℤ) + (3 + 5ℤ) = {𝛼 + 𝛽 | 𝛼 ∈ 2 + 5ℤ, 𝛽 ∈ 3 + 5ℤ};
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i.e., add every element of 2 + 5ℤ to those of 3 + 5ℤ. We learned that, since 5ℤ is a
normal subgroup of ℤ, coset addition satisfies a shortcut; namely, (2+5ℤ)+ (3+5ℤ) =
(2 + 3) + 5ℤ.

The shortcut is a convenient property, not the definition of coset addition. As an
analogy, we define 𝑈13 to be the set of elements of ℤ13 with multiplicative inverses.
According to this definition, we know that 6 ∈ 𝑈13, because 6 ⋅ 11 = 1 (mod 13). But
we also found a convenient property; namely: 6 ∈ 𝑈13 because 6 and 13 are relatively
prime (i.e., they don’t share a common factor other than 1).

Similarly to coset addition, we might define coset multiplication as follows:

(2 + 5ℤ) ⋅ (3 + 5ℤ) = {𝛼 ⋅ 𝛽 | 𝛼 ∈ 2 + 5ℤ, 𝛽 ∈ 3 + 5ℤ};

i.e., multiply every element of 2 + 5ℤ with those of 3 + 5ℤ. Let’s see what happens:

(2 + 5ℤ) ⋅ (3 + 5ℤ)
= {. . . , −13, −8, −3, 2, 7, 12, 17, . . .} ⋅ {. . . , −12, −7, −2, 3, 8, 13, 18, . . .}
= {. . . , −39, −34, −24, −14, −9, −4, 6, 16, 21, 26, 36, 46, . . .} ← call this set 𝑆.

Wewould hope that (2+5ℤ)⋅(3+5ℤ) = 2⋅3+5ℤ = 1+5ℤ, but the resulting set 𝑆 seems
to be missing some elements that are in 1 + 5ℤ. In particular, 1 is not in 𝑆. This isn’t
surprising, since the only ways to obtain 1 as a product of two integers are 1 = 1 ⋅ 1 and
1 = −1 ⋅−1; but 2+5ℤ and 3+5ℤ do not contain 1 or−1. A similar reasoning explains
why, for instance, 11 and 31 are not in 𝑆, even though they are in 1 + 5ℤ. Therefore, if
we define coset multiplication like we defined coset addition, then (2 + 5ℤ) ⋅ (3 + 5ℤ)
does not equal 1+5ℤ (i.e., the shortcut fails). Even worse, the resulting set 𝑆 isn’t even
a coset of 5ℤ.

How can we salvage the situation? We define coset multiplication using the
shortcut. Thus, we define (2+5ℤ) ⋅ (3+5ℤ) to be the coset 2 ⋅3+5ℤ, which simplifies
to 1 + 5ℤ. Now the shortcut isn’t some convenient property. Instead, it’s built into the
definition of coset multiplication.

This seems simple enough on the surface, but we must attend to an important
technicality. The product (2 + 5ℤ) ⋅ (3 + 5ℤ) = 2 ⋅ 3 + 5ℤ depends only on the coset
representatives 2 and 3, rather than the elements in those cosets. But we also have
2 + 5ℤ = 22 + 5ℤ and 3 + 5ℤ = 58 + 5ℤ. So, does (22 + 5ℤ) ⋅ (58 + 5ℤ) yield the same
product as (2 + 5ℤ) ⋅ (3 + 5ℤ) ? Let’s find out:

(22 + 5ℤ) ⋅ (58 + 5ℤ) = 22 ⋅ 58 + 5ℤ ← definition of coset multiplication
= 1,276 + 5ℤ ← because 22 ⋅ 58 = 1,276
= 1 + 5ℤ ← because 1,276 − 1 ∈ 5ℤ.

Aswe had hoped, (22+5ℤ)⋅(58+5ℤ) does equal (2+5ℤ)⋅(3+5ℤ), since both products
equal 1 + 5ℤ.

Let’s dig deeper into why (22+ 5ℤ) ⋅ (58+ 5ℤ) should equal (2+ 5ℤ) ⋅ (3+ 5ℤ). We
have 22 + 5ℤ = 2+ 5ℤ, because 22 − 2 = 5 ⋅ 4 ∈ 5ℤ. Likewise, 58 + 5ℤ = 3+ 5ℤ, since
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58 − 3 = 5 ⋅ 11 ∈ 5ℤ. Writing 22 = 2 + 5 ⋅ 4 and 58 = 3 + 5 ⋅ 11, we have
(22 + 5ℤ) ⋅ (58 + 5ℤ)

= ((2 + 5 ⋅ 4) + 5ℤ) ⋅ ((3 + 5 ⋅ 11) + 5ℤ)
= (2 + 5 ⋅ 4) ⋅ (3 + 5 ⋅ 11) + 5ℤ ← definition of coset multiplication
= (𝟐 ⋅ 𝟑 + 2 ⋅ (5 ⋅ 11) + (5 ⋅ 4) ⋅ 3 + (5 ⋅ 4) ⋅ (5 ⋅ 11)) + 5ℤ
= 𝟐 ⋅ 𝟑 + 5ℤ ← see below for reason behind this step
= (2 + 5ℤ) ⋅ (3 + 5ℤ) ← definition of coset multiplication again.

We have the coset equality (𝟐 ⋅ 𝟑+2⋅(5⋅11)+(5⋅4)⋅3+(5⋅4)⋅(5⋅11))+5ℤ = 𝟐 ⋅ 𝟑+5ℤ,
because the difference of the coset representatives is 2⋅(5⋅11)+(5⋅4)⋅3+(5⋅4)⋅(5⋅11),
which is in 5ℤ, since each term in the sumcontains a 5. Therefore, (22+5ℤ)⋅(58+5ℤ) =
(2 + 5ℤ) ⋅ (3 + 5ℤ) as desired.

The following theorem shows that this technicality is always satisfied.

Theorem 32.2 (Coset multiplication inℤ/5ℤ is well-defined). Suppose 𝑎+5ℤ = 𝑐+5ℤ
and 𝑏+5ℤ = 𝑑+5ℤ for some 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℤ. Then (𝑎+5ℤ)⋅(𝑏+5ℤ) = (𝑐+5ℤ)⋅(𝑑+5ℤ).

Proof. Since 𝑎 + 5ℤ = 𝑐 + 5ℤ, we have 𝑎 − 𝑐 ∈ 5ℤ, which implies 𝑎 = 𝑐 + 𝑥 for some
𝑥 ∈ 5ℤ. Similarly, 𝑏 + 5ℤ = 𝑑 + 5ℤ implies 𝑏 = 𝑑 + 𝑦 for some 𝑦 ∈ 5ℤ. Thus, we have

(𝑎 + 5ℤ) ⋅ (𝑏 + 5ℤ) = ((𝑐 + 𝑥) + 5ℤ) ⋅ ((𝑑 + 𝑦) + 5ℤ)
= (𝑐 + 𝑥) ⋅ (𝑑 + 𝑦) + 5ℤ
= 𝑐 ⋅ 𝑑 + (𝑐 ⋅ 𝑦 + 𝑥 ⋅ 𝑑 + 𝑥 ⋅ 𝑦) + 5ℤ.

Consider the element 𝑐 ⋅𝑦+𝑥⋅𝑑+𝑥⋅𝑦. Since 5ℤ is an ideal of ℤ, it satisfies product
absorption and is closed under addition. Since 𝑥, 𝑦 ∈ 5ℤ, we have 𝑐 ⋅ 𝑦, 𝑥 ⋅ 𝑑,
𝑥 ⋅ 𝑦 ∈ 5ℤ by product absorption. Then 𝑐 ⋅ 𝑦 + 𝑥 ⋅ 𝑑 + 𝑥 ⋅ 𝑦 ∈ 5ℤ, because 5ℤ is closed.
Therefore, we have

(𝑎 + 5ℤ) ⋅ (𝑏 + 5ℤ) = 𝑐 ⋅ 𝑑 + (𝑐 ⋅ 𝑦 + 𝑥 ⋅ 𝑑 + 𝑥 ⋅ 𝑦) + 5ℤ
= 𝑐 ⋅ 𝑑 + 5ℤ ← since 𝑐 ⋅ 𝑦 + 𝑥 ⋅ 𝑑 + 𝑥 ⋅ 𝑦 ∈ 5ℤ
= (𝑐 + 5ℤ) ⋅ (𝑑 + 5ℤ)

so that (𝑎 + 5ℤ) ⋅ (𝑏 + 5ℤ) = (𝑐 + 5ℤ) ⋅ (𝑑 + 5ℤ) as desired. ■

Proof know-how. In the above proof, we could havewritten 5𝑖 and 5𝑗 for the elements
of 5ℤ (with 𝑖, 𝑗 ∈ ℤ), rather than 𝑥 and 𝑦. However, by writing them as 𝑥 and 𝑦, we can
better highlight the fact that they are elements of an ideal. For instance, we concluded
that 𝑐 ⋅ 𝑦, 𝑥 ⋅ 𝑑, 𝑥 ⋅ 𝑦 ∈ 5ℤ, not because they’re all multiples of 5 (which they are), but
because of the product absorption property of 5ℤ.

Remark. Theorem 32.2 says cosetmultiplication inℤ/5ℤ iswell-defined; i.e., the prod-
uct does not depend on the choice of coset representatives. The key, as shown in the
proof, is that 5ℤ is an ideal of ℤ.

Example 32.3 (Non-example). Here is a fictitious rule for multiplying cosets that is
not well-defined. In ℤ/5ℤ, suppose we had defined (𝑎 + 5ℤ) ⋅ (𝑏 + 5ℤ) = 𝑎|𝑏| + 5ℤ,
where |𝑏| denotes the absolute value of 𝑏. (Note: We use 𝑎|𝑏| rather than 𝑎𝑏, which
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may not be an integer if 𝑏 is negative.) For instance, we have (2 + 5ℤ) ⋅ (3 + 5ℤ) =
2|3| + 5ℤ = 8 + 5ℤ = 3 + 5ℤ. As before, (22 + 5ℤ) ⋅ (58 + 5ℤ) should yield the same
product as (2 + 5ℤ) ⋅ (3 + 5ℤ), since 22 + 5ℤ = 2 + 5ℤ and 58 + 5ℤ = 3 + 5ℤ. But we
have
(22 + 5ℤ) ⋅ (58 + 5ℤ) = 22|58| + 5ℤ = (a huge integer ending in 4) + 5ℤ = 4 + 5ℤ,

so that (22 + 5ℤ) ⋅ (58 + 5ℤ) ≠ (2 + 5ℤ) ⋅ (3 + 5ℤ). Since this product depends on the
choice of coset representatives, we say that it’s not well-defined and thus is not a valid
multiplication rule for cosets.

Below is a generalization of Theorem 32.2, whose proof is left for you as an ex-
ercise. Observe that from its conclusion 𝑎 ⋅ 𝑏 + 𝐴 = 𝑐 ⋅ 𝑑 + 𝐴, we can deduce that
(𝑎+𝐴) ⋅ (𝑏+𝐴) = (𝑐+𝐴) ⋅ (𝑑 +𝐴), so that coset multiplication in 𝑅/𝐴 is well-defined.

Theorem 32.4. Let𝑅 be a commutative ring, and let𝐴 be an ideal of𝑅. Suppose 𝑎+𝐴 =
𝑐 + 𝐴 and 𝑏 + 𝐴 = 𝑑 + 𝐴 for some 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑅. Then 𝑎 ⋅ 𝑏 + 𝐴 = 𝑐 ⋅ 𝑑 + 𝐴.

32.3 Quotient ring ℤ3[𝑥]/⟨𝑥2⟩
Consider the polynomial ring ℤ3[𝑥] and a subset ⟨𝑥2⟩ = {𝑥2 ⋅ 𝑞(𝑥) | 𝑞(𝑥) ∈ ℤ3[𝑥]}, i.e.,
the principal ideal generated by 𝑥2. Note that ⟨𝑥2⟩ is the set of all multiples of 𝑥2. Then
the quotient ringℤ3[𝑥]/⟨𝑥2⟩ contains cosets of the form 𝑎(𝑥)+⟨𝑥2⟩where 𝑎(𝑥) ∈ ℤ3[𝑥].

Example 32.5. Consider the polynomials 𝑎(𝑥) = 𝑥9+2𝑥5+𝑥3 and 𝑏(𝑥) = 2𝑥7+𝑥4+2𝑥
inℤ3[𝑥]. We have 𝑎(𝑥) = 𝑥2 ⋅(𝑥7+2𝑥3+𝑥), so that 𝑎(𝑥) is an element of ⟨𝑥2⟩. However,
𝑏(𝑥) is not contained in ⟨𝑥2⟩, since 𝑏(𝑥) is not a polynomial multiple of 𝑥2.

Example 32.6. Let 𝛼(𝑥), 𝛽(𝑥) ∈ ℤ3[𝑥] where
𝛼(𝑥) = 𝑥9 + 2𝑥5 + 𝑥3 + 𝟐𝒙 + 𝟏 and 𝛽(𝑥) = 𝟐𝒙 + 𝟏.

Then 𝛼(𝑥) ≠ 𝛽(𝑥) in ℤ3[𝑥]; i.e., they’re different polynomials. However, in ℤ3[𝑥]/⟨𝑥2⟩,
their cosets are the same; i.e., 𝛼(𝑥) + ⟨𝑥2⟩ = 𝛽(𝑥) + ⟨𝑥2⟩, because 𝛼(𝑥) − 𝛽(𝑥) = 𝑥9 +
2𝑥5 + 𝑥3 = 𝑥2 ⋅ (𝑥7 + 2𝑥3 + 𝑥) ∈ ⟨𝑥2⟩.

Example 32.7. Let 𝛼(𝑥) = 𝑥13 + 2𝑥10 + 2𝑥5 + 𝒙 + 𝟐 ∈ ℤ3[𝑥]. We will “reduce”
the coset 𝛼(𝑥) + ⟨𝑥2⟩; i.e., we’ll find 𝛽(𝑥) ∈ ℤ3[𝑥] of the smallest degree such that
𝛼(𝑥) + ⟨𝑥2⟩ = 𝛽(𝑥) + ⟨𝑥2⟩. Let 𝛽(𝑥) = 𝒙 + 𝟐. Then

𝛼(𝑥) − 𝛽(𝑥) = 𝑥13 + 2𝑥10 + 2𝑥5 = 𝑥2 ⋅ (𝑥11 + 2𝑥8 + 2𝑥3) ∈ ⟨𝑥2⟩.
Therefore,

(𝑥13 + 2𝑥10 + 2𝑥5 + 𝑥 + 2) + ⟨𝑥2⟩ = (𝑥 + 2) + ⟨𝑥2⟩.
Note how this is analogous to reducing 4,378 + 5ℤ = 3+ 5ℤ in the quotient ring ℤ/5ℤ.

Generalizing from the above examples, suppose 𝑓(𝑥) ∈ ℤ3[𝑥] with
𝑓(𝑥) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 +⋯+ 𝑎2𝑥2 + 𝒂𝟏𝒙 + 𝒂𝟎,

where 𝑎𝑖 ∈ ℤ3. Then 𝑓(𝑥) + ⟨𝑥2⟩ = (𝒂𝟏𝒙 + 𝒂0) + ⟨𝑥2⟩, because
𝑓(𝑥) − (𝑎1𝑥 + 𝑎0) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 +⋯+ 𝑎2𝑥2 ∈ ⟨𝑥2⟩.

Hence, every element of ℤ3[𝑥]/⟨𝑥2⟩ can be reduced to (𝑎𝑥+𝑏)+ ⟨𝑥2⟩, where 𝑎, 𝑏 ∈ ℤ3.
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Thus, we have
ℤ3[𝑥]/⟨𝑥2⟩ = {(𝑎𝑥 + 𝑏) + ⟨𝑥2⟩ | 𝑎, 𝑏 ∈ ℤ3}

= {0 + ⟨𝑥2⟩, 1 + ⟨𝑥2⟩, 2 + ⟨𝑥2⟩,
𝑥 + ⟨𝑥2⟩, (𝑥 + 1) + ⟨𝑥2⟩, (𝑥 + 2) + ⟨𝑥2⟩,
2𝑥 + ⟨𝑥2⟩, (2𝑥 + 1) + ⟨𝑥2⟩, (2𝑥 + 2) + ⟨𝑥2⟩},

where the additive and multiplicative identities are 0 + ⟨𝑥2⟩ and 1 + ⟨𝑥2⟩, respectively.
We verify that these 9 cosets are distinct. Suppose for contradiction that (2𝑥+1)+

⟨𝑥2⟩ = (𝑥 + 2) + ⟨𝑥2⟩. Then (2𝑥 + 1) − (𝑥 + 2) ∈ ⟨𝑥2⟩; i.e., 𝑥 − 1 ∈ ⟨𝑥2⟩. Thus, 𝑥 − 1 is
a multiple of 𝑥2, which is a contradiction. In an exercise, you’ll show that any pair of
the 9 cosets above are, in fact, distinct.

Example 32.8. The calculation below shows (𝑥 + 1) + ⟨𝑥2⟩ and (2𝑥 + 1) + ⟨𝑥2⟩ are
multiplicative inverses of each other, and hence units in the quotient ring ℤ3[𝑥]/⟨𝑥2⟩:
((𝑥 + 1) + ⟨𝑥2⟩) ⋅ ((2𝑥 + 1) + ⟨𝑥2⟩) = (𝑥 + 1) ⋅ (2𝑥 + 1) + ⟨𝑥2⟩

= (2𝑥2 + 𝟑𝒙 + 1) + ⟨𝑥2⟩
= (2𝑥2 + 1) + ⟨𝑥2⟩ ⟵ since 3𝑥 = 0 in ℤ3[𝑥]
= 1 + ⟨𝑥2⟩.

Example 32.9. The element 𝑥 + ⟨𝑥2⟩ ∈ ℤ3[𝑥]/⟨𝑥2⟩ is non-zero; i.e., it does not equal
0 + ⟨𝑥2⟩, because 𝑥 is not a multiple of 𝑥2. Moreover, we have (𝑥 + ⟨𝑥2⟩) ⋅ (𝑥 + ⟨𝑥2⟩) =
𝑥2 + ⟨𝑥2⟩ = 0 + ⟨𝑥2⟩. Thus, 𝑥 + ⟨𝑥2⟩ is a zero divisor in ℤ3[𝑥]/⟨𝑥2⟩, which means it is
not a unit. And since not every non-zero element of ℤ3[𝑥]/⟨𝑥2⟩ is a unit, we conclude
that ℤ3[𝑥]/⟨𝑥2⟩ is not a field.

32.4 First Isomorphism Theorem for rings
Example 32.10. Consider the ring homomorphism 𝜑 ∶ ℤ → ℤ5 where 𝜑(𝑎) = 𝑎
(mod 5) for all 𝑎 ∈ ℤ. The kernel and image of 𝜑 are 𝐾 = 5ℤ and im𝜑 = ℤ5, re-
spectively. (See Example 31.16.) In Section 32.1, we observed a ring isomorphism
ℤ/5ℤ ≅ ℤ5 via the correspondence 𝑎+5ℤ ↔ 𝑎 (mod 5). Putting these pieces together,
we conclude that ℤ/𝐾 ≅ im𝜑, where 𝑎 + 𝐾 ∈ ℤ/𝐾 corresponds to 𝜑(𝑎) ∈ im𝜑.

Here is the generalization of Example 32.10, namely the First Isomorphism Theo-
rem for rings.

Theorem 32.11 (First Isomorphism Theorem for rings). Let 𝜃 ∶ 𝑅 → 𝑆 be a ring
homomorphism with 𝐾 = ker 𝜃. Then there is a ring isomorphism 𝑅/𝐾 ≅ im𝜃, where
𝑟 + 𝐾 ∈ 𝑅/𝐾 corresponds to 𝜃(𝑟) ∈ im𝜃.

Example 32.12. Consider the ring homomorphism 𝜃 ∶ ℝ[𝑥] → ℝ where 𝜃(𝑓(𝑥)) =
𝑓(2) for all 𝑓(𝑥) ∈ ℝ[𝑥]. The kernel and image of 𝜃 are 𝐾 = ⟨𝑥 − 2⟩ and im 𝜃 = ℝ,
respectively. (See Example 31.18.) Therefore, the First IsomorphismTheorem for rings
implies that there is a ring isomorphism ℝ[𝑥]/⟨𝑥 − 2⟩ ≅ ℝ, where 𝑓(𝑥) + ⟨𝑥 − 2⟩ ∈
ℝ[𝑥]/⟨𝑥 − 2⟩ corresponds to 𝑓(2) ∈ ℝ.
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Example 32.13. Consider the ring ℚ(√2) = {𝑎 + 𝑏√2 | 𝑎, 𝑏 ∈ ℚ}. In fact, ℚ(√2)
is a field, as we saw in Example 27.15. Define the function 𝜃 ∶ ℚ[𝑥] → ℚ(√2) where
𝜃(𝑓(𝑥)) = 𝑓(√2) for all 𝑓(𝑥) ∈ ℚ[𝑥]. For instance, suppose 𝑓(𝑥) = 4𝑥3−5𝑥2+6𝑥+2 ∈
ℚ[𝑥]. Then

𝜃(𝑓(𝑥)) = 𝑓(√2) = 4(√2)3 − 5(√2)2 + 6√2 + 2 = 8√2 − 10 + 6√2 + 2 = −8 + 14√2,
so that 𝜃(𝑓(𝑥)) = −8 + 14√2, which is an element of ℚ(√2). In an exercise, you’ll
show that 𝜃 is a ring homomorphism with kernel ⟨𝑥2 − 2⟩ and image ℚ(√2) (i.e., 𝜃
is onto). Thus the First Isomorphism Theorem implies that ℚ[𝑥]/⟨𝑥2 − 2⟩ ≅ ℚ(√2),
where 𝑓(𝑥) + ⟨𝑥2 − 2⟩ ∈ ℚ[𝑥]/⟨𝑥2 − 2⟩ corresponds to 𝑓(√2) ∈ ℚ(√2).

Big picture stuff
We continue to find structural similarities between the ring of integers ℤ and the poly-
nomial ring 𝐹[𝑥], where 𝐹 is a field. In this chapter, we studied the quotient rings
ℤ/5ℤ and ℤ3[𝑥]/⟨𝑥2⟩. In fact, we can write 5ℤ as the principal ideal ⟨5⟩, i.e., the set of
all multiples of 5. In Example 32.6, we saw how to reduce cosets:

Consider 𝛼(𝑥) = 𝑥9+2𝑥5+𝑥3+𝟐𝒙+𝟏 and 𝛽(𝑥) = 𝟐𝒙+𝟏 inℤ3[𝑥]. Then 𝛼(𝑥) ≠
𝛽(𝑥) in ℤ3[𝑥]; i.e., they’re different polynomials. However, in ℤ3[𝑥]/⟨𝑥2⟩, their
cosets are the same; i.e., 𝛼(𝑥) + ⟨𝑥2⟩ = 𝛽(𝑥) + ⟨𝑥2⟩, because 𝛼(𝑥) − 𝛽(𝑥) =
𝑥9 + 2𝑥5 + 𝑥3 = 𝑥2 ⋅ (𝑥7 + 2𝑥3 + 𝑥) ∈ ⟨𝑥2⟩.

This is analogous to how 4,378 ≠ 3 in ℤ; i.e., they’re different integers. However, in
ℤ/⟨5⟩, their cosets are the same; i.e., 4,378+ ⟨5⟩ = 3+ ⟨5⟩, because 4,378−3 = 5 ⋅ 873 ∈
⟨5⟩.

We also found that ℤ/⟨5⟩ is a field, but ℤ3[𝑥]/⟨𝑥2⟩ is not a field. In the upcoming
chapters, we’ll study the factors (pun intended!) that lead to this distinction.

Exercises
1. “Reduce” each element of ℤ/5ℤ by writing it in the form 𝑎 + 5ℤ where 𝑎 = 0, 1, 2,

3, or 4.

(a) −23 + 5ℤ.
(b) 172 + 5ℤ.
(c) 1,437 + 5ℤ.
(d) −2,908 + 5ℤ.

2. For a fixed positive integer 𝑛, explain why the distinct elements of ℤ/𝑛ℤ are
ℤ/𝑛ℤ = {0 + 𝑛ℤ, 1 + 𝑛ℤ, 2 + 𝑛ℤ, . . . , (𝑛 − 1) + 𝑛ℤ}.

Be sure to explain why these cosets are distinct from each other.

3. Coset multiplication in ℤ/5ℤ is defined by (𝑎 + 5ℤ) ⋅ (𝑏 + 5ℤ) = 𝑎 ⋅ 𝑏 + 5ℤ. Verify
that this operation satisfies the ring properties (6) through (9) that are outlined in
Definition 26.2.
Note: For property (9) (the distributive law), you’ll also need coset addition. Feel
free to use the coset addition shortcut; namely: (𝑎+ 5ℤ)+ (𝑏+5ℤ) = (𝑎+𝑏)+ 5ℤ.
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4. In Section 32.2, we attempted to define cosetmultiplication by saying that (2+5ℤ)⋅
(3 + 5ℤ) should equal the set 𝑆 = {𝛼 ⋅ 𝛽 | 𝛼 ∈ 2 + 5ℤ, 𝛽 ∈ 3 + 5ℤ}. Unfortunately,
we found that 𝑆 ≠ 1 + 5ℤ. Explain why 𝑆 isn’t even a coset of 5ℤ.

5. Here is a fictitious rule formultiplying cosets inℤ/5ℤ: (𝑎+5ℤ)⋅(𝑏+5ℤ) = |𝑎⋅𝑏|+5ℤ,
where |𝑎 ⋅ 𝑏| denotes the absolute value of 𝑎 ⋅ 𝑏. Explain why this rule is not well-
defined.

6. Fix 𝑥2 ∈ ℤ3[𝑥] and define ⟨𝑥2⟩ = {𝑥2 ⋅ 𝑞(𝑥) | 𝑞(𝑥) ∈ ℤ3[𝑥]}.
(a) Explain why 2𝑥7 + 𝑥5 + 2𝑥4 is contained in ⟨𝑥2⟩.
(b) Explain why 𝑥6 + 2𝑥 is not contained in ⟨𝑥2⟩.
(c) List three more elements of ℤ3[𝑥] that are contained in ⟨𝑥2⟩.
(d) List three more elements of ℤ3[𝑥] that are not contained in ⟨𝑥2⟩.

7. Let 𝛼(𝑥), 𝛽(𝑥) ∈ ℤ3[𝑥], where 𝛼(𝑥) = 2𝑥7 + 𝑥5 + 2𝑥4 + 𝑥 + 2 and 𝛽(𝑥) = 𝑥 + 2.
Explain why the cosets 𝛼(𝑥) + ⟨𝑥2⟩ and 𝛽(𝑥) + ⟨𝑥2⟩ are equal in the quotient ring
ℤ3[𝑥]/⟨𝑥2⟩.

8. (a) Let 𝑓(𝑥) = 𝑥5 + 2𝑥2 + 𝑥 + 2 ∈ ℤ3[𝑥]. Find 𝑔(𝑥) ∈ ℤ3[𝑥] of smallest degree
such that

𝑓(𝑥) + ⟨𝑥2⟩ = 𝑔(𝑥) + ⟨𝑥2⟩.
(b) Repeat part (a), this time with 𝑓(𝑥) = 2𝑥9 + 𝑥6 + 2𝑥3 + 1 ∈ ℤ3[𝑥].

9. In the quotient ring ℤ3[𝑥]/⟨𝑥2⟩, do the following:
(a) Explain why (𝑥 + 1) + ⟨𝑥2⟩ ≠ 2𝑥 + ⟨𝑥2⟩.
(b) Explain why (𝑥 + 2) + ⟨𝑥2⟩ ≠ (2𝑥 + 2) + ⟨𝑥2⟩.
(c) Prove: If 𝑎1𝑥+𝑎0 ≠ 𝑏1𝑥+𝑏0 inℤ3[𝑥], then (𝑎1𝑥+𝑎0)+⟨𝑥2⟩ ≠ (𝑏1𝑥+𝑏0)+⟨𝑥2⟩

in ℤ3[𝑥]/⟨𝑥2⟩.
Note: This confirms that ℤ3[𝑥]/⟨𝑥2⟩ indeed has 9 distinct elements. (See Sec-
tion 32.3.)

10. Let 𝐹 be a field and fix 𝑔(𝑥) ∈ 𝐹[𝑥]. Suppose 𝑝(𝑥), 𝑞(𝑥) ∈ 𝐹[𝑥] with deg 𝑝(𝑥),
deg 𝑞(𝑥) < deg 𝑔(𝑥). Prove that if 𝑝(𝑥) ≠ 𝑞(𝑥) in 𝐹[𝑥], then 𝑝(𝑥) + ⟨𝑔(𝑥)⟩ ≠ 𝑞(𝑥) +
⟨𝑔(𝑥)⟩ in 𝐹[𝑥]/⟨𝑔(𝑥)⟩.
Note: This is a generalization of Exercise #9(c) above.

11. The quotient ring ℤ3[𝑥]/⟨𝑥2⟩ is finite, so every non-zero element must be either a
unit or a zero divisor (i.e., it cannot be neither). For each non-zero element 𝑎(𝑥) +
⟨𝑥2⟩, determine if it’s a unit or a zero divisor. Moreover, find a non-zero 𝑏(𝑥)+ ⟨𝑥2⟩
such that the following hold:

• For a unit: (𝑎(𝑥) + ⟨𝑥2⟩) ⋅ (𝑏(𝑥) + ⟨𝑥2⟩) = 1 + ⟨𝑥2⟩.
• For a zero divisor: (𝑎(𝑥) + ⟨𝑥2⟩) ⋅ (𝑏(𝑥) + ⟨𝑥2⟩) = 0 + ⟨𝑥2⟩.

12. Consider the quotient ring ℤ2[𝑥]/⟨𝑥2⟩. (Be careful: The coefficient ring is ℤ2, not
ℤ3.)
(a) Find all distinct elements of ℤ2[𝑥]/⟨𝑥2⟩, i.e., distinct cosets 𝑓(𝑥) + ⟨𝑥2⟩ where

𝑓(𝑥) ∈ ℤ2[𝑥].
(b) Construct the addition and multiplication tables for ℤ2[𝑥]/⟨𝑥2⟩.
(c) Is ℤ2[𝑥]/⟨𝑥2⟩ a field? Why or why not?
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13. (a) How many distinct elements does ℤ5[𝑥]/⟨𝑥2⟩ contain?
(b) How about ℤ7[𝑥]/⟨𝑥2⟩?
(c) How about ℤ11[𝑥]/⟨𝑥2⟩?
(d) How about ℤ101[𝑥]/⟨𝑥2⟩?
(e) How about ℤ𝑝[𝑥]/⟨𝑥2⟩, where 𝑝 is prime?

14. Repeat Exercise #13, but replace ⟨𝑥2⟩ with ⟨𝑥3⟩.
15. Repeat Exercise #13, but replace ⟨𝑥2⟩ with ⟨𝑥𝑛⟩, where 𝑛 is a positive integer.
16. Consider the element (𝑥2 + 1) + ⟨𝑥4 + 𝑥2⟩ in the quotient ring ℝ[𝑥]/⟨𝑥4 + 𝑥2⟩.

(a) Explain why (𝑥2 + 1) + ⟨𝑥4 + 𝑥2⟩ ≠ 0 + ⟨𝑥4 + 𝑥2⟩ in ℝ[𝑥]/⟨𝑥4 + 𝑥2⟩.
(b) Verify that (𝑥2 + 1) + ⟨𝑥4 + 𝑥2⟩ is an idempotent in ℝ[𝑥]/⟨𝑥4 + 𝑥2⟩.

Recall: A ring element 𝑎 is called an idempotent if 𝑎2 = 𝑎.
17. Find a field 𝐹 and 𝑓(𝑥), 𝑔(𝑥) ∈ 𝐹[𝑥]where 𝑓(𝑥)+ ⟨𝑔(𝑥)⟩ is a nontrivial idempotent

in 𝐹[𝑥]/⟨𝑔(𝑥)⟩.
Note: In other words, come up with your own Exercise #16.

18. Consider the element (𝑥 + 1) + ⟨𝑥4 + 1⟩ in the quotient ring ℤ2[𝑥]/⟨𝑥4 + 1⟩.
(a) Explain why (𝑥 + 1) + ⟨𝑥4 + 1⟩ ≠ 0 + ⟨𝑥4 + 1⟩ in ℤ2[𝑥]/⟨𝑥4 + 1⟩.
(b) Verify that (𝑥 + 1) + ⟨𝑥4 + 1⟩ is nilpotent in ℤ2[𝑥]/⟨𝑥4 + 1⟩.

Recall: A ring element 𝑟 is called a nilpotent element if 𝑟𝑛 = 0 for some
positive integer 𝑛.

19. Find a field 𝐹 and 𝑓(𝑥), 𝑔(𝑥) ∈ 𝐹[𝑥] where 𝑓(𝑥) + ⟨𝑔(𝑥)⟩ is a non-zero nilpotent
element in 𝐹[𝑥]/⟨𝑔(𝑥)⟩.
Note: In other words, come up with your own Exercise #18.

20. Prove Theorem 32.4.

21. Use the First Isomorphism Theorem for rings to prove that there is a ring isomor-
phism ℤ/𝑛ℤ ≅ ℤ𝑛. (Compare with Chapter 25, Exercise #5. Also, this exercise is
referenced in Section 35.1.)

22. Consider 𝜃 ∶ ℚ[𝑥] → ℚ(√2) where 𝜃(𝑓(𝑥)) = 𝑓(√2) for all 𝑓(𝑥) ∈ ℚ[𝑥]. (See
Example 32.13.) Prove each of the following claims about 𝜃:
(a) 𝜃 is a ring homomorphism.
(b) ker 𝜃 = ⟨𝑥2 − 2⟩.
(c) im 𝜃 = ℚ(√2).

23. Consider the ring homomorphism 𝜆 ∶ ℤ10 → ℤ30 where 𝜆(𝑎) = 6𝑎 for all 𝑎 ∈ ℤ10.
(a) Find the kernel 𝐾 and image of 𝜆. (See Example 31.17 to verify your answer.)
(b) The First Isomorphism Theorem for rings says that ℤ10/𝐾 ≅ im𝜆, where

𝑎 + 𝐾 ∈ ℤ10/𝐾 corresponds to 𝜆(𝑎) ∈ im𝜆. Create addition and multipli-
cation tables for ℤ10/𝐾 and for im 𝜆 (thus, 4 tables total) to verify this ring
isomorphism.
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Quotient Ring ℤ7[𝑥]/⟨𝑥2 − 1⟩

We will continue our investigation of quotient rings involving polynomials. In partic-
ular, we will consider the polynomial ring ℤ7[𝑥] and a subset ⟨𝑥2 − 1⟩ = {(𝑥2 − 1) ⋅
𝑞(𝑥) | 𝑞(𝑥) ∈ ℤ7[𝑥]}, i.e., the principal ideal generated by 𝑥2 − 1, or, equivalently, the
set of all multiples of 𝑥2 − 1. The quotient ring ℤ7[𝑥]/⟨𝑥2 − 1⟩ contains cosets of the
form 𝑎(𝑥) + ⟨𝑥2 − 1⟩ where 𝑎(𝑥) ∈ ℤ7[𝑥].

On the surface, it may seem that there are infinitely many distinct cosets 𝑎(𝑥) +
⟨𝑥2 − 1⟩, since there are infinitely many distinct polynomials 𝑎(𝑥) ∈ ℤ7[𝑥]. However,
different coset representatives can generate the same coset. Thus, we can “reduce” a
coset such as (4𝑥5+2𝑥3+4𝑥+1)+⟨𝑥2−1⟩ to something simpler, namely (3𝑥+1)+⟨𝑥2−1⟩.
(We’ll see this in Example 33.3.) The focus of this chapter is on this reduction process.
We will formalize the method that we implicitly used in Chapter 32 when we reduced
the cosets in ℤ3[𝑥]/⟨𝑥2⟩. We will also learn a new reduction method that is muchmore
efficient.

Moreover, we will begin to address the following: Let 𝐹 be a field and fix 𝑔(𝑥) ∈
𝐹[𝑥]. Then how can we determine whether or not the quotient ring 𝐹[𝑥]/⟨𝑔(𝑥)⟩ is a
field? This is an overarching question that will guide our study for the remainder of
this textbook.

33.1 Division algorithm revisited
Example 33.1 (Example 32.7 revisited). Consider the quotient ring ℤ3[𝑥]/⟨𝑥2⟩ whose
elements are cosets of the form 𝑎(𝑥) + ⟨𝑥2⟩ where 𝑎(𝑥) ∈ ℤ3[𝑥]. Let 𝛼(𝑥) = 𝑥13 +
2𝑥10 + 2𝑥5 + 𝒙 + 𝟐 ∈ ℤ3[𝑥]. To reduce the coset 𝛼(𝑥) + ⟨𝑥2⟩, let 𝛽(𝑥) = 𝒙 + 𝟐. Then
𝛼(𝑥)−𝛽(𝑥) = 𝑥13+2𝑥10+2𝑥5 = 𝑥2 ⋅ (𝑥11+2𝑥8+2𝑥3), so that 𝛼(𝑥)−𝛽(𝑥) is a multiple
of 𝑥2. Thus, 𝛼(𝑥) − 𝛽(𝑥) ∈ ⟨𝑥2⟩, and so 𝛼(𝑥) + ⟨𝑥2⟩ = 𝛽(𝑥) + ⟨𝑥2⟩.

In the above example, we can quickly find 𝛽(𝑥) such that𝛼(𝑥)−𝛽(𝑥) is amultiple of
𝑥2. This is why reducing a coset inℤ3[𝑥]/⟨𝑥2⟩ is a relatively simple task. In this chapter,
we’ll work with the quotient ringℤ7[𝑥]/⟨𝑥2−1⟩. Reducing cosets in this setting is more
complicated, because determining whether or not a polynomial is a multiple of 𝑥2 − 1
is more difficult.
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Example 33.2. Let 𝑎(𝑥) = 3𝑥3 + 5𝑥2 + 4𝑥 + 2 and 𝑏(𝑥) = 5𝑥3 + 5𝑥2 + 4 be elements
of ℤ7[𝑥]. Long division calculations below show that 𝑎(𝑥) = (𝑥2 − 1) ⋅ (3𝑥 + 5) and
𝑏(𝑥) = (𝑥2−1) ⋅ (5𝑥+5)+(5𝑥+2). Therefore, 𝑎(𝑥) ∈ ⟨𝑥2−1⟩; i.e., 𝑎(𝑥) is a multiple of
𝑥2 − 1, since there is no remainder when dividing 𝑎(𝑥) by 𝑥2 − 1. But 𝑏(𝑥) ∉ ⟨𝑥2 − 1⟩;
i.e., 𝑏(𝑥) is not a multiple of 𝑥2 − 1, since there is a non-zero remainder 5𝑥 + 2.

Thus, we can use long division to determine whether a polynomial 𝑓(𝑥) ∈ ℤ7[𝑥] is
a multiple of 𝑥2 − 1. The next example shows how long division can be used to reduce
a coset in ℤ7[𝑥]/⟨𝑥2 − 1⟩.

Example 33.3. Let 𝛼(𝑥) = 4𝑥5+2𝑥3+4𝑥+1 ∈ ℤ7[𝑥]. Wewill reduce 𝛼(𝑥)+⟨𝑥2−1⟩ in
ℤ7[𝑥]/⟨𝑥2−1⟩, i.e., find 𝛽(𝑥) ∈ ℤ7[𝑥] of the smallest degree such that 𝛼(𝑥)+ ⟨𝑥2−1⟩ =
𝛽(𝑥) + ⟨𝑥2 − 1⟩. First, we use long division to divide 𝛼(𝑥) by 𝑥2 − 1:

We can also use a software such as Mathematica to perform long division, as shown
below:

Hence, 𝛼(𝑥) = (𝑥2−1)⋅(4𝑥3+6𝑥)+(3𝑥+1). Note how the degree of the remainder
3𝑥 + 1 is less than the degree of the divisor 𝑥2 − 1. We then have 𝛼(𝑥) + ⟨𝑥2 − 1⟩ =
(3𝑥 + 1) + ⟨𝑥2 − 1⟩, because 𝛼(𝑥) − (3𝑥 + 1) = (𝑥2 − 1) ⋅ (4𝑥3 + 6𝑥) ∈ ⟨𝑥2 − 1⟩.

We emphasize that 𝛼(𝑥) ≠ 3𝑥+ 1 in ℤ7[𝑥]; they’re different polynomials. But they
generate the same coset in ℤ7[𝑥]/⟨𝑥2 −1⟩; i.e., 𝛼(𝑥)+ ⟨𝑥2 −1⟩ = (3𝑥+ 1)+ ⟨𝑥2 −1⟩. As
mentioned in Chapter 32, this is analogous to how 4,378 ≠ 3 in ℤ; i.e., they’re different
integers. However, their cosets are the same in ℤ/5ℤ; i.e., 4,378+5ℤ = 3+5ℤ, because
4,378 − 3 = 5 ⋅ 873 ∈ 5ℤ.
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More generally, let 𝑓(𝑥) ∈ ℤ7[𝑥]. By the division algorithm, there exist 𝑞(𝑥), 𝑟(𝑥) ∈
ℤ7[𝑥] such that𝑓(𝑥) = (𝑥2−1)⋅𝑞(𝑥)+𝑟(𝑥)with either 𝑟(𝑥) = 0 ordeg 𝑟(𝑥) < deg(𝑥2−1).
(In practice, we can find such 𝑞(𝑥) and 𝑟(𝑥) using long division.) Thus 𝑟(𝑥) has the
form 𝑟(𝑥) = 𝑎𝑥 + 𝑏 where 𝑎, 𝑏 ∈ ℤ7. Then, 𝑓(𝑥) + ⟨𝑥2 − 1⟩ = 𝑟(𝑥) + ⟨𝑥2 − 1⟩, because
𝑓(𝑥) − 𝑟(𝑥) = (𝑥2 − 1) ⋅ 𝑞(𝑥) ∈ ⟨𝑥2 − 1⟩. Thus, 𝑓(𝑥) + ⟨𝑥2 − 1⟩ can be reduced to
(𝑎𝑥 + 𝑏) + ⟨𝑥2 − 1⟩ where 𝑎, 𝑏 ∈ ℤ7.

Hence we have
ℤ7[𝑥]/⟨𝑥2 − 1⟩ = {(𝑎𝑥 + 𝑏) + ⟨𝑥2 − 1⟩ | 𝑎, 𝑏 ∈ ℤ7}

so that the quotient ring contains 72 or 49 cosets. Let’s verify that they are actually
distinct. Suppose for contradiction that (5𝑥 + 3) + ⟨𝑥2 −1⟩ = (3𝑥 + 6) + ⟨𝑥2 −1⟩. Then
we have (5𝑥 + 3) − (3𝑥 + 6) ∈ ⟨𝑥2 − 1⟩; i.e., 2𝑥 + 4 ∈ ⟨𝑥2 − 1⟩. This implies 2𝑥 + 4 is a
multiple of 𝑥2 − 1, which is a contradiction. A similar argument can be used to show
that any pair of the 49 cosets above are, in fact, distinct.

In Chapter 32, we worked with the quotient ring ℤ3[𝑥]/⟨𝑥2⟩. For instance, we saw
that

(2𝑥7 + 𝑥5 + 2𝑥4 + 𝟐𝒙 + 𝟏) + ⟨𝑥2⟩ = (𝟐𝒙 + 𝟏) + ⟨𝑥2⟩,
since (2𝑥7+𝑥5+2𝑥4+𝟐𝒙+𝟏)−(𝟐𝒙+𝟏) = 2𝑥7+𝑥5+2𝑥4 = 𝑥2 ⋅(2𝑥5+𝑥3+2𝑥2) ∈ ⟨𝑥2⟩. It
seemsmuch simpler to reduce an element inℤ3[𝑥]/⟨𝑥2⟩. However, wewere (implicitly)
using the same approach taken in Example 33.3. Let 𝑓(𝑥) = 2𝑥7 + 𝑥5 + 2𝑥4 + 𝟐𝒙 + 𝟏.
Then the division algorithm in ℤ3[𝑥] yields 𝑓(𝑥) = 𝑥2 ⋅ (2𝑥5 + 𝑥3 + 2𝑥2) + (𝟐𝒙 + 𝟏),
where the degree of the remainder 2𝑥+1 is less than the degree of the divisor 𝑥2. Then
𝑓(𝑥) + ⟨𝑥2⟩ = (2𝑥 + 1) + ⟨𝑥2⟩ as before.

Example 33.4. Consider the following product in ℤ7[𝑥]/⟨𝑥2 − 1⟩:
((𝑥 + 2) + ⟨𝑥2 − 1⟩) ⋅ ((2𝑥 + 3) + ⟨𝑥2 − 1⟩) = (𝑥 + 2) ⋅ (2𝑥 + 3) + ⟨𝑥2 − 1⟩

= (2𝑥2 + 7𝑥 + 6) + ⟨𝑥2 − 1⟩
= (2𝑥2 + 6) + ⟨𝑥2 − 1⟩.

To reduce (2𝑥2 + 6) + ⟨𝑥2 − 1⟩, note that 2𝑥2 + 6 = (𝑥2 − 1) ⋅ 2 + 1, where the quotient
𝑞(𝑥) = 2 and remainder 𝑟(𝑥) = 1 can be obtained via long division. Thus,

(2𝑥2 + 6) + ⟨𝑥2 − 1⟩ = 1 + ⟨𝑥2 − 1⟩,
since (2𝑥2 + 6) − 1 = (𝑥2 − 1) ⋅ 2 ∈ ⟨𝑥2 − 1⟩. Hence,

((𝑥 + 2) + ⟨𝑥2 − 1⟩) ⋅ ((2𝑥 + 3) + ⟨𝑥2 − 1⟩) = 1 + ⟨𝑥2 − 1⟩,
so that (𝑥 + 2) + ⟨𝑥2 − 1⟩ and (2𝑥 + 3) + ⟨𝑥2 − 1⟩ are multiplicative inverses of each
other, and thus units in the quotient ring ℤ7[𝑥]/⟨𝑥2 − 1⟩.

Example 33.5. Consider the following product in ℤ7[𝑥]/⟨𝑥2 − 1⟩:
((𝑥 + 1) + ⟨𝑥2 − 1⟩) ⋅ ((𝑥 − 1) + ⟨𝑥2 − 1⟩) = (𝑥 + 1) ⋅ (𝑥 − 1) + ⟨𝑥2 − 1⟩

= (𝑥2 − 1) + ⟨𝑥2 − 1⟩
= 0 + ⟨𝑥2⟩.

Moreover, (𝑥 + 1) + ⟨𝑥2 − 1⟩ and (𝑥 − 1) + ⟨𝑥2 − 1⟩ are non-zero; i.e., they do not
equal 0 + ⟨𝑥2 − 1⟩, because neither 𝑥 + 1 nor 𝑥 − 1 is a multiple of 𝑥2 − 1. Therefore,
(𝑥+1)+⟨𝑥2−1⟩ and (𝑥−1)+⟨𝑥2−1⟩ are zero divisors in ℤ7[𝑥]/⟨𝑥2−1⟩, which means
they are not units. And since not every non-zero element of ℤ7[𝑥]/⟨𝑥2 − 1⟩ is a unit,
ℤ7[𝑥]/⟨𝑥2 − 1⟩ is not a field.
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33.2 Another way to reduce in ℤ7[𝑥]/⟨𝑥2 − 1⟩
We saw how to use long division to reduce elements inℤ7[𝑥]/⟨𝑥2−1⟩. But long division
can be a tedious process. Thus, we introduce a more efficient approach. Observe that
𝑥2 + ⟨𝑥2 −1⟩ = 1+ ⟨𝑥2 −1⟩ because 𝑥2 −1 ∈ ⟨𝑥2 −1⟩. Using this equality of cosets, we
have

(3 ⋅ 𝑥2 + 5) + ⟨𝑥2 − 1⟩ = (3 ⋅ 𝑥2 + ⟨𝑥2 − 1⟩) + (5 + ⟨𝑥2 − 1⟩)
= (3 + ⟨𝑥2 − 1⟩) ⋅ (𝒙𝟐 + ⟨𝒙𝟐 − 𝟏⟩) + (5 + ⟨𝑥2 − 1⟩)
= (3 + ⟨𝑥2 − 1⟩) ⋅ (𝟏 + ⟨𝒙𝟐 − 𝟏⟩) + (5 + ⟨𝑥2 − 1⟩)
= (3 ⋅ 1 + ⟨𝑥2 − 1⟩) + (5 + ⟨𝑥2 − 1⟩)
= (3 ⋅ 1 + 5) + ⟨𝑥2 − 1⟩.

Thus (3 ⋅ 𝒙𝟐 + 5) + ⟨𝑥2 − 1⟩ = (3 ⋅ 𝟏 + 5) + ⟨𝑥2 − 1⟩. In other words, we can treat 𝑥2
and 1 to be the same as coset representatives. Whenever we see 𝑥2 as part of a coset
representative, we can replace it with 1.

Example 33.6. Consider 𝑓(𝑥) = 4𝑥5 + 2𝑥3 + 4𝑥 + 1 ∈ ℤ7[𝑥] from Example 33.3. To
apply the reduction method described above to 𝑓(𝑥) + ⟨𝑥2 − 1⟩, we must isolate 𝑥2 in
the coset representative. Below, we write the term 4𝑥5 as 4 ⋅ 𝑥2 ⋅ 𝑥2 ⋅ 𝑥, so that each 𝑥2
can be replaced with 1. We do likewise with 2𝑥3:

𝑓(𝑥) + ⟨𝑥2 − 1⟩ = (4𝑥5 + 2𝑥3 + 4𝑥 + 1) + ⟨𝑥2 − 1⟩
= (4 ⋅ 𝒙𝟐 ⋅ 𝒙𝟐 ⋅ 𝑥 + 2 ⋅ 𝒙𝟐 ⋅ 𝑥 + 4𝑥 + 1) + ⟨𝑥2 − 1⟩
= (4 ⋅ 𝟏 ⋅ 𝟏 ⋅ 𝑥 + 2 ⋅ 𝟏 ⋅ 𝑥 + 4𝑥 + 1) + ⟨𝑥2 − 1⟩
= (4𝑥 + 2𝑥 + 4𝑥 + 1) + ⟨𝑥2 − 1⟩
= (3𝑥 + 1) + ⟨𝑥2 − 1⟩,

which is what we found before.

Remark. When using this new reduction method, we must be careful to replace 𝑥2
with 1 only in coset representatives. Although we have the coset equality 𝑥2+⟨𝑥2−1⟩ =
1 + ⟨𝑥2 − 1⟩ in ℤ7[𝑥]/⟨𝑥2 − 1⟩, the polynomials 𝑥2 and 1 are different in ℤ7[𝑥].

Example 33.7. Since ℤ7[𝑥]/⟨𝑥2 − 1⟩ is finite, every non-zero element must be ei-
ther a unit or a zero divisor (i.e., it cannot be neither). Let’s consider the element
(3𝑥 + 5) + ⟨𝑥2 − 1⟩ ∈ ℤ7[𝑥]/⟨𝑥2 − 1⟩ and determine which type it is. Consider the
following product in ℤ7[𝑥]/⟨𝑥2 − 1⟩:

((3𝑥 + 5) + ⟨𝑥2 − 1⟩) ⋅ ((𝑎𝑥 + 𝑏) + ⟨𝑥2 − 1⟩) = (3𝑥 + 5) ⋅ (𝑎𝑥 + 𝑏) + ⟨𝑥2 − 1⟩
= (3𝑎 ⋅ 𝒙𝟐 + (3𝑏 + 5𝑎)𝑥 + 5𝑏) + ⟨𝑥2 − 1⟩
= (3𝑎 ⋅ 𝟏 + (3𝑏 + 5𝑎)𝑥 + 5𝑏) + ⟨𝑥2 − 1⟩
= ((3𝑏 + 5𝑎)𝑥 + (3𝑎 + 5𝑏)) + ⟨𝑥2 − 1⟩.



33.3. 𝐹[𝑥]/⟨𝑔(𝑥)⟩ is not a field 337

Here, we used the reduction technique of replacing 𝑥2 by 1 in the coset representative.
We’ll now find 𝑎, 𝑏 ∈ ℤ7 such that one of the following is true:
• ((3𝑏 + 5𝑎)𝑥 + (3𝑎 + 5𝑏)) + ⟨𝑥2 − 1⟩ = 1 + ⟨𝑥2 − 1⟩; hence (3𝑥 + 5) + ⟨𝑥2 − 1⟩ is a
unit.

• ((3𝑏 + 5𝑎)𝑥 + (3𝑎 + 5𝑏)) + ⟨𝑥2 − 1⟩ = 0 + ⟨𝑥2 − 1⟩; hence (3𝑥 + 5) + ⟨𝑥2 − 1⟩ is a
zero divisor.

Let’s consider the first possibility. As the coset representatives (3𝑏 + 5𝑎)𝑥 + (3𝑎 + 5𝑏)
and 1 both have degree less than 2, the cosets ((3𝑏 + 5𝑎)𝑥 + (3𝑎 + 5𝑏)) + ⟨𝑥2 − 1⟩
and 1 + ⟨𝑥2 − 1⟩ are equal in ℤ7[𝑥]/⟨𝑥2 − 1⟩ precisely when their coset representatives
are equal in ℤ7[𝑥]. We’ll seek 𝑎, 𝑏 ∈ ℤ7 such that (3𝑏 + 5𝑎)𝑥 + (3𝑎 + 5𝑏) = 1 or
(3𝑏 + 5𝑎)𝑥 + (3𝑎 + 5𝑏) = 0𝑥 + 1 in ℤ7[𝑥]. Setting the coefficients equal, we obtain the
system of equations 3𝑏+5𝑎 = 0 and 3𝑎+5𝑏 = 1. Solving this in ℤ7, we find that 𝑎 = 2
and 𝑏 = 6. Thus, (3𝑥 + 5) + ⟨𝑥2 − 1⟩ is a unit in ℤ7[𝑥]/⟨𝑥2 − 1⟩ whose multiplicative
inverse is (2𝑥 + 6) + ⟨𝑥2 − 1⟩.

For the second possibility, we obtain the system of equations 3𝑏 + 5𝑎 = 0 and
3𝑎+5𝑏 = 0. Solving this inℤ7, we find that 𝑎 = 0 and 𝑏 = 0. Therefore (𝑎𝑥+𝑏)+⟨𝑥2−1⟩
is the zero element and we have

((3𝑥 + 5) + ⟨𝑥2 − 1⟩) ⋅ (0 + ⟨𝑥2 − 1⟩) = 0 + ⟨𝑥2 − 1⟩,
which, while valid, does not imply that (3𝑥 + 5) + ⟨𝑥2 − 1⟩ is a zero divisor.

33.3 𝐹[𝑥]/⟨𝑔(𝑥)⟩ is not a field
Thus far, we have seen two examples of quotient rings involving polynomials:
• ℤ3[𝑥]/⟨𝑥2⟩ in Section 32.3.
• ℤ7[𝑥]/⟨𝑥2 − 1⟩ in this chapter.

Each of these has a zero divisor and thus is not a field. Moreover, we found these zero
divisors by factoring. With ℤ3[𝑥]/⟨𝑥2⟩, we consider the factorization 𝑥2 = 𝑥 ⋅ 𝑥. The
element 𝑥 + ⟨𝑥2⟩ ∈ ℤ3[𝑥]/⟨𝑥2⟩ is non-zero, because 𝑥 is not a multiple of 𝑥2. And we
have

(𝑥 + ⟨𝑥2⟩) ⋅ (𝑥 + ⟨𝑥2⟩) = 𝑥2 + ⟨𝑥2⟩ = 0 + ⟨𝑥2⟩,
so that 𝑥 + ⟨𝑥2⟩ is a zero divisor in ℤ3[𝑥]/⟨𝑥2⟩. With ℤ7[𝑥]/⟨𝑥2 − 1⟩, we factor 𝑥2 − 1 =
(𝑥 + 1) ⋅ (𝑥 − 1) and proceed similarly to find zero divisors (𝑥 + 1) + ⟨𝑥2 − 1⟩ and
(𝑥 − 1) + ⟨𝑥2 −1⟩. Here is the generalization, whose proof is left for you as an exercise.

Theorem33.8. Let𝐹 be afield andfix 𝑔(𝑥) ∈ 𝐹[𝑥]. If 𝑔(𝑥) is factorable, then𝐹[𝑥]/⟨𝑔(𝑥)⟩
is not a field.

Example 33.9. Let 𝑔(𝑥) = 𝑥3−8 ∈ ℤ13[𝑥] and consider the quotient ringℤ13[𝑥]/⟨𝑔(𝑥)⟩.
We note that 𝑔(2) = 23 − 8 = 0. Then by the factor theorem, 𝑔(𝑥) = (𝑥 − 2) ⋅ 𝑞(𝑥) for
some 𝑞(𝑥) ∈ ℤ13[𝑥] of degree 2. Thus Theorem 33.8 implies that ℤ13[𝑥]/⟨𝑔(𝑥)⟩ is not a
field. In fact, we have
((𝑥 − 2)+ ⟨𝑔(𝑥)⟩) ⋅ (𝑞(𝑥) + ⟨𝑔(𝑥)⟩) = (𝑥− 2) ⋅ 𝑞(𝑥) + ⟨𝑔(𝑥)⟩ = 𝑔(𝑥) + ⟨𝑔(𝑥)⟩ = 0+ ⟨𝑔(𝑥)⟩,
so that (𝑥 − 2) + ⟨𝑔(𝑥)⟩ and 𝑞(𝑥) + ⟨𝑔(𝑥)⟩ are zero divisors in ℤ13[𝑥]/⟨𝑔(𝑥)⟩. Both are
non-zero inℤ13[𝑥]/⟨𝑔(𝑥)⟩, since 𝑥−2 and 𝑞(𝑥) are notmultiples of 𝑔(𝑥), as their degrees
are less than that of 𝑔(𝑥).
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33.4 𝐹[𝑥]/⟨𝑔(𝑥)⟩ is a field
Based on Theorem 33.8, we might conjecture the following:

Let 𝐹 be a field and fix 𝑔(𝑥) ∈ 𝐹[𝑥]. If 𝑔(𝑥) is unfactorable, then 𝐹[𝑥]/⟨𝑔(𝑥)⟩ is a
field.

Below are some examples that support the conjecture.

Example 33.10. Consider the polynomial 𝑔(𝑥) = 𝑥2−2, which is unfactorable inℚ[𝑥].
(See Example 30.21.) Dowe also know that the quotient ringℚ[𝑥]/⟨𝑥2−2⟩ is a field? In
Example 32.13, we used the First Isomorphism Theorem to derive a ring isomorphism
ℚ[𝑥]/⟨𝑥2 − 2⟩ ≅ ℚ(√2). Moreover, ℚ(√2) is a field. (See Chapter 27, Exercise #14(c).)
Therefore ℚ[𝑥]/⟨𝑥2 − 2⟩ is a field, as desired.

Example 33.11. Consider 𝑔(𝑥) = 𝑥2 + 1 ∈ ℤ3[𝑥]. We have 𝑔(0) = 1, 𝑔(1) = 2, and
𝑔(2) = 2, so that 𝑔(𝑥) does not have a root in ℤ3. And since deg 𝑔(𝑥) = 2, we conclude
that 𝑔(𝑥) is unfactorable in ℤ3[𝑥] by Theorem 30.19. In the exercises, you’ll verify that
the quotient ring ℤ3[𝑥]/⟨𝑥2 + 1⟩ is indeed a field.

Example 33.12. Consider 𝑔(𝑥) = 𝑥2 + 1 ∈ ℤ7[𝑥]. In the exercises, you’ll verify the
following:

• 𝑔(𝑥) does not have a root in ℤ7, so that 𝑔(𝑥) is unfactorable in ℤ7[𝑥].
• The quotient ring ℤ7[𝑥]/⟨𝑥2 + 1⟩ is a field.

Hence this example also supports our conjecture.

Big picture stuff
Theorem 33.8 above says that if 𝑔(𝑥) is factorable, then 𝐹[𝑥]/⟨𝑔(𝑥)⟩ is not a field. Let’s
see through an examplewhether an analogous claim can bemadewith the integers. We
consider 𝑛 = 12, which is composite (i.e., a factorable integer). Then can we conclude
that ℤ/⟨12⟩ (or, equivalently, ℤ/12ℤ) is not a field? Since 12 factors as 12 = 3 ⋅ 4, we
have

(3 + ⟨12⟩) ⋅ (4 + ⟨12⟩) = 3 ⋅ 4 + ⟨12⟩ = 12 + ⟨12⟩ = 0 + ⟨12⟩.
Note that 3 + ⟨12⟩ and 4 + ⟨12⟩ are non-zero in ℤ/⟨12⟩, as 3 and 4 are not multiples of
12. Thus, 3 + ⟨12⟩ and 4 + ⟨12⟩ are zero divisors in ℤ/⟨12⟩, which implies that ℤ/⟨12⟩
is not a field. In other words, the same argument used in 𝐹[𝑥]/⟨𝑔(𝑥)⟩ can be applied to
ℤ/⟨𝑛⟩ as well.

Exercises
1. (a) Consider 𝑎(𝑥), 𝑏(𝑥) ∈ ℤ7[𝑥] where 𝑎(𝑥) = 3𝑥3 + 5𝑥2 + 4𝑥 + 2 and 𝑏(𝑥) =

5𝑥3+5𝑥2+4. Recall from Example 33.2 that 𝑎(𝑥) is a multiple of 𝑥2−1, while
𝑏(𝑥) is not. Verify that both 1 and −1 in ℤ7 are roots of 𝑎(𝑥), while this is not
the case for 𝑏(𝑥).

(b) Find two more polynomials 𝑓(𝑥), 𝑔(𝑥) ∈ ℤ7[𝑥] such that 𝑓(𝑥) is a multiple
of 𝑥2 − 1, while 𝑔(𝑥) is not. Verify that both 1 and −1 in ℤ7 are roots of 𝑓(𝑥),
while this is not the case for 𝑔(𝑥).
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2. Prove: Let 𝑓(𝑥) ∈ ℤ7[𝑥]. Then 𝑓(𝑥) ∈ ⟨𝑥2 − 1⟩ if and only if 𝑓(1) = 0 and
𝑓(−1) = 0.

3. Prove: Let 𝑓(𝑥) ∈ 𝐹[𝑥] and 𝑎, 𝑏 ∈ 𝐹 where 𝑎 ≠ 𝑏. Then (𝑥−𝑎) ⋅ (𝑥−𝑏) is a factor
of 𝑓(𝑥) if and only if 𝑓(𝑎) = 0 and 𝑓(𝑏) = 0.
Note: This is a generalization of the statement in Exercise #2.

4. Use the polynomial 𝑓(𝑥) = 𝑥2 − 6𝑥 + 8 ∈ ℤ15[𝑥] to show how the statement in
Exercise #3 is false when the coefficient ring 𝐹 is not a field. (Also see Example
27.11.)

5. Fix 𝑥2 − 1 ∈ ℤ7[𝑥] and define ⟨𝑥2 − 1⟩ = {(𝑥2 − 1) ⋅ 𝑞(𝑥) | 𝑞(𝑥) ∈ ℤ7[𝑥]}.
(a) Explain why 3𝑥5 + 3𝑥3 + 4𝑥2 + 𝑥 + 3 is contained in ⟨𝑥2 − 1⟩.
(b) Explain why 2𝑥4 + 5𝑥3 + 6𝑥2 + 6𝑥 + 4 is not contained in ⟨𝑥2 − 1⟩.
(c) List three more elements of ℤ7[𝑥] that are contained in ⟨𝑥2 − 1⟩.
(d) List three more elements of ℤ7[𝑥] that are not contained in ⟨𝑥2 − 1⟩.

6. Let 𝛼(𝑥), 𝛽(𝑥) ∈ ℤ7[𝑥], where 𝛼(𝑥) = 3𝑥5 + 3𝑥3 + 4𝑥2 + 6𝑥 + 4 and 𝛽(𝑥) = 5𝑥 + 1.
Explain why the cosets 𝛼(𝑥)+ ⟨𝑥2−1⟩ and 𝛽(𝑥)+ ⟨𝑥2−1⟩ are equal in the quotient
ring ℤ7[𝑥]/⟨𝑥2 − 1⟩.

7. (a) Let 𝑓(𝑥) = 3𝑥7 + 𝑥3 + 4 ∈ ℤ7[𝑥]. Find a polynomial 𝑔(𝑥) ∈ ℤ7[𝑥] of the
smallest degree such that 𝑓(𝑥) + ⟨𝑥2 − 1⟩ = 𝑔(𝑥) + ⟨𝑥2 − 1⟩ in ℤ7[𝑥]/⟨𝑥2 − 1⟩.

(b) Repeat part (a), this time with 𝑓(𝑥) = 2𝑥9 + 5𝑥7 + 4𝑥3 + 3 ∈ ℤ7[𝑥].
8. In the quotient ring ℤ7[𝑥]/⟨𝑥2 − 1⟩, do the following:

(a) Explain why (5𝑥 + 2) + ⟨𝑥2 − 1⟩ ≠ (2𝑥 + 4) + ⟨𝑥2 − 1⟩.
(b) Explain why (𝑥 + 2) + ⟨𝑥2 − 1⟩ ≠ (6𝑥 + 2) + ⟨𝑥2 − 1⟩.
(c) Prove: If 𝑎1𝑥 + 𝑎0 ≠ 𝑏1𝑥 + 𝑏0 in ℤ7[𝑥], then (𝑎1𝑥 + 𝑎0) + ⟨𝑥2 − 1⟩ ≠

(𝑏1𝑥 + 𝑏0) + ⟨𝑥2 − 1⟩ in ℤ7[𝑥]/⟨𝑥2 − 1⟩.
Note: This confirms that ℤ7[𝑥]/⟨𝑥2 − 1⟩ indeed has 49 distinct elements.

9. Consider the elements (4𝑥+ 3)+ ⟨𝑥2 −1⟩ and (4𝑥+ 2)+ ⟨𝑥2 −1⟩ in ℤ7[𝑥]/⟨𝑥2 −1⟩.
Determine if each is a unit or a zero divisor. Explain how you know.

10. Consider the quotient ringℤ13[𝑥]/⟨𝑥3−8⟩ and let 𝑓(𝑥) = 5𝑥7+10𝑥6+2𝑥3+8𝑥+4 ∈
ℤ13[𝑥].
(a) Use long division to reduce the coset 𝑓(𝑥) + ⟨𝑥3 − 8⟩ in ℤ13[𝑥]/⟨𝑥3 − 8⟩.
(b) Explain why 𝑥3 + ⟨𝑥3 − 8⟩ = 8 + ⟨𝑥3 − 8⟩ in ℤ13[𝑥]/⟨𝑥3 − 8⟩.
(c) Use your result in part (b) and the method in Section 33.2 to reduce 𝑓(𝑥) +

⟨𝑥3 − 8⟩.
11. Howmany distinct elements doesℤ13[𝑥]/⟨𝑥3−8⟩ contain? Explain how you know.

12. Consider the quotient ring ℤ11[𝑥]/⟨𝑥3 + 4𝑥+ 6⟩ and let 𝑓(𝑥) = 5𝑥7 + 10𝑥6 + 2𝑥3 +
8𝑥 + 4 ∈ ℤ11[𝑥].
(a) Use long division to reduce the coset 𝑓(𝑥)+⟨𝑥3+4𝑥+6⟩ inℤ11[𝑥]/⟨𝑥3+4𝑥+6⟩.
(b) Explain why 𝑥3+⟨𝑥3+4𝑥+6⟩ = (7𝑥+5)+⟨𝑥3+4𝑥+6⟩ inℤ11[𝑥]/⟨𝑥3+4𝑥+6⟩.
(c) Use your result in part (b) and the method in Section 33.2 to reduce 𝑓(𝑥) +

⟨𝑥3 + 4𝑥 + 6⟩.
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13. How many distinct elements does ℤ11[𝑥]/⟨𝑥3 + 4𝑥 + 6⟩ contain? Explain how you
know.

14. Let 𝑔(𝑥) = 𝑥3 + 4𝑥 + 6 ∈ ℤ11[𝑥].

(a) Find a root of 𝑔(𝑥) in ℤ11.
(b) Show that ℤ11[𝑥]/⟨𝑔(𝑥)⟩ is not a field by finding zero divisors.

15. Consider the quotient ring ℤ3[𝑥]/⟨𝑥2 + 1⟩.

(a) Find all distinct elements of ℤ3[𝑥]/⟨𝑥2 +1⟩, i.e., distinct cosets 𝑓(𝑥)+ ⟨𝑥2 +1⟩
where 𝑓(𝑥) ∈ ℤ3[𝑥].

(b) For each non-zero element 𝑎(𝑥) + ⟨𝑥2 + 1⟩, determine if it’s a unit or a zero
divisor.

(c) Moreover, find a non-zero 𝑏(𝑥) + ⟨𝑥2 + 1⟩ such that the following are true:
• For a unit: (𝑎(𝑥) + ⟨𝑥2 + 1⟩) ⋅ (𝑏(𝑥) + ⟨𝑥2 + 1⟩) = 1 + ⟨𝑥2 + 1⟩.
• For a zero divisor: (𝑎(𝑥) + ⟨𝑥2 + 1⟩) ⋅ (𝑏(𝑥) + ⟨𝑥2 + 1⟩) = 0 + ⟨𝑥2 + 1⟩.

(d) Is ℤ3[𝑥]/⟨𝑥2 + 1⟩ a field? (It should be!) Why or why not?

16. Consider again the quotient ring 𝑅 = ℤ3[𝑥]/⟨𝑥2 + 1⟩. Define 𝑅∗ = {𝛼 ∈ 𝑅 | 𝛼 is a
unit} and recall that 𝑅∗ is a multiplicative group. (See Theorem 26.24.) Verify that
𝑅∗ is a cyclic group, generated by the element 𝛼 = (𝑥 + 1) + ⟨𝑥2 + 1⟩.

17. Define a function 𝜃 ∶ ℤ3[𝑖] → ℤ3[𝑥]/⟨𝑥2+1⟩where 𝜃(𝑎+𝑏𝑖) = (𝑎+𝑏𝑥)+ ⟨𝑥2+1⟩
for all 𝑎 + 𝑏𝑖 ∈ ℤ3[𝑖]. For example, 𝜃(1 + 2𝑖) = (1 + 2𝑥) + ⟨𝑥2 + 1⟩. Show that 𝜃 is
a ring isomorphism.
Note: In Example 27.14, we saw that ℤ3[𝑖] is a field. Therefore, the above isomor-
phism is another way to verify that ℤ3[𝑥]/⟨𝑥2 + 1⟩ is a field.

18. Consider the function𝜑 ∶ ℤ3[𝑥] → ℤ3[𝑖]where𝜑(𝑓(𝑥)) = 𝑓(𝑖) for all𝑓(𝑥) ∈ ℤ3[𝑥].
Prove the following:

(a) 𝜑 is a ring homomorphism.
(b) (Challenge) ker 𝜑 = ⟨𝑥2 + 1⟩.
(c) im𝜑 = ℤ3[𝑖].

Note: Thus the First Isomorphism Theorem implies that ℤ3[𝑥]/⟨𝑥2 + 1⟩ ≅ ℤ3[𝑖].
(This exercise is referenced in Chapter 34, Exercise #17.)

19. Let 𝑝 be a prime number. Show that ℤ𝑝[𝑥]/⟨𝑥2 − 6𝑥 + 8⟩ is not a field.

20. Prove Theorem 33.8.

21. Consider the polynomial 𝑔(𝑥) = 𝑥2 + 1 ∈ ℤ7[𝑥].

(a) Verify that 𝑔(𝑥) does not have a root in ℤ7.
(b) Explain why 𝑔(𝑥) is unfactorable in ℤ7[𝑥].

22. Prove: Let 𝑎, 𝑏 ∈ ℤ7. Then 𝑎2 + 𝑏2 = 0 in ℤ7 if and only if 𝑎 = 0 and 𝑏 = 0.
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23. Consider the quotient ring ℤ7[𝑥]/⟨𝑥2+1⟩. Since 𝑥2+1 is unfactorable in ℤ7[𝑥] (see
Exercise #21(b)), our conjecture in Section 33.4 would imply that ℤ7[𝑥]/⟨𝑥2 + 1⟩ is
a field.

(a) How many distinct elements does ℤ7[𝑥]/⟨𝑥2 + 1⟩ contain? Explain how you
know.

(b) Find amultiplicative inverse of the element (4𝑥+3)+⟨𝑥2+1⟩ ∈ ℤ7[𝑥]/⟨𝑥2+1⟩.
(c) Same as part (b), but with (2𝑥 + 5) + ⟨𝑥2 + 1⟩.
(d) Same as part (b), but with (6𝑥 + 1) + ⟨𝑥2 + 1⟩.

24. (Challenge) Let (𝑎𝑥+𝑏)+⟨𝑥2+1⟩ be a non-zero element ofℤ7[𝑥]/⟨𝑥2+1⟩. Thus, 𝑎
and 𝑏 are not both zero, though one of them could be. Find amultiplicative inverse
of (𝑎𝑥 + 𝑏) + ⟨𝑥2 + 1⟩.
Hint: Your result in Exercise #22 should help.

25. (Challenge)Howmany units and zero divisors doesℤ7[𝑥]/⟨𝑥2−1⟩ have? Can you
determine the answer without actually considering each element of the quotient
ring one by one?





34
Quotient Ring ℝ[𝑥]/⟨𝑥2 + 1⟩

Wewill study another quotient ring involving polynomials, namelyℝ[𝑥]/⟨𝑥2+1⟩. How-
ever, the highlight of this chapter is an isomorphismℝ[𝑥]/⟨𝑥2+1⟩ ≅ ℂwhere the coset
(𝑎 + 𝑏𝑥) + ⟨𝑥2 + 1⟩ ∈ ℝ[𝑥]/⟨𝑥2 + 1⟩ corresponds to the complex number 𝑎 + 𝑏𝑖 ∈ ℂ.
Intuitively, to say that the ringsℝ[𝑥]/⟨𝑥2+1⟩ andℂ are isomorphicmeans that they are
essentially the same. Thus, a calculation done in one ring must have a corresponding
(and equivalent) calculation in the isomorphic ring.

In particular, we’ll work on the task of finding the multiplicative inverse of an el-
ement in ℝ[𝑥]/⟨𝑥2 + 1⟩, say (3 + 4𝑥) + ⟨𝑥2 + 1⟩. This involves a somewhat tedious
calculation. Thus, we’ll consider the corresponding problem in ℂ of finding the mul-
tiplicative inverse of 3 + 4𝑖, which happens to be a much simpler task. Once we find
the multiplicative inverse inℂ, we’ll translate the result back toℝ[𝑥]/⟨𝑥2+1⟩ to obtain
the desired multiplicative inverse of (3 + 4𝑥) + ⟨𝑥2 + 1⟩. Indeed, translating a task in
one setting to an equivalent and simpler task in another is a powerful application of an
isomorphism.

34.1 Reducing elements in ℝ[𝑥]/⟨𝑥2 + 1⟩
Consider the polynomial ringℝ[𝑥] and a subset ⟨𝑥2+1⟩ = {(𝑥2+1)⋅𝑞(𝑥) | 𝑞(𝑥) ∈ ℝ[𝑥]},
i.e., the principal ideal generated by 𝑥2+1. Note that ⟨𝑥2+1⟩ is the set of all multiples of
𝑥2+1. Then the quotient ringℝ[𝑥]/⟨𝑥2+1⟩ contains cosets of the form 𝑎(𝑥)+ ⟨𝑥2+1⟩
where 𝑎(𝑥) ∈ ℝ[𝑥].

Consider the polynomial 𝑓(𝑥) = 5𝑥4+𝑥3−3𝑥2+4𝑥−3 ∈ ℝ[𝑥]. We will illustrate
two different approaches to reduce the coset 𝑓(𝑥) + ⟨𝑥2 + 1⟩ in ℝ[𝑥]/⟨𝑥2 + 1⟩, in other
words, to find 𝑔(𝑥) ∈ ℝ[𝑥] of the smallest degree such that 𝑓(𝑥) + ⟨𝑥2 + 1⟩ = 𝑔(𝑥) +
⟨𝑥2 + 1⟩.

Method #1: Division algorithm. We use long division to divide 𝑓(𝑥) by 𝑥2 + 1,
either by hand or using a software such asMathematica. (See Example 33.2.) We find
that 𝑓(𝑥) = (𝑥2 + 1) ⋅ (5𝑥2 + 𝑥 − 8) + (5 + 3𝑥). Note how the degree of the remainder
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5 + 3𝑥 is less than the degree of the divisor 𝑥2 + 1. Therefore,

𝑓(𝑥) + ⟨𝑥2 + 1⟩ = (5 + 3𝑥) + ⟨𝑥2 + 1⟩,

because 𝑓(𝑥) − (5 + 3𝑥) = (𝑥2 + 1) ⋅ (5𝑥2 + 𝑥 − 8) ∈ ⟨𝑥2 + 1⟩.
More generally, let 𝑓(𝑥) ∈ ℝ[𝑥]. By the division algorithm, there exist 𝑞(𝑥), 𝑟(𝑥) ∈

ℝ[𝑥] such that𝑓(𝑥) = (𝑥2+1)⋅𝑞(𝑥)+𝑟(𝑥)with either 𝑟(𝑥) = 0 or deg 𝑟(𝑥) < deg(𝑥2+1).
(In practice, we can find such 𝑞(𝑥) and 𝑟(𝑥) using long division.) Therefore, 𝑟(𝑥) has
the form 𝑟(𝑥) = 𝑎 + 𝑏𝑥 where 𝑎, 𝑏 ∈ ℝ. Then, 𝑓(𝑥) + ⟨𝑥2 + 1⟩ = 𝑟(𝑥) + ⟨𝑥2 + 1⟩,
because 𝑓(𝑥) − 𝑟(𝑥) = (𝑥2 + 1) ⋅ 𝑞(𝑥) ∈ ⟨𝑥2 + 1⟩. Thus, 𝑓(𝑥) + ⟨𝑥2 + 1⟩ can be reduced
to (𝑎 + 𝑏𝑥) + ⟨𝑥2 + 1⟩ where 𝑎, 𝑏 ∈ ℝ.

Therefore, we have

ℝ[𝑥]/⟨𝑥2 + 1⟩ = {(𝑎 + 𝑏𝑥) + ⟨𝑥2 + 1⟩ | 𝑎, 𝑏 ∈ ℝ}.

Below is a theorem which states that these cosets of the form (𝑎 + 𝑏𝑥) + ⟨𝑥2 + 1⟩ are
distinct. Its proof is left for you as an exercise at the end of the chapter.

Theorem 34.1. If 𝑎0 + 𝑎1𝑥 ≠ 𝑏0 + 𝑏1𝑥 in ℝ[𝑥], then (𝑎0 + 𝑎1𝑥) + ⟨𝑥2 + 1⟩ ≠
(𝑏0 + 𝑏1𝑥) + ⟨𝑥2 + 1⟩ in ℝ[𝑥]/⟨𝑥2 + 1⟩.

Remark. We’ve written the reduced cosets in the form (𝑎+ 𝑏𝑥)+ ⟨𝑥2 +1⟩ rather than
the more customary (𝑎𝑥+𝑏)+ ⟨𝑥2+1⟩. This is done to emphasize the correspondence
(𝑎 + 𝑏𝑥) + ⟨𝑥2 + 1⟩ ↔ 𝑎+ 𝑏𝑖 in the isomorphism ℝ[𝑥]/⟨𝑥2 + 1⟩ ≅ ℂ that we’ll see later
in the chapter.

Method #2: Coset representative. Wehave 𝑥2+⟨𝑥2+1⟩ = −1+⟨𝑥2+1⟩ because
𝑥2 − (−1) = 𝑥2 + 1 ∈ ⟨𝑥2 + 1⟩. Thus, as coset representatives, we can treat 𝑥2 and −1
to be the same. Whenever we see 𝑥2 as part of a coset representative, we can replace it
with −1. This is the same technique we employed in ℤ7[𝑥]/⟨𝑥2 − 1⟩, where we treated
𝑥2 and 1 to be the same as coset representatives. (See Section 33.2 for more details.)

Let 𝑓(𝑥) = 5𝑥4 + 𝑥3 − 3𝑥2 + 4𝑥 − 3 ∈ ℝ[𝑥] again. To apply the reduction method
described above, we isolate 𝑥2 in the coset representative. For instance, the term 5𝑥4
is written as 5 ⋅ 𝑥2 ⋅ 𝑥2, so that each occurrence of 𝑥2 in the coset representative can be
replaced with −1:

𝑓(𝑥) + ⟨𝑥2 + 1⟩ = (5𝑥4 + 𝑥3 − 3𝑥2 + 4𝑥 − 3) + ⟨𝑥2 + 1⟩
= (5 ⋅ 𝒙𝟐 ⋅ 𝒙𝟐 + 𝒙𝟐 ⋅ 𝑥 − 3 ⋅ 𝒙𝟐 + 4𝑥 − 3) + ⟨𝑥2 + 1⟩
= (5 ⋅ (−𝟏) ⋅ (−𝟏) + (−𝟏) ⋅ 𝑥 − 3 ⋅ (−𝟏) + 4𝑥 − 3) + ⟨𝑥2 + 1⟩
= (5 + 3𝑥) + ⟨𝑥2 + 1⟩,

which is the same reduction as before.

34.2 Field of complex numbers
Consider the set of complex numbers ℂ = {𝑎 + 𝑏𝑖 | 𝑎, 𝑏 ∈ ℝ}, where 𝑖 = √−1 so that
𝑖2 = −1. In an exercise, you’ll verify that ℂ is a commutative ring. In fact, we’ll soon
see that ℂ is a field.
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Example 34.2. Here is how we add and multiply in ℂ:
• (2 + 7𝑖) + (4 + 3𝑖) = (2 + 4) + (7 + 3)𝑖 = 6 + 10𝑖.

• (2 + 7𝑖) ⋅ (4 + 3𝑖) = 2 ⋅ 4 + 2 ⋅ 3𝑖 + 7𝑖 ⋅ 4 + 7𝑖 ⋅ 3𝑖
= 8 + 34𝑖 + 21 ⋅ 𝒊𝟐
= 8 + 34𝑖 + 21 ⋅ (−𝟏)
= −13 + 34𝑖.

Note how we can replace 𝑖2 with −1 to simplify the product.

Example 34.3. For comparison, let’s add and multiply in ℝ[𝑥]/⟨𝑥2 + 1⟩:
• ((2 + 7𝑥) + ⟨𝑥2 + 1⟩) + ((4 + 3𝑥) + ⟨𝑥2 + 1⟩) = ((2 + 7𝑥) + (4 + 3𝑥)) + ⟨𝑥2 + 1⟩

= ((2 + 4) + (7 + 3)𝑥) + ⟨𝑥2 + 1⟩
= (6 + 10𝑥) + ⟨𝑥2 + 1⟩.

• ((2 + 7𝑥) + ⟨𝑥2 + 1⟩) ⋅ ((4 + 3𝑥) + ⟨𝑥2 + 1⟩) = ((2 + 7𝑥) ⋅ (4 + 3𝑥)) + ⟨𝑥2 + 1⟩
= (2⋅4+2⋅3𝑥+7𝑥⋅4+7𝑥⋅3𝑥)+⟨𝑥2+1⟩
= (8 + 34𝑥 + 21 ⋅ 𝒙𝟐) + ⟨𝑥2 + 1⟩
= (8 + 34𝑥 + 21 ⋅ (−𝟏)) + ⟨𝑥2 + 1⟩
= (−13 + 34𝑥) + ⟨𝑥2 + 1⟩.

Note how we can replace 𝑥2 with −1 in the coset representative.

Examples 34.2 and 34.3 demonstrate how addition and multiplication in ℂ and in
ℝ[𝑥]/⟨𝑥2+1⟩ behave essentially in the samemanner. More precisely, the two rings are
isomorphic, with the complex number 𝑎+𝑏𝑖 ∈ ℂ corresponding to the coset (𝑎+𝑏𝑥)+
⟨𝑥2 + 1⟩ in ℝ[𝑥]/⟨𝑥2 + 1⟩.

Theorem 34.4. Consider the function 𝜃 ∶ ℂ → ℝ[𝑥]/⟨𝑥2 + 1⟩, where 𝜃(𝑎 + 𝑏𝑖) =
(𝑎 + 𝑏𝑥) + ⟨𝑥2 + 1⟩ for all 𝑎 + 𝑏𝑖 ∈ ℂ. Then 𝜃 is a ring isomorphism.

Proof. Below, we will show that 𝜃 is a bijection. The proof that 𝜃 preserves addition
and multiplication is left for you as an exercise at the end of the chapter.

First, we will show that 𝜃 is onto. Let 𝑓(𝑥) + ⟨𝑥2 + 1⟩ ∈ ℝ[𝑥]/⟨𝑥2 + 1⟩. We’ve seen
that 𝑓(𝑥) + ⟨𝑥2 + 1⟩ can be reduced to (𝑎 + 𝑏𝑥) + ⟨𝑥2 + 1⟩ where 𝑎, 𝑏 ∈ ℝ. Thus for
𝑎 + 𝑏𝑖 ∈ ℂ, we have

𝜃(𝑎 + 𝑏𝑖) = (𝑎 + 𝑏𝑥) + ⟨𝑥2 + 1⟩ = 𝑓(𝑥) + ⟨𝑥2 + 1⟩,
so that 𝜃 is onto.

To show that 𝜃 is one-to-one, suppose 𝜃(𝑎+𝑏𝑖) = 𝜃(𝑐+𝑑𝑖)where 𝑎+𝑏𝑖, 𝑐+𝑑𝑖 ∈ ℂ.
Then

(𝑎 + 𝑏𝑥) + ⟨𝑥2 + 1⟩ = (𝑐 + 𝑑𝑥) + ⟨𝑥2 + 1⟩.
By the contrapositive of Theorem 34.1, we conclude that 𝑎 + 𝑏𝑥 = 𝑐 + 𝑑𝑥 in ℝ[𝑥].
This implies that 𝑎 = 𝑐 and 𝑏 = 𝑑 in ℝ, so that 𝑎 + 𝑏𝑖 = 𝑐 + 𝑑𝑖 in ℂ. Therefore, 𝜃 is
one-to-one. ■

The upshot of this isomorphism is that we can apply our knowledge of ℂ when
working with ℝ[𝑥]/⟨𝑥2 + 1⟩. For instance, finding multiplicative inverses is simpler to
do in ℂ than in ℝ[𝑥]/⟨𝑥2 + 1⟩. The next couple of examples will illustrate this calcula-
tion.
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Example 34.5. Let 4 + 3𝑖 ∈ ℂ. Then its complex conjugate is 4 − 3𝑖. Note also that
(4 + 3𝑖) ⋅ (4 − 3𝑖) = 4 ⋅ 4 + 4 ⋅ (−3𝑖) + 3𝑖 ⋅ 4 + 3𝑖 ⋅ (−3𝑖)

= 42 − 32 ⋅ 𝒊𝟐 ← the terms −12𝑖 and 12𝑖 cancel each other
= 42 − 32 ⋅ (−𝟏)
= 42 + 32,

so that (4 + 3𝑖) ⋅ (4 − 3𝑖) = 42 + 32.

Example 34.6. Again, let 4 + 3𝑖 ∈ ℂ. Since 4 + 3𝑖 is a non-zero (complex) number,
its reciprocal 1

4+3𝑖 is the multiplicative inverse of 4 + 3𝑖. To apply the isomorphism
ℂ ≅ ℝ[𝑥]/⟨𝑥2 + 1⟩, however, we must rewrite 1

4+3𝑖 in the form 𝑎 + 𝑏𝑖, where 𝑎, 𝑏 ∈ ℝ.
This is where the conjugate plays a role:

(4 + 3𝑖)−1 = 1
4 + 3𝑖 ⋅

4 − 3𝑖
4 − 3𝑖 =

4
42 + 32 +

−3
42 + 32 𝑖.

Therefore, (4 + 3𝑖)−1 = 4
25 −

3
25 𝑖. We’ll leave it to you as an exercise to verify that

(4 + 3𝑖) ⋅ ( 4
25 −

3
25 𝑖) = 1 and ( 4

25 −
3
25 𝑖) ⋅ (4 + 3𝑖) = 1.

The calculation in Example 34.6 can be generalized to show that every non-zero
element ofℂhas amultiplicative inverse. Thuswe obtain the following theoremwhose
proof is left to you.

Theorem 34.7. ℂ is a field.

Since ℂ is a field, ℝ[𝑥]/⟨𝑥2 + 1⟩ is also a field. Thus every non-zero element in
ℝ[𝑥]/⟨𝑥2 + 1⟩ is a unit. Below, we find the multiplicative inverse of (4 + 3𝑥) + ⟨𝑥2 + 1⟩
in two different ways.

Method #1: System of equations. Wemust find (𝑎+𝑏𝑥)+⟨𝑥2+1⟩ ∈ ℝ[𝑥]/⟨𝑥2+1⟩
such that

((4 + 3𝑥) + ⟨𝑥2 + 1⟩) ⋅ ((𝑎 + 𝑏𝑥) + ⟨𝑥2 + 1⟩) = 1 + ⟨𝑥2 + 1⟩.
Expanding the left side of the above equation, we get

(4 + 3𝑥) ⋅ (𝑎 + 𝑏𝑥) + ⟨𝑥2 + 1⟩ = (4 ⋅ 𝑎 + 4 ⋅ 𝑏𝑥 + 3𝑥 ⋅ 𝑎 + 3𝑥 ⋅ 𝑏𝑥) + ⟨𝑥2 + 1⟩
= (4𝑎 + (4𝑏 + 3𝑎)𝑥 + 3𝑏 ⋅ 𝒙2) + ⟨𝑥2 + 1⟩
= (4𝑎 + (4𝑏 + 3𝑎)𝑥 + 3𝑏 ⋅ (−𝟏)) + ⟨𝑥2 + 1⟩
= ((4𝑎 − 3𝑏) + (4𝑏 + 3𝑎)𝑥) + ⟨𝑥2 + 1⟩.

Setting this equal to 1+ ⟨𝑥2+1⟩ implies 4𝑎−3𝑏 = 1 and 4𝑏+3𝑎 = 0 inℝ. Solving this
system of equations, we obtain 𝑎 = 4

25 and 𝑏 = − 3
25 , so that the desired multiplicative

inverse is ( 4
25 −

3
25𝑥) + ⟨𝑥2 + 1⟩.

Method #2: Isomorphism with ℂ. We use the isomorphism ℂ ≅ ℝ[𝑥]/⟨𝑥2+1⟩.
The coset (4+3𝑥)+ ⟨𝑥2+1⟩ corresponds to 4+3𝑖 ∈ ℂ, whose multiplicative inverse is
(4+3𝑖)−1 = 4

25 −
3
25 𝑖. (See Example 34.6.) Translating back toℝ[𝑥]/⟨𝑥

2+1⟩, we obtain
the multiplicative inverse ( 4

25 −
3
25𝑥) + ⟨𝑥2 + 1⟩, as we found in Method #1.
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34.3 𝐹[𝑥]/⟨𝑔(𝑥)⟩ is a field revisited
In Section 33.4, we studied examples of quotient rings of the form 𝐹[𝑥]/⟨𝑔(𝑥)⟩, where
𝑔(𝑥) is unfactorable in 𝐹[𝑥]. In all of these, 𝐹[𝑥]/⟨𝑔(𝑥)⟩ is a field. We include another
example from this chapter, since 𝑥2 + 1 is unfactorable in ℝ[𝑥] and ℝ[𝑥]/⟨𝑥2 + 1⟩ is a
field. Here is the conjecture we had made:

Let 𝐹 be a field and fix 𝑔(𝑥) ∈ 𝐹[𝑥]. If 𝑔(𝑥) is unfactorable, then 𝐹[𝑥]/⟨𝑔(𝑥)⟩ is a
field.

To start thinking about the proof of this conjecture, we recall how we determine that
𝐹[𝑥]/⟨𝑔(𝑥)⟩ is a field in each of our examples.

• Forℚ[𝑥]/⟨𝑥2−2⟩, derive a ring isomorphismℚ[𝑥]/⟨𝑥2−2⟩ ≅ ℚ(√2) using the First
Isomorphism Theorem. And since ℚ(√2) is a field, conclude that ℚ[𝑥]/⟨𝑥2 − 2⟩ is
also a field.

• Since ℤ3[𝑥]/⟨𝑥2 + 1⟩ contains only 9 elements, verify that each of its non-zero ele-
ments is a unit.

• Forℤ7[𝑥]/⟨𝑥2+1⟩, consider an arbitrary non-zero element (𝑎𝑥+𝑏)+⟨𝑥2+1⟩. Then
compute its multiplicative inverse and show that it must exist.

• Forℝ[𝑥]/⟨𝑥2+1⟩, obtain a ring isomorphism ℂ ≅ ℝ[𝑥]/⟨𝑥2+1⟩ via the correspon-
dence 𝑎+𝑏𝑖 ↔ (𝑎+𝑏𝑥)+⟨𝑥2+1⟩. And sinceℂ is a field, conclude thatℝ[𝑥]/⟨𝑥2+1⟩
is a field, too.
These four approaches are quite different from each other. Thus, they do not sug-

gest a proof approach that can be applied to all cases. For that, we’ll have to wait until
the next chapter.

Exercises
1. Consider the quotient ring ℤ13[𝑥]/⟨𝑥3 + 7𝑥+ 5⟩ and let 𝑓(𝑥) = 5𝑥7 + 10𝑥6 + 2𝑥3 +

8𝑥 + 4 ∈ ℤ13[𝑥].
(a) Use long division to reduce the coset 𝑓(𝑥) + ⟨𝑥3 + 7𝑥 + 5⟩.
(b) Explain why 𝑥3+⟨𝑥3+7𝑥+5⟩ = (6𝑥+8)+⟨𝑥3+7𝑥+5⟩ inℤ13[𝑥]/⟨𝑥3+7𝑥+5⟩.
(c) Use your result in part (b) and Method #2 in Section 34.1 to reduce 𝑓(𝑥) +

⟨𝑥3 + 7𝑥 + 5⟩.
2. How many distinct elements does ℤ13[𝑥]/⟨𝑥3 + 7𝑥 + 5⟩ contain? Explain how you

know.

3. Explain why ℤ13[𝑥]/⟨𝑥3 + 7𝑥 + 5⟩ is not a field.
4. Consider again the quotient ringℤ13[𝑥]/⟨𝑥3+7𝑥+5⟩, and let𝑓(𝑥) = 𝑥2+1 ∈ ℤ13[𝑥].

It turns out that 𝑓(𝑥) + ⟨𝑥3 + 7𝑥 + 5⟩ is a unit in ℤ13[𝑥]/⟨𝑥3 + 7𝑥 + 5⟩. Find its
multiplicative inverse.

5. In the quotient ring ℝ[𝑥]/⟨𝑥2 + 1⟩, do the following:
(a) Explain why (3 + 5𝑥) + ⟨𝑥2 + 1⟩ ≠ (−2 + 7𝑥) + ⟨𝑥2 + 1⟩.
(b) Explain why (4 + 10𝑥) + ⟨𝑥2 + 1⟩ ≠ (−3 + 10𝑥) + ⟨𝑥2 + 1⟩.
(c) Explain why (𝜋 + 3𝑥) + ⟨𝑥2 + 1⟩ ≠ (𝜋 − 8𝑥) + ⟨𝑥2 + 1⟩.
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6. Prove Theorem 34.1.

7. Let 𝑓(𝑥) = 3𝑥7 + 𝑥3 + 4 ∈ ℝ[𝑥]. Find a polynomial 𝑔(𝑥) ∈ ℝ[𝑥] of the smallest
degree such that 𝑓(𝑥) + ⟨𝑥2 + 1⟩ = 𝑔(𝑥) + ⟨𝑥2 + 1⟩ in ℝ[𝑥]/⟨𝑥2 + 1⟩.
Note: Do this twice, using the two different methods shown in Section 34.1.

8. Repeat Exercise #7, this time with 𝑓(𝑥) = 2𝑥9 + 5𝑥7 + 4𝑥3 + 3 ∈ ℝ[𝑥].

9. Verify that the setℂ = {𝑎+𝑏𝑖 | 𝑎, 𝑏 ∈ ℝ}, with addition andmultiplication defined
in Example 34.2, satisfies the ring properties outlined in Definition 26.2.

10. Complete the proof of Theorem 34.4 by showing that 𝜃 preserves addition andmul-
tiplication.

11. Verify that (4+3𝑖) ⋅ ( 4
25 −

3
25 𝑖) = 1 and ( 4

25 −
3
25 𝑖) ⋅ (4+3𝑖) = 1. (See Example 34.6.)

12. Consider the quotient ring ℝ[𝑥]/⟨𝑥2 + 1⟩.

(a) Use Method #1 in Section 34.2 to find the multiplicative inverse of (2 + 7𝑥) +
⟨𝑥2 + 1⟩.

(b) Use the isomorphism ℂ ≅ ℝ[𝑥]/⟨𝑥2 + 1⟩ to find the multiplicative inverse of
(2 + 7𝑥) + ⟨𝑥2 + 1⟩.

(c) Let (𝑎+𝑏𝑥)+ ⟨𝑥2+1⟩ be the multiplicative inverse you found in parts (a) and
(b). Compute

((2 + 7𝑥) + ⟨𝑥2 + 1⟩) ⋅ ((𝑎 + 𝑏𝑥) + ⟨𝑥2 + 1⟩)
and

((𝑎 + 𝑏𝑥) + ⟨𝑥2 + 1⟩) ⋅ ((2 + 7𝑥) + ⟨𝑥2 + 1⟩)
and verify that these coset products actually equal 1 + ⟨𝑥2 + 1⟩.

13. Repeat Exercise #12, with (4 − 𝑥) + ⟨𝑥2 + 1⟩ in place of (2 + 7𝑥) + ⟨𝑥2 + 1⟩.

14. Prove Theorem 34.7.

15. Let 𝑓(𝑥) = 4𝑥5 + 5𝑥4 + 𝑥3 + 9𝑥2 − 3𝑥 + 4 ∈ ℝ[𝑥].

(a) Verify that 𝑓(𝑖) = 0 where 𝑖 = √−1 ∈ ℂ.
(b) Verify that 𝑓(−𝑖) = 0 as well.

16. (a) Repeat Exercise #15, this time with 𝑓(𝑥) = 7𝑥12 +7𝑥10 −3𝑥5 −3𝑥3 +2𝑥2 +2.
(b) Prove: Let 𝑓(𝑥) ∈ ℝ[𝑥]. If 𝑖 ∈ ℂ is a root of 𝑓(𝑥), then −𝑖 is also a root of

𝑓(𝑥).

17. Consider the function 𝜑 ∶ ℝ[𝑥] → ℂ where 𝜑(𝑓(𝑥)) = 𝑓(𝑖) for all 𝑓(𝑥) ∈ ℝ[𝑥].
Prove the following:

(a) 𝜑 is a ring homomorphism.
(b) ker 𝜑 = ⟨𝑥2 + 1⟩. (Hint: Use Exercise #16(b).)
(c) im𝜑 = ℂ.
(d) What conclusion can you make using the First Isomorphism Theorem?

Note: Compare with Chapter 33, Exercise #18.



Exercises 349

18. Consider the quotient ring ℚ[𝑥]/⟨𝑥2 − 2⟩, and let 𝑓(𝑥) = 5𝑥3 − 3𝑥 + 4 ∈ ℚ[𝑥].
(a) Use long division to reduce the coset 𝑓(𝑥) + ⟨𝑥2 − 2⟩.
(b) Explain why 𝑥2 + ⟨𝑥2 − 2⟩ = 2 + ⟨𝑥2 − 2⟩ in ℚ[𝑥]/⟨𝑥2 − 2⟩.
(c) Use your result in part (b) and Method #2 in Section 34.1 to reduce 𝑓(𝑥) +

⟨𝑥2 − 2⟩.
19. Explainwhy each𝑓(𝑥)+⟨𝑥2−2⟩ ∈ ℚ[𝑥]/⟨𝑥2−2⟩ can be reduced to (𝑎+𝑏𝑥)+⟨𝑥2−2⟩,

where 𝑎, 𝑏 ∈ ℚ.
Note: Thus, we have the correspondence (𝑎 + 𝑏𝑥) + ⟨𝑥2 − 2⟩ ↔ 𝑎 + 𝑏√2 in the
ring isomorphism ℚ[𝑥]/⟨𝑥2 − 2⟩ ≅ ℚ(√2). (See Example 32.13.)

20. Find the multiplicative inverse of each element in ℚ(√2). Be sure to write your
answer in the form 𝑎 + 𝑏√2, where 𝑎, 𝑏 ∈ ℚ. (Hint: See Example 34.6.)

(a) 5 + 3√2.
(b) −6 + 11√2.
(c) 1 + √2.
(d) 10 − 7√2.
(e) 𝑎 + 𝑏√2 ← Assume that it’s a non-zero element.

21. Consider the quotient ring ℚ[𝑥]/⟨𝑥2 − 2⟩.
(a) Use Method #1 in Section 34.2 to find the multiplicative inverse of (5 + 3𝑥) +

⟨𝑥2 − 2⟩.
(b) Use the isomorphismℚ[𝑥]/⟨𝑥2−2⟩ ≅ ℚ(√2) to find themultiplicative inverse

of (5 + 3𝑥) + ⟨𝑥2 − 2⟩.
(c) Let (𝑎+𝑏𝑥)+ ⟨𝑥2−2⟩ be the multiplicative inverse you found in parts (a) and

(b). Compute
((5 + 3𝑥) + ⟨𝑥2 − 2⟩) ⋅ ((𝑎 + 𝑏𝑥) + ⟨𝑥2 − 2⟩)

and
((𝑎 + 𝑏𝑥) + ⟨𝑥2 − 2⟩) ⋅ ((5 + 3𝑥) + ⟨𝑥2 − 2⟩)

and verify that these coset products actually equal 1 + ⟨𝑥2 − 2⟩.
22. Repeat Exercise #21, with (−6 + 11𝑥) + ⟨𝑥2 − 2⟩ in place of (5 + 3𝑥) + ⟨𝑥2 − 2⟩.
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𝐹[𝑥]/⟨𝑔(𝑥)⟩ Is/Isn’t a Field, Part I

In Sections 33.4 and 34.3, we analyzed examples that support the following conjecture:
Let 𝐹 be a field and fix 𝑔(𝑥) ∈ 𝐹[𝑥]. If 𝑔(𝑥) is unfactorable, then 𝐹[𝑥]/⟨𝑔(𝑥)⟩ is a
field.

The goal of this chapter is to (finally!) give its proof. What makes the proof interesting
is not necessarily its content, but the process through which we develop the proof.

In recent chapters, we’ve found many structural similarities between the ring of
integers ℤ and the polynomial ring 𝐹[𝑥], where 𝐹 is a field. We will now use these
similarities to derive a proof of our conjecture. First, we find an analogous statement
in ℤ. Since unfactorable polynomials in 𝐹[𝑥] correspond to prime numbers in ℤ, our
conjecture, when written in the language of ℤ, becomes the following:

Fix 𝑝 ∈ ℤ. If 𝑝 is prime, then ℤ/⟨𝑝⟩ is a field.
We’ll prove this statement about ℤ and then translate that proof into the language of
𝐹[𝑥]. As we’ll see, all of the ingredients that go into the proof of the statement about
ℤ are also valid in 𝐹[𝑥]. Informally, we might say that the two proofs in ℤ and in
𝐹[𝑥] are “isomorphic” to each other. Indeed, this chapter gives yet another illustration
of the power of abstraction in mathematics, i.e., the process of extracting structural
similarities that occur in seemingly different scenarios.

35.1 Translate from 𝐹[𝑥] to ℤ
Our main goal in this chapter is to complete the proof of the following theorem:

Theorem 35.1. Let 𝐹 be a field and fix 𝑔(𝑥) ∈ 𝐹[𝑥].
(a) If 𝑔(𝑥) is factorable, then 𝐹[𝑥]/⟨𝑔(𝑥)⟩ is not a field.
(b) If 𝑔(𝑥) is unfactorable, then 𝐹[𝑥]/⟨𝑔(𝑥)⟩ is a field.

Recall that part (a) of the theorem has been resolved already. (See Theorem 33.8.)
Thus, our focus will be on part (b). As described in the introduction to this chapter,
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we will rely on the structural similarities between ℤ and 𝐹[𝑥]. To start, observe that
unfactorable polynomials in 𝐹[𝑥] correspond to prime numbers in ℤ. Therefore, part
(b) of the theorem can be translated into the language of ℤ as follows:

Fix 𝑝 ∈ ℤ. If 𝑝 is prime, then ℤ/⟨𝑝⟩ is a field.
Now, ℤ/⟨𝑝⟩ is the same as ℤ/𝑝ℤ, because ⟨𝑝⟩ = 𝑝ℤ. We also have a ring isomorphism
ℤ/𝑝ℤ ≅ ℤ𝑝 (see Chapter 32, Exercise #21), and we know that ℤ𝑝 is a field when 𝑝 is
prime. Thus, ℤ/⟨𝑝⟩must be a field as well.

The following example reviews the argument for why ℤ𝑝 is a field.

Example 35.2. Suppose 𝑎 ∈ ℤ29 with 𝑎 ≠ 0. For instance, let 𝑎 = 8. Since 29 is a
prime number, we have gcd(8, 29) = 1. Then by the GCD theorem (i.e., Theorem 3.9),
there exist 𝑥, 𝑦 ∈ ℤ such that 8𝑥+29𝑦 = 1. In fact, we have 8 ⋅ 11+29 ⋅ (−3) = 1. Then
8 ⋅ 11 − 1 = 29 ⋅ 3, so that 29 is a divisor of 8 ⋅ 11 − 1. Thus 8 ⋅ 11 = 1 in ℤ29, so that
8 has a multiplicative inverse, namely 11. Hence, 8 ∈ ℤ29 is a unit. Arguing similarly,
we can show that every non-zero element of ℤ29 is a unit. Therefore, ℤ29 is a field.

We now generalize Example 35.2 by replacing 29with a prime number 𝑝 and using
the quotient ring ℤ/⟨𝑝⟩ instead of ℤ𝑝.

Theorem 35.3. If 𝑝 is prime, then ℤ/⟨𝑝⟩ is a field.

Proof. Let 𝑎 + ⟨𝑝⟩ be a non-zero element of ℤ/⟨𝑝⟩, so that 𝑎 ∈ ℤ with 𝑎 ∉ ⟨𝑝⟩. We
must show that 𝑎 + ⟨𝑝⟩ is a unit in ℤ/⟨𝑝⟩. Since 𝑎 ∉ ⟨𝑝⟩, the integer 𝑎 is not a multiple
of 𝑝. And since 𝑝 is prime, we have gcd(𝑎, 𝑝) = 1. Hence by the GCD theorem, there
exist 𝑥, 𝑦 ∈ ℤ such that 𝑎𝑥 + 𝑝𝑦 = 1.

We have (𝑎 + ⟨𝑝⟩) ⋅ (𝑥 + ⟨𝑝⟩) = 𝑎𝑥 + ⟨𝑝⟩. Moreover, 𝑎𝑥 + ⟨𝑝⟩ = 1 + ⟨𝑝⟩, since
𝑎𝑥 − 1 = 𝑝 ⋅ (−𝑦) ∈ ⟨𝑝⟩. Thus, (𝑎 + ⟨𝑝⟩) ⋅ (𝑥 + ⟨𝑝⟩) = 1 + ⟨𝑝⟩, so that 𝑎 + ⟨𝑝⟩ is a unit
in ℤ/⟨𝑝⟩, with multiplicative inverse 𝑥 + ⟨𝑝⟩. Therefore ℤ/⟨𝑝⟩ is a field, as desired. ■

Key to the above proof is the GCD theorem for integers (Theorem 3.9), which
states:
Let 𝑎, 𝑏 ∈ ℤ. If gcd(𝑎, 𝑏) = 1, then there exist integers 𝑥 and 𝑦 such that 𝑎𝑥 + 𝑏𝑦 = 1.
The GCD theorem is proved in Appendix A. However, we’ll give a different proof of
the GCD theorem that can more easily translate back into the language of 𝐹[𝑥].

The following example illustrates a concept that is needed for our new proof of the
GCD theorem.

Example 35.4. Define the set ⟨8, 29⟩ = {8𝑥 + 29𝑦 | 𝑥, 𝑦 ∈ ℤ} containing all linear
combinations of 8 and 29. In Example 35.2, we saw that 1 ∈ ⟨8, 29⟩, because 1 =
8 ⋅ 11 + 29 ⋅ (−3). We claim that 𝑎 ∈ ⟨8, 29⟩ for every 𝑎 ∈ ℤ. Multiplying both sides of
the equation 1 = 8 ⋅ 11 + 29 ⋅ (−3) by 𝑎, we obtain 𝑎 = 8 ⋅ (11𝑎) + 29 ⋅ (−3𝑎), so that
𝑎 = 8𝑥 + 29𝑦 where 𝑥 = 11𝑎 and 𝑦 = −3𝑎. Thus, we conclude that ⟨8, 29⟩ = ℤ.

Here is a definition that generalizes the set ⟨8, 29⟩ in Example 35.4.

Definition 35.5. Let 𝑅 be a commutative ring and fix elements 𝑎1, 𝑎2, . . . , 𝑎𝑛 ∈ 𝑅. The
set

⟨𝑎1, 𝑎2, . . . , 𝑎𝑛⟩ = {𝑎1 ⋅ 𝑟1 + 𝑎2 ⋅ 𝑟2 + ⋯ + 𝑎𝑛 ⋅ 𝑟𝑛 | 𝑟1, 𝑟2, . . . , 𝑟𝑛 ∈ 𝑅}
is called the ideal generated by 𝑎1, 𝑎2, . . . , 𝑎𝑛.
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This definition is also a generalization of the principal ideal ⟨𝑎⟩ = {𝑎 ⋅ 𝑟 | 𝑟 ∈ 𝑅},
which is generated by a single fixed element 𝑎 ∈ 𝑅. As its name suggests, the set
⟨𝑎1, 𝑎2, . . . , 𝑎𝑛⟩ is indeed an ideal of the ring 𝑅. We’ll state that as a theorem and leave
the proof to you as an exercise.

Theorem 35.6. Let 𝑅 be a commutative ring and fix elements 𝑎1, 𝑎2, . . . , 𝑎𝑛 ∈ 𝑅. The
set ⟨𝑎1, 𝑎2, . . . , 𝑎𝑛⟩ is an ideal of 𝑅.

Example 35.7. Consider the set 𝐴 of all polynomials in ℤ[𝑥] with an even constant
term. In Chapter 31, Exercises #11, #12, and #13, we found that 𝐴 is an ideal of ℤ[𝑥],
but not a principal ideal; i.e., there does not exist an element 𝛼(𝑥) ∈ ℤ[𝑥] such that
𝐴 = ⟨𝛼(𝑥)⟩. In fact, we need two elements of ℤ[𝑥] to generate the ideal 𝐴. We showed
that 𝐴 = ⟨𝑥, 2⟩, where ⟨𝑥, 2⟩ = {𝑥 ⋅ 𝑓(𝑥) + 2 ⋅ 𝑔(𝑥) | 𝑓(𝑥), 𝑔(𝑥) ∈ ℤ[𝑥]}.

For the proof of our next theorem, recall that ℤ is a principal ideal domain (PID),
i.e., an integral domain whose ideals are all principal. (See Theorem 31.33.)

Theorem 35.8. Let 𝑎, 𝑏 ∈ ℤ. If gcd(𝑎, 𝑏) = 1, then ⟨𝑎, 𝑏⟩ = ℤ.

Proof. Assume gcd(𝑎, 𝑏) = 1. Since ⟨𝑎, 𝑏⟩ is an ideal of ℤ and every ideal of ℤ is
principal, we have ⟨𝑎, 𝑏⟩ = ⟨𝑑⟩ for some 𝑑 ∈ ℤ. As explained in the remark below, we
may assume that 𝑑 > 0. Note that 𝑎 ∈ ⟨𝑎, 𝑏⟩, because 𝑎 = 𝑎 ⋅ 1 + 𝑏 ⋅ 0. And since
⟨𝑎, 𝑏⟩ = ⟨𝑑⟩, we find that 𝑎 ∈ ⟨𝑑⟩. Thus, 𝑎 = 𝑑 ⋅ 𝑟 for some 𝑟 ∈ ℤ, so that 𝑑 is a
divisor of 𝑎. Similarly, 𝑑 is also a divisor of 𝑏; thus 𝑑 is a common divisor of 𝑎 and 𝑏.
But since gcd(𝑎, 𝑏) = 1, we have 𝑑 = 1. As ⟨𝑎, 𝑏⟩ = ⟨𝑑⟩ and ⟨𝑑⟩ = ⟨1⟩ = ℤ, we obtain
⟨𝑎, 𝑏⟩ = ℤ. ■

Remark. We have 𝑑 ≠ 0 in the above proof, because ⟨𝑎, 𝑏⟩ = ⟨0⟩ would imply that 𝑎
and 𝑏 are both 0, which cannot occur since gcd(𝑎, 𝑏) = 1. Since 𝑑 ≠ 0, either 𝑑 or −𝑑
is positive. And you’ll show in an exercise that ⟨𝑑⟩ = ⟨−𝑑⟩. Thus, we may assume that
𝑑 is positive in the equality ⟨𝑎, 𝑏⟩ = ⟨𝑑⟩.

Using Theorem 35.8, we can reprove the GCD theorem for integers. We’ll leave
the details to you as an exercise.

35.2 Translate (back) from ℤ to 𝐹[𝑥]
We’d like to state and prove the polynomial version of the GCD theorem. To do that,
we must define what it means for two polynomials to be relatively prime. For insight,
let’s return to the ring of integers ℤ. We say that 8 and 29 are relatively prime (or
gcd(8, 29) = 1), as they have no common divisor except 1 and −1. Moreover, observe
that 1 and −1 are the only units in ℤ. Now, the only units in 𝐹[𝑥] are the units of 𝐹
(Theorem 28.18), which are all the non-zero elements of 𝐹 since 𝐹 is a field.

The above comparison with ℤmotivates the following definition.

Definition 35.9. Let 𝐹 be a field, and let 𝑓(𝑥), 𝑔(𝑥) ∈ 𝐹[𝑥]. Then 𝑓(𝑥) and 𝑔(𝑥) are
relatively prime if they have no common factor except for the non-zero elements of 𝐹,
i.e., the non-zero constant polynomials.
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Example 35.10. Let 𝑓(𝑥) = 3𝑥2 + 4𝑥 + 1 and 𝑔(𝑥) = 𝑥3 + 2 in ℤ7[𝑥]. Since 𝑔(𝑥)
has no root in ℤ7 (we’ll leave the verification to you) and deg 𝑔(𝑥) = 3, Theorem 30.19
implies that 𝑔(𝑥) is unfactorable in ℤ7[𝑥]. Also, 𝑓(𝑥) is not a multiple of 𝑔(𝑥), because
deg 𝑓(𝑥) < deg 𝑔(𝑥). Therefore, 𝑓(𝑥) and 𝑔(𝑥) are relatively prime.

The argument in Example 35.10 above seems sensible, especially when compared
to its counterpart in ℤ. For instance, since 29 is prime and 8 is not a multiple of 29, we
conclude that 8 and 29 are relatively prime. But let’s make a more rigorous argument,
using the definition of relatively prime in 𝐹[𝑥]. We’ll start the proof of the next theorem
and leave it for you to complete as an exercise.

Theorem 35.11. Let 𝐹 be a field, and let 𝑓(𝑥), 𝑔(𝑥) ∈ 𝐹[𝑥]. If 𝑔(𝑥) is unfactorable and
𝑓(𝑥) is not a multiple of 𝑔(𝑥), then 𝑓(𝑥) and 𝑔(𝑥) are relatively prime.

Proof know-how. To show that the polynomials 𝑓(𝑥) and 𝑔(𝑥) are relatively prime,
let 𝑑(𝑥) be a common factor. Then show that 𝑑(𝑥) is a non-zero element of 𝐹, i.e., a
non-zero constant polynomial.

Proof. Assume 𝑔(𝑥) is unfactorable and 𝑓(𝑥) is not amultiple of 𝑔(𝑥). Let 𝑑(𝑥) ∈ 𝐹[𝑥]
be a common factor of 𝑓(𝑥) and 𝑔(𝑥). Thus, 𝑓(𝑥) = 𝑑(𝑥)⋅𝑝(𝑥) and 𝑔(𝑥) = 𝑑(𝑥)⋅𝑞(𝑥) for
some 𝑝(𝑥), 𝑞(𝑥) ∈ 𝐹[𝑥]. Since 𝑔(𝑥) is unfactorable, Theorem 30.8 implies that either
𝑑(𝑥) or 𝑞(𝑥) is a non-zero constant.

Suppose for contradiction that 𝑞(𝑥) is a non-zero constant; i.e., 𝑞(𝑥) = 𝛼 for some
𝛼 ∈ 𝐹 with 𝛼 ≠ 0.

(We’ll leave it up to you to obtain a contradiction here.)

Thus 𝑞(𝑥) cannot be a non-zero constant, and hence 𝑑(𝑥)must be a non-zero constant.
Therefore 𝑓(𝑥) and 𝑔(𝑥) are relatively prime, as desired. ■

We now proceed as we did with ℤ. Notice the stark similarity between the proof
below and that of Theorem 35.8. And as with ℤ, recall that 𝐹[𝑥] is a principal ideal
domain. (See Theorem 31.34.)

Theorem35.12. Let𝐹 be afield, and let𝑓(𝑥), 𝑔(𝑥) ∈ 𝐹[𝑥]. If𝑓(𝑥)and 𝑔(𝑥)are relatively
prime, then ⟨𝑓(𝑥), 𝑔(𝑥)⟩ = 𝐹[𝑥].

Proof. Assume 𝑓(𝑥) and 𝑔(𝑥) are relatively prime. Since ⟨𝑓(𝑥), 𝑔(𝑥)⟩ is an ideal of
𝐹[𝑥] and every ideal of 𝐹[𝑥] is principal, we have ⟨𝑓(𝑥), 𝑔(𝑥)⟩ = ⟨𝑑(𝑥)⟩ for some 𝑑(𝑥) ∈
𝐹[𝑥]. Note that 𝑓(𝑥) ∈ ⟨𝑓(𝑥), 𝑔(𝑥)⟩, because 𝑓(𝑥) = 𝑓(𝑥) ⋅ 1 + 𝑔(𝑥) ⋅ 0. And since
⟨𝑓(𝑥), 𝑔(𝑥)⟩ = ⟨𝑑(𝑥)⟩, we find that 𝑓(𝑥) ∈ ⟨𝑑(𝑥)⟩. Thus, 𝑓(𝑥) = 𝑑(𝑥) ⋅ 𝑝(𝑥) for some
𝑝(𝑥) ∈ 𝐹[𝑥], so that 𝑑(𝑥) is a factor of 𝑓(𝑥). Similarly, 𝑑(𝑥) is also a factor of 𝑔(𝑥);
thus 𝑑(𝑥) is a common factor of 𝑓(𝑥) and 𝑔(𝑥). But since 𝑓(𝑥) and 𝑔(𝑥) are relatively
prime, 𝑑(𝑥) is a non-zero element of 𝐹. In other words, 𝑑(𝑥) is a unit of 𝐹[𝑥] and thus
⟨𝑑(𝑥)⟩ = 𝐹[𝑥]. Since ⟨𝑓(𝑥), 𝑔(𝑥)⟩ = ⟨𝑑(𝑥)⟩ and ⟨𝑑(𝑥)⟩ = 𝐹[𝑥], we obtain ⟨𝑓(𝑥), 𝑔(𝑥)⟩ =
𝐹[𝑥]. ■

The above proof contains the claim, “𝑑(𝑥) is a unit of 𝐹[𝑥] and thus ⟨𝑑(𝑥)⟩ = 𝐹[𝑥].”
This statement relies on the following theorem, whose proof is left for you as an exer-
cise. Note that in the above proof, the ideal 𝐴 = ⟨𝑑(𝑥)⟩ contains a unit of 𝑅 = 𝐹[𝑥],
namely the element 𝑑(𝑥); thus, Theorem 35.13 implies that 𝐴 = 𝑅 or ⟨𝑑(𝑥)⟩ = 𝐹[𝑥].
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Theorem 35.13. Let 𝐴 be an ideal of a ring 𝑅. If 𝐴 contains a unit of 𝑅, then 𝐴 = 𝑅.

To conclude this section, here is the GCD theorem for polynomials. Its proof is left
to you as an exercise.

Theorem 35.14 (GCD theorem for polynomials). Let 𝐹 be a field, and let 𝑓(𝑥), 𝑔(𝑥) ∈
𝐹[𝑥]. If 𝑓(𝑥) and 𝑔(𝑥) are relatively prime, then there exist 𝑝(𝑥), 𝑞(𝑥) ∈ 𝐹[𝑥] such that
𝑓(𝑥) ⋅ 𝑝(𝑥) + 𝑔(𝑥) ⋅ 𝑞(𝑥) = 1.

Example 35.15. Let 𝑓(𝑥) = 3𝑥2 + 4𝑥 + 1 and 𝑔(𝑥) = 𝑥3 + 2 in ℤ7[𝑥]. We showed in
Example 35.10 that 𝑓(𝑥) and 𝑔(𝑥) are relatively prime. Thus, there exist 𝑝(𝑥), 𝑞(𝑥) ∈
ℤ7[𝑥] such that 𝑓(𝑥) ⋅ 𝑝(𝑥) + 𝑔(𝑥) ⋅ 𝑞(𝑥) = 1. In fact, you should verify that

𝑓(𝑥) ⋅ (5𝑥2 + 5𝑥 + 1) + 𝑔(𝑥) ⋅ (−𝑥) = 1.

35.3 Proof of Theorem 35.1(b)
Nowwe are ready to prove part (b) of Theorem 35.1. To show that 𝐹[𝑥]/⟨𝑔(𝑥)⟩ is a field,
we must show that every non-zero element is a unit (i.e., has a multiplicative inverse).
Notice how the proof below is essentially the same as the proof of Theorem 35.3.

Theorem 35.1(b). Let 𝐹 be a field, and fix 𝑔(𝑥) ∈ 𝐹[𝑥]. If 𝑔(𝑥) is unfactorable, then
𝐹[𝑥]/⟨𝑔(𝑥)⟩ is a field.

Proof. Let𝛼(𝑥)+⟨𝑔(𝑥)⟩ be a non-zero element of𝐹[𝑥]/⟨𝑔(𝑥)⟩, so that𝛼(𝑥) ∈ 𝐹[𝑥]with
𝛼(𝑥) ∉ ⟨𝑔(𝑥)⟩. We must show that 𝛼(𝑥) + ⟨𝑔(𝑥)⟩ is a unit in 𝐹[𝑥]/⟨𝑔(𝑥)⟩. Since 𝛼(𝑥) ∉
⟨𝑔(𝑥)⟩, the polynomial 𝛼(𝑥) is not a multiple of 𝑔(𝑥). And since 𝑔(𝑥) is unfactorable,
Theorem 35.11 implies that 𝛼(𝑥) and 𝑔(𝑥) are relatively prime. Hence by the GCD
theorem for polynomials, there exist 𝑝(𝑥), 𝑞(𝑥) ∈ 𝐹[𝑥] such that 𝛼(𝑥) ⋅ 𝑝(𝑥) + 𝑔(𝑥) ⋅
𝑞(𝑥) = 1.

We have (𝛼(𝑥) + ⟨𝑔(𝑥)⟩) ⋅ (𝑝(𝑥) + ⟨𝑔(𝑥)⟩) = 𝛼(𝑥) ⋅ 𝑝(𝑥) + ⟨𝑔(𝑥)⟩. Moreover,
𝛼(𝑥) ⋅ 𝑝(𝑥) + ⟨𝑔(𝑥)⟩ = 1 + ⟨𝑔(𝑥)⟩, since 𝛼(𝑥) ⋅ 𝑝(𝑥) − 1 = 𝑔(𝑥) ⋅ (−𝑞(𝑥)) ∈ ⟨𝑔(𝑥)⟩. Thus,
(𝛼(𝑥)+⟨𝑔(𝑥)⟩) ⋅(𝑝(𝑥)+⟨𝑔(𝑥)⟩) = 1+⟨𝑔(𝑥)⟩, so that 𝛼(𝑥)+⟨𝑔(𝑥)⟩ is a unit in 𝐹[𝑥]/⟨𝑔(𝑥)⟩,
with multiplicative inverse 𝑝(𝑥) + ⟨𝑔(𝑥)⟩. Therefore 𝐹[𝑥]/⟨𝑔(𝑥)⟩ is a field, as desired.

■

Big picture stuff
The main goal of the chapter was to prove the following: If 𝑔(𝑥) is unfactorable, then
𝐹[𝑥]/⟨𝑔(𝑥)⟩ is a field. To develop its proof, we took advantage of the structural similar-
ities between ℤ and 𝐹[𝑥]. We began by stating and proving the analogous theorem for
the integers: If 𝑝 is prime, then ℤ/⟨𝑝⟩ is a field. Then we translated the proof in ℤ back
to our proof in 𝐹[𝑥].

In fact, these two statements can be further generalized as follows:

Let 𝑅 be a principal ideal domain and fix 𝑝 ∈ 𝑅. If 𝑝 is irreducible, then 𝑅/⟨𝑝⟩ is a field.

Here, an irreducible element (in an integral domain) is a generalization of an unfac-
torable polynomial in 𝐹[𝑥] and a prime number in ℤ.
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Exercises
1. (Review) Fix 𝑔(𝑥) = 𝑥2 − 4 ∈ ℤ11[𝑥], and consider ℤ11[𝑥]/⟨𝑔(𝑥)⟩.

(a) Let 𝛼(𝑥) ∈ ℤ11[𝑥]. Explain how you’d find 𝛽(𝑥) ∈ ℤ11[𝑥] of the smallest
degree such that 𝛼(𝑥) + ⟨𝑔(𝑥)⟩ = 𝛽(𝑥) + ⟨𝑔(𝑥)⟩.

(b) In part (a), describe how 𝛼(𝑥) and 𝛽(𝑥) are related.
(c) Describe all distinct elements of ℤ11[𝑥]/⟨𝑔(𝑥)⟩. How many are there?
(d) Is ℤ11[𝑥]/⟨𝑔(𝑥)⟩ a field? Why or why not?

2. (Review) Find the multiplicative inverse of each element.

(a) (3𝑥 + 1) + ⟨𝑥2 − 1⟩ in ℤ7[𝑥]/⟨𝑥2 − 1⟩.
(b) (3𝑥 + 1) + ⟨𝑥2 + 1⟩ in ℤ7[𝑥]/⟨𝑥2 + 1⟩.
(c) (7𝑥 + 4) + ⟨𝑥2 + 1⟩ in ℝ[𝑥]/⟨𝑥2 + 1⟩.
(d) (7𝑥 + 4) + ⟨𝑥2 − 2⟩ in ℚ[𝑥]/⟨𝑥2 − 2⟩.

3. Find an integer solution (𝑥, 𝑦) to the equation 8𝑥 + 41𝑦 = 1. Use that solution to
find the multiplicative inverse of 8 in ℤ41.

4. Find an integer solution (𝑥, 𝑦) to the equation 7𝑥 + 19𝑦 = 1. Use that solution to
find the multiplicative inverse of 7 in ℤ19.

5. Let 𝑔(𝑥) = 𝑥2 + 2 ∈ ℤ13[𝑥].

(a) Explain why 𝑔(𝑥) is unfactorable in ℤ13[𝑥].
(b) How many elements does ℤ13[𝑥]/⟨𝑔(𝑥)⟩ contain? Explain how you know.
(c) Is ℤ13[𝑥]/⟨𝑔(𝑥)⟩ a field? Why or why not?

6. Find a prime 𝑝 and a polynomial 𝑔(𝑥) ∈ ℤ𝑝[𝑥] such that the quotient ring
ℤ𝑝[𝑥]/⟨𝑔(𝑥)⟩ is a field containing 121 elements. Explain your reasoning.

7. Find a prime 𝑝 and a polynomial 𝑔(𝑥) ∈ ℤ𝑝[𝑥] such that the quotient ring
ℤ𝑝[𝑥]/⟨𝑔(𝑥)⟩ is a field containing 343 elements. Explain your reasoning. (This ex-
ercise is referenced in Example 37.4.)

8. Consider the quotient ring ℝ[𝑥]/⟨𝑥2 − 1⟩. Let 𝑎, 𝑏 ∈ ℝ such that 𝑎2 ≠ 𝑏2. Show
that the element (𝑎𝑥 + 𝑏) + ⟨𝑥2 − 1⟩ is a unit in ℝ[𝑥]/⟨𝑥2 − 1⟩.

9. Prove Theorem 35.6.

10. Let 𝑅 be a commutative ring and fix elements 𝑎1, 𝑎2, . . . , 𝑎𝑛 ∈ 𝑅. If 𝐼 is an ideal of
𝑅 that contains 𝑎1, 𝑎2, . . . , 𝑎𝑛, then show that ⟨𝑎1, 𝑎2, . . . , 𝑎𝑛⟩ ⊆ 𝐼.
Note: In other words, ⟨𝑎1, 𝑎2, . . . , 𝑎𝑛⟩ is the smallest ideal containing the elements
𝑎1, 𝑎2, . . . , 𝑎𝑛.

11. Let 𝑅 be a commutative ring, and let 𝑑 ∈ 𝑅. Prove that ⟨𝑑⟩ = ⟨−𝑑⟩. (This exercise
is needed in the proof of Theorem 35.8. It is also referenced in Example 36.12.)

12. Fix 4, 6 ∈ ℤ and consider the ideal ⟨4, 6⟩ = {4𝑥 + 6𝑦 | 𝑥, 𝑦 ∈ ℤ}. Since every ideal
of ℤ is principal, we have ⟨4, 6⟩ = ⟨𝑑⟩ for some 𝑑 ∈ ℤ. Assuming that 𝑑 > 0, find
the value of 𝑑.
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13. Repeat Exercise #12, but with each of the following. What conjecture do you have?

(a) ⟨8, 12⟩. (b) ⟨10, 12⟩. (c) ⟨15, 20⟩. (d) ⟨21, 35⟩. (e) ⟨0, 23⟩.

14. Prove: Let 𝑎, 𝑏 ∈ ℤ, not both zero. Then ⟨𝑎, 𝑏⟩ = ⟨𝑑⟩, where 𝑑 = gcd(𝑎, 𝑏).
Hint: There are a couple of possible approaches:
• Approach #1: Let 𝑑 = gcd(𝑎, 𝑏). Then show that ⟨𝑎, 𝑏⟩ ⊆ ⟨𝑑⟩ and ⟨𝑑⟩ ⊆
⟨𝑎, 𝑏⟩.

• Approach #2: Let 𝑔 = gcd(𝑎, 𝑏). Proceeding as in the proof of Theorem 35.8,
we have ⟨𝑎, 𝑏⟩ = ⟨𝑑⟩ where 𝑑 is a positive integer. Then show that 𝑑 ≥ 𝑔 and
𝑔 ≥ 𝑑, and thus 𝑑 = 𝑔.

15. Fix 4, 6 ∈ ℤ and consider the ideal ⟨4⟩ ∩ ⟨6⟩ = {𝑛 ∈ ℤ | 𝑛 ∈ ⟨4⟩ and 𝑛 ∈ ⟨6⟩}. (See
Chapter 31, Exercise #21(b).) Since every ideal ofℤ is principal, we have ⟨4⟩∩⟨6⟩ =
⟨𝑑⟩ for some 𝑑 ∈ ℤ. Assuming that 𝑑 > 0, find the value of 𝑑.

16. Repeat Exercise #15, but with each of the following. What conjecture do you have?

(a) ⟨8⟩ ∩ ⟨12⟩. (b) ⟨10⟩∩ ⟨12⟩. (c) ⟨15⟩∩ ⟨20⟩. (d) ⟨21⟩∩ ⟨35⟩. (e) ⟨0⟩ ∩ ⟨23⟩.

17. Prove: Let 𝑎, 𝑏 ∈ ℤ. Then ⟨𝑎⟩ ∩ ⟨𝑏⟩ = ⟨𝑑⟩, where 𝑑 is the least common multiple
of 𝑎 and 𝑏.

18. Let 𝑓(𝑥) = 𝑥2 − 6𝑥 + 8 and 𝑔(𝑥) = 𝑥2 + 3𝑥 − 10 in ℝ[𝑥]. Given that every ideal of
ℝ[𝑥] is principal, find 𝑑(𝑥) ∈ ℝ[𝑥] such that the following hold:
(a) ⟨𝑓(𝑥), 𝑔(𝑥)⟩ = ⟨𝑑(𝑥)⟩.
(b) ⟨𝑓(𝑥)⟩ ∩ ⟨𝑔(𝑥)⟩ = ⟨𝑑(𝑥)⟩.

19. Repeat Exercise #18 with the following pairs of polynomials in ℝ[𝑥].
(a) 𝑓(𝑥) = 𝑥2 + 1 and 𝑔(𝑥) = 𝑥3.
(b) 𝑓(𝑥) = 𝑥2 + 1 and 𝑔(𝑥) = 𝑥4 − 1.

20. Write a proof of the GCD theorem for integers that uses Theorem 35.8.

21. Complete the proof of Theorem 35.11 by obtaining a contradiction.

22. Prove Theorem 35.13.
Hint: We have 𝐴 ⊆ 𝑅 by definition. Thus, it suffices to show the other inclusion
𝑅 ⊆ 𝐴.

23. Prove Theorem 35.14.





36
Maximal Ideals

G. H. Hardy, a British mathematician, wrote the following in his book A Mathemati-
cian’s Apology:

The mathematician’s patterns, like the painter’s or the poet’s, must be beauti-
ful; the ideas, like the colours or the words, must fit together in a harmonious
way.

Indeed, aesthetics plays an important role in mathematics, and the purpose of the re-
maining two chapters of this textbook is to bring that beauty to the forefront. To set the
context, recall Theorem 35.1 whose proof was completed in the last chapter.

Theorem 35.1. Let 𝐹 be a field and fix 𝑔(𝑥) ∈ 𝐹[𝑥].
(a) If 𝑔(𝑥) is factorable, then 𝐹[𝑥]/⟨𝑔(𝑥)⟩ is not a field.

(b) If 𝑔(𝑥) is unfactorable, then 𝐹[𝑥]/⟨𝑔(𝑥)⟩ is a field.

For part (a), we used the factorization of 𝑔(𝑥) to construct zero divisors in
𝐹[𝑥]/⟨𝑔(𝑥)⟩. To prove part (b), we used the GCD theorem for polynomials to find a
multiplicative inverse for any non-zero element in 𝐹[𝑥]/⟨𝑔(𝑥)⟩. While these proofs
were mathematically valid, they were two separate proofs that did not illuminate any
connection between the two parts of this theorem.

The next two chapterswill introduce an alternate proof to Theorem35.1 that brings
its two parts together, as if they’re two sides of the same coin. Hardymight say that this
new proof approach will highlight how the two parts of the theorem “fit together in a
harmonious way.”

The key ingredient in this new proof will be the notion ofmaximal ideals, which is
the focus of this chapter. We will continue to work with the ring of integers ℤ and the
polynomial ring 𝐹[𝑥], where 𝐹 is a field. In particular, we will rely on the fact that each
is a principal ideal domain (PID), i.e., an integral domain whose ideals are all principal.
(See Theorems 31.33 and 31.34.)

359
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36.1 Examples and definition
Recall that a subset 𝐴 of a ring 𝑅 is called an ideal of 𝑅 if the following hold:
• 𝐴 is an additive subgroup of 𝑅.
• 𝐴 satisfies the product absorption property: If 𝑟 ∈ 𝑅 and 𝑎 ∈ 𝐴, then 𝑟 ⋅ 𝑎 ∈ 𝐴.

Below is a visual depiction of product absorption. It’s as if the element 𝑎 ∈ 𝐴 absorbs
the element 𝑟 ∈ 𝑅 into the set 𝐴 when they are multiplied together.

Example 36.1. The subset 12ℤ is an ideal ofℤ. We’ll leave it up to you to verify that 12ℤ
is an additive subgroup of ℤ. For product absorption, say 7 ∈ ℤ and 24 = 12 ⋅ 2 ∈ 12ℤ.
Then 7 ⋅ 24 = 168 = 12 ⋅ 14 ∈ 12ℤ. More generally, let 𝑟 ∈ ℤ and 𝑎 ∈ 12ℤ, so that
𝑎 = 12 ⋅ 𝑘 for some 𝑘 ∈ ℤ. Then

𝑟 ⋅ 𝑎 = 𝑟 ⋅ (12 ⋅ 𝑘) = 12 ⋅ (𝑟 ⋅ 𝑘) ∈ 12ℤ.
Thus, 12ℤ satisfies the product absorption property. We can also write 12ℤ as ⟨12⟩ =
{12 ⋅ 𝑟 | 𝑟 ∈ ℤ}, i.e., the principal ideal generated by 12. In fact, recall from Theorem
31.33 that every ideal of ℤ is principal.

Example 36.2. Suppose𝐴 is an ideal ofℤ such that 12ℤ ⊆ 𝐴 ⊆ ℤ, which is a shorthand
for two set inclusions: 12ℤ ⊆ 𝐴 (12ℤ is contained in ideal 𝐴) and 𝐴 ⊆ ℤ (ideal 𝐴 is
contained in ℤ). Intuitively, the ideal 𝐴 is “sandwiched” between 12ℤ and ℤ, as shown
by the diagram below:

One possibility is𝐴 = 4ℤ. (You’ll find the other possibilities in an exercise at the end of
the chapter.) Certainly 4ℤ ⊆ ℤ. To see that 12ℤ ⊆ 4ℤ, let 𝛼 ∈ 12ℤ so that 𝛼 = 12𝑘 for
some 𝑘 ∈ ℤ. Then we have 𝛼 = 12𝑘 = 4 ⋅ (3𝑘) ∈ 4ℤ, so that 𝛼 ∈ 4ℤ. Thus 12ℤ ⊆ 4ℤ,
and therefore 12ℤ ⊆ 4ℤ ⊆ ℤ.

Example 36.3. Let 𝐴 be an ideal of ℤ such that 5ℤ ⊆ 𝐴 ⊆ ℤ. We claim that 𝐴must be
equal to either 5ℤ or ℤ. Since every ideal in ℤ is principal, we have 𝐴 = ⟨𝑑⟩ for some
positive integer 𝑑. (See the remark after Theorem 35.8 for why we can assume that
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𝑑 > 0.) Thus 5ℤ ⊆ ⟨𝑑⟩, and since 5 ∈ 5ℤ, we obtain 5 ∈ ⟨𝑑⟩. Therefore, 5 = 𝑑 ⋅ 𝑟 for
some 𝑟 ∈ ℤ and hence 𝑑 is a divisor of 5. The only positive divisors of 5 are 1 and 5. If
𝑑 = 1, we get 𝐴 = ⟨1⟩ = ℤ. If 𝑑 = 5, we have 𝐴 = ⟨5⟩ = 5ℤ. Hence 𝐴 equals either 5ℤ
or ℤ.

The ideal 5ℤ in Example 36.3 is an instance of amaximal ideal. The name “maxi-
mal” is fitting, since there is no ideal (other than ℤ) that is “bigger” than 5ℤ. When we
tried to “sandwich” an ideal 𝐴 between 5ℤ and ℤ, i.e., 5ℤ ⊆ 𝐴 ⊆ ℤ, then we found that
𝐴must equal either 5ℤ or ℤ. Here is a generalization.

Definition 36.4 (Maximal ideal). Let 𝑀 be an ideal of a commutative ring 𝑅, with
𝑀 ≠ 𝑅. Then𝑀 is said to be a maximal ideal of 𝑅 (or simply maximal in 𝑅) if for any
ideal 𝐴 such that𝑀 ⊆ 𝐴 ⊆ 𝑅, we must have either 𝐴 = 𝑀 or 𝐴 = 𝑅.

The figure below is a visual depiction of this definition.

Example 36.5 (Non-example). The ideal 12ℤ in Example 36.2 is not maximal in ℤ,
since 12ℤ ⊆ 4ℤ ⊆ ℤ where 4ℤ does not equal either 12ℤ or ℤ. We write 12ℤ ⊊ 4ℤ to
mean that 12ℤ is a subset of 4ℤ, but 12ℤ ≠ 4ℤ. Likewise, 4ℤ ⊊ ℤmeans 4ℤ is a subset
of ℤ but does not equal ℤ. Combining these, we write 12ℤ ⊊ 4ℤ ⊊ ℤ and we say that
4ℤ is strictly between 12ℤ and ℤ.

Proof know-how. To show that 𝑀 is not maximal in 𝑅, find an ideal 𝐴 such that
𝑀 ⊆ 𝐴 ⊆ 𝑅 where 𝐴 does not equal either𝑀 or 𝑅. Symbolically, we write𝑀 ⊊ 𝐴 ⊊ 𝑅
and we say that 𝐴 is strictly between𝑀 and 𝑅. Here,𝑀 ⊊ 𝐴means𝑀 is a subset of 𝐴
but𝑀 ≠ 𝐴. Similarly, 𝐴 ⊊ 𝑅 means 𝐴 ⊆ 𝑅 but 𝐴 ≠ 𝑅.

Example 36.6. Consider the ring ℤ12. In Example 14.10, we found its additive sub-
groups:

{0}, {0, 6}, {0, 4, 8}, {0, 3, 6, 9}, {0, 2, 4, 6, 8, 10}, ℤ12.
We’ll leave it to you as an exercise to verify that each of these satisfies the product
absorption property and hence is an ideal. Let’s see which of these are maximal in ℤ12.

• {0} is notmaximal, because {0} ⊊ {0, 6} ⊊ ℤ12.

• {0, 6} is notmaximal, because {0, 6} ⊊ {0, 3, 6, 9} ⊊ ℤ12.

• {0, 4, 8} is notmaximal, because {0, 4, 8} ⊊ {0, 2, 4, 6, 8, 10} ⊊ ℤ12.

• {0, 3, 6, 9} is maximal, because there is no ideal strictly between {0, 3, 6, 9} and
ℤ12. Thus if there is an ideal 𝐴 such that {0, 3, 6, 9} ⊆ 𝐴 ⊆ ℤ12, then we must have
𝐴 = {0, 3, 6, 9} or 𝐴 = ℤ12.
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• {0, 2, 4, 6, 8, 10} is maximal, because there is no ideal strictly between
{0, 2, 4, 6, 8, 10} and ℤ12.

• ℤ12 is notmaximal. By definition, amaximal ideal𝑀 (of a ring 𝑅) must be different
from 𝑅.

Thus ℤ12 has two maximal ideals, namely {0, 3, 6, 9} and {0, 2, 4, 6, 8, 10}.

Example 36.7. Consider the ring ℤ7. Its ideals are {0} and ℤ7 only. (Do you see why?)
Then {0} is a maximal ideal of ℤ7. If there is an ideal 𝐴 such that {0} ⊆ 𝐴 ⊆ ℤ7, then 𝐴
must equal either {0} or ℤ7, since those are the only ideals in ℤ7.

36.2 Maximality of ⟨𝑔(𝑥)⟩
Example 36.8 (Non-example). Consider 𝑥2 − 1 ∈ ℝ[𝑥]. We’ll show that the ideal
⟨𝑥2 − 1⟩ is not maximal in ℝ[𝑥] by finding an ideal 𝐴 that is strictly between ⟨𝑥2 − 1⟩
andℝ[𝑥]; i.e., ⟨𝑥2−1⟩ ⊊ 𝐴 ⊊ ℝ[𝑥]. Noting that 𝑥2−1 factors as 𝑥2−1 = (𝑥+1)⋅(𝑥−1),
we’ll let 𝐴 = ⟨𝑥 + 1⟩.

First, we’ll show that ⟨𝑥2 − 1⟩ ⊊ 𝐴. If 𝛼(𝑥) ∈ ⟨𝑥2 − 1⟩, then 𝛼(𝑥) = (𝑥2 − 1) ⋅ 𝑞(𝑥)
for some 𝑞(𝑥) ∈ ℝ[𝑥]. Then 𝛼(𝑥) = ((𝑥+1) ⋅ (𝑥−1)) ⋅ 𝑞(𝑥) = (𝑥+1) ⋅ ((𝑥−1) ⋅ 𝑞(𝑥)), so
that 𝛼(𝑥) is a multiple of 𝑥+1; i.e., 𝛼(𝑥) ∈ 𝐴. Hence, ⟨𝑥2−1⟩ ⊆ 𝐴. Moreover, 𝑥+1 is a
multiple of 𝑥+1, but not amultiple of 𝑥2−1. Therefore, 𝑥+1 ∈ 𝐴, but 𝑥+1 ∉ ⟨𝑥2−1⟩.
This show that ⟨𝑥2 − 1⟩ ≠ 𝐴, so that ⟨𝑥2 − 1⟩ ⊊ 𝐴.

Certainly, 𝐴 ⊆ ℝ[𝑥]. But 𝐴 ≠ ℝ[𝑥], as 1 ∈ ℝ[𝑥] but 1 ∉ 𝐴. (Note that the only
constant polynomial in𝐴 = ⟨𝑥+1⟩ is 0.) Thus, we obtain𝐴 ⊊ ℝ[𝑥]. Therefore, we find
that ⟨𝑥2−1⟩ ⊊ 𝐴 ⊊ ℝ[𝑥], so that 𝐴 = ⟨𝑥+1⟩ is an ideal that is strictly between ⟨𝑥2−1⟩
andℝ[𝑥]. We conclude that ⟨𝑥2−1⟩ is notmaximal. The picture below illustrates these
set inclusions:

Proof know-how. To show that 𝑀 ⊊ 𝐴, we must show that 𝑀 ⊆ 𝐴 and 𝑀 ≠ 𝐴.
Showing𝑀 ⊆ 𝐴 can be done in the familiar manner: Consider an element𝑚 ∈ 𝑀 and
show that𝑚 ∈ 𝐴. To show that𝑀 ≠ 𝐴 (i.e.,𝑀 and 𝐴 are different sets), one approach
is to find an element 𝑎 ∈ 𝐴 such that 𝑎 ∉ 𝑀. In Example 36.8, for instance, we showed
that ⟨𝑥2 − 1⟩ ≠ 𝐴 by showing that 𝑥 + 1 ∈ 𝐴, but 𝑥 + 1 ∉ ⟨𝑥2 − 1⟩.

Here is the generalization of Example 36.8, whose proof is left for you as an exer-
cise.

Theorem 36.9. Let 𝐹 be a field and fix 𝑔(𝑥) ∈ 𝐹[𝑥]. If 𝑔(𝑥) is factorable, then ⟨𝑔(𝑥)⟩ is
notmaximal in 𝐹[𝑥].
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Based on this theorem, we might conjecture the following:
Let𝐹 be afield andfix 𝑔(𝑥) ∈ 𝐹[𝑥]. If 𝑔(𝑥) is unfactorable, then ⟨𝑔(𝑥)⟩ ismaximal
in 𝐹[𝑥].
Let’s first verify this with an example.

Example 36.10. Consider the polynomial 𝑥2 + 1, which is unfactorable in ℝ[𝑥]. To
show that the ideal ⟨𝑥2+1⟩ is maximal inℝ[𝑥], consider an ideal𝐴 such that ⟨𝑥2+1⟩ ⊆
𝐴 ⊆ ℝ[𝑥]. We will show that either 𝐴 = ⟨𝑥2+1⟩ or 𝐴 = ℝ[𝑥]. Since every ideal ofℝ[𝑥]
is principal (Theorem 31.34), we have 𝐴 = ⟨𝑝(𝑥)⟩ for some 𝑝(𝑥) ∈ ℝ[𝑥]. Therefore,
⟨𝑥2 + 1⟩ ⊆ ⟨𝑝(𝑥)⟩ ⊆ ℝ[𝑥].

Since 𝑥2 + 1 ∈ ⟨𝑥2 + 1⟩ and ⟨𝑥2 + 1⟩ ⊆ ⟨𝑝(𝑥)⟩, we have 𝑥2 + 1 ∈ ⟨𝑝(𝑥)⟩. Thus
𝑥2 + 1 = 𝑝(𝑥) ⋅ 𝑞(𝑥) for some 𝑞(𝑥) ∈ ℝ[𝑥]. As 𝑥2 + 1 is unfactorable in ℝ[𝑥], either
deg 𝑝(𝑥) = 0 or deg 𝑞(𝑥) = 0 by Theorem 30.8. We’ll consider each case separately.

If deg 𝑝(𝑥) = 0, then 𝑝(𝑥) is a non-zero constant polynomial inℝ[𝑥]. Thus, 𝑝(𝑥) is
a non-zero real number, which is a unit in ℝ[𝑥]. Then by Theorem 35.13, we find that
⟨𝑝(𝑥)⟩ = ℝ[𝑥]. Hence 𝐴 = ℝ[𝑥] in this case. Next, suppose deg 𝑞(𝑥) = 0. Then 𝑞(𝑥)
is a unit of ℝ[𝑥], and so ⟨𝑝(𝑥)⟩ = ⟨𝑝(𝑥) ⋅ 𝑞(𝑥)⟩ (see the remark after the proof), which
implies that 𝐴 = ⟨𝑥2 + 1⟩ for this case. In either case, we showed that 𝐴 = ⟨𝑥2 + 1⟩ or
𝐴 = ℝ[𝑥]. Therefore, ⟨𝑥2 + 1⟩ is maximal in ℝ[𝑥].

Proof know-how. To show that an ideal𝑀 is maximal in a commutative ring 𝑅, first
consider an ideal 𝐴 such that𝑀 ⊆ 𝐴 ⊆ 𝑅. Then show that either 𝐴 = 𝑀 or 𝐴 = 𝑅.

Remark. The above proof contains the line, “Then 𝑞(𝑥) is a unit of ℝ[𝑥], and so
⟨𝑝(𝑥)⟩ = ⟨𝑝(𝑥) ⋅ 𝑞(𝑥)⟩.” This step requires the use of the following theorem, which
is left for you to prove as an exercise.

Theorem 36.11. Let 𝑅 be an integral domain and suppose 𝑎, 𝑏 ∈ 𝑅 where 𝑎, 𝑏 ≠ 0.
Then ⟨𝑎⟩ = ⟨𝑎 ⋅ 𝑏⟩ if and only if 𝑏 is a unit of 𝑅.

Example 36.12. In Chapter 35, Exercise #11, you showed that ⟨𝑑⟩ = ⟨−𝑑⟩ in a com-
mutative ring. Writing −𝑑 = 𝑑 ⋅ (−1), we have ⟨𝑑⟩ = ⟨𝑑 ⋅ (−1)⟩, where −1 is a unit in
any ring as (−1) ⋅ (−1) = 1. Hence, this example illustrates Theorem 36.11 with 𝑎 = 𝑑
and 𝑏 = −1.

Let’s state our conjecture as a theorem.

Theorem 36.13. Let 𝐹 be a field and fix 𝑔(𝑥) ∈ 𝐹[𝑥]. If 𝑔(𝑥) is unfactorable, then ⟨𝑔(𝑥)⟩
is maximal in 𝐹[𝑥].

Proof. Assume 𝑔(𝑥) is unfactorable in 𝐹[𝑥]. As every ideal of 𝐹[𝑥] is principal, con-
sider an ideal ⟨𝑝(𝑥)⟩ for some 𝑝(𝑥) ∈ 𝐹[𝑥] such that ⟨𝑔(𝑥)⟩ ⊆ ⟨𝑝(𝑥)⟩ ⊆ 𝐹[𝑥]. We must
show that ⟨𝑝(𝑥)⟩ = ⟨𝑔(𝑥)⟩ or ⟨𝑝(𝑥)⟩ = 𝐹[𝑥]. Since 𝑔(𝑥) ∈ ⟨𝑔(𝑥)⟩ and ⟨𝑔(𝑥)⟩ ⊆ ⟨𝑝(𝑥)⟩,
we have 𝑔(𝑥) ∈ ⟨𝑝(𝑥)⟩ and hence 𝑔(𝑥) = 𝑝(𝑥)⋅𝑞(𝑥) for some 𝑞(𝑥) ∈ 𝐹[𝑥]. And because
𝑔(𝑥) is unfactorable, we must have either deg 𝑝(𝑥) = 0 or deg 𝑞(𝑥) = 0.

Suppose deg 𝑝(𝑥) = 0; i.e., 𝑝(𝑥) is a non-zero constant polynomial. Thus 𝑝(𝑥) is
a non-zero element of the field 𝐹, which makes it a unit in 𝐹[𝑥]. Thus ⟨𝑝(𝑥)⟩ = 𝐹[𝑥]
by Theorem 35.13. Next, suppose deg 𝑞(𝑥) = 0, so that 𝑞(𝑥) is a unit of 𝐹[𝑥]. Then
⟨𝑝(𝑥)⟩ = ⟨𝑝(𝑥) ⋅ 𝑞(𝑥)⟩ by Theorem 36.11, so that ⟨𝑝(𝑥)⟩ = ⟨𝑔(𝑥)⟩. In either case, we
showed that ⟨𝑝(𝑥)⟩ = ⟨𝑔(𝑥)⟩ or ⟨𝑝(𝑥)⟩ = 𝐹[𝑥]. Thus ⟨𝑔(𝑥)⟩ is maximal in 𝐹[𝑥]. ■
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The following theorem serves as a summary of the two theorems that we proved
above.

Theorem 36.14. Let 𝐹 be a field and fix 𝑔(𝑥) ∈ 𝐹[𝑥].
(a) If 𝑔(𝑥) is factorable, then ⟨𝑔(𝑥)⟩ is notmaximal in 𝐹[𝑥].

(b) If 𝑔(𝑥) is unfactorable, then ⟨𝑔(𝑥)⟩ is maximal in 𝐹[𝑥].

Big picture stuff
By using the contrapositive of its first statement, Theorem 36.14 can be restated as:

⟨𝑔(𝑥)⟩ is maximal in 𝐹[𝑥] if and only if 𝑔(𝑥) is unfactorable.
Exercise #5 at the end of this chapter is about the ideal ⟨𝑛⟩ (or 𝑛ℤ) in ℤ. It states the
following:

⟨𝑛⟩ is maximal in ℤ if and only if 𝑛 is prime.
Notice how these two statements are essentially the same. This is yet another instance
of the structural similarity between the ring of integers ℤ and the polynomial ring 𝐹[𝑥]
where 𝐹 is a field.

Exercises
1. Determine whether each ideal of ℤ is maximal. What conjecture do you have?

(a) 6ℤ. (b) 28ℤ. (c) 17ℤ. (d) 41ℤ. (e) 375ℤ.

2. (a) Find all ideals 𝐴 of the ring ℤ such that 12ℤ ⊆ 𝐴 ⊆ ℤ. (See Example 36.2.)
(b) Find all ideals 𝐴 of the ring ℤ such that 10ℤ ⊆ 𝐴 ⊆ ℤ.
(c) Find all ideals 𝐴 of the ring ℤ such that 13ℤ ⊆ 𝐴 ⊆ ℤ.
(d) Find all ideals 𝐴 of the ring ℤ such that 𝑝ℤ ⊆ 𝐴 ⊆ ℤ, where 𝑝 is prime.
(e) What conjecture do you have?

3. Prove: Let 𝑎, 𝑏 ∈ ℤ. Then 𝑏 ∣ 𝑎 if and only if ⟨𝑎⟩ ⊆ ⟨𝑏⟩.
Note: Compare this with Chapter 31, Exercise #20.

4. Use the statement in Exercise #3 to describe all ideals 𝐴 of the ring ℤ such that
𝑛ℤ ⊆ 𝐴 ⊆ ℤ.

5. Prove: Let 𝑛 be a positive integer. The ideal 𝑛ℤ is maximal in ℤ if and only if 𝑛 is
prime.

6. Verify that each additive subgroup of ℤ12 satisfies the product absorption property
and hence is an ideal. (See Example 36.6.)

7. Prove: Every additive subgroup ofℤ𝑛 satisfies the product absorption property and
thus is an ideal.
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8. Find all maximal ideals in the following:

(a) ℤ24. (b) ℤ10. (c) ℤ32. (d) ℤ101.

9. Describe all maximal ideals in ℤ𝑛.

10. Suppose a ring 𝑅 has 40 elements and an ideal𝑀 has 8 elements. Explain why𝑀
is a maximal ideal.

11. In Example 36.6, we saw that ℤ12 has exactly two maximal ideals.
(a) Verify that ℤ20 has exactly two maximal ideals.
(b) Verify that ℤ28 has exactly two maximal ideals.
(c) Verify that ℤ18 has exactly two maximal ideals.
(d) Find a few more values of 𝑛 for which ℤ𝑛 has exactly two maximal ideals.
(e) What conjectures do you have?

12. Find a ring that has exactly three maximal ideals.

13. (a) Verify that 9 is not a unit in ℤ24. Then find a maximal ideal of ℤ24 containing
9.

(b) Verify that 10 is not a unit in ℤ35. Then find amaximal ideal of ℤ35 containing
10.

(c) Find a (non-zero) non-unit in ℤ30 and a maximal ideal of ℤ30 containing that
non-unit element.

(d) Find a (non-zero) non-unit in ℤ54 and a maximal ideal of ℤ54 containing that
non-unit element.

(e) What conjecture do you have?

14. Prove Theorem 36.9.

15. In ℝ[𝑥], explain why the principal ideals ⟨3 ⋅ (𝑥2 + 1)⟩ and ⟨𝑥2 + 1⟩ are equal.
Note: This is a set equality proof. Show that ⟨3 ⋅ (𝑥2+1)⟩ ⊆ ⟨𝑥2+1⟩ and ⟨𝑥2+1⟩ ⊆
⟨3 ⋅ (𝑥2 + 1)⟩.

16. Prove Theorem 36.11.

17. (a) Let 𝐹 be a field. Prove that {0} is the only maximal ideal of 𝐹.
(b) Is the statement in part (a) still true if we replace a field 𝐹 with an integral

domain 𝑅? If it’s true, prove it. If it’s false, provide a counterexample.

18. Let 𝑅 be a commutative ring, and let 𝑀 be an ideal with 𝑀 ≠ 𝑅. Suppose every
element of 𝑅 which is not in𝑀 is a unit. Prove that𝑀 is the only maximal ideal of
𝑅.
Note: This is a generalization of Exercise #17(a). You must show that (1) 𝑀 is
maximal and (2) there is no other maximal ideal of 𝑅.

19. The principal ideal ⟨2⟩ refers to different sets, depending on the ring in which it
resides.

(a) Let ⟨2⟩ be an ideal of the ring ℤ. Describe the elements in ⟨2⟩.
(b) Let ⟨2⟩ be an ideal of the ring ℤ[𝑥]. Describe the elements in ⟨2⟩.
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(c) Is ⟨2⟩ a maximal ideal of ℤ? Why or why not?
(d) Is ⟨2⟩ a maximal ideal of ℤ[𝑥]? Why or why not?

20. Explain why the ideal ⟨𝑥⟩ = {𝑥 ⋅ 𝑓(𝑥) | 𝑓(𝑥) ∈ ℤ[𝑥]} is not maximal in ℤ[𝑥]. (This
exercise is referenced in Chapter 37, Exercise #15.)

21. Consider the ideal ⟨𝑥, 2⟩ = {𝑥 ⋅ 𝑓(𝑥) + 2 ⋅ 𝑔(𝑥) | 𝑓(𝑥), 𝑔(𝑥) ∈ ℤ[𝑥]} in ℤ[𝑥]. Recall
from Chapter 31, Exercise #13 that ⟨𝑥, 2⟩ is equal to the set of all polynomials in
ℤ[𝑥]with an even constant term. Prove that ⟨𝑥, 2⟩ is a maximal ideal ofℤ[𝑥]. (This
exercise is referenced in Chapter 37, Exercise #13.)
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We will finish the work started in Chapter 36, namely to give an alternate proof to the
following:

Theorem 35.1. Let 𝐹 be a field and fix 𝑔(𝑥) ∈ 𝐹[𝑥].
(a) If 𝑔(𝑥) is factorable, then 𝐹[𝑥]/⟨𝑔(𝑥)⟩ is not a field.
(b) If 𝑔(𝑥) is unfactorable, then 𝐹[𝑥]/⟨𝑔(𝑥)⟩ is a field.

Towards that goal, the focus of this chapter is to prove the following theorem:

Theorem 37.2. Let𝑀 be an ideal of a commutative ring 𝑅.
(a) If𝑀 is notmaximal in 𝑅, then 𝑅/𝑀 is not a field.
(b) If𝑀 is maximal in 𝑅, then 𝑅/𝑀 is a field.

The proof of Theorem 37.2 is fairly complicated, which is perhaps fitting for the
last chapter of this book. In the proof of part (a), there are two possible paths that we
could take, but only one of them leads to the desired conclusion. For part (b), the proof
requires the use of an ideal that might seem as if it was pulled out of thin air. As we’ve
done throughout this book, we will give a detailed breakdown of the proof of each part
and describe how one might come up with such proof ideas on one’s own.

37.1 Maximal ideals and quotient rings
Example 37.1. Recall that 12ℤ is not a maximal ideal of ℤ, because 12ℤ ⊆ 4ℤ ⊆ ℤ
where 4ℤ does not equal either 12ℤ or ℤ. In other words, 4ℤ is an ideal that is strictly
between 12ℤ and ℤ. On the other hand, 5ℤ is a maximal ideal of ℤ. If there is an ideal
𝐴 such that 5ℤ ⊆ 𝐴 ⊆ ℤ, then we must have either 𝐴 = 5ℤ or 𝐴 = ℤ. Thus, there is no
ideal (other than ℤ) that is “bigger” than 5ℤ.

We also note that the quotient ringℤ/12ℤ is not a field, because it has zero divisors:
(3 + 12ℤ) ⋅ (4 + 12ℤ) = 3 ⋅ 4 + 12ℤ = 0 + 12ℤ.

But ℤ/5ℤ is a field. In particular, it is ring isomorphic to ℤ5.
367
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The example above motivates the following theorem.

Theorem 37.2. Let𝑀 be an ideal of a commutative ring 𝑅.

(a) If𝑀 is notmaximal in 𝑅, then 𝑅/𝑀 is not a field.

(b) If𝑀 is maximal in 𝑅, then 𝑅/𝑀 is a field.

We will start by proving part (a) of the theorem. (Actually, we will prove its con-
trapositive.)

Theorem 37.2(a). If 𝑅/𝑀 is a field, then𝑀 is maximal in 𝑅.

Proof. Assume 𝑅/𝑀 is a field. Let 𝐴 be an ideal of 𝑅 such that𝑀 ⊆ 𝐴 ⊆ 𝑅. We must
show that 𝐴 = 𝑀 or 𝐴 = 𝑅. We will suppose 𝐴 ≠ 𝑀 and then show that 𝐴 = 𝑅.

Since 𝑀 ⊆ 𝐴 but 𝑀 ≠ 𝐴, there exists an element 𝑎 ∈ 𝐴 such that 𝑎 ∉ 𝑀. Thus,
𝑎 + 𝑀 ≠ 0 + 𝑀 in the quotient ring 𝑅/𝑀. And as 𝑅/𝑀 is a field, 𝑎 + 𝑀 is a unit and
thus (𝑎 + 𝑀) ⋅ (𝑏 + 𝑀) = 1 + 𝑀 for some 𝑏 + 𝑀 ∈ 𝑅/𝑀. Then, 𝑎 ⋅ 𝑏 + 𝑀 = 1 + 𝑀, so
that 1 − 𝑎 ⋅ 𝑏 ∈ 𝑀.

Let𝑚 = 1−𝑎⋅𝑏where𝑚 ∈ 𝑀. Note that𝑚 ∈ 𝐴, because𝑀 ⊆ 𝐴. Then 1 = 𝑎⋅𝑏+𝑚
is in 𝐴, because 𝑎, 𝑚 ∈ 𝐴 and 𝐴 is an ideal. (More specifically, 𝑎 ⋅ 𝑏 ∈ 𝐴 by product
absorption; and 𝑎 ⋅ 𝑏 + 𝑚 ∈ 𝐴, because 𝐴 is an additive subgroup of 𝑅.) But 1 ∈ 𝐴
implies 𝐴 = 𝑅 by Theorem 35.13. Hence,𝑀 is maximal in 𝑅. ■

Wenowgive an in-depth breakdownof this proof. Early in the proof, wewere faced
with an “or” statement; i.e., we had to prove that (1) 𝐴 = 𝑀 or (2) 𝐴 = 𝑅. Recalling the
Proof know-how for Theorem 20.15, there are two possible paths that we could have
pursued:

• Path #1: 𝐴 = 𝑀 is either true or false. If it’s true, then we’re done with the proof.
Thus, we assume that (1) 𝐴 = 𝑀 is false and prove that (2) 𝐴 = 𝑅 is true.

• Path #2: 𝐴 = 𝑅 is either true or false. If it’s true, then we’re done with the proof.
Thus, we assume that (2) 𝐴 = 𝑅 is false and prove that (1) 𝐴 = 𝑀 is true.

We took the first path; i.e., we assumed that 𝐴 ≠ 𝑀 and showed that 𝐴 = 𝑅. This was
a more natural path to take, because we knew that 𝑅/𝑀 is a field. Assuming 𝐴 ≠ 𝑀
allowed us to find an element 𝑎 ∈ 𝐴 such that 𝑎 + 𝑀 is a non-zero element in 𝑅/𝑀.
And since 𝑅/𝑀 is a field, there exists 𝑏+𝑀 ∈ 𝑅/𝑀 such that (𝑎+𝑀) ⋅ (𝑏+𝑀) = 1+𝑀.
Looking ahead, our goal was to show that 𝐴 = 𝑅. In recent proofs (e.g., Theorem
36.13), we accomplished this by showing that 1 ∈ 𝐴. Thus, we were left with the
task of justifying the implication: (𝑎 + 𝑀) ⋅ (𝑏 + 𝑀) = 1 + 𝑀 ⟹ 1 ∈ 𝐴. While
we still had some work remaining, it’s mostly technical and symbolic in nature. The
more challenging aspect of coming upwith an overall framework of the proof had been
completed.

Before moving on, we recall the following theorem, which was proved in Chapter
31, Exercise #21(a).

Theorem 37.3. Let 𝐼 and 𝐽 be ideals of a ring 𝑅. Then 𝐼 + 𝐽 = {𝑖 + 𝑗 | 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽} is an
ideal of 𝑅.
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Now we prove the second statement of Theorem 37.2.

Theorem 37.2(b). If𝑀 is maximal in 𝑅, then 𝑅/𝑀 is a field.

Proof. Assume𝑀 is maximal in 𝑅. Let 𝑎+𝑀 be a non-zero element of 𝑅/𝑀. Wemust
show that 𝑎 +𝑀 is a unit. Since 𝑎 +𝑀 ≠ 0 +𝑀, we know that 𝑎 ∉ 𝑀. Then, consider
the sum of ideals

𝑀 + ⟨𝑎⟩ = {𝑚 + 𝛼 | 𝑚 ∈ 𝑀, 𝛼 ∈ ⟨𝑎⟩},
which, by Theorem 37.3 above, is also an ideal of 𝑅.

For each 𝑚 ∈ 𝑀, we have 𝑚 = 𝑚 + 𝑎 ⋅ 0 ∈ 𝑀 + ⟨𝑎⟩. Thus, 𝑀 ⊆ 𝑀 + ⟨𝑎⟩.
Next, 𝑎 = 0 + 𝑎 ⋅ 1 ∈ 𝑀 + ⟨𝑎⟩, but 𝑎 ∉ 𝑀, which implies that 𝑀 + ⟨𝑎⟩ ≠ 𝑀. Since
𝑀 ⊆ 𝑀 + ⟨𝑎⟩ ⊆ 𝑅 and𝑀 + ⟨𝑎⟩ ≠ 𝑀, the maximality of𝑀 implies that𝑀 + ⟨𝑎⟩ = 𝑅.

Now, 1 ∈ 𝑅 implies 1 ∈ 𝑀 + ⟨𝑎⟩. Then, 1 = 𝑚 + 𝑎 ⋅ 𝑏 for some𝑚 ∈ 𝑀 and 𝑏 ∈ 𝑅.
Thus 1 − 𝑎 ⋅ 𝑏 = 𝑚, and since 𝑚 ∈ 𝑀, we deduce that 1 − 𝑎 ⋅ 𝑏 ∈ 𝑀. Then we have
(𝑎 + 𝑀) ⋅ (𝑏 + 𝑀) = 𝑎 ⋅ 𝑏 + 𝑀 = 1 + 𝑀. Hence, 𝑎 + 𝑀 is a unit whose multiplicative
inverse is 𝑏 +𝑀. Therefore, 𝑅/𝑀 is a field, as desired. ■

We’d like to understand the motivation behind constructing and using the ideal
𝑀+⟨𝑎⟩. Since our goal is to show that 𝑅/𝑀 is a field, it’s natural to consider a non-zero
element 𝑎 + 𝑀 ∈ 𝑅/𝑀 with an aim of finding its multiplicative inverse 𝑏 + 𝑀 ∈ 𝑅/𝑀
such that (𝑎+𝑀) ⋅ (𝑏+𝑀) = 1+𝑀. Working backwards (a proof technique that we’ve
used often in this book), we obtain 𝑎 ⋅ 𝑏 + 𝑀 = 1 + 𝑀 so that 1 − 𝑎 ⋅ 𝑏 ∈ 𝑀. Letting
1−𝑎⋅𝑏 = 𝑚, we obtain 1 = 𝑚+𝑎⋅𝑏. Thus, our goal was twofold: (1) find an ideal that
contains the element𝑚+𝑎 ⋅ 𝑏 and (2) show that this ideal contains 1. Our goal (1) was
met by𝑀 + ⟨𝑎⟩. Then the maximality of𝑀 allowed us to conclude that𝑀 + ⟨𝑎⟩ = 𝑅,
so that 1 ∈ 𝑀 + ⟨𝑎⟩, satisfying goal (2).

Remark. As usual, this “working backwards” process of starting with (𝑎 + 𝑀) ⋅
(𝑏+𝑀) = 1+𝑀 and obtaining 1 = 𝑚+𝑎⋅𝑏 is scratch work andmust not be presented
in the proof. In the actual proof, (𝑎+𝑀)⋅ (𝑏+𝑀) = 1+𝑀must be a conclusion, rather
than an assumed starting point.

37.2 Putting it all together
We have the following theorems:

Theorem 36.14. Let 𝐹 be a field and fix 𝑔(𝑥) ∈ 𝐹[𝑥].
(a) If 𝑔(𝑥) is factorable, then ⟨𝑔(𝑥)⟩ is notmaximal in 𝐹[𝑥].
(b) If 𝑔(𝑥) is unfactorable, then ⟨𝑔(𝑥)⟩ is maximal in 𝐹[𝑥].

Theorem 37.2. Let𝑀 be an ideal of a commutative ring 𝑅.
(a) If𝑀 is notmaximal in 𝑅, then 𝑅/𝑀 is not a field.
(b) If𝑀 is maximal in 𝑅, then 𝑅/𝑀 is a field.

Combining these, while using 𝑅 = 𝐹[𝑥] and 𝑀 = ⟨𝑔(𝑥)⟩ in Theorem 37.2, we
obtain the familiar theorem, which we had already proved. But this time, we proved it
using the new tool of maximal ideals.

Theorem 35.1. Let 𝐹 be a field and fix 𝑔(𝑥) ∈ 𝐹[𝑥].
(a) If 𝑔(𝑥) is factorable, then 𝐹[𝑥]/⟨𝑔(𝑥)⟩ is not a field.
(b) If 𝑔(𝑥) is unfactorable, then 𝐹[𝑥]/⟨𝑔(𝑥)⟩ is a field.



370 Chapter 37. 𝐹[𝑥]/⟨𝑔(𝑥)⟩ Is/Isn’t a Field, Part II

37.3 Oh wait, but there’s more!
Example 37.4 (Chapter 35, Exercise #7 revisited). We will construct a field with 73
elements. Consider the polynomial 𝑔(𝑥) = 𝑥3 + 2 in ℤ7[𝑥]. Then ℤ7[𝑥]/⟨𝑔(𝑥)⟩ =
{(𝑎𝑥2 + 𝑏𝑥 + 𝑐) + ⟨𝑔(𝑥)⟩ | 𝑎, 𝑏, 𝑐 ∈ ℤ7}. With 7 choices for each of 𝑎, 𝑏, and 𝑐, this
quotient ring contains 73 = 343 elements. Since 𝑔(𝑥) has no root in ℤ7 (we’ll leave the
verification to you) and deg 𝑔(𝑥) = 3, Theorem 30.19 implies that 𝑔(𝑥) is unfactorable
in ℤ7[𝑥]. And because 𝑔(𝑥) is unfactorable, we conclude that ℤ7[𝑥]/⟨𝑔(𝑥)⟩ is a field.

Here are some beautiful facts about polynomials in ℤ𝑝[𝑥], where 𝑝 is prime:
• For every𝑛 ≥ 1, there exists anunfactorable polynomial 𝑔(𝑥) ∈ ℤ𝑝[𝑥]withdeg 𝑔(𝑥)
= 𝑛.

• So, we can construct a field ℤ𝑝[𝑥]/⟨𝑔(𝑥)⟩with 𝑝𝑛 elements, for all primes 𝑝 and all
integers 𝑛 ≥ 1.

• In fact, every finite field is obtained this way.

37.4 Prime ideals
In this final section of the textbook, we will examine prime ideals, which are a nat-
ural counterpart to maximal ideals. We focused on maximal ideals, since they were
instrumental in the alternate proof of Theorem 35.1. However, prime ideals are also
interesting objects of study and will play a prominent role in your further study of ab-
stract algebra.

Example 37.5. Consider the ideal 12ℤ of the ring of integers ℤ. Let 𝑎, 𝑏 ∈ ℤ. If their
product 𝑎𝑏 is in 12ℤ, must 𝑎 or 𝑏 be contained in 12ℤ? Not necessarily. Suppose 𝑎 = 6
and 𝑏 = 4. Then 𝑎𝑏 = 24, which is in 12ℤ. However, neither 𝑎 = 6 nor 𝑏 = 4 is a
multiple of 12, and thus 𝑎, 𝑏 ∉ 12ℤ.

Example 37.6. Consider the ideal 5ℤ of ℤ. Let 𝑎, 𝑏 ∈ ℤ. We claim the following: If
𝑎𝑏 ∈ 5ℤ, then 𝑎 or 𝑏 is in 5ℤ. Assume 𝑎𝑏 ∈ 5ℤ. Then 𝑎𝑏 = 5𝑘 for some 𝑘 ∈ ℤ, so that
5 is a divisor of 𝑎𝑏. Since 5 is prime, Theorem 37.7 below implies that 5 ∣ 𝑎 or 5 ∣ 𝑏.
Therefore, 𝑎 ∈ 5ℤ or 𝑏 ∈ 5ℤ.

Here’s the theoremused in Example 37.6. We’ll leave its proof to you as an exercise.

Theorem 37.7. Let 𝑎, 𝑏, 𝑝 ∈ ℤ where 𝑝 is prime. If 𝑝 ∣ 𝑎𝑏, then 𝑝 ∣ 𝑎 or 𝑝 ∣ 𝑏.

The ideal 5ℤ in Example 37.6 is an instance of a prime ideal. It has the property
that if the product 𝑎𝑏 is in 5ℤ, then 𝑎 or 𝑏 (possibly both) must be in 5ℤ. Here is a
generalization.

Definition 37.8 (Prime ideal). Let 𝑃 be an ideal of a commutative ring 𝑅, with 𝑃 ≠ 𝑅.
Then 𝑃 is said to be a prime ideal of 𝑅 (or simply prime in 𝑅) if for any 𝑎, 𝑏 ∈ 𝑅 such
that 𝑎𝑏 ∈ 𝑃, we have 𝑎 ∈ 𝑃 or 𝑏 ∈ 𝑃.

Example 37.9 (Non-example). The ideal 12ℤ in Example 37.5 is not a prime ideal of
ℤ. In particular, we found that 6 ⋅ 4 ∈ 12ℤ, even though 6, 4 ∉ 12ℤ.
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Proof know-how. To show that 𝑃 is not prime in 𝑅, find elements 𝑎, 𝑏 ∈ 𝑅 such that
𝑎𝑏 ∈ 𝑃 and 𝑎, 𝑏 ∉ 𝑃.

Example 37.10. As discussed in Example 36.6, the ideals of ℤ12 are
{0}, {0, 6}, {0, 4, 8}, {0, 3, 6, 9}, {0, 2, 4, 6, 8, 10}, ℤ12.

Let’s see which of these are prime in ℤ12.
• {0} is not prime, because 3 ⋅ 4 = 0 ∈ {0}, even though 3, 4 ∉ {0}.

• {0, 6} is not prime, because 3 ⋅ 4 = 0 ∈ {0, 6}, even though 3, 4 ∉ {0, 6}.

• {0, 4, 8} is not prime, because 2 ⋅ 6 = 0 ∈ {0, 4, 8}, even though 2, 6 ∉ {0, 4, 8}.

• {0, 3, 6, 9} is prime. In an exercise, you’ll show that 𝑎𝑏 ∈ {0, 3, 6, 9} implies 𝑎 or
𝑏 is in {0, 3, 6, 9}.

• {0, 2, 4, 6, 8, 10} is prime. Again, you’ll show this in an exercise.

• ℤ12 is not prime. By definition, a prime ideal 𝑃 (of a ring 𝑅) must be different from
𝑅.

Thus ℤ12 has two prime ideals, namely {0, 3, 6, 9} and {0, 2, 4, 6, 8, 10}.

Example 37.11 (Non-example). Consider 𝑥2 − 1 ∈ ℝ[𝑥]. We’ll show that the ideal
⟨𝑥2 − 1⟩ is not prime in ℝ[𝑥]. Let 𝑓(𝑥) = 𝑥 + 1 and 𝑔(𝑥) = 𝑥 − 1, so that 𝑓(𝑥) ⋅ 𝑔(𝑥) =
𝑥2 − 1 ∈ ⟨𝑥2 − 1⟩. However, neither 𝑥 + 1 nor 𝑥 − 1 is a multiple of 𝑥2 − 1. Thus 𝑓(𝑥),
𝑔(𝑥) ∉ ⟨𝑥2 − 1⟩. We conclude that ⟨𝑥2 − 1⟩ is not a prime ideal.

Example 37.12. Let 𝑥2 + 1 ∈ ℝ[𝑥], which is unfactorable. To show that ⟨𝑥2 + 1⟩ is a
prime ideal, consider 𝑓(𝑥), 𝑔(𝑥) ∈ ℝ[𝑥] such that 𝑓(𝑥) ⋅ 𝑔(𝑥) ∈ ⟨𝑥2 + 1⟩. We’ll show
that 𝑓(𝑥) ∈ ⟨𝑥2 + 1⟩ or 𝑔(𝑥) ∈ ⟨𝑥2 + 1⟩. We have 𝑓(𝑥) ⋅ 𝑔(𝑥) = (𝑥2 + 1) ⋅ 𝑞(𝑥) for some
𝑞(𝑥) ∈ ℝ[𝑥]. Thus 𝑥2 + 1 is a factor of 𝑓(𝑥) ⋅ 𝑔(𝑥). But since 𝑥2 + 1 is unfactorable in
ℝ[𝑥], Theorem 37.13 below implies that (𝑥2 + 1) ∣ 𝑓(𝑥) or (𝑥2 + 1) ∣ 𝑔(𝑥). Therefore,
𝑓(𝑥) ∈ ⟨𝑥2 + 1⟩ or 𝑔(𝑥) ∈ ⟨𝑥2 + 1⟩. (Compare with Example 37.6.)

Here’s the theorem used in Example 37.12. We’ll leave its proof to you as an exer-
cise.

Theorem 37.13. Let 𝐹 be a field, and let 𝑓(𝑥), 𝑔(𝑥), 𝑝(𝑥) ∈ 𝐹[𝑥] where 𝑝(𝑥) is unfac-
torable. If 𝑝(𝑥) ∣ 𝑓(𝑥) ⋅ 𝑔(𝑥), then 𝑝(𝑥) ∣ 𝑓(𝑥) or 𝑝(𝑥) ∣ 𝑔(𝑥).

Comparing with the examples from Chapter 36, it seems that every maximal ideal
is a prime ideal, and vice versa. Are the two concepts equivalent? Are they just two
different ways of looking at the same thing? The answer is “No,” as we’ll see in the
exercises.

Exercises
1. For Theorem 37.2(a), we proved the contrapositive of the statement: If 𝑀 is not

maximal in 𝑅, then 𝑅/𝑀 is not a field. Explore and describe what happens if we try
to prove the original statement, rather than the contrapositive.
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2. In the proof of Theorem 37.2(a), we assumed that 𝐴 ≠ 𝑀 and showed that 𝐴 = 𝑅.
Explore and describe what happens if we assume instead that 𝐴 ≠ 𝑅 and try to
show that 𝐴 = 𝑀.

3. Construct a field with 125 elements.

4. Construct a field with 1,331 elements.
5. Construct a field with 243 elements.

6. Determine if each of the following is a prime ideal of ℤ:

(a) 10ℤ. (b) 34ℤ. (c) 13ℤ. (d) 23ℤ. (e) {0}.

7. For each ideal of ℤ in Exercise #6, determine if it’s a maximal ideal.
8. For each ring 𝑅, determine if 𝑃 = {0} is a prime ideal of 𝑅. (Thus, 𝛼 ∈ 𝑃 means

𝛼 = 0.)

(a) 𝑅 = ℤ20. (b) 𝑅 = ℤ7. (c) 𝑅 = ℤ33. (d) 𝑅 = ℤ17. (e) 𝑅 = ℤ.

9. What’s a name for a commutative ring 𝑅 for which {0} is a prime ideal? Explain
your reasoning.

10. Prove Theorem 37.7.

11. Prove Theorem 37.13.

12. Complete Example 37.10 by showing the following:
(a) 𝑎𝑏 ∈ {0, 3, 6, 9} implies 𝑎 or 𝑏 is in {0, 3, 6, 9}.
(b) 𝑎𝑏 ∈ {0, 2, 4, 6, 8, 10} implies 𝑎 or 𝑏 is in {0, 2, 4, 6, 8, 10}.

13. Let 𝐴 be the set of all polynomials in ℤ[𝑥] with an even constant term. In Chapter
31, Exercise #11(a), we proved that 𝐴 is an ideal of ℤ[𝑥]. Explain why 𝐴 is a prime
ideal of ℤ[𝑥].
Note: In Chapter 36, Exercise #21, we showed that 𝐴 is maximal in ℤ[𝑥].

14. In ℤ[𝑥], let ⟨𝑥⟩ = {𝑥 ⋅ 𝑞(𝑥) | 𝑞(𝑥) ∈ ℤ[𝑥]} be the principal ideal generated by 𝑥.
Prove that ⟨𝑥⟩ = {𝑓(𝑥) ∈ ℤ[𝑥] | 𝑓(0) = 0}.
Note: Be careful. Since ℤ is not a field, you may not use the factor theorem here.

15. Explain why ⟨𝑥⟩ is a prime ideal of ℤ[𝑥].
Note: In Chapter 36, Exercise #20, we showed that ⟨𝑥⟩ is notmaximal in ℤ[𝑥].

16. Prove: Let 𝑅 be a commutative ring. If 𝐴 is maximal in 𝑅, then 𝐴 is prime in 𝑅.
17. Give a counterexample to show that the converse of the statement in Exercise #16

is false.

18. Prove: Let 𝑅 be a finite commutative ring. If 𝐴 is prime in 𝑅, then 𝐴 is maximal in
𝑅.

19. Prove: Let 𝑛 ∈ ℤwith 𝑛 ≥ 2. Then 𝑛ℤ is a prime ideal ofℤ if and only if 𝑛 is prime.
20. Prove: Let 𝑅 be a commutative ring, and let 𝑃 be an ideal of 𝑅 with 𝑃 ≠ 𝑅. Then 𝑃

is a prime ideal of 𝑅 if and only if 𝑅/𝑃 is an integral domain.



AppendixA
Proof of the GCD Theorem

We will justify the GCD theorem, which was introduced in Chapter 3. (Note that
“GCD” is an acronym for “greatest common divisor.”)

Theorem 3.9 (GCD theorem). Let 𝑎, 𝑏 ∈ ℤ. If gcd(𝑎, 𝑏) = 1, then there exist integers 𝑥
and 𝑦 such that 𝑎𝑥 + 𝑏𝑦 = 1.

In fact, we’ll consider a more general statement where the GCD isn’t necessarily 1.

Theorem A.1 (Generalized GCD theorem). Let 𝑎, 𝑏 ∈ ℤ. If gcd(𝑎, 𝑏) = 𝑑, then there
exist integers 𝑥 and 𝑦 such that 𝑎𝑥 + 𝑏𝑦 = 𝑑.

To work towards a justification, we start with an interesting property of the GCD.

Example A.2. Consider the following pairs of GCDs:

• gcd(12, 30) = 6 and gcd(12, 18) = 6.

• gcd(156, 228) = 12 and gcd(156, 72) = 12.

• gcd(35, 21) = 7 and gcd(14, 21) = 7.

• gcd(182, 52) = 26 and gcd(130, 52) = 26.
These examples seem to suggest that gcd(𝑎, 𝑏) = gcd(𝑎, 𝑏 − 𝑎) and gcd(𝑎, 𝑏) =
gcd(𝑎 − 𝑏, 𝑏).

We will prove that gcd(𝑎, 𝑏) = gcd(𝑎, 𝑏 − 𝑎). Reversing the roles of 𝑎 and 𝑏 yields
gcd(𝑎, 𝑏) = gcd(𝑎 − 𝑏, 𝑏).

Theorem A.3. Let 𝑎, 𝑏 ∈ ℤ. Then gcd(𝑎, 𝑏) = gcd(𝑎, 𝑏 − 𝑎).

Proof. Define the sets 𝑆 = {𝑑 ∈ ℤ | 𝑑 ∣ 𝑎 and 𝑑 ∣ 𝑏} and 𝑇 = {𝑑 ∈ ℤ | 𝑑 ∣ 𝑎 and 𝑑 ∣
(𝑏 − 𝑎)}. We will show that the two sets are equal; i.e., 𝑆 = 𝑇.
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We first show 𝑆 ⊆ 𝑇. Assume 𝑑 ∈ 𝑆, so that 𝑑 ∣ 𝑎 and 𝑑 ∣ 𝑏. Thus, 𝑎 = 𝑑𝑘 and
𝑏 = 𝑑𝑗 for some integers 𝑘 and 𝑗. Thus, 𝑏 − 𝑎 = 𝑑𝑗 − 𝑑𝑘 = 𝑑(𝑗 − 𝑘) where 𝑗 − 𝑘 ∈ ℤ.
Hence, 𝑑 ∣ (𝑏 − 𝑎), which shows that 𝑑 ∈ 𝑇.

To show that 𝑇 ⊆ 𝑆, assume 𝑑 ∈ 𝑇 so that 𝑑 ∣ 𝑎 and 𝑑 ∣ (𝑏 − 𝑎). Thus, 𝑎 = 𝑑𝑘 and
𝑏 − 𝑎 = 𝑑𝑗 for some 𝑘, 𝑗 ∈ ℤ. Hence, 𝑏 = (𝑏 − 𝑎) + 𝑎 = 𝑑𝑗 + 𝑑𝑘 = 𝑑(𝑗 + 𝑘) where
𝑗 + 𝑘 ∈ ℤ. Hence, 𝑑 ∣ 𝑏, which show that 𝑑 ∈ 𝑆.

Thus, we conclude that 𝑆 = 𝑇. Note that 𝑆 is the set of common divisors of 𝑎 and
𝑏. Likewise, 𝑇 is the set of common divisors of 𝑎 and 𝑏 − 𝑎. Since the two sets are
equal, the greatest element from each set must be equal to each other. In other words,
gcd(𝑎, 𝑏) = gcd(𝑎, 𝑏 − 𝑎). ■

The formulas gcd(𝑎, 𝑏) = gcd(𝑎, 𝑏−𝑎) and gcd(𝑎, 𝑏) = gcd(𝑎−𝑏, 𝑏) help simplify
GCD computations, especially when working with larger numbers, by allowing us to
reduce the pair of numbers for which to find the GCD. This is illustrated in Examples
A.4 and A.5 below.

Example A.4. To compute gcd(861, 252), we use gcd(𝑎, 𝑏) = gcd(𝑎 − 𝑏, 𝑏) to replace
861 (i.e., the larger number)with the difference 861−252 = 609. Thus, gcd(861, 252) =
gcd(609, 252). We use the formula a couple more times to obtain gcd(609, 252) =
gcd(357, 252) = gcd(105, 252). Then we use gcd(𝑎, 𝑏) = gcd(𝑎, 𝑏 − 𝑎) to replace 252
(i.e., the larger number) with the difference 252−105. In fact, we can apply gcd(𝑎, 𝑏) =
gcd(𝑎, 𝑏 − 𝑎) twice to replace 252 with 252 − 105 ⋅ 2 = 42. Thus, gcd(105, 252) =
gcd(105, 42). Now we continue by replacing 105 with a smaller number.

Here is a complete calculation for gcd(861, 252):
gcd(861, 252) = gcd(105, 252) 861 − 252 ⋅ 3 = 𝟏𝟎𝟓,

= gcd(105, 42) 252 − 105 ⋅ 2 = 𝟒𝟐,
= gcd(21, 42) 105 − 42 ⋅ 2 = 𝟐𝟏,
= gcd(21, 0) 42 − 21 ⋅ 2 = 𝟎,
= 21.

The numbers in bold are called remainders. For instance, 𝟏𝟎𝟓 is the remainder when
dividing 861 by 252. Notice that the last non-zero remainder, namely 21, is the desired
GCD.

Example A.5. The calculation below shows that gcd(861, 253) = 1, which is the last
non-zero remainder:

gcd(861, 253) = gcd(102, 253) 861 − 253 ⋅ 3 = 102,
= gcd(102, 49) 253 − 102 ⋅ 2 = 49,
= gcd(4, 49) 102 − 49 ⋅ 2 = 4,
= gcd(4, 1) 49 − 4 ⋅ 12 = 1,
= gcd(0, 1) 4 − 1 ⋅ 4 = 0,
= 1.

The approach for finding the GCD shown in Examples A.4 and A.5 is called the
Euclidean algorithm. We will use the remainder calculation in this algorithm to un-
derstand why the generalized GCD theorem (i.e., Theorem A.1) is true. We’ll leave a
formal proof of the theorem up to you!
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Example A.6. In Example A.4, we found that gcd(861, 252) = 21. Thus, the general-
ized GCD theorem ensures the existence of integers 𝑥 and 𝑦 where 861𝑥 + 252𝑦 = 21.
We will find such integers using the remainder calculation from Example A.4:

861 − 252 ⋅ 3 = 105,
252 − 105 ⋅ 2 = 42,
105 − 42 ⋅ 2 = 21,
42 − 21 ⋅ 2 = 0.

The second to last equation tells us that 21 = 105−𝟒𝟐⋅2. We substitute 𝟒𝟐 = 252−105⋅2
from the previous equation to obtain

21 = 105 − (252 − 105 ⋅ 2) ⋅ 2 = 105 ⋅ 5 − 252 ⋅ 2.
Then we substitute 𝟏𝟎𝟓 = 861−252 ⋅ 3 from the top equation into 21 = 𝟏𝟎𝟓 ⋅ 5−252 ⋅ 2
to obtain

21 = (861 − 252 ⋅ 3) ⋅ 5 − 252 ⋅ 2 = 861 ⋅ 5 − 252 ⋅ 17.
Thus, (𝑥, 𝑦) = (5, −17) is an integer solution to 861𝑥 + 252𝑦 = 21.

This method is called back-tracking, working from the bottom to the top of the
remainder calculation to write 21 as an integer linear combination of 861 and 252.
Here is one more example.

ExampleA.7. We’ve seen that gcd(861, 253) = 1. Thus, the generalizedGCD theorem
guarantees that there exist 𝑥, 𝑦 ∈ ℤ with 861𝑥 + 253𝑦 = 1. Here are the results from
Example A.5:

861 − 253 ⋅ 3 = 102,
253 − 102 ⋅ 2 = 49,
102 − 49 ⋅ 2 = 4,
49 − 4 ⋅ 12 = 1,
4 − 1 ⋅ 4 = 0.

Starting with 1 = 49 − 4 ⋅ 12 and working up the remainder calculation, we obtain
1 = 49 − (102 − 49 ⋅ 2) ⋅ 12
= 49 ⋅ 25 − 102 ⋅ 12
= (253 − 102 ⋅ 2) ⋅ 25 − 102 ⋅ 12
= 253 ⋅ 25 − 102 ⋅ 62
= 253 ⋅ 25 − (861 − 253 ⋅ 3) ⋅ 62
= 253 ⋅ 211 − 861 ⋅ 62.

Therefore, (𝑥, 𝑦) = (−62, 211) is an integer solution to 861𝑥 + 253𝑦 = 1.





AppendixB
Composition Table for 𝐷4

We saw in Chapter 5 that 𝐷4 = {𝜀, 𝑟90, 𝑟180, 𝑟270, ℎ, 𝑣, 𝑑, 𝑑′} is the set of symmetries of
a square. Here is its composition table. For 𝜎, 𝜏 ∈ 𝐷4, the “product” 𝜎 ∘ 𝜏 is the entry
in row 𝜎 and column 𝜏. For example, the product 𝑑 ∘ 𝑟90 = 𝑣 is shown in bold letters.

∘ 𝜀 𝒓𝟗𝟎 𝑟180 𝑟270 ℎ 𝑣 𝑑 𝑑′

𝜀 𝜀 𝑟90 𝑟180 𝑟270 ℎ 𝑣 𝑑 𝑑′

𝑟90 𝑟90 𝑟180 𝑟270 𝜀 𝑑′ 𝑑 ℎ 𝑣
𝑟180 𝑟180 𝑟270 𝜀 𝑟90 𝑣 ℎ 𝑑′ 𝑑
𝑟270 𝑟270 𝜀 𝑟90 𝑟180 𝑑 𝑑′ 𝑣 ℎ
ℎ ℎ 𝑑 𝑣 𝑑′ 𝜀 𝑟180 𝑟90 𝑟270
𝑣 𝑣 𝑑′ ℎ 𝑑 𝑟180 𝜀 𝑟270 𝑟90
𝒅 𝑑 𝒗 𝑑′ ℎ 𝑟270 𝑟90 𝜀 𝑟180
𝑑′ 𝑑′ ℎ 𝑑 𝑣 𝑟90 𝑟270 𝑟180 𝜀
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AppendixC
Symbols and Notations

The page number after each item indicateswhere the notation is introduced or defined.

𝑝 ⟹ 𝑞 if 𝑝, then 𝑞 (i.e., implication), p. 35
𝑝 ⟺ 𝑞 𝑝 if and only if 𝑞, p. 200

ℤ integers, p. 14
𝑚ℤ {𝑚𝑘 | 𝑘 ∈ ℤ}, p. 17
ℕ natural numbers, p. 15
ℚ rational numbers, p. 19
ℝ real numbers, p. 75
ℝ∗ {𝑎 ∈ ℝ | 𝑎 has a multiplicative inverse}, p. 76
ℂ complex numbers, p. 263

ℤ[𝑖] {𝑎 + 𝑏𝑖 | 𝑎, 𝑏 ∈ ℤ} where 𝑖2 = −1, p. 320
ℤ3[𝑖] {𝑎 + 𝑏𝑖 | 𝑎, 𝑏 ∈ ℤ3} where 𝑖2 = −1, p. 263

ℚ(√2) {𝑎 + 𝑏√2 | 𝑎, 𝑏 ∈ ℚ}, p. 274
ℤ𝑚 {0, 1, 2, . . . , 𝑚 − 1} with addition/multiplication modulo𝑚, p. 31
𝑈𝑚 {𝑎 ∈ ℤ𝑚 | 𝑎 has a multiplicative inverse in ℤ𝑚}, p. 36

𝑎 ∈ 𝑆 𝑎 is an element of set 𝑆, p. 14
𝑎 ∉ 𝑆 𝑎 is not an element of set 𝑆, p. 14
𝑆 ⊆ 𝑇 𝑆 is a subset of 𝑇, p. 13
𝑆 ⊊ 𝑇 𝑆 is a subset of 𝑇 but 𝑆 ≠ 𝑇 (i.e., strict containment), p. 361

∅ empty set (also denoted { }), p. 14
𝑆 ∩ 𝑇 intersection of sets 𝑆 and 𝑇, p. 20
𝑑 ∣ 𝑛 𝑑 is a divisor of 𝑛, p. 21
𝑑 ∤ 𝑛 𝑑 is not a divisor of 𝑛, p. 21

gcd(𝑎, 𝑏) greatest common divisor of 𝑎 and 𝑏, p. 22
𝐷3 set of symmetries of an equilateral triangle, p. 48
𝐷4 set of symmetries of a square, p. 43
𝐷𝑛 set of symmetries of a regular 𝑛-sided polygon, p. 48
𝑆𝑛 set of permutations of {1, 2, 3, . . . , 𝑛}, p. 52
𝜀 identity element of a group, p. 74
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𝑔−1 multiplicative inverse of 𝑔, p. 76
−𝑔 additive inverse of 𝑔, p. 75

ord(𝑔) order of a group element 𝑔 (also denoted |𝑔|), p. 115
𝑍(𝐺) {𝑧 ∈ 𝐺 | 𝑧𝑔 = 𝑔𝑧 for all 𝑔 ∈ 𝐺}, center of 𝐺, p. 109
𝐶(ℎ) {𝑔 ∈ 𝐺 | 𝑔ℎ = ℎ𝑔}, centralizer of ℎ in 𝐺, p. 110
⟨𝑔⟩ {𝑔𝑘 | 𝑘 ∈ ℤ}, cyclic subgroup generated by 𝑔 (multiplicative), p. 130
⟨𝑔⟩ {𝑘 ⋅ 𝑔 | 𝑘 ∈ ℤ}, cyclic subgroup generated by 𝑔 (additive), p. 131

det 𝛼 determinant of the matrix 𝛼, p. 66
𝑀(ℤ𝑚) set of 2 × 2matrices with entries in ℤ𝑚, p. 62
𝐺(ℤ𝑚) {𝛼 ∈ 𝑀(ℤ𝑚) | 𝛼 has a multiplicative inverse}, p. 99
𝑆(ℤ𝑚) {𝛼 ∈ 𝑀(ℤ𝑚) | det 𝛼 = 1}, p. 100

𝑓 ∶ 𝑆 → 𝑇 𝑓 is a function from domain 𝑆 to codomain 𝑇, p. 148
𝐺 ≅ 𝐻 𝐺 is isomorphic to 𝐻, p. 160
𝑔 ↔ ℎ 𝑔 ∈ 𝐺 corresponds to ℎ ∈ 𝐻 when 𝐺 ≅ 𝐻, p. 128
ker 𝜃 kernel of the homomorphism 𝜃, p. 180
im 𝜃 image of the homomorphism 𝜃, p. 182
𝑎𝐻 {𝑎ℎ | ℎ ∈ 𝐻}, left coset of 𝐻 generated by 𝑎, p. 196
𝐻𝑎 {ℎ𝑎 | ℎ ∈ 𝐻}, right coset of 𝐻 generated by 𝑎, p. 196

𝑎 + 𝐻 {𝑎 + ℎ | ℎ ∈ 𝐻}, left coset of 𝐻 for an additive group, p. 196
#𝐺 size of 𝐺, i.e., the number of its elements, p. 205

[𝐺 ∶ 𝐻] index of 𝐻 in 𝐺, p. 209
𝐺/𝐻 quotient group 𝐺 mod 𝐻, p. 226

𝑔𝐻𝑔−1 {𝑔ℎ𝑔−1 | ℎ ∈ 𝐻}, conjugate of 𝐻, p. 124
𝐺 × 𝐻 {(𝑔, ℎ) | 𝑔 ∈ 𝐺, ℎ ∈ 𝐻}, direct product, p. 82

▵𝐺 {(𝑔, 𝑔) | 𝑔 ∈ 𝐺}, diagonal subgroup, p. 107
𝑅∗ group of units of the ring 𝑅, p. 268

𝑅[𝑥] polynomial ring with coefficients in 𝑅, p. 282
deg 𝑓(𝑥) degree of the polynomial 𝑓(𝑥), p. 283

𝑔(𝑥) ∣ 𝑓(𝑥) 𝑔(𝑥) is a factor of 𝑓(𝑥), p. 292
⟨𝑎⟩ {𝑎 ⋅ 𝑟 | 𝑟 ∈ 𝑅}, principal ideal generated by 𝑎, p. 318

⟨𝑎1, 𝑎2, . . . , 𝑎𝑛⟩ {𝑎1 ⋅ 𝑟1 + 𝑎2 ⋅ 𝑟2 + ⋯ + 𝑎𝑛 ⋅ 𝑟𝑛 | 𝑟1, 𝑟2, . . . , 𝑟𝑛 ∈ 𝑅}, p. 352
𝑅/𝐴 quotient ring, p. 324



AppendixD
Essential Theorems

Theorem 3.9 (GCD theorem for integers). Let 𝑎, 𝑏 ∈ ℤ. If gcd(𝑎, 𝑏) = 1, then there
exist integers 𝑥 and 𝑦 such that 𝑎𝑥 + 𝑏𝑦 = 1. (Note: Its converse is also true. See
Theorem 3.18.)

Theorem 4.19 (Multiplicative inverses in ℤ𝑚). Let 𝑎 ∈ ℤ𝑚. Then 𝑎 ∈ 𝑈𝑚 if and only
if gcd(𝑎,𝑚) = 1.

Theorem 8.11 (Socks-shoes property). Let 𝑎 and 𝑏 be elements of a group. Then (𝑎𝑏)−1
= 𝑏−1𝑎−1.

Theorem 8.18 (Left cancellation). Let 𝑎, 𝑏, 𝑐 be elements of a group. If 𝑎𝑏 = 𝑎𝑐, then
𝑏 = 𝑐.

Theorem 9.10 (Sudoku property). Let𝐺 be a group. In each row or column of its group
table, every element of 𝐺 shows up exactly once.

Theorem 12.16 (Division algorithm in ℤ). Let 𝑎 and 𝑏 be integers, with 𝑏 > 0. Then
there exist 𝑞, 𝑟 ∈ ℤ such that 𝑎 = 𝑏 ⋅ 𝑞 + 𝑟 with 0 ≤ 𝑟 < 𝑏.

Theorem 12.18. Let 𝑔 be an element of a group with ord(𝑔) = 𝑛. Then 𝑛 ∣ 𝑘 if and only
if 𝑔𝑘 = 𝜀.

Theorem13.17. Let 𝑔 be an element of a groupwith ord(𝑔) = 𝑛. Then ⟨𝑔⟩ = {𝑔𝑘 | 𝑘 ∈ ℤ}
contains 𝑛 distinct elements; namely ⟨𝑔⟩ = {𝜀, 𝑔1, 𝑔2, 𝑔3, . . . , 𝑔𝑛−1}, where 𝜀 = 𝑔0.

Theorem 14.12 (Subgroups of cyclic groups). Let 𝐺 be a cyclic group, and let 𝐻 be a
subgroup of 𝐺. Then𝐻 is also cyclic.

Theorem 14.15 (Subgroups of finite cyclic groups). Suppose𝐺 is cyclic with 𝑛 elements.
Then 𝐺 has a unique subgroup of size 𝑑 for every divisor 𝑑 of 𝑛, and those are the only
subgroups of 𝐺.

Theorem 15.17. Consider a function 𝑓 ∶ 𝑆 → 𝑇, where 𝑆 and 𝑇 are finite sets of the
same size. Then 𝑓 is one-to-one if and only if 𝑓 is onto.
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Theorem 17.9. Let 𝜃 ∶ 𝐺 → 𝐻 be a group homomorphism. Then 𝜃 maps the identity
element of 𝐺 to the identity element of𝐻; i.e., 𝜃(𝜀𝐺) = 𝜀𝐻 .

Theorem 17.13. Let 𝜃 ∶ 𝐺 → 𝐻 be a group homomorphism. Then 𝜃(𝑔𝑘) = 𝜃(𝑔)𝑘 for
all 𝑔 ∈ 𝐺 and 𝑘 ∈ ℤ.

Theorem 18.6 (Kernel is a subgroup). Let 𝜃 ∶ 𝐺 → 𝐻 be a group homomorphism.
Then 𝐾 = ker 𝜃 is a subgroup of the domain 𝐺.

Theorem 18.11 (Image is a subgroup). Let 𝜃 ∶ 𝐺 → 𝐻 be a group homomorphism.
Then 𝐼 = im𝜃 is a subgroup of the codomain𝐻.

Theorem 19.14. Let 𝐺 be a group,𝐻 a subgroup of 𝐺, and 𝑎 ∈ 𝐺. Then:
• (Multiplicative) 𝑎𝐻 = 𝐻 if and only if 𝑎 ∈ 𝐻.
• (Additive) 𝑎 + 𝐻 = 𝐻 if and only if 𝑎 ∈ 𝐻.

Theorem 19.16. Let 𝐺 be a group,𝐻 a subgroup of 𝐺, and 𝑎, 𝑏 ∈ 𝐺. Then:
• (Multiplicative) 𝑎𝐻 = 𝑏𝐻 if and only if 𝑏−1 ⋅ 𝑎 ∈ 𝐻 and 𝑎−1 ⋅ 𝑏 ∈ 𝐻.
• (Additive) 𝑎 + 𝐻 = 𝑏 + 𝐻 if and only if 𝑎 − 𝑏 ∈ 𝐻 and 𝑏 − 𝑎 ∈ 𝐻.

Theorem 20.5 (Lagrange’s theorem). Let𝐻 be a subgroup of a finite group𝐺. Then#𝐻
is a divisor of #𝐺.

Theorem 20.12. Let 𝐺 be a finite group, and let 𝑔 ∈ 𝐺. Then ord(𝑔) is a divisor of #𝐺.

Theorem 22.8. Let 𝐺 be a group, and let 𝐻 be its subgroup. Assume 𝐺/𝐻 satisfies the
coset multiplication shortcut. Given 𝑎𝐻 ∈ 𝐺/𝐻, we have (𝑎𝐻)𝑛 = 𝑎𝑛𝐻 for all integer
exponents 𝑛.

Theorem 24.15 (Normal subgroup test). Let 𝐺 be a group, and let 𝐻 be a subgroup of
𝐺. Then𝐻 is normal in 𝐺 if and only if 𝑔𝐻𝑔−1 ⊆ 𝐻 for all 𝑔 ∈ 𝐺.

Theorem 24.17 (Kernel is a normal subgroup). Let 𝜃 ∶ 𝐺 → 𝐻 be a group homomor-
phism, with 𝐾 = ker 𝜃 = {𝑎 ∈ 𝐺 | 𝜃(𝑎) = 𝜀𝐻}. Then 𝐾 is normal in 𝐺.

Theorem 25.3 (First Isomorphism Theorem for groups). Let 𝜃 ∶ 𝐺 → 𝐻 be a group
homomorphism with 𝐾 = ker 𝜃. Then 𝐺/𝐾 ≅ im𝜃, where 𝑔𝐾 ∈ 𝐺/𝐾 corresponds to
𝜃(𝑔) ∈ im𝜃.

Theorem 27.6 (Cancellation in an integral domain). Let 𝑎, 𝑏, 𝑐 be elements of an inte-
gral domain 𝑅 and suppose 𝑎 ≠ 0. If 𝑎𝑏 = 𝑎𝑐, then 𝑏 = 𝑐.

Theorem 28.14 (Degree of a product). Suppose 𝑅 is an integral domain. Let 𝑓(𝑥),
𝑔(𝑥) ∈ 𝑅[𝑥] with 𝑓(𝑥), 𝑔(𝑥) ≠ 0. Then deg 𝑓(𝑥) ⋅ 𝑔(𝑥) = deg 𝑓(𝑥) + deg 𝑔(𝑥).

Theorem29.5 (Division algorithm in 𝐹[𝑥]). Let𝐹 be a field. Suppose𝑓(𝑥), 𝑔(𝑥) ∈ 𝐹[𝑥]
with 𝑔(𝑥) ≠ 0. Then there exist 𝑞(𝑥), 𝑟(𝑥) ∈ 𝐹[𝑥] such that 𝑓(𝑥) = 𝑔(𝑥) ⋅ 𝑞(𝑥)+𝑟(𝑥)with
𝑟(𝑥) = 0 or deg 𝑟(𝑥) < deg 𝑔(𝑥).
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Theorem 29.9 (Factor theorem). Let 𝐹 be a field, 𝑎 ∈ 𝐹, and 𝑓(𝑥) ∈ 𝐹[𝑥]. Then
𝑓(𝑎) = 0 if and only if (𝑥 − 𝑎) ∣ 𝑓(𝑥).

Theorem 30.8. Let 𝐹 be a field. Suppose 𝑓(𝑥) ∈ 𝐹[𝑥] with deg 𝑓(𝑥) ≥ 1. Then 𝑓(𝑥)
is unfactorable if and only if 𝑓(𝑥) satisfies the following property: If 𝑓(𝑥) = 𝑝(𝑥) ⋅ 𝑞(𝑥),
then deg 𝑝(𝑥) = 0 or deg 𝑞(𝑥) = 0.

Theorem 30.16. Let 𝐹 be a field, and let 𝑓(𝑥) ∈ 𝐹[𝑥] with deg 𝑓(𝑥) ≥ 2. If 𝑓(𝑥) has a
root 𝛼 ∈ 𝐹, then 𝑓(𝑥) is factorable in 𝐹[𝑥].

Theorem 30.19. Let 𝐹 be a field, and let 𝑓(𝑥) ∈ 𝐹[𝑥] with deg 𝑓(𝑥) = 2 or 3. If 𝑓(𝑥)
has no root in 𝐹, then 𝑓(𝑥) is unfactorable in 𝐹[𝑥].

Theorem 31.24 (Kernel is an ideal). Let 𝜃 ∶ 𝑅 → 𝑆 be a ring homomorphism with
𝐾 = ker 𝜃. Then 𝐾 is an ideal of the domain 𝑅.

Theorem 31.33. Every ideal of ℤ is a principal ideal.

Theorem 31.34. Let 𝐹 be a field. Then every ideal of 𝐹[𝑥] is a principal ideal.

Theorem 32.11 (First Isomorphism Theorem for rings). Let 𝜃 ∶ 𝑅 → 𝑆 be a ring
homomorphism with 𝐾 = ker 𝜃. Then there is a ring isomorphism 𝑅/𝐾 ≅ im𝜃, where
𝑟 + 𝐾 ∈ 𝑅/𝐾 corresponds to 𝜃(𝑟) ∈ im𝜃.

Theorem 35.1. Let 𝐹 be a field and fix 𝑔(𝑥) ∈ 𝐹[𝑥].
(a) If 𝑔(𝑥) is factorable, then 𝐹[𝑥]/⟨𝑔(𝑥)⟩ is not a field.
(b) If 𝑔(𝑥) is unfactorable, then 𝐹[𝑥]/⟨𝑔(𝑥)⟩ is a field.

Theorem 35.14 (GCD theorem for polynomials). Let 𝐹 be a field, and let 𝑓(𝑥), 𝑔(𝑥) ∈
𝐹[𝑥]. If 𝑓(𝑥) and 𝑔(𝑥) are relatively prime, then there exist 𝑝(𝑥), 𝑞(𝑥) ∈ 𝐹[𝑥] such that
𝑓(𝑥) ⋅ 𝑝(𝑥) + 𝑔(𝑥) ⋅ 𝑞(𝑥) = 1.

Theorem 36.14. Let 𝐹 be a field and fix 𝑔(𝑥) ∈ 𝐹[𝑥].
(a) If 𝑔(𝑥) is factorable, then ⟨𝑔(𝑥)⟩ is notmaximal in 𝐹[𝑥].
(b) If 𝑔(𝑥) is unfactorable, then ⟨𝑔(𝑥)⟩ is maximal in 𝐹[𝑥].

Theorem 37.2. Let𝑀 be an ideal of a commutative ring 𝑅.
(a) If𝑀 is notmaximal in 𝑅, then 𝑅/𝑀 is not a field.

(b) If𝑀 is maximal in 𝑅, then 𝑅/𝑀 is a field.
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