


Special Notations 
The following is a list of the special notations used in this text, arranged in order of their 
first appearance in the text. Numbers refer to the pages where the notations are defined. 
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set with a as its only element, 1 
x is an element of the set A, 2 
x is not an element of the set A, 2 
A is a subset of B, 2 
A is a proper subset of B, 3 

union of A and B, 3 

intersection of A and B, 3 

empty set, 4 
power set of A, 4 
universal set, 5 
complement of B in A, 5 
complement of A, 5 
set of all integers, 6 
set of all positive integers, 6 
set of all rational numbers, 6 
set of all real numbers, 6 
set of all positive real numbers, 6 
set of all complex numbers, 6 
"implies," 8 

"is implied by," 8 

"if and only if," 9 
sum of subsets A and B, 13 
Cartesian product of A and B, 13 
image of the element a under f, 14 
fis a mapping from A toB, 14 
image of the set S under f, 15 
inverse image of the set Tunderf, 15 
set of all even integers, 18 
composition mapping, 20 
set of all permutations on A, 38 

set of all mappings from A to A, 38 

identity mapping from A to A, 38 

inverse of a mapping, 42 
matrix with m rows, n columns, and elements %• 44
set of all m X n matrices over S, 45 
set of all square matrices of order n over S, 45 

sigma notation, 49 

identity matrix of order n, 51 
Kronecker delta, 51 
multiplicative inverse of the matrix A, 52 
element a has the relation R to element b, 57 
equivalence class containing a, 59 

union of the collection of sets AA, 60 
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intersection of the collection of sets AA, 60 

a divides b, a does not divide b, 84 
greatest common divisor of a and b, 91 
least common multiple of a and b, 96 
x is congruent to y modulo n, 99 
congruence classes modulo n, 101 
set of congruence classes modulo n, 111 
remainder when a is divided by n, 129 
order of the group G, 145 
general linear group of degree n over R, 147 
center of the group G, 164 
centralizer of the element a in G, 165 
subgroup generated by the element a, 165 
special linear group of order 2 over R, 168 
order of the element a, 174 
group of units in Zm 175 
kernel of cf>, 194 
symmetric group on n elements, 200 
cycle, 200 
alternating group on n elements, 207 
stabilizer of a, 212 
dihedral group of order n, 218 
product of subsets of a group, 223 
left coset of H, right coset of H, 225 
index of H in G, 227 
subgroup generated by the subset A, 234 
normalizer of the subgroup H, 237 
congruence modulo the subgroup H, 237 
quotient group or factor group, 239 
internal direct product, 246 
external direct product, 246 
sum of subgroups of an abelian group, 247 
direct sum of subgroups of an abelian group, 248 
set of elements of G with order a power of p, 255 
set of positive elements in D, 293 
order relation in an integral domain, 293 
principal ideal generated by a, 304 
ideal generated by a1, a2, • • •  , a1u 305 
quotient ring, 306 
sum of two ideals, 308 
product of two ideals, 309 
least upper bound, 333 
conjugate of the complex number z, 344 
ring of polynomials in x over R, 361 
f(x) divides g(x),f(x) does not divide g(x), 373 
discriminant of f(x) = (x - c1)(x - c2)(x - c3 ) , 411 
principal ideal generated by p(x), 415 
simple algebraic extension of F, 422 
universal quantifier, 429 
existential quantifier, 429 
"such that," 429 
negation of p, 431 
conjuction, 432 
disjunction, 432 
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=Preface 

viii 

As the earlier editions were, this book is intended as a text for an introductory course in 

algebraic structures (groups, rings, fields, and so forth). Such a course is often used to 

bridge the gap from manipulative to theoretical mathematics and to help prepare secondary 

mathematics teachers for their careers. 

A minimal amount of mathematical maturity is assumed in the text; a major goal is to 

develop mathematical maturity. The material is presented in a theorem-proof format, with 

definitions and major results easily located, thanks to a user-friendly format. The treatment 

is rigorous and self-contained, in keeping with the objectives of training the student in the 

techniques of algebra and providing a bridge to higher-level mathematical courses. 

Groups appear in the text before rings. The standard topics in elementary group theory 

are included, and the last two sections in Chapter 4 provide an optional sample of more 

advanced work in finite abelian groups. 

The treatment of the set Zn of congruence classes modulo n is a unique and popular 

feature of this text, in that it threads throughout most of the book. The first contact with Zn 

is early in Chapter 2, where it appears as a set of equivalence classes. Binary operations of 

addition and multiplication are defined in Zn at a later point in that chapter. Both the ad

ditive and multiplicative structures are drawn upon for examples in Chapters 3 and 4. The 

development of Zn continues in Chapter 5, where it appears in its familiar context as a ring. 

This development culminates in Chapter 6 with the final description of Zn as a quotient 

ring of the integers by the principal ideal (n). Later, in Chapter 8, the use of Zn as a ring 

over which polynomials are defined, provides some interesting results. 

Some flexibility is provided by including more material than would normally be taught 

in one course, and a dependency diagram of the chapters/sections (Figure P.1) is included 

at the end of this preface. Several sections are marked "optional" and may be skipped by 

instructors who prefer to spend more time on later topics. 

Several users of the text have inquired as to what material the authors themselves 

teach in their courses. Our basic goal in a single course has always been to reach the end of 

Section 5.3 "The Field of Quotients of an Integral Domain," omitting the last two sections 

of Chapter 4 along the way. Other optional sections could also be omitted if class meetings 

are in short supply. The sections on applications naturally lend themselves well to outside 

student projects involving additional writing and research. 

For the most part, the problems in an exercise set are arranged in order of difficulty, 

with easier problems first, but exceptions to this arrangement occur if it violates logical 

order. If one problem is needed or useful in another problem, the more basic problem 

appears first. When teaching from this text, we use a ground rule that any previous re

sult, including prior exercises, may be used in constructing a proof. Whether to adopt this 

ground rule is, of course, completely optional. 
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Preface ix 

Some users have indicated that they omit Chapter 7 (Real and Complex Numbers) 

because their students are already familiar with it. Others cover Chapter 8 (Polynomials) be

fore Chapter 7. These and other options are diagrammed in Figure P .1 at the end of this preface. 

The following user-friendly features are retained from the seventh edition: 

• Descriptive labels and titles are placed on definitions and theorems to indicate their 

content and relevance. 

• Strategy boxes that give guidance and explanation about techniques of proof are 

included. This feature forms a component of the bridge that enables students to become 

more proficient in constructing proofs. 

• Marginal labels and symbolic notes such as Existence, Uniqueness, Induction, 

"(p /\ q) � r" and "f'Vp <= (f'Vq /\ f'Vr)" are used to help students analyze the logic in 

the proofs of theorems without interrupting the natural flow of the proof. 

• A reference system provides guideposts to continuations and interconnections 

of exercises throughout the text. For example, consider Exercise 14 in Section 4.4. 

The marginal notation "Sec. 3.3, #11 �,, indicates that Exercise 14 of Section 4.4 

is connected to Exercise 11 in the earlier Section 3.3. The marginal notation "Sec. 4.8
, 

#7 �"indicates that Exercise 14 of Section 4.4 has a continuation in Exercise 7 of Sec

tion 4.8. Instructors, as well as students, have found this system useful in anticipating 

which exercises are needed or helpful in later sections/chapters. 

• An appendix on the basics of logic and methods of proof is included. 

• A biographical sketch of a great mathematician whose contributions are relevant to 

that material concludes each chapter. 

• A gradual introduction and development of concepts is used, proceeding from the 

simplest structures to the more complex. 

• Repeated exposure to topics occurs, whenever possible, to reinforce concepts and 

enhance learning. 

• An abundance of examples that are designed to develop the student's intuition are 

included. 

• Enough exercises to allow instructors to make different assignments of approximately 

the same difficulty are included. 

• Exercise sets are designed to develop the student's maturity and ability to construct 

proofs. They contain many problems that are elementary or of a computational nature. 

• True/False statements that encourage the students to thoroughly understand the 

statements of definitions and the results of theorems are placed at the beginning of the 

exercise sets. 

• A summary of key words and phrases is included at the end of each chapter. 

• A list of special notations used in the book appears on the front endpapers. 

• Group tables for the most common examples are on the back endpapers. 

• An updated bibliography is included. 

Copyright 2013 Cengage Leaming. AH Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materia11y affect the overall learning experience. Cengage Leaming reserves the right to remove additional content at any time if subsequent rights restrictions require it. 



x Preface 

I am very grateful to the reviewers for their thoughtful suggestions and have 

incorporated many in this edition. The most notable include the following: 

• Alerts that draw attention to counterexamples, special cases, proper symbol or 

terminology usage, and common misconceptions. Frequently these alerts lead to True/ 

False statements in the exercises that further reinforce the precision required in math

ematical communication. 

• More emphasis placed on special groups such as the general linear and special linear 

groups, the dihedral groups, and the group of units. 

• Moving some definitions from the exercises to the sections for greater emphasis. 

• Using marginal notes to outline the steps of the induction arguments required in the 

examples. 

• Adding over 200 new exercises, both theoretical and computational in nature. 

• Minor rewriting throughout, including many new examples. 
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CHAPTER 0 N E 

Fundamentals 

• Introduction 

This chapter presents the fundamental concepts of set, mapping, binary operation, and relation. It also 

contains a section on matrices, which will serve as a basis for examples and exercises from time to 

time in the remainder of the text. Much of the material in this chapter may be familiar from earlier 

courses. If that is the case, appropriate omissions can be made to expedite the study of later topics. 

� Sets 

Abstract algebra had its beginnings in attempts to address mathematical problems such as 

the solution of polynomial equations by radicals and geometric constructions with straight

edge and compass. From the solutions of specific problems, general techniques evolved 

that could be used to solve problems of the same type, and treatments were generalized to 

deal with whole classes of problems rather than individual ones. 

In our study of abstract algebra, we shall make use of our knowledge of the various 

number systems. At the same time, in many cases we wish to examine how certain proper

ties are consequences of other, known properties. This sort of examination deepens our 

understanding of the system. As we proceed, we shall be careful to distinguish between the 

properties we have assumed and made available for use and those that must be deduced 

from these properties. We must accept without definition some terms that are basic objects 

in our mathematical systems. Initial assumptions about each system are formulated using 

these undefined terms. 

One such undefined term is set. We think of a set as a collection of objects about which 

it is possible to determine whether or not a particular object is a member of the set. Sets are 

usually denoted by capital letters and are sometimes described by a list of their elements, 

as illustrated in the following examples. 

Example 1 We write 

A = { 0, 1, 2, 3} 

to indicate that the set A contains the elements 0, 1, 2, 3, and no other elements. The nota

tion {O, 1, 2, 3} is read as "the set with elements 0, 1, 2, and 3." • 

1 
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2 Chapter 1 Fundamentals 

Example 2 The set B, consisting of all the nonnegative integers, is written as 

B = {O, 1, 2, 3, ... }. 

The three dots ... , called an ellipsis, mean that the pattern established before the dots 

continues indefinitely. The notation {O, 1, 2, 3, ... } is read as "the set with elements 0, 1, 
2, 3, and so on." • 

As in Examples 1 and 2, it is customary to avoid repetition when listing the elements 

of a set. Another way of describing sets is called set-builder notation. Set-builder notation 

uses braces to enclose a property that is the qualification for membership in the set. 

Example 3 The set B in Example 2 can be described using set-builder notation as 

B = {xix is a nonnegative integer}. 

The vertical slash is shorthand for "such that," and we read "B is the set of all x such that x 
is a nonnegative integer." • 

There is also a shorthand notation for "is an element of." We write "x EA" to mean 

"x is an element of the set A." We write "x ti. A" to mean "x is not an element of the set A." 
For the set A in Example 1, we can write 

2 EA and 7 $.A. 

Definition 1.1 • Subset 

Let A and B be sets. Then A is called a subset of B if and only if every element of A is an ele

ment of B. Either the notation A � B or the notation B 2 A indicates that A is a subset of B. 

The notation A� B is read as "A is a subset of B" or "A is contained in B." Also, B 2 A 
is read as "B contains A." The symbol E is reserved for elements, whereas the symbol� 

ALERT is reserved for subsets. 

Example 4 We write 

However, 

a E {a, b, c, d} or {a}� {a, b, c, d}. 

a� {a, b, c, d} and {a} E {a, b, c, d} 

are both incorrect uses of set notation. 

Definition 1.2 • Equality of Sets 

Two sets are equal if and only if they contain exactly the same elements. 

• 

The sets A and B are equal, and we write A = B, if each member of A is also a member 

of B and if each member of B is also a member of A. 
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1.1 Sets 3 

Strategy • Typically, a proof that two sets are equal is presented in two parts. The first shows that 
A � B, the second that B � A. We then conclude that A = B. On the other hand, to prove 
that A -=F B, one method that can be used is to exhibit an element that is in either set A or 
set B but is not in both. 

We illustrate this strategy in the next example. 

Example 5 Suppose A = {1, 1 }, B = { -1, 1 }, and C = {1 }. Now A = C since 
A� C andA 2 C, whereas A -=F B since -1 EB but -1 fl. A. • 

Definition 1.3 • Proper Subset 

If A and Bare sets, then A is a proper subset of B if and only if A �B and A =I= B. 

We sometimes write A c B to denote that A is a proper subset of B. 

Example 6 The following statements illustrate the notation for proper subsets and 
equality of sets. 

{1, 2, 4} c {1, 2, 3, 4, 5} {a, c} = {c, a} • 

There are two basic operations, union and intersection, that are used to combine sets. 
These operations are defined as follows. 

Definition 1.4 • Union, Intersection 

If A and Bare sets, the union of A and B is the set A U B (read "A union B"), given by 

AU B = {xix EA or x EB}. 

The intersection of A and B is the set A n B (read "A intersection B"), given by 

An B = {xix EA andx EB}. 

The union of two sets A and B is the set whose elements are either in A or in B or are 
in both A and B. The intersection of sets A and B is the set of those elements common to 
both A and B. 

Example 7 Suppose A = {2, 4, 6}  and B = {4, 5, 6, 7}. Then 

A UB = {2, 4, 5, 6, 7} 
and 

An B = {4, 6}. • 

The operations of union and intersection of two sets have some properties that are 
analagous to properties of addition and multiplication of numbers. 
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4 Chapter 1 Fundamentals 

Example 8 It is easy to see that for any sets A and B, AU B =BU A: 

A U B = {x Ix E A or x E B} 

= {x Ix E B or x E A} 

=BUA. 

Because of the fact that A U B = B U A, we say that the operation union has the commu
tative property. It is just as easy to show that A n B = B n A, and we say also that the 
operation intersection has the commutative property. • 

It is easy to find sets that have no elements at all in common. For example, the sets 

A= {l, -1} and B = {0, 2, 3} 

have no elements in common. Hence, there are no elements in their intersection, An B, 
and we say that the intersection is empty. Thus it is logical to introduce the empty set. 

Definition 1.5 • Empty Set, Disjoint Sets 

The empty set is the set that has no elements, and the empty set is denoted by 0 or { } . 
Two sets A and B are called disjoint if and only if A n B = 0. 

The sets {1, -1} and {O, 2, 3} are disjoint, since 

{ 1, -1} n { o, 2, 3} = 0. 

There is only one empty set 0, and 0 is a subset of every set. 

Strategy • To show thatA is not a subset of B, we must find an element in A that is not in B. 

That the empty set 0 is a subset of any set A follows from the fact that a E 0 is always 
false. Thus 

a E 0 implies a E A 

must be true. (See the truth table in Figure A.4 of the appendix.) 
For a set A with n elements (n a nonnegative integer), we can write out all the subsets 

of A. For example, if 

then the subsets of A are 

Definition 1.6 • Power Set 

A= {a, b, c}, 

0, {a}, { b}, { c}, {a, b}, {a, c}, { b, c}, A. 

For any set A, the power set of A, denoted by 0J>(A), is the set of all subsets of A and is written 

0P(A) = {XIX� A}. 
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1.1 Sets 5 

Example 9 For A = {a, b, c}, the power set of A is 

gi(A) = {0, {a}, {b}, {c}, {a,b}, {a,c}, {b,c},A}. • 

It is often helpful to draw a picture or diagram of the sets under discussion. When we 

do this, we assume that all the sets we are dealing with, along with all possible unions and 

intersections of those sets, are subsets of some universal set, denoted by U. In Figure 1.1, 

we let two overlapping circles represent the two sets A and B. The sets A and B are subsets 

of the universal set U, represented by the rectangle. Hence the circles are contained in the 

rectangle. The intersection of A and B, An B, is the crosshatched region where the two 

circles overlap. This type of pictorial representation is called a Venn diagram. 

�:A 
�:B 

•Figure 1.1 �:An B 

u 

Another special subset is defined next. 

Definition 1.7 • Complement 

For arbitrary subsets A and B of the universal set U, the complement of B in A is 

A - B = {x E Vix EA and x $ B} . 

The special notation A' is reserved for a particular complement, U -A: 

A'= U-A = {xE Vix ti.A}. 

We read A' simply as "the complement of A" rather than as "the complement of A in U." 

Example 10 Let 

U = {xix is an integer} 
A = {xix is an even integer} 
B = {xix is a positive integer} . 
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6 Chapter 1 Fundamentals 

•Figure 1.2 

Then 

B - A = {xix is a positive odd integer} 
= {1, 3, 5, 7, ... } 

A - B = {xix is a nonpositive even integer} 
= {O, -2, -4, -6, ... } 

A' = {xix is an odd integer} 
= { ... ' -3, -1, 1, 3, ... } 

B' = {xix is a nonpositive integer} 

= {O, -1, -2, -3, ... }. • 

Example 11 The overlapping circles representing the sets A and B separate the interior of 

the rectangle representing U into four regions, labeled 1, 2, 3, and 4, in the Venn diagram in 

Figure 1.2. Each region represents a particular subset of U. 

u 

"' 
c: 

Region 1: B-A ·� 
-3 Region 2: AnB "' 

4 � Region 3: A-B 
'-' 

Region 4: (A UB)' • @ 

Many of the examples and exercises in this book involve familiar systems of numbers, 

and we adopt the following standard notations for some of these systems: 

Z denotes the set of all integers. 

z+ denotes the set of all positive integers. 

Q denotes the set of all rational numbers. 

R denotes the set of all real numbers. 

R+ denotes the set of all positive real numbers. 

C denotes the set of all complex numbers. 

We recall that a complex number is defined as a number of the form a + bi, where a and 

b are real numbers and i = v=T. Also, a real number x is rational if and only if x can be 

written as a quotient of integers that has a nonzero denominator. That is, 

Q = {: I m E Z, n E Z, and n * 0}. 
The relationships that some of the number systems have to each other are indicated by 

the Venn diagram in Figure 1.3. 
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•Figure 1.3 

"' 
c:: 

·c: 

� 
:g, 
"' 

� 
u 

�������������� @ 

z+ cZcQ cRc c 

1.1 Sets 7 

Our work in this book usually assumes a knowledge of the various number systems 
that would be familiar from a precalculus or college algebra course. Some exceptions 
occur when we wish to examine how certain properties are consequences of other prop
erties in a particular system. Exceptions of this kind occur with the integers in Chapter 2 
and the complex numbers in Chapter 7, and these exceptions are clearly indicated when 
they occur. 

The operations of union and intersection can be applied repeatedly. For instance, we 
might form the intersection of A and B, obtaining An B, and then form the intersection of 
this set with a third set C: (A n B) n C. 

Example 12 The sets (An B) n c andA n (B n C) are equal, since 

(An B) n C = {xix EA andx EB} n C 
= {x Ix E A and x E B and x E C} 
=An {xix EB andx EC} 
=An (B n C). 

In analogy with the associative property 

(x + y) + z = x + (y + z) 

for addition of numbers, we say that the operation of intersection is associative. When we 
work with numbers, we drop the parentheses for convenience and write 

x + y + z = x + (y + z) = (x + y) + z. 

Similarly, for sets A, B, and C, we write 

An B n c =An (B n C) =(An B) n c. • 

Just as simply, we can show (see Exercise 18 in this section) that the union of sets is 
an associative operation. We write 

AU BU C =AU (BU C) =(AU B) UC. 
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8 Chapter 1 Fundamentals 

Example 13 A separation of a nonempty set A into mutually disjoint nonempty subsets 
is called a partition of the set A. If 

A = {a,b,c,d,e,f}, 

then one partition of A is 

X1 = {a,d}, X2 = {b,c,f}, X3 = {e}, 

smce 

withX1 -=I= 0,X2 -=I= 0,X3 -=I= 0, and 

X1 nx2 = 0, 

The concept of a partition is fundamental to many of the topics encountered later in this 
book. • 

The operations of intersection, union, and forming complements can be combined 
in all sorts of ways, and several nice equalities that relate some of these results can be 
obtained. For example, it can be shown that 

A n (B u C) = (A n B) u (A n C) 

and that 

Au (B n C) = (Au B) n (Au C). 

Because of the resemblance between these equations and the familiar distributive property 
x(y + z) = xy + xz for numbers, we call these equations distributive properties. 

We shall prove the first of these distributive properties in the next example and 
leave the last one as an exercise. To prove the first, we shall show that A n (B U C) � 
(A n B) U (A n C) and that (A n B) U (A n C) �A n (B U C). This illustrates the point 
made earlier in the discussion of equality of sets, highlighted in the strategy box, after 
Definition 1.2. 

The symbol=> is shorthand for "implies," and¢:::: is shorthand for "is implied by." We 
use them in the next example. 

Example 14 To prove 

An (Bu C) = (An B) u (An C), 

we first let x E A n (B U C). Now 

x E A n (B U C) => x E A and x E (B U C) 
==? x E A, and x E B or x E C 
==? x E A and x E B, or x E A and x E C 
==? x E A n B, or x E A n C 
==? x E (An B) u (An C). 
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Thus A n (B u C) � (A n B) u (A n C). 
Conversely, suppose x E (An B) U (An C). Then 

x E (An B) U (An C) => x EA n B, or x EA n C 

1.1 Sets 9 

=> x E A and x E B, or x E A and x E C 

=> x E A, and x E B or x E C 

=> x E A and x E (B U C) 

=> x EA n (BU C). 

Therefore, (A n B) U (A n C) �A n (B U C), and we have shown that A n (B U C) = 
(A n B) u (A n C). 

It should be evident that the second part of the proof can be obtained from the first 
simply by reversing the steps. That is, when each=> is replaced by<=, a valid implication 
results. In fact, then, we could obtain a proof of both parts by replacing => with ¢=>, 

where¢:::> is short for "if and only if." Thus 

x E A n (B U C) # x E A and x E (B U C) 

# x E A, and x E B or x E C 

# x E A and x E B, or x E A and x E C 

# x E A n B, or x E A n C 

# x E (An B) u (An C) . • 

Strategy • In proving an equality of sets S and T, we can often use the technique of showing that 
S � T and then check to see whether the steps are reversible. In many cases, the steps are 
indeed reversible, and we obtain the other part of the proof easily. However, this method 
should not obscure the fact that there are still two parts to the argument: S � T and T � S. 

There are some interesting relations between complements and unions or intersec
tions. For example, it is true that 

(AnB)'=A'UB'. 

This statement is one of two that are known as De Morgan'st Laws. De Morgan's other 
law is the statement that 

(AU B)' =A' n B'. 

Stated somewhat loosely in words, the first law says that the complement of an intersection 
is the union of the individual complements. The second similarly says that the complement 
of a union is the intersection of the individual complements. 

t Augustus De Morgan (1806-1871) coined the term mathematical induction and is responsible for rigorously 
defining the concept. Not only does he have laws of logic bearing his name but also the headquarters of the 
London Mathematical Society and a crater on the moon. 
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10 Chapter 1 Fundamentals 

Exercises 1.1 

True or False 

Label each of the following statements as either true or false. 

1. Two sets are equal if and only if they contain exactly the same elements. 

2. If A is a subset of B and B is a subset of A, then A and B are equal. 

3. The empty set is a subset of every set except itself. 

4. A - A = 0 for all sets A. 

5. AU A =An A for all sets A. 

6. A c A for all sets A. 

7. {a, b} = {b, a} 

8. {a, b} = {b, a, b} 

9. A - B = C - B implies A = C, for all sets A, B, and C. 

10. A - B = A - C implies B = C, for all sets A, B, and C. 

Exercises 

1. For each set A, describe A by indicating a property that is a qualification for membership 

in A. 

a. A= {0,2,4,6,8, 10} b.A={l,-1} 

c. A = { -1, -2, -3, ... } d. A = { 1, 4, 9, 16, 25, ... } 

2. Decide whether or not each statement is true for A = { 2, 7, 11 } and B = { 1, 2, 9, 10, 11 } . 

a. 2 � A b. { 11, 2, 7} � A 

c. 2 =A n B d. {7, 11} EA 

e. A �B f. {7, 11, 2} = A 

3. Decide whether or not each statement is true. 

a. a E {a, {a}} 

c. {a}� {a, {a}} 

e. 0�A 

g. 0 E {0} 

i. {0} � 0 

k. 0E0 

b. {a} E {a, {a} } 

d. { {a} } � {a, {a } } 

f. 0 E0 

h. 0 � {0} 

j. {0} = 0 

I. 0�0 

4. Decide whether or not each of the following is true for all sets A, B, and C. 

a. B U A �A b. B n A � A U B 

c. A �AU B 

e. A nA' = 0 

g. A n (B u C) = A u (B n C) 

d. AU B �An B 

f. A n0 =A U0 

h. A U (B' n C') = A U (B U C)' 
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1.1 Sets 11 

i. A u (B n C) = (A u B) n c j. (A n B) u c = A n (B u C) 

k. A u (B n C) = (A n C) u (B n C) I. A n (B u C) = (A u B) n (A u C) 

5. Evaluate each of the following sets, where 

U = {O, 1, 2, 3, ... , 10} 

A= {O, 1, 2, 3, 4, 5} 

B = {0, 2, 4, 6, 8, 10} 

C={2, 3, 5, 7}. 

a. AUB b. An C c. A'UB 

d. Ansn c e. A'nBn C f. AU (B n C) 

g. An (BU C) h. (AU B')' i. A -B 

j. B -A k. A -(B - C) I. C -(B -A) 

m. (A -B) n ( C -B) n. (A -B) n (A - C) 

6. Determine whether each of the following is either A, A', U, or 0, where A is an arbi
trary subset of the universal set U. 

LAnA �AUA 

c. An A' d. AU A' 

e. A U0 f. An 0 

g. An U h. AU U 

i. U U A' j. A -0 

k. 0' I. U' 

m. (A')' n. 0 -A 

7. Write out the power set, 2P(A), for each set A. 

a. A= {a} b. A= {O, 1} 

c. A={a , b , c} 

e. A = { 1, { 1 } } 

g. A= {0} 

d. A = { 1, 2, 3, 4} 

f. A = { { 1}} 

h. A = {0, {0}} 

8. Describe two partitions of each of the following sets. 

a. {xlxis an integer} b. {a,b,c,d} 

c. {l,5,9, 11, 15} d. {xlxis a complex number} 

9. Write out all the different partitions of the given set A. 

a. A = { 1, 2, 3} b. A = { 1, 2, 3, 4} 

10. Suppose the set A has n elements where n E z+. 

a. How many elements does the power set 2P(A) have? 

b. If 0 ::s k ::s n, how many elements of the power set 2P(A) contain exactly k elements? 
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12 Chapter 1 Fundamentals 

11. State the most general conditions on the subsets A and B of U under which the given 
equality holds. 

a. A n B = A b. A U B' = A 

c. AU B =A 

e. An B = U 

g. AU 0 = U 

12. Let Z denote the set of all integers, and let 

d. An B' =A 

f. A' nB' = 0 

h. A' n U = 0 

A= {xix= 3p - 2for somep E Z} 

B ={xix= 3q + 1 for someq E Z}. 

Prove that A = B. 

13. Let Z denote the set of all integers, and let 

C = {xix= 3r - 1 for some r E Z} 

D = {x Ix = 3s + 2 for some s E Z}. 

Prove that C = D. 

In Exercises 14-35, prove each statement. 

14. A nB�A UB 

16. If A � B and B � C, then A � C. 

18. A U (B U C) = (A U B) U C 

20. (A n B)' = A' U B' 

22. An (A' UB) =A nB 

24. A u (A n B) = A n (A u B) 

26. If A �B. thenA n C�B n C. 

28. A n (B -A) = 0 

30. (A U B) -C = (A -C) U (B -C) 

32. U - (A n B) = (U -A) U (U -B) 

34. A � B if and only if A U B = B. 

15. (A')'= A 

17. A� B if and only if B' �A'. 

19. (A U B)' = A' n B' 

21. A u (B n C) = (A u B) n (A u C) 

23. AU (A' nB) =A UB 

25. If A �B. thenA U C�B UC. 

27. B-A = BnA' 

29. A U (B -A) = A U B 

31. (A -B) U (A n B) = A 

33. U - (AU B) = (U -A) n (U -B) 

35. A � B if and only if A n B = A. 

36. Prove or disprove that A U B = A U C implies B = C. 

37. Prove or disprove that A n B = A n C implies B = C. 

38. Prove or disprove that W>(A U B) = W>(A) U W>(B). 

39. Prove or disprove that W>(A n B) = W>(A) n W>(B). 

40. Prove or disprove that W>(A -B) = W>(A) - W>(B). 

41. Express (AU B) - (An B) in terms of unions and intersections that involve A, A', B, 
andB'. 
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1.2 Mappings 13 

42. Let the operation of addition be defined on subsets A and B of U by A + B = 
(AU B) - (An B). Use a Venn diagram with labeled regions to illustrate each of the 
following statements. 

a. A + B = (A - B) U (B - A) 
b. A + (B + C) = (A + B) + C 
c. An (B + C) = (An B) + (An C). 

43. Let the operation of addition be as defined in Exercise 42. Prove each of the following 
statements. 

a. A+ A= 0 b. A+ 0 =A 

�Mappings 
The concept of a function is fundamental to nearly all areas of mathematics. The term 
function is the one most widely used for the concept that we have in mind, but it has be
come traditional to use the terms mapping and transformation in algebra. It is likely that 
these words are used because they express an intuitive feel for the association between the 
elements involved. The basic idea is that correspondences of a certain type exist between 
the elements of two sets. There is to be a rule of association between the elements of a 
first set and those of a second set. The association is to be such that for each element in 
the first set, there is one and only one associated element in the second set. This rule of 
association leads to a natural pairing of the elements that are to correspond, and then to 
the formal statement in Definition 1.9. 

By an ordered pair of elements we mean a pairing (a, b), where there is to be a distinc
tion between the pair (a, b) and the pair (b, a), if a and b are different. That is, there is to be 
a first position and a second position such that (a, b) = (c, d) if and only if both a= c and 
b = d. This ordering is altogether different from listing the elements of a set, for there the 
order of listing is of no consequence at all. The sets { 1, 2} and { 2, 1} have exactly the same 

ALERT elements, and { 1, 2} = { 2, 1}. When we speak of ordered pairs, however, we do not con
sider (1, 2) and (2, 1) equal. With these ideas in mind, we make the following definition. 

Definition 1.8 • Cartesian t Product 

For two nonempty sets A and B, the Cartesian product A X B is the set of all ordered 
pairs (a, b) of elements a E A and b EB. That is, 

A X B = { (a, b) I a E A and b E B}. 

Example 1 If A= {1, 2} andB = {3, 4, 5}, then 

A X B = { ( 1, 3), ( 1, 4), ( 1, 5 ) , ( 2, 3), ( 2, 4), ( 2, 5)}. 

tThe Cartesian product is named for Rene Descartes (1596-1650), who has been called the "Father of Modem 
Philosophy" and the "Father of Modem Mathematics." 
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14 Chapter 1 Fundamentals 

ALERT We observe that the order in which the sets appear is important. In this example, 

BX A= {(3, 1), (3, 2), (4, 1), (4, 2), (5, 1), (5, 2)}, 

so A X B and B X A are quite distinct from each other. • 

We now make our formal definition of a mapping. 

Definition 1.9 • Mapping, Image 

•Figure 1.4 

•Figure 1.5 

Let A and B be nonempty sets. A subset f of A X B is a mapping from A to B if and only 
if for each a EA there is a unique (one and only one) element b EB such that (a, b) E f 
lff is a mapping from A to B and the pair (a, b) belongs tof, we write b = f(a) and call b 
the image of a under f 

Figure 1.4 illustrates the pairing between a andf(a). A mappingf from A to B is the 
same as a function from A to B, and the image of a E A under f is the same as the value of 
the function! at a. Two mappings f from A to B and g from A to B are equal if and only if 

f (x) = g(x) for all x EA. 

A 

a (a,b)Ef 

Example 2 LetA = {-2, 1, 2}, and let B = { 1, 4, 9}. The setf given by 

f = { ( -2, 4)' ( 1, 1)' ( 2, 4)} 

is a mapping from A to B, since for each a EA there is a unique element b E B such that 
(a, b) E f As is frequently the case, this mapping can be efficiently described by giving 
the rule for the image under f In this case,f(a) = a2, a EA. This mapping is illustrated 
in Figure 1.5. 

A 
1 

f(a) = a2,a EA • 

When it is possible to describe a mapping by giving a simple rule for the image of an 
element, it is certainly desirable to do so. We must keep in mind, however, that the set A, 

ALERT the set B, and the rule must all be known before the mapping is determined. Iffis a map
ping from A to B, we writef: A---+ B or A� B to indicate this. 
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1.2 Mappings 15 

Definition 1.10 • Domain, Codomain, Range 

Let l be a mapping from A to B. The set A is called the domain off, and B is called the 
codomain off The range of l is the set 

C = {yly EB andy = l(x) for somex EA}. 

The range oflis denoted by l(A). 

ExampleJ LetA = {-2,l,2}andB = {l,4,9},and letl be the mapping described 
in the previous example : 

l = { (a,b)ll(a) = a2, a EA}. 

The domain of l is A, the codomain of l is B, and the range of l is { 1, 4} c B. • 

If l: A ---+ B, the notation used in Definition 1.10 can be extended as follows to arbitrary 
subsets S �A. 

Definition 1.11 • Image, Inverse Image 

If l: A---+ Band S �A, then 

l(S) = {yly E Bandy =l(x) for somex ES}. 

The set l(S) is called the image of S under f For any subset T of B, the inverse image of 
Tis denoted by l-1(T) and is defined by 

l-1(T) = {xix EA andl(x) E T}. 

We note that the imagel(A) is the same as the range off Also , both notationsl(S) and 
ALERT l-1(T) in Definition 1.11 denote sets, not values of a mapping . We illustrate these notations 

in the next example . 

•Figure 1.6 

Example 4 Letl: A---+ Bas in Example 3. If S = { 1, 2}, then l(S) = { 1, 4} as shown 
in Figure 1.6. 

f 
Ol 
c 

·� 
..5 

'" 
Ol 
"' 
Ol 
c 
'" 

'-' 

@ 

With T = {4, 9},f-1(T) is given by l-1(T) = {-2, 2} as shown in Figure 1.7. 
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16 Chapter 1 Fundamentals 

•Figure 1.7 

J-1 

• 

Among the various mappings from a nonempty set A to a nonempty set B, there are some 

that have properties worthy of special designation . We make the following definition . 

Definition 1.12 • Onto, Surjective 

Letf: A--+ B. Then f is called onto, or surjective, if and only if B = f(A). Alternatively, an 

onto mapping f is called a mapping from A onto B. 

We begin our discussion of onto mappings by describing what is meant by a map

ping that does not satisfy the requirement in Definition 1.12. 

Strategy • To show that a given mapping!: A --+Bis not onto, we need only find a single element 

bin B for which no x EA exists such thatf(x) = b. 

•Figure 1.8 

Such an element band the sets A, B, and f(A) are diagrammed in Figure 1.8. 

x 

Example 5 Suppose we have f: A-+B, where A = {- 1 , 0, 1 }, B = {4, -4 }, and 

f = { ( -1, 4 ) , (0, 4 ) , (1, 4)}. The mapping f is not onto , since there is no a E A such that 

f(a) = -4 EB. • 

According to our definition , a mappingf from A to Bis onto if and only if every ele

ment of Bis the image of at least one element in A. 

Strategy • A standard way to demonstrate thatf: A --+Bis onto is to take an arbitrary element bin B 

and show (usually by some kind of formula ) that there exists an element a E A such that 

b = f(a). 
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1.2 Mappings 17 

Example 6 Letf: Z � Z, where Z is the set of integers. If f is defined by 

f = { (a, 2 - a) I a E Z}, 

then we write f(a) = 2 - a, a E Z. 
To show thatf is onto (surjective), we choose an arbitrary element b E Z. Then there 

exists (2 - b) E Z such that 

(2-b,b) E f  

sincef(2 -b) = 2 - (2 -b) = b, and hencefis onto. • 

Definition 1.13 • One-to-One, Injective 

Letf: A� B. Thenf is called one-to-one, or injective, if and only if different elements of 

A always have different images under/ 

In an approach analogous to our treatment of the onto property, we first examine the situ

ation when a mapping fails to have the one-to-one property. 

Strategy • To show that f is not one-to-one, we need only find two elements a1 E A and a2 E A 
such that ai -=/=- az andf(a1) = f(az). 

A pair of elements with this property is shown in Figure 1.9. 

A 

•Figure 1.9 

ALERT The preceding strategy illustrates how only one exception is needed to show that a 
given statement is false. An example that provides such an exception is referred to as a 

counterexample. 

Example 7 Suppose we reconsider the mapping f: A� B from Example 5 where 

A = { -1, 0, 1 }, B = { 4, -4}, andf = { (-1, 4), (0, 4), (1, 4) }. We see thatf is not one-to

one by the counterexample 

J( -1) = J( 0) = 4 but -1 -=/=- 0. • 

A mapping f: A � B is one-to-one if and only if it has the property that a1 -=/=- az in A 
always implies thatf(a1) -=/=- f(a2) in B. This is just a precise statement of the fact that diff

erent elements always have different images. The trouble with this statement is that it is for

mulated in terms of unequal quantities, whereas most of the manipulations in mathematics 
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18 Chapter 1 Fundamentals 

deal with equalities. For this reason, we take the logically equivalent contrapositive state
ment "f(a1) = f(a2) always implies a1 = a2" as our working form of the definition. 

Strategy • We usually show thatf is one-to-one by assuming that f(ai) = f(a2) and proving that 
this implies that ai = az. 

This strategy is used to show that the mapping in Example 6 is one-to-one. 

Example 8 Supposef: Z --1> Z is defined by 

f = {(a,2 - a)la E Z}. 

To show thatf is one-to-one (injective), we assume that for a1 E Z and a2 E Z, 

J(a1) = J(az). 

Then we have 

2 - a1 = 2 - a2, 

and this implies that a1 = az. Thusf is one-to-one. 

Definition 1.14 • One-to-One Correspondence, Bijection 

• 

Letf: A --1> B. The mapping! is called bijective if and only if f is both surjective (onto) and 
injective (one-to-one). A bijective mapping from A to B is called a one-to-one correspond
ence from A to B, or a bijection from A to B. 

Example 9 The mappingf: Z----1> Z defined in Example 6 by 

f = { (a, 2 - a) I a E Z} 

is both onto and one-to-one. Thusf is a one-to-one correspondence (a bijection). • 

Just after Example 11 in Section 1.1, the symbols Z, z+, Q, R, R+, and C were 
introduced as standard notations for some of the number systems. Another set of numbers 
that we use often enough to justify a special notation is the set of all even integers. The 
set E of all even integers includes 0 and all negative even integers, -2, -4, -6, ... , as 
well as the positive even integers, 2, 4, 6, .... Thus 

E = { ... , -6, -4, -2, 0, 2, 4, 6, ... }, 

and we define n to be an even integer if and only if n = 2k for some integer k. An integer 
n is defined to be an odd integer if and only if n = 2k + 1 for some integer k, and the set 
of all odd integers is the complement of E in Z: 

Z - E = { ... , -5, -3, -1, 1, 3, 5, ... }. 

Note that we could also define an odd integer by using the expression n = 2j - 1 for some 
integerj. 

The next two examples show that a mapping may be one-to-one but not onto, or it may 
be onto but not one-to-one. 
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Example 10 Consider the mapping/: Z � Z defined by 

J(x) = 2x + 3. 

1.2 Mappings 19 

Sometimes it is helpful to examine f by considering the images of a few specific domain 
elements. With 

f(-2) = -1 f(-1) = 1 f(O) = 3 f(l) = 5 f(2) = 7 

it seems reasonable to conclude that there are no even integers in the range off, and hence 
f is not onto. To actually prove that this conclusion is correct, we consider an arbitrary 
element b in Z. We have 

J(x) = b # 2x + 3 = b 

# 2x = b -3, 

and the equation 2x = b - 3 has a solution x in Z if and only if b - 3 is an even 
integer-that is, if and only if b is an odd integer. Thus, only odd integers are in the 
range off, and therefore f is not onto. 

The proof that f is one-to-one is straightforward: 

J(m) = J(n ) =:::? 2m + 3 = 2n + 3 

=:::? 2m = 2n 
=:::? m = n. 

Thusf is one-to-one even though it is not onto. • 

Example 11 In this example, we encounter a mapping that is onto but not one-to-one. 
Let h :  Z � Z be defined by 

x-2 
if xis even 

h(x) = 

2 

x-3 
-- if xis odd. 

2 

To attempt a proof that h is onto, let b be an arbitrary element in Z and consider the 
equation h(x) = b. There are two possible values for h(x), depending on whether xis even 
or odd. Considering both of these values, we have 

x-2 
-

2
- = b for x even, or 

x-3 
= b for x odd. 

2 

Solving each of these equations separately for x yields 

x = 2b + 2 for x even, or x = 2b + 3 for x odd. 

We note that 2b + 2 = 2(b + 1) is an even integer for every choice of b in Z and that 
2b + 3 = 2(b + 1) + 1 is an odd integer for every choice of b in Z. Thus there are two 
values, 2b + 2 and 2b + 3, for x in Z such that 

h ( 2b + 2 )  = b and h ( 2b + 3 )  = b. 

This proves that h is onto. Since 2b + 2 =f=. 2b + 3 and h(2b + 2) = h(2b + 3), we have 
also proved that h is not one-to-one. • 
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20 Chapter 1 Fundamentals 

In Section 3.1 and other places in our work, we need to be able to apply two mappings 

in succession, one after the other. In order for this successive application to be possible, the 

mappings involved must be compatible, as required in the next definition. 

Definition 1.15 • Composite Mapping 

Let g: A� B and/: B � C. The composite mapping/ 0 g is the mapping from A to C 

defined by 

(J0g)(x) =f(g(x)) 

for allx EA. 

The process of forming the composite mapping is called composition of mappings, 
and the result f 0 g is sometimes called the composition of g and f Readers familiar with 

calculus will recognize this as the setting for the chain rule of derivatives. 

ALERT The composite mapping/ 0 g is diagrammed in Figure 1.10. Note that the domain of 

•Figure 1.10 

f must contain the range of g before the composition/ 0 g is defined. 

Jog 

Exam p I e 12 Let Z be the set of integers, A the set of nonnegative integers, and B the 

set of nonpositive integers. Suppose the mappings g and fare defined as 

g:Z�A, 

f:A�B, 

g(x) = x2 

f(x) = -x. 

Then the composition/ 0 g is a mapping from Z to B with 

(Jo g)(x) = J(g(x)) = f(x2) = -x2. 

Note that/ 0 g is not onto, since -3 EB, but there is no integer x such that 

(Jo g)(x) = -x2 = -3. 

Also,/ 0 g is not one-to-one, since 

(Jo g)(-2) = -(-2)2 = -4 = (Jo g)(2) 

and 

-2 * 2. • 
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1.2 Mappings 21 

ALERT In connection with the composition of mappings, a word of caution about notation is in 
order. Some mathematicians use the notation xf to indicate the image of x under f That is, 
both notations xf andf(x) represent the value off at x . When the xf notation is used, map
pings are applied from left to right, and the composite mapping! 0 g is defined by the equa
tion x(f 0 g) = (xf)g .  We consistently use thef(x) notation in this book, but thexf notation 
is found in some other texts on algebra. 

When the composite mapping can be formed, we have an operation defined that is 
associative. If h: A� B, g: B � C, andf: C � D, then 

((J o g) o h)(x) = (J o g)(h(x)) 

= J[g(h(x))] 

= J((g o h)(x)) 

= (J o (g o h) )(x) 

for all x E A. Thus the compositions (f 0 g) 0 h and f 0 (g 0 h) are the same mapping from 
A toD. 

Exercises 1.2 

True or False 

Label each of the following statements as either true or false. 

1. A X A = A, for every nonempty set A. 

2. A X B = B X A for all nonempty sets A and B. 

3. Let f: A� B where A and B are nonempty. Then f-1(f(S)) = S for every subset 
S of A. 

4. Letf: A �B where A and Bare nonempty. Thenf(f-1(T)) = T for every subset T 
of B. 

5. Letf: A� B. Thenf(A) = B for all nonempty sets A and B. 

6. Every bijection is both one-to-one and onto. 

7. A mapping is onto if and only if its codomain and range are equal. 

8. Let g: A�A andf: A�A.Then (f0g)(a) = (g 0f)(a)for every a in A. 

9. Composition of mappings is an associative operation. 

Exercises 

1. For the given sets, form the indicated Cartesian product. 

a. A X B; A = {a, b}, B = { 0, 1} 
b. B X A; A = {a, b}, B = { 0, 1} 
c. A X B; A = {2, 4, 6, 8}, B = {2} 
d. BX A;A = {1,5,9}, B = {-1, 1} 
e. B X A; A = B = { 1, 2, 3} 
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22 Chapter 1 Fundamentals 

2. For each of the following mappings, state the domain, the codomain, and the range, 
wheref: E � Z. 

x 
a. J(x) = 2, x EE b. J(x) = x, x E E 

c. J(x) = lxl,x EE d. J(x) = x + 1, x EE 

3. For each of the following mappings, write outf(S) andf-1(T ) for the given Sand T, 
where f: Z � Z. 
a. J(x) = lxl;S = Z - E, T = {1, 3,4} 

{x + 1 if x is even 
b. J(x) = . . S = {O, 1, 5, 9}, T = Z - E 

X If XIS odd; 
c. J(x) = x2;S = {- 2, -1,0, 1,2},T= { 2, 7, 11} 

d. J(x) = lxl - x;S = T= {-7, -1,0,2,4} 

4. For each of the following mappings f: Z � Z, determine whether the mapping is onto 
and whether it is one-to-one. Justify all negative answers. 
a. f(x) = 2x b. f(x) = 3x 
c. J( x) = x + 3 d. J( x) = x3 
e. J(x) = lxl f. J(x) = x - Jxl {x if x is even {x if x is even 
g. 

J(x) = 
2x - 1 

h. J(x) = 
x - 1 if x is odd if x is odd {x if x is even 

i. J(x) = x -
2 
1 

if xis odd 

{x - 1 
j. 

J(x) = 
2x 

if xis even 
if xis odd 

5. For each of the following mappings f: R � R, determine whether the mapping is onto 
and whether it is one-to-one. Justify all negative answers. (Compare these results with 
the corresponding parts of Exercise 4.) 
a. J(x) = 2x 
c. J(x) = x + 3 
e. J(x) = Jxl 

b. J(x) = 3x 

d. J(x) = x3 
f. J(x) = x - lxl 

6. For the given subsets A and B of Z, let f(x) = 2x and determine whether f: A � B is 
onto and whether it is one-to-one. Justify all negative answers. 
a. A = Z, B = E b. A = E, B = E 

7. For the given subsets A and B of Z, letf(x) = lxl and determine whether/: A �Bis 
onto and whether it is one-to-one. Justify all negative answers. 
a. A = Z, B = z+ U {O} b. A = z+, B = Z 
c. A = z+' B = z+ d. A = z - { 0}' B = z + 

8. For the given subsets A and B of Z, letf(x) = Ix+ 41 and determine whether/: A �B 
is onto and whether it is one-to-one. Justify all negative answers. 
a. A = Z, B = Z b. A = z+, B = z+ 

9. For the given subsets A and B of Z, let f(x) = 2x and determine whether f: A � B 
is onto and whether it is one-to-one. Justify all negative answers. 
a. A= z+, B = z b. A= z+, B = z+ n E 
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1 .2 Mappings 23 

10. For each of the following parts, give an example of a mapping from E to E that satisfies 
the given conditions. 

a. one-to-one and onto b. one-to-one and not onto 

c. onto and not one-to-one d. not one-to-one and not onto 

11. For the givenf: Z---+ Z, decide whether f is onto and whether it is one-to-one. Prove 
that your decisions are correct. 

a. f(x) 
� U if xis even 

if xis odd 
b. J(x) = {0 2x if xis even 

if xis odd 

if xis odd 

{2x + 1 
c. f(x) = x : 1 

if xis even 

{3x 
e. fix) = 2x if xis even 

if xis odd 

d. J(x) = 

x 
2 

x-3 
2 {2x - 1 

f. J(x) = 2x 

if xis even 

if xis odd 

if xis even 

if xis odd 

12. Let A = R - {O} and B = R. For the givenf: A---+ B, decide whether f is onto and 
whether it is one-to-one. Prove that your decisions are correct. 

x - 1 
a. J(x) = --

x 
2x - 1 

b. J(x) = --
x 

x 
c. J(x) = -2--

x + 1 

2x - 1 
d. J(x) = _2 

x- + 1 

13. For the givenf: A---+ B, decide whether f is onto and whether it is one-to-one. Prove 
that your decisions are correct. 

a. A = Z X Z, B = Z X Z,f(x, y) = (y, x) 
b. A = Z X Z, B = Z,f(x, y) = x + y 
c. A = Z X Z, B = Z,f(x, y) = x 
d. A = Z, B = Z X Z,f(x) = (x, 1) 

e. A= Z X Z,B = Z,J(x,y) = x2 

f. A = Z X Z, B = Z,f(x, y) = x2 
+ y2 

g. A= z+ X z+,B = Q,f(x,y) = x/y 
h. A= R X  R,B = R,f(x,y) = 2x+y 

14. Letf: Z-+ {-1, 1} be given by J(x) = { 1 

-1 
a. Prove or disprove that f is onto. 

b. Prove or disprove that f is one-to-one. 

if xis even 

if xis odd. 

c. Prove or disprove that J(x1 + x2) = J(x1)J(x2). 
d. Prove or disprove that J(x1x2) = J(x1)J(x2). 
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24 Chapter 1 Fundamentals 

15. a. Show that the mapping! given in Example 2 is neither onto nor one-to-one. 

b. For this mappingf,show that ifS = {l, 2}, thenf-1(f(S)) * S. 

c. For this samef and T = {4 , 9}, show thatf(f-1(T)) * T. {x if x is even 
16. Let g: Z---1-Z be given by g(x) = x +

2 
1 

if xis odd. 

a. For S = {3, 4}, find g(S) and g-1(g(S)). 

b. For T = {5, 6}, find g-1(T) and g(g-1(T)). 

{2x - 1 if xis even 
17. Letf: Z---1-Z be given by J(x) = 

2x if xis odd. 

a. For S = {O, 1, 2}, findf(S) andf-1(f(S)). 

b. For T = { -1, 1, 4}, findf-1(T) andf(f-1(T)). 

18. Letf: Z----* Z and g: Z----* Z be defined as follows. In each case, compute (f 0 g)(x) for 
arbitrary x E Z. 

if xis even 
a. J(x) = 2x, g(x) = 

{x 
2x - 1 if x is odd 

b. J(x) = 2x, g(x) = x3 {� if x is even 
c. J(x) = x + lxl , g(x) = 

2
-x if xis odd 

if xis even 
d. J(x) = 

{� 
x + 1 if x is odd 

e. J(x) = x2,g(x) = x - lxl 

{x - 1 
g(x) = 

2x 
if xis even 
if xis odd 

19. Let f and g be defined in the various parts of Exercise 18. In each part, compute 
(g 0 f)(x) for arbitrary x E Z. 

In Exercises 20-22, suppose m and n are positive integers, A is a set with exactly m elements, 
and B is a set with exactly n elements. 

20. How many mappings are there from A to B? 

21. If m = n, how many one-to-one correspondences are there from A to B? 

22. If m � n, how many one-to-one mappings are there from A to B? 

23. Let a and b be constant integers with a * 0, and let the mappingf: Z ---1-Z be defined 
by f(x) = ax + b. 

a. Prove thatf is one-to-one. 

b. Prove that f is onto if and only if a = 1 or a = - 1. 
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24. Letf: A� B, where A and Bare nonempty. 
a. Prove thatf(S1 U S2) = f(S1) U f(S2) for all subsets S1 and S2 of A. 

b. Prove that f(S1 n S2) � f(S1) n f(S2) for all subsets S1 and S2 of A. 

c. Give an example where there are subsets S1 and S2 of A such that 

d. Prove thatf(S1) - f(S2) �f(S1 - S2) for all subsets S1 and S2 of A. 

e. Give an example where there are subsets S1 and S2 of A such that 

J(S1) - J(S2) * J(S1 - Sz). 

25. Letf: A� B, where A and Bare nonempty, and let T1 and T2 be subsets of B. 

a. Prove thatf-1(T1 U T2) =f-1(T1) Uf-1(Tz). 

b. Prove thatf-1(T1 n T2) = f-1(T1) nf-1(Tz). 

c. Prove thatf-1(T1) - f-1(T2) = f-1(T1 - Tz). 

d. Prove that if T1 � T2, thenf-1(T1) �f-1(T2). 

26. Let g: A �B andf: B � C. Prove that (f0 g)-1(T) = g-1(f-1(T)) for any subset T 
ofC. 

27. Let f: A �B, where A and B are nonempty. Prove that f has the property that 
f-1(f(S)) = S for every subset S of A if and only if f is one-to-one. (Compare with 
Exercise 15b.) 

28. Let f: A� B, where A and B are nonempty. Prove that f has the property that 
f(f-1(T)) = T for every subset T of B if and only if f is onto. (Compare with 
Exercise 15c.) 

~ Properties of Composite Mappings (Optional) 

In many cases, we will be dealing with mappings of a set into itself; that is, the domain and 
codomain of the mappings are the same. In these cases, the mappings f 0 g and g 0 f are 
both defined, and the question of whether f 0 g and g 0 f are equal arises. That is, is map-

ALERT ping composition commutative when the domain and codomain are equal? The following 
example shows that the answer is no. 

Exam p I e 1 Let z be the set of all integers, and let the mappings f: z � z and g : z � z 
be defined for each n E Z by 

f(n) = 2n 

g(n) � {� if n is even 

if n is odd. 
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In this case, the composition mappings f 0 g and g 0 fare both defined. We have, on the 

one hand, 

(go J)(n) = g(J(n)) 
= g(2n) 
= n, 

so (g 0 f)(n) = n for all n E Z. On the other hand, 

(Jog)(n) =J(g(n)) 

= {1( % ) = n  

J(4) = 8 

if n is even 

if n is odd, 

so f 0 g =/::. g 0 f Thus mapping composition is not commutative. • 

In the next example we use the same functions f, g, g 0 f, and f 0 g as in Example 1. For 

each of them, we determine whether the mapping is onto and whether it is one-to-one. 

Example 2 Letf and g be the same as in Example 1. We see thatfis one-to-one since 

J(m) = J(n) =* 2m = 2n 
=* m = n. 

To show thatf is not onto, consider the equationf(n) = 1: 

J(n) = 1 =* 2n = 1 
_l 

°=* n - z, 

and t is not an element of Z. Thus 1 is not in the range off 

We see that g is not one-to-one since 

g(3) = 4 and g(5) = 4. 
However, we can show that g is onto. For any m E Z, the integer 2m is in Z and 

2m . . g(2m) = 2 smce 2m is even 

= m. 
Thus every m E Z is in the range of g, and g is onto. 

and 

Using the computed values from Example 1, we have 

(go J)(n) = n 

(Jo g)(n) = {� if n is even 

if n is odd. 

The value (g 0 f)(n) = n shows that g 0 f is both onto and one-to-one. Since 

(Jo g)(l) = 8 and (Jo g)(3) = 8, 
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f 0 g is not one-to-one. Since (f 0 g )(n) is always an even integer, there is no n E Z such 

that 

(Jo g)(n) = 5, 

and hence f 0 g is not onto. 

Summarizing our results, we have that 

f is one-to-one and not onto. 

g is onto and not one-to-one. 

g 0 f is both onto and one-to-one. 

f 0 g is neither onto nor one-to-one. • 

Considerations such as those in Example 2 raise the question of how the one-to-one 

and onto properties of the mappings f, g, and f 0 g are related. General statements concern

ing these relationships are given in the next two theorems, and others can be found in the 

exercises. 

Theorem 1.16 • Composition of Onto Mappings 

Let g: A ---+ B and f: B ---+ C. If f and g are both onto, thenf 0 g is onto. 

(p /\ q) =>rt Proof Suppose f and g satisfy the stated conditions. The composition! 0 g maps A to C. 

Suppose c E C. Since f is onto, there exists b E B such that 

J(b) = c. 

Since g is onto, every element in Bis an image under g. In particular, for the specific b such 

thatf(b) = c, there exists a EA such that 

g(a) = b. 

Hence, for c E C, there exists a E A such that 

andf 0 g is onto. 

(Jog )(a) = J(g(a)) = J(b) = c, 

Theorem 1.17 • Composition of One-to-One Mappings 

Let g: A---+ B andf: B---+ C. Iff and g are both one-to-one, thenf 0 g is one-to-one. 

(p /\ q) => r Proof Suppose f and g satisfy the stated conditions. Let a1 and a2 be elements in A such 

that 

or 

tThe notation describing the logic of the proofs is defined in the Appendix. 
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Sincefis one-to-one, then 

and since g is one-to-one, then 

Thusf 0 g is one-to-one. 

The mappings in Example 3 provide a combination of properties that is different from 

the one in Example 2. 

Example 3 Letf: Z �Z and g: Z � Z be defined as follows : 

J(x) �{:;I 
if xis even 

if xis odd, 

g(x) = 4x. 

We shall determine which of the mappingsf, g,f 0 g, and g 0 fare onto, and also which of 

these mappings are one-to-one. 

For arbitrary n E Z, 2n + 1 is odd in Z, andf(2n + 1) = n. Thusfis onto. We have 

f(2 ) = 2 and alsof(5) = 2, sofis not one-to-one. 

Since g(x) is always a multiple of 4, there is no x E Z such that g(x) = 3. Hence g is 

not onto. However, 

g(x) = g(z) => 4x = 4z 
=> x = z, 

so g is one-to-one. 

Now 

(Jo g)(x) = J(g(x)) = J(4x) = 4x. 

This means that (f 0 g)(x) = g(x) for all x E Z. Therefore, f 0 g = g is not onto and is 

one-to-one. 

Computing (g 0 f)(x), we obtain 

(go J)(x) = g(J(x)) 

if xis even 

if xis odd 

if xis even 

if xis odd. 

Since (g 0 f)(x) is never odd, there is no x such that (g 0 f)(x) = 1, and g 0 f is not onto. 

Also, since (g 0 f)(2 ) = 8 and (g 0 f)(5) = 8, g 0 f is not one-to-one. 
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We can summarize our results as follows: 

Exercises 1.3 

True or False 

f is onto and not one-to-one. 

g is one-to-one and not onto. 

f 0 g is one-to-one and not onto. 

g 0 fis neither onto nor one-to-one. 

Label each of the following statements as either true or false. 

1. Mapping composition is a commutative operation. 

2. The composition of two bijections is also a bijection. 

3. Letf, g, and h be mappings from A into A such thatf0 g = h 0 g. Thenf = h. 

4. Letf, g, and h be mappings from A into A such thatf0g=f0 h. Then g = h. 

5. Let g: A--.+B andf: B---+ C such thatf0 g is onto. Then bothfand g are onto. 

• 

6. Let g: A ---+ B and f: B ---+ C such that f 0 g is one-to-one. Then both f and g are 
one-to-one. 

Exercises 

1. For each of the following pairs f: Z ---+ Z and g: Z ---+ Z, decide whether f 0 g is onto 
or one-to-one and justify all negative answers. 

a. f(x) = x - 1, g(x) = x2 

b. f(x) = 4x - 3, g(x) = 1 - x 

c. f(x) = 2.x, g(x) = {�x - 1 

if xis even 
if xis odd 

d. f(x) = 2.x, g(x) = x3 

g(x) 
� F if xis even 

e. f(x) = x + lxl, 
-x if xis odd 

f. /(x) 
� 

F if xis even 

{
x - 1 if xis even 

g(x) = 
2x if xis odd x + 1 if xis odd 

g. J(x) = x2, g(x) = x - lxl 

2. For each pairf, g given in Exercise 1, decide whether g 0 f is onto or one-to-one, and 
justify all negative answers. 
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3. Let A = { -1, 0, l}. Find mappings f: A --1' A and g: A --1' A such that f 0 g * g 0 f 

4. Give an example of mappings f and g such that one of f or g is not onto but f 0 g 

is onto. 

5. Give an example of mappingsfand g, different from those in Example 3, such that one 

off or g is not one-to-one butf 0 g is one-to-one. 

6. a. Give an example of mappings f and g, different from those in Example 2, where f is 

one-to-one, g is onto, andf 0 g is not one-to-one. 

b. Give an example of mappings f and g, different from those in Example 2, where f is 

one-to-one, g is onto, andf 0 g is not onto. 

7. a. Give an example of mappingsfand g, wherefis onto, g is one-to-one, andf0 g is 

not one-to-one. 

b. Give an example of mappings! and g, different from those in Example 3, wherefis 

onto, g is one-to-one, andf 0 g is not onto. 

8. Suppose f, g, and h are all mappings of a set A into itself. 

a. Prove that if g is onto andf 0 g = h 0 g, thenf = h. 

b. Prove that if f is one-to-one and f 0 g = f 0 h, then g = h. 

9. a. Find mappings f, g, and h of a set A into itself such that f 0 g = h 0 g and f * h. 

b. Find mappings f, g, and h of a set A into itself such that f 0 g = f 0 h and g * h. 

10. Let g: A --1' B andf: B--1- C. Prove thatfis onto ifj 0 g is onto. 

11. Let g: A --1' B andf: B --1' C. Prove that g is one-to-one if f 0 g is one-to-one. 

12. Letf: A--1-B and g: B--1-A. Prove thatfis one-to-one and onto ifj 0 g is one-to-one 

and g 0 f is onto. 

� Binary Operations 

We are familiar with the operations of addition, subtraction, and multiplication on real 

numbers. These are examples of binary operations. When we speak of a binary operation 

on a set, we have in mind a process that combines two elements of the set to produce a third 

element of the set. This third element, the result of the operation on the first two, must be 

unique. That is, there must be one and only one result from the combination. Also, it must 

always be possible to combine the two elements, no matter which two are chosen. This 

discussion is admittedly a bit vague, in that the terms process and combine are somewhat 

indefinite. To eliminate this vagueness, we make the following formal definition. 

Definition 1.18 • Binary Operation 

A binary operation on a nonempty set A is a mapping f from A X A to A. 
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It is conventional in mathematics to assume that when a formal definition is made, it 
is automatically biconditional. That is, it is understood to be an "if and only if' statement, 

ALERT without this being written out explicitly. In Definition 1.18, for example, it is understood 
as part of the definition that f is a binary operation on the nonempty set A if and only if f is 
a mapping from A X A to A. Throughout the remainder of this book, we will adhere to this 
convention when we make definitions. 

We now have a precise definition of the term binary operation, but some of the feel for 
the concept may have been lost. However, the definition gives us what we want. Supposefis 
a mapping from A X A to A. Thenf(x, y) is defined for every ordered pair (x, y) of elements 
of A, and the image f(x, y) is unique. In other words, we can combine any two elements 
x and y of A to obtain a unique third element of A by finding the value f(x, y ). The result of 
performing the binary operation on x and y is f(x, y ), and the only thing unfamiliar about this 
is the notation for the result. We are accustomed to indicating results of binary operations by 
symbols such as x + y and x -y. We can use a similar notation and write x *y in place of 

f (x, y ). Thus x * y represents the result of an arbitrary binary operation * on A, just as f (x, y) 
represents the value of an arbitrary mapping from A X A to A. 

Example 1 Two examples of binary operations on Z are the mappings from Z X Z to 
Z, defined as follows: 

1. x * y = x + y -1, 

2. x * y = 1 + xy, 

for (x, y) E Z X Z. 

for (x, y) E Z X Z. • 

Example 2 The operation of forming the intersection An B of subsets A and B of a 
universal set U is a binary operation on the collection of all subsets of U. This is also true 
of the operation of forming the union. • 

Since we are dealing with ordered pairs in connection with a binary operation, the 
results x * y and y * x may well be different. 

Definition 1.19 • Commutativity, Associativity 

If * is a binary operation on the nonempty set A, then * is called commutative if 
x * y = y * x for all x and y in A. If x * (y * z) = (x * y) * z for all x, y, z in A, then we say 
that the binary operation is associative. 

Example 3 The usual binary operations of addition and multiplication on the integers 
are both commutative and associative. However, the binary operation of subtraction on 
the integers does not have either of these properties. For example, 5 -7 =f=. 7 -5, and 
9 -(8 -3) =f=. (9 -8) -3. • 

Suppose we consider the two binary operations given in Example 1. 

Example 4 The binary operation* defined on Z by 

x*y=x+y-1 
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is commutative, since 

x * y = x + y - 1 = y + x - 1 = y * x. 

Note that * is also associative, since 

and 

x * (y * z) = x * (y + z - 1) 
= x + (y + z - 1) - 1 
=x+y+z-2 

(x * y) * z = (x + y - 1) * z 
= (x + y - 1) + z - 1 
= x + y + z -2. 

Example 5 The binary operation* defined on Z by 

x*y=l+xy 

is commutative, since 

x * y = 1 + xy = 1 + yx = y * x. 

To check whether* is associative, we compute 

x * (y * z) = x * ( 1 + yz) = 1 + x(l + yz) = 1 + x + xyz 

and 

(x * y) * z = ( 1 + xy) * z = 1 + ( 1 + xy )z = 1 + z + xyz. 

• 

Thus we can demonstrate that* is not associative by choosing x, y, and z in Z with 

x * z. Using x = 1, y = 2, z = 3, we get 

1 * (2 * 3) = 1 * ( 1 + 6) = 1 * 7 = 1 + 7 = 8 

and 

( 1  * 2) * 3 = ( 1  + 2) * 3 = 3 * 3 = 1 + 9 = 10. 

Hence * is not associative on z. • 

The commutative and associative properties are properties of the binary operation 

itself. In contrast, the property described in the next definition depends on the set under 

consideration as well as on the binary operation. 

Definition 1.20 • Closure 

Suppose that * is a binary operation on a nonempty set A, and let B �A. If x * y is an ele

ment of B for all x EB and y EB, then B is closed with respect to*· 

ALERT In the special case where B = A in Definition 1.20, the property of being closed is 

automatic, since the result x * y is required to be in A by the definition of a binary operation 

on A. 
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ALERT The next example illustrates the importance of both the set B and the binary operation 

in the definition of closure. 

Example 6 Consider the binary operation * defined on the set of integers Z by 

X*Y = lx l + IY I , (x,y ) E Z X Z. 

The set B of negative integers is not closed with respect to *, since x = -1 EB and 

y = -2 EB, but 

x * y = ( -1) * ( -2) = l-1 I + l-21 = 3 fl_ B. 

However, if we change B to the set z+ of positive integers, then B is closed with re

spect to this binary operation *. 
Now if the binary operation * is defined on Z by 

x * y = lx l - IYI 
then the set Z + of positive integers is not closed with respect to * since 1 and 2 are in Z + but 

x * y = 111 - 121 = -1 fl. z+. • 

Example 7 The definition of an odd integer that was stated in Section 1.2 can be used 

to prove that the set S of all odd integers is closed under multiplication. 

Letx and y be arbitrary odd integers. According to the definition of an odd integer, this 

means that x = 2m + 1 for some integer m and y = 2n + 1 for some integer n. Forming 

the product, we obtain 

xy = (2m + 1)(2n + 1) 
= 4mn + 2m + 2n + 1 
= 2(2mn + m + n) + 1 
= 2k + 1, 

where k = 2mn + m + n E Z, and therefore xy is an odd integer. Hence the set S of all 

odd integers is closed with respect to multiplication. • 

Definition 1.21 • Identity Element 

Let * be a binary operation on the nonempty set A. An element e in A is called an identity 
element with respect to the binary operation * if e has the property that 

for allx EA. 

ALERT The phrase "with respect to the binary operation" is critical in this definition because 

the particular binary operation being considered is all-important. This is pointed out in the 

next example. 

Example 8 The integer 1 is an identity with respect to the operation of multiplication 

(1 · x = x • 1 = x), but not with respect to the operation of addition (1 + x =F x). • 

Copyright 2013 Cengage Leaming. AH Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materia11y affect the overall learning experience. Cengage Leaming reserves the right to remove additional content at any time if subsequent rights restrictions require it. 



34 Chapter 1 Fundamentals 

Example 9 The element 1 is the identity element with respect to the binary opera

tion * given by 

x * y = x + y - 1, (x,y) E Z X Z, 

smce 

x*l=x+l-l=x and l* x=l+ x-l=L • 

Example 10 There is no identity element with respect to the binary operation* 

defined by 

x * y = 1 + xy, 

since there is no fixed integer z such that 

(x,y) E Z X Z, 

x * z = z * x = 1 + xz = x, for all x E Z. • 

Exercises 15 and 16 of this section request proofs concerning the uniqueness of an element. 

Strategy • A standard way to prove the uniqueness of an entity is to assume that two such entities 

exist and then prove the two to be equal. 

Whenever a set has an identity element with respect to a binary operation on the set, it 

is in order to raise the question of inverses. 

Definition 1.22 • Right Inverse, Left Inverse, Inverse 

Suppose that e is an identity element for the binary operation * on the set A, and let a EA. 

If there exists an element b EA such that a * b = e, then bis called a right inverse of a 

with respect to this operation. Similarly, if b * a = e, then bis called a left inverse of a. 

If both of a * b = e and b * a = e hold, then b is called an inverse of a, and a is called an 

invertible element of A. 

Sometimes an inverse is referred to as a two-sided inverse to emphasize that both of 

the required equations hold. 

Example 11 Each element x E Z has a two-sided inverse (-x + 2) E Z with respect 

to the binary operation* given by 

x * y = x + y - 1, (x,y) E Z X Z, 

since 

x * ( -x + 2) = ( -x + 2) * x = -x + 2 + x - 1 = 1 = e. • 
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Exercises 1.4 

True or False 

Label each of the following statements as either true or false. 

1. If a binary operation on a nonempty set A is commutative, then an identity element will 

exist in A. 

2. If * is a binary operation on a nonempty set A, then A is closed with respect to *. 

3. Let A = {a, b, c}. The power set 2P(A) is closed with respect to the binary operation n 
of forming intersections. 

4. Let A = {a, b, c}. The empty set 0 is the identity element in 2P(A) with respect to the 

binary operation n. 

5. Let A = {a, b, c}. The power set 2P(A) is closed with respect to the binary operation U 
of forming unions. 

6. Let A = {a, b, c}. The empty set 0 is the identity element in 2P(A) with respect to the 

binary operation U. 

7. Any binary operation defined on a set containing a single element is commutative and 

associative. 

8. An identity and inverses exist in a set containing a single element upon which a binary 

operation is defined. 

9. The set of all bijections from A to A is closed with respect to the binary operation of 

composition defined on the set of all mappings from A to A. 

Exercises 

1. Decide whether the given set B is closed with respect to the binary operation defined 

on the set of integers Z. If Bis not closed, exhibit elements x E B and y E B, such that 

x * y (/. B. 

a. x * y = xy, B = {-1, -2, -3, . . .  } 
b. x * y = x - y, B = z+ 

c. x * y = x2 
+ y2, B = z+ 

d. x * y = sgnx + sgny, B = {-2, - 1 , 0, 1 , 2} where sgnx = { � 
-1 

e. x * y = Ix I - IY I, B = Z + 

f. x * y = x + xy, B = Z + 

g. x * y = xy - x - y, Bis the set of all odd integers. 

h. x * y = xY, Bis the set of positive odd integers. 

ifx > 0 

if x = 0 

if x < 0. 

2. In each part following, a rule that determines a binary operation * on the set Z of all 

integers is given. Determine in each case whether the operation is commutative or 
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Sec. 1.6, #8 <li: 

associative and whether there is an identity element. Also find the inverse of each 

invertible element. 

a.x*y=x+xy 
c. x * y = x + 2y 
e. x * y = 3xy 
g. x * y = x + xy + y 
i. x * y = x - y + 1 

k. x * y = lxl - IYI 
m. x * y = xY for x, y E Z + 

b. x * y = x 
d. x * y = 3(x + y) 
f. x * y = x - y 

h. x * y = x + y + 3 
j. x * y = x + xy + y - 2 
I. x * y = Ix - YI 

n. x * y = 2xy for x, y E Z + 

3. Let S be a set of three elements given by S = {A, B, C}. In the following table, all of 

the elements of S are listed in a row at the top and in a column at the left. The result 

x * y is found in the row that starts with x at the left and in the column that has y at the 

top. For example, B * C = C and C * B =A. Thus the table defines the binary opera

tion * on the set S. 

* A B c 

A c A B 

B A B c 

c B A c 

a. Is the binary operation* commutative? Why? 

b. Determine whether there is an identity element in S for *. 

c. If there is an identity element, which elements have inverses? 

4. Let S be the set of three elements given by S = {A, B, C} with the following table. 

* A B c 

A A B c 

B B c A 

c c A B 

a. Is the binary operation* commutative? Why? 

b. Determine whether there is an identity element in S for *. 

c. If there is an identity element, which elements have inverses? 

5. Let S be a set of four elements given by S = {A, B, C, D} with the following table. 

* A B c D 

A B c A B 

B c D B A 

c A B c D 

D A B D D 
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b. Determine whether there is an identity element in S for *. 

c. If there is an identity element, which elements have inverses? 

6. Let S be the set of four elements given by S = {A, B, C, D} with the following table. 

* A B c D 

A A A A A 

B A B A B 

c A A c c 

D A B c D 

a. Is the binary operation * commutative? Why? 

b. Determine whether there is an identity element in S for *. 

c. If there is an identity element, which elements have inverses? 

7. Prove or disprove that the set Z-{ 0} of nonzero integers is closed with respect to di vi

sion defined on the set R -{ 0} of nonzero real numbers. 

8. Prove or disprove that the set of all odd integers is closed with respect to addition 

defined on Z, the set of integers. 

9. The definition of an even integer was stated in Section 1.2. Prove or disprove that the 

set E of all even integers is closed with respect to 

a. addition defined on Z. 

b. multiplication defined on Z. 

10. Prove or disprove that the set Z-{ 0} of nonzero integers is closed with respect to 

a. addition defined on Z. 

b. multiplication defined on Z. 

11. Prove or disprove that the set B = {z3 I z E Z} is closed with respect to 

a. addition defined on Z. 

b. multiplication defined on Z. 

12. Prove or disprove that the set Q-{ 0} of nonzero rational numbers is closed with 

respect to 

a. multiplication defined on the set R of real numbers. 

b. division defined on the set R-{ 0} of nonzero real numbers. 

13. Assume that* is an associative binary operation on the nonempty set A. Prove that 

a* [b* (c*d)] =[a* (b*c)]*d 

for all a, b, c, and d in A. 
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14. Assume that * is a binary operation on a nonempty set A, and suppose that * is both 

commutative and associative. Use the definitions of the commutative and associative 

properties to show that 

[(a*b)*c]*d= (d*c)*(a*b) 

for all a ,  b, c, and din A. 

15. Let* be a binary operation on the nonempty set A. Prove that if A contains an identity 

element with respect to *, the identity element is unique. 

16. Assume that * is an associative binary operation on A with an identity element. Prove 

that the inverse of an element is unique when it exists. 

� Permutations and Inverses 

The set of all mappings of a set into itself is of special interest, and we consider such 

a set next. 

Definition 1.23 • Permutation 

A one-to-one correspondence from a set A to itself is called a permutation on A. For any 

nonempty set A, we adopt the notation S(A) as standard for the set of all permutations on 

A. The set of all mappings from A to A will be denoted by M(A). 

From the discussion at the end of Section 1.2, we know that composition of mappings 

is an associative binary operation on M(A). The identity mapping IA is defined by 

IA(x) = x for allx EA. 

For any fin M(A), 

(IA 0 J )(x) = IA(J(x) )  = J(x) 

and 

so IA 0 f = f0 IA= f That is, IA is an identity element for mapping composition. Once an 

identity element is established for a binary operation, the next natural question is whether 

inverses exist. Consider the mappings in the next example. 

Example 1 In Example 1 of Section 1.3, we defined the mappings f: Z--+ Z and 

g: Z--+Z by 

J(n ) = 2n 

Copyright 2013 Cengage Leaming. AH Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materia11y affect the overall learning experience. Cengage Leaming reserves the right to remove additional content at any time if subsequent rights restrictions require it. 
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and 

if n is even 

if n is odd. 

For these mappings, (g 0 f)(n) = n for all n E Z, so g 0 f = /z and g is a left inverse for f 

Note, however, that 

(Jo g)(n) = {; 
Thus f 0 g =F /z, and g is not a right inverse for f 

if n is even 

if n is odd. 

Example 1 furnishes some insight into the next two lemmas. t 

• 

Strategy • Each of these lemmas makes a statement of the form "p if and only if q." For this kind of 

statement, there are two things to be proved: 

Lemma 1.24 

1. (p � q) The "if' part, where we assume q is true and prove that p must then be 

true, and 

2. (p :::::} q) The "only if' part, where we assume that p is true and prove that q must 

then be true. 

• Left Inverses and the One-to-One Property 

Let A be a nonempty set, and let f: A �A. Then f is one-to-one if and only if f has a left 

inverse. 

p � q Proof Assume first that f has a left inverse g, and suppose that f(a1) = f(a2). Since 

g 0 f = IA, we have 

a1 = IA(a1) = (g0J)(a1) = g(J(a1)) = g(J(a2)) 

= (g 0 J)(a2) = IA(a2) = az. 

Thusf(a1) = f(a2) implies ai = az, andf is one-to-one. 

p:::::} q Conversely, now assume thatf is one-to-one. We shall define a left inverse g off Let 

a0 represent an arbitrarily chosen but fixed element in A. For each x in A, g(x) is defined 

by this rule: 

1. If there is an element y in A such thatf(y) = x, then g(x) = y. 

2. If no such element y exists in A, then g(x) = a0. 

t A lemma is a proposition whose main purpose is to help prove another proposition. 
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Lemma 1.25 

When the first part of the rule applies, the element y is unique because f is one-to-one 

(f(y1) = x = f(yz) =>YI = Yz = g(x)). Thus g(x) is unique in this case. When the second 

part of the rule applies, g(x) = a0 is surely unique, and g is a mapping from A to A. For all 

a in A, we have 

(go f)(a) = g(J(a)) = a 

because x = f(a) requires g(x) = a. Thus g is a left inverse for f 

There is a connection between the onto property and right inverses that is similar to 

the one between the one-to-one property and left inverses. This connection is stated in 

Lemma 1.25, and its proof involves using the Axiom of Choice. In one of its simplest 

forms, this axiom states that it is possible to make a choice of an element from each of the 

sets in a nonempty collection of nonempty sets. We assume the Axiom of Choice in this 

text, and it should be noted that this is an assumption. 

• Right Inverses and the Onto Property 

Let A be a nonempty set, and f: A --+A. Then f is an onto mapping if and only if f has a 

right inverse. 

p <== q Proof Assume thatfhas a right inverse g, and let a0 be an arbitrarily chosen element of 

A. Now g(a0) is an element of A, and 

f(g(ao)) = (f0g)(ao) 

= IA(ao) since g is a right inverse off 

Thus a0 is the image of g(a0) under/, and this proves thatf is onto iffhas a right inverse. 

p => q Let us assume now thatfis onto, and we shall define a right inverse off as follows : 

Let a0 be an arbitrary element of A. Since f is onto, there exists at least one element x of 

A such that f (x) = ao. Choose t one of these elements, say, xo, and define g( ao) by 

g(ao) = Xo. 

For each a0 in A, we have a unique value g(a0) such that 

(J0g)(ao) =f(g(ao)) 
= f(xo) 
= a0 by the choice of x0. 

Therefore,f 0 g = IA, and g is a right inverse off 

tThe Axiom of Choice implies that this is possible. 
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Example 2 From Example 10 of Section 1.2, we know that the mapping f: Z � Z 

defined by 

J(x) = 2x + 3 

is one-to-one and not onto. According to Lemmas 1.24 and 1.25,fhas a left inverse but 
fails to have a right inverse. The two-part rule for g in the proof of Lemma 1.24 can be used 
as a guide in defining a left inverse of the funder consideration here. 

The first part of the rule reads as follows : If there is an element y in Z such that 
f(y) = x, then g(x) = y. Since we havef(x) = 2x + 3 here , the equationf(y) = x requires 
that x be odd and that 2y + 3 = x. Solving this equation for y, we obtain 

x-3 
y= --

2 
. 

Thus the equation g(x) = y becomes 

in this instance. 

x-3 
g(x) = 

-2-
for x odd 

According to the second part of the rule for g in the proof of Lemma 1.24, we may 
choose an arbitrary fixed a0 in Z and define g(x) = a0 when x is not in the range off 
Choosing a0 = 4 gives us a left inverse g off defined as follows : { x -3 

g(x) = 
4 

2 
if xis odd 

if xis even. 

Example 3 Example 11 of Section 1.2 gives a mapping h: Z � Z defined by ! x - 2 
if x is even 

h(x) = 
2 

x-3 
if xis odd 

2 

• 

that is onto but not one-to-one. Thus , by Lemmas 1.24 and 1.25, a right inverse for h exists 
but not a left inverse. Define g: Z � Z such that h(g(x)) = x for all x and let y = g(x). 
Then 

or 

J y - 2 

x = h(g(x)) = h(y) = l y � 3 

if y is even 

if y is odd 

_ {2x + 2 
y

- 2x+3 
where y is even 
where y is odd 
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If we take g(x) = 2x + 2 then g is a right inverse since 

h(g(x)) = h(2x + 2) 
2x+2-2 

2 
= x. 

since 2x + 2 is even 

Note that g(x) = 2x + 3 is another right inverse of h. 

Lemmas 1.24 and 1.25 enable us to prove the following important theorem. 

Theorem 1.26 • Inverses and Permutations 

Letf: A -*A. Thenfis invertible if and only iffis a permutation on A. 

• 

p ==> q Proof If f has an inverse g, then g 0 f = IA and f 0 g = IA. Note that g 0 f = IA implies 

thatfis one-to-one by Lemma 1.24, andf 0 g =IA implies thatfis onto by Lemma 1.25. 
Thus f is a permutation on A. 

p <== q Now suppose thatf is a permutation on A. Thenf has a left inverse g by Lemma 1.24 

and a right inverse h by Lemma 1.25. We have g 0 f = IA andf 0 h = IA, so 

g = g 0 IA= g 0 (J 0 h) = (g 0 J) 0 h =IA 0 h = h. 

That is, g = h, andfhas an inverse. 

The last theorem shows that the members of the set S(A) are special in that each of 

them is invertible. From Exercise 16 of the last section, we know that the inverse of an 

element with respect to an associative binary operation is unique. Thus we denote the 

unique inverse of a permutationfby 1-1. It is left as an exercise to prove thatf-1 is a per

mutation on A. 

There is one other property of the set S(A) that is significant. Whenever f and g are in 

S(A), thenf 0 g is also in S(A). (See Exercise 8 of this section.) Thus S(A) is closed under 

mapping composition. 

Exercises 1.5 

True or False 

Label each of the following statements as either true or false. 

1. Every permutation has an inverse. 

2. LetA-=!=- 0 andf: A -*A. Thenfis one-to-one if and only if! has a right inverse. 

3. LetA-=!=- 0 andf: A -*A. Thenf is onto if and only iff has a left inverse. 
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1. For each of the following mappings/: Z--+ Z, exhibit a right inverse of/with respect 
to mapping composition whenever one exists. 
a. f(x) = 2x b. f(x) = 3x 
c. f(x) = x + 2 d. f(x) = 1 - x 

e. f(x) = x3 f. f(x) = x2 

if xis even {x if x is even {x 
g. f(x) = h. f(x) = 

2x - 1 if x is odd x - 1 if x is odd 

i. J(x) = lxl j. f(x) = x - lxl 

k. J(x) � {:; I 
if xis even {x - 1 if xis even 
if xis odd I. f(x) = 

2x if xis odd 

m. f(x) � {� if xis even f 
+I if xis even 

n. f(x) = x: 1 
if xis odd x+2 if xis odd 

2. For each of the mappings/ given in Exercise 1, determine whether/has a left inverse. 
Exhibit a left inverse whenever one exists. 

3. If n is a positive integer and the set A has n elements, how many elements are in the set 
S(A) of all permutations on A? 

4. Let f: A --+A, where A is nonempty. Prove that f has a left inverse if and only if 
f-1(/(S)) = S for every subset S of A. 

5. Let f: A --+A, where A is nonempty. Prove that f has a right inverse if and only if 
f(f-1(D) = T for every subset T of A. 

6. Prove that if/is a permutation on A, then!1 is a permutation on A. 

7. Prove that if/is a permutation on A, then (f-1)-1 
= f 

8. a. Prove that the set of all onto mappings from A to A is closed under composition 
of mappings. 

b. Prove that the set of all one-to-one mappings from A to A is closed under mapping 
composition. 

9. Let/and g be permutations on A. Prove that (f0 g)-1 = g-1 0 !1. 
10. Let f and g be mappings from A to A. Prove that if f 0 g is invertible, then f is onto and 

g is one-to-one. 

�Matrices 
The material in this section provides a rich source of examples for many of the concepts 
treated later in the text. The basic element under consideration here will be a matrix (plural 
matrices). 
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The word matrix is used in mathematics to denote a rectangular array of elements 

in rows and columns. The elements in the array are usually numbers, and brackets may 

be used to mark the beginning and the end of the array. Two illustrations of this type of 

matrix are 

-1 
1 

-6 

0 

-2 
4 

�] and [-� �]. 
3 6 -3 

The formal notation for a matrix is introduced in the following definition. We shall 

soon see that this notation is extremely useful in proving certain facts about matrices. 

Definition 1.27 • Matrix 

An m by n matrix over a set S is a rectangular array of elements of S, arranged in m rows and 

n columns. It is customary to write an m by n matrix using notation such as 

A= 
az2 

where the uppercase letter A denotes the matrix and the lowercase aiJ denotes the element 

in row i and columnj of the matrix A. The rows are numbered from the top down, and the 

columns are numbered from left to right. The matrix A is referred to as a matrix of dimen

sion m X n (read "m by n") . 

Them X n matrix A in Definition 1.27 can be written compactly as A = [aijJmxn or 

simply as A = [a;1] if the dimension is known from the context. 

Example 1 In compact notation, B = [b;1]2x4 is shorthand for the matrix 

As a more concrete example, the matrix A defined by A = [aiJhx3 with aiJ = (-1y+1 
would appear written out as 

(This matrix describes the sign pattern in the cofactor expansion of third-order determi

nants that is used with Cramer's Rule for solving systems of linear equations.) • 
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An n X n matrix is called a square matrix of order n, and a square matrix 

A = [aiJ]nxn with aiJ = 0 whenever i :::/= j is known as a diagonal matrix. The matrices 

are diagonal matrices. 

Definition 1.28 • Matrix Equality 

Two matrices A = [aiJ]mxn and B = [bi1]pxq over a set Sare equal if and only if m = p, 

n = q, and aiJ = biJ for all pairs i,j. 

The set of all m X n matrices over Swill be denoted in this book by Mmxn(S). When 

m = n, we simply write Mn(S) instead of Mnxn(S). For the remainder of this section, we will 

restrict our attention to the sets Mmxn(R), where R is the set of all real numbers. Our goal 

is to define binary operations of addition and multiplication on certain sets of matrices and 

to investigate the basic properties of these operations. 

Definition 1.29 • Matrix Addition 

Addition in Mmxn(R) is defined by 

[ai}Jmxn + [b;j]mxn = [c;j]mxn 
where CiJ = aiJ + biJ. 

To form the sum of two elements in Mmxn(R), we simply add the elements that are 

placed in corresponding positions. 

Example 2 In M2x3(R), an example of addition is 

[� 
-1 

-7 

1 

3 -�J = [! 0 

-4 -�J. 
ALERT We note that a sum of two matrices with different dimensions is not defined. For instance, 

the sum 

[� 
2 

4 

is undefined because the dimensions of the two matrices involved are not equal. • 
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Definition 1.29 can be written in a shorter form as 

[aij],nXn + [b;Jmxn = [aij + h;Jmxn• 
or 

[a;j] + [b;J = [aij + h;J 
and these shorter forms are efficient to use in proving the basic properties of addition in 
Mmxn(R). These basic properties are stated in the next theorem. 

Theorem 1.30 • Properties of Matrix Addition 

Addition in Mmxn(R) has the following properties. 
a. Addition as defined in Definition 1.29 is a binary operation on Mmxn(R). 
b. Addition is associative in Mmxn(R). 
c. Mmxn(R) contains an identity element for addition. 
d. Each element of Mmxn(R) has an additive inverse in Mmxn(R). 
e. Addition is commutative in M mxn(R). 

Proof LetA = [aiJ]mxn,B = [bu]mxn, andC = [ciJ]mxnbe arbitrary elements ofMmxn(R). 

a. The addition defined in Definition 1.29 is a binary operation on M mxn(R) because the 
rule 

[aij] + [bij] = [aij + bij] 
yields a result that is both unique and an element of Mmxn(R). 

b. The following equalities establish the associative property for addition. 

A + (B + C) = [aij] + [bij + cij] by Definition 1.29 

= [a;j + (bij + c;1)] by Definition 1.29 

= [ (a;1 + b;) + cij] since addition in R is associative 

[a;1 + h;1] + [cij] by Definition 1.29 

(A + B) + C by Definition 1.29 

c. Let Omxn denote them X n matrix that has all elements zero. Then 

A + Omxn = [aijJmxn + [OJmxn 
[aij + 0 Jmxn by Definition 1.29 

[aijJmxn since 0 is the additive identity in R 
=A. 

A similar computation shows that Omxn +A = A , and therefore Omxn is the additive 
identity for Mmxn(R) , called the zero matrix of dimension m X n. 

d. It is left as an exercise to verify that the matrix -A defined by 

-A = [ -aijJmxn 

is the additive inverse for A in Mmxn(R). 
e. The proof that addition in Mmxn(R) is commutative is also left as an exercise. 
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Part d of Theorem 1.30 leads to the definition of subtraction in Mmxn(R): For A and 

B inMmxn(R), 

A - B =A+ (-B), 

where -B = [ -bij] is the additive inverse of B = [bu]. 
There are two types of multiplication to be considered when working with matrices. 

The simplest type is the product of a real number (called a scalar) and a matrix. 

Definition 1.31 • Scalar Multiplication 

The product of a real number c and a matrix A = [aij] in Mmxn (R) is defined by 

c [aij] = [caiJJ. 

Example 3 An example of scalar multiplication and subtraction is 

2 
-2 

3 
0 

OJ [ 3-8 
-1 

-
0-12 

[ -5 
-

-12 

6-6 
-6-0 

0 
-6 

15]
. 14 

15-0 ] 
12+2 

• 

The definition of matrix multiplication that we present is a standard definition uni

versally used in linear algebra, operations research, and other branches of mathematics. Its 

widespread acceptance is due to its usefulness in a great variety of important applications, 

not to its simplicity, for the definition of multiplication is much more complicated and 

much less "intuitive" than the definition of addition. We first state the definition and then 

illustrate it with an example. 

Definition 1.32 • Matrix Multiplication 

The product of an m X n matrix A over R and an n X p matrix B over R is an m X p 

matrix C = AB, where the element CiJ in row i and column j of AB is found by using 

the elements in row i of A and the elements in column j of B in the following manner: 

row i 

of A 

where 

columnj 

ofB columnj 

ofC 

row i 

ofC 
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That is, the element 

ciJ = a;1 b11 + a;2h21 + ai3b3J + . . . + a;nbnJ 

in row i and column j of AB is found by adding the products formed from corresponding 

elements of row i in A and columnj in B (first times first, second times second, and so on). 

Note that the elements of Care real numbers. 

ALERT Note that the number of columns in A must equal the number of rows in B in order 

to form the product AB. If this is the case, then A and B are said to be conformable for 
multiplication. A simple diagram illustrates this fact. 

Amxn Bnxp Cmxp 

It ti lg> '."ust be equal 

I I - � .....__ _________ ____. '-' 
dimension of product matrix @ 

Example 4 Consider the products that can be formed using the matrices 

3 -2 

A= 
0 
1 

4 
-3 

5 1 

and B = [� 1 
-3 

OJ 
7 . 

Since the number of columns in A is equal to the number of rows in B, the product AB is 

defined. Performing the multiplication, we obtain 

AB= 

3 -2 
0 
1 
5 

-� [� 
1 

1 
-3 

3(2) + (-2)(4) 
0(2) + 4(4) 
1(2) + (-3)(4) 
5(2) + 1(4) 

Thus AB is the 4 X 3 matrix given by 

AB= 

�] 
3(1) + ( -2) ( - 3) 3(0) + ( -2)(7) 
0(1) + 4( -3) 0(0) + 4(7) 
1(1) + ( -3) (-3) 1(0) + (-3)(7) 
5(1) + 1( -3) 5(0) + 1(7) 

-2 9 -14 
16 -12 28 

-10 10 -21 
14 2 7 

Since the number of columns in B is not equal to the number of rows in A, the product 

BA is not defined. Similarly, the products A ·A and B ·B are not defined. • 
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ALERT The work in Example 4 shows that multiplication of matrices does not have the com-

mutative property. Some of the computations in the exercises for this section illustrate cases 

where AB =I= BA, even when both products are defined and have the same dimension. 

ALERT It should also be noted in connection with Example 4 that the product of matrices we are 

working with is not a true binary operation as defined in Section 1.4. With a binary operation on 

a set A, it must always be possible to combine any two elements of A and obtain a unique result 

of the operation. Multiplication of matrices does not have this feature, since the product of two 

matrices may not be defined. If consideration is restricted to the set Mn(R) of all n X n matrices of 

a fixed order n, this difficulty disappears, and multiplication is a true binary operation on Mn(R). 
Although matrix multiplication is not commutative, it does have several properties 

that are analogous to corresponding properties in the set R of all real numbers. The sigma 
notation is useful in writing out proofs of these properties. 

In the sigma notation, the capital Greek letter� (sigma) is used to indicate a sum: 

n 
L ai = a1 + az + . . . + an
i= I 

The variable i is called the index of summation, and the notations below and above the 

sigma indicate the value of i at which the sum starts and the value of i at which it ends. For 

example, 
5 

:L bi = 
b3 + b4 + b5. 

i=3 

The index of summation is sometimes called a "dummy variable" because the value of the 

sum is unaffected if the index is changed to a different letter: 

3 3 3 
L ai = L ai = L ak = ao + a1 + az + a3. 
i=O j=O k=O 

Using the distributive properties in R, we can write 

Similarly, 

a(� bk) = a(b1 + bz + + bn) 

= ab1 + ab2 + + abn 

(� bk)a = � bka. 

In the definition of the matrix product AB, the element 

Ci} = ailbli + ai2b21 + · · · + ainbnj 

can be written compactly by use of the sigma notation as 
n 

cii = L aikbkJ· 
k=l 

If all necessary comformability is assumed, the following theorem asserts that matrix 

multiplication is associative. 
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Theorem 1.33 • Associative Property of Multiplication 

LetA = [aiJ]mxn, B = [biJ]nxp, and C = [ciJ]pxq be matrices over R. Then A(BC) = (AB)C. 
p 

Proof From Definition 

[ ± ai,drj] where 

1.32, BC = [diJ]nxq where dij = L bikckj' and A(BC) = 
k=l 

r=l mXq 

� ai,dri = � air(� b,kcki) 
= � (� ai,(b,kckj)) . 

Also, AB = [JiJ]mxp where fij = ± ai,brj' and (AB)C = [ ± fikcki] where 
r=l k=l mXq 

� ( � (airbrk)ckj) 

= � ( � ai,(b,kckj)) . 

The last equality follows from the associative property 

(ai,brk)cki = ai,(b,kck) 
of multiplication of real numbers. Comparing the elements in row i, column j, of A(BC) 
and (AB)C, we see that 

� (� ai,(b,kck1)) = � (� ai,(b,kck)) , 

since each of these double sums consists of all the np terms that can be made by using a 

product of the form air(brkCkJ) with 1 :s r :s n and 1 :s k :s p. Thus A(BC) = (AB)C. 

Similar but simpler use of the sigma notation can be made to prove the distributive 

properties stated in the following theorem. Proofs are requested in the exercises. 

Theorem 1.34 • Distributive Properties 

Let A be an m X n matrix over R, let B and C be n X p matrices over R, and let D be a 

p X q matrix over R. Then 

a. A(B + C) =AB+ AC, and 

b. (B + C)D = BD +CD. 
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For each positive integer n, we define a special matrix In by 

where a . .  = { 1 
I] 

0 

if i = j 
if i * j. 

1 .6 Matrices 51 

(The symbol Bi} used in defining In is called the Kronecker delta.) For n = 2 and n = 3, 

these special matrices are given by 

and 

The matrices In have special properties in matrix multiplication, as stated in Theorem 1.35. 

Theorem 1.35 • Special Properties of In 

Let A be an arbitrary m X n matrix over R. With In as defined in the preceding para

graph, 

a. ImA =A, and 

b. Ain = A. 

Proof To prove part a, let A = [aiJ]mxn and consider ImA. By Definition 1.32, 

ImA = [cijJmxn 

where 

m 

cij = � 8ikakj· 
k=l 

Since 8ik = 0 fork =F i and 8ii = 1, the expression for CiJ simplifies to 

Thus Cij = aiJ for all pairs i,j and ImA = A. 
The proof that Ain = A is left as an exercise. 

Because the equations ImA = A and Ain = A hold for any m X n matrix A, the matrix 

In is called the identity matrix of order n. In a more general context, the terms left identity 
and right identity are defined as follows. 

Definition 1.36 • Left Identity, Right Identity 

Let* be a binary operation on the nonempty set A. If an element e in A has the property 

that 

e * x = x for all x E A, 
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then e is called a left identity element with respect to *. Similarly, if 

x * e = x for all x E A, 

then e is a right identity element with respect to*· 

If the same element e is both a left identity and a right identity with respect to*, then e 
is an identity element as defined in Definition 1.21. An identity element is sometimes called 
a two-sided identity to emphasize that both of the required equations hold. 

Even though matrix multiplication is not a binary operation on Mmxn(R) when m * n, 
we call Im a left identity and In a right identity for multiplication with elements of Mmxn(R). 
In the set Mn(R) of all square matrices of order n over R, In is a two-sided identity element 
with respect to multiplication. 

The fact that In is a multiplicative identity for Mn(R) leads immediately to the ques
tion: Does every nonzero element A of Mn(R) have a multiplicative inverse? The answer is 

ALERT not what one might expect, because some nonzero square matrices do not have multiplica
tive inverses. This fact is illustrated in the next example. 

Example 5 Let A = [ � ! J and consider the problem of finding a matrix 

B = [; : J such that AB = h Computation of AB leads at once to 

or 

[ x + 3y 
2x + 6y 

[ x + 3y 
2 (x + 3y) 

z + 3wJ [1 OJ 2z + 6w - 0 1 ' 

z + 3w J [1 OJ 2 (z + 3w) - 0 1 · 

This matrix equality is equivalent to the following system of four linear equations. 

x + 3y = 1 

2 (x + 3y) = 0 

z + 3w = 0 

2 (z + 3w) = 1 

Since x + 3y = 1 requires2 (x + 3y) = 2, and this contradicts 2 (x + 3y) = 0, there is no 
solution to the system of equations and therefore no matrix B such that AB = h That is, A 

does not have a multiplicative inverse. • 

When we work with matrices, the convention is to use the term inverse to mean "mul
tiplicative inverse." If the matrix A has an inverse, Exercise 16 of Section 1.4 assures us 
that the inverse is unique. In this case, A is invertible, and its inverse is denoted by A -1. 

A few properties of inverses are included in the exercises for this section, but an in-depth 
investigation of inverses is more appropriate for a linear algebra course. 
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Exercises 1.6 

True or False 

Label each of the following statements as either true or false. 

1.6 Matrices 53 

1. Matrix addition is a binary operation from Mmxn(R) X Mmxn(R) to Mmxn(R). 

2. Matrix multiplication is a binary operation from Mmxn(R) X Mmxn(R) to Mmxn(R). 

3. AB = BA for all square matrices A and B of order n over R. 

4. (ABt = AnBn for all square matrices A and B of order n over R. 

5. LetA be a nonzero element inMmxn(R) andB and C elements inMnxp(R). If AB =AC, 
thenB = C. 

6. Let A be in Mmxn(R) and B be in Mnxp(R). If AB = Omxp then either A = Omxn or 
B = OnXp· 

7. The set of diagonal matrices of order n over R is closed with respect to matrix addition 
inMn(R). 

8. (A + B )3 = A3 + 3A2B + 3AB2 + B3 for all square matrices A and B of order n 

overR. 
9. The products AB and BA are defined if and only if both A and B are square matrices of 

the same order. 

10. Let A be in Mmxn(R) and B be in Mnxp(R). If the jth column of A contains all zeros, 
then the jth column of AB contains all zeros. 

11. Let A be in Mmxn(R) and B be in Mnxp(R). If the ith row of A contains all zeros, then 
the ith row of AB contains all zeros. 

12. Let A be a square matrix of order n over R such that A 2 - 3A + In = On . Then 
A-1 = 3In -A .  

Exercises 

1. Write out the matrix that matches the given description. 

a
. 

A = [ai1hx2 with ail = 2i -j 
b. A = [aiJ]4x2 with ail = (-l)ij 
c. B = [biJhx4 with biJ = (- l)

i
+i 

d. B = [biJhx4 with biJ = 1 if i < j and biJ = 0 if i > j 
e. C = [ciJ]4x3 with CiJ = i + j if i > j and CiJ = 0 if i < j 
f. C = [ciJ]4x3 with CiJ = 0 if i =f=. j and CiJ = 1 if i = j 

2. Perform the indicated operations, if possible. 

[-1 2 �] + [: -2 -9] [� �] - [� �] a
. 0 

b. 
-3 -5 -1 

c. 2[� 2 �] + {-� -�] d [ 3 �] + 4[-!] 4 
. 

8 
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54 Chapter 1 Fundamentals 

3. Perform the following multiplications, if possible. 

[_! 0 

=�Jr-� 
-
�l a. 

1 

u -�1 r; 
2 

-�1 c. -2 
0 

e. 
[-� 

;] 
[� �] 

g. r-�1r-�1 
i. [3 -2 1 f�l 

b. r-� 
d. r; 
f. [� 

h. [-4 

_ fl [ -� 
0 

1 

2 
-2 

0 -�1 r � 4 -1 

�] 
[-� 

;] 
6 2][-1 0 

j. r =�}3 -2 1] 

-
3] -1 

-n 

5] 

4. Let A = [aiJh x3 where aiJ = i + j, and let B = [biJh x4 where biJ = 2i - j. If AB = 
[ciJh x4, write a formula for CiJ in terms of i andj. 

5. Show that the matrix equation 

is equivalent to a system of linear equations in x, y, and z. 

6. Write a single matrix equation of the form AX = B that is equivalent to the following 

system of equations. 

w + 6x - 3y + 2z = 9 

4w - ?x + y + 5z = 0 

7. Let oiJ denote the Kronecker delta: oiJ = 1 if i = j, and oiJ = 0 if i =I= j. Find the value 

of the following expressions. 

a. � (�aij) b. � (� (1 - ai1)) 
� (�u - j)oij) n 

c. d. :L aijajk 
j=l 
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Sec. 1.4, #3 � 8. Let S be the set of four matrices S = {/,A, B, C}, where 

1.6 Matrices 55 

I= [� �l A= [� - l J B = [-1 0 ' 0 -�l c 
= [-� �]. 

Follow the procedure described in Exercise 3 of Section 1.4 to complete the following 
multiplication table for S. (In this case , the product BC = A is entered as shown in 
the row with Bat the left end and in the column with Cat the top.) Is S closed under 
multiplication in Mz(R)? 

. I A B c 

I 

A 

B B c I A 

c 

9. Find two square matrices A and B such that AB =f=. BA. 

10. Find two nonzero matrices A and B such that AB = BA. 

11. Find two nonzero matrices A and B such that AB = Onxn· 

12. Positive integral powers of a square matrix are defined by A 1 = A and An
+ 1 = An ·A for 

every positive integer n. Evaluate (A - B)(A + B) and A 2 - B2 and compare the results for 

A = [: � J and B = [ � - l J 1 . 

13. For the matrices in Exercise 12, evaluate (A + B )2 and A 2 + 2AB + B2 and compare 
the results. 

14. Assume that A - l exists and find a solution X to AX = B where A and B are in Mn(R). 

15. Assume that A, B, C, and X are in Mn(R), and AX C = B with A and C invertible. 
Solve for X. 

16. a. Prove part d of Theorem 1.30. 
b. Prove part e of Theorem 1.30. 

17. a. Prove part a of Theorem 1.34. 
b. Prove part b of Theorem 1.34. 

18. Prove part b of Theorem 1.35. 
19. Let a and b be real numbers and A and B elements of Mmxn (R). Prove the following 

properties of scalar multiplication. 

a. a (bA) = (ab)A 

b. a (A + B) = aA + aB 

c. (a+ b)A = aA + bA 
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20. Prove that if A E Mmxn(R), then A • Onxp = Omxp· 

21. Suppose that A is an invertible matrix over R and 0 is a zero matrix. Prove that if 

AX= 0, then X = 0. 

22. Let G be the set of all elements of M2(R) that have one row that consists of zeros and 

one row of the form [a a], with a i= 0. 

a. Show that G is closed under multiplication in Mz(R). 

b. Show that for each x in G, there is an element yin G such that xy = yx = x. 

c. Show that G does not have an identity element with respect to multiplication. 

23. Prove that the set S = { [ � -: J I a, b E R} is closed with respect to matrix ad-

Sec. 5.1, #42 � dition and multiplication in Mz(R). 

Sec. 3.3, #18 � 
Sec. 3.6, #11 � 

24. Prove or disprove that the set of diagonal matrices of order n over R is closed with 

respect to matrix multiplication in M2(R). 

25. Let A and B be square matrices of order n over R. Prove or disprove that the product 

AB is a diagonal matrix of order n over R if B is a diagonal matrix. 

26. Let A and B be square matrices of order n over R. Prove or disprove that if AB is a 

diagonal matrix of order n over R, then at least one of A or B is a diagonal matrix. 

27. A square matrix A = [aij]n with aij = 0 for all i > j is called upper triangular. Prove 

or disprove each of the following statements. 

28. 

a. The set of all upper triangular matrices is closed with respect to matrix addition in Mn(R). 

b. The set of all upper triangular matrices is closed with respect to matrix multiplication 

inMn(R). 

c. If A and B are square and the product AB is upper triangular, then at least one of A 

or B is upper triangular. 

Let a, b, e, and d be real numbers. If ad - be i= 0, show that the multiplicative inverse 

[a b] . . 
of 

e d 
is given by 

[ad �cbc 
ad - be 

-b 

l 

ad : be . 
ad - be 

Sec. 3.6, #11 � 29. Let A = [; : J over R. Prove that if ad - be = 0, then A does not have an inverse. 

30. Let A, B, and C be elements of M2(R), where A is not a zero matrix. Prove or disprove 

that AB = AC implies B = C. 

31. Let A, B, and C be square matrices of order n over R. Prove that if A is invertible and 

AB= AC, then B = C. 

32. LetA and B be n X n matrices over R such thatA -l and B-1 exist. Prove that (AB)-1 exists 

Sec. 2.2, #31 � and that (AB)-1 = B-1A -1 . (This result is known as the reverse order law for inverses.) 
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1.7 Relations 57 

In the study of mathematics, we deal with many examples of relations between elements of 
various sets. In working with the integers, we encounter relations such as "x is less than y" 
and "x is a factor of y." In calculus, one function may be the derivative of some other 
function, or perhaps an integral of another function. The property that these examples of 
relations have in common is that there is an association of some sort between two elements 
of a set, and the ordering of the elements is important. These relations can all be described 
by the following definition. 

Definition 1.37 • Relation 

A relation (or a binary relation) on a nonempty set A is a nonempty set R of ordered 
pairs (x, y) of elements x and y of A. 

That is, a relation R is a subset of the Cartesian product A X A. If the pair (a, b) is 
in R, we write aRb and say that a has the relation R to b. If (a, b) fl. R, we write a Rb. 
This notation agrees with the customary notations for relations, such as a = b and a < b 
or a =F b and a 1 b. 

Example 1 Let A = {-2, -5, 2, 5} and R = {(5, -2), (5, 2), (-5, -2), (-5, 2)}. 
Then 5 R 2, -5R 2 ,  5R ( -2), and ( -5) R ( -2), but 2 R 5, 5 R 5, and so on. As is frequently 
the case, this relation can be described by a simple rule: xRy if and only if the absolute 
value of x is the same as y2 

+ 1-that is, if lx l = y2 
+ 1. • 

Any mapping from A to A is an example of a relation, but not all relations are map
ALERT pings, as Example 1 illustrates. We have (5, 2) ER and (5, -2) ER, and for a mapping 

from A to A, the second element y in ( 5, y) would have to be unique. 
Our main concern is with relations that have additional special properties. More pre

cisely, we are interested for the most part in equivalence relations. 

Definition 1.38 • Equivalence Relation 

A relation R on a nonempty set A is an equivalence relation if the following conditions are 
satisfied for arbitrary x, y, z in A: 

1. xRx for all x EA. 

2. If xRy, then yRx. 

3. If xRy and yRz, then xRz. 

Reflexive Property 

Symmetric Property 

Transitive Property 

Properties 1, 2, and 3 of Definition 1.38 are familiar basic properties of equality. 
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Example 2 The relation R defined on the set of integers Z by 

xRy if and only if lxl = IYI 
is reflexive, symmetric, and transitive. For arbitrary x, y, and z in Z, 

1. xRx, since lxl = lxl . 

2. xRy => lxl = IYI 
=> IYI = lxl 

=> yRx. 

3. xRy andyRz => lxl = IYI and IYI = lzl 

=> lxl = lzl 

=> xRz. • 

Example 3 The relation R defined on the set of integers Z by 

xRy if and only if x > y 

is not an equivalence relation, since it is neither reflexive nor symmetric. 

1. x > x for all x E Z. 

2. x > y__;;:;Y'y > x. 

Note that R is transitive: 

3. x > y and y > z => x > z. • 

The following example is a special case of an equivalence relation on the integers that 
will be extremely important in later work. 

Example 4 The relation " congruence modulo 4" is defined on the set Z of all integers 
as follows: x is congruent toy modulo 4 if and only if x - y is a multiple of 4. We write 

x = y (mod 4) as shorthand for "x is congruent toy modulo 4." Thus x = y (mod 4) if and 
only if x - y = 4k for some integer k. We demonstrate that this is an equivalence relation. 
For arbitrary x, y, z in Z, 

1. x = x (mod 4), sincex - x = (4)(0). 
2. x = y (mod 4) => x - y = 4k for some k E Z 

=> y - x = 4(-k) and -k E Z 

=> y = x (mod 4). 
3. x = y (mod 4) and y = z (mod 4) 

=> x - y = 4k and y - z = 4m for some k, m E Z 

=> x - z = x - y + y - z = 4(k + m ) , and k + m E Z 

=> x = z (mod 4). 

Thus congruence modulo 4 has the reflexive, symmetric, and transitive properties and 
is an equivalence relation on Z. • 
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Definition 1.39 • Equivalence Class 

Let R be an equivalence relation on the nonempty set A. For each a E A, the set 

[aJ = {x E AlxRa} 

is called the equivalence class containing a. 

Example 5 The relation R in Example 2 defined on Z by xRy ¢::> lxl 
alence relation. The equivalence class containing 0 is 

[OJ = {O} 

IYI is an equiv-

since 0 is the only element x E Z such that lxl = 0. Some other equivalence classes are 

given by 

[lJ = {1, -1} and [-3J = {-3, 3}. 

For a * 0, the equivalence class [aJ is given by 

[aJ = {-a, a} 

since a and -a are the only elements in Z with absolute value equal to I a I· • 

Example 6 The relation "congruence modulo 4" was shown in Example 4 to be an 

equivalence relation. Since x = y (mod 4) if and only if x -y is a multiple of 4, the equiv

alence class [a J consists of all those integers that differ from a by a multiple of 4. Thus [OJ 
consists of all multiples of 4: 

[OJ={ ... ,-8, -4, 0, 4, 8, ... }. 

Similarly, the other equivalence classes are given by: 

[1 J = { ... ' -7, -3, 1, 5, 9, ... }. 
[2J = { ... ' -6, -2, 2, 6, 10, ... }. 
[3] = { .. ., -5, -1, 3, 7, 11, ... }. • 

In both Examples 5 and 6, the equivalence classes separate the set Z into mutually dis

joint nonempty subsets. Recall from Section 1.1 that a separation of the elements of a non

empty set A into mutually disjoint nonempty subsets is called a partition of A. 

Theorem 1.40 • Equivalence Classes and Partitions 

If R is an equivalence relation on the nonempty set A, then the distinct equivalence classes 

of R form a partition of A. 

Conversely, if a partition of A is given, then we can find an equivalence relation Ron A 
that has the given subsets as its equivalence classes. We simply define R by xRy if and only if 

x and y are in the same subset. The proofs of Theorem 1.40 and this statement are requested 

in the exercises for this section. 
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The discussion in the last paragraph illustrates a situation where we are dealing with a col
lection of sets about which very little is explicit. For example, the collection may be finite, or it 
may be infinite. In such situations, it is sometimes desirable to use the notational convenience 
known as indexing. We assume that the sets in the collection are labeled, or indexed, by a set 

;£, of symbols A. That is, a typical set in the collection is denoted by a symbol such as AA, and 
the index A takes on values from the set;£,. For such a collection {AA}, we write UAEXAA for 
the union of the collection of sets, and we write nA E xA A for the intersection. That is, 

and 

LJAA = {xix E AA for at least one A E ;£,} 
AEX 

nAA = {xix E AA for every A E ;£,}. 
AEX 

If the indexing set;£, is given by ;£, = { 1, 2, . . .  , n}, then the union of the collection of sets 

{A;} might be written in any one of the following three ways. 
n 

A1 UA2U · · ·  UAn = LJA; = LJA; 
iEX i=I 

The index notation is useful in describing a partition of a set. An alternative definition 
can be made in the following manner. 

Definition 1.41 • Partition 

Let {AA}, A E ;£,,be a collection of subsets of the nonempty set A. Then {AA} is a partition 

of A if all these conditions are satisfied: 

1. Each AA is nonempty. 

2. A= LJAA. 
AEX 

3. If Aa n A13 =f=. 0, then Aa = A13. 

Exercises 1. 7 

True or False 

Label each of the following statements as either true or false. 

1. Every mapping on a nonempty set A is a relation. 

2. Every relation on a nonempty set A is a mapping. 

3. If R is an equivalence relation on a nonempty set A, then the distinct equivalence 
classes of R form a partition of A. 

4. If R is an equivalence relation on a nonempty set A, then any two equivalence classes 
of R contain the same number of elements. 
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5. Let R be an equivalence relation on a nonempty set A and let a and b be in A. If 
b E [a], then [b] = [a]. 

6. Let R be a relation on a nonempty set A that is symmetric and transitive. Since R is 
symmetric xRy implies yRx. Since R is transitive xRy and yRx implies xRx . Hence R is 
also reflexive and thus an equivalence relation on A. 

Exercises 

1. For A = { 1, 3, 5}, determine which of the following relations on A are mappings from 
A to A, and justify your answer. 

a. {(l, 3), (3, 5), (5, l)} 
c. { (1, 1), (1, 3), (1, 5)} 
e. { (1, 5), (3, 3), (5, 3)} 

b. {(1, 1), (3, 1), (5, l)} 
d. { (1, 3), (3, 1), (5, 5)} 
f. { (5, 1), (5, 3), (5, 5)} 

2. In each of the following parts, a relation R is defined on the set Z of all integers. Deter
mine in each case whether or not R is reflexive, symmetric, or transitive. Justify your 
answers. 

a. xRy if and only if x = 2y. 

b. xRy if and only if x = -y. 

c. xRy if and only if y = xk for some kin Z. 

d. xRy if and only if x < y. 

e. xRy if and only if x 2: y. 

f. xRy if and only if x = IY I. 
g. xRy if and only iflx l:::; IY + 11. 
h. xRy if and only if xy 2: 0. 

i. xRy if and only if xy :::; 0. 

j. xRy if and only if Ix - YI = 1. 
k. xRy if and only if Ix - YI < 1. 

3. a. Let R be the equivalence relation defined on Z in Example 2, and write out the 
elements of the equivalence class [3J. 

b. Let R be the equivalence relation "congruence modulo 4" that is defined on Z in 
Example 4. For this R ,  list five members of the equivalence class [7]. 

4. Let R be the relation "congruence modulo 5" defined on Z as follows: x is congruent 
toy modulo 5 if and only if x - y is a multiple of 5, and we write x = y (mod 5) . 

a. Prove that "congruence modulo 5" is an equivalence relation. 

b. List five members of each of the equivalence classes [OJ, [ lJ, [2J, [8J, and [-4]. 

5. Let R be the relation "congruence modulo 7" defined on Z as follows: x is congruent 
toy modulo 7 if and only if x - y is a multiple of 7, and we write x = y (mod 7) . 
a. Prove that "congruence modulo 7" is an equivalence relation. 

b. List five members of each of the equivalence classes [OJ, [ lJ, [3J, [9J, and [-2]. 
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In Exercises 6-10, a relation R is defined on the set Z of all integers. In each case, prove 

that R is an equivalence relation. Find the distinct equivalence classes of R and list at least 

four members of each. 

6. xRy if and only if x2 
+ y2 is a multiple of 2. 

7. xRy if and only if x2 - y2 is a multiple of 5. 

8. xRy if and only if x + 3 y  is a multiple of 4. 

9. xRy if and only if 3x - 1 Oy is a multiple of 7. 

10. xRy if and only if (-lY = (-l)Y. 

11. Let R be a relation defined on the set Z of all integers by xRy if and only if the sum of 

x and y is odd. Decide whether or not R is an equivalence relation. Justify your decision. 

12. Let 11 and [z be lines in a plane. Decide in each case whether or not R is an equivalence 

relation, and justify your decisions. 

a. l1Rl2 if and only if 11 and 12 are parallel. 

b. l1Rl2 if and only if 11 and l2 are perpendicular. 

13. Consider the set 0'>(A) - {0} of all nonempty subsets of A= {1, 2, 3, 4, 5}. Deter

mine whether the given relation Ron 0'>(A) - {0} is reflexive, symmetric, or transi

tive. Justify your answers. 

a. xRy if and only if xis a subset of y. 

b. xRy if and only if xis a proper subset of y. 

c. xRy if and only if x and y have the same number of elements. 

14. In each of the following parts, a relation is defined on the set of all human beings. 

Determine whether the relation is reflexive, symmetric, or transitive. Justify your 

answers. 

a. xRy if and only if x lives within 400 miles of y. 

b. xRy if and only if xis the father of y. 

c. xRy if and only if xis a first cousin of y. 

d. xRy if and only if x and y were born in the same year. 

e. xRy if and only if x and y have the same mother. 

f. xRy if and only if x and y have the same hair color. 

15. Let A = R - { 0}, the set of all nonzero real numbers, and consider the following rela

tions on A X A. Decide in each case whether R is an equivalence relation, and justify 

your answers. 

a. (a, b )R(e, d) if and only if ad = be. 

b. (a, b)R(e, d) if and only if ab = ed. 

c. (a,b)R(e,d)if and only if a2 
+ b2 = e2 

+ d2. 

d. (a, b)R(e, d) if and only if a - b = e - d. 

Copyright 2013 Cengage Leaming. AH Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materia11y affect the overall learning experience. Cengage Leaming reserves the right to remove additional content at any time if subsequent rights restrictions require it. 



1.7 Relations 63 

16. Let A = { 1, 2, 3, 4} and define Ron 0'>(A) - {0} by xRy if and only if x n y :f= 0. 
Determine whether R is reflexive, symmetric, or transitive. 

17. In each of the following parts, a relation R is defined on the power set 0'>(A) of the non
empty set A. Determine in each case whether R is reflexive, symmetric, or transitive. 
Justify your answers. 

a. xRy if and only if x n y :f= 0. 

b. xRy if and only if x � y. 

18. Let 0'>(A) be the power set of the nonempty set A, and let C denote a fixed subset of A. 
Define Ron 0'>(A) by xRy if and only if x n C = y n C. Prove that R is an equivalence 
relation on 0'>(A). 

19. For each of the following relations R defined on the set A of all triangles in a plane, 
determine whether R is reflexive, symmetric, or transitive. Justify your answers. 

a. aRb if and only if a is similar to b. 

b. aRb if and only if a is congruent to b. 

20. Give an example of a relation Ron a nonempty set A that is symmetric and transitive, 
but not reflexive. 

21. A relation R on a nonempty set A is called irreflexive if xRx for all x E A. Which of 
the relations in Exercise 2 are irreflexive? 

22. A relation R on a nonempty set A is called asymmetric if, for x and y in A, xRy implies 
y Rx.Which of the relations in Exercise 2 are asymmetric? 

23. A relation R on a nonempty set A is called antisymmetric if, for x and y in A, xRy and 
yRx together imply x = y. (That is, R is antisymmetric if x :f= y implies that either xRy 

or yRx.) Which of the relations in Exercise 2 are antisymmetric? 

24. For any relation Ron the nonempty set A, the inverse of R is the relation R-1 defined 
by xR-1 y if and only if yRx. Prove the following statements. 

a. R is symmetric if and only if R = R-1. 

b. R is antisymmetric if and only if R n R-1 is a subset of {(a, a )  la EA}. 

c. R is asymmetric if and only if R n R-1 = 0. 

25. Let:£= {1,2,3},A1 = {a, b,c,d},A2 = {c,d,e,f},and A3 = {a,c,f,g}. Write out 
LJ ,\E5£A,\ and nAE5£A,\. 

26. Let:£ = {a, /3, y}, Aa = { 1, 2, 3, ... }, A13 = {-1, -2, -3, ... }, and Ay = {O}. 
Write out u ,\E5£A,\ and n,\E5£A,\. 

27. Prove Theorem 1.40: If R is an equivalence relation on the nonempty set A, then the 
distinct equivalence classes of R form a partition of A. 

28. Let A = { 1, 2, 3 }, B1 = { 1, 2}, and B2 = {2, 3 }. Define the relation Ron A by aRb if 
and only if there is a set Bi (i = 1 or 2) such that a E Bi and b E Bi. Determine which 
of the properties of an equivalence relation hold for R, and give an example for each 
property that fails to hold. 
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29. Suppose {AA}, A E 5£, represents a partition of the nonempty set A. Define R on A by 

xRy if and only if there is a subset AA such that x E AA and y E AA. Prove that R is an 

equivalence relation on A and that the equivalence classes of R are the subsets AA. 

30. Suppose thatf is an onto mapping from A to B. Prove that if {BA}, A E 5£, is a partition 

of B, then {f-1(BA) }, A E 5£, is a partition of A. 
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A Pioneer in Mathematics 
Arthur Cayley (1821-1895) 

The English mathematician Arthur Cayley, one of the three most pro

lific writers in mathematics, authored more than 200 mathematical 

papers. He founded the theory of matrices and was one of the first 

writers to describe abstract groups. According to mathematical his

torian Howard Eves, Cayley was one of the 19th-century algebraists 

who "opened the floodgates of modern abstract algebra." 

Cayley displayed superior mathematical talent early in his life. At 

the age of 17 he studied at Trinity College of Cambridge University. 

Upon graduation, he accepted a position as assistant tutor at the col

lege. At the end of his third year as tutor, his appointment was not 

renewed because he declined to take the holy orders to become a 

parson. Cayley then turned to law and spent the next 15 years as a 

practicing lawyer. It was during this period that he wrote most of his 

mathematical papers, many of which are now classics. 

Mathematics was not Cayley's only love, though. He was also an avid novel reader, a 

talented watercolor artist, an ardent mountain climber, and a passionate nature lover. How

ever, even on his mountaineering trips, he spent a few hours each day on mathematics. 

Cayley spent the last 32 years of his life as a professor of mathematics at Cambridge 

University. During this period, he campaigned successfully for the admission of women to 

the university. 
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CHAPTER TWO 

The Integers 

• Introduction 

It is unusual for a chapter to begin with an optional section, but there is an explanation for doing so here. 

Whether Section 2.1 is to be included or skipped is a matter of attitude or emphasis. If the approach is to 

emphasize the development of the basic properties of addition, multiplication, and ordering of integers 

from an initial list of postulates for the integers, then Section 2.1 should be included. As an alternative 

approach, these properties can be taken as known material from earlier experience, and Section 2.1 can 

be skipped. Whichever approach is taken, Section 2.1 summarizes the knowledge that is needed for 

the subsequent material in the chapter, and it separates "what we know" from "what we must prove." 

Although Section 2.2 on mathematical induction is not labeled as optional, this material may be 

familiar from calculus or previous algebra courses, and it might also be skipped. 

The set Zn of congruence classes modulo n makes its first appearance in Section 2.5 as a set of 

equivalence classes. Binary operations of addition and multiplication are defined on Zn in Section 2.6. 

Both the additive and the multiplicative structures are drawn upon for examples in Chapters 3 and 4. 

Sections 2.7 and 2.8 present optional introductions to coding theory and cryptography. The primary 

purpose of these sections is to demonstrate that the material in this text has usefulness other than as 

a foundation for mathematics courses at a higher level. 

~ Postulates for the Integers (Optional) 

The material in this chapter is concerned exclusively with integers. For this reason, we make 

a notational agreement that all variables represent integers. As our starting point, we shall 

take the system of integers as given and assume that the system of integers satisfies a certain 

list of basic axioms, or postulates. More precisely, we assume that there is a set Z of ele

ments, called the integers, that satisfies the following conditions. 

Postulates for the Set Z of Integers 
1. Addition postulates. There is a binary operation defined in Z that is called addition, 

is denoted by +,and has the following properties: 

a. Z is closed under addition. 

b. Addition is associative. 

c. Z contains an element 0 that is an identity element for addition. 

67 
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68 Chapter 2 The Integers 

d. For each x E Z, there is an additive inverse of x in Z, denoted by -x, such that 

x + ( -x) = 0 = ( -x) + x. 
e. Addition is commutative. 

2. Multiplication postulates. There is a binary operation defined in Z that is called 

multiplication, is denoted by ·, and has the following properties: 

a. Z is closed under multiplication. 

b. Multiplication is associative. 

c. Z contains an element 1 that is different from 0 and that is an identity element for 

multiplication. 

d. Multiplication is commutative. 

3. The distributive law, 

x · (y + z) = x • y + x · z, 

holds for all elements x, y, z E Z. 

4. Z contains a subset z+, called the positive integers, that has the following 

properties: 

a. Z + is closed under addition. 

b. Z + is closed under multiplication. 

c. For each x in Z, one and only one of the following statements is true. 

i. x E z+ 

ii. x = 0 

iii. -x E z+ 

5. Induction postulate. If S is a subset of z+ such that 

a. 1 ES, and 

b. x E S always implies x + 1 E S, 

thens= z+. 

Note that we are taking the entire list of postulates as assumptions concerning Z. This list 

is our set of basic properties. In this section we shall investigate briefly some of the conse

quences of this set of properties. After the term group has been defined in Chapter 3, we shall 

see that the addition postulates state that Z is a commutative group with respect to addition. 

ALERT Note that there is a major difference between the multiplication and the addition pos-

tulates, in that no inverses are required with respect to multiplication. 

Postulate 3, the distributive law, is sometimes known as the left distributive law. The 

requirement that 

(y + z) · x = y • x + z • x 

is known as the right distributive law. This property can be deduced from those in our list, 

as can all the familiar properties of addition and multiplication of integers. 

Postulate 4c is referred to as the law of trichotomy because of its assertion that exactly 
one of three possibilities must hold. In case iii, where -x E Z +, we say that x is a negative 

integer and that the set { x I -x E Z + } is the set of all negative integers. 

The induction postulate is so named because it provides a basis for proofs by math

ematical induction. Section 2.2 is devoted to the method of proof by induction, and the 

method is used from time to time throughout this book. 
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The right distributive law can be shown to follow from the set of postulates for the 

integers. We do this formally in the following theorem. 

Theorem 2.1 • Right Distributive Law 

The equality 

(y + z) • x = y • x + z • x 

holds for all x, y, z in Z. 

Proof For arbitrary x, y, z in Z, we have 

(y + z) • x = x • (y + z) by postulate 2d 

= x • y + x · z by postulate 3 

= y • x + z • x by postulate 2d. 

The foregoing proof is admittedly trivial, but the point is that the usual manipula

tions involving integers are indeed consequences of our basic set of postulates. As another 

example, consider the statement t that ( -x )y = - (xy). In this equation, - (xy) denotes the 

additive inverse of xy, just as - x denotes the additive inverse of x. 

Theorem 2.2 • Additive Inverse of a Product 

Lemma 2.3 

For arbitrary x and y in Z, 

(-x)y = -(xy). 

Instead of attempting to prove this statement directly, we shall first prove a lemma. 

• Cancellation Law for Addition 

If a, b, and care integers and a + b = a + c, then b = c. 

p:::::} q Proof of the Lemma Suppose a + b = a + c. Now -a is in Z, and hence 

a+b=a+c:::::}(-a) + (a+b) =(-a)+ (a+c) 

:::::} [ ( -a) + a J + b = [ ( -a) + a J + c by postulate 1 b 

:::::} 

:::::} 

O+b=O+c 

b=c 

This completes the proof of the lemma. 

by postulate 1 d 

by postulate 1 c. 

twe adopt the usual convention that the juxtaposition of x and yin xy indicates the operation of 
multiplication. 
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Proof of the Theorem Returning to the theorem, we see that we only need to show that 

xy + ( -x)y = xy + [ -(xy)]. That is, we need only to show thatxy + ( -x)y = 0. We have 

xy+ ( -x)y = [x + ( -x)]y by Theorem 2.1 

= 0. y by postulate 1 d 

=O·y+ O by postulate 1 c 

= 0 . y + { 0 . y + [ -( 0 . y) ]} by postulate ld 

= (0. y + 0. y) + [ -(0. y)] by postulate 1 b 

= ( 0 + 0 )y + [ -( 0 . y)] by Theorem 2.1 

=O·y+ [ -(O·y)] by postulate 1 c 

=O by postulate 1 d. 

We have shown that xy + ( -x)y = 0, and the theorem is proved. 

The proof of Theorem 2.2 would have been shorter if the fact that 0 • y = 0 had 

been available. However, our approach at present is to use in a proof only the basic 

postulates for Z and those facts previously proved. Several statements similar to the 

last two theorems are given to be proved in the exercises at the end of this section. After 

this section, we assume the usual properties of addition and multiplication in Z. 
Postulate 4, which asserts the existence of the set z+ of positive integers, can be used 

to introduce the order relation "less than" on the set of integers. We make the following 

definition. 

Definition 2.4 • The Order Relation Less Than 

For integers x and y, 

x < y if and only if y - x E z+ 

wherey - x = y + ( -x). 

The symbol < is read "less than," as usual. Here we have defined the relation, but we 

have not assumed any of its usual properties. However, they can be obtained by use of this 

definition and the properties of Z +. Before illustrating this with an example, we note that 

0 < y if and only if y E Z +. 
For an arbitrary x E Z and a positive integer n, we define xn as follows: 

x1 = X 

:J<+ 1 = X' • x for any positive integer k. 

Similarly, positive multiples nx of x are defined by 

lx = x 

(k + l)x = kx + x for any positive integer k. 
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2.1 Postulates for the Integers (Optional) 71 

Strategy • Some proofs must be divided into different cases because the same argument does not 
apply to all elements under consideration. The proof of the next theorem separates natu
rally into two cases, based on the law of trichotomy (postulate 4c ). 

Theorem 2.5 • Squares of Nonzero Integers 

For any x * 0 in Z, x2 E Z +. 

p:::::} q Proof Let x -=F 0 in Z. By postulate 4, either x E z+ or -x E z+. If x E z+, then 
x2 = x · x is inz+ bypostulate4b.And if -x E z+,then(-x)2 = (-x) · (-x) is inz+, 
by the same postulate. But 

x2=x·x 

= ( -x) • ( -x) by Exercise 5 in this section, 

so x2 is in Z + if -x E Z +. In each possible case, x2 is in Z +, and this completes the proof. 

As a particular case of this theorem, 1 E z+, since 1 = (1)2. That is, 1 must be a 
positive integer, a fact that may not be immediately evident in postulate 4. This in tum 
implies that 2 = 1 + 1 is in z+, by postulate 4a. Repeated application of 4a gives 3 = 
2 + 1 E Z +, 4 = 3 + 1 E Z +, 5 = 4 + 1 E Z +, and so on. It turns out that Z + must 
necessarily be the set 

z+ = {1, 2, 3, . . .  'n, n + 1, . . .  }. 

Although our discussion of order has been in terms of less than, the relations greater 

than, less than or equal to, and greater than or equal to can be introduced in Z and simi
larly treated. We consider this treatment to be trivial and do not bother with it. At the same 
time, we accept terms such as nonnegative and nonpositive with their usual meanings and 
without formal definitions. 

Exercises 2.1 

True or False 

Label each of the following statements as either true or false. 

1. The set Z of integers is closed with respect to subtraction. 

2. The set Z - z+ is closed with respect to subtraction. 

3. The set Z - z+ is closed with respect to multiplication. 

4. If xy = xz for all x, y, and z in Z, then y = z. 

5. Let A be a set of integers closed under subtraction. If x and y are elements of A, then 
x - ny is in A for any n in Z. 

6. Ix I < x for all x in Z. (See the exercises for the definition of Ix I, the absolute value of x.) 
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72 Chapter 2 The Integers 

Sec. 2.2, #24 � 

7. Ix+ yl2 < lxl2 + lyl2for allxandyinZ. 

8. If x < y, then x2 < y2 for all x and y in Z. 

9. If x < y, then x3 < y3 for all x and yin Z. 

10. l lxl - IYl l  <Ix- YI for allxandyinZ. 

Exercises 

Prove that the equalities in Exercises 1-11 hold for all x, y, z, and win Z. Assume only the 
basic postulates for Z and those properties proved in this section . Subtraction is defined 
by x - y = x + ( -y ) .  

1. x • 0 = 0 

2. -x = ( -1) . x 

3. - (-x)=x 

4. (-1)(-1) = 1 

5. (-x)(-y)=xy 

6. x - 0 = x 

7. x(y - z) = xy - xz 

8. (y - z)x = yx - zx 

9. -(x + y) = (-x) + (-y) 

10. (x - y) + (y - z) = x - z 

11. (x + y)( z + w) = xz + xw + yz + yw 

12. Let A be a set of integers closed under subtraction . 

a. Prove that if A is nonempty, then 0 is in A. 

b. Prove that if x is in A, then -xis in A. 

In Exercises 13-24, prove the statements concerning the relation < on the set Z of 
all integers . 

13. If x < y, then x + z < y + z. 

14. If x < y and z < w, then x + z < y + w. 

15. If x = y andO < z, theny < x + z. 

16. If x = y and z < 0, thenx + z < y. 

17. If x < y and y < z, then x < z. 

18. If x < y and 0 < z, then xz < yz. 

19. If x < y and z < 0, then yz < xz. 
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20. If O < x < y, thenx2 < y2. 

21. If O < x < y and 0 < z < w, thenxz < yw. 

22. lfO < z andxz < yz, thenx < y. 

23. z - x < z - y if and only if y < x. 

24. If x < y, then - y  < -x. 

2.2 Mathematical Induction 73 

25. Prove that if x and y are integers and xy = 0, then either x = 0 or y = 0. (Hint: If 

x =F 0, then either x E Z + or -x E Z +, and similarly for y. Consider xy for the vari

ous cases.) 

26. Prove that the cancellation law for multiplication holds in Z. That is, if xy = xz and 

x =F 0, then y = z. 

27. Let x and y be in Z, not both zero, then x2 + y2 E Z +. 

For an integer x, the absolute value of x is denoted by lx l and is defined by 

lx l = { x 

-x 

if 0::;::: x 

if x < 0. 

Use this definition for the proofs in Exercises 28-30. 

28. Prove that - lx l ::=::: x ::=::: lx l for any integer x. 

29. Prove that lxy I= Ix I · I Y I for all x and y in Z. 

Sec. 2.2, #48 � 30. Prove that Ix + y I < Ix I + I y I for all x and y in Z. 

31. Prove that if a is positive and b is negative, then ab is negative. 

32. Prove that if a is positive and ab is positive, then b is positive. 

33. Prove that if a is positive and ab is negative, then bis negative. 

34. Prove or disprove that 0 ::=::: x2 - xy + y2 for all x and y in Z. 

35. Consider the set { 0} consisting of 0 alone, with 0 + 0 = 0 and 0 · 0 = 0. Which of 

the postulates for Z are satisfied? 

� Mathematical Induction 

From this point on, full knowledge of the properties of addition, subtraction, and multipli

cation of integers is assumed. A study of divisibility begins in Section 2.3. 
As mentioned in the last section, the induction postulate forms a basis for the method 

of proof known as mathematical induction. Some students may have encountered this 

method of proof in calculus or in other previous courses. In this case, it is possible to skip 

this section and continue with Section 2.3. 
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74 Chapter 2 The Integers 

Strategy • Proof by Mathematical Induction In a typical proof by induction, there is a statement 

P n to be proved true for every positive integer n. The proof consists of three steps: 

1. Basis Step The statement is verified for n = 1. 
2. Induction Hypothesis The statement is assumed true for n = k. 

3. Inductive Step With this assumption made, the statement is then proved to be true 

for n = k + 1. 

The assumption that is made in step 2 is called the inductive assumption or the induc

tion hypothesis. 

Principle of Mathematical Induction 

The logic of the method is that 

a. if Pn is true for n = 1, and 

b. if the truth of Pk always implies that Pk+ 1 is true, 

then the statement Pn is true for all positive integers n. This logic fits the induction postulate 

perfectly if we let S be the set of all positive integers n for which Pn is true. When the induc

tion postulate is used in this form, it is frequently called the Principle of Mathematical 

Induction. 

Example 1 We shall prove that 

1 1 1 
-- + -- + 
1 . 3 3 . 5 5 . 7 

for every positive integer n. 

1 
+ ... + 

(2n -1)(2n + 1) 

For each positive integer n, let Pn be the statement 

n 
2n + 1 

1 1 1 1 n 
-- + -- + -- + ··· + = 

1·3 3·5 5·7 (2n-1)(2n+l) 2n+l 

In an equation of this type, it is understood that 1/[ (2n -1) (2n + 1) J is the last term on 

the left side. When n = 1, there is only one term, and no addition is actually performed. 

Basis Step When n = 1, the value of the left side is 

1 
[2(1) -1][2(1) + 1] 

and the value of the right side is 

1 
----

= 

2(1) + 1 

Thus P 1 is true. 

= 

1 
3 

1 
1 . 3 

1 
3 
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Induction 

Hypothesis 

Inductive Step 

Basis Step 

Induction Hypothesis 

Inductive Step 

2.2 Mathematical Induction 75 

Assume now that Pk is true. That is, assume that the equation 

1 1 1 1 k 
--+--+--+ ... + = ---

1·3 3·5 5·7 (2k-1)(2k+l) 2k+l 

is true. 

With this assumption made, we need to prove that P k+I is true. By adding 

1 
������������ = 

1 
[2(k + 1) -1] [2(k + 1) + 1] (2k + 1)(2k + 3) 

to both sides of the assumed equality, we obtain 

1 1 1 1 
1 . 3 

+ 
3 . 5 

+ ... + 
(2k -1)(2k + 1) 

+ 
(2k + 1)(2k + 3) 

k 1 
+ 

2k + 1 (2k + 1 )(2k + 3) 

k(2k + 3) + 1 
= 

(2k + 1)(2k + 3) 

2k2 + 3k + 1 
(2k + 1)(2k + 3) 

(2k + l)(k + 1) 
= 

(2k + 1)(2k + 3) 

k + 1 
2(k + 1) + 1 

The last expression matches exactly the fraction 

n 

2n + 1 

when n is replaced by k + 1. Thus Pk+ 1 is true whenever Pk is true. 

It follows from the induction postulate that Pn is true for all positive integers n. • 

Example 2 We shall prove that any even positive power of a nonzero integer is posi

tive. That is, if x =!= 0 in Z, then x2n is positive for every positive integer n. The second 

formulation of the statement is suitable for a proof by induction on n. 

For n = 1, x2n = x2, and x2 is positive by Theorem 2.5. 
Assume the statement is true for n = k; that is, x2k 

is positive. 

Porn= k + 1, we have 

x2n = X2(k+ 1) 

= x2k+2 

= x2k. x2. 

Since ? and x2 are positive, the product is positive by postulate 4b. Thus the statement is 

true for n = k + 1. It follows from the induction postulate that the statement is true for all 

positive integers. • 
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76 Chapter 2 The Integers 

In Section 2.3 and in some of the exercises at the end of this section, we need to use 

the fact that 1 is the least positive integer. It might seem a bit strange to prove something so 

obvious, but the proof does reveal how this familiar fact is a consequence of the induction 

postulate. 

Theorem 2.6 • Least Positive Integer 

The integer 1 is the least positive integer. That is, 1 ::::; x for all x E z+. 

Induction Proof Let S be the set of all positive integers x such that 1 < x. Then 1 ES. Suppose 

k ES. Now 0 < 1 implies k = k + 0 < k + 1, by Exercise 13 of Section 2.1, so we have 

1 ::::; k < k + 1. Thus k ES implies k + 1 ES, and S = z+ by postulate 5. 

Mathematical induction can sometimes be used in more complicated situations 

involving integers. Some statements that involve positive integers n are false for some 

values of the positive integer n but are true for all positive integers that are sufficiently 

large. Statements of this type can be proved by a modified form of mathematical induc

tion. If a is a positive integer, and we wish to prove that a statement Pn is true for all 

positive integers n 2':: a, we alter the three steps described in the strategy box of this 

section to the following form. 

Strategy • Proof by Generalized Induction 

1. Basis Step The statement is verified for n = a. 

2. Induction Hypothesis The statement is assumed true for n = k, where k > a. 

3. Inductive Step With this assumption made, the statement is then proved to be 

true for n = k + 1. 

A proof of this type with a = 4 is given in Example 3. 

Example 3 We shall prove that 

1 + 3n < n2 

for every positive integer n 2':: 4. Note that the statement is actually false for n = 1, 2, and 3. 
Basis Step For n = 4, 

Induction 

Hypothesis 

1 + 3n = 1 + 12 = 13 and n2 = 42 = 16. 

Since 13 < 16, the statement is true for n = 4. 
Assume now that the inequality is true for k where k 2':: 4: 

1 + 3k < k2. 
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Inductive Step 

2.2 Mathematical Induction 77 

When n = k + 1, the left side of the inequality is 1 + 3 ( k + 1), and 

1 + 3(k + 1) = 1 + 3k + 3 
< k2 + 3 
=k2+2+1 
<k2+2k+l 
= (k + 1)2. 

since 1 + 3k < k2 

since 1 < k implies 2 < 2k 

(In the steps involving <, we have used Exercises 13 and 18 of Section 2.1.) Since (k + 1 )2 

is the right side of the inequality when n = k + 1, we have proved that 

1 + 3n < n2 

is true when n = k + 1. Therefore, the inequality is true for all positive integers n :::::: 4. • 

The modification of mathematical induction that is described just before Example 3 
can be extended even more by allowing a to be 0 or a negative integer and using the same 

three steps listed in the strategy box to prove that a statement Pn is true for all integers 

n :::::: a. This type of proof is requested in Exercise 26 of this section. 

In some cases, it is more convenient to use yet another form of the induction pos

tulate. This form is known by three different titles: It is called the Second Principle of 

Finite Induction, the method of proof by Complete Induction, and the method of Strong 

Mathematical Induction. In this form, a proof that a statement Pn is true for all integers 

n :::::: a consists of the following three steps. 

Strategy • Proof by Complete Induction 

1. Basis Step The statement is proved true for n = a, where a E Z. 

2. Induction Hypothesis For an integer k, the statement is assumed true for all inte

gers m such that a < m < k. 
3. Inductive Step Under this assumption, the statement is proved to be true form = k. 

Our next example presents a proof by complete induction, and another example is 

provided by the proof of Theorem 2.18 in Section 2.4. 

The fact stated in Example 4 is that every positive integer can be written as a sum 

of nonnegative powers of 2. This fact is a point of departure for developing the binary 

representation of real numbers, a representation that uses 2 as the number base instead of 

10 as used in our familiar decimal system. Binary representations are used extensively in 

computer science. 

Example 4 We shall use complete induction to prove the statement that every positive 

integer n can be expressed in the form 

n = c0 + c1 • 2 + c2 
• 22 + · · · + cj-I • 2j-l + cj • 2j, 

wherej is a nonnegative integer, ci E {O, 1} for all i < j, and c1 = 1. 
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78 Chapter 2 The Integers 

Basis Step 

Induction 

Hypothesis 

Inductive Step 

For n = 1, let j = 0 and c0 = 1. Then 

Co• 2° = (1)(1) = 1, 

and the statement is true for n = 1. 
Assume now that k > 1 and the statement is true for all positive integers m such that 

m < k. 

We consider two cases: where k is even and where k is odd. 

If k is even, then k = 2p for some p E Z + with p < k. Since p < k, the induction 

hypothesis applies top, and p can be written in the form 

p = Co + C1 • 2 + C2 . 22 + ... + CJ-1 • 2J-l + CJ • 2J, 

where j is a nonnegative integer, ci E { 0, 1} for all i, and c1 = 1. Multiplying both sides of 

the equation for p by 2 gives 

k = 2p =Co. 2 +Ct. 22 + C2. 23 + ... + CJ-1. 2J +CJ. 2J+l, 

and this is an equation fork that has the required form (when k is even). 

Suppose now that k is odd, say, k = 2p + 1 for some p E Z +. Since k > 1, this means 

that k - 1 = 2p is in Z + and 

k+k 
O < p = 

k - 1 
2 

< 
2 

= k. 

But p < k implies that p can be written in the form 

p =Co+ C1. 2 + C 2. 22 + ... + CJ-1. 2J-l +CJ. 2J 

where Ci E {O, 1}, and c1 = 1. Therefore, 

2 3 . ·+ 1 2p = Co • 2 + C1 . 2 + C 2 . 2 + ... + CJ-1 • 21 + CJ • 21 

and 

k = 2p + 1 
= 1 + Co " 2 + C1 • 22 + · · · + C· • 2J + C· • 2J+ l 

1-l J ' 

which is an equation fork of the required form (when k is odd). 

Combining the arguments for k even and k odd, we have proved that if k > 1 and the 

statement is true for all positive integers less than k, then it is also true for n = k. By the 

Second Principle of Finite Induction, the statement is true for all positive integers n. • 

Exercises 2.2 

Prove that the statements in Exercises 1-16 are true for every positive integer n. 
n(n + 1) 

1. 1 + 2 + 3 + · · · + n = 
2 

2. 1 + 3 + 5 + · · · + ( 2n - 1) = n2 

n(n + 1)(2n + 1) 3. 12 + 22 + 32 + · · · + n2 = 
6 
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2.2 Mathematical Induction 79 

4. 12 + 32 + 52 + ( )2 n(2n - l)(2n + 1) 
+ 2n- l = 

3 

5. 2 + 22 + 23 + 

6. 13 + 23 + 33 + 

+ 2n = 2(2n - 1) 

n2(n + 1)2 
+ n3 = 

4 

4(4n - 1) 
7. 4 + 42 + 43 + · · · + 4n 

= 
----

3 

8. 13 + 33 + 53 + · · · + (2n - 1)3 = n2(2n2 - 1) 

( ) 
n(n+l)(n+2) 

9. 1 · 2 + 2 · 3 + 3 · 4 + · · · + n n + 1 = 

3 

10. 1 · 2 + 2 · 2 2 + 3 · 2 3 + · · · + n · 2 n = (n - 1)2n+l + 2 

1 1 1 1 n 
11. + + -- + ... + ---

1 . 2 2·3 3. 4 n(n + 1) n + 1 

1 1 1 1 
+ + + ... + 

n 
12. 

1 . 4 4·7 7. 10 (3n - 2)(3n + 1) 3n + 1 

1 
13. 

1 1 1 n(n + 3) 
---+ ---+ ---+ ... + = -------

1 . 2 . 3 2·3·4 3·4·5 n(n+l)(n+2) 4(n+l)(n+2) 

n 
15. a + (a + d) + (a + 2d) + · · · + [a + (n - l)d] = -[2a + (n - l)d] 

2 

1 - r' 
16. a + ar + ar2 + · · · + ari-1 

= a if r -=I= 1 
1 - r 

17. Use mathematical induction to prove that the stated property of the sigma notation is 

true for all positive integers n. (This sigma notation is defined in Section 1.6.) 
n n 

a. a Lb; = :Labi 
i= 1 i= 1 
n n n 

b. :L(a; + bJ = :La;+ Lb; 
i=l i=l i= 1 

Let x and y be integers, and let m and n be positive integers. Use mathematical induction 

to prove the statements in Exercises 18-23. (The definitions of� and nx are given before 

Theorem 2.5 in Section 2.1.) 

18. (xyr = xnyn 19. x"'·� = xn+n 

20. (xm)n = Xmn 

22. (m + n)x = mx + nx 
21. n(x + y) = nx + ny 

23. m(nx) = (mn)x 
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80 Chapter 2 The Integers 

Sec. 2.1, #12 � 24. Let A be a set of integers closed under subtraction. Prove that if x and y are in A, then 

x - ny is in A for every positive integer n. 

Sec. 2.6, #21 <li: 
Sec. 5.1, #50 <li: 
Sec. 8.4, #35 <li: 

25. Let a and b be real numbers, and let n and r be integers with 0 ::::::: r ::::::: n. The binomial 
theorem states that 

+ 

( 

n 
)a2bn-2 

+ 

( 

n 
)abn-1 

+ 

(

n
)bn 

n-2 n-l n 

where the binomial coefficients(�) are defined by 

(�) - (n _

n!

r)! r!' 

with r! = r(r - 1) · · · (2)( 1) for r � 1 and O! = 1. Prove that the binomial coef

ficients satisfy the equation 

This equation generates all of the "interior" entries (printed in bold) of Pascal's triangle.t 

1 

1 

1 

1 4 

1 5 

1 1 

2 

3 3 

6 

10 10 

1 

1 

4 1 

5 1 

Sec. 2.3, #49 <li: 26. Use Exercise 25 and generalized induction to prove that (�) is an integer for all 

Sec. 6.3, #12 <li: integers n and r with 0 < r ::::::: n. 

27. Use the equation 

and mathematical induction on n to prove 

for all positive integers n. 

tmaise Pascal is credited for this triangular pattern. His biographical sketch appears at the end of this chapter. 
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28. Use the equation 

2.2 Mathematical Induction 81 

and mathematical induction on n to prove the binomial theorem as it is stated in 
Exercise 25. 

If B1, B2, and B3 are matrices in Mnxp(R), part b of Theorem 1.30 implies that 
B1 + (B2 + B3) = (B1 + B2) + B3. For each positive integer j 2: 3, this associative 
property can be extended to the following generalized statement: Regardless of how symbols 
of grouping are introduced in the sum B 1 + B2 + · · · + B1, the resulting value is the same 
matrix, and this justifies writing the sum without symbols of grouping. The generalized 
statement for sums is proved in Exercise 29 of Section 3.2 and for products in Theorem 3.7. 

Use these results in Exercises 29-31. 

29. Let A be an m X n matrix over R, and let B1, B2, ... , B1 be n X p matrices over R. 

Use Theorem 1.34 and mathematical induction to prove that 

A(B1 + B2 + · · · + B) = AB1 + AB2 + · · · + ABj 

for every positive integer j. 

30. Let C be a p X q matrix over R, and let B1, B2, ... , B1 be n X p matrices over R. 

Use Theorem 1.34 and mathematical induction to prove that 

(B1 + B2 + · · · + B)C = B1C + B2C + · · · + BjC 

for every positive integer j. 

Sec. 1.6, #32 � 31. If Ai. A2, ... , An are square matrices of order m over R and each Ai is invertible, then 
the product A1A2 · · · An is invertible. Use the reverse order law for inverses and math
ematical induction to prove 

(A1A2 · · · Ant1 
= A;;-

1 
· · · A2

1A1
1 

for all positive integers n. 

In Exercises 32-36, use mathematical induction to prove that the given statement is true 
for all positive integers n. 

32. 4n > n + 2 

33. n < 2n 

34. 1 + 2n :5 3n 

35. xn < yn, where x and y are integers with 0 < x < y 

36. n! < nn 

In Exercises 37-39, use mathematical induction on n to prove that the given statement is true. 

Sec. 1.1, #10 � 37. If n is a nonnegative integer and the set A has n elements, then the power set 2J>(A) has 
2n elements. 
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82 Chapter 2 The Integers 

Sec. 1.1, #10 P 38. If n;:::: 2 and the set A has n elements, then the number of elements of the power set (l}>(A) 
. . 

l l 
. (n) 

n ( n - 1 ) 
contammg exact y two e ements 1s 2 = 2 • 

Sec. 1.1, # 1 O P 39. If n ;:::: 3 and the set A has n elements, then the number of elements of the power set (l)>(A) 

containing exactly three elements is (3) = n(n - 1;1(n - 2)
. 

Sec. 1.1, #10 P 40. Exercises 37-39 can be generalized as follows: If 0 :::::: k < n and the set A has n ele

ments, then the number of elements of the power set (l)>(A) containing exactly k elements 

is (;:). 

a. Use this result to write an expression for the total number of elements in the power 

set (l)>(A). 

b. Use the binomial theorem as stated in Exercise 25 to evaluate the expression 

in part a and compare this result to Exercises 27 and 37. (Hint: Set a = b = 1 in 

the binomial theorem.) 

In Exercises 41-45, use generalized induction to prove the given statement. 

41. 1 + n < n2 for all integers n ;:::: 2 
42. 1 + 2n < n3 for all integers n ;:::: 2 
43. 1 + 2n < 2n for all integers n ;:::: 3 
44. 2n < n ! for all integers n > 4 
45. n3 < n ! for all integers n > 6 

46. Use generalized induction and Exercise 41 to prove that n2 < n! for all integers n ;:::: 4. 
47. Use generalized induction and Exercise 43 to prove that n2 < 2n for all integers n ::::::: 5. 

(In connection with this result, see the discussion of counterexamples in the Appendix.) 

Sec. 2.1, #30 P 48. Assume the statement from Exercise 30 in Section 2.1 that I x + y I :::::: I x I + I y I for all 

x and yin Z. Use this assumption and mathematical induction to prove that 

ia1 + a2 + .. · + an l ::5 ia1i + l a2i + · .. + l an l 
for all integers n ::::::: 2 and arbitrary integers a 1, a1, ... , an. 

49. Show that if the statement 

1 + 2 + 22 + · · · + 2n - 1 = 2n 

is assumed to be true for n = k, then it can be proved to be true for n = k + 1. Is the 

statement true for all positive integers n? Why? 

50. Show that if the statement 

n(n + 1) 
1+2+3+ · · ·  +n= +2 2 

is assumed to be true for n = k, the same equation can be proved to be true for 

n = k + 1. Explain why this does not prove that the statement is true for all positive 

integers. Is the statement true for all positive integers? Why? 
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51. Given the recursively defined sequence ai = 1, a2 = 4, and an = 2an-1 
an-2 + 2, use complete induction to prove that an = n2 for all positive integers n. 

52. Given the recursively defined sequence ai = 1, a2 = 3, a3 = 9, and an = an-1 + 

3an-2 + 9an-3, use complete induction to prove that an = 3n-l for all positive integers n. 

53. Given the recursively defined sequence a1 = 0, a2 = -30, and an = San-I - l5an_2, 
use complete induction to prove that an = 5 · 3n - 3 · 5n 

for all positive integers n. 

54. Given the recursively defined sequence a1 = 3, a2 = 7, a3 = 13, and an = 3an-l -
3an_2 + an_3, use complete induction to prove that an = n2 

+ n + 1 for all positive 
integers n. 

55. The Fibonaccit sequence Un} = 1, 1, 2, 3, 5, 8, 13, 2 1, ... is defined recursively by 

f1 = 1, f2 = 1, fn+2 = fn+l + fn for n = 1, 2, 3, .... 

a. Prove f1 + f2 + · · · + fn = fn+2 - 1 for all positive integers n. 

b. Use complete induction to prove thatfn < 2n for all positive integers n. 

c. Use complete induction to prove thatfn is given by the explicit formula 

( 1 + VS)n - ( 1 - \IS)n 

fn = 
2n\15 

(This equation is known as Binet's formula, named after the 19th-century French 
mathematician Jacques Binettt.) 

56. Let fI> f2, ... , fn be permutations on a nonempty set A. Prove that 

(fl o J2 o 
• • •  o fn) -1 = Jn-1 o 

• • •  o J2-l 
o J1-l 

for all positive integers n. 

57. Define powers of a permutation! on A by the following: 

J0 =IA, J1 =f, and r =r-l 0f forn > 1. 

Letf and g be permutations on a nonempty set A. Prove that 

u-10g0J )n=1-1 0 gn 0 f 

for all positive integers n. 

tThe Fibonacci sequence was first introduced to the western world in 1202 by Leonardo of Pisa (c. 1170-c. 1250), 
who was posthumously given the nickname Fibonacci. Considered as one of the most talented mathematicians 
of the Middle Ages, Fibonacci appreciated the superiority of the Hindu-Arabic numeral system (as opposed to 
the Roman numeral system) for its ease in performing the basic arithmetic operations and is credited for intro
ducing this system into Europe. 

ttJacques Binet ( 1786-1856) is credited for this formula for the nth term in the Fibonacci sequence (although it 
was known by Euler over a century earlier) and for developing the rule for matrix multiplication in 1812. Binet 
was also a noted physicist and astronomer. 
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84 Chapter 2 The Integers 

� Divisibility 

We turn now to a study of di visibility in the set of integers. Our main goal in this section is 
to obtain the Division Algorithm (Theorem 2.10). To achieve this, we need an important 
consequence of the induction postulate, known as the Well-Ordering Theorem. 

Theorem 2.7 • The Well-Ordering Theorem 

Every nonempty set S of positive integers contains a least element. That is, there is an 
element m E S such that m :::; x for all x E S. 

p :::::} q Proof Let S be a nonempty set of positive integers. If 1 E S, then 1 :::; x for all x E S, by 
Theorem 2.6. In this case, m = 1 is the least element in S. 

Consider now the case where 1 $. S, and let L be the set of all positive integers p such 
that p < x for all x E S. That is, 

L = {p E z+ Ip < x for all x E S}. 

Since 1 $. S, Theorem 2.6 assures us that 1 EL. We shall show that there is a positive integer 
p0 such that p0 E L and p0 + 1 $. L. Suppose this is not the case. Then we have that p E L 
implies p + 1 E L, and L = Z + by the induction postulate. This contradicts the fact that S is 
nonempty (note that L n S = 0). Therefore, there is a Po such that Po E L and Po + 1 $. L. 

We must show that p0 + 1 E S. We have Po < x for all x E S, so p0 + 1 < x for all 
x E S (see Exercise 29 at the end of this section). If po + 1 < x were always true, then 
po + 1 would be in L. Hence po + 1 = x for some x E S, and m = po + 1 is the required 
least element in S. 

Definition 2.8 • Divisor, Multiple 

Basis Step 
Induction 

Hypothesis 

Let a and b be integers. We say that a divides b if there is an integer c such that b = ac. 

If a divides b, we write a lb. Also, we say that b is a multiple of a, or that a is a factor 
of b, or that a is a divisor of b. If a does not divide b, we write a ( b. 

Example 1 We use mathematical induction to prove that 

3 is a factor of 5n - 2n 

for all positive integers n. 

The statement is true for n = 1 since 3 is a factor of 51 - 21 = 3. 
Assume that 3 is a factor of 5k - 2k. That is, 

5k - 2k = 3z 

for some integer z. 
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Inductive Step Then 

5k+ 1 - 2k+ 1 = 5k • 5 - 2k • 2 

= 5k • 5 - 5k • 2 + 5k • 2 - 2k • 2 

= 5k(5 - 2) + 2(5k - 2k) 

= 5k(3) + 2(3z) 

= 3(5k + 2z). 

Since 5k + 2z is an integer, then 3 is a factor of 5k+ 1 - 2k+ 1. 

Hence 3 is a factor of 5n - 2n for all positive integers n. • 

It may come as a surprise that we can use our previous results to prove the following 

simple theorem. 

Theorem 2.9 • Divisors of 1 

The only divisors of 1 are 1 and -1. 

p:::::} (q V r) Proof Suppose a is a divisor of 1. Then 1 = ac for some integer c. The equation 1 = ac 
requires a =f=. 0, so either a E z+ or -a E z+. 

Consider first the case where a E z+. This requires c E z+ (see Exercise 32 of 

Section 2.1), so we have 1 ::; a and 1 ::; c, by Theorem 2.6. Now 

1 <a=> 1 • c <a· c by Exercise 18 of Section 2.1 

:::::} c < 1 since ac = 1, 

and this is a contradiction of 1 ::; c. Thus 1 = a is the only possibility when a E Z +. 
Considert now the case where -a E Z +. By Exercise 5 of Section 2.1, we have 

(-a)(-c) = ac = 1, 

and -a E z+ implies that -c E z+ by Exercise 32 of Section 2.1. Therefore, 1 ::; -a 
and 1 ::; -c by Theorem 2.6. Now 

1 < -a :::::} ( 1 )( -c) < ( -a)( -c) by Exercise 18 of Section 2.1 

:::::} -c < 1 since ( -a) ( -c) = 1, 

and -c < 1 is a contradiction to 1 ::; -c. Therefore, 1 = -a is the only possibility when 

-a E z+, and we have 

a = -( -a) by Exercise 3 of Section 2.1 

-1 since -a = 1. 

tThe proof for this case is similar to that where a E z+, but we include it here because it illustrates several uses 
of results from Section 2.1. 
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86 Chapter 2 The Integers 

Combining the cases where a E z+ and where -a E z+, we have shown that either 

a = 1 or a = -1 if a is a divisor of 1. 

Our next result is the basic theorem on divisibility. 

Theorem 2.10 • The Division Algorithm 

Let a and b be integers with b > 0. Then there exist unique integers q and r such that 

a = bq + r with 0 ::5 r < b. 

Existence Proof Let S be the set of all integers x that can be written in the form x = a - bn 

for n E Z, and let S' denote the set of all nonnegative integers in S. The set S' is nonempty. 

(See Exercise 30 at the end of this section.) If 0 E S', we have a - bq = 0 for some q, and 

a = bq + 0. If 0 (/:. S', then S' contains a least element r = a - bq, by the Well-Ordering 

Theorem, and 

a= bq + r 

where r is positive. Now 

r - b = a - bq - b = a - b(q + 1), 

so r - b ES. Since r is the least element in S' and r - b < r, it must be true that r - b 

is negative. That is, r - b < 0, and r < b. Combining the two cases (where 0 ES' and 

where 0 (/:. S'), we have 

a = bq + r with 0 ::5 r < b. 

Uniqueness To show that q and r are unique, suppose a = bq1 + r1 and a = bq2 + r2, where 

0 ::5 r1 < b and 0 ::5 r1 < b. We may assume that r1 ::5 r1 without loss of generality. This 

means that 

However, we also have 

0 ::5 r2 - r1 = (a - bq2) - (a - bq1) = b(q1 - qz). 

That is, r2 - r1 is a nonnegative multiple of b that is less than b. For any positive integer n, 

1 ::5 n implies b ::5 bn. Therefore, r1 - r1 = 0 and ri = r1. It follows that bq1 = bq2, 
where b =I= 0. This implies that q1 = q2 (see Exercise 26 of Section 2.1). We have shown 

that ri = r1 and qi = q1, and this proves that q and rare unique. 

The word algorithm in the heading of Theorem 2.10 may seem strange at first glance, 

since an algorithm is usually a repetitive procedure for obtaining a result. The use of the 

word here is derived from the fact that the elements a - bn of S' in the proof may be found 

by repeated subtraction of b: 

a - b,a - 2b,a - 3b, 

and so on. 
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In the Division Algorithm, the integer q is called the quotient and r is called the 

remainder in the division of a by b. The conclusion of the theorem may be more familiar 

in the form 

but we are restricting our work here so that only integers are involved. 

Example 2 When a and bare both positive integers, the quotient q and remainder r 

can be found by the familiar routine of long division. For instance, if a = 357 and b = 13, 
long division gives 

357 = (13)(27) + 6, 

so q = 27 and r = 6 in a = bq + r, with 0 ::::::: r < b. 
If a is negative, a minor adjustment (see Exercise 31 of this section) can be made to 

obtain the expression in the Division Algorithm. With a = -357 and b = 13, the preced

ing equation can be multiplied by -1 to obtain 

-357 = (13)(-27) + (-6). 

To obtain an expression with a positive remainder, we need to only subtract and add 13 in 

the right member of the equation: 

-357 = (13)(-27) + (13)(-1) + (-6) + 13 
= ( 13) ( -28) + 7. 

Thus q = -28 and r = 7 in the Division Algorithm, with a = -357 and b = 13. • 

Exercises 2.3 

True or False 

Label each of the following statements as either true or false. 

1. The Well-Ordering Theorem implies that the set of even integers contains a least 

element. 

2. Let b be any integer. Then 0 I b. 
3. Let b be any integer. Then b I 0. 

4. Olb only if b = 0. 

5. Let a and b be integers with b > 0. Then b I a if and only if the remainder r in the 

Division Algorithm, when a is divided by b, is 0. 

6. Let a and b be integers with a =I=- 0, such that alb. Then al-band -alb and -al-b. 
7. Let a and b be integers. Then 2 I ab( a + b). 
8. If ale and hie, then able. 
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88 Chapter 2 The Integers 

9. If a l b and b l a, then a= b. 

10. If a l (b + e), then a l b or a l e. 

Exercises 

1. List all divisors of the following integers. 

a. 30 b. 42 

e. 24 f. 40 

c. 28 

g. 32 

d. 45 

h. 210 

2. List all common divisors of each of the following pairs of integers. 

a. 30, 28 b. 42, 45 c. 24, 32 d. 210, 40 

e. -40, 24 f. -30, -50 

With a and b as given in Exercises 3-16, find the q and r that satisfy the conditions in the 
Division Algorithm. 

3. a= 796,b = 26 

5. a = 1149, b = 52 

7. a = -12, b = 5 

9. a = -863, b = 17 

11. a = 26, b = 796 

13. a = -4317, b = 12 

4. a = 512, b = 15 

6. a = 1205, b = 37 

8. a = -27, b = 7 

10. a = -921, b = 18 

12. a= 15,b = 512 

14. a = -5316, b = 171 

15. a = 0, b = 3 16. a = 0, b = 5 

17. Prove that if a, b, and e are integers such that a l b  and a l e, then a l (b + e). 

18. Let R be the relation defined on the set of integers Z by aRb if and only if a I b. Prove 
or disprove that R is an equivalence relation. 

19. Let a, b, e, m, and n be integers such that aJb and a l e. Prove that a I (mb + ne). 

20. Let a, b, e, and d be integers such that a I b and e Id. Prove that ae I bd. 

21. Prove that if a and bare integers such that a l b  and b l a, then either a = b or a = -b. 

22. Prove that if a and b are integers such that b * 0 and a I b, then I a I :::; I b I · 

23. Let a and b be integers such that a l b  and l b l  < l a l .  Prove that b = 0. 

24. Let a, b, and e be integers. Prove or disprove that a l b  implies ae l be. 

25. Let a, b, and e be integers. Prove or disprove that a l  be implies a l b  or a l e. 

26. Let a be an integer. Prove that 2 l a (a + 1). (Hint: Consider two cases.) 

27. Let a be an integer. Prove that 3 l a  (a + 1) (a + 2). (Hint: Consider three cases.) 

28. Let a be an odd integer. Prove that 8 I ( a2 - 1). 

29. Let m be an arbitrary integer. Prove that there is no integer n such that m < n < m + 1. 

30. Let S be as described in the proof of Theorem 2.10. Give a specific example of a 
positive element of S. 
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2.4 Prime Factors and Greatest Common Divisor 89 

31. Let a and b be integers with b > 0 and a = bq + r with 0 ::::::; r < b. Use this result to 
find the unique quotient and remainder as described by the Division Algorithm when 
-a is divided by b. 

32. Use the Division Algorithm to prove that if a and bare integers, with b i= 0, then there 
exist unique integers q and r such that a = bq + r, with 0 ::::::; r < I b I· 

33. Prove that the Well-Ordering Theorem implies the induction postulate Sin Section 2.1. 

34. Assume that the Well-Ordering Theorem holds, and prove the Second Principle of 
Finite Induction. 

In Exercises 3S-48, use mathematical induction to prove that the given statement is true 
for all positive integers n. 

35. 

37. 

39. 

41. 

43. 

45. 

3 is a factor of n3 + 2n 

3 is a factor of n3 - n 

6 is a factor of n3 - n 

3 is a factor of 4n - 1 

S is a factor of 7n - 2n 

4 is a factor of 32n - 1 

36. 3 is a factor of n3 - 7n 

38. 3 is a factor of n3 + Sn 

40. 6 is a factor of n3 + Sn 

42. 8 is a factor of 9n - 1 

44. 4 is a factor of 9n - sn 

46. S is a factor of 3Zn - 22n 

47. For all a and b in Z, a - b is a factor of an - bn. (Hint: ak+l - bk+I = ak(a - b )  + 
(ak - bk)b.) 

48. For all a and b in Z, a + b is a factor of a2n - b2n. 

Sec. 2.2, #26 � 49. a. The binomial coefficients (�) are defined in Exercise 2S of Section 2.2. Use induc
tion on r to prove that if pis a prime integer, then pis a factor of (f) for r = 1, 2, ... , 
p - 1. (From Exercise 26 of Section 2.2, it is known that (f) is an integer.) 

b. Use induction on n to prove that if p is a prime integer, then p is a factor of nP - n. 

� Prime Factors and Greatest Common Divisor 

In this section, we establish the existence of the greatest common divisor of two integers 
when at least one of them is nonzero. The Unique Factorization Theorem, also known as 
the Fundamental Theorem of Arithmetic, is obtained. 

Definition 2.11 • Greatest Common Divisor 

An integer d is a greatest common divisor of a and b if all these conditions are satisfied: 

1. d is a positive integer. 

2. dla and dlb. 

3. cia and clb imply cld. 
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The next theorem shows that the greatest common divisor d of a and b exists when 
at least one of them is not zero. Our proof also shows that d is a linear combination of a 
and b; that is, d = ma + nb for integers m and n. 

Strategy • The technique of proof by use of the Well-Ordering Theorem in Theorem 2.12 should be 
compared to that used in the proof of the Division Algorithm (Theorem 2.10). 

Theorem 2.12 • Greatest Common Divisor 

Let a and b be integers, at least one of them not 0. Then there exists a unique greatest com
mon divisor d of a and b. Moreover, d can be written as 

d =am+ bn 

for integers m and n, and dis the smallest positive integer that can be written in this form. 

Existence Proof Let a and b be integers, at least one of them not 0. If b = 0, then a =f=. 0, so I a I > 0. 
It is easy to see that d = l a l  is a greatest common divisor of a and b in this case, and either 
d = a -(1) + b • (0) or d = a· (-1) + b • (0). 

Suppose now that b =f=. 0. Consider the set S of all integers that can be written in the 
form ax + by for some integers x and y, and let s+ be the set of all positive integers in S. 

The set S contains b = a· (0) + b · (1) and -b = a· (0) + b · (-1), sos+ is not empty. 
By the Well-Ordering Theorem, s+ has a least element d, 

d =am+ bn. 

We have d positive, and we shall show that dis a greatest common divisor of a and b. 
By the Division Algorithm, there are integers q and r such that 

From this equation, 

a = dq + r with 0 ::::::: r < d. 

r=a- dq 

= a - (am + bn)q 

= a(l - mq) + b( -nq). 

Thus r is in S = {ax + by}, and 0 ::::::: r < d. By choice of d as the least element in s+, it 
must be true that r = 0, and d l a. Similarly, it can be shown that dlb. 

If c I a and c I b, then a = ch and b = ck for integers h and k. Therefore, 

d =am+ bn 

=chm+ ckn 

= c(hm +kn), 

and this shows that c l d. By Definition 2.11, d = am + bn is a greatest common divisor of 
a and b. It follows from the choice of d as least element of s+ that dis the smallest positive 
integer that can be written in this form. 
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Uniqueness To show that the greatest common divisor of a and b is unique, assume that d1 and d2 are 
both greatest common divisors of a and b. Then it must be true that d1 ld2 and d2ld1. Since d1 
and d2 are positive integers, this means that d1 = d2 (see Exercise 21 of Section 2.3). 

Whenever the greatest common divisor of a and b exists, we shall write (a, b) or 
gcd(a, b) to indicate the unique greatest common divisor of a and b. 

When at least one of a and b is not 0, the proof of the last theorem establishes the 
existence of (a, b), but looking for a smallest positive integer in S = {ax + by} is not a 
very satisfactory method for finding this greatest common divisor. A procedure known as 
the Euclidean Algorithm furnishes a systematic method for finding (a, b) where b > 0. 
It can also be used to find integers m and n such that (a, b) = am + bn. This procedure 
consists of repeated applications of the Division Algorithm according to the following pat
tern, where a and b are integers with b > 0. 

The Euclidean Algorithm 

a = bq0 + rt> 

b = r1q1 + rz, 

ri = rzqz + r3, 

0 :::5 r1 < b 

0 :::5 r2 < r1 

0 :::5 r3 < r2 

Since the integers r1, r2, ... , rk+2 are decreasing and are all nonnegative, there is a smallest 
integer n such that rn+I = 0: 

If we put ro = b, this last nonzero remainder rn is always the greatest common divisor of a 
and b. The proof of this statement is left as an exercise. 

As an example, we shall find the greatest common divisor of 1492 and 1776. 

Example 1 Performing the arithmetic for the Euclidean Algorithm, we have 

1776 = (1)(1492) + 284 
1492 = (5)(284) + 72 
284 = (3)(72) + 68 

72 = (1)(68) + 4 
68 = (4)(17) 

(qo = 1, r1 = 284) 
(q1 = 5, r2 = 72) 
(q2 = 3, r3 = 68) 
(q3 = 1, r4 = 4) 
(q4 = 17, r5 = 0). 

Thus the last nonzero remainder is rn = r4 = 4, and (1776, 1492) = 4. • 

As mentioned earlier, the Euclidean Algorithm can also be used to find integers m and 
n such that 

(a, b) = am + bn. 
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We can obtain these integers by solving for the last nonzero remainder and substituting the 

remainders from the preceding equations successively until a and bare present in the equa

tion. For example, the remainders in Example 1 can be expressed as 

284 = (1776)(1) + (1492) (- 1) 

72 = (1492)(1) + (284) (- 5) 

68 = (284)(1) + (72) (  - 3) 

4 = ( 72) ( 1) + ( 68) ( - 1) . 

Substituting the remainders from the preceding equations successively, we have 

4 = (72) (1) + [(284) (1) + (72) (- 3) ](- 1) 

= (72) (1) + (284)(- 1) + (72) (3) 

= ( 72) ( 4) + ( 284) ( - 1 ) after the first substitution 

= [(1492) (1) + (284)(- 5) ](4) + (284) (- 1) 

= ( 1492) ( 4) + ( 284) ( - 20) + ( 284) ( - 1) 

= (1492) (4) + (284) (- 21) after the second substitution 

= (1492) (4) + [(1776) (1) + (1492) (- 1) ](- 21) 

= (1492) (4) + (1776)(  - 21) + (1492) (21) 

= ( 177 6) ( - 21) + ( 1492) ( 25) after the third substitution. 

Thus m = - 21 and n = 25 are integers such that 

4 = 1776m + 1492n. 

The remainders are printed in bold type in each of the preceding steps, and we carefully 

avoided performing a multiplication that involved a remainder. 

ALERT The m and n are not unique in the equation 

(a,b) =am+ bn. 

To see this, simply add and subtract the product ab: 

(a, b) = am + ab + bn - ab 

= a(m + b) + b(n - a) . 

Thus m' = m + b and n' = n - a are another pair of integers such that 

( a, b) =am'+ bn'. 

Definition 2.13 • Relatively Prime Integers 

Two integers a and b are relatively prime if their greatest common divisor is 1. 

In the next two sections of this chapter, we prove some interesting results concerning 

those integers that are relatively prime to a given integer n. Theorem 2.14 is useful in the 

proofs of those results. 
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If a and bare relatively prime and al be, then ale. 

(p /\ q) :::::} r Proof Assume that (a, b) = 1 and a I be. Since (a, b) = 1, there are integers m and n 
such that 1 = am + bn, by Theorem 2.12. Since albc, there exists an integer q such that 
be= aq. Now, 

1 = am + bn ==? c = acm + bcn 

Thus the theorem is proved. 

==? c = acm + aqn since be = aq 

==? c = a( cm + qn) 

==?ale. 

Among the integers, there are those that have the fewest number of factors possible. 
Some of these are the prime integers. 

Definition 2.15 • Prime Integer 

An integer pis a prime integer if p > 1 and the only divisors of p are ± 1 and ±p. 

Note that the condition p > 1 makes p positive and ensures that p i' 1. The exclu
sion of 1 from the set of primes makes possible the statement of the Unique Factorization 
Theorem. Before delving into that, we prove the important property of primes in 
Theorem 2.16. 

Strategy • The conclusion in the next theorem has the form "r ors." One technique that can be 
used to prove an "or" statement such as this is to assume that one part (such as r) does 
not hold, and use this assumption to help prove that the other part must then hold. 

Theorem 2.16 • Euclid'st Lemma 

If p is a prime and p I ab, then either p I a or p I b. 

(p /\ q):::::} (r Vs) Proof Assume pis a prime and p lab. If p l a, the conclusion of the theorem is satisfied. 
Suppose, then, that p does not divide a. This implies that 1 = (p, a), since the only 

positive divisors of pare 1 and p. Then Theorem 2.14 implies that p l b. Thus plb if p does 
not di vi de a, and the theorem is true in any case. 

tEuclid (c. 325 B.c.-c. 265 B.C.), a Greek mathematician considered to be the "Father of Geometry," presented 
the principles of Euclidean geometry in his Elements, the most famous mathematics works in all of history. 
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The method of proof used in the next example and in Theorem 2.20 is contradiction. 

Strategy • A statement p � q may be proved by assuming p is true and q is false and then reach a 
contradiction (an impossible situation such as some statement that is both true and false). 

Example 2 To prove that \/2 is not a rational number, we assume that it is rational, 
and can be expressed as 

\/2 = � b' 
a 

where the fraction b is in lowest terms-that is, (a, b) = 1. We now can write 

2b2 = a2 
which implies that 2la2• But Euclid's Lemma guarantees that 2la or a = 2z for some inte
ger z. Then 

2b2 = a2 = (2z)2 = 
4z2 

gives 

b2 = 2z2. 
Now, we see that 2lb2 and again Euclid's Lemma implies that 2jb. Hence, we have a con
tradiction to the assumption that (a, b) = 1. We conclude that \/2 is irrational. • 

The following corollary generalizes Theorem 2. 16 to products with more than two 
factors. Its proof is requested in the exercises. A direct result of this corollary is that if p is 
prime andpjan, thenpja. 

Corollary 2.17 • 

If p is a prime and p I (a 1 az · · · an), then p divides some ai. 

This brings us to the Unique Factorization Theorem, a result of such importance that 
it is frequently called the Fundamental Theorem of Arithmetic. 

Strategy • Note the proof of the uniqueness part of Theorem 2. 18: Two factorizations are assumed, 
and then it is proved that the two are equal. 

Theorem 2.18 • Unique Factorization Theorem 

Every positive integer n either is 1 or can be expressed as a product of prime integers, and 
this factorization is unique except for the order of the factors. 
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Proof In the statement of the theorem, the word product is used in an extended sense: 

The product may have just one factor. 

Let Pn be the statement that either n = 1 or n can be expressed as a product of primes. 

We shall prove that Pn is true for all n E z+ by the Second Principle of Finite Induction. 

Now P1 is trivially true. Assume that Pm is true for all positive integers m < k. If k is 

a prime, then k is a product with one prime factor, and Pk is true. Suppose k is not a prime. 

Then k = ab, where neither a nor b is 1. Therefore, 1 < a < k and 1 < b < k. By the 

induction hypothesis, Pa is true and Pb is true. That is, 

a = P1P2 · · ·Pr and b = q1q2 · · · qs 

for primes Pi and qj. These factorizations give 

k = ab = P1P2 · · · Prq1q2 · · · qs, 

and k is thereby expressed as a product of primes. Thus Pk is true, and therefore Pn is true 

for all positive integers n. 
Uniqueness To prove that the factorization is unique, suppose that 

n = P1P2 · · ·Pt and n = qiq2 · · · qv 

are factorizations of n as products of prime factors Pi and qj. Then 

P1P2 · · ·Pt = q1q2 · · · qv, 

so Pl I (q1q2 · · · qv). By Corollary 2.17, Pl lqj for some j, and there is no loss of generality if 

we assume j = 1. However, Pl and qi are primes, so Pl lq1 implies qi = Pl· This gives 

PiP2 · .. Pt = P1q2 · · . qv, 

and therefore 

P2 · · · Pt = q2 · · · qv 

by the cancellation law. This argument can be repeated, removing one factor Pi with each 

application of the cancellation law, until we obtain 

Pt= qt ... qv. 

Since the only positive factors of Pt are 1 and Pt• and since each qj is a prime, this means 

that there must be only one qj on the right in this equation, and it is qt. That is, v = t and 

qt = Pt· This completes the proof. 

The Unique Factorization Theorem can be used to describe a standard form of a posi

tive integer n. Suppose p1,p2, ... ,pr are the distinct prime factors of n, arranged in order 

of magnitude so that 

P1 < P2 < · · · < Pr· 

Then all repeated factors may be collected together and expressed by use of exponents to 

yield 

where each mi is a positive integer. Each mi is called the multiplicity of Pi, and this fac

torization is known as the standard form for n. The standard form for an integer n can be 
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used to find the greatest common divisor of positive integers a and h. It can also be used to 

find the least common multiple as defined next. 

Definition 2.19 • Least Common Multiple 

A least common multiple of two nonzero integers a and h is an integer m that satisfies all 

the following conditions: 

1. mis a positive integer. 

2. aim and him. 

3. ale and hie imply mlc. 

Exercise 27 requests proofs that the least common multiple of two nonzero integers exists 

and is unique. We write [a, h] or lcm (a, h) to indicate the unique least common multiple of 

a andh. 

Example 3 We use the standard forms for two positive integers a and h to find their 

greatest common divisor (a, h) and their least common multiple [a, h]. For instance, if 

a = 31 752 = 23 
• 34 

• 72 and h = 126 000 = 24 
• 32 

• 53 
• 7 ' ' ' 

then (a, h) can be found by forming the product of all the common prime factors, with each 

common factor raised to the least power to which it appears in either factorization: 

(a,b) = 23 • 32 • 7 = 504. 

Also, [a, h] can be found by forming the product of all the distinct prime factors that appear 

in the standard form of either a or h, with each factor raised to the greatest power to which 

it appears in either factorization: 

[a, b J = 24 
• 34 

• 53 • 72 = 7,938,000. • 

From one point of view, the Unique Factorization Theorem says that the prime 

integers are building blocks for the integers, where the "building" is done by using 

multiplication and forming products. A natural question, then, is: How many blocks? 

Our next theorem states the answer given by the ancient Greek mathematician Euclid

that the number of primes is infinite. The proof is also credited to Euclid. 

Theorem 2.20 • Euclid's Theorem on Primes 

The number of primes is infinite. 

Contradiction Proof Assume there are only a finite number, n, of primes. Let these n primes be denoted 

by p1, p2, ... , Pn· and consider the integer 

m = P1P2 · · · Pn + 1. 

It is clear that the remainder in the division of m by any prime Pi is 1, so each Pi is not a fac

tor of m. Thus there are two possibilities: Either m is itself a prime, or it has a prime factor 

that is different from every one of the Pi· In either case, we have a prime integer that was 

not in the list p1, p2, ... , Pn· Therefore, there are more than n primes, and this contradiction 

establishes the theorem. 
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Exercises 2.4 

True or False 

Label each of the following statements as either true or false. 

1. The set of prime numbers is closed with respect to multiplication. 

2. The set of prime numbers is closed with respect to addition. 

3. The greatest common divisor is a binary operation from Z - { 0} X Z to Z +. 

4. The least common multiple is a binary operation from Z - {O} X Z - {O} to z+. 

5. The greatest common divisor is unique, when it exists. 

6. Let a and b be integers, not both zero, such that 1 = (a, b). Then there exist integers x 
and y such that 1 =ax+ by and ( x, y) = 1. 

7. Let a and b be integers, not both zero, such that d = ax + by for integers x and y. Then 

d = (a, b). 

8. Let a and b be integers, not both zero, such that d = (a, b). Then there exist unique 

integers x and y such that d = ax+ by. 

9. Let a and b be integers, not both zero. Then (a, b) = (-a, b). 

10. Let a be an integer, then (a, a + 1) = 1. 

11. Let a be an integer, then (a, a + 2) = 2. 

12. If (a, b) = 1 and (a, c) = 1, then (b, c) = 1. 

13. Let a be an integer. Then (a, 0) = a. 

Exercises 

In this set of exercises, all variables represent integers. 

1. List all the primes less than 100. 

2. For each of the following pairs, write a and b in standard form and use these factoriza

tions to find (a, b) and [a, b]. 

a. a = 1400, b = 980 

b. a = 4950, b = 10,500 

c. a = 3780, b = 16,200 

d. a = 52,920, b = 25,200 

3. In each part, find the greatest common divisor (a, b) and integers m and n such that 

(a,b) =am+ bn. 

a. a= 0, b = -3 

c. a = 102, b = 66 

e. a = 414, b = -33 

g. a= 414,b = 693 

La= 1197,b = 312 

b. a= 65, b = -91 

d. a = 52, b = 124 

f. a = 252, b = -180 

h. a = 382, b = 26 

j. a = 3780, b = 1200 
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k. a = 6420, b = 132 

m. a = 5088, b = -156 

4. Find the smallest integer in the given set. 

I. a= 602,b = 252 

n. a = 8767, b = 252 

a. { x E Z J x > 0 and x = 4s + 6t for some s, t in Z } 

b. {x E Z Jx > 0 and x = 6s + l5t for some s, tin Z} 

5. Prove that if p and q are distinct primes, then there exist integers m and n such that 
pm+ qn = 1. 

6. Show that n2 - n + 5 is a prime integer when n = 1, 2, 3, 4 but that it is not true that 
n2 - n + 5 is always a prime integer. Write out a similar set of statements for the 
polynomial n2 - n + 11. 

7. If a > 0 and alb, then prove or disprove that (a, b) =a. 

8. If a = be + 1, prove (a, b) = 1. 

9. Let a, b, and e be integers such that a =I- 0. Prove that if a J be, then a J e · (a, b). 

10. Let a be a nonzero integer and b a positive integer. Prove or disprove that (a, b) = 
(a, a+ b). 

11. Let aje and bje, and (a, b) = 1, prove that ab divides e. 

12. Prove that if d = (a, b), aje, and ble, then ab Jed. 

13. Let (a, b) = 1 and eJ(a + b ) . Prove or disprove that (a, e) = 1. 

14. If b > 0 and a = bq + r, prove that (a, b) = (b, r). 

15. Let r0 = b > 0. With the notation used in the description of the Euclidean 
Algorithm, use the result in Exercise 14 to prove that (a, b) = rn, the last nonzero 
remainder. 

16. Prove that every remainder r1 in the Euclidean Algorithm is a "linear combination" of 
a and b: r1 = s1a + t1b, for integers s1 and t1. 

17. Let a and b be integers, at least one of them not 0. Prove that an integer e can be 
expressed as a linear combination of a and b if and only if (a, b) I e. 

18. Prove Corollary 2.17: If p is a prime and p J (a1a2 · · · an), then p divides some a1. (Hint: 
Use induction on n.) 

19. Prove that if n is a positive integer greater than 1 such that n is not a prime, then n has 
a divisor d such that 1 < d :::; Vn. 

20. Prove that (ab, e) = 1 if and only if (a, e) = 1 and (b, e) = 1. 

21. Let (a, b) = 1 and (a, e) = 1. Prove or disprove that (ae, b) = 1. 

22. Let (a, b) = 1. Prove (a, be) = (a, e), where e is any integer. 

23. Let (a, b) = 1. Prove (a2, b2) = 1. 

24. Let (a, b) = 1. Prove that (a, bn) = 1 for all positive integers n. 

25. Prove that if m > 0 and (a, b) exists, then (ma, mb) = m · (a, b). 

Sec. 2.5, #28 � 26. Prove that if d = (a, b), a = aod, and b = bod, then (ao, bo) = 1. 
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27. Prove that the least common multiple of two nonzero integers exists and is unique. 

28. Let a and b be positive integers. If d = (a, b) and mis the least common multiple of a 
and b, prove that dm = ab. Note that it follows that the least common multiple of two 
positive relatively prime integers is their product. 

29. Let a and b be positive integers. Prove that if d = (a, b), a = a0d, and b = bod, then 
the least common multiple of a and b is aobod. 

30. Let a, b, and c be three nonzero integers. 

a. Use Definition 2.11 as a pattern to define a greatest common divisor of a, b, and c. 

b. Use Theorem 2.12 and its proof as a pattern to prove the existence of a greatest 
common divisor of a, b, and c. 

c. If d is the greatest common di visor of a, b, and c, show that d = ( (a, b), c) . 

d. Prove ((a, b), c) = (a, (b, c)). 

31. Find the greatest common divisor of a, b, and c and write it in the form ax + by + cz 

for integers x, y, and z. 

a. a= 14, b = 28, c = 35 

b. a = 26, b = 52, c = 60 
c. a= 143, b = 385,c = -65 
d. a = 60, b = -84, c = 105 

32. Use the Second Principle of Finite Induction to prove that every positive integer n can 
be expressed in the form 

n = Co + C1 • 3 + C2 • 32 + ... + Cj-1 • 3j-l + cj • 3j, 

where j is a nonnegative integer, Ci E {O, 1, 2} for all i < j, and c1 E { 1, 2}. 

33. Use the fact that 3 is a prime to prove that there do not exist nonzero integers a and b 
such that a2 = 3b2• Explain how this proves that v'3 is not a rational number. 

Sec. 8.4, #25a � 34. Let p be prime. Prove that Vp is not a rational number. 

Sec. 8.4, #25b � 35. Prove that V2 is not a rational number. 

� Congruence of Integers 

In Example 4 of Section 1.7, we defined the relation "congruence modulo 4" on the set Z 

of all integers, and we proved this relation to be an equivalence relation on Z. That example 
is a special case of congruence modulo n, as defined next. 

Definition 2.21 • Congruence Modulo n 

Let n be a positive integer, n > 1. For integers x and y, x is congruent toy modulo n if and 
only if x - y is a multiple of n. We write 

x = y (modn) 

to indicate that x is congruent to y modulo n. 
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Thusx = y(modn) if and only ifn dividesx -y,and this is equivalent tox -y = nq, 
or x = y + nq. Another way to describe this relation is to say that x and y yield the same 
remainder when each is divided by n. To see that this is true, let 

and 

Then 

x = nq1 + r1 with 0 ::::::: r1 < n 

y = nq2 + r2 with 0 ::::::: r2 < n. 

Thus x -y is a multiple of n if and only if r1 - r2 = 0-that is, if and only if r1 = rz. In 
particular, any integer x is congruent to its remainder when divided by n. This means that 
any x is congruent to one of 

0, 1, 2, ... , n - 1. 

Congruence modulo n is an equivalence relation on Z, and this fact is important 
enough to be stated as a theorem. 

Theorem 2.22 • Equivalence Relation 

Reflexive 

Symmetric 

Transitive 

The relation of congruence modulo n is an equivalence relation on Z. 

Proof We shall show that congruence modulo n is (1) reflexive, (2) symmetric, and 
(3) transitive. Let n > 1, and let x, y, and z be arbitrary in Z. 

1. x = x (mod n) since x - x = (n)(O). 

2. x = y (mod n) => x -y = nq for some q E Z 

=> y - x = n( -q) and -q E Z 

=> y = x (mod n). 

3. x = y(modn) and y = z(modn) 

=> x -y = nq and y -z = nk and q, k E Z 

=>x-z=x-y+y-z 

= n(q + k), and q + k E Z 

=> x = z (mod n). 

As with any equivalence relation, the equivalence classes for congruence modulo n 
form a partition of Z; that is, they separate Z into mutually disjoint subsets. These subsets 
are called congruence classes or residue classes. Referring to Definition 1.39, we have 

[a] = {x E Z Ix = a (mod n)} 

= {x E Z Ix - a = nk, k E Z} 

= {x E Z Ix = a + nk, k E Z} 

= [a + nk, k E Z], 
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so there are n distinct congruence classes modulo n, given by 

[OJ = { ... , -2n, -n, 0, n, 2n, ... } 

[lJ = { ... , -2n + 1, -n + 1, 1, n + 1, 2n + 1, ... } 

[ 2 J = { ... , -2n + 2, -n + 2, 2, n + 2, 2n + 2, ... } 

[n - lJ = { ... , -n - 1, -1, n - 1, 2n - 1, 3n - 1, ... }. 

When n = 4, these classes appear as 

[OJ = { ... , -8, -4, 0, 4, 8, ... } 

[lJ = { ... ' -7, -3, 1, 5, 9, ... } 

[2J = { ... ' -6, -2, 2, 6, 10, ... } 

[3J = { ... ' -5, -1, 3, 7, 11, ... }. 

Congruence classes are useful in connection with numerous examples, and we shall see 
more of them later. 

Although x = y (mod n) is certainly not an equation, in many ways congruences 
can be handled in the same fashion as equations. The next theorem asserts that the same 
integer can be added to both members and that both members can be multiplied by the 
same integer. 

Theorem 2.23 • Addition and Multiplication Properties 

If a = b (mod n) and x is any integer, then 

a+ x = b + x (mod n) and ax= bx (mod n). 

p::::? q Proof Let a = b (mod n) and x E Z. We shall prove that ax = bx (mod n) and leave the 
other part as an exercise. We have 

a = b (mod n) =* a - b = nq for q E Z 

=*(a - b) x = (nq) x forq, x E Z 

=*ax - bx= n(qx) forqx E Z 

=*ax= bx (mod n). 

Congruence modulo n also has substitution properties that are analogous to those 
possessed by equality. Suppose we wish to compute the product (25) (17) (mod 6). Since 
25 = 1 (mod 6) and 17 = 5 (mod 6), the following theorem allows us to compute the product 
(25) (17) (mod 6) as (1) (5) = 5 (mod 6) instead of (25) (17) = 425 (mod 6) = 5 (mod 6). 

Theorem 2.24 • Substitution Properties 

Suppose a= b (mod n) and c = d (mod n). Then 

a + c = b + d (mod n) and ac = bd (mod n). 
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(p /\ q) => r Proof Let a= b (mod n) and e = d (mod n). By Theorem 2.23, 

a = b (mod n) => ae = be (mod n) 

and 

e = d (mod n) =>be= bd (mod n). 

But ae = be (mod n) and be = bd (mod n) imply ae = bd (mod n), by the transitive 
property. 

The proof that a + e = b + d (mod n) is left as an exercise. 

Example 1 Since exponentiation is just repeated multiplication, Theorem 2.24 can be 
used to evaluate powers modulo n. Consider 5823 (mod 9). Since 

then by Theorem 2.24, 

Also since 

then 

58 = 4 (mod 9), 

5823 = 423 (mod 9). 

5823 = 423 (mod 9) 
= 4 2 • ( 4 3) 7 (mod 9) 
= (16) (64)7 (mod 9) 
= ( 7) ( 1) 7 (mod 9) 
= 7 (mod 9). • 

It is easy to show that there is a "cancellation law" for addition that holds for congru
ences: a + x =a + y (mod n) implies x = y (mod n). This is not the case, however, with 
multiplication: 

ALERT ax= ay (mod n) and a� 0 (mod n) do not imply x = y (mod n). 

As an example, 

(4)(6) = (4)(21)(mod 30) but 6 � 21(mod 30). 

It is important to note here that a = 4 and n = 30 are not relatively prime. When the 
condition that a and n be relatively prime is imposed, we can obtain a cancellation law for 
multiplication. 

Theorem 2.25 • Cancellation Law 

If ax= ay (mod n) and (a, n) = 1, then 

x = y (mod n). 
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2.5 Congruence of Integers 103 

(p /\ q) => r Proof Assume that ax= ay (mod n) and that a and n are relatively prime. 

ax = ay (mod n) => n I (ax - ay) 

=>nla(x - y) 

This completes the proof. 

=>nl(x - y) byTheorem2.14 

=> x = y (mod n) 

We have seen that there are analogues for many of the manipulations that may be 

performed with equations. There are also techniques for obtaining solutions to congru

ence equations of certain types. The basic technique makes use of Theorem 2.24 and the 

Euclidean Algorithm. The use of the Euclidean Algorithm is illustrated in Example 2. 

Theorem 2.26 • Linear Congruences 

If a and n are relatively prime, the congruence ax = b (mod n) has a solution x in the 

integers, and any two solutions in Z are congruent modulo n. 

p => q Proof Since a and n are relatively prime, there exist integers s and t such that 

1 =as+ nt 

=> b = asb + ntb 

=> a(sb) -b = n(-tb) 

=> nl[a(sb) -b] 

=> a(sb) = b (mod n). 

Thus x = sb is a solution to ax = b (mod n). 
Uniqueness To complete the proof, suppose that both x and y are integers that are solutions to 

ax= b (mod n). Then we have 

ax= b (mod n) and ay = b (mod n). 

Using the symmetric and transitive properties of congruence modulo n, we conclude that 

these relations imply 

ax= ay (mod n). 

Since (a, n) = 1, this requires that x = y (mod n), by Theorem 2.25. Hence any two 

solutions in Z are congruent modulo n. 

Strategy • We note that the "uniqueness" part of the proof of the theorem requires showing not that 

any two solutions to the system are "equal" but rather that they are congruent modulo n. 
This same type of proof is also used in Theorem 2.27. 
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Example 2 When (a, n) = 1, the Euclidean Algorithm can be used to find a solution 
x to ax= b(mod n). Consider the congruence 

20x = 14 (mod 63). 

We first obtains and t such that 

1 = 20s + 63t. 

Applying the Euclidean Algorithm, we have 

63 = (20)(3) + 3 
20 = ( 3) ( 6) + 2 

3= (2)(1) + 1 
2 = (1)(2). 

Solving for the nonzero remainders, 

3 = 63 - (20)(3) 
2 = 20 - (3)(6) 
1 = 3 - (2)(1). 

Substituting the remainders in turn, we obtain 

1 = 3 - (2)(1) 
= 3 - [ 20 - ( 3) ( 6)] ( 1) 
= ( 3) ( 7) + ( 20) ( -1) 
= [63 - (20)(3)](7) + (20)(-1) 
= (20)(-22) + (63)(7). 

Multiplying this equation by b = 14, we have 

14 = (20)(-308) + (63)(98) 
==> 14 = (20)(-308) (mod 63). 

Thus x = -308 is a solution. However, any number is congruent modulo 63 to its remain
der when divided by 63, and 

-308 = (63)(-5) + 7. 

Thus x = 7 is also a solution, one that is in the range 0 :::;; x < 63. • 

The preceding example illustrates the basic technique for obtaining a solution to 
ax= b (mod n) when a and n are relatively prime, but other methods are also very 
useful. Some of them make use of Theorems 2.24 and 2.25. Theorem 2.25 can be used 
to remove a factor c from both sides of the congruence, provided c and n are relatively 
prime. That is, c may be canceled from crx = ct (mod n) to obtain the equivalent con
gruence rx = t (mod n). 
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Example 3 Since 2 and 63 are relatively prime, the factor 2 in both sides of 

20x = 14 (mod 63) 

can be removed to obtain 

lOx = 7 (mod 63). 

Theorem 2.22 allows us to replace an integer by any other integer that is congruent to it 
modulo n. Now 7 = 70 ( mod 63), and this substitution yields 

lOx 70 (mod 63). 

Since (10, 63) = 1, we can remove the factor 10 from both sides, so that 

x = 7 (mod 63). 

Thus we have obtained the solution x = 7 much more easily than by the method of 
Example 2. However, this method is less systematic, and it requires more ingenuity. • 

Some systems of congruences can be solved using the result of the next theorem. 

Theorem 2.27 • System of Congruences 

Let m and n be relatively prime and a and b integers. There exists an integer x that satisfies 
the system of congruences 

x =a (modm) 

x = b (mod n). 

Furthermore, any two solutions x and y are congruent modulo mn. 

p ==> q Proof Suppose (m, n) = 1. Let x be a solution to the first congruence in the system 

x =a (modm) 

x b (modn). 

Thus x = a + mk for some integer k, and this k must be such that 

a + mk = b (mod n) 

or 

mk = b - a (mod n). 

Since (m, n) = 1, Theorem 2.26 guarantees the existence of such an integer k, and 
x = a + mk satisfies the system. 

Uniqueness Now let y be another solution to the system of congruences; that is, 

By Theorem 2.22, 

y =a (modm) 

y b (modn). 

x = y (modm) 

x = y (mod n) 
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and 

mix - y and nlx - y. 

Then 

mnlx - y 

by Exercise 11 of Section 2.4. Sox = y (mod mn). 

Example 4 Since (7, 5) = 1, we use Theorem 2.27 to solve the system of congruences 

x = 5 (mod 7) 
x = 3 (mod 5). 

From the first congruence we write x = 5 + 7 k for some integer k and substitute this 
expression for x into the second congruence. 

or 

5 + 7 k = 3 (mod 5) 

7k = -2 (mod 5) 
==> 2k = -2 (mod 5) 
==> k = - 1 (mod 5) since ( 2, 5) = 1 

==> k = 4 (mod 5). 

Thus x = 5 + 7(4) = 33 satisfies the system and x = 33 (mod 7 · 5) or x = 33 (mod 35) 
gives all solutions to the system of congruences. • 

An extension of Theorem 2.27 is the Chinese Remainder Theorem. In this theorem, we 
use the term pairwise relatively prime to mean that every pairing of integers ni and nj for all 
i -=I j are relatively prime. 

Theorem 2.28 • Chinese Remainder Theorem 

Let n1, n2, ... , nm be pairwise relatively prime. There exists an integer x that satisfies the 
system of congruences 

x = a1 (mod n1 ) 
x = a2 (mod n2) 

x =am (mod nm). 

Furthermore, any two solutions x and y are congruent modulo nin2 · · · nm. 

The proof of the Chinese Remainder Theorem is requested in the exercises and we 
illustrate the technique in the next example. 
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Example 5 Consider the system of congruences 

x = 5 (mod 7) 
x 3 (mod 5) 

x 2 (mod 8) 

x = 2 (mod 3). 

Example 4 showed that x = 33 (mod 35) is a solution to the first two congruences. Pairing 
this congruence with the third x = 2 (mod 8) in the system gives 

x - 33 (mod 35) 

x = 2 (mod 8). 

So with x = 33 + 35k for some k E Z gives 

33 + 35k = 2 (mod 8) 

=> 35k = -31 (mod 8) 

=> 3k = 1 (mod 8) 

=> k = 3 (mod 8) 

=> x = 33 + 35 • 3 

= 138. 

Thus x = 138 (mod 280) satisfies the first three congruences of the system. Pairing this 
with the last x = 2 (mod 3) gives the system 

x = 138 (mod 280) 

x = 2 (mod 3). 

Setting x = 138 + 280k for some integer kin the second congruence of the system gives 

138 + 280k = 2 (mod 3) 

=> 280k = -136 (mod 3) 

=> k = 2 (mod 3) 

=> x = 138 + 280 . 2 

= 698. 

Thus x 698 (mod 280 · 3) = 698 (mod 840) satisfies the original system. 

Exercises 2.5 

True or False 

Label each of the following statements as either true or false. 

1. a = b (mod n) implies ac = be (mod nc ) for c E Z +. 

2. a b (mod n) and c l n imply a= b (mod c) for c E z+. 

• 
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3. a2 = b2 (mod n) implies a= b (mod n) or a = -b (mod n) . 

4. a is congruent to b modulo n if and only if a and b yield the same remainder when each 
is divided by n. 

5. The distinct congruence classes for congruence modulo n form a partition of Z. 

6. If ab = 0 (mod n) , then either a= 0 (mod n) orb = 0 (mod n). 

7. If (a ,  n) = 1 ,  then a = 1 (mod n) . 

Exercises 

In this exercise set, all variables are integers. 

1. List the distinct congruence classes modulo 5 ,  exhibiting at least three elements in 
each class. 

2. Follow the instructions in Exercise 1 for the congruence classes modulo 6 .  

Find a solution x E Z, 0 :5 x < n, for each of the congruences ax= b ( mod n) in Exer
cises 3-24 . Note that in each case, a and n are relatively prime. 

3. 2x = 3 (mod 7) 4. 2x = 3 (mod 5) 

5. 3x = 7 (mod 13) 6. 3x = 4 (mod 13) 

7. 8x = 1 (mod 21) 8. l4x = 8 (mod 15) 

9. l lx = 1 (mod317) 10. l lx = 3 (mod 138) 

11. 8x = 66 (mod 79) 12. 6x = 14 (mod 55) 

13. 8x + 3 = 5 (mod 9) 14. l9x + 7 = 27 (mod 18) 

15. 13x + 19 = 2 (mod 23) 16. 5x + 43 = 15 (mod 22) 

17. 25x = 31 (mod 7) 18. 358x = 17 (mod 313) 

19. 55x = 59 (mod 42) 20. 79x = 83 (mod 61) 

21. 92x + 17 - 29 (mod 37) 22. 57x + 7 78 (mod 53) 

23. 35x + 14 = 3 (mod 27) 24. 82x + 23 = 2 (mod 47) 

25. Complete the proof of Theorem 2 .23: If a = b (mod n) and x is any integer, then 
a + x = b + x (mod n) . 

26. Complete the proof of Theorem 2 .24: If a= b (mod n) and c = d (mod n), then 
a + c = b + d (mod n) . 

27. Prove that if a + x = a + y (mod n), then x = y (mod n) . 

Sec. 2.4, #26 � 28. If ca = cb (mod n) and d = (c, n) where n = dm, prove that a = b (mod m). 

29. Find the least positive integer that is congruent to the given sum, product, or power. 

a. (3 + 19 + 23 + 52) (mod 6) 

c. (14 + 46 + 65 + 92) (mod 11) 

e. (7) (17) (32) (62) (mod 5) 

b. (2 + 17 + 43 + 117) (mod4) 

d. (9 + 25 + 38 + 92) (mod 7) 

f. (6) (16) (38) (118) (mod 9) 
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g. (4)(9)(15)(59) (mod 7) 

i. 43 15 (mod 4) 

k. 6233 (mod 5) 

2.5 Congruence of Integers 109 

h. (5)(11)(17)(65) (mod 7) 

j. 2538 (mod 7) 

1. 52 26 (mod 9) 

30. Prove that any positive integer is congruent to its units digit modulo 10. 

31. If a = b (mod n), prove that am= bm (mod n) for every positive integer m. 

32. Prove that if m is an integer, then either m2 = 0 (mod 4) or m2 = 1 (mod 4). (Hint: 
Consider the cases where mis even and where mis odd.) 

33. Prove or disprove that if n is odd, then n 2  = 1 (mod 8). 

34. If m is an integer, show that m2 is congruent modulo 8 to one of the integers 0, 1, 
or 4. (Hint: Use the Division Algorithm, and consider the possible remainders in 
m = 4q + r.) 

35. Prove that n3 = n (mod 6) for every positive integer n. 

36. Let x and y be integers. Prove that if there is an equivalence class [a] modulo n such 
that x E [a] and y E [a], then (x, n) = (y, n). 

37. Prove that if p is a prime and c =I= 0 (mod p ), then ex = b (mod p) has a unique solution 
modulo p. That is, a solution exists, and any two solutions are congruent modulo p. 

38. Letd = (a,n) wheren > 1.Prove that ifthere is a solution to ax = b (modn), thend 
divides b. 

39. (See Exercise 38.) Suppose that n > 1 and that d = (a, n) is a divisor of b. Let a = a0d, 
n = nod, and b = bod, where a0, n0, and b0 are integers. The following statements a-e 

lead to a proof that the congruence ax = b (mod n) has exactly d incongruent solutions 
modulo n, and they show how such a set of solutions can be found. 

a. Prove that ax= b (mod n) if and only if a0x = b0 (mod n0). 

b. Prove that if x1 and x2 are any two solutions to aoX = bo (mod n0), then it follows that 
x1 = x2 (mod no ). 

c. Let x1 be a fixed solution to aoX bo (mod no ), and prove that each of the d inte-
gers in the list 

is a solution to ax = b (mod n). 

d. Prove that no two of the solutions listed in part c are congruent modulo n. 

e. Prove that any solution to ax = b (mod n) is congruent to one of the numbers listed 
in part c. 

In the congruences ax= b (mod n) in Exercises 40-53, a and n may not be relatively 
prime. Use the results in Exercises 38 and 39 to determine whether there are solutions. If 
there are, find d incongruent solutions modulo n. 

40. 4x = 18 (mod 28) 

42. 18x = 33 (mod 15) 

44. 35x = 10 (mod 20) 

41. 6x = 33 (mod 27) 

43. 8x = 66 (mod 78) 

45. 68x = 36 (mod 40) 
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46. 2lx = 18 (mod 30) 

48. 36x + 1 = 49 (mod 270) 

50. 20x + 13 = 137 (mod 76) 

52. 38x + 54 20 (mod 60) 

47. 24x + 5 = 50 (mod 348) 

49. l5x + 23 = 153 (mod 1 10) 

51. 42x + 67 = 23 (mod 74) 

53. 42x + 19 = 23 (mod 48) 

Sec. 2.6, #21 � 54. Let p be a prime integer. Prove Fermat's t Little Theorem: For any positive 
Sec. 4.4, #26 � integer a ,  aP = a (mod p ). (Hint: Use induction on a,  with p held fixed.) 
Sec. 8.3, #11 � 

55. Prove the Chinese Remainder Theorem: Let ni, nz, ... , nm be pairwise relatively 
prime. There exists an integer x that satisfies the system of congruences 

x = a1 (mod n1 ) 

x = a2 (mod n2) 

x =am (mod nm ). 

Furthermore, any two solutions x and y are congruent modulo nin2 · · · nm. 

56. Solve the following systems of congruences. 

a. x = 2 (mod 5) b. x = 4 (mod 5) 
x = 3 (mod 8) x = 2 (mod 3) 

c. x = 4 (mod 7) d. 2x = 5 (mod 3) 
3x + 2 = 3 (mod 8) 5x + 4 = 5 (mod 7) 

e. x = 4 (mod 5) 
x = 6 (mod 8) 
x = 2 (mod 3) 

g. x = 2 (mod 3) 
x = 2 (mod 5) 
x = 4 (mod 7) 
x = 3 (mod 8) 

f. x = 3 (mod4) 
x = 4 (mod 5) 
x = 6 (mod 7) 

h. x = 3 (mod 5) 
x = 7 (mod 8) 
x = 3 (mod 9) 
x = 10 (mod 1 1) 

57. a. Prove that 10n = 1 (mod 9) for every positive integer n. 

b. Prove that a positive integer is divisible by 9 if and only if the sum of its digits is 
divisible by 9. (Hint: Any integer can be expressed in the form 

a
n
lon + a

n-l 10n-l + ... + a1l0 + ao 

where each ai is one of the digits 0,  1 ,  ... , 9.) 

58. a. Prove that 10n = (-l)ll (mod 1 1) for every positive integer n. 

b. Prove that a positive integer z is divisible by 1 1  if and only if 1 1  divides 
a0 - a1 + a2 - • • • + ( - 1  )nam when z is written in the form as described in the 
previous problem. 

tpierre de Fermat (1601-1665), a French mathematician, is credited for work that led to modern calculus. He 
is most widely known for his famous Last Theorem: X' + y" 

= z
" has no nonzero integral solutions for x, y, 

and z when n > 2. This unproven theorem was found by his son with a note by Fermat stating, "I have a truly 
marvelous demonstration of this proposition which this margin is too small to contain." After many failed 
attempts by numerous mathematicians, a proof by Andrew Wiles and Richard Taylor was finally accepted as 
valid over 350 years later using techniques unknown to Fermat. 
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� Congruence Classes 

In connection with the relation of congruence modulo n, we have observed that there are n 

distinct congruence classes. Let Zn denote this set of classes: 

Zn= {[O], [l], [2], ... , [n - 1]}. 
When addition and multiplication are defined in a natural and appropriate manner in Zm 

these sets provide useful examples for our work in later chapters. 

Theorem 2.29 • Addition in Zn 

Consider the rule given by 

[a]+ [b]= [a+b]. 

a. This rule defines an addition that is a binary operation on Zn. 

b. Addition is associative in Zn: 

[a]+ ([bJ + [cJ) =([a]+ [bJ) + [c]. 

c. Addition is commutative in Zn: 

[a]+ [b] = [b] +[a]. 

d. Zn has the additive identity [OJ. 
e. Each [a] in Zn has [-a] as its additive inverse in Zn. 

Proof 
a. It is clear that the rule [a] + [b] = [a + b] yields an element of Zn, but the uniqueness 

of this result needs to be verified. In other words, closure is obvious, but we need 

to show that the operation is well-defined. To do this, suppose that [a] = [x] and 

[b] = [y]. Then 

[a] = [x] =>a = x (mod n) 
and 

[ b] = [y] => b = y (mod n) . 

By Theorem 2.24, 
a + b = x + y (mod n) , 

and therefore [a + b] = [x + y]. 
b. The associative property follows from 

[a]+ ([b] + [cJ) =[a]+ [b + c] 
=[a+(b+c)] 
=[(a+ b) + c] 
=[a+b]+[c] 
=([a]+ [bJ) + [c]. 
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•Figure 2.1 

Note that the key step here is the fact that addition is associative in Z: 

a+ (b + c) = (a+ b) + c. 

c. The commutative property follows from 

[aJ + [b J = [a + b J 
= [b + aJ 
= [bJ + [aJ. 

d. [OJ is the additive identity, since addition is commutative in Zn and 

[aJ + [OJ = [a + OJ = [a]. 

e. [ -aJ = [n - a J is the additive inverse of [a J, since addition is commutative in Zn and 

[ -aJ + [aJ = [-a + aJ = [O]. 

Example 1 Following the procedure described in Exercise 3 of Section 1.4, we can 

construct an addition table for Z4 = {[OJ, [1 J, [2J, [3]}. In computing the entries for this 

table, [a J + [b J is entered in the row with [a J at the left and in the column with [b J at the top. 

For instance, 

[3J + [2J = [5J = [l J 
is entered in the row with [3] at the left and in the column with [2J at the top. The complete 

addition table is shown in Figure 2.1. 

+ [OJ [lJ [2J [3J 
[OJ [OJ [lJ [2J [3J 
[lJ [lJ [2J [3J [OJ 
[2J [2] [3J [OJ [1] 
[3J [3J [OJ [lJ [2J 

• 

In the following theorem, multiplication in Zn is defined in a natural way, and the basic 

properties for this operation are stated. The proofs of the various parts of the theorem are 

quite similar to those for the corresponding parts of Theorem 2.29, and are left as exercises. 

Theorem 2.30 • Multiplication in Zn 

Consider the rule for multiplication in Zn given by 

[a][b] =[ab]. 
a. Multiplication as defined by this rule is a binary operation on Zn. 

b. Multiplication is associative in Zn: 

[aJ([bJ [cJ) = ([aJ [bJ)[cJ. 
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c. Multiplication is commutative in Zn: 

[a][b J = [b ][a]. 

d. Zn has the multiplicative identity [1 J . 

2.6 Congruence Classes 113 

When we compare the properties listed in Theorems 2.29 and 2.30, we see that the 

ALERT existence of multiplicative inverses, even for the nonzero elements, is conspicuously miss

ing. The following example shows that this is appropriate because it illustrates a case 

where some of the nonzero elements of Zn do not have multiplicative inverses. 

•Figure 2.2 

Example 2 A multiplication table for Z4 is shown in Figure 2.2. The third row of 

the table shows that [2J is a nonzero element of Z4 that has no multiplicative inverse; 

there is no [xJ in Z4 such that [2J [xJ = [1]. Another interesting point in connection with 

x [OJ [lJ [2J [3J 

[OJ [OJ [OJ [OJ [OJ 

[lJ [OJ [lJ [2J [3J 

[2J [OJ [2J [OJ [2J 

[3J [OJ [3J [2J [lJ 

this table is that the equality [2J [2J = [OJ shows that in Z4, the product of nonzero factors 

may be zero. • 

Any nonzero element [a J in Zn for which the equation [a J [x J = [OJ has a nonzero solution 

[xJ =I=-[OJ in Zn is a zero divisor. The element [2J in Z4 is an example of a zero divisor. 

The next theorem characterizes those elements of Zn that have multiplicative 

mverses. 

Theorem 2.31 • Multiplicative Inverses in Zn 

An element [a J of Zn has a multiplicative inverse in Zn if and only if a and n are relatively 

pnme. 

p => q Proof Suppose first that [a J has a multiplicative inverse [b J in Zn. Then 

[a][b J = [lJ. 

This means that 

Therefore, 

[ab J = [ 1 J and ab == 1 (mod n). 

ab - 1 = nq 
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for some integer q, and 

a(b) + n(-q) = 1. 

By Theorem 2.12, we have (a, n) = 1. 
p � q Conversely, if (a, n) = 1, then Theorem 2.26 guarantees the existence of a solutions 

to the congruence 

as= 1 (mod n) . 

Thus, 

[a] [s] = [1], 

and [a J has a multiplicative inverse [s J in Zn. 

Corollary 2.32 • Multiplicative Inverses in Zp 

Every nonzero element of Zn has a multiplicative inverse if and only if n is a prime. 

P <=> q Proof The corollary follows from the fact that n is a prime if and only if every integer a 
such that 1 ::; a < n is relatively prime ton. 

Example 3 The elements of Z15 that have multiplicative inverses can be listed by 

writing down those [a] that are such that (a, 15) = 1. These elements are: 

[1], [2], [4], [7], [8], [11], [13], [14]. • 

Example 4 Suppose we wish to find the multiplicative inverse of [13] in Z191. The 

modulus n = 191 is so large that it is not practical to test all of the elements in Z191, so 

we utilize the Euclidean Algorithm and proceed according to the last part of the proof of 

Theorem 2.31: 

191 = (13)(14) + 9 
13 = (9)(1) + 4 
9 = (4)(2) + 1. 

Substituting the remainders in turn, we have 

Thus 

1 = 9 - (4)(2) 
= 9 - [13 - (9)(1)](2) 
= (9)(3) - (13)(2) 
= [191 - (13)(14)](3) - (13)(2) 
= (191)(3) + (13)(-44). 

(13)(-44) = 1 (mod 191) 
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or 

[13][-44] = [1]. 
The desired inverse is 

[13J-1 = [-44] = [147]. • 

Since every element in Zn has an additive inverse, subtraction can be defined in Zn by 

the equation 

[a] - [b] =[a]+ (-[bJ) 
= [a] + [ -b] 
=[a - b].  

For powers and multiples of elements in Zn, we mimic the definitions of those terms 

in Z. Let k be a positive integer and [a] an element in Zn. Then we define powers and 

multiples in Zn by the following. 

Powers 

[a]O = [1] 
[a]1 = [a] 

[a]k+1 = [a]k[a] 
[a]-k = ([aJ-I)k 

Multiples 

O[a] = [OJ 

l[a] = [a] 
(k + l)[a] = k[a] + [a] 

( -k)[a] = k[ -a] 

We now have at hand the basic knowledge about addition, subtraction, multiplication, 

powers, multiples, and multiplicative inverses in Zn. Utilizing this knowledge, we can 

successfully imitate many of the techniques that we use to solve equations in real numbers 

to solve equations involving elements of Zn. For example, Exercise 9 of this section states 

that [x J = [a r 1 [b J is the unique solution to [a J [x J = [b J in Zn whenever [a r 1 exists. In 

Exercise 19, some quadratic equations are to be solved by factoring. The next example 

shows how we can solve a simple system of linear equations in Zn by using the same kinds 

of steps that we use when working in R. 

Example 5 We shall solve the following system oflinear equations in Z26. 

[4] [x] + [y] = [22] 
[19] [x] + [y] = [15] 

We can eliminate [y] by subtracting the top equation from the bottom one: 

[19] [x] - [4] [x] = [15] - [22]. 
This simplifies to 

[15] [x] = [ -7] 
or 

[15] [x] = [19]. 
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Using the Euclidean Algorithm as we did in Example 4, we find that [ 15J in Z26 has the 
multiplicative inverse given by [ 15r1 

= [ 7]. Using the result in Exercise 9 of this section, 
we find that the solution [ xJ to [ 15J [ xJ = [ 19J is 

[ xJ = [ 15J-1 [ 19J 

= [ 7J [ 19J 

= [ 133J 

= [ 3]. 

Solving for [ yJ in the equation [ 4] [ xJ + [ yJ = [22J yields 

[ y J = [ 22 J - [ 4 ] [ x J 

= [ 22 J - [ 4 ] [ 3 J 

= [ 22J - [ 12J 

= [ 10]. 

It is easy to check that [ xJ = [3J, [yJ = [ lOJ is indeed a solution to the system. • 

Exercises 2.6 

True or False 

Label each of the following statements as either true or false. 

1. 2 E Z4. 

2. [ 7J E Z4• 
3. Every element [ a  J in Zn has an additive inverse. 

4. Every element [ a  J-=F [ OJ in Zn has a multiplicative inverse. 

5. [ a] [ bJ = [ OJ implies either [ aJ = [ OJ or [ bJ = [ OJ in Zn. 

6. [ a] [ xJ = [aJ[yJand [aJ-=F [OJimplies [xJ = [yJinZn. 
7. [ aJ = [ lJ implies (a, n ) = 1 in Zw 
8. (a, n ) = 1 implies [ aJ = [ lJ in Zw 

Exercises 

1. Perform the following computations in Z12• 
a. [ 8J + [ 7J 

c. [ 8 ][ 11J 
e. [ 6J( [ 9J + [ 7]) 
g. [ 6 ] [ 9J + [ 6 ] [ 7J 
i. 3 [ 7J + 4[ 9J 

k. [ 2]9 
m. [ 4 ]2 - [ 3]2 [ 6J3 

o. 8 [ 2 J - 7 [ 4 J [ 3 J 

b. [ lOJ + [ 9J 

d. [ 6J [ 9J 
f. [ 5J( [ 8J + [ 11]) 

h. [ 5J [ 8J + [ 5J [ 11 J 

j. 8 [ 5J- 2[ 10J 

I. [ 3 J4 

n. [ 2 ]3 [ 9 J2 + 2 [ 4 J 

p. 6 [ 3 J3 - 4 [ 2 J5 
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2. a. Verify that [1][2][3][4] = [4] in Zs. b. Verify that [1][2][3][4][5][6] = [6] in Z7. 

c. Evaluate [1 ][2][3] in Z4. d. Evaluate [1][2][3][4][5] in Z6. 

e. Evaluate 4 [3] in Z4. f. Evaluate 4 [2] in Z4. 

g. Evaluate 5 [2] in Zs. h. Evaluate 5 [ 4] in Zs. 

3. Make addition tables for each of the following. 

a. Z2 b. Z3 c. Zs 

d. Z6 e. Z7 f. Zs 

4. Make multiplication tables for each of the following. 

a. Z2 b. Z3 c. Z6 

d. Zs e. Z7 f. Zs 

5. Find the multiplicative inverse of each given element. 

a. [3] in Z13 b. [7] in Z11 c. [17] in Z20 

d. [16] in Z27 e. [17] in Z42 f. [33] in Zss 

g. [11] in Z317 h. [9] in Z12s 

6. For each of the following Zm list all the elements in Zn that have multiplicative 

inverses in Zn. 

b. Zs 

e. Z1s 

c. Z10 

f. Z20 

7. Find all zero divisors in each of the following Zn. 

a. Z6 b. Zs c. Z10 

d. Z12 e. Z1s f. Z20 

8. Whenever possible, find a solution for each of the following equations in the given Zn. 

a. [4][x] = [2] in z6 

c. [6J[x] = [4] in Zs 

e. [8J[x] = [6] in Z12 

g. [8J[x] = [4]inZ12 

i. [10] [x] = [4] in Z12 

b. [6][x] = [4JinZ12 

d. [10] [x] = [6] in Z12 

f. [4J[x] = [6J in Zs 

h. [4] [x] = [10] in Z14 

j. [9] [x] = [3] in Z12 

9. Let [a] be an element of Zn that has a multiplicative inverse [ar1 in Zn. Prove that 

[x] = [ar1 [b] is the unique solution in Zn to the equation [a] [x] = [b]. 

10. Solve each of the following equations by finding [ar1 and using the result in 

Exercise 9. 

a. [4][x] = [5] in Z13 

c. [7J[x] = [1l]inZ12 

e. [9][x] = [14]inZ20 

g. [6] [x] = [5] in Z319 

b. [8] [x] = [7] in Z11 

d. [8] [x] = [11] in Z1s 

f. [8] [x] = [15] in Z27 

h. [9] [x] = [8] in Z242 
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Sec. 2.2, #25 P 

Sec. 2.5, #54 P 

In Exercises 11-14, solve the systems of equations in Z7. 

11. [2] [ x J+ [yJ= [4J 
[2J [ x J  + [4J [yJ = [5J 

12. [ 4 ] [  x J + [ 2 ] [y J = [ 1 J 
[ 3 J  [ x J  + [2J [yJ = [5J 

13. [ 3 ] [  x J + [ 2 ] [y J = [ 1 J 
[5J [ x J  + [6J [yJ = [5J 

14. [2J [ x J  + [5J [y J = [6J 
[4J [ x J  + [6J [yJ = [6J 

15. Prove Theorem 2.30. 

16. Prove the following distributive property in Zn: 

[aJ( [bJ + [cJ) = [a] [bJ + [a] [c]. 

17. Prove the following equality in Zn: 

( [aJ + [bJ)( [cJ + [dJ) = [a] [cJ + [a] [dJ + [b] [cJ + [b] [d]. 

18. Let p be a prime integer. Prove that if [a J [b J = [OJ in Zp, then either [a J = [OJ 
or [bJ = [OJ. 

19. Use the results in Exercises 16-18 and find all solutions [ xJ to the following quadratic 

equations by the factoring method. 

a. [ xJ2 + [5J [xJ + [6J = [OJ in Z7 

c. [ xJ2 + [xJ + [5J = [OJ in Z7 

b. [ xJ2 + [4J [xJ + [3J = [OJ in Zs 

d. [ xJ2 + [xJ + [3J = [OJ in Zs 

20. a. Let [a J E Zn. Use mathematical induction to prove thatk [a J = [ka J for all positive 

integers k. 

b. Evaluate n [aJ in Zn. 

21. Use the results of Exercises 16, 17, and 20 to simplify each of the following. Pascal's 

Triangle as described in Exercise 25 of Section 2.2 may be helpful. 

a. ( [aJ - [b ])2 in Z2 
b. ( [aJ + [b ])3 in Z3 
c. ( [aJ - [b ])5 in Z5 
d. ( [aJ - [b ])7 in Z7 

22. Let p be a prime integer. Prove that [1 J and [p - 1 J are the only elements in Zp that are 

their own multiplicative inverses. 

23. Show that if n is not a prime, then there exist [aJ and [bJ in Zn such that [aJ =I=- [OJ and 

[b J =I=- [OJ, but [a J [b J = [OJ; that is, zero divisors exist in Zn if n is not prime. 

24. Let p be a prime integer. Prove the following cancellation law in Zp: If [aJ [xJ = 
[aJ [yJ and [aJ =I=- [OJ, then [ xJ = [y]. 
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25. Show that if n is not a prime, the cancellation law stated in Exercise 24 does not hold 

in Zn. 

26. Prove that a nonzero element [a] in Zn is a zero divisor if and only if a and n are not 

relatively prime. 

~ Introduction to Coding Theory (Optional) 

In this section, we present some applications of congruence modulo n found in basic cod

ing theory. When information is transmitted from one satellite to another or stored and 

retrieved in a computer or on a compact disc, the information is usually expressed in some 

sort of code. The ASCII code (American Standard Code for Information Interchange) of 

256 characters used in computers is one example. However, errors can occur during the 

transmission or retrieval processes. The detection and correction of such errors are the 

fundamental goals of coding theory. 

In binary coding theory, we omit the brackets on the elements in Z2 and call { 0, 1} 

the binary alphabet. A bitt is an element of the binary alphabet. A word (or block) is a 

sequence of bits, where all words in a message have the same length; that is, they contain 

the same number of bits. Thus a 2-bit word is an element of Z2 X Z2. For notational con

venience, we omit the comma and parentheses in the 2-bit word (a, b) and write ab, where 

a E {O, l} and b E {O, 1}. Thus 

000 010 001 011 

100 110 101 111 

are all eight possible 3-bit words using the binary alphabet. There are thirty-two 5-bit 

words, so 5-bit words are frequently used to represent the 26 letters of our alphabet, along 

with 6 punctuation marks. 

During the process of sending a message using k-bit words, one or more bits may be 

received incorrectly. It is essential that errors be detected and, if possible, corrected. The 

general idea is to generate a code, send the coded message, and then decode the coded 

message, as illustrated here: 

encode send decode 
message � coded message � received message � message. 

Ideally, the code is devised in such a way as to detect and/or correct any errors in the 

received message. Most codes require appending extra bits to each k-bit word, forming an 

n-bit code word. The next example illustrates an error-detecting scheme. 

Exam p I e 1 Parity Check Consider 3-bit words of the form abc. One coding scheme 

maps abc onto abed, where 

d = a + b + c (mod 2 ) 

tBit is an abbreviation for binary digit. 
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is called the parity check digit. If d = 0, we say that the word abc has even parity. If 

d = 1, we say abc has odd parity. Thus the eight possible 3-bit words are mapped onto 

the eight 4-bit code words as follows: 
encode 

word � code word 

000 � 0000 

010 � 0101 

001 � 0011 

011 � 0110 

100 � 1001 

110 � 1100 
encode 

101 � 1010 
encode 

111 � 1111. 

Note that each 4-bit code word has even parity. Therefore, a simple parity check on the 

code word will detect any single-bit error. For example, suppose that the coded message 

of five 4-bit code words 

1101 1011 0000 0110 0011 

is received. It is obvious that each of the first two code words 1101 and 1011 contains at 

least one error. This parity check scheme does not correct single-bit errors, nor will it detect 

ALERT which bit is in error. It also will not detect 2-bit errors. In this situation, the safest action is 

to request retransmission of the message, if retransmission is feasible. • 

Example 2 Repetition Codes Multiple errors can be detected (but not corrected) in 

a scheme in which a k-bit word is mapped onto a 2k-bit code word according to the fol

lowing scheme: 

encode 
X1X2 • • •  xk � X1X2 • • •  XkX1X2 • • •  xk. 

In the coded message with k = 3, 

110110 010011 011011 101000, 

errors occur in the second code word 010011 and in the last code word 101000. All other 

code words seem to be correct. If, upon retransmission, the coded message is received as 

110110 011011 011011 100100, 

it will be decoded as 

110 011 011 100. • 

Example 3 Maximum Likelihood Decoding Multiple errors can be detected and 

corrected if each k-bit word is mapped onto a 3k-bit code word according to the following 

scheme (called a triple repetition code): 
encode 

X1X2 • • •  xk � X1X2 • • •  XkX1X2 • • •  XkX1X2 • • •  xk. 
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For example, if the 6-bit code word (for a 2-bit word) 

010111 

is received, then an error is detected. By separating the code word into three equal parts 

01 01 11 

and comparing bit by bit, we note that the first bits in each part do not agree. We correct 

the error by choosing the digit that occurs most often, in this case a 0. Thus the corrected 

code word is 

010101, 

and more than likely the correct message is 01. The main disadvantage of this type of coding 

is that each message requires three times as many bits as the decoded message, whereas with 

the parity check scheme, only one extra bit is needed for each word. • 

A combination of a parity check and a repetition code allows detection and correction 

of coded messages without requiring quite as many bits as in the maximum likelihood 

scheme. We illustrate this in the next example. 

Example 4 Error Detection and Correction Suppose 4-bit words are mapped onto 

9-bit code words using the scheme 

encode 
X1XzX3X4 � X1XzX3X4X1XzX3X4p, 

where p is the parity check digit 

p = X1 + Xz + X3 + X4 (mod 2 ) . 

For example, the 4-bit word 0110 is encoded as 011001100. Suppose, upon transmission, a 

code word 101011100 is received. Breaking 101011100 into three parts, 

1010 1110 0, 

indicates that an error occurs in the second bit. To have parity 0, the correct word must 

be 1010. 

Errors might also occur in the parity digit. For example, if 001100111 is received, an 

error is detected, and more than likely the error has been made in the parity check digit. 

Thus the correct word is 0011. • 

The last two examples bring up the question of probability of errors occurring in any 

one or more bits of an n-bit code word. We make the following assumptions: 

1. The probability of any single bit being transmitted incorrectly is P. 

2. The probability of any single bit being transmitted correctly or incorrectly is in

dependent of the probability of any other single bit being transmitted correctly or 

incorrectly. 

Thus the probability of transmitting a 5-bit code word with only one incorrect bit is 

(i)P( 1 - P)4
. If it happens thatP = 0.01(approximately 1 of every 100 bits are transmitted 

Copyright 2013 Cengage Leaming. AH Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materia11y affect the overall learning experience. Cengage Leaming reserves the right to remove additional content at any time if subsequent rights restrictions require it. 



122 Chapter 2 The Integers 

incorrectly), then the probability of transmitting a 5-bit code word with only one incorrect 
bit is (i)0.01 ( 0.99 )4 = 0.04803, and the probability of transmitting a 5-bit code word with 
no errors is (6)( 0.01)0( 0.99 ) 5 = 0.95099. Hence the probability of transmitting a 5-bit 
code word with at most one error is (i)0.01 ( 0.99 )4 + (6)( 0.01)0(0.99 ) 5 = 0.99902. 

Up to this point, Z2 has been used in all of our examples. We next look at some in
stances in which other congruence classes play a role. 

Example 5 Using Check Digits Many companies use check digits for security pur
poses or for error detection. For example, an 11th digit may be appended to a 10-bit iden
tification number to obtain the 11-digit invoice number of the form 

where the 11th bit, c, is the check digit, computed as 

If congruence modulo 9 is used, then the check digit for an identification number 
3254782201 is 7, since 3254782201 = 7 (mod 9). Thus the complete correct invoice 
number would appear as 32547822017. If the invoice number 31547822017 were used 
instead and checked, an error would be detected, since 3154782201 =I= 7 (mod 9). 
[3154782201 6 (mod 9).] 

ALERT This particular scheme is not infallible in detecting errors. For example, if a transposi-
tion error (a common keyboarding error) occurred and the invoice number were erroneously 
entered as 32548722017, an error would not be detected, since 3254872201 = 7 (mod 9). It 
can be shown that transposition errors will never be detected with this scheme (using con
gruence modulo 9) unless one of the digits is the check digit. (See Exercise 12.) • 

Even more sophisticated schemes for using check digits appear in such places as the 
ISBNs (International Standard Book Numbers) assigned to all books, the UPCs (Universal 
Product Codes) assigned to products in the marketplace, passport numbers, and the driver's 
licenses and license plate numbers in some states. Some of the schemes are very good at 
detecting errors, and others are surprisingly faulty. In these schemes, a weighting vector 
is used in conjunction with arithmetic on congruence classes modulo n (modular arith
metic). The dot product notation is useful in describing the situation. We define the dot 
product (x1, x2, . . .  , Xn) • (y1, yz, . . .  , Yn) of two ordered n-tuples (vectors) (x1, x2, . . .  , Xn) 
and (y1, Y2, . . .  , Yn) by 

(xl> X2, · · · , Xn ) • (yl> Y2, · · · , Yn ) = X1Y1 + XzY2 + ' ' ' + XnYn· 

For example, (1, 2, 3) · ( - 3, 7, - 1) = - 3 + 14 - 3 = 8. The next example describes 
the use of the dot product and weighting vector in bank identification numbers. 

Example 6 Bank Identification Numbers Identification numbers for banks have 
eight digits, x1x2, . • •  , x8, and a check digit, x9, given by 

(xI>x2, • • •  ,x8) • (7, 3, 9, 7, 3, 9, 7, 3) = x9(mod 10). 
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The weighting vector is (7, 3, 9, 7, 3, 9, 7, 3). Thus a bank with identification number 
05320044 has check digit 

(0, 5, 3, 2, 0, 0, 4, 4) . (7, 3, 9, 7, 3, 9, 7, 3) = 0 + 15 + 27 + 14 + 0 + 0 + 28 + 12 

= 96 

= 6 (mod 10) 

and appears as 053200446 at the bottom of the check. This particular scheme detects all 
one-digit errors. However, suppose that this same bank identification number is coded in 
as 503200446, with a transposition of the first and second digits. The check digit 6 does 

ALERT not detect the error: 

•Figure 2.3 
UPC Symbol 

(5,0,3,2,0,0,4,4). (7,3,9, 7,3,9, 7,3) = 35 + 0 + 27 + 14 + 0 + 0 + 28 + 12 

= 1 16 

= 6 (mod 10). 

Transposition errors of adjacent digits Xi and Xi+ 1 will be detected by this scheme except 
whenlxi - Xi+il = 5. (See Exercise 13.) • 

The next example illustrates the use of another weighting vector in Universal Product 
Codes. 

Example 7 UPC Symbols UPC symbols consist of 12 digits, x1x2 • • • x12, with the 
last, x12, being the check digit. The weighting vector used for the UPC symbols is the 
1 1-tuple (3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3). The check digit x12 can be computed as 

-(xl> x2, • • •  , x11) • (3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3) = x12 (mod 10). 

The computation 

-(0, 2, 1, 2, 0, 0, 6, 9, 1, 1, 3) . (3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3) = -47 

= 3 (mod 10) 

verifies the check digit 3 shown in the UPC symbol in Figure 2.3. As in the bank identifica
tion scheme, some transposition errors may go undetected. 

3 • 

In this section, we have attempted to introduce only the basic concepts of coding 
theory; more sophisticated coding schemes are constantly being developed. Much re
search is being done in this branch of mathematics, research based not only on group and 
field theory but also on linear algebra and probability theory. 
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Exercises 2. 7 

True or False 

Label each of the following statements as either true or false. 

1. Parity check schemes will always detect the position of an error. 

2. All errors in a triple repetition code can be corrected by choosing the digit that occurs 

most often. 

3. In parity check schemes, errors may occur in the parity check digit. 

4. In a check digit scheme using congruence modulo 9, transposition errors will never 

be detected. 

Exercises 

1. Suppose 4-bit words abed are mapped onto 5-bit code words abcde, where e is the 

parity check digit. Detect any errors in the following six-word coded message. 

11101 00101 00010 11100 00011 10100 

2. Suppose 3-bit words abc are mapped onto 6-bit code words abcabc under a repetition 

scheme. Detect any errors in the following five-word coded message. 

111011 101101 011110 001000 011011 

3. Use maximum likelihood decoding to correct the following six-word coded message 

generated by a triple repetition code. Then decode the message. 

101101101 110110101 110100101 101000111 110010011 011011011 

4. Suppose 2-bit words ab are mapped onto 5-bit code words ababc, where c is the par

ity check digit. Correct the following seven-word coded message. Then decode the 

message. 

11100 01011 01010 10101 00011 10111 11111 

5. Suppose a coding scheme is devised that maps k-bit words onto n-bit code words. The 

efficiency of the code is the ratio k/n. Compute the efficiency of the coding scheme 

described in each of the following examples. 

a. Example 1 b. Example 2 

c. Example 3 d. Example 4 

6. Suppose the probability of erroneously transmitting a single digit is P = 0.03. Com

pute the probability of transmitting a 4-bit code word with (a) at most one error, and 

(b) exactly four errors. 

7. Suppose the probability of erroneously transmitting a single digit is P = 0.0001. 

Compute the probability of transmitting an 8-bit code word with (a) no errors, 

(b) exactly one error, (c) at most one error, (d) exactly two errors, and (e) at most two 

errors. 
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8. Suppose the probability of incorrectly transmitting a single bit is P = 0.001. Compute 
the probability of correctly receiving a 100-word coded message made up of 4-bit 
words. 

9. Compute the check digit for the eight-digit identification number 41126450 if the 
check digit is computed using congruence modulo 7. 

10. Is the identification number 11257402 correct if the last digit is the check digit com
puted using congruence modulo 7? 

11. Show that the check digit x9 in bank identification numbers satisfies the congruence 
equation 

(x1,x2, • • •  ,x8,x9) • (7, 3, 9, 7, 3, 9, 7, 3, 9) = 0 (mod 10). 

12. Suppose that the check digit is computed as described in Example 5. Prove that trans
position errors of adjacent digits will not be detected unless one of the digits is the 
check digit. 

13. Verify that transposition errors of adjacent digits xi and Xi+ 1 will be detected in a bank 
identification number except when l xi - Xi+ 1 I = 5. 

14. Compute the check digit for the UPC symbols whose first 11 digits are given. 

a. 

c. 0 d. 

0 

15. Verify that the check digit x12 in a UPC symbol satisfies the following congruence 
equation: 

(xi. x2, • • •  , x12) • (3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1) = 0 (mod 10). 

16. Show that transposition errors of the type 

(i = 2, 3, . . .  , 11) in a UPC symbol will not be detected by the check digit. 
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17. Passports contain identification codes of the following form. 

passport check birth check date of check final 
number digit date digit expiry digit check 

012345678 4 USA 480517 7 F 020721 2<<<<<<<<<<<<<<< 8 

Each of the first three check digits is computed on the preceding identification num
bers by using a weighting vector of the form 

(7, 3, 1, 7, 3, 1, ... ) 

in conjunction with congruence modulo 10. For example, in this passport identifica
tion code, the check digit 4 checks the passport number, the check digit 7 checks the 
birth date, and the check digit 2 checks the date of expiry. The final check digit is then 
computed by using the same type of weighting vector with all the digits (including 
check digits, excluding letters). Verify that this passport identification code is valid. 
Then check the validity of the following passport identification codes. 

a. 0987654326USA1512269F9901018 <<<<<<<<<<<<<<< 4 

b. 0444555331USA4609205M0409131 <<<<<<<<<<<<<<< 8 

c. 0123987457USA7803012M9711219 <<<<<<<<<<<<<<< 3 

d. 0246813570USA8301047F0312203 <<<<<<<<<<<<<<< 6 

18. ISBNs are 10-digit numbers that identify books, where x10 is the check digit and (x1, 
x2, • • •  , x10) • (10, 9, 8, 7, 6, 5, 4, 3, 2, 1) = 0 (mod 11). Only digits 0 through 9 are 
used for the first nine digits, and if the check digit is required to be 10, then an X is 
used in place of the 10. If possible, detect any errors in the following ISBNs. 

a. ISBN 0-534-92888-9 

b. ISBN 0-543-91568-X 

c. ISBN 0-87150-334-X 

d. ISBN 0-87150-063-4 

19. In the ISBN scheme, write the check digit x10 in the form 

(xi. x2, • • •  , x9) • y = x10(mod 11), 

where y is obtained from the weighting vector (10, 9, 8, 7, 6, 5, 4, 3, 2, 1). 

20. Suppose x = x1x2 • • •  Xk and y = y1y2 • • •  Yk are k-bit words. The Hammingt distance 

d(x,y) between x and y is defined to be the number of bits in which x and y differ. More 
precisely, d(x, y) is the number of indices in which Xi -=f=. Yi· Find the Hamming distance 
between the following pairs of words. 

a. 0011010 and 1011001 

b. 01000 and 10100 

c. 11110011 and 00110001 

d. 011000 and 110111 

tThis distance function is named in honor of Richard Hamming (1915-1998), who pioneered the development 
of error-correcting codes. 
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21. Let x, y, and z be k-bit words. Prove the following properties of the Hamming distance. 

a. d(x, y) = d(y, x) 

b. d(x, y) = 0 if and only if x = y 

c. d(x, z) :5 d(x, y) + d(y, z) 

22. The Hamming weight wt(x) of a k-bit word is defined to be wt(x) = d(x, 0), where 

0 is the k-bit word in which every bit is 0. Find the Hamming weight of each of the 

following words. 

a. 0011100 

b. 11110 

c. 10100001 

d. 000110001 

23. The minimum distance of a code is defined to be the smallest distance between any 

pair of distinct code words in a code. Suppose a code consists of the following code 

words. This is the repetition code on 2-bit words. 

0000 0101 1010 1111 

Find the minimum distance of this code. 

24. Repeat Exercise 23 for the code consisting of the following code words. This code is 

a repetition code on 3-bit words with a parity check digit. 

0000000 

1001001 

0100101 

1101100 

0010011 

1011010 

0110110 

1111111 

25. Repeat Exercise 23 for the code consisting of the following code words. 

0000000 

0100101 

1000110 

1100011 

0001011 

0101110 

1001101 

1101000 

0010111 

0110010 

1010001 

1110100 

0011100 

0111001 

1011010 

1111111 

This code is called the Hamming (7,4) code. Each code word x1x2X3X4XsX6X7, with 

Xi E { 0, 1}, can be decoded by using the first four digits x1x2x3x4. The last three digits 

are parity check digits, where 

X5 == X1 + Xz + X3 (mod 2) 

x6 == x1 + x3 + x4 (mod 2) 

X7 == Xz + X3 + X4 (mod 2). 

26. Write out the eight code words in the (5, 3) code where each code word X1X2X3X4Xs is 

generated in the following way: 

X; E {0, l} 

x4 == x1 + x2 (mod 2) 

X5 == X1 + X3 (mod 2). 
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~ Introduction to Cryptography (Optional) 

•Figure 2.4 
Cipher Wheel 

An additional application of congruence modulo n is found in cryptography, the designing 
of secret codes. Cryptanalysis is the process of breaking the secret codes, and cryptology 
encompasses both cryptography and cryptanalysis. Cryptography differs from code theory 
in that code theory concentrates on the detection and correction of errors in messages, 
whereas cryptography concentrates on concealing a message from an unauthorized person. 

History is rich with examples of secret writings, dating back as far as 1900 B.C. when 
an Egyptian master scribe altered hieroglyphic writing, thus forming "secret messages" in 
the tomb of the nobleman Khnumhotep II. Later, in 400 B.c., the Spartans used a device 
called a skytale to conceal messages. A ribbon was wound around a cylinder (the skytale); 
then a message was written on the ribbon. When the ribbon was removed, the message 
appeared scrambled. However, the recipient of the ribbon had a similar skytale upon which 
he wound the ribbon and then easily read the message. An early cryptological system, 
called the Caesar cipher, was employed by Julius Caesar in the Gallic Wars. In this system, 
Caesar simply replaced (substituted) each letter of the alphabet (the plaintext) by the letter 
three positions to the right (the ciphertext). The complete substitution for our alphabett 
would thus appear as 

Plaintext: a b c d e f g t u  v w x y z  

Ciphertext: D E F G H I J W X Y Z A B C, 

and the plaintext message "attack at dawn" could easily be enciphered and deciphered 
using the substitution alphabet: 

Plaintext: a t 

Ciphertext: D w 

t 

w 

a c 

D F 

k 

N 

a t 

D W 

d 

G 

a 

D 

w n 

z Q. 

The Caesar cipher is an example of an additive cipher, or translation cipher. All 
such translation ciphers can be illustrated in a cipher wheel made up of two concentric 
circles each containing the entire alphabet. One such cipher wheel is shown in Figure 2.4. 

tThe lettersj, u, and w were not in the Roman alphabet. 
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The inner alphabet, representing the plaintext, is fixed, while the outer alphabet, repre
senting the ciphertext, spins. One pair of plaintextlciphertext letters determines the entire 
scheme. This key is all that is needed to decipher any message. Caesar's plaintextlcipher
text key would appear as a/n. 

A translation cipher, as used by Caesar, and other, more sophisticated ciphers can be 
described mathematically. We first accept the following notational convention: 

a mod n is the remainder when a is divided by n, 

or, in symbols, 

r = a mod n ¢:::} a = nq + r where q and r are integers with 0 < r < n. 

Although this notation closely resembles the congruence notation defined in Section 2.5, the 
meaning is quite different and the distinction must be kept in mind. For a fixed y, the notation 

x y (mod n) 

allows x to be any integer such that x - y is a multiple of n, but the notation 

x = ymodn 

ALERT requires x to be the unique integer in the range 0 :$ x < n such that x - y is a multiple of 
n. All of the statements 

27 == 19 (mod 8), 11 == 19 (mod 8), and 3 == 19 (mod 8) 

are true, but the statement 

x = 19 mod 8 

is true if and only if x = 3. 

Example 1 

a. 3 = 23 mod 5 since 23 = 5(4) + 3. 

b. 1 = 37 mod 4 since 37 = 4(9) + 1. 

c. 21 = 47 mod 26 since 47 = 26(1) + 21. 

d. 19 = -7 mod 26 since -7 = 26(-1) + 19. 

Next we describe a translation cipher in terms of congruence modulo n. 

• 

Example 2 Translation Cipher Associate then letters of the "alphabet" with the 
integers 0, 1, 2, 3, ... , n - 1. Let A = {O, 1, 2, 3, ... , n - 1} and define the mapping 
f:A ....:;A by 

J(x) = x + kmodn 

where k is the key, the number of positions from the plaintext to the ciphertext. If our 
alphabet consists of a through z, in natural order, followed by a blank, then we have 27 
"letters" that we associate with the integers 0, 1, 2 ,  ... , 26 as follows: 

Alphabet: a b 

A: 0 1 

c d e f 

2 3 4 5 

v 

21 

w x y z 

22 23 24 25 

"blank" 

26 
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Now if our key is k = 12, then the plaintext message "send money" translates into the 
ciphertext message "DQZPLY ZQJ" as follows: 

send money 
translate to A 

� 18 4 13 3 26 12 14 13 4 24 
f(x)=x+ 12 mod 27 

� 3 16 25 15 11 24 26 25 16 9 
translate from A 

� D Q z p L y z Q J 

The mapping I, given by 

l(x) = x + k mod n 

can be shown to be one-to-one and onto, so the inverse exists and is given by 

l-1(x) = x - k mod n. 

The mapping f1 can then be used to decipher the ciphertext. 

translate to A 
DQZPLY ZQJ � 3 16 25 15 11 24 26 25 16 9 

r1(x)=x-12 mod 27 
� 18 4 13 3 26 12 14 13 4 24 

translate from A 
� s e n d m 0 n e y • 

A natural extension of the translation (or shift) cipher is found in a mapping of the 
form 

l(x) = ax + b mod n 

where a and b are fixed integers. This type of mapping is called an affine mapping. The 
ordered pair a, b of integers forms the key for this type of cipher. If a = 1, we simply have 
a translation cipher, whereas if b = 0, we have what's called a multiplicative cipher. It 
follows from Theorem 2.26 that an affine mappingl:A --1-A has an inversel-1:A --1-A if a 

and n are relatively prime. When (a, n) = 1, it can be shown that the inverse1-1 is given by 

1-•(x) = a
'

x + b' mod n 

where a
' is defined by 

1 = a
' 

a mod n, with 0 < a
' 

< n 

and 

b' = - a ' b mod n. 

Example 3 Affine Mapping We shall use an affine mapping with a= 5 and b = 7 
as the key in our 27-letter alphabet. The mappingl:A----1-A, where A = {O, 1, 2, ... , 26}, is 
given by 

l(x) = 5x + 7 mod 27. 
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The plaintext message "hi mom" is translated into the ciphertext "PUCNXN" as follows: 

hi mom 
translate to A 

26 � 7 8 12 14 12 
f(x)=5x+7 mod 27 

� 15 20 2 13 23 13 
translate from A 

� p u c N x N 

Note that (5, 27) = 1, so the mappingf has an inverse given by 

f-1(x) = llx - 11(7) mod 27 since 1 = 11 • 5 mod 27 

llx + 16(7) mod 27 since 16 = -11 mod 27 

= llx + 112 mod 27 

= llx + 4 mod 27, 

which can then be used to decipher the ciphertext. 

PUCNXN 
translate to A 

� 
r1(x)= 1lx+4mod 27 

� 
translate from A 

� 

15 

7 

h 

20 

8 

2 

26 

13 

12 

m 

23 

14 

0 

13 

12 

m • 

Example 4 Affine Mapping with Unknown Key If a ciphertext message is rela
tively long, a frequency analysis of letters in a ciphertext can be used to "break the code" 
when the key to the affine mapping f (x) = ax + b mod n is not known. Suppose we as
sociate the letters a through z, in natural order, with the integers 0 through 25, respectively, 
to form the 26-"letter" alphabet A = { 0, 1, 2, ... , 25}. In the English language, with this 
alphabet the letter e occurs most often in a lengthy message, and the letters t, a, and o are 
the next most common. With this in mind, suppose that in a ciphertext message the letter 
W occurred most frequently, followed in frequency by P. It seems reasonable that the ci
phertext letters W and P correspond to the plaintext letters e and t, respectively. Translating 
these into the set A, we have 

most frequent: 

next most frequent: 

CIPHER TEXT 
translate to A 

w � 22 
translate to A 

5 p � 1 

PLAINTEXT 
translate to A 

e � 

translate to A 
t � 

4 

19. 

Therefore, we can determine the key from the solution of the following system of equations 
for a and b: 

22 = a(4) + b mod 26 

15 = a(l9) + b mod 26. 

From Example 5 in Section 2.6, this solution is given by a = 3, b = 10. Thus we find the 
affine mappingf: A �A to be given by 

J(x) = 3x + 10 mod 26, 
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with inverse f-1: A � A defined by 

f-1(x) = 9x + 14 mod 26. • 

In each of the preceding examples, once the mapping/ was known, finding the inverse 
mapping 1-1 was not difficult. In other words, once the key is known, a message can eas
ily be deciphered. If security is an important issue (which is usually the case in sending 
secret messages), then it would certainly be advantageous to devise a system that would 
be difficult to break even if the key were known. Such systems are called Public Key 

Cryptosystems. We examine the RSA t cryptosystem next. The RSA system is based on 
the difficulty of factoring large numbers. 

We begin by first choosing two distinct prime numbers, which we label as p and q. 
Then we form the product 

m = pq. 

The value of m can be made known to the public. However, the factorization of m as pq 
shall be kept secret. The larger the value of m, the more secure this system will be, since 
breaking the code relies on knowing the prime factors p and q of m. Next we choose e to be 
relatively prime to the product (p - l)(q - 1); that is, e is defined by 

(e, (p - l)(q - 1)) = 1. 

Finally, we solve for d in the equation 

1 = edmod (p - l ) (q - 1 ) . 

The public keys (the keys to be made known) are e and m, whereas the secret keys are p, 
q, and d. 

Theorem 2.33 • RSA Public Key Cryptosystem 

Suppose A = {O, 1, 2, ... , m - 1} is an alphabet, consisting of m "letters." With m, p, q, e, and 
d as described in the preceding paragraph, let the mappingf:A �A be defined by 

J(x) = xe mod m. 

Then/has the inverse mapping g:A �A given by 

g(x) = x1 mod m. 

p :::::} q Proof Let y = xe mod m. Then 

Since 

l = (xe)d (mod m) 

= xed (mod m) . 

1 = edmod (p - l ) (q - 1), 

tRSA comes from the initials of the last names of Ronald Rivest, Adi Shamir, and Len Adelman, who devised 
this system in 1977. 
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then 

for some integer k. 
If x =fi. 0 (mod p), then 
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ed = k( p - 1) ( q - 1) + 1 

xed = xk(p-I)(q-1)+1 (modp) 
= xk(p-I)(q-I)x (mod p) 
= (xp-I)k(q-I)x (modp) 
= ( 1 )k(q-l)x (mod p) 
= x (modp) 

since xP-1 = 1 (mod p ), from Exercise 54 and Theorem 2.25 in Section 2.5. 
If x = 0 (mod p), it is clear that xed = oed (mod p) = 0 (mod p). Thus we have 

xed = x (mod p) in all cases. 
Similarly, 

Hence 

xed = x (mod q). 

p I (xed - x) and q I (xed - x). 

By Exercise 11 in Section 2.4, this implies that 

pql (xed - x), 

and since m = pq, we have 

xed = x (mod m) . 

Thus yd xed (mod m) = x (mod m) , and it follows that yd mod m = x mod m. 

We have shown that g(f(x)) = x, and analogous steps can be used to verify that 
f(g(x)) = x. Therefore, g is the inverse mapping off 

We illustrate the RSA cryptosystem with relatively small primes p and q. For the RSA 
system to be secure, it is recommended that the primes p and q be chosen so as to contain 
more than 100 digits. 

Example 5 RSA Public Key Cryptosystem We first choose two primes (which are 
to be kept secret): 

p = 17, and q = 43. 

Then we compute m (which is to be made public): 

m = pq = 17 · 43 = 731. 
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Next we choose e (to be made public), where e must be relatively prime to 
(p - l)(q - 1) = 16 • 42 = 672. Suppose we take e = 205. The Euclidean Algorithm 
can be used to verify that (205, 672) = 1. Then dis determined by the equation 

1 = 205d mod 672. 

Using the Euclidean Algorithm, we find d = 613 (which is kept secret). The mapping 
f:A -+A, where A= {O, 1, 2, ... , 730}, defined by 

f(x) = x205 mod 731 

is used to encrypt a message. Then the inverse mapping g:A -+A, defined by 

g(x) = x613 mod 731 

can be used to recover the original message. 
Using the 27-letter alphabet as in Examples 2 and 3, the plaintext message "no prob

lem" is translated into the message as follows: 

plaintext: n o p r o b 1 e m 

message: 13 14 26 15 17 14 01 11 04 12 

The message becomes 

13142615171401110412. 

This message must be broken into blocks mi, each of which is contained in A. If we choose 
three-digit blocks, each block mi < m = 731. 

mi: 131 426 151 714 011 104 12 

J(m;) = mf05mod 731 = ci: 082 715 376 459 551 593 320 

The enciphered message becomes 

082 715 376 459 551 593 320 

where we choose to report each ci with three digits by appending any leading zeros as 
necessary. 

To decipher the message, one must know the secret key d = 613 and apply the inverse 
mapping g to each enciphered message block Ci = f(mi): 

ci: 082 715 376 459 551 593 320 

g(cJ = c?13mod 731: 131 426 151 714 011 104 12 

Finally, by rebreaking the "message" back into two-digit blocks, one can translate it back 
into plaintext. 

three-digit block message: 131 426 151 714 011 104 12 

two-digit block message: 13 14 26 15 17 14 01 11 04 12 

plaintext: n o p r 0 b e m • 

The RSA Public Key Cipher is an example of an exponentiation cipher. As in coding 
theory, we have barely touched on the basics of cryptography. It is our hope that this short 
introduction may spark further interest in a topic whose basis lies in modem algebra. 
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Exercises 2.8 

True or False 
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Label each of the following statements as either true or false. 

1. The notation x = y mod n is used to indicate the unique integer x in the range 

0 :$ x < n such that x - y is a multiple of n. 

2. In order for an affine mappingf(x) =ax+ b mod n to have an inverse, a and n must 

be relatively prime. 

3. An example of an exponentiation cipher is the RSA Public Key Cipher. 

Exercises 

1. In the 27-letter alphabet A described in Example 2, use the translation cipher with key 

k = 8 to encipher the following message. 

the check is in the mail 

What is the inverse mapping that will decipher the ciphertext? 

2. Suppose the alphabet consists of a through z, in natural order, followed by a blank, a 

comma, a period, an apostrophe, and a question mark, in that order. Associate these 

"letters" with the numbers 0, 1, 2, ... , 30, respectively, thus forming a 31-letter 

alphabet B. Use the translation cipher with key k = 21 to encipher the following 

message. 

what's up, doc? 

What is the inverse mapping that will decipher the ciphertext? 

3. In the 31-letter alphabet B as in Exercise 2, use the translation cipher with key k = 11 

to decipher the following message. 

?TRP. HGOZGEZAG.PLOG XPK 

What is the inverse mapping that deciphers this ciphertext? 

4. In the 27-letter alphabet A described in Example 2, use the translation cipher with key 

k = 15 to decipher the following message. 

FXGTOPBSOGWXBT 

What is the inverse mapping that deciphers this ciphertext? 

5. In the 27-letter alphabet A described in Example 2, use the affine cipher with key 

a = 7 and b = 5 to encipher the following message. 

all systems go 

What is the inverse mapping that will decipher the ciphertext? 
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6. In the 3 1 -letter alphabet B described in Exercise 2, use the affine cipher with key 

a = 15 and b = 22 to encipher the following message. 

Houston, we have a problem. 

What is the inverse mapping that will decipher the ciphertext? 

7. Suppose the alphabet consists of a through z, in natural order, followed by a colon, a 

period, and then a forward slash. Associate these "letters" with the numbers 0, 1, 2, ... , 

28, respectively, thus forming a 29-letter alphabet, C. Use the affine cipher with key 

a = 3 and b = 22 to decipher the message 

OVV JNTTBBB Q/FD LWLFQ/GA T YST 

and state the inverse mapping that deciphers this ciphertext. 

8. Use the alphabet C from the preceding problem and the affine cipher with key a = 11 

and b = 7 to decipher the message 

RR ROA WFPHPWSUHIFOAQXZC: Q .  ZIFLW /0 :NXM 

and state the inverse mapping that deciphers this ciphertext. 

9. Suppose that in a long ciphertext message the letter x occurred most frequently, fol

lowed in frequency by c. Using the fact that in the 26 -letter alphabet A, described in 

Example 4, e occurs most frequently, followed in frequency by t, read the portion of 

the message 

RNCYXRNCHFT 

enciphered using an affine mapping on A. Write out the affine mapping f and its 

inverse. 

10. Suppose that in a long ciphertext message the letter D occurred most frequently, 

followed in frequency by N. Using the fact that in the 27-letter alphabet A, described 

in Example 2, "blank" occurs most frequently, followed in frequency bye, read the 

portion of the message 

GENDOCFAADOQNID PGMDCFE 

enciphered using an affine mapping on A. Write out the affine mapping f and its 

inverse. 

11. Suppose the alphabet consists of a through z, in natural order, followed by a blank and 

then the digits 0 through 9, in natural order. Associate these "letters" with the numbers 

0, 1, 2, ... , 36, respectively, thus forming a 3 7-letter alphabet, D. Use the affine cipher 

to decipher the message 

x0 1 916R 916 546M 9CN 1 L6B lLL6XORz6u11 

if you know that the plaintext message begins with "t" followed by "h". Write out the 

affine mapping! and its inverse. 
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12. Suppose the alphabet consists of a through z, in natural order, followed by a blank, 

a comma, and a period, in that order. Associate these "letters" with the numbers 0, 1, 

2, ... , 28, respectively, thus forming a 29-letter alphabet, E. Use the affine cipher to 

decipher the message 

BZZK,AUZNZG,RSKZ,A UWAO 

if you know that the plaintext message begins with "b" and ends with".". Write out 

the affine mapping! and its inverse. 

13. Let f:A--+A be defined by f(x) =ax+ b mod n. Show that f-
1
:A -+A exists if 

(a, n) = 1, and is given by f-1(x) = a'x + b' mod n, where a' is defined by 

1 = a' a mod n, with 0 < a' < n 

and 

b'  = -a'b mod n. 

14. Suppose we encipher a plaintext message Musing the mappingf1:A -+A resulting in 

the ciphertext C. Next we treat this ciphertext as plaintext and encipher it using the 

mappingfz: A -+A resulting in the ciphertext D. The composition mappingf:A -+A, 

where f = fz 0 Ji, could be used to encipher the plaintext message M resulting in the 

ciphertext D. 

a. Prove that ifj1 andfz are translation ciphers, thenf = fz 0 j1 is a translation cipher. 

b. Prove that ifj1 andfz are affine ciphers, thenf = fz 0 Ji is an affine cipher. 

15. a. Excluding the identity cipher, how many different translation ciphers are there 

using an alphabet of n "letters"? 

b. Excluding the identity cipher, how many different affine ciphers are there using an 

alphabet of n "letters," where n is a prime? 

16. Rework Example 5 by breaking the message into two-digit blocks instead of three

digit blocks. What is the enciphered message using the two-digit blocks? 

17. Suppose that in an RSA Public Key Cryptosystem, the public key is e = 13, m = 77. 

Encrypt the message "go for it" using two-digit blocks and the 27-letter alphabet A 

from Example 2. What is the secret key d? 

18. Suppose that in an RSA Public Key Cryptosystem, the public key is e = 35, m = 64. 

Encrypt the message "pay me later" using two-digit blocks and the 27-letter alphabet 

A from Example 2. What is the secret key d? 

19. Suppose that in an RSA Public Key Cryptosystem, p = 11, q = 13, and e = 7. 

Encrypt the message "algebra" using the 26-letter alphabet from Example 4. 

a. Use two-digit blocks. 

b. Use three-digit blocks. 

c. What is the secret key d? 
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Sec. 3.4, #42 «i 

20. Suppose that in an RSA Public Key Cryptosystem, p = 17, q = 19, and e = 19. 
Encrypt the message "pascal" using the 26-letter alphabet from Example 4. 

a. Use two-digit blocks. 

b. Use three-digit blocks. 

c. What is the secret key d? 

21. Suppose that in an RSA Public Key Cryptosystem, the public key is e = 23, m = 55. 
The ciphertext message 

26 25 00 39 09 18 52 17 49 52 02 

was intercepted. What was the message that was sent? Use the 27-letter alphabet from 
Example 2. 

22. Suppose that in an RSA Public Key Cryptosystem, the public key is e = 5, m = 51. 
The ciphertext message 

04 05 32 44 26 39 04 00 13 08 00 44 24 29 17 26 49 28 03 

was intercepted. What was the message that was sent? Use the 27-letter alphabet 
from Example 2. 

23. The Eulert phi-function is defined for positive integers n as follows: </> (n) is the 
number of positive integers m such that 1 < m ::::::: n and (m, n) = 1. Evaluate each of 
the following and list each of the integers m relatively prime to the given n. 

a. </>(5) 

c. </>( 15) 

e. </>(12) 

b. </>(19) 

d. </>(27) 

f. </>(36) 

24. Prove that the number of ordered pairs a, b that form a key for an affine cipher 
f(x) = ax + b mod n is </>(n)n. 

25. a. Evaluate each of the following. 

i. </> (2 • 3) ii. </> (2 • 5) iii. </> (3 • 5) iv. </> (3 · 7) 

b. If p is a prime, then <f>(p) = p - 1, since all positive integers less than p are 
relatively prime to p. Prove that if p and q are distinct primes, then <f>(pq) = 

(p - l)(q - 1). 

26. a. Evaluate each of the following. 

i. </> (2) ii. </> (22) 

v. </> (3) vi. </> (32) 

iii. </> ( 23) 

vii. </> ( 33) 

iv. </> (24) 

viii. </> ( 34) 

b. If pis a prime andj is a positive integer, prove <f>(pj) = pj-I(p - 1). 

tLeonhard Paul Euler (1707-1783) was a Swiss mathematician and physicist, who also worked in mechanics, 
optics, and astronomy. Euler is considered one of the greatest mathematicians of the 18th century and one of the 
best of all time. He has been featured on Swiss, German, and Russian postage stamps, a Swiss banknote, and 
has an asteroid named in his honor. 
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Key Words and Phrases 
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cancellation law for addition, 69 

check digits, 120, 122 
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Division Algorithm, 84, 86 

dot product, 122 

efficiency, 124 
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Euclidean Algorithm, 91 
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exponentiation cipher, 134 
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Generalized Induction, 76 

greatest common divisor, 89 

Hamming (7,4) code, 127 

Hamming distance, 126 

Hamming weight, 127 

induction postulate, 68 

key, 129 
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least common multiple, 96 

length, 119 
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linear combination, 90 

minimum distance of a code, 127 

multiplicative cipher, 130 

negative integer, 68 
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positive integer, 68 
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Principle of Mathematical 

Induction, 7 4 

properties of addition in Zn, 111 

properties of multiplication in 
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Public Key Cryptosystem, 132 

relatively prime integers, 92 

repetition codes, 120 

residue classes, 100 

RSA cryptosystem, 132 

Second Principle of Finite 

Induction, 77 

standard form of a positive 

integer, 95 

Strong Mathematical 

Induction, 77 

translation cipher, 128 

triple repetition code, 120 

Unique Factorization 

Theorem, 89, 94 

Well-Ordering Theorem, 84 

zero divisor, 113 

A Pioneer in Mathematics 
Blaise Pascal (1623-1662) 

Blaise Pascal is most commonly associated with Pascal's triangle, a 

triangular-shaped pattern in which the binomial coefficients are 

generated. Although Pascal was not the first to discover this pattern, 

it was through his study of the pattern that he became the first writer 

to describe precisely the process of mathematical induction. 

As a child, Pascal was frequently ill. His father, a mathematician 

himself, used to hide all his own mathematics books because he felt 

that his son's study of mathematics would be too strenuous. But 

when he was 12, Pascal was found in his playroom folding pieces 

of paper, doing an experiment by which he discovered that the sum 
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of the angles in any triangle is equal to 180°. Pascal's father was so impressed that he gave 

his son Euclid's Elements to study, and Pascal soon discovered, on his own, many of the 

propositions of geometry. 

At the age of 14, Pascal was allowed to participate actively in the gatherings of a 

group of French mathematicians. At 16, he had established significant results in projective 

geometry. Also at this time, he began developing a calculator to facilitate his father's work 

of auditing chaotic government tax records. Pascal perfected the machine over a period of 

ten years by building 50 various models, but ultimately it was too expensive to be practical. 

Pascal made many contributions in the fields of mechanics and physics as well. The 

one-wheeled wheelbarrow is another of his inventions. Through his correspondence with 

the French mathematician Pierre de Fermat, he and Fermat laid the foundations of probability 

theory. 

Pascal died in 1662 at the age of 39. His contributions to 17th-century mathematics 

were stunning, expecially in view of his short life. Scholars wonder how much more 

mathematics would have issued from his gifted mind had he lived longer. 
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CHAPTER T H R E E 

Groups 

• Introduction 

Some of the standard topics in elementary group theory are treated in this chapter: subgroups, cyclic 

groups, isomorphisms, and homomorphisms. 

In the development here, the topic of isomorphism appears before homomorphism. Some 

instructors prefer a different order and teach Section 3.6 (Homomorphisms} before Section 3.5 (Iso

morphisms}. Logic can be used to support either approach. Isomorphism is a special case of homomor

phism, while homomorphism is a generalization of isomorphism. Isomorphisms were placed first in this 

book with the thought that "same structure" is the simpler idea. 

Both the additive and the multiplicative structures in Zn serve as a basis for some of the examples 

in this chapter. 

12!] Definition of a Group 

The fundamental notions of set, mapping, binary operation, and binary relation were presented 

in Chapter 1. These notions are essential for the study of an algebraic system. An algebraic 

structure, or algebraic system, is a nonempty set in which at least one equivalence relation 

(equality) and one or more binary operations are defined. The simplest structures occur when 

there is only one binary operation, as is the case with the algebraic system known as a group. 

An introduction to the theory of groups is presented in this chapter, and it is appropriate 

to point out that this is only an introduction. Entire books have been devoted to the theory of 

groups; the group concept is extremely useful in both pure and applied mathematics. 

A group may be defined as follows. 

Definition 3.1 • Group 

Suppose the binary operation * is defined for elements of the set G. Then G is a group 

with respect to *provided the following four conditions hold: 

1. G is closed under*· That is, x E G andy E G imply that x * y is in G. 

2. * is associative. For all x, y, z in G, x * (y * z) = (x * y) * z. 
3. G has an identity element e. There is an e in G such that x * e = e * x = x for all 

xE G. 

4. G contains inverses. For each a E G, there exists b E G such that a* b = b *a = e. 

141 
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ALERT The phrase "with respect to *" should be noted. For example, the set Z of all integers 
is a group with respect to addition but not with respect to multiplication (it has no inverses 
for elements other than ± 1). Similarly, the set G = { 1, -1} is a group with respect to 
multiplication but not with respect to addition. In most instances, however, only one binary 
operation is under consideration, and we say simply that "G is a group." If the binary 
operation is unspecified, we adopt the multiplicative notation and use the juxtaposition xy 

to indicate the result of combining x and y. Keep in mind, though, that the binary operation 
is not necessarily multiplication. 

Definition 3.2 • Abelian Group 

Let G be a group with respect to*· Then G is called a commutative group, or an abeliant 

group, if* is commutative. That is, x * y = y * x for all x, y in G. 

Example 1 We can obtain some simple examples of groups by considering appropriate 
subsets of the familiar number systems. 

a. The set C of all complex numbers is an abelian group with respect to addition. 

b. The set Q - { 0} of all nonzero rational numbers is an abelian group with respect to 
multiplication. 

c. The set R+ of all positive real numbers is an abelian group with respect to multiplica
tion, but it is not a group with respect to addition (it has no additive identity and no 
additive inverses). • 

The following examples give some indication of the great variety of groups that exist, 
some of which are abelian and others that are not abelian (nonabelian). 

Example 2 Recall from Chapter 1 that a permutation on a set A is a one-to-one mapping 
from A onto A and that S(A) denotes the set of all permutations on A. In Section 1.5, we saw 
that S(A) is closed with respect to the binary operation ° of mapping composition and, in 
Section 1.2, that the operation ° is associative. In Section 1.5, the identity mapping IA was 
defined and shown to be the identity element in S(A): 

JoJA=f=JAof 

for all f E S(A), and also that each f E S(A) has an inverse in S(A). Thus we may 
conclude from results in Chapter 1 that S(A) is a group with respect to composition of 
mappings. • 

Depending on the choice of A, the group S(A) may or may not be abelian. Example 3 
illustrates a nonabelian S(A) and Exercise 46 requests an abelian example. 

Example 3 We shall take A= {1, 2, 3} and obtain an explicit example of S(A). In 
order to define an element! of S(A), we need to specify f(l), f(2), and f(3). There are 
three possible choices forf(l). Sincef is to be bijective, there are two choices forf(2) after 

tThe term abelian is used in honor of Niels Henrik Abel (1802-1829). A biographical sketch of Abel appears 
on the last page of this chapter. 
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•Figure 3.2 
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f(l) has been designated, and then only one choice forf(3). Hence there are 3! = 3 · 2 · 1 
different mappings fin S(A). These are given by {e(l) = 1 

e = IA: e(2) = 2 

e(3) = 3 {p(1) =2 

p: p(2) = 3 

p(3) = 1 {7(1) = 3 

7: 7(2) = 1 

7(3) = 2 

{u(l) = 2 

er: u(2) = 1 

u(3) = 3 {y(l) = 3 

'Y: y(2) = 2 

y(3) = 1 {8(1) = 1 

8: 8(2) = 3 

8(3) = 2. 

Thus S(A) = {e, p, 7, er, y, 8}. Following the same convention as in Exercise 3 of Section 

1.4, we shall construct a "multiplication" table for S(A). As shown in Figure 3.1, the result of 

f 0 g is entered in the row withf at the left and in the column with g at the top. 

0 g 

f . . .  Jog 

In constructing the table for S(A), we list the elements of S(A) in a column at the left 

and in a row at the top, as shown in Figure 3.2. When the product p2 = p 0 pis computed, 

we have 

p2(1) = p(p(l)) = p(2) = 3 

p2(2) = p(p(2)) = p(3) = 1 

p2(3) = p(p(3)) = p(l) = 2, 

so p2 = 7. Similarly, p 0 er = y, u 0 p = 8, and so on. 

0 e p p2 (T 'Y 8 

e e p p2 (T 'Y 8 

p p p2 e 'Y 8 (T 

p2 p2 e p 8 (T 'Y 

(T (T 8 'Y e p2 p 

'Y '}' (T 8 p e p2 

8 8 'Y (T p2 p e 
• 

A table such as the one in Figure 3.2 is referred to in various texts as a multiplication 

table. If the elements in the multiplication table form a group with respect to the opera

tion represented in the table, then the table is called a group table or a Cayley table. t 

tThe term Cayley table is in honor of Arthur Cayley (1821-1895). A biographical sketch of Cayley appears on 
the last page of Chapter 1. 
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Example 2 guarantees that the explicit example of S(A) in Example 3 is a group with re

spect to mapping composition and hence the multiplication table in Figure 3.2 is a Cayley 

table for S(A). 
With such a table, it is easy to locate the identity and inverses of elements. An element 

e is a left identity if and only if the row headed by e at the left end reads exactly the same 

as the column headings in the table. Similarly, e is a right identity if and only if the column 

headed by e at the top reads exactly the same as the row headings in the table. If it exists, 

the inverse of a certain element a can be found by searching for the identity e in the row 

headed by a and again in the column headed by a. 

If the elements in the row headings are listed in the same order from top to bottom as the 

elements in the column headings are listed from left to right, it is also possible to use the table 

to check for commutativity. The operation is commutative if and only if equal elements appear 

in all positions that are symmetrically placed relative to the diagonal from upper left to lower 

right. In Example 3, the group is not abelian since the table in Figure 3.2 is not symmetric. For 

example, 'Y 0 p2 
= 8 is in row 5, column 3, and p2 

0 'Y = a is in row 3, column 5. 

Example 4 Let G be the set of complex numbers given by G = {1, -1, i, - i} , where 

i = v'=T, and consider the operation of multiplication of complex numbers in G. The 

table in Figure 3.3 shows that G is closed with respect to multiplication. 

Multiplication in G is associative and commutative, since multiplication has these prop

erties in the set of all complex numbers. We can observe from Figure 3.3 that 1 is the iden

tity element and that all elements have inverses. Each of 1 and -1 is its own inverse, and i 
and - i are inverses of each other. Thus G is an abelian group with respect to multiplication. 

x 1 -1 i -i 

1 1 -1 i -i  

-1 -1 1 -i i 

i i -i -1 1 

• Figure 3.3 • 
-i -i i 1 -1 

•Figure 3.4 

Example 5 It is an immediate corollary of Theorem 2.29 that the set 

Zn= {[OJ, [1], [2], ... , [n - 1]} 

of congruence classes modulo n forms an abelian group with respect to addition. • 

Example 6 Let G = { e, a, b, c} with multiplication as defined by the table in Figure 3.4. 

. e a b c 

e e a b c 

a a b c e 

b b c e a 

c c e a b 
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From the table, we observe the following: 

1. G is closed under this multiplication. 

2. e is the identity element. 

3.1 Definition of a Group 145 

3. Each of e and b is its own inverse, and c and a are inverses of each other. 

4. This multiplication is commutative. 

This multiplication is also associative, but we shall not verify it here because it is a labori

ous task. It follows that G is an abelian group. • 

Example 7 The table in Figure 3.5 defines a binary operation* on the set S = 

{A,B, C,D}. 

* A B c D 

A B c A B 

B c D B A 

c A B c D 

D A B D D 

From the table, we make the following observations: 

1. S is closed under *. 

2. C is an identity element. 

3. D does not have an inverse since DX = C has no solution. 

Thus Sis not a group with respect to*· • 

Definition 3.3 • Finite Group, Infinite Group, Order of a Group 

If a group G has a finite number of elements, G is called a finite group, or a group of 

finite order. The number of elements in G is called the order of G and is denoted by 

either o( G) or I GI- If G does not have a finite number of elements, G is called an infinite 

group. 

Example 8 In Example 3, the group 

G = {e, p, p
2
, a, y, S} 

has order IGI = 6. In Example 5, IZnl = n. The set Z of all integers is a group under addi

tion, and this is an example of an infinite group. If A is an infinite set, then S(A) furnishes 

an example of an infinite group. • 

The material in Section 1.6 on matrices leads to some interesting examples of groups, 

both finite and infinite. This is pursued now in Examples 9 and 10. 
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Example 9 Theorem 1.30 translates directly into the statement that Mmxn(R) is an 

abelian group with respect to addition. This is an example of another infinite group. 

When the proof of each part of Theorem 1.30 is examined, it becomes clear that each 

group property in Mmxn(R) derives in a natural way from the corresponding property in R. 
If the set R is replaced by the set Z of all integers, the steps in the proof of each part 

of Theorem 1.30 can be paralleled to prove the same group property for Mmxn(Z). Thus 

Mmxn(Z) is also a group under addition. The same reasoning is valid if R is replaced by the 

set Q of all rational numbers, by the set C of all complex numbers, or by the set Zk of all 

congruence classes modulo k. That is, each of Mmxn(Q), Mmxn(C), and Mmxn(Zk) is a group 

with respect to addition. 

We thus have a family of groups, with Mmxn(Zk) finite and all the others infinite. Some 

aspects of computation in Mmxn(Zk) may appear strange at first. For instance, 

- [ [lJ [3J [OJ] B -
[2J [ 4 J [2J 

is the additive inverse of 

- [ [4J [2J [OJ] A -
[3J [lJ [3J 

in M2x3(Zs), since 

A+ B = [ [OJ [OJ [OJ] • 
[OJ [OJ [OJ 

= B +A. 

In Example 5 of Section 1.6, it was shown that the matrix 

A= [� �] 
in M2(R) does not have an inverse, so the nonzero elements of M2(R) do not form a group with 

respect to multiplication. This result generalizes to arbitrary Mn(R) with n > 1; that is, the 

nonzero elements of Mn(R) do not form a group with respect to multiplication. However, the 

next example shows that the invertible elements t of Mn(R) form a group under multiplication. 

Example 10 We shall show that the invertible elements of Mn(R) form a group G with 

respect to matrix multiplication. 

We have seen in Section 1.6 that matrix multiplication is a binary operation on Mn(R), 
that this operation is associative (Theorem 1.33), and that In = [oijJnxn is an identity element 

(Theorem 1.35). These properties remain valid when attention is restricted to the set G of 

invertible elements of Mn(R), so we need to only show that G is closed under multiplication. 

To this end, suppose that A and B are elements of Mn(R) such that A - l and B-1 exist. Using 

the associative property of matrix multiplication, we can write 

(AB)(B-1A-1) = A(BB-1)A-1 
= Al,A-1 

= AA-1 

tRecall that a square matrix A is called invertible if its multiplicative inverse, A -1, exists. 
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Although matrix multiplication is not commutative, a similar simplification shows that 

(B-1A-1)(AB) = Im 

and it follows that (AB)-1 exists and that (AB)-1 = B-1A-1. Thus G is a group, called the 

general linear group of degree n over R and denoted by GL(n, R). For the case when 

n = 2, Exercises 28 and 29 of Section 1.6 show that A = [: �] is invertible, and hence 

an element of GL(n, R), if and only if ad - be =I- 0. 

As in Example 9, the discussion in the preceding paragraph can be extended by replac

ing R with one of the systems Z, Q, C, or Zk. That is, the invertible elements in each of the 

sets Mn(Z), Mn(Q), Mn(C), and Mn(Zk) form a group with respect to multiplication. Each 

of these general linear groups is denoted by GL(n, Z), GL(n, Q), GL(n, C), and GL(n, Zk) 
respectively. Once again, the computations in GL(n, Zk) may seem strange. As an illustra

tion, it can be verified by multiplication that [[3] 
[5] 

[l]J . . [[2] 
[2] 

is the mverse of 
[2] 

in GL(2, Z7), the general linear group of order 2 over Z7• 

[6]] 
[3] 

• 

The Cartesian product of two nonempty sets was defined in Section 1.2, and is used in 

the next example. 

Example 11 Consider the additive groups Z2 and Z4. To avoid any unnecessary confu

sion we write [a]2 and [a]4 to designate elements in Z2 and Z4, respectively. The Cartesian 

product of Z2 and Z4 can be expressed as 

Z2 X Z4 = {([a]2, [b]4) I [a]2 E Z2, [b]4 E Z4}. 

If we define equality and addition in Z2 X Z4 by 

([a]2, [b ]4) = ([a']2, [b']4) if and only if [a]2 = [a']2 and [b ]4 = [b']4 
and 

([a]z, [b]4) + ([c]z, [d]4) = ([aJ2 + [c]z, [b]4 + [d]4), 
then Z2 X Z4 is an abelian group with respect to addition with identity element ( [ 0 ]2, [ 0 ]4) 
and inverse elements given by 

-([a]z, [b]4) = (-[a]z, -[b]4). 
(The details of the verification that Z2 X Z4 is an abelian group are requested in the exer

cises.) The order of Z2 X Z4 is IZ2 X Z41 = 8. • 

Exercises 3.1 

True or False 

Label each of the following statements as either true or false. 

1. The set Z of all integers is a nonabelian group with respect to subtraction. 

2. The set R - { 0} of nonzero real numbers is a nonabelian group with respect to division. 
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148 Chapter 3 Groups 

3. The identity element in a group G is its own inverse. 

4. If G is an abelian group, then x-1 
= x for all x in G. 

5. Let G be a group that is not abelian. Then xy =F yx for all x and yin G. 

6. The set of all nonzero elements in Zs is an abelian group with respect to multiplication. 

7. The Cayley table for a group will always be symmetric with respect to the diagonal 
from upper left to lower right. 

8. If a set is closed with respect to the operation, then every element must have an inverse. 

9. The nonzero elements of Mmxn (R) form a group with respect to matrix multiplication. 

10. The nonzero elements of Mn (R) form a group with respect to matrix multiplication. 

11. The invertible elements of Mn (R) form an abelian group with respect to matrix multi
plication. 

Exercises 

In Exercises 1-14, decide whether each of the given sets is a group with respect to the 
indicated operation. If it is not a group, state a condition in Definition 3.1 that fails to hold. 

1. The set z+ of all positive integers with operation addition. 

2. The set z+ of all positive integers with operation multiplication. 

3. The set Q of all rational numbers with operation addition. 

4. The set Q' of all irrational numbers with operation addition. 

5. The set of all positive irrational numbers with operation multiplication. 

6. The set Q+ of all positive rational numbers with operation multiplication. 

7. The set of all real numbers x such that 0 < x :5 1, with operation multiplication. 

8. For a fixed positive integer n, the set of all complex numbers x such that x
n 

= 1 (that 
is, the set of all nth roots of 1 ), with operation multiplication. 

9. The set of all complex numbers x that have absolute value 1, with operation multi
plication. Recall that the absolute value of a complex number x written in the form 
x = a + bi, with a and b real, is given by JxJ = J a + bil = v' a2 

+ b2. 

10. The set in Exercise 9 with operation addition. 

11. The set E of all even integers with operation addition. 

12. The set E of all even integers with operation multiplication. 

13. The set of all multiples of a positive integer n with operation addition. 

14. The set of all multiples of a positive integer n with operation multiplication. 

In Exercises 15 and 16, the given table defines an operation of multiplication on the set 
S = { e, a, b, c}. In each case, find a condition in Definition 3 .1 that fails to hold, and 
thereby show that S is not a group. 
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Sec. 4.4, #l, 19, 26 � 
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15. See Figure 3.6. 

16. See Figure 3.7. 

x e a b c x e a b c 

e e a b c e e a b c 

a a b a b a e a b c 

b b c b c b e a b c 

•Figure 3.6 
c c e c e 

•Figure 3.7 
c e a b c 

In Exercises 17-24, let the binary operation* be defined on Z by the given rule. Determine 

in each case whether Z is a group with respect to * and whether it is an abelian group. State 

which, if any, conditions fail to hold. 

17. x * y = x + y + 1 18. X*y=x+y- 1 

19. X*y=x+xy 20. x*y=xy+y 

21. x*y=x+xy+y 22. x*y=x-y 

23. x * y = lxly 24. X*y=2x-y 

In Exercises 25-32, decide whether each of the given sets is a group with respect to the 

indicated operation. If it is not a group, state all of the conditions in Definition 3.1 that fail 

to hold. If it is a group, state its order. 

25. The set { [ 1 J, [ 3 J} � Zs with operation multiplication. 

26. The set {[lJ, [3J, [5]} �Zs with the operation multiplication. 

27. The set {[lJ, [2J, [3]} � Z4 with the operation multiplication. 

28. The set {[lJ, [2J, [3J, [4]} � Z5 with operation multiplication. 

29. The set {[OJ, [2J, [4]} �Zs with operation multiplication. 

30. The set {[OJ, [2J, [4J, [6J, [8]} � Z10 with operation multiplication. 

31. The set {[OJ, [2J, [4J, [6J, [8]} � Z10 with operation addition. 

32. The set {[OJ, [2J, [4J, [6]} �Zs with operation addition. 

33. a. Let G = { [a J I [a J =f=. [OJ} � Zn. Show that G is a group with respect to multiplication 

in Zn if and only if n is a prime. State the order of G. This group is called the group 

of units in Zn and is designated by Un. 

b. Construct a multiplication table for the group U7 of all nonzero elements in Z7, 

and identify the inverse of each element. 
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Sec. 3.3, #22a, 32a <'i 

Sec. 3.4, #2 <'i 

Sec. 3.5, #11 <'i 

Sec. 4.2, #8 <'i 

Sec. 4.4, #23 <'i 

Sec. 4.5, #40a <'i 

Sec. 4.6, #3, 11, 16 <'i 

•Figure 3.8 

Sec. 3.3, #22c, 32c <'i 

Sec. 3.4, #5 <'i 

Sec. 4.2, #6 <'i 

Sec. 3.3,#22b,32b<'i 

Sec. 4.1, #22 <'i 

Sec. 4.6, #14 <'i 

34. Let G be the set of eight elements G = {1, i, j, k, -1, -i, -j, -k} with identity ele
ment 1 and noncommutative multiplication given byt 

(-1)2=1, 

i2 = j2 = k2 = -1, 

ij = -ji = k, 

jk = -kj = i, 

ki = -ik = j, 

-x = (-l)x = x(-1) for allxinG. 

(The circular order of multiplication is indicated by the diagram in Figure 3.8.) Given 
that G is a group of order 8, write out the multiplication table for G. This group is 
known as the quaternion group. 

k 
• 

j --� 

35. A permutation matrix is a matrix that can be obtained from an identity matrix In by 
interchanging the rows one or more times (that is, by permuting the rows). For n = 3, 
the permutation matrices are hand the five matrices 

36. 

l� 
0 

!l P, = l! 
1 

�l P, = l� 
1 

!l P1= 0 0 0 

1 0 0 

l� 
0 

�l P, = l� 
0 

n P4 = 1 0 

0 1 

Given that G = {h Pi, P2, P3, P4, Ps} is a group of order 6 with respect to matrix 
multiplication, write out a multiplication table for G. 

Consider the matrices 

R = [� 
-�J H= [� -�J V= [-1 

0 �] 
D = [� �] T= [ 

0 

-1 

-�J 
in GL(2, R), and let G = {/z, R, R2, R3, H, D, V, T } . Given that G is a group of order 
8 with respect to multiplication, write out a multiplication table for G. 

tin a multiplicative group, a2 is defined by a2 = a • a. 
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3.1 Definition of a Group 151 

37. Prove or disprove that the set of all diagonal matrices in Mn(R) forms a group with 

respect to addition. 

38. Let G be the set of all matrices in M3(R) that have the form 

with all three numbers a, b, and c nonzero. Prove or disprove that G is a group with 

respect to multiplication. 

39. Let G be the set of all matrices in M3(R) that have the form 

[� I �] 
for arbitrary real numbers a, b, and c. Prove or disprove that G is a group with respect 

to multiplication. 

40. Prove or disprove that the set Gin Exercise 38 is a group with respect to addition. 

41. Prove or disprove that the set Gin Exercise 39 is a group with respect to addition. 

42. For an arbitrary set A, the power set 2J>(A) was defined in Section 1.1 by 2J>(A) = 

{XIX 5; A}, and addition in 2J>(A) was defined by 

X + Y = (X U Y) - (X n Y) 
= (X - Y) U (Y - X). 

a. Prove that 2J>(A) is a group with respect to this operation of addition. 

b. If A has n distinct elements, state the order of 2J>(A). 

Sec. 1.1, #7c � 43. Write out the elements of 2J>(A) for the set A = {a, b, c}, and construct an addition 

table for 2J>(A) using addition as defined in Exercise 42. 

Sec. 1.1, #7c � 44. LetA = {a, b, c }. Prove or disprove that 2J>(A) is a group with respect to the operation 

of union. 

Sec. 1.1, #7c � 45. Let A = {a, b, c}. Prove or disprove that 2J>(A) is a group with respect to the operation 

of intersection. 

46. In Example 3, the group S(A) is nonabelian where A = { 1, 2, 3 }. Exhibit a set A such that 

S(A) is abelian. 

47. Find the additive inverse of [ �� � 
a. Mzx3 (Z6) 

l [2] 
48. Find the additive inverse of [ 4] 

[1] 

[4] 
[5] 

[ 1 ] ] . th . 
[3] 

m e given group. 

b. Mzx3 (Z7) 

[3] 1 
[ 0] in the given group. 

[6] 
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49 F"d h l "l" . . f [ [l] 
. m t e mu tip icative mverse o [ 3] 

a. GL(2, Zs) 

50 F. d th l . l" . . f [ [ 3 ] . m e mu tip icative mverse o [ 1] 
a. GL(2, Zs) 

[2] ] 
. th . [4] m e given group. 

b. GL(2, Z7) 

[3 ] ] 
. th . [ 4] m e given group. 

b. GL(2, Z7) 

Sec. 3.4, #27b � 51. Prove that the Cartesian product Z2 X Z4 is an abelian group with respect to the binary 

Sec. 5.1, #53 � operation of addition as defined in Example 11. 

Sec. 3.4, #27 � 

Sec. 3.5, #14, 15, 

27, 28 � 

Sec. 3.6, #12 � 

Sec. 5.1, #51 � 

52. Let G1 and G2 be groups with respect to addition. Define equality and addition in the 

Cartesian product G1 X G2 by 

(a, b) = (a', b') if and only if a = a' and b = a' 

(a,b) + (c, d) = (aEBc,btEd) 

where EB indicates the addition in G1 and tE indicates the addition in G2. 
a. Prove that G1 X G2 is a group with respect to addition. 

b. Prove that G1 X G2 is abelian if both G1 and G2 are abelian. 

For notational simplicity, write 

(a, b) + (c, d) = (a+ c, b + d) 

as long as it is understood that the additions in G1 and G2 may not be the same binary 

operations. 

Properties of Group Elements 

Several consequences of the definition of a group are recorded in Theorem 3.4. 

Strategy • Parts a and b of the next theorem are statements about uniqueness, and they can be 

proved by the standard type of uniqueness proof: Assume that two such quantities exist, 

and then prove the two to be equal. 

Theorem 3.4 • Properties of Group Elements 

Let G be a group with respect to a binary operation that is written as multiplication. 

a. The identity element e in G is unique. 

b. For each x E G, the inverse x-1 in G is unique. 

c. For each x E G, (x-1)-1 = x. 
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3.2 Properties of Group Elements 153 

d. Reverse order law. For any x and y in G, (.xy)-1 
= y -1x-1. 

e. Cancellation laws. If a, x, and y are in G, then either of the equations ax = ay or 
xa = ya implies that x = y. 

Uniqueness Proof We prove parts b and d and leave the others as exercises. To prove part b, let 
x E G, and suppose that each of y and z is an inverse of x. That is, 

Then 

.xy = e = yx and xz = e = zx. 

y = ey since e is an identity 

= (zx )y smce zx = e 

= z (.xy) by associativity 

= z (e )  since .xy = e 

= z since e is an identity. 

Thus y = z, and this justifies the notation x-1 as the unique inverse of x in G. 

(p /\ q) => r We shall use part b in the proof of part d. Specifically, we shall use the fact that the in-
verse (.xy)-1 is unique. This means that in order to show that y -1x-1 

= (.xy)-1, we only need 
to verify that ( .xy) (y -1 x-1) = e = (y -1 x-1) ( .xy). These calculations are straightforward: 

(y -tx-1 ) (.xy) = y -1 (x-1x)y = y -1ey = y -1y = e 

and 

The order of the factors y -1 and x-1 in the reverse order law (.xy)-1 
= y -1x-1 is crucial 

ALERT in a nonabelian group. An example where (.xy) - l * x-1y -1 is requested in Exercise 5 at the 
end of this section. 

Part e of Theorem 3.4 implies that in the table for a finite group G, no element of G 

appears twice in the same row, and no element of G appears twice in the same column. 
These results can be extended to the statement in the following strategy box. The proof of 
this fact is requested in Exercise 12. 

Strategy • In the multiplication table for a group G, each element of G appears exactly once in each 
row and also appears exactly once in each column. 

Although our definition of a group is a standard one, alternative forms can be made. 
One of these is given in the next theorem. 

Theorem 3.5 • Equivalent Conditions for a Group 

Let G be a nonempty set that is closed under an associative binary operation called multi
plication. Then G is a group if and only if the equations ax = b and ya = b have solutions 
x and y in G for all choices of a and bin G. 
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p::::} (q /\ r) Proof Assume first that G is a group, and let a and b represent arbitrary elements of G. 

Now a-1 is in G, and so are x = a-1b andy = ba-1• With these choices for x andy, we have 

ax = a(a-1b) = (aa-1 )b = eb = b 

and 

ya = (ba-1 )a = b(a-1a) = be = b. 

Thus G contains solutions x and y to ax = b and ya = b. 

( q /\ r) ::::} p Suppose now that the equations always have solutions in G. We first show that G 

has an identity element. Let a represent an arbitrary but fixed element in G. The equa

tion ax = a has a solution x = u in G. We shall show that u is a right identity for every 

element in G. To do this, let b be arbitrary in G. With z a solution to ya = b, we have 

za = b and 

b u  = (za)u = z(au) = za = b. 

Thus u is a right identity for every element in G. In a similar fashion, there exists an 

element v in G such that vb = b for all b in G. Then vu = v, since u is a right identity, 

and vu = u, since vis a left identity. That is, the element e = u = vis an identity ele

ment for G. 

Now for any a in G, let x be a solution to ax = e, and let y be a solution to ya = e. 

Combining these equations, we have 

x = ex 

= yax 

=ye 

= y, 

and x = y is an inverse for a. This proves that G is a group. 

In a group G, the associative property can be extended to products involving more 

than three factors. For example, if a1, a2, a3, and a4 are elements of G, then applications of 

condition 2 in Definition 3.1 yield 

[a1
(a2a3)]a4 = [(a

1
a2)a3]a4 

and 

These equalities suggest (but do not completely prove) that regardless of how sym

bols of grouping are introduced in a product a1a2a3a4, the resulting expression can be 

reduced to 

With these observations in mind, we make the following definition. 
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Definition 3.6 • Product Notation 

Let n be a positive integer, n 2: 2. For elements a1, a2, ... , an in a group G, the expression 

a1a2 · · · an is defined recursively by 

a1a2 · · · akak+1 = (a1a2 · · · ak)ak+1 for k 2: 1. 

We can now prove the following generalization of the associative property. 

Theorem 3.7 • Generalized Associative Law 

Complete 

Induction 

Let n > 2 be a positive integer, and let ai, a2, ... , an denote elements of a group G. For 

any positive integer m such that 1 ::; m < n, 

(a1a2· .. am)(am+l · .. an) = a1a2 ... an' 

Proof For n 2: 2, let Pn denote the statement of the theorem. With n = 2, the only possible 

value form ism = 1, and P2 asserts the trivial equality 

Assume now that P k  is true: For any positive integer m such that 1 ::; m < k, 

(a1a2 ... am)(am+l ... ak) = a1a2 ... ak. 

Consider the statement Pk+1, and let m be a positive integer such that 1 < m < k + 1. We 

treat separately the cases where m = k and where 1 :5 m < k. If m = k, the desired equality 

is true at once from Definition 3.6, as follows: 

If 1 ::; m < k, then 

by Definition 3.6, and consequently, 

(a1a2 · · ·am)(am+I · · · akak+1) 

(a1a2 · · · am)[(am+I · · · ak)ak+1 ] 

[ (a1a2 · · · am)(am+I · · · ak) ]ak+1 by the associative property 

[a1a2· · · ak]ak+t by Pk 

= a1a2 · · · ak+1 by Definition 3.6. 

Thus Pk+ 1 is true whenever Pk is true, and the proof of the theorem is complete. 

The product notation defined in Definition 3.6 naturally leads to the definition of 

integral exponents for elements of a group. 
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Definition 3.8 • Integral Exponents 

Let G be a group with the binary operation written as multiplication. For any a E G, we 

define nonnegative integral exponents by 

a0 = e, a1 =a, 

and 

ak+ 1 = ak · a for any positive integer k. 

Negative integral exponents are defined by 

a-k = (a-1)k for any positive integer k. 

In the next example, we freely use the generalized associative law. 

Example 1 Let G be a group in which x2 = e for all x in G. To prove that G is abelian, 

we must prove that .xy = yx for all x and y in G. Let x, y E G. Then 

xy = xey Definition 3.1 and Theorem 3.7 

= x (.xy )2 y since G is closed 

= x (.xy) (.xy) y Definition 3.8 

= x2 (yx) y2 Definition 3.8 and Theorem 3.7 

= e (yx) e sincex E G and y E G 

= yx Definition 3.1 and Theroem 3.7. 

Thus G is abelian. • 

It is common practice to write the binary operation as addition in the case of abelian 

groups. When the operation is addition, the corresponding multiples of a are defined in a 

similar fashion. The following list shows how the notations correspond, where k is a posi

tive integer. 

Multiplicative Notation 

a0 = e 

a1 =a 

Additive Notation 

Oa = 0 

la = a 

(k + l)a = ka + a 

( -k)a = k( -a) 

ALERT The notation ka in additive notation does not represent a product of k and a but, rather, a sum 

ka=a+a+ .. ·+a 

with k terms. In Oa = 0, the zero on the left is the zero integer, and the zero on the right 

represents the additive identity in the group. 
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Considering the rich variety of operations and sets that have been involved in our 

examples, it may be surprising and reassuring to find, in the next theorem, that the familiar 

laws of exponents hold in a group. 

Theorem 3.9 • Laws of Exponents 

Let x and y be elements of the group G, and let m and n denote integers. Then 

a. x'1' • x-n = e 

b. X'1 • x'1' = xm+n 

c. (xm)n = Xmn 

d. If G is abelian, (xy)n = x"'yn. 

Induction Proof The proof of each statement involves the use of mathematical induction. It would 

be redundant, and even boring, to include a complete proof of the theorem, so we shall 

assume statement a in order to prove b for the case where m is a positive integer. Even 

then, the argument is lengthy. The proofs of the statements a, c, and d are left as exercises. 

Let m be an arbitrary, but fixed, positive integer. There are three cases to consider for n: 

i. n = 0, 

n. n a positive integer, and 

iii. n a negative integer. 

First, let n = 0 for case i. Then 

� ':x'1' =�•XO= Xm • e = Xm and �+n = �+O = �. 

Thus xm • xn = xm+n in the case where n = 0. 

Second, we shall use induction on n for case ii where n is a positive integer. If n = 1, 

we have 

and statement b of the theorem holds when n = 1. Assume that b is true for n = k. That 

is, assume that 

Then, for n = k + 1, we have 

= � • (x'< • x) 
= (�. x'<) • x 
= �+k. x 
= �+k+l 

= �+n 

by definition of J<+ 1 
by associativity 

by the induction hypothesis 

by definition of x(m+k)+l 

since n = k + 1. 

Thus bis true for n = k + 1, and it follows that it is true for all positive integers n. 

Copyright 2013 Cengage Leaming. AH Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materia11y affect the overall learning experience. Cengage Leaming reserves the right to remove additional content at any time if subsequent rights restrictions require it. 



158 Chapter3 Groups 

Third, consider case iii where n is a negative integer. This means that n = -p, where p is 
a positive integer. We consider three possibilities for p: p = m, p < m, and m < p. 

Ifp = m, thenn = -p = -m, and we have 

xn • x!' = :rn . x-m = e 

by statement a of the theorem, and 

Xn+n = Xn-m =XO = e. 

We havexm · xn = xm+n whenp = m. 
If p < m, let m - p = q, so that m = q + p where q and p are positive integers. 

We have already proved statement b when m and n are positive integers, so we may use 
xq+p = xq • xP. This gives 

xn • x!' = xq+p • x-p 
= X1. �. x-p 
= X1 • e by statement a 

= xq 
= xq+p- p 
= xn+n. 

That is, X11 • x!' = xn+n for the case where p < m. 
Finally, suppose that m < p. Let r = p - m, so that r is a positive integer and 

p = m + r. By the definition of x-P, 

x-p = (x-1 )P 

(x-l)m+r 

(x-1)m • (x-1Y since m and rare positive integers 

Substituting this value for x-p in xm • xn = xm • x-P, we have 

We also have 

so xm • xn = xm+n when m < p. 

xn • x!' = xn • (x-m • x-r) 

(xn. x-m) • x-r 

xm+n = xm-p  

= xm-(m+r) 

We have proved that xm • xn = xm + n in the cases where m is a positive integer and n is 
any integer (zero, positive, or negative). Of course, this is not a complete proof of statement 
b of the theorem. A complete proof would require considering cases where m = 0 or where 

m is a negative integer. The proofs for these cases are similar to those given here, and we 
omit them entirely. 
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The laws of exponents in Theorem 3.9 translate into the following laws of multiples 

for an additive group G. 

Laws of Multiples 

a. nx+(-n)x=O 

b. mx + nx = (m + n)x 

c. n(mx) = (nm)x 

d. If G is abelian, n(x + y) = nx + ny. 

Exercises 3.2 

True or False 

Label each of the following statements as either true or false. 

1. A group may have more than one identity element. 

2. An element in a group may have more than one inverse. 

3. Let x, y, and z be elements of a group G. Then (xyz)-1 = x-•y-•z-•. 

4. In a Cayley table for a group, each element appears exactly once in each row. 

5. The Generalized Associative Law applies to any group, no matter what the group 

operation is. 

6. If x2 = e for at least one x in a group G, then x2 = e for all x E G. 

Exercises 

1. Prove part a of Theorem 3.4. 

2. Prove part c of Theorem 3.4. 

3. Prove part e of Theorem 3.4. 

4. An element x in a multiplicative group G is called idempotent if x2 = x. Prove that 

the identity element e is the only idempotent element in a group G. 

5. In Example 3 of Section 3.1, find elements a and b of S(A) such that (ab)-1 * a-•b-1. 

6. In Example 3 of Section 3.1, find elements a, b, and c of S(A) such that ab = be but 

a* c. 

7. In Example 3 of Section 3.1, find elements a and b of S(A) such that (ab)2 * a2b2• 

8. In Example 3 of Section 3.1, find all elements a of S(A) such that a2 = e. 

9. Find all elements in each of the following groups such that x2 = e. 

a. Zs under addition. 

b. {[l], [2], [3], [4]} �Zs under multiplication. 

10. Prove that in Theorem 3.5, the solutions to the equations ax = b and ya = b are actu

ally unique. 
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Sec. 3.3, #23 � 

11. Let G be a group. 

a. Prove that the relation R on G, defined by xRy if and only if there exists an a E G 

such that y = a-1 xa, is an equivalence relation. 

b. Let x E G. Find [x], the equivalence class containing x, if G is abelian. 

12. Suppose that G is a finite group. Prove that each element of G appears in the multipli

cation table for G exactly once in each row and exactly once in each column. 

In Exercises 13 and 14, part of the multiplication table for the group G = {a, b, c, d} is 

given. In each case, complete the table. 

13. See Figure 3.9. 

14. See Figure 3.10. 

x a b c d x a b c d 

a d a 

b b a 

c c c a 

•Figure 3.9 
d c 

• Figure 3.10 
d 

15. Prove that if x = x-1 for all x in the group G, then G is abelian. 

16. Suppose ab = ca implies b = c for all elements a, b, and c in a group G. Prove that G 

is abelian. 

17. Let a and b be elements of a group G. Prove that G is abelian if and only if 

(ab)-1 = a-1b-1. 

18. Let a and b be elements of a group G. Prove that G is abelian if and only if (ab )2 = a2b2. 

19. Use mathematical induction to prove that if a is an element of a group G, then 

(a-1r = (anr1 for every positive integer n. 

20. Let a and b be elements of a group G. Use mathematical induction to prove each of the 

following statements for all positive integers n. 

a. If the operation is multiplication, then (a-1bar = a-1bna. 

b. If the operation is addition and G is abelian, then n( a + b) = na + nb. 

21. Let a, b, c, and d be elements of a group G. Find an expression for (abcd)-1 in terms 

of a-1, b-1, c-1, and d-1. 

22. Use mathematical induction to prove that if ai, az, ... , an are elements of a group G, 

then (a
1
a2 • • • an)-1 = a;;-1a;;-2

1 
• • • a;,-1a!1. (This is the general form of the reverse 

order law for inverses.) 

23. Let G be a group that has even order. Prove that there exists at least one element 

Sec. 4.4, #30 � a E G such that a -=F e and a = a -1• 
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24. Prove or disprove that every group of order 3 is abelian. 

25. Prove or disprove that every group of order 4 is abelian. 

3.3 Subgroups 161 

26. Suppose G is a finite set with n distinct elements given by G = {ai. a2, • • •  , an}. 
Assume that G is closed under an associative binary operation * and that the following 

two cancellation laws hold for all a, x, and y in G: 

a * x = a * y implies x = y; 
x * a = y * a implies x = y. 

Prove that G is a group with respect to*· 

27. Suppose that G is a nonempty set that is closed under an associative binary opera

tion * and that the following two conditions hold: 

1. There exists a left identity e in G such that e * x = x for all x E G. 

2. Each a E G has a left inverse a1 in G such that a1 *a = e. 

Prove that G is a group by showing that e is in fact a two-sided identity for G and that 

a1 is a two-sided inverse of a. 

28. Reword Definition 3.6 for a group with respect to addition. 

29. State and prove Theorem 3.7 for an additive group. 

30. Prove statement a of Theorem 3.9: xn • x-n = e for all integers n. 

31. Prove statement c of Theorem 3.9: (xm)n = xmn for all integers m and n. 

32. Prove statement d of Theorem 3.9: If G is abelian, (xyr = xnyn for all integers n. 

12!] Subgroups 

Among the nonempty subsets of a group G, there are some that themselves form a group 

with respect to the binary operation* in G. That is, a nonempty subset H � G may be such 

that His also a group with respect to*· Such a subset His called a subgroup of G. 

Definition 3.10 • Subgroup 

Let G be a group with respect to the binary operation *. A subset H of G is called a subgroup 

of G if H forms a group with respect to the same binary operation* that is defined in G. 

The subsets H = { e} and H = G are always subgroups of the group G. The subgroup 

{ e} is called the trivial subgroup. The phrase "the nontrivial subgroups of G" refers to 

all subgroups of G except { e} and G itself. 

Example 1 The set Z of all integers is a group with respect to addition, and 

the set E of all even integers is a nontrivial subgroup of Z. (See Exercise 11 of Sec

tion 3.1.) • 

Example 2 The set of all nonzero complex numbers is a group under multiplication, 

and G = { 1, -1, i, - i } is a nontrivial subgroup of this group. (See Example 4 of Sec

tion 3.1.) • 
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Example 3 From the discussion in Example 9 of Section 3.1, it is clear that for fixed 

m and n, each of the additive groups in the list 

Mmxn(Z) � Mmxn( Q) � Mmxn(R) � Mmxn( C) 

is a subgroup of every listed group in which it is contained. • 

If G is a group with respect to*, then* is an associative operation on any nonempty 

subset of G. A subset Hof G is a subgroup, provided that 

1. H contains the identity; 

2. H is closed under *; and 

3. H contains an inverse for each of its elements. 

ALERT In connection with condition 1, consider the possibility that H might contain an identity 

e
' for its elements that could be different from the identity e of G. Such an element e' would 

have the property that e' * e' = e', and Exercise 4 of Section 3.2 then implies that e' = e. 

ALERT In connection with condition 3, we might consider the possibility that an element 

a E H might have one inverse as an element of the subgroup H and a different inverse 

as an element of the group G. In fact, this cannot happen because part b of Theorem 3.4 
guarantees that the solution y to a * y = y * a = e is unique in G. The following theorem 

gives a set of conditions that is slightly different from 1, 2, and 3. 

Theorem 3.11 • Equivalent Set of Conditions for a Subgroup 

p�q 

p<;=.q 

A subset Hof the group G is a subgroup of G if and only if these conditions are satisfied: 

a. H is nonempty; 

b. x EH andy E Himply xy EH; and 

c. x E Himpliesx-1 EH. 

Proof If His a subgroup of G, the conditions follow at once from Definitions 3.10 and 3.1. 
Suppose that H is a subset of G that satisfies the conditions. Since H is nonempty, 

there is at least one a EH. By condition c, a-1 EH. But a EH and a-1 EH imply 

aa-1 = e EH, by condition b. Thus H contains e, is closed, and contains inverses. Hence 

His a subgroup. 

Example 4 It follows from Example 5 of Section 3.1 that 

G = Z8 ={[OJ, [1], [2], [3], [4], [5], [6], [7]} 

forms an abelian group with respect to addition [a J + [b J = [a + b J. Consider the subset 

H ={[OJ, [2], [4], [6]} 

of G. An addition table for His given in Figure 3.11. The subset His nonempty, and it 

is evident from the table that H is closed and contains the inverse of each of its elements. 

Hence His a nontrivial abelian subgroup of Z8 under addition. 
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+ 

[OJ 

[2J 

[4J 

[OJ [2J [4J [6J 

[OJ [2J [ 4J [6J 

[2J [4J [6J [OJ 

[ 4J [6J [OJ [2J 
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•Figure 3.11 • 
[6J [6J [OJ [2] [4] 

•Figure 3.12 

Example 5 In Exercise 33 of Section 3.1, it was shown that 

U7 = {[1], [2], [3], [4], [5], [6]} � Z7 

is a group with respect to multiplication in Z7• The multiplication table in Figure 3.12 
shows that the nonempty subset 

H = {[lJ, [2J, [4]} 

is closed and contains inverses and therefore is an abelian subgroup of U7• 

x [lJ [2J [4J 

[1] [lJ [2J [4J 

[2] [2] [4] [1] 

[4] [4] [1] [2] 
• 

An even shorter set of conditions for a subgroup is given in the next theorem. 

Theorem 3.12 • Equivalent Set of Conditions for a Subgroup 

A subset H of the group G is a subgroup of G if and only if 

a. H is nonempty and 

b. a EH and b EH imply ab-I E H .  

p ==> q Proof Assume H is a subgroup of G. Then H is nonempty since e EH. Let a EH and 

b E H Then b-I E H since H contains inverses. Since a E H and b-1 E H, the product 

ab-1 E H because H is closed. Thus conditions a and b are satisfied. 

p <== q Suppose, conversely, that conditions a and b hold for H There is at least one a EH, 
and condition b implies that aa-1 = e E H. For an arbitrary x E H, we have e E H and 

x E H, which implies that ex-I = x-I E H. Thus H contains inverses. To show closure, let 

x EH and y EH Since H contains inverses, y-1 EH But x EH and y-1 EH imply 

x(y-1 )-1 = xy E H, by condition b. Hence H is closed; therefore, H is a subgroup of G. 
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When the phrase "H is a subgroup of G" is used, it indicates that H is a group with 
respect to the group operation in G. Consider the following example. 

Example 6 The operation of multiplication is defined in Z10 by 

[a][bJ = [ab]. 

This rule defines a binary operation that is associative, and Z10 is closed under this 
multiplication. Also, [1] is an identity element. However, Z10 is not a group with respect to 
multiplication, since some of its elements do not have inverses. For example, the products 

[2J[OJ = [OJ 
[2][2J = [4J 
[2][4J = [8J 
[2][6J = [2J 
[2][8J = [6J 

show that [2J[xJ = [lJ has no solution in Z10. 

[2J[1J = [2J 
[2J[3J = [6J 
[2J [5J = [OJ 
[2J[7J = [4J 
[2J[9J = [8J 

Now let us examine the multiplication table for the subset H = { [ 2 J, [ 4 ], [ 6 ], [ 8 ]} of 
Z10 (see Figure 3.13). It is surprising, perhaps, but the table shows that [6] is an identity 
element for Hand that H actually forms a group with respect to multiplication. However, 

ALERT His not a subgroup of Z10 since Z10 is not a group with respect to multiplication. 

x [2] [4J [6J [8J 

[2J [ 4J [8J [2J [6J 

[4J [8J [6J [4J [2J 

[6J [2J [4J [6J [8J 

•Figure 3.13 • 
[8J [6J [2J [8J [ 4J 

One particular subgroup of a group G is especially noteworthy. We define it next. 

Definition 3.13 • The Center of a Group 

For any group G, the set of all elements that commute with every element of G is called the 
center of G and is denoted by Z( G): 

Z(G) ={a E GI ax= xafor everyx E G}. 

Note that if G is abelian, then Z(G) = G, and if G is nonabelian, then Z(G) =F G. 

Theorem 3.14 • The Abelian Subgroup Z(G) 

The center of a group G is an abelian subgroup of G. 

Another interesting subgroup of a group G is given in the next definition. 

Copyright 2013 Cengage Leaming. AH Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materia11y affect the overall learning experience. Cengage Leaming reserves the right to remove additional content at any time if subsequent rights restrictions require it. 



Definition 3.15 • The Centralizer of a Group Element 

3.3 Subgroups 165 

For a fixed element a of a group G, the set of all elements in G that commute with a is 

called the centralizer of a in G and is denoted by Ca: 

Ca= {x E GI ax= xa}. 

Theorem 3.16 • The Subgroup Ca of a Group G 

Let a be an element of a group G. The centralizer of a in G is a subgroup of G. 

The proofs of Theorems 3.14 and 3.16 are requested in the exercises. 

In connection with integral exponents, consider the following example. 

Example 7 Let G be a group, let a be an element of G, and let H be the set of all 

elements of the form an, where n is an integer. That is, 

H = {x E Glx = an for n E Z}. 

Then H is nonempty since x = a1 is in H. If x = am EH and y =an EH, then xy = 
am+n E H and x-1 = a-m EH. It follows from Theorem 3.11 that H is a subgroup. • 

Definition 3.17 • Cyclic Subgroup 

Let G be a group. For any a E G, the subgroup 

H = {x E G Ix= an for n E Z} 

is the subgroup generated by a and is denoted by (a). The element a is called a generator 

of H. A given subgroup K of G is a cyclic subgroup if there exists an element b in G 
such that 

K = (b) = {y E Gly = bn for some n E Z}. 

In particular, G is a cyclic group if there is an element a E G such that G = (a). 

Example 8 
a. The set Z of integers is a cyclic group under addition. We have Z = (1) since any 

integer z E Z can be expressed as z = z(l), using the additive notation as described in 

Section 3.2. Also Z = (-1) since z = (-z) (-1). 

b. The subgroup E s;;; Z of all even integers is a cyclic subgroup of the additive group Z. 
Since any even integer x E E can be expressed as x = k(2) for some integer k then, 

E = (2). 
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c. In Example 6, we saw that 

H = {[2], [4], [6], [8]} � Z10 

is an abelian group with respect to multiplication. Since 

[2]2 = [4], [2]3 = [8], [2]4 = [6], 

then 

H = ([2]). 

d. The group S(A) = { e, p, p2, u, y, 8} of Example 3 in Section 3.1 is not a cyclic group. 

This can be verified by considering (a) for all possible choices of a in S(A). • 

Exercises 3.3 

True or False 

Label each of the following statements as either true or false, where H is a subgroup of a 

group G. 

1. Every group G contains at least two subgroups. 

2. The identity element in a subgroup H of a group G must be the same as the identity 

element in G. 

3. An element x in H has an inverse x-1 in H that may be different than its inverse in G. 

4. The generator of a cyclic group is unique. 

5. Any subgroup of an abelian group is abelian. 

6. If a subgroup Hof a group G is abelian, then G must be abelian. 

7. The relation R on the set of all groups defined by HRK if and only if H is a subgroup 

of K is an equivalence relation. 

8. The empty set 0 is a subgroup of any group G. 

9. Suppose G is a group with respect to ® and H � G is a group with respect to a different 

binary operation@. Then His a subgroup of G. 

10. Any group of order 3 has no nontrivial subgroups. 

11. Z5 under addition modulo 5 is a subgroup of the group Z under addition. 

Exercises 

1. Let S(A) = {e, p, p2, u, y, 8} be as in Example 3 in Section 3.1. Decide whether each 

of the following subsets is a subgroup of S(A). If a set is not a subgroup, give a reason 

why it is not. (Hint: Construct a multiplication table for each subset.) 

a. {e, u} b. {e, 8} 

c. {e,p} d. {e,p2} 

e. {e,p,p2} f. {e,p,u} 

g. {e,u,y} h. {e,u,y,8} 
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2. Decide whether each of the following sets is a subgroup of G = { 1, -1, i, -i} under 

multiplication. If a set is not a subgroup, give a reason why it is not. 

a. {1, -1} b. {1, i} 
c. { i, -i} d. { 1, -i } 

3. Consider the group Z16 under addition. List all the elements of the subgroup ([6J ), and 

state its order. 

4. List all the elements of the subgroup ([8J) in the group Z18 under addition, and state its 

order. 

5. Exercise 33 of Section 3.1 shows that U13 � Z13 is a group under multiplication. 

a. List the elements of the subgroup ([4J) of U13, and state its order. 

b. List the elements of the subgroup ([8J) of U13, and state its order. 

6. Let G be GL(2, R), the general linear group of order 2 over R under multiplication. 

List the elements of the subgroup (A) of G for the given A, and give l(A)I. 

a. A = [ � -� J b. A = [ _ � -� J 
7. Let G be the group Mz(Zs) under addition. List the elements of the subgroup (A) of G 

for the given A, and give l(A)I. [[2J [OJ] [ [OJ [lJJ a.A= [OJ [3J b.A= [2J [4J 

8. Find a subset of Z that is closed under addition but is not a subgroup of the additive 

group Z. 

9. Let G be the group of all nonzero real numbers under multiplication. Find a subset of 

G that is closed under multiplication but is not a subgroup of G. 

10. Let n > 1 be an integer, and let a be a fixed integer. Prove or disprove that the set 

H = {x E Z I ax= 0 (mod n) }  

is a subgroup of Z under addition. 

11. Let H be a subgroup of G, let a be a fixed element of G, and let K be the set of all ele

ments of the form aha-1, where h E H. That is, 

K = {x E G Ix = aha-1 for some h E H}. 

Sec. 4.4, #14 � Prove or disprove that K is a subgroup of G. 

12. Prove or disprove that H = { h E GI h-
1 = h} is a subgroup of the group G if G is 

abelian. 

13. Let G be an abelian group with respect to multiplication. Prove that each of the follow

ing subsets H of G is a subgroup of G. 

a.H= {xEGlx2=e} 

b. H = {x E GI x" = e} for a fixed positive integer n. 
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Sec. 3.5, #10 � 

Sec. 4.3, #29 � 

Sec. 3.5, #8 � 

Sec. 3.5, #5 � 

14. Prove that each of the following subsets Hof M2(Z) is a subgroup of the group M2(Z) 

under addition. 

a. H = { [: ; J I w = 0} 
c.H={[� �Jlx=y} 

b. H � {[; 
� 
J I z � w � 0} 

d. H = { [: ; J I x + y + z + w = 0} 
15. Prove that each of the following subsets H of GL(2, R) is a subgroup of GL(2, R), the 

general linear group of order 2 over R. 

a. H � {[: 
-:JI a'+ b' "°} b. H � m : JI b "°} 

c. H = {[: : J I a + e = 1, b + d = 1, and ad - be -=I= O} 
d. H = {[� �JI a H,h* o} 

16. Prove that each of the following sets His a subgroup of GL(2, C), the general linear 

group of order 2 over C. 

17. 

a. H = {[
� �l [� -�l [-� �J

[ -
� -�J} 

{[
1 OJ [ i OJ [-i OJ [ -1 OJ} b. H = O 1 ' 0 

-
i ' 0 i ' 0 -1 

[-1 M3 = 1 -1J [o 1 , Ms= 1 
-�l lJ 0 . 

Sec. 4.6, #15 � Show that His a subgroup of GL(2, R), the general linear group of order 2 over R. 

Sec. 1.6, #28 � 18. Prove that 

SL(2,R) = {[: :Jlad- be= 1} 
is a subgroup of GL(2, R), the general linear group of order 2 over R. The subgroup 

Sec. 4.5, #4 � SL(2, R) is called the special linear group of order 2 over R. 

19. Prove that each of the following subsets Hof SL(2, R) is a subgroup of SL(2, R). 

Sec. 4.5, #3 � 
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20. For each of the following matrices A in SL(2, R), list the elements of (A) and give the 

order l(A)I. 

a. A = [o -1 J b. A = [ 1 -1 J 1 -1 1 0 

21. Let 

{[[a] SL(2, Zn) = [c] ���Jl[a] [d] - [b] [c] = [1]} 
be the special linear group of order 2 over Zn. Find the inverse of each of the following 

elements in SL(2, Zn). 

[[2] a. [OJ 
[3 ]] [3] E SL(2, Z5) [[ 4] b. [2] 

[ 1 ]] [2] E SL(2, Z5) 

[ [3] c. [2] 
[ 4 ]] [3] E SL(2, Z7) [[6] d. [6] 

[ 4 ]] [3] E SL(2, Z7) 

22. Find the center Z(G) for each of the following groups G. 

Sec. 3.1,#34� a. G = {1, i,j,k, -1, -i, -j, -k} inExercise34ofSection3.l. 

Sec. 3.1, #36 � b. G = {/2, R, R2, R3, H, D, V, T} in Exercise 36 of Section 3.1. 

Sec. 3.1, #35 � c. G = {h P1, P2, P3, P4, Ps} in Exercise 35 of Section 3.1. 

d. G = GL(2, R), the general linear group of order 2 over R. 

Sec. 3.2, #11 � 23. Let R be the equivalence relation on G defined by xRy if and only if there exists an element a in G such that y = a-1xa. If x E Z( G), find [x], the equivalence class containing x. 
24. Let G be a group and Z( G) its center. Prove or disprove that if ab is in Z( G), then a and 

bare in Z(G). 

25. Let G be a group and Z(G) its center. Prove or disprove that if ab is in Z(G), then ab= ba. 
26. LetA be a given nonempty set. As noted in Example 2 of Section 3.1, S(A) is a group 

with respect to mapping composition. For a fixed element a in A, let Ha denote the set of 

allfE S(A) such thatf(a) = a. Prove that Ha is a subgroup of S(A). 

27. (See Exercise 26.) Let A be an infinite set, and let H be the set of allf E S(A) such that 

f( x) = x for all but a finite number of elements x of A. Prove that His a subgroup of S( A). 

28. For each n E Z, define fn: Z--+ Z by fn (x) = x + n for x E Z. 

a. Show thatfn is an element of S(Z). 

b. Let H = {Jn E S(Z) lfn(x) = x + n for each n E Z} . Prove that His a subgroup 

of S(Z) under mapping composition. 

c. Prove that His abelian, even though S(Z) is not. 

29. Let G be an abelian group. For a fixed positive integer n, let 

Gn ={a E Gia=� for somex E G}. 

Prove that Gn is a subgroup of G. 
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30. For fixed integers a and b, let 

S = {ax + by I x E Z and y E Z}. 

Prove that S is a subgroup of Z under addition . (A special form of this S is used in 
proving the existence of a greatest common divisor in Theorem 2.12.) 

31. a. Prove Theorem 3.14: The center of a group G is an abelian subgroup of G. 

b. Prove Theorem 3 .16: Let a be an element of a group G. The centralizer of a in G is 
a subgroup of G. 

32. Find the centralizer for each element a in each of the following groups . 

Sec.3.1,#34� a. The quaternion group G = {1, i, j, k, -1, -i, -j, -k} in Exercise 34 of 
Section 3 .1. 

Sec. 3.1, #36 � b. G = {[z, R, R
2
, R3, H, D, V, T} in Exercise 36 of Section 3.1. 

Sec.3.1,#35� c. G = {hP1,P2,P3,P4,Ps} inExercise35ofSection3.1. 

33. Prove that Ca = Ca-1, where Ca is the centralizer of a in the group G. 

34. Suppose that H1 and H2 are subgroups of the group G. Prove that H1 n H2 is a sub
group of G. 

35. For an arbitrary n in Z, the cyclic subgroup (n) of Z, generated by n under addition, 
is the set of all multiples of n. Describe the subgroup (m) n (n) for arbitrary m and 
n in Z .  

36. Let { HA}, A E :£,be an arbitrary nonempty collection of subgroups HA of the group G, 
and let K = nAE:£HA. Prove that K is a subgroup of G. 

37. If G is a group, prove that Z(G) = naEGCa, where Z(G) is the center of G and Ca is 
the centralizer of a in G. 

38. Find subgroups H and K of the group S(A) in Example 3 of Section 3.1 such that 
HU K is not a subgroup of S(A). 

39. Assume that Hand Kare subgroups of the abelian group G. Prove that the set of prod
ucts HK= {g E G lg= hk for h EH and k EK} is a subgroup of G. 

40. Find subgroups Hand K of the group S(A) in Example 3 of Section 3.1 such that the 
set HK defined in Exercise 39 is not a subgroup of S(A). 

41. Let G be a cyclic group, G = (a) . Prove that G is abelian . 

42. Reword Definition 3.17 for an additive group G. 

43. Suppose that His a nonempty subset of a group G. Prove that His a subgroup of G if 
and only if a-1b EH for all a EH and b EH. 

44. Let H be a subgroup of a group G. For a, b E G, define the relation R by 

aRb if and only if a-1b EH. 

a. Prove that R is an equivalence relation on G. 

b. Let x EH. Find [x], the equivalence class containing x. 

45. Assume that G is a finite group, and let H be a nonempty subset of G. Prove that His 
closed if and only if His a subgroup of G. 
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In the last section, a group G was defined to be cyclic if there exists an element a E G such 

that G = (a). It may happen that there is more than one element a E G such that G = (a). 
For the additive group Z, we have Z = (1) and also Z = (-1), since any n E Z can be writ

ten as ( -n) ( -1). Here, ( -n )( -1) does not indicate a product but rather a multiple of -1, 

as described in Section 3.2. 

Definition 3.18 • Generator 

Any element a of the group G such that G = (a) is a generator of G. 

If a is a generator of a multiplicative group G, then a-1 is also, since any elementx E G 

can be written as 

x =an= (a-1)-n 

for some integer n, and G = (a) = (a-1). For the additive group G, if a is a generator of G, 

then -a is also, since any x E G can be written as 

x = na = ( -n) (-a) 
for some integer n, and G = (a) = (-a). 

Example 1 The additive group 

Zn= {[O], [l], ... , [n - 1]} 
is a cyclic group with generator [l], since any [k] in Zn can be written as 

[k] = k[l] 
where k[l] indicates a multiple of [1] as described in Section 3.2. Elements other than [1] 

may also be generators. To illustrate this, consider the particular case 

Z6 = {[O], [1], [2], [3], [4], [5]}. 
The element [5] is also a generator of Z6 since [5] is the additive inverse of [1]. The following 

list shows how z6 is generated by [5]-that is, how z6 consists of multiples of [5]. 

1[5] = [5] 
2[5] = [5] + [5] = [4] 
3[5] = [5] + [5] + [5] = [3] 
4[5] = [2] 
5[5] = [1] 
6[5] = [O] 

The cyclic subgroups generated by the other elements of Z6 under addition are 

( [O]) = {[O]} 
([2]) = {[2], [4], [o]} 
([3]) = {[3], [O]} 
([4]) = {[4], [2], [O]} = ([2]). 

Thus [l] and [5] are the only elements that are generators of the entire group. • 
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ALERT 

Example 2 We saw in Example 8 of Section 3.3 that 

H = {[2], [4], [6], [8]} � Z10 

forms a cyclic group with respect to multiplication and that [2] is a generator of H. The ele

ment [8] = [2r 1 is also a generator of H, as the following computations confirm: 

[8]2 = [ 4], [8]3 = [2], [8]4 = [ 6]. • 

Example 3 In the quaternion group G = { ±1, ±i, ±j, ±k}, described in Exercise 34 
of Section 3.1, we have 

i2 = -1 
i3 = i 2  • i = -i 
i4 = i3 • i = -i2 = 1. 

Thus i generates the cyclic subgroup of order 4 given by 

(i) = {i, -1, -i, 1}, 

although the group G itself is not cyclic. • 

Whether a group G is cyclic or not, each element a of G generates the cyclic subgroup 

(a), and 

(a) = {x E Glx = an for n E Z}. 

We shall see that the structure of (a) depends entirely on whether or not an = e for some 

positive integer n. The next two theorems state the possibilities for the structure of (a) . 

Strategy • The method of proof of the next theorem is by contradiction. A statement p :::::} q may be 

proved by assuming that p is true and q is false and then proving that this assumption 

leads to a situation where some statement is both true and false-a contradiction. 

Theorem 3.19 • Infinite Cyclic Group 

Contradiction 

(p A �q) 
:::::}�p 

Let a be an element in the group G. If an =f::. e for every positive integer n, then aP =f::. aq 

whenever p =f::. q in Z, and (a) is an infinite cyclic group. 

Proof Assume that a is an element of the group G such that an =f::. e for every posi

tive integer n. Having made this assumption, suppose now that 

where p =f::. q in Z. We may assume thatp > q. Then 

aP = aq:::::} aP • a-q = aq • a-q 

:::::} ap-q = e. 

Since p - q is a positive integer, this result contradicts an =f::. e for every positive integer n. 
Therefore, it must be that a P  =f::. aq whenever p =f::. q. Thus all powers of a are distinct, and 

therefore (a) is an infinite cyclic group. 
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Example 4 To illustrate Theorem 3.19, consider the group Z of integers under addition. 

Now 3 E Z and n(3) i=- 0 for every positive integer n. Thus 

(3) = { ... , -6, -3, 0, 3, 6, 9, ... } 

is an infinite cyclic group. 

Corollary 3.20 • 

If G is a finite group and a E G, then an = e for some positive integer n. 

p :::::} q Proof Suppose G is a finite group and a E G. Since the cyclic subgroup 

(a) = {x E Glx =am form E Z} 

• 

is a subset of G, (a) must also be finite. It must therefore happen that aP = aq for some integers 

p and q withp =f=. q. It follows from Theorem 3.19 that an = e for some positive integer n. 

If it happens that an =f=. e for every positive integer n, then Theorem 3.19 states that all 

the powers of a are distinct and that (a) is an infinite group. Of course, it may happen that 

an = e for some positive integers n. In this case, Theorem 3.21 describes (a) completely. 

Theorem 3.21 • Finite Cyclic Group 

Let a be an element in a group G, and suppose an = e for some positive integer n. If m is 

the least positive integer such that am = e, then 

a. (a) has order m, and (a) = {a0 = e = am, a1, a2, • • •  , am-I } 
b. a8 = at if and only if s = t (mod m ). 

p:::::} q Proof Assume that m is the least positive integer such that am = e. We first show that 

the elements 

0 _ 2 m-1 a - e, a, a , ... , a 

are all distinct. Suppose 

ai = aj where 0 < i < m and 0 ::; j < m. 

There is no loss of generality in assuming i 2: j. Then ai = al implies 

ai-j = ai • a-j = e where 0 < i - j < m. 

Since m is the least positive integer such that am = e, and since i - j < m, it must be true 

that i - j = 0, and therefore i = j. Thus (a) contains them distinct elements a0 = e, a, 
a2, • • •  , am-I. The proof of part a will be complete if we can show that any power of a is 

equal to one of these elements. Consider an arbitrary ak. By the Division Algorithm, there 

exist integers q and r such that 

Thus 

k = mq + r, with 0 :5 r < m. 

ak = amq+r 
= amq • ar by part b of Theorem 3.9 

= (am)q .  ar by partcofTheorem3.9 

= eq . ar 
=a' 
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where r is in the set {O, 1, 2, ... , m -1}. It follows that 

(a)= {e, a, a2, • • •  , am-1}, and (a) has order m. 

p:::::} (q <=> r) To obtain part b, we first observe that if k = mq + r, with 0 :::; r < m, then ak = ar, 
where r is in the set {O, 1, 2, ... , m -1 }. In particular, ak = e if and only if r = 0-that 
is, if and only if k = 0 (mod m) . Thus 

<=> s -t 0 (mod m) 
<=> s = t (mod m) , 

and the proof is complete. 

Example 5 Referring back to Example 3 of this section, the cyclic group (i) has order 
4, where 4 is the least positive integer n such that in = 1. Powers of i can be computed using 
Theorem 3.21b. For example, 

i241 = i1 = i since 241 = 1 (mod 4) 

and 

i-25 = i3 = -i since -25 = 3 (mod 4). • 

The next example illustrates Theorem 3.21 using S(A), the set of all permutations on A. 

Example 6 In Example 3 of Section 3.1, we saw that S(A) with A = { 1, 2, 3} is a group 
with respect to mapping composition. Since 3 is the least positive integer n such that pn = e, 
then by Theorem 3.21a, (p) has order 3 and 

\p} = {po= e, p, p2}. 

Powers of p can easily be computed using congruence modulo 3. For example, 

p1292 = p2 since 1 292 = 2 (mod 3) 

and 

p-17 = p1 = p since -17 = 1(mod3). • 

We have defined the order JGJ of a group G to be the number of elements in the group. 

Definition 3.22 • Order of an Element 

The order of an element a (denoted by o(a) or laJ) of the group G is the order of the sub
group generated by a. That is, Jal = l\a)I. 

Part a of Theorem 3.21 immediately translates into the following corollary. 

Corollary 3.23 • Finite Order of an Element 

If lal is finite, then m = lal is the least positive integer such that am = e. 
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The next example illustrates the results of Theorem 3.21, Corollary 3.23, and Defini
tion 3.22. 

Example 7 It can be shown (see Exercise 16 at the end of this section) that 

U16 = {[1], [3], [5], [7], [9], [11], [13], [15]} � Z16 

is a group with respect to multiplication in Z16. The element [3 J of U16 generates a cy
clic subgroup of order 4 since [ 3 ]4 = [ 1 ], and 4 is the least positive integer m such that 
[ 3 r = [ 1]. Thus 

([3]) = {[3]0 = [1], [3], [9], [11]}, 

and the order of the element [ 3 J is 4. Also, powers larger than 4 of [ 3 J are easily computed 
using part b of Therom 3.21. For example, 

since 191 = 3 (mod 4). 

[3]191 = [3]3 = [11] 

• 

The multiplicative group U16 = {[l], [3], [5], [7], [9], [11], [13], [15]} � Z16 in 
Example 7 consists of all [a] in Z16 that have multiplicative inverses. This group is called the 
group of units in Z16· 

In general, the multiplicative group G = {[a]i[ar1 exists}� Zn is called the group of 
units in Zn and is designated by Un. Exercise 33 of Section 3.1 requests a proof that when n is 
prime, Un= {[a]i[a] =I= [O]} is a group. Exercise 16 of this section requests a proof that for any 
n, Un = { [a] I [a ]-1 exists} is a group. Another example of a group in which all elements have 
multiplicative inverses is GL(2, R), the group of units in M2(R). 

As might be expected, every subgroup of a cyclic group is also a cyclic group. It is 
even possible to predict a generator of the subgroup, as stated in Theorem 3.24. 

Strategy • The conclusion of the next theorem has the form "either a orb." To prove this statement, 
we can assume that a is false and prove that b must then be true. 

Theorem 3.24 • Subgroup of a Cyclic Group 

(p /\ q /\ � r) 
:::::} s 

Let G be a cyclic group with a E G as a generator, and let H be a subgroup of G. Then either 

a. H = {e} = (e), or 

b. if H =F { e}, then H = (ak) where k is the least positive integer such that ak E H. 

Proof Let G = (a), and suppose H is a subgroup and H =F { e}. Then H contains an 
element of the form al withj =F 0. Since H contains inverses and (al)-1 = a-1, both al and 
a-1 are in H. Thus H contains positive powers of a. Let k be the least positive integer such 
thatak EH. 

Since H is closed and contains inverses, and since ak E H, all powers (ak)t = akt are in 
H. We need to show that any element of H is a power of ak. Let an EH. There are integers 
q and r such that 

n = kq + r with 0 :::; r < k. 
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is in H. Since 0 < r < k and k is the least positive integer such that ak E H, r must be zero 

and an = akq. Thus H = (ak). 

Corollary 3.25 • 

Any subgroup of a cyclic group is cyclic. 

Note that Theorem 3.24 and Corollary 3.25 apply to infinite cyclic groups as well as 

to finite ones. The next theorem, however, applies only to finite groups. 

Strategy • In the proof of Theorem 3.26, we use the standard technique to prove that two sets A and 

Bare equal: We show that A i;; Band then that Bi;; A. 

Theorem 3.26 • Generators of Subgroups 

Let G be a finite cyclic group of order n with a E G as a generator. For any integer m, the 

subgroup generated by am is the same as the subgroup generated by ad, where d = (m, n). 

p:::::} q Proof Let d = (m, n), and let m = dp. Since am = adp = (ad)P, then am is in (ad), and 

therefore (am) i;; (ad). (See Exercise 28 at the end of this section.) 

Similarly, to show that (ad) i;; (am), it is sufficient to show that ad is in (am). By 

Theorem 2.12, there exist integers x and y such that 

d = mx + ny. 

Since a is a generator of G and JGJ = n, an = e. Using this fact, we have 

ad= amx+ny 

= amx. any 

= (am)x • (an)y 

= (am)x. ( e)Y 

= (am)x. 

Thus ad is in (am), and the proof of the theorem is complete. 

As an immediate corollary to Theorem 3.26, we have the following result. 

Corollary 3.27 • Distinct Subgroups of a Finite Cyclic Group 

Let G be a finite cyclic group of order n with a E G as a generator. The distinct subgroups 

of G are those subgroups (ad) where dis a positive divisor of n. 
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Corollary 3.27 provides a systematic way to obtain all the subgroups of a cyclic group 
of order n. In the subgroup generated by ad, the exponent d divides n, the order of G. Then 
there is a positive integer k such that n = dk and (ad) = {ad, a2d, a3d, ... , akd = an = e}. 
Thus the order of (ad} is k, and l(ad)I divides I GI .  

Example 8 Let G = (a) be a cyclic group of order 12. The divisors of 12 are 1, 2, 3, 4, 

6, and 12, so the distinct subgroups of G are 

(a) = G 
(a2) = {a2 a4 a6 as a10 a12 = e} ' ' ' ' ' 

(a3) = {a3, a6, a9, a12 = e} 
(a4) = {a4, as, a12 = e} 
(a6 ) = {a6, a12 = e} 

(a12) = (e) = {e}. 

Thus Corollary 3.27 makes it easy to list all the distinct subgroups of a cyclic group. 
Theorem 3.26 itself makes it easy to determine which subgroup is generated by each 
element of the group. For our cyclic group of order 12, 

(a5) = (a) = G since (5, 12) = 1 
(a7) = (a) = G since (7, 12) = 1 
(as ) = (a4 ) since (8, 12) = 4 

(a9) = (a3 ) since (9, 12) = 3 
(a10) = (a2) since ( 10, 12) = 2 
(a11) = (a) = G since ( 11, 12) = 1. • 

The results in Example 8 lead us to a method for finding all generators of a finite cyclic 
group. This method is described in the next theorem. 

Theorem 3.28 • Generators of a Finite Cyclic Group 

Let G = (a) be a cyclic group of order n. Then am is a generator of G if and only if m and 
n are relatively prime. 

p <== q Proof On the one hand, if m is such that m and n are relatively prime, then d = 
(m, n) = 1, and am is a generator of G by Theorem 3.26. 

p => q On the other hand, if am is a generator of G, then a = (am)p for some integer p. By part 
b of Theorem 3.21, this implies that 1 = mp (mod n). That is, 

1 - mp= nq 

for some integer q. This gives 

1 =mp+ nq, 

and it follows from Theorem 2.12 that (m, n) = 1. 
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The Euler phi-function <f>(n) was defined for positive integers n in Exercise 23 of 
Section 2.8 as follows: </>(n) is the number of positive integers m such that 1 :5 m :5 n and 
(m, n) = 1. It follows, from Theorems 3.21 and 3.28, that the cyclic group (a) of order n 
has</> (n) distinct generators. 

Example 9 Let G = (a) be a cyclic group of order 10. The positive integers less than 
10 and relatively prime to 10 are 1, 3, 7, and 9. Therefore, all generators of G are included 
in the list 

and G has </> ( 10) = 4 distinct generators. • 

Example 10 Some other explicit uses of Theorem 3.28 can be demonstrated by using Z7. 

The generators of the additive group Z7 are those [a J in Z7 such that a and 7 are 
relatively prime, and this includes all nonzero [a]. Thus every element of Z7, except [0], 
generates Z7 under addition. 

The situation is quite different when we consider the group U7 of nonzero elements of 
Z7 under multiplication. It is easy to verify that [3] is a generator: 

[3]2 = [2], 
[3]5 = [5], 

[3]3 = [6], 
[3]6 = [l], 

[3]4 = [4], 
[3]7 = [3]. 

According to Theorem 3.28, the only other generator of U7 is [3]5 = [5], since 2, 3, 4, and 
6 are not relatively prime to 6 = IU71. • 

Exercises 3.4 

True or False 

Label each of the following statements as either true or false. 

1. The order of the identity element in any group is 1. 
2. Every cyclic group is abelian. 

3. Every abelian group is cyclic. 

4. If a subgroup H of a group G is cyclic, then G must be cyclic. 

5. Whether a group G is cyclic or not, each element a of G generates a cyclic sub
group. 

6. Every subgroup of a cyclic group is cyclic. 

7. If there exists an m E Z +such that am = e, where a is an element of a group G, then 

lal = m. 

8. Any group of order 3 must be cyclic. 

9. Any group of order 4 must be cyclic. 

10. Let a be an element of a group G. Then (a) = (a-1). 
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Sec. 3.1, #34 � 

Sec. 3.1, #35 � 

3.4 Cyclic Groups 179 

Exercises 

1. List all cyclic subgroups of the group S(A) in Example 3 of Section 3.1. 

2. Let G = { ± 1, ± i, ± j, ± k} be the quaternion group. List all cyclic subgroups of G. 

3. Find the order of each element of the group S(A) in Example 3 of Section 3.1. 

4. Find the order of each element of the group G in Exercise 2. 

5. The elements of the multiplicative group G of 3 X 3 permutation matrices are given 

in Exercise 35 of Section 3.1. Find the order of each element of the group. 

6. In the multiplicative group GL(4, R), find the order of the given element A. 

0 0 0 1 0 0 1 0 

0 1 0 0 0 0 0 1 
a. A= b. A= 

0 0 1 0 0 1 0 0 

1 0 0 0 1 0 0 0 

7. Let a be an element of order 8 in a group G. Find the order of each of the following. 

a. a2 b. a3 c. a4 d. a5 e. a6 f. a7 g. as 

8. Let a be an element of order 9 in a group G. Find the order of each of the following. 

a. a2 b. a3 c. a4 d. a5 e. a6 f. a7 g. as h. a9 

9. For each of the following values of n, find all distinct generators of the cyclic group Zn 

under addition. 

a. n = 8 

d. n = 15 

b. n = 12 

e. n = 16 

c. n = 10 

f. n = 18 

10. For each of the following values of n, find all subgroups of the cyclic group Zn under 

addition and state their order. 

a. n = 12 

d. n = 15 

b. n = 8 

e. n = 16 

c. n = 10 

f. n = 18 

Sec. 3.1, #33 � 11. According to Exercise 33 of Section 3.1, if n is prime, the nonzero elements of Zn form 

a group Un with respect to multiplication. For each of the following values of n, show 

that this group Un is cyclic. 

a. n = 7 b. n = 5 c. n = 11 

d. n = 13 e. n = 17 f. n = 19 

12. For each of the following values of n, find all distinct generators of the group Un 

described in Exercise 11. 

a. n = 7 

d. n = 13 

b. n = 5 

e. n = 17 

c. n = 11 

f. n = 19 

13. For each of the following values of n, find all subgroups of the group Un described in 

Exercise 11, and state their order. 

a. n = 7 b. n = 5 c. n = 11 

d. n = 13 e. n = 17 f. n = 19 
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14. Prove that the set 

Sec. 3.5, #7 � is a cyclic subgroup of the group GL(2, R). 

15. a. Use trigonometric identities and mathematical induction to prove that 

[cos (} -sin (}

J
n 

= 
[cos nO -sin nO 

J sin (} cos (} sin n(} cos n(} 

for all integers n (positive, zero, or negative). Hence conclude that for a constant(}, 
the set 

H 
= 
{[c�s nO 

srn nO 

-sin n(}

J I n E z} 
cos nO 

is a cyclic subgroup of the group of all invertible matrices in M2(R). 

b. Evaluate each element of H for (} 
= 

90°. 

c. Evaluate each element of H for(} 
= 

120°. 

Sec. 3.5, #3, 6 � 16. For an integer n > 1, let G 
= 

Un, the group of units in Zn-that is, the set of all [a] in Zn 
Sec. 4.6, #17 � that have multiplicative inverses. Prove that Un is a group with respect to multiplication. 

17. Let Un be the group of units as described in Exercise 16. Prove that[a] E Un if and only 
if a and n are relatively prime. 

18. Let Un be the group of units as described in Exercise 16. For each value of n, write out 
the elements of Un and construct a multiplication table for Un. 

Sec. 4.6, #7, 12 � a. n 
= 

20 b. n 
= 

8 c. n 
= 

24 d. n 
= 

30 

19. Which of the groups in Exercise 18 are cyclic? 

20. Consider the group U9 of all units in Z9. Given that U9 is a cyclic group under multi
plication, find all subgroups of U9. 

21. Suppose G 
= (a) is a cyclic group of order n. Determine the number of generators of 

G for each value of n and list all the distinct generators of G. 

a. n 
= 

8 b. n 
= 

14 c. n 
= 

18 

d. n 
= 

24 e. n 
= 

7 f. n 
= 

13 

22. List all the distinct subgroups of each group in Exercise 2 1. 

23. Let G = (a) be a cyclic group of order 24. List all elements having each of the follow
ing orders in G. 

a. 2 b. 3 c. 4 d. 10 

24. Let G 
= (a) be a cyclic group of order 35. List all elements having each of the follow

ing orders in G. 

a. 2 b. 5 c. 7 d. 10 

25. Describe all subgroups of the group Z under addition. 

26. Find all generators of an infinite cyclic group G 
= (a). 
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Sec. 3.1, #51, 52 :.> 27. Prove or disprove that each of the following groups with addition as defined in Exer

cises 52 of Section 3.1 is cyclic. 

Sec. 4.6, #23 � 

Sec. 4.1, #14, 15 � 

Sec. 4.5, #7 � 

Sec. 4.6, #23 � 

Sec. 2.8, #23 :.> 

a. Z2 X Z3 b. Z2 X Z4 

28. Let a and b be elements of the group G. Prove that if a E (b), then ( a ) i;; (b). 

29. Let a and b be elements of a finite group G. 

a. Prove that a and a -1 have the same order. 

b. Prove that a and bab-1 have the same order. 

c. Prove that ab and ba have the same order. 

30. Let G be a group and define the relation R on G by aRb if and only if a and b have the 

same order. Prove that R is an equivalence relation. 

31. Let G be a group with Z(G) its center: 

32. 

33. 

34. 

35. 

36. 

37. 

38. 

39. 

40. 

41. 

42. 

Z(G) = { a E G l ax = xafor everyx E G}. 

Prove that if bis the only element of order 2 in G, then b E Z(G). 

If a is an element of order m in a group G and ak = e, prove that m divides k. 

If G is a cyclic group, prove that the equation x
2 

= e has at most two distinct solutions 

inG. 

Let G be a finite cyclic group of order n. If d is a positive divisor of n, prove that the 

equation xd = e has exactly d distinct solutions in G. 

If G is a cyclic group of order p and p is a prime, how many elements in G are generators 

ofG? 

Suppose that a and b are elements of finite order in a group such that ab = ba and 

( a ) n (b) = { e}. Prove that l abl is the least common multiple of l a l and lbl . 

Suppose that a is an element of order m in a group G, and k is an integer. If d = (k, m), 

prove that ak has order m/d. 

Assume that G = ( a ) is a cyclic group of order n. Prove that if r divides n, then G has 

a subgroup of order r. 

Suppose a is an element of order mn in a group G, where m and n are relatively prime. 

Prove that a is the product of an element of order m and an element of order n. 

Prove or disprove: If every nontrivial subgroup of the group G is cyclic, then G is a 

cyclic group. 

Let G be an abelian group. Prove that the set of all elements of finite order in G forms 

a subgroup of G. This subgroup is called the torsion subgroup of G. 

Let d be a positive integer and </> (d) the Euler phi-function. Use Corollary 3.27 and the 

additive groups zd to show that 

n = L <t> (d) 
din 

where the sum has one term for each positive divisor d of n. 
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� Isomorphisms 

•Figure 3.14 

•Figure 3.15 

It turns out that the permutation groups can serve as models for all groups. For this reason, 

we examine permutation groups in great detail in the next chapter. In order to describe 

their relation to groups in general, we need the concept of an isomorphism. Before formally 

introducing this concept, however, we consider some examples. 

Example 1 Consider a cyclic group of order 4. If G is a cyclic group of order 4, it 

must contain an identity element e and a generator a =f=. e in G. The proof of Theorem 3.21 

shows that 

G = {e a a2 a3} , , , 
where a4 = e. A multiplication table for G would have the form shown in Figure 3.14. 

. 
e a a2 a3 

e e a a2 a3 
a a a2 a3 e 

a2 a2 a3 e a 
a3 a3 e a a2 

In a very definite way, then, the structure of G is determined. The details as to what the 

element a might be and what the operation in G might be may vary, but the basic structure 

of G fits the pattern in the table. • 

Example 2 Let us consider a group related to geometry. We begin with an equilateral 

triangle T with center point 0 and vertices labeled Vi, V2, and V3 (see Figure 3.15). 
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•Figure 3.16 
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The equilateral triangle, of course, consists of the set of all points on the three sides of the 

triangle. By a rigid motion of the triangle, we mean a bijection of the set of points of the tri

angle onto itself that leaves the distance between any two points unchanged. In other words, 

a rigid motion of the triangle is a bijection that preserves distances. Such a rigid motion must 

map a vertex onto a vertex, and the entire mapping is determined by the images of the vertices 

Vi. V2, and "3. These rigid motions (or symmetries, as they are often called) form a group with 

respect to mapping composition. (Verify this.) There are a total of six elements in the group, 

and they may be described as follows: 

1. e, the identity mapping, that leaves all points unchanged. 

2. r, a counterclockwise rotation through 120° about 0 in the plane of the triangle. 

3. r
2 = r 0 r, a counterclockwise rotation through 240° about 0 in the plane of the 

triangle. 

4. A reflection! about the line L1 through Vi and 0. 

5. A reflection g about the line� through V 2  and 0. 

6. A reflection h about the line L3 through V3 and 0. 

These rigid motions can be described by indicating their values at the vertices as follows: {e(V1) = Vi {h(V1) = V2 
e : e(V2) = V2 h: h(V2) = V1 

e(V3) = V3 h(V3) = V3 

We have a group D3, called the dihedral group of degree 3 with order 6: 

D 3 = {e, r, r2, h, g,f}, 

with multiplication table shown in Figure 3.16. 

0 e r r2 h g f 

e e r r
2 h g f 

r r r
2 e g f h 

r
2 

r
2 e r f h g 

h h f g e r
2 

r 

g g h f r e r
2 

f f g h r
2 

r e 
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184 Chapter 3 Groups 

•Figure 3.17 

We shall compare the dihedral group D3 with the group of permutations S(A) from 
Example 3 of Section 3.1, and we shall see that they are the same except for notation. Let 
the elements of D3 correspond to those of S(A) according to the mapping <{J: D3 � S(A) 
given by 

<{J(e) =IA 

<{J(r) = p 

<P(?) = p
2 

<{J(h) = a 

<{J(g) = '}' 
<{J(J) = 8. 

This mapping is a one-to-one correspondence from D3 to S(A). Moreover, <P has the prop
erty that 

<{J(xy) = <{J(x) • <{J(y) 

for all x and yin D3. This statement can be verified by using the multiplication tables for D3 
and S(A) in the following manner: In the entire multiplication table for D3, we replace each 
element x E D3 by its image </J(x) in S(A). This yields the table in Figure 3.17, which has 
</J(xy) in the row with </J(x) at the left and in the column with </J(y) at the top. 

IA p p
2 

a '}' 8 

IA IA p p2 
a '}' 8 

p p p2 IA '}' 8 a 

p2 p2 IA p 8 a '}' 

a a 8 '}' IA p2 p 

'}' '}' a 8 p IA p2 

8 8 '}' a p2 p IA 

The multiplication table for S(A) given in Example 3 of Section 3.1 furnishes a 
table of values for </J(x) • </J(y), and the two tables agree in every position.t This means 
that </J(xy) = </J(x) • </J(y) for all x and yin D3. Thus the dihedral group D3 and the group 
of permutations S(A) are the same except for notation. From now on, when A = { 1, 2, 3}, 
we use the notation D3 and S(A) interchangeably, choosing D3 when emphasis is on the 

rigid motions (symmetries ) of an equilateral triangle, and S(A) when emphasis is on the 
group of permutations of A. • 

A mapping such as <P in the preceding example is called an isomorphism. 

Definition 3.29 • Isomorphism, Automorphism 

Let G be a group with respect to®, and let G' be a group with respect to�. A mapping 
</J: G � G' is an isomorphism from G to G' if 

tNote that thee in Example 3 of Section 3.1 stands for IA. 
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1. <Pis a one-to-one correspondence (a bijection) from G to G' and 

2. c/J(x ® y) = c/J(x) [] c/J(y) for all x and yin G. 

If an isomorphism from G to G' exists, we say that G is isomorphic to G', and we use the 

notation G = G' as shorthand for this phrase. An isomorphism from a group G to G itself 

is called an automorphism of G. 

ALERT The use of ®and [] in Definition 3.29 is intended to emphasize the fact that the group 

operations may be different. Now that this point has been made, we revert to our conven

tion of using the multiplicative notation for the group operation. An isomorphism is said to 

"preserve the operation," since condition 2 of Definition 3.29 requires that the result be the 

same whether the group operation is performed before or after the mapping. 

The notation= in Definition 3.29 is not standardized. The notations=, 3' , and= are 

used for the same purpose in some other texts. 

Strategy • To prove that two groups G and G' are isomorphic, we must: 

1. Define a mapping c/J: G ---1' G'. 

2. Show that <P is one-to-one. 

3. Show that <P is onto. 

4. Show that <P "preserves the operation." 

This strategy is illustrated in the next two examples. 

Example 3 The additive group Z of integers is isomorphic to the additive group E 
of even integers. To verify this statement, we must exhibit (Strategy Step 1) a one-to-one 

correspondence (Strategy Steps 2 and 3) that "preserves the operation" (Strategy Step 4). 
The mapping c/J: Z-1- E defined by 

c/J(x) = 2x 

for all x E Z, is shown to be both one-to-one and onto in Exercise 6a of Section 1.2. To 

verify that <P "preserves the operation," let x, y E Z. Then 

c/J(x + y) = 2(x + y) = 2x + 2y = c/J(x) + c/J(y). 

Hence the additive group Z is isomorphic to the additive group E. • 

Example 4 The mapping c/J(x) = 2x defined from the multiplicative group R+ of posi

tive real numbers to itself is not an automorphism, even though it is one-to-one and onto. 

The mapping <P does not "preserve the operation," since for any x, y E R +, 

c/J(xy) = 2(xy) =I= (2x) • (2y) = c/J(x)c/J(y). • 

Because an isomorphism preserves the group operation between two groups, it is not sur

prising that the identity elements always correspond under an isomorphism and that inverses 

are always mapped onto inverses. These results are stated more precisely in the next theorem. 
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Theorem 3.30 • Images of Identities and Inverses 

Suppose <P is an isomorphism from the group G to the group G'. If e denotes the identity in 

G and e' denotes the identity in G', then 

a. </J(e) = e' and 

b. </J(x-1) = [ </J(x)r 1 for all x in G. 

p => q Proof We have 

(p /\ q) => r 

e • e = e => <P(e • e) = <P(e) 

For any x in G, 

=> <P(e) • <P(e) = </J(e) 

=> </J(e) • </J(e) = </J(e) • e' 

=> <P(e) = e' 

since <P is an isomorphism 

since e' is an identity 

by Theorem 3.4e. 

x • x-1 = e => <P(x • x-1) = <P(e) 

=> <P(x • x-1) = e' by part a 

=> <P(x) • <P(x-1) = e'. 

Similarly, x-1 • x = e implies </J(x-1) • </J(x) = e', and therefore </J(x-1) = [</J(x)r1. 

The concept of isomorphism introduces the relation of being isomorphic on a collection 

<§ of groups. This relation is an equivalence relation, as the following statements show. 

1. Any group G in the collection<§ is isomorphic to itself. The identity mapping Ia is an 

automorphism of G. 

2. If G and G' are in <§ and G is isomorphic to G', then G' is isomorphic to G. In fact, 

if <P is an isomorphism from G to G', then </J-1 is an isomorphism from G' to G. (See 

Exercise 1 at the end of this section.) 

3. Suppose Gi, G2, G3 are in<§. If G1 is isomorphic to G2 and G2 is isomorphic to G3, 

then G1 is isomorphic to G3. In fact, if </J1 is an isomorphism from G1 to G2 and </J2 
is an isomorphism from G2 to G3, then <P2<P1 is an isomorphism from G1 to G3. (See 

Exercise 2a at the end of this section.) 

The fundamental idea behind isomorphisms is this: Groups that are isomorphic have 

the same structure relative to their respective group operation. They are algebraically the 

same, although details such as the appearance of the elements or the rule defining the op

eration may vary. 

From our discussion at the beginning of this section, we see that any two cyclic groups 

of order 4 are isomorphic. In fact, any two cyclic groups of the same order are isomorphic 

(see Exercises 30 and 31 at the end of this section). 

The next two examples emphasize the fact that the elements of two isomorphic groups 

and their group operations may be quite different from each other. 
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Exam p I e 5 Consider G = { 1, i, -1, -i } under multiplication and G' = Z4 = 

{[ 0 J, [ 1 J, [ 2 J, [ 3]} under addition. In order to define a mapping <P : G � Z4 that is an iso
morphism, one requirement is that <P must map the identity element 1 of G to the identity 
element [0] of Z4 (part a of Theorem 3.30). Thus </J(l) = [0]. Another requirement is that 
inverses must map onto inverses (part b of Theorem 3 .30). That is, if we take </J( i) = [ 1] then 

<P(i- 1) = (<P(i) t 1 = -[lJ 

or 

<P(-i) = [3J. 

The remaining elements -1 in G and [2] in Z4 are their own inverses, so we take <P ( -1) = [2]. 
Thus the mapping </J: G � Z4 defined by 

</J(l) = [OJ, <P(i) = [lJ, <P( -1) = [2J, <P(-i) = [3J 

is a one-to-one correspondence. To see that <Pis an isomorphism from G to Z4, we use the 
group tables for G and Z4 in the same way as in Example 2 of this section. Beginning with 
the multiplication table for G, we replace each x in the table with </J(x) (see Figures 3.18 and 
3.19). Since the resulting table (Figure 3.19) agrees completely with the addition table for 
Z4, we conclude that 

</J(xy) = <P(x) + </J(y) 

for all x E G, y E G and therefore that <P is an isomorphism from G to Z4• 

Multiplication Table for G Table of cf>(xy) 

x 1 i -1 -i + [OJ [lJ [2J [3J 

1 1 i -1 -i [OJ [OJ [ 1 J [2J [3J 

i l -1 -i 1 [lJ [lJ [2J [3J [OJ 

-1 -1 -z 1 l [2J [2J [3J [OJ [lJ 

-i -i 1 i -1 [3J [3J [OJ [lJ [2J 

•Figure 3.18 •Figure 3.19 • 

We conclude this section with an example involving matrices. 

Example 6 The multiplicative group G of 3 X 3 permutation matrices was introduced 
in Exercise 35 of Section 3.1. This group G is given by G = {h P1, P2, P3, P4, Ps}, where 

0 

0 

1 

0 

1 
0 

1 
0 

0 

0 

0 

1 

1 
0 

0 n 
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We shall show that this group is isomorphic to the group S(A) = {IA, p, p2, u, y, o} that 
appears in Example 2 of this section. 

Since P5 = P�, the group G consists of the elements 

which are listed in this order in the multiplication table shown in Figure 3.20. The multi
plication tables for G and S(A) can be used as guides for defining an isomorphism <P from 
G to S(A). We first note that h and IA are identities in G and S(A), respectively. Hence 
</J(h) = IA. Also P:31 = P�, so if we choose </J(P3) = p, then 

</J(P-:;1) = (</J(P3))-1 = p-1 
or 

<P(PD = p2• 
Each of P1, P4, and P2 is its own inverse in G, as are u, y and o in S(A). An examination 
of the patterns in the lower left portion (or upper right portion) of each table suggests that 
a one-to-one correspondence </>: G � S(A) given by 

</J(/3) = IA 

</J(P1) = u 

</J(P3) = p 

</J(P4) = 'Y 

<P(PD = P2 
</J(P2) = o 

might be an isomorphism. To verify the property </J(xy) = <P(x) </J(y ), we replace each x 
in the table for G with its image <P(x) in S(A). The resulting table is shown in Figure 3.21, 
and it agrees in every position with the group table for S(A) in Figure 3.17. Thus <P is an 
isomorphism from G to S(A). 

Multiplication Table for G Table of c/J(xy) 
. 

h P3 p� P1 P4 P2 0 IA p p2 
u 'Y 0 

h h P3 p� P1 P4 P2 IA IA p p2 
u 'Y 0 

P3 P3 p� h P4 P2 P1 p p p2 IA 'Y 0 u 

p� p� h P3 P2 P1 P4 p2 p2 IA p 0 u 'Y 

P1 P1 P2 P4 h p� P3 u u 0 'Y IA p2 p 

P4 P4 P1 P2 P3 h p� 'Y 'Y u 0 p IA p2 

P2 P2 P4 P1 p� P3 h 0 0 'Y u p2 p IA 

• Figure 3.20 • Figure 3.21 • 

Exercises 3.5 

True or False 

Label each of the following statements as either true or false. 

1. Any two cyclic groups of the same order are isomorphic. 

2. Any two abelian groups of the same order are isomorphic. 
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Sec. 3.4, #16 � 

Sec. 3.3, #17 � 

Sec. 3.4, #16 � 

Sec. 3.4, #14 � 

Sec. 3.3, #16b � 

Sec. 3.3, #lSa � 

3. Any isomorphism is an automorphism. 

4. Any automorphism is an isomorphism. 

3.5 Isomorphisms 189 

5. If two groups G and G' have order 3, then G and G' are isomorphic. 

6. Any two groups of the same finite order are isomorphic. 

7. Two groups can be isomorphic even though their group operations are different. 

8. The relation of being isomorphic is an equivalence relation on a collection of groups. 

Exercises 

1. Prove that if <P is an isomorphism from the group G to the group G', then ¢-1 
is an 

isomorphism from G' to G. 

2. Let G1, G2, and G3 be groups. 

a. Prove that if ¢1 is an isomorphism from G1 to G2 and ¢2 is an isomorphism from G2 
to G3, then <P2<P1 is an isomorphism from G1 to G3. 

b. If ¢1 is an isomorphism from G1 to G3 and ¢2 is an isomorphism from G2 to G3, find 

an isomorphism from G1 to G2. 

3. Find an isomorphism from the additive groupt Z4 = {[0]4, [1]4, [2]4, [3]4} to the mul

tiplicative group of units Us = {[l]s, [2]s, [3]s, [4]s} �Zs. 

4. Let G = {1, i, -1, -i} under multiplication, and let G' = Z4 = {[OJ, [1], [2], [3]} 
under addition. Find an isomorphism from G to G' that is different from the one given 

in Example 5 of this section. 

5. Let H be the group given in Exercise 17 of Section 3.3, and let S(A) be as given in 

Example 2 of this section. Find an isomorphism from H to S(A). 

6. Find an isomorphism from the additive group Z6 = {[a]6} to the multiplicative group 

of units U1 = {[ah E Z1 I [ah i= [Oh}. 

7. Find an isomorphism <P from the additive group Z to the multiplicative group 

and prove that </J(x + y) = </J(x)</J(y). 

8. Find an isomorphism from the group G = {1, i, -1, -i} in Example 5 of this section 

to the multiplicative group 

{[l OJ [ i OJ [-i OJ [-1 OJ } H = 

0 1 ' 0 -i ' 0 i ' 0 -1 
. 

9. Find an isomorphism <P from the multiplicative group G of nonzero complex numbers 

to the multiplicative group 

H = {[: -: J I a,b E R and a2 + b2 * 0
} 

and prove that </J(xy) = </J(x)</J(y). 

tFor clarity, we are temporarily writing [a]n for [a] E Zn. 
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Sec. 3.3, #l6a P 10. Find an isomorphism from the multiplicative group 

Sec. 4.2, #3 � 

Sec. 4.4, #17 � 

Sec. 4.6, #16 � 

• Figure 3.22 

H = {[� �l [� -�l [
-
� �l [

-
� -�

J
} 

to the group G = {e, a, b, ab} with multiplication table in Figure 3.22. This group is 

known as the Klein t four group. 

. e a b ab 

e e a b ab 

a a e ab b 

b b ab e a 

ab ab b a e 

Sec. 3.1, #34 P 11. The following set of matrices 

[1 OJ [-1 OJ [ 0 lJ [O 
0 1 ' 0 -1 ' -1 0 ' 1 

-lJ 
0 ' 

[i OJ 
[
-i OJ 

[
O iJ 

[ 
0 -iJ 

0 -i ' 0 i ' i 0 ' -i 0 

forms a group H with respect to matrix multiplication. Find an isomorphism from H to 

the quaternion group. 

12. Prove that the additive group R of real numbers is isomorphic to the multiplicative 

group R + of positive real numbers. (Hint: Consider the mapping <f>: R ---+ R + defined 

by <f>(x) = lOX for all x ER.) 

13. Consider the groups given in Exercise 12. Find an isomorphism from the multiplica

tive group R + of positive real numbers to the additive group R of real numbers. 

Sec. 3.1, #52 P 14. Consider the additive group R of real numbers. Prove or disprove that each of the 

following mappings <f>: RX R-+ R X R is an automorphism. Equality and addition 

are defined on R X R in Exercise 52 of Section 3.1. 

a. <f>(x, y) = (y, x) b. <f>(x, y) = ( -x, -y) 

Sec. 3.1, #52 P 15. Consider the additive group R of real numbers. Prove or disprove that each of the 

following mappings <f>: RX R-+ R is an isomorphism. 

a. <f>(x, y) = x b. <f>(x, y) = x + y 

tFelix Christian Klein (1849-1925) was a German mathematician known for his work on the connections be
tween geometry and group theory. Klein successfully worked toward the admission of women to the University 
of Gottingen in Germany in 1893, and supervised the first Ph.D. thesis by a woman at Gottingen. 
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16. Assume that the nonzero complex numbers form a group G with respect to multi

plication. If a and b are real numbers and i = v-=T , the conjugate of the complex 

number a + bi is defined to be a - bi. With this notation, let <P: G---+ G be defined 

by </J (a + bi) = a - bi for all a + bi in G. Prove that <Pis an automorphism of G. 

17. Let G be a group. Prove that G is abelian if and only if the mapping <P: G ---+ G defined 

by </J(x) = x-1 
for all x in G is an automorphism. 

18. Suppose (m, n) = 1 and let <{J:Zn---+ Zn be defined by <P( [a J) = m[a ]. Prove or dis

prove that <P is an automorphism of the additive group Zn-

Sec. 3.1, #33a � 19. According to Exercise 33a of Section 3.1, if n is prime, Um the set of nonzero elements 

of Zm forms a group with respect to multiplication. Prove or disprove that the mapping 

<{J: Un� Un defined by the rule in Exercise 18 is an automorphism of Un. 

20. For each a in the group G, define a mapping ta: G-+ G by ta(x) = axa-1
. Prove that 

Sec. 4.6, #32 � ta is an automorphism of G. 

21. For a fixed group G, prove that the set of all automorphisms of G forms a group with 

Sec. 4.6, #32 � respect to mapping composition. 

Sec. 3.1, #52 � 
Sec. 6.2, #22 � 

Sec. 3.1, #52 � 

22. Let G be a finite cyclic group of order n with generators a and b. Prove that the map

ping <fJ(ai) = bi is an automorphism of G. 

23. Assume G is a (not necessarily finite) cyclic group generated by a in G, and let <P be 

an automorphism of G. Prove that each element of G is equal to a power of </J(a); that 

is, prove that </J(a) is a generator of G. 

24. Let G be as in Exercise 23. Suppose also that a' is a generator of G. Define f on G by 

f(a) = a',f(ai) = (a')i = a'i. Prove that/is an automorphism of G. 

25. Let G be the multiplicative group of units Un. For each value of n, use the results of 

Exercises 23 and 24 to list all the automorphisms of G. For each automorphism </J, 

write out the images </J(x) for all x in G. 

a. n = 5 b. n = 7 

26. Use the results of Exercises 23 and 24 to find the number of automorphisms of the 

additive group Zn for the given value of n. 

a. n = 3 b. n = 4 c. n = 8 d. n = 6 

27. Consider the additive groups Z2, Z3, and Z6. Prove that Z6 is isomorphic to Z2 X Z3. 

28. Let G1, G2, H1, and H2 be groups with respect to addition. If G1 is isomorphic to H1 

and G2 is isomorphic to H2, prove that G1 X G2 is isomorphic to H1 X H2• 

29. Prove that any cyclic group of finite order n is isomorphic to Zn under addition. 

30. For an arbitrary positive integer n, prove that any two cyclic groups of order n are 

isomorphic. 

31. Prove that any infinite cyclic group is isomorphic to Z under addition. 

32. Let H be the group Z6 under addition. Find all isomorphisms from the multiplicative 

group U7 of units in Z7 to H. 

33. Suppose that G and H are isomorphic groups. Prove that G is abelian if and only if H 

is abelian. 
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34. Prove that if G and H are two groups that contain exactly two elements each, then G 
and H are isomorphic. 

35. Prove that any two groups of order 3 are isomorphic. 

36. Exhibit two groups of the same finite order that are not isomorphic. 

37. Let</> be an isomorphism from group G to group H. Let x be in G. Prove that </>(x11) = 

(<f>(x)r for every integer n. 

38. If G and Hare groups and <f>: G �His an isomorphism, prove that a and <f>(a) have 
the same order, for any a E G. 

39. Suppose that</> is an isomorphism from the group G to the group G'. 
a. Prove that if His any subgroup of G, then <f>(H) is a subgroup of G'. 

b. Prove that if K is any subgroup of G', then <f>-1(K) is a subgroup of G. 

12!] Homomorphisms 

We saw in the last section that an isomorphism between two groups provides a connection 
that shows that the two groups have the same structure relative to their group operations. It 
is for this reason that the concept of an isomorphism is extremely important in algebra. 

The name homomorphism is given to another important type of mapping that is related 
to, but different from, the isomorphism. The basic differences are that a homomorphism is not 
required to be one-to-one and also not required to be onto. The formal definition is as follows. 

Definition 3.31 • Homomorphism, Endomorphism, Epimorphism, Monomorphism 

Let G be a group with respect to ® and let G' be a group with respect to [I] . A homomor

phism from G to G' is a mapping <f>: G � G' such that 

<f>(x ®y) = <f>(x) [Il<f>(y) 

for all x and yin G. If G = G', the homomorphism</> is an endomorphism. A homomor
phism</> is called an epimorphism if</> is onto, and a monomorphism if</> is one-to-one. 

If there exists an epimorphism from G to G', then G' is called a homomorphic image 

ofG. 

As we did with isomorphisms, we drop the special symbols ® and [I] and simply write 
<f>(xy) = <f>(x)<f>(y) for the given condition. 

As already noted, a homomorphism </> from G to G' need not be one-to-one or onto. If 
</>is both (that is, if</> is a bijection ), then</> is an isomorphism as defined in Definition 3.29. 

Our first example of a homomorphism has a natural connection with our work in 
Chapter 2. 

Example 1 For a fixed integer n > 1, consider the mapping</> from the additive group 
Z to the additive group Zn defined by 

<f>(x) = [x], 
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where [x J is the congruence class in Zn that contains x. From the properties of addition in 
Zn ( see Section 2.6), it follows that 

<f>(x + y) = [x + y J 
= [x] + [y] 

= <f>(x) + <f>(y ). 

Thus <f> is a homomorphism. It follows from the definition of Zn that <f> is onto, so </> is, in 
fact, an epimorphism from Z to Zm and Zn is a homomorphic image of Z. Since <f>(O) = 

<f>(n) = [O], then</> is not one-to-one and hence not a monomorphism. • 

Example 2 For two arbitrary groups G and G', let e' denote the identity element in G' 
and define <f>: G � G' by <f>(x) = e' for all x E G. Then, for all x and y in G, 

<f>(x) • <f>(y) = e' • e' 

= e' 

= <f>(xy ), 

and <f> is a homomorphism from G to G'. If G' has order greater than 1, then <f> is not onto 
and hence not an epimorphism. Also </> is not one-to-one, since for any x =f=. y, we have 
<f>(x) = <f>(y) = e '. Thus <f> is not a monomorphism. • 

The two previous examples show that, unlike the situation with isomorphisms, the 
existence of a homomorphism from G to G' does not imply that G and G' have the same 
structure. However, we shall see that the existence of a homomorphism can reveal impor
tant and interesting information relating their structures. As with isomorphisms, we say 
that a homomorphism "preserves the group operation." Two simple consequences of this 
condition are that identities must correspond and inverses must be mapped onto inverses. 
This is stated in our next theorem, and the proofs are requested in the exercises. 

Theorem 3.32 • Images of Identities and Inverses 

Let</> be a homomorphism from the group G to the group G'. If e denotes the identity in G, 
and e' denotes the identity in G', then 

a. <f>(e) = e' and 

b.<f>(x-1) = [<f>(x)r1 for allx inG. 

The following examples give some indication of the variety that is in homomorphisms. 
Other examples appear in the exercises for this section. 

Exam p I e 3 Consider the group G of nonzero real numbers under multiplication and the 
additive group Z. Define <f>: Z � G by 

<f>(n) = {-� if n is even 

if n is odd. 
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Since every integer is either even or odd and not both, cp(n) is well-defined. The following 
table systematically checks the equality cp(m + n) = cp(m) • cp(n). 

m+n cp(m) • cp(n) cp(m + n) 

m, n both even even (1)(1) 1 

one even, one odd odd (1)(-1) -1 

m, n both odd even (-1)(-1) 1 

A comparison of the last two columns shows that <P is indeed a homomorphism from Z to 
G. However, since <Pis not onto, it is not an epimorphism. Since cp(O) = cp(2) = 1, then <P 
is not one-to-one and hence it is not a monomorphism. • 

Example 4 Consider the additive group Z and the mapping cp: Z---+ Z defined by 
cp(x) = Sx for all x E Z. Since 

cp(x + y) = S(x + y) 

= Sx +Sy 

= <P(x) + cp(y ), 

<P is an endomorphism. Clearly, <P is not an epimorphism since <P is not onto. However, 
since cp(x) = </>(y) implies Sx = Sy and x = y, then <Pis a monomorphism. • 

We saw in the last section that the relation of being isomorphic is an equivalence re
lation on a given collection Q of groups. The concept of homomorphism leads to a cor
responding, but different, relation. If there exists an epimorphism from the group G to the 
group G', then G' is a homomorphic image of G. On a given collection G of groups, the 
relation of being a homomorphic image is reflexive and transitive but may not be symmet
ric. These facts are brought out in the exercises for this section. 

The real importance of homomorphisms will be much clearer at the end of Section 4.6 

in the next chapter. The kernel of a homomorphism is one of the key concepts in that section. 

Definition 3.33 • Kernel 

Let <P be a homomorphism from the group G to the group G'. The kernel of <P is the set 

ker <P = { x E G I <P ( x) = e '} 

where e
' denotes the identity in G'. 

Example 5 To illustrate Definition 3.33, we list the kernels of the homomorphisms 
from the preceding examples in this section. 

The kernel of the homomorphism cp: Z---+ Zn defined by cp(x) = [x] in Example 1 is 
given by 

ker <P = {x E Z Ix = kn for some k E Z}, 

since cp(x) = [x] = [OJ if and only if xis a multiple of n. 
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The homomorphism <f>: Z � G in Example 3 defined by 

</>(n) = {-� if n is even 

if n is odd 

has the set E of all even integers as its kernel, since 1 is the identity in G. 

For</>: Z � Z defined by </>(x) = 5x in Example 4, we have ker </> = {O}, since 5x = 0 
if and only if x = 0. This kernel is an extreme case since part a of Theorem 3.32 assures us 
that the identity is always an element of the kernel. 

At the other extreme, the homomorphism </>: G � G' defined in Example 2 by </> (x) = e
' 

for all x E G has ker </> = G. • 

Exercises 3.6 
True or False 

Label each of the following statements as either true or false. 

1. Every homomorphism is an isomorphism. 

2. Every isomorphism is a homomorphism. 

3. Every endomorphism is an epimorphism. 

4. Every epimorphism is an endomorphism. 

5. Every monomorphism is an isomorphism. 

6. Every isomorphism is an epimorphism and a monomorphism. 

7. The relation of being a homomorphic image is an equivalence relation on a collection 
of groups. 

8. The kernel of a homomorphism is never empty. 

9. It is possible to find at least one homomorphism from any group G to any group G'. 

10. If there exists a homomorphism from group G to group G ', then G' is said to be a 
homomorphic image of G. 

Exercises 

1. Each of the following rules determines a mapping </>: G � G, where G is the group 
of all nonzero real numbers under multiplication. Decide in each case whether or not 
</> is an endomorphism. For those that are endomorphisms, state the kernel and decide 
whether </> is an epimorphism or a monomorphism. 

a. </>(x) = lxl b. </>(x) = l/x c. </>(x) = 

-x d. </>(x) = x2 

lxl 
e. <f>(x) = -

x 
f. </>(x) = x2 + 1 g. </>(x) = \1x x 

h. </>(x) = 2 
2. Each of the following rules determines a mapping </> from the additive group Z4 to the 

additive group Z2. In each case prove or disprove that </> is a homomorphism. If </> is a 
homomorphism, find ker </> and decide whether</> is an epimorphism or a monomorphism. { [OJ if xis even 
a. </>([x]) = 

[l] if xis odd 
b. </>([x]) = [x + 2 ] 
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Sec. 6.2, #l8b <a; 

3. Consider the additive groups of real numbers R and complex numbers C and define 
<f>: R--+ C by <f>(x) = x + Oi. Prove that <f> is a homomorphism and find ker <f>. Is <f> an 
epimorphism? Is <f> a monomorphism? 

4. Consider the additive group Z and the multiplicative group G = {l, i, -1, -i} and 
define <f>: Z--+ G by <f>(n) = in. 
a. Prove that <f> is a homomorphism and find ker <f>. 
b. Is <f> an epimorphism? Is <f> a monomorphism? 

c. Find <f> -l ( { i}), <f>-1 ( { -1}), <f> -l ( { -i}), <f> -l ( { 1, -1}), and <f> -l ( { i, -i}). 

5. Consider the additive group Z12 and define <f>: Z12--+ Z12 by <f>([x]) = [3x]. 
a. Prove that <f> is a homomorphism and find ker <f>. 
b. Is <f> an epimorphism? Is <f> a monomorphism? 

c. Find <f>-1( {[3]} ), <f>-1( {[6]} ), <f>-1( {[9]} ), and <f>-1( {[10]} ). 

6. Consider the additive groups Z12 and Z6 and define <f>: Z12--+ Z6 by </>([x]12) = [x]6. 
a. Prove that <f> is a homomorphism and find ker <f>. 
b. Is <f> an epimorphism? Is <f> a monomorphism? 

c. Find <f>-1 ( { [ 1 ]6}), <f>-1 ( {[ 2 ]6}), and <f>-1 ( { [ 4 ]6}). 

7. Consider the additive groups Zs and Z4 and define <f>: Zs--+ Z4 by </>( [x ]8) = [x ]4. 
a. Prove that <f> is a homomorphism and find ker <f>. 
b. Is <f> an epimorphism? Is <f> a monomorphism? 

c. Find <f>-1( {[1 ]4} ), <f>-1( {[2]4} ), and <f>-1( {[3 ]4} ). 

8. Consider the additive groups M2(Z) and Z. Define <f>: M2 (Z)--+ Z by <t>( [: �]) = a. 

Prove that <f> is a homomorphism and find ker <f>. Is <f> an epimorphism? Is <f> a monomor
phism? 

9. Let G be the additive group M2 (R) of 2 X 2 matrices over Rand G' the additive group 
R of real numbers. Define <f>: G--+ G' by 

(This mapping is called the trace of the matrix.) Prove or disprove that <f> is a homo
morphism. If <f> is a homomorphism, find ker <f> and decide whether <f> is an epimor
phism or a monomorphism. 

10. Rework Exercise 9 with G = GL(2, R), the general linear group of order 2 over R, and 
G' = R under addition. 

Sec. 1.6, #28, 29 � 11. Let G be GL(2, R), and let G' be the group of nonzero real numbers under multiplica
tion. Prove that the mapping <f>: G --+ G' defined by 

<t>([: �]) = ad - be 

Copyright 2013 Cengage Leaming. AH Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materia11y affect the overall learning experience. Cengage Leaming reserves the right to remove additional content at any time if subsequent rights restrictions require it. 



Sec. 4.6, #14 � 
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3.6 Homomorphisms 197 

is a homomorphism, and find ker <f>. Is <Pan epimorphism? Is <Pa monomorphism? 
(The value of this mapping is called the determinant of the matrix.) 

Sec. 3.1, #52 ;<> 12 . Consider the additive group R of real numbers. Let <P be a mapping from R X R to 
R, where equality and addition are defined in Exercise 52 of Section 3.1. Prove or 
disprove that each of the following mappings <P is a homomorphism. If <P is a homo
morphism, find ker <f>, and decide whether <Pis an epimorphism or a monomorphism. 

a. <f>(x, y) = x - y b. <f>(x, y) = 2x 

13. Find an example of G, G', and <P such that G is a nonabelian group, G' is an abelian 
group, and <P is an epimorphism from G to G'. 

14. Let <P be a homomorphism from the group G to the group G'. 

a. Prove part a of Theorem 3.32: If e denotes the identity in G and e' denotes the 
identity in G', then <f>(e) = e'. 

b. Prove partbofTheorem 3.32:<f>(x-1) = [<f>(x)r1for allx in G. 

15. Prove that on a given collection Q of groups, the relation of being a homomorphic 
image has the reflexive property. 

16. Suppose that G, G', and G" are groups. If G' is a homomorphic image of G, and G" is 
a homomorphic image of G', prove that G" is a homomorphic image of G. (Thus the 
relation in Exercise 15 has the transitive property.) 

17. Find two groups G and G' such that G' is a homomorphic image of G but G is not a 
homomorphic image of G'. (Thus the relation in Exercise 15 does not have the symmet
ric property.) 

18. Suppose that <Pis an epimorphism from the group G to the group G'. Prove that <Pis 
an isomorphism if and only if ker <P = {e }, where e denotes the identity in G. 

19. Let <P be a homomorphism from a group G to a group G'. Prove that ker <P is a sub
group of G. 

20. If G is an abelian group and the group G' is a homomorphic image of G, prove that G' 
is abelian. 

21. Let a be a fixed element of the multiplicative group G. Define <P from the additive 
group Z to G by <f>(n) = an for all n E Z. Prove that <P is a homomorphism. 

22. With <Pas in Exercise 2 1, show that <f>(Z) = (a), and describe the kernel of <f>. 

23. Assume that <P is a homomorphism from the group G to the group G'. 

a. Prove that if H is any subgroup of G, then <f>(H) is a subgroup of G'. 

Sec. 4.6, #28 � b. Prove that if K is any subgroup of G', then <f>-1(K) is a subgroup of G. 

24. Assume that the group G' is a homomorphic image of the group G. 

a. Prove that G' is cyclic if G is cyclic. 

b. Prove that IG'I divides IGI, whether G is cyclic or not. 

25. Let <P be a homomorphism from the group G to the group G', where G = (a), the 
cyclic group generated by a. Show that <P is completely determined by the image of 
the generator a of G. 
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A Pioneer in Mathematics 
Niels Henrik Abel (1802-1829) 

Niels Henrik Abel was a leading 19th-century Norwegian mathemati

cian. Although he died at the age of 27, his accomplishments were 

extraordinary, and he is Norway's most noted mathematician. His 

memory is honored in many ways. A monument to him was erected at 

Froland Church, his burial place, by his friend Baltazar Mathias Keilhau. 

History tells us that on his deathbed, Abel jokingly asked his friend to 

care for his fiancee after his death, perhaps by marrying her. (After Abel 

died, Keilhau did marry Abel's fiancee.) A statue of Abel stands in the 

Royal Park of Oslo, and Norway has issued five postage stamps in his 

honor. Many theorems of advanced mathematics bear his name. Probably the most lasting 

and significant recognition is in the term abe!ian group, coined around 1870. 

Abel was one of seven children of a pastor. When he was 18, his father died, and 

supporting the family became his responsibility. In spite of this burden, Abel continued his 

study of mathematics and successfully solved a problem that had baffled mathematicians 

for more than 300 years: He proved that the general fifth-degree polynomial equation could 

not be solved using the four basic arithmetic operations and extraction of roots. 

Although Abel never held an academic position, he continued to pursue his mathematical 

research, contributing not only to the groundwork for what later became known as abstract 

algebra but also to the theory of infinite series, elliptic functions, elliptic integrals, and 

abelian integrals. 

In Berlin, Abel became friends with August Leopold Crelle (1780-1856), a civil 

engineer and founder of the first journal devoted entirely to mathematical research. It was 

only through Crelle's friendship and respect for Abel's talent that many of Abel's papers 

were published. In fact, Crelle finally obtained a faculty position for Abel at the University 

of Berlin, but unfortunately, the news reached Norway two days after Abel's death. 
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CHAPTER F 0 U R 

More on Groups 

• Introduction 

The first two sections of this chapter present the standard material on permutation groups, and the 

optional Section 4.3 contains some real-world applications of such groups. The next section introduces 

cosets of a subgroup, a concept necessary to the study of normal subgroups and quotient groups in the 

next two sections. The chapter then concludes with two optional sections that present some results on 

finite abelian groups and give a sample of more advanced work. 

The set Zn of congruence classes modulo n makes isolated appearances in this chapter. 

� Finite Permutation Groups 

An appreciation of the importance of permutation groups must be based to some extent on a 

know ledge of their structures. The basic facts about finite permutation groups are presented 

in this section, and their importance is revealed in the next two sections. 

Suppose A is a finite set of n elements-say, 

A= {a1,a2, ... ,aJ. 
Any permutation/ on A is determined by the choices for the n values 

/(a1),/(a2), ... ,/(an) . 

In assigning these values, there are n choices for /(a1), then n - 1 choices of /(a2), then 

n - 2 choices of /(a3), and so on. Thus, there are n(n - 1) · · · (2)(1) = n! different ways 

in which/ can be defined, and S(A) has n! elements. Each element/in S(A) can be repre

sented by a matrix (rectangular array) in which the image of ai is written under ai: 

Each permutation f on A can be made to correspond to a permutation /' on B = 
{ 1, 2, ... , n} by replacing ak with k fork = 1, 2, ... , n: 

I [ 1 
f = f'(l) 

2 
/'(2) 

199 
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200 Chapter 4 More on Groups 

The mapping f � f' is an isomorphism from S(A) to S(B), and the groups are the same 
except for notation. For this reason, we will henceforth consider a permutation on a set of 

n elements as being written on the set B = { 1, 2, . . .  , n }. The group S(B) is known as the 
symmetric group on n elements, and it is denoted by Sn. 

Example 1 As an illustration of the matrix representation, the notation 

f = [� � � : �] 
indicates thatfis an element of Ss and thatf(l) = 3,f(2) = 5,f(3) = l,f(4) = 4, and 

f(5) = 2. • 

Definition 4.1 • Cycle 

An element! of Sn is a cycle if there exists a set {ii, i2, • • •  , i,} of distinct integers such that 

f(i1 ) = iz, f(i2) = i3, ... , f(i,_ 1 ) = i,, J(i,) = ii. 

and f leaves all other elements fixed. 

By this definition, f is a cycle if there are distinct integers i 1, i2, . . . , i, such that f maps 
these elements according to the cyclic pattern 

and f leaves all other elements fixed. A cycle such as this can be written in the form 

f = (i1 ' iz, ... , i,), 

where it is understood that f(ik) = ik+1 for 1 < k < r, and f(i,) = ii. 

Example 2 The permutation 

f= [� 
can be written simply as 

2 3 

6 3 

4 

7 

5 

5 

f = (2, 6, 4, 7). 

ALERT This expression is not unique, because 

6 

4 �] 

f= (2,6,4, 7) = (6,4, 7,2) = (4, 7,2,6) = (7,2,6,4). • 

Example 3 It is easy to write the inverse of a cycle. Since f(h) = ik+1 implies 
f-

1 (ik+1) = ik, we only need to reverse the order of the cyclic pattern. For 

f = (1, 2, 3, 4, 5, 6, 7, 8, 9), 
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4.1 Finite Permutation Groups 201 

we have 

1-1=(9,8,7,6,5,4,3,2, 1) 
= (1, 9, 8, 7, 6, 5, 4, 3, 2). • 

Not all elements of Sn are cycles, but every permutation can be written as a product of 

mutually disjoint cycles, as illustrated in the next example. 

Example 4 Consider the permutation 

f= [� 2 3 4 5 6 7 
8 2 6 7 4 9 

8 
1 

9] 5 
. 

When we use the same representation scheme with f(k) written beneath k, the result of a 

rearrangement of the columns in the matrix still represents f: 

f= [� 3 2 
2 8 

8 4 6 5 
1 6 4 7 

7 
9 

9] 5 
. 

The columns have been arranged in a special way: If f(p) = q, the column with q at the 

top has been written next after the column with p at the top. This arranges the elements in 

the first row so that f maps them according to the following pattern: 

1�3�2�8�1 
4�6�4 
5�7�9�5. 

Thus 1, 3, 2, and 8 are mapped in a circular pattern, and so are 4 and 6, and 5, 7, and 9. 
This procedure has led to a separation of the elements of { 1, 2, 3, 4, 5, 6, 7, 8, 9} into dis

joint subsets { 1, 3, 2, 8}, { 4, 6}, and { 5, 7, 9} according to the pattern determined by the 

following computations: t 

J(l) = 3 
f2(l) = J(3) = 2 
J3(1) = J(2) = 8 
J4(1) = J(8) = 1 

J(4) = 6 
J2(4) = J(6) = 4 

J(5) = 7 
f2(5) = J(7) = 9 
J3(5) = J(9) = 5. 

The disjoint subsets {1, 3, 2, 8}, {4, 6}, and {5, 7, 9} are called the orbits off 

For each orbit off, we define a cycle that maps the elements in that orbit in the same 

way as does f: 

tp = f o f,f3 = f o j2 = f o f o f. and so on. 

gl = (1, 3, 2, 8) 
g2 =(4,6) 

g3 = (5, 7, 9). 
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202 Chapter 4 More on Groups 

These cycles are automatically on disjoint sets of elements since the orbits are disjoint, and 
we see that their product is f: 

f = g1g2g3 
= (1, 3, 2, 8)(4, 6)(5, 7, 9). 

Note that these cycles commute with each other because they are on disjoint sets of elements. 
See Exercise 31. • 

The orbit { 1, 3, 2, 8} in Example 4 can be expressed as 

{l,f(l),f2(1),J3(1)} or {r(l) In E Z} 

since any integral power ofj(l) is one of the elements 1, 3, 2, or 8. In general, any a and b 
are in the same orbit off if 

Theorem 4.2 • Partition of A 

b = fn(a) for some n E Z. 

Let/be a permutation on A with a, b EA. The relation R defined on A by 

aRb if and only if b = jll(a) for some n E Z 

is an equivalence relation on A. 

The proof of Theorem 4.2 is requested in the exercises. The equivalence relation de
fined in Theorem 4.2 leads to the formal definition of the orbits of a permutation. 

Definition 4.3 • Orbit 

Let/ be a permutation on A. The orbits off are the equivalence classes determined by the 
equivalence relation defined in Theorem 4.2. 

In Example 4, the set A = { 1, 2, 3, 4, 5, 6, 7, 8, 9} is partitioned by the orbits off: 

{1, 3, 2, 8}, {4, 6}, {5, 7, 9}. 

Example 5 The positive integral powers of a cycle fare easy to compute since fm will 
map each integer in the cycle onto the integer located m places farther along in the cycle. 
For instance, if 

f = (1, 2, 3, 4, 5, 6, 7, 8, 9), 

then /2 maps each element onto the element two places farther along, according to the pattern 
......----........----.. ......----.. 

1, 2, 3, 4, 5, 6, 7, . . .  

/2 = (1, 3, 5, 7, 9, 2, 4, 6, 8). 
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4.1 Finite Permutation Groups 203 

Similarly, J 3 maps each element onto the element three places farther along, and so on for 
higher powers: 

J3 = (1, 4, 7)(2, 5, 8)(3, 6, 9) 
J4 = (1, 5, 9, 4, 8, 3, 7, 2, 6). • 

In connection with Example 5, we note that the order of an r-cycle (a cycle with r 
elements) is r. 

Ordinarily, cycles that are not on disjoint sets of elements will not commute, but their 
product is defined using mapping composition. For example, suppose J = (1, 3, 2, 4) and 
g = (1, 7, 6, 2). Thent 

smce 

Jg= (1, 3, 2, 4)(1, 7, 6, 2) = (1, 7, 6, 4)(2, 3), 

g 1 2 3 4 5 6 7 

Jg ( ( 7 1 3 4 5 26 
J ( 7 3 2 1 5 4 6. 

We adopt the notation that a 1-cycle such as ( 5) indicates that the element is left fixed. 
For example.Jg could also be written as 

Jg = ( 1, 7, 6, 4) ( 2, 3) ( 5). 

This allows expressions such as e = (1) ore = (1)(2) for the identity permutation. 
A similar diagram for gJ appears as follows: 

J 
1 2 3 4 56 7  

gJ ( ( 3 4 2 1 56 7  
g ( 3 4 1 7 5 26 

gJ = (1, 7, 6, 2)(1, 3, 2, 4) = (1, 3)(2, 4, 7, 6). 

Thus gJ * Jg. The orbits of gf are {1, 3}, { 2, 4, 7, 6}, and { 5} whereas the orbits of 
Jg are { 1, 7, 6, 4 }, {2, 3}, and {5}. Hence we have two partitions of { 1, 2, 3, 4, 5, 6, 7}, one 
determined by gf and the other by Jg. 

Example 6 A product of cycles with any number of factors can be expressed as a 
product of disjoint cycles by the same procedure that we used above. To illustrate, sup
pose we wish to express the product Jgh, where 

as a product of disjoint cycles. 

J= (1,4,3,2) 

g = (1,6,2,5) 

h = (1, 5, 3, 6, 2), 

tThe productfg is computed from right to left, according tof(g(x)). Some texts multiply permutations from left 
to right. 
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204 Chapter 4 More on Groups 

This productfgh is computed from right to left asf (g(h(x))). Thus 

fgh = (1, 4, 3, 2)(1, 6, 2, 5)(1, 5, 3, 6, 2) = (1, 4, 3)(2, 6, 5). • 

When a permutation is written as a product of disjoint cycles, it is easy to find the order 
of the permutation if we use the result in Exercise 36 of Section 3.4: The order of the product 
is simply the least common multiple of the orders of the cycles. For example, the product 
(1, 2, 3, 4)(5, 6, 7, 8, 9, 10) has order 12, the least common multiple of 4 and 6. 

Example 7 The expression of permutations as products of cycles enables us to write 
the elements of Sn in a very compact form. The elements of S3 are given by 

e = (1) 
p = (1, 2, 3) 

p2=(1,3,2) 

(Y = (1,2) 
T' = ( 1, 3) 
a = (2, 3). • 

A 2-cycle such as (3, 7) is called a transposition. Every permutation can be written 
as a product of transpositions, for every permutation can be written as a product of cycles, 
and any cycle (i1, iz, ... , ir) can be written as 

( i1' iz, ... , ir) = ( i1' i7)( i1' ir-1) · · · ( i1' i3 )( i1' iz) . 

For example, 

(1, 3, 2, 4) = (1, 4)(1, 2)(1, 3). 

ALERT The factorization into a product of transpositions is not unique, as the next example shows. 

Example 8 Consider the product jg, wheref = (1, 3, 2, 4) and g = (1, 7, 6, 2). This 
product can be written as 

(1, 3, 2, 4)(1, 7, 6, 2) = (1, 4)(1, 2)(1, 3)(1, 2)(1, 6)(1, 7) 

and also as 

(1,3,2,4)(1, 7,6,2) = (1, 7,6,4)(2,3) 
= ( 1, 4) ( 1, 6) ( 1, 7 )( 2, 3 ) . • 

Although the expression of a permutation as a product of transpositions is not unique, 
the number of transpositions used for a certain permutation is either always odd or else 
always even. Our proof of this fact takes us somewhat astray from our main course in this 
chapter. It involves consideration of a polynomial P inn variables x1, x2, • • •  , Xn that is the 
product of all factors of the form (xi - x1) with 1 :5 i < j :5 n: 

n 

P = Il (x; - xJ 
i<j 

(The symbol IT indicates a product in the same way that L is used to indicate sums.) For 
example, if n = 3, then 

3 
P = Il (x; - x) 

i<j 
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For n = 4, P is given by 
4 

P = II (xi - xi) 
i<j 

and similarly for larger values of n. 
If f is any permutation on { 1, 2, . . . , n}, then f is applied to P by the rule 

n 

f(P) = II (xf(i) - Xf(j)). i<j 
As an illustration, let us apply the transposition t = (2, 4) to the polynomial 

4 

P = II(xi - x) 
i<j 

We have 

since 2 and 4 are interchanged by t. Analyzing this result, we observe the following: 

1. The factor (x2 - x4) in P is changed to (x4 - x2) in t(P), so this factor changes sign. 
2. The factor (x1 - x3) is unchanged. 
3. The remaining factors in t(P) may be grouped in pairs as 

(x1 - x4)(x1 - x2) and (x4 - x3)(x3 - x2) = (x3 - x4)(x2 - x3 ) . 

The products of these pairs are unchanged by t. 

Thus t(P) = (- l)P, in this particular case. The sort of analysis we have used here can be 
used to prove the following lemma. 

Lemma 4.4 • 

n 

If t = (r, s) is any transposition on { 1, 2, ... , n} and P = II (xi - x) , then 
i<j 

t(P) = ( -l)P. 

(u Av)==> w Proof Since t = (r, s) = (s, r) , we may assume that r < s. We have 

n 

t(P) = II (xt(i) - Xi(j)). 
i<j 

The factors of t(P) may be analyzed as follows: 

1. The factor (xr - Xs) in P is changed to (xs - Xr) in t(P), so this factor changes sign. 
2. The factors (xi - Xj) in P with both subscripts different from r and s are unchanged by t. 
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206 Chapter 4 More on Groups 

3. The remaining factors in P have exactly one subscript k different from rand s and may 

be grouped into pairs according to the following plan. 

a. If k < r < s, the pair (xk - x,) (xk - xs) becomes (xk - xs) (xk - x,), and their 

product is unchanged by the transposition t. 

b. Similarly, if r < s < k, the product (x, - xk) (xs - xk) is also unchanged by t. 

c. Finally, if r < k < s, then the pair (x, - xk) (xk - x5) is unchanged by t since 

(x, - xk)(xk - x,) = [ - (xk - x,) ][ - (x, - xk)] 
= (xk - x,)(x, - xk). 

Thus t(P) = (-l)P, and the proof of the lemma is complete. 

Strategy • The conclusion in the next theorem has the form "r ors." In previous conclusions of this 

type, we have assumed that r was false and proved that s must then be true. It is interesting 

to note that this time, our technique is different and uses no negative assumption. 

Theorem 4.5 • Products of Transpositions 

(u /\ v) 
:::::} (rV s) 

If a certain permutation f is expressed as a product of p transpositions and also as a product 

of q transpositions, then either p and q are both even or p and q are both odd. 

Proof Suppose 

f = t 1 t2 · · · tP and f = t � t � · · · t � 
where each ti and each tj are transpositions. With the first factorization, the result of ap

plying f to 

n 

P = ITCxi - x) 
i<j 

can be obtained by successive application of the transpositions tp, tp-l• ... , t2, t1. By 

Lemma 4.4, each ti changes the sign of P, so 

f(P) = (-I)PP. 

Repeating this same line of reasoning with the second factorization, we obtain 

J(P) = ( -l)qP. 

This means that 

and consequently, 

Therefore, either p or q are both even or p and q are both odd. 
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Theorem 4.5 assures us that when a particular permutation is expressed in different 

ways as a product of transpositions, the number of transpositions used either will always 

be an even number or will always be an odd number. This fact allows us to make the fol

lowing definition. 

Definition 4.6 • Even, Odd Permutations 

A permutation that can be expressed as a product of an even number of transpositions is 

called an even permutation, and a permutation that can be expressed as a product of an 

odd number of transpositions is called an odd permutation. 

The product f g in Example 8 was written as a product of six transpositions and then as 

a product of four transpositions, and f g is an even permutation. 

The factorization of an r-cycle (i1, iz, ... , ir) as 

(i1, iz, ... , ir) = (ii, ir)(i1, ir-1) · · · (i1, i3)(i1, iz) 

uses r - 1 transpositions. This shows that an r-cycle is an even permutation if r is odd and 
an odd permutation if r is even. The identity is an even permutation since e = (1, 2)(1, 2). 
The product of two even permutations is clearly an even permutation. Since any permuta

tion can be written as a product of disjoint cycles, and since the inverse of an r-cycle is an 

r-cycle, the inverse of an even permutation is an even permutation. These remarks show 

that the set An of all even permutations in Sn is a subgroup of Sn. It is called the alternating 
group on n elements. 

Definition 4.7 • Alternating Group 

The alternating group An is the subgroup of Sn that consists of all even permutations in Sn. 

Example 9 The elements of the groupA4 are as follows: 

(1) 
( 1, 2, 3) 
(1,3,2) 

(1, 2, 4) 
(l,4,3) 
(1,3,4) 

(1, 4, 2) 
(2,3,4) 
(2,4,3) 

(1,2)(3,4) 
( 1, 3 )(2, 4) 
( 1, 4) ( 2, 3) . • 

The concept of conjugate elements in a group is basic to the study of normal subgroups. 

This concept is defined as follows. 

Definition 4.8 • Conjugate Elements 

If a and b are elements of the group G, the conjugate of a by b is the element bab-1. We 

say that c E G is a conjugate of a if and only if c = bab-1 for some bin G. 

We should point out that this concept is trivial in an abelian group G, because 

bab-1 = bb-1a = ea= a for all b E G. 
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There is a procedure by which conjugates of elements in a permutation group may 

be computed with ease. To see how this works, suppose that f and g are permutations on 

{ 1, 2, ... , n} that have been written as products of disjoint cycles, and consider gfg-1. If 

ii and iz are integers such that f(i1) = iz, then gfg-1 maps g(i1) to g(i2), as the following 

diagram shows: 

This means that if 

is one of the disjoint cycles in f, then 

(g(i1), g(i2), • • •  , g(iJ) 

is a corresponding cycle in gfg-1. Thus, if 

f = (il, iz, · · · , iJ U1,jz, · · · , js) · · · (k1, kz, · · · , kt), 
then 

Example 10 If 

f = (1, 3, 6, 9, 5)(2, 4, 7), 

and 

g = (1, 2, 8)(3, 6)(4, 5, 7), 

then gfg-1 may be obtained from f as follows: 

f = ( 1, 3, 6, 9, 5) (2, 4, 7) 
ttttt ttt 

gfg-1 
= (2, 6, 3, 9, 7)(8, 5, 4) 
= (2, 6, 3, 9, 7)(4, 8, 5), 

where the arrows indicate replacement of i by g(i). This result may be verified by direct 

computation of g-1 and the product gfg-1. • 

The procedure for computing conjugates described just before Example 10 shows that 

any conjugate of a given permutation f has the same type of factorization into disjoint 

cycles as f does. If suitable permutations f and h are given, the procedure also indicates 

how g may be found so that gf g-1 = h. This is illustrated in Example 11. 

Example 11 Suppose!= (1, 4, 2)(3, 5), h = (6, 8, 9)(5, 7), and we wish to find g such 

that gfg-1 = h. Using arrows to indicate replacements in the same way as in Example 10, 
we wish to obtain gfg-1 = h from fas follows: 

f = (1, 4, 2)(3, 5) 

t t t t t 

gfg-1 
= (6, 8, 9)(5, 7) . 
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From this diagram it is easy to see that 

g = (1,6)(4,8)(2,9)(3,5,7) 

is a solution to our problem. It is also easy to see that g is not unique. For example, 

(l,6,4,8,2,9)(3,5, 7) 

is another value of g that works just as well. • 

In Example 2 of Section 3.5, we considered the dihedral group D3 of all rigid motions, 

or symmetries, of an equilateral triangle. Every geometric figure has an associated group of 

rigid motions. (We are considering only rigid motions in space here. For a plane figure, one 

can similarly consider rigid motions of the figure in that plane.) For simple figures such 

as a square, a regular pentagon, or a cube, a rigid motion is completely determined by the 

images of the vertices. If the vertices are labeled 1, 2, 3, ... rather than Vi, V2, V3, • • •  , 
the rigid motions may be represented by permutation notation. In Example 2 of Section 3.5, 
the mappings 

can be written simply as 

h = ( 1, 2) and r = ( 1, 2, 3). 

Example 12 Using the notational convention described in the preceding paragraph, we 

shall write out the dihedral group D4 of rigid motions of a square (see Figure 4.1). 

The elements of the group D4 are as follows: 

1. the identity mapping e = (1) 
2. the counterclockwise rotation a = (1, 2, 3, 4) through 90° about the center 0 

3. the counterclockwise rotation a2 
= (1, 3)(2, 4) through 180° about the center 0 

4. the counterclockwise rotation a3 
= (1, 4, 3, 2) through 270° about the center 0 

5. the reflection f3 = (1, 4)(2, 3) about the horizontal line h 
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6. the reflection y = (2, 4) about the diagonal d1 

7. the reflection d = (1, 2)(3, 4) about the vertical line v 

8. the reflection(} = (1, 3) about the diagonal d2. 

The dihedral group D4 = {e, a, a2, a3, {3, y, d, (}} of rigid motions of the square is also 

known as the octic group. The multiplication table for D4 is requested in Exercise 20 of 

this section. • 

Exercises 4.1 

True or False 

Label each of the following statements as either true or false. 

1. Every permutation can be written as a product of transpositions. 

2. A permutation can be uniquely expressed as a product of transpositions. 

3. The product of cycles under mapping composition is a commutative operation. 

4. Disjoint cycles commute under mapping composition. 

5. The identity permutation can be expressed in more than one way. 

6. Every permutation can be expressed as a product of disjoint cycles. 

7. An r-cycle is an even permutation if r is even and an odd permutation if r is odd. 

8. The set of all odd permutations in Sn is a subgroup of Sn. 

9. The symmetric group Sn on n elements has order n. 

10. A transposition leaves all elements except two fixed. 

11. The order of an r-cycle is r. 

12. The mutually disjoint cycles of a permutation are the same as its orbits. 

Exercises 

1. Express each permutation as a product of disjoint cycles and find the orbits of each 

permutation. 

[� 
2 3 4 �] b. [� 2 3 4 !] a. 

5 5 3 1 3 2 

[� 
2 3 4 �] [� 

2 3 4 

�] c. d. 
1 3 5 5 2 4 

[� 2 3 4 5 6 �] f. [� 2 3 4 5 6 �] e. 

5 6 6 4 1 2 1 3 7 2 

[� 2 3 4 �][� 2 3 4 �] g. 
3 4 5 2 4 1 

h. [� 2 3 4 �][� 2 3 4 �] 3 4 1 3 5 4 
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2. Express each permutation as a product of disjoint cycles and find the orbits of each 

permutation. 

a. (1, 9, 2, 3)(1, 9, 6, 5)(1, 4, 8, 7) 

b. (1, 2, 9)(3, 4)(5, 6, 7, 8, 9)(4, 9) 

c. (1, 4, 8, 7)(1, 9, 6, 5)(1, 5, 3, 2, 9) 

d. (1, 4, 2, 3, 5)(1, 3, 4, 5) 

e. (1, 3, 5, 4, 2)(1, 4, 3, 5) 

f. (1, 9, 2, 4)(1, 7, 6, 5, 9)(1, 2, 3, 8) 

g. (2, 3, 7)(1, 2)(3, 5, 7, 6, 4)(1, 4) 

h. (4, 9, 6, 7, 8)(2, 6, 4)(1, 8, 7)(3, 5) 

3. In each part of Exercise 1, decide whether the permutation is even or odd. 

4. In each part of Exercise 2, decide whether the permutation is even or odd. 

5. Find the order of each permutation in Exercise 1. 

6. Find the order of each permutation in Exercise 2. 

7. Express each permutation in Exercise 1 as a product of transpositions. 

8. Express each permutation in Exercise 2 as a product of transpositions. 

9. Compute f2,f3, andf-1 for each of the following permutations. 

a. f= (1,5,2,4) b. f= (2, 7,4,3,5) 

c. f= (1,6,2)(3,4,5) d. f= (1,2)(3,5, 7,4) 

e. f= (l,2,8)(3,4,7,5,6) f. f= (l,3,7,4)(2,5,9,8,6) 

10. Letf = (1, 2, 3) ( 4, 5). Compute each of the following powers off. 

a. 1-1 
b. 11s 

c. J23 d. 1201 

11. Letf = (1, 6) (2, 3, 5, 4). Compute each of the following powers off. 

a. 1-1 
b. 112 

c. f 
103 d. 1-2 

12. Compute gf g -1, the conjugate off by g, for each pair f, g. 

a. f= (1, 2, 4, 3); g = (1, 3, 2) 

b. f = (1, 3, 5, 6); g = (2, 5, 4, 6) 

c. f = (2, 3, 5, 4); 

d. f = (1, 4)(2, 3); 

e. f = (1, 3, 5)(2, 4); 

f. f = (1, 3, 5, 2)(4, 6); 

g = (1, 3, 2)(4, 5) 

g = (1, 2, 3) 

g = (2, 5)(3, 4) 

g = (1, 3, 6)(2, 4, 5) 
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13. For the given permutations,f and h, find a permutation g such that h is the conjugate 
off by g-that is, such that h = gfg-1• 

a. f = (1, 5, 9); h = (2, 6, 4) 

b. f = (1, 3, 5, 7); h = (3, 4, 6, 8) 

c. f = (1, 3, 5)(2, 4); 

d. f = (1, 2, 3)(4, 5); 

e. f = (1, 4, 7)(2, 5, 8); 

f. f = (1, 3, 5)(2, 4, 6); 

h = (2, 4, 3)(1, 5) 

h = (2, 3, 4)(1, 6) 

h = (1, 5, 4)(2, 3, 6) 

h = (1, 2, 4)(3, 5, 6) 

Sec. 3.4, #39 � 14. Write the permutation f = (1, 2, 3, 4, 5, 6) as a product of a permutation g of order 2 
and a permutation h of order 3. 

Sec. 3.4, #39 � 15. Write the permutation f = ( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) as a product of a permu-
tation g of order 3 and h of order 4. 

16. List all the elements of the alternating group A3, written in cyclic notation. 

17. List all the elements of S4, written in cyclic notation. 

18. Find all the distinct cyclic subgroups of A4. 

19. Find cyclic subgroups of S4 that have three different orders. 

20. Construct a multiplication table for the octic group D4 described in Example 12 of this 
section. 

21. Find all the distinct cyclic subgroups of the octic group D4 in Exercise 20. 

Sec. 3.1, #36 � 22. Find an isomorphism from the octic group D4 in Example 12 of this section to the 
group G' = {[z, R, R2, R3, H, D, V, T} in Exercise 36 of Section 3.1. 

23. Prove that in any group, the relation "x is a conjugate of y" is an equivalence 
relation. 

24. In Section 3.3, the centralizer of an element a in the group G was shown to be the 
subgroup given by Ca = {x E GI ax = xa}. Use the multiplication table constructed 
in Exercise 20 to find the centralizer Ca for each element a of the octic group D4. 

25. Letfbe a permutation of a set A. For each a EA, define the stabilizer of a as 

stab (a)= {fE S(A)lf(a) =a}. 

Prove that stab (a) is a subgroup of S(A). 

26. Consider the symmetric group S3. Find each of the following stabilizers. 

a. stab (1) b. stab (2) c. stab (3) 

27. Consider the alternating group A4. Find each of the following stabilizers. 

a. stab (1) b. stab (2) c. stab (3) d. stab (4) 

28. Consider the octic group D4. Find each of the following stabilizers. 

a. stab (1) b. stab (2) c. stab (3) d. stab (4) 
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4.2 Cayley's Theorem 213 

29. A subgroup Hof the group Sn is called transitive on B = { 1, 2, ... , n} if for each pair 
i,j of elements of B there exists an element h E H such that h(i) = j. Show that there 

Sec. 4.4, #31 � exists a cyclic subgroup Hof Sn that is transitive on B. 

30. Let</> be the mapping from Sn to the additive group Z2 defined by 

<f;(f) = { [OJ 
[1] 

if f is an even permutation 
if f is an odd permutation. 

a. Prove that <f; is a homomorphism. 
b. Find the kernel of <f;. 
c. Prove or disprove that <f; an epimorphism. 
d. Prove or disprove that <f; an isomorphism. 

31. Letf and g be disjoint cycles in Sn. Prove thatfg = gf 

32. Prove that the order of An is ¥. 
33. Prove Theorem 4.2: Letfbe a permutation on A with a, b EA. The relation R defined 

on A by 

aRb if and only if b =}(a) for some n E Z 

is an equivalence relation on A. 

� Cayley·st Theorem 

At the opening of Section 3.5, we stated that permutation groups can serve as models 
for all groups. A more precise statement is that every group is isomorphic to a group of 
permutations; this is the reason for the fundamental importance of permutation groups 
in algebra. 

Theorem 4.9 • Cayley's Theorem 

Every group is isomorphic to a group of permutations. 

p :::::} q Proof Let G be a given group. The permutations that we use in the proof will be map
pings defined on the set of all elements in G. 

For each element a in G, we define a mappingfa: G-+ G by 

fa( x ) = ax for all x in G. 

t A biographical sketch of Arthur Cayley (1821-1895) is given at the end of Chapter 1. 
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That is, the image of each x in G is obtained by multiplying x on the left by a. Now.fa is 
one-to-one since 

fa(x) = fa(Y) => ax = ay 

=> x = y. 

To see thatfa is onto, let b be arbitrary in G. Thenx = a-1b is in G, and for this particular 
x we have 

fa(x) = ax 

= a(a-1b) = b. 

Thus fa is a permutation on the set of elements of G. 
We shall show that the set 

G '  = {!a l a  E G} 

actually forms a group of permutations. Since mapping composition is always associative, 
we only need to show that G' is closed, has an identity, and contains inverses. 

For any fa andfb in G' , we have 

fafb(x) = fa(J b(x)) =fa( bx) = a(bx) = (ab )(x) = fab(x) 
for all x in G. Thusfafb = fab, and G' is closed. Since 

fe(x) =ex= x 

for all x in G,Je is the identity permutation,fe = Ia. Using the resultfafb = fab, we have 

fafa-1 = faa-1 = fe 

and 

fa-1fa = fa-1a = fe-

Thus Ua)-1 = fa-1 is in G', and G' is a group of permutations. 
All that remains is to show that G is isomorphic to G' . The mapping <f>: G � G' 

defined by 

</>(a) =fa 

is clearly onto. It is one-to-one since 

<{J(a) = <{J(b) =>fa = fb 

Finally, <P is an isomorphism since 

=> fa(x) = fb(x) 
=>ax= bx 
=>a= b. 

for allx E G 

for all x E G 

<{J(a)<{J(b) = fafb = fab = <fJ(ab) 

for all a, b in G. 

The isomorphism <{J: G � G' in Cayley's Theorem is known as the left regular represen

tation of G. Note that the group G' = Ua I a E G} is a subgroup of the group S( G) of all 
permutations on G, and G' =/::. S( G) in most cases. 
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Example 1 We shall follow the proof of Cayley's Theorem with the group G = 
{ 1, i, -1, -i} to obtain a group of permutations G' that is isomorphic to G and an isomor

phism from G to G'. 
For each a in G, we define fa: G---+ G by fa(x) = ax for each x E G and obtain the fol

lowing permutations on the set of elements of G: 
!1(1) = 1 
!1(i) = i 

f1: !1(-1)=-l 
!1(-i) = -i 

f-1(1) = -1 
f-1(i) = -i 
f-1(-1) = 1 
f-1(-i) = i 

Ji(l) = i 
fi(i) = -1 

Ji: Ji( -1) = -i 
Ji(-i)=l 

f-;(1) = -i 
f-;(i) = 1 
f_;( -1) = i 
f-;(-i) = -1. 

In a more compact form, we write 

!1 = (1) 
f-1 = (1, -l)(i, -i) 

Ji= (1, i, -1, -i) 
f-; = (1, -i, -1, i). 

According to the proof of Cayley's Theorem, the set 

is a group of permutations, and the mapping </J: G---+ G' defined by 

is an isomorphism from G to G'. 

Exercises 4.2 

True or False 

</>( 1) = !1 
<P(i) =Ji </J: 
<P(-1) = f-1 
<P(-i) =f-; 

Label the following statement as either true or false. 

• 

1. Every finite group G of order n is isomorphic to a subgroup of order n of the group 

S( G) of all permutations on G. 
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Sec. 3.5, #10 P 

•Figure 4.2 

Sec. 3.1, #35 P 

Sec. 3.1, #34 P 

Exercises 

In Exercises 1-9, let G be the given group. Write out the elements of a group of permuta
tions that is isomorphic to G, and exhibit an isomorphism from G to this group. 

1. Let G be the additive group Z3. 

2. Let G be the cyclic group (a) of order 5. 

3. Let G be the Klein four group { e, a, b, ab} with its multiplication table given in 
Figure 4.2. 

4. 

5. 

6. 

7. 

8. 

9. 

e a b ab 

e e a b ab 

a a e ab b 

b b ab e a 

ab ab b a e 

Let G be the multiplicative group of units Us = {[1], [2], [3], [4]} �Zs. 

Let G be the multiplicative group {[2], [4], [6], [8]} � Z10. 

Let G be the group of permutations matrices {h, P1, P2, P3, P4, Ps} as given in 
Exercise 35 of Section 3.1. 

Let G be the multiplicative group of units U 14 = {[1 ], [3], [5], [9], [11 ], [13]} � Z14. 

LetG be thequatemion group{±l, ±i, ±j, ±k}. 

Let G be the octic group D4 = {e, a, a2, a3, {3, y, �. O}. 

10. For each a in the group G ,  define a mapping ha: G---+ G by ha(x) = xa for all x in G. 

a. Prove that each ha is a permutation on the set of elements in G. 

b. Prove that H = {ha I a E G} is a group with respect to mapping composition. 

c. Define <f>: G---+ H by <f>(a) = ha for each a in G. Determine whether </> is always 
an isomorphism. 

11. For each element a in the group G, define a mapping ka: G---+ G by ka(x) = xa- 1 for 
allx in G. 

a. Prove that each ka is a permutation on the set of elements of G. 

b. Prove that K = { ka I a E G} is a group with respect to mapping composition. 

c. Define <f>: G-+ K by <f>(a) = ka for each a in G. Determine whether</> is always an 
isomorphism. This mapping</> is known as the right regular representation of G. 

12. Find the right regular representation of G as defined in Exercise 11 for each of the fol
lowing groups. 

a. G = {1, i, -1, -i} from Example 1. 

b. The octic group D4 = {e, a, a2, a3, {3, y, �. O}. 
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13. For each a in the group G, define a mapping ma: G � G by ma(x) = a-1x for all x in G. 

a. Prove that each ma is a permutation on the set of elements of G. 

b. Prove that M = {ma I a E G} is a group with respect to mapping composition. 

c. Define <f>: G � M by </>(a) = ma for each a in G. Determine whether</> is always an 

isomorphism. 

~ Permutation Groups in Science and Art (Optional) 

Often, the usefulness of some particular knowledge in mathematics is neither obvious nor 

simple. So it is with permutation groups. Their applications in the real world come about 

through connections that are somewhat involved. Nevertheless, we shall indicate here 

some of their uses in both science and art. 

Most of the scientific applications of permutation groups are in physics and chemistry. 

One of the most impressive applications occurred in 1962. In that year, physicists Murray 

Gell-Mann and Yuval Ne'eman used group theory to predict the existence of a new parti

cle, which was designated the omega minus particle. It was not until 1964 that the exist

ence of this particle was confirmed in laboratory experiments. 

One of the most extensive uses made of permutation groups has been in the science of 

crystallography. As mentioned in Section 4.1, every geometric figure in two or three dimen

sions has its associated rigid motions, or symmetries. This association provides a natural 

connection between permutation groups and many objects in the real world. One of the most 

fruitful of these connections has been made in the study of the structure of crystals. Crystals 

are classified according to geometric symmetry based on a structure with a balanced ar

rangement of faces. One of the simplest and most common examples of such a structure is 

provided by the fact that a common table salt (NaCl) crystal is in the shape of a cube. 

In this section, we examine some groups related to the rigid motions of a plane figure. 

We have already seen two examples of this type of group. The first was the dihedral group 

D3, the group of symmetries of an equilateral triangle in Example 2 of Section 3.5, and 

the other dihedral group was the octic group D4, the group of symmetries of a square in 

Example 12 of Section 4.1. 

It is not hard to see that the symmetries of any plane figure F form a group under map

ping composition. We already know that the permutations on the set F form a group S(F) 

with respect to mapping composition. The identity permutation h preserves distances and 

consequently is a symmetry of F. If two permutations on F preserve distances, their com

position does also, and if a given permutation preserves distances, its inverse does also. 

Thus the symmetries of F form a subgroup of S(F). 

Before we consider some other specific plane figures F, a discussion of the term sym

metry is in order. In agreement with conventional terminology in algebra, we have used 

the word symmetry to refer to a rigid motion of a geometric figure. However, the term is 

commonly used in another way. For example, the pentagon shown in Figure 4.3 is said to 

have symmetry with respect to the vertical line e through the center 0 and the vertex at the 

top, or to be symmetric with respect toe. To make a distinction between the two uses, we 

shall use the phrase geometric symmetry for the latter type of symmetry. 

The groups of symmetries for regular polygons with three or four sides generalize to 

a regular polygon P with n sides, for any positive integer n > 4. Any symmetry f of P is 
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•Figure 4.3 

•Figure 4.4 

ie 
I 

I 

I 0 
• 

I 

determined by the images of the vertices of P. Let the vertices be numbered 1, 2, ... , n, 

and consider the mapping that makes the symmetry f of P correspond to the permutation 

on { 1, 2, ... , n} that has the matrix form 

2 
J(2) 

Since f is completely determined by the images of the vertices, this mapping is clearly a 

bijection between the rigid motions of P and a s ubset Dn of the symmetric group Sn of all 

permutations on { 1, 2, ... , n}. This mapping is in fact an isomorphism, Dn is a s ubgroup 

(called the dihedral group) of Sn, and we identify the rigid motions of P with the elements 

of Dn in the same way that we did in Example 12 of Section 4.1. 

Regular polygons with n = 5 (a pentagon) and n = 6 (a hexagon) are shown in Figure 4.4. 

Bearing in mind that a symmetry is determined by the images of the vertices, it can be seen that 

Dn consists of n counterclockwise rotations and n reflections about a line through the center 0 
of P. If n is odd, each reflection is about a line through a vertex and the midpoint of the opposite 

side. If n is even, half of the reflections are about lines through pairs of opposite vertices, and 

the other half are about lines through midpoints of opposite sides. Thus Dn has order 2n. 
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Example 1 Consider the pentagon in Figure 4.4. If we let R denote the rotation of 

3�00 = 72° counterclockwise about the center 0, then all possible rotations in D5 are found 

in the following list: 

R = (1, 2, 3, 4, 5), R2 = (1, 3, 5, 2, 4), R3 = (1, 4, 2, 5, 3), 
R4 = (1, 5, 4, 3, 2), Rs 

= (1). 

If we let Lk denote the reflection about line ek fork = 1, 2, 3, 4, 5, then the reflections in 

D5 appear as follows in cyclic notation: 

L1 = (2, 5)(3, 4), L2 = (1, 3)(4, 5), L3 = (1, 5)(2, 4), 
L4 = (1, 2)(3, 5), L5 = (1, 4)(2, 3). 

Direct computations verify that 

L1R = L3, L1R2 = Ls, L1R3 = L2, and L1R4 = L4• 

Thus the elements of the dihedral group D5 can be listed in the form 

Ds = {I, R, R2, R3, R4, L1,L1R, L1R2, L1R3, L1R4}. • 

All the symmetries in our examples have been either rotations or reflections about a line. 

This is no accident because these are the only kinds of symmetries that exist for a bounded 

nonempty set. If the group of symmetries of a certain figure contains a rotation different from 

the identity mapping, then the figure is said to possess rotational symmetry. A figure with a 

group of symmetries that includes a reflection about a line is said to have reflective symmetry. 

Example 2 Each part of Figure 4.5 has a group of symmetries that consists entirely 
of rotations, and each possesses only rotational symmetry. In contrast, the group of sym
metries of the pentagon contains both reflections and rotations, and the pentagon has both 
reflective symmetry and rotational symmetry. 

g 

e�1 
g 

.E .E 

� � 
"' "' 
"" "" 
'° '° 

� .,,@ � 
u u 

© © 

(a) (b) (c) • 

We have barely touched on the subject of symmetries in this section, concentrating 

primarily on bounded nonempty sets in the plane. When attention is extended to unbounded 

sets in the plane, there are two more types of symmetries that can be considered: translations 

and glide reflections. 

A translation is simply a sliding (or glide) of the entire object through a certain 

distance in a fixed direction. A glide reflection consists of a translation followed by a 

reflection about a line parallel to the direction of the translation. These types of symmetries 

are treated in detail in more advanced books than this one, and it can be shown that there 

are only four kinds of symmetries for plane figures: rotations, reflections, translations, 
and glide reflections. 

As our final example in this section, we consider the group of symmetries of an 

unbounded set. 
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Example 3 The unbounded set shown in Figure 4.6 is composed of a horizontal string 

of copies of the letter R, equally spaced one unit from the beginning of one R to the 

beginning of the next R, and endless in both directions. 

1 unit 

-----+ 
• Figure 4.6 . . . R R R R R R R ... 

If t denotes a translation of the set in Figure 4.6 one unit to the right, then t2 is a transla

tion two units to the right and tn is a translation n units to the right for any positive integer 

n. Thus all positive integral powers oft are symmetries on the set of R's. The inverse map

ping t-1 is a translation of the set one unit to the left, and r n is a translation n units to the 

left for any positive integer n. Thus all integral powers of t are symmetries on the set of 

R's, and the set 

{ -2 -1 o I 2 } 
" ' f t t = tt ... 

' ' ' ' ' ' 

is the (infinite) group of symmetries of this set. • 

Translations and glide reflections are common in the group, known as the frieze 

group, of symmetries for wallpaper patterns, textile patterns, pottery, ribbons, and all 

sorts of decorative art. The interested reader can find an excellent exposition of the 

applications that we have touched on in Tannenbaum and Arnold's Excursions in Modern 

Mathematics, 3rd ed. (Englewood Cliffs, NJ: Prentice Hall, 1998). 
The outstanding connection between permutation groups and art is provided by the 

famous works of the great Dutch artist M. C. Escher. t Concerning Escher, J. Taylor Hollist 

said, "Mathematicians continue to use his periodic patterns of animal figures as clever 

illustrations of translation, rotation and reflection symmetry. Psychologists use his optical 

illusions and distorted views of life as enchanting examples in the study of vision."tt 

Exercises 4.3 
True or False 

Label each of the following statements as either true or false. 

1. The symmetries of any plane figure form a group under mapping composition. 

2. The regular pentagon possesses only rotational symmetry. 

3. The regular hexagon possesses both rotational and reflective symmetry. 

4. The group Dn of symmetries for a regular polygon with n sides has order n. 

5. The symmetric group S3 on 3 elements is the same as the group D3 of symmetries for 

an equilateral triangle. That is, S3 = D3. 

tMaurits Comelis Escher ( 1898-1972) was a Dutch graphic artist. He is known for his explorations of infinity in 
his mathematically inspired art. Some of his original works are housed in leading public and private collections. 
The asteroid 4444 Escher is named in his honor. 

ttJ. Taylor Hollist, "Escher Correspondence in the Roosevelt Collection," Leonardo, Vol. 24, No. 3 (1991), p. 329. 
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6. The symmetric group S4 on 4 elements is the same as the group D4 of symmetries for 

a square. That is, S4 = D4. 
7. The alternating group A4 on 4 elements is the same as the group D4 of symmetries for 

a square. That is, A4 = D4. 

Exercises 

List all elements in the group of symmetries of the given set. 

1. The letter T. 
2. The letter M. 
3. The letter S. 
4. The letter H. 

Determine whether the given figure has rotational symmetry or reflective symmetry. 

s. c\Q) I w@ 
"' 
c: 
'E 

8. "' 
..5 
"' 

� 
u @ 

6.� i 
• :ij 

u @ 
"' 
c: 

9. .E 
3 
"' "' "' 
� 

u @ 

7. 

10. 

Describe the elements in the group of symmetries of the given bounded figure. 

11. � 12. �iff!!'" 
�\\\\ 

13.@ 
Recycle Crafted With Pride Atom 

© Cengage Learning © Cengage Learning © Cengage Learning 

14.@ 15 .••• 
• 

16.e 
Bio hazard Radiation Do Not Dry Clean 
© Cengage Learning © Cengage Learning © Cengage Learning 

Describe the elements in the groups of symmetries of the given unbounded figures. 
l uni� 

17. · · · E E E E E E E ... 

l unit 
� 

18. ... I> I> I> I> I> I> I> ... 
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•Figure 4.7 

More on Groups 

1 unit 
� 

19. · · · T T T T T T T ... 

1 unit 

20. � ... * * * * * * * ... 

21. Show that the group of symmetries in Example 3 of this section is isomorphic to the 
group of integers under addition. 

22. Construct a multiplication table for the group G of rigid motions of an isosceles triangle 
with vertices 1, 2, 3 if the isosceles triangle is not an equilateral triangle. 

23. Construct a multiplication table for the group G of rigid motions of a rectangle with 
vertices 1, 2, 3, 4 if the rectangle is not a square. 

24. Construct a multiplication table for the group G of rigid motions of the rhombus in 
Figure 4.7 with vertices 1, 2, 3, 4 if the rhombus is not a square. 

1 

"' " 

2 3 � 
-5 
"' "' "' "' " "' '-' 4 @ 

25. Construct a multiplication table for the group D5 of rigid motions of a regular penta-
Sec. 4.6, #4 � gon with vertices 1, 2, 3, 4, 5. 

•Figure 4.8 

26. List the elements of the group D6 of rigid motions of a regular hexagon with vertices 
1, 2, 3, 4, 5, 6. 

27. Let G be the group of rigid motions of a cube. Find the order I GI· 

28. Let G be the group of rigid motions of a regular tetrahedron (see Figure 4.8). Find the 
orderlGI. 

3 

Sec. 3.3, #16a � 29. Find an isomorphism from the group Gin Exercise 23 of this exercise set to the mul
tiplicative group 

H = {[� �l [ � -�l [ -� �l [-� -�J}. 
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� Cosets of a Subgroup 

The binary operation in a given group can be used in a natural way to define a product 

between subsets of the group. The importance of this product is difficult to appreciate at 

this point in our development. It leads to the definition of cosets; cosets in turn lead to 

quotient groups; and quotient groups provide a systematic description of all homomor

phic images of a group in Section 4.6. 

Definition 4.10 • Product of Subsets 

Let A and B be nonempty subsets of the group G. The product AB is defined by 

AB= {x E Gl x =ab for some a EA, b EB}. 

This product is formed by using the group operation in G. A more precise formulation 

would be 

A* B = {x E Gl x =a* b for some a EA, b EB}, 
where * is the group operation in G. 

Several properties of this product are worth mentioning. For nonempty subsets A, B, 
and C of the group G, 

It is obvious that 

A(BC) = {a(bc)l a EA, b EB, c EC} 
= {(ab)cl a EA, b EB, c EC} 
= (AB)C. 

B = C => AB = AC and BA = CA, 
ALERT but we must be careful about the order because AB and BA may be different sets. 

ALERT 

Example 1 Consider the subsets A = { (1, 2, 3), (1, 2)} and B = { (1, 3), (2, 3)} in 

G = S3. We have 

and 

AB = { ( 1, 2, 3 ) ( 1, 3), ( 1, 2 )( 1, 3), ( 1, 2, 3) ( 2, 3 ) , ( 1, 2) ( 2, 3 )} 
= {(2, 3), (1, 3, 2), (1, 2), (1, 2, 3)} 

BA = { ( 1, 3 )( 1, 2, 3), ( 2, 3) ( 1, 2, 3), ( 1, 3) ( 1, 2), ( 2, 3) ( 1, 2)} 
= {(1, 2), (1, 3), (1, 2, 3), (1, 3, 2)}, 

soAB =F BA. • 

For a nonabelian group G, we would probably expect AB and BA to be different. A fact 

that is not quite so "natural" is that 

AB= AC#B = C. 
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Example 2 An example where AB= AC but B * C is provided by A= {(1, 2, 3), 
(1, 3, 2)}, B = { (1, 3), (2, 3)}, and C = { (1, 2), (1, 3)} in G = S3. Straightforward calcula

tions show that 

AB= {(2, 3), (1, 2), (1, 3)} =AC, 

butB -=F C. • 

If B = {g} consists of a single element g of a group G, then AB is written simply as 

Ag instead of as A {g }: 

Ag = { x E GI x = ag for some a E A}. 

Similarly, 

gA = {x E Glx = ga for some a E A}. 

This is one instance in which a cancellation law does hold: 

This is true because 

gA = gB ==} A = B. 

gA = gB ==} g-1(gA) = g-1(gB) 
==} (g-lg)A = (g-lg)B 
==} eA = eB 
==} A= B. 

For convenience of reference, we summarize these results in a theorem. 

Theorem 4.11 • Properties of the Product of Subsets 

Let A, B, and C denote nonempty subsets of the group G, and let g denote an element of G. 
Then the following statements hold: 

a. A(BC) = (AB)C. 
b. B = C implies AB = AC and BA = CA. 
c. The product AB is not commutative. 

d. AB = AC does not imply B = C. 
e. gA = gB implies A = B. 

Statements d and e have obvious duals in which the common factor is on the right 

side. 

We shall be concerned mainly with products of subsets in which one of the factors is 

a subgroup. The cosets of a subgroup are of special importance. 
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Definition 4.12 • Cosets 

Let H be a subgroup of the group G. For any a in G, 

aH = {x E Glx = ahfor some h EH} 

is a left coset of Hin G. Similarly, Ha is called a right coset of Hin G. 

ALERT The left coset aH and the right coset Ha are never disjoint, since a = ae = ea is in both 
sets. In spite of this, aH and Ha may happen to be different sets, as the next example shows. 

Example 3 Consider the subgroup 

K = {(l), (1, 2)} 

of 

G = S3 = {(1), (1, 2, 3), (1, 3, 2), (1, 2), (1, 3), (2, 3)}. 

For a = (1, 2, 3), we have 

and 

In this case, aK =I= Ka. 

aK = { ( 1, 2, 3), ( 1, 2, 3) ( 1, 2)} 

= {( 1, 2, 3)' ( 1, 3)} 

Ka = { ( 1, 2, 3), ( 1, 2) ( 1, 2, 3)} 

= { ( 1, 2, 3)' ( 2, 3)}. 

• 

Although a left coset of H and a right coset of H may be neither equal nor disjoint, 
this cannot happen with two left cosets of H. This fact is fundamental to the proof of 
Lagrange

'
s Theorem (Theorem 4.15), so we designate it as a lemma. 

Strategy • The proof of this lemma is by use of the contrapositive. The contrapositive of p => q is 
� q => �p . As shown in the Appendix to this book, any statement and its contrapositive 
are logically equivalent. 

The following proof illustrates a case where it is easier to prove the contrapositive than 
the original statement. 

Lemma 4.13 • Left Coset Partition 

Let H be a subgroup of the group G. The distinct left cosets of Hin G form a partition of 
G; that is, they separate the elements of G into mutually disjoint subsets. 
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- q => -p Proof It is sufficient to show that any two left cosets of H that are not disjoint must be 
the same left coset. 

Suppose aH and bH have at least one element in common-say, z E aH n bH. Then 
z = ah1 for some h1 E H, and z = bh2 for some h2 E H. This means that ah1 = bh2 
and a = bh2hl1• We have that h2h!1 is in H since H is a subgroup, so a = bh3 where 
h3 = h2h11 EH. Now, for every h EH, 

ah= bh3h 

= bh4 

where h4 = h3 • h is in H. That is, ah E bH for all h E H. This proves that aH c;; bH. A 

similar argument shows that bH c;; aH, and thus aH = bH. 

The distinct right cosets of a subgroup H of a group G also form a partition of G. 
That is, Lemma 4.13 can be restated in terms of right cosets (see Exercise 13). 

Example 4 Consider again the subgroup 

K = {(1), (1, 2)} 

of 

G = S3 = {(1), (1, 2, 3), (1, 3, 2), (1, 2), (1, 3), (2, 3)}. 

In Example 3 of this section, we saw that 

(1, 2, 3)K = {(1, 2, 3), (1, 3)}. 

Since (1, 3) is in this left coset, it follows from Lemma 4.13 that 

(1, 3)K = (1, 2, 3)K = {(l, 2, 3), (1, 3)}. 

Straightforward computations show that 

(l)K = (1, 2)K = {(1), (1, 2)} = K 

and 

(2, 3)K = (1, 3, 2)K = {(l, 3, 2), (2, 3)}. 

Thus the distinct left cosets of K in G are given by 

K, (1, 2, 3)K, (1, 3, 2)K 

and a partition of G is 

G =KU (1,2,3)KU (1,3,2)K. 

In the next example, we examine the left cosets in an additive group. 

• 

Example 5 The set E of even integers is a subgroup of the additive group Z of inte
gers. Since 

0 + E = { ... , -4, -2, 0, 2, 4, ... } = E 

and 

1 + E = { ... , -3, -1, 1, 3, 5, ... } = E' 
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are disjoint sets that exhaust Z, then a partition of Z is 

Z= (O+E)U(l +E). • 

Definition 4.14 • Index 

Let H be a subgroup of G. The number of distinct left cosets of Hin G is called the index 

of H in G and is denoted by [ G: H]. 

In Example 4, we have [S3: K] = 3 and in Example 5, [Z: E] = 2. 

In the proof of the next theorem, we show that if IGI is finite, then the order of any 
subgroup of G must divide the order of the group G. 

Theorem 4.15 • Lagrange'st Theorem 

If G is a finite group and His a subgroup of G, then 

IG I = IHI. [G: H]. 

(p /\ q) =* r Proof Let G be a finite group of order n, and let H be a subgroup of G with order k. We 
shall show that k divides n. 

From Lemma 4.13, we know that the left cosets of Hin G separate the elements of G 
into mutually disjoint subsets. Let m be the index of Hin G; that is, there are m distinct left 
cosets of Hin G. We shall show that each left coset has exactly k elements. 

Let aH represent an arbitrary left coset of H. The mapping <fa: H � aH defined by 

<P(h) = ah 

is one-to-one, because the left cancellation law holds in G. It is also onto, since any x in aH 
can be written as x = ah for h E H. Thus <P is a one-to-one correspondence from H to aH, 
and this means that aH has the same number of elements as does H. 

We have then elements of G separated into m disjoint subsets, and each subset has k 

elements. Therefore, n = km, and 

IG I = IHI. [G: H]. 

Lagrange's Theorem is of great value if we are interested in finding all the subgroups 
of a finite group. In connection with this task, it is worthwhile to record this immediate 
corollary. 

Corollary 4.16 • lal divides IGI 

The order of an element of a finite group must divide the order of the group. 

tJoseph-Louis Lagrange (1736-1813) made significant contributions to analysis, number theory, ordinary and 
partial differential equations, calculus, analytical geometry, theory of equations, and to classical and celestial 
mechanics. Lagrange was responsible for the metric system, which resulted from his tenure on a commission 
for the reform of weights and measures. Napoleon designated Lagrange a count, and the crater Lagrange is so 
named in his honor. 
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Sec. 3.1, #33 :» 

Example 6 To illustrate the usefulness of the foregoing results, we shall exhibit all 

of the subgroups of S3. Any subgroup of S3 must be of order 1, 2, 3, or 6, since IS31= 6. An 

element in a subgroup of order 3 must have order dividing 3, and therefore any subgroup 

of order 3 is cyclic. Similarly, any subgroup of order 2 is cyclic. The following list is thus 

a complete list of the subgroups of S3: 

H1 = {(1)} 
H2 = {(1), (1, 2)} 
H3 = {(1), (1, 3)} 

H4 = {(1), (2, 3)} 
H5 = {(1), (1, 2, 3), (1, 3, 2)} 
H6 = S3. • 

It can be shown that if p is a prime, then any group of order p must be cyclic (see 

Exercise 27 at the end of this section). This means that, up to an isomorphism, there is only 

one group of order p, if p is a prime. In particular, the only groups of order 2, 3, or 5 are the 

cyclic groups. 

By examination of the possible orders of the elements and the possible multiplication 

tables, it can be shown that a group of order 4 is either cyclic or isomorphic to the Klein 

four group 

G = {e, a, b, ab = ba} 

of Exercise 10 in Section 3.5. Hence every group of order 4 is abelian. 

Exercises 4.4 

True or False 

Label each of the following statements as either true or false. 

1. aH n Ha -:f= 0 where His any subgroup of a group G and a E G. 

2. Let H be any subgroup of a group G. Then His a left coset of Hin G. 

3. Let H be any subgroup of a group G and a E G. Then aH = Ha. 
4. The elements of G can be separated into mutually disjoint subsets using either left 

cosets or right cosets of a subgroup Hof G. 

5. The order of an element of a finite group divides the order of the group. 

6. The order of any subgroup of a finite group divides the order of the group. 

7. Let H be a subgroup of a finite group G. The index of Hin G must divide the order of G. 

8. Every left coset of a group G is a subgroup of G. 

Exercises 

1. Consider U 13, the group of units in Z13 under multiplication. For each of the follow

ing subgroups H of U 13, find the distinct left cosets of H in U 13, partition U 13 into left 

cosets of H, and state the index [U13: HJ of Hin U13. 

a. H = ([4]) b. H = ([8]) 
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Sec. 4.5, #1 a <:<; 

Sec. 4.5, #lb<:<; 

Sec. 4.5, #1 c <:<; 

Sec. 4.5, #ld <:<; 

Sec. 4.5, #le<:<; 
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2. For each of the following subgroups Hof the additive group Z18, find the distinct left 
cosets of Hin Z1s, partition Z1s into left cosets of H, and state the index [Z1s: HJ of H 
in Z1s. 

a. H = ([8]) b. H = ([6]) 

In Exercises 3 and 4, let G be the octic group D4 = {e, a, a2, a
3
, {3, y, A, O} in Example 12 

of Section 4.1, with its multiplication table requested in Exercise 20 of the same section . 

3. Let H be the subgroup {e, /3} of the octic group D4. 

a. Find the distinct left cosets of Hin D4, write out their elements, partition D4 into left 
cosets of H, and give [D4: H]. 

b. Find the distinct right cosets of Hin D4, write out their elements, and partition D4 

into right cosets of H. 

4. Let H be the subgroup { e, A} of the octic group D 4. 

a. Find the distinct left cosets of Hin D4, write out their elements, partition D4 into left 
cosets of H, and give [D4: H]. 

b. Find the distinct right cosets of Hin D4, write out their elements, and partition D4 

into right cosets of H. 

5. Let H be the subgroup {( 1), ( 1, 2)} of S3. 

a. Find the distinct left cosets of Hin S3, write out their elements, partition S3 into left 
cosets of H, and give [S3: H]. 

b. Find the distinct right cosets of H in S3, write out their elements, and partition S3 

into right cosets of H. 

6. Let H be the subgroup {( 1), (2, 3)} of S3. 

a. Find the distinct left cosets of Hin S3, write out their elements, partition S3 into left 
cosets of H, and give [S3: H]. 

b. Find the distinct right cosets of H in S3, write out their elements, and partition S3 

into right cosets of H. 

In Exercises 7 and 8, let G be the multiplicative group of permutation matrices 
{13, P3, P�, Pi. P4, P2} in Example 6 of Section 3.5. 

7. Let H be the subgroup of G given by 

0 

1 

0 

0 

1 

0 rn-
a. Find the distinct left cosets of H in G, write out their elements, partition G into left 

cosets of H, and give [G: H]. 

b. Find the distinct right cosets of Hin G, write out their elements, and partition G into 
right cosets of H. 
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Sec. 4.5, #If� 

8. Let H be the subgroup of G given by 

H = {13, P3,Pl} = m 0 

1 

0 

a. Find the distinct left cosets of H in G, write out their elements, partition G into left 

cosets of H, and give [G: H]. 

b. Find the distinct right cosets of Hin G, write out their elements, and partition G into 

right cosets of H. 

9. Let H be a subgroup of a group G with a, b E G. Prove that aH = bH if and only if 

aE bH. 

10. Let H be a subgroup of a group G with a, b E G. Prove that aH = bH if and only if 

a-1b EH. 

11. Let G be a group of order 24. If His a subgroup of G, what are all the possible orders 

of H? 

12. Let H and K be subgroups of a group G and Ka subgroup of H. If the order of G is 24 

and the order of K is 3, what are all the possible orders of H? 

13. Let H be a subgroup of the group G. Prove that if two right cosets Ha and Hb are not 

disjoint, then Ha = Rb-that is, the distinct right cosets of Hin G form a partition of G. 

Sec. 3.3, #11 � 14. Let H be a subgroup of a group G. 

Sec. 4.8, #7 � 

a. Prove that gHg-1 is a subgroup of G for any g E G. We say that gHg-1 is a 

conjugate of Hand that Hand gHg-1 are conjugate subgroups. 

b. Prove that if His abelian, then gHg-1 is abelian . 

c. Prove that if His cyclic, then gHg-1 is cyclic . 

d. Prove that Hand gHg-1 are isomorphic . 

15. For an arbitrary subgroup H of the group G, define the mapping () from the set of left 

cosets of Hin G to the set of right cosets of Hin G by O(aH) = Ha-1• Prove that () is 

a bijection . 

16. Let H be a subgroup of the group G. Prove that the index of Hin G is the number of 

distinct right co sets of H in G. 

Sec. 3.5, #10 � 17. Show that a group of order 4 either is cyclic or is isomorphic to the Klein four group 

{e, a, b, a b= b a}. 

Sec. 4.6, #21 � 18. Let G be a group of finite order n. Prove that an = e for all a in G. 

Sec. 3.1, #33 � 19. Find the order of each of the following elements in the multiplicative group of units Up. 

a. [2] for p = 13 b. [5] for p = 13 

c. [3] forp = 17 

Sec. 4.5, #10 � 20. Find all subgroups of the octic group D4. 

d. [8] for p = 17 

Sec. 4.5, #11 � 21. Find all subgroups of the alternating group A4. 
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22. Lagrange's Theorem states that the order of a subgroup of a finite group must divide 
the order of the group. Prove or disprove its converse: If k divides the order of a finite 
group G, then there must exist a subgroup of G having order k. 

23. Find all subgroups of the quaternion group. 

24. Find two groups of order 6 that are not isomorphic. 

25. If H and K are arbitrary subgroups of G, prove that HK = KH if and only if HK is a 
subgroup of G. 

Sec. 2.5, #54 � 26. Letp be prime and G the multiplicative group of units Up = {[a] E ZPI [a] =F [0] }. Use 
Sec. 3.1, #33 � Lagrange's Theorem in G to prove Fermat's Little Theorem in the form [a]P = [a] 
Sec. 8.3, #11 � for any a E Z. (Compare with Exercise 54 in Section 2.5.) 

27. Prove that any group with prime order is cyclic. 

28. Let G be a group of order pq, where p and q are primes. Prove that any nontrivial 
subgroup of G is cyclic. 

29. Let G be a group of order pq, where p and q are distinct prime integers. If G has only 
one subgroup of order p and only one subgroup of order q, prove that G is cyclic. 

Sec. 3.2, #23 � 30. Let G be an abelian group of order 2n, where n is odd. Use Lagrange's Theorem to 
prove that G contains exactly one element of order 2. 

Sec. 4.1, #29 � 31. A subgroup Hof the group Sn is called transitive on B = { 1, 2, ... , n} if for each 
pair i, j of elements of B there exists an element h E H such that h(i) = j. Suppose 
G is a group that is transitive on { 1, 2, ... , n} , and let Hi be the subgroup of G that 
leaves i fixed: 

H; = {g E Glg(i) = i} 

for i = 1, 2, ... , n. Prove that IGI= n · IHJ 

32. (See Exercise 31.) Suppose G is a group that is transitive on { 1, 2, ... , n}, and let K; 

be the subgroup that leaves each of the elements 1, 2, ... , i fixed: 

Ki = {g E GI g ( k) = k for k = 1, 2, ... , i} 

for i = 1, 2, ... , n. Prove that G = Sn if and only if Hi =fo Hj for all pairs i, j such that 
i =fo j and i < n - 1. 

� Normal Subgroups 

Among the subgroups of a group are those known as the normal subgroups. The signifi
cance of the normal subgroups is revealed in the next section. 

Definition 4.17 • Normal Subgroup 

Let H be a subgroup of G. Then His a normal (or invariant) subgroup of G if xH = Hx 
for all x E G. 

Copyright 2013 Cengage Leaming. AH Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materia11y affect the overall learning experience. Cengage Leaming reserves the right to remove additional content at any time if subsequent rights restrictions require it. 



232 Chapter 4 More on Groups 

ALERT Note that the condition xH = Hx is an equality of sets , and it does not require that 

xh = hx for all h in H. 

Example 1 Let 

H = A3 = {(1), (1, 2, 3), (1, 3, 2)} = ((1, 2, 3)) 

and 

G = S3 = {(1), (1, 2, 3), (1, 3, 2), (1, 2), (1, 3), (2, 3)}. 

For x = (1, 2) we have 

and 

xH = {(l, 2)(1), (1, 2)(1, 2, 3), (1, 2)(1, 3, 2)} 
= {( 1, 2)' ( 2, 3)' ( 1, 3)} 

Hx = {(1)(1, 2), (1, 2, 3)(1, 2), (1, 3, 2)(1, 2)} 
= {( 1, 2)' ( 1, 3)' ( 2, 3)}. 

We have xH = Hx, but xh * hx when h = ( 1, 2, 3) E H. Similar computations show that 

(l)H = (1, 2, 3)H = (1, 3, 2)H = {(1), (1, 2, 3), (1, 3, 2)} = H 

H(l) = H(l, 2, 3) = H(l, 3, 2) = {(1), (1, 2, 3), (1, 3, 2)} = H 

(1, 2)H = (1, 3)H = (2, 3)H = {(1, 2), (1, 3), (2, 3)} 
H(l, 2) = H(l, 3) = H(2, 3) = {(1, 2), (1, 3), (2, 3)}. 

Thus His a normal subgroup of G. Additionally, we note that G can be expressed as 

G = HU ( 1, 2) H. • 

In Example 1, we have hH = H = Hh for all h E H. These equalities hold for all 

subgroups , as stated in the following theorem . 

Theorem 4.18 • A Special Coset H 

If H is any subgroup of a group G, then hH = H = Hh for all h E H. 

p :::::} q Proof Let h be an arbitrary element in the subgroup Hof the group G. 

If x E hH, then x = hy for some y E H. But h E H and y E H imply hy = xis in H, 

since H is closed . Thus hH � H. 

For any x EH, the element h-1x is in H since H contains the inverse of hand His 

closed . But 

h-1x EH :::::} h( h-1x) = x E hH, 

and this proves that H � hH. It follows that hH = H. 

The proof of the equality Hh = His similar . 

The proof of the following corollary is left as an exercise . 
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Corollary 4.19 • The Square of a Subgroup 

For any subgroup Hof a group G, H2 
= H, where H2 denotes the product HH as defined 

in Definition 4.10. 

Example 2 As an example of a subgroup that is not normal, let K = { (1), (1, 2)} in 

S3. With x = (1, 2, 3), we have 

xK = {(1,2,3), (1,2,3)(1,2)} 
= {( 1, 2, 3)' ( 1, 3)} 

Kx = { ( 1, 2, 3), ( 1, 2) ( 1, 2, 3)} 
= { ( 1, 2, 3)' ( 2, 3)}. 

Thus xK =I= Kx, and K is not a normal subgroup of S3. • 

The definition of a normal subgroup can be formulated in several different ways. For 

instance, we can write 

xH = Hx for all x E G <::::> xHx-1 
= H for all x E G 

<::::> x-1 Hx = H for all x E G. 

Other formulations can be made. One that is frequently taken as the definition is given in 

Theorem 4.20. 

Theorem 4.20 • Normal Subgroups and Conjugates 

Let H be a subgroup of G. Then His a normal subgroup of G if and only if xhx-1 E H for 

every h EH and every x E G. 

p =* q Proof If His a normal subgroup of G, then the condition follows easily, since H normal 

reqmres 

xHx-1 
= H for all x E G =* xHx-1 � H for all x E G 

=* xhx-1 E H for all h E H and all x E G. 

p <== q Suppose now that the condition holds. For any x E G, xHx-1 � H follows imme-

diately , and we need to only show that H � xHx-1• Leth be arbitrary in H, and let x E G. 

Now x-1 is an element in G, and the condition implies that 

( x-1)( h)( x-1t 1 
= x-Ihx 

is in H; that is, 

x-1 hx = h1 for some h1 EH =* h = xh1 x-1 for some h1 EH 

=* h E xHx-1. 

Thus H � xHx-1, and we have xHx-1 
= H for all x E G. It follows that His a normal 

subgroup of G. 
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The concept of generators can be extended from cyclic subgroups (a) to more compli

cated situations where a subgroup is generated by more than one element. We only touch on 

this topic here, but it is a fundamental idea in more advanced study of groups. 

Definition 4.21 • Set Generated by A 

If A is a nonempty subset of the group G, then the set generated by A, denoted by (A), is 

the set defined by 

(A) = {x E Glx = a1a2 · · · an with either ai EA or ai1 EA}. 

In other words, (A) is the set of all products that can be formed with a finite number of 

factors, each of which either is an element of A or has an inverse that is an element of A. 

Theorem 4.22 • Subgroup Generated by A 

For any nonempty subset A of a group G, the set (A) is a subgroup of G called the subgroup 

of G generated by A. 

p:::::} q Proof There exists at least one a EA, since A =I= 0. Then e = aa-1 E (A), so (A) is 

nonempty. 

If x E (A) and y E (A), then 

and 

Y = Y1Y2 · · · Yk with either yj EA or YJ-l EA. 

Thus 

where each factor on the right either is in A or has an inverse that is an element of A. Also, 

The nonempty set (A) is closed and contains inverses, and therefore it is a subgroup of G. 

In work withfinite groups, the result in Exercise 45 of Section 3.3 is extremely help

ful in finding (A), since it implies that (A) is the smallest subset of G that contains A and is 

closed under the operation. (This is true only for finite groups.) The subgroup (A) can be 

constructed systematically by starting a multiplication table using the elements of A and 

enlarging the table by adjoining additional elements until closure is obtained. A practical 

first step in this direction is to begin the table using all the elements of A and all their dis

tinct powers. This is illustrated in the next example. 
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Example 3 Let A = {(1, 2, 3, 4), (1, 4)(2, 3)}, and consider the problem of finding 

(A) in S4. We begin by computing the distinct powers of the elements of A: 

a= (1, 2, 3, 4) a2 = (1, 3)(2, 4) 
a3 = a-1 = (1 4 3 2) ' ' ' 

{3 = ( 1, 4) ( 2, 3) 
a4 = e = (1) 
132 = e. 

If we continue to form products using e, a, a2, a3, {3, we find the following new ele

ments of (A) : 

a{3 = (1,2,3,4)(1,4)(2,3) = (2,4) = y 

a2{3 = (1,3)(2,4)(1,4)(2,3) = (1,2)(3,4) = Ll 

a3{3 = (1,4,3,2)(1,4)(2,3) = (1,3) = e. 

Now if these eight elements 

are used to form a multiplication table, we obtain the table for the octic group D4 found on 

the back endpapers of this text. This shows that the octic group 

D4 = {e, a, a2, a3, {3, y, Ll, O} 
is the subgroup of S4 generated by A = {a, {3}. • 

Exercises 4.5 

True or False 

Label each of the following statements as either true or false. 

1. Let H be any subgroup of a group G and a E G. Then aH =Ha implies ah = ha for 

all h in H. 

2. The subgroups { e} and G are both normal subgroups of the group G. 

3. The subgroups { e} and Gare the only normal subgroups of a nonabelian group G. 

4. Let H be a subgroup of a group G. If hH = H = Hh for all h E H, then His normal 

in G. 

5. If a group G contains a normal subgroup, then every subgroup of G must be normal. 

6. Let A be a nonempty subset of a group G. Then A E (A). 

7. LetA be a nonempty subset of a group G. Then (A) is closed under the group operation 

if and only if A is closed under the same operation. 

Exercises 

1. Let G be the group and H the subgroup given in each of the following exercises of 

Section 4.4. In each case, is H normal in G? 

a. Exercise 3 b. Exercise 4 c. Exercise 5 

d. Exercise 6 e. Exercise 7 f. Exercise 8 
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Sec. 3.3, #19a � 

Sec. 3.3, #18 � 

Sec. 3.4, #41 � 

2. Show that 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

H = {[� �l [-� -�J} 
is a normal subgroup of the multiplicative group GL(2, R) of invertible matrices in 

M2(R). 

Prove or disprove that H = { [ 1 �] I a E R} is a normal subgroup of the special 

linear group SL(2, R). 
O 

Prove that the special linear group SL(2, R) is a normal subgroup of the general linear 

group GL(2, R). 

For any subgroup H of the group G, let H2 denote the product H2 
= HH as defined in 

Definition 4.10. Prove Corollary 4.19: H2 
= H. 

Let H be a normal cyclic subgroup of a finite group G. Prove that every subgroup K of 

His normal in G. 

Let H be a torsion subgroup of an abelian group G. That is, His the set of all elements 

of finite order in G. Prove that His normal in G. 

Show that every subgroup of an abelian group is normal. 

Consider the octic group D4 of Example 3. 

a. Find a subgroup of D4 that has order 2 and is a normal subgroup of D4. 

b. Find a subgroup of D4 that has order 2 and is not a normal subgroup of D4. 

Sec. 4.4, #20 � 10. Find all normal subgroups of the octic group. 
Sec. 4.6, #9 � 

Sec. 4.4, #21 � 11. Find all normal subgroups of the alternating group A4. 
Sec. 4.6, #10 � 

Sec. 4.4, #23 � 12. Find all normal subgroups of the quaternion group. 
Sec. 4.6, #11 � 

13. Exercise 8 states that every subgroup of an abelian group is normal. Give an example 

of a nonabelian group for which every subgroup is normal. 

14. Find groups Hand G such that H � G � A4 and the following conditions are satisfied: 

a. His a normal subgroup of G. 

b. G is a normal subgroup of A4. 

c. H is not a normal subgroup of A4. 

(Thus the statement "A normal subgroup of a normal subgroup is a normal subgroup" 

is false.) 

15. Find groups H and K such that the following conditions are satisfied: 

a. His a normal subgroup of K. 

b. K is a normal subgroup of the octic group. 

c. H is not a normal subgroup of the octic group. 
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Sec. 4.6, #36 � 

Sec. 4.6, #36 � 

Sec. 4.6, #36 � 

Sec. 4.6, #36 � 

Sec. 4.6, #34 � 

Sec. 4.6, #30, 33 � 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

4.5 Normal Subgroups 237 

Let H be a subgroup of G and assume that every left coset aH of H in G is equal to a 
right coset Hb of Hin G. Prove that His a normal subgroup of G. 

If {HA}, A E 5£, is a collection of normal subgroups H A  of G, prove that n AE:£HA is 
a normal subgroup of G. 

If His a subgroup of G, and K is a normal subgroup of G, prove that HK = KH. 

With Hand K as in Exercise 18, prove that HK is a subgroup of G. 

With Hand K as in Exercise 18, prove that H n K is a normal subgroup of H. 

With H and K as in Exercise 18, prove that K is a normal subgroup of HK. 

If H and K are both normal subgroups of G, prove that HK is a normal subgroup of G. 

Prove that if Hand Kare normal subgroups of G such that H n K = { e}, then hk = kh 

for all h E H, k E K. 

24. The center Z( G) of a group G is defined as 

Z(G ) = {a E Glax = xa for all x E G}. 

Prove that Z(G) is a normal subgroup of G. 

25. Find the center of the octic group D4. 

26. Find the center of A4. 

27. Suppose His a normal subgroup of order 2 of a group G. Prove that His contained in 
Z(G), the center of G. 

28. For an arbitrary subgroup H of the group G, the normalizer of H in G is the set 
.N'(H) = {x E GlxHx-1 = H} . 

a. Prove that .N(H) is a subgroup of G. 

b. Prove that His a normal subgroup of .N'(H) . 

c. Prove that if K is a subgroup of G that contains H as a normal subgroup, then 
K � .N(H). 

29. Find the normalizer of the subgroup {(1 ), (1, 3)(2, 4)} of the octic group D4. 

30. Find the normalizer of the subgroup { (1 ), (1, 4)(2, 3)} of the octic group D4. 

31. Let H be a subgroup of G. Define the relation "congruence modulo H" on G by 

a == b (mod H) if and only if a-1b EH. 

Prove that congruence modulo His an equivalence relation on G. 

32. Describe the equivalence classes in Exercise 31 . 

33. Let n > 1 in the group of integers under addition, and let H = (n ). Prove that 

a b (mod H) if and only if a == b (mod n ) . 

34. Let H be a subgroup of G with index 2 .  

a. Prove that His a normal subgroup of G. 

b. Prove that g2 E H for all g E G. 
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35. Show that An has index 2 in Sn, and thereby conclude that An is always a normal sub
group of Sn. 

36. LetA be a nonempty subset of a group G. Prove that A� (A). 

37. Find the subgroup of Sn that is generated by the given set . 

a. {(1, 2), (1, 3) } 

c. { (1, 2, 4), (2, 3, 4) } 

b. { (1, 3), (1, 2, 3, 4) } 

d. { (1, 2), (1, 3), (1, 4) } 

38. Let n be a positive integer , n > 1. Prove by induction that the set of transpositions 
{ (1, 2), (1, 3), ... , (1, n)} generates the entire group Sn. 

39. Let G be a group and A = {aba-1b-1 I a, b E G}. Prove that (A), the set generated by 
A, is a normal subgroup of G. This subgroup is called the commutator subgroup of G. 

40. Find the commutator subgroup of each of the following groups . 

Sec. 3.1, #34 � a. The quaternion group { ± 1, ± i, ± j, ± k}. 

b. The symmetric group S3. 

� Quotient Groups 

If His a normal subgroup of G, then xH = Hx for all x in G, so there is no distinction between 
left and right cosets of Hin G. In this case , we refer simply to the cosets of Hin G. 

If His any subgroup of G, then hH = H = Hh for all h in H, according to Theo
rem 4.18. Corollary 4.19 states that H2 = H • H = H for all subgroups H. We use this 
fact in proving the next theorem . 

Theorem 4.23 • Group of Cosets 

Let H be a normal subgroup of G. Then the cosets of Hin G form a group with respect to 
the product of subsets as given in Definition 4.10. 

p:::::} q Proof Let H be a normal subgroup of G. We shall denote the set of all distinct cosets of 
Hin G by G/H. Multiplication in G/H is associative , by part a of Theorem 4.11. 

We need to show that the cosets of Hin Gare closed under the given product . Let aH 
and bH be arbitrary cosets of Hin G. Using the associative property freely , we have 

(aH)(bH) = a(Hb)H 

= a(bH)H 

= (ab)H·H 

= abH 

Thus G/H is closed and (aH)(bH) = abH. 

since H is normal 

since H2 = H. 

The coset H = eH is the identity , since (aH)(eH) = aeH = aH and (eH)(aH) = 

eaH = aH for all aH in G/ H 
The inverse of aH is a-1H, since 

(aH)(a-1H) = aa-1H = eH = H 

Copyright 2013 Cengage Leaming. AH Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materia11y affect the overall learning experience. Cengage Leaming reserves the right to remove additional content at any time if subsequent rights restrictions require it. 



4.6 Quotient Groups 239 

and 

This completes the proof. 

Definition 4.24 • Quotient Group 

If His a normal subgroup of G, the group G/H that consists of the cosets of Hin G is called 
the quotient group or factor group of G by H. 

If the group G is abelian, then so is the quotient group G/H. Let a and b be elements 
of G, then 

and G / H is abelian . 

aHbH = a bH since H is normal 

= b aH since G is abelian 

= bHaH since H is normal 

Suppose the group G has finite order n and the normal subgroup H has order m. Then 
by Lagrange's Theorem, we have 

IG I = IHI • IG!HI 

or 

n = m · IG!HI, 

and the order of the quotient group is IG/HI = nlm. 

Example 1 Let G be the octic group as given in Example 3 of Section 4.5: 

D4 = {e, a, a2, a3, {3, y, Ll, O}. 

It can be readily verified that H = {e, y, 0, a2} is a normal subgroup of D4• The distinct 
cosets of Hin D4 are 

H = eH = yH = OH= a2H = {e, y, 0, a2} 

and 

aH = a3H = f3H = LlH = {a, a3, {3, Ll}. 

Thus D4/H = {H, aH}, and a multiplication table for D4/H is as follows . 

H aH 

H H aH 

aH aH H 
• 

There is a very important and natural relation between the quotient groups of a group 
G and the epimorphisms from G to another group G'. Our next theorem shows that every 
quotient group G/H is a homomorphic image of G . 
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Theorem 4.25 • Quotient Group => Homomorphic Image 

Let G be a group, and let H be a normal subgroup of G. The mapping </J: G---+ G/H 
defined by 

</J(a) = aH 

is an epimorphism from G to G/H. 

p =9- q Proof The rule </J(a) = aH clearly defines a mapping from G to G/H. For any a and b 
in G, 

<P(a) • </J(b) = (aH)(bH) 
= abH 

= <P(ab ). 

since H is normal in G 

Thus <P is a homomorphism. Every element of G/H is a coset of H in G that has the 
form aH for some a in G. For any such a, we have </J(a) = aH. Therefore, <P is an 
epimorphism. 

Example 2 Consider the octic group 

and its normal subgroup 

H = {e, y, fJ, a2}. 

We saw in Example 1 that D4/H = {H, aH}. Theorem 4.25 assures us that the mapping 
</J: D4---+ D4/H defined by 

</J(a) = aH 

is an epimorphism. The values of <P are given in this case by 

<P(e) = <P( '}') = <P(O) = <P(a2) = H 

</J(a) = </J(a3) = <P(f3) = </J(Ll) = aH. • 

Theorem 4.25 says that every quotient G/H is a homomorphic image of G. We 
shall see that, up to an isomorphism, these quotient groups give all of the homomorphic 
images of G. In order to prove this, we need the following result about the kernel of a 
homomorphism. 

Theorem 4.26 • Kernel of a Homomorphism 

For any homomorphism <P from the group G to the group G', ker <P is a normal subgroup 
ofG. 
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p ==> q Proof The identity e is in ker cf> since cf>( e) = e', so ker cf> is always nonempty. If a E ker cf> 

and b E ker cf> ,  then </>(a)= e' and <f>(b) = e'. Also, by Theorem 3.32, <f>(b-1) = [<f>(b) J-1, so 

<.f>(ab-1) = <.f>(a) <.f>(b-1) 

= <.f>(a)[<f>(b)J-1 

= e' · (e') -1 

= e', 

and therefore ab-1 E ker cf>. Thus, by Theorem 3.12, ker cf> is a subgroup of G. 
To show that ker cf> is normal, let x E G and a E ker cf>. Then 

<f>(xax-1) = <f>(x)<f>(a)<.f>(x-1) 

= <f>(x) • e' • <f>(x-1) 

= <.f>(x) • <.f>(x-1) 

since cf> is a homomorphism 

since a E ker cf> 

= e' by part b of Theorem 3.32. 

Thus xax-1 is inker cf>, and ker cf> is a normal subgroup by Theorem 4.20. 

The mapping cf> in Theorem 4.25 has Has its kernel, and this shows that every normal 

subgroup of G is the kernel of a homomorphism. Combining this fact with Theorem 4.26, 

we see that the normal subgroups of G and the kernels of the homomorphisms from G to 

another group are the same subgroups of G. 
We can now prove that every homomorphic image of G is isomorphic to a quotient 

group of G. 

Theorem 4.27 • Homomorphic Image::::} Quotient Group 

Let G and G' be groups with G' a homomorphic image of G. Then G' is isomorphic to a 

quotient group of G. 

p ==> q Proof Let cf> be an epimorphism from G to G; and let K = ker cf>. For each aK in G/K, 
define O(aK) by 

O(aK) = <.f>(a). 

First, we need to prove that this rule defines a mapping. For any aK and bK in G/K, 

aK = bK # b-1aK = K 

# b-1a EK 

# <.f>(b-1a) = e' 

# <f>(b-1)<.f>(a) = e' 

# [</>(b) J-1<.f>(a) = e' 

# <f>(a) = <f>(b) 

# O(aK) = O(bK). 
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Thus () is a well-defined mapping from G/K to G', and the<= parts of the<=> statements 
show that () is one-to-one as well. 

We shall show that() is an isomorphism from G/K to G'. Since 

e(aK • bK) = e(abK) 

= </>(ab) 

= <f>(a) • <f>(b) 

= O(aK) • O(bK), 

()is a homomorphism. To show that() is onto, let a' be arbitrary in G'. Since</> is an epimor
phism, there exists an element a in G such that <f>(a) = a'. Then aK is in G/K, and 

O(aK) = </>(a) =a'. 

Thus every element in G' is an image under (), and this proves that () is an isomorphism. 

Theorem 4.28 • Fundamental Theorem of Homomorphisms 

If</> is an epimorphism from the group G to the group G', then G' is isomorphic to G/ker <f>. 

The Fundamental Theorem follows at once from the proof of Theorem 4.27. 

Example 3 To illustrate Theorems 4.26 and 4.27, consider the permutation group 

G = S3 = {(1), (1, 2, 3), (1, 3, 2), (1, 2), (1, 3), (2, 3)} 

and the multiplicative group 

G' = {[1], [2]} � Z3• 

The mapping <f>: G ---+ G' defined by 

</>(1) = </>(1, 2, 3) = </>(1, 3, 2) = [1] 

</> ( 1, 2) = </> ( 1, 3) = </> ( 2, 3) = [ 2 J 

can be shown to be an epimorphism from G to G'. We see that the kernel of the epimor
phism <f>: G-+ G' is the normal subgroup 

K = ker </> 

= {(1), (1, 2, 3), (1, 3, 2)} 

of G. The quotient group G/K is given by 

GIK = {K, (1, 2)K} 

where 

(1, 2)K = {(1, 2), (2, 3), (1, 3)}. 

The isomorphism(): G/K---+ G' has values 

O(K) = </>(1) = [1] 

0((1, 2)K) = </>(l, 2) = [2]. • 
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Using the results of this section, we can systematically find all of the homomorphic 
images of a group G. We now know that the homomorphic images of G are the same (in 
the sense of isomorphism) as the quotient groups of G. 

Example 4 Let G = S3, the symmetric group on three elements. In order to find all 
the homomorphic images of G, we need to only find all of the normal subgroups H of G 
and form all possible quotient groups G/H. As we saw in Section 4.4, a complete list of 
the subgroups of G is 

Hi= {(1)} 

H2 = {(1), (1, 2)} 

H3 = {(l), (1, 3)} 

H4 = {(1), (2, 3)} 

H5 = {(1), (1, 2, 3), (1, 3, 2)} 

H6 = S3. 

Of these, H1, H5, and H6 are the only normal subgroups. The possible homomorphic im
ages of G, then, are 

GIH1 = {Hi. ( 1, 2)Hi. ( 1, 3 )Hi. (2, 3 )Hi. ( 1, 2, 3 )H1, ( 1, 3, 2)H1} 

GIH5 = {H5, ( 1, 2)H5} 

GIG= {G}. 

Thus any homomorphic image of S3 is isomorphic to S3, to a cyclic group of order 2, or to 
a group with only the identity element. • 

- Exercises 4.6 

True or False 

Label each of the following statements as either true or false. 

1. Every normal subgroup of a group is the kernel of a homomorphism. 

2. The kernel of any homomorphism from group G to group G' is a normal subgroup 
of G'. 

3. aHbH = abH for any subgroup H of a group G and for all a, b in G. 

4. Every homomorphic image of a group G is isomorphic to a quotient group of G. 

S. The homomorphic images of a group G are the same (up to an isomorphism) as the 
quotient groups of G. 

Exercises 

In Exercises 1-6, H is a normal subgroup of the group G. Find the order of the quotient 
group G/H. Write out the distinct elements of G/H and construct a multiplication table 
for G/H. 

1. The octic group D4 = {e, a, a2, a3, /3, y, a, O}; H = {e, a2}. 

2. The octic group D4 = {e, a, a2, a3, /3, y, a, O}; H = {e, /3, a, a2}. 

Sec.3.1,#34� 3. Thequaternion group G = {±1, :ti, ±j, ±k};H= {±1}. 
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Sec. 4.3, #25 P 

Sec. 3.4, #18a P 

4. The group of rigid motions of a regular pentagon D5 = {e, a, a2, a3, a4, {3, y, 8, (}, u} 
H = {e, a, a2, a3, a4}, where a= (1, 2, 3, 4, 5), f3 = (2, 5)(3, 4), y = (1, 2)(3, 5), 
8 = (1, 3)(4, 5), (} = (1, 4)(2, 3), and u = (1, 5)(2, 4). 

5. The alternating group G = A4; H = { (1), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}. 

6. The symmetric group G = S4; H = { (1), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3) }. 

7. Let G be the multiplicative group of units U20 consisting of all [a] in Z20 that have 
multiplicative inverses. Find a normal subgroup H of G that has order 2 and construct 
a multiplication table for G/H. 

8. Suppose G1 and G2 are groups with normal subgroups H1 and H2, respectively, and 
with Gi/H1 isomorphic to G2/H2• Determine the possible orders of H1 and H2 under 
the following conditions. 

a. IG11 = 24 and IG21 = 18 

b. IG1I = 32 and IG2I = 40 

Sec. 4.5, #10 P 9. Find all homomorphic images of the octic group D4. 

Sec. 4.5, #11 P 10. Find all homomorphic images of A4. 

Sec. 3.1, #34 P 11. Find all homomorphic images of the quaternion group. 
Sec. 4.5, #12 P 

Sec. 3.4, #18 P 12. Find all homomorphic images of each group G in Exercise 18 of Section 3.4. 

13. Let G = S3. For each H that follows, show that the set of all left cosets of H in G does 
not form a group with respect to a product defined by (aH)(bH) = abH. 

a. H = {(1), (1, 2)} 

b. H = { (1), (1, 3)} 

c. H = {(1), (2, 3)} 

Sec. 3.1, #36 P 14. Let G = {h R, R
2
, R3, H, D, V, T} be the multiplicative group of matrices in Exer

Sec. 3.6, #11 P cise 36 of Section 3.1, let G' = { 1, -1} under multiplication, and define¢: G--..+ G'by 

<1>([: �])=ad - be. 

a. Assume that <Pis an epimorphism, and find the elements of K = ker </J. 

b. Write out the distinct elements of G/K. 

c. Let 0: G/K---+ G' be the isomorphism described in the proof of Theorem 4.27, and 
write out the values of (}. 

Sec. 3.3, #17 P 15. Repeat Exercise 14 with G = {12, Mi. M2, M
3
, M

4
, M5}, the multiplicative group of 

matrices in Exercise 17 of Section 3.3. 

Sec. 3.l,#34P 16. Repeat Exercise 14 with the quaternion group G = {l,i,j,k, -1, -i, -j, -k}, the 
Sec. 3.5, #10 P Klein four group G '  = {e, a, b, ab}, and </J: G---+ G '  defined by 

<P(l) = <P(-1) = e 

<fJ(j) = <P( -j) = b 

<P(i) = <P( -i) = a 

<P(k) = <P( -k) = ab. 
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Sec. 3.4, #16 � 17. Repeat Exercise 14 where G is the multiplicative group of units U
2
0 and G '  is the 

cyclic group of order 4. That is , 

G = {[l], [3], [7], [9], [11], [13], [17], [19]}, 

G' = (a) = {e, a, a2, a3}. 

Define</>: G � G '  by 

<f> ([lJ) = <f> ([11J) = e 

<f> ([9J) = <f> ([19J) = a2 

<f> ([3J) = <f> ([13J) = a 

</> ([7J) = </> ([17]) = a3• 

18. If His a subgroup of the group G such that (aH)(bH) = abH for all left cosets aH and 
bH of Hin G, prove that His normal in G. 

19. LetHbe a subgroup of the group G. Prove that (Ha)(Hb) = Hab for all right cosets Ha 
and Hb of H in G if and only if H is normal in G. 

20. If His a normal subgroup of the group G, prove that (aHr = anH for every positive 
integer n. 

Sec. 4.4, #18 � 21. Let H be a normal subgroup of finite group G. If the order of the quotient group G/H 
ism, prove that gm EH for all g E G. 

22. Let H be a normal subgroup of the group G. Prove that G/H is abelian if and only if 
a-1b-1ab EH for all a, b E G. 

Sec. 3.4, #32, 41 � 23. Let G be a torsion group , as defined in Exercise 41 of Section 3.4, and Ha normal 
subgroup of G. Prove that the quotient group G/H is a torsion group. 

24. Let G be a cyclic group. Prove that for every normal subgroup Hof G, G/H is a cyclic 
group. 

25. Prove or disprove that if a group G has a cyclic quotient group G/H, then G must be 
cyclic. 

26. Prove or disprove that if a group G has an abelian quotient group G/H, then G must be 
abelian. 

27. a. Show that a cyclic group of order 8 has a cyclic group of order 4 as a homomorphic 
image. 

b. Show that a cyclic group of order 6 has a cyclic group of order 2 as a homomorphic 
image. 

Sec. 3.6, #23 � 28. Assume that </> is an epimorphism from the group G to the group G'. 

a. Prove that the mapping H � </>(H) is a bijection from the set of all subgroups of G 
that contain ker </> to the set of all subgroups of G'. 

b. Prove that if K is a normal subgroup of G' , then </>-1(K) is a normal subgroup of G. 

29. Suppose </> is an epimorphism from the group G to the group G'. Let H be a normal 
subgroup of G containing ker </>,  and let H' = </>(H). 

a. Prove that H' is a normal subgroup of G'. 

b. Prove that G/H is isomorphic to G'/H'. 
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Sec. 4.5, #24 � 30. Let G be a group with center Z(G) = C. Prove that if G/ C is cyclic, then G is abelian. 

31. (See Exercise 30.) Prove that if p and q are primes and G is a nonabelian group of 
order pq, then the center of G is the trivial subgroup { e}. 

Sec. 3.5, #20, 21 � 32. Let a be a fixed element of the group G. According to Exercise 20 of Section 3.5, 

the mapping ta: G � G defined by ta(x) = axa- 1 is an automorphism of G. Each of 
these automorphisms ta is called an inner automorphism of G. Prove that the set 
Inn( G) = {ta I a E G} forms a normal subgroup of the group of all automorphisms 
ofG. 

Sec. 4.5, #24 � 33. (See Exercise 32.) Let G be a group with center Z(G) = C. Prove that Inn(G) is 
isomorphic to G / C. 

Sec. 4.5, #23 � 34. If Hand K are normal subgroups of the group G such that G = HK and H n K = { e} , 
then G is said to be the internal direct product of Hand K, and we write G = H X K 
to denote this. If G = H X K, prove that cp: H � G/K defined by cp( h) = hK is an 
isomorphism from H to G / K. 

35. (See Exercise 34.) If G = H X K, prove that each element g E G can be written 
uniquely as g = hk with h E H and k E K. 

Sec. 4.5, #18-21 � 36. Let H be a subgroup of G and let K be a normal subgroup of G. 

Sec. 6.2, #31 <\i 

a. Prove that the mapping cp: H � HK/K defined by cp(h) = hK is an epimorphism 
from H to HK/ K. 

b. Prove that ker cp = H n K. 

c. Prove that HIH n K is isomorphic to HK/K. 

37. Let H and K be arbitrary groups and let H ® K denote the Cartesian product of H 
andK: 

H®K = {(h,k)lh E Handk EK}. 

Equality in H ® K is defined by (h, k) = (h', k') if and only if h = h' and k = k'. 
Multiplication in H ® K is defined by 

(h1, ki)(hz, kz) = (h1h2, k1k2). 

a. Prove that H ® K is a group. This group is called the external direct product of H 
andK. 

b. Suppose that e1 and e2 are the identity elements of Hand K, respectively. Show that 
H' = {(h, ez)lh EH} is a normal subgroup of H ® K that is isomorphic to Hand, 
similarly, that K '  = { ( ei, k) I k E K} is a normal subgroup isomorphic to K. 

Sec. 4.7, #16 «i c. Prove that H ® KIH ' is isomorphic to K and that H ® KIK ' is isomorphic to H. 

38. (See Exercise 37.) Let a and b be fixed elements of a group G, and let Z ® Z be the 
external direct product of the additive group Z with itself. Prove that the mapping 
cp: Z ® Z � G defined by cp(m, n) = ambn is a homomorphism if and only if ab = ba 

in G. 
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� Direct Sums (Optional) 

The overall objective of this and the next section is to present some of the basic material 

on abelian groups. A tremendous amount of work has been done on the subject. One of 

the concepts fundamental to abelian groups is a direct sum, to be defined in this section. 

Throughout this section we write all abelian groups in additive notation. 

We begin by defining the sum of a finite number of subgroups in an abelian group and 

showing that this sum is a subgroup. 

Definition 4.29 • Sum of Subgroups 

Let Hi, Hz, ... , Hn be subgroups of the abelian group G. The sum H1 +Hz+···+ Hn of 

these subgroups is defined by 

H1 + Hz + · · · + Hn = {x E Glx = h1 + h2 + · · · + hn with hi E HJ 

Theorem 4.30 • Sum of Subgroups 

If Hi, Hz, ... , Hn are subgroups of the abelian group G, then Hi + Hz + · · · + Hn is a 

subgroup of G. 

p:::::} q Proof The sum H1 + Hz + · · · + Hn is clearly nonempty. For arbitrary 

X = h1 + hz + · · · + hn 

with hi E Hi, the inverse 

is in the sum H1 + Hz+ · · · + Hn. since -hi E Hi for each i. Also, if 

y = h1 + h2 + ... + h� 
with h; E Hi, then 

is in the sum of the Hi, since hi + hj E Hi for each i. Thus Hi + Hz + · · · + Hn is a 

subgroup of G. 

The contents of Definition 4.21 and Theorem 4.22 may be restated as follows, with 

addition as the binary operation: 

If A is a nonempty subset of the group G, then the subgroup of G generated by A is 

the set 

(A)= {x E Glx = a 1  + a2 + · · · + an with a; EA or - a i  EA}. 
It is left as an exercise to prove that if H1, Hz, ... , Hn are subgroups of an abelian group G, 
then G = Hi + Hz + · · · + Hn if and only if G is generated by U;=1 Hi. 
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Example 1 Let G be the group G = Z12 under addition, and consider the following 
sums of subgroups in G. 

a. If 

and 

then 

Hi= ([3]) = {[3], [6], [9],[0]} 

Hz= ([2]) = {[2], [4], [6], [8], [10], [OJ}, 

H1 +Hz= {r[3] + s[2] I r, s E Z } 
= {[3r + 2s] I r, s E Z } 

is a subgroup. Since (3(1) + 2(11)] = (25] = [1] in Z12 and [1] generates Z12 under 
addition, we have 

b. Now let 

Ki =Hi = ([3]), 
Kz = ([4]) = {[4], [8], [OJ}. 

The sum K1 + Kz is given by 

Ki + K z = { u [ 3] + v [ 4] I u, v E z} 
= {[3u + 4v] I u, v E Z}. 

Since[3(-1) + 4(1)] = [1], [1] E K1 + Kz, and hence 

c. With the same notation as in parts a and b, 

since Kz � Hz. 

We now consider the definition of a direct sum. 

Definition 4.31 • Direct Sum 

• 

If H1, Hz, ... , Hn are subgroups of the abelian group G, then H1 + Hz + · · · + Hn is a 
direct sum if and only if the expression for each x in the sum as 

with hi E Hi is unique. We write 

to indicate a direct sum. 
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The next theorem gives a simple fact about direct sums that can be very useful when 

we work with finite groups. 

Theorem 4.32 • Order of a Direct Sum 

If Hi, Hz, ... , Hn are finite subgroups of the abelian group G such that their sum is direct, 

then the order of H1 EB H2 EB··· EB Hn is the product of the orders of the subgroups Hi: 

p :::::} q Proof With hi E Hi in the expression 

X = h1 + h2 + · · · + hn, 

there are IHil choices for each hi· Any change in one of the hi produces a different element 

x, by the uniqueness property stated in Definition 4.31. Hence there are 

distinct elements x of the form x = h1 + h2 + · · · + hn. and the theorem follows. 

There are several equivalent ways to formulate the definition of direct sum. One of 

these is presented in the following theorem. 

Theorem 4.33 • Equivalent Condition for a Direct Sum 

If each Hi is a subgroup of the abelian group G, then the sum Hi + Hz + · · · + Hn is 

direct if and only if the following condition holds: Any equation of the form 

h1 + h2 + · · · + hn = 0 

with hi E Hi implies that all hi = 0. 

p <== q Proof Assume first that the condition holds. If an element x in the sum of the Hi is 

written as 

and also as 

X = h '1 + h '2 + · · · + h 'n 

with hi and hi E Hi for each i, then 

hl + h2 + · · · + hn = h '1 + h '2 + · · · + h 1n 

and 

The condition implies that hi - hi = 0, and hence hi = hj for each i. Thus the sum 

Hi + Hz + · · · + Hn is direct. 
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p => q Conversely, suppose the sum Hi + H2 + · · · + Hn is direct. Then the identity ele-
ment 0 in the sum can be written uniquely as 

0=0+0+···+0 

where the sum on the right indicates a choice of 0 as the term from each Hi. From the 
uniqueness property, 

h 1 + hz + · · · + hn = 0 

with hi E Hi requires that all hi = 0. 

Some intuitive feeling for the concept of a direct sum is provided by considering the 
special case where the sum has only two terms. 

Theorem 4.34 • Direct Sum of Two Subgroups 

Let Hi and H2 be subgroups of the abelian group G. Then G = Hi EB H2 if and only if 
G = H1 + H2 and Hi n H1 = { 0}. 

p:::::} (q /\ r) Proof Assume first that G = Hi EB H1, and let x E Hi n H1. Then x = hi for some 
h i E Hi. Also, x E Hz, and therefore -x E H1. Let h z = -x. Then 

h 1 + h2 = x + ( -x) 
=O 

where hi E Hi. This implies that x = hi = h1 = 0, by Theorem 4.33. 

p <== (q /\ r) Assume now that G = Hi + Hz and Hin Hz = { O }. If 

h1 + h2 = 0 

with hi E Hi, then hi = -h2 E Hin H1. Therefore, hi = 0 and hz = 0. By Theorem 4.33, 

G =Hi EBH2. 

Example 2 In Example 1, we sawthat the equationsHi + H2 = Z12 andKi + Kz = Z12 
were both valid. Since Hin Hz = {[OJ, [6]}, the sum Hi + Hz is not direct. However, 
Ki n Kz = {[OJ}, so Z12 = Ki EB Kz in Example 1. • 

Theorem 4.34 can be generalized to the results stated in the next theorem. A proof is 
requested in the exercises. 

Theorem 4.35 • Direct Sum of n Subgroups 

Let Hi, H1, ... , Hn be subgroups of the abelian group G. The sum Hi + H1 + · · · + Hn 
is direct if and only if the intersection of each Hj with the subgroup generated by 

U�=l,i*-jH; is the identity subgroup {O}. 
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Example 3 Consider the following subgroups of the abelian group Z42 under addition: 

H1 = {[OJ, [21]} = ([21]) 
H2 = {[O], [14], [28]} = ([14]) 
H3 = {[O], [6], [12], [18], [24], [30], [36]} = ([6]). 

Since each of the orders of Hi, which is 2, of H2, which is 3, and of H3, which is 7, must 
divide the order of the group generated by G = Hi U H2 U H3, then G must have order 
at least 42. The sum G = Hi + Hz + H3 is direct since {[OJ} = H1 n (H2 U H3) = 

H2 n (H1 U H3) = H3 n (H1 U H2). Since 

1[21] + (-1) [14] + (-1)[6] = [1] 

and [1] generates Z42 under addition, then 

• 

As a final result for this section, we prove the following theorem. 

Theorem 4.36 • Direct Sums and Isomorphisms 

Let Hi and Hz be subgroups of the abelian group G such that G = Hi EEl Hz. Then G/H2 is 
isomorphic to Hi. 

p � q Proof The rule </>(h1) = hi + H2 defines a mapping</> from H1 to G/H2. This mapping 
is a homomorphism, since 

Now 

</>(h1 + h'1) = (hi + h'1) + Hz 
= (hi + Hz) + (h'1 + Hz) 
= </>(hi) + </>(h'i). 

hi E ker<f> � </>(h1) = H2 
� h1 + H2 = H2 

� h1 E H2 

� h1 = 0 sinceH1 n H2 = {O}. 

Thus</> is one-to-one. Let g + H2 be arbitrary in G/H2. Since G = H1 EEl H2, g can be writ
ten as g = hi + hz with hi E Hi. 

Then 

and this shows that</> is onto. Thus</> is an isomorphism from H1 to G/H2. 
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Exercises 4. 7 

True or False 

Label each of the following statements as either true or false. 

1. Let Hi, H2 be finite groups of an abelian group G. Then IHi EB Hzl = IHi l + IHzl. 

2. Let H1, H2 be finite groups of an abelian group G. If G = H1 + H2, then 
G = (Hi U Hz). 

Exercises 

1. Let Hi = {[OJ, [6J} and Hz= {[OJ, [3J, [6J, [9J} be subgroups of the abelian group 
Z12 under addition. Find H1 + H2 and determine if the sum is direct. 

2. LetHi ={[OJ, [6J, [12]} andHz ={[OJ, [3J, [6J, [9J, [12J, [15J} be subgroups of the 
abelian group Z18 under addition. Find H1 + H2 and determine if the sum is direct. 

3. Let H1 ={[OJ, [5J} and Hz= {[OJ, [2J, [4J, [6J, [8]} be subgroups of the abelian 
group Z10 under addition. Show that Z10 = Hi EB Hz. 

4. LetHi ={[OJ, [7J, [14]} and Hz= {[OJ, [3J, [6J, [9J, [12J, [15J, [18]} be subgroups 
of the abelian group Z under addition. Show that Zzi = Hi EB Hz. 

5. LetHi ={[OJ, [15]}, Hz= {[OJ, [lOJ, [20]}, andH3 ={[OJ, [6J, [12J, [18J, [24]} be 
subgroups of the abelian group Z30 under addition. Show that Z30 = Hi EB Hz EB H3• 

6. LetHi ={[OJ, [lOJ, [20J, [30J, [40J, [50J, [60]}, Hz= {[oJ, [14J, [28J, [42J, [56J}, and 
H3 = {[OJ, [35J} be subgroups of the abelian group Z10 under addition. Show that 
Z70 = H1 EB Hz EB H3• 

7. Write Z20 as the direct sum of two of its nontrivial subgroups. 

8. Write Z24 as the direct sum of two of its nontrivial subgroups. 

9. Suppose that Hi andH2 are subgroups of the abelian group G such that Hi� H2. Prove 
that Hi + H2 = H2. 

10. Suppose that H1 and H2 are subgroups of the abelian group G such that G = H1 EB H2. 
If K is a subgroup of G such that K;;;::? Hi, prove that K = Hi EB (Kn H2). 

11. Assume that H1, Hz, ... , Hn are subgroups of the abelian group G such that the sum 
Hi + H2 + · · · + Hn is direct. If Ki is a subgroup of Hi for i = 1, 2, ... , n, prove that 
Ki + K2 + · · · + Kn is a direct sum. 

12. Assume that Hi. Hz, ... , Hn are subgroups of the abelian group G. Prove that 
Hi + H2 + · · · + Hn is the smallest subgroup of G that contains all the subgroups Hi. 

13. Assume that Hi, H2, ... , Hn are subgroups of the abelian group G. Prove that G = 
Hi + H2 + · · · + Hn if and only if G is generated by U7= iH;. 

14. Let G be an abelian group of order mn, where m and n are relatively prime. If 
Hi = {x E G I mx = O} and H2 = {x E G I nx = O}, prove that G = H1 E9 H2. 

Copyright 2013 Cengage Leaming. AH Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materia11y affect the overall learning experience. Cengage Leaming reserves the right to remove additional content at any time if subsequent rights restrictions require it. 



4.7 Direct Sums (Optional) 253 

15. Let Hi and H2 be cyclic subgroups of the abelian group G, where Hi n H2 = {0}. 
Prove that Hi EB H2 is cyclic if and only if IH1I and IH21 are relatively prime. 

Sec. 4.6, #37 � 16. (This is the additive version of Exercise 37 in Section 4.6, with proofs the same ex
cept for notation.) Let H and K be arbitrary abelian groups with addition as the group 
operation, and let H EB K denote the Cartesian product of H and K: 

H EB K = { ( h, k) I h E H and k E K}. 

Equality in HEB K is defined by (h, k) = (h', k') if and only if h = h' and k = k'. 
Addition in H EB K is defined by 

(h1, k1) + (hz, kz) = (h1 + hz, k1 + kz). 

a. Prove that HEB K is a group. This group is called the external direct sum of H and K. 

b. For simplicity, we denote the additive identity in both H and K by 0. Show that 
H' = {(h, 0) lh EH} is a normal subgroup of HEB K that is isomorphic to H, and 
that K' = { ( 0, k) I k E K} is a normal subgroup isomorphic to K. 

c. Prove that HEB KIH' is isomorphic to K and HEB KIK' is isomorphic to H. 

17. (See Exercise 1 6.) Find the order of each of the following elements. 

a. ([2], [3]) inZ4EBZ6 b. ([2], [6]) inZ4EBZ12 

c. ([2], [3]) inZ3EBZ6 d. ([2], [3]) inZ6EBZ9 

18. a. Find all subgroups of Z2 EB Z4. 

b. Find all subgroups of Z2 EB Z6. 

19. a. Show that Z1s is isomorphic to Z3 EB Zs, where the group operation in each of Z1s, 
Z3, and Zs is addition. 

b. Show that Z12 is isomorphic to Z3 EB Z4, where all group operations are addition. 

20. Suppose that G and G' are abelian groups such that G = H1 EB H2 and G' = HI EB H2,. 
If H1 is isomorphic to HI and H2 is isomorphic to H2,, prove that G is isomorphic to G'. 

21. Suppose a is an element of order rs in an abelian group G. Prove that if r and s are 
relatively prime, then a can be written in the form a = b1 + b2, where b1 has order r 
and b2 has order s. 

22. (See Exercise 21.) Assume that a is an element of order rir2 · · · rn in an abelian group, 
where ri and rj are relatively prime if i =f=. j. Prove that a can be written in the form 
a = b1 + b2 + · · · + bn, where each bi has order ri. 

23. Prove that if r and s are relatively prime positive integers, then any cyclic group of order 
rs is the direct sum of a cyclic group of order r and a cyclic group of order s. 

24. Prove Theorem4.35: If Hi. Hz, ... , Hn are subgroups of the abelian group G, then the 
sum Hi + Hz + · · · + Hn is direct if and only if the intersection of each Hj with the 
subgroup generated by U7=u*1 H; is the identity subgroup { 0}. 
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� Some Results on Finite Abelian Groups (Optional) 

The aim of this section is to sample the flavor of more advanced work in groups while 
maintaining an acceptable level of rigor in the presentation. We attempt to achieve this 
balance by restricting our attention to proofs of results for abelian groups. There are 
instances where more general results hold, but their proofs are beyond the level of this 
text. In most instances of this sort, the more general results are stated informally and 
without proof. 

The following definition of a p-group is fundamental to this entire section. 

Definition 4.37 • p-Group 

If p is a prime, then a group G is called a p-group if and only if each of its elements has an 
order that is a power of p. 

A p-group can be finite or infinite. Although we do not prove it here, a finite group 
is a p-group if and only if its order is a power of p. Whether or not a group is abelian 
has nothing at all to do with whether it is a p-group. This is brought out in the following 
example. 

Example 1 With p = 2, we can easily exhibit three p-groups of order 8. 

a. Consider first the cyclic group Cs = (a) of order 8 generated by the permutation 
a = (1, 2, 3, 4, 5, 6, 7, 8): 

Each of a, a3, a5, and a7 has order 8. 

a2 and a6 have order 4. 

a4 has order 2. 

The identity e has order 1. 

Thus Cs is a 2-group. 

b. Consider now the quaternion group G = { :±: 1, ±i, ±j, ±k} of Exercise 34 in Sec
tion 3.1: 

Each of the elements :±: i, ±j, ±k has order 4. 

-1 has order 2. 

1 has order 1. 

Hence G is another 2-group of order 8. 

c. Last, consider the octic group D4 = {e, a, a2, a3, {3, y, �. O} of Example 3 in Sec-
tion 4.5: 

Each of a and a3 has order 4. 

Each of a2, {3, y, �.()has order 2. 

The identity e has order 1. 

Thus D4 is also a 2-group of order 8. 
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Of these three p-groups, C8 is abelian and both the quaternion group and D4, the octic 
group, are nonabelian. • 

It may happen that G is not a p-group, yet some of its subgroups are p-groups. In con
nection with that possibility, we make the following definition. 

Definition 4.38 • The Set Gp 

If G is a finite abelian group that has order divisible by the prime p, then Gp is the set of all 
elements of G that have orders that are powers of p. 

As might be expected, the set Gp turns out to be a subgroup. For the remainder of this 
section, we write all abelian groups in additive notation. 

Theorem 4.39 • p-Subgroups 

The set Gp defined in Definition 4.38 is a subgroup of G. 

u =:::} v Proof The identity 0 has order 1 = p0, so 0 E Gp. If a E Gp, then a has order pr for some 
nonnegative integer r. Since a and its inverse -a have the same order, -a is also in the 
set Gp. Let b be another element of the set Gp. Then b has order ps for a nonnegative inte
ger s. If t is the larger of r and s, then 

pt(a + b) = pta + ptb 
= 0 + 0 

= 0. 

This implies that the order of a + b divides pt and is therefore a power of p since p is a 
prime. Thus a + b E Gp, and set Gp is a subgroup of G. 

Example 2 Consider the additive group G = z6. The order of z6 is 6, which is divis
ible by the primes 2 and 3. In this group: 

Each of [1] and [5] has order 6. 

Each of [2] and [4] has order 3. 

[3] has order 2. 

[O] has order 1. 

For p = 2 or p = 3, the subgroups Gp are given by 

G2 = {[3], [OJ} 

G3 = {[2], [4], [OJ}. 

The group G is not a p-group, but G2 is a 2-subgroup of G, and G3 is a 3-subgroup 
ofG. • 

If a group G hasp-subgroups, certain of them are given special names, as described in 
the following definition. 
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Definition 4.40 • Sylowt p-Subgroup 

If pis a prime and mis a positive integer such that pm divides IGI and pm+ 1 does not divide 
IGI, then a subgroup of G that has order pm is called a Sylow p-subgroup of G. 

Example 3 In Example 2, G2 is a Sylow 2-subgroup of G, and G3 is a Sylow 
3-subgroup of G. As a less trivial example, consider the octic group from Example 3 of 
Section 4.5: 

where 

e = (1) a= (1,2,3,4) a2 = (1,3)(2,4) a3 = (1,4,3,2) 

f3 = ( 1, 4) ( 2, 3) r = ( 2, 4) ti = ( 1, 2) ( 3, 4) e = ( 1, 3) . 

The group D4 is a subgroup of order 23 in the symmetric group G = S4, which has order 
4! = 24. Since 23 divides IS41 and 24 does not divide IS41, the octic group D4 is a Sylow 
2-subgroup of S4. • 

Theorem 4.41 • Cauchy'stt Theorem for Abelian Groups 

If G is an abelian group of order n and p is a prime such that p I n, then G has at least one 
element of order p. 

Induction Proof The proof is by induction on the order n of G and uses the Second Principle of 
Finite Induction. For n = 1, the theorem holds by default. 

Now let k be a positive integer, assume that the theorem is true for all positive integers 
n < k, and let G be an abelian group of order k. Also, suppose that the prime p is a divisor of k. 

Consider first the case where G has only the two subgroups {O} and G. Then any a * 0 
in G must be a generator of G, G = (a). It follows from Exercise 38 of Section 3.4 that the 
order k of G must be a prime. Since p divides this order, p must equal k, and G actually has 
p - 1 elements of order p, by Theorem 3.26. 

Now consider the case where G has a nontrivial subgroup H; that is, H * {0} and 
H * G, so that 1 < IHI < k. If p divides IHI, then H contains an element of order p by the 
induction hypothesis, and the theorem is true for G. Suppose then that p does not divide IHI. 
Since G is abelian, H is normal in G, and the quotient group G/H has order 

We have 

IGI 
IG!HI =

IHI
. 

IGI = IHI • IG/HI, 

tpeter Ludwig Mejdell Sylow (1832-1918) was a Norwegian mathematician who worked in group theory, 
publishing bis Sylow theorems in a 10-page paper in 1872. 

ttA biographical sketch of Augustin Louis Cauchy (1789-1857) is given at the end of this chapter. 
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so p divides the product IHI • IG/HI. Since p is a prime and p does not divide IHI, p must 
divide IG/HI < IGI = k. Applying the induction hypothesis, we see that the abelian group 
G/H has an element b + H of order p. Then 

H = p(b + H) = pb + H, 

and therefore pb E H, where b $. H. Let r = IHI. The order of pb must be a divisor of r so 
that r(pb) = 0 and p(rb) = 0. Since p is a prime and p,f'r, then p and r are relatively prime. 
Hence there exist integers u and v such that pu + rv = 1. 

The contention now is that the element c = rb has order p. We have pc = 0, and we 
need to show that c = rb =I= 0. Assume the contrary, that rb = 0. Then 

b =lb 
= (pu + rv)b 
= u(pb) + v(rb) 

= u(pb) + 0 

= u(pb ). 

Now pb EH, and therefore u(pb) EH. But b $. H, so we have a contradiction. Thus 
c = rb * 0 is an element of order p in G, and the proof is complete. 

Cauchy's Theorem also holds for nonabelian groups, but we do not prove it here. The 
next theorem applies only to abelian groups. 

Theorem 4.42 • Sylow p-Subgroup 

If G is a finite abelian group and p is a prime such that p divides IGI, then Gp is a Sylow 
p-subgroup. 

(u Av)=> w Proof Assume that G is a finite abelian group such that pm divides IGI but pm+ 1 does not 
divide IGI. Then IGI = pmk, where p and k are relatively prime. We need to prove that Gp 
has order pm. 

We first argue that IGPI is a power of p. If IGPI had a prime factor q different from p, 
then Gp would have to contain an element of order q, according to Cauchy's Theorem. 
This would contradict the very definition of Gp, so we conclude that IGPI is a power of p. 
Let IGPI =pt. 

Suppose now that IGPI <pm-that is, that t < m. Then the quotient group G/Gp has 
order pmk/p1 = pm-tk, which is divisible by p. Hence G/Gp contains an element a + Gp of 
order p, by Theorem 4.41. Then 

GP = p(a + GP) = pa + GP, 

and this implies that pa E Gp. Thus pa has order that is a power of p. This implies that a has 
order a power of p, and therefore a E Gp; that is, a + Gp = Gp. This is a contradiction to the 
fact that a + Gp has order p. Therefore, IGPI = pm, and Gp is a Sylow p-subgroup of G. 

The next theorem shows the true significance of the Sylow p-subgroups in the struc
ture of abelian groups. 
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Theorem 4.43 • Direct Sum of Sylow p-Subgroups 

Let G be an abelian group of order n = pl'1 pz2 
• • • p�' where the Pi are distinct primes and 

each mi is a positive integer. Then 

G = GP! EB GP2 EB ... EB Gp, 

where GP; is the Sylow Pi-subgroup of G that corresponds to the prime Pi· 

u:::::} v Proof Assume the hypothesis of the theorem. For each prime Pi· GPi is a Sylow 
p-subgroup of G by Theorem 4.42. Suppose an element a1 E GP1 is also in the subgroup 
generated by GPz' GP3, • • •  

, GPr" Then 

where ai E GPi" Since GP; has order p'(\ pria; = 0 for i = 2, ... , r. Hence 

P'22P33 • • • P�'a1 = o. 

Since the order of any a1 E GP1 is a power of pi, and PI is relatively prime to p'iizp33 • • • p�', 
this requires that a1 = 0. A similar argument shows that the intersection of any GP; with the 
subgroup generated by the remaining subgroups 

is the identity subgroup { 0}. Hence the sum 

G EBG EB···EBG Pi P2 Pr 

is direct and has order equal to the product of the orders pri: 

Therefore, 

IG EB G EB··· EB G I= pm1pm2 ···pm,= !GI. P1 P2 Pr I 2 r 

G=G EBG EB···EBG Pi P2 Pr" 

Example 4 In Example 2, G = G2 EB G3. • 

Our next theorem is concerned with a class that is more general than finite abelian 
groups, the .finitely generated abelian groups. An abelian group G is said to be finitely 
generated if there exists a set of elements {a1, a2, . . .  , an} in G such that every x E G can 
be written in the form 

where each Zi is an integer. The elements ai are called generators of G, and the set 
{a1, a2, . . .  , an} is called a generating set for G. A finite abelian group G is surely a finitely 
generated group, since G itself is a generating set. 
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In a finitely generated group, the Well-Ordering Principle assures us that there are 

generating sets that have the smallest possible number of elements. Such sets are called 

minimal generating sets. The number of elements in a minimal generating set for G is 

called the rank of G. 

Theorem 4.44 • Direct Sum of Cyclic Groups 

Any finitely generated abelian group G (and therefore any finite abelian group) is a direct 

sum of cyclic groups. 

Induction Proof The proof is by induction on the rank of G. If G has rank 1, then G is cyclic and 

the theorem is true. 

Assume that the theorem is true for any group of rank k - 1, and let G be a group of 

rank k. We consider two cases. 

Case 1 Suppose there exists a minimal generating set {a1, a2, • • •  , ad for G such that 

any relation of the form 

z 1 ai + z2a2 + · · · + Z!Pk = 0 

with Zi E Z implies that z1a1 = z2a2 = · · · = Zkak = 0. Then 

G = (a1) + (a2) + · · · + (ak), 

and the theorem is true for this case. 

Case 2 Suppose that Case 1 does not hold. That is, for any minimal generating set 

{a 1, a2, ... , ak} of G, there exists a relation of the form 

z1a1 + z2a2 + ... + zkak = 0 

with Zi E Z such that some of the Ziai * 0. Among all the minimal generating sets and all 

the relations of this form, there exists a smallest positive integer zi that occurs as a coef

ficient in one of these relations. Suppose this zi occurs in a relation with the generating set 

{b1, b2, ... , bk}. If necessary, the elements in {b1, b2, ... , bd can be rearranged so that 

this smallest positive coefficient occurs as z1 with b1 in 

(1) 

Now let s1, s2, ... , sk be any set of integers that occur as coefficients in a relation of 

the form 

(2) 

with these generators bi. We shall show that z1 divides si. By the Division Algorithm, 

S1 = z1q1 + ri. where 0::::::: ri < Z1· Multiplying equation (1) by qi and subtracting the 

result from equation (2), we have 

r1b1 + (s2 - z2q1)b2 + · · · + (sk - zkq1)bk = 0. 
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The condition 0 :5 r1 < z1 forces ri = 0 by choice of z1 as the smallest positive integer in 

a relation of this form. Thus z1 is a factor of s1. 
We now show that z1 lz; for i = 2, ... , k. Consider z2, for example. By the Di

vision Algorithm, z2 = z1q2 + r2, where O < r2 < z1. If we let bf = b1 + q2b2, then 

{bi, b2, ... , bd is a minimal generating set for G, and 

z1b1 + z2b2 + · · · + zkbk = o 

=> z1(b� - qzb2) + z2b2 + · · · + zkbk = O 

=> z1Vi + (z2 - z1q2)b2 + · · · + zkbk = o 

=> z1b{ + rzb2 + ... + zkbk = 0. 

Now r2 -::/= 0 and 0 :5 r2 < z1 would contradict the choice of Zt> so it must be that r2 = 0 
and z1 lz2• The same sort of argument can be applied to each of z3, • • •  , zk> so we have 

z; = z1q; for i = 2, ... , k. Substituting in equation (1), we obtain 

z1b1 + z1q2b2 + · · · + z1qkbk = o. 

Let c1 = b1 + q2b2 + · · · + qkbk> and consider the set {c1, b2, ... , bk}. This set gen

erates G, and we have 

z1c1 = z1b1 + z1q2b2 + · · · + z1q�k 
= z1b1 + z2b2 + · · · + z�k 
= 0. 

If H denotes the subgroup of G that is generated by the set { b2, • • •  , bd, then G = 
(c1) + H since the set { c1, bz, ... , bd is a generating set for G. We shall show that the 

sum is direct. 

If s1, s2, ... , sk are any integers such that 

s1c1 + s2b2 + · · · + skbk = 0, 

then substitution for c1 yields 

s1b1 + (s1q2 + s2)b2 + · · · + (s1qk + sk)bk = 0. 

This implies that z1 divides s1, and therefore s1c1 = 0 since z1c1 = 0. Hence the sum is 

direct, and 

Since H has rank k - 1, the induction hypothesis applies to H, and H is a direct sum of 

cyclic groups. Therefore, G is a direct sum of cyclic groups, and the theorem follows by 

induction. 

We can now give a complete description of the structure of any finite abelian group G. 
As in Theorem 4.43, 

G=G EBG EB ··· EBG P1 P2 Pr 

where GP; is the Sylow p;-subgroup of order pj; corresponding to the prime Pi· Each GP; 

can in turn be decomposed into a direct sum of cyclic subgroups (a;,), each of which has 

order a power of Pi: 
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GP; = (ai, 1 ) EB (ai, 2) EB · · · EB (ai, 1) 

where the product of the orders of the subgroups (au) is pri. This description is frequently 
referred to as the Fundamental Theorem on Finite Abelian Groups. It can be used to 
systematically describe all the abelian groups of a given finite order, up to isomorphism. 

Example 5 For n a positive integer, let Cn denote a cyclic group of order n. 
If G is an abelian group of order 72 = 23 

• 32, then G is the direct sum of its Sylow 
p-subgroups Gz of order 23 and G3 of order 32: 

G = G2 EB G3• 

Each of G2 and G3 is a sum of cyclic groups as described in the preceding paragraph. By 
considering all possibilities for the decompositions of G2 and G3, we deduce that any abe
lian group of order 72 is isomorphic to one of the following direct sums of cyclic groups: 

C23 E11 C32 C23 EB C3 EB C3 
C2 El1 C22 EB C32 C2 EB C22 EB C3 EB C3 
C2 EB C2 EB C2 EB C32 C2 EB C2 EB C2 EB C3 EB C3• • 

The main emphasis of this section has been on finite abelian groups, but the results pre
sented here hardly scratch the surface. As an example of the interesting and important work 
that has been done on finite groups in general, we state the following theorem without proof. 

Theorem 4.45 • Sylow's Theorem 

Let G be a finite group, and let p be a prime integer. 

a. If m is a positive integer such that pm divides IGI and pm+ 1 does not divide IGI, then G 
has a subgroup of order pm. 

b. For the same prime p, any two Sylow p-subgroups of G are conjugate subgroups. 

c. If pdivides IGI, the number np of distinct Sylow p-subgroups of G satisfies np == l(modp). 

The result in part a of Theorem 4.45 can be generalized to state that if pm divides IGI 
and pm+ 1 does not divide IGI, then G has a subgroup of order pk for any k E Z such that 
0:::; k < m. 

Exercises 4.8 

True or False 

Label each of the following statements as either true or false. 

1. A p-group can be finite or infinite. 

2. Every p-group is abelian. 

3. Every p-group is cyclic. 
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Sec. 4.4, #14 � 

4. Every subgroup of a p-group is a p-group. 

5. Every Sylow p-subgroup of a group G is cyclic. 

6. If every nontrivial subgroup of a group G is a p-group, then G must be a p-group. 

Exercises 

1. Give an example of a p-group of order 9. 

2. Find two p-groups of order 4 that are not isomorphic. 

3. a. Find all Sylow 3-subgroups of the alternating group A4• 

b. Find all Sylow 2-subgroups of A4• 

4. Find all Sylow 3-subgroups of the symmetric group S4. 

5. For each of the following Zn, let G be the additive group G = Zn, and write G as a 
direct sum of cyclic groups. 

a. Z10 b. Z1s c. Z12 d. Z1s 

6. For each of the following values of n, describe all the abelian groups of order n, up to 
isomorphism. 

a. n = 6 b. n = 10 c. n = 12 

d. n = 18 e. n = 36 f. n = 100 

7. Let G be a group and g E G. Prove that if His a Sylow p-group of G, then so is gHg-1. 

8. Let G be a finite group, p prime, and Ha Sylow p-group. Prove that His normal in G 
if and only if His the only Sylow p-group in G. 

9. Determine which of the Sylow p-groups in each part of Exercise 3 are normal. 

10. Determine which of the Sylow 3-groups in Exercise 4 are normal. 

11. Show that {a1, az, ... , an} is a generating set for the additive abelian group G if and 
only if G = (a1) + (a2) + · · · + (an) · 

12. Give an example where G is a finite nonabelian group with order that is divisible by a 
prime p, and where the set of all elements that have orders that are powers of p is not 
a subgroup of G. 

13. If p1, p2, • • •  , Pr are distinct primes, prove that any two abelian groups that have order 
n = P1P2 · · · Pr are isomorphic. 

14. Suppose that the abelian group G can be written as the direct sum G = C22 EB C3 EB C3, 
where Cn is a cyclic group of order n. 

a. Prove that G has elements of order 12 but no element of order greater than 12. 

b. Find the number of distinct elements of G that have order 12. 
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4.8 Some Results on Finite Abelian Groups (Optional) 263 

15. Assume that G can be written as the direct sum G = C2 EB C2 EB C3 E9 C3, where Cn is 

a cyclic group of order n. 

a. Prove that G has elements of order 6 but no element of order greater than 6. 

b. Find the number of distinct elements of G that have order 6. 

16. Suppose that G is a cyclic group of order pm, where pis a prime. If k is any integer such 

that 0 :5 k :5 m, prove that G has a subgroup of order pk. 

17. Prove the result in Exercise 16 for an arbitrary abelian group G of order pm, where G 

is not necessarily cyclic. 

18. Prove that if G is an abelian group of order n and s is an integer that divides n, then G 

has a subgroup of orders. 
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A Pioneer in Mathematics 
Augustin Louis Cauchy (1789-1857) 

Augustin Louis Cauchy, a 19th-century French mathematician, has the 
distinction of being a major contributor to the development of modern 
calculus. The calculus that we know today is based substantially on 
his clear and precise definition of limits, which changed the whole 
complexion of the field. Cauchy's attention was not confined to 
calculus, though. In 1814, he began to develop the theory of functions 
of complex variables. He made significant contributions in the areas 
of differential equations, infinite series, probability, determinants, and 
mathematical physics, as well as abstract algebra. The current notation 
and terminology used for permutations are credited to Cauchy. 

A major theorem in the study of abelian groups (Theorem 4.39) was proved by Cauchy and 
thus was named for him. 

Cauchy was born in Paris on August 21, 1789. By the time he was 11 years old, French 
mathematicians recognized his rare talent. He went on to study civil engineering and spent 
the first few years of his career as an engineer in Napoleon's army, pursuing mathematical 
research on the side. For health reasons, he gave up engineering and began a teaching 
career that was mathematically fruitful in spite of political unrest in France. In 1830, Cauchy, 
an ardent supporter of King Charles X, refused to swear allegiance to the new government 
after the exile of the king. He lost his professorship and was forced to leave France for 
eight years. He subsequently taught in church schools and produced so many papers that 
the Academy of Sciences, alarmed at the printing bills that resulted, passed a rule limiting 
each paper to four pages. After the February Revolution of 1848, Cauchy was appointed 
professor of celestial mechanics at the Ecole Polytechnique, a position he retained for the 
rest of his career. 
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CHAPTER F I V E 

Rings, Integral 
Domains, and Fields 

• Introduction 

Rings, integral domains, and fields are introduced in this chapter. The field of quotients of an integral 

domain is constructed, and ordered integral domains are considered. The development of Zn continues 

in Section 5.1, where it appears for the first time in its proper context as a ring. 

[!!] Definition of a Ring 

A group is one of the simpler algebraic systems because it has only one binary operation. A 

step upward in the order of complexity is the ring. A ring has two binary operations called 

addition and multiplication. Conditions are made on both binary operations, but fewer are 

made on multiplication. A full list of the conditions is in our formal definition. 

Definition 5.1a • Definition of a Ring 

Suppose R is a set in which a relation of equality, denoted by =, and operations of addition 

and multiplication, denoted by + and ., respectively, are defined. Then R is a  ring (with 

respect to these operations) if the following conditions are satisfied: 

1. R is closed under addition: x E R and y E R imply x + y E R. 

2. Addition in R is associative: x + (y + z) = (x + y) + z for all x, y, z in R. 

3. R contains an additive identity 0: x + 0 = 0 + x = x for all x E R. 

4. R contains additive inverses: For x in R, there exists - x in R such that 

x + ( - x) = ( - x) + x = 0. 

5. Addition in R is commutative: x + y = y + x for all x, y in R. 

6. R is closed under multiplication: x E R and y E R imply x • y E R. 

7. Multiplication in R is associative: x • (y • z) = (x · y) • z for all x, y, z in R. 

8. Two distributive laws hold in R: x • (y + z) = x • y + x • z and (x + y) • z = 

x • z + y • z for all x, y, z in R. 

The notation xy will be used interchangeably with x · y to indicate multiplication. 

265 
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266 Chapter 5 Rings, Integral Domains, and Fields 

The additive identity of a ring is denoted by 0 and referred to as the zero of the ring. 

The additive inverse -a is called the negative of a or the opposite of a, and subtraction 

in a ring is defined by 

x- y=x + (-y). 

As in elementary algebra, we adhere to the convention that multiplication takes precedence 
ALERT over addition. That is, it is understood that in any expression involving multiplication and 

addition, multiplications are performed first. Thus xy + xz represents (x • y) + (x • z), not 

x(y + x)z. 
The statement of the definition can be shortened to a form that is easier to remember if 

we note that the first five conditions amount to the requirement that R be an abelian group 

under addition. 

Definition 5.1b • Alternative Definition of a Ring 

Suppose R is a set in which a relation of equality, denoted by =
, and operations of addition 

and multiplication, denoted by + and·, respectively, are defined. Then R is a  ring (with 

respect to these operations) if these conditions hold: 

1. R forms an abelian group with respect to addition. 

2. R is closed with respect to an associative multiplication. 

3. Two distributive laws hold in R: x · (y + z) = x · y + x • z and (x + y) • z = x • z + y · z 
for all x, y, z in R. 

Example 1 Some simple examples of rings are provided by the familiar number sys

tems with their usual operations of addition and multiplication: 

a. the set Z of all integers 

b. the set Q of all rational numbers 

c. the set R of all real numbers 

d. the set C of all complex numbers. • 

Example 2 We shall verify that the set E of all even integers is a ring with respect to 

the usual addition and multiplication in Z. The following conditions of Definition 5.la are 

satisfied automatically since they hold throughout the ring Z, which contains E. 

2. Addition in E is associative. 

5. Addition in E is commutative. 

7. Multiplication in E is associative. 

8. The two distributive laws in Definition 5. la hold in E. 

The remaining conditions in Definition 5.la may be checked as follows: 

1. If x E E and y E E, then x = 2m and y = 2n with m and n in Z. For the sum, we have 

x + y = 2m + 2n = 2(m + n), which is in E. Thus E is closed under addition. 

3. E contains the additive identity, since 0 = (2)(0). 

Copyright 2013 Cengage Leaming. AH Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materia11y affect the overall learning experience. Cengage Leaming reserves the right to remove additional content at any time if subsequent rights restrictions require it. 



5.1 Definition of a Ring 267 

4. For any x = 2k in E, the additive inverse of xis in E, since -x = 2(-k). 

6. For x = 2m and y = 2n in E, the product xy = 2(2mn) is in E, so E is closed under 

multiplication. • 

Definition 5.2 • Subring 

Whenever a ring R1 is a subset of a ring R2 and has addition and multiplication as defined 

in R2, we say that R1 is a subring of R2. 

Thus the ring E of even integers is a subring of the ring Z of all integers. From Example 1, 

we see that the ring Z is a subring of the rational numbers Q, the rational numbers Q form 

a subring of the real numbers R, and the real numbers R form a subring of the complex 

numbers C. 

Generalizing from Example 2, we may observe that conditions 2, 5, 7, and 8 of Defini

tion 5.la are automatically satisfied in any subset of a ring, leaving only conditions 1, 3, 4, 

and 6 to be verified for the subset to form a subring. A slightly more efficient characteriza

tion of subrings is given in the following theorem, the proof of which is left as an exercise. 

Theorem 5.3 • Equivalent Set of Conditions for a Subring 

A subset S of the ring R is a subring of R if and only if these conditions are satisfied: 

a. Sis nonempty. 

b. x E S and y E S imply that x + y and xy are in S. 

c. x ES implies -x ES. 

An even more efficient characterization of subrings is provided by the next theorem. 

The proof of this theorem is left as an exercise. 

Theorem 5.4 • Characterization of a Subring 

A subset S of the ring R is a subring of R if and only if these conditions are satisfied: 

a. Sis nonempty. 

b. x E S and y E S imply that x - y and xy are in S. 

Just as with groups, the subsets S = { 0} and S = R are always subrings of the ring R, 

with { 0} called the trivial subring. The phrase "the nontrivial subrings of R" refers to all 

the subrings of R except {O} and R itself. 

Example 3 Using Theorem 5.3 or Theorem 5.4, it is not difficult to verify the follow

ing examples of subrings. 

a. The set of all real numbers of the form m + n \/2, with m E Z and n E Z, is a subring 

of the ring of all real numbers. 

b. The set of all real numbers of the form a + b \/2, with a and b rational numbers, is a 

subring of the real numbers. 

c. The set of all real numbers of the form a + b� + c V4, with a, b, and c rational 

numbers, is a subring of the real numbers. • 
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268 Chapter 5 Rings, Integral Domains, and Fields 

The preceding examples of rings are all drawn from the number systems. The next 

example exhibits a class of rings with a different flavor: They are finite rings (that is, rings 

with a finite number of elements). The next example is also important because it presents the 

set Zn of congruence classes modulo n for the first time in its proper context as a ring. 

Example 4 For n > 1, let Zn denote the congruence classes of the integers modulo n: 

Zn= {[O J, [ l J, [2 J, ... , [n - l J}. 

We have previously seen that the rules 

[aJ+[bJ=[a+bJ and [aJ·[bJ=[abJ 
define binary operations of addition and multiplication in Zn. We have seen that Zn forms 

an abelian group under addition, with [OJ as the additive identity and [-aJ as the additive 
inverse of [a]. It has also been noted that Zn is closed with respect to multiplication and that 

this multiplication is associative. For arbitrary [a J, [b J, [ c J in Zn, we have 

[aJ • ([bJ + [cJ) = [aJ • [b + cJ 
= [a(b + c)J 
= [ab+ acJ 
= [ab J + [acJ 
= [aJ • [bJ + [aJ • [cJ, 

so the left distributive law holds in Zn. The right distributive law can be verified in a similar 
way, and Zn is a ring with respect to these operations. • 

Making use of some results from Chapter 1, we can obtain an example of a ring quite 

different from any of those previously discussed. 

Example 5 Let U be a nonempty universal set, and let W'(U) denote the collection of 

all subsets of U. 

For arbitrary subsets A and B of U, let A + B be defined as in Exercise 42 of Section 1.1: 

A + B = (AU B) -(An B). 

This rule defines an operation of addition on the subsets of U, W'(U) is closed with respect 
to this addition, and this operation is associative, by Exercise 42b of Section 1.1. This ad

dition is commutative, since A U B = B U A and A n B = B n A. The empty set 0 is an 

additive identity because 

0+A=A+0 
= (A U 0) -(A n 0) 
=A-0 
=A. 

An unusual feature here is that each subset A of U is its own additive inverse: 

A+ A= (AU A) -(An A) 
=A-A 
=0. 
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We define multiplication in C/P( U) by 

A· B =An B, 

and C/P(U) is closed with respect to this multiplication. Also multiplication is associative 

since 

A • (B • C) = A n (B n C) 
=(Ans) n c 

= (A • B) · C. 

The left distributive law A n (B + C) = (A n B) + (A n C) is part c of Exercise 42, 

Section 1.1, and the right distributive law follows from this one since forming intersections 

of sets is a commutative operation. Thus C/P(U) is a ring with respect to the operations + 

and · as we have defined them. • 

Definition 5.5 • Ring with Unity, Commutative Ring 

Let R be a ring. If there exists an element e in R such that x • e = e · x = x for all x in R, 

then e is called a unity, and R is a ring with unity. If multiplication in R is commutative, 

then R is called a commutative ring. 

ALERT A ring may have one of the properties in Definition 5.5 without the other, it may have 

neither, or it may have both of the properties. These possibilities are illustrated in the 

following examples. 

Example 6 The ring Z of all integers has both properties, so Z is a commutative ring 

with a unity. As other examples of this type, Zn is a commutative ring with unity [1], and 

C/P(U) is a commutative ring with the subset U as unity. • 

Example 1 The ring E of all even integers is a commutative ring, but E does not have 

a unity. • 

Example 8 It follows from our work in Sections 1.6, 3.1 and 3.3 that if n ::::::: 2, then 

each of the sets in the list 

is a noncommutative ring with unity In. Each of these four rings is a subring of every listed 

ring in which it is contained. • 

Example 9 The set 

Mz (E ) = {[ac �JI a, b, c, and dare in E} 
of all 2 X 2 matrices over the ring E of even integers is a noncommutative ring that does 

not have a unity. • 

The definition of a unity allows the possibility of more than one unity in a ring. 

However, this possibility cannot happen. 
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270 Chapter 5 Rings, Integral Domains, and Fields 

Theorem 5.6 • Uniqueness of the Unity 

If R is a  ring that has a unity, the unity is unique. 

Uniqueness Proof Suppose that both e and e
' are unity elements in a ring R. Consider the product 

e • e
' in R. On the one hand, we have e · e

' 
= e, since e

' is a unity. On the other hand, 
e • e

' 
= e

'
, since e is a unity. Thus 

e = e • e
' 

= e
'
, 

and the unity is unique. 

In general discussions, we shall denote the unity by e. When a ring R has a unity, it is 
in order to consider the existence of multiplicative inverses. 

Definition 5.7 • Multiplicative Inverse 

Let R be a ring with unity e, and let a ER. If there is an element x in R such that 
ax = xa = e, then x is a multiplicative inverse of a and a is called a unit (or an invertible 
element) in R. 

As with the unity, a multiplicative inverse of an element is unique whenever it exists. 
The proof of this is left as an exercise. 

Theorem 5.8 • Uniqueness of the Multiplicative Inverse 

Suppose R is a  ring with unity e. If an element a ER has a multiplicative inverse, the mul
tiplicative inverse of a is unique. 

We shall use the standard notation a-1 to denote the multiplicative inverse of a, if the 
inverse exists. 

Example 10 Some elements in a ring R may have multiplicative inverses whereas others 
do not. In the ring Z10, [1] and [9] are their own multiplicative inverses, whereas [3] and [7] are 
inverses of each other. All other elements of Z10 do not have multiplicative inverses, so the 
only units in Z10 are [1], [9], [3], and [7]. • 

Since every ring R forms an abelian group with respect to addition, many of our 
results for groups have immediate applications concerning addition in a ring. For example, 
Theorem 3.4 gives these results: 

1. The zero element in R is unique. 

2. For each x in R, -x is unique. 

3. For eachx in R, -(-x) = x. 

4. For any x and y in R, -(x + y) = -y - x. 

5. If a, x, and y are in R and a + x = a + y, then x = y. 
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5.1 Definition of a Ring 271 

Whenever both addition and multiplication are involved, the results are not so direct, 

but they turn out much as we might expect. One basic result of this type is that a product is 

0 if one of the factors is 0. 

Theorem 5.9 • Zero Product 

If R is a ring, then 

a·O=O·a=O 

for all a ER. 

Proof Let a be arbitrary in R. We reduce a • 0 to 0 by using various conditions in Defini

tion 5.la, as indicated: 

a • 0 = a • 0 + 0 by condition 3 

= a • 0 + {a • 0 + [ -(a • 0)]} by condition 4 

=(a· 0 +a· 0) +[-(a· O)] by condition2 

= [a • ( 0 + 0)] + [ -(a • 0)] by condition 8 

= a • 0 + [ -(a • 0)] by condition 3 

= 0 by condition 4. 

Similar steps can be used to reduce 0 · a to 0. 

Theorem 5.9 says that a product is 0 if one of the factors is 0. Note that the converse 

ALERT is not true: A product may be 0 when neither factor is 0. An illustration is provided by 

[2] · [5] = [OJ in the ring Z10. 

Definition 5.10 • Zero Divisor 

Let R be a ring and let a E R. If a =!= 0, and if there exists an element b =!= 0 in R such that 

either ab = 0 or ba = 0, then a is called a proper divisor of zero, or a zero divisor. 

If we compare the steps used in the proof of Theorem 5.9 to the last part of the proof of 

Theorem 2.2, we see that they are much the same. In the same fashion, the proof of the first 

part of the next theorem is parallel to another part of the proof of Theorem 2.2. The same 

sort of similarity exists between Exercises 1-10 of Section 2.1 and the remaining parts of 

Theorem 5 .11. Because of this similarity, their proofs are left as exercises. 

Theorem 5.11 • Additive Inverses and Products 

For arbitrary x, y, and z in a ring R, the following equalities hold: 

a. (-x)y = -(xy) 

c. (-x)(-y) = xy 

e. (x - y )z = xz - yz. 

b. x(-y) = -(xy) 

d. x(y - z) = xy - xz 

Copyright 2013 Cengage Leaming. AH Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materia11y affect the overall learning experience. Cengage Leaming reserves the right to remove additional content at any time if subsequent rights restrictions require it. 



272 Chapter 5 Rings, Integral Domains, and Fields 

Proof of a Since the additive inverse -(.xy) of the element.xy is unique, we only need to 
show thatxy + (-x)y = 0. We have 

xy + ( -x )y = [ x + ( -x) ]y by the right distributive law 

= 0. y 

=O 
by the definition of -x 

by Theorem 5.9. 

Even though a ring does not form a group with respect to multiplication, both associa
tive laws in a ring R can be generalized by the procedure followed in Definition 3.6 and 
Theorem 3.7. For any integer n > 2, the expressions ai + az + · · · + an and a1a2 

· · · 
an 

are defined recursively by 

a1 + a2 + · · · + ak + ak+ 1 = (a1 + a2 + · · · + ak) + ak+ 1 

and 

The details are too repetitive to present here, so we accept the following theorem without 
proof. 

Theorem 5.12 • Generalized Associative Laws 

Let n 2':: 2 be a positive integer, and let ai, az, ... , an denote elements of a ring R. For any 
positive integer m such that 1 < m < n, 

(a1 + a2 + · · · + am) + (am+l + · · · + an) = a1 + a2 + · · · + an 

and 

Generalized distributive laws also hold in an arbitrary ring. This fact is stated in the 
following theorem, with the proofs left as exercises. 

Theorem 5.13 • Generalized Distributive Laws 

Let n 2':: 2 be a positive integer, and let b, a1, a2, ... , an denote elements of a ring R. Then 
we have 

a. b(a1 + az + · · · +an)= ba1 + ba2 + · · · +ban, and 

b. (a1 + az + · · · + an)b = aib + azb + · · · + anb. 

Exercises 5.1 

True or False 

Label each of the following statements as either true or false. 

1. Every ring is an abelian group with respect to the operations of addition and multiplication. 

2. Let R be a ring. The set { 0} is a subring of R with respect to the operations in R. 
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Sec. 5.2, #la� 

Sec. 5.2, #lb� 

Sec. 5.2, #ld � 

Sec. 5.2, #le � 

Sec. 6.1, #29 � 

Sec. 6.4, #11, 12 � 

Sec. 5.2, #lh � 

Sec. 5.2, #4, 5 � 

3. Let R be a ring. Then R is a subring of itself. 
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4. Both E, the set of even integers, and Z - E, the set of odd integers, are subrings of the 
set Z of all integers. 

5. If one element in a ring R has a multiplicative inverse, then all elements in R must have 
multiplicative inverses. 

6. Let x and y be elements in a ring R. If xy = 0, then either x = 0 or y = 0. 

7. Let R be a ring with unity and Sa subring (with unity) of R. Then R and S must have 
the same unity elements. 

8. A unity exists in any commutative ring. 

9. Any ring with unity must be commutative. 

10. Zn is a subring of Z, where n E z+ and n > 1. 

Exercises 

1. Confirm the statements made in Example 3 by proving that the following sets are sub
rings of the ring of all real numbers. 

a. The set of all real numbers of the form m + n \/2, with m E Z and n E Z. 

b. The set of all real numbers of the form a + b \/2, with a and b rational numbers. 

c. The set of all real numbers of the form a + b V'2 + c \o/4, with a, b, and c rational 
numbers. 

2. Decide whether each of the following sets is a ring with respect to the usual opera
tions of addition and multiplication. If it is not a ring, state at least one condition in 
Definition 5 .1 a that fails to hold. 

a. The set of all integers that are multiples of 5. 

b. The set of all real numbers of the form m + n V3 with m E Z and n E Z. 

c. The set of all real numbers of the form a + b Vs, where a and b are rational numbers. 

d. The set of all real numbers of the form a + b Vs + c \o/25, where a, b, and c are 
rational numbers. 

e. The set of all positive real numbers. 

f. The set of all complex numbers of the form m + ni, where m E Z and n E Z. (This 
set is known as the Gaussian integers.) 

g. The set of all real numbers of the form m + n \/2, where m E E and n E Z. 

h. The set of all real numbers of the form m + n \/2, where m E Z and n E E. 

3. Let U = {a, b }. Using addition and multiplication as they are defined in Example 5, 
construct addition and multiplication tables for the ring CZP(U) that consists of the 
elements0,A ={a}, B = {b}, U. 

4. Follow the instructions in Exercise 3, and use the universal set U = {a, b, c}. 

5. Let U = {a, b }. Define addition and multiplication in CZP(U) by C + D = CUD and 
CD = C n D. Decide whether CZP( U) is a ring with respect to these operations. If it is 
not, state a condition in Definition 5 .1 a that fails to hold. 
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6. Work Exercise 5 using U = {a}. 

7. Find all zero divisors in Zn for the following values of n. 

Ln=6 �n=S 

c. n = 10 d. n = 12 

e. n = 14 f. n a prime integer 

8. For the given value of n, find all the units in Zn. 

a. n = 6 b. n = 8 

c. n = 16 d. n = 12 

e. n = 14 f. n a prime integer 

9. Prove Theorem 5.3: A subset S of the ring R is a  subring of R if and only if these condi

tions are satisfied: 

a. S is nonempty. 

b. x E S and y E S imply that x + y and xy are in S. 

c. x ES implies -x ES. 

10. Prove Theorem 5.4: A subset S of the ring R is a  subring of R if and only if these condi

tions are satisfied: 

a. S is nonempty. 

b. x E S and y E S imply that x - y and xy are in S. 

11. Assume R is a ring with unity e. Prove Theorem 5.8: If a E R has a multiplicative 

inverse, the multiplicative inverse of a is unique. 

12. (See Example 4.) Prove the right distributive law in Zn: 

([a]+ [b]) · [c] =[a]· [c] + [b] • [c]. 

13. Complete the proof of Theorem 5.9 by showing that 0 • a = 0 for any a in a ring R. 

14. Let R be a ring, and let x, y, and z be arbitrary elements of R. Complete the proof of 

Theorem 5 . 1 1  by proving the following statements. 

a. x(-y) = -(.xy) b. (-x)(-y) = xy 

c. x(y - z) = xy - xz d. (x - y )z = xz - yz 

15. Let a and b be elements of a ring R. Prove that the equation a + x = b has a unique solution. 

16. Suppose that G is an abelian group with respect to addition, with identity element 0. 
Define a multiplication in G by ab = 0 for all a, b E G. Show that G forms a ring with 

respect to these operations. 

17. If R 1 and R2 are subrings of the ring R, prove that R 1 n R2 is a subring of R. 

18. Find subrings Ri and Rz of Z such that Ri U Rz is not a subring of Z. 

19. Find a specific example of two elements a and bin a ring R such that ab = 0 and ba * 0. 

20. Find a specific example of two nonzero elements a and b in a ring R such that the equa

tions ax = b and ya = b have solutions x * y. 
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21. Define a new operation of addition in Z by x EB y = x + y - 1 with a new multiplication 

in Z by x 8 y = x + y - xy. 

a. Verify that Z forms a ring with respect to these operations. 

b. Is Z a commutative ring with respect to these operations? 

c. Find the unity, if one exists. 

22. Define a new operation of addition in Z by x EB y = x + y - 1 and a new multiplication 

in Z by x 0 y = 1. 

a. Is Z a commutative ring with respect to these operations? 

b. Find the unity, if one exists. 

23. Let R be a ring with unity and S be the set of all units in R. 

a. Prove or disprove that Sis a subring of R. 

b. Prove or disprove that S is a group with respect to multiplication in R. 

24. Prove that if a is a unit in a ring R with unity, then a is not a zero divisor. 

25. (See Exercise 8.) Describe the units of Zn. 

26. (See Example 8.) Describe the units of M2(R). 

27. Suppose that a, b, and c are elements of a ring R such that ab = ac. Prove that if a has 

a multiplicative inverse, then b = c. 

28. Let R be a ring with no zero divisors. Prove that if a, b, c, and d are elements in R such 

that ab = c =f::. 0 and ad = c =f::. 0, then b = d. 

29. For a fixed element a of a ring R, prove that the set {x ER I ax = O} is a subring of R. 

30. For a fixed element a of a ring R, prove that the set {xa Ix ER} is a subring of R. 

31. Let R be a ring. Prove that the set S = { x E R I xa = ax for all a E R} is a subring of R. 
This subring is called the center of R. 

32. Consider the set R = {[OJ, [2J, [4J, [6J, [8]} � Z10. 

a. Construct addition and multiplication tables for R, using the operations as defined in Z10. 

b. Observe that R is a commutative ring with unity [6], and compare this unity with 

the unity in Z10. 

c. Is R a subring of Z10? If not, give a reason. 

d. Does R have zero divisors? 

e. Which elements of R have multiplicative inverses? 

33. Consider the set S ={[OJ, [2J, [4J, [6J, [8J, [lOJ, [12J, [14J, [16]} � Z18. Using addition and 

multiplication as defined in Z18, consider the following questions. 

a. Is Sa ring? If not, give a reason. 

b. Is Sa commutative ring with unity? If a unity exists, compare the unity in S with the 

unity in Z1s. 

c. Is S a subring of Z1s? If not, give a reason. 

d. Does Shave zero divisors? 

e. Which elements of Shave multiplicative inverses? 
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34. The addition table and part of the multiplication table for the ring R = {a, b, c} are 

Sec. 6.2, #25 � given in Figure 5.1. Use the distributive laws to complete the multiplication table. 

+ a b c a b c 

a a b c a a a a 

b b c a b a c 

•Figure 5.1 
c c a b c a 

35. The addition table and part of the multiplication table for the ring R = {a, b, c, d} are 

Sec. 6.2, #26 � given in Figure 5.2. Use the distributive laws to complete the multiplication table. 

+ a b c d a b c d 

a a b c d a a a a a 

b b c d a b a c 

c c d a b c a a 

•Figure 5.2 
d d a b c d a a c 

Sec. 3.2, #4 � 

Sec. 5.2, #18 � 

Sec. 6.2, #4 � 

36. Give an example of a zero divisor in the ring M2(Z). 

37. Let a and b be elements in a ring R. If ab is a zero divisor, prove that either a orb is a 

zero divisor. 

38. An element x in a ring is called idempotent if x
2 

= x. Find two different idempotent 

elements in Mz(Z). 

39. (See Exercise 38.) Show that the set of all idempotent elements of a commutative ring 

is closed under multiplication. 

40. Let a be idempotent in a ring with unity. Prove e - a is also idempotent. 

41. Decide whether each of the following sets S is a subring of the ring M2(Z). If a set is 

not a subring, give a reason why it is not. If it is a subring, determine if S is commuta

tive and find the unity, if one exists. For those that have a unity, which elements in S 

have multiplicative inverses in S? 

a. S = { [; � J I x E Z} b. S = { [ � � J I x E Z} 
Sec. 6.1, #25 � C. S = { [; � J I x, Y E Z} d. S = { [ � � J I X, y, Z E Z} 

e. S = { [ � � J I x E Z} f. S = { [ � � J I x, y E Z} 
g. s = { [ � � J I x E z} h. s = { [ � �2 J I x E z} 
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Sec. 1.6, #23 � 
Sec. 5.2, #11 <ii' 

42. Let S = { [: -: J I a, b E R} . 

5.1 Definition of a Ring 277 

sec. 6.2, #20 <ii' a. Show that S is a commutative subring of M2(R). 

b. Find the unity, if one exists. 

c. Describe the units in S, if any. 

43. Lets= {[ a+ bi c + d�J I a,b,c,d E R} . 
-c +di a - bz 

a. Show that S is a noncommutative subring of M2(C). 

b. Find the unity element, if it exists. 

44. Consider the set T of all 2 X 2 matrices of the form [: : ] , where a and b are real 

numbers, with the same rules for addition and multiplication as in M2(R). 

a. Show that Tis a ring that does not have a unity. 

b. Show that Tis not a commutative ring. 

45. Prove the following equalities in an arbitrary ring R. 

a. (x + y)(z + w) = (xz + xw) + (yz + yw) 

b. (x + y)(z - w) = (xz + yz) - (xw + yw) 

c. (x - y)(z - w) = (xz + yw) - (xw + yz) 

d. (x + y)(x - y) = (x2 - y2) + (yx - xy) 

46. Let R be a set of elements containing the unity e, that satisfy all of the conditions in 

Definition 5.la, except condition 5: Addition is commutative. Prove that condition 5 

must also hold. 

47. Prove Theorem 5.13a. 

48. Prove Theorem 5.13b. 

49. An element a of a ring R is called nilpotent if an = 0 for some positive integer n. Prove 

Sec. 6.1, #33 <ii' that the set of all nilpotent elements in a commutative ring R forms a subring of R. 

Sec. 2.2, #25 � 

Sec. 3.1, #52 � 
Sec. 5.2, #21, 22 <ii' 
Sec. 6.2, #21, 22 <ii' 
Sec. 6.3, #2, 6, 7 <ii' 
Sec. 6.4, #24, 25 <ii' 

50. Let x and y be nilpotent elements that satisfy the following conditions in a commuta

tive ring R: Prove that x + y is nilpotent. 

a. x2 = 0, y3 = 0 

b. xn = 0, ym = 0 for some n, m E Z + 

51. Let R and S be arbitrary rings. In the Cartesian product R X S of R and S, define 

(r,s) = (r',s') if and only if r= r' ands = s', 

(ri.s1 ) + (r2,s2) = (r1 + r2, s1 + s2) , 

(r1 , s1 ) • (rz, Sz) = (r1rz, s1sz) . 

a. Prove that the Cartesian product is a ring with respect to these operations. It is 

called the direct sum of R and S and is denoted by R EB S. 

b. Prove that R EB S is commutative if both R and S are commutative. 

c. Prove that R EB S has a unity element if both R and S have unity elements. 

d. Give an example of rings R and S such that R EB S does not have a unity element. 
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52. (See Exercise 51.) 
a. Write out the elements of Z2 EB Z2 and construct addition and multiplication tables 

for this ring (Suggestion: Write 0 for [0], 1 for [1] in Zz.) 

b. Is Z2 EB Z2 a commutative ring? 

c. Identify the unity element, if one exists. 

d. Find all units, if any exist. 

e. Find all zero divisors, if any exist. 

f. Find all idempotent elements, if any exist. 

g. Find all nilpotent elements, if any exist. 

Sec. 3.1, #51 :P 53. Rework Exercise 52 with the direct sum Z2 EB Z4. 

Sec. 5.2, #23 � 

Sec. 6.3, #16 � 

54. a. Show that S1 = { [O], [2]} is a subring of Z4, and S2 = { [0], [3]} is a subring of Z6. 

b. Write out the elements of S1 EB S2, and construct addition and multiplication tables 

for this ring. 

c. Is S1 EB S2 a commutative ring? 

d. Find the unity in S 1 EB S2, if one exists. 

e. Find all units, if any exist. 

f. Find all zero divisors, if any exist. 

g. Find all idempotent elements, if any exist. 

h. Find all nilpotent elements, if any exist. 

55. Rework Exercise 54 with S1 = {[O], [3], [6]} � Z9 and S2 = {[O], [5]} � Z10. 

56. Suppose R is a ring in which all elements x are idempotent-that is, all x satisfy x2 
= x. 

(Such a ring is called a Boolean ring.) 

a. Prove that x = - x for each x E R. (Hint: Consider (x + x)2. ) 

b. Prove that R is commutative. (Hint: Consider (x + y)2. )  

� Integral Domains and Fields 

In the preceding section we defined the terms ring with unity, commutative ring, and zero 

divisors. All three of these terms are used in defining an integral domain. 

Definition 5.14 • Integral Domain 

Let D be a ring. Then D is an integral domain provided these conditions hold: 

1. D is a commutative ring. 

2. D has a unity e, and e =f=. 0. 
3. D has no zero divisors. 

ALERT Note that the requirement e =f=. 0 means that an integral domain must have at least two 

elements. 
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Example 1 The ring Z of all integers is an integral domain, but the ring E of all even 
integers is not an integral domain, because it does not contain a unity. As familiar examples 
of integral domains, we can list the set of all rational numbers, the set of all real numbers, and 
the set of all complex numbers-all of these with their usual operations. • 

Example 2 The ring Z10 is a commutative ring with a unity, but the presence of zero 
divisors such as [2] and [5] prevents Z10 from being an integral domain. Considered as a 
possible integral domain, the ring M2(R) of all 2 X 2 matrices with real numbers as elements 
fails on two counts: Multiplication is not commutative, and it has zero divisors. • 

In Example 4 of Section 5 .1, we saw that Zn is a ring for every value of n > 1. 
Moreover, Zn is a commutative ring since 

[a J • 
[ b J = [ab J = [ ba J = [ b J • 

[a J 

for all [a], [b] in Zn. Since Zn has [1] as the unity, Zn is an integral domain if and only if it 
has no zero divisors. The following theorem characterizes the Zn with no zero divisors, 
providing us with a large class of finite integral domains (that is, integral domains that have 
a finite number of elements). 

Theorem 5.15 • The Integral Domain Zn When n Is a Prime 

For n > 1, Zn is an integral domain if and only if n is a prime. 

Proof From the previous discussion, it is clear that we need to only prove that Zn has no 
zero divisors if and only if n is a prime. 

p ¢=. q Suppose first thatn is a prime. Let[a] =I=- [OJ in Zn, and suppose[a] [b] = [O] for some [b] in 
Zn. Now [a] [b] = [OJ implies that [ab] = [01 and therefore, nlab. However, [a] =I=- [OJ means 
that n{a. Thus nlab and n{a. Since n is a prime, this implies that nib, by Theorem 2.16 
(Euclid's Lemma); that is, [b] = [O} We have shown that if [a] =I=- [01 the only way that 

[a] [b] can be [OJ is for [b] to be [OJ. Therefore, Zn has no zero divisors and is an integral domain. 

�p ¢=. � q Suppose now that n is not a prime. Then n has divisors other than± 1 and ±n, so there 
are integers a and b such that 

n = ab where 1 <a< n and 1 < b < n. 

This means that [a J =I=- [OJ, [b J =I=- [OJ, but 

[a ] [b ] = [ab ] = [n ] = [O J. 

Therefore, [a J is a zero divisor in Zn, and Zn is not an integral domain. 
Combining the two cases, we see that n is a prime if and only if Zn is an integral 

domain. 

One direct consequence of the absence of zero di visors in an integral domain is that the 
cancellation law for multiplication must hold. 
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Theorem 5.16 • Cancellation Law for Multiplication 

If a, b, and care elements of an integral domain D such that a =F 0 and ab = ac, then b = c. 

(p /\ q):::::} r Proof Suppose a, b, and c are elements of an integral domain D such that a =F 0 and 

ab= ac. Now 

ab = ac :::::} ab - ac = 0 

=*a(b - c) = 0. 

Since a =F 0 and D has no zero divisors, it must be true that b - c = 0, and hence b = c. 

It can be shown that if the cancellation law holds in a commutative ring, then the ring 

cannot have zero divisors. The proof of this is left as an exercise. 

To require that a ring has no zero divisors is equivalent to requiring that a product of 

nonzero elements must always be different from 0. Or, stated another way, a product that 

is 0 must have at least one factor equal to 0. 
Afield is another special type of ring, and we shall examine the relationship between 

a field and an integral domain. We begin with a definition. 

Definition 5.17 • Field 

Let F be a ring. Then F is a field provided these conditions hold: 

1. Fis a commutative ring. 

2. F has a unity e, and e =F 0. 

3. Every nonzero element of F has a multiplicative inverse. 

The rational numbers, the real numbers, and the complex numbers are familiar exam

ples of fields. We shall see in Corollary 5.20 that if pis a prime, then Zp is a field. Other 

and less familiar examples of fields are found in the exercises for this section. 

Part of the relation between fields and integral domains is stated in the following 

theorem. 

Theorem 5.18 • Fields and Integral Domains 

Every field is an integral domain. 

p :::::} q Proof Let F be a field. To prove that F is an integral domain, we need to only show that 

F has no zero divisors. Suppose a and b are elements of F such that ab = 0. If a =F 0, then 

a-1 E F and 

ab= 0 ===? a-1(ab) = a-1 • 0 

===? (a-1a)b = 0 

===? eb = 0 

===? b = 0. 

Similarly, if b =F 0, then a = 0. Therefore, F has no zero divisors and is an integral domain. 
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ALERT It is certainly not true that every integral domain is a field. For example, the set Z of 

all integers forms an integral domain, and the integers 1 and - 1 are the only elements of 

Z that have multiplicative inverses. It is perhaps surprising, but an integral domain with a 

finite nwnber of elements is always a field. This is the other part of the relationship between 

a field and an integral domain. 

Theorem 5.19 • Finite Integral Domains and Fields 

Every finite integral domain is a field. 

p => q Proof Assume that D is a finite integral domain. Let n be the number of distinct ele

ments in D; say, 

where the di are the distinct elements of D. Now let a be any nonzero element of D, and 

consider the set of products 

These products are all distinct, for a =I= 0 and adr = ads would imply dr = ds, by 

Theorem 5.16, and the di are all distinct. These n products are all contained in D, and 

no two of them are equal. Hence they are the same as the elements of D, except possibly 

for order. This means that every element of D appears somewhere in the list 

In particular, the unity e is one of these products. That is, adk = e for some dk. Since mul

tiplication is commutative in D, we have dka = adk = e, and dk is a multiplicative inverse 

of a. Thus D is a field. 

Corollary 5.20 • The Field Zn When n Is a Prime 

Zn is a field if and only if n is a prime. 

Proof This follows at once from Theorems 5.15, 5.18, and 5.19. 

We have seen that the elements of a ring form an abelian group with respect to addition. 

A similar comparison can be made for the nonzero elements of a field. It is readily seen that 

the nonzero elements form an abelian group with respect to multiplication. The definition 

of a field can thus be reformulated as follows: A field is a set of elements in which equality, 

addition, and multiplication are defined such that the following conditions hold. 

1. F forms an abelian group with respect to addition. 

2. The nonzero elements of F form an abelian group with respect to multiplication. 

3. The distributive law x(y + z) = xy + xz holds for all x, y, z in F. 

The last example in this section points out that some of our most familiar rings do not 

form integral domains. 
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Sec. 5.1, #la� 
Sec. 5.3, #14 � 
Sec. 5.1, #lb� 

Sec. 5.1, #le� 

Sec. 5.1, #2f � 

Sec. 5.3, #15 � 

Sec. 5.1, #2h � 

Example 3 For n 2: 2, each of the rings 

Mn(Z), Mn(Q), Mn(R), Mn(C) 
is not an integral domain, since multiplication in each of them is not commutative. It is also 

true that each of them contains zero divisors if n 2: 2. For n = 2, the product 

[� �][� �] = [� �] 
illustrates this statement. Similar examples can easily be constructed for n > 2. • 

Exercises 5.2 

True or False 

Label each of the following statements as either true or false. 

1. An integral domain contains at least two elements. 

2. Every field is an integral domain. 

3. Every integral domain is a field. 

4. If a set S is not an integral domain, then S is not a field. 

Exercises 

1. Decide which of the following are integral domains and which are fields with respect 

to the usual operations of addition and multiplication. For each one that fails to be an 

integral domain or a field, state a reason. 

a. The set of all real numbers of the form m + n \/2, where m and n are integers. 

b. The set of all real numbers of the form a + b \/2, where a and b are rational numbers. 

c. The set of all real numbers of the form a + b Vl, where a and b are rational numbers. 

d. The set of all real numbers of the form a + bVl + c\14, where a, b, and care 

rational numbers. 

e. The Gaussian integers-that is, the set of all complex numbers of the form m + ni, 
where m E Z and n E Z. 

f. The set of all complex numbers of the form m + ni, where m E E and n E E. (E is 

the ring of all even integers.) 

g. The set of all complex numbers of the form a + bi, where a and b are rational numbers. 

h. The set of all real numbers of the form m + n \/2, where m E Z and n E E. 

2. Consider the set R = {[OJ, [2], [4], [6], [8]} � Z10, with addition and multiplication as 

defined in Z10. 
a. Is Ran integral domain? If not, give a reason. 

b. Is Ra field? If not, give a reason. 
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Sec. 5.1, #3 � 

Sec. 5.3, #9 � 
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3. Consider the set S = {[OJ, [2J, [4J, [6J, [8J, [lOJ, [12J, [14J, [16]} � Z18, with addition and 

multiplication as defined in Z1s-

a. Is San integral domain? If not, give a reason. 

b. Is Sa field? If not, give a reason. 

Examples 5 and 6 of Section 5.1 showed that !Ji>(U) is a commutative ring with unity. In 

Exercises 4 and 5, let U = {a, b}. 

4. Is !JP( U) an integral domain? If not, find all zero di visors in !JP( U). 

5. Is !Ji>(U) a field? If not, find all nonzero elements that do not have multiplicative inverses. 

6. Let S = {(0, 0), (1, 1), (0, 1), (1, O)}, where 0 = [OJ and 1 = [lJ are the elements of 

Z2. Equality, addition, and multiplication are defined in Sas follows: 

(a, b) = (e, d) if and only if a = e and b = din Z2, 

(a,b) + (e,d) = (a+ e,b + d), 

(a,b) • (e,d) = (ad+ be+ bd,ad +be+ ae). 

a. Prove that multiplication in S is associative. 

Assume that Sis a ring and consider these questions, giving a reason for any negative 

answers. 

b. Is Sa commutative ring? 

c. Does Shave a unity? 

d. Is San integral domain? 

e. Is Sa field? 

7. Let W be the set of all ordered pairs (x, y) of integers x and y. Equality, addition, and 

multiplication are defined as follows: 

(x, y ) = (z, w ) if and only if x = z and y = w in Z, 

(x,y ) + (z, w ) = (x + z,y + w ) , 

(x, y ) • (z, w ) = (xz - yw, xw + yz). 

Given that Wis a ring, determine whether Wis commutative and whether W has a 

unity. Justify your decisions. 

8. Let S be the set of all 2 X 2 matrices of the form [; �], where x is a real number. 

Assume that S is a ring with respect to matrix addition and multiplication. Answer the 

following questions, and give a reason for any negative answers. 

a. Is S a commutative ring? 

b. Does Shave a unity? If so, identify the unity. 

c. Is S an integral domain? 

d. Is Sa field? 

Copyright 2013 Cengage Leaming. AH Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materia11y affect the overall learning experience. Cengage Leaming reserves the right to remove additional content at any time if subsequent rights restrictions require it. 



284 Chapter 5 Rings, Integral Domains, and Fields 

Sec. 5.3, #9 � 

Sec. 5.1, #42 � 

Sec. 5.1, #38 � 

Sec. 7.2, #51 � 

9. Work Exercise 8 using S as the set of all 2 X 2 matrices of the form [� �], where x 

is a real number. 

10. 

11. 

Work Exercise 8 using Sas the set of all matrices of the form [a 
. b are mtegers. 

-b] 
a 

, where a and b 

[a -b] 
Let R be the set of all matrices of the form 

b a 
, where a and b are real numbers. 

Assume that R is a commutative ring with unity with respect to matrix addition and 
multiplication. Answer the following questions and give a reason for any negative 
answers. 

a. Is R an integral domain? 

b. Is R a  field? 

12. Consider the Gaussian integers modulo 3, that is, the set S = {a + bi I a, b E Z3} 
{O, 1, 2, i, 1 + i, 2 + i, 2i, 1 + 2i, 2 + 2i}, where we write 0 for [0], 1 for [1], and 2 
for [2] in Z3. Addition and multiplication are as in the complex numbers except that 
the coefficients are added and multiplied as in Z3. Thus i2 = -1 as in the complex 
numbers and -1 = 2 in Z3. 

a. Is S a commutative ring? 

b. Does S have a unity? 

c. Is San integral domain? 

d. Is Sa field? 

13. Work Exercise 12 using S = {a + bi I a, b E Zs}, the Gaussian integers modulo 5. 

14. Let R be a commutative ring with unity in which the cancellation law for multiplication 
holds. That is, if a, b, and c are elements of R, then a =f=. 0 and ab = ac always imply 
b = c. Prove that R is an integral domain. 

15. Give an example of an infinite commutative ring with no zero divisors that is not an 
integral domain. 

16. Prove that if a subring R of an integral domain D contains the unity element of D, then 
R is an integral domain. 

17. If e is the unity in an integral domain D, prove that ( - e )a = - a for all a E D. 

18. Prove that the only idempotent elements in an integral domain are 0 and e. 

19. a. Give an example where a and b are not zero divisors in a ring R, but the sum a + b 
is a zero divisor. 

b. Give an example where a and bare zero divisors in a ring R with a + b =f=. 0, and 
a + bis not a zero divisor. 

c. Prove that the set of all elements in a ring R that are not zero divisors is closed under 
multiplication. 

20. Find the multiplicative inverse of the given element. (See Example 4 of Section 2.6.) 

a. [11 Jin Z317 b. [11 Jin Z13s c. [9] in Z242 d. [6] in Z319 
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Sec. 5.1, #51 � 21. Prove that if Rand S are integral domains, then the direct sum R EB S is not an integral 
domain. 

Sec. 5.1, #51 � 22. Prove that if Rand S are fields, then the direct sum R EB S is not a field. 

Sec. 5.1, #56 � 23. Let R be a Boolean ring with unity e. Prove that every element of R except 0 and e is 
a zero divisor. 

24. If a * 0 in a field F, prove that for every b E F the equation ax = b has a unique 
solution x in F. 

25. Suppose S is a subset of a field F that contains at least two elements and satisfies 
both of the following conditions: x ES and y ES imply x - y ES, and x ES and 
y * 0 E S imply xy-1 E S. Prove that S is a field. This S is called a subfield of F. 

� The Field of Quotients of an Integral Domain 

The example of an integral domain that is most familiar to us is the set Z of all integers, 
and the most familiar example of a field is the set of all rational numbers. There is a very 
natural and intimate relationship between these two systems. In fact, a rational number 
is by definition a quotient a/b of integers a and b, with b * O; that is, the set of rational 
numbers is the set of all quotients of integers with nonzero denominators. For this reason, 
the set of rational numbers is frequently referred to as "the quotient field of the integers." 
In this section, we shall see that an analogous field of quotients can be constructed for an 
arbitrary integral domain. 

Before we present this construction, let us review the basic definitions of equality, 
a 

addition, and multiplication in the rational numbers. We recall that for rational numbers -
e b 

and-
d' 

a e 

d 
if and only if ad= be, 

b 
a e ad+ be 
- + -= ---

b d bd 
a e ae 
-

. 
-=-

b d bd" 

Note that the definitions of equality, addition, and multiplication for rational numbers are 
based on the corresponding definitions for the integers. These definitions guide our con
struction of the quotient field for an arbitrary integral domain D. 

Our first step in this construction is the following definition. 

Definition 5.21 • A Relation on Ordered Pairs 

Let D be an integral domain and let S be the set of all ordered pairs (a, b) of elements of 
D withb -::F 0: 

S = { (a, b) I a, b E D and b -=f:. 0}. 
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Lemma 5.22 

The relation - is defined on S by 

(a, b) - (e, d) if and only if ad = be. 

The relation - is an obvious imitation of the equality of rational numbers, and we can 

show that it is indeed an equivalence relation on S. 

• The Equivalence Relation -

The relation - in Definition 5.21 is an equivalence relation on S. 

Proof We shall show that - is reflexive, symmetric, and transitive. Let (a, b), (e, d), and 

(f, g) be arbitrary elements of S. 

Reflexive 1. (a, b) - (a, b), since the commutative multiplication in D implies that ab = ba. 

Symmetric 2. (a, b) - ( e, d) => ad = be by definition of -

=> da = cb or cb = da since multiplication is commutative in D 

=> (c, d) - (a, b) by definition of 

Transitive 3. Assume that (a, b) - (e, d) and (e, d) - ( f, g). 

(a, b) - (e, d) => ad= be => adg =beg} 
(c, d) - (f, g) => cg= df => beg= bdf 

=> adg = bdf 

Using the commutative property of multiplication in D once again, we have t 

dag = dbf 

where d =f=. 0, and therefore 

ag =bf 

by Theorem 5.16. According to Definition 5.21, this implies that (a, b) - (f, g). 
Thus - is an equivalence relation on S. 

The next definition reveals the basic plan for our construction of the quotient field of D. 

Definition 5.23 • The Set of Quotients 

LetD, S, and - be the same as in Definition 5.21 and Lemma 5.22. For each (a, b) in S, let 

[a, b] denote the equivalence class in S that contains (a, b), and let Q denote the set of all 

equivalence classes [a, b J : 

Q ={[a, b ] l(a, b) ES}. 

The set Q is called the set of quotients for D. 

tu is tempting here to use ad= be and cg = df to obtain (ad)( cg) = (bc)(df), but this would not imply that 
ag = bf, because c might be zero. 
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We shall at times need the fact that for any x :f. 0 in D and any [a, b] in Q, 

[a, b]  = [ax, bx]. 

This follows at once from the equality a(bx) = b(ax) in the integral domain D. 

Lemma 5.24 • Addition and Multiplication in Q 

The following rules define binary operations on Q. Addition in Q is defined by 

[a, b ]  + [c, d] = [ad + be, bd], 

and multiplication in Q is defined by 

[a, b J • [c, d] = [ac, bd]. 

Proof We shall verify that the rule stated for addition defines a binary operation on Q. For 

arbitrary [a, b] and [ c, d] in Q, we have b :f. 0 and d :f. 0 in D. Since D is an integral domain, 

b :f. 0 and d :f. 0 imply bd :f. 0, so [a, b] + [c, d] = [ad+ be, bd] is an element of Q. 
To show that the sum of two elements is unique (or well-defined), suppose that 

[a, b] = [x, y] and [c, d] = [z, w] in Q. We need to show [a, b] + [c, d] = [x, y] + [z, w]. Now 

[a,b] + [c,d] =[ad+ bc,bd] 

and 

[x, y J + [z, w J = [xw + yz, yw]. 

To prove these elements equal, we need 

or 

We have 

and 

(ad+ bc)yw = bd(xw + yz) 

adyw + bcyw = bdxw + bdyz. 

[a,b]  = [x,y]  ==> ay =bx 

==> (ay )(dw) = (bx)(dw) 

==> adyw = bdxw 

[c,d] = [z,w] ==>cw= dz 

==> (cw) (by) = (dz) (by) 

==> bcyw = bdyz. 

By adding corresponding sides of equations, we obtain 

adyw + bcyw = bdxw + bdyz. 

Thus [a, b] + [c, d] = [x, y] + [z, w]. 
It can be similarly shown that multiplication as defined by the given rule is a binary 

operation on Q. 
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It is important to note that the set of all ordered pairs of the form (0, x), where x =f= 0, 

forms a complete equivalence class that can be written as [O, b] for any nonzero element b 
of D. With these preliminaries out of the way, we can now state our theorem. 

Theorem 5.25 • The Quotient Field 

Let D be an integral domain. The set Q as given in Definition 5.23 is a field, called the 

quotient field of D with respect to the operations defined in Lemma 5.24. 

Proof We first consider the postulates for addition. It is left as an exercise to prove that 

addition is associative. The zero element of Q is the class [O, b ], since 

[x,y] + [O,b] = [x · b + y • O,y • b] = [xb,yb] = [x,y], 

and similar steps show that 

[O,b] + [x,y] = [x,y]. 

The equality [xb, yb] = [x, y] follows from the fact that b =f= 0, as was pointed out just after 

Definition 5.23. Routine calculations show that [-a, b] is the additive inverse of [a, b] in 

Q and that addition in Q is commutative. The verification of the associative property for 

multiplication is left as an exercise. 

We shall verify the left distributive property and leave the other as an exercise. Let 

[x, y], [z, w], and [u, v] denote arbitrary elements of Q. We have 

and 

[x,y] • ([z, w] + [u, vJ) = [x,y] [zv + wu, wv] 

= [xzv + xwu, ywv J 

[x, y] • [z, w J + [x, y] • [u, v] = [xz, yw] + [xu, yv J 

= [xyzv + xywu, y2wv] 

= [y(xzv + xwu), y(ywv) ]. 

Comparing the results of these two calculations, we see that the last one differs from the 

first only in that both elements in the pair have been multiplied by y. Since [x, y] in Q 

requires y =f= 0, these results are equal. 

Since multiplication in D is commutative, we have 

[a, b] • [c, d] = [ac, bd] 

= [ca, db J 

= [c, d] ·[a, b]. 

Thus Q is a commutative ring. 

Let b =f= 0 in D, and consider the element [b, b] in Q. For any [x, y] in Q we have 

[x, y] • [b, b J = [xb, yb J 

= [x,y], 
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so [b, b] is a right identity for multiplication. Since multiplication is commutative, [b, b] is 
a nonzero unity for Q. 

We have seen that the zero element of Q is the class [O, b]. Thus any nonzero element 
has the form [c, d], with both c and d nonzero. But then [d, c] is also in Q, and 

[c, d ]  • [d, c ]  = [cd, de] 

= [d, d ], 

so [d, c] is the multiplicative inverse of [c, d] in Q. This completes the proof that Q is 
a field. 

Note that in the proof of Theorem 5.25, the unity e in D did not appear explicitly 
anywhere. In fact, the construction yields a field if we start with a commutative ring that 
has no zero divisors instead of with an integral domain. However, we make use of the unity 
of D in Theorem 5.27. 

The concept of an isomorphism can be applied to rings as well as to groups. The 
definition is a very natural extension of the concept of a group isomorphism. Since there 
are two binary operations involved in the definition of a ring, we simply require that both 
operations be preserved. 

Definition 5.26 • Ring Isomorphism 

Let R and R' denote two rings. A mapping <f>: R � R' is a ring isomorphism from R to R' 
provided the following conditions hold: 

1. <f> is a one-to-one correspondence (a bijection ) from R to R'. 

2. <f>(x + y) = <f>(x) + <f>(y) for all x and yin R. 

3. <f>(x • y) = <f>(x) • <f>(y) for all x and yin R. 

If an isomorphism from R to R' exists, we say that R is isomorphic to R'. 

Of course, the term ring isomorphism may be applied to systems that are more than a 
ring; that is, there may be a ring isomorphism that involves integral domains or fields. The 
relation of being isomorphic is reflexive, symmetric, and transitive on rings, just as it was 
with groups. 

The field of quotients Q of an integral domain D has a significant feature that has not 
yet been brought to light. In the sense of isomorphism, it contains the integral domain D. 
More precisely, Q contains a subring D' that is isomorphic to D. 

Theorem 5.27 • Subring of Q Isomorphic to D 

Let D and Q be as given in Definition 5.23, and let e denote the unity of D. The set D' 
that consists of all elements of Q that have the form [x, e] is a subring of Q, and D is 
isomorphic to D'. 

Proof Referring to Definition 5. la, we see that conditions 2, 5, 7, and 8 are automatically 
satisfied in D', and we need to only check conditions 1, 3, 4, and 6. 
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For arbitrary [x, e] and [y, e] in D', we have 

[x,e]+ [y,e]= [x·e+y·e,e·e] 

= [x + y, e], 

and D' is closed under addition. The element [O, e] is in D', so D' contains the zero element 

of Q. For [x, e] in D', the additive inverse is [-x, e], an element of D'. Finally, the calculation 

[x, e] • [y, e] = [xy, e] 

shows that D' is closed under multiplication. Thus D' is a subring of Q. 

To prove that D is isomorphic to D', we use the natural mapping </>: D ---+ D' defined by 

<f>(x) = [x,e]. 

The mapping </> is obviously a one-to-one correspondence. Since 

and 

</>(x + y) = [x + y,e] 

= [x, e J + [y, e] 

= <f>(x) + </>(y) 

</>(x • y) = [xy, e] 

= [ x, e J • [y, e] 

= <f>(x) • </>(y ), 

</> is a ring isomorphism from D to D'. 

Thus the quotient field Q contains D in the sense of isomorphism. We say that D is 

embedded in Q or that Q is an extension of D. More generally, if Sis a ring that contains 

a subring R' that is isomorphic to a given ring R, we say that R is embedded in S or that S 

is an extension of R. 

There is one more observation about Q that should be made. For any nonzero [b, e J in 

v: the multiplicative inverse of [b, e] in Q is [b, er1 = [e, b], and every element of Q can 

be written in the form 

[a, b]  = [a, e] • [e, b ]  = [a, e] • [b, e]-1• 

If the isomorphism </> in the proof of Theorem 5.27 is used to identify x in D with [x, e J in 

v: then every element of Q can be identified as a quotient ab-1 of elements a and b of D, 

with b-=/=- 0. 

From this, it follows that any field F that contains the integral domain D must also con

tain Q because F must contain b-1 for each b =F 0 in D and must also contain the product 

ab-1 for all a ED. Thus Q is the smallest field that "contains" D. 

If the construction presented in this section is carried out beginning with D = Z, the 

field Q of rational numbers is obtained, with the elements written as [a, b] instead of a/b. 
The isomorphism</> in the proof of Theorem 5.27 maps an integer x onto [x, l], which is 

playing the role of x/l in the notation, and we end up with the integers embedded in the 

rational numbers. The construction of the rational numbers from the integers is in this way 

a special case of the procedure described here. 
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Sec. 5.2, #7, 10 � 

Exercises 5.3 

True or False 

5.3 The Field of Quotients of an Integral Domain 291 

Label each of the following statements as either true or false. 

1. The field Q of rational numbers is an extension of the integral domain Z of integers. 

2. The field R of real numbers is an extension of the integral domain Z of integers. 

3. The field of quotients Q of an integral domain D contains D. 

4. The field of quotients Q of an integral domain D contains a subring D' = {[x, e J Ix E D, 

and e is the unity in D}. 

5. A field of quotients can be constructed from an arbitrary integral domain. 

Exercises 

1. Prove that the multiplication defined in Lemma 5.24 is a binary operation on Q. 

2. Prove that addition is associative in Q. 

3. Show that [-a, b] is the additive inverse of [a, b] in Q. 

4. Prove that addition is commutative in Q. 

5. Prove that multiplication is associative in Q. 

6. Prove the right distributive property in Q: 

([x, y] + [z, w J) · [u, v ] = [x, y] · [u, v ] + [z, w] • [u, v ] . 

7. Prove that on a given set of rings, the relation of being isomorphic has the reflexive, 

symmetric, and transitive properties. 

8. Assume that the ring R is isomorphic to the ring R'. Prove that if R is commutative, 

then R' is commutative. 

9. Let Wbe the ring in Exercise 7 of Section 5.2, and let She the ring in Exercise 10 of the 

same section. Given that Wand S are isomorphic rings, define an isomorphism from W 

to S and prove that your mapping is an isomorphism. 

10. Since this section presents a method for constructing a field of quotients for an 

arbitrary integral domain D, we might ask what happens if D is already a field. As 

an example, consider the situation when D = Zs. 

a. With D = Zs, write out all the elements of S, sort these elements according to the 

relation - , and then list all the distinct elements of Q. 

b. Exhibit an isomorphism from D to Q. 

11. Work Exercise 10 with D = Z3. 

12. Prove that if D is a field to begin with, then the field of quotients Q is isomorphic to D. 

13. Just after the end of the proof of Theorem 5.25, we noted that the construction in 

the proof yields a field if we start with a commutative ring that has no zero divisors. 

Assume this is true, and let F denote the field of quotients of the ring E of all even 

integers. Prove that F is isomorphic to the field of rational numbers. 
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Sec. 5.2, #la� 14. Let D be the set of all real numbers of the form m + nVl, where m, n E Z. Carry 

out the construction of the quotient field Q for this integral domain, and show that this 

quotient field is isomorphic to the set of real numbers of the form a + bVl where a 

and b are rational numbers. 

Sec. 5.2, #le� 15. Let D be the Gaussian integers, the set of all complex numbers of the form m + ni, 
where m E Z and n E Z. Carry out the construction of the quotient field Q for this 

integral domain, and show that this quotient field is isomorphic to the set of all com

plex numbers of the form a + bi, where a and b are rational numbers. 

16. Prove that any field that contains an integral domain D must contain a subfield isomor

phic to the quotient field Q of D. 

17. Assume R is a  ring, and let S be the set of all ordered pairs (m, x) where m E Z and 

x E R. Equality in S is defined by 

( m, x) = ( n, y) if and only if m = n and x = y. 
Addition and multiplication in S are defined by 

(m, x) + (n, y) = (m + n, x + y) 
and 

(m, x) • (n, y) = (mn, my + nx + xy ), 
where my and nx are multiples of y and x in the ring R. 

a. Prove that S is a ring with unity. 

b. Prove that <f>: R--+ S defined by <f>(x) = (0, x) is an isomorphism from R to a sub

ring R' of S. This result shows that any ring can be embedded in a ring that has a 

unity. 

18. Let T be the smallest subring of the field Q of rational numbers that contains ! . Find a 

description for a typical element of T. 

� Ordered Integral Domains 

In Section 2.1 we assumed that the set Z of all integers satisfied a list of five postulates. The 

last two of these postulates led to the introduction of the order relation "greater than" in Z, 

and to the proof of the Well-Ordering Theorem (Theorem 2.7). In this section, we follow a 

development along similar lines in a more general setting. 

Definition 5.28 • Ordered Integral Domain 

An integral domain D is an ordered integral domain if D contains a subset v+ that has 

the following properties: 

1. v+ is closed under addition. 

2. v+ is closed under multiplication. 
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3. For each x ED, one and only one of the following statements is true: 

x E D� x = 0, -x E D� 

Such a subset n+ is called a set of positive elements for D. 

Analogous to the situation in Z, condition 3 in Definition 5.28 is referred to as the law 

of trichotomy, and an elementx ED such that -x En+ is called a negative element of D. 

Example 1 The integral domain Z is, of course, an example of an ordered integral 
domain. With their usual sets of positive elements, the set of all rational numbers and 
the set of all real numbers furnish two other examples of ordered integral domains. • 

Later, we shall see that not all integral domains are ordered integral domains. 
Following the same sort of procedure that we followed with the integers, we can use 

the set of positive elements in an ordered integral domain D to define the order relation 
"greater than" in D. 

Definition 5.29 • Greater Than 

Let D be an ordered integral domain with n+ as the set of positive elements. The relation 
greater than, denoted by >, is defined on elements x and y of D by 

x > y if and only if x - y ED� 

The symbol> is read "greater than." Similarly,< is read "less than." We definex < y 
if and only if y > x. As direct consequences of the definition, we have 

x > 0 if and only if x E n+ 

and 

x < 0 if and only if -x ED� 

The three properties of n+ in Definition 5.28 translate at once into the following properties 
of> inD. 

1. If x > 0 and y > 0, then x + y > 0. 

2. If x > 0 and y > 0, then xy > 0. 

3. For each x ED, one and only one of the following statements is true: 

x > 0, x = 0, x < 0. 

The other basic properties of > are stated in the next theorem. We prove the first two 
and leave the proofs of the others as exercises. 

Theorem 5.30 • Properties of> 

Suppose that D is an ordered integral domain. The relation > has the following properties, 
where x, y, and z are arbitrary elements of D. 

a. If x > y, then x + z > y + z. 

b. If x > y and z > 0, thenxz > yz. 
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294 Chapter 5 Rings, Integral Domains, and Fields 

c. If x > y and y > z, then x > z. 

d. One and only one of the following statements is true: 

x > y, x = y, x < y. 

p:::::} q Proof of a If x > y, then x - y ED+, by Definition 5.29. Since 

(x + z) - (y + z) = x + z - y - z 

= x - y, 

this means that (x + z) - (y + z) E v+, and therefore x + z > y + z. 

(p /\ q):::::} r Proof of b Suppose x > y and z > 0. Then x - y ED+ and z ED+. Condition 2 of 
Definition 5.28 requires that v+ be closed under multiplication, so the product (x - y)z 
must be in D+. Since (x - y)z = xz - yz, we have xz - yz E D+, and therefore xz > yz. 

Our main goal in this section is to characterize the integers as an ordered integral domain 
that has a certain type of set of positive elements. As a first step in this direction, we prove 
the following simple theorem, which may be compared to Theorem 2.5. 

Theorem 5.31 • Square of a Nonzero Element 

For any x =F 0 in an ordered integral domain D, x2 Ev+. 

p:::::}q Proof Supposex =F OinD.By condition3ofDefinition5.28,eitherxED+ or-xED+. 
If x E D+, then x2 = x • x is in D+ since D+ is closed under multiplication. If - x E D+, 
then x2 = x • x = (-x)(-x) is in D+, again by closure of v+ under multiplication. In 
either case, we have x2 Ev+. 

Corollary 5.32 • The Unity Element 

In any ordered integral domain, e Ev+. 

Proof This follows from the fact that e = e2. 

The preceding theorem and its corollary can be used to show that the set C of all com
plex numbers does not form an ordered integral domain. Suppose, to the contrary, that C does 
contain a set c+ of positive elements. By Corollary 5.32, 1 E c+, and therefore -1 $. c+ by 
the law of trichotomy. Theorem 5.31 requires, however, that i2 = -1 be inc+' and we have 
a contradiction. Therefore, C does not contain a set of positive elements. In other words, it is 

ALERT impossible to impose an order relation on the set of complex numbers. 
In the next definition, we use the symbol < with its usual meaning. Similarly, we later 

use the symbol � with its usual meaning and without formal definition. 

Definition 5.33 • Well-Ordered Subset 

A nonempty subset S of an ordered integral domain D is well-ordered if for every non
empty subset T of S, there is an element m E T such that m :::; x for all x E T. Such an ele
ment m is called a least element of T. 
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5.4 Ordered Integral Domains 295 

Thus S =I= 0 in D is well-ordered if every nonempty subset of S contains a least ele
ment. We proved in Theorem 2.7 that the set of all positive integers is well-ordered. 

The next step toward our characterization of the integers is the following theorem. 

Theorem 5.34 • Well-Ordered D+ 

If Dis an ordered integral domain in which the set D+ of positive elements is well-ordered, 
then 

a. e is the least element of D+ and 

b. D+ = {neln E z+}. 

p => q Proof We have e ED+ by Corollary 5.32. To prove that e is the least element of D+, let 
T be the set of all x Ev+ such that e > x > 0, and assume that T is nonempty. Since v+ 
is well-ordered, T has a least element m, and 

e > m > 0. 

Using Theorem 5.30b and multiplying by m, we have 

m • e > m2 > m • 0. 

That is, 

m > m2 > 0, 

and this contradicts the choice of m as the least element of T. Therefore, T is empty and e 
is the least element of v+. 

p => r Now let S be the set of all n E z+ such that ne ED+. We have 1 ES since 
1 e = e E D +. Assume that k E S. Then ke E D +, and this implies that 

(k + 1 )e = ke + e 

is in S, since D+ is closed under addition. Thus k ES implies k + 1 ES, and S = z+ by 
the induction postulate for the positive integers. This proves that 

D+ ;::2 {ne In E z+}. 

In order to prove that D+ � {neln E z+}, let L be the set of all elements of D+ that 
are not of the form ne with ne E z+, and suppose that L is nonempty. Since D+ is well
ordered, L has a least element e. It must be true that 

e > e, 

since e is the least element of D+, and therefore .e - e > 0. Now 

e > 0 :::::} e + ( -e) > 0 + ( -e) by Theorem 5 .30a 

:::::} 0 > -e 

:::::} -C>-C- e by Theorem 5.30a. 

We thus have f > .e - e > 0. By choice off as least element of L, .e - e (/:. L, so 

f - e = pe for some p E Z +. 
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This implies that 

e = pe + e 

= (p + l)e, wherep + 1 E z+, 

and we have a contradiction to the fact that e is an element that cannot be written in the 
form ne with n E z+. Therefore, L = 0, and 

D+ = {ne In E z+}. 

We can now give the characterization of the integers toward which we have been 
working. 

Theorem 5.35 • Isomorphic Images of Z 

If D is an ordered integral domain in which the set D+ of positive elements is well-ordered, 
then D is isomorphic to the ring Z of all integers. 

(p /\ q) => r Proof We first show that 

D = {neln E Z}. 

For an arbitrary x ED, the law of trichotomy requires that exactly one of the following 
holds: 

x E D� x = 0, -x E D� 

Ifx ED+, thenx = ne for somen E z+, byTheorem5.34b. Ifx = 0, thenx = Oe. Finally, 
if -x ED+, then -x =me for m E z+, and therefore,t x = - (me)= (-m)e, where 
-m E Z. HenceD = {neln E Z}. 

Consider now the rule defined by 

<f>(ne) = n, 

for any ne in D. To demonstrate that this rule is well-defined, it is sufficient to show that 
each element of D can be written as ne in only one way. To do this, suppose me = ne. 
Without loss of generality, we may assume that m 2: n. Now 

me = ne ==> me - ne = 0 

==> (m - n)e = 0. 

Ifm - n > 0, then (m - n)e ED+ byTheorem5.34b. Therefore,it must be thatm - n = 0 

and m = n. This shows that the rule </> ( ne) = n defines a mapping </> from D to Z. 
If </>(me) = </>(ne), then m = n, so me = ne. Hence </> is one-to-one. An arbitrary 

n E Z is the image of ne E D under </>, so </> is an onto mapping. 
To show that </> is a ring isomorphism, we need to verify that 

</>(me + ne) = </>(me) + <f>(ne) 

tThe equality -(me) = ( -m )e is the additive fonn of the familiar property of exponents (am)-1 = a-m in a 
group. 
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and also that 

</>(me • ne) = </>(me) • </>(ne). 

From the laws of multiples in Section 3.2, we know that me + ne = (m + n)e, and it fol

lows that 

</>(me + ne) = </> [ (m + n)e J 
=m+n 
= </>(me) + </>(ne). 

To show that</> preserves multiplication, we need the fact that me • ne = (mn)e. This fact is 

a consequence of the generalized distributive laws stated in Theorem 5 .13 and other results 

from Section 5 .1. We leave the details of this proof as Exercise 9 at the end of this section. 

Using me· ne = (mn)e, we have 

</> (me • ne) = </> [ ( mn) e J 
= mn 
= </>(me) · <f>(ne). 

Exercises 5.4 

True or False 

Label each of the following statements as either true or false. 

1. Every integral domain contains a set of positive elements. 

2. It is impossible to impose an order relation on the set C of complex numbers. 

3. In any ordered integral domain, the unity element e is a positive element. 

4. The set R of real numbers is an ordered integral domain. 

5. The set of all integers is well-ordered. 

Exercises 

1. Complete the proof of Theorem 5.30 by proving the following statements, where x, y, 

and z are arbitrary elements of an ordered integral domain D. 

a. If x > y and y > z, then x > z. 

b. One and only one of the following statements is true: 

x > y, x = y, x < y. 

2. Prove the following statements for arbitrary elements x, y, z of an ordered integral 

domainD. 

a. If x > y and z < 0, thenxz < yz. 

b. If x > y and z > w, then x + z > y + w. 

c. If x > y > 0, then x2 > y2. 
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Sec. 7.3, #28 � 

d. If x =f:. 0 in D, then x2n > 0 for every positive integer n. 

e. If x > 0 and xy > 0, then y > 0. 

f. If x > 0 and xy > xz, then y > z. 

3. Prove the following statements for arbitrary elements in an ordered integral domain. 

a. a> b implies -b > -a. 

b. a > e implies a2 > a. 

c. If a> band c > d, where a, b, c, and dare all positive elements, then ac > bd. 

4. Suppose a and b have multiplicative inverses in an ordered integral domain. Prove 
each of the following statements. 

a. If a > b > 0, then b-1 > a-1 > 0. 

b. If a < 0, then a-1 < 0. 

5. Prove that the equation x2 + e = 0 has no solution in an ordered integral domain. 

6. Prove that if a is any element of an ordered integral domain D, then there exists an 
element b E D such that b > a. (Thus D has no greatest element, and no finite integral 
domain can be an ordered integral domain.) 

7. For an element x of an ordered integral domain D, the absolute value Ix I is defined by 

lxl = { x 

-x 

a. Prove that I-xi = lxl for all x ED. 

b. Prove that - lxl '.'.':::: x '.'.':::: lxl for all x ED. 

if x � 0 

if 0 > x. 

c. Prove that lxyl = lxl · lyl for allx,yED. 

d. Prove that Ix + YI '.'.':::: lxl + IYI for all x, y ED. 

e. Prove that llxl - IYll < Ix - YI for all x, y ED. 

8. If x and y are elements of an ordered integral domain D, prove the following inequalities. 

a. x2- 2xy + y2 � o 

b. x2 + y2 � xy 

c. x2 + y2 > -xy 

9. If e denotes the unity element in an integral domain D, prove that me • ne = ( mn )e for 
allm, n E Z. 

10. An ordered field is an ordered integral domain that is also a field. In the quotient field 
Q of an ordered integral domain D, define Q+ by 

Q+ ={[a, b] I ab Ev+}. 

Prove that Q+ is a set of positive elements for Q and hence, that Q is an ordered field. 

11. (See Exercise 10.) According to Definition 5.29, > is defined in Q by [a, b] > [c, d] if 
and only if [a, b] - [c, d] E Q+. Show that [a, b] > [c, d] if and only if 
abd2 - cdb2 ED+. 
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5.4 Ordered Integral Domains 299 

12. (See Exercises 10 and 11.) If each x ED is identified with [x, e] in Q, prove that 
v+ � Q+. (This means that the order relation defined in Exercise 10 coincides in D 
with the original order relation in D. We say that the ordering in Q is an extension of 
the ordering in D.) 

13. Prove that if x and y are rational numbers such that x > y, then there exists a rational 
number z such that x > z > y. (This means that between any two distinct rational 
numbers there is another rational number.) 

14. a. If D is an ordered integral domain, prove that each element in the quotient field Q 
of D can be written in the form [a, b] with b > 0 in D. 

b. lf[a, b] E Q with b > 0 in D, prove that [a, b] E Q+ if and only if a > 0 in D. 

15. (See Exercise 14.) If [a, b] and [c, dJ E Q with b > 0 and d > 0 in D, prove that 
[a, b] > [c, d] if and only if ad > be in D. 

16. If x and y are positive rational numbers, prove that there exists a positive integer n 
such that nx > y. This property is called the Archimedean Property of the rational 
numbers. (Hint: Write x = a/b andy = c/d with each of a, b, c, d E z+.) 
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A Pioneer in Mathematics 
Richard Dedekind (1831-1916) 

Julius Wilhelm Richard Dedekind, born on October 6, 1831, in 

Brunswick, Germany, has been called "the effective founder 

of abstract algebra" by the mathematics historian Morris Kline. 

Dedekind introduced the concepts of a ring and an ideal; in 

fact, he coined the terms ring, ideal, and field. His Dedekind 

cuts provided a technique for construction of the real numbers. 

Far ahead of his time, he built a foundation for further 

developments in ring and ideal theory by the famous algebraist 

Emmy Noether (1882-1935). 

At the age of 21, Dedekind earned his doctorate 

in mathematics working under Carl Friedrich Gauss (1777-1855) at the University of 

Gottingen. He taught at the university for a few years and presented the first formal 

lectures on Galois theory to an audience of two students. For four years, beginning in 

1858, he was a professor in Zurich, Switzerland. Dedekind spent the next 50 years of his 

life in Brunswick, teaching in a technical high school that he had once attended. He died on 

February 12, 1916. 
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CHAPTER SIX 

More on Rings 

• Introduction 

The basic theorems on quotient rings and ring homomorphisms are presented in this chapter, along 
with a section on the characteristic of a ring and a section on maximal ideals. The development of 
Zn culminates in Section 6.1 with the final description of Zn as a quotient ring of the integers by the 
principal ideal (n). 

� Ideals and Quotient Rings 

In this chapter, we develop some theory of rings that parallels the theory of groups pre

sented in Chapters 3 and 4. We shall see that the concept of an ideal in a ring is analogous 

to that of a normal subgroup in a group. 

Definition 6.1a • Definition of an Ideal 

The subset I of a ring R is an ideal of R if the following conditions hold: 

1. I is a subring of R. 

2. x E I and r E R imply that xr and rx are in I. 

Note that the second condition in this definition requires more than closure of I under 

ALERT multiplication. It requires that I "absorbs" multiplication by arbitrary elements of R, both 

on the right and on the left. 

In more advanced study of rings, the type of subring described in Definition 6.la 

is referred to as a "two-sided" ideal, and terms that are more specialized are introduced: 

A right ideal of R is a subring S of R such that xr E S for all x E S, r E R, and a left 
ideal of R is a subring S of R such that rx E S for all x E S, r E R. Here we only mention 

these terms in passing, and observe that these distinctions cannot be made in a commuta

tive ring. 

The subrings I = { 0} and I = R are always ideals of a ring R with { 0} labeled as the 

trivial ideal. The phrase "the nontrivial ideals of a ring R" refers to all the ideals of R 

except { 0} and R itself. 

If R is a ring with unity e and I is an ideal of R that contains e, then it can be shown that 

it must be true that I= R (see Exercise 14). 

301 
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302 Chapter 6 More on Rings 

Example 1 In Section 5.1, we saw that the set E of all even integers is a subring of 

the ring Z of all integers. To show that condition 2 of Definition 6. la holds, let x E E and 

m E Z. Since x E E, x = 2k for some integer k. We have 

xm = mx = m(2k) = 2(mk), 

so xm = mx is in E. Thus E is an ideal of Z. 

It is worth noting that E is also a subring of the ring Q of all rational numbers, but E 

ALERT is not an ideal of Q. Condition 2 fails with x = 4 E E and r = t E Q, but xr = � is not 

in E. • 

In combination with Theorem 5.3, Definition 6. la provides the following checklist of 

conditions that must be satisfied in order that a subset I of a ring R be an ideal: 

1. I is nonempty. 

2. x E I and y E I imply that x + y and xy are in I. 

3. x E I implies -x E I. 

4. x E I and r E R imply that xr and rx are in I. 

The multiplicative closure in the second condition is implied by the fourth condition, so it 

may be deleted to obtain an alternative form of the definition of an ideal. 

Definition 6.1b • Alternative Definition of an Ideal 

A subset I of a ring R is an ideal of R provided the following conditions are satisfied: 

1. I is nonempty. 

2. x E I and y E I imply x + y E I. 

3. x EI implies -x E /. 

4. x E I and r E R imply that xr and rx are in /. 

A more efficient checklist is given in Exercise 1 at the end of this section. 

Example 2 In Exercise 41d of Section 5.1, we saw that the set 

S = { [ � �JI a, b, c E Z} 
forms a noncommutative ring with respect to the operations of matrix addition and multi

plication. In this ring S, consider the subset 

which is clearly nonempty. Since 

[� �] + [� �] = [� x + YJ 
0 

' 
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6.1 Ideals and Quotient Rings 303 

I is closed under addition. And since 

-[o b] = [o -bJ 
0 0 0 0 ' 

I contains the additive inverse of each of its elements. For arbitrary [� �] in S, we 
have 

[o b] [x YJ = [o bz] and [x YJ [o b] = [o xb] 
0 0  O z  0 0 O z  0 0  0 O '  

and both of these products are in I. Thus I is an ideal of S. • 

Example 3 Example 8 of Section 5.1 introduced the ring M = M2(R) of all 2 X 2 
matrices over the real numbers R, and Exercise 44 of Section 5.1 introduced the subring T 
of M, given by 

For arbitrary [: : J E T, [; : J E M, the product 

[; :J[: a] = [xa + yb 
b za + wb 

xa + yb J 
za + wb 

is in T, so T absorbs multiplication on the left by elements of M. However, the product 

[: :] [; y ] = [ax+ az 
w bx+ bz 

ay +aw] 
by+ bw 

is not always in T, and T does not absorb multiplication on the right by elements of M. This 
failure keeps T from being an idealt of M. • 

Example 1 may be generalized to the set of all multiples of any fixed integer n. That 
is, the set { nk I k E Z } of all multiples of n is an ideal of Z. Instead of proving this fact, we 
establish the following more general result. 

Example 4 Let R be a commutative ring with unity e. For any fixed a ER, we shall 
show that the set 

(a) = {arlr ER} 

is an ideal of R. 

tr could be said to be a left ideal of M. 
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This set is nonempty, since a = ae is in (a). Let x = ar and y = as be arbitrary ele

ments of (a), where r E R, s E R. Then 

x + y = ar + as = a( r + s), 

where r + s ER, so (a) is closed under addition. We also have 

-x = -(ar) = a(-r), 

where -r ER, so (a) contains additive inverses. For arbitrary t ER, 

tx = xt = (ar)t = a(rt), 

where rt E R. Thus tx = xt is in (a) for arbitrary x E (a), t E R, and (a) is an ideal 

of R. • 

This example leads to the following definition. 

Definition 6.2 • Principal Ideal 

If a is a fixed element of the commutative ring R with unity, the ideal 

(a) = { ar I r E R}, 

which consists of all multiples of a by elements r of R, is called the principal ideal gener

ated by a in R. 

ALERT Any commutative ring R with unity e can be expressed as the principal ideal (e) since 

any r ER can be written as r =er. For example, Z = (1). In fact, every ideal of the ring of 

integers Z is a principal ideal, a result important enough to be stated in the next theorem. 

Theorem 6.3 • Ideals in Z 

In the ring Z of integers, every ideal is a principal ideal. 

p:::::} q Proof The trivial ideal {O} is certainly a principal ideal, {O} = (0). Consider then an 

ideal I of Z such that I '* { 0}. Since I '* { 0}, I contains an integer m '* 0. And since I 
contains both m and -m, it must contain some positive integers. Let n be the least positive 

integer in/. (Such an n exists, by the Well-Ordering Theorem.) For an arbitrary k E /, the 

Division Algorithm asserts that there are integers q and r such that 

k = nq + r with 0 :::; r < n. 

Solving for r, we have 

r = k - nq, 

and this equation shows that r E /, since k and n are in I and I is an ideal. That is, r is an 

element of I such that 0 :::; r < n, where n is the least positive element of/. This forces the 

equality r = 0, and therefore, k = nq. It follows that every element of I is a multiple of n, 
and therefore I= (n). 

A generalization of Definition 6.2 is stated next. 
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Defnition 6.4 • Ideal generated by a1, a2, ... , ak 

Let R be a commutative ring with unity. For elements a1, a2, ... , ak in R, then 

(a1, az, ... , ak) = {a1r1 + azrz + · · · + akrk I ri, rz, ... , rk ER} 

is the ideal generated by ai, az, ... , ak. 

The verification that (ai, a2, • • •  , ak) as defined in Definition 6.4 is, in fact, an ideal 
of R is requested in Exercise 12. 

Part of the analogy between ideals of a ring and normal subgroups of a group lies in the 
fact that ideals form the basis for a quotient structure much like the quotient group formed 
from the cosets of a normal subgroup. 

To begin with, a ring R is an abelian group under addition, and any ideal I of R is a 
normal subgroup of this additive group. Thus we may consider the additive quotient group 
R/1 that consists of all the cosets 

r +I= I+ r = {r +xix E J} 

of I in R. From our work in Chapter 4, we know that 

a + I = b + I if and only if a - b E /, 

that 

(a + 1) + (b + 1) = (a + b) + I, 

and that R/1 is an abelian group with respect to this operation of addition. 

Strategy • If the defining rule for a possible binary operation is stated in terms of a certain type of 
representation for the elements, then the rule does not define a binary operation unless 
the result is independent of the representation for the elements-that is, unless the rule is 
well-defined. 

In order to make a ring from the cosets in R/1, we consider a multiplication defined by 

(a + l)(b + 1) = ab + I. 

We must show that this multiplication is well-defined. That is, we need to show that if 

a + I = a' + I and b + I = b' + I, 

then 

Now 

Thus 

ab+ I= a'b' +I. 

a + I = a' + I ==> a = a' + x where x E I 

b + I= b' + I ==> b = b' + y where y E /. 

ab= (a'+ x)(b' + y) = a'b' + a'y + xb' + xy. 

Since x E /, y E /, and I is an ideal, each of a'y, xb', and xy is in I. Therefore, their sum 

z = a'y + xb' + xy 

Copyright 2013 Cengage Leaming. AH Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materia11y affect the overall learning experience. Cengage Leaming reserves the right to remove additional content at any time if subsequent rights restrictions require it. 



306 Chapter 6 More on Rings 

is in/, and z + I = I. This gives 

ab+ I= a'b' + z +I= a'b' +I 

and our product is well-defined. 

Theorem 6.5 • The Ring of Cosets 

Let I be an ideal of the ring R. Then the set R/I of additive cosets r + I of I in R forms a 

ring with respect to coset addition 

(a + I) + (b + I) = (a + b) + I 

and coset multiplication 

(a + I)(b + I) = ab + I. 

Proof Assume I is an ideal of R. We noted earlier that the additive quotient group R/I is 

an abelian group with respect to addition. 

We have already proved that the product 

(a + I)(b + I) = ab + I 

is well-defined in R/I, and closure under multiplication is automatic from the definition of 

this product. That the product is associative follows from 

(a + I) [ ( b + I) ( c + I) J = (a + I) (be + I) 

= a(bc) +I 

= (ab )c + I since multiplication is associative in R 

= (ab + I)(c + I) 

=[(a+ I)(b + I)](c +I). 

Verifying the left distributive law, we have 

(a+ I)[(b +I)+ (c +I)]= (a+ I)[(b + c) +I] 

= a(b + c) +I 

= (ab + ac) + I from the left distributive law in R 

= (ab + I) + (ac + I) 

= (a+ I)(b +I) + (a+ I)(c +I). 

The proof of the right distributive law is similar. Leaving that as an exercise, we conclude 

that R/I is a ring. 

Definition 6.6 • Quotient Ring 

If I is an ideal of the ring R, the ring R/I described in Theorem 6.5 is called the quotient 
ring of R by 1.t 

t R/ I is also known as "the ring of residue classes modulo the ideal /." 
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Example 5 In the ring Z of integers, consider the principal ideal 

(4) = {4klk E Z}. 

The distinct elements of the ring Z/ ( 4) are 

(4) = { ... ,-8,-4,0,4,8, ... } 

1 + (4) = { ... , - 7, -3, 1, 5, 9, ... } 

2 + ( 4) = { ... , -6, - 2, 2, 6, 10, ... } 

3 + (4) = { ... , -5, -1, 3, 7, 11, ... }. 

We see, then, that these cosets are the same as the elements of Z4: 

( 4) = [O ], 1 + (4) = [1], 2 + (4) = [2], 3 + (4) = [3]. 

Moreover, the addition 

{a + (4)} + {b + (4)} = {a+ b} + (4) 

agrees exactly with 

[a]+ [b]= [a+b] 

in Z4, and the multiplication 

{a+ (4)}{b + (4)} = ab+ (4) 

agrees exactly with 

[a][b] =[ab] 

in Z4. Thus Z/ ( 4) is our old friend Z4. Put another way, Z4 is the quotient ring of the inte

gers Z by the ideal (4). • 

The specific case in Example 5 generalizes at once to an arbitrary integer n > 1, and 

we see that Zn is the quotient ring of Z by the ideal (n). This is our final and best description 

of Zn. 
As a final remark to this section, we note that 

(a + I) ( b + I) = ab + I 
=I= {xylx E a + I and y Eb + /}. 

As a particular instance, consider I= (4) as in Example 5. We have 

( 0 + I) ( 0 + I) = 0 + I = I. 

However, 

{xy Ix E 0 + I and y E 0 + /} = {16rlr E Z}, 

since x = 4p and y = 4q for p, q E Z imply xy = l6pq. 
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Exercises 6.1 

True or False 

Label each of the following statements as either true or false. 

1. Every ideal of a ring R is a subring of R. 
2. Every subring of a ring R is an ideal of R. 
3. The only ideal of a ring R that contains the unity e is the ring R itself. 

4. Any ideal of a ring R is a normal subgroup of the additive group R. 
5. The only ideals of the set of real numbers R are the ideals { 0} and R. 

6. Every ideal of Z is a principal ideal. 

7. For n > 1, the quotient ring of Z by the ideal (n) is Zn. 

8. If I is an ideal of S where Sis a subring of a ring R, then I is an ideal of R. 

Exercises 

1. Let I be a subset of the ring R. Prove that I is an ideal of R if and only if I is nonempty 

and x - y, xr, and rx are in I for all x and y E /, r E R. 

2. a. Complete the proof of Theorem 6.5 by proving the right distributive law in R/I. 
b. Prove that R/I is commutative if R is commutative. 

c. Prove that R/I has a unity if R has a unity. 

3. Prove or disprove each of the following statements. 

a. The set Q of rational numbers is an ideal of the set R of real numbers. 

b. The set Z of integers is an ideal of the set Q of rational numbers. 

4. If Ii and [z are two ideals of the ring R, prove that Ii n [z is an ideal of R. 

5. If { h}, A E :£, is an arbitrary collection of ideals /A of the ring R, prove that nAE.'.£ /A 
is an ideal of R. 

6. Find two ideals Ii and [z of the ring Z such that 

a. Ii U [z is not an ideal of Z. 

b. Ii U /2 is an ideal of Z. 

7. Let I be an ideal of a ring R, and let S be a subring of R. Prove that I n Sis an ideal of S. 

8. If Ii and /2 are two ideals of the ring R, prove that the set 

/1 + 12 = {x + y I x E /1, y E /2} 

is an ideal of R that contains each of Ii and [z. The ideal Ii + 12 is called the sum of 

ideals Ii and [z. 

9. Find the principal ideal (z) of Z such that each of the following sums as defined in 

Exercise 8 is equal to (z). 

a. (2) + (3) b. (4) + (6) c. (5) + (10) d. (a)+ (b) 
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10. Let Ii and /2 be ideals of the ring R. Prove that the set 

1112 = {a1b1 + a2b2 + · · · + anbnla; E li.b; E 12,n E z+} 

is an ideal of R. The ideal Iih is called the product of ideals Ii and h 

11. Find a principal ideal (z) of Z such that each of the following products as defined in 

Exercise 10 is equal to (z). 
a. (2) (3) b. (4) (5) c. (4) (8) d. (a) (b) 

12. Let R be a commutative ring with unity. If a1, a2, ... , ak ER, prove that 

I= {a1r1 + azr2 + · · · + akrk I r1, r1, ... , rk ER} 

is an ideal of R. 

13. Verify each of the following statements involving the ideal generated by (a1, a2, ... , ak) 

in the ring of integers Z. 

a. (2, 3) = Z b. (2, 5) = z c. ( 10, 15) = (5) 

d. (4, 6, 8) = (2) e. ( 10, 15, 25) = (5) f. (a, b) = (gcd (a, b)) 

14. Let l be an ideal in a ring R with unity e. Prove that if e E /,then I = R. 

15. Let I be an ideal in a ring R with unity. Prove that if I contains an element a that has a 

multiplicative inverse, then l = R. 

16. Prove that if R is a field, then R has no nontrivial ideals. 

17. In the ring Z of integers, prove that every subring is an ideal. 

18. Let a =I=- 0 in the ring of integers Z. Find b E Z such that a =I=- b but (a) = (b). 

19. Let m and n be nonzero integers. Prove that (m) � (n) if and only if n divides m. 

20. If a and b are nonzero integers and m is the least common multiple of a and b, prove 

that (a) n (b) = (m). 

Sec. 6.2, #27 � 21. Prove that every ideal of Zn is a principal ideal. (Hint: See Corollary 3.27.) 

22. Let [a] E Zn- Prove ([a]) = ([n - a]). 

23. Find all distinct principal ideals of Zn for the given value of n. 

a. n = 7 b. n = 1 1  c. n = 12 

d. n = 18 e. n = 20 f. n = 24 

24. If R is a commutative ring and a is a fixed element of R, prove that the set la = 

{ x E RI ax = 0} is an ideal of R. (The set la is called the annihilator of a in the ring R.) 

Sec. 5.1, #4ld � 25. Given that the set 

Sec. 6.2, #7 � 

S = {[� �Jlx,y,z E Z } 
is a ring with respect to matrix addition and multiplication, show that 

is an ideal of S. 
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26. Show that the set 

I= M2(E) = { [a
c 
:JI a, b, c, and dare in E} 

of all 2 X 2 matrices over the ring E of even integers is an ideal of the ring M2(Z). 

27. With S as in Exercise 25, decide whether or not the set 

U = { [ � : ] I a, b E Z} 
is an ideal of S, and justify your answer. 

28. a. Show that the set 

R = { [; �] I x, y E z } 
is a ring with respect to matrix addition and multiplication. 

b. Is R commutative? 

c. Does R have a unity? 

d. Decide whether or not the set 

Sec. 6.2, #8 � is an ideal of R, and justify your answer. 

Sec. 5.1, #2f � 29. Let G be the set of Gaussian integers { m + ni Im, n E Z}. Let 

I= {a + bila E Z, b EE}. 

Sec. 6.4, #2-4 � 

Sec. 6.4, #16, 17 � 

Sec. 6.4, #19, 20 � 

a. Prove or disprove that I is a subring of G. 

b. Prove or disprove that I is an ideal of G. 

30. a. For a fixed element a of a commutative ring R, prove that the set I= {arlr ER} 
is an ideal of R. (Hint: Compare this with Example 4, and note that the element a 
itself may not be in this set I.) 

b. Give an example of a commutative ring R and an element a ER such that 
a fl. (a) = {arlr ER}. 

31. Let R be a commutative ring that does not have a unity. For a fixed a ER, prove that 
the set 

(a) = {na + rain E Z, r ER} 

is an ideal of R that contains the element a. (This ideal is called the principal ideal of 
R that is generated by a.) 

32. a. Let I be an ideal of the commutative ring R and a E R. Prove that the set 

S = {ar + sir ER, s E /} 

is an ideal of R containing /. 

b. If e ER and a fl./, show that/CS. 
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Sec. 5.1, #49 � 33. An element a of a ring R is called nilpotent if an 
= 0 for some positive integer n. Show 

that the set of all nilpotent elements in a commutative ring R forms an ideal of R. (Tiris 

Sec. 6.2, #24b � ideal is called the radical of R.) 

34. If I is an ideal of R, prove that the set 

K1 = {x E R l xa = 0 for all a EI} 
is an ideal of R. The set K1 is called the annihilator of the ideal I. Note the difference 

between K1 and Ia (of Exercise 24 ), where K1 is the annihilator of an ideal and Ia is the 

annihilator of an element a of R. 

35. Let R be a commutative ring with unity whose only ideals are { 0} and R itself. Prove 

that R is a  field. (Hint: See Exercise 30.) 

36. Suppose that R is a commutative ring with unity and that I is an ideal of R. Prove that 

the set of all x E R such that xn E I for some positive integer n is an ideal of R. 

� Ring Homomorphisms 

We turn our attention now to ring homomorphisms and their relations to ideals and quo

tient rings. 

Definition 6.7 • Ring Homomorphism 

If R and R' are rings, a ring homomorphism from R to R' is a mapping 0: R � R' such that 

O(x + y) = O(x) + O(y) and 0(.xy) = O(x)O(y) 
for all x and y in R. 

That is, a ring homomorphism is a mapping from one ring to another that preserves 

both ring operations. This situation is analogous to the one where a homomorphism 

from one group to another preserves the group operation, and it explains the use of the 

term homomorphism in both situations. It is sometimes desirable to use either the term 

ALERT group homomorphism or the term ring homomorphism for clarity, but in many cases, 

the context makes the meaning clear for the single word homomorphism. If only groups 

are under consideration, then homomorphism means group homomorphism, and if only 

rings are under consideration, homomorphism means ring homomorphism. 

Some terminology for a special type of homomorphism is given in the following 

definition. 

Definition 6.8 • Ring Epimorphism, Isomorphism 

Let(} be a homomorphism from the ring R to the ring R'. 

1. If(} is onto, then (} is called an epimorphism and R' is called a homomorphic image of R. 

2. If(} is a one-to-one correspondence (both onto and one-to-one), then(} is an isomorphism. 
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Example 1 Consider the mapping 0: Z �Zn defined by 

O(a) = [a]. 

Since 

O(a + b) = [a + b J = [a] + [b J = O(a) + O(b) 

and 

O(ab) = [ab]= [a][b] = O(a)O(b) 

for all a and b in Z, 0 is a homomorphism from Z to Zn. In fact, 0 is an epimorphism and 

Zn is a homomorphic image of Z. • 

Example 2 Consider 0: z6 � z6 defined by 

It follows from 

0( [a]) = 4[a]. 

O([a] + [b]) = 4([a] + [b]) 

= 4[a] + 4[b] 

= O([a]) + O([b]) 

that 0 preserves addition. For multiplication, we have 

0 ( [a] [ b]) = 0 ( [ab]) = 4 [ab J = [ 4ab J 

and 

O([a])O([b]) = (4[a])(4[b]) = 16[ab] = [16ab] = [4ab], 

since [16] = [4] in Z6. Thus 0 is a homomorphism. It can be verified that O(Z6) = 
{[OJ, [2], [4]}, and we see that 0 is neither onto nor one-to-one. • 

Theorem 6.9 • Images of Zero and Additive Inverses 

If 0 is a homomorphism from the ring R to the ring R', then 

a. 0(0) = 0 and 

b. 0(-r) = -O(r) for all r ER. 

p :::::} q Proof The statement in part a follows from 

(p  /\ q):::::} r 

0(0) = 0(0) + 0 

= 0(0) + 0(0) - 0(0) 

= 0(0 + 0) - 0(0) 

= 0(0) - 0(0) 

= 0. 

To prove part b, we observe that 

O(r) + 0(-r) = O[r + (-r)] 

= 0(0) 

= 0. 
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Since the additive inverse is unique in the additive group of R', 

-O(r) = 0(-r). 

Under a ring homomorphism, images of subrings are subrings, and inverse images of 
subrings are also subrings. This is the content of the next theorem. 

Theorem 6.10 • Images and Inverse Images of Subrings 

Suppose 0 is a homomorphism from the ring R to the ring R'. 

a. If Sis a subring of R, then O(S) is a subring of R'. 

b. If S' is a subring of R', then o-1(S') is a subring of R. 

(p A q) => r Proof To prove part a, suppose Sis a subring of R. We shall verify that the conditions 
of Theorem 5.3 are satisfied by O(S). The element 0( 0 ) = 0 is in O(S), so O(S) is nonempty. 
Let x' and y' be arbitrary elements of O(S). Then there exist elements x, y E S such that 
O(x) = x' and O(y) = y'. Since Sis a subring, x + y and xy are in S. Therefore, 

O(x + y) = O(x) + O(y) 

= x'  + y' 

and 

O(xy) = O(x)O(y) = x'y' 

are in O(S), and O(S) is closed under addition and multiplication. Since -x is in S and 

0(-x) = -O(x) = -x', 

we have -x' E O(S), and it follows that O(S) is a subring of R'. 
(p A q) => r To prove part b, assume that S' is a subring of R'. We have 0 in o-1(S') since 0( 0 ) = 0, 

so o-1(S') is nonempty. Let x E o-1(S') and y E o-1(S'). This implies that O(x) ES' and 
O(y) ES'. Hence O(x) + O(y) = O(x + y) and O(x)O(y) = O(xy) are in S', since S' is a sub
ring. Now 

and 

We also have 

O(x + y) ES' => x + y E o-1(S') 

O(xy) E S' => xy E o-1(S'). 

O(x) E S' => -O(x) = 0( -x) E S '  

=> -x E o-1(S'), 

and o-1(S') is a subring of R by Theorem 5.3. 

Definition 6.11 • Kernel 

If 0 is a homomorphism from the ring R to the ring R', the kernel of 0 is the set 

ker 0 = {x E RIO(x) = O}. 
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Example 3 In Example 1, the epimorphism 0: Z �Zn is defined by O(a) =[a]. Now 

O(a) = [OJ if and only if a is a multiple of n, so 

ker 0 = { ... , -2n, -n, 0, n, 2n, ... } 

for this 0. 

In Example 2, the homomorphism 0: Z6 � Z6 defined by o([aJ) = 4[a] has kernel 

given by 

ker 0 = {[O ], [3 ]} . • 

In these two examples, ker 0 is an ideal of the domain of 0. This is true in general for 

homomorphisms, according to the following theorem. 

Theorem 6.12 • Kernel of a Ring Homomorphism 

If 0 is any homomorphism from the ring R to the ring R', then ker 0 is an ideal of R, and 

ker 0 = { 0} if and only if 0 is one-to-one. 

p :::::} q Proof Under the hypothesis, we know that ker 0 is a subring of R from Theorem 6.10. For 

any x E ker 0 and r E R, we have 

O(xr) = O(x)O(r) 
= 0 • O(r) = 0, 

and similarly O(rx) = 0. Thus xr and rx are inker 0, and ker 0 is an ideal of R. 

u ¢:::: v Suppose 0 is one-to-one. Then x E ker 0 implies O(x) = 0 = 0(0), and therefore 

x = 0. Hence ker 0 = { 0} if 0 is one-to-one. 

u :::::} v Conversely, if ker 0 = { 0}, then 

O(x) = O(y) � O(x) -O(y) = 0 

�O(x-y)=O 
�x-y=O 
� x=y. 

This means that 0 is one-to-one if ker 0 = { 0}, and the proof is complete. 

Example 4 This example illustrates the last part of Theorem 6.12 and provides a nice 

example of a ring isomorphism. 

For the set U = {a, b }, the power set of U is 0'>(U) = {0, A, B, U}, where A = {a} 
and B = { b}. With addition defined by 

X + Y = (X U Y) -(X n Y) 

and multiplication by 

X·Y=XnY, 

0'>(U) forms a ring, as we saw in Example 5 of Section 5.1. Addition and multiplication 

tables for 0'>(U) are given in Figure 6.1. 
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The ring R = Z2 EB Z2 was introduced in Exercises 51 and 52 of Section 5 .1. If we 

write 0 for [OJ and 1 for [1] in Z2, the set R is given by R = {(0, 0), (1, 0), (0, 1), (1, 1)}. 
Addition and multiplication tables for R are displayed in Figure 6.2. 

+ (0, 0) (1, 0) (0, 1) (1, 1) (0, 0) (1, 0) (0, 1) (1, 1) 

(0, 0) (0, 0) (1, 0) (0, 1) (1, 1) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) 

(1, 0) (1, 0) (0, 0) (1, 1) (0, 1) (1, 0) (0, 0) (1, 0) (0, 0) (1, 0) 

(0, 1) (0, 1) (1, 1) (0, 0) (1, 0) (0, 1) (0, 0) (0, 0) (0, 1) (0, 1) 

(1, 1) (1, 1) (0, 1) (1, 0) (0, 0) (1, 1) (0, 0) (1, 0) (0, 1) (1, 1) 

Consider the mapping 0: <!P(U) � R defined by 

0(0) = (0, 0), O(A) = ( 1, 0), O(B) = (0, 1 ), O(U) = ( 1, 1 ). 

If each element x in the tables for CZP( U) is replaced by O(x), the resulting tables agree com

pletely with those in Figure 6.2. Thus 0 is an isomorphism. We note that the kernel of 0 
consists of the zero element in CZP( U). • 

We know now that every kernel of a homomorphism from a ring R is an ideal of R. 
The next theorem shows that every ideal of R is a kernel of a homomorphism from R. This 

means that the ideals of R and the kernels of the homomorphisms from R to another ring 

are the same subrings of R. 

Theorem 6.13 • Quotient Ring� Homomorphic Image 

If I is an ideal of the ring R, the mapping 0: R � R/I defined by 

O ( r) = r +I 

is an epimorphism from R to R/ I with kernel I. 

Copyright 2013 Cengage Leaming. AH Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materia11y affect the overall learning experience. Cengage Leaming reserves the right to remove additional content at any time if subsequent rights restrictions require it. 



316 Chapter 6 More on Rings 

p � q Proof It is clear that the rule O(r) = r + I defines an onto mapping (J from R to R/I and 
that ker (J = I. Since 

and 

O(x + y) = (x + y) + I 

= (x + I) + (y + I) 

= O(x) + O(y) 

O(xy) = xy +I 

= (x + I)(y + I) 

= O(x)O(y), 

(J is indeed an epimorphism from R to R/I. 

The last theorem shows that every quotient ring of a ring R is a homomorphic image 
of R. A result in the opposite direction is given in the next theorem. 

Strategy • In the proof of Theorem 6.14, it is shown that a certain rule defines a mapping <f>. When 
the defining rule for a possible mapping is stated in terms of a certain type of representa
tion for the elements, the rule does not define a mapping unless the result is independent 
of the representation of the elements-that is, unless the rule is well-defined. 

Theorem 6.14 • Homomorphic Image=} Quotient Ring 

If a ring R' is a homomorphic image of the ring R, then R' is isomorphic to a quotient ring 
ofR. 

p � q Proof Suppose (J is an epimorphism from R to R', and let K = ker (J. For each a + K in 
R/K, define <f>(a + K) by 

<f>(a + K) = O(a). 

To prove that this rule defines a mapping, let a + K and b + K be arbitrary elements of 
R/K. Then 

a+K=b+K-¢:? a-bE.K 

-¢:? O(a -b) = 0 

-¢:? O(a) = O(b) 

-¢:? </>(a + K) = </>(b + K). 

This shows that </> is well-defined and one-to-one as well. From the definition of <f>, it fol
lows that <f>(R/K) = O(R). But O(R) = R', since (J is an epimorphism. Thus </> is onto and, 
consequently, is a one-to-one correspondence from R/ K to R'. 

Copyright 2013 Cengage Leaming. AH Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materia11y affect the overall learning experience. Cengage Leaming reserves the right to remove additional content at any time if subsequent rights restrictions require it. 



and 

For arbitrary a + Kand b + Kin R/K, 

6.2 Ring Homomorphisms 317 

<f>[(a + K) + (b + K)] = <f>[(a + b) + K] 

= O(a + b) 

= (J (a) + (J ( b) since (J is an epimorphism 

= <f>(a + K) + <f>(b + K) 

<f>[ (a + K)(b + K)] = <f>(ab + K) 

= O(ab) 

= (J (a) (J ( b) since (J is an epimorphism 

= <f>(a + K)<f>(b + K). 

Thus <f> is an isomorphism from R/K to R'. 

As an immediate consequence of the proof of this theorem, we have the following 
Fundamental Theorem of Ring Homomorphisms. 

Theorem 6.15 • Fundamental Theorem of Ring Homomorphisms 

If (J is an epimorphism from the ring R to the ring R', then R' is isomorphic to R/ker 0. 

We now see that, in the sense of isomorphism, the homomorphic images of a ring R 
are the same as the quotient rings of R. This gives a systematic way to search for all the 
homomorphic images of a given ring. To illustrate the usefulness of this method, we shall 
find all the homomorphic images of the ring Z of integers. 

Example 5 In order to find all homomorphic images of Z, we shall find all possible 
ideals of Z and form all possible quotient rings. According to Theorem 6.3, every ideal of 
Z is a principal ideal. 

For the trivial ideal (0) = {O}, we obtain the quotient ring Z/(O), which is isomorphic 
to Z, since a + (0) = b + (0) if and only if a = b. For the ideal (1) = Z, we obtain the 
quotient ring Z/Z, which has only one element and is isomorphic to {O}. As shown 
in the proof of Theorem 6.3, any nontrivial ideal I of Z has the form I= (n) for some 
positive integer n > 1. For these ideals, we obtain the quotient ringst Z/(n) =Zn. Thus the 
homomorphic images of Z are Z itself, {O}, and the rings Zn. • 

Exercises 6.2 

True or False 

Label each of the following statements as either true or false. 

1. A ring homomorphism from a ring R to a ring R' must preserve both ring operations. 

2. If a homomorphism exists from a ring R to a ring R', then R' is called a homomorphic 
image of R. 

tsee the paragraph immediately following Example 5 in Section 6.1. 
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Sec. 5.1, #38 � 

Sec. 6.1, #25 � 

Sec. 6.1, #28 � 

3. The ideals of a ring R and the kernels of the homomorphisms from R to another ring 
are the same subrings of R. 

4. Every quotient ring of a ring R is a homomorphic image of R. 
S. A ring homomorphism from R to R' is a group homomorphism from the additive group 

R to the additive group R'. 
6. Let (J be a homomorphism from a ring R to a ring R'. If r E R is a zero divisor then 

O(r) ER' must also be a zero divisor. 

Exercises 

1. Each of the following rules determines a mapping (J: R--1> R, where R is the field of 
real numbers. Decide in each case whether (J preserves addition, whether {) preserves 
multiplication, and whether (J is a homomorphism. 
a. O(x) = JxJ b. O(x) = 2x 

c. O(x) = -x d. O(x) = x2 {O ifx=O 
e. O (x) = 

_xi 
f. O(x) = x + 1 

if x =f=. 0 

Unless otherwise stated, R and R' denote arbitrary rings throughout this set of exercises. 
In Exercises 2-5, suppose Rand R' are isomorphic rings. 

2. Prove that R is commutative if and only if R' is commutative. 
3. Prove that R has a unity if and only if R' has a unity. 
4. Prove that R contains an idempotent element if and only if R' does. 
S. Prove that R contains a zero divisor if and only if R' does. 
6. (See Exercise 3.) Suppose that (J is an epimorphism from R to R' and that R has a unity. 

Prove that if a-1 exists for a ER, then [O(a)t1 exists, and [O(a)t1 = O(a-1). 

7. Assume that the set 

is a ring with respect to matrix addition and multiplication. 

a. Verify that the mapping (J: S --1> Z defined by (J ( [� y]) = z is an epimorphism 
from S to Z. 

z 

b. Describe ker {),and exhibit an isomorphism from S/ker {) to Z. 

8. Assume that the set 

R = { [; � J I X, y E z} 
is a ring with respect to matrix addition and multiplication. 

a. Verify that the mapping{): R--1> Z defined by o( [x �]) =xis an epimorphism 
fromR to Z. Y 

b. Describe ker {) and exhibit an isomorphism from R/ker {) to Z. 
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9. For any a E Z, let [a ]6 denote [a] in Z6 and let [ah denote [a] in Z2. 
a. Prove that the mapping fJ: Z6 � Z2 defined by fJ([aJ6) = [a]i is a homomorphism. 

b. Find ker fJ. 
10. Let fJ: Z3 � Z12 be defined by fJ([xh) = 4[x]12 using the same notational convention 

as in Exercise 9. 

a. Prove that () is a ring homomorphism. 

b. Is fJ(e) = e' where e is the unity in Z3 and e' is the unity in Z12? 

11. Show that(): Z3 � Z12 defined by fJ([xh) = 3[x]12 is not a homomorphism. 

12. Consider the mapping(): Z12 � Z12 defined by fJ([aJ) = 4[a]. Decide whether() is a 

homomorphism, and justify your decision. 

13. Consider the mapping fJ: Z12 � Z12 defined by fJ([al) = 6[a]. Decide whether() is a 

homomorphism and justify your decision. 

14. Let R be a ring with unity e. Verify that the mapping(): Z � R defined by fJ(x) = x • e 

is a homomorphism. 

15. In the field C of complex numbers, show that the mapping () that maps each complex 

number onto its conjugate, fJ(a +bi)= a - bi, is an isomorphism from C to C. 

16. (See Example 3 of Section 5.1.) Let S denote the subring of the real numbers that 

consists of all real numbers of the form m + n v'2, with m E Z and n E Z. Prove that 

fJ (m + n v'2) = m - n v'2 defines an isomorphism from S to S. 

17. Define fJ: M2(Z) � M1(Z2) by 

Prove that () is a homomorphism, and describe ker fJ. 

[b]J [d] . 

18. Let (): M2(Z) � Z where M2(Z) is the ring of 2 X 2 matrices over the integers Z. 
Prove or disprove that each of the following mappings is a homomorphism. 

Sec. 3.6, #11 � a. ()([; :J) = ad - be 

Sec. 3.6, #9 � b. () ( [; : J) = a + d (This mapping is the trace of the matrix.) 

19. Assume that 

and 

R '  = {m + n V2 l m,n E Z} 

are rings with respect to their usual operations, and prove that R and R' are isomor

phic rings. 
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Sec. 5.1, #42 � 20. Show that the ring 

and the ring C of complex numbers with respect to their usual operations are isomorphic. 

Sec. 5.1, #51 � 21. Let R1 be the subring of R EB R' that consists of all elements of the form (r, 0), where 
r E R. Prove that R1 is isomorphic to R. 

Sec. 3.5, #27 � 

Sec. 5.1, #51 � 

Sec. 6.1, #33 � 

22. Suppose R and R' are rings with unity elements e and e', respectively. Let 8: R � R' 

be a ring isomorphism. 

a. Show that 8(e) = e'. 

b. Use the result in part a to find an isomorphism from Z6 to Z2 EB Z3. 

23. Let R, R', R" be rings and 81: R � R' and 82: R' � R" be homomorphisms. Prove that 
8281: R � R" is a homomorphism. 

24. Suppose 8 is a homomorphism from R to R'. 

a. Let x E R. Prove that O(xn) = (O(x)t for all positive integers n. 

b. Prove that if x E R is nilpotent, then O(x) is nilpotent in R'. 

Sec. 5.1, #34 � 25. Figure 6.3 gives addition and multiplication tables for the ring R = {a, b, c} in 
Exercise 34 of Section 5 .1. Use these tables, together with addition and multiplication 
tables for Z3, to find an isomorphism from R to Z3. 

+ a b c a b c 

a a b c a a a a 

b b c a b a c b 

•Figure 6.3 
c c a b c a b c 

Sec. 5.1, #35 � 26. Figure 6.4 gives addition and multiplication tables for the ring R = {a, b, c, d} in 
Exercise 35 of Section 5.1. Construct addition and multiplication tables for the subring 
R' = {[OJ, [2], [4], [6]} of Z8, and find an isomorphism from R to R'. 

+ a b c d a b c d 

a a b c d a a a a a 

b b c d a b a c a c 

c c d a b c a a a a 

•Figure 6.4 
d d a b c d a c a c 

Sec. 6.1, #21 � 27. For each given value of n, find all homomorphic images of Zn. 

a. n = 6 b. n = 10 c. n = 12 

d. n = 18 e. n = 8 f. n = 20 
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6.3 The Characteristic of a Ring 321 

28. Suppose Fis a field and 0 is an epimorphism from F to a ring S such that ker 0 -:::/= F. 

Prove that 0 is an isomorphism and that S is a field. 

29. Assume that 0 is an epimorphism from R to R'. Prove the following statements. 

a. If I is an ideal of R, then 0(/) is an ideal of R'. 

b. If I' is an ideal of R', then 0-1(/1) is an ideal of R. 

c. The mapping I � 0(1) is a bijection from the set of ideals I of R that contain ker 0 
to the set of all ideals of R'. 

30. In the ring Z of integers, let new operations of addition and multiplication be defined by 

x EB y = x + y + 1 and x 0 y = xy + x + y, 

where x and y are arbitrary integers and x + y and xy denote the usual addition and 
multiplication in Z. 

a. Prove that the integers form a ring R' with respect to EB and 0. 

b. Identify the zero element and unity of R'. 

c. Prove that Z is isomorphic to R'. 

Sec. 4.6, #36 � 31. Let Kand I be ideals of the ring R. Prove that K/K n I is isomorphic to (K + I)! I. 

� The Characteristic of a Ring 

In this section, we focus on the fact that the elements of a ring R form an abelian group 
under addition. 

When the binary operation in a group G is multiplication, each element a of G gener
ates a cyclic group (a) that consists of all integral powers of a. If there are positive integers 
n such that an = e and mis the smallest such positive integer, then mis the (multiplicative) 
order of a. 

When the binary operation in a group is addition, the cyclic subgroup (a) consists of 
all integral multiples ka of a. If there are positive integers n such that na = 0 and m is 
the smallest such positive integer, then mis the (additive) order of a. In a sense, the char
acteristic of a ring is a generalization from this idea. 

Definition 6.16 • Characteristic 

If there are positive integers n such that nx = 0 for all x in the ring R, then the smallest 
positive integer m such that mx = 0 for all x E R is called the characteristic of R. If no 
such positive integer exists, then R is said to be of characteristic zero. 

It is logical in the last case to call zero the characteristic of R since n = 0 is the only 
integer such that nx = 0 for all x E R. 

Example 1 The ring Z of integers has characteristic zero since nx = 0 for all x E Z 

requires that n = 0. For the same reason, the field R of real numbers and the field C of 
complex numbers both have characteristic zero. • 
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322 Chapter 6 More on Rings 

Example 2 Consider the ring Z6. For the various elements of Z6, we have 

1 [OJ = [OJ 
2[3J = [OJ 

6[1J = [OJ 
3[4J =[OJ 

3[2J =[OJ 
6 [5J = [O]. 

Although smaller positive integers work for some individual elements of Z6, the smallest 

positive integer m such that m[a J = [OJ for all [a J E Z6 is m = 6. Thus Z6 has characteristic 6. 
This example generalizes readily, and we see that Zn has characteristic n. • 

Theorem 6.17 • Characteristic of a Ring 

Let R be a ring with unity e. If e has finite additive order m, then m is the characteristic 

of R. 

p :::::} q Proof Suppose R is a ring with unity e and that e has finite additive order m. Then m is 

the least positive integer such that me = 0. For arbitrary x ER, 

mx = m(ex) = (me)x = 0 • x = 0. 

Thus mx = 0 for all x E R, and m is the smallest positive integer for which this is true. By 

Definition 6.16, R has characteristic m. 

In connection with the last theorem, we note that if R has a unity e and e does not have 

ALERT finite additive order, then R has characteristic zero. In either case, the characteristic can be 

determined simply by investigating the additive order of e. 

Theorem 6.18 • Characteristic of an Integral Domain 

The characteristic of an integral domain is either zero or a prime integer. 

-p ¢:::: (-q /\ -r) Proof Let D be an integral domain. As mentioned before, D has characteristic zero if 

the additive order of the unity e is not finite. Suppose, then, that e has finite additive order m. 
By Theorem 6.17, D has characteristic m, and we need to only show that m is a prime integer. 

Assume, to the contrary, that mis not a prime and m = rs for positive integers rands such that 

1 < r < m and 1 < s < m. Then we have re -=!= 0 and se -=!= 0, but 

(re)(se) = (rs)e2 = (rs)e =me= 0. 

This is a contradiction to the fact that D is an integral domain. Therefore, m is a prime 

integer, and the proof is complete. 

If the characteristic of a ring R is zero, it follows that R has an infinite number of ele

ALERT ments. However, the converse is not true. R may have an infinite number of elements and 

not have characteristic zero. This is illustrated in the next example. 

Example 3 Consider the ring <!J'(Z) of all subsets of the integers Z, with operations 

X + Y = (X U Y) - (X n Y) 
X·Y=XnY 
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6.3 The Characteristic of a Ring 323 

for all X, Yin W'(Z). The ring W'(Z) has an infinite number of elements, yet 

X + X = (XU X) - (X n X) 

=X-X 

=0, 

where 0 is the zero element for W'(Z). Thus W'(Z) has characteristic 2. 

Theorem 6.19 • Integral Domains, Z, and Zp 

• 

An integral domain with characteristic zero contains a subring that is isomorphic to Z, and 
an integral domain with positive characteristic p contains a subring that is isomorphic to Zp. 

Proof Let D be an integral domain with unity e. Define the mapping 0: Z --+ D by 

O(n) = ne 

for each n E Z. Since 

O(m + n) = (m + n)e = me + ne = O(m) + O(n) 

and 

O(mn) = (mn)e = mne2 = (me)(ne) = O(m)O(n), 

(} is a homomorphism from Z to D. By Theorem 6. lOa, O(Z) is a subring of D. 
r => s Suppose D has characteristic zero. Then ne = 0 if and only if n = 0, and it follows that 

ker (} = {O}. According to Theorem 6.12, this means that(} is one-to-one and therefore an 
isomorphism from Z to the subring O(Z) of D. 

u => v Suppose now that D has characteristic p. Then p is the additive order of e, and ne = 0 
if and only if p In, by Theorem 3.21b. In this case, we have ker (} = (p), the set of all mul
tiples of p in Z. By Theorem 6.15, the subring O(Z) of D is isomorphic to Z/(p) = Zp. 

The terms embedded and extension were introduced in connection with quotient fields 
in Section 5.3. Stated in these terms, Theorem 6.19 says that any integral domain with 
characteristic zero has Z embedded in it, and any integral domain with characteristic p has 
Zp embedded in it. 

In Exercise 17 of Section 5.3, a construction was given by which an arbitrary ring can 
be embedded in a ring with unity. The next theorem is an improvement on that statement. 

Theorem 6.20 • Embedding a Ring in a Ring with Unity 

Any ring R can be embedded in a ring S with unity that has the same characteristic as R. 

u => (v /\ w) Proof If R has characteristic zero, Exercise 17 of Section 5.3 gives a construction whereby 
R can be embedded in a ring S with unity. To see that the ring S has characteristic zero, we 
observe that 

n(l,O) = (n,O) = (0,0) 

if and only if n = 0. 
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324 Chapter 6 More on Rings 

Suppose now that R has characteristic n. We follow the same type of construction as 
before, with Z replaced by Zn. Let S be the set of all ordered pairs ([ m], x ), where [ m J E Zn 
and x E R. Equality in S is defined by 

( [ m ], x) = ( [ k ], y) if and only if [ m] = [ k] and x = y. 

Addition and multiplication are defined by 

( [ m ], x) + ( [ k ], y) = ( [ m + k ], x + y) 

and 

([m],x) • ([k],y) = ([mk],my + kx + xy). 

It is straightforward to show that S forms an abelian group with respect to addition, the 
zero element being ((OJ, 0). This is left as an exercise (see Exercise 23 at the end of this 
section). 

The rule for multiplication yields an element of S, but we need to show that this 
element is unique. To do this, let ([m1], x1 ) = ([m2], x2 ) and ([k1], yi) = ([k2] , yz). Then 

[m1] = [m2J, x1 = x2, [k1] = [k2], and Y1 = Y2 from the definition of equality. Using the 
definition of multiplication and these equalities, we get 

and 

([m1J, X1) • ([k1J. Y1) = ([m1k1J. ffl1Y1 + k1X1 + X1Y1) 

( [mz], Xz) • ( [kz], Y2) = ( [m2kz], m2Y2 + kzXz + X2Y2) 

= ([m1k1J. ffl2Y1 + kzX1 + X1Y1). 

Comparing the results of these two computations, we see that we need 

ffl2Y1 + kzX1 = ffl1Y1 + k1X1 

to conclude that the results are equal. Now 

Therefore, 

[m1] = [m2] => m2 - m1 = pn for some p E Z 

=> m2 = m1 + pn. 

mzY1 = (m1 + pn)y1 
= m1Y1 + npy1 

since PYl is in R and R has characteristic n. Similarly, kzx1 = k1x1, and we conclude that 
the product is well-defined. 

Verifying that multiplication is associative, we have 

([m],x){([k],y)([r],z)} = ([m],x)([kr],kz + ry + yz) 
= ([ mkr ], mkz + mry + myz + krx + kxz 

+ rxy + xyz) 
= ([mk], my+ kx + xy) • ([r], z) 
= {([m], x)([k], y )}([r ], z). 
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The left distributive law follows from 
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([m],x){([k],y) + ([r],z)} = ([m],x)([k + r],y + z) 
= ([mk + mr],my + mz + kx + rx + .xy + xz) 
= ([mk], my+ kx + .xy) + ([mr], mz + rx + xz) 
= ([m],x)([k],y) + ([m],x)([r],z). 

The verification of the right distributive law is similar to this and is left as an exercise. 

The argument up to this point shows that S is a ring. Since each of Zn and R has 

characteristic n, 
n([m], x) = (n[m], nx) = ([OJ, 0) 

for all ([m], x) in S, and n is the least positive integer for which this is true. Thus S has 

characteristic n. 
Consider now the mapping 0: R---+ S defined by(} (x) = ([ 0 ], x) for all x E R. Since 

O(x) = O(y) <==} ([oJ, x) = ([oJ, y) <==} x = y, 
(}is a one-to-one correspondence from R to O(R). Now 

O(x + y) = ([O],x + y) = ([O],x) + ([O],y) = O(x) + O(y) 

and 

O(.xy) = ([O],.xy) = ([O],x)([O],y) = O(x)O(y), 

so(} is an isomorphism from R to O(R), and O(R) is a subring of S by Theorem 6.lOa. This 

shows that R is embedded in S. 

Exercises 6.3 

True or False 

Label each of the following statements as either true or false. 

1. The characteristic of a ring R is the positive integer n such that nx = 0 for all x in R. 

2. The characteristic of a ring R is the smallest positive integer n such that nx = 0 for 

somex in R. 

3. The characteristic of a ring R is zero if n = 0 is the only integer such that nx = 0 for 

all x in R. 

4. If a ring R has characteristic zero, then R must have an infinite number of elements. 

5. If a ring R has an infinite number of elements, then R must have characteristic zero. 

Exercises 

1. Find the characteristic of each of the following rings: 

a. E b. Q c. Mz(Z) 

d. Mz(R) e. M1(Z2) 
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Sec. 5.1, #51 P 

Sec. 5.1, #51 P 

Sec. 5.1, #51 P 

2. Find the characteristic of the following rings. 

a. Z2 EB Z2 b. Z3 EB Z3 

3. Let D be an integral domain with positive characteristic. Prove that all nonzero ele

ments of D have the same additive order. 

4. Show by example that the statement in Exercise 3 is no longer true if "an integral 

domain" is replaced by "a ring." 

5. Let R be a ring with unity of characteristic m > 0. Prove that k • e = 0 if and only if 

m divides k. 

6. Suppose that R and Sare rings with positive characteristics m and n, respectively. If k is 

the least common multiple of m and n, prove that R EB S has characteristic k. 

7. Prove that if both R and S in Exercise 6 are integral domains, then R EB S has charac

teristic mn if m * n. 

8. Prove that the characteristic of a field is either 0 or a prime. 

9. LetD be an integral domain with four elements, D = {O, e, a, b }, where e is the unity. 

a. Prove that D has characteristic 2. 

b. Construct an addition table for D. 

10. Let R be a commutative ring with characteristic 2. Show that each of the following is 

true for all x, y E R. 

a. (x + y )2 = x2 + y2 b. (x + y )4 = x4 + y4 

11. a. Give an example of a ring R of characteristic 4, and elements x, y in R such that 

(x + y)4 * x4 + y4. 

b. Give an example of a noncommutative ring R with characteristic 4, and elements 

x, y in R such that (x + y)4 * x4 + y4. 

Sec. 2.2, #26 P 12. Let R be a commutative ring with prime characteristic p. Prove, for any x, y in R, that 

( ) n n n 
X + y P = xP + yP 

for every positive integer n. 

13. Prove that Zn has a nonzero element whose additive order is less than n if and only if 

n is not a prime integer. 

14. Let R be a ring with more than one element that has no zero divisors. Prove that the 

characteristic of R is either zero or a prime integer. 

15. In a commutative ring R of characteristic 2, prove that the idempotent elements form 

a subring of R. 

Sec. 5.1, #56 P 16. A Boolean ring is a ring in which all elements x satisfy x2 = x. Prove that every 

Boolean ring has characteristic 2. 
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17. Suppose R is a ring with positive characteristic n. Prove that if I is any ideal of R, then 
n is a multiple of the characteristic of I. 

18. If Fis a field with positive characteristic p, prove that the set 

{Oe = O,e,2e,3e, ... , (p - l)e} 

of multiples of the unity e forms a subfield of F. 

19. If p is a positive prime integer, prove that any field with p elements is isomorphic to Zp. 

20. Let I be the set of all elements of a ring R that have finite additive order. Prove that I 
is an ideal of R. 

21. Prove that if a ring R has a finite number of elements, then the characteristic of R is a 
positive integer. 

22. Let R be a ring with a finite number n of elements. Show that the characteristic of R 
divides n. 

23. As in the proof of Theorem 6.20, let S = {([m] , x )l [m] E Zn and x E R}. Prove that S 
forms an abelian group with respect to addition. 

24. With S as in Exercise 23, prove that the right distributive law holds in S. 

25. With S as in Exercise 23, prove that the set R' = {([OJ, x ) I x E R} is an ideal of S. 

26. Prove that every ordered integral domain has characteristic zero. 

� Maximal Ideals (Optional) 

We conclude this chapter with a brief study of certain ideals that yield very special quotient 
rings. We are interested primarily in commutative rings R with unity, and we consider the 
question of when a quotient ring R/I is a field. (The question of when R/I is an integral 
domain is treated very briefly in the exercises for this section.) 

Definition 6.21 • Maximal Ideal 

Let M be an ideal of the commutative ring R. Then Mis a maximal ideal of R if Mis not a 
proper subsett of any ideal except R itself. 

Thus an ideal Mis a maximal ideal of R if and only if M c I � R where I is an ideal, 
implies I = R. 

Example 1 Consider the commutative ring R = Z. According to Theorem 6.3, every 
ideal of Z is a principal ideal (n) . We shall show that if n i= 1, then (n) is a maximal ideal 
of Z if and only if n is a prime. 

tThe term proper subset is defined in Definition 1.3. 
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Suppose first that n = p, where p is a prime integer, and let I be an ideal of Z such 

that (p) C I� Z. Then there exists an integer k in I such that k fl. (p). That is, k is not a 

multiple of p. Since p is a prime, this implies that k and p are relatively prime and there 

exist integers u and v such that 

1 = uk + vp. 

Now uk E /,since k EI. We also have vp E /,since p EI. Therefore, uk + vp = 1 is in 

/,since I is an ideal. But 1 EI implies immediately that I = Z, and this proves that (p) is 

a maximal ideal if p is a prime. 

Suppose now that n is not a prime integer. Since n * l, there are integers a and b 
such that 

n =ab where 1 <a< n and 1 < b < n. 

Consider the ideal I= (a). We have (n) CI, since a< n. Also, we have IC Z, since 1 <a. 
Thus (n) CIC Z, and (n) is not a maximal ideal if n is not a prime. • 

Example 2 Example 1 shows that the ideal (4) is not maximal in Z. However, (4) is 

a maximal ideal of the ring E of all even integers. To see that this is true, let I be an ideal 

of E such that ( 4) C I� E. Let x be any element of I that is not in ( 4). Then x has the form 

x = 4k + 2 = 2(2k + 1), 

where k E Z. Since I is an ideal, 

x E I and 4k E I ==? x - 4k = 2 E /. 

But 2 E I implies I = E. Thus ( 4) is a maximal ideal of E. • 

The importance of maximal ideals is evident from the result of the following theorem. 

Theorem 6.22 • Quotient Rings That Are Fields 

Let R be a commutative ring with unity, and let M be an ideal of R. Then R/M is a field if 

and only if M is a maximal ideal of R. 

Proof Let R be a commutative ring with unity e, and let M be an ideal of R. It follows im

mediately from Theorem 6.5 that R/M is a commutative ring with unity e + M. Thus R/M 

is a field if and only if every nonzero element of R/M has a multiplicative inverse in R/M. 

p ¢:::: q Assume first that M is a maximal ideal, and let a + M be a nonzero element of 

R/M. That is, a+ M *M and a fl. M. Let 

I= {ar + mlr ER, m EM}. 

It is clear that each element a · 0 + m = m of M is in I and that a = ae + 0 is in I but not 

in M. Thus M C I. We shall show that I is an ideal of R. 

Let x = ar1 + m1 and y = ar2 + m2 be arbitrary elements of I with ri ER and 

mi EM. Then 
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where r1 + r2 E R and m 1 + m2 E M, since M is an ideal. Thus x + y E I. Also, 

is in/, since - r1 E R and -m1 E M For any element r of R, 

is in/, since r1r ER and m1r EM Thus I is an ideal of R. 

Since Mis a maximal ideal and M C /, it must be true that I = R. Therefore, there exist 

r E R and m E M such that 

Hence, 

ar + m = e. 

e + M = ( ar + m) + M 

= ar + M 

= (a + M)( r + M), 

sincem EM 

and this means that r + Mis the multiplicative inverse of a + Min R/M. We have thus 

shown that R/M is a field if Mis a maximal ideal. 

p =:::} q Assume now that R/M is a field, and let I be an ideal of R such that M C I� R. Since 

M C /, there exists an element a E I such that a (/:. M. 

We shall show that I = R. To this end, let b be an arbitrary element of R. Since R/M is a 

field and a + Mis not zero in R/M, there exists t an element x + Min R/M such that 

(a+ M)( x + M) = b + M 

or 

ax+ M = b + M. 

Therefore, ax - b = m for some m E M, and 

b =ax - m. 

Now ax E /, since a E /, x E R, and I is an ideal of R. Also, m E I since M C I. Hence 

b = ax - m E I. Since b was an arbitrary element of R, we have proved that R � /, and 

therefore, I = R. It follows that M is a maximal ideal of R. 

Example 3 We showed in Example 1 of this section that (n) is a maximal ideal of 

Z if and only if n is a prime. It follows from Theorem 6.22 that Z/(n) is a field if and 

only if n is a prime. However, this fact is not new to us. In connection with Example 5 of 

Section 6. 1, we saw that Zn was the same as Z/(n), and we know from Corollary 5.20 

that Zn is a field if and only if n is a prime. • 

tsee Exercise 24 of Section 5.2. 
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Sec. 6.1, #31 � 

Sec. 6.1, #31 � 

Sec. 6.1, #31 � 

Example 4 We saw in Example 2 of this section that (4) is a maximal ideal of the 

ring E of all even integers. The distinct elements of the quotient ring E/(4) are given by 

(4) = { . . .  ,-8,-4,0,4,8, . . .  } 
2 + (4) = { . . .  ' -6, -2, 2, 6, 10, . . .  }. 

Now E/(4) is not a field, since 2 + (4) is not zero in E/(4), but 

[2 + (4)] [2 + (4)] = 4 + (4) = (4), 

and ( 4) is the zero in E/ ( 4). At first glance, this seems to contradict Theorem 6.22. However, 

E does not have the unity that is required in the hypothesis of Theorem 6.22. • 

Exercises 6.4 

True or False 

Label each of the following statements as either true or false. 

1. The only ideal of a ring R that properly contains a maximal ideal is the ideal R. 

2. Only one maximal ideal exists for a given ring R. 

Exercises 

1. According to part a of Example 3 in Section 5 .1, the set 

R = {m + n\/21m E Z,n E Z} 

is a ring. Assume that the set 

I= {a+ b\/2la E E,b EE} 

is an ideal of R, and show that I is not a maximal ideal of R. 

2. Let R be as in Exercise 1, and show that the principal ideal 

I= (\/2) = {2n + m\/2ln E Z,m E Z} 

is a maximal ideal of R. 

3. Show that the ideal I = (6) is a maximal ideal of E. 

4. Show that the ideal I= (10) is a maximal ideal of E. 

5. Let R and I be as in Exercise 1, and write out the distinct elements of R/I. 

6. Let R and I be as in Exercise 2, and write out the distinct elements of R/I. 

7. With I as in Exercise 3, write out the distinct elements of E/I. 

8. With I as in Exercise 4, write out the distinct elements of E/I. 

9. Find all maximal ideals of Z12. 

10. Find all maximal ideals of Z18. 
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Sec. 5.1, #2f ;;:> 11. Let R be the ring of Gaussian integers { m + ni Im, n E Z}. Let 

M ={a+ bil3 divides a and 3 divides b}. 

a. Show that M is an ideal of R. 

b. Show that M is a maximal ideal of R. 

Sec. 5.1, #2f ;;:> 12. Let R be the ring of Gaussian integers as in Exercise 1 1, and let 

I = {a + bil2 divides a and 2 divides b }. 

a. Show that I is an ideal of R. 

b. Show that I is not a maximal ideal of R. 

13. An ideal I of a commutative ring R is a  prime ideal if I if=. R and if ab EI implies 
either a EI orb EI. Let R be a commutative ring with unity, and suppose that I is 
an ideal of R such that I if=. R and I if=. { 0}. Prove that R/ I is an integral domain if and 
only if I is a prime ideal. 

14. Prove that for n if=. 1 and (n) * { 0 }, an ideal (n) of Z is a prime ideal if and only if n 
is a prime integer. 

15. Show that the ideal I in Exercise 1 is not a prime ideal of R. 

Sec. 6.1, #31 ;;:> 16. Show that the ideal ( 4) of E is not a prime ideal of E. 

Sec. 6.1, #31 ;;:> 17. Show that the ideal ( 6) in Exercise 3 is a prime ideal of E. 

18. Show that the ideal I in Exercise 2 is a prime ideal of R. 

Sec. 6.1, #31 ;;:> 19. Show that ( 10) is a prime ideal of E. 

Sec. 6.1, #31 ;;:> 20. Show that ( 14) is a prime ideal of E. 

21. Find all prime ideals of Z12. 

22. Find all prime ideals of Z18• 

23. Give an example of two prime ideals such that their intersection is not prime. 

Sec. 5.1, #51 ;;:> 24. Show that ZEB E is a maximal ideal of ZEB Z. 

Sec. 5.1, #51 ;;:> 25. Show that ZEB {O} is a prime ideal of ZEB Z but is not a maximal ideal of ZEB Z. 

26. a. Let R = M2(R), and M = { [ � �] } . Show that Mand M2(R) are the only ideals 

of M2(R) and hence Mis a maximal ideal. 

b. Show that R/M is not a field. Hence Theorem 6.22 is not true if the condition that 
R is commutative is removed. 

27. If R is a  commutative ring with unity, prove that any maximal ideal of R is also a prime 
ideal. 

28. If R is a finite commutative ring with unity, prove that every prime ideal of R is a 
maximal ideal of R. 
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A Pioneer in Mathematics 
Amalie Emmy Noether (1882-1935) 

Amalie Emmy Noether, born on March 23, 1882, in Erlangen, 
Germany, is considered the foremost female mathematician up 
to her time. She overcame numerous obstacles to receive her 
education and to be permitted to work as a mathematician in a 
university environment. Yet her contributions revolutionized abstract 
algebra and subsequently influenced mathematics as a whole. 

Even though university policy stated that admission of women 
would "overthrow all academic order,"t in 1900, Noether and one 
other woman were given special permission to audit classes at the 

University of Erlangen along with one thousand regularly enrolled male students. It wasn't 
until 1904 that Noether was allowed to enroll formally and enjoy the same privileges as her 
male counterparts. Three years later, she completed her doctoral dissertation. 

Between 1908 and 1915, Noether was allowed only to substitute teach at Erlangen 
whenever her father was ill. In 1915, she was brought to the University of Gottingen by 
David Hilbert (1862-1943) to help in his study of the mathematics involved in the general 
theory of relativity. Hilbert tried to secure a teaching position for Noether but met strong 
opposition from the faculty to his request to hire a woman. According to David M. Burton, 
Hilbert, in a faculty senate meeting held to discuss her appointment, exploded in frustration, 
"I do not see that the sex of the candidate is an argument against her admission as a 
Privatdozent. After all we are a university, not a bathhouse." Her appointment was voted 

down, but Hilbert allowed her to lecture in courses that were listed under his own name. 
At Gottingen. Noether eventually became a lecturer in algebra and earned a modest 

salary. Gi:ittingen was an international center of mathematics during this time. From her 
students, the "Noether boys," came some of the brightest mathematical talents of the era. 

Noether, a Jew, was forced to leave Germany in 1933 when Hitler came into power. 
She fled to the United States, where she accepted a position as visiting professor at Bryn 
Mawr College in Pennsylvania. She also worked at the Institute for Advanced Study in 
Princeton, New Jersey. Eighteen months later, at the height of her creative career, she died 
unexpectedly after an operation. 

tDavid M. Burton, Abstract Algebra (Cincinnati: William C. Brown, 1988), p. 242. 
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CHAPTER S EV E N 

Real and Com pl ex Numbers 

• Introduction 

The material in this chapter is included for the benefit of those who would not see it in some other 

course. However, it may be skipped by some instructors. It is possible to cover Chapter 8 before this 

one, and some instructors use this option. 

11.1 I The Field of Real Numbers 

At this point it is possible to fit some of the familiar number systems into the structures 

developed in the preceding chapters. 

In Theorem 5.35, the ring Z of all integers was characterized as an ordered integral 

domain in which the set of positive elements is well-ordered. By "characterized," we mean 

that any ordered integral domain in which the set of positive elements is well-ordered must 

be isomorphic to the ring Z of all integers. 

At the end of Section 5 .3 we noted that the construction of the rational numbers from 

Z is a special case of the procedure described in that section. That is, the set Q of all 

rational numbers is the quotient field of Z and, therefore, is the smallest field that con

tains Z. From a more abstract point of view, the field of rational numbers can be char

acterized as the smallest ordered field. That is, any ordered field must contain a subfield 

that is isomorphic to Q. (See Exercises 22-24 at the end of this section.) 

The main goal of this section is to present a similar characterization for the field of real 

numbers. The following definition is essential. 

Definition 7.1 • Upper Bound, Least Upper Bound 

Let S be a nonempty subset of an ordered field F. An element u of F is an upper bound of 

S if u 2: x for all x E S. An element u of F is a least upper bound of S if these conditions 

are satisfied: 

1. u is an upper bound of S. 

2. If b E F is an upper bound of S, then b 2: u. 

The phrase least upper bound is abbreviated l.u.b. 

333 
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Example 1 Let F = Q be the field of rational numbers, and let S be the set of all 
negative rational numbers. 

If a is any negative rational number, then there exists b E Q such that 0 > b > a, by 
Exercise 13 of Section 5.4. Thus no negative number is an upper bound of S. However, any 
positive rational number u is an upper bound of S, since 

u>O>x for allx ES. 

The rational number 0 is also an upper bound of S, since 0 > x for all x E S. In fact, 0 is a 
least upper bound of S in Q. • 

If u E F and v E F are both least upper bounds of the nonempty subset S of an ordered 
ALERT field F, then the second condition in Definition 7.1 requires both v � u and u � v. Therefore, 

u = v and the least upper bound of S in F is unique whenever it exists. 
Later we shall exhibit a nonempty subset of Q that has an upper bound in Q but does 

not have a least upper bound in Q. The following theorem will be needed, whose proof is 
given in Example 2 of Section 2.4. 

Theorem 7.2 • V2 Is Not Rational 

There is no rational number x such that x2 
= 2. 

Example 2 Let 

S = {x E Q Ix > 0 and x2 :::::: 2}. 

We shall show that S is a nonempty subset of Q that has an upper bound in Q but does not 
have a least upper bound (l.u.b.) in Q. 

The set S is nonempty since 1 is in S. The rational number 3 is an upper bound of S in 
Q since x � 3 requires x2 � 9 by Exercise 2c of Section 5.4. 

It is not so easy to show that S does not have a l.u.b. in Q. As a start, we shall prove 
the following two statements for positive u E Q: 

1. If u is not an upper bound of S, then u2 < 2. 

2. If u2 < 2, then u is not an upper bound of S. 

Consider statement 1. If u E Q is not an upper bound of S, then there exists x E S such 
that 0 < u < x. By Exercise 2c of Section 5.4, this implies that u2 < x2. Since x2 :::::: 2 for 
all x E S, we have u2 < 2. 

2 - u2 
To prove statement 2, suppose that u E Q is positive and u2 < 2. Then is 

2u + 1 
a positive rational number. By Exercise 13 of Section 5.4, there exists a rational number 
d such that 

{ 2 - u2 } 
0 < d <min 1, , 

2u + 1 
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where min { 1, 
2 - u2 } denotes the smaller of the two numbers in braces. If we now put 
2u + 1 

v = u + d, then vis a positive rational number, v > u, and 

v2 = u2 + 2ud + d2 

< u2 + 2ud + d since 0 < d < 1 implies 0 < d2 
< d 

= u2 + 

< u2 + 

= 2. 

(2u + l)d 

2 - u2 
(2u + 1) · --

2u + 1 

2 - u2 
sinced < ---

2u + 1 

Thus vis an element of S such that v > u, and hence u is not an upper bound of S. 

Having established statements 1 and 2, we may combine them with Theorem 7 .2 and 

obtain the following statement: 

3. A positive u E Q is an upper bound of S if and only if u2 > 2. 

With this fact at hand, we can now show that S does not have a l.u.b. in Q. 
Suppose u E Q is an upper bound of S. Then u is positive, since all elements of S are 

positive, and u2 > 2 by statement 3. Let 

w=u-
u2 - 2 

2u 

= 
u2 + 2 

2u 

u 1 
=- + -. 

2 u 

u2 2 
Then w is a positive rational number. We also have w < u, since 

-
is positive. Now 

2u 

> 2, 

sow is an upper bound of S by statement 3. Since w < u, we have that u is not a least upper 

bound of S. Since u was an arbitrary upper bound of S in Q, this proves that S does not have 

a l.u.b. in Q. • 

Example 2 establishes a very significant deficiency in the field Q of rational numbers: 

ALERT Some nonempty sets of rational numbers have an upper bound in Q but fail to have a least 

upper bound in Q. The next definition gives a designation for those ordered fields that do 

not have this deficiency. 
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Definition 7.3 • Complete Ordered Field 

Let F be an ordered field. Then F is complete if every nonempty subset of F that has an 

upper bound in F has a least upper bound in F. 

The basic difference between the field of rational numbers and the field of real numbers 

is that the real number field is complete. It is possible to construct the field of real numbers 

from the field of rational numbers, but this construction is too lengthy and difficult to be 

included here. It is more properly a part of that area of mathematics known as analysis. The 

method of construction most commonly used is one that is credited to Richard Dedekind 

( 183 1-1916) and utilizes what are called Dedekind cuts. In our treatment, we shall assume 

the validity of the following theorem. 

Theorem 7.4 • The Field of Real Numbers 

•Figure 7.1 

There exists a field R, called the field of real numbers, that is a complete ordered field. 

Any complete ordered field F has the following properties: 

a. F is isomorphic to R. 

b. F contains a subfield that is isomorphic to the field Q of rational numbers, and the 

ordering in F is an extension of the ordering in this subfield. 

The set of all real numbers may be represented geometrically by setting up a one-to

one correspondence between real numbers and the points on a straight line. To begin, we 

select a point on a horizontal line, designate it as the origin, and let this point correspond to 

the number 0. A second point is now chosen to the right of the origin, and we let this point 

correspond to the number 1. The distance between the two points corresponding to 0 and 1 

is now taken as one unit of measure. Points on the line located successively one unit farther 

to the right are made to correspond to the positive integers 2, 3, 4, ... in succession. With 

the same unit of measure and beginning at the origin, points on the line located succes

sively one unit farther to the left are made to correspond to the negative integers -1, -2, 
-3, ... (see Figure 7.1). This sets up a one-to-one correspondence between the set Z of all 

integers and some of the points on the line. 

-3 -2 -1 0 1 2 3 
© Cengage Learning 

Points on the line that correspond to nonintegral rational numbers are now located by 

using distances proportional to their expressions as quotients a/b of integers a and b and by 

using directions to the right for positive numbers and to the left for negative numbers. For 

example, the point corresponding to � is located midway between the points that correspond 

to 1 and 2, whereas the point corresponding to -� is located midway between those that cor

respond to -1 and -2. In this manner, a one-to-one correspondence is established between 

the set Q of rational numbers and a subset of the points on the line. 

It is not very difficult to demonstrate that there are points on the line that do not cor

respond to any rational number. This can be done by considering a right triangle with each 

leg one unit in length (see Figure 7.2). By the Pythagorean Theorem, the length h of the 
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•Figure 7.2 
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hypotenuse of the triangle in Figure 7 .2 satisfies the equation h2 
= 2. There is a point on 

the line located at a distance h units to the right of the origin, but by Theorem 7 .2, this point 

cannot correspond to a rational number. 

1 

"' 
" 
" 
"' 

.3 
"' 
"' 
"' 
"' 

---------� ii:i 
u 

© 1 

The foregoing demonstration shows that there are gaps in the rational numbers, even 

though any two distinct rational numbers have another rational number located between 

them (see Exercise 13 of Section 5.4). We assume now that the one-to-one correspond

ence that we have set up between the rational numbers and points on the line can be 

extended to the set of all real numbers and the set of all points on the line. The points that 

do not correspond to rational numbers are assumed to correspond to real numbers that are 

not rational-that is, to irrational numbers. For example, the discussion in the preceding 

paragraph located the point that corresponds to the irrational number h = \12. 
One more aspect of the real numbers is worthy of mention: the decimal representa

tion of real numbers. Here we assume that each real number can be represented by a deci

mal expression that either terminates, as does 

9 8 = 1.125, 

or continues without end, as do the repeating decimalt 

and the nonrepeating decimal 

14 
- = 1.272727 ... = 1.27 
11 

V2 = 1.41421356 .... 

The decimal expression for a rational number a/b may be found by long division. For 

example, for the rational number �i, long division yields the following. 

1.27 

111i4.0o 
11 

30 
22 
80 

77 
-

3 

tThe bar above 27 indicates that the digits 27 repeat endlessly. 
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The repetition of the remainder 3 at this point makes it clear that we have the repeating 

decimal expression 

14 
11 

1.272727 . . .  = 1.27. 

A terminating decimal expression may be regarded as a repeating pattern where zeros 

repeat endlessly. For example, 

9 
8 

1.125000 . . .  = 1.1250. 

With this point of view, the decimal expression for any rational number a/b will 

always have a repeating pattern. This can be seen from the long-division algorithm: 

Each remainder satisfies 0 < r < b, so there are only b distinct possibilities for the 

remainders, and the expression starts repeating whenever a remainder occurs for the 

second time. 

Rational numbers that have a terminating decimal expression can be represented in 

another way by changing the range on the remainders in the long division from 0 :::; r < b 
to 0 < r :::; b. If we perform the long division for � in this way, it appears as follows. 

1.1249 
�9.0000 

8 
10 
8 
20 
16 
40 
32 
80 
72 
8 

At this point, the remainder 8 has occurred twice, and the repeating pattern is seen to be 

9 
- = 1.124999 . . .  = 1.1249. 
8 

It is shown in calculus that if a -=F 0, then the infinite geometric series 

00 

:Larn-1 
n=l 

diverges for Ir I 2':: 1 and converges to al( 1 - r) when Ir I < 1. Thus every nonterminating 

repeating decimal expression represents a rational number, since it is the sum of an infinite 

geometric series with r = 10-k, for some positive integer k. The next example illustrates 

this situation. 
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Example 3 We shall express 2.134 as a quotient of integers. We have 

2.134 = 2.1343434 ... 
= 2.1 + 0.034 + 0.00034 + 0.0000034 + ... 

and the terms 0.034 + 0.00034 + 0.0000034 + · · · form an infinite geometric series 

with a = 0.034 and r = 10-2 = 0.01. Since Ir I < 1, this geometric series converges to 

0.034/(1 - 0.01) and 

00 

2.134 = 2.1 + _L(0.034)(0.0l)n-l 
n=l 

21 0.034 
= - + ----

10 1 - 0.01 
21 0.034 

= - + --

10 0.99 
21 34 

= - + -

= 

10 990 
2113 
990

. • 

This discussion of decimal representations is not intended to be a rigorous presenta-

tion. Its purpose is to make the following remarks appear plausible: 

1. Each real number can be represented by a decimal expression. 

2. Decimal expressions that repeat or terminate represent rational numbers. 

3. Decimal expressions that do not repeat and do not terminate represent irrational numbers. 

Exercises 7.1 

True or False 

Label each of the following statements as either true or false. 

1. Every least upper bound of a nonempty set S is an upper bound. 

2. Every upper bound of a nonempty set S is a least upper bound. 

3. The least upper bound of a nonempty set S is unique. 

4. Every upper bound of a nonempty set S must be an element of S. 

5. If a nonempty set S contains an upper bound, then a least upper bound must exist in S. 

6. The field of real numbers is complete. 

7. The field of rational numbers is complete. 

8. Every decimal representation of a real number that terminates represents a rational 

number. 

9. Every decimal representation of a real number that does not terminate represents an 

irrational number. 
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Exercises 

Find the decimal representation for each of the numbers in Exercises 1-6. 

1. � 2. 3
7
3 3. �? 

4 16 
• 7 5 22 

• 7 6 19 • TI 

Express each of the numbers in Exercises 7-12 as a quotient of integers, reduced to lowest 

terms. 

7. 3.4 

10. 0.63 

8. 1.6 

11. 2.51 

9. 0.12 

12. 3.21321 

13. Prove that v'5 is irrational. (That is, prove there is no rational number x such that 

x2 = 5.) 

14. Prove that \Y3 is irrational. 

15. Prove that if p is a prime integer, then .\J'P is irrational. 

16. Prove that if a is rational and b is irrational, then a + b is irrational. 

17. Prove that if a is a nonzero rational number and b is irrational, then ab is irrational. 

18. Prove that if a is an irrational number, then a-1 is an irrational number. 

19. Prove that if a is a nonzero rational number and ab is irrational, then b is irrational. 

20. Give counterexamples for the following statements. 

a. If a and b are irrational, then a + b is irrational. 

b. If a and b are irrational, then ab is irrational. 

21. Let S be a nonempty subset of an ordered field F. 

a. Write definitions for lower bound of S and greatest lower bound of S. 

b. Prove that if F is a complete ordered field and the nonempty subset S has a lower 

bound in F, then S has a greatest lower bound in F. 

22. Prove that if F is an ordered field with p+ as its set of positive elements, then p+ 2 
{neln E z+ }, where e denotes the multiplicative identity inF. (Hint: See Theorem 5.34 
and its proof.) 

23. If F is an ordered field, prove that F contains a subring that is isomorphic to Z. 
(Hint: See Theorem 5.35 and its proof.) 

24. Prove that any ordered field must contain a subfield that is isomorphic to the field Q 
of rational numbers. 

25. If a and b are positive real numbers, prove that there exists a positive integer n such 

that na > b. This property is called the Archimedean t Property of the real numbers. 

tArchimedes (c. 287 B.C.-c. 212 B.C.) was a Greek mathematician, physicist, engineer, and astronomer. He is 
regarded as the leading scientist of his time and as one of the greatest mathematicians ever. He is famous for his 
innovative machine designs, including the screw pump. He is honored with a lunar crater and a lunar mountain 
range named after him. California adopted his famous Eureka! as its state motto. 
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(Hint: If ma:::;; bfor allm E z+,then b is an upper boundfor the setS ={maim E z+}. 
Use the completeness property of R to arrive at a contradiction.) 

26. Prove that if a and b are real numbers such that a > b, then there exists a rational 
number m/n such that a> m/n > b. (Hint: Use Exercise 25 to obtain n E z+ such 
that a - b > 1/n. Then choose m to be the least integer such that m > nb. With these 
choices ofmand n,showthat(m - 1)/n :5 b and then thata > m/n > b.) 

12!] Complex Numbers and Quaternions 

The fact that negative real numbers do not have square roots in R is a serious deficiency of 
the field of real numbers, but it is one that can be overcome by the introduction of complex 
numbers. 

Although we do not present a characterization of the field of complex numbers until 
Section 8.4, it is possible to construct the complex numbers from the real numbers. Such a 
construction is the main purpose of this section. 

In our construction, complex numbers appear first as ordered pairs (a, b) and later in 
the more familiar form a + bi. The operations given in the following definition will seem 
more natural if they are compared with the usual operations on complex numbers in the 
form a+ bi. 

Definition 7.5 • Complex Numbers 

Let C be the set of all ordered pairs (a, b) of real numbers a and b. Equality, addition, and 
multiplication are defined in C by 

(a, b) = (c, d) if and only if a = c and b = d 
(a,b) + (c,d) =(a+ c,b + d) 
(a, b) ( c, d) = ( ac - bd, ad + be). 

The elements of C are called complex numbers. 

It is easy to see that the stated rules for addition and multiplication do in fact define 
binary operations on C. 

Theorem 7.6 • The Field of Complex Numbers 

With addition and multiplication as given in Definition 7.5, C is a field. The set of all ele
ments of the form (a, 0) in C forms a subfield of C that is isomorphic to the field R of real 
numbers. 

Proof Closure of C under addition follows at once from the fact that R is closed under 
addition. It is left for the exercises to prove that addition is associative and commuta
tive, that (0, 0) is the additive identity in C, and that the additive inverse of (a, b) E C is 
(-a, -b) EC. 
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Since R is closed under multiplication and addition, each of ac - bd and ad + be is in 

R whenever (a, b) and (c, d) are in C. Thus C is closed under multiplication. 

For the remainder of the proof, let (a, b), (c, d), and (e, f) represent arbitrary 

elements of C. The associative property of multiplication is verified by the following 

computations: 

(a,b)[(c,d)(e,f)] = (a,b)(ce - df,cf+ de) 

= [a(ce - df) - b(cf+ de),a(cf+ de)+ b(ce - df)] 

= (ace - adj- bcf- bde, acf + ade + bee - bdf) 

= [(ac - bd)e - (ad+ bc)f, (ac - bd)f + (ad+ bc)e] 

= (ac - bd, ad+ bc)(e,f) 

= [(a, b)(c, d)](e,f). 

Before considering the distributive laws, we shall show that multiplication is commu

tative in C. This follows from 

(c,d)(a,b) =(ca - db,cb + da) 

= (ca - db, da + cb) 

= ( ac - bd, ad + be) 

= (a, b )(c, d). 

We shall verify the left distributive property and leave the proof of the right distribu

tive property as an exercise: 

(a, b)[(c, d) + (e,f)] = (a, b)(c + e, d + J) 

= [a(c + e) - b(d + J),a(d + J) + b(c + e)] 

= ( ac + ae - bd - bf, ad + af + be + be) 

= (ac - bd, ad + be) + (ae - bf, af + be) 

= (a, b )(c, d) + (a, b )(e,f). 

To this point, we have established that C is a commutative ring. 

The computation 

( 1, 0) (a, b) = ( 1 
• a - 0 • b, 1 

• b + 0 • a) = (a, b) 

shows that (1, 0) is a left identity for multiplication in C. Since multiplication in C is com

mutative, it follows that (1, 0) is the unity in C. 

If (a, b) =/= (0, 0) in C, then at least one of the real numbers a orb is nonzero, and it 

follows that a2 + b2 is a positive real number. Hence 

( a2 : b2' a2 �
b 

b2) 
is an element of C. The multiplication 

( a -b ) (a2 + b2 
(a, b) 

a2 + b2 , 
a2 + b2 = 

a2 + b2 , 
-ab+ ba) = ( ) 2 2 1, 0 

a + b 
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shows that 

(a, b )-1 = ( az : bz ' az �
b 

bz), 

since multiplication is commutative in C. This completes the proof that C is a field. 
Consider now the set R' that consists of all elements of C that have the form (a, 0): 

R '  = {(a, 0) la E R}. 
The proof that R' is a subfield of C is left as an exercise. The mapping fJ: R --+ R' defined by 

fJ(a) = (a,O) 
is clearly onto, and is one-to-one, since (a, 0) = (b, 0) if and only if a = b. For arbitrary 
a and bin R, 

and 

fJ(a + b) =(a+ b,O) 
= (a, 0) + ( b, 0) 

= fJ(a) + fJ(b) 

fJ(ab) = (ab,O) 
= (a, O)(b, 0) 

= fJ(a)fJ(b). 

Thus fJ preserves both operations and is an isomorphism from R to R'. 

We shall use the isomorphism fJ in the preceding proof to identify a ER with (a, 0) in 
R'. We write a instead of (a, 0) and consider R to be a subset of C. The calculation 

( 0, 1) ( 0, 1) = ( 0 • 0 - 1 • 1, 0 • 1 + 1 • 0) 

= ( - 1 , 0 ) 
= -1 

shows that the equation x2 = -1 has a solution x = (0, 1) in C. 

To obtain the customary notation for complex numbers, we define the number i by 

i = ( 0, 1 ). 

This makes i a number such that i2 = - 1. We now note that any (a, b) EC can be written 
in the form 

(a,b) = (a,O) + (O,b) 
= (a,O) + b(O, 1) 
=a+ bi, 

and this gives us the familiar form for complex numbers. 
Using the field properties freely, we may rewrite the rules for addition and multiplica

tion in C as follows: 

(a + bi) + ( c + di) = a + c + bi + di 
= (a + c ) + (b + d)i 
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and 

(a + bi)(c + di) = (a + bi)c + (a + bi)di 
= ac + bci + adi + bdi2 
= (ac - bd) + (ad+ bc)i, 

where the last step was obtained by replacing i2 with -1. 
The fact that i2 = -1 was used in Section 5.4 to prove that it is impossible to impose 

an order relation on C. Hence C is not an ordered field. 
It is easy to show that all negative real numbers have square roots in C. For any positive 

real number a, the negative real number -a has both Vai and -Vai as square roots, since 

( Vai)2 = ( Va)2i2 = a( -1) = -a 

and 

(-Vai)2 = (-Va)2i2 = a(-1) =-a. 

We shall see later in this chapter that every nonzero complex number has two distinct 

square roots in C. 

Example 1 The following results illustrate some calculations with complex numbers. 

a. (1 + 2i)(3 - 5i) = 3 + 6i - 5i - l0i2 = 13 + i 
b. (2 + 3i)(2 - 3i) = 4 - 9i2 = 13 
c. (-3 + 4i)(3 + 4i) = -9 + l6i2 = -25 
d. (1 - if= 1 - 2i + i2 = -2i 
e. i4 = (i2)2 = ( -1)2 = 1 

In connection with part b of Example 1, we note that 

(a + bi)(a - bi) = a2 - b2i2 
=a2+b2 

• 

for any complex number a + bi. The number a2 + b2 is always real, and it is positive if 

a + bi is nonzero. 

Definition 7.7 • Conjugate 

For any a, b in R, the conjugate of the complex number a + bi is the number a - bi. The 

notation z indicates the conjugate of z: If z = a + bi with a and b real, then z = a - bi. 

Using the bar notation of Definition 7. 7, we can write 

zz = zz = a2 + b2, 

and the multiplicative inverse of a nonzero z is given by 
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Division of complex numbers may be accomplished by multiplying the numerator and 

denominator of a quotient by the conjugate of the denominator. 

Example 2 We have the following illustrations of division. 

3 + 7i 3 + 7i 2 + 3i 6 + 23i - 21 
a. = = 

2 - 3i 2 - 3i 2 + 3i 4+9 
1 1 2 - i 2 - i 2 1 

b. -- = -- . -- = -- = - - -i 
2 + i 2 + i 2 - i 5 5 5 

= 
15 23 

- - + - i 
13 13 

• 

By using the techniques illustrated in Examples 1 and 2, we can write the result of any 

calculation involving the field operations with complex numbers in the form a + bi, with a 

and b real numbers. This form is called the standard form of the complex number. If b =I= 0, 
the number is called imaginary. If a = 0 and b =F 0, the number is called pure imaginary. 

The construction of the complex numbers by use of ordered pairs was first accom

plished by Hamilton (see the biographical section at the end of this chapter). Eventually, he 

was able to use ordered quadruples (x, y, z, w) of real numbers to extend the complex num

bers to a larger set that he called the quaternions. His quaternions satisfy all the postulates 

for a field except the requirement that multiplication be commutative. A system with these 

properties is called a division ring, or a skew field, and Hamilton's quaternions were the 

first known example of a division ring. 

Example 3 In this example we outline the development of the quaternions as the set 

H = {(x, y, z, w) Ix, y, z, w ER}, 

with most of the details left as exercises. 

Equality and addition are defined in H by 

(x, y, z, w) = (r, s, t, u) if and only if x = r, y = s, z = t, and w = u; 
(x, y, z, w) + (r, s, t, u) = (x + r, y + s, z + t, w + u). 

It is easy to see that this addition is a binary operation on H, and (0, 0, 0, 0) in H is the 

additive identity. Also, each (x, y, z, w) in H has an additive inverse ( -x, -y, -z, -w) in H. 

The proofs that addition is associative and commutative are left as exercises. Thus H forms 

an abelian group with respect to addition. 

When the definition of multiplication in H is presented in the same manner as 

multiplication of complex numbers in Definition 7.5, it has the following complicated 

appearance: 

(x, y, z, w )(r, s, t, u) = (xr - ys - zt - wu, xs + yr+ zu - wt, 
xt - yu + zr + ws, xu + yt - zs + wr). 

This multiplication is a binary operation on H, and it is easy to verify that (1, 0, 0, 0) is a 

unity in H. Laborious computations will show that multiplication is associative in H and 

that both distributive laws hold. These verifications are left as exercises and lead to the 

conclusion that H is a ring. 
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At this point, it can be shown that the set 

R' = {(a, 0, 0, 0) I a ER} 

is a field contained in H and that the mapping () : R � R' defined by 

O(a) = (a, 0, 0, 0) 

is an isomorphism. In a manner similar to the identification of a with (a, 0) in C, we can 

identify a in R with (a, 0, 0, 0) in R' and consider R to be a subring of H. 

Some other notational changes can be used to give the elements of H a more natural 

appearance. We let 

i = (0, 1,0,0), j = (0,0, 1,0), and k = ( 0, 0, 0, 1). 

Then an arbitrary element (x, y, z, w) in H can be written as 

(x,y, z, w) = (x, 0, 0, 0) + (y, 0, 0, 0) i + (z, 0, 0, 0)j + ( w, 0, 0, 0)k 

= x + yi + zj + wk. 

Routine calculations confirm the equations 

( -1)2 = 1 

i2 = j2 = k2 = -1 

(-l)a = a (-1) = -a for all a E {±1, ±i, ±j, ±k} 

ij = -ji = k 

jk = -kj = i 

ki = -ik = j. 

In fact, this multiplication agrees with the table constructed for the quaternion group in 

Exercise 34 of Section 3.1. The circular order of multiplication observed previously is also 

valid in H (see Figure 3.8). With a positive (counterclockwise) rotation, the product of two 

consecutive elements is the third one on the circle, and the sign changes with a negative 

ALERT (clockwise) rotation. Computations such as ij = k and ji = - k show that multiplication in 

His not commutative, and His not a field. 

With the i,j, k notation, H can be written in the form 

H = {x + yi + zj + wklx,y, z, w ER}, 

with addition and multiplication appearing as 

(x  + yi + zj + wk) + (r + si + tj + uk) = (x + r) + (y + s) i + (z  + t)j 

+ (w + u)k; 

(x + yi + zj + wk) (r + si + tj + uk) = (xr - ys - zt - wu) 

+ (xs + yr+ zu - wt) i 

+ (xt - yu + zr + ws )j 

+ (xu + yt - zs + wr )k. 

Multiplication can thus be performed by using the distributive laws and other natural ring 

properties, with two exceptions: 

1. Multiplication is not commutative. 

2. Products of i,j, or k are simplified using the equations in the middle of this page. 
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The most outstanding feature of His that each nonzero element has a multiplicative 

inverse. For each q = x + yi + zj + wk in H, we imitate conjugates in C and write 

q = x - yi - zj - wk. 

It is left as an exercise to verify that 

qq = qq = x2 
+ y2 

+ z2 
+ w2. 

If q =f=. 0, then qq =f=. 0, and 

Thus H has all the field properties except commutative multiplication. • 

Exercises 7 .2 

True or False 

Label each of the following statements as either true or false. 

1. It is possible to impose an order relation on C, the set of complex numbers. 

2. Negative real numbers have two distinct square roots in the field of complex numbers. 

3. The inverse of any nonzero complex number can be expressed in terms of its conjugate. 

4. The complex numbers form a field. 

5. The quaternions form a field. 

6. Every field is a division ring. 

7. Every division ring is a field. 

Exercises 

Perform the computations in Exercises 1-12 and express the results in standard form 

a+ bi. 

1. (2 - 3i)( -1 + 4i) 2. (5 - 3i)(2 - 4i) 

3 ·15 
• l 4 • i87 

5. (2 - i)3 6. i(2 + i)2 

1 
7. --

2 - i 
8. 

1 

3 + i 

2 - i 1 - i 
9. 10. 

8 - 6i 1 + 3i 

5 + 2i 4 - 3i 
11. 12. 

5 - 2i 4 + 3i 
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13. Find two square roots of each given number. 

a. -9 

d. -36 

b. -16 

e. -13 

c. -25 

f. -8 

14. With addition as given in Definition 7.5, prove the following statements. 

a. Addition is associative in C. 

b. Addition is commutative in C. 

c. (0, 0) is the additive identity in C. 

d. The additive inverse of (a, b) E C is (-a,-b) E C. 

15. With addition and multiplication as in Definition 7 .5, prove that the right distributive 

property holds in C. 

16. Show that in = im for all integers n, where n == m (mod 4). 

17. With C given in Definition 7 .5, prove that R' = {(a, 0) I a E R} is a subfield of C. 

18. Let B = {bi I b E R} be a subset of C with the usual operations of addition and mul

tiplication of complex numbers. 

a. Prove or disprove that B is an abelian group with respect to addition. 

b. Prove or disprove that B is a ring. 

19. Let (J be the mapping 0: C � C defined for z = a + bi in standard form by 

O(z) = a - bi. 

Prove that (J is a ring isomorphism. 

20. It follows from Exercise 19 that z1 + z2 = z1 + z2 and that z1z2 = z1 z2 for all z1, z2 
in C. Prove the following statements concerning conjugates of complex numbers. 

a. (z) = z b. If z * o, then (zt1 
= (z-1). 

c. z + z E R d. z = z if and only if z E R. 

e. z = -z if and only if z is pure imaginary or z = 0. 

21. a. Show that x + yi satisfies the equation z2 = a + bi where 

b )v' a2 + b2 - a 
x = - and y = ::!: . 

2y 2 

b. Find two square roots of each of the following complex numbers. 

i. 3 - 4i ii. 4 + 3i iii. 5 + l2i iv. -12 + 5i 

22. Assume that 0: C � C is an isomorphism and O(a) = a for all a ER. Prove that if (J 

is not the identity mapping, then O(z) = z for all z E C. 

Perform the computations in Exercises 23-34 and express the results in the form x + yi + 
zj +wk wherex, y, z, w ER. 

23. (2 + i) (3 - 4i + j - k) 24. (1 + j - k) (4 + 3i + k) 
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27. (2i -k)3 

29. (i -j)-1 

6) 
31. ----

1 + 2i -k 

l+j-2k 
33. ------

2 -i + j -4k 

7.2 Complex Numbers and Quaternions 349 

26. i1)3k10 

28. j(i -k)4 

3o. <2 + 0-2 

9ij 
32. ----

i +j-k 

i + 2j -3k 
34. ------

1 + 4i -j + 3k 

35. With addition as given in Example 3 of this section, prove the following statements. 

a. Addition is associative in H. 

b. Addition is commutative in H. 

36. Prove that multiplication in the set H of Example 3 has the associative property. 

37. With addition and multiplication as defined in Example 3, prove that both distributive 

laws hold in H. 

Exercises 38--42 are stated using the notation in the last paragraph of Example 3. 

38. Prove that @ = q for all q E H. 

39. Prove that q1 + q2 = q1 + q2 for all qi, qz E H. 

40. Prove that q1q2 = q2 �for all qi, qz EH. 

41. Prove or disprove: q1q2 = q1 q2 for all qi, qz EH. 

42. Verify that qq = qq = i2 + y2 + z2 + w2 for arbitrary q = x + yi + zj + wk in H. 

43. (See Exercise 42.) For arbitrary q = x + yi + zj + wk in H, we define the absolute 

value of q by lql = V i2 + y2 + z2 + w2. Verify that lq1q2I = lq11 • lqzl. 

44. Let qi. q2 E H. Prove qiq2 = 0 implies qi = 0 or qz = 0. 

45. Show that the equation x2 = -1 has an infinite number of solutions in the quaternions. 

46. a. With H as defined in Example 3, prove that the set 

R' = {(a, 0, 0, 0) la ER} 

is a field that is contained in H. 

b. Prove that the mapping (} :  R --+ R' defined by O(a) = (a, 0, 0, 0) is an 

isomorphism. 

47. Assume that 

C' = {(a, b, O, O)ia, b ER} 

is a subring of the quaternions in Example 3 when H is regarded as a set of quadruples. 

Prove that the mapping (}: C--+ C' defined by O(a + bi) = (a, b, 0, 0) is an isomor

phism from the field C of complex numbers to C'. (Thus we can consider C to be a 

subring of H.) 
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48. Suppose the mapping f is defined on the set H of quaternions by f(q) = q for all 

q EH. Show thatf is one-to-one, onto, and satisfies the following properties. 

49. Let S be the subset of M2(C) given by 

a. Prove that S is a subring of M2(C). 
b. Prove that the mapping 0: H � S defined by 

[ a+ bi O(a + bi + cj + dk) = ( ") - c - di 
c +di] 
a - bi 

is an isomorphism from the ring of quaternions H to S. [Note that 

a + bi + cj + dk = (a + bi) + (c + di)j.] 
50. Let K be the group of nonzero quaternions with the operation of multiplication. Show 

that the center of K is {x = x + Oi + Oj + Ok Ix ER, x =/= O}. 
Sec. 5.2, #18 � 51. An element a in a ring R is idempotent if a2 = a. Prove that a division ring must 

contain exactly two idempotent elements. 

52. Prove that a finite ring R with unity and no zero divisors is a division ring. 

De Moivre's t Theorem and Roots 
of Complex Numbers 

We have seen that real numbers may be represented geometrically by the points on a straight 

line. In much the same way, it is possible to represent complex numbers by the points in 

a plane. We begin with a conventional rectangular coordinate system in the plane (see 

Figure 7 .3). With each complex number x + yi in standard form, we associate the point 

that has coordinates (x, y). This association establishes a one-to-one correspondence from 

the set C of complex numbers to the set of all points in the plane. 

The point in the plane that corresponds to a complex number is called the graph of 

the number, and the complex number that corresponds to a point in the plane is called 

the coordinate of the point. Points on the horizontal axis have coordinates a + Oi that 

are real numbers. Consequently, the horizontal axis is referred to as the real axis. Points, 

t Abraham de Moivre (1667-1754) was a French mathematician famous for his book on probability theory, 
The Doctrine of Chances. It is rumored that de Moivre predicted the date of his own death, and he was the 
first to discover Binet' s formula for the nth term in the Fibonacci sequence, although Binet is given credit 
for it. 
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•Figure 7.3 

•Figure 7.4 
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other than the origin, on the vertical axis have coordinates 0 + bi that are pure imaginary 

numbers, so the vertical axis is called the imaginary axis. Several points are labeled 

with their coordinates in Figure 7.3. 

Complex numbers are sometimes represented geometrically by directed line segments 

called vectors. In this approach, the complex number a + bi is represented by the directed 

line segment from the origin of the coordinate system to the point with rectangular 

coordinates (a, b) or by any directed line segment with the same length and direction as 

this one. This is shown in Figure 7.4. 

y /'bi 

(a, b) 

x 

-� 
E 
"' 

.3 
"' 
C> 
"' 

� 
u 

<§ 

In this book we have little use for the vector representation of complex numbers. We 

simply note that in this interpretation, addition of complex numbers corresponds to the 

usual "parallelogram rule" for adding vectors. This is illustrated in Figure 7.5. 
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•Figure 7.5 
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•Figure 7.6 

Returning now to the representation of complex numbers by points in the plane, we 
observe that any point P in the plane can be located by designating its distance r from the 
origin 0 and an angle 0 in standard position that has OP as its terminal side. Figure 7.6 

shows r and 0 for a complex number x + yi in standard form. 
From Figure 7 .6, we see that r and 0 are related to x and y by the equations 

x = r cos 0, y = r sin 0, r = Vx2 + y2. 

The complex number x + yi can thus be written in the form 

x + yi = r(cos 0 + i sin 0). 

Definition 7.8 • Trigonometric Form 

When a complex number in standard form x + yi is written as 

x + yi = r(cos 0 + i sin 0), 

the expressiont r(cos 0 + i sin 0) is called the trigonometric form (or polar form) of 

x + yi. The number r = V x2 + y2 is called the absolute value (or modulus) of x + yi, and 
the angle 0 is called the argument (or amplitude) of x + yi. 

The usual notation is used for the absolute value of a complex number: 

Ix+ yil = r = Vx2 + y2. 

ALERT The absolute value, r, is unique, but the angle 0 is not unique since there are many angles 
in standard position with P on their terminal side. This is illustrated in the next example. 

tThe expression cos () + i sin() is sometimes abbreviated as cis 8. 
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Example 1 Expressing the complex number - 1 - i in trigonometric form,t we have 

( 57T 57T) 
v'2 cos 4 + i sin 4 

v'2 [cos ( - 3:) + i sin ( - 3:)] 
( l37T l37T) 

= v'2 cos 4 + i sin -4- . 

Many other such expressions are possible. • 

Although the argument 0 is not unique, an equation of the form 

does require that r1 = r2 and that 01 and 02 be coterminal. Hence 

for some integer k. 
The next theorem gives a hint as to the usefulness of the trigonometric form of complex 

numbers. In proving the theorem, we shall use the following identities from trigonometry: 

cos (A + B) = cos A cos B - sin A sin B 
sin (A + B) = sin A cos B + cos A sin B. 

Theorem 7.9 • Product of Complex Numbers 

If 

and 

are arbitrary complex numbers in trigonometric form, then 

z1z2 = r1r2 [cos (01 + 02) + i sin (01 + 02)]. 

In words, the absolute value of the product of two complex numbers is the product of their 

absolute values, and an argument of the product is the sum of their arguments. 

tw e choose to use radian measure for angles. Degree measure could also be used. 
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354 Chapter 7 Real and Complex Numbers 

Proof The statement of the theorem follows from 

z1z2 = [r1(cos 01 + i sin 01)][r2(cos 02 + i sin 02)] 

r1r2[(cos 01 cos 02 - sin 01 sin 02) 

+ i(cos 01 sin 02 + sin 01 cos 02)] 

= r1r2[cos (01 + 02) + i sin (01 + 02)]. 

The preceding result leads to the next theorem, which begins to reveal the true useful
ness of the trigonometric form. 

Theorem 7.10 • De Moivre's Theorem 

If n is a positive integer and 

z = r(cos 0 + i sin 0) 

is a complex number in trigonometric form, then 

zn = rn(cos nO + i sin nO). 

Induction Proof For n = 1, the statement is trivial. Assume that it is true for n = k-that is, that 

zk = rk(cos kO + i sin kO). 

Using Theorem 7.9, we have 

zk+ 
1 

= zk • z 

= [rk( cos kO + i sin kO) ][r( cos 0 + i sin 0)] 

= rk+l [cos(kO + 0) + i sin(kO + O)] 

= rk+
1 
[cos(k + 1)0 + i sin(k + 1)0]. 

Thus the theorem is true for n = k + 1, and it follows by induction that the theorem is true 
for all positive integers. 

Example 2 Some applications of De Moivre's Theorem are shown in the following 
computations. 

[ 20( cos 
3; + i sin 

3;) r 
= 64( cos 31T + i sin 31T) 

= 64( -1 + Oi) = -64 
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b. ( v; + � i )4° = [ 1 (cos � + i sin �) r0 

= 140( cos 
2�1T 

+ i sin 
2�1T) 

= cos(2; + 61T) + i sin(2; + 61T) 
21T 21T 

= cos - + i sin -
3 3 

1 v'3 
=-- + -- i 

2 2 • 

If n is a positive integer greater than 1 and un = z for complex numbers u and z, then u 
is called an nth root of z. We shall prove that every nonzero complex number has exactly 

n nth roots in C. 

Theorem 7.11 • nth Roots of a Complex Number 

For each integer n :::::: 1, any nonzero complex number 

z = r (cos (} + i sin 0) 

has exactly n distinct nth roots in C, and these are given by 

lln ( (} + 2k1T . . (} + 2k1T) _ 
r cos 

n 
+ i sm 

n 
, k - 0, 1, 2, ... , n - 1, 

where r11n = Yr denotes the positive real nth root of r. 

Proof For an arbitrary integer k, let 

Then 

( (} + 2k1T (} + 2k1T) v = r11n cos 
n 

+ i sin 
n 

. 

( 1/ ) ( n (O + 2k1T) . . n (O + 2k1T )) vn = r n n cos + l sm -----
n n 

= r [cos(O + 2k1T) + i sin (O + 2k1T)] 
= r (cos (} + i sin 0) 
= z, 

and v is an nth root of z. The n angles 

(} (} + 21T (} + 2(21T) 
' n n n 

(} + (n- 1)(21T) 
' ... ' n 
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356 Chapter 7 Real and Complex Numbers 

are equally spaced 2; radians apart, so no two of them have the same terminal side. Thus 
the n values of v obtained by letting k = 0, 1, 2, ... , n - 1 are distinct, and we have 
shown that z has at least n distinct nth roots in C. 

To show there are no other nth roots of z in C, suppose v = t( cos </> + i sin </>) is the 
trigonometric form of a complex number v such that vn = z. Then 

tn( cos n<f> + i sin n<f>) = r( cos (} + i sin (}), 

by De Moivre's Theorem. It follows from this that 

tn = r, cos n<f> = cos (}, and sin n<f> = sin (}. 

Since r and tare positive, it must be true that t = r11n. The other equations require that n<f> 
and (} be coterminal, and hence they differ by a multiple of 27T: 

n<f> = (} + m(27T) 

for some integer m. By the Division Algorithm, 

m = qn + k, 

where k E {O, 1, 2, ... , n - 1}. Thus 

and 

n<f> = () + (qn + k)(27T) 

() + 2k7T 
</> = + q(27T ). 

n 

This equation shows that</> is coterminal with the angle 
() + 2k7T

, and hence v is one of the 
nth roots listed in the statement of the theorem. 

n 

Example 3 We shall find the three cube roots of Si and express each in standard form 
a + bi. Expressing Si in trigonometric form, we have 

Si = S (cos � + i sin �). 
By the formula in Theorem 7 .11, the cube roots of z = Si are given by 

( 7T + 2k7T 
7T + 2k7T ) 

S 113 cos 
2 3 + i sin 

2 3 , k = 0, 1, 2. 

Each of these roots has absolute value s1/3 
= 2, and they are equally spaced 2; radians 

apart, with the first one at K. Thus the three cube roots of Si are 
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( 'TT .. 'TT) 
(\13 1.) 

... !'> . 
2 cos 6 + z sm 6 = 2 2 + 2 z = v 3 + z 

( 5'TT 5'TT) ( 
V3 1 

) 2 cos 6 + i sin 6 = 2 -2 + 2 i = -\13 + i 

( 
3'TT . . 3'TT) . . 2 cos 2 + z sm 2 = 2(0 - z) = -2z. 

These results may be checked by direct multiplication. 

Exercises 7 .3 
True or False 

Label each of the following statements as either true or false. 

• 

1. There is a one-to-one correspondence between the standard form and the trigonometric 
form of a complex number. 

2. Every nonzero complex number has exactly n nth roots in C. 

3. In order for two trigonometric forms to represent the same complex number, the 
absolute values must be equal and the arguments must be equal. 

4. The n nth roots of any complex number are equally spaced around a circle with center 
at the origin. 

Exercises 

1. Graph each of the following complex numbers, and express each in trigonometric form. 
a. -2 + 2\13 i b. 2 + 2i c. 3 - 3i 
d. V3 + i e. 1 + V3 i f. -1 - i 
g. -4 h. -5i 

2. Find each of the following products. Write each result in both trigonometric and 
standard form. 
a. [4(cosi + i sini)][cos5; + i sin5;J 

b. [3(cos 1; + i sin 1;)][cos2; + i sin�rJ 

c. [2(cos5; + i sin5;)]{3[cos( -U + i sin(-�)]} 

d. [6(cos5; + i sin5;)]{5[cos( -�) + i sin(-�)]} 

3. Use De Moivre's Theorem to find the value of each of the following. Leave your 
answers in standard form a + bi. 

a. (\13 + i)7 

c. (-\13 + i)10 

b. (� + �i)21 

d. (� - �iy8 
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e. ( -± + v; i ) 18 

g. ( 1 - v'3 i)8 

f. ( V2 + V2i)9 

h. ( -± + v; i ) 12 

4. Show that the n distinct nth roots of 1 are equally spaced around a circle with center at 

the origin and radius 1. 

5. If w = cos 2; + i sin 2;, show that the distinct nth roots of 1 are given by w, w2, ... , 
wn-1, wn = 1. 

6. Find the indicated roots of 1 in standard form a + bi, and graph them on a unit circle 

with center at the origin. 

a. cube roots of 1 
c. eighth roots of 1 

b. fourth roots of 1 
d. sixth roots of 1 

7. Find all the indicated roots of the given number. Leave your results in trigonometric 

form. 

v'3 1 
a. cube roots of 

2 
+ 

2 
i 

v'3 1 
c. fourth roots of -T + 

l 
i 

e. fifth roots of -16V2 - 16V2 i 

b. cube roots of -1 + i 

1 v'3 
d. fourth roots of 

l 
- Ti 

f. sixth roots of 32v'3 - 32i 

8. Find all complex numbers that are solutions of the given equation. Leave your answers 

in standard form a + bi. 
a. z3 + 27 = 0 b. zs - 16 = 0 
c. z3 - i = 0 

4 1 v'3. 
e. z + - - -- 1 = 0 

2 2 
1 v'3 

g. z4 + - + -i = 0 
2 2 

d. z3 + 8i = 0 

f. z4 + 1 - v'3 i = 0 

h. z4 + 8 + 8 v'3 i = 0 

9. If w = cos 2; + i sin 2;, and u is any nth root of z E C, show that the nth roots of z 
· b 2 n-1 n _ are given y wu, w u, ... , w u, w u - u. 

10. Prove that for a fixed value of n, the set Un of all nth roots of 1 forms a group with 

respect to multiplication. 

In Exercises 11-14, take Un to be the group in Exercise 10. 

a. Find all elements of the subgroup (a) generated by the given a. Leave your answers 

in trigonometric form. 

b. State the order of (a). 
c. Find all the generators of (a). 

11 27T + . . 27T • u . a = cos 3 z sm 3 m 6 12. a = cos 3:;_ + i sin 3:;_ in Us 
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13. a= coss; + i sins; in U6 14. a= coss; + i sins; in U8 

15. Prove that the group in Exercise 10 is cyclic, with w = cos 2; + i sin 2; as a generator. 

16. Any generator of the group in Exercise 10 is called a primitive nth root of 1. Prove that 

2k7r 2k7r 
cos--+ i sin--

n n 

is a primitive nth root of 1 if and only if k and n are relatively prime. 

17. a. Find all primitive sixth roots of 1. 

b. Find all primitive eighth roots of 1. 

18. Let wk = cos 2�7T + i sin 2�7T be a primitive nth root of unity. Prove that if r is a posi-
tive integer such that (n, r) = d, then w;; is a primitive (nld)th root of unity. 

19. Prove that the set of all roots of 1 forms a group with respect to multiplication. 

20. Prove that the sum of all the distinct nth roots of 1 is 0. 

21. Prove that the product of all the distinct nth roots of 1 is ( - l)n+ 1. 

22. Prove the following statements concerning absolute values of complex numbers. (As 
in Definition 7.7, z denotes the conjugate of z.) 

a. lzl = lzl b. zz = lzl2 

c. If z i= 0, then z -I = 
I z
l 

2 
. 

e. lz1 + z2I :5 lz1 I + lz2I 

d. If z2 i= 0, then I�: I 

23. Prove that the set of all complex numbers that have absolute value 1 forms a group 
with respect to multiplication. 

24. Prove that if z = r( cos 0 + i sin 0) is a nonzero complex number in trigonometric 
form, then z -l = r-1 [cos ( -0) + i sin ( -0)]. 

25. Prove that if n is a positive integer and z = r(cos 0 + i sin 0) is a nonzero complex 
number in trigonometric form, then z-n = r -n [cos ( -nO) + i sin( -nO)]. 

26. Prove that if z1 = rl(cos 01 + i sin 01) and z2 = r2(cos 02 + i sin 02) are complex 
numbers in trigonometric form and z2 is nonzero, then 

27. Let u be an nth root of unity. 

a. Show that u-1 is also an nth root of unity. 

b. Show that u is also an nth root of unity. 

Sec. 5.4, #7 � 28. In the ordered field R, absolute value is defined according to Exercise 7 of Section 5.4 by 

lal = { a 

-a 

if a ;::::: 0 

if a< 0. 

For a ER, show that the absolute value of a + Oi according to Definition 7.8 agrees 
with the definition from Chapter 5. (Keep in mind, however, that C is not an ordered 
field, as was shown in Section 5.4.) 
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A Pioneer in Mathematics 
William Rowan Hamilton (1805-1865) 

William Rowan Hamilton, born in Dublin, Ireland, on August 3, 1805, 

became Ireland's greatest mathematician. He was the fourth of nine 

children and did not attend school. Instead, he was tutored by an uncle. By 

the age of 3, he showed amazing ability in reading and arithmetic; he had 

mastered 13 languages by age 13. His interest turned to mathematics in 

1813, when he placed only second in a public contest of arithmetic skills. 

This humbling incident led him to a study of the classical mathematics 

texts in their original languages of Greek, Latin, and French. In 1823, he 

was the top student entering Trinity College, Dublin. He was knighted in 

1835 for obtaining significant results in the field of optics. 

In 1833, Hamilton initiated a new line of thought about complex numbers by treating 

them as ordered pairs. He spent the next ten years of his life trying to generalize this 

treatment of ordered pairs to ordered triples. One day, while walking and chatting with his 

wife along the Royal Canal on the way to a meeting, he became preoccupied with his own 

thoughts about the ordered triples and suddenly made a dramatic discovery. He realized 

that if he considered quadruples (the "quaternions") instead of triples and compromised 

the commutative law for multiplication, he would have the generalization that he had been 

seeking for several years. Hamilton became so excited about his discovery that he recorded 

it in a pocket book and impulsively carved it in a stone on the Brougham Bridge. A tablet 

there marks the spot of Hamilton's discovery of the quaternions. 

Hamilton's approach to complex numbers and their four-dimensional generalization, the 

quaternions, revolutionized algebraic thought. He spent the last 22 years of his life studying 

the theory of quaternions and reporting his results. 
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CHAPTER E I G H T 

Polynomials 

• Introduction 

The elementary theory of polynomials over a field is presented in this chapter. Topics included are the 
division algorithm, the greatest common divisor, factorization theorems, simple algebraic extensions, 
and splitting fields for polynomials. This chapter may be studied independently of Chapter 7. 

� Polynomials over a Ring 

Starting with beginning algebra courses, a great deal of time is devoted to developing skills 
in various manipulations with polynomials. Procedures are learned for the basic operations 
of addition, subtraction, multiplication, and division of polynomials. By the time a student 
begins an abstract algebra course, polynomials are a very familiar topic. 

Much of this prior experience involved polynomials in a single letter, such as 
5 + 4t + t2, where the letter usually represented a variable with the domain being a subset 
of the real numbers. In this section our point of view is very different. We wish to start with 
a commutative ring R with unityt 1 and construct a ring that contains both R and a given 
element x. More precisely, we want to construct a smallest ring that contains R and x in this 
sense: Any ring that contains both R and x would necessarily contain the constructed ring. 
We assume that x is not an element of R, but nothing more than this. For the time being, the 

ALERT letter x will be a formal symbol subject only to the definitions that are made as we proceed. 
The letter x is referred to as an indeterminate in order to emphasize its role here. Later, we 
shall consider other possible roles for x. 

Definition 8.1 • Polynomial in x over R 

Let R be a commutative ring with unity 1, and let x be an indeterminate. A polynomial in x 

with coefficients in R, or a polynomial in x over R, is an expression of the form 

aoXO + aiX1 + a2X2 + · · · + QnXn, 

where n is a nonnegative integer and each ai is an element of R. The set of all polynomials 
in x over R is denoted by R[x]. 

tThroughout this chapter, the unity is denoted by 1 rather thane. A similar construction can be made with fewer 
restrictions on R, but such generality results in complications that are avoided here. 

361 
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362 Chapter 8 Polynomials 

The construction that we shall carry out will be guided by our previous experience with 
polynomials. Consistent with this, we adopt the familiar language of elementary algebra 
and refer to the parts aixi of the expression in Definition 8.1 as terms of the polynomial 
and to ai as the coefficient of xi in the term aixi. As a notational convenience, we shall use 
functional notations such as f(x) for shorthand names of polynomials. That is, we shall 
write things such as 

J(x) = a0x
0 + a1x

1 + · · · + anX', 

ALERT but this indicates only that f (x) is a symbolic name for the polynomial. It does not indicate 
a function or a function value. 

Example 1 Some examples of polynomials in x over the ring Z of integers are listed 
here. 

a. f(x) = 2x0 + ( -4)x1 + ox2 + 5x3 

b. g(x) = lx0 + 2x1 + (- l)x2 

c. h(x) = (-5)x0 + Ox1 + Ox2 • 

We have not yet defined equality of polynomials. (The preceding use of= only 
indicated that certain polynomials had been given shorthand names.) To be consistent with 
prior experience, it is desirable to define equality of polynomials so that terms with zero 
coefficients can be deleted with equality retained. With this goal in mind, we make the 
following (somewhat cumbersome ) definition. 

Definition 8.2a • Equality of Polynomials 

Suppose that R is a  commutative ring with unity, that xis an indeterminate, and that 

J(x) = a0x
0 + a1x

1 +···+a/ 

and 

g(x) = b0x
0 + b1x

1 + · · · + bmxm 

are polynomials in x over R. Thenf(x) and g (x) are equal polynomials,f(x) = g(x), if and 
only if the following conditions hold for all i that occur as a subscript on a coefficient in 
eitherf(x) or g(x): 

1. If one of ai, bi is zero, then the other is either omitted or is also zero. 

2. If one of ai, bi is not zero, then the other is not omitted, and ai = bi. 

Example 2 According to Definition 8.2a, the following equalities are valid in the set 
Z[x] of all polynomials in x over Z. 

a. 2x0 + (-4)x1 + Ox2 + 5x3 = 2x0 + (-4)x1 + 5x3 

b. (-5)x0 + Ox1 + Ox2 = (-5)x0 • 
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8.1 Polynomials over a Ring 363 

The compact sigma notation is useful when we work with polynomials. The polynomial 

f (x) = a0x0 
+ a1x

1 
+ · · · + anX1 

may be written compactly using the sigma notation as 
n 

J(x) = � aix
i. 

i=O 
After the convention concerning zero coefficients has been clarified and agreed upon 

as stated in conditions 1 and 2 of Definition 8.2a, the definition of equality of polynomials 
may be shortened as follows. 

Definition 8.2b • Alternative Definition, Equality of Polynomials 

If R is a commutative ring with unity, and J(x) = L7=o aix
; and g(x) = L�=o b;x

; are 
polynomials in x over R, thenf(x) = g(x) if and only if ai = bi for all i. 

ALERT It is understood, of course, that any polynomial over R has only a finite number of 
nonzero terms. The notational agreements that have been made allow us to make concise 
definitions of addition and multiplication in R[x]. 

Definition 8.3 • Addition and Multiplication of Polynomials 

LetR be a commutative ring with unity. For any J(x) = L7=oaixi and g(x) = 2:;':,0 b;x
; in 

R[x], we define addition in R[x] by 

k 

J(x) + g(x) = � (ai + b;)xi, 
i=O 

where k is the larger of the two integers n, m. We define multiplication in R[x] by 

n+m 

J(x)g(x) = � c;x
i, 

i=O 

The expanded expression for c; appears as 

c; = a0bi + a1 bi-l + a2b;-2 + · · · + a; _ 2b2 + a;-1 b1 + aib0. 

We shall see presently that this formula agrees with previous experience in the multiplica
tion of polynomials. 

To introduce some novelty in our next example, we consider the sum and product of 
two polynomials over the ring z6. 

Example 3 We shall follow a convention that has been used on some earlier occasions 
and write a for [a] in Z6. Let 

3 
J(x) = � a;x

i 
= lx0 

+ 5x1 
+ 3x3 

i=O 
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364 Chapter 8 Polynomials 

and 

1 
g(x) = L b;xi 

= 4x0 + 2x1 
i=O 

in Z6[x]. According to our agreement regarding zero coefficients, these polynomials may 

be written as 

J(x) = lx0 + 5x1 + Ox2 + 3x3 
g(x) = 4x0 + 2x1 + Ox2 + Ox3, 

and the definition of addition yields 

3 
J(x) + g(x) = L (a; + b;)xi 

i=O 
= ( 1 + 4 )x0 + ( 5 + 2 )x1 + ( 0 + 0 )x2 + ( 3 + 0 )x3 
= 5x0 + lx1 + Ox2 + 3x3 
= 5x0 + lx1 + 3x3 ' 

since 5 + 2 = 1 in Z6. The definition of multiplication gives 

where 

Thus 

4 
f(x)g(x) = :Lc;xi, 

i=l 

c0 = a0b0 = 1 · 4 = 4 
c1 = a0b1 + a1 b0 = 1 · 2 + 5 · 4 = 2 + 2 = 4 
c2 = a0b2 + a1b1 + a2b0 = 1 • 0 + 5 • 2 + 0 • 4 = 4 

c3 = a0b3 + a1 b2 + a2b1 + a3b0 = 1 • 0 + 5 • 0 + 0 • 2 + 3 • 4 = 0 

c4 = a0b4 + a1b3 + a2b2 + a3b1 + a4b0 
= 1 . 0 + 5 • 0 + 0 • 0 + 3 • 2 + 0 • 4 = 0. 

J(x)g(x) = (lx0 + 5x1 + 3x3)(4x0 + 2x1) 
= 4x0 + 4x1 + 4x2 + Ox3 + Ox4 

= 4x0 + 4x1 + 4x2 

in Z6[x]. This product, obtained by using Definition 8.3 , agrees with the result obtained by 

the usual multiplication procedure based on the distributive laws: 

J(x)g(x) = (lx0 + 5x1 + 3x3)(4x0) + (lx0 + 5x1 + 3x3)(2x1) 
= (4x0 + 2x1 + Ox3) + (2x1 + 4x2 + Ox4) 
= 4x0 + 4x1 + 4x2• • 
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8.1 Polynomials over a Ring 365 

The expanded forms of the Ci in Example 3 illustrate how the coefficient of xi in the 

product is the sum of all products of the form apbq with p + q = i. In general, it is true that 

i 
ci = L ajbi-j j=O 

This observation is useful in the proof of our next theorem. 

Theorem 8.4 • The Ring of Polynomials over R 

Let R be a commutative ring with unity. With addition and multiplication as given in 

Definition 8.3, R[x] forms a commutative ring with unity. 

Proof Let 
n m k 

J(x) = L aixi, g(x) = L bixi, h(x) = L cixi 
i=O i=O i=O 

represent arbitrary elements of R[x] , and lets be the greatest of the integers n, m, and k. 

It follows immediately from Definition 8.3 that the sum J(x) + g(x) is a well-defined 

element of R[x], and R[x] is closed under addition. Addition in R[x] is associative since 
n s 

J(x) + [g(x) + h(x)] = L aixi + L (bi + cJxi 
i=O i=O 

s 

L [ai + (bi+ cJ]xi 
i=O 

s 

= L [ (ai + b;) + cJxi since addition is associative in R 
i=O 

s k 

L (ai + b;)xi + L cixi 
i=O i=O 

= [J(x) + g(x) J + h(x). 

The polynomial Ox0 is an additive identity in R[x] since 

J(x) + Ox0 = Ox0 + J(x) = J(x) 

for all f(x) in R[x]. The additive inverse of f(x) is 2:7=o( -aJxi since 
n n 

f(x) + L (-aJt = L [ai + (-aJ]xi = Ox0, 
i=O i=O 

and 2:7=o ( -aJxi + J(x) = Ox0 in similar fashion. Addition in R[x] is commutative since 
s s 

J(x) + g(x) = L (ai + bJxi = L (bi+ aJxi = g(x) + J(x). 
i=O i=O 

Thus R[x] is an abelian group with respect to addition. 
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366 Chapter 8 Polynomials 

It is clear from Definition 8.3 that R[x] is closed under the binary operation of multipli

cation. To see that multiplication is associative in R[x], we first note that the coefficient of 

xi in f(x)[g(x)h(x)] is given by 

_L aP(bqc,), 
p+q+r=i 

the sum of all products aP ( b qc r) of coefficients ap, b q• c r such that the subscripts sum to i. 

Similarly, in [J(x)g(x) ]h(x), the coefficient of xi is 

_L (apbq)c,. 
p+q+r=i 

Now ap(bqc,) = (apbq)c, since multiplication is associative in R, and therefore 

f(x)[g(x)h(x) J = [J(x)g(x) ]h(x). 

Before considering the distributive laws, we shall establish that multiplication in R[x] 
is commutative. This follows from the equalities 

J(x)g(x) = �� c�
=i 

apbq) xi 

= �� c*
=i 

bq<1p ) xi since multiplication is commutative in R 

= g(x)J(x). 

Lett be the greater of the integers m and k, and consider the left distributive law. We 

have 

J(x)[g(x) + h(x) J = � aixi [ � (bi + c;) xi] 
= � [

p
�

=i 
<1p (bq + cq) ] xi 

� [
p
�

=i 
(<1pbq + apcq) ] xi 

= � c�
=i

<1pbq)xi + � c�
=i �

cq) xi 

n+m ( ) n+k ( ) = � 
p
�

=i 
<1pbq xi + � 

p
�

=i 
<1pCq xi 

= J(x) g(x) + J(x) h(x), 

and the left distributive property is established. The right distributive property is now easy 

to prove: 

[J(x) + g(x) ]h(x) = h(x)[f(x) + g(x) J since multiplication is 

commutative in R [x]  
= h(x )J(x) + h(x) g(x) by the left distributive law 

= J(x) h(x) + g(x) h(x) since multiplication is 

commutative in R [ x ]. 
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The element lx0 is a unity in R [x J since 

8.1 Polynomials over a Ring 367 

n n 
lx0 • J(x) = J(x) • lx0 = _L (a;· l)xi 

= _L a;x
; 

= J(x). 
i=O i=O 

This completes the proof that R[x] is a commutative ring with unity. 

Theorem 8.4 justifies referring to R [x] as the ring of polynomials over R or as the ring 

of polynomials with coefficients in R. 

Theorem 8.5 • Subring of R[x] Isomorphic to R 

For any commutative ring R with unity, the ring R[x] of polynomials over R contains a 

subring R' that is isomorphic to R. 

Proof Let R' be the subset of R[x] that consists of all elements of the form ax0. We shall 

show that R' is a subring by utilizing Theorem 5.4. 

The subset R' contains elements such as the additive identity Ox0 and the unity lx0 of 

R[x]. For arbitrary ax0 and bx0 in R', 

ax0 - bx0 = (a - b)x0 

and 

(ax0)(bx0) = (ab )x0 

are in R', and therefore R' is a subring of R[x] by Theorem 5.4. 

Guided by our previous experience with polynomials, we define (J: R � R' by 

O(a) = ax0 

for all a ER. This rule defines a one-to-one correspondence since (J is onto and 

O(a) = O(b) <=> ax0 = bx0 <=> a = b. 

Moreover, (J is an isomorphism since 

O(a + b) = (a+ b)x0 = ax0 + bx0 = O(a) + O(b) 

and 

O(ab) = (ab)x0 = (ax0)(bx0) = O(a)O(b). 

Thus R is embedded in R[x]. We can use the isomorphism (J to identify a ER with ax0 
in R[x], and from now on we shall write a in place of ax0. In particular, 0 may denote the zero 

polynomial Ox0, and 1 may denote the unity lx0 in R[x]. We write an arbitrary polynomial 

J(x) = a
0
x0 + a1x1 + a2x2 + · · · + anxn 

as 
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368 Chapter 8 Polynomials 

Actually, we want to carry this notational simplification a bit further, writing x for x1, 
xi for lxi, and -aixi for (-aDxi. This allows us to use all the conventional polynomial 
notations for the elements of R[x]. Also, we can now regard each term aixi with i 2: 1 as 
a product: 

a.xi = a. • x • x • · · · • x 
l l 

with i factors of x in the product. 
Having made the agreements described in the last paragraph, we may observe that our 

major goal for this section has been achieved. We have constructed a "smallest" ring R[x] 
that contains R and x. It is "smallest" because any ring that contains both R and x would 
have to contain all polynomials 

f(x) = a0 + a1x + a
2

x2 + · · · + anX' 

as a consequence of the closure properties. 
It is now appropriate to pick up some more of the language that is customarily used in 

work with polynomials. 

Definition 8.6 • Degree, Leading Coefficient, Constant Term 

Let R be a commutative ring with unity, and let 

be a nonzero element of R[x]. Then the degree of f(x) is the largest integer k such that the 
coefficient of xk is not zero, and this coefficient ak is called the leading coefficient of f(x). 
The term a0 of f(x) is called the constant term of f(x), and elements of R are referred to 
as constant polynomials. 

The degree of f(x) will be abbreviated deg f(x). Note that degree is not defined for the 

ALERT zero polynomial. (The reason for this will be clear later.) Note also that the polynomials of 
degree zero are the same as the nonzero elements of R. 

Example 4 The polynomials f(x) and g(x) in Example 3 can now be written as 

f(x) = 1 + 5x + 3x3 = 3x3 + 5x + 1 

g(x) = 4 + 2x = 2x + 4. 

a. The constant term of f(x) is 1 and the leading coefficient of f(x) is 3. 

b. The polynomial g(x) has constant term 4 and leading coefficient 2. 

c. deg f(x) = 3 and deg g(x) = 1. 

d. In Example 3, we found that 

f(x) g(x) = 4 + 4x + 4x2, 
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ALERT 

8.1 Polynomials over a Ring 369 

so deg (f(x) g(x)) = 2. In connection with the next theorem, we note that 

deg(J(x)g(x)) -=!= degf(x) + deg g(x) 

in this instance. • 

Theorem 8.7 • Degree of a Product 

If R is an integral domain and f(x) and g(x) are nonzero elements of R[x], then 

deg(J(x)g(x)) = degf(x) + degg(x). 

(p A q) :::::} r Proof Let R be an integral domain, and suppose that 

and 

n 

J(x) = L aix
i has degree n 

i=O 

m 

g(x) = L b;x
; has degree m 

i=O 

in R[x] . Then an -=!= 0 and bm -=!= 0, and this implies that anbm -=!= 0 since R is an integral 
domain. But anbm is the leading coefficient in f(x)g(x) since 

J(x)g(x) = % (ta  ajbi-j)x; 

by Definition 8.3. Therefore, 

deg(J(x)g(x)) = n + m = degf(x) +deg g(x). 

Corollary 8.8 • Polynomials over an Integral Domain 

R[x] is an integral domain if and only if R is an integral domain. 

p <== q Proof Assume that R is an integral domain. If f(x) and g(x) are arbitrary nonzero elements 
of R[x] , then both f(x) and g(x) have degrees. According to Theorem 8.7, f(x)g(x) has a 
degree that is the sum of deg f(x) and deg g(x). Therefore,f(x)g(x) is not the zero polyno
mial, and this shows that R[x] is an integral domain. 

p:::::} q If R[x] is an integral domain, however, then R must also be an integral domain since R 
is a commutative ring with unity and R � R[x] . 

We make some final observations concerning Theorem 8. 7. Since the product of the 
zero polynomial and any polynomial always yields the zero polynomial, the equation in 

ALERT Theorem 8. 7 cannot hold when one of the factors is a zero polynomial. This is justifica
tion for not defining degree for the zero polynomial. We also note that the reason why 
the conclusion of Theorem 8.7 fails to hold in Example 4 is that Z6 is not an integral 
domain. 
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370 Chapter 8 Polynomials 

Exercises 8.1 

True or False 

Label each of the following statements as either true or false where R represents a com

mutative ring with unity. 

1. A polynomial in x over R is made up of sums of terms of the form aix
i 

where each 

ai E R and i E Z. 

2. The zero polynomial has degree zero. 

3. Polynomials of degree zero over Rare the same as the nonzero elements of R. 

4. The degree of the sum of any two polynomials f(x) and g(x) over R is always the sum 

of the degrees of f(x) and g(x). 

5. The degree of the product of any two polynomials f(x) and g(x) over R is always the 

product of the degrees of f(x) and g(x). 

6. The degree of the product of any two polynomials f(x) and g(x) over R is always the 

sum of the degrees of f(x) and g(x). 

7. The degree of the product of any two polynomials f(x) and g(x) over an integral 

domain R always is the sum of the degrees of f(x) and g(x). 

Exercises 

1. Write the following polynomials in expanded form. 
3 4 

a. � C;Xi b. � djxi 
i=O j=O 

3 4 

c. � akxk d. �xk 

k=I k=2 

2. Express the following polynomials by using sigma notation. 

a. cox0 + c1x1 + c
2
x2 

c. x + x2 + x3 + x4 

b. d
2
x2 + d

3
x3 + d

4
x4 

d. x3 + x4 + x5 

3. Consider the following polynomials over Zs, where a is written for [a J in Zs: 

J(x) = 2x3 + 7x + 4, g(x) = 4x2 + 4x + 6, h(x) = 6x2 + 3. 

Find each of the following polynomials with all coefficients in Z8. 

a. f(x) + g(x) 

c. f(x)g(x) 

e. f(x)g(x) + h(x) 

g. f(x)g(x) + f(x)h(x) 

b. g(x) + h(x) 

d. g(x)h(x) 

f. f(x) + g(x)h(x) 

h. f(x)h(x) + g(x)h(x) 

4. Consider the following polynomials over Z9, where a is written for [a] in Z9: 

J(x) = 2x3 + 7x + 4, g(x) = 4x2 + 4x + 6, h(x) = 6x2 + 3. 

Find each of the following polynomials with all coefficients in Z9. 

a. f(x) + g(x) b. g(x) + h(x) 

c. f(x)g(x) d. g(x)h(x) 
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e. f (x)g(x) + h(x) 
g. f (x)g(x) + f(x)h(x) 

8.1 Polynomials over a Ring 371 

f. f(x) + g(x)h(x) 
h. f(x)h(x) + g(x)h(x) 

5. Decide whether each of the following subsets is a subring of R[x], and justify your 
decision in each case. 
a. The set of all polynomials with zero constant term. 
b. The set of all polynomials that have zero coefficients for all even powers of x. 
c. The set of all polynomials that have zero coefficients for all odd powers of x. 
d. The set consisting of the zero polynomial together with all polynomials that have 

degree 2 or less. 

6. Determine which of the subsets in Exercise 5 are ideals of R[x] and which are principal 
ideals. Justify your choices. 

7. a. Prove that 

I[x] = {a0 + a1x + · · · + anx
n l a0 = 2kfor k E Z}, 

the set of all polynomials in Z[x] with even constant term, is an ideal of Z[x]. 
b. Show that I[x] is not a principal ideal; that is, show that there is no f(x) E Z[x] such 

that 

I[x] = (f (x)) = {f(x) g(x) I g(x) E Z[x]}. 

c. Show that I[x] is an ideal generated by two elements in Z[x]-that is, 

I[x] = (x, 2) = {xf(x) + 2g(x) IJ(x), g(x) E Z[x]}. 

8. a. Prove that 

I [x ] = {a0 + a1x + · · · + anx
n l ai = 2kJor ki E Z}, 

the set of all polynomials with even coefficients, is an ideal of Z[x]. 
b. Prove or disprove that I[x] is a principal ideal. 

9. a. Let F be a field. Prove that 

I [x ] = {a0 + a1x + · · · + an x
n l ai E F and a0 + a1 + · · · + an = O}, 

the set of all polynomials in F[x] such that the sum of the coefficients is zero, is an 
ideal of F[x]. 

b. Prove or disprove that I[x J is a principal ideal. 

10. Let R be a commutative ring with unity. Prove that 

deg (J(x) g(x)) :5 deg f(x) +deg g(x) 
for all nonzero f(x), g(x) in R[x], even if R is not an integral domain. 

11. a. List all the polynomials in Z3[x] that have degree 2. 
b. Determine which of the polynomials in part a are units. If none exists, state so. 

12. a. Find a nonconstant polynomial in Z4[x ], if one exists, that is a unit. 
b. Find a nonconstant polynomial in Z3[x], if one exists, that is a unit. 
c. Prove or disprove that there exist nonconstant polynomials in Zp[x] that are units if 

pis prime. 
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13. a. How many polynomials of degree 2 are there in Zn[x]? 

b. If mis a positive integer, how many polynomials of degree mare there in Zn[x]? 

14. Prove or disprove that R[x] is a field if R is a  field. 

15. Prove that if I is an ideal in a commutative ring R with unity, then I[x] is an ideal 
in R[x]. 

16. a. If R is a commutative ring with unity, show that the characteristic of R[x] is the 
same as the characteristic of R. 

b. State the characteristic of Zn[x]. 
c. State the characteristic of Z[x]. 

17. a. Suppose that R is a  commutative ring with unity, and define 0: R[x] � R by 

O(a0 + a1x + · · · + an�) = a0 

for all ao + aix + · · · + anxn in R[x]. Prove that (J is an epimorphism from R[x] to R. 
b. Describe the kernel of the epimorphism in part a. 

18. Let R be a commutative ring with unity, and let I be the principal ideal I = (x) in R[x] . 
Prove that R[x]/I is isomorphic to R. 

19. In the integral domain Z[x], let (Z[xJt denote the set of all f(x) in Z[x] that have a 
positive integer as a leading coefficient. Prove that Z[x] is an ordered integral domain 
by proving that (Z[x]t is a set of positive elements for Z[x] . 

20. Consider the mapping cp: Z[x] � Zk[x] defined by 

cp(ao + a1x + · · · + anxn) = [a0] + [a1 ]x + · · · + [an ]xn, 

where [ai] denotes the congruence class of Zk that contains ai. Prove that <Pis an epi
morphism from Z[x] to Zk[x] . 

21. Describe the kernel of the epimorphism <P in Exercise 20. 

22. Assume that each of R and S is a commutative ring with unity and that 0: R �S is an 
epimorphism from R to S. Let cp: R[x] � S[x] be defined by 

<P(ao + a1x + · · · + an�) = O(ao) + O(a1)x + · · · + O(an)xn. 

Prove that <Pis an epimorphism from R[x] to S[x] . 

23. Describe the kernel of the epimorphism <P in Exercise 22. 

24. For each J (x) = L7=o aix
i in R[x], the formal derivative of f(x) is the polynomial 

n 
J' (x) = 2: iaixi-I. 

i= 1 

(For n = 0, f'(x) = 0 by definition.) 
a. Prove that [f(x) + g(x)J' = f'(x) + g'(x). 

b. Prove that [f(x)g(x)]' = f(x)g'(x) + f'(x)g(x). 

25. (See Exercise 24.) 

a. Show that the relationf(x) Rg(x) if and only if f' (x) = g' (x) is an equivalence rela
tion on R[x]. 

b. Describe the equivalence class [f(x)]. 

Copyright 2013 Cengage Leaming. AH Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materia11y affect the overall learning experience. Cengage Leaming reserves the right to remove additional content at any time if subsequent rights restrictions require it. 



8.2 Divisibility and Greatest Common Divisor 373 

[,!!] Divisibility and Greatest Common Divisor 

If a ring R is not an integral domain, the division of polynomials over R is not a very satis
factory subject for study, because of the possible presence of zero divisors. In order for us 
to obtain the results we need on division of polynomials, the ring of coefficients actually 
must be a field. For this reason, with a few exceptions in the exercises, we confine our 
attention for the rest of this chapter to rings of polynomials F[x] where Fis afield. This 
assures us that F[x] is an integral domain (Corollary 8.8) and that every nonzero element of 
F has a multiplicative inverse. 

The definition, the theorems, and even proofs in this section are very similar to cor
responding statements in Chapter 2 about division in the integral domain Z. 

Definition 8.9 • Divisor, Multiple 

If f(x) and g(x) are in F[x], then f(x) divides g(x) if there exists h(x) in F[x] such that g(x) = 
f(x)h(x). 

Iff(x) divides g(x), we write J(x) lg(x), and we say thatg(x) is a multiple of f(x), that 
f(x) is a factor of g(x), or that f(x) is a divisor of g(x). We write J(x) .f g(x) to indicate 
that f(x) does not divide g(x). 

Polynomials of degree zero (the nonzero elements of F) have two special properties 
ALERT that are worth noting. First, any nonzero element a of Fis a factor of every f(x) E F[x], 

because a-1f(x) is in F[x] and 

J(x) = a [a-1f(x) ]. 

Second, if f(x)lg(x), then af(x)lg(x) for all nonzero a E F, since the equation 

g(x) = J(x )h(x) 

implies that 

g(x) = [af(x) J[a-1h(x) ]. 

The Division Algorithm for integers has the following analogue in F[x]. 

Theorem 8.10 • The Division Algorithm 

Let f(x) and g(x) be elements of F[x], with f(x) a nonzero polynomial. There exist unique 
elements q(x) and r(x) in F[x] such that 

g(x) =f(x)q(x) + r(x) 

with either r(x) = 0 or deg r(x) < deg f(x). 

Existence Proof We postpone the proof of uniqueness until existence of the required q(x) and r(x) 
in F[x J has been proved. There are two trivial cases that we shall dispose of first. 
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Complete 

Induction 

1. If g(x) = 0 or if deg g(x) < deg f(x), then we see from the equality 

g(x) = J(x) • 0 + g(x) 

that q(x) = 0 and r(x) = g(x) satisfy the required conditions. 

2. If deg f(x) = 0, then f(x) = c for some nonzero constant c. The equality 

g(x) = c[c-1g(x) J + 0 

shows that q(x) = c-1g(x) and r(x) = 0 satisfy the required conditions. 

Suppose now that g(x) =F 0 and 1 ::::::: deg f (x) ::::::: deg g(x). The proof is by induction on 

n = deg g(x), using the Second Principle of Finite Induction. For each positive integer n, 

let Sn be the statement that if g(x) E F[x] has degree n and 1 <deg f(x) ::::::: deg g(x), then 

there exist q(x) and r(x) E F[x] such that g(x) = f(x)q(x) + r(x), with either r(x) = 0 or 

deg r(x) <deg f(x). 
If n = 1, then the condition 1 ::::::: deg f(x) < deg g(x) = n requires that both f(x) and 

g(x) have degree 1-say, 

f(x) =ax+ b, g(x) =ex+ d, 

where a =F 0 and c =F 0. The equality 

ex+ d = (ax+ b)(ca-1) + (d - bca-1) 

shows that q(x) = ca-1 and r(x) = d - bca-1 satisfy the required conditions, and S1 is 

true. 

Now assume that k is a positive integer such that Sm is true for all positive integers 

m < k. To prove that Skis true, let g(x) E F[x] with deg g(x) = k and f(x) E F[x] with 

1 ::::::: deg f(x) < deg g(x). Then 

J(x) = ax1 + · · . , g(x) = cxk + · · · 

with a =F 0, c =F 0, and j ::::::: k. The first step in the usual long division of g(x) by f(x) is 

shown in Figure 8.1. 

axi + .
.

. I cxk + ... 
ca-•xk-JJ(x) 

•Figure 8.1 g(x) - ca-1xk-Jf(x) 

This first step in long division yields 

g(x) = ca-• xk-Jf(x) + [g(x) - ca-1 xk-Jf(x)]. 

Let h(x) = g(x) - ca-1 xk-J f(x). Then the coefficient of xk in h(x) is zero, and deg h(x) < k. 

By the induction hypothesis, there exist polynomials q0(x) and r(x) such that 

h(x) =f(x)q0(x) + r(x) 
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with either r(x) = 0 or deg r(x) < deg f(x). This gives the equality 

g(x) = ca-1 xk-Jf(x) + h(x) 
= ca-1xk-Jf(x) + J(x)q0(x) + r(x) 
= J(x)[ca-1xk-J + q0(x)] + r(x), 

which shows that q(x) = ca-1 xk-J + q0(x) and r(x) are polynomials that satisfy the required 
conditions. Therefore, Sk is true, and the existence part of the theorem follows from the 
Second Principle of Finite Induction. 

Uniqueness To prove uniqueness, suppose that g(x) = f(x)q1(x) + r1(x) and g(x) = f(x)q2(x) + 

r2(x), where either ri(x) = 0 or deg ri(x) < deg f(x) for i = 1, 2 .  Then 

r1(x) - r2(x) = [g(x) - J(x)q1(x)] - [g(x) - J(x)q2(x)] 
= f(x)[ qz(x) - q1(x)]. 

The right member of this equation,f(x)[ q2(x) - ql(x)], either is zero or has degree greater 
than or equal to deg f(x), by Theorem 8.7. However, the left member, r1(x) - r2(x), either 
is zero or has degree less than degf(x), since deg r1(x) <deg f(x) and deg r2(x) < degf(x). 
Therefore, both members must be zero, and this requires that r1(x) = r2(x) and q1(x) = q2(x) 
since f(x) is nonzero. Therefore, q(x) and r(x) are unique and the proof is complete. 

In the Division Algorithm, the polynomial q(x) is called the quotient and r(x) is called 
the remainder in the division of g(x) by f(x). For any field F, the quotient and remainder 
in F[x] can be found by the familiar long-division procedures. An illustration is given in the 
next example. 

Example 1 Let f(x) = 3x2 
+ 2 and g(x) = 4x4 + 2x3 + 6x2 

+ 4x + 5 in Z7[x]. We 
shall find q(x) and r(x) by the long-division procedure. Referring to Figure 8. 1, we have 
a= 3 in f(x), c = 4 in g(x), and ca-1 = 3(4-1) = 3(2) = 6 in the first step. 

6x2 + 3x + 5 
3x2 + 2 l4x4 + 2x3 + 6x2 + 4x + 5 

4x4 + 5x2 
2x3 + x2 
2x3 + 6x 

x2 + 5x 
x2 + 3 

5x + 2 

Thus the quotient is q(x) = 6x2 
+ 3x + 5 and the remainder is r(x) = 5x + 2 in the division 

of g(x) by f(x). • 

Our next objective in this section is to prove that any two nonzero polynomials over F 
have a greatest common divisor in F[x]. We saw earlier that if f(x) is a divisor of g(x), then 
af(x) is also a divisor of g(x) for every nonzero a E F. By choosing a to be the multiplica
tive inverse of the leading coefficient of f(x), we can make the leading coefficient in af(x) 
equal to 1. This means that when we consider common divisors of two polynomials, there 
is no loss of generality if we restrict our attention to polynomials that have 1 as their lead
ing coefficient. 
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Definition 8.11 • Monie Polynomial 

A polynomial with 1 as its leading coefficient is called a monic polynomial. 

One of the conditions that we place on a greatest common divisor of two polynomials 

ALERT is that it be monic. Without this condition, the greatest common divisor of two polynomials 

would not be unique. 

Definition 8.12 • Greatest Common Divisor 

Let f(x) and g(x) be nonzero polynomials in F[x]. A polynomial d(x) in F[x] is a greatest 

common divisor of f(x) and g(x) if these conditions are satisfied: 

1. d(x) is a monic polynomial. 

2. d(x) I f(x) and d(x) I g(x). 

3. h(x) I f(x) and h(x) I g(x) imply that h(x) I d(x). 

The next theorem shows that any two nonzero elements f(x), g(x) of F[x J have a unique 

greatest common divisor d(x). 

Strategy • The proof of Theorem 8.13 is obtained by making minor adjustments in the proof of 

Theorem 2.12, and it shows that d(x) is a linear combination of f(x) and g(x); that is, 

d(x) can be written in the form 

d(x) = J(x)s(x) + g(x)t(x) 

for some s(x), t(x) E F[x] . 

Theorem 8.13 • Greatest Common Divisor 

Let f(x) and g(x) be nonzero polynomials over F. Then there exists a unique greatest 

common divisor d(x) of f(x) and g(x) in F[x] . Moreover, d(x) can be expressed as 

d(x) = J(x)s(x) + g(x)t(x) 

for s(x) and t(x) in F[x], and d(x) is the monic polynomial of least degree that can be written 

in this form. 

Existence Proof Consider the set S of all polynomials in F[x] that can be written in the form 

J(x)u(x) + g(x)v(x) 

with u(x) and v(x) in F[x]. Since f(x) = f(x) • 1 + g(x) • 0 * 0, the set of nonzero polyno

mials in S is nonempty. Let 
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be a polynomial of least degree among the nonzero elements of S. If c is the leading coef

ficient of d1(x), then 

d(x) = c-
1d1(x) = J(x)[c-

1
u1(x)] + g(x)[c-

1
v1(x)] 

is a monic polynomial of least degree in S. Letting s(x) = c-
1
u1(x) and t(x) = c-

1
v1(x), 

we have a polynomial 

d(x) = J(x)s(x) + g(x)t(x), 

which is expressed in the required form and satisfies the first condition in Definition 8.12. 

We shall show that d(x) I f(x). By the Division Algorithm, there are elements q(x) and 

r(x) of F[x] such that 

J(x) = d(x)q(x) + r(x) 

with either r(x) = 0 or deg r(x) <deg d(x). Since 

r(x) = J(x) - d(x)q(x) 

= J(x) - [J(x)s(x) + g(x)t(x)]q(x) 

= J(x)[l - s(x)q(x)] + g(x)[-t(x)q(x)], 

r(x) is an element of S. By choice of d(x) as having smallest possible degree among the 

nonzero elements of S, it cannot be true that deg r(x) <deg d(x). Therefore, r(x) = 0 and 

d(x) I f(x). A similar argument shows that d(x) I g(x), and hence d(x) satisfies condition 2 

in Definition 8.12. 

If h(x) I f(x) and h(x) I g(x), thenf(x) = h(x)p1(x) and g(x) = h(x)pz(x) for Pi(x) E F[x]. 
Therefore, 

d(x) = J(x)s(x) + g(x)t(x) 

= h(x)p1(x)s(x) + h(x)p2(x)t(x) 

= h(x)[p1(x)s(x) + p2(x)t(x)], 

and this shows that h(x) I d(x). By Definition 8.12, d(x) is a greatest common divisor of f(x) 

and g(x). 

Uniqueness To show uniqueness, suppose that d1(x) and d2(x) are both greatest common divisors 

of J(x) and g(x). Then d1(x) ld2(x) and also d2(x) ld1(x). Since both d1(x) and d2(x) are 

monic polynomials, this means that d1(x) = d2(x). (See Exercise 26 at the end of this 

section.) 

If f(x) and g(x) are nonzero polynomials such that f(x) I g(x), then the greatest com

mon divisor of f(x) and g(x) is simply the product of f(x) and the multiplicative inverse of 

its leading coefficient. If J(x) ,r g(x), the Euclidean Algorithm extends readily to polyno

mials, furnishing a systematic method for finding the greatest common divisor ofj(x) and 

g(x) and for finding s(x) and t(x) in the equation 

d(x) = J(x)s(x) + g(x)t(x). 

The Euclidean Algorithm consists of repeated application of the Division Algorithm to 

yield the following sequence, where rn(x) is the last nonzero remainder. 
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Euclidean Algorithm 

g(x) = J(x)q0(x) + r1(x), 

J(x) = r1(x)q1(x) + r2(x), 

r1 (x) = r2(x)q2(x) + r3(x), 

rn-2(x) = rn-1(x)qn-1(x) + rn(x), 

rn-1(x) = rn(x)qn(x) 

deg r1(x) < degf(x) 

deg r2(x) < deg r1 (x) 

deg r3(x) < deg r2(x) 

Suppose that a is the leading coefficient of the last nonzero remainder, rn(x). It is left as 
an exercise to prove that a-1rn(x) is the greatest common divisor of f(x) and g(x). 

Example 2 We shall find the greatest common divisor of f(x) = 3x3 + 5x2 + 6x and 
g(x) = 4x4 + 2x3 + 6x2 + 4x + 5 in Z7[x] . Long division of g(x) by f(x) yields a quotient 
of qo(x) = 6x and a remainder of ri(x) = 5.x2 + 4x + 5, so we have 

g(x) = J(x) • (6x) + (5x
2 

+ 4x + 5). 

Dividing f(x) by ri(x), we obtain 

J(x) = r1(x) • (2x + 5) + (4x + 3), 

so q1(x) = 2x + 5 and r2(x) = 4x + 3 in the Euclidean Algorithm. Division of r1(x) by 
r2(x) then yields 

r1(x) = r2(x) • (3x + 4). 

Thus rz(x) = 4x + 3 is the last nonzero remainder, and the greatest common divisor of f(x) 
and g(x) in Z7[x] is 

d(x) = 4-1
(4x + 3) 

= 2(4x + 3) 
= x + 6. • 

As mentioned earlier, the Euclidean Algorithm can also be used to find polynomials 
s(x) and t(x) such that 

d(x) = J(x)s(x) + g(x)t(x). 

This is illustrated in Example 3. 

Example 3 As in Example 2, let f(x) = 3x3 + 5x2 + 6x and g(x) = 4x4 + 2x3 + 

6x2 + 4x + 5 in Z7[x]. From Example 2, the greatest common divisor of f(x) and g(x) is 
d(x) = x + 6. To find polynomials s(x) and t(x) such that 

d(x) = J(x) s(x) + g(x) t(x), 

we first solve for the remainders in the Euclidean Algorithm (see Example 2) as follows: 

r2 (x) = J(x) - r1(x)(2x + 5) 

r1 (x) = g(x) - J(x)(6x). 
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Substituting for r1(x) in the first equation, we have 

r2(x) = J(x) - [g(x) - J(x)(6x) ](2x + 5) 
=f(x) + J(x) (6x)(2x + 5) - g(x)(2x + 5) 

= J(x) [l + (6x) (2x + 5) J + g(x)( -2x - 5) 

= J(x)(5x2 + 2x + 1) + g(x)(5x + 2). 

To express d(x) = 4-1 r2(x) = 2r2(x) as a linear combination of J(x) and g(x), we mul
tiply both members of the last equation by 4-1 = 2: 

d(x) = 2rz(x) = J(x)(2)(5x2 + 2x + 1) + g(x)(2)(5x + 2) 
d(x) = J(x)(3x2 + 4x + 2) + g(x)(3x + 4). 

The desired polynomials are given by s(x) = 3x2 + 4x + 2 and t(x) = 3x + 4. • 

Exercises 8.2 

True or False 

Label each of the following statements as either true or false. 

1. Every f(x) in F[x], where Fis a field, can be factored. 

2. Any two nonzero polynomials over a field F have a unique greatest common divisor. 

3. The greatest common divisor of two polynomials f(x) and g(x) over a field F may not 
be monic if at least one of f(x) or g(x) is not monic. 

Exercises 

For f(x), g(x), and Zn[x] given in Exercises 1-6, find q(x) and r(x) in Zn[x] that satisfy the 
conditions in the Division Algorithm. 

1. f(x) = 3x + 1, g(x) = 2x3 + 3x2 + 4x + 1, in Zs[x] 

2. f(x) = 2x + 2, g(x) = x3 + 2x2 + 2, in Z3[x] 

3. f(x) = x3 + x2 + 2x + 2, g(x) = x4 + 2x2 + x + 1, inZ3[x] 

4. f(x) = x3 + 2x2 + 2, g(x) = 2x5 + 2x4 + x2 + 2, in Z3[x] 

5. f(x) = 3x2 + 2, g(x) = x4 + 5x2 + 2x + 2, in Z7[x] 

6. f(x) = 3x2 + 2, g(x) = 4x4 + 2x3 + 6x2 + 4x + 5, in Z7[x] 

Forf(x), g(x), and Zn[x] given in Exercises 7-10, find the greatest common divisor d(x) of 
f(x) and g(x) in Zn[x]. 

Sec. 8.3, 4f27 <r;; 7. f(x) = x3 + x2 + 2x + 2, g(x) = x4 + 2x2 + x + 1, in Z3[x] 

Sec. 8.3, #27 <r;; 8. f(x) = x3 + 2x2 + 2, g(x) = 2x5 + 2x4 + x2 + 2, in Z3[x] 
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Sec. 8.3, #27 � 9. f(x) = 3.x2 + 2, g(x) = x4 + 5x2 + 2x + 2, in Z1[x] 

Sec. 8.3, #27 � 10. f(x) = 3.x2 + 2, g(x) = 4x4 + 2x3 + 6x2 + 4x + 5, in Z1[x] 

For f(x), g(x), and Zn[x] given in Exercises 11-14, find s(x) and t(x) in Zn[x] such that 
d(x) = f(x)s(x) + g(x)t(x) is the greatest common divisor of f(x) and g(x). 

11. f(x) = 2x3 + 2x2 + x + 1, g(x) = x4 + 2x2 + x + 1, in Z3[x] 

12. f(x) = 2x3 + x2 + 1, g(x) = x5 + x4 + 2x2 + 1, in Z3[x] 

13. f(x) = 3x2 + 2, g(x) = x4 + 5x2 + 2x + 2, in Z7[x] 

14. f(x) = 3x2 + 2, g(x) = 4x4 + 2x3 + 6x2 + 4x + 5, in Z7[x] 

15. a. Factor x as a product of two polynomials of degree 1 in Zdx]. 

b. Factor x as a product of two polynomials of degree 1 in Z 1s[x]. 

16. Factor each of the following polynomials as the product of two polynomials of degree 1 
inZdxJ. 

a. x + 2 b. x + 3 

17. Factor each of the following polynomials as the product of two polynomials of degree 1 
in Z10[x]. 

a. x + 7 b. x + 9 

18. Prove or disprove that the polynomial x can be factored as the product of two polyno
mials of degree 1 in F[x], where F is a field. 

19. Let I be the principal ideal (x2 + 1) = {(x2 + l)J(x) IJ(x) E Z[x]}. Determine 
whether each of the following polynomials is an element of/. 

a. x4 - 3x3 + 3x2 - 3x + 2 b. x4 + x3 - 2x2 + x + 1 

20. Let I be the principal ideal (x2 + 1) = {(x2 + l)J(x) IJ(x) E Z5[x]}. Determine 
whether each of the following polynomials is an element of/. 

a. 2x4 + 4x3 + 4x + 3 b. 3x5 + x4 + 2x3 + 3.x2 + 4x + 1 

21. Let I be the principal ideal (x + 2) = {(x + 2)J(x) IJ(x) E Z7[x]}. Determine 
whether each of the following polynomials is an element of I. 

a. 4x4 + x2 + x + 2 b. 5x4 + 5x3 + 3x2 + 2x + 1 

22. Let I be the principal ideal (2x + 7) = {(2x + 7)J(x) IJ(x) E Z11[x ]}. Determine 
whether each of the following polynomials is an element of/. 

a. 4x4 + 6x3 + x2 + 7x + 4 b. 9x4 + x3 + 8x2 + 2x + 10 

23. Let f(x), g(x) E F[x] wheref(x) I g(x). Prove (g(x)) � (f(x)). 

24. Let J(x) =an�+ an-l�-l + · · · + a0 where an i= 0. Find the greatest common 
divisor of f(x) and the zero polynomial. 

25. Prove that if f(x) and g(x) are nonzero elements of F[x] such that f(x) I g(x) and 
g(x) I f(x), then f(x) = ag(x) for some nonzero a E F. 
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26. Prove that if d 1 (x) and d2(x) are monic polynomials over the field F such that d 1 (x) I d2(x) 
and dz(x) I di(x), then d i(x) = dz(x). 

27. Show that the polynomials s(x) and t(x) in the expression 

d(x) = J(x)s(x) + g(x)t(x) 

in Theorem 8.13 are not unique. 

28. Prove that if h(x) I f(x) and h(x) I g(x) in F[x], then h(x) divides f(x)u(x) + g(x)v(x) for 
all u(x) and v(x) in F[x]. 

29. Letf(x), g(x), h(x) E F[x]. Prove that if f(x) I g(x) and g(x) I h(x) then f(x) I h(x). 

30. In the statement of the Division Algorithm (Theorem 8.10), prove that the great
est common divisor of g(x) andf(x) is equal to the greatest common divisor of f(x) 
and r(x). 

31. With the notation used in the description of the Euclidean Algorithm, prove that 
a-1rn(x) is the greatest common divisor of f(x) and g(x). 

32. Prove that every nonzero remainder r/x) in the Euclidean Algorithm is a linear com
bination of f(x) and g(x): rj(x) = f(x)s1(x) + g(x)t1(x) for some s1(x) and t j(x) in F[x]. 

33. Prove that the only elements of F[x] that have multiplicative inverses are the nonzero 
elements of the field F. (Hence F[x] is not a field.) 

34. Prove that every ideal in F[x], where F is a field, is a principal ideal. 

Sec. 8.3, #27 � 35. Follow the pattern in Definition 2.19 of Section 2.4 to define the least common multi
ple of two nonzero polynomials f(x) and g(x) over the field F. 

� Factorization in f[x] 

Let f(x) = ao + aix + azx2 + · · · +a� denote an arbitrary polynomial over the field F. 
For any c E F, f(c) is defined by the equation 

That is, f(c) is obtained by replacing the indeterminate x in f(x) by the element c. For each 
c E F, this replacement rule yields a unique value f(c) E F, and hence the pairing (c, f(c)) 
defines a mapping from F to F. A mapping obtained in this manner is called a polynomial 

mapping, or a polynomial function, from F to F. 

Definition 8.14 • Zero, Root, Solution 

Let f(x) be a polynomial over the field F. If c is an element of F such that f(c) = 0, then c 
is called a zero of f(x), and we say that c is a root, or a solution, of the equation f(x) = 0. 
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382 Chapter 8 Polynomials 

Example 1 Consider f(x) = x2 + 1 in Zs[x]. Since 

f ( 2) = 22 + 1 = 0 

in Zs, 2 is a zero of x2 + 1. Also, 2 is a root, or a solution, of x2 + 1 = 0 over Zs. • 

For arbitrary polynomials f(x) and g(x) over a field F, let h(x) = f(x) + g(x) and 

p(x) = f(x)g(x). Two consequences of the definitions of addition and multiplication in F[x] 
are that 

h(c) = f(c) + g(c) and p(c) = f(c)g(c) 

for all c in F. We shall use these results quite freely, with their justifications left as exercises. 

The difference in the roles of the letters x and c in the preceding paragraph should be 

emphasized. Beginning with the second paragraph of Section 8.1, the indeterminate x has 

ALERT been used as a formal symbol which represents an element that is not in R (or F) and sub

ject only to the definitions that we have made since that paragraph. However, the symbol c 
represents a variable element in the field F, and f(c) represents the value of the polynomial 

function! at the element c. 
The next example shows that f(x) and g(x) may be different polynomials in F[x] that 

ALERT define the same polynomial function from F to F. That is, we may have J(c) = g(c) for 

all c in F while the polynomials f(x) and g(x) are not equal. 

Example 2 Consider the polynomials f(x) = 3xs - 4x2 and g(x) = x2 + 3x in Zs[x]. 
By direct computation, we find that 

J(O) = 0 = g(O) 

J(3) = 3 = g(3) 

J(l) = 4 = g(l) J(2) = 0 = g(2) 

J(4) = 3 = g(4) . 

Thus f(c) = g(c) for all c in Zs, but f(x) :f= g(x) in Zs[x]. • 

The next two theorems are two of the simplest and most useful results on factorization 

in F[x]. 

Theorem 8.15 • The Remainder Theorem 

If f(x) is a polynomial over the field F and c E F, then the remainder in the division of 

f(x) by x - c is f(c). 

(u Av):::::} w Proof Since x - c has degree 1, the remainder r in 

f(x) = (x - c)q(x) + r 

is a constant. Replacing x with c, we obtain 

Thus r = f(c). 

J(c) = (c - c)q(c) + r 

= 0 · q(c) + r 

= r. 
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Theorem 8.16 • The Factor Theorem 

8.3 Factorization in F[x] 383 

A polynomial f(x) over the field F has a factor x - c in F[x] if and only if c E F is a zero 
of f(x). 

p <=::> q Proof From the Remainder Theorem, we have 

J(x) = (x - c)q(x) + J(c). 
Thus x - c is a factor of f(x) if and only if f(c) = 0. 

Example 3 In Example 1, we saw thatf(2) = 0. Thus x - 2 is a factor of x2+1 in Z5[x]. 
Similarly in Example 2, we have x = x - 0 and x - 2 as factors of both 3x5 - 4x2 and 
�+���w • 

The Factor Theorem can be extended as follows. 

Theorem 8.17 • Factorization of f(x) with Distinct Zeros 

Let f(x) be a polynomial over the field F that has positive degree n and leading coefficient 
a. If c1, c2, ... , en are n distinct zeros of f(x) in F, then 

J(x) = a(x - c1)(x - c2) 
· · · (x - en). 

Induction Proof The proof is by induction on n = deg f(x). For each positive integer n, let Sn be 
the statement of the theorem. 

For n = 1, suppose that f(x) has degree 1 and leading coefficient a, and let c1 be a zero 
of f(x) in F. Then f(x) = ax + b, where a * 0 andf(c1) = 0. This implies that ac1 + b = 0 

and b = -ac1. Therefore, f(x) = ax - ac1 = a(x - c1), and S1 is true. 
Assume now that Skis true, and let f(x) be a polynomial with leading coefficient a and 

degree k + 1 that has k + 1 distinct zeros ci, c2, ... , ch ck+1 in F. Since ck+1 is a zero ofj(x), 

J(x) = (x - ck+1)q(x) 

by the Factor Theorem. By Theorem 8.7, q(x) must have degree k. Since the factor x - ck+1 
is monic, q(x) and f(x) have the same leading coefficient. For i = 1, 2, ... , k, we have 

(c; - ck+ 1)q(c;) = J(c;) = 0, 

where Ci - ck+1 * 0, since the zeros c1, c2, ... , ch ck+1 are distinct. Therefore, q(c;) = 0 

for i = 1, 2, ... , k. That is, c1, c2, ... , ck are k distinct zeros of q(x) in F. By the induction 
hypothesis, 

q(x) = a(x - c1)(x - c2) 
• • • (x - ck). 

Substitution of this factored expression for q(x) in f(x) = (x - ck+1)q(x) yields 

J(x) = a(x - c1)(x - c2) 
· · · (x - ck)(x - ck+1). 

Therefore, Sk+ 1 is true whenever Sk is true, and it follows by induction that Sn is true for all 
positive integers n. 

The proof of the following corollary is left as an exercise. 
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384 Chapter 8 Polynomials 

Corollary 8.18 • Number of Distinct Zeros 

A polynomial of positive degree n over the field F has at most n distinct zeros in F. 

Example 4 In Example 2, the polynomial g(x) = x2 + 3x has degree 2 with distinct 

zeros 0 and 2. Thus g(x) can be factored as 

g(x) = x(x - 2). • 

In the factorization of polynomials over a field F, the concept of an irreducible polyno

mial is analogous to the concept of a prime integer in the factorization of integers. 

Definition 8.19 • Irreducible, Prime, Reducible 

A polynomial f(x) in F[x] is irreducible (or prime) over F if f(x) has positive degree and 

if f(x) cannot be expressed as a product f(x) = g(x)h(x) with both g(x) and h(x) of positive 

degree in F[x]. If f(x) is not irreducible, then f(x) is said to be reducible. 

Example 5 Note that whether or not a given polynomial is irreducible over F depends 

on the field F. For instance, x2 + 1 is irreducible over the field of real numbers, but it is 

reducible over the field C of complex numbers, since x2 + 1 can be factored as 

x2 + 1 = (x - i)(x + i) 

in C[x] . • 

ALERT If g(x) and h(x) are polynomials of positive degree, their product g(x)h(x) has degree 

at least 2. Therefore, all polynomials of degree 1 are irreducible. Constant polynomials, 

however, are never irreducible because they do not have positive degree. 

It is usually not easy to decide whether or not a given polynomial is irreducible over a 

certain field. However, the following theorem is sometimes quite helpful for polynomials 

with degree less than 4. 

Theorem 8.20 • Polynomials of Degree 2 or 3 

If f(x) is a polynomial of degree 2 or 3 over the field F, then f(x) is irreducible over F if 

p <=::> q and only if f(x) has no zeros in F. 

Proof Let f (x) be a polynomial of degree 2 or 3 over the field F. 
�p <=::> �q We shall prove the theorem in this form: f(x) is reducible over F if and only if f(x) has 

at least one zero in F. 
�p <= �q Suppose first that f(x) has a zero c in F. By the Factor Theorem, 

J(x) = (x - c)q(x), 

where q(x) has degree one less than that of f(x) by Theorem 8.7. This factorization shows 

that f(x) is reducible over F. 
�p ==> �q Assume, conversely, that f(x) is reducible over F. That is, there are polynomials g(x) 

and h(x) in F[x] such that f(x) = g(x)h(x), with both g(x) and h(x) of positive degree. By 

Theorem 8. 7, 

deg J(x) = deg g(x) + deg h(x). 
Copyright 2013 Cengage Leaming. AH Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materia11y affect the overall learning experience. Cengage Leaming reserves the right to remove additional content at any time if subsequent rights restrictions require it. 



8.3 Factorization in F[x] 385 

Since deg f (x) is either 2 or 3, one of the factors g(x) and h(x) must have degree 1. Without 

loss of generality, we may assume that this factor is g(x), and we have 

J(x) = (ax + b )h(x), 

where a =I= 0. It follows at once from this equation that - a - 1b is a zero of f(x) in F, and 

the proof is complete. 

Example 6 Let us determine whether each of the following polynomials is irreducible 

over Zs. 

a. f (x) = x3 + 2x2 - 3x + 4 

b. g(x) = x2 + 3x + 4 

Routine computations show that 

J(O) = 4, J(l) = 4, J(2) = 4, J(3) = 0, J(4) = 3. 

Thus 3 is a zero of f(x) in Zs, and f(x) is reducible over Zs. However, g(x) is irreducible 

over Zs since g(x) has no zeros in Zs: 

g(O) = 4, g(l) = 3, g(2) = 4, g(3) = 2, g(4) = 2. • 

Irreducible polynomials play a role in the factorization of polynomials corresponding 

to the role that prime integers play in the factorization of integers. This is illustrated by the 

next theorem. 

Theorem 8.21 • Irreducible Factors 

If p(x) is an irreducible polynomial over the field F and p(x) divides f(x)g(x) in F[x], then 

either p(x) I f(x) or p(x) I g(x) in F[x]. 

(u /\ v):::::} (w V z) Proof Assume that p(x) is irreducible over F and that p(x) divides f(x)g(x); say, 

J(x)g(x) = p(x)q(x) 

for some q(x) in F[x]. If p(x) I f(x), the conclusion is satisfied. Suppose, then, that p(x) does 

not divide f(x). This means that 1 is the greatest common divisor of f(x) and p(x), since the 

only divisors of p(x) with positive degree are constant multiples of p(x). By Theorem 8.13, 
there exist s(x) and t(x) in F[x] such that 

and this implies that 

1 = J(x)s(x) + p(x)t(x), 

g(x) = g(x )[J(x )s(x) + p(x )t(x) J 

=f(x)g(x)s(x) + p(x)g(x)t(x) 

= p(x)q(x)s(x) + p(x)g(x)t(x), 

Copyright 2013 Cengage Leaming. AH Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materia11y affect the overall learning experience. Cengage Leaming reserves the right to remove additional content at any time if subsequent rights restrictions require it. 
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since f(x)g(x) = p(x)q(x). Factoring p(x) from the two terms in the right member, we see 
that p(x) I g(x): 

g(x) = p(x)[q(x)s(x) + g(x)t(x)]. 

Thus p(x) divides g(x) if it does not divide f(x). 

A comparison of Theorem 8.21 with Theorem 2.16 (Euclid's Lemma) provides an 
indication of how closely the theory of divisibility in F[x] resembles the theory of divisibility 
in the integers. This analogy carries over to the proofs as well. For this reason, the proofs of 
the remaining results in this section are left as exercises. 

Theorem 8.22 • 

Suppose p(x) is an irreducible polynomial over the field F such that p(x) divides a product 
f1(x)fz(x) · · · fn(x) in F[x] , thenp(x) divides some fj(x). 

Just as with integers, two nonzero polynomials f(x) and g(x) over the field F are called 
relatively prime over F if their greatest common divisor in F[x] is 1. 

Theorem 8.23 • 

If f(x) and g(x) are relatively prime polynomials over the field F and if f(x)lg(x)h(x) in F[x], 
then f(x)lh(x) in F[x]. 

Theorem 8.24 • Unique Factorization Theorem 

Every polynomial of positive degree over the field F can be expressed as a product of its 
leading coefficient and a finite number of manic irreducible polynomials over F. This 
factorization is unique except for the order of the factors. 

Of course, the manic irreducible polynomials involved in the factorization of f(x) 
over F may not all be distinct. If p 1(x), pz(x), ... , p,(x) are the distinct manic irreducible 
factors of f(x), then all repeated factors may be collected together and expressed by the use 
of exponents to yield 

where each mi is a positive integer. 
In the last expression for f(x), mi is called the multiplicity of the factor Pi(x). More 

generally, if g(x) is an arbitrary polynomial of positive degree such that [g(x)]m divides f(x) 
and no higher power of g(x) divides f(x) in F[x], then g(x) is said to be a factor of f(x) over 
F[x] with multiplicity m. Also, if c is an element of the field F such that (x - er divides 

f(x) for some positive integer m but no higher power of x - c dividesf(x), then c is called 
a zero of multiplicity m. 
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Example 7 We shall find the factorization that is described in the Unique Factorization 
Theorem for the polynomial 

f(x) = 2.x4 + x3 + 3x2 + 2x + 4 

over the field Zs. 

We first determine the zeros of f(x) in Zs: 

J(O) = 4, J(l) = 2, J(2) = 0, J(3) = 1, f(4) = 1. 
Thus 2 is the only zero of f(x) in Zs, and the Factor Theorem assures us that x - 2 is a 
factor of f(x). Dividing by x - 2, we get 

J(x) = (x - 2)(2.x3 + 3x + 3). 

By Exercise 16 at the end of this section, the zeros of f(x) are 2 and the zeros of g(x) = 

2x3 + 3x + 3. We therefore need to determine the zeros of g(x), and the only possibility 
is 2, since this is the only zero of f(x) in Zs. We find that g(2) = 0, and this indicates that 
x - 2 is a factor of g(x). Performing the required division, we obtain 

and 

2x3 + 3x + 3 = (x - 2)(2x2 + 4x + 1) 

J(x) = (x - 2)(x - 2)(2x2 + 4x + 1) 
= (x - 2)2(2.x2 + 4x + 1). 

We now find that 2.x2 + 4x + 1 is irreducible over Zs, since it has no zeros in Zs. To 
arrive at the desired factorization, we need to only factor the leading coefficient of f(x) 
from the factor 2.x2 + 4x + 1: 

Exercises 8.3 

True or False 

J(x) = (x - 2)2(2x2 + 4x + 1) 
= (x - 2)2[2x2 + 4x + (2)(3)] 

= 2(x - 2)2(x2 + 2x + 3). 

Label each of the following statements as either true or false. 

• 

1. For each c in afieldF, the valuef(c) E F is unique, wheref(x) = a0 + a1x + · · · + 

anxn E F[x]. 

2. We say that c E F is a solution to the polynomial equation f(x) = 0 if and only if 
f(c) = O inF. 

3. Letf(x) and g(x) be arbitrary polynomials over a field F. If f(c) = g(c) for all c E F, 
then f(x) = g(x). 

4. Any polynomial of positive degree n over the field F has exactly n distinct zeros in F. 

5. There are nonzero elements in a field F that can be considered as irreducible polyno
mials in F[x]. 
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6. Since the polynomial ax + b of degree 1 over a field F can be factored as a(x + a-1 b ), 
then ax + b is not irreducible. 

7. Whether or not a given polynomial is irreducible over a field F depends on F. 

8. Any polynomial f(x) of positive degree that is reducible over a field F has at least one 
zero in F. 

9. Let F and F' be fields with Ft;;;;; F'. If f(x) is irreducible over F, thenf(x) is irreducible 
over F'. 

Exercises 

1. Determine the remainder r whenf(x) is divided by x - c over the field F for the given 
f(x), c, and F, where R denotes the field of real numbers and C the field of complex 
numbers. 

a. f(x) = x4 - 7x2 - 3x + 9, c = 2, F = R 

b. f(x) = 3xs - 2x4 + 5x2 + 2x - 1, c = -1, F = R 

c. f (x) = x4 - ix3 + 3x2 - 3ix, c = i, F = C 

d. f(x) = x4 - ix3 + 3x2 - 3ix, c = -i, F = C 

e. f(x) = x5 + x3 + x + 1, c = 1, F = Z3 
f. f(x) = x4 + x3 + 2x2 + 1, c = 2, F = Z3 
g. f(x) = x3 + 4x2 + 2x + 1, c = 3, F =Zs 

h. f(x) = 2x4 + 3x3 + 4x2 + 3, c = 2, F = Zs 

i. f(x) = x4 + 5x3 + 2x2 + 6x + 2, c = 4, F = Z7 

j. f(x) = x3 + 6x2 + 2x + 2, c = 5, F = Z7 

2. Let Q denote the field of rational numbers, R the field of real numbers, and C the field 
of complex numbers. Determine whether each of the following polynomials is irreduc
ible over each of the indicated fields, and state all the zeros in each of the fields. 

a. x2 - 2 over Q, R, and C 

b. x2 + 1 over Q, R, and C 

c. x2 + x - 2 over Q, R, and C 

d. x2 + 2x + 2 over Q, R, and C 

e. x2 + x + 2 over Z3, Zs, and Z7 

f. x2 + 2x + 2 over Z3, Zs, and Z7 

g. x3 - x2 + 2x + 2 over Z3, Zs, and Z7 

h. x4 + 2x2 + 1 over Z3, Zs, and Z7 

3. Find all monic irreducible polynomials of degree 2 over Z3. 

4. Write each of the following polynomials as a product of its leading coefficient and 
a finite number of monic irreducible polynomials over Zs. State their zeros and the 
multiplicity of each zero. 

a. 2x3 + 1 b. 3x3 + 2x2 + x + 2 

c. 3x3 + x2 + 2x + 4 d. 2x3 + 4x2 + 3x + 1 
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8.3 Factorization in F[x] 389 

e. 2.x4 + x3 + 3x + 2 f. 3x4 + 3x3 + x + 3 

g. x4 + x3 + x2 + 2x + 3 h. x4 + x3 + 2x2 + 3x + 2 

i. x4 + 2.x3 + 3x + 4 j. xs + x4 + 3x3 + 2x2 + 4x 

5. Let F be a field and f(x) = a0 + a1x + · · · + anxi E F[x]. 

a. Prove that x - 1 is a factor of f(x) if and only if a0 + a1 + · · · + an = 0. 

b. Prove that x + 1 is a factor of f(x) if and only if a0 - a1 + · · · + ( -1 )
n
an = 0. 

6. Prove Corollary 8.18: A polynomial of positive degree n over the field F has at most 
n distinct zeros in F. 

7. Corollary 8.18 requires that F be a field. Show that each of the following polynomials 
of positive degree n has more than n zeros over F where F is not a field. 

a. 4x2 + 4 over Zs b. 5x3 + 5 over Z10 

8. Let f(x) be an irreducible polynomial over a field F. Prove that af(x) is irreducible 
over F for all nonzero a in F. 

9. Let F be a field. Prove that if c + 0 is a zero of f(x) = ao + a1x + · · · + anJ!I E F[x] 
then c-1 is a zero of an + an_ 1x + · · · + aoxi. 

10. Let f(x) and g(x) be two polynomials over the field F, both of degree n or less. Prove 
that if m > n and if there exist m distinct elements c1, c2, . . .  , Cm of F such that 
f(ci) = g(ci) for i = 1, 2, . . .  , m, then f(x) = g(x). 

Sec. 2.5, #54 � 11. Let p be a prime integer, and consider the polynomials f(x) = xP and g(x) = x over the 
Sec. 4.4, #26 � field Zp. Prove that f ( c) = g( c) for all c in Zp. (This result is another form of Fermat's 

Little Theorem: nP = n (mod p). To prove it, consider the multiplicative group of 
nonzero elements of Zp.) 

12. Find all the zeros of each of the following polynomials over the indicated fields. 

a. xs - x over Zs b. x11 - x over Z11 

13. Give an example of a polynomial of degree 4 over the field R of real numbers that is 
reducible over R and yet has no zeros in the real numbers. 

14. If f(x) and g(x) are polynomials over the field F, and h(x) = f(x) + g(x), prove that 
h(c) = f(c) + g(c) for all c in F. 

15. If J(x) and g(x) are polynomials over the field F, and p(x) = J(x)g(x), prove that 
p(c) = J(c)g(c) for all c inF. 

16. Let f(x) be a polynomial of positive degree n over the field F, and assume that 
f(x) = (x - c)q(x) for some c E F and q(x) in F[x]. Prove that 

a. c and the zeros of q(x) in F are zeros of f(x) 

b. f(x) has no other zeros in F. 

17. Suppose that f(x), g(x), and h(x) are polynomials over the field F, each of which has 
positive degree, and that f(x) = g(x)h(x). Prove that the zeros of f(x) in F consist of 
the zeros of g(x) in F together with the zeros of h(x) in F. 
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390 Chapter 8 Polynomials 

18. Prove that a polynomial f(x) of positive degree n over the field F has at most n (not 
necessarily distinct) zeros in F. 

19. Prove Theorem 8.22: Suppose p(x) is an irreducible polynomial over the field F such 
thatp(x) divides a product fi(x)fz(x) · · · fn(x) in F[x], thenp(x) divides some fj(x). 

20. Prove Theorem 8.23: If f(x) and g(x) are relatively prime polynomials over the field F 
and if f(x) I g(x)h(x) in F[x], then f(x) I h(x) in F[x]. 

21. Prove the Unique Factorization Theorem in F[x] (Theorem 8.24). 

22. Let a -=F bin a field F. Show that x + a and x + bare relatively prime in F[x]. 

23. Let f(x), g(x), h(x) E F[x] where f(x) and g(x) are relatively prime. If h(x) I f(x), prove 
that h(x) and g(x) are relatively prime. 

24. Let f(x), g(x), h(x) E F[x] where f(x) and g(x) are relatively prime. If f(x) I h(x) and 
g(x) I h(x), prove that f (x)g(x) I h(x). 

25. Let f(x), g(x), h(x) E F[x] where f(x) and g(x) are relatively prime and f(x) and h(x) 
are relatively prime. Prove that f(x) and g(x)h(x) are relatively prime. 

26. Let f(x), g(x) E F[x] and d(x) the greatest common divisor of f(x) and g(x) where 
f(x) = h(x)d(x) and g(x) = k(x)d(x) for some h(x), k(x) E F[x]. Prove that h(x) and 
k(x) are relatively prime. 

Sec. 8.2, #7-10, 35 � 27. Find the least common multiple of each pair of polynomials given in Exercises 7-10 
of Section 8.2. 

� Zeros of a Polynomial 

We now focus our interest on polynomials that have their coefficients in the field C of 
complex numbers, the field R of real numbers, or the field Q of rational numbers. Our 
results are concerned with the zeros of these polynomials and the related property of ir
reducibility over these fields. 

The statement in Theorem 8.25 is so important that it is known as the Fundamental 
Theorem of Algebra. It was first proved in 1799 by the great German mathematician Carl 
Friedrich Gauss (1777-1855). Unfortunately, all known proofs of this theorem require 
theories that we do not have at our disposal, so we are forced to accept the theorem without 
proof. 

Theorem 8.25 • The Fundamental Theorem of Algebra 

If f(x) is a polynomial of positive degree over the field of complex numbers, then f(x) has 
a zero in the complex numbers. 

The Fundamental Theorem opens the door to a complete decomposition of any poly
nomial over C, as described in the following theorem. 
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8.4 Zeros of a Polynomial 391 

Theorem 8.26 • Factorization over C 

If f(x) is a polynomial of positive degree n over the field C of complex numbers, then f(x) 
can be factored as 

where a is the leading coefficient of f(x) and c1, c2, ... , Cn are n (not necessarily distinct) 

complex numbers that are zeros of f(x). 

Induction Proof For each positive integer n, let Sn be the statement of the theorem. 

Ifn = 1, then f (x) =ax+ b, where a =f=. 0. The complexnumberc1 = -a-
1
bis a zero 

of f(x), and 

f(x) = ax + b = ax - ac1 = a(x - c1). 

Thus S 1 is true. 

Assume that Skis true, and let f(x) be a polynomial of degree k + 1 over C. By the 

Fundamental Theorem of Algebra, f(x) has a zero c1 in the complex numbers, and the 

Factor Theorem asserts that 

f(x) = (x - c1)q(x) 

for some polynomial q(x) over C. Since x - c1 is monic, q(x) has the same leading coef

ficient as f(x), and Theorem 8.7 implies that q(x) has degree k. By the induction hypothesis, 

q(x) can be factored as the product of its leading coefficient and k factors of the form x - c i: 

q(x) = a(x - c2)(x - c3) • • • (x - ck+ 1). 

Therefore, 

f(x) = (x - c1)q(x) 

= a(x - c1)(x - c2) • • • (x - ck+ 1), 

and sk+ 1 is true. It follows that the theorem is true for all positive integers n. 

As noted in the statement of Theorem 8.26, the zeros ci are not necessarily distinct 

in the factorization of f(x) that is described there. If the repeated factors are collected to

gether, we have 

as a standard form for the unique factorization of a polynomial over the complex numbers. 

ALERT In particular, we observe that the only irreducible polynomials over C are the first-degree 
polynomials. 

With such a simple description of the irreducible polynomials over C, it is natural to 

ask which polynomials are irreducible over the real numbers. For polynomials of degree 2 

(quadratic polynomials), an answer to this question is readily available from the quadratic 
formula. According to the quadratic formula, the zeros of a polynomial 

f(x) = ax2 
+ bx + c 
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392 Chapter 8 Polynomials 

with real coefficients t and a ::/= 0 are given by 

-b + Vb2 - 4ac 
2a 

and 
-b - Vb2 - 4ac 

2a 

These zeros are not real numbers if and only if the discriminant, b2 - 4ac, is negative. 

Thus a quadratic polynomial is irreducible over the real numbers if and only if it has a 

negative discriminant. 

If we introduce some appropriate terminology, a meaningful characterization of the 

field of complex numbers can now be formulated. If F and E are fields such that F � E, 

then E is called an extension of F. An element a E E is called algebraic over F if a is the 

zero of a polynomial f (x) with coefficients in F, and E is an algebraic extension of F if 

every element of E is algebraic over F. E is algebraically closed if every polynomial of 

positive degree over E has a zero in E. 

The field C of complex numbers can be characterized as a field with the following 

properties: 

1. C is an algebraic extension of the field R of real numbers. 

2. C is algebraically closed. 

If z = a + bi with a, b E R, then z is a zero of the polynomial 

J(x) = [x - (a+ bi)][x - (a - bi)] 
= x2 - 2ax + (a2 + b2) 

over R. Thus z is algebraic over R, and property 1 is established. The Fundamental 

Theorem of Algebra (Theorem 8.25) asserts that C is algebraically closed. It can be 

proved that any field that is an algebraic extension of R and is algebraically closed must 

be isomorphic to C. The proof of this assertion is beyond the scope of this text. 

If a and b are real numbers, the conjugate of the complex number z = a + bi is the 

complex number z = a - bi. Note that the zeros r1 and r2 given by the quadratic formula 

are conjugates of each other when the coefficients are real and b2 - 4ac < 0. 

In the exercises at the end of this section, proofs are requested for the following facts 

concerning conjugates: 

- - -

z I • Zz • . . . •  Zn = z I • Zz • . . . •  Zn-

That is, the conjugate of a sum of terms is the sum of the conjugates of the individual terms, 

and the conjugate of a product of factors is the product of the conjugates of the individual 

factors. As a special case for products, 

These properties of conjugates are used in the proof of the next theorem. 

tThe quadratic formula is also valid if the coefficients are complex numbers, but at the moment we are 
interested only in the real case. 
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8.4 Zeros of a Polynomial 393 

Theorem 8.27 • Conjugate Zeros 

Suppose that f(x) is a polynomial that has all its coefficients in the real numbers. If the 

complex number z is a zero of f(x), then its conjugate z is also a zero of f(x). 
n 

p:::::} q Proof Let J(x) = :Laixi, where all ai are real, and assume that z is a zero of f(x). Then 
i=O 

f(z) = 0, and therefore, 

0 = J(z) 
����������-

= ao + a1z + a2z2 + ... + anzn 

= ao + a1z + a2z2 + ... + anz n 

= ao + a1z + alz)2 + · · · + anCz)n 

= Go + G1Z + a2(z)2 + ... + anCz)n, 

where the last equality follows from the fact that each ai is a real number. We thus have 

J(z) = 0, and the theorem is proved. 

Example 1 The monic polynomial of least degree over the complex numbers that has 

1 - i and 2i as zeros is 

J( x) = [ x - ( 1 - i)] [ x - 2i] 
= x2 - ( 1 + i)x + 2 + 2i. 

However, a polynomial with real coefficients that has 1 - i and 2i as zeros must also have 

1 + i and -2i as zeros. Thus the monic polynomial of least degree with real coefficients 

that has 1 - i and 2i as zeros is 

g(x) = [x - ( 1 - i)][x - ( 1 + i)][x - 2i][x + 2i] 
= (x2 - 2x + 2)(x2 + 4)  
= x4 - 2x3 + 6x2 - 8x + 8. • 

Example 2 Suppose that it is known that 1 - 2i is a zero of the fourth-degree polyno

mial f(x) = x4 - 3x3 + x2 + 7x - 30 and that we wish to find all the zeros of f(x). From 

Theorem 8.27, we know that 1 + 2i is also a zero of f(x). The Factor Theorem then assures 

us that x - (1 - 2i) and x - (1 + 2i) are factors of f(x): 

J(x) = [x - (1 - 2i)][x - ( 1 + 2i)]q(x). 

To find q(x), we divide f(x) by the polynomial 

[ x - ( 1 - 2i) J [ x - ( 1 + 2i) ] = x2 - 2x + 5 

and obtain q(x) = x2 - x - 6. Thus 

J(x) = [x - ( 1 - 2i)][x - ( 1 + 2i)](x2 - x - 6) 
= [x - ( 1 - 2i)][x - ( 1 + 2i)](x - 3)(x + 2). 

It is now evident that the zeros of f(x) are 1 - 2i, 1 + 2i, 3, and -2. • 
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The results obtained thus far prepare for the next theorem, which describes a standard 

form for the unique factorization of a polynomial over the real numbers. The proof of this 

theorem is left as an exercise. 

Theorem 8.28 • Factorization over R 

Every polynomial of positive degree over the field R of real numbers can be factored as 

the product of its leading coefficient and a finite number of monic irreducible polynomials 

over R, each of which is either quadratic or of first degree. 

We restrict our attention now to the rational zeros of polynomials with rational coeffi

cients and to the irreducibility of such polynomials. Neither the zeros of a polynomial nor 

its irreducibility is changed when it is multiplied by a nonzero constant, so we lose no 

generality by restricting our attention to polynomials with coefficients that are all integers. 

Theorem 8.29 • Rational Zeros 

Let 

f(x) = ao + a
1X + .. 

· + a
n-IXn-I + a

nXn 

be a polynomial of positive degree n with coefficients that are all integers, and let p/q be a 

rational number that has been written in lowest terms. If p/q is a zero of f(x), thenp divides 

u:::::} (v /\ w) ao and q divides an. 

u:::::} w Proof Suppose that p/q is a rational number expressed in lowest terms that is a zero of 

( ) 
� n i 

f x = �i=O aix. Then 

(
p

) (
p

)
n-1 

(
p

)
n 

a0 + a
1 q + · · · + a

n-
l q +a

n q = 0. 

Multiplying both sides of this equality by q
n 

gives 

aoqn + alpqn-1 + ... + a
n-1

Pn-1q + a
n
pn = 0. 

Subtracting anp
n 

from both sides, we have 

aoqn + alpqn-1 + ... + a
n-1

Pn-1q = -a
n
pn, 

and hence, 

q(aoqn-1 + alpqn-2 + ... + a
n-IPn-1) = -a

n
pn. 

This shows that q divides anp
n
, and therefore q I an, since q and pare relatively prime. 

u:::::} v Similarly, the equation 

a
1
pqn-1 + ... + a

n-1
Pn-1q + a

n
pn = -aoqn 

can be used to show that p I ao. 

ALERT It is important to note that Theorem 8.29 only restricts the possibilities of the rational 

zeros. It does not guarantee that any of these possibilities is actually a zero of f(x). 
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8.4 Zeros of a Polynomial 395 

It may happen that when some of the rational zeros of a polynomial have been found, 

the remaining zeros may be obtained by use of the quadratic formula. This is illustrated in 

the next example. 

Example 3 We shall obtain all zeros of the polynomial 

l(x) = 2.x4 - 5x3 + 3x2 + 4x - 6 
by first finding the rational zeros of l(x). According to Theorem 8.29, any rational zero p/q 
of l(x) that is in lowest terms must have a numerator p that divides the constant term and a 

denominator q that divides the leading coefficient. This means that 

p E {± 1, ±2, ±3, ±6} 
q E {±1,±2} 

� E { ±�,±1,±%,±2,±3,±6} . 

Testing the positive possibilities systematically, we get 

1(�) = -�· 1(1) = - 2, 1(%) = 0. 

We could continue to test the remaining possibilities, but chances are that it is worthwhile to 

divide l(x) by x - (3/2) and then work with the quotient. Performing the division, we obtain 

l(x) = (x - %}2.x3 - 2x2 + 4) 

= (2.x - 3)(x3 - x2 + 2). 
From this factorization, we see that the other zeros of l(x) are the zeros of the factor 

q(x) = x3 - x2 + 2. Since this factor is monic, the only possible rational zeros are the 

divisors of 2. We already know that 1 is not a zero, since 1(1) = - 2. Thus the remaining 

possibilities are 2, - 1, and - 2. We find that 

q(2) = 6, q(- 1) = 0. 

Therefore, x + 1 is a factor of x3 - x2 + 2. Division by x + 1 yields 

x3 - x2 + 2 = (x + l)(x2 - 2x + 2) 
and 

l(x) = (2.x - 3)(x + l)(x2 - 2x + 2). 

The remaining zeros of l(x) can be found by using the quadratic formula on the factor 

x2 - 2x + 2: 

2±\!4=8 
1 ± i. 

2 
x= 

Thus the zeros of l(x) are 3/2, - 1, 1 + i, and 1 - i. • 

The results concerning irreducibility over the field Q of rational numbers are not nearly 

as neat or complete as those we have obtained for the fields C and R. The best-known result 
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for Q is a theorem that states what is known as Eisenstein's Irreducibility Criterion. To 

establish this result is the goal of the rest of this section. We need the following definition 

and two intermediate theorems to reach our objective. 

Definition 8.30 • Primitive Polynomial 

Let J(x) = .L7=oaixi be a polynomial in which all coefficients are integers. Then f(x) is a 

primitive polynomial if the greatest common divisor of ao, ai, ... , an is 1. 

That is, a polynomial is primitive if and only if there is no prime integer that divides 

all of its coefficients. 

Our first intermediate result simply asserts that the product of two primitive polynomi

als is primitive. 

Theorem 8.31 • Product of Primitive Polynomials 

(p A q) � r 

(pAqA �r) � 

(�p v �q) 

If g(x) and h(x) are primitive polynomials, then g(x)h(x) is a primitive polynomial. 

Proof We shall assume that the theorem is false and arrive at a contradiction. 

Suppose that g(x) and h(x) are primitive polynomials, but the product f(x) = g(x)h(x) is 

not primitive. Then there is a prime integer p that divides every coefficient of f(x) = 

.L7=o aixi. The mapping cf>: Z[xJ--1- Zp[xJ defined by 

cp(ao + a1X + · · · + anxn) = [aoJ + [a1Jx + · · · + [an]xn 

is an epimorphism from Z[xJ to Zp[xJ, by Exercise 20 of Section 8.1. Since every coefficient 

of f(x) is a multiple of p, cf>(f(x)) = [OJ in Zp[x]. Therefore, 

cf>(g(x)) • cf>(h(x)) = cf>(g(x )h(x)) 
= cf>(J(x)) 
= [O J 

in Zp[x]. Since p is a prime, Zp[xJ is an integral domain, and either cf>(g(x)) = [OJ or 

cf>(h(x)) = [OJ . Consequently, either p divides every coefficient of g(x), or p divides every 

coefficient of h(x). In either case, we have a contradiction to the supposition that g(x) and 

h(x) are primitive polynomials. This contradiction establishes the theorem. 

The following theorem is credited to the same mathematician who first proved the 

Fundamental Theorem of Algebra. 

Theorem 8.32 • Gauss'st Lemma 

Let f(x) be a primitive polynomial. If f(x) can be factored as f(x) = g(x)h(x), where 

g(x) and h(x) have rational coefficients and positive degree, then f(x) can be factored 

as f(x) = G(x)H(x), where G(x) and H(x) have integral coefficients and positive degree. 

t A biographical sketch of Carl Friedrich Gauss (1777-1855) is given at the end of this chapter. 
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8.4 Zeros of a Polynomial 397 

p => q Proof Suppose that f(x) = g(x)h(x) as described in the hypothesis. Let b be the 

least common denominator of the coefficients of g(x), so that g(x) can be expressed as 

g(x) = tg1 (x), where gi(x) has integral coefficients. Now let a be the greatest common 

divisor of the coefficients of gi(x), so that gi(x) = aG(x), where G(x) is a primitive polyno

mial. Then we have g(x) = �G(x), where a and bare integers and G(x) is primitive and of 

the same degree as g(x). Similarly, we may write h(x) = 5H(x), where c and d are integers 

and H(x) is primitive and of the same degree as h(x). Substituting these expressions for g(x) 
and h(x), we obtain 

and therefore, 

a c 
J(x) = bG(x) • dH(x), 

bdf(x) = acG(x)H(x). 

Since f(x) is primitive, the greatest common divisor of the coefficients of the left member of 

this equation is bd. By Theorem 8.31, G(x)H(x) is primitive, and therefore the greatest com

mon divisor of the coefficients of the right member is ac. Hence bd = ac, and this implies 

that f(x) = G(x)H(x), where G(x) and H(x) have integral coefficients and positive degrees. 

Example 4 The polynomial J(x) = x5 + 2x4 - 10x3 - 9x2 + 30x - 12 is a primi

tive polynomial in Z[x] that can be factored as 

f(x) = (�x3 - 4x + 2)(%x2 + 3x - 6). 

where the factors on the right have rational coefficients and positive degrees. Using the 

same technique as in the proof of Gauss's Lemma, we can write 

J(x) = �(x3 - 6x + 3)(%>x2 + 2x - 4) 

= (x3 - 6x + 3)(x2 + 2x - 4). 

Thus J(x) = G(x) H(x), where G(x) = x3 - 6x + 3 and H(x) 
integral coefficients and positive degree. 

We are now in a position to prove Eisenstein's result. 

Theorem 8.33 • Eisenstein'st Irreducibility Criterion 

x2 + 2x - 4 have 

• 

Let f(x) = a0 + a1x + · · · + anxn be a polynomial of positive degree with integral coef

ficients. If there exists a prime integer p such that p I ai for i = 0, 1, . . .  , n - 1 but p ,ran 
and p2 ,r a0, then f(x) is irreducible over the field of rational numbers. 

tFerdinand Gotthold Max Eisenstein (1823-1852) was a German mathematician inspired to do mathematical 
research by Abel's proof of the impossibility of solving fifth-degree polynomials using only the operations 
of addition, subtraction, multiplication, division, and the extraction of roots. He experienced health problems 
throughout his life and died of tuberculosis at the age of 29. 
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Contradiction Proof Dividing out the greatest common divisor of the coefficients of a polynomial 

would have no effect on whether or not the criterion was satisfied by a prime p because of 

the requirement that p % an- Therefore, we may restrict our attention to the case where f(x) 

is a primitive polynomial. 

Let J(x) = L7=o a;x
; be a primitive polynomial, and assume there exists a prime in

teger p that satisfies the hypothesis. At the same time, assume that the conclusion is false, 

so that f(x) factors over the rational numbers as a product of two polynomials of positive 

degree. Then f (x) can be factored as the product of two polynomials of positive degree that 

have integral coefficients, by Theorem 8.32 (Gauss's Lemma). Suppose that 

J(x) = (ho + b1x + · · · + b,x')(c0 + c1x + · · · + csxs), 

where all the coefficients are integers and r > 0, s > 0. Then a0 = b0c0, and hence p I b0c0, 
but p2 % b0c0 by the hypothesis. This implies that either p I ho or p I c0, but p does not divide 

both ho and c0• Without loss of generality, we may assume that p I b0 and p % c0• If all of the 

b; were divisible by p, then p would divide all the coefficients in the product, f(x). Since 

p % an, some of the bi are not divisible by p. Let k be the smallest subscript such that p % bb 
and consider 

By the choice of k, p divides each of ho, b1, . . .  , bk- I, and therefore, 

Pl(bock + b1ck-1 + · · · + bk-1c1). 

Also, p I ak, since k < n. Hence p divides the difference: 

PI [ak - (bock + b1ck-1 + · · · + bk-1cil. 

That is, p I hkCo· This is impossible, however, since p % bk and p ,r c0• We have arrived at a 

contradiction, and therefore f(x) is irreducible over the rational numbers. 

Example 5 Consider the polynomial 

J(x) = 10 - 15x + 25x2 - 7x4. 

The prime integer p = 5 divides all of the coefficients inf (x) except the leading coefficient 

an = -7, and 52 does not divide the constant term a0 = 10. Therefore, f(x) is irreducible 

over the rational numbers, by Eisenstein's Criterion. • 

Sometimes when Eisenstein's Irreducibility Criterion does not apply to a given poly

nomial, a change of variable will result in a polynomial for which Eisenstein's Irreducibil

ity Criterion does apply, as shown in Example 6. 

Example 6 Consider the polynomial 

J(x) = x4 + x3 + 6x2 - 14x + 16. 
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Eisenstein's Irreducibility Criterion does not apply to this polynomial. However, if we 

replace x by x + 1 in f(x), we obtain 

J(x + 1) = (x + 1)4 + (x + 1 )3 + 6(x + 1 )2 - 14(x + 1) + 16 
= x4 + 5x3 + 15x2 + 5x + 10. 

Now 5 is prime and divides all the coefficients of f(x + 1) except the leading coeffi

cient and 52..r10 = a0. Thus f(x + 1) = x4 + 5x3 + 15x2 + 5x + 10 is irreducible and 

hence, J(x) = x4 + x3 + 6x2 - 14x + 16 is irreducible (see Exercise 33 at the end of this 

section). • 

We end this section with another technique for determining if a polynomial is irreduc

ible over the field Q of rational numbers. 

Theorem 8.34 • Irreducibility of f(x) in Q[x] 

Suppose f(x) = a0 + a1x + · · · + anxn is a polynomial of positive degree with integral 

coefficients and pis a prime integer that does not divide an. Let 

fp(x) = [ao] + [a1Jx + · · · + [an]xn, 

where [a;) E ZP for i = 0, 1, . . .  , n. If fp(x) is irreducible in Zp[x], then f(x) is irreducible 

in Q[x]. 

� q � �p Proof Let J(x) = a0 + a1x + · · · + anxn be a polynomial of positive degree with inte

gral coefficients and define 

where p is a prime integer that does not divide an. Assume f(x) is reducible over Q, that 

is, there exist polynomials g(x), h(x) of positive degree in Z[x J such that f (x) = g(x)h(x). 
The leading coefficient of the product g(x)h(x) is the leading coefficient an of f(x). Since 

p does not divide an, then p does not divide the leading coefficient of either g(x) or of h(x). 
Hence the leading coefficients of gp(x) and hp(x) are nonzero elements in Zp. Therefore, the 

deg gp(x) = deg g(x) > 1 and deg hp(x) = deg h(x) � 1. 
Now let <f>: Z[x] � Zp[x] defined by </>(f(x)) = fp(x). This mapping is an epimorphism 

(see Exercise 20 in Section 8.1). Thus 

and fp(x) is reducible over Zp. 

fp(x) = <f>(J(x)) 
= </>(g(x )h(x)) 
= <f>(g(x))</>(h(x)) 
= gp(x)hp(x), 

We illustrate the use of Theorem 8.34 in the last two examples of this section. 
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Example 7 Consider f(x) = x4 + 7x3 - 4x2 + 12.x + 9 .  Now p = 2 is a prime integer 
that does not divide an = 1 and 

f2
(x) = [l]x4 + [7]x3 - [4]x2 + [12]x + [9] 

= x4 + x3 + 1 ' 

where we are writing a for [a] in Z2. Since f2(0) = 1 and f2(1) = 1, then f2(x) has no zeros 
and hence no first-degree factors in Z2• 

The only possible second-degree factors in Z2 are x2, x2 + x, x2 + 1, and x2 + x + 1. 
Now x2 = x • x, x2 + x = x(x + 1), and x2 + 1 = (x + 1)2 are not factors of f2(x), since 
fz(x) has no first-degree factors. Long division shows thatx2 + x + 1 is not a factor of fz(x). 
Thus fz(x) is irreducible in Z2 and hence f(x) = x4 + 7x3 - 4x2 + 12x + 9 is irreducible 
by Theorem 8.34. • 

Example 8 The polynomialf(x) = x3 + 3x + 5 is irreducible since f2(x) = x3 + x + 1 
is irreducible over Z2. However, p = 3 is also prime andf3(x) = x3 + 2 is not irreducible, 
since x = 1 is a zero of f3(x). Thus Theorem 8.34 does not require that fµ(x) be irre-

ALERT ducible for all positive primes. So finding a prime p such that fµ(x) is reducible leads to 
no conclusion. • 

Exercises 8.4 

True or False 

Label each of the following statements as either true or false. 

1. Every polynomial of positive degree over the complex numbers has a zero in the 
complex numbers. 

2. The only irreducible polynomials over the complex numbers are of degree 1. 
3. The field of complex numbers is an algebraic extension of the field of real numbers. 

4. The field of real numbers is algebraically closed. 
5. If z = a + bi is a zero of a polynomial f(x) with coefficients in the field C, then z is 

also a zero of f(x) over C. 

6. Every polynomial of positive degree over the field R of real numbers can be fac
tored as the product of its leading coefficient and a finite number of monic irreducible 
polynomials of first degree over R. 

7. A polynomial is primitive if and only if there is no prime integer that divides all its 
coefficients. 

8. The product of two primitive polynomials is primitive. 

9. The sum of two primitive polynomials is primitive. 

10. Every monic polynomial is primitive. 
11. Every primitive polynomial is monic. 

12. Every primitive polynomial is irreducible. 
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13. Every irreducible polynomial is primitive. 
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14. A polynomial with real coefficients may have no real zeros. 

15. If z is a zero of multiplicity m of a polynomial f (x) with coefficients in the field R of 

real numbers, then z is a zero of f(x) of multiplicity m. 

Exercises 

1. Find a monic polynomial f(x) of least degree over C that has the given numbers as 

zeros, and a monic polynomial g(x) of least degree with real coefficients that has the 

given numbers as zeros. 

a. 2i, 3 

c. 2, 1 - i 

e. 3i, 1 + 2i 

g. 2 + i, -i, and 1 

b. -3i, 4 

d. 3, 2 - i 

f. i, 2 - i 

h. 3 - i, i, and 2 

2. One of the zeros is given for each of the following polynomials. Find the other zeros 

in the field of complex numbers. 

a. x3 - 4x2 + 6x - 4; 1 - i is a zero. 

b. x3 
+ x2 - 4x + 6; 1 - i is a zero. 

c. x4 + x3 
+ 2x2 + x + 1; -i is a zero. 

d. x4 + 3x3 + 6x2 + 12x + 8; 2i is a zero. 

Find all rational zeros of each of the polynomials in Exercises 3-6. 

3. 2x3 - x2 - Sx - 5 4. 3x3 + 19x2 + 30x + 8 

5. 2x4 - x3 - x2 - x - 3 6. 2x4 + x3 - 8x2 + x - 10 

In Exercises 7-12, find all zeros of the given polynomial. 

7. x3 + x2 - x + 2 8. 3x3 - 7 x2 + Sx - 2 

9. 3x3 + 2x2 - 7x + 2 

11. 6x3 + llx2 
+ x - 4 

10. 3x3 - 2x2 - 7x - 2 

12. 9x3 + 27x2 + Sx - 20 

Factor each of the polynomials in Exercises 13-16 as a product of its leading coefficient 

and a finite number of monic irreducible polynomials over the field of rational numbers. 

13. x4 - x3 - 2x2 + 6x - 4 

15. 2x4 + 5x3 - 7x2 - lOx + 6 

14. 2x4 - x3 - 13x2 + 5x + 15 

16. 6x4 + x3 
+ 3x2 - 14x - 8 

17. Show that each of the following polynomials is irreducible over the field of rational 

numbers. 

a. 3 + 9x + x3 b. 7 - 14x + 28x2 + x3 

c. 3 - 27x2 + 2x5 d. 6 + 12x2 - 27x3 + 10x5 
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18. Show that the converse of Eisenstein's Irreducibility Criterion is not true by finding an 
irreducible J(x) E Q[x] such that there is no p that satisfies the hypothesis of Eisen
stein's Irreducibility Criterion. 

19. Let J(x) = a0 + a1x + · · · + anx
n be a polynomial of positive degree with integral 

coefficients. If there exists a prime integer p such that p I ai for i = 1, 2, ... , n but 
p ..r a0 and p2 

..ram prove that f (x) is irreducible over the field of rational numbers. 

20. Show that each of the following polynomials is irreducible over the field Q of rational 
numbers. 

a. 1 + 2x + 6x2 - 4x3 + 2x4 

b. 4 + 9x2 - 15x3 + 12x4 

c. 6 - 35x + 14x2 + 7x5 

d. 12  + 22x - 55x2 + 1 lx4 + 33x6 

21. Use Theorem 8.34 to show that each of the following polynomials is irreducible over 
the field Q of rational numbers. 

a. f(x) = 27x3 - 16x2 + 3x - 25 

b. f (x) = 8x3 - 2x2 - 5x + 10 

c. f(x) = 12x3 - 2x2 + l5x - 2 

d. f(x) = 30x3 + llx2 - 2x + 8 

e. f(x) = 3x4 + 9x3 - 7x2 + l5x + 25 

f. f (x) = 9x5 - x4 + 6x3 + 5x2 - x + 21 

22. Show that the converse of Theorem 8.34 is not true by finding an irreducible f(x) in 
Q[x], different from thef(x) given in Example 8, such thatfp(x) in Zp[x] is reducible 
for a prime p that does not divide the leading coefficient of f(x). 

23. Prove that z1 + z2 + 
Z1, Z2, · · · , Zn· 

+ Zn = z1 + z2 + · · · + Zn for complex numbers 

24. Prove that z1 • z2 • • • • • Zn = z1 • z2 • • • • • Zn for complex numbers z1, z2, ... , Zn· 

Sec. 2.4, #34 P 25. a. Let p be prime. Use Eisenstien' s Criterion to prove that vP is irrational by examin
ing f(x) = x2 - p E Q[x]. 

Sec. 2.4, #35 P b. Prove that there exist irreducible polynomials of every positive degree in Q[x]. 

26. Let f(x) = ao + aix + · · · + an-1Xn-l + xn be a manic polynomial of positive 
degree n with coefficients that are all integers. Prove that any rational zero of f(x) is 
an integer that divides the constant term a0. 

27. Derive the quadratic formula for the zeros of ax2 + bx + c, where a, b, and c are 
complex numbers and a * 0. 

28. Prove Theorem 8.28. (Hint: In the factorization described in Theorem 8.26, pair those 
factors of the form x - (a + bi) and x - (a - bi).) 

29. Prove that any polynomial of odd degree that has real coefficients must have a zero in 
the field of real numbers. 
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30. Let J(x) = a0 + a1x + · · · + anxn in R[x]. Prove that if ai =::= 0 for all i = 0, 1, ... , n 
or if ai :s 0 for all i = 0, 1, ... , n, then f(x) has no positive zeros. 

31. Let J(x) = a0 + a1x + · · · + anxn in R[x]. Prove that if the coefficients ai alternate 
in sign, where a zero coefficient can be considered as positive or negative to establish 
an alternating pattern, then f(x) has no negative zeros. 

32. Let a be in the field F. Define the mapping </J: F[x] � F[x] by </J(f(x)) = f(x + a) . 

Prove that <P is an automorphism. 

33. Let f(x) E F[x] where F is a field and let a E F. Prove that if f(x + a) is irreducible 
over F, then f(x) is irreducible over F. 

34. Show that each of the following polynomials is irreducible over the field of rational 
numbers by making the appropriate change of variable and applying Eisenstein's 
Irreducibility Criterion. 

a. x3 + 3x + 8 b. x3 + 5x2 - 9x + 13 

Sec. 2.2, #25 � 35. Prove that J(x) = xp- l 
+ xP-2 + · · · + x + 1 is irreducible over Q for any prime p. 

(Hint:Note thatf(x) = (xP- 1)/(x- l) and considerf(x + 1) = ((x + l)P- 1)/ 
( (x + 1) - 1). Use the Binomial Theorem and Eisenstein's Irreducibility Criterion.) 

� Solution of Cubic and Quartic Equations 
by Formulas (Optional) 

In this section, we focus on polynomials that have their coefficients in the field R of real 
numbers. Up to this point, results have been stated with emphasis on the zeros of poly
nomials or on the related property of irreducibility. 

We now place emphasis on a different point of view. Finding the zeros of a poly
nomial 

f(x) = ao + alx + · · · + an-lXn-l 
+ anXn 

is equivalent to finding the solutions of the equation 

ao + a1X + .. 
· + an-lXn-l 

+ anXn = 0. 

Historically, mathematics developed with emphasis on the solution of equations. 
The solution of linear equations 

by the formula 

and the solution of quadratic equations 

ax +b = O 

b 
x = -

a 

ax
2 
+bx+ c = 0 
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by the formula 

x = 
-b ± Vb2 - 4ac 

2a 

long ago prompted mathematicians to seek similar formulas for equations of higher degree 
with real coefficients. 

In the 16th century, Italian mathematicians named Ferro, Tartaglia, Ferrari, and 
Cardano developed methods for solving third- and fourth-degree equations with real coef
ficients by the use of formulas that involved only the operations of addition, subtraction, 
multiplication, division, and the extraction of roots. For more than 200 years afterward, 
mathematicians struggled to obtain similar formulas for equations with degree higher than 
4 or to prove that such formulas did not exist. It was in the early 19th century that the 
Norwegian mathematician Abelt proved that it was impossible to obtain such formulas for 
equations with degree greater than 4. 

The proof of Abel's result is beyond the level of this text, but the formulas for cubic and 
quartic (third- and fourth-degree) equations with real coefficients are within our reach. 

We consider first the solution of the general cubic equation 

G3X
3 

+ a2x2 + G1X + ao = 0 

where the coefficients are real numbers and a3 * 0. There is no loss of generality in 
assuming that the cubic polynomial is manic since division of both sides of the equation by 
a3 yields an equivalent equation. Thus we assume an equation of the form 

x3 + ax2 + bx + c = 0. 

As would be expected, cube roots of complex numbers play a major role in the 
development. For this reason, some remarks on cube roots are in order. 

An easy application of Theorem 7 .11 yields the fact that the cube roots of 1 are 
given by 

cos 0 + i sin 0 = 1, 

27r 27r 
cos -+ i sin -= 

3 3 

47r . 47r 
cos-+ ism-= 

3 3 

-1 + i\!3 

2 

-1 - i\!3 

2 

If we let w = ( -1 + i\!3)12, the distinct cube roots of 1 are w, w2, and w3 = 1. For an 
arbitrary nonzero complex number z, let Vz denote any fixed cube root of z, Then each of 
the numbers Vz, w vz, and w2Vz is a cube root of z, and they are clearly distinct. Thus the 
three cube roots of z are given by 

�3/ �3/ 2�3/ v z, w v z, w v z, 

where w = ( -1 + i\!3)12. This result is used in solving the cubic equation in Theo
rem 8.36. 

t See the biographical sketch of Niels Henrik Abel at the end of Chapter 3. 
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The following two theorems lead to formulas for the solutions of the general cubic 

equation 

x3 + ax2 + bx + c = 0. 

Theorem 8.35 • Change of Variable in the Cubic 

The change of variable 

a 
x=y --

3 

in x3 + ax2 + bx + c = 0 yields the equation 

where 

y3 +PY+ q = 0, 

a2 ab 2a3 
p = b - 3' q = c -

3 
+ 

27 . 

u :::::} v Proof The theorem can be proved by direct substitution, but the details are neater if we 

first consider a substitution of the form x = y + h, where h is unspecified at this point. 

This substitution yields 

( y  + h)3 + a(y + h)2 + b(y + h) + c = 0. 

When this equation is simplified, it appears as 

y3 + ( 3h + a )y2 + ( 3h2 + 2ah + b )y + (h3 + ah2 + bh + c ) = 0. 

If we let h = -�, the coefficients then simplify as follows: 

3h + a = 3( -�) + a = 0 

3h2 + 2ha + b = 3( �) + 2a( -�) + b = b - ;2 
a3 a3 ab ab 2a3 

h3 + ah2 + bh + c = -- + - - - + c = c - - + -
27 9 3 3 27 

This establishes the theorem. 

Theorem 8.36 • Solutions to the Cubic Equation 

Consider the equation y3 + py + q = 0, and let 

- -1 + iv3 - q �(q)2 (p)3 - q �(q)2 (p)3 
w 
- A - -- + - + - B - -- - - + - . 

2 '  2 2 3 '  2 2 3 
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The solutions to y3 + py + q = 0 are given by 

VA + VB, w VA + w2VB, and w2VA + wVB, 

where VA and VB denote (real or complex) cube roots of A and B chosen so that 

VAVB = -�. 

u => v Proof For an efficient proof, we resort to a "trick" substitution: We let 

p 
y = z - -3z 

in y3 + py + q = 0. This substitution yields 

(
z -

:zY 
+ p

(
z -

:z
) + q = 0. 

This equation then simplifies to 

and then to 

p3 
z3---+q=O 27z3 

p3 
z6 + qz3 - -= 0. 27 

This is a quadratic equation in z3, and we can use the quadratic formula to obtain 

-q±A 
� 

z3 = --2--
7 
= -� ± )(�Y 

+ 
(�Y· 

With A and B as given in the statement of the theorem, we have 

z3 = A or z3 = B. 

Noting that 

AB=
(
-�+) 

(�Y 
+ 

(�
)3)

(-� -) (�)2 + 
(�
)3) 

= 
(�Y 

-
( (�Y 

+ 
(�
)3) 

p3 
27' 

we see that VA and VB need to be chosen so that 

VAVB= 
p 
3 

Copyright 2013 Cengage Leaming. AH Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materia11y affect the overall learning experience. Cengage Leaming reserves the right to remove additional content at any time if subsequent rights restrictions require it. 



8.5 Solution of Cubic and Quartic Equations by Formulas (Optional) 407 

With these choices made, the six solutions for z are given by 

�317 �317 2�317 �31n �31n 
Vii, w vA, w vA, vB, w vB, 

Substituting these values in 

P VAVB 
y=z--=z+ ---3z z 

and using t = w2 or ;z = w, we obtain the following three solutions for y: 
VA + VB, w VA + w2Vs, and w2VA + w Vs. 

Example 1 We shall use the formulas in Theorem 8.36 to solve the equation 

y3 - 9y - 12 = 0. 

We have p = -9 and q = -12. Thus 

12 �----

A= 2 + Y(-6)2 + (-3)3 = 6 + v'9 = 9, 

B = 6 - v'9 = 3, 

and the real cube roots V9 and \Y3 satisfy VA Vs= -�.The solutions are given by 

V9 + \o/3, 

w\Y§° + w2\Y3 = ( -1 : iv'3)V9 + ( -1 � iv'3)\Y3 

-�( V9 + \o/3) + i'; ( V9 - \o/3), 

w2\Y9 + w\o/3 = ( -1 � i\/3) \Y9 + ( -1 +
2 

iv'3)\Y3 
1 (�3/n �3.M) iv'3(�31n ,.3fl\ = -- v 9 + v 3 - - v 9 - v 3 }· 
2 2 

• 

The results of Theorems 8.35 and 8.36 combine to yield the following theorem. The 

formulas in the theorem are known as Cardano's Formulas. 

Theorem 8.37 • Cardano'st Formulas 

The solutions to the cubic equation 

x3 + ax2 + bx + c = 0 

taerolamo Cardano (1501-1576) was an Italian Renaissance mathematician, physician, astrologer, and gambler 
who used his gambling expertise as a source of needed income. One of his books (published after his death) 
was an early treatment of probability that included information on cheating techniques for gambling. Cardano 
is credited with several inventions, and he also published two natural science encyclopedias as well as several 
other works on a wide variety of subjects. 
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are given by 

where 

w= 

�31A 2�3/T> a 
wvli+w vB--3' 

- 1  + i'\/3 
2 

and 2�3J. �31n a w vA+wvB--3' 

ab 2a3 
q = c - 3 + 27' 

with � and VB chosen so that 

p 

3 
The use of Theorem 8.37 is demonstrated in the following example. 

Example 2 For the equation 

x3 - 3x2 - 6x - 4 = 0 ' 
we have a = -3, b = -6, and c = -4. The formulas in Theorem 8.37 yield 

9 
p = -6 - 3 = -9, 

18 54 
q = -4 - 3 - 27 = - 12, 

A= 6 + V(-6)2 + ( -3)3 = 9, 

B = 6 -V(-6)2 + (-3)3 = 3. 

The real cube roots V9 and \Y3 satisfy � VB= -�,and the solutions are given by 

V9 + \Y3 + 1, 
1 ·0 w-\Y9 + w2\Y3 + 1 = -2( V9 + \Y3 - 2) + T( V9 - \o/3), 

w2V9 + w\o/3 + 1 = _ _!_( V9 + \Y3 - 2) - i'\/3 ( V9 - \o/3). • 2 2 
We turn our attention now to the solution of quartic equations. As in the case of the 

cubic equation, there is no loss of generality in assuming that the equation is monic. Thus 

we assume an equation of the form 

x4 + ax3 + bx2 + ex + d = 0. 

We find again that an appropriate substitution will remove the term of second-highest 

degree. 
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Theorem 8.38 • Change of Variable in the Quartic 

The change of variable 

a x=y--
4 

in x4 + ax3 + bx2 + ex + d = 0 yields an equation of the form 

y4 + py2 + qy + r = 0. 

Theorem 8.38 can be proved by direct substitution, and this proof is left as an exercise. 

In contrast to Theorem 8.35, we are not interested in formulas for p, q, and r at this time. 

Consider now an equation of the form 

y4 + py2 + qy + r = 0, 

which can be written as 

y4 = -py2 - qy - r. 

The basic idea of our method, which was devised by Ferrari, is to add an expression to each 

side of the last equation that will make both sides perfect squares (squares of binomials). 

With this idea in mind, we add 

t2 
ty2 + -

4 

to both sides, where tis yet to be determined. This gives 

or 

t2 t2 
y4 + ty2 + 4 = -py2 - qy - r + ty2 + 4' 

(l+ �y (t-p)y2- qy+ (: -r) . 

We recall that a quadratic polynomial Ay2 + By + C is the square of a binomial 

Ay2 + By + C = (Dy + E)2 
if and only if B2 - 4AC = 0. Thus 

(t -p)y2 - qy + (: -r) =(Dy+ E)2 

if and only if 

(-q)2 - 4(t -p)(: - r) = 0. 

This equation simplifies to the equation 

t3 -pt2 - 4rt + 4rp - q2 = 0, 

which is known as the resolvent equation for y4 + py2 + qy + r = 0. 
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The resolvent equation can be solved fort by Cardano' s method. Any one of the three 

solutions for t may be used in 

(y2 + f )2 
= ( t - p )y2 - qy + (: - r) 

to obtain an equation of the form 

The solutions to the original equation can then be found by solving the two quadratic 

equations 

t 
y2+-=Dy+E 

2 
and 

t 
y2 + -= -Dy - E. 

2 

The method is illustrated in the following example. 

Example 3 We illustrate the preceding discussion by solving the equation 

y4 + y2 - 2y + 6 = 0. 

We have p = 1, q = -2, and r = 6. The resolvent equation is given by 

t3 - t2 - 24t + 20 = 0. 

We find that t = 5 is a solution to the resolvent equation, and the equation 

becomes 

(y2 + f )2 
= ( t - p )y2 - qy + (: - r) 

( 5)2 I ( 1)2 
y2 + 2 = 4y2 + 2y + 4 = 2y + 2 . 

Equating square roots, we obtain 

and then 

y2 - 2y + 2 = 0 or y2 + 2y + 3 = 0. 

The quadratic formula then yields 

y = 1 ± i and y = -1 ± iv12 

as the solutions of the original equation. • 

We can now describe a method of solution for an arbitrary quartic equation 

x4 + ax3 + bx2 + ex + d = 0. 
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We first make the substitution 

and obtain an equation for the form 

a 
x=y--

4 

y4 + pyz + qy + r = 0. 

We next use the method of Example 3 to find the four solutions Yi. yz, y3, and y4 of the 
equation in y. Then the solutions to the original equation are given by 

a 
xj = Yj - 4 for j = 1, 2, 3, 4. 

This is illustrated in Example 4. 

Example 4 Consider the equation 

x4 + 4x3 + 7x2 + 4x + 6 = 0. 

The substitution formula x = y - � yields x = y - 1 and the resulting equation 

(y - 1)4 + 4(y - 1)
3 + 7(y - 1)2 + 4(y - 1) + 6 = 0. 

This equation simplifies to 

y4 + y2 - 2y + 6 = 0. 

From Example 3, the solutions to the last equation are 

Yi = 1 + i, y2 = 1 - i, y3 = -1 + i\/2, and y4 = -1 - i\/2. 

Hence the solutions xi = Yi - 1 are given by 

Xi = i, Xz = -i, X3 = -2 + i\/2, and X4 = -2 - i\/2. • 

Just as the discriminant b2 - 4ac can be used to characterize the solutions of the 
quadratic equation ax2 + bx + c = 0, the discriminant of a polynomial equation can 
be used to characterize its solutions. In particular, we will see that a cubic equation will 
have either exactly one real solution or exactly three real solutions. We begin with the 
next definition. 

Definition 8.39 • Discriminant of a Cubic Polynomial 

Let f(y) = y3 + py + q have zeros c1, c2, and c3. The discriminant of f(y) is D2 where 

D = IT (ci - cj) = (ci - c2)(ci - c3)(c2 - c3). 
i<j 
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412 Chapter 8 Polynomials 

The reason for defining the discriminant as D2, rather than as D, is because the sign of D depends on the order of the zeros. However, the sign of D2 is independent on the order 

of the zeros. 

Theorem 8.40 • Discriminant of a Cubic Polynomial 

The discriminant of f(y) = y3 + py + q is D2 = -27q2 - 4p3. 

p � q Proof Let c1, c2, and c3 be zeros of f(y) = y3 + py + q. Then we can write f(y) = 
(y - c1)(y - c2)(y - c3) where 

and 

The discriminant is 

C1 =VA+ VB 
Cz = w VA + w2VB 
c3 = w2VA + wVB 

A=-�+ )(�Y + (�)
3 

B � -� -)(�)' + (�)' 
w= -l+i\13 

2 

D2 = (c1 - C2)2(c1 - C3)2(c2 - C3)2, 
and using w3 = 1, we have 

c1 - Cz = (VA+ VB) - (wVA + w2VB) 
= VA+ VB - wVA - w2VB 
= (1 - w)(VA - w2VB) 

c1 - c3 =(VA+ VB) - (w2VA + wVB) 
= VA+ VB - w2VA - wVB 
= -w2(1 - w)(VA - wVB) 

Cz - C3 = (wVA + w2VB) - (w2VA + wVB) 
= wVA + w2VB - w2VA - wVB 
= w(l - w)(VA - VB). 
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D = -w3(1 - w)3(VA - w2VB)(VA - wVB)(VA - VB) 
= 3iv'3 (VA - w2VB)( VA - w VB)( VA - VB) 
= 3iv'3(\o/A3 - w3VJi3 + w3VAYfiii - VAlVB 

-wVAlVB + wVAYfiii - w2VAZVB + w2VAYfii2) 
= 3iv'3(A - B + VAYfiii - VAlVB 

-w(VAZVB - VAYfiii) - w2(VAZVB - VAYfiii)) 
= 3iv'3(A - B + (-1 - w - w2)(VAZVB - VAYfiii)) 

= 3iv'3(A - B) 

since -1 - w - w2 = 0 and 

Thus 

A - B = 

-� + 
) (�)2 

+ (� )3 - ( -� - ) (�)2 
+ (� )3) 

= z)(�)' + (�)' 

D2 = 

(
3i\/3

) 
q2 + 2�P3

)2 
= -27q2 - 4p3• 

The result of Theorem 8.40 can be used to characterize the solutions to the polynomial 

equation y3 + py + q = 0. 

Theorem 8.41 • Real Solutions of a Cubic Equation 

The equation y3 + py + q = 0 has exactly three real solutions if and only if D2 2: O; that 

is, if and only if -27q2 - 4p3 2: O. 

p � q Proof Let c1, c2, and c3 be real solutions to y3 + py + q = 0. Then 

D = (c1 - c2)(c1 - c3)(c2 - c3) 
is real, and the discriminant D2 2: 0. 
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-p � -q Now assume that there are exactly one real solution c1 and two nonreal solutions c2 
and c3. We know that the nonreal solutions must be conjugates, so let c2 = z = a + bi and 

c3 = z =a - bi. Then 

D = (c1 - z)(c1 - z)(z - z) 
= (c1 - (a+ bi))(c1 - (a - bi))(a +bi - (a - bi)) 
= 2bi( (a - c1)2 + b2) 

and 

D2 = (2bi((a - c1)2 + b2))2 
= - 4b2( (a - c1)2 + b2)2 
<O 

since b =F 0. Thus, if there is a nonreal solution, then the discriminant is negative. It follows 

that if the discriminant is nonnegative, then the solutions must all be real. 

We note that the discriminant for the polynomial y3 - 9y - 12 in Example 1 with two 

nonreal zeros is D2 = -27q2 - 4p3 = -27(-12)2 - 4(-9)3 = - 972 < 0. 

Exercises 8.5 

True or False 

Label each of the following statements as either true or false. 

1. Every cubic equation over the reals has at least one real solution. 

2. Every quartic equation over the reals has at least one real solution. 

3. If the discriminant is positive for a quadratic or cubic polynomial over the reals, then 

all the zeros must be real. 

4. If the discriminant is negative for a quadratic or cubic polynomial over the reals, then 

all the zeros must be nonreal. 

Exercises 

In Exercises 1-22, use the techniques presented in this section to find all solutions of the 

given equation. 

1. x3 - 15x - 30 = 0 

3. x3 - 12x - 20 = 0 

5. x3 - 6x - 6 = 0 

7. x3 + 9x + 6 = 0 

9. 2x3 + 6x - 3 = 0 

11. x3 - 6x2 + 33x - 92 = 0 

13. 8x3 + 12x2 + 150x + 25 = 0 

2. x3 - 9x + 12 = 0 

4. x3 + l 5x - 20 = 0 

6. x3 + 6x - 2 = 0 

8. x3 + 9x - 6 = 0 

10. 2x3 - 6x - 5 = 0 

12. x3 + 3x2 + 21x + 13 = 0 

14. 8x3 - 12x2 + 54x - 9 = 0 
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15. x4 - 4x2 - 8x - 4 = 0 

17. x4 + 2.x2 + 4x + 8 = 0 

19. x4 + 4x3 + 3x2 + 4x + 2 = 0 

21. x4 - 4x3 + 10x2 - 20x + 25 = 0 

8.6 Algebraic Extensions of a Field 415 

16. x4 - 2x2 + 8x - 3 = 0 

18. x4 - 3x2 - 6x - 2 = 0 

20. x4 - 4x3 + 4x2 - 8x + 4 = 0 

22. x4 + 4x3 + 7 x2 + 8x + 10 = 0 

In Exercises 23-28, characterize the solutions to the following equations by evaluating the 

discriminant D2. 

23. x3 - 9 lx + 90 = 0 

25. x3 - 55x - 72 = 0 

27. x3 - 47x - 136 = 0 

24. x3 - 32.x + 24 = 0 

26. x3 - 124x - 240 = 0 

28. x3 - 3x + 52 = 0 

29. Prove Theorem 8.38: The change of variable x = y - � in 

x4 + ax3 + hx2 + ex +d = 0 

yields an equation of the form 

y4 + py2 + qy + r = 0. 

30. Show that the change of variable x = y - �an-I in 

Xn + an-IXn-1 + an-2Xn-2 + ... + alx + ao = 0 

yields an equation of the form yn + 0 • yn-I + hn_2yn-2 + · · · + h1y + h0 = 0 or 

Yn + hn-2�
-2 + · · · + h1Y + ho = 0. 

31. Derive the quadratic formula by using the change in variable x = y - !(�) to trans

form the quadratic equation x2 + �x + � = 0 into one involving the difference of two 

squares and solve the resulting equation. 

32. Use the definition of the discriminant 

D2 = Il(c; - c)2 
i<j 

to show that the discriminant of x2 + (�)x + � is (�)2 - 4(�). 

� Algebraic Extensions of a Field 

Some of the results in Chapter 6 concerning ideals and quotient rings are put to good use in 

this section. Starting with an irreducible polynomial p(x) over a field F, these results are used 

in the construction of a field which is an extension of F that contains a zero of p(x). 
As a special case of Definition 6.2, if p(x) is a fixed polynomial over the field F, the 

principal ideal generated by p(x) in F[x] is the set 

P = (p(x)) = {J(x)p(x) I J(x) E F[x]}, 
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416 Chapter 8 Polynomials 

which consists of all multiples of p(x) by elements f(x) of F[x]. Most of our work in this 
section is related to quotient rings of the form F[x]/(p(x)). 

Theorem 8.42 • The Quotient Rings F[x]/(p(x)) 

Let p(x) be a polynomial of positive degree over the field F. Then the quotient ring 
F[x]/(p(x)) is a commutative ring with unity that contains a subring that is isomorphic to F. 

Proof For a fixed polynomial p(x) in F[x], let P = (p(x)). According to Theorem 6.5, the 
set F[x]/P forms a ring with respect to addition defined by 

[J(x) + P] + [g(x) + P] = (J(x) + g(x)) + P 

and multiplication defined by 

[J(x) + P] [g(x) + P] = J(x)g(x) + P. 

The ring F[x]/P is commutative, since f(x)g(x) = g(x)f(x) in F[x], and 1 + P is the unity 
in F[x]. 

Consider the nonempty subset F' of F[x]/P that consists of all cosets of the form a + P 
with a E F: 

F '  = {a+ P[a E F}. 

For arbitrary elements a + P and b + P of F' , the elements 

(a + P) - (b + P) = (a - b) + P 

and 

(a + P)(b + P) =ab+ P 

are in F' since a - band ab are in F. Thus F' is a subring of F[x]/P, by Theorem 5.4. The 
unity 1 + P is in F', and every nonzero element a + P of F' has the multiplicative inverse 
a-1 + P in F'. Hence F' is a field. 

The mapping(}: F---+ F' defined by 

is a homomorphism, since 

and 

e(a) = a + p 

e(a + b) = (a + b) + p 

= (a + P) + (b + P) 

= e(a) + e(b) 

(} (ab) = ab + P 

= (a + P)(b + P) 

= e(a)e(b ). 
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It follows from the definition of F' that(} is an epimorphism. Since p(x) has positive degree, 
0 is the only element of F that is contained in P, and therefore, 

O(a) = O(b) <:::}a + P = b + P 

<=}a-bEP 
<:::}a= b. 

Thus(} is an isomorphism from F to the subring F' of F[x]/(p(x)). 

As we have done in similar situations in the past, we can now use the isomorphism (} 
in the preceding proof to identify a E F with a + P in F[x]/(p(x)). This identification al
lows us to regard F as a subset of F [ x ]/ (p(x)). This point of view is especially advantageous 
when the quotient ring F[x]/(p(x)) is a field. 

Theorem 8.43 • F[x]/(p(x)) with p(x) Irreducible 

Let p(x) be a polynomial of positive degree over the field F. Then the ring F[x]/(p(x)) is a 
field if and only if p(x) is an irreducible polynomial over F. 

u ¢:::: v Proof As in the proof of Theorem 8.42, let P = (p(x)). Assume first that p(x) is an irre
ducible polynomial over F. In view of Theorem 8.42, we need to only show that any nonzero 
element f(x) + P in F[x]/P has a multiplicative inverse in F[x]/P. If f(x) + P =f=. P, then f(x) 
is not a multiple of p(x), and this means that the greatest common divisor of f(x) and p(x) 
is 1, since p(x) is irreducible. By Theorem 8. 13, there exist s(x) and t(x) in F[x] such that 

J(x)s(x) + p(x)t(x) = 1. 

Now p(x)t(x) E P, so p(x)t(x) + P = 0 + P, and hence 

1 + P = [J(x)s(x) + p(x)t(x)] + P 

= [J(x)s(x) + P] + [p(x)t(x) + P] 

= [J(x)s(x) + P] + [O + P] 

= J(x)s(x) + P 

= [J(x) + P] [s(x) + P]. 

Thus s(x) + P = [f(x) + Pr1. and we have proved that F[x]/P is a field. 
- u ¢:::: -v Suppose now that p(x) is reducible over F. Then there exist polynomials g(x) and h(x) 

of positive degree in F[x] such that p(x) = g(x)h(x). Since deg p(x) = deg g(x) + deg h(x) 
and all these degrees are positive, it must be true that deg g(x) < deg p(x) and 
deg h(x) < deg p(x). Therefore, neither g(x) nor h(x) is a multiple of p(x). That is, 

but 

g(x) + P =f=. P and h(x) + P =f=. P, 

[g(x) + P] [h(x) + P] = g(x)h(x) + P 

= p(x) + p 

= P. 

We have g(x) + P and h(x) +P as two nonzero elements of F[x]/P whose product is zero. 
Hence F[x ]/ P is not a field in this case, and the proof is complete. 
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If F and E are fields such that F � E, then E is called an extension field of F. With 
the identification that we have made between F and F', the preceding theorem shows that 
F[x]/(p(x)) is an extension field of F if and only if p(x) is an irreducible polynomial over 
F. The main significance of all this becomes clear in the proof of the next theorem, which 
is credited to the German mathematician Leopold Kronecker (1823-1891). 

Theorem 8.44 • Extension Field Containing a Zero 

If p(x) is an irreducible polynomial over the field F, there exists an extension field of F that 
contains a zero of p(x). 

u ==> v Proof For a given irreducible polynomial 

p(x) =Po + P1X + PzX2 + · · · + PnXn 

over the field F, let P = (p(x)) in F[x] and let a = x + P in F[x]/P. From the definition of 
multiplication in F[x]/P, it follows that 

a2 = (x + P)(x + P) = x2 + P 

and that 

for every positive integer i. By using the identification of a E F with a + P in F[x]/P, we 
can write the polynomial 

p(x) =Po + P1X + PzX2 + · · · + Pn� 

in the form 

Hence 

p(x) = (po + P) + (p1 + P)x + (p2 + P)x2 + · · · + (pn + P)xn. 

p(a) = (po + P) + (p1 + P)a + (pz + P)a2 + · · · + (pn + P)an 

= (po+ P) + (p1 + P)(x + P) + (p2 + P)(x2 + P) 

+ · · · + (pn + P)(xn + P) 

= (po + P) + (p1X + P) + (pzX2 + P) + · · · + (pnxn + P) 

= (po + P1X + PzX2 + · · · + PnXn) + P 

= p(x) + p 

= 0 + P. 

Thus p(a) is the zero element of F[x]/P, and a is a zero of p(x) in F[x]/P. 

For a particular polynomial p(x), explicit standard forms for the elements of the 
ring F[x]/(p(x)) can be given. Before going into this, we note that the ring F[x]/(p(x)) is 
unchanged if p(x) is replaced by a multiple of the form cp(x) , with c =f=. 0 in F. This follows 
from the fact that the ideal P = (p(x)), which consists of the set of all multiples of p(x) in 
F[x], is the same as the set of all multiples of cp(x) in F[x]. In particular, we can choose c to 
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be the multiplicative inverse of the leading coefficient of p(x), thereby obtaining a monic 

polynomial that gives the same ring F [x]/P as p(x) does. Thus there is no loss of generality 

in assuming from now on that p(x) is a monic polynomial over F. 

Before considering the general situation, we examine some particular cases in the 

following examples. 

Example 1 Consider the monic irreducible polynomial 

p (x) = x2 + 2x + 2 

over the field Z3. We shall determine all the elements of the field Z3[x]/(p(x)) and, at the 

same time, construct addition and multiplication tables for this field. 

Let P = (p(x)) and a = x + P in Z3[x]/P. We start construction of the addition table 

for Z3[x]/P with the elements 0 = 0 + P, 1 = 1 + P, 2 = 2 + P, and a. Filling out the 

table until closure is obtained, we pick up the new elements a + 1, a + 2, 2a, 2a + 1, and 

2a + 2. The completed table in Figure 8.2 shows that the set 

{O, l,2,a,a + l,a + 2,2a,2a + l,2a + 2} 

is closed under addition. 

+ 0 1 2 a a+ 1 a+2 2a 2a + 1 2a + 2 

0 0 1 2 a a+ 1 a+2 2a 2a + 1 2a + 2 

1 1 2 0 a+ 1 a+2 a 2a + 1 2a + 2 2a 

2 2 0 1 a+2 a a+ 1 2a + 2 2a 2a + 1 

a a a+ 1 a+2 2a 2a + 1 2a + 2 0 1 2 

a+ 1 a+ 1 a+2 a 2a + 1 2a + 2 2a 1 2 0 

a+2 a+2 a a+ 1 2a + 2 2a 2a + 1 2 0 1 

2a 2a 2a + 1 2a + 2 0 1 2 a a+ 1 a+2 

2a + 1 2a + 1 2a + 2 2a 1 2 0 a+ 1 a+2 a 

2a + 2 2a + 2 2a 2a + 1 2 0 1 a+2 a a+ 1 

Turning now to multiplication, we start with the same nine elements that occur in 

the addition table. In constructing this table, we make use of the fact that a is a zero of 

p(x) = x2 + 2x + 2 in the following manner: 

a2 + 2a + 2 = 0 => a2 = -2a - 2 = a + 1. 

That is, whenever a2 occurs in a product, it is replaced by a + 1. As an illustration, we have 

( 2a + 1) (a + 2) = 2a2 + 2a + 2 
= 2(a + 1) + 2a + 2 
=2a+2+2a+2 
=a+ 1. 
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•Figure 8.3 

•Figure 8.4 

•Figure 8.5 

The completed table is shown in Figure 8.3. 

0 1 2 a a+ 1 a+2 2a 2a + 1 2a + 2 

0 0 0 0 0 0 0 0 0 0 

1 0 1 2 a a+ 1 a+2 2a 2a + 1 2a + 2 

2 0 2 1 2a 2a + 2 2a + 1 a a+2 a+ 1 

a 0 a 2a a+ 1 2a + 1 1 2a + 2 2 a+2 

a+ 1 0 a+ 1 2a + 2 2a + 1 2 a a+2 2a 1 

a+2 0 a+2 2a + 1 1 a 2a + 2 2 a+ 1 2a 

2a 0 2a a 2a + 2 a+2 2 a+ 1 1 2a + 1 

2a + 1 0 2a + 1 a+2 2 2a a+ 1 1 2a + 2 a 

2a + 2 0 2a + 2 a+ 1 a+2 1 2a 2a + 1 a 2 
• 

Example 2 The polynomial p(x) = x2 
+ 1 is not irreducible over the field Z2, since 

p(l) = 0. We follow the same procedure as in Example 1 and construct addition and mul

tiplication tables for the ring Z2[x]/(p(x)). 
As before, let P = (p(x)) and a = x + Pin Z2[x]/P. Extending an addition table until 

closure is obtained, we arrive at the table shown in Figure 8.4. 

+ 0 1 a a+ 1 

0 0 1 a a+ 1 

1 1 0 a+ 1 a 

a a a+ 1 0 1 

a+ 1 a+ 1 a 1 0 

In making the multiplication table shown in Figure 8.5, we use the fact that p(a) = 0 

in this way: 

0 1 

0 0 0 

1 0 1 

a 0 a 

a+ 1 0 a+ 1 

a2 + 1 = 0 :::::} a2 = -1 

:::::} a2 = 1. 

a a+ 1 

0 0 

a a+ 1 

1 a+ 1 

a+ 1 0 

Theorem 8.43 assures us that Z2[x]/P is not a field, and the multiplication table confirms 

this fact by showing that a + 1 does not have a multiplicative inverse. • 

The next theorem and its corollary set forth the standard forms for the elements of the 

ring F[x]/(p(x)) that we referred to earlier. 
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Theorem 8.45 • Elements of F[x]/(p(x)) 

8.6 Algebraic Extensions of a Field 421 

Let p(x) be a polynomial of positive degree n over the field F, and let P = (p(x)) in F[x]. 
Then each element of the ring F[x]/P can be expressed uniquely in the form 

(ao + aix + aiX2 + 
· · · 

+ an_ 1.x"-1) + P. 

u::} v Proof Assume the hypothesis and let f(x) + P be an arbitrary element in F[x]/P. By the 
Division Algorithm, there exist q(x) and r(x) in F[x] such that 

J(x) = p(x)q(x) + r(x), 

where either r(x) = 0 or deg r(x) < n = deg p(x). In either case, we may write 

r(x) = a0 + a1x + a2
x2 + 

· · · 
+ an-ix"-

1
. 

Since p(x)q(x) is in P, p(x)q(x) + P = 0 + P, and therefore, 

J(x) + P = [p(x)q(x) + P] + [r(x) + P] 

= [ 0 + P J + [ r( x) + P J 

= r(x) + P 

= (ao + a1x + 
· · · 

+ an_1.x"-1) + P. 

Uniqueness To show uniqueness, suppose that f(x) + P = r(x) + P as before and also that 
f(x) + P = g(x) + P, where 

g(x) = b0 + b1x + b2
x2 + 

· · · 
+ bn_1.xi-1• 

Then r(x) + P = g(x) + P, and therefore r(x) - g(x) is in P. Each of r(x) and g(x) either is 
zero or has degree less than n, and this implies that the difference r(x) - g(x) either is zero 
or has degree less than n. Since P = (p(x)) contains no polynomials with degree less than 
n, it must be true that r(x) - g(x) = 0, and r(x) = g(x) . 

Corollary 8.46 • Elements of F[x]/ Pas Polynomials 

For a polynomial p(x) of positive degree n over the field F, let P = (p(x)) in F[x] and let 
a = x + P in F[x]/P. Then each element of the ring F[x]/P can be expressed uniquely in 
the form 

u::} v Proof From the theorem, each f(x) + P in F[x]/P can be expressed uniquely in the form 

J(x) + P = (a0 + a1x + 
· · · 

+ an_1x
n-l) + P 

= (ao + P) + (a1 + P)(x + P) + 
· · · 

+ (an-I + P)(.x"-1 + P) 

= (ao + P) + (a1 + P)a + 
· · · 

+ (an-l 
+ P)an-l 

_ + + + n-1 - a0 a1a · · · an_1a , 

where the last equality follows from the identification of ai in F with ai + P in F[x]/P. 
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In Example 1, the polynomials f(x) in Z3[x] and the cosets f(x) + Pin Z3[x]/P receded 
into the background once the notation a = x + P was introduced, and we ended up with 
a field whose elements had the form ao + aia, with ai E Z3. This field Z3(a) of nine 
elements, given by 

Z3
(a) = {O, 1, 2, a, a + 1, a + 2, 2a, 2a + 1, 2a + 2}, 

is called the.field obtained by adjoining a zero a ofx2 + 2x + 2 to Z3. 
In general, if p(x) is an irreducible polynomial over the field F, the smallest field that 

contains both F and a zero a of p(x) is denoted by F(a) and is referred to as the fieldt 

obtained by adjoining a to the field F. A field F(a) of this type is called a simple alge
braic extension of F, and F is referred to as the ground field. Corollary 8.46 describes the 
standard form for the elements of F(a). 

Example 3 The polynomialp(x) = x3 
+ 2x2 + 4x + 2 is irreducible over Zs, since 

p(O) = 2, p(l) = 4, p(2) = 1, p(3) = 4, p(4) = 4. 

In the field Zs( a) obtained by adjoining a zero a of p(x) to Zs, we shall obtain a formula for 
the product of two arbitrary elements ao + a1a + aza2 and bo + b1a + bza2. 

In order to accomplish this objective, we first express a3 and a4 as polynomials in a 
with degrees less than 3. Since p(a) = 0, we have 

Hence 

a3 + 2a2 
+ 4a + 2 = 0 :::::} a3 = -2a2 - 4a - 2 

= 3a2 
+a+ 3. 

a4 = a(3a2 
+ a + 3) 

= 3a3 + a2 + 3a 

= 3 ( 3a2 
+ a + 3) + a

2 
+ 3a 

= 4a2 
+ 3a + 4 + a

2 
+ 3a 

=a+ 4. 

Using these results, we get 

(a0 + a1a + a2a
2
) (b0 + b1a + b2a

2
) 

= aobo + (a0b1 + a1b0)a + (a0b2 + a1b1 + a2b0)a2 

+ (a1b2 + a2b1)a3 + a2b2a4 

= a0b0 + (a0b1 + a1b0)a + (a0b2 + a1b1 + a2b0)a2 

+ (a1b2 + a2b1) (3a2 + a + 3) + a2b2(a + 4) 

= (a0b0 + 3a1b2 + 3a2b1 + 4a2b2) 

+ (a0b1 + a1b0 + a1b2 + a2b1 + a2b2)a 

+ (a0b2 + a1b1 + a2b0 + 3a1b2 + 3a2b1)a2. 

tThe existence of such a field F(a) is ensured by Theorem 8.44. 

• 
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8.6 Algebraic Extensions of a Field 423 

Example 4 With Z 5(a) as in Example 3, suppose that we wish to find the multiplica
tive inverse of the element a2 + 3a + 1 in the field Z 5(a). 

The polynomials f(x) = x2 + 3x + 1 and p(x) = x3 + 2.x2 + 4x + 2 are relatively 
prime over Zs, so there exist s(x) and t(x) in Zs[x] such that 

J(x)s(x) + p(x)t(x) = 1, 

by Theorem 8.13. Since p(a) = 0, this means that 

J(a)s(a) = 1 

and that (a2 + 3a + 1)-1 = [f(a)r1 = s(a). In order to find s(x) and t(x), we use the 
Euclidean Algorithm: 

Thus 

p(x) = J(x)(x + 4) + (x + 3) 
J(x) = (x + 3)(x) + 1. 

1 =J(x) - x(x + 3) 
= f(x) - x [p(x) - f(x)(x + 4)] 
= J(x)[l + x(x + 4)] + p(x)(-x) 

= J(x)(x2 + 4x + 1) + p(x)( -x), 

so we have s(x) = x2 + 4x + 1 and t(x) = -x. Therefore, 

(a2 + 3a + 1)-1 = s(a) = a2 + 4a + 1. 

The result may be checked by computing the product 

( a2 + 3a + 1) ( a2 + 4a + 1) 

in Zs(a). • 

It is of some interest to consider an example similar to Example 4 but in a more famil
iar setting. 

Example 5 The polynomial p(x) = x2 - 2 is irreducible over the field Q of rational 
numbers. In the field Q( \/2) obtained by adjoining a zero a = \/2 of p(x) to Q, let us find 
the multiplicative inverse of the element 4 + 3 \/2 by the method employed in Example 4. 
The polynomialsf(x) = 3x + 4 andp(x) = x2 - 2 are relatively prime over Q. To find s(x) 
and t(x) such that 

J(x)s(x) + p(x)t(x) = 1, 

we need only one step in the Euclidean Algorithm: 

p(x) = J(x) • (�x - �) + (-�). 
Multiplying by 9/2 and rewriting this equation, we obtain 

J(x) • (%x - 2) + p(x)( -�) = 1. 
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Since p( v'2) = 0, this gives 

J( v'2) • (�v'2 - 2) = 1 

and 

This agrees with the result obtained by the usual procedure of rationalizing the 
denominator: 

1 
4 + 3v'2 

( 1) ( 4 - 3 v'2) 
(4 + 3\/'2)(4 - 3\/'2) 

3 
= -v'2 - 2. 

2 

4- 3Vl 
-2 

The result in Theorem 8.44 generalizes to the following theorem. 

• 

Theorem 8.47 • Splitting Field 

Complete 
Induction 

If p(x) is a polynomial of positive degree n over the field F, there exists an extension field 
E of F that contains n zeros of p(x). 

Proof The proof is by induction on the degree n of p(x). If n = 1, then p(x) has the form 
p(x) = ax+ b, with a =I= 0. Since p(x) has the unique zero -a -

1
b in F, the theorem is true 

for n = 1. 
Assume the theorem is true for all polynomials of degree less than k, and let p(x) 

be a polynomial of degree k. We consider two cases, depending on whether p(x) is 
irreducible. 

If p(x) is irreducible, then there exists an extension field E1 of F that contains a zero a 

of p(x), by Theorem 8.44. By the Factor Theorem, 

p(x) = (x - a)q(x) , 

where q(x) must have degree k - 1, according to Theorem 8.7. Since q(x) is a polynomial 
over E1 that has degree less thank, the induction hypothesis applies to q(x) over E1, and 
there exists an extension field E of E1 such that q(x) has k - 1 zeros in E. By Exercise 16 
of Section 8.3, the zeros of p(x) in E consist of a and the zeros of q(x) in E. Thus p(x) has 

k zeros in E. 

If p(x) is reducible, then p(x) can be factored as a product p(x) = g(x)h(x), where 
ni = deg g(x) and n2 = deg h(x) are positive integers such that n1 + n2 = k. Since ni < k, 
the induction hypothesis applies to g(x) over F, and there exists an extension field Ei of F 

that contains n1 zeros of g(x). Now h(x) is a polynomial of degree n2 < k over Ei. so the 
induction hypothesis applies again to h(x) over E1, and there exists an extension field E of 
E1 such that h(x) has n2 zeros in E. By Exercise 17 of Section 8.3, the zeros of p(x) in E 
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8.6 Algebraic Extensions of a Field 425 

consist of the zeros of g(x) in E together with the zeros of h(x) in E. There are altogether 

ni + nz = k of these zeros in E. 

In either case, we have proved the existence of an extension field of F that contains k 

zeros of p(x), and the theorem follows by induction. 

If E is a field that contains all the zeros of a polynomial p(x), and if no proper subfield 

of E contains all of these zeros, then E is called the splitting field of p(x) because it is the 

"smallest" field over whichp(x) "splits" into first-degree factors. When considering x2 + 1 

as a polynomial over the field R of real numbers, then R(i), or the field C of complex num

bers, is the splitting field for x2 + 1 where 

x2 + 1 = (x - i)(x + i). 

However, if x2 + 1 is considered a polynomial over the field Q of rational numbers, then 

the splitting field of x2 + 1 is Q(i), a proper subset of C. 

The basic facts about zeros of polynomials have been presented in this chapter. The 

two most important facts are found in Theorems 8.26 and 8.47. Theorem 8.26 asserts that 

for any polynomial p(x) of positive degree n over C, the field C contains n zeros of p(x). 

Theorem 8.4 7 states that for an arbitrary field F and any polynomial p(x) of positive degree 

n over F, there exists an extension field of F that contains n zeros of p(x). 

Important as it is, the material in this chapter is only a small part of the knowledge 

about extension fields. The study of extension fields leads into the area of mathematics 

known as Galoist theory. Interesting results concerning some ancient problems lie in this 

direction. One of these results is that it is impossible to trisect an arbitrary angle using only 

a straightedge and a compass. Another is that it is impossible to express the zeros of the 

general equation of degree 5 or more by formulas that use only the four basic arithmetic 

operations and extraction of roots. 

The end of this book is actually a beginning. It is a gateway to higher mathematics 

courses in several directions, especially those in abstract algebra and linear algebra. These 

higher-level courses are more theoretical and stimulating intellectually, and they might 

well lead to a lifelong interest in mathematics. 

Exercises 8.6 

True or False 

Label each of the following statements as either true or false. 

1. Every polynomial equation of degree n over a field F can be solved over an extension 

field E of F. 

2. If p(x) is an irreducible polynomial over a field F, then the largest field that contains 

both F and a zero a of p(x) is F( a) . 

3. Let F be a field. If p(x) is reducible over F, the quotient ring F [x ]/(p(x)) is also a field. 

tE.variste Galois (1811-1832) was a French mathematician who solved the problem of finding a necessary and 
sufficient condition for solving polynomials by radicals and laid the foundations for Galois theory. He died at 
the age of 20 from wounds suffered in a duel. 
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Exercises 

1. Each of the following polynomials p(x) is irreducible over Z3. For each of these poly

nomials , find all the elements of Z3[x]/(p(x)) and construct addition and multiplication 

tables for this field. 

a. p(x) = x2 + x + 2 b. p(x) = x2 + 1 

2. In each of the following parts , a polynomial p(x) over a field F is given. Construct 

addition and multiplication tables for the ring F[x]/(p(x)) in each case and decide 

whether this ring is a field. 

a. p(x) = x2 + x + 1 over F = Z2 b. p(x) = x3 + 1 over F = Z2 
c. p(x) = x3 + x + 1 over F = Z2 d. p(x) = x3 + x2 + 1 over F = Z2 
e. p(x) = x2 + x + 1 over F = Z3 f. p(x) = x2 + 2 over F = Z3 

In Exercises 3-6, a field F, a polynomial p(x) over F, and an element of the field F(a) 
obtained by adjoining a zero a of p(x) to Fare given. In each case: 

a. Verify that p(x) is irreducible over F. 

b. Write out a formula for the product of two arbitrary elements ao + ai a + a2a2 and 

ho + b1a + b2a2 of F(a). 

c. Find the multiplicative inverse of the given element of F(a). 

3. F = Z3, p(x) = x3 + 2.x2 + 1, a2 +a+ 2 

4. F = Z3, p(x) = x3 + x2 + 2x + 1, a2 + 2a + 1 

5. F=Z5,p(x)=x3+x+l,a2+4a 

6. F = Zs, p(x) = x3 + x2 + 1, a2 + 2a + 3 

7. For the given irreducible polynomial p(x) over Z3, list all elements of the field Z3(a) 
that is obtained by adjoining a zero a of p(x) to Z3. 

a. p(x) = x3 + 2x2 + 1 b. p(x) = x3 + x2 + 2x + 1 

8. If Fis a finite field with k elements , and p(x) is a polynomial of positive degree n over 

F, find a formula for the number of elements in the ring F[x]/(p(x)). 

9. Construct a field having the following number of elements. 

a. 24 b. 52 c. 33 d. 72 

10. Find the multiplicative inverse of V4 - 2 \o/2 - 2 in Q( \o/2), where Q is the field of 

rational numbers. 

11. Find the multiplicative inverse of \Y9 - \Y3 + 2 in Q( \Y3), where Q is the field of 

rational numbers. 

12. An element u of a field Fis a perfect square in F if there exists an element v in F such 

that u = v2. The quadratic formula can be generalized in the following way: Suppose 

that 1 + 1 =f=. 0 in F, and let p(x) = ax2 + bx + c, a =f=. 0, be a quadratic polynomial 

over F. 
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a. Prove that p(x) has a zero in F if and only if b2 
- 4ac is a perfect square in F. 

b. If b2 
- 4ac is a perfect square in F, show that the zeros of p(x) in F are given by 

-b + V b2 
- 4ac -b - V b2 

- 4ac 
r1 = and r2 = -------

2a 2a 

and that these zeros are distinct if b2 - 4ac -=I- 0. 

13. Determine whether each of the following polynomials has a zero in the given field F. 

If a polynomial has zeros in the field, use the quadratic formula to find them. 

a. x2 + 3x + 2, F = Zs 

b. x2 + 3x + 3, F = Zs 

c. x2 + 2x + 6, 

d. x2 + 3x + 1,  

e .  2x2 + x + 1, 

f. 3x2 + 2x - 1, 

F = Z1 

F = Z1 

F = Z1 

F = Z1 

14. a. Find the value of c that will cause the polynomial f(x) = x2 + 3x + c to have 3 as 

a zero in the field Z7. 

b. Find the other zero of f(x) in Z7. 

Each of the polynomials p(x) in Exercises 15-18 is irreducible over the given field F. Find 

all zeros of p(x) in the field F(a) obtained by adjoining a zero of p(x) to F. (In Exercises 17 

and 18,p(x) has three zeros in F(a).) 

15. p(x) = x2 + 2x + 2, F = Z3 

16. p(x) = x2 + x + 2, 

17. p(x) = x3 + x2 + 1,  

18. p(x) = x3 + 2x2 + 4x + 2, 

F = Z3 

F= Zs 

F= Zs 
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A Pioneer in Mathematics 
Carl Friedrich Gauss (1777-1855) 

Carl Friedrich Gauss was born in Brunswick, Germany, on April 30, 

1777. He is regarded as the greatest mathematician of the 19th 

century and has been called the Prince of Mathematics. Part of 

Gauss's  greatness is due to the fact that his interest spanned all 

mathematics known in his time. Since then, the volume of knowledge 
� in mathematics has become so large that no one person could ever 
� 
:g, hope to master the whole field. In this sense, he may have been the 
<O 

� last complete mathematician. 
� 

The world was almost deprived of Gauss's genius when, as a child, 

he fell into an overflowing canal near his home. It is said that he surely would have drowned 

had he not been rescued by a passerby. 

His mathematical genius became evident early in his life. He often said that he could 

reckon before he could talk. In school, his precocity attracted the attention of the Duke of 

Brunswick. The Duke decided to finance the education of the young prodigy and granted 

him a fixed pension so that he could devote himself to work without financial considerations. 

Gauss made some of the greatest contributions to mathematics when he was a young 

man. He developed the method of least squares while preparing for university studies at 

Collegium Carolinium. Two years later, he solved a 2,000-year-old problem by proving that 

a regular 17-sided polygon can be constructed with only a straightedge and a compass. In 

his doctoral dissertation, Gauss proved the Fundamental Theorem of Algebra, a result that 

had been accepted without proof for many years. In 1801, at the age of 24, he published the 

monumental work Disquisitiones Arithmeticae, in which he laid the foundations of the area of 

mathematics called number theory. 

Also in 1801, when Gauss turned his attention to astronomy, he accomplished an 

extraordinary achievement. Using a scanty amount of data, he was able to predict accurately 

the orbit of the asteroid Ceres. For this achievement, he garnered international acclaim. In 

1807, he was appointed director of the astronomical observatory of Gbttingen. 
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APPENDIX 

The Basics of Logic 

In any mathematical system, just as in any language, there must be some undefined 

terms. For example, the words set and element are undefined terms. We think of a set as 

a collection of objects, and the individual objects as elements of the set. We need to un

derstand the word set to describe the word element, and vice versa. Hence we must rely 

on our intuition to understand these undefined terms and feel comfortable using them to 

define new terms. 

A statement, or proposition, is a declarative sentence that is either true or false, 

but not both. Postulates are statements (often expressed using undefined terms) that 

are assumed to be true. Postulates and definitions are used to prove statements called 

theorems. Once a theorem is proved to be true, it can be used to establish the truth of 

subsequent theorems. A lemma is itself a theorem whose major importance lies not in 

its own statement but in its role as a stepping stone toward the statement or proof of 

a theorem. Finally, a corollary is also a theorem but is not so named because it is usu

ally either a direct consequence of or a special case of a preceding theorem. To avoid 

"stealing the thunder" of the more important theorem, it is labeled a corollary. 

We now briefly discuss the basic concepts of logic that are essential to the mathemati

cian for constructing proofs. We use the letters p, q, r, s, and so on to represent statements. 

Consider the following statements: 

p: The sum of the angles in a triangle is 180°. 

q: 22 + 32 = (2 + 3)2 

r: x2 + 1 = 0 

s: Beckie is pretty. 

The statement p is a true proposition from plane geometry. The statement q is a false 

proposition, when we consider the usual multiplication and addition in the set of real 

numbers. The statement r is not a proposition, since its truth or falsity cannot be deter

mined unless the value of x is known. The statements is not a proposition, since its truth 

or falsity "is in the eyes of the beholder" and also depends on which "Beckie" is under 

consideration. 

The statement r in the preceding paragraph can be clarified by placing restrictions on 

the variable x, such as "for every x," 
"for each x," 

"for all x," 
"for some x," 

"for at least 

one x," 
or "there exists an x." 

The phrases "for every x," 
"for all x," 

and "for each x" 
mean 

the same thing and are often abbreviated by the symbol V, which is called the universal 

quantifier. Similarly, the phrases "for some x," 
"for at least one x," 

and "there exists an 

x" 
mean the same thing and are abbreviated by the symbol 3, which is called the exis

tential quantifier. Another commonly used symbol is 3, which is read "such that." 

429 
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Thus the statement 

is read 

Similarly, the statement 

is read 

Vx, x > 0 

"For every x, x > O." 

"There exists a y such that y2 + 1 = O." 

A statement about the variable x may be true for some values of x and false for other 

values of x. Some such statements can be proved by furnishing an example, but others can

not. The quantifier used in the statement determines the type of proof required. 

If the statement has an existential quantifier, then one example where the statement is 

true will establish the statement as a theorem. Consider the statement 

"There exists an integer x such that x2 + 2x = 24." 

If the value 4 is assigned to x, and it is then verified that 42 + 2(4) = 16 + 8 = 24, this 

proves that the statement is true. The phrase "there exists an integer x "  requires only one 

value of x that works to make the statement true. 

If the statement has a universal quantifier, a specific example does not make a proof. 

Consider the statement 

"For any integer n, the integer n - 1 is a factor of n2 - 4n + 3." 

If the value 7 is assigned to n, and it is then verified that n - 1 = 6 is indeed a factor of 

72 - 4(7) + 3 = 24 = 6(4), this illustrates a case where the statement is true, but it does 
not prove that the statement is true for any value of n other than 7 and thus does not con

stitute a proof. The phrase "for any integer n" requires an argument that can be applied 

independently of the value of n. In this case, a proof can be supplied by demonstrating that 

(n - l)(n - 3 ) = n2 - 4n + 3, 

since this shows that n - 1 is always a factor of n2 - 4n + 3. 

If a statement about x with a universal quantifier is not true for at least one value 

of x, the statement is declared to be false (and therefore is not a theorem). Consider the 

statement 

"x2 
< 2x for all real numbers x." 

For x = 3, 

is false. Therefore, the statement 

"x2 
< 2x for all real numbers x" 

is false. 
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A demonstration in which a statement is shown to be false for a certain value of the 

variable is called a counterexample. A statement with a universal quantifier can be proved 

false by finding just one counterexample, as we did in the last paragraph. 

If p is a proposition, then the negation of p is denoted by -p and is read "not p." If p 
is a true proposition, then -p must be false, and vice versa. We illustrate the idea using a 

truth table (see Figure A.1), where T stands for true and F stands for false. 

Truth Table 

for - p 

p -p 

T F 

F T 

The negation of statements involving the universal quantifier and the existential quan

tifier are given next. We use p(x) to represent a statement involving the variable x. Then 

the statement 

-('v'x,p(x)) is 3x 3 -p(x) 

is read 

"The negation of 'For every x, p(x) is true' 

is 

'There exists an x such that p(x) is false.' " 

We also write 

-(3x 3 p(x)) is \ix,-p(x) 

and read 

"The negation of 'There exists an x such that p(x) is true' 

is 

'For every x, p(x) is false.' " 

Example 1 The negation of the statement 

"All the students in the class are female" 

IS 

"There exists at least one student in the class who is not female." 

Example 2 The negation of the statement 

"There is at least one student who passed the course" 

IS 

"All the students failed the course." 

• 

• 

Copyright 2013 Cengage Leaming. AH Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materia11y affect the overall learning experience. Cengage Leaming reserves the right to remove additional content at any time if subsequent rights restrictions require it. 



432 Appendix The Basics of Logic 

•Figure A.2 

Connectives are used to join propositions to make compound statements. Propositions 

p and q can be joined with the connective "and," which is commonly symbolized by/\ and 

called conjunction. We define p /\ q to be true only when both p is true and q is true. The 

corresponding truth table for p /\ q is given in Figure A.2. 

Truth Table 

for p /\ q 

p q 

T T 

T F 

F T 

F F 

p /\ q 

T 

F 

F 

F 
•Figure A.3 

Truth Table 

for pV q 

p q 

T T 

T F 

F T 

F F 

pVq 

T 

T 

T 

F 

Similarly, propositions p and q can be joined with the connective "or," symbolized 

by V and called disjunction. We define p V q to be true when either p is true or q is true, or 

both p and q are true. The truth table for p V q is given in Figure A.3. 

Probably the most important connective is implication, denoted by===?. Suppose p and 

q are propositions. Then 

is read in several ways: 

p ===? q 

"p implies q" 

"if p then q" 

"p only if q" 

"p is sufficient for q" 

"q is necessary for p." 

In each of these statements, p is called the hypothesis and q is called the conclusion. 

Let us consider the following situations. Algebra class meets only three days a week, 

on Monday, Wednesday, and Friday. Let p and q be the following propositions: 

Consider the implication 

p: Today is Monday. 

q: Algebra class meets today. 

p ===? q. 

This implication is true if both p and q are true: 

Today is Monday===? Algebra class meets today. 
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Suppose p is true and q is false. Then the implication 

Today is Monday => Algebra class meets today 

is false. Next suppose that p is false. The falsity of p does not affect the truth or falsity of 
q. That is, 

Today is not Monday 

does not give any information about whether algebra class meets today. Thus we conclude 
that 

p => q 

is false only when pis true and q is false. We record these results in the truth table in 
Figure A.4. 

Truth Table 
for p=> q 

p q 

T T 

T F 

F T 

F F 

p=>q 

T 

F 

T 

T 

Another prominent connective is the biconditional, which is denoted by 

p�q 

and is read in any one of three ways: 

"p if and only if q" 

"p is necessary and sufficient for q" 

"pis equivalent to q." 

The biconditional statement 

p�q 

can be expressed as the conjunction of two statements: 

(p => q )  /\ (q => p). 

The truth table in Figure A.5 illustrates that the statement p � q is true when p and q are 
both true or both false; otherwise, p � q is false. 
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•Figure A.5 

•Figure A.6 

Truth Table for p # q 

(p => q) /\ (q => p) 
p q p=>q q=>p p#q 

T T T T T 

T F F T F 

F T T F F 

F F T T T 

If the truth tables for two propositions are identical, then the two propositions are said 

to be logically equivalent, and we use the # symbol to designate this. 

Example 3 To show that 

we examine the two columns headed by � (p /\ q) and by ( � p) V ( � q) in the truth table in 

Figure A.6 and note that they are identical. 

Truth Table for � (p /\ q) # ( � p) v ( � q) 

p q p /\ q �(p /\ q) �p �q (�p) v (�q) 

T T T F F F F 

T F F T F T T 

F T F T T F T 

F F F T T T T • 

The statement in Example 3 is the logical form of one of De Morgan's Laws. The 

corresponding form for sets is given at the end of Section 1.1. The next example illustrates 

a truth table involving three propositions. 

Example 4 To show that 

r /\ (p V q) # (r f\p) V (r /\ q), 

we need eight rows in our truth table, since there are 23 different ways to assign true and 

false to the three different statements (see Figure A.7). 
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Truth Table for r /\ (p v q) <=> (r /\ p) v (r /\ q) 

r p q pVq r /\ (p V q) r/\p r /\ q (r /\p) V (r /\ q) 

T T T T T T T T 

T T F T T T F T 

T F T T T F T T 

T F F F F F F F 

F T T T F F F F 

F T F T F F F F 

F F T T F F F F 

F F F F F F F F 
• 

In this text, we see some theorems whose statements involve an implication 

p:::::}q. 

In some instances, it is more convenient to prove a statement that is logically equivalent 
to the implication p :::::} q. The truth table in Figure A.8 shows that the implication 

p :::::} q ( implication) 

is logically equivalent to the statement 

-q:::::} -p (contrapositive), 

which is called the contrapositive of p :::::} q. 

Truth Table for (p:::::} q):::::} (-q:::::} -p) 

p 

T 

T 

F 

F 

and 

q p:::::} q -q -p -q:::::}-p 

T T F F T 

F F T F F 

T T F T T 

F T T T T 

Two other variations of the implication p:::::} q are given special names. They are 

q :::::} p is the converse of p :::::} q 

-p:::::} -q is the inverse of p:::::} q. 

We note that the converse and the inverse are logically equivalent-that is, 

(q:::::}p) <=> (-p:::::} -q). 
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436 Appendix The Basics of Logic 

Example 5 Let p and q be the following statements: 

p: xis an even integer. 

q: x is an integer. 

In Figure A.9, we describe the implication p =* q and its variations. 

Logically equivalent Logically equivalent 

Implication Contrapositive Converse Inverse 

p=*q �q=* �p q=*p �p=* �q 

xis an even xis not an xis an xis not an 

integer. integer. integer. even integer. 

=* =* =* =* 

x 1s an xis not an xis an even xis not an 

integer. even integer. integer. integer. 

TRUE TRUE FALSE FALSE 
• Figure A.9 • 

• Figure A.10 

Example 6 Suppose p and q are the following statements: 

p: The Saints win this week. 

q: The Saints are in the playoffs next week. 

Suppose the only way the Saints go to the playoffs is if they win this week. Hence, if they do 

not win this week, they will not go to the playoffs next week. In Figure A.10, we examine 

the implication p =* q and its variations. 

Logically equivalent Logically equivalent 

Implication Contrapositive Converse Inverse 

p =* q �q =* �p q =* p �p =* �q 

Saints win Saints are not Saints are in Saints do not 

this week. in the playoffs the playoffs win this week. 

next week. next week. 

=* =* =* =* 

Saints are in Saints do not Saints win Saints are not 

the playoffs win this week. this week. in the playoffs 

next week. next week. 

TRUE TRUE TRUE TRUE 

Since the implication and its converse are true, we write 

p <=> q. • 

The method of proof by contradiction is sometimes useful in proving statements of 

the form "p implies q." As shown in Figure A.4, the statement "p implies q" is true in all 

cases except when p is true and q is false. In a proof by contradiction, we assume that p is 

true and that q is false and then reach a contradiction (an impossible situation). 
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To provide a simple example, consider the following propositions: t 

p: x is an integer and x2 is even. 

q: x is an even integer. 

We shall use a proof by contradiction to prove that p =* q. 

Assume that p is true and q is false. Since x is not an even integer, x must be an odd 

integer. That is, x = 2n + 1 for some integer n. This implies that 

x2 = (2n + 1)(2n + 1) 
= 4n2 + 4n + 1 
= 2(2n2 + 2n) + 1, 

and therefore x2 is an odd integer. This directly contradicts proposition p. Therefore, q must 

be true when p is true, and this means that p implies q. 

Appendix Exercises 

Prove that each of the statements in Exercises 1-6 is false. 

1. For every real number x, x2 > 0. 

2. For any real number x, x2 2':: x. 

3. For each real number a, there is a real number b such that ab = 1. 
4. 2x < 3x for all real numbers x. 

5. - x < lxl for all real numbers x. 

6. If x is a real number such that x < 1, then x2 < x. 

Prove that each of the statements in Exercises 7-12 is true. 

7. There is an integer n such that n2 + 2n = 48. 
8. There is a real number x such that x + � = 1£. 
9. n2 < 2n for some integer n. 

10. 1 + 3n < zn for some integer n. 
11. There exists an integer n such that n2 + n is an even integer. 

12. There exists an integer n such that n2 + 2n is a multiple of 5. 

Write the negation of each of the statements in Exercises 13-36. 
13. All the children received a Valentine card. 

14. Every house has a fireplace. 

15. Every senior graduated and received a job offer. 

16. All the cheerleaders are tall and athletic. 

t An integer m is defined to be an even integer if m = 2k for some integer k, and m is defined to be an odd inte
ger if m = 2q + 1 for some integer q. More details may be found in Section 1.2. 
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17. There is a rotten apple in the basket. 

18. There is a snake that is nonpoisonous. 

19. There is a politician who is honest and trustworthy. 

20. There is a cold medication that is safe and effective. 

21. For every x E A, x E B. (The notation x E A is defined in Section 1.1.) 

22. For every real number r, the square of r is nonnegative. 

23. For every right triangle with sides a and b and hypotenuse c, we have c2 = a2 + b2. 

24. For any two rational numbers r ands, there is an irrational number j between them. 

25. Every complex number has a multiplicative inverse. 

26. For all 2 X 2 matrices A and B over the real numbers, we have AB = BA. (The prod

uct of two matrices is given in Definition 1.32 of Section 1.6.) 

27. For all sets A and B, their Cartesian products satisfy the equation A X B = B X A. 

(The Cartesian product is defined in Definition 1.8 of Section 1.2.) 

28. For any real number c, x < y =>ex< cy. 

29. There exists a complex number x such that x2 + 1 = 0. 

30. There exists a 2 X 2 matrix A over the real numbers such that A 2 = I where 

I= [� �] and A2 = A ·A. (The product of two matrices is given in Defi

nition 1. 32 of Section 1.6.) 

31. There exists a set A such that A� An B. (The notation A� An B is defined in Sec

tion 1.1.) 

32. There exists a complex number z such that z = z. (The notation z is given in Definition 

7. 7 of Section 7. 2.) 

33. There exists a triangle with angles a, {3, and 'Y such that a + f3 + 'Y > 180°. 

34. There exists an angle (J such that sin (J = 2. 1. 

35. There exists a real number x such that 2x < 0. 

36. There exists an even integer x such that x2 is odd. 

Construct truth tables for each of the statements in Exercises 37-52. 

37. p# - (-p) 

39. - (p /\ (-p)) 

41. (p /\ q) => p 

43. (p /\ (p => q)) => q 

45. (p=>q)#((-p)Vq) 

47. (p => q) # (p /\ (-q) => (-p)) 

49. (p /\ q /\ r) => ((p V q) /\ r) 

51. (p => (q /\ r)) # ((p => q) /\ (p => r)) 

52. ((p /\ q) => r) # (p => (q => r)) 

38. p v (-p) 

40. p => (p v q) 

42. -(pVq)#(-p)/\(-q) 

44. (p => q) # - (p /\ -q) 

46. (-(p => q)) # (p /\ (-q)) 

48. rV (p /\ q) # (rV p) /\ (rV q) 

50. ((p => q) /\ (q => r)) => (p => r) 
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In Exercises 53-68, examine the implication p => q and its variations (contrapositive, 

inverse, and converse) by writing each in English. Determine the truth or falsity of each. 

53. p: My grade for this course is A. 

q: I can enroll in the next course. 

54. p: My car ran out of gas. 

q: My car won't start. 

55. p: The Saints win the Super Bowl. 

q: The Saints are the champion football team. 

56. p: I have completed all the requirements for a bachelor's degree. 

q: I can graduate with a bachelor's degree. 

57. p: My pet has four legs. 

q: My pet is a dog. 

58. p: I am within 30 miles of home. 

q: I am within 20 miles of home. 

59. p: Quadrilateral ABCD is a square. 

q: Quadrilateral ABCD is a rectangle. 

60. p: Triangle ABC is isosceles. 

q: Triangle ABC is equilateral. 

61. p: xis a positive real number. 

q: xis a nonnegative real number. 

62. p: xis a positive real number. 

q: x2 is a positive real number. 

63. p: 5x is odd. 

q: xis odd. 

64. p: 5 + xis odd. 

q: xis even. 

65. p: xy IS even. 
. . 

q: x IS even or y IS even. 

66. p: xis even and y is even. 

q: x + y is even. 

67. p: x2 > y2 

q: x > y 

x 
68. p: - > 0 

y 

q: xy > 0 

State the contrapositive, converse, and inverse of each of the implications in Exercises 

69-74. 

69. p => (q V r) 

71. p => -q 

73. (p V q) => (r /\ s) 

70. p => (q /\ r) 

72. (p /\ -q) => -p 

74. (p /\ q) => (r /\ s) 
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Answers to True/False and 

Selected Exercises 

Included are answers for approximately one-half of all the computational exercises. Also included are 

answers for other problems, leaving justifications or counterexamples for the student to supply. Hints are 

given for some of the more complicated or unusual proofs. 

- Exercises 1.1 Pages 10-13 

True or False 

1. true 

6. false 

Exercises 

2. true 

7. true 

3. false 

8. true 

4. true 

9. false 

1. a. A = { x Ix is a nonnegative even integer less than 12} 

c. A = { x Ix is a negative integer} 

2. a. false c. false e. false 

3. a. true c. true e. true g. true 

4. a. false c. true e. true g. false 

5. a. {O, 1,2,3,4,5,6,8, 10} c. {O, 2, 4, 6, 7, 8, 9, 10} 

g. {O, 2, 3, 4, 5} i. {l, 3, 5} k. {l, 2, 3, 5} 

5. true 

10. false 

i. false 

i. false 

e. 0 
m. {3, 5} 

6. a. A c. 0 e. A g. A i. U k. U m. A 
7. a. {0,A} c. {0, {a}, {b}, {c}, {a, b}, {a, c}, {b, c},A} 

e. {0, {l}, { {l} },A} g. {0,A} 

k. false 

k. false 

8. a. One possible partition is X1 = {x Ix is a negative integer} and X2 = {x Ix is a nonnegative integer}. 

Another partition is X 1 = { x Ix is a negative integer}, X2 = { 0}, X3 = { x Ix is a positive integer}. 

c. One partition is X1 = { 1, 5, 9} and X2 = { 11, 15}. Another partition is X1 = { 1, 15}, X2 = { 11}, and 

X3 = {5, 9}. 
9. a. X1 = {1},X2 = {2},X3 = {3};X1 = {l},X2 = {2,3};X1 = {2},X2 = {l,3};X1 = {3},X2 = {1,2} 

11. a. A � B c. B � A e. A = B = U g. A = U 

37. Let A = {a}, B = {a, b}, and C = {a, c}. Then A n B = {a} = A n C but B =F C. 

41. (A n B') u (A' n B) = (A u B) n (A' u B') 

441 
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42. a. U 

c. 

4 

AU B: Regions 1, 2, 3 
A n B: Region 2 

(AU B) - (An B) : Regions 1, 3 
A + B: Regions 1, 3 

A - B: Region 1 
B - A: Region 3 

(A - B) U (B - A): Regions 1, 3 

Each of A +Band (A - B) U (B - A) consists of Regions 1, 3. 

u 

3 
8 

A: Regions 1, 4, 5, 7 An B: Regions 5, 7 

B + C: Regions 2, 3, 4, 5 A n C: Regions 4, 7 

An (B + C): Regions 4, 5 (An B) + (An C): Regions 4, 5 

Each of An (B + C) and (An B) + (An C) consists of Regions 4, 5. 

43. a. A+ A= (A U A) - (A nA) =A - A= A nA' = 0 

.. Exercises 1.2 Pages 21-25 

True or False 

1. false 

6. true 

Exercises 

2. false 

7. true 

3. false 

8. false 

4. false 

9. true 

5. false 

1. a. { (a, 0), (a, 1), (b, 0), (b, 1)} c. { (2, 2), (4, 2), (6, 2), (8, 2)} 
e. {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)} 
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2. a. domain = E, codomain = Z, range = Z 

c. domain = E, codomain = Z, 

Answers to True/False and Selected Exercises 443 

range= {y IY is a nonnegative even integer}= (z+ n E) U {O} 

3. a. f(S) = {1, 3, 5, . . .  } = z+ - E, 1-1(T) = {-4, -3, -1, 1, 3, 4} 

c. f(S) = {O, 1, 4}, f-1(T) = 0 

4. a. The mapping! is one-to-one but not onto. 

c. The mapping f is onto and one-to-one. 

e. The mapping! is not onto and not one-to-one. 

g. The mapping f is one-to-one but not onto. 

i. The mapping f is onto but not one-to-one. 

5. a. The mapping f is both onto and one-to-one. 

c. The mapping f is both onto and one-to-one. 

e. The mapping! is not onto and not one-to-one. 

6. a. The mapping! is onto and one-to-one. 

7. a. The mapping! is onto but not one-to-one. 

c. The mapping! is onto and one-to-one. 

8. a. The mapping! is not onto and not one-to-one. 

9. a. The mapping f is one-to-one but not onto. 

10. a. Letf: E---"* E wheref(x) = x. 

c. Letf: E---"* E where 

11. 

12. 

13. 

a. 

c. 

e. 

a. 

c. 

a. 

c. 

(x) = 
{x/2 if x is a multiple of 4 

f 
x if x is not a multiple of 4. 

The mapping! is onto but not one-to-one. 

The mapping f is onto but not one-to-one. 

The mapping! is not onto and not one-to-one. 

The mapping! is one-to-one but not onto. 

The mapping! is not onto and not one-to-one. 

The mappingf is onto and one-to-one. 

The mapping! is onto but not one-to-one. 

e. The mapping f is not onto and not one-to-one. 

g. The mapping! is not onto and not one-to-one. 

15. c. With T = {4, 9},f-1(T) = {-2, 2}, andf(f-1(T)) = f({-2, 2}) = {4} -:f:. T. 

16. a. g(S) = {2, 4 }, g-1(g(S)) = {2, 3, 4, 7} 

17. a. f(S) = {-1, 2, 3},J-1(f(S)) = S 
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18. a. (/0 g)(x) = {� 2x _ l )  {x + lxl 
c. (Jo g)(x) = 

2 

lxl - x 

e. (f 0 g)(x) = (x - Ix 1)2 

if xis even 
if xis odd 

if xis even 

if xis odd 

19. a. (g 0 f)(x) = 2x ( )( ) 
x + lxl 

c. g 0 f x = 

2 
21. n! 

.. Exercises 1.3 Pages 29-30 

True or False 

1. false 2. true 3. false 4. false 

Exercises 

1. a. The mapping/ 0 g is not onto and not one-to-one. 
c. The mapping/ 0 g is one-to-one but not onto. 
e. The mapping/ 0 g is not onto and not one-to-one. 
g. The mapping/ 0 g is not onto and not one-to-one. 

2. a. The mapping g 0 f is not onto and not one-to-one. 
c. The mapping g 0 f is one-to-one but not onto. 
e. The mapping g 0 f is not onto and not one-to-one. 
g. The mapping g 0 f is not onto and not one-to-one. 

3. /(x) = x2, g(x) = -x. 

e. (g of) (x) = 0 

5. false 6. false 

5. Let/ and g be defined as in Exercise lf. Then/ is not one-to-one, g is one-to-one, and/ 0 g is one-to-one. 

7. a. Let/: Z--+ Zand g: Z--+ Z be defined by {� if x is even 
f(x) = 

x
2 g(x) = x. 

if xis odd 

9. a. Let/(x) = x, g(x) = x2, and h(x) = Ix I, for all x E Z. 

.. Exercises 1.4 Pages 35-38 

True or False 

1. false 

7. true 

2. true 

8. true 

3. true 

9. true 

4. false 5. true 6. true 
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Exercises 

1. a. The set B is not closed, since - 1 E B and - 1 * - 1 

c. The set B is closed. 

1 (£. B. 

e. The set B is not closed, since 1 EB and 1 * 1 = 0 (£. B. 

g. The set B is closed. 

2. a. not commutative; not associative; no identity element 

c. not commutative; not associative; no identity element 

e. commutative; associative; no identity element 

g. commutative; associative; 0 is an identity element; 0 is the only invertible element, and its inverse is 0. 

i. not commutative; not associative; no identity element 

k. not commutative; not associative; no identity element 

m. not commutative; not associative; no identity element 

3. a. The binary operation * is not commutative, since B * C i= C * B. 

b. There is no identity element. 

5. a. The binary operation * is not commutative, since D * A i= A * D. 

b. C is an identity element. 

c. The elements A and B are inverses of each other, and C is its own inverse. 

7. The set of nonzero integers is not closed with respect to division, since 1 and 2 are nonzero integers but 

1 ...;- 2 is not a nonzero integer. 

10. a. The set of nonzero integers is not closed with respect to addition defined on Z. 

11. a. The set B is not closed with respect to addition defined on Z. 

12. a. The set Q - { 0} is closed with respect to multiplication defined on R. 

- Exercises 1.5 Pages 42-43 

True or False 

1. true 2. false 3. false 

Exercises 

1. a. A right inverse does not exist, since f is not onto. 

c. A right inverse g: Z---+ Z is g(x) = x - 2. 

e. A right inverse does not exist, since f is not onto. 

g. A right inverse does not exist, since f is not onto. 

i. A right inverse does not exist, since f is not onto. 
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k. A right inverse g: Z � Z is g(x) = {x 

2x + 1 
if xis even 

if xis odd. 

m. A right inverse g: Z � Z is g(x) = {2x 

x- 2 
if xis even 

if xis odd. 

2. a. A left inverse g: Z--> Z is g(x) � n if xis even 

if xis odd. 

c. A left inverse g: Z � Z is g(x) = x - 2. 

e. A left inverse g: Z � Z is g(x) = { � if x = y
3 for some y E Z 

if x =f:. y
3 for some y E Z. 

g. A left inverse g: Z-> Z is g(x) � {: ; 1 
if xis even 

if xis odd. 

i. There is no left inverse, since f is not one-to-one. 

k. There is no left inverse, since f is not one-to-one. 

m. There is no left inverse, since f is not one-to-one. 

3. n! 

5. Hint: Use Lemma 1.25 and Exercise 28 of Section 1.2. 

.. Exercises 1.6 Pages 53-56 

True or False 

1. true 2. false 3. false 4. 

7. true 8. false 9. false 10. 

Exercises 

a. A� [� �] c. B = [ l -1 1 
1. -1 1 -1 

[� 0 -:J 2. a. c. not possible -8 

false 

false 

-�J e. 

5. false 

11. true 

c � [; 
3. a. [-! -�J c. not possible e. [; �] g. not possible 

3 

4. cij = �(i + k)(2k - j) 
k=l 

= (i + 1)(2 - j) + (i + 2)(4 - j) + (i + 3)(6 - j) 
= l2i - 6j - 3ij + 28 

6. false 

12. true 

0 

�] 4 
5 
6 

i. [4] 
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7. a. n c. 0 
8. 

I A B c 

I I A B c 

A A B c I 

B B c I A 

c c I A B 

15. x = A-1Bc-1 

- Exercises 1.7 Pages 60-64 

True or False 

1. true 

Exercises 

1. a. Yes 

2. false 

c. No 

3. true 

e. Yes 

4. false 

2. a. The relation R is not reflexive, not symmetric, and not transitive. 

c. The relation R is reflexive and transitive, but it is not symmetric. 

e. The relation R is reflexive and transitive, but not symmetric. 

g. The relation R is not reflexive, not symmetric, and not transitive. 

i. The relation R is symmetric, not reflexive, and not transitive. 

k. The relation R is reflexive, symmetric, and transitive. 

3. a. { -3, 3} 

5. true 

5. b. [OJ={ ... , -14, -7, 0, 7, 14, ... }, [lJ = { ... , -13, -6, 1, 8, 15, ... }, 
[3J = { ... ' -11, -4, 3, 10, 17, ... }, [9J = [2J = { ... ' -12, -5, 2, 9, 16, ... }, 
[ -2 J = [ 5 J = { ... ' -9, -2, 5, 12, 19' ... } 

7. [OJ= {O, ±5, ± 10, ... }, {± 1, ±4, ±6, ±9} � [lJ, {±2, ±3, ±7, ±8} � [2J 

6. false 

9. [OJ={ ... , -7, 0, 7, 14, ... }, [lJ = { ... , -13, -6, 1, 8, ... }, [2J = { ... , -12, -5, 2, 9, ... }, 
[3J = { ... , -11, -4, 3, 10, ... }, [4J = { ... ' -10, -3, 4, 11, ... }, 
[5J = { .. ., -9, -2, 5, 12, ... }, [6J = { ... ' -8, -1, 6, 13, ... } 

11. The relation R is symmetric but not reflexive and not transitive. Thus R is not an equivalence relation 
onZ. 

12. a. The relation R is symmetric but not reflexive and not transitive. Thus R is not an equivalence relation. 

13. a. The relation R is reflexive and transitive but not symmetric. 

c. The relation R is reflexive, symmetric, and transitive. 

14. a. The relation is reflexive and symmetric but not transitive. 

c. The relation is symmetric but not reflexive and not transitive. 

e. The relation is reflexive, symmetric, and transitive. 
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15. a. The relation R is an equivalence relation on A X A. 

c. The relation R is an equivalence relation on A X A. 

16. The relation R is reflexive and symmetric but not transitive. 

17. a. The relation is symmetric but not reflexive and not transitive. 

19. a. The relation is reflexive, symmetric, and transitive. 

21. d,j 

23. a, d, e, f, k 

25. LJ A,\ = A1 U A2 U A3 = {a, b, c, d, e,f, g}, 
,\EX 

n A,\= A1 nA2nA3 = {c} 

.. Exercises 2.1 Pages 71-73 

True or False 

1. true 

6. false 

Exercises 

2. false 

7. false 

3. false 

8. false 

,\EX 

4. false 

9. true 

5. true 

10. true 

35. All the addition postulates and all the multiplication postulates except 2c are satisfied. Postulate 2c is not 

satisfied, since { 0} does not contain an element different from 0. The set { 0} has the properties required in 

postulate 4, and postulate 5 is satisfied vacuously (that is, there is no counterexample). 

.. Exercises 2.3 Pages 87-89 

True or False 

1. false 

6. true 

Exercises 

2. false 

7. true 

3. true 

8. false 

1. a. :±:: 1, :±::2, :±::3, :±::5, :±::6, :±:: 10, :±:: 15, :±::30 

e. :±:: 1, :±::2, :±::3, :±::4, :±::6, :±::8, :±:: 12, :±::24 

2. a. :±::1, :±::2 

3. q = 30, r = 16 

9. q = -51, r = 4 

15. q = 0, r = 0 

c. :±:: 1, :±::2, :±::4, :±::8 

5. q = 22, r = 5 

11. q = 0, r = 26 

25. Counterexample: Let a = 6, b = 8, and c = 9. 

4. true 

9. false 

5. true 

10. false 

c. :±:: 1, :±::2, :±::4, :±::7, :±:: 14, :±::28 

g. :±:: 1, :±::2, :±::4, :±::8, :±:: 16, :±::32 

e. :±:: 1, :±:: 2, :±:: 4, :±:: 8 

7. q = -3, r = 3 

13. q = -360, r = 3 

30. If a = 0, then n = -1 makes a - bn = 0 - b( -1) = b > 0, and we have a positive element of S in 

this case. If a -=f. 0, the choice n = -2 I a I gives a - bn = a + 2b I a I as a specific example of a positive 

element of S. Hint: To show that this element is positive, use Theorem 2.6 of Section 2.2 and Exercises 14 
and 18 of Section 2.1. 
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- Exercises 2.4 Pages 97-99 

True or False 

1. false 

8. false 

Exercises 

2. false 

9. true 

3. true 

10. true 

4. true 

11. false 

5. true 

12. false 

6. true 

13. false 

1. 2,3,5, 7, 11, 13, 17, 19, 23, 29,31,37,41,43,47,53,59,61,67, 71,73, 79,83,89,97 
2. a. 1400 = 23 • 52 • 7; 980 = 22 • 5 · 72; (1400, 980) = 22 • 5 · 7 = 140; 

[1400, 980] = 23 • 52 • 72 = 9800 
c. 3780 = 22• 33• 5. 7; 16,200 = 23• 34• 52; (3780, 16,200) = 22• 33• 5 = 540; 

[3780, 16,200] = 23 • 34 • 52 • 7 = 113, 400 
3. a. (a, b) = 3, m = 0, n = -1 

e. (a, b) = 3, m = 2, n = 25 
i. (a, b) = 3, m = -49, n = 188 

m. (a, b) = 1 2, m = 5, n = 163 
4. a. ( 4, 6) = 2 

c. (a, b) = 6, m = 2, n = -3 
g. (a,b) = 9,m = -5,n = 3 
k. (a, b) = 1 2, m = -3, n = 146 

30. a. An integer dis a greatest common divisor of a, b, and c if these conditions are satisfied: 

(1) dis a positive integer. 

( 2) d l a, d lb, and di e. 

(3) If n la, n lb, and n l c, then n l d. 

31. a. 7 = 14(- 2) + 28(0) + 35(1) c. 1 = 143(-53) + 385(18) + (-65)(-10) 

- Exercises 2.5 Pages 107-110 

True or False 

7. false 

1. true 2. true 3. false 4. true 5. true 6. false 7. false 

Exercises 

1. [OJ = { . . .  , -5, 0, 5, . . .  }, [1] = { . . .  , -4, 1, 6, . . .  }, 
[ 2] = { . . .  ' -3, 2, 7, . . .  }, [3] = { . . .  ' - 2, 3, 8, . . .  }, 
[4] = { . . .  ' -1, 4, 9, . . .  } 

3. x=5 5. x = 11 7. x = 8 9. x = 173 
13. x = 7 15. x = 4 17. x = 6 19. x = 11 
23. x = 2 29. a. 1 c. 8 e. 1 g. 3 i. 3 
41. d = (6, 27) = 3 and 3 divides 33; x = 1, x = 10, x = 19 are solutions. 

43. d = (8, 78) = 2 and 2 divides 66; x = 18 and x = 57 are solutions. 

11. x = 28 
21. x = 13 

k. 2 
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45. d = (68, 40) = 4 and 4 divides 36; x = 7, x = 17, x = 27, x = 37 are solutions. 

47. d = (24, 348) = 12 and 12 does not divide 45; therefore, there are no solutions. 

49. d = (15, 110) = 5 and 5 divides 130; x = 16, 38, 60, 82, 104 are solutions. 

51. d = (42, 74) = 2 and 2 divides 30; x = 6 and x = 43 are solutions. 

53. d = (42, 48) = 6 and 6 does not divide 4; therefore, there are no solutions. 

56. a. x = 27 or x = 27 (mod 40) c. x = 11 or x = 11 (mod 56) 

e. x = 14 or x = 14 (mod 120) g. x = 347 or x = 347 (mod 840) 

Exercises 2.6 Pages 116-119 

True or False 

1. false 2. true 3. true 4. false 5. false 6. false 7. true 

Exercises 

1. a. [3] c. [4] e. [O] g. [O] i. [9] k. [8] m. [4] 

2. a. [1][2][3][4] = [24] = [4] c. [2] e. [O] g. [O] 

3. a. 
+ [O] [1] 

[O] [O] [1] 

[l] [1] [O] 

c. 
+ [O] [1] [2] [3] [4] 

[0] [0] [l] [2] [3] [4] 

[l] [l] [2] [3] [4] [0] 

[2] [2] [3] [4] [O] [l] 

[3] [3] [4] [O] [1] [2] 

[4] [4] [0] [1] [2] [3] 

e. 
+ [0] [l] [2] [3] [4] [5] [6] 

[O] [O] [1] [2] [3] [4] [5J [6J 

[1] [1] [2] [3J [4] [5J [6J [OJ 

[2] [2] [3J [4J [5J [6J [OJ [1] 

[3] [3J [4J [5J [6J [OJ [lJ [2] 

[4] [4J [5J [6J [OJ [lJ [2J [3] 

[5] [5J [6J [OJ [lJ [2J [3J [4] 

[6] [6J [OJ [lJ [2J [3] [4] [5] 

8. false 

o. [4] 
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4. a. 
x [O] [1] 

[0] [0] [0] 

[l] [0] [l] 

c. 
x [O] [1] 

[0] [O] [O] 

[l] [0] [l] 

[2] [O] [2] 

[3] [O] [3] 

[4] [0] [4] 

[5] [0] [5] 

e. 
x [0] [l] 

[0] [0] [0] 

[1] [O] [1] 

[2] [O] [2] 

[3] [0] [3] 

[4] [0] [4] 

[5] [O] [5] 

[6] [O] [6] 

[2] [3] [4] 

[O] [O] [O] 

[2] [3] [4] 

[4] [O] [2] 

[O] [3] [O] 

[2] [0] [4] 

[4] [3] [2] 

[2] [3] [4] 

[0] [0] [0] 

[2] [3] [4] 

[4] [6] [1] 

[6] [2] [5] 

[l] [5] [2] 

[3] [1] [6] 

[5] [4] [3] 

[5] 

[0] 

[5] 

[4] 

[3] 

[2] 

[l] 

[5] 

[0] 

[5] 

[3] 

[1] 

[6] 

[4] 

[2] 

[6] 

[0] 

[6] 

[5] 

[4] 

[3] 

[2] 

[1] 

Answers to True/False and Selected Exercises 451 

5. a. [9] c. [13] e. [5] g. [173] 

6. a. [l], [5] c. [l], [3], [7], [9] e. [l], [5], [7], [11], [13], [17] 

7. a. [2], [3], [4] c. [2], [4], [5], [6], [8] e. [2], [3], [4], [6], [8], [9], [10], [12], [14], [15], [16] 

8. a. [x] = [2] or [x] = [5] c. [x] = [2] or [x] = [6] 

e. No solution exists. 

g. [x] = [2], [x] = [5], [x] = [8], or [x] = [11] 

i. [x] = [4] or [x] = [10] 

10. a. [x] = [4r1[5] = [10][5] = [11] 

e. [x] = [9r1[14] = [9][14] = [6] 

11. [x] = [3], [y] = [5] 

13. [x] = [3], [y] = [3] 

19. a. [x] = [4] or [x] = [5] 

21. a. [a + b] c. [a - b] 

c. [x] = [7r1[111 = [7][11] = [5] 

g. [xJ = [6r1[5J = [266][51 = [541 

c. [x] = [1] or [x] = [5] 
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.. Exercises 2.7 Pages 124-127 

True or False 

1. false 2. false 3. true 4. false 

Exercises 

1. Errors occur in 00010 and 11100. 
3. Correct coded message: 

101101101 110110110 100100100 101101101 010010010 011011011 

Decoded message: 101 110 100 101 010 011 

5. a. � c. � = t 
6. a. (0.97)4 

+ 4(0.97)3(0.03) = 0.9948136 

7. a. (0.9999)8 = 0.9992003 

c. (0.9999)8 
+ 8(0.9999)7(0.0001) = 0.9999997 

e. 1.000000 

9. 1 14. a. 7 

17. a. valid c. not valid 

c. 1 

18. a. No error is detected. c. An error is detected. 

19. y = -(10, 9, 8, 7, 6, 5, 4, 3, 2) 

22. a. 3 c. 3 23. 2 

.. Exercises 2.8 Pages 135-138 

20. a. 3 

25. 3 

True or False 

1. true 2. true 3. true 

Exercises 

1. Ciphertext: APMHKPMKSHQ HQVHAPMHUIQT 

1-1(x) = x + 19 mod 27 

3. Plaintext: "tiger, do you read me?" 

1-1(x) = x + 20 mod 31 

5. Ciphertext: FBBZXLXDGIXZUW 

1-1(x) = 4x + 7 mod 27 

7. Plaintext: http://www.cengage.com/us/ 

1-1(x) = lOx + 12 mod 29 

c. 3 
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9. Plaintext: mathematics 

J(x) = 9x + 13 mod 26 
f-1(x) = 3x + 13 mod 26 

11. Plaintext: there are 25 primes less than 100 
f(x) = l2x + 17 mod 37 

f-1(x) = 34x + 14 mod 37 
15. a. n - 1 b. (n - l)n - 1 = n2 - n - 1 
17. Ciphertext: 62 49 75 
19. a. Ciphertext: 000 132 

b. Ciphertext: 001 050 
c. d = 103 

21. Plaintext: quaternions 

23. a. </>(5) = 4; 1, 2, 3, 4 
e. </>(12) = 4; 1, 5, 7, 11 

25. a. i. 2 
26. a. i. 1 

iii. 8 
iii. 4 

26 49 73 75 50 61 d = 37 
085 082 001 030 000 
105 039 000 

c. </>(15) = 8; 1, 2, 4, 7, 8, 11, 13, 14 

v. 2 vii. 18 
b. Hint: The positive integers less than or equal to pj that are not relatively prime to pj are multiples 

ofp. 

- Exercises3.1 Pages 147-152 

True or False 

1. false 

7. false 

Exercises 

2. false 

8. false 

3. true 

9. false 

4. false 

10. false 

5. false 

11. false 

6. false 

1. The set z+ does not form a group with respect to addition. There is no identity element and hence, 
no inverses. 

3. group 

5. The set of all positive irrational numbers with the operation of multiplication does not form a group. 
The set is not closed with respect to multiplication. For example, V2 is a positive irrational number, but 
V2 V2 = 2 is not. Also, there is no identity element. 

7. The set of all real numbers x such that 0 < x :::; 1 is not a group with respect to multiplication because 
not all elements have inverses. 

9. group 11. group 13. group 
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15. The operation X is not associative, and not all elements have inverses. 

17. The set Z is an abelian group with respect to *. 

19. The set Z is not a group and hence not an abelian group with respect to*· The operation is not associa
tive. There is no identity element and hence no inverse elements. 

21. The set Z is not a group and hence not an abelian group with respect to *. The identity element is 0, but 
1 does not have an inverse in Z. 

23. The set Z is not a group and hence not an abelian group with respect to *. There is no identity element 
and hence no inverse elements. 

25. group, 2 

27. The set is not a group with respect to multiplication. It is not closed and not all elements have inverses. 

29. The set is not a group with respect to multiplication, since it does not have an identity element and hence 
has no inverse elements. 

31. group, 5 

33. a. n - 1 b. 

35. 
x h P1 

h h P1 

P1 P1 h 

P2 P2 Ps 

P3 P3 P4 

P4 P4 P3 

Ps Ps P2 

42. b. 2n 

x [l] [2] [3] [4] [5] [6] 

[1] [1] [2] [3] [4] [5] [6] 

[2] [2] [4] [6] [1] [3] [5] 

[3] [3] [6] [2] [5] [1] [4] 

[4] [4] [l] [5] [2] [6] [3] 

[5] [5] [3] [1] [6] [4] [2] 

[6] [6] [5] [4] [3] [2] [1] 

[lr1 
= [1], [2] and [4] are inverses of each other, 

[3] and [5] are inverses of each other, and [6r1 
= [6]. 

P2 P3 P4 Ps 

P2 P3 P4 Ps 

P3 P2 Ps P4 

h P4 P3 P1 

P1 Ps P2 /3 

Ps P1 h P2 

P4 h P1 P3 
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43. \if>(A) = {0, {a}, {b}, {c}, {a, b}, {a, c}, {b, c},A} 

+ 0 {a} {b} {c} {a,b} {a, c} {b,c} A 

0 0 {a} {b} {c} {a,b} {a, c} {b,c} A 

{a} {a} 0 {a,b} {a, c} {b} {c} A {b,c} 

{b} {b} {a,b} 0 {b, c} {a} A {c} {a,c} 

{c} {c} {a,c} {b,c} 0 A {a} {b} {a,b} 

{a,b} {a,b} {b} {a} A 0 {b, c} {a,c} {c} 

{a,c} {a,c} {c} A {a} {b, c} 0 {a,b} {b} 

{b,c} {b,c} A {c} {b} {a, c} {a,b} 0 {a} 
A A {b,c} {a,c} {a,b} {c} {b} {a} 0 

45. The set CZ/' (A) is not a group with respect to the operation of intersection. 

[ [4J [2J [5J ] 
47. a. [OJ [lJ [3J 

[ [3J [lJ ] 
49. a. 

[4J [2J 

[ [5J [4J ] 
48 a. [3J [OJ 

[6J [lJ 

[ [lJ [3J ] 
50. a. 

[lJ [2J 

- Exercises3.2 Pages 159-161 

True or False 

1. false 2. false 3. false 4. true 

Exercises 

9. a. [O] 11. b. {x} 
13. 

x a b c d 

a c d a b 

b d c b a 

c a b c d 

d b a d c 

21. (abcd)-1 
= ((d-1c-1)b-1)a-1 

5. true 6. false 

23. Hint: Consider the set S = {a E GI a =I= a-1} and its complement G - S = {a E GI a = a -1}. 
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.. Exercises 3.3 Pages 166-170 

True or False 

1. true 

7. false 

Exercises 

2. true 

8. false 

3. false 

9. false 

4. false 

10. true 

5. true 

11. false 

6. false 

1. a. The set {e, l'.T} is a subgroup of S(A). c. The set {e, p} is not a subgroup of S(A). 

e. The set {e, p, p2} is a subgroup of S(A). g. The set {e, l'.T, y} is not a subgroup of S(A). 

2. a. The set { 1, -1} is a subgroup of G. 

c. The set { i, -i} is not a subgroup of G. 

3. ([6J) = {[OJ, [2], [4], [6], [8], [10], [12], [14]}, 1([6J)I = 8 

5. a. {[1], [3], [4], [9], [10], [12]}, 1([4J)I = 6 

6. a. (A) = { [ � -� l [ -� _ 

� l [ _ 

� � l [ � � J}, I (A) I = 4 

1. a. (A) = {D�� [OJ] [[4J 
[3J ' [OJ 

[OJ] [[lJ 
[lJ ' [OJ 

[OJ] [[3J 
[4J ' [OJ 

[OJ] [[OJ 
[2J ' [OJ 

[OJ]} 
[OJ 

, l(A)I = 5 

9. The set of all real numbers that are greater than 1 is closed under multiplication but is not a subgroup of 
G, since it does not contain inverses. (If x > 1, then x-1 < 1.) 

20. a. (A)= {[� 
[[3J [2J] 21. a. 

[OJ [2J 

-lJ , [-1 
-1 -1 �l [� �]}, l(A)I = 3 

[[3J [3J] 
c. 

[SJ [3 J 

22. a. {1, -1} c. {h} 23. [xJ={x} 

32. a. C1 = c_1 = G, C; = c_i = {1, i, -1, -i}, cj = c_j = {1, j, -1, -j}, ck = c_k = {1, k, -1, -k} 
c. C1, = G, Cp, = {13, P1}, Cp2 = {13, P2}. Cp, = Cp5 = {/3, P3, P5}, Cp. = {/3, P4} 

35. The subgroup (m) n (n) is the set of all multiples of the least common multiple of m and n. 

.. Exercises 3.4 Pages 178-181 

True or False 

1. true 

6. true 

2. true 

7. false 

3. false 

8. true 

4. false 

9. false 

5. true 

10. true 
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Exercises 

1. ( e) = {e}, (p) = {e, p, p2}, (er)= {e, er}, (r) = {e, y}, (o) = {e, o} 

3. lei= 1, la-I= lrl = IBI = 2, IPI = IP21 = 3 

5. lhl = 1, IP1I = IP2I = IP4I = 2, IP3I = IPsl = 3 

6. a. IA I= 2 7. a. 4 c. 2 e. 4 g. 1 8. a. 9 c. 9 e. 3 g. 9 

9. a. [1], [3], [5], [7] c. [1], [3], [7], [9] e. [l], [3], [5], [7], [9], [11], [13], [15] 

10. a. {[0]}, l; {[0], [6]}, 2; {[0], [4], [8]}, 3; {[O], [3], [6], [9]}, 4; {[0], [2], [4], [6], [8], [10]}, 6; Z12, 12 

c. {[O]}, 1; {[O], [5]}, 2; {[0], [2], [4], [6], [8]}, 5; Z10, 10 

e. {[0]}, 1; {[0], [8]}, 2; {[0], [4], [8], [12]}, 4; {[0], [2], [4], [6], [8], [10], [12], [14]}, 8; Z16, 16 

11. a. U1 = ([3]) = ([5]) 

c. u 11 = ([2]) = ([ 6]) = ([71) = ([8]) 

e. U11 = ([3]) = ([5]) = ([61) = ([71) = ([10]) = ([11]) = ([12]) = ([141) 

12. a. [3], [5] c. [2], [6], [7], [8] e. [3], [5], [6], [7], [10], [11], [12], [14] 

13. a. {[1]}, l; {[l], [6]}, 2; {[l], [2], [4]}, 3; U7, 6 

c. {[1]}, l; {[l], [10]}, 2; {[l], [3], [4], [5], [9]}, 5; U11, 10 

e. {[1]}, 1; {[1], [16]}, 2; {[1], [4], [13], [16]}, 4; 
{[l], [2], [4], [8], [9], [13], [15], [16]}, 8; U17, 16 

1 0 -2 -2 -2 2 
{ [ l v'3] [ l v'3]} 

15. c. H � [ 0 i]. f -l 
, 

- f -l 

18. a. U20 = {[l], [3], [7], [9], [11], [13], [17], [19]} 

[l] [3] [7] [9] 

[1] [1] [3] [7] [9] 

[3] [3] [9] [1] [7] 

[7] [7] [l] [9] [3] 

[9] [9] [7] [3] [1] 

[11] [11] [13] [17] [19] 

[13] [13] [19] [11] [17] 

[17] [17] [11] [19] [13] 

[19] [19] [17] [13] [11] 

[11] 

[11] 

[13] 

[17] 

[19] 

[l] 

[3] 

[7] 

[9] 

[13] [17] [19] 

[13] [17] [19] 

[19] [11] [17] 

[11] [19] [13] 

[17] [13] [11] 

[3] [7] [9] 

[9] [1] [7] 

[1] [9] [3] 

[7] [3] [l] 
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c. U24 = {[l], [5], [7], [11], [13], [17], [19], [23]} 

[1] 

[5] 

[7] 

[11] 

[13] 

[17] 

[19] 

[23] 

19. a. not cyclic 

c. not cyclic 

[l] [5] 

[1] [5] 

[5] [1] 

[7] [11] 

[11] [7] 

[13] [17] 

[17] [13] 

[19] [23] 

[23] [19] 

21. a. </>(8) = 4; a, a3, as, a7 

[7] 

[7] 

[11] 

[1] 

[5] 

[19] 

[23] 

[13] 

[17] 

c. </>(18) = 6; a, as, a7, a11, a13, a17 
e. </>(7) = 6; a, a2, a3, a4, as, a6 

22. a. (a)= G 

(a2) = (a6) = {a2, a4, a6, as = e} 
(a4) = {a4, a8 = e} 
(a8) = (e) = {e} 

c. (a)= G 

[11] 

[11] 

[7] 

[5] 

[l] 

[23] 

[19] 

[17] 

[13] 

[13] [17] [19] [23] 

[13] [17] [19] [23] 

[17] [13] [23] [19] 

[19] [23] [13] [17] 

[23] [19] [17] [13] 

[1] [5] [7] [11] 

[5] [1] [11] [7] 

[7] [11] [1] [5] 

[11] [7] [5] [l] 

(a2) = (a4) = (as) = (a10) = (al4) = (a16) = {a2, a4, a6, as, aw, ai2, a14, ai6, ais = e} 
(a3) = (a1s) = {a3, a6, a9, ai2, ais, ais = e} 
(a6) = (a12) = {a6, ai2, ais = e} 
(a9) = {a9, ais = e} 
(a18) = (e) = {e} 

e. (a)= G, (a7) = (e) = {e} 

23. a. a12 

c. a6, ais 

24. a. none 

c. as, aw, ais, a2o
, a2s, a3o 

25. All subgroups of Z are of the form ( n ) , n a fixed integer. 

27. a. Z2 X Z3 = ( ( [ 1 ], [ 1])) = ( ( [ 1 ], [ 2])) 
35. p - 1 
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- Exercises 3.5 Pages 188-192 

True or False 

1. true 

6. false 

Exercises 

2. false 

7. true 

3. Let <f>: Z4-+ Us be defined by 

3. false 

8. true 

4. true 5. true 

</>([0)4) = [l]s. </>([1)4) = [2]s. </>([2)4) = [4]s. </>([3)4) = [3]s. 

5. Let <f>: H-+ S(A) be defined by 

</>(/z) = IA, </>(M1) = u, </>(M2) = p, </>(M3) = p2, </>(M4) = y, </>(Ms) = o. 

7. Let <f>: Z---+ H be defined by </>(n) = [ � �]. n E Z. 

9. Define <f>: G---+ H by </>(a + bi) = [: 
11. Define <f>: H---+ G by 

<1>([ � �]) = 1 

<1>([ _� �]) = i 

<1>([ � -�J) = j 
<1>([ -� -�J) = k 

-bJ 
a 

for a + bi E G. 

<1>([-� -�J) = -1 

<1>([� -�J) = -i 

<1>([-� �]) = -j 
<1>([ � � ]) = -k. 

13. Define <f>: R + ---+ R by <f>(x) = log x for x E R +. 

14. a. The mapping</> is an automorphism. 

15. a. The mapping </> is not an isomorphism. 

25. a. For notational convenience we let a represent [a]. The elements 2 and 23 = 3 are generators of Us. 
The automorphisms of Us are </>1 and </>2 defined by 

26. a. 2 c. 4 

l</>2(2) = 3 

</>2 ( 2
2
) = </>2 ( 4) = 3

2 
= 4 

</>2: 
</>2(23) = </>2(3) = 33 = 2 

. 

</>2 ( 24) = </>2 ( 1) = 34 = 1 
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.. Exercises 3.6 Pages 195-197 

True or False 

1. false 

6. true 

Exercises 

2. true 

7. false 

3. false 

8. true 

4. false 

9. true 

5. false 

10. false 

1. a. <P is an endomorphism and ker <P = { :±: 1 } . <P is not an epimorphism nor a monomorphism. 

c. <P is not an endomorphism. 

e. <P is an endomorphism and ker <P = R +. <P is not an epimorphism nor a monomorphism. 

g. <P is an endomorphism and ker <P = { 1 } . <P is an epimorphism and a monomorphism. 

2. a. <P is a homomorphism and ker <P = {[OJ, [2]}. <P is an epimorphism but not a monomorphism. 

3. ker <P = { 0}, <P is not an epimorphism, and <P is a monomorphism. 

5. a. ker <P = { [O], [ 4], [8]} 

b. <P is not an epimorphism, and <P is not a monomorphism. 

c. </J-1({[3]}) = {[l], [5], [9]}, </J-1({[6]}) = {[2], [6], [10]}, 
</J-1({[9]}) = {[3], [7], [11]}, </J-1({[10]}) = 0 

7. a. ker <P = { [O]s, [4]s} 

b. <P is an epimorphism, and <P is not a monomorphism. 

c. </J-1({[1]4}) = {[l]g, [5]g}, ¢-1({[2]4}) = {[2]g, [6]g}, 
</J-1({[3]4}) = {[3]s, [7]s} 

9. <P is a �omomorphism, ker <P = { [: _:]I a, b, c E R} , <Pis an epimorphism, and <Pis not a mono

morph1sm. 

11. ker <P = SL(2, R), <Pis an epimorphism but not a monomorphism. 

12. a. <P is a homomorphism, ker <P = { (x, x) [ x E R}, <P is an epimorphism but not a monomorphism. 

13. An example is provided by G, G', and <Pin Exercise 11 of this section. 

17. Let G be the additive group Zand G' be the additive group Zn. 

.. Exercises 4.1 Pages 210-213 

True or False 

1. true 

7. false 

2. false 

8. false 

3. false 

9. false 

4. true 

10. true 

5. true 

11. true 

6. true 

12. false 
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Exercises 

1. a. (1, 4)(2, 5); {1, 4}, {2, 5}, {3} 

c. (1, 4, 5, 2); {1, 4, 5, 2}, {3} 

e. (1, 3, 5)(2, 4, 6); {1, 3, 5}, {2, 4, 6}, {7} 

g. (1, 4)(2, 3, 5); { 1, 4}, {2, 3, 5} 

Answers to True/False and Selected Exercises 461 

2. a. (1, 4, 8, 7, 2, 3)(5, 9, 6); {l, 4, 8, 7, 2, 3}, {5, 9, 6} 

c. (1, 4, 8, 7)(2, 6, 5, 3); {l, 4, 8, 7}, {2, 6, 5, 3}, {9} 

e. (1, 2)(3, 4, 5); { 1, 2}, {3, 4, 5} 

g. (1, 7, 6, 4, 3, 5, 2); {1, 7, 6, 4, 3, 5, 2} 

3. a. even c. odd e. even g. odd 

4. a. odd c. even e. odd g. even 

5. a. two c. four e. three g. six 

6. a. six c. four e. six g. seven 

7. a. (1, 4)(2, 5) 8. a. (1, 3)(1, 2)(1, 7)(1, 8)(1, 4)(5, 6)(5, 9) 

c. (1, 2)(1, 5)(1, 4) c. (1, 7)(1, 8)(1, 4)(2, 3)(2, 5)(2, 6) 

e. (1, 5)(1, 3)(2, 6)(2, 4) e. (1, 2)(3, 5)(3, 4) 

g. (1, 4)(2, 5)(2, 3) g. (1, 2)(1, 5)(1, 3)(1, 4)(1, 6)(1, 7) 

9. a. /2 = (1, 2)(4, 5), /3=1-1 = (1, 4, 2, 5) 

c. /2=1-1 = (1, 2, 6)(3, 5, 4), /3 = (1) 

e. /2 = (1, 8, 2)(3, 7, 6, 4, 5), /3 = (3, 5, 4, 6, 7), 1-1 = (1, 8, 2)(3, 6, 5, 7, 4) 

10. a. (1, 3, 2)(4, 5) c. (1, 3, 2)(4, 5) 

11. a. (1, 6)(2, 4, 5, 3) c. ( 1, 6)(2, 4, 5, 3) 

12. a. (3, 1, 4, 2) = (1, 4, 2, 3) 13. a. (1, 2)(4, 9)(5, 6) 

c. (1, 2, 4, 5) 

e. (1, 4, 2)(5, 3) = (1, 4, 2)(3, 5) 

15. g = /4 = (1, 5, 9)(2, 6, 10)(3, 7, 11)(4, 8, 12) 
h =f9=(1,10,7,4)(2, 11,8,5)(3, 12,9,6) 

17. (1, 2, 3, 4) (1, 2, 3) (1, 2) 
(1, 2, 4, 3) (1, 3, 2) (1, 3) 
(1,3,2,4) (1,2,4) (1,4) 
(1,3,4,2) (1,4,2) (2,3) 
(1,4,2,3) (1,3,4) (2,4) 
(1,4,3,2) (1,4,3) (3,4) 

(2, 3, 4) 
(2, 4, 3) 

19. ((1, 2)) = { (1), (1, 2)} has order 2. 
((1, 2, 3)) = {(l), (1, 2, 3), (1, 3, 2)} has order 3. 

c. (1, 2)(3, 4, 5) 

e. (3, 7, 4, 5)(6, 8) 

(1, 2)(3, 4) 
(1, 3)(2, 4) 
(1, 4)(2, 3) 
(1) 

((1, 2, 3, 4)) = {(l), (1, 2, 3, 4), (1, 3)(2, 4), (1, 4, 3, 2)} has order 4. 
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21. {e}, {e, ,8}, {e, y}, {e, L.}, {e, O}, {e, a2}, {e, a, a2, a3} 
26. a. {e, 8} c. {e, a} 

27. a. {(1), (2, 3, 4), (2, 4, 3)} 
28. a. {e, y} c. {e, y} 

.. Exercises 4.2 Pages 215-217 

True or False 

1. true 

Exercises 

c. {(1), (1, 2, 4), (1, 4, 2)} 

1. For notational convenience, we let a represent [a] in this solution. With fg: Z3 � Z3 defined by 
fg(x) = g + x for each x E Z3, we obtain the following permutations on the set of elements in Z3: 

fo = (0), /1 = (0, 1, 2), /2 = (0, 2, 1). 
The set G' = {/0,/1,/2} is a group of permutations, and the mapping <f>: Z3 � G' defined by 

</>(i) = f;fori = 1, 2, 3, 
is an isomorphism from Z3 to G'. 

3. With/g: G � G defined by fg(x) = gx for each x E G, we obtain the following permutations on the set of 
elements of G: 

fe = (e), fa= (e, a)(b, ab), fh = (e, b)(a, ab), !ab= (e, ab)(a, b). 
The set G' = {fe, fa, fh, f ab} is a group of permutations, and the mapping <f>: G � G' defined by 

</>(x) = fx for x = e, a, b, ab, 
is an isomorphism from G to G'. 

5. For notational convenience, we let a represent [a] in this solution. 
Let fa: G � G be defined by fa(x) = ax for each x E G. Then we have the following permutations: 

/2 = (2, 4, 8, 6), /4 = (2, 8)(4, 6), /6 = (6), /8 = (2, 6, 8, 4). 
The set G' = {/2,/4,/fofs} is a group of permutations, and the mapping <f>: G � G' defined by 

</>(a) =fa for a = 2, 4, 6, 8, 
is an isomorphism from G to G'. 

7. For notational convenience, we let a represent [a] in this solution. 
Let fa: U14 � U14 be defined by fa(x) = ax for each x E U14. Then we have the following permutations: 

/1 = (1), f3 = (1, 3, 9, 13, 11, 5), f5 = (1, 5, 11, 13, 9, 3) 
f9 = (1, 9, 11) (3, 13, 5), /11 = (1, 11, 9) (3, 5, 13), /13 = (1, 13) (3, 11) (5, 9). 
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The set G' = {Ji, f3, /5, f9, fu, /13} is a group of permutations, and the mapping cp: U14-+ G' defined by 

</>(a) = fa for a = 1, 3, 5, 9, 11, 13, 
is an isomorphism from U14 to G'. 

9. With/g: D4--+ D4 defined by fg(x) = gx for each x E D4, we obtain the following permutations on the set 
of elements in D4: 

le= (e) 
faz = (e, a2)(a, a3)(/3, d)( y, e) 
!{3 = (e, /3)(a, e)(a2, d)(a3, y) 
f;1 = (e, d)(a, y )(a2, /3)(a3, (}) 

fa = (e, a, a2, a3)(/3, y, d, (}) 
fa'= (e, a3, a2, a)(/3, (}, d,y) 
!,, = (e, 'Y )(a, /3)(a2, e)(a3, d) 
fo = (e, e)(a, d)(a2, 'Y )(a3, /3) 

The set G' = {fe, fa, faz, fa'• ff3, J,,, fl!., f0} is a group of permutations, and the mapping cp: D4--+ G' 
defined by 

<:/>(x) = fx for x = e, a, a2, a3, f3, y, d, (}, 
is an isomorphism from D4 to G'. 

11. c. The mapping is an isomorphism. 

12. a. For G = { 1, i, -1, -i}, then K = {ki, ki, k-1, k-i} is a group of permutations on G where 

kl= (1), ki = (1, -i, -1, i), k-1 = (1, -1) (i, -i), Li= (1, i, -1, -i). 

The right regular representation of G is the isomorphism cp: G --+ K defined by 

</>(a)= kafora = l, i, -1, -i. 

13. c. The mapping <:/> is not an isomorphism when G is not abelian. 

- Exercises 4.3 Pages 220-222 

True or False 

1. true 2. false 3. true 4. false 5. true 6. false 

Exercises 

7. false 

1. { /, V}, where I is the identity mapping and Vis the reflection about the vertical axis of symmetry 

3. {/, R}, where I is the identity mapping and R is the counterclockwise rotation through 180° about the 
center of symmetry 

5. rotational symmetry only 

7. reflective symmetry only 

9. both rotational symmetry and reflective symmetry 

11. {R, R2, R3 = /}, where I is the identity mapping and R is the counterclockwise rotation through 120° 
about the center of the triangle determined by the arrow tips 
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13. Let the vertices of the ellipses be numbered as in the following figure. 

2 

3 

4 

5 

Then any symmetry of the figure can be identified with the corresponding permutation on { 1, 2, 3, 4, 5, 6}, 
and the group G of symmetries of the figure can be described with the notation 

where 

G = {R, R2, R3, R4, Rs, R6 = /, L, LR, LR2, LR3, LR4, LRs}, 

I= (1) 

R = (1,2,3,4,5,6) 

R2 = (1, 3, 5)(2, 4, 6) 

R3 = (1,4)(2,5)(3,6) 

R4 = (1, 5, 3)(2, 6, 4) 

Rs= (1,6,5,4,3,2) 

L = (2, 6)(3, 5) 

LR= (1, 6)(2, 5)(3, 4) 

LR2 = (1, 5)(2, 4) 

LR3 = (1,4)(2,3)(5,6) 

LR4 = (1, 3)(4, 6) 

LRs = (1, 2)(3, 6)(4, 5). 

This is the same permutation group as the one in the answer to Exercise 26 of this exercise set. 

15. Let the axes of symmetry be labeled as in the following figure. 

Then the group G of symmetries of the figure can be described as 

G = {I, R, R2, L, LR, LR2} 
' 

where 

I is the identity mapping, 

R is the rotation through 120° counterclockwise about the center, 

R2 is the rotation through 240° counterclockwise about the center, 

L is the reflection about the vertical axis e 1, 

LR is the reflection about the axis e
2
, and 

LR2 is the reflection about the axis e
3
• 
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17. Let I denote the identity mapping , and let t denote a translation of the set of E's one unit to the right. 
Then t-1 is a translation of the set of E's one unit to the left, and the collection 

{ . . .  'r2, r1, t0 
= /, t, t2, • • •  } 

are elements of the (infinite) group of symmetries of the figure. Let r denote the reflection of the figure 
about the horizontal axis of symmetry through the E's. Then r2 

= I= r0, rt = tr, and the group of sym
metries consists of all products of the form ritj, where i is either 0 or 1 and j is an integer. 

19. Let I denote the identity mapping, and let t denote a translation of the set of T's one unit to the right. Then 
r 1 is a translation of the set of T's one unit to the left. There is a vertical axis of symmetry through each 
copy of the letter T and a corresponding reflection of the figure about that vertical axis. Each of these 
reflections is its own inverse. The group of symmetries consists of this infinite collection of reflections 
(one for each copy of the letter T) together with the identity I and all the integral powers of the translation t. 

23. Using the same notational convention as in Example 12 of Section 4.1, the elements of G are as follows: 

e = (1), a= (1, 3)(2, 4), f3 = (1, 4)(2, 3), a= (1, 2)(3, 4). 

With this notation, we obtain the following multiplication table for G. 

0 e a f3 a 

e e a f3 a 

a a e a f3 

f3 f3 a e a 

a a f3 a e 

25. Using the same notational convention as in Example 12 of Section 4.1, the elements of D5 are as follows: 

e= (1) f3 = (2, 5)(3, 4) 

a = (1,2,3,4,5) y = af3 = f3a4 = (1, 2)(3, 5) 

az 
= (1, 3, 5, 2, 4) a= a2f3 = f3a3 = (1, 3)(4, 5) 

a3 = (1, 4, 2, 5, 3) (} = a3 f3 = f3a2 = ( 1, 4) ( 2, 3) 

a4 = (1,5,4,3,2) u = a4f3 = f3a = (1, 5)(2, 4). 

With this notation, we obtain the following multiplication table for D5. 

0 e a a2 a3 a4 f3 'Y a (} (]" 

e e a a2 a3 a4 f3 'Y a (} (]" 

a a a2 a3 a4 e 'Y a (} (]" f3 
a2 a2 a3 a4 e a a (} (]" f3 'Y 

a3 a3 a4 e a a2 (} (]" f3 'Y a 

a4 a4 e a a2 a3 (]" f3 'Y a (} 

f3 f3 (]" (} a 'Y e a4 a3 a2 a 

'Y 'Y f3 (]" (} a a e a4 a3 a2 

a a 'Y f3 (]" (} a2 a e a4 a3 

(} (} a 'Y f3 (]" a3 a2 a e a4 

(]" (]" (} a 'Y f3 a4 a3 a2 a e 
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27. 48 

29. Using the same notational convention as in Example 12 of Section 4.1, the elements of G = {e, a, {3, d} 
are e = (1), a= (1, 3)(2, 4), f3 = (1, 4)(2, 3), d = (1, 2)(3, 4). Let </J: G � Hbe defined by 

</J(e) = [� �l 
[-1 OJ <P(/3) = 

0 1 ' 

</J(a) = [� -�l 
</J(d) = [-� -�J. 

.. Exercises 4.4 Pages 228-231 

True or False 

1. true 

6. true 

Exercises 

2. true 

7. true 

3. false 

8. false 

4. true 5. true 

1. a. [l]H = [3]H = [4]H = [9]H = [lO]H = [l2]H = H = {[1], [3], [4], [9], [10], [12]}; 
[2]H = [5]H = [6]H = [7]H = [8]H= [ll]H= {[2], [5], [6], [7], [8], [11]}; 
U13 =HU [2]H; [U13: H] = 2 

2. a. [0] + H = [2] + H = [4] + H = [6] + H = [8] + H = [10] + H = [12] + H = 
[14] + H = [16] + H = H = {[O], [2], [4], [6], [8], [10], [12], [14], [16]}; 
[1] + H = [3] + H = [5] + H = [7] + H = [9] + H = [11] + H = [13] + H = 
[15] + H = [17] + H = { [l], [3], [5], [7], [9], [11], [13], [15], [17]}; 
Z1s =HU ([1] + H); [Z1s: H] = 2 

3. a. eH = {3H = H = {e, {3}; aH = yH ={a, y}; 
a2H = dH = {a2, d}; a3H =OH= {a3, 0}; 
D4 = HU aH U a2H U a3H; [D4: H] = 4 

b. He = H/3 = H = {e, /3}; Ha = HO = {a, 0}; 
Ha2 = Hd = {a2, d}; Ha3 =Hy= {a3, y}; 
D4 = HU Ha U Ha2 U Ha3 

5. a. (l)H = (1, 2)H = H = {(1), (1, 2)}; (1, 2, 3)H = (1, 3)H = {(1, 2, 3), (1, 3)}; 
(1, 3, 2)H = (2, 3)H = {(1, 3, 2), (2, 3)}; 
S3 =HU (1,2,3)HU (1,3,2)H; [S3 :H] = 3 

b. H(l) = H(l, 2) = H = {(1), (1, 2)}; 
H(l, 2, 3) = H(2, 3) = {(1, 2, 3), (2, 3)}; 
H(l, 3, 2) = H(l, 3) = {(1, 3, 2), (1, 3)}; 
S3 = HUH(l,2,3) UH(l,3,2) 
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7. a. 13H = P4H = H = {13, P4}; P1H = P�H = {PI> Pn; P2H = P� = {P2, P3}; 
G =HU P1H U P2H; [G: H] = 3 

b. H/3 = HP4 = H = {/3, P4}; HP1 = HP3 = {Pi. P3}; HP2 =HP�= {Pz, Pn; 
G = H U HP 1 U HP2 

11. 1,2,3,4,6,8, 12,24 
19. a. 12 c. 16 

21. Order 1: {(1)} 
Order 2: {(1), (1, 2)(3, 4)}, {(1), (1, 3)(2, 4)}, {(1), (1, 4)(2, 3)} 
Order 3: {(1), (1, 2, 3), (1, 3, 2)}, {(1), (1, 2, 4), (1, 4, 2)}, 

{(1), (1, 4, 3), (1, 3, 4)}, {(1), (2, 3, 4), (2, 4, 3)} 
Order 4: {( 1), ( 1, 2) (3, 4 ), ( 1, 3)(2, 4 ), ( 1, 4)(2, 3)} 
Order 12: A4, as given in Example 9 of Section 4.1 

23. Order 1: {(1)} 
Order 2: { -1, 1} 
Order4: {i, -1, -i, 1}, {j, -1, -j, 1}, {k, -1, -k, 1} 
Order 8: {1, -1, i, -i,j, -j, k, -k} 

- Exercises 4.5 Pages 235-238 

True or False 

1. false 

Exercises 

1. a. no 

2. true 

c. no 

3. false 4. false 

e. no 

9. a. {e, an b. {e, d} 

11. Order 1: {(1)} 

5. false 

Order 4: {(1), (1, 2) (3, 4), (1, 3)(2, 4), (1, 4) (2, 3)} 
Order 12: A4, as given in Example 9 of Section 4.1 

6. false 

13. Every subgroup of the nonabelian quaternion group is normal. 

15. H = {e, d}, K = {e, {3, d, a2} 

25. {e, a2} 

7. false 

29. For H = {( 1), ( 1, 3)(2, 4)}, .N (H) is the octic group D4 since His normal in D4. 

37. a. S3 = {(1), (1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2)} 
c. A4, as given in Example 9 of Section 4.1 

40. a. {±1} 
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.. Exercises 4.6 Pages 243-246 

True or False 

1. true 

Exercises 

2. false 3. false 

1. ID4/HI = 4; D4/H = {H, aH, f3H, yH}, where 

H = {e, a2}, 

f3H = {{3, A}, 

aH ={a, a3}, 

yH = {y, 8}. 

H aH f3H yH 

H H aH f3H yH 

aH aH H yH f3H 

f3H f3H yH H aH 

yH yH f3H aH H 

3. IG!HI = 4; GIH = {H, iH, jH, kH}, where 

H = {1, -1}, iH = {i, -i}, 

jH = { j, -j}, kH = {k, -k}. 

H iH jH kH 

H H iH jH kH 

iH iH H kH jH 

jH jH kH H iH 

kH kH jH iH H 

4. true 

5. IAiHI = 3;A4/H = {H, (1, 2, 3)H, (1, 3, 2)H}, where 

(1, 2, 3) H = {(1, 2, 3), (1, 3, 4), (2, 4, 3), (1, 4, 2)}, 

(1, 3, 2) H = {(1, 3, 2), (2, 3, 4), (1, 2, 4), (1, 4, 3)}. 

H (1, 2, 3)H (1, 3, 2)H 

H H (1, 2, 3)H (1, 3, 2)H 

(1, 2, 3)H (1, 2, 3)H (1, 3, 2)H H 

(1, 3, 2)H (1, 3, 2)H H (1, 2, 3)H 

5. true 
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7. H = {[1], [9]}, U20/H = {H, [3]H, [ll]H, [13]H},where 

[3]H = {[3], [7]}, 

H 

[3]H 

[ll]H 

[13]H 

[ll]H = {[11], [19]}, 

[13]H = {[13], [17]}. 

H [3]H [ll]H 

H [3]H [ll]H 

[3]H H [13]H 

[ll]H [13]H H 

[13]H [ll]H [3]H 

8. a. IHrl = 4n when IH2I = 3n, n = 1, 2, 3, 6 

[13]H 

[13]H 

[ll]H 

[3]H 

H 

9. The normal subgroups of the octic group D4 are Hr = { e}, H2 = { e, a2}, H3 = { e, a, a2, a3}, 
H4 = {e, f3, Ll, a2}, Hs = {e, y, 0, a2}, and H6 = D4. We consider the possible quotient groups. 

(1) D4/Hr is isomorphic to D4. 
(2) D4/H2 = {H2, aH2, f3H2, rH2} is isomorphic to the Klein four group. (See Exercise 3 of Section 4.2.) 
(3) Each of D4/H3, D4/H4, and D4/H5 is a cyclic group of order 2. 
(4) D4/D4 = {D4} is a group of order 1. 

Thus the homomorphic images of the octic group D4 are D4 itself, a Klein four group, a cyclic group of 
order 2, and a group with only the identity element. 

11. The normal subgroups of the quaternion group Gare Hr = { 1}, H2 = { -1, 1}, H3 = {i, -1, -i, 1}, 
H4 = U, -1, -j, 1}, Hs = {k, -1, -k, 1}, and H6 = G. We consider the quotient groups. 

(1) G/Hr is isomorphic to G. 
(2) G/H2 = {H2, iH2,jH2, kH2} is isomorphic to the Klein four group. (See Exercise 3 of Section 4.2.) 
(3) Each of G/H3, G/H4, and G/Hs is a cyclic group of order 2. 
(4) G/G = { G} is a group of order 1. 

Thus the homomorphic images of the quaternion group G are G itself, a Klein four group, a cyclic group 
of order 2, and a group with only the identity element. 

13. a. The left cosets of H = { (1), (1, 2)} in G = S3 are given by 

(l)H = (1, 2)H = { (1), (1, 2)} 

(1, 3)H = (1, 2, 3)H = { (1, 3), (1, 2, 3)} 

(2, 3)H = (1, 3, 2)H = {(2, 3), (1, 3, 2)}. 

The rule aHbH = abH leads to 

(1, 3)H(2, 3)H = (1, 3)(2, 3)H = (1, 3, 2)H 

and also to 

(1, 2, 3)H(l, 3, 2)H = (1, 2, 3)(1, 3, 2)H = (l)H. 

We have (1, 3)H = (1, 2, 3)H and (2, 3)H = (1, 3, 2)H, but 

(1, 3)H(2, 3)H-=/= (1, 2, 3) H (1, 3, 2)H. 

Thus the rule aHbH = abH does not define a binary operation on the left cosets of H in S3. (That is, 
the result is not well-defined.) 

Copyright 2013 Cengage Leaming. AH Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materia11y affect the overall learning experience. Cengage Leaming reserves the right to remove additional content at any time if subsequent rights restrictions require it. 



470 Answers to True/False and Selected Exercises 

15. a. K = {12, M2, M3} b. K = {12, M2, M3}, M1K = {Mi. M4, M5} 
c. O(K) = 1, O(M1K) = -1 

17. a. K = {[1], [11]} 
b. K = {[1], [11]}, [3]K = {[3], [13)}, [7]K = {[7J, [17]}, [9]K = {[9], [19J} 

c. O(K) = e, 0([3JK) = a, 0((7JK) = a3
, 0([9]K) = a2 

25. S3 is not cyclic. However H = { (1), (1, 2, 3), (1, 3, 2)} is normal, and S3/H = {H, (1, 2)H} is cyclic. 

27. a. Let G = {a, a2, a3, a4, a5, a6, a7, as= e} be a cyclic group of order 8. The subgroup H = {a2, a4, 
a6, as = e} of G is a cyclic group of order 4, and the mapping <f>: G---+ H defined by <f>(x) = x2 is an 

epimorphism. 

.. Exercises 4.7 Pages 252-253 

True or False 

1. false 2. true 

Exercises 

1. H1 + H2 = H2 The sum is not direct. 

7. Z20 = ([ 4 J) EB ([5 ]) 
17. a. 2 c. 6 

18. a. {([OJ, [OJ)}, 
{([OJ, [OJ), ([OJ, [2J)}, 
{ ( [ 0 J, [ 0])' ( [ 1 J, [ 0])}' 
{ ( [ 0 J, [ 0])' ( [ 1 J, [ 2])}' 
{([OJ, [OJ), ([OJ, [lJ), ([OJ, [2]), ([OJ, [3])}, 
{([OJ, [OJ), ([OJ, [2]), ([1], [OJ), ([lJ, [2])}, 
{( [ 0 J, [ 0])' ( [ 0 J, [ 2]), ( [ 1 J, [ 1])' ( [ 1 J, [ 3])}' 
Z2 EB Z4 

19. a. Z15 = ([5J) EB ([3]), where ([5]) = {[5J, [ 10 J, [OJ} is a cyclic group of order 3, and ([3]) = {[3 J, [ 6], [9J, 
[ 12 J, [ 0]} is a cyclic group of order 5 . From this, it is intuitively clear that Z15 is isomorphic to 

Z3 EB Z5. Hint: The idea can be formalized as follows. For each a E Z, let [a J15, [a ]3, and [a J5 denote 

the congruence class of a modulo 15 , 3, and 5 , respectively. Then write [a]15 in Z15 as 

with r and s integers. Show that 

the rule 

[aJ1s = r[5J1s + s[3J1s 

defines an isomorphism from Z15 to the external direct sum Z3 EB Z5• 
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- Exercises 4.8 Pages 261-263 

True or False 

1. true 2. false 3. false 4. true 5. false 

Exercises 

1. The cyclic group C9 = (a) of order 9 is a p-group with p = 3. 
3. a. ((1, 2, 3)), ((1, 2, 4)), ((1, 3, 4)), ((2, 3, 4)) 

6. false 

5. a. Z10 = ([5]) EB ([2]) c. Z12 = ([3]) $ ([4]) 
= {[5], [OJ} EB {[2], [4], [6], [8], [OJ} = {[3], [6], [9], [OJ} EB {[4], [8], [OJ} 

6. a. Any abelian group of order 6 is isomorphic to C3 E9 C2, where Cn is a cyclic group of order n. 

c. Any abelian group of order 12 is isomorphic to either C4 E9 C3 or C2 E9 C2 E9 C3. 

e. Any abelian group of order 36 is isomorphic to one of the direct sums C4 E9 C9, C2 E9 C2 E9 C9, 
C4 E9 C3 E9 C3, or C2 E9 C2 E9 C3 E9 C3. 

9. a. none 

15. b. There are 24 distinct elements of G that have order 6. 

- Exercises 5.1 Pages 272-278 

True or False 

1. false 

6. false 

Exercises 

2. a. ring 

2. true 

7. false 

3. true 

8. false 

4. false 

9. false 

c. Not a ring. The set is not closed with respect to multiplication. 

5. false 

10. false 

e. Not a ring. The set of positive real numbers does not contain an additive identity. 

g. ring 

3. 
+ 0 A B u 0 A B u 

0 0 A B u 0 0 0 0 0 

A A 0 u B A 0 A 0 A 

B B u 0 A B 0 0 B B 

u u B A 0 u 0 A B u 

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Leaming reserves the right to remove additional content at any time if subsequent rights restrictions require it. 



472 Answers to True/False and Selected Exercises 

5. The set rz/l (A) is not a ring with respect to the operations of addition and multiplication as defined, since 

the additive inverse elements of A, B, and Udo not exist. 

7. a. [2], [3], [4] 

c. [2], [4], [5], [6], [8] 

e. [2], [4], [6], [7], [8], [10], [12] 

8. a. [1r1 = [l], [5r1 = [5] 

c. Dr1 = Dl, [3r1 = [111, [5r1 = [13], [7r1 = [7], [9r1 = [9], D1r1 = [31, 
[Br1 = [5], [15r1 = [151 

e. [1]-1 = [1], [3]-1 = [5], [5]-1 = [3], [9]-1 = [11], [ll]-1 = [9], [13]-1 = [13] 

21. b. Yes c. 0 

25. The units in Zn are [x] where (x, n) = 1. 

33. a. yes 

b. The set Sis a commutative ring, and it contains the unity [10]. The unity in Z1s is [1]. 

c. yes 

d. yes, [6] and [12] 

e. [2], [4], [8], [10], [14], [16] 

35. 
a b c d 

a a a a a 

b a c a c 

c a a a a 

d a c a c 

41. a. � is � commutative subring of M2(Z) with unity [ � �]. All [: �] for x = ± 1 have multiplica

tive mverses. 

c. Sis a noncommutative subring of M2(Z) without unity. 

e. Sis a commutative subring of M2(Z) without unity. 

g. Sis not a subring of M2(Z), since it is not closed with respect to multiplication. 

43. b. [� �] 
51. d. R = { [0], [3], [6]} � Z9, S = { [0], [5]} � Z10 

53. a. Z2 X Z4 = {(O, 0), (1, 0), (0, 1), (1, 1), (0, 2), (1, 2), (0, 3), (1, 3)} 

b. yes c. (1, 1) d. (1, 1), (1, 3) e. (1, 0), (0, 1), (0, 2), (1, 2), (0, 3) 

f. (0, 0), (1, 0), (0, 1), (1, 1) g. (0, 0), (0, 2) 
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55. For notational convenience, we let a represent [a]. 

b. S1 E9 S2 = { (0, 0), (0, 5), (3, 0), (3, 5), (6, 0), (6, 5)} 

+ (0, 0) (0, 5) (3, 0) (3, 5) (6, 0) (6, 5) 

(0, 0) (0, 0) (0, 5) (3, 0) (3, 5) (6, 0) (6, 5) 

(0, 5) (0, 5) (0, 0) (3, 5) (3, 0) (6, 5) (6, 0) 

(3, 0) (3, 0) (3, 5) (6, 0) (6, 5) (0, 0) (0, 5) 

(3, 5) (3, 5) (3, 0) (6, 5) (6, 0) (0, 5) (0, 0) 

(6, 0) (6, 0) (6, 5) (0, 0) (0, 5) (3, 0) (3, 5) 

(6, 5) (6, 5) (6, 0) (0, 5) (0, 0) (3, 5) (3, 0) 

(0, 0) (0, 5) (3, 0) (3, 5) (6, 0) (6, 5) 

(0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) 

(0, 5) (0, 0) (0, 5) (0, 0) (0, 5) (0, 0) (0, 5) 

(3, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) 

(3, 5) (0, 0) (0, 5) (0, 0) (0, 5) (0, 0) (0, 5) 

(6, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) 

(6, 5) (0, 0) (0, 5) (0, 0) (0, 5) (0, 0) (0, 5) 

c. yes 

d. No unity exists. 

e. No units exist. 

f. (0, 5), (3, 0), (3, 5), (6, 0), (6, 5) 

g. (0, 0), (0, 5) 

h. (0, 0), (3, 0), (6, 0) 

- Exercises 5.2 Pages 282-285 

True or False 

1. true 2. true 3. false 4. true 

Exercises 

1. a. The set is an integral domain. It is not a field, since not every element has a multiplicative inverse. 

c. The set is neither an integral domain nor a field, since it is not a ring. The set is not closed with respect 
to multiplication. 
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e. The set is an integral domain. It is not a field, since not every element has a multiplicative inverse. 

g. The set is both an integral domain and a field. 

3. a. The set Sis not an integral domain, since the elements [6] and [12] are zero divisors. 

b. The set Sis not a field, since [6] and [12] do not have multiplicative inverses. 

5. <!]' ( U) is not a field. A = {a} and B = { b} do not have multiplicative inverses. 

7. The ring Wis commutative, since if (x, y) and (z, w) are elements of W, we have 

(x, y) • (z, w) = (xz - yw, xw + yz) 
= (zx - wy,zy + wx) 
= (z, w) • (x, y ). 

The element ( 1, 0) in W is the unity element, since for ( x, y) in W we have 

(x,y) • (1,0) = (1,0) · (x,y) 

9. a. S is a commutative ring. 

c. S is an integral domain. 

11. a. R is an integral domain. 

= (Ix - Oy, Iy +Ox) 
= (x,y). 

b. S has the unity element [ � 
d. S is a field. 

b. R is a field. 

1] 
0 . 

13. a. yes b. yes, [1] c. No, since (2 + i) (2 + 4i) = 0 (mod 5). d. no 

20. a. [173] c. [27] 

.. Exercises 5.3 Pages 291-292 

True or False 

1. true 2. false 3. false 

Exercises 

4. true 5. true 

9. The mapping cf>: W � S defined by cf>( (x, y)) = [� -� J is an isomorphism. 

11. a. For notational convenience in this solution, we write a for [a] in Z3. Then 

S = {(O, 1), (0, 2), (1, 1), (1, 2), (2, 1), (2, 2)}. 

Since ( 0, 1) - ( 0, 2), ( 1, 1) - (2, 2), and ( 1, 2) - (2, 1) in S, the distinct elements of Qare [O, 1], 
[l, 1], and [2, 1]. 

b. Define cf>: D � Q by 

cf>(O) = [O, 1] 
cf>(l) = [1, 1] 
cf>(2) = [2, I]. 
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15. Hint: The set of all quotients for D is the set Q of all equivalence classes [m + ni, r + si], where 

m + ni E D and r + si E D with not both rands equal to 0. Show that the mapping </J: Q ---+ C defined by 

m + ni <P([m + ni, r + si]) = 
. 

r + Sl 

is an isomorphism from Q to C. 
m 

18. 2n for m, n E Z. 

- Exercises 5.4 Pages 297-299 

True or False 

1. false 2. true 3. true 

- Exercises 6.1 Pages 308-311 

True or False 

1. true 

6. true 

Exercises 

9. a. (1) = Z 

11. a. (6) 
23. a. { [0]}, Z1 

c. { [O]} 

2. false 

7. true 

c. (5) 
c. (32) 

([6]) = { [0], [6]} 
([4]) = {[0], [4], [8]} 
([3]) = { [O], [3], [6], [9]} 

3. true 

8. false 

([2]) = {[0], [2], [4], [6], [8], [10]} 
Z12 

e. { [O]} 
([10]) = {[0], [10]} 
([5]) = {[0], [5], [10], [15]} 
([4]) = {[O], [4], [8], [12], [16]} 

4. true 

4. true 

([2]) = {[0], [2], [4], [6], [8], [10], [12], [14], [16], [18]} 
Z20 

5. false 

5. true 

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Leaming reserves the right to remove additional content at any time if subsequent rights restrictions require it. 



476 Answers to True/False and Selected Exercises 

.. Exercises 6.2 Pages 317-321 

True or False 

1. true 2. false 3. true 4. true 

Exercises 

5. true 6. false 

1. a. (} does not preserve addition; (} preserves multiplication; (} is not a homomorphism. 

c. (} preserves addition; (} does not preserve multiplication; (} is not a homomorphism. 

e. (} does not preserve addition; (} preserves multiplication; (} is not a homomorphism. 

7. b. ker(} = {[� �Jlx E Zandy E Z }.¢([� �] + kero) = o([� �]) = z 

9. b. ker (} = {[OJ6, [2J6, [4J6} 
13. The mapping (} is not a homomorphism since it does not preserve multiplication. 

17. ker (} = {[ 2
2: �:J Im, n,p, q E Z } 

18. a. (} does not preserve addition. 

25. The mapping ¢: R � Z3 given by 

¢(a)= [O], ¢(b) = [2], ¢(c) = [1] 
is an isomorphism. 

27. a. The ideals of Z6 are Ii = {[OJ}, [z = {[OJ, [3]}, h = {[OJ, [2J, [4]}, and 14 = Z6. We consider the 
quotient rings: 

(1) Z6/li is isomorphic to Z6. 
(2) Z6//z = {h [1] + h [2] + /z} is isomorphic to Z3. 
(3) Z6/h = {h [1] + h} is isomorphic to Z2. 
( 4) Z6/Z6 = { Z6} is a ring with only the zero element. 

Thus, the homomorphic images of Z6 are (isomorphic to) Z6' Z3, Z2, and { 0}. 
c. The ideals of Z12 are Ii= {[O]}, /z = {[O], [6]}, h = {[O], [4], [8]}, 14 = {[O], [3], [6], [9]}, 

ls = { [0], [2], [ 4], [6], [8], [1 0]}, and h = Z12. The quotient rings are as follows: 

(1) Z12/Ii is isomorphic to Z12. 
(2) Z12//z = {/z, [1] + /z, [2] + /z, [3] + /z, [4] + /z, [5] + /z} is isomorphic to Z6. 
(3) Z12/h = {h [1] + h [2] + h [3] + h} is isomorphic to Z4. 
(4) Z12/l4 = {/4, [1] + h [2] + 14} is isomorphic to Z3. 
(5) Z12/ls = {/s, [1] + ls} is isomorphic to Z2. 
(6) Z12/Z12 = {Z12} is a ring with only the zero element. 

The homomorphic images of Z12 are (isomorphic to) Z12, Z6, Z4, Z3, Z2, and {O}. 
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e. The ideals of Z8 are /1 = {[0]}, 12 = {[0], [4]}, /3 = {[0], [2], [4], [6]}, and/4 = Z8. The quotient rings 

are as follows: 

(1) Zs/Ii is isomorphic to Zs. 
(2) Zs//z = {h [l] + h [2] + h [3] + /z} is isomorphic to Z4. 
(3) Zs/h = {h [1] + h} is isomorphic to Z2. 
( 4) Zs/Zs = {Zs} is a ring with only the zero element. 

The homomorphic images of Zs are (isomorphic to) Zs, Z4, Z2, and { 0}. 

- Exercises 6.3 Pages 325-327 

True or False 

1. false 2. false 3. true 4. true 5. false 

Exercises 

1. a. 0 c. 0 e. 2 
2. a. 2 c. 6 e. 12 
9. b. Exercise 3 assures us that e, a, and ball have additive order 2. The other entries in the table can be 

determined by using the fact that D forms a group with respect to addition. For example, e + a = a 

would imply e = 0, so e + a = b must be true. 

+ 0 e a b 

0 0 e a b 

e e 0 b a 

a a b 0 e 

b b a e 0 

11. a. Hint: Consider R = {[OJ, [5], [10], [15]} � Z20• 

- Exercises 6.4 Pages 330-331 

True or False 

1. true 2. false 

Exercises 

5. RI!= {I, 1 + I, \12 + I, 1 + \12 + I} 
7. Ell = {I, 2 + I, 4 + I} 
9. { [0], [3], [6], [9]} and { [0], [2], [4], [6], [8], [10]} 

21. {[0], [3], [6], [9]} and {[0], [2], [4], [6], [8], [10]} 
23. Hint: Consider /1 = {[O], [3], [6], [9]} and /2 = {[O], [2], [ 4], [6], [8], [10]} of Z12• 
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.. Exercises 7.1 Pages 339-341 

True or False 

1. true 

6. true 

Exercises 

1. 0.5 
7. 31/9 

2. false 

7. false 

3. true 

8. true 

3. 0.987654320 
9. 4/33 

4. false 

9. false 

20. a. a = v'2 and b = -v'2 are irrational, but a + b = 0 is rational. 

5. false 

5. 3.142857 
11. 83/33 

21. a. An element v of Fis a lower bound of S if v ::::; x for all x E S. An element v of Fis a greatest lower 
bound of S if these conditions are satisfied: 

(1) vis a lower bound of S. 
(2) If b E Fis a lower bound of S, then b ::::; v. 

.. Exercises 7.2 Pages 347-350 

True or False 

1. false 2. true 

Exercises 

1. 
3. 

5. 

7. 
9. 

11. 

13. 

21. 

10 + lli 
-i 
2 - lli 
� + li 5 5 

11 + 1 . 
50 251 
21 + 20. 29 291 

a. 3i, -3i 
c. 5i, -5i 
e. vTii, -vTii 
b. i. -2 + i, 2 - i 

23. 10 - 5i + 3j - k 
27. -lOi + 5k 
31. i + j + 2k 

3. true 4. true 5. false 

iii. 3 + 2i, -3 - 2i 
25. 1 
29 1·+1 ·  

• -21 21 
331+ 3· I ·  lk 

• 2 221 - 221 - 22 

6. true 7. false 
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- Exercises 7.3 Pages 357-359 

True or False 

1. false 2. true 3. false 

Exercises 

1. a. -2 + 2\!3i = 4(cos 2; + i sin 2;) 

y 

-2 + 2.../3i 

e. 1 + \!3i 2( cos I + i sin I) 

y 

1 + .../3i 

2. a. 4(cos3; + i sin3'I) = -2V'2 + 2V'2i 
c. 6(cos 2; + i sin 2;) = -3 + 3\/3i 

3. a. -64 V3 - 64i c. 512 + 512V3i 

Answers to True/False and Selected Exercises 479 

4. true 

c. 3 - 3i = 3V'2(cos 1; + i sin 7'I) 

y 

r = 3../2 

3 - 3i 

g. -4 4( cos 7T + i sin 7T ) 

y 

1T 

-4 r=4 

e. 1 g. -128 - 128\/3i 
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6. a. y 

1 

c. 

7 7T + . . 7T l37T + . . 137T 257T + . . 257T . a. cos 18 z sm 18· cos 18 z sm 18· cos 18 z sm 18 

y 

-1 

c. cos � + i sin �, cos 1i;" + i sin 1i;", cos 2f; + i sin 2f;, cos 4il' + i sin 4il' 
e. 2( cos* + i sin*), 2( cos 1i,(; + i sin 1i,;), 2( cos 2i?; + i sin 2i?;), 

2( cos 2f?; + i sin 2f?;), 2( cos 3'J,(; + i sin 3'J,(;) 
8 a 1 + 3 0 z· -3 1 - 3 0 z· c v'3 + 1 z· - v'3 + 1 z· 

- z· 

• · 2  2 '  •2 2 • 2 2• 2 2• 

e v'3 + li _l + v'3 i - v'3 - li l - v'3 i 
• 2 2• 2 2 '  2 2•2 2 

g. l + v'3 z· - v'3 + l z· _l - v'3 z· v'3 - l z· 

2 2 '  2 2• 2 2 ' 2  2 

11. a. (cos 2; + i sin 2;) = {cos 2; + i sin 2;, cos 4; + i sin 4;, cos 0 + i sin O} 
b. l(a)I = 

3 

c. cos 2; + i sin 2;, cos 4; + i sin 4; 
13. a. (cos s; + i sin 5;) = {cos 5; + i sin 5;, cos 4; + i sin 4;, cos 'TT + i sin 'TT, 

cos 2; + i sin 2;, cos I + i sin I· cos 0 + i sin O} 
b. l(a)I = 6 

57T + . . 57T 7T + . . 7T c. cos 3 z sm 3, cos 3 z sm 3 

17. a. cos I + i sin I 
= t + "{ i, cos 5; + i sin 5; = t - "{ i 

.. Exercises 8.1 Pages 370-372 

True or False 

1. false 2. false 3. true 4. false 5. false 

Exercises 

1. a. C()Xo + C1X
1 + c2x2 + C3X3, or Co + C1X + cix2 + C3X3 

c. aix1 + a2x2 + aJX3, or aix + a2x2 + aJX3 

6. false 7. true 

1 

- i 
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2 

2. a. L cjx
j 

j=O i= 1 

3. a. 2.x3 + 4x2 + 3x + 2 

e. 2.x2 + 2x + 3 

4. a. 2.x3 + 4x2 + 2x + 1 

e. 8.x5 + 8x4 + 4x3 + 5x2 + 4x 

5. a. The set is a subring of R[x]. 

c. The set is a subring of R[x]. 

Answers to True/False and Selected Exercises 481 

c. 4x2 + 2x 

g. 4x5 + 4x2 + 7 x + 4 

c. 8.x5 + 8x4 + 4x3 + 8x2 + 4x + 6 

g. 2.x5 + 8x4 + 7x3 + 5x2 + 7x 

6. a. The set is a principal ideal of R[x] and can be expressed as (x) = {x • f(x) I f(x) E R[x]}. 

c. The set is not an ideal of R[x], and hence not a principal ideal. 

9. b. l[x] is a principal ideal where l[x] = (1 - x). 

11. a. x2, x2 + 1, x2 + 2, x2 + x, x2 + x + 1, x2 + x + 2, x2 + 2.x, x2 + 2x + 1, x2 + 2x + 2, 2x2, 2x2 + 1, 
2.x2 + 2, 2x2 + x, 2x2 + x + 1, 2x2 + x + 2, 2x2 + 2x, 2x2 + 2x + 1, 2x2 + 2x + 2 

b. none 

12. a. We write a for [a] in Z4. The polynomial 2x + 1 is a unit. 

13. a. n2(n - 1) b. nm(n - 1) 

16. b. n c. 0 

17. b. ker ()is the set of all polynomials in R[x] that have zero constant term. (That is, ker ()is the principal 

ideal (x) generated by x in R[x].) 

21. ker </>is the set of all polynomials in Z[x] that are multiples of k. (That is, ker </>is the principal ideal (k) 

generated by k in R[x].) 

23. ker </>is the set of all polynomials f(x) = a0 + a1x + · · · + anxn in R[x] such that all the coefficients ai 
are in ker (). 

25. b. {f(x) + cic ER} 

- Exercises 8.2 Pages 379-381 

True or False 

1. true 2. true 3. false 

Exercises 

1. q(x) = 4x2 + 3x + 2, r(x) = 4 

3. q(x) = x + 2, r(x) = x2 + x 

5. q(x) = 5x2 + 3, r(x) = 2x + 3 

7. d(x) = x + 1 
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9. d(x) = x + 5 
11. s(x) = x2 + 2x + 1, t(x) = x 
13. s(x) = x2 + 2, t(x) = 4 
15. a. (3x + 4)(4x + 3) = x 
16. a. (3x - 2)(4x - 1) = (3x + 10)(4x + 11) 
17. a.(2x - 1)(5x - 7) = (2x + 9)(5x + 3) 
19. a. yes 20. a. yes 21. a. no 

.. Exercises 8.3 Pages 387-390 

True or False 

1. true 

6. false 

Exercises 

2. true 

7. true 

3. false 

8. false 

22. a. no 

4. false 

9. false 

1. a. -9 c. 0 e. 1 g. 0 i. 4 

5. false 

2. a. x2 - 2 is irreducible over Q, reducible over R and C, since x2 - 2 = (x - \!2)(x + \12). V2 and 

-\12 are zeros in R and C. 

c. x2 + x - 2 = (x + 2)(x - 1) is reducible over the fields Q, R, and C with zeros -2 and 1 in Q, R, 

andC. 

e. x2 + x + 2 is irreducible over Z3 and Zs; x2 + x + 2 = (x + 4)2 is reducible over Z7, and 3 is a zero 

of multiplicity 2 in Z7. 

g. x3 - x2 + 2x + 2 is irreducible over Z3; x3 - x2 + 2x + 2 = (x + 3)3 is reducible over Zs, and 2 is a 

zero of multiplicity 3 in Zs; Also x3 - x2 + 2x + 2 = (x + 2)(x2 + 4x + 1) is reducible over Z7, and 

5 is a zero in Z7. 

3. x2 + 1, x2 + x + 2, x2 + 2x + 2 
4. a. 2x3 + 1 = 2(x + 2)(x2 + 3x + 4), and 3 is a zero of multiplicity 1. 

c. 3x3 + x2 + 2x + 4 = 3(x + l)(x + 2)(x + 4), and 4, 3, and 1 are zeros, each of multiplicity 1. 
e. 2x4 + x3 + 3x + 2 = 2(x + l)(x + 2)(x2 + 3) with zeros 4 and 3, each of multiplicity 1. 
g. x4 + x3 + x2 + 2x + 3 = (x + 3)2(x2 + 2), and 2 is a zero of multiplicity 2. 
i. x4 + 2x3 + 3x + 4 = (x + 4 )(x + 1 )3, 1 is a zero of multiplicity 1, and 4 is a zero of multiplicity 3. 

7. a. 4x2 + 4 has degree 2 and has 4 zeros: 1, 3, 5, and 7. 

12. a. 0, 1, 2, 3, and 4 in Zs 

13. x4 + 5x2 + 4 = (x2 + 1 )(x2 + 4) 
27. Exercise 7: (x + 1)2(x + 2)(x3 + 2x2 + 1) = x6 + x4 + x3 + 2x2 + 2x + 2 

Exercise 9: (x + 2)(x + 5)(x3 + 2x2 + 2x + 6) = x5 + 2x4 + 5x3 + 5x2 + 6x + 4 
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- Exercises 8.4 Pages 400-403 

True or False 

1. true 

6. false 

11. false 

Exercises 

2. true 

7. true 

12. false 

3. true 

8. true 

13. false 

4. false 

9. false 

14. true 

1. a. f(x) = x2 - (3 + 2i)x + 6i, g(x) = x3 - 3x2 + 4x - 12 
c. /(x) = x2 - (3 - i)x + (2 - 2i), g(x) = x3 - 4x2 + 6x - 4 

5. false 

10. true 

15. true 

e. f(x) = x2 - (1 + 5i)x - (6 - 3i), g(x) = x4 - 2x3 + 14x2 - 18x + 45 

g. f(x) = x3 - 3x2 + (3 - 2i)x - (1 - 2i) 
g(x) = x5 - 5x4 + 10x3 - 10x2 + 9x - 5 

2. a. 1 + i, 2 c. i, ( -1 + iv3)12, ( -1 - iv3)12 

3. 5/2, -1 

7. -2, (1 + iv3)12, (1 - iv3)/2 

9. 1, 1/3, -2 

5. 3/2, -1 

11. -1, 1/2, -4/3 

13. x4 - x3 - 2x2 + 6x - 4 = (x - l)(x + 2)(x2 - 2x + 2) 

15. 2x4 + 5x3 - 7x2 - lOx + 6 = 2(x - t)<x + 3)(x2 - 2) 

17. a. Hint: Use Eisenstein's Criterion. 
c. Hint: Use Eisenstein's Criterion. 

20. a. Hint: Use Exercise 19. 
c. Hint: Use Exercise 19. 

21. a. h(x) = x3 + x + 1 has no zeros in Z2. 
c. /5(x) = 2x3 + 3x2 + 3 has no zeros in Zs. 
e. f2(x) = x4 + x3 + x2 + x + 1 has no zeros in Z2 and hence no first-degree factors in Z2. 

The only possible second-degree factors in Z2 are x2, x2 + x, x2 + 1, and x2 + x + 1. Now 
x2 = x · x, x2 + x = x(x + 1), and x2 + 1 = (x + 1)2 are not factors ofh(x), sincef2(x) has no first
degree factors. Long division shows that x2 + x + 1 is not a factor of f2(x). Thus f2(x) is irreducible 
in Z2, and hence f(x) = 3x4 + 9x3 - 7x2 + 15x + 25 is irreducible by Theorem 8.34. 

34. a. Let f(x) = x3 + 3x + 8. Since f(x + 1) = x3 + 3x2 + 6x + 12 is irreducible by the Eisenstein 
Irreducibility Criterion, then/(x) is irreducible over Q. 
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.. Exercises 8.5 Pages 414-415 

True or False 

1. true 2. false 3. true 4. false 

Exercises 

1. V"E + Vs, 
V"E +Vs 

±i\/3 
V"E -Vs 

2 2 

3. V16 + V4, V16 + V4 
+ ·0 V16 - V4 

2 - l 
2 

5. V4 + V2, -
V4 ; V2 

:±: i\/3 
V4 ; V2 

V9-V3 V9+ \Y3 
7. V3 - V9, 

2 
:±: i\/3 

2 
2V2 - V4 V4 - 2V2 V4 + 2V2 

9• 2 ' 4 
:±: i\/3 

4 

11. V49 - V7 + 2, 

13 �3!10 - �3'12 - .!_ 
• v 10 v lL. 2' 

15. -1 :±: i, 1 :±: V3 

V7-V49+4 V7+V49 
±i\/3----

2 2 
m-ViS-1 m+ViS 

±i\/3-----
2 2 

17. -l±i, l±i\/3 

19. ±i, -2 :±: V2 21. 2 :±: i, ±iv's 

23. Since D2 
= -27(90)2 -4(-91)3 

= 2,795,584 > 0, all three solutions are real. 

25. Since D2 
= -27(-72)2 -4(-55)3 

= 525,532 > 0, all three solutions are real. 

27. Since D2 
= -27(-136)2 -4(-47)3 

= -84,100 < 0, there is one real solution and one pair of complex 
conjugates. 

.. Exercises 8.6 Pages 425-427 

True or False 

1. true 2. false 3. false 

Exercises 

1. a. Let P = (p(x)) and a = x + P in Z3[x]/P. The elements of Z3[x]/P are 

{O, 1, 2, a, a + 1, a + 2, 2a, 2a + 1, 2a + 2}, 
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where 0 = 0 + P, 1 = 1 + P, and 2 = 2 + P. Addition and multiplication tables are as follows: 

+ 0 1 2 a a+ 1 a+2 2a 

0 0 1 2 a a+ 1 a+2 2a 

1 1 2 0 a+ 1 a+2 a 2a + 1 

2 2 0 1 a+2 a a+ 1 2a + 2 

a a a+ 1 a+2 2a 2a + 1 2a + 2 0 

a+ 1 a+ 1 a+2 a 2a + 1 2a + 2 2a 1 

a+2 a+2 a a+ 1 2a + 2 2a 2a + 1 2 

2a 2a 2a + 1 2a + 2 0 1 2 a 

2a + 1 2a + 1 2a + 2 2a 1 2 0 a+ 1 

2a + 2 2a + 2 2a 2a + 1 2 0 1 a+2 

0 1 2 a a+ 1 a+2 2a 

0 0 0 0 0 0 0 0 

1 0 1 2 a a+ 1 a+2 2a 

2 0 2 1 2a 2a + 2 2a + 1 a 

a 0 a 2a 2a + 1 1 a + 1 a+2 

a+ 1 0 a + 1 2a + 2 1 a+2 2a 2 

a+2 0 a+2 2a + 1 a+ 1 2a 2 2a + 2 

2a 0 2a a a+2 2 2a + 2 2a + 1 

2a + 1 0 2a + 1 a+2 2a + 2 a 1 a+ 1 

2a + 2 0 2a + 2 a + 1 2 2a + 1 a 1 

2. a. Z2[x]/(p(x)) = {O, 1, a, a + 1} is a field. 

c. Z2[x]/(p(x)) = {O, 1, a, a + 1, a2, a2 + 1, a2 + a, a2 + a + 1} is a field. 

e. The elements of Z3[x]/(p(x)) are given by 

{O, 1, 2, a, a + 1, a+ 2, 2a, 2a + 1, 2a + 2}. 

This ring is not a field, since a + 2 does not have a multiplicative inverse. 

3. b. (a0 + a1a + a2a
2
)(b0 + b1a + b2a

2
) 

= (a0b0 + 2a1b2 + 2a2b1 + 2a2b2) 
+ (a0b1 + a1b0 + 2a2b2)a 
+ (a0b2 + a1b1 + a1b2 + a2b0 + a2b1 + a2b2)a

2 

c. ( a2 + a + 2 )-1 
= a + 1 

2a + 1 2a + 2 

2a + 1 2a + 2 

2a + 2 2a 

2a 2a + 1 

1 2 

2 0 

0 1 

a+ 1 a+2 

a+2 a 

a a+ 1 

2a + 1 2a + 2 

0 0 

2a + 1 2a + 2 

a+2 a+ 1 

2a + 2 2 

a 2a + 1 

1 a 

a + 1 1 

2 2a 

2a a+2 
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5. b. (a0 + a1a + a2
a2)(b0 + b1a + b2

a2) 
= (a0b0 + 4a1b2 + 4a2b1) 

+ (a0b1 + a1b0 + 4a1b2 + 4a2b1 + 4a2b2)a 
+ (aob2 + a1b1 + a2b0 + 4a2b2)a2 

c. ( a2 + 4a )-1 = 4a2 + 3a + 2 
7. a. 0, 1, 2, a, a + 1, a + 2, 2a, 2a + 1, 2a + 2, a2, a2 + 1, a2 + 2, 2a2, 2a2 + 1, 

2a2 + 2, a2 + a, a2 + a+ 1, a2 + a+ 2, 2a2 + a, 2a2 + a + 1, 

2a2 + a+ 2, a2 + 2a, a2 + 2a + 1, a2 + 2a + 2, 2a2 + 2a, 2a2 + 2a + 1, 

2a2 + 2a + 2 
9. a. The polynomial p(x) = x4 + x2 + 1 is irreducible over Z2. Let a be a zero of p(x) in Z2[x]/(p(x)). The 

quotient ring 

Z2[x]/(p(x)) = {O, 1, a, a+ 1, a2, a2 + 1, a2 +a, a2 +a+ 1, a3, 
a3 + 1, a3 + a, a3 + a + 1, a3 + a2, a3 + a2 + 1, 

a3 + a2 + a, a3 + a2 + a + 1} 

containing 24 elements is a field. 

c. The polynomial p(x) = x3 + 2x2 + x + 1 is irreducible over Z3. Let a be a zero of p(x) in 

Z3[x]j(p(x)). The quotient ring 

Z3[x]l(p(x)) = {O, 1, 2, a, a + 1, a + 2, 2a, 2a + 1, 2a + 2, a2, a2 + 1, 

a2 + 2, 2a2, 2a2 + 1, 2a2 + 2, a2 +a, a2 +a+ 1, a2 +a+ 2, 
ci + 2a, a2 + 2a + 1, a2 + 2a + 2, 2a2 + a, 2a2 + a + 1, 

2a2 + a + 2, 2a2 + 2a, 2a2 + 2a + 1, 2a2 + 2a + 2} 

containing 33 elements is a field. 

11. fi(-V9 + 5\o/3 + 1) 
13. a. 3, 4 c. 2, 3 e. 5, 5 
15. a, 2a + 1 17. a, 2a2 + 3a, 3a2 + a + 4 

.. Appendix Exercises Pages 437-439 

1. For x = 0, the statement 02 > 0 is false. 

3. For a = 0 and any real number b, the statement 0 · b = 1 is false. 

5. For x = -4, the statement -(-4) < l-41 is false. 

7. For n = 6, the statement 62 + 2(6) = 48 is true. 

9. For n = 5, the statement 52 < 25 is true. 

11. For n = 3, the integer 32 + 3 is an even integer. 

13. There is at least one child who did not receive a Valentine card. 

15. There is at least one senior who either did not graduate or did not receive a job offer. 

17. All of the apples in the basket are not rotten. 
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19. All of the politicians are dishonest or untrustworthy. 

21. There is at least one x EA such that x $. B. 

23. There exists a right triangle with sides a and b and hypotenuse c such that c2 * a2 + b2. 

25. Some complex number does not have a multiplicative inverse. 

27. There are sets A and B such that the Cartesian products A X B and B X A are not equal. 

29. For every complex number x, x2 + 1 * 0. 

31. For all sets A and B, the set A is not a subset of A n B. 

33. For any triangle with angles a, {3, and y, the inequality a + f3 + 'Y < 180° holds. 

35. For every real number x, 2x > 0. 

37. TRUTH TABLE for p � -(-p) 

p -p -(�p) 

T F T 

F T F 

We examine the two columns headed by p and -( � p) and note that they are identical. 

39. TRUTH TABLE for -(p /\ (-p)) 

p �p p/\(-p) -(p /\ (-p)) 

T F F T 

F T F T 

41. TRUTH TABLE for (p /\ q) ==> p 

p q p /\ q (p /\ q) ==> p 

T T T T 

T F F T 

F T F T 

F F F T 

43. TRUTH TABLE for (p /\ (p => q)) => q 

p q p => q p /\ (p => q) (p /\ (p => q)) => q 

T T T T T 

T F F F T 

F T T F T 

F F T F T 
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45. TRUTH TABLE for (p => q) <=> ((�p) V q) 

p q p=>q �p (�p) v q 

T T T F T 

T F F F F 

F T T T T 

F F T T T 

We examine the two columns headed by p => q and ( � p) V q and note that they are identical. 

47. TRUTH TABLE for (p => q) <=> ((p /\ ( �q)) => ( �p)) 

p q p=>q �q p /\ ( �q ) �p (p /\ ( �q)) => ( �p) 

T T T F F F T 

T F F T T F F 

F T T F F T T 

F F T T F T T 

We examine the two columns headed by p => q and (p /\ ( � q)) => ( � p) and note that they are identical. 

49. TRUTH TABLE for (p /\ q /\ r) => ((p V q) /\ r) 

p q r p/\q/\r pVq (p V q) /\ r (p /\ q /\ r) => ((p V q) /\ r) 

T T T T T T T 

T T F F T F T 

T F T F T T T 

T F F F T F T 

F T T F T T T 

F T F F T F T 

F F T F F F T 

F F F F F F T 
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51. TRUTH TABLE for (p => (q /\ r)) <=> ((p => q) /\ (p => r)) 

p q r q /\ r p => (q /\ r) p=>q p=> r (p => q) /\ (p => r) 

T T T T T T T T 

T T F F F T F F 

T F T F F F T F 

T F F F F F F F 

F T T T T T T T 

F T F F T T T T 

F F T F T T T T 

F F F F T T T T 

We examine the two columns headed by p => (q /\ r) and (p => q) /\ (p => r) and note that they are identical. 

53. The implication (p => q) is true: My grade for this course is A implies that I can enroll in the next course. 

The contrapositive ( �q => �p) is true: I cannot enroll in the next course implies that my grade for 

this course is not A. 

The inverse ( �p => �q) is false: My grade for this course is not A implies that I cannot enroll in the 

next course. 

The converse (q => p) is false: I can enroll in the next course implies that my grade for this course is A. 

55. The implication (p => q) is true: The Saints win the Super Bowl implies that the Saints are the champion 

football team. 

The contrapositive ( �q => �p) is true: The Saints are not the champion football team implies that the 

Saints did not win the Super Bowl. 

The inverse ( �p => �q) is true: The Saints did not win the Super Bowl implies that the Saints are not 

the champion football team. 

The converse (q => p) is true: The Saints are the champion football team implies that the Saints did 

win the Super Bowl. 

57. The implication (p => q) is false: My pet has four legs implies that my pet is a dog. 

The contrapositive ( �q => �p) is false: My pet is not a dog implies that my pet does not have four legs. 

The inverse ( �p => �q) is true: My pet does not have four legs implies that my pet is not a dog. 

The converse (q => p) is true: My pet is a dog implies that my pet has four legs. 

59. The implication (p => q) is true: Quadrilateral ABCD is a square implies that quadrilateral ABCD is a rectangle. 

The contrapositive ( �q => �p) is true: Quadrilateral ABCD is not a rectangle implies that quadrilat

eral ABCD is not a square. 

The inverse ( � p => � q) is false: Quadrilateral ABCD is not a square implies that quadrilateral ABCD 

is not a rectangle. 

The converse (q => p) is false: Quadrilateral ABCD is a rectangle implies that quadrilateral ABCD is 

a square. 
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61. The implication (p => q) is true: xis a positive real number implies that xis a nonnegative real number. 

The contrapositive ( -q => -p) is true: x is a negative real number implies that xis a nonpositive real 

number. 

The inverse (-p => -q) is false: x is a nonpositive real number implies that x is a negative real 

number. 

The converse (q => p) is false: xis a nonnegative real number implies thatx is a positive real number. 

63. The implication (p => q) is true: 5x is odd implies that xis odd. 

The contrapositive (-q => -p) is true: xis not odd implies that 5x is not odd. 

The inverse (-p => -q) is true: 5x is not odd implies that xis not odd. 

The converse (q => p) is true: xis odd implies that 5x is odd. 

65. The implication (p => q) is true: .xy is even implies that xis even or y is even. 

The contrapositive (-q => -p) is true: xis odd and y is odd implies that xy is odd. 

The inverse (-p => -q) is true: .xy is odd implies that xis odd and y is odd. 

The converse (q => p) is true: xis even or y is even implies that .xy is even. 

67. The implication (p => q) is false: x2 
> y2 implies that x > y. 

The contrapositive ( -q => -p) is false: x < y implies that x2 
::=:::: y2. 

The inverse (-p => -q) is false: x2 ::=:::: y2 implies that x < y. 

The converse (q => p) is false: x > y implies thatx2 
> y2. 

69. Contrapositive: -(q V r) => -p, or ((-q) /\ (-r)) => -p 
Converse: (q V r) => p 
Inverse: -p => -(q V r), or -p => ((-q) /\ (-r)) 

71. Contrapositive: q => -p 

Converse: -q => p 

Inverse: -p => q 

73. Contrapositive: -(r /\ s) => -(p V q), or ((-r) V (-s)) => ((-p) /\ (-q)) 

Converse: (r /\ s) => (p V q) 

Inverse: -(p V q) => -(r /\ s), or ((-p) /\ (-q)) => ((-r) V (-s)) 
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Unique Factorization Theorem, 89, 94, 
386 

Unit, 270 
Unity, 269 
Universal quantifier, 429 
Universal set, 5 
UPC symbol, 123 
Upper 

bound,333 
triangular matrix, 56 

Vector, 122. 351 
Venn diagram, 5 

Well-ordered, 294 
Well-Ordering Theorem, 84 
Word, 119 

Zero 
characteristic, 321 
divisor, 113, 271 
matrix, 46 
of multiplicity m, 386 
of a polynomial, 381, 386 
of a ring, 266 
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Dihedral Group of Order 4, D4 
Octic Group 

e = (1) 
a = (1, 2, 3, 4) 

a2 = (1, 3)(2, 4) 

a3 = (1, 4, 3, 2) 

Group Table 

0 e a 

e e a 

a a a2 

a2 a2 a3 

a3 a3 e 

{3 {3 () 

'}' '}' {3 

d d 1' 

() () d 

a2 

a2 

a3 

e 

a 

d 

() 

{3 

1' 

{3 = (1, 4)(2, 3) 

1' = (2, 4) 
d = (1, 2)(3, 4) 

() = (1, 3) 

a3 {3 1' 

a3 {3 1' 

e 1' d 

a d () 

a2 
() {3 

1' e a3 

d a e 

() a2 a 

{3 a3 a2 

d () 

d () 

() {3 

{3 1' 

1' d 

a2 a 

a3 a2 

e a3 

a e 

Klein Four Group 
{e,a,b,ab} Group Table 

e a b ab 

e e a b ab 

a a e ab b 

b b ab e a 

ab ab b a e 

I 

I 

v 

' 
' 

' 

'd2 
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Dihedral Group of Order 3, D3 
Symmetric Group of Order 3, S3 
{e, p, p2, a, y, S} 
e = (1) 

p = (1, 2, 3) 

p2 = (1, 3, 2) 

Group Table 

0 e 

e e 

p p 

p2 p2 

a u 

r 'Y 

8 8 

p 

p 

p2 

e 

8 

u 

r 

a= (1, 2) 

y = (1, 3) 
8 = (2, 3) 

p2 
u 

p2 
u 

e 'Y 

p 8 

'Y e 

8 p 

<r p2 

r 8 

r 8 

8 a 

<r 'Y 

p2 p 

e p2 

p e 

Quaternion Group 
{l,i,j,k, -1, -i, -j, - k}  

Group Table 

1 i j k -1 -i -j -k 

1 1 l j k -1 -i -j -k 

l l -1 k -j -1 1 -k j 

j j -k -1 l -j k 1 -1 

k k j -z -1 -k -j l 1 

-1 -1 -i -j -k 1 i j k 

-i -i 1 -k j i -1 k -j 

-j -j k 1 -z j -k -1 l 

-k -k -j i 1 k j -i -1 

1 
I 

I 

I 

I L3 

2 
' 

' 
' 

' 
'

, 

Circular Order of Multiplication 

k 
• 

j _� 
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