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In Mathematical Methods for Physics using Microsoft Excel, readers will investigate topics
from classical to quantum mechanics, which are often omitted from the course work. Some
of these topics include rocket propulsion, Rutherford scattering, precession and nutation of
a top under gravity, parametric oscillation, relativistic Doppler effect, concepts of entropy,
kinematics of wave packets, and boundary value problems and associated special func-
tions as orthonormal bases. Recent topics such as the Lagrange point of the James Webb
Space Telescope, a muon detector in relation to Cherenkov’s radiation, and information
entropy and H-function are also discussed and analyzed. Additional interdisciplinary
topics, such as self-avoiding random walks for polymer length and population dynamics,
are also described. This book will allow readers to reproduce and replicate the data and
experiments often found in physics textbooks, with a stronger foundation of knowledge.
While investigating these subjects, readers will follow a step-by-step introduction to com-
putational algorithms for solving differential equations for which analytical solutions are
often challenging to find. For computational analysis, features of Microsoft Excel® includ-
ing AutoFill, Iterative Calculation, and Visual Basic for Applications are useful to conduct
hands-on projects. For the visualization of computed outcomes, the Chart output feature
can be readily used. There are several first-time attempts on various topics introduced in
this book such as 3D-like graphics using Euler’s angle and the behavior of wave functions
of harmonic oscillators and hydrogen atoms near the true eigenvalues.

Shinil Cho completed his graduate studies at the Seoul National University (MS) and
the Ohio State University (PhD). He has conducted research in statistical physics and
cryogenic magnetic resonance spectroscopy. Currently he is a Professor at La Roche
University. His current research interests include quantum computation and biometric
authentication.
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Preface

« I OFTEN SAY THAT WHEN you can measure what you are speaking about, and express
it in numbers, you know something about it; but when you cannot express it in

numbers, your knowledge is of a meager and unsatisfactory kind; it may be beginning of

knowledge, but you have scarcely in your thoughts advanced to the stage of Science.”

William Thomson (Lord Kelvin)
1824-1907

Mathematics is the queen of physics. Without it, physics cannot make quantitative argu-
ments. Although there are many books on mathematical physics, books of concise descrip-
tions of advanced topics with an easy-to-read guide of computation and visualization are
few. This book aims to demonstrate how to study the subjects of physics with numerical
analysis as supplemental material for self-study. This book also aims to give you tips on
computational algorithms. For number crunching, we use Microsoft Excel®. Its AutoFill
and macro (Visual Basic for Applications) features are useful for conducting hands-on
computational projects. For the visualization of computed results, we use the Chart output
feature.

There is a wide spectrum of topics covered by this book, from classical mechanics to
quantum mechanics. Chapter 1 demonstrates graphical representations of the dynamics
of a projectile with air resistance, rocket propulsion, and three-body problems including
the Lagrange points, Rutherford scattering, and motions of a top. In Chapter 2, you ana-
lyze oscillations with external damping and driving forces, parametric oscillations, and
coupled oscillation. Chapter 3 describes wave properties including the relativistic Doppler
effect and foundation of wave optics such as the Fourier transform, Huygens’s principle,
and diffractions. Chapter 4 describes electromagnetic potentials and EM waves derived
from Maxwell’s equations. The main theme of Chapter 5 is entropy, from its thermody-
namical definition to that of information. Chapter 6 guides special functions that we apply
to boundary value problems. The concept of orthonormal basis is the main theme and
shows series expansions using various special functions. Chapter 7 discusses the kinemat-
ics of wave packets and how eigenfunctions and eigenvalues are determined by the bound-
ary condition of a particle in a box, a harmonic oscillator, and a hydrogen atom using a
shooting method. In Chapter 8, we discuss polymer properties such as elasticity and length
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determined by self-avoiding walks. Several models of population dynamics are also intro-
duced in this chapter to learn how to establish a model and visualize their outcomes.

It is the author’s wish that readers enjoy the journey of analyzing these topics and feel
them on their computers.
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CHAPTER 1

Classical Mechanics

OPICS OF CLASSICAL MECHANICS are the foundation of physics. The mathematics of

differential equations in classical mechanics can be applied to other areas of phys-
ics. Computational algorithms for numerical solutions of differential equations are use-
tul when analytical solutions are difficult to find. We demonstrate numerical solutions of
topics in classical mechanics which we often skip in lectures, including projectile motions
with air resistance, rocket propulsion, Rutherford scattering, three-body problems, and
motions of a top.

1.1 PROJECTILE MOTION WITH AIR RESISTANCE

In general physics, we usually assume no air resistance for projectile motions, introducing
only terminal velocity. Let us analyze the projectile motion with air resistance in both the

horizontal and vertical directions. The equations of motion including the air resistance are

m dv, =—kv,
ddt (1.1)
Vy
T g —kv,
m 5t mg —kv

where the terms —kv, and —kv, are the air resistances proportional to the speed of the
object and the coefficient k is the proportional constant. With the initial conditions, x, = y,
=0, v,9 = v,cos 6, and v, = vysin 0, where 6, is the initial projection angle, the analytical
solution is given by

_ v
v, (t)=v,cos0,e™™, x(t) =

:lo (1 e )

v,(t)=—5 +De, )’(t)IB(l—e‘“’)——ét
a a a

(1.2)

where a = k/m and D = v +g/a.
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For the numerical solutions, we apply the Euler method of solving differential equations
to Equation 1.1. Refer to Appendix A2 for the Euler method. Figure 1.1 shows the VBA
codeassumingg = 1, a = 0.5, v0= 5. Thetimeincrementisdt = 0.08.

Figure 1.2 shows the computed trajectories with the initial angle from 75° to 5° by 10°
step. With the air resistance, the maximum range is not attained with the initial angle of
approximately 45° but approximately 30° with a detailed analysis.

Sub Projectile()
Cells(1, 1) = "Projectile motion with air -resistance using Euler's method"
Dim x(100)
Dim y(100)
Dim vx(100)
Dim vy(100)
Dim theta(8) 'Initial angle from 5 to 75 degrees
Pi=3.1415927
'Initialization:
Fori=0To 99
x(i)=0
y(i)=0
vx(i)=0
vy(i)=0
Next i
g=1 'Gravitational acceleration
a=0.5 'Coefficient of air resistance
v0=5 'Initial speed
dt=0.08 'Time increment
Cells(2,3) ="g=":Cells(2,4) =g
Cells(2, 6) = "alpha=": Cells(2, 7) = a
Cells(2, 9) = "v0=": Cells(2, 10) = vO
'Calculate x, y, vx, vy for a given initial angle theta.
Radangle = Pi / 180 'Angle unit conversion from degree to radian.
Fori=5To 75 Step 10
'Make integers from 1 to 8:
ii=(i+5)/10
theta(ii) = i * Radangle 'Initial angle in radian
'Initial velocities:
vx(0) = vO * Cos(theta(ii))
vy(0) = vO * Sin(theta(ii))
RowNum =100 * (i - 1)
Cells(3 + RowNum, 1) = "Angle=": Cells(3 + RowNum, 2) =i
Cells(3 + RowNum, 3) = "degrees"
Cells(4 + RowNum, 3) = "time"
Cells(4 + RowNum, 4) = "x"
Cells(4 + RowNum, 5) ="y"
Cells(4 + RowNum, 6) = "vx"
Cells(4 + RowNum, 7) = "vy"
Forj=0To 97
j=j+1
Alphax = -a * vx(j)
Alphay = -g - a * vy(j)
vx(jj) = vx(j) + Alphax * dt
X(ij) = x(j) + vx(j) * dt
vy(ij) = vy(j) + Alphay * dt
(i) = y() + vy(j) * dt
Cells(5 + RowNum +j, 3) =j * dt
Cells(5 + RowNum + j, 4) = x(j)
Cells(5 + RowNum +j, 5) = y(j)
Cells(5 + RowNum + j, 6) = vx(j)
Cells(5 + RowNum +j, 7) = vy(j)
Next j
Next i
End Sub

FIGURE 1.1 VBA code for the projectile motion with air resistance.
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Projectile motion with air resistance

FIGURE 1.2 Trajectories with different initial angles of projectile motion with air resistance.

Note: Why does the air resistance depend on the object speed?

Imagine thata board of cross-sectional area A is moving at speed V through air as shown
in Figure 1.3. Here, we assume that V is slower than the average speed of air “particles” v.
These particles hit the board from both the front and back sides of the moving board.

Consider the change in momentum of a single particle hitting from the backside is
given by

Ap, =m(v—V)—m(—(v—V))=2m(v—V), (1.3)
and the change in momentum of a single particle hitting from the front side is given by
Ap, =—m(v+V)—m(v+V)=—2m(v+V). (1.4)

Suppose the numbers of air particles from the backside and the front side per unit time
are I, and I,, respectively, the net force exerted on the board, which is the air resistance, is
given by

F=(Ap)I, +(Ap,) 1. (1.5)
Ground frame Frame fixed to moving board
—& 'y L v ~(v+V)
v -V ! .
e — —® . — % !
| |
1] |
+X (v-V)At ~(v+V) At

FIGURE 1.3 A plate moving at speed V to +x-direction.
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Let the mass density of the air be p. In the frame of reference fixed to the moving board,
in a time interval At, all air particles in the volume (v—V)eAteA at the backside collide with
the board to have

I =pA(v-V). (1.6)

Similarly, all air particles in the volume (v+V)eAteA at the backside collide with the board
per unit time to have

L =pA(v+V). (1.7)
Therefore, the air resistance is proportional to the speed of the moving board V,

F=(Ap)], +(Apy)L, =2m(v—V )pA(v=V)—=2m(v+V )pA(v+V)=—8mpAvV. (1.8)

1.2 ROCKET PROPULSION

Rockets are propelled by the momentum produced by the exhausted gas particles. Because
rockets lose their masses as the fuel burns, the equations of motion of rockets involve
time-varying mass. Assume a rocket projected vertically upward in a uniform gravity field,
having velocity v(f), mass m(t) at time ¢; let the initial velocity and the initial altitude of
the rocket be both zero; assume the exhaust gas velocity is —v; relative to the rocket and
a constant rate of expending the fuel is € per unit time. At time ¢ + dt, the rocket velocity
becomes v + dv, and the rocket mass is reduced to m — dm by burning the fuel dm to pro-
duce the high-speed gas of exhaust velocity —v;. The rocket mass at time ¢ should be given
by m(t) = m, — et, where m, is the initial rocket mass (i.e., the rocket body + the loaded fuel).
For example, numerical data of Saturn V are m,=2.8 X 10° kg, ¢ = 20 X 10° kg, and v;= 2.40
% 10° m/s. These data are cited from NASA’s web page [1].

The changing rate of the momentum of the rocket gives the external force exerted on
the rocket.

(m—dm)(v+dv)+dm(v+dv—v,)—mv

—-m 1.9
o g (1.9)
From Equation 1.9, the acceleration of the rocket is
dv 1 dm
av_, Lam_ 1.10
it T madr % (110)

where dm/dt = € because m(t) = m, — et. Solving Equation 1.10, the velocity is given by

W(t)=gt—vInjl——" ¢, (111)
m
and the altitude of the rocket is
t
h(t) =I y(t)dt = - L g2 +vmeK1—8tjln 1- %4 +8t}. (1.12)
0 2 e mo mO mO
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Sub Rocket()
Cells(1, 1) = "Launching Saturn V using Euler's method"
Dim a(140)
Dim v(140)
Dim h(140)
Dim M(140)
Dim Vtheory(140)
Dim Ytheory(140)
Dim Mtheory(140)
Fori=0To 139
ai)=0
v(i)=0
y(i)=0
M(i)=0
Next i
g=9.8/1000 'Gravitational Acceleration in km/sec’2
vf=2.4 'Exhaust speed in km/s.
t=0
dt=1 'Time increment in second.
dM =20 'Burning rate of fuel in ton/sec
M(0) = 2800 'Initial rocket mass with fuel in ton.
Cells(2, 1) = "Payload": Cells(3, 1) = M(0): Cells(2, 2) = "vf": Cells(3, 2) = vf
Cells(2, 3) = "dt": Cells(3, 3) = dt
Cells(5, 2) = "Numerical"
Cells(6, 1) = "Time": Cells(6, 2) = "Speed": Cells(6, 3) = "Altitude": Cells(6, 4) = "Mass"
Cells(5, 6) = "Theory"
Cells(6, 6) = "Speed": Cells(6, 7) = "Altitude": Cells(6, 8) = "Mass"
Fori=0To 130
t=i*dt
a(i) = -g +vf/((M(0) / dM) -t)
'Euler's method
v(i+ 1) = v(i) + a(i) * dt
h(i + 1) = h(i) + (v(i) + v(i + 1)) *dt / 2
M(i + 1) = M(i) - dM * dt
Cells(7 +i,1) =i * dt
Cells(7 +1i, 2) = v(i)
Cells(7 +1i, 3) = h(i)
Cells(7 +1i, 4) = M(i)
'Theoretical calculation
Epsilon = Abs(1 -t * dM / M(0))
Vtheory(i) = -g * t - vf * Log(Epsilon)
Ytheory(i) = -g *t 2~ 2/ 2 + (vf * M(0) / dM) * (Epsilon * Lo g(Epsilon) + 1 - Epsilon)
Mtheory(i) = M(0) - dM * t
Cells(7 +1i, 6) = Vtheory(i)
Cells(7 +1i, 7) = Htheory(i)
Cells(7 +1i, 8) = Mtheory(i)
Next i
End Sub

Use the average velocity
between t and t+dt.

FIGURE 1.4 VBA code of the rocket propulsion.

Figure 1.4 shows the VBA code of launching Saturn V. Because one may expect that the
accelerated motion is smooth in time, we apply Euler’s method (Appendix A2) for obtain-
ing numerical solutions of v(t) and h(f). In this code, we also calculate the theoretical values
using Equations 1.11 and 1.12. Because the initial velocity and the initial altitude of the
rocket are both zero, the altitude of the next instance needs to have a non-zero velocity for
Euler’s method. For this reason, one may use the average velocity between two successive
times to calculate the altitude.

Figure 1.5 shows the time dependence of the altitude, the velocity, and the mass of Saturn
V. The solid lines are the computed curves and the broken lines are theoretical curves. The
theoretical and numerical calculations are in good agreement. For 120 s after launching
the rocket, the altitude reaches approximately 120 km, and the rocket mass becomes only
about 14% of the initial mass!
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FIGURE 1.5 Time dependence of payload of Saturn V.

1.3 TWO- AND THREE-BODY PROBLEMS OF UNIVERSAL GRAVITY
1.3.1 Two-Body System (Sun-Earth)

Before we analyze three-body systems, we analyze a two-body system such as the Earth
around the Sun to demonstrate how planetary motions are computed. For this analysis, we
may consider that the Sun is fixed in space. Suppose position (x,, y.) and velocity (u,, v.) of
the Earth are given by equations of motion,

dxe due _ Xe
=U, T, s 3

;t and ddt R} (1.13)
Ve _y e __GMm, e
dt dt R}

where G is the universal gravitational constant and Ms is the mass of the Sun. For the
numerical calculation, we use the astronomical unit, AU. One AU is the average distance
between the Sun and the Earth, denoted as Re. With the AU unit, GM, = 4n*> AU%/yr? [2].
The computational algorithm used here is the Runge-Kutta method. Refer to Appendix
A3 for the Runge-Kutta method. Figure 1.6 lists the VBA code for this calculation, and
Figure 1.7 shows the orbit of the Earth assuming that the Earth starts moving at v, = 2z
AUlyear from the initial position (1 AU, 0). The orbit is nearly a circle as expected.

1.3.2 Three-Body System (Sun-Earth-Moon)

Figure 1.8 is a schematic diagram of a three-body, e.g., Sun-Earth-Moon, system. We again
assume that the Sun is at the origin of a fixed coordinate frame. Because the orbits of
the Earth and the Moon are nearly on the same plane, we may assume their motions are
two-dimensional.
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Sub Earth()

Cells(1,1)="0rbit of Earth”

P1=3.141592654

Cells(2,1)="GM”: GM=4*PIA2; Cells(2,2)=GM: Cells(2,3)="AUA3/yrA3"

'Initial conditions:
Cells(3, 2) = "Initial t": t=0: Cells(4, 2) = t
Cells(3, 3) = "Initial x": x=1: Cells(4, 3) = x
Cells(3, 4) = "Initial y": y=0: Cells(4, 4) =y
Cells(3, 5) = "Initial vx": vx=0: Cells(4, 5) = vx
Cells(3, 6) = "Initial vy": vy=2*PI: Cells(4, 6) = vy
Cells(3, 7) = "delta t": h=0.02: Cells(4, 7) = h

'Parmeter names:

Cells(10, 2) = "t"
Cells(10, 3) = "x"
Cells(10, 4) ="y"
Cells(10, 5) = "vx"

Cells(10, 6) = "vy"
'Runge-Kutter method:
n=1000 ‘number of iterations
Fori=0Ton
Cells(i+11,2) =t
Cells(i + 11, 3) =x
Cells(i +11,4) =y
Cells(i + 11, 5) = vx
Cells(i + 11, 6) = vy
Ix1 = gx(GM, t, x, y)
lyl=gy(GM, t, x, y)
kx1 = fx(t, X, y, VX, vy)
kyl = fy(t, x, y, vx, vy)
Ix2=gx(GM,t+h /2, x+h*kx1/2,y+h*kyl/2)
ly2=gy(GM,t+h/2,x+h*kx1/2,y+h*kyl /2)
kx2=fx(t+h/2,x+h*kx1/2,y+h*kyl/2,vx+h*Ix1/2,vy+h*lyl/2)
ky2 =fy(t+h/2,x+h*kx1/2,y+h*kyl/2,vx+h*Ix1/2,vy+h*lyl1/2)
Ix3=gx(GM, t+h /2, x+h*kx2/2,y+h*ky2/2)
ly3=gy(GM,t+h/2,x+h*kx2/2,y+h*ky2/2)
kx3=fx(t+h/2,x+h*kx2/2,y+h*ky2/2,vx+h*Ix2/2,vy+h *1ly2 /2)
ky3=fy(t+h/2,x+h*kx2/2,y+h*ky2/2,vx+h*Ix2/2, vy+h *1ly2/2)
Ix4 = gx(GM, t+ h, x + h * kx3, y + h * ky3)
ly4 = gy(GM, t + h, x + h * kx3, y + h * ky3)
kx4 = fx(t + h, x + h * kx3, y + h * ky3, vx + h * Ix3, vy + h * ly3)
kyd =fy(t+h,x+h*kx3,y+h *ky3, vx+ h *Ix3, vy + h * ly3)
vx=vx+h*(Ix1+2*Ix2+2*Ix3 +Ix4) / 6
vy=vy+h*(lyl+2*Ily2+2*Ily3+1y4) /6
x=x+h*(kx1+2*kx2+2*kx3+kx4)/6
y=y+h*(kyl+2*ky2+2*ky3 +ky4)/6
t=t+h
Next i
End Sub

Function gx(GM, t, x, y)

'dvx/dt=gx
gx=-GM *x /((x~2+y ~2) 7 1.5)

End Function

Function gy(GM, t, x, y)

'dvy/dt=gy
gy=-GM*y/((x"2+y~2)"15)

End Function

Function fx(t, X, y, vx, vy)
'vx=dx/dt

fx = vx
End Function

Function fy(t, X, y, vx, vy)
'vy=dy/dt
fy=vy
End Function

FIGURE 1.6 'VBA code for the Earth orbit.
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Earth Orbit when v,=2n AU/yr

15

-1.5 1.5
-1.5
FIGURE 1.7 Earth orbit using the AU unit.
¥
Earth (M.)
rem
'rE
rﬂ’?
sun {MO} /_ Moon (Mm}
K | ¥
FIGURE 1.8 Positions of Sun-Earth-Moon.
Equations of motions are
du X Xy — X
dxe:ue diez—GMsfg+GMm m3 ¢
;t and ) t . Tom (1.14)
V —
e v, © =-GM,”¢ +GM,, I )e
dt dt A Ton
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for the Farth, and

W _ d:'" =-GM, “ +GM, T

ddt and ) t T Tem (1.15)
Dy, 1= oMY oM, Y0

dt dt . Tom

for the Moon, where r,,, = \/(xe %)+ (Ve = Ym)

Because the actual scaled orbiting radii are difficult to draw on paper, the initial posi-
tions of the Earth and the Moon are changed to (10 AU, 0) and (10.1 AU, 0), respectively.
The initial velocity of the Earth is (0, 2.0) and that of the Moon is (0, 1.5). While the actual
mass ratios are K, = M, /M, = 0.037x10-° and K, = M_/M, = 3.00 X 10-°, we assume K, =
5.0 X 10~*and K, = 1.0x10~° to show the orbits clearly on a graph. The equations of motion
are now

du, _ _am? Yoy 4n’k,, Xm —Xe du _ g Fm 4K, Xe = Xm

dt r o dt r o

J ‘ “*  and p e em (1.16)
Ve :_4n2L§+4nzkm ymaye ﬁ:_4n2yign+4n2Ke )/e 3)/,,,

dt Te Tem dt Te Tem

For analyzing the planetary problems, it is better to apply the Runge-Kutta method
(Appendix A3). Figure 1.9 lists the VBA code for the three-body system, and Figure 1.10
shows the computed orbits of Earth and the Moon. The actual mass ratios are very small,
and we adjusted the ratios in computation to accentuate the orbit of the Moon.

1.3.3 Euler’s Satellite

In the three-body problem, assume the mass of the third object, m, is much smaller than
the two fixed-in-space objects M, and M,. Let M, be at the origin and M, is at (d, 0). The
position of the third object is the coordinate (x, y). What is the two-dimensional orbit of
the third object as the inter-planetary distance between M, and M, is changed?

The equation of motion for the third object is given by

du X x—d
di:u 52_4752 N +4m’K (e—d) 4 302
jt and p (x Y ) (x— v ) (1.17)
y _ v _ Yy J
E—V E—_‘.‘:nzﬁ‘i“LﬂZZK ) ) 3
(x +y) ((x—d) +y)

where GM, is scaled to be 1 and the mass ratio M, = M,/M,= 0.5.

The VBA code for the motion of the third object m is very much similar to the previ-
ous three-body problem. Figure 1.11 shows the orbits of the Euler satellite for different
distances between M, and M,. Depending on the distance between M, and M, the satellite
exhibits quite different orbits.
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Sub SunEarthMoon()

Cells(1, 1) = "Sun-Earth-Moon"
GM =39.478 'GM =4*pai”2 is the astronomical unit (AU).
KE = 0.0005 'KE=GM(earth), actual value = 3.00E-6
KM = 0.00001 'KM=G(moon), actual value=0.037E-6

'Writing labels and initial value:
'Labels:

Cells(3, 2) = "Initial t": t = 0: Cells(4, 2) =t
Cells(3, 3) = "Initial XE": xE = 10: Cells(4, 3) = xE
Cells(3, 4) = "Initial yE": yE = 0: Cells(4, 4) = yE
Cells(3, 5) = "Initial vxE": vxE = 0: Cells(4, 5) = vxE
Cells(3, 6) = "Initial vyE": vyE = 2: Cells(4, 6) = vyE
Cells(3, 7) = "Initial xM": xM = 10.1: Cells(4, 7) = xM
Cells(3, 8) = "Initial yM": yM = 0: Ce lls(4, 8) = yM
Cells(3, 9) = "Initial vxM": vxM = 0: Cells(4, 9) = vxM
Cells(3, 10) = "Initial vyM": vyM = 1.5: Cells(4, 10) = vyM

Cells(3, 11) = "delta t": h = 0.04: Cells(4, 11) = h 'Time increment
'Parmeter names:

Cells(6, 2) = "t"

Cells(6, 3) = "E-x"

Cells(6, 4) = "E-y"

Cells(6, 5) = "E-vx"

Cells(6, 6) = "E-vy"

Cells(6, 7) = "M-x"

Cells(6, 8) ="M-y"

Cells(6, 9) = "M-vx"

Cells(6, 10) = "M-vy"
'Runge-Kutter method:
n=1000 'iteration #
Fori=0Ton

Cells(i+7,2)=t

Cells(i + 7, 3) = xE

Cells(i + 7, 4) = yE

Cells(i + 7, 5) = vxE

Cells(i + 7, 6) = vyE

Cells(i+7,7) =xM

Cells(i+7,8)=yM

Cells(i + 7, 9) = vxM

Cells(i + 7, 10) = vyMm
IXE1 = gxE(GM, KM, xE, yE, XM, yM)
lyE1 = gyE(GM, KM, XE, YE, XM, yM)
kxE1 = fXE(xM, yM, vXE, vyE)
kyE1 = fyE(xM, yM, vxE, vyE)
IXM1 = gxM(GM, KE, xE, yE, xM, yM)
lyM1 = gyM(GM, KE, xE, yE, xM, yM)
kxM1 = fxM(xM, yM, vxM, vyM)
kyM1 = fyM(xM, yM, vxM, vyM)
IXE2 = gXE(GM, KM, XE +h * kxE1/2,yE+h *KkyE1/2,xM + h * kxM1/2,yM + h * kyM1/ 2)
IyE2 = gyE(GM, KM, XE + h * kXE1 /2, yE+h * kyE1 /2, xM + h * kxM1/2,yM +h * kyM 1/2)
KXE2 = fXE(XE + h * kxE1 /2, yE+h * kyE1 /2, vxE+h *IXE1 /2, vwyE+h *IyE1/2)
kyE2 = fyE(XE + h * kxE1 /2, yE+h * kEyl/2,vxE+h *IXEL /2, vyE+h *IyE1/2)
IXM2 = gxM(GM, KE, XE + h * kxEL /2, yE+h *kyE1 /2, xM +h * kx M1 /2,yM + h * kyM1 / 2)
lyM2 = gyM(GM, KE, XE+h *kxE1/2,yE+h *KkyE1/2,xM +h *kxM1/2,yM +h * kyM1 / 2)
kxM2 = fxM(xM + h * kxM1/2,yM +h *kyM1 /2, vxM + h * IXM1 /2, vyM + h * lyM1/ 2)
kyM2 = fyM(xM +h *kxM1/2,yM+h *kyM1/2,vxM +h *IxM1/2,vyM + h * lyM1/ 2)
IXE3 = gXE(GM, KM, XE + h * kxE2 /2, yE+h *kyE2 /2, XM + h * kxM2 /2, yM + h * kyM2 / 2)
IyE3 = gyE(GM, KM, XE + h * kxE2 /2, yE+h * kyE2 /2, xM + h * kxM2 / 2, yM + h * kyM2 / 2)
kxE3 = fXE(XE + h * kxE2 /2, yE+h * kyE2 /2, vxE + h * IXE2 / 2, vwyE + h * IyE2 / 2)
kyE3 = fyE(XE + h * kxE2 /2, yE+h * kyE2 /2, vxE + h * IXE2 /2, wE + h * IyE2 / 2)
IxM3 = gxM(GM, KE, XE + h * kxE2 / 2, yE+ h * kyE2 / 2, xM + h * kxM2 / 2, yM + h * kyM2 / 2)
lyM3 = gyM(GM, KE, XE + h * kxE2 /2, yE+h *kyE2 / 2, XM + h * kxM2 / 2, yM + h * kyM2 / 2)
kxM3 = fxM(xM + h * kxM2 /2, yM + h * kyM2 / 2, vxM + h * IxXM2 / 2, wyM + h * lyM2 / 2)
kyM3 = fyM(xM + h * kxM2 /2, yM + h * kyM2 /2, vxM + h * IxM2 / 2,vyM + h * lyM2 / 2)

FIGURE 1.9 VBA code for the Sun-Planet-Satellite system.
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IXE4 = gxE(GM, KM, XE + h * kxE 3, yE + h * kyE3, xM + h * kxM3, yM + h * kyM3)
lyE4 = gyE(GM, KM, XE + h * kxE 3, yE + h * kyE3, xM + h * kxM3, yM + h * kyM3)
kxE4 = fXE(XE + h * kxE3, yE + h * kyE3, vxE + h * IXE3, vyE + h * IyE3)
kyE4 = fyE(XE + h * kxE3, yE + h * kyE3, vxE + h * IXE3, vyE + h * lyE3)
IXM4 = gxM(GM, KE, xE + h * kxE3, yE + h * kyE3, xM + h * kxM3, yM + h * kyM3)
lyM4 = gyM(GM, KE, xE + h * kxE 3, yE + h * kyE3, xM + h * kxM3, yM + h * kyM3)
kxM4 = fXM(xM + h * kxM3, yM + h * kyM3, vxM + h * IXM 3, vyM + h * lyM3)
kyM4 = fyM(xM + h * kxM 3, yM + h * kyM3, vxE + h * IXM3, vyM + h * lyM3)
VXE=VXE+h * (IXE1 +2 * IXE2 + 2 * IXE3 + IXxE4) / 6
VWE=vyE+h* (lyE1+2*lyE2 + 2 * lyE3 + lyE4) / 6
XE =XE +h * (kxE1 + 2 * kxE2 + 2 * kxE3 + kxE4) / 6
YE=yE+h*(kyE1l+2 * kyE2 + 2 * kyE3 + kyE4) / 6
VXM = VXM + h * (IXM 1 + 2 * IXM2 + 2 * IXM3 + IxM4) / 6
vwM=vyM+h * (lyM1+2 * lyM2 + 2 * lyM3 + lyM4) / 6
XM =xM + h * (kxM1 + 2 * kxM2 + 2 * kxM3 + kxM4) / 6
yM =yM+h * (kyM1 + 2 * kyM2 + 2 * kyM3 + kyM4) / 6
t=t+h
Next i
End Sub

Function gxE(GM, KM, XE, YE, XM, yM)
'dvxE/dt=gxE

gXE = -GM * XE / ((XE A 2+ YE A 2) A 1.5) - GM * KM * (XE - xM) / (((XM - XE) A 2 + (yM - yE) A 2) A 1.5)
End Function

Function gyE(GM, KM, xE, yE, XM, yM)
'dvyE/dt=gEy

gyE=-GM * yE / ((XEA 2+ yE A 2) A 1.5) - GM * KM * (VE - yM) / (((xM - XE) A 2 + (yM - yE) A 2) A 1.5)
End Function

Function gxM(GM, KE, xE, YE, XM, yM)
'dvxM/dt=gxM

gxM = -GM * XM / (XM A 2 + yM A 2) A 1.5) + GM * KE * (xE - xM) / (((xM - XE) A 2 + (yM - yE) A 2) A 1.5)
End Function

Function gyM(GM, KE, xE, yE, XM, yM)
'dvyM/dt=gyM

gyM=-GM *yM / (XM~ 2 +yM A 2) A 1.5) + GM * KE * (YE - yM) / (((xM - XE) A 2 + (yM - yE) A 2) A 1.5)
End Function

Function fxE(xE, yE, vxE, vyE)
'vxE=dxE/dt
fxE = vxE
End Function

Function fyE(Ex, Ey, vxE, vyE)
'vyE=dyE/dt

fyE = vyE
End Function

Function fxM(xM, yM, vxM, vyM)
'vxM=dxM/dt

fxM = vxM
End Function

Function fyM(xM, yM, vxM, vyM)
'vyM=dyM/dt

fyM = vyM
End Function

FIGURE 1.9 Continued.
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Sun-Earth-Moon
15
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FIGURE 1.10  Orbits of a planet and its satellite plane around the Sun.

Euler's satellite 1
1.5

15

-1.5

FIGURE 1.11A  Orbits of Euler’s satellite. Two planets are separated well (d=10): the satellite is orbit-
ing around M,. The initial position of the satellite is (1, 0) and the initial velocity is (0, 2m). The posi-
tion of M, is not shown in this diagram.
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Euler's Satellite 2

FIGURE 1.11B  Orbits of Euler’s satellite. Two planets are relatively close (d=3): the satellite is
orbiting around M, and M,. The initial position of the satellite is (1.5, 0) and the initial velocity is
(3.5,3.5).

Euler's satellite 3

3.5

FIGURE 1.11C  Orbits of Euler’s satellite. Two planets are close (d=0.5): the satellite is orbiting
enclosing M, and M,. The initial position of the satellite is (3.0, 0) and the initial velocity is (3.14, 0).

1.3.4 Lagrange Points

There are unique points in the three-body system, called the Lagrange points. The
Lagrange points are points of equilibrium for a small-mass object such as the James Webb
Space Telescope (JWST) in the gravitational field due to two massive orbiting bodies [3].
Figure 1.12 illustrates the Lagrange points. There are five Lagrange points where the net
universal gravitational forces of the Earth and the Sun on a small object m provide balance
with the centrifugal force of the orbiting object as observed from the Earth. Equation 1.20
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FIGURE 1.12 Lagrange points.

derived below describes this balancing condition. L2 is one of the five points in space where
JWST has been deployed. L2 is behind the Earth from the Sun and enables JWST’s sun-
shield to effectively protect its instruments from the electromagnetic radiation and heat of
the Sun, Earth, and Moon.

Let us find where L2 is. Let M, be the Sun and M, be the Earth. These two celestial bod-
ies M, and M, are huge compared with the third body m. Let the coordinates frame (X,
Y) be the frame fixed to the Sun-Earth system. The origin of the XY-frame is the center of
mass of the Sun and the Earth (CM in Figure 1.12). Notice that the XY-frame is a rotating
frame around the center of mass. Referring to Figure 1.12, the distance between the Sun
and the origin, r,, is given by

M, _ (M, /M)

- 7o = o (1.18)
M1+M2 1+(M2/M1)

T

where r, is the distance between M, and M,. Between the Sun and the Earth, r, =1 AU =
1.496 x 108 km.

Because the XY-frame is a rotating frame with angular velocity w,, the relative motion
of the third body as observed in the XY-frame is due to the forces exerted on the third body,
which are the centrifugal force and the Coriolis force in addition to the universal gravities
of m-M, and m-M,. Thus, the equation of motion of m in the XY-frame is given by

mid = F, + F, + moiF +2m(V x ®). (1.19)

In the above equation, | F |=G mM, and | =G mM,

2 2
n )

between M, and m and M, and m, respectively.

If the third object is at a point where the net force acting on the third body vanishes, the
third object must be at rest as observed in the XY-frame. In other words, from the Earth,
the velocity and the acceleration in Equation 1.19 are both zero and Equation 1.19 becomes

where 1, and r, are the distances

E +E +mwiF =0. (1.20)
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As shown in Figure 1.12, Equation 1.20 for the Lagrange point L2 is one-dimensional and
Equation 1.20 reads

M
¢ " 22+m03(2)(r—1;)=0 (1.21)
r (r—n)
where r,—r, is the distance from the center of mass to the Earth, and r—r, is the distance
from the center of mass to the third object. The angular velocity @, of the Sun and the

Earth can be calculated from the rotational motion of the Sun around the center of mass,

M, M
Mr,o; =G 12 2
To
and we obtain
o, = JG<M+M> _ JGM1<1+M23/MI>_ 122
To To
Plug Equation 1.22 into Equation 1.21 to obtain
1 M,/M, 1+M,/M
- - 2/ -+ * 23/ L(r—r)=0.
r° (r—n) 75
Let @ = M,/M, and 3 = (1+a)/r,*, then
~(r—1,)* —or’ +Pr*(r—n )’ (r—r,)=0. (1.23)

Therefore, the Lagrange point L2 is the point that satisfies the following equation,
f(r)=ocr2(r—r0)2—Brz(r—ro)z(r—rs):o. (1.24)

Figure 1.13 lists the VBA code to find the Lagrange point L2, where the net force on the
third body vanishes. L2 is the root of Equation 1.24, which can be found numerically. The
algorithm used here to find the root of the function f(r) is simple [4]. The algorithm starts
from a trial value of r guaranteed to be less than the root and increases the trial value by
small positive steps, backing up and having the step size every time f(r) changes sign. The
values of r generated by this procedure converge to the root, and the root-seeking step can
be terminated whenever the step size becomes less than the preset tolerance. The boxed
part of the code of Figure 1.14 shows this algorithm.

Figure 1.14 shows the calculated net force f(r) by changing the distance between the
third object and the Sun, r. The “zero point” of the force function f(r) is subtle and unstable,
indicating that the point L2 is not a stable equilibrium point. The calculated zero point is
1.01004 AU. Thus, the distance between the Earth and the third object is given by r — r, =
0.01004 AU = 1.502x10° km [5].



16 ®m Mathematical Methods for Physics Using Microsoft Excel

Sub Root()
Cells(2, 1) = "Finding L2 (Sun-Earth)"
'Data
Msun = 1.99E+30
Mearth = 5.98E+24
'Distance from Sun to Earth is 1 AU= 1.496E8 km.
Cells(2, 4) = "Mearth/Msun": alpha = Mearth / Msun: Cells(3, 4) = alpha
Cells(2, 5) ="CM": rs = alpha / (1 + alpha): Cells(3, 5) = rs
Cells(4,1) ="r"
Cells(4, 2) = "Net force"
beta =1 + alpha
'Calculate sum of gravity and centripetal force

Fori=0To 150 Finding a root
F ey f tion
NetForce = Fr(r, alpha, beta, rs) 7 Gtk
Cells(5+i,1)=r (1.24).
Cells(5 +1i, 2) = NetForce
Next i
'F_inE L_2 _________________________________
: Tolerance = 1.0E-6 'to find the zero with this tolerance.

1 Cells(5, 5) = "Iteration"
Cells(5, 6) = "Root"
'Initial guess from the net force
r=1.01 'Starting point
fold = Fr(r, alpha, beta, rs) 'Net force at the starting point. Fold>0
dr =0.0001 'Increment of distance
Iter=0
While Abs(dr) > Tolerance
Iter =Iter + 1
r=r+dr
Cells(5 + Iter, 5) = Iter: Cells(5 + Iter, 6) = r
If fold * Fr(r, alpha, beta, rs) > 0 Then GoTo Skip
r=r-dr
dr=dr/2 'Narrowing the increment width
v Skip: Wend
End Sub

Function Fr(r, alpha, beta, rs)
Fr=(r-1)A2+alpha*r~2-beta*(r-rs)*rr2*(r-1)"2
End Function

FIGURE 113 VBA code for finding the second Lagrange point.

L2 (Sun-Earth)
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400000 01 ;
balancing.
LO00UE-DL

LOOONT+N0

non n.po n.40 O.RM 1 4 1.40 1.60

.60

-2 0000 E-U1

-4 0N00F-M

FIGURE 1.14 Net force on the third object.
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Rutherford Scattering

Scattering
angle ¢

FIGURE 1.15  Scattering of a charged particle by a heavy nucleus.

1.4 RUTHERFORD SCATTERING — SCATTERING IN CENTRAL FORCE FIELD
1.4.1 Theory

Rutherford scattering describes the motion of an incoming charged particle such as an
alpha-particle scattered by a heavy target nucleus due to the Coulomb repulsive force [6].
The target nucleus (charge Ze) is assumed to be at rest in space. An incident particle (charge
ze and mass m) has an initial velocity v , far away from the nucleus as shown in Figure 1.15.
This is the same as the Kepler problem, similar to the discussion in Section 1.3.1, except
that the force is repulsive. Using conventional notations, the equation of motion of the
incident particle is

a’r 1 ze(Ze) T

me . (1.25)
dt*  4me, 1* r

In Figure 1.15, the length of a vertical line from the target nucleus to the incident direction
of the incoming particle is called the impact parameter b. Recall that the target nucleus is
fixed at the origin.

The radial part of the Equation 1.25 of motion of is

2 2
m d—;—r o 252 where K = L zZe*. (1.26)
dt dt r 47e,

Because the Coulomb force has no angular component, the angular part of Equation 1.25

is

mli rzd—‘p =0, (1.27)
rdr dt
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L

and thus, r° do_L where L is angular momentum. Combining Equations 1.26 and 1.27,
we obtain m

dr (L )_K

> m\mr’ mr?
Using i = d—(pi and u = l, we obtain

dt dt do r
d’u K mK

+u=-m— =-D where D = (1.28)

do’ r
Let us find a solution in the form of u(¢) = Acos(p — a) — D or r(¢p) = 1/[Acos(p — a) — D]
where A and a are integral constants. This function u indeed satisfies Equation 1.28. Define

angle ¢ = 0 when the particle is at its turning point, i.e., dr/dp =0 atr=r_,:

¢=0 whenﬂ

do

_d(1/u)
do

1 du

Wl do

=0. (1.29)

7'=Tmin

"="min "="min

With this selection of coordinates, the constant a becomes zero. (1.30)
In order to determine the other constant A, we use the total energy of the motion,

E:Hdrj +r2[d(P) }FK:LZK‘W] +u2]+Ku. (1.31)
dt dt r 2m|\do

Let u,, = 1/r,,,, then u satisfies

min?®

2

E=L—u,2,, +Ku,, (1.32)
2m

at the turning point where du/dg = 0. Equation 1.32 may be solved to obtain the root u,,.
Because u,, must be non-negative, we find

2
mK mK 2mE
U, =— I + (LZ j + o (1.33)
mK .
Thus, u,, = Acoscp$:0 -D= A—7, and we obtain
2 2
A=y, + MK (MK 2mE _[mK] ) 2EL (1.34)
L L L L mK

Using the obtained a, A, and D, the solution, u = Acos(¢p—a)—D, of the differential Equation
1.28 becomes a hyperbolic function,
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2 2 2
or r=— 1 wherer, = L ande :\/1+ ZEf =\/1+r02. (1.35)
—14+gcos@ mK K b

In the above Equation 1.35, E = (1/2)mv_? and L = mv_b, where v, is the incident velocity,
and b is the impact parameter. By conversely expressing r, with ¢, we obtain
20,2
-1
LA e ) (1.36)
—-1+¢ecos@
Therefore, we observe cosg,, = +1/¢ for the incoming a-particle and n+1/e for the outgoing
a-particle where the upper branch (i.e., the upper part of Figure 1.17) takes the positive sign
and the lower branch takes the negative sign.
The scattering angle  shown in Figure 1.15 is expressed by 6 = © — 2¢_,, and thus,

cos @,

oo =
tan| — |=cot((,) = —F—=T—2—= -,
(2 l—coscho0 b

I
—
|
™
I

and

tan(Q,) = 2 (1.37)
To
Therefore, tan (¢,,) is proportional to the impact parameter.
The differential cross-section o(6) is defined as the probability of scattering within the
unit solid angles d£2 = 2nsinfd@ along the #-direction from the incident a-particles pass-
ing through the area between b and b + db, which is given by 2xbdb, and

c(0) =

2
2nbdb _L K j 1 2Ze (138)

- = where K = .
2nsin0d0 | 2mv2 )sin*(0/2) 47e,
1.4.2 Numerical Analysis

Let the equation of motion for a computational analysis of the two-dimensional case.

- d’x 1 zZe* .
dt*  Amg, (x° +y*)"
dy 1 zZe*

m-—=
di? dme, (P y )

(1.39)

The equation of motion of an incoming a-particle is analogous to that of a motion under
universal gravity, and the computational analysis can apply the Runge-Kutta method
(Appendix A3).
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Sub Rutherford()
Cells(1, 1) = "Rutherford Scattering"
'Parmeter Alpha is the constant.
Cells(2, 1) = "Alpha": Alpha = 10#: Cells(2, 2) = Alpha
'Writing labels and initial value in cells:
Cells(3, 2) = "Initial t": t = 0: Cells(4, 2) = t
Cells(3, 3) = "Initial x": x = -40: Cells(4, 3) = x
'Cells(3, 4) = "Initial y": y = 5: Cells(4, 4) =y
Cells(3, 5) = "Initial vx": vx = 1: Cells(4, 5) = vx
Cells(3, 6) = "Initial vy": vy = 0: Cells(4, 6) = vy
Cells(3, 7) = "delta t": h = 0.05: Cells(4, 7) = h
'Runge-Kutter method:
n=2000 " Iteration #
Cells(10,2) = "t"
Forj=1To15
t = Cells(4, 2)
x = Cells(4, 3)
y=i
vx = Cells(4, 5)
vy = Cells(4, 6)
Cells(10, 1) ="t"
Cells(10,2 +3 * (j- 1)) ="x"
Cells(10,3 +3 * (j- 1)) = "y+"
Cells(10,4 +3 * (j- 1)) = "y-"
Fori=0Ton
Cells(i+11,1) =t
Cells(i+11,2+3*(j-1))=x
Cells(i+11,3+3*(j-1)) =y
Cells(i+11,4+3*(j-1))=-y
LX1 = gx(Alpha, t, X, y)
Lyl = gy(Alpha, t, x, y)
Kx1 = fx(t, x, y, vx, vy)
Kyl = fy(t, x, y, vx, vy)
LX2 = gx(Alpha, t+h / 2, x +h *Kx1/2,y+h *Kyl/2)
Ly2 = gy(Alpha, t+h /2, x+h *Kx1/2,y+h*Kyl/?2)
Kx2=fx(t+h/2,x+h*Kx1/2,y+h*Kyl/2,vx+h*LX1/2, vy+h*Lyl/2)
Ky2=fy(t+h/2,x+h*Kx1/2,y+h*Kyl/2,vx+h*LX1/2,vy+h*Lyl/2)
LX3 = gx(Alpha, t+h /2, x+h *Kx2 /2,y +h *Ky2 / 2)
Ly3 =gy(Alpha, t+h/2,x+h*Kx2/2,y+h *Ky2/?2)
Kx3=fx(t+h/2,x+h*Kx2/2,y+h*Ky2/2,vx+h*LX2/2,vy+h*Ly2/2)
Ky3=fy(t+h/2,x+h*Kx2/2,y+h*Ky2/2,vx+h*LX2/2,vy+h*Ly2/2)
LX4 = gx(Alpha, t+ h, x + h * Kx3, y + h * Ky3)
Ly4 = gy(Alpha, t + h, x + h * Kx3, y + h * Ky3)
Kx4 = fx(t + h, x + h * Kx3, y + h * Ky3, vx + h * LX3, vy + h * Ly3)
Ky4 = fy(t + h, x+ h * Kx3,y + h * Ky3, vx + h * LX3, vy + h * Ly3)
VX=VX+h*(LX1+2*LX2+2*LX3 +LX4)/6
vy=vy+h*(Lyl+2*Ly2+2*Ly3+Lyd) /6
Xx=Xx+h*(Kx1+2*Kx2+2*Kx3+Kx4)/6
y=y+h*(Kyl+2*Ky2+2*Ky3+Kyd)/6
t=t+h
Next i
Next j
End Sub

FIGURE 1.16  VBA code to compute the trajectories of Rutherford scattering.

Figure 1.16 lists the VBA code to compute the trajectories by changing the impact
parameters 1 to 15. Figure 1.17 shows the calculated trajectories.

From Equation 1.37, tan(g,.) is expected to be proportional to the impact parameter
b. Figure 1.18 shows the data of the coordinates (x, y) of the minimum r for given impact
parameters. From the coordinates, we calculate cot(¢,/2) = 1/tan(¢p.,/2) = r,/b.
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Function gx(Alpha, t, X, y)
‘dvx/dt=gx

gx=Alpha *x/((x» 2+y~2)~15)
End Function

Function gy(Alpha, t, X, y)

‘dvy/dt=gy
gy=Alpha*y/((x»2+y~2)r15)

End Function

Function x(t, , y, VX, vy)
'vx=dx/dt

fx = vx
End Function

Function fy(t, x, y, vx, vy)
‘vy=dy/dt
fy=vy

End Function

FIGURE 1.16 Continued.

Trajectories of Rutherford scattering

80

70 30 40

-80

FIGURE 1.17  Trajectories of Rutherford scattering.
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A A ! B | C | =) 13 !
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FIGURE 1.18 = Scattering angle vs impact parameter.

1.5 ROTATIONAL MOTIONS
1.5.1 Rotational Motion with Reducing Radius

An object attached to a pivot point of a friction-free surface by a string is rotating on the
surface as shown in Figure 1.19. The string is being shortened by a constant radial force F
such that the string length is r(f) = r,(1 — €t) where r, is the initial length and ¢ is the reduc-
tion rate. The mass of the object is m and the angular velocity of the object is w(¢). The basic
equations for these rotational motions are:

. . dL . = - .
Equation of motion : ; =7 where L is angular momentum and 7 is torque;

Moment of inertia: I = E m;r? and I =mr? in this case;
i

Angular momentum : L =I&; and

Rotational kinetic energy : K = %I .

Because the force pulling the string does cause no torque, the angular momentum is con-
served and we obtain

It)o(t) = I,m,, or mr’(t)w(t) = mrio,. (1.40)

Thus, the time dependence of the angular velocity is

rO 2 ~ L 2
co(t)-[r(t)j ®, _(l—stj [ (1.41)

The rotational kinetic energy is not conserved. The change in the kinetic energy is given by

2 2

2
AK =L 10 - L et = met| S -1 | (1.42)
2 2 2 r 0
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Sub AngMomentum()

Cells(1, 1) = "Rotational motion of an object while the string attached to the object is reduced."
Dim Omega(1001)

Dim Theta(1001)

Dim x(1000)

Dim y(1000)

Dim Radius(1001)

Dim TanSpeed(1001)

Dim KE(1001)

Dim F(1001)

Epsilon = 0.5 'Reduction rate of radius

Omega0 = 10 * 3.1415: RO = 1#: m = 2# 'Initial values of angular velocity and radius, and mass
TanSpeed(0) = RO * Omega0 'Initial tangential speed

Cells(2, 1) = "R0": Cells(2, 2) = "Omega0": Cells(2, 3) = "Radius reduction rate"
Cells(3, 1) = RO: Cells(3, 2) = Omega0: Cells(3, 3) = Epsilon
Cells(5, 2) = "Time": Cells(5, 3) = "Radius": Cells(5, 4) = "Omega": Cells(5, 5) = "Theta"
Cells(5, 6) = "x": Cells(5, 7) = "y": Cells(5, 8) = "Tan v"
Cells(5, 9) = "KE": Cells(5, 10) = "Fc"
‘Initialization:
Fori=0To 1000
Omega(i) = 0: Theta(i) = 0: x(i) = 0: y(i) = 0
Radius(i) = 0: TanSpeed(i) = 0: KE(i) = 0: F(i) = 0
Next i
Fori=0To999
t=0.001*i
Radius(i) = RO - Epsilon * t
Omegal(i) = (RO / Radius(i)) » 2 * Omega0
Theta(i) = Omegal(i) * t
x(i) = Radius(i) * Cos(Thetal(i))
y(i) = Radius(i) * Sin(Theta(i))
TanSpeed(i) = Radius(i) * Omegal(i)
KE(i) = m * (TanSpeed(i)) » 2 / 2
F(i) = m * Radius(i) * (Omegal(i)) * 2
Cells(6 +1i,2) =t
Cells(6 +i, 3) = Radius(i)
Cells(6 +i, 4) = Omega(i)
Cells(6 +1i, 5) = Theta(i)
Cells(6 +i, 6) = (i)
Cells(6 +1i, 7) = y(i)
Cells(6 +1i, 8) = TanSpeed(i)
Cells(6 +1i, 9) = KE(i)
Cells(6 +i, 10) = F(i)
Next i
End Sub

FIGURE 1.19  Rotational motion of an object while the radius is reduced.

The change in the kinetic energy is due to the work done by the pulling force which is the
centripetal force.

r r 2 r 4 4
1 1 1
sz chrz—J. m(m)) dr:—.[ mr0c300 dr =—mr'o; = | (1.43)
T 10 r 10 r 2 r 1o

Figure 1.19 shows the VBA code where r, = 1, € = 0.5, @, = 107, and the time interval is 1 s.
Figure 1.20 shows the trajectory and the angular velocity of the object. The angular
velocity w increases as the radius is reduced.

1.5.2 Euler’s Equation for Rotational Motions

Figure 1.21 depicts two coordinate systems: the lab (space)-fixed xyz-frame and a rotating
XYZ-frame. Consider a point P, e.g., the center of mass, in a rigid body, and the coordinates
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Trajectory of ice pack Angular velocity

LY

FIGURE 1.21 Lab-fixed frame and body-fixed frame.

of the point P in a lab-fixed xyz-frame. Let the XYZ-frame be attached to the rigid body
with the origin at the point P. The position and orientation of the body is completely given
in terms of the origin of the body-fixed frame (X, Y, Z) and the orientation of the body-
fixed frame (X, Y, Z) with respect to the lab frame (x, y, z). The orientation of the body-fixed
frame is expressed using Euler’s angles (0, ¢, w). For the definition of Euler’s angles, refer
to Appendix A5.

A rigid body has three mutually orthogonal principal axes, along which principal
moment of inertia can be defined as I;; i = 1, 2, 3 [7, 8]. Using the principal axes, kinematic
variables such as angular momentum and rotational kinetic energy may be written with-
out cross terms among the principal axes. Assign the body-fixed frame along the principal
axes of a rigid body (1, 2, 3).

The rotational equation motion, called Euler equation, in the body-fixed XYZ-frame,
which is rotating with respect to the spaced-fixed frame, is given by

dL, +(a)><1j). =1, wherei=1, 2, 3. (1.44)
dt i
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Here, L, @, and 7 are angular momentum, angular velocity, and torque, respectively. For a
rigid body, they are generally different along each of the principal axes. Thus, the explicit
forms of equation (1.44) are

Loy +0,05(I; - 1) =14

do;

; and L, =Lo;;i=1,2, 3. (1.45)

Iz(bz +(,03(1)1(Il _13) = Tz Where (:01' =

Lios +0,(I, = 1) =15

In the above Equation 1.45, I, (i = 1, 2, 3) are the principal moments of inertia. If a rigid
body has an axis of symmetry, then rotations about that axis will be dynamically balanced.
That is, that axis is a principal axis, and we can use the symmetries of a body to recognize
principal axes.

The angular velocities @’s are given by the Euler angles (6, ¢, y) and their time derivatives.

o, cosy  sin@siny  0)( O Bcosy + (sinOsiny
o, |=| —siny  sinOcosy O || ¢ |=| —Osiny +PsinOcosy (1.46)
W5 0 cosO 1)y (pcos0

» «

The Euler angles are called “6 = nutation,
dynamics.
In order to describe the motion of a rotating body, we need to solve:

¢ = precession,” and “y = spin” for rigid body

(1) Euler’s Equation 1.42 is applied to obtain w,, w,, and @, and

(2) The directions of the principal axes change with respect to the lab frame.

1.5.3 Free Rotation of a Symmetrical Top

Free rotation means that there is no external torque. The equation of rotational motion in
the space-fixed frame is given by

dar =1=0. (1.47)
dt
Thus, the angular momentum is constant in its direction and magnitude as observed in
the space-fixed frame. Let us take the Z-axis of the body-fixed frame along the angular
momentum. In the body-fixed frame, angular momentum is given by L, = L,w,, i = 1, 2, 3
along the principal axes. For a symmetrical top, take I, = I, # I, where I, is along the spin-
ning axis (Z-axis) of the top. With these conditions, the Euler Equation 1.45 in the body-

fixed frame are

Loy +@,05(; - 1) =1, =0
12(;)2 +CO30)1(II_I3):T2 :0. (148)

136)3 =13 =0
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From the third equation, @, = constant, which means L, = Lcosf along the Z-axis, and w;,
= L,/I; = (LcosH)/I, where L is the magnitude of the angular momentum. The projection of
the angular velocity w,, on the XY-plane is constant. Define the projection of the angular
momentum L, on the XY-plane, and o, = L, /I, = Lsin0/I,.

Let the angular velocity of precession w,: @, = L/I,. (1.49)

The angular velocity vector is given by ® = 0)312 + cop,f / L where k is the unit vector along
the spinning Z-axis. Notice that w,, = Lsind/I, = w,,sinf. As shown in Figure 1.22, the
motion of a free rotation of a symmetrical top consists of a spin rotation, with a constant
rate @, = (Lcos#)/I; around the body-fixed axis, combined with a precession with a constant
angle & and a rate w,, = L/I, of the body-fixed axis with respect to the space-fixed z-axis.

Figure 1.23 lists the VBA code to compute the free rotation of a symmetrical body by
applying the Runge-Kutta method (Appendix A3). Since we expect € = constant and d6/dt
=0, from Equation 1.46, we use the following equation to calculate 6, ¢, and y-

0=cos (L, /L).

o) (@sinOsiny
o, |=| ¢sinOcosy |, and we obtain { p=~/o; +®; /sin@=L/I,. (1.50)
s (pcosO W =wm; —pcosO=(L;/I;)—(L/I;)cosb.

Figure 1.24 is a screenshot of the calculated results where thetal, theta?2, theta3,
omegal, omega2, omega3, L3,and L are in the body-fixed frame. Principal moments
of inertia I1, I2, and I3 are also shown on the sheet. Angles ©6(theta), ¢(phi),

FIGURE 1.22  Free rotation of a symmetrical top.
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Sub FreeTop()
Cells(1, 1) = "Free rotation of symmetrical top with no external torque"
'Principal moment of inertia of symmetrical top: 1 1=12
Cells(2, 2) = "11=": 11 = 1#: Cells(2, 3) = I1
Cells(2, 5) = "12=": 12 = I1: Cells(2, 6) = 12
Cells(2, 8) = "13=":13 = 2#: Cells(2,9) =13
Pi=3.14159265
'Initial conditions to assume the top starts at rest with a give orientation.
Cells(5, 1) = "time": t = 0: Cells(6, 1) =t

Cells(5, 2) = "thetal": thetal = 0: Cells(6, 2) = thetal 'Angle between principal axis 1 and z-axis
Cells(5, 3) = "theta2": theta2 = 0: Cells(6, 3) = theta2 'Rotation around z-axis
Cells(5, 4) = "theta3": theta3 = 0: Cells(6, 4) = theta3 'Rotation around new z-axis after theta2-rotation

Cells(5, 5) = "omegal": omegal = 1: Cells(6, 5) = omegal
Cells(5, 6) = "omega2": omega2 = 1: Cells(6, 6) = omega2
Cells(5, 7) = "omega3": omega3 = Pi: Cells(6, 7) = omega3
Cells(5, 8) ="L3": L10 = 11 * omegal: L30 = I3 * omega3: Cells(6, 8) = L30 'Initial L1 & L3
Cells(5,9) ="L": LO = ((11 * omegal) ~ 2 + (12 * omega2) » 2 + (13 * omega3)  2) A 0.5: Cells(6, 9) = LO 'Initial L
Cells(5, 10) = "theta": thetaO = WorksheetFunction.Acos(L30 / LO): Cells(6, 10) = thetaO
Cells(5, 11) = "phi": Phi = 0: Cells(6, 11) = Phi
Cells(5, 12) = "psi": psi = 0: Cells(6, 12) = psi
Cells(5, 13) = "d(phi)/dt": Precession = L / 11: Cells(6, 13) = Precession
Cells(5, 14) = "d(psi)/dt": Spinning = omega 3 - Precession * (L10 / LO): Cells(6, 14) = Spinning
‘RK method:
Cells(3, 1) = "delta-t": h = 0.005: Cells(3,2) =h
n=1000 'Number of repetitions

Fori=0Ton
Cells(6 +i,1) =t
Cells(6 +1i, 2) = thetal
Cells(6 +1i, 3) = theta2
Cells(6 +1i, 4) = theta3
Cells(6 +1i, 5) = omegal
Cells(6 +1i, 6) = omega2
Cells(6 +1i, 7) = omega3
K11 =f1(I1, 12, 13, t, omegal, omega2, omega3)
L11=g1(I1, 12,13, t, omegal, omega2, omega3)
K21 =1f2(I1, 12, 13, t, omegal, omega2, omega3)
L21=g2(I1, 12, 13, t, omegal, omega2, omega3)
K31 =1f3(I1, 12, 13, t, omegal, omega2, omega3)
L31=g3(l1, 12, 13, t, omegal, omega2, omega3)
K12 =f1(11,12,13,t+h /2, omegal + h * K11 /2, omega2 + h * K21 /2, omega3 + h * K31/ 2)
L12 =g1(I1,12,13,t+h /2, omegal + h * L11 /2, omega2 + h * L21 /2, omega3 + h * L31/2)
K22 =f2(11,12,13,t+h /2, omegal + h * K11/ 2, omega2 + h * K21 /2, omega3 + h * K31/ 2)
122 =g2(11,12,13,t+h /2, omegal + h * L11 /2, omega2 + h * L21 /2, omega3 +h *L31/2)
K32 =f3(11,12,13,t+h /2, omegal + h * K11 /2, omega2 + h * K21 /2, omega3 + h * K31/ 2)
L32=g3(I1,12,13,t+h /2, omegal + h *L11 /2, omega2 + h * L21 / 2, omega3 + h * L31/2)
K13 =f1(I1,12,13,t+ h /2, omegal + h * K12 / 2, omega2 + h * K22 / 2, omega3 + h * K32 / 2)
L13=g1(I1,12,13,t+h /2, omegal + h * L12 /2, omega2 + h * L22 / 2, omega3 + h * L32/ 2)
K23 =f2(I1,12,13,t+h /2, omegal + h * K12 / 2, omega2 + h * K22 / 2, omega3 + h * K32/ 2)
L23=g2(I1,12,13,t+h /2, omegal + h *L12 /2, omega2 + h * L22 / 2, omega3 + h * L32/ 2)
K33 =f3(11,12,13,t+h /2, omegal + h * K12 / 2, omega2 + h * K22 / 2, omega3 + h * K32 / 2)
L33 =g3(11,12,13,t+h /2, omegal+h *L12 /2, omega2 + h *L22 /2, omega3 +h *L32/2)
K14 =f1(11, 12,13, t + h, omegal + h * K13, omega2 + h * K23, omega3 + h * K33)
L14 = g1(I1, 12,13, t + h, omegal + h * L13, omega2 + h * L23, omega3 + h * L33)
K24 =f2(11, 12, 13, t + h, omegal + h * K13, omega2 + h * K23, omega3 + h * K33)
L24 = g2(11, 12,13, t + h, omegal + h * L13, omega2 + h * L23, omega3 + h * L33)
K34 =f3(11, 12,13, t + h, omegal + h * K13, omega2 + h * K23, omega3 + h * K33)
L34 =g3(11, 12,13, t+ h, omegal + h * L13, omega2 + h * L23, omega3 + h * L33)
omegal =omegal+h* (L11+2*L12+2*L13+114)/6
omega2 =omega2 +h * (L21+2 * 122 +2* 123 +124) /6
omega3 =omega3 +h * (L31+2*132+2*133+134)/6
thetal = thetal + h * (K11 +2 * K12 + 2 * K13 +K14) / 6
theta2 = theta2 + h * (K21 +2 * K22 + 2 * K23 + K24) / 6
theta3 = theta3 + h * (K31 +2 * K32 + 2 * K33 +K34) / 6
L1=11* omegal: L2 =12 * omega2: L3 =13 * omega3
L=(L122+L222+1372)20.5

FIGURE 1.23  VBA code for analyzing motion of free rotor.
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Precession=L/11 'd(phi)/dt=L/I1
Spinning = omega3 - Precession * Cstheta 'd(psi)/dt
theta = WorksheetFunction.Acos(L3 / L) 'theta=arccos(L3/L)
Phi = Precession * t + Phi 'phi=phi+d(phi)/dt
psi = Spinning * t + psi 'psi=psi+d(psi)/dt
Cells(6 +1i, 8) = L3
Cells(6 +i,9) =L

Cells(6 +i, 10) = theta
Cells(6 +i, 11) = Phi
Cells(6 +i, 12) = psi

Cells(6 + i, 13) = Precession 'd(phi)/dt
Cells(6 + i, 14) = Spinning 'd(psi)/dt
t=t+h
Next i

End Sub

Function g1(I1, 12, 13, t, omegal, omega2, omega 3)

'gl=d(omegal)/dt is the second time derivative of theta 1.
gl=(12-13) /11 * omega2 * omega3

End Function

Function g2(11, 12, I3, t, omegal, omega2, omega3)

'g2=d(omega2)/dt is the second time derivative of theta 1.
g2=(13-11) /12 * omega3 * omegal

End Function

Function g3(11, 12, I3, t, omegal, omega2, omega3)

'g3=d(omega3)/dt is the second time derivative of thetal.
g3=(11-12) /13 * omegal * omega2

End Function

Function f1(I1, 12, 13, t, omegal, omega2, omega3)
'fl=d(thetal)/dt

f1 = omegal
End Function

Function f2(11, 12, 13, t, omegal, omega2, omega3)
'f2=d(theta2)/dt

f2 = omega2

End Function

Function f3(11, 12, I3, t, omegal, omega2, omega3)
'f3=d(theta3)/dt
f3 = omega3
End Function

FIGURE 1.23 Continued.
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3 0.004 4E-05 4.01E-05 0.001253 0.009987 0.010013 0.214150 0.628319 0.628478 0.02250411 0.002771 0.001835
S 0,006 GE-05 G.01E-05 0001887 0.009581 0.01001% 0.314159 0.628319 0.62B478 0.02250411 0.007542 0.00377

10__._ 0.008 EE-05 HO0ZE-05 0.002516 0.009575 0.010025 0.314158 0.62B319 0628478 0.02250411 0.01257 0.006283
1 0.01 1E-04 00001 0003145 0009969 0.010031 0.314159 0628310 0.628478 0.02250411 0LOLEES4 0.009425

FIGURE 1.24 Result from the VBA code listed in Figure 1.23.
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Body Frame (XY) Lab frame (xy)
15 15
15 15 15 15
35 e
Body frame (YZ) Lab frame (yz)
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0.005
0
0 0.5 1 15 15 15

FIGURE 1.25 Trajectories of free rotor.

¥(psi) are as observed from the lab-fixed frame. As we expect, angular momentum L
and its Z-component L, angle 6, the precession rate dg/dt, and the spinning rate dy/dt are
constant in time.

Figure 1.25 shows the trajectories in the body (XY) frame and in the lab (xy) frame.
Note: Free rotation of the Earth [9]. The moments of inertia I, I,, and I, of the Earth are
I, =1, < Iyand (I, — I))/I; = € is approximately 1/300. The direction of the rotating body
(the Earth) which is the fixed axis Z points to the North Pole. The direction of the angular
momentum L is very close to the North Pole. Referring to Figure 1.22, the angle 6 between
the Z-axis and Lis 0~0.1” of arc., which is an actual distance 10 m or so on the surface of
the Earth between the North Pole and the point where the L-vector out of the Earth. The
direction of ® can be measured by locating the center of diurnal motions of stars. Accurate
measurement shows that the direction of ® moves with respect to the Earth, making a
circle of radius of about 10 m in 400 days.

We may analyze this motion. In Section 1.5.3, we obtained

O = constant, w; = Ly/I; = (Lcost)/L;, and w,, = Lsin/1, = w,,sind.
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In Figure 1.22, the angle between ® and the Z-axis is y, and

tany = Oxr _ Iy tan 6. Thus, y is slightly larger than 6.

o, I
The period of a circular motion of the tip of ® around the North Pole is given by .
This is the rate with which an observer fixed to the rotating XYZ-frame of the Earth sees

the z-axis. The space-fixed z-axis is in the direction of L which makes a cone of angle 6
around the direction of the Earth-fixed Z-axis toward the North Pole. From Equations 1.48
and 1.49,

®

o :I£:(p and o, :(pcose+\i/=1£c089.

1 3

Therefore, =L(1—1Jc039 =—£8cose = —ASCOSG(‘p.

I
3 1 1 3

Because I,/I;~1, cosfx1, and ¢ =1 turn per day, we obtain \y =1 turn per 300 days. The
observed rate is 1 per 400 days, and the difference may be primarily due to non-rigid prop-
erties of the Earth.

1.5.4 A Symmetric Top Rotating about a Fixed Point in the Presence of Gravity

The gravitational force mg produces torque, and unlike the free rotation discussed earlier,
the angular momentum is not aligned with the lab z-axis but processes about the z-axis
[8]. The angular momentum in the body-fixed frame is L, = [,w,, i = 1, 2, 3. Equations 1.47
and 1.48 are applicable to this problem. We study the motion of the top in € and ¢ while
allowing it to spin with angular velocity \y relative to a frame rotating with angular velocity
®. We also assume the spinning rate s is much faster than both and ¢. The angular veloc-
ity and the angular momentum of the symmetric top in the body-fixed frame are given by

0)1 :é Ll :IIO‘)I :Ile
®, =psin®  and i L, = [,o, = L,psin® (1.51)
®; =PCcosO+\ Ly = ;w; = I;(pcosO+ ) = p,
Because the external force is only the gravity mg, the Euler equations 1.51 become
I, (é—('p2 sinBcos 6)+ 13('psin6(('pcose+\i1) = mglsin®
(1.52)

I ((psinG+2¢9c036)—l3é(¢c059+\i/) =0
I (\}‘1+(()c059—(‘pésin6) =0

where [ is the distance from the fixed point to the center of mass of the top.
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mgé

FIGURE 1.26  Steady precession of a top with a fixed point under gravity.

1.5.5 Steady Precession about the Space-Fixed z-Axis

The top rotates with spin velocity yabout its principal axis and makes a precession with
angular velocity ¢while angle € is kept constant: $=0 and ¢ =@y; =0 and 6=0, ;
W =0 and \y =\y,. Because we assume \y > @, in the first Equation 1.49, ¢pcosO+\y =\
and @y —¢* ~ ¢y. Thus, I;¢\y =mgl and the precession angular velocity is given by
¢ =mgl/ I;\y. Figure 1.26 depicts the steady precession of a top about the space-fixed z-axis.

1.5.6 Unsteady Precession

Rearrange Equations 1.52 to express the second-time derivatives of 0, ¢, and y using their
first derivatives,

é:(l—?}'pz sinGcosG—?(p\ifsin6+n;glsin6

1 1 1

. [ I cosO .. I, 1 ..
S T R A LI
¢(L jmw ® L sing ¥ (1.53)

éW}+ﬁn6¢é

cosO - . £

= —cos 0+ sin 00 =—COSG|:(?—2J

1

= 2—1—3 COSO+sin6 6([)—5#6\11
I, )sin® I, sin®

sin® I, sin
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Equations 1.53 are the coupled differential equations that can be numerically solved
with the Runge-Kutta method (Appendix A3). As 6(t) is computed, ¢(f) and w(t) are also
computed.

There are three constant quantities during the motion. From the second and the third
equations of the set of Equations 1.52,

:llt[(ll sin’ 9)¢+I3(\P+¢C089)C089} =LZ;¢ =0,

(1.54)
d o dp
—| Ly +¢sin0) | ==~ =0.
LT+ fsin®) ==
Thus, the y~component of angular momentum
py =15 (\i/+('pcos@) (1.55)
and the ¢-component of angular momentum
po =L¢sin’ 0+1; (\i/ +(cos G)COSG =I,¢sin’ 0+ p,, cos (1.56)
are constants in time. The total energy is also a constant in time.
1 N2 ) 1 . . 2
E=—1 (9 +¢” sin 9)+—I3 (\|/+(pcos(9) +mg{cosO
2 2 (1.57)

2

= l1192 +m+ipﬁ, +mg/ cos®.

2 21, sin” 6 21,
Figure 1.27 lists the VBA code to compute the coupled equations 1.55 to 1.57. We calculate
the trace of the tip of the top in the XYZ-frame using X = sinfcosg, Y = sinfsing, and Z =
cosf. The traces are displayed in the top view (XY-plane) and the side view (YZ-plane). The
number of iteration and the time step are adjusted so that motions per about one turn are
displayed. The code also calculates p,, p,,, and E.

We observe three different patterns of nutation. Below is a theoretical description of the
patterns and their examples from the computational results. Let cos@ = zin the total energy
of the top, Equation 1.57 becomes

2 1, 2
(1-z )E—Ellz +— (p<p Py2) +(213Pw+mg£j(1—z )Or (1.58)
Z'Z=(1—z2)(0t—a2)—(B—bZ)2Ef(Z)

where

2E p\ll B_p\v 2mg€>0 andb p\V
I, LI I, I, I
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Sub TopUnderGravity()
Cells(1, 1) = "Top with a fixed point under gravity"
'Principal moment of inertia 'Symmetrical top means 11=12

Cells(2,2) ="11=":11=1: Cells(2,3) =11  'Moment of inertia along body -fixed X-axis.
Cells(2, 5) = 2 =11: Cells(2, 6) =12 'Along body-fixed Y-axis.
Cells(2, 8) ="1 =2:Cells(2,9) =13 'Along body-fixed Z-axis.
MGL =20 'MGL=m * g * Igt /13 'The max MGL depends on 11 and I3.
Pi=3.141592654
'Initial conditions to assume the top starts at rest with a give orientation.
Cells(5, 1) = "Time": t = 0: Cells(6, 1) = t
Cells(5, 2) = "theta": theta = Pi / 3: Cells(6, 2) = theta 'Nutation=theta = theta: angle between principal axis 1 and z-axis
Cells(5, 3) = "phi": phi = 0: Cells(6, 3) = phi 'Precession=phi = phi: rotation around z-axis
Cells(5, 4) = "psi": psi = Pi / 8: Cells(6, 4) = psi 'Spinning=psi = psi: rotation around new z-axis after phi-rotation
Cells(5, 5) = "dtheta": dtheta = 5: Cells(6, 5) = dtheta 'Nutation rate: dtheta = d(theta) / dt
Cells(5, 6) = "dphi": dphi = 0.5: Cells(6, 6) = dphi  'Precession rate: dphi = d(phi) / dt
Cells(5, 7) = "dpsi": dpsi = 2.5 * Pi: Cells(6, 7) = dpsi 'Spinn rate: dpsi = d(psi) / dt
Cells(5, 8) ="L3": L3 = I3 * dpsi: Cells(6, 8) = L3
Cells(5,9) = "L": L = (11 * dtheta) A 2 + (12 * dphi) A 2 + (I3 * dpsi) A 3) A 0.5
Cells(6,9) =L
Cells(5, 10) = "p(psi)": Ppsi = 13 * dpsi: Cells(6, 10) = Ppsi
Cells(5, 11) = "p(phi)": Pphi =11 * dphi * Sin(theta) » 2 + Ppsi * Cos(theta)
Cells(6, 11) = Pphi
omegal = dtheta * Cos(psi) + dphi * Sin(theta) * Sin(psi)
omega2 = dphi * Sin(theta) * Cos(psi) - dtheya * Sin(psi)
omega3 = dpsi + dphi * Cos(theta)
Cells(5, 12) = "Total E": E=0.5 * (11 * megal A 2 + 12 * omega2 ~ 2 + 13 * omega3 " 2)

Cells(6, 12) = E

Cells(5, 14) = "X": X = Sin(theta) * Cos(phi): Cells(6, 14) = X 'Body-fixed X-component
Cells(5, 15) ="Y": Y = Sin(theta) * Sin(phi): Cells(6, 15) = Y 'Y-component

Cells(5, 16) = "Z": Z = Cos(theta): Cells(6, 16) = Z 'Z-component

‘RK method:

Cells(3, 1) = "del-t": h = 0.003: Cells(3, 2) = h
n=1000 'Number of repetitions
Fori=0Ton
Cells(6 +1i,1) =t
Cells(6 +1i, 2) = theta
Cells(6 +1i, 3) = phi
Cells(6 +1i, 4) = psi
Cells(6 +1i, 5) = dtheta
Cells(6 +1i, 6) = dphi
Cells(6 +1i, 7) = dpsi
omegal = dtheta * Cos(psi) + dphi * Sin(theta) * Sin(psi)
omega2 = dphi * Sin(theta) * Cos(psi) - dtheta * Sin(psi)
omega3 = dpsi + dphi * Cos(theta)
L3 =13 * omega3: Cells(6 +i, 8) = L3
L=((11* omegal) A 2 + (12 * omega2) * 2 + (I3 * omega3) 2 2) 0.5 : Cells(6+i,9) =L
Ppsi =13 * (dpsi + dphi * Cos(theta)): Cells(6 + i, 10) = Ppsi
Pphi =11 * Sin(theta) A 2 * phi + Ppsi: Cells(6 +i, 11) = Pphi
E=0.5*(I1* omegal "2 +12 * omega2 ~ 2 +13 * omega3 " 2): Cells(6 +i, 12) = E
X = Sin(theta) * Cos(phi): Cells(6 +i, 14) = X
Y = Sin(theta) * Sin(phi): Cells(6 +1i, 15) =Y
Z = Cos(theta): Cells(6 +i, 16) =Z
L11 = g1(I1, 13, MGL, t, theta, phi, psi, dtheta, dphi, dpsi)
K11 = f1(11, 13, MGL, t, theta, p hi, psi, dtheta, dphi, dpsi)
L21 = g2(I1, 13, MGL, t, theta, phi, psi, dtheta, dphi, dpsi)
K21 = f2(11, 13, MGL, t, theta, phi, psi, dtheta, dphi, dpsi)
L31 = g3(I1, 13, MGL, t, theta, phi, psi, dtheta, dphi, dpsi)
K31 =f3(I1, 13, MGL, t, theta, phi, psi, dtheta, dphi, dpsi)
L12 =g1(I1, 13, MGL, t+ h / 2, theta+ h *L11 /2, phi+h * 121 /2, psi+ h *L31 /2, dtheta+ h * L11 /2, dphi+ h * L21 / 2, dpsi+h * L31/2)
K12 =f1(I1, 13, MGL, t + h / 2, theta + h * K11/ 2, phi+ h * K21 /2, psi+ h * K31 /2, dtheta+h * K11 /2, dphi+h * K21 /2, dpsi +h * K31/ 2)
122 =g2(11, 13, MGL, t + h / 2, theta + h * L11 / 2, phi+h * L21 /2, psi+ h * L31/ 2, dtheta + h * L11 /2, dphi+h * L21 /2, dpsi + h * L31/ 2)
K22 =f2(I1, 13, MGL, t + h / 2, theta+ h * K11 / 2, phi+ h * K21/ 2, psi+ h * K31 / 2, dtheta + h * K11/ 2, dphi+ h * K21/ 2, dpsi + h * K31 / 2)

132=g3(11, 13, MGL, t + h /2, theta + h * L11 /2, phi+ h * L21 /2, psi+h * 131/ 2, dtheta + h * L11 /2, dphi+ h * 121/2, dpsi+h*131/2)

FIGURE 1.27 VBA code for unsteady precession.
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K32 =1f3(I1, 13, MGL, t + h / 2, theta + h * K11 / 2, phi+ h * K21/ 2, psi+ h * K31/ 2, dtheta + h * K11 / 2, dphi + h * K21/ 2, dpsi + h * K31/ 2)
L13 =g1(I1,13, MGL, t + h / 2, theta+ h * L12 / 2, phi+ h * 22 / 2, psi+ h * L32 /2, dtheta+ h * L12 /2, dphi+h * L22 / 2, dpsi+ h * L32/ 2)
K13 =f1(11, 13, MGL, t + h / 2, theta + h * K12 / 2, phi+ h * K22 / 2, psi + h * K32 / 2, dtheta + h * K12 / 2, dphi + h * K22 / 2, dpsi + h * K32 / 2)
123 =g2(11,13, MGL, t +h / 2, theta+ h *L12 / 2, phi+h *L22 /2, psi+ h * L32 / 2, dtheta+ h * L12 / 2, dphi+ h * L22 / 2, dpsi + h * L32 / 2)
K23 = f2(11, 13, MGL, t + h / 2, theta + h * K12 / 2, phi+h * K22 / 2, psi+ h * K32 / 2, dtheta + h * K12 / 2, dphi+ h * K22 /2, dpsi+h * K32/2)
L33 =g3(I1, 13, MGL, t+ h / 2, theta+ h *L12 / 2, phi+h *L22 /2, psi+ h * L32 /2, dtheta+ h * L12 / 2, dphi+ h * L22 / 2, dpsi + h * L32 / 2)
K33 =3(I1, 13, MGL, t + h / 2, theta + h * K12 / 2, phi+ h * K22 / 2, psi +h * K32/ 2, dtheta + h * K12 / 2, dphi + h * K22/ 2, dpsi + h * K32/ 2)

114 = g1(11, 13, MGL, t + h, theta + h * L13, phi + h * L23, psi + h * L33, dtheta + h * L13, dphi + h * L23, dpsi + h * L33)
K14 =1(11, 13, MGL, t + h, theta + h * K13, phi + h * K23, psi + h * K33, dtheta + h * K13, dphi + h * K23, dpsi + h * K33)
124 = g2(I1, 13, MGL, t + h, theta + h * L13, phi + h * L23, psi + h * L33, dtheta + h * L13, dphi + h * L23, dpsi + h * L33)
K24 = 2(11, 13, MGL, t + h, theta + h * K13, phi + h * K 23, psi + h * K33, dtheta + h * K13, dphi + h * K23, dpsi + h * K33)
134 = g3(I1, 13, MGL, t + h, theta + h * L13, phi + h * L23, psi + h * L33, dtheta + h * L13, dphi + h * L23, dpsi + h * L33)
K34 = 3(11, 13, MGL, t + h, theta + h * K13, phi + h * K23, psi + h * K33, dtheta + h * K13, dphi + h * K23, dpsi + h * K33)
dtheta = dtheta+h * (L11+2 * L12+2 * L13 +L14) /6
dphi=dphi+h*(L21+2*122+2*123+124) /6
dpsi=dpsi+h*(L31+2*132+2*133+134)/6
theta = theta + h * (K11 +2 * K12 + 2 * K13 + K14) / 6
phi = phi+h * (K21 +2 * K22 + 2 * K23 + K24) / 6
psi=psi+h*(K31+2*K32+2*K33+K34) /6
alpha=psi®f2/(11*13)-2*E/I1
beta =11 * Sin(theta) A 2 * dphi + Ppsi
a=2*MGL/I1
b=Ppsi/I1l
Cells(2, 14) = "alpha / a": Cells(3, 14) = alpha / a
Cells(2, 15) = "beta / b": Cells(3, 15) = beta / b
t=t+h
Next i
End Sub

Function g1(11, 13, MGL, t, theta, phi, psi, dtheta, dphi, dpsi)
'gl=d(dtheta)/dt is the second time derivative of theta.

g1=(1-13/11) * Sin(theta) * Cos(theta) * dphi * 2 - (13 /I11) * Sin(theta) * dphi * dpsi + (MGL / 11) * Sin(theta)
End Function

Function g2(11, 13, MGL, t, theta, phi, psi, dtheta, dphi, dps i)
'g2=d(dphi)/dt is the second time derivative of theta.

g2 =((13/11-2) * Cos(theta) * dphi + (13 / I1) * dpsi) * dtheta / Sin(theta)
End Function

Function g3(11, 13, MGL, t, theta, phi, psi, dtheta, dphi, dpsi)

'g3=d(dpsi)/dt is the second time derivative of theta.

g3 =(((2-13/11) * Cos(theta) » 2 / Sin(theta) + Sin(theta)) * dphi - (13 / 11) * Sin(theta) * dpsi) * dtheta
End Function

Function f1(11, 13, MGL, t, theta, phi, psi, dtheta, dphi, dpsi)
'f1=d(theta)/dt

f1 = dtheta
End Function

Function f2(11, 13, MGL, t, theta, phi, psi, dtheta, dphi, dpsi)
‘f2=d(phi)/dt

2 = dphi
End Function

Function f3(11, 13, MGL, t, theta, phi, psi, dtheta, dphi, dpsi)
'f3=d(psi)/dt

3 = dpsi
End Function

FIGURE 1.27 Continued.
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Function f1(I1, 13, MGL, t, ang1, ang2, ang3, omegal, omega2, omega3)
'f1=d(theta)/dt

f1 =omegal

End Function

Function f2(I1, 13, MGL, t, ang1, ang2, ang3, omegal, omega2, omega3)
'f2=d(ang2)/dt

f2 = omega2

End Function

Function f3(I1, 13, MGL, t, ang1, ang2, ang3, omegal, omega2, omega3)
'f3=d(ang3)/dt

f3 = omega3
End Function

FIGURE 1.27 Continued.

Notice that the cubic function (1.58) has the properties,
f(#ED)=—BF1)’ <0and f(z)>0if z>>1. (1.59)

Figure 1.28 is a schematic graph of f(z). As shown in the figure, f(2) should have three roots
that satisfy f(z;) = 0 where i = 1, 2, 3 and -1 < z, < z, < +1< z;. Since f(2) is square of the
time derivative of z = cos6, f(z) must be non-negative. Therefore, physically possible roots
must be z, and z,. Let z, = cos6, and z, = cosf,. For 0 < 8 < 7t/2, since cosé, < cosb,, 6, < 6
< 0,. The nutation of 8 will be limited between 6, and 6,.

From the angular momentum p,, the time derivative of the angle ¢ is given by

. Po—pycosO
=, 1.60
¢ I,sin* 0 (1.60)
Define angle @, such that =0, i.e., cos0; = Po. Then, comparing the smaller angle 6, for
p .
the nutation with 0, we have three different cases that determine the nutation: case L:p>0

if 8,>6;, case 2:¢ < 0 if 6,<6;, and case 3: p =0 if ,=0,.

fia)

—1 +1 /

z
z z;\_/ e

FIGURE 1.28 Function f(2) = (1 - 2?)(a — az) — (f — bz).
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oy
1

Unidirectional ‘ Precessian projected on XY plane

Mutation projected an ¥Z plane
D

Initial conditions:
=13, difdt=0.05
w=0, dp/dt=1.0
=i/ 10, dif/dt=2.51

Time increment: 0.0047

FIGURE 1.29 Unidirectional precession.

Looping Laaping XY plane
el
i

Initial conditions:
=3, difdt=5
w=0, dg/dt=0.5
Y=iyB, dielt=2.5m

Time increment: 0.003

FIGURE 1.30 Looping precession.

Casel: 6, > 60,. The time derivate of ¢ is positive throughout the nutation, and the rota-
tional direction of ¢ does not change. This motion is called unidirectional preces-
sion. Figure 1.29 shows the motion of this case and an actual computational result
we obtained.

Case2: 0,<0,. The time derivate of ¢ can change its sign, whence the rotational direc-
tion of ¢ becomes backward and the top axis moves backward. This motion is called
looping precession. Figure 1.30 shows the motion of this case and an actual compu-
tational result.

Case3: 6,=0,. The top, spinning about its axis with angular velocity m; =\ +@cos0 is
held with its axis initially at rest at an angle 6,, and then released. Initially, we have 0
=0, 0=0, ¢ =0,and = o;. Then, p,, = [;m;and p,, = I;0; cos O, at t = 0. This motion
is called cuspidal precession. The schematic diagram of the motion of this case and a
corresponding actual result are shown in Figure 1.31.
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Cuspidal
| Precession projected on XY plane

=t

Mutation projected on ¥Z plane
Initial conditions: [

t=n/3, difdt=1
w=0, dgy/dt=0.5
=iy B, dielt=2.5m

Time increment: 0.0046

FIGURE 1.31 Cuspidal precession.
SUGGESTED FURTHER STUDY

Perhaps the readers would have seen a photograph of Niels Bohr and Wolfgang Pauli play-
ing with a special top called tippe top. The dynamics of a tippe top is complicated and

beyond our scope, but it is worth reading related articles [10]. Another interesting topic
is the Dzhanibekov effect or tennis racket theorem. The effect was discovered in a space-
station but had been kept secret for decades. Watch a video or read articles to know more
about this strange effect [11, 12].
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CHAPTER 2

Oscillations

NOWLEDGE OF OSCILLATIONS AND waves is on the front line with regard to advance-

ment in physics. We discuss classical harmonic oscillations with driving and/or
damping force to describe the phenomena of resonance, weak oscillation, strong damp-
ing, and critical damping. Parametric excitations, which can be seen in swing motions
and electronic devices, are noteworthy for acquiring knowledge of distinct oscillations and
resonance. We also discuss a pair of pendulums with a nonlinear coupling mechanism
between them. It is fascinating to view how these two pendulums interact with each other
depending on their initial conditions.

2.1 HARMONIC OSCILLATION WITH EXTERNAL FORCES
2.1.1 Periodic Driving Force

The equation of a harmonic oscillator with an external force is given by

d;’;ﬁt) +aix(t) = (1) @.1)

where w, is the angular frequency of the harmonic oscillator without the external force f(t)
[1]. Assume that the driving force is periodic of angular frequency w, i.e., f(t)=Fsinwt, then
Equation 2.1 becomes

d*x(t)

dt*

+wox(t) = Fsin(wt). (2.2)

The solution of differential Equation 2.2 can be given by adding a general solution of the
homogenous equation, where F = 0 and any special solution of Equation 2.2. The general
solution may have a form of y(f) = Asin(w,t + ¢), where A and ¢ are constants. Assume a
special solution y(f) = Asin(wt). From Equation 2.2, we obtain

(0f —®*)A =F, and thus x(¢) = (ze)sin(oot) is a special solution. (2.3)
Wy
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Therefore, a general solution of Equation 2.2 is given by

x(t) = Asin(mot+c)+%sin(mt) (2.4)
(0 —7)

where ¢ and A are determined by the initial condition. The above solution becomes infinite
when @ = @,. In other words, when the frequency of the driving force f(t) is the same as the
natural frequency of the harmonic oscillator, resonance occurs. Notice if ® < w,, the sec-
ond term of Equation 2.4 is out of phase of the external driving force. On the other hand,
if o > w,, the second term becomes out of phase. There is a good demonstration conducted
by the MIT Physics Lecture Demonstration Group [2].

Figure 2.1 lists the VBA code to calculate the displacement and velocity of the oscilla-
tor in Equation 2.2 using the Runge-Kutta method (Appendix A3). In this code, the trial
angular frequency is set to 1 while the external driving frequency is changed.

Figure 2.2 shows the computed results of the VBA code. The broken curve in black is the
oscillation without the external driving force, and the large red line is the resonating oscil-
lation with the angular frequency of the periodic driving force being equal to the natural
angular frequency of the oscillator. Other oscillation patterns in green and blues are when
the driving frequencies are 0.5 and 1.5, which do not excite the oscillation. Recall the phase
of the natural oscillation, and the resonating oscillation is out of phase. The diagram of the
phase space is an alternative view of the forced oscillation. The amplitude of the oscillation
or the energy of the oscillation is rapidly accumulated in the oscillator.

2.1.2 Damping Force

Suppose the damping force is proportional to the velocity dx/dt, we obtain

’x dx
=42k +wpx =0 2.5
et 29
where the periportal constant of the damping force is 2k.

Let y(f) = e, then y* +2ky + oy =0 and the roots are

Y_—Zki«/4k2—4(o§ _—k+yJD 2.6

2 2

where D = k” — ;. There are three distinct oscillation patterns depending on the numeri-
cal value of D.

Case 1 (D <0): Weak damping.

Possible roots (2.6) are y;, = —k +im and vy, = —k —i®, where ® =+/ oy —k* . Thus, the general
solution is given by

x(t) = Ae" + Be™ =M [(A + B)coswt +i(A—B)sin (x)t:l,
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Sub ForcedOscil()
Cells(1, 1) = "Harmonic oscillation with damping term and external periodic driving force"
'd(2)x/dt(2)+(omega0)*2x=F*sin(omega*t) OR dv/dt=-(0mega0)”2x+Fsin(omega*t) and dx/dt=v
'Write labels and initial values in cells:
Cells(3, 1) = "Initial t": t = 0: Cells(4, 1) = t
Cells(3, 2) = "Initial x": x = 1: Cells(4, 2) = x
Cells(3, 3) = "Initial v": v = 0: Cells(4, 3) = v
Cells(3, 4) = "dt": h = 0.1: Cells(4, 4) = h
omegal =1 'Natural oscillation frequency without external factor
'Driving term F*sin(omega*t) where F=1 and omega=0.2 to 2.0 by step 0.2.
=1
For j=0To 200 Step 25
omega =j/ 100
t=0
x=1
v=0
Cells(6,2 +2 * (jj - 1)) = "omega"
Cells(7,2 +2 * (jj - 1)) = omega
Cells(8, 1) = "time"
Cells(8, 2 +2 * (jj - 1)) = "X"
Cells(8,3+2 * (jj - 1)) = "v"
'Runge-Kutta parameters:
n =200 "' Iteration # (n*h = range of x; 0 to 5 by step h=0.1)
Fori=0Ton
Cells(i+9,1) =t
Cells(i+9,2+2*(jj - 1)) =x
Cells(i+9,3+2* (jj-1))=v
K1 =f(t, x, v)
L1 = g(omega0, omega, t, x, v)
K2=f(t+h/2,x+h*K1/2,v+h*L1/2)
L2 = g(omega0, omega, t+h /2, x+h*K1/2,v+h*L1/2)
K3=f{t+h/2,x+h*K2/2,v+h*12/2)
L3 = g(omega0, omega, t+h /2, x+h*K2/2,v+h*12/2)
K4 =f(t+h,x+h*K3,v+h*L3)
L4 = g(omega0, omega, t + h, x + h * K3, v+ h * L3)
t=t+h
x=x+h*(KL+2*K2+2*K3+K4)/6
v=v+h*(L1+2*12+2*13+14)/6
Next i
i=ii+1
Next j
End Sub

Function g(omega0, omega, t, X, v)
‘g=dv/dt 4[\ Defined by the differential equation.]

g =-omegal ~ 2 * x + Sin(omega * t)

End Function

Function f(t, x, v)
‘f=dx/dt
f=v
End Function

FIGURE 2.1  VBA code for forced oscillation.

Because x(f) should be real, both c=A+B and d=i(A-B) must be real. Conversely, A and B
can be expressed by c and d: A = (c — id)/2 and B = (c + id)/2. Thus, A and B are complex
conjugates. Using c and d, we obtain

x(t)=e™ [c cos ot +dsin mt] =ae ™ cos(ot +¢) (2.7)
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Forced oscillation Forced oscillalgion in phase space

x(t)

FIGURE 2.2 Forced oscillation.

Weak damping oscillation x(t) Weakly damping oscillation
in phase space

FIGURE2.3 Time dependence of displacement and trajectory of v(x) of weakly damping oscillation.

where a = (¢ + d*)'? and tang = d/c. The trajectory of x(t) is an exponentially decreasing
periodic function and the one of v(x) in the phase space is a spiral-like curve as shown in
Figure 2.3. The period is given by

T=2n/w=2n/o;—k*.

The VBA code for damping oscillations is similar to the one listed in Figure 2.3 except the
statement of function g of the Ruge-Kutta algorithm. We used g = -a*v-4*x,
where a = 2k and @, = 2. Make your own code and run to observe the trajectories.

Case 2 (D >0): Strong damping.

Two roots of y become: y, =—k+@' and y, =—k—@', where @ =+/k* —;. The general
solution is x(f) = Ae™ + Be™, where A and B are both real. Both terms are exponentially
decreasing because

—kim’:-k[m\h—(%/k)2}<o. (2.8)
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Strong damping Strong damping in phase space

FIGURE 2.4 Time dependence of displacement and trajectory of v(x) of strong damping oscillation.

Figure 2.4 shows the exponentially decreasing trajectory of x(f) and abruptly settling v(x)
due to the strong damping.

Case 3 (D = 0): Critical damping.
Two roots of y are v, =y, =—k. The general solution of Equation 2.5 has one solution. One
may find if it can be a form of x(f) = g(t)e .

2 2
ax _, d—g—kg e X andd—fz d—f—z g g | (2.9)
dt dt dt dt dt
: : dzg 2 2
Thus, Equation 2.5 should satisfy W_(k — ) )g =0. (2.10)

Because D = 0, i.e., k = w,, g(f) = A + Btand x(f) = (A + Bt)e™™, where A and B are constants.
Figure 2.5 shows the shortest time to cease the oscillation and the gradually settling v(x).
The graph in the phase space exhibits a different pattern from that of the strong damping.

Critical damping Critical damping in phase space
1.2

0.2 0.4 0.6 0.8

0.8

0.6

0.4

0.2

FIGURE2.5 Timedependence of displacement and trajectory of v(x) of weakly damping oscillation.
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2.1.3 Both Driving and Damping Forces

If both driving and damping forces are applied to the harmonic oscillator and Equations
2.2 and 2.3 are combined, we have

2
cjﬁf+2kj’:+m§x = Fsin(wt). (2.11)

The general solution of Equation 2.11 is given by adding the general solution of Equation
2.5, which is calculated, and a special solution of Equation 2.11. Let us find a special solu-
tion of a form of Asin(wt — §) including a phase delay 6. From Equation 2.11, we obtain

—’ Asin(ot —8) + 2kmA cos(wt — 8) + wy A sin(wt —8) = Fsin(mt). (2.12)
By applying the addition theorem of trigonometric functions, we obtain

[kaoA sind +(wp —®*)* Asin 6} sinmt = Fsin ot

(2.13)
[(mﬁ —®°)* Asind —2koA cos 8} =0.
Solving them for A and tané gives
1
Asing= X0 A= F
(@ —0") +4k0” w21 — (/@ )*)? + 4k / )2 (00/ 3, )
2 \2 >
Ascosd= (0332(0) . tanS:Z(k/m")(m/?‘))
(g —»° ) +4k*w 1-(®/wy)
(2.14)

. . 2 232 2 2 . s
The amplitude A becomes a maximum value when (@, —®”)” +4k”®" becomes a mini-

mum value, i.e., when (05 —®”) +4k*®” = 0. The phase 6 vanishes as the angular frequency
of the external driving force approaches that of the harmonic oscillation. Notice that after
a sufficiently long time, only the term of this special solution, which is a forced oscillation,
remains.

Let D = k/w, and £2 = w/w,. From Equation 2.14, we obtain

2
Awy _ ! and tand = 2P%% . (2.15)

F o Ju-Q?) +4D?Q? 1-O

Figure 2.6 shows a screenshot of the angular frequency (2 = w/w,) dependence of the
amplitude (Aw,?/F) for different values of damping terms (D = k/w,). Excel’s AutoFill fea-
ture is applied to this calculation. For AutoFill, refer to Appendix Al.1.

Steps for this two-factor calculation using Excel’s AutoFill feature are given below. Notes
in Rows 1 to 4 are ranges of variables Q and D. Column A is the range of £ (0-1.5 by
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4 A B (= D E F G H |

1 |Harmeonic oscillation with external periodic driving force and damping term

2 |d2xdt2+2kdx/dt+w02x=fsin(wt) D=kfu,  Oto 2.0 bystep 0.5

3 x=Asin[wt-8) Q=wfw, 0to 1.5bystep0.02

4 F:Amnllf to be caleculated

5

6 o0 o 025 0.5 0.75 1 1.25 15

7| ! 1 1 1 1 1 1 1

8 002 10004 100038 ==2=~>"—1ADN2R3  1.0002 1000087 0.99995

190 g:g: 1:23;222 i:gi;i =1/(SQRT((1-5A7~2)"2+B56"2*5A7A2) in cell BT
|11 0.08 1.006441 1.006237 T.005627 T.0046TT T.UUSTY5 T.UUISBZ UIYIISL

FIGURE 2.6  Calculated frequency dependence of amplitude with different damping terms.
increment 0.02) and Row 6 is the range of D (0-2.0 by increment 0.5). “Q\D” in cell A6 is
an optional remark.

The letters and numbers in bold are to be entered in a specified cell of a spreadsheet.
Q-values(x-axis):

1) Enter 0 into Cell A7;

2) Enter = A7-0.02 into Cell AS8;

3) AutoFill to Cell 2107.

D-values (y-axis):
4) Enter 0 into Cell B6;
5) Enter =B5+0.5 into C6;

6) AutoFill to cell Heé.

Enter function of Equation 2.15:
7) Click on cell B7 and enter
=1/(SQRT((1-$A72)*2+B$672*$A7*2))
8) AutoFill to cell H7 (to the right);

9) Continue AutoFill to H107 (downward).

Create a graph:
10) Highlight Cell A7 to B107;

11) From the drop-down menu, select [Insert] — [Chart] — [Scatter with
Smooth Lines];

12) Expand the created chart if necessary;
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Oscillation with damping and periodic driving

[ Mo damping 1

T
[ Heavy damping |~

a 02 a4 (il 08 1 12 14 10 1E 2

FIGURE 2.7 Resonance curve of forced harmonic oscillation.

A A B | ¢ | D E F | G H 1
1 D=kfm, 0Oto 2.0 bystep 0.5

2 tand O=w/w, 0tol.5 by step0.02

3 F:Amgzlf to be calculated

4 4

5 O\D 0 0.25 0.5 0.75 1 1.25 15
6 | of % o} 0 0 0 0 o 0
7 oo 0 0.0TGeat-°020008 0.030012 0040016 0.05002 0.060024
8 0.04 0 0.0 _pxpg5*sA6/(1-5A672) in cell 56 0.10016 0.120192
9 0.06 0 0.0, k1 0.150542 0.18065
10 | 0.08 0 0.040258 0.080515 0.120773 0.161031 0.201288 0.241546

FIGURE 2.8 Calculated frequency dependence of phase with different damping factors.

13) Right-click on the graph to display a pop-up menu to select [Select Data] —[Add]
for adding the graph from the data from Column C, etc.

Figure 2.7 is the final graph of the amplitude from the calculated data.

Figure 2.8 shows a screenshot of calculating the angular frequency (w/w,) dependence
of phase (tan §) for different values of damping factor (k/w,). The phase changes across the
resonating condition where tan § diverges. The calculation procedure is very much the
same as the amplitude calculation.

Figure 2.9 shows the final graph of tané from the calculated data.

2.2 PARAMETRIC OSCILLATION

Figure 2.10 illustrates a parametric pendulum where the string length varies periodically
3, 4].
The equation of motion using angular momentum and torque is given by

jt[mL2 Z?j =—mgLsin® (2.16)

where g is the gravitational constant, and the string length # has a slow periodic time
dependence L(t) = L [ 1+hsin(ot +8) | and 0<h<< 1.
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tané
15

10

No damping

-10

Heavy damping

FIGURE 2.9 Phase change of force harmonic oscillation.

<15

S

mg

FIGURE 2.10  Pendulum oscillation with parametric excitation
We assume the small angle approximation (sinf~6). Converting the variable from the

angle to the arc length x = L6, Equation 2.16 becomes

)x(t) ~0or d;’;gt) +G(t)x(t) =0, and

P 1 dL
> L dt*
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Displacement vs time Velocity vs Displacement
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FIGURE 2.11  Arc length and velocity of a pendulum with the parametric excitation.

G(t)zl(g

(2.17)

d? ] L1+8sin(@t+8)] 1+0sin(of+8)

B dzLj g + Lyw*8sin(ot + ) . 1+n°3sin(wt + )
L

where w, =/g /L, when L is fixed to L, and ® = naw,.

Note: The VBA code for the parametric oscillation is similar to that shown in Figure 2.1.
The only difference is the form of function g of the Runge-Kutta algorithm (Appendix
A3). For the parametric oscillation,

functiong = -x * Omegal0 ~ 2 * (1 + d1 * (kk ~ 2) *
Sin(Omega * t + phi)) / (1 + d1 * Sin(Omega * t + phi))

from Equation 2.17.

Figure 2.11 shows the arch length vs time and velocity vs time with different multiplica-
tion factors n. As we may expect from swings, the arc length exponentially increases when
o =2m,.

2.3 COUPLED PENDULUMS

Figure 2.12 is a schematic diagram of two identical pendulums of length L connected with
a nonlinear spring [5]. Assume the spring force is given by k,Ax + €k,(Ax)?, where k;, k,, €
= 1/3! are constants and Ax is the length change of the spring.

Equations of motion are:

mL L —mgx; —ky (x; —x,) — ek, (X, -x,)°
(2.18)

mLﬁ = —mgxz _kz(xz _xl) _8k2(x2 _x1)3
dt,
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Nonlinear
coupler

FIGURE 2.12  Two pendulums connected with a spring.

Let x, + x, = y; and x, — x, = ,. Equations 2.18 become

d2y1

dt?

dz)’z 2 3
+yy, =—¢€k
ar 1) V2

+o;y; =0 and

where o} =g /L, ®; =g /L+2k /mL,and k =2k,mL.

(2.19)

The solution of y, is a harmonic oscillation while y, yields a nonlinear osculation. The
coupling between two pendulums is nonlinear, and their motions may not be simple. Let

us compute their motions, and then obtain x, and x, from calculated y, and y,.

Case 1: Small oscillations

Figure 2.13 shows y, and y,. We set the coupling coefficient & = 1/6 in the nonlinear term
in Equation 2.15. The angular momentum w,*> = g/L = 9.8 is set to 3.13 and k, = k, = 1. The
initial displacements are y, = 0.5 and y, = —0.5. It seems that both y, and y, yield harmonic
oscillations. With these initial settings, the coupling may not be seen except by the pair of

pendulums’ gradual energy exchange due to the weak coupling.

ya(t) y,(t)

ne s

FIGURE 2.13  Coupled pendulums with y, =0.5and y, =-0.5at t=0.
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X4(t) X(t)

FIGURE 2.14  Observable displacements of coupled pendulums with small nonlinear coupling.

Figure 2.14 shows observable displacements x, and x, with an initial condition of x, =
0 and x, = 1 at t = 0. There is energy transfer from pendulum 2 to pendulum 1 due to the
coupling.

Case 2: Large oscillations
Taking the third orders of sin(x,) and sin(x,): sinx, ~ x; +¢&x; and sinx, ~ x, +&x;, where
e=1/3,
d2x1 3 3
mL =—mgx, +emgx; —k; (x, —x,) — ek, (x; —x,)
dztz . (2.20)

mL ddfz = —mgx, +emgx; —k,(x, —x,) — ek, (x, — x,)’
2

Using the same definitions of y, and y,, we obtain

d? d?
dt)f +oiy; =¢fi(y,y,) and dtyj +w3y; =ef,(n,9,) (2.21)

where fi(y1,,) = (g /4Ly (77 +392), (0. 92) =(g/ 4Ly (7 +3y3) —2(k; / mL)ys,

o, =g/L, and o = g/L+2k /m. The coefficient & is a measure of deviation from
linearity.

Figures 2.15 shows the motions of y, and y, from the nonlinear oscillations. Initially we
set y, = 0.5 and y, = —0.5. A gradual energy transfer from y, to y, is observed with the non-
linear coupling. The coupling coefficient € = 1/6 is the same as in Case 1.

Figure 2.16 shows the observable displacements x, = (y,+y,)/2 and x, = (y,-y,)/2. The
initial displacements are x, = 0 and x, = 1 at t = 0. Changes in their displacements are more
noticeable due to the nonlinear cubic terms of x, and x,.

Try and observe what their motions are. It’s fun!
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ya(t)

0.8

FIGURE 2.15 Nonlinear pendulums with nonlinear coupling. y, = 0.5 and y, = -0.5 at t = 0.

X4 (t) X,(t)

0.8 0.6

-0.6

0.8

FIGURE 2.16  Observable displacements of nonlinear pendulums with nonlinear coupling.

SUGGESTED FURTHER STUDY

Although this book does not cover nonlinear oscillations, there are many important topics
in nonlinear oscillations. For example, electronic devices including diodes and transistors
are actually nonlinear components [6]. There is an old-fashioned computer using param-
etrons conceived by the parametric oscillation [7]. Nonlinear optics is a fascinating tech-
nology applied in medicine and science [8]. Chaos is caused by nonlinear dynamics such
as large oscillations of a pendulum and double pendulums [9].
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CHAPTER 3

Waves

WAVE PHENOMENA COULD BE understood better by conducting computational analy-
ses of waves. Analyses are done to show diagrams of interference, standing waves,
the classical/relativistic Doppler effect, muon detection using the Doppler effect, the law
of refraction based on wave and particle models, and diffraction phenomena through a
two-dimensional aperture. In relation to standing waves, the Fourier series are introduced
to demonstrate that an arbitrary periodic wave can be expressed in terms of trigonometric
functions.

3.1 WAVE EQUATION

Let the wave velocity be v. In the Cartesian coordinate system, a three-dimensional wave is
given by the following equations [1].

Qu,t) L[ o o o - 202, = 22, .2, .2
2=yt ——+—— |u(¥,t) = vV u(¥,t) where v = v, +v +v;. 3.1
ot? ' oyt o7 . = g .
A plane wave, u(7,t) = Asin(E - —ot+9), is a solution of the wave equation, where A is
the amplitude, k= (kx,ky,kz) is the wave number vector, k-7 = kxx+kyy+kzz, w 1is the
angular frequency, ¢ is the initial phase, and v = w/k = fA, where f = 2n/w is the frequency

- A
and A = 2n/k is the wavelength. A spherical wave, u(r,t) = —sin(kr — ot +9), is also a solu-
: 2 2 2 2 2 2 r . P . .
tion, where r=/x"+y°+2z° and k=/k; +k, +k;. A spherical wave is isotropic, i.e.,
R : 10°
u(7,t) = u(r,t) and satisfies Vu(r,t) = aaz u(r,t).
r or

Notice that the wave equation is a linear differential equation. It means that, if u;, and u,
satisfy the wave equation, their linear combination, e.g., u = au, + bu,, where a and b are
constants, is also a solution of the wave equation. This is the foundation of the superposi-
tion principle discussed below.

52 DOI: 10.1201/9781003516347-3


http://dx.doi.org/10.1201/9781003516347-3

Waves m 53

Sub Sinelnterference()
Cells(1, 1) = "Demonstration of interference of two plane waves"
Dim y1(1001)
Dim y2(1001)
Dim x(1001)
Pi=3.14159
alpha=0.1
Cells(2, 1) = "Phase difference =": phase = alpha * Pi
Cells(2, 3) = alpha * Pi: Cells(2, 4) = "rad"

Cells(3, 2) ="x"
Cells(3, 3) = "y1"
Cells(3, 4) ="y2"

Cells(3, 5) = "y1+y2"
Fori=0To 1000
x(i) =i * 0.01
Cells(4 +1i, 2) = x(i)
Next i
f=1
k=0.5
a=1
Fori=0To 1000
y1(i)=a*Sin(2 * Pi * k * x(i) - 2 * Pi * f * j / 50)
y2(i) =a * Sin(2 * Pi * k * x(i) - 2 * Pi * f * j / 50 + phase)
Cells(4 +1, 3) = y1(i)
Cells(4 +i, 4) = y2(i)
Cells(4 +1, 5) = y1(i) + y2(i)
Next i
End Sub

FIGURE 3.1 VBA code to calculate the interference of two sine waves.

3.2 SUPERPOSITION PRINCIPLE

The superposition principle is the cause of several key wave phenomena. We describe inter-
ference, beat, and standing waves in relation to this principle [2].

3.2.1 Interferences

Suppose there are two plane waves in space: u;(x,t) = Asin(kx —ot) and u,(x,f) = Asin
(kx — ot +3), the resultant wave is the algebraic sum of the two waves [3]. They are inter-
fered constructively if 6 = 0 and destructively if 6 = m. Figure 3.1 lists the VBA code to
calculate the interference.

Figure 3.2 shows an interference pattern of two sine waves with a small phase difference
of 0.1r to demonstrate the superposition of the two waves clearly.

The interference pattern can also be created by superposing two spherical waves at a
certain time. Here we consider two-dimensional circular waves. Two circular waves of the
same angular frequency generated from two different sources at slightly different locations
of (0, +y,) and supposed them.

. sin(kr, — wt) N sin(kr, —wt)

(3.2)
n n

where 71 =[x2 +(y—ys)2} and r, =[x2 +(y+ys)2].
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Interference of two sine-waves

FIGURE 3.2 Interference of two sine waves with path difference of 0.17.

A A B e | ® | B | ¥ G Ho | ]
1 Circular waves at a give time |
i L 2“ 2 ; =SIN($BS$3*SQRT(($A6-2)2+B$52)-
4 $C53*5A53)/SART(($A6-}"2+B$572)
5y 20 19.5 19 +SIN($BS3*SQRT(($A6+2)"2+BS52)- 165 16
5] 200 -0.05583| 0.003145 n~em” 14222 0.003437
! | C53*5A53)/SORT((SAG+2)"2+B55"2
7 19.5-0:001877" 0.058225 w.ue. PEeatuRARY SORT{{pAbA2) 2582 11627 -0.07884
8 19 0050944 D.015683 -0.05475  incell B6 10763 -0.00899
a 18.5 0.017792 -0.04675 -0.03251 0.045441 0.051689 -0.03286 -0.07037 0.005332 0.078409
10 18 -0.03587 -0.03161 0.037486 0.046831 -0.03091 -0.0637 0.012254 0.075749 0.019756
11 17.5 -0.03p22—= R e ear AT i 0.010954 -0.07352
12 17 0.013: y-caardinates (row): —20.0 to —20.0 by 0.5 step ) .0.0691 -0.03456
13 16.5 0.0280  x-cpordinates (column): +20.0to —20.0 by 0.5 step  * -0.02996 0.061093
14 16 0.00550s -uwsblis -UUUYUL UUSBEIYS LULLBU/S  -uwesss  -uauewsd 0.052697  0.049517

FIGURE 3.3  Calculation of the interference pattern of two circular waves.

Parameter setting
Wave number: k = 4; angular frequency: @ = 1; time ¢ = 2; and locations of circular wave
sources (0, +2.0).

The area to create the interference pattern is set to x: [-20.0, 20.0], y: [-20.0, 20.0] with
an increment of 0.5 in the x and y directions. Figure 3.3 is a screenshot of the calculation
using Excel’s AutoFill feature (Appendix Al.1).

Calculation step:
The letters and numbers in bold are to be entered in a specified cell of a spreadsheet.

1) Enter t in cell A2, k in cell B2, and @ in cell C2, and then enter 2 in cell A3, 4 in B3, and 1 in cell C3.
Note: These values may be changed after drawing the chart. “x\y” at cell A5 is an optional memo.

Determine range and step:
X-axis:

2) Enter 20 into Cell A6;
3) Enter =A6-0.5 into Cell A7;
4) AutoFill to Cell A86.
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y-axis:

5) Enter 20 into Cell B5;
6) Enter =B5-0.5 into C5;
7) AutoFill to cell CD5.

Superpose circular waves:

8) Click on cell B6 and enter
=SIN ($SB$S3*SQRT ( ($A6-2) *2+BS$572) -$CS$3*SAS$3) /SQRT ( ($SA6-) *2+BS$S572)
+SIN(SB$3*SQRT ( (SA6+2) *2+B$572) -$CS$3*SAS$3) /SQRT ( (SA6+2) ~2+B$512),
and then, AutoFill to cell CD5 (to the right);

9) Continue AutoFill to CD86 (downward).

Create 3D Surface Chart:

10) Highlight Cell B5 to CD86;

11) From the pulldown menu, select [Insert] — [Chart] — [Surface];

12) Expand the created chart if necessary;

13) Right click on the graph to display a pop-up menu and select [3-D Rotation];
14) Rotate your graph to obtain the best view.

Figure 3.4 shows computed 3D charts with the given wave parameters setting and a specific
view angle.

Depending on the path difference between two circular waves that arrive at the same
point determines the constructive or destructive interference: Constructive if the path dif-
ference is mA and destructive if the path difference is (m + 1/2)4, where m =0, 1, 2, ...

3.2.2 Beat

When two sound frequencies are slightly different by a few Hertz or so, we hear a beat [4].
Musical instruments such as pianos and guitars are tuned by listening to beats. Suppose
two sound waves are

u, = Acos(k,x—mt) and u, = A cos(k,x — m,t),

when an observer at position x = 0 hears two sounds at the same time, the resultant sound
is their superposition,

¥ Rotation =407 and ¥ Rotation =302 ¥ Rotation =0 and ¥ Rotation =905 (Top view}

FIGURE 3.4 Interference of circular waves.
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Beat pattern

FIGURE 3.5 The beat pattern from two sine waves.

u=u, +u, =2Acos ©2 ¥ O cos| 22"y |, (3.3)
x=0 27

The beat frequency is defined by f,,,; =\L®2 ~ O tz ‘ fHL—-h ‘

The VBA code to create the beat is simildto that shown in Figure 3.1. For obtaining the
beat, the observer’s position is fixed while the time varies. The essential part of the VBA
code is

For i = 0 To 400 ‘time increment
y1(i) = Sin(2 * Pi* f1 *i/ 10)
y2(i) = Sin2 * Pi* f2 * i/ 10)

Cells(1 +i,2) =i/ 10
Cells(1 + i, 3) = y1() + y2(i)
Next i

Figure 3.5 shows the beat pattern, where f, = 1.00, f, = 1.05, and f, — f, = 0.05. In this figure,
the period of the beat is 20.0, and the beat frequency is also calculated as f,, = 1/20 = 0.05.

3.2.3 Standing Waves

Assume a sine wave traveling to the right on a string, uz(x,t)=Asin(kx—ot), is
reflected at the end on the right side of the fixed string to produce a reflected wave,
uy (x,t) = Asin(kx + ot). The superpose wave is

u(x,t) =ug +u; = Asin(kx —ot)+ Asin(kx + ot) = 2A sin(kx) cos(wt). (3.4)

The resultant wave forms a standing wave, which is not traveling to the right nor left but is
a stationary wave pattern with a time-varying amplitude [5]. Figure 3.6 shows a standing
wave pattern. The VBA code to obtain the standing wave pattern is similar to that shown
in Figure 3.1.

It should be noted that establishing a standing wave requires specific boundary condi-
tions and string length, as well as the tension in the string, which determines the wave
speed. For this reason, standing waves are categorized as a boundary value problem. That
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Standing waves

FIGURE 3.6 A standing wave.

is, standing waves on a string of length L having both ends fixed are the solutions of the
wave equation,

O u(x,t) _,2 O*u(x,t)
ot ox*

(3.5

with the boundary condition of fixed ends, u(0,f) = u(L,t) = 0, where u(x, t) is the displace-
ment, v = (F/u)"? is the wave speed, F is the tension in the string, and y is line density of
the string.

By separating the variables, u(x, ) = U(x)I'(), the equation U(x) for the x-coordinate
becomes what we call the Helmholtz equation, whereas the equation I'(¢) for time is an
equation of harmonic oscillation,

d’T(t)

dt?

d’U(x)

dx*

+Av T (1) =0. (3.6)

+AU(x) =0 where U(0)=U(L)=0, and

(1) Solutions of U(x) are given using sin(nnx/L), where 4, = (nn/L)* and n =1, 2, 3, ....
By the superposition principle, a general solution or an arbitrary wave form with the
same boundary condition is given by

U(x)= Z a,, sinmx. (3.7)

(2) The solution of the time part, I'(f), for a given 4, is

r,@t)=c, sin{[mvjwrf)n}.
L
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(3) ulx, t) = U(x)[(£) is given by

. NIV 7 N -
u(x,t) = ;anCn s1n(Tt + 6,,)sm(f x) —;An(t)sm( L x) (3.8)

where A, (t) =a,C, sin(%t +9,) is the time-varying amplitude of the n'" standing wave.

3.3 FOURIER THEOREM

Equation 3.7 can also be interpreted in such a way that an arbitrary form of oscillation u(x,
t) on a string of fixed ends is the superposition of discrete standing waves or oscillation
modes [6, 7]. Assume an observed wave pattern on a string of length 2L (-L <x < +L) ata
certain time is given as shown in Figure 3.7, where L = 1. This wave contains five modes of

standing waves,

f(x) =sin(nx) +0.5sin(2mx) —0.2sin(37x) + 0.4 sin(4nx) — 0.1sin(5mx).

Is it possible to find the frequencies and amplitudes that constitute a given wave pattern?
More generally, would it be possible to express an arbitrary function f{¢), where the variable
£ is a spatial coordinate or time, as a series of sinusoidal functions? This is called the Fourier
series of f(£). Because the sinusoidal functions are well known and are easy to apply, the
Fourier series is valuable for analyzing periodic motions.

The Fourier series can be constructed in the following way. An arbitrary periodic func-
tion f(x) in the interval [-L, +L] can be expressed by a series expansion of trigonometric
functions.

0

f(x)= az—o+ Zak cos (nLTcijerk sin(nljt xj (3.9

n=1

where

_ 1t mn 1t [ mn
An =7 ILf(x)cos( L xjdx and b, = I v|‘Lf(x)sm( . xjdx. (3.10)

Wave on a string

FIGURE 3.7 An observed wave on string.
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The Fourier coefficients are calculated using the orthogonal property of sinusoidal func-
tions. Refer to Section 6.1.2 for the orthogonal property.
Using the inner product, ( ... | ... ), defined by Equation 1.17, we obtain

(cos(mx)| cos(nx))y = J.L cos(mx) cos(nx)dt =0; (m # n)

(sin(mx) | sin(nx)) = IL sin(mx)sin(nx)dt = 0; (m # n)

and

(cos(mx) | sin(nx)) = J ' cos(mx)sin(nx)dt =0. (includingm =n)  (3.11)

Depending on the symmetric property of the original periodic function f(x), a Fourier
series may have only sine terms or cosine terms. If the function f(x) is an even function
in the interval [-L, +L], the sine terms must be excluded, and the Fourier series has only
cosine terms,

f(x)za?OJrZak cos(n;x} (3.12)

n=1
Similarly, if the periodic function f(x) is an odd function in the interval [-L, +L}], the Fourier
series has only sine terms,

flx)= ;bk sin(n;x). (3.13)

We can also use the periodicity of time. A periodic function f{f) of period T (-1/2 < t <
+T1/2) can be expressed by a Fourier series,

4 N L
f(t)= 70 + ;an cos(nmyt) + ;bn sin(nw,t) (3.14)
where w, = 27/T is the angular frequency of the fundamental mode, and the Fourier coef-
ficients a,, and b,, are given by

2 T2 +T/2

a, =— f(t)cos(mmyt)dt and b ,= 2 f(t)sin(mao,t )dt. (3.15)
TJd 112 TJ 112

Additionally, we can obtain a Fourier series in a complex exponential form. By applying
Euler’s formula, e’ = cos@ + i sin, the Fourier series of complex variables are

f@t)= :Z: c,e™™ (3.16)

n=—owo
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where the complex Fourier coefficient is given by

1 +T/2 .
(=t J' F(R)e ™ . (3.17)
TJd-1r2

The complex Fourier coeflicient represents the magnitude of the frequency component and
the phase.

What if we only know the numerical data of the unknown function f(x)? What if the
function is non-periodic? Numerical calculations of the integrals to find the coeflicients
a, and b, seem to be very time-consuming computational tasks. To overcome the com-
putational difficulty, we can apply another mathematical theory, which is an extension of
the Fourier series, called the Fourier transform. Also, a fast computational algorithm of
the Fourier transform called the fast Fourier transform (FFT) has been widely used for
numerical computation. For the basic idea of Fourier transform, refer to Section 3.6.1. For
detailed discussions on FFT, refer to other books [8].

3.4 DOPPLER EFFECT AND SHOCKWAVE
3.4.1 Doppler Effect

When a sound source is moving to one direction, e.g., to the right, the center of each new
wavefront is moved to the right direction. As a result, the wavefronts begin to bunch up
on the right side (in front) and spread further apart on the left (behind) of the source. As a
result, an observer at rest on the right side will hear a higher pitch sound when the sound
source is approaching the observer and a lower pitch sound when the sound source is

moving away from the observer. If the observer is also moving at a velocity, the following
frequency change will be observed:

14 +v,
fobs — fs[mce sound observer (318)

sound — Vsource

where v >0 if the observer is approaching the sound source and v, .>0 if the sound
source is approaching the observer. For a detailed explanation, refer to a standard educa-
tion material [9].

Figure 3.8 lists a VBA code to generate wave patterns as the sound source approaches a

observer souce

stationary observer. At a given time, a circle of the wavefront is calculated. The wave speed
is 10 m/s and the source speed is 8 m/s (Mac = v, ,ce/Viouna = 0-8)

At t =0, acircle is drawn using the calculated values of xw and yw in the VBA code. The
successive circles at later times are added to the one at t = 0. Figure 3.9 shows the schematic
diagram of the final result.

3.4.2 Relativistic Doppler Effect

A general physics course may briefly mention the relativistic Doppler effect by pointing
out a resemblance to the acoustic Doppler effect. However, its quantitative discussion is
seldom found in an introductory physics textbook, and it may be helpful to be aware of the
relativistic effect [10, 11].
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Dim x(6)
Dim rw(6)
Dim xw(37)
Dim yw(37)

h=1
n=5

t=0

x(i) = 0:
Next i

xw(j)
Next j

x(i)=1i*
Next i

Next i

Next k
Next j
Next i
End Sub

Sub Doppler()
Cells(1, 1) =

Cells(2, 2) = "Wave speed v": v = 10: Cells(3, 2) = v
Cells(2, 4) = "Mac": Mac = 2: Cells(3, 4) = Mac
Cells(2, 6) = "Source speed u": u=v * Mac: Cells(3, 6) =u

'Initialization:

Fori=0Ton

Forj=0To 36
=0:yw(j)=0

'Positions of generating circular waves:

Fori=0To5 'i*h is time increment.

Cells(5, 1) = "Time="
Cells(6, 1) ="
Fori=0To5
Cells(6, 2 +2 *i) ="(x"
Cells(6,3+2 *i)="y)"
Cells(7, 2 + 2 *i) = x(i)
Cells(7,3+2*i)=0
Cells(8,2+2*i)=0
Cells(8,3+2*i)=0

'Time development of wave patterns:

Fori=0Ton 'time interval i*h
Cells(5,2+2*i)=t
Cells(9, 2 +2 *i) ="xw": Cells(9, 3+ 2 * i) = "yw"

Forj=0To 5
rw(j)=(n-j)*h*v 'Wave front circle at a given time.
Fork=0To 36 'Define 36 points on a circle.
theta=2*3.14*k /36 'Angle at each point on a circle
xw(j) = x(j) + rw(j) * Cos(theta) 'x value of the circular wave.
yw(j) = rw(j) * Sin(theta) 'y value of the circular wave.

"Wave pattern of Doppler effect"
'Position of the source.
'Wave propagation from the source.
'x-coordinate of the wave front.
'y-coordinate of the wave front.

‘Time increment.
'n*h is the total time interval.

rw(i)=0

h*u 'Position of the source at time i*h.

"Source at"

Cells(10 + k, 2 +2 * j) = xw(j)
Cells(10 + k, 3 +2 *j) = yw(j)

FIGURE 3.8 VBA code for visualizing the Doppler effect.

Define a sine plane wave as observed in a frame S,

sin(E -7 —ot) =sin(k,x +k,y+k,z—ot) where o = ck. (3.19)

Let 71 be the unit vector of the wave number vector kand k = k# = (w/ ¢)#. Assume there is
another frame S’ moving at velocity v with respect to frame S. The Lorentz transform of
the wave number vector has exactly the same form as the position vector. That is,



62 m Mathematical Methods for Physics Using Microsoft Excel

Shock wave (Mac=0.8)

FIGURE 3.9 The Doppler effect.

ch—" o—kv 1-(n-v/c)
k'=——C— and thus, o' =ck' = = = where B =v/c.

€ — =®
1-p? J1-p* 1-PB? J1-p

v
k=75

(3.20)

where k is the wave number as observed in frame S, and k’ is the wave number emitted
from frame §'. Thus, the velocity dependence of the angular frequency is directional.

1) If 1 is parallel to ¥, then

m’zml_wczm 1-B orgz ﬂ (3.21)
/1_[32 I+ o 1-B

where w is the angular frequency as observed in frame S and @’ is the angular fre-
quency as observed in frame §’ which is moving in the direction n with respect to
frame S. Figure 3.10 shows the longitudinal Doppler effect where frame S’ is approach-
ing frame S, and moving away from frame S.

Longitudinal Doppler effeel

FrameS'is | = Frame S’ is
approaching to | moving away
frame S. | = from frame 5.

w/w'

FIGURE 3.10 The Longitudinal Doppler effect.



Waves ®m 63

Transverse Doppler effect

/'

é:v,fc
FIGURE 3.11  The Transverse Doppler effect.

2) If 11 is perpendicular to ¥, then we obtain ® = &'\/1—* . Figure 3.11 shows the veloc-
ity dependence of the ratio @’/w. This velocity dependence is called the transverse
Doppler effect. The transverse Doppler effect is unique and not observed in the

acoustic Doppler effect. For the transverse Doppler effect, ® < @', i.e., A > A", which
is called redshift [12]

3.4.3 Shockwave

When the speed of a wave source exceeds the speed of the generated wave, the wavefronts
lag behind the wave source, forming a cone-shaped region with the source at the vertex
[13]. The front edge of the cone forms a supersonic wave within which sound energy is
confined. In Figure 3.12, Mac = v ., ../Viouna = 20/10 = 2.0, and the vertex is at x = 100.

soruce’ Ysound —

Note: Cherenkov radiation and muon detector. One of the interesting shockwave phe-
nomena is the Cherenkov radiation [14, 15]. The relativistic theory states that the speed of
light in a vacuum is constant ¢, while in media of the index of refraction #, the speed of light
is given by ¢/n < c. For example, the propagation speed in water is only 0.75c. Particles can
be accelerated by nuclear reactions or particle accelerators to exceed the propagation speed
in the medium (although never exceeding the speed of light ¢ in a vacuum). Cherenkov

Shock wave (Mac=2.0)

FIGURE 3.12 Wavefronts of shockwave.
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radiation is emitted when a charged particle passes through a (non-insulating) dielectric
material at a speed faster than the speed of light in that medium.

When a charged particle passes through such a medium, the local electromagnetic
field in the material is disturbed. Electrons in the atoms of the medium are moved and
polarized by the passing charged particle’s field. When the electrons return to equilib-
rium states after the field disturbance has passed, photons are emitted (in conductors, they
return to equilibrium without emitting photons). In a normal case, the photons interfere
destructively and no radiation is detected. However, when the field disturbance propagates
faster than the speed of light in the material, the photons interfere constructively and the
observed radiation is amplified.

Cherenkov radiation is often compared to the shockwave. As shown in Figure 3.12, the
sound waves generated by a supersonic object cannot leave the object itself because they do
not have enough speed. Thus, the sound waves accumulate, and a shock front is formed. In
the same way, a charged particle also generates a shockwave of photons as it passes through
a medium.

Figure 3.13 depicts the directions of particle motion and its shockwave. In the diagram,
a particle passes through a medium with a velocity v. If # is the refractive index of the
material, the propagation speed of the emitted electromagnetic wave is v, = c/n. The left
vertex of the triangle represents the position of the particle at an initial time (t = 0). The
right vertex represents the position of the particle at a certain time ¢. For a certain t, the
distance traveled by the particle is x, = v t, and the distance traveled by the radiated elec-
tromagnetic wave is x,,,, = (c/n)t. Therefore, the radiation angle is cosf = x,,,/x,,

It is interesting to know that a neutrino detector catches the Cherenkov radiation [16].
When a charged particle fired by a neutrino travels through water with a speed faster than
that of light, the Cherenkov radiation is emitted. The emitted Cherenkov radiation forms
a cone shape in the direction of the charged particle’s movement as shown in Figure 3.10.
Photomultiplier tubes attached to the wall of the water tank capture this Cherenkov
radiation. The photomultiplier tubes provide information about the amount of radiation
received and the time at which it was received. Based on this, the energy, direction, posi-
tion, and type of the charged particle are determined. The Super-Kamiokande experiment
detects neutrinos using a huge water tank equipped with approximately 13,000 photomul-
tiplier tubes (11,129 in the inner tank and 1,885 in the outer tank) [17].

FIGURE 3.13 The direction of a shockwave (Cherenkov radiation).
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FIGURE 3.14 Refraction of light across two different media.

3.5 REFRACTION
3.5.1 Huygens's Principle

As shown in Figure 3.14, when the incident wavefront just reaches the interface at point A,
point B is still well within medium 1. In the time At it takes for a wavelet to travel from B to
B’ on the interface at speed v, = ¢/n,, a wavelet from A travels into medium 2 at a distance of
AA’ =v,At, where v, = c¢/n, and c is the speed of light in a vacuum and #, and n, are indices
of refraction in the respective medium. Notice

sinf, sin0, sin 6, sin6,

AB' =

(3.22)

In this way, we obtain Snell’s law: #,sinf, = n,sin#,. To confirm Snell’s’ law, one may use

sin@, = 55 _ nAt and sin0, = 44 VAl __ /At

, = = (3.23)
AB' 12 £ (v,At)? AB P +(mAl)? I+ (ALY

where AB = L and a = n,/n,. Figure 3.15 shows the calculation for sine values at different

A-values using v; = 1, L = 1, and a = 1.2. The slope of the graph is the index of refraction n,,
which is the same as the assumed a-value.

3.5.2 Principle of Least Traveling Time

Figure 3.16 depicts an optical path across the interface between the two different media.
The traveling time from point A (0, 0) to point B (I, m) via point M (a, y) on the interface
is given by

J¢+y2+Jw+a—yf

V1 vV

(3.24)

T=



66 m Mathematical Methods for Physics Using Microsoft Excel

1 Snells' Law: sin(thetal)=({alpha)*sin(thetaZ?) where n2=alpha*nl

2 Refraction

3 alpha= 12 Snell's law

4 L= 10

5 yl= 1 0.25

6 vi= 0.833333

o 02

Bt e jend y = 1.1934x + 0.0002

Cl 0.0 0 0

10 0.2 0.016664 0019936 0.15

1 0.4 0033315 0.039958

12 0.6 0.049938 0,059892 01

12 0.8 0066519 0.079745

14 1.0 0.083045 0.099504

15 12 0099504 0119145 0.05

16 14 0115881 0.138648

17 16 0132164 0.157991 o & |
18 18 014834 0.177153

12 2.0 0164399 0.196116 0 0.05 ol 0.15 0.2

FIGURE 3.15 Snell’s law.

A(0,0)

FIGURE 3.16  Optical path while being refracted.

The least traveling time should satisfy

v oy oty (3.25)
dx vl\/az +y? vz\/b2+(£—y)2

Referring to the geometry of Figure 3.14, the incident and the refracted angles satisfy

y . l—y .
——=2— =sin0, and — ——=—— =sin6,. (3.26)
Jai+y* Vb + (L= y)

Therefore, the condition of the least traveling time becomes

dv _sin6, _sin®, _ (3.27)

dx v v,

Because v, = ¢/n; and v, = ¢/n,, Equation 3.24 yields to Snell’s law: #, sin0, =#, sin®,. For
determining the optical path using Excel’s Solver, refer to [18].
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3.5.3 Particle Model

With the particle model of light, the law of refraction is a consequence of the conservation
laws of momentum and energy. Consider that a particle of mass m goes across the inter-
face. Referring to Figure 3.13, the momentum component along the interface is conserved:
mv,sinf, = mv,sind,. If the total energy of the particle is only the kinetic energy, (1/2)mv,? =
(1/2)mv,? by the energy conservation value. Combining both conservation laws, we obtain
n,sin6, = n;sind,, but this is not Snell’s law! In fact, this discrepancy was one of the reasons
for the failure of the particle model of light, and Huygens’s principle is better equipped
to support the wave model of light. We need to carefully reconsider the “velocity of light
particle.”

Because the particle is a photon, the energy of the particle in each medium is given
by E, = pic = p(c/n,), where c is the speed of light in a vacuum, and in E; and p,, i = 1, 2,
are relativistic energy and momentum of the respective medium [19]. The conservation of
momentum,

pisiné, = p,sind, becomes (n,/cE,)siné, = (n, /cE,)sind,, (3.28)

which gives Snell’s law because E, = E,. Alternatively, De Broglie wavelength, 1 = h/p, can
also be applied, where  is the Planck’s constant.

p1sin®, = p,sinB, becomes (h/mh,)sin0, =(h/mk,)sin06,. (3.29)

Because A, = v/f; = c/(nf), i = 1, 2, but f,=f,, the de Broglie wavelength can also derive
Snell’s law.

3.6 DIFFRACTION
3.6.1 Fourier Transform

We apply the Fourier transform to spectral analysis where we want to decompose a time-
varying signal to its frequency components to acquire the spectrum of the signal [20]. The
Fourier transform of a function f(f) constitutes a pair of integrals:

F(o) = I F(H)edt and f(r) = i I F(w)e do. (3.30)
The second integral of the above pair is called the inverse Fourier transform. Equations 3.16
are applied to analyses of signals of mechanics, acoustics, and electromagnetism. Here, let
us acquire the energy spectrum of the damped oscillation that we discussed in Section 2.1.
We use a simplified version of Equation 2.7 as a displacement of a damping oscillation of
angular frequency .

x(t) = e ™ sinw,t, where the damping factor is 2k. (3.31)

The Fourier transform of Equation 3.31 is
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+00 » 400 B . . 1 +00 B . » i
X() =I x(t)e ™ dt =I (e sinw,t)e ' dt = 2—.[ e M (et — g7t )i Jt
—0 0 1Jo

1 ) ) . 1 ) i . (3.32)
il k—i(o-w,) k+ilw+w,) | 2| (0—o)+ik (0+w)—ik |

Assume that the damping is very slow and k/w, <<1. Then

1
4[(w—w0)2+k2]'

X(w) ~ 1{1} when o = ®,, and \X(m)\2 ~ (3.33)

2| (m—wy)+ik

Figure 3.17 shows the beginning part of Excel’s spreadsheet of calculating |X(f)|* of x(f) =
e"'sin(20xf). The total number of data is N = 1024. The sampling time interval is set to 10~
s, and the frequency resolution is 1000/N = 0.9766 Hz. Figure 3.18 shows the calculated x(¢)
and |X(f)|*.

Remark: Excel has a built-in Fourier transform. To use it, an Add-in option, Analysis Tool-
Pak, must be installed. Refer to Appendix A1.2 for installing the option.

Mathematically, the Fourier transform connects two different variable spaces that are
canonically conjugate. For example, the coordinate {g} and the momentum {p} (or the wave
vector {k}) are canonically conjugates. The Fourier transform of a function f(x) constitutes
a pair of the following integrals.

4 & ] C ] E F G

1 | Datanc. Time{s) Data FFT Freq (Hz) 1%] |%)?

2 0 o 015.2774914968487 0 152774915 233401746
3 | 1 0001 0.062728 15.4244100679968-0.611493127633584i 09766 154365274 238285378
4 I 0002 0.125083 15.8823911470968-1.2623027900403) 159532 159324749 253.843757
5 3 0003 018682 16.7083954792871-200058583187578i 29208 168277397 283.172813
[ 4 D004 0.247687 18.0182955763862-2.896676987730151 3.5064 182496497 333.049713
7 5 0005 0307476 20.0333194619014-4 DGA72E1196535i 4.883 204425308 417.897064
8 6 0006 0365922 23.1948075781147-5.753205626149621 58595  23.8976667 571.098474

FIGURE 3.17  The Fourier transform of damped oscillation.

x(t)=etsin(20xt) [X(f)]?

5 7 a 11 13 15

Time (s) Frequency (Hz)

FIGURE 3.18 Damping oscillation and its power spectrum.
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F(k):j F(x)e ™ dx and its inverse Fourier transform f(x):zi J' Floe™dk.  (3.34)
—o0 T

Equation 3.34 is used in wave optics and quantum mechanics.

3.6.2 Diffraction pattern

Diffraction phenomena are the best representation of what a wave is. Any wave exhib-
its diffraction. Huygens’s principle explains that diffraction through a small aperture is a
superposition of the secondary waves from each point on the aperture. Figure 3.19 illus-
trates a schematic diagram of observing two-dimensional diffraction. In this figure, the
amplitude of a diffraction pattern observed at point P(X, Y) on the screen is given by the
two-dimensional integral of the spherical wave over the aperture:

Cexp(ikr)

Up(X,Y)=
P( ) apature inr

g(x, y)dxdy (3.35)
where C is a constant, r is the distance from a point inside the aperture to the observing
point on the screen, g(x, y) is called the aperture function, where g(x, y) = 1 if a point (x,
) on the screen is inside the aperture and 0 otherwise. The integral element of dxdy is the
area element of the aperture.

The aperture size is comparable to the wavelength for diffraction, and the distance from
the light source to the aperture plane is very long, and the distance from the aperture to
the observation screen — denoted as R - is also much larger than the aperture size. Under
this circumstance, the incident and diffracted spherical waves have negligible curvatures.
The angular spread of the diffracted light is small, and we can regard both the incident and
diffracted waves as plane waves. This is called the Fraunhofer diffraction, and Equation
(3.35) becomes

Up(X,Y)= ij g(x, y)exp(ikr)dxdy. (3.36)
Z)\«R apature
¥
\ .
a1 o
T . e
=il e A - =
=T aglxy) 7 B o X
Apertured 0
Screen Rl ,'
Screen

FIGURE 3.19  Schematic diagram of two-dimensional diffraction.
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Now, we apply the “Fresnel approximation” to Equation 3.36. Because R in Figure 3.17 is
considerably large it is denoted as (x—X) and (y-Y), and the distance r can be approximated
to be

(x—X)* +(y—Y)2
R? (3.37)

r=R+(x—X) +(y-Y) =R\/1+
1 2 2 1 2 2 2 2 1
zR+§[(x—X) +(y=Y) ]=R+§[(x +9)+(XP+Y )]—E(xXerY).

Furthermore, because the aperture size is very small, we may drop the term (x?+y?) from
Equation (3.37) to get

1 2 2 1
r=R+§[(X +Y )]—E(waY), (3.38)

whence the diffraction pattern U, becomes

K x2y? © .
UP(X’Y):i}(fR T Y)_[_ g(x,y)exp{—lg(xX+yY):|dXdy

o d (3.39)
, [ee} o0 ik
= CI g(x,y)exp[—R(xX+ yY)}dxdy
b) kR k (X2+Y2)
where C (C / 17\,R) kR o' 2R . Equation 3.39 indicates that the diffraction pattern, U,

is the two-dimensional Fourier transform of the geometrical shape of the aperture func-
tion g(x, ).

Remark: If g(x, y) = g(x)g,(y), then the two-dimensional Fourier transform becomes a
product of two independent one-dimensional Fourier transforms. The two-dimensional
FFT is separated into each component. Unfortunately, Excel does not have a built-in two-
dimensional FFT, but it is not difficult to make a VBA code [8].

3.6.3 Rectangular Aperture

Iftheapertureisarectangleof size D, by D, g(x,y) = 1if -D,/2 <x< D,/2and —D,/2<y<D./s;
it is otherwise, 0. The integral of the diffraction pattern U,(X, Y) can be calculated easily
to obtain

Dy/2 Dyl2
Up(x,,y,) = C'J‘ I exp[— xX+yY)}dxdy

D, /2 D /2
D
sin[kD"Xj sinLkZRyYJ (3.40)
=C'D,D P DzR D )
e ()
2R 2R



Waves m 71

Two-dimensional diffraction due to square aperture

FIGURE 3.20 Diffraction pattern due to a square aperture.

Figure 3.20 shows the intensity of the diffraction pattern through a square aperture, where
C =1,D,=D,=1,and k/2R = 1. The procedure to create the diffraction pattern is similar
to that of Figure 3.3. In order to avoid the singular pit X = Y = 0, we select the range of
X and Y to be —20.1 £ X (and Y) < +19.9 with increments of 0.5. Excel’s AutoFill and 3-D
Surface chart options are used.

SUGGESTED FURTHER STUDY

There are excellent articles and books on periodic motions [21, 22]. The author recom-
mends that everyone read these books and a series of OpenCourseWare by MIT. The
Fourier transform is a valuable mathematics tool for various physics subjects including
spectral analysis and optics [6-8].
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CHAPTER 4

Electromagnetism

AFTER REVIEWING VECTOR ALGEBRA, we start with time-independent Maxwell’s equa-
tions to discuss the electric potential and the electric field, as well as vector poten-
tial and magnetic field. Although computation of EM fields by solving Poisson’s equation
requires a complicated algorithm, Excel offers an option for “iterative calculation,” which
allows us to compute EM fields in relatively simple boundary conditions without program-
ming. From time-dependent Maxwell’s equations in free space, we derive wave equations
of E-field and B-field. Huygens’s principle and Snell’s law of refraction can be naturally
derived from these EM fields. Alternative approaches to the law of refraction are also
discussed.

4.1 VECTOR ALGEBRA

Here are the formulas for the addition of two vectors and scalar and vector products. Let

d=(ay,a,,a,) and b= (by,b,,b,). Vector sum/subtraction is given by
atb=(a,+b,a,+b,a,+b,);
the scalar product is
a-b=(ab, +a,b, +a,b,); and
the three components of the vector product, 4 x b, are
(Eix E)X =a,b, —a,b,, (Eix E)y =a,b, —a,b,, and (5><l;)z =a.b,—a,b,.

These numerical results may be shown with three-dimensional graphs created by applying
the Euler angles. For given vectors, a spreadsheet of Excel can be used to calculate these
components of vector sums and vector products as shown in Figure 4.1. For the vector addi-

tion, d =(1,0,4) and b= (0,2,0) are used. For the vector product, unit vectors i= (1,0,0) and
j =(0,1,0) are used.

DOI: 10.1201/9781003516347-4 73


http://dx.doi.org/10.1201/9781003516347-4

74 m Mathematical Methods for Physics Using Microsoft Excel

4 # | ® | c | D E | F | & | W
1 |3D-Vectors

2 |Adding two-dimensional vectors alpha beta gamma
3 | 1.047198 1047198 1.047198
4 Vectorl Tail Tip

5 |x1 0 L =] ] 025
6yl [ b a 0 -0.86603
Tl 0 o 0 0433013

9 |Vector2

102 0 b 4 0 0433013

11 v2 0 i b 0 05
i EOROON OO | ROosoaei 5 0 0.75

13

55 U VN

15 [ Xsum 0 o — 0 -0.43301

16 |Ysum a 3 a x b o 0.5

17 |zsum a o o 1.25

e
19 |Vetor product (i x j) = i
20 [x-comp 0 i 7 0 -0.85603 |
21 y-comp 0 0 o o !
22 zcomp it 1 —o——os

23

FIGURE 4.1 Calculation of vector addition and vector product.

For creating their three-dimensional representations, a small VBA code is created
which reads the calculated values and displays their charts from an arbitrary set of the
Euler angles (Appendix A5). The VBA code is shown in Figure 4.2. A vector is defined by
the coordinates of its tip and tail and displays the vector on screen using the [scatter
with straight line] chart.

Figure 4.3 shows the addition of the vectors d =(1,0,4) and b =(0,2,0), and the unit
vector product k = i x j. Both are projected on a YZ plane created by a set of Euler angles
(alpha = /3, beta = /3, gamma = 0 for the addition, and alpha = n/4, beta = —n/6, gamma
= 0 for the vector product).

4.2 LORENTZ FORCE

The Lorenz force on a moving point with charge g and a velocity v in an external electric

field E and a magnetic field B is given by F = gE +q¥ x B. Suppose a charged particle with
charge q is initially at the origin and is fired in the y-direction with v, = v, there is a uni-
form E-field and a uniform B-field along the z-direction, and the force components are

F,=qE,+q(v,B, -v.B,)=qv,B,
F}' = qu +Q(Vsz _VXBZ) = —quBZ . (4.1)

F, =qE, +q(v,B, —v,B,) =qE,

Figure 4.4 shows the VBA code to calculate the position (x, y, z) of the changed particle
when E =(0,0,1), B =(0,0,—1), ¥(t =0) =(0,1,0), and the charge-to-mass ratio g/m = 2.

Figure 4.5 shows the trajectory projected on the xy-plane of the lab coordinates and
on the YZ-plane of the tilted plane by the Euler angles. The trajectory is a spiral with an
acceleration in the axial direction because there is a vertical acceleration due to the electric
field along the z-axis. For better visibility, two dots at the starting and ending points are
added.
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Sub Vector3D()
Cells(1, 1) = "3D-Vectors"
Pi=3.14159265358979
'Rotational angles of coordinates
Cells(2, 6) = "alpha": alpha = Pi / 3: Cells(3, 7) = alpha
Cells(2, 7) = "beta": beta = Pi / 3: Cells(3, 8) = beta
Cells(2, 8) = "gamma": Gamma = 0: Cells(3, 9) = Gamma
x1 = Cells(5, 3)
y1 = Cells(6, 3)
21 = Cells(7, 3)
x2 = Cells(10, 3)
y2 = Cells(11, 3)
22 = Cells(12, 3)
xsum = Cells(15, 3)
ysum = Cells(16, 3)
zsum = Cells(16, 3)
xp = Cells(20, 3)
yp = Cells(21, 3)
zp = Cells(22, 3)
fx1 =x1 * (Cos(beta) * Cos(alpha) * Cos(Gamma) - Sin(alpha) * Sin(Gamma)) + y1 * (Cos(beta) * Sin(alpha) * Cos(Gamma) +
Cos(alpha) * Sin(Gamma)) - z1 * Sin(beta) * Cos(Gamma)
fyl = -x1 * (Cos(beta) * Cos(alpha) * Sin(Gamma) + Sin(alpha) * Cos(Gamma)) - y1 * (Cos(beta) * Sin(alpha) * Sin(Gamma) -
Cos(alpha) * Cos(Gamma)) + z1 * Sin(beta) * Sin(Gamma)
fz1 = x1 * Sin(beta) * Cos(alpha) + y1 * Sin(beta) * Sin(alpha) + z1 * Cos(beta)
Cells(5, 6) = 0: Cells(5, 7) = fx1
Cells(6, 6) = 0: Cells(6, 7) = fyl
Cells(7, 6) = 0: Cells(7, 7) = fz1
fx2 = x2 * (Cos(beta) * Cos(alpha) * Cos(Gamma) - Sin(alpha) * Sin(Gamma)) + y2 * (Cos(beta) * Sin(alpha) * Cos(Gamma) +
Cos(alpha) * Sin(Gamma)) - z2 * Sin(beta) * Cos(Gamma)
fy2 = -x2 * (Cos(beta) * Cos(alpha) * Sin(Gamma) + Sin(alpha) * Cos(Gamma)) - y2 * (Cos(beta) * Sin(alpha) * Sin(Gamma) -
Cos(alpha) * Cos(Gamma)) + z2 * Sin(beta) * Sin(Gamma)
fz2 = x2 * Sin(beta) * Cos(alpha) + y2 * Sin(beta) * Sin(alpha) + z2 * Cos(beta)
Cells(10, 6) = 0: Cells(10, 7) = fx2
Cells(11, 6) = 0: Cells(11, 7) = fy2
Cells(12, 6) = 0: Cells(12, 7) = fz2
fxsum = xsum * (Cos(beta) * Cos(alpha) * Cos(Gamma) - Sin(alpha) * Sin(Gamma)) + ysum * (Cos(beta) * Sin(alpha) * Cos(Gamma) +
Cos(alpha) * Sin(Gamma)) - zsum * Sin(beta) * Cos(Gamma)
fysum = -xsum * (Cos(beta) * Cos(alpha) * Sin(Gamma) + Sin(alpha) * Cos(Gamma)) - ysum * (Cos(beta) * Sin(alpha) * Sin(Gamma) -
Cos(alpha) * Cos(Gamma)) + zsum * Sin(beta) * Sin(Gamma)
fzsum = xsum * Sin(beta) * Cos(alpha) + ysum * Sin(beta) * Sin(alpha) + zsum * Cos(beta)
Cells(15, 6) = 0: Cells(15, 7) = fxsum
Cells(16, 6) = 0: Cells(16, 7) = fysum
Cells(17, 6) = 0: Cells(17, 7) = fzsum
fxp = xp * (Cos(beta) * Cos(alpha) * Cos(Gamma) - Sin(alpha) * Sin(Gamma)) + yp * (Cos(beta) * Sin(alpha) * Cos(Gamma) + Cos(alpha) *
Sin(Gamma)) - zp * Sin(beta) * Cos(Gamma)
fyp = -xp * (Cos(beta) * Cos(alpha) * Sin(Gamma) + Sin(alpha) * Cos(Gamma)) - yp * (Cos(beta) * Sin(alpha) * Sin(Gamma) - Cos(alpha) *
Cos(Gamma)) + zp * Sin(beta) * Sin(Gamma)
fzp = xp * Sin(beta) * Cos(alpha) + yp * Sin(beta) * Sin(alpha) + zp * Cos(beta)
Cells(30, 6) = 0: Cells(30, 7) = fxp
Cells(31, 6) = 0: Cells(31, 7) = fyp
Cells(32, 6) = 0: Cells(32, 7) = fzp

End Sub

FIGURE 4.2 Vector sum ¢ = @x b and vector product of unit vectors i X j = k.

4.3 MAXWELL'S EQUATIONS FOR STATIC ELECTROMAGNETIC FIELDS
4.3.1 Static Electric Field

From the Coulomb force, the static electric field and the electric potential can be given by
a charge distribution p(7) and the permittivity of free space &

E(F) = ! IP(F,)(F—?’)CPF’,and

dne, Jv[F -7
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Vector sum on YZ plane Unit vector product on YZ plane

3.5 3

a:{ 1! 0! 4)
b:{ol 2! 0)
c=a+h

0

Alpha=mt/4 and beta =—1t/6

1 1 1.5

Aipﬁ.a=n/3 and beté =1/3

FIGURE 4.3 VBA code for three-dimensional display of a vector sum and a unit vector product.

o= | PI) s, (4.2)
\4

47g, ‘F -7

Let us find the differential equations for the electric field [1]. Gauss’ law, which is a con-
sequence of Coulomb’s law of 1/r* dependence of the electrostatic force, states that the
closed surface integral is the total charge within the volume enclosed by the closed surface

divided by ¢,:

_[ E(F)-di=1 j o(F)AV. 4.3)
s € Jv

By applying the Gauss theorem of vector calculus, the closed surface integral of Equation

4.3 can be changed to a volume integral: I V(7)-dA = j (V-V(7))dV for any vector func-
= N \4

tion V.

). di= [ v.Evav = L[ o
ﬂqus,ISE(r)-dA—IVV EGWV = jvp(r)dV.

€o

Therefore, we obtain the differential form of Maxwell’s equation, V- E(F)= (4.4)
Using the electric potential defined by E = V¢, Equation 2.3 can be expressed by another
€o
4.5)
Note that V x E = =V x (V) = 0 for any scalar function ¢. In summary, the static electric
field can be described with the following two Maxwell’s equations:

differential equation for the electric potential called Poisson’s equation: V>¢(7) =

V-E(F):@ and VxE =0 (4.6)

€o

where E = V¢ and the electric potential satisfies Poisson’s Equation 4.5.
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Sub ChargedParticle()
Cells(1, 1) = "Charged particle in Static EM-field."
Cells(2, 1) = "Both E-field and B-field are in the z-direction."
Cells(3, 1) = "A charged particle is fired to the yz-direction from the origin on the xy-plane of the lab frame."
'Parmeter Charge/Mass is the electrical charge of the particle.
QM =2
'Writing labels and initial value in cells:
Cells(3, 2) = "Initial t": t = 0: Cells(4, 2) = t
Cells(3, 3) = "Initial x": x = 0: Cells(4, 3) =x
Cells(3, 4) = "Initial y": y = 0: Cells(4, 4) =y
Cells(3, 5) = "Initial z": z = 0: Cells(4, 5) =z
Cells(3, 6) = "Initial vx": vx = 0: Cells(4, 6) = vx
Cells(3, 7) = "Initial vy": vy = 10: Cells(4, 7) = vy
Cells(3, 8) = "Initial vz": vz = 0.5: Cells(4, 8) = vz
Cells(3, 9) = "delt": h = 0.005: Cells(4, 9) = h
'Parmeter names:

Cells(10, 2) = "t"
Cells(10, 3) = "x"
Cells(10, 4) ="y"
Cells(10, 5) ="z

Cells(10, 6) = "vx"
Cells(10, 7) = "vy"
Cells(10, 8) = "vz"
Cells(9, 10) = "Euler angled coordinates"
Cells(10, 10) = "X"
Cells(10, 11) = "Y"
Cells(10, 12) = "Z"

'Runge-Kutta method:

Pi =3.14159265358979
'Rotational angles of coordinates

"

Cells(5, 1) = "Euler angles for 3D display "
Cells(6, 1) = "alpha": alpha = Pi / 6: Cells(7, 1) = alpha
Cells(6, 3) = "beta": beta = -Pi / 3: Cells(7, 3) = beta
Cells(6, 5) = "gamma": Gamma = 0: Cells(7, 5) = Gamma
n =5000 'lteration #
Fori=0Ton
Lx1 = gx(QM, t, X, y, Z, VX, vy, vz)
Lyl =gy(QM, t, x, y, Z, vX, vy, vz)
Lz1 =gz(QM, t, X, Y, Z, VX, vy, vz)
Kx1 = fx(x, y, z, vX, vy, vz)
Kyl =fy(x, y, z, vx, vy, vz)
Kzl = fz(x, y, z, vx, vy, vz)
Lx2 =gx(QM, t, x+h *Kx1/2,y+h*Kyl/2,z+h*Kzl/2,vx+h*1x1/2,vwy+h *Lyl/2,vz+h *Lz1/2)
Ly2 =gy(QM, t, x+h *Kx1/2,y+h*Kyl/2,z+h*Kz1/2,vx+h*Lx1/2,vy+h*Lyl/2,vz+h *Lz1/2)
122 =gz(QM,t, x +h*Kx1 /2,y +h*Kyl/2,z+h*Kz1/2,vx+h*Lx1/2,vy+h* Lyl /2,vz+h * 121/ 2)
Kx2=fx(x +h*Kx1/2,y+h*Kyl/2,z+h*Kz1/2,vx+h*1x1/2,vy+h*Lyl/2,vz+h*Lz1/2)
Ky2=fy(x+h*Kx1/2,y+h*Kyl/2,z+h*Kz1/2,vx+h*Lx1/2,vy+h*Lyl/2,vz+h *Lz1/2)
Kz2 =fz(x +h *Kx1/2,y+h*Kyl/2,z+h*Kzl1/2,vx+h*Lx1/2,vy+h*Lyl/2,vz+h*Lz1/2)
Lx3=gx(QM, t,x+h *Kx2 /2, y+h *Ky2/2,z+h*Kz2 /2, vx+h*x2 /2, vy+h *Ly2 /2,vz+h * Lz2 / 2)
Ly3=gy(QM, t, x+h *Kx2 /2,y +h*Ky2/2,z+h*Kz2 /2, vx+h *Lx2 /2,vy+h *Ly2 /2,vz+h *Lz2 / 2)
Lz3=gz(QM, t,x+h *Kx2 /2,y +h*Ky2/2,z+h*Kz2 /2, vx+h *Lx2 /2, vy+h *Ly2 /2,vz+ h * Lz2 / 2)
Kx3=fx(x+h*Kx2/2,y+h*Ky2/2,z+h*Kz2 /2, vx+h*1x2/2,vy+h*Ly2/2,vz+h *1z2/ 2)
Ky3=fy(x+h*Kx2/2,y+h*Ky2/2,z+h*Kz2 /2, vx+h*Lx2/2,vy+h *Ly2 /2, vz+h *1z2/2)
Kz3 =fz(x +h *Kx2/2,y+h*Ky2/2,z+h*Kz2/2,vx+h *Lx2/2,vy+h *Ly2 /2,vz+h * Lz2 / 2)
Lx4 = gx(QM, t, x + h * Kx3,y + h * Ky3, z+ h * Kz3, vx + h * Lx3, vy + h * Ly3, vz + h * Lz3)
Lyd =gy(QM, t,x + h *Kx3,y + h *Ky3, z+ h * Kz3, vx + h * Lx3, vy + h * Ly3, vz + h * Lz3)
Lz4 =gz(QM, t, x + h *Kx3,y + h *Ky3, z+ h * Kz3, vx + h * Lx3, vy + h * Ly3, vz + h * Lz3)
Kx4 = fx(x + h * Kx3, y + h * Ky3, z+ h * Kz3, vx + h * Lx3, vy + h * Ly3, vz + h * Lz3)
Ky4 =fy(x + h * Kx3, y + h *Ky3, z+ h *Kz3, vx + h * Lx3, vy + h * Ly3, vz + h * Lz3)
Kz4 = fz(x + h * Kx3,y + h * Ky3, z+ h *Kz3, vx + h * Lx3, vy + h * Ly3, vz + h * Lz3)

FIGURE 4.4 VBA code for calculating Lorentz force.
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vx=vx+h*(Lx1+2*x2+2*Lx3+1x4)/ 6
vy=vy+h*(Lyl+2*Ly2+2*Ly3+Ly4)/6
vz=vz+h*(Lz1+2*Lz22+2*z3+1z4)/ 6
Xx=xX+h*(Kx1+2*Kx2+2*Kx3+Kx4)/6
y=y+h*(Kyl+2*Ky2+2*Ky3+Kyd)/6
z=z+h*(Kz1+2*Kz2+2*Kz3 +Kz4)/ 6
Cells(i+11,2) =t
Cells(i+ 11, 3) =x
Cells(i+11,4) =y
Cells(i+11,5)=z
Cells(i + 11, 6) = vx
Cells(i+ 11, 7) = vy
Cells(i+ 11, 8) = vz
t=t+h
‘Euler’s angles
EulerX = x * (Cos(beta) * Cos(alpha) * Cos(Gamma) - Sin(alpha) * Sin(Gamma)) +y * (Cos(beta) * Sin(alpha) * Cos(Gamma) + Cos(alpha)
* Sin(Gamma)) - z * Sin(beta) * Cos(Gamma)
EulerY = -x * (Cos(beta) * Cos(alpha) * Sin(Gamma) + Sin(alpha) * Cos(Gamma)) -y * (Cos(beta) * Sin(alpha) * Sin(Gamma) - Cos(alpha)
* Cos(Gamma)) + z * Sin(beta) * Sin(Gamma)
EulerZ = x * Sin(beta) * Cos(alpha) +y * Sin(beta) * Sin(alpha) + z * Cos(beta)
Cells(i + 11, 10) = EulerX
Cells(i + 11, 11) = EulerY
Cells(i + 11, 12) = EulerZ
Next i
End Sub

Function gx(QM, t, x, Y, z, VX, vy, vz)
‘dvx/dt=gx

gx=QM * (Ex(x, y, z) + vy * Bz(x, y, z) - vz * By(x, y, z))
End Function

Function gy(QM, t, X, Y, Z, VX, vy, vz)
‘dvy/dt=gy

gy =QM * (Ey(x, y, z) + vz * Bx(x, y, z) - vx * Bz(x, y, z))
End Function

Function gz(QM, t, X, v, z, VX, vy, vz)
'dvz/dt=gz

gz=QM * (Ez(x, y, z) + vx * By(x, y, z)- vy * Bx(x, v, z))
End Function

Function fx(x, y, z, vx, vy, vz)
'vx=dx/dt

fx = vx
End Function

Function fy(x, y, z, vx, vy, vz)
'vy=dy/dt
fy=vy
End Function

FIGURE 4.4 Continued.

4.3.2 Difference Equations for the Electric Potential and the Field

Let us focus on two-dimensional spaces to find the electric potential and the electric field
from a given charge distribution:

09(x, )
E.(x,y)=— """
Poey) Foey)__ptey | TETT )
ax2 a)/z €p ’ Ey (x’ )/) - _ a(l)(x’ )’) '

dy
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xy-plane YZ plane

FIGURE 4.5 Trajectories on the xy-plane of the lab frame and on the XY-plane of the tilted plane.

We discretize the independent variables x and y: x = iAx and y = jAy, where i and j are inte-
gers, and the electric potential function, ¢(x, y), is defined as ¢(3, j). Partial derivatives for
a continuous and smooth function are calculated as

op(x,y) _0G+1L7)—0Gj) | 00(xy) _ 4G, j)—¢G-1,))

Oox Ax or ox Ax (4.8)
80(x,y) _ 80 j+D =06 j) ™| 800 y) _ 60 )~ (i i)
oy Ax oy Ax '

Using the forward and backward derivatives, the second derivatives are given by

O*9(x, y) <L [¢(i+1)1')—¢(i>j)]_(4)(1'»]')—4)(1'—1)]')]
ox* Ax Ax Ax

52¢(x))’)zi ¢, j+D) =00, ) | [ ¢G5 j)— G, j—1)
o Ay Ay Ay ’

4.9)

and the Poisson equation discretized for numerical calculation becomes:

1 [(b(i+1)J')—¢(i,j)j_[¢(i,j)—¢(i—l»j)j
h h h

(¢(i,j+1)—¢(i,j)j_(¢(i,j)—¢(i,j—1)j __pG))
h h €o .

(4.10)

1
+7
h

From Equation 4.9, the electric potential at the point (i, j) is

j)= O +1L )+ G =1 1)+ j+1D+¢6j-1) th(i,j).

411
4 4g, @1

oG,
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4.3.3 Electric Dipole Potential

With Equation 7.6, the two-dimensional electric potential can be calculated from a given
charge distribution, p(i, j). Let us calculate the dipole field from which we obtain the 3D
equipotential surface of Figure 4.7. Excel has an option called Iterative Calculation, which
is “the repeated recalculation of a worksheet until a specific numeric condition is met.” [2].
Refer to Appendix A.1.5 for enabling this option.

Here is the iteration routine for the electric potential:

1) Use AutoFill to write x-coordinate values from =10 to +10 in Row 1 (the x-coordi-
nates) and Column A (the y-coordinates).

2) Enter the boundary condition: ¢(+10,y)=¢(-10,y)= ¢(x,+10)= ¢(x,-10)=0
for =10 <x <+10 and -10 <y <+10. Enter 0 in Cells B2:B42 of Column B, Cells
AP2:AP42 of Column AP, Cells B2: AP2 of Row 2, and Cells B42:AP42 of Row 42.

3) Enter the charges: *1 (=h’p/4¢,) in Cells R23 and AB23, respectively.

4) Enter =(B2+C1+D3+C4)/4 in Cell C3. Figure 4.6 shows the difference equation and
its equation for Excel.

(=] = ~ 1B 3 CID3 A

A A B ¢ S N G

1 -10 -a.5 e i 75
2 -10 0 0 @i+l +li—1, )+, j+D)+eli, =1 )
3 -9.5 0| -0.00033| -~ 4 ¥
4 -9 0 -0.00065 -L )
5 -8.5 0 -0.00096 -0.00195 -0.00296 -0.00403 -0.00516

FIGURE 4.6 Preparing the integrative calculation.

Electric dipole field

FIGURE 4.7 Two-dimensional electric dipole potential surface.
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5) AutoFill C3 to C42 and then AutoFill C3 to AQ3. Continue AutoFill along rows and
columns. Do not worry even if the cell values are all zero until reaching Column
0. Once Column P is AutoFilled, the cell values change by the Iteration Calculation
option. For Column Q, AutoFill 03:021 and Q23:042 to avoid Cells Q22.

6) Highlight A1:AP42 and inserta [Wire frame 3-D surface] graph.

4.3.4 Two-Dimensional Electric Field from Electric Potential

The electric field can be calculated from the electric potential: E(x, ,2)==V(x, y,z).
Because the electric field is a vector, it needs two separate tables for E,(x, y) and E,(x, y). For
the two-dimensional potential, the following approximation of position derivatives can be
used.

E.(x.y)=_ 00000 1 <|>(i+1,j)—<|>(i,j)+<|>(i,j)—<|>(i—1,j)}:_¢(i+1,j)—<l>(i—1,j)
ey x| 2 h h 2h ’

(4.12)

and

T

(4.13)
From the spreadsheet of the electric dipole potential obtained through steps (17) to (22),
the electric field, E (x, y) and Ey(x, ), can be calculated. Here, rows change the x-coordi-
nates: Cells B2: AP2 correspond to the coordinate (10, —10) to (+10, —10) by increments of

0.5, and columns change the y-coordinates: Cells A2:A42 correspond to the coordinates
(10, -10) to (~10, +10).

Calculation of E(x, y)

7) Use AutoFill and enter the x-coordinates from -10 to +10 in Cells B45:AP45 of
Row 46 by step 0.7. Similarly, enter the y-coordinates from =10 to +10 in Cells
A45:A85 of Column A.

8) Enter the boundary value 0 in Cells B45:AP45, B45:B84, AP45:AP84, and
B85:AP87.

9) Enter =—(C3-B3) in Cell B46 and AutoFill to AP46.

10) Highlight Cells B46:AP46 and AutoFill to Cells B84: AP84.

Figure 4.8 shows the initial part of E..



82 m Mathematical Methods for Physics Using Microsoft Excel

A A B C o E F G H | ] | K L M
A . . |
4 a0 85 e as & s 3 s B 5 4s
% 0 0 a 0 o 0 0 o 0 0 0 0 o
47 A5 0 0.000678 0000657 0000624 0.000579 0.000521 0,00045 0000365 0000267 0.000156 3.46E-05 -9.GE-05
48 9 0 0.001368 0001325 000126 0.00117 0.001055 0.000913 0.000744 0.000547 0.000324 7.78E-05 -0.0001%
45 8.5 0 0.002079 0.002016 0.00191% 0.001787 0.001616 0.001404 0.00115 0000853 0.000514 0.00013% -0.00027

FIGURE 4.8 Initial part of E,.

E x, y)

Eyx, y) | 4
[

| +

FIGURE 4.9  Electric field patters E, and E,.

Calculation of E(x, y)

11) Use AutoF1i11 and enter the x-coordinates from —10 to +10 in Cells B89:AP89 of
Row 89 by step 0.7. Enter the y-coordinates from —10 to +10 in Cells A90:A130 of
Column A.

12) Enter the boundary value 0 in Cells B90:AP90, B90:B130, AP90:AP130 and
B130:AP130.

13) Enter =—(C4-C3) in Cell B91. AutoFill to AP91.

14) Highlight Cells B91:AP91 and AutoFill to Cells B129:AP129.

4.3.5 A Charged Square Conductor in a Uniform Electric Field

Apply potential difference V across a pair of large parallel plates to produce a uniform
E-field. Place a square conductor that initially carries no charge in the field. How can we
compute equipotential lines?

Figure 4.10 shows a part of the initial setting of a spreadsheet. There are 40 X 40 points
to calculate the potential distribution. The ranges of x and y coordinates are set to be [-10,
+10] with 0.5 increments. Column B (cells B4:B44) represents a plate of zero potential and
Column AP (Cell AP4:AP44) represents the plate of potential of a constant positive voltage
V. They are highlighted in yellow. The cells highlighted in green (Cells U19:X19 ) represent
the square conductor. Assume that the region between the plates is large and potential val-
ues on both sides of the region should be linear from 0 to V volts.
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FIGURE 4.10  Electric potential around a square conductor (shown in green) in uniform E-field.

The computational step of the electric potential is similar to that in Section 4.3.3.
Boundary conditions:

1) Enter O in cells B4 to B44.
2) Enter =B4+1 in cell C4 and AutoFill to cell AP4.
3) Enter =B4+1 in cell C44 and AutoFill to cell AP44.

4) The conductor forms an equipotential region but the potential value is unknown. We
set the numerical value in cells of the square conductor to calculate the average value
of the surrounding cell. Enter

=(T18+T19+T20+T21+T22+T23+T24+T25+T26+T27+U27+V27+W27+X27+X2
6+X25+X24+X23+X22+X21+X19+X18+W18+V18+U18) /40

in Cell U19, and then copy and paste it to other cells of the square conductor. Each
cell of U19:X19 has the same calculation formula.

5) Enter =(B5+C4+4+D5+C6) /4 in Cell C5.
6) Apply Excel’s Iterative Calculation feature. AutoFill C5 to C44 and then AutoFill C5

to AP44, avoiding the cells of the square conductor.

Figure 4.11 shows the final result of the electric potential distribution around the square
conductor.

4.3.6 Static Magnetic Field

Since there is no magnetic monopole, the Gauss’ law for the magnetic field is

_[ B-dA =0, which leads to V-B=0. (4.14)
A
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Top view Side view

FIGURE 4.11  Electric potential distribution around a square conductor.

Using the current density, j(F), Ampere’s law can be expressed to be (ﬁ Bds = uoj j-dA .
4 A

Now, Stokes” theorem forms vector calculus, and the line integral of the above

equation can be changed to a surface integral B d§=J‘ (VxB)-d;l, and thus,
- . ¢ A

j(VxB)-dAzuoj jdA. (4.15)

A A

Therefore, we obtain the differential form of Maxwell’s equation for B-field, Vx B = u, .

The magnetic field can be expressed in the form of B=V x A, where A is the vector poten-

tial of the magnetic field. Since V-(V xA)=0 for any vector, Equation (4.14) is automati-
cally satisfied with the vector potential defined in this way [3].

Use Equation (4.15) with B=V x A to obtain Vx B =V x(VxA)=V(V-A)-V*A =p,].
(4.16)

Now, because any scalar function y satisfies Vx(Vy)=0, another vector potential
A=A+ Vy also satisfies B =V x A=VxA +Vx (Vyx)=Vx A’. This means that both the
vector potentials A and A'yield the same magnetic field. Back to Equation (4.16), we may
choose the vector potential such that V- A = 0. With this condition on the vector potential,
we obtain —V2A = p1,]. (4.17)

In summary, the static magnetic field can be described with the following two Maxwell’s
equations:

V-Banndeézuoj (4.18)

where B =V x A and the vector potential satisfies —V*A = ;.



Electromagnetism = 85

Similar to the electric potential, the vector potential and the magnetic field in two-
dimensional space can be computed by the following difference equations.

4.3.7 lteration Method to Compute Vector Potential and Magnetic Field

Magnetic fields can be calculated using vector potential. For a two-dimensional field,

Bx(x,y):M and By(x,y):_w (4.19)
Oy Ox
where the vector potential satisfies
DA (x,y) O*A.(x,
Cor)  TACI g, ) (4.20)

ox* oy’

Similar to the numerical solution of the Poisson equation (4.7) for an electric field, the vec-
tor potential can be numerically given by

AG+Lj)+A(-L)+A.Gj+D+A.Gj-1) fu ]G, j)
0 .
4

A, (i,)) = 4

4.21)

The magnetic field given by Equation 4.19 can be calculated as the average of the forward
and backward derivatives:

B,(x,y) = _0A, N 1A (x+Ax, y) - AL(x, ) N A (x,y)—A,(x—Ax, y)
ox 2 Ax Ax (4'22)
_ _Az(x+Ax,y)—Az(x—Ax,y) - By(i,j) =_Az(1+1,])—AZ(1—1,]) ,
2Ax 2h
and
B.(x,y) = Az z1{Az(x,y+Ay>—Az<x,y)+Az<x,y)—Az(x,y—Ay>}
d 2 Ay Ay (4.23)
_ A (x,y+Ay)—A,(x,y—Ay) — B.(i ) = Az(z,]+1)—AZ(z,]—1).
2Ay 2h

4.3.8 Vector Potential and Magnetic Field due to a Pair of Current Wires

Here is how to calculate the magnetic field using a pair of straight current wires with oppo-
site current directions along the z-axis. The positive current, +1, is at x = +1.25 and the
negative current —1, is at x = —1.25 in the two-dimensional space, -10 < x < + 10, -10 < y
< +10.

First of all, make sure that the [Tterative Calculation] option is enabled. Refer
to A.1.5 for enabling this option.
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Calculation of the vector potential A_(i, j)
1) Create a spreadsheet with a boundary condition.
X-axis
i) Enter -10 into Cell B1
ii) Enter =C2+40.5 into Cell 2
iii) Autofill to Cell AP1
y-axis
iv) Enter -10 into Cell A2
v) Enter =B3+0.5 into Cell A3
vi) Autofill to Cell A42
2) Enter 0 along the boundaries B2: AP2, B2:B42, AP2:AP42,and B42:AP42.

3) Enter current value -1 in Cell AA23 (x=-2.5,y=0) and +2 inCell 023 (x
=42.5,y=0).

4) Enter =(A2+B1+C2+B3)/4 in Cell B2.

5) Complete the sheet by applying AutoFill.
Figures 4.12 shows the initial part of the spreadsheet and Figure 4.13 shows the 3D surface
graph of the completed vector potential due to two current wires: I, = -1 at (-2.5,0) and I,
=+2 at (+2.5,0)
Calculation of the magnetic fields B, (i, j)

6) Create coordinate positions (i, j) and boundary conditions

X-axis:
i) Enter -10 into Cell B44
ii) Enter =C2+40.5 into Cell C44

iii)  AutoFill to Cell AP44

B lBeCasDaes

4 5 | B = 0| CE G H | e

1 potential .

2 -10 8.5 < 46 J)_z1(f+Lr)+zL(f—LD—A(u+1}+/1(r.f—l)I MJ‘!‘J-(r-..f) 55
3 -10 0 0 C 4 4 0
4 9.5 0] -0.0007| -0.00138 ~vwuevs vwurus vwuses wouarr wwovi s -0.00461
5 El 0 -D.0014 -0.00277 -0.00409 -0.00534 -0.00647 -0.00747 -D.00829 -0.00891 -0.00929

FIGURE 4.12  Beginning part of the spreadsheet for the vector potential.
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Vector Potential due a pair of current wires

FIGURE 4.13  Vector potential of a pair of opposite-current wires.
y-axis:
iv) Enter =10 into Cell AP45
v) Enter =B3+0.5 into Cell 246
vi) AutoFill to Cell A85
7) Enter 0 along the boundaries B45: AP45, B45:B85, AP45:AP85, and B485:AP85.
8) Enter =B3—C3 in Cell C46.
9) Complete the B, components (B45:AP85) by performing AutoFill.
Calculation of the magnetic fields B (i, j)
10) Create coordinate positions (i, j) and boundary condition
X-axis:
i) Enter =10 into Cell B89
ii) Enter =C2+40.5 into Cell C89
iii) AutoFill to Cell AP89
y-axis:
iv) Enter =10 into Cell 290
v) Enter =B3+0.5 into Cell A91

vi) AutoFill to Cell 2130
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Magnetic field due to the two current wires

FIGURE 4.14 Magnetic foil produced by two current wires (I, = -1 and I, = +2).

11) Enter 0 along the boundaries B45: AP45, B45:B85, AP45:AP85, and B485: AP85.
12) Enter = B2-B4 in Cell C91.

13) Complete the B, components (B91:AP130) by performing AutoFill.

The pattern of the magnetic field due to the two current wires is similar to the electric
dipole field as shown in Figure 4.14.

Note: Biot-Savart’s law from Ampere’s law

Each component of Equation 4.17 is essentially a Poisson’s equation. For example, its
x-component is ~V2A, =1, e

1 p(r’)
4me, ‘r

Recall that ¢(r) = 4’7", and we may writeA, (F) = 4— j J(7) 7. (4.24)

v‘q r'

Thus, A(F) = hj. J i ) d3 can be used to calculate the magnetic field [4, 5].
r—

BG)=VxAG =12 Ho 2V “ i) d*'} (4.25)

which is Biot-Savart’s law.

4 r—r'

Taking the x-component, we have B, (r) = Hogy D- i) daf’:l , (4.26)
\4
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we can calculate B,.
B =t | & ) 5 ) o W) g
4n ay ‘r ' 62 ‘r
Mo = 3= =y 3=y
= a’r d
4n J.]Z(r) (r ] I]y(r) [r—?’} r}

_MO I 31 ' 3=
== 7. (7" dr+J.](r) dr
475 ‘r—r‘ g

]

13
4n 7

F-

Combining all three components, we obtain Biot-Savart’s law.

B(r)=Ho [ j Wﬁ']. 4.27)

-~ -3
4n ‘r—’

4.4 TIME-VARYING MAXWELL'S EQUATIONS
4.4.1 Faraday’s Law of Magnetic Induction

The induced voltage (emf) is proportional to the changing rate of magnetic flux.

0Dy OB
emf = 5 q.)A Py -dA. (4.28)
What induces emf? An electric field or a magnetic field must be induced, and charges
(electrons) are driven by the induced field to produce electrical current and voltage. Note
that the magnetic field does not work because the magnetic force is always perpendicular
to the displacement of the charges. Therefore, the induced field must be electric. The charge
along the closed path by the induced electric field is equal to the electric potential energy
due to emf.

W= (ﬁ F-ds = q(j} E-ds = q(emf), thus q(ﬁ E-ds = CI) - dA (4.29)

By applying Stokes’ theorem, CJ) E-ds= —(ﬁ (V xE )-d;\ =— 81: dA. (4.30)
C A A
OB
Therefore, Faraday’s law states V x E=-"". (4.31)

ot
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4.4.2 Displacement Current

You may notice a similar equation for B-field, i.e., Ampere’s law: VxB=p, . For a time-
varying magnetic field, this equation cannot be used. Here is why. Because V-(V x B) =0,
Ampere’slawindicates V- j = 0. Thisisacceptable for asteady current but not for a time-vary-

ing current. For a time-varying current, the conservation of charge, dp(¥,t)/ 6t +V-j =0
must be applied.

Recall V- E(F) = M The time derivative of this equation,
&
0 = 1 5[) 1 =
—|V-E|l=—""=——(V-j).
Gt[ ] g, Ot € ( ])
- 0o = - OE
Thus,V‘]Jrsoat[V-Esz-{]ﬁLsoat}zo. (4.32)

The additional term is called the displacement current. Ampere’s law is modified to

VxB =y, (] +g aa]f] Maxwell’s equations for time-varying fields are now given:

v. B0 = PO gy Eg.p - B0
€ ot
V-B(7,t) =0, VX B(F,t) = ioj (F>1) + togo aEgt’t). (4.33)

4.4.3 Electromagnetic Wave in Free Space

The most important aspect of Maxwell’s equations is that they predict the existence of
electromagnetic waves [5]. Faraday’s speculation that “visible light is an electromagnetic
wave” was proved.

There is neither charge nor current. In this case, Maxwell’s Equations 4.33 become

OB(7,1) 0.
0

V-E(F,t)=0; VxE(F,t)+

OE(7,t) _

0. 4.34
Py (4.34)

V- B(F,t) =0; and V x B(F,t) — o€,

Calculate

}v.(v.g)_mmwzo,

OB(7, 1)
ot ot

V{VXE(F,m

°E

and thus, VZE = —1,g, E;tz (4.35)
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This is a wave equation and the speed of the electromagnetic wave is ¢ = 1/ JHo€y =2.99x10°
m/s.

. . = 1 aE . . 2—’ 1 aZB
Similarly, Vx(VxB) = —Vx 5 , which becomes another wave equation, V°B =—-
c

¢ ott’
(4.36)

4.5 HUYGENS'S PRINCIPLE AND GREEN’S FUNCTION

Huygens’s principle explains how and where waves propagate. It states that every point on
a wavefront itself is the source of spherical wavelets [6]. The sum of these spherical wavelets
forms a new wavefront. Here, we describe the principle in non-rigorous mathematics in an

analogy of electric potential in the next chapter (Section 4.3).
Suppose there is a distribution of charge densityp(¥), the electric potential is given by

o) = [ PT) g 4.37)
4me, ‘r—

where ¢, is the permittivity of free space and the integral is for volume. As we explain in
Section 4.3.1, the potential satisfies the Poisson equation

V2(F) = ps(”. (4.38)

Suppose we have a differential equation
V2§(F) = F(7), (4.39)

a special solution of this differential equation should be given by

NG )_——I F(?I) -d’7' by replacing — P it F(7). (4.40)

€o

If F(¥) is the Dirac’s delta function 8(7), the solution 3.22 becomes

e o7

The integrant of Equation 3.23, G(7,7") =—1/4n(|7 —7'|), is called Green’s function of
V?¢(7) = 8(7), and it is a fundamental solution of the Laplace equation V>¢(7) = 0.

The special solution 3.23 of the differential equation 3.21 and the fundamental solution
of the Laplace equation constitute a general solution of the differential equation 3.21.

A7 (4.41)
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1 1 [ FG)

G F)=—
v An(|7 7)) 4ndv[F-F

a’r. (4.42)

By an analogous argument, we can construct a general solution of the differential equation
V2(F) + k*¢(r) = F(7). (4.43)

Green’s function for the differential equation, a special solution of differential equation
4.43 is given by

zk|r 7|
I FFF, (4.44)
4TC ‘r -7 ‘

and the fundamental solution of the Helmholtz differential equation

V2(F) +k*(F) =0 (4.45)

is given by a linear combination of plane waves,e**”

4.45 is given by

, and a general solution of Equation

lk|r 7|

() = ae™ +be* — L _[ = FEOF. (4.46)

r—r‘

The special solution 4.44 is a spherical wave generated at each point 7' and that is what
Huygens’s principle states. For a more rigorous description of Huygens’s principle, refer to
the advanced book of electrodynamics and optics [7].

SUGGESTED FURTHER STUDY

Wave optics including Huygens’s principle and Snell’s law discussed in Chapter 3 can be
established with Maxwell’s equation. Refer to advanced textbooks on electrodynamics for
these subjects [8].
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CHAPTER 5

Entropy

NTROPY IS ONE OF the important concepts in physics and other fields. Yet, we do not

have enough time to contemplate it with examples. Here, we consider the entropy of
ideal gas, regular solution, spin system, and quantum harmonic oscillators. There are phe-
nomena where changes in entropy cause interesting consequences. For example, adiabatic
demagnetization on reaching a temperature below 1 mK is a fascinating application of
entropy and can be modeled with a set of N-independent spins. Although the numerical
calculation of change in entropy of two substances of known specific heat capacities and
initial temperatures is a typical introductory physics problem, its “general proof” is not
discussed. This book shows a diagram of the thermodynamic entropy change only with
ratios of specific heat capacity and masses and given initial temperatures.

Although entropy of information may not be introduced in physics courses, it is a
vital concept even in the economy of these days. We introduce popular concepts such
as the probability distribution of maximum entropy and one-factor entropy. H-function
and entropy in Markov processes are also described to validate the increasing entropy.
Negative entropy proposed by Erwin Schrodinger is also explained in relation to informa-
tion science.

5.1 THERMODYNAMIC VARIABLES

This section summarizes the basic properties of thermodynamics of ideal gas of N mol-
ecules, having pressure P, temperature T, and volume V [1]. The equation of ideal gas, PV =
Nk,T, connects these state variables to express its thermal state.

The first law of thermodynamics states the change in internal energy of a system while
absorbing heat and receiving work done on the system: AE = AQ + AW, where AQ is the
heat absorbed by the system and AW is the work done on the system. For the ideal gas,
AW = —[PdV. The beauty of the first law is that work and heat are not state variables, i.e.,
they depend on the thermodynamic process but the internal energy is a state variable, and
the change in the internal energy does not depend on the thermodynamic processes. In
particular, the internal energy of ideal gas depends only on the temperature of the system.
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The second law of thermodynamics has various statements. Since we focus on entropy,
we use entropy change to state the second law. By the definition of Clausius, the second law
states that the change in entropy is dS = dQ/T, where dQ is the heat absorbed by the system
and T is the absolute temperature of the system during an infinitesimally small reversible
process, and dS >0 i.e., the entropy of an isolated system never decreases. For an irrevers-
ible process, we use the entropy change of a reversible process with the same initial and
final states.

The probability that a thermodynamic system at temperature T has internal energy E is
given by the canonical ensemble,

= Q(E)exp(-BE) where =

P(E) Z(T,N) kT

(5.1)
In Equation 5.1, 2(E) is the number of microscopic states for a given internal energy E, k;

is the Boltzmann constant, and N is the number of particles. The denominator Z(T, N) of
Equation 5.1 is called the distribution function,

2(8) = [ QE)exp(-BEME = [ exp[ ~(BE-In(E) . (5.2)

Using the distribution function, thermodynamic functions can be calculated. For exam-
ple, the average internal energy is

(E) = J.Ep(E)dE - —aaBan(T,N). (5.3)

Suppose the distribution function is at its maximum value when E = E* then the distribu-
tion function can be approximated with

Z(T,N) ~ exp| <(BE*~InQ(E*)) ], and thus In Z(T,N) = —[BE * ~In Q(E)].

Therefore, the Helmholtz free energy may be expressed as
F(T,N) = —éan(T,N) -F —éan(E) —EF TS, (5.4)

where entropy S is defined by S = k;TIn€(E). Recall that the change in the entropy is
thermodynamically defined by dS = dQ/T. We bridge these two definitions of entropy in
Section 5.2. Once the Helmbholtz free energy is calculated,

P= _((EF) and S = _(EBFJ (5.5)
ov ). oT ),

from the change in the free energy, dF = dE — SdT — PdV.
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5.2 ENTROPY OF AN IDEAL GAS
5.2.1 Change in Entropy during Free Expansion

For obtaining a change in entropy while an ideal gas undergoes free expansion where its
volume expands from V, to V,, and pressure changes from P, to P;, we calculate the equiva-
lent entropy change of isothermal expansion of the same initial and the final states. Note
that there is no change in the internal energy because the internal energy of an ideal gas
depends only on T. Thus, according to Clausius’s definition,

f f
AS = J. dTQ = %AQ and AQ=AW = I PdV because AE = 0 for the isothermal process.

Vi
Using the ideal gas equation, AW=I &dV NkBTln[V J, and the entropy

change during an isothermal expansion is given by

_AQ_ 1
AS = T = Nk; ln(v J (5.6)

Following Boltzmann, we may consider the entropy change from the “microscopic state”
of an ideal gas during the free expansion. Below is a simplified version of his argument.
Assume that each particle occupies a microscopic cell of volume V. The number of pos-
sible allocations of a single particle in a bulk volume V'is given by V/V,.. Because V>> V_,
V-V, ~&V,and even V — Ne V_ ~ V. Then, the number of allocating N particles in the bulk
volume V is given by 2 = (V/V, )N. Therefore, when the volume of the gas expands from V,
to V}, the number of microscopic states changes from £2, = (Vi/V, )N to £; = (V/V,_ )N, and
we obtain

Qf:(vf/Vm)N:(ijN_ (5.7)
Q.  (VilV,) V;

One may formulate entropy based on the number of microscopic states by comparing
Equation 5.6 with Equation 5.7 to obtain

N
0
AS =Nk In| ~~ Vs kBln =kyln| L
Vi V, Q

Thus, the entropy of the ideal gas may be expressed as
S=kzInQ=NkzInV. (5.8)

The derivations of the number of microscopic states of an ideal gas are shown in standard
textbooks [2]. From the classical mechanics,

Q(E) — 7C3N (2 )3N/2 VNE(3N/2) 1 (59)
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3N/2
s

F(3N+1j
2

Gamma function described in Section 6.5.5. From the Schrodinger equation,

where C;y = is the volume of a 3N-dimensional unit sphere and I'(x) is a

3N/2

aE) =N, [ 2] yvpeven, (5.10)
2 h

The essential part of the entropy of an ideal gas is given by S = Nk;InV from both classical

and quantum systems.

5.2.2 Mixing Entropy

Assume two ideal gas systems of the same pressure and temperature but different numbers
of particles and volume: PV,=N,k;T and PV,=N,k,T. Each of them is placed in two separate
compartments of volume V; and V, of a box with the total volume V=V, + V,.

Imagine there is a partition between the compartments. By removing the partition, we
can mix the gases. The equation of the mixed gas is given by PV = Nk;T. Because V=V, +
V,and N=N, + N,, V, = N,V/N and V, = N,V/N, and the entropies are given by

S, =NkyInV; =Nk In(N,V/N), and S, = N,k InV, = N,k In(N,V/N). (5.11)
Before mixing, the total entropy is the sum of §, and S, that is,
S, +8, =NikgIn(N,V/N)+ Nk In(N,V/N)=NInV +ky [ N, In(N, / N)+ N, In(N, / N) ].

After mixing, the entropy of the mixed gas is S = NkgInV, and thus, the change in entropy
by mixing is

AS =S8, —(Si+8,) =—ky [ N, In(N, / N)+ N, In(N, / N) |

(5.12)
=kg[ N, In(N/N,)+ N, In(N/N,) |>0.

Figure 5.1 is a screenshot of the calculation of the mixing entropy given by Equation 5.10.
The total number of gas particles is kept to N = 100 while changing N, and N, from 1 to 99.

Figure 5.2 shows the dependence of the mixing entropy on the mixing ratio N;/N,. The
mixing entropy becomes maximum when N, = N,.

5.2.3 Gibbs Paradox

Imagine that a box has two parts of equal volume V separated with a partition. Place two
different ideal gases (e.g., two different kinds of inert gases) of the same V. T. and N into the
box. Each of the gas systems is placed into each of the two separate parts of the box. Using
the calculation in Section 5.2.2, the total entropy before mixing is S,,, = S, + S, = 2NkglnV,
where N, = N, = N. Next, remove the partition to mix the gases. Each gas expands to the
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4 A BE | € | D E F
1 Mixing two gasses N1+N2 100

2 e
3 el N2 AS | Enter

4 i 99 5.600153 .~  =($E$1/A4)*
5 2 98 9.803911 . Ln(SESL/Ad)
6 3 97 13.47422 Ml
7 4 96 16.79441 SES1/A4)

8 5 95 19.85152 and apply

9__ 6 94 22.69675 | AutoFill.
10 7 93 25.36389

11 8 92 27.87694

FIGURE 5.1 Calculation table of mixing entropy.

Entropy change by mixing ideal gasses

Mixnig entropy

w 10 L

il (2]
Mixing ration (M,/N,)

FIGURE 5.2 Mixing entropy of ideal gases.

volume of 2V, and the entropy after mixing should be §’,, = 2Nk;In(2V), and the entropy
change by mixing should be given by S’ , — S,,, = 2kzIn2 >0.

Now, consider the same mixing procedure using two sets of gases of the same kind.
Because the gases are identical, the “mixing” has no meaning, and entropy should exhibit
no change. Since N, T, P, and V do not reflect the particle types, the above result of entropy
change by mixing should be applicable even for the two sets of the same kind of ideal gas.
This could be a paradox [3].

Is this really a paradox? The calculations of the number of microscopic states described
in Section 5.2.1 did not consider the indistinguishability of the identical particles, which
affects the number of allocating N particles. Back to Equation 5.8, we should have used

N
S=ks h{‘;'j — Nk InV —ky InN1~ Nky InV —ky (NInN-N)  (5.13)

where we used the Stirling formula, InN!~NInN — N for N >>1.
Using the Stirling formula again, the total entropy of the two ideal gases of the same
type should be

Siot = 2(Nk3 InV —kg lnN!) ~2NkpInV —2kzNInN +2kz N before mixing,
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and

S" o1 =2Nkp In(2V) — kp In[(2N)!] = 2Nk In(2V) - 2kzy N In(2N) + 2kp N after mixing.
Thus, the mixing entropy is S, =S, —Sier =0 as we expect.

How about mixing two sets of ideal gases of different numbers of particles (N, and N,)
and different volumes (V, and V,) and pressures (P, and P,) to reach the final state of N = N,
+ N,, V=V, + V,,and T? Using Equation 5.11,

Sl =leB ln[NIVj_kB 1nN1!and SZ :Nsz ln(NZV)_kB lnNz!.
N N
VN
Slwt :kB ln[ N ijkB an_kB 11‘1(N1 !)_kB 11‘1(N2 !).
1-4V2+

Therefore, the change of entropy by mixing is calculated below, which results in the
same as Equation 5.12.
2V)

Nk, InV —(N, + N, )k, InV — kl{Nlln(I:] j+N21n[IX]ﬂ (5.14)

o o (2

It is remarkable that the indistinguishable property of identical particles that appeared in
quantum mechanics must be considered when mixing the entropy of an ideal gas!

Spix = S — (S, +8,) = Nkg InV — leBln(NIi]Vj—NszIn(

5.2.4 Mixing Entropy of Ideal Solutions

An ideal solution or an ideal mixture is a solution that exhibits thermodynamic properties
analogous to those of a mixture of ideal gases [4, 5]. Consider mixing two components of
molecules N, and N, in a solution with volume. We use the lattice model of the solution.
Suppose there are N lattices in volume V. Let b° be the volume of a lattice cell, then V= b°N,
and there will be no vacancy, i.e., N = N, + N,. Mathematically, this model is very much
similar to mixing two ideal gases as discussed earlier, and the total number of N, molecules
and N, molecules in the volume is

S=kgln J\'I‘! C|=ks NInN+N,-(N,InN,+N, =N, InN, +N, )
Nl.Nz.
=ky[(N,+N,)InN, =N, InN, -N, InN, | (5.15)

_k{Nlln[N )+N21n[N H:Nklg[Nlln[NfJ FEAT (N ﬂ
Nl N2 Nt Nl Nt N2

The mixing entropy has the same dependence on N, and N, as shown in Figure 5.1.
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5.3 THERMODYNAMICS OF TWO-LEVEL SYSTEMS
5.3.1 Spin 1/2 Particles in a Uniform Magnetic Field

Suppose there are N independent spins in a magnetic field B. Each spin can take either the

spin up state of energy —upB = —¢, or the spin down state of energy +uyB = +&, where uj is

the magnetic moment [6]. The total magnetic energy is E = (Ng — N,) &, = Mg, where N, is

the number of down spins and N, is the number of up spins, N= N, + N, and M = N; - N,
The number of possible spin configurations is given by

N!

e [@/2(N=-M)][/2(N+M)] (5.16)

and the entropy of this spin system is given by

S=—k, [Nu ln(IX;‘ j+N,,, 1{%]} = Nks[ pln(l/ p)+ (1= p)In1/1-p)]  (5.17)

where p = Ny/N and N,/N = 1 — p. Similar to the ideal gas as shown in Figure 5.2, entropy
is at its maximum when p = 0.5. The temperature of the system is given by

1_1 as—lkBln(N_M]. (5.18)

T & oM 2g (N+M
Note that if M >0 (or E >0), then the temperature will be negative, T <0. That is, the system
is not normal because of the negative temperature. On the other hand, if M <0 (or E <0),
then T >0. This is acceptable and we consider M <O0.

Figure 5.3 shows a screenshot of these calculations using the AutoFill feature.

Figure 5.4 shows entropy (S/Nkg) vs energy (E/ Ne;), where the positive and negative
temperature regions appear.

4 & | B8 | ¢ D E F | G H

1 N-independent particles of two enengy levels

2

3 p E=2p-1  S/Nky  ksT/e;  E/Ne;  C/Nkg s In2

4 001  -0.98 0.056002 001 -1 _7.44E-40, 0 0.693147
B —— e ey 0.1 -170.018626 244E-07 0.693147
_:M*LN{M‘”J’“"“‘”'LN“"“'M“E 421 099745 0.387695 / 000769 0.693147
7 007  -0.86 0.25363% ~ 031 -P 4685 0.825417 011741 0.693147
8 009 -0 03 £ 047 498483 1.030)  ).044434 0.693147
9 0.11  =TANH(1/D4) | /096115 1.067  (0.095794 0.693147
10 013 ‘“ugw umsessc A 092738 100 [0.156033 0.693147
11 0.15 q =(1/D4}42/COSH((1/D4)) FJ,SS‘ME [ 0.216995 0.693147
12 017  -D.bo—omozoow oror— -0.8439/ i 0273982 0.693147
13 019  -0.62 0.4862 =LN(2*COSH(1/D4))-(1/D4)*TANH(1/D4} 4969 0.693147

FIGURE 5.3 Calculation of two-level system.
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Energy dependence of entropy

S/MNey

FIGURE 5.4 Entropy vs energy.

For T >0,
2¢g, .
from equation (5.18).

B

Thus, we obtain
exp(—g, / kgT) (5.19)

d Ne_
N exp(ey/kgT)+exp(—gy / kgT) '

exp(& / kT)

N,
N exp(ey/kpgT)+exp(—¢g, / kgT)

Hence, using Equation 5.19, E=—(N,;—N, )&, =—Ng, tanh(so / kBT). Figure 5.5 shows
energy (E/Ng,) vs temperature (k,T/g).
The specific heat capacity, C = dE/dT, is also calculated below.

j exp(2¢g, / kT) (5.20)

2
C = Nkg (SZ/kBT) :NkB( &
cosh (so/kBT) kT

[1+exp(2¢ey / kT)
Figure 5.6 shows the temperature dependence of specific heat capacity (C/Nk;). This type

of specific heat capacity is called the Schottky type [7].

Temperature dependence of energy
i

2

E/Nzg,

kyT/ey

FIGURE 5.5 Temperature dependence of energy.
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Heat Capacity

C/NK,

kaT/E;

FIGURE 5.6  Schottky type heat capacity of the N-spin system.

5.3.2 Adiabatic Demagnetization

Using the independent spin system described earlier, we may explain the basic idea of adia-
batic demagnetization to achieve micro-Kelvin temperature [8]. We apply the canonical
distribution or the partition function Zy to express entropy as a function of temperature.
For an N-independent spin system at temperature § = 1/k;T,

Zy=Y >y exP(ﬁHBBZ J (5.21)

sp=%lsy=*1 sy=%1

where Z, = Zexp(—B u BBS) =2cosh(BugB). The entropy can be calculated using

s=x1

Equation 5.5.

_ (©oF _ 0
S=— (aTJ kBB( BJ_ NkBB(aB(Zcosh(BuBB)J. (5.22)
S 1
N, _Eln(Zcosh(BpBB))—pBBtanh(BuBB). (5.23)

The cooling steps are as follows:

1) Ramp up the magnetic field from B, to B, isothermally at temperature T). Spins are
aligned more and the entropy decreases at an initial temperature T}; and

2) Ramp down the magnetic field from B, to B, adiabatically. Since the entropy does not
change in this adiabatic process, the argument fu;B remains the same, i.e., fiu;B, =
PousB, and B, > B,. Thus, B, > B, or T, < T,. The system temperature decreases to T,.

Figure 5.7 shows a graph of the calculated entropy expression 5.23 with y;B, = 0.1 and u;B,
=0.2.
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Adiabatic demagnetization

Increase B-field isothermally. |

Decrease B-field adiabatically. ! ’

Temperature

FIGURE 5.7 Model of adiabatic demagnetization.

Note: Negative thermodynamic temperature. If the temperature is negative, the factor
exp(—E/k,T) in the canonical distribution 5.1 could be infinite, which is unacceptable from
a thermodynamics viewpoint as thermal equilibrium states do not have a negative tem-
perature [9]. However, it is possible to create a transient state with a negative temperature.
For example, imagine a spin system where spins are lined up in an external magnetic field
in the positive z-direction. The spin distribution will have a population inversion where the
number of up spins is more than that of the down spins. If the magnetic field is reversed
quickly, the spin distribution momentarily creates a negative temperature because the
spins of higher energy states are more than those of lower energy states. A new thermal
equilibrium state will be established soon with a positive temperature and energy exchange
in an interaction other than the spin interaction. Note that if we use a temperature scale /3
= 1/kgT, the negative temperature is higher than the positive temperature!

5.3.3 N-Independent Quantum Oscillators

For the energy level of a quantum harmonic oscillator, the total energy of N-independent
oscillatorsis E= N(n + 1/2)hw = N(M/N + 1/2), where M = Nen,and n =0, 1, 2, 3, ... Denote
the quantum number of the i-* oscillator as ;. The total energy is

E= (;N+ Mj ho (5.24)

where

N
an - M. (5.25)
i=1
The number of possible configurations is equal to the number of possible allocations of M
balls into N boxes. Because n; = 0 is allowed, an empty box is also allowed. Thus, the num-
ber of possible configurations is equal to the number of possible ways to line up M white
balls (corresponding to oscillators) and (N-1) black balls (corresponding to empty boxes).
Note that the white balls are indistinguishable and so are the black balls. Therefore,
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_(M+N-1)!

MI(N-1!" (5.26)

Q(E)

Entropy is given by S=k; InQ(E) ~ ks [ (M+N)In(N+M)-MInM-NInN].  (5.27)

.1 068 0OSOM kg (E/N)+(1/2)ho
Temperatureis —=—=————=—"In R

T O©E oM OE ho |(E/N)-(1/2)ho
and conversely

and E = Nho| © + 1 . (528)
2 exp(ho/ksT)-1

(E/N)+(/2ho _ [ §o
(E/N)—(1/2)ho kT

Figure 5.8 shows a screenshot of the calculation of energy and entropy of N-independent
quantum oscillators.

Figure 5.9 shows the temperature (k;T/A®) dependence of energy (E/NAm). As the tem-
perature increases, energy approaches the classical system. For calculations of M/N and
entropy, use Equations 5.27 and 5.28.

vzoowiB65736 0

0.25 0.518657- ( T 5574
0| =(1+D4)"LN(1+D4}-DA*LNIDA) 3449

0.29 0.532845 0.29 0.032844899
0.33 0.550752 0.33 0.05075239 0.203301592 0.203302 0.5507524

4d » | 8 [ ¢ | B | & | ¢ | &
1 N independent oscillators

2

3 kgT/he  E/(Nhw) Asymptoic M/N S SvsE Asymptote
4 001 05  0.01] 3.72008c-44] 3.72008¢-42]

5 005 /M5 0.05 2.06115E-09 4_323?25-08 4.33E-08 0.5
Bl [ ; 1 009 ¥ 19456E—DS 0.000 "'(F.UO? 0.000181 0.5000149
7 | Bl i | 013,/ J00456532 0.003¢ 214 0.003968 0.5004565
8 | 0.17 0.50279% n17 N3796013 0.019: 46 0.019239 0.502796
Y 0.21 0,503621 =1/(EXP({1/A4)-1) 1862303 0,04Qé s 0.049648 0.508623
10 ' ;

11

|12

FIGURE 5.8 Calculation of N quantum oscillators.

Energy vs temperature

_E;'Nﬁw_

~
e
S

. Asymptotic value of
] energy (&, T/NAw)

B 1 1.2 14 LE

0E o]
ke T/

FIGURE 5.9 Temperature dependence of energy of N quantum oscillators.



Entropy m 105

Using the Stirling formula, the entropy Equation 5.27 can be modified to

S = 1+M In 1+M (M In 1+M . (5.29)
Nkj N N) N N
From Equations 5.28, — = BT =x _L where x = L (5.30)
N Nio 2 2 Nho

With Equation 5.30, entropy 5.29 becomes

S :(x+1jln[x+lj—(x—l}n(x+lj. (5.31)
Nkj 2 2 2 2

Figure 5.10 shows the energy (x = E/Nhw) dependence of entropy (S/Nky).

5.3.4 Change in Entropy of Two Substances after Making Thermal Contact

Refer to a popular exercise problem relating to entropy in general physics to calculate the
entropy change of two substances of known masses and specific heat capacities after reach-
ing thermal equilibrium by thermal contact [10]. The entropy change is given by

T T T T
AS = dQ, +J- 4Q, =m1c1J. d—T+m2c2 d—szlc1 In I +m,c, In T (5.32)
n T n T 1 T T T T T,

and the condition of thermal equilibrium is

mlcl(T_’l—'l)+m2C2(T_T2) :0 (5.33)

Entropy vs energy

0.8

0.6

S/NKg

a4

2

1] 02 0.4 0.6 08 1 12 14 16

E/Nhm

FIGURE 5.10 Energy dependence of entropy.
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where T is the equilibrium temperature. While this problem demonstrates that the entropy
increases with a given date of masses and specific heat capacities, it is challenging to prove
it without numerical data.

Here, we seek a general tendency of the entropy. First, we assume T| > T,. Let T, = aT,
and m,c, = im,c, where a >1 with the temperature condition and # >0. Using these ratios,
Equation 5.32 becomes

B(T—aT)+(T-T,)=0o0r T =(1+ap)T, /1+p). (5.34)

From Equations 5.32 and 5.33, we define “reduced” entropy

5= AS _gp| 1FoB 1+af 1+aB)
AS:mZCZ—BlnL(HB)}m{ 1+l3} (1+B)In [ Bj Blna. (5.35)

Figure 5.11 is a screenshot of the commutation of Equation 5.35. On this spreadsheet, 1 <
a < 1851 by step 10 and 1<3<331 by step 10.

Figure 5.12 shows the 3D surface chart from the numerical calculation of Equation 5.35,
where the ranges of @ and 8 are limited to 1 < o < 20 and 0.1 < 8 < 10.1. It appears that
the entropy is a monotonic increasing function of @ and # and never be negative. Although

A A | B | c | E F G H I

1 |Change in entropy by contacting two substances

2 o beta E 1I 11 21 31 41 51 61
3 |alpha 1 1 3&‘3294 25.81888 68.00293 110.9035 156.9821 205.4647 255.8823
4 | 11| 7. 3\‘ T . 840251 170.184 261.0487 355.0884 451.5308 549.9076
5 | 21 9. 3 .'“‘.\8\506 197.9438 301.7416 408.7141 518.0893 629.3988
& 31 1;" T4g 214.6747 3262621 441024 558.1885 677.2874
7 . ' 6683
a8 ={1+C$2) *LN( (14C$2*$B3) / (14+c$2) ) ~CE2*LN ($B3)incell C3 },508?
9 | D.5283
10 71 12.81601 126.8317 250.2895 378.451 509.7869 643.5253 779.1981

FIGURE 5.11  Change in entropy by establishing thermal contact of two substances.

45/(mscy) Change in entropy by contacting two substances

a=T,/T,

B=myc;/myc,

o\"‘u\l‘:ﬁmﬂ‘-

ﬁ

n“?"‘ \l\ﬂ“

FIGURE 5.12  Change in entropy after making two substances in thermal equilibrium.
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we show limited ranges of @ and f3, expanding their ranges does not change the monotonic
increasing tendency.

5.3.5 H-Function and Entropy in Markov Processes

Assume a system is changing its state, following a Markov process that can take finite

numbers of state variables x, which may represent a set of several variables, x,, x,, ..., xy

[11, 12]. Let p;; be the probability of transit from state x; to state x;. The conditions on p;; are:
1) In a thermal system, microscopic reversibility means p;; = p;; and

The transition probability p; satisfies the sum of all possible transitions that must be unity,

w
ie., Zpﬁ =1.
j=1

If the probability that the system is found in the state x; is P,(n) after the n' transition,
then the probability that the system is found in the state x;, P;(n+1) after the (n+1)™ transi-
tions is given by

W
P(n+1) =Z PP, (5.36)
i=1
Now, consider a convex downward function f(x) where we assume that the variable x fol-
lows a probability distribution of a Markov process. Its tangential line is always below f(x)
as shown in Figure 5.13. In other words, f(x) > f(<x>) + (constant)(x — <x>). Taking an
average of f(x), we obtain the following inequality,
<flx) > > <f(<x>)> + <(constant)(x — <x>)>.

Furthermore, because <(constant)(x — <x>)> = (constant)<(x — <x>) =0,

<flx) > > <flxx>)>. (5.37)

""-.-.-..-J((Qo}+c{x—<x>}

FIGURE 5.13 A convex downward function f(x).
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Using Equation 5.36, Equation 5.37 can be interpreted as

Z pif (P(m)= f[z pﬂP(n)J f(P,(n+1)). (5.38)

TakmgthesumonW: izwlpﬂf P(n) :i[ L pj,-}/ p(n) Zif P(n+1)) (5.39)
i j=1 j=1

j=1 j=1 i=1 =1

Hence,

Zf(Pi(n))Z Zf(Pj(nH)). (5.40)

Define H-function as H(n) = Z f (PJ (n)), then AH = H(n+1)— H(n) <0 by Equation 5.40.
j=1
Therefore, the H-function never increases in a Markov process. Furthermore, if we
define entropy,

S(n) = —kzH(n),
then we have
AS =S8(n + 1) — S(n) >0, i.e., the entropy never decreases.
Let f(x) = xInx. The inequality 5.37 holds, and the above discussion is still valid. Thus,

w
S(n) = ~kyH(n) =—ky ) B(m)In B (n).
i=1
This is the same entropy form of information we discuss in the next Section 5.4.1. As we
will find in the next section, the entropy becomes maximum when p, = 1/2;i=1,2, ..., W,
and S, = k;InQ.

5.4 ENTROPY OF INFORMATION
5.4.1 Quantification of Information and Entropy of Information

When you define the probability of an event occurring as p, p~1 means the event surely
occurs, whereas p~0 means the event seldom occurs. Using the reciprocal value of prob-
ability, called odds, we define self-information,

I(p) = KIn(1/p) = —KIn(p). (5.41)

where the coefficient K is included to compare the entropy of information with that of
thermodynamics [13].
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-In(p)

Q 0.z 0.4 0.6 0.8 1

FIGURE 5.14  Self-information.

As shown in Figure 5.14, the self-information is I(p = 1) = 0 and becomes a steep func-
tion near p >0. If something occurs for sure, we do not gain useful information, but if
something that would not be expected to occur, the event provides us with much useful
information.

We define entropy of information as the expectation value of the self-information:

S= —KZ p:In p; where Z P =1 (5.42)

What is the probability distribution that leads to maximum entropy? Consider that when
the entropy becomes maximum, it is a maximum value for any p,. Let us apply the Lagrange
multiplier to find such a probability distribution. The restriction is that the total probabil-
ity must be 1. Define

N
L:S(pl,pz,...,pN)+k{Zp,»—1}:0. (5.43)

i=1
The function L should satisfy a@L =0;i= ., N; and Zi (5.44)
1) dL/0A = 0 yields to Y p; = 1. (5.45)

2) g}f a0 {KZp]lnp]]+7u l:sz]—Ole, Klnp,—~141=0, (5.46)
i i =1
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and we obtain p; = exp[(k—l)/K].

N
=1

3) Zpi =1= Zexp[(?»—l)/K] = exp[(?»—l)/K]Zl =N-exp[(k—1)/K]. (5.47)

i=1

Thus, exp[(k—l)/K] :% and p; :% fori=12,..,N. (5.48)

In other words, the entropy becomes maximum when the probabilities are all equal to 1/N.
The maximum entropy value is

n N
S =K pInp, = —KZ[;]m(;D ~KInN. (5.49)
i=1 i=1

5.4.2 Probability Distribution for Maximum Entropy

Assume an event takes positive values of €, i = 1, 2, ..., N with the probability of the event
being p,. The average value of information is E = ) ¢,p,. What is the probability distribution
that gives the maximum entropy? In this case, entropy S = )’ p,ln p; becomes maximum
with the conditions of Y p, = 1 and E = Y &;p,. We can also apply the Lagrange multiplier to
find such probability distribution with two restrictions, > p,= 1 and E = Y ¢;p..

Define

L =S(p1,p2,...,pN)+x{Zpi —1}+Q{Za,~pi —E} (5.50)

i=1 i=1

and minimize L.

1) dL/ap; = 0
a—inS( )+A+ag; =—Klnp, +A+ag; =0, and thus
api apl phPZ’n':pN i pz i > >
pi =exp[(ag; —1+A)/K].
2) dL/oA =0
N N
D pi=1=) expl(as, ~1+2)/K]=exp[(~1+2)/K]), and thus
i1 i=1
exp[(—l+k)/K]:N;, and thus
Zexp(aai / K)

i=1=1
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= Nexp(ocsi /K) _ Nexp(Bocs,-)  where 1/K =
Zexp(ocsi / K) Zexp(B(xs,-)
i=1=1 i=1=1
3) dL/oa =0
N
N Zsi exp(Boe;)

Zs,—pi —E =0, and thus E :izlj\]l—.
= Zexp(ﬁasi)
i=1=1
5.4.3 Maximum Entropy and Minimum Energy

Assume an event takes positive values of ¢;,i = 1, 2, . ..., N with the probability of the event
being p,. The average value of information is E(p,, p,, ..., pPx)=2.&,P;- What is the probability
distribution that gives both maximum entropy S(p,, p,, ..., px) and minimum energy of E
= Y e;p? We may also apply the Lagrange multiplier to find such probability distribution
with the restriction ) p; = 1. Note that entropy S will never be negative and E >0 with the
assumption of & >0. This time, one finds the probability distribution for maximizing S(p,,
Das o POIE(Dy, oy -+ Pyy) With the restriction of Y p; = 1.

.. . S(pl;pz; ’PN
Define , and minimize M. M = +A . —1 (5.51)
E(ppr) )pN ZP
1) oM/dp, = 0

aMza(S]m s = % 154 x_f( lnp,-—l)—%sm%zo. (5.52)

opi op;\ E c’)pz E 6pl E E

S .

Thus, Inp; = _Egi +AE-1i=12,...,N. (5.53)

By multiplying p; to the above equation, we obtain

pi ll’lp, = _%pigi +}\’Epl _pi'
Thus,

N N N N
ZP:‘ Inp; = _%Zpigi +7¥EZP1‘ —ZP,- .
i-1 P i-1 i=1

N
Because Z pi =1, the above equation becomes S =—-S+AE—1, and thus A=1/E.

i=1
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Back to Equation 5.37, we obtain

N
pi= exp(—ssij =exp(—1¢;) where 1=S/E and Zexp(—rs,-) =1L (5.54)
E i=1
2)0L/0A =0

N

N N
Zp,- = Zexp(asi —1+A)=exp(-1+ X)Zexp(asi) =1.
i=1

i=1 i=1=1

exp(—1+A) =N;, and thus p; :Nexp(iasi)

Zexp(ocsi) Zexp(asi) (5.55)

i=1=1 i=1=1

Here is an example of how to use Equation 5.55. Let N = 2, and ¢, = ¢, and ¢, = 2¢, where
€, is a constant. Imagine a two-energy level system where the higher energy level is twice

the lower level. With this condition, e %" + ¢ 2%°

-1+
J5 ~0.618 for x >0. Therefore, p; =x =0.618

and p, = x> =0.382. The probability of reaczhing the higher energy level is proportional to
the square of the lower probability.

=1or x+x° =1, where x = . Solving

the quadrature equation, we obtain x =

5.4.4 Negative Entropy

Assume that the number of all possible events is N, and each of which has an equal prob-
ability, and we knew there were only N,-events, where N; < N, occurred. As we defined in
Section 5.4.1, the information we get from N;-events is given by

I, = —Kln(p,) = KInN, because p, = 1/N, and I, = —KIn(1/N,) = KInN, because p, = 1/N,,

assuming each event in a group of possible events takes the equal probability. Thus, we lose
information when the number of occurring events changes from N, to N, when N, < N,

The maximum entropy from the N;-events and N,-events are given by §, = KInN, and §,
= KInN,. Change in entropy from the N;-events to Ny-events is AS = Sy—S, = KIn(N,/N,) >0
when N, < N,. The entropy of a system increases and reaches the maximum in its thermal
equilibrium state as the second law of thermodynamics states.

As the entropy of the system increases, information on the system decreases,
AI=I—I,=KIn(N,/N,). In order to increase or even maintain the amount of information, we
must decrease entropy. For a thermodynamic system, it means that from a thermal non-
equilibrium state to the equilibrium state, the entropy of the system increases while we lose
information on the microscope state of the system. Once the system reaches its thermal
equilibrium state, all the microscopic states will have an equal probability.

The concept of negentropy was introduced by Irwin Schrédinger in his book titled
What Is Life? [14]. According to him, a living organism is not in a thermal equilibrium
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state while alive and its entropy reaches its maximum upon death. In order for the living
tissues to be alive, they must maintain information about reproduction, and we need to
feed negentropy!

SUGGESTED FURTHER STUDY

Knowing the history of entropy would open your eyes to thermodynamics [15, 16]. That
history was indeed the reason for me to study statistical physics.

In digital data/image processing, the maxim entropy method (MEM) is widely applied.
MEM is based on the entropy of information and the power spectrum of a signal to estimate
its spectrum by maximizing the entropy. MEM is equivalent to computational processes of
determining the coeflicients of a linear prediction (LP) filter [17-19]. Furthermore, cepstra
constructed by the LP method and Fourier transform (FT) are equivalent. Cepstra are the
results of computing the inverse Fourier transform (IFT) of the logarithm of the estimated
signal spectrum. MEM may also acquire signal spectra although a two-dimensional MEM
has not been established. If readers are interested in these digital technologies, refer to
these references. One of our readers would accomplish a new discovery!

For the general description of information theory applied in physics, refer to a collection
of research articles [20].
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CHAPTER 6

Boundary Value Problems

HELMHOLTZ DIFFERENTIAL EQUATION, V?U(F)+kU(7) =0, appears in many science
subjects. Solving the Helmholtz equation for a specific boundary condition needs a
special mathematical function that satisfies the boundary condition. The boundary value
problems may be called the eigenvalue problems where these special functions are called
“orthonormal bases.” Because the boundary conditions are expressed using suitable coor-
dinate systems, we may sort out special functions according to their coordinate systems.
While there is a wide variety of mathematical properties that appear in the boundary value
problems, this book focuses on their orthonormal properties without mathematical proofs.
For their comprehensive descriptions, refer to advanced mathematics books [1-5].

6.1 EIGENFUNCTIONS AS ORTHONORMAL BASES
6.1.1 Separation of Variables of the Helmholtz Equation

One of the methods to solve partial differential equations of the second-order time

2 —
derivative, 0 u(z,t) =v’V?u(7,t), is the separation of variables. Assume u(7,t) = T(t)U(F)
o IT/d 5, VU
and T(f) = exp(+iwt). The differential equations become ———— =-»" = ,and the

space part becomes the Helmholtz equation V>U +k*U =0, where k = w/v. We can also
apply the variable separation for partial differential equations with the first order time

... ou(r,t - ) . o .
derivative, (t ) =AV?u(7,t) such as heat conduction equation, diffusion equation, and
) ) ) a*T/dt* | VU ,
Schrodinger equation. In this case, / =A U =—q, where a is a constant. The

space part also becomes the Helmholtz equation, V>U + kU =0, where k = a/A.
Depending on the coordinate system used to solve the Helmholtz equation, appropriate
special functions are applied to describe the solutions. Solutions of the Helmholtz equation
satisfying a specific boundary condition are called eigenfunctions, and the k-values for the
solutions are called eigenvalues. Recall that with a set of unit vectors an arbitrary vector
can be expressed. Likewise, a set of eigenfunctions forms an orthogonal basis with which
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an arbitrary function satisfying the boundary condition may be expressed. The general
orthonormal properties are described below.

6.1.2 Orthonormal Property of Eigenfunctions

Recall a three-dimensional vector space of the Cartesian coordinate frame. Let a set of unit
vectors {€;;i =1,2,3} be in the coordinate frame. We learn that the unit vectors are orthogo-

nal to each other, i.e., their inner products satisty (¢; -¢;) = 3;, where §; is the Kronecker

i]‘)
delta. With the orthonormal property of the unit vectors, we can express a vector V in the

coordinate such that

V =V,é, +V,6, + V6, where V, =(V-8,); i=1,2,3. 6.1)
A similar argument may be made for the solutions of Helmholtz equations with a specific
boundary condition. Assume that we have a one-dimensional boundary value problem

described by

a’x

2

+AX =0 where 0 < x <1. (6.2)
dx

The boundary conditions are, for example, X(0) = X(1) = 1. Assume we obtain eigenfunc-
tions X, and X, for different eigenvalues 1, and A,
2 2
diz’”+7ume =0 and d )g”
dx dx
and X, and X satisfy the same boundary condition of X(0) = X(1) = 0, dX(0)/dx = dX(1)dx
=0, or X(0) = dX(1)/dx = 0. From these eigenfunctions, we obtain

+1,X, =0, (6.3)

a’Xx,,
dx*

Xn _Xm

2
X, d (Xn dx,, an]‘ 6.4)

=% -X,,
dx*  dx dx dx

1

1
Thus, (7\,,,1 —Ay )I X, X, dx = [Xn d;”’ -X, dx,, } =0 for the boundary conditions.
0 x

dx

0

1
Because 4,#4,, J- X, X,,dx=0. This relationship may be interpreted as the “inner
0

product” of the functions X, and X,,, and when the inner product becomes zero, we

1
interpreted eigenfunctions X, and X, to be orthogonal if A, #4,. Even if HX H2 = J. Xrdx #1
0

for a set of orthogonal functions, we may normalize the orthogonal functions to make a
set of orthonormal functions,

X, (x)

¥, () =~
X

(6.5)
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Note: The Sturm-Liouville differential equation
The Sturm-Liouville differential equation has the following form [1].

LA AN _
T (p(x) dxj qx)y+Ar(x)y=0
or
“ =)
Ly =Ary where L =—| p(x)— |—q(x). (6.6)
dx dx

Note that the Helmholtz differential equation is a special form with p(x) = 1, g(x) = 0, and
r(x) = 1. The solutions of the Sturm-Liouville equation are orthogonal as described below.

Let eigenfunctions of the Sturm-Liouville differential equation for different eigenvalues
Anand 4, be X and X, with a given boundary condition for a < x <b:

LX,, =\,rX, and LX, = L,rX,. 6.7)

With arbitrary functions, u(x) and v(x), we have

. - d( du d( dv d du dv
Lv—viu=v— _ |-y — _— = —_ . 6.8
ey de(pdxj udx(pdxj dx{p[vdx dxuﬂ ©8)
Let u =X, and v = X . Equation 6.8 becomes
(A =10 ) X, X, _d p| X, dx,, _dX,, X, |1 (6.9)
dx dx  dx

Then, the eigenfunctions are orthogonal with a weight function r(x):

b b
. I X, X,de=| p| X, KB x N _oiea, #4,.  (6.10)
a dx dx .

6.2 RECTANGULAR COORDINATES
6.2.1 Standing Wave on a Rectangular Membrane

Consider a standing wave on a two-dimensional rectangular membrane. The wave equa-
tion is

(6.11)

o’ u(x, y,t) 2 o’u(x, y,t) N o’u(x, y,t) .
ot ox* oy’

The solution of the equation can be obtained by the variable separation. Let u(x, y, f) =
X(x)Y(y)I'(#), then Equation 6.1 becomes
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X"(.X) N Y”(}/) _ i l—w(t)

X Y AT ©12
and X(x) and Y(y) are also separated,
X _ g2 ang YO _ e, 6.13)
X(x) 7 Y(iy) 7

Assume the following initial and boundary conditions for a rectangular membrane:

(i) The initial conditions: u(x, y, 0) = f,(x, y) and (Qu/ot), _, = f,(x, y); and
(ii) The boundary conditions: u(0, y, ) = u(a, y, t) = 0 and u(x, 0, t) = u(x, b, t) = 0.

The solutions of Equation 6.2 including the boundary condition are

X, (x)=A, sin(mnxj where k, =" and m= L,2,3.. (6.14)
a a

Y,(y) =B, sin(rzcyj where k, =" and n=1,2,3, ...; (6.15)
a

and the time part of Equation 6.1 is a harmonic oscillation,

d’T'(t)

dt*

+®°T'(t) =0 where ©* =v* (k,c2 +k,’ ) (6.16)

Because possible values of k, and k, are discrete, the angular frequency w is also discrete:

2 2
oy, =V {(mj +[Zj ], and thus T,,,(t) = C,,, sin (@, +&,,,, )- (6.17)

Therefore, the general solution is

(X, 51) = szm (%)Y, (y)[,,,.(F)
- (6.18)
= ;;Dm sin(n:t xj sin(rzc yjsin((om’nt +Epp )

where {D,, .} = {A,,B,C

'm,n>

m=123,..,andn=1,2,3,...} and {¢,, .} are determined by
the initial condition.

The spatial part is a two-dimensional Fourier series discussed in Section 6.2.2.
Figure 6.1 shows a screenshot of the calculated spatial part of u, ; with a = b = 3.14 using
Equation 6.17. The x-range is specified from 0 to 3.15 with increments of 3.15/30 = 0.105
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N
=
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FIGURE 6.1 Two-dimensional standing wave u, ;.

Two-dimensional standing wave Top view

FIGURE 6.2 'Two-dimensional standing wave on a square membrane.

in Column B and the y-range is specified from 0 to 3.15 with increments of 3.15/30 =
0.105 in Row 2. Enter =SIN(2*$B3)*SIN(3*C$2) and apply AutoFill.
Figure 6.2 shows a 3D surface chart from the calculated data.

6.2.2 Trigonometric Functions as an Orthonormal Basis — Fourier Series
Trigonometric functions form a set of orthonormal functions, and a function f(x) can be
expressed as a series of trigonometric functions. As we described in Section 3.3., if the
function f(x) is a periodic function, a series expansion in terms of trigonometric functions
should be suitable.

An arbitrary periodic function f(x) in the interval [-L, +L] can be expressed by a series
expansion of trigonometric functions,

f(x):c;—o+2akcos nL—TEx +Zbksin %x (6.19)
n=1 n=1

where the coefficients {a,,} and {b,} are given by

L L
a,, :%J:Lf(x)cos %x dx and b, zijif(x)sin %x dx. (6.20)
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Sub Fourier1D()
Cells(1, 1) = "Fourier series of f(x)=x for |x|<=1"
Pi=3.141592654
Cells(2, 2) = "x"
Cells(2, 3) = "FT"
Cells(2, 4) = "Exact"
N =200 '# of terms to be calculated.
Forj=1To 101 '100 segments from x=0 to x=1
ji=(-1)/100
temp=0
Fork=1ToN
temp =temp + ((-1) A (k + 1)) * Sin(k * Pi * jj) / k
Next k
Cells(j+2,2) =jj
Cells(j+2,3)=temp * 2/ Pi
Cells(j+ 2, 4) = jj
Next j
End Sub

FIGURE 6.3 VBA code for calculating the Fourier series of f(x) = x.

f(x)=x (5 terms) f(x)=x (200 terms)

Q 0.2 0.4 0.6 0.8 1

FIGURE 6.4 The Fourier series of f(x) = x for 0 < x < 1 (5 terms and 200 terms).

Example: a sawtooth wave. The sawtooth wave is a repetition of the function f(f) = x for —1<
x < +1, and the period is 2. The Fourier series of the above sawtooth wave is

ft)= i;(_lzmsin(nnx) = i{sin(nx) - % sin(2mx) + %sin(Snx) —isin(ﬁlnx) + é sin(5mx) —+-- } .

(6.21)

Figure 6.3 lists the VBA code for the iterative summation of the Fourier series of f(x) = x
using Equation 6.21.

Figure 6.4 shows the actual Fourier series of up to 5 terms and 200 terms for 0<x<1. The
Fourier series of the first 5 terms is shown for comparison with series expansions of other
orthonormal functions in Sections 6.3 and 6.4.

6.2.3 Hermite Polynomials

The Hermite differential equation is given by
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Hermite polynomials H,,(x)

&0

|#=0,1,2,3,4,5

40

FIGURE 6.5 Hermite polynomials.

dF(x)

dx* 2

F
x dd(x) +2nF(x) =0 where n=0,1,2, ... 6.22)
X
Solutions of the Hermite equation are called Hermite polynomials. The quantum harmonic
oscillator can be described by the Hermite equation as we will discuss in Section 7.2.2.

Example of Hermite polynomials (n = 0 to 5):

Hy(x) =1,

H,(x) = 2x,

Hy(x) =4x% -2,

H,(x) = 8x* — 12x,

H,(x) = 16x* — 48x2 + 12,

H(x) = 32x> — 160x> — 120x. (6.23)

Graphs: Figure 6.5 shows H_(x) to H;(x) using Excel’s AutoFill.
The Hermite polynomials can be generated with the following formula.

Generating function: H,(x) =(-1)" X d e and " = ZMI‘ " (6.24)
dx" n!

n=0

Recursion formula: H,,(x) =2xH,(x)—2nH,_,(x) . (6.25)

Important properties of the Hermite polynomials are:

Parity: H,(-x) = (-1)"H, (x) (6.26)
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+00
Orthonormality: J. e H L(X)H,, (x)dx :(\/E 2"nd,,,, where §__ is the Kronecker delta.

- (6.27)
The orthonormality expressed by Equation 6.27 means that the Hermite polynomials form
an orthonormal basis given by

Hn (x)e—x2 /2

|:\/;2nn!:|1/2 ?

Series expansion using the Hermite polynomials is given by

h,(x) = n=0,1,23,... (6.28)

flx) = chhn (x) (6.29)
— ” - - x2/2
where ¢, = lef(x)h,, (x)dx = [\/;2"711 1/2 ,[, f(x)H,(x)e™ "“dx. (6.30)

A few terms of h (x) do not represent a good approximation. Figure 6.6 shows two exam-
ples: f(x) = x and f(x) = sinx with up to n = 5 terms of the orthonormal bases (6.29). The cal-
culation of the coeflicients (6.30) is shown in Appendix A6.1. We apply Simpson’s method
for the numerical evaluation of the integrals in Equation 6.30. Refer to Appendix A.4 for
Simpson’s method.

6.2.4 Laguerre polynomials

The Laguerre polynomials, L, (p), are solutions of the Laguerre differential equation:

2
dd (Zx) 1- )dy(x) +ny(x) =0 where n is integer. (6.31)
f(x)=x by Hermite polynomials (5 terms) f{x} sin(x) by Hermite polynomials (5 terms)

AL /N

FIGURE 6.6 Series expansions using Hermite polynomials.
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Laguerre Polynomials

= — o
4 3 2 1 i \:—-‘/ 2 '*‘_ __'.! [ T @ @ f 0
FIGURE 6.7 Laguerre polynomials (n = 1-4).
Examples of Laguerre polynomials (n = 0 — 4):
Ly(x) =1,
Li(x)=-x+1,
Ly(x) =x>—4x + 12,
Ly(x) = —x3 + 9x* — 18x + 6,
L,(x) = x* = 16x3 + 72x% — 96x + 24. (6.32)
Figure 6.7 shows the Laguerre polynomials of n = 0-4 using Excel’s AutoFill.
ege X dﬂ n_—x
Definition: L,(x) =e d—n(x e ). (6.33)
X
L
Generating function: U(x,t) = Lexp _M) Zﬂt". (6.34)
1-t 1-t - 7!
Recursion formula: L,,,(x)—(2n+1—x)L,(x)+n*L, ,(x) =0, n>1.
Ln’(x) - nLn—l '(-x) + ”Ln—l (x) =0.
xL,"(x)+(1-x)L, (x)+nL,(x)=0 (6.35)
where primes denote the differential with respect to x.
Orthonormality: I e L (x)L, (x)dx = (n!)’5,, 6.36)
0

Laguerre polynomials are also a complete set of functions. An arbitrary function f(x) on
the interval 0 < x < co may be expanded with the following orthonormal functions:
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F@)=Y 6,0,(x) where ¢, (x) = %Ln (e (1=0,1,2, ..). 6.37)

6.2.5 Associated Laguerre Polynomials

Associated Laguerre differential equation is defined as

X

Y | r1-x) PO
X

e y +ny(x) =0 where n = integer and a # 0. (6.38)
x

Solutions ofthe associated Laguerre differential equation are called associated Laguerre poly-

a

nomials,L; (x). The associated Laguerre polynomials can be defined as L} (x) = d—aLn (x).
x

Generating function: The generating function of the Laguerre polynomials (6.34) a-times
with respect to x gives the generating function for the associated Laguerre polynomials.

o0

o —xt/(1-t) a
U, (x,1)= (_2 _et)w = Z_(; L”n(!x) ", (6.39)
Examples of Associated Laguerre Polynomials (1 = 0-3):
Ly(x) =1,
Li(x)=—x+0a+1],
[%(x) = (1/2)[x2 ~2(0u+2)x + (o +1)(a +2)],
(6.40)

1%(x) = (1/6)[—x3 +3(0u+3)x2 —3(a+2)(a+3)x+(a+1)(a+2)(a+3)].

The radial wave function of the hydrogen atom is reduced to the associated Laguerre dif-
ferential equation as we will discuss in Section 7.3.3. For more description of the associated
Laguerre polynomials, refer to the advanced books listed in Chapter 7.

6.3 CYLINDRICAL COORDINATES

Using the cylindrical coordinates (r, 6, z), the Helmholtz equation becomes

2 2
1 1
Ou V0u 1 0u  OU k2~ 0 where u=u(r,,2). (6.41)
or" ror r 00" Oz
Because the z-component is the same as the rectangular coordinates, let us focus on two-
dimensional cases (z = 0). Let u(r, 6) = R(r)(0) for separating variables.

T T (6.42)
R R o)
2 2
where B 9RO po _d'R@) 4o dO0)

dr dr? do?
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Assume @" /@ =—m”* and O(0) = Aexp(im6), where A and m are constants. If the angular
part has a periodic boundary condition, &(0) = @(6+2x), then m must be integers, m = 0,
1,2,3, ...

Let kr = x and R(r) = y(x). From Equation 6.42, the radial part R(r) satisfies Bessel dif-
ferential equation,

2

Xy +xy' +(x, —m’)y =0. (6.43)

6.3.1 Bessel Functions

A general solution of the Bessel Equation 6.43 is given by

m+2S8

D [ () +b,Y,,(x)] where J,,(x) = Z(‘D@‘j , (6.44)

1 !
o sl(s+m)!

which is called the mt-order Bessel function. It remains finite for all x values. The other
solution Y, (x) is called the m'™-order Neuman function. The Neuman function diverges at
x=0.

Y. (x) = lim S5OV () =] ()

vom sin(v) (6.45)

Note: Excel has built-in Bessel functions: BESSELJ as ] (x), BESSELY as Y, (x), BESSELT
as a modified Bessel function, and BESSELK as a modified Neuman function.

Graphs: Figure 6.8 plots ],(x) and Y, (x), where n =0, 1, 2, 3, 4, 5 using Excels BESSELJ (x, M)
as J,(x) and BESSELY (x, M) as Y,(x) which are found by taking the following steps of
menus, [Formulas]—[More Functions]—[Engineering].

Bessel J (x) Bessel Y, (x)

\ n=0,1,2,3,4,5 ‘

FIGURE 6.8 Bessel function ] (x) and Neumann Function Y, (x).
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' ) X 1 ~ +00 .
Generating function: exp{z(t _tﬂ = Z T ()™, (6.46)

Note: Let f = e”, then t—(1/t) = 2isinf and the generation function becomes

exp(ixsin0) = Z J . (x)e™F. (6.47)

=—0

The real and the imaginary parts are

cos(xsin®) = Z T (x)cos(mB) = J,(x) +22]2m(x) cos(2m0),
Mmoo m=1 (6.48)

sin(x sin 0) = Z ] (x)sin(m0) = J, (x) +2Z Joma () sin[(2m—1)0].

Orthonormality: If ] (kx) and ], (Ix) vanish at a and b, or if ] '(kx) and ], (Ix) vanish at a
and b, we obtain

b
j J. (kx)],,(x)dx = 0 if k #I; and (6.49)

j ) = b;[JmH(kb)]z —“22[1,.,+1<ka>]2 it k=1 (6.50)

With the orthogonal property, a function f(x) on the interval 0 < x < 1 may be expanded
in terms of Bessel functions.

flx)= ch]n(knx) where the k, are chose so that ], (kna) =0, and (6.51)

n=0

the coeflicients are given by

j " F 0T (k)
c, =" 5
@ 1D T (k)]

Figure 6.9 shows the series expansion of f(x) = x using Equations 6.51 and 6.52. For a
detailed calculation, refer to Appendix A6.2. Because Bessel functions J,(x) of integers n
have functional forms similar to trigonometric functions, the series expansion of Bessel
functions is similar to that of Fourier transform as shown in Figure 6.6.

using _[: T (ky)] (kyx)xcdx = 8, (a® 1 2)[ T (k@) ] - (6.52)

6.3.2 Application of Bessel Functions

There are many applications of Bessel functions [6]. An example is standing waves on a
circular membrane of radius 1. The wave equation is

o*y(x, y,t) N o*y(x, y,t) _1 o’ y(x, y,t)

6.53
ox? ox? v? ot? (6.53)
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f{x)}=x by Bessel-Fourie expansion (5 terms)

—

FIGURE 6.9 f(x) = x using Bessel functions of n = 0-4.

where we assume the wave speed is v = 1.

Let w(x, y, t) = u(r, ©)sin(kt) = R(r)@(0)sin(kt), where k >0, then u(r, 6) satisfies the Helm-
holtz Equation 6.2. If the rim of the membrane is fixed, the boundary condition is R(1) =
0 in addition to the periodicity of ©(0). The Neuman function Y,(r) diverges at r = 0, and
it is excluded in the solution. Thus, R(r) = AJ_(kr) and ©(0) = Ce™®, where A,, and C are
constants. For the fixed boundary condition at r = 1, ], (k) = 0. Let the nth-zero-point of the
m-order Bessel function A,,;: J,.(k,,,) = 0, where n = 1, 2, 3, .... for a given m. In this book,
we define ], = ], (k, ,7). The solution is given by

y(r,t)= ZZDm]m(km)nr)cos(me) r) where D,, = A,,C. (6.54)

m=0 n=1

Figure 6.10 is a screenshot for calculating J; = J,(kys7), where m = 0 and n = 3. The x-range
is entered from -1 to +1 with increments of 0.05 in Column B and the y-range is from -1
to +1 with increments of 0.05 in Row 3. The third zero point of J, in Equation 6.54 is k,; =
9.654, which is entered in Cell C2. Then, enter

=BESSELJ($C$2*SQRT ($B4"2+C$3*2),0)

in cell C4 and apply AutoFill.

d A B | ¢ D E F G H

1 Standing waves on circular membrane

el k03= 9.654

3 y _ 1 095 08 -0.85 08 075 0.7
4 |x -1} 0.206734 0.218353 0206076 0.172625 0122806 006261 -0.0017
5 095 [t D 0 0.112055 0.045456 -0.02485 -0.09196
6 -09 I 0 0.036686 -0.03882 -0.10992 -0.1699
o | _Qgr.—' A NAAZAS 44973 ndenad -0.22446
= 0  —BESSELJ(SC$2*SQORT ($B4~2+C$342) ,0)incell 4 | 029872
9 -0 . -0.24062
10 07 0 0 0 -0.22446 -0.24872 -0.24062 -0.20277

FIGURE 6.10 Calculating J, = J;(kg,1).
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Joy=Jolkosr) 44120y (kg ricosO

A

Al

FIGURE 6.11  Standing waves on a circular membrane.

Figure 6.11 shows the standing waves on a circular membrane using Bessel functions. D, =
1, radius = 1, and the angular part is adjusted to be cos(m@). Here, ], is the third mode of

Joand n =3 and ], = J,(k,,r)cosb.

Figure 6.12 lists the VBA code to compute ], to obtain #n = 1 and m = 1. Here, we used

the built-in Bessel function of Excel in the VBA code,

Application.WorksheetFunction.Besseld(k * r, m).

Sub CircularSheet()
Cells(1, 1) = "Standing wave on a circular sheet of radius 1"
'J1(k11x)*cos(theta)
Cells(2, 1) ="m=": m = 1: Cells(2,2) =m
Cells(2, 4) = "k=": k = 3.832: Cells(2, 5) = k
r =1 'Radius of circular sheet
h=0.05
For Row =0 To 40
Cells(Row +4, 2) = -1 + h * Row
Next Row
For Col =0 To 40
Cells(3, Col +3) = -1+ h * Col
Next Col
Fori=-20To 20
x=i/20
Forj=-20To 20
y=j/20
r=(x"2+y~2)70.5
ii=i+24 [ Calling the Excel function BESSELJ ]
ji=j+23
If r > 1 Then Cells(ii, jj) = 0: GoTo Skip
If r <= 1 Then BJ = Application.WorksheetFunction.BesselJ(k * r, m)

'Angular part
Ifr=0Thentrig=1
If r<>0Thentrig=(x/r)
Cells(ii, jj) = BJ * trig 'J1(k11x)*cos(theta)
Skip:  Nextj
Next i
End Sub

FIGURE 6.12 VBA code to calculate J,,cos0.
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6.4 SPHERICAL COORDINATES

The Schrodinger equation in a central potential energy is essentially

VY(FE)+[ E-V(r) Jy(F) =0. (6.55)

Using the spherical coordinates (r, 6, ), Equation 6.54 becomes

———sin0

sin© 00 % sin’ 0 8

10 ,0 1|1 o 0 1 &
— 1+
rror or r’

}+E V(r)} (r,0,9)=0. (6.56)

For separating variables, let y(r,0,¢) = R(r)®(0)D(¢) to obtain

1 d 1 1 1 d
—_— —R +r[E-V . (6.57
Ry dr! R rESVOl= {@(9) sin0do " q>(¢) n* 0 dg? ((p)} (657
The angular part is
1 L ®0)+ 1 & ®(@) |=—A where A is a constant.  (6.58)
@(0) sind de CD((p)s n20dgt -
For separating two angular variables,
. 2
sinf 1 —@(9)+ls1n 6——* d ®(¢p) =—a where a is a constant. (6.59)
©(0) sin6 4o O(p) do’
FromL d’ ®(¢) =a, and thus (@) =e"
O(p) dg’ ’

With the periodic boundary condition, ®(¢) = ®(¢ + 27), a = —m?, where m is integer and
thus

D(p) =e™. (6.60)
The O-part becomes

smei—@(O)Jr},sm 0=m’ (6.61)

©(0) sin6 4O

6.4.1 Associated Legendre Function
Let x = cosf and ©(0) = P(x), then from Equation 6.61 becomes

2

d o d m
L a-) L Px)+[n—
dx( x)dx (x)+[ !

~1P(x) =0. (6.62)
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For Equation 6.62 to have finite value of solutions for |x| <1, it is shown that 1 = £(£ + 1),

where - < m < +¢ [7]. Therefore,

m2

-1P(x) =0. (6.63)

d 4o d .
E(l—x)de(x)+[€(£+1) I

Equation 6.63 is called the associated Legendre differential equation, and their solutions

are called the associated Legendre functions P;" (x).

Examples of associated Legendre polynomials (£ = 0 to 2):

(=0:P)(x)=1.

(=1:, P(x)=+1-x%, "' (x) =—%\/1—x2.

(=2: P2(x)=3(1-x%), P(x) = 3xv/1—x*, P! (x) = %(3% -1). (669
P (x) = —%xﬁ P(x) = éa—xZ).
Let x = cosf to express the polynomials in trigonometric functions:
P (x) = cos®.
P!(x)=sin®, P’ (x) =cosH, P ' (x) = —%sin 0.
(6.65)

P}(x)=3sin’ 0 = %(1 —c0s20), P} (x) =3cos0sinf = %sinZG,

P (x)= %(3 cos’0-1), P, (x) = —%cos@sin 0, P, % (x) = %sin2 0.

Figure 6.13 shows these functions calculated using Excel’s AutoFill feature.

P™, (x) P, (x)

a5

m=2,1,0,-1, -2

— e
1
1.5
&

FIGURE 6.13  Associated Legendre functions (£ = 1 and 2).



Boundary Value Problems = 131

List of important properties of Legendre polynomials.

1 m (+m

1-x%)2 — (x> —1)’, where —£/<m<+?. (6.66)

Rodrigues formula: P, (x) = 2 G

Generating function:

2l
(L +m)!

L
(cosO+isinOcosd)’ = P,(cos 9)+22im cos(md)P;" (cos0) (6.67)
m=1
where P,(cosf) is the Legendre polynomials discussed in the next section.

Recursion relations:

2mxP" (x) = V1—x2 [Pg““(x) F(lrm)(L—m+ 1)p;"*1(x)]. (6.68)
(0 —m+1)P", (x)— (20 +1)xP,"(x) + (£ +m)P,",(x) = 0. (6.69)
a —xZ)dPZ("’ = (04 DxP ()~ (= m+ )P ()
X
— (04 m)P" (%)= £xP" (x) = N1 — %% P (x) — mxP)" (x) (6.70)
=mxP" (x)—({ +m)({ —m+D\V1—x" P (x).
Parity: B (x) = (1" =™ p(x) and B (—x) = (—1)" P (). 6.71)
(0 +m)!
o [ oy 2 ((+m)!
Orthonormality: .L P (x)P," (x)dx = Py (= m)! Osp- (6.72)

Associated Legendre functions, with a fixed m, also form a set of orthonormal basis, and
an arbitrary function f(x) on the interval —-1<x<+1 may be expanded in a series of the form,

N — |
)= e P() where ¢, = 2L (=)
l=m

2 (t+m)! Lf (x)P/" (x)dx. (6.73)

Remark: Although there is another solution of the associated Legendre equation called
the associated Legendre functions of the second kind, they are seldom applied to physics
problems.

6.4.2 Legendre Polynomials

The associated Legendre differential equation with m = 0 is called the Legendre differential
equation.

i(1 - xz)ip(x) + /(¢ +1)P(x) =0. (6.74)
dx dx
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The solutions of Equation 6.74 are called Legendre polynomials and can be given by

[£/2]

~ (-1 ¢—-2r)!
()= ;2/‘7‘!@—1’)!@—27‘)!

x7 s and ‘R (x)‘ <1 for ‘x‘ <lI. (6.75)

Legendre polynomials of lower orders (£ = 0-4):

Py(x) =1,

P\(x) = x,

P,() = (12)(3% - 1),

P,(x) = (1/2)(5x3 — 3x),

P,(x) = (1/8)(35x*-30x%+3), ...

Assume x = cosf to express the polynomials in terms of trigonometric functions:

Po(x) =1,

P,(x) = cosb),

P,(x) = (1/4)(3cos26 + 1),

P,(x) = (1/8)(5¢c0s360 + 3cosb),

P,(x) = (35/64)cos40 + (30/91)cos28 + 9/64, ... (6.76)

Figure 6.14 shows Legendre polynomials (£ = 0-4). The calculations can be made using
Excel’s AutoFill.

Rodrigues formula: B, (x) = ni d (x* -1)". (6.77)

2"n! dx"

Legendre polynomials

FIGURE 6.14 Legendre polynomials.
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Generating function: ————— ZP (ot". (6.78)
1- 2tx +t sy
. 2n+1 .
Recursion formula: P,,,(x) = xP (x )——1 1(x), using (6.79)
+

{(1 x)—(n+1)x}P(x)——(n+1) (%) and{(l x)—nx}P (x)=nP,_,(x).
dx

List of important properties of Legendre polynomials.

Parity: P,(—x) =(-1)"P,(x). (6.80)

Note: P (x) = P,(x) and P/"(x)=(1—x )2 d —P,(x). (6.81)

Orthonormality: J' " ()P, (x)dx = ianm. (6.82)
-1 2n+1

Legendre functions also form a set of orthonormal bases. A function f(x) on the interval
-1 < x < +1 may be expanded in a series of the form

20+1

flx)= ZC(P@ (x) where ¢, = Il f(x)P,(x)dx. (6.83)
=1 -1

Figure 6.15 shows f(x) = sinx using 5 terms of P, (x). Refer to Appendix A6.3 for its detailed
calculation. Because Legendre functions originated from the spherical coordinates, which
are based on trigonometric functions, the fitting is good for 5 terms.

6.4.3 Spherical Harmonic Functions
In the Schrodinger Equation 6.55, the angular part of the Hamiltonian,

f(x)=sin(x) by Legendre polynomials (5 terms)

FIGURE 6.15 Series expansion of sinx using Legendre polynomials (5 terms).
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o . .0 1 &

—sinf0—+ — (6.84)
sin® 00 00  sin® 0 0o’
expresses the angular momentum operators,
. 2
I’ =-n ,1 isineiJr L and L, —z‘hﬁ. (6.85)
sin6 06 00  sin’ 0 0’ op
The solution of the angular momentum operators is the spherical harmonic function
defined as
—m)! .
Y,.(0,0)=(-1)" WPZ”(COSO)(&”"‘P (6.86)
41(l +m)!
where

2
Lngm(O,(p)z—hz['lasinea LG

=9 Y,,,(6,9) = R*((L +1)Y,,, (6,
sin® 00 00  sin* 0 0p° }[’"( @) =L +1)Y,,(0,9),

(6.87)

o . 0
LZYKm (e) (P) =—ih ai(l) Yé/m (ea (P) =mh Y/Zm (ea (p)'

Here are the explicit forms of the spherical harmonic functions.

1
£=0: Yoo(e,q,)zf.
T

=1 Y,,(0,¢) = 1fgismeé > Yi0(0,0) = %cose, Y,41(0,¢) = isinee”'“’-

=21 Y,,(0,y) = 3s1n 0e*?, Y,,(0,9) = ,f 3s1n6cos 0e™, Y,0(0,0) = — %%(%inz 0-1),
V I

(6.88)
Y, ,(0,¢) = \/Z%inecos 0e™, Y, ,(0,¢) = \/;3 sin” Qe 2.
£=3: Y5,(0,0) = \/7(cos e—COSGJ Y1(6,0) = \/z4sm9(5cos 60— 1)
Y, (6,0) = \/7 sin” ©cos 0e*?, Y;;(0,¢) = \/7 sin’ B¢, etc.

For displaying spherical harmonic functions using Euler’s angles, there are several steps:

N
1

1) Convert 6 and ¢ values to x, y, z values: using

X = rcosfcos, y = rcosfsing, and z = rsind (r = 1);
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2) Rotate the calculated xyz-coordinates to XYZ-coordinates using specified Euler’s
angles; and

3) Select the XY, the YZ, or the ZX plane to display data using the Scatter chart.

As is well known, angular parts of wave functions are quite different from the semi-classi-
cal theory, and it is fun to produce them on your own computer. Figure 6.16 lists the VBA
code to take the above steps to create |Y,,|.

Figures 6.17 to 6.19 show these spherical harmonic functions (£ = 0-3). Euler’s angles: a
=mn/6 rad, § = /3 rad, and y = nt/8 rad.

Orthonormality: {Y,, (0, ¢)} forms an orthonormal basis on a spherical surface. A func-
tion f(0, @) on a sphere may be expressed with {Y,,,(6, ¢)}.

Sub SphericalHarmonics()
Cells(1, 1) = "3D displays of Spherical Harmonics"
Pi=3.14159265358979
'Rotational angles of coordinates
Cells(2, 1) = "alpha": alpha = Pi / 6: Cells(3, 1) = alpha
Cells(2, 3) = "beta": beta = Pi / 3: Cells(3, 3) = beta
Cells(2, 5) = "gamma": Gamma = Pi / 8: Cells(3, 5) = Gamma
'Variable labels
Cells(4, 1) = "phi"
Cells(4, 2) = "theta"
Cells(4, 3) = "Y00"

Cells(4, 5) = "fx"
Cells(4, 6) = "fy"
Cells(4, 7) = "fz"
Cells(4, 9) = "Fx"

Cells(4, 10) = "Fy"
Cells(4, 11) ="Fz"
'Calculating spherical harmonics
'For a given theta, change phi from 0 to 2*PI and calculate the given spherical harmonics.
Fori=0To 32
Phi=i*(2*Pi/32)
Cells(5 +33 *i, 1) = Phi
Forj=0To 32
theta = * (Pi/32)
Y=1
Cells(5 +33 *i+]j, 2) = theta
Cells(5 +33*i+j,3)=Y
fx =Y * Sin(theta) * Cos(Phi)
fy =Y * Sin(theta) * Sin(Phi)
fz =Y * Cos(theta)
Cells(5+33 *i+]j,5)=fx
Cells(5+33 *i+]j,6)=fy
Cells(5+33*i+j,7) =1z
'Rotate fx, fy, fz to ffx, ffy, ffz by Euler’s angles (alpha, beta, gamma).
ffx = fx * (Cos(beta) * Cos(alpha) * Cos(Gamma) - Sin(alpha) * Sin(Gamma)) + fy * (Cos(beta) * Sin(alpha) * Cos(Gamma) + Cos(alpha) *
Sin(Gamma)) - fz * Sin(beta) * Cos(Gamma)
ffy = -fx * (Cos(beta) * Cos(alpha) * Sin(Gamma) + Sin(alpha) * Cos(Gamma)) - fy * (Cos(beta) * Sin(alpha) * Sin(Gamma) - Cos(alpha) *
Cos(Gamma)) + fz * Sin(beta) * Sin(Gamma)
ffz = fx * Sin(beta) * Cos(alpha) + fy * Sin(beta) * Sin(alpha) + fz * Cos(beta)
Cells(5+33 *i+j,9) =ffx
Cells(5 +33 *i+j, 10) = ffy
Cells(5+33 *i+]j, 11) = ffz
Next j
Next i
End Sub

FIGURE 6.16  VBA code to prepare a 3D display of Y.
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Zvs X Zvs X

-1.5

FIGURE 6.17  [Y,o| and | Y.

Zvs X Zvs X

FIGURE 6.18  [Y,,] and |Y,|.

2T T
(Yo Yy ) = j do j Y 00 (8, 0)Y 1 (6,9) 510 0600 = 5,,.8,y
0 0 (6.89)

2n b
(VoY )= [ dof Yin(©.0)Y, (0.0)5in0d0 = 5,5,

o  +/

JO.0= 3" funtim(®.0) whete fi, = (Vi /)= [ " do[ Y.,(©.0)/(®.0)sin0do. (.90

=0 m=—(
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0.8

FIGURE 6.19 |Y5o| and [Yy].

Note: Ladder operators of angular momentum. Ladder operators or raising or lowering
operators are mathematical operators that increase or decrease the eigenvalue of another

operator. The angular momentum,

v v v 0
L,=zp, —xp, =—ih| z——x— 6.91
P [ 0x 82} ©91)
. . . 0 0
Lz = - x = —ih A~ ) A
s a{sE 2]
can be expressed in spherical polar coordinates to give

L = ih[sin(pa%Jr cotecosq)aa(pj

I:y =ih —coscpiJrcotesin(pi ) (6.92)
L,= —i?’Lli
o9
Define new
I:+ =L, +iI:y =e £a+icot66]
@ o0 6.93)
i’* = Lx _liy :e_i(p _i‘{‘lcotei .
00 op
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—m)! 4 .
Using Equation 6.86, Y,,,(0,¢) = (-1)" MP[” (cos0)e™® =N,,,P/" (cos0)e™?,
47n(l +m)!

I:+YW (0,0)=€N,,, o +icot Gi P (cosB)e™?
00 o

(6.94)
— ei(mﬂ)(pN[m dP/ m COSGP[m .
do sin©
Let x = cosd, then d/d@ = (dx/dO)ed/dx, and
dP[ __ ll_xz dP/ :—P[erl—i- mx P/!m
49 dx 1=’ (6.95)

mx
V1-x*

where we used the recursion relations (6.70). Thus, moving the second term from the right
side to the left side,

=(l+m)(—m+1)P" " + P —(l+m)({ —m+1)P/"" +cotOP;".

m

P
_d ! +mCOteP4m=Pgm+l,
do

(6.96)
dpém m m+1
0 +mcotOP" =(L+m)({—m+1)P/"",
and Equation 6.95 gives
L.Y,,(6,¢)=e" ﬁﬂ'cot@)i Y,,,(0,¢)
" o0 op) " (6.97)
=€ "N, P (c0s0) = — /(L —~m) (L + m+1)Y,,,.. (6, ).
Similarly, we obtain
L Y, (0,0) =€ —iJricotei Y,,.(6,0)
o 0 op) " (6.98)

= —J(l+m) (L =m+1)Y,,,(6,0).

6.5 TABULATED INTEGRALS
6.5.1 Gamma Functions

Gamma function I'(x) is the generalization of factorial (n!). The definition of gamma func-
tion is

nm:ﬂ%%ﬂm. (6.99)
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From the definition, I'(x + 1) = x I'(x), and I'(n + 1) = n!, where n is a positive integer.

-
Notice I'(1/2)=+/n and [(n+1/2) = (2”21)\/5 (6.100)

where n!! = ne(n — 2)e(n — 4)...3e1 if n is an odd integer and n!! = ne(n — 2)e(n — 4).. .42 if
n is an even integer.

If x<0,weuse '(x)['(1—x)= to calculate F(x). (6.101)

sin(mx)

Excel does not provide the gamma function. However, the gamma function can be created
by using the probability distribution function of the gamma distribution, which is the
built-in function GAMMADIST. Using this built-in function, we can calculate

I'(x)=1/GAMMADIST(1, x, 1, 0)/EXP(1)

for x >0. For x <0, use Equation 6.101. Figure 6.20 shows the gamma function using
GAMMADIST.

6.5.2 Beta Functions

1
Beta function is defined as B(x, y) =I t*'(1-t)""'dt where x>0 and y > 0. (6.102)
0

Beta function is closely related to gamma function in the following way.

Gamma function

an

riig

FIGURE 6.20 Gamma function using GAMMADIST.
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C(r)I'(s) :j x"le_xdxj y e Vdx :I duI dxx(u—x)""e™ where u=x+y. (6.103)
0 0 0 0

Assume x = ut, then

F(r)F(s):‘[Ooodue_“ II At (1= 1) = T(r +5)B(r,5). (6.104)

From the above relationship, we can calculate B(x, y) by using GAMMADIST in the follow-
ing way:

B(x, y)=GAMMADIST(1, x+y, 1, 0)/GAMMADIST(1, x, 1, 0)/GAMMADIST(1,
y, 1, 0)/EXP(1).

Figure 6.21 is a screenshot for calculating the numerical values of the beta function.

1) The x-axis ranges from 0.05 to 3.0.5 with increments of 0.1 in Column B and the
y-axis ranges from 0.05 to 3.05 with increments of 0.1 in Row 2.

2) Enter

=GAMMADIST(1,$B3+C$2,1,0)/GAMMADIST(1,$B3,1,0)/GAMMADIST(1,
c$2,1,0)/EXP(1)

in cell C3 and apply AutoFill.

3) Highlight the data set (C3 to BJ33) and select [Wire-frame 3D surface
chart].

4) Expand the graph and select [Monochrome color].

5) Right-click on the graph to select [3-D Rotation]. Try to rotate your graph to
obtain a good view.

Figure 6.22 shows the beta function profile.

6.5.3 Elliptic Functions

The equation of motion of a pendulum of length L under gravity is given by

4 A B C D E F G H |

1 Beta function B{x,y)

2 xy 005 0.15 0.2 0.25 0.3 0.35 0.4
5‘, 26.38061 24.65354 2359663 22.87617 22.34902 21.94343
"*--12 93361 11.2155 10.16711 9.45482 B.935482 B8.537436

4

= P nmaddl g ARAA W g 21430 £ ansena EanTigg
6

7

| =GAMMADIST (1, $B3+C$2,1, 0} /GAMMADIST (1, $B3,1,0) /GAMMADIST (1,C$2,1,0) /EXP(1) |49

THT ELUITUE GZEUT 70 UIEH i & FaT T LI, o I H 0 . ousE i 3, —zwd29

FIGURE 6.21 Calculating beta function B(x, y).
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Beta function B(x,y) , .

Note: B(x,y)=B(y,x)

- ;L}H‘T]'”-I]—}JW_'TTLI-WTT“T"ﬁ“ T

T‘ﬂT"r'rﬂT' | | Wﬁ I lLlrllrl"lllflrlrll 'LMM 1] T ”’
ﬂﬂTﬂWﬂTm || ||Tm I lLlf'flelﬁiﬁ il 'ﬂ\'ﬂlﬂ" | LlllLﬂ' il 'WIH' IlTl i
| TITHHL T Ay T L[|
e B v -

T s AT
\\ [ -1J\~" \ ; s

|

FIGURE 6.22 Beta function.

2
Zt? — —&in® where 0 is the angular displacement to the vertical direction. (6.105)
Multiplying dé/dt to the above equation to perform the energy integral.
t 2 t
j LN (O PA f e i (6.106)
ol dt )\ dt LJo dt
2 0
(a0 _ el &I d(c0s0) _8 (¢056-1). (6.107)
2|\ dt LJo dt L

Where we used the initial conditions as d6/dt|,_, = w, and 6),_, = 0.

Considering the case when the angular velocity is positive, we obtain

‘jl(: = \/mg —ZTg(l—cose) = \/w% —4Tgsin2 [SJ (6.108)

40 = 2\/§ k* —sin® 9 where k* = Lcoé (6.109)
dt l 2 4¢
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0
Thus, dt:l\Fde, andt:l\FI 4 610
2\ g Kk —sin*(8/2) 2\ g Jdo \Jk? —sin*(0/2)
Let sin(0/2) = kz, then
(1/k)sin(6/2)
p= |L J‘ dz _ (6.111)
g Jo J1-22)(1-k*2%)
The following integral is called elliptic integral:
2 (6.112)

xzj.y 4 .
0 J1-y)(A-Ky?)

Note that Equation 6.112 becomes x = sin”'y when k = 0. In other words, if we define

then y = sinx can be defined as the inverse function of x = sin"!y. Analogues to this idea,
elliptic functions are defined as the inverse functions to elliptic integrals. When k#0, we
denote the inverse function of Equation 6.112 as y = sn(x, k).

We also define

cn(x, k) =1—sn*(x,k),

tn(x, k) = sn(x, k) / cn(x, k), (6.113)
dn(x,k) = \1-k*sn’ (x,k).
In particular, these functions with k=0and k = 1 become ordinary trigonometric functions:

sn(x,0) = sinx, cn(x,0) = cosx, tn(x,0) = tanx, and dn(x,0) = 1.
sn(x,1) = tanhx, cn(x,1) = sechx, tn (x,1) = sinhx, and dn(x,1) = sechx.

Figure 6.23 shows these elliptic functions.

SUGGESTED FURTHER STUDY

Hypergeometric functions,

') N T@+nl(b+n)x,

HOBSD = L@ 2 Tern  ar

are a solution of the differential equation called the hypergeometric equation,

2
x(l—x)flx};+[c—(a+b+1)x]z—aby=0.
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Elliptic functions

y=cn(x,1)
=dn(x,1)

y=sn(x,1)

FIGURE 6.23  Elliptic functions.

Mathematical functions we encounter in physics are mostly special cases of ,F,(a, b, ¢, x)
including the Legendre functions, Jacobi polynomials, Bessel functions, Laguerre polyno-
mials, Hermite polynomials, and Fresnel integrals of classical optics. Refer to [1, 8, 9] for
hypergeometric functions and equations.

Elliptic functions play an important role in cryptography. “Elliptic integral” was named
so by Legendre because it relates to the elliptic arclength. Jacobi called the inverse func-
tion of the elliptic integral as an “elliptic function.” Riemann considered the relationship
between the elliptic function and the algebraic curves. For example, the third-order poly-
nomial curve was expressed using a parametric expression of the elliptic function. Refer
to [10] for the historical background. For elliptic cryptography, refer to interesting articles
on the Internet [11, 12].

REFERENCES

1. Mathews J, and Walker RL, Mathematical Methods of Physics, Internet Archive, 1973. https://
archive.org/details/mathematicalmeth0000math.

2. Arfken GB, Weber HJ, and Harris FE, Mathematical Methods for Physicists, Internet Archive.
2013. https://archive.org/details/Mathematical Methods_for_Physicists.

3. Riley KF, Hobson MP, and Bence SJ, Mathematical Methods for Physics and Engineering,
Cambridge University Press, 2002.

4. Schneider BI, Miller BR, and Saunders BV, Digital Library of Mathematical Functions, NIST.
https://dlmf.nist.gov/.

5. Abramowitz M, and Stegun IA, A Handbook of Mathematical Functions with Formula,
Graphs, and Mathematical Tables, National Bureau of Standards, 1972. https://personal.math
.ubc.ca/~cbm/aands/frameindex.htm.

6. Zakharov V, Bessel Functions and their Applications to Solutions of Partial Differential

Equations, University of Arizona, 2009. https://math.arizona.edu/~zakharov/Bessel Functions
.pdf.



https://archive.org/details/mathematicalmeth0000math
https://archive.org/details/mathematicalmeth0000math
https://archive.org/details/Mathematical_Methods_for_Physicists
https://dlmf.nist.gov/
https://personal.math.ubc.ca/~cbm/aands/frameindex.htm
https://personal.math.ubc.ca/~cbm/aands/frameindex.htm
https://math.arizona.edu/~zakharov/BesselFunctions.pdf
https://math.arizona.edu/~zakharov/BesselFunctions.pdf

144

10.

11.

12.

m Mathematical Methods for Physics Using Microsoft Excel

. This statement can be also obtained from the Laplace equation. See [3].
. Mathews WN, Esrick MA, Teoh ZY, and Freericks JK, A Physicist’s Guide to the Solution

of Kummer’s Equation and Confluent Hypergeometric Functions, arXiv, Cornell University,
2012. https://arxiv.org/abs/2111.04852.

. Boyce WE and DiPrima RC, Elementary Differential Equations, John Wiley & Sons, Inc.,

2003.

Ravenel D, Elliptic Curves: What They Are, Why They Are Called Elliptic, and Why Topologists
Like Them, I, Wayne State University Mathematics Colloquium, 2007. https://people.math.
rochester.edu/faculty/doug/mypapers/wayne3.pdf#:~:text=Elliptic%20curves%20Recall%20
that%20an%?20elliptic.

Froehlich A Elliptic Curve Cryptography (ECC): TechTarget. https://www.techtarget.com/
searchsecurity/definition/elliptical-curve-cryptography.

Elliptic Curve Cryptography, Avi Networks. https://www.vmware.com/topics/elliptic-curve

-cryptography.


https://arxiv.org/abs/2111.04852
https://people.math.rochester.edu/faculty/doug/mypapers/wayne3.pdf#:~:text=Elliptic%20curves%20Recall%20that%20an%20elliptic
https://people.math.rochester.edu/faculty/doug/mypapers/wayne3.pdf#:~:text=Elliptic%20curves%20Recall%20that%20an%20elliptic
https://people.math.rochester.edu/faculty/doug/mypapers/wayne3.pdf#:~:text=Elliptic%20curves%20Recall%20that%20an%20elliptic
https://www.techtarget.com/searchsecurity/definition/elliptical-curve-cryptography
https://www.techtarget.com/searchsecurity/definition/elliptical-curve-cryptography
https://www.vmware.com/topics/elliptic-curve-cryptography
https://www.vmware.com/topics/elliptic-curve-cryptography

CHAPTER 7

Wave Packets and
Wave Functions

WAVE PACKET Is A model to implement the dual nature of a wave-particle in quantum
mechanics. From the kinematics of wave packets, we understand:

(1) The difference between the velocities of particle and wave; and

(2) The propagation of a wave packet in a given potential energy.

As we pointed out in Section 3.5.3, when the particle model is applied to the law of refrac-
tion, the classical theory does not correctly predict the law. The reason for this discrepancy
may be attributed to the difference between the velocities of classical particles and the
electromagnetic wave. A computational algorithm proposed by Visscher et al. predicts the
kinematics of wave packets correctly. We demonstrate the algorithm for two cases: in a free
space and in a potential step.

The algorithm of Euler and Cromer is known as a shooting method for finding the eigen-
values of a bound state Schrodinger equation and other boundary value problems. The
shooting method may be extended more generally by applying the Runge-Kutta method
with correct boundary conditions to a harmonic oscillator and a hydrogen atom.

7.1 KINEMATICS OF WAVE PACKET

Although a single plane wave cannot be localized, an arbitrary localized wave propagat-
ing in the x direction can be created by a wave packet which is superposed plane waves
F(k)e'**=9 of amplitude F(k):

Wi t) = fw F(k)e' ) k. (7.1)
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This is equivalent to the Fourier transform, and the “amplitude” F(k) should be the inverse
Fourier transform [1].

Fk)=1 J' Wi, e dk. (7.2)
21 d
If a particle can be a wave packet, what is the speed of a wave packet?

7.1.1 Group Velocity and Phase Velocity

Does the phase velocity, v, = 1:f = o/k, where @ is the angular frequency and k is the wave
number, represent the speed of a particle as a wave [2]? If the particle has the frequency, f,
its energy is given by E = hf = hiw. From the de Broglie wavelength of a particle, the momen-
tum of the particle is given by p = h/A = k. The phase velocity is given by

ho E _ mc ¢’

(O]
Vv ase: .}\‘:—:7_ = = . (7‘3)
ph f k hk p MY particle V particle

The relativistic expressions of energy and momentum are E = mc? and p = mv where m is
the relativistic mass,

E mc? c?

9
Vohase = — = = = -¢ > ¢ because ¢ >V i - (7.4)
mvparticle Vparticle Vparticle

The consequence of Equation 7.4 is unacceptable. The phase velocity cannot be the speed of
the wave nature of a particle. Instead, the group velocity defined by v, = dw/dk may be used
to express the speed of a wave packet [3]. In terms of the particle’s parameter, the group
velocity can be expressed as

, —do_dE/n) _dE 75)
dk  d(p/h) dp

For a particle, the kinetic energy is E = p?/2m, and thus, v,= dE/dp = p/m = v. Energy and
momentum of a free particle can be given by E = iw and p = iik. Because the energy of a
free particle is given by E = p*/2m, w = E/h = hk?/2m from which the group velocity is cor-
rectly given by v, = dw/dk = hk/m = p/m.

How can we incorporate the group velocity in the wave packet [4]? If the distribution
F(k) of Equation 7.2 is localized at around k,, then the angular frequency w(k) can be
expanded around k:

co(k)=c00+d;’: (k—ko)+... (7.6)

0

Plugging Equation 7.6 into Equation 7.1, we obtain

i‘:kx—(mng—m

(k—ko )t+...)} imot+th

dk=e *

0

W(x,t)= I:oF (ke kt}dk. (7.7)

do)|
kot +00 {kx——
: +I Fkjel %o
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Recall the definition of a Fourier transform,

W(x,0) = j F(k)e™dk, (7.8)

—00

and we obtain

I ) F(k)e{k(x_j;‘)"t)}dk = y(x',0) 79

—00

do

where x'=x———| t.
dk |,

Because dw/dk is the group velocity v,, the position of the wave packet at a later time £ is

given by x’ = x — v,t. This is equivalent to the position of a particle moving at a velocity v,.

7.1.2 Motion of a Wave Packet in Free Space

We start with Equation 7.1 to describe the motion of a wave packet in free space. In addi-
tion, we assume the probability of existence at t = 0 is given by a Gaussian distribution
function at the origin,

1 x*
x,0) = exp| — 7.10
[v=0 (27‘[62 )1/2 P{ 202} 70

with the standard deviation o, which represents the uncertainty in the position Ax at t = 0.
The wave packet at ¢ = 0 is given by

1 x? .
y(x,0) = ——— 1 €Xp {— 5 }exp[zkox]. (7.11)
(2n62 ) 40
From Equation 7.2, the amplitude F(k) for the Gaussian wave packet is

2

1/4
_L o —ikx _ 20 _~2(1 _ 2
Fo = LO w(x,0)e dx-[n j exp[ o2 (k—ky) ] (7.12)

From equation (7.1), the wave packet y(x, t) at time ¢ is given by

im 27 )2
:% 1 —exp| - (x 2120 ko) vk ||,
o' (1+iat) 4c°(1+iot)

1/4
2(52 +00
w(x,t):(j exp| —o” (k—ko)* +i(kx — wt) |dk
T '[ * [ }d (7.13)
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Mation of wave packet

[

Time

FIGURE 7.1 A time-dependent wave packet.

Where a = #/2ma®. The calculation of the above wave packet is detailed in Appendix A7.
(x—v,t)?

The probability distribution function is
2 1
y(x,t)| = F———exp {—}
‘ ‘ \2re® (1+a’t?) 26°(1+a’t?)
where v, = hiky/m. This is a “spreading-Gaussian” function with the standard deviation
given by &*(1+a?#?). Figure 7.1 is the schematic diagram of the time-dependent wave packet
with v, = 1, 6 = 0.2, and a = 1. The Gaussian wave packet is spreading out as time elapses
while the peak position is moving at the group velocity v,.
Figure 7.2 lists the VBA code used to calculate the motion of the Gaussian wave packet.

(7.14)

7.1.3 Wave Packet in a Harmonic Potential

The potential energy of a harmonic oscillator asymptotically becomes infinite and a par-
ticle will be trapped inside the potential. How does its wave packet, or more precisely, the
probability distribution function of the wave function change dynamically? For analyzing

Sub WavePacket()

Cells(1, 1) = "Time dependence of wave packet in free space"
Cells(2, 2) = "sigma": sigma = 1: Cells(3, 2) = sigma

Cells(2, 3) = "alpha": alpha = 0.1: Cells(3, 3) = alpha

Cells(2, 4) = "v0": vO = 2: Cells(3, 4) = vO

Cells(5, 2) = "x"

Cells(4, 3) = "Time"
Pi=3.141592654
Fork=0To5
t=10*k
Cells(5,3+k) =t
j=0
Forx=-10To 120
Cells(6 +j, 2) =x
Probability = (1 / ((2 * Pi * sigma ~ 2) * (1 + (alpha * t) A 2)) 2 0.5) * Exp( -(x-vO *t) A2 /(2 * (1 + (alpha * t) A 2)) * sigma * 2)
Cells(6 +j, 3 + k) = Probability
j=i+1
Next x
Next k
End Sub

FIGURE 7.2 VBA code of the time-dependent wave packet.
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the motion, we need to use the Schrodinger equation for the harmonic oscillator [5]. Let us
start with the time-dependent wave function,

y(x,t) = ZCn@n(x)eXP[—;Ent} (7.15)

where the time-independent wave function satisfies the time-independent Schrodinger
equation.

2 2
{—hdimméxz}pn(x) =E,0,(x). (7.16)

The solution of Equation 7.16 is given by the Hermite polynomials discussed in Section
6.2.3:

1/2
¢, (x) =Nan(0Lx)exp(—0L2x2), where N, = % , 0= me ,
where ' 2"n! /]

E, =(n+;]hcoo, n=0,1,2, ...

Combining Equations 7.14 and 7.15, we obtain

y(x,t)= exp{—;mot} ch(p,, (x) exp[—icoont]. (7.17)

n=0

We may predict that the probability distribution function |y(x,t)|? is periodic with a period
of T = 2x/w,.

2

‘\V(x, t+ uT)‘2 = ch(pn (x) exp[—i(ooont + 2nnu)} (7.18)
n=0
where u is an integer. Because nu is also an integer, exp(-2ninu) = 1. Therefore,
2

2 . 2

‘\y(x,t + uT)‘ = ch(pn (x)exp[—zwont] = ‘\y(x,t)‘ . (7.19)
n=0

This indicates that the probability distribution function retains the same shape over time.
As the initial condition, take the wave function of the ground state except that the center
of gravity is displaced in the positive x direction by an amount x,:

® 2 \V4 5 1/2
\V(x,O):ch(pn(x):(O;J exp[—O;(x—xo)z}where(x=[m;looj . (720)

n 2
The coefficients {c,} are given by ¢, = (ax,) exp{— (ax,) } Refer to Appendix A9 for the
calculation of the coeflicients. V2'n! 4
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The time-dependent wave function of the ground state is given by

2

1/4 0 n
o 1 ;1 2 1. H,(ax)( 1 —iwot
xX,t)=| — e ——(ox)" ——(oxy)” ——imgt —— —oxge
w( )[n] xp[ S (@) — (o) O}Z |

n=0

1/4
2
a 1 1 1. 1 i i
=| 7| exp| ——o’x’ ——a’xg — it ——a’xpe N + ot xxge
i 2 4 2 4

2 1/4 2 2
- (a] exp {—Oé(x — %, cos(myt ) } x exp[—i (cozot +a’xx, sin(wot)J - (OLZO) sin(ZmOt)}.
n

Thus,

‘\y(x,t)‘z = \/O:tzexp[—az (x - X, cos(mot))z}. (7.21)

This shows that y represents a wave packet that oscillates without change of shape about
x = 0, with amplitude x, and the classical angular frequency w,. In other words, the time
dependence of the peak position of the wave packet is the harmonic oscillation with
cos(m,t), equivalent to the classical harmonic oscillation. Figure 7.5 shows the wave packet
in a harmonic potential, where x, = =3, m = 1, @ = 1, and o, = 0.2. The peak position of the
wave packet exhibits a classical harmonic oscillation in -3 < x < +3.

Figure 7.4 lists the VBA code for calculating the wave packet positions at different times.

7.2 WAVE PACKET APPROACHING THE POTENTIAL STEP
7.2.1 Method of Visscher et al.

When the kinematics of a wave packet is difficult to compute, we may apply a method
to obtain the numerical solution of the time-dependent Schrodinger equation developed
by Visscher and others [6]. One-dimensional time-dependent Schrodinger equation in a
potential of a real function V(x) is given by

OVt W Oyl

I~ P + V() (x,t) = Hy(x, 1)

Motion of wave packet in a harmonic potential|

FIGURE 7.3 A wave packet in a harmonic potential.
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Sub WPacketHO()
Cells(1, 1) = "Motion of wave packet of harmonics oscillator"
Pi=3.141592654
Cells(2, 1) ="m": m = 1: Cells(3, 1) = m
Cells(2,2) ="a":a=1:Cells(3,2)=a
Cells(2, 3) = "Omega0": omega0 = 0.2: Cells(3, 3) = omegal
Cells(2, 4) = "Initial x0": x0 = -3: Cells(3, 4) = x0
Cells(2, 5) = "Period": Period = 2 * Pi / omega0: Cells(3, 5) = Period
Cells(4, 3) = "Wave packet at a given time. Time step is pi:"
Cells(5, 1) = "x"
Cells(5, 2) ="U(x)"

Fori=0To 10
Cells(5,3 +i)=i 'Time step i*pi

j=0.1%i

Cells(6,i+3)=j*Pi

'Phi(j)= | Wave packet|~2 where j is the x coordinate at a given time.

Next i
n=10 'Number of repetitions
dt=Pi 'Time step
dx=0.1 'Coordinate step
'Calculate U(x) and phi(x) at a given time t, starting t=0.
t=0 'Initial time
Fori=0Ton
For j=0To 100 'Change the x-coordinate
x=-5+]j*dx
Cells(6 +j, 1) =x 'x-coordinate
U=m * (omega0 *x) "2 /2 'Potential energy

Cells(6 +j,2)=U
Phi=(a/Pi”0.5) * Exp(-(a * (x - xO * Cos(omega0 * t)) A 2))
Cells(6 +j, 3 +i) = Phi
Next j
t=t+dt
Next i
End Sub

FIGURE 7.4 VBA code for the motion of a wave packet in a harmonic potential.
where
- w0
H=———+V(x). (7.22)

2m 0x’
The method by Visscher et al. treats the real and the imaginary parts of the wave function
separately and applies a form of the half-step time method to establish difference equations
for numerical calculations. Let

y(x,t)=R(x,t)+il(x,t)

where R(x, t) and I(x, f) satisfy

OROSD) _ 1 FiR(a )= H, o)
o (7.23)
a(xt) _

. ] )
=—"HI(x,t)=—H,I(x,t
o . (x,1) (x,1)

By applying the half-step method, the difference equations we use are given by
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Sub PotentialStep()
Cells(1, 1) = "Kinematics of wave packet approaching to potential step."
Cells(2, 1) = "Calculate wave packet and probability distribution function at each given time."

Dim RE(1000) 'Real par of wave packet

Dim IM(1000) 'Imaginary part of wave packet

Dim IMold(1000) ‘Temporal imaginary part of wave packet
Pi =3.1415926
x0=-15 'Initial position of Gaussian wave packet
wd=1:wd2=wd"2 'Standard deviation of initial wave packet
ko =2 'Initial wave number
xmax = 60: xmin = -xmax 'Range of x-coordinate.
Vo=2 'Height of potential step
a=0 'Position of rising edge of potential step
dx=0.4:dx2=dx "2 'dx=division of x-coordinate to calculate wave packet.
n =1+ (xmax - xmin) / dx 'n=101 is number of divisions of the x coordinates.
dt=0.1 'Time increment. To be repeated by RepeatNumber
RepeatNumber = 210 'Time change is 0 to RepeatNumber*dt, e.g., 10*0.1=1.

‘Parameter labels

Cells(3, 2) = "Time"

Cells(3, 3) = "Psum" 'Total probability should be 1.
Cells(5, 1) = "x" 'x-coordinate

Cells(5, 2) = "RE(X)" 'Real part of wave packet
'Imaginary part of wave packet
'Probability distribution function

'Construct initial Gaussian wave packet (t=0)
t=0:Cells(4,2) =t
Amp =1/ ((2 * Pi * wd2) A 0.25)
b=ko*dt/2
Fori=1Ton
X =xmin + (i - 1) * dx
efact = Exp(-((x - x0) A 2 / wd2 / 4))
RE(i) = Amp * Cos(k0 * (x - x0)) * efact 'Value at t=0
IM(i) = Amp * Sin(k0 * (x - x0 - b / 2)) * efact 'Value at t=dt/2
Cells(5, 1) ="x": Cells(5 +1i, 1) =x
Cells(5, 2) = "RE(x)": Cells(5 + i, 2) = RE(i)
Cells(5, 3) = "IM(x)": Cells(5 +1i, 3) = IM(i)

Next i
Psum=0
Cells(S, 4) = "P(x)"
Fori=1Ton
P = RE(i) * RE(i) + IM(i) * IM(i)
Cells(5 +i,4) =P
Psum = Psum + P * dx
Next i
Cells(4, 3) = Psum 'Psum should be 1.

'Time evolution of wave packet
For j =1 To RepeatNumber
j=3%]
Cells(3, 2 +jj) = "Time": t = t + dt: Cells(4, 2 + jj) =t 'Current time
Cells(3, 3 +jj) = "Psum"
Cells(5, 2 + jj) = "RE(X)" 'Real part of wave packet
Cells(S, 3 +jj) = "IM(x)" 'Imaginary part of wave packet

Cells(5, 4 +jj) = "P(x)" 'Probability distribution fu nction
Fori=1Ton

x =xmin + (i - 1) * dx
HIM = V(x, VO, a) * IM(i) - 0.5 * (IM(i + 1) - 2 * IM(i) + IM(i - 1)) / dx2
RE(i) = RE(i) + HIM * dt 'Real part defined at multiples of dt
Cells(5 +i, 2 + jj) = RE(i)
Next i
Fori=1Ton
X =xmin + (i - 1) * dx
IMold(i) = IM(i) 'dt/2-earlier than real part
HRE = V(x, VO, a) * RE(i) - 0.5 * (RE(i + 1) - 2 * RE(i) + RE(i - 1)) / dx2
M(i) = IM(i) - HRE * dt 'dt/2-later than real part
Cells(5 +1i, 3 + jj) = IM(i)

FIGURE 7.5 VBA code for a wave packet in free space.
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Next i
Psum =0
Fori=1Ton
P = RE(i) * RE(i) + IM(i) * IMold(i)
Psum = Psum + P * dx
Cells(5+i,4+jj)=P
Next i
Cells(4, 3 + jj) = Psum 'Psum should be 1.
Next j
End Sub

Function V(x, VO, a)
V=0
End Function

FIGURE 7.5 Continued.

R(x,t+Af) = RO, £)+ ELI(x, £ + - Af)AE
2 (7.24)

I(x,t +§At) = I(x,t +%At) — H,R(x,t)At.

The initial values are given by R(x, 0) and I(x, (1/2)(A¢). Note that they are not defined at the
same time. The probability density is assumed to be given by

P(x,£) = RO + 10+~ ADI(x,— - Af)
1 2 2 ] , and (7.25)
P(x,t+ EAt) = R(t + At)R(x,t) + I(x,t + ) ALY

they conserve the total probability. Visscher has shown this algorithm is stable if the poten-
tial satisfies the following condition:

2
2, 20 2%

—<V——— 7.26
At At (mAx)’ (726)
A Gaussian wave packet is selected as the initial wave packet:
1/4 2
1 iko (x—x0) (x—2x)
x%0)=| ——| e’ Vexp| —7—|. 7.27
vix0) (Z‘EO'Z j p[ 4o’ 7.27)

We need the values of I(x, (1/2)At) and R(x, 0) to start the half-step algorithm. For calculat-
ing I(x, At/2), note that a plane wave at time ¢ evolving in a zero potential region is related
to its value at t = 0 by a factor of e7, where w is related to the kinetic energy E by E = hw
= po?2m = h’k?/2m.

The center of the Gaussian wave packet will move by an amount <v>t. Considering
these conditions, we may approximate the wave packet yrat time t = (1/2)At by changing the
phase in the Gaussian wave packet by replacing [ik,(x — x,)] with [iky(x — x,) — iw(1/2)At]
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Wave packet in free space

FIGURE 7.6 A wave packet in free space using the method of Visscher et al.

= [ iky(x — x,) — ihk?At/(4m)], and the argument of the Gaussian curve by replacing [x —
x,] with [x — x, — <v>At/2] = [x — x, — hk,At/(2m)]. The result is not exact because these
changes require a small correction in the overall normalization factor.

7.2.2 Wave Packet in Free Space Using the Visscher Algorithm

Figure 7.5 lists the VBA code to calculate the motion of a wave packet in free space. Although
the potential V(x) = 0 in this case, the VBA code has a definition of Function V(x, VO,
a) = 0 so that the potential form may be changed for more applications. Figure 7.6 shows
the computed wave packet in free space by the algorithm by Visscher et al. The initial wave
packet is somewhat distorted from a Gaussian curve due to the approximate algorithm.
The motion of the wave packet is comparable to the one shown in Figure 7.1.

7.2.3 Wave Packet at a Potential Step
Assume that there is a potential step of height 2 at 0 < x. We use 2 = 1 and m = 1. The VBA

code is the same except the Function statement for the step potential is

Function V(x, V0, a) 'Step potential

If x > a Then

V=V0

Else

V=0

End If

End Function
Figure 7.7 shows the wave packets approaching the potential step. At t =9, the wave packet
is bumping the edge of the potential step and at t = 15, the reflective wave and the transmit-

ted wave are both observed. At ¢ = 21, both the reflection and the transmission are moving
far away from the potential step at x = 0.
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Wave packet at t=0,3,9,15,21

FIGURE 7.7 Time dependence of a wave packet against potential step.

7.3 ASYMPTOTIC BEHAVIOR OF WAVE FUNCTIONS
NEAR THE TRUE EIGENVALUE

7.3.1 Standing Wave on a String

There are so-called “shooting methods” to solve time-independent Schrodinger equations
and boundary value problems in general [7]. Here is an example of a one-dimensional
standing wave.

2
Problem : d;/(zx) +o*y(x) =0 where 0 < x <1and w(O) = w(l) =0. (7.28)
x
Analytical solution: y, (x)~sin(nnx) and w = nz,n=1,2,3, ...

The procedure of the shooting method for finding @ = 7 is:

1) Guess an eigenvalue. For example, @ would be between 3.0 and 3.2;

2) Obtain the differential equation with the trial w-values. For solving the differential
equation numerically, select an appropriate method such as the Euler method or the
Runge-Kutta method. In this case, the Runge-Kutta method should be better;

3) If the resulting solution does not satisfy the boundary condition, change the trial
eigenvalue and find the corresponding solution again; and

4) Repeat the process until a trial eigenvalue is found for which the boundary condition
satisfies within a pre-determined tolerance.

Note: If the trial eigenvalue is not the true value, the solution for the trial eigenvalue does
not satisfy the boundary condition. In the above problem, y(1) >0 if ,,;,, <m, whereas (1)
< 0 if w,;, > 7. In other boundary value problems, the solution with a trial eigenvalue
tends to diverge in one direction if the trial eigenvalue is made slightly smaller and tends
to diverge in the opposite direction if the trial eigenvalue is made slightly larger.

Figure 7.8 lists a VBA code to calculate y(x)’s with the same initial condition of y(0) = 0
and dy(0)/dx = 1 for w,,;, = 3.05 to 3.25 with increments of 0.05.
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Sub StandingWave ()
Cells(1, 1) = "Standing wave by shooting method"
'Phi is a trial eigen function to be found for a trail eigen values.
' Dphi=d(Phi)/dt is the 1st derivative of Phi.
' DDphi=d(Dphi)/dt=omega”2phi is the 2nd derivative of Phi
'Write labels and initial values in cells:
Cells(3, 1) = "Initial t": t = 0: Cells(4, 1) = t
Cells(3, 2) = "Initial Phi": Phi = 0: Cells(4, 2) = Phi
Cells(3, 3) = "Initial Dphi": Dphi = 1: Cells(4, 3) = Dphi

Cells(3, 4) = "delta t": h =0.01: Cells(4, 4) = h 'Time increment
Cells(5, 1) = "Trial eigen value"
Cells(6, 2) = "t"
Forj=1To5
t=0

Cells(6, 2 +j) = "Phi": Phi=0: Dphi=1
omega =2.99 +j / 20: Cells(5, 2 + j) = omega: GoTo RK
'Runge-Kutta parameters:
RK:  n=120 '# of Iteration (n*h = range of Phi; n*h=1):
Fori=0Ton
Cells(i+7,2)=t
Cells(i + 7, 2 + j) = Phi

k1 = f(t, Phi, Dphi)

11 = g(omega, t, Phi, Dphi)

k2=f(t+h/2,Phi+h*k1/2, Dphi+h*11/2)

12 =g(omega, t+h/2,Phi+h*kl/2, Dphi+h*I1/2)

k3=f(t+h /2, Phi+h*k2/2, Dphi+h*12/2)

13 =g(omega, t+h /2, Phi+h*k2 /2, Dphi+h*12/2)

k4 = f(t + h, Phi + h * k3, Dphi + h * 13)

14 = g(omega, t + h, Phi + h * k3, Dphi + h * 13)
Phi=Phi+h*(k1+2*k2+2*k3+k4)/6
Dphi=Dphi+h*(11+2*12+2*13+14) /6

t=t+h
Next i
Next j
End Sub

Function g(omega, t, Phi, Dphi)

'g=d(Dphi)/dt ' The 2nd derivative of Phi.
g =-omega ” 2 * Phi

End Function

Function f(t, Phi, Dphi)
'f=d(phi)/dt
f = Dphi
End Function

FIGURE 7.8  Finding the eigenvalue of a standing wave by the shooting method.

Figure 7.9 illustrates the solutions of the differential equation 7.26 of the first mode w,
= 1. When @,,;,; = 3.15, the solution is the closest to satisfying the boundary condition at x
= 1:y(1) = 0.

Figure 7.10 shows the solutions of the differential equation 7.28 for the second mode @, =
2n. When o,;,, = 6.28, the solution is the closest to satisty the boundary condition y(1) = 0.

For the standing wave problem, only one boundary condition at x = 0 was used. The
other boundary condition at x = 1 may be implemented by incorporating a fake poten-
tial well of V(x) = 0 for 0 < x < 1 and otherwise V,, >>1. This creates a one-dimensional
Schrodinger equation of a deep potential well.
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Standing wave by shooting method

y{x)

FIGURE 7.9 Behavior of solutions near x = 1 with w around 3.14.

Standing wave by shooting method

6.18
51623 | L
6.28

unix)

6.38

FIGURE 7.10 Behavior of solutions near x = 1 with w around 6.28.

7.3.2 Euler-Cromer Algorithm for a Particle in an Infinite Potential Well

The Euler-Cromer algorithm is a shooting method for finding the eigenvalues of a bound
state Schrodinger equation [8, 9]. Here is a brief description of the algorithm.

1) In the Schrodinger equation,

I dy()
2m  dx’

+V(x)y(x) = Ey(x), (7.29)

if the potential function is real and even: V(x) = V(-x), then the wave function will be
either even w(x) = w(—x) or odd w(x) = —w(—x).

2) For an even wave function, choose y(0) = 1 and dy(0)/dx = 0; and
For an odd wave function, choose y(0) = 0 and dy(0)/dx = 1.

3) Guess a value of E.

4) Define x,, = nAx.

5) Compute y’,..; =y +y " Ax and v, =y, +y Ax.
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6) Iterate y(x) by increasing x until y(x) diverges.
7) Change E and repeat steps 6 and 7.
8) Observe the diverting direction. Find the E-value when the direction changes.

9) Narrow the range of E-values and repeat steps 6 and 7.

Figure 7.11 lists a VBA code to perform the Euler-Cromer algorithm for a potential well
where V(x) = 0 for |x|<1 and V, otherwise where V,, may be set to a large value such as V;, =
200. The trial eigenvalues are from 1.20 to 1.24 with increments of 0.01.

Figure 7.12 shows the asymptotic behavior of wave functions with several trial eigen-
values. Due to the computational error of the Euler method, the accumulation of the error
makes wave functions diverge. In Figure 7.10, the solution of the trial eigenvalue of 1.22 has
the least diverging property, and one of the trial eigenvalues, 1.23, is the closest to y(1) = 0.
The exact eigenvalue is 12/8 = 1.233.

Sub Qbound()

Cells(1, 1) = "Time-independent Schrodinger eq."

VO =200

a=1

h=0.05

xmax = 2

Parity =1

'Change E to see divergences

Fork=1To 6
E=1.2+0.01* (k-1)
Cells(2, k+1)=E

If Parity =-1 Then '0dd parity
Phi=0 'Initial value at x =0
Dphi=1 '1st derivative

Else
Phi=1 'Even parity
Dphi =0

End If

i=0
x=0
Do Until x > xmax
x0ld = x
PhiOld = Phi

Cells(5 +1i, 1) = xOld
Cells(5 +i, k + 1) = PhiOld

x=x+h
DDphi =2 * (V(x, VO, a) - E) * Phi ' Schrodinger eq.
Dphi = Dphi + DDphi * h ' Euker-Cromer algorithm
Phi = Phi + Dphi * h
i=i+1
Loop
Next k
End Sub

Function V(x, VO, a)
If Abs(x) > a Then
V=V0
Else
V=0
End If
End Function

FIGURE 711 VBA code of Euler-Cromer algorithm applied to a potential well problem.
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Wave function in a potential well

Trial eigen \/’
values; e - —_—

1.20 &%

1.21 Y
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1.24

FIGURE 7.12 Asymptotic behavior of wave functions near the boundary with several trial
eigenvalues.

Note that the numerical value of potential height V| affects the eigenvalue. Proper
implementation of the boundary condition is required to obtain accurate eigenvalues for
the shooting method.

7.3.3 Harmonic Oscillator
Let us start with the Schrodinger equation:

2y |1
2m dx?

k*x*y (x) = Ey (x). (7.30)

Let & = ax, where a* = mk/h? to obtain

2y
de’
The exact eigenvalue 4 = 1 from the ground state energy E, = (1/2) . We solve the above
equation using the Runge-Kutta method while changing the trial value of 1. Preliminary
calculation indicates that divergence is very fast and we narrow down the range of the trial
value to 0.999, 1.000, and 1.0001. Figure 7.13 lists the VBA code for the solution of differen-
tial Equation 7.29 with given A-values.

Figure 7.14 shows that the asymptotic behavior of wave functions is observed as posi-
tively diverging if A,,;,, <1 and negatively diverging if A;,, >1. When A, = 1, the wave
function appears to be approaching zero.

The above approach does not include the boundary condition at £ = +00. One may incor-
porate the boundary conditions at ¢ = +c0, where Equation 7.31 asymptotically becomes

2m  2E

i (7.31)

+(1—€)w(®) =0 where 1 =

dz‘é@ () =0. (732)

Thus, the solution of Equation 7.32, ie., the asymptotic wave function should be
y(&)~exp(—&%/2), which is finite at & = +00. Let (&) = f(§) exp(—&%/2), then we obtain
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Sub QuantumOsci()

Cells(1, 1) = "Harmonic oscillator in quantum mechanics"

'Phi is the wave function.

' Dphi=d(Phi)/dx is the 1st derivative of Phi.

' DDphi=d(Dphi)/dx=-(lambda-x*2)*phi=0 is the 2nd derivative of Phi
'lambda = (2*E/Dirac h)*Sqrt(m/k)

'Write labels and initial values in cells:

Cells(3, 1) = "Initial x": x = 0: Cells(4, 1) =x

Cells(3, 2) = "Initial Phi": Phi = 1: Cells(4, 2) = Phi

Cells(3, 3) = "Initial Dphi": Dphi = 0: Cells(4, 3) = Dphi

Cells(3, 4) = "delta x": h = 0.04: Cells(4, 4) =h 'Position increment
Cells(6, 2) = "x"

Cells(5, 1) = "lambda"
' Change lambda 0.000, 1.000, and 1.001 to observe the behavior of phi at larger x.
Forj=0To 2
Cells(6, 3 +j) = "Phi": Phi=1: Dphi=0:x =0
If j = 0 Then lambda = 0.999: Cells(5, 3 + j) = lambda: GoTo RK
If j = 1 Then lambda = 1#: Cells(5, 3 + j) = lambda: GoTo RK
If j =2 Then lambda = 1.001: Cells(5, 3 +j) = lambda
'Runge-Kutta parameters:
RK: n =100 'Iteration # (n*h = range of Phi; n*h=5):
Fori=0Ton
Cells(i+7,2)=x
Cells(i + 7, 3 +j) = Phi

k1 = f(x, Phi, Dphi)

11 = g(lambda, x, Phi, Dphi)

k2=f(x+h/2,Phi+h*k1/2, Dphi+h*I1/2)

12 = g(lambda, x+ h / 2, Phi+h * k1 /2, Dphi+h *11/2)

k3=f(x+h/2,Phi+h*k2 /2, Dphi+h*12/2)

13 = g(lambda, x+h /2, Phi+h * k2 /2, Dphi+h * 12 / 2)

k4 = f(x + h, Phi + h * k3, Dphi + h * 13)

14 = g(lambda, x + h, Phi + h * k3, Dphi + h * I3)
Phi=Phi+h* (k1+2*k2+2*k3+k4)/6
Dphi=Dphi+h*(I1+2*12+2*I3+14) /6

x=x+h

Next i
Next j
End Sub

Function g(lambda, x, Phi, Dphi)

'g=d(Dphi)/dx ' The 2nd derivative of Phi.
g=(x"2-lambda) * Phi

End Function

Function f(x, Phi, Dphi)
'f=d(phi)/dx

f = Dphi
End Function

FIGURE 713 VBA code for calculating wave functions for different eigenvalues.

Quantum Harmonic Oscillator

Trial A:
0.599
1.000
1.001 /'

E—Eix

FIGURE 7.14  Asymptotic behavior of wave functions with trial eigenvalues.
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d’f© _,.df©) _
e R G IR (7.33)
where f(&)exp(—£/2) must vanish at & = +oo0.

Equation 7.33 is a Hermite differential equation (6.22) with 2n = 1 — 1. From Section
6.2.3, the Hermite polynomial of the zeroth order is Hy(x) = 1. Thus, f({) is expected to be
1 whenl=1.

The VBA code created for using the differential equation 7.33 is similar to the one listed
in Figure 7.12 with a different definition of Function g(lambda, x, Phi, Dphi).
In this case,

g=2 * x * Dphi - (lambda - 1) * Phi

Figure 7.15 shows the result of the shooting method. As shown when 1 >1, f(¢) tends to
exhibit a negative divergence, and when 4 <1, f(¢) tends to be a positive divergence.

For the first excited state, n = 1 or A = 3. The initial condition should be f(¢) = 0 and df(&)/
d¢ =1at ¢ =0 for an odd function. Figure 7.16 shows the result for A = 2.9, 3.0, and 3.1 for
around n = 1. Recall that the Hermite polynomial of the first order is H,(x) = 2x, and the
result shown here is consistent with H,(x).

7.3.4 Hydrogen Atom

The radial wave function R(r) of the Schrodinger equation for a hydrogen-like atom is

_hzld(rz dR(’)j ze MR(r) = ER(r) (7.34)

—k,—R(r)+
dr ‘or ) 2

Quantum Harmonic Oscillator (n=0)

100

80

&0 )l=2n+1

45

a0

&0

&0

100

E=ax

FIGURE 7.15  Asymptotic behavior of a wave function of a harmonic oscillator in the ground state.
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Quantum harmonic Oscillatior (n=1)

e Trial A:
A=2n+1 29 f.-/
n=1 3.0 / S
4 31 5 ___,.--""/
X

FIGURE 7.16  Asymptotic behavior of a wave function of a harmonic oscillator of the first excited
state.

where y is the reduced mass, k, = 1/4ne,, and ¢ is the angular momentum quantum num-
ber [5]. Let

2 2
Su |2E| and A = Zuk{e = keZZe iy (7.35)
h oh h 2|E|

So that Equation 7.34 is rewritten to

p =or where o =

1 d( ,dR(P)) | A 1 U(l+]) _
X dr[P “dp j+|:p PR }R(p) 0 (7.36)

where the particular choice of the number 1/4 for the eigenvalue term is arbitrary but con-
venient for the following development.

We incorporate the boundary conditions at p— oo with Equation 7.34. With the limit of
p— o0, Equation 7.36 is approximately

dRp) 1,
PR LR (7.37)

Let R(p) = prexp(£p/2) then

&R 1 ., 1 1 1 1 1
=+-np" exp|x-—p|+-—p'xp|Et-—plx—p'xp|Lt-p|
dp’ > p P( ZP] 4P P( ij 4P P( ZP)
Thus, R(p) = prexp(+p/2) satisfies the above equation for any n. However, since R(p) — 0
as p — o0, exp(p/2) is not allowed and n must be finite. We may look for an exact solution

of Equation 7.36 of the form R(p) = F(p)exp(-p/2) where F(p) may be a finite polynomial
function. From Equation 7.36, F(p) satisfies

&F(p) {2_1] dF(p) +[x—1 . f(€+l)}F(p) o (7.38)
p

dp*  \p dp ’
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Find the solution of Equation 7.38 in the form

F(p)=p°f(p) where f(p)=a,+a,p+a,p’ +otapta, 20, (7.39)

and s >0 for the boundary condition at p = 0. Substitute Equation 7.39 with Equation 7.38
and obtain

2 dzf(p)
dp’

+p[2(s+1)—p]‘#d(;)

o +[p(—s=D+s(s+D)—L(+1) ] f(p)=0. (7.40)

Setting p = 0 in Equation 7.40 gives s(s + 1) — (£ + 1) = 0, and s = £ for s >0. Equation 7.38
now becomes

pd;fgph[zwﬂ)_ e (p)+[x r-1]f(p)=0. (741)
P

Substituting the power series 7.39 into Equation 7.41, we obtain
(k+1)(k+2+20)ap, + { k(k+1+£)}ak =
or

k+0+1-)\
i . 7.42
e T e D (k42420 (742)

Note that the series solution 7.39 cannot be infinite for satisfying the boundary condition
when r — oco. There must be an integer k such that g, # 0 but g, =0. Thus, k+ £+ 1 -1 =
0 from the numerator of Equation 7.42, and we obtain

A=k+/l+1=nwheren=k+¢+1=1,2,3,.... (7.43)
The energy E can be obtained from the definition 7.35,

2rz2 2
ke f i wheren=1,2,3,...;and n > /. (7.42)
a n

E=—

Note: Equation 7.41 with 4 = n is an associated Laguerre differential equation (6.38), and
the polynomial solutions are the associated Laguerre polynomials. The radial wave func-

tion is of the form e 2 p' 23} (p). Refer to advanced books on quantum physics [10] for

explicit radial functions.
For the ground state, n=1and £ =0, Equation 7.41 has the eigenvalue 1 = n = 1. Figure 7.15
lists the VBA code to demonstrate the behavior of the eigenfunction of Equation 7.41 with
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Sub Hatom()
Cells(1, 1) = "Ground state of H-atom"
'Phi is the wave function.
'Dphi=d(Phi)/dt is the 1st derivative of Phi.
'DDphi=d(Dphi)/dt=(1-2 / r - 1) * Dphi + (1-lambda) * Phi / r is the 2nd derivative of Phi
'Write labels and initial values in cells:
Cells(3, 1) = "Initial r": r = 0: Cells(4, 1) = r
Cells(3, 2) = "Initial Phi": Phi = 0: Cells(4, 2) = Phi
Cells(3, 3) = "Initial Dphi": Dphi = -1: Cells(4, 3) = Dphi
Cells(3, 4) ="dr": h =0.1: Cells(4,4) =h 'Radial increment
Cells(6, 2) ="r"
Cells(5, 1) = "lambda"
'Change lambda value around the true eigen value (lambda=1)
Forj=1To 3
r=0:Cells(7,2)=r
Cells(6, 2 + j) = "Phi": Phi = 1: Dphi = 0
If j =1 Then lambda = 0.99: Cells(5, 2 + j) = lambda: GoTo RK
If j =2 Then lambda = 1: Cells(5, 2 + j) = lambda: GoTo RK
If j =3 Then lambda = 1.01: Cells(5, 2 + j) = lambda: GoTo RK
'Runge-Kutta parameters:
RK:  maxN =100 ' Iteration # (n*h = range of Phi; n*h=5):
Fori=1To maxN
r=r+h
Cells(i+7,2)=r
Cells(i + 6, 2 +j) = Phi

k1 = f(lambda, r, Phi, Dphi)

11 = g(lambda, r, Phi, Dphi)

k2 = f(lambda, r + h / 2, Phi+h * k1 /2, Dphi+h *11/2)

12 =g(lambda, r+h /2, Phi+h *k1 /2, Dphi+h *11/2)

k3 = f(lambda, r + h /2, Phi+h * k2 /2, Dphi+h *12 / 2)

13 =g(lambda, r + h /2, Phi+h * k2 /2, Dphi+h * 12/ 2)

k4 = f(lambda, r + h, Phi+ h * k3, Dphi + h * I3)

14 = g(lambda, r + h, Phi + h * k3, Dphi + h * I3)
Phi=Phi+h*(k1+2*k2+2*k3+kd)/6
Dphi=Dphi+h*(I11+2*12+2*I3+14)/ 6

Next i
Next j
End Sub

Function g(lambda, r, Phi, Dphi)

'g=d(Dphi)/dt ' The 2nd derivative of Phi.
g=(1-2/r)*Dphi+ (1 -lambda) * Phi /r

End Function

Function f(lambda, r, Phi, Dphi)
‘f=d(phi)/dt
f = Dphi
End Function

FIGURE 717 VBA code for seeking eigenvalue E by the shooting method.

a few A-values around A = 1. The eigenfunction of Equation 7.41 is constant, f(p) = a, = 1 if
A = 1. The VBA code calculates a, = 1.

Figure 7.18 shows the computed behaviors of the radial wave functions near A =1 (n =
1 and ¢ = 0). Because the Laguerre polynomial of the zero-th order is 1, the solution f(p)
is expected to be 1 when 4 = 1. When # is smaller than 1, f(p) exhibits a positive deviation
from the constant a, = 1, and when n is larger than 1, f(p) exhibits a negative deviation
from the constant.

Figure 7.19 shows the computed behaviors of the radial wave functions near A =2 (n =2
and £ = 0). The solution f(p) is expected to be linear when 4 = 1.



Wave Packets and Wave Functions ® 165

Ground state wave function of H-atom bu shooting method

b
por
FIGURE 718 Asymptotic behavior of the radial wave function (n = 1).
First excited state wave function of H-atem by shooting method
Trial A=n: g
! 1.90 3

2.00
2.10

| \
p=or

FIGURE 7.19  Asymptotic behavior of the radial wave function (1 = 1).

SUGGESTED FURTHER STUDY

For learning advanced computational algorithms to solve boundary value problems, there
are many lecture notes [11-13] and books [14, 15]. For general knowledge of computational
physics, one needs to recommend creating and running examples of advanced computa-
tional books [6, 16-18].
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CHAPTER 8

Interdisciplinary Topics

I NTERDISCIPLINARY TOPICS ARE ALWAYS bringing opportunities to be aware of how phys-
ics and mathematics are applied in other fields. There are two topics selected from poly-
mer and population dynamics:

1) Polymers give us interesting topics in conjunction with entropy change and self-
avoiding random walks. We apply a model similar to the examples discussed in
Chapter 5 to demonstrate the entropic elasticity of polymers. A model to calculate
the polymer length is self-avoiding random walks. We demonstrate it by placing a
polymer chain in a two-dimensional square lattice.

2) There are many natural phenomena which can be modeled with differential equa-
tions. Differential equations to describe population change exhibit very curious pre-
dictions. Numerical computation and visualization of several models are considered.
The dynamics of biological systems where species interact as prey and predator are
also portrayed.

8.1 POLYMERS
8.1.1 Entropic Elasticity

The elasticity of rubber is caused by the entropy change [1]. Let the number of possible
configurations of monomers in a polymer chain be £. Once £ is found, entropy, which is
given by S = kyln€2 from the description in Section 5.1, can be calculated where kj is the
Boltzmann constant. Figure 8.1 depicts two different states of a polymer chain. Let 2 = £2,
when the polymer is unstretched and Q = ©, when the polymer is stretched. As we cal-
culate below, because €2, > ©,, S, > S, and S, — S, <0. From a stretched state, the polymer
tends to return to an unstretched state where the polymer has larger entropy, producing
the restoring elastic force.

Consider a one-dimensional polymer chain that is made of N monomers. The joints
between the two monomers freely point to the right or left. Figure 8.2 depicts the polymer
chain model. This model is very similar to the one-dimensional random walk.
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FIGURE 8.1 Unstretched and stretched states of the polymer.

FIGURE 8.2 A one-dimensional polymer chain.

Suppose the length of monomers is a, the length of the polymer chain is x, the number
of right-pointing monomers is Ny, and the number of left-pointing monomers is N;, then

the length of the polymer chain is given by

x:(NR_NL)a Whel‘eN=NR+NL,

and the number of possible orientations of monomers to yield x is

| !
Q) = NI _ N! '
Ni !Ny, Na+x | Na—x |
2a )\ 2a )
whereweusedNR=Na+xandNL=Na+x.
2a 2a

Using the Stirling formula, entropy is

Na

S =k, InQ(x) = Nk; [ln2—;(1+len(l+xj—l(l—

(8.1)

8.2)
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and the tension in the polymer chain is given by

X:(GFJ =_T(65j _ kT 1+(x/Na)
ox )y ox ). a 1-(x/Na)

(8.4)

:kB—T[ln{H(x/Na)}—ln{l—(x/Na)}].
a

Using the Taylor expansions, In(1£&)2 = £& —%Eﬁ + % £ - i €, £..., we obtain

3
ax z{x_’_l(xj +O(x5)]. 8.5)
kgT Na 3\ Na
Therefore, tension X is proportional to the length of the polymer to the first order, fol-
lowing Hooke’s law. Figure 8.3 is a screenshot of the numerical calculation including the
third-order term.
Figure 8.4 shows the length dependence of tension [aX/k;T], where the horizontal axis
is the stretched length [x/Na]. When the stretched length is short, Hooke’s law follows the

first order. As the stretched length becomes longer, higher-order nonlinear terms appear
in the entropic elasticity.

8.1.2 Polymer Length and Self-Avoiding Walk

Assume that a polymer chain is placed on an upstretched two-dimensional surface. How
can we calculate the length of the two-dimensional polymer chain? Assume there are N
monomers in a polymer chain and the joints between monomers are freely pointing and
there is no correlation between the two monomers. We use a square lattice model where
the lattice constant is the monomer length [2]. In this model, each monomer can take four
different directions (up, down, right, and left), but two monomers cannot take the same
lattice segment. Starting with the monomer at one end placed on the square lattice, the
second monomer can be randomly placed, avoiding the first monomer, and so forth. This

4 ~ | 8 | ¢ | B | E | F | & |
1 |Rubber elasticity )

2 Tension=aX/k,T

3 Strech  Tension Linear—

4 0 o o

5 005 0.100083 0.1 -

6 .1 0.200671 0.2 ~ Calculating linear

7| ¢ 5 0.302281 0.3 approximation=2x{Na |
8 | | *oN | 0.405465 0.4

9 | 0.25 0.510826 0.5

10 0.3 0.6159039 0.6

FIGURE 8.3 Calculation of tension.
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Entropic elasticity of polymer
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o 0.1 0.2 0.3 04 0.5 0.6 o7 08 0.9 E

Stretched distance (x/Na)

Tension (aX/k,T)

FIGURE 8.4 Entropic elasticity.

configuration is equivalent to the self-avoiding walk on the two-dimensional square lattice
[3]. Figure 8.5 lists the VBA code to place a polymer of 120 monomers of unit length to a
square lattice of unit lattice constant.

Figure 8.6 shows a typical result of 120 consecutive self-avoiding walks to represent 120
monomers.

Note: Although there are more efficient computation algorithms for self-avoiding random
walks [4], personal computers today may be fast enough to apply the simple algorithm we
applied here.

8.2 POPULATION DYNAMICS

Population dynamics is a description of the size and age composition of a group of indi-
viduals of a single species and how the number and age composition of individuals in a
population change over time. Differential equations are used to model the dynamics with
pre-determined conditions [5]. It is interesting to get an idea of how several factors are to
be implemented in a basic differential equation.

8.2.1 Malthus’s Law of Population and Logistic Equation
Imagine a bacterial growth. If the bacteria do not die, the equation to describe the bacterial
growth is given by

N _ N (8.6)
dt
where 7 is the growth (birth) rate. The radioactive decay has the same differential equation
with the negative coefficient n.
Malthus’s law includes the death rate, which states that the time dependence of the pop-

ulation of a species can be given by a differential equation,
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Sub SAW2D()
Cells(1, 1) = "Self-avoiding walk (SAW) on the two-dimensional square lattice."
GridSize = 21
WalkLength = 120
Dim grid(GridSize, GridSize) As Integer
Dim pathX(WalkLength) As Integer
Dim pathY(WalkLength) As Integer
For i =0 To WalkLength

pathX(i) =0
pathY(i) =0
Next i

'Initialize the grid and starting position
For x = 1 To GridSize
For Y =1 To GridSize
grid(x,Y)=0
Next Y
Next x
'Set the origin (the mid-point of the lattice) as the starting point:
x = (GridSize + 1) / 2
Y = (GridSize +1) / 2
grid(x,Y) =1
pathX(0) = x
pathY(0) =Y
' Directions: right (1,0), left (-1,0), down (0,1), up (0, -1)
Dim dx(3) As Integer
Dim dy(3) As Integer
dx(0) = 1: dy(0) =0
dx(1) = -1: dy(1) =0
dx(2) =0:dy(2) =1
dx(3) =0:dy(3) = -1
ii=0
Fori=1To WalkLength
ii=ii+1

'Footprinted

'Check for possible moves
Dim possibleMoves(3) As Integer
Count=0
Fork=0To3
newX = x + dx(k)
newY =Y + dy(k)
If newX > 0 And newX <= GridSize And newY > 0 And newY <= GridSize Then
If grid(newX, newY) = 0 Then
possibleMoves(Count) = k
Count = Count + 1
End If
End If
Next k
'If there are no possible moves, exit the loop
If Count = 0 Then Exit For
'Choose a random move from the possible moves
d = possibleMoves(Int(Rnd * Count))

x = x + dx(d)
Y=Y +dy(d)

'Mark the new position on the grid and add to the path
grid(x,Y)=1
pathX(i) = x
pathY(i) =Y

Next i
Cells(2, 1) = ii
Fori=0Toii

If pathX(i) <> 0 Then
Cells(i + 4, 1) = i: Cells(i + 4, 2) = pathX(i): Cells(i + 4, 3) = pathY(i)

Else
Exit For
End If
Next i
R = Sqr((pathX(ii) - pathX(0)) A 2 + (pathY(ii) - pathY(0)) » 2)
Cells(3,1) =R

End Sub

FIGURE 8.5 VBA code of self-avoiding walks on a square lattice.
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FIGURE 8.6 A polymer chain on a square lattice.

aN =nN-mN =¢eN (8.7)
dt
where 7 is the birth rate, m is the death rate, and ¢ = n — m is called the Malthus coefficient
[6]. The solution of Equation 8.7 is
N(t) = Nyexp(et) where Nj is the population at £ = 0.
The solution indicates the exponential increase when ¢ >0, and the exponential decrease
when ¢ <0. If € = 0, there is no change in the population.
More realistically, increasing and/or decreasing rates of the population are not steady
because the birth and death rates are not constant over time. Logistic equation models
growth and saturation of population,

”Zj =(e-AN)N. (8.8)

where & >0 is called the Malthus coeflicient and A is called the crowdedness constant [7].
The solution of Equation 8.8 can be obtained in the following manner. Let

N
G(N)= _dx where N, =N at t =0. 8.9
Ny x(€—2Ax)

Evaluating the integral of G(N) to obtain

G(N):l{ln(Nj—lnES_lNﬂzllnE N S_XNOJ. (8.10)
€ N, e—AN, e \e—AN N,

Using Equation 8.8, Equation 8.9 yields

N dx t
N, (dx/dt) Ji,

G(N) = dt =t —t,. (8.11)
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Combining Equations 8.10 and 8.11,

N &-AN,
ot 20 exple(t—t,)].
sN N, Pl
Thus,
N N, Ny
= e(t—ty)]=C e(t—t here C=———.
AN san, Pl wl=Ceplalt—to)Tw e~ AN,

Solving Equation 8.12 for N(t), we obtain

eCexple(t—t,)] &N, e™
1+ACexple(t—t,)]  &+ANy[e* ™ —1]

N(t) =

m 173

(8.12)

(8.13)

Assuming appropriate numerical values of N, ¢ , and 4, one may draw a graph of N(¥).
Alternatively, one may numerically solve the differential Equation 8.8. Figure 8.7 shows the
VBA code to solve Equation 8.8 by applying the Runge-Kutta method (Appendix A3). In
this code, € = 3,1 = 0.1, and N, = 1. Figure 8.8 shows its result where ¢ = 0 to 5 with incre-
ments of 0.05. The graph indicates a growth followed by saturation. Such a curve is called

a sigmoid curve.

Sub LogisticEq()
Cells(1, 1) = "Population dynamics by Logistic equation"
'Parameters in the Logistic eq:
Cells(3, 1) = "Malthus": epsilon = 3: Cells(4, 1) = epsilon 'Malthus coefficient
Cells(3, 2) = "Crowdedness": lambda = 0.1: Cells(4, 2) = lambda 'Crowdedness constant
'Writing labels and initial value in cells:
Cells(3, 3) = "Initial t": t = 0: Cells(4, 3) = t
Cells(3, 4) = "delta t": h = 0.05: Cells(4, 4) =h
Cells(3, 5) = "Initial Population": population = 1: Cells(4, 5) = population
'Runge-Kutta method:
n=100" Iteration #

Cells(6, 2) = "t"
Cells(6, 3) = "Population"
Fori=0Ton
Cells(7 +i,2) =t
Cells(7 +1, 3) = population
L1 = g(epsilon, lambda, t, population)
L2 = g(epsilon, lambda, t + h * L1 / 2, population + h * L1/ 2)
L3 = g(epsilon, lambda, t + h * L2 / 2, population + h * L2 / 2)
L4 = g(epsilon, lambda, t + h * L3, population + h * L3)
t=t+h
population = population+h * (L1+2* L2+2*13+14)/6
Next i
End Sub

Function g(epsilon, lambda, t, population)
'd(Population)/dt=g
g = (epsilon - lambda * population) * population
End Function

FIGURE 8.7 VBA code for solving the Logistic equation.
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Population dynamics by Logistic eq.
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FIGURE 8.8 Population N(f) from the Logistic equation.

8.2.2 Lotka-Volterra Equations

The Lotka-Volterra equations are a pair of equations used to describe the dynamics of
biological systems where two species interact as prey (N,) and predator (N,) [8]. The Lotka-
Volterra equation modified Equation 8.8 to make a pair of equations for properly consider-
ing the interaction of two species.

ANy 2(81 —XINZ)N1 and

dt (8.14&8.15)

dz\f = (& —2.N,)N,.

The analytical solution of the pair of differential equations can be found in the following
way:

(1) Calculate [Equation 8.14e4,]+[ Equation 8.15¢4,] to obtain

dN dN
7\42 dit-l—i—}\’ldi;:}\lzglNl _7\4182N2. (8.16)

(2) Calculate [Equation 8.14e¢,/N,]+ [Equation 8.15¢¢,/N,] to obtain

dN, /dt dN, [ dt
€,y li]] + € ]i]z = _7\¢281N1 + 7\4182N2. (817)
(3) From Equations 8.16 and 8.17,
6, le/dt+gl sz/alt:k2 dN1+7Ll dN, (8.18)

N, N, dt dr
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(4) Calculate the integrals of Equation 8.18 to obtain

€, InN, +¢,InN, —A,N, + N, = constant, and therefore,
N2 N 2NN — ¢ (8.19)

It is difficult to make a graph of N,(f) and N,(f) from the analytical solution 8.19 to observe
N, (t) and N,(t), but one may numerically solve the pair of differential equations 8.14 and
8.15. Figure 8.9 lists the VBA code to solve the pair of equations using the Runge-Kutta
method. In this code, ¢, =¢,=4,=4,=1land N,=1and N, =2 att=0.

Figure 8.10 shows the time dependence of N, and N,, and the population of predator vs
the population of prey. Note that the vertical scales are different. The computed correlation

Sub LotkaVolterraEq()

Cells(1, 1) = "Population dynamics between predator and prey by Lotka -Volterra equation”
'N1= Population of prey and N2=Population of predator.

'Parameters in the Lotka-Volterra eq:

Cells(3, 1) = "Malthus1": epsilon1 = 1: Cells(4, 1) = epsilon 1 'Malthus coefficient
Cells(3, 2) = "Crowdedness1": lambdal = 2: Cells(4, 2) = lambdal 'Crowdedness constant
Cells(3, 3) = "Malthus2": epsilon2 = 1: Cells(4, 3) = epsilon 2 'Malthus coefficient

Cells(3, 4) = "Crowdedness2": lambda2 = 1: Cells(4, 4) = epsilon2 'Crowdedness constant
'Writing labels and initial value in cells:
Cells(3, 5) = "Initial N1": N1 = 1: Cells(4, 5) = N1 'Prey
Cells(3, 6) = "Initial N2": N2 = 2: Cells(4, 6) = N2 'Predator
Cells(3, 7) = "Initial t": t = 0: Cells(4, 7) = t
Cells(3, 8) = "delta t": h = 0.02: Cells(4, 8) =h
'Runge-Kutta method:
n =500 " Iteration #
Cells(6, 2) = "t"
Cells(6, 3) = "Prey"
Cells(6, 4) = "Predator"
Fori=0Ton
Cells(7 +i,2) =t
Cells(7 +1i,3) = N1
Cells(7 +i,4) = N2
L1 = g(epsilonl, lambdal, epsilon2, lambda2, t, N1, N2)
F1 = f(epsilon1, lambdal, epsilon2, lambda2, t, N1, N2)
L2 = g(epsilon1, lambdal, epsilon2, lambda2,t+h /2, N1+h*L1/2,N2+h *F1/2)
F2 =f(epsilon1, lambdal, epsilon2, lambda2,t+h /2, N1+h*L1/2,N2+h *F1/2)
L3 = g(epsilon1, lambdal, epsilon2, lambda2,t+h /2, N1+h*12/2,N2+h *F2/2)
F3 =f(epsilon1, lambdal, epsilon2, lambda2,t+h /2, N1+h*L2/2,N2+h *F2/2)
L4 = g(epsilonl, lambdal, epsilon2, lambda2, t + h, N1 + h * L3, N2 + h * F3)
F4 = f(epsilon1, lambdal, epsilon2, lambda2, t + h, N1 + h * L3, N2 + h * F3)
t=t+h
NI=Nl+h*(L1+2*12+2*13+14)/6
N2=N2+h*(FL+2*F2+2*F3+F4)/6
Next i
End Sub

Function g(epsilon1, lambdal, epsilon2, lambda2, t, N1, N2)
'dN1/dt=g

g =(epsilon 1 -lambdal * N2) * N1
End Function

Function f(epsilon1, lambda1l, epsilon2, lambda2, t, N1, N2)
'dN2/dt=f
f = -(epsilon2 - lambda2 * N1) * N2
End Function

FIGURE 8.9 VBA code to solve the Lotka-Volterra equation.
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FIGURE 8.10 Prey-predator relationship described by the Lotka-Volterra equation.

between N, and N, follows the nature where the change (increase/decrease) in the popula-
tion of predators tracks the change (increase/decrease) in the population of prey.

8.2.3 Population Dynamics Including Reproduction

Volterra made postulates to represent population explosion with reproduction:
1) The ratios of males and females to the total population do not change over time:

Nmule

=o and

N ‘emalte
g\l “ =B are both constants (8.20)

where N is the total population;

2) The number of encounters with the opposite sex is proportional to

Nmale 'Nfemale = aBNZ; (821)

3) There are n encounters per unit time and m births from the encounter, and assume
m/n is constant in time;

4) With the above assumptions, the total number of births is given by

ma

jN 2 =)AN? where K and A are constants; and (8.22)
n

KOLB(
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5) If there is no birth, the population satisfies

aN =—gN where £>0 (8.23)

dt

to implement death.
Combining Equations 8.20 with 8.23, the population change is given by

‘3;] =—eN+AN? =(—e+AN)N =—(¢—AN)N. (8.24)

Equation 8.24 is the same as the Logistic equation (8.8) except for its negative sign.
The solution of Equation 8.24 is

N, A

N({t)=——°  where R=N, . 8.25
) (1-R)e” +R ‘¢ (8.25)

There are three possibilities for the dynamics of Equation 8.25, depending on the h-value:

(i) R=l,i.e.,, e-AN,=0 at t=0. N=N,: no change in N;
(i) R<1,i.e., e-AN,>0 at t=0. As t—00, N—oo: declining population; and

(iii) R>1,i.e.,e-AN,<0at t=0. As t—t_, (1/&)In[AN,/(AN,—¢), N—oo: population explosion.

One may interpret the above conditions in a different way. From the differential
equation 8.24,

(@) If e = AN,= 0 at t = 0, N may not change where the initial population is Ny - R =0
because R = N \/e;

(ii) If e — AN,>0 at t = 0, N may increase where the initial population is N; - R = N(e —
A)/e>0; and

(iii)’ If € — AN, <0 at t = 0, N may decrease where the initial population is N, - R = N(e —
M/e <0;

Figure 8.11 lists the VBA code to analyze Equation 8.21 with the Runge-Kutta method
for visualizing the population change on the conditions (i)’ to (iii)’. Note that Nj is the ini-
tial population only if 1 = €. This code is obtained using the VBA code listed in Figure 8.7,
where € = 1, 4 = 1, and N, = 1. The three possible R-values are selected to set the initial
populations by N — R to satisty the above three conditions: 1 for case (i); and —0.006 for
case (ii), and 0.1 for case (iii)’.

Figure 8.12 shows the three possibilities of population change with reproduction. The
numerical value of R = AN/e = 1 is the threshold. If the reproduction rate 4 rate is more
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Sub Reproduction()
Cells(1, 1) = "Population dynamics including reproduction by Lotka -Volterra eq"
'N = Population.
'Parameters in the Lotka-Volterra eq:

Cells(3, 1) = "Epsilon": epsilon = 1: Cells(4, 1) = epsilon

Cells(3, 2) = "Lambda": lambda = 1: Cells(4, 2) = lam bda

NO=1 'Initial N=NO when R=1"
'Writing labels and initial value in cells:

Cells(3, 7) = "Initial t": t = 0: Cells(4, 7) = t

Cells(3, 8) = "delta t": delt = 0.05: Cells(4, 8) = delt

Cells(3, 6) ="N at t=0"

Cells(7,2) = "t"
Cells(5, 1) = "Population dynamics"
Forj=-1To1l 'Creating 3 different R-values

Cells(5,2 +j+2)="R"
Cells(7,2 +j+2)="N"
Ifj=1ThenR=0.1* j: GoTo Population
If j=0Then R = j: GoTo Population
Ifj=-1Then R =j * 0.006
Population:
N =NO - R: Cells(4, 6) =N
Cells(6,2+j+2) =R
t=0 'Resetting initial time.
'Runge-Kutta method:
NN =90 Iteration #
Fori=0To NN
Cells(8 +i,2) =t
Cells(8 +i,2+j+2)=N
L1 = g(epsilon, lambda, t, N)
L2 = g(epsilon, lambda, t + delt /2, N + delt * L1/ 2)
L3 = g(epsilon, lambda, t + delt /2, N + delt * L2 / 2)
L4 = g(epsilon, lambda, t + delt, N + delt * L3)
N=N+delt*(L1+2*L2+2*13+14)/6
t=t+delt
Next i
Next j
End Sub

Function g(epsilon, lambda, t, N)
'dN/dt=g
g = -(epsilon - lambda * N) * N
End Function

FIGURE 8.11  VBA code for computing population change with reproduction.
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£—AN,>0 ' . -

Time

FIGURE 8.12  Population dynamics with reproduction.
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than the death rate ¢, or R >1, the population explodes. On the other hand, if the reproduc-
tion rate A rate is less than the death rate ¢, or R <1, the population decreases. These days,
many countries are facing the latter case.

8.2.4 Population Dynamics with Birth, Death at Birth, and Reproduction

In the above argument, the assumption (3): There are n encounters per unit time and m
births from the encounter and assume m/n is constant in time. Incorporating death at
birth in population dynamics involves adjusting the model described in Section 8.2.3 to
account for a portion of births that do not survive. For including death at birth, we may
replace m with m — pN where p is a proportional constant [9]. Equation 8.22 becomes

KOLB(m_pNjNZ =AN?-KapP N?, (8.26)
n n
and Equation 8.24 becomes
d—Nz[—H(x—u)N—yONZ]Nz—(aN2—bN—c)N (8.27)
dt

where y, = Kafip/n, and c =€, b = (A — ), and a = y,. Suppose the quadrilateral equation
aN? — bN + ¢ = 0 has two real roots p and q (p > g > 0), Equation 8.27 becomes

b+b* —4a

dN ——a(N—p)(N—q)N where p,q=-——

C
—= dp>qg. 8.28
dt andp=>4q (8.28)

The solution of Equation 8.28 can be given by

cavar [ NY [ N-p "(N-q 7P_ (8.29)
Ny No—p No—q

From Equation 8.28, one notices dN/dt behaves difterently with different initial population
N,. Let

‘Zj =—af (N)N where f(N)=(N-p)(N-q)N and g < p. (8.30)

Figure 8.13(a) depicts a function f(N). From the figure,

1) If N>p, dN/dt<0 and N(t) decreases;

2) If N=p, dN/dt=0 and N(f) does not change;

3) If g<N<p, dN/dt>0 and N(f) increases;

4) If N=g, dN/dt=0 and N(t) does not change; and
5) If 0<N<gq, dN/dt<0 and N(f) decreases.
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(a) qm) (o) g{n)

N : N
© g P o| n \/ p
FIGURE 8.13  Functions f(N) and g(N).
TABLE 8.1 Population dynamics with different conditions of birth and death, and reproduction
N, AN) dN/dt g(N) d*N/dt* Behavior of N(t)
N, >p + - + - N(t) decreases to asymptotically approach N = p.
Ny=p 0 N(t) remains the same.
r, <N, - + + + N(t) increases to asymptotically approach N = p.
<p
q <N, - + - - Although N(t) increases to asymptotically approach
<r, N = p, the curve is sigmoid.
Ny=q 0 0 - 0 N(t) remains the same.
r <N, + - - + N(t) increases to asymptotically approach N = 0. At
<q N =r,, there is an inflexion.
0<N, + - + - N(t) increases to N = 0 without any inflexion.
<r

In order to analyze the behavior more precisely, we examine d>N/dt>.

d’N _d

d?  dr

dN )\ ) dN
(de——a(3N —2(p+q)N+pq)?

(8.31)
= —ag(N)CZ;] =—aNf(N)g(N)

where g(N) = 3N? - 2(p + )N + pq. Figure 8.13(b) depicts a function g(N). Because g(p) >0,
g(g) <0, and g(0) >0, g(N) has two roots, r, and r,, such that 0<r,<g<r,<p.

Table 8.1 shows the possible cases of N(f) according to the range of initial N.

Figure 8.14 shows the five cases where p = 2 and g = 1. For the given p and q values, r, =
0.427 and r, = 1.577. The population is stable when the initial population is around p = 2
while it is sensitive to the initial population around g. The Runge-Kutta-based VBA code
to generate the outcome is similar to the one in Figure 8.10 with the following function
declaration from Equation 8.28.
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Population dynamics with birth, deat at hirth, and reproductionChart Title

Ng<p p=2.0 |

r<Ng<p ‘ / .
1 T~ ‘ Inflexion at N=r,
| a<Ne<r, | /
_._._._._._._'_._____.—-—'—'_,_._'_ .

Population

Time

FIGURE 8.14 Population dynamics with birth, death at birth, and reproduction.
Function g(p, g, t, N)
'dN/dt=g¢g
g=-(N-p)*(N-g)*N

End Function

SUGGESTED FURTHER STUDY

The Galton-Watson process models family names as patrilineal (passed from father to
son), while offspring are randomly either male or female, and names become extinct if
the family name line dies out (holders of the family name die without male descendants)
[10, 11]. This model may also be applicable to the change in the number of neutrons in a
nuclear fission chain reaction. A neutron collides with a nucleus with a certain probability
to produce a random number of neutrons.

Nonlinear equations exhibit many interesting phenomena around us. In particular, the
Logistic equation exhibits chaotic behaviors [12]. For studying general concepts of nonlin-
ear oscillations, refer to [13].
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Appendix

S OME DETAILS NOT EXPLAINED are collected in this appendix.

A.1 USEFUL FEATURES OF EXCEL

A.1.1 AutoFill

AutoFill is a useful Excel feature for scientific calculations. With this feature, iterative cal-
culations can be carried out without VBA programming. Here is a simple example that
enters integer 0, 1, 2, 3, .... in Column A (Figure A.1).

(1) Input 0 in Cell A1.

(2) Go to Cell A2 and enter =A1+1 and press <Enter>. The value in Cell A2 is calcu-
lated to be 1.

(3) Place the cursor in Cell A2 and hit <Enter>. The Cell is emphasized.

(4) Click on the fill handle (a small solid square at the lower right corner). The cursor
becomes a plus sign (+). While pressing the right mouse button, drag the cursor to
cells below in column A until reaching the desired integer value.

Note: There is a quicker method when a formula is involved. Provided there is data in a
column adjacent to the one with the formula, all that is required is to right double-click the
fill handle and the formula will automatically be copied to the below columns [1].

4 m Enter O AmEm
1 0 In Cell A1 ; g
T -~
2 S 3
T 4
2| Enter =A1+1 ; E |
' ; 6
5 inCell A2 | =
_? 8 Drag [+]toa
=l G .
8 0] desired Row
= 11 o
12 i’ 1
13 S
14

FIGURE A.1  AutoFill feature.
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FIGURE A.2 Add-ins options screen.

A.1.2 Data Analysis

Because Excel’s default setting is not for scientific computation, we need to add data analy-
sis tools in order to add the Fourier transform option and other useful scientific calcula-
tion tools [2]. From the [File] menu, select [Options] to display the “Excel option”
screen. Click on [Add-Ins] to display the following screen (Figure A.2).

Next, click on [Go] to display available add-ins, and then check [Analysis ToolPak],
[Analysis ToolPak-VBA],and [Solver Add-In] (Figure A.3).

Remark: [Solver] is an optimization (maximizing or minimizing) routine used for
applications such as linear programming. There are many scientific problems that can be
computed using this feature. It would be better to install it on your computer.

A.1.3 Excel Macro (VBA)

Excel macro is a visual basic programing environment. Those who are interested in
Excel macro, refer to other books [2, 3]. Take the following steps to enable Excel’s macro
capability:

(1) Goto [Trust Center] (Figure A.4).

(2) From [Option], go to [Trust Center], and click on [Trust Center Settings...] of [Excel
Options] in [Microsoft Excel Trust Center].

(3) Select [Macro Settings]and check [Enable All Macro (not recom-
mended; potentially dangerous code can run)] (Figure A.5). Click
[OK] to complete the setting.

(4) In the pulldown menu, click on [View] and click on [Macros] to select [View
Macros] and create a macro (visual basic) program (Figure A.6).
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FIGURE A.3 Available add-ins.

After entering a macro name, create a source code using a built-in editor (Figure A.7).
Alternatively, use MS WORD or a text-editor such as “Notepad++” to write a code and
paste it to the Macro editor. When the created VBA code needs to be reviewed or edited,

click on [Edit].

A.1.4 lterative Calculation

From the [F11e] menu, select [opt ions] to display the [EXCEL Options] screen. Click
on [Formulas] to display the following screen. Figure A.8 shows the screenshot of this

procedure.

A.2 EULER’'S METHOD

Consider a one-dimensional motion. From the definition of the derivative of, e.g., the posi-

tion x (f) and the acceleration a(f)

lim x(t +At)—x(t) _ dx(t) and lim v(t+ At)—v(t) _ dv(t) _
At dt

At—0 At dt At—0

a(t). (A1)
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Trusted add-in Catalo: Dizable all macros except digitally signed macros

Add-ins © Enable all macros (not recommended; potentially dangeraus cade can run)
ActiveX Settings Developer Macya Settings

B Trust access to the VBA project object model

Protected View

Message Ba
External Conter
File Block Setting
Frivacy Optior

Form-based Sign-

(o].8 | | Zancel

FIGURE A.5 Macro settings.
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Macro
Macro name:
| 2
Enter your macro
name and click
on [Create]
Macros in: |AI§0penWorkbuoks |£|

Description

Run

Step Into

Delete

Options...

FIGURE A.6  Creating Macro (VBA) code.

#1Microsoft Visual Basic for Applications - [Module1 (Code)]
% File Edit View |nsert Format Debug Run Tools Add-lns Window Help
JEm-a AM9C » na(BSY - @04 Coll B
il et
Sub Test )
& A atpubacn xis (ATPVEL Eed Sub
= ¥§ Sobver [SOLVER.NLAK |
= B vmnkroject (Bookl)
=75 Mirosaft Excel Ok
‘Snaat] (Sheetl
Thewarkbook
- 5'”%"::‘"&1 H
85 s s Write your
S X source code
!ﬁw Hodle -]
Alphabetc  Catagenned
e w— here.
=17 «

5

FIGURE A.7 Macro editor.

Utilizing Equation A.1, the Euler method numerically solves the differential equations
such as the equation of motion, F = ma, by successively calculating the position x(t + At)
and velocity v(t + At) at time ¢ + At using the position x(f) and the velocity v(f) at time ¢ and

the derivatives dx/dt and dv/dt at time t:
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General . [ 111 Change options related to formula calculation, performance, and A
— —}& error handling.
Calculation options
Data
Proofing ‘Workbook Cal_culation@ y " | Enable jterative calculation
Fo B cutoumtiz ) 4 I". Magimum lterations; | 100
() Automatic except for data \
Language tables /_.f' I". Maximum Change: 0.001
i ) Manual / |
Accessibility L~ s \
ey’ Check this box to enable
customizs  jterative calculation. Also
ikt determined Max imum i
M| iterations,e.g.,
Trust Cen :
10000 and Maximum es
\ change,e.g.,, 0.000001. ,
-- . B Enable background errar checking | | =
| i =2 i
Ok | Cancel
FIGURE A.8 Enable iterative calculation.
dx
x(t+At) =x(t)+ % At = x(t) +v(t)At, (A.2)
t
dv dv
v(t+At)=v(t)+—| -At =v(t)+a(t)At because —| =g. and (A.3)
dt |, dt|,

With the initial condition of the position and the velocity, x, and v,, and the time inter-
val, e.g., At = 0.01 sec, the Euler method generates the position of the trajectory using
Equations A.2 and A.3. The Euler method can be carried out on a spreadsheet with the
AutoFill feature.

This method is applicable when a motion is “slow and smooth in time” or “under a
constant acceleration” such as projectile motions. However, if the motion is under a large
change in acceleration such as harmonic oscillations, the Euler method may cause a large
computational error.

A.3 THE RUNGE-KUTTA METHOD

Another approach to solving the equation of motion, called the Runge-Kutta method, is a
better choice [2, 3]. Below is the algorithm of the fourth-order Runge-Kutta method.

First-order differential equation: LZ = f(t,x)

1) Define the size of time increment: ¢,,, = t; + h, where h is the time increment and i =
0,1,2,...,N.
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2) Calculate the following K-values using given ¢ = ¢, and x = x;.

Klzf(t)x)
sl L HE
Kz—f(t+2, X+ 5 ) (A4)
h hK
K3=f(t+5, X+ 22)

K,=f(t+h, x+hK;).

3) Calculate the next x-value: x,,; = x; + Ax at t = t,,;, where the position increment is a
weighted average of the K-values, i.e., Ax = h(K, + 2K, + 2K, + K,)/6. (A.5).

4) Repeat the steps 9)-11) for a pre-determined N-value (e.g., 100) to obtain a table of the

t-values and the x-values.
. ) . ’x dx
Second-order differential equation: Py g(t,x,v) where v= %
t

5) Separate the differential equation into two equations:

fl: =g(t,x,v)and v = Z’: = f(t,x,v). (A.6)

6) Define the size of time increment: ¢,,, = f, + h where h is the time interval and i = 0, 1,
2,..,N.

7) For solving ﬂ = g(t,x,v), calculate the following L-values using given t = t,, x = x;,
andv=v;

L, =g(t,x,v);

h hL, hL,
L=¢(t+—, x+—%, v+—2);
» =8l 2 2 2

h hL, hL, (A7)
Li=glt+—, x+—=, v+—2);
s =8l T 2)

L4 zg(t+;l, x+hL3, V+hL3).

AV :h(Ll +2L2 +2L3 +L4)/6.
8) Calculate the next v-value: v,,, = v, + Avat ¢t =t,,, where Av = h(L, + 2L, + 2L, + L,)/6.
(A.8)
9) Solving LZ = f(t,x,v)is essentially the same as the first order differential equation

described earlier. In this case, there is also a velocity term. Calculate the following
K-values at givent=t, x =x,and v=v;
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K, = f(t,x,v)
h hK, hK,
Ky=f@t+—, x+—, v+—+
2= 2 YT VT, )
h hK hK
Ky=ft+2, x+ 22, v+ 22)
K4=f(t+§, x+hK,, v+h12<3).

(A.9)

10) Calculate the next x-value: x,,, = x; + Ax at t = t,,,, where Ax = h(K, + 2K, + 2K, +

K,)/6.

(A.10)

11) Repeat the above steps for a pre-determined N (e.g., 100) to obtain a table of the

t-values, the x-values, and the v-values.

The Runge-Kutta method is much easier to implement with Excel’s VBA (Visual Basic for
Applications). Refer to Appendix A1l.3 for enabling the VBA capability. Remember that the
VBA code for the Runge-Kutta method applies to many other second-order differential
equation problems because the mathematical function, g(¢, x, v), is the only part that needs

to be changed.

A4 SIMPSON’S METHOD FOR DEFINITE INTEGRAL

b
Consider an integral I = I f(x)dx where the integral interval [a, b] is finite (e.g., a = 0 and

b = 1). If the integrant f(x)n is too complicated to perform the integral, we approximate f(x)

to make the integral easier.
Denote the Taylor expansion of f(x) as

x3

2
' L B T
f(x)—fo—xf+2! +3! +

where all derivatives are evaluated at x = 0. It can be shown that

h

fu Ef(xzih)zfoihf’+h;f”i6

The first derivative of f(x) can be approximated by

>

r~f1_f*1
f= 2h

and the second derivative can be approximated by

"o f1_2f0+f*1
f ~ h2 .

’ f/lr+o(h4).

(A.11)

(A.12)

(A.13)

(A.14)
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Thus, Equation A.11 can be improved using Equations A.13 and A.17:

f(x):fo"'fl;hfl X+f1_22'2)2+f1 2 +0(x7). (A.15)

Using Equation A.15, the following integral can be approximated by

.[;h Fx)dx =’;( fitdfy+ f2)+005),

The integral to be evaluated can be approximated by

I- J': Flx)dx

:Z[f(a)+4f(a+h)+2f(a+2h)+4f(a+3h)+-~-+4f(b—h)+f(b)}

(A.16)

1
Figure A.9 lists a VBA code of Simpson’s methods to evaluate I exp(—x)dx=1-¢' =
0

0.632121. Simpson’s method outputs 0.632121 to this significant figure.

o0

How can we evaluate the integrallike I = |  f(x)dx? If the integrant f(x) monotonically
decreases quickly and becomes nearly zero dt’a certain x-value (say, b), then f(x) ~0 for b <
x and we may have

I= I: f(x)dx = Lbf(x)dx. (A.17)

Sub Simpson()
Cells(1, 1) = "Simpson’s rule doe definite integrals"
a=0"'a>=0

Fori=1ToN-1
If coeff = 2 Then coeff = 4 Else coeff = 2
x=i*h
Cells(4 +1i, 1) =x
Cells(4 +i, 2) = coeff
Sum = Sum + coeff * F(x)
Cells(4 +1i, 3) = Sum
Next i
Sum = Sum + F(b)
Integral =Sum *h /3
Cells(3, 1) = "Integral=": Cells(3, 2) = integral
End Sub

Function F(x)
F = Exp(-x)
End Function

FIGURE A.9 Simpson’s method for evaluating the integral.
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For example, I e " dx =1. By applying Simpson’s method,

0

5 10
j e " dx=0.99326 and J- e " dx=0.99996!
0

0

Another approach is to split the integration region into two segments,

I- J‘: Fl)dx = .[: Fl)dx+ _[ ; Flx)dx, (A.18)

and change the variable x with 1/y for the second integral.

) 0 1/a -1
[ W (A19)
a 1/a Ly 0 y
Thus, T = I " Flo)dx = J' fedx+| AU gy (A.20)
0 0 0 y

If the change of variable has not introduced an additional singularity into the integrand,
this integral can often be evaluated by one of the standard numerical methods.

A.5 EULER’S ANGLES

Euler’s angles are a set of three angles {a, 3, y} that rotate a coordinate frame (x, y, z) to
another frame (X, Y, Z) [4]. Figure A.10 depicts the Euler angles where the rotational order
of coordinates is

(%, 3,2) (%, ', 2) (", y", 2") (X, Y, Z).
o B Y
Using matrix representation, rotational matrices are:

cosa sinaac. 0
1) Rotation about the z-axis by angle « is given by M, (at) =| —sina  cosa. 0| (A.21)
0 0 1

Coordinates: xyz — x’y’z’ where z’=z.

cosp 0 —sinf
2) Rotation about the y’-axis by angle B is given by M ,(B) =| 0 1 0 (A.22)
sinB 0  cosP

» »_»

Coordinates: x’y’z’ — x”y"z” where y’=y’.
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FIGURE A.10 Euler’s angles.

cosy siny

3) Rotation about the z”-axis by angle y is given by M, (y) =| —siny  cosy

0 0
Coordinates: x”y”z” - XYZ where Z = 7"
Combining them, the rotation from xyz to XYZ is given by
[ cosPcosacosy cosPsina cosy
—sinasiny +cosasiny
—cosPcosasiny —cosPsinacosy
M(oB,y) = M. (V )M, (B)M () =| .~ ,
—sinasiny +cosasiny
sinPsina sinf cos

0
0] (A.23).
1

—sinfcosy

sin3siny

cosf

(A.24)

Figure A.11 lists the VBA code for rotating unit vectors e, = (1, 0, 0), e, = (0, 1, 0), e; = (0, 0,
1)} of the xyz-frame to another set of {R1,R2,R3} of the XYZ-frame using specified angle
values of {a, 3, y}. Unit vectors are defined by specifying the coordinates of their tips and
tails. This code reads Euler’s angles from the spreadsheet: a0 = 45°, § = —30°, and y = 0°.
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Sub UnitVector3D()
Cells(1, 1) = "Rotation of unit vectors using Euler angles"
Pi =3.14159265358979
Alpha = 0: Beta = 0: Gamma =0
'Euler angles
Cells(3, 1) = "Alpha": Alpha = Cells(4, 1): Alpha = Alpha * Pi / 180: Cells(5, 1) = Alpha
Cells(3, 2) = "Beta": Beta = Cells(4, 2): Beta = Beta * Pi / 180: Cells(5, 2) = Beta
Cells(3, 3) ="Gamma": Gamma = Cells(4, 3): Gamma = Gamma * Pi / 180: Cells(5, 3) = Gamma
Cells(4, 4) = "degrees": Cells(5, 4) = "radians"
'Unit vectors fixed with space
Cells(6, 2) = "Tail": Cells(6, 3) = "Tip": Cells(6, 6) = "Tail": Cells(6, 7) = "Tip"
'Unit vector along x-axis.
Cells(6, 1) = "e1"
Cells(7, 1) = "x1": Cells(7, 2) = 0: x1 = 1: Cells(7, 3) = x1
Cells(8, 1) ="y1": Cells(8, 2) =0: y1 = 0: Cells(8, 3) = y1
Cells(9, 1) = "z1": Cells(9, 2) = 0: z1 = 0: Cells(9, 3) = z1
'Unit vector along y-axis.
Cells(10, 1) = "e2"
Cells(11, 1) = "x2": Cells(11, 2) = 0: x2 = 0: Cells(11, 3) = x2
Cells(12, 1) ="y2": Cells(12, 2) =0:y2 = 1: Cells(12, 3) = y2
Cells(13, 1) = "z2": Cells(13, 2) = 0: z2 = 0: Cells(13, 3) = z2
'Unit vector along z-axis.
Cells(14, 1) = "e3"
Cells(15, 1) = "x3": Cells(15, 2) = 0: x3 = 0: Cells(15, 3) =x3
Cells(16, 1) = "y3": Cells(16, 2) = 0: y3 = 0: Cells(16, 3) = y3
Cells(17, 1) = "z3": Cells(17, 2) = 0: 23 = 1: Cells(17, 3) = 23
'Rotated unit vectors
'Unit vector along X-axis.
Rx1 = FX(x1, y1, z1, Alpha, Beta, Gamma)
Ryl =FY(x1, y1, z1, Alpha, Beta, Gamma)
Rz1 = FZ(x1, y1, z1, Alpha, Beta, Gamma)
Cells(7, 5) = "Rx1": Cells(7, 6) = 0: Cells(7, 7) = Rx1
Cells(8, 5) = "Ry1": Cells(8, 6) = 0: Cells(8, 7) = Ryl
Cells(9, 5) = "Rz1": Cells(9, 6) = 0: Cells(9, 7) = Rz1
'Unit vector along Y-axis.
Rx2 = FX(x2, y2, z2, Alpha, Beta, Gamma)
Ry2 =FY(x2, y2, z2, Alpha, Beta, Gamma)
Rz2 = FZ(x2, y2, z2, Alpha, Beta, Gamma)
Cells(11, 5) = "Rx2": Cells(11, 6) = 0: Cells(11, 7) = Rx2
Cells(12, 5) = "Ry2": Cells(12, 6) = 0: Cells(12, 7) = Ry2
Cells(13, 5) = "Rz2": Cells(13, 6) = 0: Cells(13, 7) = Rz2
'Unit vector along x-axis.
Rx3 = FX(x3, y3, z3, Alpha, Beta, Gamma)
Ry3 = FY(x3, y3, z3, Alpha, Beta, Gamma)
Rz3 = FX(x3, y3, z3, Alpha, Beta, Gamma)
Cells(15, 5) = "Rx3": Cells(15, 6) = 0: Cells(15, 7) = Rx3
Cells(16, 5) = "Ry3": Cells(16, 6) = 0: Cells(16, 7) = Ry3
Cells(17, 5) = "Rz3": Cells(17, 6) = 0: Cells(17, 7) = Rz3
End Sub

Function FX(x, y, z, Alpha, Beta, Gamma)

FX = x * (Cos(Beta) * Cos(Alpha) * Cos(Gamma) - Sin(Alpha) * Sin(Gamma)) +y * (Cos(Beta) * Sin(Alpha) * Cos(Gamma) + Cos (Alpha) *
Sin(Gamma)) - z * Sin(Beta) * Cos(Gamma)

End Function

Function FY(x, y, z, Alpha, Beta, Gamma)

FY = -x * (Cos(Beta) * Cos(Alpha) * Sin(Gamma) + Sin(Alpha) * Cos(Gamma)) -y * (Cos(Beta) * Sin(Alpha) * Sin(Gamma) - Cos(Alpha) *
Cos(Gamma)) + z * Sin(Beta) * Sin(Gamma)

End Function

Function FZ(x, y, z, Alpha, Beta, Gamma)
FZ = x * Sin(Beta) * Cos(Alpha) +y * Sin(Beta) * Sin(Alpha) + z * Cos(Beta)
End Function

FIGURE A.11  VBA code for rotating unit vectors using Euler’s angles.
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A A L= - - =
1 |Rotation of unit vectors using Euler angles
2_.
3 |Alpha Beta Gamma
4 | 45 -30 0 degrees
5 | 0.785398 -0.5236 0 radians
6 el Tail Tip Tail Tip
7 x1 0 1 Rx1 0 0.612372
8 iyl 0 0 Ryl 0 -0.70711
9 21 0 0 Rzl 0 -0.35355
10 | e2
11 [x2 0 0 Rx2 0 0.612372
12 |y2 0 1 Ry2 0 0.707107
13 22 0 0 Rz2 0 -0.35355
14 e3
15 0 0 Rx3 0 0.5
16 0 Ry3 0 0
17 |23 0 1 0 0.5
18
FIGURE A.12  Screenshot of rotation of unit vectors.
YZ plane XY plane ZX plane
0.6 (18] 0.8
= = 7 . \os |
i 04 / ‘
03 J."
0.2 B .//
0.1 0 [
o 05 1
o 0.2 05 2
04
0.6
8 0.6

FIGURE A.13  Unit vectors as observed from the rotated coordinates XYZ.

Figure A.12 is a screenshot of unit vectors. Coloring was done manually for illustration
purposes.
Figure A.13 shows rotated unit vectors projected on YZ, XY, and ZX planes.

A.6 SERIES EXPANSION USING ORTHONORMAL BASES

For complicated integrals, we applied Simpson’s method.

A.6.1 Hermite Expansion

f@=) ah)
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where ¢, = J‘°° fh, (x)dx = 71,2]‘ f(x)H,(x)e”™ 2y,

[ n2"n! e

and

b= H(x)e ™"

[\/EZ"VI!T&

Example 1: f(x) = x where —co < x < +o00.

n!

o0
2n+l _—ax?
Note:J- x"e ™ dx=—"~.
0 2a

—00

¢ = _[ F)hy (x)dx = j } e =0,
C,=¢4 =¢¢=0.

¢ = x(2x)e_"2/2dx = x2e ™ dx = 2.6264.

prp e g

1

¢ = I J()hs (x)dx = ]1,2 I x(8x* —12x%)e ™ 2dx = 3.26041.

[Vr2 3

Cs :I f(x)hs(x)dx = 7 J‘ f(x)(32x° —160x° +120x)e ™™ "2y = 3.63863.

wrah

Thus,
f(x)=x=2.66264h,(x)+3.26041h;(x) + 3.63863hs(x) +...
Figure 6.5 shows the graph of the final result.

Example 2: f(x) = sinx where -t < x < +m.

COZCZ :C4:C6:O.

6 =2 _[ " o (x)dx = J' (sinx)(2x)e ™ dx

(sin x)(Zx)e_x2 2dx =1.615

2 J-+10
~ 1/2
2]
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¢ =2 I " s (x)dx = ;J‘w(sinx)(&f _12x)e P dx

1/2
[\/5-23-3!] 0

2 +10 )
~ 71 (sinx)(8x> —12x)e ™ *dx = 0.6594

|:2\/;:|1/2 0

Cs = 2-[ f(x)h5 (X)dx = ;J‘ (SinX)(32x5 _16Ox3 n 120x)e"‘2/2dx
0

1/2
[\/5-25-5!] 0

2 +10
~ 71 (sin x)(32x° —160x° +120x)e ™ 2dx = —0.1463

|:2\/;:|1/2 0
Thus,

f(x)=sinx =1.615h,(x) +0.594h;(x) —0.1463h;(x) +...
Figure 6.5 shows the graph of the final result.

A.6.2 Bessel Expansion

F0= el (k)

where the k, are chose so that /n(k,a) = 0, and the coefficients are given by

j“ FGT (k) xdd
c. =90

2 2"
(ll /2) I:]m+1 (kna):l

Bessel’s zeros [5]:

Jo n ]2 )3 J4 15
1 2.4048 3.8317 5.1356 6.3802 7.5883 8.7715
2 5.5201 7.0156 8.4172 9.7610 11.0647 12.3386
3 8.6537 10.1735 11.6198 13.0152 14.3725 15.7002
4 11.7915 13.3237 14.7960 16.2235 17.6160 18.9801
5 14.9309 16.4706 17.9598 19.4094 20.8269 22.2178
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4 A B C D E F G H 1 J
1 f(x)=x by Bessle functions ' ' ' ' [ [
.
=ax m Exact P =%
4 0 0 0 / =2% (BESSELJ (3.8317*A4,1) /(3.8317
5 | 0.01 0.036555 ‘i\::_———— - +BESSELJ(3.8317,2) ) +BESSELJ(7.01 |
5 0.02 0.072472 0w 56%A4,1)/(7.0156*BESSELJ (7.0156,
; - ggi gig;;i; g'gi ™. 2))+BESSELJ(10.1735*A4,1)/(10.17
9 @05 CAIDATL S | 35*BESSELJ(10.1735,2))+BESSELJ(1
10 0.06 0.197937 0.06 | 3.3237*a4,1)/13.3237*BESSELJ (13.
1 0.07 0.22223 0.07 | 3237,2))+BESSELJ(16.471*A4,1)/(1
‘ 12 0.08 0.242933 0.08 | 6.471*BESSELJ(16.471,2)))
13 0.09 0.259816 0.09 '.\ in Cell B4. /
14 0.1 027275 0.1 X ¥
15 0.11 0.281705 0.11 G e

FIGURE A.14  Calculation table of Bessel expansion of f(x) = x.

Example: f(x) = x where 0 <x < 1.

>
P ayeJ> (alk)

Ji(ax) _ J1(3.8317x) N J1(7.0156x) N
3.8317],(3.8317) 7.0156/,(7.0156)

1 N hlawx) _ Ji38317x)  ]i(7.0156x)

2" Layfy(ay) 3.8317-],(3.8317)  7.0156-],(7.0156)
Ji101735x)  J,(133237%)

10.1735-J,(10.1735) * 13.3237-J,(13.3237)

Note: The built-in J, (x) in Excel is BESSELJ (x,n). Figure A.14 is a screenshot of the calcu-
Ji(ax)

P aycJ>(ay)

lation table of the x =2 up to 4 terms where 0 < x < 1. Excel’s AutoFill feature

is used for the calculation.

Figure 6.6 shows the series expansion of the four terms.

A.6.3 Legendre Expansion
F)= aPi(x) = R () + 6Py () + 6By (¥)
/=1

where ¢, =

252“ L FoP(x)dx.

Example: f(x) = sinx where -1 <x < 1.

Figure A.15 lists a VBA code to calculate the coefficients ¢, where £ = 1, 2, 3, 4, 5, 6 using
Simpson’s method. Note that ¢, = ¢, = ¢, = 0. Once the coefficients are calculated, we evaluate
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Sub SimpsonLegendre()
Cells(1, 1) = "Sin(x) by Legendre polynomials"
Pi=3.14159254
a=0 'a>=0
b=1
N =500
h=(b-a)/N
Weight = 2 'Weight (2 or 4) in the Simpson's formula
suml = Fi(a) 'Integral of xsin(x)exp(-x"2/2) where F1(0) = 0
'Integral of xsin(x)
Fori=1ToN-1
If Weight = 2 Then Weight = 4 Else Weight = 2
x=i*h
suml = suml + Weight * F1(x)
Next i
suml = (suml+F1(b)) *h /3 'Complete the integral
al=3*suml
Cells(3, 2) = "al=": Cells(4, 2) =al
'Integral of (5*x"3-3*x)/2 where F3(0)=0.
sum3 = F3(a)
Fori=1ToN-1
If Weight = 2 Then Weight = 4 Else Weight = 2
x=i*h
sum3 = sum3 + Weight * F3(x)
Next i
sum3 = (sum3 +F3(b)) *h /3  'Complete the integral
a3=7*sum3
Cells(3, 3) = "a3=": Cells(4, 3) = a3
'Integral of (xA5)*sin(x)*exp(-x"2/2) where F5(0)=0.
sum5 = F5(a)
Fori=1ToN-1
If Weight = 2 Then Weight = 4 Else Weight = 2
x=i*h

sum5 = sum5 + Weight * F5(x)

Next i
sum5 = (sum5 + F5(b)) *h /3 'Complete the integral
a5=11* sum5
Cells(3, 4) = "a5=": Cells(4, 4) = a5
End Sub

Function F1(x)
F1=Sin(x) * x
End Function

Function F3(x)
F3=Sin(x) *(5*x~3-3*x)/2
End Function

Function F5(x)
F5=Sin(x) * (63 *xA5-70*x"3+15*x)/8
End Function

FIGURE A.15  VBA code for calculating the coefficient c.

F) =D ePi(x) = 6B (x)+ 6Py () + 6By (3)

for 0 < x < mbeyond x = 1 using AutoFill to see if the series fits well.

Figure A.16 shows the series expansion where we extend the result to x = w. The series
expansion deviates from the exact value near x = m. Figure A.22 is a screenshot to obtain

the final result as shown in Figure 6.13.
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d A B e | om0 E | E | & | ® ook
2

3 al= a3= a5= J

4 0.903506 -0.06695 0.001018 ) =B6+C6+D6 J

5 |x P1 P3 PS5 sum sin{xl,_:_{ff"""\i

6 0 0 0 0 o— 0

7 0031416 00283/‘\4 000315‘\59?5 05 ~T====_0.031504 0.031411

8 0.062832 0.05¢ Lo 006268 | 0118 0.063>e =221~
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FIGURE A.16  Screenshot of series expansion of sinx with the Legendre polynomials.

A.7 KINEMATICS OF WAVE PACKET IN FREE SPACE

The detailed calculation of Equation 7.11 is shown below.

1 +o0 i 2 )
F(k)= %Jiw v(x,0)e ™ dx where y(x,0) = exp {— 4);2 }exp [zkox].

(2n02 )1/4

Using the integral formula shown in Appendix A9,

14 2
F(k) _ i 262 .[+ efgﬂkoxﬂkx dx — \/— 402 = 2 (kg 2 \/gecz(kko )2 .
2\ - 2n| w T

Equation 7.1 becomes

\V(x:t) = ‘[ F(k)ei(kxiwt)dk = \/EJ. efﬁz(k*ko)zei(kx—mt)dk
- TJd-o
+00 2
:\/gj exp[~c’(k—k,)’ +i(kx—ﬂt)]dk
oo 2m

where @ = fik* / 2m.
() o 2 . ht 2 . 2 27.2
y(x,t)= ,/—I exp[—(c +12—)k +(ix +20°ky)k — ok 1dk
TJd—o m

_ \F exp(—czkg)j exp[—ak® + bkldk
T —0

ht
where a = 6* +i2— and b = ix +2c°k,.
m
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Using the integral formula again,

2
y(x,t)= ° exp(—c°k;) n exp(%j
s a a

2 272 o 27y
\v(x,t)=\Fexp(_62kg) “exp[‘lb}\gexr)( o ko)exp _4(x—i20’ky)
T a a

& +i ot +i
2m 2m

1 (x—i26°k,)* 5.5 1 4(x—i26°k,)* . . -
= exp| - ————+0k =——exp| —F————(1—iat)+ 0k
Vi+iat p[ {462(1+ioct) " v P o’ (1-o’t*) ’

4a

—0

) 2
A.8 INTEGRAL FORMULA I = J‘ exp[—ax2+bx]dx=\/;exp(b J
a

1)1 =J. exp(—axz)d = \/; where Re[a] > 0.
—0 a

If the coeflicient is real, the integral can be proved by replacing Jax with y. If aisacom-
plex number, let a = re’® where Re[a]>0 (|0|<n/2). Consider the following complex integral
along the path as shown in Figure A.17.

From the Cauchy’s integral theorem, J. e ¥ dz=0.
c

R R 0/2 .
2 2 _p22i0 :
Thus,j e ™ a”zdxzj. e” dx+J. e " iRedg where +/ =\/;e’e/2.
0

0 0

Y
A B(Reiﬁﬂ}

6/2

c A(R, 0)

FIGURE A.17 Integral path C for the complex integral of exp(—ax?/2).
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02 oe.
Because e iRedo

012 o
< J. e_RzewiRe“"d(p — 0 as R — oo, the integral along the
0

0

0

e dx = L e dx = \/; where Re[a] > 0.

a1/2 0 2a1/2

arc vanishes and we obtain J.
0

If the coefficient a is a pure imaginary number, let a = +ia = e*™2q (a >0), then

j ety = eii”/“\/; where o > 0.
o a
© b2
2 I:I exp(—ax® +bx =\/;ex — .
) o P( )d a P 4a

If both a and b are real numbers,
0 © b 2 b2
I= —ax’ +bx Jdx = J- —alx—— | +—
le exp( ax x)dx . exp{ a(x ZaJ p }dx
=ex K -J‘mex -a x—iz —\/;ex E
P 4a —» P 2a a P 4q )

If a is a complex number, let a = re’, where Re[a]>0 (|0|<n/2) and b an arbitrary complex

number. Consider the following complex integral along the path as shown in Figure A.18.

From Cauchy’s integral theorem, I e dz =0. Thus,
o

R b2 R 2 Im[b] Rait)? 0 Rait)?
I e b g2 gy =I e dx+.[ g (R+iD) idt+.[ e R gy
R R

0 Im(b]

~R+Im[b] R+ilm[b]

FIGURE A.18 Integral path C’ for the complex integral of exp[-a(x+b)x?].
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The last two terms on the right side become zero when R — o0, and we obtain

R 5 R
J‘ o Hb)” J12 g, :J- —ax? dx = £ where Re[ ] >0.
_R a

-R

Therefore,

bZ

2
2
R P e _a(x_iJ -
J‘ e xdx=e4“'.[ e dx—e“”-ﬁ.
a

00 —0

A.9 EXPANSION COEFFICIENTS OF WAVE FUNCTION
OF A HARMONIC OSCILLATOR

Let the Hamiltonian H, its eigen vector | @, ), and eigenvalue E,: H |9,)=E,|0,), n=0,
1L,2,...
The time-dependent wave function of the system is given by

y(x,t)= ch(p,,(x) exp(—;Ent}

Using the above wave function at t = 0, the coeflicient ¢, can be calculated.

@, (W) =D (0, ()| 0D = D by =,
m=0 m=0
For the harmonic oscillator, the inner product is

6, = (9, ()| y(0)) = j 01 (0w (x,0)dx.

The initial wave function is given by Equation 7.18,

2 1/4 P 1/2
y(x,0) = L exp —(X—(ac—ac())2 where o =| "0 | |
T 2 h

the normalized eigenvector is given by

9, (x) = N,H,(ax)exp(—a’x”) where N, = (OLJ

bl
22" n!

and H,, is the Hermite polynomial discussed in section 6.3.

Cn = o/ 1/2J‘ H (é)exp(—& jexp[—(i &) j 3

o/ 1/2_[ H (&)exp{ (& F%oé"‘ ao }di

where £ = ax and &, = a.x,,.
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Using the generating function of Hermite polynomial Equation 6.34, consider the follow-
ing two integrals:

[ Cew(-s +2s&)exp{—<8 —&oaﬁaé)}fa - Z;, [ e eXp[—(éz —aoa@as)}da,

—00

and

12 1, _ 12 1., N (Séo)k
T exp( 4§o+s§0j—n exp( 45()} .

!
e~ k!

we obtain

_ & _ﬁ z(axo)" _(OUCO)2
C, = @) exp{ 4} 72'1”! exp{ }

Refer to [Shiff] for this calculation.
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Sturm-Liouville equation, 117

Vector algebra, 73-74
Vector potential and magnetic field, 85-89
Visscher algorithm, 154

Wave equation, 52-53
Wave functions
harmonic oscillator, 159-161
hydrogen atom, 161-165
Wave packet, 145
group velocity and phase velocity, 146-147
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Three-body system, 8-9
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