


Mathematical Methods for 
Physics using Microsoft Excel

In Mathematical Methods for Physics using Microsoft Excel, readers will investigate topics  

from classical to quantum mechanics, which are often omitted from the course work. Some 

of these topics include rocket propulsion, Rutherford scattering, precession and nutation of 

a top under gravity, parametric oscillation, relativistic Doppler effect, concepts of entropy, 

kinematics of wave packets, and boundary value problems and associated special func-

tions as orthonormal bases. Recent topics such as the Lagrange point of the James Webb 

Space Telescope, a muon detector in relation to Cherenkov’s radiation, and information 

entropy and H-function are also discussed and analyzed. Additional interdisciplinary 

topics, such as self-avoiding random walks for polymer length and population dynamics, 

are also described. This book will allow readers to reproduce and replicate the data and 

experiments often found in physics textbooks, with a stronger foundation of knowledge.

While investigating these subjects, readers will follow a step-by-step introduction to com-

putational algorithms for solving differential equations for which analytical solutions are 

often challenging to find. For computational analysis, features of Microsoft Excel® includ-

ing AutoFill, Iterative Calculation, and Visual Basic for Applications are useful to conduct 

hands-on projects. For the visualization of computed outcomes, the Chart output feature 

can be readily used. There are several first-time attempts on various topics introduced in 

this book such as 3D-like graphics using Euler’s angle and the behavior of wave functions 

of harmonic oscillators and hydrogen atoms near the true eigenvalues.

Shinil Cho completed his graduate studies at the Seoul National University (MS) and 

the  Ohio State University (PhD). He has conducted research in statistical physics and 

 cryogenic magnetic resonance spectroscopy. Currently he is a Professor at La Roche 

University. His current research interests include quantum computation and biometric 

authentication.



http://taylorandfrancis.com


Mathematical Methods for 
Physics using Microsoft Excel

Shinil Cho



Designed cover image: Shutterstock_1145743310

First edition published 2025

by CRC Press

2385 NW Executive Center Drive, Suite 320, Boca Raton FL 33431

and by CRC Press

4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2025 Shinil Cho

Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume respon-

sibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the 

copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this 

form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify 

in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any 

form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, 

and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www .copyright .com or contact the Copyright 

Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on CCC 

please contact mpkbookspermissions @tandf .co  .uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for identification 

and explanation without intent to infringe.

ISBN: 9781032844541 (hbk)

ISBN: 9781032850634 (pbk)

ISBN: 9781003516347 (ebk)

DOI: 10.1201/9781003516347

Typeset in Minion

by Deanta Global Publishing Services, Chennai, India

http://www.copyright.com
http://www.mpkbookspermissions@tandf.co.uk
http://dx.doi.org/10.1201/9781003516347


v

Contents

Preface, x

CHAPTER 1   ◾    Classical Mechanics 1

1.1  PROJECTILE MOTION WITH AIR RESISTANCE 1

1.2  ROCKET PROPULSION 4

1.3  TWO- AND THREE-BODY PROBLEMS OF UNIVERSAL GRAVITY 6

1.3.1  Two-Body System (Sun-Earth) 6

1.3.2  Three-Body System (Sun-Earth-Moon) 6

1.3.3  Euler’s Satellite 9

1.3.4  Lagrange Points 13

1.4  RUTHERFORD SCATTERING – SCATTERING IN CENTRAL FORCE FIELD 17

1.4.1  Theory 17

1.4.2  Numerical Analysis 19

1.5  ROTATIONAL MOTIONS 22

1.5.1  Rotational Motion with Reducing Radius 22

1.5.2  Euler’s Equation for Rotational Motions 23

1.5.3  Free Rotation of a Symmetrical Top 25

1.5.4 A Symmetric Top Rotating about a Fixed Point in the Presence of 

Gravity 30

1.5.5  Steady Precession about the Space-Fixed z-Axis 31

1.5.6  Unsteady Precession 31

SUGGESTED FURTHER STUDY 37

REFERENCES 37

CHAPTER 2   ◾    Oscillations 38

2.1  HARMONIC OSCILLATION WITH EXTERNAL FORCES 38

2.1.1  Periodic Driving Force 38

2.1.2  Damping Force 39

2.1.3  Both Driving and Damping Forces 43

 



vi   ◾    Contents 

2.2  PARAMETRIC OSCILLATION 45

2.3  COUPLED PENDULUMS 47

SUGGESTED FURTHER STUDY 50

REFERENCES 50

CHAPTER 3   ◾    Waves 52

3.1  WAVE EQUATION 52

3.2  SUPERPOSITION PRINCIPLE 53

3.2.1  Interferences 53

3.2.2  Beat 55

3.2.3  Standing Waves 56

3.3  FOURIER THEOREM 58

3.4  DOPPLER EFFECT AND SHOCKWAVE 60

3.4.1  Doppler Effect 60

3.4.2  Relativistic Doppler Effect 60

3.4.3  Shockwave 63

3.5  REFRACTION 65

3.5.1  Huygens’s Principle 65

3.5.2  Principle of Least Traveling Time 65

3.5.3  Particle Model 67

3.6  DIFFRACTION 67

3.6.1  Fourier Transform 67

3.6.2  Diffraction pattern 69

3.6.3  Rectangular Aperture 70

SUGGESTED FURTHER STUDY 71

REFERENCES 71

CHAPTER 4   ◾    Electromagnetism 73

4.1  VECTOR ALGEBRA 73

4.2  LORENTZ FORCE 74

4.3  MAXWELL’S EQUATIONS FOR STATIC ELECTROMAGNETIC FIELDS 75

4.3.1  Static Electric Field 75

4.3.2  Difference Equations for the Electric Potential and the Field 78

4.3.3  Electric Dipole Potential 80

4.3.4  Two-Dimensional Electric Field from Electric Potential 81

4.3.5  A Charged Square Conductor in a Uniform Electric Field 82



Contents     ◾   vii

4.3.6  Static Magnetic Field 83

4.3.7  Iteration Method to Compute Vector Potential and Magnetic Field 85

4.3.8  Vector Potential and Magnetic Field due to a Pair of Current Wires 85

4.4  TIME-VARYING MAXWELL’S EQUATIONS 89

4.4.1  Faraday’s Law of Magnetic Induction 89

4.4.2  Displacement Current 90

4.4.3  Electromagnetic Wave in Free Space 90

4.5  HUYGENS’S PRINCIPLE AND GREEN’S FUNCTION 91

SUGGESTED FURTHER STUDY 92

REFERENCES 92

CHAPTER 5   ◾    Entropy 94

5.1  THERMODYNAMIC VARIABLES 94

5.2  ENTROPY OF AN IDEAL GAS 96

5.2.1  Change in Entropy during Free Expansion 96

5.2.2  Mixing Entropy 97

5.2.3  Gibbs Paradox 97

5.2.4  Mixing Entropy of Ideal Solutions 99

5.3  THERMODYNAMICS OF TWO-LEVEL SYSTEMS 100

5.3.1  Spin 1/2 Particles in a Uniform Magnetic Field 100

5.3.2  Adiabatic Demagnetization 102

5.3.3  N-Independent Quantum Oscillators 103

5.3.4 Change in Entropy of Two Substances after Making Thermal  

Contact 105

5.3.5  H-Function and Entropy in Markov Processes 107

5.4  ENTROPY OF INFORMATION 108

5.4.1  Quantification of Information and Entropy of Information 108

5.4.2  Probability Distribution for Maximum Entropy 110

5.4.3  Maximum Entropy and Minimum Energy 111

5.4.4  Negative Entropy 112

SUGGESTED FURTHER STUDY 113

REFERENCES 113

CHAPTER 6   ◾    Boundary Value Problems 115

6.1  EIGENFUNCTIONS AS ORTHONORMAL BASES 115

6.1.1  Separation of Variables of the Helmholtz Equation 115

6.1.2  Orthonormal Property of Eigenfunctions 116



viii   ◾    Contents 

6.2  RECTANGULAR COORDINATES 117

6.2.1  Standing Wave on a Rectangular Membrane 117

6.2.2  Trigonometric Functions as an Orthonormal Basis – Fourier Series 119

6.2.3  Hermite Polynomials 120

6.2.4  Laguerre polynomials 122

6.2.5  Associated Laguerre Polynomials 124

6.3  CYLINDRICAL COORDINATES 124

6.3.1  Bessel Functions 125

6.3.2  Application of Bessel Functions 126

6.4  SPHERICAL COORDINATES 129

6.4.1  Associated Legendre Function 129

6.4.2  Legendre Polynomials 131

6.4.3  Spherical Harmonic Functions 133

6.5  TABULATED INTEGRALS 138

6.5.1  Gamma Functions 138

6.5.2  Beta Functions 139

6.5.3  Elliptic Functions 140

SUGGESTED FURTHER STUDY 142

REFERENCES 143

CHAPTER 7   ◾    Wave Packets and Wave Functions 145

7.1  KINEMATICS OF WAVE PACKET 145

7.1.1  Group Velocity and Phase Velocity 146

7.1.2  Motion of a Wave Packet in Free Space 147

7.1.3  Wave Packet in a Harmonic Potential 148

7.2  WAVE PACKET APPROACHING THE POTENTIAL STEP 150

7.2.1  Method of Visscher et al. 150

7.2.2  Wave Packet in Free Space Using the Visscher Algorithm 154

7.2.3  Wave Packet at a Potential Step 154

7.3  ASYMPTOTIC BEHAVIOR OF WAVE FUNCTIONS NEAR THE TRUE 
EIGENVALUE 155

7.3.1  Standing Wave on a String 155

7.3.2  Euler-Cromer Algorithm for a Particle in an Infinite Potential Well 157

7.3.3  Harmonic Oscillator 159

7.3.4  Hydrogen Atom 161

SUGGESTED FURTHER STUDY 165

REFERENCES 165



Contents     ◾   ix

CHAPTER 8   ◾    Interdisciplinary Topics 167

8.1  POLYMERS 167

8.1.1  Entropic Elasticity 167

8.1.2  Polymer Length and Self-Avoiding Walk 169

8.2  POPULATION DYNAMICS 170

8.2.1  Malthus’s Law of Population and Logistic Equation 170

8.2.2  Lotka-Volterra Equations 174

8.2.3  Population Dynamics Including Reproduction 176

8.2.4  Population Dynamics with Birth, Death at Birth, and Reproduction 179

SUGGESTED FURTHER STUDY 181

REFERENCES 181

APPENDIX 183

A.1  USEFUL FEATURES OF EXCEL 183

A.1.1  AutoFill 183

A.1.2  Data Analysis 184

A.1.3  Excel Macro (VBA) 184

A.1.4  Iterative Calculation 185

A.2  EULER’S METHOD 185

A.3  THE RUNGE-KUTTA METHOD 188

A.4  SIMPSON’S METHOD FOR DEFINITE INTEGRAL 190

A.5  EULER’S ANGLES 192

A.6  SERIES EXPANSION USING ORTHONORMAL BASES 195

A.6.1  Hermite Expansion 195

A.6.2  Bessel Expansion 197

A.6.3  Legendre Expansion 198

A.7  KINEMATICS OF WAVE PACKET IN FREE SPACE 200

A.8  INTEGRAL FORMULA I ax bx dx
a

b

a
�

�

�
�

�

�
�

��

�

� exp exp
4

2[ ]
2

�� �� ��
�

 201

A.9  EXPANSION COEFFICIENTS OF WAVE FUNCTION OF A 
HARMONIC OSCILLATOR 203

REFERENCES 204

INDEX, 205



x

Preface

“I often say that when you can measure what you are speaking about, and express 

it in numbers, you know something about it; but when you cannot express it in 

 numbers, your knowledge is of a meager and unsatisfactory kind; it may be beginning of 

knowledge, but you have scarcely in your thoughts advanced to the stage of Science.”

William Thomson (Lord Kelvin)

1824–1907

Mathematics is the queen of physics. Without it, physics cannot make quantitative argu-

ments. Although there are many books on mathematical physics, books of concise descrip-

tions of advanced topics with an easy-to-read guide of computation and visualization are 

few. This book aims to demonstrate how to study the subjects of physics with numerical 

analysis as supplemental material for self-study. This book also aims to give you tips on 

computational algorithms. For number crunching, we use Microsoft Excel®. Its AutoFill 

and macro (Visual Basic for Applications) features are useful for conducting hands-on 

computational projects. For the visualization of computed results, we use the Chart output 

feature.

There is a wide spectrum of topics covered by this book, from classical mechanics to 

quantum mechanics. Chapter 1 demonstrates graphical representations of the dynamics 

of a projectile with air resistance, rocket propulsion, and three-body problems including 

the Lagrange points, Rutherford scattering, and motions of a top. In Chapter 2, you ana-

lyze oscillations with external damping and driving forces, parametric oscillations, and 

coupled oscillation. Chapter 3 describes wave properties including the relativistic Doppler 

effect and foundation of wave optics such as the Fourier transform, Huygens’s principle, 

and diffractions. Chapter 4 describes electromagnetic potentials and EM waves derived 

from Maxwell’s equations. The main theme of Chapter 5 is entropy, from its thermody-

namical definition to that of information. Chapter 6 guides special functions that we apply 

to boundary value problems. The concept of orthonormal basis is the main theme and 

shows series expansions using various special functions. Chapter 7 discusses the kinemat-

ics of wave packets and how eigenfunctions and eigenvalues are determined by the bound-

ary condition of a particle in a box, a harmonic oscillator, and a hydrogen atom using a 

shooting method. In Chapter 8, we discuss polymer properties such as elasticity and length 
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determined by self-avoiding walks. Several models of population dynamics are also intro-

duced in this chapter to learn how to establish a model and visualize their outcomes.

It is the author’s wish that readers enjoy the journey of analyzing these topics and feel 

them on their computers.
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1

C H A P T E R  1

Classical Mechanics

Topics of classical mechanics are the foundation of physics. The mathematics of 

differential equations in classical mechanics can be applied to other areas of phys-

ics. Computational algorithms for numerical solutions of differential equations are use-

ful when analytical solutions are difficult to find. We demonstrate numerical solutions of 

topics in classical mechanics which we often skip in lectures, including projectile motions 

with air resistance, rocket propulsion, Rutherford scattering, three-body problems, and 

motions of a top.

1.1  PROJECTILE MOTION WITH AIR RESISTANCE

In general physics, we usually assume no air resistance for projectile motions, introducing 

only terminal velocity. Let us analyze the projectile motion with air resistance in both the 

horizontal and vertical directions. The equations of motion including the air resistance are
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where the terms −kvx and −kvy are the air resistances proportional to the speed of the 

object and the coefficient k is the proportional constant. With the initial conditions, x0 = y0 

= 0, vx0 = v0cos θ0, and vy0 = v0sin θ0, where θ0 is the initial projection angle, the analytical 

solution is given by
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where a = k/m and D = vy0+g/a.
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For the numerical solutions, we apply the Euler method of solving differential equations 

to Equation 1.1. Refer to Appendix A2 for the Euler method. Figure 1.1 shows the VBA 

code assuming g = 1, a = 0.5, v0 = 5. The time increment is dt = 0.08.

Figure 1.2 shows the computed trajectories with the initial angle from 75° to 5° by 10° 

step. With the air resistance, the maximum range is not attained with the initial angle of 

approximately 45° but approximately 30° with a detailed analysis.

Sub Projectile()

Cells(1, 1) = "Projectile motion with air -resistance using Euler's method"

Dim x(100)

Dim y(100)

Dim vx(100)

Dim vy(100)

Dim theta(8)   'Initial angle from 5 to 75 degrees

Pi=3.1415927

'Initialization:

For i = 0 To 99

x(i) = 0

y(i) = 0

vx(i) = 0

vy(i) = 0

Next i

g = 1      'Gravitational acceleration

a = 0.5   'Coefficient of air resistance

v0 = 5   'Initial speed

dt = 0.08 'Time increment       

Cells(2, 3) = "g=": Cells(2, 4) = g

Cells(2, 6) = "alpha=": Cells(2, 7) = a

Cells(2, 9) = "v0=": Cells(2, 10) = v0            

'Calculate x, y, vx, vy for a given initial angle theta.

Radangle = Pi / 180 'Angle unit conversion from degree to radian.

For i = 5 To 75 Step 10

'Make integers from 1 to 8:

ii = (i + 5) / 10

theta(ii) = i * Radangle 'Initial angle in radian

'Initial velocities:

vx(0) = v0 * Cos(theta(ii))

vy(0) = v0 * Sin(theta(ii))

RowNum = 100 * (ii - 1)

Cells(3 + RowNum, 1) = "Angle=": Cells(3 + RowNum, 2) = i

Cells(3 + RowNum, 3) = "degrees"

Cells(4 + RowNum, 3) = "time"

Cells(4 + RowNum, 4) = "x"

Cells(4 + RowNum, 5) = "y"

Cells(4 + RowNum, 6) = "vx"

Cells(4 + RowNum, 7) = "vy"     

For j = 0 To 97

jj = j + 1

Alphax = -a * vx(j)

Alphay = -g - a * vy(j)

vx(jj) = vx(j) + Alphax * dt

x(jj) = x(j) + vx(j) * dt

vy(jj) = vy(j) + Alphay * dt

y(jj) = y(j) + vy(j) * dt

Cells(5 + RowNum + j, 3) = j * dt

Cells(5 + RowNum + j, 4) = x(j)

Cells(5 + RowNum + j, 5) = y(j)

Cells(5 + RowNum + j, 6) = vx(j)

Cells(5 + RowNum + j, 7) = vy(j)

Next j

Next i

End Sub

FIGURE 1.1 VBA code for the projectile motion with air resistance.
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Note: Why does the air resistance depend on the object speed?

Imagine that a board of cross-sectional area A is moving at speed V through air as shown 

in Figure 1.3. Here, we assume that V is slower than the average speed of air “particles” v. 

These particles hit the board from both the front and back sides of the moving board.

Consider the change in momentum of a single particle hitting from the backside is 

given by

 �p m v V m v V m v V1 2� �� �� � �� � � �� �( ) ,  (1.3)

and the change in momentum of a single particle hitting from the front side is given by

 �p m v V m v V m v V2 2� � �� �� �� � � � �� �. (1.4)

Suppose the numbers of air particles from the backside and the front side per unit time 

are I1 and I2, respectively, the net force exerted on the board, which is the air resistance, is 

given by

 F p I p I� �( ) ( ) .� �1 1 2 2  (1.5)

FIGURE 1.2 Trajectories with different initial angles of projectile motion with air resistance.

FIGURE 1.3 A plate moving at speed V to +x-direction.
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Let the mass density of the air be ρ. In the frame of reference fixed to the moving board, 

in a time interval Δt, all air particles in the volume (v−V)∙Δt∙A at the backside collide with 

the board to have

 I A v V1 � �� �� .  (1.6)

Similarly, all air particles in the volume (v+V)∙Δt∙A at the backside collide with the board 

per unit time to have

 I A v V2 � �� �� . (1.7)

Therefore, the air resistance is proportional to the speed of the moving board V,

 F p I p I m v V A v V m v V A v V m AvV� � � �� � �� �� �� � �� � � �( ) ( ) .� �1 1 2 2 2 2 8� � �  (1.8)

1.2  ROCKET PROPULSION

Rockets are propelled by the momentum produced by the exhausted gas particles. Because 

rockets lose their masses as the fuel burns, the equations of motion of rockets involve 

time-varying mass. Assume a rocket projected vertically upward in a uniform gravity field, 

having velocity v(t), mass m(t) at time t; let the initial velocity and the initial altitude of 

the rocket be both zero; assume the exhaust gas velocity is −vf relative to the rocket and 

a constant rate of expending the fuel is ε per unit time. At time t + dt, the rocket velocity 

becomes v + dv, and the rocket mass is reduced to m − dm by burning the fuel dm to pro-

duce the high-speed gas of exhaust velocity −vf. The rocket mass at time t should be given 

by m(t) = m0 − εt, where m0 is the initial rocket mass (i.e., the rocket body + the loaded fuel). 

For example, numerical data of Saturn V are m0=2.8 × 106 kg, ε = 20 × 103 kg, and vf = 2.40 

× 103 m/s. These data are cited from NASA’s web page [1].

The changing rate of the momentum of the rocket gives the external force exerted on 

the rocket.

 
( )( ) ( )m dm v dv dm v dv v mv

dt
mg

f� � � � � �
� �  (1.9)

From Equation 1.9, the acceleration of the rocket is

 
dv

dt
v

m

dm

dt
gf� � �

1
 (1.10)

where dm/dt = ε because m(t) = m0 − εt. Solving Equation 1.10, the velocity is given by

 v t gt v
m

tf( ) ln ,� � �1
�

 (1.11)

and the altitude of the rocket is
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Figure 1.4 shows the VBA code of launching Saturn V. Because one may expect that the 

accelerated motion is smooth in time, we apply Euler’s method (Appendix A2) for obtain-

ing numerical solutions of v(t) and h(t). In this code, we also calculate the theoretical values 

using Equations 1.11 and 1.12. Because the initial velocity and the initial altitude of the 

rocket are both zero, the altitude of the next instance needs to have a non-zero velocity for 

Euler’s method. For this reason, one may use the average velocity between two successive 

times to calculate the altitude.

Figure 1.5 shows the time dependence of the altitude, the velocity, and the mass of Saturn 

V. The solid lines are the computed curves and the broken lines are theoretical curves. The 

theoretical and numerical calculations are in good agreement. For 120 s after launching 

the rocket, the altitude reaches approximately 120 km, and the rocket mass becomes only 

about 14% of the initial mass!

Sub Rocket()

Cells(1, 1) = "Launching Saturn V using Euler's method"

Dim a(140)

Dim v(140)

Dim h(140)

Dim M(140)

Dim Vtheory(140)

Dim Ytheory(140)

Dim Mtheory(140)

For i = 0 To 139

a(i) = 0

v(i) = 0

y(i) = 0

M(i) = 0

Next i

g = 9.8 / 1000 'Gravitational Acceleration in km/sec^2

vf = 2.4       'Exhaust speed in km/s.

t = 0

dt = 1       'Time increment in second.

dM = 20   'Burning rate of fuel in ton/sec

M(0) = 2800     'Initial rocket mass with fuel in ton.

Cells(2, 1) = "Payload": Cells(3, 1) = M(0): Cells(2, 2) = "vf": Cells(3, 2) = vf

Cells(2, 3) = "dt": Cells(3, 3) = dt

Cells(5, 2) = "Numerical"

Cells(6, 1) = "Time": Cells(6, 2) = "Speed": Cells(6, 3) = "Altitude": Cells(6, 4) = "Mass"

Cells(5, 6) = "Theory"

Cells(6, 6) = "Speed": Cells(6, 7) = "Altitude": Cells(6, 8) = "Mass"

For i = 0 To 130

t = i * dt

a(i) = -g + vf / ((M(0) / dM) - t)

'Euler's method

v(i + 1) = v(i) + a(i) * dt

h(i + 1) = h(i) + (v(i) + v(i + 1)) * dt / 2

M(i + 1) = M(i) - dM * dt

Cells(7 + i, 1) = i * dt

Cells(7 + i, 2) = v(i)

Cells(7 + i, 3) = h(i)

Cells(7 + i, 4) = M(i)

'Theoretical calculation

Epsilon = Abs(1 - t * dM / M(0))

Vtheory(i) = -g * t - vf * Log(Epsilon)

Ytheory(i) = -g * t ^ 2 / 2 + (vf * M(0) / dM) * (Epsilon * Lo g(Epsilon) + 1 - Epsilon)

Mtheory(i) = M(0) - dM * t

Cells(7 + i, 6) = Vtheory(i)

Cells(7 + i, 7) = Htheory(i)

Cells(7 + i, 8) = Mtheory(i)

Next i

End Sub

Use the average velocity

between t and t+dt.

FIGURE 1.4 VBA code of the rocket propulsion.
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1.3  TWO- AND THREE-BODY PROBLEMS OF UNIVERSAL GRAVITY
1.3.1  Two-Body System (Sun-Earth)

Before we analyze three-body systems, we analyze a two-body system such as the Earth 

around the Sun to demonstrate how planetary motions are computed. For this analysis, we 

may consider that the Sun is fixed in space. Suppose position (xe, ye) and velocity (ue, ve) of 

the Earth are given by equations of motion,
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where G is the universal gravitational constant and Ms is the mass of the Sun. For the 

numerical calculation, we use the astronomical unit, AU. One AU is the average distance 

between the Sun and the Earth, denoted as Re. With the AU unit, GMs = 4π2 AU3/yr2 [2]. 

The computational algorithm used here is the Runge-Kutta method. Refer to Appendix 

A3 for the Runge-Kutta method. Figure 1.6 lists the VBA code for this calculation, and 

Figure 1.7 shows the orbit of the Earth assuming that the Earth starts moving at vy0 = 2π 

AU/year from the initial position (1 AU, 0). The orbit is nearly a circle as expected.

1.3.2  Three-Body System (Sun-Earth-Moon)

Figure 1.8 is a schematic diagram of a three-body, e.g., Sun-Earth-Moon, system. We again 

assume that the Sun is at the origin of a fixed coordinate frame. Because the orbits of 

the Earth and the Moon are nearly on the same plane, we may assume their motions are 

two-dimensional.

FIGURE 1.5 Time dependence of payload of Saturn V.
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Sub Earth()

Cells(1,1)=”Orbit of Earth”

PI=3.141592654

Cells(2,1)=”GM”: GM=4*PI^2: Cells(2,2)=GM: Cells(2,3)=”AU^3/yr^3”

'Initial conditions:

Cells(3, 2) = "Initial t": t=0: Cells(4, 2) = t

Cells(3, 3) = "Initial x": x=1: Cells(4, 3) = x

Cells(3, 4) = "Initial y": y=0: Cells(4, 4) = y

Cells(3, 5) = "Initial vx": vx=0: Cells(4, 5) = vx 

Cells(3, 6) = "Initial vy": vy=2*PI: Cells(4, 6) = vy

Cells(3, 7) = "delta t": h=0.02: Cells(4, 7) = h       

'Parmeter names:

Cells(10, 2) = "t"

Cells(10, 3) = "x"

Cells(10, 4) = "y"

Cells(10, 5) = "vx"

Cells(10, 6) = "vy"

'Runge-Kutter method:

n=1000    ‘number of iterations    

For i = 0 To n

Cells(i + 11, 2) = t

Cells(i + 11, 3) = x

Cells(i + 11, 4) = y

Cells(i + 11, 5) = vx

Cells(i + 11, 6) = vy

lx1 = gx(GM, t, x, y)

ly1 = gy(GM, t, x, y)

kx1 = fx(t, x, y, vx, vy)

ky1 = fy(t, x, y, vx, vy)          

lx2 = gx(GM, t + h / 2, x + h * kx1 / 2, y + h * ky1 / 2)

ly2 = gy(GM, t + h / 2, x + h * kx1 / 2, y + h * ky1 / 2)

kx2 = fx(t + h / 2, x + h * kx1 / 2, y + h * ky1 / 2, vx + h * lx1 / 2, vy + h * ly1 / 2)

ky2 = fy(t + h / 2, x + h * kx1 / 2, y + h * ky1 / 2, vx + h * lx1 / 2, vy + h * ly1 / 2)                         

lx3 = gx(GM, t + h / 2, x + h * kx 2 / 2, y + h * ky2 / 2)

ly3 = gy(GM, t + h / 2, x + h * kx2 / 2, y + h * ky2 / 2)

kx3 = fx(t + h / 2, x + h * kx2 / 2, y + h * ky2 / 2, vx + h * lx2 / 2, vy + h * ly2 / 2)

ky3 = fy(t + h / 2, x + h * kx2 / 2, y + h * ky2 / 2, vx + h * lx2 / 2, vy + h * ly2 / 2)              

lx4 = gx(GM, t + h, x + h * kx3, y + h * ky3)

ly4 = gy(GM, t + h, x + h * kx3, y + h * ky3)

kx4 = fx(t + h, x + h * kx3, y + h * ky3, vx + h * lx3, vy + h * ly3)

ky4 = fy(t + h, x + h * kx3, y + h * ky3, vx + h * lx3, vy + h * ly3)              

vx = vx + h * (lx1 + 2 * lx2 + 2 * lx3 + lx4) / 6

vy = vy + h * (ly1 + 2 * ly2 + 2 * ly3 + ly4) / 6

x = x + h * (kx1 + 2 * kx2 + 2 * kx3 + kx4) / 6

y = y + h * (ky1 + 2 * ky2 + 2 * ky3 + ky4) / 6

t = t + h

Next i        

End Sub

_________________________________________________________________________________

Function gx(GM, t, x, y)

'dvx/dt=gx

gx = -GM * x / ((x ^ 2 + y ^ 2) ^ 1.5)           

End Function

_________________________________________________________________________________

Function gy(GM, t, x, y)

'dvy/dt=gy

gy = -GM * y / ((x ^ 2 + y ^ 2) ^ 1.5)

End Function

__________________________________________ _______________________________________

Function fx(t, x, y, vx, vy)

'vx=dx/dt

fx = vx

End Function

_________________________________________________________________________________

Function fy(t, x, y, vx, vy)

'vy=dy/dt

fy = vy

End Function

FIGURE 1.6 VBA code for the Earth orbit.
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Equations of motions are
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FIGURE 1.7 Earth orbit using the AU unit.

FIGURE 1.8 Positions of Sun-Earth-Moon.
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for the Earth, and
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for the Moon, where r x x y yem e m e m� � � �( ) ( )2 2  .

Because the actual scaled orbiting radii are difficult to draw on paper, the initial posi-

tions of the Earth and the Moon are changed to (10 AU, 0) and (10.1 AU, 0), respectively. 

The initial velocity of the Earth is (0, 2.0) and that of the Moon is (0, 1.5). While the actual 

mass ratios are Km = Mm/Ms = 0.037×10−6 and Ke = Me/Ms = 3.00 × 10−6, we assume Ke = 

5.0 × 10−4 and Km = 1.0×10−5 to show the orbits clearly on a graph. The equations of motion 

are now
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For analyzing the planetary problems, it is better to apply the Runge-Kutta method 

(Appendix A3). Figure 1.9  lists the VBA code for the three-body system, and Figure 1.10 

shows the computed orbits of Earth and the Moon. The actual mass ratios are very small, 

and we adjusted the ratios in computation to accentuate the orbit of the Moon.

1.3.3  Euler’s Satellite

In the three-body problem, assume the mass of the third object, m, is much smaller than 

the two fixed-in-space objects M1 and M2. Let M1 be at the origin and M2 is at (d, 0). The 

position of the third object is the coordinate (x, y). What is the two-dimensional orbit of 

the third object as the inter-planetary distance between M1 and M2 is changed?

The equation of motion for the third object is given by
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where GM1 is scaled to be 1 and the mass ratio M12 = M1/M2 = 0.5.

The VBA code for the motion of the third object m is very much similar to the previ-

ous three-body problem. Figure 1.11 shows the orbits of the Euler satellite for different 

distances between M1 and M2. Depending on the distance between M1 and M2, the satellite 

exhibits quite different orbits.      
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Sub SunEarthMoon()

Cells(1, 1) = "Sun-Earth-Moon"

GM = 39.478     'GM =4*pai^2 is the astronomical unit (AU).

KE = 0.0005   'KE=GM(earth), actual value = 3.00E-6

KM = 0.00001   'KM=G(moon), actual value=0.037E-6

'Wri�ng labels and ini�al value:

'Labels:

Cells(3, 2) = "Ini�al t": t = 0: Cells(4, 2) = t

Cells(3, 3) = "Ini�al xE": xE = 10: Cells(4, 3) = xE

Cells(3, 4) = "Ini�al yE": yE = 0: Cells(4, 4) = yE

Cells(3, 5) = "Ini�al vxE": vxE = 0: Cells(4, 5) = vxE

Cells(3, 6) = "Ini�al vyE": vyE = 2: Cells(4, 6) = vyE

Cells(3, 7) = "Ini�al xM": xM = 10.1: Cells(4, 7) = xM

Cells(3, 8) = "Ini�al yM": yM = 0: Ce lls(4, 8) = yM

Cells(3, 9) = "Ini�al vxM": vxM = 0: Cells(4, 9) = vxM

Cells(3, 10) = "Ini�al vyM": vyM = 1.5:  Cells(4, 10) = vyM

Cells(3, 11) = "delta t": h = 0.04: Cells(4, 11) = h       'Time increment

'Parmeter names:

Cells(6, 2) = "t"

Cells(6, 3) = "E-x"

Cells(6, 4) = "E-y"

Cells(6, 5) = "E-vx"

Cells(6, 6) = "E-vy"

Cells(6, 7) = "M-x"

Cells(6, 8) = "M-y"

Cells(6, 9) = "M-vx"

Cells(6, 10) = "M-vy"

'Runge-Ku�er method:

n = 1000 ' itera�on #

For i = 0 To n

Cells(i + 7, 2) = t

Cells(i + 7, 3) = xE

Cells(i + 7, 4) = yE

Cells(i + 7, 5) = vxE

Cells(i + 7, 6) = vyE

Cells(i + 7, 7) = xM

Cells(i + 7, 8) = yM

Cells(i + 7, 9) = vxM

Cells(i + 7, 10) = vyM

lxE1 = gxE(GM, KM, xE, yE, xM, yM)

lyE1 = gyE(GM, KM, xE, yE, xM, yM)

kxE1 = fxE(xM, yM, vxE, vyE)

kyE1 = fyE(xM, yM, vxE, vyE)

lxM1 = gxM(GM, KE, xE, yE, xM, yM)

lyM1 = gyM(GM, KE, xE, yE, xM, yM)

kxM1 = fxM(xM, yM, vxM, vyM)

kyM1 = fyM(xM, yM, vxM, vyM)

lxE2 = gxE(GM, KM, xE + h * kxE 1 / 2, yE + h * kyE1 / 2, xM + h * kxM1 / 2, yM + h * kyM1 / 2)

lyE2 = gyE(GM, KM, xE + h * kxE1 / 2, yE + h * kyE1 / 2, xM + h * kxM1 / 2, yM + h * kyM 1 / 2)

kxE2 = fxE(xE + h * kxE1 / 2, yE + h * kyE1 / 2, vxE + h * lxE1 / 2, vyE + h * lyE1 / 2)

kyE2 = fyE(xE + h * kxE1 / 2, yE + h * kEy1 / 2, vxE + h * lxE1 / 2, vyE + h * lyE1 / 2)

lxM2 = gxM(GM, KE, xE + h * kxE1 / 2, yE + h * kyE1 / 2, xM + h * kx M1 / 2, yM + h * kyM1 / 2)

lyM2 = gyM(GM, KE, xE + h * kxE 1 / 2, yE + h * kyE1 / 2, xM + h * kxM1 / 2, yM + h * kyM1 / 2)

kxM2 = fxM(xM + h * kxM1 / 2, yM + h * kyM1 / 2, vxM + h * lxM1 / 2, vyM + h * lyM1 / 2)

kyM2 = fyM(xM + h * kxM1 / 2, yM + h * kyM 1 / 2, vxM + h * lxM1 / 2, vyM + h * lyM1 / 2)

lxE3 = gxE(GM, KM, xE + h * kxE 2 / 2, yE + h * kyE2 / 2, xM + h * kxM2 / 2, yM + h * kyM2 / 2)

lyE3 = gyE(GM, KM, xE + h * kxE 2 / 2, yE + h * kyE2 / 2, xM + h * kxM2 / 2, yM + h * kyM2 / 2)

kxE3 = fxE(xE + h * kxE2 / 2, yE + h * kyE2 / 2, vxE + h * lxE2 / 2, vyE + h * lyE2 / 2)

kyE3 = fyE(xE + h * kxE2 / 2, yE + h * kyE2 / 2, vxE + h * lxE2 / 2, vyE + h * lyE2 / 2)

lxM3 = gxM(GM, KE, xE + h * kxE2 / 2, yE + h * kyE2 / 2, xM + h * kxM2 / 2, yM + h * kyM2 / 2)

lyM3 = gyM(GM, KE, xE + h * kxE 2 / 2, yE + h * kyE2 / 2, xM + h * kxM2 / 2, yM + h * kyM2 / 2)

kxM3 = fxM(xM + h * kxM2 / 2, yM + h * kyM2 / 2, vxM + h * lxM2 / 2, vyM + h * lyM2 / 2)

kyM3 = fyM(xM + h * kxM2 / 2, yM + h * kyM2 / 2, vxM + h * lxM2 / 2, vyM + h * lyM2 / 2)

FIGURE 1.9 VBA code for the Sun-Planet-Satellite system.
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lxE4 = gxE(GM, KM, xE + h * kxE 3, yE + h * kyE3, xM + h * kxM3, yM + h * kyM3)

lyE4 = gyE(GM, KM, xE + h * kxE 3, yE + h * kyE3, xM + h * kxM3, yM + h * kyM3)

kxE4 = fxE(xE + h * kxE3, yE + h * kyE3, vxE + h * lxE3, vyE + h * lyE3)

kyE4 = fyE(xE + h * kxE3, yE + h * kyE3, vxE + h * lxE3, vyE + h * lyE3)

lxM4 = gxM(GM, KE, xE + h * kxE 3, yE + h * kyE3, xM + h * kxM3, yM + h * kyM3)

lyM4 = gyM(GM, KE, xE + h * kxE 3, yE + h * kyE3, xM + h * kxM3, yM + h * kyM3)

kxM4 = fxM(xM + h * kxM3, yM + h * kyM3, vxM + h * lxM3, vyM + h * lyM3)

kyM4 = fyM(xM + h * kxM3, yM + h * kyM3, vxE + h * lxM3, vyM + h * lyM3)

vxE = vxE + h * (lxE1 + 2 * lxE2 + 2 * lxE3 + lxE4) / 6

vyE = vyE + h * (lyE1 + 2 * lyE2 + 2 * lyE3 + lyE4) / 6

xE = xE + h * (kxE1 + 2 * kxE2 + 2 * kxE3 + kxE4) / 6

yE = yE + h * (kyE1 + 2 * kyE2 + 2 * kyE3 + kyE4) / 6

vxM = vxM + h * (lxM1 + 2 * lxM2 + 2 * lxM3 + lxM4) / 6

vyM = vyM + h * (lyM1 + 2 * lyM2 + 2 * lyM3 + lyM4) / 6

xM = xM + h * (kxM1 + 2 * kxM2 + 2 * kxM3 + kxM4) / 6

yM = yM + h * (kyM1 + 2 * kyM2 + 2 * kyM3 + kyM4) / 6

t = t + h

Next i

End Sub

_________________________________________________________________________________

Func�on gxE(GM, KM, xE, yE, xM, yM)

'dvxE/dt=gxE

gxE = -GM * xE / ((xE ^ 2 + yE ^ 2) ^ 1.5) - GM * KM * (xE - xM) / (((xM - xE) ^ 2 + (yM - yE) ^ 2) ^ 1.5)

End Func�on

_________________________________________________________________________________

Func�on gyE(GM, KM, xE, yE, xM, yM)

'dvyE/dt=gEy

gyE = -GM * yE / ((xE ^ 2 + yE ^ 2) ^ 1.5) - GM * KM * (yE - yM) / (((xM - xE) ^ 2 + (yM - yE) ^ 2) ^ 1.5)

End Func�on

_________________________________________________________________________________

Func�on gxM(GM, KE, xE, yE, xM, yM)

'dvxM/dt=gxM

gxM = -GM * xM / ((xM ^ 2 + yM ^ 2) ^ 1.5) + GM * KE * (xE - xM) / (((xM - xE) ^ 2 + (yM - yE) ^ 2) ^ 1.5)

End Func�on

_____________________________________________________________________________ ____

Func�on gyM(GM, KE, xE, yE, xM, yM)

'dvyM/dt=gyM

gyM = -GM * yM / ((xM ^ 2 + yM ^ 2) ^ 1.5) + GM * KE * (yE - yM) / (((xM - xE) ^ 2 + (yM - yE) ^ 2) ^ 1.5)

End Func�on

______________________________________________________________ ___________________

Func�on fxE(xE, yE, vxE, vyE)

'vxE=dxE/dt

fxE = vxE

End Func�on

_________________________________________________________________________________

Func�on fyE(Ex, Ey, vxE, vyE)

'vyE=dyE/dt

fyE = vyE

End Func�on

_________________________________________________________________________________

Func�on fxM(xM, yM, vxM, vyM)

'vxM=dxM/dt

fxM = vxM

End Func�on

_________________________________________________________________________________

Func�on fyM(xM, yM, vxM, vyM)

'vyM=dyM/dt

fyM = vyM

End Func�on

FIGURE 1.9 Continued.
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FIGURE 1.10 Orbits of a planet and its satellite plane around the Sun.

FIGURE 1.11A Orbits of Euler’s satellite. Two planets are separated well (d=10): the satellite is orbit-

ing around M1. The initial position of the satellite is (1, 0) and the initial velocity is (0, 2π). The posi-

tion of M2 is not shown in this diagram.
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1.3.4  Lagrange Points

There are unique points in the three-body system, called the Lagrange points. The 

Lagrange points are points of equilibrium for a small-mass object such as the James Webb 

Space Telescope (JWST) in the gravitational field due to two massive orbiting bodies [3]. 

Figure 1.12 illustrates the Lagrange points. There are five Lagrange points where the net 

universal gravitational forces of the Earth and the Sun on a small object m provide balance 

with the centrifugal force of the orbiting object as observed from the Earth. Equation 1.20 

FIGURE 1.11B Orbits of Euler’s satellite. Two planets are relatively close (d=3): the satellite is 

 orbiting around M1 and M2. The initial position of the satellite is (1.5, 0) and the initial velocity is 

(3.5, 3.5).

FIGURE 1.11C Orbits of Euler’s satellite. Two planets are close (d=0.5): the satellite is orbiting 

enclosing M1 and M2. The initial position of the satellite is (3.0, 0) and the initial velocity is (3.14, 0).
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derived below describes this balancing condition. L2 is one of the five points in space where 

JWST has been deployed. L2 is behind the Earth from the Sun and enables JWST’s sun-

shield to effectively protect its instruments from the electromagnetic radiation and heat of 

the Sun, Earth, and Moon.

Let us find where L2 is. Let M1 be the Sun and M2 be the Earth. These two celestial bod-

ies M1 and M2 are huge compared with the third body m. Let the coordinates frame (X, 

Y) be the frame fixed to the Sun-Earth system. The origin of the XY-frame is the center of 

mass of the Sun and the Earth (CM in Figure 1.12). Notice that the XY-frame is a rotating 

frame around the center of mass. Referring to Figure 1.12, the distance between the Sun 

and the origin, rs, is given by

 r
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where r0 is the distance between M1 and M2. Between the Sun and the Earth, r0 =1 AU = 

1.496 × 108 km.

Because the XY-frame is a rotating frame with angular velocity ω0, the relative motion 

of the third body as observed in the XY-frame is due to the forces exerted on the third body, 

which are the centrifugal force and the Coriolis force in addition to the universal gravities 

of m-M1 and m-M2. Thus, the equation of motion of m in the XY-frame is given by

 ma F F m r m v
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In the above equation, | |
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=  where r1 and r2 are the distances  

between M1 and m and M2 and m, respectively.

If the third object is at a point where the net force acting on the third body vanishes, the 

third object must be at rest as observed in the XY-frame. In other words, from the Earth, 

the velocity and the acceleration in Equation 1.19 are both zero and Equation 1.19 becomes
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FIGURE 1.12 Lagrange points.
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As shown in Figure 1.12, Equation 1.20 for the Lagrange point L2 is one-dimensional and 

Equation 1.20 reads
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where r0−rs is the distance from the center of mass to the Earth, and r−rs is the distance 

from the center of mass to the third object. The angular velocity ω0 of the Sun and the 

Earth can be calculated from the rotational motion of the Sun around the center of mass,
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Plug Equation 1.22 into Equation 1.21 to obtain
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Let α = M2/M1 and ß = (1+α)/r0
3, then
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Therefore, the Lagrange point L2 is the point that satisfies the following equation,
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Figure 1.13 lists the VBA code to find the Lagrange point L2, where the net force on the 

third body vanishes. L2 is the root of Equation 1.24, which can be found numerically. The 

algorithm used here to find the root of the function f(r) is simple [4]. The algorithm starts 

from a trial value of r guaranteed to be less than the root and increases the trial value by 

small positive steps, backing up and having the step size every time f(r) changes sign. The 

values of r generated by this procedure converge to the root, and the root-seeking step can 

be terminated whenever the step size becomes less than the preset tolerance. The boxed 

part of the code of Figure 1.14 shows this algorithm.

Figure 1.14 shows the calculated net force f(r) by changing the distance between the 

third object and the Sun, r. The “zero point” of the force function f(r) is subtle and unstable, 

indicating that the point L2 is not a stable equilibrium point. The calculated zero point is 

1.01004 AU. Thus, the distance between the Earth and the third object is given by r − r0 = 

0.01004 AU = 1.502×106 km [5].
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FIGURE 1.14 Net force on the third object.

Sub Root()

Cells(2, 1) = "Finding L2 (Sun -Earth)"

'Data

Msun = 1.99E+30

Mearth = 5.98E+24

'Distance from Sun to Earth is 1 AU= 1.496E8 km.

Cells(2, 4) = "Mearth/Msun": alpha = Mearth / Msun: Cells(3, 4) = alpha

Cells(2, 5) = "CM": rs = alpha / (1 + alpha): Cells(3, 5) = rs

Cells(4, 1) = "r"

Cells(4, 2) = "Net force"

beta = 1 + alpha

'Calculate sum of gravity and centripetal force

For i = 0 To 150

r  = i / 100

NetForce = Fr(r, alpha, beta, rs)

Cells(5 + i, 1) = r

Cells(5 + i, 2) = NetForce

Next i

'Find L2

Tolerance = 1.0E-6                      'to find the zero with this tolerance.

Cells(5, 5) = "Iteration"

Cells(5, 6) = "Root"

'Initial guess from the net force

r = 1.01     'Starting point

fold = Fr(r, alpha, beta, rs)       'Net force at the starting point. Fold>0

dr = 0.0001                     'Increment of distance

Iter = 0

While Abs(dr) > Tolerance

Iter = Iter + 1

r = r + dr

Cells(5 + Iter, 5) = Iter: Cells(5 + Iter, 6) = r

If fold * Fr(r, alpha, beta, rs) > 0 Then GoTo Skip

r = r - dr

dr = dr / 2       'Narrowing the increment width

Skip: Wend

End Sub

____________________________________________________________________________________

Function Fr(r, alpha, beta, rs)

Fr = (r - 1) ^ 2 + alpha * r ^ 2 - beta * (r - rs) * r ^ 2 * (r - 1) ^ 2

End Function

Finding a root

of equation

(1.24).

FIGURE 1.13 VBA code for finding the second Lagrange point.
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1.4  RUTHERFORD SCATTERING – SCATTERING IN CENTRAL FORCE FIELD
1.4.1  Theory

Rutherford scattering describes the motion of an incoming charged particle such as an 

alpha-particle scattered by a heavy target nucleus due to the Coulomb repulsive force [6]. 

The target nucleus (charge Ze) is assumed to be at rest in space. An incident particle (charge 

ze and mass m) has an initial velocity v∞ far away from the nucleus as shown in Figure 1.15. 

This is the same as the Kepler problem, similar to the discussion in Section 1.3.1, except 

that the force is repulsive. Using conventional notations, the equation of motion of the 

incident particle is

 m
d r

dt

ze Ze

r

r

r

2

2
0

2

1

4

 
�

��
( )

. (1.25)

In Figure 1.15, the length of a vertical line from the target nucleus to the incident direction 

of the incoming particle is called the impact parameter b. Recall that the target nucleus is 

fixed at the origin.

The radial part of the Equation 1.25 of motion of is

 m
d r

dt
r

d
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K

r
K zZe
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where .  (1.26)

Because the Coulomb force has no angular component, the angular part of Equation 1.25 

is

 m
r

d

dr
r

d

dt

1
02 ��

�
�

�

�
� � ,  (1.27)

FIGURE 1.15 Scattering of a charged particle by a heavy nucleus.
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and thus, r
d

dt

L

m
2 �

�  where L is angular momentum. Combining Equations 1.26 and 1.27, 

we obtain
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, we obtain
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Let us find a solution in the form of u(φ) = Acos(φ − α) − D or r(φ) = 1/[Acos(φ − α) − D] 

where A and α are integral constants. This function u indeed satisfies Equation 1.28. Define 

angle φ = 0 when the particle is at its turning point, i.e., dr/dφ = 0 at r = rmin:

 �
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With this selection of coordinates, the constant α becomes zero. (1.30)

In order to determine the other constant A, we use the total energy of the motion,
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Let um = 1/rmin, then um satisfies

 E
L

m
u Kum m� �

2
2

2
 (1.32)

at the turning point where du/dφ = 0. Equation 1.32 may be solved to obtain the root um. 

Because um must be non-negative, we find
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Thus, u A D A
mK

L
m � � � �
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� 0 2
, and we obtain
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Using the obtained α, A, and D, the solution, u = Acos(φ−α)−D, of the differential Equation 

1.28 becomes a hyperbolic function,
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In the above Equation 1.35, E = (1/2)mv∞
2 and L = mv∞b, where v∞ is the incident velocity, 

and b is the impact parameter. By conversely expressing r0 with ε, we obtain
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b
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cos
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 (1.36)

Therefore, we observe cosφ∞ = ±1/ε for the incoming α-particle and π±1/ε for the outgoing 

α-particle where the upper branch (i.e., the upper part of Figure 1.17) takes the positive sign 

and the lower branch takes the negative sign.

The scattering angle θ shown in Figure 1.15 is expressed by θ = π − 2φ∞, and thus,
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and
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 (1.37)

Therefore, tan (φ∞) is proportional to the impact parameter.

The differential cross-section σ(θ) is defined as the probability of scattering within the 

unit solid angles dΩ = 2πsinθdθ along the θ-direction from the incident α-particles pass-

ing through the area between b and b + db, which is given by 2πbdb, and
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1.4.2  Numerical Analysis

Let the equation of motion for a computational analysis of the two-dimensional case.
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The equation of motion of an incoming α-particle is analogous to that of a motion under 

universal gravity, and the computational analysis can apply the Runge-Kutta method 

(Appendix A3).
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Figure 1.16  lists the VBA code to compute the trajectories by changing the impact 

parameters 1 to 15. Figure 1.17 shows the calculated trajectories.

From Equation 1.37, tan(φ∞) is expected to be proportional to the impact parameter 

b. Figure 1.18 shows the data of the coordinates (x, y) of the minimum r for given impact 

parameters. From the coordinates, we calculate cot(φ∞/2) = 1/tan(φ∞/2) = r0/b.

Sub Rutherford()

Cells(1, 1) = "Rutherford Scattering"

'Parmeter Alpha is the constant.

Cells(2, 1) = "Alpha": Alpha = 10#: Cells(2, 2) = Alpha

'Writing labels and initial value in cells:

Cells(3, 2) = "Initial t": t = 0: Cells(4, 2) = t

Cells(3, 3) = "Initial x" : x = -40: Cells(4, 3) = x

'Cells(3, 4) = "Initial y": y = 5: Cells(4, 4) = y

Cells(3, 5) = "Initial vx": vx = 1: Cells(4, 5) = vx

Cells(3, 6) = "Initial vy": vy = 0: Cells(4, 6) = vy

Cells(3, 7) = "delta t": h = 0.05: Cells(4, 7) = h                    

'Runge-Kutter method:

n = 2000 ' Iteration #

Cells(10, 2) = "t"

For j = 1 To 15

t = Cells(4, 2)

x = Cells(4, 3)

y = j

vx = Cells(4, 5)

vy = Cells(4, 6)

Cells(10, 1) = "t"

Cells(10, 2 + 3 * (j - 1)) = "x"

Cells(10, 3 + 3 * (j - 1)) = "y+"

Cells(10, 4 + 3 * (j - 1)) = "y-"

For i = 0 To n

Cells(i + 11, 1) = t

Cells(i + 11, 2 + 3 * (j - 1)) = x

Cells(i + 11, 3 + 3 * (j - 1)) = y

Cells(i + 11, 4 + 3 * (j - 1)) = -y                

LX1 = gx(Alpha, t, x, y)

Ly1 = gy(Alpha, t, x, y)

Kx1 = fx(t, x, y, vx, vy)

Ky1 = fy(t, x, y, vx, vy)              

LX2 = gx(Alpha, t + h / 2, x + h * Kx1 / 2, y + h * Ky1 / 2)

Ly2 = gy(Alpha, t + h / 2, x + h * Kx1 / 2, y + h * Ky1 / 2)

Kx2 = fx(t + h / 2, x + h * Kx1 / 2, y + h * Ky1 / 2, vx + h * LX1 / 2, vy + h * Ly1 / 2)

Ky2 = fy(t + h / 2, x + h * Kx1 / 2, y + h * Ky1 / 2, vx + h * LX1 / 2, vy + h * Ly1 / 2)                    

LX3 = gx(Alpha, t + h / 2, x + h * Kx2 / 2, y + h * Ky2 / 2)

Ly3 = gy(Alpha, t + h / 2, x + h * Kx2 / 2, y + h * Ky2 / 2)

Kx3 = fx(t + h / 2, x + h * Kx2 / 2, y + h * Ky2 / 2, vx + h * LX2 / 2, vy + h * Ly2 / 2)

Ky3 = fy(t + h / 2, x + h * Kx2 / 2, y + h * Ky2 / 2, vx + h * LX2 / 2, vy + h * Ly2 / 2)                                           

LX4 = gx(Alpha, t + h, x + h * Kx 3, y + h * Ky3)

Ly4 = gy(Alpha, t + h, x + h * Kx 3, y + h * Ky3)

Kx4 = fx(t + h, x + h * Kx3, y + h * Ky3, vx + h * LX3, vy + h * Ly3)

Ky4 = fy(t + h, x + h * Kx3, y + h * Ky3, vx + h * LX3, vy + h * Ly3)    

vx = vx + h * (LX1 + 2 * LX2 + 2 * LX3 + LX4) / 6

vy = vy + h * (Ly1 + 2 * Ly2 + 2 * Ly3 + Ly4) / 6

x = x + h * (Kx1 + 2 * Kx2 + 2 * Kx3 + Kx4) / 6

y = y + h * (Ky1 + 2 * Ky2 + 2 * Ky3 + Ky4) / 6     

t = t + h

Next i

Next j

End Sub

FIGURE 1.16 VBA code to compute the trajectories of Rutherford scattering.



  Classical Mechanics   ◾   21

_____________________________________________________________________________________

Function gx(Alpha, t, x, y)

'dvx/dt=gx

gx = Alpha * x / ((x ^ 2 + y ^ 2) ^ 1.5)

End Function

_____________________________________________________________________________________

Function gy(Alpha, t, x, y)

'dvy/dt=gy

gy = Alpha * y / ((x ^ 2 + y ^ 2) ^ 1.5)

End Function

________________________________________________________________________________ _____

Function fx(t, x, y, vx, vy)

'vx=dx/dt

fx = vx

End Function

_____________________________________________________________________________________

Function fy(t, x, y, vx, vy)

'vy=dy/dt

fy = vy

End Function

FIGURE 1.16 Continued.

FIGURE 1.17 Trajectories of Rutherford scattering.
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1.5  ROTATIONAL MOTIONS
1.5.1  Rotational Motion with Reducing Radius

An object attached to a pivot point of a friction-free surface by a string is rotating on the 

surface as shown in Figure 1.19. The string is being shortened by a constant radial force F 

such that the string length is r(t) = r0(1 − εt) where r0 is the initial length and ε is the reduc-

tion rate. The mass of the object is m and the angular velocity of the object is ω(t). The basic 

equations for these rotational motions are:

Equation of motion is angular momentum and is towhere:
dL

dt
L
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Because the force pulling the string does cause no torque, the angular momentum is con-

served and we obtain
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Thus, the time dependence of the angular velocity is
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The rotational kinetic energy is not conserved. The change in the kinetic energy is given by
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FIGURE 1.18 Scattering angle vs impact parameter.
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The change in the kinetic energy is due to the work done by the pulling force which is the 

centripetal force.
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Figure 1.19 shows the VBA code where r0 = 1, ε = 0.5, ω0 = 10π, and the time interval is 1 s.

Figure 1.20 shows the trajectory and the angular velocity of the object. The angular 

velocity ω increases as the radius is reduced.

1.5.2  Euler’s Equation for Rotational Motions

Figure 1.21 depicts two coordinate systems: the lab (space)-fixed xyz-frame and a rotating 

XYZ-frame. Consider a point P, e.g., the center of mass, in a rigid body, and the coordinates 

Sub AngMomentum()

Cells(1, 1) = "Rotational motion of an object while the string attached to the object is reduced."

Dim Omega(1001)

Dim Theta(1001)

Dim x(1000)

Dim y(1000)

Dim Radius(1001)

Dim TanSpeed(1001)

Dim KE(1001)

Dim F(1001)

Epsilon = 0.5                  'Reduction rate of radius

Omega0 = 10 * 3.1415: R0 = 1#: m = 2#  'Initial values of angular velocity and radius, and mass

TanSpeed(0) = R0 * Omega0        'Initial tangential speed

Cells(2, 1) = "R0": Cells(2, 2) = "Omega0": Cells(2, 3) = "Radius reduction rate"

Cells(3, 1) = R0: Cells(3, 2) = Omega0: Cells(3, 3) = Epsilon

Cells(5, 2) = "Time": Cells(5, 3) = "R adius": Cells(5, 4) = "Omega": Cells(5, 5) = "Theta"

Cells(5, 6) = "x": Cells(5, 7) = "y": Cells(5, 8) = "Tan v"

Cells(5, 9) = "KE": Cells(5, 10) = "Fc"

'Initialization:

For i = 0 To 1000

Omega(i) = 0: Theta(i) = 0: x(i) = 0: y(i) = 0

Radius(i) = 0: TanSpeed(i) = 0: KE(i) = 0: F(i) = 0

Next i

For i = 0 To 999

t = 0.001 * i

Radius(i) = R0 - Epsilon * t

Omega(i) = (R0 / Radius(i)) ^ 2 * Omega0

Theta(i) = Omega(i) * t

x(i) = Radius(i) * Cos(Theta(i))

y(i) = Radius(i) * Sin(Theta(i))

TanSpeed(i) = Radius(i) * Omega(i)

KE(i) = m * (TanSpeed(i)) ^ 2 / 2

F(i) = m * Radius(i) * (Omega(i)) ^ 2

Cells(6 + i, 2) = t

Cells(6 + i, 3) = Radius(i)

Cells(6 + i, 4) = Omega(i)

Cells(6 + i, 5) = Theta(i)

Cells(6 + i, 6) = x(i)

Cells(6 + i, 7) = y(i)

Cells(6 + i, 8) = TanSpeed(i)

Cells(6 + i, 9) = KE(i)

Cells(6 + i, 10) = F(i)

Next i

End Sub

FIGURE 1.19 Rotational motion of an object while the radius is reduced.
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of the point P in a lab-fixed xyz-frame. Let the XYZ-frame be attached to the rigid body 

with the origin at the point P. The position and orientation of the body is completely given 

in terms of the origin of the body-fixed frame (X, Y, Z) and the orientation of the body-

fixed frame (X, Y, Z) with respect to the lab frame (x, y, z). The orientation of the body-fixed 

frame is expressed using Euler’s angles (θ, φ, ψ). For the definition of Euler’s angles, refer 

to Appendix A5.

A rigid body has three mutually orthogonal principal axes, along which principal 

moment of inertia can be defined as Ii; i = 1, 2, 3 [7, 8]. Using the principal axes, kinematic 

variables such as angular momentum and rotational kinetic energy may be written with-

out cross terms among the principal axes. Assign the body-fixed frame along the principal 

axes of a rigid body (1, 2, 3).

The rotational equation motion, called Euler equation, in the body-fixed XYZ-frame, 

which is rotating with respect to the spaced-fixed frame, is given by

 
dL

dt
L ii

i
i� �� � � �

 
� � where 1 2 3, , . (1.44)

FIGURE 1.21 Lab-fixed frame and body-fixed frame.

FIGURE 1.20 Trajectory and angular velocity of rotating object.



  Classical Mechanics   ◾   25

Here, L, ω, and τ are angular momentum, angular velocity, and torque, respectively. For a 

rigid body, they are generally different along each of the principal axes. Thus, the explicit 

forms of equation (1.44) are
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In the above Equation 1.45, Ii (i = 1, 2, 3) are the principal moments of inertia. If a rigid 

body has an axis of symmetry, then rotations about that axis will be dynamically balanced. 

That is, that axis is a principal axis, and we can use the symmetries of a body to recognize 

principal axes.

The angular velocities ω’s are given by the Euler angles (θ, φ, ψ) and their time derivatives.
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The Euler angles are called “θ = nutation,” “φ = precession,” and “ψ = spin” for rigid body 

dynamics.

In order to describe the motion of a rotating body, we need to solve:

 (1) Euler’s Equation 1.42 is applied to obtain ω1, ω2, and ω3 and

 (2) The directions of the principal axes change with respect to the lab frame.

1.5.3  Free Rotation of a Symmetrical Top

Free rotation means that there is no external torque. The equation of rotational motion in 

the space-fixed frame is given by
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Thus, the angular momentum is constant in its direction and magnitude as observed in 

the space-fixed frame. Let us take the Z-axis of the body-fixed frame along the angular 

momentum. In the body-fixed frame, angular momentum is given by Li = Iiωi, i = 1, 2, 3 

along the principal axes. For a symmetrical top, take I1 = I2 ≠ I3 where I3 is along the spin-

ning axis (Z-axis) of the top. With these conditions, the Euler Equation 1.45 in the body-

fixed frame are
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From the third equation, ω3 = constant, which means L3 = Lcosθ along the Z-axis, and ω3 

= L3/I3 = (Lcosθ)/I3 where L is the magnitude of the angular momentum. The projection of 

the angular velocity ωxy on the XY-plane is constant. Define the projection of the angular 

momentum Lxy on the XY-plane, and ωxy = Lxy/I1 = Lsinθ/I1.

Let the angular velocity of precession ωpr: ωpr = L/I1. (1.49)

The angular velocity vector is given by 
� ɵ

�
� � �� �3 k L Lpr /  where k̆ is the unit vector along 

the spinning Z-axis. Notice that ωxy = Lsinθ/I1 = ωprsinθ. As shown in Figure 1.22, the 

motion of a free rotation of a symmetrical top consists of a spin rotation, with a constant 

rate ω3 = (Lcosθ)/I3 around the body-fixed axis, combined with a precession with a constant 

angle θ and a rate ωpr = L/I1 of the body-fixed axis with respect to the space-fixed z-axis.

Figure 1.23  lists the VBA code to compute the free rotation of a symmetrical body by 

applying the Runge-Kutta method (Appendix A3). Since we expect θ = constant and dθ/dt 

= 0, from Equation 1.46, we use the following equation to calculate θ, φ, and ψ:

 
�

�

�

� � �

� � �

� �

1

2

3

�

�

�
�
�

�

�

�
�
�
�

�

�

�

�
�
�

�

�

�
�
�





sin sin

sin cos

cos

, and wwe obtain

�

� � � �

� � � �

�

� � �

� � �

�cos ( / ).

/ sin / .

cos (

1
3

1
2

2
2

1

3

L L

L I
  LL I L I3 3 1/ ) ( / )cos .�

�

�
��

�
�
�

�
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Figure 1.24 is a screenshot of the calculated results where theta1, theta2, theta3, 

omega1, omega2, omega3, L3, and L are in the body-fixed frame. Principal moments 

of inertia I1, I2, and I3 are also shown on the sheet. Angles θ(theta), φ(phi), 

FIGURE 1.22 Free rotation of a symmetrical top.



  Classical Mechanics   ◾   27

Sub FreeTop()

Cells(1, 1) = "Free rotation of symmetrical top with no external torque"

'Principal moment of inertia of symmetrical top: I 1=I2

Cells(2, 2) = "I1=": I1 = 1#: Cells(2, 3) = I1

Cells(2, 5) = "I2=": I2 = I1: Cells(2, 6) = I2

Cells(2, 8) = "I3=": I3 = 2#: Cells(2, 9) = I3

Pi = 3.14159265

'Initial conditions to assume the top starts at rest with a give orientation.

Cells(5, 1) = "time": t = 0: Cells(6, 1) = t

Cells(5, 2) = "theta1": theta1 = 0: Cells(6, 2) = theta1  'Angle between principal axis 1 and z-axis

Cells(5, 3) = "theta2": theta2 = 0: Cells(6, 3) = theta2   'Rotation around z-axis

Cells(5, 4) = "theta3": theta3 = 0: Cells(6, 4) = theta3  'Rotation around new z-axis after theta2-rotation

Cells(5, 5) = "omega1": omega1 = 1: Cells(6, 5) = omega1

Cells(5, 6) = "omega2": omega2 = 1: Cells(6, 6) = omega2

Cells(5, 7) = "omega3": omega3 = Pi: Cells(6, 7) = omega3

Cells(5, 8) = "L3": L10 = I1 * omega1: L30 = I3 * omega3: Cells(6, 8) = L30                      'Initial L1 & L3

Cells(5, 9) = "L": L0 = ((I1 * omega1) ^ 2 + (I2 * omega2) ^ 2 + (I3 * omega3) ^ 2) ^ 0.5: Cells(6, 9) = L0 'Initial L

Cells(5, 10) = "theta": theta0 = WorksheetFunction.Acos(L30 / L0): Cells(6, 10) = theta0

Cells(5, 11) = "phi": Phi = 0: Cells(6, 11) = Phi

Cells(5, 12) = "psi": psi = 0: Cells(6, 12) = psi

Cells(5, 13) = "d(phi)/dt": Precession = L / I 1: Cells(6, 13) = Precession

Cells(5, 14) = "d(psi)/dt": Spinning = omega 3 - Precession * (L10 / L0): Cells(6, 14) = Spinning

'RK method:

Cells(3, 1) = "delta-t": h = 0.005: Cells(3, 2) = h

n = 1000 'Number of repetitions

For i = 0 To n

Cells(6 + i, 1) = t

Cells(6 + i, 2) = theta1

Cells(6 + i, 3) = theta2

Cells(6 + i, 4) = theta3

Cells(6 + i, 5) = omega1

Cells(6 + i, 6) = omega2

Cells(6 + i, 7) = omega3

K11 = f1(I1, I2, I3, t, omega1, omega2, omega3)

L11 = g1(I1, I2, I3, t, omega1, omega2, omega3)

K21 = f2(I1, I2, I3, t, omega1, omega2, omega3)

L21 = g2(I1, I2, I3, t, omega1, omega2, omega3)

K31 = f3(I1, I2, I3, t, omega1, omega2, omega3)

L31 = g3(I1, I2, I3, t, omega1, omega2, omega3)

K12 = f1(I1, I2, I3, t + h / 2, omega1 + h * K11 / 2, omega2 + h * K21 / 2, omega3 + h * K31 / 2)

L12 = g1(I1, I2, I3, t + h / 2, omega1 + h * L11 / 2, omega2 + h * L21 / 2, omega3 + h * L31 / 2)

K22 = f2(I1, I2, I3, t + h / 2, omega1 + h * K11 / 2, omega2 + h * K21 / 2, omega3 + h * K31 / 2)

L22 = g2(I1, I2, I3, t + h / 2, omega1 + h * L11 / 2, omega2 + h * L21 / 2, omega3 + h * L31 / 2)

K32 = f3(I1, I2, I3, t + h / 2, omega1 + h * K11 / 2, omega2 + h * K21 / 2, omega3 + h * K31 / 2)

L32 = g3(I1, I2, I3, t + h / 2, omega1 + h * L11 / 2, omega2 + h * L21 / 2, omega3 + h * L31 / 2)

K13 = f1(I1, I2, I3, t + h / 2, omega1 + h * K12 / 2, omega2 + h * K22 / 2, omega3 + h * K32 / 2)

L13 = g1(I1, I2, I3, t + h / 2, omega1 + h * L12 / 2, omega2 + h * L22 / 2, omega3 + h * L32 / 2)

K23 = f2(I1, I2, I3, t + h / 2, omega1 + h * K12 / 2, omega2 + h * K22 / 2, omega3 + h * K32 / 2)

L23 = g2(I1, I2, I3, t + h / 2, omega1 + h * L12 / 2, omega2 + h * L22 / 2, omega3 + h * L32 / 2)

K33 = f3(I1, I2, I3, t + h / 2, omega1 + h * K12 / 2, omega2 + h * K22 / 2, omega3 + h * K32 / 2) 

L33 = g3(I1, I2, I3, t + h / 2, omega1 + h * L 12 / 2, omega2 + h * L22 / 2, omega3 + h * L32 / 2)

K14 = f1(I1, I2, I3, t + h, omega1 + h * K13, omega2 + h * K23, omega3 + h * K33)

L14 = g1(I1, I2, I3, t + h, omega1 + h * L13, omega2 + h * L23, omega3 + h * L33)

K24 = f2(I1, I2, I3, t + h, omega1 + h * K13, omega2 + h * K23, omega3 + h * K33)

L24 = g2(I1, I2, I3, t + h, omega1 + h * L13, omega2 + h * L23, omega3 + h * L33)

K34 = f3(I1, I2, I3, t + h, omega1 + h * K13, omega2 + h * K23, omega3 + h * K33)

L34 = g3(I1, I2, I3, t + h, omega1 + h * L13, omeg a2 + h * L23, omega3 + h * L33)

omega1 = omega1 + h * (L11 + 2 * L12 + 2 * L13 + L14) / 6

omega2 = omega2 + h * (L21 + 2 * L22 + 2 * L23 + L24) / 6

omega3 = omega3 + h * (L31 + 2 * L32 + 2 * L33 + L34) / 6

theta1 = theta1 + h * (K11 + 2 * K12 + 2 * K13 + K14) / 6

theta2 = theta2 + h * (K21 + 2 * K22 + 2 * K23 + K24) / 6

theta3 = theta3 + h * (K31 + 2 * K32 + 2 * K33 + K34) / 6

L1 = I1 * omega1: L2 = I2 * omega2: L3 = I3 * omega3

L = (L1 ^ 2 + L2 ^ 2 + L3 ^ 2) ^ 0.5

FIGURE 1.23 VBA code for analyzing motion of free rotor.
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FIGURE 1.24 Result from the VBA code listed in Figure 1.23.

Precession = L / I1                           'd(phi)/dt=L/I1

Spinning = omega3 - Precession * Cstheta     'd(psi)/dt

theta = WorksheetFunction.Acos(L3 / L)    'theta=arccos(L3/L)

Phi = Precession * t + Phi               'phi=phi+d(phi)/dt

psi = Spinning * t + psi                   'psi=psi+d(psi)/dt

Cells(6 + i, 8) = L3

Cells(6 + i, 9) = L

Cells(6 + i, 10) = theta

Cells(6 + i, 11) = Phi

Cells(6 + i, 12) = psi

Cells(6 + i, 13) = Precession               'd(phi)/dt

Cells(6 + i, 14) = Spinning                 'd(psi)/dt

t = t + h

Next i

End Sub

_________________________________________________________________________

Function g1(I1, I2, I3, t, omega1, omega2, omega 3)

'g1=d(omega1)/dt is the second time derivative of theta1.

g1 = (I2 - I3) / I1 * omega2 * omega3

End Function

_________________________________________________________________________

Function g2(I1, I2, I3, t, omega1, omega2, omega3)

'g2=d(omega2)/dt is the second time derivative of theta1.

g2 = (I3 - I1) / I2 * omega3 * omega1

End Function

_________________________________________________________________________

Function g3(I1, I2, I3, t, omega1, omega2, omega3)

'g3=d(omega3)/dt is the second time derivative of theta1.

g3 = (I1 - I2) / I3 * omega1 * omega2

End Function

_________________________________________________________________________

Function f1(I1, I2, I3, t, omega1, omega2, omega3)

'f1=d(theta1)/dt

f1 = omega1

End Function

_________________________________________________________________________

Function f2(I1, I2, I3, t, omega1, omega2, omega3)

'f2=d(theta2)/dt

f2 = omega2

End Function

_________________________________________________________________________

Function f3(I1, I2, I3, t, omega1, omega2, omega3)

'f3=d(theta3)/dt

f3 = omega3

End Function

FIGURE 1.23 Continued.
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ψ(psi) are as observed from the lab-fixed frame. As we expect, angular momentum L 

and its Z-component L3, angle θ, the precession rate dφ/dt, and the spinning rate dψ/dt are 

constant in time.

Figure 1.25 shows the trajectories in the body (XY) frame and in the lab (xy) frame.

Note: Free rotation of the Earth [9]. The moments of inertia I1, I2, and I3 of the Earth are 

I1 = I2 < I3 and (I3 − I1)/I1 = ε is approximately 1/300. The direction of the rotating body 

(the Earth) which is the fixed axis Z points to the North Pole. The direction of the angular 

momentum 

L  is very close to the North Pole. Referring to Figure 1.22, the angle θ between 

the Z-axis and 

Lis θ≈0.1” of arc., which is an actual distance 10 m or so on the surface of 

the Earth between the North Pole and the point where the 

L-vector out of the Earth. The 

direction of 

ω can be measured by locating the center of diurnal motions of stars. Accurate 

measurement shows that the direction of 

ω moves with respect to the Earth, making a 

circle of radius of about 10 m in 400 days.

We may analyze this motion. In Section 1.5.3, we obtained

Θ = constant, ω3 = L3/I3 = (Lcosθ)/I3, and ωxy = Lsinθ/I1 = ωprsinθ.

FIGURE 1.25 Trajectories of free rotor.
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In Figure 1.22, the angle between 

ω and the Z-axis is χ, and

tan tan�
�
�

�� �XY I

I3

3

1

. Thus, χ is slightly larger than θ.

The period of a circular motion of the tip of 

ω around the North Pole is given by ψ . 

This is the rate with which an observer fixed to the rotating XYZ-frame of the Earth sees 

the z-axis. The space-fixed z-axis is in the direction of 

L  which makes a cone of angle θ 

around the direction of the Earth-fixed Z-axis toward the North Pole. From Equations 1.48 

and 1.49,
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Because I1/I3≈1, cosθ≈1, and � �1 turn per day, we obtain � �1 turn per 300 days. The 

observed rate is 1 per 400 days, and the difference may be primarily due to non-rigid prop-

erties of the Earth.

1.5.4  A Symmetric Top Rotating about a Fixed Point in the Presence of Gravity

The gravitational force mg produces torque, and unlike the free rotation discussed earlier, 

the angular momentum is not aligned with the lab z-axis but processes about the z-axis 

[8]. The angular momentum in the body-fixed frame is Li = Iiωi, i = 1, 2, 3. Equations 1.47 

and 1.48 are applicable to this problem. We study the motion of the top in θ and φ while 

allowing it to spin with angular velocity ψ relative to a frame rotating with angular velocity 

ω. We also assume the spinning rate ψ is much faster than both θand ϕ. The angular veloc-

ity and the angular momentum of the symmetric top in the body-fixed frame are given by
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Because the external force is only the gravity mg, the Euler equations 1.51 become
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where l is the distance from the fixed point to the center of mass of the top.
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1.5.5  Steady Precession about the Space-Fixed z-Axis

The top rotates with spin velocity ψabout its principal axis and makes a precession with 

angular velocity ϕwhile angle θ is kept constant: � � 0 and  � �� 0 ; � � 0 and  � �� 0 ; 
� � 0 and  � �� 0 . Because we assume ɺ ≫ ɺ� �, in the first Equation 1.49,   � � � �cos � �

and     �� � ��� �2 . Thus, I mgl3  �� �  and the precession angular velocity is given by 
 � ��mgl I/ 3 . Figure 1.26 depicts the steady precession of a top about the space-fixed z-axis.

1.5.6  Unsteady Precession

Rearrange Equations 1.52 to express the second-time derivatives of θ, φ, and ψ using their 

first derivatives,
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FIGURE 1.26 Steady precession of a top with a fixed point under gravity.
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Equations 1.53 are the coupled differential equations that can be numerically solved 

with the Runge-Kutta method (Appendix A3). As θ(t) is computed, φ(t) and ψ(t) are also 

computed.

There are three constant quantities during the motion. From the second and the third 

equations of the set of Equations 1.52,
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Thus, the ψ-component of angular momentum

 p I� � � �� �� �3   cos  (1.55)

and the φ-component of angular momentum
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are constants in time. The total energy is also a constant in time.
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Figure 1.27   lists the VBA code to compute the coupled equations 1.55 to 1.57. We calculate 

the trace of the tip of the top in the XYZ-frame using X = sinθcosφ, Y = sinθsinφ, and Z = 

cosθ. The traces are displayed in the top view (XY-plane) and the side view (YZ-plane). The 

number of iteration and the time step are adjusted so that motions per about one turn are 

displayed. The code also calculates pφ, pψ, and E.

We observe three different patterns of nutation. Below is a theoretical description of the 

patterns and their examples from the computational results. Let cosθ = z in the total energy 

of the top, Equation 1.57 becomes
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Sub TopUnderGravity()

Cells(1, 1) = "Top with a fixed point under gravity"

'Principal moment of inertia   'Symmetrical top means I1=I2

Cells(2, 2) = "I1=": I1 = 1: Cells(2, 3) = I1 'Moment of inertia along body -fixed X-axis.

Cells(2, 5) = "I2=": I2 = I1: Cells(2, 6) = I2 'Along body-fixed Y-axis.

Cells(2, 8) = "I3=": I3 = 2: Cells(2, 9) = I3 'Along body-fixed  Z-axis.

MGL = 20 'MGL = m * g * lgt / I3 'The max MGL depends on I 1 and I3.

Pi = 3.141592654

'Initial conditions to assume the top starts at rest with a give orientation.

Cells(5, 1) = "Time": t = 0: Cells(6, 1) = t

Cells(5, 2) = "theta": theta = Pi / 3: Cells(6, 2) = theta     'Nutation=theta = theta: angle between principal axis 1 and z-axis

Cells(5, 3) = "phi": phi = 0: Cells(6, 3) = phi   'Precession=phi = phi: rotation around z -axis

Cells(5, 4) = "psi": psi = Pi / 8: Cells(6, 4) = psi  'Spinning=psi = psi: rotation around new z -axis after phi-rotation

Cells(5, 5) = "dtheta": dtheta = 5: Cells(6, 5) = dtheta 'Nutation rate: dtheta = d(theta) / dt

Cells(5, 6) = "dphi": dphi = 0.5: Cells(6, 6) = dphi      'Precession rate: dphi = d(phi) / dt

Cells(5, 7) = "dpsi": dpsi = 2.5 * Pi: Cells(6, 7) = dpsi 'Spinn rate: dpsi = d(psi) / dt

Cells(5, 8) = "L3": L3 = I3 * dpsi: Cells(6, 8) = L3

Cells(5, 9) = "L": L = ((I1 * dtheta) ^ 2 + (I2 * dphi) ^ 2 + (I3 * dpsi) ^ 3) ^ 0.5

Cells(6, 9) = L

Cells(5, 10) = "p(psi)": Ppsi = I3 * dpsi: Cells(6, 10) = Ppsi

Cells(5, 11) = "p(phi)": Pphi = I1 * dphi * Sin(theta) ^ 2 + Ppsi * Cos(theta)

Cells(6, 11) = Pphi

omega1 = dtheta * Cos(psi) + dphi * Sin(theta) * Sin(psi)

omega2 = dphi * Sin(theta) * Cos(psi) - dtheya * Sin(psi)

omega3 = dpsi + dphi * Cos(theta)

Cells(5, 12) = "Total E": E = 0.5 * (I1 * mega1 ^ 2 + I2 * omega2 ^ 2 + I3 * omega3 ^ 2)

Cells(6, 12) = E

Cells(5, 14) = "X": X = Sin(theta) * Cos(phi):  Cells(6, 14) = X  'Body-fixed X-component

Cells(5, 15) = "Y": Y = Sin(theta) * Sin(phi): Cells(6, 15) = Y  'Y-component

Cells(5, 16) = "Z": Z = Cos(theta): Cells(6, 16) = Z            'Z-component

'RK method:

Cells(3, 1) = "del-t": h = 0.003: Cells(3, 2) = h

n = 1000 'Number of repetitions

For i = 0 To n

Cells(6 + i, 1) = t

Cells(6 + i, 2) = theta

Cells(6 + i, 3) = phi

Cells(6 + i, 4) = psi

Cells(6 + i, 5) = dtheta

Cells(6 + i, 6) = dphi

Cells(6 + i, 7) = dpsi

omega1 = dtheta * Cos(psi) + dphi * Sin(theta) * Sin(psi)

omega2 = dphi * Sin(theta) * Cos(psi) - dtheta * Sin(psi)

omega3 = dpsi + dphi * Cos(theta)

L3 = I3 * omega3:  Cells(6 + i, 8) = L3

L = ((I1 * omega1) ^ 2 + (I2 * omega2) ^ 2 + (I3 * omega3) ^ 2) ^ 0.5 :  Cells(6 + i, 9) = L

Ppsi = I3 * (dpsi + dphi * Cos(theta)): Cells( 6 + i, 10) = Ppsi

Pphi = I1 * Sin(theta) ^ 2 * phi + Ppsi: Cells(6 + i, 11) = Pphi

E = 0.5 * (I1 * omega1 ^ 2 + I2 * omega2 ^ 2 + I3 * omega3 ^ 2): Cells(6 + i, 12) = E

X = Sin(theta) * Cos(phi):  Cells( 6 + i, 14) = X

Y = Sin(theta) * Sin(phi): Cells( 6 + i, 15) = Y

Z = Cos(theta): Cells(6 + i, 16) = Z

L11 = g1(I1, I3, MGL, t, theta, phi, psi, dtheta, dphi, dpsi)

K11 = f1(I1, I3, MGL, t, theta, p hi, psi, dtheta, dphi, dpsi)

L21 = g2(I1, I3, MGL, t, theta, phi, psi, dtheta, dphi, dpsi)

K21 = f2(I1, I3, MGL, t, theta, phi, psi, dtheta, dphi, dpsi)

L31 = g3(I1, I3, MGL, t, theta, phi, psi, dtheta, dphi, dpsi)

K31 = f3(I1, I3, MGL, t, theta, phi, psi, dtheta, dphi, dpsi)

L12 = g1(I1, I3, MGL, t + h / 2, theta + h * L11 / 2, phi + h * L21 / 2, psi + h * L31 / 2, dtheta + h * L11 / 2, dphi + h * L21 / 2, dpsi + h * L31 / 2) 

K12 = f1(I1, I3, MGL, t + h / 2, theta + h * K11 / 2, phi + h * K21 / 2, psi + h * K31 / 2, dtheta + h * K11 / 2, dphi + h * K21 / 2, dpsi + h * K31 / 2)  

L22 = g2(I1, I3, MGL, t + h / 2, theta + h * L11 / 2, phi + h * L21 / 2, psi + h * L31 / 2, dtheta + h * L11 / 2, dphi + h * L21 / 2, dpsi + h * L31 / 2)  

K22 = f2(I1, I3, MGL, t + h / 2, theta + h * K11 / 2, phi + h * K21 / 2, psi + h * K31 / 2, dtheta + h * K11 / 2, dphi + h * K21 / 2, dpsi + h * K31 / 2)  

L32 = g3(I1, I3, MGL, t + h / 2, theta + h * L11 / 2, phi + h * L21 / 2, psi + h * L31 / 2, dtheta + h * L11 / 2, dphi + h * L21 / 2, dpsi + h * L31 / 2)  

FIGURE 1.27 VBA code for unsteady precession.
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K32 = f3(I1, I3, MGL, t + h / 2, theta + h * K11 / 2, phi + h * K21 / 2, psi + h * K31 / 2, dtheta + h * K11 / 2, dphi + h * K21 / 2, dpsi + h * K31 / 2)  

L13 = g1(I1, I3, MGL, t + h / 2, theta + h * L12 / 2, phi + h * L22 / 2, psi + h * L32 / 2, dtheta + h * L12 / 2, dphi + h * L22 / 2, dpsi + h * L32 / 2)  

K13 = f1(I1, I3, MGL, t + h / 2, theta + h * K12 / 2, phi + h * K22 / 2, psi + h * K32 / 2, dtheta + h * K12 / 2, dphi + h * K22 / 2, dpsi + h * K32 / 2) 

L23 = g2(I1, I3, MGL, t + h / 2, theta + h * L12 / 2, phi + h * L22 / 2, psi + h * L32 / 2, dtheta + h * L12 / 2, dphi + h * L22 / 2, dpsi + h * L32 / 2)  

K23 = f2(I1, I3, MGL, t + h / 2, theta + h * K12 / 2, phi + h * K22 / 2, psi + h * K32 / 2, dtheta + h * K12 / 2, dphi + h * K22 / 2, dpsi + h * K32 / 2) 

L33 = g3(I1, I3, MGL, t + h / 2, theta + h * L12 / 2, phi + h * L22 / 2, psi + h * L32 / 2, dtheta + h * L12 / 2, dphi + h * L22 / 2, dpsi + h * L32 / 2) 

K33 = f3(I1, I3, MGL, t + h / 2, theta + h * K12 / 2, phi + h * K22 / 2, psi + h * K32 / 2, dtheta + h * K12 / 2, dphi + h * K22 / 2, dpsi + h * K32 / 2) 

L14 = g1(I1, I3, MGL, t + h, theta + h * L13, phi + h * L23, psi + h * L33, dtheta + h * L13, dphi + h * L23, dpsi + h * L33)

K14 = f1(I1, I3, MGL, t + h, theta + h * K13, phi + h * K23, psi + h * K33, dtheta + h * K13, dphi + h * K23, dpsi + h * K33)

L24 = g2(I1, I3, MGL, t + h, theta + h * L13, phi + h * L23, psi + h * L33, dtheta + h * L13, dphi + h * L23, dpsi + h * L33)

K24 = f2(I1, I3, MGL, t + h, theta + h * K13, phi + h * K 23, psi + h * K33, dtheta + h * K13, dphi + h * K23, dpsi + h * K33)

L34 = g3(I1, I3, MGL, t + h, theta + h * L13, phi + h * L23, psi + h * L33, dtheta + h * L13, dphi + h * L23, dpsi + h * L33)

K34 = f3(I1, I3, MGL, t + h, theta + h * K13, phi + h * K23, psi + h * K33, dtheta + h * K13, dphi + h * K23, dpsi + h * K33)

dtheta = dtheta + h * (L11 + 2 * L12 + 2 * L13 + L14) / 6

dphi = dphi + h * (L21 + 2 * L22 + 2 * L23 + L24) / 6

dpsi = dpsi + h * (L31 + 2 * L32 + 2 * L33 + L34) / 6

theta = theta + h * (K11 + 2 * K12 + 2 * K13 + K14) / 6

phi = phi + h * (K21 + 2 * K22 + 2 * K23 + K24) / 6

psi = psi + h * (K31 + 2 * K32 + 2 * K33 + K34) / 6

alpha = psi ^ 2 / (I1 * I3) - 2 * E / I1

beta = I1 * Sin(theta) ^ 2 * dphi + Ppsi

a = 2 * MGL / I1

b = Ppsi / I1

Cells(2, 14) = "alpha / a": Cells( 3, 14) = alpha / a

Cells(2, 15) = "beta / b": Cells(3, 15) = beta / b

t = t + h

Next i

End Sub

______________________________________________________________________________________________

Function g1(I1, I3, MGL, t, theta, phi, psi, dtheta, dphi, dpsi)

'g1=d(dtheta)/dt is the second time derivative of theta.

g1 = (1 - I3 / I1) * Sin(theta) * Cos(theta) * dphi ^ 2 - (I3 / I1) * Sin(theta) * dphi * dpsi + (MGL / I 1) * Sin(theta)

End Function

______________________________________________________________________________________________

Function g2(I1, I3, MGL, t, theta, phi, psi, dtheta, dphi, dps i)

'g2=d(dphi)/dt is the second time derivative of theta.

g2 = ((I3 / I1 - 2) * Cos(theta) * dphi + (I3 / I1) * dpsi) * dtheta / Sin(theta)

End Function

______________________________________________________________________________________________

Function g3(I1, I3, MGL, t, theta, phi, psi, dtheta, dphi, dpsi)

'g3=d(dpsi)/dt is the second time derivative of theta.

g3 = (((2 - I3 / I1) * Cos(theta) ^ 2 / Sin(theta) + Sin(theta)) * dphi - (I3 / I1) * Sin(theta) * dpsi) * dtheta

End Function

______________________________________________________________________________________________

Function f1(I1, I3, MGL, t, theta, phi, psi, dtheta, dphi, dpsi)

'f1=d(theta)/dt

f1 = dtheta

End Function

__________________________________________________________________ ____________________________

Function f2(I1, I3, MGL, t, theta, phi, psi, dtheta, dphi, dpsi)

'f2=d(phi)/dt

f2 = dphi

End Function

______________________________________________________________________________________________

Function f3(I1, I3, MGL, t , theta, phi, psi, dtheta, dphi, dpsi)

'f3=d(psi)/dt

f3 = dpsi

End Function

______________________________________________________________________________________________

FIGURE 1.27 Continued.
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Notice that the cubic function (1.58) has the properties,

 f f z z( ) ( ) ( ) .� � � � � ��1 1 0 0 12� and if  (1.59)

Figure 1.28 is a schematic graph of f(z). As shown in the figure, f(z) should have three roots 

that satisfy f(zi) = 0 where i = 1, 2, 3 and −1 < z1 < z2 < +1< z3. Since f(z) is square of the 

time derivative of z = cosθ, f(z) must be non-negative. Therefore, physically possible roots 

must be z1 and z2. Let z1 = cosθ1 and z2 = cosθ2. For 0 ≤ θ ≤ π/2, since cosθ1 < cosθ2, θ1 ≤ θ 

≤ θ2. The nutation of θ will be limited between θ1 and θ2.

From the angular momentum pφ, the time derivative of the angle φ is given by

 �
�

�
� ��
�p p

I

cos

sin
.

1
2

 (1.60)

Define angle θ3 such that � � 0, i.e., cos� �

�
3 �

p

p
. Then, comparing the smaller angle θ1 for  

the nutation with θ3, we have three different cases that determine the nutation: case 1: � � 0 

if θ1>θ3, case 2: � � 0  if θ1<θ3, and case 3: � � 0 if θ1=θ3.

Function f1(I1, I3, MGL, t, ang1, ang2, ang3, omega1, omega2, omega3)

'f1=d(theta)/dt

f1 = omega1

End Function

______________________________________________________________________________________________

______________________________________________________________________________________________

Function f2(I1, I3, MGL, t, ang1, ang2, ang3, omega1, omega2, omega3)

'f2=d(ang2)/dt

f2 = omega2

End Function

______________________________________________________________________________________________

Function f3(I1, I3, MGL, t, ang1, ang2, ang3, omega1, omega2, omega3)

'f3=d(ang3)/dt

f3 = omega3

End Function

FIGURE 1.27 Continued.

FIGURE 1.28 Function f(z) = (1 − z2)(α − az) − (ß − bz)2.
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Case1: θ1 > θ3. The time derivate of φ is positive throughout the nutation, and the rota-

tional direction of φ does not change. This motion is called unidirectional preces-

sion. Figure 1.29 shows the motion of this case and an actual computational result 

we obtained.

Case2: θ1<θ3. The time derivate of φ can change its sign, whence the rotational direc-

tion of φ becomes backward and the top axis moves backward. This motion is called 

looping precession. Figure 1.30 shows the motion of this case and an actual compu-

tational result.

Case3: θ1=θ3. The top, spinning about its axis with angular velocity � � � �3 � �  cos  is 

held with its axis initially at rest at an angle θ1, and then released. Initially, we have θ 

= θ1, 
� � 0, � � 0, and � �� 3 . Then, p I� �� 3 3andp I� � �� 3 3 1cos  at t = 0. This motion 

is called cuspidal precession. The schematic diagram of the motion of this case and a 

corresponding actual result are shown in Figure 1.31.

FIGURE 1.29 Unidirectional precession.

FIGURE 1.30 Looping precession.
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FIGURE 1.31 Cuspidal precession.

SUGGESTED FURTHER STUDY

Perhaps the readers would have seen a photograph of Niels Bohr and Wolfgang Pauli play-

ing with a special top called tippe top. The dynamics of a tippe top is complicated and 

beyond our scope, but it is worth reading related articles [10]. Another interesting topic 

is the Dzhanibekov effect or tennis racket theorem. The effect was discovered in a space-

station but had been kept secret for decades. Watch a video or read articles to know more 

about this strange effect [11, 12].
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C H A P T E R  2

Oscillations

Knowledge of oscillations and waves is on the front line with regard to advance-

ment in physics. We discuss classical harmonic oscillations with driving and/or 

damping force to describe the phenomena of resonance, weak oscillation, strong damp-

ing, and critical damping. Parametric excitations, which can be seen in swing motions 

and electronic devices, are noteworthy for acquiring knowledge of distinct oscillations and 

resonance. We also discuss a pair of pendulums with a nonlinear coupling mechanism 

between them. It is fascinating to view how these two pendulums interact with each other 

depending on their initial conditions.

2.1  HARMONIC OSCILLATION WITH EXTERNAL FORCES
2.1.1  Periodic Driving Force

The equation of a harmonic oscillator with an external force is given by

 
d x t

dt
x t f t

2

2 0
2( )

( ) ( )� ��  (2.1)

where ω0 is the angular frequency of the harmonic oscillator without the external force f(t) 

[1]. Assume that the driving force is periodic of angular frequency ω, i.e., f(t)=Fsinωt, then 

Equation 2.1 becomes

 
d x t

dt
x t F t

2

2 0
2( )

( ) sin( ).� �� �   (2.2)

The solution of differential Equation 2.2 can be given by adding a general solution of the 

homogenous equation, where F = 0 and any special solution of Equation 2.2. The general 

solution may have a form of y(t) = Asin(ω0t + c), where A and c are constants. Assume a 

special solution y(t) = Asin(ωt). From Equation 2.2, we obtain

 ( ) ( )
( )

sin( ),� �
� �

�0
2 2

0
2 2

� � �
�

A F x t
F

tand thus is a special solution.. (2.3)
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Therefore, a general solution of Equation 2.2 is given by

 x t A t c
F

t( ) sin( )
( )

sin( )� � �
�

�
� �

�0

0
2 2

 (2.4)

where c and A are determined by the initial condition. The above solution becomes infinite 

when ω = ω0. In other words, when the frequency of the driving force f(t) is the same as the 

natural frequency of the harmonic oscillator, resonance occurs. Notice if ω < ω0, the sec-

ond term of Equation 2.4 is out of phase of the external driving force. On the other hand, 

if ω > ω0, the second term becomes out of phase. There is a good demonstration conducted 

by the MIT Physics Lecture Demonstration Group [2].

Figure 2.1 lists the VBA code to calculate the displacement and velocity of the oscilla-

tor in Equation 2.2 using the Runge-Kutta method (Appendix A3). In this code, the trial 

angular frequency is set to 1 while the external driving frequency is changed.

Figure 2.2 shows the computed results of the VBA code. The broken curve in black is the 

oscillation without the external driving force, and the large red line is the resonating oscil-

lation with the angular frequency of the periodic driving force being equal to the natural 

angular frequency of the oscillator. Other oscillation patterns in green and blues are when 

the driving frequencies are 0.5 and 1.5, which do not excite the oscillation. Recall the phase 

of the natural oscillation, and the resonating oscillation is out of phase. The diagram of the 

phase space is an alternative view of the forced oscillation. The amplitude of the oscillation 

or the energy of the oscillation is rapidly accumulated in the oscillator.

2.1.2  Damping Force

Suppose the damping force is proportional to the velocity dx/dt, we obtain

 
d x

dt
k

dx

dt
x

2

2 0
22 0� � ��  (2.5)

where the periportal constant of the damping force is 2k.

Let y(t) = eγt, then � � �2
0
22 0� � �k  and the roots are

 �
�

�
� � �

�
� �2 4 4

2 2

2
0
2k k k D

 (2.6)

where D k� �2
0
2� . There are three distinct oscillation patterns depending on the numeri-

cal value of D.

Case 1 (D <0): Weak damping.

Possible roots (2.6) are � �1 � � �k i  and � �2 � � �k i , where � �� �0
2 2k . Thus, the general 

solution is given by

x t Ae Be e A B t i A B tt t kt( ) ( )cos ( )sin� � � � � ��� ��
�� � � �1 2 .
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Because x(t) should be real, both c≡A+B and d≡i(A−B) must be real. Conversely, A and B 

can be expressed by c and d: A = (c − id)/2 and B = (c + id)/2. Thus, A and B are complex 

conjugates. Using c and d, we obtain

 x t e c t d t ae tkt kt( ) cos sin cos( )� ��� �� � �� �� � � �  (2.7)

Sub ForcedOsci1()

Cells(1, 1) = "Harmonic oscillation with damping term and external periodic driving force"

'd(2)x/dt(2)+(omega0)^2x=F*sin(omega*t)   OR dv/dt= -(0mega0)^2x+Fsin(omega*t) and dx/dt=v

'Write labels and initial values in cells:

Cells(3, 1) = "Initial t": t = 0: Cells(4, 1) = t

Cells(3, 2) = "Initial x": x = 1: Cells(4, 2) = x

Cells(3, 3) = "Initial v": v = 0: Cells(4, 3) = v

Cells(3, 4) = "dt": h = 0.1: Cells(4, 4) = h

omega0 = 1  'Natural oscillation frequency without external factor

'Driving term F*sin(omega*t) where F=1 and omega=0.2 to 2.0 by step 0.2.

jj = 1

For j = 0 To 200 Step 25

omega = j / 100

t = 0

x = 1

v = 0

Cells(6, 2 + 2 * (jj - 1)) = "omega"

Cells(7, 2 + 2 * (jj - 1)) = omega

Cells(8, 1) = "time"

Cells(8, 2 + 2 * (jj - 1)) = "x"

Cells(8, 3 + 2 * (jj - 1)) = "v"

'Runge-Kutta parameters:

n = 200 ' Iteration # (n*h = range of x; 0 to 5 by step h=0.1)

For i = 0 To n

Cells(i + 9, 1) = t

Cells(i + 9, 2 + 2 * (jj - 1)) = x

Cells(i + 9, 3 + 2 * (jj - 1)) = v

K1 = f(t, x, v)

L1 = g(omega0, omega, t, x, v)

K2 = f(t + h / 2, x + h * K1 / 2, v + h * L1 / 2)

L2 = g(omega0, omega, t + h / 2, x + h * K1 / 2, v + h * L1 / 2)

K3 = f(t + h / 2, x + h * K2 / 2, v + h * L2 / 2)

L3 = g(omega0, omega, t + h / 2, x + h * K2 / 2, v + h * L2 / 2)

K4 = f(t + h, x + h * K3, v + h * L3)

L4 = g(omega0, omega, t + h, x + h * K3, v + h * L3)

t = t + h

x = x + h * (K1 + 2 * K2 + 2 * K3 + K4) / 6

v = v + h * (L1 + 2 * L2 + 2 * L3 + L4) / 6

Next i

jj = jj + 1

Next j

End Sub

____________________________________________________________________________________

Function g(omega0, omega, t, x, v)

'g=dv/dt

g = -omega0 ^ 2 * x + Sin(omega * t)

End Function

____________________________________________________________________________________

Function f(t, x, v)

'f=dx/dt

f = v

End Function

Defined by the differential equation.

FIGURE 2.1 VBA code for forced oscillation.
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where a = (c2 + d2)1/2 and tanφ = d/c. The trajectory of x(t) is an exponentially decreasing 

periodic function and the one of v(x) in the phase space is a spiral-like curve as shown in 

Figure 2.3. The period is given by

 T k� � �2 2 0
2 2

� � � �/ / .

The VBA code for damping oscillations is similar to the one listed in Figure 2.3 except the 

statement of function g of the Ruge-Kutta algorithm. We used g = -a*v-4*x, 

where a = 2k and ω0 = 2. Make your own code and run to observe the trajectories.

Case 2 (D >0): Strong damping.

Two roots of γ become: � �1 � � �k � and � �2 � � �k �, where � �� � �k2
0
2

. The general 

solution is x t Ae Bet t( ) � �� �1 2 , where A and B are both real. Both terms are exponentially 

decreasing because

 � � � � ��
��

�
��
�k k k� �� 1 1 00

2 ( / ) .  (2.8)

FIGURE 2.2 Forced oscillation.

FIGURE 2.3 Time dependence of displacement and trajectory of v(x) of weakly damping oscillation.
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Figure 2.4 shows the exponentially decreasing trajectory of x(t) and abruptly settling v(x) 

due to the strong damping.

Case 3 (D = 0): Critical damping.

Two roots of γ are � �1 2� � �k . The general solution of Equation 2.5 has one solution. One 

may find if it can be a form of x(t) = g(t)e−kt.

 
dx

dt

dg

dt
kg e

d x

dt

d g

dt
k

dg

dt
k ekt k� �

�

�
�

�

�
� � � �

�

�
�

�

�
�

� �2 2
2

2

2

2

2and tt . (2.9)

Thus, Equation 2.5 should satisfy 
d g

dt
k g

2

2

2
0
2 0� �� � �� .  (2.10)

Because D = 0, i.e., k = ω0, g(t) = A + Bt and x(t) = (A + Bt)e−kt, where A and B are constants.

Figure 2.5 shows the shortest time to cease the oscillation and the gradually settling v(x). 

The graph in the phase space exhibits a different pattern from that of the strong damping.

FIGURE 2.4 Time dependence of displacement and trajectory of v(x) of strong damping oscillation.

FIGURE 2.5 Time dependence of displacement and trajectory of v(x) of weakly damping oscillation.
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2.1.3  Both Driving and Damping Forces

If both driving and damping forces are applied to the harmonic oscillator and Equations 

2.2 and 2.3 are combined, we have

 
d x

dt
k

dx

dt
x F t

2

2 0
22� � �� �sin( ).  (2.11)

The general solution of Equation 2.11 is given by adding the general solution of Equation 

2.5, which is calculated, and a special solution of Equation 2.11. Let us find a special solu-

tion of a form of Asin(ωt − δ) including a phase delay δ. From Equation 2.11, we obtain

 � � � � � � �� � � � � � � � � �2
0
22A t k A t A t F tsin( ) cos( ) sin( ) sin( ).  (2.12)

By applying the addition theorem of trigonometric functions, we obtain
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Solving them for A and tanδ gives
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The amplitude A becomes a maximum value when ( )� � �0
2 2 2 2 24� � k  becomes a mini-

mum value, i.e., when ( )� � �0
2 2 2 24 0� � �k . The phase δ vanishes as the angular frequency 

of the external driving force approaches that of the harmonic oscillation. Notice that after 

a sufficiently long time, only the term of this special solution, which is a forced oscillation, 

remains.

Let D = k/ω0 and Ω = ω/ω0. From Equation 2.14, we obtain
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Figure 2.6 shows a screenshot of the angular frequency (Ω = ω/ω0) dependence of the 

amplitude (Aω0
2/F) for different values of damping terms (D = k/ω0). Excel’s AutoFill fea-

ture is applied to this calculation. For AutoFill, refer to Appendix A1.1.

Steps for this two-factor calculation using Excel’s AutoFill feature are given below. Notes 

in Rows 1 to 4 are ranges of variables Ω and D. Column A is the range of Ω (0–1.5 by 
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increment 0.02) and Row 6 is the range of D (0–2.0 by increment 0.5). “Ω\D” in cell A6 is 

an optional remark.

The letters and numbers in bold are to be entered in a specified cell of a spreadsheet.

Ω-values(x-axis):

 1) Enter 0 into Cell A7;

 2) Enter = A7−0.02 into Cell A8;

 3) AutoFill to Cell A107.

D-values (y-axis):

 4) Enter 0 into Cell B6;

 5) Enter =B5+0.5 into C6;

 6) AutoFill to cell H6.

Enter function of Equation 2.15:

 7) Click on cell B7 and enter

  =1/(SQRT((1-$A7^2)̂ 2+B$6^2*$A7^2))
 8) AutoFill to cell H7 (to the right);

 9) Continue AutoFill to H107 (downward).

Create a graph:

 10) Highlight Cell A7 to B107;

 11) From the drop-down menu, select [Insert] → [Chart] → [Scatter with 
Smooth Lines];

 12) Expand the created chart if necessary;

FIGURE 2.6 Calculated frequency dependence of amplitude with different damping terms.
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 13) Right-click on the graph to display a pop-up menu to select [Select Data] →[Add] 

for adding the graph from the data from Column C, etc.

Figure 2.7 is the final graph of the amplitude from the calculated data.

Figure 2.8 shows a screenshot of calculating the angular frequency (ω/ω0) dependence 

of phase (tan δ) for different values of damping factor (k/ω0). The phase changes across the 

resonating condition where tan δ diverges. The calculation procedure is very much the 

same as the amplitude calculation.

Figure 2.9 shows the final graph of tanδ from the calculated data.

2.2  PARAMETRIC OSCILLATION

Figure 2.10 illustrates a parametric pendulum where the string length varies periodically 

[3, 4].

The equation of motion using angular momentum and torque is given by

 
d

dt
mL

d

dt
mgL2 �

�
�

�
�

�

�
� � � sin  (2.16)

where g is the gravitational constant, and the string length ℓ has a slow periodic time 

dependence L t L h t( ) sin( )� � ��� ��0 1 � �  and 0<h<< 1.

FIGURE 2.7 Resonance curve of forced harmonic oscillation.

FIGURE 2.8 Calculated frequency dependence of phase with different damping factors.
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We assume the small angle approximation (sinθ≈θ). Converting the variable from the 

angle to the arc length x = Lθ, Equation 2.16 becomes

d x t

dt L
g

d L

dt
x t

2

2

2

2

1
0

( )
( )� �

�

�
�

�

�
� �  or 

d x t

dt
G t x t

2

2
0

( )
( ) ( )� � , and

FIGURE 2.10 Pendulum oscillation with parametric excitation

FIGURE 2.9 Phase change of force harmonic oscillation.
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where �0 0� g L/  when L is fixed to L0 and � �� n 0.

Note: The VBA code for the parametric oscillation is similar to that shown in Figure 2.1. 

The only difference is the form of function g of the Runge-Kutta algorithm (Appendix 

A3). For the parametric oscillation,

function g = -x * Omega0 ^ 2 * (1 + dl * (kk ^ 2) *
Sin(Omega * t + phi)) / (1 + dl * Sin(Omega * t + phi))

from Equation 2.17.

Figure 2.11 shows the arch length vs time and velocity vs time with different multiplica-

tion factors n. As we may expect from swings, the arc length exponentially increases when 

ω = 2ω0.

2.3  COUPLED PENDULUMS

Figure 2.12 is a schematic diagram of two identical pendulums of length L connected with 

a nonlinear spring [5]. Assume the spring force is given by k1Δx + εk2(Δx)3, where k1, k2, ε 

= 1/3! are constants and Δx is the length change of the spring.

Equations of motion are:
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FIGURE 2.11 Arc length and velocity of a pendulum with the parametric excitation.
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Let x1 + x2 = y1 and x1 − x2 = y2. Equations 2.18 become
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where �1
2 � g L/ , �2

2
12� �g L k mL/ / , and k k mL= 2 2 .

The solution of y1 is a harmonic oscillation while y2 yields a nonlinear osculation. The 

coupling between two pendulums is nonlinear, and their motions may not be simple. Let 

us compute their motions, and then obtain x1 and x2 from calculated y1 and y2.

Case 1: Small oscillations

Figure 2.13 shows y1 and y2. We set the coupling coefficient ε = 1/6 in the nonlinear term 

in Equation 2.15. The angular momentum ω1
2 = g/L = 9.8 is set to 3.13 and k1 = k2 = 1. The 

initial displacements are y1 = 0.5 and y2 = −0.5. It seems that both y1 and y2 yield harmonic 

oscillations. With these initial settings, the coupling may not be seen except by the pair of 

pendulums’ gradual energy exchange due to the weak coupling.

FIGURE 2.13 Coupled pendulums with y1 = 0.5 and y2 = −0.5 at t = 0.

FIGURE 2.12 Two pendulums connected with a spring.
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FIGURE 2.14 Observable displacements of coupled pendulums with small nonlinear coupling.

Figure 2.14 shows observable displacements x1 and x2 with an initial condition of x1 = 

0 and x2 = 1 at t = 0. There is energy transfer from pendulum 2 to pendulum 1 due to the 

coupling.

Case 2: Large oscillations

Taking the third orders of sin(x1) and sin(x2): sin x x x1 1 1
3� � �  and sin x x x2 2 2

3� � � , where 

ε = 1/3!,
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Using the same definitions of y1 and y2, we obtain
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where f y y g L y y y1 1 2 1 1
2

2
24 3( , ) ( / ) ( )� � , f y y g L y y y k mL y2 1 2 1 1

2
2
2

2 2
34 3 2( , ) ( / ) ( ) ( / )� � � ,

�1 � g L/ , and �2
2

12� �g L k m/ / . The coefficient ε is a measure of deviation from 

linearity.

Figures 2.15 shows the motions of y1 and y2 from the nonlinear oscillations. Initially we 

set y1 = 0.5 and y2 = −0.5. A gradual energy transfer from y1 to y2 is observed with the non-

linear coupling. The coupling coefficient ε = 1/6 is the same as in Case 1.

Figure 2.16 shows the observable displacements x1 = (y1+y2)/2 and x2 = (y1−y2)/2. The 

initial displacements are x1 = 0 and x2 = 1 at t = 0. Changes in their displacements are more 

noticeable due to the nonlinear cubic terms of x1 and x2.

Try and observe what their motions are. It’s fun!
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SUGGESTED FURTHER STUDY

Although this book does not cover nonlinear oscillations, there are many important topics 

in nonlinear oscillations. For example, electronic devices including diodes and transistors 

are actually nonlinear components [6]. There is an old-fashioned computer using param-

etrons conceived by the parametric oscillation [7]. Nonlinear optics is a fascinating tech-

nology applied in medicine and science [8]. Chaos is caused by nonlinear dynamics such 

as large oscillations of a pendulum and double pendulums [9].
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FIGURE 2.15 Nonlinear pendulums with nonlinear coupling. y1 = 0.5 and y2 = −0.5 at t = 0.

FIGURE 2.16 Observable displacements of nonlinear pendulums with nonlinear coupling.
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C H A P T E R  3

Waves

Wave phenomena could be understood better by conducting computational analy-

ses of waves. Analyses are done to show diagrams of interference, standing waves, 

the classical/relativistic Doppler effect, muon detection using the Doppler effect, the law 

of refraction based on wave and particle models, and diffraction phenomena through a 

two-dimensional aperture. In relation to standing waves, the Fourier series are introduced 

to demonstrate that an arbitrary periodic wave can be expressed in terms of trigonometric 

functions.

3.1  WAVE EQUATION

Let the wave velocity be v. In the Cartesian coordinate system, a three-dimensional wave is 

given by the following equations [1].
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A plane wave, u r t A k r t( , ) sin( )
  

� � � �� � , is a solution of the wave equation, where A is 

the amplitude, 

k k k kx y z= ( , , ) is the wave number vector, 

 
k r k x k y k zx y z� � � � , ω is the 

angular frequency, δ is the initial phase, and v = ω/k = fλ, where f = 2π/ω is the frequency 

and λ = 2π/k is the wavelength. A spherical wave, u r t
A

r
kr t( , ) sin( )


� � �� � , is also a solu-

tion, where r x y z� � �2 2 2  and k k k kx y z� � �2 2 2 . A spherical wave is isotropic, i.e., 
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r r
u r t( , ) ( , ).

Notice that the wave equation is a linear differential equation. It means that, if u1 and u2 

satisfy the wave equation, their linear combination, e.g., u = au1 + bu2, where a and b are 

constants, is also a solution of the wave equation. This is the foundation of the superposi-

tion principle discussed below.

DOI: 10.1201/9781003516347-3

http://dx.doi.org/10.1201/9781003516347-3


  Waves   ◾   53

3.2  SUPERPOSITION PRINCIPLE

The superposition principle is the cause of several key wave phenomena. We describe inter-

ference, beat, and standing waves in relation to this principle [2].

3.2.1  Interferences

Suppose there are two plane waves in space: u x t A kx t1( , ) sin( )� ��  and u2(x,t) = Asin 

( )kx t� �� � , the resultant wave is the algebraic sum of the two waves [3]. They are inter-

fered constructively if δ = 0 and destructively if δ = π. Figure 3.1 lists the VBA code to 

calculate the interference.

Figure 3.2 shows an interference pattern of two sine waves with a small phase difference 

of 0.1π to demonstrate the superposition of the two waves clearly.

The interference pattern can also be created by superposing two spherical waves at a 

certain time. Here we consider two-dimensional circular waves. Two circular waves of the 

same angular frequency generated from two different sources at slightly different locations 

of (0, ±ys) and supposed them.

 u
kr t

r

kr t

r
�

�
�

�sin( ) sin( )1

1

2

2

� �
 (3.2)

where r x y ys1
2 2� � ��� ��( )  and r x y ys2

2 2� � ��� ��( ) .

Sub SineInterference()

Cells(1, 1) = "Demonstration of interference of two plane waves"

Dim y1(1001)

Dim y2(1001)

Dim x(1001)

Pi = 3.14159

alpha = 0.1

Cells(2, 1) = "Phase difference =": phase = alpha * Pi

Cells(2, 3) = alpha * Pi: Cells(2, 4) = "rad"

Cells(3, 2) = "x"

Cells(3, 3) = "y1"

Cells(3, 4) = "y2"

Cells(3, 5) = "y1+y2"

For i = 0 To 1000

x(i) = i * 0.01

Cells(4 + i, 2) = x(i)

Next i

f = 1

k = 0.5

a = 1

For i = 0 To 1000

y1(i) = a * Sin(2 * Pi * k * x(i) - 2 * Pi * f * j / 50)

y2(i) = a * Sin(2 * Pi * k * x(i) - 2 * Pi * f * j / 50 + phase)

Cells(4 + i, 3) = y1(i)

Cells(4 + i, 4) = y2(i)

Cells(4 + i, 5) = y1(i) + y2(i)

Next i

End Sub

FIGURE 3.1 VBA code to calculate the interference of two sine waves.
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Parameter setting

Wave number: k = 4; angular frequency: ω = 1; time t = 2; and locations of circular wave 

sources (0, ±2.0).

The area to create the interference pattern is set to x: [−20.0, 20.0], y: [−20.0, 20.0] with 

an increment of 0.5 in the x and y directions. Figure 3.3 is a screenshot of the calculation 

using Excel’s AutoFill feature (Appendix A1.1).

Calculation step:

The letters and numbers in bold are to be entered in a specified cell of a spreadsheet.

 1) Enter t in cell A2, k in cell B2, and ω in cell C2, and then enter 2 in cell A3, 4 in B3, and 1 in cell C3. 
Note: These values may be changed after drawing the chart. “x\y” at cell A5 is an optional memo.

Determine range and step:

x-axis:

 2) Enter 20 into Cell A6;
 3) Enter = A6−0.5 into Cell A7;
 4) AutoFill to Cell A86.

FIGURE 3.3 Calculation of the interference pattern of two circular waves.

FIGURE 3.2 Interference of two sine waves with path difference of 0.1π.
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y-axis:

 5) Enter 20 into Cell B5;
 6) Enter =B5−0.5 into C5;
 7) AutoFill to cell CD5.

Superpose circular waves:

 8) Click on cell B6 and enter
=SIN( $B$3* SQRT( ($A6- 2)^2+ B$5^2 )-$C$ 3*$A$ 3)/SQ RT(($ A6-)^ 2+B$5 ̂2) 
+SIN($B$3* SQRT( ($A6+ 2)^2+ B$5^2 )-$C$ 3*$A$ 3)/SQ RT(($ A6+2) ̂2+B$ 5^2), 
and then, AutoFill to cell CD5 (to the right);

 9) Continue AutoFill to CD86 (downward).

Create 3D Surface Chart:

 10) Highlight Cell B5 to CD86;
 11) From the pulldown menu, select [Insert] → [Chart] → [Surface];
 12) Expand the created chart if necessary;
 13) Right click on the graph to display a pop-up menu and select [3-D Rotation];
 14) Rotate your graph to obtain the best view.

Figure 3.4 shows computed 3D charts with the given wave parameters setting and a specific 

view angle.

Depending on the path difference between two circular waves that arrive at the same 

point determines the constructive or destructive interference: Constructive if the path dif-

ference is mλ and destructive if the path difference is (m + 1/2)λ, where m = 0, 1, 2, …

3.2.2  Beat

When two sound frequencies are slightly different by a few Hertz or so, we hear a beat [4]. 

Musical instruments such as pianos and guitars are tuned by listening to beats. Suppose 

two sound waves are

u A k x t1 1 1� �cos( )�  and u A k x t2 2 2� �cos( )� ,

when an observer at position x = 0 hears two sounds at the same time, the resultant sound 

is their superposition,

FIGURE 3.4 Interference of circular waves.
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The beat frequency is defined by f f fbeat �
�

� �
� �

�
2 1

2 1
2

.

The VBA code to create the beat is similar to that shown in Figure 3.1. For obtaining the 

beat, the observer’s position is fixed while the time varies. The essential part of the VBA 

code is

For i = 0 To 400 ‘time increment

y1(i) = Sin(2 * Pi * f1 * i / 10)

y2(i) = Sin(2 * Pi * f2 * i / 10)

Cells(1 + i, 2) = i / 10

Cells(1 + i, 3) = y1(i) + y2(i)

Next i

Figure 3.5 shows the beat pattern, where f1 = 1.00, f2 = 1.05, and f1 − f2 = 0.05. In this figure, 

the period of the beat is 20.0, and the beat frequency is also calculated as fbeat = 1/20 = 0.05.

3.2.3  Standing Waves

Assume a sine wave traveling to the right on a string, u x t A kx tR ( , ) sin( )� �� , is 

reflected at the end on the right side of the fixed string to produce a reflected wave, 

u x t A kx tL ( , ) sin( )� �� . The superpose wave is

 u x t u u A kx t A kx t A kx tR L( , ) sin( ) sin( ) sin( )cos( ).� � � � � � �� � �2   (3.4)

The resultant wave forms a standing wave, which is not traveling to the right nor left but is 

a stationary wave pattern with a time-varying amplitude [5]. Figure 3.6 shows a standing 

wave pattern. The VBA code to obtain the standing wave pattern is similar to that shown 

in Figure 3.1.

It should be noted that establishing a standing wave requires specific boundary condi-

tions and string length, as well as the tension in the string, which determines the wave 

speed. For this reason, standing waves are categorized as a boundary value problem. That 

FIGURE 3.5 The beat pattern from two sine waves.
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is, standing waves on a string of length L having both ends fixed are the solutions of the 

wave equation,
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with the boundary condition of fixed ends, u(0,t) = u(L,t) = 0, where u(x, t) is the displace-

ment, v = (F/μ)1/2 is the wave speed, F is the tension in the string, and μ is line density of 

the string.

By separating the variables, u(x, t) = U(x)Γ(t), the equation U(x) for the x-coordinate 

becomes what we call the Helmholtz equation, whereas the equation Γ(t) for time is an 

equation of harmonic oscillation,
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 (1) Solutions of U(x) are given using sin(nπx/L), where λn = (nπ/L)2 and n = 1, 2, 3, …. 

By the superposition principle, a general solution or an arbitrary wave form with the 

same boundary condition is given by

 U x a mxm

m

( ) sin .�
�

�

�
0

 (3.7)

 (2) The solution of the time part, Γ(t), for a given λn is

 �n n nt C
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L
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FIGURE 3.6 A standing wave.
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 (3) u(x, t) = U(x)Γ(t) is given by

 u x t a C
n v

L
t

n

L
x A t

n

L
xn n n

n

n

n

( , ) sin( )sin( ) ( )sin( )� � �
� �
� �

�
�

� �

1 1

 (3.8)

where A t a C
n v

L
tn n n n( ) sin( )� �

�
�  is the time-varying amplitude of the nth standing wave.

3.3  FOURIER THEOREM

Equation 3.7 can also be interpreted in such a way that an arbitrary form of oscillation u(x, 

t) on a string of fixed ends is the superposition of discrete standing waves or oscillation 

modes [6, 7]. Assume an observed wave pattern on a string of length 2L (−L ≤ x ≤ +L) at a 

certain time is given as shown in Figure 3.7, where L = 1. This wave contains five modes of 

standing waves,

f x x x x x( ) sin( ) . sin( ) . sin( ) . sin( ) . sin(� � � � �� � � � �0 5 2 0 2 3 0 4 4 0 1 5 xx).

Is it possible to find the frequencies and amplitudes that constitute a given wave pattern? 

More generally, would it be possible to express an arbitrary function f(ξ), where the variable 

ξ is a spatial coordinate or time, as a series of sinusoidal functions? This is called the Fourier 

series of f(ξ). Because the sinusoidal functions are well known and are easy to apply, the 

Fourier series is valuable for analyzing periodic motions.

The Fourier series can be constructed in the following way. An arbitrary periodic func-

tion f(x) in the interval [−L, +L] can be expressed by a series expansion of trigonometric 

functions.
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where
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FIGURE 3.7 An observed wave on string.
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The Fourier coefficients are calculated using the orthogonal property of sinusoidal func-

tions. Refer to Section 6.1.2 for the orthogonal property.

Using the inner product, 〈 ... | … 〉, defined by Equation 1.17, we obtain

� � � �
��cos( ) | cos( ) cos( )cos( )mx nx mx nx dt

L

L

0;  (m ≠ n)

� � � �
��sin( ) | sin( ) sin( )sin( )mx nx mx nx dt

L

L

0;  (m ≠ n)

and

     � � � �
��cos( ) | sin( ) cos( )sin( ) .mx nx mx nx dt

L

L

0   (including m = n) (3.11)

Depending on the symmetric property of the original periodic function f(x), a Fourier 

series may have only sine terms or cosine terms. If the function f(x) is an even function 

in the interval [−L, +L], the sine terms must be excluded, and the Fourier series has only 

cosine terms,
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Similarly, if the periodic function f(x) is an odd function in the interval [−L, +L], the Fourier 

series has only sine terms,
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  (3.13)

We can also use the periodicity of time. A periodic function f(t) of period T (−T/2 < t ≤ 

+T/2) can be expressed by a Fourier series,
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where ω0 = 2π/T is the angular frequency of the fundamental mode, and the Fourier coef-

ficients am and bm are given by

 a
T

f t m t dt b
T

f t m t dtm
T

T

m
T

T

� �
�� �

�

�
2 2

0
2

2

0
2

( )cos( ) ( )sin( )
/

/

/

� �and
//

.
2

�  (3.15)

Additionally, we can obtain a Fourier series in a complex exponential form. By applying 

Euler’s formula, eiθ = cosθ + i sinθ, the Fourier series of complex variables are

 f t c e
n

n

n
in t( ) �

���

���

� �0  (3.16)
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where the complex Fourier coefficient is given by

 c
T

f e dn
in t
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�
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( ) .
/

/

� ��  (3.17)

The complex Fourier coefficient represents the magnitude of the frequency component and 

the phase.

What if we only know the numerical data of the unknown function f(x)? What if the 

function is non-periodic? Numerical calculations of the integrals to find the coefficients 

an and bn seem to be very time-consuming computational tasks. To overcome the com-

putational difficulty, we can apply another mathematical theory, which is an extension of 

the Fourier series, called the Fourier transform. Also, a fast computational algorithm of 

the Fourier transform called the fast Fourier transform (FFT) has been widely used for 

numerical computation. For the basic idea of Fourier transform, refer to Section 3.6.1. For 

detailed discussions on FFT, refer to other books [8].

3.4  DOPPLER EFFECT AND SHOCKWAVE
3.4.1  Doppler Effect

When a sound source is moving to one direction, e.g., to the right, the center of each new 

wavefront is moved to the right direction. As a result, the wavefronts begin to bunch up 

on the right side (in front) and spread further apart on the left (behind) of the source. As a 

result, an observer at rest on the right side will hear a higher pitch sound when the sound 

source is approaching the observer and a lower pitch sound when the sound source is 

moving away from the observer. If the observer is also moving at a velocity, the following 

frequency change will be observed:

 f f
v v

v v
obs souce

sound observer

sound source

�
�
�

 (3.18)

where vobserver >0 if the observer is approaching the sound source and vsouce>0 if the sound 

source is approaching the observer. For a detailed explanation, refer to a standard educa-

tion material [9].

Figure 3.8 lists a VBA code to generate wave patterns as the sound source approaches a 

stationary observer. At a given time, a circle of the wavefront is calculated. The wave speed 

is 10 m/s and the source speed is 8 m/s (Mac = vsource/vsound = 0.8)

At t = 0, a circle is drawn using the calculated values of xw and yw in the VBA code. The 

successive circles at later times are added to the one at t = 0. Figure 3.9 shows the schematic 

diagram of the final result.

3.4.2  Relativistic Doppler Effect

A general physics course may briefly mention the relativistic Doppler effect by pointing 

out a resemblance to the acoustic Doppler effect. However, its quantitative discussion is 

seldom found in an introductory physics textbook, and it may be helpful to be aware of the 

relativistic effect [10, 11].
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Define a sine plane wave as observed in a frame S,

 sin( ) sin( ) .
 
k r t k x k y k z t ckx y z� � � � � � �� � �where  (3.19)

Let n̆ be the unit vector of the wave number vector 

k and 


k kn c n� �˘ ( / )˘� . Assume there is 

another frame S’ moving at velocity 

v  with respect to frame S. The Lorentz transform of 

the wave number vector has exactly the same form as the position vector. That is,

Sub Doppler()

Cells(1, 1) = "Wave pattern of Doppler effect"

Dim x(6)                    'Position of the source.

Dim rw(6)                   'Wave propagation from the source.

Dim xw(37)               'x-coordinate of the wave front.

Dim yw(37)                  'y-coordinate of the wave front.

Cells(2, 2) = "Wave speed v": v = 10: Cells(3, 2) = v

Cells(2, 4) = "Mac": Mac = 2: Cells(3, 4) = Mac

Cells(2, 6) = "Source speed u": u = v * Mac: C ells(3, 6) = u

h = 1                    'Time increment.

n = 5                 'n*h is the total time interval.

'Initialization:

t = 0

For i = 0 To n

x(i) = 0: rw(i) = 0

Next i

For j = 0 To 36

xw(j) = 0: yw(j) = 0

Next j

'Positions of generating circular waves:

For i = 0 To 5        ' i*h is time increment.           

x(i) = i * h * u       'Position of the source at time i*h.

Next i

Cells(5, 1) = "Time="

Cells(6, 1) = "Source at"

For i = 0 To 5

Cells(6, 2 + 2 * i) = "(x"

Cells(6, 3 + 2 * i) = "y)"

Cells(7, 2 + 2 * i) = x(i)        

Cells(7, 3 + 2 * i) = 0

Cells(8, 2 + 2 * i) = 0

Cells(8, 3 + 2 * i) = 0

Next i

'Time development of wave patterns:

For i = 0 To n                         'time interval i*h

Cells(5, 2 + 2 * i) = t

Cells(9, 2 + 2 * i) = "xw": Cells(9, 3 + 2 * i) = "yw"

For j = 0 To 5

rw(j) = (n - j) * h * v                  'Wave front circle at a given time.

For k = 0 To 36                      'Define 36 points on a circle.                         

theta = 2 * 3.14 * k / 36 'Angle at each point on a circle

xw(j) = x(j) + rw(j) * Cos(theta) 'x value of the circular wave.

yw(j) = rw(j) * Sin(theta)     'y value of the circular wave.

Cells(10 + k, 2 + 2 * j) = xw(j)

Cells(10 + k, 3 + 2 * j) = yw(j)

Next k

Next j

Next i

End Sub

FIGURE 3.8 VBA code for visualizing the Doppler effect.
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where k is the wave number as observed in frame S, and k′ is the wave number emitted 

from frame S′. Thus, the velocity dependence of the angular frequency is directional.

 1) If n̆ is parallel to 

v , then
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 where ω is the angular frequency as observed in frame S and ω′ is the angular fre-

quency as observed in frame S′ which is moving in the direction n̆ with respect to 

frame S. Figure 3.10 shows the longitudinal Doppler effect where frame S′ is approach-

ing frame S, and moving away from frame S.

FIGURE 3.9 The Doppler effect.

FIGURE 3.10 The Longitudinal Doppler effect.
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 2) If n̆ is perpendicular to 

v , then we obtain � � �� �� 1 2 . Figure 3.11 shows the veloc-

ity dependence of the ratio ω’/ω. This velocity dependence is called the transverse 

Doppler effect. The transverse Doppler effect is unique and not observed in the 

acoustic Doppler effect. For the transverse Doppler effect, ω < ω′ , i.e., λ > λ′ , which 

is called redshift [12]

3.4.3  Shockwave

When the speed of a wave source exceeds the speed of the generated wave, the wavefronts 

lag behind the wave source, forming a cone-shaped region with the source at the vertex 

[13]. The front edge of the cone forms a supersonic wave within which sound energy is 

confined. In Figure 3.12, Mac = vsoruce/vsound = 20/10 = 2.0, and the vertex is at x = 100.

Note: Cherenkov radiation and muon detector. One of the interesting shockwave phe-

nomena is the Cherenkov radiation [14, 15]. The relativistic theory states that the speed of 

light in a vacuum is constant c, while in media of the index of refraction n, the speed of light 

is given by c/n < c. For example, the propagation speed in water is only 0.75c. Particles can 

be accelerated by nuclear reactions or particle accelerators to exceed the propagation speed 

in the medium (although never exceeding the speed of light c in a vacuum). Cherenkov 

FIGURE 3.11 The Transverse Doppler effect.

FIGURE 3.12 Wavefronts of shockwave.
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radiation is emitted when a charged particle passes through a (non-insulating) dielectric 

material at a speed faster than the speed of light in that medium.

When a charged particle passes through such a medium, the local electromagnetic 

field in the material is disturbed. Electrons in the atoms of the medium are moved and 

polarized by the passing charged particle’s field. When the electrons return to equilib-

rium states after the field disturbance has passed, photons are emitted (in conductors, they 

return to equilibrium without emitting photons). In a normal case, the photons interfere 

destructively and no radiation is detected. However, when the field disturbance propagates 

faster than the speed of light in the material, the photons interfere constructively and the 

observed radiation is amplified.

Cherenkov radiation is often compared to the shockwave. As shown in Figure 3.12, the 

sound waves generated by a supersonic object cannot leave the object itself because they do 

not have enough speed. Thus, the sound waves accumulate, and a shock front is formed. In 

the same way, a charged particle also generates a shockwave of photons as it passes through 

a medium.

Figure 3.13 depicts the directions of particle motion and its shockwave. In the diagram, 

a particle passes through a medium with a velocity v. If n is the refractive index of the 

material, the propagation speed of the emitted electromagnetic wave is vem = c/n. The left 

vertex of the triangle represents the position of the particle at an initial time (t = 0). The 

right vertex represents the position of the particle at a certain time t. For a certain t, the 

distance traveled by the particle is xp = vpt, and the distance traveled by the radiated elec-

tromagnetic wave is xem = (c/n)t. Therefore, the radiation angle is cosθ = xem/xp.

It is interesting to know that a neutrino detector catches the Cherenkov radiation [16]. 

When a charged particle fired by a neutrino travels through water with a speed faster than 

that of light, the Cherenkov radiation is emitted. The emitted Cherenkov radiation forms 

a cone shape in the direction of the charged particle’s movement as shown in Figure 3.10. 

Photomultiplier tubes attached to the wall of the water tank capture this Cherenkov 

radiation. The photomultiplier tubes provide information about the amount of radiation 

received and the time at which it was received. Based on this, the energy, direction, posi-

tion, and type of the charged particle are determined. The Super-Kamiokande experiment 

detects neutrinos using a huge water tank equipped with approximately 13,000 photomul-

tiplier tubes (11,129 in the inner tank and 1,885 in the outer tank) [17].

FIGURE 3.13 The direction of a shockwave (Cherenkov radiation).
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3.5  REFRACTION
3.5.1  Huygens’s Principle

As shown in Figure 3.14, when the incident wavefront just reaches the interface at point A, 

point B is still well within medium 1. In the time Δt it takes for a wavelet to travel from B to 

B′ on the interface at speed v1 = c/n1, a wavelet from A travels into medium 2 at a distance of 

AA’ = v2Δt, where v2 = c/n2 and c is the speed of light in a vacuum and n1 and n2 are indices 

of refraction in the respective medium. Notice

 AB
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�
� �

�� � � �
sin sin

,
( / )

sin

( / )

sin
.

� � � �1 2

2

1

1

2

and
� �

 (3.22)

In this way, we obtain Snell’s law: n1sinθ1 = n2sinθ2. To confirm Snell’s’ law, one may use
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where AB = L and α = n2/n1. Figure 3.15 shows the calculation for sine values at different 

Δ-values using v1 = 1, L = 1, and α = 1.2. The slope of the graph is the index of refraction n2, 

which is the same as the assumed α-value.

3.5.2  Principle of Least Traveling Time

Figure 3.16 depicts an optical path across the interface between the two different media. 

The traveling time from point A (0, 0) to point B (l, m) via point M (a, y) on the interface 

is given by

 � �
�

�
� �a y

v

b l y

v

2 2

1

2 2

2

( )
.   (3.24)

FIGURE 3.14 Refraction of light across two different media.
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The least traveling time should satisfy
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Referring to the geometry of Figure 3.14, the incident and the refracted angles satisfy
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Therefore, the condition of the least traveling time becomes
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Because v1 = c/n1 and v2 = c/n2, Equation 3.24 yields to Snell’s law: n n1 1 2 2sin sin� �� . For 

determining the optical path using Excel’s Solver, refer to [18].

FIGURE 3.16 Optical path while being refracted.

FIGURE 3.15 Snell’s law.
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3.5.3  Particle Model

With the particle model of light, the law of refraction is a consequence of the conservation 

laws of momentum and energy. Consider that a particle of mass m goes across the inter-

face. Referring to Figure 3.13, the momentum component along the interface is conserved: 

mv1sinθ1 = mv2sinθ2. If the total energy of the particle is only the kinetic energy, (1/2)mv1
2 = 

(1/2)mv2
2 by the energy conservation value. Combining both conservation laws, we obtain 

n2sinθ1 = n1sinθ2, but this is not Snell’s law! In fact, this discrepancy was one of the reasons 

for the failure of the particle model of light, and Huygens’s principle is better equipped 

to support the wave model of light. We need to carefully reconsider the “velocity of light 

particle.”

Because the particle is a photon, the energy of the particle in each medium is given 

by Ei = pic = pi(c/ni), where c is the speed of light in a vacuum, and in Ei and pi, i = 1, 2, 

are relativistic energy and momentum of the respective medium [19]. The conservation of 

momentum,

 p1sinθ1 = p2sinθ2 becomes (n1/cE1)sinθ1 = (n2 /cE2)sinθ2, (3.28)

which gives Snell’s law because E1 = E2. Alternatively, De Broglie wavelength, λ = h/p, can 

also be applied, where h is the Planck’s constant.

 p p h m h m1 1 2 2 1 1 2 2sin sin ( / )sin ( / )sin .� � � � � �� �becomes  (3.29)

Because λi = vi/fi = c/(nifi), i = 1, 2, but f1=f2, the de Broglie wavelength can also derive 

Snell’s law.

3.6  DIFFRACTION
3.6.1  Fourier Transform

We apply the Fourier transform to spectral analysis where we want to decompose a time-

varying signal to its frequency components to acquire the spectrum of the signal [20]. The 

Fourier transform of a function f(t) constitutes a pair of integrals:

 F f t e dt f t F e di t i t( ) ( ) ( ) ( ) .�
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� �� �� ��
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� �and
1

2
 (3.30)

The second integral of the above pair is called the inverse Fourier transform. Equations 3.16 

are applied to analyses of signals of mechanics, acoustics, and electromagnetism. Here, let 

us acquire the energy spectrum of the damped oscillation that we discussed in Section 2.1. 

We use a simplified version of Equation 2.7 as a displacement of a damping oscillation of 

angular frequency ω0.

 x t e tkt( ) sin ,� � �0  where the damping factor is 2k. (3.31)

The Fourier transform of Equation 3.31 is
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Assume that the damping is very slow and k/ω0 <<1. Then
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Figure 3.17 shows the beginning part of Excel’s spreadsheet of calculating |X(f)|2 of x(t) = 

e−tsin(20πt). The total number of data is N = 1024. The sampling time interval is set to 10−3 

s, and the frequency resolution is 1000/N = 0.9766 Hz. Figure 3.18 shows the calculated x(t) 

and |X(f)|2.

Remark: Excel has a built-in Fourier transform. To use it, an Add-in option, Analysis Tool-

Pak, must be installed. Refer to Appendix A1.2 for installing the option.

Mathematically, the Fourier transform connects two different variable spaces that are 

canonically conjugate. For example, the coordinate {q} and the momentum {p} (or the wave 

vector {k}) are canonically conjugates. The Fourier transform of a function f(x) constitutes 

a pair of the following integrals.

FIGURE 3.17 The Fourier transform of damped oscillation.

FIGURE 3.18 Damping oscillation and its power spectrum.
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Equation 3.34 is used in wave optics and quantum mechanics.

3.6.2  Diffraction pattern

Diffraction phenomena are the best representation of what a wave is. Any wave exhib-

its diffraction. Huygens’s principle explains that diffraction through a small aperture is a 

superposition of the secondary waves from each point on the aperture. Figure 3.19 illus-

trates a schematic diagram of observing two-dimensional diffraction. In this figure, the 

amplitude of a diffraction pattern observed at point P(X, Y) on the screen is given by the 

two-dimensional integral of the spherical wave over the aperture:

 U X Y
C ikr

i r
g x y dxdyP

apature

( , )
exp( )

( , )� � �
 (3.35)

where C is a constant, r is the distance from a point inside the aperture to the observing 

point on the screen, g(x, y) is called the aperture function, where g(x, y) = 1 if a point (x, 

y) on the screen is inside the aperture and 0 otherwise. The integral element of dxdy is the 

area element of the aperture.

The aperture size is comparable to the wavelength for diffraction, and the distance from 

the light source to the aperture plane is very long, and the distance from the aperture to 

the observation screen – denoted as R – is also much larger than the aperture size. Under 

this circumstance, the incident and diffracted spherical waves have negligible curvatures. 

The angular spread of the diffracted light is small, and we can regard both the incident and 

diffracted waves as plane waves. This is called the Fraunhofer diffraction, and Equation 

(3.35) becomes

 U X Y
C

i R
g x y ikr dxdyP

apature

( , ) ( , )exp( ) .� ��
  (3.36)

FIGURE 3.19 Schematic diagram of two-dimensional diffraction.
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Now, we apply the “Fresnel approximation” to Equation 3.36. Because R in Figure 3.17 is 

considerably large it is denoted as (x−X) and (y−Y), and the distance r can be approximated 

to be
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Furthermore, because the aperture size is very small, we may drop the term (x2+y2) from 

Equation (3.37) to get

 r R
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X Y
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2

12 2( ) ( ),  (3.38)

whence the diffraction pattern UP becomes
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where C C i R e eikR
i

k

R
X Y

’ /
( )

� � �
�

� 2
2 2

. Equation 3.39 indicates that the diffraction pattern, Up, 

is the two-dimensional Fourier transform of the geometrical shape of the aperture func-

tion g(x, y).

Remark: If g(x, y) = gx(x)gy(y), then the two-dimensional Fourier transform becomes a 

product of two independent one-dimensional Fourier transforms. The two-dimensional 

FFT is separated into each component. Unfortunately, Excel does not have a built-in two-

dimensional FFT, but it is not difficult to make a VBA code [8].

3.6.3  Rectangular Aperture

If the aperture is a rectangle of size Dx by Dy, g(x, y) = 1 if −Dx/2 ≤ x ≤ Dx/2 and −Dy/2≤y≤Dy/s; 

it is otherwise, 0. The integral of the diffraction pattern UP(X, Y) can be calculated easily 

to obtain
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Figure 3.20 shows the intensity of the diffraction pattern through a square aperture, where 

C’ = 1, Dx = Dy = 1, and k/2R = 1. The procedure to create the diffraction pattern is similar 

to that of Figure 3.3. In order to avoid the singular pit X = Y = 0, we select the range of 

X and Y to be −20.1 ≤ X (and Y) ≤ +19.9 with increments of 0.5. Excel’s AutoFill and 3-D 

Surface chart options are used.

SUGGESTED FURTHER STUDY

There are excellent articles and books on periodic motions [21, 22]. The author recom-

mends that everyone read these books and a series of OpenCourseWare by MIT. The 

Fourier transform is a valuable mathematics tool for various physics subjects including 

spectral analysis and optics [6–8].
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C H A P T E R  4

Electromagnetism

After reviewing vector algebra, we start with time-independent Maxwell’s equa-

tions to discuss the electric potential and the electric field, as well as vector poten-

tial and magnetic field. Although computation of EM fields by solving Poisson’s equation 

requires a complicated algorithm, Excel offers an option for “iterative calculation,” which 

allows us to compute EM fields in relatively simple boundary conditions without program-

ming. From time-dependent Maxwell’s equations in free space, we derive wave equations 

of E-field and B-field. Huygens’s principle and Snell’s law of refraction can be naturally 

derived from these EM fields. Alternative approaches to the law of refraction are also 

discussed.

4.1  VECTOR ALGEBRA

Here are the formulas for the addition of two vectors and scalar and vector products. Let 

a a a ax y z= ( , , ) and 


b b b bx y z= ( , , ). Vector sum/subtraction is given by

 
 
a b a b a b a bx x y y z z� � � � �( , , );

the scalar product is

 
 
a b a b a b a bx x y y z z� � � �( ); and

the three components of the vector product, 
 
a b× , are

 
 
a b a b a b

x
y z z y�� � � � , 

 
a b a b a b

y
z x x z�� � � � , and 

 
a b a b a b

z
x y y z�� � � � .

These numerical results may be shown with three-dimensional graphs created by applying 

the Euler angles. For given vectors, a spreadsheet of Excel can be used to calculate these 

components of vector sums and vector products as shown in Figure 4.1. For the vector addi-

tion, 

a = ( , , )1 0 4  and 


b = ( , , )0 2 0  are used. For the vector product, unit vectors 


i = ( , , )1 0 0  and 

j = ( , , )0 1 0  are used.

DOI: 10.1201/9781003516347-4
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For creating their three-dimensional representations, a small VBA code is created 

which reads the calculated values and displays their charts from an arbitrary set of the 

Euler angles (Appendix A5). The VBA code is shown in Figure 4.2. A vector is defined by 

the coordinates of its tip and tail and displays the vector on screen using the [scatter 
with straight line] chart.

Figure 4.3 shows the addition of the vectors 

a = ( , , )1 0 4  and 


b = ( , , )0 2 0 , and the unit 

vector product 
  
k i j� � . Both are projected on a YZ plane created by a set of Euler angles 

(alpha = π/3, beta = π/3, gamma = 0 for the addition, and alpha = π/4, beta = −π/6, gamma 

= 0 for the vector product).

4.2  LORENTZ FORCE

The Lorenz force on a moving point with charge q and a velocity 

v  in an external electric 

field 

E  and a magnetic field 


B  is given by 

   
F qE qv B� � � . Suppose a charged particle with 

charge q is initially at the origin and is fired in the y-direction with vy = v0, there is a uni-

form E-field and a uniform B-field along the z-direction, and the force components are

 
F qE q v B v B qv B

F qE q v B v B qv B

F qE

x x y z z y y z

y y z x x z x z

z z

� � � �

� � � � �

� �

( )

( )

qq v B v B qEx y y x z( )

.

� �

�

�
�

�
�

  (4.1)

Figure 4.4  shows the VBA code to calculate the position (x, y, z) of the changed particle 

when 

E = ( , , )0 0 1 , 


B � �( , , )0 0 1 , 


v t( ) ( , , )= =0 0 1 0 , and the charge-to-mass ratio q/m = 2.

Figure 4.5 shows the trajectory projected on the xy-plane of the lab coordinates and 

on the YZ-plane of the tilted plane by the Euler angles. The trajectory is a spiral with an 

acceleration in the axial direction because there is a vertical acceleration due to the electric 

field along the z-axis. For better visibility, two dots at the starting and ending points are 

added.

FIGURE 4.1 Calculation of vector addition and vector product.
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4.3  MAXWELL’S EQUATIONS FOR STATIC ELECTROMAGNETIC FIELDS
4.3.1  Static Electric Field

From the Coulomb force, the static electric field and the electric potential can be given by 

a charge distribution ρ( )

r  and the permittivity of free space ε0:

  
 

  
E r

r

r r
r r d r

V

( )
( )

,�
�

�� ��
1

4 0

3

��
� �

�
� � and

Sub Vector3D()

Cells(1, 1) = "3D-Vectors"

Pi = 3.14159265358979

'Rotational angles of coordinates

Cells(2, 6) = "alpha": alpha = Pi / 3: Cells(3, 7) = alpha

Cells(2, 7) = "beta": beta = Pi / 3: Cells(3, 8) = beta

Cells(2, 8) = "gamma": Gamma = 0: Cells(3, 9) = Gamma

x1 = Cells(5, 3)

y1 = Cells(6, 3)

z1 = Cells(7, 3)

x2 = Cells(10, 3)

y2 = Cells(11, 3)

z2 = Cells(12, 3)

xsum = Cells(15, 3)

ysum = Cells(16, 3)

zsum = Cells(16, 3)

xp = Cells(20, 3)

yp = Cells(21, 3)

zp = Cells(22, 3)

fx1 = x1 * (Cos(beta) * Cos(alpha) * Cos(Gamma) - Sin(alpha) * Sin(Gamma)) + y1 * (Cos(beta) * Sin(alpha) * Cos(Gamma) + 

Cos(alpha) * Sin(Gamma)) - z1 * Sin(beta) * Cos(Gamma)

fy1 = -x1 * (Cos(beta) * Cos(alpha) * Sin(Gamma) + Sin(alpha) * Cos(Gamma)) - y1 * (Cos(beta) * Sin(alpha) * Sin(Gamma) -

Cos(alpha) * Cos(Gamma)) + z 1 * Sin(beta) * Sin(Gamma)

fz1 = x1 * Sin(beta) * Cos(alpha) + y1 * Sin(beta) * Sin(alpha) + z1 * Cos(beta)

Cells(5, 6) = 0: Cells(5, 7) = fx1

Cells(6, 6) = 0: Cells(6, 7) = fy1

Cells(7, 6) = 0: Cells(7, 7) = fz1

fx2 = x2 * (Cos(beta) * Cos(alpha) * Cos(Gamma) - Sin(alpha) * Sin(Gamma)) + y2 * (Cos(beta) * Sin(alpha) * Cos(Gamma) + 

Cos(alpha) * Sin(Gamma)) - z2 * Sin(beta) * Cos(Gamma)

fy2 = -x2 * (Cos(beta) * Cos(alpha) * Sin(Gamma) + Sin(alpha) * Cos(Gamma)) - y2 * (Cos(beta) * Sin(alpha) * Sin(Gamma) -

Cos(alpha) * Cos(Gamma)) + z2 * Sin(beta) * Sin(Gamma)

fz2 = x2 * Sin(beta) * Cos(alpha) + y2 * Sin(beta) * Sin(alpha) + z2 * Cos(beta)

Cells(10, 6) = 0: Cells(10, 7) = fx2

Cells(11, 6) = 0: Cells(11, 7) = fy2

Cells(12, 6) = 0: Cells(12, 7) = fz2                     

fxsum = xsum * (Cos(beta) * Cos(alpha) * Cos(Gamma) - Sin(alpha) * Sin(Gamma)) + ysum * (Cos(beta) * Sin(alpha) * Cos(Gamma) + 

Cos(alpha) * Sin(Gamma)) - zsum * Sin(beta) * Cos(Gamma)

fysum = -xsum * (Cos(beta) * Cos(alpha) * Sin(Gamma) + Sin(alpha) * Cos(Gamma)) - ysum * (Cos(beta) * Sin(alpha) * Sin(Gamma) -

Cos(alpha) * Cos(Gamma)) + zsum * Sin(beta) * Sin(Gamma)

fzsum = xsum * Sin(beta) * Cos(alpha) + ysum * Sin(beta) * Sin(alpha) + zsum * Cos(beta)

Cells(15, 6) = 0: Cells(15, 7) = fxsum

Cells(16, 6) = 0: Cells(16, 7) = fysum

Cells(17, 6) = 0: Cells(17, 7) = fzsum                   

fxp = xp * (Cos(beta) * Cos(alpha) * Cos(Gamma) - Sin(alpha) * Sin(Gamma)) + yp * (Cos(beta) * Sin(alpha) * Cos(Gamma) + Cos(alpha) * 

Sin(Gamma)) - zp * Sin(beta) * Cos(Gamma)

fyp = -xp * (Cos(beta) * Cos(alpha) * Sin(Gamma) + Sin(alpha) * Cos(Gamma)) - yp * (Cos(beta) * Sin(alpha) * Sin(Gamma) - Cos(alpha) * 

Cos(Gamma)) + zp * Sin(beta) * Sin(Gamma)

fzp = xp * Sin(beta) * Cos(alpha) + yp * Sin(beta) * Sin(alpha) + zp * Cos(beta)

Cells(30, 6) = 0: Cells(30, 7) = fxp

Cells(31, 6) = 0: Cells(31, 7) = fyp

Cells(32, 6) = 0: Cells(32, 7) = fzp                    

End Sub

FIGURE 4.2 Vector sum 
  
c a b� �  and vector product of unit vectors 

  
i j k� � .
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 �
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�
( )

( )
.

 
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
r

r

r r
d r

V

�
��

1

4 0

3�
�

�   (4.2)

Let us find the differential equations for the electric field [1]. Gauss’ law, which is a con-

sequence of Coulomb’s law of 1/r2 dependence of the electrostatic force, states that the 

closed surface integral is the total charge within the volume enclosed by the closed surface 

divided by ε0:

 
   
E r dA r dV

S V

( ) ( ) .� �� �
1

0�
�  (4.3)

By applying the Gauss theorem of vector calculus, the closed surface integral of Equation 

4.3 can be changed to a volume integral: 
    

V r dA V r dV
S V

( ) ( ( ))� �� � ��  for any vector func-

tion 


V .

Thus,
     
E r dA E r dV r dV

S V V

( ) ( ) ( )� � �� � �� �
1

0�
� .

Therefore, we obtain the differential form of Maxwell’s equation, �� �
  
E r

r
( )

( )
.

�

�0

 (4.4)

Using the electric potential defined by 

E � ���, Equation 2.3 can be expressed by another 

differential equation for the electric potential called Poisson’s equation: � � �2

0

�
�
�

( )
( ) 

r
r

.

(4.5)

Note that �� � ��� � �

E ( )� 0  for any scalar function φ. In summary, the static electric 

field can be described with the following two Maxwell’s equations:

 �� � �� �
   
E r

r
E( )

( )�

�0

0and  (4.6)

where 

E � ��� and the electric potential satisfies Poisson’s Equation 4.5.

FIGURE 4.3 VBA code for three-dimensional display of a vector sum and a unit vector product.
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Sub ChargedPar�cle()

Cells(1, 1) = "Charged par�cle in Sta�c EM-field."

Cells(2, 1) = "Both E-field and B-field are in the z-direc�on."

Cells(3, 1) = "A charged par�cle is fired to the yz-direc�on from the origin on the xy-plane of the lab frame."

'Parmeter Charge/Mass is the electrical charge of the par�cle.

QM = 2           

'Wri�ng labels and ini�al value in cells:

Cells(3, 2) = "Ini�al t": t = 0: Cells(4, 2) = t

Cells(3, 3) = "Ini�al x": x = 0: Cells(4, 3) = x

Cells(3, 4) = "Ini�al y": y = 0: Cells(4, 4) = y

Cells(3, 5) = "Ini�al z": z = 0: Cells(4, 5) = z

Cells(3, 6) = "Ini�al vx": vx = 0: Cells(4, 6) = vx

Cells(3, 7) = "Ini�al vy": vy = 10: Cells(4, 7) = vy

Cells(3, 8) = "Ini�al vz": vz = 0.5: Cells(4, 8) = vz

Cells(3, 9) = "delt": h = 0.005: Cells(4, 9) = h    

'Parmeter names:

Cells(10, 2) = "t"

Cells(10, 3) = "x"

Cells(10, 4) = "y"

Cells(10, 5) = "z"

Cells(10, 6) = "vx"

Cells(10, 7) = "vy"

Cells(10, 8) = "vz"

Cells(9, 10) = "Euler angled coordinates"

Cells(10, 10) = "X"

Cells(10, 11) = "Y"

Cells(10, 12) = "Z"                

'Runge-Ku�a method:

Pi = 3.14159265358979

'Rota�onal angles of coordinates

Cells(5, 1) = "Euler angles for 3D display "

Cells(6, 1) = "alpha": alpha = Pi / 6: Cells(7, 1) = alpha

Cells(6, 3) = "beta": beta = -Pi / 3: Cells(7, 3) = beta

Cells(6, 5) = "gamma": Gamma = 0: Cells(7, 5) = Gamma

n = 5000  'Itera�on #

For i = 0 To n          

Lx1 = gx(QM, t, x, y, z, vx, vy, vz)

Ly1 = gy(QM, t, x, y, z, vx, vy, vz)

Lz1 = gz(QM, t, x, y, z, vx, vy, vz)

Kx1 = fx(x, y, z, vx, vy, vz)

Ky1 = fy(x, y, z, vx, vy, vz)

Kz1 = fz(x, y, z, vx, vy, vz)

Lx2 = gx(QM, t, x + h * Kx1 / 2, y + h * Ky1 / 2, z + h * Kz1 / 2, vx + h * Lx1 / 2, vy + h * Ly1 / 2, vz + h * Lz1 / 2)

Ly2 = gy(QM, t, x + h * Kx1 / 2, y + h * Ky1 / 2, z + h * Kz1 / 2, vx + h * Lx1 / 2, vy + h * Ly1 / 2, vz + h * Lz1 / 2)

Lz2 = gz(QM, t, x + h * Kx1 / 2, y + h * Ky1 / 2, z + h * Kz1 / 2, vx + h * Lx1 / 2, vy + h * Ly1 / 2, vz + h * Lz1 / 2)

Kx2 = fx(x + h * Kx1 / 2, y + h * Ky1 / 2, z + h * Kz1 / 2, vx + h * Lx1 / 2, vy + h * Ly1 / 2, vz + h * Lz1 / 2)

Ky2 = fy(x + h * Kx1 / 2, y + h * Ky1 / 2, z + h * Kz1 / 2, vx + h * Lx1 / 2, vy + h * Ly1 / 2, vz + h * Lz1 / 2)

Kz2 = fz(x + h * Kx1 / 2, y + h * Ky1 / 2, z + h * Kz1 / 2, vx + h * Lx1 / 2, vy + h * Ly1 / 2, vz + h * Lz1 / 2)

Lx3 = gx(QM, t, x + h * Kx2 / 2, y + h * Ky2 / 2, z + h * Kz2 / 2, vx + h * Lx2 / 2, vy + h * Ly2 / 2, vz + h * Lz2 / 2)

Ly3 = gy(QM, t, x + h * Kx2 / 2, y + h * Ky2 / 2, z + h * Kz2 / 2, vx + h * Lx2 / 2, vy + h * Ly2 / 2, vz + h * Lz2 / 2)

Lz3 = gz(QM, t, x + h * Kx2 / 2, y + h * Ky2 / 2, z + h * Kz2 / 2, vx + h * Lx2 / 2, vy + h * Ly2 / 2, vz + h * Lz2 / 2)

Kx3 = fx(x + h * Kx2 / 2, y + h * Ky2 / 2, z + h * Kz2 / 2, vx + h * Lx2 / 2, vy + h * Ly2 / 2, vz + h * Lz2 / 2)

Ky3 = fy(x + h * Kx2 / 2, y + h * Ky2 / 2, z + h * Kz2 / 2, vx + h * Lx2 / 2, vy + h * Ly2 / 2, vz + h * Lz2 / 2)

Kz3 = fz(x + h * Kx2 / 2, y + h * Ky2 / 2, z + h * Kz2 / 2, vx + h * Lx2 / 2, vy + h * Ly2 / 2, vz + h * Lz2 / 2)                             

Lx4 = gx(QM, t, x + h * Kx3, y + h * Ky3, z + h * Kz3, vx + h * Lx3, vy + h * Ly3, vz + h * Lz3)

Ly4 = gy(QM, t, x + h * Kx3, y + h * Ky3, z + h * Kz3, vx + h * Lx3, vy + h * Ly3, vz + h * Lz3)

Lz4 = gz(QM, t, x + h * Kx3, y + h * Ky3, z + h * Kz3, vx + h * Lx3, vy + h * Ly3, vz + h * Lz3)

Kx4 = fx(x + h * Kx3, y + h * Ky3, z + h * Kz3, vx + h * Lx3, vy + h * Ly3, vz + h * Lz3)

Ky4 = fy(x + h * Kx3, y + h * Ky3, z + h * Kz3, vx + h * Lx3, vy + h * Ly3, vz + h * Lz3)

Kz4 = fz(x + h * Kx3, y + h * Ky3, z + h * Kz3, vx + h * Lx3, vy + h * Ly3, vz + h * Lz3)                  

FIGURE 4.4 VBA code for calculating Lorentz force.
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4.3.2  Difference Equations for the Electric Potential and the Field

Let us focus on two-dimensional spaces to find the electric potential and the electric field 

from a given charge distribution:
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vx = vx + h * (Lx1 + 2 * Lx2 + 2 * Lx3 + Lx4) / 6

vy = vy + h * (Ly1 + 2 * Ly2 + 2 * Ly3 + Ly4) / 6

vz = vz + h * (Lz1 + 2 * Lz2 + 2 * Lz3 + Lz4) / 6

x = x + h * (Kx1 + 2 * Kx2 + 2 * Kx3 + Kx4) / 6

y = y + h * (Ky1 + 2 * Ky2 + 2 * Ky3 + Ky4) / 6

z = z + h * (Kz1 + 2 * Kz2 + 2 * Kz3 + Kz4) / 6

Cells(i + 11, 2) = t

Cells(i + 11, 3) = x

Cells(i + 11, 4) = y

Cells(i + 11, 5) = z

Cells(i + 11, 6) = vx

Cells(i + 11, 7) = vy

Cells(i + 11, 8) = vz

t = t + h

‘Euler’s angles            

EulerX = x * (Cos(beta) * Cos(alpha) * Cos(Gamma) - Sin(alpha) * Sin(Gamma)) + y * (Cos(beta) * Sin(alpha) * Cos(Gamma) + Cos(alpha) 

* Sin(Gamma)) - z * Sin(beta) * Cos(Gamma)

EulerY = -x * (Cos(beta) * Cos(alpha) * Sin(Gamma) + Sin(alpha) * Cos(Gamma)) - y * (Cos(beta) * Sin(alpha) * Sin(Gamma) - Cos(alpha) 

* Cos(Gamma)) + z * Sin(beta) * Sin(Gamma)

EulerZ = x * Sin(beta) * Cos(alpha) + y * Sin(beta) * Sin(alpha) + z * Cos(beta)

Cells(i + 11, 10) = EulerX

Cells(i + 11, 11) = EulerY

Cells(i + 11, 12) = EulerZ

Next i

End Sub

_________________________________________________________________________

Func�on gx(QM, t, x, y, z, vx, vy, vz)

'dvx/dt=gx

gx = QM * (Ex(x, y, z) + vy * Bz(x, y, z) - vz * By(x, y, z))

End Func�on

________________________________________________________ _________________

Func�on gy(QM, t, x, y, z, vx, vy, vz)

'dvy/dt=gy

gy = QM * (Ey(x, y, z) + vz * Bx(x, y, z) - vx * Bz(x, y, z))

End Func�on

_________________________________________________________________________

Func�on gz(QM, t, x, y, z, vx, vy, vz)

'dvz/dt=gz

gz = QM * (Ez(x, y, z) + vx * By(x, y, z) - vy * Bx(x, y, z))

End Func�on

_________________________________________________________________________

Func�on fx(x, y, z, vx, vy, vz)

'vx=dx/dt

fx = vx

End Func�on

_________________________________________________________________________

Func�on fy(x, y, z, vx, vy, vz)

'vy=dy/dt

fy = vy

End Func�on

FIGURE 4.4 Continued.
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We discretize the independent variables x and y: x = iΔx and y = jΔy, where i and j are inte-

gers, and the electric potential function, φ( , )x y , is defined as φ( , )i j . Partial derivatives for 

a continuous and smooth function are calculated as
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 (4.8)

Using the forward and backward derivatives, the second derivatives are given by
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and the Poisson equation discretized for numerical calculation becomes:
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 (4.10)

From Equation 4.9, the electric potential at the point (i, j) is
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FIGURE 4.5 Trajectories on the xy-plane of the lab frame and on the XY-plane of the tilted plane.
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4.3.3  Electric Dipole Potential

With Equation 7.6, the two-dimensional electric potential can be calculated from a given 

charge distribution, ρ(i, j). Let us calculate the dipole field from which we obtain the 3D 

equipotential surface of Figure 4.7. Excel has an option called Iterative Calculation, which 

is “the repeated recalculation of a worksheet until a specific numeric condition is met.” [2]. 

Refer to Appendix A.1.5 for enabling this option.

Here is the iteration routine for the electric potential:

 1) Use AutoFill to write x-coordinate values from −10 to +10 in Row 1 (the x-coordi-

nates) and Column A (the y-coordinates).

 2) Enter the boundary condition: ϕ(+10,y)=ϕ(−10,y)= ϕ(x,+10)= ϕ(x,−10)=0 

for −10 ≤x ≤+10 and −10 ≤y ≤+10. Enter 0 in Cells B2:B42 of Column B, Cells 

AP2:AP42 of Column AP, Cells B2:AP2 of Row 2, and Cells B42:AP42 of Row 42.

 3) Enter the charges: ±1 (=h2ρ/4ε0) in Cells R23 and AB23, respectively.

 4) Enter =(B2+C1+D3+C4)/4 in Cell C3. Figure 4.6 shows the difference equation and 

its equation for Excel.

FIGURE 4.7 Two-dimensional electric dipole potential surface.

FIGURE 4.6 Preparing the integrative calculation.
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 5) AutoFill C3 to C42 and then AutoFill C3 to AQ3. Continue AutoFill along rows and 

columns. Do not worry even if the cell values are all zero until reaching Column 

O. Once Column P is AutoFilled, the cell values change by the Iteration Calculation 

option. For Column Q, AutoFill Q3:Q21 and Q23:Q42 to avoid Cells Q22.

 6) Highlight A1:AP42 and insert a [Wire frame 3-D surface] graph.

4.3.4  Two-Dimensional Electric Field from Electric Potential

The electric field can be calculated from the electric potential: 

E x y z x y z( , , ) ( , , )� ��� . 

Because the electric field is a vector, it needs two separate tables for Ex(x, y) and Ey(x, y). For 

the two-dimensional potential, the following approximation of position derivatives can be 

used.
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From the spreadsheet of the electric dipole potential obtained through steps (17) to (22), 

the electric field, Ex(x, y) and Ey(x, y), can be calculated. Here, rows change the x-coordi-

nates: Cells B2:AP2 correspond to the coordinate (−10, −10) to (+10, −10) by increments of 

0.5, and columns change the y-coordinates: Cells A2:A42 correspond to the coordinates 

(−10, −10) to (−10, +10).

Calculation of Ex(x, y)

 7) Use AutoFill and enter the x-coordinates from -10 to +10 in Cells B45:AP45 of 

Row 46 by step 0.7. Similarly, enter the y-coordinates from −10 to +10 in Cells 

A45:A85 of Column A.

 8) Enter the boundary value 0 in Cells B45:AP45, B45:B84, AP45:AP84, and 

B85:AP87.

 9) Enter =−(C3−B3) in Cell B46 and AutoFill to AP46.

 10) Highlight Cells B46:AP46 and AutoFill to Cells B84:AP84.

Figure 4.8 shows the initial part of Ex.
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Calculation of Ey(x, y)

 11) Use AutoFill and enter the x-coordinates from −10 to +10 in Cells B89:AP89 of 

Row 89 by step 0.7. Enter the y-coordinates from −10 to +10 in Cells A90:A130 of 

Column A.

 12) Enter the boundary value 0 in Cells B90:AP90, B90:B130, AP90:AP130 and 

B130:AP130.

 13) Enter =−(C4−C3) in Cell B91. AutoFill to AP91.

 14) Highlight Cells B91:AP91 and AutoFill to Cells B129:AP129.  

4.3.5  A Charged Square Conductor in a Uniform Electric Field

Apply potential difference V across a pair of large parallel plates to produce a uniform 

E-field. Place a square conductor that initially carries no charge in the field. How can we 

compute equipotential lines?

Figure 4.10 shows a part of the initial setting of a spreadsheet. There are 40 × 40 points 

to calculate the potential distribution. The ranges of x and y coordinates are set to be [−10, 

+10] with 0.5 increments. Column B (cells B4:B44) represents a plate of zero potential and 

Column AP (Cell AP4:AP44) represents the plate of potential of a constant positive voltage 

V. They are highlighted in yellow. The cells highlighted in green (Cells U19:X19 ) represent 

the square conductor. Assume that the region between the plates is large and potential val-

ues on both sides of the region should be linear from 0 to V volts.

FIGURE 4.8 Initial part of Ex.

FIGURE 4.9 Electric field patters Ex and Ey.
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The computational step of the electric potential is similar to that in Section 4.3.3.

Boundary conditions:

 1) Enter 0 in cells B4 to B44.

 2) Enter =B4+1 in cell C4 and AutoFill to cell AP4.

 3) Enter =B4+1 in cell C44 and AutoFill to cell AP44.

 4) The conductor forms an equipotential region but the potential value is unknown. We 

set the numerical value in cells of the square conductor to calculate the average value 

of the surrounding cell. Enter

 =(T18 +T19+ T20+T 21+T2 2+T23 +T24+ T25+T 26+T2 7+U27 +V27+ W27+X 27+X2 
6+X25+X24+X23+X22+X21+X19+X18+W18+V18+U18)/40 

 in Cell U19, and then copy and paste it to other cells of the square conductor. Each 

cell of U19:X19 has the same calculation formula.

 5) Enter =(B5+C4+D5+C6)/4 in Cell C5.

 6) Apply Excel’s Iterative Calculation feature. AutoFill C5 to C44 and then AutoFill C5 

to AP44, avoiding the cells of the square conductor.

Figure 4.11 shows the final result of the electric potential distribution around the square 

conductor.

4.3.6  Static Magnetic Field

Since there is no magnetic monopole, the Gauss’ law for the magnetic field is

 
  
B dA B

A

� � �� �� 0 0, .which leads to  (4.14)

FIGURE 4.10 Electric potential around a square conductor (shown in green) in uniform E-field.
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Using the current density, 
 
j r( ), Ampere’s law can be expressed to be 

� � � �

ℓ
� B ds j dA

A

� � �� ��0  .

Now, Stokes’ theorem forms vector calculus, and the line integral of the above 

equation can be changed to a surface integral 
� � � �

ℓ
� B ds B dA

A

� � �� �� � ( ) , and thus, 

( )�� � � �� �
   
B dA j dA

A A

�0 . (4.15)

Therefore, we obtain the differential form of Maxwell’s equation for B-field, �� �
 
B jo� .   

The magnetic field can be expressed in the form of 
 
B A� �� , where 


A  is the vector poten-

tial of the magnetic field. Since �� �� �( )

A 0 for any vector, Equation (4.14) is automati-

cally satisfied with the vector potential defined in this way [3].

Use Equation (4.15) with 
 
B A� ��  to obtain �� ��� �� �� � � �� �

    
B A A A j( ) ( ) .2

0�   

 (4.16)

Now, because any scalar function χ satisfies �� � �( )� 0, another vector potential  
A A� ��� � also satisfies 

   
B A A A� �� ��� ��� � ���� �( )� . This means that both the 

vector potentials 

A  and 


A′yield the same magnetic field. Back to Equation (4.16), we may 

choose the vector potential such that �� �

A 0. With this condition on the vector potential, 

we obtain �� �2
0

 
A j� . (4.17)

In summary, the static magnetic field can be described with the following two Maxwell’s 

equations:

 �� � �� �
  
B B jo0 and �  (4.18)

where 
 
B A� ��  and the vector potential satisfies �� �2

0

 
A j� .

FIGURE 4.11 Electric potential distribution around a square conductor.
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Similar to the electric potential, the vector potential and the magnetic field in two-

dimensional space can be computed by the following difference equations.

4.3.7  Iteration Method to Compute Vector Potential and Magnetic Field

Magnetic fields can be calculated using vector potential. For a two-dimensional field,
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where the vector potential satisfies
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Similar to the numerical solution of the Poisson equation (4.7) for an electric field, the vec-

tor potential can be numerically given by
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The magnetic field given by Equation 4.19 can be calculated as the average of the forward 

and backward derivatives:
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and
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4.3.8  Vector Potential and Magnetic Field due to a Pair of Current Wires

Here is how to calculate the magnetic field using a pair of straight current wires with oppo-

site current directions along the z-axis. The positive current, +1, is at x = +1.25 and the 

negative current −1, is at x = −1.25 in the two-dimensional space, −10 ≤ x ≤ + 10, −10 ≤ y 

≤ +10.

First of all, make sure that the [Iterative Calculation] option is enabled. Refer 

to A.1.5 for enabling this option.
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Calculation of the vector potential Az(i, j)

 1) Create a spreadsheet with a boundary condition.

 x-axis

 i) Enter -10 into Cell B1

 ii) Enter =C2+0.5 into Cell 2

 iii) Autofill to Cell AP1

 y-axis

 iv) Enter -10 into Cell A2

 v) Enter =B3+0.5 into Cell A3

 vi) Autofill to Cell A42

 2) Enter 0 along the boundaries B2:AP2, B2:B42, AP2:AP42, and B42:AP42.

 3) Enter current value -1 in Cell AA23 (x = −2.5, y = 0) and +2 in Cell Q23 (x 

= +2.5, y = 0).
 4) Enter =(A2+B1+C2+B3)/4 in Cell B2.

 5) Complete the sheet by applying AutoFill.

Figures 4.12 shows the initial part of the spreadsheet and Figure 4.13 shows the 3D surface 

graph of the completed vector potential due to two current wires: I1 = −1 at (−2.5,0) and I2 

= +2 at (+2.5, 0)

Calculation of the magnetic fields Bx(i, j)

 6) Create coordinate positions (i, j) and boundary conditions

 x-axis:

 i) Enter -10 into Cell B44

 ii) Enter =C2+0.5 into Cell C44

 iii) AutoFill to Cell AP44

FIGURE 4.12 Beginning part of the spreadsheet for the vector potential.
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 y-axis:

 iv) Enter -10 into Cell AP45

 v) Enter =B3+0.5 into Cell A46

 vi) AutoFill to Cell A85

 7) Enter 0 along the boundaries B45:AP45, B45:B85, AP45:AP85, and B485:AP85.

 8) Enter =B3−C3 in Cell C46.

 9) Complete the Bx components (B45:AP85) by performing AutoFill.

Calculation of the magnetic fields By(i, j)

 10) Create coordinate positions (i, j) and boundary condition

 x-axis:

 i) Enter -10 into Cell B89

 ii) Enter =C2+0.5 into Cell C89

 iii) AutoFill to Cell AP89

 y-axis:

 iv) Enter -10 into Cell A90

 v) Enter =B3+0.5 into Cell A91

 vi) AutoFill to Cell A130

FIGURE 4.13 Vector potential of a pair of opposite-current wires.
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 11) Enter 0 along the boundaries B45:AP45, B45:B85, AP45:AP85, and B485:AP85.

 12) Enter = B2−B4 in Cell C91.

 13) Complete the By components (B91:AP130) by performing AutoFill.

The pattern of the magnetic field due to the two current wires is similar to the electric 

dipole field as shown in Figure 4.14.

Note: Biot-Savart’s law from Ampere’s law

Each component of Equation 4.17 is essentially a Poisson’s equation. For example, its  

x-component is �� �2
0A jx x� .

Recall that and we may write�
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Thus, 
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� can be used to calculate the magnetic field [4, 5].
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which is Biot-Savart’s law.

Taking the x-component, we have B r
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�  (4.26)

FIGURE 4.14 Magnetic foil produced by two current wires (I1 = −1 and I2 = +2).



  Electromagnetism   ◾   89

we can calculate Bx.
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Combining all three components, we obtain Biot-Savart’s law.
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4.4  TIME-VARYING MAXWELL’S EQUATIONS
4.4.1  Faraday’s Law of Magnetic Induction

The induced voltage (emf) is proportional to the changing rate of magnetic flux.

 emf
t

B

t
dAB

A

� �
�
�

� �
�
�
��

�
�
�

� .  (4.28)

What induces emf? An electric field or a magnetic field must be induced, and charges 

(electrons) are driven by the induced field to produce electrical current and voltage. Note 

that the magnetic field does not work because the magnetic force is always perpendicular 

to the displacement of the charges. Therefore, the induced field must be electric. The charge 

along the closed path by the induced electric field is equal to the electric potential energy 

due to emf.
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By applying Stokes’ theorem, 
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�
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� � �E ds E dA
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 Therefore, Faraday’s law states �� � �
�
�

 
E

B

t
.   (4.31)
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4.4.2  Displacement Current

You may notice a similar equation for B-field, i.e., Ampere’s law: �� �
 
B jo� . For a time-

varying magnetic field, this equation cannot be used. Here is why. Because �� �� �( )

B 0, 

Ampere’s law indicates �� �

j 0 . This is acceptable for a steady current but not for a time-vary-

ing current. For a time-varying current, the conservation of charge, � � ��� ��( , ) /
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r t t j 0 

must be applied.
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The additional term is called the displacement current. Ampere’s law is modified to 
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� �0 0 . Maxwell’s equations for time-varying fields are now given:
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4.4.3  Electromagnetic Wave in Free Space

The most important aspect of Maxwell’s equations is that they predict the existence of 

electromagnetic waves [5]. Faraday’s speculation that “visible light is an electromagnetic 

wave” was proved.

There is neither charge nor current. In this case, Maxwell’s Equations 4.33 become
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This is a wave equation and the speed of the electromagnetic wave is c � � �1 2 99 100 0
8� � .

m/s.
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4.5  HUYGENS’S PRINCIPLE AND GREEN’S FUNCTION

Huygens’s principle explains how and where waves propagate. It states that every point on 

a wavefront itself is the source of spherical wavelets [6]. The sum of these spherical wavelets 

forms a new wavefront. Here, we describe the principle in non-rigorous mathematics in an 

analogy of electric potential in the next chapter (Section 4.3).

Suppose there is a distribution of charge densityρ( )

r , the electric potential is given by
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where ε0 is the permittivity of free space and the integral is for volume. As we explain in 

Section 4.3.1, the potential satisfies the Poisson equation
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Suppose we have a differential equation
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a special solution of this differential equation should be given by
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If F r( )


 is the Dirac’s delta function δ( )

r , the solution 3.22 becomes
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The integrant of Equation 3.23, G r r r r( , ) / (| |)
   

� �� � �1 4� , is called Green’s function of 

� �2� �( ) ( )
 
r r , and it is a fundamental solution of the Laplace equation � �2 0�( )


r .

The special solution 3.23 of the differential equation 3.21 and the fundamental solution 

of the Laplace equation constitute a general solution of the differential equation 3.21.
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By an analogous argument, we can construct a general solution of the differential equation
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Green’s function for the differential equation, a special solution of differential equation 

4.43 is given by
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and the fundamental solution of the Helmholtz differential equation

 � � �2 2 0� �( ) ( )
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is given by a linear combination of plane waves,e ik r� �
 

, and a general solution of Equation 

4.45 is given by
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The special solution 4.44 is a spherical wave generated at each point 

r ′ and that is what 

Huygens’s principle states. For a more rigorous description of Huygens’s principle, refer to 

the advanced book of electrodynamics and optics [7].

SUGGESTED FURTHER STUDY

Wave optics including Huygens’s principle and Snell’s law discussed in Chapter 3 can be 

established with Maxwell’s equation. Refer to advanced textbooks on electrodynamics for 

these subjects [8].
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C H A P T E R  5

Entropy

Entropy is one of the important concepts in physics and other fields. Yet, we do not 

have enough time to contemplate it with examples. Here, we consider the entropy of 

ideal gas, regular solution, spin system, and quantum harmonic oscillators. There are phe-

nomena where changes in entropy cause interesting consequences. For example, adiabatic 

demagnetization on reaching a temperature below 1 mK is a fascinating application of 

entropy and can be modeled with a set of N-independent spins. Although the numerical 

calculation of change in entropy of two substances of known specific heat capacities and 

initial temperatures is a typical introductory physics problem, its “general proof” is not 

discussed. This book shows a diagram of the thermodynamic entropy change only with 

ratios of specific heat capacity and masses and given initial temperatures.

Although entropy of information may not be introduced in physics courses, it is a 

vital concept even in the economy of these days. We introduce popular concepts such 

as the probability distribution of maximum entropy and one-factor entropy. H-function 

and entropy in Markov processes are also described to validate the increasing entropy. 

Negative entropy proposed by Erwin Schrödinger is also explained in relation to informa-

tion science.

5.1  THERMODYNAMIC VARIABLES

This section summarizes the basic properties of thermodynamics of ideal gas of N mol-

ecules, having pressure P, temperature T, and volume V [1]. The equation of ideal gas, PV = 

NkBT, connects these state variables to express its thermal state.

The first law of thermodynamics states the change in internal energy of a system while 

absorbing heat and receiving work done on the system: ΔE = ΔQ + ΔW, where ΔQ is the 

heat absorbed by the system and ΔW is the work done on the system. For the ideal gas, 

ΔW = −∫PdV. The beauty of the first law is that work and heat are not state variables, i.e., 

they depend on the thermodynamic process but the internal energy is a state variable, and 

the change in the internal energy does not depend on the thermodynamic processes. In 

particular, the internal energy of ideal gas depends only on the temperature of the system.

DOI: 10.1201/9781003516347-5

http://dx.doi.org/10.1201/9781003516347-5
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The second law of thermodynamics has various statements. Since we focus on entropy, 

we use entropy change to state the second law. By the definition of Clausius, the second law 

states that the change in entropy is dS = dQ/T, where dQ is the heat absorbed by the system 

and T is the absolute temperature of the system during an infinitesimally small reversible 

process, and dS ≥0 i.e., the entropy of an isolated system never decreases. For an irrevers-

ible process, we use the entropy change of a reversible process with the same initial and 

final states.

The probability that a thermodynamic system at temperature T has internal energy E is 

given by the canonical ensemble,

 p E
E E

Z T N k TB

( )
( )exp( )

( , )
.�

�
�

� �
�where

1
 (5.1)

In Equation 5.1, Ω(E) is the number of microscopic states for a given internal energy E, kB 

is the Boltzmann constant, and N is the number of particles. The denominator Z(T, N) of 

Equation 5.1 is called the distribution function,

 Z E E E dE E E dE( ) ( )exp( ) exp ln ( ) .� � � � �� ��� ��� �� �� �   (5.2)

Using the distribution function, thermodynamic functions can be calculated. For exam-

ple, the average internal energy is
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�
��E Ep E dE Z T N( ) ln ( , ).
�

  (5.3)

Suppose the distribution function is at its maximum value when E = E* then the distribu-

tion function can be approximated with

 Z T N E E( , ) exp ( * ln ( *))� � ��� ��� � , and thus ln ( , ) [ * ln ( )]Z T N E E� � �� � .

Therefore, the Helmholtz free energy may be expressed as

 F T N Z T N E E E TS( , ) ln ( , ) ln ( ) ,* *� � � � � �
1 1

� �
�   (5.4)

where entropy S is defined by S = kBTlnΩ(E). Recall that the change in the entropy is 

thermodynamically defined by dS = dQ/T. We bridge these two definitions of entropy in 

Section 5.2. Once the Helmholtz free energy is calculated,
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from the change in the free energy, dF = dE – SdT − PdV.
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5.2  ENTROPY OF AN IDEAL GAS
5.2.1  Change in Entropy during Free Expansion

For obtaining a change in entropy while an ideal gas undergoes free expansion where its 

volume expands from Vi to Vf, and pressure changes from Pi to Pf, we calculate the equiva-

lent entropy change of isothermal expansion of the same initial and the final states. Note 

that there is no change in the internal energy because the internal energy of an ideal gas 

depends only on T. Thus, according to Clausius’s definition,

� �S
dQ

T T
Q

i

f

� ��
1

 and � �Q W PdV
i

f

� � �  because ΔE = 0 for the isothermal process.

Using the ideal gas equation, �W
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�� ln , and the entropy  

change during an isothermal expansion is given by
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Following Boltzmann, we may consider the entropy change from the “microscopic state” 

of an ideal gas during the free expansion. Below is a simplified version of his argument. 

Assume that each particle occupies a microscopic cell of volume Vm. The number of pos-

sible allocations of a single particle in a bulk volume V is given by V/Vm. Because V >> Vm, 

V− Vm ≈V, and even V − N∙ Vm ≈ V. Then, the number of allocating N particles in the bulk 

volume V is given by Ω = (V/Vm)N. Therefore, when the volume of the gas expands from Vi 

to Vf, the number of microscopic states changes from Ωi = (Vi/Vm)N to Ωf = (Vf/Vm)N, and 

we obtain

 
�

�
f

i

f m

N

i m
N

f

i

N
V V

V V

V

V
�
� �

�
�

�
�

�

�
�

/

( / )
.   (5.7)

One may formulate entropy based on the number of microscopic states by comparing 

Equation 5.6 with Equation 5.7 to obtain

 �
�

�
S Nk

V

V
k

V

V
kB

f

i

B
f

i

N

B
f

i

�
�

�
�

�

�
� �

�

�
�

�

�
� �

�

�
�

�

�
�ln ln ln .

Thus, the entropy of the ideal gas may be expressed as

 S k Nk VB B� �ln ln .�  (5.8)

The derivations of the number of microscopic states of an ideal gas are shown in standard 

textbooks [2]. From the classical mechanics,
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where C
N

N
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 is the volume of a 3N-dimensional unit sphere and Γ(x) is a  

 

 

Gamma function described in Section 6.5.5. From the Schrödinger equation,
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The essential part of the entropy of an ideal gas is given by S = NkBlnV from both classical 

and quantum systems.

5.2.2  Mixing Entropy

Assume two ideal gas systems of the same pressure and temperature but different numbers 

of particles and volume: PV1=N1kBT and PV2=N2kBT. Each of them is placed in two separate 

compartments of volume V1 and V2 of a box with the total volume V = V1 + V2.

Imagine there is a partition between the compartments. By removing the partition, we 

can mix the gases. The equation of the mixed gas is given by PV = NkBT. Because V = V1 + 

V2 and N = N1 + N2, V1 = N1V/N and V2 = N2V/N, and the entropies are given by

 S N k V N k N V N S N k V N k N V NB B B B1 1 1 1 1 2 2 2 2 2� � � � � �ln ln / , ln ln( / ).and  (5.11)

Before mixing, the total entropy is the sum of S1 and S2, that is,

S S N k N V N N k N V N N V k N N N N NB B B1 2 1 1 2 2 1 1 2� � � �� � � � � �ln / ln / ln ln( / ) ln( 22 / ) .N�� ��

After mixing, the entropy of the mixed gas is S = NkBlnV, and thus, the change in entropy 

by mixing is
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 (5.12)

Figure 5.1 is a screenshot of the calculation of the mixing entropy given by Equation 5.10. 

The total number of gas particles is kept to N = 100 while changing N1 and N2 from 1 to 99.

Figure 5.2 shows the dependence of the mixing entropy on the mixing ratio N1/N2. The 

mixing entropy becomes maximum when N1 = N2.

5.2.3  Gibbs Paradox

Imagine that a box has two parts of equal volume V separated with a partition. Place two 

different ideal gases (e.g., two different kinds of inert gases) of the same V, T, and N into the 

box. Each of the gas systems is placed into each of the two separate parts of the box. Using 

the calculation in Section 5.2.2, the total entropy before mixing is Stot = S1 + S2 = 2NkBlnV, 

where N1 = N2 = N. Next, remove the partition to mix the gases. Each gas expands to the 
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volume of 2V, and the entropy after mixing should be S’tot = 2NkBln(2V), and the entropy 

change by mixing should be given by S’tot − Stot = 2kBln2 >0.

Now, consider the same mixing procedure using two sets of gases of the same kind. 

Because the gases are identical, the “mixing” has no meaning, and entropy should exhibit 

no change. Since N, T, P, and V do not reflect the particle types, the above result of entropy 

change by mixing should be applicable even for the two sets of the same kind of ideal gas. 

This could be a paradox [3].

Is this really a paradox? The calculations of the number of microscopic states described 

in Section 5.2.1 did not consider the indistinguishability of the identical particles, which 

affects the number of allocating N particles. Back to Equation 5.8, we should have used

 S k
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N
Nk V k N Nk V k N N NB
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B B B B�
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� � � � � �� �ln

!
ln ln ! ln ln  (5.13)

where we used the Stirling formula, lnN!≈NlnN − N for N >>1.

Using the Stirling formula again, the total entropy of the two ideal gases of the same 

type should be

S Nk V k N Nk V k N N k Ntot B B B B B� �� � � � �2 2 2 2ln ln ! ln ln before mixing,

FIGURE 5.1 Calculation table of mixing entropy.

FIGURE 5.2 Mixing entropy of ideal gases.
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and

S Nk V k N Nk V k N N k Ntot B B B B B� � � � � �2 2 2 2 2 2 2 2ln( ) ln[( )!] ln( ) ln( )  after mixing. 

Thus, the mixing entropy is S S Smix tot tot� � �� 0 as we expect.

How about mixing two sets of ideal gases of different numbers of particles (N1 and N2) 

and different volumes (V1 and V2) and pressures (P1 and P2) to reach the final state of N = N1 

+ N2, V = V1 + V2, and T? Using Equation 5.11,
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Therefore, the change of entropy by mixing is calculated below, which results in the 

same as Equation 5.12.
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 (5.14)

It is remarkable that the indistinguishable property of identical particles that appeared in 

quantum mechanics must be considered when mixing the entropy of an ideal gas!

5.2.4  Mixing Entropy of Ideal Solutions

An ideal solution or an ideal mixture is a solution that exhibits thermodynamic properties 

analogous to those of a mixture of ideal gases [4, 5]. Consider mixing two components of 

molecules N1 and N2 in a solution with volume. We use the lattice model of the solution. 

Suppose there are N lattices in volume V. Let b3 be the volume of a lattice cell, then V= b3N, 

and there will be no vacancy, i.e., N = N1 + N2. Mathematically, this model is very much 

similar to mixing two ideal gases as discussed earlier, and the total number of N1 molecules 

and N2 molecules in the volume is
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 (5.15)

The mixing entropy has the same dependence on N1 and N2 as shown in Figure 5.1.
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5.3  THERMODYNAMICS OF TWO-LEVEL SYSTEMS
5.3.1  Spin 1/2 Particles in a Uniform Magnetic Field

Suppose there are N independent spins in a magnetic field B. Each spin can take either the 

spin up state of energy −μBB = −ε0 or the spin down state of energy +μBB = +ε0, where μB is 

the magnetic moment [6]. The total magnetic energy is E = (Nd − Nu) ε0 = Mε0, where Nd is 

the number of down spins and Nu is the number of up spins, N = Nd + Nu, and M = Nd − Nu.

The number of possible spin configurations is given by
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N M N M
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,

1 2 1 2
  (5.16)

and the entropy of this spin system is given by
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where p = Nd/N and Nu/N = 1 − p. Similar to the ideal gas as shown in Figure 5.2, entropy 

is at its maximum when p = 0.5. The temperature of the system is given by
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Note that if M >0 (or E >0), then the temperature will be negative, T <0. That is, the system 

is not normal because of the negative temperature. On the other hand, if M <0 (or E <0), 

then T >0. This is acceptable and we consider M <0.

Figure 5.3 shows a screenshot of these calculations using the AutoFill feature.

Figure 5.4 shows entropy (S/NkB) vs energy (E/ Nε0), where the positive and negative 

temperature regions appear.

FIGURE 5.3 Calculation of two-level system.
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For T >0,
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2 0�  from equation (5.18).

Thus, we obtain
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 (5.19)

Hence, using Equation 5.19, E N N N k Td u B� � � � � � �( ) tanh /� � �0 0 0 . Figure 5.5 shows 

energy (E/Nε0) vs temperature (kBT/ε0).

The specific heat capacity, C = dE/dT, is also calculated below.
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Figure 5.6 shows the temperature dependence of specific heat capacity (C/NkB). This type 

of specific heat capacity is called the Schottky type [7].

FIGURE 5.4 Entropy vs energy.

FIGURE 5.5 Temperature dependence of energy.
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5.3.2  Adiabatic Demagnetization

Using the independent spin system described earlier, we may explain the basic idea of adia-

batic demagnetization to achieve micro-Kelvin temperature [8]. We apply the canonical 

distribution or the partition function ZN to express entropy as a function of temperature. 

For an N-independent spin system at temperature ß = 1/kBT,
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where Z Bs BB B
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 S
F

T
k

F
Nk BB B B� �

�
�
�

�
�

�

�
� �

�
�

�

�
�

�

�
� � �

�
�
�

�
�

�

�
��

�
�

�
��( cosh( ) .2   (5.22)

 
S

Nk
B B B

B

B B B� � ��1
2

�
�� � ��ln cosh( ) tanh( ).   (5.23)

The cooling steps are as follows:

 1) Ramp up the magnetic field from B1 to B2 isothermally at temperature T1. Spins are 

aligned more and the entropy decreases at an initial temperature T1; and

 2) Ramp down the magnetic field from B2 to B1 adiabatically. Since the entropy does not 

change in this adiabatic process, the argument βμBB remains the same, i.e., β1μBB2 = 

β2μBB1 and B2 > B1. Thus, β2 > β1 or T2 < T1. The system temperature decreases to T2.

Figure 5.7 shows a graph of the calculated entropy expression 5.23 with μBB1 = 0.1 and μBB2 

= 0.2.

FIGURE 5.6 Schottky type heat capacity of the N-spin system.
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Note: Negative thermodynamic temperature. If the temperature is negative, the factor 

exp(−E/kBT) in the canonical distribution 5.1 could be infinite, which is unacceptable from 

a thermodynamics viewpoint as thermal equilibrium states do not have a negative tem-

perature [9]. However, it is possible to create a transient state with a negative temperature. 

For example, imagine a spin system where spins are lined up in an external magnetic field 

in the positive z-direction. The spin distribution will have a population inversion where the 

number of up spins is more than that of the down spins. If the magnetic field is reversed 

quickly, the spin distribution momentarily creates a negative temperature because the 

spins of higher energy states are more than those of lower energy states. A new thermal 

equilibrium state will be established soon with a positive temperature and energy exchange 

in an interaction other than the spin interaction. Note that if we use a temperature scale ß 

= 1/kBT, the negative temperature is higher than the positive temperature!

5.3.3  N-Independent Quantum Oscillators

For the energy level of a quantum harmonic oscillator, the total energy of N-independent 

oscillators is E = N(n + 1/2)ℏω = N(M/N + 1/2), where M = N∙n, and n = 0, 1, 2, 3, … Denote 

the quantum number of the i-th oscillator as ni. The total energy is

 E N M� �
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where

 n M
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1

1

�
�
� .   (5.25)

The number of possible configurations is equal to the number of possible allocations of M 

balls into N boxes. Because ni = 0 is allowed, an empty box is also allowed. Thus, the num-

ber of possible configurations is equal to the number of possible ways to line up M white 

balls (corresponding to oscillators) and (N−1) black balls (corresponding to empty boxes). 

Note that the white balls are indistinguishable and so are the black balls. Therefore,

FIGURE 5.7 Model of adiabatic demagnetization.
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Entropy is given by S k E k M N N M M M N NB B� � � � � ��� ��ln ( ) ( ) ln( ) ln ln .�  (5.27)
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Figure 5.8 shows a screenshot of the calculation of energy and entropy of N-independent 

quantum oscillators.

Figure 5.9 shows the temperature (kBT/ℏω) dependence of energy (E/Nℏω). As the tem-

perature increases, energy approaches the classical system. For calculations of M/N and 

entropy, use Equations 5.27 and 5.28.

FIGURE 5.8 Calculation of N quantum oscillators.

FIGURE 5.9 Temperature dependence of energy of N quantum oscillators.
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Using the Stirling formula, the entropy Equation 5.27 can be modified to
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From Equations 5.28, 
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With Equation 5.30, entropy 5.29 becomes
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Figure 5.10 shows the energy (x = E/Nℏω) dependence of entropy (S/NkB).

5.3.4  Change in Entropy of Two Substances after Making Thermal Contact

Refer to a popular exercise problem relating to entropy in general physics to calculate the 

entropy change of two substances of known masses and specific heat capacities after reach-

ing thermal equilibrium by thermal contact [10]. The entropy change is given by

 �S
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and the condition of thermal equilibrium is

 m c T T m c T T1 1 1 2 2 2 0( ) ( )� � � �  (5.33)

FIGURE 5.10 Energy dependence of entropy.
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where T is the equilibrium temperature. While this problem demonstrates that the entropy 

increases with a given date of masses and specific heat capacities, it is challenging to prove 

it without numerical data.

Here, we seek a general tendency of the entropy. First, we assume T1 > T2. Let T1 = αT2 

and m1c1 = ßm2c2, where α >1 with the temperature condition and ß >0. Using these ratios, 

Equation 5.32 becomes

 � � �� �( ) ( ) ( ) / ( ).T T T T T T� � � � � � �2 2 20 1 1or  (5.34)

From Equations 5.32 and 5.33, we define “reduced” entropy
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Figure 5.11 is a screenshot of the commutation of Equation 5.35. On this spreadsheet, 1 ≤ 

α ≤ 1851 by step 10 and 1≤ß≤331 by step 10.

Figure 5.12 shows the 3D surface chart from the numerical calculation of Equation 5.35, 

where the ranges of α and ß are limited to 1 ≤ α ≤ 20 and 0.1 ≤ ß ≤ 10.1. It appears that 

the entropy is a monotonic increasing function of α and ß and never be negative. Although 

FIGURE 5.11 Change in entropy by establishing thermal contact of two substances.

FIGURE 5.12 Change in entropy after making two substances in thermal equilibrium.
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we show limited ranges of α and ß, expanding their ranges does not change the monotonic 

increasing tendency.

5.3.5  H-Function and Entropy in Markov Processes

Assume a system is changing its state, following a Markov process that can take finite 

numbers of state variables x, which may represent a set of several variables, x1, x2, …, xW 

[11, 12]. Let pji be the probability of transit from state xi to state xj. The conditions on pji are:

 1) In a thermal system, microscopic reversibility means pji = pij; and

The transition probability pji satisfies the sum of all possible transitions that must be unity, 

i.e., p ji

j

W

�
�
� 1

1

.

If the probability that the system is found in the state xi is Pi(n) after the nth transition, 

then the probability that the system is found in the state xj, Pj(n+1) after the (n+1)th transi-

tions is given by

 P n p P nj ji

i

W

i( ) ( ).� �
�

�1
1

  (5.36)

Now, consider a convex downward function f(x) where we assume that the variable x fol-

lows a probability distribution of a Markov process. Its tangential line is always below f(x) 

as shown in Figure 5.13. In other words, f(x) ≥ f(<x>) + (constant)(x − <x>). Taking an 

average of f(x), we obtain the following inequality,

 <f(x) > ≥ <f(<x>)> + <(constant)(x − <x>)>.

Furthermore, because <(constant)(x − <x>)> = (constant)<(x − <x>) = 0,

 <f(x) > ≥ <f(<x>)>. (5.37)

FIGURE 5.13 A convex downward function f(x).
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Using Equation 5.36, Equation 5.37 can be interpreted as
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Hence,
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Define H-function as H n f P nj
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, then �H H n H n� � � �( ) ( )1 0  by Equation 5.40.

Therefore, the H-function never increases in a Markov process. Furthermore, if we 

define entropy,

 S(n) = −kBH(n),

then we have

 ΔS = S(n + 1) − S(n) ≥0, i.e., the entropy never decreases.

Let f(x) = xlnx. The inequality 5.37 holds, and the above discussion is still valid. Thus,

 S n k H n k P n P nB B i i

i

W

( ) ( ) ( ) ln ( )� � � �
�
�

1

.

This is the same entropy form of information we discuss in the next Section 5.4.1. As we 

will find in the next section, the entropy becomes maximum when pi = 1/Ω; i = 1, 2, …, W, 

and Smax = kBlnΩ.

5.4  ENTROPY OF INFORMATION
5.4.1  Quantification of Information and Entropy of Information

When you define the probability of an event occurring as p, p~1 means the event surely 

occurs, whereas p~0 means the event seldom occurs. Using the reciprocal value of prob-

ability, called odds, we define self-information,

 I(p) = Kln(1/p) = −Kln(p). (5.41)

where the coefficient K is included to compare the entropy of information with that of 

thermodynamics [13].
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As shown in Figure 5.14, the self-information is I(p = 1) = 0 and becomes a steep func-

tion near p ≥0. If something occurs for sure, we do not gain useful information, but if 

something that would not be expected to occur, the event provides us with much useful 

information.

We define entropy of information as the expectation value of the self-information:

 S K p p pi

i

i i

i

� � �� �ln .where 1  (5.42)

What is the probability distribution that leads to maximum entropy? Consider that when 

the entropy becomes maximum, it is a maximum value for any pi. Let us apply the Lagrange 

multiplier to find such a probability distribution. The restriction is that the total probabil-

ity must be 1. Define

 L S p p p pN i

i

N

� � �
�
�
�

��

�
�
�

��
�

�
�( , ,..., ) .1 2

1

1 0�   (5.43)

The function L should satisfy 
�
�

�
�
�

�� �
L

p

L
i N

i

0 01 2; , , , ; .and
�

  (5.44)

1) ∂L/∂λ = 0 yields to ∑pi = 1. (5.45)

2) 
�
�

� �
�
�
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�
�

�

�

�
�
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�
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�
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�

�

�
�
�

� �
� �L

p p
K p p

p
p

i i

j j

j

N

i

j

j

N

ln , .
1 1

0� i e.., ln ,� � � �K pi 1 0�  (5.46)

FIGURE 5.14 Self-information.
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and we obtain p Ki � �� ��� ��exp /� 1 .

3) p K K Ni

i

N

i

N

i

N

� � �� � � �� � � � �� �
�� �
�� �1 1 1 1 1

11 1

exp[ / ] exp[ / ] exp[� � � // ].K  (5.47)

Thus, exp[ / ] , ,..., .� �� � � � �1
1 1

1 2K
N

p
N

Niand for i   (5.48)

In other words, the entropy becomes maximum when the probabilities are all equal to 1/N. 

The maximum entropy value is

 S K p p K
N N

K Ni i

i

N

i

n

max ln ln ln .� � � �
�

�
�

�

�
�

�

�
�

�

�
� �

��

�� 1 1

11

 (5.49)

5.4.2  Probability Distribution for Maximum Entropy

Assume an event takes positive values of εi, i = 1, 2, …, N with the probability of the event 

being pi. The average value of information is E = ∑εipi. What is the probability distribution 

that gives the maximum entropy? In this case, entropy S = ∑ piln pi becomes maximum 

with the conditions of ∑pi = 1 and E = ∑εipi. We can also apply the Lagrange multiplier to 

find such probability distribution with two restrictions, ∑pi = 1 and E = ∑εipi.

Define

 L S p p p p p EN i

i

N

i i

i

N

� � �
�
�
�

��

�
�
�

��
� �

�
�
�

��

�
�

� �
� �( , ,..., )1 2

1 1

1� � �
��

��
 (5.50)

and minimize L.

 1) ∂L/∂pi = 0

  
�
�

�
�
�

� � � � � � �
L

p p
S p p p K p

i i

N i i i( , ,..., ) ln1 2 0� �� � �� , and thus,

  p Ki i� � �exp[( ) / ]�� �1 .

 2) ∂L/∂λ = 0

  p K Ki i

i

N

i

N

� � � � � � �
��

�� 1 1 1
11

exp[( ) / ] exp[( ) / ])�� � � , and thus

  exp[( ) / ]

exp( / )

� � �

� �
�

1
1

1 1

�

��

K

Ki

i

N
, and thus
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  p
K

K

i
i

i

i

N

i

i

i

N
� �

� � � �
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exp( / )

exp( / )

exp( )

exp( )

��

��

���

���

1 1 1 1

, where 1/K = ß.

 3) ∂L/∂α = 0

  �i i

i

N

p E� �

�

� 0
1

, and thus E

i i

i

N

i

i

N
� � �

� �

�

�

� ���

���

exp( )

exp( )

1 1

1 1

.

5.4.3  Maximum Entropy and Minimum Energy

Assume an event takes positive values of εi , i = 1, 2, . …, N with the probability of the event 

being pi. The average value of information is E(p1, p2, …, pN)=∑εipi. What is the probability 

distribution that gives both maximum entropy S(p1, p2, …, pN) and minimum energy of E 

= ∑εipi? We may also apply the Lagrange multiplier to find such probability distribution 

with the restriction ∑pi = 1. Note that entropy S will never be negative and E >0 with the 

assumption of εi >0. This time, one finds the probability distribution for maximizing S(p1, 

p2, …, pN)/E(p1, p2, …, pN) with the restriction of ∑pi = 1.

Define , and minimize M. M
S p p p

E p p p
pN

N

i

i

N

� � �
�
�
�

��

�
�
�

���
�( , ,..., )

( , ,..., )
1 2

1 2 1

1�  (5.51)

 1) ∂M/∂pi = 0
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 Thus i N, ln ; , ,..., .p
S

E
Ei i� � � � �� � 1 1 2   (5.53)

  By multiplying pi to the above equation, we obtain

p p
S

E
p Ep pi i i i i iln � � � �� � .

  Thus,

p p
S

E
p E p pi i

i

N

i i

i

N

i

i

N

i

i

N

ln
� � � �
� � � �� � � �

1 1 1 1

� � .

  Because pi

i

N

�
� �

1

1, the above equation becomes S S E� � � �� 1, and thus λ=1/E.
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  Back to Equation 5.37, we obtain
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S

E
S Ei i i i

i
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� �
�

�
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�

�
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 (5.54)

 2) ∂L/∂λ = 0
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NN

�
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  (5.55)

Here is an example of how to use Equation 5.55. Let N = 2, and ε1 = ε0 and ε2 = 2ε0, where 

ε0 is a constant. Imagine a two-energy level system where the higher energy level is twice 

the lower level. With this condition, e e� �� �� � � �0 02 1 or x x� �2 1, where x e� �� �0 . Solving 

the quadrature equation, we obtain x �
� �1 5

2
0 618 .  for x >0. Therefore, p x1 0 618= = .  

and p x2
2 0 382= = . . The probability of reaching the higher energy level is proportional to 

the square of the lower probability.

5.4.4  Negative Entropy

Assume that the number of all possible events is N0 and each of which has an equal prob-

ability, and we knew there were only N1-events, where N1 < N0, occurred. As we defined in 

Section 5.4.1, the information we get from N1-events is given by

I0 = −Kln(p0) = KlnN0 because p0 = 1/N0 and I1 = −Kln(1/N1) = KlnN1 because p1 = 1/N1,

assuming each event in a group of possible events takes the equal probability. Thus, we lose 

information when the number of occurring events changes from N1 to N0 when N1 < N0.

The maximum entropy from the N1-events and N0-events are given by S1 = KlnN1 and S0 

= KlnN0. Change in entropy from the N1-events to N0-events is ΔS = S0−S1 = Kln(N0/N1) >0 

when N1 < N0. The entropy of a system increases and reaches the maximum in its thermal 

equilibrium state as the second law of thermodynamics states.

As the entropy of the system increases, information on the system decreases, 

ΔI=I0−I1=Kln(N1/N0). In order to increase or even maintain the amount of information, we 

must decrease entropy. For a thermodynamic system, it means that from a thermal non-

equilibrium state to the equilibrium state, the entropy of the system increases while we lose 

information on the microscope state of the system. Once the system reaches its thermal 

equilibrium state, all the microscopic states will have an equal probability.

The concept of negentropy was introduced by Irwin Schrödinger in his book titled 

What Is Life? [14]. According to him, a living organism is not in a thermal equilibrium 
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state while alive and its entropy reaches its maximum upon death. In order for the living 

tissues to be alive, they must maintain information about reproduction, and we need to 

feed negentropy!

SUGGESTED FURTHER STUDY

Knowing the history of entropy would open your eyes to thermodynamics [15, 16]. That 

history was indeed the reason for me to study statistical physics.

In digital data/image processing, the maxim entropy method (MEM) is widely applied. 

MEM is based on the entropy of information and the power spectrum of a signal to estimate 

its spectrum by maximizing the entropy. MEM is equivalent to computational processes of 

determining the coefficients of a linear prediction (LP) filter [17–19]. Furthermore, cepstra 

constructed by the LP method and Fourier transform (FT) are equivalent. Cepstra are the 

results of computing the inverse Fourier transform (IFT) of the logarithm of the estimated 

signal spectrum. MEM may also acquire signal spectra although a two-dimensional MEM 

has not been established. If readers are interested in these digital technologies, refer to 

these references. One of our readers would accomplish a new discovery!

For the general description of information theory applied in physics, refer to a collection 

of research articles [20].
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C H A P T E R  6

Boundary Value Problems

Helmholtz differential equation, � � �2 0U r kU r( ) ( )
 

, appears in many science 

subjects. Solving the Helmholtz equation for a specific boundary condition needs a 

special mathematical function that satisfies the boundary condition. The boundary value 

problems may be called the eigenvalue problems where these special functions are called 

“orthonormal bases.” Because the boundary conditions are expressed using suitable coor-

dinate systems, we may sort out special functions according to their coordinate systems. 

While there is a wide variety of mathematical properties that appear in the boundary value 

problems, this book focuses on their orthonormal properties without mathematical proofs. 

For their comprehensive descriptions, refer to advanced mathematics books [1–5].

6.1  EIGENFUNCTIONS AS ORTHONORMAL BASES
6.1.1  Separation of Variables of the Helmholtz Equation

One of the methods to solve partial differential equations of the second-order time  

 derivative, 
�
�

� �
2

2

2 2u r t

t
v u r t

( , )
( , )

 
, is the separation of variables. Assume u r t T t U r( , ) ( ) ( )

 
=  

and T(t) = exp(±iωt). The differential equations become 
d T dt

T

v U

U

2 2
2

2 2/
� � �

�
� , and the 

space part becomes the Helmholtz equation � � �2 2 0U k U , where k = ω/v. We can also 

apply the variable separation for partial differential equations with the first order time 

derivative, 
�
�

� �
u r t

t
u r t

( , )
( , )

 
�

2  such as heat conduction equation, diffusion equation, and 

Schrödinger equation. In this case, 
d T dt

T

U

U

2 2 2/
�

�
� �� �, where α is a constant. The 

space part also becomes the Helmholtz equation, � � �2 0U kU , where k = α/λ.

Depending on the coordinate system used to solve the Helmholtz equation, appropriate 

special functions are applied to describe the solutions. Solutions of the Helmholtz equation 

satisfying a specific boundary condition are called eigenfunctions, and the k-values for the 

solutions are called eigenvalues. Recall that with a set of unit vectors an arbitrary vector 

can be expressed. Likewise, a set of eigenfunctions forms an orthogonal basis with which 
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an arbitrary function satisfying the boundary condition may be expressed. The general 

orthonormal properties are described below.

6.1.2  Orthonormal Property of Eigenfunctions

Recall a three-dimensional vector space of the Cartesian coordinate frame. Let a set of unit 

vectors { ; , , }

e ii =1 2 3  be in the coordinate frame. We learn that the unit vectors are orthogo-

nal to each other, i.e., their inner products satisfy ( )
 
e ei j ij� � � , where δij is the Kronecker 

delta. With the orthonormal property of the unit vectors, we can express a vector 


V  in the 

coordinate such that

 
     

V V e V e V e V V e ii i� � � � � �1 1 2 2 3 3 1 2 3where ( ); , , . (6.1)

A similar argument may be made for the solutions of Helmholtz equations with a specific 

boundary condition. Assume that we have a one-dimensional boundary value problem 

described by

 
d X

dx
X x

2

2
0 0 1� � � �� where . (6.2)

The boundary conditions are, for example, X(0) = X(1) = 1. Assume we obtain eigenfunc-

tions Xm and Xn for different eigenvalues λm and λn:

 
d X

dx
X

d X

dx
Xm

m m
n

n n

2

2

2

2
0 0� � � �� �and , (6.3)

and Xm and Xn satisfy the same boundary condition of X(0) = X(1) = 0, dX(0)/dx = dX(1)dx 

= 0, or X(0) = dX(1)/dx = 0. From these eigenfunctions, we obtain

 X
d X

dx
X

d X

dx

d

dx
X

dX

dx
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dX

dx
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m
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m
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�. (6.4)

Thus, � �m n n m n
m

n
mX X dx X

dX

dx
X

dX

dx
�� � � �

�

�
�

�

�
� ��0

1

0

1

0 for the boundary conditions.

Because λm≠λn, X X dxn m
0

1

0� � . This relationship may be interpreted as the “inner  

product” of the functions Xn and Xm, and when the inner product becomes zero, we 
 

interpreted eigenfunctions Xn and Xm to be orthogonal if λm≠λn. Even if X X dxm

2 2

0

1

1� ��  

for a set of orthogonal functions, we may normalize the orthogonal functions to make a 

set of orthonormal functions,

 Y x
X x

X x
m

m( )
( )

( )
.=

2  (6.5)



  Boundary Value Problems   ◾   117

Note: The Sturm-Liouville differential equation

The Sturm-Liouville differential equation has the following form [1].

 
d

dx
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q x y r x y( ) ( ) ( )
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 ˘ ˘ ( ) ( ).Ly ry L
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q x� �
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�

�
� �� where  (6.6)

Note that the Helmholtz differential equation is a special form with p(x) = 1, q(x) = 0, and 

r(x) = 1. The solutions of the Sturm-Liouville equation are orthogonal as described below.

Let eigenfunctions of the Sturm-Liouville differential equation for different eigenvalues 

λm and λn be Xm and Xn with a given boundary condition for a ≤ x ≤b:

 ˘ ˘ .LX rX LX rXm m m n n n� �� �and  (6.7)

With arbitrary functions, u(x) and v(x), we have
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Let u = Xn and v = Xm. Equation 6.8 becomes
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Then, the eigenfunctions are orthogonal with a weight function r(x):

 � � � �m n m n
a

b

m
n m

n

a

b

m nrX X dx p X
dX

dx

dX

dx
X�� � � �

�

�
�

�

�
�

�

�
�

�

�
� � �
 0 if . (6.10)

6.2  RECTANGULAR COORDINATES
6.2.1  Standing Wave on a Rectangular Membrane

Consider a standing wave on a two-dimensional rectangular membrane. The wave equa-

tion is
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�
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�
�

2
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2
2

2

2

2

u x y t

t
v

u x y t

x

u x y t

y

( , , ) ( , , ) ( , , )
. (6.11)

The solution of the equation can be obtained by the variable separation. Let u(x, y, t) = 

X(x)Y(y)Γ(t), then Equation 6.1 becomes
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and X(x) and Y(y) are also separated,

 
X x

X x
k

Y y

Y y
kx y

� �( )
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( )
.� � � �2 2and  (6.13)

Assume the following initial and boundary conditions for a rectangular membrane:

 (i) The initial conditions: u(x, y, 0) = f1(x, y) and (∂u/∂t)t = 0 = f2(x, y); and

 (ii) The boundary conditions: u(0, y, t) = u(a, y, t) = 0 and u(x, 0, t) = u(x, b, t) = 0.

The solutions of Equation 6.2 including the boundary condition are

 X x A
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a
x k

m

a
mn n x( ) sin , , , ;�
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�
�
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where and  1 2 3  (6.14)

 Y y B
n

b
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a
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where and 1 2 3  (6.15)

and the time part of Equation 6.1 is a harmonic oscillation,
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Because possible values of kx and ky are discrete, the angular frequency ω is also discrete:
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Therefore, the general solution is
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 (6.18)

where {Dm,n} = {AmBnCm,n; m = 1,2,3, …, and n = 1, 2, 3, ….} and {εm,n} are determined by 

the initial condition.

The spatial part is a two-dimensional Fourier series discussed in Section 6.2.2. 

Figure 6.1 shows a screenshot of the calculated spatial part of u2,3 with a = b = 3.14 using 

Equation 6.17. The x-range is specified from 0 to 3.15 with increments of 3.15/30 = 0.105 
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in  Column B and the y-range is specified from 0 to 3.15 with increments of 3.15/30 = 

0.105 in Row 2. Enter =SIN(2*$B3)*SIN(3*C$2) and apply AutoFill.

Figure 6.2 shows a 3D surface chart from the calculated data.

6.2.2  Trigonometric Functions as an Orthonormal Basis – Fourier Series

Trigonometric functions form a set of orthonormal functions, and a function f(x) can be 

expressed as a series of trigonometric functions. As we described in Section 3.3., if the 

function f(x) is a periodic function, a series expansion in terms of trigonometric functions 

should be suitable.

An arbitrary periodic function f(x) in the interval [−L, +L] can be expressed by a series 

expansion of trigonometric functions,

 f x
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 (6.19)

where the coefficients {am} and {bm} are given by
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1 1

( )cos ( )sin
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and �� . (6.20)

FIGURE 6.1 Two-dimensional standing wave u2,3.

FIGURE 6.2 Two-dimensional standing wave on a square membrane.
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Example: a sawtooth wave. The sawtooth wave is a repetition of the function f(t) = x for −1< 

x < +1, and the period is 2. The Fourier series of the above sawtooth wave is

 f t
n

n x x x
n

n

( )
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sin( ) sin( ) sin( ) sin(�
�

� � �
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�
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�2 1 2 1

2
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1
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� � �xx x x) sin( ) sin( ) .� � ��
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�
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�

�
�

1

4
4

1

5
5� �   

 (6.21)

Figure 6.3 lists the VBA code for the iterative summation of the Fourier series of f(x) = x 

using Equation 6.21.

Figure 6.4 shows the actual Fourier series of up to 5 terms and 200 terms for 0<x<1. The 

Fourier series of the first 5 terms is shown for comparison with series expansions of other 

orthonormal functions in Sections 6.3 and 6.4.

6.2.3  Hermite Polynomials

The Hermite differential equation is given by

Sub Fourier1D()

Cells(1, 1) = "Fourier series of f(x)=x for |x|<=1"

Pi = 3.141592654

Cells(2, 2) = "x"

Cells(2, 3) = "FT"

Cells(2, 4) = "Exact"

N = 200                  '# of terms to be calculated.

For j = 1 To 101      '100 segments from x=0 to x=1

jj = (j - 1) / 100

temp = 0

For k = 1 To N

temp = temp + ((-1) ^ (k + 1)) * Sin(k * Pi * jj) / k

Next k

Cells(j + 2, 2) = jj

Cells(j + 2, 3) = temp * 2 / Pi

Cells(j + 2, 4) = jj

Next j

End Sub

FIGURE 6.3 VBA code for calculating the Fourier series of f(x) = x.

FIGURE 6.4 The Fourier series of f(x) = x for 0 < x < 1 (5 terms and 200 terms).
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d F x

dx
x

dF x

dx
nF x n

2

2
2 2 0 0 1 2

( ) ( )
( ) , , ,� � � � �where  (6.22)

Solutions of the Hermite equation are called Hermite polynomials. The quantum harmonic 

oscillator can be described by the Hermite equation as we will discuss in Section 7.2.2.

Example of Hermite polynomials (n = 0 to 5):

H0(x) = 1,

H1(x) = 2x,

H2(x) = 4x2 − 2,

H3(x) = 8x3 − 12x,

H4(x) = 16x4 − 48x2 + 12,

H5(x) = 32x5 − 160x3 − 120x. (6.23)

Graphs: Figure 6.5 shows Ho(x) to H5(x) using Excel’s AutoFill.

The Hermite polynomials can be generated with the following formula.

Generating function: H x e
d

dx
en

n x
n

n

x( ) ( )� � �1
2 2

 and e
H x

n
txt t n n

n

2

0

2�

�

�

�� ( )

!
. (6.24)

Recursion formula: H x xH x nH xn n n� �� �1 12 2( ) ( ) ( ) . (6.25)

Important properties of the Hermite polynomials are:

Parity: Hn(−x) = (−1)nHn(x) (6.26)

FIGURE 6.5 Hermite polynomials.
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Orthonormality: e H x H x dx nx
n m

n
nm

�

��

��

��
2

2( ) ( ) ( !)� � , where δnm is the Kronecker delta.  

 (6.27)

The orthonormality expressed by Equation 6.27 means that the Hermite polynomials form 

an orthonormal basis given by
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Series expansion using the Hermite polynomials is given by
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A few terms of hn(x) do not represent a good approximation. Figure 6.6 shows two exam-

ples: f(x) = x and f(x) = sinx with up to n = 5 terms of the orthonormal bases (6.29). The cal-

culation of the coefficients (6.30) is shown in Appendix A6.1. We apply Simpson’s method 

for the numerical evaluation of the integrals in Equation 6.30. Refer to Appendix A.4 for 

Simpson’s method.

6.2.4  Laguerre polynomials

The Laguerre polynomials, Ln(ρ), are solutions of the Laguerre differential equation:

 x
d y x

dx
x

dy x

dx
ny x n

2

2
1 0

( )
( )

( )
( ) .� � � � where is integer  (6.31)

FIGURE 6.6 Series expansions using Hermite polynomials.
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Examples of Laguerre polynomials (n = 0 – 4):

L0(x) = 1,

L1(x) = −x + 1,

L2(x) = x2 − 4x + 12,

L3(x) = −x3 + 9x2 − 18x + 6,

L4(x) = x4 − 16x3 + 72x2 − 96x + 24. (6.32)

Figure 6.7 shows the Laguerre polynomials of n = 0–4 using Excel’s AutoFill.

Definition: L x e
d

dx
x en

x
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n

n x( ) ( ).� �  (6.33)

Generating function:  U x t
t

xt

t

L x

n
tn n

n

( , ) exp
( )

!
.�

�
�

�

�

�
�

�

�
� �

�

�

�1

1 1
0

 (6.34)

Recursion formula: L x n x L x n L xn n n� �� � � � �1
2

12 1 0( ) ( ) ( ) ( ) , n≥1.

L x nL x nL xn n n� �( ) ( ) ( ) .� � �� �1 1 0

 xL x x L x nL xn n n"( ) ( ) ’( ) ( )� � � �1 0 (6.35)

where primes denote the differential with respect to x.

Orthonormality: e L x L x dx nx
m n nm

�
�

�� ( ) ( ) ( !) .2

0

�   (6.36)

Laguerre polynomials are also a complete set of functions. An arbitrary function f(x) on 

the interval 0 ≤ x ≤ ∞ may be expanded with the following orthonormal functions:

FIGURE 6.7 Laguerre polynomials (n = 1–4).
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6.2.5  Associated Laguerre Polynomials

Associated Laguerre differential equation is defined as
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Solutions of the associated Laguerre differential equation are called associated Laguerre poly-

nomials,L xn
α( ). The associated Laguerre polynomials can be defined as L x

d

dx
L xn n

�
�

�
( ) ( )� .

Generating function: The generating function of the Laguerre polynomials (6.34) α-times 

with respect to x gives the generating function for the associated Laguerre polynomials.
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Examples of Associated Laguerre Polynomials (n = 0–3):
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 (6.40)

The radial wave function of the hydrogen atom is reduced to the associated Laguerre dif-

ferential equation as we will discuss in Section 7.3.3. For more description of the associated 

Laguerre polynomials, refer to the advanced books listed in Chapter 7.

6.3  CYLINDRICAL COORDINATES

Using the cylindrical coordinates (r, θ, z), the Helmholtz equation becomes
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Because the z-component is the same as the rectangular coordinates, let us focus on two-

dimensional cases (z = 0). Let u(r, θ) = R(r)(θ) for separating variables.
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Assume � �� / � �m
2  and Θ(θ) = Aexp(imθ), where A and m are constants. If the angular 

part has a periodic boundary condition, Θ(θ) = Θ(θ+2π), then m must be integers, m = 0, 

1, 2, 3, …
Let kr = x and R(r) = y(x). From Equation 6.42, the radial part R(r) satisfies Bessel dif-

ferential equation,

 x y xy x m y2
2

2 0� �� � � �( ) . (6.43)

6.3.1  Bessel Functions

A general solution of the Bessel Equation 6.43 is given by

 a J x b Y x J x
s s m

x
m m m m

m

m

s

s

( ) ( ) ( )
( )

!( )!
��� �� �

�

�

�

�
�

�

�
�

� �

�
0 0

1

2
where ��

�m S2

, (6.44)

which is called the mth-order Bessel function. It remains finite for all x values. The other 

solution Ym(x) is called the mth-order Neuman function. The Neuman function diverges at 

x = 0.

 Y x
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��
 (6.45)

Note: Excel has built-in Bessel functions: BESSELJ as Jm(x), BESSELY as Ym(x), BESSELI 

as a modified Bessel function, and BESSELK as a modified Neuman function.

Graphs: Figure 6.8 plots Jn(x) and Yn(x), where n = 0, 1, 2, 3, 4, 5 using Excel’s BESSELJ(x,M) 

as Jn(x) and BESSELY(x, M) as Yn(x) which are found by taking the following steps of 

menus, [Formulas]→[More Functions]→[Engineering].

FIGURE 6.8 Bessel function Jn(x) and Neumann Function Yn(x).
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Note: Let t = eiθ, then t−(1/t) = 2isinθ and the generation function becomes
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The real and the imaginary parts are
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Orthonormality: If Jm(kx) and Jm(lx) vanish at a and b, or if Jm’(kx) and Jm’(lx) vanish at a 

and b, we obtain
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With the orthogonal property, a function f(x) on the interval 0 < x < 1 may be expanded 

in terms of Bessel functions.

 f x c J k x k J k an n n

n

n n n( ) ( ) ,� � � �
�

�

�
0

0where the are chose so that and  (6.51)

the coefficients are given by
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Figure 6.9 shows the series expansion of f(x) = x using Equations 6.51 and 6.52. For a 

detailed calculation, refer to Appendix A6.2. Because Bessel functions Jn(x) of integers n 

have functional forms similar to trigonometric functions, the series expansion of Bessel 

functions is similar to that of Fourier transform as shown in Figure 6.6.

6.3.2  Application of Bessel Functions

There are many applications of Bessel functions [6]. An example is standing waves on a 

circular membrane of radius 1. The wave equation is
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where we assume the wave speed is v = 1.

Let ψ(x, y, t) = u(r, θ)sin(kt) = R(r)Θ(θ)sin(kt), where k >0, then u(r, θ) satisfies the Helm-

holtz Equation 6.2. If the rim of the membrane is fixed, the boundary condition is R(1) = 

0 in addition to the periodicity of Θ(θ). The Neuman function Yn(r) diverges at r = 0, and 

it is excluded in the solution. Thus, R(r) = AJm(kr) and Θ(θ) = Ceimθ, where Am and C are 

constants. For the fixed boundary condition at r = 1, Jm(k) = 0. Let the nth-zero-point of the 

mth-order Bessel function λm: Jm(km,n) = 0, where n = 1, 2, 3, …. for a given m. In this book, 

we define Jmn = Jm(km,nr). The solution is given by

 � �( , ) ( )cos( ) ) .,r t D J k r m r D A Cm m m n

nm

m m� �
��

��
10

where  (6.54)

Figure 6.10 is a screenshot for calculating J03 = J0(k03r), where m = 0 and n = 3. The x-range 

is entered from −1 to +1 with increments of 0.05 in Column B and the y-range is from −1 

to +1 with increments of 0.05 in Row 3. The third zero point of J0 in Equation 6.54 is k03 = 

9.654, which is entered in Cell C2. Then, enter

=BESSELJ($C$2*SQRT($B4^2+C$3^2),0)
in cell C4 and apply AutoFill.

FIGURE 6.9 f(x) = x using Bessel functions of n = 0–4.

FIGURE 6.10 Calculating J03 = J0(k03r).
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Figure 6.11 shows the standing waves on a circular membrane using Bessel functions. Dm = 

1, radius = 1, and the angular part is adjusted to be cos(mθ). Here, J03 is the third mode of 

J0 and n = 3 and J11 = J1(k11r)cosθ.

Figure 6.12 lists the VBA code to compute J11 to obtain n = 1 and m = 1. Here, we used 

the built-in Bessel function of Excel in the VBA code,

Application.WorksheetFunction.BesselJ(k * r, m).

Sub CircularSheet()

Cells(1, 1) = "Standing wave on a circular sheet of radius 1"

'J1(k11x)*cos(theta)

Cells(2, 1) = "m=": m = 1: Cells(2, 2) = m

Cells(2, 4) = "k=": k = 3.832: Cells(2, 5) = k

r = 1 'Radius of circular sheet

h = 0.05

For Row = 0 To 40

Cells(Row + 4, 2) = -1 + h * Row

Next Row

For Col = 0 To 40

Cells(3, Col + 3) = -1 + h * Col

Next Col

For i = -20 To 20

x = i / 20

For j = -20 To 20

y = j / 20

r = (x ^ 2 + y ^ 2) ^ 0.5

ii = i + 24

jj = j + 23

If r > 1 Then Cells(ii, jj) = 0: GoTo Skip

If r <= 1 Then BJ = Application.WorksheetFunction.BesselJ(k * r, m)

'Angular part

If r = 0 Then trig = 1

If r <> 0 Then trig = (x / r)

Cells(ii, jj) = BJ * trig         'J1(k11x)*cos(theta)

Skip:       Next j

Next i

End Sub

Calling the Excel function BESSELJ

FIGURE 6.12 VBA code to calculate J11cosθ.

FIGURE 6.11 Standing waves on a circular membrane.
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6.4  SPHERICAL COORDINATES

The Schrödinger equation in a central potential energy is essentially

 � � ��� �� �2 0� �( ) ( ) ( ) .
 
r E V r r  (6.55)

Using the spherical coordinates (r, θ, φ), Equation 6.54 becomes

 
1 1 1 1
2

2

2 2

2

2r r
r

r r
E V r

�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�
�
� �

�

�
�

sin
sin

sin
( )

� �
�
� � ���

�

�
�
�

�
 � �( , , ) .r 0  (6.56)
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The angular part is
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For separating two angular variables,
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With the periodic boundary condition, Φ(φ) = Φ(φ + 2π), a = −m2, where m is integer and 

thus

 �( ) .� �� eim  (6.60)

The θ-part becomes
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6.4.1  Associated Legendre Function

Let x = cosθ and Θ(θ) = P(x), then from Equation 6.61 becomes

 
d

dx
x

d

dx
P x

m

x
P x( ) ( ) [ ] ( ) .1

1
02

2

2
� � �

�
��  (6.62)



130   ◾   Mathematical Methods for Physics Using Microsoft Excel  

For Equation 6.62 to have finite value of solutions for |x| ≤1, it is shown that λ = ℓ(ℓ + 1), 

where −ℓ ≤ m ≤ +ℓ [7]. Therefore,
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Equation 6.63 is called the associated Legendre differential equation, and their solutions 

are called the associated Legendre functions P xm
 ( ).

Examples of associated Legendre polynomials (ℓ = 0 to 2):
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Let x = cosθ to express the polynomials in trigonometric functions:
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Figure 6.13 shows these functions calculated using Excel’s AutoFill feature.

FIGURE 6.13 Associated Legendre functions (ℓ = 1 and 2).
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List of important properties of Legendre polynomials.

Rodrigues formula: P x x
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where Pℓ(cosθ) is the Legendre polynomials discussed in the next section.

Recursion relations:
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Associated Legendre functions, with a fixed m, also form a set of orthonormal basis, and 

an arbitrary function f(x) on the interval −1≤x≤+1 may be expanded in a series of the form,
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Remark: Although there is another solution of the associated Legendre equation called 

the associated Legendre functions of the second kind, they are seldom applied to physics 

problems.

6.4.2  Legendre Polynomials

The associated Legendre differential equation with m = 0 is called the Legendre differential 

equation.
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The solutions of Equation 6.74 are called Legendre polynomials and can be given by
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Legendre polynomials of lower orders (ℓ = 0–4):

P0(x) = 1,

P1(x) = x,

P2(x) = (1/2)(3x2 − 1),

P3(x) = (1/2)(5x3 − 3x),

P4(x) = (1/8)(35x4−30x2+3), …

Assume x = cosθ to express the polynomials in terms of trigonometric functions:

P0(x) = 1,

P1(x) = cosθ,

P2(x) = (1/4)(3cos2θ + 1),

P3(x) = (1/8)(5cos3θ + 3cosθ),

P4(x) = (35/64)cos4θ + (30/91)cos2θ + 9/64, … (6.76)

Figure 6.14 shows Legendre polynomials (ℓ = 0–4). The calculations can be made using 

Excel’s AutoFill.
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FIGURE 6.14 Legendre polynomials.
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Generating function:  
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Legendre functions also form a set of orthonormal bases. A function f(x) on the interval 

−1 ≤ x ≤ +1 may be expanded in a series of the form
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Figure 6.15 shows f(x) = sinx using 5 terms of Pn(x). Refer to Appendix A6.3 for its detailed 

calculation. Because Legendre functions originated from the spherical coordinates, which 

are based on trigonometric functions, the fitting is good for 5 terms.

6.4.3  Spherical Harmonic Functions

In the Schrödinger Equation 6.55, the angular part of the Hamiltonian,

FIGURE 6.15 Series expansion of sinx using Legendre polynomials (5 terms).
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expresses the angular momentum operators,
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The solution of the angular momentum operators is the spherical harmonic function 

defined as
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Here are the explicit forms of the spherical harmonic functions.
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For displaying spherical harmonic functions using Euler’s angles, there are several steps:

 1) Convert θ and φ values to x, y, z values: using

 x = rcosθcosφ, y = rcosθsinφ, and z = rsinθ (r = 1);
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 2) Rotate the calculated xyz-coordinates to XYZ-coordinates using specified Euler’s 

angles; and

 3) Select the XY, the YZ, or the ZX plane to display data using the Scatter chart.

As is well known, angular parts of wave functions are quite different from the semi-classi-

cal theory, and it is fun to produce them on your own computer. Figure 6.16 lists the VBA 

code to take the above steps to create |Y00|.

Figures 6.17 to 6.19 show these spherical harmonic functions (ℓ = 0–3). Euler’s angles: α 

= π/6 rad, ß = π/3 rad, and γ = π/8 rad.  

Orthonormality: {Yℓm(θ, φ)} forms an orthonormal basis on a spherical surface. A func-

tion f(θ, φ) on a sphere may be expressed with {Yℓm(θ, φ)}.

Sub SphericalHarmonics()

Cells(1, 1) = "3D displays of Spherical Harmonics"

Pi = 3.14159265358979

'Rotational angles of coordinates

Cells(2, 1) = "alpha": alpha = Pi / 6: Cells(3, 1) = alpha

Cells(2, 3) = "beta": beta = Pi / 3: Cells(3, 3) = beta

Cells(2, 5) = "gamma": Gamma = Pi / 8: Cells(3, 5) = Gamma

'Variable labels

Cells(4, 1) = "phi"

Cells(4, 2) = "theta"

Cells(4, 3) = "Y00"

Cells(4, 5) = "fx"

Cells(4, 6) = "fy"

Cells(4, 7) = "fz"

Cells(4, 9) = "Fx"

Cells(4, 10) = "Fy"

Cells(4, 11) = "Fz"

'Calculating spherical harmonics

'For a given theta, change phi from 0 to 2*PI and calculate the given spherical harmonics.

For i = 0 To 32

Phi = i * (2 * Pi / 32)

Cells(5 + 33 * i, 1) = Phi

For j = 0 To 32

theta = j * (Pi / 32)

Y = 1

Cells(5 + 33 * i + j, 2) = theta

Cells(5 + 33 * i + j, 3) = Y

fx = Y * Sin(theta) * Cos(Phi)

fy = Y * Sin(theta) * Sin(Phi)

fz = Y * Cos(theta)

Cells(5 + 33 * i + j, 5) = fx

Cells(5 + 33 * i + j, 6) = fy

Cells(5 + 33 * i + j, 7) = fz

'Rotate fx, fy, fz to ffx, ffy, ffz by Euler’s angles (alpha, beta, gamma).

ffx = fx * (Cos(beta) * Cos(alpha) * Cos(Gamma) - Sin(alpha) * Sin(Gamma)) + fy * (Cos(beta) * Sin(alpha) * Cos(Gamma) + Cos(alpha) * 

Sin(Gamma)) - fz * Sin(beta) * Cos(Gamma)

ffy = -fx * (Cos(beta) * Cos(alpha) * Sin(Gamma) + Sin(alpha) * Cos(Gamma)) - fy * (Cos(beta) * Sin(alpha) * Sin(Gamma) - Cos(alpha) * 

Cos(Gamma)) + fz * Sin(beta) * Sin(Gamma)

ffz = fx * Sin(beta) * Cos(alpha) + fy * Sin(beta) * Sin(alpha) + fz * Cos(beta)

Cells(5 + 33 * i + j, 9) = ffx

Cells(5 + 33 * i + j, 10) = ffy

Cells(5 + 33 * i + j, 11) = ffz

Next j

Next i

End Sub

FIGURE 6.16 VBA code to prepare a 3D display of Y.



136   ◾   Mathematical Methods for Physics Using Microsoft Excel  

 

Y Y d Y Y d

Y

m m m m mm

m

    



, ( , ) ( , )sin

*

� � � � � �� � � ��� � � � � � � � � �
��

00

2

,, ( , ) ( , )sin .* * *Y d Y Y d
m mm mm  � � � � � �� � � ��� � � � � � � � � �

��

00

2
 (6.89)

f f Y f Y f d Y fm m

m

m m m( , ) ( , ) , ( , )� � � � � � �� � � � �
��

�

�

�

��  





  

0

where (( , )sin .� � � �
��

d
00

2

��  (6.90)

FIGURE 6.18 |Y20| and |Y21|.

FIGURE 6.17 |Y00| and |Y10|.
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Note: Ladder operators of angular momentum. Ladder operators or raising or lowering 

operators are mathematical operators that increase or decrease the eigenvalue of another 

operator. The angular momentum,
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can be expressed in spherical polar coordinates to give
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FIGURE 6.19 |Y30| and |Y31|.
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Using Equation 6.86, Y
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Let x = cosθ, then d/dθ = (dx/dθ)∙d/dx, and
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where we used the recursion relations (6.70). Thus, moving the second term from the right 

side to the left side,

 
� � �

� � � � �

�

�

dP

d
m P P

dP

d
m P m m P

m
m m

m
m m


 


  

�
�

�
�

cot ,

cot ( )( ) ,

1

11

 (6.96)

and Equation 6.95 gives
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Similarly, we obtain
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6.5  TABULATED INTEGRALS
6.5.1  Gamma Functions

Gamma function Γ(x) is the generalization of factorial (n!). The definition of gamma func-

tion is

 �( ) .x e t dtt x� � �
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� 1

0

 (6.99)
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From the definition, Γ(x + 1) = x Γ(x), and Γ(n + 1) = n!, where n is a positive integer.
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where n!! = n∙(n − 2)∙(n − 4)…3∙1 if n is an odd integer and n!! = n∙(n − 2)∙(n − 4)…4∙2 if 

n is an even integer.

 If we use to calculatex xx x
x

� � � � �0 1, .( ) ( )
sin( )

� � �
�

�
 (6.101)

Excel does not provide the gamma function. However, the gamma function can be created 

by using the probability distribution function of the gamma distribution, which is the 

built-in function GAMMADIST. Using this built-in function, we can calculate

Γ(x)=1/GAMMADIST(1, x, 1, 0)/EXP(1)
for x >0. For x <0, use Equation 6.101. Figure 6.20 shows the gamma function using 

GAMMADIST.

6.5.2  Beta Functions

 Beta function is defined as where andB x y t t dt xx y( , ) ( )� � �� �� 1 1

0

1

1 0 yy � 0. (6.102)

Beta function is closely related to gamma function in the following way.

FIGURE 6.20 Gamma function using GAMMADIST.



140   ◾   Mathematical Methods for Physics Using Microsoft Excel  
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Assume x = ut, then
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From the above relationship, we can calculate B(x, y) by using GAMMADIST in the follow-

ing way:

B(x, y)=GAMMADIST(1, x+y, 1, 0)/GAMMADIST(1, x, 1, 0)/GAMMADIST(1, 
y, 1, 0)/EXP(1).

Figure 6.21 is a screenshot for calculating the numerical values of the beta function.

 1) The x-axis ranges from 0.05 to 3.0.5 with increments of 0.1 in Column B and the 

y-axis ranges from 0.05 to 3.05 with increments of 0.1 in Row 2.

 2) Enter

 =GAMMADIST(1,$B3+C$2,1,0)/GAMMADIST(1,$B3,1,0)/GAMMADIST(1, 
C$2,1,0)/EXP(1)

 in cell C3 and apply AutoFill.

 3) Highlight the data set (C3 to BJ33) and select [Wire-frame 3D surface 
chart].

 4) Expand the graph and select [Monochrome color].

 5) Right-click on the graph to select [3-D Rotation]. Try to rotate your graph to 

obtain a good view.

Figure 6.22 shows the beta function profile.

6.5.3  Elliptic Functions

The equation of motion of a pendulum of length L under gravity is given by

FIGURE 6.21 Calculating beta function B(x, y).
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Multiplying dθ/dt to the above equation to perform the energy integral.
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Where we used the initial conditions as dθ/dt|t=0 = ω0 and θ|t=0 = 0.

Considering the case when the angular velocity is positive, we obtain
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FIGURE 6.22 Beta function.
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Let sin( / )� 2 � kz , then
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The following integral is called elliptic integral:
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Note that Equation 6.112 becomes x = sin−1y when k = 0. In other words, if we define

 x y
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y
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then y = sinx can be defined as the inverse function of x = sin−1y. Analogues to this idea, 

elliptic functions are defined as the inverse functions to elliptic integrals. When k≠0, we 

denote the inverse function of Equation 6.112 as y = sn(x, k).

We also define
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In particular, these functions with k = 0 and k = 1 become ordinary trigonometric functions:

sn(x,0) = sinx, cn(x,0) = cosx, tn(x,0) = tanx, and dn(x,0) = 1.

sn(x,1) = tanhx, cn(x,1) = sechx, tn (x,1) = sinhx, and dn(x,1) = sechx.

Figure 6.23 shows these elliptic functions.

SUGGESTED FURTHER STUDY

Hypergeometric functions,
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FIGURE 6.23 Elliptic functions.

Mathematical functions we encounter in physics are mostly special cases of 2F1(a, b, c, x) 

including the Legendre functions, Jacobi polynomials, Bessel functions, Laguerre polyno-

mials, Hermite polynomials, and Fresnel integrals of classical optics. Refer to [1, 8, 9] for 

hypergeometric functions and equations.

Elliptic functions play an important role in cryptography. “Elliptic integral” was named 

so by Legendre because it relates to the elliptic arclength. Jacobi called the inverse func-

tion of the elliptic integral as an “elliptic function.” Riemann considered the relationship 

between the elliptic function and the algebraic curves. For example, the third-order poly-

nomial curve was expressed using a parametric expression of the elliptic function. Refer 

to [10] for the historical background. For elliptic cryptography, refer to interesting articles 

on the Internet [11, 12].
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C H A P T E R  7

Wave Packets and 

Wave Functions

A wave packet is a model to implement the dual nature of a wave-particle in quantum 

mechanics. From the kinematics of wave packets, we understand:

 (1) The difference between the velocities of particle and wave; and

 (2) The propagation of a wave packet in a given potential energy.

As we pointed out in Section 3.5.3, when the particle model is applied to the law of refrac-

tion, the classical theory does not correctly predict the law. The reason for this discrepancy 

may be attributed to the difference between the velocities of classical particles and the 

electromagnetic wave. A computational algorithm proposed by Visscher et al. predicts the 

kinematics of wave packets correctly. We demonstrate the algorithm for two cases: in a free 

space and in a potential step.

The algorithm of Euler and Cromer is known as a shooting method for finding the eigen-

values of a bound state Schrödinger equation and other boundary value problems. The 

shooting method may be extended more generally by applying the Runge-Kutta method 

with correct boundary conditions to a harmonic oscillator and a hydrogen atom.

7.1  KINEMATICS OF WAVE PACKET

Although a single plane wave cannot be localized, an arbitrary localized wave propagat-

ing in the x direction can be created by a wave packet which is superposed plane waves  

F(k)ei(kx−ωt) of amplitude F(k):

 � �( , ) ( ) .( )x t F k e dki kx t� �

��

��

�  (7.1)
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This is equivalent to the Fourier transform, and the “amplitude” F(k) should be the inverse 

Fourier transform [1].

 F k x t e dkikx( ) ( , ) .� �
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2�
�  (7.2)

If a particle can be a wave packet, what is the speed of a wave packet?

7.1.1  Group Velocity and Phase Velocity

Does the phase velocity, vp = λ·f = ω/k, where ω is the angular frequency and k is the wave 

number, represent the speed of a particle as a wave [2]? If the particle has the frequency, f, 

its energy is given by E = hf = ℏω. From the de Broglie wavelength of a particle, the momen-

tum of the particle is given by p = h/λ = ℏk. The phase velocity is given by
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The relativistic expressions of energy and momentum are E = mc2 and p = mv where m is 

the relativistic mass,
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The consequence of Equation 7.4 is unacceptable. The phase velocity cannot be the speed of 

the wave nature of a particle. Instead, the group velocity defined by vg = dω/dk may be used 

to express the speed of a wave packet [3]. In terms of the particle’s parameter, the group 

velocity can be expressed as
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 (7.5)

For a particle, the kinetic energy is E = p2/2m, and thus, vg = dE/dp = p/m = v. Energy and 

momentum of a free particle can be given by E = ℏω and p = ℏk. Because the energy of a 

free particle is given by E = p2/2m, ω = E/ℏ = ℏk2/2m from which the group velocity is cor-

rectly given by vg = dω/dk = ℏk/m = p/m.

How can we incorporate the group velocity in the wave packet [4]? If the distribution 

F(k) of Equation 7.2 is localized at around k0, then the angular frequency ω(k) can be 

expanded around k0:
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Plugging Equation 7.6 into Equation 7.1, we obtain
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Recall the definition of a Fourier transform,
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and we obtain
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where x x
d

dk
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�

0

.

Because dω/dk is the group velocity vg, the position of the wave packet at a later time t is 

given by x′ = x − vgt. This is equivalent to the position of a particle moving at a velocity vg.

7.1.2  Motion of a Wave Packet in Free Space

We start with Equation 7.1 to describe the motion of a wave packet in free space. In addi-

tion, we assume the probability of existence at t = 0 is given by a Gaussian distribution 

function at the origin,
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with the standard deviation σ, which represents the uncertainty in the position Δx at t = 0. 

The wave packet at t = 0 is given by
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From Equation 7.2, the amplitude F(k) for the Gaussian wave packet is
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From equation (7.1), the wave packet ψ(x, t) at time t is given by
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Where α = ℏ/2mσ2. The calculation of the above wave packet is detailed in Appendix A7. 

The probability distribution function is
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where v0 = ℏk0/m. This is a “spreading-Gaussian” function with the standard deviation 

given by σ2(1+α2t2). Figure 7.1 is the schematic diagram of the time-dependent wave packet 

with v0 = 1, σ = 0.2, and α = 1. The Gaussian wave packet is spreading out as time elapses 

while the peak position is moving at the group velocity v0.

Figure 7.2 lists the VBA code used to calculate the motion of the Gaussian wave packet.

7.1.3  Wave Packet in a Harmonic Potential

The potential energy of a harmonic oscillator asymptotically becomes infinite and a par-

ticle will be trapped inside the potential. How does its wave packet, or more precisely, the 

probability distribution function of the wave function change dynamically? For analyzing 

FIGURE 7.1 A time-dependent wave packet.

Sub WavePacket()

Cells(1, 1) = "Time dependence of wave packet in free space"

Cells(2, 2) = "sigma": sigma = 1: Cells(3, 2) = sigma

Cells(2, 3) = "alpha": alpha = 0.1: Cells(3, 3) = alpha

Cells(2, 4) = "v0": v0 = 2: Cells(3, 4) = v0

Cells(5, 2) = "x"

Cells(4, 3) = "Time"

Pi = 3.141592654

For k = 0 To 5

t = 10 * k

Cells(5, 3 + k) = t

j = 0

For x = -10 To 120

Cells(6 + j, 2) = x

Probability = (1 / ((2 * Pi * sigma ^ 2) * (1 + (alpha * t) ^ 2)) ^ 0.5) * Exp( -(x - v0 * t) ^ 2 / (2 * (1 + (alpha * t) ^ 2)) * sigma ^ 2)

Cells(6 + j, 3 + k) = Probability

j = j + 1

Next x

Next k

End Sub

FIGURE 7.2 VBA code of the time-dependent wave packet.
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the motion, we need to use the Schrödinger equation for the harmonic oscillator [5]. Let us 

start with the time-dependent wave function,
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where the time-independent wave function satisfies the time-independent Schrödinger 

equation.
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The solution of Equation 7.16 is given by the Hermite polynomials discussed in Section 

6.2.3:
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Combining Equations 7.14 and 7.15, we obtain
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We may predict that the probability distribution function |ψ(x,t)|2 is periodic with a period 

of T = 2π/ω0.
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where u is an integer. Because nu is also an integer, exp(−2πinu) = 1. Therefore,
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This indicates that the probability distribution function retains the same shape over time.

As the initial condition, take the wave function of the ground state except that the center 

of gravity is displaced in the positive x direction by an amount x0:
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The coefficients {cn} are given by c
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calculation of the coefficients.
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The time-dependent wave function of the ground state is given by
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This shows that ψ represents a wave packet that oscillates without change of shape about 

x = 0, with amplitude x0 and the classical angular frequency ω0. In other words, the time 

dependence of the peak position of the wave packet is the harmonic oscillation with 

cos(ω0t), equivalent to the classical harmonic oscillation. Figure 7.5   shows the wave packet 

in a harmonic potential, where x0 = −3, m = 1, α = 1, and ω0 = 0.2. The peak position of the 

wave packet exhibits a classical harmonic oscillation in −3 ≤ x ≤ +3.  

Figure 7.4 lists the VBA code for calculating the wave packet positions at different times.

7.2  WAVE PACKET APPROACHING THE POTENTIAL STEP
7.2.1  Method of Visscher et al.

When the kinematics of a wave packet is difficult to compute, we may apply a method 

to obtain the numerical solution of the time-dependent Schrödinger equation developed 

by Visscher and others [6]. One-dimensional time-dependent Schrödinger equation in a 

potential of a real function V(x) is given by

 i
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FIGURE 7.3 A wave packet in a harmonic potential.
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where
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The method by Visscher et al. treats the real and the imaginary parts of the wave function 

separately and applies a form of the half-step time method to establish difference equations 

for numerical calculations. Let
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By applying the half-step method, the difference equations we use are given by

Sub WPacketHO()

Cells(1, 1) = "Motion of wave packet of harmonics oscillator"

Pi = 3.141592654

Cells(2, 1) = "m": m = 1: Cells(3, 1) = m

Cells(2, 2) = "a": a = 1: Cells(3, 2) = a

Cells(2, 3) = "Omega0": omega0 = 0.2: Cells(3, 3) = omega0

Cells(2, 4) = "Initial x0": x0 = -3: Cells(3, 4) = x0

Cells(2, 5) = "Period": Period = 2 * Pi / omega0: Cells(3, 5) = Period

Cells(4, 3) = "Wave packet at a given time. Time step is pi:"

Cells(5, 1) = "x"

Cells(5, 2) = "U(x)"

For i = 0 To 10

Cells(5, 3 + i) = i    'T ime step i*pi

j = 0.1 * i

Cells(6, i + 3) = j * Pi 

'Phi(j)= |Wave packet|^2 where j is the x coordinate at a given time.

Next i

n = 10       'Number of repetitions

dt = Pi      'Time step

dx = 0.1      'Coordinate step

'Calculate U(x) and phi(x) at a given time t, starting t=0.

t = 0          'Initial time

For i = 0 To n

For j = 0 To 100                   'Change the x-coordinate

x = -5 + j * dx

Cells(6 + j, 1) = x        'x-coordinate

U = m * (omega0 * x) ^ 2 / 2  'Potential energy

Cells(6 + j, 2) = U

Phi = (a / Pi ^ 0.5) * Exp( -(a * (x - x0 * Cos(omega0 * t)) ^ 2))

Cells(6 + j, 3 + i) = Phi

Next j

t = t + dt

Next i

End Sub

FIGURE 7.4 VBA code for the motion of a wave packet in a harmonic potential.
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Sub Poten�alStep()

Cells(1, 1) = "Kinema�cs of wave packet approaching to poten�al step."

Cells(2, 1) = "Calculate wave packet and probability distribu�on func�on at each given �me."

Dim RE(1000)                     'Real par of wave packet

Dim IM(1000)                      'Imaginary part of wave packet

Dim IMold(1000)                   'Temporal imaginary part of wave packet

Pi = 3.1415926

x0 = -15              'Ini�al posi�on of Gaussian wave packet

wd = 1: wd2 = wd ^ 2         'Standard devia�on of ini�al wave packet

k0 = 2                      'Ini�al wave number

xmax = 60: xmin = -xmax         'Range of x-coordinate.

V0 = 2                'Height of poten�al step

a = 0                      'Posi�on of rising edge of poten�al step

dx = 0.4: dx2 = dx ^ 2       'dx=division of x-coordinate to calculate wave packet.

n = 1 + (xmax - xmin) / dx      'n=101 is number of divisions of the x coordinates.

dt = 0.1                      'Time increment. To be repeated by RepeatNumber

RepeatNumber = 210          'Time change is 0 to RepeatNumber*dt, e.g., 10*0.1=1.

'Parameter labels

Cells(3, 2) = "Time"

Cells(3, 3) = "Psum"          'Total probability should be 1.

Cells(5, 1) = "x"              'x-coordinate

Cells(5, 2) = "RE(X)"         'Real part of wave packet

Cells(5, 3) = "IM(x)"        'Imaginary part of wave packet

Cells(5, 4) = "P(x)"           'Probability distribu�on func�on

'Construct ini�al Gaussian wave packet (t=0)

t = 0: Cells(4, 2) = t

Amp = 1 / ((2 * Pi * wd2) ^ 0.25)

b = k0 * dt / 2

For i = 1 To n

x = xmin + (i - 1) * dx

efact = Exp(-((x - x0) ^ 2 / wd2 / 4))

RE(i) = Amp * Cos(k0 * (x - x0)) * efact 'Value at t=0

IM(i) = Amp * Sin(k0 * (x - x0 - b / 2)) * efact 'Value at t=dt/2

Cells(5, 1) = "x": Cells(5 + i, 1) = x

Cells(5, 2) = "RE(x)": Cells(5 + i, 2) = RE(i)

Cells(5, 3) = "IM(x)": Cells(5 + i, 3) = IM(i)

Next i

Psum = 0

Cells(5, 4) = "P(x)"

For i = 1 To n

P = RE(i) * RE(i) + IM(i) * IM(i)

Cells(5 + i, 4) = P

Psum = Psum + P * dx

Next i

Cells(4, 3) = Psum          'Psum should be 1.

'Time evolu�on of wave packet

For j = 1 To RepeatNumber

jj = 3 * j

Cells(3, 2 + jj) = "Time": t = t + dt: Cells(4, 2 + jj) = t    'Current �me

Cells(3, 3 + jj) = "Psum"

Cells(5, 2 + jj) = "RE(X)"              'Real part of wave packet

Cells(5, 3 + jj) = "IM(x)"                                          'Imaginary part of wave packet

Cells(5, 4 + jj) = "P(x)"                                                        'Probability distribu�on fu nc�on

For i = 1 To n

x = xmin + (i - 1) * dx

HIM = V(x, V0, a) * IM(i) - 0.5 * (IM(i + 1) - 2 * IM(i) + IM(i - 1)) / dx2

RE(i) = RE(i) + HIM * dt        'Real part defined at mul�ples of dt

Cells(5 + i, 2 + jj) = RE(i)

Next i

For i = 1 To n

x = xmin + (i - 1) * dx

IMold(i) = IM(i)                                              'dt/2-earlier than real part

HRE = V(x, V0, a) * RE(i) - 0.5 * (RE(i + 1) - 2 * RE(i) + RE(i - 1)) / dx2

M(i) = IM(i) - HRE * dt               'dt/2-later than real part

Cells(5 + i, 3 + jj) = IM(i)

FIGURE 7.5 VBA code for a wave packet in free space.
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The initial values are given by R(x, 0) and I(x, (1/2)(Δt). Note that they are not defined at the 

same time. The probability density is assumed to be given by

 
P x t R x t I x t t I x t t

P x t t R t t R

( , ) ( , ) ( , ) ( , )

( , ) ( ) (

� � � �

� � �

2 1

2

1

2
1

2

� �

� � xx t I x t t, ) ( , )

,

� �

�

�
��

�
�
�

1

2
2�

and  (7.25)

they conserve the total probability. Visscher has shown this algorithm is stable if the poten-

tial satisfies the following condition:

 
�

� � �
2 2 2 2

2

  
� � �t

V
t m x( )

.  (7.26)

A Gaussian wave packet is selected as the initial wave packet:
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We need the values of I(x, (1/2)Δt) and R(x, 0) to start the half-step algorithm. For calculat-

ing I(x, Δt/2), note that a plane wave at time t evolving in a zero potential region is related 

to its value at t = 0 by a factor of e−iωt, where ω is related to the kinetic energy E by E = ℏω 

= p0
2/2m = ℏ2k0

2/2m.

The center of the Gaussian wave packet will move by an amount <v>t. Considering 

these conditions, we may approximate the wave packet ψ at time t = (1/2)Δt by changing the 

phase in the Gaussian wave packet by replacing [ik0(x − x0)] with [ik0(x − x0) − iω(1/2)Δt] 

Next i

Psum = 0

For i = 1 To n

P = RE(i) * RE(i) + IM(i) * IMold(i)

Psum = Psum + P * dx

Cells(5 + i, 4 + jj) = P

Next i

Cells(4, 3 + jj) = Psum         'Psum should be 1.

Next j

End Sub

____________________________________________________________________________________

Func�on V(x, V0, a)                                                

V=0

End Func�on

FIGURE 7.5 Continued.
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= [ ik0(x − x0) − iℏk0
2Δt/(4m)], and the argument of the Gaussian curve by replacing [x − 

x0] with [x − x0 − <v>Δt/2] = [x − x0 − ℏk0Δt/(2m)]. The result is not exact because these 

changes require a small correction in the overall normalization factor.

7.2.2  Wave Packet in Free Space Using the Visscher Algorithm

Figure 7.5 lists the VBA code to calculate the motion of a wave packet in free space. Although 

the potential V(x) = 0 in this case, the VBA code has a definition of Function V(x, V0, 
a) = 0 so that the potential form may be changed for more applications. Figure 7.6 shows 

the computed wave packet in free space by the algorithm by Visscher et al. The initial wave 

packet is somewhat distorted from a Gaussian curve due to the approximate algorithm. 

The motion of the wave packet is comparable to the one shown in Figure 7.1.

7.2.3  Wave Packet at a Potential Step

Assume that there is a potential step of height 2 at 0 ≤ x. We use ℏ = 1 and m = 1. The VBA 

code is the same except the Function statement for the step potential is

Function V(x, V0, a) 'Step potential

If x > a Then

V = V0

Else

V = 0

End If

End Function

Figure 7.7 shows the wave packets approaching the potential step. At t = 9, the wave packet 

is bumping the edge of the potential step and at t = 15, the reflective wave and the transmit-

ted wave are both observed. At t = 21, both the reflection and the transmission are moving 

far away from the potential step at x = 0.

FIGURE 7.6 A wave packet in free space using the method of Visscher et al.
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7.3  ASYMPTOTIC BEHAVIOR OF WAVE FUNCTIONS 
NEAR THE TRUE EIGENVALUE

7.3.1  Standing Wave on a String

There are so-called “shooting methods” to solve time-independent Schrödinger equations 

and boundary value problems in general [7]. Here is an example of a one-dimensional 

standing wave.

 Problem where and: .
( )

( )
d x

dx
x x

2

2

2 0 0 1 0 1 0
�

� � � �� � � � � �� � � �  (7.28)

Analytical solution: ψn(x)~sin(nπx) and ω = nπ, n = 1, 2, 3, …
The procedure of the shooting method for finding ω = π is:

 1) Guess an eigenvalue. For example, ω would be between 3.0 and 3.2;

 2) Obtain the differential equation with the trial ω-values. For solving the differential 

equation numerically, select an appropriate method such as the Euler method or the 

Runge-Kutta method. In this case, the Runge-Kutta method should be better;

 3) If the resulting solution does not satisfy the boundary condition, change the trial 

eigenvalue and find the corresponding solution again; and

 4) Repeat the process until a trial eigenvalue is found for which the boundary condition 

satisfies within a pre-determined tolerance.

Note: If the trial eigenvalue is not the true value, the solution for the trial eigenvalue does 

not satisfy the boundary condition. In the above problem, ψ(1) >0 if ωtrial <π, whereas ψ(1) 

< 0 if ωtrial > π. In other boundary value problems, the solution with a trial eigenvalue 

tends to diverge in one direction if the trial eigenvalue is made slightly smaller and tends 

to diverge in the opposite direction if the trial eigenvalue is made slightly larger.

Figure 7.8 lists a VBA code to calculate ψ(x)’s with the same initial condition of ψ(0) = 0 

and dψ(0)/dx = 1 for ωtrial = 3.05 to 3.25 with increments of 0.05.

FIGURE 7.7 Time dependence of a wave packet against potential step.
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Figure 7.9 illustrates the solutions of the differential equation 7.26 of the first mode ω1 

= π. When ωtrial = 3.15, the solution is the closest to satisfying the boundary condition at x 

= 1: ψ(1) = 0.

Figure 7.10 shows the solutions of the differential equation 7.28 for the second mode ω2 = 

2π. When ωtrial = 6.28, the solution is the closest to satisfy the boundary condition ψ(1) = 0.

For the standing wave problem, only one boundary condition at x = 0 was used. The 

other boundary condition at x = 1 may be implemented by incorporating a fake poten-

tial well of V(x) = 0 for 0 ≤ x ≤ 1 and otherwise V0 >>1. This creates a one-dimensional 

Schrödinger equation of a deep potential well.

Sub StandingWave ()

Cells(1, 1) = "Standing wave by 

Cells(3, 4) = "delta t": h = 0.01: Cells(4, 4) = h       'Time increment

Cells(5, 1) = "Trial eigen value"

Cells(6, 2) = "t"

For j = 1 To 5

t = 0

Cells(6, 2 + j) = "Phi": Phi = 0: Dphi = 1

omega = 2.99 + j / 20: Cells(5, 2 + j) = omega: GoTo RK

'Runge-

For i = 0 To n

Cells(i + 7, 2) = t

Cells(i + 7, 2 + j) = Phi

k1 = f(t, Phi, Dphi)

l1 = g(omega, t, Phi, Dphi)

k2 = f(t + h / 2, Phi + h * k1 / 2, Dphi + h * l1 / 2)

l2 = g(omega, t + h / 2, Phi + h * k1 / 2, Dphi + h * l1 / 2)

k3 = f(t + h / 2, Phi + h * k2 / 2, Dphi + h * l2 / 2)

l3 = g(omega, t + h / 2, Phi + h * k2 / 2, Dphi + h * l2 / 2)

k4 = f(t + h, Phi + h * k3, Dphi + h * l3)

l4 = g(omega, t + h, Phi + h * k3, Dphi + h * l3)

Phi = Phi + h * (k1 + 2 * k2 + 2 * k3 + k4) / 6

Dphi = Dphi + h * (l1 + 2 * l2 + 2 * l3 + l4) / 6

t = t + h

Next i

Next j

End Sub

______________________________________________________________

g = -omega ^ 2 * Phi

______________________________________________________________

'f=d(phi)/dt

f = Dphi

FIGURE 7.8 Finding the eigenvalue of a standing wave by the shooting method.
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7.3.2  Euler-Cromer Algorithm for a Particle in an Infinite Potential Well

The Euler-Cromer algorithm is a shooting method for finding the eigenvalues of a bound 

state Schrödinger equation [8, 9]. Here is a brief description of the algorithm.

 1) In the Schrödinger equation,

 � � �
2 2

22m

d x

dx
V x x E x

�
� �

( )
( ) ( ) ( ), (7.29)

 if the potential function is real and even: V(x) = V(−x), then the wave function will be 

either even ψ(x) = ψ(−x) or odd ψ(x) = −ψ(−x).

 2) For an even wave function, choose ψ(0) = 1 and dψ(0)/dx = 0; and

 For an odd wave function, choose ψ(0) = 0 and dψ(0)/dx = 1.

 3) Guess a value of E.

 4) Define xn = nΔx.

 5) Compute ψ’n+1 = ψ’n+ψ”nΔx and ψn+1 = ψn+ψ’nΔx.

FIGURE 7.9 Behavior of solutions near x = 1 with ω around 3.14.

FIGURE 7.10 Behavior of solutions near x = 1 with ω around 6.28.
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 6) Iterate ψ(x) by increasing x until ψ(x) diverges.

 7) Change E and repeat steps 6 and 7.

 8) Observe the diverting direction. Find the E-value when the direction changes.

 9) Narrow the range of E-values and repeat steps 6 and 7.

Figure 7.11 lists a VBA code to perform the Euler-Cromer algorithm for a potential well 

where V(x) = 0 for |x|≤1 and V0 otherwise where V0 may be set to a large value such as V0 = 

200. The trial eigenvalues are from 1.20 to 1.24 with increments of 0.01.

Figure 7.12 shows the asymptotic behavior of wave functions with several trial eigen-

values. Due to the computational error of the Euler method, the accumulation of the error 

makes wave functions diverge. In Figure 7.10, the solution of the trial eigenvalue of 1.22 has 

the least diverging property, and one of the trial eigenvalues, 1.23, is the closest to ψ(1) = 0. 

The exact eigenvalue is π2/8 = 1.233.

Sub Qbound()

Cells(1, 1) = "Time-independent Schrödinger eq."

V0 = 200

a = 1

h = 0.05

xmax = 2

Parity = 1

'Change E to see divergences

For k = 1 To 6

E = 1.2 + 0.01 * (k - 1)

Cells(2, k + 1) = E

If Parity = -1 Then                                     'Odd parity

Else

Phi = 1                                                      'Even parity

Dphi = 0

End If

i = 0

x = 0

xOld = x

PhiOld = Phi

Cells(5 + i, 1) = xOld

Cells(5 + i, k + 1) = PhiOld

x = x + h

DDphi = 2 * (V(x, V0, a) - E) * Phi    ' Schrödinger eq.

Dphi = Dphi + DDphi * h                   ' Euker-Cromer algorithm

Phi = Phi + Dphi * h

i = i + 1

Loop

Next k

End Sub

_______________________________________________________________________

If Abs(x) > a Then

V = V0

Else

V = 0

End If

FIGURE 7.11 VBA code of Euler-Cromer algorithm applied to a potential well problem.
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Note that the numerical value of potential height V0 affects the eigenvalue. Proper 

implementation of the boundary condition is required to obtain accurate eigenvalues for 

the shooting method.

7.3.3  Harmonic Oscillator

Let us start with the Schrödinger equation:
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Let ξ = αx, where α4 = mk/ℏ2 to obtain
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The exact eigenvalue λ = 1 from the ground state energy E0 = (1/2) ℏ. We solve the above 

equation using the Runge-Kutta method while changing the trial value of λ. Preliminary 

calculation indicates that divergence is very fast and we narrow down the range of the trial 

value to 0.999, 1.000, and 1.0001. Figure 7.13 lists the VBA code for the solution of differen-

tial Equation 7.29 with given λ-values.

Figure 7.14 shows that the asymptotic behavior of wave functions is observed as posi-

tively diverging if λtrial <1 and negatively diverging if λtrial >1. When λtrial = 1, the wave 

function appears to be approaching zero.

The above approach does not include the boundary condition at ξ = ±∞. One may incor-

porate the boundary conditions at ξ = ±∞, where Equation 7.31 asymptotically becomes
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d
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2 0
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( )
( ) .� �  (7.32)

Thus, the solution of Equation 7.32, i.e., the asymptotic wave function should be 

ψ(ξ)~exp(−ξ2/2), which is finite at ξ = ±∞. Let ψ(ξ) = f(ξ) exp(−ξ2/2), then we obtain

FIGURE 7.12 Asymptotic behavior of wave functions near the boundary with several trial 

eigenvalues.
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Sub QuantumOsci()

Cells(1, 1) = "Harmonic oscillator in quantum mechanics"

' DDphi=d(Dphi)/dx=-(lambda-

'lambda = (2*E/Dirac h)*Sqrt(m/k)

Cells(3, 4) = "delta x": h = 0.04: Cells(4, 4) = h       'P

Cells(6, 2) = "x"

Cells(5, 1) = "lambda"         

' Change lambda 0.000, 1.000, and 1.001 to observe the behavior of phi at larger x.

For j = 0 To 2

Cells(6, 3 + j) = "Phi": Phi = 1: Dphi = 0: x = 0

If j = 0 Then lambda = 0.999: Cells(5, 3 + j) = lambda: GoTo RK

If j = 1 Then lambda = 1#: Cells(5, 3 + j) = lambda: GoTo RK

If j = 2 Then lambda = 1.001: Cells(5, 3 + j) = lambda

'Runge-

For i = 0 To n

Cells(i + 7, 2) = x

Cells(i + 7, 3 + j) = Phi                                

k1 = f(x, Phi, Dphi)

l1 = g(lambda, x, Phi, Dphi)                    

k2 = f(x + h / 2, Phi + h * k1 / 2, Dphi + h * l1 / 2)

l2 = g(lambda, x+ h / 2, Phi + h * k1 / 2, Dphi + h * l1 / 2)                    

k3 = f(x + h / 2, Phi + h * k2 / 2, Dphi + h * l2 / 2)

l3 = g(lambda, x + h / 2, Phi + h * k2 / 2, Dphi + h * l2 / 2)                    

k4 = f(x + h, Phi + h * k3, Dphi + h * l3)

l4 = g(lambda, x + h, Phi + h * k3, Dphi + h * l3)                    

Phi = Phi + h * (k1 + 2 * k2 + 2 * k3 + k4) / 6

Dphi = Dphi + h * (l1 + 2 * l2 + 2 * l3 + l4) / 6

x = x + h 

Next i

Next j

End Sub

________________________________________________________________

g = (x ^ 2 - lambda) * Phi

_______________________________________________________________

'f=d(phi)/dx

f = Dphi

FIGURE 7.13 VBA code for calculating wave functions for different eigenvalues.

FIGURE 7.14 Asymptotic behavior of wave functions with trial eigenvalues.
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where f(ξ)exp(−ξ2/2) must vanish at ξ = ±∞.

Equation 7.33 is a Hermite differential equation (6.22) with 2n = λ − 1. From Section 

6.2.3, the Hermite polynomial of the zeroth order is H0(x) = 1. Thus, f(ξ) is expected to be 

1 when λ = 1.

The VBA code created for using the differential equation 7.33 is similar to the one listed 

in Figure 7.12 with a different definition of Function g(lambda, x, Phi, Dphi). 

In this case,

g = 2 * x * Dphi - (lambda - 1) * Phi
Figure 7.15 shows the result of the shooting method. As shown when λ >1, f(ξ) tends to 

exhibit a negative divergence, and when λ <1, f(ξ) tends to be a positive divergence.

For the first excited state, n = 1 or λ = 3. The initial condition should be f(ξ) = 0 and df(ξ)/

dξ = 1 at ξ = 0 for an odd function. Figure 7.16 shows the result for λ = 2.9, 3.0, and 3.1 for 

around n = 1. Recall that the Hermite polynomial of the first order is H1(x) = 2x, and the 

result shown here is consistent with H1(x).

7.3.4  Hydrogen Atom

The radial wave function R(r) of the Schrödinger equation for a hydrogen-like atom is
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FIGURE 7.15 Asymptotic behavior of a wave function of a harmonic oscillator in the ground state.
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where μ is the reduced mass, ke = 1/4πε0, and ℓ is the angular momentum quantum num-

ber [5]. Let
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So that Equation 7.34 is rewritten to
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where the particular choice of the number 1/4 for the eigenvalue term is arbitrary but con-

venient for the following development.

We incorporate the boundary conditions at ρ→∞ with Equation 7.34. With the limit of 

ρ→∞, Equation 7.36 is approximately
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Let R(ρ) = ρnexp(±ρ/2) then
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Thus, R(ρ) = ρnexp(±ρ/2) satisfies the above equation for any n. However, since R(ρ) → 0 

as ρ → ∞, exp(ρ/2) is not allowed and n must be finite. We may look for an exact solution 

of Equation 7.36 of the form R(ρ) = F(ρ)exp(−ρ/2) where F(ρ) may be a finite polynomial 

function. From Equation 7.36, F(ρ) satisfies
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FIGURE 7.16 Asymptotic behavior of a wave function of a harmonic oscillator of the first excited 

state.
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Find the solution of Equation 7.38 in the form

 F f f a a p a a as
k

k( ) ( ) ( ) , ,� � � � � �� � � � � � �where 0 1 2
2

0 0  (7.39)

and s >0 for the boundary condition at ρ = 0. Substitute Equation 7.39 with Equation 7.38 

and obtain
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Setting ρ = 0 in Equation 7.40 gives s(s + 1) − ℓ(ℓ + 1) = 0, and s = ℓ for s >0. Equation 7.38 

now becomes
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Substituting the power series 7.39 into Equation 7.41, we obtain
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Note that the series solution 7.39 cannot be infinite for satisfying the boundary condition 

when r → ∞. There must be an integer k such that ak ≠ 0 but ak+1 = 0. Thus, k + ℓ+ 1 – λ = 

0 from the numerator of Equation 7.42, and we obtain

 � � � � � � � � � �k n n k 1 1 1 2 3where , , , . (7.43)

The energy E can be obtained from the definition 7.35,

 E
k Z e

a n
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Note: Equation 7.41 with λ = n is an associated Laguerre differential equation (6.38), and 

the polynomial solutions are the associated Laguerre polynomials. The radial wave func-

tion is of the form e Ln

�

�
�

1

2 2 1
�
� �


 ( ). Refer to advanced books on quantum physics [10] for 

explicit radial functions.

For the ground state, n = 1 and ℓ = 0, Equation 7.41 has the eigenvalue λ = n = 1. Figure 7.15 

lists the VBA code to demonstrate the behavior of the eigenfunction of Equation 7.41 with 
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a few λ-values around λ = 1. The eigenfunction of Equation 7.41 is constant, f(ρ) = a0 = 1 if 

λ = 1. The VBA code calculates a0 = 1.  

Figure 7.18 shows the computed behaviors of the radial wave functions near λ = 1 (n = 

1 and ℓ = 0). Because the Laguerre polynomial of the zero-th order is 1, the solution f(ρ) 

is expected to be 1 when λ = 1. When n is smaller than 1, f(ρ) exhibits a positive deviation 

from the constant a0 = 1, and when n is larger than 1, f(ρ) exhibits a negative deviation 

from the constant.

Figure 7.19 shows the computed behaviors of the radial wave functions near λ = 2 (n = 2 

and ℓ = 0). The solution f(ρ) is expected to be linear when λ = 1.

Sub Hatom()

Cells(1, 1) = "Ground state of H-atom"

'Phi is the wave function.

'Dphi=d(Phi)/dt is the 1st derivative of Phi.

'DDphi=d(Dphi)/dt=(1-2 / r - 1) * Dphi + (1-lambda) * Phi / r  is the 2nd derivative of Phi

'Write labels and initial values in cells:

Cells(3, 1) = "Initial r": r = 0: Cells(4, 1) = r

Cells(3, 2) = "Initial Phi": Phi = 0: Cells(4, 2) = Phi

Cells(3, 3) = "Initial Dphi": Dphi = -1: Cells(4, 3) = Dphi

Cells(3, 4) = "dr": h = 0.1: Cells(4, 4) = h        'Radial increment

Cells(6, 2) = "r"

Cells(5, 1) = "lambda"

'Change lambda value around the true eigen value (lambda=1)

For j = 1 To 3

r = 0: Cells(7, 2) = r

Cells(6, 2 + j) = "Phi": Phi = 1: Dphi = 0

If j = 1 Then lambda = 0.99: Cells(5, 2 + j) = lambda: GoTo RK                 

If j = 2 Then lambda = 1: Cells(5, 2 + j) = lambda: GoTo RK

If j = 3 Then lambda = 1.01: Cells(5, 2 + j) = lambda: GoTo RK

'Runge-Kutta parameters:

RK:       maxN = 100  ' Iteration # (n*h = range of Phi; n*h=5):

For i = 1 To maxN

r = r + h

Cells(i + 7, 2) = r

Cells(i + 6, 2 + j) = Phi

k1 = f(lambda, r, Phi, Dphi)

l1 = g(lambda, r, Phi, Dphi)

k2 = f(lambda, r + h / 2, Phi + h * k1 / 2, Dphi + h * l1 / 2)

l2 = g(lambda, r + h / 2, Phi + h * k1 / 2, Dphi + h * l1 / 2)

k3 = f(lambda, r + h / 2, Phi + h * k2 / 2, Dphi + h * l2 / 2)

l3 = g(lambda, r + h / 2, Phi + h * k2 / 2, Dphi + h * l2 / 2)

k4 = f(lambda, r + h, Phi + h * k3, Dphi + h * l3)

l4 = g(lambda, r + h, Phi + h * k3, Dphi + h * l3)

Phi = Phi + h * (k1 + 2 * k2 + 2 * k3 + k4) / 6

Dphi = Dphi + h * (l1 + 2 * l2 + 2 * l3 + l4) / 6

Next i

Next j

End Sub

_____________________________________________________________

Function g(lambda, r, Phi, Dphi)

'g=d(Dphi)/dt  ' The 2nd derivative of Phi.

g = (1 - 2 / r) * Dphi + (1 - lambda) * Phi / r      

End Function

____________________________________________________________

Function f(lambda, r, Phi, Dphi)

'f=d(phi)/dt

f = Dphi

End Function

From equation (7.39)

FIGURE 7.17 VBA code for seeking eigenvalue E by the shooting method.
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SUGGESTED FURTHER STUDY

For learning advanced computational algorithms to solve boundary value problems, there 

are many lecture notes [11–13] and books [14, 15]. For general knowledge of computational 

physics, one needs to recommend creating and running examples of advanced computa-

tional books [6, 16–18].
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Interdisciplinary Topics

Interdisciplinary topics are always bringing opportunities to be aware of how phys-

ics and mathematics are applied in other fields. There are two topics selected from poly-

mer and population dynamics:

 1) Polymers give us interesting topics in conjunction with entropy change and self-

avoiding random walks. We apply a model similar to the examples discussed in 

Chapter 5 to demonstrate the entropic elasticity of polymers. A model to calculate 

the polymer length is self-avoiding random walks. We demonstrate it by placing a 

polymer chain in a two-dimensional square lattice.

 2) There are many natural phenomena which can be modeled with differential equa-

tions. Differential equations to describe population change exhibit very curious pre-

dictions. Numerical computation and visualization of several models are considered. 

The dynamics of biological systems where species interact as prey and predator are 

also portrayed.

8.1  POLYMERS
8.1.1  Entropic Elasticity

The elasticity of rubber is caused by the entropy change [1]. Let the number of possible 

configurations of monomers in a polymer chain be Ω. Once Ω is found, entropy, which is 

given by S = kBlnΩ from the description in Section 5.1, can be calculated where kB is the 

Boltzmann constant. Figure 8.1 depicts two different states of a polymer chain. Let Ω = Ω1 

when the polymer is unstretched and Ω = Ω2 when the polymer is stretched. As we cal-

culate below, because Ω1 > Ω2, S1 > S2 and S2 − S1 <0. From a stretched state, the polymer 

tends to return to an unstretched state where the polymer has larger entropy, producing 

the restoring elastic force.

Consider a one-dimensional polymer chain that is made of N monomers. The joints 

between the two monomers freely point to the right or left. Figure 8.2 depicts the polymer 

chain model. This model is very similar to the one-dimensional random walk.

DOI: 10.1201/9781003516347-8

http://dx.doi.org/10.1201/9781003516347-8
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Suppose the length of monomers is a, the length of the polymer chain is x, the number 

of right-pointing monomers is NR, and the number of left-pointing monomers is NL, then 

the length of the polymer chain is given by

 x N N a N N NR L R L� � � �( ) ,where  (8.1)

and the number of possible orientations of monomers to yield x is
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FIGURE 8.1 Unstretched and stretched states of the polymer.

FIGURE 8.2 A one-dimensional polymer chain.
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and the tension in the polymer chain is given by
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Therefore, tension X is proportional to the length of the polymer to the first order, fol-

lowing Hooke’s law. Figure 8.3 is a screenshot of the numerical calculation including the 

third-order term.

Figure 8.4 shows the length dependence of tension [aX/kBT], where the horizontal axis 

is the stretched length [x/Na]. When the stretched length is short, Hooke’s law follows the 

first order. As the stretched length becomes longer, higher-order nonlinear terms appear 

in the entropic elasticity.

8.1.2  Polymer Length and Self-Avoiding Walk

Assume that a polymer chain is placed on an upstretched two-dimensional surface. How 

can we calculate the length of the two-dimensional polymer chain? Assume there are N 

monomers in a polymer chain and the joints between monomers are freely pointing and 

there is no correlation between the two monomers. We use a square lattice model where 

the lattice constant is the monomer length [2]. In this model, each monomer can take four 

different directions (up, down, right, and left), but two monomers cannot take the same 

lattice segment. Starting with the monomer at one end placed on the square lattice, the 

second monomer can be randomly placed, avoiding the first monomer, and so forth. This 

FIGURE 8.3 Calculation of tension.
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configuration is equivalent to the self-avoiding walk on the two-dimensional square lattice 

[3]. Figure 8.5 lists the VBA code to place a polymer of 120 monomers of unit length to a 

square lattice of unit lattice constant.

Figure 8.6 shows a typical result of 120 consecutive self-avoiding walks to represent 120 

monomers.

Note: Although there are more efficient computation algorithms for self-avoiding random 

walks [4], personal computers today may be fast enough to apply the simple algorithm we 

applied here.

8.2  POPULATION DYNAMICS

Population dynamics is a description of the size and age composition of a group of indi-

viduals of a single species and how the number and age composition of individuals in a 

population change over time. Differential equations are used to model the dynamics with 

pre-determined conditions [5]. It is interesting to get an idea of how several factors are to 

be implemented in a basic differential equation.

8.2.1  Malthus’s Law of Population and Logistic Equation

Imagine a bacterial growth. If the bacteria do not die, the equation to describe the bacterial 

growth is given by

 
dN

dt
nN=  (8.6)

where n is the growth (birth) rate. The radioactive decay has the same differential equation 

with the negative coefficient n.

Malthus’s law includes the death rate, which states that the time dependence of the pop-

ulation of a species can be given by a differential equation,

FIGURE 8.4 Entropic elasticity.
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Sub SAW2D()

Cells(1, 1) = "Self-avoiding walk (SAW) on the two-dimensional square lattice."

GridSize = 21

WalkLength = 120

Dim grid(GridSize, GridSize) As Integer

Dim pathX(WalkLength) As Integer

Dim pathY(WalkLength) As Integer

For i = 0 To WalkLength

pathX(i) = 0

pathY(i) = 0

Next i

'Initialize the grid and starting position

For x = 1 To GridSize

For Y = 1 To GridSize

grid(x, Y) = 0

Next Y

Next x

'Set the origin (the mid-point of the lattice) as the starting point:

x = (GridSize + 1) / 2

Y = (GridSize + 1) / 2

grid(x, Y) = 1          'Footprinted

pathX(0) = x

pathY(0) = Y

' Directions: right (1,0), left (-1,0), down (0,1), up (0, -1)

Dim dx(3) As Integer

Dim dy(3) As Integer

dx(0) = 1: dy(0) = 0

dx(1) = -1: dy(1) = 0

dx(2) = 0: dy(2) = 1

dx(3) = 0: dy(3) = -1

ii = 0

For i = 1 To WalkLength

ii = ii + 1

'Check for possible moves

Dim possibleMoves(3) As Integer

Count = 0

For k = 0 To 3

newX = x + dx(k)

newY = Y + dy(k)

If newX > 0 And newX <= GridSize And newY > 0 And newY <= GridSize Then

If grid(newX, newY) = 0 Then

possibleMoves(Count) = k

Count = Count + 1

End If

End If

Next k

'If there are no possible moves, exit the loop

If Count = 0 Then Exit For

'Choose a random move from the possible moves

d = possibleMoves(Int(Rnd * Count))

x = x + dx(d)

Y = Y + dy(d)

'Mark the new position on the grid and add to the path

grid(x, Y) = 1

pathX(i) = x

pathY(i) = Y    

Next i

Cells(2, 1) = ii

For i = 0 To ii

If pathX(i) <> 0 Then

Cells(i + 4, 1) = i: Cells(i + 4, 2) = pathX(i): Cells(i + 4, 3) = pathY(i)

Else

Exit For

End If

Next i

R = Sqr((pathX(ii) - pathX(0)) ^ 2 + (pathY(ii) - pathY(0)) ^ 2)

C ells(3, 1) = R

End Sub

FIGURE 8.5 VBA code of self-avoiding walks on a square lattice.
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dN

dt
nN mN N� � � �  (8.7)

where n is the birth rate, m is the death rate, and ε = n − m is called the Malthus coefficient 

[6]. The solution of Equation 8.7 is

N(t) = N0exp(εt) where N0 is the population at t = 0.

The solution indicates the exponential increase when ε >0, and the exponential decrease 

when ε <0. If ε = 0, there is no change in the population.

More realistically, increasing and/or decreasing rates of the population are not steady 

because the birth and death rates are not constant over time. Logistic equation models 

growth and saturation of population,

 
dN

dt
N N� �� �� � . (8.8)

where ε >0 is called the Malthus coefficient and λ is called the crowdedness constant [7]. 

The solution of Equation 8.8 can be obtained in the following manner. Let
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Using Equation 8.8, Equation 8.9 yields
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FIGURE 8.6 A polymer chain on a square lattice.
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Combining Equations 8.10 and 8.11,
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Solving Equation 8.12 for N(t), we obtain
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Assuming appropriate numerical values of N0, ε , and λ, one may draw a graph of N(t). 

Alternatively, one may numerically solve the differential Equation 8.8. Figure 8.7 shows the 

VBA code to solve Equation 8.8 by applying the Runge-Kutta method (Appendix A3). In 

this code, ε = 3, λ = 0.1, and N0 = 1. Figure 8.8 shows its result where t = 0 to 5 with incre-

ments of 0.05. The graph indicates a growth followed by saturation. Such a curve is called 

a sigmoid curve.

Sub LogisticEq()

Cells(1, 1) = "Population dynamics by Logistic equation"

'Parameters in the Logistic eq:

Cells(3, 1) = "Malthus": epsilon = 3: Cells(4, 1) = epsilon 'Malthus coefficient

Cells(3, 2) = "Crowdedness": lambda = 0.1: Cells(4, 2) = lambda 'Crowdedness constant

'Writing labels and initial value in cells:

Cells(3, 3) = "Initial t": t = 0: Cells(4, 3) = t

Cells(3, 4) = "delta t": h = 0.05: Cells(4, 4) = h

Cells(3, 5) = "Initial Population": population = 1: Cells(4, 5) = population                   

'Runge-Kutta method:

n = 100 ' Iteration #

Cells(6, 2) = "t"

Cells(6, 3) = "Population"             

For i = 0 To n

Cells(7 + i, 2) = t

Cells(7 + i, 3) = population

L1 = g(epsilon, lambda, t, population)

L2 = g(epsilon, lambda, t + h * L1 / 2, population + h * L1 / 2)

L3 = g(epsilon, lambda, t + h * L2 / 2, population + h * L2 / 2)

L4 = g(epsilon, lambda, t + h * L3, population + h * L3)

t = t + h

population = population + h * (L1 + 2 * L2 + 2 * L3 + L4) / 6

Next i

End Sub

___________________________________________________________________

Function g(epsilon, lambda, t, population)

'd(Population)/dt=g

g = (epsilon - lambda * population) * population

End Function

FIGURE 8.7 VBA code for solving the Logistic equation.
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8.2.2  Lotka-Volterra Equations

The Lotka-Volterra equations are a pair of equations used to describe the dynamics of 

biological systems where two species interact as prey (N1) and predator (N2) [8]. The Lotka-

Volterra equation modified Equation 8.8 to make a pair of equations for properly consider-

ing the interaction of two species.
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The analytical solution of the pair of differential equations can be found in the following 

way:

 (1) Calculate [Equation 8.14∙λ2]+[ Equation 8.15∙λ1] to obtain
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 (2) Calculate [Equation 8.14∙ε2/N1]+ [Equation 8.15∙ε1/N2] to obtain
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 (3) From Equations 8.16 and 8.17,
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FIGURE 8.8 Population N(t) from the Logistic equation.
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 (4) Calculate the integrals of Equation 8.18 to obtain

  � � � �2 1 1 2 2 1 1 2ln lnN N N N� � �  = constant, and therefore,

 N N e CN N
1 2

2 1 2 1 1 2� � � �� � � . (8.19)

It is difficult to make a graph of N1(t) and N2(t) from the analytical solution 8.19 to observe 

N1(t) and N2(t), but one may numerically solve the pair of differential equations 8.14 and 

8.15. Figure 8.9 lists the VBA code to solve the pair of equations using the Runge-Kutta 

method. In this code, ε1 = ε2 = λ1 = λ2 = 1 and N1 = 1 and N2 = 2 at t = 0.

Figure 8.10 shows the time dependence of N1 and N2, and the population of predator vs 

the population of prey. Note that the vertical scales are different. The computed correlation 

Sub LotkaVolterraEq()

Cells(1, 1) = "Population dynamics between predator and prey by Lotka -Volterra equation"

'N1= Population of prey and N2=Population of predator.

'Parameters in the Lotka-Volterra eq:

Cells(3, 1) = "Malthus1": epsilon1 = 1: Cells(4, 1) = epsilon 1    'Malthus coefficient

Cells(3, 2) = "Crowdedness1": lambda1 = 2: Cells(4, 2) = lambda1 'Crowdedness constant

Cells(3, 3) = "Malthus2": epsilon2 = 1: Cells(4, 3) = epsilon 2   'Malthus coefficient

Cells(3, 4) = "Crowdedness2": lambda2 = 1: Cells(4, 4) = epsilon2 'Crowdedness constant

'Writing labels and initial value in cells:

Cells(3, 5) = "Initial N1": N1 = 1: Cells(4, 5) = N1  'Prey

Cells(3, 6) = "Initial N2": N2 = 2: Cells(4, 6) = N2  'Predator

Cells(3, 7) = "Initial t": t = 0: Cells(4, 7) = t

Cells(3, 8) = "delta t": h = 0.02: Cells(4, 8) = h                    

'Runge-Kutta method:

n = 500 ' Iteration #

Cells(6, 2) = "t"

Cells(6, 3) = "Prey"

Cells(6, 4) = "Predator"              

For i = 0 To n

Cells(7 + i, 2) = t

Cells(7 + i, 3) = N1

Cells(7 + i, 4) = N2    

L1 = g(epsilon1, lambda1, epsilon2, lambda2, t, N1, N2)

F1 = f(epsilon1, lambda1, epsilon2, lambda2, t, N1, N2)

L2 = g(epsilon1, lambda1, epsilon2, lambda2, t + h / 2, N1 + h * L1 / 2, N2 + h * F1 / 2)

F2 = f(epsilon1, lambda1, epsilon2, lambda2, t + h / 2, N1 + h * L1 / 2, N2 + h * F1 / 2)

L3 = g(epsilon1, lambda1, epsilon2, lambda2, t + h / 2, N1 + h * L2 / 2, N2 + h * F2 / 2)

F3 = f(epsilon1, lambda1, epsilon2, lambda2, t + h / 2, N1 + h * L2 / 2, N2 + h * F2 / 2)

L4 = g(epsilon1, lambda1, epsilon2, lambda2, t + h, N1 + h * L3, N2 + h * F3)

F4 = f(epsilon1, lambda1, epsilon2, lambda2, t + h, N1 + h * L3, N2 + h * F3)

t = t + h

N1 = N1 + h * (L1 + 2 * L2 + 2 * L3 + L4) / 6

N2 = N2 + h * (F1 + 2 * F2 + 2 * F3 + F4) / 6

Next i

End Sub

_____________________________________________________________________________________

Function g(epsilon1, lambda1, epsilon2, lambda2, t, N1, N2)

'dN1/dt=g

g = (epsilon 1 - lambda1 * N2) * N1

End Function

_____________________________________________________________________________________

Function f(epsilon1, lambda1, epsilon2, lambda2, t, N1, N2)

'dN2/dt=f

f = -(epsilon2 - lambda2 * N1) * N2

End Function

FIGURE 8.9 VBA code to solve the Lotka-Volterra equation.
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between N1 and N2 follows the nature where the change (increase/decrease) in the popula-

tion of predators tracks the change (increase/decrease) in the population of prey.

8.2.3  Population Dynamics Including Reproduction

Volterra made postulates to represent population explosion with reproduction:

 1) The ratios of males and females to the total population do not change over time:

 
N

N

N

N
male female� �� �and are both constants (8.20)

  where N is the total population;

 2) The number of encounters with the opposite sex is proportional to

 N N Nmale female� � �� 2 ; (8.21)

 3) There are n encounters per unit time and m births from the encounter, and assume 

m/n is constant in time;

 4) With the above assumptions, the total number of births is given by
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where and are constants and;  (8.22)

FIGURE 8.10 Prey-predator relationship described by the Lotka-Volterra equation.
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 5) If there is no birth, the population satisfies

 
dN

dt
N� � �� �where 0 (8.23)

to implement death.

Combining Equations 8.20 with 8.23, the population change is given by
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Equation 8.24 is the same as the Logistic equation (8.8) except for its negative sign.

The solution of Equation 8.24 is
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There are three possibilities for the dynamics of Equation 8.25, depending on the h-value:

 (i) R=1, i.e., ε−λN0=0 at t=0. N=N0: no change in N;

 (ii) R<1, i.e., ε−λN0>0 at t=0. As t→∞, N→∞: declining population; and

 (iii) R>1, i.e., ε−λN0<0 at t=0. As t→t∞, (1/ε)ln[λN0/(λN0−ε), N→∞: population explosion.

One may interpret the above conditions in a different way. From the differential 

equation 8.24,

 (i)’ If ε − λN0 = 0 at t = 0, N may not change where the initial population is N0 – R = 0 

because R = N0λ/ε;

 (ii)’ If ε − λN0 >0 at t = 0, N may increase where the initial population is N0 – R = N0(ε − 

λ)/ε>0; and

 (iii)’ If ε − λN0 <0 at t = 0, N may decrease where the initial population is N0 – R = N0(ε − 

λ)/ε <0;

Figure 8.11 lists the VBA code to analyze Equation 8.21 with the Runge-Kutta method 

for visualizing the population change on the conditions (i)’ to (iii)’. Note that N0 is the ini-

tial population only if λ = ε. This code is obtained using the VBA code listed in Figure 8.7, 

where ε = 1, λ = 1, and N0 = 1. The three possible R-values are selected to set the initial 

populations by N0 − R to satisfy the above three conditions: 1 for case (i)’; and −0.006 for 

case (ii)’, and 0.1 for case (iii)’.

Figure 8.12 shows the three possibilities of population change with reproduction. The 

numerical value of R = λN0/ε = 1 is the threshold. If the reproduction rate λ rate is more 
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Sub Reproduction()

Cells(1, 1) = "Population dynamics including reproduction by Lotka -Volterra eq"

'N = Population.

'Parameters in the Lotka-Volterra eq:

Cells(3, 1) = "Epsilon": epsilon = 1: Cells(4, 1) = epsilon

Cells(3, 2) = "Lambda": lambda = 1: Cells(4, 2) = lam bda

N0 = 1                                           'Initial N=N0 when R=1"

'Writing labels and initial value in cells:

Cells(3, 7) = "Initial t": t = 0: Cells(4, 7) = t

Cells(3, 8) = "delta t": delt = 0.05: Cells(4, 8) = delt

Cells(3, 6) = "N at t=0"

Cells(7, 2) = "t"

Cells(5, 1) = "Population dynamics"

For j = -1 To 1                                          'Creating 3 different R-values

Cells(5, 2 + j + 2) = "R"

Cells(7, 2 + j + 2) = "N"

If j = 1 Then R = 0.1 * j: GoTo Population

If j = 0 Then R = j: GoTo Population

If j = -1 Then R = j * 0.006

Population:

N = N0 - R: Cells(4, 6) = N

Cells(6, 2 + j + 2) = R

t = 0             'Resetting initial time.

'Runge-Kutta method:

NN = 90 ' Iteration #

For i = 0 To NN

Cells(8 + i, 2) = t

Cells(8 + i, 2 + j + 2) = N

L1 = g(epsilon, lambda, t, N)

L2 = g(epsilon, lambda, t + delt / 2, N + delt * L1 / 2)

L3 = g(epsilon, lambda, t + delt / 2, N + delt * L2 / 2)

L4 = g(epsilon, lambda, t + delt, N + delt * L3)

N = N + delt * (L1 + 2 * L2 + 2 * L3 + L4) / 6

t = t + delt

Next i

Next j

End Sub

__________________________________________________________

Function g(epsilon, lambda, t, N)

'dN/dt=g

g = -(epsilon - lambda * N) * N

End Function

FIGURE 8.11 VBA code for computing population change with reproduction.

FIGURE 8.12 Population dynamics with reproduction.
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than the death rate ε, or R >1, the population explodes. On the other hand, if the reproduc-

tion rate λ rate is less than the death rate ε, or R <1, the population decreases. These days, 

many countries are facing the latter case.

8.2.4  Population Dynamics with Birth, Death at Birth, and Reproduction

In the above argument, the assumption (3): There are n encounters per unit time and m 

births from the encounter and assume m/n is constant in time. Incorporating death at 

birth in population dynamics involves adjusting the model described in Section 8.2.3 to 

account for a portion of births that do not survive. For including death at birth, we may 

replace m with m − ρN where ρ is a proportional constant [9]. Equation 8.22 becomes
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and Equation 8.24 becomes
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where γ0 = Kαßρ/n, and c = ε, b = (λ − μ), and a = γ0. Suppose the quadrilateral equation 

aN2 – bN + c = 0 has two real roots p and q (p > q > 0), Equation 8.27 becomes
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The solution of Equation 8.28 can be given by
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From Equation 8.28, one notices dN/dt behaves differently with different initial population 

N0. Let
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Figure 8.13(a) depicts a function f(N). From the figure,

 1) If N>p, dN/dt<0 and N(t) decreases;

 2) If N=p, dN/dt=0 and N(t) does not change;

 3) If q<N<p, dN/dt>0 and N(t) increases;

 4) If N=q, dN/dt=0 and N(t) does not change; and

 5) If 0<N<q, dN/dt<0 and N(t) decreases.
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In order to analyze the behavior more precisely, we examine d2N/dt2.
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where g(N) = 3N2 − 2(p + q)N + pq. Figure 8.13(b) depicts a function g(N). Because g(p) >0, 

g(q) <0, and g(0) >0, g(N) has two roots, r1 and r2, such that 0<r1<q<r2<p.

Table 8.1 shows the possible cases of N(t) according to the range of initial N.  

Figure 8.14 shows the five cases where p = 2 and q = 1. For the given p and q values, r1 = 

0.427 and r2 = 1.577. The population is stable when the initial population is around p = 2 

while it is sensitive to the initial population around q. The Runge-Kutta–based VBA code 

to generate the outcome is similar to the one in Figure 8.10 with the following function 

declaration from Equation 8.28.

FIGURE 8.13 Functions f(N) and g(N).

TABLE 8.1   Population dynamics with different conditions of birth and death, and reproduction

N0 f(N) dN/dt g(N) d2N/dt2 Behavior of N(t)

N0 > p + − + − N(t) decreases to asymptotically approach N = p. 

N0 = p 0 0 + 0 N(t) remains the same. 

r2 < N0 
< p

− + + + N(t) increases to asymptotically approach N = p. 

q < N0 
< r2

− + − − Although N(t) increases to asymptotically approach 
N = p, the curve is sigmoid.

N0 = q 0 0 − 0 N(t) remains the same.

r1 < N0 
< q

+ − − + N(t) increases to asymptotically approach N = 0. At 
N = r2, there is an inflexion.

0 < N0 
< r1

+ − + − N(t) increases to N = 0 without any inflexion.
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Function g(p, q, t, N)

'dN/dt = g

g = -(N - p) * (N - q) * N

End Function

SUGGESTED FURTHER STUDY

The Galton–Watson process models family names as patrilineal (passed from father to 

son), while offspring are randomly either male or female, and names become extinct if 

the family name line dies out (holders of the family name die without male descendants) 

[10, 11]. This model may also be applicable to the change in the number of neutrons in a 

nuclear fission chain reaction. A neutron collides with a nucleus with a certain probability 

to produce a random number of neutrons.

Nonlinear equations exhibit many interesting phenomena around us. In particular, the 

Logistic equation exhibits chaotic behaviors [12]. For studying general concepts of nonlin-

ear oscillations, refer to [13].
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Appendix

Some details not explained are collected in this appendix. 

A.1  USEFUL FEATURES OF EXCEL
A.1.1  AutoFill

AutoFill is a useful Excel feature for scientific calculations. With this feature, iterative cal-

culations can be carried out without VBA programming. Here is a simple example that 

enters integer 0, 1, 2, 3, …. in Column A (Figure A.1).

 (1) Input 0 in Cell A1.

 (2) Go to Cell A2 and enter =A1+1 and press <Enter>. The value in Cell A2 is calcu-

lated to be 1.

 (3) Place the cursor in Cell A2 and hit <Enter>. The Cell is emphasized.

 (4) Click on the fill handle (a small solid square at the lower right corner). The cursor 

becomes a plus sign (+). While pressing the right mouse button, drag the cursor to 

cells below in column A until reaching the desired integer value.

Note: There is a quicker method when a formula is involved. Provided there is data in a 

column adjacent to the one with the formula, all that is required is to right double-click the 

fill handle and the formula will automatically be copied to the below columns [1].

FIGURE A.1 AutoFill feature.

DOI: 10.1201/9781003516347-9

http://dx.doi.org/10.1201/9781003516347-9
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A.1.2  Data Analysis

Because Excel’s default setting is not for scientific computation, we need to add data analy-

sis tools in order to add the Fourier transform option and other useful scientific calcula-

tion tools [2]. From the [File] menu, select [Options] to display the “Excel option” 

screen. Click on [Add-Ins] to display the following screen (Figure A.2).

Next, click on [Go] to display available add-ins, and then check [Analysis ToolPak], 

[Analysis ToolPak-VBA], and [Solver Add-In] (Figure A.3).

Remark: [Solver] is an optimization (maximizing or minimizing) routine used for 

applications such as linear programming. There are many scientific problems that can be 

computed using this feature. It would be better to install it on your computer.

A.1.3  Excel Macro (VBA)

Excel macro is a visual basic programing environment. Those who are interested in 

Excel macro, refer to other books [2, 3]. Take the following steps to enable Excel’s macro 

capability:

 (1) Go to [Trust Center] (Figure A.4).

 (2) From [Option], go to [Trust Center], and click on [Trust Center Settings…] of [Excel 

Options] in [Microsoft Excel Trust Center].

 (3) Select [Macro Settings] and check [Enable All Macro (not recom-
mended; potentially dangerous code can run)] (Figure A.5). Click 

[OK] to complete the setting.

 (4) In the pulldown menu, click on [View] and click on [Macros] to select [View 
Macros] and create a macro (visual basic) program (Figure A.6).

FIGURE A.2 Add-ins options screen.
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After entering a macro name, create a source code using a built-in editor (Figure A.7). 

Alternatively, use MS WORD or a text-editor such as “Notepad++” to write a code and 

paste it to the Macro editor. When the created VBA code needs to be reviewed or edited, 

click on [Edit].

A.1.4  Iterative Calculation

From the [File] menu, select [options] to display the [EXCEL Options] screen. Click 

on [Formulas] to display the following screen. Figure A.8 shows the screenshot of this 

procedure.

A.2  EULER’S METHOD

Consider a one-dimensional motion. From the definition of the derivative of, e.g., the posi-

tion x (t) and the acceleration a(t)

 lim
( ) ( ) ( )

lim
( ) ( ) (

� �

�
�

�
�t t

x t t x t

t

dx t

dt

v t t v t

t

dv t

� �

� �
�

� �
�

0 0
and

))
( ).

dt
a t�  (A.1)

FIGURE A.3 Available add-ins.
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FIGURE A.4 Excel options.

FIGURE A.5 Macro settings.
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Utilizing Equation A.1, the Euler method numerically solves the differential equations 

such as the equation of motion, F = ma, by successively calculating the position x(t + Δt) 

and velocity v(t + Δt) at time t + Δt using the position x(t) and the velocity v(t) at time t and 

the derivatives dx/dt and dv/dt at time t:

FIGURE A.6 Creating Macro (VBA) code.

FIGURE A.7 Macro editor.
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 x t t x t
dx

dt
t x t v t t

t

( ) ( ) ( ) ( ) ,� � � � � �� � �  (A.2)

 v t t v t
dv

dt
t v t a t t

dv

dt
g

t t

( ) ( ) ( ) ( ) .� � � � � � �� � � because  and (A.3)

With the initial condition of the position and the velocity, x0 and v0, and the time inter-

val, e.g., Δt = 0.01 sec, the Euler method generates the position of the trajectory using 

Equations A.2 and A.3. The Euler method can be carried out on a spreadsheet with the 

AutoFill feature.

This method is applicable when a motion is “slow and smooth in time” or “under a 

constant acceleration” such as projectile motions. However, if the motion is under a large 

change in acceleration such as harmonic oscillations, the Euler method may cause a large 

computational error.

A.3  THE RUNGE-KUTTA METHOD

Another approach to solving the equation of motion, called the Runge-Kutta method, is a 

better choice [2, 3]. Below is the algorithm of the fourth-order Runge-Kutta method.

First-order differential equation: 
dx

dt
f t x= ( , )

 1) Define the size of time increment: ti+1 = ti + h, where h is the time increment and i = 

0, 1, 2, …, N.

FIGURE A.8 Enable iterative calculation.



 Appendix    ◾   189

 2) Calculate the following K-values using given t = ti and x = xi.
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( , )..

 (A.4)

 3) Calculate the next x-value: xi+1 = xi + Δx at t = ti+1, where the position increment is a 

weighted average of the K-values, i.e., Δx = h(K1 + 2K2 + 2K3 + K4)/6. (A.5).

 4) Repeat the steps 9)–11) for a pre-determined N-value (e.g., 100) to obtain a table of the 

t-values and the x-values.

Second-order differential equation: 
d x

dt
g t x v

2

2
= ( , , ) where  v

dx

dt
=

 5) Separate the differential equation into two equations:

 
dv

dt
g t x v v

dx

dt
f t x v= = =( , , ) ( , , ).and  (A.6)

 6) Define the size of time increment: ti+1 = ti + h where h is the time interval and i = 0, 1, 

2, …, N.

 7) For solving 
dv

dt
g t x v= ( , , ), calculate the following L-values using given t = ti, x = xi, 

and v = vi:
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 (A.7)

 �v h L L L L� � � �( ) / .1 2 3 42 2 6  

 8) Calculate the next v-value: vi+1 = vi + Δv at t = ti+1 where Δv = h(L1 + 2L2 + 2L3 + L4)/6.

 (A.8)

 9) Solving 
dx

dt
f t x v= ( , , )is essentially the same as the first order differential equation  

described earlier. In this case, there is also a velocity term. Calculate the following 

K-values at given t = ti, x = xi, and v = vi:
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 (A.9)

 10) Calculate the next x-value: xi+1 = xi + Δx at t = ti+1, where Δx = h(K1 + 2K2 + 2K3 + 

K4)/6. (A.10)

 11) Repeat the above steps for a pre-determined N (e.g., 100) to obtain a table of the 

t-values, the x-values, and the v-values.

The Runge-Kutta method is much easier to implement with Excel’s VBA (Visual Basic for 

Applications). Refer to Appendix A1.3 for enabling the VBA capability. Remember that the 

VBA code for the Runge-Kutta method applies to many other second-order differential 

equation problems because the mathematical function, g(t, x, v), is the only part that needs 

to be changed.

A.4  SIMPSON’S METHOD FOR DEFINITE INTEGRAL

Consider an integral I f x dx
a

b

� � ( )  where the integral interval [a, b] is finite (e.g., a = 0 and 

b = 1). If the integrant f(x)n is too complicated to perform the integral, we approximate f(x) 

to make the integral easier.

Denote the Taylor expansion of f(x) as

 f x f xf
x

f
x

f( )
! !

� � � � �0

2 3

2 3
� � ��  (A.11)

where all derivatives are evaluated at x = 0. It can be shown that

 f f x h f hf
h

f
h

f O h� � � � � � � � �1 0

2 3
4

2 6
( ) ( ).� � ��  (A.12)

The first derivative of f(x) can be approximated by

 f
f f

h
� �

� �1 1

2
,  (A.13)

and the second derivative can be approximated by

 f
f f f

h
� �

� � �1 0 1

2

2
.  (A.14)
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Thus, Equation A.11 can be improved using Equations A.13 and A.17:

 f x f
f f

h
x

f f f

h
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Using Equation A.15, the following integral can be approximated by

 f x dx
h

f f f O h
h
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( ) ( ),
�
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41 0 1
5  

The integral to be evaluated can be approximated by

 
I f x dx

h
f a f a h f a h f a h f b h f b
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 (A.16)

Figure A.9 lists a VBA code of Simpson’s methods to evaluate exp( )� � �� �x dx e
0

1
11  =  

0.632121. Simpson’s method outputs 0.632121 to this significant figure.

How can we evaluate the integral like I f x dx�
�

� ( )
0

? If the integrant f(x) monotonically 

decreases quickly and becomes nearly zero at a certain x-value (say, b), then f(x) ~0 for b ≤ 

x and we may have

 I f x dx f x dx
b

� �
�

� �( ) ( ) .
0 0

  (A.17)

Sub Simpson()

Cells(1, 1) = "Simpson’s rule doe definite integrals"

a = 0 ' a>=0

b = 1

N = 64

h = (b - a) / N

Sum = 0

Sum = F(a)

coeff = 2

For i = 1 To N - 1

If coeff = 2 Then coeff = 4 Else coeff = 2

x = i * h

Cells(4 + i, 1) = x

Cells(4 + i, 2) = coeff

Sum = Sum + coeff * F(x)

Cells(4 + i, 3) = Sum

Next i

Sum = Sum + F(b)

Integral = Sum * h / 3

Cells(3, 1) = "Integral=": Cells(3, 2) = integral

End Sub

__________________________________________________________________

Function F(x)

F = Exp(-x)

End Function

FIGURE A.9 Simpson’s method for evaluating the integral.
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For example, e�
�

� �x dx
0

1. By applying Simpson’s method,

 e e� �� �� �x xdx dx
0

5

0

10

0.99326 and 0.99996! 

Another approach is to split the integration region into two segments,

 I f x dx f x dx f x dx
a

a

� � �
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� � �( ) ( ) ( ) ,
0 0

  (A.18)

and change the variable x with 1/y for the second integral.
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If the change of variable has not introduced an additional singularity into the integrand, 

this integral can often be evaluated by one of the standard numerical methods.

A.5  EULER’S ANGLES

Euler’s angles are a set of three angles {α, ß, γ} that rotate a coordinate frame (x, y, z) to 

another frame (X, Y, Z) [4]. Figure A.10 depicts the Euler angles where the rotational order 

of coordinates is

 ( , , ) ( , , , ) ( , , ) ( , , )x y z x y z x y z X Y Z� � �
� � �

� � � � � � .

Using matrix representation, rotational matrices are:

1) Rotation about the z-axis by angle α is given by Mz ( )

cos sin

sin cos�
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�
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�
�
�

0

0

0 0 1

  (A.21)

Coordinates: xyz → x’y’z’ where z’=z.

2) Rotation about the y’-axis by angle ß is given by M y�( )
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sin cos
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�
�

0

0 1 0
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  (A.22)

Coordinates: x’y’z’ → x”y”z” where y”=y’.
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3) Rotation about the z”-axis by angle γ is given by M y�( )
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  (A.23).

Coordinates: x”y”z” → XYZ where Z = z”.

Combining them, the rotation from xyz to XYZ is given by
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 (A.24)

Figure A.11 lists the VBA code for rotating unit vectors e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 

1)} of the xyz-frame to another set of {R1,R2,R3} of the XYZ-frame using specified angle 

values of {α, ß, γ}. Unit vectors are defined by specifying the coordinates of their tips and 

tails. This code reads Euler’s angles from the spreadsheet: α = 45°, ß = −30°, and γ = 0°.

FIGURE A.10 Euler’s angles.
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Sub UnitVector3D()

Cells(1, 1) = "Rotation of unit vectors using Euler angles"

Pi = 3.14159265358979

Alpha = 0: Beta = 0: Gamma = 0

'Euler angles

Cells(3, 1) = "Alpha": Alpha = Cells(4, 1): Alpha = Alpha * Pi / 180: Cells(5, 1) = Alpha

Cells(3, 2) = "Beta": Beta = Cells(4, 2): Beta = Beta * Pi / 180: Cells(5, 2) = Beta

Cells(3, 3) = "Gamma": Gamma = Cells(4, 3): Gamma = Gamma * Pi / 180: Cells(5, 3) = Gamma

Cells(4, 4) = "degrees": Cells(5, 4) = "radians"

'Unit vectors fixed with space

Cells(6, 2) = "Tail": Cells(6, 3) = "Tip": Cells(6, 6) = "Tail": Cells(6, 7) = "Tip"

'Unit vector along x-axis.

Cells(6, 1) = "e1"

Cells(7, 1) = "x1": Cells(7, 2) = 0: x1 = 1: Cells(7, 3) = x1

Cells(8, 1) = "y1": Cells(8, 2) = 0 : y1 = 0: Cells(8, 3) = y1

Cells(9, 1) = "z1": Cells(9, 2) = 0: z1 = 0: Cells(9, 3) = z1

'Unit vector along y-axis.

Cells(10, 1) = "e2"

Cells(11, 1) = "x2": Cells(11, 2) = 0: x2 = 0: Cells(11, 3) = x2

Cells(12, 1) = "y2": Cells(12, 2) = 0: y2 = 1: Cells(12, 3) = y2

Cells(13, 1) = "z2": Cells(13, 2) = 0: z2 = 0: Cells(13, 3) = z2

'Unit vector along z-axis.

Cells(14, 1) = "e3"

Cells(15, 1) = "x3": Cells(15, 2) = 0: x3 = 0: Cells(15, 3) = x3

Cells(16, 1) = "y3": Cells(16, 2) = 0: y3 = 0: Cells(16, 3) = y3

Cells(17, 1) = "z3": Cells(17, 2) = 0: z3 = 1: Cells(17, 3) = z3

'Rotated unit vectors

'Unit vector along X-axis.

Rx1 = FX(x1, y1, z1, Alpha, Beta, Gamma)

Ry1 = FY(x1, y1, z1, Alpha, Beta, Gamma)

Rz1 = FZ(x1, y1, z1, Alpha, Beta, Gamma)

Cells(7, 5) = "Rx1": Cells(7, 6) = 0: Cells(7, 7) = Rx1

Cells(8, 5) = "Ry1": Cells(8, 6) = 0: Cells(8, 7) = Ry1

Cells(9, 5) = "Rz1": Cells(9, 6) = 0: Cells(9, 7) = Rz1

'Unit vector along Y-axis.

Rx2 = FX(x2, y2, z2, Alpha, Beta, Gamma)

Ry2 = FY(x2, y2, z2, Alpha, Beta, Gamma)

Rz2 = FZ(x2, y2, z2, Alpha, Beta, Gamma)

Cells(11, 5) = "Rx2": Cells(11, 6) = 0: Cells(11, 7) = Rx2

Cells(12, 5) = "Ry2": Cells(12, 6) = 0: Cells(12, 7) = Ry2

Cells(13, 5) = "Rz2": Cells(13, 6) = 0: Cells(13, 7) = Rz2

'Unit vector along x-axis.

Rx3 = FX(x3, y3, z3, Alpha, Beta, Gamma)

Ry3 = FY(x3, y3, z3, Alpha, Beta, Gamma)

Rz3 = FX(x3, y3, z3, Alpha, Beta, Gamma)

Cells(15, 5) = "Rx3": Cells(15, 6) = 0: Cells(15, 7) = Rx3

Cells(16, 5) = "Ry3": Cells(16, 6) = 0: Cells(16, 7) = Ry3

Cells(17, 5) = "Rz3": Cells(17, 6) = 0: Cells(17, 7) = Rz3

End Sub

________________________________________________________________________________________________

Function FX(x, y, z, Alpha, Beta, Gamma)

FX = x * (Cos(Beta) * Cos(Alpha) * Cos(Gamma) - Sin(Alpha) * Sin(Gamma)) + y * (Cos(Beta) * Sin(Alpha) * Cos(Gamma) + Cos (Alpha) * 

Sin(Gamma)) - z * Sin(Beta) * Cos(Gamma)

End Function

______________________________________________________________________________________________

Function FY(x, y, z, Alpha, Beta, Gamma)

FY = -x * (Cos(Beta) * Cos(Alpha) * Sin(Gamma) + Sin(Alpha) * Cos(Gamma)) - y * (Cos(Beta) * Sin(Alpha) * Sin(Gamma) - Cos(Alpha) * 

Cos(Gamma)) + z * Sin(Beta) * Sin(Gamma)

End Function

______________________________________________________________________________________________

Function FZ(x, y, z, Alpha, Beta, Gamma)

FZ = x * Sin(Beta) * Cos(Alpha) + y * Sin(Beta) * Sin(Alpha) + z * Cos(Beta)

End Function

FIGURE A.11 VBA code for rotating unit vectors using Euler’s angles.
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Figure A.12 is a screenshot of unit vectors. Coloring was done manually for illustration 

purposes.

Figure A.13 shows rotated unit vectors projected on YZ, XY, and ZX planes.

A.6  SERIES EXPANSION USING ORTHONORMAL BASES

For complicated integrals, we applied Simpson’s method.

A.6.1  Hermite Expansion

 f x c h xn n

n

( ) ( )�
�
�

0

 

FIGURE A.12 Screenshot of rotation of unit vectors.

FIGURE A.13 Unit vectors as observed from the rotated coordinates XYZ.
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where c f x h x dx
n

f x H x e dxn n
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22
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Example 1: f(x) = x where −∞ < x < +∞.

Note: x e dx
n

a

n ax

n

2 1

1
0

2

2
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��
!

.
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Thus,

 f x x h x h x h x( ) . ( ) . ( ) . ( ) ...� � � � �2 66264 3 26041 3 638631 3 5  

Figure 6.5 shows the graph of the final result.

Example 2: f(x) = sinx where –π < x < +π.

c c c c0 2 4 6 0= = = = . 

c f x h x dx x x e dxx
1 1

0
1 2

2

0

2
2

2
2

2

2

2

� �
�
�

�
�

�
�
�

�
�

�
�

�

� �( ) ( ) (sin )( )
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Thus,

 f x x h x h x h x( ) sin . ( ) . ( ) . ( ) ...� � � � �1 615 0 594 0 14631 3 5  

Figure 6.5 shows the graph of the final result.

A.6.2  Bessel Expansion

 f x c J k xn n n

n

( ) ( )�
�

�

�
1

 

where the kn are chose so that Jn(kna) = 0, and the coefficients are given by

 c
f x J k x xdx

a J k a
n

m n

a

m n

�
�� ��

�
�

( ) ( )

( / ) ( )
.0

2
1

2
2

 

Bessel’s zeros [5]:

  J0  J1  J2  J3  J4  J5

1 2.4048 3.8317 5.1356 6.3802 7.5883 8.7715

2 5.5201 7.0156 8.4172 9.7610 11.0647 12.3386

3 8.6537 10.1735 11.6198 13.0152 14.3725 15.7002

4 11.7915 13.3237 14.7960 16.2235 17.6160 18.9801

5 14.9309 16.4706 17.9598 19.4094 20.8269 22.2178
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Example: f(x) = x where 0 ≤ x ≤ 1.

x
J a x

a J a

J x
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k k

� � �2 2
3 8317
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�

�
� ))

( . )

. ( . )
�

�
�

J x

J
1

2

13 3237

13 3237 13 3237


Note: The built-in Jn(x) in Excel is BESSELJ(x,n). Figure A.14 is a screenshot of the calcu-

lation table of the x
J a x

a J a
k

k kk

�
�
�2 1 1

1 2 11

( )

( )
 up to 4 terms where 0 ≤ x ≤ 1. Excel’s AutoFill feature  

 

is used for the calculation.

Figure 6.6 shows the series expansion of the four terms.

A.6.3  Legendre Expansion

 f x c P x c P x c P x c P x( ) ( ) ( ) ( ) ( )� � � �
�
�  
 1

1 1 3 3 5 5  

where c f x P x dx 


�
�

��
2 1

2 1

1

( ) ( ) .

Example: f(x) = sinx where −1 ≤ x ≤ 1.

Figure A.15 lists a VBA code to calculate the coefficients cℓ where ℓ = 1, 2, 3, 4, 5, 6 using 

Simpson’s method. Note that c2 = c4 = c6 = 0. Once the coefficients are calculated, we evaluate

FIGURE A.14 Calculation table of Bessel expansion of f(x) = x.
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 f x c P x c P x c P x c P x( ) ( ) ( ) ( ) ( )� � � �
�
�  
 1

1 1 3 3 5 5  

for 0 ≤ x ≤ π beyond x = 1 using AutoFill to see if the series fits well.

Figure A.16 shows the series expansion where we extend the result to x = π. The series 

expansion deviates from the exact value near x = π. Figure A.22 is a screenshot to obtain 

the final result as shown in Figure 6.13.

Sub SimpsonLegendre()

Cells(1, 1) = "Sin(x) by Legendre polynomials"

Pi = 3.14159254

a = 0   'a>=0

b = 1

N = 500

h = (b - a) / N  

Weight = 2                           'Weight (2 or 4)  in the Simpson's formula

sum1 = F1(a)                       'Integral of xsin(x)exp( -x^2/2) where F1(0) = 0

'Integral of xsin(x)

For i = 1 To N - 1

If Weight = 2 Then Weight = 4 Else Weight = 2

x = i * h

sum1 = sum1 + Weight * F1(x)

Next i

sum1 = (sum1 + F1(b)) * h / 3     'Complete the integral

a1 = 3 * sum1                 

Cells(3, 2) = "a1=": Cells(4, 2) = a1        

'Integral of (5*x^3-3*x)/2 where F3(0)=0.

sum3 = F3(a)

For i = 1 To N - 1

If Weight = 2 Then Weight = 4 Else Weight = 2

x = i * h

sum3 = sum3 + Weight * F3(x)

Next i

sum3 = (sum3 + F3(b)) * h / 3       'Complete the integral

a3 = 7 * sum3

Cells(3, 3) = "a3=": Cells(4, 3) = a3

'Integral of (x^5)*sin(x)*exp(-x^2/2) where F5(0)=0.

sum5 = F5(a)

For i = 1 To N - 1

If Weight = 2 Then Weight = 4 Else Weight = 2

x = i * h

sum5 = sum5 + Weight * F5(x) 

Next i

sum5 = (sum5 + F5(b)) * h / 3         'Complete the integral

a5 = 11 * sum5

Cells(3, 4) = "a5=": Cells(4, 4) = a5

End Sub

__________________________________________________________________

Function F1(x)

F1 = Sin(x) * x

End Function

__________________________________________________________________

Function F3(x)

F3 = Sin(x) * (5 * x ^ 3 - 3 * x) / 2

End Function

__________________________________________________________________

Function F5(x)

F5 = Sin(x) * (63 * x ^ 5 - 70 * x ^ 3 + 15 * x) / 8

End Function

FIGURE A.15 VBA code for calculating the coefficient c.
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A.7  KINEMATICS OF WAVE PACKET IN FREE SPACE

The detailed calculation of Equation 7.11 is shown below.
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Using the integral formula shown in Appendix A9,
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FIGURE A.16 Screenshot of series expansion of sinx with the Legendre polynomials.
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Using the integral formula again,
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A.8  INTEGRAL FORMULA I ax bx dx
a

b
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 where Re[ ]a ≥ 0 .

If the coefficient is real, the integral can be proved by replacing ax  with y. If a is a com-

plex number, let a = reiθ where Re[a]≥0 (|θ|≤π/2). Consider the following complex integral 

along the path as shown in Figure A.17.

From the Cauchy’s integral theorem, e dzz

C
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FIGURE A.17 Integral path C for the complex integral of exp(−ax2/2).
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If the coefficient a is a pure imaginary number, let a = ±iα = e±iπ/2α (α >0), then

 e dx ei x i� �

��

��

� �� � � �
�

�
2 4 0/ .where  

2) I ax bx dx
a

b

a
� � �� � �

�

�
�

�

�
�

��

�

� exp exp .2
2

4

�

If both a and b are real numbers,

 

I ax bx dx a x
b

a

b

a
dx� � �� � � � �

�

�
�

�

�
� �

�

�
�
�

�

�
�
�

�

��

�

��

�


 
exp exp2

2 2

2 4

eexp exp exp
b

a
a x

b

a
dx

a

b

a

2 2 2

4 2 4

�

�
�

�

�
� � � �

�

�
�

�

�
�

�

�
�
�

�

�
�
�

� �
�

��

�



�

��
�

�

�
�.

 

If a is a complex number, let a = reiθ, where Re[a]≥0 (|θ|≤π/2) and b an arbitrary complex 

number. Consider the following complex integral along the path as shown in Figure A.18.

From Cauchy’s integral theorem, e dzaz
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FIGURE A.18 Integral path C’ for the complex integral of exp[−a(x+b)x2].
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The last two terms on the right side become zero when R → ∞, and we obtain
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A.9  EXPANSION COEFFICIENTS OF WAVE FUNCTION 
OF A HARMONIC OSCILLATOR

Let the Hamiltonian H̆ , its eigen vector |�n � , and eigenvalue En: ˘ | |H En n n� �� � �, n = 0, 

1, 2, …
The time-dependent wave function of the system is given by
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Using the above wave function at t = 0, the coefficient cn can be calculated.
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For the harmonic oscillator, the inner product is
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and Hn is the Hermite polynomial discussed in section 6.3.
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where � �� x  and � �0 0� x .
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Using the generating function of Hermite polynomial Equation 6.34, consider the follow-

ing two integrals:
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Refer to [Shiff] for this calculation.
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entropy change by thermal contact, 105–107

N-independent quantum oscillator, 103–105

spins in uniform magnetic field, 100–102

Euler-Cromer algorithm, 157–159

Euler’s angles, 192–195

Euler’s method, 5, 185–188

Euler’s satellite, 9–13

Excel features

AutoFill, 43, 54, 81, 183–184

Bessel functions, 125

data analysis, 184

Excel macro (VBA), 184–185

iterative calculation, 73, 80, 83, 185

F

Faraday’s law, 89

Fast Fourier transform (FFT), 60, 70

Finding a root of equation, 15

Fourier theorem, 58–60

Fraunhofer diffraction, 69

Fresnel approximation, 70

G

Gamma functions, 138–139

Gaussian wave packet, 148, 153

Gauss law, 76, 83
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Generating function

for Bessel function, 125

for Hermite polynomials, 121

for Laguerre polynomials, 123, 124

for Legendre polynomials, 131, 132

Gibbs paradox, 97–99

Group velocity, 146–147

H

Harmonic oscillation, 38–45, 48, 150

harmonic oscillation with external forces

damping force, 39–42

periodic driving force, 38–39

Helmholtz free energy, 95

Hermite expansion, 195–197

Hermite polynomials, 120–122

Huygens’s principle, 65

I

Ideal gas, 94, 96, 98, 99

Interferences, 53–55

L

Lagrange points, 13–17

Laguerre polynomials, 122–124, 163

Legendre expansion, 198–200

Legendre polynomials, 130–133

Longitudinal Doppler effect, 62

Lorenz force, 74–75

Lotka-Volterra equations, 174–176

M

Malthus’s law, 170–174

Markov process, 107–108

Maxwell’s equations, 73, 75, 76, 84, 89, 90

Mixing entropy, 97, 99

Muon detector, 63–65

N

Negative entropy, 112–113

Negentropy, 112–113

Neumann function, 125, 127

O

Orthonormality

of Bessel function, 126

of Hermite polynomials, 121

of Laguerre polynomials, 123

of Legendre polynomials, 131, 133

of spherical harmonic functions, 135

P

Parametric pendulum, 45–46

Phase velocity, 146

Planetary motions 6

Euler’s Satellite, 9–13

Lagrange points, 13–17

three-body system (Sun-Earth-Moon), 6–9

two-body system (Sun-Earth), 6, 8

Poisson’s equation, 76, 79, 85, 88

Polymers

entropic elasticity, 167–169

chain model, 167, 168

polymer length, 169–170

self-avoiding walk, 169–170

Population dynamics

Logistic equation, 167

Lotka-Volterra equations, 174–176

Malthus’s law, 170–174

reproduction, 176–179

Population explosion, 176, 177

Probability distribution function, 139, 148, 149

Projectile motions with air resistance, 1–4

R

Recursion formula

for Hermite polynomials, 121

for Laguerre polynomials, 123, 133

Redshift, 63

Refraction

Huygens’s principle, 65

least traveling time, 65–67

particle model, 67

Snell’s law, 65–67

Relativistic Doppler effect, 61–63

Rocket propulsion, 4–6

Rodrigues formula

for Legendre polynomials, 131, 132

Rotational equation motions , 24, 25, 30

Euler’s equation, 23–25

free rotation, 25–30

with reducing radius, 22–23

steady precession, 31

symmetric top rotation, 30

unsteady precession, 31–37

Runge-Kutta method, 6, 9, 26, 39, 159, 188–190

Rutherford scattering, 17–22
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S

Schottky type heat capacity, 101, 102

Schrödinger equation, 97, 129, 133, 149, 150, 155, 

157, 159, 161

Self-information

of entropy, 108, 109

Shockwave, 63–65

Shooting method, 145, 155, 159, 161

Simpson’s method, 122, 190–192

Snell’s law, 65–67

Spherical harmonic functions, 133–138

Standing waves, 56–58

Static electric field, 75–78

Static magnetic field, 83–85

Stirling formula, 98, 105, 168

Stokes’ theorem, 84, 89

Sturm-Liouville equation, 117

T

Three-body system, 8–9

Time-dependent Schrödinger equation, 150

Time-varying Maxwell’s equations

displacement current, 90

electromagnetic wave in free space, 90–91

Faraday’s magnetic induction law, 89

Transverse Doppler effect, 63

Two-body system, 6

Two-dimensional Fourier transform, 70

V

Vector algebra, 73–74

Vector potential and magnetic field, 85–89

Visscher algorithm, 154

W

Wave equation, 52–53

Wave functions

harmonic oscillator, 159–161

hydrogen atom, 161–165

Wave packet, 145

group velocity and phase velocity, 146–147

in harmonic potential, 148–150

in free space, 147–148

in potential step, 154–155
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