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Preface 

This book is a monograph about limit cycles and homoclinic networks in polynomial 
systems. The study of dynamical behaviors of polynomial dynamical systems has 
been stimulated by the Hilbert’s 16th problem in 1900. Too many scientists have 
tried to work on the Hilbert sixteenth problem. Until now, no significant results have 
been achieved yet. 

In this book, the properties of equilibriums in planar polynomial dynamical 
systems are studied. The homoclinic networks of sources, sinks, and saddles in 
self-univariate polynomial systems are discussed, and the corresponding bifurca-
tion theory is developed. The corresponding first integral manifolds are determined 
analytically, and networks of source, sinks, and saddles are illustrated. The homo-
clinic networks of saddles and centers (or limit cycles) in crossing-univariate polyno-
mial systems are discussed, and the corresponding bifurcation theory is developed. 
The corresponding first integral manifolds are polynomial functions. The homoclinic 
networks of saddles and centers are illustrated, which are without any sources and 
sinks. Since the maximum numbers of equilibriums for such two types of planar 
polynomial systems with the same degrees are discussed, the maximum centers and 
saddles in homoclinic networks are obtained, and the maximum numbers of sinks, 
sources, and saddles in homoclinic networks without centers are obtained as well. 
Such studies are to achieve global dynamics of planar polynomial dynamical systems, 
which can help one study global behaviors in nonlinear dynamical systems in physics, 
chemical reaction dynamics, engineering dynamics, and so on. 

In this book, five chapters are included. Chapter 1 is for instruction to polynomial 
dynamical systems. Chapter 2 discusses homoclinic networks without centers. The 
corresponding bifurcations for homoclinic networks without centers are presented 
in Chap. 3. Chapter 4 discusses homoclinic networks with centers and saddles. The 
corresponding bifurcations for homoclinic with centers are presented in Chap. 5. 

Finally, the author hopes the materials presented herein can provide a better 
understanding of nonlinear dynamics in science and engineering. 

Edwardsville, IL, USA Albert C. J. Luo
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Chapter 1 
Introduction 

1.1 Hilbert’s 16th Problem 

Consider a dynamical system with a differential equation as 

ẋ1 ≡ 
dx1 
dt 

= P(x1, x2), ẋ2 ≡ 
dx2 
dt 

= Q(x1, x2) (1.1) 

where P(x1, x2) and Q(x1, x2) are real polynomials of degree n. The second part of 
Hilbert’s 16th problem is to decide an upper bound for the number of limit cycles 
in polynomial vector fields of degree n and, similar to the first part, investigate their 
relative positions. The original problem can be found in [1]. For the first part, it is 
about much many branches of the algebraic curves determined by 

dx1 
dx2 

= 
P(x1, x2) 
Q(x1, x2) 

. (1.2) 

If the curve manifolds are polynomial functions, the first and second parts are 
similar. If the first integral manifolds are not polynomial functions, the first and 
second parts are different. For the limit cycles, the first integral manifolds will be 
considered as polynomial functions. For other cases, they will not be discussed in 
this book. 

In fact, the limit cycle or the branches of curves can be separated by homo-
clinic orbits relative to the equilibriums. To look for the maximum limit cycles, the 
maximum equilibriums (or singular points) should be solved. Consider 

P(x1, x2) = 
n1∑

k=0 

α12k (x2)x
k 
1 = 

n2∑

k=0 

α11k (x1)x
k 
2, 

Q(x1, x2) = 
n1∑

k=0 

α22k (x2)x
k 
1 = 

n2∑

k=0 

α21k (x1)x
k 
2; 

(1.3)
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where 

α12k (x2) = 
n−k∑

l=0 

β12lx
l 
2, α11k (x1) = 

n−k∑

l=0 

β11lx
l 
1, 

α22k (x2) = 
n−k∑

l=0 

β22lx
l 
2, α21k (x1) = 

n−k∑

l=0 

β21lx
l 
1. 

(1.4) 

Thus, if 

P(x1, x2) = 0, Q(x1, x2) = 0, (1.5) 

then four cases are given by 

n1∑

k=0 

α12k (x2)x
k 
1 = 0, 

n1∑

k=0 

α22k (x2)x
k 
1 = 0; 

n1∑

k=0 

α12k (x2)x
k 
1 = 0, 

n2∑

k=0 

α21k (x1)x
k 
2 = 0; 

n2∑

k=0 

α11k (x1)x
k 
2 = 0, 

n1∑

k=0 

α22k (x2)x
k 
1 = 0; 

n2∑

k=0 

α11k (x1)x
k 
2 = 0, 

n2∑

k=0 

α21k (x1)x
k 
2 = 0. 

(1.6) 

From the above four cases, the algebraic basic theorem gives the foregoing alge-
braic equations having n × n roots and only n × n roots. The real roots are equilib-
riums (singular points). If all of n× n roots are real, then the maximum equilibriums 
(singular points) of Eq. (1.1) are  n × n and cannot be more than n × n. Suppose 
equilibriums are obtained by 

x∗ 
1 = a11k k ∈ {1, 2, · · ·  , n1} ,  
x∗ 
1 = a21k k ∈ {1, 2, · · ·  , n − n1} ;  
x∗ 
2 = a12k k ∈ {1, 2, · · ·  , n − n1} ,  
x∗ 
2 = a22k k ∈ {1, 2, · · ·  , n1} . 

(1.7) 

Thus the deformation of Eq. (1.1) gives  

ẋ1 = a110 
n1∏

s1=1 

(x1 − a11s1 ) 
n−n1∏

l1=1 

(x2 − a12l1 ), 

ẋ2 = a220 
n−n1∏

s2=1 

(x1 − a21s2 ) 
n1∏

l2=1 

(x2 − a22l2 ). 

(1.8)
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Without lose of generality, consider two extreme cases. For n1 = n, 

ẋ1 = a110 
n∏

s1=1 

(x1 − a11s1 ), ̇x2 = a220 
n∏

l2=1 

(x2 − a22l2 ), (1.9) 

and for n1 = 0, 

ẋ1 = a120 
n∏

l1=1 

(x2 − a12l1 ), ẋ2 = a210 
n∏

s2=1 

(x1 − a21s2 ). (1.10) 

In this book, from the above two cases, the properties of n × n equilibriums will 
be discussed. Further, the limit cycles and homoclinic networks of planar dynamical 
systems for the two cases will be studied. Such studies will help one better understand 
the nonlinear dynamics in mathematics, physics, and engineering. 

1.2 A Brief History 

Too many scientists have worked on the Hilbert sixteenth problem, which cannot be 
discussed one by one herein. For a brief history, in 1923, Dulac [2] discussed the 
proof of the finiteness theorem, which was not considered to be true until 1970s. 
In 1982, Ilyashenko [3] discussed singular points and limit cycles of differential 
equations in real and complex planes, which are based on normal form analysis. The 
phase portraits of normal forms are based on the topological imagination rather than 
studying the depth of the corresponding dynamical behaviors. In 1984, Ilyashenko [4] 
also presented limit cycle of polynomial vector fields with non-degenerate singular 
points on the real plane. The review articles on limit cycles were discussed through 
the local theory of differential equations in Ilyashenko [5]. In 1991, Ilyashenko 
[6] showed Dulac’s proof contains an essential gap and presented the theorems for 
finiteness of limit cycles. 

The proof is based on Poincare maps without differential equations. The Dulac 
formal form series was adopted. In such series, polynomial functions are based on 
linear cases to be imagined. For higher-order singularity, such polynomial loga-
rithmic function cannot exist. The centennial research history of Hilbert’s sixteenth 
problem was given by Ilyashenko [7]. In 2003, Li [8] also gave a systematical review 
on Hilbert’s 16th problem, the bifurcations of planar polynomial vector fields are 
based on the traditional analysis. The simple versions of the Hilbert 16th problem 
include the Abel equation, the Lienard equation and van del Pol equation, the 
infinitesimal Hilbert problem, and the Hilbert-Arnold problem. For the Abel equa-
tion, the equation is on the cylinder polynomial in y and periodic in x. Such a problem 
can be referenced to Shahshahani [9], Lins Neto [10] and Panov [11]. Smale [12] 
listed the Lienard equation as one of the 21th century mathematical problems.
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The early work originated from van del Pol equation [13, 14] and Lienard equation 
[15]. The experiments proved the existence of limit cycles in the Poincare sense. In 
1939, Bautin [16] announced the number of limit cycles N (2) ≥ 3 in a quadratic 
system, and the full proof was given by Bautin [17] in 1952. In 1955, Petrovski 
and Landis [18, 19] claimed the quadratic system has three limit cycles and the 
general discussion can be found as well. However, in 1979, Shi [20] gave a quadratic 
system having four limit cycles, and Chen and Wang [21] discussed the relative 
position, and the number of, the limit cycles in quadratic differential equation. In 
2001, Ilyashenko and Panov [22] obtained the uniform upper bound for the number 
of limit cycles for the general Lienard equation. In 1977, Arnold [23, 24] proposed 
the weakened, infinitesimal (or tangential) Hilbert 16th problems. In fact, such a 
deformed problem should not belong to the original Hilbert’s sixteen problem. The 
possible bifurcations of limit cycles for Hilbert’s sixteenth problem were mentioned 
in Li [8], and the corresponding discussion can also be found from Ye [25] and Zhang 
et al. [26]. 

The limit cycles are separated by homoclinic networks. To determine possible 
maximum limit cycles, the maximum equilibriums should be determined. In 
2022, Luo [27] presented an alternative theory of singularity and stability of 
two-dimensional linear systems. To understand singularities in two-dimensional 
quadratic systems, a theory of two-dimensional quadratic systems with single-
variable quadratic vector fields was presented in Luo [28]. The theories for planar 
dynamical systems with self-univariate and crossing-univariate quadratic vector 
fields were developed in Luo [29, 30]. In 2023, Luo [31] discussed the nonlinear 
dynamics of two-dimensional systems with product quadratic vector fields. If one is 
interested in bifurcations for such polynomial systems, the detailed discussion for 
quadratic and cubic polynomial systems are in Luo [32–34]. 

1.3 Book Layout 

In this book, five chapters are included. The first chapter is for instruction to poly-
nomial dynamical systems. Chapter 2 will discuss homoclinic networks without 
centers. The corresponding bifurcations for homoclinic networks without centers will 
be discussed in Chap. 3. Chapter 4 will discuss homoclinic networks with centers 
and saddles. The corresponding bifurcations for homoclinic with centers will be 
presented. 

In Chap. 2, the homoclinic networks of sources, sinks, and saddles in self-
univariate polynomial systems are discussed, and the numbers of sources, sinks and 
saddles are determined through a theorem, and the first integral manifolds are devel-
oped. The corresponding proof of the theorem is completed and a few illustrations 
of networks for source, sinks and saddles are presented for a better understanding of 
the homoclinic networks. Such homoclinic networks are without any centers even if 
the networks are separated by the homoclinic orbits.
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In Chap. 3, the appearing and switching bifurcations are discussed for the 
homoclinic networks of non-singular and singular sources, sinks, saddles with 
singular saddle-sources, saddle-sinks, and double-saddles in self-univariate polyno-
mial systems. The first integral manifolds for non-singular and singular equilibrium 
networks are determined. The illustrations of singular equilibriums to networks of 
non-singular sources, sinks and saddles are given. 

In Chap. 4, the homoclinic networks of positive and negative saddles with clock-
wise and counter-clockwise limit cycles in crossing-univariate polynomial systems 
are studied secondly, and the numbers of saddles and centers are determined through 
a theorem and the first integral manifolds are determined through polynomial func-
tions. The corresponding proof of the theorem is given, and a few illustrations of 
networks of saddles and centers are given to show the corresponding geometric 
structures. Such homoclinic networks of saddles and centers are without any sources 
and sinks. 

In Chap. 5, the appearing and switching bifurcations are studied for homoclinic 
networks of singular and non-singular saddles and centers with singular parabola-
saddles and double-inflection saddles in crossing-univariate polynomial systems, 
and the first integral manifolds of such homoclinic networks are determined through 
polynomial functions. The illustrations of singular equilibriums to networks of non-
singular saddles and centers are given. 
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Chapter 2 
Homoclinic Networks Without Centers 

In this Chapter, the homoclinic networks of sources, sinks, and saddles in self-
univariate polynomial systems are discussed, and the numbers of sources, sinks and 
saddles are determined through a theorem, and the first integral manifolds are devel-
oped. The corresponding proof of the theorem is completed and a few illustrations 
of networks for source, sinks and saddles are presented for a better understanding of 
the homoclinic networks. Such homoclinic networks are without any centers even if 
the networks are separated by the homoclinic orbits. 

2.1 Sources, Sinks, and Saddles 

In this section, as in Luo [1], consider homoclinic networks of maximized sinks, 
sources, and saddles in two-dimensional polynomial nonlinear systems. A poly-
nomial system with a self-univariate polynomial vector field is considered, and the 
corresponding dynamical behaviors will be presented through the following theorem. 

Theorem 2.1 Without of lose of generality, consider a self-univariate polynomial 
dynamical system as 

ẋj1 = aj1j10 
m∏

s1=1 

(xj1 − aj1j1s1 ), 

ẋj2 = aj2j20 
n∏

l1=1 

(xj2 − aj2j2l1 ), 

j1, j2 ∈ {1, 2}; j1 �= j2. (2.1)
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The first integral manifold is 

n∑

l1=1 

1
∏3 

l2=1,l2 �=l1 
(aj2j2l1 − aj2j2l2 ) 

ln 
|xj2 − aj2j2l1 | 
|xj20 − aj2j2l1 | 

= 
aj2j20 
aj1j10 

m∑

s1=1 

1
∏3 

s2=1,s2 �=s1 
(aj1j1s1 − aj1j1s2 ) 

ln 
|xj1 − aj1j1s1 | 
|xj10 − aj1j1s1 | 

. (2.2) 

The equilibrium of (x∗
j1 , x

∗
j2 ) = (aj1j1s1 , aj2j2l1 ) (s1, s2 ∈ {1, 2, · · ·  , m}, s1 �= s2; l1, l2∈ 

{1, 2, 3, · · ·  , n},l1 �= l2) possesses the following properties. 

• For aj1j10
∏m 

s2=1,s2 �=s1 
(aj1j1s1 − aj1j1s2 ) >  0 and 

aj2j20
∏n 

l2=1,l2 �=l1 
(aj2j2l1 − aj2j2l2 ) >  0, 

(aj1j1s1 , aj2j2l1 ) = (SO, SO)︸ ︷︷ ︸
source 

. (2.3) 

The equilibrium of (x∗
j1 
, x∗

j2 
) = (aj1j1s1 , aj2j2l1 ) is an (SO,SO)-source. 

• For aj1j10
∏m 

s2=1,s2 �=s1 
(aj1j1s1 − aj1j1s2 ) <  0 and 

aj2j20
∏n 

l2=1,l2 �=l1 
(aj2j2l1 − aj2j2l2 ) >  0, 

(aj1j1s1 , aj2j2l1 ) = (SI, SO)︸ ︷︷ ︸
saddle 

. (2.4) 

The equilibrium of (x∗
j1 
, x∗

j2 
) = (aj1j1s1 , aj2j2l1 ) is an (SI,SO)-saddle. 

• For aj1j10
∏m 

s2=1,s2 �=s1 
(aj1j1s1 − aj1j1s2 ) >  0 and 

aj2j20
∏n 

l2=1,l2 �=l1 
(aj2j2l1 − aj2j2l2 ) <  0, 

(aj1j1s1 , aj2j2l1 ) = (SO, SI)︸ ︷︷ ︸
saddle 

. (2.5) 

The equilibrium of (x∗
j1 
, x∗

j2 
) = (aj1j1s1 , aj2j2l1 ) is called an (SO,SI)-saddle. 

• For aj1j10
∏m 

s2=1,s2 �=s1 
(aj1j1s1 − aj1j1s2 ) <  0 and 

aj2j20
∏n 

l2=1,l2 �=l1 
(aj2j2l1 − aj2j2l2 ) <  0, 

(aj1j1s1 , aj2j2l1 ) = (SI, SI)︸ ︷︷ ︸
sink 

. (2.6) 

The equilibrium of (x∗
j1 
, x∗

j2 
) = (aj1j1s1 , aj2j2l1 ) is an (SI,SI)-sink.
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Define a notation for homoclinic networks as 

m⋃

s=1 

n⋃

l=1 

(aj1j1s, aj2j2l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

(aj1j11, aj2j2n) (aj1j12,j2j2n ) · · · (aj1j1m,j2j2n ) 
(aj1j11, aj2j2(n−1)) (aj1j12, aj2j2(n−1)) · · ·  (aj1j1m, aj2j2(n−1)) 

... 
... · · · ... 

(aj1j11, aj2j21) (aj1j12, aj2j21) · · · (aj1j1m, aj2j21) 

⎫ 
⎪⎪⎪⎬ 

⎪⎪⎪⎭ 
n×m 

. (2.7) 

(i1) For  m = 2m1 + 1 and n = 2n1 + 1, the homoclinic networks of (2m1 + 1) × 
(2n1 + 1) equilibriums have the following properties. 

• For aj1j10 > 0 and aj2j20 > 0, 

2m1+1⋃

s=1 

2n1+1⋃

l=1 

(aj1j1s, aj2j2l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

· · ·  (SO,SO)︸ ︷︷ ︸
source 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

· · ·  (SO,SI)︸ ︷︷ ︸
saddle 

... 
... 

... 
... 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

· · ·  (SO,SO)︸ ︷︷ ︸
source 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2n1+1)×(2m1+1) 

. 

(2.8) 

In the network, the number of (SO,SI)-saddles is n1 × (m1 + 1), the number 
of (SI,SO)-saddles is (n1 + 1) × m1;the number of (SO,SO)-sources is (n1 + 
1) × (m1 + 1); and the number of (SI,SI)-sink is n1 × m1. 

• For aj1j10 < 0 and aj2j20 > 0, 

2m1+1⋃

s=1 

2n1+1⋃

l=1 

(aj1j1s, aj2j2l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

· · ·  (SI,SO)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

· · ·  (SI,SI)︸ ︷︷ ︸
sink 

... 
... 

... 
... 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

· · ·  (SI,SO)︸ ︷︷ ︸
saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2n1+1)×(2m1+1) 

. 

(2.9) 

In the network, the number of (SO,SI)-saddles is n1 × m1, the number of 
(SI,SO)-saddles is (n1 + 1) × (m1 + 1); the number of (SO,SO)-sources is 
(n1 + 1) × m1; and the number of (SI,SI)-sink is n1 × (m1 + 1).
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• For aj1j10 > 0 and aj2j20 < 0, 

2m1+1⋃

s=1 

2n1+1⋃

l=1 

(aj1j1s, aj2j2l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

· · ·  (SO,SI)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

· · ·  (SO,SO)︸ ︷︷ ︸
source 

... 
... 

... 
... 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

· · ·  (SO,SI)︸ ︷︷ ︸
saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2n1+1)×(2m1+1) 

. 

(2.10) 

In the network, the number of (SO,SI)-saddles is (n1+1)×(m1+1), the number 
of (SI,SO)-saddles is n1×m1; the number of (SO,SO)-sources is n1× (m1+1); 
and the number of (SI,SI)-sink is (n1 + 1) × m1. 

• For aj1j10 < 0 and aj2j20 < 0, 

2m1+1⋃

s=1 

2n1+1⋃

l=1 

(aj1j1s, aj2j2l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

· · ·  (SI,SI)︸ ︷︷ ︸
sink 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

· · ·  (SI,SO)︸ ︷︷ ︸
saddle 

... 
... 

... 
... 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

· · ·  (SI,SI)︸ ︷︷ ︸
sink 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2n1+1)×(2m1+1) 

. 

(2.11) 

In the network, the number of (SO,SI)-saddles is (n1 + 1) ×m1, the number of 
(SI,SO)-saddles is n1 × (m1 + 1); the number of (SO,SO)-sources is n1 × m1; 
and the number of (SI,SI)-sink is (n1 + 1) × (m1 + 1). 

(i2) The numbers of saddles, sink and sources for (2m1+1)× (2n1+1)-equilibriums 
are summarized in Table 2.1. 

(ii1) For  m = 2m1 and n = 2n1+1, the equilibrium networks with (2m1)× (2n1+1) 
equilibriums have the following properties. 

Table 2.1 Numbers of saddles, sinks, and sources in homoclinic networks (m = 2m1 + 1, n = 
2n1 + 1) 
(aj1j10, aj2j20) (SO,SI)-saddle (SI,SO)-saddle (SO,SO)-source (SI,SI)-sink 

(+, +) n1 × (m1 + 1) (n1 + 1) × m1 (n1+1)× (m1+1) n1 × m1 

(−, +) n1 × m1 (n1+1)× (m1+1) (n1 + 1) × m1 n1 × (m1 + 1) 
(+, −) (n1+1)× (m1+1) n1 × m1 n1 × (m1 + 1) (n1 + 1) × m1 

(−, −) (n1 + 1) × m1 n1 × (m1 + 1) n1 × m1 (n1+1)× (m1+1)
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• For aj1j10 > 0 and aj2j20 > 0, 

2m1⋃

s=1 

2n1+1⋃

l=1 

(aj1j1s, aj2j2l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

· · ·  (SO,SO)︸ ︷︷ ︸
source 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

· · ·  (SO,SI)︸ ︷︷ ︸
saddle 

... 
... 

... 
... 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

· · ·  (SO,SO)︸ ︷︷ ︸
source 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2n1+1)×(2m1) 

. 

(2.12) 

In the network, the number of (SO,SI)-saddles is n1 × m1, the number of 
(SI,SO)-saddles is (n1 + 1)× m1; the number of (SO,SO)-sources is (n1 + 1) × 
m1; and the number of (SI,SI)-sinks is n1 × m1. 

• For aj1j10 > 0 and aj2j20 > 0, 

2m1⋃

s=1 

2n1+1⋃

l=1 

(aj1j1s, aj2j2l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

· · ·  (SI,SO)︸ ︷︷ ︸
saddle 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

· · ·  (SI,SI)︸ ︷︷ ︸
sink 

... 
... 

... 
... 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

· · ·  (SI,SO)︸ ︷︷ ︸
saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2n1+1)×(2m1) 

. 

(2.13) 

In the network, the number of (SO,SI)-saddles is n1 × m1, the number of 
(SI,SO)-saddles is (n1 + 1)× m1; the number of (SO,SO)-sources is (n1 + 1) × 
m1; and the number of (SI,SI)-sinks is n1 × m1. 

• For aj1j10 > 0 and aj2j20 > 0, 

2m1⋃

s=1 

2n1+1⋃

l=1 

(aj1j1s, aj2j2l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

· · ·  (SO,SI)︸ ︷︷ ︸
saddle 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

· · ·  (SO,SO)︸ ︷︷ ︸
source 

... 
... 

... 
... 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

· · ·  (SO,SI)︸ ︷︷ ︸
saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2n1+1)×(2m1) 

. 

(2.14)
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In the network, the number of (SO,SI)-saddles is (n1 + 1) × m1, the number 
of (SI,SO)-saddles is n1 × m1; the number of (SO,SO)-sources is n1 × m1; and 
the number of (SI,SI)-sinks is (n1 + 1) × m1. 

• For aj1j10 > 0 and aj2j20 > 0, 

2m1⋃

s=1 

2n1+1⋃

l=1 

(aj1j1s, aj2j2l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

· · ·  (SI,SI)︸ ︷︷ ︸
sink 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

· · ·  (SI,SO)︸ ︷︷ ︸
saddle 

... 
... 

... 
... 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

· · ·  (SI,SI)︸ ︷︷ ︸
sink 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2n1+1)×(2m1) 

. 

(2.15) 

In the network, the number of (SO,SI)-saddles is (n1 + 1) × m1, the number 
of (SI,SO)-saddles is n1 × m1; the number of (SO,SO)-sources is n1 × m1; and 
the number of (SI,SI)-sinks is (n1 + 1) × m1. 

(ii2) The numbers of saddles, sinks and sources for (2m1) × (2n1 + 1)-equilibriums 
are summarized in Table 2.2. 

(iii1) For  m = 2m1+1 and n = 2n1, the equilibrium networks with (2m1+1)×(2n1) 
equilibriums have the following properties. 

• For aj1j10 > 0 and aj2j20 > 0, 

2m1+1⋃

s=1 

2n1⋃

l=1 

(aj1j1s, aj2j2l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

· · ·  (SO,SO)︸ ︷︷ ︸
source 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

· · ·  (SO,SI)︸ ︷︷ ︸
saddle 

... 
... 

... 
... 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

· · ·  (SO,SI)︸ ︷︷ ︸
saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2n1)×(2m1+1) 

. 

(2.16)

Table 2.2 Numbers of saddles, sinks, and sources in homoclinic networks (m = 2m1, n = 2n1+1) 

(aj1j10, aj2j20) (SO,SI)-saddle (SI,SO)-saddle (SO,SO)-source (SI,SI)-sink 

(+, +) n1 × m1 (n1 + 1) × m1 (n1 + 1) × m1 n1 × m1 

(−, +) n1 × m1 (n1 + 1) × m1 (n1 + 1) × m1 n1 × m1 

(+, −) (n1 + 1) × m1 n1 × m1 n1 × m1 (n1 + 1) × m1 

(−, −) (n1 + 1) × m1 n1 × m1 n1 × m1 (n1 + 1) × m1 
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In the network, the number of (SO,SI)-saddles is n1 × (m1 + 1), the number of 
(SI,SO)-saddles is n1 × m1; the number of (SO,SO)-sources is n1 × (m1 + 1); 
and the number of (SI,SI)-sinks is n1 × m1. 

• For aj1j10 < 0 and aj2j20 > 0, 

2m1+1⋃

s=1 

2n1⋃

l=1 

(aj1j1s, aj2j2l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

· · ·  (SI,SO)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

· · ·  (SI,SI)︸ ︷︷ ︸
sink 

... 
... 

... 
... 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

· · ·  (SI,SI)︸ ︷︷ ︸
sink 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2n1)×(2m1+1) 

. 

(2.17) 

In the network, the number of (SO,SI)-saddles is n1 × m1, the number of 
(SI,SO)-saddles is n1 × (m1 + 1); the number of (SO,SO)-sources is n1 × m1; 
and the number of (SI,SI)-sink is n1 × (m1 + 1). 

• For aj1j10 > 0 and aj2j20 < 0, 

2m1+1⋃

s=1 

2n1⋃

l=1 

(aj1j1s, aj2j2l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

· · ·  (SO,SI)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

· · ·  (SO,SO)︸ ︷︷ ︸
source 

... 
... 

... 
... 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

· · ·  (SO,SO)︸ ︷︷ ︸
source 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2n1)×(2m1+1) 

. 

(2.18) 

In the network, the number of (SO,SI)-saddles is n1 × (m1 + 1), the number of 
(SI,SO)-saddles is n1 × m1; the number of (SO,SO)-sources is n1 × (m1 + 1); 
and the number of (SI,SI)-sink is n1 × m1. 

• For aj1j10 < 0 and aj2j20 < 0, 

2m1+1⋃

s=1 

2n1⋃

l=1 

(aj1j1s, aj2j2l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

· · ·  (SI,SI)︸ ︷︷ ︸
sink 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

· · ·  (SI,SO)︸ ︷︷ ︸
saddle 

... 
... 

... 
... 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

· · ·  (SI,SO)︸ ︷︷ ︸
saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2n1)×(2m1+1) 

. 

(2.19)
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In the network, the number of (SO,SI)-saddles is n1 × m1, the number of 
(SI,SO)-saddles is n1 × (m1 + 1); the number of (SO,SO)-sources is n1 × m1; 
and the number of (SI,SI)-sink is n1 × (m1 + 1). 

(iii2) The numbers of saddles, sink and sources for (2m1 + 1) × (2n1)-equilibriums 
are summarized in Table 2.3. 

(iv1) For  m = 2m1 and n = 2n1, the equilibrium networks with (2m1) × (2n1) 
equilibriums have the following properties. 

• For aj1j10 > 0 and aj2j20 > 0, 

2m1⋃

s=1 

2n1⋃

l=1 

(aj1j1s, aj2j2l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

· · ·  (SO,SO)︸ ︷︷ ︸
source 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

· · ·  (SO,SI)︸ ︷︷ ︸
saddle 

... 
... 

... 
... 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

· · ·  (SO,SI)︸ ︷︷ ︸
saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2n1)×(2m1) 

. (2.20) 

In the network, the number of (SO,SI)-saddles is n1 × m1, the number of 
(SI,SO)-saddles is n1 × m1; the number of (SO,SO)-sources is n1 × m1; and 
the number of (SI,SI)-sinks is n1 × m1. 

• For aj1j10 < 0 and aj2j20 > 0, 

2m1⋃

s=1 

2n1⋃

l=1 

(aj1j1s, aj2j2l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

· · ·  (SI,SO)︸ ︷︷ ︸
saddle 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

· · ·  (SI,SI)︸ ︷︷ ︸
sink 

... 
... 

... 
... 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

· · ·  (SI,SI)︸ ︷︷ ︸
sink 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2n1)×(2m1) 

. (2.21)

Table 2.3 Numbers of saddles, sinks, and sources in homoclinic networks (m = 2m1+1, n = 2n1) 
(aj1j10, aj2j20) (SO,SI)-saddle (SI,SO)-saddle (SO,SO)-source (SI,SI)-sink 

(+, +) n1 × (m1 + 1) n1 × m1 n1 × (m1 + 1) n1 × m1 

(−, +) n1 × m1 n1 × (m1 + 1) n1 × m1 n1 × (m1 + 1) 
(+, −) n1 × (m1 + 1) n1 × m1 n1 × (m1 + 1) n1 × m1 

(−, −) n1 × m1 n1 × (m1 + 1) n1 × m1 n1 × (m1 + 1) 
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In the network, the number of (SO,SI)-saddles is n1 × m1, the number of 
(SI,SO)-saddles is n1 × m1; the number of (SO,SO)-sources is n1 × m1; and 
the number of (SI,SI)-sink is n1 × m1. 

• For aj1j10 > 0 and aj2j20 < 0, 

2m1⋃

s=1 

2n1⋃

l=1 

(aj1j1s, aj2j2l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

· · ·  (SO,SI)︸ ︷︷ ︸
saddle 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

· · ·  (SO,SO)︸ ︷︷ ︸
source 

... 
... 

... 
... 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

· · ·  (SO,SO)︸ ︷︷ ︸
source 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2n1)×(2m1) 

. (2.22) 

In the network, the number of (SO,SI)-saddles is n1 × m1, the number of 
(SI,SO)-saddles is n1 × m1; the number of (SO,SO)-sources is n1 × m1; and 
the number of (SI,SI)-sink is n1 × m1. 

• For aj1j10 < 0 and aj2j20 < 0, 

2m1⋃

s=1 

2n1⋃

l=1 

(aj1j1s, aj2j2l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

· · ·  (SI,SI)︸ ︷︷ ︸
sink 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

· · ·  (SI,SO)︸ ︷︷ ︸
saddle 

... 
... 

... 
... 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

· · ·  (SI,SO)︸ ︷︷ ︸
saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2n1)×(2m1) 

. (2.23) 

In the network, the number of (SO,SI)-saddles is n1 × m1, the number of 
(SI,SO)-saddles is n1 × m1; the number of (SO,SO)-sources is n1 × m1; and 
the number of (SI,SI)-sink is n1 × m1. 

(iv2) The numbers of saddles, sink and sources for (2m1) × (2n1)-equilibriums are 
summarized in Table 2.4. 

Table 2.4 Numbers of saddles, sinks and sources in homoclinic networks (m = 2m1, n = 2n1) 
(aj1j10, aj2j20) (SO,SI)-saddle (SI,SO)-saddle (SO,SO)-source (SI,SI)-sink 

(+, +) n1 × m1 n1 × m1 n1 × m1 n1 × m1 

(−, +) n1 × m1 n1 × m1 n1 × m1 n1 × m1 

(+, −) n1 × m1 n1 × m1 n1 × m1 n1 × m1 

(−, −) n1 × m1 n1 × m1 n1 × m1 n1 × m1
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2.2 Proof of Theorem 2.1 

Without lose of generality, consider a self-univariate polynomial dynamical system 
as 

ẋj1 = aj1j10 
m∏

s1=1 

(xj1 − aj1j1s1 ), 

ẋj2 = aj2j20 
n∏

l1=1 

(xj2 − aj2j2l1 ), 

j1, j2 ∈ {1, 2}; j1 �= j2. 

In phase space, 

dxj1 
dxj2 

= 
aj1j10

∏m 
s1=1 (xj1 − aj1j1s1 ) 

aj2j20
∏n 

l1=1 (xj2 − aj2j2l1 ) 
, 

and 

dxj1 
(xj1 − aj1j1s1 )

∏m 
s2=1,s2 �=s1 

(xj1 − aj1j1s2 ) 

= 
aj1j10 
aj2j20 

dxj2 
(xj2 − aj2j2l1 )

∏n 
l2=1,l2 �=l1 

(xj2 − aj2j2l2 ) 
, 

With an initial condition (xj10, xj20), the first integral manifold is 

n∑

l1=1 

1
∏3 

l2=1,l2 �=l1 
(aj2j2l1 − aj2j2l2 ) 

ln 
|xj2 − aj2j2l1 | 
|xj20 − aj2j2l1 | 

= 
aj2j20 
aj1j10 

m∑

s1=1 

1
∏3 

s2=1,s2 �=s1 
(aj1j1s1 − aj1j1s2 ) 

ln 
|xj1 − aj1j1s1 | 
|xj10 − aj1j1s1 |

. 

For (x∗
j1 
, x∗

j2 
) = (aj1j1s1 , aj2j2l1 )(s1, s2 ∈ {1, 2, · · ·  , m}, s1 �= s2;l1, l2 ∈ {1, 2, · · ·  , n}, 

l1 �= l2), the variational equations are

�ẋj1 = [aj1j10 
m∏

s2=1,s2 �=s1 

(aj1j1s1 − aj1j1s2 )]�xj1

�ẋj2 = [aj2j20 
n∏

l1=1 

(aj2j2l2 − aj2j2l1 )]�xj2 .
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For aj1j10
∏m 

s2=1,s2 �=s1 
(aj1j1s1 − aj1j1s2 ) >  0 and aj1j10

∏m 
s2=1,s2 �=s1 

(aj1j1s1 − aj1j1s2 ) <  0, 
the flows at (x∗

j1 , x
∗
j2 ) = (aj1j1s1 , aj2j2l1 ) are source and sink flows in the xj1 -

direction, and the flows at (x∗
j1 
, x∗

j2 
) = (aj1j1s1 , aj2j2l1 ) are source and sink flows for 

aj2j20
∏n 

l2=1,l2 �=l1 
(aj2j2l1 − aj2j2l2 ) >  0 and aj2j20

∏n 
l2=1,l2 �=l1 

(aj2j2l1 − aj2j2l2 ) <  0 in the 
xj2 -direction. 

Therefore, the equilibrium of (x∗
j1 , x

∗
j2 ) = (aj1j1s1 , aj2j2l1 ) (s1, s2 ∈ {1, 2, · · ·  , m}, 

s1 �= s2; l1, l2 ∈ {1, 2, 3, · · ·  , n}, l1 �= l2) possesses the following properties in Eqs. 
(2.3)–(2.6). 

• For aj1j10
∏m 

s2=1,s2 �=s1 
(aj1j1s1 − aj1j1s2 ) >  0 and 

aj2j20
∏n 

l2=1,l2 �=l1 
(aj2j2l1 − aj2j2l2 ) >  0, 

(aj1j1s1 , aj2j2l1 ) = (SO, SO)︸ ︷︷ ︸
source 

. 

The equilibrium of (x∗
j1 , x

∗
j2 ) = (aj1j1s1 , aj2j2l1 ) is an (SO,SO)-source. 

• For aj1j10
∏m 

s2=1,s2 �=s1 
(aj1j1s1 − aj1j1s2 ) <  0 and 

aj2j20
∏n 

l2=1,l2 �=l1 
(aj2j2l1 − aj2j2l2 ) >  0, 

(aj1j1s1 , aj2j2l1 ) = (SI, SO)︸ ︷︷ ︸
saddle 

. 

The equilibrium of (x∗
j1 , x

∗
j2 ) = (aj1j1s1 , aj2j2l1 ) is an (SI,SO)-saddle. 

• For aj1j10
∏m 

s2=1,s2 �=s1 
(aj1j1s1 − aj1j1s2 ) >  0 and 

aj2j20
∏n 

l2=1,l2 �=l1 
(aj2j2l1 − aj2j2l2 ) <  0, 

(aj1j1s1 , aj2j2l1 ) = (SO, SI)︸ ︷︷ ︸
saddle 

. 

The equilibrium of (x∗
j1 , x

∗
j2 ) = (aj1j1s1 , aj2j2l1 ) is called an (SO,SI)-saddle. 

• For aj1j10
∏m 

s2=1,s2 �=s1 
(aj1j1s1 − aj1j1s2 ) <  0 and 

aj2j20
∏n 

l2=1,l2 �=l1 
(aj2j2l1 − aj2j2l2 ) <  0, 

(aj1j1s1 , aj2j2l1 ) = (SI, SI)︸ ︷︷ ︸
sink 

. 

The equilibrium of (x∗
j1 , x

∗
j2 ) = (aj1j1s1 , aj2j2l1 ) is an (SI,SI)-sink. 

From the above equations, the equilibrium networks can be developed. Consider 
four cases:
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• For m = 2m1 + 1 and n = 2n1 + 1, the corresponding equilibrium networks 
can be matrixed. 

• For m = 2m1 and n = 2n1 + 1, the corresponding equilibrium networks can 
be matrixed. 

• For m = 2m1 + 1 and n = 2n1, the corresponding equilibrium networks can 
be matrixed. 

• For m = 2m1 and n = 2n1, the corresponding equilibrium networks can be 
matrixed. 

The (SO,SI)-saddles, (SI,SO)-saddles, (SO,SO)-sources, (SI,SI)-sinks are deter-
mined and counted for each row and column. Summations of numbers yield the total 
numbers of saddles, sources, and sinks. 

For simplicity, define a notation for homoclinic networks as 

m⋃

s=1 

n⋃

l=1 

(aj1j1s, aj2j2l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

(aj1j11, aj2j2n) (aj1j12,j2j2n ) · · ·  (aj1j1m,j2j2n ) 
(aj1j11, aj2j2(n−1)) (aj1j12, aj2j2(n−1)) · · ·  (aj1j1m, aj2j2(n−1)) 

... 
... · · · ... 

(aj1j11, aj2j21) (aj1j12, aj2j21) · · ·  (aj1j1m, aj2j21) 

⎫ 
⎪⎪⎪⎬ 

⎪⎪⎪⎭ 
n×m 

. 

(i1) For  m = 2m1 + 1 and n = 2n1 + 1,, the equilibrium networks with (2m1 + 1) × 
(2n1 + 1) equilibriums have the following properties as in Eqs. (2.8)–(2.11). 

• For aj1j10 > 0 and aj2j20 > 0, 

2m1+1⋃

s=1 

2n1+1⋃

l=1 

(aj1j1s, aj2j2l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

· · ·  (SO,SO)︸ ︷︷ ︸
source 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

· · ·  (SO,SI)︸ ︷︷ ︸
saddle 

... 
... 

... 
... 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

· · ·  (SO,SO)︸ ︷︷ ︸
source 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2n1+1)×(2m1+1) 

. 

In the network, the number of (SO,SI)-saddles is n1 × (m1 + 1), the number 
of (SI,SO)-saddles is (n1 + 1) × m1; the number of (SO,SO)-sources is (n1 + 
1) × (m1 + 1); and the number of (SI,SI)-sink is n1 × m1. 

• For aj1j10 < 0 and aj2j20 > 0,
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2m1+1⋃

s=1 

2n1+1⋃

l=1 

(aj1j1s, aj2j2l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

· · ·  (SI,SO)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

· · ·  (SI,SI)︸ ︷︷ ︸
sink 

... 
... 

... 
... 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

· · ·  (SI,SO)︸ ︷︷ ︸
saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2n1+1)×(2m1+1) 

. 

In the network, the number of (SO,SI)-saddles is n1 × m1, the number of 
(SI,SO)-saddles is (n1 + 1) × (m1 + 1); the number of (SO,SO)-sources is 
(n1 + 1) × m1; and the number of (SI,SI)-sink is n1 × (m1 + 1). 

• For aj1j10 > 0 and aj2j20 < 0, 

2m1+1⋃

s=1 

2n1+1⋃

l=1 

(aj1j1s, aj2j2l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

· · ·  (SO,SI)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

· · ·  (SO,SO)︸ ︷︷ ︸
source 

... 
... 

... 
... 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

· · ·  (SO,SI)︸ ︷︷ ︸
saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2n1+1)×(2m1+1) 

. 

In the network, the number of (SO,SI)-saddles is (n1+1)×(m1+1), the number 
of (SI,SO)-saddles is n1×m1; the number of (SO,SO)-sources is n1× (m1+1); 
and the number of (SI,SI)-sink is (n1 + 1) × m1. 

• For aj1j10 < 0 and aj2j20 < 0, 

2m1+1⋃

s=1 

2n1+1⋃

l=1 

(aj1j1s, aj2j2l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

· · ·  (SI,SI)︸ ︷︷ ︸
sink 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

· · ·  (SI,SO)︸ ︷︷ ︸
saddle 

... 
... 

... 
... 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

· · ·  (SI,SI)︸ ︷︷ ︸
sink 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2n1+1)×(2m1+1) 

. 

In the network, the number of (SO,SI)-saddles is (n1 + 1) ×m1, the number of 
(SI,SO)-saddles is n1 × (m1 + 1); the number of (SO,SO)-sources is n1 × m1; 
and the number of (SI,SI)-sink is (n1 + 1) × (m1 + 1). 

(i2) From case (i1), the numbers of saddles, sink and sources for (2m1+1) × (2n1+1)
-equilibriums are summarized as in Table 2.1.
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(ii1) For  m = 2m1 and n = 2n1+1, the equilibrium networks with (2m1)× (2n1+1) 
equilibriums have the following properties as in Eqs. (2.12)–(2.15). 

• For aj1j10 > 0 and aj2j20 > 0, 

2m1⋃

s=1 

2n1+1⋃

l=1 

(aj1j1s, aj2j2l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

· · ·  (SO,SO)︸ ︷︷ ︸
source 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

· · ·  (SO,SI)︸ ︷︷ ︸
saddle 

... 
... 

... 
... 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

· · ·  (SO,SO)︸ ︷︷ ︸
source 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2n1+1)×(2m1) 

. 

In the network, the number of (SO,SI)-saddles is n1 × m1, the number of 
(SI,SO)-saddles is (n1 + 1)× m1; the number of (SO,SO)-sources is (n1 + 1) × 
m1; and the number of (SI,SI)-sinks is n1 × m1. 

• For aj1j10 < 0 and aj2j20 > 0, 

2m1⋃

s=1 

2n1+1⋃

l=1 

(aj1j1s, aj2j2l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

· · ·  (SI,SO)︸ ︷︷ ︸
saddle 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

· · ·  (SI,SI)︸ ︷︷ ︸
sink 

... 
... 

... 
... 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

· · ·  (SI,SO)︸ ︷︷ ︸
saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2n1+1)×(2m1) 

. 

In the network, the number of (SO,SI)-saddles is n1 × m1, the number of 
(SI,SO)-saddles is (n1 + 1)× m1; the number of (SO,SO)-sources is (n1 + 1) × 
m1; and the number of (SI,SI)-sinks is n1 × m1. 

• For aj1j10 > 0 and aj2j20 < 0, 

2m1⋃

s=1 

2n1+1⋃

l=1 

(aj1j1s, aj2j2l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

· · ·  (SO,SI)︸ ︷︷ ︸
saddle 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

· · ·  (SO,SO)︸ ︷︷ ︸
source 

... 
... 

... 
... 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

· · ·  (SO,SI)︸ ︷︷ ︸
saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2n1+1)×(2m1) 

.
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In the network, the number of (SO,SI)-saddles is (n1 + 1) × m1, the number 
of (SI,SO)-saddles is n1 × m1; the number of (SO,SO)-sources is n1 × m1; and 
the number of (SI,SI)-sinks is (n1 + 1) × m1. 

• For aj1j10 < 0 and aj2j20 < 0, 

2m1⋃

s=1 

2n1+1⋃

l=1 

(aj1j1s, aj2j2l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

· · ·  (SI,SI)︸ ︷︷ ︸
sink 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

· · ·  (SI,SO)︸ ︷︷ ︸
saddle 

... 
... 

... 
... 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

· · ·  (SI,SI)︸ ︷︷ ︸
sink 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2n1+1)×(2m1) 

. 

In the network, the number of (SO,SI)-saddles is (n1 + 1) × m1, the number 
of (SI,SO)-saddles is n1 × m1; the number of (SO,SO)-sources is n1 × m1; and 
the number of (SI,SI)-sinks is (n1 + 1) × m1. 

(ii2) Form case (ii2), the numbers of saddles, sinks and sources for (2m1) × (2n1 + 
1)-equilibriums are summarized in Table 2.2. 

(iii1) For  m = 2m1+1 and n = 2n1, the equilibrium networks with (2m1+1)×(2n1) 
equilibriums have the following properties as in Eqs. (2.16)–(2.19). 

• For aj1j10 > 0 and aj2j20 > 0, 

2m1+1⋃

s=1 

2n1⋃

l=1 

(aj1j1s, aj2j2l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

· · ·  (SO,SO)︸ ︷︷ ︸
source 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

· · ·  (SO,SI)︸ ︷︷ ︸
saddle 

... 
... 

... 
... 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

· · ·  (SO,SI)︸ ︷︷ ︸
saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2n1)×(2m1+1) 

. 

In the network, the number of (SO,SI)-saddles is n1 × (m1 + 1), the number of 
(SI,SO)-saddles is n1 × m1; the number of (SO,SO)-sources is n1 × (m1 + 1); 
and the number of (SI,SI)-sinks is n1 × m1. 

• For aj1j10 < 0 and aj2j20 > 0,
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2m1+1⋃

s=1 

2n1⋃

l=1 

(aj1j1s, aj2j2l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

· · ·  (SI,SO)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

· · ·  (SI,SI)︸ ︷︷ ︸
sink 

... 
... 

... 
... 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

· · ·  (SI,SI)︸ ︷︷ ︸
sink 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2n1)×(2m1+1) 

. 

In the network, the number of (SO,SI)-saddles is n1 × m1, the number of 
(SI,SO)-saddles is n1 × (m1 + 1); the number of (SO,SO)-sources is n1 × m1; 
and the number of (SI,SI)-sink is n1 × (m1 + 1). 

• For aj1j10 > 0 and aj2j20 < 0, 

2m1+1⋃

s=1 

2n1⋃

l=1 

(aj1j1s, aj2j2l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

· · ·  (SO,SI)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

· · ·  (SO,SO)︸ ︷︷ ︸
source 

... 
... 

... 
... 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

· · ·  (SO,SO)︸ ︷︷ ︸
source 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2n1)×(2m1+1) 

. 

In the network, the number of (SO,SI)-saddles is n1 × (m1 + 1), the number of 
(SI,SO)-saddles is n1 × m1; the number of (SO,SO)-sources is n1 × (m1 + 1); 
and the number of (SI,SI)-sink is n1 × m1. 

• For aj1j10 < 0 and aj2j20 < 0, 

2m1+1⋃

s=1 

2n1⋃

l=1 

(aj1j1s, aj2j2l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

· · ·  (SI,SI)︸ ︷︷ ︸
sink 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

· · ·  (SI,SO)︸ ︷︷ ︸
saddle 

... 
... 

... 
... 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

· · ·  (SI,SO)︸ ︷︷ ︸
saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2n1)×(2m1+1) 

. 

In the network, the number of (SO,SI)-saddles is n1 × m1, the number of 
(SI,SO)-saddles is n1 × (m1 + 1); the number of (SO,SO)-sources is n1 × m1; 
and the number of (SI,SI)-sink is n1 × (m1 + 1). 

(iii2) From case (iii1), the numbers of saddles, sink and sources for (2m1 + 1) × 
(2n1)-equilibriums are summarized in Table 2.3.
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(iv1) For  m = 2m1 and n = 2n1, the equilibrium networks with (2m1) × (2n1) 
equilibriums have the following properties as in Eqs. (2.20)–(2.23). 

• For aj1j10 > 0 and aj2j20 > 0, 

2m1⋃

s=1 

2n1⋃

l=1 

(aj1j1s, aj2j2l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

· · ·  (SO,SO)︸ ︷︷ ︸
source 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

· · ·  (SO,SI)︸ ︷︷ ︸
saddle 

... 
... 

... 
... 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

· · ·  (SO,SI)︸ ︷︷ ︸
saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2n1)×(2m1) 

. 

In the network, the number of (SO,SI)-saddles is n1 × m1, the number of 
(SI,SO)-saddles is n1 × m1; the number of (SO,SO)-sources is n1 × m1; and 
the number of (SI,SI)-sinks is n1 × m1. 

• For aj1j10 < 0 and aj2j20 > 0, 

2m1⋃

s=1 

2n1⋃

l=1 

(aj1j1s, aj2j2l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

· · ·  (SI,SO)︸ ︷︷ ︸
saddle 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

· · ·  (SI,SI)︸ ︷︷ ︸
sink 

... 
... 

... 
... 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

· · ·  (SI,SI)︸ ︷︷ ︸
sink 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2n1)×(2m1) 

. 

In the network, the number of (SO,SI)-saddles is n1 × m1, the number of 
(SI,SO)-saddles is n1 × m1; the number of (SO,SO)-sources is n1 × m1; and 
the number of (SI,SI)-sink is n1 × m1. 

• For aj1j10 > 0 and aj2j20 < 0, 

2m1⋃

s=1 

2n1⋃

l=1 

(aj1j1s, aj2j2l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

· · ·  (SO,SI)︸ ︷︷ ︸
saddle 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

· · ·  (SO,SO)︸ ︷︷ ︸
source 

... 
... 

... 
... 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

· · ·  (SO,SO)︸ ︷︷ ︸
source 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2n1)×(2m1) 

.
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In the network, the number of (SO,SI)-saddles is n1 × m1, the number of 
(SI,SO)-saddles is n1 × m1; the number of (SO,SO)-sources is n1 × m1; and 
the number of (SI,SI)-sink is n1 × m1. 

• For aj1j10 < 0 and aj2j20 < 0, 

2m1⋃

s=1 

2n1⋃

l=1 

(aj1j1s, aj2j2l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

· · ·  (SI,SI)︸ ︷︷ ︸
sink 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

· · ·  (SI,SO)︸ ︷︷ ︸
saddle 

... 
... 

... 
... 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

· · ·  (SI,SO)︸ ︷︷ ︸
saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2n1)×(2m1) 

. 

In the network, the number of (SO,SI)-saddles is n1 × m1, the number of 
(SI,SO)-saddles is n1 × m1; the number of (SO,SO)-sources is n1 × m1; and 
the number of (SI,SI)-sink is n1 × m1. 

(iv2) From case (iv1), the numbers of saddles, sink and sources for (2m1) × (2n1)-
equilibriums are summarized in Table 2.4. 

In the end, Theorem 2.1 is proved. �

2.3 Homoclinic Networks Without Centers 

(A) Consider a 2-dimensional system with (2m1) × (2n1) = 2 × 2 as 

ẋ1 = a110(x1 − a111)(x1 − a112), 
ẋ2 = a220(x2 − a221)(x2 − a222). 

(2.24) 

The first integral manifold is 

a110 
a222 − a221

(
ln 

|x2 − a222| 
|x20 − a222| − ln 

|x2 − a221| 
|x20 − a221|

)

= a220 
a112 − a111

(
ln 

|x1 − a112| 
|x10 − a112| − ln 

|x1 − a111| 
|x10 − a111|

)
. (2.25) 

Phase portraits for the 2-dimensional systems near the simple equilibriums of the 
saddles, sinks and sources presented in Fig. 2.1a–d for (a110 > 0, a220 > 0), (a110 < 
0, a220 > 0), (a110 > 0, a220 < 0) and (a110 < 0, a220 < 0). For all cases, one sink 
equilibrium, one source equilibrium, and two opposite saddles are for the four simple 
equilibriums of

(
x∗
1, x∗

2

) = (a111, a221), (a112, a221), (a111, a222), (a112, a222). The  
four simple equilibriums are based on the bifurcation of double-saddle bifurcations.
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Fig. 2.1 Phase portraits for 2-dimensional systems on the x1-direction with x∗
1 = a111, a112 and 

on the x2-direction with x∗
2 = a221, a222. The four sets of four simple equilibriums: a (a110 > 

0, a220 > 0), b (a110 < 0, a220 > 0), c (a110 > 0, a220 < 0), d (a110 < 0, a220 < 0) 

Table 2.5 Numbers of saddles, sinks and sources in networks for 2 × 2-equilibriums 

(a110, a220) (SO,SI)-saddle (SI,SO)-saddle (SO,SO)-source (SI,SI)-sink 

(+, +) m1 × n1 = 1 m1 × n1 = 1 m1 × n1 = 1 m1 × n1 = 1 
(−, +) m1 × n1 = 1 m1 × n1 = 1 m1 × n1 = 1 m1 × n1 = 1 
(+, −) m1 × n1 = 1 m1 × n1 = 1 m1 × n1 = 1 m1 × n1 = 1 
(−, −) m1 × n1 = 1 m1 × n1 = 1 m1 × n1 = 1 m1 × n1 = 1
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{
(a111, a222) (a112, a222) 
(a111, a221) (a112, a221)

}
= 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

⎫ 
⎪⎪⎬ 

⎪⎪⎭ 

for a110 > 0, a220 > 0; (2.26)

{
(a111, a222) (a112, a222) 
(a111, a221) (a112, a221)

}
= 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

⎫ 
⎪⎪⎬ 

⎪⎪⎭ 

for a110 < 0, a220 > 0; (2.27)

{
(a111, a222) (a112, a222) 
(a111, a221) (a112, a221)

}
= 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

⎫ 
⎪⎪⎬ 

⎪⎪⎭ 

for a110 > 0, a220 < 0; (2.28)

{
(a111, a222) (a112, a222) 
(a111, a221) (a112, a221)

}
= 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

⎫ 
⎪⎪⎬ 

⎪⎪⎭ 

for a110 < 0, a220 < 0. (2.29) 

The numbers of saddles, sinks, and saddles in networks for 2 × 2-equilibriums 
are listed in Table 2.5. 

(B) Consider a 2-dimensional system with (2m1 + 1) × (2n1) = 3 × 2 equilibriums 
as 

ẋ1 = a110(x1 − a111)(x1 − a112)(x1 − a113), 
ẋ2 = a220(x2 − a221)(x2 − a222). (2.30) 

The first integral manifold is given by 

1 

a222 − a221 
(ln 

|x2 − a222| 
|x20 − a222| − ln 

|x2 − a221| 
|x20 − a221| ) 

= 
a220 
a110

∑3 

s1=1 

1
∏3 

s2=1,s2 �=s1 
(a11s1 − a11s2 ) 

ln 
|x1 − a11s1 | 
|x10 − a11s1 | 

. (2.31)

Phase portraits for the 2-dimensional systems near the simple equilibriums of 
the saddles, sinks and sources presented in Fig. 2.2a–d for (a110 > 0, a220 > 0),



2.3 Homoclinic Networks Without Centers 27

1x 111a 112a 

2x 
221a 

222a 

113a 
(a) 

111a 112a 

222a 

1x 

2x 

221a 

113a 

(b) 

111a 112a 

222a 

1x 

2x 

221a 

113a 
(c) 

Fig. 2.2 Phase portraits for 2-dimensional systems on the x1-direction with x∗
1 = a111, a112, a113 

and on the  x2-direction with x∗
2 = a221, a222. The four networks of sink, source and saddle: a (a110 > 

0, a220 > 0), b (a110 < 0, a220 > 0), c (a110 > 0, a220 < 0), d (a110 < 0, a220 < 0)
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Fig. 2.2 (continued) 

Table 2.6 Numbers of saddles, sinks and sources in networks for 3 × 2-equilibriums 

(a110, a220) (SO,SI)-saddle (SI,SO)-saddle (SO,SO)-source (SI,SI)-sink 

(+, +) n1 × (m1 + 1) = 2 n1 × m1 = 1 n1 × (m1 + 1) = 2 m1 × n1 = 1 
(−, +) n1 × m1 = 1 n1 × (m1 + 1) = 2 n1 × m1 = 1 n1 × (m1 + 1) = 2 
(+, −) n1 × (m1 + 1) = 2 n1 × m1 = 1 n1 × (m1 + 1) = 2 m1 × n1 = 1 
(−, −) n1 × m1 = 1 n1 × (m1 + 1) = 2 n1 × m1 = 1 n1 × (m1 + 1) = 2

(a110 < 0, a220 > 0), (a110 > 0, a220 < 0) and (a110 < 0, a220 < 0). For all cases, 
the six simple equilibriums are generated through the (3,2)-saddle-source (sink) 
appearing bifurcations, and the (3,2) homoclinic network without centers are given 
as follows.

{
(a111, a222) (a112, a222) (a113, a222) 
(a111, a221) (a112, a221) (a113, a221)

}
= 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

⎫ 
⎪⎪⎬ 

⎪⎪⎭ 

for a110 > 0, a220 > 0; (2.32)

{
(a111, a222) (a112, a222) (a113, a222) 
(a111, a221) (a112, a221) (a113, a221)

}
= 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

⎫ 
⎪⎪⎬ 

⎪⎪⎭ 

for a110 < 0, a220 > 0; (2.33)
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{
(a111, a222) (a112, a222) (a113, a222) 
(a111, a221) (a112, a221) (a113, a221)

}
= 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

⎫ 
⎪⎪⎬ 

⎪⎪⎭ 

for a110 > 0, a220 < 0; (2.34)

{
(a111, a222) (a112, a222) (a113, a222) 
(a111, a221) (a112, a221) (a113, a221)

}
= 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

⎫ 
⎪⎪⎬ 

⎪⎪⎭ 

for a110 < 0, a220 < 0. 

(2.35) 

The numbers of saddles, sinks, and sources in the networks of 3× 2-equilibriums 
are listed in Table 2.6. 

(C) Consider a 2-dimensional system with (2m1) × (2n1 + 1) = 2 × 3 equilibriums 
as 

ẋ1 = a110(x1 − a111)(x1 − a112), 
ẋ2 = a220(x2 − a221)(x2 − a222)(x2 − a223). (2.36) 

The first integral manifold is given by 

3∑

l1=1 

1
∏3 

l2=1,l2 �=l1 
(a22l1 − a22l2 ) 

ln 
|x2 − a22l1 | 
|x20 − a22l1 | 

= 
a220 
a110 

2∑

s1=1 

1
∏2 

s2=1,s2 �=s1 
(a11s1 − a11s2 ) 

ln 
|x1 − a11s1 | 
|x10 − a11s1 | 

. (2.37) 

Phase portraits for the 2-dimensional systems near the simple equilibriums of 
the saddles, sinks and sources presented in Fig. 2.3a–d for (a110 > 0, a220 > 0), 
(a110 < 0, a220 > 0), (a110 > 0, a220 < 0) and (a110 < 0, a220 < 0). For all 
cases, the six simple equilibriums are based on the third-order sink, source and 
saddle bifurcations. The numbers of saddles, sinks, and sources in the networks of 
2 × 3-equilibriums are listed in Table 2.7.
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Fig. 2.3 Phase portraits for 2-dimensional systems on the x1-direction with x∗
1 = a111, a112 and 

on the x2-direction with x∗
2 = a221, a222, a223. The four networks of sink, source and saddle: 

a (a110 > 0, a220 > 0), b (a110 < 0, a220 > 0), c (a110 > 0, a220 < 0), d (a110 < 0, a220 < 0)
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Table 2.7 Numbers of saddles, sinks and sources in networks for 2 × 3-equilibriums 

(a110, a220) (SO,SI)-saddle (SI,SO)-saddle (SO,SO)-source (SI,SI)-sink 

(+, +) n1 × m1 = 1 (n1 + 1) × m1 = 2 (n1 + 1) × m1 = 2 n1 × m1 = 1 
(−, +) n1 × m1 = 1 (n1 + 1) × m1 = 2 (n1 + 1) × m1 = 2 n1 × m1 = 1 
(+, −) (n1 + 1) × m1 = 2 n1 × m1 = 1 n1 × m1 = 1 (n1 + 1) × m1 = 2 
(−, −) (n1 + 1) × m1 = 2 n1 × m1 = 1 n1 × m1 = 1 (n1 + 1) × m1 = 2 

⎧ 
⎨ 

⎩ 

(a111, a223) (a112, a223) 
(a111, a222) (a112, a222) 
(a111, a221) (a112, a221) 

⎫ 
⎬ 

⎭ = 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎩ 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎭ 

for a110 > 0, a220 > 0; (2.38) 

⎧ 
⎨ 

⎩ 

(a111, a223) (a112, a223) 
(a111, a222) (a112, a222) 
(a111, a221) (a112, a221) 

⎫ 
⎬ 

⎭ = 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎩ 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎭ 

for a110 < 0, a220 > 0; (2.39) 

⎧ 
⎨ 

⎩ 

(a111, a223) (a112, a223) 
(a111, a222) (a112, a222) 
(a111, a221) (a112, a221) 

⎫ 
⎬ 

⎭ = 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎩ 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎭ 

for a110 > 0, a220 < 0; (2.40) 

⎧ 
⎨ 

⎩ 

(a111, a223) (a112, a223) 
(a111, a222) (a112, a222) 
(a111, a221) (a112, a221) 

⎫ 
⎬ 

⎭ = 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎩ 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎭ 

for a110 < 0, a220 < 0. (2.41)
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(D) Consider a 2-dimensional system with (2m1+1)×(2n1+1) = 3×3 equilibriums 
as 

ẋ1 = a110(x1 − a111)(x1 − a112)(x1 − a113), 
ẋ2 = a220(x2 − a221)(x2 − a222)(x2 − a223). (2.42) 

The first integral manifold is given by 

3∑

l1=1 

1
∏3 

l2=1,l2 �=l1 
(a22l1 − a22l2 ) 

ln 
|x2 − a22l1 | 
|x20 − a22l1 | 

= 
a220 
a110 

3∑

s1=1 

1
∏3 

s2=1,s2 �=s1 
(a11s1 − a11s2 ) 

ln 
|x1 − a11s1 | 
|x10 − a11s1 | 

. (2.43) 

Phase portraits for the 2-dimensional systems near the simple equilibriums of 
the saddles, sinks and sources presented in Fig. 2.4a–d for (a110 > 0, a220 > 0), 
(a110 < 0, a220 > 0), (a110 > 0, a220 < 0) and (a110 < 0, a220 < 0). For all 
cases, the nine simple equilibriums are based on the third-order sink, source and 
saddle bifurcations. The numbers of saddles, sinks, and sources in the networks of 
3 × 3-equilibriums are listed in Table 2.8.

⎧ 
⎨ 

⎩ 

(a111, a223) (a112, a223) (a113, a223) 
(a111, a222) (a112, a222) (a113, a222) 
(a111, a221) (a112, a221) (a113, a221) 

⎫ 
⎬ 

⎭ = 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎩ 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎭ 

for a110 > 0, a220 > 0; (2.44) 

⎧ 
⎨ 

⎩ 

(a111, a223) (a112, a223) (a113, a223) 
(a111, a222) (a112, a222) (a113, a222) 
(a111, a221) (a112, a221) (a113, a221) 

⎫ 
⎬ 

⎭ = 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎩ 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎭ 

for a110 < 0, a220 > 0; (2.45)
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Fig. 2.4 Phase portraits for 2-dimensional systems on the x1-direction with x∗
1 = a111, a112, a113 

and on the  x2-direction with x∗
2 = a221, a222, a223. The four networks of sink, source and saddle: 

a (a110 > 0, a220 > 0), b (a110 < 0, a220 > 0), c (a110 > 0, a220 < 0), d (a110 < 0, a220 < 0)
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Fig. 2.4 (continued)

⎧ 
⎨ 

⎩ 

(a111, a223) (a112, a223) (a113, a223) 
(a111, a222) (a112, a222) (a113, a222) 
(a111, a221) (a112, a221) (a113, a221) 

⎫ 
⎬ 

⎭ = 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎩ 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎭ 

for a110 > 0, a220 < 0; (2.46)
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Table 2.8 Numbers of saddles, sinks and sources in networks for 3 × 3-equilibriums 

(a110, a220) (SO,SI)-saddle (SI,SO)-saddle (SO,SO)-source (SI,SI)-sink 

(+, +) n1 × (m1 + 1) = 2 (n1 + 1) × m1 = 2 (n1 + 1)× (m1 + 1) 
= 4 

n1 × m1 = 1 

(−, +) n1 × m1 = 1 (n1 + 1)× (m1 + 1) 
= 4 

(n1 + 1) × m1 = 2 n1 × (m1 + 1) = 2 

(+, −) (n1 + 1)× (m1 + 1) 
= 4 

n1 × m1 = 1 n1 × (m1 + 1) = 2 (n1 + 1) × m1 = 2 

(−, −) (n1 + 1) × m1 = 2 n1 × (m1 + 1) = 2 n1 × m1 = 1 (n1 + 1)× (m1 + 1) 
= 4

⎧ 
⎨ 

⎩ 

(a111, a223) (a112, a223) (a113, a223) 
(a111, a222) (a112, a222) (a113, a222) 
(a111, a221) (a112, a221) (a113, a221) 

⎫ 
⎬ 

⎭ = 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎩ 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎭ 

for a110 < 0, a220 < 0. (2.47) 

(E) Consider a 2-dimensional system with (2m1 + 1) × (2n1) = 3 × 4 equilibriums 
as 

ẋ1 = a110(x1 − a111)(x1 − a112)(x1 − a113), 
ẋ2 = a220(x2 − a221)(x2 − a222)(x2 − a223)(x2 − a224). (2.48) 

The first integral manifold is given by 

4∑

l1=1 

1
∏4 

l2=1,l2 �=l1 
(a22l1 − a22l2 ) 

ln 
|x2 − a22l1 | 
|x20 − a22l1 | 

= 
a220 
a110 

3∑

s1=1 

1
∏3 

s2=1,s2 �=s1 
(a11s1 − a11s2 ) 

ln 
|x1 − a11s1 | 
|x10 − a11s1 | 

. (2.49) 

Phase portraits for the 2-dimensional systems near the simple equilibriums of 
the saddles, sinks and sources presented in Fig. 2.5a–d for (a110 > 0, a220 > 0), 
(a110 < 0, a220 > 0), (a110 > 0, a220 < 0) and (a110 < 0, a220 < 0). For all cases, 
the twelve (12) simple equilibriums are based on the (3,4)-saddle-node bifurcations. 
The numbers of saddles, sinks and sources in the networks of 4× 3-equilibriums are 
listed in Table 2.9.
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Fig. 2.5 Phase portraits for 2-dimensional systems on the x1-direction with x∗
1 = a111, a112, a113 

and on the  x2-direction with x∗
2 = a221, a222, a223, a224. The four networks of sink, source and 

saddle: a (a110 > 0, a220 > 0), b (a110 < 0, a220 > 0), c (a110 > 0, a220 < 0), d (a110 < 0, a220 < 
0)
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Fig. 2.5 (continued)
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Table 2.9 Numbers of saddles, sinks and sources in networks for 3 × 4-equilibriums 

(a110, a220) (SO,SI)-saddle (SI,SO)-saddle (SO,SO)-source (SI,SI)-sink 

(+, +) n1 × (m1 + 1) = 4 n1 × m1 = 2 n1 × (m1 + 1) = 4 n1 × m1 = 2 
(−, +) n1 × m1 = 2 n1 × (m1 + 1) = 4 n1 × m1 = 2 n1 × (m1 + 1) = 4 
(+, −) n1 × (m1 + 1) = 4 n1 × m1 = 2 n1 × (m1 + 1) = 4 n1 × m1 = 2 
(−, −) n1 × m1 = 2 n1 × (m1 + 1) = 4 n1 × m1 = 2 n1 × (m1 + 1) = 4 

3⋃

s=1 

4⋃

l=1 

(a11s, a22l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 

for a110 > 0, a220 > 0; (2.50) 

3⋃

s=1 

4⋃

l=1 

(a11s, a22l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 

for a110 < 0, a220 > 0; (2.51) 

3⋃

s=1 

4⋃

l=1 

(a11s, a22l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 

for a110 > 0, a220 < 0; (2.52)
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3⋃

s=1 

4⋃

l=1 

(a11s, a22l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 

for a110 < 0, a220 < 0. (2.53) 

(F) Consider a 2-dimensional system with (2m1) × (2n1 + 1) = 4 × 3 equilibriums 
as 

ẋ1 = a110(x1 − a111)(x1 − a112)(x1 − a113)(x1 − a114), 
ẋ2 = a220(x2 − a221)(x2 − a222)(x2 − a223). (2.54) 

The first integral manifold is given by 

3∑

l1=1 

1
∏3 

l2=1,l2 �=l1 
(a22l1 − a22l2 ) 

ln 
|x2 − a22l1 | 
|x20 − a22l1 | 

= 
a220 
a110 

4∑

s1=1 

1
∏4 

s2=1,s2 �=s1 
(a11s1 − a11s2 ) 

ln 
|x1 − a11s1 | 
|x10 − a11s1 | 

. (2.55) 

Phase portraits for the 2-dimensional systems near the simple equilibriums of 
the saddles, sinks and sources presented in Fig. 2.6a–d for (a110 > 0, a220 > 0), 
(a110 < 0, a220 > 0), (a110 > 0, a220 < 0) and (a110 < 0, a220 < 0). For all cases, 
the twelve simple equilibriums are based on the (4,3)-saddle-node bifurcations. The 
numbers of saddles, sinks and sources in the networks of 4 × 3-equilibriums are 
listed in Table 2.10. 

4⋃

s=1 

3⋃

l=1 

(a11s, a22l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎩ 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎭ 

for a110 > 0, a220 > 0; (2.56)
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Fig. 2.6 Phase portraits for 2-dimensional systems on the x1-direction with x∗
1 = a111, a112, 

a113, a114 and on the x2-direction with x∗
2 = a221, a222, a223. The four networks of sink, source 

and saddle: a (a110 > 0, a220 > 0), b (a110 < 0, a220 > 0), c (a110 > 0, a220 < 0), 
d (a110 < 0, a220 < 0)
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Fig. 2.6 (continued) 

Table 2.10 Numbers of saddles, sinks and sources in networks for 4 × 3-equilibriums 

(a110, a220) (SO,SI)-saddle (SI,SO)-saddle (SO,SO)-source (SI,SI)-sink 

(+, +) n1 × m1 = 2 (n1 + 1) × m1 = 4 (n1 + 1) × m1 = 4 n1 × m1 = 2 
(−, +) n1 × m1 = 2 (n1 + 1) × m1 = 4 (n1 + 1) × m1 = 4 n1 × m1 = 2 
(+, −) (n1 + 1) × m1 = 4 n1 × m1 = 2 n1 × m1 = 2 (n1 + 1) × m1 = 4 
(−, −) (n1 + 1) × m1 = 4 n1 × m1 = 2 n1 × m1 = 2 (n1 + 1) × m1 = 4
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4⋃

s=1 

3⋃

l=1 

(a11s, a22l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎩ 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎭ 

for a110 < 0, a220 > 0; (2.57) 

4⋃

s=1 

3⋃

l=1 

(a11s, a22l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎩ 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎭ 

for a110 > 0, a220 < 0; (2.58) 

4⋃

s=1 

3⋃

l=1 

(a11s, a22l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎩ 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎭ 

for a110 < 0, a220 < 0. (2.59) 

(G) Consider a 2-dimensional system with (2m1) × (2n1) = 4 × 4 equilibriums 
as 

ẋ1 = a110(x1 − a111)(x1 − a112)(x1 − a113)(x1 − a114), 
ẋ2 = a220(x2 − a221)(x2 − a222)(x2 − a223)(x2 − a224). (2.60) 

The first integral manifold is given by 

4∑

l1=1 

1 
4∏

l2=1,l2 �=l1 

(a22l1 − a22l2 ) 
ln 

|x2 − a22l1 | 
|x20 − a22l1 | 

= 
a220 
a110 

4∑

s1=1 

1
∏4 

s2=1,s2 �=s1 
(a11s1 − a11s2 ) 

ln 
|x1 − a11s1 | 
|x10 − a11s1 | 

. (2.61) 

Phase portraits for the 2-dimensional systems near the simple equilibriums of 
the saddles, sinks and sources presented in Fig. 2.7a–d for (a110 > 0, a220 > 0), 
(a110 < 0, a220 > 0), (a110 > 0, a220 < 0) and (a110 < 0, a220 < 0). For all cases, the
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sixteen simple equilibriums are based on the fourth-order double-saddle bifurcations. 
The numbers of saddles, sinks, and sources in the networks of 4 × 4-equilibriums 
are listed in Table 2.11. 

4⋃

s=1 

4⋃

l=1 

(a11s, a22l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 

for a110 > 0, a220 > 0; (2.62)

4⋃

s=1 

4⋃

l=1 

(a11s, a22l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 

for a110 < 0, a220 > 0; (2.63) 

4⋃

s=1 

4⋃

l=1 

(a11s, a22l)︸ ︷︷ ︸
XX 

== 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 

for a110 > 0, a220 < 0; (2.64)
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(b) 
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Fig. 2.7 Phase portraits for 2-dimensional systems on the x1-direction with x∗
1 = a111, a112, 

a113, a114 and on the x2-direction with x∗
2 = a221, a222, a223, a224. The four networks of sink, 

source and saddle: a (a110 > 0, a220 > 0), b (a110 < 0, a220 > 0), c (a110 > 0, a220 < 0), 
d (a110 < 0, a220 < 0)
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Fig. 2.7 (continued)
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Table 2.11 Numbers of saddles, sinks and sources in networks for 4 × 4-equilibriums 

(a110, a220) (SO,SI)-saddle (SI,SO)-saddle (SO,SO)-source (SI,SI)-sink 

(+, +) n1 × m1 = 4 n1 × m1 = 4 n1 × m1 = 4 n1 × m1 = 4 
(−, +) n1 × m1 = 4 n1 × m1 = 4 n1 × m1 = 4 n1 × m1 = 4 
(+, −) n1 × m1 = 4 n1 × m1 = 4 n1 × m1 = 4 n1 × m1 = 4 
(−, −) n1 × m1 = 4 n1 × m1 = 4 n1 × m1 = 4 n1 × m1 = 4

4⋃

s=1 

4⋃

l=1 

(a11s, a22l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 

for a110 < 0, a220 < 0. (2.65) 
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Chapter 3 
Bifurcations for Homoclinic Networks 
Without Centers 

In this chapter, the appearing and switching bifurcations are discussed for the 
homoclinic networks of non-singular and singular sources, sinks, saddles with 
singular saddle-sources, saddle-sinks, and double-saddles in self-univariate polyno-
mial systems. The first integral manifolds for non-singular and singular equilibrium 
networks are determined. The illustrations of singular equilibriums to networks of 
non-singular sources, sinks and saddles are given. 

3.1 Higher-Order Singularity and Bifurcations 

To discuss singular equilibriums and bifurcations in polynomial systems, as in Luo 
[1], consider a polynomial system with self-univariate polynomial vector fields, 
and the corresponding dynamical behaviors will be presented through the following 
theorem. 

Theorem 3.1 

(i) Consider a self-univariate polynomial dynamical system as 

ẋj1 = aj1j10(xj1 − aj1j11)m , ẋj2 = aj2j20(xj2 − aj2j21)n , 
j1, j2 ∈ {1, 2}; j1 �= j2. (3.1) 

The first integral manifold is 

1 

n − 1

[ 1 

(xj2 − aj2j21)n−1 
− 1 

(xj20 − aj2j21)n−1

]

= 
aj2j20 
aj1j10 

1 

m − 1

[ 1 

(xj1 − aj1j11)m−1 
− 1 

(xj20 − aj1j11)m−1

]
,

© Higher Education Press Limited Company 2025 
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for m, n �= 1; 
− ln 

|xj2 − aj2j21| 
|xj20 − aj2j21| 

= 
aj2j20 
aj1j10 

1 

m − 1

[ 1 

(xj1 − aj1j11)m−1 
− 1 

(xj20 − aj1j11)m−1

]
, 

for n = 1 and m �= 1; 

1 

n − 1

[
1 

(xj2 − aj2j21)n−1 
− 1 

(xj20 − aj2j21)n−1

]
= −  

aj2j20 
aj1j10 

ln 
|xj1 − aj1j11| 
|xj20 − aj1j11| 

, 

for m = 1 and n �= 1; 

ln 
|xj2 − aj2j21| 
|xj20 − aj2j21| 

= 
aj2j20 
aj1j10 

ln 
|xj1 − aj1j11| 
|xj20 − aj1j11| 

, 

for m, n = 1. (3.2) 

(i1) For  m = 2m1 + 1 and n = 2n1 + 1, the equilibrium of (x∗
j1 , x

∗
j2 ) = (aj1j11, aj2j21) 

has the following properties. 

• For aj1j10 > 0 and aj2j20 > 0, 

(aj1j11, aj2j21) = ((2m1+1)th SO,(2n1+1)th SO)︸ ︷︷ ︸
((2m1+1),(2n1 + 1))-source 

(3.3) 

• For aj1j10 < 0 and aj2j20 > 0, 

(aj1j11, aj2j21) = ((2m1+1)th SI,(2n1+1)th SO)︸ ︷︷ ︸
((2m1+1),(2n1 + 1))-saddle 

(3.4) 

• For aj1j10 > 0 and aj2j20 < 0, 

(aj1j11, aj2j21) = ((2m1+1)th SO,(2n1+1)th SI)︸ ︷︷ ︸
((2m1+1),(2n1 + 1))-saddle 

(3.5) 

• For aj1j10 < 0 and aj2j20 < 0 , 

(aj1j11, aj2j21) = ((2m1+1)th SI,(2n1+1)th SI)︸ ︷︷ ︸
((2m1+1),(2n1 + 1))-sink 

(3.6) 

(i2) For  m = 2m1 and n = 2n1 + 1, the equilibrium of (x∗ 
j1 
, x∗ 

j2 
) = (aj1j11, aj2j21) has 

the following properties. 

• For aj1j10 > 0 and aj2j20 > 0, 

(aj1j11, aj2j21) = ((2m1)
th US,(2n1+1)th SO)︸ ︷︷ ︸

((2m1),(2n1 + 1))-upper-saddle source 

(3.7)
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• For aj1j10 < 0 and aj2j20 > 0, 

(aj1j11, aj2j21) = ((2m1)
th LS,(2n1+1)th SO)︸ ︷︷ ︸

((2m1),(2n1 + 1))-lower-saddle source 

(3.8) 

• For aj1j10 > 0 and aj2j20 < 0, 

(aj1j11, aj2j21) = ((2m1)
th US,(2n1+1)th SI)︸ ︷︷ ︸

((2m1),(2n1 + 1))-upper-saddle sink 

(3.9) 

• For aj1j10 < 0 and aj2j20 < 0, 

(aj1j11, aj2j21) = ((2m1)
th LS,(2n1+1)th SI)︸ ︷︷ ︸

((2m1),(2n1 + 1))-lower-saddle sink 

(3.10) 

(i3) For  m = 2m1 + 1 and n = 2n1, the equilibrium of (x∗
j1 
, x∗

j2 
) = (aj1j11, aj2j21) has 

the following properties. 

• For aj1j10 > 0 and aj2j20 > 0, 

(aj1j11, aj2j21) = ((2m1+1)th SO,(2n1)
th US)︸ ︷︷ ︸

((2m1+1),(2n1)-upper-saddle source 

. (3.11) 

• For aj1j10 < 0 and aj2j20 > 0, 

(aj1j11, aj2j21) = ((2m1+1)th SI,(2n1)
th US)︸ ︷︷ ︸

((2m1+1),(2n1))-upper-saddle sink 

. (3.12) 

• For aj1j10 > 0 and aj2j20 < 0, 

(aj1j11, aj2j21) = ((2m1+1)th SO,(2n1)
th LS)︸ ︷︷ ︸

((2m1+1),(2n1))-lower-saddle source 

. (3.13) 

• For aj1j10 < 0 and aj2j20 < 0, 

(aj1j11, aj2j21) = ((2m1+1)th SI,(2n1)
th LS)︸ ︷︷ ︸

((2m1+1),(2n1))-lower-saddle sink 

. (3.14) 

(i4) For  m = 2m1 and n = 2n1, the equilibrium of (x∗
j1 , x

∗
j2 ) = (aj1j11, aj2j21) has the 

following properties. 

• For aj1j10 > 0 and aj2j20 > 0,
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(aj1j11, aj2j21) = ((2m1)
th US,(2n1)

th US)︸ ︷︷ ︸
((2m1),(2n1))-double saddle 

(3.15) 

• For aj1j10 < 0 and aj2j20 > 0, 

(aj1j11, aj2j21) = ((2m1)
th LS,(2n1)

th US)︸ ︷︷ ︸
((2m1),(2n1))-double saddle 

(3.16) 

• For aj1j10 > 0 and aj2j20 < 0, 

(aj1j11, aj2j21) = ((2m1)
th US,(2n1)

th LS)︸ ︷︷ ︸
((2m1),(2n1))-upper-saddle sink 

(3.17) 

• For aj1j10 < 0 and aj2j20 < 0, 

(aj1j11, aj2j21) = ((2m1)
th LS,(2n1)

th LS)︸ ︷︷ ︸
((2m1),(2n1))-double-saddle 

(3.18) 

(ii) Consider a self-univariate polynomial dynamical system as 

ẋj1 = aj1j10 
p∏

r=1,�p 
r=1mr=m 

(xj1 − aj1j1r)mr , 

ẋj2 = aj2j20 
q∏

s=1,�q 
s=1ns=n 

(xj2 − aj2j2s)ns , 

j1, j2 ∈ {1, 2}; j1 �= j2. (3.19) 

The first integral manifold is 

q∑
s1=1 

ns1∑
l2=1 

Bl2ns1 

l2 − 1

[ 1 

(xj2 − aj2j2s1 )l2−1 
− 1 

(xj20 − aj2j2s1 )l2−1

]

= 
aj2j20 
aj1j10 

p∑
r1=1 

mr1∑
l1=1 

Al1mr1 

l1 − 1

[ 1 

(xj1 − aj1j1r1 )l1−1 
− 1 

(xj10 − aj1j1r1 )l1−1

]
, 

for l1, l2 �= 1; 
lim 
l2→1 

1 

(l2 − 1)

[ 1 

(xj2 − aj2j2s1 )l2−1 
− 1 

(xj20 − aj2j2s1 )l2−1

]
= − ln 

|xj2 − aj2j2s1 | 
|xj20 − aj2j2s1 | 

, 

for l2 = 1; 
lim 
l1→1 

1 

l1 − 1

[ 1 

(xj1 − aj1j1r1 )l1−1 
− 1 

(xj10 − aj1j1r1 )l1−1

]
= −  ln 

|xj1 − aj1j1r1 | 
|xj10 − aj1j1r1 | 

,
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for l1 = 1. (3.20) 

where 

Al1mr1 
= 1 

(mr1 − l1)! 
dmr1−l1 

dx 
mr1−l1 
j1 

1∏p 
r2=1,r2 �=r1 

(xj1 − aj1j1r2 )mr2

∣∣∣x∗
j1

=aj1 j1r1 
, 

Amr1 mr1 
= 1∏p 

r2=1,r2 �=r, (aj1j1r1 − aj1j1r2 )mr2 
; 

Bl2ns1 
= 1 

(ns1 − l2)! 
dns1−l2 

dx 
ns1−l2 
j2 

1∏q 
s2=1,s2 �=s1 

(xj2 − aj2j2s2 )ns2

∣∣∣x∗
j2

=aj2 j2s1 
, 

Bns1 ns1 
= 1∏q 

s2=1,s2 �=s1 
(aj2j2s1 − aj2j2s2 )ns2 

. (3.21) 

The singular equilibrium network with �
p 
ri=1mri = m and �

q 
ri=1nsi = n is defined as 

p⋃
r=1 

q⋃
s=1 

(aj1j1r, aj2j2s)︸ ︷︷ ︸
(mr ,ns)-XX 

≡ 

⎧ 
⎪⎨ 

⎪⎩ 

(aj1j11, aj2j2q) · · ·  (aj1j1p, aj2j2q) 
... · · · ... 

(aj1j11, aj2j21) · · ·  (aj1j1p, aj2j21) 

⎫ 
⎪⎬ 

⎪⎭ 
q×p 

= 

⎧⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎩ 

((m1)
th XX,(nq)

th XX)︸ ︷︷ ︸
(m1,nq)-XX 

· · ·  ((mp)
th XX,(nq)

th XX)︸ ︷︷ ︸
(m(i) 

pi ,n
(i) 
qi )-XX 

... 
... 

... 
((m1)

th XX,(n1)
th XX)︸ ︷︷ ︸

(m1,n1)-XX 

· · ·  ((mp)
th XX,(n1)

th XX)︸ ︷︷ ︸
(mp,n1)-XX 

⎫⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎭ 
q×p 

. (3.22) 

(ii1) For  mr1 = 2mr11 + 1 and ns1 = 2ns11 + 1, the equilibrium of (x∗ 
j1 
, x∗ 

j2 
) = (aj1j1r1 , 

aj2j2s1 ) has the following properties. 

• For aj1j10
∏p 

r2=1,r2 �=s1 
(aj1j1r1 − aj1j1r2 )mr2 > 0 and 

aj2j20
∏q 

s2=1,s2 �=s1 
(aj2j2s1 − aj2j2s2 )ns2 > 0, 

(aj1j1r1 , aj2j2s1 ) = ((2mr11+1)th SO,(2ns11+1)th SO)︸ ︷︷ ︸
((2mr11+1),(2ns11 + 1))-source 

. (3.23) 

• For aj1j10
∏p 

r2=1,r2 �=s1 
(aj1j1r1 − aj1j1r2 )mr2 < 0 and 

aj2j20
∏q 

s2=1,s2 �=s1 
(aj2j2s1 − aj2j2s2 )ns2 > 0, 

(aj1j1r1 , aj2j2s1 ) = ((2mr11+1)th SI,(2ns11+1)th SO)︸ ︷︷ ︸
((2mr11+1),(2ns11 + 1))-saddle 

. (3.24)
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• For aj1j10
∏p 

r2=1,r2 �=s1 
(aj1j1r1 − aj1j1r2 )mr2 > 0 and 

aj2j20
∏q 

s2=1,s2 �=s1 
(aj2j2s1 − aj2j2s2 )ns2 < 0, 

(aj1j1r1 , aj2j2s1 ) = ((2mr11+1)th SO,(2ns11+1)th SI)︸ ︷︷ ︸
((2mr11+1),(2ns11 + 1))-saddle 

. (3.25) 

• For aj1j10
∏p 

r2=1,r2 �=s1 
(aj1j1r1 − aj1j1r2 )mr2 < 0 and 

aj2j20
∏q 

s2=1,s2 �=s1 
(aj2j2s1 − aj2j2s2 )ns2 < 0, 

(aj1j1r1 , aj2j2s1 ) = ((2mr11+1)th SI,(2ns11+1)th SI)︸ ︷︷ ︸
((2mr11+1),(2ns11 + 1))-sink 

. (3.26) 

(ii2) For  mr1 = 2mr11 and ns1 = 2ns11+1, the equilibrium of (x∗
j1 
, x∗

j2 
) = (aj1j1r1 ,aj2j2s1 ) 

has the following properties. 

• For aj1j10
∏p 

r2=1,r2 �=s1 
(aj1j1r1 − aj1j1r2 )mr2 > 0 and 

aj2j20
∏q 

s2=1,s2 �=s1 
(aj2j2s1 − aj2j2s2 )ns2 > 0, 

(aj1j1r1 , aj2j2s1 ) = ((2mr11)
th US,(2ns11+1)th SO)︸ ︷︷ ︸

((2mr11),(2ns11 + 1))-upper-saddle source 

. (3.27) 

• For aj1j10
∏p 

r2=1,r2 �=s1 
(aj1j1r1 − aj1j1r2 )mr2 < 0 and 

aj2j20
∏q 

s2=1,s2 �=s1 
(aj2j2s1 − aj2j2s2 )ns2 > 0, 

(aj1j1r1 , aj2j2s1 ) = ((2mr11)
th LS,(2ns11+1)th SO)︸ ︷︷ ︸

((2mr11),(2ns11 + 1))-lower-saddle source 

. (3.28) 

• For aj1j10
∏p 

r2=1,r2 �=s1 
(aj1j1r1 − aj1j1r2 )mr2 > 0 and 

aj2j20
∏q 

s2=1,s2 �=s1 
(aj2j2s1 − aj2j2s2 )ns2 < 0, 

(aj1j1r1 , aj2j2s1 ) = ((2mr11)
th US,(2ns11+1)th SI)︸ ︷︷ ︸

((2mr11),(2ns11 + 1))-upper-saddle sink 

. (3.29) 

• For aj1j10
∏p 

r2=1,r2 �=s1 
(aj1j1r1 − aj1j1r2 )mr2 < 0 and 

aj2j20
∏q 

s2=1,s2 �=s1 
(aj2j2s1 − aj2j2s2 )ns2 < 0, 

(aj1j1r1 , aj2j2s1 ) = ((2mr11)
th LS,(2ns11+1)th SI)︸ ︷︷ ︸

((2mr11),(2ns11 + 1))-lower-saddlesink 

. (3.30)
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(ii3) For  mr1 = 2mr11 + 1 and ns1 = 2ns11, the equilibrium of 
(x∗

j1 , x
∗
j2 ) =(aj1j1r1 , aj2j2s1 ) has the following properties. 

• For aj1j10
∏p 

r2=1,r2 �=s1 
(aj1j1r1 − aj1j1r2 )mr2 > 0 and 

aj2j20
∏q 

s2=1,s2 �=s1 
(aj2j2s1 − aj2j2s2 )ns2 > 0, 

(aj1j1r1 , aj2j2s1 ) = ((2mr11+1)th SO,(2ns11)
th US)︸ ︷︷ ︸

((2mr11+1),(2ns11))-upper-saddle source 

. (3.31) 

• For aj1j10
∏p 

r2=1,r2 �=s1 
(aj1j1r1 − aj1j1r2 )mr2 < 0 and 

aj2j20
∏q 

s2=1,s2 �=s1 
(aj2j2s1 − aj2j2s2 )ns2 > 0, 

(aj1j1r1 , aj2j2s1 ) = ((2mr11+1)th SI,(2ns11)
th US)︸ ︷︷ ︸

((2mr11+1),(2ns11))-upper-saddle sink 

. (3.32) 

• For aj1j10
∏p 

r2=1,r2 �=s1 
(aj1j1r1 − aj1j1r2 )mr2 > 0 and 

aj2j20
∏q 

s2=1,s2 �=s1 
(aj2j2s1 − aj2j2s2 )ns2 < 0, 

(aj1j1r1 , aj2j2s1 ) = ((2mr11+1)th SO,(2ns11)
th LS)︸ ︷︷ ︸

((2mr11+1),(2ns11))-lower-saddle source 

. (3.33) 

• For aj1j10
∏p 

r2=1,r2 �=s1 
(aj1j1r1 − aj1j1r2 )mr2 < 0 and 

aj2j20
∏q 

s2=1,s2 �=s1 
(aj2j2s1 − aj2j2s2 )ns2 < 0, 

(aj1j1r1 , aj2j2s1 ) = ((2mr11+1)th SI,(2ns11)
th LS)︸ ︷︷ ︸

((2mr11+1),(2ns11))-lower-saddle sink 

. (3.34) 

(ii4) For  mr1 = 2mr11 and ns1 = 2ns11, the equilibrium of (x∗
j1 
, x∗

j2 
) = (aj1j1r1 ,aj2j2s1 ) 

has the following properties. 

• For aj1j10
∏p 

r2=1,r2 �=s1 
(aj1j1r1 − aj1j1r2 )mr2 > 0 and 

aj2j20
∏q 

s2=1,s2 �=s1 
(aj2j2s1 − aj2j2s2 )ns2 > 0, 

(aj1j1r1 , aj2j2s1 ) = ((2mr11)
th US,(2ns11)

th US)︸ ︷︷ ︸
((2mr11),(2ns11))-double-saddle 

. (3.35) 

• For aj1j10
∏p 

r2=1,r2 �=s1 
(aj1j1r1 − aj1j1r2 )mr2 < 0 and 

aj2j20
∏q 

s2=1,s2 �=s1 
(aj2j2s1 − aj2j2s2 )ns2 > 0, 

(aj1j1r1 , aj2j2s1 ) = ((2mr11)
th LS,(2ns11)

th US)︸ ︷︷ ︸
((2mr11),(2ns11))-double-saddle 

. (3.36)
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• For aj1j10
∏p 

r2=1,r2 �=s1 
(aj1j1r1 − aj1j1r2 )mr2 > 0 and 

aj2j20
∏q 

s2=1,s2 �=s1 
(aj2j2s1 − aj2j2s2 )ns2 < 0, 

(aj1j1r1 , aj2j2s1 ) = ((2mr11)
th US,(2ns11)

th LS)︸ ︷︷ ︸
((2mr11),(2ns11))-doubel-saddle 

. (3.37) 

• For aj1j10
∏p 

r2=1,r2 �=s1 
(aj1j1r1 − aj1j1r2 )mr2 < 0 and 

aj2j20
∏q 

s2=1,s2 �=s1 
(aj2j2s1 − aj2j2s2 )ns2 < 0, 

(aj1j1r1 , aj2j2s1 ) = ((2mr11)
th LS,(2ns11)

th LS)︸ ︷︷ ︸
((2mr11),(2ns11))-double-saddle 

. (3.38) 

(iii) Consider a self-univariate polynomial dynamical system as 

ẋj1 = aj1j10 
m∏

s1=1 

(xj1 − aj1j1s1 ), ẋj2 = aj2j20 
n∏

l1=1 

(xj2 − aj2j2l1 ), (3.39) 

j1, j2 ∈ {1, 2}; j1 �= j2. 

The first integral manifold is 

n∑
l1=1 

1∏n 
l2=1,l2 �=l1 

(aj2j2l1 − aj2j2l2 ) 
ln 

|xj2 − aj2j2l1 | 
|xj20 − aj2j2l1 | 

= 
aj2j20 
aj1j10 

m∑
s1=1 

1∏m 
s2=1,s2 �=s1 

(aj1j1s1 − aj1j1s2 ) 
ln 

|xj1 − aj1j1s1 | 
|xj10 − aj1j1s1 |

. (3.40) 

The simple-equilibrium network is defined as 

m⋃
s=1 

n⋃
l=1 

(aj1j1s, aj2j2l)︸ ︷︷ ︸
XX 

≡ 

⎧⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

(aj1j11, aj2j2n) (aj1j12, aj2j2n) · · · (aj1j1m, aj2j2n) 
(aj1j11, aj2j2(n−1)) (aj1j12, aj2j2(n−1)) · · ·  (aj1j1m, aj2j2(n−1)) 

... 
... · · · ... 

(aj1j11, aj2j21) (aj1j12, aj2j21) · · · (aj1j1m, aj2j21) 

⎫⎪⎪⎪⎬ 

⎪⎪⎪⎭ 
n×m 

. 

(3.41) 

The equilibrium of (x∗
j1 
, x∗

j2 
) = (aj1j1s1 , aj2j2l1 ) (s1, s2 ∈ {1, 2, · · ·  , m}, s1 �= s2; 

l1, l2 ∈ {1, 2, · · ·  , n},l1 �= l2) possesses the following properties.
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• For aj1j10
∏m 

s2=1,s2 �=s1 
(aj1j1s1 − aj1j1s2 ) >  0 and 

aj2j20
∏n 

l2=1,l2 �=l1 
(aj2j2l1 − aj2j2l2 ) >  0, 

(aj1j1s1 , aj2j2l1 ) = (SO,SO)︸ ︷︷ ︸
source 

. (3.42) 

The equilibrium of (x∗
j1 
, x∗

j2 
) = (aj1j1s1 , aj2j2l1 ) is an (SO,SO)-source. 

• For aj1j10
∏m 

s2=1,s2 �=s1 
(aj1j1s1 − aj1j1s2 ) <  0 and 

aj2j20
∏n 

l2=1,l2 �=l1 
(aj2j2l1 − aj2j2l2 ) >  0, 

(aj1j1s1 , aj2j2l1 ) = (SI,SO)︸ ︷︷ ︸
saddle 

. (3.43) 

The equilibrium of (x∗ 
j1 
, x∗ 

j2 
) = (aj1j1s1 , aj2j2l1 ) is an (SI,SO)-saddle. 

• For aj1j10
∏m 

s2=1,s2 �=s1 
(aj1j1s1 − aj1j1s2 ) >  0 and 

aj2j20
∏n 

l2=1,l2 �=l1 
(aj2j2l1 − aj2j2l2 ) <  0, 

(aj1j1s1 , aj2j2l1 ) = (SO,SI)︸ ︷︷ ︸
saddle 

. (3.44) 

The equilibrium of (x∗
j1 
, x∗

j2 
) = (aj1j1s1 , aj2j2l1 ) is an (SO,SI)-saddle. 

• For aj1j10
∏m 

s2=1,s2 �=s1 
(aj1j1s1 − aj1j1s2 ) <  0 and 

aj2j20
∏n 

l2=1,l2 �=l1 
(aj2j2l1 − aj2j2l2 ) <  0, 

(aj1j1s1 , aj2j2l1 ) = (SI,SI)︸ ︷︷ ︸
sink 

. (3.45) 

The equilibrium of (x∗ 
j1 
, x∗ 

j2 
) = (aj1j1s1 , aj2j2l1 ) is an (SI,SI)-sink. 

(iv) For m = 2m1 + 1 and n = 2n1 + 1, the equilibrium of(x∗
j1 
, x∗

j2 
) = (aj1j11, aj2j21) 

has the following bifurcation properties. 

(iv1) For  aj1j10 > 0 and aj2j20 > 0, there is a ((2m1+1)th SO,(2n1+1)th SO)-source 
equilibrium as 

(aj1j11, aj2j21) = ((2m1+1)th SO,(2n1+1)th SO)︸ ︷︷ ︸
((2m1+1),(2n1 + 1))-source 

. (3.46) 

There are three following ((2m1+1)th SO,(2n1+1)th SO)-source appearing and 
switching bifurcations.
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(iv1a) The  ((2m1+1)th SO, (2n1+1)th SO)-source appearing bifurcation are from a 
(SO,SO)-source to a (2m1 + 1) × (2n1 + 1)-equilibrium network as 

(aj1j11, aj2j21)︸ ︷︷ ︸
(SO,SO)-source

� ((2m1+1)th SO,(2n1+1)th SO)︸ ︷︷ ︸
((2m1+1),(2n1 + 1))-source

�
2m1+1⋃
r=1 

2n1+1⋃
s=1 

(aj1j1r, aj2j2s)︸ ︷︷ ︸
XX 

(3.47) 

where 

2m1+1⋃
r=1 

2n1+1⋃
s=1 

(aj1j1r, aj2j2s)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

· · ·  (SO,SO)︸ ︷︷ ︸
source 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

· · ·  (SO,SI)︸ ︷︷ ︸
saddle 

... 
... 

... 
... 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

· · ·  (SO,SO)︸ ︷︷ ︸
source 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2n1+1)×(2m1+1) 

. 

(3.48) 

(iv1b) The  ((2m1+1)th SO, (2n1+1)th SO)-source appearing bifurcation is from a 
q1 × p1 to q2 × p2 equilibrium network as 

p1⋃
r1=1 

q1⋃
s1=1 

(aj1j1r1 , aj2j2s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )- XX

� ((2m1+1)th SO,(2n1+1)th SO)︸ ︷︷ ︸
((2m1+1),(2n1 + 1))-source

�
p2⋃

r2=1 

q2⋃
s2=1 

(aj1j1r2 , aj2j2s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )- XX  

(3.49) 

where 

2m1 + 1 − 
p1∑

r1=1 

m(1) 
r1 = 2 

l1∑
s=1 

ms 

with l1-quadratic polynomials without real roots 

and sth-quadratic polynomial with power ms, 

2n1 + 1 − 
q1∑

s1=1 

n(1) 
s1 = 2 

l2∑
l=1 

nl 

with l2-quadraitc polynomials without real roots 

and lth-quadratic polynomial with power nl;
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p2∑
r2=1 

m(2) 
r2 = 2m1 + 1, 

q2∑
s2=1 

n(2) 
s2 = 2n1 + 1; for i = 1, 2, 

((m(i) 
pi )

th XX,(n(i) 
qi )

th XX)︸ ︷︷ ︸
(m(i) 

pi ,n
(i) 
qi )-XX 

∈ 

⎧⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
pi1+1)th SO,(2n(i) 

qi1 + 1)th SO)︸ ︷︷ ︸
((2m(i) 

pi 1
+1),(2n(i) 

qi 1
+1))-source 

, ((2m(i) 
pi1)

th US,(2n(i) 
qi1)

th US)︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

qi 1
))-double-saddle 

, 

((2m(i) 
pi1)

th US,(2n(i) 
qi1 + 1)th SO)︸ ︷︷ ︸

((2m(i) 
pi 1

),(2n(i) 
qi 1

+1))-upper-saddle-source 

, ((2m(i) 
pi1+1)th SO,(2n(i) 

qi1)
th US)︸ ︷︷ ︸

((2m(i) 
pi 1

+1),(2n(i) 
qi 1

))-upper-saddle-source 

⎫⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
pi )

th XX,(n(i) 
1 )

th XX)︸ ︷︷ ︸
(m(i) 

pi ,n
(i) 
1 )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
pi1+1)th SO,(2n(i) 

11 + 1)th SO)︸ ︷︷ ︸
((2m(i) 

pi 1
+1),(2n(i) 

11+1))-source 

, ((2m(i) 
pi1)

th US,(2n(i) 
11)

th LS)︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

11 ))-double-saddle 

, 

((2m(i) 
pi1)

th US,(2n(i) 
11 + 1)th SO)︸ ︷︷ ︸

((2m(i) 
pi 1

),(2n(i) 
11+1))-upper-saddle-source 

, ((2m(i) 
pi1+1)th SO,(2n(i) 

11)
th LS)︸ ︷︷ ︸

((2m(i) 
pi 1

+1),(2n(i) 
11 ))-lower-saddle-source 

⎫ 
⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
1 )

th XX,(n(i) 
qi )

th XX)︸ ︷︷ ︸
(m(i) 

1 ,n
(i) 
qi )-XX 

∈ 

⎧⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
11+1)th SO,(2n(i) 

qi1 + 1)th SO)︸ ︷︷ ︸
((2m(i) 

11+1),(2n(i) 
qi 1

+1))-source 

, ((2m(i) 
11)

th LS,(2n(i) 
qi1)

th US)︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
qi 1

))-double-saddle 

, 

((2m(i) 
11)

th LS,(2n(i) 
qi1 + 1)th SO)︸ ︷︷ ︸

((2m(i) 
11 ),(2n

(i) 
qi 1

+1))-lower-saddle-source 

, ((2m(i) 
11+1)th SO,(2n(i) 

qi1)
th US)︸ ︷︷ ︸

((2m(i) 
11+1),(2n(i) 

qi 1
))-upper-saddle-source 

⎫⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
1 )

th XX,(n(i) 
1 )

th XX)︸ ︷︷ ︸
(m(i) 

1 ,n
(i) 
1 )-XX 

∈ 

⎧⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

((2m(i) 
11+1)th SO,(2n(i) 

11 + 1)th SO)︸ ︷︷ ︸
((2m(i) 

11+1),(2n(i) 
11+1))-source 

, ((2m(i) 
11)

th LS,(2n(i) 
11)

th LS)︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
11 ))-double-saddle 

, 

((2m(i) 
11)

th LS,(2n(i) 
11 + 1)th SO)︸ ︷︷ ︸

((2m(i) 
11 ),(2n

(i) 
11+1))-lower-saddle-source 

, ((2m(i) 
11+1)th SO,(2n(i) 

11)
th LS)︸ ︷︷ ︸

((2m(i) 
11+1),(2n(i) 

11 ))-lower-saddle-source 

⎫⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎭ 

. 

(3.50) 

(iv1c) The  ((2m1+1)th SO, (2n1+1)th SO)-source switching bifurcation is for the 
switching of two q × p equilibrium networks as
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p⋃
r1=1 

q⋃
s1=1 

(aj1j1r1 , aj2j2s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� ((2m1+1)th SO,(2n1+1)th SO)︸ ︷︷ ︸
((2m1+1),(2n1 + 1))-source

�
p⋃

r2=1 

q⋃
s2=1 

(aj1j1r2 , aj2j2s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX 

(3.51) 

with �
p 
ri=1mri = 2m1 + 1 and �

q 
si=1nsi = 2n1 + 1 for  i = 1, 2. 

(iv2) For  aj1j10 < 0 and aj2j20 > 0, there is a ((2m1+1)th SI, (2n1+1)th SO)-saddle 
equilibrium as 

(aj1j11, aj2j21) = ((2m1+1)th SI,(2n1+1)th SO)︸ ︷︷ ︸
((2m1+1),(2n1 + 1))-saddle 

. (3.52) 

There are the following three ((2m1+1)th SI,(2n1+1)th SO)-saddle appearing and 
switching bifurcations. 

(iv2a) The  ((2m1+1)th SI, (2n1+1)th SO)-saddle appearing bifurcation is from a 
(SI,SO)-saddle to a (2m1 + 1) × (2n1 + 1) network as 

(aj1j11, aj2j21)︸ ︷︷ ︸
(SI,SO)-saddle

� ((2m1+1)th SI,(2n1+1)th SO)︸ ︷︷ ︸
((2m1+1),(2n1 + 1))-saddle

�
2m1+1⋃
r=1 

2n1+1⋃
s=1 

(aj1j1r, aj2j2s)︸ ︷︷ ︸
XX 

(3.53) 

where 

2m1+1⋃
r=1 

2n1+1⋃
s=1 

(aj1j1r, aj2j2s)︸ ︷︷ ︸
XX 

= 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

· · ·  (SI,SO)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

· · ·  (SI,SI)︸ ︷︷ ︸
sink 

... 
... 

... 
... 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

· · ·  (SI,SO)︸ ︷︷ ︸
saddle 

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2n1+1)×(2m1+1) 

. 

(3.54) 

(iv2b) The  ((2m1+1)th SI, (2n1+1)th SO)-saddle appearing bifurcation is from q1×p1 
to q2 × p2 equilibrium networks as 

p1⋃
r1=1 

q1⋃
s1=1 

(aj1j1r1 , aj2j2s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� ((2m1+1)th SI,(2n1+1)th SO)︸ ︷︷ ︸
((2m1+1),(2n1 + 1))-saddle
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�
p2⋃

r2=1 

q2⋃
s2=1 

(aj1j1r2 , aj2j2s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX 

(3.55) 

where 

2m1 + 1 − 
p1∑

r1=1 

m(1) 
r1 = 2 

l1∑
s=1 

ms 

with l1-quadratic polynomials without real roots 

and sth-quadratic polynomial with power ms, 

2n1 + 1 − 
q1∑

s1=1 

n(1) 
s1 = 2 

l2∑
l=1 

nl 

with l2-quadraitc polynomials without real roots 

and lth-quadratic polynomial with power nl; 
p2∑

r2=1 

m(2) 
r2 = 2m1 + 1, 

q2∑
s2=1 

n(2) 
s2 = 2n1 + 1; for i = 1, 2 

((m(i) 
pi )

th XX,(n(i) 
qi )

th XX)︸ ︷︷ ︸
(m(i) 

pi ,n
(i) 
qi )-XX 

∈ 

⎧⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
pi1+1)th SI,(2n(i) 

qi1 + 1)th SO)︸ ︷︷ ︸
((2m(i) 

pi 1
+1),(2n(i) 

qi 1
+1))-saddle 

, ((2m(i) 
pi1)

th LS,(2n(i) 
qi1)

th US)︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

qi 1
))-double-saddle 

, 

((2m(i) 
pi1)

th LS,(2n(i) 
qi1 + 1)th SO)︸ ︷︷ ︸

((2m(i) 
pi 1

),(2n(i) 
qi 1

+1))-lower-saddle-source 

, ((2m(i) 
pi1+1)th SI,(2n(i) 

qi1)
th US)︸ ︷︷ ︸

((2m(i) 
pi 1

+1),(2n(i) 
qi 1

))-upper-saddle-sink 

⎫⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
pi )

th XX,(n(i) 
1 )

th XX)︸ ︷︷ ︸
(m(i) 

pi ,n
(i) 
1 )-XX 

∈ 

⎧⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
pi1+1)th SI,(2n(i) 

11 + 1)th SO)︸ ︷︷ ︸
((2m(i) 

pi 1
+1),(2n(i) 

11+1))-saddle 

, ((2m(i) 
pi1)

th LS,(2n(i) 
11)

th LS)︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

11 ))-double-saddle 

, 

((2m(i) 
pi1)

th LS,(2n(i) 
11 + 1)th SO)︸ ︷︷ ︸

((2m(i) 
pi 1

),(2n(i) 
11+1))-lower-saddle-source 

, ((2m(i) 
pi1+1)th SI,(2n(i) 

11)
th LS)︸ ︷︷ ︸

((2m(i) 
pi 1

+1),(2n(i) 
11 ))-lower-saddle-sink 

⎫⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

;
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((m(i) 
1 )

th XX,(n(i) 
qi )

th XX)︸ ︷︷ ︸
(m(i) 

1 ,n
(i) 
qi )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
11+1)th SI,(2n(i) 

qi1 + 1)th SO)︸ ︷︷ ︸
((2m(i) 

11+1),(2n(i) 
qi 1

+1))-saddle 

, ((2m(i) 
11)

th US,(2n(i) 
qi1)

th US)︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
qi 1

))-double-saddle 

, 

((2m(i) 
11)

th US,(2n(i) 
qi1 + 1)th SO)︸ ︷︷ ︸

((2m(i) 
11 ),(2n

(i) 
qi 1

+1))-upper-saddle-source 

, ((2m(i) 
11+1)th SI,(2n(i) 

qi1)
th US)︸ ︷︷ ︸

((2m(i) 
11+1),(2n(i) 

qi 1
))-upper-saddle-sink 

⎫ 
⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
1 )

th XX,(n(i) 
1 )

th XX )︸ ︷︷ ︸
(m(i) 

1 ,n
(i) 
1 )-XX 

∈ 

⎧⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

((2m(i) 
11+1)th SI,(2n(i) 

11 + 1)th SO)︸ ︷︷ ︸
((2m(i) 

11+1),(2n(i) 
11+1))-saddle 

, ((2m(i) 
11)

th US,(2n(i) 
11)

th LS)︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
11 ))-double-saddle 

, 

((2m(i) 
11)

th US,(2n(i) 
11 + 1)th SO)︸ ︷︷ ︸

((2m(i) 
11 ),(2n

(i) 
11+1))-upper-saddle-source 

, ((2m(i) 
11+1)th SI,(2n(i) 

11)
th LS)︸ ︷︷ ︸

((2m(i) 
11+1),(2n(i) 

11 ))-lower-saddle-sink 

⎫⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎭ 

. (3.56) 

(iv2c) The  ((2m1+1)th SI, (2n1+1)th SO)-saddle switching bifurcations is for two q×p 
equilibrium networks as 

p⋃
r1=1 

q⋃
s1=1 

(aj1j1r1 , aj2j2s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� ((2m1+1)th SI,(2n1+1)th SO)︸ ︷︷ ︸
((2m1+1),(2n1 + 1))-saddle

�
p⋃

r2=1 

q⋃
s2=1 

(aj1j1r2 , aj2j2s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX 

(3.57) 

with �
p 
ri=1mri = 2m1 + 1 and �

q 
si=1nsi = 2n1 + 1 for  i = 1, 2. 

(iv3) For  aj1j10 > 0 and aj2j20 < 0, there is a ((2m1+1)th SO, (2n1+1)th SI)-saddle 

equilibrium as 

(aj1j11, aj2j21) = ((2m1+1)th SO,(2n1+1)th SI)︸ ︷︷ ︸
((2m1+1),(2n1 + 1))-saddle 

. (3.58) 

There are the following three ((2m1+1)th SO, (2n1+1)th SI)-saddle appearing and 
switching bifurcations. 

(iv3a) The  ((2m1+1)th SO, (2n1+1)th SI)-saddle appearing bifurcation are from a 
(SO,SI)-saddle to a (2m1 + 1) × (2n1 + 1)-equilibrium network as
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(aj1j11, aj2j21)︸ ︷︷ ︸
(SO,SI)-saddle

� ((2m1+1)th SO,(2n1+1)th SI)︸ ︷︷ ︸
((2m1+1),(2n1 + 1))-saddle

�
2m1+1⋃
r=1 

2n1+1⋃
s=1 

(aj1j1r, aj2j2s)︸ ︷︷ ︸
XX 

(3.59) 

where 

2m1+1⋃
r=1 

2n1+1⋃
s=1 

(aj1j1r, aj2j2s)︸ ︷︷ ︸
XX 

= 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

· · ·  (SO,SI)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

· · ·  (SO,SO)︸ ︷︷ ︸
source 

... 
... 

... 
... 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

· · ·  (SO,SI)︸ ︷︷ ︸
saddle 

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2n1+1)×(2m1+1) 

. 

(3.60) 

(iv3b) The  ((2m1+1)th SO, (2n1+1)th SI)-saddle appearing bifurcation is from a q1 × 
p1 to q2 × p2 equilibrium network as 

p1⋃
r1=1 

q1⋃
s1=1 

(aj1j1r1 , aj2j2s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� ((2m1+1)th SO,(2n1+1)th SI)︸ ︷︷ ︸
((2m1+1),(2n1 + 1))-saddle

�
p2⋃

r2=1 

q2⋃
s2=1 

(aj1j1r2 , aj2j2s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX 

(3.61) 

where 

2m1 + 1 − 
p1∑

r1=1 

m(1) 
r1 = 2 

l1∑
s=1 

ms 

with l1-quadratic polynomials without real roots 

and sth-quadratic polynomial with power ms, 

2n1 + 1 − 
q1∑

r1=1 

n(1) 
s1 = 2 

l2∑
l=1 

nl 

with l2-quadraitc polynomials without real roots 

and lth-quadratic polynomial with power nl; 
p2∑

r2=1 

m(2) 
r2 = 2m1 + 1, 

q2∑
s2=1 

n(2) 
s2 = 2n1 + 1; for i = 1, 2,
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((m(i) 
pi )

th XX,(n(i) 
qi )

th XX)︸ ︷︷ ︸
(m(i) 

pi ,n
(i) 
qi )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
pi1+1)th SO,(2n(i) 

qi1 + 1)th SI)︸ ︷︷ ︸
((2m(i) 

pi 1
+1),(2n(i) 

qi 1
+1))-saddle 

, ((2m(i) 
pi1)

th US,(2n(i) 
qi1)

th LS)︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

qi 1
))-double-saddle 

, 

((2m(i) 
pi1)

th US,(2n(i) 
qi1 + 1)th SI)︸ ︷︷ ︸

((2m(i) 
pi 1

),(2n(i) 
qi 1

+1))-upper-saddle-sink 

, ((2m(i) 
pi1+1)th SO,(2n(i) 

qi1)
th LS)︸ ︷︷ ︸

((2m(i) 
pi 1

+1),(2n(i) 
qi 1

))-lower-saddle-source 

⎫ 
⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
pi )

th XX,(n(i) 
1 )

th XX)︸ ︷︷ ︸
(m(i) 

pi ,n
(i) 
1 )-XX 

∈ 

⎧⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
pi1+1)th SO,(2n(i) 

11 + 1)th SI)︸ ︷︷ ︸
((2m(i) 

pi 1
+1),(2n(i) 

11+1))-saddle 

, ((2m(i) 
pi1)

th US,(2n(i) 
11)

th US)︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

11 ))-double-saddle 

, 

((2m(i) 
pi1)

th US,(2n(i) 
11 + 1)th SI)︸ ︷︷ ︸

((2m(i) 
pi 1

),(2n(i) 
11+1))-upper-saddle-sink 

, ((2m(i) 
pi1+1)th SO,(2n(i) 

11)
th US)︸ ︷︷ ︸

((2m(i) 
pi 1

+1),(2n(i) 
11 ))-upper-saddle-source 

⎫⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
1 )

th XX,(n(i) 
qi )

th XX)︸ ︷︷ ︸
(m(i) 

1 ,n
(i) 
qi )-XX 

∈ 

⎧⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
11+1)th SO,(2n(i) 

qi1 + 1)th SI)︸ ︷︷ ︸
((2m(i) 

11+1),(2n(i) 
qi 1

+1))-saddle 

, ((2m(i) 
11)

th LS,(2n(i) 
qi1)

th LS)︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
qi 1

))-double-saddle 

, 

((2m(i) 
11)

th LS,(2n(i) 
qi1 + 1)th SI)︸ ︷︷ ︸

((2m(i) 
11 ),(2n

(i) 
qi 1

+1))-lower-saddle-sink 

, ((2m(i) 
11+1)th SO,(2n(i) 

qi1)
th LS)︸ ︷︷ ︸

((2m(i) 
11+1),(2n(i) 

qi 1
))-lower-saddle-source 

⎫⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
1 )

th XX,(n(i) 
1 )

th XX)︸ ︷︷ ︸
(m(i) 

1 ,n
(i) 
1 )-XX 

∈ 

⎧⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
11+1)th SO,(2n(i) 

qi1 + 1)th SI)︸ ︷︷ ︸
((2m(i) 

11+1),(2n(i) 
qi 1

+1))-saddle 

, ((2m(i) 
pi1)

th LS,(2n(i) 
qi1)

th US)︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

qi 1
))-double-saddle 

, 

((2m(i) 
11)

th LS,(2n(i) 
11 + 1)th SI)︸ ︷︷ ︸

((2m(i) 
11 ),(2n

(i) 
11+1))-lower-saddle-sink 

, ((2m(i) 
pi1+1)th SI,(2n(i) 

11)
th US)︸ ︷︷ ︸

((2m(i) 
pi 1

+1),(2n(i) 
11 ))-upper-saddle-sink 

⎫⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

. (3.62) 

(iv3c) The  ((2m1+1)th SO, (2n1+1)th SI)-saddle switching bifurcation is for the 
switching of two q × p equilibrium networks as
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p⋃
r1=1 

p⋃
r1=1 

(aj1j1r1 , aj2j2s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� ((2m1+1)th SO,(2n1+1)th SI)︸ ︷︷ ︸
((2m1+1),(2n1 + 1))-saddle

�
p⋃

r2=1 

q⋃
s2=1 

(aj1j1r2 , aj2j2s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX 

(3.63) 

with �
p 
ri=1mri = 2m1 + 1 and �

q 
si=1nsi = 2n1 + 1 for  i = 1, 2. 

(iv4) For  aj1j10 < 0 and aj2j20 < 0, there is a ((2m1+1)th SI, (2n1+1)th SI)-sink 
equilibrium as 

(aj1j11, aj2j21) = ((2m1+1)th SI, (2n1+1)th SI)︸ ︷︷ ︸
((2m1+1),(2n1 + 1))-sink 

. (3.64) 

There are the following three ((2m1+1)th SI,(2n1+1)th SI)-sink appearing and 
switching bifurcations. 

(iv4a) The  ((2m1+1)th SI, (2n1+1)th SI)-sink appearing bifurcation is from a (SI,SI)-
sink to a (2m1 + 1) × (2n1 + 1) network as 

(aj1j11, aj2j21)︸ ︷︷ ︸
(SI,SI)-sink

� ((2m1+1)th SI,(2n1+1)th SI)︸ ︷︷ ︸
((2m1+1),(2n1 + 1))-sink

�
2m1+1⋃
r=1 

2n1+1⋃
s=1 

(aj1j1r, aj2j2s)︸ ︷︷ ︸
XX 

(3.65) 

where 

2m1+1⋃
r=1 

2n1+1⋃
s=1 

(aj1j1r, aj2j2s)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

· · ·  (SI,SI)︸ ︷︷ ︸
sink 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

· · ·  (SI,SO)︸ ︷︷ ︸
saddle 

... 
... 

... 
... 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

· · ·  (SI,SI)︸ ︷︷ ︸
sink 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2n1+1)×(2m1+1) 

. 

(3.66) 

(iv4b) The  ((2m1+1)th SI, (2n1+1)th SI)-sink appearing bifurcation is from q1 × p1 
to q2 × p2 equilibrium networks as 

p1⋃
r1=1 

q1⋃
s1=1 

(aj1j1r1 , aj2j2s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� ((2m1+1)th SI,(2n1+1)th SI)︸ ︷︷ ︸
((2m1+1),(2n1 + 1))-sink
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�
p2⋃

r2=1 

q2⋃
s2=1 

(aj1j1r2 , aj2j2s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX 

(3.67) 

where 

2m1 + 1 − 
p1∑

r1=1 

m(1) 
r1 = 2 

l1∑
s=1 

ms 

with l1-quadratic polynomials without real roots 

and sth-quadratic polynomial with power ms, 

2n1 + 1 − 
q1∑

r1=1 

n(1) 
s1 = 2 

l2∑
l=1 

nl 

with l2-quadraitc polynomials without real roots 

and lth-quadratic polynomial with power nl; 
p2∑

r2=1 

m(2) 
r2 = 2m1 + 1, 

q2∑
s2=1 

n(2) 
s2 = 2n1 + 1; for i = 1, 2, 

((m(i) 
pi )

th XX,(n(i) 
qi )

th XX)︸ ︷︷ ︸
(m(i) 

pi ,n
(i) 
qi )-XX 

∈ 

⎧⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
pi1+1)th SI,(2n(i) 

qi1 + 1)th SI)︸ ︷︷ ︸
((2m(i) 

pi 1
+1),(2n(i) 

qi 1
+1))-sink 

, ((2m(i) 
pi1)

th LS,(2n(i) 
qi1)

th LS)︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

qi 1
))-double-saddle 

, 

((2m(i) 
pi1)

th LS,(2n(i) 
qi1 + 1)th SI)︸ ︷︷ ︸

((2m(i) 
pi 1

),(2n(i) 
qi 1

+1))-lower-saddle-sink 

, ((2m(i) 
pi1+1)th SI,(2n(i) 

qi1)
th LS)︸ ︷︷ ︸

((2m(i) 
pi 1

+1),(2n(i) 
qi 1

))-lower-saddle-sink 

⎫⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
pi )

th XX,(n(i) 
1 )

th XX)︸ ︷︷ ︸
(m(i) 

pi ,n
(i) 
1 )-XX 

∈ 

⎧⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
pi1+1)th SI,(2n(i) 

11 + 1)th SI)︸ ︷︷ ︸
((2m(i) 

pi 1
+1),(2n(i) 

11+1))-sink 

, ((2m(i) 
pi1)

th LS,(2n(i) 
11)

th US)︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

11 ))-double-saddle 

, 

((2m(i) 
pi1)

th LS,(2n(i) 
11 + 1)th SI)︸ ︷︷ ︸

((2m(i) 
pi 1

),(2n(i) 
11+1))-lower-saddle-sink 

, ((2m(i) 
pi1+1)th SI,(2n(i) 

11)
th US)︸ ︷︷ ︸

((2m(i) 
pi 1

+1),(2n(i) 
11 ))-upper-saddle-sink 

⎫⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

;
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((m(i) 
1 )

th XX,(n(i) 
qi )

th XX)︸ ︷︷ ︸
(m(i) 

1 ,n
(i) 
qi )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
11+1)th SI,(2n(i) 

qi1 + 1)th SI)︸ ︷︷ ︸
((2m(i) 

11+1),(2n(i) 
qi 1

+1))-sink 

, ((2m(i) 
11)

th US,(2n(i) 
qi1)

th LS)︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
qi 1

))-double-saddle 

, 

((2m(i) 
11)

th US,(2n(i) 
qi1 + 1)th SI)︸ ︷︷ ︸

((2m(i) 
11 ),(2n

(i) 
qi 1

+1))-upper-saddle-sink 

, ((2m(i) 
11+1)th SI,(2n(i) 

qi1)
th LS)︸ ︷︷ ︸

((2m(i) 
11+1),(2n(i) 

qi 1
))-lower-saddle-sink 

⎫ 
⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
1 )

th XX,(n(i) 
1 )

th XX)︸ ︷︷ ︸
(m(i) 

1 ,n
(i) 
1 )-XX 

∈ 

⎧⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

((2m(i) 
11+1)th SI,(2n(i) 

11 + 1)th SI)︸ ︷︷ ︸
((2m(i) 

11+1),(2n(i) 
11+1))-sink 

, ((2m(i) 
11)

th US,(2n(i) 
11)

th US)︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
11 ))-double-saddle 

, 

((2m(i) 
11)

th US,(2n(i) 
11 + 1)th SI)︸ ︷︷ ︸

((2m(i) 
11 ),(2n

(i) 
11+1))-upper-saddle-sink 

, ((2m(i) 
11+1)th SI,(2n(i) 

11)
th US)︸ ︷︷ ︸

((2m(i) 
11+1),(2n(i) 

11 ))-upper-saddle-sink 

⎫⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎭ 

. (3.68) 

(iv4c) The  ((2m1+1)th SI, (2n1+1)th SI)-sink switching bifurcation is for two q × p 
equilibrium networks as 

p⋃
r1=1 

q⋃
s1=1 

(aj1j1r1 , aj2j2s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� ((2m1+1)th SI,(2n1+1)th SI)︸ ︷︷ ︸
((2m1+1),(2n1 + 1))-sink

�
p⋃

r2=1 

q⋃
s2=1 

(aj1j1r2 , aj2j2s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX 

(3.69) 

with �
p 
ri=1mri = 2m1 + 1 and �

q 
si=1nsi = 2n1 + 1 for  i = 1, 2. 

(v) For m = 2m1 and n = 2n1 + 1, the equilibrium of (x∗
j1 , x

∗
j2 ) = (aj1j11, aj2j21) has 

the following bifurcation properties. 

(v1) For  aj1j10 > 0 and aj2j20 > 0, there is a ((2m1)
th US,(2n1+1)th SO)-upper-saddle-

source equilibrium as 

(aj1j11, aj2j21) = ((2m1)
th US,(2n1+1)th SO)︸ ︷︷ ︸

((2m1),(2n1 + 1))-upper-saddle-source 

. (3.70) 

There are three following ((2m1)
th US,(2n1+1)th SO)-upper-saddle-source appearing 

and switching bifurcations.
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(v1a) The  ((2m1)
th US, (2n1+1)th SO)-upper-saddle-source appearing bifurcation are 

from a (pF,SO)-positive source flow to a (2m1) × (2n1 + 1)-equilibrium network as 

(ẋj1 , aj2j21)︸ ︷︷ ︸
(pF,SO)-psotive source flow

� ((2m1)
th US,(2n1+1)th SO)︸ ︷︷ ︸

((2m1),(2n1 + 1))-upper-saddle-source

�
2m1⋃
r=1 

2n1+1⋃
s=1 

(aj1j1r, aj2j2s)︸ ︷︷ ︸
XX 

(3.71) 

where 

2m1⋃
r=1 

2n1+1⋃
s=1 

(aj1j1r, aj2j2s)︸ ︷︷ ︸
XX 

= 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

· · ·  (SO,SO)︸ ︷︷ ︸
source 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

· · ·  (SO,SI)︸ ︷︷ ︸
saddle 

... 
... 

... 
... 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

· · ·  (SO,SO)︸ ︷︷ ︸
source 

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2n1+1)×(2m1) 

. (3.72) 

(v1b) The  ((2m1)
th US, (2n1+1)th SO)-upper-saddle-source appearing bifurcation is 

from a q1 × p1 to q2 × p2 equilibrium network as 

p1⋃
r1=1 

q1⋃
s1=1 

(aj1j1r1 , aj2j2s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� ((2m1)
th US,(2n1+1)th SO)︸ ︷︷ ︸

((2m1),(2n1 + 1))-upper-saddle-source

�
p2⋃

r2=1 

q2⋃
s2=1 

(aj1j1r2 , aj2j2s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX 

(3.73) 

where 

2m1 − 
p1∑

r1=1 

m(1) 
r1 = 2 

l1∑
s=1 

ms 

with l1-quadratic polynomials without real roots 

and sth-quadratic polynomial with power ms, 

2n1 + 1 − 
q1∑

s1=1 

n(1) 
s1 = 2 

l2∑
l=1 

nl 

with l2-quadraitc polynomials without real roots 

and lth-quadratic polynomial with power nl;
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p2∑
r2=1 

m(2) 
r2 = 2m1 + 1, 

q2∑
s2=1 

n(2) 
s2 = 2n1 + 1; for i = 1, 2, 

((m(i) 
pi )

th XX,(n(i) 
qi )

th XX)︸ ︷︷ ︸
(m(i) 

pi ,n
(i) 
qi )-XX 

∈ 

⎧⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
pi1+1)th SO,(2n(i) 

qi1 + 1)th SO)︸ ︷︷ ︸
((2m(i) 

pi 1
+1),(2n(i) 

qi 1
+1))-source 

, ((2m(i) 
pi1)

th US,(2n(i) 
qi1)

th US)︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

qi 1
))-double-saddle 

, 

((2m(i) 
pi1)

th US,(2n(i) 
qi1 + 1)th SO)︸ ︷︷ ︸

((2m(i) 
pi 1

),(2n(i) 
qi 1

+1))-uuper-saddle-source 

, ((2m(i) 
pi1+1)th SO,(2n(i) 

qi1)
th US)︸ ︷︷ ︸

((2m(i) 
pi 1

+1),(2n(i) 
qi 1

))-double-saddle 

⎫⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
pi )

th XX,(n(i) 
1 )

th XX)︸ ︷︷ ︸
(m(i) 

pi ,n
(i) 
1 )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
pi1+1)th SO,(2n(i) 

11 + 1)th SO)︸ ︷︷ ︸
((2m(i) 

pi 1
+1),(2n(i) 

11+1))-source 

, ((2m(i) 
pi1)

th US,(2n(i) 
11)

th LS)︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

11 ))-double-saddle 

, 

((2m(i) 
pi1)

th US,(2n(i) 
11 + 1)th SO)︸ ︷︷ ︸

((2m(i) 
pi 1

),(2n(i) 
11+1))-upper-saddle-source 

, ((2m(i) 
pi1+1)th SO,(2n(i) 

11)
th LS)︸ ︷︷ ︸

((2m(i) 
pi 1

+1),(2n(i) 
11 ))-lower-saddle-source 

⎫ 
⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
1 )

th XX,(n(i) 
qi )

th XX)︸ ︷︷ ︸
(m(i) 

1 ,n
(i) 
qi )-XX 

∈ 

⎧⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
11+1)th SI,(2n(i) 

qi1 + 1)th SO)︸ ︷︷ ︸
((2m(i) 

11+1),(2n(i) 
qi 1

+1))-saddle 

, ((2m(i) 
11)

th US,(2n(i) 
qi1)

th US)︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
qi 1

))-double-saddle 

, 

((2m(i) 
11)

th US,(2n(i) 
qi1 + 1)th SO)︸ ︷︷ ︸

((2m(i) 
11 ),(2n

(i) 
qi 1

+1))-upper-saddle-source 

, ((2m(i) 
11+1)th SI,(2n(i) 

qi1)
th US)︸ ︷︷ ︸

((2m(i) 
11+1),(2n(i) 

qi 1
))-upper-saddle-sink 

⎫⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
1 )

th XX,(n(i) 
1 )

th XX)︸ ︷︷ ︸
(m(i) 

1 ,n
(i) 
1 )-XX 

∈ 

⎧⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

((2m(i) 
11+1)th SI,(2n(i) 

11 + 1)th SO)︸ ︷︷ ︸
((2m(i) 

11+1),(2n(i) 
11+1))-saddle 

, ((2m(i) 
11)

th US,(2n(i) 
11)

th LS)︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
11 ))-double-saddle 

, 

((2m(i) 
11)

th US,(2n(i) 
11 + 1)th SO)︸ ︷︷ ︸

((2m(i) 
11 ),(2n

(i) 
11+1))-upper-saddle-source 

, ((2m(i) 
11+1)th SI,(2n(i) 

11)
th LS)︸ ︷︷ ︸

((2m(i) 
11+1),(2n(i) 

11 ))-lower-saddle-sink 

⎫⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎭ 

. (3.74) 

(v1c) The  ((2m1)
th US, (2n1+1)th SO)-upper-saddle-source switching bifurcation is 

for the switching of two q × p equilibrium networks as
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p⋃
r1=1 

q⋃
s1=1 

(aj1j1r1 , aj2j2s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� ((2m1)
th US,(2n1+1)th SO)︸ ︷︷ ︸

((2m1),(2n1 + 1))-upper-saddle-source

�
p⋃

r2=1 

q⋃
s2=1 

(aj1j1r2 , aj2j2s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX 

(3.75) 

with �
p 
ri=1mri = 2m1 and �

q 
si=1nsi = 2n1 + 1 for  i = 1, 2. 

(v2) For  aj1j10 < 0 and aj2j20 > 0, there is a ((2m1)
th LS, (2n1+1)th SO)-lower-saddle-

source equilibrium as 

(aj1j11, aj2j21) = ((2m1)
th LS,(2n1+1)th SO)︸ ︷︷ ︸

((2m1),(2n1 + 1))-lower-saddle-source 

. (3.76) 

There are the following three ((2m1)
th LS, (2n1+1)th SO)-lower-saddle-source 

appearing and switching bifurcations. 

(v2a) The  ((2m1)
th LS, (2n1+1)th SO)-lower-saddle-source appearing bifurcation is 

from an (nF,SO)-negative source flow to a (2m1) × (2n1 + 1) network as 

(ẋj1 , aj2j21)︸ ︷︷ ︸
(nF,SO)-negative source flow

� ((2m1)
th LS,(2n1+1)th SO)︸ ︷︷ ︸

((2m1),(2n1 + 1))-lower-saddle-source

�
2m1⋃
r=1 

2n1+1⋃
s=1 

(aj1j1r, aj2j2s)︸ ︷︷ ︸
XX 

(3.77) 

where 

2m1⋃
r=1 

2n1+1⋃
s=1 

(aj1j1r, aj2j2s)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

· · ·  (SI,SO)︸ ︷︷ ︸
saddle 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

· · ·  (SI,SI)︸ ︷︷ ︸
sink 

... 
... 

... 
... 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

· · ·  (SI,SO)︸ ︷︷ ︸
saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2n1+1)×(2m1) 

. (3.78) 

(v2b) The  ((2m1)
th LS, (2n1+1)th SO)-lower-saddle-source appearing bifurcation is 

from q1 × p1 to q2 × p2 equilibrium networks as 

p1⋃
r1=1 

q1⋃
s1=1 

(aj1j1r1 , aj2j2s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� ((2m1)
th LS,(2n1+1)th SO)︸ ︷︷ ︸

((2m1),(2n1 + 1))-lower-saddle-source
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�
p2⋃

r2=1 

q2⋃
s2=1 

(aj1j1r2 , aj2j2s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX 

(3.79) 

where 

2m1 − 
p1∑

r1=1 

m(1) 
r1 = 2 

l1∑
s=1 

ms 

with l1-quadratic polynomials without real roots 

and sth-quadratic polynomial with power ms, 

2n1 + 1 − 
q1∑

s1=1 

n(1) 
s1 = 2 

l2∑
l=1 

nl 

with l2-quadraitc polynomials without real roots 

and lth-quadratic polynomial with power nl; 
p2∑

r2=1 

m(2) 
r2 = 2m1, 

q2∑
s2=1 

n(2) 
s2 = 2n1 + 1; for i = 1, 2, 

((m(i) 
pi )

th XX,(n(i) 
qi )

th XX)︸ ︷︷ ︸
(m(i) 

pi ,n
(i) 
qi )-XX 

∈ 

⎧⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
pi1+1)th SI,(2n(i) 

qi1 + 1)th SO)︸ ︷︷ ︸
((2m(i) 

pi 1
+1),(2n(i) 

qi 1
+1))-saddle 

, ((2m(i) 
pi1)

th LS,(2n(i) 
qi1)

th US)︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

qi 1
))-double-saddle 

, 

((2m(i) 
pi1)

th LS,(2n(i) 
qi1 + 1)th SO)︸ ︷︷ ︸

((2m(i) 
pi 1

),(2n(i) 
qi 1

+1))-lower-saddle-source 

, ((2m(i) 
pi1+1)th SI,(2n(i) 

qi1)
th US)︸ ︷︷ ︸

((2m(i) 
pi 1

+1),(2n(i) 
qi 1

))-upper-saddle-sink 

⎫⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
pi )

th XX,(n(i) 
1 )

th XX)︸ ︷︷ ︸
(m(i) 

pi ,n
(i) 
1 )-XX 

∈ 

⎧⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
pi1+1)th SI,(2n(i) 

11 + 1)th SO)︸ ︷︷ ︸
((2m(i) 

pi 1
+1),(2n(i) 

11+1))-saddle 

, ((2m(i) 
pi1)

th LS,(2n(i) 
11)

th LS)︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

11 ))-double-saddle 

, 

((2m(i) 
pi1)

th LS,(2n(i) 
11 + 1)th SO)︸ ︷︷ ︸

((2m(i) 
pi 1

),(2n(i) 
11+1))-lower-saddle-source 

, ((2m(i) 
pi1+1)th SI,(2n(i) 

11)
th LS)︸ ︷︷ ︸

((2m(i) 
pi 1

+1),(2n(i) 
11 ))-lower-saddle-sink 

⎫⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

;
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((m(i) 
1 )

th XX,(n(i) 
qi )

th XX)︸ ︷︷ ︸
(m(i) 

1 ,n
(i) 
qi )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
11+1)th SO,(2n(i) 

qi1 + 1)th SO)︸ ︷︷ ︸
((2m(i) 

11+1),(2n(i) 
qi 1

+1))-source 

, ((2m(i) 
11)

th LS,(2n(i) 
qi1)

th US)︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
qi 1

))-double-saddle 

, 

((2m(i) 
11)

th LS,(2n(i) 
qi1 + 1)th SO)︸ ︷︷ ︸

((2m(i) 
11 ),(2n

(i) 
qi 1

+1))-lower-saddle-source 

, ((2m(i) 
11+1)th SO,(2n(i) 

qi1)
th US)︸ ︷︷ ︸

((2m(i) 
11+1),(2n(i) 

qi 1
))-upper-saddle-source 

⎫ 
⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
1 )

th XX,(n(i) 
1 )

th XX)︸ ︷︷ ︸
(m(i) 

1 ,n
(i) 
1 )-XX 

∈ 

⎧⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

((2m(i) 
11+1)th SO,(2n(i) 

11 + 1)th SO)︸ ︷︷ ︸
((2m(i) 

11+1),(2n(i) 
11+1))-source 

, ((2m(i) 
11)

th LS,(2n(i) 
11)

th LS)︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
11 ))-double-saddle 

, 

((2m(i) 
11)

th LS,(2n(i) 
11 + 1)th SO)︸ ︷︷ ︸

((2m(i) 
11 ),(2n

(i) 
11+1))-lower-saddle-source 

, ((2m(i) 
11+1)th SO,(2n(i) 

11)
th LS)︸ ︷︷ ︸

((2m(i) 
11+1),(2n(i) 

11 ))-lower-saddle-source 

⎫⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎭ 

. (3.80) 

(v2c) The  ((2m1)
th LS, (2n1+1)th SO)-lower-saddle-source switching bifurcation is 

for two q × p equilibrium networks as 

p⋃
r1=1 

q⋃
s1=1 

(aj1j1r1 , aj2j2s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� ((2m1)
th LS,(2n1+1)th SO)︸ ︷︷ ︸

((2m1),(2n1 + 1))-lower-saddle-source

�
p⋃

r2=1 

q⋃
s2=1 

(aj1j1r2 , aj2j2s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX 

(3.81) 

with �
p 
ri=1mri = 2m1 and �

q 
si=1nsi = 2n1 + 1 for  i = 1, 2. 

(v3) For  aj1j10 > 0 and aj2j20 < 0, there is a ((2m1)
th US, (2n1+1)th SI)-upper-saddle-

sink equilibrium as 

(aj1j11, aj2j21) = ((2m1)
th US,(2n1+1)th SI)︸ ︷︷ ︸

((2m1),(2n1 + 1))-upper-saddle-sink 

. (3.82) 

There are the following three ((2m1)
th US, (2n1+1)th SI)-upper-saddle-sink appearing 

and switching bifurcations. 

(v3a) The  ((2m1)
th US, (2n1+1)th SI)-upper-saddle-sink appearing bifurcation is from 

a (pF,SI)-positive sink flow to a (2m1) × (2n1 + 1)-equilibrium network as
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(ẋj1 , aj2j21)︸ ︷︷ ︸
(pF,SI)-positive sink flow

� ((2m1)
th US,(2n1+1)th SI)︸ ︷︷ ︸

((2m1),(2n1 + 1))-upper-saddle-sink

�
2m1⋃
r=1 

2n1+1⋃
s=1 

(aj1j1r, aj2j2s)︸ ︷︷ ︸
XX 

(3.83) 

where 

2m1⋃
r=1 

2n1+1⋃
s=1 

(aj1j1r, aj2j2s)︸ ︷︷ ︸
XX 

= 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

· · ·  (SO,SI)︸ ︷︷ ︸
saddle 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

· · ·  (SO,SO)︸ ︷︷ ︸
source 

... 
... 

... 
... 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

· · ·  (SO,SI)︸ ︷︷ ︸
saddle 

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2n1+1)×(2m1) 

. (3.84) 

(v3b) The  ((2m1)
th US, (2n1+1)th SI)-upper-saddle-sink appearing bifurcation is from 

a q1 × p1 to q2 × p2 equilibrium network as 

p1⋃
r1=1 

q1⋃
s1=1 

(aj1j1r1 , aj2j2s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� ((2m1)
th US,(2n1+1)th SI)︸ ︷︷ ︸

((2m1),(2n1 + 1))-upper-saddle-sink

�
p2⋃

r2=1 

q2⋃
s2=1 

(aj1j1r2 , aj2j2s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX 

(3.85) 

where 

2m1 − 
p1∑

r1=1 

m(1) 
r1 = 2 

l1∑
s=1 

ms 

with l1-quadratic polynomials without real roots 

and sth-quadratic polynomial with power ms, 

2n1 + 1 − 
q1∑

s1=1 

n(1) 
s1 = 2 

l2∑
l=1 

nl 

with l2-quadraitc polynomials without real roots 

and lth-quadratic polynomial with power nl; 
p2∑

r2=1 

m(2) 
r2 = 2m1, 

q2∑
r2=1 

n(2) 
s2 = 2n1 + 1; for i = 1, 2,
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((m(i) 
pi )

th XX,(n(i) 
qi )

th XX)︸ ︷︷ ︸
(m(i) 

pi ,n
(i) 
qi )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
pi1+1)th SO,(2n(i) 

qi1 + 1)th SI)︸ ︷︷ ︸
((2m(i) 

pi 1
+1),(2n(i) 

qi 1
+1))-saddle 

, ((2m(i) 
pi1)

th US,(2n(i) 
qi1)

th LS)︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

qi 1
))-double-saddle 

, 

((2m(i) 
pi1)

th US,(2n(i) 
qi1 + 1)th SI)︸ ︷︷ ︸

((2m(i) 
pi 1

),(2n(i) 
qi 1

+1))-upper-saddle-sink 

, ((2m(i) 
pi1+1)th SO,(2n(i) 

qi1)
th LS)︸ ︷︷ ︸

((2m(i) 
pi 1

+1),(2n(i) 
qi 1

))-lower-saddle-source 

⎫ 
⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
pi )

th XX,(n(i) 
1 )

th XX)︸ ︷︷ ︸
(m(i) 

pi ,n
(i) 
1 )-XX 

∈ 

⎧⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
pi1+1)th SO,(2n(i) 

11 + 1)th SI)︸ ︷︷ ︸
((2m(i) 

pi 1
+1),(2n(i) 

11+1))-saddle 

, ((2m(i) 
pi1)

th US,(2n(i) 
11)

th US)︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

11 ))-double-saddle 

, 

((2m(i) 
pi1)

th US,(2n(i) 
11 + 1)th SI)︸ ︷︷ ︸

((2m(i) 
pi 1

),(2n(i) 
11+1))-upper-saddle-sink 

, ((2m(i) 
pi1+1)th SO,(2n(i) 

11)
th US)︸ ︷︷ ︸

((2m(i) 
pi 1

+1),(2n(i) 
11 ))-upper-saddle-source 

⎫⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
1 )

th XX,(n(i) 
qi )

th XX)︸ ︷︷ ︸
(m(i) 

1 ,n
(i) 
qi )-XX 

∈ 

⎧⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
11+1)th SI,(2n(i) 

qi1 + 1)th SI)︸ ︷︷ ︸
((2m(i) 

11+1),(2n(i) 
qi 1

+1))-sink 

, ((2m(i) 
11)

th US,(2n(i) 
qi1)

th LS)︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
qi 1

))-double-saddle 

, 

((2m(i) 
11)

th US,(2n(i) 
qi1 + 1)th SI)︸ ︷︷ ︸

((2m(i) 
11 ),(2n

(i) 
qi 1

+1))-upper-saddle-sink 

, ((2m(i) 
11+1)th SI,(2n(i) 

qi1)
th LS)︸ ︷︷ ︸

((2m(i) 
11+1),(2n(i) 

qi 1
))-lower-saddle-sink 

⎫⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
1 )

th XX,(n(i) 
1 )

th XX)︸ ︷︷ ︸
(m(i) 

1 ,n
(i) 
1 )-XX 

∈ 

⎧⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

((2m(i) 
11+1)th SI,(2n(i) 

11 + 1)th SI)︸ ︷︷ ︸
((2m(i) 

11+1),(2n(i) 
11+1))-sink 

, ((2m(i) 
11)

th US,(2n(i) 
11)

th US)︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
11 ))-double-saddle 

, 

((2m(i) 
11)

th US,(2n(i) 
11 + 1)th SI)︸ ︷︷ ︸

((2m(i) 
11 ),(2n

(i) 
11+1))-upper-saddle-sink 

, ((2m(i) 
11+1)th SI,(2n(i) 

11)
th US)︸ ︷︷ ︸

((2m(i) 
11+1),(2n(i) 

11 ))-upper-saddle-sink 

⎫⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎭ 

. (3.86) 

(v3c) The  ((2m1)
th US, (2n1+1)th SI)-upper-saddle-sink switching bifurcation is for 

the switching of two q × p equilibrium networks as 

p⋃
r1=1 

q⋃
s1=1 

(aj1j1r1 , aj2j2s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� ((2m1)
th US,(2n1+1)th SI)︸ ︷︷ ︸

((2m1),(2n1 + 1))-upper-saddle-sink
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�
p⋃

r2=1 

q⋃
s2=1 

(aj1j1r2 , aj2j2s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX 

(3.87) 

where �
p 
ri=1mri = 2m1, �

q 
si=1nsi = 2n1 + 1 for  i = 1, 2. 

(v4) For  aj1j10 < 0 and aj2j20 < 0, there is a ((2m1)
th LS, (2n1+1)th SI)-lower-saddle-

sink equilibrium as 

(aj1j11, aj2j21) = ((2m1)
th LS, (2n1+1)th SI)︸ ︷︷ ︸

((2m1),(2n1 + 1))-lower-saddle-sink 

(3.88) 

There are the following three ((2m1)
th LS,(2n1+1)th SI)-lower-saddle-sink appearing 

and switching bifurcations. 

(v4a) The  ((2m1)
th LS,(2n1+1)th SI)-lower-saddle-sink appearing bifurcation is from 

an (nF,SI)-negative sink flow to a (2m1) × (2n1 + 1) network as 

(ẋj1 , aj2j21)︸ ︷︷ ︸
(nF,SI)-negative sink flow

� ((2m1)
th LS,(2n1+1)th SI)︸ ︷︷ ︸

((2m1),(2n1 + 1))-lower-saddle-sink

�
2m1⋃
r=1 

2n1+1⋃
s=1 

(aj1j1r, aj2j2s)︸ ︷︷ ︸
XX 

(3.89) 

where 

2m1⋃
r=1 

2n1+1⋃
s=1 

(aj1j1r, aj2j2s)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

· · ·  (SI,SI)︸ ︷︷ ︸
sink 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

· · ·  (SI,SO)︸ ︷︷ ︸
saddle 

... 
... · · · ... 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

· · ·  (SI,SI)︸ ︷︷ ︸
sink 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2n1+1)×(2m1) 

. (3.90) 

(v4b) The  ((2m1)
th LS, (2n1+1)th SI)-lower-saddle-sink appearing bifurcation is from 

q1 × p1 to q2 × p2 equilibrium networks as 

p1⋃
r1=1 

q1⋃
s1=1 

(aj1j1r1 , aj2j2s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� ((2m1)
th LS,(2n1+1)th SI)︸ ︷︷ ︸

((2m1),(2n1 + 1))-lower-saddle-sink

�
p2⋃

r2=1 

q2⋃
s2=1 

(aj1j1r2 , aj2j2s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX 

(3.91) 

where
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2m1 − 
p1∑

r1=1 

m(1) 
r1 = 2 

l1∑
s=1 

ms 

with l1-quadratic polynomials without real roots 

and sth-quadratic polynomial with power ms, 

2n1 + 1 − 
q1∑

s1=1 

n(1) 
s1 = 2 

l2∑
l=1 

nl 

with l2-quadraitc polynomials without real roots 

and lth-quadratic polynomial with power nl; 
p2∑

r2=1 

m(2) 
r2 = 2m1, 

q2∑
s2=1 

n(2) 
s2 = 2n1 + 1; for i = 1, 2, 

((m(i) 
pi )

th XX,(n(i) 
qi )

th XX)︸ ︷︷ ︸
(m(i) 

pi ,n
(i) 
qi )-XX 

∈ 

⎧⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
pi1+1)th SI,(2n(i) 

qi1 + 1)th SI)︸ ︷︷ ︸
((2m(i) 

pi 1
+1),(2n(i) 

qi 1
+1))-sink 

, ((2m(i) 
pi1)

th LS,(2n(i) 
qi1)

th LS)︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

qi 1
))-double-saddle 

, 

((2m(i) 
pi1)

th LS,(2n(i) 
qi1 + 1)th SI)︸ ︷︷ ︸

((2m(i) 
pi 1

),(2n(i) 
qi 1

+1))-lower-saddle-sink 

, ((2m(i) 
pi1+1)th SI,(2n(i) 

qi1)
th LS)︸ ︷︷ ︸

((2m(i) 
pi 1

+1),(2n(i) 
qi 1

))-lower-saddle-sink 

⎫⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

, 

((m(i) 
pi )

th XX,(n(i) 
1 )

th XX)︸ ︷︷ ︸
(m(i) 

pi ,n
(i) 
1 )-XX 

∈ 

⎧⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
pi1+1)th SI,(2n(i) 

11 + 1)th SI)︸ ︷︷ ︸
((2m(i) 

pi 1
+1),(2n(i) 

11+1))-sink 

, ((2m(i) 
pi1)

th LS,(2n(i) 
11)

th US)︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

11 ))-double-saddle 

, 

((2m(i) 
pi1)

th LS,(2n(i) 
11 + 1)th SI)︸ ︷︷ ︸

((2m(i) 
pi 1

),(2n(i) 
11+1))-lower-saddle-sink 

, ((2m(i) 
pi1+1)th SI,(2n(i) 

11)
th US)︸ ︷︷ ︸

((2m(i) 
pi 1

+1),(2n(i) 
11 ))-upper-saddle-sink 

⎫⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
1 )

th XX,(n(i) 
qi )

th XX)︸ ︷︷ ︸
(m(i) 

1 ,n
(i) 
qi )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
11+1)th SO,(2n(i) 

qi1 + 1)th SI)︸ ︷︷ ︸
((2m(i) 

11+1),(2n(i) 
qi 1

+1))-saddle 

, ((2m(i) 
11)

th LS,(2n(i) 
qi1)

th LS)︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
qi 1

))-double-saddle 

, 

((2m(i) 
11)

th LS,(2n(i) 
qi1 + 1)th SI)︸ ︷︷ ︸

((2m(i) 
11 ),(2n

(i) 
qi 1

+1))-lower-saddle-sink 

, ((2m(i) 
11+1)th SO,(2n(i) 

qi1)
th LS)︸ ︷︷ ︸

((2m(i) 
11+1),(2n(i) 

qi 1
))-lower-saddle-source 

⎫ 
⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

;
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((m(i) 
1 )

th XX,(n(i) 
1 )

th XX)︸ ︷︷ ︸
(m(i) 

1 ,n
(i) 
1 )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

((2m(i) 
11+1)th SO,(2n(i) 

11 + 1)th SI)︸ ︷︷ ︸
((2m(i) 

11+1),(2n(i) 
11+1))-saddle 

, ((2m(i) 
11)

th LS,(2n(i) 
11)

th US)︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
11 ))-double-saddle 

, 

((2m(i) 
11)

th LS,(2n(i) 
11 + 1)th SI)︸ ︷︷ ︸

((2m(i) 
11 ),(2n

(i) 
11+1))-lower-saddle-sink 

, ((2m(i) 
11+1)th SO,(2n(i) 

11)
th US)︸ ︷︷ ︸

((2m(i) 
11+1),(2n(i) 

11 ))-upper-saddle-source 

⎫ 
⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎭ 

. (3.92) 

(v4c) The  ((2m1)
th LS, (2n1+1)th SI)-lower-saddle-sink switching bifurcation is for 

two q × p equilibrium networks as 

p⋃
r1=1 

q⋃
s1=1 

(aj1j1r1 , aj2j2s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� ((2m1)
th LS,(2n1+1)th SI)︸ ︷︷ ︸

((2m1),(2n1 + 1))-lower-saddle-sink

�
p⋃

r2=1 

q⋃
s2=1 

(aj1j1r2 , aj2j2s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX 

(3.93) 

where �
p 
ri=1mri = 2m1, �

q 
si=1nsi = 2n1 + 1 for  i = 1, 2. 

(vi) For m = 2m1 + 1 and n = 2n1, the equilibrium of (x∗
j1 , x

∗
j2 ) = (aj1j11, aj2j21) has 

the following properties. 

(vi1) For  aj1j10 > 0 and aj2j20 > 0, there is a ((2m1+1)th SO,(2n1)
th US)-upper-saddle-

source equilibrium as 

(aj1j11, aj2j21) = ((2m1+1)th SO,(2n1)
th US)︸ ︷︷ ︸

((2m1+1),(2n1))-upper-saddle-source 

. (3.94) 

There are three following ((2m1+1)th SO,(2n1)
th US)-upper-saddle-source appearing 

and switching bifurcations. 

(vi1a) The  ((2m1+1)th SO,(2n1)
th US)-upper-saddle-source appearing bifurcation is 

from an (SO,pF)-positive source flow to a (2m1 + 1) × (2n1)-equilibrium network 
as 

(aj1j11, ̇xj2 )︸ ︷︷ ︸
(SO,pF)-positive source flow 

⇒ ((2m1+1)th SO,(2n1)
th US)︸ ︷︷ ︸

((2m1+1),(2n1))-upper-saddle-source 

⇒ 
2m1+1⋃
r=1 

2n1⋃
s=1 

(aj1j1r, aj2j2s)︸ ︷︷ ︸
XX 

(3.95) 

where
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2m1+1⋃
r=1 

2n1⋃
s=1 

(aj1j1r, aj2j2s)︸ ︷︷ ︸
XX 

= 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

· · ·  (SO,SO)︸ ︷︷ ︸
source 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

· · ·  (SO,SI)︸ ︷︷ ︸
saddle 

... 
... 

... 
... 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

· · ·  (SO,SI)︸ ︷︷ ︸
saddle 

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2n1)×(2m1+1) 

. (3.96) 

(vi1b) The  ((2m1+1)th SO, (2n1)
th US)-upper-sadddle-source appearing bifurcation is 

from a q1 × p1 to q2 × p2 equilibrium network as 

p1⋃
r1=1 

q1⋃
s1=1 

(aj1j1r1 , aj2j2s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� ((2m1+1)th SO,(2n1)
th US)︸ ︷︷ ︸

((2m1+1),(2n1))-upper-saddle-source

�
p2⋃

r2=1 

q2⋃
s2=1 

(aj1j1r2 , aj2j2s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX 

(3.97) 

where 

2m1 + 1 − 
p1∑

r1=1 

m(1) 
r1 = 2 

l1∑
s=1 

ms 

with l1-quadratic polynomials without real roots 

and sth-quadratic polynomial with power ms, 

2n1 − 
q1∑

s1=1 

n(1) 
s1 = 2 

l2∑
l=1 

nl 

with l2-quadraitc polynomials without real roots 

and lth-quadratic polynomial with power nl; 
p2∑

r2=1 

m(2) 
r2 = 2m1 + 1, 

q2∑
s2=1 

n(2) 
s2 = 2n1; for i = 1, 2,
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((m(i) 
pi )

th XX,(n(i) 
qi )

th XX)︸ ︷︷ ︸
(m(i) 

pi ,n
(i) 
qi )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
pi1+1)th SO,(2n(i) 

qi1 + 1)th SO)︸ ︷︷ ︸
((2m(i) 

pi 1
+1),(2n(i) 

qi 1
+1))-source 

, ((2m(i) 
pi1)

th US,(2n(i) 
qi1)

th US)︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

qi 1
))-double-saddle 

, 

((2m(i) 
pi1)

th US,(2n(i) 
qi1 + 1)th SO)︸ ︷︷ ︸

((2m(i) 
pi 1

),(2n(i) 
qi 1

+1))-upper-saddle-source 

, ((2m(i) 
pi1+1)th SO,(2n(i) 

qi1)
th US)︸ ︷︷ ︸

((2m(i) 
pi 1

+1),(2n(i) 
qi 1

))-upper-saddle-source 

⎫ 
⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
pi )

th XX,(n(i) 
1 )

th XX)︸ ︷︷ ︸
(m(i) 

pi ,n
(i) 
1 )-XX 

∈ 

⎧⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
pi1+1)th SO,(2n(i) 

11 + 1)th SI)︸ ︷︷ ︸
((2m(i) 

pi 1
+1),(2n(i) 

11+1))-saddle 

, ((2m(i) 
pi1)

th US,(2n(i) 
11)

th US)︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

11 ))-double-saddle 

, 

((2m(i) 
pi1)

th US,(2n(i) 
11 + 1)th SI)︸ ︷︷ ︸

((2m(i) 
pi 1

),(2n(i) 
11+1))-upper-saddle-sink 

, ((2m(i) 
pi1+1)th SO,(2n(i) 

11)
th US)︸ ︷︷ ︸

((2m(i) 
pi 1

+1),(2n(i) 
11 ))-upper-saddle-source 

⎫⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
1 )

th XX,(n(i) 
qi )

th XX)︸ ︷︷ ︸
(m(i) 

1 ,n
(i) 
qi )-XX 

∈ 

⎧⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
11+1)th SO,(2n(i) 

qi1 + 1)th SO)︸ ︷︷ ︸
((2m(i) 

11+1),(2n(i) 
qi 1

+1))-source 

, ((2m(i) 
11)

th LS,(2n(i) 
qi1)

th US)︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
qi 1

))-double-saddle 

, 

((2m(i) 
11)

th LS,(2n(i) 
qi1 + 1)th SO)︸ ︷︷ ︸

((2m(i) 
11 ),(2n

(i) 
qi 1

+1))-lower-saddle-source 

, ((2m(i) 
11+1)th SO,(2n(i) 

qi1)
th US)︸ ︷︷ ︸

((2m(i) 
11+1),(2n(i) 

qi 1
))-upper-saddle-source 

⎫⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
1 )

th XX,(n(i) 
1 )

th XX)︸ ︷︷ ︸
(m(i) 

1 ,n
(i) 
1 )-XX 

∈ 

⎧⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

((2m(i) 
11+1)th SO,(2n(i) 

11 + 1)th SI)︸ ︷︷ ︸
((2m(i) 

11+1),(2n(i) 
11+1))-saddle 

, ((2m(i) 
11)

th LS,(2n(i) 
11)

th US)︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
11 ))-double-saddle 

, 

((2m(i) 
11)

th LS,(2n(i) 
11 + 1)th SI)︸ ︷︷ ︸

((2m(i) 
11 ),(2n

(i) 
11+1))-lower-saddle-sink 

, ((2m(i) 
11+1)th SO,(2n(i) 

11)
th US)︸ ︷︷ ︸

((2m(i) 
11+1),(2n(i) 

11 ))-upper-saddle-source 

⎫⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎭ 

. (3.98) 

(vi1c) The  ((2m1+1)th SO, (2n1)
th US)-upper-saddle-source switching bifurcation is 

for the switching of two q × p equilibrium networks as 

p⋃
r1=1 

q⋃
s1=1 

(aj1j1r1 , aj2j2s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� ((2m1+1)th SO,(2n1)
th US)︸ ︷︷ ︸

((2m1+1),(2n1))-upper-saddle-source
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�
p⋃

r2=1 

q⋃
s2=1 

(aj1j1r2 , aj2j2s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX 

(3.99) 

where �
p 
ri=1mri = 2m1 + 1, �q 

si=1nsi = 2n1 for i = 1, 2. 

(vi2) For  aj1j10 < 0 and aj2j20 > 0, there is a ((2m1+1)th SI, (2n1)
th US)-upper-saddle-

sink equilibrium as 

(aj1j11, aj2j21) = ((2m1+1)th SI,(2n1)
th US)︸ ︷︷ ︸

((2m1+1),(2n1))-upper-saddle-sink 

. (3.100) 

There are the following three ((2m1+1)th SI, (2n1)
th US)-upper-saddle-sink appearing 

and switching bifurcations. 

(vi2a) The  ((2m1+1)th SI, (2n1)
th US)-upper-saddle-sink appearing bifurcation is 

from an (SI,pF)-positive sink flow to a (2m1 + 1) × (2n1) network as 

(aj1j11, ̇xj2 )︸ ︷︷ ︸
(SI,pF)-positive sink flow

� ((2m1+1)th SI,(2n1)
th US)︸ ︷︷ ︸

((2m1+1),(2n1))-upper-saddle-sink

�
2m1+1⋃
r=1 

2n1⋃
s=1 

(aj1j1r, aj2j2s)︸ ︷︷ ︸
XX 

(3.101) 

where 

2m1+1⋃
r=1 

2n1⋃
s=1 

(aj1j1r, aj2j2s)︸ ︷︷ ︸
XX 

= 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

· · ·  (SI,SO)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

· · ·  (SI,SI)︸ ︷︷ ︸
sink 

... 
... 

... 
... 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

· · ·  (SI,SI)︸ ︷︷ ︸
sink 

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2n1)×(2m1+1) 

. (3.102) 

(vi2b) The  ((2m1+1)th SI, (2n1)
th US)-upper-saddle-sink appearing bifurcation is 

from q1 × p1 to q2 × p2 equilibrium networks as 

p1⋃
r1=1 

q1⋃
s1=1 

(aj1j1r1 , aj2j2s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )−XX

� ((2m1+1)th SI,(2n1)
th US)︸ ︷︷ ︸

((2m1+1),(2n1))-upper-saddle-sink

�
p2⋃

r2=1 

q2⋃
s2=1 

(aj1j1r2 , aj2j2s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )−XX 

(3.103) 

where
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2m1 + 1 − 
p1∑

r1=1 

m(1) 
r1 = 2 

l1∑
s=1 

ms 

with l1-quadratic polynomials without real roots 

and sth-quadratic polynomial with power ms, 

2n1 − 
q1∑

s1=1 

n(1) 
s1 = 2 

l2∑
l=1 

nl 

with l2-quadraitc polynomials without real roots 

and lth-quadratic polynomial with power nl; 
p2∑

r2=1 

m(2) 
r2 = 2m1 + 1, 

q2∑
s2=1 

n(2) 
s2 = 2n1; for i = 1, 2, 

((m(i) 
pi )

th XX,(n(i) 
qi )

th XX)︸ ︷︷ ︸
(m(i) 

pi ,n
(i) 
qi )-XX 

∈ 

⎧⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
pi1+1)th SI,(2n(i) 

qi1 + 1)th SO)︸ ︷︷ ︸
((2m(i) 

pi 1
+1),(2n(i) 

qi 1
+1))-saddle 

, ((2m(i) 
pi1)

th LS,(2n(i) 
qi1)

th US)︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

qi 1
))-double-saddle 

, 

((2m(i) 
pi1)

th LS,(2n(i) 
qi1 + 1)th SO)︸ ︷︷ ︸

((2m(i) 
pi 1

),(2n(i) 
qi 1

+1))-lower-saddle-source 

, ((2m(i) 
pi1+1)th SI,(2n(i) 

qi1)
th US)︸ ︷︷ ︸

((2m(i) 
pi 1

+1),(2n(i) 
qi 1

))-upper-saddle-sink 

⎫⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
pi )

th XX,(n(i) 
1 )

th XX)︸ ︷︷ ︸
(m(i) 

pi ,n
(i) 
1 )-XX 

∈ 

⎧⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
pi1+1)th SI,(2n(i) 

11 + 1)th SI)︸ ︷︷ ︸
((2m(i) 

pi 1
+1),(2n(i) 

11+1))-sink 

, ((2m(i) 
pi1)

th LS,(2n(i) 
11)

th US)︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

11 ))-double-saddle 

, 

((2m(i) 
pi1)

th LS,(2n(i) 
11 + 1)th SI)︸ ︷︷ ︸

((2m(i) 
pi 1

),(2n(i) 
11+1))-lower-saddle-sink 

, ((2m(i) 
pi1+1)th SI,(2n(i) 

11)
th US)︸ ︷︷ ︸

((2m(i) 
pi 1

+1),(2n(i) 
11 ))-upper-saddle-sink 

⎫⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
1 )

th XX,(n(i) 
qi )

th XX)︸ ︷︷ ︸
(m(i) 

1 ,n
(i) 
qi )-XX 

∈ 

⎧⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
11+1)th SI,(2n(i) 

qi1 + 1)th SO)︸ ︷︷ ︸
((2m(i) 

11+1),(2n(i) 
qi 1

+1))-saddle 

, ((2m(i) 
11)

th US,(2n(i) 
qi1)

th US)︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
qi 1

))-double-saddle 

, 

((2m(i) 
11)

th US,(2n(i) 
qi1 + 1)th SO)︸ ︷︷ ︸

((2m(i) 
11 ),(2n

(i) 
qi 1

+1))-upper-saddle-source 

, ((2m(i) 
11+1)th SI,(2n(i) 

qi1)
th US)︸ ︷︷ ︸

((2m(i) 
11+1),(2n(i) 

qi 1
))-upper-saddle-sink 

⎫⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

;
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((m(i) 
1 )

th XX,(n(i) 
1 )

th XX)︸ ︷︷ ︸
(m(i) 

1 ,n
(i) 
1 )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

((2m(i) 
11+1)th SI,(2n(i) 

11 + 1)th SI)︸ ︷︷ ︸
((2m(i) 

11+1),(2n(i) 
11+1))-sink 

, ((2m(i) 
11)

th US,(2n(i) 
11)

th US)︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
11 ))-double-saddle 

, 

((2m(i) 
11)

th US,(2n(i) 
11 + 1)th SI)︸ ︷︷ ︸

((2m(i) 
11 ),(2n

(i) 
11+1))-upper-saddle-sink 

, ((2m(i) 
11+1)th SI,(2n(i) 

11)
th US)︸ ︷︷ ︸

((2m(i) 
11+1),(2n(i) 

11 ))-upper-saddle-sink 

⎫ 
⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎭ 

. (3.104) 

(vi2c) The  ((2m1+1)th SI, (2n1)
th US)-upper-saddle-sink switching bifurcation is for 

two q × p equilibrium networks as 

p⋃
r1=1 

q⋃
s1=1 

(aj1j1r1 , aj2j2s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� ((2m1+1)th SI,(2n1)
th US)︸ ︷︷ ︸

((2m1+1),(2n1))-upper-saddle-sink

�
p⋃

r2=1 

q⋃
s2=1 

(aj1j1r2 , aj2j2s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX 

(3.105) 

where �
p 
ri=1mri = 2m1 + 1, �q 

si=1nsi = 2n1 for i = 1, 2. 

(vi3) For  aj1j10 > 0 and aj2j20 < 0, there is a ((2m1+1)th SO, (2n1)
th LS)-lower-saddle-

source equilibrium as 

(aj1j11, aj2j21) = ((2m1+1)th SO,(2n1)
th LS)︸ ︷︷ ︸

((2m1+1),(2n1))-lower-saddle-source 

. (3.106) 

There are the following three ((2m1+1)th SO, (2n1)
th LS)-lower-saddle-source 

appearing and switching bifurcations. 

(vi3a) The  ((2m1+1)th SO, (2n1)
th LS)-lower-saddle-source appearing bifurcation is 

from an (SO,nF)-negative source flow to a (2m1 + 1) × (2n1)-equilibrium network 
as 

(aj1j11, ̇xj2 )︸ ︷︷ ︸
(SO,nF)-negative source flow

� ((2m1+1)th SO,(2n1)
th LS)︸ ︷︷ ︸

((2m1+1),(2n1))-lower-saddle-source

�
2m1+1⋃
r=1 

2n1⋃
s=1 

(aj1j1r, aj2j2s)︸ ︷︷ ︸
XX 

(3.107) 

where
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2m1+1⋃
r=1 

2n1⋃
r=1 

(aj1j1r, aj2j2s)︸ ︷︷ ︸
XX 

= 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

· · ·  (SO,SI)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

· · ·  (SO,SO)︸ ︷︷ ︸
source 

... 
... 

... 
... 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

· · ·  (SO,SO)︸ ︷︷ ︸
source 

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2n1)×(2m1+1) 

. (3.108) 

(vi3b) The  ((2m1+1)th SO, (2n1)
th LS)-lower-saddle-source appearing bifurcation is 

from a q1 × p1 to q2 × p2 equilibrium network as 

p1⋃
r1=1 

q1⋃
s1=1 

(aj1j1r1 , aj2j2s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� ((2m1+1)th SO,(2n1)
th LS)︸ ︷︷ ︸

((2m1+1),(2n1))-lower-saddle-source

�
p2⋃

r2=1 

q2⋃
s2=1 

(aj1j1r2 , aj2j2s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX 

(3.109) 

where 

2m1 + 1 − 
p1∑

r1=1 

m(1) 
r1 = 2 

l1∑
s=1 

ms 

with l1-quadratic polynomials without real roots 

and sth-quadratic polynomial with power ms, 

2n1 − 
q1∑

s1=1 

n(1) 
s1 = 2 

l2∑
l=1 

nl 

with l2-quadraitc polynomials without real roots 

and lth-quadratic polynomial with power nl; 
p2∑

r2=1 

m(2) 
r2 = 2m1 + 1, 

q2∑
s2=1 

n(2) 
s2 = 2n1; for i = 1, 2,
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((m(i) 
pi )

th XX,(n(i) 
qi )

th XX)︸ ︷︷ ︸
(m(i) 

pi ,n
(i) 
qi )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
pi1+1)th SO,(2n(i) 

qi1 + 1)th SI)︸ ︷︷ ︸
((2m(i) 

pi 1
+1),(2n(i) 

qi 1
+1))-saddle 

, ((2m(i) 
pi1)

th US,(2n(i) 
qi1)

th LS)︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

qi 1
))-double-saddle 

, 

((2m(i) 
pi1)

th US,(2n(i) 
qi1 + 1)th SI)︸ ︷︷ ︸

((2m(i) 
pi 1

),(2n(i) 
qi 1

+1))-upper-saddle-sink 

, ((2m(i) 
pi1+1)th SO,(2n(i) 

qi1)
th LS)︸ ︷︷ ︸

((2m(i) 
pi 1

+1),(2n(i) 
qi 1

))-lower-saddle-source 

⎫ 
⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
pi )

th XX,(n(i) 
1 )

th XX)︸ ︷︷ ︸
(m(i) 

pi ,n
(i) 
1 )-XX 

∈ 

⎧⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
pi1+1)th SO,(2n(i) 

11 + 1)th SO)︸ ︷︷ ︸
((2m(i) 

pi 1
+1),(2n(i) 

11+1))-source 

, ((2m(i) 
pi1)

th US,(2n(i) 
11)

th LS)︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

11 ))-double-saddle 

, 

((2m(i) 
pi1)

th US,(2n(i) 
11 + 1)th SO)︸ ︷︷ ︸

((2m(i) 
pi 1

),(2n(i) 
11+1))-upper-saddle-source 

, ((2m(i) 
pi1+1)th SO,(2n(i) 

11)
th LS)︸ ︷︷ ︸

((2m(i) 
pi 1

+1),(2n(i) 
11 ))-lower-saddle-source 

⎫⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
1 )

th XX,(n(i) 
qi )

th XX)︸ ︷︷ ︸
(m(i) 

1 ,n
(i) 
qi )-XX 

∈ 

⎧⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
11+1)th SO,(2n(i) 

qi1 + 1)th SI)︸ ︷︷ ︸
((2m(i) 

11+1),(2n(i) 
qi 1

+1))-saddle 

, ((2m(i) 
11)

th LS,(2n(i) 
qi1)

th LS)︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
qi 1

))-double-saddle 

, 

((2m(i) 
11)

th LS,(2n(i) 
qi1 + 1)th SI)︸ ︷︷ ︸

((2m(i) 
11 ),(2n

(i) 
qi 1

+1))-lower-saddle-sink 

, ((2m(i) 
11+1)th SO,(2n(i) 

qi1)
th LS)︸ ︷︷ ︸

((2m(i) 
11+1),(2n(i) 

qi 1
))-lower-saddle-source 

⎫⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
1 )

th XX,(n(i) 
1 )

th XX)︸ ︷︷ ︸
(m(i) 

1 ,n
(i) 
1 )-XX 

∈ 

⎧⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

((2m(i) 
11+1)th SO,(2n(i) 

11 + 1)th SO)︸ ︷︷ ︸
((2m(i) 

11+1),(2n(i) 
11+1))-source 

, ((2m(i) 
11)

th LS,(2n(i) 
11)

th LS)︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
11 ))-double-saddle 

, 

((2m(i) 
11)

th LS,(2n(i) 
11 + 1)th SO)︸ ︷︷ ︸

((2m(i) 
11 ),(2n

(i) 
11+1))-lower-saddle-source 

, ((2m(i) 
11+1)th SO,(2n(i) 

11)
th LS)︸ ︷︷ ︸

((2m(i) 
11+1),(2n(i) 

11 ))-lower-saddle-source 

⎫⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎭ 

. (3.110) 

(vi3c) The  ((2m1+1)th SO, (2n1)
th LS)-lower-saddle-source switching bifurcation is 

for the switching of two q × p equilibrium networks as 

p1⋃
r1=1 

q1⋃
s1=1 

(aj1j1r1 , aj2j2s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� ((2m1+1)th SO,(2n1)
th LS)︸ ︷︷ ︸

((2m1+1),(2n1)-lower-saddle-sink
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�
p2⋃

r2=1 

q2⋃
s2=1 

(aj1j1r2 , aj2j2s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX 

(3.111) 

where �
p 
ri=1mri = 2m1 + 1, �q 

si=1nsi = 2n1 for i = 1, 2. 

(vi4) For  aj1j10 < 0 and aj2j20 < 0, there is a ((2m1+1)th SI,(2n1)
th LS)-lower-saddle-

sink equilibrium as 

(aj1j11, aj2j21) = ((2m1+1)th SI, (2n1)
th LS)︸ ︷︷ ︸

((2m1+1),(2n1))-lower-saddle-sink 

. (3.112) 

There are the following three ((2m1+1)th SI,(2n1)
th LS)-lower-saddle-sink appearing 

and switching bifurcations. 

(vi4a) The  ((2m1+1)th SI,(2n1)
th LS)-lower-saddle-sink appearing bifurcation is from 

an (SI,nF)-negative sink flow to a (2m1 + 1) × (2n1) network as 

(aj1j11, ̇xj2 )︸ ︷︷ ︸
(SI,nF)-negative sink flow

� ((2m1+1)th SI,(2n1)
th LS)︸ ︷︷ ︸

((2m1+1),(2n1))-lower-saddle-sink

�
2m1+1⋃
r=1 

2n1⋃
s=1 

(aj1j1r, aj2j2s)︸ ︷︷ ︸
XX 

(3.113) 

where 

2m1+1⋃
r=1 

2n1⋃
s=1 

(aj1j1r, aj2j2s)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

· · ·  (SI,SI)︸ ︷︷ ︸
sink 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

· · ·  (SI,SO)︸ ︷︷ ︸
saddle 

... 
... 

... 
... 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

· · ·  (SI,SO)︸ ︷︷ ︸
saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2n1)×(2m1+1) 

. (3.114) 

(vi4b) The  ((2m1+1)th SI,(2n1)
th LS)-lower-saddle-sink appearing bifurcation is from 

q1 × p1 to q2 × p2 equilibrium networks as 

p1⋃
r1=1 

q1⋃
s1=1 

(aj1j1r1 , aj2j2s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� ((2m1+1)th SI,(2n1)
th LS)︸ ︷︷ ︸

((2m1+1),(2n1))-lower-saddle-sink

�
p2⋃

r2=1 

q2⋃
s2=1 

(aj1j1r2 , aj2j2s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX 

(3.115) 

where
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2m1 + 1 − 
p1∑

r1=1 

m(1) 
r1 = 2 

l1∑
s=1 

ms 

with l1-quadratic polynomials without real roots 

and sth-quadratic polynomial with power ms, 

2n1 − 
q1∑

s1=1 

n(1) 
s1 = 2 

l2∑
l=1 

nl 

with l2-quadraitc polynomials without real roots 

and lth-quadratic polynomial with power nl; 
p2∑

r2=1 

m(2) 
r2 = 2m1 + 1, 

q2∑
s2=1 

n(2) 
s2 = 2n1; for i = 1, 2, 

((m(i) 
pi )

th XX,(n(i) 
qi )

th XX)︸ ︷︷ ︸
(m(i) 

pi , n
(i) 
qi )-XX 

∈ 

⎧⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
pi1 + 1)th SI,(2n(i) 

qi1 + 1)th SI)︸ ︷︷ ︸
((2m(i) 

pi 1 
+ 1), (2n(i) 

qi 1
+1))-sink 

, ((2m(i) 
pi1)

th LS,(2n(i) 
qi1)

th LS)︸ ︷︷ ︸
((2m(i) 

pi 1
), (2n(i) 

qi 1
))-double-saddle 

, 

((2m(i) 
pi1)

th LS,(2n(i) 
qi1 + 1)th SI)︸ ︷︷ ︸

((2m(i) 
pi 1

), (2n(i) 
qi 1

+1))-lower-saddle-sink 

, ((2m(i) 
pi1 + 1)th SI,(2n(i) 

qi1)
th LS)︸ ︷︷ ︸

((2m(i) 
pi 1 

+ 1), (2n(i) 
qi 1

))-lower-saddle-sink 

⎫⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
pi )

th XX,(n(i) 
1 )

th XX)︸ ︷︷ ︸
(m(i) 

pi , n
(i) 
1 )-XX 

∈ 

⎧⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
pi1 + 1)th SI,(2n(i) 

11 + 1)th SO)︸ ︷︷ ︸
((2m(i) 

pi 1 
+ 1), (2n(i) 

11+1))-saddle 

, ((2m(i) 
pi1)

th LS,(2n(i) 
11)

th LS)︸ ︷︷ ︸
((2m(i) 

pi 1
), (2n(i) 

11 ))-double-saddle 

, 

((2m(i) 
pi1)

th LS,(2n(i) 
11 + 1)th SO)︸ ︷︷ ︸

((2m(i) 
pi 1

), (2n(i) 
11+1))-lower-saddle-source 

, ((2m(i) 
pi1 + 1)th SI,(2n(i) 

11)
th LS)︸ ︷︷ ︸

((2m(i) 
pi 1 

+ 1), (2n(i) 
11 ))-lower-saddle-sink 

⎫⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
1 )

th XX,(n(i) 
qi )

th XX)︸ ︷︷ ︸
(m(i) 

1 , n
(i) 
qi )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
11 + 1)th SI,(2n(i) 

qi1 + 1)th SI)︸ ︷︷ ︸
((2m(i) 

11 + 1), (2n
(i) 
qi 1

+1))-sink 

, ((2m(i) 
11)

th US,(2n(i) 
qi1)

th LS)︸ ︷︷ ︸
((2m(i) 

11 ), (2n
(i) 
qi 1

))-double-saddle 

, 

((2m(i) 
11)

th US,(2n(i) 
qi1 + 1)th SI)︸ ︷︷ ︸

((2m(i) 
11 ), (2n

(i) 
qi 1

+1))-upper-saddle-sink 

, ((2m(i) 
11 + 1)th SI,(2n(i) 

qi1)
th LS)︸ ︷︷ ︸

((2m(i) 
11 + 1), (2n

(i) 
qi 1

))-lower-saddle-sink 

⎫ 
⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

;
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((m(i) 
1 )

th XX,(n(i) 
1 )

th XX)︸ ︷︷ ︸
(m(i) 

1 , n
(i) 
1 )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

((2m(i) 
11 + 1)th SI,(2n(i) 

11 + 1)th SO)︸ ︷︷ ︸
((2m(i) 

11 + 1), (2n
(i) 
11+1))-saddle 

, ((2m(i) 
11)

th US,(2n(i) 
11)

th LS)︸ ︷︷ ︸
((2m(i) 

11 ), (2n
(i) 
11 ))-double-saddle 

, 

((2m(i) 
11)

th US,(2n(i) 
11 + 1)th SO)︸ ︷︷ ︸

((2m(i) 
11 ), (2n

(i) 
11+1))-upper-saddle-source 

, ((2m(i) 
11 + 1)th SI,(2n(i) 

11)
th LS)︸ ︷︷ ︸

((2m(i) 
11 + 1), (2n

(i) 
11 ))-lower-saddle-sink 

⎫ 
⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎭ 

. (3.116) 

(vi4c) The  ((2m1+1)th SI,(2n1)
th LS)-lower-saddle-sink switching bifurcation is for 

two q × p equilibrium networks as 

p⋃
r1=1 

q⋃
s1=1 

(aj1j1r1 , aj2j2s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� ((2m1+1)th SI,(2n1)
th LS)︸ ︷︷ ︸

((2m1+1),(2n1))-lower-saddle-sink

�
p⋃

r2=1 

q⋃
s2=1 

(aj1j1r2 , aj2j2s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX 

(3.117) 

where �
p 
ri=1mri = 2m1 + 1, �q 

si=1nsi = 2n1 for i = 1, 2. 

(vii) For m = 2m1 and n = 2n1, the equilibrium of (x∗
j1 , x

∗
j2 ) = (aj1j11, aj2j21) has the 

following properties. 

(vii1) For  aj1j10 > 0 and aj2j20 > 0, there is a ((2m1)
thUS,(2n1)

th US)-double-saddle 
equilibrium as 

(aj1j11, aj2j21) = ((2m1)
th US,(2n1)

th US)︸ ︷︷ ︸
((2m1),(2n1))-double-saddle 

. (3.118) 

There are three following ((2m1)
th US,(2n1)

th US)-double-saddle appearing and 
switching bifurcations. 

(vii1a) The  ((2m1)
th US, (2n1)

th US)-double-saddle appearing bifurcation is from a 
(pF,pF)-positive flow to a (2m1) × (2n1)-equilibrium network as 

(ẋj1 , ̇xj2 )︸ ︷︷ ︸
(pF,pF)-flow

� ((2m1)
th US,(2n1)

th US)︸ ︷︷ ︸
((2m1),(2n1))-double-saddle

�
2m1⋃
r=1 

2n1⋃
s=1 

(aj1j1r, aj2j2s)︸ ︷︷ ︸
XX 

(3.119)
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where 

2m1⋃
r=1 

2n1⋃
s=1 

(aj1j1r, aj2j2s)︸ ︷︷ ︸
XX 

= 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

· · ·  (SO,SO)︸ ︷︷ ︸
source 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

· · ·  (SO,SI)︸ ︷︷ ︸
saddle 

... 
... 

... 
... 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

· · ·  (SO,SI)︸ ︷︷ ︸
saddle 

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2n1)×(2m1) 

. (3.120) 

(vii1b) The  ((2m1)
th US, (2n1)

th US)-double-saddle appearing bifurcation is from a 
q1 × p1 to q2 × p2 equilibrium network as 

p1⋃
r1=1 

q1⋃
s1=1 

(aj1j1r1 , aj2j2s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� ((2m1)
th US,(2n1)

th US)︸ ︷︷ ︸
((2m1),(2n1))-double-saddle

�
p2⋃

r2=1 

q2⋃
s2=1 

(aj1j1r2 , aj2j2s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX 

(3.121) 

where 

2m1 − 
p1∑

r1=1 

m(1) 
r1 = 2 

l1∑
s=1 

ms 

with l1-quadratic polynomials without real roots 

and sth-quadratic polynomial with power ms, 

2n1 − 
q1∑

s1=1 

n(1) 
s1 = 2 

l2∑
l=1 

nl 

with l2-quadraitc polynomials without real roots 

and lth-quadratic polynomial with power nl; 
p2∑

r2=1 

m(2) 
r2 = 2m1, 

q2∑
s2=1 

n(2) 
s2 = 2n1; for i = 1, 2,
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((m(i) 
pi )

th XX,(n(i) 
qi )

th XX)︸ ︷︷ ︸
(m(i) 

pi ,n
(i) 
qi )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
pi1+1)th SO,(2n(i) 

qi1 + 1)th SO)︸ ︷︷ ︸
((2m(i) 

pi 1
+1),(2n(i) 

qi 1
+1))-source 

, ((2m(i) 
pi1)

th US,(2n(i) 
qi1)

th US)︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

qi 1
))-double-saddle 

, 

((2m(i) 
pi1)

th US,(2n(i) 
qi1 + 1)th SO)︸ ︷︷ ︸

((2m(i) 
pi 1

),(2n(i) 
qi 1

+1))-upper-saddle-source 

, ((2m(i) 
pi1+1)th SO,(2n(i) 

qi1)
th US)︸ ︷︷ ︸

((2m(i) 
pi 1

+1),(2n(i) 
qi 1

))-upper-saddle-source 

⎫ 
⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
pi )

th XX,(n(i) 
1 )

th XX)︸ ︷︷ ︸
(m(i) 

pi ,n
(i) 
1 )-XX 

∈ 

⎧⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
pi1+1)th SO,(2n(i) 

11 + 1)th SI)︸ ︷︷ ︸
((2m(i) 

pi 1
+1),(2n(i) 

11+1))-saddle 

, ((2m(i) 
pi1)

th US,(2n(i) 
11)

th US)︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

11 ))-double-saddle 

, 

((2m(i) 
pi1)

th US,(2n(i) 
11 + 1)th SI)︸ ︷︷ ︸

((2m(i) 
pi 1

),(2n(i) 
11+1))-upper-saddle-sink 

, ((2m(i) 
pi1+1)th SO,(2n(i) 

11)
th US)︸ ︷︷ ︸

((m(i) 
pi 1

+1),(2n(i) 
11 ))-upper-saddle-source 

⎫⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
1 )

th XX,(n(i) 
qi )

th XX)︸ ︷︷ ︸
(m(i) 

1 ,n
(i) 
qi )-XX 

∈ 

⎧⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
11+1)th SI,(2n(i) 

qi1 + 1)th SO)︸ ︷︷ ︸
((2m(i) 

11+1),(2n(i) 
qi 1

+1))-saddle 

, ((2m(i) 
11)

th US,(2n(i) 
qi1)

th US)︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
qi 1

))-double-saddle 

, 

((2m(i) 
11)

th US,(2n(i) 
qi1 + 1)th SO)︸ ︷︷ ︸

((2m(i) 
11 ),(2n

(i) 
qi 1

+1))-upper-saddle-source 

, ((2m(i) 
11+1)th SI,(2n(i) 

qi1)
th US)︸ ︷︷ ︸

((2m(i) 
11+1),(2n(i) 

qi 1
))-upper-saddle-sink 

⎫⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
1 )

th XX,(n(i) 
1 )

th XX)︸ ︷︷ ︸
(m(i) 

1 ,n
(i) 
1 )-XX 

∈ 

⎧⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

((2m(i) 
11+1)th SI,(2n(i) 

11 + 1)th SI)︸ ︷︷ ︸
((2m(i) 

11+1),(2n(i) 
11+1))-sink 

, ((2m(i) 
11)

th US,(2n(i) 
11)

th US)︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
11 ))-double-saddle 

, 

((2m(i) 
11)

th US,(2n(i) 
11 + 1)th SI)︸ ︷︷ ︸

((2m(i) 
11 ),(2n

(i) 
11+1))-upper-saddle-sink 

, ((2m(i) 
11+1)th SI,(2n(i) 

11)
th US)︸ ︷︷ ︸

((2m(i) 
11+1),(2n(i) 

11 ))-upper-saddle-sink 

⎫⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎭ 

. (3.122) 

(vii1c) The  ((2m1)
th US, (2n1)

th US)-double-saddle switching bifurcation is for the 
switching of two q × p equilibrium networks as 

p⋃
r1=1 

q⋃
s1=1 

(aj1j1r1 , aj2j2s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )−XX

� ((2m1)
th US,(2n1)

th US)︸ ︷︷ ︸
((2m1),(2n1))-double-saddle
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�
p⋃

r2=1 

q⋃
s2=1 

(aj1j1r2 , aj2j2s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )−XX 

(3.123) 

where �
p 
ri=1mri = 2m1, �

q 
si=1nsi = 2n1 for i = 1, 2. 

(vii2) For  aj1j10 < 0 and aj2j20 > 0, there is a ((2m1)
th LS, (2n1)

th US)-double-saddle 
equilibrium as 

(aj1j11, aj2j21) = ((2m1)
th LS,(2n1)

th US)︸ ︷︷ ︸
((2m1),(2n1))-double-saddle 

. (3.124) 

There are the following three ((2m1)
th LS, (2n1)

th US)-double-saddle appearing and 
switching bifurcations. 

(vii2a) The  ((2m1)
th LS, (2n1)

th US)-double-saddle appearing bifurcation is from an 
(nF,pF)-flow to a (2m1) × (2n1) network as 

(ẋj1 , ̇xj2 )︸ ︷︷ ︸
(nF,pF)-flow

� ((2m1)
th LS,(2n1)

th US)︸ ︷︷ ︸
((2m1),(2n1))-double-saddle

�
2m1⋃
r=1 

2n1⋃
s=1 

(aj1j1r, aj2j2s)︸ ︷︷ ︸
XX 

(3.125) 

where 

2m1⋃
r=1 

2n1⋃
s=1 

(aj1j1r, aj2j2s)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

· · ·  (SI,SO)︸ ︷︷ ︸
saddle 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

· · ·  (SI,SI)︸ ︷︷ ︸
sink 

... 
... 

... 
... 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

· · ·  (SI,SI)︸ ︷︷ ︸
sink 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2n1)×(2m1) 

. (3.126) 

(vii2b) The  ((2m1)
th LS, (2n1)

th US)-double-saddle appearing bifurcation is from q1× 
p1 to q2 × p2 equilibrium networks as 

p1⋃
r1=1 

q1⋃
s1=1 

(aj1j1r1 , aj2j2s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� ((2m1)
th LS,(2n1)

th US)︸ ︷︷ ︸
((2m1),(2n1))-double-saddle

�
p2⋃

r2=1 

q2⋃
s2=1 

(aj1j1r2 , aj2j2s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX 

(3.127) 

where
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2m1 − 
p1∑

r1=1 

m(1) 
r1 = 2 

l1∑
s=1 

ms 

with l1-quadratic polynomials without real roots 

and sth-quadratic polynomial with power ms, 

2n1 − 
q1∑

s1=1 

n(1) 
s1 = 2 

l2∑
l=1 

nl 

with l2-quadraitc polynomials without real roots 

and lth-quadratic polynomial with power nl ; 
p2∑

r2=1 

m(2) 
r2 = 2m1, 

q2∑
s2=1 

n(2) 
s2 = 2n1; for i = 1, 2, 

((m(i) 
pi )

th XX,(n(i) 
qi )

th XX)︸ ︷︷ ︸
(m(i) 

pi , n
(i) 
qi )-XX 

∈ 

⎧⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
pi1 + 1)th SI,(2n(i) 

qi1 + 1)th SO)︸ ︷︷ ︸
((2m(i) 

pi 1 
+ 1), (2n(i) 

qi 1
+1))-saddle 

, ((2m(i) 
pi1)

th LS,(2n(i) 
qi1)

th US)︸ ︷︷ ︸
((2m(i) 

pi 1
), (2n(i) 

qi 1
))-double-saddle 

, 

((2m(i) 
pi1)

th LS,(2n(i) 
qi1 + 1)th SO)︸ ︷︷ ︸

((2m(i) 
pi 1

), (2n(i) 
qi 1

+1))-lower-saddle-source 

, ((2m(i) 
pi1 + 1)th SI,(2n(i) 

qi1)
th US)︸ ︷︷ ︸

((2m(i) 
pi 1 

+ 1), (2n(i) 
qi 1

))-upper-saddle-sink 

⎫⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
pi )

th XX,(n(i) 
1 )

th XX)︸ ︷︷ ︸
(m(i) 

pi , n
(i) 
1 )-XX 

∈ 

⎧⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
pi1 + 1)th SI,(2n(i) 

11 + 1)th SI)︸ ︷︷ ︸
((2m(i) 

pi 1 
+ 1), (2n(i) 

11+1))-sink 

, ((2m(i) 
pi1)

th LS,(2n(i) 
11)

th US)︸ ︷︷ ︸
((2m(i) 

pi 1
), (2n(i) 

11 ))-double-saddle 

, 

((2m(i) 
pi1)

th LS,(2n(i) 
11 + 1)th SI)︸ ︷︷ ︸

((2m(i) 
pi 1

), (2n(i) 
11+1))-lower-saddle-sink 

, ((2m(i) 
pi1 + 1)th SI,(2n(i) 

11)
th US)︸ ︷︷ ︸

((2m(i) 
pi 1 

+ 1), (2n(i) 
11 ))-upper-saddle-sink 

⎫⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
1 )

th XX,(n(i) 
qi )

th XX)︸ ︷︷ ︸
(m(i) 

1 , n
(i) 
qi )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
11 + 1)th SO,(2n(i) 

qi1 + 1)th SO)︸ ︷︷ ︸
((2m(i) 

11 + 1), (2n
(i) 
qi 1

+1))-source 

, ((2m(i) 
11)

th LS,(2n(i) 
qi1)

th US)︸ ︷︷ ︸
((2m(i) 

11 ), (2n
(i) 
qi 1

))-double-saddle 

, 

((2m(i) 
11)

th LS,(2n(i) 
qi1 + 1)th SO)︸ ︷︷ ︸

((2m(i) 
11 ), (2n

(i) 
qi 1

+1))-lower-saddle-source 

, ((2m(i) 
11 + 1)th SO,(2n(i) 

qi1)
th US)︸ ︷︷ ︸

((2m(i) 
11 + 1), (2n

(i) 
qi 1

))-upper-saddle-source 

⎫ 
⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

;
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((m(i) 
1 )

th XX,(n(i) 
1 )

th XX)︸ ︷︷ ︸
(m(i) 

1 , n
(i) 
1 )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

((2m(i) 
11 + 1)th SO,(2n(i) 

11 + 1)th SI)︸ ︷︷ ︸
((2m(i) 

11 + 1), (2n
(i) 
11+1))-saddle 

, ((2m(i) 
11)

th LS,(2n(i) 
11)

th US)︸ ︷︷ ︸
((2m(i) 

11 ), (2n
(i) 
11 ))-double-saddle 

, 

((2m(i) 
11)

th LS,(2n(i) 
11 + 1)th SI)︸ ︷︷ ︸

((2m(i) 
11 ), (2n

(i) 
11+1))-lower-saddle-sink 

, ((2m(i) 
11 + 1)th SO,(2n(i) 

11)
th US)︸ ︷︷ ︸

((2m(i) 
11 + 1), (2n

(i) 
11 ))-upper-saddle-source 

⎫ 
⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎭ 

. (3.128) 

(vii2c) The  ((2m1)
th LS, (2n1)

th US)-double-saddle switching bifurcation is for two 
q × p equilibrium networks as 

p⋃
r1=1 

q⋃
s1=1 

(aj1j1r1 , aj2j2s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� ((2m1)
th LS,(2n1)

th US)︸ ︷︷ ︸
((2m1),(2n1))-double-saddle

�
p⋃

r2=1 

q⋃
s2=1 

(aj1j1r2 , aj2j2s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX 

(3.129) 

where �
p 
ri=1mri = 2m1, �

q 
si=1nsi = 2n1 for i = 1, 2. 

(vii3) For  aj1j10 > 0 and aj2j20 < 0, there is a ((2m1)
th US, (2n1)

th LS) -double-saddle 
equilibrium as 

(aj1j11, aj2j21) = ((2m1)
th US,(2n1)

th LS)︸ ︷︷ ︸
((2m1),(2n1))-double-saddle 

. (3.130) 

There are the following three ((2m1)
th US, (2n1)

th LS)-double-saddle appearing and 
switching bifurcations. 

(vii3a) The  ((2m1)
th US, (2n1)

th LS)-double-saddle appearing bifurcation is from an 
(pF,nF)-flow to a (2m1) × (2n1)-equilibrium network as 

(ẋj1 , ̇xj2 )︸ ︷︷ ︸
(pF,nF)-flow

� ((2m1)
th US,(2n1)

th LS)︸ ︷︷ ︸
((2m1),(2n1))-double-saddle

�
2m1⋃
r=1 

2n1⋃
s=1 

(aj1j1r, aj2j2s)︸ ︷︷ ︸
XX 

(3.131) 

where
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2m1⋃
r=1 

2n1⋃
s=1 

(aj1j1r, aj2j2s)︸ ︷︷ ︸
XX 

= 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

· · ·  (SO,SI)︸ ︷︷ ︸
saddle 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

· · ·  (SO,SO)︸ ︷︷ ︸
source 

... 
... 

... 
... 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

· · ·  (SO,SO)︸ ︷︷ ︸
source 

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2n1)×(2m1) 

. (3.132) 

(vii3b) The  ((2m1)
th US, (2n1)

th LS)-double-saddle appearing bifurcation is from a 
q1 × p1 to q2 × p2 equilibrium network as 

p1⋃
r1=1 

q1⋃
s1=1 

(aj1j1r1 , aj2j2s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� ((2m1)
th US,(2n1)

th LS)︸ ︷︷ ︸
((2m1),(2n1))-double-saddle

�
p2⋃

r2=1 

q2⋃
s2=1 

(aj1j1r2 , aj2j2s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX 

(3.133) 

where 

2m1 − 
p1∑

r1=1 

m(1) 
r1 = 2 

l1∑
s=1 

ms 

with l1-quadratic polynomials without real roots 

and sth-quadratic polynomial with power ms, 

2n1 − 
q1∑

s1=1 

n(1) 
s1 = 2 

l2∑
l=1 

nl 

with l2-quadraitc polynomials without real roots 

and lth-quadratic polynomial with power nl; 
p2∑

r2=1 

m(2) 
r2 = 2m1, 

q2∑
s2=1 

n(2) 
s2 = 2n1; for i = 1, 2,
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((m(i) 
pi )

th XX,(n(i) 
qi )

th XX)︸ ︷︷ ︸
(m(i) 

pi ,n
(i) 
qi )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
pi1+1)th SO,(2n(i) 

qi1 + 1)th SI)︸ ︷︷ ︸
((2m(i) 

pi 1
+1),(2n(i) 

qi 1
+1))-saddle 

, ((2m(i) 
pi1)

th US,(2n(i) 
qi1)

th LS)︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

qi 1
))-double-saddle 

, 

((2m(i) 
pi1)

th US,(2n(i) 
qi1 + 1)th SI)︸ ︷︷ ︸

((2m(i) 
pi 1

),(2n(i) 
qi 1

+1))-upper-saddle-sink 

, ((2m(i) 
pi1+1)th SO,(2n(i) 

qi1)
th LS)︸ ︷︷ ︸

((2m(i) 
pi 1

+1),(2n(i) 
qi 1

))-lower-saddle-source 

⎫ 
⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
pi )

th XX,(n(i) 
1 )

th XX)︸ ︷︷ ︸
(m(i) 

pi ,n
(i) 
1 )-XX 

∈ 

⎧⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
pi1+1)th SO,(2n(i) 

11 + 1)th SO)︸ ︷︷ ︸
((2m(i) 

pi 1
+1),(2n(i) 

11+1))-source 

, ((2m(i) 
pi1)

th US,(2n(i) 
11)

th LS)︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

11 ))-double-saddle 

, 

((2m(i) 
pi1)

th US,(2n(i) 
11 + 1)th SO)︸ ︷︷ ︸

((2m(i) 
pi 1

),(2n(i) 
11+1))-upper-saddle-source 

, ((2m(i) 
pi1+1)th SO,(2n(i) 

11)
th LS)︸ ︷︷ ︸

((2m(i) 
pi 1

+1),(2n(i) 
11 ))-lower-saddle-source 

⎫⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
1 )

th XX,(n(i) 
qi )

th XX)︸ ︷︷ ︸
(m(i) 

1 ,n
(i) 
qi )-XX 

∈ 

⎧⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
11+1)th SI,(2n(i) 

qi1 + 1)th SI)︸ ︷︷ ︸
((2m(i) 

11+1),(2n(i) 
qi 1

+1))-sink 

, ((2m(i) 
11)

th US,(2n(i) 
qi1)

th LS)︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
qi 1

))-double-saddle 

, 

((2m(i) 
11)

th US,(2n(i) 
qi1 + 1)th SI)︸ ︷︷ ︸

((2m(i) 
11 ),(2n

(i) 
qi 1

+1))-upper-saddle-sink 

, ((2m(i) 
11+1)th SI,(2n(i) 

qi1)
th LS)︸ ︷︷ ︸

((2m(i) 
11+1),(2n(i) 

qi 1
))-lower-saddle-sink 

⎫⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
1 )

th XX,(n(i) 
1 )

th XX)︸ ︷︷ ︸
(m(i) 

1 ,n
(i) 
1 )-XX 

∈ 

⎧⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

((2m(i) 
11+1)th SI,(2n(i) 

11 + 1)th SO)︸ ︷︷ ︸
((2m(i) 

11+1),(2n(i) 
11+1))-saddle 

, ((2m(i) 
11)

th US,(2n(i) 
11)

th LS)︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
11 ))-double-saddle 

, 

((2m(i) 
11)

th US,(2n(i) 
11 + 1)th SO)︸ ︷︷ ︸

((2m(i) 
11 ),(2n

(i) 
11+1))-upper-saddle-source 

, ((2m(i) 
11+1)th SI,(2n(i) 

11)
th LS)︸ ︷︷ ︸

((2m(i) 
11+1),(2n(i) 

11 ))-lower-saddle-sink 

⎫⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎭ 

. (3.134) 

(vii3c) The  ((2m1)
th US, (2n1)

th LS)-double-saddle switching bifurcation is for the 
switching of two q × p equilibrium networks as 

p1⋃
r1=1 

q1⋃
s1=1 

(aj1j1r1 , aj2j2s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� ((2m1)
th US,(2n1)

th LS)︸ ︷︷ ︸
((2m1),(2n1))-double-saddle



3.1 Higher-Order Singularity and Bifurcations 93

�
p2⋃

r2=1 

q2⋃
s2=1 

(aj1j1r2 , aj2j2s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX 

(3.135) 

where �
p 
ri=1mri = 2m1, �

q 
si=1nsi = 2n1 for i = 1, 2. 

(vii4) For  aj1j10 < 0and aj2j20 < 0 , there is a ((2m1)
th LS,(2n1)

th LS)-double-saddle 
equilibrium as 

(aj1j11, aj2j21) = ((2m1)
th LS, (2n1)

th LS)︸ ︷︷ ︸
((2m1),(2n1))-double-saddle 

(3.136) 

There are the following three ((2m1)
th LS,(2n1)

th LS)-double-saddle appearing and 
switching bifurcations. 

(vi4a) The  ((2m1)
th LS,(2n1)

th LS)-double-saddle appearing bifurcation is from a 
(nF,nF)-flow to a (2m1) × (2n1) network as 

(ẋj1 , ̇xj2 )︸ ︷︷ ︸
(nF,nF)-flow

� ((2m1)
th LS,(2n1)

th LS)︸ ︷︷ ︸
((2m1),(2n1))-double-saddle

�
2m1⋃
r=1 

2n1⋃
s=1 

(aj1j1r, aj2j2s)︸ ︷︷ ︸
XX 

(3.137) 

where 

2m1⋃
r=1 

2n1⋃
s=1 

(aj1j1r, aj2j2s)︸ ︷︷ ︸
XX 

= 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

· · ·  (SI,SI)︸ ︷︷ ︸
sink 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

· · ·  (SI,SO)︸ ︷︷ ︸
saddle 

... 
... 

... 
... 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

· · ·  (SI,SO)︸ ︷︷ ︸
saddle 

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2n1)×(2m1) 

. (3.138) 

(vii4b) The  ((2m1)
th LS,(2n1)

th LS)-double-saddle appearing bifurcation is from q1 × 
p1 to q2 × p2 equilibrium networks as 

p1⋃
r1=1 

q1⋃
s1=1 

(aj1j1r1 , aj2j2s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� ((2m1)
th SI,(2n1)

th LS)︸ ︷︷ ︸
((2m1),(2n1))-double-saddle

�
p2⋃

r2=1 

q2⋃
s2=1 

(aj1j1r2 , aj2j2s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX 

(3.139) 

where
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2m1 − 
p1∑

r1=1 

m(1) 
r1 = 2 

l1∑
s=1 

ms 

with l1-quadratic polynomials without real roots 

and sth-quadratic polynomial with power ms, 

2n1 − 
q1∑

s1=1 

n(1) 
s1 = 2 

l2∑
l=1 

nl 

with l2-quadraitc polynomials without real roots 

and lth-quadratic polynomial with power nl; 
p2∑

r2=1 

m(2) 
r2 = 2m1, 

q2∑
s2=1 

n(2) 
s2 = 2n1; for i = 1, 2, 

((m(i) 
pi )

th XX,(n(i) 
qi )

th XX)︸ ︷︷ ︸
(m(i) 

pi ,n
(i) 
qi )-XX 

∈ 

⎧⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
pi1+1)th SI,(2n(i) 

qi1 + 1)th SI)︸ ︷︷ ︸
((2m(i) 

pi 1
+1),(2n(i) 

qi 1
+1))-sink 

, ((2m(i) 
pi1)

th LS,(2n(i) 
qi1)

th LS)︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

qi 1
))-double-saddle 

, 

((2m(i) 
pi1)

th LS,(2n(i) 
qi1 + 1)th SI)︸ ︷︷ ︸

((2m(i) 
pi 1

),(2n(i) 
qi 1

+1))-lower-saddle-sink 

, ((2m(i) 
pi1+1)th SI,(2n(i) 

qi1)
th LS)︸ ︷︷ ︸

((2m(i) 
pi 1

+1),(2n(i) 
qi 1

))-lower-saddle-sink 

⎫⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
pi )

th XX,(n(i) 
1 )

th XX)︸ ︷︷ ︸
(m(i) 

pi ,n
(i) 
1 )-XX 

∈ 

⎧⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
pi1+1)th SI,(2n(i) 

11 + 1)th SO)︸ ︷︷ ︸
((2m(i) 

pi 1
+1),(2n(i) 

11+1))-saddle 

, ((2m(i) 
pi1)

th LS,(2n(i) 
11)

th LS)︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

11 ))-double-saddle 

, 

((2m(i) 
pi1)

th LS,(2n(i) 
11 + 1)th SO)︸ ︷︷ ︸

((2m(i) 
pi 1

),(2n(i) 
11+1))-lower-saddle-source 

, ((2m(i) 
pi1+1)th SI,(2n(i) 

11)
th LS)︸ ︷︷ ︸

((2m(i) 
pi 1

+1),(2n(i) 
11 ))-lower-saddle-sink 

⎫⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
1 )

th XX,(n(i) 
qi )

th XX)︸ ︷︷ ︸
(m(i) 

1 ,n
(i) 
qi )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
11+1)th SO,(2n(i) 

qi1 + 1)th SI)︸ ︷︷ ︸
((2m(i) 

11+1),(2n(i) 
qi 1

+1))-saddle 

, ((2m(i) 
11)

th LS,(2n(i) 
qi1)

th LS)︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
qi 1

))-double-saddle 

, 

((2m(i) 
11)

th LS,(2n(i) 
qi1 + 1)th SI)︸ ︷︷ ︸

((2m(i) 
11 ),(2n

(i) 
qi 1

+1))-lower-saddle-sink 

, ((2m(i) 
11+1)th SO,(2n(i) 

qi1)
th LS)︸ ︷︷ ︸

((2m(i) 
11+1),(2n(i) 

qi 1
))-lower-saddle-sourc 

⎫ 
⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

;
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((m(i) 
1 )

th XX,(n(i) 
1 )

th XX)︸ ︷︷ ︸
(m(i) 

1 ,n
(i) 
1 )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

((2m(i) 
11+1)th SO,(2n(i) 

11 + 1)th SO)︸ ︷︷ ︸
((2m(i) 

11+1),(2n(i) 
11+1))-source 

, ((2m(i) 
11)

th LS,(2n(i) 
11)

th LS)︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
11 ))-double-saddle 

, 

((2m(i) 
11)

th LS,(2n(i) 
11 + 1)th SO)︸ ︷︷ ︸

((2m(i) 
11 ),(2n

(i) 
11+1))-lower-saddle-source 

, ((2m(i) 
11+1)th SO,(2n(i) 

11)
th LS)︸ ︷︷ ︸

((2m(i) 
11+1),(2n(i) 

11 ))-lower-saddle-source 

⎫ 
⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎭ 

. (3.140) 

(vii4c) The  ((2m1)
th LS,(2n1)

th LS)-double-saddle switching bifurcation is for two 
q × p equilibrium networks as 

p⋃
r1=1 

q⋃
s1=1 

(aj1j1r1 , aj2j2s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )−XX

� ((2m1)
th LS,(2n1)

th LS)︸ ︷︷ ︸
((2m1),(2n1))-double-saddle

�
p⋃

r2=1 

q⋃
s2=1 

(aj1j1r2 , aj2j2s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )−XX 

(3.141) 

where �
p 
ri=1mri = 2m1, �

q 
si=1nsi = 2n1 for i = 1, 2. 

3.2 Proof of Theorem 3.1 

Consider a self-univariate polynomial dynamical system as 

ẋj1 = aj1j10(xj1 − aj1j11)m , ẋj2 = aj2j20(xj2 − aj2j21)n , 
j1, j2 ∈ {1, 2}; j1 �= j2. 

In phase space, 

dxj1 
dxj2 

= 
aj1j10 
aj2j20 

(xj1 − aj1j11)m 

(xj2 − aj2j21)n 
, 

and 

dxj2 
(xj2 − aj2j21)n 

= 
aj2j20 
aj1j10 

dxj1 
(xj1 − aj1j11)m 

, 

With the initial condition (xj10, xj20), the integration of the foregoing equation gives 
the first integral manifold for for m, n �= 1 as 

1 

n − 1
[ 1 

(xj2 − aj2j21)n−1 
− 1 

(xj20 − aj2j21)n−1

]
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= 
aj2j20 
aj1j10 

1 

m − 1
[ 1 

(xj1 − aj1j11)m−1 
− 1 

(xj10 − aj1j11)m−1

]
. 

For n = 1 and m �= 1, the first integral manifold becomes 

−ln 
|xj2 − aj2j21| 
|xj20 − aj2j21| 

= 
aj2j20 
aj1j10 

1 

m − 1
[ 1 

(xj1 − aj1j11)m−1 
− 1 

(xj10 − aj1j11)m−1

]
. 

For m = 1 and n �= 1, the first integral manifold becomes 

1 

n − 1
[ 1 

(xj2 − aj2j21)n−1 
− 1 

(xj20 − aj2j21)n−1

] = −  
aj2j20 
aj1j10 

ln 
|xj1 − aj1j11| 
|xj10 − aj1j11| 

. 

For m, n = 1, the first integral manifold becomes 

ln 
|xj2 − aj2j21| 
|xj20 − aj2j21| 

= 
aj2j20 
aj1j10 

ln 
|xj1 − aj1j11| 
|xj10 − aj1j11| 

. 

The corresponding variational equation at (x∗
j1 
, x∗

j2 
) = (aj1j11, aj2j21) is

�ẋj1 = aj1j10(�xj1 )
m , �ẋj2 = aj2j20(�xj2 )

n . 

(i1) For  m = 2m1 + 1 and n = 2n1 + 1, the flows at x∗
j1 

= aj1j11 are the (2m1 + 1)th-
order source and sink for aj1j10 > 0 and aj1j10 < 0, respectively; and the flows at 
x∗ 
j2 

= aj2j21 are the (2n1 + 1)th-order source and sink for aj2j20 > 0 and aj2j20 < 0, 
respectively. 

Therefore, for m = 2m1 + 1 and n = 2n1 + 1, the equilibrium of (x∗
j1 , x

∗
j2 ) = 

(aj1j11, aj2j21) has the following properties as in Eqs. (3.3)–(3.6). 

• For aj1j10 > 0 and aj2j20 > 0, 

(aj1j11, aj2j21) = ((2m1+1)th SO,(2n1+1)th SO)︸ ︷︷ ︸
((2m1+1),(2n1 + 1))-source 

. 

• For aj1j10 < 0 and aj2j20 > 0, 

(aj1j11, aj2j21) = ((2m1+1)th SI,(2n1+1)th SO)︸ ︷︷ ︸
((2m1+1),(2n1 + 1))-saddle 

. 

• For aj1j10 > 0 and aj2j20 < 0, 

(aj1j11, aj2j21) = ((2m1+1)th SO,(2n1+1)th SI)︸ ︷︷ ︸
((2m1+1),(2n1 + 1))-saddle 

.
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• For aj1j10 < 0 and aj2j20 < 0, 

(aj1j11, aj2j21) = ((2m1+1)th SI,(2n1+1)th SI)︸ ︷︷ ︸
((2m1+1),(2n1 + 1))-sink 

. 

(i2) For  m = 2m1 and n = 2n1 + 1, the flows at x∗
j1 

= aj1j11 are the (2m1)
th-order 

upper-saddle and lower-saddle for aj1j10 > 0 and aj1j10 < 0, respectively; and the 
flows at x∗

j2 
= aj2j21 are the (2n1 + 1)th-order source and sink for aj2j20 > 0 and 

aj2j20 < 0, respectively. 

Therefore, for m = 2m1 and n = 2n1 + 1, the equilibrium of (x∗ 
j1 
, x∗ 

j2 
) = 

(aj1j11, aj2j21) has the following properties as in Eqs. (3.17)–(3.20). 

• For aj1j10 > 0 and aj2j20 > 0, 

(aj1j11, aj2j21) = ((2m1)
th US,(2n1+1)th SO)︸ ︷︷ ︸

((2m1),(2n1 + 1))-upper-saddle source 

. 

• For aj1j10 < 0 and aj2j20 > 0, 

(aj1j11, aj2j21) = ((2m1)
th LS,(2n1+1)th SO)︸ ︷︷ ︸

((2m1),(2n1 + 1))-lower-saddle source 

. 

• For aj1j10 > 0 and aj2j20 < 0, 

(aj1j11, aj2j21) = ((2m1)
th US,(2n1+1)th SI)︸ ︷︷ ︸

((2m1),(2n1 + 1))-upper-saddle sink 

. 

• For aj1j10 < 0 and aj2j20 < 0, 

(aj1j11, aj2j21) = ((2m1)
th LS,(2n1+1)th SI)︸ ︷︷ ︸

((2m1),(2n1 + 1))-lower-saddle sink 

. 

(i3) For  m = 2m1 + 1 and n = 2n1, the flows at x∗
j1 = aj1j11 are the (2m1 + 1)th-order 

source and sink for aj1j10 > 0 and aj1j10 < 0, respectively; and the flows at x∗
j2 

= aj2j21 
are the (2n1)th-order upper-saddle and lower-saddle for aj2j20 > 0 and aj2j20 < 0, 
respectively. 

Therefore, for m = 2m1 + 1 and n = 2n1, the equilibrium of (x∗
j1 , x

∗
j2 ) = (aj1j11, 

aj2j21) has the following properties as in Eqs. (3.21)–(3.24). 

• For aj1j10 > 0 and aj2j20 > 0,
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(aj1j11, aj2j21) = ((2m1+1)th SO,(2n1)
th US)︸ ︷︷ ︸

((2m1+1),(2n1)-upper-saddle source 

. 

• For aj1j10 < 0 and aj2j20 > 0, 

(aj1j11, aj2j21) = ((2m1+1)th SI,(2n1)
th US)︸ ︷︷ ︸

((2m1+1),(2n1))-upper-saddle sink 

. 

• For aj1j10 > 0 and aj2j20 < 0, 

(aj1j11, aj2j21) = ((2m1+1)th SO,(2n1)
th LS)︸ ︷︷ ︸

((2m1+1),(2n1))-lower-saddle source 

. 

• For aj1j10 < 0 and aj2j20 > 0, 

(aj1j11, aj2j21) = ((2m1+1)th SI,(2n1)
th LS)︸ ︷︷ ︸

((2m1+1),(2n1))-lower-saddle sink 

. 

(i4) For  m = 2m1 and n = 2n1, the flows at x∗
j1 

= aj1j11 are the (2m1)
th-order upper-

saddle and lower-saddle for aj1j10 > 0 and aj1j10 < 0, respectively; and the flows at 
x∗
j2 

= aj2j21 are the (2n1)th-order upper-saddle and lower-saddle for aj2j20 > 0 and 
aj2j20 < 0, respectively. 

Therefore, for m = 2m1 and n = 2n1, the equilibrium of (x∗ 
j1 
, x∗ 

j2 
) = (aj1j11, aj2j21) 

has the following properties as in Eqs. (3.25)–(3.28). 

• For aj1j10 > 0 and aj2j20 > 0, 

(aj1j11, aj2j21) = ((2m1)
th US,(2n1)

th US)︸ ︷︷ ︸
((2m1),(2n1))-double saddle 

. 

• For aj1j10 < 0 and aj2j20 > 0, 

(aj1j11, aj2j21) = ((2m1)
th LS,(2n1)

th US)︸ ︷︷ ︸
((2m1),(2n1))-double saddle 

. 

• For aj1j10 > 0 and aj2j20 < 0, 

(aj1j11, aj2j21) = ((2m1)
th US,(2n1)

th LS)︸ ︷︷ ︸
((2m1),(2n1))-upper-saddle sink 

. 

• For aj1j10 < 0 and aj2j20 < 0,
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(aj1j11, aj2j21) = ((2m1)
th LS,(2n1)

th LS)︸ ︷︷ ︸
((2m1),(2n1))-double-saddle 

. 

(ii) Consider a self-univariate polynomial dynamical system �
p 
r=1mr = m and

�
q 
s=1ns = n as 

ẋj1 = aj1j10 
p∏

r=1 

(xj1 − aj1j1r)mr , ẋj2 = aj2j20 
q∏

s=1 

(xj2 − aj2j2s)ns . 

In phase space,
∑p 

r=1 mr = m and �
q 
s=1ns = n 

dxj2 
dxj1 

= 
aj2j20 
aj1j10 

(xj2 − aj2j2s1 )ns1
∏q 

s2=1,s2 �=s1 
(xj2 − aj2j2s2 )ns2 

(xj1 − aj1j1r1 )mr1
∏p 

r2=1,r2 �=r1 
(xj1 − aj1j1r2 )mr2 

, 

and 

q∑
s1=1 

ns1∑
l2=1 

Bl2s1dxj2 
(xj2 − aj2j2s1 )l2 

= 
aj2j20 
aj1j10 

p∑
r1=1 

mr1∑
l1=1 

Al1r1dxj1 
(xj1 − aj1j1r1 )l1 

, 

where 

Al1mr1 
= 1 

(mr1 − l1)! 
dmr1−l1 

dx 
mr1−l1 
j1 

1∏p 
r2=1,r2 �=r1 

(xj1 − aj1j1r2 )mr2

∣∣∣x∗
j1

=aj1 j1r1 
, 

Amr1 mr1 
= 1∏p 

r2=1,r2 �=r1, (aj1j1r1 − aj1j1r2 )mr2 
; 

Bl2ns1 
= 1 

(ns1 − l2)! 
dns1−l2 

dx 
ns1−l2 
j2 

1∏q 
s2=1,s2 �=s1 

(xj2 − aj2j2s2 )ns2

∣∣∣x∗
j2

=aj2 j2s1 
, 

Bns1 ns1 
= 1∏q 

s2=1,s2 �=s1 
(aj2j2s1 − aj2j2s2 )ns2 

. 

With the initial condition (xj10, xj20), the integration of the foregoing equation gives 
the first integral manifold as 

q∑
s1=1 

ns1∑
l2=1 

Bl2ns1 

l2 − 1
[ 1 

(xj2 − aj2j2s1 )l2−1 
− 1 

(xj20 − aj2j2s1 )l2−1

]

= 
aj2j20 
aj1j10 

p∑
r1=1 

mr1∑
l1=1 

Al1mr1 

l1 − 1
[ 1 

(xj1 − aj1j1r1 )l1−1 
− 1 

(xj10 − aj1j1r1 )l1−1

]
, 

for l1, l2 �= 1;
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lim 
l2→1 

1 

(l2 − 1)
[ 1 

(xj2 − aj2j2s1 )l2−1 
− 1 

(xj20 − aj2j2s1 )l2−1

] = −  ln 
|xj2 − aj2j2s1 | 
|xj20 − aj2j2s1 | 

, 

for l2 = 1; 
lim 
l1→1 

1 

l1 − 1
[ 1 

(xj1 − aj1j1r1 )l1−1 
− 1 

(xj10 − aj1j1r1 )l1−1

] = −  ln 
|xj1 − aj1j1r1 | 
|xj10 − aj1j1r1 |

, 

for l1 = 1. 

The singular equilibrium network with �
p 
ri=1mri = m and �

q 
ri=1nsi = n is defined as 

p⋃
r=1 

q⋃
s=1 

(aj1j1r, aj2j2s)︸ ︷︷ ︸
(mr ,ns)-XX 

≡ 

⎧⎪⎨ 

⎪⎩ 

(aj1j11, aj2j2q) · · ·  (aj1j1p, aj2j2q) 
... · · · ... 

(aj1j11, aj2j21) · · ·  (aj1j1p, aj2j21) 

⎫⎪⎬ 

⎪⎭ 
q×p 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎩ 

((m1)
th XX,(nq)

th XX)︸ ︷︷ ︸
(m1,nq)-XX 

· · ·  ((mp)
th XX,(nq)

th XX)︸ ︷︷ ︸
(m(i) 

pi ,n
(i) 
qi )-XX 

... 
... 

... 
((m1)

th XX,(n1)
th XX)︸ ︷︷ ︸

(m1,n1)-XX 

· · ·  ((mp)
th XX,(n1)

th XX)︸ ︷︷ ︸
(mp,n1)-XX 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎭ 
q×p 

. 

The corresponding variational equations at (x∗
j1 , x

∗
j2 ) = (aj1j1s1 , aj2j2s2 ) are

�ẋj1 = aj1j10 
p∏

r2=1,r2 �=r1 

(aj1j1r1 − aj1j1r2 )mr2 (�xj1 )
mr1 ,

�ẋj2 = aj2j20 
q∏

s2=1,s2 �=s1 

(aj2j2s1 − aj2j2s2 )ns2 (�xj2 )
ns1 . 

(ii1) For  mr1 = 2mr11+1 and ns1 = 2ns11+1, the flows at x∗
j1 

= aj1j1s1 are (2mr11+ 
1)th-source and sink in the xj1 -direction for aj1j10

∏p 
r2=1,r2 �=r (aj1j1r1 − aj1j1r2 )mr2 > 

0 and aj1j10
∏p 

r2=1,r2 �=r1 
(aj1j1r1 − aj1j1r2 )mr2 < 0, respectively; and the flows at 

x∗
j2 

= aj2j2s2 are (2ns11 + 1)th-source and sink in the xj2 -direction for 
aj2j20

∏q 
s2=1,s2 �=s1 

(aj2j2s1 −aj2j2s2 )
ns2 > 0 and aj2j20

∏q 
s2=1,s2 �=s1 

(aj2j2s1 − aj2j2s2 )ns2 < 0, 
respectively. 

Therefore, for mr1 = 2mr11+1 and ns1 = 2ns11 + 1, the equilibrium of (x∗
j1 
, x∗

j2 
) = 

(aj1j1r1 , aj2j2s1 ) has the following properties as in Eqs. (3.23)–(3.26). 

• For aj1j10
∏p 

r2=1,r2 �=s1 
(aj1j1r1 − aj1j1r2 )mr2 > 0 and 

aj2j20
∏q 

s2=1,s2 �=s1 
(aj2j2s1 − aj2j2s2 )ns2 > 0,
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(aj1j1r1 , aj2j2s1 ) = ((2mr11+1)th SO,(2ns11+1)th SO)︸ ︷︷ ︸
((2mr11+1),(2ns11 + 1))-source 

. 

• For aj1j10
∏p 

r2=1,r2 �=s1 
(aj1j1r1 − aj1j1r2 )mr2 < 0 and 

aj2j20
∏q 

s2=1,s2 �=s1 
(aj2j2s1 − aj2j2s2 )ns2 > 0, 

(aj1j1r1 , aj2j2s1 ) = ((2mr11+1)th SI,(2ns11+1)th SO)︸ ︷︷ ︸
((2mr11+1),(2ns11 + 1))-saddle 

. 

• For aj1j10
∏p 

r2=1,r2 �=s1 
(aj1j1r1 − aj1j1r2 )mr2 > 0 and 

aj2j20
∏q 

s2=1,s2 �=s1 
(aj2j2s1 − aj2j2s2 )ns2 < 0, 

(aj1j1r1 , aj2j2s1 ) = ((2mr11+1)th SO,(2ns11+1)th SI)︸ ︷︷ ︸
((2mr11+1),(2ns11 + 1))-saddle 

. 

• For aj1j10
∏p 

r2=1,r2 �=s1 
(aj1j1r1 − aj1j1r2 )mr2 < 0 and 

aj2j20
∏q 

s2=1,s2 �=s1 
(aj2j2s1 − aj2j2s2 )ns2 < 0, 

(aj1j1r1 , aj2j2s1 ) = ((2mr11+1)th SI,(2ns11+1)th SI)︸ ︷︷ ︸
((2mr11+1),(2ns11 + 1))-sink 

. 

(ii2) For  mr1 = 2mr11 and ns1 = 2ns11+1, the flows at x∗
j1 

=aj1j1s1 are (2mr11)
th-upper-

saddle and lower-saddle in the xj1 -direction for aj1j10
∏p 

r2=1,r2 �=r (aj1j1r1 −aj1j1r2 )
mr2 > 

0 and aj1j10
∏p 

r2=1,r2 �=r (aj1j1r1 −aj1j1r2 )
mr2 < 0, respectively; and the flows at x∗

j2 
= 

aj2j2s2 are (2ns11 + 1)th-source and sink for aj2j20
∏q 

s2=1,s2 �=s1 
(aj2j2s1 − aj2j2s2 )ns2 > 0 

and aj2j20
∏q 

s2=1,s2 �=s1 
(aj2j2s1 − aj2j2s2 )ns2 < 0 in the xj2 -direction, respectively. 

Therefore, for mr1 = 2mr11 and ns1 = 2ns11 + 1, the equilibrium of (x∗ 
j1 
, x∗ 

j2 
) = 

(aj1j1r1 , aj2j2s1 ) has the following properties, as in Eqs.(3.27)–(3.30). 

• For aj1j10
∏p 

r2=1,r2 �=s1 
(aj1j1r1 − aj1j1r2 )mr2 > 0 and 

aj2j20
∏q 

s2=1,s2 �=s1 
(aj2j2s1 − aj2j2s2 )ns2 > 0, 

(aj1j1r1 , aj2j2s1 ) = ((2mr11)
th US,(2ns11+1)th SO)︸ ︷︷ ︸

((2mr11),(2ns11 + 1))-upper-saddle source 

. 

• For aj1j10
∏p 

r2=1,r2 �=s1 
(aj1j1r1 − aj1j1r2 )mr2 < 0 and 

aj2j20
∏q 

s2=1,s2 �=s1 
(aj2j2s1 − aj2j2s2 )ns2 > 0, 

(aj1j1r1 , aj2j2s1 ) = ((2mr11)
th LS,(2ns11+1)th SO)︸ ︷︷ ︸

((2mr11),(2ns11 + 1))-lower-saddle source 

.
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• For aj1j10
∏p 

r2=1,r2 �=s1 
(aj1j1r1 − aj1j1r2 )mr2 > 0 and 

aj2j20
∏q 

s2=1,s2 �=s1 
(aj2j2s1 − aj2j2s2 )ns2 < 0, 

(aj1j1r1 , aj2j2s1 ) = ((2mr11)
th US,(2ns11+1)th SI)︸ ︷︷ ︸

((2mr11),(2ns11 + 1))-upper-saddle sink 

. 

• For aj1j10
∏p 

r2=1,r2 �=s1 
(aj1j1r1 − aj1j1r2 )mr2 < 0 and 

aj2j20
∏q 

s2=1,s2 �=s1 
(aj2j2s1 − aj2j2s2 )ns2 < 0, 

(aj1j1r1 , aj2j2s1 ) = ((2mr11)
th LS,(2ns11+1)th SI)︸ ︷︷ ︸

((2mr11),(2ns11 + 1))-lower-saddle-sink 

. 

(ii3) For  mr1 = 2mr11 + 1 and ns1 = 2ns11, the flows at x∗
j1 

= aj1j1s1 are (2mr11 + 1)th 

source and sink in the xj1 -direction for aj1j10
∏p 

r2=1,r2 �=r (aj1j1r1 − aj1j1r2 )mr2 > 0 and 
aj1j10

∏p 
r2=1,r2 �=r (aj1j1r1 − aj1j1r2 )mr2 < 0, respectively; and the flows at x∗

j2 
= aj2j2s2 are 

(2ns11)
th upper-saddle and lower-saddle for aj2j20

∏q 
s2=1,s2 �=s1 

(aj2j2s1 − aj2j2s2 )ns2 > 0 
and aj2j20

∏q 
s2=1,s2 �=s1 

(aj2j2s1 − aj2j2s2 )ns2 < 0 in the xj2 -direction, respectively. 

Therefore, for mr1 = 2mr11 + 1 and ns1 = 2ns11, the equilibrium of (x∗
j1 
, x∗

j2 
) = 

(aj1j1r1 , aj2j2s1 ) has the following properties as in Eqs. (3.31)–(3.34). 

• For aj1j10
∏p 

r2=1,r2 �=s1 
(aj1j1r1 − aj1j1r2 )mr2 > 0 and 

aj2j20
∏q 

s2=1,s2 �=s1 
(aj2j2s1 − aj2j2s2 )ns2 > 0, 

(aj1j1r1 , aj2j2s1 ) = ((2mr11+1)th SO,(2ns11)
th US)︸ ︷︷ ︸

((2mr11+1),(2ns11))-upper-saddle source 

. 

• For aj1j10
∏p 

r2=1,r2 �=s1 
(aj1j1r1 − aj1j1r2 )mr2 < 0 and 

aj2j20
∏q 

s2=1,s2 �=s1 
(aj2j2s1 − aj2j2s2 )ns2 > 0, 

(aj1j1r1 , aj2j2s1 ) = ((2mr11+1)th SI,(2ns11)
th US)︸ ︷︷ ︸

((2mr11+1),(2ns11))-upper-saddle sink 

. 

• For aj1j10
∏p 

r2=1,r2 �=s1 
(aj1j1r1 − aj1j1r2 )mr2 > 0 and 

aj2j20
∏q 

s2=1,s2 �=s1 
(aj2j2s1 − aj2j2s2 )ns2 < 0, 

(aj1j1r1 , aj2j2s1 ) = ((2mr11+1)th SO,(2ns11)
th LS)︸ ︷︷ ︸

((2mr11+1),(2ns11))-lower-saddle source 

. 

• For aj1j10
∏p 

r2=1,r2 �=s1 
(aj1j1r1 − aj1j1r2 )mr2 < 0 and 

aj2j20
∏q 

s2=1,s2 �=s1 
(aj2j2s1 − aj2j2s2 )ns2 < 0,
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(aj1j1r1 , aj2j2s1 ) = ((2mr11+1)th SI,(2ns11)
th LS)︸ ︷︷ ︸

((2mr11+1),(2ns11))-lower-saddle sink 

. 

(ii4) For  mr1 = 2mr11 and ns1 = 2ns11, the flows at x∗ 
j1 

= aj1j1s1 are (2mr11)
th-upper-

saddle and lower-saddle in the xj1 -direction for aj1j10
∏p 

r2=1,r2 �=r1 
(aj1j1r1 − aj1j1r2 )mr2 > 

0 and aj1j10
∏p 

r2=1,r2 �=r1 
(aj1j1r1 − aj1j1r2 )mr2 < 0, respectively; and the 

flows at x∗
j2 

= aj2j2s2 are (2ns11)
th upper-saddle and lower-saddle for 

aj2j20
∏q 

s2=1,s2 �=s1 
(aj2j2s1 − aj2j2s2 )ns2 > 0 and aj2j20

∏q 
s2=1,s2 �=s1 

(aj2j2s1 − aj2j2s2 )ns2 < 0 
in the xj2 -direction, respectively. 

Therefore, for mr1 = 2mr11 and ns1 = 2ns11, the equilibrium of (x∗
j1 
, x∗

j2 
) = (aj1j1r1 , 

aj2j2s1 ) has the following properties as in Eqs. (3.35)–(3.38). 

• For aj1j10
∏p 

r2=1,r2 �=s1 
(aj1j1r1 − aj1j1r2 )mr2 > 0 and 

aj2j20
∏q 

s2=1,s2 �=s1 
(aj2j2s1 − aj2j2s2 )ns2 > 0,

(
aj1j1l1 , aj2j2s1

) =
((
2mr11

)th 
US,

(
2ns11

)th 
US

)
︸ ︷︷ ︸
((2m21+1),(2ns1 ))-double-saddle 

. 

• For aj1j10
∏p 

r2=1,r2 �=s1 
(aj1j1r1 − aj1j1r2 )mr2 < 0 and 

aj2j20
∏q 

s2=1,s2 �=s1 
(aj2j2s1 − aj2j2s2 )ns2 > 0, 

(aj1j1r1 , aj2j2s1 ) = ((2mr11)
th LS,(2ns11)

th US)︸ ︷︷ ︸
((2mr11),(2ns11))-double-saddle 

. 

• For aj1j10
∏p 

r2=1,r2 �=s1 
(aj1j1r1 − aj1j1r2 )mr2 > 0 and 

aj2j20
∏q 

s2=1,s2 �=s1 
(aj2j2s1 − aj2j2s2 )ns2 < 0, 

(aj1j1r1 , aj2j2s1 ) = ((2mr11)
th US,(2ns11)

th LS)︸ ︷︷ ︸
((2mr11),(2ns11))-doubel-saddle 

. 

• For aj1j10
∏p 

r2=1,r2 �=s1 
(aj1j1r1 − aj1j1r2 )mr2 < 0 and 

aj2j20
∏q 

s2=1,s2 �=s1 
(aj2j2s1 − aj2j2s2 )ns2 < 0, 

(aj1j1r1 , aj2j2s1 ) = ((2mr11)
th LS,(2ns11)

th LS)︸ ︷︷ ︸
((2mr11),(2ns11))-double-saddle 

. 

(iii) Consider a self-univariate polynomial dynamical system as
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ẋj1 = aj1j10 
m∏

s1=1 

(xj1 − aj1j1s1 ), ̇xj2 = aj2j20 
n∏

l1=1 

(xj2 − aj2j2l1 ), 

j1, j2 ∈ {1, 2}; j1 �= j2. 

In phase space, 

dxj2 
dxj1 

= 
aj2j20 
aj1j10

∏n 
l1=1 (xj2 − aj2j21)∏m 
s1=1 (xj1 − aj1j1s1 ) 

, 

and 

dxj2∏n 
l1=1 (xj2 − aj2j21) 

= 
aj2j20 
aj1j10 

dxj1∏m 
s1=1 (xj1 − aj1j1s1 ) 

. 

With the initial condition (xj10, xj20), the integration of the foregoing equation gives 
the first integral manifold as 

n∑
l1=1 

1∏n 
l2=1,l2 �=l1 

(aj2j2l1 − aj2j2l2 ) 
ln 

|xj2 − aj2j2l1 | 
|xj20 − aj2j2l1 | 

= 
aj2j20 
aj1j10 

m∑
s1=1 

1∏m 
s2=1,s2 �=s1 

(aj1j1s1 − aj1j1s2 ) 
ln 

|xj1 − aj1j1s1 | 
|xj10 − aj1j1s1 | 

. 

The simple-equilibrium network is defined as 

m⋃
s=1 

n⋃
l=1 

(aj1j1s, aj2j2l)︸ ︷︷ ︸
XX 

≡ 

⎧⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

(aj1j11, aj2j2n) (aj1j12, aj2j2n) · · ·  (aj1j1m, aj2j2n) 
(aj1j11, aj2j2(n−1)) (aj1j12, aj2j2(n−1)) · · ·  (aj1j1m, aj2j2(n−1)) 

... 
... · · · ... 

(aj1j11, aj2j21) (aj1j12, aj2j21) · · ·  (aj1j1m, aj2j21) 

⎫⎪⎪⎪⎬ 

⎪⎪⎪⎭ 
n×m 

. 

The variational equation at (x∗
j1 
, x∗

j2 
) = (aj1j1s1 , aj2j2l1 ) is given by

�ẋj1 = aj1j10 
m∏

s2=1,s2 �=s1 

(aj1j1s1 − aj1j1s2 )�xj1 ,

�ẋj2 = aj2j20 
n∏

l2=1,l2 �=l1 

(aj2j2l1 − aj2j2l2 )�xj2 .
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The flows at x∗
j1 

= aj1j1s1 are source and sink for aj1j10
∏m 

s2=1,s2 �=s1 
(aj1j1s1xj1 − aj1j1s2 ) >  

0 and aj1j10
∏m 

s2=1,s2 �=s1 
(aj1j1s1xj1 − aj1j1s2 ) <  0, in the  xj1 -direction respectively; and 

the flows at x∗ 
j2 

= aj2j2l1 are source and sink for aj2j20
∏n 

l2=1,l2 �=l1 
(aj2j2l1 − aj2j2l2 ) >  0 

and aj2j20
∏n 

l2=1,l2 �=l1 
(aj2j2l1 − aj2j2l2 ) <  0 in the xj2 -direction, respectively. 

Therefore, the equilibrium of (x∗
j1 
, x∗

j2 
) = (aj1j1s1 , aj2j2l1 ) (s1, s2 ∈ {1, 2, · · ·  , m}, 

s1 �= s2;l1, l2 ∈ {1, 2, · · ·  , n},l1 �= l2;) possesses the following properties as in 
Eqs.(3.42)-(3.45). 

• For aj1j10
∏m 

s2=1,s2 �=s1 
(aj1j1s1 − aj1j1s2 ) >  0 and 

aj2j20
∏n 

l2=1,l2 �=l1 
(aj2j2l1 − aj2j2l2 ) >  0, 

(aj1j1s1 , aj2j2l1 ) = (SO,SO)︸ ︷︷ ︸
source 

. 

The equilibrium of (x∗
j1 
, x∗

j2 
) = (aj1j1s1 , aj2j2l1 ) is an (SO,SO)-source. 

• For aj1j10
∏m 

s2=1,s2 �=s1 
(aj1j1s1 − aj1j1s2 ) <  0 and 

aj2j20
∏n 

l2=1,l2 �=l1 
(aj2j2l1 − aj2j2l2 ) >  0, 

(aj1j1s1 , aj2j2l1 ) = (SI,SO)︸ ︷︷ ︸
saddle 

. 

The equilibrium of (x∗
j1 
, x∗

j2 
) = (aj1j1s1 , aj2j2l1 ) is an (SI,SO)-saddle. 

• For aj1j10
∏m 

s2=1,s2 �=s1 
(aj1j1s1 − aj1j1s2 ) >  0 and 

aj2j20
∏n 

l2=1,l2 �=l1 
(aj2j2l1 − aj2j2l2 ) <  0, 

(aj1j1s1 , aj2j2l1 ) = (SO,SI)︸ ︷︷ ︸
saddle 

. 

The equilibrium of (x∗
j1 
, x∗

j2 
) = (aj1j1s1 , aj2j2l1 ) is called an (SO,SI)-saddle. 

• For aj1j10
∏m 

s2=1,s2 �=s1 
(aj1j1s1 − aj1j1s2 ) <  0 and 

aj2j20
∏n 

l2=1,l2 �=l1 
(aj2j2l1 − aj2j2l2 ) <  0, 

(aj1j1s1 , aj2j2l1 ) = (SI,SI)︸ ︷︷ ︸
sink 

. 

The equilibrium of (x∗
j1 
, x∗

j2 
) = (aj1j1s1 , aj2j2l1 ) is an (SI,SI)-sink. 

(iv) For m = 2m1 + 1 and n = 2n1 + 1, the bifurcation process is discussed through 
differential equations as follows. There are three cases (I)-(III). 

Case I: Consider a dynamical system having a single equilibrium (A1) as
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ẋj1 = aj1j10(xj1 − bj1j11) 
m1∏
s=1 

[(xj1 − a(s) 
j1j1 

)2 + �
(s) 
j1j1

], 

ẋj2 = aj2j20(xj2 − bj2j21) 
n1∏
l=1 

[(xj2 − a(l) 
j2j2 

)2 + �
(l) 
j2j2

]; 

where aj1j11 = bj1j11 and aj2j21 = bj2j21. Once

�
(s) 
j1j1 = �j1j1 = 0 (s = 1, 2, · · ·  , m1),

�
(l) 
j2j2 = �j2j2 = 0 (l = 1, 2, · · ·  , n1), 

if 

aj1j11 = bj1j11 = a(s) 
j1j1 

(s = 1, 2, · · ·  , m1), 

aj2j21 = bj2j21 = a(l) 
j2j2 

(l = 1, 2, · · ·  , n1), 

the foregoing differential equations becomes a dynamical system with a singular 
equilibrium (B1) as  

ẋj1 = aj1j10(xj1 − aj1j11)2m1+1 , ẋj2 = aj2j20(xj2 − aj2j21)2n1+1 . 

If

�
(s) 
j1j1 

= �j1j1 + δs (s = 1, 2, · · ·  , m1),

�
(l) 
j2j2 

= �j2j2 + δl (l = 1, 2, · · ·  , n1), 
δs > 0 and δl > 0, 

then 

a(s) 
j1j11, a

(s) 
j1j12 = aj1j11 ± εs, (s = 1, 2, · · ·  , m1), 

a(l) 
j2j21, a

(l) 
j2j22 = aj2j21 ± εl, (l = 1, 2, · · ·  , n1);{

aj1j11, aj1j12, · · ·  , aj1j1(2m1+1)

}
= sort

{
bj1j11, a

(s) 
j1j11, a

(s) 
j1j12

∣∣∣s = 1, 2, · · ·  , m1

}
,

{
aj2j21, aj2j21, · · ·  , aj2j2(2n1+1)

}
= sort

{
bj2j21, a

(l) 
j2j21, a

(l) 
j2j22

∣∣∣l = 1, 2, · · ·  , n1
}
. 

Thus, the differential equation becomes a dynamical system with a non-singular 
equilibrium network (C1) as  

ẋj1 = aj1j10 
2m1+1∏
s=1 

(xj1 − aj1j1s), ẋj2 = aj2j20 
2n1+1∏
l=1 

(xj2 − aj2j2l).
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From the above bifurcation process analysis, at least, (m1 + 1)-parameter variations 
in the xj1 -direction and (n1 + 1)-parameter variations in the xj2 -direction are engaged 
in such a bifurcation from a single equilibrium to the equilibrium network of (2m1 + 
1)×(2n1+1) through the (2m1+1)th-source and sink bifurcations in the xj1 -direction 
and the (2n1+1)th-source and sink bifurcations in the xj2 -direction. With both of them, 
the higher-order source, sink, and saddle bifurcations are developed. 

Thus, the appearing or vanishing bifurcation route is as follows. 

(aj1j11, aj2j21)︸ ︷︷ ︸
XX

� (aj1j11, aj2j21)︸ ︷︷ ︸
((2m1+1),(2n1 + 1))-XX

�
2m1+1⋃
s=1 

2n1+1⋃
l=1 

(aj1j1s, aj2j2l)︸ ︷︷ ︸
XX 

. 

Case II: From Case (I), consider a dynamical system having singular equilibriums 
(A2) as  

ẋj1 = aj1j10 
p1∏

r1=1 

(xj1 − bj1j1r1 )
m(1) 

r1 

l1∏
s=1

[
(xj1 − a(s) 

j1j1 )
2 + �

(s) 
j1j1

]ms 
, 

ẋj2 = aj2j20 
q1∏

s1=1 

(xj2 − bj2j2s1 )
n(1) 
s1 

l2∏
l=1

[
(xj2 − a(l) 

j2j2 )
2 + �

(l) 
j2j2

]nl ; 

where

{
aj1j1r1

∣∣r1 = 1, 2, · · ·  , p1
} = sort

{
bj1j1r1

∣∣r1 = 1, 2, · · ·  , p1
}
,{

aj2j2s1
∣∣s1 = 1, 2, · · ·  , q1

} = sort
{
bj2j2s1

∣∣s1 = 1, 2, · · ·  , q1
}
; 

2m1 + 1 − 
p1∑

r1=1 

m(1) 
r1 = 2 

l1∑
s=1 

ms 

with l1-quadratic polynomials without real roots 

and sth-quadratic polynomial with power ms, 

2n1 + 1 − 
q1∑

s1=1 

n(1) 
s1 = 2 

l2∑
l=1 

nl 

with l2-quadraitc polynomials without real roots 

and lth-quadratic polynomial with power nl . 

Once

�
(s) 
j1j1 

= 0 (s = 1, 2, · · ·  , l1) and �
(l) 
j2j2 

= 0 (l = 1, 2, · · ·  , l2), 

if 

aj1j11 ≡ aj1j1r1 = a(s) 
j1j1 

(r1 = 1, 2, · · ·  , p1; s = 1, 2, · · ·  , l1),
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aj2j21 ≡ aj2j2s1 = a(l) 
j2j2 

(s1 = 1, 2, · · ·  , q1; l = 1, 2, · · ·  , l2). 

the foregoing differential equations becomes a dynamical system with a singular 
equilibrium (B2) as  

ẋj1 = aj1j10(xj1 − aj1j11)2m1+1 , ẋj2 = aj2j20(xj2 − aj2j21)2n1+1 . 

If

�
(s) 
j1j1 

= �j1j1 + δs (s = 1, 2, · · ·  , l1),

�
(l) 
j2j2 

= �j2j2 + δl (l = 1, 2, · · ·  , l2), 
δs > 0 and δl > 0, 

then 

a(s) 
j1j11, a

(s) 
j1j12 = aj1j11 ± εs, (s = 1, 2, · · ·  , l1), 

a(l) 
j2j21, a

(l) 
j2j22 = aj2j21 ± εl, (l = 1, 2, · · ·  , l2);{

aj1j11, aj1j12, · · ·  , aj1j1p2
}

= sort
{
aj1j11, aj1j12, · · ·  , aj1j1p1; a(s) 

j1j11, a
(s) 
j1j12

∣∣∣s = 1, 2, · · ·  , l1
}
,

{
aj2j21, aj2j21, · · ·  , aj2j2q2

}

= sort
{
aj2j21, aj2j21, · · ·  , aj2j2q1; a(l) 

j2j21, a
(l) 
j2j22

∣∣∣l = 1, 2, · · ·  , l2
}
. 

Thus, the differential equation becomes a dynamical system with singular equilib-
riums (C2) as  

ẋj1 = aj1j10 
p2∏

r2=1 

(xj1 − aj1j1r2 )
m(2) 

r2 , ẋj2 = aj2j20 
q2∏

s2=1 

(xj2 − aj2j2s2 )
n(2) 
s2 ; 

where 

p2∑
r2=1 

m(2) 
r2 = 2m1 + 1, 

q2∑
s2=1 

n(2) 
s2 = 2n1 + 1. 

From the above bifurcation process analysis, at least, p2-parameter variations in the 
xj1 -direction and q2-parameter variations in the xj2 -direction are engaged in such a 
bifurcation from a p1 × q1 equilibrium network to a p2 × q2 equilibrium network 
through the (2m1 + 1)th-source and sink bifurcations in the xj1 -direction and the 
(2n1 + 1)th-source and sink bifurcations in the xj2 -direction.
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Thus, the appearing or vanishing bifurcation route from a p1 × q1 to a p2 × q2 
equilibrium network is expressed as 

p1⋃
r1=1 

q1⋃
s1=1 

(aj1j1r1 , aj2j2s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� (aj1j11, aj2j21)︸ ︷︷ ︸
((2m1+1),(2n1 + 1))-XX

�
p2⋃

r2=1 

q2⋃
s2=1 

(aj1j1r2 , aj2j2s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX 

. 

From case (I), the singular equilibriums can be formed through nonsingular 
equilibrium networks. Thus, 

(aj1j1r1 , aj2j2s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

�
m(1) 

r1⋃
s=1 

n(1) 
s1⋃

l=1 

(aj1j1s, aj2j2l)︸ ︷︷ ︸
XX 

≡ 

⎧ 
⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩ 

(aj1j11, aj2j2n(1) 
s1 

) (aj1j12, aj2j2n(1) 
s1 

) · · · (aj1j1m(1) 
r1 

, aj2j2n(1) 
s1 

) 
(aj1j11, aj2j2(n(1) 

s1 −1) ) (aj1j12, aj2j2(n(1) 
s1 −1) ) · · ·  (aj1j1m(1) 

r1 
, aj2j2(n(1) 

s1 −1) ) 
... 

... · · · ... 
(aj1j11, aj2j21) (aj1j12, aj2j21) · · · (aj1j1m(1) 

r1 
, aj2j21) 

⎫ 
⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎭ 
n(1) 
s1 ×m(1) 

r1 

, 

and 

(aj1j1r2 , aj2j2s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX

�
m(2) 

r2⋃
s=1 

n(2) 
s2⋃

l=1 

(aj1j1s, aj2j2l)︸ ︷︷ ︸
XX 

≡ 

⎧⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩ 

(aj1j11, aj2j2n(2) 
s2 

) (aj1j12, aj2j2n(2) 
s2 

) · · ·  (aj1j1m(2) 
r2 

, aj2j2n(2) 
s2 

) 
(aj1j11, aj2j2(n(2) 

s2 −1) ) (aj1j12, aj2j2(n(2) 
s2 −1) ) · · ·  (aj1j1m(2) 

r2 
, aj2j2(n(2) 

s2 −1) ) 
... 

... · · · ... 
(aj1j11, aj2j21) (aj1j12, aj2j21) · · ·  (aj1j1m(2) 

r2 
, aj2j21) 

⎫⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎭ 
n(2) 
s2 ×m(2) 

r2 

. 

From the above definition, the corner singular equilibriums for i = 1, 2 are 
determined by 

((m(i) 
pi )

th XX,(n(i) 
qi )

th XX)︸ ︷︷ ︸
(m(i) 

pi ,n
(i) 
qi )-XX

�
m(i) 

pi⋃
s=1 

n(i) 
qi⋃

l=1 

(aj1j1s, aj2j2l)︸ ︷︷ ︸
XX 

, 

((m(i) 
pi )

th XX,(n(i) 
1 )

th XX)︸ ︷︷ ︸
(m(i) 

pi ,n
(i) 
1 )-XX

�
m(i) 

pi⋃
s=1 

n(i) 
1⋃

l=1 

(aj1j1s, aj2j2l)︸ ︷︷ ︸
XX 

,
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((m(i) 
1 )

th XX,(n(i) 
qi1)

th XX)︸ ︷︷ ︸
(m(i) 

1 ,n
(i) 
qi )-XX

�
m(i) 

1⋃
s=1 

n(i) 
qi⋃

l=1 

(aj1j1s, aj2j2l)︸ ︷︷ ︸
XX 

, 

((m(i) 
1 )

th XX,(n(i) 
1 )

th XX)︸ ︷︷ ︸
(m(i) 

1 ,n
(i) 
1 )-XX

�
m(i) 

1⋃
s=1 

n(i) 
1⋃

l=1 

(aj1j1s, aj2j2l)︸ ︷︷ ︸
XX 

. 

Case III: Consider two dynamical systems with the same equilibriums with 
locations switched (A3,C3) for  i = 1, 2 as 

ẋj1 = aj1j10 
p∏

ri=1 

(xj1 − aj1j1ri )
m(i) 

ri , ẋj2 = aj2j20 
q∏

si=1 

(xj2 − aj2j2si )
n(i) 
si ; 

where 

p∑
ri=1 

m(i) 
ri = 2m1 + 1, 

q∑
si=1 

n(i) 
si = 2n1 + 1. 

Consider a dynamical system as a singular equilibrium (B3) as  

ẋj1 = aj1j10(xj1 − aj1j11)2m1+1 , ẋj2 = aj2j20(xj2 − aj2j21)2n1+1 . 

For ri = 1, 2, · · ·  , p and si = 1, 2, · · ·  , q (i = 1, 2), define two functions as

�
(r1r2) 
j1j1 

= (aj1j1r1 − aj1j1r2 )2 ,(r1, r2 ∈ {1, 2, · · ·  , p}, r1 �= r2),

�
(s1s2) 
j2j2 = (aj2j2s1 − aj2j2s2 )2 ,(s1, s2 ∈ {1, 2, · · ·  , q}, s1 �= s2). 

For ri = 1, 2, · · ·  , p and si = 1, 2, · · ·  , q (i = 1, 2), if

�
(r1r2) 
j1j1 

= (aj1j1r1 − aj1j1r2 )2 = 0,

�
(s1s2) 
j2j2 

= (aj2j2s1 − aj2j2s2 )2 = 0, 

two equilibriums of (aj1j1r1 , aj2j2s1 ) and (aj1j1r2 , aj2j2s2 ) switching at point (aj1j11, aj2j21) 
with the same order singularity are given through 

(aj1j1r1 , aj2j2s1 )︸ ︷︷ ︸
(m(1) 

r1 ,n
(1) 
s1 )-XX

� (aj1j11, aj2j21)︸ ︷︷ ︸
((2m1+1),(2n1 + 1))-XX

� (aj1j1r2 , aj2j2s2 )︸ ︷︷ ︸
(m(2) 

r2 ,n
(2) 
s2 )-XX{

aj1j1r1 � aj1j1r2
∣∣m(1) 

r1 = m(2) 
r2 ; r1, r2 ∈ {1, 2, · · ·  , p}, r1 �= r2

}
,{

aj2j2s1 � aj2j2s2
∣∣n(1) 

s1 = n(2) 
s2 ; s1, s2 ∈ {1, 2, · · ·  , q}, s1 �= s2

}
.
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and 

aj1j1r1 = aj1j11 − εr1 , aj1j1r2 = aj1j11 + εr2 , 
(aj1j1r1 = aj1j11 + εr1 , aj1j1r2 = aj1j11 − εr2 ); 
aj2j2s1 = aj2j21 − εs1 , aj2j2s2 = aj2j21 + εs2 , 
(aj2j2s1 = aj2j21 + εs1 , aj2j2s2 = aj2j21 − εs2 ) 
εr1 , εr2 > 0 and εs1 , εs2 > 0; 
ri = 1, 2, · · ·  , p; si = 1, 2, · · ·  , q (i = 1, 2). 

From case (I), the singular equilibriums can be formed through nonsingular equi-
librium networks as presented in Case (II), and the corner singular equilibriums for 
i = 1, 2 are determined similarly. 

In summary, from the cases (I)–(III), the equilibrium of (x∗ 
j1 
, x∗ 

j2 
) = (aj1j11, aj2j21) 

for m = 2m1+1 and n = 2n1+1 has the bifurcation properties as stated in (iv1)-(iv4) 
through Eqs. (3.46)–(3.69). 

(v) For m = 2m1 and n = 2n1 + 1, the bifurcation process is discussed through 
differential equations as similar as in (iv). There are three cases (I)–(III). 

Case I: Consider a dynamical system having a 1-dimesnional flow (A1) as  

ẋj1 = aj1j10 
m1∏
s=1 

[(xj1 − a(s) 
j1j1 

)2 + �
(s) 
j1j1

], 

ẋj2 = aj2j20(xj2 − bj2j21) 
n1∏
l=1 

[(xj2 − a(l) 
j2j2 

)2 + �
(l) 
j2j2

]; 

where aj2j21 = bj2j21. Once

�
(s) 
j1j1 

= 0 (s = 1, 2, · · ·  , m1) and �
(l) 
j2j2 

= 0 (l = 1, 2, · · ·  , n1), 

if 

aj1j11 = a(s) 
j1j1 

(s = 1, 2, · · ·  , m1) and aj2j21 = bj2j21 = a(l) 
j2j2 

(l = 1, 2, · · ·  , n1), 

the foregoing differential equation becomes a dynamical system with a singular 
equilibrium (B1) as  

ẋj1 = aj1j10(xj1 − aj1j11)2m1 , ẋj2 = aj2j20(xj2 − aj2j21)2n1+1 . 

If

�
(s) 
j1j1 = �j1j1 + δs (s = 1, 2, · · ·  , m1),
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�
(l) 
j2j2 

= �j2j2 + δl (l = 1, 2, · · ·  , n1), 
δs > 0 and δl > 0, 

then 

a(s) 
j1j11, a

(s) 
j1j12 = aj1j11 ± εs, (s = 1, 2, · · ·  , m1), 

a(l) 
j2j21, a

(l) 
j2j22 = aj2j21 ± εl, (l = 1, 2, · · ·  , n1);{

aj1j11, aj1j12, · · ·  , aj1j1(2m1)

}
= sort

{
a(s) 
j1j11, a

(s) 
j1j12

∣∣∣∣s = 1, 2, · · ·  , m1

}
,

{
aj2j21, aj2j21, · · ·  , aj2j2(2n1+1)

}
= sort

{
bj2j21, a

(l) 
j2j21, a

(l) 
j2j22

∣∣∣∣l = 1, 2, · · ·  , n1
}
. 

Thus, the differential equation becomes a dynamical system with a non-singular 
equilibrium network (C1) as  

ẋj1 = aj1j10 
2m1∏
s=1 

(xj1 − aj1j1s), ẋj2 = aj2j20 
2n1+1∏
l=1 

(xj2 − aj2j2l). 

From the above bifurcation process analysis, at least, (m1)-parameter variations in 
the xj1 -direction and (n1 + 1)-parameter variations in the xj2 -direction are engaged in 
such a bifurcation from a source or sink flow to the equilibrium network of (2m1) × 
(2n1 + 1) through the (2m1)

th-upper-saddle and lower-saddle bifurcations in the 
xj1 -direction and the (2n1 + 1)th-source and sink bifurcations in the xj2 -direction. 
With both of them, the higher-order saddle-source and saddle-sink bifurcations are 
developed. 

Thus, the appearing or vanishing bifurcation route is as follows. 

(ẋj1 , aj2j21)︸ ︷︷ ︸
XX

� (aj1j11, aj2j21)︸ ︷︷ ︸
((2m1),(2n1 + 1))-XX

�
2m1⋃
s=1 

2n1+1⋃
l=1 

(aj1j1s, aj2j2l)︸ ︷︷ ︸
XX 

. 

Case II: From Case (I), as in Case (II) for (iv), consider a dynamical system having 
singular equilibriums (A2) as  

ẋj1 = aj1j10 
p1∏

r1=1 

(xj1 − bj1j1r1 )
m(1) 

r1 

l1∏
s=1 

[(xj1 − a(s) 
j1j1 

)2 + �
(s) 
j1j1

]ms , 

ẋj2 = aj2j20 
q1∏

s1=1 

(xj2 − bj2j2s1 )
n(1) 
s1 

l2∏
l=1 

[(xj2 − a(l) 
j2j2 

)2 + �
(l) 
j2j2

]nl ; 

where
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{
aj1j1r1

∣∣r1 = 1, 2, · · ·  , p1
} = sort

{
bj1j1r1

∣∣r1 = 1, 2, · · ·  , p1
}
,{

aj2j2s1
∣∣s1 = 1, 2, · · ·  , q1

} = sort
{
bj2j2s1

∣∣s1 = 1, 2, · · ·  , q1
}; 

2m1 − 
p1∑

r1=1 

m(1) 
r1 = 2 

l1∑
s=1 

ms 

with l1-quadratic polynomials without real roots 

and sth-quadratic polynomial with power ms, 

2n1 + 1 − 
q1∑

s1=1 

n(1) 
s1 = 2 

l2∑
l=1 

nl 

with l2-quadraitc polynomials without real roots 

and lth-quadratic polynomial with power nl . 

Once

�
(s) 
j1j1 

= 0 (s = 1, 2, · · ·  , l1) and �
(l) 
j2j2 

= 0 (l = 1, 2, · · ·  , l2), 

if 

aj1j11 ≡ aj1j1r1 = a(s) 
j1j1 

(r1 = 1, 2, · · ·  , p1; s = 1, 2, · · ·  , l1), 

aj2j21 ≡ aj2j2s1 = a(l) 
j2j2 

(s1 = 1, 2, · · ·  , q1; l = 1, 2, · · ·  , l2), 

the foregoing differential equations becomes a dynamical system with a singular 
equilibrium (B2) as  

ẋj1 = aj1j10(xj1 − aj1j11)2m1 , ẋj2 = aj2j20(xj2 − aj2j21)2n1+1 . 

If

�
(s) 
j1j1 

= �j1j1 + δs (s = 1, 2, · · ·  , l1);
�

(l) 
j2j2 

= �j2j2 + δl (l = 1, 2, · · ·  , l2) 
δs > 0 and δl > 0 

then 

a(s) 
j1j11, a

(s) 
j1j12 = aj1j11 ± εs, (s = 1, 2, · · ·  , l1), 

a(l) 
j2j21, a

(l) 
j2j22 = aj2j21 ± εl, (l = 1, 2, · · ·  , l2);{

aj1j11, aj1j12, · · ·  , aj1j1p2
}

= sort
{
aj1j11, aj1j12, · · ·  , aj1j1p1; a(s) 

j1j11, a
(s) 
j1j11

∣∣s = 1, 2, · · ·  , l1
}
,{

aj2j21, aj2j21, · · ·  , aj2j2q2
}

= sort
{
aj2j21, aj2j21, · · ·  , aj2j2q1; a(l) 

j2j21, a
(l) 
j2j22

∣∣l = 1, 2, · · ·  , l2
}
.
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Thus, the differential equation becomes a dynamical system with singular equilib-
riums (C2) as  

ẋj1 = aj1j10 
p2∏

r2=1 

(xj1 − aj1j1r2 )
m(2) 

r2 , ẋj2 = aj2j20 
q2∏

s2=1 

(xj2 − aj2j2s2 )
n(2) 
s2 ; 

where 

p2∑
r2=1 

m(2) 
r2 = 2m1, 

q2∑
s2=1 

n(2) 
s2 = 2n1 + 1. 

From the above bifurcation process analysis, at least, p2-parameter variations in 
the xj1 -direction and q2-parameter variations in the xj2 -direction are engaged in such 
a bifurcation from a p1 × q1 equilibrium network to a p2 × q2 equilibrium network 
through the (2m1)

th-upper-saddle and lower-saddle bifurcations in the xj1 -direction 
and the (2n1 + 1)th-source and sink bifurcations in the xj2 -direction. 

Therefore, the appearing or vanishing bifurcation route from a p1×q1 to a p2 ×q2 
equilibrium network is expressed as 

p1⋃
r1=1 

q1⋃
s1=1 

(aj1j1r1 , aj2j2s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� (aj1j11, aj2j21)︸ ︷︷ ︸
((2m1),(2n1 + 1))-XX

�
p2⋃

r2=1 

q2⋃
s2=1 

(aj1j1r2 , aj2j2s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX 

. 

The corner singular equilibriums for i = 1, 2 can be determined as in Case (II) for 
(iv). 

Case III, consider two dynamical systems with the same equilibriums with 
locations switched (A3,C3) for  i = 1, 2 as 

ẋj1 = aj1j10 
p∏

ri=1 

(xj1 − aj1j1ri )
m(i) 

ri , ẋj2 = aj2j20 
q∏

si=1 

(xj2 − aj2j2si )
n(i) 
si ; 

where 

p∑
ri=1 

m(i) 
ri = 2m1, 

q∑
si=1 

n(i) 
si = 2n1 + 1. 

Consider a dynamical system as a singular equilibrium (B3) as  

ẋj1 = aj1j10(xj1 − aj1j11)2m1 , ẋj2 = aj2j20(xj2 − aj2j21)2n1+1 . 

For ri = 1, 2, · · ·  , p and si = 1, 2, · · ·  , q (i = 1, 2), define two functions as

�
(r1r2) 
j1j1 

= (aj1j1r1 − aj1j1r2 )2 ,(r1, r2 ∈ {1, 2, · · ·  , p}, r1 �= r2),
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�
(s1s2) 
j2j2 

= (aj2j2s1 − aj2j2s2 )2 ,(s1, s2 ∈ {1, 2, · · ·  , q}, s1 �= s2). 

For ri = 1, 2, · · ·  , p and si = 1, 2, · · ·  , q (i = 1, 2), if

�
(r1r2) 
j1j1 = (aj1j1r1 − aj1j1r2 )2 = 0,

�
(s1s2) 
j2j2 

= (aj2j2s1 − aj2j2s2 )2 = 0, 

two equilibriums of (aj1j1r1 , aj2j2s1 ) and (aj1j1r2 , aj2j2s2 ) switching at point (aj1j11, aj2j21) 
with the same order singularity are given through 

(aj1j1r1 , aj2j2s1 )︸ ︷︷ ︸
(m(1) 

r1 ,n
(1) 
s1 )-XX

� (aj1j11, aj2j21)︸ ︷︷ ︸
((2m1),(2n1 + 1))-XX

� (aj1j1r2 , aj2j2s2 )︸ ︷︷ ︸
(m(2) 

r2 ,n
(2) 
s2 )-XX{

aj1j1r1 � aj1j1r2
∣∣m(1) 

r1 = m(2) 
r2 ; r1, r2 ∈ {1, 2, · · ·  , p}, r1 �= r2

}
,{

aj2j2s1 � aj2j2s2
∣∣n(1) 

s1 = n(2) 
s2 ; s1, s2 ∈ {1, 2, · · ·  , q}, s1 �= s2

}; 

and 

aj1j1r1 = aj1j11 − εr1 , aj1j1r2 = aj1j11 + εr2 , 
(aj1j1r1 = aj1j11 + εr1 , aj1j1r2 = aj1j11 − εr2 ); 
aj2j2s1 = aj2j21 − εs1 , aj2j2s2 = aj2j21 + εs2 , 
(aj2j2s1 = aj2j21 + εs1 , aj2j2s2 = aj2j21 − εs2 ) 
εr1 , εr2 > 0 and εs1 , εs2 > 0; 
ri = 1, 2, · · ·  , p; si = 1, 2, · · ·  , q (i = 1, 2). 

From case (I), the singular equilibriums can be formed through nonsingular equi-
librium networks as presented in Case (II), and the corner singular equilibriums for 
i = 1, 2 are determined similarly. 

In summary, from the cases (I)–(III), the equilibrium of (x∗
j1 , x

∗
j2 ) = (aj1j11, aj2j21) 

for m = 2m1 and n = 2n1 + 1 has the bifurcation properties as stated in (v1)-(v4) 
through Eqs.(3.70)–(3.93). 

(vi) For m = 2m1 + 1 and n = 2n1, this case is quite similar to (v) for m = 
2m1 and n = 2n1 + 1, the bifurcation process is discussed through differential 
equations as follows. There are three cases (I)–(III). 

Case I: Consider a dynamical system having a single equilibrium (A1) as  

ẋj1 = aj1j10(xj1 − bj1j11) 
m1∏
s=1 

[(xj1 − a(s) 
j1j1 

)2 + �
(s) 
j1j1

], 

ẋj2 = aj2j20 
n1∏
l=1 

[(xj2 − a(l) 
j2j2 

)2 + �
(l) 
j2j2

];
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where aj1j11 = bj1j11. Once

�
(s) 
j1j1 = �j1j1 = 0 (s = 1, 2, · · ·  , m1) and �

(l) 
j2j2 = �j2j2 = 0 (l = 1, 2, · · ·  , n1), 

if 

aj1j11 = bj1j11 = a(s) 
j1j1 

(s = 1, 2, · · ·  , m1) and aj2j21 = a(l) 
j2j2 

(l = 1, 2, · · ·  , n1), 

the foregoing differential equations becomes a dynamical system with a singular 
equilibrium (B1) as  

ẋj1 = aj1j10(xj1 − aj1j11)2m1+1 , ẋj2 = aj2j20(xj2 − aj2j21)2n1 . 

If

�
(s) 
j1j1 

= �j1j1 + δs (s = 1, 2, · · ·  , m1);
�

(l) 
j2j2 

= �j2j2 + δl (l = 1, 2, · · ·  , n1) 
δs > 0 and δl > 0. 

then 

a(s) 
j1j11, a

(s) 
j1j12 = aj1j11 ± εs, (s = 1, 2, · · ·  , m1), 

a(l) 
j2j21, a

(l) 
j2j22 = aj2j21 ± εl, (l = 1, 2, · · ·  , n1);{

aj1j11, aj1j12, · · ·  , aj1j1(2m1+1)
} = sort

{
bj1j11, a

(s) 
j1j11, a

(s) 
j1j12

∣∣s = 1, 2, · · ·  , m1
}
,

{
aj2j21, aj2j21, · · ·  , aj2j2(2n1)

} = sort
{
a(l) 
j2j21, a

(l) 
j2j22

∣∣l = 1, 2, · · ·  , n1
}
. 

Thus, the differential equation becomes a dynamical system with a non-singular 
equilibrium network (C1) as  

ẋj1 = aj1j10 
2m1+1∏
s=1 

(xj1 − aj1j1s), ẋj2 = aj2j20 
2n1∏
l=1 

(xj2 − aj2j2l). 

From the above bifurcation process analysis, at least, (m1+1)-parameter variations 
in the xj1 -direction and (n1)-parameter variations in the xj2 -direction are engaged in 
such a bifurcation from a source and sink flow to the equilibrium network of (2m1 + 
1) × (2n1) through the (2m1 + 1)th-source and sink bifurcations in the xj1 -direction 
and the (2n1)th-upper-saddle and lower-saddle bifurcations in the xj2 -direction. With 
both of them, the higher-order saddle-source and saddle-sink bifurcations are also 
developed. 

Thus the appearing or vanishing bifurcation route is given as follows.
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(aj1j11, ̇xj2 )︸ ︷︷ ︸
XX

� (aj1j11, aj2j21)︸ ︷︷ ︸
((2m1+1),(2n1))-XX

�
2m1+1⋃
s=1 

2n1⋃
l=1 

(aj1j1s, aj2j2l)︸ ︷︷ ︸
XX 

. 

Case II: From Case (I), consider a dynamical system having singular equilibriums 
(A2) as  

ẋj1 = aj1j10 
p1∏

r1=1 

(xj1 − bj1j1r1 )
m(1) 

r1 

l1∏
s=1 

[(xj1 − a(s) 
j1j1 

)2 + �
(s) 
j1j1

]ms , 

ẋj2 = aj2j20 
q1∏

s1=1 

(xj2 − bj2j2s1 )
n(1) 
s1 

l2∏
l=1 

[(xj2 − a(l) 
j2j2 

)2 + �
(l) 
j2j2

]nl ; 

where

{
aj1j1r1

∣∣r1 = 1, 2, · · ·  , p1
} = sort

{
bj1j1r1

∣∣r1 = 1, 2, · · ·  , p1
}
,{

aj2j2s1
∣∣s1 = 1, 2, · · ·  , q1

} = sort
{
bj2j2s1

∣∣s1 = 1, 2, · · ·  , q1
}
; 

2m1 + 1 − 
p1∑

r1=1 

m(1) 
r1 = 2 

l1∑
s=1 

ms 

with l1-quadratic polynomials without real roots 

and sth-quadratic polynomial with power ms, 

2n1 − 
q1∑

s1=1 

n(1) 
s1 = 2 

l2∑
l=1 

nl 

with l2-quadraitc polynomials without real roots 

and lth-quadratic polynomial with power nl . 

Once

�
(s) 
j1j1 

= 0 (s = 1, 2, · · ·  , l1) and �
(l) 
j2j2 

= 0 (l = 1, 2, · · ·  , l2), 

if 

aj1j11 ≡ aj1j1r1 = a(s) 
j1j1 

(r1 = 1, 2, · · ·  , p1; s = 1, 2, · · ·  , l1), 

aj2j21 ≡ aj2j2s1 = a(l) 
j2j2 

(s1 = 1, 2, · · ·  , q1; l = 1, 2, · · ·  , l2), 

the foregoing differential equations becomes a dynamical system with a singular 
equilibrium (B2) as  

ẋj1 = aj1j10(xj1 − aj1j11)2m1+1 , ẋj2 = aj2j20(xj2 − aj2j21)2n1 .
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If

�
(s) 
j1j1 

= �j1j1 + δs (s = 1, 2, · · ·  , l1);
�

(l) 
j2j2 

= �j2j2 + δl (l = 1, 2, · · ·  , l2) 
δs > 0 and δl > 0, 

then 

a(s) 
j1j11, a

(s) 
j1j12 = aj1j11 ± εs, (s = 1, 2, · · ·  , l1), 

a(l) 
j2j21, a

(l) 
j2j22 = aj2j21 ± εl, (l = 1, 2, · · ·  , l2); 

{aj1j11, aj1j12, · · ·  , aj1j1p2} 
= sort{ aj1j11, aj1j12, · · ·  , aj1j1p1; a(s) 

j1j11, a
(s) 
j1j12|s = 1, 2, · · ·  , l1} ,  

{aj2j21, aj2j21, · · ·  , aj2j2q2} 
= sort{aj2j21, aj2j21, · · ·  , aj2j2q1; a(l) 

j2j21, a
(l) 
j2j22|l = 1, 2, · · ·  , l2}. 

Thus, the differential equation becomes a dynamical system with singular equilib-
riums (C2) as  

ẋj1 = aj1j10 
p2∏

r2=1 

(xj1 − aj1j1r2 )
m(2) 

r2 , 

ẋj2 = aj2j20 
q2∏

s2=1 

(xj2 − aj2j2s2 )
n(2) 
s2 ; 

where 

p2∑
r2=1 

m(2) 
r2 = 2m1 + 1, 

q2∑
s2=1 

n(2) 
s2 = 2n1. 

From the above bifurcation process analysis, at least, p2-parameter variations in the 
xj1 -direction and q2-parameter variations in the xj2 -direction are engaged in such a 
bifurcation from a p1 × q1 equilibrium network to a p2 × q2 equilibrium network 
through the (2m1 + 1)th-source and sink bifurcations in the xj1 -direction and the 
(2n1)th-upper-saddle and lower-saddle bifurcations in the xj2 -direction. 

Thus, the appearing or vanishing bifurcation route from a p1 × q1 to a p2 × q2 
equilibrium network is expressed as 

p1⋃
r1=1 

q1⋃
s1=1 

(aj1j1r1 , aj2j2s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� (aj1j11, aj2j21)︸ ︷︷ ︸
((2m1+1),(2n1))-XX

�
p2⋃

r2=1 

q2⋃
s2=1 

(aj1j1r2 , aj2j2s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX 

.
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From case (I), the singular equilibriums can be formed through nonsingular 
equilibrium networks, and the corner singular equilibriums for i = 1, 2 are 
determined. 

Case III: Consider two dynamical systems with the same equilibriums with 
locations switched (A3,C3) for  i = 1, 2 as 

ẋj1 = aj1j10 
p∏

ri=1 

(xj1 − aj1j1ri )
m(i) 

ri , ẋj2 = aj2j20 
q∏

si=1 

(xj2 − aj2j2si )
n(i) 
si ; 

where 

p∑
ri=1 

m(i) 
ri = 2m1 + 1, 

q∑
si=1 

n(i) 
si = 2n1. 

Consider a dynamical system as a singular equilibrium (B3) as  

ẋj1 = aj1j10(xj1 − aj1j11)2m1+1 , ẋj2 = aj2j20(xj2 − aj2j21)2n1 . 

For ri = 1, 2, · · ·  , p and si = 1, 2, · · ·  , q (i = 1, 2), define two functions as

�
(r1r2) 
j1j1 

= (aj1j1r1 − aj1j1r2 )2 ,(r1, r2 ∈ {1, 2, · · ·  , p}, r1 �= r2),

�
(s1s2) 
j2j2 

= (aj2j2s1 − aj2j2s2 )2 ,(s1, s2 ∈ {1, 2, · · ·  , q}, s1 �= s2). 

For ri = 1, 2, · · ·  , p and si = 1, 2, · · ·  , q (i = 1, 2), if

�
(r1r2) 
j1j1 = (aj1j1r1 − aj1j1r2 )2 = 0,

�
(s1s2) 
j2j2 

= (aj2j2s1 − aj2j2s2 )2 = 0, 

two equilibriums of (aj1j1r1 , aj2j2s1 ) and (aj1j1r2 , aj2j2s2 ) switching at point (aj1j11, aj2j21) 
with the same order singularity are given through 

(aj1j1r1 , aj2j2s1 )︸ ︷︷ ︸
(m(1) 

r1 ,n
(1) 
s1 )−XX

� (aj1j11, aj2j21)︸ ︷︷ ︸
((2m1+1),(2n1))-XX

� (aj1j1r2 , aj2j2s2 )︸ ︷︷ ︸
(m(2) 

r2 ,n
(2) 
s2 )−XX 

,

{
aj1j1r1 � aj1j1r2

∣∣m(1) 
r1 = m(2) 

r2 ; r1, r2 ∈ {1, 2, · · ·  , p}, r1 �= r2
}
,{

(aj2j2s1 � aj2j2s2
∣∣n(1) 

s1 = n(2) 
s2 ; s1, s2 ∈ {1, 2, · · ·  , q}, s1 �= s2

}
, 

and 

aj1j1r1 = aj1j11 − εr1 , aj1j1r2 = aj1j11 + εr2 , 
(aj1j1r1 = aj1j11 + εr1 , aj1j1r2 = aj1j11 − εr2 ); 
aj2j2s1 = aj2j21 − εs1 , aj2j2s2 = aj2j21 + εs2 ,
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(aj2j2s1 = aj2j21 + εs1 , aj2j2s2 = aj2j21 − εs2 ) 
εr1 , εr2 > 0 and εs1 , εs2 > 0; 
ri = 1, 2, · · ·  , p; si = 1, 2, · · ·  , q (i = 1, 2). 

From case (I), the singular equilibriums can be formed through nonsingular equi-
librium networks as presented in Case (II), and the corner singular equilibriums for 
i = 1, 2 are determined similarly. 

In summary, from the cases (I)–(III), the equilibrium of (x∗ 
j1 
, x∗ 

j2 
) = (aj1j11, aj2j21) 

for m = 2m1 + 1 and n = 2n1 has the bifurcation properties as stated in (vi1)-(vi4) 
through Eqs. (3.94)–(3.117). 

(vii) For m = 2m1 and n = 2n1, this case is quite similar to (iv) for m = 
2m1 + 1 and n = 2n1 + 1, the bifurcation process is discussed through differential 
equations as follows. There are three cases (I)–(III). 

Case I: Consider a dynamical system having a single equilibrium (A1) as  

ẋj1 = aj1j10 
m1∏
s=1 

[(xj1 − a(s) 
j1j1 

)2 + �
(s) 
j1j1

], 

ẋj2 = aj2j20 
n1∏
l=1 

[(xj2 − a(l) 
j2j2 

)2 + �
(l) 
j2j2

]. 

Once

�
(s) 
j1j1 

= �j1j1 = 0 (s = 1, 2, · · ·  , m1) and �
(l) 
j2j2 

= �j2j2 = 0 (l = 1, 2, · · ·  , n1), 

if 

aj1j11 = a(s) 
j1j1 (s = 1, 2, · · ·  , m1) and aj2j21 = a(l) 

j2j2 (l = 1, 2, · · ·  , n1), 

the foregoing differential equations becomes a dynamical system with a singular 
equilibrium (B1) as  

ẋj1 = aj1j10(xj1 − aj1j11)2m1 , ẋj2 = aj2j20(xj2 − aj2j21)2n1 . 

If

�
(s) 
j1j1 

= �j1j1 + δs (s = 1, 2, · · ·  , m1);
�

(l) 
j2j2 

= �j2j2 + δl (l = 1, 2, · · ·  , n1) 
δs > 0 and δl > 0, 

then
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a(s) 
j1j11, a

(s) 
j1j12 = aj1j11 ± εs, (s = 1, 2, · · ·  , m1), 

a(l) 
j2j21, a

(l) 
j2j22 = aj2j21 ± εl, (l = 1, 2, · · ·  , n1);{

aj1j11, aj1j12, · · ·  , aj1j1(2m1)

} = sort
{
bj1j11, a

(s) 
j1j11, a

(s) 
j1j12

∣∣s = 1, 2, · · ·  , m1
}
,

{
aj2j21, aj2j21, · · ·  , aj2j2(2n1)

} = sort
{
a(l) 
j2j21, a

(l) 
j2j22

∣∣l = 1, 2, · · ·  , n1
}
. 

Thus, the differential equation becomes a dynamical system with a non-singular 
equilibrium network (C1) as  

ẋj1 = aj1j10 
2m1∏
s=1 

(xj1 − aj1j1s), ẋj2 = aj2j20 
2n1∏
l=1 

(xj2 − aj2j2l). 

From the above bifurcation process analysis, at least, m1-parameter variations in 
the xj1 -direction and n1-parameter variations in the xj2 -direction are engaged in such 
a bifurcation from a flow to the equilibrium network of (2m1) × (2n1) through 
the (2m1)

th-upper-saddle and lower-saddle bifurcations in the xj1 -direction and the 
(2n1)th-upper-saddle and lower-saddle bifurcations in the xj2 -direction. With both of 
them, the higher-order double-saddle bifurcations are developed. 

Thus the appearing or vanishing bifurcation route is as follows. 

(ẋj1 , ̇xj2 )︸ ︷︷ ︸
XX

� (aj1j11, aj2j21)︸ ︷︷ ︸
((2m1),(2n1))-XX

�
2m1⋃
s=1 

2n1⋃
l=1 

(aj1j1s, aj2j2l)︸ ︷︷ ︸
XX 

. 

Case II: From Case (I), consider a dynamical system having singular equilibriums 
(A2) as  

ẋj1 = aj1j10 
p1∏

r1=1 

(xj1 − bj1j1r1 )
m(1) 

r1 

l1∏
s=1 

[(xj1 − a(s) 
j1j1 

)2 + �
(s) 
j1j1

]ms , 

ẋj2 = aj2j20 
q1∏

s1=1 

(xj2 − bj2j2s1 )
n(1) 
s1 

l2∏
l=1 

[(xj2 − a(l) 
j2j2 

)2 + �
(l) 
j2j2

]nl ; 

where

{
aj1j1r1

∣∣r1 = 1, 2, · · ·  , p1
} = sort

{
bj1j1r1

∣∣r1 = 1, 2, · · ·  , p1
}
,{

aj2j2s1
∣∣s1 = 1, 2, · · ·  , q1

} = sort
{
bj2j2s1

∣∣s1 = 1, 2, · · ·  , q1
}
; 

2m1 − 
p1∑

r1=1 

m(1) 
r1 = 2 

l1∑
s=1 

ms 

with l1-quadratic polynomials without real roots 

and sth-quadratic polynomial with power ms,
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2n1 − 
q1∑

s1=1 

n(1) 
s1 = 2 

l2∑
l=1 

nl 

with l2-quadraitc polynomials without real roots 

and lth-quadratic polynomial with power nl . 

Once

�
(s) 
j1j1 

= 0 (s = 1, 2, · · ·  , l1) and �
(l) 
j2j2 

= 0 (l = 1, 2, · · ·  , l2), 

if 

aj1j11 ≡ aj1j1r1 = a(s) 
j1j1 

(r1 = 1, 2, · · ·  , p1; s = 1, 2, · · ·  , l1), 

aj2j21 ≡ aj2j2s1 = a(l) 
j2j2 

(s1 = 1, 2, · · ·  , q1; l = 1, 2, · · ·  , l2). 

the foregoing differential equations becomes a dynamical system with a singular 
equilibrium (B2) as  

ẋj1 = aj1j10(xj1 − aj1j11)2m1 , ẋj2 = aj2j20(xj2 − aj2j21)2n1 . 

If

�
(s) 
j1j1 

= �j1j1 + δs (s = 1, 2, · · ·  , l1);
�

(l) 
j2j2 

= �j2j2 + δl (l = 1, 2, · · ·  , l2) 
δs > 0 and δl > 0, 

then 

a(s) 
j1j11, a

(s) 
j1j12 = aj1j11 ± εs, (s = 1, 2, · · ·  , l1), 

a(l) 
j2j21, a

(l) 
j2j22 = aj2j21 ± εl, (l = 1, 2, · · ·  , l2);{

aj1j11, aj1j12, · · ·  , aj1j1p2
}

= sort
{
aj1j11, aj1j12, · · ·  , aj1j1p1; a(s) 

j1j11, a
(s) 
j1j12

∣∣s = 1, 2, · · ·  , l1
}
,{

aj2j21, aj2j21, · · ·  , aj2j2q2
}

= sort
{
aj2j21, aj2j21, · · ·  , aj2j2q1; a(l) 

j2j21, a
(l) 
j2j22

∣∣l = 1, 2, · · ·  , l2
}
. 

Thus, the differential equation becomes a dynamical system with singular equilib-
riums (C2) as  

ẋj1 = aj1j10 
p2∏

r2=1 

(xj1 − aj1j1r2 )
m(2) 

r2 , ẋj2 = aj2j20 
q2∏

s2=1 

(xj2 − aj2j2s2 )
n(2) 
s2 ;
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where 

p2∑
r2=1 

m(2) 
r2 = 2m1, 

q2∑
s2=1 

n(2) 
s2 = 2n1. 

From the above bifurcation process analysis, at least, p2-parameter variations in the 
xj1 -direction and q2-parameter variations in the xj2 -direction are engaged in such a 
bifurcation from a p1 × q1 equilibrium network to a p2 × q2 equilibrium network 
through the (2m1)

th-upper-saddle and lower-saddle bifurcations in the xj1 -direction 
and the (2n1)th-upper-saddle and lower-saddle bifurcations in the xj2 -direction. 

Thus the appearing or vanishing bifurcation route from a p1 × q1 to a p2 × q2 
equilibrium network is expressed as 

p1⋃
r1=1 

q1⋃
s1=1 

(aj1j1r1 , aj2j2s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� (aj1j11, aj2j21)︸ ︷︷ ︸
((2m1),(2n1))-XX

�
p2⋃

r2=1 

q2⋃
s2=1 

(aj1j1r2 , aj2j2s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX 

. 

From case (I), the singular equilibriums can be formed through nonsingular 
equilibrium networks, and the corner singular equilibriums for i = 1, 2 are 
determined. 

Case III: Consider two dynamical systems with the same equilibriums with 
locations switched (A3,C3) for  i = 1, 2 as 

ẋj1 = aj1j10 
p∏

ri=1 

(xj1 − aj1j1ri )
m(i) 

ri , ẋj2 = aj2j20 
q∏

si=1 

(xj2 − aj2j2si )
n(i) 
si ; 

where 

p∑
ri=1 

m(i) 
ri = 2m1, 

q∑
si=1 

n(i) 
si = 2n1. 

Consider a dynamical system as a singular equilibrium (B3) as  

ẋj1 = aj1j10(xj1 − aj1j11)2m1 , ẋj2 = aj2j20(xj2 − aj2j21)2n1 . 

For ri = 1, 2, · · ·  , p and si = 1, 2, · · ·  , q (i = 1, 2), define two functions as

�
(r1r2) 
j1j1 

= (aj1j1r1 − aj1j1r2 )2 (r1, r2 ∈ {1, 2, · · ·  , p}, r1 �= r2),

�
(s1s2) 
j2j2 = (aj2j2s1 − aj2j2s2 )2 (s1, s2 ∈ {1, 2, · · ·  , q}, s1 �= s2). 

For ri = 1, 2, · · ·  , p and si = 1, 2, · · ·  , q (i = 1, 2), if

�
(r1r2) 
j1j1 

= (aj1j1r1 − aj1j1r2 )2 = 0,
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�
(s1s2) 
j2j2 

= (aj2j2s1 − aj2j2s2 )2 = 0, 

two equilibriums of (aj1j1r1 , aj2j2s1 ) and (aj1j1r2 , aj2j2s2 ) switching at point (aj1j11, aj2j21) 
with the same order singularity are given through 

(aj1j1r1 , aj2j2s1 )︸ ︷︷ ︸
(m(1) 

r1 ,n
(1) 
s1 )-XX

� (aj1j11, aj2j21)︸ ︷︷ ︸
((2m1),(2n1))-XX

� (aj1j1r2 , aj2j2s2 )︸ ︷︷ ︸
(m(2) 

r2 ,n
(2) 
s2 )-XX 

,

{
aj1j1r1 � aj1j1r2

∣∣m(1) 
r1 = m(2) 

r2 ; r1, r2 ∈ {1, 2, · · ·  , p}, r1 �= r2
}
,{

aj2j2s1 � aj2j2s2
∣∣n(1) 

s1 = n(2) 
s2 ; s1, s2 ∈ {1, 2, · · ·  , q}, s1 �= s2

}
, 

and 

aj1j1r1 = aj1j11 − εr1 , aj1j1r2 = aj1j11 + εr2 , 
(aj1j1r1 = aj1j11 + εr1 , aj1j1r2 = aj1j11 − εr2 ); 
aj2j2s1 = aj2j21 − εs1 , aj2j2s2 = aj2j21 + εs2 , 
(aj2j2s1 = aj2j21 + εs1 , aj2j2s2 = aj2j21 − εs2 ) 
εr1 , εr2 > 0 and εs1 , εs2 > 0; 
ri = 1, 2, · · ·  , p; si = 1, 2, · · ·  , q (i = 1, 2). 

From case (I), the singular equilibriums can be formed through nonsingular equi-
librium networks as presented in Case (II), and the corner singular equilibriums for 
i = 1, 2 are determined similarly. 

In summary, from the cases (I)-(III), the equilibrium of (x∗ 
j1 
, x∗ 

j2 
) = (aj1j11, aj2j21) 

for m = 2m1 and n = 2n1 has the bifurcation properties as stated in (vii1)–(vii4) 
through Eqs. (3.118)–(3.141). 

In the end, the theorem is proved. �

3.3 Bifurcations to Homoclinic Networks Without Centers 

As in Luo [1], in this section, four types of bifurcations are presented for non-singular 
equilibriums. 

3.3.1 ((2m1 + 1), (2n1 + 1))-Source, Saddles, and Sink 
Bifurcations 

Consider a 2-dimensional singular system of the (2m1 + 1) × (2n1 + 1)-type as 

ẋ1 = a110(x1 − a111)2m1+1 , ̇x2 = a220(x2 − a221)2n1+1 . (3.142)
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The first integral manifold is 

1 

2n1

[ 1 

(x2 − a221)2n1 
− 1 

(x20 − a221)2n1
]

= 
a220 
a110 

1 

2m1

[ 1 

(x1 − a111)2m1 
− 1 

(x10 − a111)2m1

]
, 

for m1, n1 �= 0, 
1 

2n1

[ 1 

(x2 − a221)2n1 
− 1 

(x20 − a221)2n1
] = −  

a220 
a110 

ln 
|x1 − a111| 
|x10 − a111| , 

for n1 �= 0 and m1 = 0, 

− ln 
|x2 − a221| 
|x20 − a221| = 

a220 
a110 

1 

2m1

[ 1 

(x1 − a111)2m1 
− 1 

(x10 − a111)2m1

]
, 

for n1 = 0 and m1 �= 0, 

ln 
|x2 − a221| 
|x20 − a221| = 

a220 
a110 

ln 
|x1 − a111| 
|x10 − a111| , for m1, n1 = 0. (3.143) 

Phase portraits of the singular equilibriums for the 2-dimensional singular system 
of the ((2m1+1), (2n1+1))-type are presented in Fig. 3.1a–d for (a110 > 0, a220 > 0), 
(a110 < 0, a220 > 0), (a110 > 0, a220 < 0) and (a110 < 0, a220 < 0). 

(a111, a221) = ((2m1+1)th SO,(2n1+1)th SO)︸ ︷︷ ︸
((2m1+1),(2n1 + 1))-source 

for a110 > 0 and a220 > 0, 

(a111, a221) = ((2m1+1)th SI,(2n1+1)th SO)︸ ︷︷ ︸
((2m1+1),(2n1 + 1))-saddle 

for a110 < 0 and a220 > 0, 

(a111, a221) = ((2m1+1)th SO,(2n1+1)th SI)︸ ︷︷ ︸
((2m1+1),(2n1 + 1))-saddle 

for a110 > 0 and a220 < 0, 

(a111, a221) = ((2m1+1)th SI,(2n1+1)th SI)︸ ︷︷ ︸
((2m1+1),(2n1 + 1))-sink 

for a110 < 0 and a220 < 0. (3.144)

From the above bifurcations, there is a non-singular system with (2m1 + 1) × 
(2n1 + 1)-equilibriums as 

ẋ1 = a110 
2m1+1∏
s=1 

(x1 − a11s) and ẋ2 = a220 
2n1+1∏
l=1 

(x2 − a22l). (3.145) 

The first integral manifold is given by

2n1+1∑
l1=1 

1∏2n1+1 
l2=1,l2 �=l1 

(a22l1 − a22l2 ) 
ln 

|x2 − a22l1 | 
|x20 − a22l1 |



126 3 Bifurcations for Homoclinic Networks Without Centers

(b)(a) 

(d)(c) 
1x

111a 

2x 

221a 

1x 
111a 

2x 

221a 

1x 
111a 

2x 

221a 

1x
111a 

2x 

221a 

Fig. 3.1 Phase portraits of the ((2m1 + 1), (2n1 + 1))-source, saddles, and sink for 2-dimensional 
systems at (x∗

1 , x
∗
2 ) = (a111, a221). a (a110 > 0, a220 > 0), b (a110 < 0, a220 > 0), c (a110 > 

0, a220 < 0), d (a110 < 0, a220 < 0)

= 
a220 
a110 

2m1+1∑
s1=1 

1∏2m1+1 
s2=1,s2 �=s1 

(a11s1 − a11s2 ) 
ln 

|x1 − a11s1 | 
|x10 − a11s1 | 

. (3.146)

Phase portraits for the 2-dimensional systems near the simple equilibriums of the 
saddles, sinks and sources are presented in Fig. 3.2a–d for (a110 > 0, a220 > 0), 
(a110 < 0, a220 > 0), (a110 > 0, a220 < 0) and (a110 > 0, a220 < 0). For all cases, 
the (2m1 + 1) × (2n1 + 1)-simple equilibriums are based on the ((2m1 + 1), (2n1 + 
1))-source, saddles and sink bifurcations.
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(a) 
111a

1x 

2x 
221a 

111(2 )ma 

122(2 )na 

111(2 +1 

+1 

)ma 

122(2 +1)na 

(b) 
111a

1x 

2x 
221a 

111(2 )ma 

122(2 )na 

111(2 )ma 

122(2 )na +1 

Fig. 3.2 Phase portraits for 2-dimensional systems with x∗
1 = a111, a112, · · ·  , a11(2m1+1) and x∗

2 = 
a221, a222, · · ·  , a22(2n1+1). The four networks of sink, source and saddle: a (a110 > 0, a220 > 0), 
b (a110 < 0, a220 > 0), c (a110 > 0, a220 < 0), d (a110 > 0, a220 < 0)
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(c) 
111a

1x 

2x 
221a 

111(2 )ma 

122(2 )na 

111(2 +1)ma 

122(2 +1)na 

(d) 
111a

1x 

2x 
221a 

111(2 )ma 

122(2 )na 

111(2 +1)ma 

122(2 +1)na 

Fig. 3.2 (continued)
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2m1+1⋃
s=1 

2n1+1⋃
l=1 

(aj1j1s, aj2j2l)︸ ︷︷ ︸
XX 

= 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SO,SO)︸ ︷︷ ︸
source 

· · ·  (SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

(SO,SI)︸ ︷︷ ︸
saddle 

· · ·  (SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

... 
... 

... 
... 

(SO,SO)︸ ︷︷ ︸
source 

· · ·  (SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2n1+1)×(2m1+1) 

for a110 > 0, a220 > 0; (3.147) 

2m1+1⋃
s=1 

2n1+1⋃
l=1 

(aj1j1s, aj2j2l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SI,SO)︸ ︷︷ ︸
saddle 

· · ·  (SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

· · ·  (SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

... 
... 

... 
... 

(SI,SO)︸ ︷︷ ︸
saddle 

· · ·  (SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2n1+1)×(2m1+1) 

for a110 < 0, a220 > 0; (3.148) 

2m1+1⋃
s=1 

2n1+1⋃
l=1 

(aj1j1s, aj2j2l)︸ ︷︷ ︸
XX 

= 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SO,SI)︸ ︷︷ ︸
saddle 

· · ·  (SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

· · ·  (SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

... 
... 

... 
... 

(SO,SI)︸ ︷︷ ︸
saddle 

· · ·  (SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2n1+1)×(2m1+1) 

for a110 > 0, a220 < 0; (3.149) 

2m1+1⋃
s=1 

2n1+1⋃
l=1 

(aj1j1s, aj2j2l)︸ ︷︷ ︸
XX 

= 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SO,SI)︸ ︷︷ ︸
saddle 

· · ·  (SI,SO)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

(SI,SO)︸ ︷︷ ︸
saddle 

· · ·  (SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

... 
... 

... 
... 

(SO,SI)︸ ︷︷ ︸
saddle 

· · ·  (SI,SO)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2n1+1)×(2m1+1) 

for a110 < 0, a220 < 0. (3.150)
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3.3.2 ((2m1), (2n1 + 1))-Saddle-Source and Saddle-Sink 
Bifurcations 

Consider a 2-dimensional singular system of the (2m1) × (2n1 + 1)-type as 

ẋ1 = a110(x1 − a111)2m1 , ̇x2 = a220(x2 − a221)2n1+1 . (3.151) 

The first integral manifold is 

1 

2n1

[ 1 

(x2 − a221)2n1 
− 1 

(x20 − a221)2n1
]

= 
a220 
a110 

1 

2m1 − 1
[ 1 

(x1 − a111)2m1−1 
− 1 

(x10 − a111)2m1−1

]
, 

for m1, n1 �= 0, 

− ln 
|x2 − a221| 
|x20 − a221| = 

a220 
a110 

1 

2m1 − 1
[ 1 

(x1 − a111)2m1−1 
− 1 

(x10 − a111)2m1−1

]
, 

for n1 = 0 and m1 �= 0. (3.152) 

Phase portraits of the singular saddle-sources and saddle-sinks for the 2-dimensional 
singular system of the ((2m1), (2n1+1))-type are presented in Fig. 3.3a–d for (a110 > 
0, a220 > 0), (a110 < 0, a220 > 0), (a110 > 0, a220 < 0) and (a110 < 0, a220 < 0). 

(a111, a221) = ((2m1)
th US,(2n1+1)th SO)︸ ︷︷ ︸

((2m1),(2n1 + 1))-upper-saddle-source 

for a110 > 0 and a220 > 0, 

(a111, a221) = ((2m1)
th LS,(2n1+1)th SO)︸ ︷︷ ︸

((2m1),(2n1 + 1))-lower-saddle-source 

for a110 < 0 and a220 > 0, 

(a111, a221) = ((2m1)
th US,(2n1+1)th SI)︸ ︷︷ ︸

((2m1),(2n1 + 1))-upper-saddle-sink 

for a110 > 0 and a220 < 0, 

(a111, a221) = ((2m1)
th LS,(2n1+1)th SI)︸ ︷︷ ︸

((2m1),(2n1 + 1))-lower-saddle-sink 

for a110 < 0 and a220 < 0. (3.153)

From the above bifurcations, there is a non-singular system with (2m1) × (2n1 + 
1)-equilibriums as 

ẋ1 = a110 
2m1∏
s=1 

(x1 − a11s) and ẋ2 = a220 
2n1+1∏
l=1 

(x1 − a22l). (3.154) 

The first integral manifold is given by
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(b)(a) 

(d)(c) 
1x

111a 

2x 

221a 

1x 
111a 

2x 

221a 

1x 
111a 

2x 

221a 

1x
111a 

2x 

221a 

Fig. 3.3 Phase portraits of the ((2m1), (2n1 +1))-saddle-source and saddle-sink for 2-dimensional 
systems at (x∗

1 , x
∗
2 ) = (a111, a221). a (a110 > 0, a220 > 0), b (a110 < 0, a220 > 0), c (a110 > 

0, a220 < 0), d (a110 < 0, a220 < 0)

2n1+1∑
l1=1 

1∏2n1+1 
l2=1,l2 �=l1 

(a22l1 − a22l2 ) 
ln 

|x2 − a22l1 | 
|x20 − a22l1 | 

= 
a220 
a110 

2m1∑
s1=1 

1∏2m1 
s2=1,s2 �=s1 

(a11s1 − a11s2 ) 
ln 

|x1 − a11s1 | 
|x10 − a11s1 |

. (3.155) 

Phase portraits for the 2-dimensional systems of ((2m1), (2n1 + 1))-type with the 
saddles, sinks and sources are presented in Fig. 3.4a–d for (a110 > 0, a220 > 0), 
(a110 < 0, a220 > 0), (a110 > 0, a220 < 0) and (a110 < 0, a220 < 0). For all 
cases, the (2m1) × (2n1 + 1)-simple equilibriums are based on the ((2m1), (2n1 + 
1))-saddle-source and saddle-sink bifurcations.
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2m1⋃
s=1 

2n1+1⋃
l=1 

(aj1j1s, aj2j2l)︸ ︷︷ ︸
XX 

= 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SI,SO)︸ ︷︷ ︸
saddle 

· · ·  (SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

(SI,SI)︸ ︷︷ ︸
sink 

· · ·  (SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

... 
... 

... 
... 

(SI,SO)︸ ︷︷ ︸
saddle 

· · ·  (SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2n1+1)×(2m1) 

for a110 > 0, a220 > 0; (3.156) 

2m1⋃
s=1 

2n1+1⋃
l=1 

(aj1j1s, aj2j2l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SO,SO)︸ ︷︷ ︸
source 

· · ·  (SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

(SO,SI)︸ ︷︷ ︸
saddle 

· · ·  (SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

... 
... 

... 
... 

(SO,SO)︸ ︷︷ ︸
source 

· · ·  (SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2n1+1)×(2m1) 

for a110 < 0, a220 > 0; (3.157) 

2m1⋃
s=1 

2n1+1⋃
l=1 

(aj1j1s, aj2j2l)︸ ︷︷ ︸
XX 

= 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SI,SI)︸ ︷︷ ︸
sink 

· · ·  (SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

(SI,SO)︸ ︷︷ ︸
saddle 

· · ·  (SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

... 
... 

... 
... 

(SI,SI)︸ ︷︷ ︸
sink 

· · ·  (SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2n1+1)×(2m1) 

for a110 > 0, a220 < 0; (3.158) 

2m1⋃
s=1 

2n1+1⋃
l=1 

(aj1j1s, aj2j2l)︸ ︷︷ ︸
XX 

= 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SI,SO)︸ ︷︷ ︸
saddle 

· · ·  (SI,SO)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

(SO,SO)︸ ︷︷ ︸
source 

· · ·  (SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

... 
... 

... 
... 

(SI,SO)︸ ︷︷ ︸
saddle 

· · ·  (SI,SO)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2n1+1)×(2m1) 

for a110 < 0, a220 < 0. (3.159)
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(a) 

(b) 
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2x 
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111(2 –1)ma 

122(2 )na 

111(2 )ma 

122(2 +1)na 

Fig. 3.4 Phase portraits for 2-dimensional systems with x∗
1 = a111, a112, · · ·  , a11(2m1) and with 

x∗
2 = a221, a222, · · ·  , a22(2n1+1). The four networks of sinks, sources, and saddles: a (a110 > 
0, a220 > 0), b (a110 < 0, a220 > 0), c (a110 > 0, a220 < 0), d (a110 < 0, a220 < 0)
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(d) 
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122(2 )na 

111(2 )ma 

122(2 +1)na 

Fig. 3.4 (continued)
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3.3.3 ((2m1 + 1), (2n1))-Saddle-Source and Saddle-Sink 
Bifurcations 

Consider a 2-dimensional singular system of the (2m1 + 1) × (2n1)-type as 

ẋ1 = a110(x1 − a111)2m1+1 , ̇x2 = a220(x2 − a221)2n1 . (3.160) 

The first integral manifold is. 

1 

2n1 − 1
[ 1 

(x2 − a221)2n1−1 
− 1 

(x20 − a221)2n1−1

]

= 
a220 
a110 

1 

2m1

[ 1 

(x1 − a111)2m1 
− 1 

(x10 − a111)2m1

]
, 

for m1, n1 �= 0, 
1 

2n1

[ 1 

(x2 − a221)2n1−1 
− 1 

(x20 − a221)2n1−1

] = −a220 
a110 

ln 
|x1 − a111| 
|x10 − a111| , 

for n1 �= 0 and m1 = 0. (3.162) 

Phase portraits of the singular equilibriums for the 2-dimensional singular system 
of the ((2m1 + 1), (2n1))-type are presented in Fig. 3.5a–d for (a110 > 0, a220 > 0), 
(a110 < 0, a220 > 0), (a110 > 0, a220 < 0) and (a110 < 0, a220 < 0). 

(a111, a221) = ((2m1+1)th SO,(2n1)
th US)︸ ︷︷ ︸

((2m1+1),(2n1))-upper-saddle-source 

for a110 > 0 and a220 > 0, 

(a111, a221) = ((2m1+1)th SI,(2n1)
th US)︸ ︷︷ ︸

((2m1+1),(2n1))-upper-saddle-sink 

for a110 < 0 and a220 > 0, 

(a111, a221) = ((2m1+1)th SO,(2n1)
th LS)︸ ︷︷ ︸

((2m1+1),(2n1))-lower-saddle-source 

for a110 > 0 and a220 < 0, 

(a111, a221) = ((2m1+1)th SI,(2n1)
th LS)︸ ︷︷ ︸

((2m1+1),(2n1))-lower-saddle-sink 

for a110 < 0 and a220 < 0. (3.163)

From the above bifurcations, there is a non-singular system with (2m1 + 1) × 
(2n1)-equilibriums as 

ẋ1 = a110 
2m1+1∏
s=1 

(x1 − a11s) and ẋ2 = a220 
2n1∏
l=1 

(x1 − a22l). (3.164) 

The first integral manifold is given by
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Fig. 3.5 Phase portraits of the ((2m1 +1), (2n1))-saddle-source and saddle-sink for 2-dimensional 
systems at (x∗

1 , x
∗
2 ) = (a111, a221). a (a110 > 0, a220 > 0), b (a110 < 0, a220 > 0), c (a110 > 

0, a220 < 0), d (a110 < 0, a220 < 0)

2n1∑
l1=1 

1∏2n1 
l2=1,l2 �=l1 

(a22l1 − a22l2 ) 
ln 

|x2 − a22l1 | 
|x20 − a22l1 | 

= 
a220 
a110 

2m1+1∑
s1=1 

1∏2m1+1 
s2=1,s2 �=s1 

(a11s1 − a11s2 ) 
ln 

|x1 − a11s1 | 
|x10 − a11s1 | 

. (3.165) 

Phase portraits for the 2-dimensional systems near the simple equilibriums of the 
saddles, sinks and sources are presented in Fig. 3.6a–d for (a110 > 0, a220 > 0), 
(a110 < 0, a220 > 0), (a110 > 0, a220 < 0) and (a110 < 0, a220 < 0). For all cases, 
the (2m1 + 1) × (2n1)-simple equilibriums are based on the ((2m1 + 1), (2n1))-
saddle-source and saddle-sink bifurcations.
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Fig. 3.6 Phase portraits for 2-dimensional systems with x∗
1 = a111, a112, · · ·  , a11(2m1+1) and x∗

2 = 
a221, a222, · · ·  , a22(2n1). The four networks of sink, source and saddle: a (a110 > 0, a220 > 0), 
b (a110 < 0, a220 > 0), c (a110 > 0, a220 < 0), d (a110 < 0, a220 < 0)
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Fig. 3.6 (continued)
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2m1+1⋃
s=1 

2n1⋃
l=1 

(aj1j1s, aj2j2l)︸ ︷︷ ︸
XX 

= 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SO,SO)︸ ︷︷ ︸
source 

· · ·  (SI,SO)︸ ︷︷ ︸
saddle 

(SO,SO)︸ ︷︷ ︸
source 

(SO,SI)︸ ︷︷ ︸
saddle 

· · ·  (SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

... 
... 

... 
... 

(SO,SI)︸ ︷︷ ︸
saddle 

· · ·  (SI,SI)︸ ︷︷ ︸
sink 

(SO,SI)︸ ︷︷ ︸
saddle 

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2n1)×(2m1+1) 

for a110 > 0, a220 > 0; (3.166) 

2m1+1⋃
s=1 

2n1⋃
l=1 

(aj1j1s, aj2j2l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SI,SO)︸ ︷︷ ︸
saddle 

· · ·  (SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 
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· · ·  (SO,SI)︸ ︷︷ ︸
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(SI,SI)︸ ︷︷ ︸
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... 
... 

... 
... 

(SI,SI)︸ ︷︷ ︸
sink 

· · ·  (SO,SI)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
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⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2n1)×(2m1+1) 

for a110 < 0, a220 > 0; (3.167) 

2m1+1⋃
s=1 

2n1⋃
l=1 

(aj1j1s, aj2j2l)︸ ︷︷ ︸
XX 

= 
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(SO,SI)︸ ︷︷ ︸
saddle 

· · ·  (SI,SI)︸ ︷︷ ︸
sink 
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... 
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source 
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(SO,SO)︸ ︷︷ ︸
source 

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2n1)×(2m1+1) 

for a110 > 0, a220 < 0; (3.168) 

2m1+1⋃
s=1 

2n1⋃
l=1 
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XX 

= 
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(SI,SI)︸ ︷︷ ︸
sink 

· · ·  (SI,SO)︸ ︷︷ ︸
saddle 

(SI,SI)︸ ︷︷ ︸
sink 

(SI,SO)︸ ︷︷ ︸
saddle 

· · ·  (SO,SO)︸ ︷︷ ︸
source 
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saddle 
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... 

... 
... 

(SI,SO)︸ ︷︷ ︸
saddle 

· · ·  (SO,SO)︸ ︷︷ ︸
source 

(SI,SO)︸ ︷︷ ︸
saddle 

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2n1)×(2m1+1) 

for a110 < 0, a220 < 0. (3.169)
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3.3.4 ((2m1), (2n1))-Double-Saddle Bifurcations 

Consider a 2-dimensional singular system of the (2m1) × (2n1)-type as 

ẋ1 = a110(x1 − a111)2m1 , ̇x2 = a220(x2 − a221)2n1 . (3.170) 

The first integral manifold is 

1 

2n1 − 1
[ 1 

(x2 − a221)2n1−1 
− 1 

(x20 − a221)2n1−1

]

= 
a220 
a110 

1 

2m1 − 1
[ 1 

(x1 − a111)2m1−1 
− 1 

(x10 − a111)2m1−1

]
, 

for m1, n1 �= 0. (3.171) 

Phase portraits of the singular equilibriums for the 2-dimensional singular system 
of the ((2m1), (2n1))-type are presented in Fig. 3.7a–d for (a110 > 0, a220 > 0), 
(a110 < 0, a220 > 0), (a110 > 0, a220 < 0) and (a110 < 0, a220 < 0). 

(a111, a221) = ((2m1)
th US,(2n1)

th US)︸ ︷︷ ︸
((2m1),(2n1))-double-saddle 

for a110 > 0 and a220 > 0, 

(a111, a221) = ((2m1)
th LS,(2n1)

th US)︸ ︷︷ ︸
((2m1),(2n1))-double-saddle 

for a110 < 0 and a220 > 0, 

(a111, a221) = ((2m1)
th US,(2n1)

th LS)︸ ︷︷ ︸
((2m1),(2n1))-double-saddle 

for a110 > 0 and a220 < 0, 

(a111, a221) = ((2m1)
th LS,(2n1)

th LS)︸ ︷︷ ︸
((2m1),(2n1))-double-saddle 

for a110 < 0 and a220 < 0. (3.172)

From the above bifurcations, there is a non-singular system with (2m1) × (2n1)-
equilibriums as 

ẋ1 = a110 
2m1∏
s=1 

(x1 − a11s) and ẋ2 = a220 
2n1∏
l=1 

(x1 − a22l). (3.173) 

The first integral manifold is given by 

2n1∑
l1=1 

1∏2n1 
l2=1,l2 �=l1 

(a22l1 − a22l2 ) 
ln 

|x2 − a22l1 | 
|x20 − a22l1 | 

= 
a220 
a110 

2m1∑
s1=1 

1∏2m1 
s2=1,s2 �=s1 

(a11s1 − a11s2 ) 
ln 

|x1 − a11s1 | 
|x10 − a11s1 | 

. (3.174)
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Fig. 3.7 Phase portraits of the ((2m1), (2n1))-double-saddles for 2-dimensional systems at 
(x∗

1 , x
∗
2 ) = (a111, a221). a (a110 > 0, a220 > 0), b (a110 < 0, a220 > 0), c (a110 > 0, a220 < 0), 

d (a110 < 0, a220 < 0)

Phase portraits for the 2-dimensional systems near the simple equilibriums of the 
saddles, sinks and sources are presented in Fig. 3.8a–d for (a110 > 0, a220 > 0), 
(a110 < 0, a220 > 0), (a110 > 0, a220 < 0) and (a110 < 0, a220 < 0). For all cases, 
the (2m1)×(2n1) simple equilibriums are based on the ((2m1), (2n1))-double-saddle 
bifurcations. 

2m1⋃
s=1 

2n1⋃
l=1 

(aj1j1s, aj2j2l)︸ ︷︷ ︸
XX 

= 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 
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⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 
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for a110 > 0, a220 > 0; (3.175) 
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for a110 < 0, a220 > 0; (3.176) 
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for a110 > 0, a220 < 0; (3.177) 
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source 

(SI,SO)︸ ︷︷ ︸
saddle 

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2n1)×(2m1) 

for a110 < 0, a220 < 0. (3.178)

Similarly, the higher-singular appearing bifurcations are from a singular dynam-
ical system of p1 × q1-equilibriums to a singular dynamical system of p2 × q2-
equilibriums. The higher-singular switching bifurcations are from equilibriums 
switching of two singular dynamical system of p × q-equilibriums. Such two cases 
can be done by readers.
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Fig. 3.8 Phase portraits for 2-dimensional systems with x∗
1 = a111, a112, · · ·  , a11(2m1) and x

∗
2 = 

a221, a222, · · ·  , a22(2n1). The four networks of sink, source and saddle: a (a110 > 0, a220 > 0), 
b (a110 < 0, a220 > 0), c (a110 > 0, a220 < 0), d (a110 < 0, a220 < 0)
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Fig. 3.8 (continued)
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Chapter 4 
Homoclinic Networks with Centers 

In this chapter, the homoclinic networks of positive and negative saddles with clock-
wise and counter-clockwise limit cycles in crossing-univariate polynomial systems 
are studied secondly, and the numbers of saddles and centers are determined through 
a theorem and the first integral manifolds are determined through polynomial func-
tions. The corresponding proof of the theorem is given, and a few illustrations of 
networks of saddles and centers are given to show the corresponding geometric 
structures. Such homoclinic networks of saddles and centers are without any sources 
and sinks. 

4.1 Saddles and Centers 

In this section, as in Luo [1], consider homoclinic networks with maximized clock-
wise and counter-clockwise centers and positive and negative saddles in two-
dimensional polynomial nonlinear systems with crossing-variables vector fields. 
Consider a polynomial system with crossing-univariate polynomial vector fields in 
two directions. The corresponding dynamical behaviors will be presented through 
the following theorem. 

Theorem 4.1 Consider a crossing-univariate polynomial system as 

ẋj1 = aj1j20 
m∏

s1=1

(
xj2 − aj1j2s1

)
, 

ẋj2 = aj2j10 
n∏

l1=1

(
xj1 − aj2j1l1

)
, 

j1, j2 ∈ {1, 2}; j1 �= j2. (4.1)

© Higher Education Press Limited Company 2025 
A. C. J. Luo, Limit Cycles and Homoclinic Networks in Two-Dimensional Polynomial 
Systems, https://doi.org/10.1007/978-981-97-2617-2_4 

147

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-2617-2_4&domain=pdf
https://doi.org/10.1007/978-981-97-2617-2_4


148 4 Homoclinic Networks with Centers

The first integral manifold is 

aj2j10

{
1 

n + 1
[
(xj1 − aj2j1l1 )n+1 − (xj10 − aj2j1l1 )n+1

]

+ 
n−1∑

k=1 

1 

n − k + 1 
bj2j1k

[
(xj1 − aj2j1l1 )n−k+1 − (xj10 − aj2j1l1 )n−k+1]}

= aj1j20
{

1 

m + 1
[
(xj2 − aj1j2s1 )m+1 − (xj20 − aj1j2s1 )m+1

]

+ 
m−1∑

k=1 

1 

m − k + 1 
bj1j2k

[
(xj2 − aj1j2s1 )m−k+1 − (xj10 − aj1j2s1 )m−k+1

]}
. (4.2) 

where 

bj2j11 = 
n∑

l2=1,l2 �=l1

(
aj2j1l1 − aj2j1l2

)
, 

bj2j12 = 
n∑

l2,l3=1;l2,l3 �=l1 
(l2<l3) 

3∏

r=2

(
aj2j1l1 − aj2j1lr

)
, · · ·  , 

bj2j1k = 
n∑

l2,l3,··· ,lk+1=1; 
l2,l3,··· ,lk+1 �=l1 
(l2<l3<···<lk+1) 

k+1∏

r=2

(
aj2j1l1 − aj2j1lr

)
, · · ·  , 

bj2j1(n−1) = 
n∏

l2=1,l2 �=l1

(
aj2j1l1 − aj2j1l2

); 

bj1j21 = 
m∑

s2=1,s2 �=s1

(
aj1j2s1 − aj1j2s2

)
, 

bj1j22 = 
m∑

s2,s3=1;s2,s3 �=s1 
(s2<s3) 

3∏

r=2

(
aj1j2s1 − aj1j2sr

)
, · · ·  , 

bj1j2k = 
m∑

s2,s3,··· ,sk+1=1; 
s2,s3,··· ,sk+1 �=s1 
(s2<s3<···<sk+1) 

k+1∏

r=2

(
aj1j2s1 − aj1j2sr

)
, · · ·  , 

bj1j2(m−1) = 
m∏

s1=1,s2 �=s1

(
aj1j2s1 − aj1j2s2

)
. (4.3) 

The equilibrium of (x∗
j2 , x

∗
j1 ) = (aj1j2s1 , aj2j1l1 ) (s1, s2 ∈ {1, 2, · · ·  , m}, s1 �= s2;l1, l2 ∈ 

{1, 2, · · ·  , n}, l1 �= l2) has the following properties.
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• For aj1j20
∏m 

s2=1,s2 �=s1

(
aj1j2s1 − aj1j2s2

)
> 0 and 

aj2j10
∏n 

l2=1,l2 �=l1

(
aj2j1l1 − aj2j1l2

)
> 0,

(
ajij251 , aj2j11

) = (UP+, UP+)︸ ︷︷ ︸
positive saddle 

. (4.4) 

The equilibrium of (x∗
j2 
, x∗

j1 
) = (aj1j2s1 , aj2j1l1 ) is a (UP+, UP+)-positive saddle. 

• For aj1j20
∏m 

s2=1,s2 �=s1

(
aj1j2s1 − aj1j2s2

)
< 0 and 

aj2j10
∏n 

l2=1,l2 �=l1

(
aj2j1l1 − aj2j1l2

)
> 0,

(
ajij2s1 , aj2j11

) = (DP+, DP−)︸ ︷︷ ︸
CCW center 

. (4.5) 

The equilibrium of (x∗
j2 
, x∗

j1 
) = (aj1j2s1 , aj2j1l1 ) is a (DP+,DP−)-counter-

clockwise center. 

• For aj1j20
∏m 

s2=1,s2 �=s1

(
aj1j2s1 − aj1j2s2

)
> 0 and 

aj2j10
∏n 

l2=1,l2 �=l1

(
aj2j1l1 − aj2j1l2

)
< 0, 

(aj1j2s1 , aj2j1l1 ) = (DP−,DP+)︸ ︷︷ ︸
CW center 

. (4.6) 

The equilibrium of (x∗
j2 
, x∗

j1 
) = (aj1j2s1 , aj2j1l1 ) is a (DP−, DP+)-clockwise center. 

• For aj1j20
∏m 

s2=1,s2 �=s1

(
aj1j2s1 − aj1j2s2

)
< 0 and 

aj2j10
∏n 

l2=1,l2 �=l1

(
aj2j1l1 − aj2j1l2

)
< 0, 

(aj1j2s1 , aj2j1l1 ) = (UP−,UP−)︸ ︷︷ ︸
negative saddle 

. (4.7) 

The equilibrium of (x∗
j2 
, x∗

j1 
) = (aj1j2s1 , aj2j1l1 ) is a (UP−,UP−)-negative saddle. 

Define a notation as 

m⋃

s=1 

n⋃

l=1

(
aj1j2s, aj2j1l

)
︸ ︷︷ ︸

XX 

= 

⎧ 
⎪⎪⎪⎨ 

⎪⎪⎪⎩

(
aj1j2m, aj2j11

)
(aj1j2m, aj2j12) · · · (

aj1j2m, aj2j1n
)

(
aj1j2(m−1), aj2j11

) (
aj1j2(m−1), aj2j12

) · · · (
aj1j2(m−1), aj2j1n

)

... 
... 

... 
...(

aj1j21, aj2j21
) (

aj1j11, aj2j12
) · · · (

aj1j21, aj2j1n
)

⎫ 
⎪⎪⎪⎬ 

⎪⎪⎪⎭ 
m×n 

(4.8)
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(i1) For m = 2m1 + 1 and n = 2n1 + 1, the equilibrium networks with (2m1 + 1) × 
(2n1 + 1) equilibriums have the following properties. 

• For aj1j20 > 0 and aj2j10 > 0, 

2m1+1⋃

s=1 

2n1+1⋃

l=1

(
aj1j2s, aj2j1l

)
︸ ︷︷ ︸

XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(UP+, UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

· · ·  (UP+, UP+)︸ ︷︷ ︸
saddle (+) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP−, UP−)︸ ︷︷ ︸
saddle (−) 

· · ·  (DP+, DP−)︸ ︷︷ ︸
center (CCW) 

... 
... 

... 
... 

(UP+, UP+)︸ ︷︷ ︸
saddle (+) 

(DP−, DP+)︸ ︷︷ ︸
center (CW) 

· · ·  (UP+, UP+)︸ ︷︷ ︸
saddle (+) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2m1+1)×(2n1+1) 

. (4.9) 

In the network, the number of (DP+, DP−)-counter-clockwise centers is m1 × 
(n1 + 1); the number of (DP−, DP+)-clockwise centers is (m1 + 1) × n1; 
the number of (UP+, UP+)-positive saddles is (m1 + 1) × (n1 + 1); and the 
number of (UP−, UP−)-negative saddles is m1 × n1. 

• For aj1j20 < 0 and aj2j10 > 0, 

2m1+1⋃

s=1 

2n1+1⋃

l=1

(
aj1j2s, aj2j1l

)
︸ ︷︷ ︸

XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(DP+, DP−)︸ ︷︷ ︸
center (CCW) 

(UP−, UP−)︸ ︷︷ ︸
saddle (−) 

· · ·  (DP+, DP−)︸ ︷︷ ︸
center (CCW) 

(UP+, UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

· · ·  (UP+, UP+)︸ ︷︷ ︸
saddle (+) 

... 
... 

... 
... 

(DP+, DP−)︸ ︷︷ ︸
center (CCW) 

(UP−, UP−)︸ ︷︷ ︸
saddle (−) 

· · ·  (DP+, DP−)︸ ︷︷ ︸
center (CCW) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2m1+1)×(2n1+1) 

. (4.10)
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In the network, the number of (DP+, DP−)-counter-clockwise centers is 
(m1 + 1)× (n1 + 1); the number of (DP−, DP+)-clockwise centers is m1×n1; 
the number of (UP+, UP+)-positive saddles is m1 × (n1 + 1); and the number 
of (UP−, UP−)-negative saddles is (m1 + 1) × n1. 

• For aj1j20 > 0 and aj2j10 < 0, 

2m1+1⋃

s=1 

2n1+1⋃

l=1

(
aj1j2s, aj2j1l

)
︸ ︷︷ ︸

XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(DP−, DP+)︸ ︷︷ ︸
center (CW) 

(UP+, UP+)︸ ︷︷ ︸
saddle (+) 

· · ·  (DP−, DP+)︸ ︷︷ ︸
center (CW) 

(UP−, UP−)︸ ︷︷ ︸
saddle (−) 

(DP+, DP−)︸ ︷︷ ︸
center (CCW) 

· · ·  (UP−, UP−)︸ ︷︷ ︸
saddle (−) 

... 
... 

... 
... 

(DP−, DP+)︸ ︷︷ ︸
center (CW) 

(UP+, UP+)︸ ︷︷ ︸
saddle (+) 

· · ·  (DP−, DP+)︸ ︷︷ ︸
center (CW) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2m1+1)×(2n1+1) 

. (4.11) 

In the network, the number of (DP+, DP−)-counter-clockwise centers is m1 × 
n1; the number of (DP−, DP+)-clockwise centers is (m1 + 1) × (n1 + 1); the 
number of (UP+, UP+)-positive saddles is (m1 + 1) × n1; and the number of 
(UP−, UP−)-negative saddles is m1 × (n1 + 1). 

• For aj1j20 < 0 and aj2j10 < 0, 

2m1+1⋃

s=1 

2n1+1⋃

l=1

(
aj1j2s, aj2j1l

)
︸ ︷︷ ︸

XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(UP−, UP−)︸ ︷︷ ︸
saddle (−) 

(DP+, DP−)︸ ︷︷ ︸
center (CCW) 

· · ·  (UP−, UP−)︸ ︷︷ ︸
saddle (−) 

(DP−, DP+)︸ ︷︷ ︸
center (CW) 

(UP+, UP+)︸ ︷︷ ︸
saddle (+) 

· · ·  (DP−, DP+)︸ ︷︷ ︸
center (CW) 

... 
... 

... 
... 

(UP−, UP−)︸ ︷︷ ︸
saddle (−) 

(DP+, DP−)︸ ︷︷ ︸
center (CCW) 

· · ·  (UP−, UP−)︸ ︷︷ ︸
saddle (−) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2m1+1)×(2n1+1) 

. (4.12)
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In the network, the number of (DP+, DP−)-counter-clockwise centers is 
(m1 + 1)×n1; the number of (DP−, DP+)-clockwise centers is m1× (n1 + 1); 
the number of (UP+, UP+)-positive saddles is m1 × n1; and the number of 
(UP−, UP−)-negative saddles is (m1 + 1) × (n1 + 1). 

(i2) The numbers of positive and negative saddles, clockwise and counter-clockwise 
centers for (2m1 + 1) × (2n1 + 1)-equilibriums are summarized in Table 4.1. 

(i3) With global centers and saddles, the total numbers of limit cycles and saddles 
are obtained as follows. 

• For aj1j20 > 0 and aj2j10 > 0, 

NLC = m1 × (n1 + 1) + (m1 + 1) × n1 = 2m1n1 + m1 + n1; 
NSD = (m1 + 1) × (n1 + 1) + m1 × n1 + 1 = 2m1n1 + m1 + n1 + 2. 

(4.13) 

• For aj1j20 < 0 and aj2j10 > 0, 

NLC = (m1 + 1) × (n1 + 1) + m1 × n1 + 1 = 2m1n1 + m1 + n1 + 2; 
NSD = m1 × (n1 + 1) + (m1 + 1) × n1 = 2m1n1 + m1 + n1. (4.14) 

• For aj1j20 > 0 and aj2j10 < 0, 

NLC = (m1 + 1) × (n1 + 1) + m1 × n1 + 1 = 2m1n1 + m1 + n1 + 2; 
NSD = m1 × (n1 + 1) + (m1 + 1) × n1 = 2m1n1 + m1 + n1. (4.15)

• For aj1j20 < 0 and aj2j10 < 0, 

NLC = m1 × (n1 + 1) + (m1 + 1) × n1 = 2m1n1 + m1 + n1;

Table 4.1 Numbers of positive and negative saddles, and clockwise and counter-clockwise centers 
in network for (2m1 + 1) × (2n1 + 1)-equilibriums 

(aj1 j20, aj2 j10) Numbers 

(DP+, DP−)-center 
(CCW) 

(DP−, DP+)-center 
(CW) 

(UP+, UP+)-saddle 
(+) 

(UP−, UP−)-saddle 
(−) 

(+, +) m1 × (n1 + 1) (m1 + 1) × n1 (m1 + 1) × (n1 + 1) m1 × n1 
(−, +) (m1 + 1) × (n1 + 1) m1 × n1 m1 × (n1 + 1) (m1 + 1) × n1 
(+, −) m1 × n1 (m1 + 1) × (n1 + 1) (m1 + 1) × n1 m1 × (n1 + 1) 
(−, −) (m1 + 1) × n1 m1 × (n1 + 1) m1 × n1 (m1 + 1) × (n1 + 1) 
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NSD = (m1 + 1) × (n1 + 1) + m1 × n1 + 1 = 2m1n1 + m1 + n1 + 2. 
(4.16)

The detailed distributions are listed in Table 4.2. 

(ii1) For m = 2m1 and n = 2n1+1, the equilibrium networks with (2m1) × (2n1+1) 
equilibriums have the following properties. 

• For aj1j20 > 0 and aj2j10 > 0, 

2m1⋃

s=1 

2n1+1⋃

l=1

(
aj1j2s, aj2j1l

)
︸ ︷︷ ︸

XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(UP+, UP+)︸ ︷︷ ︸
saddle (+) 

(DP−, DP+)︸ ︷︷ ︸
center (CW) 

· · ·  (UP+, UP+)︸ ︷︷ ︸
saddle (+) 

(DP+, DP−)︸ ︷︷ ︸
center (CCW) 

(UP−, UP−)︸ ︷︷ ︸
saddle (−) 

· · ·  (DP+, DP−)︸ ︷︷ ︸
center (CCW) 

... 
... 

... 
... 

(DP+, DP−)︸ ︷︷ ︸
center (CCW) 

(UP−, UP−)︸ ︷︷ ︸
saddle (−) 

· · ·  (DP+, DP−)︸ ︷︷ ︸
center (CCW) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2m1)×(2n1+1) 

. (4.17) 

In the network, the number of (DP+, DP−)-counter-clockwise centers is m1 × 
(n1+1); the number of (DP−, DP+)-clockwise centers is m1×n1; the number of 
(UP+, UP+)-positive saddles is m1×(n1+1); and the number of (UP−, UP−)-
negative saddles is m1 × n1.

Table 4.2 Total numbers of limit cycles and saddles in network for (2m1 + 1) × (2n1 + 1)-
equilibriums 

(aj1j20, aj2j10) Total numbers 

Limit cycles (CCW) Limit cycles (CW) Saddles (+) Saddles (−) 

(+, +) m1 × (n1 + 1) (m1 + 1) × n1 (m1 + 1) × 
(n1 + 1) + 1∗ 

m1 × n1 

(−, +) (m1 + 1) × (n1 + 1) 
+ 1* 

m1 × n1 m1 × (n1 + 1) (m1 + 1) × n1 

(+, −) m1 × n1 (m1 + 1) × (n1 + 1) 
+ 1* 

(m1 + 1) × n1 m1 × (n1 + 1) 

(−, −) (m1 + 1) × n1 m1 × (n1 + 1) m1 × n1 (m1 + 1) × 
(n1 + 1) + 1∗ 

* For one global cycle or saddle 
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• For aj1j20 < 0 and aj2j10 > 0, 

2m1⋃

s=1 

2n1+1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

· · ·  (DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

· · ·  (UP+,UP+)︸ ︷︷ ︸
saddle (+) 

... 
... 

... 
... 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

· · ·  (UP+,UP+)︸ ︷︷ ︸
saddle (+) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2m1)×(2n1+1) 

. (4.18) 

In the network, the number of (DP+, DP−)-counter-clockwise centers is m1 × 
(n1+1); the number of (DP−, DP+)-clockwise centers is m1×n1; the number of 
(UP+, UP+)-positive saddles is m1×(n1+1); and the number of (UP−, UP−)-
negative saddles is m1 × n1. 

• For aj1j20 > 0 and aj2j10 < 0, 

2m1⋃

s=1 

2n1+1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

· · ·  (DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

· · ·  (UP−,UP−)︸ ︷︷ ︸
saddle (−) 

... 
... 

... 
... 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

· · ·  (UP−,UP−)︸ ︷︷ ︸
saddle (−) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2m1)×(2n1+1) 

. (4.19) 

In the network, the number of (DP+, DP−)-counter-clockwise centers is m1 × 
n1; the number of (DP−, DP+)-clockwise centers is m1 × (n1 + 1); the number 
of (UP+, UP+)-positive saddles is m1 × n1; and the number of (UP−, UP−)-
negative saddles is m1 × (n1 + 1). 

• For aj1j20 < 0 and aj2j10 < 0,
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Table 4.3 Numbers of positive and negative saddles, and clockwise and counter-clockwise centers 
in network for (2m1) × (2n1 + 1)-equilibriums 

(aj1 j20, aj2 j10) Numbers 

(DP+, DP−)-center 
(CCW) 

(DP−, DP+)-center 
(CW) 

(UP+, UP+)-saddle 
(+) 

(UP−, UP−)-saddle 
(−) 

(+, +) m1 × (n1 + 1) m1 × n1 m1 × (n1 + 1) m1 × n1 
(−, +) m1 × (n1 + 1) m1 × n1 m1 × (n1 + 1) m1 × n1 
(+, −) m1 × n1 m1 × (n1 + 1) m1 × n1 m1 × (n1 + 1) 
(−, −) m1 × n1 m1 × (n1 + 1) m1 × n1 m1 × (n1 + 1) 

2m1⋃

s=1 

2n1+1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

· · ·  (UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

· · ·  (DP−,DP+)︸ ︷︷ ︸
center (CW) 

... 
... 

... 
... 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

· · ·  (DP−,DP+)︸ ︷︷ ︸
center (CW) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2m1)×(2n1+1) 

. (4.20) 

In the network, the number of (DP+, DP−)-counter-clockwise centers is m1 × 
n1; the number of (DP−, DP+)-clockwise centers is m1 × (n1 + 1); the number 
of (UP+, UP+)-positive saddles is m1 × n1; and the number of (UP−, UP−)-
negative saddles is m1 × (n1 + 1). 

(ii2) The numbers of positive and negative saddles, clockwise and counter-clockwise 
centers for (2m1) × (2n1 + 1)-equilibriums are summarized in Table 4.3. 

(ii3) Without global centers and saddles existing, the total numbers of limit cycles 
and saddles are obtained as follows. 

• For aj1j20 > 0 and aj2j10 > 0, 

NLC = m1 × (n1 + 1) + m1 × n1 = m1(2n1 + 1); 
NSD = m1 × (n1 + 1) + m1 × n1 = m1(2n1 + 1). (4.21) 

• For aj1j20 < 0 and aj2j10 > 0, 

NLC = m1 × (n1 + 1) + m1 × n1 = m1(2n1 + 1); 
NSD = m1 × (n1 + 1) + m1 × n1 = m1(2n1 + 1). (4.22)
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• For aj1j20 > 0 and aj2j10 < 0, 

NLC = m1 × (n1 + 1) + m1 × n1 = m1(2n1 + 1); 
NSD = m1 × (n1 + 1) + m1 × n1 = m1(2n1 + 1). (4.23) 

• For aj1j20 < 0 and aj2j10 < 0, 

NLC = m1 × (n1 + 1) + m1 × n1 = m1(2n1 + 1); 
NSD = m1 × (n1 + 1) + m1 × n1 = m1(2n1 + 1). (4.24) 

The detailed descriptions are given in Table 4.4. 

(iii1) For m = 2m1+1 and n = 2n1, the equilibrium networks with (2m1+1)×(2n1) 
equilibriums have the following properties. 

• For aj1j20 > 0 and aj2j10 > 0, 

2m1+1⋃

s=1 

2n1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

· · ·  (UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

· · ·  (DP+,DP−)︸ ︷︷ ︸
center (CCW) 

... 
... 

... 
... 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

· · ·  (UP+,UP+)︸ ︷︷ ︸
saddle (+) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2m1+1)×(2n1) 

. (4.25) 

In the network, the number of (DP+, DP−)-counter-clockwise centers is m1 × 
n1; the number of (DP−, DP+)-clockwise centers is (m1+1)×n1; the number of 
(UP+, UP+)-positive saddles is (m1+1)×n1; and the number of (UP−, UP−)-
negative saddles is m1 × n1.

Table 4.4 Numbers of clockwise and counter-clockwise limit cycles in network for (2m1)×(2n1+ 
1)-equilibriums 

(aj1j20, aj2j10) Total numbers 

Limit cycles (CCW) Limit cycles (CW) Saddles (+) Saddles (−) 

(+, +) m1 × (n1 + 1) m1 × n1 m1 × (n1 + 1) m1 × n1 
(−, +) m1 × (n1 + 1) m1 × n1 m1 × (n1 + 1) m1 × n1 
(+, −) m1 × n1 m1 × (n1 + 1) m1 × n1 m1 × (n1 + 1) 
(−, −) m1 × n1 m1 × (n1 + 1) m1 × n1 m1 × (n1 + 1) 

Notice: No global cycles or saddles but global parabola-saddle existence 
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• For aj1j20 < 0 and aj2j10 > 0, 

2m1+1⋃

s=1 

2n1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

· · ·  (DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

· · ·  (UP+,UP+)︸ ︷︷ ︸
saddle (+) 

... 
... 

... 
... 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

· · ·  (DP+,DP−)︸ ︷︷ ︸
center (CCW) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2m1+1)×(2n1) 

. (4.26) 

In the network, the number of (DP+, DP−)-counter-clockwise centers is (m1+ 
1) × n1; the number of (DP−, DP+)-clockwise centers is m1 × n1; the number 
of (UP+, UP+)-positive saddles is m1 × n1; and the number of (UP−, UP−)-
negative saddles is (m1 + 1) × n1. 

• For aj1j20 > 0 and aj2j10 < 0, 

2m1+1⋃

s=1 

2n1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

· · ·  (DP−,DP+)︸ ︷︷ ︸
center (CW) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

· · ·  (UP−,UP−)︸ ︷︷ ︸
saddle (−) 

... 
... 

... 
... 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

· · ·  (DP−,DP+)︸ ︷︷ ︸
center (CW) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2m1+1)×(2n1) 

. (4.27) 

In the network, the number of (DP+, DP−)-counter-clockwise centers is m1 × 
n1; the number of (DP−, DP+)-clockwise centers is (m1+1)×n1; the number of 
(UP+, UP+)-positive saddles is (m1+1)×n1; and the number of (UP−, UP−)-
negative saddles is m1 × n1. 

• For aj1j20 < 0 and aj2j10 < 0, 

2m1+1⋃

s=1 

2n1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX
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= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

· · ·  (UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

· · ·  (DP−,DP+)︸ ︷︷ ︸
center (CW) 

... 
... 

... 
... 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

· · ·  (UP−,UP−)︸ ︷︷ ︸
saddle (−) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2m1+1)×(2n1) 

. (4.28) 

In the network, the number of (DP+, DP−)-counter-clockwise centers is (m1+ 
1) × n1; the number of (DP−, DP+)-clockwise centers is m1 × n1; the number 
of (UP+, UP+)-positive saddles is m1 × n1; and the number of (UP−, UP−)-
negative saddles is (m1 + 1) × n1. 

(iii2) The numbers of positive and negative saddles, clockwise and counter-clockwise 
centers for (2m1 + 1) × (2n1)-equilibriums are summarized in Table 4.5. 

(iii3) Without global centers and saddles existing, the total numbers of limit cycles 
and saddles are obtained as follows. 

• For aj1j20 > 0 and aj2j10 > 0, 

NLC = (m1 + 1) × n1 + m1 × n1 = (2m1 + 1)n1; 
NSD = (m1 + 1) × n1 + m1 × n1 = (2m1 + 1)n1. (4.29) 

• For aj1j20 < 0 and aj2j10 > 0, 

NLC = (m1 + 1) × n1 + m1 × n1 = (2m1 + 1)n1; 
NSD = (m1 + 1) × n1 + m1 × n1 = (2m1 + 1)n1. (4.30) 

• For aj1j20 > 0 and aj2j10 < 0, 

NLC = (m1 + 1) × n1 + m1 × n1 = (2m1 + 1)n1; 
NSD = (m1 + 1) × n1 + m1 × n1 = (2m1 + 1)n1. (4.31)

Table 4.5 Numbers of positive and negative saddles, and clockwise and counter-clockwise centers 
in network for (2m1 + 1) × (2n1)-equilibriums 

(aj1 j20, aj2 j10) Numbers 

(DP+, DP−)-center 
(CCW) 

(DP−, DP+)-center 
(CW) 

(UP+, UP+)-saddle 
(+) 

(UP−, UP−)-saddle 
(−) 

(+, +) m1 × n1 (m1 + 1) × n1 (m1 + 1) × n1 m1 × n1 
(−, +) (m1 + 1) × n1 m1 × n1 m1 × n1 (m1 + 1) × n1 
(+, −) m1 × n1 (m1 + 1) × n1 (m1 + 1) × n1 m1 × n1 
(−, −) (m1 + 1) × n1 m1 × n1 m1 × n1 (m1 + 1) × n1 
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• For aj1j20 < 0 and aj2j10 < 0, 

NLC = (m1 + 1) × n1 + m1 × n1 = (2m1 + 1)n1; 
NSD = (m1 + 1) × n1 + m1 × n1 = (2m1 + 1)n1. (4.32) 

The detailed descriptions are given in Table 4.6. 

(iv1) For m = 2m1 and n = 2n1, the equilibrium networks with (2m1) × (2n1) 
equilibriums have the following properties. 

• For aj1j20 > 0 and aj2j10 > 0, 

2m1⋃

s=1 

2n1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

· · ·  (UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

· · ·  (DP+,DP−)︸ ︷︷ ︸
center (CCW) 

... 
... 

... 
... 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

· · ·  (DP+,DP−)︸ ︷︷ ︸
center (CCW) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2m1)×(2n1) 

. 

(4.33) 

In the network, the number of (DP+, DP−)-counter-clockwise centers is m1 × 
n1; the number of (DP−, DP+)-clockwise centers is m1 × n1; the number of 
(UP+, UP+)-positive saddles is m1 × n1; and the number of (UP−, UP−)-
negative saddles is m1 × n1. 

• For aj1j20 < 0 and aj2j10 > 0,

Table 4.6 Total numbers of clockwise and counter-clockwise limit cycles in network for (2m1 + 
1) × (2n1)-equilibriums 

(aj1j20, aj2j10) Total Numbers 

Limit cycles (CCW) Limit cycles (CW) Saddles (+) Saddles (−) 

(+, +) m1 × n1 (m1 + 1) × n1 (m1 + 1) × n1 m1 × n1 
(−, +) (m1 + 1) × n1 m1 × n1 m1 × n1 (m1 + 1) × n1 
(+, −) m1 × n1 (m1 + 1) × n1 (m1 + 1) × n1 m1 × n1 
(−, −) (m1 + 1) × n1 m1 × n1 m1 × n1 (m1 + 1) × n1 
Notice: no global cycles or saddles but global parabola-saddle existence 
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2m1⋃

s=1 

2n1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

· · ·  (DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

· · ·  (UP+,UP+)︸ ︷︷ ︸
saddle (+) 

... 
... 

... 
... 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

· · ·  (UP+,UP+)︸ ︷︷ ︸
saddle (+) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2m1)×(2n1) 

. 

(4.34) 

In the network, the number of (DP+, DP−)-counter-clockwise centers is m1 × 
n1; the number of (DP−, DP+)-clockwise centers is m1 × n1; the number of 
(UP+, UP+)-positive saddles is m1 × n1; and the number of (UP−, UP−)-
negative saddles is m1 × n1. 

• For aj1j20 > 0 and aj2j10 < 0, 

2m1⋃

s=1 

2n1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

· · ·  (DP−,DP+)︸ ︷︷ ︸
center (CW) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

· · ·  (UP−,UP−)︸ ︷︷ ︸
saddle (−) 

... 
... 

... 
... 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

· · ·  (UP−,UP−)︸ ︷︷ ︸
saddle (−) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2m1)×(2n1) 

. 

(4.35) 

In the network, the number of (DP+, DP−)-counter-clockwise centers is m1 × 
n1; the number of (DP−, DP+)-clockwise centers is m1 × n1; the number of 
(UP+, UP+)-positive saddles is m1 × n1; and the number of (UP−, UP−)-
negative saddles is m1 × n1. 

• For aj1j20 < 0 and aj2j10 < 0, 

2m1⋃

s=1 

2n1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

· · ·  (UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

· · ·  (DP−,DP+)︸ ︷︷ ︸
center (CW) 

... 
... 

... 
... 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

· · ·  (DP−,DP+)︸ ︷︷ ︸
center (CW) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2m1)×(2n1) 

. 

(4.36) 

In the network, the number of (DP+, DP−)-counter-clockwise centers is m1 × 
n1; the number of (DP−, DP+)-clockwise centers is m1 × n1; the number of
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(UP+, UP+)-positive saddles is m1 × n1; and the number of (UP−, UP−)-
negative saddles is m1 × n1. 

(iv2) The numbers of positive and negative saddles, clockwise and counter-clockwise 
centers for (2m1) × (2n1)-equilibriums are summarized in Table 4.7. 

(iv3) Without global centers and saddles existing, the total numbers of limit cycles 
and saddles are obtained as follows. 

• For aj1j20 > 0 and aj2j10 > 0, 

NLC = m1 × n1 + m1 × n1 = 2m1n1; 
NSD = m1 × n1 + m1 × n1 = 2m1n1. (4.37) 

• For aj1j20 < 0 and aj2j10 > 0, 

NLC = m1 × n1 + m1 × n1 = 2m1n1; 
NSD = m1 × n1 + m1 × n1 = 2m1n1. (4.38) 

• For aj1j20 > 0 and aj2j10 < 0, 

NLC = m1 × n1 + m1 × n1 = 2m1n1; 
NSD = m1 × n1 + m1 × n1 = 2m1n1. (4.39) 

• For aj1j20 < 0 and aj2j10 < 0, 

NLC = m1 × n1 + m1 × n1 = 2m1n1; 
NSD = m1 × n1 + m1 × n1 = 2m1n1. (4.40) 

The detailed descriptions are given in Table 4.8.

Table 4.7 Numbers of positive and negative saddles, and clockwise and counter-clockwise centers 
in network for (2m1) × (2n1)-equilibriums 

(aj1 j20, aj2 j10) Numbers 

(DP+, DP−)-center 
(CCW) 

(DP−, DP+)-center 
(CW) 

(UP+, UP+)-saddle 
(+) 

(UP−, UP−)-saddle 
(−) 

(+, +) m1 × n1 m1 × n1 m1 × n1 m1 × n1 
(−, +) m1 × n1 m1 × n1 m1 × n1 m1 × n1 
(+, −) m1 × n1 m1 × n1 m1 × n1 m1 × n1 
(−, −) m1 × n1 m1 × n1 m1 × n1 m1 × n1 
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Table 4.8 Total numbers of clockwise and counter-clockwise limit cycles in network for (2m1) × 
(2n1)-equilibriums 

(aj1j20, aj2j10) Total numbers 

Limit cycles (CCW) Limit cycles (CW) Saddles (+) Saddles (−) 

(+, +) m1 × n1 m1 × n1 m1 × n1 m1 × n1 
(−, +) m1 × n1 m1 × n1 m1 × n1 m1 × n1 
(+, −) m1 × n1 m1 × n1 m1 × n1 m1 × n1 
(−, −) m1 × n1 m1 × n1 m1 × n1 m1 × n1 
Notice: no global cycles or saddles but global inflection-saddle existence 

4.2 Proof of Theorem 4.1 

Consider a crossing-univariate polynomial system as 

ẋj1 = aj1j20 
m∏

s1=1 

(xj2 − aj1j2s1 ), 

ẋj2 = aj2j10 
n∏

l1=1 

(xj1 − aj2j1l1 ), 

j1, j2 ∈ {1, 2}; j1 �= j2. 

In phase space, for aj1j2s1 �= aj1j2s2 (s1, s2 ∈ {1, 2, · · ·  , m},s1 �= s2) and aj1j2l1 �= aj2j1l2 
(l1, l2 ∈ {1, 2, · · ·  , n},l1 �= l2), 

dxj1 
dxj2 

= 
aj1j20 
aj2j10 

(xj2 − aj1j2s1 )
∏m 

s2=1,s2 �=s1 
(xj2 − aj1j2s2 ) 

(xj1 − aj2j1l1 )
∏n 

l2=1,l2 �=l1 
(xj1 − aj2j1l2 ) 

= 
aj1j20 
aj2j10 

(xj2 − aj1j2s1 )
∏m 

s2=1,s2 �=s1 
(xj2 − aj1j2s1 + aj1j2s1 − aj1j2s2 ) 

(xj1 − aj2j1l1 )
∏n 

l2=1,l2 �=l1 
(xj1 − aj2j1l1 + aj2j1l1 − aj2j1l2 ) 

, 

thus, from the relations of coefficients and roots, we have 

aj2j10
[(
xj1 − aj2j1l1

)n + 
n−1∑

k=1 

bj2j1k
(
xj1 − aj2j1l1

)n−k]
dxj1 

= aj1j20
[(
xj2 − aj1j2s1

)m + 
m−1∑

k=1 

bj1j2k
(
xj2 − aj1j2s1

)m−k]
dxj2 , 

and 

bj2j11 = 
n∑

l2=1,l2 �=l1 

(aj2j1l1 − aj2j1l2 ),
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bj2j12 = 
n∑

l2,l3=1;l2,l3 �=l1 
(l2<l3) 

3∏

r=2 

(aj2j1l1 − aj2j1lr ), · · ·  , 

bj2j1k = 
n∑

l2,l3,··· ,lk+1=1; 
l2,l3,··· ,lk+1 �=l1 
(l2<l3<···<lk+1) 

k+1∏

r=2 

(aj2j1l1 − aj2j1lr ), · · ·  , 

bj2j1(n−1) = 
n∏

l2=1,l2 �=l1 

(aj2j1l1 − aj2j1l2 ); 

bj1j21 = 
m∑

s2=1,s2 �=s1 

(aj1j2s1 − aj1j2s2 ), 

bj1j22 = 
m∑

s2,s3=1;s2,s3 �=s1 
(s2,<3) 

3∏

r=2 

(aj1j2s1 − aj1j2sr ), · · ·  , 

bj1j2k = 
m∑

s2,s3,··· ,sk+1=1; 
s2,s3,··· ,sk+1 �=s1 
(s2<s3<···<sk+1) 

k+1∏

r=2 

(aj1j2s1 − aj1j2sr ), · · ·  , 

bj1j2(m−1) = 
m∏

s1=1,s2 �=s1 

(aj1j2s1 − aj1j2s2 ). 

With initial conditions of (xj10, xj20) at t = t0, the integration of the above equations 
gives the first integral manifold as 

aj2j10
{ 1 

n + 1
[
(xj1 − aj2j1l1 )n+1 − (xj10 − aj2j1l1 )n+1

]

+ 
n−1∑

k=1 

1 

n − k + 1 
bj2j1k

[
(xj1 − aj2j1l1 )n−k+1 − (xj10 − aj2j1l1 )n−k+1

]}

= aj1j20
{ 1 

m + 1
[
(xj2 − aj1j2s1 )m+1 − (xj20 − aj1j2s1 )m+1

]

+ 
m−1∑

k=1 

1 

m − k + 1 
bj1j2k

[
(xj1 − aj1j2s1 )m−k+1 − (xj10 − aj1j2s1 )m−k+1

]}
. 

In phase space, at (x∗
j2 
, x∗

j1 
) = (aj1j2s1 , aj2j1l1 ), two cases are discussed. 

(I) In phase space, at x∗
j2 

= aj1j2s1 (s1, s2 ∈ {1, 2, · · ·  , m}, s1 �= s2) and xj1 �= aj2j1l1 
(l1 = 1, 2, · · ·  , n), we have 

dxj1 
dxj2

∣∣∣x∗
j2

=aj1 j2s1 
= 

aj1j20 
aj2j10 

(xj2 − aj1j2s1 )
∏m 

s2=1,s2 �=s1 
(xj2 − aj1j2s2 )∏n 

l1=1 (xj1 − aj2j1l1 )

∣∣∣x∗
j2

=aj1 j2s1 
= 0.
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If 

d2xj1 
dx2 j2

∣∣∣x∗
j2

=aj1 j2s1 
= 

aj1j20 
aj2j10

∏m 
s2=1,s2 �=s1 

(aj1j2s1 − aj1j2s2 )∏n 
l1=1 (xj1 − aj2j1l1 ) 

> 0, 

there is an up-parabola flow at x∗
j2 

= aj1j2s1 in the xj1 -direction. If 

d2xj1 
dx2 j2

∣∣∣x∗
j2

=aj1 j2s1 
= 

aj1j20 
aj2j10

∏m 
s2=1,s2 �=s1 

(aj1j2s1 − aj1j2s2 )∏n 
l1=1 (xj1 − aj2j1l1 ) 

< 0, 

there is a down-parabola flow at x∗ 
j2 

= aj1j2s1 in the xj1 -direction. Because of 

ẋj2 = aj2j10 
n∏

l1=1 

(xj1 − aj2j1l1 ), 

the flows at x∗
j2 

= aj1j2s1 in the xj2 -direction are positive and negative for ẋj2 > 0 and 
ẋj2 < 0, respectively. 

Thus, the equilibrium of x∗
j2 = aj1j2s1 (s1, s2 ∈ {1, 2, · · ·  , m}, s1 �= s2) on the  

xj2 -direction with xj1 �= aj2j1l1 (l1 = 1, 2, · · ·  , n) has the following properties. 

• For aj1j20
∏m 

s2=1,s2 �=s1 
(aj1j2s1 − aj1j2s2 ) >  0 and aj2j10

∏n 
l1=1 (xj1 − aj2j1l1 ) >  0,

(
aj1j2s1 , ẋj2

) = (UP, pF)︸ ︷︷ ︸
up-parabola flow(+) 

. 

• For aj1j20
∏m 

s2=1,s2 �=s1 
(aj1j2s1 − aj1j2s2 ) <  0 and aj2j10

∏n 
l1=1 (xj1 − aj2j1l1 ) >  0,

(
aj1j2s1 , ẋj2

) = (DP, pF)︸ ︷︷ ︸
down-parabola flow(+) 

. 

• For aj1j20
∏m 

s2=1,s2 �=s1 
(aj1j2s1 − aj1j2s2 ) >  0 and aj2j10

∏n 
l1=1 (xj1 − aj2j1l1 ) <  0, 

(aj1j2s1 , ẋj2 ) = (DP,nF)︸ ︷︷ ︸
down-parabola flow (−) 

. 

• For aj1j20
∏m 

s2=1,s2 �=s1 
(aj1j2s1 − aj1j2s2 ) <  0 and aj2j10

∏n 
l1=1 (xj1 − aj2j1l1 ) <  0, 

(aj1j2s1 , ẋj2 ) = (UP,nF)︸ ︷︷ ︸
up-parabola flow (−) 

. 

(II) In phase space, at x∗
j1 

= aj2j1l1 (l1, l2 ∈ {1, 2, · · ·  , n}, l1 �= l2) and xj2 �= aj1j2s1 
(s1 = 1, 2, · · ·  , m), we have
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dxj2 
dxj1

∣∣∣x∗
j1

=aj2 j1 l1 
= 

aj2j10 
aj1j20 

(xj1 − aj2j1l1 )
∏n 

l2=1,l2 �=l1 
(xj1 − aj2j1l2 )∏m 

s1=1 (xj2 − aj1j2s1 )

∣∣∣x∗
j1

=aj2 j1 l1 
= 0. 

If 

d2xj2 
dx2 j1

∣∣∣x∗
j1

=aj2 j1 l1 
= 

aj2j10 
aj1j20

∏n 
l2=1,l2 �=l1

(
aj2j1l1 − aj2j1l2

)
∏m 

s1=1 (xj2 − aj1j2s1 ) 
> 0, 

there is an up-parabola flow at x∗
j1 

= aj2j1l1 in the xj2 -direction. If 

d2xj2 
dx2 j1

∣∣∣x∗
j1

=aj2 j1 l1 
= 

aj2j10 
aj1j20

∏n 
l2=1,l2 �=l1

(
aj2j1l1 − aj2j1l2

)
∏m 

s1=1

(
xj2 − aj1j2s1

) < 0, 

there is a down-parabola flow at x∗
j1 

= aj2j1l1 in the xj1 -direction. Because of 

ẋj1 = aj1j20 
m∏

s1=1 

(xj2 − aj1j2s1 ), 

the flows at x∗
j1 

= aj2j1l1 in the xj1 -direction are positive and negative for ẋj1 > 0 and 
ẋj1 < 0, respectively. 

Thus, the equilibrium of x∗
j1 

= aj2j1l1 (l1, l2 ∈ {1, 2, · · ·  , n}, l1 �= l2) and xj2 �= 
aj1j2s1 (s1 = 1, 2, · · ·  , m) on the  xj2 -direction has the following properties. 

• For aj1j20
∏m 

s1=1 (xj2 − aj1j2s1 ) >  0 and aj2j10
∏n 

l2=1,l2 �=l1 
(aj2j1l1 − aj2j1l2 ) >  0, 

(ẋj1 , aj2j1l1 ) = (pF,UP)︸ ︷︷ ︸
up-parabola flow (+) 

. 

• For aj1j20
∏m 

s1=1 (xj2 − aj1j2s1 ) <  0 and aj2j10
∏3 

l2=1,l2 �=l1

(
aj2j1l1 − aj2j1l2

)
> 0, 

(ẋj1 , aj2j1l1 ) = (nF,DP)︸ ︷︷ ︸
down-parabola flow (−) 

. 

• For aj1j20
∏m 

s1=1 (xj2 − aj1j2s1 ) >  0 and aj2j10
∏n 

l2=1,l2 �=l1 
(aj2j1l1 − aj2j1l2 ) <  0, 

(ẋj1 , aj2j1l1 ) = (pF,DP)︸ ︷︷ ︸
down-parabola flow (+) 

. 

• For aj1j20
∏m 

s1=1 (xj2 − aj1j2s1 ) <  0 and aj2j10
∏n 

l2=1,l2 �=l1 
(aj2j1l1 − aj2j1l2 ) <  0, 

(ẋj1 , aj2j1l1 ) = (nF,UP)︸ ︷︷ ︸
up-parabola flow (−) 

.
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Therefore, from the two cases (I) and (II), the equilibrium of (x∗
j2 
, x∗

j1 
) = 

(aj1j2s1 , aj2j1l1 ) (s1, s2 ∈ {1, 2, · · ·  , m}, s1 �= s2; l1, l2 ∈ {1, 2, · · ·  , n},l1 �= l2) has 
the following properties as in Eqs. (4.7)–(4.10). 

• For aj1j20
∏m 

s2=1,s2 �=s1 
(aj1j2s1 − aj1j2s2 ) >  0 and 

aj2j10
∏n 

l2=1,l2 �=l1 
(aj2j1l1 − aj2j1l2 ) >  0, 

(aj1j2s1 , aj2j1l1 ) = (UP+,UP+)︸ ︷︷ ︸
positive saddle 

. 

The equilibrium of (x∗
j2 
, x∗

j1 
) = (aj1j2s1 , aj2j1l1 ) is a (UP+,UP+)-positive 

saddle. 
• For aj1j20

∏m 
s2=1,s2 �=s1 

(aj1j2s1 − aj1j2s2 ) <  0 and 
aj2j10

∏n 
l2=1,l2 �=l1 

(aj2j1l1 − aj2j1l2 ) >  0, 

(aj1j2s1 , aj2j1l1 ) = (DP+,DP−)︸ ︷︷ ︸
CCW center 

. 

The equilibrium of (x∗ 
j2 
, x∗ 

j1 
) = (aj1j2s1 , aj2j1l1 ) is a (DP+,DP−)-counter-

clockwise center. 
• For aj1j20

∏m 
s2=1,s2 �=s1 

(aj1j2s1 − aj1j2s2 ) >  0 and 
aj2j10

∏n 
l2=1,l2 �=l1 

(aj2j1l1 − aj2j1l2 ) <  0, 

(aj1j2s1 , aj2j1l1 ) = (DP−,DP+)︸ ︷︷ ︸
CW center 

. 

The equilibrium of (x∗
j2 
, x∗

j1 
) = (aj1j2s1 , aj2j1l1 ) is a (DP−,DP+)-clockwise 

center. 
• For aj1j20

∏m 
s2=1,s2 �=s1 

(aj1j2s1 − aj1j2s2 ) <  0 and 
aj2j10

∏n 
l2=1,l2 �=l1 

(aj2j1l1 − aj2j1l2 ) <  0,

(
aj1j2s1 , aj2j1l1

) = (UP−, UP−)︸ ︷︷ ︸
negative saddle 

. 

The equilibrium of (x∗
j2 , x

∗
j1 ) = (aj1j2s1 , aj2j1l1 ) is a (UP−,UP−)-negative 

saddle. 

From the above equations, the equilibrium networks can be developed. Consider 
four cases: 

• For m = 2m1 + 1 and n = 2n1 + 1, the corresponding equilibrium networks 
can be matrixed. 

• For m = 2m1 and n = 2n1 + 1, the corresponding equilibrium networks can 
be matrixed.
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• For m = 2m1 + 1 and n = 2n1, the corresponding equilibrium networks can 
be matrixed. 

• For m = 2m1 and n = 2n1, the corresponding equilibrium networks can be 
matrixed. 

The (UP+,UP+)-positive saddles, (DP+,DP−)-counter-clockwise centers, (DP−,DP+)
-clockwise centers, (UP−,UP−)-negative saddles are determined and counted for 
each row and column. Summations of numbers yield the total numbers of positive 
and negative saddles and counter-clockwise and clockwise centers. 

Define a notation as 

m⋃

s=1 

n⋃

l=1

(
aj1j2s, aj2j1l

)
︸ ︷︷ ︸

XX 

= 

⎧ 
⎪⎪⎪⎨ 

⎪⎪⎪⎩

(
aj1j2m, aj2j11

) (
aj1j2m, aj2j12

) · · · (
aj1j2m, aj2j1n

)
(
aj1j2(m−1), aj2j11

) (
aj1j2(m−1), aj2j12

) · · · (
aj1j2(m−1), aj2j1n

)

... 
... 

... 
...(

aj1j21, aj2j21
) (

aj1j11, aj2j12
) · · · (

aj1j21, aj2j1n
)

⎫ 
⎪⎪⎪⎬ 

⎪⎪⎪⎭ 
m×n 

(i1) From the above conditions, for m = 2m1 + 1 and n = 2n1 + 1, the equilibrium 
networks with (2m1 + 1) × (2n1 + 1) equilibriums have the following properties as 
in Eqs. (4.9)–(4.12). 

• For aj1j20 > 0 and aj2j10 > 0, 

2m1+1⋃

s=1 

2n1+1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

· · ·  (UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

· · ·  (DP+,DP−)︸ ︷︷ ︸
center (CCW) 

... 
... 

... 
... 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

· · ·  (UP+,UP+)︸ ︷︷ ︸
saddle (+) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2m1+1)×(2n1+1) 

. 

In the network, the number of (DP+, DP−)-counter-clockwise centers is m1 × 
(n1 + 1); the number of (DP−, DP+)-clockwise centers is (m1 + 1) × n1; the  
number of (UP+, UP+)-positive saddles is (m1+1)× (n1+1); and the number 
of (UP−, UP−)-negative saddles is m1 × n1.
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• For aj1j20 < 0 and aj2j10 > 0, 

2m1+1⋃

s=1 

2n1+1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

· · ·  (DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

· · ·  (UP+,UP+)︸ ︷︷ ︸
saddle (+) 

... 
... 

... 
... 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

· · ·  (DP+,DP−)︸ ︷︷ ︸
center (CCW) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2m1+1)×(2n1+1) 

. 

In the network, the number of (DP+, DP−)-counter-clockwise centers is (m1+ 
1) × (n1 + 1); the number of (DP−, DP+)-clockwise centers is m1 × n1; the  
number of (UP+, UP+)-positive saddles is m1 × (n1 + 1); and the number of 
(UP−, UP−)-negative saddles is (m1 + 1) × n1. 

• For aj1j20 > 0 and aj2j10 < 0, 

2m1+1⋃

s=1 

2n1+1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

· · ·  (DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

· · ·  (UP−,UP−)︸ ︷︷ ︸
saddle (−) 

... 
... 

... 
... 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

· · ·  (DP−,DP+)︸ ︷︷ ︸
center (CW) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2m1+1)×(2n1+1) 

. 

In the network, the number of (DP+, DP−)-counter-clockwise centers is m1 × 
n1; the number of (DP−, DP+)-clockwise centers is (m1 + 1) × (n1 + 1); the  
number of (UP+, UP+)-positive saddles is (m1 + 1) × n1; and the number of 
(UP−, UP−)-negative saddles is m1 × (n1 + 1). 

• For aj1j20 < 0 and aj2j10 < 0,
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2m1+1⋃

s=1 

2n1+1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

· · ·  (UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

· · ·  (DP−,DP+)︸ ︷︷ ︸
center (CW) 

... 
... 

... 
... 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

· · ·  (UP−,UP−)︸ ︷︷ ︸
saddle (−) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2m1+1)×(2n1+1) 

. 

In the network, the number of (DP+, DP−)-counter-clockwise centers is 
(m1 + 1) × n1; the number of (DP−, DP+)-clockwise centers is m1 × (n1 + 1); 
the number of (UP+, UP+)-positive saddles is m1 × n1; and the number of 
(UP−, UP−)-negative saddles is (m1 + 1) × (n1 + 1). 

(i2) From case (i1), the numbers of positive and negative saddles, clockwise and 
counter-clockwise centers for (2m1 + 1) × (2n1 + 1)-equilibriums can be calculated 
and summarized as in Table 4.1. 

(i3) From case (i2), with global centers and saddles, the total numbers of limit cycles 
and saddles are calculated and obtained as follows as in Eqs. (4.13)–(4.16). 

• For aj1j20 > 0 and aj2j10 > 0, 

NLC = m1 × (n1 + 1) + (m1 + 1) × n1 = 2m1n1 + m1 + n1; 
NSD = (m1 + 1) × (n1 + 1) + m1 × n1 + 1 = 2m1n1 + m1 + n1 + 2. 

• For aj1j20 < 0 and aj2j10 > 0, 

NLC = (m1 + 1) × (n1 + 1) + m1 × n1 + 1 = 2m1n1 + m1 + n1 + 2; 
NSD = m1 × (n1 + 1) + (m1 + 1) × n1 = 2m1n1 + m1 + n1. 

• For aj1j20 > 0 and aj2j10 < 0, 

NLC = (m1 + 1) × (n1 + 1) + m1 × n1 + 1 = 2m1n1 + m1 + n1 + 2; 
NSD = m1 × (n1 + 1) + (m1 + 1) × n1 = 2m1n1 + m1 + n1. 

• For aj1j20 < 0 and aj2j10 < 0, 

NLC = m1 × (n1 + 1) + (m1 + 1) × n1 = 2m1n1 + m1 + n1; 
NSD = (m1 + 1) × (n1 + 1) + m1 × n1 + 1 = 2m1n1 + m1 + n1 + 2.
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From case (i2), the detailed distributions are listed as in Table 4.2. 

(ii1) From the basic properties, for m = 2m1 and n = 2n1 + 1, the equilibrium 
networks with (2m1) × (2n1 + 1) equilibriums have the following properties as in 
Eqs. (4.17)–(4.20). 

• For aj1j20 > 0 and aj2j10 > 0, 

2m1⋃

s=1 

2n1+1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

· · ·  (UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

· · ·  (DP+,DP−)︸ ︷︷ ︸
center (CCW) 

... 
... 

... 
... 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

· · ·  (DP+,DP−)︸ ︷︷ ︸
center (CCW) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2m1)×(2n1+1) 

. 

In the network, the number of (DP+, DP−)-counter-clockwise centers is m1 × 
(n1+1); the number of (DP−, DP+)-clockwise centers is m1×n1; the number of 
(UP+, UP+)-positive saddles is m1×(n1+1); and the number of (UP−, UP−)-
negative saddles is m1 × n1. 

• For aj1j20 < 0 and aj2j10 > 0, 

2m1⋃

s=1 

2n1+1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

· · ·  (DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

· · ·  (UP+,UP+)︸ ︷︷ ︸
saddle (+) 

... 
... 

... 
... 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

· · ·  (UP+,UP+)︸ ︷︷ ︸
saddle (+) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2m1)×(2n1+1) 

. 

In the network, the number of (DP+, DP−)-counter-clockwise centers is m1 × 
(n1+1); the number of (DP−, DP+)-clockwise centers is m1×n1; the number of
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(UP+, UP+)-positive saddles is m1×(n1+1); and the number of (UP−, UP−)-
negative saddles is m1 × n1. 

• For aj1j20 > 0 and aj2j10 < 0, 

2m1⋃

s=1 

2n1+1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

· · ·  (DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

· · ·  (UP−,UP−)︸ ︷︷ ︸
saddle (−) 

... 
... 

... 
... 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

· · ·  (UP−,UP−)︸ ︷︷ ︸
saddle (−) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2m1)×(2n1+1) 

. 

In the network, the number of (DP+, DP−)-counter-clockwise centers is m1 × 
n1; the number of (DP−, DP+)-clockwise centers is m1 × (n1 + 1); the number 
of (UP+, UP+)-positive saddles is m1 × n1; and the number of (UP−, UP−)-
negative saddles is m1 × (n1 + 1). 

• For aj1j20 < 0 and aj2j10 < 0, 

2m1⋃

s=1 

2n1+1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

· · ·  (UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

· · ·  (DP−,DP+)︸ ︷︷ ︸
center (CW) 

... 
... 

... 
... 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

· · ·  (DP−,DP+)︸ ︷︷ ︸
center (CW) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2m1)×(2n1+1) 

. 

In the network, the number of (DP+, DP−)-counter-clockwise centers is m1 × 
n1; the number of (DP−, DP+)-clockwise centers is m1 × (n1 + 1); the number 
of (UP+, UP+)-positive saddles is m1 × n1; and the number of (UP−, UP−)-
negative saddles is m1 × (n1 + 1). 

(ii2) From case (ii1), the numbers of positive and negative saddles, clockwise and 
counter-clockwise centers for (2m1) × (2n1 + 1)-equilibriums are calculated and 
summarized as in Table 4.3.
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(ii3) From case (ii2), due to without global centers and saddles existing, the total 
numbers of limit cycles and saddles are obtained as follows as in Eqs. (4.21)–(4.24). 

• For aj1j20 > 0 and aj2j10 > 0, 

NLC = m1 × (n1 + 1) + m1 × n1 = m1(2n1 + 1); 
NSD = m1 × (n1 + 1) + m1 × n1 = m1(2n1 + 1). 

• For aj1j20 < 0 and aj2j10 > 0, 

NLC = m1 × (n1 + 1) + m1 × n1 = m1(2n1 + 1); 
NSD = m1 × (n1 + 1) + m1 × n1 = m1(2n1 + 1). 

• For aj1j20 > 0 and aj2j10 < 0, 

NLC = m1 × (n1 + 1) + m1 × n1 = m1(2n1 + 1); 
NSD = m1 × (n1 + 1) + m1 × n1 = m1(2n1 + 1). 

• For aj1j20 < 0 and aj2j10 < 0, 

NLC = m1 × (n1 + 1) + m1 × n1 = m1(2n1 + 1); 
NSD = m1 × (n1 + 1) + m1 × n1 = m1(2n1 + 1). 

Such a (2m1) × (2n1 + 1)-polynomial systems have the same numbers of saddles 
and centers. From case (ii2), the detailed descriptions are given as in Table 4.4. 

(iii1) From the basic properties, for m = 2m1 + 1 and n = 2n1, the equilibrium 
networks with (2m1 + 1) × (2n1) equilibriums have the following properties as in 
Eq. (4.25)–(4.28). 

• For aj1j20 > 0 and aj2j10 > 0, 

2m1+1⋃

s=1 

2n1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

· · ·  (UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

· · ·  (DP+,DP−)︸ ︷︷ ︸
center (CCW) 

... 
... 

... 
... 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

· · ·  (UP+,UP+)︸ ︷︷ ︸
saddle (+) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2m1+1)×(2n1) 

.
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In the network, the number of (DP+, DP−)-counter-clockwise centers is m1 × 
n1; the number of (DP−, DP+)-clockwise centers is (m1+1)×n1; the number of 
(UP+, UP+)-positive saddles is (m1+1)×n1; and the number of (UP−, UP−)-
negative saddles is m1 × n1. 

• For aj1j20 < 0 and aj2j10 > 0, 

2m1+1⋃

s=1 

2n1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

· · ·  (DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

· · ·  (UP+,UP+)︸ ︷︷ ︸
saddle (+) 

... 
... 

... 
... 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

· · ·  (DP+,DP−)︸ ︷︷ ︸
center (CCW) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2m1+1)×(2n1) 

. 

In the network, the number of (DP+, DP−)-counter-clockwise centers is (m1+ 
1) × n1; the number of (DP−, DP+)-clockwise centers is m1 × n1; the number 
of (UP+, UP+)-positive saddles is m1 × n1; and the number of (UP−, UP−)-
negative saddles is (m1 + 1) × n1. 

• For aj1j20 > 0 and aj2j10 < 0, 

2m1+1⋃

s=1 

2n1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

· · ·  (DP−,DP+)︸ ︷︷ ︸
center (CW) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

· · ·  (UP−,UP−)︸ ︷︷ ︸
saddle (−) 

... 
... 

... 
... 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

· · ·  (DP−,DP+)︸ ︷︷ ︸
center (CW) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2m1+1)×(2n1) 

. 

In the network, the number of (DP+, DP−)-counter-clockwise centers is m1 × 
n1; the number of (DP−, DP+)-clockwise centers is (m1+1)×n1; the number of 
(UP+, UP+)-positive saddles is (m1+1)×n1; and the number of (UP−, UP−)-
negative saddles is m1 × n1. 

• For aj1j20 < 0 and aj2j10 < 0,
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2m1+1⋃

s=1 

2n1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

· · ·  (UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

· · ·  (DP−,DP+)︸ ︷︷ ︸
center (CW) 

... 
... 

... 
... 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

· · ·  (UP−,UP−)︸ ︷︷ ︸
saddle (−) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2m1+1)×(2n1) 

. 

In the network, the number of (DP+, DP−)-counter-clockwise centers is (m1+ 
1) × n1; the number of (DP−, DP+)-clockwise centers is m1 × n1; the number 
of (UP+, UP+)-positive saddles is m1 × n1; and the number of (UP−, UP−)-
negative saddles is (m1 + 1) × n1. 

(iii2) From case (iii1), the numbers of positive and negative saddles, clockwise and 
counter-clockwise centers for (2m1 + 1) × (2n1)-equilibriums are calculated and 
summarized as in Table 4.5. 

(iii3) From case (iii2), due to without global centers and saddles existing, the total 
numbers of limit cycles and saddles are calculated and obtained as follows as in 
Eqs. (4.29)–(4.32). 

• For aj1j20 > 0 and aj2j10 > 0, 

NLC = (m1 + 1) × n1 + m1 × n1 = (2m1 + 1)n1; 
NSD = (m1 + 1) × n1 + m1 × n1 = (2m1 + 1)n1. 

• For aj1j20 < 0 and aj2j10 > 0, 

NLC = (m1 + 1) × n1 + m1 × n1 = (2m1 + 1)n1; 
NSD = (m1 + 1) × n1 + m1 × n1 = (2m1 + 1)n1. 

• For aj1j20 > 0 and aj2j10 < 0, 

NLC = (m1 + 1) × n1 + m1 × n1 = (2m1 + 1)n1; 
NSD = (m1 + 1) × n1 + m1 × n1 = (2m1 + 1)n1. 

• For aj1j20 < 0 and aj2j10 < 0, 

NLC = (m1 + 1) × n1 + m1 × n1 = (2m1 + 1)n1; 
NSD = (m1 + 1) × n1 + m1 × n1 = (2m1 + 1)n1.
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From case (iii3), the detailed descriptions are given as in Table 4.6. 

(iv1) From the basic properties, for m = 2m1 and n = 2n1, the equilibrium networks 
with (2m1) × (2n1) equilibriums have the following properties as in Eqs. (4.33)– 
(4.36). 

• For aj1j20 > 0 and aj2j10 > 0, 

2m1⋃

s=1 

2n1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

· · ·  (UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

· · ·  (DP+,DP−)︸ ︷︷ ︸
center (CCW) 

... 
... 

... 
... 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

· · ·  (DP+,DP−)︸ ︷︷ ︸
center (CCW) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2m1)×(2n1) 

. 

In the network, the number of (DP+, DP−)-counter-clockwise centers is m1 × 
n1; the number of (DP−, DP+)-clockwise centers is m1 × n1; the number of 
(UP+, UP+)-positive saddles is m1 × n1; and the number of (UP−, UP−)-
negative saddles is m1 × n1. 

• For aj1j20 < 0 and aj2j10 > 0, 

2m1⋃

s=1 

2n1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

· · ·  (DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

· · ·  (UP+,UP+)︸ ︷︷ ︸
saddle (+) 

... 
... 

... 
... 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

· · ·  (UP+,UP+)︸ ︷︷ ︸
saddle (+) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2m1)×(2n1) 

. 

In the network, the number of (DP+, DP−)-counter-clockwise centers is m1 × 
n1; the number of (DP−, DP+)-clockwise centers is m1 × n1; the number of 
(UP+, UP+)-positive saddles is m1 × n1; and the number of (UP−, UP−)-
negative saddles is m1 × n1. 

• For aj1j20 > 0 and aj2j10 < 0,
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2m1⋃

s=1 

2n1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

· · ·  (DP−,DP+)︸ ︷︷ ︸
center (CW) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

· · ·  (UP−,UP−)︸ ︷︷ ︸
saddle (−) 

... 
... 

... 
... 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

· · ·  (UP−,UP−)︸ ︷︷ ︸
saddle (−) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2m1)×(2n1) 

. 

In the network, the number of (DP+, DP−)-counter-clockwise centers is m1 × 
n1; the number of (DP−, DP+)-clockwise centers is m1 × n1; the number of 
(UP+, UP+)-positive saddles is m1 × n1; and the number of (UP−, UP−)-
negative saddles is m1 × n1. 

• For aj1j20 < 0 and aj2j10 < 0, 

2m1⋃

s=1 

2n1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

· · ·  (UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

· · ·  (DP−,DP+)︸ ︷︷ ︸
center (CW) 

... 
... 

... 
... 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

· · ·  (DP−,DP+)︸ ︷︷ ︸
center (CW) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2m1)×(2n1) 

. 

In the network, the number of (DP+, DP−)-counter-clockwise centers is m1 × 
n1; the number of (DP−, DP+)-clockwise centers is m1 × n1; the number of 
(UP+, UP+)-positive saddles is m1 × n1; and the number of (UP−, UP−)-
negative saddles is m1 × n1. 

(iv2) From case (iv1), the numbers of positive and negative saddles, clockwise 
and counter-clockwise centers for (2m1) × (2n1)-equilibriums are calculated and 
summarized as in Table 4.7. 

(iv3) From case (iv2). Due to without global centers and saddles existing, the total 
numbers of limit cycles and saddles are obtained as follows as in Eqs. (4.37)–(4.40). 

• For aj1j20 > 0 and aj2j10 > 0, 

NLC = m1 × n1 + m1 × n1 = 2m1n1; 
NSD = m1 × n1 + m1 × n1 = 2m1n1. 

• For aj1j20 < 0 and aj2j10 > 0, 

NLC = m1 × n1 + m1 × n1 = 2m1n1;
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NSD = m1 × n1 + m1 × n1 = 2m1n1. 

• For aj1j20 > 0 and aj2j10 < 0, 

NLC = m1 × n1 + m1 × n1 = 2m1n1; 
NSD = m1 × n1 + m1 × n1 = 2m1n1. 

• For aj1j20 < 0 and aj2j10 < 0, 

NLC = m1 × n1 + m1 × n1 = 2m1n1; 
NSD = m1 × n1 + m1 × n1 = 2m1n1. 

From case (iv2), the detailed descriptions of limit cycles and saddles are given as in 
Table 4.8. 

In the end, Theorem 4.1 is proved. 

4.3 Homoclinic Networks with Centers 

As in Luo [1], the networks for limit cycles and saddles in lower-degrees polynomial 
system with crossing-univariate vector fields are presented for a better understanding 
of the Hilbert’s sixteenth problem. 

(A) Consider a quadratic dynamical system with (2m1)× (2n1) = 2×2 equilibriums 
as 

ẋ1 = a120(x2 − a121)(x2 − a122), 
ẋ2 = a210(x1 − a211)(x1 − a212). (4.41) 

and the first integral manifold is determined by 

a120
{1 
3

[
(x2 − a121)3 − (x20 − a121)3

]

+ 
1 

2 
(a121 − a122)

[
(x2 − a121)2 − (x20 − a121)2

]}

= a210
{1 
3

[
(x1 − a211)3 − (x10 − a211)3

]

+ 
1 

2 
(a211 − a212)

[
(x1 − a211)2 − (x10 − a211)2

]}
. (4.42)
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Fig. 4.1 Phase portraits for 2-dimensional systems on the x1-direction with x∗
1 = a211, a212 and on 

the x2-direction with x∗
2 = a121, a122. The four sets of four simple equilibriums: a (a120 > 0,a210 > 

0), b (a120 < 0, a210 > 0), c (a120 > 0, a210 < 0), d (a120 < 0, a210 < 0) 

Phase portraits for 2-dimensional systems near the simple equilibriums of the 
saddles and centers are presented in Fig. 4.1(a–d) for (a120 > 0, a210 > 0), 
(a120 < 0, a210 > 0), (a120 > 0, a210 < 0) and (a120 < 0, a210 < 0). The 
numbers of limit cycles and centers are tabulated in Table 4.9. The six equilibriums 
are three saddles and three centers. There are three limit cycles around the centers and 
three closed separatrices connected three saddles. The blue curves show the (2,2)-
inflection-saddles, which will be discussed in the next chapter. The network matrices 
of saddle and centers are generated by the (2,2)-inflection-saddles, as presented as 
follows.
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Table 4.9 Numbers of limit cycles and saddles in networks for 2 × 2-equilibriums 

(a120, a210) Numbers 

(DP+, DP−)-center 
(CCW) 

(DP−, DP+)-center 
(CW) 

(DP+, DP+)-saddle 
(+) 

(DP−, DP−)-saddle 
(−) 

(+, +) m1 × n1 = 1 m1 × n1 = 1 m1 × n1 = 1 m1 × n1 = 1 
(−, +) m1 × n1 = 1 m1 × n1 = 1 m1 × n1 = 1 m1 × n1 = 1 
(+, −) m1 × n1 = 1 m1 × n1 = 1 m1 × n1 = 1 m1 × n1 = 1 
(−, −) m1 × n1 = 1 m1 × n1 = 1 m1 × n1 = 1 m1 × n1 = 1 

• For a210 > 0 and a120 > 0,

{
(a122, a211) (a122, a212) 
(a121, a211) (a121, a212)

}
= 

⎧ 
⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

⎫ 
⎪⎪⎪⎬ 

⎪⎪⎪⎭ 
. (4.43) 

• For a210 < 0 and a120 > 0,

{
(a122, a211) (a122, a212) 
(a121, a211) (a121, a212)

}
= 

⎧ 
⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

⎫ 
⎪⎪⎪⎬ 

⎪⎪⎪⎭ 
. (4.44) 

• For a210 > 0 and a120 < 0,

{
(a122, a211) (a122, a212) 
(a121, a211) (a121, a212)

}
= 

⎧ 
⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

⎫ 
⎪⎪⎪⎬ 

⎪⎪⎪⎭ 
. (4.45) 

• For a210 < 0 and a120 < 0,

{
(a122, a211) (a122, a212) 
(a121, a211) (a121, a212)

}
= 

⎧ 
⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

⎫ 
⎪⎪⎪⎬ 

⎪⎪⎪⎭ 
. (4.46) 

(B) Consider a quadratic dynamical system with (2m1) × (2n1 + 1) = 2 × 3 
equilibriums as
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ẋ1 = a120(x2 − a121)(x2 − a122), 
ẋ2 = a210(x1 − a211)(x1 − a212)(x1 − a213). 

(4.47) 

and the first integral manifold is determined by 

a120
{1 
3

[
(x2 − a121)3 − (x20 − a121)3

]

+ 
1 

2 
(a121 − a122)

[
(x2 − a121)2 − (x20 − a121)2

]}

= a210
{1 
4

[
(x1 − a211)4 − (x10 − a211)4

]

+ 
1 

3 
(2a211 − a212 − a213)

[
(x1 − a211)3 − (x10 − a211)3

]

+ 
1 

2 
(a211 − a212)(a211 − a213)

[
(x1 − a211)2 − (x10 − a211)2

]}
. (4.48) 

Phase portraits for 2-dimensional systems with saddles and centers are presented 
in Fig. 4.2a–d for (a120 > 0, a210 > 0), (a120 < 0, a210 > 0), (a120 > 0, a210 < 0) 
and (a120 < 0, a210 < 0). The six equilibriums are three saddles and three centers. 
There are three limit cycles around the centers and three closed separatrices connected 
three saddles. The blue curves show the (2,3)-parabola-saddles, which will be 
discussed in the next chapter. The numbers of saddles and centers are tabulated 
in Table 4.10.

(i) For a120 > 0 and a210 > 0,

{
(a122, a211) (a122, a212) (a122, a213) 
(a121, a211) (a121, a212) (a121, a213)

}

= 

⎧ 
⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

⎫ 
⎪⎪⎪⎬ 

⎪⎪⎪⎭ 
. 

(4.49) 

(ii) For a120 < 0 and a210 > 0,

{
(a122, a211) (a122, a212) (a122, a213) 
(a121, a211) (a121, a212) (a121, a213)

}

= 

⎧ 
⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

⎫ 
⎪⎪⎪⎬ 

⎪⎪⎪⎭ 
. 

(4.50)



4.3 Homoclinic Networks with Centers 181

211a 212a 

121a 

2x 

1x 

122a 

213a 

(a) 

211a 212a 

121a 

2x 

1x 

122a 

213a 

(b) 

Fig. 4.2 Phase portraits for 2-dimensional systems with x∗
1 = a211, a212, a213 and x∗

2 = a121, a122. 
The four sets of six simple saddle and center: a (a120 > 0, a210 > 0), b (a120 < 0, a210 > 0), 
c (a120 > 0, a210 < 0), d (a120 < 0, a210 < 0)
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Fig. 4.2 (continued) 

Table 4.10 Numbers of limit cycles and saddles in networks for 2 × 3-equilibriums 

(a120, a210) Numbers 

(DP+, DP−)-center 
(CCW) 

(DP−, DP+)-center 
(CW) 

(UP+, UP+)-saddle 
(+) 

(UP−, UP−)-saddle 
(−) 

(+, +) m1 × (n1 + 1) = 2 m1 × n1 = 1 m1 × (n1 + 1) = 2 m1 × n1 = 1 
(−, +) m1 × (n1 + 1) = 2 m1 × n1 = 1 m1 × (n1 + 1) = 2 m1 × n1 = 1 
(+, −) m1 × n1 = 1 m1 × (n1 + 1) = 2 m1 × n1 = 1 m1 × (n1 + 1) = 2 
(−, −) m1 × n1 = 1 m1 × (n1 + 1) = 2 m1 × n1 = 1 m1 × (n1 + 1) = 2
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(iii) For a120 > 0 and a210 < 0,

{
(a122, a211) (a122, a212) (a122, a213) 
(a121, a211) (a121, a212) (a121, a213)

}

= 

⎧ 
⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

⎫ 
⎪⎪⎪⎬ 

⎪⎪⎪⎭ 
. 

(4.51) 

(iv) For a120 < 0 and a210 < 0,

{
(a122, a211) (a122, a212) (a122, a213) 
(a121, a211) (a121, a212) (a121, a213)

}

= 

⎧ 
⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

⎫ 
⎪⎪⎪⎬ 

⎪⎪⎪⎭ 
. 

(4.52) 

(C) Consider a cubic dynamical system with (2m1+1)×(2n1) = 3×2 equilibriums 
as 

ẋ1 = a120(x2 − a121)(x1 − a122)(x1 − a123), 
ẋ2 = a210(x1 − a211)(x1 − a212), (4.53) 

and the first integral manifold is determined by 

a210
{1 
3

[
(x1 − a211)3 − (x10 − a211)3

]

+ 
1 

2 
(a211 − a212)

[
(x1 − a211)2 − (x10 − a211)2

]}

= a120
{1 
4

[
(x2 − a121)4 − (x20 − a121)4

]

+ 
1 

3 
(2a121 − a122 − a123)

[
(x2 − a121)3 − (x20 − a121)3

]

+ 
1 

2 
(a121 − a122)(a121 − a123)

[
(x2 − a121)2 − (x20 − a121)2

]}
. (4.54) 

From the first integral manifold, the corresponding center and saddle networks are 
given as follows. 

(i) For a120 > 0 and a210 > 0,
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⎧ 
⎨ 

⎩ 

(a123, a211) (a123, a212) 
(a122, a211) (a122, a212) 
(a121, a211) (a121, a212) 

⎫ 
⎬ 

⎭ = 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎭ 

. (4.55) 

(ii) For a120 < 0 and a210 > 0, 

⎧ 
⎨ 

⎩ 

(a123, a211) (a123, a212) 
(a122, a211) (a122, a212) 
(a121, a211) (a121, a212) 

⎫ 
⎬ 

⎭ = 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎭ 

. (4.56) 

(iii) For a120 > 0 and a210 < 0, 

⎧ 
⎨ 

⎩ 

(a123, a211) (a123, a212) 
(a122, a211) (a122, a212) 
(a121, a211) (a121, a212) 

⎫ 
⎬ 

⎭ = 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎭ 

. (4.57) 

(iv) For a120 < 0 and a210 < 0, 

⎧ 
⎨ 

⎩ 

(a123, a211) (a123, a212) 
(a122, a211) (a122, a212) 
(a121, a211) (a121, a212) 

⎫ 
⎬ 

⎭ = 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎭ 

. (4.58) 

Phase portraits for 2-dimensional systems with the saddles and centers are 
presented in Fig. 4.3a–d for (a120 > 0, a210 > 0), (a120 < 0, a210 > 0), (a120 > 0, 
a210 < 0) and (a120 < 0, a210 < 0). The six equilibriums are three saddles and three 
centers. There are three limit cycles around the centers and three closed separatrices 
connected three saddles. The blue curves show the (3,2)-parabola-saddles, which will 
be discussed in the next chapter. The numbers of saddles and centers are tabulated 
in Table 4.11.
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Fig. 4.3 Phase portraits for 2-dimensional systems with x∗
1 = a211, a212 and x∗

2 = a121, a122, a123. 
The four sets of six simple saddle and center: a (a120 > 0, a210 > 0), b (a120 < 0, a210 > 0), 
c (a120 > 0, a210 < 0), d (a120 < 0, a210 < 0)
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Table 4.11 Numbers of limit cycles and saddles in networks for 3 × 2-equilibriums 

(a120, a210) Numbers 

(DP+, DP−)-center 
(CCW) 

(DP−, DP+)-center 
(CW) 

(UP+, UP+)-saddle 
(+) 

(UP−, UP−)-saddle 
(−) 

(+, +) m1 × n1 = 1 (m1 + 1) × n1 = 2 (m1 + 1) × n1 = 2 m1 × n1 = 1 
(−, +) (m1 + 1) × n1 = 2 m1 × n1 = 1 m1 × n1 = 1 (m1 + 1) × n1 = 2 
(+, −) m1 × n1 = 1 (m1 + 1) × n1 = 2 (m1 + 1) × n1 = 2 m1 × n1 = 1 
(−, −) (m1 + 1) × n1 = 2 m1 × n1 = 1 m1 × n1 = 1 (m1 + 1) × n1 = 2 

(D) Consider a cubic dynamical system with (2m1 + 1) × (2n1 + 1) = 3 × 3 
equilibriums as 

ẋ1 = a120(x2 − a121)(x2 − a122)(x2 − a123), 
ẋ2 = a210(x1 − a211)(x1 − a212)(x1 − a213), (4.59) 

and the first integral manifold is determined by 

a120
{1 
4

[
(x2 − a121)4 − (x20 − a121)4

]

+ 
1 

3 
(2a121 − a122 − a123)

[
(x2 − a121)3 − (x20 − a121)3

]

+ 
1 

2 
(a121 − a122)(a121 − a123)

[
(x2 − a121)2 − (x20 − a121)2

]}

= a210
{1 
4

[
(x1 − a211)4 − (x10 − a211)4

]

+ 
1 

3 
(2a211 − a212 − a213)

[
(x1 − a211)3 − (x10 − a211)3

]

+ 
1 

2 
(a211 − a212)(a211 − a213)

[
(x1 − a211)2 − (x10 − a211)2

]}
. (4.60) 

Phase portraits for 2-dimensional systems with the saddles and centers are 
presented in Fig. 4.4a–d for (a120 > 0, a210 > 0), (a120 < 0, a210 > 0), 
(a120 > 0, a210 < 0) and (a120 < 0, a210 < 0). The six equilibriums are three saddles 
and three centers. There are three limit cycles around the centers and three closed 
separatrices connected three saddles. The blue curves show the (3,3)-clockwise 
center, (3,3)-counter-clockwise centers, (3,3)-positive saddle, (3,3)-negative saddle. 
Such center and saddle bifurcations will be discussed in the next chapter. The numbers 
of saddles and centers are tabulated in Table 4.12. For the (3,3)-centers, there are six 
centers. For the (3,3)-saddles, there are six saddles. The equilibrium properties in the 
homoclinic networks are listed as follows.
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Fig. 4.4 Phase portraits for 2-dimensional systems with x∗
1 = a211, a212, a213 and x∗

2 = a121, 
a122, a123. The four sets of nine simple saddle and center: a (a120 > 0, a210 > 0), b (a120 < 

0, a210 > 0), c (a120 > 0, a210 < 0), d (a120 < 0, a210 < 0)
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Fig. 4.4 (continued)
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Table 4.12 Numbers of limit cycles and saddles in networks for 3 × 3-equilibriums 

(a120, a210) Numbers 

(DP+, DP−)-center 
(CCW) 

(DP−, DP+)-center 
(CW) 

(UP+, UP+)-saddle 
(+) 

(UP−, UP−)-saddle 
(–) 

(+, +) m1 × (n1 + 1) = 2 (m1 + 1) × n1 = 2 (m1 + 1) × (n1 + 1) 
+1 = 5 

m1 × n1 = 1 

(−, +) (m1 + 1) × (n1 + 1) 
+1 = 5 

m1 × n1 = 1 m1 × (n1 + 1) = 2 (m1 + 1) × n1 = 2 

(+, −) m1 × n1 = 1 (m1 + 1) × (n1 + 1) 
+1 = 5 

(m1 + 1) × n1 = 2 m1 × (n1 + 1) = 2 

(−, −) (m1 + 1) × n1 = 2 m1 × (n1 + 1) = 2 m1 × n1 = 1 (m1 + 1) × (n1 + 1) 
+1 = 5 

(i) For a120 > 0 and a210 > 0, 

3⋃

s=1 

3⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎭ 

(4.61) 

(ii) For a120 < 0 and a210 > 0, 

3⋃

s=1 

3⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎭ 

. (4.62) 

(iii) For a120 > 0 and a210 < 0,
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3⋃

s=1 

3⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎭ 

. 

(iv) For a120 < 0 and a210 < 0, 

3⋃

s=1 

3⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎭ 

. (4.63) 

(E) Consider a dynamical system with (2m1 + 1) × (2n1) = 3 × 4 equilibriums as 

ẋ1 = a120(x2 − a121)(x2 − a122)(x2 − a123), 
ẋ2 = a210(x1 − a211)(x1 − a212)(x1 − a213)(x1 − a214), 

(4.64) 

and the first integral manifold is determined by 

a120
{1 
4

[
(x2 − a12s1 )4 − (x20 − a12s1 )4

]

+ 
1 

3 

3∑

s2=1,s2 �=s1 

(a12s1 − a12s2 )
[
(x2 − a121)3 − (x20 − a121)3

]

+ 
1 

2

∏3 

s2=1,s3 �=s1 
(a12s1 − a12s2 )

[
(x2 − a12s1 )2 − (x20 − a12s1 )2

]}

= a210
{1 
5

[
(x1 − a21l1 )5 − (x10 − a21l1 )5

]

+ 
1 

4 

4∑

l2=2,l2 �=l1 

(a21l1 − a21l2 )
[
(x1 − a21l1 )4 − (x10 − a21l1 )4

]

+ 
1 

3 

4∑

l2,l3=1,l2,l3 �=l1 
(l2<l3)

∏l3 

r=l2 
(a21l1 − a12r)

[
(x1 − a21l1 )3 − (x10 − a21l1 )3

]

+ 
1 

2

∏4 

l2=2,l2 �=l1 
(a21l1 − a21l2 )

[
(x1 − a21l1 )2 − (x10 − a21l1 )2

]}
. (4.65)
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The equilibrium properties in the homoclinic networks are listed as follows. 

(i) For a120 > 0 and a210 > 0, 

4⋃

s=1 

3⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎭ 

. 

(4.66) 

(ii) For a120 < 0 and a210 > 0, 

4⋃

s=1 

3⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎭ 

. 

(4.67) 

(iii) For a120 > 0 and a210 < 0, 

4⋃

s=1 

3⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎭ 

. 

(4.68) 

(iv) For a120 < 0 and a210 < 0, 

4⋃

s=1 

3⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎭ 

. 

(4.69)
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Phase portraits for 2-dimensional systems with the saddles and centers are 
presented in Fig. 4.5a–d for (a120 > 0, a210 > 0), (a120 < 0, a210 > 0), (a120 > 0, 
a210 < 0) and (a120 < 0, a210 < 0). The twelve equilibriums are six saddles and 
six centers. There are six limit cycles around the centers and six closed separatrices 
connected six saddles. The blue curves show the (3,4)-parabola-saddles, which will 
be discussed in the next chapter. The numbers of saddles and centers are tabulated 
in Table 4.13. 

(F) Consider a quartic dynamical system with (2m1)×(2n1+1) = 4×3 equilibriums 
as 

ẋ1 = a120(x2 − a121)(x2 − a122)(x2 − a123)(x2 − a124), 
ẋ2 = a210(x1 − a211)(x1 − a212)(x1 − a213), 

(4.70) 

and the first integral manifold is determined by 

a120
{1 
5

[
(x2 − a12s1 )5 − (x20 − a12s1 )5

]

+ 
1 

4 

4∑

s2=1,s2 �=s1 

(a12s1 − a12s2 )
[
(x2 − a121)4 − (x20 − a121)4

]

+ 
1 

3 

4∑

s2,s3=1,s2,s3 �=s1 
(s2<s3) 

s3∏

r=s2 

(a12s1 − a12r)
[
(x2 − a12s1 )3 − (x20 − a12s1 )3

]

+ 
1 

2 

4∏

s2=1,s3 �=s1 

(a12s1 − a12s2 )
[
(x2 − a12s1 )2 − (x20 − a12s1 )2

]}

= a210
{1 
4

[
(x1 − a21l1 )4 − (x10 − a21l1 )4

]

+ 
1 

3 

3∑

l2=2,l2 �=l1 

(a21l1 − a21l2 )
[
(x1 − a21l1 )3 − (x10 − a21l1 )3

]

+ 
1 

2 

3∏

l2=2,l2 �=l1 

(a21l1 − a21l2 )
[
(x1 − a21l1 )2 − (x10 − a21l1 )2

]}
. (4.71)
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Fig. 4.5 Phase portraits for 2-dimensional systems with x∗
1 = a211, a212, a213, a214 and x∗

2 = 
a121, a122, a123. The four sets of nine simple saddle and center: a (a120 > 0, a210 > 0), b (a120 < 

0, a210 > 0), c (a120 > 0, a210 < 0), d (a120 < 0, a210 < 0)
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Fig. 4.5 (continued)
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Table 4.13 Numbers of limit cycles and saddles in networks for 3 × 4-equilibriums 

(a120, a210) Numbers 

(DP+, DP−)-center 
(CCW) 

(DP−, DP+)-center 
(CW) 

(UP+, UP+)-saddle 
(+) 

(UP−, UP−)-saddle 
(−) 

(+, +) m1 × n1 = 2 (m1 + 1) × n1 = 4 (m1 + 1) × n1 = 4 m1 × n1 = 2 
(−, +) (m1 + 1) × n1 = 4 m1 × n1 = 2 m1 × n1 = 2 (m1 + 1) × n1 = 4 
(+, −) m1 × n1 = 2 (m1 + 1) × n1 = 4 (m1 + 1) × n1 = 4 m1 × n1 = 2 
(−, −) (m1 + 1) × n1 = 4 m1 × n1 = 2 m1 × n1 = 2 (m1 + 1) × n1 = 4 

The equilibrium properties in the homoclinic networks are listed as follows. 

(i) For a120 > 0 and a210 > 0, 

3⋃

s=1 

4⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 

. (4.72) 

(ii) For a120 < 0 and a210 > 0, 

3⋃

s=1 

4⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 

. (4.73) 

(iii) For a120 > 0 and a210 < 0,
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3⋃

s=1 

4⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 

. (4.74) 

(iv) For a120 < 0 and a210 < 0, 

3⋃

s=1 

4⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 

. (4.75) 

Phase portraits for 2-dimensional systems with the saddles and centers are 
presented in Fig. 4.6a–d for (a120 > 0, a210 > 0), (a120 < 0, a210 > 0), 
(a120 > 0, a210 < 0) and (a120 < 0, a210 < 0). The twelve equilibriums are six 
saddles and six centers. There are six limit cycles around the centers and six closed 
separatrices connected six saddles. The blue curves show the (4,3)-parabola-saddles, 
which will be discussed in the next chapter. The numbers of saddles and centers are 
tabulated in Table 4.14.

(G) Consider a quartic dynamical system with (2m1) × (2n1) = 4 × 4 equilibriums 
as 

ẋ1 = a120(x2 − a121)(x2 − a122)(x2 − a123)(x2 − a124), 
ẋ2 = a210(x1 − a211)(x1 − a212)(x1 − a213)(x1 − a214), (4.76) 

and the first integral manifold is determined by

a120
{1 
5

[
(x2 − a12s1 )5 − (x20 − a12s1 )5

]

+ 
1 

4 

4∑

s2=1,s2 �=s1 

(a12s1 − a12s2 )
[
(x2 − a121)4 − (x20 − a121)4

]
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Fig. 4.6 Phase portraits for 2-dimensional systems with x∗
1 = a211, a212, a213 and x∗

2 = a121, a122, 
a123, a124. The four sets of nine simple saddles and centers: a (a120 > 0, a210 > 0), b (a120 < 

0, a210 > 0), c (a120 > 0, a210 < 0), d (a120 < 0, a210 < 0)
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Table 4.14 Numbers of limit cycles and saddles in networks for 4 × 3-equilibriums 

(a120, a210) Numbers 

(DP+, DP−)-center 
(CCW) 

(DP−, DP+)-center 
(CW) 

(UP+, UP+)-saddle 
(+) 

(UP−, UP−)-saddle 
(−) 

(+, +) m1 × (n1 + 1) = 4 m1 × n1 = 2 m1 × (n1 + 1) = 4 m1 × n1 = 2 
(−, +) m1 × (n1 + 1) = 4 m1 × n1 = 2 m1 × (n1 + 1) = 4 m1 × n1 = 2 
(+, −) m1 × n1 = 2 m1 × (n1 + 1) = 4 m1 × n1 = 2 m1 × (n1 + 1) = 4 
(−, −) m1 × n1 = 2 m1 × (n1 + 1) = 4 m1 × n1 = 2 m1 × (n1 + 1) = 4

+ 
1 

3 

4∑

s2,s3=1,s2,s3 �=s1 
(s2<s3) 

s3∏

r=s2 

(a12s1 − a12r)
[
(x2 − a12s1 )3 − (x20 − a12s1 )3

]

+ 
1 

2 

4∏

s2=1,s3 �=s1 

(a12s1 − a12s2 )
[
(x2 − a12s1 )2 − (x20 − a12s1 )2

]}

= a210
{1 
5

[
(x1 − a21l1 )5 − (x10 − a21l1 )5

]

+ 
1 

4 

4∑

l2=2,l2 �=l1 

(a21l1 − a21l2 )
[
(x1 − a21l1 )4 − (x10 − a21l1 )4

]

+ 
1 

3 

4∑

l2,l3=1,l2,l3 �=l1 
(l2<l3) 

l3∏

r=l2 

(a21l1 − a12r)
[
(x1 − a21l1 )3 − (x10 − a21l1 )3

]

+ 
1 

2 

4∏

l2=2,l2 �=l1 

(a21l1 − a21l2 )
[
(x1 − a21l1 )2 − (x10 − a21l1 )2

]}
. (4.77)

The equilibrium properties in the homoclinic networks are listed as follows. 

(i) For a120 > 0 and a210 > 0, 

4⋃

s=1 

4⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 

(4.78)



4.3 Homoclinic Networks with Centers 199

(ii) For a120 < 0 and a210 > 0, 

4⋃

s=1 

4⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 

. 

(4.79) 

(iii) For a120 > 0 and a210 < 0, 

4⋃

s=1 

4⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 

. 

(4.80) 

(iv) For a120 > 0 and a210 < 0, 

4⋃

s=1 

4⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(DP+,DP−)︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)︸ ︷︷ ︸
saddle (−) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

(UP+,UP+)︸ ︷︷ ︸
saddle (+) 

(DP−,DP+)︸ ︷︷ ︸
center (CW) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 

. 

(4.81)
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Fig. 4.7 Phase portraits for 2-dimensional systems with x∗
1 = a211, a212, a213, a214 and x∗

2 = 
a121, a122, a123, a124. The four sets of nine simple saddle and center: a (a120 > 0, a210 > 0), 
b (a120 < 0, a210 > 0), c (a120 > 0, a210 < 0), d (a120 < 0, a210 < 0)
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Fig. 4.7 (continued)
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Phase portraits for 2-dimensional systems with the saddles and centers are 
presented in Fig. 4.7a–d for (a120 > 0, a210 > 0), (a120 < 0, a210 > 0), (a120 > 0, 
a210 < 0) and (a120 < 0, a210 < 0). The sixteen equilibriums are eight saddles and 
eight centers. There are eight limit cycles around the eight centers and eight closed 
separatrices connected eight saddles. The blue curves show the (4,4)-inflection-
saddles, which will be discussed in the next chapter. The numbers of saddles and 
centers are tabulated in Table 4.15. 

Table 4.15 Numbers of limit cycles and saddles in networks for 4 × 4-equilibriums 

(a120, a210) Numbers 

(DP+, DP−)-center 
(CCW) 

(DP−, DP+)-center 
(CW) 

(UP+, UP+)-saddle 
(+) 

(UP−, UP−)-saddle 
(−) 

(+, +) m1 × n1 = 4 m1 × n1 = 4 m1 × n1 = 4 m1 × n1 = 4 
(−, +) m1 × n1 = 4 m1 × n1 = 4 m1 × n1 = 4 m1 × n1 = 4 
(+, −) m1 × n1 = 4 m1 × n1 = 4 m1 × n1 = 4 m1 × n1 = 4 
(−, −) m1 × n1 = 4 m1 × n1 = 4 m1 × n1 = 4 m1 × n1 = 4 

Reference 

1. Luo, A. C. J. (2023). Limit cycles and homoclinic network in 2-dimensional polynomial systems. 
AIP Chaos, 34, 022104 (66 pages).



Chapter 5 
Bifurcations for Homoclinic Networks 
with Centers 

In this chapter, the appearing and switching bifurcations are studied for homoclinic 
networks of singular and non-singular saddles and centers with singular parabola-
saddles and double-inflection saddles in crossing-univariate polynomial systems, 
and the first integral manifolds of such homoclinic networks are determined through 
polynomial functions. The illustrations of singular equilibriums to networks of non-
singular saddles and centers are given. 

5.1 Higher-Order Singularity and Bifurcations 

Consider singular equilibriums and bifurcations for homoclinic networks with 
centers in two-dimensional crossing-univariate polynomial nonlinear systems. To 
discuss bifurcations of equilibriums in polynomial systems, consider a polyno-
mial system with crossing-univariate polynomial vector fields. The corresponding 
dynamical behaviors are presented through the following theorem. 

Theorem 5.1 (i) Consider a crossing-univariate polynomial dynamical system as 

ẋj1 = aj1j20(xj2 − aj1j21)m , ẋj2 = aj2j10(xj1 − aj2j11)n , 
j1, j2 ∈ {1, 2}; j1 �= j2. (5.1) 

The first integral manifold is 

1 

n + 1
[
(xj1 − aj2j11)n+1 − (xj10 − aj2j11)n+1

]

= 
aj1j20 
aj2j10 

1 

m + 1
[
(xj2 − aj1j21)m+1 − (xj20 − aj1j21)m+1

]
, 

for m, n ≥ 1. (5.2)

© Higher Education Press Limited Company 2025 
A. C. J. Luo, Limit Cycles and Homoclinic Networks in Two-Dimensional Polynomial 
Systems, https://doi.org/10.1007/978-981-97-2617-2_5 
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(i1) For  m = 2m1 + 1 and n = 2n1 + 1, the equilibrium of (x∗
j2 
, x∗

j1 
) = (aj1j21, aj2j11) 

has the following properties. 

• For aj1j20 > 0 and aj2j10 > 0, 

(aj1j21, aj2j11) = ((2m1+1)th UP+,(2n1+1)th UP+)
︸ ︷︷ ︸

((2m1+1),(2n1+1))-positive saddle 

. (5.3) 

• For aj1j20 < 0 and aj2j10 > 0, 

(aj1j21, aj2j11) = ((2m1+1)th DP+,(2n1+1)th DP−)
︸ ︷︷ ︸

((2m1+1,)(2n1+1))-CCW center 

. (5.4) 

• For aj1j20 > 0 and aj2j10 < 0, 

(aj1j21, aj2j11) = ((2m1+1)th DP−,(2n1+1)th DP+)
︸ ︷︷ ︸

((2m1+1),(2n1+1))-CW center 

. (5.5) 

• For aj1j20 < 0 and aj2j10 < 0, 

(aj1j21, aj2j11) = ((2m1+1)th UP−,(2n1+1)th UP−)
︸ ︷︷ ︸

((2m1+1),(2n1+1))-negative saddle 

. (5.6) 

(i2) For  m = 2m1 and n = 2n1 + 1, the equilibrium of (x∗
j2 , x

∗
j1 ) = (aj1j21, aj2j11) has 

the following properties. 

• For aj1j20 > 0 and aj2j10 > 0, 

(aj1j21, aj2j11) = ((2m1)
th US,(2n1+1)th UP)︸ ︷︷ ︸

((2m1),(2n1+1))-up-parabola upper-saddle 

. (5.7) 

• For aj1j20 < 0 and aj2j10 > 0, 

(aj1j21, aj2j11) = ((2m1)
th LS, (2n1 + 1)th DP)︸ ︷︷ ︸

((2m1),(2n1+1))-down-parabola lower-saddle 

. (5.8) 

• For aj1j20 > 0 and aj2j10 < 0, 

(aj1j21, aj2j11) = ((2m1)
th US, (2n1 + 1)th DP)︸ ︷︷ ︸

((2m1),(2n1+1))-down-parabola upper-saddle 

. (5.9) 

• For aj1j20 < 0 and aj2j10 < 0,
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(aj1j21, aj2j11) = ((2m1)
th LS, (2n1+1)th UP)︸ ︷︷ ︸

((2m1),(2n1+1))-up-parabola lower-saddle 

. (5.10) 

(i3) For  m = 2m1 + 1 and n = 2n1, the equilibrium of (x∗
j2 
, x∗

j1 
) = (aj1j21, aj2j11) has 

the following properties. 

• For aj1j20 > 0 and aj2j10 > 0, 

(aj1j21, aj2j11) = ((2m1+1)th UP,(2n1)
th US)︸ ︷︷ ︸

((2m1+1),(2n1))-up-parabola upper-saddle 

. (5.11) 

• For aj1j20 < 0 and aj2j10 > 0, 

(aj1j21, aj2j11) = ((2m1+1)th DP,(2n1)
th US)︸ ︷︷ ︸

((2m1+1),(2n1))-down-parabola upper-saddle 

. (5.12) 

• For aj1j20 > 0 and aj2j10 < 0, 

(aj1j21, aj2j11) = ((2m1+1)th DP, (2n1)
th LS)︸ ︷︷ ︸

((2m1+1),(2n1))-down-parabola lower-saddle 

. (5.13) 

• For aj1j20 < 0 and aj2j10 < 0, 

(aj1j21, aj2j11) = ((2m1+1)th UP, (2n1)
th LS)︸ ︷︷ ︸

((2m1+1),(2n1))-up-parabola lower-saddle 

. (5.14) 

(i4) For  m = 2m1 and n = 2n1, the equilibrium of (x∗
j2 , x

∗
j1 ) = (aj1j21, aj2j11) has the 

following properties. 

• For aj1j20 > 0 and aj2j10 > 0, 

(aj1j21, aj2j11) = ((2m1)
th II+,(2n1)

th II+)
︸ ︷︷ ︸

((2m1),(2n1))-double-inflection saddle 

. (5.15) 

• For aj1j20 < 0 and aj2j10 > 0, 

(aj1j21, aj2j11) = ((2m1)
th DI+, (2n1)

th DI−)
︸ ︷︷ ︸

((2m1),(2n1))-double-inflection -saddle 

. (5.16) 

• For aj1j20 > 0 and aj2j10 < 0, 

(aj1j21, aj2j11) = ((2m1)
th DI−, (2n1)

th DI+)
︸ ︷︷ ︸

((2m1),(2n1))-double-inflection saddle 

. (5.17)



206 5 Bifurcations for Homoclinic Networks with Centers

• For aj1j20 < 0 and aj2j10 < 0, 

(aj1j21, aj2j11) = ((2m1)
th II−, (2n1)

th II−)
︸ ︷︷ ︸

((2m1),(2n1))-double-inflection saddle 

. (5.18) 

(ii) Consider a crossing-univariate polynomial dynamical system as 

ẋj1 = aj1j20 
p∏

r=1

(
xj2 − aj1j2r

)mr 
, 

ẋj2 = aj2j10 
q∏

s=1

(
xj1 − aj2j1s

)ns 
, 

p∑

r=1 

mr = m and 
q∑

s=1 

ns = n; j1, j2 ∈ {1, 2}; j1 �= j2. (5.19) 

The first integral manifold is 

aj2j10
{ 1 

n + 1
[
(xj1 − aj2j1s1 )n+1 − (xj10 − aj2j1s1 )n+1

]

+ 
n−ns1∑

β=1 

1 

n − β + 1 
bj2j1β

[
(xj1 − aj2j1s1 )n−β+1 − (xj10 − aj2j1s1 )n−β+1

]}

= aj1j20
{ 1 

m + 1
[
(xj2 − aj1j2r1 )m+1 − (xj20 − aj1j2r1 )m+1

]

+ 
m−mr1∑

α=1 

1 

m − α + 1 
bj1j2α

[
(xj1 − aj1j2r1 )m−α+1 − (xj10 − aj1j2r1 )m−α+1

]}
(5.20) 

where 

bj2j1β = 
lsq+tsq=nsq∑

lsq ,tsq=0 

· · ·  
ls2+ts2=ns2∑

ls2 ,ts2=0

[ sq∏

k=s2 

nk ! 
rk !tk ! (aj2j1l1 − aj2j1k )rk

]
δ
n−β 
ts2+···+tsq 

, 

bj1j2α = 
lrp+trp=mrp∑

lrp ,trp=0 

· · ·  
lr2+tr2=mr2∑

lr2 ,tr2=0

[ rp∏

k=r2 

mk ! 
lk !tk ! (aj1j2r1 − aj1j2k )lk

]
δm−α 
tr2+···+trp

; 

bj2j10 = 1, bj1j20 = 1. (5.21) 

The singular equilibrium network with
∑p 

ri=1 mri = m and
∑q 

ri=1 nsi = n is defined 
as
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p⋃

r=1 

q⋃

s=1 

(aj1j2r, aj2j1s)︸ ︷︷ ︸
(mr , ns)-XX 

≡ 

⎧ 
⎪⎨ 

⎪⎩ 

(aj1j2p, aj2j11) · · ·  (aj1j2p, aj2j1q) 
... · · · ... 

(aj1j21, aj2j11) · · ·  (aj1j21, aj2j1q) 

⎫ 
⎪⎬ 

⎪⎭ 
p×q 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎩ 

((mp)
th XX, (nq)

th XX)
︸ ︷︷ ︸

(m1, nq)-XX 

· · ·  ((mp)
th XX, (nq)

th XX)
︸ ︷︷ ︸

(m(i) 
pi , n

(i) 
qi )-XX 

... 
... 

... 
((m1)

th XX, (n1)
th XX)︸ ︷︷ ︸

(m1, n1)-XX 

· · ·  ((mp)
th XX, (nq)

th XX)
︸ ︷︷ ︸

(mp, n1)-XX 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎭ 
p×q 

. 

(5.22) 

(ii1) For  mr1 =2mr11+1 and ns1 =2ns11+1, the equilibrium of (x∗
j2 , x

∗
j1 )= (aj1j2r1 , aj2j1s1 ) 

has the following properties. 

• For aj1j20
∏p 

r2=1,r2 �=r1 
(aj1j2r1 − aj1j2r2 )mr2 > 0 and 

aj2j10
∏q 

s2=1,s2 �=s1 
(aj2j1s1 − aj2j1s2 )ns2 > 0, 

(aj1j2r1 , aj2j1s1 ) = ((2mr11+1)th UP+, (2ns11+1)th UP+)
︸ ︷︷ ︸

((2mr11+1), (2ns11+1))-positive saddle 

. (5.23) 

• For aj1j20
∏p 

r2=1,r2 �=r1 
(aj1j2r1 − aj1j2r2 )mr2 < 0 and 

aj2j10
∏q 

s2=1,s2 �=s1 
(aj2j1s1 − aj2j1s2 )ns2 > 0, 

(aj1j2r1 , aj2j1s1 ) = ((2mr11+1)th DP+, (2ns11+1)th DP−)
︸ ︷︷ ︸

((2mr11+1),(2ns11 + 1))-CCW center 

. (5.24) 

• For aj1j20
∏p 

r2=1,r2 �=r1 
(aj1j2r1 − aj1j2r2 )mr2 > 0 and 

aj2j10
∏q 

s2=1,s2 �=s1 
(aj2j1s1 − aj2j1s2 )ns2 < 0, 

(aj1j2r1 , aj2j1s1 ) = ((2mr11+1)th DP−, (2ns11+1)th DP+)
︸ ︷︷ ︸

((2mr11+1),(2ns11 + 1))-CW center 

. (5.25) 

• For aj1j20
∏p 

r2=1,r2 �=r1 
(aj1j1r1 − aj1j1r2 )mr2 < 0 and 

aj2j10
∏q 

s2=1,s2 �=s1 
(aj2j2s1 − aj2j2s2 )ns2 < 0, 

(aj1j2r1 , aj2j1s1 ) = ((2mr11+1)th UP−, (2ns11+1)th UP−)
︸ ︷︷ ︸

((2mr11+1),(2ns11 + 1))-negative saddle 

. (5.26)



208 5 Bifurcations for Homoclinic Networks with Centers

(ii2) For  mr1 =2mr11 and ns1 =2ns11+1, the equilibrium of (x∗
j2 
, x∗

j1 
)= (aj1j2r1 , aj2j1s1 ) 

has the following properties. 

• For aj1j20
∏p 

r2=1,r2 �=r1 
(aj1j2r1 − aj1j2r2 )mr2 > 0 and 

aj2j10
∏q 

s2=1,s2 �=s1 
(aj2j1s1 − aj2j1s2 )ns2 > 0, 

(aj1j2r1 , aj2j1s1 ) = ((2mr11)
th US,(2ns11+1)th UP)

︸ ︷︷ ︸
((2mr11),(2ns11 + 1))-up-parabola upper-saddle 

. (5.27) 

• For aj1j20
∏p 

r2=1,r2 �=r1 
(aj1j2r1 − aj1j2r2 )mr2 < 0 and 

aj2j10
∏q 

s2=1,s2 �=s1 
(aj2j1s1 − aj2j1s2 )ns2 > 0, 

(aj1j2r1 , aj2j1s1 ) = ((2mr11)
th LS, (2ns11+1)th DP)

︸ ︷︷ ︸
((2mr11),(2ns11+1))-down-parabola lower-saddle 

. (5.28) 

• For aj1j20
∏p 

r2=1,r2 �=r1 
(aj1j2r1 − aj1j2r2 )mr2 > 0 and 

aj2j10
∏q 

s2=1,s2 �=s1 
(aj2j1s1 − aj2j1s2 )ns2 < 0, 

(aj1j2r1 , aj2j1s1 ) = ((2mr11)
th US,(2ns11+1)th DP)

︸ ︷︷ ︸
((2mr11),(2ns11+1))-down-parabola upper-saddle 

. (5.29) 

• For aj1j20
∏p 

r2=1,r2 �=r1 
(aj1j2r1 − aj1j2r2 )mr2 < 0 and 

aj2j10
∏q 

s2=1,s2 �=s1 
(aj2j2s1 − aj2j2s2 )ns2 < 0, 

(aj1j2r1 , aj2j1s1 ) = ((2mr11)
th LS,(2ns11+1)th UP)

︸ ︷︷ ︸
((2mr11),(2ns11 + 1))-up-parabola lower-saddle 

. (5.30) 

(ii3) For  mr1 = 2mr11 + 1 and ns1 = 2ns11, the equilibrium of (x∗
j2 
, x∗

j1 
) = 

(aj1j2r1 , aj2j1s1 ) has the following properties. 

• For aj1j20
∏p 

r2=1,r2 �=r1 
(aj1j2r1 − aj1j2r2 )mr2 > 0 and 

aj2j10
∏q 

s2=1,s2 �=s1 
(aj2j1s1 − aj2j1s2 )ns2 > 0, 

(aj1j2r1 , aj2j1s1 ) = ((2mr11+1)th UP,(2ns11)
th US)

︸ ︷︷ ︸
((2mr11+1),(2ns11))-up-parabola upper-saddle 

. (5.31) 

• For aj1j20
∏p 

r2=1,r2 �=r1 
(aj1j2r1 − aj1j2r2 )mr2 < 0 and 

aj2j10
∏q 

s2=1,s2 �=s1 
(aj2j1s1 − aj2j1s2 )ns2 > 0, 

(aj1j2r1 , aj2j1s1 ) = ((2mr11+1)th DP,(2ns11)
th US)

︸ ︷︷ ︸
((2mr11+1),(2ns11))-down-parabola upper-saddle 

. (5.32)
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• For aj1j20
∏p 

r2=1,r2 �=r1 
(aj1j2r1 − aj1j2r2 )mr2 > 0 and 

aj2j10
∏q 

s2=1,s2 �=s1 
(aj2j1s1 − aj2j1s2 )ns2 < 0, 

(aj1j2r1 , aj2j1s1 ) = ((2mr11+1)th DP,(2ns11)
th LS)

︸ ︷︷ ︸
((2mr11+1),(2ns11))-down-parabola lower-saddle 

. (5.33) 

• For aj1j20
∏p 

r2=1,r2 �=r1 
(aj1j1r1 − aj1j1r2 )mr2 < 0 and 

aj2j10
∏q 

s2=1,s2 �=s1 
(aj2j2s1 − aj2j2s2 )ns2 < 0, 

(aj1j2r1 , aj2j1s1 ) = ((2mr11+1)th UP,(2ns11)
th LS)

︸ ︷︷ ︸
((2mr11+1),(2ns11))-up-parabola lower-saddle 

. (5.34) 

(ii4) For  mr1 = 2mr11 and ns1 = 2ns11, the equilibrium of (x∗
j2 
, x∗

j1 
) = (aj1j2r1 , aj2j1s1 ) 

has the following properties. 

• For aj1j20
∏p 

r2=1,r2 �=r1 
(aj1j2r1 − aj1j2r2 )mr2 > 0 and 

aj2j10
∏q 

s2=1,s2 �=s1 
(aj2j1s1 − aj2j1s2 )ns2 > 0, 

(aj1j2r1 , aj2j1s1 ) = ((2mr11)
th II+, (2ns11)

th II+)
︸ ︷︷ ︸

((2mr11),(2ns11))-double-inflection saddle 

. (5.35) 

• For aj1j20
∏p 

r2=1,r2 �=r1 
(aj1j2r1 − aj1j2r2 )mr2 < 0 and 

aj2j10
∏q 

s2=1,s2 �=s1 
(aj2j1s1 − aj2j1s2 )ns2 > 0, 

(aj1j2r1 , aj2j1s1 ) = ((2mr11)
th DI+, (2ns11)

th DI−)
︸ ︷︷ ︸

((2mr11),(2ns11))-double-inflection saddle 

. (5.36) 

• For aj1j20
∏p 

r2=1,r2 �=r1 
(aj1j2r1 − aj1j2r2 )mr2 > 0 and 

aj2j10
∏q 

s2=1,s2 �=s1 
(aj2j1s1 − aj2j1s2 )ns2 < 0, 

(aj1j2r1 , aj2j1s1 ) = ((2mr11)
th DI−, (2ns11)

th DI+)
︸ ︷︷ ︸

((2mr11),(2ns11))-double-inflection saddle 

. (5.37) 

• For aj1j20
∏p 

r2=1,r2 �=r1 
(aj1j1r1 − aj1j1r2 )mr2 < 0 and 

aj2j10
∏q 

s2=1,s2 �=s1 
(aj2j2s1 − aj2j2s2 )ns2 < 0, 

(aj1j2r1 , aj2j1s1 ) = ((2mr11)
th II−, (2ns11)

th II−)
︸ ︷︷ ︸

((2mr11),(2ns11))-double-inflection saddle 

. (5.38)
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(iii) Consider a crossing-univariate polynomial system as 

ẋj1 = aj1j20 
m∏

s1=1 

(xj2 − aj1j2s1 ), 

ẋj2 = aj2j10 
n∏

l1=1 

(xj1 − aj2j1l1 ), 

j1, j2 ∈ {1, 2}; j1 �= j2. (5.39) 

The first integral manifold is 

aj2j10
{ 1 

n + 1
[
(xj1 − aj2j1l1 )n+1 − (xj10 − aj2j1l1 )n+1

]

+ 
n−1∑

k=1 

1 

n − k + 1 
bj2j1k

[
(xj1 − aj2j1l1 )n−k+1 − (xj10 − aj2j1l1 )n−k+1

]}

= aj1j20
{ 1 

m + 1
[
(xj2 − aj1j2s1 )m+1 − (xj20 − aj1j2s1 )m+1

]

+ 
m−1∑

k=1 

1 

m − k + 1 
bj1j2k

[
(xj1 − aj1j2s1 )m−k+1 − (xj10 − aj1j2s1 )m−k+1

]}
. (5.40) 

where 

bj2j11 = 
n∑

l2=1,l2 �=l1 

(aj2j1l1 − aj2j1l2 ), 

bj2j12 = 
n∑

l2,l3=1;l2,l3 �=l1 
(l2<l3) 

3∏

r=2 

(aj2j1l1 − aj2j1lr ), · · ·  , 

bj2j1k = 
n∑

l2,l3,··· ,lk+1=1; 
l2,l3,··· ,lk+1 �=l1 
(l2<l3<···<lk+1) 

k+1∏

r=2 

(aj2j1l1 − aj2j1lr ), · · ·  , 

bj2j1(n−1) = 
n∏

l2=1,l2 �=l1 

(aj2j1l1 − aj2j1l2 ); 

bj1j21 = 
m∑

s2=1,s2 �=s1 

(aj1j2s1 − aj1j2s2 ), 

bj1j22 = 
m∑

s2,s3=1;s2,s3 �=s1 
(s2<s3) 

3∏

r=2 

(aj1j2s1 − aj1j2sr ), · · ·  ,
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bj1j2k = 
m∑

s2,s3,··· ,sk+1=1; 
s2,s3,··· ,sk+1 �=s1 
(s2<s3<···<sk+1) 

k+1∏

r=2 

(aj1j2s1 − aj1j2sr ), · · ·  , 

bj1j2(m−1) = 
m∏

s1=1,s2 �=s1 

(aj1j2s1 − aj1j2s2 ). (5.41) 

The nonsingular equilibrium network with m × n is defined as 

m⋃

s=1 

n⋃

l=1 

(aj1j1s, aj2j2l)︸ ︷︷ ︸
XX 

≡ 

⎧ 
⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

(aj1j2m, aj2j11) (aj1j2m, aj2j12) · · ·  (aj1j2m, aj2j1n) 
(aj1j2(m−1), aj2j11) (aj1j1(m−1), aj2j12) · · ·  (aj1j2(m−1), aj2j1n) 

... 
... 

... 
... 

(aj1j21, aj2j21) (aj1j11, aj2j12) · · · (aj1j21, aj2j1n) 

⎫ 
⎪⎪⎪⎬ 

⎪⎪⎪⎭ 
m×n 

. (5.42) 

The equilibrium of (x∗ 
j2 
, x∗ 

j1 
) = (aj1j2s1 , aj2j1l1 ) (s1, s2 ∈ {1, 2, · · ·  , m}, s1 �= s2; l1, l2 

∈ {1, 2, · · ·  , n}, l1 �= l2) has the following properties. 

• For aj1j20
∏m 

s2=1,s2 �=s1 
(aj1j2s1 − aj1j2s2 ) >  0 and 

aj2j10
∏n 

l2=1,l2 �=l1 
(aj2j1l1 − aj2j1l2 ) >  0,

(
aj1j2s1 , aj2j11

) = (UP+, UP+)
︸ ︷︷ ︸
positive saddle 

. (5.43) 

The equilibrium of (x∗ 
j2 
, x∗ 

j1 
) = (aj1j2s1 , aj2j1l1 ) is a (UP+, UP+)-positive saddle. 

• For aj1j20
∏m 

s2=1,s2 �=s1 
(aj1j2s1 − aj1j2s2 ) <  0 and 

aj2j10
∏n 

l2=1,l2 �=l1 
(aj2j1l1 − aj2j1l2 ) >  0,

(
aj1j2s1 , aj2j11

) = (DP+, DP−)
︸ ︷︷ ︸
CCW center 

(5.44) 

The equilibrium of (x∗
j2 
, x∗

j1 
) = (aj1j2s1 , aj2j1l1 ) is a (DP+, DP−)-counter-clockwise 

center. 

• For aj1j20
∏m 

s2=1,s2 �=s1

(
aj1j2s1 − aj1j2s2

)
> 0 and 

aj2j10
∏n 

l2=1,l2 �=l1

(
aj2j1l1 − aj2j1l2

)
< 0,

(
aj1j2s1 , aj2j1l1

) = (
DP−,DP+

)

︸ ︷︷ ︸
CW center 

. (5.45)
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The equilibrium of (x∗
j2 
, x∗

j1 
) = (aj1j2s1 , aj2j1l1 ) is a (DP−, DP+)-clockwise center. 

• For aj1j20
∏m 

s2=1,s2 �=s1 
(aj1j2s1 − aj1j2s2 ) <  0 and 

aj2j10
∏n 

l2=1,l2 �=l1 
(aj2j1l1 − aj2j1l2 ) <  0, 

(aj1j2s1 , aj2j1l1 ) = (UP−,UP−)
︸ ︷︷ ︸
negative saddle 

. (5.46) 

The equilibrium of (x∗
j2 
, x∗

j1 
) = (aj1j2s1 , aj2j1l1 ) is a (UP−, UP−)-negative saddle. 

(iv) For m = 2m1 + 1 and n = 2n1 + 1, the equilibrium of (x∗
j2 
, x∗

j1 
) = (aj1j21, aj2j11) 

has the following bifurcation properties. 

(iv1) For  aj1j20 > 0 and aj2j10 > 0, there is a ((2m1+1)th UP+, (2n1+1)th UP+)-
positive saddle equilibrium as 

(aj1j21, aj2j11) = ((2m1+1)th UP+, (2n1+1)th UP+)
︸ ︷︷ ︸

((2m1+1),(2n1 + 1))-positive saddle 

. (5.47) 

There are three following ((2m1+1)th UP+, (2n1+1)th UP+)-positive saddle appearing 
and switching bifurcations. 

(iv1a) The  ((2m1 + 1)thUP+,(2n1 + 1)thUP+)-positive saddle appearing bifurcation 
is from a (UP+,UP+)-positive saddle to a (2m1 +1) × (2n1 + 1)-equilibrium network 
as 

(aj1j21, aj2j11)︸ ︷︷ ︸
(UP+,UP+)-positive saddle

� ((2m1+1)th UP+, (2n1+1)th UP+)
︸ ︷︷ ︸

((2m1+1),(2n1 + 1))-positive saddle

�
2m1+1⋃

r=1 

2n1+1⋃

s=1 

(aj1j2r, aj2j1s)︸ ︷︷ ︸
XX 

, (5.48) 

where 

2m1+1⋃

r=1 

2n1+1⋃

s=1

(
aj1j2r, aj2j1s

)

︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
UP+,UP+

)

︸ ︷︷ ︸
positive saddle

(
DP−,DP+

)

︸ ︷︷ ︸
center (CW) 

· · · (UP+,UP+
)

︸ ︷︷ ︸
positive saddle(

DP+,DP−
)

︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)
︸ ︷︷ ︸
negative saddle 

· · · (DP+,DP−
)

︸ ︷︷ ︸
center (CCW) 

... 
... 

... 
...(

UP+,UP+
)

︸ ︷︷ ︸
positive saddle

(
DP−,DP+

)

︸ ︷︷ ︸
center (CW) 

· · · (UP+,UP+
)

︸ ︷︷ ︸
positive saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2m1+1)×(2n1+1) 

. 

(5.49)
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(iv1b) The  ((2m1+1)thUP+,(2n1+1)thUP+)-positive saddle appearing bifurcation is 
from a p1 × q1 to p2 × q2 equilibrium network as 

p1⋃

r1=1 

q1⋃

s1=1 

(aj1j2r1 , aj2j1s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� ((2m1 + 1)th UP+, (2n1 + 1)th UP+)
︸ ︷︷ ︸

((2m1+1),(2n1+1))-positive saddle

�
p2⋃

r2=1 

q2⋃

s2=1 

(aj1j2r2 , aj2j1s2 )︸ ︷︷ ︸
(m(2) 

r2 ,n
(2) 
s2 )-XX 

(5.50) 

where 

2m1 − �
p1 
r1=1m

(1) 
r1 = 2�l1 

s=1ms 

with l1-quadratic polynomials without real roots 

and sth-quadratic polynomial with power ms, 

2n1 + 1 − �
q1 
s1=1n

(1) 
s1 = 2�l2 

l=1nl 

with l2-quadratic polynomials without real roots 

and lth-quadratic polynomial with power n1;
�

p2 
s2=1m

(2) 
r2 = 2m1 + 1, �

q2 
s2=1n

(2) 
s2 = 2n1 + 1; for i = 1, 2, 

((m(i) 
pi )

th XX, (n(i) 
qi )

th XX)
︸ ︷︷ ︸

(m(i) 
pi ,n

(i) 
qi )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

((2m(i) 
pi1 + 1)th UP+, (2n(i) 

qi1 + 1)th UP+)
︸ ︷︷ ︸

((2m(i) 
pi 1

+1),(2n(i) 
qi 1

+1))-positive saddle 

, ((2m(i) 
pi1)

th II+, (2n(i) 
qi1)

th II+),
︸ ︷︷ ︸

((2m(i) 
pi 1

),(2n(i) 
qi 1

))-double-infection saddle 

((2m(i) 
pi1)

th US, (2n(i) 
qi1 + 1)th UP)

︸ ︷︷ ︸
((2m(i) 

pi 1
+1),(2n(i) 

qi 1
+1))-up-parabola upper-saddle 

, ((2m(i) 
pi1 + 1)th UP, (2n(i) 

qi1)
th US)

︸ ︷︷ ︸
((2m(i) 

pi 1
+1),(2n(i) 

qi 1
))-up-parabola upper-saddle 

⎫ 
⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
pi )

th XX, (n(i) 
1 )

th XX)
︸ ︷︷ ︸

(m(i) 
pi ,n

(i) 
1 )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

((2m(i) 
pi1 + 1)th UP+, (2n(i) 

11 + 1)th UP+)
︸ ︷︷ ︸

((2m(i) 
pi 1

+1),(2n(i) 
11+1))-positive saddle 

, ((2m(i) 
pi1)

th DI−, (2n(i) 
11)

th DI+),
︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

11 ))-double-infection saddle 

((2m(i) 
pi1)

th US, (2n(i) 
11 + 1)th UP),

︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

11+1))-up-parabola upper-saddle 

((2m(i) 
pi1 + 1)th DP, (2n(i) 

11)
th LS),

︸ ︷︷ ︸
((2m(i) 

pi 1
+1),(2n(i) 

11 ))-down-parabola lower-saddle 

⎫ 
⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎭ 

;
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((m(i) 
1 )

th XX, (n(i) 
qi )

th XX)
︸ ︷︷ ︸

(m(i) 
1 ,n

(i) 
qi )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

((2m11 
(i) + 1)th UP+, (2n(i) 

11 + 1)th UP+)
︸ ︷︷ ︸

((2m(i) 
11+1),(2n(i) 

11+1))-positive saddle 

, ((2m(i) 
pi1)

th DI−, (2n(i) 
qi1)

th DI+)
︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
qi 1

))-double-infection saddle 

, 

((2m(i) 
11)

th DP+, (2n(i) 
qi1 + 1)th DP−)

︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
qi 1

+1))-down-parabola lower-saddle 

, ((2m(i) 
11 + 1)th DP−, (2n(i) 

qi1)
th US)

︸ ︷︷ ︸
((2m(i) 

11+1),(2n(i) 
qi 1

))-up-parabola upper-saddle 

⎫ 
⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
1 )

th XX, (n(i) 
1 )

th XX)
︸ ︷︷ ︸

(m(i) 
1 ,n

(i) 
1 )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩ 

((2m11 
(i) + 1)th UP+, (2n(i) 

qi1 + 1)th UP+)
︸ ︷︷ ︸

((2m(i) 
11+1),(2n(i) 

11+1))-positive saddle 

, ((2m(i) 
11)

th II−, (2n(i) 
11)

th II−)
︸ ︷︷ ︸

((2m(i) 
11 ),(2n

(i) 
11 ))-double-infection saddle 

, 

((2m(i) 
11)

th LS, (2n(i) 
11 + 1)th DP)

︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
11+1))-down-parabola lower-saddle 

, ((2m(i) 
11 + 1)th UP, (2n(i) 

11)
th LS)

︸ ︷︷ ︸
((2m(i) 

11+1),(2n(i) 
11 ))-down-parabola lower-saddle 

⎫ 
⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎭ 

; 

(5.51) 

(iv1c) The  ((2m1+1)thSO,(2n1+1)thSO)-source switching bifurcation is for the 
switching of two p × q equilibrium networks as 

p⋃

r1=1 

q⋃

s1=1 

(aj1j2r1 , aj2j1s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� ((2m1+1)th UP+, (2n1+1)th UP+)
︸ ︷︷ ︸

((2m1+1),(2n1 + 1))-positive saddle

�
p⋃

r2=1 

q⋃

s2=1 

(aj1j2r2 , aj2j1s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX 

(5.52) 

with �
p 
ri=1mri = 2m1 + 1 and �

q 
si=1nsi = 2n1 + 1 for  i = 1, 2. 

(iv2) For  aj1j10 < 0 and aj2j20 > 0, there is a ((2m1+1)th DP+, (2n1+1)th DP−)-CCW 
center equilibrium as 

(aj1j21, aj2j11) = ((2m1+1)th DP+, (2n1+1)th DP−)
︸ ︷︷ ︸

((2m1+1),(2n1 + 1))-CCW center 

. (5.53) 

There are the following three ((2m1+1)th DP+, (2n1+1)th DP−)-CCW center appearing 
and switching bifurcations.
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(iv2a) The  ((2m1+1)thDP+,(2n1+1)thDP−)-CCW center appearing bifurcation is 
from a (DP+, DP−)-CCW center to a (2m1 + 1) × (2n1 + 1) network as

(
aj1j21, aj2j11

)

︸ ︷︷ ︸
(DP+,DP−)-CCW center

� ((2m1+1 )th DP+,(2n1+1)th DP−
)

︸ ︷︷ ︸
((2m1+1 ), (2n1+1))-CCW center

�
2m1+1⋃

r=1 

2n1+1⋃

s=1

(
aj1j2r, aj2j1s

)

︸ ︷︷ ︸
XX 

(5.54) 

where 

2m1+1⋃

r=1 

2n1+1⋃

s=1 

(aj1j2r, aj2j1s)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(DP+,DP−)
︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)
︸ ︷︷ ︸

saddle (−) 

· · ·  (DP+,DP−)
︸ ︷︷ ︸
center (CCW) 

(UP+,UP+)
︸ ︷︷ ︸

saddle (+) 

(DP−,DP+)
︸ ︷︷ ︸
center (CW) 

· · ·  (UP+,UP+)
︸ ︷︷ ︸

saddle (+) 
... 

... 
... 

... 
(DP+,DP−)
︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)
︸ ︷︷ ︸

saddle (−) 

· · ·  (DP+,DP−)
︸ ︷︷ ︸
center (CCW) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2m1+1)×(2n1+1) 

. 

(5.55) 

(iv2b) The  ((2m1 + 1)thDP+,(2n1 + 1)thDP−)-CCW center appearing bifurcation is 
from p1 × q1 to p2 × q2 equilibrium networks as 

p1⋃

r1=1 

q1⋃

s1=1 

(aj1j2r1 , aj2j1s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� ((2m1+1)th DP+, (2n1+1)th DP−)
︸ ︷︷ ︸

((2m1+1),(2n1 + 1))-CCW center

�
p2⋃

r2=1 

q2⋃

s2=1 

(aj1j2r2 , aj2j1s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX 

(5.56) 

where 

2m1 + 1 − �
p1 
r1=1m

(1) 
r1 = 2�l1 

s=1ms 

with l1-quadratic polynomials without real roots 

and sth-quadratic polynomial with power ms, 

2n1 + 1 − �
q1 
s1=1n

(1) 
s1 = 2�l2 

l=1nl 

with l2-quadraitc polynomials without real roots 

and lth-quadratic polynomial with power nl;
�

p2 
r2=1m

(2) 
r2 = 2m1 + 1, �

q2 
s2=1n

(2) 
s2 = 2n1 + 1; for i = 1, 2
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((m(i) 
pi )

th XX,(n(i) 
qi )

th XX)
︸ ︷︷ ︸

(m(i) 
pi ,n

(i) 
qi )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
pi1+1)th DP+, (2n(i) 

qi1 + 1)th DP−)
︸ ︷︷ ︸

((2m(i) 
pi 1

+1),(2n(i) 
qi 1

+1))-CCW center 

, ((2m(i) 
pi1)

th DI+, (2n(i) 
qi1)

th DI−)
︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

qi 1
))-double-inflection saddle 

, 

((2m(i) 
pi1)

th LS,(2n(i) 
qi1 + 1)th DP)

︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

qi 1
+1))-down-parabola lower-saddle 

, ((2m(i) 
pi1+1)th DP,(2n(i) 

qi1)
th US)

︸ ︷︷ ︸
((2m(i) 

pi 1
+1),(2n(i) 

qi 1
))-down-parabola upper-saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
pi )

th XX,(n(i) 
1 )

th XX)
︸ ︷︷ ︸

(m(i) 
pi ,n

(i) 
1 )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
pi1+1)th DP+, (2n(i) 

11 + 1)th DP−)
︸ ︷︷ ︸

((2m(i) 
pi 1

+1),(2n(i) 
11+1))-CCW center 

, ((2m(i) 
pi1)

th II−, (2n(i) 
11)

th II−)
︸ ︷︷ ︸

((2m(i) 
pi 1

),(2n(i) 
11 ))-double-inflection saddle 

, 

((2m(i) 
pi1)

th LS,(2n(i) 
11 + 1)th DP)

︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

11+1))-down-parabola lower-saddle 

, ((2m(i) 
pi1+1)th UP,(2n(i) 

11)
th LS)

︸ ︷︷ ︸
((2m(i) 

pi 1
+1),(2n(i) 

11 ))-up-parabola lower-saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
1 )

th XX,(n(i) 
qi )

th XX)
︸ ︷︷ ︸

(m(i) 
1 ,n

(i) 
qi )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
11+1)th DP+, (2n(i) 

qi1 + 1)th DP−)
︸ ︷︷ ︸

((2m(i) 
11+1),(2n(i) 

qi 1
+1))-CCW center 

, ((2m(i) 
11)

th II+, (2n(i) 
qi1)

th II+)
︸ ︷︷ ︸

((2m(i) 
11 ),(2n

(i) 
qi 1

))-double-saddle 

, 

((2m(i) 
11)

th US,(2n(i) 
qi1 + 1)th UP)

︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
qi 1

+1))-up-parabola upper-saddle 

, ((2m(i) 
11+1)th DP,(2n(i) 

qi1)
th US)

︸ ︷︷ ︸
((2m(i) 

11+1),(2n(i) 
qi 1

))-down-parabola upper-saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
1 )

th XX,(n(i) 
1 )

th XX)
︸ ︷︷ ︸

(m(i) 
1 ,n

(i) 
1 )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

((2m(i) 
11+1)th DP+, (2n(i) 

11 + 1)th DP−)
︸ ︷︷ ︸

((2m(i) 
11+1),(2n(i) 

11+1))-CCW center 

, ((2m(i) 
11)

th DI−, (2n(i) 
11)

th DI+)
︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
11 ))-double-inflection saddle 

, 

((2m(i) 
11)

th US,(2n(i) 
11 + 1)th UP)

︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
11+1))-up-parabola upper-saddle 

, ((2m(i) 
11+1)th DP,(2n(i) 

11)
th LS)

︸ ︷︷ ︸
((2m(i) 

11+1),(2n(i) 
11 ))-down-parabola lower-saddle 

⎫ 
⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎭ 

. 

(5.57) 

(iv2c) The  ((2m1+1)th DP+, (2n1+1)th DP−)-CCW center switching bifurcations is 
for two p × q equilibrium networks as
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p⋃

r1=1 

q⋃

s1=1 

(aj1j2r1 , aj2j1s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� ((2m1+1)th DP+, (2n1+1)th DP−)
︸ ︷︷ ︸

((2m1+1),(2n1 + 1))-CCW center

�
p⋃

r2=1 

q⋃

s2=1 

(aj1j2r2 , aj2j1s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX 

(5.58) 

with �
p 
ri=1mri = 2m1 + 1 and �

q 
si=1nsi = 2n1 + 1 for  i = 1, 2. 

(iv3) For  aj1j10 > 0 and aj2j20 < 0, there is a ((2m1+1)th DP−, (2n1+1)th DP+)-CW 
center equilibrium as 

(aj1j21, aj2j11) = ((2m1+1)th DP−, (2n1+1)th DP+)
︸ ︷︷ ︸

((2m1+1),(2n1 + 1))-CW center 

. (5.59) 

There are the following three ((2m1+1)th DP−, (2n1+1)th DP+)-CW center appearing 
and switching bifurcations. 

(iv3a) The  ((2m1 + 1 )th DP−,(2n1 + 1)th DP+
)
-CW center appearing bifurcation is 

from a (DP−, DP+)-CW center to a (2m1 + 1) × (2n1 + 1)-equilibrium network as 

(aj1j21, aj2j11)︸ ︷︷ ︸
(DP−,DP+)-CW center

� ((2m1+1)th DP−, (2n1+1)th DP+)
︸ ︷︷ ︸

((2m1+1),(2n1 + 1))-CW center

�
2m1+1⋃

r=1 

2n1+1⋃

s=1 

(aj1j1r, aj2j2s)︸ ︷︷ ︸
XX 

(5.60) 

where 

2m1+1⋃

r=1 

2n1+1⋃

s=1 

(aj1j2r, aj2j1s)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(DP−,DP+)
︸ ︷︷ ︸
center (CW) 

(UP+,UP+)
︸ ︷︷ ︸

saddle (+) 

· · ·  (DP−,DP+)
︸ ︷︷ ︸
center (CW) 

(UP−,UP−)
︸ ︷︷ ︸

saddle (−) 

(DP+,DP−)
︸ ︷︷ ︸
center (CCW) 

· · ·  (UP−,UP−)
︸ ︷︷ ︸

saddle (−) 
... 

... 
... 

... 
(DP−,DP+)
︸ ︷︷ ︸
center (CW) 

(UP+,UP+)
︸ ︷︷ ︸

saddle (+) 

· · ·  (DP−,DP+)
︸ ︷︷ ︸
center (CW) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2m1+1)×(2n1+1) 

. (5.61) 

(iv3b) The  ((2m1 + 1)thDP−,(2n1 + 1)thDP+)-CW center appearing bifurcation is 
from a p1 × q1 to p2 × q2 equilibrium network as
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p1⋃

r1=1 

q1⋃

s1=1 

(aj1j2r1 , aj2j1s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� ((2m1+1)th DP−, (2n1+1)th DP+)
︸ ︷︷ ︸

((2m1+1),(2n1 + 1))-CW center

�
p2⋃

r2=1 

q2⋃

s2=1 

(aj1j2r2 , aj2j1s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX 

(5.62) 

where 

2m1 + 1 − �
p1 
r1=1m

(1) 
r1 = 2�l1 

s=1ms 

with l1-quadratic polynomials without real roots 

and sth-quadratic polynomial with power ms, 

2n1 + 1 − �
q1 
s1=1n

(1) 
s1 = 2�l2 

l=1nl 

with l2-quadraitc polynomials without real roots 

and lth-quadratic polynomial with power nl;
�

p2 
r2=1m

(2) 
r2 = 2m1 + 1, �

q2 
s2=1n

(2) 
s2 = 2n1 + 1; for i = 1, 2 

((m(i) 
pi )

th XX,(n(i) 
qi )

th XX)
︸ ︷︷ ︸

(m(i) 
pi ,n

(i) 
qi )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
pi1+1)th DP−, (2n(i) 

qi1 + 1)th DP+)
︸ ︷︷ ︸

((2m(i) 
pi 1

+1),(2n(i) 
qi 1

+1))-CW center 

, ((2m(i) 
pi1)

th DI−, (2n(i) 
qi1)

th DI+)
︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

qi 1
))-double-inflection saddle 

, 

((2m(i) 
pi1)

th US,(2n(i) 
qi1 + 1)th DP)

︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

qi 1
+1))-down-parabola upper-saddle 

, ((2m(i) 
pi1+1)th DP,(2n(i) 

qi1)
th LS)

︸ ︷︷ ︸
((2m(i) 

pi 1
+1),(2n(i) 

qi 1
))-down-parabola lower-saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
pi )

th XX,(n(i) 
1 )

th XX)
︸ ︷︷ ︸

(m(i) 
pi ,n

(i) 
1 )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
pi1+1)th DP−, (2n(i) 

11 + 1)th DP+)
︸ ︷︷ ︸

((2m(i) 
pi 1

+1),(2n(i) 
11+1))-CW center 

, ((2m(i) 
pi1)

th II+, (2n(i) 
11)

th II+)
︸ ︷︷ ︸

((2m(i) 
pi 1

),(2n(i) 
11 ))-double-inflection saddle 

, 

((2m(i) 
pi1)

th US,(2n(i) 
11 + 1)th DP)

︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

11+1))-down-parabola upper-saddle 

, ((2m(i) 
pi1+1)th UP,(2n(i) 

11)
th US)

︸ ︷︷ ︸
((2m(i) 

pi 1
+1),(2n(i) 

11 ))-up-parabola upper-saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

;
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((m(i) 
1 )

th XX,(n(i) 
qi )

th XX)
︸ ︷︷ ︸

(m(i) 
1 ,n

(i) 
qi )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
11+1)th DP−, (2n(i) 

qi1 + 1)th DP+)
︸ ︷︷ ︸

((2m(i) 
11+1),(2n(i) 

qi 1
+1))-CW center 

, ((2m(i) 
11)

th II−, (2n(i) 
qi1)

th II−)
︸ ︷︷ ︸

((2m(i) 
11 ),(2n

(i) 
qi 1

))-double-inflection saddle 

, 

((2m(i) 
11)

th LS,(2n(i) 
qi1 + 1)th UP)

︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
qi 1

+1))-up-parabola lower-saddle 

, ((2m(i) 
11+1)th DP,(2n(i) 

qi1)
th LS)

︸ ︷︷ ︸
((2m(i) 

11+1),(2n(i) 
qi 1

))-down-parabola lower-saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
1 )

th XX,(n(i) 
1 )

th XX)
︸ ︷︷ ︸

(m(i) 
1 ,n

(i) 
1 )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

((2m(i) 
11+1)th DP−, (2n(i) 

11 + 1)th DP+)
︸ ︷︷ ︸

((2m(i) 
11+1),(2n(i) 

11+1))-CW center 

, ((2m(i) 
11)

th DI+, (2n(i) 
11)

th DI−)
︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
11 ))-double-inflection saddle 

, 

((2m(i) 
11)

th LS,(2n(i) 
11 + 1)th UP)

︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
11+1))-up-paraobla lower-saddle 

, ((2m(i) 
11+1)th UP,(2n(i) 

11)
th US)

︸ ︷︷ ︸
((m(i) 

11 ),(2n
(i) 
11 ))-down-paraobla upper-saddle 

⎫ 
⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎭ 

. 

(5.63) 

(iv3c) The  ((2m1 + 1 )th DP−,(2n1 + 1)th DP+
)
-CW center switching bifurcation is 

for the switching of two p × q equilibrium networks as 

p1⋃

r1=1 

q1⋃

s1=1 

(aj1j2r1 , aj2j1s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� ((2m1+1)th DP−, (2n1+1)th DP+)
︸ ︷︷ ︸

((2m1+1),(2n1 + 1))-CW center

�
p2⋃

r2=1 

q2⋃

s2=1 

(aj1j2r2 , aj2j1s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX 

(5.64) 

with �
p 
ri=1mri = 2m1 + 1 and �

q 
si=1nsi = 2n1 + 1 for  i = 1, 2. 

(iv4) For  aj1j10 < 0 and aj2j20 > 0, there is a ((2m1 + 1)thUP−, (2n1 + 1)thUP−)-
negative saddle equilibrium as

(
aj1j21, aj2j11

) = ((
2m1 + 1

)th 
UP−,

(
2n1 + 1

)th 
UP−

)

︸ ︷︷ ︸((
2m1+1

)
,

(
2n1+1

))
-negative saddle 

(5.65) 

There are the following three ((2m1 + 1 )th UP−,(2n1 + 1)th UP−
)
-negative saddle 

appearing and switching bifurcations. 

(iv4a) The  ((2m1 + 1 )th UP−,(2n1 + 1)th UP−
)
-negative saddle appearing bifurca-

tion is from a (UP–,UP–)-negative saddle to a (2m1 + 1) × (2n1 + 1) network as
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(aj1j21, aj2j11)︸ ︷︷ ︸
(UP−,UP−)-negative-saddle

� ((2m1 + 1)th UP−, (2n1 + 1)th UP−)
︸ ︷︷ ︸

((2m1+1),(2n1+1))-negative saddle

�
2m1+1⋃

r=1 

2n1+1⋃

s=1 

(aj1j2r, aj2j1s)︸ ︷︷ ︸
XX 

(5.66) 

where 

2m1+1⋃

s=1 

2n1+1⋃

l=1

(
aj1j2s, aj2j1l

)

︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(UP−, UP−)
︸ ︷︷ ︸

saddle (−) 

(DP+, DP−)
︸ ︷︷ ︸
center (CCW) 

· · ·  (UP−, UP−)
︸ ︷︷ ︸

saddle (−) 
(DP−, DP+)
︸ ︷︷ ︸

center (CW) 

(UP+, UP+)
︸ ︷︷ ︸

saddle (+) 

· · ·  (DP−, DP+)
︸ ︷︷ ︸

center (CW) 
... 

... 
... 

... 
(UP−, UP−)
︸ ︷︷ ︸

saddle (−) 

(DP+, DP−)
︸ ︷︷ ︸
center (CCW) 

· · ·  (UP−, UP−)
︸ ︷︷ ︸

saddle (−) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2m1+1)×(2n1+1) 

(5.67) 

(iv4b) The  ((2m1 + 1)thUP−, (2n1 + 1)thUP−)-negative saddle appearing bifurcation 
is from a p1 × q1 to p2 × q2 equilibrium network as 

p1⋃

r1=1 

q1⋃

s1=1 

(aj1j2r1 , aj2j1s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� ((2m1 + 1)th UP−, (2n1 + 1)th UP−)
︸ ︷︷ ︸

((2m1+1),(2n1+1))-negative saddle

�
p2⋃

r2=1 

q2⋃

s2=1 

(aj1j2r2 , aj2j1s2 )︸ ︷︷ ︸
(m(2) 

r2 ,n
(2) 
s2 )-XX 

(5.68) 

where 

2m1 + 1 − �
p1 
r1=1m

(1) 
r1 = 2�l1 

s=1ms 

with l1-quadratic polynomials without real roots 

and sth-quadratic polynomial with power ms, 

2n1 + 1 − �
q1 
s1=1n

(1) 
s1 = 2�l2 

l=1nl 

with l2-quadraitc polynomials without real roots 

and lth-quadratic polynomial with power nl;
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�
p2 
r2=1m

(2) 
r2 = 2m1 + 1, �

q2 
s2=1n

(2) 
s2 = 2n1 + 1; for i = 1, 2, 

((m(i) 
pi )

th XX,(n(i) 
qi )

th XX)
︸ ︷︷ ︸

(m(i) 
pi ,n

(i) 
qi )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
pi1+1)th UP−, (2n(i) 

qi1 + 1)th UP−)
︸ ︷︷ ︸

((2m(i) 
pi 1

+1),(2n(i) 
qi 1

+1))-nagative saddle 

, ((2m(i) 
pi1)

th II−, (2n(i) 
qi1)

th II−)
︸ ︷︷ ︸

((2m(i) 
pi 1

),(2n(i) 
qi 1

))-double-inflection saddle 

, 

((2m(i) 
pi1)

th LS,(2n(i) 
qi1 + 1)th UP)

︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

qi 1
+1))-up-parabola lower-saddle 

, ((2m(i) 
pi1+1)th UP,(2n(i) 

qi1)
th LS)

︸ ︷︷ ︸
((2m(i) 

pi 1
+1),(2n(i) 

qi 1
))-up-parabola lower-saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
pi )

th XX,(n(i) 
1 )

th XX)
︸ ︷︷ ︸

(m(i) 
pi ,n

(i) 
1 )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
pi1+1)th UP−, (2n(i) 

qi1 + 1)th UP−)
︸ ︷︷ ︸

((2m(i) 
pi 1

+1),(2n(i) 
qi 1

+1))-nagative saddle 

, ((2m(i) 
pi1)

th DI+, (2n(i) 
11)

th DI−)
︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

11 ))-double-inflection saddle 

, 

((2m(i) 
pi1)

th LS,(2n(i) 
11 + 1)th UP)

︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

11+1))-up-paraobla lower-saddle 

, ((2m(i) 
pi1+1)th DP,(2n(i) 

11)
th US)

︸ ︷︷ ︸
((2m(i) 

pi 1
+1),(2n(i) 

11 ))-down-parabpla upper-saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
1 )

th XX,(n(i) 
qi )

th XX)
︸ ︷︷ ︸

(m(i) 
1 ,n

(i) 
qi )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
11+1)th UP−, (2n(i) 

qi1 + 1)th UP−)
︸ ︷︷ ︸

((2m(i) 
11+1),(2n(i) 

qi 1
+1))-nagative saddle 

, ((2m(i) 
11)

th DI−, (2n(i) 
qi1)

th DI+)
︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
qi 1

))-double-inflection saddle 

, 

((2m(i) 
11)

th US,(2n(i) 
qi1 + 1)th DP)

︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
qi 1

+1))-down-parabola upper-saddle 

, ((2m(i) 
11+1)th UP,(2n(i) 

qi1)
th LS)

︸ ︷︷ ︸
((2m(i) 

11+1),(2n(i) 
qi 1

))-up-parobla lower-saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
1 )

th XX,(n(i) 
1 )

th XX)
︸ ︷︷ ︸

(m(i) 
1 ,n

(i) 
1 )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

((2m(i) 
11+1)th UP−, (2n(i) 

11 + 1)th UP−)
︸ ︷︷ ︸

((2m(i) 
11+1),(2n(i) 

qi 1
+1))-nagative saddle 

, ((2m(i) 
11)

th II+, (2n(i) 
11)

th II+)
︸ ︷︷ ︸

((2m(i) 
11 ),(2n

(i) 
11 ))-double-inflection saddle 

, 

((2m(i) 
11)

th US,(2n(i) 
11 + 1)th DP)

︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
11+1))-down-parabola upper-saddle 

, ((2m(i) 
11+1)th DP,(2n(i) 

11)
th US)

︸ ︷︷ ︸
((2m(i) 

11+1),(2n(i) 
11 ))-down-paraobla upper-saddle 

⎫ 
⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎭ 

. 

(5.69) 

(iv4c) The  ((2m1 + 1)thUP−,(2n1 + 1)thUP−)-negative saddle switching bifurcation 
is for two p × q equilibrium networks as



222 5 Bifurcations for Homoclinic Networks with Centers

p⋃

r1=1 

q⋃

s1=1 

(aj1j2r1 , aj2j1s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� ((2m1+1)th UP−, (2n1+1)th UP−)
︸ ︷︷ ︸

((2m1+1),(2n1 + 1))-negative saddle

�
p⋃

r2=1 

q⋃

s2=1 

(aj1j2r2 , aj2j1s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX 

(5.70) 

with �
p 
ri=1mri = 2m1 + 1 and �

q 
si=1nsi = 2n1 + 1 for  i = 1, 2. 

(v) For m = 2m1 and n = 2n1 + 1, the equilibrium of (x∗
j2 
, x∗

j1 
) = (aj1j21, aj2j11) has 

the following bifurcation properties. 

(v1) For  aj1j10 > 0 and aj2j20 > 0, there is a ((2m1)
th US, (2n1+1)th UP)-up-parabola 

upper-saddle equilibrium as

(
aj1j21, aj2j11

) = ((2m1)
th US,(2n1+1)th UP)︸ ︷︷ ︸

((2m1),(2n1 + 1))-up-parabola upper-saddle 

. (5.71) 

There are three following ((2m1)
thUS, (2n1 + 1)thUP)-up-parabola upper-saddle 

appearing and switching bifurcations. 

(v1a) The  ((2m1)
thUS, (2n1 + 1)thUP)-up-paraonla upper-saddle appearing bifur-

cation is from a (pF,UP)-positive parabola flow to a (2m1) × (2n1 + 1)-equilibrium 
network as 

(ẋj1 , aj2j11)︸ ︷︷ ︸
(pF,UP)-up-parabola flow (+)

� ((2m1)
th US,(2n1+1)th UP)︸ ︷︷ ︸

((2m1),(2n1 + 1))-up-paraobla upper-saddle

�
2m1⋃

r=1 

2n1+1⋃

s=1 

(aj1j2r, aj2j1s)︸ ︷︷ ︸
XX 

(5.72) 

where 

2m1⋃

s=1 

2n1+1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(UP+,UP+)
︸ ︷︷ ︸

saddle (+) 

(DP−,DP+)
︸ ︷︷ ︸
center (CW) 

· · ·  (UP+,UP+)
︸ ︷︷ ︸

saddle (+) 

(DP+,DP−)
︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)
︸ ︷︷ ︸

saddle (−) 

· · ·  (DP+,DP−)
︸ ︷︷ ︸
center (CCW) 

... 
... 

... 
... 

(DP+,DP−)
︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)
︸ ︷︷ ︸

saddle (−) 

· · ·  (DP+,DP−)
︸ ︷︷ ︸
center (CCW) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2m1)×(2n1+1) 

. 

(5.73) 

(v1b) The  ((2m1)
thUS, (2n1 + 1)thUP)-up-paraonla upper-saddle appearing bifur-

cation is from a p1 × q1 to p2 × q2 equilibrium network as
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p1⋃

r1=1 

q1⋃

s1=1 

(aj1j2r1 , aj2j1s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� ((2m1)
th US, (2n1 + 1)th UP)︸ ︷︷ ︸

((2m1), (2n1+1))-up-paraobla upper-saddle

�
p2⋃

r2=1 

q2⋃

s2=1 

(aj1j2r2 , aj2j1s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX 

(5.74) 

where 

2m1 − �
p1 
r1=1m

(1) 
r1 = 2�l1 

s=1ms 

with l1-quadratic polynomials without real roots 

and sth-quadratic polynomial with power ms, 

2n1 + 1 − �
q1 
r1=1n

(1) 
s1 = 2�l2 

l=1nl 

with l2-quadratic polynomials without real roots 

and lth-quadratic polynomial with power n1;
�

p2 
r2=1m

(2) 
r2 = 2m1, �

q2 
s2=1n

(2) 
s2 = 2n1 + 1; for i = 1, 2, 

((m(i) 
pi )

th XX, (n(i) 
qi )

th XX)
︸ ︷︷ ︸

(m(i) 
pi ,n

(i) 
qi )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

((2m(i) 
pi1 + 1)th UP+, (2n(i) 

qi1 + 1)th UP+)
︸ ︷︷ ︸

((2m(i) 
pi 1

+1),(2n(i) 
qi 1

+1))-positive saddle 

, ((2m(i) 
pi1)

th II+, (2n(i) 
qi1)

th II+),
︸ ︷︷ ︸

((2m(i) 
pi 1

),(2n(i) 
qi 1

))-double-infection saddle 

((2m(i) 
pi1)

th US, (2n(i) 
qi1 + 1)th UP)

︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

qi 1
+1))-up-parabola upper-saddle 

, ((2m(i) 
pi1 + 1)th UP, (2n(i) 

qi1)
th US)

︸ ︷︷ ︸
((2m(i) 

pi 1
+1),(2n(i) 

qi 1
))-up-parabola upper-saddle 

⎫ 
⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
pi )

th XX, (n(i) 
qi )

th XX)
︸ ︷︷ ︸

(m(i) 
pi ,n

(i) 
1 )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

((2m(i) 
pi1 + 1)th UP+, (2n(i) 

11 + 1)th UP+)
︸ ︷︷ ︸

((2m(i) 
pi 1

+1),(2n(i) 
11+1))-positive saddle 

, ((2m(i) 
pi1)

th DI−, (2n(i) 
11)

th DI+),
︸ ︷︷ ︸

((2m(i) 
pi 1

),(2n(i) 
11 ))-double -saddle 

((2m(i) 
pi1)

th US, (2n(i) 
11 + 1)th UP),

︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

11+1))-up-parabola upper-saddle 

((2m(i) 
pi1 + 1)th DP, (2n(i) 

11)
th LS),

︸ ︷︷ ︸
((2m(i) 

pi 1
+1),(2n(i) 

11 ))-down-parabola lower-saddle 

⎫ 
⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎭ 

;
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((m(i) 
1 )

th XX, (n(i) 
qi )

th XX)
︸ ︷︷ ︸

(m(i) 
1 ,n

(i) 
qi )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

((2m11 
(i) + 1)th US, (2n(i) 

qi1 + 1)th UP)
︸ ︷︷ ︸
((2m(i) 

11+1),(2n(i) 
qi 1

+1))-up-parabola upper-saddle 

, ((2m(i) 
11)

th II+, (2n(i) 
qi1)

th II+)
︸ ︷︷ ︸

((2m(i) 
11 ),(2n

(i) 
qi 1

))-double-infection saddle 

, 

((2m(i) 
11)

th DP+, (2n(i) 
qi1 + 1)th DP−)

︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
qi 1

+1))-CCW center 

, ((2m(i) 
11 + 1)th DP, (2n(i) 

qi1)
th US)

︸ ︷︷ ︸
((2m(i) 

11+1),(2n(i) 
qi 1

))-down-parabola upper-saddle 

⎫ 
⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
1 )

th XX, (n(i) 
1 )

th XX)
︸ ︷︷ ︸

(m(i) 
1 ,n

(i) 
1 )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩ 

((2m11
(i) + 1)th US, (2n(i) 

11 + 1)th UP+)
︸ ︷︷ ︸

((2m(i) 
11+1),(2n(i) 

11+1))-up-parabola upper-saddle 

, ((2m(i) 
11)

th DI−, (2n(i) 
11)

th DI+)
︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
11 ))-double-infection saddle 

, 

((2m(i) 
11)

th DP+, (2n(i) 
11 + 1)th DP−)

︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
11+1))-CCW center 

, ((2m(i) 
11 + 1)th UP, (2n(i) 

11)
th LS)

︸ ︷︷ ︸
((2m(i) 

11+1),(2n(i) 
11 ))-up-parabola lower-saddle 

⎫ 
⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎭ 

; 

(5.75) 

(v1c) The  ((2m1)
th US, (2n1 + 1)th UP)-up-paraonla upper-saddle switching bifur-

cation is for the switching of two p × q equilibrium networks as 

p⋃

r1=1 

q⋃

s1=1 

(aj1j2r1 , aj2j1s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� ((2m1)
th US,(2n1+1)th UP)︸ ︷︷ ︸

((2m1),(2n1 + 1))-up-paraobla upper-saddle

�
p⋃

r2=1 

q⋃

s2=1 

(aj1j2r2 , aj2j1s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX 

(5.76) 

with
∑p 

ri=1 mri = 2m1 and 
q∑

si=1 
nsi = 2n1 + 1 for  i = 1, 2. 

(v2) For  aj1j10 < 0 and aj2j20 > 0, there is a ((2m1)
th LS, (2n1+1)th DP)-down-parabola 

lower-saddle equilibrium as 

(aj1j21, aj2j11) = ((2m1)
th LS,(2n1+1)th DP)︸ ︷︷ ︸

((2m1),(2n1 + 1))-down-parabola lower-saddle 

. (5.77) 

There are the following three ((2m1)
thLS, (2n1 + 1)thUP)-up-paraonla lower-saddle 

appearing and switching bifurcations. 

(v2a) The  ((2m1)
thLS, (2n1 + 1)thDP)-down-parabola lower-saddle appearing 

bifurcation is from an (nF,UP)-negative up-parabola flow to a (2m1) × (2n1 + 1)
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network as 

(ẋj1 , aj2j11)︸ ︷︷ ︸
(nF,UP)-up-parabola flow (−)

� ((2m1)
th LS,(2n1+1)th DP)︸ ︷︷ ︸

((2m1),(2n1 + 1))-down-parabola lower-saddle

�
2m1⋃

r=1 

2n1+1⋃

s=1 

(aj1j1r, aj2j2s)︸ ︷︷ ︸
XX 

(5.78) 

where 

2m1⋃

s=1 

2n1+1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(DP+,DP−)
︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)
︸ ︷︷ ︸

saddle (−) 

· · ·  (DP+,DP−)
︸ ︷︷ ︸
center (CCW) 

(UP+,UP+)
︸ ︷︷ ︸

saddle (+) 

(DP−,DP+)
︸ ︷︷ ︸
center (CW) 

· · ·  (UP+,UP+)
︸ ︷︷ ︸

saddle (+) 
... 

... 
... 

... 
(UP+,UP+)
︸ ︷︷ ︸

saddle (+) 

(DP−,DP+)
︸ ︷︷ ︸
center (CW) 

· · ·  (UP+,UP+)
︸ ︷︷ ︸

saddle (+) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2m1)×(2n1+1) 

. 

(5.79) 

(v2b) The  ((2m1)
thLS, (2n1 + 1)thDP)-down-parabola lower-saddle appearing 

bifurcation is from a p1 × q1 to p2 × q2 equilibrium network as 

p1⋃

r1=1 

q1⋃

s1=1 

(aj1j2r1 , aj2j1s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� ((2m1)
th LS,(2n1+1)th DP)︸ ︷︷ ︸

((2m1),(2n1 + 1))-down-parabola lower-saddle

�
p2⋃

r2=1 

q2⋃

s2=1 

(aj1j2r2 , aj2j1s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX 

(5.80) 

where 

2m1 − �
p1 
r1=1m

(1) 
r1 = 2�l1 

s=1ms 

with l1-quadratic polynomials without real roots 

and sth-quadratic polynomial with power ms, 

2n1 + 1 − �
q1 
r1=1n

(1) 
s1 = 2�l2 

l=1nl 

with l2-quadratic polynomials without real roots 

and sth-quadratic polynomial with power n1;
�

p2 
r2=1m

(2) 
r2 = 2m1, �

q2 
s2=1n

(2) 
s2 = 2n1 + 1; for i = 1, 2,
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((m(i) 
pi )

th XX, (n(i) 
qi )

th XX)
︸ ︷︷ ︸

(m(i) 
pi ,n

(i) 
qi )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

((2m(i) 
pi1 + 1)th DP+, (2n(i) 

qi1 + 1)th DP−)
︸ ︷︷ ︸

((2m(i) 
pi 1

+1),(2n(i) 
qi 1

+1))-CCW center 

, ((2m(i) 
pi1)

th DI+, (2n(i) 
qi1)

th DI−),
︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

qi 1
))-double-infection saddle 

((2m(i) 
pi1)

th LS, (2n(i) 
qi1 + 1)th DP)

︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

qi 1
+1))-down-parabola lower-saddle 

, ((2m(i) 
pi1 + 1)th UP, (2n(i) 

qi1)
th US)

︸ ︷︷ ︸
((2m(i) 

pi 1
+1),(2n(i) 

qi 1
))-down-parabola upper-saddle 

⎫ 
⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
pi )

th XX, (n(i) 
1 )

th XX)
︸ ︷︷ ︸

(m(i) 
pi ,n

(i) 
1 )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

((2m(i) 
pi1 + 1)th DP+, (2n(i) 

11 + 1)th DP−)
︸ ︷︷ ︸

((2m(i) 
pi 1

+1),(2n(i) 
11+1))-CCW center 

, ((2m(i) 
pi1)

th II−, (2n(i) 
11)

th II−),
︸ ︷︷ ︸

((2m(i) 
pi 1

),(2n(i) 
11 ))-double-infection saddle 

((2m(i) 
pi1)

th LS, (2n(i) 
11 + 1)th DP),

︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

11+1))-down-parabola lower-saddle 

((2m(i) 
pi1 + 1)th UP, (2n(i) 

11)
th LS),

︸ ︷︷ ︸
((2m(i) 

pi 1
+1),(2n(i) 

11 ))-up-parabola lower-saddle 

⎫ 
⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
1 )

th XX, (n(i) 
qi )

th XX)
︸ ︷︷ ︸

(m(i) 
1 ,n

(i) 
qi )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

((2m(i) 
11 + 1)th UP+, (2n(i) 

qi1 + 1)th UP+)
︸ ︷︷ ︸

((2m(i) 
11+1),(2n(i) 

qi 1
+1))-positive saddle 

, ((2m(i) 
11)

th DI+, (2n(i) 
qi1)

th DI−)
︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
qi 1

))-double-infection saddle 

, 

((2m(i) 
11)

th US, (2n(i) 
qi1 + 1)th DP)

︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
qi 1

+1))-down-parabola lower-saddle 

, ((2m(i) 
11 + 1)th UP, (2n(i) 

qi1)
th LS)

︸ ︷︷ ︸
((2m(i) 

11+1),(2n(i) 
qi 1

))-up-parabola upper-saddle 

⎫ 
⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
1 )

th XX,(n(i) 
1 )

th XX)
︸ ︷︷ ︸

(m(i) 
1 ,n

(i) 
1 )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

((2m(i) 
11+1)th UP+, (2n(i) 

11 + 1)th UP+)
︸ ︷︷ ︸

((2m(i) 
11+1),(2n(i) 

11+1))-positive saddle 

, ((2m(i) 
11)

th II−, (2n(i) 
11)

th II−)
︸ ︷︷ ︸

((2m(i) 
11 ),(2n

(i) 
11 ))-double-infelction saddle 

, 

((2m(i) 
11)

th LS,(2n(i) 
11 + 1)th DP)

︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
11+1))-down-parabola lower-saddle 

, ((2m(i) 
11+1)th DP,(2n(i) 

11)
th LS)

︸ ︷︷ ︸
((2m(i) 

11+1),(2n(i) 
11 ))-down-parabola lower-saddle 

⎫ 
⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎭ 

. 

(5.81) 

(v2c) The  ((2m1)
thLS, (2n1 + 1)thUP)-up-parabola lower-saddle switching bifurca-

tion is for two p × q equilibrium networks as
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p⋃

r1=1 

q⋃

s1=1 

(aj1j2r1 , aj2j1s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� ((2m1)
th LS,(2n1+1)th UP)︸ ︷︷ ︸

((2m1),(2n1 + 1))-up-parabola lower-saddle

�
p⋃

r2=1 

q⋃

s2=1 

(aj1j2r2 , aj2j1s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX 

(5.82) 

with 
p∑

ri=1 
mri = 2m1 and 

q∑

si=1 
nsi = 2n1 + 1 for  i = 1, 2. 

(v3) For  aj1j10 > 0 and aj2j20 < 0, there is a ((2m1)
th US, (2n1+1)th DP)-down-

parabola upper-saddle equilibrium as 

(aj1j21, aj2j11) = ((2m1)
th US,(2n1+1)th DP)︸ ︷︷ ︸

((2m1),(2n1 + 1))-down-parabola upper-saddle 

. (5.83) 

There are the following three ((2m1)
th US, (2n1+1)th DP)-down-parabola upper-

saddle appearing and switching bifurcations. 

(v3a) The  ((2m1)
thUS, (2n1 + 1)thDP)-down-parabola upper-saddle appearing 

bifurcation is from a (pF, DP)-positive down-parabola flow to a (2m1) × (2n1 + 1)-
equilibrium network as 

(ẋj1 , aj2j11)︸ ︷︷ ︸
(pF,DP)-down-parabola flow (+)

� ((2m1)
th US,(2n1+1)th DP)︸ ︷︷ ︸

((2m1),(2n1 + 1))-down-parabola upper-saddle

�
2m1⋃

r=1 

2n1+1⋃

s=1 

(aj1j2r, aj2j1s)︸ ︷︷ ︸
XX 

(5.84) 

where 

2m1⋃

s=1 

2n1+1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(DP−,DP+)
︸ ︷︷ ︸
center (CW) 

(UP+,UP+)
︸ ︷︷ ︸

saddle (+) 

· · ·  (DP−,DP+)
︸ ︷︷ ︸
center (CW) 

(UP−,UP−)
︸ ︷︷ ︸

saddle (−) 

(DP+,DP−)
︸ ︷︷ ︸
center (CCW) 

· · ·  (UP−,UP−)
︸ ︷︷ ︸

saddle (−) 
... 

... 
... 

... 
(UP−,UP−)
︸ ︷︷ ︸

saddle (−) 

(DP+,DP−)
︸ ︷︷ ︸
center (CCW) 

· · ·  (UP−,UP−)
︸ ︷︷ ︸

saddle (−) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2m1)×(2n1+1) 

. 

(5.85) 

(v3b) The  ((2m1)
thUS, (2n1 + 1)thDP)-down-parabola upper-saddle appearing 

bifurcation is from a p1 × q1 to p2 × q2 equilibrium network as
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p1⋃

r1=1 

q1⋃

s1=1 

(aj1j2r1 , aj2j1s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� ((2m1)
th US,(2n1+1)th DP)︸ ︷︷ ︸

((2m1),(2n1 + 1))-down-parabola upper-saddle

�
p2⋃

r2=1 

q2⋃

s2=1 

(aj1j2r2 , aj2j1s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX 

(5.86) 

where 

2m1 − �
p1 
r1=1m

(1) 
r1 = 2�l1 

s=1ms 

with l1-quadratic polynomials without real roots 

and sth-quadratic polynomial with power ms, 

2n1 + 1 − �
q1 
s1=1n

(1) 
s1 = 2�l2 

l=1nl 

with l2-quadraitc polynomials without real roots 

and lth-quadratic polynomial with power nl;
�

p2 
r2=1m

(2) 
r2 = 2m1, �

q2 
s2=1n

(2) 
s2 = 2n1 + 1; for i = 1, 2, 

((m(i) 
pi )

th XX,(n(i) 
qi )

th XX)
︸ ︷︷ ︸

(m(i) 
pi ,n

(i) 
qi )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
pi1+1)th DP−, (2n(i) 

qi1 + 1)th DP+)
︸ ︷︷ ︸

((2m(i) 
pi 1

+1),(2n(i) 
qi 1

+1))-CW center 

, ((2m(i) 
pi1)

th DI−, (2n(i) 
qi1)

th DI+)
︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

qi 1
))-double-inflection saddle 

, 

((2m(i) 
pi1)

th US,(2n(i) 
qi1 + 1)th DP)

︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

qi 1
+1))-down-parabola upper-saddle 

, ((2m(i) 
pi1+1)th DP,(2n(i) 

qi1)
th LS)

︸ ︷︷ ︸
((2m(i) 

pi 1
+1),(2n(i) 

qi 1
))-down-parabola lower-saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
pi )

th XX,(n(i) 
1 )

th XX)
︸ ︷︷ ︸

(m(i) 
pi ,n

(i) 
1 )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
pi1+1)th DP−, (2n(i) 

11 + 1)th DP+)
︸ ︷︷ ︸

((2m(i) 
pi 1

+1),(2n(i) 
11+1))-CW center 

, ((2m(i) 
pi1)

th II+, (2n(i) 
11)

th II+)
︸ ︷︷ ︸

((2m(i) 
pi 1

),(2n(i) 
11 ))-double-inflection saddle 

, 

((2m(i) 
pi1)

th US,(2n(i) 
11 + 1)th DP)

︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

11+1))-down-paraobla upper-saddle 

, ((2m(i) 
pi1+1)th UP,(2n(i) 

11)
th US)

︸ ︷︷ ︸
((2m(i) 

pi 1
+1),(2n(i) 

11 ))-up-parabola upper-saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

;



5.1 Higher-Order Singularity and Bifurcations 229

((m(i) 
1 )

th XX,(n(i) 
qi1)

th XX)
︸ ︷︷ ︸

(m(i) 
1 ,n

(i) 
qi )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
11+1)th UP−, (2n(i) 

qi1 + 1)th UP−)
︸ ︷︷ ︸

((2m(i) 
11+1),(2n(i) 

qi 1
+1))-negative saddle 

, ((2m(i) 
11)

th DI−, (2n(i) 
qi1)

th DI+)
︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
qi 1

))-double-inflection saddle 

, 

((2m(i) 
11)

th US,(2n(i) 
qi1 + 1)th DP)

︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
qi 1

+1))-down-paraobla upper-saddle 

, ((2m(i) 
11+1)th UP,(2n(i) 

qi1)
th LS)

︸ ︷︷ ︸
((2m(i) 

11+1),(2n(i) 
qi 1

))-up-paraobla lower-saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
1 )

th XX,(n(i) 
1 )

th XX)
︸ ︷︷ ︸

(m(i) 
1 ,n

(i) 
1 )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

((2m(i) 
11+1)th DP−, (2n(i) 

11 + 1)th DP−)
︸ ︷︷ ︸

((2m(i) 
11+1),(2n(i) 

11+1))-negtive saddle 

, ((2m(i) 
11)

th II−, (2n(i) 
11)

th II+)
︸ ︷︷ ︸

((2m(i) 
11 ),(2n

(i) 
11 ))-double-inflection saddle 

, 

((2m(i) 
11)

th US,(2n(i) 
11 + 1)th DP)

︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
11+1))-down-parabola upper-saddle 

, ((2m(i) 
11+1)th DP,(2n(i) 

11)
th US)

︸ ︷︷ ︸
((2m(i) 

11+1),(2n(i) 
11 ))-down-parabola upper-saddle 

⎫ 
⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎭ 

. 

(5.87) 

(v3c) The  ((2m1)
thUS, (2n1 + 1)thDP)-down-parabola upper-saddle switching 

bifurcation is for the switching of two q × p equilibrium networks as 

p⋃

r1=1 

q⋃

s1=1 

(aj1j2r1 , aj2j1s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� ((2m1)
th US,(2n1+1)th DP)︸ ︷︷ ︸

((2m1),(2n1 + 1))-down-parabola upper-saddle

�
p⋃

r2=1 

q⋃

s2=1 

(aj1j2r2 , aj2j1s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX 

, (5.88) 

where
∑p 

ri=1 mri = 2mi,
∑q 

si=1 nsi = 2ni + 1 for  i = 1, 2. 

(v4) For  aj1j10 < 0 and aj2j20 < 0, there is a ((2m1)
th LS, (2n1+1)th UP)-up-parabola 

lower-saddle equilibrium as 

(aj1j21, aj2j11) = ((2m1)
th LS, (2n1+1)th UP)︸ ︷︷ ︸

((2m1),(2n1 + 1))-up-parabola lower-saddle 

. (5.89) 

There are the following three ((2m1)
th LS, (2n1+1)th UP)-up-parabola lower-saddle 

appearing and switching bifurcations. 

(v4a) The  ((2m1)
thLS, (2n1 + 1)thUP)-up-parabola lower-saddle appearing bifurca-

tion is from an (nF, DP)-negative down-parabola flow to a (2m1)×(2n1 + 1) network
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as 

(ẋj1 , aj2j11)︸ ︷︷ ︸
(nF,UP)-up-parabola flow (−)

� ((2m1)
th LS,(2n1+1)th UP)︸ ︷︷ ︸

((2m1),(2n1 + 1))-up-parabola lower-saddle

�
2m1⋃

r=1 

2n1+1⋃

s=1 

(aj1j2r, aj2j1s)︸ ︷︷ ︸
XX 

(5.90) 

where 

2m1⋃

s=1 

2n1+1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(UP−,UP−)
︸ ︷︷ ︸

saddle (−) 

(DP+,DP−)
︸ ︷︷ ︸
center (CCW) 

· · ·  (UP−,UP−)
︸ ︷︷ ︸

saddle (−) 
(DP−,DP+)
︸ ︷︷ ︸
center (CW) 

(UP+,UP+)
︸ ︷︷ ︸

saddle (+) 

· · ·  (DP−,DP+)
︸ ︷︷ ︸
center (CW) 

... 
... 

... 
... 

(DP−,DP+)
︸ ︷︷ ︸
center (CW) 

(UP+,UP+)
︸ ︷︷ ︸

saddle (+) 

· · ·  (DP−,DP+)
︸ ︷︷ ︸
center (CW) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2m1)×(2n1+1) 

. 

(5.91) 

(v4b) The  ((2m1)
thLS, (2n1 + 1)thUP)-up-paraobla lower-saddle appearing bifurca-

tion is from a p1 × q1 to p2 × q2 equilibrium network as 

p1⋃

r1=1 

q1⋃

s1=1 

(aj1j2r1 , aj2j1s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� ((2m1)
th LS,(2n1+1)th UP)︸ ︷︷ ︸

((2m1),(2n1 + 1))-up-parabola lower-saddle

�
p2⋃

r2=1 

q2⋃

s2=1 

(aj1j2r2 , aj2j1s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX 

(5.92) 

where 

2m1 − �
p1 
r1=1m

(1) 
r1 = 2�l1 

s=1ms 

with l1-quadratic polynomials without real roots 

and sth-quadratic polynomial with power ms, 

2n1 + 1 − �
q1 
s1=1n

(1) 
s1 = 2�l2 

l=1nl 

with l2-quadraitc polynomials without real roots 

and lth-quadratic polynomial with power nl;
�

p2 
r2=1m

(2) 
r2 = 2m1, �

q2 
s2=1n

(2) 
s2 = 2n1 + 1; for i = 1, 2,
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((m(i) 
pi )

th XX,(n(i) 
qi )

th XX)
︸ ︷︷ ︸

(m(i) 
pi ,n

(i) 
qi )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
pi1+1)th UP−, (2n(i) 

11 + 1)th UP−)
︸ ︷︷ ︸

((2m(i) 
pi 1

+1),(2n(i) 
11+1))-negative saddle 

, ((2m(i) 
pi1)

th II−, (2n(i) 
qi1)

th II−)
︸ ︷︷ ︸

((2m(i) 
pi 1

),(2n(i) 
qi 1

))-double-inflection saddle 

, 

((2m(i) 
pi1)

th LS,(2n(i) 
qi1 + 1)th UP)

︸ ︷︷ ︸
((2m(i) 

pi 1
+1),(2n(i) 

qi 1
+1))-up-parabola lower-saddle 

, ((2m(i) 
pi1+1)th UP,(2n(i) 

qi1)
th LS)

︸ ︷︷ ︸
((2m(i) 

pi 1
+1),(2n(i) 

qi 1
))-up-parabola lower-saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
pi )

th XX,(n(i) 
1 )

th XX)
︸ ︷︷ ︸

(m(i) 
pi ,n

(i) 
1 )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
pi1+1)th UP−, (2n(i) 

11 + 1)th UP−)
︸ ︷︷ ︸

((2m(i) 
pi 1

+1),(2n(i) 
11+1))-negative saddle 

, ((2m(i) 
pi1)

th DI+, (2n(i) 
11)

th DI−)
︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

11 ))-double-inflection saddle 

, 

((2m(i) 
pi1)

th LS,(2n(i) 
11 + 1)th UP)

︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

11+1))-up-parabola lower-saddle 

, ((2m(i) 
pi1+1)th DP,(2n(i) 

11)
th US)

︸ ︷︷ ︸
((2m(i) 

pi 1
+1),(2n(i) 

11 ))-down-parabola upper-saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
1 )

th XX,(n(i) 
qi )

th XX)
︸ ︷︷ ︸

(m(i) 
1 ,n

(i) 
qi )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
11+1)th DP−, (2n(i) 

qi1 + 1)th DP+)
︸ ︷︷ ︸

((2m(i) 
11+1),(2n(i) 

qi 1
+1))-CW center 

, ((2m(i) 
11)

th II−, (2n(i) 
qi1)

th II−)
︸ ︷︷ ︸

((2m(i) 
11 ),(2n

(i) 
qi 1

))-double-inflection saddle 

, 

((2m(i) 
11)

th LS,(2n(i) 
qi1 + 1)th UP)

︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
qi 1

+1))-up-parabola lower-saddle 

, ((2m(i) 
11+1)th DP,(2n(i) 

qi1)
th LS)

︸ ︷︷ ︸
((2m(i) 

11+1),(2n(i) 
qi 1

))-down-paraobla lower-saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
1 )

th XX,(n(i) 
1 )

th XX)
︸ ︷︷ ︸

(m(i) 
1 ,n

(i) 
1 )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

((2m(i) 
11+1)th DP−, (2n(i) 

11 + 1)th DP+)
︸ ︷︷ ︸

((2m(i) 
11+1),(2n(i) 

11+1))-CW center 

, ((2m(i) 
11)

th DI+, (2n(i) 
11)

th DI−)
︸ ︷︷ ︸

((2m(i) 
11 ),(2n

(i) 
11 ))-double-infelction saddle 

, 

((2m(i) 
11)

th LS,(2n(i) 
11 + 1)th UP)

︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
11+1))-up-parabola lower-saddle 

, ((2m(i) 
11+1)th UP,(2n(i) 

11)
th US)

︸ ︷︷ ︸
((2m(i) 

11+1),(2n(i) 
11 ))-up-parabola upper-saddle 

⎫ 
⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎭ 

. 

(5.93) 

(v4c) The  ((2m1)
thLS, (2n1 + 1)thUP)-up-paraobla lower-saddle switching bifurca-

tion is for two p × q equilibrium networks as 

p⋃

r1=1 

q⋃

s1=1 

(aj1j2r1 , aj2j1s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� ((2m1)
th LS,(2n1+1)th DP)︸ ︷︷ ︸

((2m1),(2n1 + 1))-down-parabola lower-saddle



232 5 Bifurcations for Homoclinic Networks with Centers

�
p⋃

r2=1 

q⋃

s2=1 

(aj1j2r2 , aj2j1s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX 

(5.94) 

where
∑p 

ri=1 mri = 2mi,
∑q 

si=1 nsi = 2ni + 1 for  i = 1, 2. 

(vi) For m = 2m1 + 1 and n = 2n1, the equilibrium of (x∗
j2 
, x∗

j1 
) = (aj1j21, aj2j11) has 

the following properties. 

(vi1) For  aj1j10 > 0 and aj2j20 > 0, there is a ((2m1+1)th UP,(2n1)
th US)-up-parabola-

upper-saddle equilibrium as 

(aj1j21, aj2j11) = ((2m1+1)th UP,(2n1)
th US)︸ ︷︷ ︸

((2m1+1),(2n1))-up-paraobla upper-saddle 

. (5.95) 

There are three following ((2m1 + 1)thUP, (2n1)thUS)-up-parabola upper-saddle 
appearing and switching bifurcations. 

(vi1a) The  ((2m1 + 1)thUP, (2n1)thUS)-up-parabola upper-saddle appearing bifurca-
tion is from an (UP, pF)-positive up-parabola flow to a (2m1 + 1)×(2n1)-equilibrium 
network as 

(aj1j21, ̇xj2 )︸ ︷︷ ︸
(UP,pF)-up-parabola flow (+)

� ((2m1+1)th UP,(2n1)
th US)︸ ︷︷ ︸

((2m1+1),(2n1))-up-paranola upper-saddle

�
2m1+1⋃

r=1 

2n1⋃

s=1 

(aj1j1r, aj2j2s)︸ ︷︷ ︸
XX 

(5.96) 

where 

2m1+1⋃

s=1 

2n1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(DP−,DP+)
︸ ︷︷ ︸
center (CW) 

(UP+,UP+)
︸ ︷︷ ︸

saddle (+) 

· · ·  (UP+,UP+)
︸ ︷︷ ︸

saddle (+) 

(UP−,UP−)
︸ ︷︷ ︸

saddle (−) 

(DP+,DP−)
︸ ︷︷ ︸
center (CCW) 

· · ·  (DP+,DP−)
︸ ︷︷ ︸
center (CCW) 

... 
... 

... 
... 

(DP−,DP+)
︸ ︷︷ ︸
center (CW) 

(UP+,UP+)
︸ ︷︷ ︸

saddle (+) 

· · ·  (UP+,UP+)
︸ ︷︷ ︸

saddle (+) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2m1+1)×(2n1) 

. 

(5.97) 

(vi1b) The  ((2m1 + 1)th UP, (2n1)th US)-up-parabola upper-saddle appearing bifur-
cation is from a p1 × q1 to p2 × q2 equilibrium network as
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p1⋃

r1=1 

q1⋃

s1=1 

(aj1j2r1 , aj2j1s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� ((2m1 + 1)th UP, (2n1)
th US)︸ ︷︷ ︸

((2m1+1), (2n1))-up-parabola upper-saddle

�
p2⋃

r2=1 

q2⋃

s2=1 

(aj1j2r2 , aj2j1s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX 

(5.98) 

where 

2m1 − �
p1 
r1=1m

(1) 
r1 = 2�l1 

s=1ms 

with l1-quadratic polynomials without real roots 

and sth-quadratic polynomial with power ms, 

2n1 + 1 − �
q1 
s1=1n

(1) 
s1 = 2�l2 

l=1nl 

with l2-quadratic polynomials without real roots 

and lth-quadratic polynomial with power n1;
�

p2 
r2=1m

(2) 
r2 = 2m1 + 1, �

q2 
s2=1n

(2) 
s2 = 2n1; for i = 1, 2, 

((m(i) 
pi )

th XX, (n(i) 
qi )

th XX)
︸ ︷︷ ︸

(m(i) 
pi ,n

(i) 
qi )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

((2m(i) 
pi1 + 1)th UP+, (2n(i) 

qi1 + 1)th UP+)
︸ ︷︷ ︸

((2m(i) 
pi 1

+1),(2n(i) 
qi 1

+1))-positive saddle 

, ((2m(i) 
pi1)

th II+, (2n(i) 
qi1)

th II+),
︸ ︷︷ ︸

((2m(i) 
pi 1

),(2n(i) 
qi 1

))-double-infection saddle 

((2m(i) 
pi1)

th US, (2n(i) 
qi1 + 1)th UP)

︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

qi 1
+1))-up-parabola upper-saddle 

, ((2m(i) 
pi1 + 1)th UP, (2n(i) 

qi1)
th US)

︸ ︷︷ ︸
((2m(i) 

pi 1
+1),(2n(i) 

qi 1
))-up-parabola upper-saddle 

⎫ 
⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
pi )

th XX, (n(i) 
1 )

th XX)
︸ ︷︷ ︸

(m(i) 
pi ,n

(i) 
1 )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

((2m(i) 
pi1 + 1)th DP−, (2n(i) 

11 + 1)th DP)
︸ ︷︷ ︸
((2m(i) 

pi 1
+1),(2n(i) 

11+1))-down-parabola upper-saddle 

, ((2m(i) 
pi1)

th UP, (2n(i) 
11)

th US),
︸ ︷︷ ︸

((2m(i) 
pi 1

),(2n(i) 
11 ))-up-parabola upper saddle 

((2m(i) 
pi1)

th US, (2n(i) 
11 + 1)th UP),

︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

11+1))-down-parabola upper-saddle 

((2m(i) 
pi1 + 1)th DP, (2n(i) 

11)
th US),

︸ ︷︷ ︸
((2m(i) 

pi 1
+1),(2n(i) 

11 ))-up-parabola upper-saddle 

⎫ 
⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎭ 

;
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((m(i) 
1 )

th XX, (n(i) 
qi )

th XX)
︸ ︷︷ ︸

(m(i) 
1 ,n

(i) 
qi )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

((2m(i) 
11 + 1)th UP+, (2n(i) 

11 + 1)th UP+)
︸ ︷︷ ︸

((2m(i) 
11+1),(2n(i) 

qi 1
+1))-positive saddle 

, ((2m(i) 
11)

th DI+, (2n(i) 
qi1)

th DI−)
︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
qi 1

))-double-infection saddle 

, 

((2m(i) 
11)

th LS, (2n(i) 
qi1 + 1)th DP)

︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
qi 1

+1))-down-parabola lower-saddle 

, ((2m(i) 
11 + 1)th UP−, (2n(i) 

qi1)
th US)

︸ ︷︷ ︸
((2m(i) 

11+1),(2n(i) 
qi 1

))-up-parabola upper-saddle 

⎫ 
⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
1 )

th XX, (n(i) 
1 )

th XX)
︸ ︷︷ ︸

(m(i) 
1 ,n

(i) 
1 )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩ 

((2m(i) 
11 + 1)th DP−, (2n(i) 

qi1 + 1)th DP+)
︸ ︷︷ ︸

((2m(i) 
11+1),(2n(i) 

11+1))-CCW center 

, ((2m(i) 
11)

th DI+, (2n(i) 
11)

th DI−)
︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
11 ))-double-infection saddle 

, 

((2m(i) 
11)

th LS, (2n(i) 
11 + 1)th UP)

︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
11+1))-up-parabola lower-saddle 

, ((2m(i) 
11 + 1)th UP, (2n(i) 

11)
th US)

︸ ︷︷ ︸
((2m(i) 

11+1),(2n(i) 
11 ))-up-parabola upper-saddle 

⎫ 
⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎭ 

; 

(5.99) 

(vi1c) The  ((2m1 + 1) th UP, (2n1)th US-up-parabola upper-saddle switching bifur-
cation is for the switching of two p × q equilibrium networks as 

p⋃

r1=1 

q⋃

s1=1 

(aj1j2r1 , aj2j1s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� ((2m1+1)th UP,(2n1)
th US)︸ ︷︷ ︸

((2m1+1),(2n1))-up-parabola upper-saddle

�
p⋃

r2=1 

q⋃

s2=1 

(aj1j2r2 , aj2j1s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX 

(5.100) 

where
∑p 

ri=1 mri = 2m1 + 1,
∑q 

si=1 nsi = 2n1 for i = 1, 2. 

(vi2) For  aj1j10 < 0 and aj2j20 > 0, there is a ((2m1+1)th DP, (2n1)
th US)-down-

parabola upper-saddle equilibrium as 

(aj1j21, aj2j11) = ((2m1+1)th DP,(2n1)
th US)︸ ︷︷ ︸

((2m1+1),(2n1))-down-parabola upper-saddle 

. (5.101) 

There are the following three ((2m1+1)th DP, (2n1)
th US)-down-parabola upper-

saddle appearing and switching bifurcations. 

(vi2a) The  ((2m1 + 1)th DP, (2n1)th US)-down-parabola upper-saddle appearing 
bifurcation is from a (DP, pF)-positive down-parabola flow to a (2m1 + 1) × (2n1) 
network as
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(aj1j21, ̇xj2 )︸ ︷︷ ︸
(DP,pF)-down-parabola flow (+)

� ((2m1+1)th DP,(2n1)
th US)︸ ︷︷ ︸

((2m1+1),(2n1))-down-parabola upper-saddle

�
2m1+1⋃

r=1 

2n1⋃

s=1 

(aj1j2r, aj2j1s)︸ ︷︷ ︸
XX 

(5.102) 

where 

2m1+1⋃

s=1 

2n1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(UP−,UP−)
︸ ︷︷ ︸

saddle (−) 

(DP+,DP−)
︸ ︷︷ ︸
center (CCW) 

· · ·  (DP+,DP−)
︸ ︷︷ ︸
center (CCW) 

(DP−,DP+)
︸ ︷︷ ︸
center (CW) 

(UP+,UP+)
︸ ︷︷ ︸

saddle (+) 

· · ·  (UP+,UP+)
︸ ︷︷ ︸

saddle (+) 
... 

... 
... 

... 
(UP−,UP−)
︸ ︷︷ ︸

saddle (−) 

(DP+,DP−)
︸ ︷︷ ︸
center (CCW) 

· · ·  (DP+,DP−)
︸ ︷︷ ︸
center (CCW) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2m1+1)×(2n1) 

. 

(5.103) 

(vi2b) The  ((2m1 + 1)thDP, (2n1)thUS)-down-parabola upper-saddle appearing 
bifurcation is from a p1 × q1 to p2 × q2 equilibrium network as 

p1⋃

r1=1 

q1⋃

s1=1 

(aj1j2r1 , aj2j1s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� ((2m1 + 1)th DP, (2n1)
th US)︸ ︷︷ ︸

((2m1+1),(2n1))-down-parabola upper-saddle

�
p2⋃

r2=1 

q2⋃

s2=1 

(aj1j2r2 , aj2j1s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX 

(5.104) 

where 

2m1 + 1 − �
p1 
r1=1m

(1) 
r1 = 2�l1 

s=1ms 

with l1-quadratic polynomials without real roots 

and sth-quadratic polynomial with power ms, 

2n1 − �
q1 
s1=1n

(1) 
s1 = 2�l2 

l=1nl 

with l2-quadraitc polynomials without real roots 

and lth-quadratic polynomial with power nl;
�

p2 
r2=1m

(2) 
r2 = 2m1 + 1, �

q2 
s2=1n

(2) 
s2 = 2n1; for i = 1, 2,
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((m(i) 
pi )

th XX,(n(i) 
qi )

th XX)
︸ ︷︷ ︸

(m(i) 
pi ,n

(i) 
qi )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
pi1+1)th DP+, (2n(i) 

qi1 + 1)th DP−)
︸ ︷︷ ︸

((2m(i) 
pi 1

+1),(2n(i) 
qi 1

+1))-CCW center 

, ((2m(i) 
pi1)

th DI+, (2n(i) 
qi1)

th DI−)
︸ ︷︷ ︸

((2m(i) 
pi 1

),(2n(i) 
qi 1

))-double-infelction saddle 

, 

((2m(i) 
pi1)

th LS,(2n(i) 
qi1 + 1)th DP)

︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

qi 1
+1))-down-parabola lower-saddle 

, ((2m(i) 
pi1+1)th DP,(2n(i) 

qi1)
th US)

︸ ︷︷ ︸
((2m(i) 

pi 1
+1),(2n(i) 

qi 1
))-down-parabola upper-saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
pi )

th XX,(n(i) 
1 )

th XX)
︸ ︷︷ ︸

(m(i) 
pi ,n

(i) 
1 )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
pi1+1)th UP−, (2n(i) 

11 + 1)th UP−)
︸ ︷︷ ︸

((2m(i) 
pi 1

+1),(2n(i) 
11+1))-negative saddle 

, ((2m(i) 
pi1)

th DI+, (2n(i) 
11)

th DI−)
︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

11 ))-double-inflection saddle 

, 

((2m(i) 
pi1)

th LS,(2n(i) 
11 + 1)th UP)

︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

11+1))-up-parabola lower-saddle 

, ((2m(i) 
pi1+1)th DP,(2n(i) 

11)
th US)

︸ ︷︷ ︸
((2m(i) 

pi 1
+1),(2n(i) 

11 ))-down-parabola upper-saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
1 )

th XX,(n(i) 
qi )

th XX)
︸ ︷︷ ︸

(m(i) 
1 ,n

(i) 
qi )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
11+1)th DP+, (2n(i) 

qi1 + 1)th DP−)
︸ ︷︷ ︸

((2m(i) 
11+1),(2n(i) 

qi 1
+1))-CCW center 

, ((2m(i) 
11)

th II+, (2n(i) 
qi1)

th II+)
︸ ︷︷ ︸

((2m(i) 
11 ),(2n

(i) 
qi 1

))-double-inflection saddle 

, 

((2m(i) 
11)

th US,(2n(i) 
qi1 + 1)th UP)

︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
qi 1

+1))-up-parabola upper-saddle 

, ((2m(i) 
11+1)th DP,(2n(i) 

qi1)
th US)

︸ ︷︷ ︸
((2m(i) 

11+1),(2n(i) 
qi 1

))-down-parabola upper-saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
1 )

th XX,(n(i) 
1 )

th XX)
︸ ︷︷ ︸

(m(i) 
1 ,n

(i) 
1 )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

((2m(i) 
11+1)th UP−, (2n(i) 

11 + 1)th UP−)
︸ ︷︷ ︸

((2m(i) 
11+1),(2n(i) 

11+1))-negative saddle 

, ((2m(i) 
11)

th II+, (2n(i) 
11)

th II+)
︸ ︷︷ ︸

((2m(i) 
11 ),(2n

(i) 
qi 1

))-double-inflection saddle 

, 

((2m(i) 
11)

th US,(2n(i) 
11 + 1)th DP)

︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
11+1))-down-parabola upper-saddle 

, ((2m(i) 
11+1)th DP,(2n(i) 

11)
th US)

︸ ︷︷ ︸
((2m(i) 

11+1),(2n(i) 
qi 1

))-down-parabola upper-saddle 

⎫ 
⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎭ 

. 

(5.105) 

(vi2c) The  ((2m1 + 1)thDP, (2n1)thUS)-down-parabola upper-saddle switching 
bifurcation ((2m1 + 1 )th DP, (2n1)th US

)
-down-parabola upper-saddle is for two
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p × q equilibrium networks as 

p⋃

r1=1 

q⋃

s1=1 

(aj1j2r1 , aj2j1s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� ((2m1+1)th DP,(2n1)
th US)︸ ︷︷ ︸

((2m1+1),(2n1))-down-parabola upper-saddle

�
p⋃

r2=1 

q⋃

s2=1 

(aj1j2r2 , aj2j1s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX 

(5.106) 

where
∑p 

ri=1 mri = 2mi + 1,
∑q 

si=1 nsi = 2ni for i = 1, 2. 

(vi3) For  aj1j10 > 0 and aj2j20 < 0, there is a ((2m1+1)th DP, (2n1)
th LS)-down-

parabola lower-saddle equilibrium as 

(aj1j21, aj2j11) = ((2m1+1)th DP,(2n1)
th LS)︸ ︷︷ ︸

((2m1+1),(2n1))-down-parabola lower-saddle 

. (5.107) 

There are the following three ((2m1+1)th DP, (2n1)
th LS)-down-parabola lower-

saddle appearing and switching bifurcations. 

(vi3a) The  ((2m1 + 1)thDP, (2n1)thLS)-down-parabola lower-saddle appearing 
bifurcation are from an (UP, nF)-negative up-parabola flow to a (2m1 + 1) × 
(2n1)-equilibrium network as 

(aj1j21, ̇xj2 )︸ ︷︷ ︸
(SO,nF)-negative source flow

� ((2m1+1)th DP,(2n1)
th LS)︸ ︷︷ ︸

((2m1+1),(2n1))-down-parabola lower-saddle

�
2m1+1⋃

r=1 

2n1⋃

s=1 

(aj1j2r, aj2j1s)︸ ︷︷ ︸
XX 

(5.108) 

where 

2m1+1⋃

s=1 

2n1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(UP+,UP+)
︸ ︷︷ ︸

saddle (+) 

(DP−,DP+)
︸ ︷︷ ︸
center (CW) 

· · ·  (DP−,DP+)
︸ ︷︷ ︸
center (CW) 

(DP+,DP−)
︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)
︸ ︷︷ ︸

saddle (−) 

· · ·  (UP−,UP−)
︸ ︷︷ ︸

saddle (−) 
... 

... 
... 

... 
(UP+,UP+)
︸ ︷︷ ︸

saddle (+) 

(DP−,DP+)
︸ ︷︷ ︸
center (CW) 

· · ·  (DP−,DP+)
︸ ︷︷ ︸
center (CW) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2m1+1)×(2n1) 

. 

(5.109)
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(vi3b) The  ((2m1 + 1)thDP, (2n1)thLS)-down-parabola lower-saddle appearing 
bifurcation is from a p1 × q1 to p2 × q2 equilibrium network as 

p1⋃

r1=1 

q1⋃

s1=1 

(aj1j1r1 , aj2j2s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� ((2m1+1)th DP,(2n1)
th LS)︸ ︷︷ ︸

((2m1+1),(2n1))-down-parabola lower-saddle

�
p2⋃

r2=1 

q2⋃

s2=1 

(aj1j1r2 , aj2j2s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX 

(5.110) 

where 

2m1 + 1 − �
p1 
r1=1m

(1) 
r1 = 2�l1 

s=1ms 

with l1-quadratic polynomials without real roots 

and sth-quadratic polynomial with power ms, 

2n1 − �
q1 
s1=1n

(1) 
s1 = 2�l2 

l=1nl 

with l2-quadraitc polynomials without real roots 

and lth-quadratic polynomial with power nl;
�

p2 
r2=1m

(2) 
r2 = 2m1 + 1, �

q2 
s2=1n

(2) 
s2 = 2n1; for i = 1, 2, 

((m(i) 
pi )

th XX,(n(i) 
qi )

th XX)
︸ ︷︷ ︸

(m(i) 
pi ,n

(i) 
qi )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
pi1+1)th DP−, (2n(i) 

qi1 + 1)th DP+)
︸ ︷︷ ︸

((2m(i) 
pi 1

+1),(2n(i) 
qi 1

+1))-CW center 

, ((2m(i) 
pi1)

th DI−, (2n(i) 
qi1)

th DI+)
︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

qi 1
))-double-inflection saddle 

, 

((2m(i) 
pi1)

th US,(2n(i) 
qi1 + 1)th DP)

︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

qi 1
+1))-down-parabola upper-saddle 

, ((2m(i) 
pi1+1)th DP,(2n(i) 

qi1)
th LS)

︸ ︷︷ ︸
((2m(i) 

pi 1
+1),(2n(i) 

qi 1
))-down-parabola lower-saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
pi )

th XX,(n(i) 
1 )

th XX)
︸ ︷︷ ︸

(m(i) 
pi ,n

(i) 
1 )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
pi1+1)th UP+, (2n(i) 

11 + 1)th UP+)
︸ ︷︷ ︸

((2m(i) 
pi 1

+1),(2n(i) 
11+1))-positive saddle 

, ((2m(i) 
pi1)

th DI−, (2n(i) 
11)

th DI+)
︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

11 ))-double-inflection saddle 

, 

((2m(i) 
pi1)

th US,(2n(i) 
11 + 1)th UP)

︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

11+1))-up-parabola upper-saddle 

, ((2m(i) 
pi1+1)th DP,(2n(i) 

11)
th LS)

︸ ︷︷ ︸
((2m(i) 

pi 1
+1),(2n(i) 

11 ))-down-parabola lower-saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

;
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((m(i) 
1 )

th XX,(n(i) 
qi )

th XX)
︸ ︷︷ ︸

(m(i) 
1 ,n

(i) 
qi )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
11+1)th DP−, (2n(i) 

qi1 + 1)th DP+)
︸ ︷︷ ︸

((2m(i) 
11+1),(2n(i) 

qi 1
+1))-CW center 

, ((2m(i) 
11)

th II−, (2n(i) 
qi1)

th II−)
︸ ︷︷ ︸

((2m(i) 
11 ),(2n

(i) 
qi 1

))-double-infelction center 

, 

((2m(i) 
11)

th LS,(2n(i) 
qi1 + 1)th UP)

︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
qi 1

+1))-up-parabola lower-saddle 

, ((2m(i) 
11+1)th DP,(2n(i) 

qi1)
th LS)

︸ ︷︷ ︸
((2m(i) 

11+1),(2n(i) 
qi 1

))-down-parabola lower-saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
1 )

th XX,(n(i) 
1 )

th XX)
︸ ︷︷ ︸

(m(i) 
1 ,n

(i) 
1 )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

((2m(i) 
11+1)th UP+, (2n(i) 

11 + 1)th UP+)
︸ ︷︷ ︸

((2m(i) 
11+1),(2n(i) 

11+1))-positive saddle 

, ((2m(i) 
11)

th II−, (2n(i) 
11)

th II−)
︸ ︷︷ ︸

((2m(i) 
11 ),(2n

(i) 
11 ))-double-inflection saddle 

, 

((2m(i) 
11)

th LS,(2n(i) 
11 + 1)th DP)

︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
11+1))-down-parabola lower-saddle 

, ((2m(i) 
11+1)th DP,(2n(i) 

11)
th LS)

︸ ︷︷ ︸
((2m(i) 

11+1),(2n(i) 
11 ))-down-parabola lower-saddle 

⎫ 
⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎭ 

. 

(5.111) 

(vi3c) The  ((2m1 + 1)thDP, (2n1)thLS)-down-parabola lower-saddle switching 
bifurcation is for the switching of two p × q equilibrium networks as 

p1⋃

r1=1 

q1⋃

s1=1 

(aj1j2r1 , aj2j1s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� ((2m1+1)th DP,(2n1)
th LS)︸ ︷︷ ︸

((2m1+1),(2n1)-down-parabola lower-saddle

�
p2⋃

r2=1 

q2⋃

s2=1 

(aj1j2r2 , aj2j1s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX 

, (5.112) 

where 
p∑

ri=1 
mri = 2mi + 1, 

q∑

si=1 
nsi = 2ni for i = 1, 2. 

(vi4) For  aj1j10 < 0 and aj2j20 < 0, there is a ((2m1+1)th UP,(2n1)
th LS)-up-parabola 

lower-saddle equilibrium as 

(aj1j21, aj2j11) = ((2m1+1)th UP, (2n1)
th LS)︸ ︷︷ ︸

((2m1+1),(2n1))-up-parabola lower-saddle 

(5.113) 

There are the following three ((2m1 + 1)thUP, (2n1)thLS)-up-parabola lower-saddle 
appearing and switching bifurcations.
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(vi4a) The  ((2m1 + 1 )th UP, (2n1)th LS
)
-up-parabola lower-saddle appearing bifur-

cation is from a (UP, nF)-negative up-parabola flow to a (2m1 + 1) × (2n1) network 
as 

(aj1j21, ̇xj2 )︸ ︷︷ ︸
(DP,nF)-negative down-parabola flow

� ((2m1+1)th UP, (2n1)
th LS)︸ ︷︷ ︸

((2m1+1),(2n1))-up-parabola lower-saddle

�
2m1+1⋃

r=1 

2n1⋃

s=1 

(aj1j2r, aj2j1s)︸ ︷︷ ︸
XX 

(5.114) 

where 

2m1+1⋃

s=1 

2n1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(DP+,DP−)
︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)
︸ ︷︷ ︸

saddle (−) 

· · ·  (UP−,UP−)
︸ ︷︷ ︸

saddle (−) 
(UP+,UP+)
︸ ︷︷ ︸

saddle (+) 

(DP−,DP+)
︸ ︷︷ ︸
center (CW) 

· · ·  (DP−,DP+)
︸ ︷︷ ︸
center (CW) 

... 
... 

... 
... 

(DP+,DP−)
︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)
︸ ︷︷ ︸

saddle (−) 

· · ·  (UP−,UP−)
︸ ︷︷ ︸

saddle (−) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2m1+1)×(2n1) 

. 

(5.115) 

(vi4b) The  ((2m1 + 1)thUP, (2n1)thLS)-up-parabola lower-saddle appearing bifurca-
tion is from p1 × q1 to p2 × q2 equilibrium networks as 

p1⋃

r1=1 

q1⋃

s1=1 

(aj1j2r1 , aj2j1s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� ((2m1+1)th UP, (2n1)
th LS)︸ ︷︷ ︸

((2m1+1),(2n1))-up-parabola lower-saddle

�
p2⋃

r2=1 

q2⋃

s2=1 

(aj1j2r2 , aj2j1s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX 

(5.116) 

where 

2m1 + 1 − �
p1 
r1=1m

(1) 
r1 = 2�l1 

s=1ms 

with l1-quadratic polynomials without real roots 

and sth-quadratic polynomial with power ms, 

2n1 − �
q1 
s1=1n

(1) 
s1 = 2�l2 

l=1nl 

with l2-quadraitc polynomials without real roots 

and lth-quadratic polynomial with power nl;
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�
p2 
r2=1m

(2) 
r2 = 2m1 + 1, �

q2 
s2=1n

(2) 
s2 = 2n1; for i = 1, 2, 

((m(i) 
pi )

th XX, (n(i) 
qi )

th XX)
︸ ︷︷ ︸

(m(i) 
pi ,n

(i) 
qi )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
pi1+1)th UP−, (2n(i) 

qi1 + 1)th UP−)
︸ ︷︷ ︸

((2m(i) 
pi 1

+1),(2n(i) 
qi 1

+1))-negartive saddle 

, ((2m(i) 
pi1)

th II−, (2n(i) 
qi1)

th II−)
︸ ︷︷ ︸

((2m(i) 
pi 1

),(2n(i) 
qi 1

))-double-inflection saddle 

, 

((2m(i) 
pi1)

th LS,(2n(i) 
qi1 + 1)th UP)

︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

qi 1
+1))-up-parabola lower-saddle 

, ((2m(i) 
pi1+1)th UP,(2n(i) 

qi1)
th LS)

︸ ︷︷ ︸
((2m(i) 

pi 1
+1),(2n(i) 

qi 1
))-up-parabola lower-saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
pi )

th XX,(n(i) 
1 )

th XX)
︸ ︷︷ ︸

(m(i) 
pi ,n

(i) 
1 )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
pi1+1)th DP+, (2n(i) 

11 + 1)th DP−)
︸ ︷︷ ︸

((2m(i) 
pi 1

+1),(2n(i) 
11+1))-CCW center 

, ((2m(i) 
pi1)

th II−, (2n(i) 
11)

th II−)
︸ ︷︷ ︸

((2m(i) 
pi 1

),(2n(i) 
11 ))-double-inflection saddle 

, 

((2m(i) 
pi1)

th LS,(2n(i) 
11 + 1)th DP)

︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

11+1))-down-parabola lower-saddle 

, ((2m(i) 
pi1+1)th UP,(2n(i) 

11)
th LS)

︸ ︷︷ ︸
((2m(i) 

pi 1
+1),(2n(i) 

11 ))-up-parabola lower-saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
1 )

th XX,(n(i) 
qi )

th XX)
︸ ︷︷ ︸

(m(i) 
1 ,n

(i) 
qi )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
11+1)th UP−, (2n(i) 

qi1 + 1)th UP−)
︸ ︷︷ ︸

((2m(i) 
11+1),(2n(i) 

qi 1
+1))-nagative saddle 

, ((2m(i) 
11)

th DI−, (2n(i) 
qi1)

th DI+)
︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
qi 1

))-double-inflection saddle 

, 

((2m(i) 
11)

th US,(2n(i) 
qi1 + 1)th DP)

︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
qi 1

+1))-down-parabola upper-saddle 

, ((2m(i) 
11+1)th UP,(2n(i) 

qi1)
th LS)

︸ ︷︷ ︸
((2m(i) 

11+1),(2n(i) 
qi 1

))-up-parabola lower-saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
1 )

th XX,(n(i) 
1 )

th XX)
︸ ︷︷ ︸

(m(i) 
1 ,n

(i) 
1 )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

((2m(i) 
11+1)th DP+, (2n(i) 

11 + 1)th DP−)
︸ ︷︷ ︸

((2m(i) 
11+1),(2n(i) 

11+1))-CCW center 

, ((2m(i) 
11)

th DI−, (2n(i) 
11)

th DI+)
︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
11 ))-double-inflection saddle 

, 

((2m(i) 
11)

th US,(2n(i) 
11 + 1)th UP)

︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
11+1))-up-parabola upper-saddle 

, ((2m(i) 
11+1)th UP,(2n(i) 

11)
th LS)

︸ ︷︷ ︸
((2m(i) 

11+1),(2n(i) 
11 ))-up-parabola lower-saddle 

⎫ 
⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎭ 

. 

(5.117)
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(vi4c) The  ((2m1 + 1)thUP, (2n1)thLS)-up-parabola lower-saddle switching bifurca-
tion is for two p × q equilibrium networks as 

p⋃

r1=1 

q⋃

s1=1 

(aj1j2r1 , aj2j1s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� ((2m1+1)th UP, (2n1)
th LS)︸ ︷︷ ︸

((2m1+1),(2n1))-up-parabola lower-saddle

�
p⋃

r2=1 

q⋃

s2=1 

(aj1j2r2 , aj2j1s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX 

(5.118) 

where
∑p 

ri=1 mri = 2m1 + 1,
∑q 

si=1 nsi = 2ni for i = 1, 2. 

(vii) For m = 2m1 and n = 2n1, the equilibrium of (x∗
j2 , x

∗
j1 ) = (aj1j21, aj2j11) has the 

following properties. 

(vii1) For  aj1j10 > 0 and aj2j20 > 0, there is a ((2m1)
thII+, (2n1)thII+)-double-

inflection saddle equilibrium as 

(aj1j21, aj2j11) = ((2m1)
th II+, (2n1)

th II+)
︸ ︷︷ ︸

((2m1),(2n1))-double-inflection saddle 

. (5.119) 

There are three following ((2m1)
thII+, (2n1)thII+)-double-inflection saddle appearing 

and switching bifurcations. 

(vii1a) The  ((2m1)
thII+, (2n1)thII+)-double-inflection saddle appearing bifurcation 

are from a (pF, pF)-positive flow to a ((2m1) × (2n1))-equilibrium network as 

(ẋj1 , ̇xj2 )︸ ︷︷ ︸
(pF,pF)-flow

� ((2m1)
th II+, (2n1)

th II+)
︸ ︷︷ ︸

((2m1),(2n1))-double-inflection saddle

�
2m1⋃

r=1 

2n1⋃

s=1 

(aj1j2r, aj2j1s)︸ ︷︷ ︸
XX 

(5.120) 

where 

2m1⋃

s=1 

2n1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(DP−,DP+)
︸ ︷︷ ︸
center (CW) 

(UP+,UP+)
︸ ︷︷ ︸

saddle (+) 

· · ·  (UP+,UP+)
︸ ︷︷ ︸

saddle (+) 

(UP−,UP−)
︸ ︷︷ ︸

saddle (−) 

(DP+,DP−)
︸ ︷︷ ︸
center (CCW) 

· · ·  (DP+,DP−)
︸ ︷︷ ︸
center (CCW) 

... 
... 

... 
... 

(UP−,UP−)
︸ ︷︷ ︸

saddle (−) 

(DP+,DP−)
︸ ︷︷ ︸
center (CCW) 

· · ·  (DP+,DP−)
︸ ︷︷ ︸
center (CCW) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2m1)×(2n1) 

. 

(5.121)



5.1 Higher-Order Singularity and Bifurcations 243

(vii1b) The  ((2m1)
thII+, (2n1)thII+)-double-inflection saddle appearing bifurcation 

is from a p1 × q1 to p2 × q2 equilibrium network as 

p1⋃

r1=1 

q1⋃

s1=1 

(aj1j2r1 , aj2j1s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� ((2m1)
th II+, (2n1)

th II+)
︸ ︷︷ ︸

((2m1),(2n1))-double-inflection saddle

�
p2⋃

r2=1 

q2⋃

s2=1 

(aj1j2r2 , aj2j1s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX 

(5.122) 

where 

2m1 − �
p1 
r1=1m

(1) 
r1 = 2�l1 

s=1ms 

with l1-quadratic polynomials without real roots 

and sth-quadratic polynomial with power ms, 

2n1 − �
q1 
s1=1n

(1) 
s1 = 2�l2 

l=1nl 

with l2-quadraitc polynomials without real roots 

and lth-quadratic polynomial with power nl;
�

p2 
r2=1m

(2) 
r2 = 2m1, �

q2 
s2=1n

(2) 
s2 = 2n1; for i = 1, 2, 

((m(i) 
pi )

th XX, (n(i) 
qi )

th XX)
︸ ︷︷ ︸

(m(i) 
pi ,n

(i) 
qi )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

((2m(i) 
pi1 + 1)th UP+, (2n(i) 

qi1 + 1)th UP+)
︸ ︷︷ ︸

((2m(i) 
pi 1

+1),(2n(i) 
qi 1

+1))-positive saddle 

, ((2m(i) 
pi1)

th II+, (2n(i) 
qi1)

th II+),
︸ ︷︷ ︸

((2m(i) 
pi 1

),(2n(i) 
qi 1

))-double-infection saddle 

((2m(i) 
pi1)

th US, (2n(i) 
qi1 + 1)th UP)

︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

qi 1
+1))-up-parabola upper-saddle 

, ((2m(i) 
pi1 + 1)th UP, (2n(i) 

qi1)
th US)

︸ ︷︷ ︸
((2m(i) 

pi 1
+1),(2n(i) 

qi 1
))-up-parabola upper-saddle 

⎫ 
⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
pi )

th XX, (n(i) 
1 )

th XX)
︸ ︷︷ ︸

(m(i) 
pi ,n

(i) 
1 )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

((2m(i) 
pi1 + 1)th DP−, (2n(i) 

11 + 1)th DP+)
︸ ︷︷ ︸

((2m(i) 
pi 1

+1),(2n(i) 
11+1))-CW center 

, ((2m(i) 
pi1)

th II+, (2n(i) 
11)

th II+),
︸ ︷︷ ︸

((2m(i) 
pi 1

),(2n(i) 
11 ))-double-infection saddle 

((2m(i) 
pi1)

th US, (2n(i) 
11 + 1)th DP),

︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

11+1))-down-parabola upper-saddle 

((2m(i) 
pi1 + 1)th UP, (2n(i) 

11)
th US),

︸ ︷︷ ︸
((2m(i) 

pi 1
+1),(2n(i) 

11 ))-up-parabola upper-saddle 

⎫ 
⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎭ 

;
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((m(i) 
1 )

th XX, (n(i) 
qi )

th XX)
︸ ︷︷ ︸

(m(i) 
1 ,n

(i) 
qi )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

((2m11
(i) + 1)th DP+, (2n(i) 

qi1 + 1)th DP−)
︸ ︷︷ ︸

((2m(i) 
pi 1

+1),(2n(i) 
qi 1

+1))-CCW center 

, ((2m(i) 
11)

th II+, (2n(i) 
qi1)

th II+)
︸ ︷︷ ︸

((2m(i) 
11 ),(2n

(i) 
qi 1

))-double-infection saddle 

, 

((2m(i) 
11)

th US, (2n(i) 
qi1 + 1)th UP)

︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
qi 1

+1))-up-parabola upper-saddle 

, ((2m(i) 
11 + 1)th UP, (2n(i) 

qi1)
th US)

︸ ︷︷ ︸
((2m(i) 

11+1),(2n(i) 
qi 1

))-down-parabola upper-saddle 

⎫ 
⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
1 )

th XX, (n(i) 
1 )

th XX)
︸ ︷︷ ︸

(m(i) 
1 ,n

(i) 
1 )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩ 

((2m11 
(i) + 1)th UP−, (2n(i) 

11 + 1)th UP−)
︸ ︷︷ ︸

((2m(i) 
11+1),(2n(i) 

11+1))-negative saddle 

, ((2m(i) 
11)

th DI+, (2n(i) 
11)

th DI−)
︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
11 ))-double-infection saddle 

, 

((2m(i) 
11)

th US, (2n(i) 
11 + 1)th DP)

︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
11+1))-down-parabola upper-saddle 

, ((2m(i) 
11 + 1)th DP, (2n(i) 

11)
th US)

︸ ︷︷ ︸
((2m(i) 

11+1),(2n(i) 
11 ))-down-parabola upper-saddle 

⎫ 
⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎭ 

; 

(5.123) 

(vii1c) The  ((2m1)
thII+, (2n1)thII+)-double-inflection saddle switching bifurcation 

is for the switching of two p × q equilibrium networks as 

p⋃

r1=1 

q⋃

s1=1 

(aj1j2r1 , aj2j1s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� ((2m1)
th II+, (2n1)

th II+)
︸ ︷︷ ︸

((2m1),(2n1))-double-inflection saddle

�
p⋃

r2=1 

q⋃

s2=1 

(aj1j2r2 , aj2j1s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX 

(5.124) 

where
∑p 

ri=1 mri = 2m1,
∑q 

si=1 nsi = 2n1 for i = 1, 2. 

(vii2) For  aj1j10 < 0 and aj2j20 > 0, there is a ((2m1)
thDI+, (2n1)thDI−) double-

inflection saddle equilibrium as 

(aj1j21, aj2j11) = ((2m1)
th DI+, (2n1)

th DI−)
︸ ︷︷ ︸

((2m1),(2n1))-double-inflection saddle 

. (5.125) 

There are the following three ((2m1)
th DI+, (2n1)

th DI−)-double-inflection saddle 
appearing and switching bifurcations. 

(vii2a) The  ((2m1)
thDI+, (2n1)thDI−)-double-inflection saddle appearing bifurcation 

is from an (nF, pF)-flow to a (2m1) × (2n1) network as
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(ẋj1 , ̇xj2 )︸ ︷︷ ︸
(nF,pF)-flow

� ((2m1)
th DI+, (2n1)

th DI−)
︸ ︷︷ ︸

((2m1),(2n1))-double-inflection saddle

�
2m1⋃

r=1 

2n1⋃

s=1 

(aj1j2r, aj2j1s)︸ ︷︷ ︸
XX 

(5.126) 

where 

2m1⋃

s=1 

2n1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(UP−,UP−)
︸ ︷︷ ︸

saddle (−) 

(DP+,DP−)
︸ ︷︷ ︸
center (CCW) 

· · ·  (DP+,DP−)
︸ ︷︷ ︸
center (CCW) 

(DP−,DP+)
︸ ︷︷ ︸
center (CW) 

(UP+,UP+)
︸ ︷︷ ︸

saddle (+) 

· · ·  (UP+,UP+)
︸ ︷︷ ︸

saddle (+) 
... 

... 
... 

... 
(DP−,DP+)
︸ ︷︷ ︸
center (CW) 

(UP+,UP+)
︸ ︷︷ ︸

saddle (+) 

· · ·  (UP+,UP+)
︸ ︷︷ ︸

saddle (+) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2m1)×(2n1) 

. 

(5.127) 

(vii2b) The  (2m1)
th DI+, (2n1)th DI−)-double-inflection saddle appearing bifurcation 

is from p1 × q1 to p2 × q2 equilibrium networks as 

p1⋃

r1=1 

q1⋃

s1=1 

(aj1j2r1 , aj2j1s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� ((2m1)
th DI+, (2n1)

th DI−)
︸ ︷︷ ︸

((2m1),(2n1))-double-inflection saddle

�
p2⋃

r2=1 

q2⋃

s2=1 

(aj1j2r2 , aj2j1s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX 

(5.128) 

where 

2m1 − �
p1 
r1=1m

(1) 
r1 = 2�l1 

s=1ms 

with l1-quadratic polynomials without real roots 

and sth-quadratic polynomial with power ms, 

2n1 − �
q1 
s1=1n

(1) 
s1 = 2�l2 

l=1nl 

with l2-quadraitc polynomials without real roots 

and lth-quadratic polynomial with power nl;
�

p2 
r2=1m

(2) 
r2 = 2m1, �

q2 
s2=1n

(2) 
s2 = 2n1; for i = 1, 2, 

((m(i) 
pi )

th XX,(n(i) 
qi )

th XX)
︸ ︷︷ ︸

(m(i) 
pi ,n

(i) 
qi )-XX
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∈ 

⎧ 
⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
pi1+1)th DP+, (2n(i) 

qi1 + 1)th DP−)
︸ ︷︷ ︸

((2m(i) 
pi 1

+1),(2n(i) 
qi 1

+1))-CCW center 

, ((2m(i) 
pi1 + 1)th DI+, (2n(i) 

qi1)
th DI−)

︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

qi 1
))-double-inflection saddle 

, 

((2m(i) 
pi1)

th LS,(2n(i) 
qi1 + 1)th DP)

︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

qi 1
+1))-down-parabola lower-saddle 

, ((2m(i) 
pi1+1)th UP,(2n(i) 

qi1)
th US)

︸ ︷︷ ︸
((2m(i) 

pi 1
+1),(2n(i) 

qi 1
))-down-parabola upper-saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
pi )

th XX,(n(i) 
1 )

th XX)
︸ ︷︷ ︸

(m(i) 
pi ,n

(i) 
1 )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
pi1+1)th UP−, (2n(i) 

11 + 1)th UP−)
︸ ︷︷ ︸

((2m(i) 
pi 1

+1),(2n(i) 
11+1))-negative saddle 

, ((2m(i) 
pi1)

th DI+, (2n(i) 
11)

th DI−)
︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

11 ))-double-inflection saddle 

, 

((2m(i) 
pi1)

th LS,(2n(i) 
11 + 1)th UP)

︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

11+1))-up-parabola lower-saddle 

, ((2m(i) 
pi1+1)th UP,(2n(i) 

11 + 1)th US)
︸ ︷︷ ︸

((2m(i) 
pi 1

+1),(2n(i) 
11 ))-down-parabola lower-saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
1 )

th XX,(n(i) 
qi )

th XX)
︸ ︷︷ ︸

(m(i) 
1 ,n

(i) 
qi )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
11+1)th UP+, (2n(i) 

qi1 + 1)th UP+)
︸ ︷︷ ︸

((2m(i) 
11+1),(2n(i) 

qi 1
+1))-positive saddle 

, ((2m(i) 
11)

th DI+, (2n(i) 
qi1)

th DI−)
︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
qi 1

))-double-infection-saddle 

, 

((2m(i) 
11)

th LS,(2n(i) 
qi1 + 1)th DP)

︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
qi 1

+1))-down-parabola lower-saddle 

, ((2m(i) 
11+1)th DP,(2n(i) 

qi1)
th US)

︸ ︷︷ ︸
((2m(i) 

11+1),(2n(i) 
qi 1

))-up-parabola lower-saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
1 )

th XX,(n(i) 
1 )

th XX)
︸ ︷︷ ︸

(m(i) 
1 ,n

(i) 
1 )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

((2m(i) 
11+1)th DP−, (2n(i) 

11)
th DP+)

︸ ︷︷ ︸
((2m(i) 

11+1),(2n(i) 
11+1))-CW center 

, ((2m(i) 
11)

th DI+, (2n(i) 
11)

th DI−)
︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
11 ))-double-inflection saddle 

, 

((2m(i) 
11)

th LS,(2n(i) 
11 + 1)th UP+)

︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
11+1))-up-parabola lower-saddle 

, ((2m(i) 
11+1)th DP,(2n(i) 

11)
th LS)

︸ ︷︷ ︸
((2m(i) 

11+1),(2n(i) 
11 ))-down-parabola lower-saddle 

⎫ 
⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎭ 

. 

(5.129) 

(vii2c) The  (2m1)
th DI+, (2n1)th DI−)-double-inflection saddle switching bifurcation 

is for two p × q equilibrium networks as 

p⋃

r1=1 

q⋃

s1=1 

(aj1j2r1 , aj2j1s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� ((2m1)
th DI+, (2n1)

th DI−)
︸ ︷︷ ︸

((2m1),(2n1))-double-inflection saddle
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�
p⋃

r2=1 

q⋃

s2=1 

(aj1j2r2 , aj2j1s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX 

(5.130) 

where
∑p 

ri=1 mri = 2mi + 1,
∑q 

si=1 nsi = 2ni for i = 1, 2. 

(vii3) For  aj1j10 > 0 and aj2j20 < 0, there is a ((2m1)
thDI−, (2n1)thDI+) double-

inflection saddle equilibrium as 

(aj1j11, aj2j21) = ((2m1)
th DI−, (2n1)

th DI+)
︸ ︷︷ ︸

((2m1),(2n1))-double-inflection saddle 

. (5.131) 

There are the following three ((2m1)
thDI−, (2n1)thDI+)-double-inflection saddle 

appearing and switching bifurcations. 

(vii3a) The  ((2m1)
thDI−, (2n1)thDI+)-double-inflection saddle appearing bifurca-

tion are from an (pF, nF)-flow to a (2m1) × (2n1)-equilibrium network as 

(ẋj1 , ̇xj2 )︸ ︷︷ ︸
(pF,nF)-flow

� ((2m1)
th DI−, (2n1)

th DI+)
︸ ︷︷ ︸

((2m1),(2n1))-double-inflection saddle

�
2m1⋃

r=1 

2n1⋃

s=1 

(aj1j2r, aj2j1s)︸ ︷︷ ︸
XX 

(5.132) 

where 

2m1⋃

s=1 

2n1⋃

l=1

(
aj1j2s, aj2j1l

)

︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
UP+,UP+

)

︸ ︷︷ ︸
saddle (+)

(
DP−,DP+

)

︸ ︷︷ ︸
center (CW) 

· · · (DP−,DP+
)

︸ ︷︷ ︸
center (CW)(

DP+,DP−
)

︸ ︷︷ ︸
center (CCW)

(
UP−,UP−

)

︸ ︷︷ ︸
saddle (−) 

· · · (UP−,UP−
)

︸ ︷︷ ︸
saddle (−) 

... 
... 

... 
...(

DP+,DP−
)

︸ ︷︷ ︸
center (CCW)

(
UP−,UP−

)

︸ ︷︷ ︸
saddle (−) 

· · · (UP−,UP−
)

︸ ︷︷ ︸
saddle (−) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2m1)×(2n1) 

. 

(5.133) 

(vii3b) The  ((2m1)
thDI−, (2n1)thDI+)-double-inflection saddle appearing bifurca-

tion is from a p1 × q1 to p2 × q2 equilibrium network as 

p1⋃

r1=1 

q1⋃

s1=1 

(aj1j2r1 , aj2j1s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� ((2m1)
th DI−, (2n1)

th DI+)
︸ ︷︷ ︸

((2m1),(2n1))-double-inflection saddle

�
p2⋃

r2=1 

q2⋃

s2=1 

(aj1j2r2 , aj2j1s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX 

(5.134)
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where 

2m1 − �
p1 
r1=1m

(1) 
r1 = 2�l1 

s=1ms 

with l1-quadratic polynomials without real roots 

and sth-quadratic polynomial with power ms, 

2n1 − �
q1 
s1=1n

(1) 
s1 = 2�l2 

l=1nl 

with l2-quadraitc polynomials without real roots 

and lth-quadratic polynomial with power nl;
�

p2 
r2=1m

(2) 
r2 = 2m1, �

q2 
s2=1n

(2) 
s2 = 2n1; for i = 1, 2, 

((m(i) 
pi )

th XX,(n(i) 
qi )

th XX)
︸ ︷︷ ︸

(m(i) 
pi ,n

(i) 
qi )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
pi1+1)th DP−, (2n(i) 

qi1 + 1)th DP+)
︸ ︷︷ ︸

((2m(i) 
pi 1

+1),(2n(i) 
qi 1

+1))-CW center 

, ((2m(i) 
pi1)

th DI−, (2n(i) 
qi1)

th DI−)
︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

qi 1
))-double-inflection saddle 

, 

((2m(i) 
pi1)

th US,(2n(i) 
qi1 + 1)th DP)

︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

qi 1
+1))-down-parabola upper-saddle 

, ((2m(i) 
pi1+1)th UP,(2n(i) 

qi1)
th US)

︸ ︷︷ ︸
((2m(i) 

pi 1
+1),(2n(i) 

qi 1
))-down-parabola lower-saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
pi )

th XX,(n(i) 
1 )

th XX)
︸ ︷︷ ︸

(m(i) 
pi ,n

(i) 
1 )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
pi1+1)th UP+, (2n(i) 

11 + 1)th UP+)
︸ ︷︷ ︸

((2m(i) 
pi 1

+1),(2n(i) 
11+1))-positive saddle 

, ((2m(i) 
pi1)

th DI−, (2n(i) 
11)

th DI+)
︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

11 ))-double-inflection saddle 

, 

((2m(i) 
pi1)

th US,(2n(i) 
11 + 1)th UP)

︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

11+1))-up-parabola upper-saddle 

, ((2m(i) 
pi1+1)th DP,(2n(i) 

11)
th LS)

︸ ︷︷ ︸
((2m(i) 

pi 1
+1),(2n(i) 

11 ))-down-parabola lower-saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
1 )

th XX,(n(i) 
qi )

th XX)
︸ ︷︷ ︸

(m(i) 
1 ,n

(i) 
qi )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
11+1)th UP−, (2n(i) 

qi1 + 1)th UP−)
︸ ︷︷ ︸

((2m(i) 
11+1),(2n(i) 

qi 1
+1))-negative saddle 

, ((2m(i) 
11)

th DI−, (2n(i) 
qi1)

th DI+)
︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
qi 1

))-double-infection-saddle 

, 

((2m(i) 
11)

th US,(2n(i) 
qi1 + 1)th DP)

︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
qi 1

+1))-down-parabola upper-saddle 

, ((2m(i) 
11+1)th UP,(2n(i) 

qi1)
th LS)

︸ ︷︷ ︸
((2m(i) 

11+1),(2n(i) 
qi 1

))-up-parabola lower-saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
1 )

th XX,(n(i) 
1 )

th XX)
︸ ︷︷ ︸

(m(i) 
1 ,n

(i) 
1 )-XX
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∈ 

⎧ 
⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

((2m(i) 
11+1)th DP+, (2n(i) 

11 + 1)th DP−)
︸ ︷︷ ︸

((2m(i) 
11+1),(2n(i) 

11+1))-CCW center 

, ((2m(i) 
11)

th DI−, (2n(i) 
11)

th DI+)
︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
11 ))-double-inflection saddle 

, 

((2m(i) 
11)

th US,(2n(i) 
11 + 1)th UP)

︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
11+1))-up-parabola upper-saddle 

, ((2m(i) 
11+1)th UP,(2n(i) 

11)
th LS)

︸ ︷︷ ︸
((2m(i) 

11+1),(2n(i) 
11 ))-up-parabola lower-saddle 

⎫ 
⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎭ 

. 

(5.135) 

(vii3c) The  ((2m1)
thDI−, (2n1)thDI+)-double-inflection saddle switching bifurca-

tion is for the switching of two p × q equilibrium networks as 

p1⋃

r1=1 

q1⋃

s1=1 

(aj1j2r1 , aj2j1s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� ((2m1)
th DI−, (2n1)

th DI+)
︸ ︷︷ ︸

((2m1),(2n1))-double-inflection saddle

�
p2⋃

r2=1 

q2⋃

s2=1 

(aj1j2r2 , aj2j1s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX 

(5.136) 

where
∑p 

ri=1 mri = 2m1,
∑q 

si=1 nsi = 2n1 for i = 1, 2. 

(vii4) For  aj1j10 < 0 and aj2j20 < 0, there is a ((2m1)
th II−, (2n1)

th II−)-double-
inflection saddle equilibrium as 

(aj1j11, aj2j21) = ((2m1)
th II−, (2n1)

th II−)
︸ ︷︷ ︸

((2m1), (2n1))-double-inflection saddle 

(5.137) 

There are the following three ((2m1)
thII−, (2n1)thII−)-double-inflection saddle 

appearing and switching bifurcations. 

(vii4a) The  ((2m1)
thII−, (2n1)thII−)-double-inflection saddle appearing bifurcation 

is from an (nF, nF)-flow to a (2m1) × (2n1) network as 

(ẋj1 , ̇xj2 )︸ ︷︷ ︸
(nF,nF)-flow

� ((2m1)
th II−, (2n1)

th II−)
︸ ︷︷ ︸

((2m1),(2n1))-double-inflection saddle

�
2m1⋃

r=1 

2n1⋃

s=1 

(aj1j2r, aj2j1s)︸ ︷︷ ︸
XX 

(5.138) 

where
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2m1⋃

s=1 

2n1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(DP+,DP−)
︸ ︷︷ ︸
center (CCW) 

(UP−,UP−)
︸ ︷︷ ︸

saddle (−) 

· · ·  (UP−,UP−)
︸ ︷︷ ︸

saddle (−) 
(UP+,UP+)
︸ ︷︷ ︸

saddle (+) 

(DP−,DP+)
︸ ︷︷ ︸
center (CW) 

· · ·  (DP−,DP+)
︸ ︷︷ ︸
center (CW) 

... 
... 

... 
... 

(UP+,UP+)
︸ ︷︷ ︸

saddle (+) 

(DP−,DP+)
︸ ︷︷ ︸
center (CW) 

· · ·  (DP−,DP+)
︸ ︷︷ ︸
center (CW) 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2m1)×(2n1) 

. 

(5.139) 

(vii4b) The  ((2m1)
thII−, (2n1)thII−)-double-inflection saddle appearing bifurcation 

is from a p1 × q1 to p2 × q2 equilibrium network as 

p1⋃

r1=1 

q1⋃

s1=1 

(aj1j2r1 , aj2j1s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� ((2m1)
th II−, (2n1)

th II−)
︸ ︷︷ ︸

((2m1),(2n1))-double-inflection saddle

�
p2⋃

r2=1 

q2⋃

s2=1 

(aj1j2r2 , aj2j1s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX 

(5.140) 

where 

2m1 − �
p1 
r1=1m

(1) 
r1 = 2�l1 

s=1ms 

with l1-quadratic polynomials without real roots 

and sth-quadratic polynomial with power ms, 

2n1 − �
q1 
s1=1n

(1) 
s1 = 2�l2 

l=1nl 

with l2-quadraitc polynomials without real roots 

and lth-quadratic polynomial with power nl;
�

p2 
r2=1m

(2) 
r2 = 2m1, �

q2 
s2=1n

(2) 
s2 = 2n1; for i = 1, 2, 

((m(i) 
pi )

th XX,(n(i) 
qi )

th XX)
︸ ︷︷ ︸

(m(i) 
pi ,n

(i) 
qi )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
pi1+1)th UP−, (2n(i) 

qi1 + 1)th UP−)
︸ ︷︷ ︸

((2m(i) 
pi 1

+1),(2n(i) 
qi 1

+1))-negative saddle 

, ((2m(i) 
pi1 + 1)th II−, (2n(i) 

qi1 + 1)th II−)
︸ ︷︷ ︸

((2m(i) 
pi 1

),(2n(i) 
qi 1

))-double-inflection saddle 

, 

((2m(i) 
pi1)

th LS,(2n(i) 
qi1 + 1)th UP)

︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

qi 1
+1))-up-parabola lower-saddle 

, ((2m(i) 
pi1+1)th UP,(2n(i) 

qi1)
th LS)

︸ ︷︷ ︸
((2m(i) 

pi 1
+1),(2n(i) 

qi 1
))-up-parabola lower-saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

;
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((m(i) 
pi )

th XX,(n(i) 
1 )

th XX)
︸ ︷︷ ︸

(m(i) 
pi ,n

(i) 
1 )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
pi1+1)th DP+, (2n(i) 

11 + 1)th DP−)
︸ ︷︷ ︸

((2m(i) 
pi 1

+1),(2n(i) 
11+1))-CCW center 

, ((2m(i) 
pi1 + 1)th II−, (2n(i) 

11)
th II−)

︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

11 ))-double-inflection saddle 

, 

((2m(i) 
pi1)

th LS,(2n(i) 
11 + 1)th DP)

︸ ︷︷ ︸
((2m(i) 

pi 1
),(2n(i) 

11+1))-down-parabola lower-saddle 

, ((2m(i) 
pi1+1)th UP,(2n(i) 

11 + 1)th LS)
︸ ︷︷ ︸
((2m(i) 

pi 1
+1),(2n(i) 

11 ))-up-parabola lower-saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
1 )

th XX,(n(i) 
qi )

th XX)
︸ ︷︷ ︸

(m(i) 
1 ,n

(i) 
qi )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎩ 

((2m(i) 
11+1)th DP−, (2n(i) 

qi1 + 1)th DP+)
︸ ︷︷ ︸

((2m(i) 
11+1),(2n(i) 

qi 1
+1))-CW center 

, ((2m(i) 
11)

th II−, (2n(i) 
qi1)

th II−)
︸ ︷︷ ︸

((2m(i) 
11 ),(2n

(i) 
qi 1

))-double-infection-saddle 

, 

((2m(i) 
11)

th LS,(2n(i) 
qi1 + 1)th UP)

︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
qi 1

+1))-up-parabola lower-saddle 

, ((2m(i) 
11+1)th DP,(2n(i) 

qi1)
th LS)

︸ ︷︷ ︸
((2m(i) 

11+1),(2n(i) 
qi 1

))-down-parabola lower-saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎭ 

; 

((m(i) 
1 )

th XX,(n(i) 
1 )

th XX)
︸ ︷︷ ︸

(m(i) 
1 ,n

(i) 
1 )-XX 

∈ 

⎧ 
⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

((2m(i) 
11+1)th UP+, (2n(i) 

11)
th UP+)

︸ ︷︷ ︸
((2m(i) 

11+1),(2n(i) 
11+1))-positive saddle 

, ((2m(i) 
11)

th II−, (2n(i) 
11)

th II−)
︸ ︷︷ ︸

((2m(i) 
11 ),(2n

(i) 
11 ))-double-saddle 

, 

((2m(i) 
11)

th LS,(2n(i) 
11 + 1)th UP+)

︸ ︷︷ ︸
((2m(i) 

11 ),(2n
(i) 
11+1))-down-parabola lower-saddle 

, ((2m(i) 
11+1)th DP,(2n(i) 

11)
th LS)

︸ ︷︷ ︸
((2m(i) 

11+1),(2n(i) 
11 ))-down-parabola lower-saddle 

⎫ 
⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎭ 

. 

(5.141) 

(vii4c) The  ((2m1)
thII−, (2n1)thII−)-double-inflection saddle switching bifurcation 

is for two p × q equilibrium networks as 

p⋃

r1=1 

q⋃

s1=1 

(aj1j2r1 , aj2j1s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� ((2m1)
th II−, (2n1)

th II−)
︸ ︷︷ ︸

((2m1),(2n1))-double-inflection saddle

�
p⋃

r2=1 

q⋃

s2=1 

(aj1j2r2 , aj2j1s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX 

(5.142) 

where
∑p 

ri=1 mri = 2m1,
∑q 

si=1 nsi = 2n1 for i = 1, 2.
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5.2 Proof of Theorem 5.1 

(i) Consider a crossing-univariate polynomial dynamical system as 

ẋj1 = aj1j20(xj2 − aj1j21)m , ẋj2 = aj2j10(xj1 − aj2j11)n , 
j1, j2 ∈ {1, 2}; j1 �= j2. 

In phase space, 

dxj2 
dxj1 

= 
aj2j10 
aj1j20 

(xj1 − aj2j11)n 

(xj2 − aj1j21)m 

gives 

(xj1 − aj2j11)n dxj1 = 
aj1j20 
aj2j10 

(xj2 − aj1j21)m dxj2 . 

With initial condition (xj10, xj20), the integration of the foregoing equation yields the 
first integral manifold as 

1 

n + 1
[
(xj1 − aj2j11)n+1 − (xj10 − aj2j11)n+1

]

= 
aj1j20 
aj1j20 

1 

m + 1
[
(xj2 − aj1j21)m+1 − (xj20 − aj1j21)m+1

]
, for m, n ≥ 1. 

At (x∗
j2 
, x∗

j1 
) = (aj1j21, aj2j11) for xj2 �= aj1j21, in phase space, 

dxj2 
dxj1

∣∣
∣x∗

j1
=aj2 j11 

= 
aj2j10 
aj1j20 

(xj1 − aj2j11)n(
xj2 − aj1j21

)m = 0, 

... 
dnxj2 
dxn j1

∣∣∣x∗
j1

=aj2 j11 
= 0. 

If 

dn+1xj2 
dxn+1 

j1

∣∣
∣x∗

j1
=aj2 j11 

= 
aj2j10 
aj1j20 

n!
(
xj2 − aj1j21

)m > 0, 

there is a (2n1 + 1)th-order up-parabola flow for n = 2n1 + 1 or a (2n1)th-order 
increasing-inflection flow for n = 2n1 in the xj2 -direction. If
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dn+1xj2 
dxn+1 

j1

∣
∣∣x∗

j1
=aj2 j11 

= 
aj2j10 
aj1j20 

n! 
(xj2 − aj1j21)m 

< 0, 

there is a (2n1 + 1)th-order down-parabola flow for n = 2n1 + 1 or a (2n1)th-order 
decreasing-inflection flow for n = 2n1 in the xj2 -direction. Let 

ẋj1 = aj1j20
(
xj2 − aj1j21

)m 
. 

If aj1j20
(
xj2 − aj1j21

)m 
> 0, the  (2n1 + 1)th-order parabola flow is positive for n = 

2n1 + 1 and the (2n1)th-order inflection flow is positive for n = 2n1 in the xj1 -
direction. If aj1j20

(
xj2 − aj1j21

)m 
< 0, the  (2n1 + 1)th-order parabola flow is negative 

for n = 2n1 + 1 and the (2n1)th-order inflection flow is negative for n = 2n1 in the 
xj1 -direction. 

Similarly, at (x∗
j2 
, x∗

j1 
) = (aj1j21, aj2j11) for xj1 �= aj2j11, in phase space, 

dxj1 
dxj2

∣
∣∣x∗

j2
=aj1 j21 

= 
aj1j20 
aj2j10

(
xj2 − aj1j21

)m
(
xj1 − aj2j11

)n = 0, 

... 
dmxj1 
dxm j2

∣
∣∣x∗

j2
=aj1 j21 

= 0. 

If 

dm+1xj1 
dxm+1 

j2

∣∣∣x∗
j2

=aj1 j21 
= 

aj1j20 
aj2j10 

m!
(
xj1 − aj2j11

)n > 0, 

there is a (2m1 + 1)th-order up-parabola flow for m = 2m1 + 1 or a (2m1)
th-order 

increasing-inflection flow for m = 2m1 in the xj1 -direction. If 

dm+1xj1 
dxm+1 

j2

∣∣∣x∗
j2

=aj1 j21 
= 

aj1j20 
aj2j10 

m!
(
xj1 − aj2j11

)n < 0, 

there is a (2m1 + 1)th-order down-parabola flow for m = 2m1 + 1 or a (2m1)
th-order 

decreasing-inflection flow for m = 2m1 in the xj1 -direction. 
Let 

ẋj2 = aj2j10
(
xj1 − aj2j11

)n 
. 

If aj2j10
(
xj1 − aj2j11

)n 
> 0, the  (2m1 + 1)th-order parabola flow is positive for m = 

2m1 + 1 and the (2m1)
th-order inflection flow is positive for m = 2m1 in the xj2 -

direction. If aj2j10
(
xj1 − aj2j11

)n 
< 0, the  (2m1 + 1)th-order parabola flow is negative
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for m = 2m1 + 1 and a (2n1)th-order inflection flow is negative for m = 2m1 in the 
xj2 -direction. 

Therefore, for xj1 = aj2j11 and xj2 = aj1j21, four cases can be summarized as 
follows: 

• Case I: The singular equilibriums of (x∗ 
j2 
, x∗ 

j1 
) = (aj1j21, aj2j11) for m = 2m1 + 

1 and n = 2n1 + 1 are given as in case (i1) through Eqs. (5.3)–(5.6). 
• Case II: The singular equilibriums of (x∗

j2 
, x∗

j1 
) = (aj1j21, aj2j11) for m = 

2m1 and n = 2n1 + 1 are given as in case (i2) through Eqs. (5.7)–(5.10). 
• Case III: The singular equilibriums of (x∗

j2 
, x∗

j1 
) = (aj1j21, aj2j11) for m = 2m1 + 

1 and n = 2n1 are given as in case (i3) through Eqs. (5.11)–(5.14). 
• Case IV: The singular equilibriums of (x∗

j2 
, x∗

j1 
) = (aj1j21, aj2j11) for m = 

2m1 and n = 2n1 are given as in case (i4) through Eqs. (5.15)–(5.18). 

(i1) For  m = 2m1 + 1 and n = 2n1 + 1, the equilibrium of (x∗ 
j2 
, x∗ 

j1 
) = (aj1j21, aj2j11) 

has the following properties. 

• For aj1j20 > 0 and aj2j10 > 0,
(
aj1j21, aj2j11

) = ((2m1 + 1)th UP+, (2n1 + 1)th UP+)
︸ ︷︷ ︸

((2m1+1 ), (2n1+1))-positive saddle 

. 

• For aj1j20 < 0 and aj2j10 > 0,
(
aj1j21, aj2j11

) = ((2m1 + 1)th DP+, (2n1 + 1)th DP−)
︸ ︷︷ ︸

((2m1+1 ), (2n1+1))-CCW center 

. 

• For aj1j20 > 0 and aj2j10 < 0,
(
aj1j11, aj2j21

) = ((2m1 + 1)th DP−, (2n1 + 1)th DP+)
︸ ︷︷ ︸

((2m1+1 ), (2n1+1))-CCW center 

. 

• For aj1j20 < 0 and aj2j10 < 0,
(
aj1j21, aj2j11

) = ((2m1 + 1)th UP_, (2n1 + 1)th UP_)︸ ︷︷ ︸
((2m1+1 ), (2n1+1))-negative saddle 

. 

(i2) For  m = 2m1 and n = 2n1 + 1, the equilibrium of (x∗
j2 
, x∗

j1 
) = (aj1j21, aj2j11) has 

the following properties. 

• For aj1j20 > 0 and aj2j10 > 0, 

(aj1j21, aj2j11) = ((2m1)
th US, (2n1 + 1)th UP)︸ ︷︷ ︸

((2m1),(2n1+1))-up-parabola upper-saddle 

.
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• For aj1j20 < 0 and aj2j10 > 0, 

(aj1j21, aj2j11) = ((2m1)
th LS,(2n1+1)th DP)︸ ︷︷ ︸

((2m1),(2n1 + 1))-down-parabola lower-saddle 

. 

• For aj1j20 > 0 and aj2j10 < 0, 

(aj1j21, aj2j11) = ((2m1)
th US,(2n1+1)th DP)︸ ︷︷ ︸

((2m1),(2n1 + 1))-down-parabola upper-saddle 

. 

• For aj1j20 < 0 and aj2j10 < 0, 

(aj1j21, aj2j11) = ((2m1)
th LS,(2n1+1)th UP)︸ ︷︷ ︸

((2m1),(2n1 + 1))-up-parabola lower-saddle 

. 

(i3) For  m = 2m1 + 1 and n = 2n1, the equilibrium of (x∗ 
j2 
, x∗ 

j1 
) = (aj1j21, aj2j11) has 

the following properties. 

• For aj1j20 > 0 and aj2j10 > 0, 

(aj1j21, aj2j11) = ((2m1+1)th UP,(2n1)
th US)︸ ︷︷ ︸

((2m1+1),(2n1))-up-parabola upper-saddle 

. 

• For aj1j20 < 0 and aj2j10 > 0, 

(aj1j21, aj2j11) = ((2m1+1)th DP,(2n1)
th US)︸ ︷︷ ︸

((2m1+1),(2n1))-down-parabola upper-saddle 

. 

• For aj1j20 > 0 and aj2j10 < 0, 

(aj1j21, aj2j11) = ((2m1+1)th DP,(2n1)
th LS)︸ ︷︷ ︸

((2m1+1),(2n1))-down-parabola lower-saddle 

. 

• For aj1j20 < 0 and aj2j10 < 0, 

(aj1j21, aj2j11) = ((2m1+1)th UP,(2n1)
th LS)︸ ︷︷ ︸

((2m1+1),(2n1))-up-parabola lower-saddle 

. 

(i4) For  m = 2m1 and n = 2n1, the equilibrium of (x∗
j2 
, x∗

j1 
) = (aj1j21, aj2j11) has the 

following properties. 

• For aj1j20 > 0 and aj2j10 > 0,
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(aj1j21, aj2j11) = ((2m1)
th II+, (2n1)

th II+)
︸ ︷︷ ︸

((2m1),(2n1))-double-inflection saddle 

. 

• For aj1j20 < 0 and aj2j10 > 0, 

(aj1j21, aj2j11) = ((2m1)
th DI+, (2n1)

th DI−)
︸ ︷︷ ︸

((2m1),(2n1))-double-inflection saddle 

. 

• For aj1j20 > 0 and aj2j10 < 0,
(
aj1j21, aj2j11

) = (
(2m1)

th DI+, (2n1)th DI−
)

︸ ︷︷ ︸
((2m1),(2m1))-double-inflection saddle 

. 

• For aj1j20 < 0 and aj2j10 < 0, 

(aj1j21, aj2j11) = ((2m1)
th II−, (2n1)

th II−)
︸ ︷︷ ︸

((2m1),(2n1))-double-inflection saddle 

. 

(ii) Consider a crossing-univariate polynomial dynamical system for �
p 
r=1mr = 

m and �
q 
s=1ns = n as 

ẋj1 = aj1j20 
p∏

r=1 

(xj2 − aj1j2r)mr , 

ẋj2 = aj2j10 
q∏

s=1 

(xj1 − aj2j1s)ns , 

p∑

r=1 

mr = m and 
q∑

s=1 

ns = n; j1, j2 ∈ {1, 2}; j1 �= j2. 

In phase space, with
∑p 

r=1 mr = m and
∑q 

s=1 ns = n, 

dxj2 
dxj1 

= 
aj2j10 
aj1j20

∏q 
s=1 (xj1 − aj2j1s)ns∏p 
r=1 (xj2 − aj1j2r)mr 

. 

The deformation of the above equation gives 

aj1j20(xj2 − aj1j2r1 )mr1 

rp∏

r2=1,r2 �=r1 

(xj2 − aj1j2r1 + aj1j2r1 − aj1j2r2 )mr2 dxj2 

= aj2j10(xj1 − aj2j1s1 )ns1 
sq∏

s2=1,s2 �=s1 

(xj1 − aj2j1s1 + aj2j1s1 − aj2j1s2 )ns2 dxj1 .
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r1, r2 · · ·  , rp ∈ {1, 2, · · ·  , p} and s1, s2 · · ·  , sq ∈ {1, 2, · · ·  , q}. 

Using expansion, the foregoing equation becomes 

aj1j20(xj2 − aj1j2r1 )mr1 

× 
p∏

r2=1,r2 �=r1

[lr2+tr2=ms2∑

lr2 ,tr2=0 

mr2 ! 
lr2 !tr2 ! 

(xj2 − aj1j2r1 )tr2 (aj1j2r1 − aj1j2r2 )lr2
]
dxj2 

= aj2j10(xj1 − aj2j1s1 )nl1 

× 
q∏

s2=1,s2 �=s1

[ls2+ts2=ns2∑

ls2 ,ts2=0 

ns2 ! 
ls2 !ts2 !

(xj1 − aj2j1s1 )ts2 (aj2j1s1 − aj2j1s2 )rl2
]
dxj1; 

and exchanging summations and continuous multiplications yields 

aj1j20(xj2 − aj1j2r1 )mr1 

lr2+tr2=mr2∑

lr2 ,tr2=0 

· · ·  
lrp+trp=mrp∑

lrp ,trp=0

[ rp∏

k=r2 

mk ! 
lk !tk ! (aj1j2r1 − aj1j2r2 )lk

]

× (xj2 − aj1j2r1 )tr2+···+trp dxj2 

= aj2j10(xj1 − aj2j1s1 )ns1 
ls2+ts2=ns2∑

ls2 ,ts2=0 

· · ·  
lsq+tsq=nsq∑

lsq ,tsq=0

[ sq∏

k=s2 

nk ! 
lk !tk ! (aj1j2s1 − aj1j2s2 )lk

]

× (xj2 − aj2j1s1 )ts2+···+tsp dxj1; 

which is equivalent to 

aj1j20{(xj2 − aj1j2r1 )m 

+ 
m−ms1∑

α=1

[lr2+tr2=mr2∑

lr2 ,tr2=0 

· · ·  
lrp+trp=mrp∑

lrp ,trp=0 

rp∏

k=s2 

mk ! 
lk !tk ! (aj1j2r1 − aj1j2r2 )lk δm−α 

tr2+···+trp

]

× (xj2 − aj1j2r1 )m−α}dxj2 
= aj2j10

{
(xj1 − aj2j1s1 )n 

+ 
n−nl1∑

β=1

[ls2+ts2=ns2∑

ls2 ,ts2=0 

· · ·  
lsq+tsq=nsq∑

lsq ,tsq=0 

sq∏

k=s2 

nk ! 
lk !tk ! (aj2j1s1 − aj2j1s2 )lk δ

n−β 
ts2+···+tsq

]

× (xj1 − aj2j1s2 )n−β

}
dxj1 . 

Let
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bj2j1β = 
lsq+tsq=nsq∑

lsq ,tsq=0 

· · ·  
ls2+ts2=n2∑

ls2 ,ts2=0

[ sq∏

k=s2 

nk ! 
lk !tk ! (aj2j1s1 − aj2j1k )lk

]
δ
n−β 
ts2+···+tsq 

, 

bj1j2α = 
lrp+trp=mrp∑

lrp ,trp=0 

· · ·  
lr2+tr2=mr2∑

lr2 ,tr2=0

[ rp∏

k=r2 

mk ! 
lk !tk ! (aj1j2r1 − aj1j2k )lk

]
δm−α 
tr2+···+trp

; 

α = 0, 1, · · ·  , m − mr1; β = 0, 1, · · ·  , n − ns1; 
bj2j10 = 1, bj1j20 = 1. 

Thus, 

aj2j10
{
(xj1 − aj2j1s1 )n + 

n−nl1∑

β=1 

bj2j1β (xj1 − aj2j1s1 )n−β
}
dxj1 

= aj1j20
{
(xj2 − aj1j2r1 )m + 

m−ms1∑

α=1 

bj1j2α(xj1 − aj1j2r1 )m−α
}
dxj2 . 

With initial condition (xj10, xj20), the integration of the foregoing equation yields the 
first integral manifold as 

aj2j10

{
1 

n + 1
[
(xj1 − aj2j1s1 )n+1 − (xj10 − aj2j1s1 )n+1

]

+ 
n−ns1∑

β=1 

1 

n − β + 1 
bj2j1β

[
(xj1 − aj2j1s1 )n−β+1 − (xj10 − aj2j1s1 )n−β+1

]}

= aj1j20
{

1 

m + 1
[
(xj2 − aj1j2r1 )m+1 − (xj20 − aj1j2r1 )m+1

]

+ 
m−mr1∑

α=1 

1 

m − α + 1 
bj1j2α

[
(xj1 − aj1j2r1 )m−α+1 − (xj10 − aj1j2r1 )m−α+1

]}
. 

The singular equilibrium network with
∑p 

ri=1 mri = m and
∑q 

si=1 nsi = n is defined 
as 

p⋃

r=1 

q⋃

s=1 

(aj1j2r, aj2j1s)︸ ︷︷ ︸
(mr ,ns)-XX 

≡ 

⎧ 
⎪⎨ 

⎪⎩ 

(aj1j2p, aj2j11) · · ·  (aj1j2p, aj2j1q) 
... 

... 
... 

(aj1j21, aj2j11) · · ·  (aj1j21, aj2j1q) 

⎫ 
⎪⎬ 

⎪⎭ 
p×q
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= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎩ 

((mp)
th XX,(nq)

th XX)
︸ ︷︷ ︸

(m1,nq)-XX 

· · ·  ((mp)
th XX,(nq)

th XX)
︸ ︷︷ ︸

(m(i) 
pi ,n

(i) 
qi )-XX 

... 
... 

... 
((m1)

th XX,(n1)
th XX)︸ ︷︷ ︸

(m1,n1)-XX 

· · ·  ((m1)
th XX,(nq)

th XX)
︸ ︷︷ ︸

(mp,n1)-XX 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎭ 

. 

At (x∗
j2 , x

∗
j1 ) = (aj1j2r1 , aj2j1s1 ) for xj2 �= aj1j2r1 , in phase space, 

dxj2 
dxj1

∣∣∣x∗
j1

=aj2 j1s1 
= 

aj2j10 
aj1j20 

(xj1 − aj2j1s1 )ns1
∏q 

s2=1,s2 �=s1 
(xj1 − aj2j1s2 )ns2 

(xj2 − aj1j2s1 )mr1
∏p 

r2=1,r2 �=r1 
(xj2 − aj1j2r2 )msr

∣∣∣x∗
j1

=aj2 j1s1 
= 0, 

... 
dns1 xj2 
dx 

ns1 
j1

∣∣∣x∗
j1

=aj2 j1s1 
= 0. 

If 

dns1+1xj2 

dx 
ns1+1 
j1

∣∣
∣x∗

j1
=aj2 j1s1 

= 
aj2j10 
aj1j20 

(ns1 )!
∏q 

s2=1,s2 �=s1 
(aj2j1s1 − aj2j1s2 )ns2 

(xj2 − aj1j2r1 )mr1
∏p 

r2=1,r2 �=r1 
(xj2 − aj1j2r2 )mr2 

> 0, 

there is a (2ns11 +1)th-order up-parabola flow for ns1 = 2ns11 +1 or a (2ns11)
th-order 

increasing-inflection flow for ns1 = 2ns11 in the xj2 -direction. If 

dns1+1xj2 

dx 
ns1+1 
j1

∣∣∣x∗
j1

=aj2 j1s1 
= 

aj2j10 
aj1j20 

(ns1 )!
∏q 

s2=1,s2 �=s1 
(aj2j1s1 − aj2j1s2 )ns2 

(xj2 − aj1j2r1 )mr1
∏p 

r2=1,r2 �=r1 
(xj2 − aj1j2r2 )mr2 

< 0, 

there is a (2ns11+1)th-order down-parabola flow for ns1 = 2ns11+1 or a (2ns11)
th-order 

decreasing-inflection flow for ns1 = 2ns11 in the xj2 -direction. 
Let 

ẋj1 = aj1j20(xj2 − aj1j2r1 )mr1 

p∏

r2=1,r2 �=r1 

(xj2 − aj1j2r2 )mr2 = aj1j20 
p∏

r1=1 

(xj2 − aj1j2r1 )mr1 

If aj1j20
∏p 

r1=1 (xj2 − aj1j2r1 )mr1 > 0, the  (2ns11 + 1)th-order parabola flow is positive 
for ns1 = 2ns11+1 and the (2ns11)

th-order inflection flow is positive for ns1 = 2ns11 in 
the xj1 -direction. If aj1j20

∏p 
r1=1 (xj2 − aj1j2r1 )mr1 < 0, the  (2ns11 + 1)th-order parabola 

flow is negative for ns1 = 2ns11 + 1 and the (2ns11)th-order inflection flow is negative 
for ns1 = 2ns11 in the xj1 -direction. 

Similarly, at (x∗
j2 
, x∗

j1 
) = (aj1j2r1 , aj2j1s1 ) for xj1 �= aj2j1s1 , in phase space,
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dxj1 
dxj2

∣∣∣x∗
j2

=aj1 j2r1 
= 

aj1j20 
aj2j10 

(xj2 − aj1j2r1 )mr1
∏p 

r2=1,r2 �=r1 
(xj2 − aj1j2r2 )mr2 

(xj1 − aj2j1s1 )ns1
∏q 

s2=1,s2 �=s1 
(xj1 − aj2j1s2 )ns2

∣∣∣x∗
j2

=aj1 j2r1 
= 0, 

... 
dmr1 xj1 
dx 

mr1 
j2

∣∣∣x∗
j2

=aj1 j2r1 
= 0. 

If 

dmr1+1xj1 

dx 
mr1+1 
j2

∣∣∣x∗
j2

=aj1 j2r1 
= 

aj1j20 
aj2j10 

(mr1 )!
∏p 

r2=1,r2 �=r1 
(aj1j2r1 − aj1j2r2 )mr2 

(xj1 − aj2j1s1 )ns1
∏q 

s2=1,s2 �=s1 
(xj1 − aj2j1s2 )ns2 

> 0, 

there is a (2mr11 + 1)th-order up-parabola flow for mr1 = 2mr11 + 1 or a (2mr11)
th-

order increasing-inflection flow for mr1 = 2mr11 in the xj1 -direction. If 

dmr1+1xj1 

dx 
mr1+1 
j2

∣∣∣x∗
j2

=aj1 j2r1 
= 

aj1j20 
aj2j10 

(mr1 )!
∏p 

r2=1,r2 �=r1 
(aj1j2r1 − aj1j2r2 )mr2 

(xj1 − aj2j1s1 )ns1
∏q 

s2=1,s2 �=s1 
(xj1 − aj2j1s2 )ns2 

< 0, 

there is a (2mr11 + 1)th-order down-parabola flow for mr1 = 2mr11 + 1 or a (2mr11)
th-

order decreasing-inflection flow for mr1 = 2mr11 in the xj1 -direction. Let 

ẋj2 = aj2j10(xj1 − aj2j1s1 )ns1 
q∏

s2=1,s2 �=s1 

(xj1 − aj2j1s2 )ns2 = aj2j10 
q∏

s1=1 

(xj1 − aj2j1s1 )ns1 . 

If aj2j10
∏q 

s1=1 (xj1 − aj2j1s1 )ns1 > 0, the  (2mr11 + 1)th-order parabola flow is positive 
for mr1 = 2mr11+1 and a (2mr11)

th-order inflection flow is positive for mr1 = 2mr11 in 
the xj2 -direction. If aj2j10

∏q 
s1=1 (xj1 − aj2j1s1 )ns1 < 0, the  (2mr11 + 1)th-order parabola 

flow is negative for mr1 = 2mr11 + 1 and a (2mr11)
th-order inflection flow is negative 

for mr1 = 2mr11 in the xj2 -direction. 
Therefore, for xj2 = aj1j2r1 and xj1 = aj2j1s1 the following four cases exist: 

• Case I: The singular equilibriums of (x∗
j2 
, x∗

j1 
) = (aj1j2r1 , aj2j1s1 ) for mr1 = 2mr11+1 

and ns1 = 2ns11 + 1 are given as in case (ii1) through Eqs. (5.23)–(5.27). 
• Case II: The singular equilibriums of (x∗

j2 
, x∗

j1 
) = (aj1j2r1 , aj2j1s1 ) for mr1 = 2mr11 

and ns1 = 2ns11 + 1 are given as in case (ii2) through Eqs. (5.28)–(5.31). 
• Case III: The singular equilibriums of (x∗ 

j2 
, x∗ 

j1 
) = (aj1j2r1 , aj2j1s1 ) for mr1 = 2mr11+ 

1 and ns1 = 2ns11 are given as in case (ii3) through Eqs. (5.32)–(5.35). • Case IV: The singular equilibriums of (x∗
j2 
, x∗

j1 
) = (aj1j2r1 , aj2j1s1 ) for mr1 = 2mr11 

and ns1 = 2ns11 are given as in case (ii4) through Eqs. (5.36)–(5.39). 

(ii1) For  mr1 = 2mr11 + 1 and ns1 = 2ns11+1, the equilibrium of (x∗
j2 
, x∗

j1 
) = (aj1j2r1 , 

aj2j1s1 ) has the following properties.
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• For aj1j20
∏p 

r2=1,r2 �=s1 
(aj1j2r1 − aj1j2r2 )mr2 > 0 and 

aj2j10
∏q 

s2=1,s2 �=s1 
(aj2j1s1 − aj2j1s2 )ns2 > 0, 

(aj1j2r1 , aj2j1s1 ) = ((2mr11+1)th UP+, (2ns11+1)th UP+)
︸ ︷︷ ︸

((2mr11+1),(2ns11 + 1))-positive saddle 

. 

• For aj1j20
∏p 

r2=1,r2 �=s1

(
aj1j2r1 − aj1j2r2

)mr2 < 0 and 
aj2j10

∏q 
s2=1,s2 �=s1

(
aj2j1s1 − aj2j1s2

)ns2 > 0, 

(aj1j2r1 , aj2j1s1 ) = ((2mr11+1)th DP+, (2ns11+1)th DP−)
︸ ︷︷ ︸

((2mr11+1),(2ns11 + 1))-CCW center 

. 

• For aj1j20
∏p 

r2=1,r2 �=s1 
(aj1j2r1 − aj1j2r2 )mr2 > 0 and 

aj2j10
∏q 

s2=1,s2 �=s1 
(aj2j1s1 − aj2j1s2 )ns2 < 0, 

(aj1j2r1 , aj2j1s1 ) = ((2mr11+1)th DP−, (2ns11+1)th DP+)
︸ ︷︷ ︸

((2mr11+1),(2ns11 + 1))-CW center 

. 

• For aj1j20
∏p 

r2=1,r2 �=s1 
(aj1j1r1 − aj1j1r2 )mr2 < 0 and 

aj2j10
∏q 

s2=1,s2 �=s1 
(aj2j2s1 − aj2j2s2 )ns2 < 0, 

(aj1j2r1 , aj2j1s1 ) = ((2mr11+1)th UP−, (2ns11+1)th UP−)
︸ ︷︷ ︸

((2mr11+1),(2ns11 + 1))-negative saddle 

. 

(ii2) For  mr1 = 2mr11 and ns1 = 2ns11+1, the equilibrium of (x∗
j2 
, x∗

j1 
) = (aj1j2r1 ,aj2j1s1 ) 

has the following properties. 

• For aj1j20
∏p 

r2=1,r2 �=s1 
(aj1j2r1 − aj1j2r2 )mr2 > 0 and 

aj2j10
∏q 

s2=1,s2 �=s1 
(aj2j1s1 − aj2j1s2 )ns2 > 0, 

(aj1j2r1 , aj2j1s1 ) = ((2mr11)
th US,(2ns11+1)th UP)

︸ ︷︷ ︸
((2mr11),(2ns11 + 1))-up-parabola upper-saddle 

. 

• For aj1j20
∏p 

r2=1,r2 �=s1 
(aj1j2r1 − aj1j2r2 )mr2 < 0 and 

aj2j10
∏q 

s2=1,s2 �=s1 
(aj2j1s1 − aj2j1s2 )ns2 > 0, 

(aj1j2r1 , aj2j1s1 ) = ((2mr11)
th LS,(2ns11+1)th DP)

︸ ︷︷ ︸
((2mr11),(2ns11 + 1))-down-parabola lower-saddle 

. 

• For aj1j20
∏p 

r2=1,r2 �=s1 
(aj1j2r1 − aj1j2r2 )mr2 > 0 and
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aj2j10
∏q 

s2=1,s2 �=s1 
(aj2j1s1 − aj2j1s2 )ns2 < 0, 

(aj1j2r1 , aj2j1s1 ) = ((2mr11)
th US,(2ns11+1)th DP)

︸ ︷︷ ︸
((2mr11),(2ns11 + 1))-down-parabola upper-saddle 

. 

• For aj1j20
∏p 

r2=1,r2 �=s1 
(aj1j2r1 − aj1j2r2 )mr2 < 0 and 

aj2j10
∏q 

s2=1,s2 �=s1 
(aj2j2s1 − aj2j2s2 )ns2 < 0, 

(aj1j2r1 , aj2j1s1 ) = ((2mr11)
th LS,(2ns11+1)th UP)

︸ ︷︷ ︸
((2mr11),(2ns11 + 1))-up-parabola lower-saddle 

. 

(ii3) For  mr1 = 2mr11+1 and ns1 = 2ns11, the equilibrium of (x∗
j2 
, x∗

j1 
) = (aj1j2r1 ,aj2j1s1 ) 

has the following properties. 

• For aj1j20
∏p 

r2=1,r2 �=s1 
(aj1j2r1 − aj1j2r2 )mr2 > 0 and 

aj2j10
∏q 

s2=1,s2 �=s1 
(aj2j1s1 − aj2j1s2 )ns2 > 0, 

(aj1j2r1 , aj2j1s1 ) = ((2mr11+1)th UP,(2ns11)
th US)

︸ ︷︷ ︸
((2mr11+1),(2ns11))-up-parabola upper-saddle 

. 

• For aj1j20
∏p 

r2=1,r2 �=s1 
(aj1j2r1 − aj1j2r2 )mr2 < 0 and 

aj2j10
∏q 

s2=1,s2 �=s1 
(aj2j1s1 − aj2j1s2 )ns2 > 0, 

(aj1j2r1 , aj2j1s1 ) = ((2mr11+1)th DP,(2ns11)
th US)

︸ ︷︷ ︸
((2mr11+1),(2ns11))-down-parabola upper-saddle 

. 

• For aj1j20
∏p 

r2=1,r2 �=s1 
(aj1j2r1 − aj1j2r2 )mr2 > 0 and 

aj2j10
∏q 

s2=1,s2 �=s1 
(aj2j1s1 − aj2j1s2 )ns2 < 0, 

(aj1j2r1 , aj2j1s1 ) = ((2mr11+1)th DP,(2ns11)
th LS)

︸ ︷︷ ︸
((2mr11+1),(2ns11))-down-parabola lower-saddle 

. 

• For aj1j20
∏p 

r2=1,r2 �=s1 
(aj1j1r1 − aj1j1r2 )mr2 < 0 and 

aj2j10
∏q 

s2=1,s2 �=s1 
(aj2j2s1 − aj2j2s2 )ns2 < 0, 

(aj1j2r1 , aj2j1s1 ) = ((2mr11+1)th UP,(2ns11)
th LS)

︸ ︷︷ ︸
((2mr11+1),(2ns11))-up-parabola lower-saddle 

. 

(ii4) For  mr1 = 2mr11 and ns1 = 2ns11, the equilibrium of (x∗
j2 
, x∗

j1 
) = (aj1j2r1 , aj2j1s1 ) 

has the following properties.
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• For aj1j20
∏p 

r2=1,r2 �=s1 
(aj1j2r1 − aj1j2r2 )mr2 > 0 and 

aj2j10
∏q 

s2=1,s2 �=s1 
(aj2j1s1 − aj2j1s2 )ns2 > 0, 

(aj1j2r1 , aj2j1s1 ) = ((2mr11)
th II+, (2ns11)

th II+)
︸ ︷︷ ︸

((2mr11),(2ns11))-double-inflection saddle 

. 

• For aj1j20
∏p 

r2=1,r2 �=s1 
(aj1j2r1 − aj1j2r2 )mr2 < 0 and 

aj2j10
∏q 

s2=1,s2 �=s1 
(aj2j1s1 − aj2j1s2 )ns2 > 0, 

(aj1j2r1 , aj2j1s1 ) = ((2mr11)
th DI+, (2ns11)

th DI−)
︸ ︷︷ ︸

((2mr11),(2ns11))-double-inflection saddle 

. 

• For aj1j20
∏p 

r2=1,r2 �=s1 
(aj1j2r1 − aj1j2r2 )mr2 > 0 and 

aj2j10
∏q 

s2=1,s2 �=s1 
(aj2j1s1 − aj2j1s2 )ns2 < 0, 

(aj1j2r1 , aj2j1s1 ) = ((2mr11)
th DI−, (2ns11)

th DI+)
︸ ︷︷ ︸

((2mr11),(2ns11))-double-inflection saddle 

. 

• For aj1j20
∏p 

r2=1,r2 �=s1 
(aj1j1r1 − aj1j1r2 )mr2 < 0 and 

aj2j10
∏q 

s2=1,s2 �=s1 
(aj2j2s1 − aj2j2s2 )ns2 < 0, 

(aj1j2r1 , aj2j1s1 ) = ((2mr11)
th II−, (2ns11)

th II−)
︸ ︷︷ ︸

((2mr11),(2ns11))-double-inflection saddle 

. 

(iii) Consider a crossing-univariate polynomial system as 

ẋj1 = aj1j20 
m∏

s1=1 

(xj2 − aj1j2s1 ), 

ẋj2 = aj2j10 
n∏

l1=1 

(xj1 − aj2j1l1 ), 

j1, j2 ∈ {1, 2}; j1 �= j2. 

In phase space, for aj1j2s1 �= aj1j2s2 (s1, s2∈{1, 2, 3}, s1 �= s2) and aj2j1l1 �= aj2j1l2 (l1, l2∈ 
{1, 2, 3}, l1 �= l2·), 

dxj1 
dxj2 

= 
aj1j20 
aj2j10 

(xj2 − aj1j2s1 )
∏m 

s2=1,s2 �=s1 
(xj2 − aj1j2s2 ) 

(xj1 − aj2j1l1 )
∏n 

l2=1,l2 �=l1 
(xj1 − aj2j1l2 ) 

= 
aj1j20 
aj2j10 

(xj2 − aj1j2s1 )
∏m 

s2=1,s2 �=s1 
(xj2 − aj1j2s1 + aj1j2s1 − aj1j2s2 ) 

(xj1 − aj2j1l1 )
∏n 

l2=1,l2 �=l1 
(xj1 − aj2j1l1 + aj2j1l1 − aj2j1l2 ) 

,
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thus, from the relations of coefficients and roots, we have 

aj2j10
[
(xj1 − aj2j1l1 )n + 

n−1∑

k=1 

bj2j1k (xj1 − aj2j1l1 )n−k
]
dxj1 

= aj1j20
[
(xj2 − aj1j2s1 )m + 

m−1∑

k=1 

bj1j2k (xj1 − aj1j2s1 )m−k
]
dxj2 , 

and 

bj2j11 = 
n∑

l2=1,l2 �=l1 

(aj2j1l1 − aj2j1l2 ), 

bj2j12 = 
n∑

l2,l3=1;l2,l3 �=l1 
(l2<l3) 

3∏

r=2 

(aj2j1l1 − aj2j1lr ), · · ·  , 

bj2j1k = 
n∑

l2,l3,··· ,lk+1=1; 
l2,l3,··· ,lk+1 �=l1 
(l2<l3<···<lk+1) 

k+1∏

r=2 

(aj2j1l1 − aj2j1lr ), · · ·  , 

bj2j1(n−1) = 
n∏

l2=1,l2 �=l1 

(aj2j1l1 − aj2j1l2 ); 

bj1j21 = 
m∑

s2=1,s2 �=s1 

(aj1j2s1 − aj1j2s2 ), 

bj1j22 = 
m∑

s2,s3=1;s2,s3 �=s1 
(s2,<3) 

3∏

r=2 

(aj1j2s1 − aj1j2sr ), · · ·  , 

bj1j2k = 
m∑

s2,s3,··· ,sk+1=1; 
s2,s3,··· ,sk+1 �=s1 
(s2<s3<···<sk+1) 

k+1∏

r=2 

(aj1j2s1 − aj1j2sr ), · · ·  , 

bj1j2(m−1) = 
m∏

s1=1,s2 �=s1 

(aj1j2s1 − aj1j2s2 ). 

With initial conditions of
(
xj10, xj20

)
at t = t0, the integration of the above equations 

gives the first integral manifold as 

aj2j10
{ 1 

n + 1
[
(xj1 − aj2j1l1 )n+1 − (xj10 − aj2j1l1 )n+1]
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+ 
n−1∑

k=1 

1 

n − k + 1 
bj2j1k

[
(xj1 − aj2j1l1 )n−k+1 − (xj10 − aj2j1l1 )n−k+1

]}

= aj1j20
{ 1 

m + 1
[
(xj2 − aj1j2s1 )m+1 − (xj20 − aj1j2s1 )m+1

]

+ 
m−1∑

k=1 

1 

m − k + 1 
bj1j2k

[
(xj1 − aj1j2s1 )m−k+1 − (xj10 − aj1j2s1 )m−k+1]

}
. 

The nonsingular equilibrium network with m × n is defined as 

m⋃

s=1 

n⋃

l=1 

(aj1j1s, aj2j2l)︸ ︷︷ ︸
XX 

≡ 

⎧ 
⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

(aj1j2m, aj2j11) (aj1j2m, aj2j12) · · · (aj1j2m, aj2j1n) 
(aj1j2(m−1), aj2j11) (aj1j1(m−1), aj2j12) · · ·  (aj1j2(m−1), aj2j1n) 

... 
... 

... 
... 

(aj1j21, aj2j21) (aj1j11, aj2j12) · · ·  (aj1j21, aj2j1n) 

⎫ 
⎪⎪⎪⎬ 

⎪⎪⎪⎭ 
m×n 

. 

In phase space, at (x∗
j2 , x

∗
j1 ) = (aj1j2s1 , aj2jl l1 ), two cases are discussed. 

(I) In phase space, at x∗
j2 

= aj1j2s1 (s1, s2 ∈ {1, 2, · · ·  , m}, s1 �=s2) and xj1 �= aj2j1l1 
(l1 = 1, 2, · · ·  , n), we have  

dxj1 
dxj2

∣∣
∣x∗

j2
=aj1 j2s1 

= 
aj1j20 
aj2j10 

(xj2 − aj1j2s1 )
∏m 

s2=1,s2 �=s1 
(xj2 − aj1j2s2 )∏n 

l1=1 (xj1 − aj2j1l1 )

∣∣
∣x∗

j2
=aj1 j2s1 

= 0. 

If 

d2xj1 
dx2 j2

∣∣∣x∗
j2

=aj1 j2s1 
= 

aj1j20 
aj2j10

∏m 
s2=1,s2 �=s1 

(aj1j2s1 − aj1j2s2 )∏n 
l1=1 (xj1 − aj2j1l1 ) 

> 0, 

there is an up-parabola flow at x∗
j2 

= aj1j2s1 in the xj1 -direction. If 

d2xj1 
dx2 j2

∣∣∣x∗
j2

=aj1 j2s1 
= 

aj1j20 
aj2j10

∏m 
s2=1,s2 �=s1 

(aj1j2s1 − aj1j2s2 )∏n 
l1=1 (xj1 − aj2j1l1 ) 

< 0, 

there is a down-parabola flow at x∗
j2 

= aj1j2s1 in the xj1 -direction. Because of 

ẋj2 = aj2j10 
n∏

l1=1 

(xj1 − aj2j1l1 ),
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the flows at x∗
j2 

= aj1j2s1 in the x∗
j2
-direction are positive and negative for x∗

j2 
> 0 and 

ẋj2 < 0, respectively. 
Thus, the equilibrium of x∗

j2 
= aj1j2s1 (s1, s2 ∈ {1, 2, · · ·  , m}, s1 �= s2) on the x∗

j2
-

direction with xj1 �= aj2j1l1 (l1 = 1, 2, · · ·  , n) has the following properties. 

• For aj1j20
∏m 

s2=1,s2 �=s1 
(aj1j2s1 − aj1j2s2 ) >  0 and aj2j10

∏n 
l1=1 (xj1 − aj2j1l1 ) >  0, 

(aj1j2s1 , ̇xj2 ) = (UP, pF)
︸ ︷︷ ︸

up-parabola flow(+) 

. 

• For aj1j20
∏m 

s2=1,s2 �=s1 
(aj1j2s1 − aj1j2s2 ) <  0 and aj2j10

∏n 
l1=1 (xj1 − aj2j1l1 ) >  0, 

(aj1j2s1 , ̇xj2 ) = (DP, pF)
︸ ︷︷ ︸

down-parabola flow(+) 

. 

• For aj1j20
∏m 

s2=1,s2 �=s1 
(aj1j2s1 − aj1j2s2 ) >  0 and aj2j10

∏n 
l1=1 (xj1 − aj2j1l1 ) <  0, 

(aj1j2s1 , ̇xj2 ) = (DP, nF)︸ ︷︷ ︸
down-parabola flow(−) 

. 

• For aj1j20
∏m 

s2=1,s2 �=s1 
(aj1j2s1 − aj1j2s2 ) <  0 and aj2j10

∏n 
l1=1 (xj1 − aj2j1l1 ) <  0, 

(aj1j2s1 , ̇xj2 ) = (UP, nF)︸ ︷︷ ︸
up-parabola flow (−) 

. 

(II) In phase space, at x∗
j1 

= aj2l1 (l1, l2 ∈ {1, 2, · · ·  , n}, l1 �= l2) and xj2 �= aj1j2s1 
(s1 = 1, 2, · · ·  , m), we have  

dxj2 
dxj1

∣
∣∣x∗

j1
=aj2 j1 l1 

= 
aj2j10 
aj1j20 

(xj1 − aj2j1l1 )
∏n 

l2=1,l2 �=l1 
(xj1 − aj2j1l2 )∏m 

s1=1 (xj2 − aj1j2s1 )

∣
∣∣x∗

j1
=aj2 j1 l1 

= 0. 

If 

d2xj2 
dx2 j1

∣∣∣x∗
j1

=aj2 j1 l1 
= 

aj2j10 
aj1j20

∏n 
l2=1,l2 �=l1 

(aj2j1l1 − aj2j1l2 )∏m 
s1=1 (xj2 − aj1j2s1 ) 

> 0, 

there is an up-parabola flow at x∗
j1 

= aj2j1l1 in the xj2 -direction. If 

d2xj2 
dx2 j1

∣∣
∣x∗

j1
=aj2 j1 l1 

= 
aj2j10 
aj1j20

∏n 
l2=1,l2 �=l1 

(aj2j1l1 − aj2j1l2 )∏m 
s1=1 (xj2 − aj1j2s1 ) 

< 0, 

there is a down-parabola flow at x∗
j1 = aj2j1l1 in the xj1 -direction. Because of
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ẋj1 = aj1j20
∏m 

s1=1 
(xj2 − aj1j2s1 ), 

the flows at x∗
j1 = aj2j1l1 in the xj1 -direction are positive and negative for ẋj1 > 0 and 

ẋj1 < 0, respectively. 
Thus, the equilibrium of x∗

j1 
= aj2j1l1 (l1, l2 ∈ {1, 2, · · ·  , n}, l1 �= l2) and xj2 �= 

aj1j2s1 (s1 = 1, 2, · · ·  , m) on the xj2 -direction has the following properties. 

• For aj1j20
∏m 

s1=1 (xj2 − aj1j2s1 ) >  0 and aj2j10
∏n 

l2=1,l2 �=l1 
(aj2j1l1 − aj2j1l2 ) >  0, 

(ẋj1 , aj2j1l1 ) = (pF, UP)
︸ ︷︷ ︸

up-parabola flow (+) 

. 

• For aj1j20
∏m 

s1=1 (xj2 − aj1j2s1 ) <  0 and aj2j1
∏n 

l2=1,l2 �=l1 
(aj2j1l1 − aj2j1l2 ) >  0, 

(ẋj1 , aj2j1l1 ) = (nF, DP)︸ ︷︷ ︸
down-parabola flow (−) 

. 

• For aj1j20
∏m 

s1=1 (xj2 − aj1j2s1 ) >  0 and aj2j10
∏n 

l2=1,l2 �=l1 
(aj2j1l1 − aj2j1l2 ) <  0, 

(ẋj1 , aj2j1l1 ) = (pF, DP)
︸ ︷︷ ︸

down-parabola flow (+) 

. 

• For aj1j20
∏m 

s1=1 (xj2 − aj1j2s1 ) <  0 and aj2j10
∏n 

l2=1,l2 �=l1 
(aj2j1l1 − aj2j1l2 ) <  0,

(
ẋj1 , aj2j1l1

) = (nF, UP)︸ ︷︷ ︸
up-parabola flow(−) 

. 

Therefore, from the two cases (I) and (II), the equilibrium of (x∗ 
j2 
, x∗ 

j1 
) = 

(aj1j2s1 , aj2j1l1 ) (s1, s2 ∈ {1, 2, · · ·  , m}, s1 �= s2; l1, l2 ∈ {1, 2, · · ·  , n},l1 �= l2) 
has the following properties as in Eqs. (5.43)–(5.46). 

• For aj1j20
∏m 

s2=1,s2 �=s1 
(aj1j2s1 − aj1j2s2 ) >  0 and 

aj2j10
∏n 

l2=1,l2 �=l1 
(aj2j1l1 − aj2j1l2 ) >  0, 

(aj1j2s1 , aj2j1l1 ) = (UP+, UP+)
︸ ︷︷ ︸
positive saddle 

The equilibrium of (x∗
j2 
, x∗

j1 
) = (aj1j2s1 , aj2j1l1 ) is a (UP+, UP+)-positive saddle. 

• For aj1j20
∏m 

s2=1,s2 �=s1 
(aj1j2s1 − aj1j2s2 ) <  0 and 

aj2j10
∏n 

l2=1,l2 �=l1 
(aj2j1l1 − aj2j1l2 ) >  0, 

(aj1j2s1 , aj2j1l1 ) = (DP+, DP−)
︸ ︷︷ ︸
CCW center 

.
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The equilibrium of (x∗
j2 
, x∗

j1 
) = (aj1j2s1 , aj2j1l1 ) is a (DP+, DP−)-counter-

clockwise center. 
• For aj1j20

∏m 
s2=1,s2 �=s1 

(aj1j2s1 − aj1j2s2 ) >  0 and 
aj2j10

∏n 
l2=1,l2 �=l1 

(aj2j1l1 − aj2j1l2 ) <  0, 

(aj1j2s1 , aj2j1l1 ) = (DP−, DP+)
︸ ︷︷ ︸

CW center 

. 

The equilibrium of (x∗
j2 , x

∗
j1 ) = (aj1j2s1 , aj2j1l1 ) is a (DP−, DP+)-clockwise 

center. 
• For aj1j20

∏m 
s2=1,s2 �=s1 

(aj1j2s1 − aj1j2s2 ) <  0 and 
aj2j10

∏n 
l2=1,l2 �=l1 

(aj2j1l1 − aj2j1l2 ) <  0, 

(aj1j2s1 , aj2j1l1 ) = (UP−, UP−)
︸ ︷︷ ︸
negative saddle 

. 

The equilibrium of (x∗
j2 
, x∗

j1 
) = (aj1j2s1 , aj2j1l1 ) is a (UP−, UP−)-negative saddle. 

(iv) For m = 2m1 + 1 and n = 2n1 + 1, the bifurcation process is discussed through 
differential equations as follows. There are three cases (I)–(III). 

Case I: Consider a dynamical system having a single equilibrium (A1) as  

ẋj1 = aj1j20(xj2 − bj1j21) 
m1∏

s=1

[
(xj2 − a(s) 

j1j2 
)2 + �

(s) 
j1j2

]
, 

ẋj2 = aj2j10(xj1 − bj2j11) 
n1∏

l=1

[
(xj1 − a(l) 

j2j1 
)2 + �

(l) 
j2j1

]; 

where aj1j21 = bj1j21 and aj2j11 = bj2j11. Once

�
(s) 
j1j2 

= �j1j2 = 0 (s = 1, 2, · · ·  , m1),

�
(l) 
j2j1 

= �j2j1 = 0 (l = 1, 2, · · ·  , n1), 

if 

aj1j21 = bj1j21 = a(s) 
j1j2 (s = 1, 2, · · ·  , m1), 

aj2j11 = bj2j11 = a(l) 
j2j1 (l = 1, 2, · · ·  , n1), 

the foregoing differential equations becomes a dynamical system with a singular 
equilibrium (B1) as  

ẋj1 = aj1j20
(
xj2 − aj1j21

)2m1+1 
, ẋj2 = aj2j10

(
xj1 − aj2j11

)2n1+1 
.
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If

�
(s) 
j1j2 

= �j1j2 + δs (s = 1, 2, · · ·  , m1),

�
(l) 
j2j1 

= �j2j1 + δl (l = 1, 2, · · ·  , n1), 
δs > 0 and δl > 0, 

then 

a(s) 
j1j2 

, a(s) 
j1j22 = aj1j21 ± εs, (s = 1, 2, · · ·  , m1) 

a(l) 
j2j11, a

(l) 
j2j12 = aj2j11 ± εl, (l = 1, 2, · · ·  , n1)

{
aj2j11, aj1j22, · · ·  , aj1j2(2m1+1)

} = sort
{
bj1j21, a

(s) 
j1j21, a

(s) 
j1j22

∣∣s = 1, 2, · · ·  , m1
}
,

{
aj2j11, aj2j11, · · ·  , aj1j2(2n1+1)

} = sort
{
bj2j11, a

(l) 
j2j11, a

(l) 
j2j12

∣∣l = 1, 2, · · ·  , n1
}
. 

Thus, the differential equation becomes a dynamical system with a non-singular 
equilibrium network (C1) as  

ẋj1 = aj1j20 
2m1+1∏

s=1

(
xj2 − aj1j2s

)
, ẋj2 = aj2j10 

2n1+1∏

l=1

(
xj1 − aj2j1l

)
. 

From the above bifurcation process analysis, at least, (m1 + 1)-parameter varia-
tions in the xj1 -direction and (n1 + 1)-parameter variations in the xj2 -direction are 
engaged in such a bifurcation from a single equilibrium to the equilibrium network 
of (2m1 + 1) × (2n1 + 1) through the (2m1 + 1)th-up-parabola and down-parabola 
bifurcations in the xj1 -direction and the (2n1 + 1)th-up-parabola and down-parabola 
bifurcations in the xj2 -direction. With both of them, the higher-order positive saddle, 
counter-clockwise center, clockwise center, and negative saddle bifurcations are 
developed. 

Thus, the appearing or vanishing bifurcation route is as follows. 

(aj1j21, aj2j11)︸ ︷︷ ︸
XX

� (aj1j21, aj2j11)︸ ︷︷ ︸
((2m1+1),(2n1+1))-XX

�
2m1+1⋃

s=1 

2n1+1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

. 

Case II: From Case (I), consider a dynamical system having singular equilibriums 
(A2) as  

ẋj1 = aj1j20 
p1∏

r1=1 

(xj2 − bj1j2r1 )
m(1) 

r1 

l1∏

s=1

[(
xj2 − a(s) 

j1j2

)2 + �
(s) 
j1j2

]ms 
, 

ẋj2 = aj2j10 
q1∏

s1=1 

(xj1 − bj2j1s1 )
n(1) 
s1 

l2∏

l=1

[(
xj1 − a(l) 

j2j1

)2 + �
(l) 
j2j1

]nl ;
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where

{
aj1j2r1 |r1 = 1, 2, · · ·  , p1

} = sort
{
bj1j2r1

∣∣r1 = 1, 2, · · ·  , p1
}
,

{
aj2j1s1 |s1 = 1, 2, · · ·  , q1

} = sort
{
bj2j1s1

∣∣s1 = 1, 2, · · ·  , q1
}; 

2m1 + 1 − �
p1 
r1=1m

(1) 
r1 = 2�l1 

s=1ms 

with l1-quadratic polynomials without real roots 

and sth-quadratic polynomial with power ms, 

2n1 + 1 − �
q1 
s1=1n

(1) 
s1 = 2�l2 

l=1nl 

with l2-quadraitc polynomials without real roots 

and lth-quadratic polynomial with power nl . 

Once

�
(s) 
j1j2 

= 0(s = 1, 2, · · ·  , l1) and �
(l) 
j2j1 

= 0(l = 1, 2, · · ·  , l2), 

if 

aj1j21 ≡ aj1j2r1 = a(s) 
j1j2 (r1 = 1, 2, · · ·  , p1; s = 1, 2, · · ·  , l1), 

aj2j11 ≡ aj2j1s1 = a(l) 
j2j1 (s1 = 1, 2, · · ·  , q1; l = 1, 2, · · ·  , l2), 

the foregoing differential equations becomes a dynamical system with a singular 
equilibrium (B2) as  

ẋj1 = aj1j20
(
xj1 − aj1j21

)2m1+1 
, ẋj2 = aj2j10

(
xj2 − aj2j11

)2n1+1 
. 

If

�
(s) 
j1j2 

= �j1j2 + δs (s = 1, 2, · · ·  , l1),

�
(l) 
j2j1 

= �j2j1 + δl (l = 1, 2, · · ·  , l2), 
δs > 0 and δl > 0, 

then 

a(s) 
j1j21, a

(s) 
j1j22 = aj1j21 ± εs, (s = 1, 2, · · ·  , l1), 

a(l) 
j2j1 

, a(l) 
j2j2 

= aj2j1 ± εl, (l = 1, 2, · · ·  , l2);
{
aj1j2 , aj1j22, · · ·  , aj1j2p2

}

= sort
{
aj1j21, aj1j22 · · ·  , aj1j2p1; a(s) 

j1j21, a
(s) 
j1j22

∣∣s = 1, 2, · · ·  , l1
}
,

{
aj1j21, aj1j21, · · ·  , aj1j2q2

}
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= sort
{
aj1j21, aj1j21, · · ·  , aj1j2q1; a(l) 

j1j21, a
(l) 
j1j22

∣∣l = 1, 2, · · ·  , l2
}
. 

Thus, the differential equation becomes a dynamical system with singular equilib-
riums (C2) as  

ẋj1 = aj1j10 
p2∏

r2=1

(
xj2 − aj1j2r2

)m(2) 
r2 , ̇xj2 = aj2j20 

q2∏

s2=1

(
xj1 − aj2j1s2

)n(2) 
s2 ; 

where 

p2∑

r2=1 

m(2) 
r2 = 2m1 + 1, 

q2∑

s2=1 

n(2) 
s2 = 2n1 + 1. 

From the above bifurcation process analysis, at least, p2-parameter variations 
in the xj1 -direction and q2-parameter variations in the xj2 -direction are engaged in 
such a bifurcation from a p1 × q1 equilibrium network to a p2 × q2 equilibrium 
network through the (2m1 + 1)th-up-parabola and down-parabola bifurcations in the 
xj1 -direction and the (2n1 + 1)th-up-parabola and down-parabola bifurcations in the 
xj2 -direction. 

Thus, the appearing or vanishing bifurcation route from a p1 × q1 to a p2 × q2 
equilibrium network is expressed as. 

p1⋃

r1=1 

q1⋃

s1=1 

(aj1j2r1 , aj2j1s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� (aj1j21, aj2j11)︸ ︷︷ ︸
((2m1+1),(2n1+1))-XX

�
p2⋃

r2=1 

q2⋃

s2=1 

(aj1j2r2 , aj2j1s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX 

. 

From case (I), the singular equilibriums can be formed through nonsingular 
equilibrium networks. Thus, 

(aj1j2r1 , aj2j1s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

�
m(1) 

r1⋃

s=1 

n(1) 
s1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

≡ 

⎧ 
⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩ 

(aj1j2m(1) 
r1 

, aj2j11) (aj1j2m(1) 
r1 

, aj2j12) · · · (aj1j2m(1) 
r1 

, aj2j1n(1) 
s1 

) 
(aj1j2(m(1) 

r1 −1) , aj2j11) (aj1j2(m(1) 
r1 −1) , aj2j12) · · ·  (aj1j2(m(1) 

r1 −1) , aj2j1n(1) 
s1 

) 
... 

... · · · ... 
(aj1j21, aj2j11) (aj1j21, aj2j12) · · · (aj1j21, aj2j1n(1) 

s1 
) 

⎫ 
⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎭ 
m(1) 

r1 ×n(1) 
s1 

, 

and
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(aj1j2r2 , aj1j1s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX

�
m(2) 

r2⋃

s=1 

n(2) 
s2⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

≡ 

⎧ 
⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩ 

(aj1j2m(2) 
r2 

, aj2j11) (aj1j2m(2) 
r2 

, aj2j12) · · · (aj1j2m(2) 
r2 

, aj2j1n(2) 
s2 

) 
(aj1j2(m(2) 

r2 
−1), aj2j11) (aj1j2(m(2) 

r2 
−1), aj2j12) · · ·  (aj1j2(m(2) 

r2 
−1), aj2j1n(2) 

s2 
) 

... 
... · · · ... 

(aj1j21, aj2j11) (aj1j21, aj2j12) · · ·  (aj1j21, aj2j1n(2) 
s2 

) 

⎫ 
⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎭ 
m(2) 

r2 ×n(2) 
s2 

. 

From the above definition, the corner singular equilibriums for i = 1, 2 are 
determined by 

((m(i) 
pi )

th XX,(n(i) 
qi )

th XX)
︸ ︷︷ ︸

(m(i) 
pi ,n

(i) 
qi )-XX

�
m(i) 

pi⋃

s=1 

n(i) 
qi⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

, 

((m(i) 
pi )

th XX,(n(i) 
1 )

th XX)
︸ ︷︷ ︸

(m(i) 
pi ,n

(i) 
1 )-XX

�
m(i) 

pi⋃

s=1 

n(i) 
1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

, 

((m(i) 
1 )

th XX,(n(i) 
qi )

th XX)
︸ ︷︷ ︸

(m(i) 
1 ,n

(i) 
qi )-XX

�
m(i) 

1⋃

s=1 

n(i) 
qi⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

, 

((m(i) 
1 )

th XX,(n(i) 
1 )

th XX)
︸ ︷︷ ︸

(m(i) 
1 ,n

(i) 
1 )-XX

�
m(i) 

1⋃

s=1 

n(i) 
1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

. 

Case III: Consider two dynamical systems with the same equilibriums with locations 
switched (A3,C3) for  i = 1, 2 as 

ẋj1 = aj1j20 
p∏

ri=1 

(xj2 − aj1j2ri )
m(i) 

ri , ẋj2 = aj2j10 
q∏

si=1 

(xj1 − aj2j1si )
n(i) 
si ; 

where

∑p 

ri=1 
m(i) 

ri = 2m1 + 1,
∑q 

si=1 
n(i) 
si = 2n1 + 1. 

Consider a dynamical system as a singular equilibrium (B3) as
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ẋj1 = aj1j20(xj2 − aj1j21)2m1+1 , ẋj2 = aj2j10(xj1 − aj2j11)2n1+1 . 

For ri = 1, 2, · · ·  , p and si = 1, 2, · · ·  , q (i = 1, 2), define two functions as

�
(r1r2) 
j1j2 = (aj1j2r1 − aj1j2r2 )2 (r1, r2 ∈ {1, 2, · · ·  , p}, r1 �= r2),

�
(s1s2) 
j2j1 

= (aj2j1s1 − aj2j1s2 )2 (s1, s2 ∈ {1, 2, · · ·  , q}, s1 �= s2). 

For ri = 1, 2, · · ·  , p and si = 1, 2, · · ·  , q (i = 1, 2), if

�
(r1r2) 
j1j2 

= (aj1j2r1 − aj1j2r2 )2 = 0,

�
(s1s2) 
j2j1 

= (aj2j1s1 − aj2j1s2 )2 = 0, 

two equilibriums of (aj1j1r1 , aj2j2s1 ) and (aj1j1r2 , aj2j2s2 ) switching at point (aj1j11, aj2j21) 
with the same order singularity are given through 

(aj1j2r1 , aj2j1s1 )︸ ︷︷ ︸
(m(1) 

r1 ,n
(1) 
s1 )-XX

� (aj1j21, aj2j11)︸ ︷︷ ︸
((2m1+1),(2n1 + 1))-XX

� (aj1j2r2 , aj2j1s2 )︸ ︷︷ ︸
(m(2) 

r2 ,n
(2) 
s2 )-XX

{
aj1j2r1 � aj1j2r2

∣∣m(1) 
r1 = m(2) 

r2 ; r1, r2 ∈ {1, 2, · · ·  , p}, r1 �= r2
}
,

{
aj2j1s1 � aj2j1s2

∣∣n(1) 
s1 = n(2) 

s2 ; s1, s2 ∈ {1, 2, · · ·  , q}, s1 �= s2
}; 

and 

aj1j2r1 = aj1j21 − εr1 , aj1j2r2 = aj1j21 + εr2 , 
(aj1j2r1 = aj1j21 + εr1 , aj1j2r2 = aj1j21 − εr2 ); 
aj2j1s1 = aj2j11 − εs1 , aj2j1s2 = aj2j11 + εs2 , 
(aj2j1s1 = aj2j11 + εs1 , aj2j1s2 = aj2j11 − εs2 ) 
εr1 , εr2 > 0 and εs1 , εs2 > 0; 
ri = 1, 2, · · ·  , p; si = 1, 2, · · ·  , q (i = 1, 2). 

From case (I), the singular equilibriums can be formed through nonsingular equi-
librium networks as presented in Case (II), and the corner singular equilibriums for 
i = 1, 2 are determined similarly. 

In summary, from the cases (I)–(III), the equilibrium of (x∗
j2 , x

∗
j1 ) = (aj1j21, aj2j11) 

for m = 2m1+1 and n = 2n1+1 has the bifurcation properties as stated in (iv1)–(iv4) 
through Eqs. (5.47)–(5.70). 

(v) For m = 2m1 and n = 2n1 + 1, the bifurcation process is discussed through 
differential equations as similar as in (iv). There are three cases (I)-(III). 

Case I: Consider a dynamical system having a 1-diemnsional flow (A1) as
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ẋj1 = aj1j20 
m1∏

s=1 

[(xj2 − a(s) 
j1j2 

)2 + �
(s) 
j1j2

], 

ẋj2 = aj2j10(xj1 − bj2j11) 
n1∏

l=1 

[(xj1 − a(l) 
j2j1 

)2 + �
(l) 
j2j1

]; 

where aj2j11 = bj2j11. Once

�
(s) 
j1j2 

= �j1j2 = 0 (s = 1, 2, · · ·  , m1) and �
(l) 
j2j1 

= �j2j1 = 0 (l = 1, 2, · · ·  , n1), 

if 

aj1j21 = a(s) 
j1j2 (s = 1, 2, · · ·  , m1) and aj2j11 = bj2j11 = a(l) 

j2j1 (l = 1, 2, · · ·  , n1), 

the foregoing differential equations becomes a dynamical system with a singular 
equilibrium (B1) as  

ẋj1 = aj1j20
(
xj2 − aj1j21

)2m1 
, ẋj2 = aj2j10

(
xj1 − aj2j11

)2n1+1 
. 

If

�
(s) 
j1j2 

= �j1j2 + δs (s = 1, 2, · · ·  , m1),

�
(l) 
j2j1 

= �j2j1 + δl (l = 1, 2, · · ·  , n1), 
δs > 0 and δl > 0, 

then 

a(s) 
j1j21, a

(s) 
j1j22 = aj1j21 ± εs, (s = 1, 2, · · ·  , m1), 

a(l) 
j2j11, a

(l) 
j2j12 = aj2j11 ± εl, (l = 1, 2, · · ·  , n1);

{
aj1j2 , aj1j22, · · ·  , aj1j2(2m1)

} = sort
{
a(s) 
j1j21, a

(s) 
j1j22

∣∣s = 1, 2, · · ·  , m1

}
,

{
aj2j1 , aj2j1 , · · ·  , aj2j1(2n1+1)

} = sort
{
bj2j11, a

(l) 
j2j11, a

(l) 
j2j12

∣∣l = 1, 2, · · ·  , n1
}
. 

Thus, the differential equation becomes a dynamical system with a non-singular 
equilibrium network (C1) as.  

ẋj1 = aj1j20 
2m1∏

s=1

(
xj2 − aj1j2s

)
, ẋj2 = aj2j10 

2n1+1∏

l=1

(
xj1 − aj2j1l

)
. 

From the above bifurcation process analysis, at least, m1-parameter variations in 
the xj1 -direction and (n1 + 1)-parameter variations in the xj2 -direction are engaged
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in such a bifurcation from a parabola flow to the equilibrium network of (2m1) × 
(2n1 + 1) through the (2m1)

th-increasing-inflection and decreasing-inflection bifur-
cations in the xj1 -direction and the (2n1 + 1)th-up-parabola and down-parabola bifur-
cations in the xj2 -direction. With both of them, the higher-order up- parabola-saddle 
and down-parabola saddle bifurcations are developed. 

Thus, the appearing or vanishing bifurcation route is as follows. 

(ẋj1 , aj2j11)︸ ︷︷ ︸
XX

� (aj1j21, aj2j11)︸ ︷︷ ︸
((2m1 ), (2n1+1))-XX

�
2m1⋃

s=1 

2n1+1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

. 

Case II: From Case (I), consider a dynamical system having singular equilibriums 
(A2) as  

ẋj1 = aj1j20 
p1∏

r1=1

(
xj2 − bj1j2r1

)mr1 

l1∏

s=1

[(
xj2 − a(s) 

j1j2

)2 + �
(s) 
j1j2

]ms 
, 

ẋj2 = aj2j10 
q1∏

s1=1

(
xj1 − bj2j1s1

)ns1 
l2∏

l=1

[(
xj1 − a(l) 

j2j1

)2 + �
(l) 
j2j1

]nl ; 

where

{
aj1j2r1

∣
∣r1 = 1, 2, · · ·  , p1

} = sort
{
bj1j2r1

∣
∣r1 = 1, 2, · · ·  , p1

}
,

{
aj2j1s1

∣∣s1 = 1, 2, · · ·  , q1
} = sort

{
bj2j1s1

∣∣s1 = 1, 2, · · ·  , q1
}
; 

2m1 − �
p1 
r1=1m

(1) 
r1 = 2�l1 

s=1ms 

with l1-quadratic polynomials without real roots 

and sth-quadratic polynomial with power ms, 

2n1 + 1 − �
q1 
s1=1n

(1) 
s1 = 2�l2 

l=1nl 

with l2-quadraitc polynomials without real roots 

and lth-quadratic polynomial with power nl . 

Once

�
(s) 
j1j2 

= 0 (s = 1, 2, · · ·  , l1) and �
(l) 
j2j1 

= 0 (l = 1, 2, · · ·  , l2), 

if 

aj1j21 ≡ aj1j2r1 = a(s) 
j1j2 

(r1 = 1, 2, · · ·  , p1; s = 1, 2, · · ·  , l1), 

aj2j11 ≡ aj2j1s1 = a(l) 
j2j1 

(s1 = 1, 2, · · ·  , q1; l = 1, 2, · · ·  , l2),
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the foregoing differential equations becomes a dynamical system with a singular 
equilibrium (B2) as  

ẋj1 = aj1j20(xj1 − aj1j21)2m1 , ẋj2 = aj2j10(xj2 − aj2j11)2n1+1 . 

If

�
(s) 
j1j2 = �j1j2 + δs (s = 1, 2, · · ·  , l1),

�
(l) 
j2j1 = �j2j1 + δl (l = 1, 2, · · ·  , l2), 

δs > 0 and δl > 0, 

then 

a(s) 
j1j21, a

(s) 
j1j22 = aj1j21 ± εs, (s = 1, 2, · · ·  , l1), 

a(l) 
j2j1 

, a(l) 
j2j2 

= aj2j1 ± εl, (l = 1, 2, · · ·  , l2);
{
aj1j2 , aj1j22, · · ·  , aj1j2p2

}

= sort
{
aj1j21, aj1j22 · · ·  , aj1j2p1; a(s) 

j1j21, a
(s) 
j1j22

∣∣s = 1, 2, · · ·  , l1
}
,

{
aj1j21, aj1j21, · · ·  , aj1j2q2

}

= sort
{
aj1j21, aj1j21, · · ·  , aj1j2q1; a(l) 

j1j21, a
(l) 
j1j22

∣∣l = 1, 2, · · ·  , l2
}
. 

Thus, the differential equation becomes a dynamical system with singular equilib-
riums (C2) as  

ẋj1 = aj1j10 
p2∏

r2=1 

(xj2 − aj1j2r2 )
m(2) 

r2 , ẋj2 = aj2j20 
q2∏

s2=1 

(xj1 − aj2j1s2 )
n(2) 
s2 ; 

where 

p2∑

r2=1 

m(2) 
r2 = 2m1, 

q2∑

s2=1 

n(2) 
s2 = 2n1 + 1. 

From the above bifurcation process analysis, at least, p2-parameter variations in the 
xj1 -direction and q2-parameter variations in the xj2 -direction are engaged in such a 
bifurcation from a p1 × q1 equilibrium network to a p2 × q2 equilibrium network 
through the (2m1)

th-increasing-inflection and decreasing-inflection bifurcations in 
the xj1 -direction and the (2n1 + 1)th-up-parabola and down-parabola bifurcations in 
the xj2 -direction. 

Thus, the appearing or vanishing bifurcation route from a p1 × q1 to a p2 × q2 
equilibrium network is expressed as



5.2 Proof of Theorem 5.1 277

p1⋃

r1=1 

q1⋃

s1=1 

(aj1j2r1 , aj2j1s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� (aj1j21, aj2j11)︸ ︷︷ ︸
((2m1),(2n1 + 1))-XX

�
p2⋃

r2=1 

q2⋃

s2=1 

(aj1j2r2 , aj2j1s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX 

. 

From case (I), the singular equilibriums can be formed through nonsingular 
equilibrium networks. Thus, 

(aj1j2r1 , aj2j1s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

�
⋃m(1) 

r1 

s=1

⋃n(1) 
s1 

l=1 
(aj1j2s, aj2j1l)︸ ︷︷ ︸

XX 

≡ 

⎧ 
⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩ 

(aj1j2m(1) 
r1 

, aj2j11) (aj1j2m(1) 
r1 

, aj2j12) · · · (aj1j2m(1) 
r1 

, aj2j1n(1) 
s1 

) 
(aj1j2(m(1) 

r1 
−1), aj2j11) (aj1j2(m(1) 

r1 
−1), aj2j12) · · ·  (aj1j2(m(1) 

r1 
−1), aj2j1n(1) 

s1 
) 

... 
... · · · ... 

(aj1j21, aj2j11) (aj1j21, aj2j12) · · · (aj1j21, aj2j1n(1) 
s1 

) 

⎫ 
⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎭ 
m(1) 

r1 ×n(1) 
s1 

, 

and 

(aj1j2r2 , aj1j1s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX

�
⋃m(2) 

r2 

s=1

⋃n(2) 
s2 

l=1 
(aj1j2s, aj2j1l)︸ ︷︷ ︸

XX 

≡ 

⎧ 
⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩ 

(aj1j2m(2) 
r2 

, aj2j11) (aj1j2m(2) 
r2 

, aj2j12) · · · (aj1j2m(2) 
r2 

, aj2j1n(2) 
s2 

) 
(aj1j2(m(2) 

r2 
−1), aj2j11) (aj1j2(m(2) 

r2 
−1), aj2j12) · · ·  (aj1j2(m(2) 

r2 
−1), aj2j1n(2) 

s2 
) 

... 
... · · · ... 

(aj1j21, aj2j11) (aj1j21, aj2j12) · · ·  (aj1j21, aj2j1n(2) 
s2 

) 

⎫ 
⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎭ 
m(2) 

r2 ×n(2) 
s2 

. 

From the above definition, the corner singular equilibriums for i = 1, 2 are 
determined by 

((m(i) 
pi )

th XX,(n(i) 
qi )

th XX)
︸ ︷︷ ︸

(m(i) 
pi ,n

(i) 
qi )-XX

�
m(i) 

pi⋃

s=1 

n(i) 
qi⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

, 

((m(i) 
pi )

th XX,(n(i) 
1 )

th XX)
︸ ︷︷ ︸

(m(i) 
pi ,n

(i) 
1 )-XX

�
m(i) 

pi⋃

s=1 

n(i) 
1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

, 

((m(i) 
1 )

th XX,(n(i) 
qi )

th XX)
︸ ︷︷ ︸

(m(i) 
1 ,n

(i) 
qi )-XX

�
m(i) 

1⋃

s=1 

n(i) 
qi⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

,
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((m(i) 
1 )

th XX,(n(i) 
1 )

th XX)
︸ ︷︷ ︸

(m(i) 
1 ,n

(i) 
1 )-XX

�
⋃m(i) 

1 

s=1

⋃n(i) 
1 

l=1 
(aj1j2s, aj2j1l)︸ ︷︷ ︸

XX 

. 

Case III: Consider two dynamical systems with the same equilibriums with locations 
switched (A3,C3) for  i = 1, 2 as 

ẋj1 = aj1j20 
p∏

ri=1 

(xj2 − aj1j2ri )
m(i) 

ri , ẋj2 = aj2j10 
q∏

si=1 

(xj1 − aj2j1si )
n(i) 
si ; 

where 

p∑

ri=1 

m(i) 
ri = 2m1, 

q∑

si=1 

n(i) 
si = 2n1 + 1. 

Consider a dynamical system as a singular equilibrium (B3) as  

ẋj1 = aj1j20(xj2 − aj1j21)2m1 , ẋj2 = aj2j10(xj1 − aj2j11)2n1+1 . 

For ri = 1, 2, · · ·  , p and si = 1, 2, · · ·  , q (i = 1, 2), define two functions as

�
(r1r2) 
j1j2 

= (aj1j2r1 − aj1j2r2 )2 (r1, r2 ∈ {1, 2, · · ·  , p}, r1 �= r2),

�
(s1s2) 
j2j1 = (aj2j1s1 − aj2j1s2 )2 (s1, s2 ∈ {1, 2, · · ·  , q}, s1 �= s2). 

For ri = 1, 2, · · ·  , p and si = 1, 2, · · ·  , q (i = 1, 2), if

�
(r1r2) 
j1j2 

= (aj1j2r1 − aj1j2r2 )2 = 0,

�
(s1s2) 
j2j1 = (aj2j1s1 − aj2j1s2 )2 = 0, 

two equilibriums of (aj1j1r1 , aj2j2s1 ) and (aj1j1r2 , aj2j2s2 ) switching at point (aj1j11, aj2j21) 
with the same order singularity are given through 

(aj1j2r1 , aj2j1s1 )︸ ︷︷ ︸
(m(1) 

r1 ,n
(1) 
s1 )-XX

� (aj1j21, aj2j11)︸ ︷︷ ︸
((2m1),(2n1 + 1))-XX

� (aj1j2r2 , aj2j1s2 )︸ ︷︷ ︸
(m(2) 

r2 ,n
(2) 
s2 )-XX

{
aj1j2r1 � aj1j2r2

∣∣m(1) 
r1 = m(2) 

r2 ; r1, r2 ∈ {1, 2, · · ·  , p}, r1 �= r2
}
,

{
aj2j1s1 � aj2j1s2

∣∣n(1) 
s1 = n(2) 

s2 ; s1, s2 ∈ {1, 2, · · ·  , q}, s1 �= s2
}
, 

and 

aj1j2r1 = aj1j21 − εr1 , aj1j2r2 = aj1j21 + εr2 , 
(aj1j2r1 = aj1j21 + εr1 , aj1j2r2 = aj1j21 − εr2 );
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aj2j1s1 = aj2j11 − εs1 , aj2j1s2 = aj2j11 + εs2 , 
(aj2j1s1 = aj2j11 + εs1 , aj2j1s2 = aj2j11 − εs2 ) 
εr1 , εr2 > 0 and εs1 , εs2 > 0; 
ri = 1, 2, · · ·  , p; si = 1, 2, · · ·  , q (i = 1, 2). 

From case (I), the singular equilibriums can be formed through nonsingular equi-
librium networks as presented in Case (II), and the corner singular equilibriums for 
i = 1, 2 are determined similarly. 

In summary, from the cases (I)–(III), the equilibrium of (x∗
j2 
, x∗

j1 
) = (aj1j21, aj2j11) 

for m = 2m1 and n = 2n1 + 1 has the bifurcation properties as stated in (v1)-(v4) 
through Eqs.(5.71)–(5.94). 

(vi) For m = 2m1 + 1 and n = 2n1, this case is quite similar to (v) for m = 2m1 and 
n = 2n1 + 1, and there are three cases (I)–(III). 

Case I: Consider a dynamical system having a 1-dimensional flow (A1) as  

ẋj1 = aj1j20(xj2 − bj1j21) 
m1∏

s=1 

[(xj2 − a(s) 
j1j2 

)2 + �
(s) 
j1j2

], 

ẋj2 = aj2j10 
n1∏

l=1 

[(xj1 − a(l) 
j2j1 

)2 + �
(l) 
j2j1

]; 

where aj1j21 = bj1j21. Once

�
(s) 
j1j2 

= �j1j2 = 0 (s = 1, 2, · · ·  , m1) and �
(l) 
j2j1 

= �j2j1 = 0 (l = 1, 2, · · ·  , n1), 

if 

aj1j21 = bj1j21 = a(s) 
j1j2 (s = 1, 2, · · ·  , m1) and aj2j11 = a(l) 

j2j1 (l = 1, 2, · · ·  , n1), 

the foregoing differential equations becomes a dynamical system with a singular 
equilibrium (B1) as  

ẋj1 = aj1j20
(
xj2 − aj1j21

)2m1+1 
, ẋj2 = aj2j10

(
xj1 − aj2j11

)2n1 
. 

If

�
(s) 
j1j2 

= �j1j2 + δs (s = 1, 2, · · ·  , m1),

�
(l) 
j2j1 

= �j2j1 + δl (l = 1, 2, · · ·  , n1), 
δs > 0 and δl > 0,
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then 

a(s) 
j1j21, a

(s) 
j1j22 = aj1j21 ± εs, (s = 1, 2, · · ·  , m1), 

a(l) 
j2j11, a

(l) 
j2j22 = aj2j1 ± εl, (l = 1, 2, · · ·  , n2);

{
aj1j21, aj1j22 · · ·  , aj1j2(2m1+1)

} = sort
{
b(s) 
j1j21, a

(s) 
j1j22

∣∣s = 1, 2, · · ·  , m1

}
,

{
aj1j21, aj1j21 · · ·  , aj1j2(2n1)

} = sort
{
a(l) 
j2j11, a

(l) 
j2j12

∣∣l = 1, 2, · · ·  , n1
}
. 

Thus, the differential equation becomes a dynamical system with a non-singular 
equilibrium network (C1) as  

ẋj1 = aj1j20 
2m1+1∏

s=1 

(xj2 − aj1j2s), ẋj2 = aj2j10 
2n1∏

l=1 

(xj1 − aj2j1l). 

From the above bifurcation process analysis, at least, (m1+1)-parameter variations 
in the xj1 -direction and n1-parameter variations in the xj2 -direction are engaged in 
such a bifurcation from a parabola flow to the equilibrium network of (2m1 + 1) × 
(2n1) through the (2m1+1)th-up-parabola and down-parabola bifurcations in the xj1 -
direction and the (2n1)th-increasing-inflection and decreasing-inflection bifurcations 
in the xj2 -direction. With both of them, the higher-order up-parabola and down-
parabola saddle bifurcations are developed. 

Thus, the appearing or vanishing bifurcation route is as follows. 

(aj1j21, ̇xj2 )︸ ︷︷ ︸
XX

� (aj1j21, aj2j11)︸ ︷︷ ︸
((2m1+1),(2n1))-XX

�
2m1+1⋃

s=1 

2n1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

. 

Case II: From Case (I), consider a dynamical system having singular equilibriums 
(A2) as  

ẋj1 = aj1j20 
p1∏

r1=1 

(xj2 − bj1j2r1 )
m(1) 

r1 

l1∏

s=1 

[(xj2 − a(s) 
j1j2 

)2 + �
(s) 
j1j2

]ms , 

ẋj2 = aj2j10 
q1∏

s1=1 

(xj1 − bj2j1s1 )
n(1) 
s1 

l2∏

l=1 

[(xj1 − a(l) 
j2j1 

)2 + �
(l) 
j2j1

]nl ; 

where

{
aj1j2r1

∣∣r1 = 1, 2, · · ·  , p1
} = sort

{
bj1j2r1

∣∣r1 = 1, 2, · · ·  , p1
}
,

{
aj2j1s1

∣∣s1 = 1, 2, · · ·  , q1
} = sort

{
bj2j1s1

∣∣s1 = 1, 2, · · ·  , q1
}
;
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2m1 + 1 − �
p1 
r1=1m

(1) 
r1 = 2�l1 

s=1ms 

with l1-quadratic polynomials without real roots 

and sth-quadratic polynomial with power ms, 

2n1 − �
q1 
s1=1n

(1) 
s1 = 2�l2 

l=1nl 

with l2-quadraitc polynomials without real roots 

and lth-quadratic polynomial with power nl . 

Once

�
(s) 
j1j2 

= 0 (s = 1, 2, · · ·  , l1) and �
(l) 
j2j1 

= 0 (l = 1, 2, · · ·  , l2), 

if 

aj1j21 ≡ aj1j2r1 = a(s) 
j1j2 (r1 = 1, 2, · · ·  , p1; s = 1, 2, · · ·  , l1), 

aj2j11 ≡ aj2j1s1 = a(l) 
j2j1 (s1 = 1, 2, · · ·  , q1; l = 1, 2, · · ·  , l2), 

the foregoing differential equations becomes a dynamical system with a singular 
equilibrium (B2) as  

ẋj1 = aj1j20
(
xj1 − aj1j21

)2m1+1 
, ẋj2 = aj2j10

(
xj2 − aj2j11

)2n1 
. 

If

�
(s) 
j1j2 

= �j1j2 + δs (s = 1, 2, · · ·  , l1),

�
(l) 
j2j1 

= �j2j1 + δl (l = 1, 2, · · ·  , l2), 
δs > 0 and δl > 0, 

then 

a(s) 
j1j21, a

(s) 
j1j22 = aj1j21 ± εs, (s = 1, 2, · · ·  , l1), 

a(l) 
j2j11, a

(l) 
j2j12 = aj2j11 ± εl, (l = 1, 2, · · ·  , l2);

{
aj1j21, aj1j22, · · ·  , aj1j2p2

}

= sort
{
a(s) 
j1j21, a

(s) 
j1j22, · · ·  aj1j2p1; a(s) 

j1j21, a
(s) 
j1j22

∣∣s = 1, 2, · · ·  , l1
}
,

{
aj1j21, aj1j22, · · ·  , aj1j2q2

}

= sort
{
aj1j21, aj1j22, · · ·  , aj1j2q1; a(l) 

j1j21, a
(l) 
j1j22

∣∣l = 1, 2, · · ·  , l2
}
. 

Thus, the differential equation becomes a dynamical system with singular equilib-
riums (C2) as
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ẋj1 = aj1j10 
p2∏

r2=1

(
xj2 − aj1j2r2

)m(2) 
r2 , ẋj2 = aj2j20 

q2∏

s2=1

(
xj1 − aj2j1s2

)n(2) 
s2 ; 

where 

p2∑

r2=1 

m(2) 
r2 = 2m1 + 1, 

q2∑

s2=1 

n(2) 
s2 = 2n1. 

From the above bifurcation process analysis, at least, p2-parameter variations in the 
xj1 -direction and q2-parameter variations in the xj2 -direction are engaged in such a 
bifurcation from a p1 × q1 equilibrium network to a p2 × q2 equilibrium network 
through the (2m1 + 1)th-up-parabola and down-parabola bifurcations in the xj1 -
direction and the (2n1)th-increasing-inflection and decreasing-inflection bifurcations 
in the xj2 -direction. 

Thus, the appearing or vanishing bifurcation route from a p1 × q1 to a p2 × q2 
equilibrium network is expressed as 

p1⋃

r1=1 

q1⋃

s1=1

(
aj1j2r1 , aj2j1s1

)

︸ ︷︷ ︸
(
m(1) 

r1 , n
(1) 
s1

)
-XX

�
(
aj1j21, aj2j11

)

︸ ︷︷ ︸
((2m1+1 ), (2n1))-XX

�
p2⋃

r2=1 

q2⋃

s2=1

(
aj1j2r2 , aj2j1s2

)

︸ ︷︷ ︸
(
m(2) 

r2 , n
(2) 
s2

)
-XX 

. 

From case (I), the singular equilibriums can be formed through nonsingular 
equilibrium networks. Thus, 

(aj1j2r1 , aj2j1s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

�
⋃m(1) 

r1 

s=1

⋃n(1) 
s1 

l=1 
(aj1j2s, aj2j1l)︸ ︷︷ ︸

XX 

≡ 

⎧ 
⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩ 

(aj1j2m(1) 
r1 

, aj2j11) (aj1j2m(1) 
r1 

, aj2j12) · · · (aj1j2m(1) 
r1 

, aj2j1n(1) 
s1 

) 
(aj1j2(m(1) 

r1 −1) , aj2j11) (aj1j2(m(1) 
r1 −1) , aj2j12) · · ·  (aj1j2(m(1) 

r1 −1) , aj2j1n(1) 
s1 

) 
... 

... · · · ... 
(aj1j21, aj2j11) (aj1j21, aj2j12) · · · (aj1j21, aj2j1n(1) 

s1 
) 

⎫ 
⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎭ 
m(1) 

r1 ×n(1) 
s1 

, 

and 

(aj1j2r2 , aj1j1s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX

�
⋃m(2) 

r2 

s=1

⋃n(2) 
s2 

l=1 
(aj1j2s, aj2j1l)︸ ︷︷ ︸

XX
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≡ 

⎧ 
⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩ 

(aj1j2m(2) 
r2 

, aj2j11) (aj1j2m(2) 
r2 

, aj2j12) · · · (aj1j2m(2) 
r2 

, aj2j1n(2) 
s2 

) 
(aj1j2(m(2) 

r2 
−1), aj2j11) (aj1j2(m(2) 

r2 
−1), aj2j12) · · ·  (aj1j2(m(2) 

r2 
−1), aj2j1n(2) 

s2 
) 

... 
... · · · ... 

(aj1j21, aj2j11) (aj1j21, aj2j12) · · ·  (aj1j21, aj2j1n(2) 
s2 

) 

⎫ 
⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎭ 
m(2) 

r2 ×n(2) 
s2 

. 

From the above definition, the corner singular equilibriums for i = 1, 2 are 
determined by 

((m(i) 
pi )

th XX,(n(i) 
qi )

th XX)
︸ ︷︷ ︸

(m(i) 
pi ,n

(i) 
qi )-XX

�
m(i) 

pi⋃

s=1 

n(i) 
qi⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

, 

((m(i) 
pi )

th XX,(n(i) 
1 )

th XX)
︸ ︷︷ ︸

(m(i) 
pi ,n

(i) 
1 )-XX

�
m(i) 

pi⋃

s=1 

n(i) 
1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

, 

((m(i) 
1 )

th XX,(n(i) 
qi1)

th XX)
︸ ︷︷ ︸

(m(i) 
1 ,n

(i) 
qi )-XX

�
m(i) 

1⋃

s=1 

n(i) 
qi⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

, 

((m(i) 
1 )

th XX,(n(i) 
1 )

th XX)
︸ ︷︷ ︸

(m(i) 
1 ,n

(i) 
1 )-XX

�
m(i) 

1⋃

s=1 

n(i) 
1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

. 

Case III: Consider two dynamical systems with the same equilibriums with locations 
switched (A3,C3) for  i = 1, 2 as 

ẋj1 = aj1j20 
p∏

ri=1 

(xj2 − aj1j2ri )
m(i) 

ri , ẋj2 = aj2j10 
q∏

si=1 

(xj1 − aj2j1si )
n(i) 
si ; 

where 

p∑

ri=1 

m(i) 
ri = 2m1 + 1, 

q∑

si=1 

n(i) 
si = 2n1. 

Consider a dynamical system as a singular equilibrium (B3) as  

ẋj1 = aj1j20(xj2 − aj1j21)2m1+1 , ẋj2 = aj2j10(xj1 − aj2j11)2n1 . 

For ri = 1, 2, · · ·  , p and si = 1, 2, · · ·  , q (i = 1, 2), define two functions as
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�
(r1r2) 
j1j2 

= (aj1j2r1 − aj1j2r2 )2 (r1, r2 ∈ {1, 2, · · ·  , p}, r1 �= r2),

�
(s1s2) 
j2j1 

= (aj2j1s1 − aj2j1s2 )2 (s1, s2 ∈ {1, 2, · · ·  , q}, s1 �= s2). 

For ri = 1, 2, · · ·  , p and si = 1, 2, · · ·  , q (i = 1, 2), if

�
(r1r2) 
j1j2 

= (aj1j2r1 − aj1j2r2 )2 = 0,

�
(s1s2) 
j2j1 = (aj2j1s1 − aj2j1s2 )2 = 0, 

two equilibriums of (aj1j1r1 , aj2j2s1 ) and (aj1j1r2 , aj2j2s2 ) switching at point (aj1j11, aj2j21) 
with the same order singularity are given through 

(aj1j2r1 , aj2j1s1 )︸ ︷︷ ︸
(m(1) 

r1 ,n
(1) 
s1 )-XX

� (aj1j21, aj2j11)︸ ︷︷ ︸
((2m1+1),(2n1))-XX

� (aj1j2r2 , aj2j1s2 )︸ ︷︷ ︸
(m(2) 

r2 ,n
(2) 
s2 )-XX 

,

{
aj1j2r1 � aj1j2r2

∣∣m(1) 
r1 = m(2) 

r2 ; r1, r2 ∈ {1, 2, · · ·  , p}, r1 �= r2
}
,

{
aj2j1s1 � aj2j1s2

∣∣n(1) 
s1 = n(2) 

s2 ; s1, s2 ∈ {1, 2, · · ·  , q}, s1 �= s2
}
, 

and 

aj1j2r1 = aj1j21 − εr1 , aj1j2r2 = aj1j21 + εr2 , 
(aj1j2r1 = aj1j21 + εr1 , aj1j2r2 = aj1j21 − εr2 ); 
aj2j1s1 = aj2j11 − εs1 , aj2j1s2 = aj2j11 + εs2 , 
(aj2j1s1 = aj2j11 + εs1 , aj2j1s2 = aj2j11 − εs2 ) 
εr1 , εr2 > 0 and εs1 , εs2 > 0; 
ri = 1, 2, · · ·  , p; si = 1, 2, · · ·  , q (i = 1, 2). 

From case (I), the singular equilibriums can be formed through nonsingular equi-
librium networks as presented in Case (II), and the corner singular equilibriums for 
i = 1, 2 are determined similarly. 

In summary, from the cases (I)-(III), the equilibrium of (x∗
j2 
, x∗

j1 
) = (aj1j21, aj2j11) 

for m = 2m1 + 1 and n = 2n1 has the bifurcation properties as stated in (vi1)-(vi4) 
through Eqs. (5.95)–(5.118). 

(vii) For m = 2m1 and n = 2n1, the bifurcation process is discussed through 
differential equations as follows. There are three cases (I)-(III). 

Case I: Consider a dynamical system having a two-dimensional flow (A1) as  

ẋj1 = aj1j20 
m1∏

s=1 

[(xj2 − a(s) 
j1j2 

)2 + �
(s) 
j1j2

], 

ẋj2 = aj2j10 
n1∏

l=1 

[(xj1 − a(l) 
j2j1 

)2 + �
(l) 
j2j1

].
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Once

�
(s) 
j1j2 

= �j1j2 = 0 (s = 1, 2, · · ·  , m1) and �
(l) 
j2j1 

= �j2j1 = 0 (l = 1, 2, · · ·  , n1), 

if 

aj1j21 = a(s) 
j1j2 

(s = 1, 2, · · ·  , m1) and aj2j11 = a(l) 
j2j1 

(l = 1, 2, · · ·  , n1), 

the foregoing differential equations becomes a dynamical system with a singular 
equilibrium (B1) as  

ẋj1 = aj1j20(xj2 − aj1j21)2m1 , ẋj2 = aj2j10(xj1 − aj2j11)2n1 . 

If

�
(s) 
j1j2 

= �j1j2 + δs (s = 1, 2, · · ·  , m1),

�
(l) 
j2j1 

= �j2j1 + δl (l = 1, 2, · · ·  , n1), 
δs > 0 and δl > 0, 

then 

a(s) 
j1j21, a

(s) 
j1j22 = aj1j21 ± εs, (s = 1, 2, · · ·  , m1), 

a(l) 
j2j11, a

(l) 
j2j12 = aj2j11 ± εl, (l = 1, 2, · · ·  , n1);

{
aj1j21, aj1j22, · · ·  , aj1j2(2m1)

} = sort
{
a(s) 
j1j21, a

(s) 
j1j22

∣∣s = 1, 2, · · ·  , m1

}
,

{
aj2j11, aj2j11, · · ·  , aj2j1(2n1)

} = sort
{
a(l) 
j2j11, a

(l) 
j2j12

∣∣l = 1, 2, · · ·  , n1
}
. 

Thus, the differential equation becomes a dynamical system with a non-singular 
equilibrium network (C1) as  

ẋj1 = aj1j20 
2m1∏

s=1 

(xj2 − aj1j2s), ẋj2 = aj2j10 
2n1∏

l=1 

(xj1 − aj2j1l). 

From the above bifurcation process analysis, at least, m1-parameter variations 
in the xj1 -direction and n1-parameter variations in the xj2 -direction are engaged in 
such a bifurcation from a flow to the equilibrium network of (2m1) × (2n1) through 
the (2m1 + 1)th-up-parabola and down-parabola bifurcations in the xj1 -direction and 
the (2n1)th-increasing-inflection and decreasing-inflection bifurcations in the xj2 -
direction. With both of them, the higher-order double-inflection saddle bifurcations 
are developed. 

Thus, the appearing or vanishing bifurcation route is as follows.
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(ẋj1 , ̇xj2 )︸ ︷︷ ︸
XX

� (aj1j21, aj2j11)︸ ︷︷ ︸
((2m1),(2n1))-XX

�
2m1⋃

s=1 

2n1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

. 

Case II: From Case (I), consider a dynamical system having singular equilibriums 
(A2) as  

ẋj1 = aj1j20 
p1∏

r1=1 

(xj2 − bj1j2r1 )
m(1) 

r1 

l1∏

s=1

[
(xj2 − a(s) 

j1j2 
)2 + �

(s) 
j1j2

]ms 
, 

ẋj2 = aj2j10 
q1∏

s1=1 

(xj1 − bj2j1s1 )
n(1) 
s1 

l2∏

l=1

[
(xj1 − a(l) 

j2j1 
)2 + �

(l) 
j2j1

]nl ; 

where

{
aj1j2r1

∣∣r1 = 1, 2, · · ·  , p1
} = sort

{
bj1j2r1

∣∣r1 = 1, 2, · · ·  , p1
}
,

{
aj2j1s1

∣∣s1 = 1, 2, · · ·  , q1
} = sort

{
bj2j1s1

∣∣s1 = 1, 2, · · ·  , q1
}
; 

2m1 − �
p1 
r1=1m

(1) 
r1 = 2�l1 

s=1ms 

with l1-quadratic polynomials without real roots 

and sth-quadratic polynomial with power ms, 

2n1 − �
q1 
s1=1n

(1) 
s1 = 2�l2 

l=1nl 

with l2-quadraitc polynomials without real roots 

and lth-quadratic polynomial with power nl . 

Once

�
(s) 
j1j2 = 0 (s = 1, 2, · · ·  , l1) and �

(l) 
j2j1 = 0 (l = 1, 2, · · ·  , l2), 

if 

aj1j21 ≡ aj1j2r1 = a(s) 
j1j2 (r1 = 1, 2, · · ·  , p1; s = 1, 2, · · ·  , l1), 

aj2j11 ≡ aj2j1s1 = a(l) 
j2j1 (s1 = 1, 2, · · ·  , q1; l = 1, 2, · · ·  , l2), 

the foregoing differential equations becomes a dynamical system with a singular 
equilibrium (B2) as  

ẋj1 = aj1j20
(
xj1 − aj1j21

)2m1 
, ẋj2 = aj2j10

(
xj2 − aj2j11

)2n1 
. 

If

�
(s) 
j1j2 

= �j1j2 + δs (s = 1, 2, · · ·  , l1),



5.2 Proof of Theorem 5.1 287

�
(l) 
j2j1 

= �j2j1 + δl (l = 1, 2, · · ·  , l2), 
δs > 0 and δl > 0, 

then 

a(s) 
j1j21, a

(s) 
j1j22 = aj1j21 ± εs, (s = 1, 2, · · ·  , l1), 

a(l) 
j2j11, a

(l) 
j2j12 = aj2j11 ± εl, (l = 1, 2, · · ·  , l2);

{
aj1j2 , aj1j22, · · ·  , aj1j2p2

}

= sort
{
aj1j21, aj1j22, · · ·  , aj1j2p1; a(s) 

j1j21, a
(s) 
j1j22

∣∣1, 2 · · ·  , l1
}
,

{
aj2j11, aj2j11, · · ·  , aj2j1q2

}

= sort
{
aj1j21, aj1j22, · · ·  , aj1j2q1; a(l) 

j2j11, a
(l) 
j2j12

∣∣l = 1, 2 · · ·  , l2
}
. 

Thus, the differential equation becomes a dynamical system with singular equilib-
riums (C2) as  

ẋj1 = aj1j10 
p2∏

r2=1

(
xj2 − aj1j2r2

)m(2) 
r2 , ẋj2 = aj2j20 

q2∏

s2=1

(
xj1 − aj2j1s2

)n(2) 
s2 ; 

where 

p2∑

r2=1 

m(2) 
r2 = 2m1, 

q2∑

s2=1 

n(2) 
s2 = 2n1. 

From the above bifurcation process analysis, at least, p2-parameter variations in 
the xj1 -direction and q2-parameter variations in the xj2 -direction are engaged in such 
a bifurcation from a p1 × q1 equilibrium network to a p2 × q2 equilibrium network 
through the (2m1)

th-increasing-inflection and decreasing-inflection bifurcations 
in the xj1 -direction and the (2n1)

th-increasing-inflection and decreasing-inflection 
bifurcations in the xj2 -direction. 

Thus, the appearing or vanishing bifurcation route from a p1 × q1 to a p2 × q2 
equilibrium network is expressed as 

p1⋃

r1=1 

q1⋃

s1=1 

(aj1j2r1 , aj2j1s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

� (aj1j21, aj2j11)︸ ︷︷ ︸
((2m1),(2n1))-XX

�
p2⋃

r2=1 

q2⋃

s2=1 

(aj1j2r2 , aj2j1s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX 

. 

From case (I), the singular equilibriums can be formed through nonsingular 
equilibrium networks. Thus,
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(aj1j2r1 , aj2j1s1 )︸ ︷︷ ︸
(m(1) 

r1 , n
(1) 
s1 )-XX

�
⋃m(1) 

r1 

s=1

⋃n(1) 
s1 

l=1 
(aj1j2s, aj2j1l)︸ ︷︷ ︸

XX 

≡ 

⎧ 
⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩ 

(aj1j2m(1) 
r1 

, aj2j11) (aj1j2m(1) 
r1 

, aj2j12) · · · (aj1j2m(1) 
r1 

, aj2j1n(1) 
s1 

) 
(aj1j2(m(1) 

r1 
−1), aj2j11) (aj1j2(m(1) 

r1 
−1), aj2j12) · · ·  (aj1j2(m(1) 

r1 
−1), aj2j1n(1) 

s1 
) 

... 
... · · · ... 

(aj1j21, aj2j11) (aj1j21, aj2j12) · · · (aj1j21, aj2j1n(1) 
s1 

) 

⎫ 
⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎭ 
m(1) 

r1 ×n(1) 
s1 

, 

and 

(aj1j2r2 , aj1j1s2 )︸ ︷︷ ︸
(m(2) 

r2 , n
(2) 
s2 )-XX

�
⋃m(2) 

r2 

s=1

⋃n(2) 
s2 

l=1 
(aj1j2s, aj2j1l)︸ ︷︷ ︸

XX 

≡ 

⎧ 
⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩ 

(aj1j2m(2) 
r2 

, aj2j11) (aj1j2m(2) 
r2 

, aj2j12) · · · (aj1j2m(2) 
r2 

, aj2j1n(2) 
s2 

) 
(aj1j2(m(2) 

r2 
−1), aj2j11) (aj1j2(m(2) 

r2 
−1), aj2j12) · · ·  (aj1j2(m(2) 

r2 
−1), aj2j1n(2) 

s2 
) 

... 
... · · · ... 

(aj1j21, aj2j11) (aj1j21, aj2j12) · · ·  (aj1j21, aj2j1n(2) 
s2 

) 

⎫ 
⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎭ 
m(2) 

r2 ×n(2) 
s2 

. 

From the above definition, the corner singular equilibriums for i = 1, 2 are 
determined by 

((m(i) 
pi )

th XX,(n(i) 
qi )

th XX)
︸ ︷︷ ︸

(m(i) 
pi ,n

(i) 
qi )-XX

�
m(i) 

pi⋃

s=1 

n(i) 
qi⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

, 

((m(i) 
pi )

th XX,(n(i) 
1 )

th XX)
︸ ︷︷ ︸

(m(i) 
pi ,n

(i) 
1 )-XX

�
m(i) 

pi⋃

s=1 

n(i) 
1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

, 

((m(i) 
1 )

th XX,(n(i) 
qi1)

th XX)
︸ ︷︷ ︸

(m(i) 
1 ,n

(i) 
qi )-XX

�
m(i) 

1⋃

s=1 

n(i) 
qi⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

, 

((m(i) 
1 )

th XX,(n(i) 
1 )

th XX)
︸ ︷︷ ︸

(m(i) 
1 ,n

(i) 
1 )-XX

�
m(i) 

1⋃

s=1 

n(i) 
1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

. 

Case III: Consider two dynamical systems with the same equilibriums with locations 
switched (A3,C3) for  i = 1, 2 as
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ẋj1 = aj1j20 
p∏

ri=1 

(xj2 − aj1j2ri )
m(i) 

ri , ẋj2 = aj2j10 
q∏

si=1 

(xj1 − aj2j1si )
n(i) 
si ; 

where 

p∑

ri=1 

m(i) 
ri = 2m1, 

q∑

si=1 

n(i) 
si = 2n1. 

Consider a dynamical system as a singular equilibrium (B3) as  

ẋj1 = aj1j20(xj2 − aj1j21)2m1 , ẋj2 = aj2j10(xj1 − aj2j11)2n1 . 

For ri = 1, 2, · · ·  , p and si = 1, 2, · · ·  , q (i = 1, 2), define two functions as

�
(r1r2) 
j1j2 

= (aj1j2r1 − aj1j2r2 )2 (r1, r2 ∈ {1, 2, · · ·  , p}, r1 �= r2),

�
(s1s2) 
j2j1 

= (aj2j1s1 − aj2j1s2 )2 (s1, s2 ∈ {1, 2, · · ·  , q}, s1 �= s2). 

For ri = 1, 2, · · ·  , p and si = 1, 2, · · ·  , q (i = 1, 2), if

�
(r1r2) 
j1j2 

= (aj1j2r1 − aj1j2r2 )2 = 0,

�
(s1s2) 
j2j1 

= (aj2j1s1 − aj2j1s2 )2 = 0, 

two equilibriums of (aj1j1r1 , aj2j2s1 ) and (aj1j1r2 , aj2j2s2 ) switching at point (aj1j11, aj2j21) 
with the same order singularity are given through 

(aj1j2r1 , aj2j1s1 )︸ ︷︷ ︸
(m(1) 

r1 ,n
(1) 
s1 )-XX

� (aj1j21, aj2j11)︸ ︷︷ ︸
((2m1),(2n1))-XX

� (aj1j2r2 , aj2j1s2 )︸ ︷︷ ︸
(m(2) 

r2 ,n
(2) 
s2 )-XX 

,

{
aj1j2r1 � aj1j2r2

∣∣m(1) 
r1 = m(2) 

r2 ; r1, r2 ∈ {1, 2, · · ·  , p}, r1 �= r2
}
,

{
aj2j1s1 � aj2j1s2

∣∣n(1) 
s1 = n(2) 

s2 ; s1, s2 ∈ {1, 2, · · ·  , q}, s1 �= s2
}
, 

and 

aj1j2r1 = aj1j21 − εr1 , aj1j2r2 = aj1j21 + εr2 , 
(aj1j2r1 = aj1j21 + εr1 , aj1j2r2 = aj1j21 − εr2 ); 
aj2j1s1 = aj2j11 − εs1 , aj2j1s2 = aj2j11 + εs2 , 
(aj2j1s1 = aj2j11 + εs1 , aj2j1s2 = aj2j11 − εs2 ) 
εr1 , εr2 > 0 and εs1 , εs2 > 0; 
ri = 1, 2, · · ·  , p; si = 1, 2, · · ·  , q (i = 1, 2).
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From case (I), the singular equilibriums can be formed through nonsingular equi-
librium networks as presented in Case (II), and the corner singular equilibriums for 
i = 1, 2 are determined similarly. 

In summary, from the cases (I)-(III), the equilibrium of (x∗
j2 
, x∗

j1 
) = (aj1j21, aj2j11) 

for m = 2m1 and n = 2n1 has the bifurcation properties as stated in (vii1)-(vii4) 
through Eqs. (5.119)–(5.142). 

In the end, Theorem 5.1 is proved. 

5.3 Bifurcations to Homoclinic Networks with Centers 

As in [1], four types of bifurcations are presented for non-singular equilibriums. 

5.3.1 ((2m1 + 1), (2n1 + 1))-Saddle and Center Bifurcations 

Consider a 2-dimensional singular system of the (2m1 + 1) × (2n1 + 1)-type as 

ẋ1 = a110(x2 − a121)2m1+1 , ̇x2 = a220(x1 − a211)2n1+1 . (5.143) 

The first integral manifold is 

1 

2m1 + 2
[
(x2 − a121)2m1+2 − (x20 − a121)2m1+2

]

= 1 

2n1 + 2 
a210 
a120

[
(x1 − a211)2n1+2 − (x10 − a211)2n1+2]. (5.144) 

Phase portraits of the singular equilibriums for the 2-dimensional singular system 
of the ((2m1+1), (2n1+1))-type are presented in Fig. 5.1a–d for (a120 > 0, a210 > 0), 
(a120 < 0, a210 > 0), (a120 > 0, a210 < 0) and (a120 < 0, a210 < 0). 

(a121, a211) = ((2m1+1)th UP+, (2n1+1)th UP+)
︸ ︷︷ ︸

((2m1+1),(2n1 + 1))-positive saddle 

for a120 > 0 and a210 > 0, 

(a121, a211) = ((2m1+1)th DP+, (2n1+1)th DP−)
︸ ︷︷ ︸

((2m1+1),(2n1 + 1))-CCW center 

for a120 < 0 and a210 > 0, 

(a121, a211) = ((2m1+1)th DP−, (2n1+1)th DP+)
︸ ︷︷ ︸

((2m1+1),(2n1 + 1))-CW center 

for a120 > 0 and a210 < 0, 

(a121, a211) = ((2m1+1)th UP−, (2n1+1)th UP−)
︸ ︷︷ ︸

((2m1+1),(2n1 + 1))-negative saddle 

for a120 < 0 and a210 < 0. 

(5.145)



5.3 Bifurcations to Homoclinic Networks with Centers 291

(b)(a) 

(d)(c) 
1x

211a 

2x 

121a 

1x 
211a 

2x 

121a 

1x 
211a 

2x 

121a 

1x
211a 

2x 

121a 

Fig. 5.1 Phase portraits of the ((2m1+1), (2n1+1))-saddles and centers for 2-dimensional systems 
at (x∗

1 , x
∗
2 ) = (a111, a221). a (a120 > 0, a210 > 0), b (a120 < 0, a210 > 0), c (a120 > 0, a210 < 0), 

d (a120 < 0, a210 < 0) 

From the above bifurcations, a polynomial system with (2m1 + 1) × (2n1 + 1)
-non-singular equilibriums exists as 

ẋ1 = a120
∏2m1+1 

s=1 
(x2 − a12s) and ẋ2 = a210

∏2n1+1 

l=1 
(x1 − a21l). (5.146) 

The first integral manifold is given by 

a210
{ 1 

2n1 + 2
[
(x1 − a21l1 )2n1+2 − (x10 − a21l1 )2n1+2

]

+ 
2n1∑

k=1 

1 

2n1 − k + 2 
b21k

[
(x1 − a21l1 )2n1−k+2 − (x10 − a21l1 )2n1−k+2]

}
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= aj1j20
{ 1 

2m1 + 2
[
(x2 − a12s1 )2m1+2 − (x20 − a12s1 )2m1+2

]

+ 
2m1∑

k=1 

1 

2m1 − k + 2 
b12k

[
(x1 − a21s1 )2m1−k+2 − (x10 − a21s1 )2m1−k+2

]}
(5.147) 

where 

b211 = 
2n1+1∑

l2=1,l2 �=l1 

(a21l1 − a21l2 ), 

b212 = 
2n1+1∑

l2,l3=1;l2,l3 �=l1 
(l2<l3)

∏3 

r=2 
(a21l1 − a21lr ), · · ·  , 

b21k = 
2n1+1∑

l2,l3,··· ,lk+1=1; 
l2,l3,··· ,lk+1 �=l1 
(l2<l3<···<lk+1)

∏k+1 

r=2 
(a21l1 − a21lr ), · · ·  , 

b21(2n1) = 
2n1∏

l2=1,l2 �=l1 

(a2l1 − aj2j1l2 ); 

b121 = 
2m1+1∑

s2=1,s2 �=s1 

(a12s1 − a12s2 ), 

b122 = 
2m1+1∑

s2,s3=1;s2,s3 �=s1 
(s2<s3) 

3∏

r=2 

(a12s1 − a12sr ), · · ·  , 

b12k = 
2m1+1∑

s2,s3,··· ,sk+1=1; 
s2,s3,··· ,sk+1 �=s1 
(s2<s3<···<sk+1)

∏k+1 

r=2 
(a12s1 − a12sr ), · · ·  , 

b12(2m1) = 
2m1∏

s1=1,s2 �=s1 

(a12s1 − a12s2 ). (5.148) 

Phase portraits for the 2-dimensional systems near the simple equilibriums of the 
saddles and centers are presented in Fig. 5.2a–d for (a120 > 0, a210 > 0), (a120 < 
0, a210 > 0), (a120 > 0, a210 < 0) and (a120 < 0, a210 < 0). For all cases, the (2m1 + 
1) × (2n1 + 1)-simple equilibriums are based on the ((2m1 + 1), (2n1 + 1))-saddle 
and center bifurcations. 

2m1+1⋃

s=1 

2n1+1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX
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= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(UP+,UP+)
︸ ︷︷ ︸
positive saddle 

· · ·  (DP−,DP+)
︸ ︷︷ ︸

CW center 

(UP+,UP+)
︸ ︷︷ ︸
positive saddle 

(DP+,DP−)
︸ ︷︷ ︸
CCW center 

· · ·  (UP−,UP−)
︸ ︷︷ ︸
negative saddle 

(DP+,DP−)
︸ ︷︷ ︸
CCW center 

... 
... 

... 
... 

(UP+,UP+)
︸ ︷︷ ︸
positive saddle 

· · ·  (DP−,DP+)
︸ ︷︷ ︸

CW center 

(UP+,UP+)
︸ ︷︷ ︸
positive saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2m1+1)×(2n1+1) 

for a120 > 0, a210 > 0; (5.149) 

2m1+1⋃

s=1 

2n1+1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(DP+,DP−)
︸ ︷︷ ︸
CCW center 

· · ·  (UP−,UP−)
︸ ︷︷ ︸
negative saddle 

(DP+,DP−)
︸ ︷︷ ︸
CCW center 

(UP+,UP+)
︸ ︷︷ ︸
positive saddle 

· · ·  (DP−,DP+)
︸ ︷︷ ︸

CW center 

(UP+,UP+)
︸ ︷︷ ︸
positive saddle 

... 
... 

... 
... 

(DP+,DP−)
︸ ︷︷ ︸
CCW center 

· · ·  (UP−,UP−)
︸ ︷︷ ︸
negative saddle 

(DP+,DP−)
︸ ︷︷ ︸
CCW center 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2m1+1)×(2n1+1) 

for a120 < 0, a210 > 0; (5.150) 

2m1+1⋃

s=1 

2n1+1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(DP−,DP+)
︸ ︷︷ ︸

CW center 

· · ·  (UP+,UP+)
︸ ︷︷ ︸
positive saddle 

(DP−,DP+)
︸ ︷︷ ︸

CW center 

(UP−,UP−)
︸ ︷︷ ︸
negative saddle 

· · ·  (DP+,DP−)
︸ ︷︷ ︸
CCW center 

(UP−,UP−)
︸ ︷︷ ︸
negative saddle 

... 
... 

... 
... 

(DP−,DP+)
︸ ︷︷ ︸

CW center 

· · ·  (UP+,UP+)
︸ ︷︷ ︸
positive saddle 

(DP−,DP+)
︸ ︷︷ ︸

CW center 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2m1+1)×(2n1+1) 

for a120 > 0, a210 < 0; (5.151) 

2m1+1⋃

s=1 

2n1+1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX
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= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(UP−,UP−)
︸ ︷︷ ︸
negative saddle 

· · ·  (DP+,DP−)
︸ ︷︷ ︸
CCW center 

(UP−,UP−)
︸ ︷︷ ︸
negative saddle 

(DP−,DP+)
︸ ︷︷ ︸

CW center 

· · ·  (UP+,UP+)
︸ ︷︷ ︸
positive saddle 

(DP−,DP+)
︸ ︷︷ ︸

CW center 
... 

... 
... 

... 
(UP−,UP−)
︸ ︷︷ ︸
negative saddle 

· · ·  (DP+,DP−)
︸ ︷︷ ︸
CCW center 

(UP−,UP−)
︸ ︷︷ ︸
negative saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2m1+1)×(2n1+1) 

for a120 < 0, a210 < 0. (5.152)

5.3.2 ((2m1), (2n1 + 1))-Parabola-Saddle Bifurcations 

Consider a 2-dimensional singular system of the (2m1) × (2n1 + 1)-type as 

ẋ1 = a110(x2 − a121)2m1+1 , ̇x2 = a220(x1 − a211)2n1+1 . (5.153) 

The first integral manifold is 

1 

2m1 + 1
[
(x2 − a121)2m1+1 − (x20 − a121)2m1+1

]

= 1 

2n1 + 2 
a210 
a120

[
(x1 − a211)2n1+2 − (x10 − a211)2n1+2]. (5.154) 

Phase portraits of the singular equilibriums for the 2-dimensional singular system 
of the ((2m1), (2n1 + 1))-type are presented in Fig. 5.3a–d for (a120 > 0, a210 > 0), 
(a120 < 0, a210 > 0), (a120 > 0, a210 < 0) and (a120 < 0, a210 < 0). 

(a121, a211) = ((2m1)
th US,(2n1+1)th UP)︸ ︷︷ ︸

((2m1),(2n1 + 1))-up-parabola upper-saddle 

for a120 > 0 and a210 > 0, 

(a121, a211) = ((2m1)
th LS,(2n1+1)th DP)︸ ︷︷ ︸

((2m1),(2n1 + 1))-down-parabola lower-saddle 

for a120 < 0 and a210 > 0, 

(a121, a211) = ((2m1)
th US,(2n1+1)th DP)︸ ︷︷ ︸

((2m1),(2n1 + 1))-down-parabola upper-saddle 

for a120 > 0 and a210 < 0, 

(a121, a211) = ((2m1)
th LS,(2n1+1)th UP)︸ ︷︷ ︸

((2m1),(2n1 + 1))-down-parabola lower-saddle 

for a120 < 0 and a210 < 0. 

(5.155)

From the above bifurcations, a polynomial system with (2m1) × (2n1 + 1)- non-
singular equilibriums exists as
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(a) 

(b) 
211a

1x 

2x 

121a 

121(2 )na 

112(2 )ma 

121(2 +1)na 

112(2 +1)ma 

211a
1x 

2x 

121a 

121(2 )na 

112(2 )ma 

121(2 +1)na 

112(2 +1)ma 

Fig. 5.2 Phase portraits for 2-dimensional systems with x∗
1 = a211, a212, · · ·  , a21(2m1+1) and x∗

2 = 
a211, a212, · · ·  , a21(2n1+1). The four networks of saddles and centers: a (a120 > 0, a210 > 0), 
b (a120 < 0, a210 > 0), c (a120 > 0, a210 < 0), d (a120 < 0, a210 < 0)
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(c) 

(d) 
211a

1x 

2x 

121a 

121(2 )na 

112(2 )ma 

121(2 +1)na 

112(2 +1)ma 

211a
1x 

2x 

121a 

121(2 )na 

112(2 )ma 

121(2 +1)na 

112(2 +1)ma 

Fig. 5.2 (continued)
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(b)(a) 

(d)(c) 
1x

211a 

2x 

121a 

1x
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1x
211a 

2x 
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Fig. 5.3 Phase portraits of the ((2m1), (2n1 + 1))-parabola-saddles for 2-dimensional systems at 
(x∗

1 , x
∗
2 ) = (a121, a211). a (a120 > 0, a210 > 0), b (a120 < 0, a210 > 0), c (a120 > 0, a210 < 0), 

d (a120 < 0, a210 < 0)

ẋ1 = a120
∏2m1 

s=1 
(x2 − a12s) and ẋ2 = a210

∏2n1+1 

l=1 
(x1 − a21l). (5.156) 

The first integral manifold is given by 

a210
{ 1 

2n1 + 2
[
(x1 − a21l1 )2n1+2 − (x10 − a21l1 )2n1+2

]

+ 
2n1∑

k=1 

1 

2n1 − k + 2 
b21k

[
(x1 − a21l1 )2n1−k+2 − (x10 − a21l1 )2n1−k+2

]}

= aj1j20
{ 1 

2m1 + 1
[
(x2 − a12s1 )2m1+1 − (x20 − a12s1 )2m1+1

]
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+ 
2m1−1∑

k=1 

1 

2m1 − k + 1 
b12k

[
(x1 − a21s1 )2m1−k+1 − (x10 − a21s1 )2m1−k+1

]}

(5.157) 

where 

b211 = 
2n1+1∑

l2=1,l2 �=l1 

(a21l1 − a21l2 ), 

b212 = 
2n1+1∑

l2,l3=1;l2,l3 �=l1 
(l2<l3) 

3∏

r=2 

(a21l1 − a21lr ), · · ·  , 

b21k = 
2n1+1∑

l2,l3,··· ,lk+1=1; 
l2,l3,··· ,lk+1 �=l1 
(l2<l3<···<lk+1)

∏k+1 

r=2 
(a21l1 − a21lr ), · · ·  , 

b21(2n1) = 
2n1∏

l2=1,l2 �=l1 

(a2l1 − aj2j1l2 ); 

b121 = 
2m1∑

s2=1,s2 �=s1 

(a12s1 − a12s2 ), 

b122 = 
2m1∑

s2,s3=1;s2,s3 �=s1 
(s2<s3) 

3∏

r=2 

(a12s1 − a12sr ), · · ·  , 

b12k = 
2m1∑

s2,s3,··· ,sk+1=1; 
s2,s3,··· ,sk+1 �=s1 
(s2<s3<···<sk+1)

∏k+1 

r=2 
(a12s1 − a12sr ), · · ·  , 

b12(2m1) = 
2m1−1∏

s1=1,s2 �=s1 

(a12s1 − a12s2 ). (5.158) 

Phase portraits for the 2-dimensional systems near the simple equilibriums of the 
saddles and centers are presented in Fig. 5.4a–d for (a120 > 0, a210 > 0), (a120 < 
0, a210 > 0), (a120 > 0, a210 < 0) and (a120 < 0, a210 < 0). For all cases, the 
((2m1), (2n1+1))-simple equilibriums are based on the ((2m1+1), (2n1))-parabola-
saddle bifurcations. 

2m1⋃

s=1 

2n1+1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX
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= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(UP+,UP+)
︸ ︷︷ ︸
positive saddle 

· · ·  (DP−,DP+)
︸ ︷︷ ︸

CW center 

(UP+,UP+)
︸ ︷︷ ︸
positive saddle 

(DP+,DP−)
︸ ︷︷ ︸
CCW center 

· · ·  (UP−,UP−)
︸ ︷︷ ︸
negative saddle 

(DP+,DP−)
︸ ︷︷ ︸
CCW center 

... 
... 

... 
... 

(DP+,DP−)
︸ ︷︷ ︸
CCW center 

· · ·  (UP−,UP−)
︸ ︷︷ ︸
negative saddle 

(DP+,DP−)
︸ ︷︷ ︸
CCW center 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2m1)×(2n1+1) 

for a120 > 0, a210 > 0; (5.159) 

2m1⋃

s=1 

2n1+1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(DP+,DP−)
︸ ︷︷ ︸
CCW center 

· · ·  (UP−,UP−)
︸ ︷︷ ︸
negative saddle 

(DP+,DP−)
︸ ︷︷ ︸
CCW center 

(UP+,UP+)
︸ ︷︷ ︸
positive saddle 

· · ·  (DP−,DP+)
︸ ︷︷ ︸

CW center 

(UP+,UP+)
︸ ︷︷ ︸
positive saddle 

... 
... 

... 
... 

(UP+,UP+)
︸ ︷︷ ︸
positive saddle 

· · ·  (DP−,DP+)
︸ ︷︷ ︸

CW center 

(UP+,UP+)
︸ ︷︷ ︸
positive saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2m1)×(2n1+1) 

for a120 < 0, a210 > 0; (5.160) 

2m1⋃

s=1 

2n1+1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(DP−,DP+)
︸ ︷︷ ︸

CW center 

· · ·  (UP+,UP+)
︸ ︷︷ ︸
positive saddle 

(DP−,DP+)
︸ ︷︷ ︸

CW center 

(UP−,UP−)
︸ ︷︷ ︸
negative saddle 

· · ·  (DP+,DP−)
︸ ︷︷ ︸
CCW center 

(UP−,UP−)
︸ ︷︷ ︸
negative saddle 

... 
... 

... 
... 

(UP−,UP−)
︸ ︷︷ ︸
negative saddle 

· · ·  (DP+,DP−)
︸ ︷︷ ︸
CCW center 

(UP−,UP−)
︸ ︷︷ ︸
negative saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2m1)×(2n1+1) 

for a120 > 0, a210 < 0; (5.161) 

2m1⋃

s=1 

2n1+1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX
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= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(UP−,UP−)
︸ ︷︷ ︸
negative saddle 

· · ·  (DP+,DP−)
︸ ︷︷ ︸
CCW center 

(UP−,UP−)
︸ ︷︷ ︸
negative saddle 

(DP−,DP+)
︸ ︷︷ ︸

CW center 

· · ·  (UP+,UP+)
︸ ︷︷ ︸
positive saddle 

(DP−,DP+)
︸ ︷︷ ︸

CW center 
... 

... 
... 

... 
(DP−,DP+)
︸ ︷︷ ︸

CW center 

· · ·  (UP+,UP+)
︸ ︷︷ ︸
positive saddle 

(DP−,DP+)
︸ ︷︷ ︸

CW center 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2m1)×(2n1+1) 

for a120 < 0, a210 < 0. (5.162)

5.3.3 ((2m1 + 1), (2n1))-Parabola-Saddle Bifurcations 

Consider a 2-dimensional singular system of the (2m1 + 1) × (2n1)-type as 

ẋ1 = a110(x2 − a121)2m1+1 , ̇x2 = a220(x1 − a211)2n1 . (5.163) 

The first integral manifold is 

1 

2m1 + 2
[
(x2 − a121)2m1+2 − (x20 − a121)2m1+2

]

= 1 

2n1 + 1 
a210 
a120

[
(x1 − a211)2n1+1 − (x10 − a211)2n1+1

]
. (5.164) 

Phase portraits of the singular equilibriums for the 2-dimensional singular system 
of the ((2m1 + 1), (2n1))-type are presented in Fig. 5.5a–d for (a120 > 0, a210 > 0), 
(a120 < 0, a210 > 0), (a120 > 0, a210 < 0) and (a120 < 0, a210 < 0). 

(a121, a211) = ((2m1+1)th UP,(2n1)
th US)︸ ︷︷ ︸

((2m1+1),(2n1))-up-parabola upper-saddle 

for a120 > 0 and a210 > 0, 

(a121, a211) = ((2m1+1)th DP,(2n1)
th US)︸ ︷︷ ︸

((2m1+1),(2n1)-down-parabola upper-saddle 

for a120 < 0 and a210 > 0, 

(a121, a211) = ((2m1+1)th DP,(2n1)
th LS)︸ ︷︷ ︸

((2m1+1),(2n1))-down-parabola lower-saddle 

for a120 > 0 and a210 < 0, 

(a121, a211) = ((2m1+1)th UP,(2n1)
th LS)︸ ︷︷ ︸

((2m1+1),(2n1))-up-parabola lower-saddle 

for a120 < 0 and a210 < 0. 

(5.165)

From the above bifurcations, a non-singular system with (2m1 + 1) × (2n1)-
equilibriums exists as
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(a) 

(b) 
211a

1x 

2x 

121a 

121(2 )na 

112(2 –1)ma 

121(2 +1)na 

112(2 )ma 

211a
1x 

2x 

121a 

121(2 )na 

112(2 –1)ma 

121(2 +1)na 

112(2 )ma 

Fig. 5.4 Phase portraits for 2-dimensional systems with x∗
1 = a211, a212, · · ·  , a21(2n1+1) and 

x∗
2 = a121, a122, · · ·  , a12(2m1). The four networks of saddles and centers: a (a120 > 0, a210 > 0), 
b (a120 < 0, a210 > 0), c (a120 > 0, a210 < 0), d (a120 < 0, a210 < 0)

ẋ1 = a120 
2m1+1∏

s=1 

(x2 − a12s) and ẋ2 = a210 
2n1∏

l=1 

(x1 − a21l). (5.166) 

The first integral manifold is given by
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(c) 

(d) 211a
1x 

2x 

121a 

121(2 )na 

112(2 –1)ma 

121(2 +1)na 

112(2 )ma 

211a
1x 

2x 

121a 

121(2 )na 

112(2 –1)ma 

121(2 +1)na 

112(2 )ma 

Fig. 5.4 (continued)
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(b)(a) 

(d)(c) 
1x

211a 

2x 

121a 

1x
211a 

2x 

121a 

1x
211a 

2x 

121a 

1x
211a 

2x 

121a 

Fig. 5.5 Phase portraits of the ((2m1 + 1), (2n1))-parabola-saddles for 2-dimensional systems at 
(x∗

1 , x
∗
2 ) = (a111, a221). a (a120 > 0, a210 > 0), b (a120 < 0, a210 > 0), c (a120 > 0, a210 < 0), 

d (a120 < 0, a210 < 0)

a210
{ 1 

2n1 + 1
[
(x1 − a21l1 )2n1+1 − (x10 − a21l1 )2n1+1

]

+ 
2n1−1∑

k=1 

1 

2n1 − k + 1 
b21k

[
(x1 − a21l1 )2n1−k+1 − (x10 − a21l1 )2n1−k+1

]}

= aj1j20
{ 1 

2m1 + 2
[
(x2 − a12s1 )2m1+2 − (x20 − a12s1 )2m1+2

]

+ 
2m1∑

k=1 

1 

2m1 − k + 2 
b12k

[
(x1 − a21s1 )2m1−k+2 − (x10 − a21s1 )2m1−k+2

]}
(5.167) 

where
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b211 = 
2n1∑

l2=1,l2 �=l1 

(a21l1 − a21l2 ), 

b212 = 
2n1∑

l2,l3=1;l2,l3 �=l1 
(l2<l3) 

3∏

r=2 

(a21l1 − a21lr ), · · ·  , 

b21k = 
2n1∑

l2,l3,··· ,lk+1=1; 
l2,l3,··· ,lk+1 �=l1 
(l2<l3<···<lk+1) 

k+1∏

r=2 

(a21l1 − a21lr ), · · ·  , 

b21(2n1) = 
2n1−1∏

l2=1,l2 �=l1 

(a2l1 − aj2j1l2 ); 

b121 = 
2m1+1∑

s2=1,s2 �=s1 

(a12s1 − a12s2 ), 

b122 = 
2m1+1∑

s2,s3=1;s2,s3 �=s1 
(s2<s3)

∏3 

r=2 
(a12s1 − a12sr ), · · ·  , 

b12k = 
2m1+1∑

s2,s3,··· ,sk+1=1; 
s2,s3,··· ,sk+1 �=s1 
(s2<s3<···<sk+1)

∏k+1 

r=2 
(a12s1 − a12sr ), · · ·  , 

b12(2m1) = 
2m1∏

s1=1,s2 �=s1 

(a12s1 − a12s2 ). (5.168) 

Phase portraits for the 2-dimensional systems near the simple equilibriums of the 
saddles and centers are presented in Fig. 5.6a–d for (a120 > 0, a210 > 0), (a120 < 
0, a210 > 0), (a120 > 0, a210 < 0) and (a120 < 0, a210 < 0). For all cases, the ((2m1+ 
1)× (2n1))-simple equilibriums are based on the ((2m1+1), (2n1))-parabola-saddle 
bifurcations.
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2m1+1⋃

s=1 

2n1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(DP−,DP+)
︸ ︷︷ ︸

CW center 

· · ·  (DP−,DP+)
︸ ︷︷ ︸

CW center 

(UP+,UP+)
︸ ︷︷ ︸
positive saddle 

(UP−,UP−)
︸ ︷︷ ︸
negative saddle 

· · ·  (UP−,UP−)
︸ ︷︷ ︸
negative saddle 

(DP+,DP−)
︸ ︷︷ ︸
CCW center 

... 
... 

... 
... 

(DP−,DP+)
︸ ︷︷ ︸

CW center 

· · ·  (DP−,DP+)
︸ ︷︷ ︸

CW center 

(UP+,UP+)
︸ ︷︷ ︸
positive saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2m1+1)×(2n1) 

for a120 > 0, a210 > 0; (5.169) 

2m1+1⋃

s=1 

2n1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(UP−,UP−)
︸ ︷︷ ︸
negative saddle 

· · ·  (UP−,UP−)
︸ ︷︷ ︸
negative saddle 

(DP+,DP−)
︸ ︷︷ ︸
CCW center 

(DP−,DP+)
︸ ︷︷ ︸

CW center 

· · ·  (DP−,DP+)
︸ ︷︷ ︸

CW center 

(UP+,UP+)
︸ ︷︷ ︸
positive saddle 

... 
... 

... 
... 

(UP−,UP−)
︸ ︷︷ ︸
negative saddle 

· · ·  (UP−,UP−)
︸ ︷︷ ︸
negative saddle 

(DP+,DP−)
︸ ︷︷ ︸
CCW center 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2m1+1)×(2n1) 

for a120 < 0, a210 > 0; (5.170) 

2m1+1⋃

s=1 

2n1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(UP+,UP+)
︸ ︷︷ ︸
positive saddle 

· · ·  (UP+,UP+)
︸ ︷︷ ︸
positive saddle 

(DP−,DP+)
︸ ︷︷ ︸

CW center 

(DP+,DP−)
︸ ︷︷ ︸
CCW center 

· · ·  (DP+,DP−)
︸ ︷︷ ︸
CCW center 

(UP−,UP−)
︸ ︷︷ ︸
negative saddle 

... 
... 

... 
... 

(UP+,UP+)
︸ ︷︷ ︸
positive saddle 

· · ·  (UP+,UP+)
︸ ︷︷ ︸
positive saddle 

(DP−,DP+)
︸ ︷︷ ︸

CW center 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2m1+1)×(2n1) 

for a120 > 0, a210 < 0; (5.171)
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2m1+1⋃

s=1 

2n1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(DP+,DP−)
︸ ︷︷ ︸
CCW center 

· · ·  (DP+,DP−)
︸ ︷︷ ︸
CCW center 

(UP−,UP−)
︸ ︷︷ ︸
negative saddle 

(UP+,UP+)
︸ ︷︷ ︸
positive saddle 

· · ·  (UP+,UP+)
︸ ︷︷ ︸
positive saddle 

(DP−,DP+)
︸ ︷︷ ︸

CW center 
... 

... 
... 

... 
(DP+,DP−)
︸ ︷︷ ︸
CCW center 

· · ·  (DP+,DP−)
︸ ︷︷ ︸
CCW center 

(UP−,UP−)
︸ ︷︷ ︸
negative saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2m1+1)×(2n1) 

for a120 < 0, a210 < 0. (5.172)

5.3.4 ((2m1), (2n1))-Double-Inflection-Saddle Bifurcations 

Consider a 2-dimensional singular system of the (2m1) × (2n1)-type as 

ẋ1 = a110(x2 − a121)2m1 , ̇x2 = a220(x1 − a211)2n1 . (5.173) 

The first integral manifold is 

1 

2m1 + 1
[
(x2 − a121)2m1+1 − (x20 − a121)2m1+1

]

= 1 

2n1 + 1 
a210 
a120

[
(x1 − a211)2n1+1 − (x10 − a211)2n1+1

]
. (5.174) 

Phase portraits of the singular equilibriums for the 2-dimensional singular system 
of the ((2m1), (2n1))-type are presented in Fig. 5.7a–d for (a120 > 0, a210 > 0), 
(a120 < 0, a210 > 0), (a120 > 0, a210 < 0) and (a120 < 0, a210 < 0). 

(a121, a211) = ((2m1)
th II+, (2n1)

th II+)
︸ ︷︷ ︸

((2m1),(2n1))-double-inflection saddle 

for a120 > 0 and a210 > 0, 

(a121, a211) = ((2m1)
th DI+, (2n1)

th DI−)
︸ ︷︷ ︸
((2m1),(2n1)-double-inflection saddle 

for a120 < 0 and a210 > 0, 

(a121, a211) = ((2m1)
th DI−, (2n1)

th DI+)
︸ ︷︷ ︸

((2m1),(2n1))-double-inflection saddle 

for a120 > 0 and a210 < 0, 

(a121, a211) = ((2m1)
th II−, (2n1)

th II−)
︸ ︷︷ ︸

((2m1),(2n1))-double-inflection saddle 

for a120 < 0 and a210 < 0. (5.175)
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(a) 

(b) 
211a

1x 

2x 

121a 

121(2 –1)na 

112(2 )ma 

121(2 )na 

112(2ma 

211a
1x 

2x 

121a 

121(2 –1)na 

112(2 )ma 

121(2 )na 

112(2 +1) 

+1) 

ma 

Fig. 5.6 Phase portraits for 2-dimensional systems with x∗
1 = a211, a212, · · ·  , a21(2m1+1) and x∗

2 = 
a211, a212, · · ·  , a21(2n1). The four networks of saddles and centers: a (a120 > 0, a210 > 0), b (a120 < 
0, a210 > 0), c (a120 > 0, a210 < 0), d (a120 < 0, a210 < 0)
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(c) 

(d) 
211a

1x 

2x 

121a 

121(2 –1)na 

112(2 )ma 

121(2 )na 

112(2 +1)ma 

211a
1x 

2x 

121a 

121(2 –1)na 

112(2 )ma 

121(2 )na 

112(2 +1)ma 

Fig. 5.6 (continued)

From the above bifurcations, there is a non-singular system with (2m1) × (2n1)-
equilibriums as 

ẋ1 = a120 
2m1∏

s=1 

(x2 − a12s) and ẋ2 = a210 
2n1∏

l=1 

(x1 − a21l). (5.176)
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(b)(a) 

(d)(c) 
1x
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2x 

121a 

1x
211a 

2x 

121a 

Fig. 5.7 Phase portraits of the ((2m1), (2n1))-double-inflection saddles for 2-dimensional systems 
at (x∗

1 , x
∗
2 ) = (a111, a221). a (a120 > 0, a210 > 0), b (a120 < 0, a210 > 0), c (a120 > 0, a210 < 0), 

d (a120 < 0, a210 < 0)

The first integral manifold is given by 

a210
{ 1 

2n1 + 1
[
(x1 − a21l1 )2n1+1 − (x10 − a21l1 )2n1+1

]

+ 
2n1−1∑

k=1 

1 

2n1 − k + 1 
b21k

[
(x1 − a21l1 )2n1−k+1 − (x10 − a21l1 )2n1−k+1

]}

= aj1j20
{ 1 

2m1 + 1
[
(x2 − a12s1 )2m1+1 − (x20 − a12s1 )2m1+1]
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+ 
2m1−1∑

k=1 

1 

2m1 − k + 1 
b12k

[
(x1 − a21s1 )2m1−k+1 − (x10 − a21s1 )2m1−k+1

]}

(5.177) 

where 

b211 = 
2n1∑

l2=1,l2 �=l1 

(a21l1 − a21l2 ), 

b212 = 
2n1∑

l2,l3=1;l2,l3 �=l1 
(l2<l3) 

3∏

r=2 

(a21l1 − a21lr ), · · ·  , 

b21k = 
2n1∑

l2,l3,··· ,lk+1=1; 
l2,l3,··· ,lk+1 �=l1 
(l2<l3<···<lk+1) 

k+1∏

r=2 

(a21l1 − a21lr ), · · ·  , 

b21(2n1) = 
2n1−1∏

l2=1,l2 �=l1 

(a2l1 − aj2j1l2 ); 

b121 = 
2m1∑

s2=1,s2 �=s1 

(a12s1 − a12s2 ), 

b122 = 
2m1∑

s2,s3=1;s2,s3 �=s1 
(s2<s3) 

3∏

r=2 

(a12s1 − a12sr ), · · ·  , 

b12k = 
2m1∑

s2,s3,··· ,sk+1=1; 
s2,s3,··· ,sk+1 �=s1 
(s2<s3<···<sk+1)

∏k+1 

r=2 
(a12s1 − a12sr ), · · ·  , 

b12(2m1) = 
2m1−1∏

s1=1,s2 �=s1 

(a12s1 − a12s2 ). (5.178)

Phase portraits for the 2-dimensional systems near the simple equilibriums of the 
saddles and centers are presented in Fig. 5.8a–d for (a120 > 0, a210 > 0), (a120 < 
0, a210 > 0), (a120 > 0, a210 < 0) and (a120 < 0, a210 < 0). For all cases, the 
(2m1)×(2n1)-simple equilibriums are based on the ((2m1), (2n1))-double-inflection 
saddle bifurcations.
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(a) 

(b) 
211a

1x 

2x 

121a 

121(2 –1)na 

112(2 –1)ma 

121(2 )na 

112(2 )ma 

211a
1x 

2x 

121a 

121(2 –1)na 

112(2 –1)ma 

121(2 )na 

112(2 )ma 

Fig. 5.8 Phase portraits for 2-dimensional systems with x∗
1 = a211, a212, · · ·  , a21(2m1) and x

∗
2 = 

a211, a212, · · ·  , a21(2n1). The four networks of saddles and centers: a (a120 > 0, a210 > 0), b (a120 < 
0, a210 > 0), c (a120 > 0, a210 < 0), d (a120 < 0, a210 < 0)
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(c) 

(d) 211a
1x 

2x 

121a 

121(2 –1)na 

112(2 –1)ma 

121(2 )na 

112(2 )ma 

211a
1x 

2x 

121a 

121(2 –1)na 

112(2 –1)ma 

121(2 )na 

112(2 )ma 

Fig. 5.8 (continued)
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2m1⋃

s=1 

2n1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(DP−,DP+)
︸ ︷︷ ︸

CW center 

· · ·  (DP−,DP+)
︸ ︷︷ ︸

CW center 

(UP+,UP+)
︸ ︷︷ ︸
positive saddle 

(UP−,UP−)
︸ ︷︷ ︸
negative saddle 

· · ·  (UP−,UP−)
︸ ︷︷ ︸
negative saddle 

(DP+,DP−)
︸ ︷︷ ︸
CCW center 

... 
... 

... 
... 

(UP−,UP−)
︸ ︷︷ ︸
negative saddle 

· · ·  (UP−,UP−)
︸ ︷︷ ︸
negative saddle 

(DP+,DP−)
︸ ︷︷ ︸
CCW center 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2m1)×(2n1) 

for a120 > 0, a210 > 0; (5.179) 

2m1⋃

s=1 

2n1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(UP−,UP−)
︸ ︷︷ ︸
negative saddle 

· · ·  (UP−,UP−)
︸ ︷︷ ︸
negative saddle 

(DP+,DP−)
︸ ︷︷ ︸
CCW center 

(DP−,DP+)
︸ ︷︷ ︸

CW center 

· · ·  (DP−,DP+)
︸ ︷︷ ︸

CW center 

(UP+,UP+)
︸ ︷︷ ︸
positive saddle 

... 
... 

... 
... 

(DP−,DP+)
︸ ︷︷ ︸

CW center 

· · ·  (DP−,DP+)
︸ ︷︷ ︸

CW center 

(UP+,UP+)
︸ ︷︷ ︸
positive saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2m1+1)×(2n1) 

for a120 < 0, a210 > 0; (5.180) 

2m1⋃

s=1 

2n1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(UP+,UP+)
︸ ︷︷ ︸
positive saddle 

· · ·  (UP+,UP+)
︸ ︷︷ ︸
positive saddle 

(DP−,DP+)
︸ ︷︷ ︸

CW center 

(DP+,DP−)
︸ ︷︷ ︸
CCW center 

· · ·  (DP+,DP−)
︸ ︷︷ ︸
CCW center 

(UP−,UP−)
︸ ︷︷ ︸
negative saddle 

... 
... 

... 
... 

(DP+,DP−)
︸ ︷︷ ︸
CCW center 

· · ·  (DP+,DP−)
︸ ︷︷ ︸
CCW center 

(UP−,UP−)
︸ ︷︷ ︸
negative saddle 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2m1)×(2n1) 

for a120 > 0, a210 < 0; (5.181) 

2m1⋃

s=1 

2n1⋃

l=1 

(aj1j2s, aj2j1l)︸ ︷︷ ︸
XX 

= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

(DP+,DP−)
︸ ︷︷ ︸
CCW center 

· · ·  (DP+,DP−)
︸ ︷︷ ︸
CCW center 

(UP−,UP−)
︸ ︷︷ ︸
negative saddle 

(UP+,UP+)
︸ ︷︷ ︸
positive saddle 

· · ·  (UP+,UP+)
︸ ︷︷ ︸
positive saddle 

(DP−,DP+)
︸ ︷︷ ︸

CW center 
... 

... 
... 

... 
(UP+,UP+)
︸ ︷︷ ︸
positive saddle 

· · ·  (UP+,UP+)
︸ ︷︷ ︸
positive saddle 

(DP−,DP+)
︸ ︷︷ ︸

CW center 

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
(2m1)×(2n1) 

for a120 < 0, a210 < 0. (5.182)
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