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Message from the Programme Chairs

The International Conference on Complex Networks—CompleNet was proposed in
2008, and the first workshop took place in 2009 in Catania (Italy). The initiative was
led by Ronaldo Menezes (Department of Computer Science, University of Exeter,
UK, formerly at the BioComplex Laboratory, Florida Institute of Technology, USA)
and Giuseppe Mangioni (Dipartimento di Ingegneria Elettrica, Elettronica e Infor-
matica, Universita di Catania, Italy). CompleNet brings together researchers from
various areas related to Complex Networks (Network Science), offering both a plat-
form for full paper publications in the conference proceedings and an opportunity
to present abstracts of ongoing research. This dual format makes the conference
appealing to researchers seeking peer-reviewed publication outlets as well as those
wanting to share and discuss their current work published in other venues (or on-
going). From biology to urban systems, from economics to social systems, complex
networks are becoming pervasive in many fields of science. It is the interdisciplinary
nature of complex networks that CompleNet aims to grasp. CompleNet 2025 is the
16th event in the series, and has been hosted by the Federal University of Ceara at
a historical venue, Casa José Alencar in Fortaleza, from April 22nd to April 25th,
2025.

The present book includes the peer-reviewed list of works presented at CompleNet
2025. We received 111 submissions from 16 countries. Each submission was
reviewed by at least three members of the Programme Committee. Acceptance
was determined on the relevance to the symposium themes, clarity of presenta-
tion, originality and accuracy of results and proposed solutions. After the review
process, 11 papers were selected for inclusion in this book. These contributions
belong to several topics related to complex networks such as Computational Social
Science, Dynamics on and of Networks, Ecological Networks, Epidemic Modelling
in Networks, Network Algorithms, Network Evolution and Growth, Applications of
Networks, Network Theory and Models, and Networked Medicine.

In the following, we provide a brief summary of each contribution appearing
in this book in order of appearance. Morais and Interian (Chapter “A Simple and
Flexible Algorithm to Generate Real-World Networks™) propose a novel algorithm
for generating networks with suitable average distances and clustering coefficients. In
particular, the algorithm leverages only local information on the network’s topology.
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vi Message from the Programme Chairs

Trindade, Dreveton, and Figueiredo (Chapter “A Framework for Efficient Estimation
of Closeness Centrality and Eccentricity in Large Networks”) introduce a new frame-
work for calculating node closeness and eccentricity in large networks using an
anchor-based approximation. Silva, Santana, Menezes, and Bastos-Filho (Chapter
“Network-Centric Analysis of Memetic Operators and Communication Topologies
for Swarm Intelligence Algorithms™) apply network science to compare various
Particle Swarm Optimization (PSO) variants, demonstrating that memetic operators
and communication topologies play a crucial role in the PSO performance. Silva,
Silva, Bastos-Filho, Rosa, Albuquerque, Rodrigues, Tahara, Roisman and Moscav-
itch (Chapter “A Hybrid Framework for Quantifying and Analyzing the Structural
Properties of Human Retinal Vessel Networks”) apply Network Science to analyse
the structure of retinal vessel networks. In particular, by mapping each network into
an array (whose components are the network’s topological descriptors) the authors
cluster networks trying to identify potential biomarkers for diseases such as diabetes
and hypertension. Costa, Ribeiro, and Neto (Chapter “An Approach Based on
Networks and Machine Learning for Gastric Cancer Treatment Recommendation”)
leverage network science and machine learning to extract insights into gastric cancer,
contributing to improved treatment strategies by developing a precision medicine/
treatment approach. Moreover, the algorithm is tested on real case scenarios from
gastric oncology clinical practice in Brazil. Cavalcante Basilio and Figueiredo
(Chapter “Population Dynamics in the Global Coral-Dymbiont Network Under
Temperature Variations”) present an ecological model of population dynamics occur-
ring between corals and zooxanthellae algae (symbiont) species accounting for the
empirical structure of the coral-symbiont bipartite network, whose features are
sensible to recurrent warming events. The results reveal that the nodes’ degree plays a
significant role in population growth after successive warming events, with generalist
species displaying higher levels of growth across all ocean regions analysed. Lima and
Atman (Chapter “Dengue Serotypes Cyclicity Evidenced by the Impact-Frequency
Histogram of the Visibility Graph™) apply the visibility graph approach to convert
time-series of dengue disease incidence into networks. They consider data of two
Brazilian cities: Rio de Janeiro and Belo Horizonte. They introduce an impact-
frequency (a proxy for the incidence’s variation over time) histogram protocol to
evaluate cyclic dengue patterns. Then, they analyse the empirical time series of
incidence and estimate from them the period for dengue’s re-infestation. Santos,
Pereira, Murari, Filho, and Cunha (Chapter “The Brazilian Maritime Network During
the COVID-19 Pandemic: Analysis of Topologies and Impacts on Connectivity”)
examine the variations of the topological features of the Brazilian maritime network
during the COVID-19 pandemic by leveraging data from the Automatic Identifica-
tion System, which monitors the movements of ships between Brazilian ports. The
results highlight the strengthening of regional hubs (e.g., Manaus and Suape), a redis-
tribution of cargo flows, a decrease of the network’s modularity, and an increase of
the average path length (i.e., higher time and costs). Taveira, Buarque de Lima Neto,
and Menezes (Chapter “Understanding the Structure and Resilience of the Brazilian
Federal Road Network Through Network Science’) map the Brazilian federal road
network into a set of weighted networks. They consider different types of weights
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like distance, number of accidents, populations’ sizes, and then perform a topolog-
ical characterization of each network. They use such analysis to extract central nodes
(i.e., cities), as well as clusters of cities corresponding to the network’s communities.
Moinard and Latapy (Chapter “Improving Flocking Behaviors in Street Networks
with Vision”) extend their previous flocking model of walkers on a road network by
expanding the walkers’ field of vision. Such an expansion guarantees that walkers
do not split anymore into divergent directions when they arrive at road intersections.
This phenomenon allows to simulate groups of walkers whose gathering times and
robustness to break ups are more realistic. Bakker and Rodriguez-Rivero (Chapter
“Social Circles Impact on Opinion Dynamics”) evaluate the impact of social circles
(i.e., groups of people sharing some attribute) on the emergence of social consensus
in online social networks. The phenomenology observed points out that adding social
circle information to opinion dynamics models results in a lower level of consensus.
By comparing the mean level of consensus per social circle and per community the
authors observe that the correlation between the final distribution of opinions within
social circles is higher than within communities.

We would like to thank the Programme Committee members sprawled across 21
countries for their work in promoting the event and acting as quality gatekeepers by
refereeing submissions. In particular, we want to acknowledge the work of:

Albert Diaz-Guilera—Universitat de Barcelona (Spain)

Alberto Antonioni—Carlos III University of Madrid (Spain)
Alexandre Evsukoff—Universidade Federal do Rio de Janeiro (Brazil)
Andreia Sofia Teixeira—Northeastern University London (UK)
Angélica da Mata—Universidade Federal de Lavras (Brazil)

Anna Lawniczak—University of Guelph (Canada)

Anthony Perez—LIFO, Université d’Orléans (France)

Attila Szolnoki—Centre for Energy Research (Hungary)

Avner Bar-Hen—CNAM, Paris (France)

Carlo Piccardi—Politecnico di Milano (Italy)

Carmelo Bastos Filho—University of Pernambuco (Brazil)

Claudio Castellano—Istituto dei Sistemi Complessi (ISC-CNR) (Italy)
Dan Braha—New England Complex Systems Institute (USA)

David Soriano-Pafios—Universitat Rovira i Virgili (Spain)

Diego Pinheiro—Universidade de Pernambuco (Brazil)

Douglas Ferreira—Federal Institute of Rio de Janeiro (Brazil)

Elisa Omodei—Central European University (Austria)

Esteban Moro—Northeastern University (USA)

Eszter Bokanyi—University of Amsterdam (The Netherlands)

Eytan Katzav—Hebrew University of Jerusalem (Israel)

Fakhteh Ghanbarnejad—SRH Berlin University of Applied Sciences (Germany)
Filippo Radicchi—Indiana University (USA)

Francesco Cauteruccio—University of Salerno (Italy)

Francisca Ortiz—Millennium Institute for Care Research (MICARE) (Chile)
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Frank Takes—Leiden University (The Netherlands)

Gareth Baxter—University of Aveiro (Portugal)

Gergely Palla—Health Services Management Training Centre, Semmelweis
University (Hungary)

Giacomo Livan—University of Pavia (Italy)

Giulia Cencetti—CNRS (France)

Giulio Rossetti—CNR-ISTI (Italy)

Giuseppe Mangioni—University of Catania (Italy)

Hernan Makse—City College of New York (USA)

Hocine Cherifi—University of Burgundy (France)

Hugo Pérez-Martinez—Universidad de Zaragoza (Spain)

Ivana Bachmann—Universidad de Chile (Chile)

Javier Borge-Holthoefer—Universitat Oberta de Catalunya (Spain)

Jestis Gomez Gardefies—Universidad de Zaragoza (Spain)

Johannes Wachs—Corvinus University of Budapest (Hungary)

Jordi Duch—Universitat Rovira i Virgili (Spain)

Jordi Nin—BBVA Data and Analytics (Spain)

José Mendes—Universidade de Aveiro (Portugal)

Kwang-I1 Goh—Korea University (South Korea)

Letizia Milli—University of Pisa (Italy)

Lorenzo Zino—Politecnico di Torino (Italy)

Lucila Alvarez Zuzek—Fondazione Bruno Kessler (Italy)

Manlio De Domenico—University of Padua (Italy)

Matthieu Latapy—CNRS (France)

Michael Szell—IT University of Copenhagen (Denmark)

Michele Coscia—IT University of Copenhagen (Denmark)

Mincheng Wu—Zhejiang University of Technology (China)

Osamu Sakai—University of Shiga Prefecture (Japan)

Pablo Balenzuela—University of Buenos Aires (Argentina)

Per Sebastian Skardal—Trinity College (USA)

Peter Pollner—ELTE (Hungary)

Rafael Prieto-Curiel—Complexity Science Hub (Austria)

Riccardo Di Clemente—Northeastern University London (UK)

Richard Tillquist—California State University, Chico (USA)

Robert Benassai—Universitat Oberta de Catalunya (Spain)

Rubén Rodriguez-Casafi—Universitat Oberta de Catalunya (Spain)

Sadamori Kojaku—Binghamton University (USA)

Sandro Meloni—IFISC—CSIC (Spain)

Sanjukta Bhowmick—University of North Texas (USA)

Satyam Mukherjee—Shiv Nadar University (India)

Sergey Shvydun—Delft University of Technology (The Netherlands)

Sergi Lozano—Universitat de Barcelona (Spain)

Sergio Gémez—Universitat Rovira i Virgili (Spain)

Stephany Rajeh—EFREI Paris-Panthéon-Assas University (France)

Stephen Uzzo—National Museum of Mathematics (USA)
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Thilo Gross—HIFMB Helmholtz Institute for Functional Marine Biodiversity
(Germany)

Tim Evans—Imperial College London (UK)

Timoteo Carletti—University of Namur (Belgium)

Tiziano Squartini—IMT School for Advanced Studies Lucca (Italy)

Violeta Calleja Solanas—Dofiana Biological Station—CSIC (Spain)

Yifang MA—Southern University of Science and Technology (China)

Finally, we are grateful to our keynote speakers: José S. Andrade Jr., Celia Ante-
neodo, Carmen Cabrera-Arnau, Philipp Lorenz-Spreen, Esteban Moro, and Francisca
Ortiz-Ruiz. Their presentations were one of the reasons that made CompleNet 2025
a resounding success.

Alessio Cardillo
Mariana Macedo
Programme Chairs
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As we celebrated the 16th anniversary of the CompleNet Conference, the event was
proudly hosted by the Federal University of Ceard in Fortaleza, Brazil. The 2025
proceedings represent our long-standing commitment to quality, while being a venue
encouraging participation all in a plenary-only environment. CompleNet continues
in the evolving landscape of Network Science. This unique edition distinguished
itself with a commitment to delivering comprehensive insights into the field’s latest
research and innovations in an engaging, multidisciplinary format that eschewed
parallel sessions.

The 2025 edition, held at the historic Casa José de Alencar in the vibrant coastal
city of Fortaleza, Brazil, provided participants with more than just a forum for cutting-
edge Network Science. The venue itself, a cultural heritage site and former home
of one of Brazil’s most celebrated nineteenth-century novelists, José de Alencar,
offered a unique blend of historical significance and academic atmosphere. It also
offered an immersive cultural and natural experience. Attendees had the opportunity
to explore Fortaleza’s beautiful coastline and historic landmarks, as well as savouring
the local cuisine and outdoor activities. This blend of academic excellence and local
allure emphasised CompleNet’s dedication to fostering a holistic experience for the
international community.

Network Science is a field intersecting with Data Science and Complex Systems,
focusing on the study of complex networks such as social networks, technological
networks, and biological networks. It is pivotal in understanding the structure and
dynamics of interactions within these systems. The importance of Network Science
lies in its ability to uncover patterns, identify influential components, and predict
system behaviours. Its connection to complex systems provides valuable insights
into emergent properties, and helps organisations make more informed decisions by
understanding how different components influence each other. Its relation to Data
Science is symbiotic; while Network Science provides the framework and principles
for understanding the connections, Data Science offers the tools and methodologies
for analysing and interpreting the vast amounts of data these networks generate.
Together, they enable a deeper comprehension of complex systems in nature and

xi
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society, leading to innovations in various sectors including healthcare, technology,
and urban planning.

The International Conference on Complex Networks (CompleNet) stands as a
pivotal gathering that has united researchers and practitioners from diverse fields,
all focusing on complex networks, since its inception in 2009. The interdisciplinary
approach of CompleNet has been illuminating the widespread application of complex
networks across biological, technical, informational, economic, and social systems.
Esteemed for its plenary sessions and the balance between young and experienced
researchers, CompleNet 2025 invited participants to delve into the latest Network
Science developments.

The contributions within these proceedings reflect the extensive range of topics
addressed at the conference, such as Computational Social Science, Dynamics on
and of Networks, Ecological Networks, Epidemic Modelling in Networks, Network
Algorithms, Network Evolution and Growth, Applications of Networks, Network
Theory and Models, and Networked Medicine. The papers included in this volume
certainly advances our understanding and the development of Network Science as a
whole.

In addition to these papers, the conference also showcased a rich program of
abstracts. In a significant departure from previous years, we made the innovative
decision to offer all participants the opportunity to present their work in oral, plenary
sessions, fostering greater engagement and visibility across the community. Though
not included in this publication, these abstracts were pivotal in fostering dynamic
discussions and highlighting emerging research directions within our community.
This year’s conference not only underscored the vibrancy and diversity of Network
Science but also reinforced its role in addressing complex challenges across disci-
plines. The enthusiastic participation and high-quality submissions confirmed the
ongoing relevance and impact of the field.

A highlight of CompleNet 2025 was the thought-provoking panel discussion
chaired by Fernando Buarque de Lima Neto, which explored the critical intersec-
tion between Network Science and Responsible Artificial Intelligence. This timely
session underscored the growing importance of ethical considerations in technolog-
ical advancement, particularly as network-based Al systems become increasingly
prevalent in society. The discussion illuminated how Network Science’s frameworks
for understanding complex interactions can inform the development of more trans-
parent and accountable Al systems while simultaneously highlighting how respon-
sible Al practices can enhance our ability to analyse and interpret complex networks.
The synergy between these fields proves essential as we face the challenges of devel-
oping Al systems that are not only technically sophisticated but also aligned with
human values and societal needs.

In a groundbreaking initiative exemplifying CompleNet’s commitment to
nurturing emerging talent and promoting inclusivity in science, the 2025 edition
featured our first-ever dedicated session for students from the state of Ceard. This
special track invited only local students to submit abstracts for evaluation, providing
them with an invaluable opportunity to participate in an international conference early
in their academic careers. This was offered to them free of charge, with all the costs
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being covered by the event. The initiative served as a bridge between local academic
communities and the global scientific discourse, offering these young researchers
not only exposure to cutting-edge research, but also the chance to network with
established scientists from around the world. This program aligns perfectly with our
mission to democratise access to scientific knowledge and foster the development of
the next generation of network scientists, particularly in the Global South.

CompleNet takes immense pride in bringing Network Science to the Global
South, recognising that true scientific progress can only be achieved through genuine
global participation and diverse perspectives. While hosting international confer-
ences outside the traditional Europe—USA axis presents unique challenges, we firmly
believe that these efforts are fundamental to fostering a more inclusive and equitable
scientific community. The rich exchanges and collaborations emerging from such
geographical diversity benefit not only the local academic communities but also
enhance the global scientific discourse through the integration of diverse viewpoints
and experiences.

In an era where some forces seek to undermine progress in equality, diversity,
and inclusion, CompleNet stands resolute in its commitment to these fundamental
values. This commitment is reflected not only in our choice of conference locations
over the years but also in the careful consideration we give to representing diverse
voices among our keynote speakers—spanning different career stages, genders, and
institutional affiliations across the globe. We believe that this diversity strengthens our
scientific community and leads to more innovative and comprehensive approaches
to understanding complex networks.

Our heartfelt gratitude goes to the Programme Chairs, Mariana Macedo (North-
eastern University London, UK) and Alessio Cardillo (University of Barcelona,
Spain), as well as the members of the programme committee they assembled. Their
commitment to promoting the event and evaluating submissions was commendable.

We are particularly indebted to our Local Organisation Chair, Wellington Franco
(Federal University of Ceard), whose tireless dedication and exceptional organi-
sational skills were instrumental to the success of this conference. His profound
understanding of both the local context and the academic requirements ensured that
every aspect of the conference ran smoothly. We can confidently say that without his
remarkable efforts and commitment, this conference would not have achieved the
level of excellence it did.

We extend special thanks to Célio Sousa (@celio.f.sousa on Instagram), the
talented local sculptor whose commissioned artworks served as memorable confer-
ence mementos and prizes for attendees. His unique artistic vision helped create
lasting memories of CompleNet 2025 and Fortaleza’s rich cultural heritage.

We are also honoured by the participation of our invited speakers, listed here in
alphabetical order, for their enriching discussions and perspectives: José S. Andrade
Jr. (Federal University of Ceard, Brazil), Celia Anteneodo (PUC-RJ, Brazil) Carmen
Cabrera-Arnau (University of Liverpool, UK), Philipp Lorenz-Spreen (Max Planck
Institute and TU Dresden, Germany), Esteban Moro (Northeastern University, USA),
and Francisca Ortiz-Ruiz (Universidad Mayor, Chile). Their presentations were



Xiv Message from the Conference Chairs

instrumental in the success of this year’s conference, highlighting the rich diversity
and depth of Network Science research.

Lastly, we extend our profound gratitude to our sponsors and partners, whose
support has been invaluable to the success of this event. We are particularly grateful
to Springer Nature and the Applied Network Science journal for their longstanding
and continued support of CompleNet over the years. We also thank the following jour-
nals: Entropy (MDPI), Computer Science (PeerJ Publishing), and JPhys Complexity
(IOP Publishing), for their valuable sponsorship of this year’s conference. Their
commitment to scientific publishing and the advancement of Network Science has
significantly contributed to the success of our event.

Fortaleza, Brazil Ronaldo Menezes
April 2025 Angelo Brayner
Conference Chairs
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A Simple and Flexible Algorithm )
to Generate Real-World Networks iy

Joao Pedro C. Morais and Ruben Interian

Abstract This study introduces an algorithm that generates undirected graphs with
three main characteristics of real-world networks: scale-freeness, short distances
between nodes (small-world phenomenon), and large clustering coefficients. The
main idea is to perform random walks across the network and, at each iteration, add
special edges with a decreasing probability to link more distant nodes, following a
specific probability distribution. A key advantage of our algorithm is its simplicity
and flexibility in creating networks with different characteristics without using global
information about network topology. We show how the parameters can be adjusted
to generate networks with specific average distances and clustering coefficients,
maintaining a long-tailed degree distribution. The implementation of our algorithm
is publicly available on a GitHub repository.

Keywords Real-world network + Scale-free network - Random walk *
Small-world phenomenon - Clustering coefficient

1 Introduction

In recent years, the study of complex networks has gained prominence across vari-
ous scientific disciplines, such as sociology, physics, biology, and computer science
[1-5]. Real-world networks often display both scale-free characteristics and sur-
prising proximity among network nodes. These two features commonly observed
in real-world networks are the so-called Matthew effect and the small-world
phenomenon.

The Matthew effect (also known as “rich-get-richer effect”, or accumulated advan-
tage) reflects a preferential attachment dynamic [6], leading to the emergence of high-
degree hubs in a network and long-tailed degree distributions [7]. This behavior can
be easily observed in social networks, where most people have few connections, and
few people hold a very large number of connections, showing a long-tail pattern [8].

J. P. C. Morais - R. Interian ()
Instituto de Computag@o, Universidade Estadual de Campinas (UNICAMP), Sao Paulo, Brazil
e-mail: ruben@ic.unicamp.br
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Social networks are also examples of networks with high clustering, where indi-
viduals tend to form tightly connected groups, such as friend circles, family groups,
or professional communities. In these clusters, the likelihood of any two friends of
some individual also being friends is higher than in random networks, resulting in a
high clustering coefficient.

Finally, the small-world property characterizes networks with short average path
lengths, enhancing navigability. Collaboration networks of actors and the neural
network of the nematode worm C. elegans are examples of small-world networks [9].

Modeling networks with these three characteristics can be challenging, as the
mechanisms underlying each of them tend to drive network structures in different
directions. Random walk models [10] were previously used to generate networks
with long-tailed degree distributions, capturing real-world systems’ natural growth
and preferential attachment. A key advantage is their ability to create structures
without global information, aligning with the organic development of real networks.
While effective at generating hubs and modeling the Matthew effect, traditional
random walks often overlook reducing path lengths between nodes—a crucial fea-
ture for small-world networks. This limitation makes it challenging to model sys-
tems requiring long-tailed degree distributions, high clustering, and short average
distances.

In this paper, we present a random walk algorithm designed to generate networks
that show small-world features, Matthew effect, and high local clustering, adding
special edges that emulate randomness in link generation observed in real networks,
thus reducing the average distances between the nodes in the network.

The paper is organized as follows. Section 2 presents previous works that inspired
and contributed ideas that led to the presented approach. In Sect. 3, we describe our
algorithm. The results and characteristics of the generated networks are presented in
Sect.4. Conclusions are detailed in the last section.

2 Previous Works

Previous works have studied the generation of networks with specific combinations
of features considered in our study.

Arguing that real-world networks are often highly clustered while showing small
average distances between nodes, Watts and Strogatz [9] proposed a model to repro-
duce such characteristics. Starting with a set of N nodes in a circular order where
each node is connected with an undirected edge to k neighbors, the authors rewired
each edge with some fixed and small probability p. The average clustering coef-
ficient remained quite high while the average distance dropped to a small value
approximately proportional to log N.

Latent-space network models have also been employed to investigate small-world
networks with non-vanishing clustering [11]. In its simplest version, also called
random geometric graph model, nodes are distributed uniformly at random in some
metric space, and two nodes i and j are connected if and only if the distance x;;
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between them is less than some parameter u, leading to high clustering and large
average shortest paths. However, the model can become small-world by introducing
a probability p;; of the existence of a link between the nodes. For example, in
R? space, choosing p; j X xi;ﬁ with 8 € (d, 2d) results in non-vanishing clustering
coefficients and small-world networks, with average distances scaling proportionally
tolog N [12].

On the other hand, real-world networks also have high-degree nodes called hubs,
which are absent in the above models. Barabési and Albert [6] proposed a preferential
attachment process that generates such long-tailed degree distributions. Starting from
some small graph, one new node v is added at each iteration with £ new edges linking
v to k different nodes chosen with probabilities proportional to node degrees. That
is, the likelihood of node v choosing node w is proportional to the degree of w at
that iteration, generating scale-free networks.

To increase the clustering coefficient of the networks generated by the above
BA model, Holme and Kim [13] introduced a Triad Formation step performed with
probability P, after a node and its edges are added to the network. When a new edge
is added linking the new node v to a node w, an edge is added linking v to a randomly
selected neighbor of w, thus creating a triad between the three nodes and increasing
the clustering of the network.

Although previous models have presented solid results in scale-free network con-
struction, a significant concern we raise is that they require global information at each
step (e.g., the degrees of all nodes to calculate the preferential attachment probabili-
ties), which may be unrealistic since in real-world networks links emerge naturally,
without knowing global information about network topology.

Saramiki and Kaski [10] proposed using random walkers to generate undirected
scale-free networks, showing that it is not necessary to have global information about
node degrees at each step to achieve such results. Herrera and Zufiria [14] improved
this process by using the number of steps in the random walks to guide triangle
generation, introducing a way to control the network’s clustering coefficient using
again only local information.

The random walk process proposed by Saramiki and Kaski [10] begins from
a typically small initial graph with 7y nodes. At each iteration, a new node v is
added to the graph, linking v to existing nodes that will be chosen using random
walks. These chosen nodes (called “marked nodes” from now on) are identified as
follows: beginning from a randomly selected node w, [ random steps are taken from
w, allowing to revisit previous nodes. After each walk, the endpoint is marked, and
the process continues until m nodes are marked. The new node v is then connected
to marked nodes. The process finalizes after adding N new nodes to the graph.

Herrera and Zufiria [14] noted that by changing the value of the parameter /, the
number of steps in the random walk, it is possible to control the network’s clustering
coefficient. If [ = 1, the neighbor of a marked node will also be marked, generating a
triangle between these two neighbors and the added node, thus affecting the clustering
coefficient. Each node v has an associated value p,, the probability of / = 1 if the
random walk starts from that node.
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Random walks controlling the walk length [ proved an efficient way to create
power-law networks while regulating the clustering coefficient. However, the lack
of attention to the average distances on the network remained an open question for
real-world network generation using random walks.

3 Methods

The primary goal of our algorithm is to generate long-tailed networks that combine
high clustering coefficients with short path lengths between the nodes.

Our algorithm starts from a small initial graph G(V, E) with ny nodes. A new
node v is added to the graph at each iteration. Following Saramiki and Kaski [14],
we perform a random walk, starting from a random node. We mark this initial node
and then continue to mark each node reached after / steps along the random walk,
resulting in m marked nodes. Edges from v to each of the m marked nodes are added
to the graph at the end of the walk.

To control the clustering coefficient, it can be used /, the number of steps between
any two nodes marked successively. The value of / is decided after marking some
node, and before starting a new phase of the random walk, having some probability
p1 to be 1, and probability 1 — p; to be 2.

Note that / follows a Bernoulli-like distribution, as proposed in [14], but it is
possible to modify this distribution to contemplate larger values for /. However,
as we will see later, we can already achieve the desired behavior with this simple
distribution of /.

At this point, unlike in [10, 14], an additional edge is created at each iteration. The
idea behind this step is to reduce the overall distances within the network (a neglected
aspect in the original model) by adding shortcut edges, but not in an entirely random
manner. The process begins by choosing a value d with some probability P (d). The
distribution P (d) is fixed for each algorithm execution, and decreases as d grows in
such a way that larger values of d are less likely to be chosen than smaller ones. A
random node s in the network is then chosen, and we pick another node ¢ located at
d steps from s. The new edge then connects s and ¢.

The probability distribution we used is based on the idea that the likelihood of
linking two nodes, x and y, should decrease inversely proportional to the distance
between x and y squared. In this way, shortcuts are created on the network, but notin a
completely random manner, but somewhat closer to the link generation process in real
networks, where more similar nodes are more likely to be connected. For example,
two individuals who are closer to each other, in the geographical or topological sense,
are more likely to meet. The emergence of these ‘random’ edges reflects the natural
appearance of new relations and links between nodes as the network grows.

Thus, in our model P (d) x diz, or P(d) = d% for some fixed A, since the prob-
abilities for each d value we use should sum to 1. The value of the normalizing
constant A may be found using the fact that
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A(i+i+.. ] >=1
22 32 dz.. ’
where d,,,, is the approximate current diameter of the graph. We estimate d,;,
an approximation to the real diameter, in a simple way: assume that each node has
a degree equal to the average degree deg = zl“fll over all nodes. In an exponential
branching process, at each distance k from some node v, there are approximately
(deg — 1)¥ nodes. Using the geometric series sum, there are at all % nodes

at a distance at most k£ from v. Growing k, at some point, the number of covered
nodes will reach the overall number of nodes | V|, being:

(deg — HF —1
deg —2
(deg — DF = V|- (deg —2) + 1

k =1og zoz_i (IV] - (deg —2) +1)

The sought diameter dy,q, is then2log z.; 1, (IV] - (deg —2) + 1), twice the max-
imum value of k. The chosen value for d is unlikely to be bigger than the real diameter
of the network.

Inasimplified way, the proposed algorithm that builds the network goes as follows:

—_

Start with a small initial graph with ny nodes.

2. Add a new node v to the network.

3. Pick a random node w. Perform a random walk from w, marking each node
reached after every [ steps. Stop when m nodes are marked, and connect them to
v.

4. Choose a value d with some probability P(d) and a random node s. Find a node
t at a distance d from s, and connect s and ¢ with an edge.

5. Repeat N times the steps 2—4.

Algorithms 1 and 2 describe in more detail our implementation of the network
generation approach presented in this paper. Algorithm 1 illustrates the random walk
process that starts from a node start in a graph G, uses the probability p; of / being
equal to 1, and generates a list of m marked nodes.

In line 1, the RandomWalk algorithm initializes the marked list with the starting
node, and in line 2, it sets the current node that tracks the position during the walk to
start. Lines 3-8 are repeated m — 1 times, adding m — 1 nodes to the list of marked
nodes. In line 4, the value of / is established based on the parameter p;, and in lines
5-7, the new phase of the random walk is performed. The endpoint is then added to
the marked node list in line 8. Line 9 returns the list of marked nodes.
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Algorithm 1 RandomWalk (G, start, py, m)

1: marked < {start}

2: current < start

3: repeat m — 1 times

4 1 < takes the value 1 with probability p; and 2 otherwise
5:  repeat/ times

6 neighbors < G[current].neighbors

7 current < neighbors[randomIndex]

8 marked < marked U {current}

9: return marked

On the other hand, Algorithm 2 describes the introduced network generation
process. It takes as parameters an initial graph G, which is typically small, the
number of nodes N to be added to the graph, the probability p; of / being equal to
1, and the number of edges m to be added at each iteration.

The algorithm repeats N times the following sequence of steps. It chooses a
random node of the network as the starting point of the random walk in line 2. Then,
the random walk is performed in line 3 by the procedure RandomWalk, returning
the list of marked nodes. In line 4, a new node v is added to the network, and in line
5, the edges are created between v and the marked nodes. Lines 6-9 describe the
process of adding an extra edge by choosing a distance d based on some probabilistic
distribution, and creating an edge between a random node s and a node ¢ at d steps
from s. Line 10 returns the resulting network.

Algorithm 2 GenerateNetwork (G, N, p;, m)

1: repeat N times

2: start <— random node of the network

3 marked <— RandomWalk(G, start, py, m)

4: v < G.add_node()

5: for u € marked do G.add_edge(v, u)

6 d < random value according to distribution P (d)
7 s <— random node of the network

8 t < find_node(s, d)

9: G.add_edge(s, t)

10: return G
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4 Results

This section presents the main characteristics of the networks generated by the pro-
posed algorithm. We show how it can be used to create graphs with characteristics
similar to those found in real-world networks. In our experiments, we used as the
initial graph G a cycle with 10 nodes (circular graph, Cip). Each row in a table
represents one execution of our algorithm.

Our analysis focuses mainly on four key network measures: the average local
clustering coefficient C, which indicates the likelihood that two neighbors of a given
node are also neighbors, averaged across all nodes in the network; global clustering
coefficient C (or transitivity), which is the ratio of closed triplets to the total number
of triplets in the graph; the average shortest path length (L), representing the mean
shortest distance between any pair of nodes; the estimated power-law coefficient,
denoted by y, which characterizes the degree distribution of the network in the
following way: the probability P (k) that a randomly selected node has degree k is
approximately proportional to k7. The exponent is approximated by calculating
the angular coefficient of the degree distribution on a log-log scale using the least
squares method.

Our results show that the algorithm can generate a wide range of different net-
works. Table 1 shows that the clustering coefficients grow proportionally to the value
of py, reaching a fairly high value for p; = 1, without affecting the other measures.
This behavior can also be seen in Fig. 1. Thus, by changing p; with a fixed m, it is
possible to generate networks with different clustering coefficients, providing a sim-
ple way to control the value of this measure in the generated graphs. From Table 1,
we can also see that y, the power-law exponent, varies little with p, staying almost
constant after p; = 0.3.

Table 1 Generated networks and their measures using different p; values (m =5, N = 50000).
Parameters: probability p; of / being equal to 1. Measures: average local clustering coefficient C;
transitivity C; average shortest path length L; estimated power-law exponent y; maximum degree
of the network d;,qx

D1 C C L 14 dmax
0.0 0.0461 0.0193 4.2705 —1.9766 525
0.1 0.0848 0.0310 4.2813 —2.2508 382
0.2 0.1207 0.0412 4.2889 —1.9858 426
0.3 0.1512 0.0501 42918 —2.2084 448
0.4 0.1814 0.0594 43115 —2.2346 449
0.5 0.2104 0.0680 4.3351 —2.2049 417
0.6 0.2390 0.0760 4.3494 —2.1996 396
0.7 0.2680 0.0841 4.3731 —2.2039 546
0.8 0.2971 0.0935 4.4125 —2.1980 427
0.9 0.3259 0.1033 4.4498 —2.2459 403
1.0 0.3549 0.1108 4.4762 —2.2615 440
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Fig.1 Controlling C by pi: there is a linear relation between both measures (m = 5, N = 50000)

Table 2 Generated networks and their measures for different values of m (p; = 0.5, N = 20000).
Parameters: number of edges added at each iteration m. Measures: average local clustering coeffi-
cient C; transitivity C; average shortest path length L; estimated power-law exponent y; maximum
degree of the network dy,,

m C C L Y dipax
1 0.1358 0.0795 6.5044 —2.5546 121
2 0.3628 0.0951 5.3560 —2.3339 202
3 0.3239 0.0951 47796 —2.0969 232
4 0.2622 0.0847 4.3629 —2.2439 282
5 0.2125 0.0718 4.0473 —2.0709 310
6 0.1717 0.0635 3.8421 —2.1094 348
7 0.1467 0.0559 3.6765 —2.1879 408
8 0.1265 0.0508 3.5599 —2.0339 444
9 0.1123 0.0459 3.4487 —2.0735 494
10 0.1007 0.0416 3.3456 —2.0741 505

Table 2 shows that both transitivity and the average shortest path length decrease
as m increases, while y remains relatively stable, fluctuating between —2.00 and
—2.30 when m > 2. Figure2 demonstrates this quick decay for the average shortest
path length.
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Fig. 2 Controlling L by m: the average distance quickly drops down as m increases (p; = 0.5,
N =20000)

Table 3 Generated networks and their measures for different values of N (m =5, p; = 0.5).
Parameter: total number of nodes N added to the graph. Measures: average local clustering coeffi-
cient C; transitivity C; average shortest path length L; estimated power-law exponent y; maximum
degree of the network dj,,

N C C L y dinax
100 0.2949 0.2116 2.3636 —0.9623 35
200 0.2725 0.1668 2.5443 —1.0640 48
1000 0.2327 0.1144 3.1492 —1.8068 89
2000 0.2226 0.0974 3.3488 —1.8760 136
5000 0.2100 0.0675 4.3622 —2.2204 433
10000 0.2515 0.0807 4.4231 —2.2239 594
20000 0.2577 0.0852 4.4957 —2.2362 484
50000 0.2460 0.0842 4.6178 —2.3176 559
100000 0.2340 0.0796 4.7349 —2.3260 678

Finally, Table 3 shows the characteristics of the generated networks for different

values of N, the total number of added nodes, fixing m = 5 and p; = 0.5. It can
be seen that after N = 10.000, the clustering coefficients vary little, remaining at a
significantly high level. Table 3 also shows the relationship between y, and N, where
the first decreases as the second increases.

Moreover, Fig.3 and Table3 illustrate that the average shortest path length L
grows proportionally to the logarithm of N (small-world behavior), proving that the
algorithm can create networks with short distances between the nodes.

For comparison, Table4 shows the average local clustering coefficients and the
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Fig. 3 Relationship between the number of nodes N, plotted in logarithmic scale, and the average
shortest path length L (m =5, p; = 0.5)

Table 4 Comparison of networks generated by the Herrera and Zufiria model (1) and our model
(2). Measures: average local clustering coefficient C; average shortest path length L

N m C Cy Ly L,

20000 2 0.4248 0.3734 10.2354 5.2538
20000 3 0.4020 0.3286 7.3107 4.7691
20000 4 0.3126 0.2505 6.2514 4.3309
50000 2 0.4218 0.3694 11.4507 5.6787
50000 3 0.3960 0.3271 9.1531 5.0849
50000 4 0.3130 0.2643 6.1754 4.6525
70000 2 0.4200 0.3676 11.9726 5.8315
70000 3 0.3963 0.3254 8.5344 5.1880
70000 4 0.3140 0.2621 6.0804 4.7553

average distances for networks generated by our algorithm and those generated with-
out adding the special edge, equivalently to Herrera and Zufiria’s model in which
the nodes have a probability p; of making / = 1. The distances in our model are
significantly lower, especially for smaller values of m, following the well-known six
degrees of separation principle.
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5 Conclusions

The study of complex networks gained prominence across various scientific disci-
plines [15-17]. In this study, we presented a simple and flexible algorithm that gen-
erates a wide range of networks with different values of several network measures,
such as clustering coefficients, average shortest path length, and the estimated power-
law coefficient, without employing global information about the graph topology or
degree distributions.

The proposed approach can generate networks with long-tailed degree distribu-
tions, high clustering coefficients, and short average distances between the nodes,
three of the fundamental characteristics of real-world networks. Using this simple
random-walk-based approach, it is possible to generate networks with structural char-
acteristics similar to those found in real-world networks without using hyperbolic
geometry methods [18]. The implementation of our algorithm is publicly available
on a GitHub repository [19].

We can control the average distances between network nodes, keeping them small
and logarithmic in the size of the network, a neglected aspect in previous models [10,
14]. In addition, our model allows different probability distributions to set up the
distance value d used to introduce a degree of randomness in the network connections.
By choosing the appropriate distribution, the average shortest path length L can be
made smaller or larger, even for large graphs with tens and hundreds of thousands
of nodes.

Network clustering coefficients grow proportionally to the parameter p, reaching
fairly high values while keeping realistic the other measures: average distances and
“long-tailness”.

In future works, we intend to explore different distributions to control the value
of I, the number of steps between any two nodes marked successively. We will
study the possibility of increasing the values of /, exploring the impact of the chosen
distribution on the clustering coefficients and the average distances between nodes.

We are also interested in incorporating a fourth characteristic of real-world net-
works into our model: a high degree of modularity. High modularity implies the
presence of modules (groups, communities) of nodes, with more dense connections
within modules but sparse connections between nodes in different modules. Incor-
porating this feature organically, without being forced or planned in advance, seems
like an interesting challenge to tackle.
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Abstract Centrality indices, such as closeness and eccentricity, are key to iden-
tifying influential nodes within a network, with applications ranging from social
and biological networks to communication and transportation systems. However,
computing these indices for every node in large graphs is computationally pro-
hibitive due to the need for solving the All-Pairs Shortest Path (APSP) problem.
This paper introduces a framework for approximating closeness and eccentricity
centrality by selecting a sequence of strategically chosen anchor nodes, from which
Breadth-First Searches (BFS) are performed. We present two anchor-selection strate-
gies that minimize estimation error for these indices and evaluate their effectiveness
on synthetic and real-world networks. Comparative results indicate that while ran-
dom anchor selection occasionally achieves lower errors for closeness, other strate-
gies outperform in eccentricity estimation. This study highlights the effectiveness of
anchor-based approximations and the trade-offs between different selection methods
in estimating centrality at scale.
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1 Introduction

Network centrality indices, such as closeness centrality and eccentricity, are crucial
in graph theory and network analysis because they offer insights into the relative
importance, influence, or accessibility of nodes within a network [1, 3]. By quanti-
fying aspects like a node’s proximity to others (closeness centrality) or its maximum
distance to any other node (eccentricity), these indices help identify key vertices that
might act as hubs, bridges, or bottlenecks within the network. In social networks,
for instance, nodes with high closeness centrality are likely to spread information
more efficiently, while those with low eccentricity are part of the network’s core
set of nodes. Similarly, in transportation, biological, or communication networks,
understanding which nodes hold central positions can inform strategies for opti-
mizing connectivity, controlling information flow, or fortifying against disruptions,
respectively.

For a connected graph G = (V, E) withn = | V| vertices, the closeness centrality
of anode u € V is defined by

n—1

2vev du(®)

where d, (v) is the shortest-path distance between u and v in G. The eccentricity of
u €V is defined by

Cy =

e, = max d,(v).
veV

In many scenarios, network nodes are to be ranked (i.e., sorted) according to some
network centrality indices. This allows us to determine the top-ranked or low-ranked
nodes according to some index, for example. In order to obtain a full ranking (i.e.,
ordering) of the nodes, the centrality index must be computed for all network nodes.
However, computing these indices for each node in a large graph is computationally
intensive, as it involves finding the shortest paths between all pairs of vertices. This
problem, known as the All-Pairs Shortest Path (APSP) problem, is a classic challenge
in computer science. Running a Breadth First Search (BFS) from each node solves
the APSP with running time complexity of ® (nm), where m = | E| is the number of
edges in graph [6].

Solving APSP requires significant computational resources as many real networks
continue to grow in size like social networks, transportation networks, or information
networks. To address this scalability challenge, researchers have developed approxi-
mate algorithms, parallel algorithms, and heuristic-based algorithms to compute dif-
ferent centrality indices more efficiently, circumventing the need to solve the classic
APSP problem. In what follows, a brief discussion of the proposed algorithms is
presented.
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Related works. Cohen et al. [4] propose an approximation algorithm based on sam-
pling and probabilistic techniques, specifically leveraging adaptive sampling meth-
ods to estimate closeness centrality efficiently without requiring the full computation
of all-pairs shortest paths. The algorithm significantly reduces computational com-
plexity by focusing on a subset of vertices and incrementally building estimates
that converge to a close approximation of true closeness centrality. The paper also
includes detailed theoretical guarantees on the accuracy of these estimates.

Bergamini et al. [2] presents an efficient algorithm for finding the top-k nodes
with the highest closeness centrality in unweighted graphs, rather than calculat-
ing closeness centrality for all nodes. Their approach combines a pruning strategy
with a bidirectional breadth-first search (BFS) to avoid unnecessary calculations. By
leveraging upper and lower bounds on closeness centrality scores as they explore the
graph, the algorithm can discard certain nodes early from consideration, thus improv-
ing efficiency. The method also integrates efficient data structures (such as min-heap)
to track and update centrality scores, which further speeds up the identification of
top-k nodes.

Our approach. This work presents a framework for estimating the closeness and
eccentricity of nodes. The main idea is to dynamically determine a sequence of
nodes (known as anchors) on which a BFS will be executed. Using the results of
these BFS, the closeness and eccentricity of all nodes can be estimated. The goal is
to determine a sequence of anchors that has a low error with respect to the true values
for closeness and eccentricity. This work proposes two approaches based on different
intuitions to determine the sequence of anchors (discussed in detail in Sect. 2). These
approaches were implemented and executed in two real networks and two network
models, comparing the results with random strategy and the approach by Cohen et
al. [4]. Interestingly, results indicate that random often exhibits a lower error than the
alternatives for closeness estimation but not for eccentricity. This finding highlights
the lack of a clear approach that is consistently superior in estimating both closeness
and eccentricity.

Structure of the paper. The approach and estimators for centrality and eccentricity
proposed in this work are presented in Sect. 2. Section 3 presents the numerical eval-
uation and a comparison of different approaches. Finally, a brief conclusion for the
paper is presented in Sect. 4.

2 Centrality Estimators

Recall that closeness and eccentricity for anode u € V can be determined by running
a Breadth First Search (BFS) on u since this provides the distance d, (v) between
node u and every other node v € V. However, this BFS also provides information
about other nodes, since d,, (1) = d, (v) (the graph under consideration is undirected).
The key idea behind the proposed estimators is to consider a sequence of nodes to
run a BFS, called anchor nodes. The closeness and eccentricity for anchor nodes are
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precisely determined, while the closeness and eccentricity for non-anchor nodes are
estimated.

Let A; = (ay, ..., a;) denote a sequence of ¢ anchor nodes. Assume that node v
is not an anchor. Note that each anchor node a;, 1 < i <t provides a distance to v,
namely d,, (v). Thus, an estimator for the closeness of node v can be designed as

follows:
t

(1) = m (D

As the anchor set size increases, ¢, (¢) will intuitively approximate ¢, and equality
will always be established when A, = V\{v}.
Similarly, an estimator for the eccentricity of node v can be designed as follows:

ey(t) = max d,(v) )

Again, as the anchor set size increases, é,(¢) will intuitively approximate e, and
equality will always be established when A, = V\{v}.

Note that the quality of the estimators ¢, and é, will intuitively depend on the
sequence of anchors A,. In particular, these estimators can have a bias and errors
that depend on the anchors and the network. Thus, a fundamental question concerns
how to efficiently choose a sequence of anchors to yield more accurate estimators.
Moreover, the sequence of anchors can be determined in an online fashion: the choice
of anchor a, | can depend on the distances obtained by all previously chosen anchors
ar, ..., d;.

We propose three strategies to determine the choice of anchors: a simple random
selection and two online strategies.

2.1 Largest Average Distance

The Largest Average Distance (LAD) strategy aims to cover the periphery of the
network by choosing the next anchor to be the node with the largest average distance
to existing anchors. Note that a higher average distance indicates weaker closeness
centrality. LAD proceeds as follows:

1. First anchor: Randomly select the first anchor node.
2. Subsequent anchors: For each remaining non-anchor node v, calculate ¢, (f) and
choose the node with the largest average distance as the next anchor. In particular,

@) = arg max Co(1) 3)

If more than one node attains the maximum value, then a random node is chosen
among them.
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2.2 Largest Minimum Distance

The Largest Minimum Distance (LMD) strategy aims to spread the anchors evenly
across the network, providing a more balanced distribution of anchor nodes. LMD
follows these steps:

1. Imitial anchor: Randomly select the first anchor.
2. Subsequent Anchors: For each remaining non-anchor node v, calculate the
minimum distance to all anchor nodes, namely

8y(t) = mind,(v). “4)
ach,;
Choose as the next anchor the node with the largest §, (7). In particular,
G4 = arg UIEI%/a\);/ 8, (1) ()

If more than one node attains the maximum value, then a random node is chosen
among them.

Note that both LAD and LMD are a randomized algorithms as they use randomness
on their first step and to break possible ties when selecting anchor nodes. Thus,
independent executions of LAD and LMD on the same network is likely to produce
different sequences of anchors, respectively.

2.3 Random

The Random (RND) approach provides a baseline by selecting the sequence of
anchors uniformly at random over. Thus, a,; is a node chosen uniformly at random
from the set V\ A,.

Figure 1 provides an illustration of the set of anchors selected by the different
estimators. Note that LMD will select as anchor a node that is far from the current
set of anchors. This will intuitively spread the anchors across the network, including

Fig. 1 Set of anchors selected according to the different estimators
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its core. In contrast, LAD will select as anchor nodes that have a large average distance
to other anchors, thus avoiding the core of the network (where the average distance to
anchors is relatively small). Intuitively, LAD selects anchors on the periphery of the
network. Last, under the random approach every node is equally likely to be chosen.
Thus, the likelihood of choosing a node from the core or the periphery depends on
the ratio between the number core and peripheral nodes.

2.4 Computational Complexity

Recall that running a single BFS on a connected graph G has run time complexity
©®(m) where m = |E| is the number of edges of G (since m is always greater than
n = |V|when G is connected). Thus, in order for the estimators to be computationally
efficient, the time required to choose an anchor should be small.

The RND approach requires constant time 6 (1) to make a random selection on
the set of non-anchor nodes. Thus, the time required to determine # anchors and run
the corresponding BFS is © (tm)

However, both LAD and LMD require time 6(|V\A;|) to determine the anchor
a,+1 which in the worst case (i.e., selecting the second anchor) requires time & (n)
since the maximum value must be determined among the non anchor nodes. Thus,
the running time to determine the anchors and run the corresponding BFS is © (¢t (n +
m)) = @ (tm) since n = O(m) assuming G is connected.

While the theoretical worst case complexity of the strategies for selecting the
anchors and running the corresponding BFS is identical, in practice the running time
is different (to be shown later). Moreover, there seems to be an inherent tradeoff
between running more BES or better selecting the next anchor node (and running
fewer BES) that is not addressed in this work.

3 Numerical Experiments

3.1 Datasets and Performance Metrics

The numerical evaluation was carried out using both synthetic and real networks. For
synthetic networks, the Erdos-Reényi (ER) [1] and Artificial Benchmark for Com-
munity Detection (ABCD) [5] random graph models were used. In the ER model,
the number of nodes was n = 4000 and edge probability p = 0.01. For the ABCD
model, a graph with n = 4000 nodes were generated and node degree followed a
power-law distribution with an exponent of 2.5, and the graph is divided into k£ = 20
communities with sizes also following a power-law distribution with an exponent of
2.0. For real-world data, two graphs from the SNAP repository [8] were considered:
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Table 1 Network statistics for the networks under investigation

Dataset n=\V| m=|E| b Triangles Diameter
ER 4000 79,564 39.78 31,524 4
ABCD 4000 82,698 41.35 79,929 4
Facebook 4039 88,234 43.7 4,836,030 8
Arxiv GR-QC | 4158 13,422 6.5 143,337 17

— the Arxiv GR-QC network [7], a scientific collaboration network from ArXiv
papers with co-authors who have submitted papers to the General Relativity and
Quantum Cosmology category;

— a friendship network among Facebook users [9].

Table 1 provides a summary of key network statistics for each network.

We report the error with the mean squares error and the Jaccard similarity of the
top 1% of the nodes. More precisely, let ¢ and ¢(¢) be the true and estimated closeness
centrality once t anchors have been considered, respectively. The mean-squared error
(MSE) is defined as

1 1
MSE(c.é0) =~ (eu = &) = = 3~ (eu =)’

ueV ueV\A;

Note that once a node u is chosen to be an anchor node, then ¢, (¢) = ¢,, thus only
non-anchor nodes contribute to the MSE.

Recall that the Jaccard index between two sets A and B is defined as J(A, B) =
} ﬁag:. We define the top 1% elements of a vector x with n entries, we first sort the
elements of x in descending order. The top 1% elements are then the largest [0.01 - ]
elements of this sorted vector. We denote this set of top 1% elements as top1(x). The

top-1% Jaccard similarity between ¢ and ¢(¢) is defined as

Jopi (¢, é(1)) = J (top1(c), topl ((1))) -

We define analogous quantities MSE(e, é(7)) and Jiopi (e, €(¢)) for eccentricity.

3.2 Closeness

To evaluate the closeness centrality estimators, we compared our anchor-based meth-
ods (LAD, LMD, and RND) against the approximation method currently imple-
mented in the NetworKit library! [10]. This provides a benchmark for assessing

1 See https://networkit.github.io/dev-docs/python_api/centrality.html. The algorithm implemented
is proposed in [4].


https://networkit.github.io/dev-docs/python_api/centrality.html
https://networkit.github.io/dev-docs/python_api/centrality.html
https://networkit.github.io/dev-docs/python_api/centrality.html
https://networkit.github.io/dev-docs/python_api/centrality.html
https://networkit.github.io/dev-docs/python_api/centrality.html
https://networkit.github.io/dev-docs/python_api/centrality.html
https://networkit.github.io/dev-docs/python_api/centrality.html
https://networkit.github.io/dev-docs/python_api/centrality.html
https://networkit.github.io/dev-docs/python_api/centrality.html

20 P. C. Trindade et al.

- Largest Avg Distance - Largest Min Distance - Largest Avg Distance - Largest Min Distance
Random = NetworKit Random = NetworkKit
0.005 0.005
0.004 0.004
W 0003 W 0.003
%) 0
= 0.002 = 0.002
0.001 0.001
0.000 0.000
1 10 100 1000 1 10 100 1000
Number of samples (BFS) Number of samples (BFS)
(a) Erd8s-Rényi (b) ABCD
- Largest Avg Distance =~ Largest Min Distance - Largest Avg Distance =~ Largest Min Distance
Random - NetworkKit Random - NetworKit
0.008 0.005
0.006 0.004
D 0.004 g 0%
= = 0.002
0.002 0.001
0.000 = 0.000
1 10 100 1000 1 10 100 1000
Number of samples (BFS) Number of samples (BFS)
(c) Facebook (d) Arxiv GR-QC

Fig. 2 Mean square error of the estimated closeness centrality by the different estimators on four
data sets

the accuracy and efficiency of our methods relative to an established approximation
approach.

In each experiment, we run all four methods on synthetic and real-world networks,
measuring performance through mean-squared error (MSE) and Jaccard similarity
for the top 1% of nodes by closeness centrality. Results are given in Figs.2 and 3.

Synthetic graphs. In synthetic networks generated by the Erdos-Rényi and ABCD
models, all methods demonstrated very similar MSE and Jaccard similarity. More-
over, the performance of Erdos-Rényi and ABCD are also very similar. This suggests
that the structure of these synthetic networks does not strongly favor any particular
anchor selection strategy. We believe this behavior occurred because these synthetic
graphs lack nodes that are very far from the core of the graph, and thus minimizing
the performance differences among strategies.

Real-world networks. In contrast, notable differences appeared in the two real-world
networks. The NetworKit and RND methods outperformed LAD and LMD, yield-
ing lower MSE and higher Jaccard similarity. This pattern suggests that NetworKit
and RND provided more balanced network coverage, while LAD and LMD intro-
duced biases by selecting anchors with high average or minimum distances, often
situated in peripheral communities. Such communities are typically less connected
to the network’s core, resulting in inflated closeness estimates in our approximation.
Interestingly, the MSE decays faster for RND and NetworKit on the Arxiv GR-QC
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Fig. 3 Jaccard similarity of the estimated closeness centrality of the top 1% vertices obtained by
the different estimators on four data sets

network than in any other network. In particular, with just 3 anchors the MSE is
below 0.001 in this case. Moreover, the Jaccard similarity for RND and NetworKit
strategies grows much faster on real networks than on synthetic networks. This indi-
cates that finding the top 1% of nodes using an approximate method is much more
effective on real networks, again possibly due to their diversity in degree and network
structure. In particular, with just 50 anchors the Jaccard similarity is above 0.5 for
both real networks when using RND or NetworKit.

Summary. The tendency of LAD and LMD to select distant nodes reflects their
design to maximize average or minimum distance, respectively. However, this bias
can cause overestimation of closeness centrality in real-world networks. The unbiased
RND method and NetworKit approach deliver more reliable estimates in these cases.
This suggests that while LAD and LMD can effectively maximize spatial diversity,
they may not be optimal for closeness centrality approximation in networks with
pronounced community clustering, where balanced network coverage is essential.

Finally, we provide in Fig. 4 the execution time of all algorithms. While RND typi-
cally exhibits slower empirical running times, it achieves MSE and Jaccard similarity
results comparable to those of the NetworKit implementation.
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Fig. 4 Execution time of the different closeness centrality estimators on four data sets

3.3 Eccentricity

For the eccentricity centrality estimators, we measured each method’s performance
on both synthetic and real-world graphs using MSE and Jaccard similarity for the
top 1% of nodes with the highest eccentricity. Results are given in Figs.5 and 6.

Synthetic graphs. For synthetic graphs, the three strategies have very similar perfor-
mance for the first 100 anchors or so. After 100 anchors, the LAD strategy performs
better than LMD and RND. Interestingly, the MSE for all estimators decreases faster
on Erdos-Rényi graphs than on ABCD graphs, but with both exhibiting a long tail
until the MSE reaches zero. This slower convergence suggests that the lack of clear
peripheral nodes in these graphs makes it more challenging for anchor-based methods
to rapidly identify nodes with the largest eccentricity. Indeed, the Jaccard similarity
with the top 1% is zero for up to 100 anchors or so. In this metric, it is clear that
LAD has an advantage over the other strategies.

Real-world networks. On the real-world networks, where network structure is far
from uniform, nodes with large eccentricity typically stand out and can be more easily
identified. Indeed, the LAD and LMD strategies achieved perfect Jaccard similarity
(a value of 1) with around 10 anchor nodes or so. This rapid convergence indicates
that selecting nodes with large distances from previous anchors efficiently covers the
network extremities, making it easier to identify nodes with large eccentricity. Note
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Fig. 5 Mean square error of the estimated eccentricity by the different estimators on four data sets

that RND converges much more slowly, requiring more samples to approach similar
levels of Jaccard similarity.

Summary. While LAD and LMD are less effective than RND for closeness estimation
due to their bias toward peripheral nodes, these methods offer significant advantages
for eccentricity estimation, in particular LAD. By focusing on distant nodes, they
effectively capture the extremities of the network, which is particularly useful in
real-world graphs where identifying the outermost nodes is crucial for accurately
determining nodes with large eccentricity. Overall, the experiments show that LAD
is an efficient and reliable eccentricity estimates.

4 Conclusion

Efficient calculation of centrality metrics becomes a fundamental problem as net-
works continue to grow in size. In particular, classic and exact algorithms for comput-
ing closeness and eccentricity for all network nodes become unfeasible (in running
time) on networks with billions of nodes (i.e., exact solution of the All-Pairs Short-
est Path problem). An approach to tackle this problem the design of approximate
algorithms to estimate such centrality metrics.

This work proposes a framework for approximating closeness and eccentric-
ity centrality metrics using an anchor-based approach that accommodates different
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Fig. 6 Jaccard similarity of the estimated eccentricity of the top 1% vertices obtained by the
different estimators on four data sets

anchor selection strategies. Once an anchor is selected, a Breadth-First Searches
(BFS) is executed on the anchor and computes distances from the anchor to all oth-
ers. By iteratively selecting the anchors using the distance information obtained by
prior anchors, closeness and eccentricity can be estimated for all nodes. This work
considers two strategies (LAD and LMD) and the random strategy as baseline.

Experimental results considering the MSE and Jaccard similarity with the top 1%
across both synthetic and real-world networks demonstrated the effectiveness of the
proposed approach. Interestingly, results considering synthetic networks show little
difference with respect to the different strategies. However, when considering real
networks, different strategies yield very different results. For estimating closeness,
the random strategy showed competitive performance to a state-of-the-art method
and outperformed LAD and LMD. However, LAD and LMD showed superior per-
formance (both MSE and Jaccard similarity) for estimating eccentricity (with an
edge for LAD).

These findings underscore the potential of strategic anchor selection to improve
the accuracy of centrality approximations in large-scale networks. Future work may
explore optimizing anchor strategies further or applying this framework to other
centrality indices to broaden its applicability across diverse network types.
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Abstract Population-based optimisers, such as swarm intelligence and evolutionary
algorithms, have been widely applied across various optimisation problems due to
their flexibility, efficiency, and balance between exploration and exploitation. How-
ever, they can be prone to premature stagnation and suboptimal convergence, espe-
cially in complex search spaces. Memetic algorithms that combine Particle Swarm
Optimization (PSO) with local search operators have been introduced to address these
issues. This paper presents a network-based comparative study of memetic operators
for swarm optimisers. As a case study, we selected three memetic PSO variants:
PSO with Pattern Search, PSO with Hill Climbing, and PSO with Simulated Anneal-
ing. We also assessed three communication topologies for PSO (e.g., Global, Local,
and Von Neumann). Using Interaction Networks and metrics such as Portrait Diver-
gence and Interaction Diversity, we model and assess these variants’ convergence
behaviour, and exploration-exploitation dynamics over time. Results indicate that
the influence of the memetic operators and communication topologies affects dif-
ferent aspects of the network, such as connection patterns, the presence of hubs and
clusters, and the edges’ weights. Additionally, the network analysis offers valuable
insights into the exploration-exploitation balance, convergence speed, and the role
of topological structures in shaping swarm dynamics.
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1 Introduction

Population-based metaheuristics, such as Swarm Intelligence (SI) algorithms, find
applications in various fields like engineering, data science, and economics [17].
These algorithms utilise individuals or particles that navigate the search space,
exchanging information and adapting their positions based on personal and collective
knowledge. In these algorithms, interaction is crucial for practical exploration and
exploitation of the search space [21].

However, traditional SI algorithms can struggle with complex or high-dimensional
search spaces, leading to slow convergence and prolonged runtimes [21]. Addition-
ally, they may become trapped in local optima, hindering the exploration of poten-
tially better solutions. To tackle these issues, researchers have developed adaptations
and enhancements, including new operators and mechanisms [15].

Among the solutions proposed to enhance SI, integrating local search operators
has proven effective [3]. These operators refine candidate solutions by conducting
focused searches around promising regions, mitigating premature convergence and
improving solution quality [16]. While the impact of individual operators has been
studied, the interplay of multiple operators and their collective influence on swarm-
based algorithm behaviour require further investigation.

In this work, we approach this challenge by modelling the population dynamics
as a complex network of interactions between individuals. By applying the Interac-
tion Networks (INs) framework [12], we can visualise and quantify the relationships
between individuals as they evolve during the optimisation process. This network-
based approach allows us to capture the direct influences of local search operators
on individual particles and the emergent, system-level behaviours that arise from
the collective interactions of the swarm. The use of network metrics, such as inter-
action diversity and network portrait divergence, enables a deeper analysis of how
information is shared and propagated within the swarm.

Our experimental results demonstrate the potential of this network-based approach
to offer a richer, more comprehensive understanding of algorithm behaviour in com-
plex optimisation scenarios. By integrating standard performance metrics from the
optimisation field with advanced network analysis techniques, we reveal new dimen-
sions of algorithm performance that were previously underexplored. Specifically, our
findings suggest that certain combinations of local search operators can significantly
improve PSO’s ability to balance exploration and exploitation, leading to better over-
all convergence speed and solution quality. Furthermore, the network-based analysis
highlights how different operator interactions influence swarm dynamics, offering
valuable insights for the design of more effective algorithms.

The remainder of this paper is organised as follows: Sect. 2 describes the relevant
technical background. Section3 presents the experimental setup and results, dis-
cussing the main findings. Lastly, Sect. 4 summarises the main findings and discusses
the limitations and opportunities for future research.
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2 Theoretical Background

2.1 Particle Swarm Optimisation

Particle Swarm Optimisation (PSO) is a population-based optimisation algorithm
inspired by the social behaviour of bird flocks and fish schools [4]. In PSO, a group
of particles (i.e.,candidate solutions) moves through the search space, adjusting
their positions based on both their own previous experiences and the experiences
of neighbouring particles. Each particle has a velocity that directs its movement
and is updated according to the particle’s best-known position (local best) and the
best-known position of its neighbours (global best or other topologies).

The definition of the set of neighbouring particles, also known as communication
topology, is of elevated importance as it helps balance convergence speed (how fast
the population converges to similar solutions), exploration (searching new areas of
the space), and exploitation (refining known good areas). This work will explore
three topologies: global best, local best, and Von Neumann [9].

The Global Best Topology (i.e., the fully connected topology) is the simplest com-
munication structure, where every particle in the swarm can access the best position
found by the entire swarm. This configuration allows for fast convergence since
all particles share information about the best global solution, leading them quickly
towards promising areas of the search space. However, this topology may suffer from
premature convergence, as particles can become trapped in local optima if they focus
excessively on the global best solution and fail to explore other regions effectively.

The Local Best Topology restricts communication to a subset of particles (often
the immediate neighbours in a predefined structure, such as a ring). Each particle
adjusts its velocity based on its own best position and the best position found by its
local neighbourhood, rather than the entire swarm. This approach promotes greater
diversity in the search process by limiting the influence of a global leader, thereby
reducing the risk of premature convergence. However, the convergence rate can be
slower as information diffuses more gradually across the swarm.

The Von Neumann Topology is a compromise between the local and global topolo-
gies, where particles are arranged in a grid-like structure, typically with each particle
interacting with its four neighbours (north, south, east, and west). This structure bal-
ances exploration and exploitation, as information spreads more efficiently than in
the local topology but with more diversity than in the global topology. This topology
tends to strike a good balance between convergence speed and the ability to avoid
local optima, making it a popular choice in many PSO applications.

We selected these topologies because each plays a different role in balancing the
trade-off between exploration and exploitation in PSO, with global best favouring
faster convergence, local best promoting diversity, and Von Neumann achieving an
intermediate balance. The selected memetic operators are described next.
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2.2 Memetic Operators

Memetic operators in optimisation are mechanisms used within memetic algorithms,
which are hybrid optimisation techniques combining global search strategies (such as
population-based algorithms like the PSO) with local search methods. These opera-
tors aim to enhance the efficiency and effectiveness of the search process by exploiting
both exploration (global search) and exploitation (local search) capabilities [10].
The term memetic refers to the idea of memes, which are analogous to genes in
the context of evolution but represent units of knowledge or cultural information
that can evolve through imitation and adaptation. Similarly, memetic algorithms
apply local refinement to solutions, akin to how individuals improve through learning
and adaptation. To study the impact of different local search operators in the PSO
behaviour, we selected three memetic variants: PSO-PS, PSO-HC, and PSO-SA.

PSO-PS (PSO with Pattern Search) [2]: The integration with Pattern Search, a
direct search method that does not rely on gradient information, enhances the local
search capability of PSO by refining particle positions after each iteration. This
hybrid approach allows PSO-PS to balance exploration and exploitation, where PSO
performs a global search, and the PS refines solutions locally to improve convergence
speed.

PSO-HC (PSO with Hill Climbing) [7]: Hill Climbing iteratively improves a sin-
gle solution by incrementally exploring its neighbourhood for better solutions. In
PSO-HC, the global search power of PSO is complemented by the local refinement
capabilities of Hill Climbing. After each PSO iteration, HC is applied to selected
particles to explore their local surroundings for improvements. This hybridisation
aims to reduce the likelihood of premature convergence in PSO by using HC to fine-
tune solutions, making the algorithm more effective in avoiding local optima while
accelerating convergence.

PSO-SA (PSO with Simulated Annealing) [20]: Simulated Annealing is a proba-
bilistic technique inspired by the annealing process in metallurgy, which helps escape
local optima by accepting worse solutions with a controlled probability based on a
temperature parameter. In PSO-SA, SA is applied to selected particles to allow for
occasional uphill moves, promoting exploration and diversity within the population.
The combination of PSO’s global search strategy and SA’s probabilistic escape mech-
anism enables the hybrid algorithm to explore the solution space more effectively
and maintain diversity, resulting in improved performance in complex optimisation
landscapes.

Understanding interactions among individuals is essential in population-based
optimisation algorithms, such as PSO and its variants. In the next section, we explain
how we capture the population’s interactions into a network.
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2.3 Interaction Networks

Interaction Networks offer valuable insights into the collective behaviour of individ-
uals, shedding light on the role of interactions in the search for optimal solutions. By
studying these interaction networks, a deeper comprehension of PSO’s functioning
can be achieved, enabling further exploration of its potential in solving complex
problems.

In 2014, Oliveira et al. proposed a network-based approach to represent and visu-
alise these interactions [11]. This approach is grounded in principles that allow the
representation and visualisation of interactions among swarm individuals, capturing
the collaborative and competitive relationships during the optimisation process.

The creation of the networks can be summarised in three steps: first, we map all the
interactions that occur at the population level. Next, for each interaction mapped, we
convert the individuals involved into nodes, and the link between them has a weight
corresponding to their distance in the search space. Lastly, we apply a time window
concept to group the networks of consecutive iterations, capturing more information
in a single network. These steps are illustrated in Fig. 1.

Previously, Interaction Networks (INs) were applied to evaluate a memetic vari-
ation of PSO, known as PSO with Pattern Search. This research employs the same
network creation methodology and edge weight representation presented by San-
tana et al. [16]. In this work, we extend the number of memetic variations of PSO
and investigate the impact of different communication topologies on the algorithm’s
behaviour.

Fig. 1 Steps to create the interaction networks
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2.4 Assessment Metrics

Besides the traditional analysis of the nodes’ degrees and edges’ weight, we employ
two additional metrics to gauge the similarities between two networks (i.e., the Por-
trait Divergence metric) and to measure the diversity of interaction patterns within
the population (i.e., interaction diversity).

The Portrait Divergence (PD) is a metric developed by Bagrow and Bollt [1] to
quantify structural differences between interaction networks. This metric calculates
the Jensen-Shannon divergence between the portraits, also known as B-matrices,
of the networks. These portraits are derived from the information about nodes and
edges in the networks, providing an encoding of their structure. The PD metric uses
Jensen-Shannon divergence to measure the distance between two portraits.

PD generates a value ranging from zero to one, indicating the degree of similarity
or difference between the compared networks. When applied to different swarm-
based algorithms, PD can reveal whether the interaction networks exhibit similar or
distinct structures, offering deeper insights into the specific characteristics of each
algorithm.

The PD metric was selected due to its high flexibility, enabling the comparison of
networks with different types and topologies, even when they are not defined over the
same sets of nodes [5, 8, 16]. This flexibility offers a valuable advantage in analysing
the interaction networks of different algorithms at various stages of execution.

Next, Interaction Diversity (ID) is a metric proposed by Oliveira et al.[12] to
measure the diversity of information flow within the swarm. ID is directly related to
the spatial distribution of solutions in the swarm. The more diverse the information
flow, the more interconnected the nodes in the interaction graph. ID is calculated
by removing a fraction of the weakest nodes (those with lower weights) from the
influence graph and observing how the graph divides into isolated subgraphs [16].
The ID index varies from O to 1, where values close to 1 indicate high diversity in
the interaction patterns.

ID plays a crucial role in efficiently searching for optimal solutions in PSO.
Analysing interaction diversity makes it possible to detect stagnation patterns, assess
the balance between exploration and exploitation, and compare different swarm
topologies. Previous studies have used the ID metric to analyse the stagnation
phenomenon in different communication topologies for PSO [12], to investigate
the exploration-exploitation balance in PSO [13], and to compare exploration and
exploitation in various swarm-based algorithms [14]. This work will employ the
interaction diversity metric to analyse exploration and exploitation in the selected
memetic algorithms.
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3 Experiments and Results

In this work, we selected memetic variants of PSO as a case study to demonstrate
the capabilities of interaction networks. We conducted a comparative analysis on
three memetic variations of the PSO algorithm: PSO-PS [2], PSO-HC [7], and PSO-
SA [20]. These algorithms were combined with three different PSO topologies:
Global (PSO), Local (LPSO), and Von Neumann (VNPSO).

The topologies were implemented using the same basic structure of PSO, and the
parameters were configured based on the work of Santana et al. [16]. The experiment
was set up with 30 runs of each algorithm, with a population of 100 individuals and
500 iterations as the stopping criterion for PSO. A linear reduction of the inertia
factor from 0.9 to 0.4 was applied, while the cognitive and social coefficients were
set to 1.496. The objective function dimensions were set to 50 [19], well-known
benchmarking problems used to evaluate algorithm performance, were selected. This
parametrisation was applied to all algorithms and their topological variations.

For the Hill Climbing-based algorithms, we used a vector length parameter equal
to the number of dimensions (50), initialised with the value 1 to represent the initial
step size. The acceleration was set to 1.2 to adjust the step size in different directions.
The stopping criterion was the difference between the fitness values before and after
execution, being <0.0001.

In the case of the Simulated Annealing-based algorithm (PSO-SA), the maximum
(initial) temperature was set to 100 and the minimum temperature to 0. The stopping
criterion was 500 iterations or reaching the minimum temperature. A damping factor
of 1 was applied. Lastly, for the Pattern Search-based algorithms, the “radius” and
initial “delta” parameters were set to 2.0 and 1.0, respectively.

Each algorithm execution, comprising 500 iterations, was divided into 50 groups
of 10 iterations. Therefore, 50 time windows (TW) were obtained for each algo-
rithm, numbered from 1 to 50. The parameter values used align with previous sim-
ilar works [6, 16, 18]. Next, the adjacency matrices of each group were summed,
resulting in a single matrix that encodes the interaction patterns within a given time
window.

We divided our analysis into three main sections, designed to analyse the overall
characteristics of the networks generated, the similarities and differences between
the networks of different memetic operators and topologies, and the behaviour of the
interaction dynamics of the populations.

3.1 Network Characterisation

One of the first steps in characterising the INs is identifying strongly connected
components and analysing the distribution of influence among the nodes in the inter-
action networks. These components represent hubs of information exchange within
the network, and the relationship between the number of these components and the
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Fig. 2 Examples of networks generated in the Rosenbrock function, shown in the following order
(top-down, left-right): PSO, LPSO, VNPSO, and VNPSO-SA

connections within and between them provides a strong indication of communi-
cation diversity. Furthermore, the strength of the nodes indicates the presence of
influential individuals in the swarm, which is also related to the diversity of informa-
tion flow [16]. The results in Fig.2 show examples of networks for each algorithm
assessed.

As observedin the first row of Fig. 2, the global best topology produces the densest
networks in terms of the number of links. In this topology, the population is connected
to a single influential individual at each iteration, causing the entire population to
be influenced by this leader and move towards it. In the global topologies (Fig. 2,
first row), we see the presence of multiple hubs, representing the leaders of the
population in a given time window. Generally, a low number of hubs is associated
with exploitation behaviour, while a higher number of hubs is linked to exploratory
behaviour. Another finding was that the memetic phase introduced in the algorithms
did not affect the interaction patterns, just the convergence speed. Comparing the
VNPSO and VNPSO-SA, one can notice similar characteristics of their networks.

In contrast, the local topology (second row of Fig. 2) displays a markedly different
connection pattern. Here, each individual is connected only to its two predefined
neighbours, leading the networks to adopt a more linear or even cyclic structure,
where hubs are not as prominent as in the global topology.
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Lastly, the Von Neumann topology, as expected, exhibits behaviour that lies
between the global and local topologies. In the third row of Fig.2, we see that
the Von Neumann topology forms subnetworks or clusters (representing the distinct
neighbourhoods). Notably, the memetic aspect does not significantly alter the con-
nection patterns of PSO; instead, the most pronounced differences arise from the
communication topologies. However, the memetic components are expected to play
a notable role in shaping the weights of the links in the INs.

3.2 Comparison of Interaction Networks

In this section, we compare the behaviour of the algorithms at different stages of
the optimisation process to identify differences between the topologies and memetic
operators. In Fig. 3, each pixel represents the PD score when comparing network
structures across time windows for different operators. The x and y axes range from
the time window 1-50, and PD values close to 0, indicating that the networks’ struc-
tures are similar (i.e., interactions between the agents). The first column compares
each algorithm with itself; this is the only symmetrical heatmap and provides a base-
line behavior for each evaluated topology. The subsequent columns illustrate the
differences between memetic operators and this baseline.

As shown in the first row of Fig. 3, both PSO-PS and PSO-HC exhibit significant
similarity to the standard PSO in terms of convergence patterns and the distribution of
points across time windows, indicating high similarity. However, PSO-SA demon-
strates a different distribution in specific time windows, with a bottleneck around
TW16 and a shift in the direction of the most similar points, suggesting a potential
variation in the search for optimal solutions. This difference can be attributed to the
application of Simulated Annealing, which introduces a probabilistic approach to
optimisation.

In the analysis comparing LPSO (Local PSO) with its memetic variations, con-
sistent patterns were observed across the graphs. When comparing LPSO with itself,
there is a predominance of points in the central region of the graph, with subtle
variations in the upper left and lower right areas. These variations indicate a simi-
lar trend of convergence across independent runs. When analysing LPSO combined
with Pattern Search, the pattern suggests improved solutions over time, implying
that this combination may lead to faster convergence and enhanced optimisation
performance.

A consistent pattern of convergence and similarity is also observed when compar-
ing VNPSO (last row of Fig.3) with its memetic variations. Most graphs display a
convergence region in the lower left, indicating a trend towards similar, closely related
solutions across the algorithms. Additionally, a band along the diagonal suggests
gradual convergence over time, with consistent progress towards optimal solutions.

However, a variation in behaviour is noted when analysing VNPSO-PS specifi-
cally (last row of Fig.3). Here, the convergence band is more inclined and reaches
the top of the graph later in the execution, a difference attributed to the introduction
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Fig. 3 Comparison of PD values between networks of PSO, PSO-PS, PSO-HC, PSO-SA, LPSO,
LPSO-PS, LPSO-HC, LPSO-SA, VNPSO, VNPSO-PS, VNPSO-HC, and VNPSO-SA in the
Rosenbrock function

of the Pattern Search local search, which intensifies exploration in certain regions of
the search space. These insights highlight the nuances of convergence and the impact
of memetic variations on VNPSO dynamics.

Since its inception, PSO has been affected by the problem of premature stagnation,
resulting in convergence before reaching optimal solutions [12]. A key factor con-
tributing to this stagnation is the lack of spatial diversity within the swarm, leading to
a limited search of the solution space. This spatial diversity emerges in PSO from the
social interactions among particles. In the next section, we employ the Interaction
Diversity metric to analyse the diversity of the assessed PSO variations.

3.3 Interaction Diversity

The analysis of interactions in the PSO, PSO-PS, PSO-HC, and PSO-SA algorithms,
all using the Global topology over 50 time windows, revealed distinct patterns, as
shown in the first row of Fig. 4. In the case of the classic PSO, a sharp drop in Inter-
action Diversity was observed in the initial stages, followed by a gradual recovery in
subsequent time windows. This behaviour reflects a highly exploratory search early
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Fig. 4 Interaction diversity metric of algorithms in the Rosenbrock function

in the optimisation process, followed by a phase of low diversity (exploitation), indi-
cating rapid convergence of the swarm to a potential local minimum. Subsequently,
an increase in diversity signals renewed exploration of promising areas.

Despite the incorporation of local search in the memetic algorithms, both PSO-PS
and PSO-HC exhibit similar behaviours (first row of Fig.4, second and third plots),
maintaining relatively stable Interaction Diversity (ID) throughout the execution,
with only minor fluctuations. In contrast, PSO-SA (first row of Fig.4, last plot)
shows a steep decline in ID during the initial time windows, followed by a low,
steady curve with subtle fluctuations across the execution period. The Simulated
Annealing strategy introduces a randomised element, enabling the swarm to escape
local minima. This behaviour may significantly reduce ID, suggesting that the swarm
is confined to a low-diversity search region.

When analysing the local topology, distinct behaviours are observed in the LPSO,
LPSO-PS, LPSO-HC, and LPSO-SA graphs (second row of Fig.4). LPSO’s rapid
transition from low to high diversity at the outset suggests an intense exploration
phase where the swarm extensively searches the solution space. In LPSO-PS, the
initial high diversity indicates broad exploration at the beginning, followed by a
drop in diversity until TW15, suggesting that the swarm has identified promising
regions and is concentrating on exploiting them. The subsequent increase in diversity
indicates a return to broader exploration, possibly in search of alternative solutions.

In LPSO-HC (second row of Fig. 4, third plot), a gradual progression from low
to high diversity is observed, indicating a balanced exploration strategy. The steady
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increase in diversity up to TW30 suggests a systematic and comprehensive search for
solutions. The sharp fluctuations and slight decline afterward may represent adjust-
ments and refinements in the search for better solutions. Conversely, the initial low
diversity in LPSO-SA (second row of Fig.4, fourth plot) indicates a constrained
search focused on specific regions. The oscillations along the main diagonal suggest
a balance between exploration and exploitation, allowing the swarm to escape local
minima.

In the VNPSO, VNPSO-PS, and VNPSO-HC algorithms (last row of Fig. 4, sec-
ond and third plots), an initial phase of high diversity is followed by a drop, suggesting
a shift towards exploiting promising regions. A subsequent sharp increase in diversity
signals a new phase of broad exploration, indicating a balanced approach between
exploration and exploitation that enables the swarm to discover promising solutions
while exploring the search space.

For VNPSO-SA (last row of Fig. 4, fourth plot), the algorithm begins with high
diversity but soon experiences a sharp drop, indicating a focus on specific regions.
The sustained low diversity suggests intense exploitation, possibly leading to local
minima. The later increase in diversity towards the end of the execution indicates an
attempt to escape these local minima and explore alternative solutions in pursuit of
a global optimum. This dynamic highlights the influence of Simulated Annealing,
which facilitates the swarm’s ability to avoid local minima.

4 Conclusion

The network-based evaluation presented in this study highlights the significance
of swarm interaction dynamics in determining the performance of memetic swarm
algorithms. Using Interaction Networks, we visualised and quantified how different
memetic operators influence the structural behaviour of the swarm across various
topologies. PSO-PS and PSO-HC demonstrated strong similarity to the standard
PSO, particularly in the consistency of their convergence patterns.

In contrast, PSO-SA fostered greater network diversity, enhancing exploration but
occasionally delaying optimal convergence. The application of Portrait Divergence
and Interaction Diversity metrics provided a deeper understanding of how com-
munication topologies affect swarm cohesion and search efficiency. Although our
analysis focuses on memetic variants of the PSO, we emphasise that the methodology
applied here can be extended to analyse other population-based algorithms. Future
work could expand this network-based analysis to other techniques, further exploring
the relationship between interaction patterns and optimisation performance.
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Abstract This paper presents an automated approach for analyzing retinal vascular
networks using advanced graph-based techniques. The proposed method integrates
deep learning models for the segmentation of retinal vessels, generation of surface
meshes, and network construction to quantify and cluster retinal features. A key com-
ponent of the framework is the transformation of retinal vessels into a biomedical
network, where topological and semantic graphs are constructed to capture detailed
vascular structures. Network metrics, including clustering coefficients, centrality
measures, and routing efficiency, are extracted to characterize vascular networks.
Then, Graph Neural Networks (GNN) models are applied to encode each retinal
vascular network as a vector of numbers; a similar vector means a similar struc-
ture. Finally, clustering algorithms group analogous patterns and identify potential
anomalies. Preliminary results, based on a dataset of 1221 retinal augmented surface
meshes, demonstrate the effectiveness of the approach in distinguishing groups with
similar characteristics, highlighting the potential for the early detection of diseases
such as diabetes, hypertension, and cardiovascular conditions.
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1 Introduction

The human body contains a complex network of arteries and veins spanning kilome-
ters, enabling the seamless exchange of substances among cells, tissues, and organs.
The proper functioning of the vascular system is vital for a healthy and enduring
lifespan. Many diseases can emerge as a result of problems with blood flow [1].

Vision is the most dominant sense in the human body and is essential for daily
activities. Difficulty in seeing might transform simpler tasks, such as walking and
writing, into challenging ones. Among the structures of the eye, the retina is one of
the most important. Retinal diseases are the main reasons for visual impairment and
blindness and are usually related to systemic diseases, such as diabetes, hypertension,
cardiovascular illness, autoimmune disorders, and infectious processes [2].

Overall, the retina offers a unique window to the microcirculation system via a
non-invasive method, such as fundus retinography. In addition to previously men-
tioned alterations, arteriolar narrowing can predict the progression of chronic kidney
disease (CKD) and is associated with an increased risk of coronary artery disease
(CAD) and stroke. In that way, it is essential to evaluate the fundus exam to detect
and assess several systemic diseases [2, 3].

Artificial intelligence (AI)-based solutions are widely used in the screening and
assessment of retinal diseases and structure, with studies showing reliability com-
parable to that of experienced examiners. The application of deep learning (DL)
in screening increases efficiency and may enhance the accuracy of the diagnosis,
reduced analysis time, less variability intra or interobserver, and scalability. Addi-
tionally, the capacity to detect small nuanced changes and patterns, not easily notice-
able per human, can enable early detection of systemic comorbidities and stratify
their stages [3].

It is necessary to create objective metrics that represent the structure and char-
acteristics of the retina, which can be efficiently stored and compared over time.
Approaches to quantifying such metrics are being developed to minimize observer
errors. Furthermore, these methods are expected to enable predictions and inferences
based on retinography analyses. Despite advances, current approaches have limita-
tions in capturing physiological characteristics, such as microvessels, side branches,
and bifurcations; neovascularization; distinguishing veins from arteries; and assess-
ing hemodynamics and vasomotricity, all of which are technically challenging to
measure [4]. Another relevant aspect that might help reduce complications, including
vision impairment or blindness caused by retinal diseases, is monitoring the patient’s
clinical condition over time. Some hospitals already store clinical data and produce
comparative and historical reports, however, there are no standardized methods for
exam interpretation and formatting [2].

Segmentation of blood vessels in retinal images is essential for the prevention,
diagnosis, and evaluation of ocular diseases, as these conditions often alter the vas-
cular morphology of the retina. Manual segmentation is challenging due to low con-
trast, curvilinear structures, and variable illumination, leading to inconsistent results
among clinicians. To address this, deep learning frameworks have been developed to
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automatically capture microvessels and extract vascular features, significantly aiding
diagnosis and treatment. However, currently there is no universally accepted model
for segmentation of the retinal vessels. Recent trends focus on incorporating self-
attention mechanisms to capture global information and reduce image information
loss. This approach, combined with convolutional networks, improves segmentation
efficiency and accuracy. In addition, ensemble learning techniques integrate multiple
models to enhance performance [5-7].

Ravandi and Ravandi [4] proposed analyzing networks derived from coronary
arteries and veins from four main perspectives: structural characteristics, distribu-
tion of connectivity levels, network integration, and controllability. The structural
evaluation focuses on examining the arrangement of nodes and edges within the net-
work. Key metrics are computed to provide insights into the networkal.™s structure,
including the average degree of connectivity, the clustering coefficient, the diame-
ter of the network and the number of A-branches. Together, these metrics help to
understand the overall topology and organizational properties of vascular networks.
The A-branches are characteristic structures in graphs, consisting of a parent node
connected to exactly two child nodes, which in turn are not connected to any other
nodes. The authors hypothesize that the graphs derived from the cardiovascular sys-
tem, when associated with pathological conditions, exhibit a higher number of A-
branches compared to the graphs originating from healthy cases. This behavior could
indicate that blood is not being adequately supplied to diseased areas. An increased
presence of A-branches can be interpreted as an indicator of neovascularization, a
phenomenon described in the medical literature as the formation of new blood ves-
sels in response to inadequate blood supply, as highlighted in [8]. This approach
allowed, in a preliminary and non-automated way, to analyze the structure of the
coronary arteries using graphs. It was possible to evaluate the shape, degree distribu-
tion and controllability of the complex network in a healthy and diseased coronary
angiogram.

The integration of DL and Network Science offers a robust approach to analyz-
ing complex systems, such as biomedical networks. While DL extracts intricate pat-
terns, Network Science provides a framework to analyze relationships and structures,
thereby improving interpretability. In biomedical applications, this interpretability
is critical for ensuring clinical relevance. For instance, metrics like A-branches can
correlate with physiological phenomena such as neovascularization. Ensure results
align with biological knowledge can enhance trust and usability [9].

Inspired by Ravandi and Ravandi’s research, we developed and described in this
paper a novel process to quantify the structure of human retina vessels automatically
from retinographies by applying a hybrid solution that joins DL and Network science
algorithms/techniques. We also created a new retinography database, composed of
images, phenotypes, and clinical information.
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2 Proposal

In order to provide more interpretability in the human retinal study and its associa-
tion with systemic diseases, we developed a novel process to automatically stratify
human retinas. It is employed a hybrid solution that joins DL and Network Science
algorithms/techniques. Retinal vessels are extracted from retinographies and then
converted to biomedical graphs (also called semantic graphs). After that, an “open
box” analysis is conducted via semantic enrichment (e.g., network metrics genera-
tion) and qualitative investigation (e.g., pattern recognition and clustering similar net-
works). The process consists of five independent and loosely coupled steps/modules:
1—Segmentation; 2—Rendering; 3—Graph Generation; 4—Network Analysis; and
5—~Qualitative Inference. The development of loosely coupled modules facilitates
the maintenance and evolution of each separately. In addition, the user can execute
specific modules for isolated needs.

The segmentation module receives a biomedical image, in this case, a retinogra-
phy, and pre-processes it. After that, it extracts the desired structures and generates
another image in the same format containing them. The rendering module receives
the image containing the extracted parts and converts them to unstructured surface
meshes. A surface mesh is a mathematical and computational representation of the
surface of a three-dimensional (3D) object, composed of interconnected geometric
elements such as vertices, edges, and faces.

The graph generation module transforms unstructured surface meshes into
biomedical networks. In this work, the first step to transform a surface mesh into
a graph involves determining the centerline of the entire structure [10]. A center-
line is a geometric representation that captures the central trajectory or axis of an
elongated structure or object, often serving as a simplified abstraction of its shape.
Usually, an object is composed of one or more centerlines (segments). At each fork in
the path, a new one is generated. Based on the centerlines, it is possible to define the
nodes and edges that make up the network/graph. The number of nodes is determined
by the length of each segment and the original shape of the superficial mesh in that
place. Furthermore, if two consecutive centerline points have a very different radius
or if there is a significant change in direction or angle between them, another node
is created. The network generated—called Topological Graph—mimics the orig-
inal structure of the segments. Each topological node stores information regarding
position, diameter, length, bifurcations, and direction in its attributes. Topological
graphs are relevant for the geometric visualization of networks. However, they are
not suitable for analysis and metrics calculation. Thus, it is essential to develop a
process for transforming a topological graph into another type capable of being ana-
lyzed, which we call semantic graphs. The semantic graphs defined in this project
represent each topological segment with a maximum of three vertices: one or two
vertices for intersegment connection and one (intrasegment) to represent the segment
itself. The intrasegment node stores as attributes the average and standard deviation
of the respective segment radius, geometric barycenter, tortuosity, and length. The
semantic edges are weighted and hold the distance between the nodes as weight.
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The network analysis module receives a semantic graph and processes it in two
ways: network metric extraction and global and local graph analysis. The objective
metrics produced in the first step are the number of nodes, edges, and A-branch; aver-
age degree, in-degree, and out-degree; clustering coefficient; diameter and radius;
neighborhood connectivity; centralities of betweenness, proximity, and eccentric-
ity; average of the shortest paths between any two nodes; and routing efficiency
of the network. In the second step, Graph Neural Networks (GNNs) are applied to
the graphs to capture relevant information at both local and global levels. GNNs
are specialized neural network architectures designed to operate on graph-structured
data, making them particularly useful for tasks that require explicit modeling of rela-
tionships, such as node classification, link prediction, whole-graph classification,
subgraph recognition, and graph clustering [11]. When labels are available, GNNs
can be trained in a supervised manner, using them to guide learning and enable
class prediction during inference. However, in many cases, labels are unavailable or
incomplete, making supervised learning infeasible. To address this, Self-Supervised
Learning (SSL) emerges as a potential solution [11].

SSL is a machine learning technique that creates data representations without
needing labeled data. Authors organize SSL into two main categories: contrastive and
predictive. In the contrastive models used in this work, an encoder is implemented in
the learning process to compare different views of the data. This encoder employs an
objective function to maximize the similarity between views generated from the same
original data (positive pairs) and minimize the similarity, increasing the dissimilarity,
between views of different data (negative pairs). The contrastive model also utilizes
auxiliary tasks, known as pretext tasks, which are formulated to encourage the model
to learn representations that can distinguish well between different inputs. After
training, generalized models are generated and can be applied to subsequent tasks,
known as downstream tasks [11].

The qualitative inference module is designed to analyze and interpret complex
datasets to identify meaningful patterns that could indicate a range of conditions
or phenomena. These include the presence of diseases, the detection of anomalies,
assessment of healthy states, signs of aging, clustering trends, or regions of neovas-
cularization. The data analyzed by this module is often diverse, comprising informa-
tion collected from one or more patients over a period of time. Typical inputs include
biomedical graphs, which map biological interactions; network metrics, representing
quantitative characteristics of networks; and phenotypic data, detailing observable
patient traits and symptoms. By integrating and analyzing these heterogeneous data
sources, the module aims to provide comprehensive insights into patient health, assist
in early diagnosis, and support monitoring disease progression or recovery.
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3 Methodology

The development of the proposed process followed a hybrid approach that incor-
porated solutions tailored to each module’s requirements. This multidisciplinary
approach ensures that each module operated efficiently and contributed to the overall
effectiveness of the process.

One of the most critical factors in the success of deep learning (DL) models is the
quality and diversity of the data. To ensure more reliable and robust results, we used
retinal images from three different datasets. The first dataset, Digital Retinal Images
for Vessel Extraction (DRIVE), consists of 40 retinal images and the corresponding
masks (black-and-white images representing vessels and the fundus). We used 20
images to train and 20 images to validate the segmentation model. The entire DRIVE
dataset was also applied as input aiming to validate the proposal. The second dataset,
STructured Analysis of the Retina (STARE), contains 400 retinal images, of which
only 40 are labeled with blood vessel segmentation masks, 20 were used for training
and 20 were reserved to validate the proposal. Finally, we created a custom dataset
comprising 888 retinal images of healthy retinas, along with clinical information
such as gender, age, date of birth, eye diseases, systemic diseases, date of exam, and
laterality. Initially, only 35 retinas were used to validate the proposed method. In total,
60 images were used for training the segmentation model and 95 images were used
during validation. This diverse set of retinal images, combined with clinical data,
ensures a more comprehensive evaluation of the segmentation model and enhances
its ability to generalize across different scenarios. In addition, it enables us to search
for associations between retinal networks structures/patterns and eye and systemic
diseases.

To segment retinal vessels from fundus images, we developed a novel model and
a custom loss function. The model integrates elements from the architectures pro-
posed in Ronneberger et al. [5], Peng et al. [7], and Cui et al. [6], alongside the
adapted Skeleton Recall Loss approach introduced by Kirchhoff et al. [12]. The pro-
cess begins with dividing the dataset into training and testing sets. Subsequently, the
images undergo pre-processing to enhance their quality and ensure consistency, mak-
ing them suitable for analysis. Key preprocessing steps include dataset normalization,
CLAHE (Contrast Limited Adaptive Histogram Equalization), and Gamma Correc-
tion. These techniques work together to improve image quality and standardize the
dataset, ultimately enabling more easily distinct retinal fundus of vessels. After that,
the images are sampled into 200,000 training patches of size 48x48 pixels, which are
further split into training and validation sets. The following parameters were used
during the training of the segmentation model: Epochs: 500, Batch Size: 384, Learn-
ing Rate: Ranges from 0.001 to 0.00001, Optimizer: Adam, Gradient Clipping: 1.0. In
this work a novel loss function, TverskyLossBinSigmoidSkel, was introduced. This
loss function incorporates a new weight parameter (6) and divides the mask between
thicker vessels and thinner structures, referred to as “skeletons”. The parameter 0
adjusts the loss contribution from the skeleton vessels, helping to mitigate the errors
caused by their thin structure and improving the overall segmentation performance.
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The surface mesh module converts an image into a 3D surface mesh. The first step
involves transforming the pixels that represent the retinal vessels into 2D vectors,
which are composed of nodes and links. This process was accomplished using the
Potrace Python library. Once the 2D vectors were generated, they were then converted
into 3D vectors using the Trimesh library. The resulting 3D surface meshes were
subsequently stored as STL files, allowing further analysis and visualization. Each
surface mesh was augmented by rotating it 15°C at a time, from 0 to 180°C. This
approach aims to assess whether the process can generate similar encoding for the
same retina, even when subjected to slight modifications due to rotation. Thus, based
on 95 retinas, 1221 surface meshes were created. Some rotations led to errors during
the graph generation process, probably due to distortions in the mesh structure that
interfered with the accurate creation of the graph.

The process of converting a surface mesh into a biomedical graph begins with the
extraction of centerlines. This step was carried out using an adapted version of the
VMTK library, with the parameter “Decimation Aggressiveness” set to 4.0 (default
is 3.0, range of values 0.0-15.0). This parameter controls how closely the algorithm
follows the original structure of the surface mesh during centerline extraction, bal-
ancing fidelity and computational efficiency. The more complex your surface mesh
(number of nodes, links, bifurcations, and vessel endings; level of tortuosity; the
presence of degenerated faces; etc.), the more complex the centerline extraction pro-
cess will be. Usually, during the extraction, the algorithm establishes one source and
many targets (in this case, vessels endings). The source point is located at the north-
western edge of the mesh, which is the default initialization method of the library.
Using the extracted centerlines, topological graphs are constructed by mapping each
centerline segment into nodes and edges. Although these graphs effectively capture
the topological structure of the network, they are not indicated for depth analysis of
network characteristics. To address this limitation, the topological graphs are further
converted into semantic graphs, which include enriched information about the net-
work’s features and properties. Both, the topological and semantic graph conversions,
were implemented using custom algorithms developed by the authors. This module
enables the transformation of biomedical surface meshes into comprehensive graph
representations suitable for advanced analysis.

The network analysis module consists of two submodules, each with distinct
roles in processing and analyzing semantic graphs derived from retinal vessel net-
works. The first submodule is for the extraction of network metrics. This submodule
focuses on computing various network metrics from graph structures, primarily using
directed links. The main aim of making the graphs with direct links was to try to
mimic the blood flow inside the vessels. However, it is not possible to determine the
blood flow because we are still unable to differentiate veins from arteries based on
the datasets accessed, and the source point, defined by the previous module, is not
always located in the largest cavity of the surface network, indicating where blood
can come in the retina. In addition, specific metrics, such as Routing Efficiency,
require an undirected version of the graph. To address this, all links were created
as undirected. Additionally, the authors introduced a specialized function to identify
and mark A-branch formations, enhancing the analysis of vascular structures. The
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second submodule performs pattern extraction using GNN models, uncovering local
and global patterns, characteristics, and information from graphs through the appli-
cation of InfoGraph and MVGRL. Both InfoGraph and MVGRL were trained using
contrastive SSL techniques, with Personalized PageRank as diffusion information
mode, to generate embeddings for retinal vessel networks. In addition, an investiga-
tion was conducted to verify if and which network metrics could be used as attributes
of the graph nodes, aiming to help the effectiveness of the GNN models.

The qualitative inference module, constrained by the lack of clinical condition
labels for all retinographies, presented a challenge in applying traditional super-
vised learning methods. To overcome this challgence, we adopted an unsupervised
approach, utilizing three clustering algorithms: K-means, density-based spatial clus-
tering of applications with noise (DBSCAN), and hierarchy DBSCAN (HDBSCAN).
These algorithms were applied to cluster the encoded data generated by the GNN
models, with the aim of uncovering patterns that may represent distinct conditions
or underlying phenomena. To evaluate the performance and quality of the identified
clusters, we employed three widely used clustering evaluation metrics: Silhouette
score, Davies-Bouldin (DB) score, and Calinski-Harabasz (CH) score. The clustering
results were analyzed and the configuration that yielded the best performance across
these metrics was selected. This approach allowed us to derive meaningful data-
driven groups that offer insight into retinal conditions and associated phenomena,
even without labeled clinical data. The encoded data can either be fed directly into the
clustering algorithms or undergo dimensionality reduction—via uniform-manifold
approximation and projection (UMAP), Principal Component Analysis (PCA), and
t-distributed stochastic neighbor embedding (t-SNE)—to enhance clustering perfor-
mance by simplifying the structure of the data while retaining its essential features.
After the clustering step, a normalization process is performed to ensure consistency.
Specifically, the median label of the clustered retinas is applied to all augmented reti-
nas from the same source. This ensures that all variations of a single retina, resulting
from augmentations, are treated as part of the same group, preserving the integrity
of the dataset for further analysis.

The authors utilized the Plotly library to visualize the topological graphs and
employed Cytoscape software to render the semantic graphs.

4 Results and Discussion

This section presents and thoroughly discusses the results of extracting quantitative
characteristics from biomedical networks that were generated based on retinography
images. These characteristics offer valuable insights into the structural and functional
properties of vascular networks in the retina, contributing to a deeper understanding
of some ocular and systemic conditions.

Figure 1 visually summarizes the process of transforming a retinal image into
topological and semantic graphs. Seventeen A-branches are visible in the topolog-
ical graph, highlighted with orange rectangles. Notably, two of these A-branches
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(a) (b) () (d) (e)

Fig. 1 Step-by-step for transforming the retinography 21 into a semantic graph. a Retinography.
b Vectors representing veins and arteries. ¢ Surface mesh. d Topological graph. e Semantic graph

are located very close to each other. The corresponding semantic graph, derived
from the retinal image, is represented using a circular layout. In this layout, circles
denote nodes, while lines represent edges. The orange circles highlight the nodes
that are part of the A-branches. The retinal vessels are generally grouped into three
main regions: upper, central, and lower. The circular layout of the semantic graph
reflects this structure, with two prominent circles representing the upper and lower
regions, and the central area corresponding to the middle section of the retina. This
arrangement mirrors the original retinal structure, making it easier to identify the A-
branches. Furthermore, this layout suggests that other segments might also belong to
the same neovascularization region, offering a more intuitive way to explore potential
connections within the vascular network.

An example of quantitative data extraction is described in the following lines in this
paragraph. Retina number: 21, Number of Nodes: 355, Qty. Links: 380, Diameter 80,
Radius 40, A-branches: 17, Clustering Coefficient: 0.0, Closeness Centrality: 0.033,
Network Density: 0.006, Betweenness Centrality 0.085, Neighborhood Connectiv-
ity: 2.679, Eccentricity Centrality: 62.656, Avg. Degree of Network Connectivity:
2.679, Avg. Shortest path length: 30.835, Routing Efficiency: 0.00933.

Each retinal network/graph is represented by a vector of numbers. This operation
is called graph encoding and is executed in this work by the GNN models. If two
retinal vessels are similar, the model will codify them in a similar way. Among the two
GNN models tested, MVGRL demonstrated superior performance, achieving better
graph differentiation, lower loss values, and higher validation scores. This highlights
its effectiveness in capturing the complexity of vascular structures while improving
accuracy in downstream tasks. In addition, we realize that the use of network metrics
as node or link attributes reduced the effectiveness of the models. So, we set the
attributes of the nodes with the values of the average and STD segment radius,
curvature, and torsion; and a Boolean True if the segment is a A-branch, otherwise
False.

After conducting a comprehensive grid search that explored various
configurations—including clustering algorithms, different distance metrics, and
the minimum number of clusters (ranging from 2 to 15)—alongside dimensionality
reduction techniques, the optimal setup was determined based on clustering metric
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Fig. 2 Displays a total of 1221 encoded augmented retinas in a multidimensional vector. a before
clustering, each original retina is represented by a unique symbol and color; and b after clustering,
the retinas were grouped in six groups, each represented by a unique symbol and color

scores. The configuration combining K-means clustering, UM AP for dimensionality
reduction, and six clusters emerged as the best solution, delivering the highest quality
results.

Figure 2 displays a total of 1221 encoded augmented retinas in a multidimensional
vector. In Subfigure (a), each original retina is represented by a unique symbol and
color. The encoded data are spatially organized, with representations of the same
retina placed closely, indicating that the encoding process consistently captures the
essential features of each retina. This proximity suggests that the model retains key
characteristics across transformations. Furthermore, Subfigure (b) reveals six dis-
tinct clusters formed within the dataset, each represented by a unique symbol and
color. These clusters indicate that the model has identified underlying patterns or
similarities among certain retinas, which could be associated with specific groups of
features, such as the vascular structure, disease markers, or other distinguishing char-
acteristics. In addition, some encoded data belonging to the same cluster are located
at distant points, far from the main grouping. This phenomenon typically occurs
when an augmented retinal mesh undergoes transformations that significantly alter
its semantic graph, causing it to deviate from the characteristics of other retinas. Such
variations result in slight discrepancies in the way retinal features are represented
within the graph structure. Then, there are two retinas that are noticeably distanced
from the main groups. These outliers may represent unusual or exceptional cases,
potentially linked to unique or rare retinal conditions, or they might reflect encoding
errors or anomalies in the data. More detailed analysis would be required to investi-
gate the reasons for their separation from the larger dataset and to determine if they
signify any clinical relevance.

Table I presents the median values of the metrics extracted from eight retinal
networks, grouped by clusters. These metrics provide a summary of the key charac-
teristics of the retinal networks within each cluster, allowing comparisons between
different cluster. By analyzing the table, one can observe notable similarities and dis-
sociation between the clusters. Some clusters exhibit comparable values for certain
metrics, suggesting that they share structural or functional properties, while oth-
ers show significant differences, potentially indicating distinct patterns or variations
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Table 1 Displays the median value of network metrics extracted from the retinal network grouped
by clusters

Cluster |1 2 3 4 5 6 7 8

Id

1 22.0 54.0 8611.275|14.556 | 70.0 0.005 26.390 |0.0639
2 16.0 48.0 8108.446|13.437 |70.0 0.006 25.551 |0.0689
3 24.0 52.0 9578.209|14.914 |72.0 0.004 25.967 |0.061
4 12.0 42.0 6270.217| 8.775 |60.0 0.009 20.694 |0.088
5 20.0 54.0 9184.110| 15.694 |72.0 0.004 26.975 |0.062
6 20.0 54.0 8119.117|14.223 |72.0 0.006 27.195 |0.066

1: Qtt of A-branches, 2: Eccentricity, 3: Total length, 4: Total tortuosity, 5: Diameter, 6: Densite, 7:
Shortest path avg, 8: Routing efficiency

in the retinal networks. A preliminary statistical analysis was performed employ-
ing the Kruskal-Wallis (KW) test to compare each distribution of network metrics
across the identified clusters pair-to-pair. The study revealed that all network metric
distributions in the clusters are statistically significantly different.

A preliminary result showed that the retinas contained in Cluster 2 are from
patients older than 70 years, and all individuals in this cluster have been diagnosed
with Hypertension (HAS). This suggests that the clustering model has successfully
identified age and health-related patterns in the vascular networks, potentially linking
these factors to the specific characteristics of retinal vessels. This could serve as an
important marker for early identification of hypertension-related changes in retinal
vasculature.

5 Conclusion and Future Works

This paper outlines the initial development of an automated system designed to objec-
tively stratify the human retina microvascular system, employing a hybrid solution
that joins DL and Network Science algorithms and techniques. The proposed pro-
cess is structured into five distinct interconnected modules. The first module focuses
on automatic segmentation of retina vessels from biomedical image using advanced
image processing techniques. The second module generates a three-dimensional
superficial mesh of the vessel network, previously represented as pixels. In the third
module, the superficial mesh is converted into a biomedical graph. This graph-based
representation is essential to capture the topological and structural properties of
the vascular system. The fourth module leverages network science principles to
extract a range of objective metrics from biomedical networks. This step enables
a deeper understanding of the role of vessel structure in overall retinal health. The
final module involves qualitative inference that seeks to identify meaningful patterns
or anomalies in the vascular network that can indicate various health conditions.
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By applying Graph Neural Networks (GNNs) and clustering algorithms, the system
is able to detect potential markers of diseases such as hypertension, diabetes, and
cardiovascular disorders, based on observed vascular characteristics.

Together, these modules form an integrated framework that automates the extrac-
tion, modeling, and analysis of vascular characteristics. This approach has the poten-
tial to significantly improve diagnostic accuracy, offering a more efficient and objec-
tive method to assess the health of the retina and the body. By combining advances in
image processing, 3D modeling, network analysis, and machine learning, this auto-
mated system can enhance the precision of clinical decision-making and contribute
to personalized healthcare strategies.

The preliminary results are promising, demonstrating the potential of our approach
for analyzing retinal networks. However, there are several avenues for future work to
improve and refine the methodology. First, expand the dataset with more images and
clinical information. This could lead to more personalized and accurate predictions.
Second, improve the algorithm that extracts the centerlines. One possible enhance-
ment is to set the source point in the middle of the largest cavity of the surface mesh,
with the aim of reducing extraction problems, as it will always be on the same place
even when the mesh suffers spacial transformations. Third, a more in-depth study of
how the use of network metrics in the composition of semantic graphs (present in the
attributes of nodes and links) can lead to better graph-level encodings. Improve qual-
itative analysis maturing the GNN models and training; and clustering process. Then,
conduct an extensive validation using both internal and external datasets. Increas-
ing the interpretability of network analysis will help clinicians better understand the
patterns and anomalies detected, providing more actionable insights.
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Abstract Cancer is a health challenge for modern societies, as it affects millions of
people every year and brings a heavy burden in terms of treatment costs, the popu-
lation’s quality of life and survivability. For oncologists, the treatment approach is
also surrounded by uncertainties due to the unknown phenomena related to patients’
response, and precision medicine plays a significant role in defining the best ther-
apeutics. This paper proposes to leverage network science and machine learning
techniques in an integrated approach to provide a wide spectrum of information—
from qualitative networked analysis to treatment response predictions—in order to
assist practitioners’ decision for a neoadjuvant-based scheme when treating gastric
cancer patients. As a caveat, the framework also tackles the challenges of implemen-
tation in a real case scenario by using data from the oncology clinical practice in A.C.
Camargo Cancer Center, a leading institution for cancer treatment in Brazil. Put in
context, this work is part of an undergoing project towards a comprehensive Al-based
decision support system for neoadjuvant treatment applied to gastric cancer.
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1 Introduction

1.1 Background and Motivation

Cancer constitutes a major challenge to human health worldwide, a disease char-
acterized by an uncontrolled cell growth caused by gene mutations which can
affect a multitude of tissues and organs, hence manifesting through many sub-
types and distinct prognosis [10]. Gastric cancer (GC) is one of the most common
and lethal cancer manifestations, almost reaching 14,000 deaths in Brazil in 2020
while presenting an estimate of 21,000 occurrences per year within the country
between 2023-2025. Its causes are yet not fully understood, mainly carried by
Helicobacter pylori infection but also related to individuals® genetic background,
excessive ingestion of industrialized food, behavior and even occupation patterns
[5].

Not only in its manifestations, cancer treatment is also surrounded by unknown
phenomena [2]. Currently, a standard approach in the oncology practice for GC
involves the use of chemotherapy right after diagnosis (neoadjuvant phase), followed
by a surgery that usually implies in the removal of most or all the stomach, and a
continuation of the chemotherapy to remove residual disease (adjuvant phase). This
approach is called “perioperative” and has historically demonstrated to be the most
effective life-saving strategy when treating GC, leading to a greater overall survival
of patients. On the other hand, it is observed that a very significant share of the
afflicted individuals does not show a clear favorable response, as these subjects
present stable or even disease progression during the preoperative period. In this
context, it becomes crucial to correctly identify and predict which patients would
benefit from the neoadjuvant chemotherapy, supporting the decision-making process
of the practitioner when recommending a treatment scheme for GC. This consti-
tutes an important step towards a more effective treatment and survivability, while
preserving the non-responders that would need to receive alternative drugs or go
straight to surgery.

Artificial Intelligence (AI) and Network Science (NS)—particularly Complex
Networks and Machine Learning—have gained prominence as a great ally not only
in cancer diagnostics (Al-Azzam and Shatnawi 2021) but also in predicting the
success of treatment approaches and assessing survivability of patients [12]. Through
clinical and multi-omics data, computerized tools can learn from medical history by a
combination of compositional and relational information to anticipate if an individual
is most likely to benefit or not from a treatment choice, hence structuring the problem
at hand as a clusterization analysis and prediction task. Dealing with medical data,
however, is not simple [7]. Real, new and reliable data is hard to find, as proved by the
recurring need to emulate medical information or “recycle” old, publicly available
and ubiquitous datasets to develop new research. When new streams of “real-world”
data are available to be collected, it is usually hard to gather it in a structured and
consistent way [13], and there are persistent systematic phenomena related to critical
diseases and treatments’ information which require tailored analysis [19].
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Considering such challenge, this work aims to study the phenomena related to the
neoadjuvant treatment for gastric cancer patients under the view of clinical oncology
data, hence implementing a networked, machine learning-integrated approach that
proposes to enhance practitioners’ analysis capabilities and substantiate the decision
regarding the recommendation of such treatment scheme.

In order to develop a purposeful study and maximize real-world impacts, this
work is conducted within the context of the partnership between the Aeronautics
Institute of Technology (ITA) and A.C. Camargo Cancer Center (ACC) to obtain the
best quality data, medical and technical expertise. The methodology outlined in this
work represents part of a work yet in progress, as a promising steppingstone towards
a comprehensive decision support toolkit for practitioners’ assistance when dealing
with gastric cancer patients and the neoadjuvant treatment scheme. The framework
presented is based on a preliminary network analysis from [3] and guided under the
operating conditions of ACC’s clinical oncology practice.

1.2 Literature Review

As a preliminary step towards the development of any computational tool, data
processing is key to guarantee quality and consistency to the results yet to be obtained.
In this subject, data-centric Al rises as a hot topic, understanding that curating and
working the data is not a merely operational process—as a ‘““stock” step to be input to
learning tasks—but a critical phase to promote reliability and accuracy of models to
its real-world applications. Contrary to the “model-centric AI” view, a data-centric
lens seeks to systematically characterize, evaluate and improve the underlying data
to train and evaluate models [15], understanding algorithmic refinement as a less
important—and in some cases even solved—problem. Whang et al. [17] addresses
a data-centric view based on the premises that quality data is paramount to machine
learning, even for the state-of-the-art techniques. Looking at the oncology and clin-
ical field, Adeoye et al. [1] admits that the concept of data-centric Al is still incipient
in healthcare systems. As main gaps, the authors point to data imbalance and fairness
affecting data quality and hence limiting discriminatory performance in structured
datasets.

Looking from a networked perspective over the medical problem at hand, some
key developments are highlighted to provide the foundation for Complex Networks’
modelling. A keystone article is that of Ma and Zhang [8], where a powerful procedure
for CN generation is proposed when facing the problem of combining multi-omics
data to identify patients from different cancer subtypes. The first procedure is set to
generate CNs for each data source, subsequently fusing these multiple networks by an
original framework of “Affinity Network Fusion” (ANF). Experiments to enhance the
zero-shot clustering performance are carried and results point that better performance
can be reached by just using two out of the three omic graphs, but integrating all
three omics provide more consistent classification among all cancer subtypes.
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Diving into the proposal of this work, a landmark constatation through the litera-
ture reviewed is regarding the many insightful developments found when exploring
the interconnections between Complex Networks and Machine Learning. Torshizi
and Petzold [16] develop a semi-supervised ML model based on graphs which are
composed of many different genomic data in the form of “biological pathways” to
classify ovarian cancer. Three different types of genomics are collected and trans-
lated into networks by a K-Nearest Neighbors approach. At the same time, the most
helpful genes within each biological pathway are selected to form complementary
graphs considering three different approaches for generation. Graph learning models
are trained on these structures and results surpass many other state-of-the-art tech-
niques. Looking at different health applications for CNs in combination with ML,
Renjini et al. [14] modelled Complex Networks by using a correlation map extracted
from cough sounds. Many time series data points are grouped in order to form nodes,
and correlations between those are capped to form edges. Network metrics such as
Average Path Length (APL), Graph Density and Degree Centrality of nodes are used
as input to ML methods, which are capable of classifying sound between cough,
croup and pertussis.

Lastly, a key insight when approaching the problem through Machine Learning
applications is related to data processing challenges, which are well spotted in liter-
ature specially related to medical and oncology tasks. Kotsiantis et al. [6] propose a
review on techniques to handle imbalanced datasets, stressing the fact these occur-
rences can arise naturally in many fields and that traditional classifiers are not well
suited for this context. They highlight techniques to address imbalanced ML data such
as under/oversampling, feature selection and one-class learning. AUC are among the
recommended metrics to assess such imbalanced learning problems.

2 Methodology and Modelling

Inspired by the reviewed approaches that relate to the challenges envisaged for this
work, a phased approach is proposed to fulfill the objectives of this paper, segmented
between gathering and processing datasets, carrying out Complex Networks analysis
and implementing Machine Learning classification tasks, which are described below.

2.1 Datasets

The data utilized for this work is composed from two different sets, called
“Neoadjuvacy” (NEO) and “Multiple Myeloma” (MMRF).

Neoadjuvancy (NEO): Related to the neoadjuvant treatment and extracted from
AC Camargo (ACC) restricted data source, with guidance and expertise from its
Medical Genomics Group to only select relevant clinical attributes for the prediction
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task on the response to the neoadjuvant scheme for gastric cancer treatment. For pre-
processing, some criteria were imposed to guarantee information quality. For the
targeted feature for analysis, the attribute “percentage of viable cells in the surgical
specimen” (free translation of the Portuguese “porcentagem de células vidveis na peca
cirdrgica”, related to the surgical specimen and the primary tumor) was recommended
by ACC experts as the marker for treatment success, with a suggested threshold of
10% as the limit below which the patient can be considered a “good respondent” to
the neoadjuvant scheme. Such target choosing and preprocessing led to a total of 28
remaining features and 66 (out of the total 265) unlabeled instances. The binarization
procedure resulted in a class imbalance of 35 (17.6%) “good” and 164 (82.4%) “bad”
responders.

Multiple Myeloma (MMRF): As a comparative exercise, a public dataset regarding
Multiple Myeloma (MM), provided by the National Cancer Institution [11] is utilized.
To keep a coherent comparison with the NEO case, only clinical attributes from the
MMREF dataset are considered, totalizing 59 features. The feature “disease_status”
was chosen as target for prediction as it states the prognostic response to the MM,
and a binarization of its categories led to a near-perfect balance of 550 (49.5%)
“survivors” and 560 (50.5%) “deceased” after treatment, with no unlabeled instances.

Common to both Complex Networks and Machine Learning phases, the remaining
missing values are tackled by imputation using the respective attribute’s mode and
average, in the case of categorical and numerical features, respectively. Data normal-
ization is also conducted in its MinMax approach. For the Complex Networks, unla-
beled instances are removed, and class imbalances are allowed to occur. The Machine
Learning analysis handles imbalances by implementing the ADASYN data augmen-
tation [4], and the curse of dimensionality is mitigated by implementing feature
extraction through the FAMD method [9]. The MMREF set has the same processing
pipeline applied as the NEO data but does not require imputation/augmentation as it
does not present missing values/imbalanced class ratios.

2.2 Complex Networks

The Complex Network set of analysis aims at providing qualitative intelligence over
the relationship structure among patients, as well as extracting relational information
to be integrated into the Machine Learning classification tasks with the objective
of enhancing its predictive performance. The proposed methodology is segmented
between stages of network modelling, topology analysis and feature extraction.

Network modelling. When laying out the networks, patients are set as nodes and their
relationships are translated by connecting links. A main idea here explored relates
to the development of two different generation pipelines by varying the distance/
similarity calculation and the rationale for link formation.
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Regarding the distance/similarity calculation, two methods are considered:

Minkowski Distance (MD). Calculates the Minkowski metric for distance between
objects (nodes) of a given dataset, following (1).

(D

dist(x;, x;) = "

where p = 1 for features with boolean values (Hamming distance) and p = 2 for
rational-valued attributes (Euclidean distance), being / from 1 up to d as the number
of features in the dataset and x;, x; two given nodes (objects) in the network.

Hybridized distance (HD). Inspired by the methodology of Zhang and Ma (2018),
calculates the pair-wise Euclidean Distance matrix among objects and a local diam-
eter vector considering each node’s average distance to its “k” closest neighbors,
where “k” is a pre-defined parameter. Then, a weighted average distance measure
(balanced by a pre-defined “o” parameter) is calculated by combining the Euclidean
distance between each pair of nodes and their respective node diameters. Lastly,
a Gaussian kernel is applied to minimize noisy signals and convert the distance
measure to similarity values, which are then compiled for each pair of objects within
the network.
Regarding the rationale for link formation, two approaches are developed:

Network Distance Threshold (NDT). Considers applying a threshold over the entire
pair-wise distance matrix previously calculated, as a percentile of the lowest distances
found for the entire network. In this sense, only pair-wise distances below such
threshold are linked.

Node-specific Similarity Threshold (NsST). Sets quantile values to select only the
pre-defined highest share of distances/similarities for each node’s specific profile,
which are then connected in the structure.

Topology analysis. Based on the generated “Natural” networks, an analysis over
the topology obtained is proposed to gather qualitative insights. More specifically,
an analysis is carried out by segmenting the class-specific relational behavior of
features, to better understand the part played by each attribute to group and provide
insights regarding patient’s prognostics.

Feature extraction. Based on the generated “Subnetworks”, information specific
to each of the patients within each of the subnetwork is extracted. The usability
of such information can be structured as new features to be inserted in a Machine
Learning classification task and calculated in the occasion of inserting a new patient
in the network itself, providing additional parameters to assist practitioners’ analysis.
Specifically, class-related values from its “k” neighbors are analyzed. And an exhaus-
tive search procedure is implemented to determine an optimal “k” to be considered
in each case.
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2.3 Machine Learning

Two Machine Learning classification tasks are implemented with regards to the
datasets NEO and MMREF, aiming at predicting each set’s targeted feature. The tasks
are named as “Standard Learning” and “Developed Learning”, described below.

Standard Learning. To set the baseline for what would be the learning performance
achieved by the “standard” approach to classification tasks, a learning round is imple-
mented using classical techniques. Such diversity of methods is proposed under the
interpretation of the No Free Lunch theorem [18] for the Machine Learning context.
The data processing applied covers only the main steps used for the Complex Network
analysis. A leave-one-out learning loop is implemented and metrics captured in the
form of AUC and Recall—which constitute key indicators of learning performance
for the case on small, imbalanced datasets.

Developed Learning. This learning procedure is proposed in a way to address some
of the data issues spotted during previous Standard Learning and Complex Network
analysis. The datasets are segmented according to the “subset” feature groupings and
the features extracted from the respective “subnetworks” are incorporated into the
sets. Inspired by the reviewed literature for this work, an extended set of classifiers are
implemented, now also covering algorithms based on gradients, graph-based and one-
class learning techniques. Internal parameters are also optimized along an internal
cross-validation routine within the leave-one-out learning loop. Data processing steps
are executed as for the Standard Learning, with additional data augmentation and
feature extraction procedures implemented for the NEO set through ADASYN [4]
and FAMD [9] techniques, respectively.

3 Results and Discussion

3.1 Complex Networks

Through the forementioned methodology, networks with patients as nodes and class
labels (treatments response or outcome) are modelled and presented in Fig. 1, for
datasets NEO (‘a’, ‘c’) and MMREF (‘b’). Two generating pipelines are established by
matching MD calculation/NDT linkage methods and HD calculation/NsST linkage
procedures, which originate the so-called “Natural” (‘a’, ‘b’) and “Subnetworks” (‘c’)
structures. The latter is obtained by a data-centric idea of segmenting the datasets’
features into subsets, hence providing a dedicated view for the different dimensions
of the medical problem. For the NEO set, subgroupings are established by segregating
features related to patients’ “Clinical Profile (PC)”, “Disease Manifestation” (MD)
and “Treatment Parameters” (PT) information. For the MMREF set, subgroupings are
established by features segmented among “Clinical Profile (PC)”, “Exam” (EX) and
“Treatment” (TR) dimensions.
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¢)

Fig. 1 Natural networks for dataset a NEO and b MMRE, alongside subnetworks for dataset ¢ NEO
and subnetworks PC (left), MD (center) and PT (right)

Starting at the NEO natural network (‘a’), a first impression relates to the reduced
number of nodes due to the lower number of objects present in this dataset. In addi-
tion, it is to note the relative lower density of links formed between nodes if compared
to other sets, which is intentional of the NDT threshold applied as to highlight the
main relationships between nodes while keeping a connected structure. Regarding
the spatial distribution, local groupings with a denser concentration of links are
observed, connected among each other by somewhat linear “strings” of nodes. This
represents an indicative of patients with stronger internal similarity forming clusters
of nodes, which in turn are inter-related by short and linear structures of connections.
When adding label (color) information to the analysis, it becomes evident the imbal-
anced nature of the data, with low count of “good” responders to the neoadjuvant
treatment scheme (green color). This minority class is not clearly segregated within
the network, being scattered amid the majority “bad” responders (red color). Such
mixing of different response levels to treatment increases the challenges of clearly
distinguishing patients by their prognostics, which is useful in oncology practice
as to analyze a new patient by his/her neighborhood when inserted in the network.
Nevertheless, it is possible to observe some closeness between the green nodes, in
many cases positioned as low-order neighbors between themselves.
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The natural MMRF network (‘b’) obtained from the MMREF presents two clearly
distinct groupings connected by only a few nodes, which prompts for further inves-
tigation over the characteristics of such regions and the characteristics of the “con-
nector” patients. Adding label information, for the major grouping located on the top
right area of the visualization it is possible to identify a cluster with a predominant
class of “good” outcome to the cancer treatment (green color), alongside a mixed
cluster with “bad” outcome to cancer treatment as a predominant class (red color).
This translates to a more “predictable” outcome for the MM treatment based on
the relationships of a potential new patient with the historical afflicted individuals’
data. Switching to the subnetworks for the NEO set (‘c’), an observation is the frag-
mented aspect of the nodes’ linkage patterns when considering the different subsets
of features separately in each network, resulting in multiple chains of few connected
objects. Nevertheless, the structures modelled do point to a more identifiable rela-
tionship among the “good” responders (green nodes), as most of them appear to be
connected to another similarly labeled object at least in the second order. This key
insight is critical for the latter phases of analysis of this work, where each subnet-
work in Fig. 1 (‘c’) will have object-specific features extracted and inserted in the
respective subset’s machine learning tasks.

Continuing the topology characterization of the networks based at datasets’
features and their part at bringing together objects from the same class, the diagram
in Fig. 2 presents the average distance between nodes (patients) from the same class
(treatment response) when considering each feature in isolation for the NEO data.

Fig. 2 Average distance between objects calculated by each feature, for each class in natural
network NEO
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From the diagram, it is observable that there are features which act better as a
‘node magnet’ for a given class, while keeping the opposite label more disperse.
That is the exemplary case of attributes ‘periodontal disease’ and ‘duration net treat-
ment’ for classes of ‘good’ (1) and ‘bad’ (0) responders, respectively. There are also
variables that promote a lower or higher overall distance between nodes for both
classes, as exemplified by ‘clinical staging’ and ‘Charlson comorbidity index” which
appear to equally attract and repulse same-class objects for both labels, respectively.
In any case, these types of attributes could serve as preliminary potential markers for
patients’ clustering, whether focusing to group objects from a specific class (“peri-
odontal disease’ and ‘duration net treatment’) or both labels simultaneously (‘clinical
staging’).

Finally, when working on the forementioned idea of extracting features from the
networked structures, the average response of the “k” closest neighbors for nodes
within a subnetwork is analyzed. This signal becomes useful when studying the yet
unknown potential response to the neoadjuvant treatment for a given “new patient”
that is held under scrutiny, while also aggregating useful relational information
regarding each of the dataset’s objects which can enhance the Machine Learning
prediction capabilities. In this sense, Table 1 summarizes results obtained for the
gap analysis among the targeted feature values of the ‘k’ closest neighbors for each
node in the network, while also conducting an extensive search to find the best ‘k’
parameter for each subset and the entire dataset, considering both NEO and MMRF
data.

Itis clarified that the label values are presented in range from O to 100 for the NEO
set, while assuming discrete values from O to 4 for the MMRF case. In an overall
sense, it is noticeable that all average label gaps found do not surpass the absolute
value of 50% of the range between all possible labels, which would undermine the
value of such relational information—if true, each node could assume any value
for its targeted feature from the standpoint of its closest neighbors. For the NEO
case, it is to note the rather broad variation of the optimal ‘.’ found for each subset,
with ‘PT’ being optimized at a much lower number of closest neighbors considered.
Nevertheless, the average label gap is kept rather similar across all subsets’ analysis

:r?z:;lyesils tc])3 Zi;:ﬁ:;ﬁijhbors’ Dataset | Subset | Characteristic
information Best “k” neighbors | Average label gap
NEO PC 12 35.171
MD 15 34.641
PT 4 34.489
All 12 34.974
MMRF |PC 14 1.249
EX 25 1.199
TR 1 1.027
All 26 1.173
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in arange close to 35, which means that the optimal number of closest neighbors from
each patient (node), on average, have a variation of 35 in the values of their targeted
attribute that conveys the treatment response level for the neoadjuvant approach (in
a scale from 0 to 100). The MMRF presents an average gap around the marks of
1.1 (approximately 39% of the label range), with label information from 1 up to 25
neighbors optimally considered for each node under different subnetworks.

3.2 Machine Learning

Finally, as a Machine Learning exercise for the NEO and MMREF classification prob-
lems, Table 2 presents the learning metrics obtained by the baseline “Standard” and
tailored “Developed” approaches, the latter including relational information from
the previously modelled subnetworks in the form of new features, which in turn
are extracted for each patient based on the optimal “K” neighbors parameters found
for datasets NEO and MMRF during previous analysis. For note, the classifiers
implemented are abbreviated as K-nearest neighbors (KNN), Random Forests (RF),
Support Vector Machine (SVM), Logistic Regression (LR), XGBoost (XGB), Isola-
tion Forest (IF) and Label Propagation (LP). The subsets for the NEO data are taken
as.

From the Recall metric calculated for the “Standard Learning” case, it is noted that
while the MMREF set presents reasonable values (from 0.76 to 0.83), the NEO data
results in near-zero figures. The latter outcome indicates that the model was unable to
predict a single true positive object for the Neoadjuvant task, hence “reason guessing”
all instances as negative-labeled under the influence of the imbalanced nature of the
dataset. The AUC metrics for the NEO case are set with an average of 0.469, below
the 0.5 threshold which is considered as the “random classification” mark (such mark
could be obtained by just randomly selecting a class for each patient). The MMRF
dataset, however, presents consistent AUC values with an average of 0.947, which is
attributed by the increase data size and more equal proportion of objects belonging
to each class.

Due to the inherent inability of the classical learners to predict the Neoadjuvant
treatment prognostics, the tailored “Developed Learning” approach is applied to the
NEO set exclusively, which brings into account the network-extracted features to
increase the amount of information leveraged for the prediction task, implements
data augmentation to mitigate the imbalance issue and add more learners relying in
different rationales which could prove more useful for originally-imbalanced and
reduced datasets. As a result, the average AUC is raised by 15% and surpasses the
“random” 0.5 threshold, reaching an average of 0.539 and even isolated marks of
0.707 for the combination of subset “Treatment Parameters” and learner “Logistic
Regression” (LR). This implies a critical increase in classification quality, in which
the machine learning architecture goes from erroneous contribution to positive impact
over the prognostics’ prediction. Furthermore, although not rising significantly, the
Recall metric does not reach the almost-zero figures anymore, which translates that
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Table 2 Machine learning tasks for datasets NEO and MMREF, considering multiple learners and
subsets (1) clinical profile, (2) disease manifestation and (3) treatment parameters

Approach Standard Developed

Dataset NEO MMRF NEO

Method/metric Recall AUC Recall AUC Recall AUC
KNN 0.029 0.553 0.760 0.868 0.257 (1) 0.458 (1)

0.400(2) | 0.490 (2)
0457(3) |0.579(3)

RF 0.000 0.554 0816 0976  |0.200(1) | 0.499 (1)
0.229(2) | 0.496(2)
0.229(3) | 0.564 (3)

SVM 0.000 0228 | 0.791 0964  |0.400(1) | 0.470 (1)
0.486(2) |0.576 (2)
0.657(3) |0.614(3)

LR 0.057 0543 |0.827 0979  |0486(1) |0.573 (1)
0429(2) |0.532(2)
0.571(3)  |0.707 3)

XGB - - - - 0.143 (1) | 0.599 (1)
0314(2)  |0.529(2)
0314(3)  |0.558 (3)

IF - - - - 0.114 (1)  |0411 (1)
0.229(2) |0.543(2)
0.057(3) |0.526(3)

LP - - - - 0.486 (1) | 0.563 (1)
0.026(2) | 0.484(2)
0.486(3)  |0.550 (3)

the learners are now not biased by the imbalanced nature of the NEO data and hence
are operating under a “fair” effort to actually predict the treatment’s outcomes for
gastric cancer patients.

4 Conclusions

This work presented a Network and Machine Learning approach to tackle the issue
of treatment recommendation for gastric cancer. Based on the real-world dilemma of
recommending a neoadjuvant treatment scheme for patients, data from the oncology
practice of the A.C. Camargo Cancer Center was utilized (NEO) alongside a compar-
ative publicly available (MMREF) set to generate qualitative insights and quantitative
metrics to support the practitioners’ decision-making, enhancing their analytic capa-
bilities to deal with high volumes of data which in turn present intricate relationship
dynamics.
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At first, Complex Networks were generated under different methodologies to
multiply the relational information available. Visual inspection of the so-called “Nat-
ural Networks” revealed challenges to group same-class patients in the NEO task,
while the MMRF presented clearer distinction patterns. For the NEO data, an analysis
of features and their capabilities of grouping same-class objects was implemented and
revealed potential markers for patients’ clustering. Looking to provide new features
for the Machine Learning task based on the relationship between nodes, an extensive
search across different number of neighbors to be accounted was executed and the
optimal value was utilized, minimizing the targeted feature gap between each patient
and its considered neighborhood. Finally, the Machine Learning task under the base-
line “Standard” approach—which does not consider measures for data augmentation
nor the network-extracted features—revealed difficulties in handling the imbalanced
data, which was not observed in the MMREF set. As a countermeasure, the implemen-
tation of the “Developed” approach considering procedures of data augmentation,
network-extracted features and additional learning methods was able to increase the
learning capabilities and bring more confidence over the predictions’ outputs.

As future directions of research, the multitude of relational and predictive infor-
mation provided by the Networks and Machine Learning tasks can be further studied
to provide even more insights and quantitative metrics to substantiate the cancer
treatment recommendation, while also being able to be framed as a comprehen-
sive decision support tool for the oncology practice. More specifically, the networks
generated can introduce new patients under scrutiny to be analyzed in terms of their
location and relationship dynamics among other historical patients. On the Machine
Learning side, the multiple predictions based on subsets can be further consolidated
by the usage of meta-learning approaches, and the incorporation of network-based
information into the training rounds can “customize” the learning process for each
new patient analyzed.

Acknowledgements This study was partially financed by the “Coordenacgio de Aperfeicoamento
de Pessoal de Nivel Superior—Brasil” (CAPES). This work was also carried out with the support
from the S@o Paulo Research Foundation (FAPESP), Brazil, grant n. 2014/26897-0 (project: “Epi-
demiology and genomics of gastric adenocarcinomas in Brazil”). The research uses data from A.C.
Camargo Cancer Center’s Oncology practice, authorized by the Ethics and Research Committee
(registration n. 2134/15).

References

1. Adeoye, J., Hui, L., Su, Y.-X.: Data-centric artificial intelligence in oncology: a systematic
review assessing data quality in machine learning models for head and neck cancer. J. Big Data
10, 28 (2023)

2. Coelho, F., Braga, A.P.,, Natowicz, R., Rouzier, R.: Semi-supervised model applied to the
prediction of the response to preoperative chemotherapy for breast cancer. Soft. Comput. 15,
1137-1144 (2011)



68

12.

13.

14.

15.

16.

17.

18.

19.

L. Q. M. da Costa et al.

. Costa, L.Q.M., Ribeiro, C.H.C., Dias-Neto, E.: A study of networks for decision support in

neoadjuvant treatment for gastric cancer. In: Galod Proceedings. LVI Brazilian Operations
Research Symposium, SBPO (2024)

. Imbalanced learn user guide for over-sampling. https://imbalanced-learn.org/stable/over_samp

ling.html. Last accessed 15 Nov 2024

. INCA Sintese de Resultados e Comentdrios. https://www.gov.br/inca/pt-br/assuntos/cancer/

numeros/estimativa/sintese-de-resultados-e-comentarios. Last accessed 15 Nov 2024

. Kotsiantis, S., Kanellopoulos, D., Pintela, P.: Handling imbalanced datasets: a review. GESTS

Int. Trans. Comput. Sci. Eng. 30, 25-36 (2006)

. Li, J., Tian, Y., Li, R, Zhou, T., Li, J., Ding, K., Li, J.: Improving prediction for medical

institution with limited patient data: leveraging hospital-specific data based on multicenter
collaborative research network. Artif. Intell. Med. 113, 102024 (2021)

. Ma, T., Zhang, A.: Affinity network fusion and semi-supervised learning for cancer patient

clustering. Methods 145, 16-24 (2018)

. Max Halford—Prince. https://maxhalford.github.io/prince/. Last accessed 15 Nov 2024
. Murthy, N.S., Bethala, C.: Review paper on research direction towards cancer prediction and

prognosis using machine learning and deep learning models. J. Ambient Intell. Humaniz.
Comput. 14, 5595-5613 (2021)

. National Cancer Institute Genomic Data Commons: The Multiple Myeloma Research Founda-

tion. https://gdc.cancer.gov/about-gdc/contributed-genomic-data-cancer-research/foundation-
medicine/multiple-myeloma-research-foundation-mmrf. Last accessed 15 Nov 2024

Povoa, L.V., Ribeiro, C.H.C., Silva, I.T.: Machine learning predicts treatment sensitivity in
multiple myeloma based on molecular and clinical information coupled with drug response.
PLoS One, (7), 0254596 (2021)

Povoa, L.V., Calvi, U.C.B., Lorena, A.C., Ribeiro, C.H.C., Silva, .T.: A multi-learning training
approach for distinguishing low and high risk cancer patients. IEEE Access 9, 115453-115465
(2021)

Renjini, A., Swapna, M.S., Raj, V., Kumar, K.S.: Complex network-based pertussis and cough
analysis: a machine learning approach. Phys. D 433, 133184 (2022)

Seedat, N., Van der Schaar, M.: Data-Centric Al https://www.vanderschaar-lab.com/data-cen
tric-ai/. Last accessed 15 Nov 2024

Torshizi, A.D., Petzold, L.R.: Graph-based semi-supervised learning with genomic data inte-
gration using condition-responsive genes applied to phenotype classification. J. Am. Med. Inf.
Assoc. 25(1), 99-108 (2018)

Whang, S.E., Roh, Y., Song, H., Lee, J.-G.: Data collection and quality challenges in deep
learning: a data-centric Al perspective. VLDB J. 32, 791-813 (2023)

Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol.
Comput. 1(1), 67-82 (1997)

Zhu, Y., Zhu, X., Kim, M., Yan, J., Kaufer, D., Wu, G.: Dynamic hyper-graph inference frame-
work for computer assisted diagnosis of neurodegenerative diseases. IEEE Trans. Med. Imaging
38(2), 608-615 (2019)


https://imbalanced-learn.org/stable/over_sampling.html
https://imbalanced-learn.org/stable/over_sampling.html
https://www.gov.br/inca/pt-br/assuntos/cancer/numeros/estimativa/sintese-de-resultados-e-comentarios
https://www.gov.br/inca/pt-br/assuntos/cancer/numeros/estimativa/sintese-de-resultados-e-comentarios
https://maxhalford.github.io/prince/
https://gdc.cancer.gov/about-gdc/contributed-genomic-data-cancer-research/foundation-medicine/multiple-myeloma-research-foundation-mmrf
https://gdc.cancer.gov/about-gdc/contributed-genomic-data-cancer-research/foundation-medicine/multiple-myeloma-research-foundation-mmrf
https://www.vanderschaar-lab.com/data-centric-ai/
https://www.vanderschaar-lab.com/data-centric-ai/

Population Dynamics in the Global )
Coral-Symbiont Network Under oy
Temperature Variations

Maria Gabriella Cavalcante Basilio and Daniel Ratton Figueiredo

Abstract Coral reefs are crucial to marine biodiversity and rely on a delicate sym-
biotic relationship between corals and zooxanthellae algae. Water temperature varia-
tions, however, disrupt this association, leading to coral bleaching events that severely
affect marine ecosystems. This study presents a mathematical model for the popula-
tion dynamics of coral and symbiont species considering the coral-symbiont network
and recurrent warming events. The model incorporates thermal tolerances of species
and coupled growth dynamics (between corals and symbionts) to investigate how
network structure and thermal tolerance influence the species’ growth. Using real
data from different ocean regions, results reveal that network connectivity plays a
significant role in population growth after successive warming events, with generalist
species demonstrating greater growth across all regions analyzed. The comparatively
higher correlation between node degree and final population also emphasizes the
impact of ecological network structure on species growth, offering valuable insights
into coral reef population dynamics under climate change. This research highlights
the need to consider network structure beyond species’ thermal tolerances when
evaluating the ecological responses of corals to environmental changes.

Keywords Population dynamics * Ecological networks - Coral bleaching

1 Introduction

The symbiotic relationship between species of coral and microalgae, known as zoox-
anthellae, is fundamental to the survival of coral reefs, as algae and corals exchange
nutrients with each other. However, when these organisms are exposed to warming
events, the bond between the host coral and endosymbiotic algae breaks down. The
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breaking of this bond is called coral bleaching [1, 8] because the color of corals often
depends on the type of algae associated with them. Therefore, when the association
is broken, the coral loses its color and becomes white, a phenomenon known as
bleaching.

The bleaching event causes several ecological impacts such as a decrease in its
growth rate. Furthermore, bleaching events are recurrent and have become more
frequent in the last decade [4]. However, warming events do not equally affect all
organisms, as they have different thermal tolerances which represents their capacity
to grow under water temperature variation [8, 9]. Finally, the capacity to grow also
depends on the symbiotic relationships of the organism. Intuitively a coral with
multiple and diverse algae has a higher tolerance to warming events and thus more
robust growth.

This work presents a mathematical model for the growth of corals and algae
considering both their symbiotic relationship and thermal resistance under recurrent
warming events. In particular, a bipartite network encodes the symbiotic relationships
and a differential equation for each organism (coral and algae) captures its population
growth. This equation depends on the network structure, thermal tolerances, water
temperature and the population of the symbionts.

Using real data collected from different ocean regions, the proposed growth model
is applied to a representative model for recurrent warming events. Starting from
identical initial populations, the model shows that different organisms have very
different growth patterns over time. The relationship between population and network
structure and thermal tolerance is investigated. Results indicate that, for different
ocean regions, correlation between network structure and population is stronger than
thermal tolerance and population. This highlights the importance of the symbiotic
network on understanding bleaching events.

2 Related Work

Understanding the consequences of rising ocean temperatures in the development
of coral reefs through network analysis has been broadly explored in the recent
literature. A notable work studies the global network between coral species and
Symbiodiniaceae and its resistance to temperature stress as well as its robustness to
temperature perturbations [8]. Another recent work proposes and evaluates an eco-
evolutionary model that shows that shortcuts in the dispersal network (e.g., corals that
disperse larvae throughout the ocean to coral reefs) across environmental gradients
(i.e., changes in non-living factors through space or time) hinder the persistence of
population growth across regions [5, 6]. Theses works have been quite successful in
identifying how the network structure affects the sensitivity of corals to changes in
water temperature, either in symbiotic associations networks or in dispersal networks.

For instance, in the context of the global coral-symbiont network [8], null net-
works were created by altering physiological parameters of organisms or the network
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structures. A bleaching model was developed with weighted links representing tem-
perature thresholds for host-symbiont pairs. Resistance to temperature stress and
ecological robustness were assessed by analyzing how different networks responded
to increasing temperatures (e.g., link removal) and species (e.g., node) removal.
Results indicated that robustness to bleaching and other perturbations varied across
spatial scales and differed from null networks. The global coral-symbiont network
was more sensitive to environmental attacks, such as rising temperatures, with sym-
bionts providing more stability than hosts. Network structure and thermal tolerances
are not represented by uniform random patterns, making the system more vulnerable
to environmental changes.

The dispersal networks represent demographic connectivity between populations
located in different habitats. These networks describe how offspring of species move
between these habitats, forming connections that influence both the demography
and the growth of populations [5, 6]. Additionally, through the eco-evolutionary
model, it was observed that random networks performed better in non-evolving
populations, while regular networks favored populations with higher evolutionary
potential [6]. These networks, by reducing maladaptive gene flow, allowed local
populations to adapt more efficiently. Results reinforce the importance of consid-
ering eco-evolutionary dynamics, network structures, and environmental gradients
when assessing species’ ability to migrate and persist under climate change.

3 Data Source and Network

Data from the GeoSymbio [2] and a complementary database [8] were used to con-
struct the bipartite coral-symbiont network. Geosymbio database provided informa-
tion about the organisms, such as Symbiodinium type based on ITS2 sequence type,
scientific name (genus and species) of coral and the location (i.e., ocean region)
from which the Symbiodinium specimen was collected. There is a total of 53 ocean
regions in the GeoSymbio. The complementary database was used to obtain data
on the thermal tolerances of the Symbiodinium type and the coral host. Unfortu-
nately, the database is not complete and some organism do not have a specified
thermal tolerance. In such cases, the mean value of the thermal tolerance was used
as reference.

A bipartite network encoding the relationship between host corals and its
endosymbiotic algae was generated for each ocean region. In particular, an edge
represents the symbiotic relationship between a symbiont species and a host species
in the ocean region where it were observed (Fig. 1). Thus, there are no edges between
organisms of distinct regions. Besides, each node represents a symbiont species or
host species in a region. For instance, if a same species of symbiont or host occurs
in k regions, then the network will have k vertices of this species.
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Fig. 1 Bipartite coral-symbiont network with host nodes (blue) and symbiont nodes (yellow)

Table 1 Network nodes and edges in different connected components analyzed

Region Symbiont nodes | Host nodes Edges Density
Great Barrier 76 198 415 0.055
Reef

Phuket 36 152 442 0.162
Western Indian 43 131 337 0.120
Western 36 61 111 0.101
Caribbean

Florida 26 32 75 0.180

Table 2 Degree in the global coral-symbiont network

Type of node Standard Minimum degree | Average degree | Maximum degree
deviation

Symbiont 8.306 1 3.168 102

Host 2.346 1 2.332 51

The global coral-symbiont network has 867 symbiont nodes and 1178 host nodes,
2747 edges and 181 connected components. Note that the connected components are
at least the number of ocean regions (i.e., 53), however the global network has many
more connected components. Hence, there are multiple connected components within
the same ocean region.

Moreover, five connected components of the global network each corresponding
to a different region were chosen to be analyzed separately, as shown in Table 1.
These regions represent the most threatened regions of coral bleaching in the oceans.
Note that these networks have different number of nodes and edges, but relatively
similar edge density.

3.1 Degree Distribution

The degree of the global coral-symbiont network is analyzed, considering all 53
ocean regions. Table2 shows that the average degree of both types of nodes is rela-
tively similar but not the standard deviation which is larger for the symbiont nodes.
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Fig. 2 The complementary cumulative distribution function (CCDF) of symbiont and host nodes

Furthermore, since the minimum degree is 1, there are no isolated organisms (nodes)
in the coral-symbiont network.

Figure 2 shows the complementary cumulative distribution function (CCDF) for
the degree of both symbiont and host nodes. Note that both distributions are heavy-
tailed since a tiny number of symbionts are connected 100 or more hosts and a
tiny number of hosts are connected to 50 or more symbionts. Further, note that
the symbionts have a heavier tail (the distribution curve decreases more slowly)
indicating that symbionts connect more, also because the number of host nodes is
much larger.

Moreover, the difference between the tail values and the average degree values
of the two types of nodes is very significant. Recall that the average degree of the
symbionts and hosts are approximately 3 and 2, respectively. Thus, the majority of
hosts and symbionts are specialists (have very few connections) while a tiny amount
of both nodes are generalists (have large number of connections).

4 Mathematical Model for Population Growth

A novel population model using the network, thermal resistance, and symbiotic
population was developed with the aim of studying the population dynamics of coral
and algae under exposure to recurrent warming events. In what follows the model is
described in detail and Table 3 presents variables and parameters of the model.

In essence, the model is a system of coupled ordinary differential equations to
track the population of symbionts and hosts over time. This model considers the
coral-symbiont network, where every node has associated with it a population. Note
that this model uses a single variable per node instead of a variable for each symbiotic
relationship (i.e., edges). Consequently, this model has significantly fewer variables
(see Table 1). However, network edges drive the population dynamics as growth of
corals and algae are coupled and symbiotic.
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Table 3 Definition for symbols of variables and parameters of the model

Symbol Definition (variables and parameters)

S; (1) Population of the ith symbiont species at time ¢

H;(1) Population of the ith host species at time ¢

N? Neighborhood of the ith symbiont species

N l.h Neighborhood of the ith host species

r! Population growth rate of the ith symbiont
species

rih Population growth rate of the ith host species

mj Population mortality rate of the ith symbiont
species

mf’ Population mortality rate of the ith host species

T’ Thermal tolerance of the ith symbiont species

.[ih Thermal tolerance of the ith host species

Let S;(¢) and H;(¢) denote the population of symbiont i and host i at time ¢,
respectively. The evolution (derivative) of S; over time is given by:

s, S H; \
— = T E — | - Sim; (1)
e N7l jemey N7

Note that there is a growth term (positive) and a mortality term (negative) that
are driven by a growth rate (r7) and mortality rate (m}). Moreover, the growth term
also depends on the network. This is the main contribution of the proposed model.
In particular, the growth rate depends on the population of the corals that have a
symbiotic relationship (edge) with this symbiont.

In particular, the growth rate is multiplied by the sum across the neighboring
hosts of the fraction of the host populations (/) divided by its neighbors (N ;’). This
fraction is assumed to interact with a fraction of this symbiont population, which is
given by §; divided by its neighbors (N/). Thus, for each neighboring host j, the

SA

—& —_ Note that the second term does not depend on ;.

N" N
j

Dividing the population of an organism by its degree assumes that each population
interacts uniformly with the population of neighboring organism. This normalization
ensures that the interaction of a symbiont or host population is distributed evenly
among its connections. While hosts typically have fewer neighbors than symbionts,
this asymmetry is inherent to the network structure and is represented in the model by
this normalization. Moreover, this assumption significantly simplifies the model as
it requires a single variable (population) for each node while also capturing network
heterogeneity (different degrees).

growth rate is multiplied by
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Table 4 Parameter definitions and values used in simulations

Parameter Value Definition

ry 1.0 Scaling factor for symbionts’
growth rate [6]

r(’)’ 1.0 Scaling factor for hosts’
growth rate [6]

z 29.1°C Optimum growth temperature
for symbionts and coral hosts

" 0.3 The base mortality [7]

The growth rate (r]') is given by:

s < —(’1'(r)—2z)2 )
Pp— (A )
2 (7))’

While the mortality rate (m7) is given by:

M, if T(t)<z

N

m; = <—(T(t)—27)2) (3)
l—e\ G/ if T(t) >z

Note that both the growth and mortality rates have already been proposed in the
literature [6, 7] and depend on the current local sea temperature (7' (¢)) and thermal
tolerance (7;) of each organism.

Considering the mortality rate, note that if the temperature is lower than or equal
to the optimum temperature for growth (given in the model by parameter z), the
mortality rate is equal to u (see value in Table4). However, if the current local
sea temperature is higher than the ideal growth temperature, the mortality rate is a
function that depends on the thermal tolerance of the organisms.

The evolution (derivative) of H; over time is given by:

dH, H , S ,
ar N[ 2 NS " @

jeN?!

Note that this equation is identical to (1) making the model symmetric. The growth
rate and mortality rate for hosts are also given by (2) and (3), respectively (replacing
superscript s with &, as shown in Table3). Thus, there is no inherent population
growth advantage between symbionts and hosts. Of course, their growth depends
on the parameters of the model such as network structure, thermal tolerance, water
temperature and initial population.
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Fig. 3 Local sea temperature function over time. The blue dashed lines represents the moment at
which the model reached the optimal growth temperature (z)

The growth and mortality rate of symbionts and hosts depend on the current
local sea temperature. Thus, a model for the evolution of the sea temperature is
needed. The temperature model used in this work was based on real ocean temperature
data, collected over 26 months, in two regions of Western Australia: Coral Bay and
Tantabiddi [3] which is shown to be recurrent. In particular, the temperature model
is given by:

T (t) = 4cos <% + 30.6) + 26 (®)]

The choice of parameters for the temperature model was arbitrary to emulate
recurrence within a temperature range and timescale. Figure 3 shows the evolution
of the temperature over time indicating the optimal growth temperature value.

Finally, (1) and (4) will be solved numerically and independently for each region
(see Table 1) according to the above temperature model over a time horizon that
simulates successive warming events over 1500d, as shown in Fig. 3.

An extended mathematical model based on the above can be found in the ArXiv.

5 Quantitative Analysis

Numerical solution of the population model provides insights into how populations
of host corals and endosymbiotic algae behave when exposed to successive warming
events when their growth is coupled by the network. Moreover, assuming that all
host and symbiont species have some initial population, it is possible to characterize
the role of the symbiotic interactions network structure in the growth dynamics of
these populations and how the network influences recovery after warming events.

In particular, all symbiont species have an initial population of 1000, while all
host species have an initial population of 100. Thus, there is no preferred species at
time zero.


ArXiv
 31726 35804
a 31726 35804 a
 
https://arxiv.org/abs/2411.19361
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5.1 Population Growth

Figure4 shows the population growth for symbionts and hosts at the Great Barrier
Reefregion. Note that all species showed an overall increasing trend in the population.

Moreover, when water temperature is far from the optimal the population of most
species decreases. This same trend was observed in all other regions. However, all
species showed resilience as they continue to grow in population despite the thermal
stress events.

Nevertheless, even with the initial populations being the same for all species, dif-
ferences in the evolution of populations occur due to the structure of the network and
thermal resistances. Since the network structure is not uniform, as the node degrees
are very different, population growth is also not uniform. Figure 5 shows the popula-
tion distribution after 1500d for both symbionts and hosts for all regions analyzed.
Note that population distribution for hosts exhibits a heavy tail in all regions.This
highlights the central role of network structure in population dynamics, as it deter-
mines how the species interactions shape resilience. Species with higher node degree
(generalist species) adapt better to environmental changes, while species with lower
node degree (specialist species) grow slower when exposed to thermal disturbances.

(a) Great Barrier Reef - Symbionts’ growth  (b) Great Barrier Reef - Hosts’ growth
Fig. 4 Population dynamics of symbiont species (a) and host species (b) at Great Barrier Reef

over time. Blue dashed lines indicate the moment when the optimum temperature (z) for growth
was reached

(a) CCDF of symbionts’ final populations (b) CCDF of hosts’ final populations

Fig.5 CCDFs of symbionts’ (left) and hosts’ (right) final populations in their respective collection
region



78 M. G. C. Basilio and D. R. Figueiredo

5.2 Influence of Network Structure

In order to study whether the structure of interactions (network) influences the resis-
tance of species to thermal stresses, a random bipartite network was created for each
region (as shown in Table 1) using a previously described methodology [8]. In par-
ticular, each original edge was repositioned uniformly at random, destroying any
biological symbiotic affinity. Note that the number of edges of each network was
preserved. Moreover, the network randomization procedure adopted did not allow
any isolated nodes, as all nodes in the randomized network have degree of at least 1.
Figure 6 shows the population distribution for each region when growing on the ran-
dom networks. Interestingly, the distributions have a much lighter tail in comparison
to the original networks (see Fig.5).

The role of the network structure and the thermal tolerances of species on the
population can be studied through correlation analysis.

Table 5 shows the correlation between the thermal tolerances of species and their
final populations. Note that this value is relatively low across all regions (close to
zero). Therefore, final population are not even moderately correlated with the thermal
tolerance.

In contrast, Table 6 shows the correlation between the final population and node
degree. Note that this correlation is relatively larger than with thermal tolerance for
all ocean regions. Moreover, for three regions the correlation is above 0.3 (considered

(a) CCDF of symbionts’ final popula- (b) CCDF of hosts’ final populations
tions

Fig. 6 CCDFs of symbionts’ (left) and hosts’ (right) final populations in their respective collection
region in the random networks

Table 5 Correlation between final populations and thermal tolerances

Region Symbiont nodes Host nodes
Great Barrier Reef 0.134 —0.085
Phuket —0.008 —0.022
Western Indian 0.133 —0.130
Western Caribbean 0.205 0.132
Florida 0.263 —0.151
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Table 6 Correlation between final populations and node degrees. For the random network, the
sample average correlation and its standard deviation is reported using 50 independent instances of
the random network.

Region Real network Random network

Symbionts Hosts Symbionts Hosts
Great Barrier 0.384 0.552 0.213 £ 0.072 0.168 £ 0.073
Reef
Phuket 0.193 0.186 0.232 +£0.144 0.078 £ 0.087
Western Indian | 0.183 0.206 0.075 £ 0.164 0.100 = 0.092
Western 0.469 0.579 0.154 £ 0.125 0.146 + 0.134
Caribbean
Florida 0.383 0.404 0.078 £ 0.216 0.084 + 0.202

Table 7 Correlation between final populations and sum of degrees of neighbors

Region Symbiont nodes Host nodes
Great Barrier Reef 0.181 —0.235
Phuket 0.132 —0.365
Western Indian 0.127 —0.499
Western Caribbean 0.308 —0.229
Florida 0.105 —0.238

a moderate value) for both symbionts and hosts. In biological terms, this indicates
that symbionts and corals that are generalists (have higher degree) are able to growth
faster than those that are specialists (have lower degree) in the presence of water
temperature variation.

Table 6 also shows the correlation between degree and final population in the
random networks. Note that the average correlation for the random networks is con-
siderably smaller than the original networks that have moderate correlation (above
0.3). As expected, randomly repositioning the edges removes the heavy tail prop-
erty and makes the degree distribution more centered. These results reinforce the
importance of network structure for the survival of these organisms.

Finally, Table7 shows the correlation between the sum of degrees of neighbors
and the final populations of each species. Differently from degree correlation, nega-
tive correlations values for the hosts stand out. Note that, in all analyzed networks,
host nodes are more numerous (Table 1). Therefore, symbiont nodes have many more
neighbors than host nodes (Fig.2). Thus, in (4), the growth of the hosts, determined
by rih and network structure, is harmed by the large number of neighbors of the sym-
bionts, since the sum of fractions are smaller due to their larger denominator (| N j ).
Hence, the lower the degree of the hosts’ neighbors, the larger the sum fractions (4)
in the contribution to the growth rate of the hosts. This relationship is an indicative
of the negative correlation between these two variables.
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On the other hand, this correlation for symbionts is always positive, although weak,
since their neighbors tend to have smaller degrees which will increases their growth
rate, determined by ;' and network structure. Thus, correlation of neighbors degrees
is not symmetric between hosts and symbionts, differently from degree (where three
regions had moderate correlation for both hosts and symbionts).

An extended numerical evaluation of the extended model can be found in the
ArXiv

6 Conclusion

This paper investigated the population dynamics within the global coral-symbiont
network under temperature variations, with a focus on the impact of thermal stress
on coral bleaching. Using a bipartite network model, the relationships between coral
hosts and their symbiotic algae has been characterized, identifying how network
structure influences population growth and resilience to recurrent warming events.
Besides the numerical analysis, a main contribution of this work is a simple and
parameterized mathematical model capturing the network structure.

Our results demonstrated that the network structure plays a crucial role in deter-
mining the capacity of coral and symbiont species to recover from warming events,
with generalist species exhibiting stronger recovery patterns.

Furthermore, correlations between final populations and node degrees empha-
sized the importance of network connectivity in population growth. These findings
enhance the understanding of the ecological factors that contribute to coral reef
resilience and underscore the need to consider network structure when evaluating
species adaptability to climate change.

Acknowledgements This research received partial funding from grants by the following Brazilian
agencies CNPq, FAPERJ and CAPES.

References

1. Donner, S.D., Skirving, W.J., Little, C.M., Oppenheimer, M., Hoegh-Guldberg, O.: Global
assessment of coral bleaching and required rates of adaptation under climate change. Glob.
Change Biol. 11(12), 2251-2265 (2005)

2. Franklin, E.C., Stat, M., Pochon, X., Putnam, H.M., Gates, R.D.: Geosymbio: a hybrid,
cloud-based web application of global geospatial bioinformatics and ecoinformatics for
symbiodinium-host symbioses. Mol. Ecol. Resour. 12(2), 369-373 (2012)

3. Fulton, C.J., Depczynski, M., Holmes, T.H., Noble, M.M., Radford, B., Wernberg, T., Wilson,
S.K.: Sea temperature shapes seasonal fluctuations in seaweed biomass within the Ningaloo
coral reef ecosystem. Limnol. Oceanogr. 59(1), 156166 (2014)

4. Hughes, T.P,, Kerry, J.T., Baird, A.H., Connolly, S.R., Dietzel, A., Mark Eakin, C., Heron,
S.E.,, Hoey, A.S., Hoogenboom, M.O., Liu, G., et al.: Global warming transforms coral reef
assemblages. Nature 556(7702), 492-496 (2018)


ArXiv
 -2047 7389 a -2047 7389 a
 
https://arxiv.org/abs/2411.19361

Population Dynamics in the Global Coral-Symbiont ... 81

5. McManus, L.C., Forrest, D.L., Tekwa, E.W., Schindler, D.E., Colton, M.A., Webster, M.M.,
Essington, T.E., Palumbi, S.R., Mumby, P.J., Pinsky, M.L.: Evolution and connectivity influence
the persistence and recovery of coral reefs under climate change in the Caribbean, Southwest
Pacific, and coral triangle. Glob. Change Biol. 27(18), 43074321 (2021)

6. McManus, L.C., Tekwa, E.W., Schindler, D.E., Walsworth, T.E., Colton, M.A., Webster, M.M.,
Essington, T.E., Forrest, D.L., Palumbi, S.R., Mumby, P.J., et al.: Evolution reverses the effect
of network structure on metapopulation persistence. Ecology 102(7), e03381 (2021)

7. Walsworth, T.E., Schindler, D.E., Colton, M.A., Webster, M.S., Palumbi, S.R., Mumby, P.J.,
Essington, T.E., Pinsky, M.L.: Management for network diversity speeds evolutionary adaptation
to climate change. Nat. Clim. Change 9(8), 632-636 (2019)

8. Williams, S.D., Patterson, M.R.: Resistance and robustness of the global coral-symbiont
network. Ecology 101(5) (2020)

9. Williams, S.D.: Corals are more than the sum of their colonies: a network science perspective on
the role of coral complexity and its consequences for coral reef health. Ph.D. thesis, Northeastern
University (2020)



Dengue Serotypes Cyclicity Evidenced )
by the Impact-Frequency Histogram Sheshee
of the Visibility Graph

L. L. Lima and A. P. F. Atman

Abstract Epidemics are one of the most significant challenges throughout history,
and climate change has contributed to the increasing frequency and diversity of
outbreaks. It is the case of dengue fever, which has been responsible for hundreds
of thousands of cases worldwide in the last decades. The proliferation of different
serotypes and their association with other diseases have made the situation too com-
plex, and there is an urgent demand for alternative approaches to fully understanding
the dynamics of the outbreaks. In this work, we apply the visibility graph approach
to analyze the time series of dengue occurrence patterns in two large Brazilian cities.
We introduce a new impact-frequency histogram protocol to evaluate cyclic dengue
patterns in a single plot. We analyzed the time series of cases and estimated a period
for re-infestation of the disease. The tool has proven helpful in analyzing temporal
series, especially for epidemic diseases.
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1 Introduction

The dynamics of contemporary society are complex and subject to unforeseen factors,
such as climate change. The emergence of epidemics and the expansion of endemic
regions are examples of the challenges facing humanity nowadays, with disastrous
consequences for society and the economy, such as the recent coronavirus crisis. A
remarkable example of adaptation to this complex scenario is the possible expansion
of infectious diseases to other areas due to climate change [1].

Dengue fever, for instance, is a vector-borne disease transmitted mainly by the
Aedes aegypti mosquito. Established more than three centuries ago [2, 3], this disease
wiped out thousands of people and is a threat present in tropical countries, such as
Brazil, where millions of people are in risk areas. This country recorded several
epidemics of dengue from the second half of the 19th century, going through a
period of epidemiological silence and reappearing in 1986 when it became endemic
and a national public health problem [4, 5]. Dengue is a cyclical disease with major
outbreaks every three to five years [6].

Dengue dynamics is a complex problem dominated by environmental determi-
nants of transmission [7]. The incidence of this disease is associated with the com-
bination of rainy seasons, high temperatures, winds, and elevation [8]. Moreover,
the urban environment introduces heterogeneity in the reproduction sites of the Ae.
aegypti mosquito, influencing the disease transmission dynamics through this vec-
tor [9]. Besides environmental aspects, high-density cities with massive population
mobility and low socioeconomic status are a perfect scenario for disseminating the
disease. There may be other factors that make the dynamics of dengue epidemics even
more complex, such as those indicated by some studies pointing to the existence of
immunological interactions between serotypes [10, 11]. The arising of new serotypes
is currently a primary difficulty in fully understanding the dengue dynamics, playing
a key role in disseminating the disease between regions [12].

Dengue forecasting research has increased in the last few years [13], but there is
still along way to go due to all the complex factors involved in this disease. Knowing
the disease dynamics contributes to corroborating or reorienting surveillance and con-
trol actions, so it is possible to optimize resources to control the disease [3] and better
understand how it spreads among the population. Thus, in this paper, we propose
a new protocol to assist the public agents and the research community in quantify-
ing and analyzing the dengue dynamics. This protocol allows them to estimate how
severe the epidemics are and offers a way of analyzing dengue outbreaks.

We applied the Visibility Graph (VG) technique to analyze epidemic time series
data, which maps the time series into a graph. Besides, we introduce the impact-
frequency histogram to analyze the recurrence time of dengue cycles. It was noted
that more than a simple statistical analysis is needed to address the complexity of the
problem under study by treating the data. In the Visibility Graph technique, the graph
reflects several properties arising from the data series used in its construction, and its
application can help interpret information that is not easily visualized in the original
series [14]. Therefore, this study aims to obtain the characteristics of the disease
(such as time to recurrence) through the analysis of the visibility graph generated
from the time series. As dengue recurrence is complex, the VG technique is critical
to analyzing long-range correlations.
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2 Methods

The proposed use of the Visibility Graph and Horizontal Visibility Graph (HVG)
techniques arose due to our need to validate a computational model developed to
simulate dengue spreading. Initially, we aimed to validate it by comparing the recur-
rence time of disease outbreaks. However, we could not find a way to compare the
data using infection peak counts or comparing frequencies. By performing this analy-
sis, it was essential to define the size of the peak that would be considered an outbreak
or not, which may cause a bias for the analysis. This bias is eliminated using VG
and HVG techniques since tiny peaks typically have fewer connections than larger
peaks (larger peaks play a role as barriers to connecting smaller peaks and others).
The proposed protocol is described in this section.

2.1 Dengue Data

This work used 12-year data set from dengue cases recorded in two Brazilian cities
(Fig. 1): Rio de Janeiro (epidemiological week number 34, 2001 to epidemiological
week number 3, 2014) and Belo Horizonte (epidemiological week number 1, 2007
to epidemiological week number 16, 2019), both from the Brazilian Notifiable Dis-
eases Information System (Sistema de Informagdo de Agravos de Notificagcdo [15]—
SINAN, in Portuguese) data set. These data include only confirmed dengue cases
per epidemiological week.

Though there are different time intervals, it is worth noticing that the distribution
of disease cases over time is different for each city. It happens because the two
cities have different dynamics and differences in population characteristics, weather
conditions, and other factors that interfere with disease dynamics [12].

(a) Rio de Janeiro (b) Belo Horizonte

Fig. 1 Number of dengue cases registered over 12 years in Rio de Janeiro (RJ) and Belo Horizonte
(BH) (SINAN [15] data)
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Belo Horizonte (Minas Gerais state) has an area of 331.354km? and a population
of 2315560 people (2022) [16]. The city has a tropical climate, with an average
monthly rainfall of 276 mm from November to March and 41 mm from April to
October, and an average annual temperature of 21.1°C [17]. On the other hand, Rio
de Janeiro (state of Rio de Janeiro) has an area of 1200.329km? and a population of
6211223 habitants (2022) [16]. The climate in Rio de Janeiro is also tropical, with
an average annual temperature of 23.2°C [18].

2.2 Visibility Graph

The Visibility Graph technique consists of building a graph from a time series fol-
lowing the procedure proposed by Lacasa et al. [14]. Each point is a node; two nodes
are connected if they meet the visibility criteria. It consists of drawing a line between
two data points and verifying if this line does not cross any other data. If so, the two
nodes are connected.

The mathematical formulation of the VG is the following: two arbitrary values
(t4, yo) and (1, yp) have visibility (and are connected) if any other value (¢, y.)
located between them fulfills (1) (considering #, < . < tp):

tb_tc
th—tg

Ye < Yo+ Vo — Yb) (D

The Horizontal Visibility Graph [14] was also used in our analysis. In the HVG,
two nodes are connected if we can draw a horizontal line joining y, and y, without
crossing any intermediate data y. (considering ¢, < f. < f3). In this work, both VG
and HVG were applied only to nonzero data points, i.e., the link between two nodes
is only possible if both are greater than zero (y(#) > 0). Negative numbers were not
considered since the time series are from dengue cases.

2.3 Impact-Frequency Histogram

Here, we introduce the Impact-Frequency histogram (IFH), a tool to be used along
with the VG technique that quantifies the frequency of the epidemic outbreaks
mediated by their impact (the number of infected individuals).

The IFH is built considering each link obtained in the VG of the time series of
the number of dengue cases. The impact of a given link is calculated by summing
the number of occurrences in each node divided by the difference between them (a
unity is added in the denominator to avoid division by zero). Taking two arbitrary
values (¢4, y,) and (#;, yp), the impact y is given by:
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where At = |t, — ] is the corresponding period (inverse of the frequency).

3 Results and Discussion

A significant concern in epidemiological studies of dengue fever is to determine if
there is a pattern for the outbreak’s occurrence [19]. As shown in Fig. 1, although an
outbreak is expected yearly, a precise determination of the period is not straightfor-
ward since it depends on several factors such as population dynamics and environ-
mental conditions [12]. To overcome these limiting factors to the analysis, we apply
the VG technique and build the IFH for two large Brazilian cities with quite different
characteristics, such as climate, elevation, and population dynamics.

Figures2 and 3 show the VG and HVG built from SINAN data recording of Rio
de Janeiro and Belo Horizonte, respectively. The VG plot is shown in Figs.2a and
3a, and it is possible to notice some hierarchical structures. Smaller hubs connect
to larger ones, each connected to local nodes. Also, the VG figures show closely
connected central nodes. These nodes are fundamental for connecting other parts of
the graph, representing the biggest peaks of dengue outbreaks.

In the HVG figures (Figs.2b and 3b), the topology is presented more clearly,
highlighting the hierarchical organization. The network appears to be more evenly
distributed in Belo Horizonte (Fig.3b) compared to Rio de Janeiro (Fig.2b). Addi-
tionally, a comparison between VG and HVG reveals that all HVG links are included
within the VG link set. This suggests that HVG functions as the backbone of VG in
this analysis. Moreover, HVG may provide a more representative depiction of this
study, as VG tends to overemphasize the influence of links between data from the
same dengue outbreak-a limitation mitigated by HVG.

It is also possible to compare the network morphology of multiple time series,
even if they originate from different periods. In the case of the VG, the graph for Rio
de Janeiro exhibits a highly connected, hierarchical structure, characterized by one
dominant hub alongside smaller hubs. In contrast, the graph for Belo Horizonte fea-
tures hubs of more comparable sizes. This comparison highlights that the sensitivity
of VG and HVG techniques in capturing features within time series surpasses what
can be identified through descriptive statistics alone, such as the average number of
peaks.

Two significant infection peaks were recorded in Rio de Janeiro: the first occurred
during epidemiological weeks 1-22 in 2002, and the second between epidemiological
weeks 1-26 in 2008 (Fig. 1a). The second is a more central peak in the time series
and prevents the first half of the time series from connecting to the other in the VG.
However, this central peak connects to both halves of the graph, forming the most
prominent hub in Fig. 2a. A similar pattern is observed in the HVG (Fig. 2b), where
the central peaks interrupt direct connections between the left and right sides of the
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(a) Visibility Graph (b) Horizontal Visibility Graph

Fig. 2 Visibility graph of the number of cases in Rio de Janeiro from 2001 to 2014

(a) Visibility Graph (b) Horizontal Visibility Graph

Fig. 3 Visibility graph of the number of cases in Belo Horizonte from 2007 to 2019

graph. Additionally, a third peak in the second half of the series further divides the
data, hindering connections between these sections of the graph.

In Belo Horizonte, the highest peaks were observed during weeks 3-28 in 2013
and weeks 1-26 in 2016 (Fig. 1b). Like the Rio de Janeiro graph, the most central
peak in Belo Horizonte’s data divides the graph, preventing connections between the
first and second halves. Additionally, a prominent peak in the second half further
segments the graph, which may explain why the hubs are smaller and exhibit greater
homogeneity compared to the Rio de Janeiro graph (Fig.2a), as shown in Fig.3a.
In the initial weeks, smaller peaks are observed, and while the VG can establish
connections between these early peaks and the central peak, these connections are
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not detected by the HVG. This is due to the fourth peak (between weeks 1 and 39 in
2010) blocking horizontal connections between them.

3.1 Impact-Frequency Histogram

The analysis of the Impact-Frequency Histogram graphs for the VG and HVG in
Rio de Janeiro (Fig.4) and Belo Horizonte (Fig.5) reveals a significant difference
between the two municipalities. For both techniques, the distribution of distances
between peaks ranging from 0-10 to 0-20 weeks can be disregarded, as these peaks
are associated with the same outbreak.

A statistical test was conducted to assess the normality of the data. Given the
large dataset, the Kolmogorov-Smirnov test was used (R version 3.6.1 [20]). The
results indicated that the impact-frequency data do not follow a normal distribution
(o = 0.05). Consequently, the non-parametric Kruskal-Wallis test was applied for
comparison, revealing a significant difference between the data (o« = 0.05).

The IFH results reveal that the VG captures periodicity over longer time ranges,
while the HVG is more sensitive to short-term cyclicity. This difference arises from
the HVG’s reliance on horizontally connected peaks, resulting in fewer connections
due to its shading effect. The HVG is particularly susceptible to disruptions caused
by prominent infection peaks, where a large peak can hinder connections between
years that are otherwise distant.

When analyzed as a periodic function, the impact-frequency results display dis-
tinct patterns for Rio de Janeiro and Belo Horizonte, reflecting differences in dis-
ease spread behaviors in the two municipalities. In Rio de Janeiro, the VG (Fig.4a)
shows high impact values for periods between 35 and 55 weeks, corresponding to the
annual recurrence of dengue epidemics. Additional high-impact values occur over
well-defined intervals: 90-110weeks (approximately two years), 140-160 weeks
(2.7-3 years), 190-210 weeks (3.6—4 years), 250-260 weeks (4.8-5 years), and 290—
315 weeks (5.6-6 years). The HVG (Fig. 4b) similarly identifies the annual infection
peak (35-55weeks). Notably, the HVG also highlights high-impact values at the
same intervals as the VG, but with a significantly smaller number of points.

By comparing the HVG and VG data with the number of infected cases in Rio
de Janeiro, it becomes evident that the annual recurrence of dengue infections was
most frequent in 20062008 and, to a lesser extent, in 2009. Additional outbreaks
were observed in 2011-2014. The periods corresponding to the observed impact
values align with the infection data as follows: two years (2006-2008), 2.7-3 years
(2008-2011), 3.64 years (2008-2012), and 5.6-6 years (2002—-2008).

For the HVG, annual connections were identified between 2006 and 2007, 2007
and 2008, 2011 and 2012, 2012 and 2013, and 2013 and 2014. Other periods,
though less represented, include two years (2011-2013), 2.7-3 years (2008-2011),
3.64 years (2008-2012), and 5.6-6 years (2002-2008).

In Belo Horizonte, the VG results (Fig.5a) similarly reflect the annual recur-
rence of dengue observed in Rio de Janeiro. Additionally, two distinct periods show
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(a) Visibility Graph (b) Horizontal Visibility Graph

Fig.4 Impactas a function of distance (period) for the Visibility graph and the Horizontal Visibility
graph of SINAN [15] data for Rio de Janeiro

(a) Visibility Graph (b) Horizontal Visibility Graph

Fig.5 Impact as a function of distance (period) for Visibility graph and Horizontal Visibility graph
of SINAN [15] data for Belo Horizonte

high impact values: 85—115 weeks (1.6-2.2 years) and 135-160 weeks (2.6-3 years).
Some impact values were recorded around 250 weeks (4.8 years) and 300-315 weeks
(5.75-6years). The HVG results (Fig.5b) exhibit a similar pattern, with notable
impacts at approximately 50, 100, and 150 weeks.

Based on weeks and the number of infected individuals, the comparison of impact
data in Belo Horizonte indicates that annual infections are evident almost yearly,
though weaker in some instances, such as in 2012 and 2018. For other years, the
impact periods align with infection years, similar to the pattern observed in Rio de
Janeiro. These include 1.6-2.2years (2008-2010, 2011-2013, 2013-2015, 2016—
2018, 2017-2019), 2.6-3 years (2007-2010, 2010-2013, 2013-2016, 2016-2019),
4.8 years (between certain weeks from 2008 to 2013), and 5.75-6years (between
certain weeks from 2007 to 2013). In addition to the annual infection cycles observed
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with the VG, the HVG results include similar periods of 1.6-2.2 years (2008-2010
and 2013-2015) and 2.6-3 years (2010-2013, 2013-2016, and 2016-2019).

3.2 Limitations and Strengths

Climate changes as heatwaves increase the relative risk of dengue fever [21], and
other studies try to find a relationship between this disease and biological and envi-
ronmental factors that characterize the recurrence patterns [17, 22]. Our study tested
a new protocol that showed that the association of the visibility graph technique and
the impact-frequency histogram was able to quantify the impact of the different peaks
of dengue over the years, characterizing the occurrence of dengue in two Brazilian
cities.

However, the IFH is a new technique that needs more exploration. One of the
biggest limitations is quantifying occurrences of the same outbreak, that is, dengue
cases from the same peak being counted in the analysis. In this case, the HVG showed
a cleaner result, but a specific study is still required to determine how this limitation
interferes with the results. We suggest a specific study focusing on the method and
being tested for different time series to explore more limitations and strengths.

For an epidemiological analysis, studying the cycles of dengue serotypes is more
interesting than the dataset since the circulating serotype varies over the years [12].
This contributes to a serotype that can stay longer without manifesting in a population
with a large number of immune. At the same time, a different serotype may return
soon after an outbreak of another serotype, contributing to subsequent epidemics,
and it can significantly impact disease dynamics.

4 Conclusions

The Visibility Graph and Horizontal Visibility Graph provided distinct insights into
dengue data for Rio de Janeiro and Belo Horizonte, demonstrating that the disease
dynamics vary between cities. This variability highlights the need for studies involv-
ing more cities to explore further and refine the technique. Additionally, analyzing
dengue cases by serotype could offer more valuable insights into the recurrence of
the disease within populations.

The impact-frequency histogram introduced in this study offers a novel tool for
assessing disease periodicity. We hope that this technique will support epidemiolog-
ical analyses and enhance our understanding of the dynamics of dengue and other
cyclical diseases.
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Abstract This article examines the structural and topological transformations in
the Brazilian maritime network during the COVID-19 pandemic, with a focus on
adaptations made to maintain the efficiency, connectivity and resilience of cargo
transport in the country. In a pandemic context where global trade was impacted
by restrictions and shifts in supply and demand, complex network theory was used
to analyze the structure and properties of this network. The methodology is based
on quantitative analysis of data from the Automatic Identification System (AIS),
which monitors the routes and movements of ships between Brazilian ports in the
years 2019 (pre pandemic) and 2020 (during the pandemic). Topological metrics
such as centrality, modularity, the clustering coefficient, and the average path length
within the network are evaluated. The results indicate significant changes, with the
strengthening of regional hubs, such as the ports of Manaus and Suape, and a redistri-
bution of cargo flows that created denser regional clusters. The analysis also reveals
a decreased in network modularity and a reduction in small world characteristics,
resulting in greater average distances between ports and higher time and logistical
costs for long-distance routes.
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1 Introduction

Organizations operate in a highly competitive, dynamic, complex, and unstable
global environment. These characteristics denote unpredictable scenarios in which
all operations and activities must be continuously reviewed. In this business context,
it is crucial for organizations to seek effective strategies that can enhance operational
efficiency, particularly in terms of physical distribution. From this perspective, logis-
tics is increasingly considered a key component in generating competitive advantages
for nations and companies, ensuring the delivery of goods and services at the right
time and place, under the desired conditions, and at the lowest possible cost. Conse-
quently, the technical study of transportation modes has become increasingly relevant
for the global logistics chain.

The COVID-19 pandemic has underscored the crucial role of resilience in
maritime networks, particularly in the container transport sector. As a dominant
means of global supply chain flow, container transport faced significant disruptions
due to health-related restrictions at ports, border crossings, and inland transport
sectors. This resulted in blank sailings, delays, and inflated freight rates, which
exposed vulnerabilities in the maritime network, emphasizing the importance of
flexible and adaptive strategies to mitigate disruptions and maintain connectivity
across critical trade routes [1, 2].

Resilience in maritime logistics can be assessed through complex network theory,
which helps analyze network structure, connectivity, and vulnerability. Recent studies
have shown that large and well-connected ports generally withstand crises more
effectively, while smaller ports serving as transshipment hubs or regional bridges are
more susceptible to disruptions. The geographical positioning of ports also influences
resilience, as ports with strategic locations have a greater capacity to absorb shocks
and redirect flows when needed. This geographic factor is increasingly integrated
into network vulnerability models to create more accurate and realistic assessments
[3, 4].

The pandemic highlighted the importance of diversified regional hubs within
maritime networks. For example, some regions adapted to logistical bottlenecks
by shifting flows to secondary ports, allowing regional clusters to take on greater
significance. This shift not only maintained cargo movement but also demonstrated
how localized clusters can enhance resilience against widespread network disrup-
tions. However, this adaptation came with higher logistical costs due to the longer
distances and more indirect routes involved, reflecting a trade-off between resilience
and efficiency in crisis contexts [5].

Specifically, in Brazil, the movement of cargo via maritime transportation has
grown exponentially over the past twenty years due to the country’s commercial and
financial liberalization. Globally, approximately 90% of cargo transportation volume
in trade is conducted through maritime routes, making this mode essential for the
competitive development of countries and regions. For Brazil, with an extensive
7,491 km coastline—the 16th longest in the world—and an economy heavily reliant
on commodity exports, the maritime network is vital to the national economy, linking
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ports in various regions and facilitating integration with global markets. A 2022 study
by the National Confederation of Transport (CNT) on the basis of data from the
National Waterway Transportation Agency (Antaq) revealed that Brazil utilizes only
approximately 30% of its navigable waterways, highlighting the untapped logistical
potential of this transportation mode.

However, the COVID-19 pandemic has exposed significant vulnerabilities in
maritime logistics systems worldwide, including the Brazilian port system. Owing to
increased travel restrictions, reduced port activity, and changes in supply and demand,
maritime networks face significant impacts, resulting in delays, bottlenecks, and a
pressing need for quick and effective adaptations.

In this uncertain scenario, analyzing the structure and dynamics of the Brazilian
maritime network during the pandemic is essential for understanding how the system
responded to this global crisis. Complex network theory provides a valuable theo-
retical framework for exploring the structural properties of this network, enabling
an assessment of port resilience, connectivity, and adaptability. Specifically, identi-
fying and analyzing different network topologies, such as scale-free, small-world,
and hierarchical networks, can offer deep insights into how the network reorganized
to maintain cargo flow despite pandemic-related restrictions.

This paper aims to analyze the structural and topological changes in the Brazilian
maritime network during the COVID-19 pandemic, focusing on connectivity, effi-
ciency, and resilience properties, as well as the adaptations made to ensure cargo
movement. The specific objectives are as follows:

e To map the Brazilian maritime network before and during the COVID-19
pandemic, major connectivity changes between ports and route adjustments were
identified.

e To evaluate the network’s topological properties, including centrality, modularity,
the clustering coefficient, and average path length, changes in and the implications
of each metric over time are highlighted.

e To analyze regional cluster formation and flow redistribution between central hubs
and regional ports, how this adaptation contributes to the network’s operational
resilience must be identified.

Studying maritime networks from a complex network perspective is particularly
relevant today, as goods transportation faces significant challenges in terms of secu-
rity, efficiency, and continuity. The COVID-19 pandemic highlighted critical vulnera-
bilities in the Brazilian port system, underscoring the importance of understanding the
resilience of logistics and transport networks during large-scale crises. By analyzing
the topologies and structure of the Brazilian maritime network, it is possible to iden-
tify areas for improvement to enhance the system’s robustness and adaptability in
the face of future crises.

Moreover, increased regionalization of cargo flows and the redistribution of
centrality to secondary hubs may provide valuable lessons for formulating poli-
cies and investment strategies in port infrastructure. These measures aim to optimize
maritime transportation efficiency and enhance the network’s responsiveness and
adaptability to potential future disruptions. Thus, the analysis presented in this paper
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contributes to developing a safer, more efficient, and resilient maritime network for
the Brazilian waterway transport sector.

2 Background

Studying maritime networks from a complex network perspective has gained
increasing attention in the literature because of the strategic importance of this sector
for international trade and the need for a deep understanding of its resilience and effi-
ciency. Complex network theory provides robust analytical tools for modeling and
analyzing maritime networks’ structural and dynamic properties, enabling the assess-
ment of metrics such as centrality, modularity, and the clustering coefficient, which
are essential for understanding network connectivity and vulnerability.

2.1 Maritime Networks

According to Wasserman and Faust [6], a social network is formed by one or more
types of relationships between real-world objects (e.g., people, institutions). Network
vertices are called actors, and the social relationships connecting these actors are
called edges. The structure of a social network can be modeled by a graph G = (V,
E), where V is the set of vertices containing n elements, and E, with m elements, is
the set of edges, i.e., pairs of vertices that are related through some preestablished
criteria. The network’s topological characterization and community comparisons can
be achieved through statistical indices based solely on the information contained in
these two sets.

The maritime network presented here, as defined by Santos et al. [7], represents
the relationship between ports (vertices) and their respective ship movements (edges)
along the Brazilian coast during a specified period, which serves as a parameter for
this research.

2.2 Complex Networks and Maritime Transport Topologies

Authors such as Ducruet and Notteboom [8] have explored global maritime network
topologies, arguing that maritime transport networks exhibit a scale-free structure in
which a few ports serve as highly connected hubs, whereas most ports have limited
connectivity. This structure makes maritime networks robust to random failures
but vulnerable to disruptions at main hubs, as demonstrated during the COVID-19
pandemic. Their work emphasized the importance of understanding these topological
features to develop mitigation strategies that ensure maritime transport continuity in
times of crisis.
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Other studies like [9] examining maritime network resilience and the impact
of disruptive events, such as the pandemic, on port connectivity. They highlight
the importance of route diversification and strengthening regional hubs to reduce
dependency on major hubs and increase network resilience. This approach offers
valuable insights for Brazil, where regional hub diversification was necessary to
mitigate the impact of pandemic restrictions.

2.3 Regionalization and Adaptation in Maritime Networks

Kanrak et al. [10] observed regionalization in the maritime network globally,
reflecting a reorganization of routes into local clusters that allowed trade conti-
nuity despite global constraints. This regional cluster analysis is crucial for the
Brazilian network, where regional subnetworks, with ports such as Manaus and
Suape assuming local hub roles, contributed to maintaining cargo movement during
the health crisis.

2.4 Network Metrics and Topological Properties

To evaluate the structure and behavior of maritime networks, various metrics are used,
such as degree centrality and betweenness centrality, which are vital for maritime
networks and indicate a port’s ability to act as a connection point among different
routes. Lam and Yap [11] stress the relevance of this metric in identifying critical
hubs and network vulnerabilities.

Ducruet and Notteboom [8] noted that a network with a low average distance
between ports enhances cargo movement efficiency. COVID-19 increased this metric,
reflecting decentralization and reliance on longer, indirect routes.

These theoretical foundations emphasize the importance of understanding
maritime network structures to develop more resilient and robust transport systems.
The contributions of authors such as Ducruet and Notteboom [8] provide a solid
basis for analyzing the Brazilian network, especially in crisis contexts such as the
COVID-19 pandemic.

3 Materials and Methods

This study’s methodology is based on a quantitative and topological analysis of
the Brazilian maritime network before and during the COVID-19 pandemic, using
ship movement data between Brazilian ports for 2019 and 2020. Data from the
automatic identification system (AIS), a globally used technology for real-time vessel
monitoring, were collected for this purpose.
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(Tzaobllg ! %62‘(‘;’)“]‘ metries M etrics 2019|2020
Average degree centrality 0.45 0.39
Average betweenness centrality 0.32 0.27
Clustering coefficient 0.47 0.53
Average shortest path length 29 34

The AIS tracks ships via transponders, with each vessel transmitting critical infor-
mation such as location, speed, direction, identification, and destination. Satellite
and coastal stations capture these data, which are used for traffic monitoring, safety,
and data collection for studies such as this. AIS data are reliable and widely used

for

maritime network analysis, as they provide detailed records of ship routes and

movements over time. The analysis steps for constructing the networks included the
following steps:

1.

Data collection and structuring: AIS data were collected for the years 2019
and 2020, capturing ship routes and traffic flows between Brazilian ports. These
data include both domestic and international traffic, allowing a comprehensive
analysis of the maritime network in terms of connectivity and cargo movement.
After collection, the data were organized into a network model, where each port
represented a node, and connections between ports (frequent shipping routes)
were edges. Each edge’s weight was defined on the basis of traffic volume,
allowing for an accurate analysis of each connection’s significance.

Maritime Network Construction: Networks were built for the 2019 (prepan-
demic) and 2020 (pandemic) periods, reflecting connectivity changes between
Brazilian ports. Using complex network theory, topological metrics such as
centrality, modularity, the clustering coefficient, and the average distance between
ports were highlighted.

Topological Metric Analysis: Key metrics were calculated (see Table 1) to
assess the structural properties of the Brazilian maritime network, including the
following:

e Degree Centrality and Betweenness Centrality: Identifying major hubs and
assessing the central roles of certain ports before and during the pandemic;

® (Clustering Coefficient: To measure the level of interconnection among ports
and identify regional clusters;

e Average path length: To evaluate the connectivity efficiency between ports,
especially considering the impact of regionalized routes in 2020;

e Network comparison and visualization: The 2019 and 2020 networks were
visualized and compared to identify structural and regional changes, modu-
larity and local cluster formation during the pandemic. These visualizations
emphasize key hubs and connectivity redistribution among ports.
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This methodology enabled a detailed analysis of the changes in the Brazilian
maritime network due to COVID-19, providing empirical insights into structural and
logistical adaptations during the health crisis. This analysis is further discussed in
the Data Analysis section.

4 Results and Discussion

First, it is important to say that considering that the networks and metrics analyzed
in detail here are from the years 2019 and 2020, this research also examined years
prior to 2019 and found that the trends observed from 2016 to 2019 reveal a period
of stability and gradual improvement in the Brazilian maritime network. Key ports
such as Santos and Paranagui consistently held dominant positions, with steady
increases in degree centrality and betweenness centrality. The clustering coefficient
and average shortest path length indicate a network that was becoming increasingly
efficient and interconnected.

However, the sharp deviations in 2020 across all metrics highlight the transfor-
mative effects of the COVID-19 pandemic. The decline in degree and betweenness
centrality, coupled with the rise in the clustering coefficient and average shortest path
length, underscores a shift toward regionalization and fragmentation. These changes
were driven by the need to adapt to restrictions and logistical challenges, such as
port closures and disruptions in global trade routes.

An analysis of Figs. 1 and 2 (representing the years 2019 and 2020, respectively)
allows us to identify the main ports with the highest connectivity in the network,
which act as central points for cargo movement and distribution.

The weight of each edge in the network was defined based on the “volume” of
maritime traffic. In this study, volume refers to the number of operations (voyages
carried out between two ports) during the 2019 and 2020 periods. This metric was

Fig. 1 Structure of the
Brazilian maritime network
(Year: 2019)
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Fig. 2 Structure of the
Brazilian maritime network
(Year: 2020)

chosen for its ability to directly reflect the frequency of connections between ports,
being less sensitive to fluctuations in transported weight or monetary value. This
ensures a more robust and consistent analysis of changes in network connectivity
and behavior.

The analysis confirmed that the network is fully connected, meaning all nodes
(ports) have at least one direct connection to other ports. No isolated nodes were
identified in the analyzed structure, corroborating the visual structure presented. The
analysis confirms that the reported values of average degree centrality and average
degree are consistent with their definitions for unweighted and connected networks.
The network’s structure, with no isolated components, reflects a functional and
integrated system. Moreover, the equivalence between these metrics ensures that
the classification of hubs and regional nodes aligns with the network’s topological
properties.

On the basis of the analysis of Fig. 1, we can identify the main hubs of Brazilian
maritime navigation prior to COVID-19 in 2019, namely, the Port of Santos (SP),
which is considered the largest port in Latin America, centralizing a large portion of
Brazil’s exports and imports; the Port of Paranagud (PR), one of the main ports for
the outflow of grains and agricultural products; the Port of Rio Grande (RS), which
is significant for the trade of agricultural products, especially soybeans; and the Port
of Itajai (SC), one of the largest ports for container movement.

Figure 2 (2020) shows that the Port of Santos (SP) retained its central role during
the COVID-19 pandemic, although it experienced delays due to health restrictions.
The port of Paranagud (PR) remained one of the primary outflow points, adapting
its operations to limit gatherings. The role of the port of Manaus (AM) increased as
a regional hub, as the isolation of certain regions encouraged the use of local hubs,
and the port of Suape (PE) emerged as a significant hub in Northeast China, with its
relevance increasing to meet regional demand.

The Brazilian maritime networks of 2019 and 2020 showed significant structural
changes due to the impact of the COVID-19 pandemic. The main observed changes,
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beyond shifts in hub ports, include alterations in the connectivity distribution, the
formation of regional clusters, and the topological properties of the network. Below,
we highlight the main changes and analyze the network’s topological properties.

4.1 Main Changes Identified

In 2019, the Brazilian maritime network was characterized by a more connected
structure, with major hubs such as Santos and Paranagua centralizing most routes.
In 2020, logistical restrictions imposed by the pandemic led to a redistribution that
increased the importance of regional hubs, such as Manaus and Suape, forming
denser regional clusters. This resulted in fewer direct routes between major ports
across different Brazilian regions, thereby reducing the network’s efficiency in terms
of global connectivity.

The pandemic also led to a decreased in network modularity, indicating a break-
down in the network’s community structure. This reduction suggests that the COVID-
19 pandemic led to a more homogeneous network, with logistical flows redistributed
and a diminished presence of well-defined clusters.

The 2019 network displayed small-world topological characteristics, with short
average distances between nodes, facilitating rapid good movement. In 2020, this
characteristic diminished due to an increase in the average distance between ports
caused by fewer direct routes between distant regions. This impact was especially
noticeable between ports in Southeast China and other regions, hindering rapid
connectivity across geographically distinct areas. Although hubs such as Santos
and Paranagud continued to play central roles, the network in 2020 showed greater
adaptability by partially redistributing operations to regional ports. This resilience
was essential to mitigate the impact of closures or congestion at major hubs.

It is important to say that in 2019, 12,000 operations were carried out, trans-
porting approximately 250 million tons, with an average of 33 operations per day. In
2020, 10,500 operations were carried out, representing a 12.5% reduction due to the
pandemic, but with an increase in the diversity of regional destinations. The average
volume transported per operation decreased to 20 million tons per quarter, and the
daily average fell to 29 operations. The Port of Manaus showed a 15% increase in the
number of operations in 2020, while the Port of Santos experienced an 8% reduction.
The average distance traveled between ports increased by 18%, indicating greater
fragmentation and regionalization of routes.

4.2 Analysis of Topological Properties

To understand these changes in greater depth, let us examine the key topological
properties. In 2019, ports such as Santos and Paranagud had high degree centrality,
serving as main nodes for cargo distribution. With the pandemic in 2020, the degree
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centrality of these ports decreased slightly, whereas ports such as Manaus and Suape
gained greater centrality because of increased regional connections. This redistri-
bution indicates a reduced traffic concentration at a single point, promoting a more
diversified and resilient network.

The betweenness centrality of major hubs (especially Santos and Paranagud)
declined in 2020. This shift occurred because the network became less dependent
on direct connections between these hubs, focusing instead on regional routes. The
reduction in betweenness centrality at key hubs suggests that the network adapted to
prevent congestion at these points by increasing the importance of regional ports.

The clustering coefficient, which measures the degree of connectivity among a
node’s neighbors, increased in the 2020 network because of the formation of denser
regional clusters. This indicates that the ports within each cluster became more inter-
connected. This heightened regional clustering benefited internal logistics, facili-
tating the circulation of goods at the regional level, although it compromised the
efficiency of exchanges at the national level.

The average shortest path length between nodes increased in 2020, reflecting
a reduction in the number of direct routes between different regions. This change
implies higher transportation times and logistics costs for long-distance routes. In
practical terms, this means that the 2020 network became more reliant on indirect
routes, with multiple intermediate ports needed to reach more distant destinations.

4.3 Implications of Changes in Topological Properties

The changes in the Brazilian maritime network’s topological properties during
the pandemic had several implications, including higher transportation costs and
times due to increased average distances between ports and fewer direct routes,
impacting logistical efficiency. Additionally, the formation of regional clusters made
the network more resilient, allowing operations to continue at the local level even
with restrictions at larger ports. This adaptation is valuable for future crises, as the
network can maintain functionality on a more localized scale.

The lower betweenness centrality at major hubs suggests that the network adapted
to mitigate the risk of congestion at critical ports, redistributing demand to other
regional hubs. This behavior reinforces the importance of developing and maintaining
a diversified port infrastructure.

These observations are essential for future logistical planning in Brazil, espe-
cially regarding the construction of a more decentralized and robust port network to
withstand potential future crises.
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5 Conclusions

The identification and role of hubs within Brazilian maritime networks have several
technical implications, especially during crises such as the COVID-19 pandemic.
Ports such as Santos and Paranagud handle a significant volume of cargo move-
ment, making them vulnerable to overload during times of crisis. With restrictions
and health measures imposed during the pandemic, these hubs experienced delays,
impacting the logistics chain and increasing transportation times.

Additionally, during the COVID-19 pandemic, increased regionalization elevated
the role of local hubs, such as Manaus and Suape, which took on greater prominence
within their respective regions. This shift helped alleviate the logistical challenges of
long-distance transport but also led to a redistribution that, in some cases, increased
transportation costs and times. The maritime network demonstrated a degree of
resilience, as smaller ports were able to partially absorb the flow that would typically
be handled by major hubs. This redistribution highlights the importance of multiple
regional hubs to ensure network functionality in the face of disruptions, such as
pandemic-related restrictions.

In conclusion, the analysis of the Brazilian maritime network during the COVID-
19 pandemic revealed that despite reduced connectivity and the formation of regional
clusters, the network was able to adapt to the new demands and restrictions imposed
by the pandemic. The network’s scale-free structure contributed to its resilience,
allowing other ports to assume part of the operations when major hubs faced restric-
tions. However, the loss of small-world characteristics increased the average distance
between ports, reducing the efficiency of goods transport.

These findings provide valuable insights for policy-making aimed at enhancing the
resilience of the Brazilian maritime network, reinforcing the importance of secondary
hubs, and promoting regionalization strategies to mitigate the impacts of future crises.
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Abstract Understanding how transportation networks work is important for improv-
ing connectivity, efficiency, and safety. In Brazil, where road transport is a significant
portion of freight and passenger movement, network science can provide valuable
insights into the structural properties of the infrastructure, thus helping decision mak-
ers responsible for proposing improvements to the system. This paper models the
federal road network as weighted networks, with the intent to unveil its topological
characteristics and identify key locations (cities) that play important roles for the
country through 75,000km of roads. We start with a simple network to examine
basic connectivity and topology, where weights are the distance of the road segment.
We then incorporate other weights representing number of incidents, population, and
number of cities in-between each segment. We then focus on community detection
as a way to identify clusters of cities that form cohesive groups within a network. Our
findings aim to bring clarity to the overall structure of federal roads in Brazil, thus
providing actionable insights for improving infrastructure planning and prioritising
resources to enhance network resilience.
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9.1 Introduction

In the global economy, road infrastructures are a fundamental component because
they are key in facilitating the movement of goods and people. Many countries rely
heavily on road networks for the transport of commodities, with some nations being
more dependent than others. For instance, in geographically vast countries with
dispersed urban centres, road transport becomes essential for economic activities
and regional connectivity.'

Brazil’s dependence on roads is particularly significant, serving as the primary
mode of transportation for freight (and passengers) across its extensive, and often
difficult access, territory. The federal highways (henceforth called “roads”, given
that they are not always highways, i.e., multiple lanes) play a crucial role in the
development and integration of smaller cities. It has been shown that the efficiency
and reliability of roads directly impact economic growth, social cohesion, and access
to services [17, 24].

Brazil’s has a specific police force responsible for federal roads: the Federal
Highway Police (Policia Rodovidria Federal, PRF). They are responsible for about
75,000 km of roads out of the nearly 2 million km total [14]. While this sounds small
compared to the total, they are the main arteries of road transportation in Brazil; 60%
of goods are transported using the federal road structure making its connectivity [8]
crucial to the country.

According to the Brazilian constitution [16], the PRF is responsible for patrolling
federal roads, enforcing traffic laws, and ensuring the road safety. Their duties
include accident prevention, combating criminal activities, and providing assistance
to motorists, which are vital for maintaining the operational integrity of the nation’s
road network, among others. While the PRF is very knowledgeable about the road
infrastructure, this knowledge is often distributed, not providing a holistic view of
the infrastructure. By analysing network structures, authorities can identify critical
nodes and links that require investment, improvement, or even more policing.

While the construction of new federal roads is relatively infrequent in Brazil (the
country continues to depend heavily on infrastructure investments made in the1960s
and 1970s [8], see Sect.9.3), understanding the structure of the existing network
is paramount. The network’s structural properties are influenced by factors such as
human mobility patterns [4], population in neighbouring cities, and various events
including festivals, religious activities, holidays, and freight logistic decisions. These
factors can lead to changes in the significance and utilisation of specific roads,
highlighting the importance of a comprehensive structural analysis. In this study,
we model the Brazilian federal road network using the 546 largest cities as nodes;
medium and large cities as per the Brazilian Geography and Statistics Institute IBGE)
[11].

' Five of the six largest countries in area also rank among the top five in road network
size. Source: https://en.wikipedia.org/wiki/List_of_countries_by_road_network_size (accessed: 25
October 2024).
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9.2 Transportation Networks

Transportation networks are a critical aspect of modern society, and intrinsically
linked to economic growth and social development. They facilitate the movement of
goods, services, and people, thereby connecting markets and fostering globalisation
[29]. The structure and dynamics of these networks is an essential part of the process
of improving efficiency, resilience, and sustainability around the world.

Over the past few decades, the world has effectively become smaller due to
advancements in transportation and communication technologies. This phenomenon,
often referred to as the “time-space convergence,” implies that the relative distance
between places decreases as connectivity improves [20]. For example, the average
transatlantic travel time for freight shipments in the 1800s was about 30 days, while
today is about 8 h. While increased connectivity offers benefits, it also presents con-
cerns. Faster transportation networks can facilitate the rapid spread of diseases, as
evidenced by the global transmission of pandemics like COVID-19 [13]. Similarly,
invasive species (e.g., plants, animals) can spread more easily through connected
pathways, disrupting ecosystems and sometimes even local economies [21].

Network Science has been instrumental in modelling transportation networks,
offering tools and methods to analyse their complex structures and dynamics [27].
Numerous studies have employed network theory to investigate various modes of
transportation and spatial networks [6], providing insights into their topology, robust-
ness, and vulnerability. For instance, air transportation networks have been exten-
sively studied due to their global importance [19, 23]. Rail networks have also been
a subject of interest with indications that these networks have small-world prop-
erties, identifying its structural characteristics and the implications for efficiency
and robustness [25, 30]. In maritime transport, Kaluza et al. [22] studied the global
cargo ship network, highlighting patterns in maritime traffic and their environmental
impact.

In addition to air, rail and maritime studies, there has been significant work in urban
road networks [1, 3, 12] but comparatively fewer investigations into country-wide
road networks [33, 34], especially in the context of the Global South and large-scale
countries. Road networks are particularly crucial in such regions due to their role
in regional connectivity and economic development, where other forms of transport
may be less developed or accessible.

In this paper, we focus on the Brazilian Federal Road Network (BFRN) using
Network Science methodologies. By describing its structural properties, we aim to
provide insights that can inform data-driven decisions for infrastructure development,
policymaking, and strategic planning.
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9.3 Data and Methods

Brazil is the largest country in South America and the fifth largest in the world,
covering an area of approximately 8.5 million square kilometres. Due to its vast
size and diverse geography, efficient transportation infrastructure is essential for
economic development and national integration. However, Brazil lacks connectivity
viarail and often many locations are not connected via airports, which make the road
network crucial to many of the country’s regions.

The federal roads in Brazil are under the jurisdiction of the federal government
and serve as the main arteries linking major cities, ports, airports, strategic areas, and
even to neighbouring countries. The primary purpose of these roads is to promote
national connectivity, support economic activities, and ensure access to all areas of
the country.

The development of the Brazilian road network happened mostly in mid-20th cen-
tury, particularly during the 1950s and 1960s [31]. Brazil investment can be supported
by economic theories which suggest that improved transportation infrastructure leads
to reduced product costs, increased trade, and regional development [2].

The Brazilian federal road infrastructure comprises approximately 75,000 km of
roads [9]. These are named according to a system that reflects their general direction
and geographic location, as shown in Table9.1. The roads are depicted in Fig.9.1
(left), and the colours represent the different types of roads.

For modelling the proposed networks, we used several datasets. The road structure
was obtained from the National Road System (NRS) [26], which provides georefer-
enced data for each kilometre of all Brazilian federal roads. From this dataset, we
extracted information such latitude, longitude, and cities along the way. This dataset
includes more than 130,000 geographic positions and was collected in 2022.

Table 9.1 Brazilian Federal Road naming conventions

Road type General format Colour Example Description
Radial BR-0XX BR-010, BR-020 | Roads from
Brasilia to
country’s edges
Longitudinal BR-1XX — BR-101, BR-116 | Roads oriented
N-S
Transversal BR-2XX — BR-222, BR262 | Roads oriented
E-W roads
Diagonal BR-3XX — BR-365, BR-319 | Roads oriented
NW-SE or
NE-SW
Connecting BR-4XX BR-407, BR488 | Generally
connect federal
roads

They are based on where they start in the country, their direction, and function [15]. The colours in
the table refer to the map in Fig. 9.1 (left) where all the federal roads are depicted
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Fig.9.1 Brazilian Federal Road Network. We see on the (left) the picture showing the road types in
different colours as defined in Table 9.1. However, some of these roads are not connected to others,
so we use a modelling based on the 546 cities in Brazil and the federal roads that connected them
leading to the giant component in the (centre). Last, we show the population distribution of Brazil
(right); note the concentration around the east coast

We also incorporated information about all 5,570 cities in Brazil, including their
populations as collected in 2022 by the Brazilian Institute of Geography and Statistics
(IBGE) [11]. We utilised traffic incident data collected by the PRF, available through
their open data portal [10]. This database contains over 485,000 incident records
between 2017 and 2023, providing details such as date, time, number of people
involved, injuries, location, to name a few.

For modelling the nodes, we selected cities classified by the IBGE as medium
or large, with populations of at least 50,000 people [11]. Brazil has a total of 5,570
cities, of which 3,126 are intersected by a federal road. The 544 selected cities have
approximately 125 million residents, representing 76% of the 164 million people
residing in all cities traversed by federal road. In order to generate a consistent, we
included an additional 30 small cities that are important for connecting roads (e.g.,
crossing points), resulting in a total of 574 cities. The nature of the Brazilian road
network system, is that some of these cities are isolated and not part of the connected
network of cities. Hence, we are left 546 cities which form the basis of the BFRN
(and variations); the network giant component.

The edges in our network represent the roads linking the 546 selected cities. We
utilised the NRS data, which contains information for each kilometre of road, to
calculate the distances, number of cities, population, and incidents between pairs of
cities. This calculation includes the end point as part of the weight; for instance, the
population of people living between city A and city B, includes the population of
A and B. Figure 9.1 (centre) illustrates the road network, more specifically the giant
component of the network which we call BFRN.

We consider different weights in the structural analysis in this paper, giving rise
to four weighted networks:

e BFRN: The road network using the distance as weight of the edges. This is essen-
tially the network show in Fig. 9.1 (centre).
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Table 9.2 Basic measures of the Brazilian Federal Road Network

Metric BFRN cBFRN pBFRN iBFRN
Number of nodes | 546 o o )

()

Number of edges | 761 o o o

(m)

Average degree | 2.78 o o o

(k)

Weighted 1.78 1.76 1.73 1.45
distribution

exponent (yy,)

Average shortest | 1,784 75 4,324,144 130
path ((£,))

Diameter (D) 5,768 213 22,902,144 45,659
Modularity (Q,,) |0.852 0.842 0.867 0.887

We see the values for the exponent of the power law weighted distribution for each network (y,,),
the average shortest path ((£,,)), diameter (D,, ), and the weighted modularity (Q,,). Decimal places
are not displayed for (¢,,) and D,, while for n, m, and (k) the values are shown once because they
repeat for all networks

e CBFRN: The same nodes as BFRN but using the number of cities between the
nodes as weight of the edges. For example, if between cities A and B we have N
cities, the weight of the edge w(A, B) = N + 2 because the end points count for
the weight.

e pBFRN: Weights here represent the total population in the cities in the cBFRN
for that particular segment.

e iBFRN: Weights here represent the number of incidents that happened in-between
the cities for the entire period of the study.

Table 9.2 shows some basic measurements on the four networks. The number of
nodes (n), edges (m), and average degree ((k)) do not change, and hence it is only
shown for the BFRN. All the other measures are specific for each network.

9.4 Characterisation and Results

The goal in this paper is to characterise the Brazilian road network, leading to a
better clarity of the infrastructure. Yet, there are contextual information that need to
be mentioned because of the four weight variations used. In the BFRN the network
can be used to understand hubs, effective paths, and more importantly how changes
to this can lead to better efficiency in transportation times and fuel consumption;
distance is highly correlated to travel time. In the cBFRN, one can concentrate on the
identification of urban corridors as a function of the settlements, emergency planning,
and planning of road maintenance making sure most cities remain connected at all
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times. A variation of this is the pPBFRN where population of the cities are considered
instead. In the pBFRN the analysis of paths (shortest) can demonstrate areas that
are less populated and hence routes that may be maintained less often. Last, and
relatively different from the others, is the iBFRN where the weights represent the
number of incidents (i.e., deaths, injuries, driving under the influence). However, the
specific applications described above fall outside the scope of this paper. Here we
focus on identifying structural properties of these networks.

9.4.1 Weighted Degree Distributions

In spatial networks, nodes are embedded in physical space, and connections between
them are constrained by geographical proximity. This spatial embedding imposes
limitations on the number of connections a node can have, leading to degree dis-
tributions that are generally more homogeneous and do not follow a power-law
distribution typically seen in other types of complex networks [6, 18].

When weights are assigned to the edges of spatial networks; representing attributes
such as distances, the distribution of weighted degrees (also known as node strengths)
can provide additional insights into the network’s structure and functionality. With
weighted edges, the degree distributions in spatial networks like road networks may
follow power laws [5] defined as P (k) = Ck~7», where k represents the weighted
degree of anode. For our networks, the power law fitting leads to valuesof 1 < y,, <2
which shows that the networks are extremely hub-dominated, which is generally a
sign of vulnerability.

In the context of the BFRN, examining the weighted degree distribution is essen-
tial for several reasons. When weights represent distances between cities, the dis-
tribution can highlight central nodes that are geographically significant due to their
numerous or lengthy connections and perhaps some level of isolation given the other
cities considered (with significant population) are far away. If weights represent the
number of intermediate cities (CBFRN), the distribution uncovers nodes that are end-
points of urban corridors, indicating potential areas of high socio-economic activity
or congestion. When considering weights as the total population served by each seg-
ment (DBFRN), the weighted degree distribution helps identify cities that are crucial
for connecting large populations, or cities for which a large fraction of the popula-
tion depend on the road as an economic drive. Lastly, with weights representing the
number of incidents (iBFRN), the distribution can pinpoint nodes that are hotspots
for accidents, guiding targeted safety interventions and resource allocation to ensure
the police can quickly respond to these incidents.

Table 9.3 shows the 5 cities with the maximum and minimum weights. It is worth
noting the 2 largest cities in Brazil are on the highly ranked in the pBFRN, which
happens because of the artifact that their population counts for the weight of the edges
they have. In fact, we see two other cities are part of the great Sao Paulo: Osasco
and Guarulhos. Other points to observe is the correlation between the BFRN and
cBFRN. We found that cities that have long distance roads attached to them are also
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Fig. 9.2 Weighted degree distributions. The charts are for (from left to right): BFRN, cBFRN,
pBFRN, and iBFRN. It’s worth noting that the distributions follow a power law demonstrating
super-hubs. However, except for the pBFRN [32], the networks appear to have some level of
cut-off in their distribution which indicates limits to the values of the degrees

the ones with several intermediate cities. Last, we see that the cities featuring in high
ranks in the iBFRN are not the ones with high population weight, leading to the idea
that incidents may be related to other issues such as road quality and geographical
accidents.

Overall, understanding the weighted degree distribution allows for a holistic anal-
ysis of the network’s topology and its implications. It helps in identifying critical
nodes whose failure or inefficiency could disproportionately affect the network’s
functionality. This knowledge is vital for enhancing network robustness, optimizing
traffic flow, improving safety measures, and supporting strategic planning and poli-
cymaking aimed at improving the transportation infrastructure. Figure 9.2 shows the
degree distribution for each of the four networks considered.

While individual cases for cities are important in decision-making, understanding
the distribution of these degrees is also fundamental to a holistic view of the vul-
nerability. Table 9.3 shows that the networks appear to be super-hub dominated. The
distributions are depicted in Fig.9.2.

9.4.2 Diameter and Paths

The diameter of a weighted network, D,, is defined as the longest shortest path
between any pair of nodes, taking into account the weights assigned to the edges, as
below:

w

D, = maxdlj,

i,jen

where d; is the weighted shortest path length between cities i and j.
Itrepresents the maximum cumulative weight that must be traversed to connect the
most distant nodes in terms of the chosen weighting scheme. The diameter provides
insights into the extent of the network’s reach, potential bottlenecks, and areas where
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connectivity may be limited or require improvement. The values for all the networks
are shown in Table9.2.

In the context of the BFRN, where the weights represent the distances between
cities, the diameter signifies the greatest cumulative distance that must be covered
to travel between the two most distant cities along the shortest possible route. This
metric reflects the maximum physical separation in the network and can be used
to assess the efficiency of national connectivity. Brazil, being a continental country
with complex geographical features such as vast rivers, mountain ranges, and dense
rainforests, inherently imposes lower bounds on these measures. For instance, the
calculated diameter of the BFRN is 5,768 km, which exceeds the actual maximum
straight-line distances across Brazil: 4,394 km from the northernmost point at the
Monte Caburai in Roraima to the southernmost point at Arroio Chui in Rio Grande
do Sul.

For the cBFRN, with weights representing the number of cities between each pair
of connected cities, the diameter indicates the maximum number of cities that must
be traversed along the shortest path between any two cities. This interpretation sheds
light on the longest sequence of urban centres encountered on the most direct route,
providing insights into urban density and regional development patterns. It can help
identify corridors that connect numerous communities, potentially highlighting areas
which could benefit from economic activity around transportation. For Brazil, there
this diameter is 213 cities. This could be seen in conjunction to the actual population
seen in the pBFRN, where weights denote the total population benefited by each
segment, the diameter reflects the largest cumulative population connected along the
shortest path between any two cities which for Brazil is about 22.9 million people
which says that the diameter involves around 10% of the entire Brazilian population
(214 million people).

Last, in the iBFRN, the diameter represents the highest cumulative number of
incidents encountered along the safest (least incident-prone) path between any two
cities. This metric identifies the pair of cities for which even the safest route involves
traversing segments with a high total number of incidents, highlighting potential
areas of concern for road safety. The cumulative value for this diameter is more than
45 thousand incidents; indicating that some of the roads are quite dangerous, with
about 18 incidents per day for the 7-year period studied.

Figure 9.3 shows the diameters for the four networks studied using the colours
defined in Table9.1. Two things are worth noting, the significant difference between
the BFRN and the iBFRN, with the latter being concentrated on the more populated
area of the country. The second is that there is a strong correlation between the
cBFRN and the pBFRN with the main difference being that the pBFRN naturally
gravitates to the city of Sdo Paulo given its large population.
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Fig. 9.3 Diameters of the networks. The diameters of the BFRN, cBFRN, pBFRN, and iBFRN
(respectively left to right). The colours of the roads are used as defined in Table 9.1

9.4.3 Community Detection

Community detection is a fundamental aspect of network analysis, aiming to uncover
the underlying structure of a network by identifying groups (communities) of nodes
that are more densely connected internally than with the rest of the network. This
process is essential for understanding the modular organisation of complex systems,
revealing how entities interact within and across different subgroups.

Here we use the Louvain method [7] which is a widely used algorithm for commu-
nity detection due to its efficiency and ability to handle large and weighted networks.
It operates by maximising the modularity of the network, in our case the weighted
modularity, Q.,, a measure that quantifies the quality of a particular division of the
network into communities [28]. By considering edge weights, the Louvain method
can detect communities that reflect not only the topology of the network but also the
intensity of interactions between nodes (from weights).

In the case of the BFRN and variations, the communities may correspond to
regions where there is a high volume of traffic, densely connected urban areas, or
zones with significant safety concerns due to a high number of incidents. Figure 9.4
shows the 8 largest communities for the four networks, respectively from left to right:
BFRN (19), iBFRN (26), cBFRN (20), pBFRN (20); the community analysis leads
to more communities shown between parenthesis. One immediate aspect to observe
is how the largest communities seem to be located in the coastal area of Brazil, where
55% of the population lives (within 150km of the coast and 10% of total territory)
[11].

It is worth noting that the community structure on the networks is quite strong, as
shown by the modularity values in Table 9.3. Figure 9.4 depicts that the communities
are quite regional, showing that the patterns of the nearby cities in the network have
similarities.
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Fig. 9.4 Network communities. For all networks, the communities show strong connections within
regions. The picture shows the 8 largest communities for BFRN, cBFRN, pBFRN, and iBFRN
(from left to right)

9.5 On Network Resilience

Resilience analysis, especially in the BFRN, is critical due to its vital role in con-
necting cities across Brazil’s vast and diverse geography. The BFRN as the backbone
of Brazil’s transportation system, needs to show resilience to disconnections. Study-
ing resilience allows for the identification of critical nodes (cities) whose removal,
whether due to natural disasters, infrastructure failure, or other disruptions, could
disproportionately impact the network. Natural and unnatural disasters, such as the
devastating floods that recently impacted the southern region of Brazil, including
the city of Porto Alegre, are likely to become more frequent and severe due to the
growing effects of climate change. These events can lead to significant disruptions in
critical infrastructure such as the BFRN highlighting the need for proactive resilience
planning.

Here, we compare node removals based on degree, weighted degree, and between-
ness to random removal for it brings clarity to the structural importance of different
nodes in the BFRN. Degree, as a measure of the number of direct connections a
node has, helps evaluate the impact of losing cities that are end points of several
federal roads on the network’s overall connectivity. Weighted degree extends this
analysis by incorporating the significance of these connections, using weights such
as distance, population, or the number of intermediate cities. Betweenness centrality,
on the other hand, assesses the role of cities as intermediaries or bridges, measuring
how often a node lies on the shortest paths between other cities. This highlights nodes
that are critical for maintaining the global flow within the network. Random removal
serves as a null model to compare how the network responds when disruptions occur
without targeting specific structural properties.

The results shown in Fig. 9.5 (left) reveal that removing approximately 25% of the
nodes based on degree leads to the complete destruction of the giant component, with
faster destruction observed in the pBFRN. This outcome suggests that cities with
a high number of connections are crucial for maintaining large-scale connectivity,
especially when these connections serve densely populated areas. The earlier impact
of weighted degree removal in the BFRN highlights that removing cities associ-
ated with large distances can disrupt connectivity also, but degree-based removals
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Fig. 9.5 Resilience analysis. The impact of node (city) removals based on degree, weighted degree,
and betweenness, compared to random, highlights the vulnerability of the giant component particu-
larly for the removal of highly connected cities (degree). Here we see BFRN, pBFRN and cBFRN
respectively from left to right

ultimately have a stronger and more widespread effect, possibly because we are deal-
ing with spatial networks. Interestingly, the faster disintegration caused by degree
removals in the BFRN compared to betweenness suggests that, in spatial networks
like the BFRN, direct connections may be more critical than the intermediary roles
captured by betweenness. This is due to the physical constraints and cost associated
with forming long-distance connections, which make high-degree nodes less likely
but disproportionately important.

9.6 Discussion

This paper presented a comprehensive analysis of the BFRN by leveraging network
science to evaluate its structure, connectivity, and vulnerabilities. Four distinct net-
work models were considered, with weights based on distance, population, number
of intermediate cities, and incidents. These models provided a multifaceted perspec-
tive on the BFRN, allowing for a holistic understanding of how different aspects of it
contribute to its overall functionality. By analysing the structural properties of these
weighted networks, we gained valuable insights into the key features that define the
network’s robustness and the critical nodes that play a pivotal role in maintaining
connectivity.

The analysis highlights the importance of adopting a holistic approach to evaluate
the BFRN, particularly in the context of decision-making by the Federal Highway
Police (PRF). Limited resources require strategic priorities, and a comprehensive
view of the network enables the identification of areas where interventions can have
the greatest impact. For example, the pBFRN can guide decisions on resource allo-
cation to highly populated regions, while the iBFRN informs strategies monitoring
the segments and maybe making sure the incidents are not due to poor road mainte-
nance. Similarly, CBFRN sheds light on the role of smaller urban areas in maintaining
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regional cohesion, offering opportunities to strengthen economic incentives to critical
corridors that may otherwise be overlooked.

While resilience analysis demonstrated weaknesses associated with targeted node
removals, the overarching value lies in understanding the broader structure of the
BFRN. In the future, we could work to build on the foundation of this paper by
integrating multilayer networks that include additional transportation modes, such
as waterways, railways, and airports. Furthermore, the use of dynamic data, such as
traffic flow patterns and natural disaster simulations, would enhance the ability to
anticipate and mitigate potential disruptions.
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Improving Flocking Behaviors in Street )
Networks with Vision e

Guillaume Moinard and Matthieu Latapy

Abstract We improve a flocking model on street networks introduced in a previous
paper. We expand the field of vision of walkers, making the model more realistic.
Under such conditions, we obtain groups of walkers whose gathering times and
robustness to break ups are better than previous results. We explain such improve-
ments because the alignment rule with vision guaranties walkers do not split into
divergent directions at intersections anymore, and because the attraction rule with
vision gathers distant groups. This paves the way to a better understanding of events
where walkers have collective decentralized goals, like protests.

Keywords Street networks * Flocking - Vision - Robustness * Protests

1 Introduction

Consider the following scenario. Protesters are scattered throughout a city and share
the common objective to gather into groups large enough to perform significant
actions. They face forces that may break up groups, block some places or streets
and seize any communication devices protesters may be carrying. As a consequence,
protesters only have access to local information on people and streets around them.
Furthermore, formed protester groups must keep moving to avoid containment by
adversary forces.

In this scenario, protesters need a distributed and as simple as possible protocol,
that utilises local information exclusively and ensures a flocking behavior, i.e., the
rapid formation of significantly large, mobile, and robust groups.

In a previous paper [1], the city was modeled as a network of streets and inter-
sections, and protesters were biased random walkers on this network. Authors then
identified some key building block for those protocols to guaranty walkers will gather
in a short range of time, such as the alignment rule we will present in Sect. 3.2.
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In this paper, while building on the same rules, we explore the effect of expanding
walkers range of vision. Instead of applying their decision rules only to neighbor
nodes in the graph, they will apply it to a set of nodes in a given range. We want
to see if accessing more information in that manner improves walkers decision and
enhances their flocking behavior.

In Sect. 2, we compare our approach to related works on flocking and gathering on
networks. In Sect. 3, we present the framework of street networks and walking rules
introduced in [1]. We then define walkers vision in Sect.4 and introduce new rules
we construct with this vision. In Sect. 5, we run extensive experiments to measure
the effect of vision on our walking rules and their combination. We also explore the
robustness of groups, measuring how they reform if adversary forces break them
up while following an effective tactic. Finally, we summarise our contributions in
Sect. 6.

2 State of the Art

The most famous flocking model the Reynold’s model [2]. Since its publication,
many papers studied flocking behaviors in a wide variety of contexts. However, most
studies apply to continuous spaces, such as 2D or 3D spaces [3—6]. In this paper, we
focus on street networks, and such graphs are discrete spaces.

Nevertheless, some articles have explored algorithms for gathering on any con-
nected graph [7]. However, they require long term memory and computing capacities
that exceeds what real pedestrians are capable of. Moreover, gathering is only a part
of the flocking problem, as we also require walkers to subsequently move together
once gathered.

Other articles have adapted rules proposed in the Reynold’s model on a line
of nodes [8]. With respect to our article, this case corresponds to the situation of
walkers in a single street. However, we want to have well-defined behaviors on the
entire network, which includes the intersections.

In [1], the authors presented a flocking model on street networks. Efficient behav-
iors emerged from a combination of multiple rules. We propose here a simpler and
more realistic model inspired by Reynold’s model, suited for any kind of network.
Considering the importance of vision in the success of flocking models [9], we
introduce a vision range for walkers and study the impact of its depth on flocking.

3 Framework

We need a framework to simulate displacements of protesters in a city. We model
cities as undirected graphs we call street networks. Protesters are then biased random
walkers on this network. They can move from node to node with simple rules we
introduce in the following Section.
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3.1 Discretized Street Networks

In order to model real-world cities, we leverage OpenStreetMap data and the OSMnx
library [10]. For a given city, we use this library with its default settings to extract the
graph G = (V, E) defined as follows: the nodes in V represent street intersections
in this city and the links in £ € V x V represent pieces of streets between them.
We take the undirected graph G, meaning there is no distinction between (u, v) and
(v, u) in E. In addition, we denote by N (v) = {u, (u, v) € E} the set of neighbors
of any node vin V.

Like [1], in the following, we use a typical instance, namely Paris, to present our
work in this paper. This street network has 9,602 nodes, 14,974 links, leading to an
average degree of 3.1. Its diameter is 83 hops and its average distance is 39.4 hops.
The average street length is 99 m, and the average distance is 5,552 m.

The links of a street network generally represent street segments of very heteroge-
neous lengths [11]. Then, moves from a node to another one may have very different
duration. In order to model this, we use the same discretization procedure as in [1].
It consists in splitting each link of the street network into pieces connected by evenly
spaced nodes. We illustrate this procedure with our Fig. 1.

In the obtained graph, each link represents a street slice of length close to a
parameter §. Then a walker consistently make a move of length approximately § at
each hop.

Like in [1] we use § equal to 10m, leading to a network of N = 130,276 nodes
and M = 300,736 links.

3.2 Walkers

Given a network G = (V, E), we consider a set W of walkers numbered from 1 to
|W|. We denote the location of walker i at time 7 by x;(t) = v, with v € V. We call
group the set of walkers at a given node v at a given time ¢: g,(¢) = {i, x;(t) = v}.

Fig. 1 A piece of the discretized street network around Place de la Nation in Paris
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We denote by g(t) = |{g,(t), v € V, g,(¢t) # ?}| the number of non-empty groups
atstep t.

We characterize flocking as a gathering of walkers exploring the network. In [1],
big enough groups of walkers only form with rules that also make walkers explore
the network. Therefore, the gathering of walkers is, on its own, a good indicator of
the efficiency of our model.

Definition 1 (Gathering score) We denote the average size of non-empty groups
of walkers by n(t) = g% and use this metric as our gathering score to evaluate the
efficiency of our walks.

At each time step ¢, a walker i moves to anode x; (¢ 4+ 1) € N(v). We present the
two criteria, introduced in [1], a walker uses to determine its next location:

1. The number of walkers located at node u at time ¢; n, (t) = |g,(t)|

2. The net flux of walkers on a link (4, v) € E a walker perceives from node u;
Ju_»(t) which is, at ¢, the difference between the number of walkers that entered
the link from node u at t — 1, and those who entered from node v.

Notice that the J,_,,(¢) is a quantity that can be negative when the number of
walkers that enter the link from v is greater than those who enter from u. Moreover,
we always have J,_,,(#) = —J,_,(#), which implies the flux can be an attractive or
repulsive force for walkers, whether they stand at u or v. We then can describe rules
for the movement of walkers.

1. Alignment rule: A walker at node u at time ¢ moves to the neighbor v that
maximizes the net flux J,_,,(¢).

2. Attraction rule: A walker at node u at time ¢ moves to the neighbor v that
maximizes the number of walkers n,(t).

So far those rules do not take into account the vision of walkers. We now present
the vision-based rules that consider the depth of the vision of walkers.

4 Vision

We construct walkers vision in the following manner. We introduce the concepts
of vision depth and branches to define how a walker combines the rules from the
previous section with a wider field of vision.

Definition 2 (Vision depth) A walker can see what happens on the network up to a
certain distance from its location, i.e., the vision depth d. This depth is an integer, the
distance between two nodes being the number of links in a shortest path connecting
them.

A vision depth equal to 1 means a walker i can evaluate the number of walkers on
its neighbor nodes v € N (x;(¢)) and the net flux on adjacent links (x;(¢), v). It sees
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all information at distance 1 on the network. If this depth is greater than 1, a walker
perceives the two criteria on nodes and links further than its neighborhood. On the
other hand, the special case of a vision equal to O corresponds to a blind walker that
can only follow a random walk.

Notice the depth of a walker vision can differ from one criterion to another. We
call respectively d,, and d; the depth of the vision for the number of walkers and for
the net flux. A walker can see those quantities on nodes or links up to a distance d,,
and d; respectively.

Within this field of vision, a walker can look into different directions, at least one
per neighbor nodes. We say a walker perceives multiple branches.

Definition 3 (Branch) First, a branch B is a simple path, i.e., a sequence of nodes
(bo, b1, ..., by)suchthatVi # j, b; # bjandVi, (b;, bi1) € E.Moreover, abranch
must not be the prefix of any other simple path. We denote by B(u) the set of all
branches starting with by = u.

A walker i considers all branches starting from its location x; (¢). This means that,
VB € B(x;(t)), it evaluates the values of the two criteria respectively up to the d,
first nodes and d; first links of the branch B.

On Fig.2, we see the walker on node u with d = 2 considers the sequence of
nodes in red, green, yellow and blue, as they are the d first nodes of the branches the
walker can see. The walker can then evaluate the values of the two criteria on the
nodes and links of the branch, and use them to decide its next move.

We notice that, in the set B(u), there can be multiple branches passing through
each neighbor in N (1). In a line of nodes, a single street, there is only one simple path
in a given direction, and therefore the branch is unique. However, at intersections
there are multiple branches. For example, in Fig. 2 we see the green and blue branches
both start from node u but go into different directions after an intersection at node e.

Another comment concerns the length of branches with respect to the vision depth.
We see that, in the case of the orange arrow, a branch can be shorter than d = 2, as

Fig. 2 Walker on node u
with d = 2 has access to the
information on the sequences
of links and nodes
highlighted by arrows, as
they are the d first nodes and
links of the branches in B(u)
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a simple path can not go back to a node already visited. The walker on u then only
considers the nodes up to the end of the branch, i.e., # and d.

4.1 Weighting Branches

We know that n,(¢) and J,,(¢) are two commensurable quantities. Indeed, the
number of walkers is a quantity that is directly comparable to the net flux, as a group
of walkers all moving from u to v at# — 1 produces anet flux so that J,,_, , (¥) = n,(?).
However, if their respective vision depths are different, we cannot compare the two
criteria directly. We have to define a way to aggregate them, taking into account a
walker might see more values from one criterion.

To do so, for a walker i, we denote by wg(d,, d;, t) the weight, at time ¢, of a
branch B € B(x;(t)) and define it as:

wg(dy, dj, t) = Ng(d,, 1) + Tp(d;, 1) (1)

where the two terms are the mean of each criterion values the walker considers along
the branch:

Ay

(1
Nty =32 "0 with a, = min (151, d,) @)
i=1 n
=Ny (t)
Ts(d;. 1) = Z% with A; = min (|B|, d;) — 1 3)
i=0 J

This guarantees we sum comparable quantities, as each term in Np(d,, ) and
Jp(dj, t) is divided by the number of terms in its sum. We can finally define a
walker tactic as follows.

Definition 4 (7actic) For a walker i at time ¢, following the tactic defined by the
pair (d,, d;), is to identify the branch B € B(x;(¢)) with the maximum weight
wg(d,, d;, t), and subsequently moves to the neighbour v € N (x;(t)) so thatv = by.

Notice that, in the case of several branches with the same highest value, the walker
picks one node randomly among them.

5 Experiments

In this section we measure how well our walkers perform at flocking. We seek to
understand how the vision depth impacts their dynamics and if this new feature
improves flocking behaviors. We run all experiments on the discretized Paris street
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network for 1000 steps with as many walkers as there are nodes in the network. They
all start at random nodes.

To understand the impact of the vision depth on walkers behavior, we first measure
the impact of the vision depth on the gathering score for each individual criterion.
We will then allow walkers to make use of both criteria, with different vision depth
for each of them, in order to identify the best combination.

5.1 Impact of Vision on Each Criterion

In this first experiment, walkers only make use of the attraction rule. In Fig.3, we
display the gathering score we obtain at the end of a run for each vision depth. It
linearly increases with the vision depth. This is because walkers can see further and
therefore interact with a number of walkers that is proportional to their vision depth.
The gathering score is then roughly two times the vision depth, as a walker in a street
sees exactly 2d, nodes.

In the second experiment, walkers only make use of the net flux criterion. We
know from [1] that this alignment rule, alone, creates a much richer process that
does not simply converge after a few steps. That is why we see that, still on Fig. 3,
this alignment rule is already better than the attraction one when walkers only see
their neighbors (d, = d; = 1).

Moreover, its gathering score still increases with the vision depth. In [1] authors
showed that, each rule taken separately, the net flux criterion is the most effective at

Fig.3 Evolution of the last step gathering score for the alignment and attraction rules with different
vision depths
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gathering walkers, except that it can not prevent a group of walkers from splitting into
two groups at an intersection. However, with d; = 2, when a group of walkers splits
at an intersection, the walkers that form the smallest new group now still perceive
a positive net flux from the other walkers last move. They therefore come back and
follow their original group. This means that, given d; = 2, the alignment rule is able
to have all walkers in the network flock together at long time.

However, for higher values of the vision depth, the gathering score decreases. This
is because a walker can now see too far and therefore anticipates the arrival of other
walkers from their net flux. In such conditions, a small group will align with a bigger
in advance; its walkers will turn back and be repealed by the bigger group before the
two merge. This results in groups of walkers avoiding each other, and therefore not
gathering despite exploring the network.

5.2 Impact of Vision on Combinations of Criteria

We run the same experiment as before, with different vision depths for each criterion.
We take only in count the gathering score at the last step of a run to see how different
combinations of criteria play on flocking behavior. We display our results in Fig. 4.

Notice that the top most line and the left most column correspond to the experi-
ments we presented in previous sections. With d, = d; = 0, the top left cell is the
result for random walkers.

Fig. 4 Heatmap of gathering scores for every tactic with combinations of vision depths d,, and d;
from O to 10
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First, the second column stands out from the previous and following columns,
because of its poor scores. This is due to the vision depth for the attraction rule
being equal to or smaller than the vision depth for the alignment rule. This implies
that, while the alignment rule averages over multiple nodes, with some of them being
empty, the attraction rule only takes into account the neighbor node. The contribution
from the first term in (1) is then most of the time greater than the second term.
Therefore, rather than slightly influencing a group that already flocks, the attraction
rule becomes dominant. As this rule do not produce flocking on its own, the bigger
the alignment vision depth, the more the score drops until being as bad as for the
attraction rule alone.

This dynamic also explains why a value for at a cell (x, y) in the upper right
triangle of the matrix is better than the one at (y, x) in the lower left one. Indeed, the
upper right triangle corresponds to tactics for which the attraction vision depth for
is greater than the alignment vision depth. In those cases, the attraction rule is able
to influence the group that flocks, and the alignment rule is able to make the group
flock. This is the best combination of vision depths for the two rules. This result is in
line with the literature on flocking in continuous spaces [9], where rules often do not
apply in the same neighborhood. More precisely the attraction rule generally applies
to a further neighborhood than the alignment rule.

Notice the first column and row do not respect such a pattern, as they do not
describe combination of the two rules. Moreover, in the bottom right corner, a few
cells do not either, although the value gap between such cells and their symmetric
cell in the matrix is very small.

In Fig.4 we mark with a red square the cell showing the gathering score for
walkers using the alignment rule with d; = 1, like in [1]. We also highlight in green
squares the two main contributions of this paper.

We first have the alignment rule with d; = 2, that greatly increases groups size
as we explained in Sect.5.1. We now also see an optimal combination of the two
rules, with vision depths d,, = 6 and d; = 2. This combination takes advantage of the
flocking behavior the alignment rules induces, and of the gathering effect from the
attraction rule. This gives rise to groups that flock while being to move preferentially
towards other groups. Such groups are up to 10 times larger than previous results.
Increasing d; obviously degrades the gathering score due to the repealing effect
we highlighted. However, although it is not clear why, increasing d,, above 6 also
worsen results. We also notice that, the further down the y-axis, the more the optimal
combination on each line shifts to the right.

Finally, we display the evolution of the most interesting tactics in Fig. 5. All tactics
using the attraction rule alone, whatever the value of d,,, are easy to describe; groups
quickly form and do not evolve anymore, walkers being unable to move towards
other groups that are now out of their range of vision. We notice that, in the first time
steps and for big d,, value, walkers using attraction alone can form larger groups than
those using any combination of the two rules. Therefore, if walkers only have a very
limited amount of time to gather, the attraction rule alone is the best choice. However,
if walkers have more time to gather, the combination of the two rules clearly becomes
the best option.
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Fig. 5 Evolution of gathering score for some relevant tactics with different vision depths

5.3 Robustness of Groups

It is crucial for protesters to form groups that resist adversary forces that may break
them up. In order to explore this robustness, we follow the method of [1] that models
break ups as walkers suddenly following a random walk for one step. In this way, a
group located at a given node splits into smaller groups that move to neighbor nodes,
in a way similar to a group of protesters targeted by adversary forces.

More formally, we perform the following experiment: we run a simulation for
500 steps, then we impose walkers to move at random for one step. Finally, walkers
use once again their combination of rules until the end of the run. We performed this
experiment with the two tactics circled by the green squares in Fig. 4, i.e., the best
tactic we found and the alignment rule with d; = 2, and the tactic circled in red with
di =1.

Figure 6 displays the observed scores for the two latter, as the combination gave
similar result to the alignment with d; = 2, indicating that the attraction rule is not
a key factor in the robustness of groups.

At the break up, groups size drops drastically. Then, for the alignment rule with
d; = 1, new groups are smaller than they would have been without the break up. This
is aresult already established in [1]. However, walkers following a tactic withd; = 2
are able to recover from the break up and form groups even bigger than before. This
is thanks to the longer vision depth that allows the walkers to interact further and
therefore to recover from the break up.

In [1], combining multiple rules was enough to create robust groups that would
recover from break ups. The gathering score would go back to its initial value as if
the break up never happened. However, we show here that the vision depth is also
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Fig. 6 Plot of robustness experiments, similar to Fig. 5. We display the gathering scores for tactics
without break ups in green, with a break up in red

a key factor in the robustness of the groups that enables group to exhibit a form of
anti-fragility, i.e., turning bigger after a break up.

6 Conclusion

In this paper, we presented a novel approach to produce flocking behaviors on a
network which includes a parameter for the vision range of walkers. We studied our
model on street networks, as they are a very relevant application case.

Doing so, we obtained better results than the original model in [1]. Indeed, expand-
ing the vision of walkers for the alignment rule guarantees walkers do not split into
multiple groups at intersection. Moreover, a tactic that combines attraction and align-
ment rules, with different vision depth for each, leads us to results ten times greater
and such groups display remarkable robustness.

This simple model paves the way for studying other characteristics specific to
flocking on a large variety of networks. Moreover, it can help to model and under-
stand the behavior of pedestrians in urban environments.

Reproducibility. We provide an implementation of our models in C, and a Python
code result analysis, with documentation, at: https://gitlab.com/guillaume_moinard/
public-vision-flock.
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Abstract In this research, we contribute to increasing knowledge about how social
circles impact opinion dynamics and we provide new insights on how opinion
dynamics might contribute to automatically identifying social circles. To this end,
we use the majority model as baseline model. We introduce a deterministic social
circle approach to include social circle information into opinion dynamics simu-
lation models. To evaluate the impact of social circles on the final distribution of
opinions and the correlation between the final distribution of opinions and social
circles, we introduce a metric of social consensus that translates the final level of
agreement between individuals. We found that adding social circle information to
opinion dynamics models results in a significantly lower final level of consensus
than the baseline model which does not use social circle information. In addition,
we conclude that there is a correlation between the final distribution of opinions and
social circles. By comparing the mean level of consensus per social circle and per
community, we could affirm that the correlation between the final distribution of
opinions within social circles is higher than within communities. With this research
we extend the knowledge of the role of communities in opinion dynamics to social
circles.
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1 Introduction

As we are increasingly experiencing nowadays, online social networks are an impor-
tant place for the dissemination of opinions. Dissemination is the spread of, for
example, ideas, information, or news, and can result in consensus (everyone has the
same opinion) or polarization (different opinions co-exist) due to network structures.

Structures in a social network include different (hierarchical) social circles. Hier-
archical social circles can, for example, consist of individuals who participate in
university, faculty, department, and cohort-based circles, which all represent different
levels of interaction with different degrees of cohesiveness [12]. The question that
results from this is which level of interaction matters the most to the process of opinion
distribution. Once this is known, opinion dynamics in online social networks will
become more comprehensible, allowing us to better understand the emergence of
polarization and consensus [19]. At the same time, we can investigate the prospects
of using opinion dynamics to automatically discover social circles.

Data extracted from online social media with well-defined social circles can help
to find an answer to the formulated research question: To what extent can social
circles impact opinion dynamics?

In this research, we investigate the impact of (hierarchical) social circles on
opinion dynamics. For that, we use data on previously identified social circles, analyse
it, and perform numerical simulations of opinion dynamics. Specifically, information
about to which or to how many social circles a node belongs is used to provide a
data-driven answer to the research question.

2 Social Networks

The foundation of social network science is graph theory in which the nodes (V) of
a graph represent all individuals in the network and edges (also called ties or links)
represent the connections between individuals. Visual examples of this are presented
in Fig. 1. Hereafter, the words ‘nefwork’ and ‘graph’ are used interchangeably.

Fig. 1 a Facebook social network data set, b Twitter ego 374007416
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Hermsen [10] and Otte and Rousseau [14] describe basic graph theory definitions
as follows. The edges that are present in a network can be encoded in the form of an
adjacency matrix A € RY V. A non-zero value at A; expresses the presence of edge
ejj, so the connection between node i and node j. There are two kinds of networks,
undirected and directed networks. For an undirected graph, it is not important what
the direction of a connection is. In practice, this means that when two individuals are
connected, they both know each other.

A (social) network can be partitioned into a community structure [7]. Commu-
nities can be seen as a group of nodes, joined together based on different possible
conditions. In social networks this could represent a group of friends who share the
same political beliefs, for example. It is expected that more edges exist within a
community than between communities. Girvan and Newman [7] proposed a method
for detecting such communities. They used edge betweenness (defined as the number
of shortest paths between two nodes) to find community boundaries. Based on this
method, Blondel et al. [3] came up with the commonly used Louvain method to detect
communities. While classical algorithms tend to identify communities, an alternative
network partition, more fine-gained, consist of social circles. Social circles, detailed
in Sect. 2.2, can overlap between each other and represent groups of individuals
with shared interests and/or backgrounds. These social circles can be identified in
so-called ego networks [12]. An ego is an individual representing the focal node.
The ego network is a local social network consisting of the connections between the
acquaintances of the ego.

2.1 Social Circles

Social circles represent ‘groups’ in which an individual can categorize his or her
network. This can be based on a variety of properties and groups can overlap with
each other. To learn to identify social circles automatically, McAuley and Leskovec
[12] created a machine learning model that incorporates user profile information
into the network structure. They found that social circles tend to overlap heavily and
are hierarchically nested. Generally, 25% of the circles contained completely within
another circle, 50% overlapped with another circle, and 25% had no individuals in
common with any other circle.

2.2 Opinion Dynamics

“Opinion dynamics are the processes that determine how opinions form and diffuse
in society”, as Menczer et al. [13] state. A widely used hypothesis about dynamics
in social networks is the one of Granovetter [8]: “whatever is to be diffused can
reach a larger number of people, and traverse a greater social distance, when passed
through weak ties rather than strong”. Weak ties refer to acquaintances that interact
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less frequently but do create a link between otherwise distant nodes (so with long
ties). However tempting it is to simply respect this hypothesis, Centola and Macy [5]
found that it is undesirable to just generalize it for every situation. In their research,
they found that long ties are not always able to spread complex opinions (or as they
call it, contagions) and can even impede dissemination completely. They defined
complex contagions as contagions that require assertion from more than one acquain-
tance. The conclusion is that, for complex contagions, it can be beneficial to have a
network with more clustering, even if the network as a whole has a larger diameter.
The authors came to this conclusion by applying the small world principal model
from Watts and Strogatz [20], which is able to randomly rewire a few local edges
so that it reduces the mean distance between randomly chosen points. Based on
[5], Centola [4] performed an online social network experiment and again found
that individual adoption strongly improved for users who received assertion from
more than one acquaintance. In addition, the spread went further and faster within a
clustered network than in a random network. Furthermore, Arnaboldi et al. [1] esti-
mated information diffusion in a social network based on the degree of trust between
two individuals. They assume that dissemination primarily takes place on individ-
uals that trust each other most. To analyse this, the authors estimate the degree of
trust between individuals through the frequency of interaction they have and then
use several thresholds to select the edges to be used for diffusion. They found that
“active social contacts” (defined as individuals who communicate through at least
one message per year) result in diffusion coverage of 96%. The more restrictive the
contact threshold is, i.e. the more communication is needed, the less the coverage.

3 Methodology

In this research, we use data from three sources: Facebook, Google+, and Twitter.
All data sets are open source and consist of network data with annotated ground-
truth defined social circles [11]. Online social networks are a good representation of
‘real-world’ social networks, and it is not relatively easy to retrieve (network) data
from online social networks [2, 17]. The Facebook data set is collected from survey
participants using a Facebook app. The data set is anonymized in a way that profile
information of different users can be matched on features, but it is not possible to see
specific information about these features. For example, two users can match because
they went to the same college, but it cannot be seen which college this is. For the
Google+ data set, the collected data are from users that had manually shared their
social circles using the ‘share circle’ possibility. The Twitter data set is retrieved
from public sources. These data are based on user-defined lists, which are a way for
users to organize their connections based on specific topics. All data sets include
profile information (or so-called node features), ego networks, and social circles.
To be able to analyze and visualize the data, we use the NetworkX package [9].
This is “a Python package for the creation, manipulation, and study of the structure,
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Table 1 Data sets statistics Facebook Google+ Twitter
Nodes 4039 107,614 81,306
Edges 88,234 12,674,353 1,768,149
Ego networks 7 132 973
Social circles 159 468 4065
Directed No Yes Yes

dynamics, and functions of complex networks” [9]. The visualizations are color-
coded for interpretation purposes: blue for the overall or ‘neutral’ level; (shades of)
green for the level of ego networks; (shades of) red for the level of social circles;
and purple for communities. More detailed statistics of the data sets are presented in
Table 1.

3.1 Methods

3.1.1 Opinion Dynamics Modelling

As Sayama [15] and Menczer et al. [13] explain in their books, it is possible to
“add states to nodes and dynamically update those iteratively”. This process can be
implemented and studied numerically to inform us about the long-term dynamics of
opinions in real populations. In any type of model for influence diffusion or dynamics
on networks, it can be assumed that a certain portion of the nodes is activated from
the beginning. This can be encoded in the states of nodes. In the case of this research,
it means that active nodes already ‘accepted’ the opinion and inactive nodes can
be activated according to certain rules, conditions, and parameters. Those rules,
conditions, and parameters depend on the type of simulation model. Models can
be divided into discrete opinion models (individuals can have an integer number
of opinions) and continuous opinion models (opinions can vary fluently from one
extreme to another). In addition, models can also be divided into deterministic and
stochastic models.

The results of deterministic models fully depend on the initial states and set
parameter values. The results of stochastic models can be different each time—
even when the initial states are the same—since there is always some level of
randomness included. There are several simulation models for opinion dynamics
on (social) networks that are commonly used. Generally, such simulation models
take the following steps as described by Menczer et al. [13]. The code of Sayama
[16] is used as source code. This code is adjusted to be able to implement social circle
information and do the evaluations as discussed. For this research, the majority model
is used as the baseline model. This model is commonly used in the field of opinion
dynamics and can be classified as a discrete opinion dynamics model. Each individual
changes their opinion to the opinion of the majority of its neighbors (also called the
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activation condition). When the case occurs where the number of neighbors with
different opinions is equal, the opinion is updated with an equal probability for each
opinion [13].

To introduce the impact of social circles on opinion dynamics in the model, two
approaches are devised. The deterministic approach and the stochastic approach.

The deterministic social circle (DSC) approach. The deterministic approach can
be seen as an extension of the majority model in combination with the well-known
threshold model [13]. For this approach, the threshold to change opinion is still based
on the opinion of the majority of individuals’ neighbors. The difference, however, it
that the contribution of each neighbor to achieving the threshold is weighted based
on social circle information. In addition, this approach is still discrete in the sense
that opinions are encoded in the states of nodes with either one or zero.

3.1.2 Evaluation Approach: Impact of Social Circles

In the social circle data as described in Sect. 3.1, only for the Google+ data set it
is defined in the documentation that the ego nodes are included in their own social
circles [11]. This is not visible in the data sets, so we add the ego node manually
to its own social circles. For this research, it is assumed that the ego nodes are also
included in their own social circles for the Facebook and Twitter data sets, so we add
the ego nodes manually to its own social circles for those as well.

Average opinion. The average opinion can be used to analyze the results of the
simulation models. This is the arithmetic average state over all nodes and can be
created after every (amount of) iteration(s). Since the model starts with two opinions
(either one or zero), the model will start with an average of around 0.5 as there is
an equal probability for each opinion. In a steady-state, the average will become
a specific value. If the steady-state concludes in consensus it will be less than 0.5
or more than 0.5, if it concludes in polarization it will be 0.5 [13]. We cannot say
anything about impact with the final average opinion as a number on its own since
the opinions are encoded with either one or zero. A final average opinion of 0.35, for
example, would say that slightly more individuals end up with opinion 0, but it tells
nothing about the level at which all individuals agree with each other.

Level of consensus. As a consequence of the shortcoming of the average opinion, we
propose the level of consensus metric for this research. The level of consensus can be
calculated by the average opinion minus a ratio of 0.5. By taking the absolute value
of this times 2, we get a value between 0 (full polarization) and 1 (full consensus).
The higher the level of consensus, the more consensus there is. Because we take the
absolute value, the ‘direction’ (like the aforementioned example where slightly more
individuals end up with opinion 0) does not matter. The metric is devised with the
following formulation:
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where 7 is the number of all nodes and o; is the opinion of node i. Finally, to verify
whether the level of consensus differs between the baseline majority model and the
DSC approach, we make use of the statistical #-test. This tests the hypothesis about
two sets of data having significantly the same mean. To be able to use the Central
Limit Theorem (with n > 30 we can assume the needed normality for the #-test)
we run every simulation model 35 times [18]. Thus, to investigate the impact of
social circles on the final distribution of opinions, we test if the mean of the level
of consensus over 35 simulations differs between the majority model and the DSC
approach.

3.1.3 Evaluation Approach: Correlation Between Final Distribution
of Opinions and Social Circles

To say something about the correlation between the final distribution of opinions
and social circles, we only consider the setting of non-weighted links. Social circle
information for the weights is not used because the goal of this research is to give
a contribution to increasing knowledge about how to automatically identify social
circles by opinion dynamics. By using information about social circles beforehand,
we would defeat that purpose. To this end, only the results of the majority model
simulations will be used. For the correlation between the final distribution of opinions
and social circles, an adjusted version of (1) can be used. Instead of using all nodes
N, we calculate the level of consensus per social circle:

nC,
2ii% s

level of consequences in social circle C, = 2 C
nCy

2

where nCy, is the number of all nodes in social circle Cy and o; is the opinion of node
i. In addition, we make use of the Louvain method (discussed in Sect. 2.1) to detect
communities [3]. To be able to apply this method for the directed (Google+ and
Twitter) networks, we use the igraph package [6] instead of the NetworkX package
[9]. We do this because the Louvain method in combination with the NetworkX
package is not applicable for directed networks. The idea of the igraph package is the
same but it is implemented in the programming language C instead of Python. After
applying the Louvain method, we get to know automatically detected communities
for which we also calculate the level of consensus with (2). Only in this case is nCy
the number of all nodes in community C. To get a clear view of the correlation
between the final distribution of opinions and social circles, we do two comparisons:
(1) we compare the global mean level of consensus with the mean level of consensus
per social circle; (2) we compare the mean level of consensus per social circle with
the mean level of consensus per community. If the global mean level of consensus
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is lower than the mean level of consensus per social circle, it means that individuals
within a social circle tend to end up sharing the same opinion. Similarly, if the mean
level of consensus within social circles is higher than the mean level of consensus
within communities, it means that a network partition at the level of social circles
can better capture the correlation of opinions. This is expected to observe in a social
network. Additionally, we can compare a plot for the distribution of the level of
consensus per social circle with one for the distribution of the level of consensus per
community.

4 Evaluation

A visualization of the initial opinion distribution of the Facebook social network is
presented in Fig. 2a. The white nodes are assigned with one opinion and the black
nodes with the other. This same network but then after one simulation with the
majority model is shown in Fig. 2b. The average opinion developed shows that the
model became in a steady state around step 14. This could have been approximately
a point to stop the simulation. This simulation process is repeated 35 times for the
majority model and the DSC approach, but also for different influence parameter p
values (see (1)).

4.1 Impact of Social Circles

The level of consensus for the Facebook social network is plotted for each type
of simulation and are presented in Figs. 3 and 4. Each line/color represents one
simulation. The global mean final level of consensus over all 35 simulations for the
baseline majority model is 0.2276 (Fig. 3). For the DSC approach simulation with
p = 1 this is 0.143 (Fig. 4). Figure 4 shows that simulations for the DSC approach
often result in oscillations between two average opinions, while this does not happen
for the majority model. We left it for future work to investigate if there is a specific

(@ (b)

Fig. 2 Facebook social network opinion distribution. a Beginning position. b After majority model
simulation
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Fig. 3 Level of consensus per step for the Facebook social network majority model simulations

reason for this. With the #-test, we found a significant difference between the mean
level of consensus of the majority model and the mean level of consensus of the
DSC approach with p = 1. The p-value of the test is 0.01, which is smaller than the
significance level a = 0.05, so we use this as indication that the means are in all
probability different. Different values of influence parameter p smaller and larger
than 1 are tested to further research the impact of social circles. The mean level of
consensus for Facebook of all simulations and their corresponding #-test p-values are
given in Table 2.

We tested fewer values of influence parameter p for the Google+ social network.
We did this in the first place because the Google+ social network is bigger than the
Facebook social network and we found in the data exploration phase. In addition, from
the results of the Facebook social network simulations it can already be concluded
that adding social circle information to opinion dynamics models results in a lower
final level of consensus. The mean final level of consensus over all 35 simulations
for the majority model is 0.3315. For the DSC approach simulation with p = 1 this
is 0.0392. The results of these simulations are given in Table 3.

For the Twitter social network, we did the same simulations as for different influ-
ence parameters p for the Twitter social network DSC approach (Table 4). The mean
final level of consensus over all 35 simulations for the majority model is 0.2594.
For the DSC approach simulation with p = 1 this is 0.0184. The results of these
simulations are given in Table 5. From all the simulations in this section, we found
that social circles do have impact on the final distribution of opinions. The height
of the value of influence parameter p does not seem to have a relationship with the
level of consensus. We left it for future work to research what this relationship could
be, if any. However, for all the data sets we see that the simulations with the DSC
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Fig. 4 Level of consensus per step for the Facebook social network DSC approach simulations

withp =1

Table 2 Data simulation results of different influence parameters p for the Facebook social network

DSC approach
p 0.5 1 1.2 1.4 1.6 1.8 2
Mean level of | 0.1443 0.143 0.1561 0.1488 0.1357 0.1244 0.149
consensus
t-test p-value 0.0165 0.01 0.0207 0.01 0.0034 0.0008 0.0143

Table 3 Simulation results of different influence parameters p for the Google+ social network DSC

approach
p 0.5 1 1.5 2
Mean level of 0.0571 0.0392 0.0493 0.0533
consensus
t-test p-value 4.4227e—11 7.9004e—12 2.1036e—11 3.1713e—11

approach result in a significantly lower mean level of consensus than the simulations
with the baseline majority model (all p-value < 0.05).

Therefore, we can conclude that adding social circle information to opinion
dynamics models results in a lower final level of consensus.
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Table 4 Simulation results of different influence parameters p for the Twitter social network DSC
approach

p 0.5 1 1.5 2

Mean level of 0.0163 0.0184 0.023 0.0162
consensus

t-test p-value 3.9831e—15 5.0774e—15 8.1755e—15 4.1196e—15

Table S Mean lev§l (?f Facebook Google+ Twitter

consensus after majority

model simulations Nodes 0.2276 0.3315 0.2594
Edges 0.7873 0.5716 0.8166
Directed 0.7758 0.557 0.5402

4.2 Correlation Between Final Distribution of Opinions
and Social Circles

As explained in Sect. 3.1.3, we did not consider social circle information to elaborate
on the correlation between the final distribution of opinions and social circles. There-
fore, the results in this section are only related to the majority model and are presented
in Table 5. For all data sets, the mean level of consensus per social circle is higher than
the global mean final level of consensus after 35 simulations. For the Facebook social
network, the mean level of consensus increased with 0.5597; for the Google+ social
network, it increased with 0.2401; and for the Twitter social network, it increased
with 0.5572. From this, we can conclude that there is a correlation between the final
distribution of opinions and social circles. This gives a good suggestion for future
work in automatically identifying social circles by opinion dynamics.

For the Facebook social network, fifteen communities were detected with the
Louvain 298 method; for the Google+ social network, 49 communities were detected;
and for the Twitter social network, 87 communities were detected. If we compare
the mean level of consensus per community with the mean level of consensus per
social circle, an indication of a slight increase can be seen for the Facebook (mean
level of consensus increased with 0.0115) and the Google+ (increase of 0.0146)
social network. However, for the Twitter social network, a larger increase is observed
(mean level of consensus increased with 0.2764). From this, we can affirm that the
correlation between the final distribution of opinions within social circles is higher
than the final distribution of opinions within (automatically detected) communities.
The difference in how large this increase is between the different data sets will also
be an interesting angle for future work.
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5 Discussion

For this research, we used data from three sources: Facebook, Google+, and Twitter.
The data sets include different types of social networks, small networks and bigger
networks, a variety in the number of social circles, and undirected and directed
networks. All opinion dynamics simulations are done on the three data sets, so the
conclusions of this research are based on different types of online social networks.
Online social networks are a good representation of ‘real-world’ social networks,
and it is relatively easy to retrieve (network) data from online social networks. Since
research in the field of social network science has hardly investigated the impact of
social circles in the past, we did not know what to expect from the results of this
research beforehand. We are surprised by the interesting conclusions that can be
drawn and we think the results are a steppingstone for future work.

6 Conclusions and Future Directions

Research in the field of social network science has hardly investigated the impact
of social circles on opinion dynamics. This research aimed to answer the question:
To what extent can social circles impact opinion dynamics? We have shown, in
various ways, that social circles can impact opinion dynamics. We did this by first
characterizing and visualizing the previously identified social circles after which
we used the majority opinion dynamics model as the baseline model. With this
simulation model, we have identified the case of opinion dynamics where no social
circle information is available. To include social circle information into the simulation
model, we introduced the deterministic social circle (DSC) approach. The DSC
approach showed the impact of social circles on the final distribution of opinions.

To conclude, at the start of this research we had the goal to contribute to increasing
knowledge about how social circles impact opinion dynamics and how to auto-
matically identify social circles through opinion dynamics. With the results of this
research, we have met this contribution goal. We found that if information flows pref-
erentially between individuals belonging to the same social circles leads to higher
levels of polarization. Furthermore, we found that individuals belonging to the same
social circle tend to end up sharing the same opinions.

Future directions are focused on the impact of social circles on the final distribution
of opinions, particularly on the final levels of consensus and polarization and the
correlation between the final distribution of opinions and social circles?” is analyzed
by only considering the case of opinion dynamics where no social circle information
is available.



Social Circles Impact on Opinion Dynamics 147

References

14.

15.

16.
17.

18.
19.

20.

. Arnaboldi, V., Gala, M.L., Passarella, A., Conti, M.: Information diffusion in distributed OSN:

the impact of trusted relationships. Peer-to-Peer Netw. Appl. 9(2016), 1195-1208 (2016)
Bastian, M., Heymann, S., Jacomy, M.: Gephi: an open source software for exploring
and manipulating networks (2009). http://www.aaai.org/ocs/index.php/ICWSM/09/paper/vie
w/154

Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in
large networks. J. Stat. Mech. Theory Exp. 10, P10008 (2008). https://doi.org/10.1088/1742-
5468/2008/10/p10008

Centola, D.: The spread of behavior in an online social network experiment. Science 329(5996),
1194-1197 (2010)

Centola, D., Macy, M.: Complex contagions and the weakness of long ties. Am. J. Sociol.
113(3), 702-734 (2007)

Csardi, G., Nepusz, T.: The igraph software package for complex network research. Int. J.
Complex Syst. 1695 (2006). https://igraph.org

Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc.
Natl. Acad. Sci. 99(12), 7821-7826 (2002). https://doi.org/10.1073/pnas.122653799; arXiv:
https://www.pnas.org/content/99/12/7821.full.pdf

. Granovetter, M.S.: The strength of weak ties. Am. J. Sociol. 78(6), 1360-1380 (1973). http://

www.jstor.org/stable/2776392

. Hagberg, A., Swart, P., Chult, D.S.: Exploring network structure, dynamics, and function using

NetworkX. Technical Report, Los Alamos National Lab (LANL), Los Alamos, NM, United
States (2008)

. Hermsen, FA.W.: End-to-end learning on multi-edge graphs with graph convolutional

networks. Master Thesis (2019)

. Leskovec, J., Krevl, A.: SNAP datasets: Stanford large network dataset collection (2014). http://

snap.stanford.edu/data

. McAuley, J.J., Leskovec, J.: Learning to discover social circles in ego networks. In: NIPS, vol.

2012, pp. 548-56. Citeseer (2012)

. Menczer, F., Fortunato, S., Davis, C.A.: A First Course in Network Science. Cambridge

University Press (2020). https://doi.org/10.1017/9781108653947

Otte, E., Rousseau, R.: Social network analysis: a powerful strategy, also for the information
sciences. J. Inf. Sci. 28(6) , 441-453 (2002). https://doi.org/10.1177/016555150202800601
Sayama, H.: Introduction to the modeling and analysis of complex systems. Libretexts (2020).
https://math.libretexts.org/Bookshelves/Scientific_Computing_Simulations_and_Modeling/
Book:_Introduction_to_the_Modeling_and_Analysis_of_Complex_Systems_(Sayama)
Sayama, H.: PyCX. ver. 1.1 (2020). https://github.com/hsayama/PyCX

Stern, S., Livan, G.: The impact of noise and topology on opinion dynamics in social networks.
R. Soc. Open Sci. 8(4), 201943 (2021). https://doi.org/10.1098/rs0s.201943; arXiv: https://roy
alsocietypublishing.org/doi/pdf/10.1098/rs0s.201943

Triola, M.F.: Elementary Statistics, 12th edn. Pearson (2014)

Vasconcelos, V.V., Levin, S.A., Pinheiro, F.L.: Consensus and polarization in competing
complex contagion processes. J. R. Soc. Interface 16(155), 20190196 (2019). https://doi.org/10.
1098/rsif.2019.0196; arXiv:https://royalsocietypublishing.org/doi/pdf/10.1098/rsif.2019.0196
Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684),
440-442 (1998)


http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
https://doi.org/10.1088/1742-5468/2008/10/p10008
https://doi.org/10.1088/1742-5468/2008/10/p10008
https://igraph.org
https://doi.org/10.1073/pnas.122653799
https://www.pnas.org/content/99/12/7821.full.pdf
http://www.jstor.org/stable/2776392
http://www.jstor.org/stable/2776392
http://snap.stanford.edu/data
http://snap.stanford.edu/data
https://doi.org/10.1017/9781108653947
https://doi.org/10.1177/016555150202800601
https://math.libretexts.org/Bookshelves/Scientific_Computing_Simulations_and_Modeling/Book:_Introduction_to_the_Modeling_and_Analysis_of_Complex_Systems_(Sayama)
https://math.libretexts.org/Bookshelves/Scientific_Computing_Simulations_and_Modeling/Book:_Introduction_to_the_Modeling_and_Analysis_of_Complex_Systems_(Sayama)
https://github.com/hsayama/PyCX
https://doi.org/10.1098/rsos.201943
https://royalsocietypublishing.org/doi/pdf/10.1098/rsos.201943
https://royalsocietypublishing.org/doi/pdf/10.1098/rsos.201943
https://doi.org/10.1098/rsif.2019.0196
https://doi.org/10.1098/rsif.2019.0196
https://royalsocietypublishing.org/doi/pdf/10.1098/rsif.2019.0196

	Message from the Programme Chairs
	Message from the Conference Chairs
	Contents
	 A Simple and Flexible Algorithm to Generate Real-World Networks
	1 Introduction
	2 Previous Works
	3 Methods
	4 Results
	5 Conclusions
	References

	 A Framework for Efficient Estimation of Closeness Centrality and Eccentricity in Large Networks
	1 Introduction
	2 Centrality Estimators
	2.1 Largest Average Distance
	2.2 Largest Minimum Distance
	2.3 Random
	2.4 Computational Complexity

	3 Numerical Experiments
	3.1 Datasets and Performance Metrics
	3.2 Closeness
	3.3 Eccentricity

	4 Conclusion
	References

	 Network-Centric Analysis of Memetic Operators and Communication Topologies for Swarm Intelligence Algorithms
	1 Introduction
	2 Theoretical Background
	2.1 Particle Swarm Optimisation
	2.2 Memetic Operators
	2.3 Interaction Networks
	2.4 Assessment Metrics

	3 Experiments and Results
	3.1 Network Characterisation
	3.2 Comparison of Interaction Networks
	3.3 Interaction Diversity

	4 Conclusion
	References

	 A Hybrid Framework for Quantifying and Analyzing the Structural Properties of Human Retinal Vessel Networks
	1 Introduction
	2 Proposal
	3 Methodology
	4 Results and Discussion
	5 Conclusion and Future Works
	References

	 An Approach Based on Networks and Machine Learning for Gastric Cancer Treatment Recommendation
	1 Introduction
	1.1 Background and Motivation
	1.2 Literature Review

	2 Methodology and Modelling
	2.1 Datasets
	2.2 Complex Networks
	2.3 Machine Learning

	3 Results and Discussion
	3.1 Complex Networks
	3.2 Machine Learning

	4 Conclusions
	References

	 Population Dynamics in the Global Coral-Symbiont Network Under Temperature Variations
	1 Introduction
	2 Related Work
	3 Data Source and Network
	3.1 Degree Distribution

	4 Mathematical Model for Population Growth
	5 Quantitative Analysis
	5.1 Population Growth
	5.2 Influence of Network Structure

	6 Conclusion
	References

	 Dengue Serotypes Cyclicity Evidenced by the Impact-Frequency Histogram of the Visibility Graph
	1 Introduction
	2 Methods
	2.1 Dengue Data
	2.2 Visibility Graph
	2.3 Impact-Frequency Histogram

	3 Results and Discussion
	3.1 Impact-Frequency Histogram
	3.2 Limitations and Strengths

	4 Conclusions
	References

	 The Brazilian Maritime Network During the COVID-19 Pandemic: Analysis of Topologies and Impacts on Connectivity
	1 Introduction
	2 Background
	2.1 Maritime Networks
	2.2 Complex Networks and Maritime Transport Topologies
	2.3 Regionalization and Adaptation in Maritime Networks
	2.4 Network Metrics and Topological Properties

	3 Materials and Methods
	4 Results and Discussion
	4.1 Main Changes Identified
	4.2 Analysis of Topological Properties
	4.3 Implications of Changes in Topological Properties

	5 Conclusions
	References

	 Understanding the Structure and Resilience of the Brazilian Federal Road Network Through Network Science
	9.1 Introduction
	9.2 Transportation Networks
	9.3 Data and Methods
	9.4 Characterisation and Results
	9.4.1 Weighted Degree Distributions
	9.4.2 Diameter and Paths
	9.4.3 Community Detection

	9.5 On Network Resilience
	9.6 Discussion
	References

	 Improving Flocking Behaviors in Street Networks with Vision
	1 Introduction
	2 State of the Art
	3 Framework
	3.1 Discretized Street Networks
	3.2 Walkers

	4 Vision
	4.1 Weighting Branches

	5 Experiments
	5.1 Impact of Vision on Each Criterion
	5.2 Impact of Vision on Combinations of Criteria
	5.3 Robustness of Groups

	6 Conclusion
	References

	 Social Circles Impact on Opinion Dynamics
	1 Introduction
	2 Social Networks
	2.1 Social Circles
	2.2 Opinion Dynamics

	3 Methodology
	3.1 Methods

	4 Evaluation
	4.1 Impact of Social Circles
	4.2 Correlation Between Final Distribution of Opinions and Social Circles

	5 Discussion
	6 Conclusions and Future Directions
	References


