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Preface 

This volume celebrates Yuri Karlovich’s remarkable five-decade-long mathematical 
career, honoring his 75th birthday on April 18, 2024. He is a renowned expert in 
various branches of Analysis. During his fruitful career, Yuri published more than 
190 research papers, many of them with coauthors, whose list contains more than 
50 colleagues from several countries. He coauthored four research monographs and 
supervised eight PhD theses. 

The volume consists of two parts. The first part contains biographical information 
about Yuri, his list of publications, and personal reminiscences by one of us. To 
illustrate that Yuri is an outstanding team-worker, we included the reprint of a paper 
that was published in 1996 and was, in a sense, the culmination of a collaborative 
endeavor of seven enthusiasts working on the so-called “N projections theorem. ”

The larger second part of the volume consists of nine research papers on topics in 
operator theory and its applications by colleagues many of whom collaborated with 
Yuri or were in some other way influenced by his work. We thank all the authors 
who contributed to this volume for their efforts as well as the referees who in many 
cases generously helped to improve the manuscripts. We dedicate this volume to 
Yuri, with gratitude for the many things we learned from him, and we wish him 
many fruitful years to come. 

Chemnitz, Germany Albrecht Böttcher 
Lisboa, Portugal Oleksiy Karlovych 
London, UK Eugene Shargorodsky 
Williamsburg, VA, USA Ilya Spitkovsky 
October, 2024 
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Part I 
Yuri Karlovich and His Work



Yuri Karlovich’s Path in Mathematics 

Oleksiy Karlovych and Eugene Shargorodsky 

Yuri Ivanovich Karlovich was born on April 18, 1949 in Leningrad, Soviet Union 
(now Saint Petersburg, Russia). His father, Ivan Grigorievich Karlovich, was a 
military officer. His mother, Olga-Matilde Davidovna Karlovich, was a housewife. 

In 1966, Yuri Karlovich graduated from the secondary school No. 33 (Odessa, 
Ukraine) with a gold medal. During the ten years of study at school, he participated 
in and was a winner of several regional and republican olympiads in mathematics, 
physics and chemistry, and then chose mathematics for his further education under 
the influence of his school mathematics teacher Leonid Georgievich Zhbankov. 

After graduating from school, Yuri Karlovich became a student of the Depart-
ment of Mathematics and Mechanics of the Odessa State University. He completed 
his Master of Science degree with Distinction in 1971. From his third year at the 
University, he was a regular participant of the weekly Odessa City Seminar on 
boundary value problems and singular integral equations led by Professor Georgii 
Semenovich Litvinchuk. This seminar, which was active for more than 25 years, 
had a big influence on the scientific careers of its participants. In particular, 
Yuri Karlovich started to study singular integral operators with shifts under the 
supervision of Professor Litvinchuk. 

O. Karlovych 
Centro de Matemática e Aplicações, Departamento de Matemática, Faculdade de Ciências e 
Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal 
e-mail: oyk@fct.unl.pt 

E. Shargorodsky () 
Department of Mathematics, King’s College London, London, United Kingdom 
e-mail: eugene.shargorodsky@kcl.ac.uk 
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4 O. Karlovych and E. Shargorodsky

From 1974 to 2009, Yuri Karlovich worked at institutions of the National 
Academy of Sciences of Ukraine: first, at the Department of Mathematical Modeling 
of Economical and Ecological Systems of the Odessa Branch of the Institute 
of Economics in 1974–1986, and then at the Department of Integral Equations 
and Boundary Value Problems of Hydroacoustics in the Hydroacoustic Branch of 
the Marine Hydrophysical Institute (Odessa) from 1986, taking subsequently the 
positions of Researcher in 1975, Senior Researcher in 1976 and Leading Researcher 
in 1992. In that period he was involved in the development of mathematical models 
and applications of mathematical methods to the study of concrete systems in 
economy, ecology, and hydroacoustics. This activity resulted in a cycle of papers 
in applied mathematics, e.g., [68, 104, 105, 117] and led to the book [116]. 

In 1998, Yuri was awarded, for the successful scientific work over many years, a 
Medal commemorating the 80th Anniversary of the National Academy of Sciences 
of Ukraine. He maintained scientific relations with colleagues in the Hydroacoustic 
Branch of the Marine Hydrophysical Institute (Odessa) until 2009. 

In February 1975, Yuri defended his PhD thesis Singular integral operators 
with a shift of the contour of integration in the domain and their applications 
(1974, 111 pp.) at the Odessa State University under the supervision of Professor 
Litvinchuk (Fig. 1). The PhD degree in Physics and Mathematics (theory of func-
tions and functional analysis) was approved by the Higher Attestation Commission 
in Moscow in February 1976. 

In the subsequent years, Yuri jointly with Viktor Kravchenko studied Banach 
algebras of singular integral operators with piecewise continuous coefficients and 

Fig. 1 Yuri Karlovich during his PhD defense, February 1975
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a non-Carleman shift (that is, a shift generating an infinite cyclic group) on 
Lebesgue spaces. At that time, a big group of mathematicians were involved in 
this topic: A.B. Antonevich and A.V. Lebedev, A.G. Myasnikov and L.I. Sazonov, 
V.N. Semenyuta and A.B. Khevelev, A.P. Soldatov. During 1976–1994, Yuri 
Karlovich and Viktor Kravchenko wrote a series of important papers on the 
Fredholm symbol calculi for such Banach algebras, establishing Fredholm criteria 
and index formulas for the operators in these algebras (see the six papers [40–45] 
in Soviet Math. Dokl., [46] in Math. USSR Sbornik, [69] in Differential Equations, 
and [70] in Math. USSR Izvestiya). The first local principle for studying nonlocal 
Banach algebras with shifts and discontinuous coefficients was developed in their 
work. It allowed them to construct a noncommutative Fredholm symbol calculus 
for these algebras. These investigations are described in the important survey [106]. 
They made a significant contribution to the book [115]. 

This line of investigation of Banach algebras of singular integral operators 
with discrete groups of shifts was continued by Yuri and enabled him to extend 
the existing local principles to nonlocal Banach algebras as well as to construct 
Fredholm symbol calculi for Banach algebras of singular integral operators with 
discrete groups of shifts and various classes of discontinuous coefficients on 
Lebesgue spaces. Fredholm criteria were also established. 

Later, in 1983, Yuri Karlovich and Ilya Spitkovsky began studying almost peri-
odic (AP ) factorization of matrix-valued functions and its applications to singular 
integral operators with matrix semi-almost periodic coefficients on Lebesgue spaces 
and Wiener-Hopf operators with semi-almost periodic matrix symbols on Lebesgue 
spaces and spaces of Bessel potentials. Convolution type operators on a union 
of intervals were also studied. These investigations were inspired by results of 
R.V. Duduchava and A.I. Saginashvili on the scalar analogues of such operators. 
Yuri and Ilya studied two-sided and one-sided invertibility of the mentioned 
operators with almost periodic matrix data as well as Fredholmness, index formulas 
and n(d).-normality. In contrast to the scalar AP functions of the Wiener class, 
APW , for the matrix APW functions, APW factorizations might not always exist, 
and studying the existence of AP (APW ) factorization is a difficult problem related 
to arbitrary real-valued partial AP indices. On this topic, Yuri and Ilya wrote the
papers [94, 96] in Soviet Math. Dokl. and [97] in Math. USSR Izvestiya, and also 
the manuscript [95]. 

With boundless enthusiasm Yuri continued developing a local-trajectory machin-
ery applicable to nonlocal C∗

.-algebras associated with C∗
.-dynamical systems. It 

may be regarded as a nonlocal analogue of the Allan-Douglas local principle and 
it turned out to be a right tool for establishing isomorphism theorems for C∗

.-
algebras (see [6, 48] and [55]). The local-trajectory method allows one to study 
the invertibility of elements of C∗

.-algebras in terms of invertibility of their local 
representatives. This method is based on a close relation between C∗

.-algebras 
associated with C∗

.-dynamical systems and the crossed products of C∗
.-algebras 

and groups of their automorphisms. As a result, faithful representations of several 
nonlocal C∗

.-algebras were obtained (see, e.g., [49]). In concrete applications, the 
local-trajectory method and isomorphism theorems give a powerful and convenient
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machinery for studying C∗
.-algebras of nonlocal type operators with discontinuous 

data. 
An isomorphism theorem and a local-trajectory method applicable to C∗

.-
algebras A. extended by subexponential or admissible groups G of unitary elements
Ug . (g ∈ G). generating the automorphisms a ;→ UgaU∗

g . of A. were elaborated 
by A.B. Antonevich, V.V. Brenner, and A.V. Lebedev (see the book [1]). The 
isomorphism theorem in the case of subexponential discrete groups G was proved 
making use of an estimate for the growth of the number of words of length n. 
Yuri extended those results to arbitrary C∗

.-algebras A. with non-trivial central 
subalgebras Z. and arbitrary amenable discrete groups G. 

Taking advantage of the isomorphism of the C∗
.-algebra of singular integral 

operators with n × n. almost periodic matrix coefficients acting on the Lebesgue 
space L2

n(R). and a C∗
.-algebra of operators acting on the Besicovitch space B2

n ., 
Yuri proved the crucial result on the equivalence of the invertibility of the Wiener-
Hopf operators W(a). with matrix symbols a ∈ APW . and the existence of a 
canonical right APW factorization for a. We should emphasize that isomorphism 
theorems form a bridge between algebras of singular integral operators with shifts 
and convolution operators with semi-almost periodic symbols because convolution 
operators with symbols eiλx

. are translation operators. 
Yuri also generalized the local method of studying the Fredholmness of singular 

integral operators with infinite cyclic groups of shifts, which was developed jointly 
with V.G. Kravchenko in [45, 70]. Applying the separation of arbitrary finite sets 
of different orbits, Yuri was able to study the Fredholmness of operators in Banach 
algebras of singular integral operators with discrete subexponential groups of shifts 
on the Lebesgue spaces Lp

. with the help of an essential modification of an earlier 
local principle [45] for nonlocal Banach algebras (see [50] and its further treatment 
and application [92, 93] developed jointly with B. Silbermann). 

Yuri also studied the invertibility of functional operators and the Fredholmness of 
singular integral operators with a non-Carleman shift on generalized Hölder spaces 
[47, 79, 80, 103] and reflexive Orlicz spaces [2] (also see [51, 66, 107]).  It  was  
established that weighted shift operators on such spaces have massiv e spectra.

In total, Yuri with coauthors published 16 papers in Soviet Math. Dokl. and 3 
papers in Doklady Mathematics. 

The results described above were included in Yuri’s Doctoral (Habilitation) thesis 
Algebras of convolution type operators with discrete groups of shifts and oscillating 
coefficients, Odessa, 1990, 380 pp. (Russian), which was defended at the Andrea 
Razmadze Mathematical Institute (Tbilisi, Georgia) in October 1991. The Doctor 
of Science degree in Physics and Mathematics (theory of functions and functional 
analysis) was awarded by the Higher Attestation Commission in Moscow in January 
1992 (a month after the dissolution of the Soviet Union). 

Along with his work at the Hydroacoustic Branch of the Marine Hydrophysical 
Institute, Yuri also delivered lectures in mathematics at the Odessa State University 
from 1990 to 1993 as an Associate Professor (1990–1992) and a Full Professor 
(1992–1993). 

In December 1993, Yuri was invited by Albrecht Böttcher to Chemnitz Technical 
University (Chemnitz, Germany) as a Visiting Professor. Two and half years
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in Chemnitz were a very fruitful time for Yuri due to numerous mathematical 
discussions with Albrecht Böttcher, Bernd Silbermann and others members of their 
seminar. During this time, Yuri and Albrecht constructed the Fredholm theory for 
Banach algebras of singular integral operators with piecewise continuous (PC) 
coefficients on weighted Lebesgue spaces over general Carleson (Ahlfors-David) 
curves with general Muckenhoupt weights (see monograph [20] and also Albrecht’s 
article included in this volume). As is known, the Cauchy singular integral operator 
is bounded on the weighted Lebesgue space Lp(r,w).with p ∈ (1,∞). if and only 
if r . is a Carleson curve and w is a Muckenhoupt weight.

Until 1990, the Fredholm theory for singular integral operators (SIO’s) with PC  
coefficients on the spaces Lp(r,w). was known for piecewise smooth curves r . 

and power (Khvedelidze) weights w mainly due to results obtained by H. Widom, 
I.B. Simonenko, I. Gohberg and N. Krupnik. The local spectrum of such operators 
at every discontinuity point t of the coefficients is a circular arc the shape of which 
depends on p and the exponent of the power weight at the point t . In 1990, Ilya 
Spitkovsky proved that in the case of a piecewise smooth curve r ., the local spectrum 
of SIO’s at every discontinuity point of the coefficients on the space Lp(r,w).with 
a general Muckenhoupt weight is a horn with a boundary consisting of two circular 
arcs. Subsequently, Albrecht and Yuri completely described the shapes of these local 
spectra for general Carleson curves r . and general Muckenhoupt weights w.  The  
form of the local spectrum depends on the “interference” between the geometry of 
the curv e r . and the properties of the weight w. The local spectra can be spiralic 
horns, logarithmic leaves with a median separating point and so called general 
leaves. These basic results of the modern Fredholm theory for Banach algebras of 
singular integral operators were published in the papers [17–19, 21, 22] and in the 
monograph [20], which was awarded the Ferran Sunyer i Balaguer 1997 prize of the 
Institut d’Estudis Catalans (Barcelona, Spain). 

In connection with the study of the structure of Banach algebras of SIO’s, 
the search for an appropriate N idempotents theorem was a hot topic in the 
1990s. It is therefore no surprise that such a theorem was independently and 
almost simultaneously established by three groups: A. Böttcher, Yu. Karlovich, and 
I. Spitkovsky forming one of them, I. Gohberg and N. Krupnik being the second, 
and S. Roch and B. Silbermann constituting the third. The outcome of the effort 
of these seven enthusiasts was summarized in paper [25], which was an important 
cornerstone in the entire development and which is reprinted in this volume. 

The collaboration of Yu. Karlovich, A. Böttcher and V.S. Rabinovich started in 
Chemnitz and originated from the idea to use Mellin pseudodifferential operators 
in studying SIO’s on weighted Lebesgue spaces with Muckenhoupt weights over 
Carleson curves. This approach allowed them to clarify the nature of local spectra 
for SIO’s and to discover new applications of the limit operators method (see the 
papers [26–28, 89]). 

The stay in Chemnitz allowed Yuri to renew his previous investigations with 
Ilya Spitkovsky of matrix AP factorability and its applications to convolution type 
operators [98–101]. Albrecht, Yuri and Ilya founded a research group under the 
name Toeplitz operators and algebras of convolution type operators, which was 
supported by a NATO Collaborative Research Grant from 1995 to 1999. Their joint
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results on convolution type operators with semi-almost periodic matrix coefficients 
or symbols, related to the interesting and difficult problem of the matrix AP 
factorization, were published in the papers [24, 29, 31] and the monograph [30]. 

From December 1996 to May 1999, Yuri continued his research at the Instituto 
Superior Técnico (Lisbon, Portugal) as a Visiting Professor and a member of 
the group Operator Factorization and Applications to Physics and Mathematics, 
supported by JNICT (Portugal), 1996–1998. The collaboration of Yuri with A.F. dos 
Santos, M.A. Bastos, and I.M. Spitkovsky on problems of matrix factorization, its 
relations with the corona problem, and applications to the operator theory resulted 
in the cycle of papers [13–16, 92]  (see  al  so [3]). 

In May 1999, Yuri moved to Mexico at the invitation by Nikolai Vasilevski 
for a research stay at the Department of Mathematics, CINVESTAV del I. P. N., 
Mexico City, supported by CONACYT (México) grant, Cátedra Patrimonial de 
Excelencia Nivel II, 1999–2001. During that time, Yuri studied shift-invariant 
algebras of SIO’s with oscillating coefficients and singular integral operators 
with fixed singularities [89, 90], the invertibility of functional operators and the 
compactness of commutators [66, 67, 108] (Fig. 2). 

From January 2002, Yuri is Full Professor at the Autonomous University of 
the State Morelos in Cuernavaca, Mexico. He has a wide range of interests in 
real, complex and functional analysis, as well as in operator theory. His areas 
of interest include studying the invertibility of functional operators with shifts 
and the Fredholmness of singular integral operators with discrete groups of shifts 
and various classes of discontinuous coefficients (piecewise slowly oscillating and 
piecewise quasicontinuous), including Banach algebras of these operators. Such 
operators and their C∗

.-algebras were studied, e.g., in [7–9, 23, 55] in the case of 
piecewise slowly oscillating coefficients and in [10–12] in the case of piecewise 
quasicontinuous coefficients. The Fredholm theory for Banach algebras of SIO’s 
with shifts and piecewise slowly oscillating coefficients was constructed in the cycle 
of papers including, e.g., [56, 109, 110, 112–114]. 

Investigations of C∗
.-algebras of Bergman and poly-Bergman type operators with 

piecewise continuous coefficients (see [85–88]) and C∗
.-algebras of Bergman type 

operators with piecewise continuous and piecewise slowly oscillating coefficients 
in domains with piecewise-smooth boundaries having angles (see [36–39, 59]) are 
another important area of Yuri’s interest. Studying one-dimensional Fourier and 
Mellin pseudodifferential operators with non-regular symbols admitting disconti-
nuities in spatial and dual variables, algebras of such pseudodifferential operators 
with limited smoothness of their symbols, and applications of these operators is 
another interesting field of Yuri’s investigations (see [52–54, 58, 61–63]). 

The Fredholm theory of Wiener-Hopf integral operators with semi-almost 
periodic and slowly oscillating matrix symbols on weighted Lebesgue spaces on 
R+ . with Muckenhoupt weights (see [71–73, 75]) and studying the Fredholmness 
of operators in the Banach algebras generated by the operators of multiplication 
by piecewise slowly oscillating functions and convolution operators with piecewise 
slowly oscillating symbols on weighted Lebesgue spaces with a subclass of
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Fig. 2 Yuri Karlovich during the excursion to Vallum Hardiani at IWOTA 2004 in Newcastle 

Muckenhoupt weights (see [74, 76, 77] and also [35, 78]) form other important 
investigation topics for Yuri. 

Yuri also continued the study of the problem of AP factorability of matrix 
functions and its applications to Toeplitz and Wiener-Hopf operators (see the papers 
[4, 32–34, 102, 111]), the Haseman boundary value problem with discontinuous 
data [57, 60, 65, 91], C∗

.-algebras of two-dimensional singular integral operators 
with shifts [82, 84]  (see  al  so [83]), singular integral operators on curves with cusps 
[81], and index formulas [5, 64].
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It is now for decades that Yuri has been continuing his collaboration with 
colleagues at the Mathematics Department of the Instituto Superior Técnico of the 
University of Lisbon. He also collaborates with colleagues at the NOVA School of 
Science and Technology of the NOVA University Lisbon. 

Eight PhD theses were defended under the direction of Yuri Karlovich: 

1. Vidady Aslanov: Functional and Singular Integral Operators with a Shift on 
Orlicz Spaces, Azerbaijan Oil Academy, Baku, Azerbaijan, 1992 (with G.S. 
Litvinchuk). 

2. António José Vieira Bravo: Factorization of semi-almost periodic matrix func-
tions and convolution type operators with oscillating presymbols, Instituto 
Superior Técnico, Lisboa, Portugal, 2003 (with M.A. Bastos). 

3. Luís Filipe Serrazes Ventura de Barros Pessoa: Two-dimensional singular inte-
gral operators with Bergman kernel and shifts, Instituto Superior Técnico, 
Lisboa, Portugal, 2006 (with M.A. Bastos). 

4. Cláudio António Rainha Aires Fernandes: Algebras of singular integral opera-
tors with discontinuous coefficients and shifts, Instituto Superior Técnico, Lisboa, 
Portugal, 2006 (with M.A. Bastos). 

5. Juan Loreto Hernández: Convolution type operators with oscillating symbols, 
Institute of Mathematics, National Autonomous University of Mexico, Cuer-
navaca, Morelos, México, 2008. 

6. Iván Loreto Hernández: Algebras of nonlocal integral operators with discontinu-
ous data, Institute of Mathematics, National Autonomous University of Mexico, 
Cuernavaca, Morelos, México, 2013. 

7. Enrique Espinoza Loyola: Algebras of Bergman type operators with discontinu-
ous data in domains with angles, Institute of Mathematics, National Autonomous 
University of Mexico, Cuernavaca, Morelos, México, 2019. 

8. Jennyffer Rosales Méndez: The Haseman boundary value problem with piece-
wise quasicontinuous coefficients, Autonomous University of the State of More-
los, Cuernavaca, Morelos, México, 2024. 

During the six years from 2009 to 2015, Yuri was the head of an international 
project in Mexico that included 6 scientific groups from Poland (Institute of 
Mathematics, University of Szczecin, Szczecin), Russia (Institute for Information 
Transmission Problems (IITP) of the Russian Academy of Sciences, Moscow), 
and Mexico: Autonomous University of the State Morelos (Cuernavaca), National 
Polytechnical Institute (Mexico City), CINVESTAV del I.P.N. (Mexico City), 
Michoacan University of San Nicolas de Hidalgo (Morelia). This project allowed 
him and his colleagues to organize three International Workshops in Ixtapa (Mex-
ico). 

In addition, Yuri was an organizer of four International Workshops on “Analysis, 
Operator Theory and Applications” in Mexico (Cancún, April 28–May 2, 2008; 
Ixtapa, March 1–5, 2010; Ixtapa, January 23–27, 2012; Ixtapa, February 24–28, 
2014). 

Yuri Karlovich is on the editorial board of the journal “Advances in Operator 
Theory” and a reviewer for many mathematical journals. He is also a reviewer for
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Fig. 3 Evguenia and Yuri Karlovich in Cuernavaca, Mexico 

the zbMATH Open. Yuri has participated with plenary and contributed talks in more 
than 150 international and national conferences. 

In 2019, the session Toeplitz Operators, Convolution type Operators and Oper-
ator Algebras of the XXX International Workshop on Operator Theory and 
Applications (IWOTA 2019), Lisbon, July 22–26, was dedicated to Yuri Karlovich 
on his 70th birthday. 

Yuri married Evguenia Karlovich, nee Zhila, in 1972. She is Yuri’s reliable 
companion who always helps him in all his plans and endeavours (Fig. 3). Yuri and 
Evguenia have two children, son Oleksiy and daughter Anna, and 6 grandchildren. 

We wish Yuri a long and happy life! We believe that his dedication to and passion 
for mathematics will continue for many years to come. 
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Yuri Karlovich and the Metamorphosis 
of Spectra of Singular Integral and 
Toeplitz Operators 

Albrecht Böttcher 

For Yura Karlovich on his 75th birthday 
with sincere friendship, admiration, 
and hearty thanks for being my partner 
in one of the most amazing mathematical 
adventures of my life 

Abstract This is an expository paper describing a few selected topics of Yuri 
Karlovich’s work. I focus the attention on our joint work devoted to the identification 
of the local spectra of Toeplitz and singular integral operators caused by the 
oscillations of Carleson curves and those of Muckenhoupt weights. 

1 Origin and Motivation 

Singular integral equations. The Cauchy singular integral operator is the operator 

.(Srf )(x) = p.v.
1

πi

(
r

f (y)

y − x
dy, x ∈ r. (1) 

Here r . is a locally rectifiable and oriented curve in the complex plane C.. Specific 
restrictions on r . will be made later. Admissible examples include the unit circle T., 
subarcs of T., the real line R., the real half-line R+ = (0,∞)., or the circumference 
of a pentagon together with its five diagonals. The integral is understood in the 
principal value sense: 

. p.v.
1

πi

(
r

f (y)

y − x
dy := 1

πi
lim
ε→0

(
r\r(x,ε)

f (y)

y − x
dy,
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where r(x, ε) := {y ∈ r : |y − x| < ε}.. The questions on the existence of the 
principal value and on spaces we can make Sr . act on will also be discussed later. 

The simplest singular integral equations are equations of the form cf + dSrf =
h., where c, d, h. are given functions on r . and f is a sought function o n r .. It turns 
out that it is often more convenient to work with the operators Pr,Qr . defined by 
Pr = (I+Sr)/2., Qr = (I−Sr)/2.. The equation then becomes aPrf +bQrf = h. 

with a = c + d ., b = c − d ., and assuming that a has no zeros on r ., we may write 
the equation as Prf + GQrf + g . with G = b/a . and g = h/a .. 

A pivotal topic of Yura1 Karlovich’s work is so-called singular integral equations 
with shift. An example of such an equation reads WαPrf + GQrf = g . where α ., 
the shift, is a bijective map of r . onto itself (subject to further restrictions) and Wα . 

stands for the composition operator (Wαf )(x) = f (α(x)).. 

The Haseman problem. For simplicity, suppose now that r = R+ . is the 
naturally oriented positive half-line. We omit the subscript r . in Sr, Pr,Qr .. If  f 
is sufficiently nice, say f ∈ L1(R+) ∩ Lp(R+). for some 1 < p < ∞., then the 
function o. defined by the Cauchy integral 

. o(z) = 1

2πi

(
R+

f (y)

y − z
dy, z ∈ C \ [0,∞),

is analytic in C \ [0,∞). and its limits 

. o±(x) := lim
ε→0+ o(x ± iε)

exist for almost all x ∈ R+ = (0,∞).. The Sokhotski-Plemelj formulas tell us that 
o+(x) = (Pf )(x). and o−(x) = −(Qf )(x). for almost all x ∈ R+ .. Consequently, 
the equation WαPf + GQf = g . may be written as 

.o+(α(x)) = G(x)o−(x) + g(x), x ∈ R+. (2) 

This is a so-called Haseman problem. One seeks a function o. that is analytic in 
C \ [0,∞). and whose boundary values o±

. on R+ . satisfy a “jump condition with 
shifted argument”. In the case of the absence of the shift, or equivalently, in the case 
where α(x) = x ., Eq. (2) is known as a Riemann-Hilbert problem. 

Conformal welding. In the papers [1–3], problem (2) is transformed into a 
problem without shift via so-called conformal welding. The idea is to find an 
oriented and locally rectifiable curve r . which is homeomorphic to [0,∞). and a 
conformal (i.e., analytic and bijective) map ω : Ċ \ [0,∞) → Ċ \ r . such that 

.ω+(α(x)) = ω−(x) for all x ∈ (0,∞)

1 Yura is a diminutive form of the name Yuri commonly used by friends and colleagues. 
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and such that ω(z). converges to the endpoint of r . as z → 0.. Here Ċ = C∪{∞}., and 
ω+(ξ). and ω−(ξ).denote the limits of ω(z). as z ∈ C\[0,∞). approaches ξ ∈ (0,∞). 

from above and from below, respectively. 

To have a concrete example, take α(x) := βx . with some constant β > 0. and 
β /= 1.. Put 

. δ = 1

2π
log β, r = {re−iδ log r : r > 0} ∪ {0}.

Notice that r . is a logarithmic spiral. Let log z. be the branch of the logarithm which 
is analytic in C \ [0,∞). and assumes the value − iπ . at z = −1., and define 

. ω(z) = z1/(1+iδ) = exp

)
1

1 + iδ
log z

(

for z ∈ C \ [0,∞).. It can be shown by elementary computations that ω . maps Ċ \
[0,∞). conformally onto Ċ \ r . and that ω+(βx) = ω−(x). for x ∈ (0,∞). and 
ω(z) → 0. as z → 0.. The details of the computation are also on page 375 of [9]. 

Removing the shift. Let α, r, ω . be as in the preceding example. We denote by 
τ : Ċ \ r → Ċ \ R+ . the inverse of ω . and define y . on Ċ \ r . by y(ζ) := o(τ(ζ )).. 
Then, for y = ω+(α(x)) = ω−(x). on r ., 

. y+(y) = lim o(τ(ζ )) as ζ → y from the left

= lim o(z) as z → α(x) from above

= o+(α(x)),

y−(y) = lim o(τ(ζ )) as ζ → y from the right

= lim o(z) as z → x from below

= o−(x).

After extending τ . to r . by defining τ(ω−(x)) = x . we get G(x) = G(τ(y)). and 
g(x) = g(τ(y)).. Consequently, the Haseman problem (2) can be transformed into 
the Riemann-Hilbert problem 

.y+(y) = G(τ(y))y−(y) + g(τ(y)), y ∈ r. (3) 

Instead of a singular integral equation with a shift on R+ ., we now have a singular 
integral equation without shift but on a logarithmic spiral r .. To show the natural 
emergence of integration contours like logarithmic spirals is the purpose of this 
introductory section and hence I want to make a temporary stop with mathematics 
at this point. I will say more on the singular integral operator related to (3) later.
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Fig. 1 Eight years later: with Ilya Spitkovsky and Yura Karlovich during the international confer-
ence “Factorization, singular operators, and related problems in honor of Georgii Litvinchuk” on 
Madeira Island in January 2002 

Yura in Chemnitz. In the period from December 1993 to September 1996, Yura 
was a visiting professor at the TU Chemnitz. He came to Chemnitz on my invitation. 
I wanted to learn from him about techniques for tackling non-local operators, 
and we planned to write a book on this topic. The first pages had already been 
written when we both attended the Oberwolfach workshop “Singuläre Integral- und 
Pseudodifferential-Operatoren” in January 1994. This workshop motivated Yura to 
reconsider problem (3), and some day he told me that the well-known circular arcs 
appearing in the spectra of singular integral operators over Lyapunov curves become 
logarithmic double spirals when letting the operators act on a logarithmic spiral. Just 
at that time I was captured by Ilya Spitkovsky’s discovery [24] of horns in the spectra 
of singular integral operators in the presence of general Muckenhoupt weights; see 
also [6]. These two happy circumstances made Yura and me put the book project 
aside and start the adventure I will tell about in the following. Figure 1 shows the 
three of us. 

2 Carleson Curves and Muckenhoupt Weights 

General setting. We now turn to bounded curves. A set r ⊂ C. is said to be a 
simple curve if it is either a Jordan curve, which means that it is homeomorphic to 
the unit circle T., or if it is an arc, that is, if it is homeomorphic to the line segment
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[0, 1].. A weight on a simple rectifiable curve r . is a function w : r → [0,∞]. 
measurable with respect to length measure such that the pre-image w−1({0,∞}). 
has measure zero. Given a simple rectifiable curve r . and a weight w on it, we 
denote by Lp(r,w). (1 ≤ p < ∞.) the usual Lebesgue space with the norm 

. llf ll :=
)(

r

|f (τ)|pw(τ)p |dτ |
(1/p

.

Note that the weight enters the norm in the pth power. We let L∞(r). stand for 
the space of essentially bounded measurable functions on r .. After giving r . an 
orientation, which is always the positive one in the case of a Jordan curve, the 
singular integral operator Sr . is defined by (1), but we now change x, y . to t, τ .. The  
operator Sr . is said to be well-defined on Lp(r,w). if Srf . exists almost everywhere 
on r . and is in Lp(r,w). for every f ∈ Lp(r,w).. 

The following theorem is one of the great achievements of mathematical analysis 
of the twentieth century. 

Let r . be a simple curve. The singular integral operator Sr . is well-defined and bounded on 
Lp(r,w). if and only if 1 < p < ∞., r . is a Carleson curve, and w is an Ap .Muckenhoupt 
weight. 

This theorem grew out of the work of Hardy, Littlewood, M. Riesz, Mikhlin, 
Babenko, Khvedelidze, Helson, Szegő, Ahlfors, Widom, Forelli, Danilyuk, Shele-
pov, Paatashvili, Khuskivadze, and others, the decisive steps of the proof were made 
by Calderón, David, Hunt, Muckenhoupt, Wheeden, and more recent developments 
(including new proofs and generalizations) are connected with the names of 
Coifman, McIntosh, Meyer, Jones, Journé, Semmes, Murai, Dynkin, Osilenker, 
Mattila, Melnikov, Verdera, to cite only some mathematicians. Precise references 
are in [9, 10]. A full proof (occupying about 80 pages) is also in Chapters 3 and 4 
of [9]. 

Carleson curves. A Carleson curve (often also called Ahlfors-David curve) is 
a simple rectifiable and oriented curve r . such that supt,ε |r(t, ε)|/ε < ∞., the  
supremum over t ∈ r . and ε > 0. and with |r(t, ε)|. denoting the length of the 
curve’s portion r(t, ε) := {τ ∈ r : |τ − t | < ε}.. This is of course satisfied for 
piecewise C1

. curves. Less trivial examples are arcs of the form 

.r = {0, 1} ∪ {τ ∈ C : τ = reiθ(r), 0 < r < 1} (4) 

where θ(r) = h(log | log r|) log r . with a real-valued function h ∈ C1(R). for which 
h and h'

. are bounded on R.; see [9, Example 1.7]. For h(x) = 0. we get the line 
segment [0, 1]., for h(x) = δ . ( /= 0.) we obtain logarithmic spirals, and the choice 
h(x) = δ + γ sin(ηx). delivers quite exotic Carleson arcs. Some pictures are in [11].
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Muckenhoupt weights. Given a simple rectifiable curve r . and p ∈ (1,∞)., we  
denote by Ap(r). the set of weights on r . satisfying 

. sup
I

)
1

|I |
(

I

w(τ)p|dτ |
(1/p )

1

|I |
(

I

w(τ)−q |dτ |
(1/q

< ∞,

where 1/p + 1/q = 1., I ranges over all subarcs of r ., and |I |. is the length of I . 
Such weights are called Muckenhoupt weights. Weights of the form 

.w(τ) =
nl l

j=1

|τ − tj |μj (5) 

with distinct points tj ∈ r . and real numbers μj . are referred to as power weights. A 
classical result by B. V. Khvedelidze says that such a weight is in Ap(r). if and only 
if − 1/p < μj < 1/q . for all j . More sophisticated weights on the arcs given by (4) 
result from putting 

. w
(
reiθ(r)

) := ev(r), 0 < r < 1,

where v(r) = g(log | log r|) log r . with a real-valued function g ∈ C2(R). such that 
g, g', g''

. are bounded on R.. Together with Yura we proved in [9, Theorem 2.36] that 
such a weight w is in Ap(r). if and only if 

. − 1

p
< lim inf

x→+∞
(
g(x) + g'(x)

) ≤ lim sup
x→+∞

(
g(x) + g'(x)

)
<

1

q
.

In the special case g(x) = μ + ε sin(ηx). we obtain that this holds exactly if 

. − 1

p
< μ − |ε|

/
η2 + 1 ≤ μ + |ε|

/
η2 + 1 <

1

q
. (6) 

For g(x) = μ., we get the power weight w
(
eiθ(r)

) = eμ log r = rμ
. and (6) becomes 

the known condition − 1/p < μ < 1/q .. Taking g(x) = ε sin x ., we encounter an 
oscillating weight and (6) shows that this weight is an Ap(r). Muckenhoupt weight 
if and only if |ε|√2 < min(1/p, 1/q).. 

3 Toeplitz Operators 

Hardy spaces. Throughout this and the next three sections we suppose that r . is 
a positively oriented Carleson Jordan curve, 1 < p < ∞., and w is a weight in
Ap(r).. It is well known that then S2

r = I . and hence Pr = (I + Sr)/2. is a bounded 
projection on Lp(r,w).. The Hardy (or Smirnov) space Hp(r,w). is defined as the 
range of Pr ., i.e., Hp(r,w) = Pr(Lp(r,w))..
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Toeplitz operators. Let a be a function in L∞(r).. Then multiplication by a is 
bounded on Lp(r,w).. The Toeplitz operator T (a). is defined as the compression of 
multiplication by a to Hp(r,w).: 

. T (a) : Hp(r,w) → Hp(r,w), f l→ Pr(af ).

The function a is in this context referred to as the symbol of T (a).. If Lp(r,w). is the 
Hilbert space L2(T). on the unit circle (with no weight), then the matrix representa-
tion of T (a). in the orthonormal basis {einθ /

√
2π}∞n=0 . of the corresponding Hardy 

space H 2(T). is the classical Toeplitz matrix (aj−k)
∞
j,k=0 . composed of the Fourier 

coefficients an . (n ∈ Z.) of  a. 

Spectra. The spectrum σ(A). of a bounded linear operator A on Lp(r,w). or 
Hp(r,w). is the set of all λ ∈ C. for which A − λI . is not (boundedly) invertible, 
and the essential spectrum σess(A). is the set of all λ ∈ C. for which T is not 
Fredholm, that is, not invertible modulo compact operators. One can show that the 
essential spectrum of Toeplitz oprators is local in nature, which means that there are 
constructions that associate a set σt (T (a)). with each t ∈ r . such that 

. σess(T (a)) =
l  l
t∈r

σt (T (a)).

The sets σt (T (a)). are called local spectra and, given p,r,w ., they depend only on a 
in an arbitrarily small open neighborhood U ⊂ r . of t . If  a is continuous, a ∈ C(r)., 
then σt (T (a)) = {a(t)}., σess(T (a)) = a(r)., and σ(T (a)). is the union of a(r). and 
all points in C. that are encircled by a(r). with nonzero winding number. This is a 
classical result in the case where r . and w are nice. It was proved in [7] for general 
Carleson curves and general weights; see also [9, Theorem 6.24]. 

Piecewise continuous symbols. A function a ∈ L∞(r). is said to be piecewise 
continuous, a ∈ PC(r)., if the one-sided limits a(t ± 0). exist for each t ∈ r .. Here  
a(t−0).denotes the limit of a(τ). as τ . approaches t following the positive orientation 
of r ., while a(t +0). is the limit of a(τ). as τ → t . opposite to the positive orientation 
of r .. The purpose of what follows is to find σt (T (a)). is a ∈ PC(r). makes a jump 
at t , that is, if a(t − 0) /= a(t + 0).. The (essential) range of a on r . is always part 
of σess(T (a)).. To find out what else is contained in σess(T (a)). we may therefore 
assume that a is invertible in L∞(r).. 

4 Spiralic Carleson Curves 

Logarithmic whirls. Fix a point t ∈ r .. We then have τ − t = |τ − t |ei arg(τ−t)
. for 

τ ∈ r \ {t}., and the argument arg(τ − t). may be chosen so that it is a continuous 
function on r \ {t}.. Seifullaev [23] showed that for an arbitrary Carleson curve the 
estimate 

. arg(τ − t) = O(− log |τ − t |) (τ → t)
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holds. In our paper [7], written in the first half of 1994, we studied Carleson curves 
subject to the stronger condition 

. arg(τ − t) = −δt log |τ − t | + O(1) (τ → t) (7) 

with some δt ∈ R.. If  δt /= 0., we call t a logarithmic whirl point. The curv e r . is said 
to be a spiralic curve if for each t ∈ r . there is a δt ∈ R. such that (7) is satisfied. 

Theorem 1 Suppose for each t on the Carleson Jordan curve r . there is a δt ∈ R. 

such that (7) holds and suppose w is identically 1 on r .. Let a be  a  functi  on in
PC(r). such that a(t ± 0) /= 0. for all t ∈ r .. Then T (a). is Fredholm on Hp(r). if 
and only if 

.
1

p
− 1

2π

)
arg

a(t − 0)

a(t + 0)
− δt log

lllla(t − 0)

a(t + 0)

llll
(

/∈ Z (8) 

for all t ∈ r .. 

The idea behind the proof is that T (a). is Fredholm if and only if a admits a 
so-called Wiener-Hopf f actorization

. a(τ) = a−(τ )τ κa+(τ )

with some integer κ ., which is minus the index of the Fredholm operator T (a).. The  
factors a± . are subject to a series of requirements. Part of these requirements are 
harmless. The deciding one is that |a−1+ |. must be weight in Ap(r).. Choose γt ∈ C. 

such that 

.Re γt = − 1

2π
arg

a(t − 0)

a(t + 0)
, Im γt = 1

2π
log

lllla(t − 0)

a(t + 0)

llll . (9) 

We may suppose that the origin is in the interior of the domain bounded by r . and 
define gt . by gt (τ ) = τ−γt . as a branch of the function on r . which makes the jump 
at the point t . Note that 

. 
gt (t + 0)

gt (t − 0)
= 1

e−2πiγt
= e2πiγt = a(t + 0)

a(t − 0)
.

Having recourse to a localization theorem, one can show that T (a). is Fredholm if 
and only if T (gt ). is Fredholm for each t ∈ r .. A Wiener-Hopf factorization of gt . is 

. gt (τ ) = τ−γt = (1 − t/τ )γt+κt τ κt (τ − t)−γt−κt .

Using condition (7) it can be proved that there are positive constants C1, C2 . such 
that 

.C1|τ − t |Re γt+δt Im γt ≤ |(τ − t)γt | ≤ C2|τ − t |Re γt+δt Im γt (10)
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for τ ∈ r .. Consequently, |(τ − t)γt+κt |. is weight in Ap(r). if and only if the power 
weight |τ − t |Re γt+δt Im γt+κt . is in Ap(r)., and we know that this happens exactly if 

. − 1/p < Re γt + δt Im γt + κt < 1/q.

Thus, we arrive at the conclusion that T (a). is Fredholm if and only if 

. 1/p + Re γt + δt Im γt /∈ Z,

which, by (9), is just (8). 
What does (8) mean geometrically? For δ, ν ∈ R., consider the set 

. Sν,δ := {ξ ∈ C \ {0} : arg ξ − δ log |ξ | ∈ 2πν + 2πZ}.

We have ξ ∈ Sν,δ . if and only if 

. ξ = elog |ξ |+i(δ log |ξ |+2πν) = e2πiνreiδ log r

with some r > 0., which reveals that Sν,δ . is a logarithmic spiral for δ /= 0. and a ray 
starting at the origin for δ = 0.. Put 

. S(z1, z2, ν, δ) :=
l

z2ξ − z1

ξ − 1
: ξ ∈ Sν,δ

l
.

The Möbius transform ξ l→ (z2ξ − z1)/(ξ − 1). maps 0 to z1 . and the point at 
infinity to z2 .. Consequently, it maps the logarithmic spiral Sν,δ . (δ /= 0.) to a kind  
of logarithmic double spiral S(z1, z2, ν, δ). scrolling out of z1 . and coiling at z2 .. The  
set S(z1, z2, ν, 0)., being the image of a straight ray, is a circular arc between z1 . and 
z2 .. Here is the result established in [7]. 

Theorem 2 Let t ∈ r . and suppose (7) holds. Assume further that the weight w 
is identically 1 on r .. Then, for every a ∈ PC(r)., the local spectrum of T (a). on 
Hp(r). at the point t equals 

. σt (T (a)) = {a(t − 0), a(t + 0)} ∪ S(a(t − 0), a(t + 0), 1/p, δt ).

Indeed, Theorem 1 implies that σt (T (a)) \ {a(t ± 0)}. equals 

. 

l
λ ∈ C : arg

a(t − 0) − λ

a(t + 0) − λ
− δt log

lllla(t − 0) − λ

a(t + 0) − λ

llll ∈ 2π

p
+ 2πZ

l
.

Hence, λ ∈ σt (T (a)) \ {a(t ± 0)}. if and only if 

.ξ := a(t − 0) − λ

a(t + 0) − λ
∈ S1/p,δt ,



44 A. Böttcher

which is equivalent to saying that 

. λ = a(t + 0)ξ − a(t − 0)

ξ − 1
for some ξ ∈ S1/p,δt .

Spiralic curves with a weight. Let r . be an arbitrary Carleson Jordan curve and 
w ∈ Ap(r).. In the following section we will associate with each point t ∈ r . two 
numbers − 1/p < μt ≤ νt < 1/q . measuring in some sense the “powerlikeness” of 
the weight w at t . If  w is the pure power weight (5), then μt = νt = μj . for t = tj . 

and μt = νt = 0. if t /∈ {t1, . . . , tm}.. Let  

. S(z1, z2, ν1, ν2, δ) =
l  l

ν∈[ν1,ν2]
S(z1, z2, ν, δ).

We call this set a horn for δ = 0. and a spiralic horn for δ /= 0.. In [7] we proved that 
if r . is spiralic and w ∈ Ap(r)., then, for every a ∈ PC(r)., the local spectrum of 
T (a). on Hp(r,w). at the point t equals 

. σt (T (a)) = {a(t − 0), a(t + 0)} ∪ S(a(t − 0), a(t + 0), 1/p + μt , 1/p + νt , δt ).

The pictures that will follow. In the mid 1990s, we still gave our talks using 
hand-written transparencies. To convey a flavor of those times, I decided to take 
the pictures behind the mathematics presented here from just these transparencies. 
Figure 2 shows the essential spectrum of an operator T (a).. 

Fig. 2 The essential spectrum is the union of the range of a (green) and of spiralic horns filled in 
between the endpoints of the two jumps of a (red)
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5 The Metamorphoses 

Metamorphosis 1. The emergence of circular arcs in the business considered here 
was discovered by Gohberg and Krupnik [18] and Widom [25] in the 1960s. See 
also Krupnik’s recent article [19] about the story of how the circular arcs were born. 
Note that all these results concerned “nice” curves r . with power weights. 

The first metamorphosis came with Ilya Spitkovsky [24] at the turn to the 1990s. 
He started with the observation that for “nice” curves r . with arbitrary weight w 
belonging to Ap(r). things may be reduced to identifying the sets 

. It (r, p,w) := {γ ∈ R : |τ − t |γ w(τ) ∈ Ap(r)}.

Ilya showed that It (r, p,w). is always an open interval (−1/p − μt , 1/q − νt ). 

with certain numbers − 1/p < μt ≤ νt < 1/q ., the so-called indices of 
powerlikeness. (In several publications, including [6], the interval It (r, p,w). is 
written as (−ν−

t , 1 − ν+
t ). with ν−

t = 1/p + νt . and ν+
t = 1/p + μt ..) In the 

Gohberg/Krupnik/Widom situation, It (r, p,w). is an open interval of length 1, and 
the complement of It (γ, p,w) + Z. in R., which is comprised of the “forbidden” 
values, is {λt } + Z. with some λt ., i.e., the union of singletons separated at the 
distance 1. This caused the circular arc S(z1, z2, λt , 0).. In the Spitkovsky case, 
the complement of It (γ, p,w) + Z. in R. ( =. the “forbidden” values) is [1/q −
νt , 1/q −μt ]+Z., and if μt < νt ., this yields an uncountable bundle of circular arcs, 
which constitute the horn S(z1, z2, 1/p + μt , 1/p + νt , 0).. More details on Ilya’s 
contribution to the topic can be found in [6]. 

Metamorphosis 2. The second metamorphosis of local spectra of Toeplitz opera-
tors was described in the previous section. It is the emergence of logarithmic double 
spirals and of spiralic horns in the case of spiralic curves. To understand this and the 
further metamorphoses, it is helpful to look at the plan behind them. 

The blueprint. The role played by intervals It (r, p,w). in Ilya’s approach is 
performed by the sets 

.Nt(r, p,w) := {γ ∈ C : |(τ − t)γ |w(τ) ∈ Ap(r)} (11) 

in the general situation. Note that, as seen for example from (10), we cannot replace 
|(τ − t)γ |. by |τ − t |Re γ

.. We proved that Nt(r, p,w). is always an open set in the 
plane containing the origin and that it can be described as 

. {γ = Re γ + iIm γ ∈ C : −1/p < Re γ + αt (Im γ ) ≤ Re γ + βt (Im γ ) < 1/q}
(12) 

with a concave function αt . and a convex function βt .. These two functions define a 
new set 

.Y (p, αt , βt ) := {z = x + iy ∈ C : 1/p + αt (x) ≤ y ≤ 1/p + βt (x)}.
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We call αt , βt . the indicator functions and Y (p, αt , βt ). the indicator set of r,w, p . 

at t . The following theorem was established in [10]. 

Theorem 3 Let r . be an arbitrary Carleson Jordan curve, 1 < p < ∞., and w ∈
Ap(r).. Then, for a ∈ PC(r)., the local spectrum of T (a). at t ∈ r . is 

. σt (T (a)) =
l

a(t + 0)e2πz − a(t − 0)

e2πz − 1
: z ∈ Y (p, αt , βt )

l
∪ {a(t − 0), a(t + 0)}.

(13) 

The set (13) is a certain connected set joining a(t − 0). to a(t + 0).. We call it a  
leaf. Thus, the procedure to get the leaf between two different points z1, z2 ∈ C. is 
as follows: take ζ ∈ Yt (p, αt , βt )., map it to ξ = e2πiζ

., and map ξ . to 

. λ = Mz1,z2(ξ) := z2ξ − z1

ξ − 1
.

The set of all λ. obtained in this way (plus the two points z1, z2 . themselves) forms a 
set we denote by L(z1, z2, p, αt , βt ).. 

Metamorphoses 1 and 2 again. Let r . be a spiralic Carleson Jordan curve with a 
weight w ∈ Ap(r).. Fix  t ∈ r . and suppose (7) holds. For δt = 0., we are in the 
context of Metamorphosis 1, for δt /= 0., we have Metamorphosis 2. From (10) we  
infer that if w is identically 1, then

. Nt(p, r,w) = {γ ∈ C : −1/p < Re γ + δt Im γ < 1/q},

which implies that αt (x) = βt (x) = δtx . for x ∈ R.. In the case of an arbitrary 
weight w, the set Nt(p, r,w). can be shown to be 

. {γ ∈ C : −1/p < Re γ + μt + δt Im γ ≤ Re γ + νt + δt Im γ < 1/q}

with two numbers − 1/p < μt ≤ νt < 1/q ., called the indices of powerlikeness 
at t . In the case δt = 0., these numbers coincide with the indices of powerlikeness 
introduced by Ilya. Consequently, αt (x) = μt + δtx ., βt (x) = νt + δtx ., and 

. Yt (p, αt , βt ) = {x + iy ∈ C : 1/p + μt + δtx ≤ y ≤ 1/p + νt + δtx}.

This is a strip (degenerating to a straight line for μt = νt .) with the slope δt .. The  
exponential ζ l→ e2πiζ

. maps this strip to the bundle of logarithmic spirals Sν,δt . 

(1/p + μt ≤ ν ≤ 1/p + νt .) starting at the origin, and the Möbius transform finally 
maps this bundle into a spiralic horn (becoming a logarithmic double spiral in the 
degenerate case). For δt = 0., further degenerations lead to horns and circular arcs. 

Figures 3 and 4 illustrate Metamorphosis 1 and 2. There we took a(t ± 0) = ±1., 
by virtue of which the Möbius transform is (z + 1)/(z − 1)..
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Fig. 3 Metamorphosis 1: the emergence of circular and horns on “nice” curves with arbitrary 
weights 

Metamorphosis 3. In the first half of 1994, Yura and I had Metamorphosis 2, and 
it seemed to us that the further exploration of the matter, that is, the treatment of 
more and more general curves and weights would feed us the forthcoming years. 
At the annual meeting of the Deutsche Mathematiker-Vereinigung in Duisburg in 
1994, I was invited to give a plenary talk, and I chose the title “Toeplitz operators 
with piecewise continuous symbols—a neverending story?” (in German). At that 
time Yura and I did not even dream of being able to settle the matter ultimately 
within the upcoming months. However, we made it. 

Already in the early 1995 we were able to dispose of the case of general Carleson 
curves provided we don’t have a weight on them [8]. Here is the result.
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Fig. 4 Metamorphosis 2: the emergence of logarithmic double spirals and spiralic horns on 
spiralic curves with arbitrary weights 

Theorem 4 Let r .be an arbitrary Carleson Jordan curve,1 < p < ∞., and suppose 
w is identically 1. Then for each t ∈ r ., there are two numbers δ−

t , δ+
t ∈ R.,  the  so-

called spirality indices of r . at t , such that δ−
t ≤ δ+

t . and the indicator functions 
in (12) are given by 

. αt (x) = min(δ−
t x, δ+

t x), βt (x) = max(δ−
t x, δ+

t x) for x ∈ R.

The numbers δ−
t , δ+

t . can actually be shown to be independent of p; see the end 
of Sect. 5. If a ∈ PC(r)., then the local spectrum of T (a). on Hp(r). is 

. σt (T (a)) = {a(t − 0), a(t + 0)} ∪
l

a(t + 0)e2πiζ − a(t − 0)

e2πiζ − 1
: ζ ∈ Yt

l

with Yt := {x + iy ∈ C : 1/p + αt (x) ≤ y ≤ 1/p + βt (x)}.. This indicator 
set is the union of all straight lines {x + iy : y = 1/p + δx}. with δ ∈ [δ−

t , δ+
t ].. 

Each of these straight lines is mapped via ζ l→ Mz1,z2(e
2πiζ ). into a logarithmic 

spiral between z1 . and z2 .. All these logarithmic spirals pass through the point 
Mz1,z2(e

2πi/p).. This is a separating point of the leaf: removing it makes the leaf 
split into two disjoint pieces. Thus, while oscillations of weights blow up the spirals
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Fig. 5 Metamorphosis 3: the emergence of logarithmic leaves with a separating point in the case 
of arbitrary Carleson curves without weight 

in the middle, oscillations of the curve blow up the spirals at their endpoints. See 
Fig. 5; there the blue intermediate set was omitted. 

Metamorphosis 4. In the summer of 1995, we finally had an ultimate solution of 
the problem: we were able to characterize the local spectra for arbitrary Carleson 
Jordan curves r . with arbitrary weights w ∈ Ap(r).. The solution is presented 
in detail in our paper [10] of 1999, the original version of which was submitted 
in September 1995. Due to Theorem 3, we are left with describing the indicator 
functions αt , βt .. Figure 6 illustrates the following theorem. 

Theorem 5 Let r . be a Carleson Jordan curve, 1 < p < ∞., and w ∈ Ap(r).. Then 
the indicator functions αt . and βt . at a point t ∈ r . have the following properties: 

(i) − ∞ <  αt (x) ≤ βt (x) < ∞. for all x ∈ R.; 
(ii) − 1/p < αt (0) ≤ βt (0) < 1/q .; 

(iii) αt . is a concave function and βt . is a convex function; 
(iv) there exist six numbers δ±

t , μ±
t , ν±

t ∈ R. such that 

. δ−
t ≤ δ+

t , −1/p < μ−
t ≤ ν−

t < 1/q, −1/p < μ+
t ≤ ν+

t < 1/q,

and 

. βt (x) = ν+
t + δ+

t x + o(1), αt (x) = μ−
t + δ−

t x + o(1) (x → +∞),

βt (x) = ν−
t + δ−

t x + o(1), αt (x) = μ+
t + δ+

t x + o(1) (x → −∞).

Given 1 < p < ∞. and any two functions αt . and βt .with these four properties, 
there exists a Carleson curve r ., a weight w ∈ Ap(r)., and a point t ∈ r . such 
that αt . and βt . are the indicator functions at the point t . 

Originally we suspected that the situation should always be as in the upper half 
of Fig. 6. There are indeed cases in which the indicator set is of this shape: it is 
completely characterized by two slopes (the spirality indices δ−

t . and δ+
t .) and the
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Fig. 6 Metamorphosis 4. The upper picture shows the four linear asymptotes in Theorem 5(iv), in 
the lower picture we see αt , βt .. Thus, the union of the two green sets is actually not the indicator 
set as it was the case in the previous pictures. The indicator set results from shifting up the union 
of the two green sets by 1/p . 

ordinates of the four points at which the straight boundary lines meet the imaginary 
axis (the numbers 1/p + μ±

t , 1/p + ν±
t . with the indices of powerlikeness μ±

t , ν±
t .). 

The boundary of the resulting leaf is comprised of four pieces of logarithmic double 
spirals, by virtue of which we call such a leaf a logarithmic leaf. 

Only after some time we understood that in general the indicator functions need 
not be as in the upper half of Fig. 6. Namely, some kind of interference between the 
oscillation of the curve and the oscillation of the weight may add two more pieces 
like those in the lower half of Fig. 6 to the indicator set. The upper boundary of the
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upper piece is given by a convex function y = βt (x). which has two asymptotes 
that coincide with the two straight upper boundary lines y = ν±

t + δ±
t x ., while the 

lower boundary of the lower piece is described by a concave function y = αt (x). 

the two asymptotes of which exist and are the two straight lower boundary lines 
y = μ±

t + δ±
t x .. These two additional pieces add something to the logarithmic leaf 

shown in the lower half of Fig. 6. We call it a halo.2 

The proof of Theorem 5 is very technical and I must refer the interested reader 
to [9, 10]. I confine myself to one key ingredient, which also gives a formula for the 
indicator functions. Let r . be a Carleson Jordan curve, 1 < p < ∞., and w ∈ Ap(r).. 
Fix t ∈ r .. We constructed several submultiplicative functions e . associated with 
r, p,w, t ., that is, functions e : (0,∞) → (0,∞). satisfying e(xy) ≤ e(x)e(y). for 
all x, y ∈ (0,∞).. For such functions one can define their so-called Boyd indices 

. α := lim
x→0

log e(x)

log x
, β := lim

x→∞
log e(x)

log x
,

and we were able to give alternative characterizations of Muckenhoupt weights in 
terms of these indices. One of these constructions is as follows. 

Given a weight ψ : r → [0,∞]. such that log ψ ∈ L1(r)., we consider the 
geometric means 

. (Gψ)t (ξR) := exp

)
1

r(t, ξR)

(
r(t,ξR)

log ψ(τ) |dτ |
(

,

where, as above, r(t, ε). denotes the portion {τ ∈ r : |τ − t | < ε}., define a new 
function V 0

t ψ : (0,∞) → [0,∞]. by 

. (V 0
t ψ)(ξ) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

lim sup
R→0

(Gψ)t (ξR)

(Gψ)t (R)
if ξ ∈ (0, 1],

lim sup
R→0

(Gψ)t (R)

(Gψ)t (ξ−1R)
if ξ ∈ [1,∞),

and put 

. α(V 0
t ψ) := lim sup

ξ→0

log(V 0
t ψ)(ξ)

log ξ
, β(V 0

t ψ) := lim sup
ξ→∞

log(V 0
t ψ)(ξ)

log ξ
.

For τ ∈ r . we have τ − t = |τ − t |ei arg(τ−t)
., and arg(τ − t). may be chosen to be 

continuous of r \ {t}.. Put ηt (τ ) = e− arg(τ−t) for τ ∈ r \ {t}.. It can be shown

2 Calling it corona would be more appropriate, but the notion of corona is already used in other 
contexts. 
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that x log ηt + log w ∈ L1(r). for every x ∈ R.. Hence, we may apply the previous 
construction to the function ψ := ηx

t w .. 

Theorem 6 The indicator functions are given by 

. αt (x) = α(V 0
t (ηx

t w)), βt (x) = β(V 0
t (ηx

t w)).

We also remark that the spirality indices can be expressed as δ−
t = α(V 0

t ηt ). and 
δ+
t = β(V 0

t ηt )., which reveals that they are indeed intrinsic characteristics of the 
curve r . and independent of p and w .

6 The Spectrum of the Cauchy Singular Integral Operator 

Cauchy versus Toeplitz. We now turn to the Cauchy singular integral operator. 
Throughout this section we let r . stand for a Carleson Jordan curve, and we assume 
that 1 < p < ∞. and w ∈ Ap(r).. Since S2

r = I ., both the spectrum and the essential 
spectrum of Sr . are equal to the doubleton {−1, 1}.. Things become interesting if the 
integration curve is no longer Jordan but an arc, that is, a curve homeomorphic to 
line segment [0, 1].. 

Let E ⊂ r . be an arc. We give E the orientation from r .. Then E has a starting 
point a ∈ r . and a terminating point b ∈ r .. The Cauchy singular integral operator 
SE . is defined as usual: 

. (SEf )(t) := p.v.
1

πi

(
E

f (τ)

τ − t
dτ, t ∈ E.

This is a well-defined and bounded operator on Lp(E,W). where W denotes the 
restriction of w to E, i.e., W := w|E .. It can again be shown that the essential 
spectrum of SE . is the union of its local spectra. Put E◦ := E \ {a, b}.. Thus, 

. σess(SE) =
l  l
t∈E

σt (SE) = σa(SE) ∪ σb(SE) ∪
l  l
t∈E◦

σt (SE).

Let L(z1, z2, p, αt , βt ). be the leaf introduced in the previous section after Theo-
rem 3. 

Theorem 7 We have σt (SE) = {−1, 1}. for t ∈ E◦
. and 

. σa(SE) = L(−1, 1, p, αa, βa), σb(SE) = L(1,−1, p, αb, βb).

For t ∈ E◦
., SE . looks locally like Sr . and hence it is not a miracle that there the 

local spectrum is again {−1, 1}.. At the endpoints of E, we may employ the fact 
that in a unital Banach algebra generated by two idempotents p . and q . the spectra
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of pqp . and qpq . coincide. This follows from appropriate two projections theorems. 
Indeed, with the well-known representations 

.p l→
)

1 0
0 0

(
, q l→

)
x

√
x(1 − x)√

x(1 − x) 1 − x

(
(14) 

we get 

. pqp l→
)

1 0
0 0

()
x

√
x(1 − x)√

x(1 − x) 1 − x

()
1 0
0 0

(
=

)
x 0
0 0

(

and 

. qpq l→
)

x
√

x(1 − x)√
x(1 − x) 1 − x

( )
1 0
0 0

( )
x

√
x(1 − x)√

x(1 − x) 1 − x

(

=
)

x2 x
√

x(1 − x)

x
√

x(1 − x) x(1 − x)

(
= U

)
x 0
0 0

(
U∗,

U :=
) √

x −√
1 − x√

1 − x
√

x

(
.

Note that U is unitary. 
Returning to Theorem 7, we first take t = a .. Let  χE . be the function on r . that 

takes the value 1 on E and is identically zero on r\E .. The operator of multiplication 
by χE . will simply be denoted by χE . as well. The point of the matter is that SE . may 
be identified with the operator χESrχE = χE(2Pr − I )χE . and that the operator 
PrχEPr . may be interpreted as the Toeplitz operator T (χE).. We have χ2

E = χE . 

and P 2
r = Pr ., and after localization we get local representatives χ . and P . satisfying 

χ2 = χ . and P 2 = P .. It follows that  

. σa(SE) = 2σ(χPχ) − 1 = 2σa(T (χE)) − 1,

and since, by Theorem 3, 

. 2σa(T (χE)) − 1 = 2L(0, 1, p, αa, βa) − 1 = L(−1, 1, p, αa, βa),

we obtain the desired result at the starting point a. The terminating point t = b. 

becomes the starting point after reversing the orientation of the curve, which gives 
us 

. σb(SE) = −L(−1, 1, p, αb, βb) = L(1,−1, p, αb, βb).

A rigorous proof of Theorem 7 can be based on two projections theorems. 
Halmos’ original version was for Hilbert space operators, but in our context two 
projections theorems for Banach space operators are required. Such theorems were
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Fig. 7 Local spectra, essential spectrum, and spectrum of the operator SE . over an arc E 

first established in [17, 21]. See also paper [12], which is reprinted in this volume. 
Theorem 1 of that paper is exactly what we need. Notice that in our concrete case 
the points 0 and 1 are cluster points of the spectrum of 

. pqp + (e − p)(e − q)(e − p),

which dispenses us from the consideration of the maps Gm . appearing in part (b) of 
Theorem 1 of [12]. See also Chapter 8 of [9] for all technical details.3 

Spectrum. Thus, the essential spectrum of SE . is σess(SE) = σa(SE)∪σb(SE)., and 
Theorem 7 identifies the two local spectra as leaves. To get the spectrum σ(SE)., 
choose any continuous curve from − 1. to 1 entirely contained in σa(SE). (e.g., the 
dashed curve in Fig. 7) and any continuous curve from 1 to −1. in σb(SE).. These two 
curves form a Jordan curve C, and σ(SE). can be shown to be the union of σess(SE). 

and of all points in the plane that are encircled by C with nonzero winding number. 
See Fig. 7. 

Algebras. Let B(Lp(r,w)). be the Banach algebra of all bounded linear oper-
ators on Lp(r,w).. We define alg(S, PC). as the smallest closed subalgebra of

3 There are two typos in Theorem 8.7(a) of [9]: spBX . must be spAX . and “onto” must be “into”. 
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Fig. 8 Examples of the set M. as they appeared on our transparencies in the 1990s 

B(Lp(r,w)). which contains Sr . and all multiplication operators Ma : f l→ af . 

by functions a ∈ PC(r).. Let ϕ : T → r . be a homeomorphism and put 

. M :=
l  l
τ∈T

(
{τ } ×L(0, 1, p, αϕ(τ), βϕ(τ))

)
.

See Fig. 8. Here is a Fredholm criterion for operators in the algebra alg(S, PC).. 

Theorem 8 For each point m = (τ, x) ∈ M. the map 

. ym : {S} ∪ {Ma : a ∈ PC(r)} → C2×2

sending S to
(

1 0
0 −1

)
. and Ma . to 

.a(ϕ(τ)−0)

)
1 − x −√

x(1 − x)

−√
x(1 − x) x

(
+a(ϕ(τ)+0)

)
x

√
x(1 − x)√

x(1 − x) 1 − x

(
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extends to a continuous Banach algebra homomorphism ym : alg (S, PC) →
C2×2

., and an operator A ∈ alg (S, PC). is Fredholm on Lp(r,w). if and only if 
det ym(A) /= 0. for all m ∈ M.. If an operator in alg (S, PC). is Fredholm, then it 
has a regularizer belonging to alg (S, PC).. 

The last sentence in Theorem 8 says that if A ∈ alg (S, PC). is Fredholm, then 
there is an operator R ∈ alg (S, PC). such that AR − I . and RA − I . are compact. A 
full proof of this theorem can be found in Chapter 8 of the book [9] or in any of the  
papers [5, 12]. Needless to point out that the proof of this theorem is also a struggle 
with inverse closedness in Banach algebras. 

Extending curves and weights. So far we have assumed that the Carleson arc E is 
a subset of a Carleson Jordan curv e r . and that the Ap(E). weight W is the r estriction
W = w|E . of a Muckenhoupt weight w ∈ Ap(r).. But what if we are merely given 
a Carleson arc E and a weight W ∈ Ap(E).? To put us into the situation considered 
above, we have to extend the Carleson arc E to a Carleson Jordan curv e r . and at 
the same time to continue the weight W ∈ Ap(E). to a weight w ∈ Ap(r).. And  
even if we succeeded doing this, does the local spectrum of SE . at the endpoints of 
E depend on the specific extensions of r . and W? 

Yura and I understood that these are subtle and difficult questions, and in 1996 
we turned to Ilya Spitkovsky and Chris Bishop for help. After very intense work and 
correspondence we were fortunately able to solve the problems, and at the end of 
1996, we had our 80-pager [5] ready for publication. As expected, things were very 
technical and required sophisticated techniques and deep results from geometric 
function theory. I confine myself to citing the final result. A detailed presentation is 
also in Chapter 9 of the book [9]. 

Theorem 9 Let E be  a  Carleson  arc, 1 < p < ∞., and W ∈ Ap(E).. Then there 
exists a Carleson Jordan curve r . and a weight w ∈ Ap(r). such that E ⊂ r . and 
W = w|E ..  For t ∈ E ., the indicator set Y (p, αt , βt ). of r, p,w . at the point t is 
independent of the specific extensions r . and w. 

Composed curves. Let K be a composed Carleson curve, that is, suppose K is a 
connected set which may be represented as a union of finitely many simple Carleson 
arcs each pair of which have at most endpoints in common. For example, K may be 
a pentagon together with its five diagonals or may be the star consisting of only the 
three diagonals of a regular hexagon. Let further 1 < p < ∞. and w ∈ Ap(K).. The  
essential spectrum of SK . on Lp(K,w). is again the union of the local spectra, 

. σess(SK) =
l  l
t∈K

σt (SK).

Fix a point t ∈ K .. At this point, there are n+
. outgoing arcs of K and n−

. incoming 
arcs of K . The difference ε := n+ − n−

. is called the valency of t . Pick one of 
the n+ + n−

. arcs having t as an endpoint and orient this arc so that t becomes its
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starting point. We denote the arc obtained in this way by Kt . and put wt = w|Kt .. 
Let Y (p, αt , βt ). be the indicator set of Kt . at t given by Theorem 9. 

Theorem 10 If ε = 0., then σt (SK) = {−1, 1}..  If ε /= 0., we have 

. σt (SK) =
l
λ ∈ C :

)
λ + 1

λ − 1

(ε

= e2πiζ for some ζ ∈ Y (p, αt , βt )

l
∪ {−1, 1}.

A full proof of this theorem is in [5] and Chapter 9 of [9]. We remark that the 
proof does not only require the extension of Carleson arcs and weights on them to 
Carleson Jordan curves and weights on these curves. It rather requires the extension 
of so-called Carleson stars to so-called Carleson flowers with the simultaneous 
extension of the weight. 

Résumé and taking stock of my years with Yura. In summary, the connection 
between a Toeplitz operator T (a). on Hp(r,w). with a ∈ PC(r). and a singular 
integral operator SE . on Lp(E,w|E). over an arc E ⊂ r . having the same orientation 
as r . at the starting point t of E is given by t he formula

. σt (T (a)) = a(t − 0) + a(t + 0)

2
+ a(t + 0) − a(t − 0)

2
σt (SE).

In this sense, the problem of finding the local spectra of Toeplitz operators with 
piecewise continuous symbols is equivalent to the problem of describing the local 
spectra of the Cauchy singular integral operator over arcs. The tour taken by Yura 
and me was the one that first went through Toeplitz operators and ended with 
singular integral operators. In the next section I will briefly touch upon our joint 
work with Volodya Rabinovich. This work gives us the local spectra of singular 
integral operators without the detour through Toeplitz operators (though not for 
arbitrary weights in Ap(E). but only for weights in a proper subset A0

p(E)., which, 
however, is so large that it delivers all possible indicator sets). 

The years with Yura were an amazing period for me, and I think also for 
Yura. During his stay in Chemnitz and in the following years we enjoyed several 
joint trips, joint participations in conferences, and joint visits to friends, including 
Ilya Spitkovsky, Anatoly Aizenshtat, Serezha Grudsky, and Volodya Rabinovich. 
Figures 9 and 10 show some photos. 

I think the most painful event for Yura during his visit in Chemnitz was my 
proposal to give up writing a book on his beloved non-local operators and to write 
instead a book on Toeplitz operators over curves and with weights that could not 
been tackled by the existing machinery. However, Yura soon fell in love with the 
new project and what followed remains something like a miracle to me until today. 
As said, originally we thought that diving deeper and deeper into the matter would 
give us work for several years. But astonishingly, we had everything for general 
curves after only a few months and then settled the problem for general weights after 
only a few months more. It was a true kind of rush we experienced, and the body 
of results and thus the book increased week by week. At some time, Yura suggested
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Fig. 9 Left: In the Negev desert in 1995, during the weekend break of the workshop “One-
dimensional linear singular integral operators” in Tel Aviv and Jerusalem, organized by Israel 
Gohberg and myself. Right: In Xochicalco, Mexico, in 2003, during a visit to Yura in Cuernavaca 

to include not only the spectral theory of Toeplitz and singular integral operators 
into the book but also a full proof of the boundedness criterion for them. This was 
an enormous amount of work and it was only due to Yura’s unceasing energy that 
we brought this venture to a successful end. In 1996, we had the manuscript of 
our book [9] accomplished. To our great delight, the book won the Ferran Sunyer i 
Balaguer Prize of the year 1997, and Yura and I enjoyed meeting each other for the 
first time after his visit to Chemnitz anew in Barcelona. See Fig. 11. 

During our joint work, Yura perpetually surprised me with unconventional ideas. 
I want to mention at least one of his strokes of genius. Representations (14) are in  
general use in the two projections business. The complex variable x runs through 
a certain set that is specified in advance. In the context of singular integral and 
Toeplitz operators, this set is a leaf between 0 and 1. The interesting values of x are
x /∈ {0, 1}.. Yura observed that for such x representation (14) may be replaced by the 
representation 

.p l→
)

1 0
0 0

(
, q l→

)
x x − 1

−x 1 − x

(
. (15) 

The enigma’s resolution is that 

.Dx

)
1 0
0 0

(
D−1

x =
)

1 0
0 0

(
, Dx

)
x

√
x(1 − x)√

x(1 − x) 1 − x

(
D−1

x =
)

x x − 1
−x 1 − x

(
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Fig. 10 Left: In Williamsburg, Virginia, attending the Old Dominion Operator Theory and 
Analysis Conference in 1995. Right: In Key West, Florida, during a trip along the East Coast 
in 1997, which included also a visit to Anatoly Aizenshtat in Fort Lauterdale 

with the diagonal matrix 

. Dx := diag( 4
/

(1 − x)/x,− 4
/

x/(1 − x)).

Note that Dx . is only needed to establish the equivalence of the representations; 
Dx . does not appear in the representations themselves. In contrast to (14), the new 
representation (15) is “root-free”, and this turned out to be a deciding advantage 
when passing from two projections to N projections. See [5, 12] or Chapter 8 of [9]. 

Finally, recall that Toeplitz operators have their origin in the infinite Toeplitz 
matrix 

. (aj−k)
∞
j,k=0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0 a−1 a−2 a−3 . . .

a1 a0 a−1 a−2
. . .

a2 a1 a0 a−1
. . .

a3 a2 a1 a0
. . .

...
. . .

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

In our context, this matrix corresponds to a Toeplitz operator on H 2(T) ∼= e2(Z+).. 
When leaving the p = 2. and r = T. case, one is entering new worlds. Besides 
the operators on Hp(r,w). considered here, one is led to Wiener-Hopf integral 
operators on Lp(R+, w). or discrete convolution operators on ep(Z+, w).. In the
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Fig. 11 In Barcelona in 1997 after the receipt of the Ferran Sunyer i Balaguer Prize for our 
monograph [9]. We both love the cute typo in the certificate 

last two contexts, Ilya Spitkovsky’s horns persist—no new leaves are emerging. 
Section 6 of [6] tells more about this part of the story. 

7 Mellin Convolutions 

Let me finish with what we started: the Cauchy singular integral operator over a 
logarithmic spiral. 

Volodya Rabinovich. Some time in the mid 1990s, Yura and I came together with 
Volodya Rabinovich, and he surprised us with the observation that the indicator set 
Y (p, αt , βt ). is always the union of straight lines: 

When pursuing this idea, Volodya and we developed two more approaches to the 
spectral theory of the Cauchy singular integral operator. The first of them is based 
on Fourier(-Mellin) techniques [14], the second makes use of the theory of so-
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called limit operators [15], and both eventually reduce things to pseudodifferential 
operators on the real line with slowly oscillating symbols. For example, one can 
associate a family of limit operators with a given operator A so that the local 
spectrum of A is the union of the local spectra of the limit operators. Under 
certain assumptions, the limit operators are sufficiently simple, which means that 
their indicator sets are straight lines. Clearly, this gives the characterization of the 
indicator set observed by Volodya. See also [11] for some illustrations. 

From logarithmic spirals to Mellin convolutions. The following approach is 
based on our paper [13] with Volodya and follows Section 10.6 of [9]. Let δ ∈ R. 

and 

.rδ := {x1−iδ : 0 < x < ∞} = {xe−iδ log x : 0 < x < ∞}. (16) 

Thus, rδ . is a logarithmic spiral. We give rδ . the orientation from the origin to 
infinity. The logarithmic spiral rδ . is an unbounded curve and hence the results stated 
above are not directly applicable. However, the Cauchy singular integral Srδ ., 

. (Srδf )(t) := lim
ε→0

1

πi

(
rδ\rδ(t,ε)

f (τ )

τ − t
dτ, t ∈ rδ,

can be shown to be well-defined and bounded on Lp(rδ,w). if 1 < p < ∞. and 
w(τ) := |τ |λ . with −1/p < λ < 1/q ..4 It can of course also be proved that the local 
spectrum σ0(Srδ ). at the origin is the logarithmic double spiral 

. S(−1, 1, 1/p + λ, δ)

introduced above and that σt (Srδ ) = {−1, 1}. for t ∈ rδ \ {0}.. Here is a completely 
different approach to the matter. 

We put dμ(x) := dx/x . and let Lp(R+, dμ). stand for the Lp
. space over R+ =

(0,∞). with the weight x−1/p
.: 

. llf llLp(R+,dμ) :=
)( ∞

0
|f (x)|p dx

x

(1/p

.

It is straightforward to check that the map 

.Cδ : Lp(rδ,w) → Lp(R+, dμ), (Cδh)(x) := |1 − iδ|1/px1/p+λh(x1−iδ)

4 We now have to denote the exponent by λ. since μ. is in common use for the measure dμ(x) =
dx/x .. 
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is an isometric isomorphism. We have 

. (CδSrδC
−1
δ f )(x) = |1 − iδ|1/px1/p+λ(SrδC

−1
δ f )(x1−iδ)

= |1 − iδ|1/px1/p+λ

πi

(
rδ

(C−1
δ f )(τ )

τ − x1−iδ
dτ.

Making the change of variables τ = y1−iδ
., dτ = (1 − iδ)y1−iδ dy/y . and taking 

into account that (C−1
δ f )(y1−iδ) = |1 − iδ|−1/py−1/p−λf (y)., we get 

. (CδSrδC
−1
δ f )(x) = |1 − iδ|1/px1/p+λ

πi

( ∞

0
(1 − iδ)

(C−1
δ f )(y1−iδ)

y1−iδ − x1−iδ
y1−iδ dy

y

= 1 − iδ

πi

( ∞

0

(x/y)1/p+λ

1 − (x/y)1−iδ
f (y)

dy

y
. (17) 

The integral in (17) is a so-called Mellin convolution. The half-line R+ . is a 
locally compact abelian group with the group operation x∗y := xy . and the invariant 
measure dx/x .. In this context, a convolution operator K is formally given b y

. (Kf )(x) =
(
R+

k(x ∗ y−1)f (y) dμ(y) =
( ∞

0
k(x/y)f (y)

dy

y
, x ∈ R+.

The characters χ : R+ → T. all act by the rule χξ (x) := xiξ
. with ξ ∈ R.. 

Consequently, we may identify the dual group R∗+ . as the additive group R. with 
Lebesgue measure. The Fourier transform corresponding to this pairing is usually 
denoted by M and called the Mellin transform. Formally ,

. (Mk)(ξ) :=
(
R+

k(x)χξ (x) dμ(x) =
( ∞

0
k(x)xiξ dx

x
,

and the Mellin convolution K can be written as K = M0(a) := M−1aM . with 
a(ξ) := (Mk)(ξ).. When consideringM0(a). on Lp

., one is faced with a multiplier 
problem. However, all we need in the case at hand is that if a ∈ L∞(R) ∩ PC(R). 

has bounded total variation, thenM0(a). is bounded on Lp(R+, dμ)., andM0(a). is 
invertible on Lp(R+, dμ). if and only if a is invertible in L∞(R).. 

Computing the Mellin transform. Thus, we need the function (Mk)(ξ). for 
k(x) = x1/p+λ/(1−x1−iδ).. A more general result states that if k(x) = xη/(1 − xe). 

with 0 < η < 1. and a complex number e . such that Re e ≥ 1., then 

.aη,e(ξ) := e

πi
(Mk)(ξ) = coth

)
π

iη − ξ

e

(
, ξ ∈ R,
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the function aη,e . is continuous and has bounded total variation on R., the finite limits 
a(±∞). exist, andM0(aη,e). acts on Lp(R+, dμ). by the rule 

. (M0(aη,e)f )(x) = lim
ε→0

e

πi

(
| log(x/y)|>ε

(x/y)η

1 − (x/y)e
f (y)

dy

y
, x ∈ R+.

For e = 1., a proof is in [16, pp. 24–25, 51–52] and [22, pp. 12–13]. For Re e ≥ 1., 
see [13]. 

Computing the spectrum. By (17) and the preceding paragraph, the operator Srδ . 

is similar toM0(a1/p+λ,1−iδ).. Let R := R ∪ {±∞}.. Since 

. coth z = ez + e−z

ez − e−z
= e2z + 1

e2z − 1
= M−1,1(e

2z),

we obtain 

. a1/p+λ,1−iδ(R) =
l
M−1,1

)
exp

)
2π

i(1/p + λ) − ξ

1 − iδ

((
: ξ ∈ R

l
,

and by decomposing (i(1/p +λ)− ξ)/(1 − iδ). into real and imaginary parts we get 

. a1/p+λ,1−iδ(R) = {M−1,1(e
2π(x+iy)) : y = 1/p + λ + δx, x ∈ R} ∪ {−1, 1}.

This is the logarithmic double spiral 

. L(−1, 1, p, α, β) = S(−1, 1, 1/p + λ, δ),

and we have finally arrived at the following result. 

Theorem 11 Let δ ∈ R \ {0}, p ∈ (1,∞), λ ∈ (−1/p, 1/q)., denote by rδ . the 
logarithmic spiral (16) with the orientation from 0 to infinity, and let w(τ) = |τ |λ . 

for τ ∈ rδ .. Then the spectrum of Srδ . on Lp(rδ,w). is a logarithmic double spiral 
joining − 1. to 1. This logarithmic double spiral is given by 

. 

l
e2πz + 1

e2πz − 1
: Im z = 1

p
+ λ + δ Re z

l
∪ {−1, 1}.

We could have included the case δ = 0. into the theorem: for δ = 0., we get a 
circular arc between − 1. and 1 if 1/p + λ /= 1/2., and the line segment [−1, 1]. if 
1/p + λ = 1/2.. 

The gain from pseudodifferential operators. Here is a generalization of the 
previous approach. Let 

.r := {t + xeiθ(x) : 0 < x < s}, w(t + xeiθ(x)) := ev(x) (18)
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where s ∈ (0,∞]. and θ . and v are real-valued functions in C∞(0, s). satisfying 

. sup
x∈(0,s)

|(xDx)
j |θ(x)| < ∞, sup

x∈(0,s)

|(xDx)
j |v(x)(x)| < ∞ for all j ≥ 1,

lim
x→0

(xDx)
2θ(x) = 0, lim

x→0
(xDx)

2v(x) = 0,

−1/p < lim inf
x→0

xv'(x) ≤ lim sup
x→0

xv'(x) < 1/q.

We add the point t to r ., and if s is a finite number, we also add the point t + seiθ(s)
.. 

We orient r . so that t is the starting point. The requirements made for θ . and w 
ensure that r . is a Carleson curve and that w ∈ Ap(r).. Using results from [4, 20] 
we showed in [14] that point z ∈ C. belongs to the local spectrum σt (Sr). if and only 
if 

. lim
ε→0

inf
(x,ξ)∈(0,ε)×R

llllM−1,1

)
exp

)
2π

i(1/p + xv'(x)) − ξ

1 + ixθ '(x)

((
− z

llll = 0.

This gives the following description of the local spectrum.5 

Theorem 12 Under the above assumptions, let P. be the set of the partial limits of 
the map 

. (0, s) → (0, 1) × R, x l→
)

1

p
+ xv'(x),−xθ '(x)

(

as x → 0.. Then 

. σt (Sr) =
l  l

(ω,δ)∈convP

l
e2πz + 1

e2πz − 1
: Im z = ω + δ Re z

l
∪ {−1, 1},

where convP. is the convex hull of P.. Actually it suffices to take the union only over 
solely P.. 

Clearly, if θ(x) = −δ log x . and v(x) = λ log x ., then P. is just the singleton 
{(1/p + λ, δ)}., and Theorem 12 becomes Theorem 11. 

The gain from limit operators and localization. In [15] we used the method of 
limit operators to localize the problem completely. The abstract of this paper is 
as follows. “One of the great challenges of the spectral theory of singular integral 
operators is a theory unifying the three ‘forces’ which determine the local spectra: 
the oscillation of the Carleson curve, the oscillation of the Muckenhoupt weight, and 
the oscillation of the coefficients. In this paper we demonstrate how by employing

5 The minus sign in − xθ '(x). appearing in the following two theorems is unfortunately missing in 
Theorems 10.25 and 10.27 of [9]. 
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the method of limit operators one can describe the spectra in case all data of the 
operator (the curve, the weight, and the coefficients) are slowly oscillating.” 

A function f ∈ C∞(0, s)∩L∞(0, s). is said to be slowly oscillating at the origin 
if 

. lim
x→0

|(xDx)
jf (x)| = 0 for all j ≥ 1.

For example, if g ∈ C∞(R). and g as well as all its derivatives are bounded, then
f (x) := g(log(− log x)). (0 < x < 1.) is slowly oscillating at the origin. The 
following theorem was established in [15]. Note that it is for the case p = 2.. 

Theorem 13 Let p = 2. and let r . and w be given by (18). Suppose c and d are 
slowly oscillating at the origin. Put

. cr(t + xeiθ(x)) := c(x), dr(t + xeiθ(x)) := d(x),

and consider the operator A := crI + drSr . on L2(r,w).. Denote by PA . the set of 
all partial limits of the map 

. (0, s) → C2 × (0, 1) × R, x l→ (c(x), d(x), 1/2 + xv'(x),−xθ '(x))

as x → 0.. Then 

. σt (A) =
l  l

(α,β,ω,δ)∈PA

α + βS(−1, 1, ω, δ) =
l  l

(α,β,ω,δ)∈PA

S(α − β, α + β, ω, δ)

where, as above, S(z1, z2, ω, δ). is the logarithmic double spiral 

. S(z1, z2, ω, δ) =
l

z2e
2πz − z1

e2πz − 1
: Im z = ω + δ Re z

l
∪ {z1, z2}.

Credits. The photos and illustrations are courtesy of the author. 
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Abstract It is well known that for Banach algebras generated by two idempotents 
and the identity all irreducible representations are of order not greater than two. 
These representations have been described completely and have found important 
applications to symbol theory. It is also well known that without additional 
restrictions on the idempotents these results do not admit a natural generalization 
to algebras generated by more than two idempotents and the identity. In this paper 
we describe all irreducible representations of Banach algebras generated by N 
idempotents which satisfy some additional relations. These representations are of 
order not greater than N and allow us to construct a symbol theory with applications 
to singular inte gral operators.
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Preface and Acknowledgment 

The study of the structure of Banach algebras generated by two idempotents and 
the identity has a long history of more than 30 years and has found interesting 
applications to Banach algebras of singular integral operators on simple contours. 

Further advances in the theory of Banach algebras of singular integral operators 
on non-simple contours required developing a structure theory for Banach algebras 
generated by N idempotents which satisfy certain relations. The authors of this 
paper, working in different groups, developed several approaches to this problem.

At the request of the other authors, Steffen Roch, a member of one of the groups, 
unified these approaches and styles, closed the gaps, and brought the paper to the 
form in which it is presented. All authors express their sincere gratitude to Steffen 
Roch for the outstanding task he performed. 

1 Introduction 

In the last 15–20 years, notable advance in understanding the structure of Banach 
algebras generated by singular integral operators has been made. Many new insights 
are essentially based on two observations which are characteristic for a large variety 
of concrete algebras. 

The first one is that the Calkin image of operator algebras often contains a non-
trivial center, which offers the opportunity of applying local techniques such as 
Allan’s local principle (see below). This principle associates with each of these 
algebras a whole family of smaller, so-called local, algebras which are labeled 
by the points of a compact space, namely the maximal ideals of the center. Now 
the second observation enters the scene: in many cases, these local algebras are 
generated by two (concrete) idempotent cosets, and so they are subject to so-
called two projections theorems (see [26, 34, 35, 37, 38, 46, 48] for the  C∗

.-case, 
[46] for the  W ∗

.-case, and [18, 21, 22, 40], and [49], for the general Banach 
algebra case). Two projection theorems describe abstract algebras generated by 
two idempotents either completely (the C∗

.-case) or yield at least necessary and 
sufficient invertibility criteria for the elements of the algebra (the Banach algebra 
case) by associating with each element of the algebra a certain 2× 2. or 1× 1. matrix 
function. The correspondence between the elements of the algebra and the matrix 
function is either an isometric isomorphism ( C∗

.-case) or a spectrum-preserving 
homomorphism (Banach algebra case). 

Since Douglas’ pioneering paper [14], the idea of combining local principles 
with two projections theorems has been successfully employed, e.g., for algebras 
generated by one-dimensional singular integral operators with piecewise contin-
uous coefficients, for algebras of Wiener-Hopf and multiplication operators, for 
algebras of Toeplitz and Hankel operators with piecewise continuous or piecewise 
quasicontinuous generating functions, for algebras of Fourier integral operators,
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and for algebras of operators with Carleman shifts (see [2–5, 8, 9], [6, Chapter 4], 
[7, 15, 31, 36, 37, 40, 42], [44]). In all these situations, effective symbol calculi for 
Fredholmness are available. 

Moreover, during the last few years it has become clear that the same approach 
also applies to certain algebras of approximating sequences for operator equations, 
the symbol now telling us something about the stability of the sequence. For this 
topic see [24, 39, 41, 43] and the monograph [25]. 

In the present paper we consider Banach algebras which are generated by more 
than two idempotents. Algebras of this type appear as local algebras of concrete 
operator or sequence algebras. We recall that, in general, there is no matrix-valued 
symbol calculus even for algebras generated by only three idempotents. However, 
under certain additional conditions, we establish an N projections theorem which 
yields exactly the two projections theorem (without additional conditions) in case
N = 2.. We also illustrate the application of our N projections theorem to 
the construction of a symbol calculus for algebras generated by singular integral 
operators with piecewise continuous coef ficients.

For a first discussion of the N projections problem (but without deriving effective 
invertibility criteria) see [47]. 

The paper is organized as follows. In Sect. 2, we remind the reader of some 
known results on algebras generated by two idempotents and on so-called local 
principles. Section 3 is devoted to algebras generated by three idempotents. We 
there point out that such algebras do not possess a matrix symbol in general, but 
that a matrix symbol exists under certain additional hypotheses. Section 4 contains 
the main theorem (Theorem 9 in Sect. 4.4) and its proof. In Sect. 5, we illustrate 
how the main theorem may be applied to singular integral operators on composed 
curves. In Sect. 6, we record several special cases, modifications, and extensions of 
the main theorem. 

2 Algebras Generated by Two Idempotents 

The following theorem is one of the main results of [40], with a completion by [21]. 

Theorem 1 Let A. be a Banach algebra with identity e, and let p and q be 
idempotents in A. (i.e. p2 = p . and q2 = q .). Let further B. stand for the smallest 
closed subalgebra of A. which contains p, q and e. Then 

(a) for eac h

. x ∈ σB(pqp + (e − p)(e − q)(e − p)) \ {0, 1},

the mapping 

.Fx : {e, p, q} → C2×2,
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given by 

. Fx(e) =
(

1 0
0 1

)
, Fx(p) =

(
1 0
0 0

)
, Fx(q) =

(
x

√
x(1 − x)√

x(1 − x) 1 − x

)
,

where
√

x(1 − x). denotes any number with
(√

x(1 − x)
)2 = x(1 − x). and σB(a). 

refers to the spectrum of a in B., extends to a continuous algebra homomorphism 
from B. into C2×2

.; 
(b) for each 

. m ∈ σB(p + 2q) ∩ {0, 1, 2, 3},

the mapping 

. Gm : {e, p, q} → C1×1,

given by 

. G0(e) = 1, G0(p) = G0(q) = 0, G1(e) = G1(p) = 1, G1(q) = 0,

G2(e) = G2(q) = 1, G2(p) = 0, G3(e) = G3(p) = G3(q) = 1,

extends to a continuous algebra homomorphism from B. into C1×1
.; 

(c) an element a ∈ B. is invertible in B. if and only if the matrices Fx(a). are 
invertible for all 

. x ∈ σB(pqp + (e − p)(e − q)(e − p)) \ {0, 1},

and the numbers Gm(a). are non-zero for all m ∈ σB(p + 2q) ∩ {0, 1, 2, 3}.; 
(d) an element a ∈ B. is invertible in A. if and only if the matrices Fx(a). are 

invertible for all 

. x ∈ σA(pqp + (e − p)(e − q)(e − p)) \ {0, 1},

and the numbers Gm(a). are non-zero for all m ∈ σA(p + 2q) ∩ {0, 1, 2, 3}.. 
For a proof see [18, 21, 22, 40] and compare also [49]. 
The known proofs of the two projections theorem make use of at least one of the 

following basic properties of the abstract two projections algebra B = alg(e, p, q).. 
(a) The algebra B. possesses a non-trivial center. In particular, the element 

. pqp + (e − p)(e − q)(e − p)

commutes with each other element of B. (recall that the center of an algebra consists 
of all elements which commute with each other element of the algebra).
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(b) The algebra B. is an algebra with a polynomial identity. More precisely, it 
satisfies the standard polynomial F4 . where 

. F2n(a1, . . . , a2n) =
7

σ∈S2n

(sign σ)aσ(1) . . . aσ(2n)

and S2n . refers to the group of all permutations of the set {1, 2, . . . , 2n}., which means 
that 

. F4(b1, b2, b3, b4) = 0 for all b1, . . . , b4 ∈ B.

The first property renders the algebra B. accessible to the local principle by Allan 
and Douglas (see [1] and [13]), which reads as follows. 

Theorem 2 Let A. be a Banach algebra with identity e, and let C. be a subalgebra 
of the center of A. which contains e. For each maximal ideal x of the (commutative) 
Banach algebra C., let  Ix . denote the smallest closed two-sided ideal of A. which 
contains x. Then an element a of A. is invertible if and only if the cosets a + Ix . are 
invertible in the quotient algebraA/Ix . for all maximal ideals of C.. 

(In case Ix = A., the coset a + Ix . is invertible by definition for all a.) 
Property (b) shows that the two projections algebra is also subject to another 

local principle, which is due to one of the authors (see [29]): 

Theorem 3 Let A. be a Banach algebra with identity which satisfies the standard 
polynomial F2n .. Then 

(a) for each two-sided maximal ideal M of A., the quotient algebra A/M . is 
isomorphic to the matrix algebra Cl×l

. with a certain l = l(M). less than or equal 
to n; 

(b) an element a ∈ A. is invertible if and only if the matrices fM(a). are invertible 
for all two-sided maximal ideals M where fM = ϕMπM ., πM . is the canonical 
homomorphism from A. onto A/M ., and ϕM . is the isomorphism from A/M . onto 
C

l×l
. given by (a). 

Let us remark that this theorem remains true if A. only satisfies a certain power 
Fm

2n . of F2n . (see [17]). 

3 Algebras Generated by Three Idempotents 

Let A. be a Banach algebra with identity. We say that A. possesses a matrix symbol 
of order n if there is a family (ft )t∈T .of continuous algebra homomorphisms ft . from 
A. into the algebra Cl(t)×l(t)

. with l(t) ≤ n. such that an element a ∈ A. is invertible 
in A. if and only if the matrices ft (a). are invertible for all t ∈ T .. By Theorem 3, 
each Fm

2n .-algebra has a matrix symbol of order n and, in particular, each algebra 
generated by two idempotents has a matrix symbol of order 2.
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The following result is taken from [30]. It shows that the (abstract) algebra 
generated by three idempotents cannot possess a matrix symbol of a certain fixed 
order. 

Theorem 4 If n ≥ 3. then the algebra Cn×n
. is generated by three idempotents. 

Moreover, one has the following characterization of algebras generated by three 
idempotents. Recall that a Banach algebra is called separable if it possesses a 
countable dense subset. 

Theorem 5 (a) Every Banach algebra generated by three idempotents is separable. 
(b) Every separable Banach algebra is isomorphic to a subalgebra of an algebra 
generated by three idempotents. 

Proof The first assertion is evident. For the second one, we first prove that every 
separable Banach algebra is isomorphic to a subalgebra of a finitely generated 
Banach algebra. 

Let A. be a separable Banach algebra with a dense subset {a1, a2, . . . }. and 
suppose without loss of generality that an l= 0. for all n. For n = 1, 2, . . . . and 
k = 1, 2, . . . , 2n

. set c2n−2+k := ak/llakll.. Let further l2(A). stand for the Banach 
space of all sequences (xn)

∞
n=1 . of elements of A. such that 

. ll(xn)ll2 :=
∞7

n=1

llxnll2 < ∞,

and writhe L(l2(A)). for the Banach algebra of all bounded linear operators on 
l2(A).. On  l2(A). we consider the following operators: 

. 

A : (xn) l→ (yn), yn = cnxn,

V1 : (xn) l→ (yn), yn =
l

0 if n = 1
xn−1 if n > 1,

V−1 : (xn) l→ (yn), yn = xn+1,

W1 : (xn) l→ (yn), yn =
l

xk if n = 2k − 1
0 if n l= 2k − 1,

W−1 : (xn) l→ (yn), yn = x2n−1.

Obviously, A,V1, V−1,W1,W−1 ∈ L(l2(A))., and so it makes sense to consider 
the smallest closed subalgebra B. of L(l2(A)). which contains the operators 
A,V1, V−1,W1,W−1 . and the identity operator I . The algebra B. is finitely gener-
ated, and we claim that A. is isomorphic to a subalgebra of B.. Since 

.W−1AW1 : (xn) l→ (yn), yn = c1xn,

W−1V−1AV1W1 : (xn) l→ (yn), yn = c2xn,
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we conclude that the diagonal matrix diag(ck, ck, . . . ). lies in B. for k = 1, 2.. In  
order to arrive at this conclusion for k > 2., set  

. rk = 2{log2 k} − 3 + k and sk = 2{log2 k} − 2

where {z}. refers to the smallest integer which is greater than or equal to z. Then 

. V
sk
−1W−1V

sk
1 · V rk

−1AV
rk
1 · V sk

−1W1V
sk
1 : (xn) l→ (yn), yn = ckxn

for all k > 2.. Hence, diag(ck, ck, . . . ). is in B. for all k and consequently ,
diag(ak, ak, . . . ). belongs to B. for all k. Now it is easy to check that the mapping 

. T : A→ B, a l→ diag(a, a, . . . )

is the desired isomorphism from A. onto a subalgebra of B.. 
To finish the proof it remains to remark that, for each finitely generated Banach 

algebra B., the algebra Br×r
. of all r × r . matrices with entries in B. is generated by 

three idempotents if only r is large enough (see [32]). Thus, each finitely generated 
Banach algebra is isomorphic to a subalgebra of a Banach algebra generated by 
three idempotents (the isomorphism simply being given by 

. B→ Br×r , b l→ diag(b, b, . . . , b) ),

and this result in combination with what has already been proved gives our claim. 
  

Theorem 5 indicates that the variety of all Banach algebras generated by three 
idempotents is extremely large and that these algebras can show a rather involved 
structure. This observation suggests the study of Banach algebras generated by 
three (or more) idempotents with additional relations between their generators. For 
example, let L2(J ). denote the Hilbert space of the squared integrable functions 
on some (finite or infinite) interval J . On  L2(R)., we introduce the operator SR . of 
singular integration, 

. (SRf )(t) = 1

πi

l ∞

−∞
f (s)

s − t
ds, t ∈ R,

and the operators χR+I . and χ[0,1]I . of multiplication by the characteristic functions 
of the intervals R+ . and [0, 1]., respectively. Let A. denote the smallest closed sub 
algebra of L(L2(R)). which contains the operators SR ., χR+I . and χ[0,1]I .. Since 
S2
R
= I . and S∗

R
= SR . (see [20]), we conclude that PR := (I + SR)/2. is a projection 

and hence, the algebra A. is generated by three projections and the identity operator. 
Let further B. refer to the smallest closed subalgebra of A. which contains all 
operators χ[0,1](χR+SRχR+)kχ[0,1]I . with k = 0, 1, . . . .. Clearly, one can think of 
B. as a subalgebra of L(L2([0, 1]))..
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Theorem 6 The algebra B. (which is a subalgebra of an algebra generated by three 
idempotents) contains all compact operators on L2([0, 1]).. 

For a proof see, e.g., Theorem 8.7 in [16]. 
Taking into account that the ideal of all compact operators on L2([0, 1]). contains 

a copy of C1×1
. for all l or having recourse to Corollary 22.1 in [29], we arrive at 

the conclusion that the algebra B. (and hence the algebra A.) cannot possess a matrix 
symbol of any fixed order. Thus, even if the three idempotents are projections, and 
even if two of them commute, a matrix symbol need not exist. This highlights that 
the additional conditions we look for in order to guarantee the existence of matrix 
symbols have to be rather strong. 

Here are two (positive) examples of algebras generated by three idempotents 
which possess a matrix symbol. Observe the strong relations between the generating 
elements. 

Theorem 7 Let A. be a Banach algebra with identity e, and let p, q and j be 
elements inA. such that 

. p2 = p, q2 = q, j2 = e and jpj = e − p, jqj = e − q.

Then the smallest closed subalgebra B. of A. which contains e, p, q and j is F4 ., and 
it possesses a matrix symbol of order 2. 

For a proof (and also for the explicit derivation of the matrix symbol under an 
additional condition) see [40]. Let us emphasize that the algebra B. in Theorem 7 is 
indeed generated by three idempotents since p and q are idempotent and (e + j)/2. 

is idempotent, too. 

Theorem 8 Let A. be a Banach algebra with identity e, and let p, q and j be 
elements inA. such that 

. p2 = p, q2 = q, j2 = e and jpj = p, jqj = e − q.

Then the smallest closed subalgebra B. of A. which contains e, p, q and j possesses 
a matrix symbol of order 4.

For a proof, and for an explicit matrix symbol, see [31]. 

4  An  N Projections Theorem

4.1 Choice of the Additional Conditions 

We are going to describe a class of Banach algebras which are generated by a large 
number of idempotents and possess a matrix symbol. Our choice of the additional 
conditions between the generating elements of the algebras is motivated by the



Banach Algebras Generated by N Idempotents and Applications 75

situation considered in Sect. 5 (and, in a sense, by the approach of the papers [19] 
and [23]). 

Let A. be a Banach algebra with identity element I , and let {p1, . . . , p2N }. be a 
partition of unity into projections, i.e. suppose pi l= 0. for all i, 

.pi · pj = δijpi for all i, j, (1) 

where δij . is the Kronecker delta, and 

.

2N7
i=1

pi = I. (2) 

Let further P ∈ A., put Q = I − P ., and suppose that 

.P(p2i−1 + p2i )P = (p2i−1 + p2i )P (3) 

and 

.Q(p2i + p2i+1)Q = (p2i + p2i+1)Q (4) 

for all i = 1, . . . , N ., where p2N+1 := pl .. In what follows we use the convention 
pk := pr . with r ∈ {1, . . . , 2N}. whenever k − r . is divisible by 2N . It is clear that 
then (3) and (4) hold for all integers i. 

The algebra B. we are interested in is the smallest closed subalgebra of A. which 
contains the set {pi}2N

i=1 . as well as the element P . Observe that B. contains the 
identity I (due to (2)) and that P and Q are complementary idempotents. Indeed, 
adding the identities (3) for i = 1, . . . , N . yields 

. P ·
2N7
i=1

pi · P =
2N7
i=1

pi · P,

that is, P 2 = P ., whence Q2 = Q.. Thus, B. is actually an algebra generated by 
2N + 1. idempotents (or by 2N idempotents and the i dentity).

We will show that the algebra B. possesses a matrix symbol of order 2N . 

4.2 Algebraic Structure of B. 

We start with examining the smallest (not necessarily closed) subalgebra B0
. which 

contains the partition of unity into projections {pi}2N
i=1 . and the idempotent P . Set
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. X :=
N7

i=1

(p2i−1Pp2i−1 + p2iQp2i ).

Proposition 1 The element X is in the center of B0
.. 

Proof Evidently, X commutes with each of the idempotents pi .. It remains to show 
that PX = XP .. Let us first prove that 

.X =
N7

i=1

((p2i + p2i+1)Qp2iQ+ (p2i−1 + p2i )Pp2i−1P). (5) 

Since the pj . form a partition of unity into projections, it is sufficient to prove that 

. pjX = pj

N7
i=1

((p2i + p2i+1)Qp2iQ+ (p2i−1 + p2i )Pp2i−1P)

for j = 1, . . . , 2N . or, equivalently, that 

.p2iQp2i = p2iQp2iQ+ p2iPp2i−1P (6) 

and 

.p2i−1Pp2i−1 = p2i−1Qp2i−2Q+ p2i−1Pp2i−1P (7) 

for all i = 1, . . . , N .. For  (6) we observe that 

. p2iQp2iQ+ p2iPp2i−1P = p2iQ− p2iPp2iQ+ p2iPp2i−1P

= p2iQ− p2iPp2i + p2iPp2iP + p2iPp2i−1P

= p2iQ− p2iPp2i + p2iP (p2i−1 + p2i )P

= p2iQ− p2iPp2i + p2iP

= p2i − p2iPp2i

= p2i (P +Q)p2i − p2iPp2i

= p2iQp2i ,

and (7) follows analogously. Thus (5) holds. Further, axioms (3) and (4) say that 

.Q(p2i−1 + p2i )P = P(p2i + p2i+1)Q = 0 (8) 

for i = 1, . . . , N ., and the axioms (3), (4) together with the identities (5), (8) yield 

.PX = P ·
N7

i=1

((p2i + p2i+1)Qp2iQ+ (p2i−1 + p2i )Pp2i−1P)
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= 
N7

i=1 

(p2i−1 + p2i )Pp2i− 1P

and 

. XP =
N7

i=1

((p2i + p2i+1)Qp2iQ+ (p2i−1 + p2i )Pp2i−1P) · P

=
N7

i=1

(p2i−1 + p2i )Pp2i−1P

and, hence, PX = XP ..   
Proposition 2 Considered as module over its center, the algebra B0

. is generated 
by the (2N)2

. elements (pi)
2N
i=1 . and (piPpj )

2N
i,j=1 . with i l= j .. To be more precise, 

given A ∈ B0
., there are polynomials Rij . in X such that

.A =
2N7
i=1

Rii(X)pi +
2N7

i, j = 1
i l= j

Rij (X)piPpj . (9) 

Proof Let B1
. denote the set of all elements in B0

. which can be written as in (9). 
First we show that the generating elements of B0

. belong to B1
.. This is evident for 

the idempotents pi .. Since further 

.piPpi = piPpi · pi =
l

X · pi if i is odd
(I −X) · pi if i is even,

(10) 

the assertion for P can be seen as follo ws:

. P =
2N7

i,j=1

piPpj =
N7

i=1

p2iPp2i +
N7

i=1

p2i−1Pp2i−1 +
2N7

i, j = 1
i l= j

piPpj

=
N7

i=1

(I −X)p2i +
N7

i=1

Xp2i−1 +
2N7

i, j = 1
i l= j

piPpj .

In the second step we are going to show that B1
. is actually an algebra. Since the 

generating elements of B0
. belong to B1

., this automatically yields that B0 = B1
.. 

The set B1
. is evidently closed under addition. In order to get its closedness under 

multiplication we have to show that the product of each two of the elements (pi)
2N
i=1 .
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and (piPpj )
2N
i,j=l . with i l= j . is in B1

. again. This is obvious if one of these elements 
is pi ., and so we have only to deal with the products piPpj · pkPpl . with i l= j . and 
k l= l .. This product is 0 (which is in B1

.) if  j l= k . and equal to piPpjPpl . in case 
j = k .. If  j is even (say, j = 2n.) then 

. piPp2nPpl = piP (p2n−1 + p2n)Ppl − piPp2n−1Ppl

= pi(p2n−1 + p2n)Ppl − piPp2n−1Ppl (11) 

by axiom (3), whereas in case j is odd (j = 2n− 1.), 

. piPp2n−1Ppl = piP (p2n−2 + p2n−1)Ppl − piPp2n−2Ppl

= piP (p2n−2 + p2n−1)pl − piPp2n−2Ppl (12) 

by (8). The first items in (11) and (12) are in B1
.. Indeed, they are either 0 or equal 

to piPpl . (in dependence on j ). If i l= l . then piPpl ∈ B1
. by definition, whereas the 

inclusion piPpi ∈ B1
. follows from (10). 

Thus, identities (11) and (12) reduce the question whether piPpjPpl ∈ B1
. to the 

problem whether piPpj−1Ppl ∈ B1
.. Repeated application of this argument finally 

yields an element of the form piPpiPpl .. This element is in B1
. since 

. piPpiPpl = piPpi · piPpl =
l

X · piPpl if i is odd
(I −X) · piPpl if i is even

and by (10).   
Let us have a closer look at the products piPpj ·pjPpl . in case i l= j . and j l= l .. 

Proposition 3 (a) If l > j > i . or j > i > l . or i > l > j . then 

. piPpjPpl = (−1)j−1(X − I )piPpl.

(c) If l > i > j . or j > l > i . or i > j > l . then 

. piPpjPpl = (−1)j−1XpiPpl.

(c) If i = l . and i l= j . then 

. piPpjPpi = (−1)j−iX(X − I )pi.

Proof Let j l= i, l .. Then 

.piPpjPpl = piP (pj−i + pj )Ppl − piPpj−1Ppl. (13)



Banach Algebras Generated by N Idempotents and Applications 79

If, moreover, j − i l= i, l ., then we conclude from (3) and (8) that 
piP (pj−i + pj )Ppl = 0. and, hence, 

.piPpjPpl = −piPpj−1Ppl. (14) 

Suppose now the conditions of assertion (a) to be satisfied. Then there is a smallest 
positive integer k such that (all computations modulo 2N )

. j l= i, l, j − 1 l= i, l, . . . , j − (k − l) l= i, l

but j − k = i .. Consequently, repeated application of (14) gives 

. piPpjPpl = (−1)k−1piPpj−(k−1)Ppl

whence by virtue of (13), 

. piPpjPpl = (−1)k−1(piP (pj−k + pj−(k−1))Ppl − piPpj−kPpl)

= (−1)k−1(piP (pi + pi+1)Ppl − piPpiPpl).

Observe that our assumptions imply that l l= i . and l l= i + 1. (otherwise j − (k− 1). 

would be equal to l). Thus 

. piPpjPpl =
l

(−1)k−1(pi(pi + pi+1)Ppl − piPpiPpl) if i is odd
(−1)k−1(piP (pi + pi+1)pl − piPpiPpl) if i is even

=
l

(−1)k−1(piPpl − piPpiPpl) if i is odd
(−1)k−1(−piPpiPpl) if i is even

=
l

(−1)k−1(I −X)piPpl if i is odd
(−1)k−1(−1)(I −X)piPpiPpl if i is even

(again take into account (10)). Replacing k by j − i . yields assertion (a). The proof 
for (b) and (c) is analogous.   

4.3 Localization, and Identification of the Local Algebras 

The element X belongs to the center of the algebra B0
. (Proposition 1) and thus 

to the center of B. itself. Hence, the smallest closed subalgebra C. of B. which 
contains the identity element I and the element X is in the center of B., and 
this offers the possibility of localizing B. over C. by the local principle of Allan 
and Douglas (Theorem 2). It is well known that the maximal ideal space of the 
singly (by X) generated Banach algebra C. is homeomorphic to the spectrum σC(X). 

of its generator (see [12], 15.3.6) and that under this homeomorphism the point
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x ∈ σC(X). corresponds to the smallest closed ideal of C. which contains X− xI .. In  
accordance with Theorem 2, we introduce ideals Ix . in B. for all x ∈ σC(X).. 

Proposition 4 (a) If x ∈ σB(X)(⊆ σC(X)). then Ix l= B.. 
(b) If x ∈ σC(X) \ σB(X). then Ix = B.. 

For a proof see [18]. Thus, by Theorem 2, an element b ∈ B. is invertible if and 
only if the cosets b + Ix . are invertible for all x ∈ σB(X).. 

For x ∈ σB(X)., let  

. Bx := B/Ix

denote the local algebra associated with x and let

. ox : B→ Bx

be the canonical homomorphism. Let us remark once more that, by Proposition 4, 
each algebra Bx . contains at least two different elements (the zero and the identity). 
Our next goal is the explicit description of the local algebras Bx .. 

Proposition 5 If x ∈ σB(X) \ {0, 1}., then Bx . is isomorphic to C2N×2N
.. 

Proof Consider the image ox(B0). of the algebra B0
. in Bx .. Since each element of 

B0
. can be written in the form (9) and since 

. ox(X) = xox(I)

by definition, it follows that 

. ox(R(X)) = R(x)ox(I)

for each polynomial R. Consequently, we conclude that each element of ox(B0). is 
a complex linear combination of the elements 

. ox(pi) (i = 1, . . . , 2N) and ox(piPpj ) (i, j = 1, . . . , 2N, i l= j).

(15) 

Conversely, each linear combination of the elements (15) is in ox(B0).. Thus, 
ox(B0). is a finite dimensional linear space (of dimension ≤ (2N)2

.). In particular, 
ox(B0). is closed in Bx .. On the other hand, B0

. is dense in B. and, hence, ox(B0). is 
dense in ox(B) = Bx .. Thus, Bx = ox(B0)., and Bx . is a linear space of dimension 
≤ (2N)2

.. 
We claim that the dimension of Bx . is exactly (2N)2

. and that the elements (15) 
form a basis of this space. Given i, j = 1, . . . , 2N ., define aij ∈ Bx . by 

.aij =
⎧⎨
⎩

(−1)i−1(x − 1)−1ox(piPpj ) if i < j

(−1)i−1x−1ox(piPpj ) if i > j

ox(pi) if i = j.
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(This definition is correct since x l= 0. and x l= 1..) Proposition 3 implies that 

.aij akl = δjk · ail for all 1 ≤ i, j, k, l ≤ 2N. (16) 

We check (16), for example, in case j = k . and j > i > l .: 

. aij ajl = (−1)i−1(x − 1)−1ox(piPpj ) · (−1)j−1x−1ox(pjPpl)

= (−1)i−1(−1)j−1x−1(x − 1)−1ox(piPpjPpl)

= (−1)i−1(−1)j−1x−1(x − 1)−1ox((−1)j−1(X − I )piPpl)

= (−1)i−1x−1ox(piPpl) = ail .

The other cases can be disposed of analogously. 
Now suppose the elements aij . are linearly dependent. Then there are numbers 

cij . with 

.

2N7
i,j=1

cij aij = 0 (17) 

but ci0j0 l= 0. for certain i0, j0 .. Multiplying (17) from the left by aki0 . and from the 
right by aj0k . yields that 

. ci0j0aki0ai0j0aj0k = ci0j0akk = 0

and hence, akk = 0. for all k = 1, . . . , 2N .. Consequently, 

. ox(I) = ox

ll
2N7
k=1

pk

l
=

2N7
k=1

akk = ox(0)

which contradicts Proposition 4(a) (see also the remark following this proposition). 
Thus, the elements (aij )

2N
i,j=1 . are linearly independent. It follows that so are also 

the elements (15), and therefore both sets of elements form a basis of Bx .. Finally, it 
is immediate from (16) that the mapping 

. yx : (aij )
2N
i,j=1 → C2N×2N, aij l→ Eij ,

where Eij . refers to the 2N × 2N . matrix where i, j . entry is 1 and all other entries of 
which are zero, extends to an algebra isomorphism from Bx . onto C2N×2N

..   
Here are the images of the generating elements of the algebra B. under the 

homomorphism Fx := yx ◦ox : B→ C2N×2N
..
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Corollary 1 Let x ∈ σB(X) \ {0, 1}.. Then 

.Fx(pi) = diag(0, . . . , 0, 1, 0, . . . , 0), (18) 

the 1 standing at the ith place, and 

. Fx(P ) = diag(1,−1, 1,−1, . . . , 1,−1)×

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x x − 1 x − 1 x − 1 . . . x − 1 x − 1
x x − 1 x − 1 x − 1 . . . x − 1 x − 1
x x x x − 1 . . . x − 1 x − 1
x x x x − 1 . . . x − 1 x − 1
...

...
...

...
. . .

...
...

x x x x . . . x x − 1
x x x x . . . x x − 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (19) 

Proof To verify (18) recall that ox(pi) = aii ., and to get (19) observe that 

. Fx(P ) =Fx

⎛
⎝ 2N7

i,j=1

piPpj

⎞
⎠

=(yx ◦ox)

⎛
⎜⎜⎝

2N7
j, j = 1
i < j

piPpj

⎞
⎟⎟⎠+ (yx ◦ox)

⎛
⎜⎜⎝

2N7
j, j = 1
i > j

piPpj

⎞
⎟⎟⎠

+ (yx ◦ox)

⎛
⎝ 2N7

j=1

piPpi

⎞
⎠

=yx

⎛
⎜⎜⎝

2N7
i, j = 1
i < j

(−1)i−1(x − 1)aij

⎞
⎟⎟⎠+yx

⎛
⎜⎜⎝

2N7
i, j = 1
i > j

(−1)i−1xaij

⎞
⎟⎟⎠

+ (yx ◦ox)

⎛
⎝ 2N7

j=1

piPpi

⎞
⎠

and take into account (10).   
Our next subject is the local algebras Bx . associated with the points in σB(X) ∩

{0, 1}.. These algebras will not be identified completely; we will only show that all 
irreducible representations are one-dimensional and will compute them. 

Proposition 6 If x ∈ σB(X) ∩ {0, 1}. then Bx . is an FN+1
2 .-algebra.
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Proof Instead of working with the polynomial 

. FN+1
2 (a, b) = (ab − ba)N+1

in two variables, which is non-linear, let us consider the polynomial 

. F
(N+1)
2 (a1, b1, . . . , aN+1, bN+1) :=

N+1ll
k=1

(akbk − bkak)

in 2(N+1).variables, which is linear in each variable. Notice that if Bx . is an F
(N+1)
2 .-

algebra, then it is also and FN+1
2 .-algebra. 

Since BX . is a linear space (recall the proof of Proposition 5) and since F
(N+1)
2 . is 

multilinear, it remains to prove that 

. 

N+1ll
k=1

(akbk − bkak) = 0

for all choices of cosets ak, bk . (k = 1, . . . , N + 1.) among the (possible) basis 
elements of the algebra Bx .: 

. ox(pi) (i = 1, . . . , 2N) and ox(piPpj ) (i, j = 1, . . . , 2N, i l= j).

Proposition 3 entails that each commutant akbk − bkak . can be written as 

. ckox(pikPpjk
)

where ik, jk ∈ {1, . . . , N + 1}. and ck ∈ C. can be zero. Hence, 

. 

N+1ll
k=1

(akbk − bkak) = cox

ll
N+1ll
k=1

pikPpjk

l
.

Since the partition of unity into projections (pi). consists of 2N elements, there are 
two of the elements pik . and pjk

. with k = 1, . . . , N + 1. which coincide. Thus, lN+1
k=1 pikPpjk

. contains at least one subproduct of the form 

. piPpl1Ppl2 . . . Pplr Ppi

with r ≥ 1., and invoking Proposition 3 once more, one easily gets 

.ox(piPpl1Ppl2 . . . Pplr Ppi) = 0.
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Thus, 

. ox

ll
N+1ll
k=1

pikPpjk

l
= 0 for x ∈ σB(X) ∩ {0, 1},

which concludes the proof.   
By Theorem 3 (extended version), the algebras Bx . possess matrix symbols of 

order 1, i.e. scalar-valued symbols. Since each algebra homomorphism 

. y : Bx → C

gives rise to an algebra homomorphism y ◦ ox : B → C., we proceed with 
determining the one-dimensional representations of the algebra B.. 

Clearly, each homomorphism G : B → C. maps idempotents to idempotents. 
Thus, if p ∈ B. is idempotent, then G(p). is either 0 or 1. Moreover, since G(I) = 1. 

for each non-zero homomorphism G, we conclude that, given a partition of unity 
into projections (pi)

2N
i=1 ., there is an i0 . such that G(pi0) = 1. and G(pi) = 0. for 

all i l= i0 .. Hence, the restriction of a non-zero homomorphism G : B → C. to 
the set {P, p1, p2, . . . , p2N }. coincides with one of the following mappings Gn . with 
n ∈ {1, 2, . . . , 4N}.: 

.

G4m(pi) =
l

1 if i = 2m

0 if i l= 2m,
G4m(P ) = 0,

G4m−1(pi) =
l

1 if i = 2m

0 if i l= 2m,
G4m−1(P ) = 1,

G4m−2(pi) =
l

1 if i = 2m− 1
0 if i l= 2m− 1,

G4m−2(P ) = 1,

G4m−3(pi) =
l

1 if i = 2m− 1
0 if i l= 2m− 1,

G4m−3(P ) = 0,

(20) 

where m = 1, . . . , N .. Set 

. Y :=
N7

i=1

(p2i−1P + p2iQ)+
2N7
i=1

(2i − 1)pi.

Proposition 7 If m ∈ σB(Y ) ∩ {1, 2, . . . , 4N}. then the mapping 

. Gm : {P, p1, p2, . . . , p2N } → C,

given by (20), extends to an algebra homomorphism from B. onto C..
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Proof First of all notice that if Gm . extends to an algebra homomorphism, then 

.Gm(Y ) = m. (21) 

We claim that, for m ∈ σB(Y ) ∩ {1, 2, . . . , 4N}. and x ∈ σB(X) \ {0, 1}., 

.m /∈ σBx (ox(Y )). (22) 

What we have to prove is, by Corollary 1, that the 2N × 2N . matrices 

. (yx ◦ox)(Y )− diag(m,m, . . . , m) =

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x x − 1 x − 1 x − 1 . . . x − 1 x − 1
x x x − 1 x − 1 . . . x − 1 x − 1
x x x x − 1 . . . x − 1 x − 1
x x x x . . . x − 1 x − 1
...

...
...

...
. . .

...
...

x x x x . . . x x − 1
x x x x . . . x x

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ diag(1 −m, 3 −m, . . . , 4N − 1 −m)

are invertible. For this goal we compute the determinant of the slightly more general 
M ×M . matrix 

.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x + λ1 x − 1 x − 1 x − 1 . . . x − 1 x − 1
x x + λ2 x − 1 x − 1 . . . x − 1 x − 1
x x x + λ3 x − 1 . . . x − 1 x − 1
x x x x + λ4 . . . x − 1 x − 1
...

...
...

...
. . .

...
...

x x x x . . . x + λM−1 x − 1
x x x x . . . x x + λM

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(23) 

where λ1, . . . , λM, x ∈ C.. Consider x as being variable and denote the determinant 
of the matrix (23) by D(x).. Subtracting in (23) the first row from all other rows, 
and then the last column from all other columns, one gets a matrix the 1, N . entry 
of which is x − 1. while all other entries are independent of x. Thus, D(x). is a 
polynomial of first degree in x and, since D(0) = lM

i=1 λi . and D(1) = lM
i=1(1 +

λi)., one has 

.D(x) = x

Mll
i=1

(1 + λi)+ (1 − x)

Mll
i=1

λi. (24)
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Now let m ∈ {1, . . . , 4N}., M = 2N ., and λi = 2i − 1 −m. for i = 1, . . . , 2N .. If  m 
is odd, then one of the numbers λi . is equal to zero, but 

. 

Mll
i=1

(1 + λi) l= 0.

If m is even, then one of the numbers 1 + λi . is zero, but 

. 

Mll
i=1

λi l= 0.

Hence, in any case, 

. x

Mll
i=1

(1 + λi)+ (1 − x)

Mll
i=1

λi l= 0

whenever x /∈ {0, 1}.. This proves our claim (22). 
Now the assertion can be obtained as follows. Let m ∈ σB(Y ) ∩ {1, 2, . . . , 4N}.. 

Then, by the local principle, 

. m ∈
l

x∈σB(X)

σBx (ox(Y ))

whereas, by (22), 

. m /∈
l

x∈σB(X)\{0,1}
σBx (ox(Y )).

Hence, 

. m ∈
l

x∈σB(X)∩{0,1}
σBx (ox(Y )).

But the algebras Bx . with x ∈ σB(X) ∩ {0, 1}. possess a scalar-valued symbol 
(Proposition 6 and Theorem 3). Thus, if m ∈ σBx0

(ox0(Y )). with a certain x0 ∈
σB(X) ∩ {0, 1}. then there is an algebra homomorphism G'

. from Bx0 . onto C. with 
G'(ox0(Y )) = m.. Then G := G' ◦ ox0 . is an algebra homomorphism from B. onto 
C. with G(Y) = m.. The restriction of G to the set {P, p1, . . . , p2N }. coincides with 
one of the mappings Gn . introduced in (20) and, by (21), this restriction is just Gm .. 
In other words, Gm . extends to an (evidently continuous) algebra homomorphism 
from B. onto C..   

For m ∈ σB(Y )∩{1, 2, . . . , 4N}., let us denote the extension of Gm . by Gm . again. 
One easily checks that
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. Gm(X) =
l

0 if m is odd
1 if m is even.

Thus, if 0 ∈ σB(X). and m is odd, then the local ideal I0 . lies in the kernel of Gm . and 
consequently, for each A ∈ B. the number Gm(A). depends on the coset o0(A). only. 
So the quotient mapping 

. G'
m : B0 → C, o0(A) l→ Gm(A)

is correctly defined, and it is an algebra homomorphism from B0 . onto C.. Analo-
gously, if 0 ∈ σB(X). and m is even, then

. G'
m : B1 → C, o1(A) l→ Gm(A)

is a correctly defined and non-trivial algebra homomorphism. 

Proposition 8 (a) If 0 ∈ σB(X). then the set {Gm}., consisting of all mappings Gm . 

with m ∈ σB(Y )∩ {1, 2, . . . , 4N}. and m odd, forms a scalar-valued symbol for B0 .. 
(b) If 1 ∈ σB(X). then the set {Gm}., consisting of all mappings Gm . with m ∈
σB(Y ) ∩ {1, 2, . . . , 4N}. and m even, forms a scalar-valued symbol for B1 .. 

Proof The mappings G'
m . with m odd (even) are the only non-trivial algebra 

homomorphisms from B0 . (resp. B1 .) into  C.. But since the algebras B0 . (resp. B1 .) 
possess a scalar-valued symbol by Theorem 3 and Proposition 6, we conclude that 
for all A ∈ B. the coset o0(A). (resp. o1(A).) is invertible whenever all 

. G'
m(o0(A)) = Gm(A)

with m odd (resp. even) are inv ertible.   

4.4 The N Projections T heorem

Now we are in a position to state our main result. 

Theorem 9 Let A. be a Banach algebra with identity I . Let p1, p2, . . . , p2N . and 
P be nonzero elements o fA. satisfying 

. pi · pj = δijpi for all i, j and p1 + p2 + · · · + p2N = I,

where δij . is the Kronecker delta, and 

. P(p2i−1 + p2i )P = (p2i−1 + p2i )P and Q(p2i + p2i+1)Q = p2i + p2i+1)Q

for all i = 1, . . . , N ., where 

.Q := I − P and p2N+1 := p1.
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Let further B. stand for the smallest closed subalgebra of A. containing the elements 
P and p1, . . . , p2N .. Then the following assertions hold. 

(a) If x ∈ σB(X) \ {0, 1}. where 

. X =
N7

i=1

(p2i−1Pp2i−1 + p2iQp2i ),

then the mapping Fx : {P, p1, . . . , p2N } → C2N×2N
. given by 

. Fx(pi) = diag(0, . . . , 0, 1, 0, . . . , 0),

with the 1 standing at the ith place, and 

. Fx(P ) = diag(1,−1, 1,−1, . . . , 1,−1)×

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x x − 1 x − 1 x − 1 . . . x − 1 x − 1
x x − 1 x − 1 x − 1 . . . x − 1 x − 1
x x x x − 1 . . . x − 1 x − 1
x x x x − 1 . . . x − 1 x − 1
...

...
...

...
. . .

...
...

x x x x . . . x x − 1
x x x x . . . x x − 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

extends to a continuous algebra homomorphism from B. onto C2N×2N
.. 

(b) If m ∈ σB(Y ) ∩ {1, . . . , 4N}. where 

. Y :=
N7

i=1

(p2i−1P + p2iQ)+
2N7
i=1

(2i − 1)pi,

then the mapping Gm : {P, p1, . . . , p2N } → C. defined by 

. 

G4m(pi) =
l

1 if i = 2m

0 if i l= 2m,
G4m(P ) = 0,

G4m−1(pi) =
l

1 if i = 2m

0 if i l= 2m,
G4m−1(P ) = 1,

G4m−2(pi) =
l

1 if i = 2m− 1
0 if i l= 2m− 1,

G4m−2(P ) = 1,

G4m−3(pi) =
l

1 if i = 2m− 1
0 if i l= 2m− 1,

G4m−3(P ) = 0

where m = 1, . . . , N ., extends to a continuous algebra homomorphism from B. 

onto C..
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(c) An element B ∈ B. is invertible in B. if and only if the matrices Fx(B). are 
invertible for all x ∈ σB(X) \ {0, 1}. and the numbers Gm(B). are non-zero for all 
m ∈ σB(Y ) ∩ {1, . . . , 4N}.. 

(d) An element B ∈ B. is invertible in A. if and only if the matrices Fx(B). are 
invertible for all x ∈ σA(X) \ {0, 1}. and the numbers Gm(B). are non-zero for all 
m ∈ σA(Y ) ∩ {1, . . . , 4N}.. 
Proof The proof of assertions (a), (b) and (c) is immediate from the local principle 
in combination with the description of the local algebras given in the preceding 
subsection. Concerning the continuity of the mappings Fx . and Gm . we refer to a 
general result by Johnson (see, e.g., [28], Chapter 6, Theorem 2.65) stating that an 
algebra homomorphism from a Banach algebra onto a semi-simple Banach algebra 
is always continuous. 

For a proof of assertion (d) recall that the algebra B0
. is a (2N)2

. dimensional 
module over its center. Thus, Corollary 1.2 in [22] tells us that there is a set {νt }., 
t ∈ T ., of representations of B. such that Im νt = Cl×l

. with l = l(t) ≤ 2N . and such 
that an element B of B. is invertible in A. if and only if det νt (B) l= 0. for all t ∈ T .. 
The very same arguments as in the proof of assertion (c) entail that each of these 
representations is of the form Fx . (with an x ∈ C\{0, 1}.) as defined in Corollary 1 or 
Gm . (with an m ∈ {1, 2, . . . , 4N}.) as defined after Proposition 6. Hence, there exist 
two sets ξ = ξ(A,B) ⊂ C \ {0, 1}. and μ = μ(A,B) ⊆ {1, 2, . . . , 4N}. such that 

.σA(B) =
l
x∈ξ

σ (Fx(B)) ∪ {Gm(B) : m ∈ μ} (25) 

for all B ∈ B.. We claim that ξ = σA(X) \ {0, 1}. and μ = σA(Y ) ∩ {1, . . . , 4N}.. 
Since Gm(X) ∈ {0, 1}. and ξ ∩ {0, 1} = ∅., one has 

.σA(X)\{0, 1} =
l
x∈ξ

σ (Fx(X))∪{Gm(X) : m ∈ μ}\{0, 1} =
l
x∈ξ

{x} = ξ. (26) 

For the second claim note that, for any λ ∈ C., the matrix Fx(Y −λI). coincides with 
the matrix (21) with the λi . in (21) replaced by 2i−1−λ.. It follows from the explicit 
form (24) of the determinant of this matrix that every eigenvalue λ. of Fx(Y ). solves 
the equation 

. x

2Nll
i=1

(2i − λ)+ (1 − x)

2Nll
i=1

(2i − 1 − λ) = 0.

But, if x /∈ {0, 1}., then σ(Fx(Y )) ∩ {1, 2, . . . , 2N} = ∅.. Thus, 

.σA(Y )∩{1, . . . , 4N} = {Gm(Y ) : m ∈ μ}∩{1, . . . , 4N} = {m}m∈μ = μ. (27) 

Now assertion (d) follows immediately from (25), (26) and (27).   
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Observe that assertion (d) is evident in case the algebra B. is inverse closed in A.. 
However, this is not always satisfied as the following example indicates. 

Example Let T. be the unit circle {t ∈ C : |t | = 1}. and consider the algebra A. of 
all continuous 2 × 2. matrix functions on T.. If  t denotes the identical mapping of T. 
then 

. P =
(

t 1 − t

t 1 − t

)
, p1 =

(
1 0
0 0

)
, and p2 =

(
0 0
0 1

)

are elements of A. which satisfy the assumptions of Theorem 9 (with N = 1.). The 
element 

. X = p1Pp1 + p2(I − P)p2 =
(

t 0
0 t

)

is invertible in A. but not invertible in B. since the latter algebra consists of matrix 
functions holomorphic in the unit disk only.   

In this connection, let us emphasize an evident consequence of assertions (c) and 
(d) of the previous theorem. 

Corollary 2 If σB(X) = σA(X).and σB(Y ) = σA(Y )., then the algebra B. is inverse 
closed in A.. 

The following additional assertions are often useful. 

Proposition 9 (a) If 0 /∈ σB(X). and 1 /∈ σB(X). then σB(Y ) ∩ {1, . . . , 4N} = ∅.. 
(b) If 0 ∈ σB(X). and 1 ∈ σB(X)., and if both points are not isolated in σB(X)., then 
the family (Fx). with x ∈ σB(X). is a matrix symbol for B.. 
(c) If 0 /∈ σA(X). and 1 /∈ σA(X). then σA(Y ) ∩ {1, . . . , 4N} = ∅.. 
(d) If 0 ∈ σA(X). and 1 ∈ σA(X)., and if both points are not isolated in σA(X)., 
then the family (Fx). with x ∈ σA(X). is a matrix symbol for the invertibility of the 
elements of B. in the algebra A.. 

Proof (a) Observe that Gm(X) ∈ {0, 1}. in any case. Thus, if 

. σB(X) ∩ {0, 1} = ∅,

one-dimensional representations cannot exist. 
(b) Let M be a mapping from C. into the set of all subsets of C.. Given a sequence 

(xn) ⊆ C.with xn → 0. as n →∞., we consider the set L(xn).of all limiting points of 
all sequences (λxn). with λxn ∈ M(xn)., and we define the limiting set limx→0 M(x). 

as ∪L(xn). where the union is taken over all sequences (xn). with xn → 0. but xn l= 0. 

for all n. Analogously, we define limx→1 M(x)..
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The function x l→ Fx(Y ). is continuous on σB(X).. Due to the continuous 
dependence of the eigenvalues of a matrix on the matrix itself (see [27], Appendix 
D), one has 

. σ(F0(Y )) = lim
x→0

σ(Fx(Y ))

and consequently, 

.σ(F0(Y )) = lim
x→0

σ(ox(Y )). (28) 

We claim that 

. lim
x→0

σ(ox(Y )) ⊆ σ(o0(Y )). (29) 

To prove (29), we need the following supplement to the local principle. Let the 
notation be as in Theorem 2.   
Proposition 10 Let a ∈ A. and suppose a + Ix . to be invertible for some x. Then 
there is an open neighborhood U of x such that the cosets a + Iy . are invertible and 

. ll(a + Iy)
−1ll ≤ 4ll(a + Ix)

−1ll for all y ∈ U.

Proof Set φx(a) := a + Ix . and let φx(a). be invertible. Then there is a b ∈ A. such 
that 

. φx(ab − e) = φx(ba − e) = 0.

As shown in [1], or [6], Theorem 1.34, or [25], Theorem 1.5, the mappings 

. y l→ llφy(ab − e)ll and y l→ llφy(ba − e)ll,

defined on the maximal ideal space of C., are upper semi-continuous. Hence 

. llφy(ab − e)ll < 1/2 and llφy(ba − e)ll < 1/2

for all maximal ideals y in a certain neighborhood U '
. of x. Since 

. φy(a)φy(b) = φy(e)+ φy(ab − e) and φy(b)φy(a) = φy(e)+ φy(ba − e),

and since φy(e). is the identity element inA/Iy ., this implies (Neumann’s series) that 
φy(a). is invertible inA/Iy . and that 

.llφy(a)−1ll ≤ 2llφy(b)ll for all y ∈ U '.
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Invoking upper semi-continuity once more we get 

. llφy(b)ll ≤ 2llφx(b)ll = 2llφx(a)−1ll

for all y in a neighborhood U ''
. of x, which proves Proposition 10.   

Continuation of the Proof of Proposition 9 Now, in order to prove our claim (29), 
assume there are sequences (xn) ⊆ σB(X). and (λn). with λn ∈ σ(oxn(Y )). such that 
xn → 0., xn l= 0., λn → λ., but λ /∈ σ(o0(Y )).. Then o0(Y − λI). is invertible and, 
by Proposition 10, oxn(Y − λI). is invertible and 

. lloxn(Y − λI)−1ll ≤ 4llo0(Y − λI)−1ll

for all n large enough. Thus,

. dist(λ, σ (oxn(Y ))) ≥ 1

4llo0(Y − λI)−1ll ,

which contradicts our assumption since 

. |λ− λxn | ≥ dist(λ, σ (oxn(Y ))).

This proves our claim (29). 

From (28) and (29) we see that σ(F0(Y )) ⊆ σ(o0(Y )). and, analogously, 
σ(F1(Y )) ⊆ σ(o1(Y )).. Hence, 

. σ(F0(Y )) ∪ σ(F1(Y )) ⊆ σ(o0(Y )) ∪ σ(o1(Y )) ⊆ σB(Y ).

Evidently, 

. σ(F0(Y )) ∪ σ(F1(Y )) = {1, 2, . . . , 4N},

and consequently, 

. σB(Y ) ∩ {1, 2, . . . , 4N} = {1, 2, . . . , 4N}.

In other words, all possible one-dimensional representations occur. 
It remains to observe that, for each A ∈ B., the matrices F0(A). and F1(A). are 

triangular and that the diagonal of F0(A). equals (G1(A),G3(A), . . . ,G2N−1(A))., 
while the diagonal of F1(A). is (G2(A),G4(A), . . . ,G2N(A)).. 

The proof of assertions (c) and (d) can be given in a completely analogous 
manner.   
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5 Examples 

5.1 Abstract Analogues of Singular Integral Operators 

Let T be a non-empty proper subset of {1, 2, . . . , 2N}., set P := l
i∈T pi . and 

q := I−p .. Elements of the form A := pPp+q(∈ B). are called abstract analogues 
of singular integrals. Our first concern is to demonstrate how Theorem 9 can be used 
to compute the spectrum of abstract singular integrals in case the spectrum of X is 
known. From Theorem 9 we conclude that this spectrum equals 

. 
l

x∈σF(X)\{0,1}
σ(Fx(A)) ∪

l
m∈σF(Y )∩{1,...,2N}

σ(Gm(A)),

where F ∈ {A,B}. depends on whether we want to know the spectrum of A in F =
A. or in F = B.. Let us first determine the spectrum of Fx(A). for x ∈ σF(X)\ {0, 1}.. 
Let λ ∈ C. and set D(x) := det(Fx(A − AI)).. Further, let t, to ., and te . refer to the 
number of the elements of the sets T , T ∩{1, 3, . . . , 2N−1}., and T ∩{2, 4, . . . , 2N}., 
respectively. Also put υ := to − te .. Changing the rows and columns of Fx(A). in an 
appropriate way produces a matrix of the form 

.

(
F11 0
0 I

)
(30) 

where F11 . is a t × t . matrix and I is the (2N − t) × (2N − t). identity matrix. 
The determinant D(x). of (30) is a polynomial of first degree in x (see the proof of 
Proposition 7), and 

. D(0) = (−λ)to (1 − λ)te (1 − λ)2N−t , D(1) = (1 − λ)to (−λ)te (1 − λ)2N−t ,

the factors (1 − λ)2N−t
. coming from the lower right corner in (30) and the other 

factors resulting from the upper left one. Thus, 

. D(x) = (1 − λ)2N−t [x(1 − λ)to (−λ)te + (1 − x)(−λ)to (1 − λ)te ].

Depending on whether υ > 0., υ = 0., or  υ < 0., this equals 

. D(x) = (1 − λ)2N−t (1 − λ)te (−λ)te [x(1 − λ)υ + (1 − x)(−λ)υ ],
D(x) = (1 − λ)2N−t (1 − λ)to (−λ)to ,

D(x) = (1 − λ)2N−t (1 − λ)to (−λ)to [x(−λ)|υ| + (1 − x)(1 − λ)|υ|],

respectively. Thus, if υ = 0., σ(Fx(A)) = {0, 1}.. In case υ > 0., we have  

.x(1 − λ)υ + (1 − x)(−λ)υ = 0 (31)
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if and only if 

.

(
λ

λ− 1

)υ

= x

x − 1
(32) 

(observe that x l= 1. by assumption and that (31) cannot vanish if λ = 1.). Hence, on 
denoting by 

. ζ0(x), . . . , ζυ−1(x)

the υ . roots of x/(x − 1)., we infer form (32) that the spectrum of Fx(A). equals 

.{0, 1} ∪
l

ζ0(x)

ζ0(x)− 1
, . . . ,

ζυ−1(x)

ζυ−1(x)− 1

l
for te > 0, . (33) 

{1} ∪
l

ζ0(x) 
ζ0(x)− 1 

,  .  .  .  ,  
ζυ−1(x) 

ζυ−1 (x)− 1

l
for te = 0. (34) 

In the case υ < 0. we obtain analogously that σ(Fx(A)). is 

.{0, 1} ∪
l −1

ζ0(x)− 1
, . . . ,

−1

ζ|υ|−1(x)− 1

l
for to > 0, . (35) 

{1} ∪
l −1 

ζ0(x)− 1 
,  .  .  .  ,  

−1 

ζ|υ|−1(x )− 1

l
for to = 0. (36) 

Finally, it is evident that Gm(A) ∈ {0, 1}. for all m, and it is clear which value is 
actually assumed. 

The case where σF(X). is a logarithmic double spiral is of particular interest for 
applications. For δ ∈ R. and ν ∈ (0, 1)., put 

. Sδ,ν := {reiδ log re2πiν : r ∈ (0,∞)},
and given two distinct numbers z,w ∈ C., let  

. S(z, w; δ; ν) := {(wζ − z)/(ζ − 1) : ζ ∈ Sδ,ν} ∪ {z,w}.
If δ = 0., then Sδ,ν . is a ray and hence, S(z, w; δ, ν). is a circular arc between z and 
w, which degenerates to the line segment [z,w]. in case ν = 1/2.. If  δ l= 0., then 
Sδ,ν . is a logarithmic spiral and therefore S(z, w; δ; ν). is a double spiral wriggling 
out of z and scrolling up at w. We call a set a  logarithmic double spiral (between z 
and w) if it is of the form S(z, w; δ; ν). with some δ ∈ R. and ν ∈ (0, 1).. Notice that 
segments and circular arcs are logarithmic double spirals in this sense. 

Now suppose σF(X) = S(0, 1; δ; ν). and let x ∈ S(0, 1; δ; ν) \ {0, 1}.. Assume 
first that υ := to − te > 0. and te > 0.. Then σ(Fx(A)). is given by (33). If  

.x = reiδ log re2πiν/(reiδ log re2πiν − 1),
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then 

. x/(x − 1) = reiδ log re2πiν = reiδ log re2πi(ν+k)

and consequently, the υ . roots of ζ υ = x/(x − 1). are 

. ζk(x) = r1/υeiδ(log r)/υe2πi(ν+k)/υ = seiδ log se2πi(ν+k)/υ

where s := r1/υ
. and k = 0, . . . , υ − 1.. Thus, if  x traces out S(0, 1; δ; ν) \ {0, 1}. 

then ζk(x)/(ζk(x)−1). describes the logarithmic double spiral S(0, 1; δ; (ν+k)/υ)\
{0, 1}.. In the case where υ < 0. we similarly see that if x ranges ove r S(0, 1; δ; ν) \
{0, 1}. then −1/(ζk(x)− 1). moves along the logarithmic double spiral 

. S(1, 0; δ; (ν + k)/|υ|) \ {0, 1}.

Taking into account that spectra are closed we so obtain from (33)–(36) the 
following result, a concrete version of which was by means of slightly different 
methods already proved and explicitly stated in [9] (Theorem 2.2.2). 

Theorem 10 Let F. be A. or B..  I  f σF(X). is the logarithmic double spiral 
S(0, 1; δ; ν)., then the spectrum of A := pPp + q . in F. equals 

. {0, 1} for υ = 0,

υ−1l
k=0

S(0, 1; δ; (ν + k)/υ) for υ > 0, . (37) 

|υ|−1l
k=0 

S(0, 1; δ; (ν + k)/|υ|) for υ < 0. (38) 

Clearly, if σF(X). is a union of logarithmic spirals, 

. σF(X) =
l

δ∈[δ1,δ2]
S(0, 1; δ; ν),

then the conclusion of Theorem 10 remains true with (37) and (38) replaced by 

.

υ−1l
k=0

l
δ∈[δ1,δ2]

S(0, 1; δ; (ν + k)/υ) for υ > 0,

|υ|−1l
k=0

l
δ∈[δ1,δ2]

S(0, 1; δ; (ν + k)/|υ|) for υ < 0.
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5.2 Applications to Singular Integral Operators 

The results of this paper yield a symbol calculus for the closed algebra generated 
by singular integral operators with piecewise continuous coefficients. This symbol 
calculus reduces the question of deciding whether an operator is Fredholm to the 
problem of finding out whether a family of matrix functions consists of invertible 
matrices only. The simplest nontrivial operator in the algebra mentioned is the 
Cauchy singular integral operator Sr ., and we now apply the results of Sect. 5.1 to the 
operator Sr .. To avoid complications that go beyond the scope of this paper, we will 
not study the problem in full generality. We abstain in particular from considering 
the operators on spaces with general (Muckenhoupt) weights [5, 45]. 

A simple arc is an oriented rectifiable curve in the plane which is homeomorphic 
to a line segment. The union of finitely many simple arcs each pair of which have 
at most endpoints in common is called a composed curve. If  r . is a composed curve 
and z ∈ r ., then in a small neighborhood of z the curve is locally comprised by 
a finite number of simple arcs. This number is referred to as the multiplicity of z 
and is denoted by t := t (z).. At a point z of multiplicity t , the curve has to := to(z). 

outgoing and te := te(z). incoming simple arcs, where to ≥ 0., te ≥ 0., and to+te = t .. 
We call υ := υ(z) := to − te . the valency of the point z. 

Let r . be a composed curve. The curve r . is said to be a Carleson curve (or to be 
Ahlfors-David regular) if  

. sup
z∈Γ

sup
ε>0

|r(z, ε)|/ε < ∞

where |r(z, ε)|. denotes the (length) measure of the portion r(z, ε) := {ζ ∈ r :
|ζ − z| < ε}.. David [10, 11] proved that the Cauchy singular integral operator Sr ., 

. (Srf )(z) := lim
ε→0

1

πi

l
r\r(z,ε)

f (ζ )

ζ − z
dζ (z ∈ r),

is a well-defined and bounded operator on Lp(r). (1 < p < ∞.) if and only if r . is a 
Carleson curve (see also [33] for the “only if" portion). So let us henceforth suppose 
that r . is Carleson. Our aim is to determine the essential spectrum of Sr . on Lp(r)., 
i.e. to determine the set 

. σess(Sr) := {λ ∈ C : Sr − λI is not Fredholm on Lp(r)}.

Recall that an operator A ∈ L(Lp(r)). is Fredholm if and only if it is invertible 
modulo the ideal K(Lp(r)). of the compact operators, that is, if and only if the coset 
π(A) := A+K(Lp(r)). is invertible in the Calkin algebra L(Lp(r))/K(Lp(r)).. 

For a ∈ L∞(r)., let aI : Lp(r) → Lp(r). be the multiplication operator f l→
af .. We denote by C(r). the continuous functions on r . and by PC(r). the closure in 
L∞(r). of all piecewise constant functions on r ..
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An operator A ∈ L(Lp(r)). is said to be of local type if AcI − cA. is a compact 
operator for every c ∈ C(r).. Clearly, compact operators as well as multiplication 
operators are of local type. It is well known that Sr . is also of local type (see [20], 
Vol. I, Chap. 1, Theorem 4.3 and [3], Lemma 5.1). One can easily see that the set 
OLT. of all operators of local type is a closed subalgebra of L(Lp(r)). and that 
an operator A ∈ OLT. is Fredholm if and only if the coset π(A). is invertible in 
π(OLT) := OLT /K(Lp(r)).. For  z ∈ r ., let  Jz . be the smallest closed two-sided 
ideal of π(OLT). containing {π(cI) : c ∈ C(r), c(z) = 0}.. Put Az := π(OLT)/Jz . 

and denote the coset π(A)+ Jz . by πz(A).. Allan’s local principle (Theorem 2) with 
A := OLT. and C := {π(cI) : c ∈ C(r)}. so implies that an operator A ∈ OLT. is 
Fredholm on Lp(r). if and only if πz(A). is invertible inAz . for every z ∈ r .. 

The algebraAz . contains P := πz(Pr). and pj := πz(χj I ). (j = 1, . . . , t .) where 
Pr = (I + Sr)/2. and χ1, . . . , χt . are the characteristic functions of the t connected 
components of (r ∩ U) \ {z}. (U sufficiently small). Let Bz . stand for the closed 
subalgebra ofAz . which is generated by P, p1, p2, . . . , pt .. 

Clearly, Bz . is of much better structure thanAz .. It is obvious that p1, p2, . . . , pt . 

are idempotents whose sum is the identity and which satisfy pipj = δijpi .. 
Unfortunately, in general P is not an idempotent, by virtue of which Theorem 9 
is not immediately applicable. We therefore construct two other “local algebras” 
A∗

z ⊃ B∗z . and identify πz(Pr). as an abstract singular integral (in the sense of 
Sect. 5.1) in these algebras. 

A counter-clockwise oriented curve homeomorphic to a circle is called a Jordan 
curve. A composed curve consisting of a finite number N ≥ 2. of Jordan curves 
which have exactly one point in common is referred to as a flower. All points of a 
flower have valency zero, exactly one point, the center of the flower, has multiplicity 
2N , while the remaining points have multiplicity 2. 

Suppose r∗
. is both a flower and a Carleson curve. Denote the center of r∗

. by z, 
and let A∗

z . and B∗z . be the algebras that arise from the above construction with r∗
. 

in place of r .. If  ε > 0. is sufficiently small, then the connected component of the 
portion r∗(z, ε). containing z may be written in the form

.

Nl
i=1

(r∗
2i ∪ r∗

2i−1) (39) 

where r∗
2i . and r∗

2i−1 . (i = 1, . . . , N .) are outgoing and incoming simple arcs, 
respectively. The algebra B∗z . is generated by P := πz(Pr∗). and pj := πz(χj I ). 

(j = 1, . . . , 2N .) where χj . is the characteristic function of r∗
j .. One can show that 

now P is idempotent and that (3), (4) hold. Thus, Theorem 9 is applicable to the pair 
of algebrasA := A∗

z ., B := B∗z ., and we may use the results of Sect. 5.1 to compute 
the local spectrum of the singular integral operator 

.A :=
⎛
⎝7

j∈T

χj I

⎞
⎠ Pr∗

⎛
⎝7

j∈T

χj I

⎞
⎠+

⎛
⎝7

j /∈T

χj I

⎞
⎠ , (40)
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i.e. the spectrum of the abstract singular integral πz(A) = pPp + q ., where T is 
a nonempty proper subset of {1, 2, . . . , 2N}. (note that σA∗

z
πz(A) = σB∗z πz(A) =

{0, 1}. for T = {1, 2, . . . , 2N}.). 
What we need is the spectrum σA∗

z
(X). of 

. X :=
N7

i=1

(p2i−1Pp2i−1 + p2iQp2i ).

It is easily seen that 

. σA∗
z
(X) =

Nl
i=1

σA∗
z
(p2i−1Pp2i−1 + p2iQp2i ),

which reduces the problem to finding the local spectrum of singular integral 
operators with piecewise continuous coefficients on Carleson Jordan curves. These 
spectra were completely determined in [4]. In order to illustrate the basic phenom-
ena, let us for the sake of simplicity assume that the arcs r∗

j . of the flower may be 
parametrized as 

.r∗
j = {ζ = z+ reiφ(r)+bj (r)) : 0 ≤ r < ε} (j = 1, . . . , 2N) (41) 

where ε ∈ (0, 1)., φ . is a real-valued function of the form 

. φ(r) = h(log(− log r))(− log r)

with a function h ∈ C2(R). for which h, h', h'' . are bounded on R., and bj . are real-
valued functions in C1[0, ε]. such that 

. 0 ≤ b1(r) < b2(r) < · · · < b2N(r) < 2π for r ∈ (0, ε).

We remark that the ansatz h(log(− log r)). guarantees that rφ̇(r). is bounded for 
r ∈ (0, 1)., which in turn implies that r∗

. is a Carleson curve (see e.g. [4]). Clearly, 
every piecewise C1

. flower can be parametrized in this way with h = 0.. If  h and 
bl, . . . , b2N . are constant functions, then r . locally consists of 2N logarithmic spirals 
scrolling up at z. The choice

.h(x) = δ + μ sin x, bj (r) = bj = constant (42) 

gives 2N “oscillating spirals” terminating at z. In accordance with [4], the spirality 
indices δ−z . and δ+z . of r∗

. are defined by 

.δ−z = lim inf
x→∞ (h(x)+ h'(x)) (= lim inf

r→0
(−rφ̇(r))),
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δ+z = lim sup 
x→∞ 

(h(x)+ h'(x)) (= lim sup 
r→0 

(− rφ̇(r))).

In case h = 0., i.e. for piecewise C1
. flowers, we have δ−z = δ+z = 0.. If  h is as in

(42), then 

. δ−z = δ − |μ|√2, δ+z = δ + |μ|√2.

The symbol calculus of [4] implies that 

. σA∗
z
(p2i−1Pp2i−1 + p2iQp2i ) =

l
δ∈[δ−z ,δ+z ]

S(0, 1; δ; 1/p)

for every i = 1, . . . , N ., whence 

.σA∗
z
(X) =

l
δ∈[δ−z ,δ+z ]

S(0, 1; δ; 1/p). (43) 

The set on the right of (43) is a union of logarithmic double spirals; such sets were 
called skew spiralic horns in [4] and are logarithmic leaves with a separating point 
in the terminology of [5]. Clearly, for piecewise C1

. flowers or, more generally, for 
flowers whose spirality indices are both zero, the set (43) is a circular arc. 

Since the set (43) does not separate the complex plane (i.e., does not contain 
“holes”), a standard result from the theory of Banach algebras implies that 

. σA∗
z
(X) = σB∗z (X).

By a substar of the flower r∗
. we understand a set r . of the form r = ∪j∈T r∗

j . 

where the simple arcs r∗
j . are given by (39) and T is a non-empty subset of

{1, 2, . . . , 2N}.. Obviously, the operator Pr = (I + Sr)/2. may be identified with 
the singular integral operator (40). Thus, combining Theorem 10 (and the remark 
after it) with (43) we arrive at the following result for Sr = 2Pr − I .. 

Theorem 11 Let r∗
. be a Carleson flower with the center z and let r . be a substar 

of r∗
.. Denote the valency of z ∈ r . by v(z). and let δ−z , δ+z . be the spirality indices of 

z. Then the local spectra σBz (Sr). and σAz (Sr). of Sr . at z coincide and are equal to

.{−1, 1} if υ(z) = 0,

υ(z)−1l
k=0

l
δ∈[δ−z ,δ+z ]

S(−1, 1; δ; (1/p + k)/υ(z)) if υ(z) > 0,

|υ(z)|−1l
k=0

l
δ∈[δ−z ,δ+z ]

S(−1, 1; δ; (1/p + k)/|υ(z)|) if υ(z) < 0.
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We finally return to the case of an arbitrary composed Carleson curve r .. A point 
z ∈ r . is called a bud if there exists an ε > 0. such that the connected component of 

. r ∩ {ζ ∈ C : |ζ − z| < ε}

containing z is a substar of some Carleson flower. It is easily seen that composed 
Carleson curves which may locally be “parametrized by the radius” as i n (41) consist 
entirely of buds. We conjecture that every point of a composed Carleson curve is a 
bud; three of the authors are planning to devote a forthcoming paper to this problem. 
The following theorem is immediate from the preceding discussion. 

Theorem 12 Let r . be a composed Carleson curve each point of which is a bud. 
Then the essential spectrum of Sr . on Lp(r). is 

. σess(Sr) =
l
z∈r

σ(Sr)

where σ(Sr) := σAz (Sr) = σBz (Sr). is as in Theorem 11. 

6 Miscellanea 

6.1 Other Partitions of Unity into Projections 

Besides the (obvious) partition of unity into projections (pi)., there are other 
partitions in B.. Set, for example, 

. w2i = (p2i + p2i+1)Q and w2i−1 = (p2i−1 + p2i )P .

Proposition 11 The set (wi)
2n
i=1 . is a partition of unity into projections in B.. 

The consideration of this partition is motivated by [22]. To get another one, set 

. ai = p2i−1 + p2i

and 

. qi =
l

aiPai if i = 1, . . . , N

a2N+1−iQa2N+1−i if i = N + 1, . . . , 2N.
v

Proposition 12 The set (qi)
2n
i=1 . is a partition of unity into projections in B.. 

The proofs of the preceding propositions are straightforward.
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Clearly, the use of other partitions of unity into projections than (pi). yields other 
descriptions of the local algebras at points 

. x ∈ σB(X) \ {0, 1}.

We shall illustrate this for the partition (wi).. Here are the analogues of Proposi-
tions 2 and 3. 

Proposition 13 Considered as module over its center, the algebra B0
. is generated 

by the (2N)2
. elements (wi)

2N
i=1 . and (wiYwj )

2N
i,j=1 . with i l= j .. To be more precise, 

given A ∈ B0
., there are polynomials Rij . in X such that

.A =
2N7
i=1

Rii(X)wi +
2N7

i, j = 1
i l= j

Rij (X)wiYwj . (44) 

Proposition 14 (a) If l > j > i . or j > i > l . or i > l > j . then 

. wiYwjYwl = (X − I )wiYwl.

(b) If l > i > j . or j > l > i . or i > j > l . then 

. wiYwjYwl = XwiYwl.

(c) If i = l . and i l= j . then 

. wiYwjYwi = X(X − I )wi.

The proofs are omitted. 
As in the proof of Proposition 5 one can show that, for x ∈ σB(X) \ {0, 1}., the  

elements 

. bij =
⎧⎨
⎩

(x − 1)−1ox(wiYwj ) if i < j

x−1ox(wiYwj ) if i > j

ox(wi) if i = j

form a basis of the linear space Bx . which, moreover, satisfies bij bkl = δjkbil .. Thus, 
there is an algebra homomorphism 

. y '
x : Bx → C2N×2N

with y '
x(bij ) = Eij .. Set Hx = y '

x ◦ox .. Then 

.Hx(wi) = diag(0, . . . , 0, 1, 0, . . . , 0) (45)
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the 1 standing at the ith place, and 

.Hx(Y ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x x − 1 x − 1 x − 1 . . . x − 1 x − 1
x x x − 1 x − 1 . . . x − 1 x − 1
x x x x − 1 . . . x − 1 x − 1
x x x x . . . x − 1 x − 1
...

...
...

...
. . .

...
...

x x x x . . . x x − 1
x x x x . . . x x

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (46) 

Here is the analogue of Corollary 1. 

Corollary 3 Let x ∈ σB(X) \ {0, 1}.. Then 

. Hx(P ) = diag(1, 0, 1, 0, . . . , 1, 0),

and Hx(pi). is the matrix with (i − 1).st column 

. (1 − x, 1 − x, . . . , 1 − x,−x,−x, . . . ,−x),

ith column 

. (x − 1, x − 1, . . . , x − 1, x, x, . . . , x)

(the entries 1 − x . and x − 1. both appear i − 1. times), and all other columns are 
zero. 

Proof The proof is based on checking that P = lN
i=1 w2i−1 ., that 

. pi = (I −X)wi−1 +Xwi −
2N7
k = 1

k l= i − 1

wkYwi−1 +
2N7
k = 1
k l= i

wkYwi,

and on employing (45) and (46).   
We renounce to give an explicit formulation of Theorem 9 based on the partition 

(wi).. 

6.2 Other Indicator Elements 

The elements X and Y indicate which matrix representations of the algebra B. 

actually appear. While X is distinguished by the fact that it belongs to the center of
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B., there is some latitude to choose Y . For example, one can show that the element 

. Z := P +
2N7
i=1

2ipi

can play the role of Y in the determination of all one-dimensional representations. 
Indeed, consider the mappings Km . given by K2i (P ) = 0., K2i+1(P ) = 1., 

. K2i (pi) =
l

1 if i = j

0 if i l= j,
K2i+1(pi) =

l
1 if i = j

0 if i l= j,

where i = 1, . . . , 2N .. The analogue of Proposition 7 reads as follows. 

Proposition 15 If m ∈ σB(Z) ∩ {2, 3, 4, . . . , 4N + 1}. then the complex-valued 
mapping Km . defined on {P, p1, . . . , p2N }. extends to an algebra homomorphism 
from B. onto C.. 

The proof runs as that of Proposition 7. 
The following observation is often useful in order to determine the spectrum of 

X. For i = 1, 2, . . . , 2N . let Bi . denote the algebra 

. piBpi = {pibpi, b ∈ B}.

Proposition 16 If {0, 1} ⊆ σBi
(piXpi). for some i then σB(X) = σBi

(piXpi).. 

Proof Since (pi). is a partition of unity into projections and X is in the center of B., 
we have 

.σB(X) =
2Nl
j=1

σBj
(pjXpj ). (47) 

We claim that 

.σBj
(pjXpj ) \ {0, 1} = σBk

(pkXpk) \ {0, 1} (48) 

for all j, k = 1, . . . , 2N .. Indeed, let λ /∈ σBj
(pjXpj ).. Then there is an a in B. such 

that 

. pjapj (pjXpj − λpj ) = pj .

Multiplying this identity from the left hand side by pkPpj . and from the right hand 
side by pjPpk . with some k l= j . yields 

.pkPpjapj (pjXpj − λpj )pjPpk = pkPpjPpk
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and, by Proposition 3, 

. pkPpjapjPpk(pkXpk − λpk) = (−1)j−kX(X − I )pk.

The element pkXpk . lies in the center of the algebra Bk .. Thus, localizing Bk . over its 
smallest closed subalgebra which contains pk . and pkXpk . via Theorem 2 yields that 
at the point μ ∈ σBk

(pkXpk). (where oμ . refers to the canonical homomorphism 
from Bk . onto its local algebra at μ.) the following equality holds: 

. (μ− λ)oμ(pkPpjapjPpk) = (−1)j−kμ(μ− 1)oμ(I).

Thus, if μ /∈ {0, 1}. then μ− λ l= 0. and, hence, 

. λ /∈ σBk
(pkXpk) \ {0, 1}.

This gives our claim (48). Clearly, (48) in combination with (47) proves the 
assertion.   

6.3 The Two Projections Theorem 

If N = 1. in Theorem 9, then the partition (pi). consists of two elements p1 . and 
p2 . with p2 = I − p1 .. Moreover, the axioms (3) and (4) reduce to P 2 = P . and 
Q2 = Q., respectively. Thus, B. is nothing but the (general) algebra generated by 
two idempotents (P and p1 .) and the identity. 

Obviously, there are some differences between the specification of Theorem 9 
to the case N = 1. and Theorem 1. In case N = 1., set p := p1 . and q := P . in 
Theorem 1. 

The first difference concerns the indicator element for the one-dimensional 
representations. In Theorem 1, it is the element p + 2q ., whereas it is 

. Y = pq + (I − p)(I − q)+ P + 3(I − p) = 2pq + 4I − 3p − q

in Theorem 9, which seems to be much more complicated. But if Y is replaced by 
the element Z from preceding remark, then

. Z = q + 2p + 4(I − p) = q − 2p + 4I

which is as simple as P + 2q .. 
The second difference concerns the explicit form of the 2 × 2. matrices. In 

Theorem 1, the matrix associated with q at the point x ∈ σB(X) \ {0, 1}. is
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.

(
x

√
x(1 − x)√

x(1 − x) 1 − x

)
, (49) 

whereas the corresponding matrix from Theorem 9 is 

. 

(
x 1 − x

x 1 − x

)
.

But, for x ∈ C \ {0, 1}., 

. 

(
x

√
x(1 − x)√

x(1 − x) 1 − x

)
=

⎛
⎝ 4

l
x

1−x
0

0 4
l

1−x
x

⎞
⎠

(
x 1 − x

x 1 − x

)⎛
⎝ 4

l
1−x
x

0

0 4
l

x
1−x

⎞
⎠

and, moreover, 

. 

(
1 0
0 0

)
=

⎛
⎝ 4

l
x

1−x
0

0 4
l

1−x
x

⎞
⎠ (

1 0
0 0

) ⎛
⎝ 4

l
1−x
x

0

0 4
l

x
1−x

⎞
⎠

where 4
l

x
1−x

. is any number with 

. 

(
4

l
x

1 − x

)4

= x

1 − x
and 4

l
1 − x

x
is

(
4

l
x

1 − x

)−1

.

Thus, both representations are equivalent. 

6.4 Symmetric Representations in Case N > 1. 

In case N = 1., the 2N×2N . dimensional representations of pi . and P can be chosen 
to be symmetric (and even self-adjoint in case σB(X) ⊆ R., which is of particular 
interest in many applications) (compare the matrix (49)). This observation suggests 
the following question: Is there a symmetric representation in case N > 1., too? To 
be more precise, is there an invertible matrix D such that ag ain

.D−1Fx(pi)D = diag(0, . . . , 0, 1, 0, . . . , 0) = Fx(pi) (50) 

(which is desirable for symmetry) but, moreover, 

.D−1Fx(P )D = (D−1Fx(P )D)T (51) 

where T . marks the transposed matrix?
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In general, a matrix D with these properties does not exist in case N > 1.! Indeed, 
(50) involves that D itself is a diagonal matrix, s ay

. D = diag(d1, d2, . . . , d2N).

Then identity (51) yields for the 2, 1., the  4, 1., and the 4, 2. entry 

.d2d
−1
1 x = d1d

−1
2 (1 − x), . (52) 

d4d
−1 
1 x = d1d

−1 
4 (1 − x) , . (53) 

d4d
−1 
2 (−x) = d2d

−1 
4 (1 − x), (54) 

respectively. Identities (52) and (53) imply that 

. d2
2 = d2

4 ,

which contradicts (54). 

6.5 Coefficient Algebras 

Again let A. be a Banach algebra with identity I , let (pi)
2N
i=1 . be a partition of unity 

into projections and P be an idempotent in A. such that the axioms (3) and (4) 
hold. The smallest closed subalgebra of A. containing the partition (pi). as well as 
the element P will be denoted by B. again. Suppose G. is a closed subalgebra of A. 

containing I and having the property that

. pig = gpi and gP = Pg for all i = 1, . . . , 2N and g ∈ G.

The algebra G. is referred to as a coefficient algebra. As in [18], one can derive a 
version of Theorem 9 which provides us with an invertibility symbol for the smallest 
closed subalgebra C. of A. which contains the partition (pi .), the idempotent P , and 
the algebra G.. Here is the formulation of this version under the stronger condition 
that G. be a simple algebra. 

Theorem 13 Let C. be as above and let G. be simple. 
(a) If x ∈ σB(X) \ {0, 1}., then the mapping 

. Fx : {P, p1, . . . , p2N } ∪ G→ G2N×2N

given by 

.Fx(pi) = diag(0, . . . , 0, I, 0, . . . , 0),
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the I standing at the ith place ,

. Fx(P ) = diag(I,−I, I,−I, . . . , I,−I )×

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x x − 1 x − 1 x − 1 . . . x − 1 x − 1
x x − 1 x − 1 x − 1 . . . x − 1 x − 1
x x x x − 1 . . . x − 1 x − 1
x x x x − 1 . . . x − 1 x − 1
...

...
...

...
. . .

...
...

x x x x . . . x x − 1
x x x x . . . x x − 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Fx(g) = diag(g, g, . . . , g),

extends to a continuous algebra homomorphism from C. onto G2N×2N
.. 

(b) If m ∈ σB(Y ) ∩ {1, . . . , 4N}., then the mapping 

. Gm : {P, p1, . . . , p2N } ∪ G→ G

given by 

. 

G4m(pi) =
l

I if i = 2m

0 if i l= 2m,
G4m(P ) = 0,

G4m−1(pi) =
l

I if i = 2m

0 if i l= 2m,
G4m−1(P ) = I,

G4m−2(pi) =
l

I if i = 2m− 1
0 if i l= 2m− 1,

G4m−2(P ) = I,

G4m−3(pi) =
l

I if i = 2m− 1
0 if i l= 2m− 1,

G4m−3(P ) = 0,

where m = 1, . . . , N ., and by Gm(g) = g . extends to a continuous algebra 
homomorphism from C. onto G.. 

(c) An element C ∈ C. is invertible in C. if and only if the matrices Fx(C). are 
invertible for all x ∈ σB(X) \ {0, 1}. and the elements Gm(C). are invertible for all 
m ∈ σB(Y ) ∩ {1, . . . , 4N}.. 

(d) An element C ∈ C. is invertible in A. if and only if the matrices Fx(C). are 
invertible for all x ∈ σA(X) \ {0, 1}. and the elements Gm(C). are invertible for all 
m ∈ σA(Y ) ∩ {1, . . . , 4N}.. 

Observe that the conditions of the theorem are satisfied if, for example, G. is the 
algebra Cn×n

. which yields just the matrix version of Theorem 9.
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M-Local Type Conditions for the 
C∗-Crossed Product and Local 
Trajectories 
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Dedicated to Professor Yuri Karlovich on the occasion of his 
75th birthday. 

Abstract The local trajectories method establishes invertibility in algebras 
B = alg(A, UG). for a unital C∗

.-algebra A. with a non-trivial center and a unitary 
group Ug ., g ∈ G., with G a discrete group, assuming that G is amenable and the
action a l→ UgaU∗

g . is topologically free. It is applicable in particular to C∗
.-algebras 

associated with convolution type operators with amenable groups of shifts. We 
introduce here an M-local type condition that allows to establish an isomorphism 
between B. and a C∗

.-crossed product, which is fundamental for the local trajectories 
method to work. We replace amenability of G by the more general condition that 
the action is amenable. The influence of the structure of the fixed points of the 
group action is analysed and a condition is introduced that applies when the action 
is not topologically free. IfA. is commutative, the referred conditions are related to 
the subalgebra alg(UG). yielding, in particular, a sufficient condition that depends 
essentially on UG .. It is shown that in π(B) = alg(π(A), π(UG))., with π . the local 
trajectories representation, the M-local type condition is satisfied, which allows 
establishing the isomorphism essential for the local trajectories method. 

1 Introduction 

The study of invertibility criteria in algebras of operators plays an important role in 
operator theory, with wide applications in many areas. One approach that has been 
fruitful is to use suitable families of representations, so that to reduce to invertibility 
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of the representatives in ’nicer’, so-called local, algebras. The Allan-Douglas local 
principle applies to C∗

.-algebras A.with a non-trivial center, in that if Z. is a central 
subalgebra then using the isomorphism Z ∼= C(M). given by Gelfand theory, with 
M the maximal ideal space ofZ., we have local algebras 

. Am = A/Jm, πm : A→ Am, m ∈ M,

where Jm . is the closed *-ideal of A. generated by m, πm . is the quotient map, and in 
this case, a ∈ A. is invertible in A. if, and only if, πm(a). is invertible in Am . for all 
m ∈ M .. 

In this paper, we are interested in the case when we have a unital C∗
.-algebra of 

operators A., a discrete group G and a group of unitary operators UG . defining an 
action of G on A., that is, if we have a C∗

.-dynamical system. One is then bound to 
study invertibility in the algebra of operators generated by A. and Ug ., g ∈ G., 

. B := alg(A, UG), with A ⊂ B(H), U : G → B(H) unitary,

with B(H). being the C∗
.-algebra of all bounded linear operators acting on some 

Hilbert space H . The issue is that even when A. is commutative, B. typically has a 
trivial center, so local principles do not apply directly. 

The study of C∗
.-algebras of operators associated with C∗

.-dynamical systems 
was developed by Antonevich when the initial C∗

.-algebra is commutative and the 
group is subexponential or admissible (see [3, 4]). The extension of the Allan-
Douglas local principle to C∗

.-algebras induced by an action of a discrete amenable 
group was developed by Karlovich [16, 18], relying on a given arbitrary central 
subalgebra of A. and representations of C∗

.-crossed product algebras, originating 
what we call the local trajectories method (see below for details). An alternative 
approach was also developed by Antonevich, Lebedev, Brenner (see [5] and 
references therein). 

The local trajectories method gives a powerful machinery for studying invertibil-
ity and Fredholmness in C∗

.-algebras of nonlocal type operators with discontinuous 
data. A first example of this application can be found in the paper by Karlovich 
[17] in which he analysed the Fredholm theory of convolution type operators with 
discrete groups of displacements and coefficients admitting discontinuities of semi 
almost periodic type. It has also been applied in the Fredholm analysis of C∗

.-
algebras with amenable groups of shifts, algebras of convolution type operators with 
oscillating coefficients, algebras of singular integral operators with piecewise quasi-
continuous and semi almost periodic coefficients. Examples of these applications 
can be found for instance in [8–11, 17, 21]. 

More precisely, the local trajectories method is applicable to study invertibility 
in C∗

.-algebras of the form B = alg(A, UG)., where A ⊂ B(H). is a C∗
.-algebra 

with non-trivial center and UG := U(G)., where U : G → B(H). is a unitary 
representation of an amenable discrete group G. We assume that we have an action 
α : G → Aut(A). given by αg(a) = UgaU∗

g ., so we have a dynamical system 
(A,G, α)., with (id, U). a covariant representation on H , and we can consider the
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crossed product algebra A xα G.. We assume that G also acts on a given central 
subalgebraZ ∼= C(M) ⊂ A., so that we have an induced action ofG on the maximal 
ideal space M .

The idea behind the local trajectories method is to consider first localization in 
A. as in Allan-Douglas and then to consider the associated regular representations 
of A xα G. on l2 .-spaces. If we let o. be the set of orbits of the action on M , 
then for points in the same orbit the respective regular representations are unitarily 
equivalent, so the local trajectories representations reduce to a family of regular 
representations {πω}ω∈o . of the crossed product algebra Axα G.. (We review these 
definitions in Sect. 3.) 

In order to study invertibility in B. through this family of representations, it is 
therefore a fundamental step to establish an isomorphism between the algebra B. 

and the crossed product A xα G.. Conditions for this isomorphism, as well as for 
the faithfulness of the local trajectories family, typically assume that the group G 
is amenable. The approaches in [4, 5, 16, 18] rely on proving suitable isomorphism 
theorems giving sufficient conditions namely through the set of fixed points and the 
crucial notion of a topologically free action (see also [7]). 

In the setting of local trajectories, following [18], the notion of being topologi-
cally free relies on the topology of the pure state space. If we let PA . and PZ . be the 
classes of pure states of A. and Z., then since Z ∼= C(M).,  we  have PZ ∼= Ẑ ∼= M ., 
and since Z. is central, there is a well-defined, surjective, restriction map 

. ψ : PA → PZ ∼= Ẑ ∼= M.

Then the action is said to be topologically free if for any finite set G0 ⊂ G., and for 
any non-empty open set W ⊂ PA ., there exists m ∈ ψ(W). with βg(m) /= m. for all 
g /= e ∈ G0 ., with β : G × M → M . the induced action on M; this is referred to as 
condition (A3) (see Sect. 3). 

The main result in [18] (see also Theorem 1) can then be written as: 
Local Trajectories Method: If G is amenable and the action is topologically free, 

then B ∼= A xα G. and the family {πω}ω∈o . is faithful, so that b ∈ B. is invertible if 
and only if ⊕ωπω(b). is invertible if and only if πω(b). is invertible for all orbits ω . 

and supω∈o llπ−1
ω (b)ll < ∞.. 

If the action is not topologically free, the situation is typically much harder to 
analyse, but in some situations there are still methods to reduce things to this case, 
see [8, 18] (and references therein), and also [4, 5]. 

The purpose of the present article is to explore the relation between the notion 
of topologically freeness and the isomorphism with the crossed product algebra, as 
well as alternative conditions for the local trajectories method to hold in order to 
better understand its domain of applicability. 

We do this by going back to a basic global condition, known to be equivalent to 
the existence of an isomorphism B ∼= Axα G.—referred to as condition (B0)—and 
establishing similar conditions but of M-local type, that is, on open sets of the space 
M of maximal ideals i n Z.—referred to as condition (B1). This basically amounts
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to considering ‘local’ elements of the form zb, where b ∈ B. and z ∈ Z = C(M). is 
a bump function with support in V (the precise definitions are in Sect. 4.1). 

We note that a necessary condition for condition (B0) to yield the isomorphism 
of B. with the crossed product is that the full and reduced crossed product algebras 
coincide. In previous works, this identification typically comes from assuming that 
the group G is amenable. Here this condition is replaced by the more general notion 
of amenability of the action α : G → Aut(A). (see for instance [1, 12]), which we 
assume in Sect. 4. That is, instead of assuming that the group is ‘nice’, we assume 
that it acts ‘nicely’, and we still haveAxα G ∼= Ax

r
α G.. 

We show that M-localization applies to a class of algebras A.where open sets of 
PA . always determine an open set in M , in that the restriction map ψ . defined above 
is open. We say that such an algebra A. is M-localizable, or satisfies condition (C). 
This class includes all commutative algebras and algebras of matrices of continuous 
functions, as well as the class of algebras considered in [4]. 

The point in using M-local type conditions is that we can split between open 
sets V ⊂ M . where the action is ‘well-behaved’, in that there are points in V that 
are not fixed by a finite G0 ⊂ G., and the open sets V that are fixed by some non-
trivial finite G0 ⊂ G. such that (βg)|V = id|V ., g ∈ G0 . (see Sect. 4.2). This is made 
possible by Lemma 2 and Proposition 4, which imply on one hand that if the action 
is topologically free then the M-local condition (B1) is automatically satisfied, so 
that we have an isomorphism with the crossed product, and on the other hand, that in 
the general case, to check (B1) it suffices to consider the class of open sets where the 
action of some finite subset is trivial - referred to as condition (B2). As a result, in 
Corollary 4, we obtain an isomorphism between B. andAxαG. as long as we replace 
the assumption of the action being topologically free by our M-local condition being 
satisfied on such sets, should they exist, condition (B2). 

We use condition (B2) to show, in Examples 1 and 2, that in case the action 
is not topologically free, then the fact that B. is isomorphic to the crossed product 
may depend on the way A. and alg(UG). ‘sit’ inside B(H). and how they interact, 
which cannot happen in the presence of topological freeness, due to the isomorphim 
theorems in [5, 7, 18]. 

This work then explores the local type conditions in two directions. The first one, 
developed in Sect. 4.3, applies directly to commutative algebras, and has to do with 
a C∗

.-subalgebra A'
. that is M-locally ‘arbitrarily close’ to A. and where G also acts; 

in this case, assuming the generated algebras are also M-locally ‘arbitrarily close’, 
then the local condition (B2) needs only be verified on A'

. and B'
.. We say that A'

. 

and B'
. are M-locally dense in A. and B.. 

It turns out that when the algebra A. is commutative, and we see that this is the 
case withA' = C. and B' = alg(UG)., so we obtain an M-local condition in alg(UG). 

sufficient for our local condition (B2) to be satisfied in B., and for the isomorphism 
with the crossed product algebra; this is Theorem 2. 

Moreover, under an additional non-degeneracy condition, we can use (B2) to get 
rid of the M-local element, and we find a global condition on alg(UG)., namely that 
alg(UG) ∼= C∗(G)., the group algebra, which guarantees (B2) and the isomorphism 
with the crossed product algebra. We point out that this condition depends only on
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UG ., not on localization, and effectively substitutes the requirement of topological 
freeness in this situation, see Theorems 3 and 8. 

Another application of the M-local conditions (B1) and (B2) is to guarantee 
conditions for the applicability of the method of local trajectories to M-localizable 
algebras, that is, those satisfying (C). As it is pointed out in Sect. 3, in general, the 
local trajectories method is applicable to B., and yields a faithful family if there are 
isomorphisms 

. B ∼= Axα G, π(B) ∼= π(A) xα' G

where π = ⊕πω . and {πω}ω∈o . is the local trajectories family, πω . regular represen-
tations. For the second isomorphism, we have representations on C∗

.-algebras of the 
form B(l2(G,Hω)). and we can explore their norm properties to show that the M-
local type condition (B1) is in fact always satisfied in π(B) = alg(π(A), U '

G)..  We  
conclude that if A. is M-localizable, then the conditions obtained before to ensure 
the isomorphism B ∼= Axα G. are also sufficient for the method of local trajectories 
to work on B.; this leads to Theorems 6, 7 and 8. 

In this article, we chose to formulate our results for a ‘concrete’ algebra of 
operators A ⊂ B(H)., for some fixed Hilbert space H , together with an action of a 
discrete group on A., and a group of unitary operators UG ⊂ B(H).. The condition 
that the action satisfies αg(a) = UgaU∗

g . is nothing more than the pair (id, U). 

being a covariant representation for (A,G, α).. We point out that in fact our results 
also apply to the setting when we start with an ‘abstract’ unital C∗

.-algebra A. and 
consider an arbitrary faithful representation φ : A→ B(Hφ). on some Hilbert space 
Hφ ., and a covariant representation (φ,U)., with UG ⊂ B(Hφ). unitary operators. 
Defining Bφ,U = alg(A, UG)., conditions (B0), (B1) and (B2) can be easily written 
(see Remark 3) in a way such that they yield an isomorphism Bφ,U

∼= Axα G., and 
similar conditions can be given such that the locally trajectories method works on 
Bφ,U .. 

We now give an outline of the paper. In Sect. 2, we review some objects and 
concepts needed throughout the paper. We also establish the setting we will work 
on and define the relevant C∗

.-algebras associated with our structures. 
In Sect. 3, we present the local trajectories method. We follow the lines of [18], 

while focusing on pinpointing the main steps and in particular, on the role of the 
isomorphisms with crossed product algebras. 

In Sect. 4, we explore conditions to guarantee the isomorphism with the crossed 
product, using what we call M-localization, that is, reduction to open subsets of M 
and assuming that the action is a menable.

We start, in Sect. 4.1, by introducing the classical condition to guarantee the 
isomorphism of B.with the respective crossed product algebra, called here condition 
(B0). We then give a similar condition of M-local type, on open sets of the space 
of the maximal ideals of Z., called condition (B1). Under an assumption on A., 
condition (C) that A. is M-localizable, we prove the equivalence between these two 
notions in Proposition 3.
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In Sect. 4.2, we see how this localized condition can be used together with 
the structure of the fixed point set and the notion of topologically free action to 
guarantee the isomorphism with the crossed product algebra, and we will arrive 
at condition (B2) that only involves open sets of M fixed by a finite subset of G 
(Proposition 4). 

In Sect. 4.3, we show that in the commutative case we need check conditions for 
isomorphism on alg(UG). and the group algebra C∗(G). depending only on G.  We  
prove first that this algebra is what we call M-locally dense i n B. and then abstract 
these results to the general case. 

Then in Sect. 5, we tackle the conditions for applicability of the local trajectories 
method, applying our results to the local trajectories representation π = ⊕πω ..  We  
show that the image π(B). of B. is always isomorphic to a crossed product, proving 
that if A. is M-localizable, the local trajectories method works on B. as long as there 
is an isomorphism of B.with the crossed product. In the commutative case, we give 
a sufficient condition depending only on UG .. 

2 Preliminaries 

Throughout the paper, A. will always denote a unital C∗
.-algebra. We review in this 

section some concepts and results on C∗
.-algebras and representation theory that will 

be needed in the paper. For general references, see for instance [14, 15, 20]. 

2.1 Representations and States 

By a representation of a C∗
.-algebra A. on a Hilbert space Hπ . we always mean a 

non-degenerate ∗.-homomorphism 

. π : A→ B(Hπ),

with B(Hπ). the C∗
.-algebra of bounded linear operators on Hπ .. Non-degenerate 

in the unital case means that π(1A) = I .. We say that π . is irreducible if its only 
invariant subspaces are trivial. An injective representation is called faithful. 

A state in A. is a positive linear functional μ.on A.with llμll = 1., or, equivalently, 
μ(1A) = 1.. The state space SA ⊂ A∗

. is convex and compact in the weak-∗. 

topology, and as such, has extreme points that are called pure states. We denote 
the pure state space of A. by PA ., and always endow SA . and PA . with the weak-∗. 

topology, that is the topology of pointwise convergence. 
States are related to representations in a fundamental way: π : A→ B(H). is an 

irreducible representation on a Hilbert space H , and x is a unit vector in H , t hen

.μ(a) := (π(a)x, x)
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is a pure state, and, by the GNS construction, any pure state defines an irreducible 
representation πμ . satisfying the above. 

By the Gelfand-Naimark theorem, for every C∗
.-algebra A. there exists a faithful 

representation π : A→ B(H). given by the direct sum 

. π = ⊕πν, πν : A→ B(Hν)

where πν . are irreducible representations associated to pure states. 
We will make extensive use of the following properties (see [15], Proposition 

4.3.1 and Theorems 4.3.8 and 4.3.14): 

(i) Pure states separate points in A.:  if μ(a) = 0. for all μ ∈ PA . then a = 0.. 
(ii) For any state μ. on A., and a, b ∈ A., we have the Cauchy-Schwarz inequality 

for states: 

. |μ(a∗b)|2 ≤ μ(a∗a)μ(b∗b).

In particular, since μ(1A) = 1., we get |μ(a)| ≤ √
μ(a∗a) ≤ llall.. 

(iii) If a ∈ A. is normal, that is, if a∗a = aa∗
., then there exists a pure state μ ∈ PA . 

such that 

. llall = |μ(a)|.

In general, for a ∈ A., 

. llall = max
μ∈PA

/
μ(a∗a).

In particular, if a is a positive element, then llall = maxμ∈PA μ(a).. 
(iv) If Z. is a central subalgebra of A., then for any μ ∈ PA .,  we  ha  ve

. μ(za) = μ(z)μ(a), for a ∈ A, z ∈ Z.

It follows that μ|Z . is a multiplicative linear functional. 

It follows from (iii) and the GNS construction that for any a ∈ A. there exists an 
irreducible representation φ . of A. such that 

. llall = llφ(a)ll.

We shall also need results on extension of states. Let Z. be a closed C∗
.-subalgebra 

of A., containing the identity. Then any state on Z. can be extended to a state on A. 

(see [15], Theorem 4.3.13); for each state in SZ ., the set of its extensions to SA . is 
weak-∗. compact and convex. Moreover, pure states can be extended to pure states. 
On the other hand, if Z. is a central subalgebra of A., pure states restrict to pure
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states (by (iv) and Proposition 4.4.1 in [15]), so restriction yields then a surjective 
map 

.ψ : PA → PZ, μ l→ μ|Z, (1) 

which is moreover continuous, since PA ., PZ . have the weak-∗. topology. Since Z. is 
a central subalgebra, then from (iv) above, μ|Z . is a multiplicative linear functional 

and PZ = Ẑ., the character space of Z.. Moreover, by Gelfand’s theorem, since Z. is 
commutative, Ẑ ∼= M ., the space of maximal ideals of Z., and the Gelfand transform 
yields an isomorphismZ ∼= C(M).. 

2.2 Algebras Associated to an Unitary Action 

In what follows, we let A. be a unital C∗
.-algebra and G be a discrete group. For 

details on the constructions below, see for instance [12, 20, 22] and references 
therein. 

An action of G on A. is a homomorphism α : G → Aut(A)., where Aut(A). 

is the group of ∗.-automorphisms of A.. Given such an action we call (A,G, α). a 
C∗

.-dynamical system. 
Given a C∗

.-dynamical system (A,G, α)., we denote by Cc(G,A). the linear 
space of finitely supported functions in G, 

. Cc(G,A) = {f : G → A | f (s) = 0, s /∈ G0 finite }.

We use the action α . to define a α .-twisted convolution product on Cc(G,A).,  as  well  
as an inv olution:

. (f ∗ g)(s) :=
7

t∈G

f (t)αt (g(t−1s)), f ∗(s) := αs(f
∗(s−1)).

We call the ∗.-algebra Cc(G,A). the convolution algebra of (A,G, α).. 
If A. is commutative, A ∼= C(M)., with M some compact Hausdorff space, then

C∗
.- dynamical systems are in one-to-one correspondence with group actions on M: 

if G acts on compact space M , G × M → M, (g,m) → g · m., then(C(M),G, α). 

is a C∗
.-dynamical system with 

. αs(f )(m) = f (s−1 · m), m ∈ M, s ∈ G.

Conversely, ifA = C(M). is a commutative algebra, then G acts on M and (G,M). 

is a transformation group. 
We are interested in studying invertibility in C∗

.-algebras associated to dynamical 
systems.
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Definition 1 Assume thatA ⊂ B(H)., for some Hilbert space H , and let U : G →
B(H), g l→ Ug . be a unitary representation. We denote by 

. B := alg(A, UG)

the C∗
.-subalgebra of B(H). generated by A. and UG = {Ug, g ∈ G}.. Assume also 

that UgaU∗
g . is a ∗.-automorphism of A. for all g ∈ G., that is, that we have an action 

. α : G → Aut(A), αg(a) := UgaU∗
g ,

then B. is the closure in B(H). of the ∗.-subalgebra 

. B0 :=
⎧
⎨

⎩

7

g∈G0

agUg : ag ∈ A,G0 ⊂ G finite

⎫
⎬

⎭
=
⎧
⎨

⎩

7

g∈G

a(g)Ug : a ∈ Cc(G,A)

⎫
⎬

⎭
.

Given an arbitrary dynamical system (A,G, α)., there is always a universal object 
that encodes both the original C∗

.-algebra A. and the group action. 

Definition 2 The crossed product algebra Axα G. is the completion of Cc(G,A). 

with respect to the universal norm 

. llf llu = sup
π

llπ(f )ll,

where π . ranges over all ∗.-homomorphisms π : Cc(G,A) → B(H)., with H a 
Hilbert s pace.

WhenA = C., the crossed product algebra yields the group algebra C∗(G).. 
If B. is as in Definition 1, one of our goals is to discuss conditions under which 

B ∼= A xα G. (see Sect. 4). One can check that there is always a ∗.-homomorphism 
o : Cc(G,A) → B0 ., surjective, given by 

.o(f ) =
7

g∈G

f (g)Ug, (2) 

that extends to a surjection o : Axα G → B., so the algebra B. is always a quotient 
of the crossed product algebra. To study representations of such algebras B.,  we  
consider first representations of the crossed product. 

Let (A,G, α). be a dynamical system. Given a Hilbert space H , consider a 
representation π : A → B(H). and a unitary representation U : G → B(H)., 
then the pair (π,U). is said to be a covariant representation of (A,G, α). if 

.π(αs(a)) = Usπ(a)U∗
s .
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If (π,U). is a covariant representation on some Hilbert space H , we can define the 
so-called integrated representation ofAxα G. by 

. π x U : Axα G → B(H), (π x U)(f ) =
7

t∈G

π(f (g))Ug, f ∈ Cc(G,A).

We have that any covariant representation defines a ∗.-representation of Cc(G,A). 

and, conversely, every non-degenerate ∗.-representation of Cc(G,A). is induced by 
some covariant representation of (A,G, α)., so that 

. llf llu = sup
(π,U)

llπ x U(f )ll,

where (π,U). ranges over all covariant representations of (A,G, α).. Note that in 
Definition 1, we are simply assuming that (id, U). is a covariant representation, and 
the map o. in (2) is given by o = id x U .. 

In fact, the definition of the crossed product algebra yields the following univer-
sal property: for every covariant representation (π,U)., there is a ∗.-homomorphism 
σ : Axα G → alg(π(A), UG) ⊂ B(H). such that 

. σ (f ) =
7

g∈G

π (f (g))Ug for all f ∈ Cc(G,A).

We are interested in a particular class of integrated representations that correspond 
to taking the left regular representations of G: given a Hilbert space H , one defines 
the representation 

. λ : G → B(l2(G,H)), λgξ(s) = ξ(g−1s).

Given a representation π : A→ B(H). of A., define also 

. π̃ : A→ B(l2(G,H)), π̃(a)ξ(s) = π(α−1
s (a))ξ(s).

Then one can see that (π̃, λ). is covariant representation. 

Definition 3 The regular representation of Axα G. induced by the representation 
π . is given by the integrated representation induced by (π̃, λ)., that is, 

. π̃ x λ : Axα G → B(l2(G,H))

such that for f ∈ Cc(G,A)., 

.[(π̃ x λ)(f )ξ ](g) =
7

s∈G

π̃
(
αg−1 [f (s)]) ξ

(
s−1g

0
, ξ ∈ l2(G,H). (3)
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The reduced crossed product algebraAx
r
α G. is the completion of Cc(G,A). in the 

norm 

. llf llr = sup
(π̃,λ)

ll(π̃ x λ)(f )ll,

where (π̃ x λ). ranges over all regular representations of A xα G..  If A = C. then 
Ax

r
α G. is the reduced group algebra C∗

r (G).. 

In this paper, we shall work in the setting where the full and reduced crossed 
product algebras coincide, so that 

. llf llu = llf llr = sup
(π̃,λ)

ll(π̃ x λ)(f )ll, with (π̃ x λ) a regular representation.

A discrete group G is said to be amenable if there exists a state μ. on l∞(G).which 
is invariant under the left translation action: for all s ∈ G. and f ∈ l∞(G)., 

. μ(sf ) = μ(f ).

The state μ. is called an invariant mean. In this case, we have C∗
r (G) ∼= C∗(G). and 

it follows thatAxα G ∼= Ax
r
α G., for any dynamical system (A,G, α).. The class of 

amenable groups includes all compact groups, abelian groups, solvable groups and 
finitely generated groups of subexponential growth. On the other hand, if G contains 
a copy of the free group in two generators, then G is not amenable. 

We will consider here a more general notion of amenability that suffices for our 
purposes, that of an amenable action (see for instance [12], Section 4.3). Define a 
norm in Cc(G,A). by 

. llf ll2 :=
llllllllllll

7

g∈G

f (g)f (g)∗
llllllllllll

1/2

, f ∈ Cc(G,A).

Let Z(A). denote the center of A..  For s ∈ G.,  let δs ∈ Cc(G,A). be such that 
δs(s) = 1A . and δs(g) = 0., g /= s .. Then (δs ∗ f )(g) = αs(f (s−1g)),. g ∈ G.. 

Definition 4 An action α : G → Aut(A). is amenable if there exist finitely 
supported functions xi : G → Z(A) ⊂ A., i ∈ N., with the following properties: 

1. xi(g) ≥ 0. for all i ∈ N. and g ∈ G.; 
2.
E

g∈G xi(g)2 = 1 A . for all i ∈ N.; 
3. llδs ∗ xi − xill2 → 0. for all s ∈ G.. 

Given a dynamical system (A,G, α). where the action is amenable, we always 
haveAxα G ∼= Ax

r
α G. (Theorem 4.3.4 in [12]). 

Moreover, every action by an amenable discrete group is amenable. This can be 
seen using the following equivalent definition of amenability: a discrete group G



124 M. A. Bastos et al.

is amenable if, and only if, for any finite set G0 ⊂ G. there exist nonnegative unit 
vectors xi ∈ l2(G)., i ∈ N., such that llλsxi − xill2 → 0. for all s ∈ G0 . (see for 
instance [12], Theorem 2.6.8). In this case, for any action α . of an amenable discrete 
group G on a C∗

.-algebra A., identifying C.with C1A ⊂ Z(A).,  we  ha  ve

. (δs ∗ xi)(g) = αs(xi(s
−1g)) = xi(s

−1g)αs(1A) = λsxi(g)1A, g ∈ G.

On the other hand, there are many relevant amenable actions of non-amenable 
groups, such as the action of a free group on its Gromov boundary, see [12]. 

3 Local Trajectories Method 

We let A ⊂ B(H). be a unital C∗
.-algebra and U : G → B(H). be a unitary 

representation. We review in this section the method of local trajectories, whose 
goal is to establish an invertibility criterion for operators in B = alg(A, UG). in 
terms of the invertibility of local representatives associated to the orbits of an action 
of G on some compact space. We follow here the approach and notation in [18] (see 
also [4]). 

From now on, we will let Z. be a central subalgebra of A., with 1A ∈ Z..  In  
this case, the Gelfand transform yields an isomorphism Z ∼= C(M)., where M is 
the compact Hausdorff space of maximal ideals o f Z. or equivalently, the class of 
non-zero multiplicative linear functionals with the weak-∗. topology. We typically 
identify z ∈ Z. with its Gelfand transform in C(M)., that is, we regard z as a 
continuous function.

Following the terminology in [18], we consider conditions (A1) and (A2): 
Condition (A1): For every g ∈ G., the mapping αg : a l→ UgaU∗

g . is a ∗.-
automorphism of the C∗

.-algebras A. and Z.. 
Condition (A2): G is an amenable discrete gr oup.
Assume condition (A1), that is, we assume that (id, U). is a covariant represen-

tation of (A,G, α).where α . is an action on A. that mapsZ = C(M). toZ = C(M).. 
We have then an action β . of G on M given by βg : M → M . such that for z ∈ Z., 

. z
(
βg(m)

) = (αg(z)
)
(m), m ∈ M, g ∈ G.

For each m ∈ M .,  let G(m) = {βg(m) : g ∈ G}. be the G-orbit of m and o. be the 
orbit space, that is, o = M/ ∼.with m ∼ n ⇔ G(m) = G(n).. Let also: 

• Jm . be the closed two-sided ideal of A. generated by maximal ideal m ∈ M . of 
Z ⊂ A.; 

• Am := A /Jm ., and ρm : A → A/Jm . be the quotient map. Then by (A1), 
Jβg(m) = α−1

g Jm .,  so  it  follows  t  hat

.Am' ∼= Am, m' ∈ G(m).
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We define now a family of representations of A.. For each orbit ω ∈ o., choose a 
representative mω ∈ ω . and a faithful representation φω : Amω → B(Hω). on some 
Hilbert space Hω ., and define 

. π '
ω : A→ B(Hω), π '

ω = φω ◦ ρm

Recall that to π '
ω .we associate π̃ '

ω : A→ B(l2(G,Hω)). such that 

. (π̃ '
ω(a)ξ)(g) := π '

ω(α−1
g (a))(ξ(g)).

Definition 5 The local trajectories family on A xα G. is the family of regular 
representations {πω}ω∈o . induced by π '

ω ., ω ∈ o., that is, induced by the covariant 
representation (π '

ω, λω)., such that 

. πω : Axα G → B(l2(G,Hω)), πω := π̃ '
ω x λω,

with 

. [πω(a)ξ ] (t) = π '
mω

(
α−1

t (a)
0

ξ(t),
ll
πω

(
Ug

)
ξ
l
(t) = ξ

(
g−1t

0
,

for ξ ∈ l2(G,Hω)., t ∈ G..  Let π = ⊕ω∈oπω . be the direct sum representation of 
Axα G. on B(Ho)., with Ho =Eω∈o l2 (G,Hω).. 

In order for the local trajectories maps to be well-defined on the algebra 
B = alg(A, UG)., we need extra conditions, namely to guarantee that there is 
uniqueness of representation of elements in B0 .. One such condition has to do with 
the structure of fixed points of the action. Recall that we say that G acts freely on M 
if the group

l
βg : g ∈ G

l
. of homeomorphisms of M onto itself acts freely on M , 

that is, if βg(m) /= m. for all g ∈ G\{e}. and all m ∈ M .. One considers here a more 
general notion of freeness that relies on the topology of the state space. 

Let PA . be the set of all pure states on A., equipped with the weak-* topology. As 
we have noted in (1),  we  have  a  m  ap

. ψ : PA → Ẑ ∼= M, μ l→ μ|Z.

We often write m = mμ . if m = μ|Z = Z ∩ kerμ.. 
If Jm ⊂ A. is the ideal generated by the maximal ideal m ∈ M . of Z. and 

m = μ|Z .,  for  some μ ∈ PA ., then kerμ ⊃ Jm . and therefore (see [11], Lemma 
4.1) 

.PA =
l l

m∈M

Pm, Pm := {μ ∈ PA : kerμ ⊃ Jm} . (4) 

Writing m = μ|Z ., then Pm ⊂ PA . is the class of extensions of the pure state μ|Z . to 
a pure state on A..
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As in [18], we adopt the following notion of topologically free action: 
Condition (A3): For every finite set G0 ⊂ G. and every open set W ⊂ PA . there 

exists ν ∈ W . such that βg (mν) /= mν . for all g ∈ G0\{e}., where mν := ν|Z =
Z ∩ ker ν ∈ M .. 

Note that (A3) guarantees that the set of fixed points has empty interior. If the 
C∗

.-algebra A. is commutative, then takingZ = A ∼= C(M).,  we  have PA ∼= M .,  so  
we can rewrite (A3): 

(Commutative (A3)) For every finite set G0 ⊂ G. and every open set V ⊂ M . 

there exists m0 ∈ V . such that βg (m0) /= m0 . for all g ∈ G0\{e}.. 
Under assumptions (A1)-(A3), we have an isomorphism B ∼= A xα G. (see 

[18, Theorem 3.2]). In particular, the local trajectories family is well-defined in B.. 
Moreover, we have: 

Theorem 1 (Local Trajectories Method: [18, Theorem 4.1]) If (A1)-(A3) hold, 
then the local trajectories representation π = ⊕ω∈oπω . is faithful in B.. Hence, 
b ∈ B. is invertible if and only if πω(b). is invertible in B(l2(G,Hω)). for all ω ∈ o. 

and 

. sup
lllllll(πω(b))−1

llllll : ω ∈ o
l

< ∞.

If the number of orbits is finite, then the bound on the norms of the inverse 
elements always holds, so that b ∈ B. is invertible if, and only if, πω(b). is invertible 
in B(l2(G,Hω)). for all ω ∈ o.. In this case, local trajectories family is said to be 
sufficient. 

A crucial step in the proof of the above criterion is that the local trajectory family 
is always injective over A., that is, π(A) ∼= A.. This result relies on the structure of 
pure states of A. as in (4), we give here a short proof for completeness (see also [18] 
for a direct proof of the equality of norms). 

Proposition 1 Assume (A1) is satisfied. Then {(πω)|A}ω∈o . is a faithful family in A., 
i.e., π|A := ⊕(πω)|A . is injective and 

. llπ(a)ll = sup
ω∈o

llπω(a)ll = llallA for all a ∈ A.

Proof Let π(a) = 0., a ∈ A., so that πω(a) = 0. for all ω ∈ o.. We show that 

. kerπω ∩A =
 

g∈G

Jβg(m), m ∈ ω.

We have πω(a) = 0 ⇔ π '
ω(αg(a)) = 0., for any g ∈ G. ⇔ ρm(αg(a))) = 0.,  fo  r

g ∈ G ⇔ αg(a) ∈ Jm .,  for g ∈ G.. Since, by (A1), Jm = αg

(
Jβg(m)

)
., the equality 

above holds. 
Hence, π(a) = 0. yields that for any m ∈ M . and μ ∈ Pm .,  we  have μ(a) = 0., 

since Jm ⊂ kerμ..  B  y (4),  we  have μ(a) = 0., for any μ ∈ PA .,  so a = 0.. uu
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Assume (A1) and suppose that o := id xU : Axα G → B. is an isomorphism, 
so the representations πw : B→ B

(
l2 (G,Hw)

)
. defined by: 

. [πω(a)ξ ] (t) = π '
mω

(
α−1

t (a)
0

ξ(t) ,
ll
πω

(
Ug

)
ξ
l
(t) = ξ

(
g−1t

0

for ξ ∈ l2 (G,Hω). are well defined. As before, let π =Eω∈o πω .. 
Now since, by Proposition 1, π : A→ π(A). is an isomorphism, we can define 

y : Cc(G,A) →. Cc(G, π(A)). given by 

. y(f )(s) = π(f (s)), f ∈ Cc(G,A),

which extends to an isomorphism y : Axα G → π(A) xα' G., with 

. α'
g(π(a)) := π(αg(a)) = π(UgaU∗

g ) = π(Ug)π(a)π(U∗
g ).

Thus, by definition, (id, π(U)). is a covariant representation of (π(A),G, α')..  We  
have also that π(B) = alg (π(A), π (UG)).. 

We then obtain the following commutative diagram: 

. (5) 

The idea of the proof of Theorem 1 in [18] can be summarized roughly as 
follows: assuming (A1)–(A3) then A xα G ∼= B. and moreover (π(A),G, α'). also 
satisfies (A1)-(A3), since (id, π(U)). is a covariant representation of (π(A),G, α')., 
α'

.maps π(Z). to π(Z)., and the condition (A3) of topological freeness relies on the 
sets of pure states of A. and π(A)., which are isomorphic. This then implies that π . 

is an isomorphism due to the commutative diagram above, since all the other arrows 
are isomorphisms. 

Remark 1 It follows from the discussion above that, assuming (A1), and therefore 
knowing that π(A) ∼= A., with π = Eω∈o πω ., then the conclusion of the local 
trajectories method, Theorem 1, holds in B. as long as one can show that 

. id xα U : Axα G → B, id xα' π(U) : π(A) xα' G → π(B)

are isomorphisms, with α' = π ◦ α .. The proof of injectivity of π . on B. will then 
follow by the commutativity of the diagram (5). Recall that B = alg(A, UG). and 
π(B) = alg(π(A), π(UG))..
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4 Isomorphism with the Crossed Product 

As we have noted, one important step to establish the local trajectory method, 
Theorem 1, in the non-local algebra B = alg(A, UG). is to give conditions such 
that B. is isomorphic to a crossed product algebra. Our goal in this section is to 
give conditions that guarantee that such an isomorphism exists, without assuming 
topological freeness of the action. 

We assume throughout this section thatA ⊂ B(H)., for some Hilbert space H , α . 

is an action by automorphisms of A. and that U : G → B(H), g l→ Ug . is a unitary 
representation satisfying 

. αg(a) = UgaU∗
g ,

for g ∈ G., a ∈ A., that is, that (id, U). is a covariant representation of the dynamical 
system (A,G, α). on B(H).. As in Definition 1,  we  let B := alg(A, UG). be the 
C∗

.-algebra generated by A. and U , which coincides with the closure in B(H). of the 
∗.-subalgebra 

. B0 =
⎧
⎨

⎩

7

g∈G0

agUg : ag ∈ A,G0 ⊂ G finite

⎫
⎬

⎭
.

The condition that the group G is amenable will be replaced by the weaker condition 
that the action α . is amenable. Note that in the case we haveAxα G ∼= Ax

r
α G.. 

4.1 General Conditions and M-Localization 

We start with noting that by the universal property of the crossed product, one has a 
surjection o : Cc(G,A) → B0 . given by o(f ) =Es∈G f (s)Us . that is bounded in 
the universal norm and therefore extends toAxα G., so we obtain a surjective map 

. o := id x U : Axα G → B.

Hence we have B ∼= A xα G/ kero., so in order to establish that B ∼= A xα G.,  it  
suffices to give conditions such that kero = 0.. As it is known, this condition can 
be written as the boundedness of a family of ’evaluation maps’ [4, 5, 18, 19]. 

For s ∈ G.,  le  t

.Es(f ) := f (s), f ∈ Cc(G,A). (6)
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Then Es . is bounded in the universal norm so that it extends to Es : Axα G → A.. 
We can write, by continuity, 

. o(f ) =
7

s∈G

Es(f )Us, f ∈ Axα G.

We will need the following simple lemma. 

Lemma 1 IfAxα G ∼= Ax
r
α G. then

 
s∈G kerEs = {0}.. 

Proof Let π : A → B(HA). be an arbitrary ∗.-representation of A. and π̃ x λ :
Axα G → B(l2(G,HA)). be the induced regular representation. Extending (3) by 
continuity, we can write, for b ∈ Axα G., 

. [(π̃ x λ)(b)ξ ](g) =
7

s∈G

π
(
αg−1 [Es(b)]) ξ

(
s−1g

0

for ξ ∈ l2(G,HA)., g ∈ G..  If b ∈  s∈G kerEs ., then π
(
αg−1 [Es(b)]) = 0. for all 

s, g ∈ G., hence (π̃ x λ)(b) = 0.. Since π . is arbitrary, it follows that for the reduced 
norm we have llbllr = 0., and by the isomorphismAxα G ∼= Ax

r
α G.,  also b = 0.. 

uu
Assume that also E'

s : B0 → A. such that 

. E'
s

⎛

⎝
7

g∈G0

agUg

⎞

⎠ = as

is well defined, that is, we have uniqueness of representation of elements in B0 .. 
Then we have a bijection between B0 . and Cc(G,A). and Es(f ) = E'

s ◦ o(f ).,  fo  r
f ∈ Cc(G,A).. 

Proposition 2 Assume that the action α : G → Aut(A). is amenable, in particular, 
Axα G ∼= Ax

r
α G.. Then the following statements are equivalent: 

(i) o = id x U : Axα G → B. is an isomorphism; 
(ii) E'

s : B0 → A. is well defined and bounded for all s ∈ G.; 
(iii) For any finite set G0 ⊂ G. and ag ∈ A., g ∈ G0 ., we have 

. llaell ≤
llllllllllll

7

g∈G0

agUg

llllllllllll
.

Proof If o = id x U . is an isomorphism on A xα G., then E'
s = Es ◦ o−1

. is 
well defined and bounded. Conversely, if E'

s . bounded then Es = E'
s ◦ o. extends 

to A xα G..  If b ∈ kero. then also Es(b) = 0. for all s, and since the action of G
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is amenable, it follows from Lemma 1 that b = 0..  So  (i) ⇔. (ii), and (ii) clearly 
gives (iii). Assuming (iii), we have

E
g∈G0

agUg = 0 ⇒ ae = 0. and also as = 0., 
for s ∈ G0 ., so we have uniqueness of representation and E'

s . is well defined. The 
boundedess of the maps E'

s . for any s ∈ G. is equivalent to boundedness for s = e., 

since E'
s

(E
g∈G0

agUg

0
= E'

e

(E
g∈G0

agUgs−1

0
.. uu

This result can be found in [4, 5, 18], with the assumption that G is amenable.

Remark 2 The reduced C∗
.-algebra A x

r
α G. always has a canonical faithful 

conditional expectation to A., that is, a contractive projection onto A., given by the 
extension of Ee . as in (6) (see for instance [12], Proposition 4.1.9). Faithful here 
means that Ee(b

∗b) = 0. if, and only if, b = 0. (or equivalently that the kernel of Ee . 

does not contain any non-zero ideal). Assuming A xα G ∼= A x
r
α G., we see that 

the equivalent conditions (ii) and (iii) just mean that there exists a canonical faithful 
conditional expectation from B = alg(A, UG). to A. given by E'

e .. 

According to the previous proposition, our aim is to give conditions so that we 
have: 

Condition (B0): For any finite set G0 ⊂ G. and ag ∈ A., g ∈ G0 ., we have 

.llaell ≤
llllllllllll

7

g∈G0

agUg

llllllllllll
. (7) 

When (7) holds, we say that (B0). holds for b =Eg∈G0
agUg .. 

When A = C., condition (B0) gives conditions such that the group C∗
.-algebra 

C∗(G). and alg(UG).,  the C∗
.-algebra generated by the unitary representations Ug ., 

g ∈ G., are isomorphic. 

Remark 3 We are working in a concrete setting where A ⊂ B(H). for some fixed 
Hilbert space H and (id, U). is a covariant representation. However, condition (B0) 
and the result above can be used more generally. For an ’abstract’ C∗

.-algebra A. 

and action α : G → Aut(A)., suppose that we are given any faithful representation 
π : A → B(Hπ). on a Hilbert space Hπ . and U : G → B(Hπ). is a unitary 
representation. Let Bπ,U . be the C∗

.-algebra generated by π(A). and Ug ., g ∈ G.. 
Then (π,U). is a covariant representation of (A,G, α). on B(Hπ). if, and only 

if, (id, U). is a covariant representation of (π(A),G, α')., with α' := π ◦ α ◦ π−1
.. 

Moreover α . is amenable if, and only if, α'
. is amenable. There is an isomorphism 

Axα G ∼= π(A) xα' G. that intertwines π x U . and id x U .. 
We conclude from Proposition 2 that if (π,U). is a faithful covariant represen-

tation of (A,G, α). and α . is amenable, then π x U : A xα G → Bπ,U . is an 
isomorphism if, and only if, for any finite set G0 ⊂ G. and ag ∈ A., g ∈ G0 .,  we  
hav e

.

llllllllllll

7

g∈G0

π(ag)Ug

llllllllllll
≥ llπ(ae)ll = llaell.
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In order to estimate norms, it is often useful to consider positive elements, by 
property (iii) in Sect. 2.1.  We  let b =Eg∈G0

agUg ., where G0 ⊂ G. is a finite set. In 
terms of pure states, (B0) becomes: 

. llaell2 = lla∗
e aell = max

μ∈PA
μ(a∗

e ae) ≤ max
ν0∈PB(H)

ν0(b
∗b) = llb∗bll = llbll2.

We will write often 

.b∗b = ã +
7

s /=t∈G0

α−1
s

(
a∗
s at

)
Us−1t , with ã :=

7

s∈G0

α−1
s

(
a∗
s as

) ∈ A. (8) 

Then ã . is positive and we can write ã = a∗
e ae + a'

., with a∗
e ae . and a'

. positive 
elements. Hence, μ(a∗

e ae) ≤ μ(ã).,  for μ ∈ PA ., so that also lla∗
e aell ≤ llãll..  It  

follows that if (B0) holds for all positive elements, that is, i f

. llãll ≤ llb∗bll for all b ∈ B0,

then llaell2 = lla∗
e aell ≤ llb∗bll = llbll2 . and (B0) holds in general. We conclude 

that to guarantee that o. is an isomorphism, one needs only check (B0) for positive 
elements b and ae .. 

We now give a localized version of (B0). We let Z. be a central subalgebra of 
A., as in Sect. 3. From now on, we assume condition (A1) of the previous section, 
that is, that α . acts by automorphisms both of A. and of Z. and (id, U). is a covariant 
representation of (A,G, α).. We will replace condition (A2) of amenability of the 
group G by the weaker assumption that the action α . is amenable. 

As before, we let M be the maximal ideal space of the commutative C∗
.-algebra 

Z., and identify Z. with C(M). through the Gelfand transform. Recall from (1) that 
we have a surjective, continuous map 

. ψ : PA → PZ = Ẑ ∼= M, μ l→ μ|Z,

where PA ., Ẑ ∼= M . have the weak-∗. topology. We have PA = Um∈M Pm ., where 
Pm . are the pure states that restrict to m and for V ⊂ M ., we write PV := ψ−1(V ).. 

We make the following assumption on the algebra A. of an M-localization 
property: 

Condition (C): For any open set W ⊂ PA .,  the  se  t

.V = ψ(W) = {m ∈ M : m = μ|Z, μ ∈ W } (9) 

is open in M ∼= Ẑ.. 
We say that such an algebra A. is M-localizable. Clearly any commutative 

algebra satisfies (C), since in this case PA . is homeomorphic to M .  Also  matri  x
algebras [C(M)]N×N ., N ∈ N., satisfy (C), and more generally also algebras of the 
form HOM(E,F)., where E,F . are vector bundles, as the ones considered in [4].



132 M. A. Bastos et al.

Moreover, all C∗
.-algebras that have the uniqueness of extension property [2, 6, 13]), 

that is, if ψ . is injective in that any pure state in Z. has a unique extension to a pure 
state in A., also satisfy (C), since in this case the extension in SA . is also unique and 
the extension map PZ → PA ⊂ SA . is continuous (see [13], Lemma 1, or directly). 

Note that if A. satisfies (C), then topological freeness, condition (A3), becomes 
equivalent to requiring that no non-empty open set of M is fixed by a finite, non-
trivial, subset G0 ⊂ G., similarly to the commutative case and to the definition 
adopted in [4]. 

According to (8), (B0) for the positive element b∗b. comes down to llb∗bll ≥ llãll.. 
The next result shows that, assuming our algebra satisfies (C), if this inequality holds 
locally, for any positive element, then also (B0) holds in B.. 

We first introduce the following notation that we shall use throughout the paper: 
for ∅ /= V ⊂ M . open, letZ(V ) ⊂ Z. be those z ∈ C(M).with 0 ≤ z ≤ 1., llzll = 1., 
suppz ⊂ V .. We think of elements zb, z ∈ Z(V )., b ∈ B., as being a localization of b 
to V . 

If we let μ ∈ PA ., with mμ = μ|Z ∈ M . and z ∈ Z., then if z(mμ) = 0. then 
μ0(zb) = 0. for all b ∈ B., μ0 . any extension of μ. to a state in B., since 

. |μ0(zb)|2 ≤ μ(zz∗)μ0(b
∗b) = z2(mμ)μ0(b

∗b) = 0.

In particular, if V ⊂ M . is open and zV ∈ Z(V )., then for μ0 . an extension of μ.with 
μ /∈ PV ., that is, mμ /∈ V .,  we  ha  ve

.μ0(zV b) = 0, for b ∈ B. (10) 

Moreover, if a ∈ A.with a ≥ 0. then, since a and zV ∈ Z. commute and zV ≥ 0.,  we  
have zV a ≥ 0. and 

. llzV all = max
μ∈PV

μ(zV a) = max
μ∈PV

zV (μ|Z)μ(a).

We now prove: 

Proposition 3 Assume A. satisfies (C). LetG0 ⊂ G.be finite and b =Eg∈G0
agUg ., 

ag ∈ A., and ã :=Eg∈G0
α−1

g (a∗
gag).. If for any non-empty open set V ⊂ M ., there 

is a central element zV ∈ Z(V ). satisfying 

.llzV b∗bll ≥ llzV ãll (11) 

then (B0). holds for b. In fact, it suffices that llzV b∗bll ≥ ν(zV ã).,  for ν ∈ PA . such 
that zV (mν) = 1., with mν = ν|Z .. 

Proof Let φ ∈ PA . be such that lla∗
e aell = φ(a∗

e ae) ≤ φ(ã). and consider the open 
sets 

.W = {μ ∈ PA : |μ(ã) − φ(ã)| < ε} and V = {μ|Z : μ ∈ W } ⊂ M.
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Let zV ∈ Z(V ).. Then since zV ã . is positive, writing mμ = μ|Z ., μ ∈ PA ., 

. llzV ãll = max
μ∈PA

μ(zV )μ(ã) ≥ max
μ∈W

μ(zV )μ(ã)

> (φ(ã) − ε) max
mμ∈V

zV (mμ) = φ(ã) − ε ≥ llaell2 − ε.

Taking zV . satisfying the assumption, and noting that llzV b∗bll ≤ llbll2 ., we get 
llbll2 ≥ llaell2 − ε . for all ε > 0., so (B0) follows. 

For the last assertion, in this case, taking m ∈ V . with z(m) = 1. and ν ∈ W . 

with ν|Z = m., we get llzV b∗bll ≥ ν(ã). for some ν ∈ W ., and proceed in the same 
way. uu

In terms of pure states, the condition in Proposition 3 follows if for any open 
V ⊂ M ., there is zV ∈ Z(V ). and ν ∈ PA . such that 

. ν0

⎛

⎝zV ã +
7

s /=t∈G0

α−1
s

(
a∗
s at

)
zV Us−1t

⎞

⎠

≥ μ(zV ã) for all μ ∈ PA, with μ|Z ∈ V ,

and ν0 . an extension of ν . to a state in B.. In fact it suffices to check this for μ ∈ PA . 

with μ(zV ) = 1.. 
We arrive at condition (B1): 
Condition (B1): For any non-empty open set V ⊂ M ., finite set G0 ⊂ G. and 

ag ∈ A., g ∈ G0 ., there exists a central element zV ∈ Z(V ). satisfying 

.llzV aell ≤
llllllllllll
zV

7

g∈G0

agUg

llllllllllll
. (12) 

As a matter of terminology, if (12) or (11) hold for b = Eg∈G0
agUg ∈ B0 .,  we  

say that (B1). holds for b, and if it holds on a subset B'
0 . dense in a C

∗
.-subalgebra 

B' ⊂ B.we say that (B1) holds in B'
.. 

Of course, if (B0) holds, then (B1) holds for any zV ∈ Z(V ).. On the other hand, 
the condition in Proposition 3 amounts to (B1) for the positive elements b∗b. and ã .. 
We have then that for M-localizable algebras A.,  as  i  n (9), the global condition (B0) 
is equivalent to the M-local condition (B1). 

Together with Proposition 2, we obtain another condition for the isomorphism of 
B. with the crossed product algebra. Recall that condition (A1) means that (id, U). 

is a covariant representation of (A,G, α)., where α . acts by automorphisms both of 
A. and of the central subalgebra Z..
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Corollary 1 Assume that A. satisfies (C), condition (A1) is satisfied for (A,G, α). 

and that the action α . is amenable. Then 

. (B1) ⇔ (B0) ⇔ o = id x U : Axα G → B is an isomorphism.

In the spirit of Remark 3, if we are given an arbitrary faithful representation 
π : A → B(Hπ)., with Hπ . a Hilbert space, and a covariant representation (π,U)., 
with U : G → B(Hπ). a unitary representation, we can also easily deduce a M-local 
condition to ensure thatAxα G ∼= Bπ,U := alg(π(A), UG).. 

We will see in the next section that, in fact, for these results to hold, we only need 
to check (B1) for a subclass of open subsets of M . 

Remark 4 We remark that conditions (B0) and (B1) are not, in general, related to 
the action α .but only to the way A. interacts with the unitaries Ug .. In some situations, 
we may have unitaries Ug . and U '

g . defining the same action α : G → Aut(A). such 
that the algebras B = alg(A, UG). and B' = alg(A, U '

G). are not isomorphic, if (B0) 
is satisfied in B. but not in B'

. (see for instance Example 12.11 in [5]). This cannot 
happen if G is amenable and the action is topologically free, by the isomorphism 
theorems in [18] (Theorem 3.3) and [5] (Corollary 12.16), as in this case we would 
have B ∼= B' ∼= Axα G.. 

We note further that if the action is not topologically free, then the fact that 
conditions (B0) and (B1) hold may depend on the way A. is represented as an algebra 
of bounded operators; see Examples 1 and 2 at the end of the next section. 

4.2 Fixed Points 

We show here how the structure of fixed points plays a role in ensuring the localized 
condition (B1). We keep the assumption that condition (A1) holds for our dynamical 
system (A,G, α)., in that the action α . leaves the central subalgebra Z = C(M). 

invariant and (id, U). is a covariant representation of (A,G, α). on some Hilbert 
space H , with U a unitary representation of G in B(H)., and B = alg(A, UG).. 
We also consider the induced action of G on M given by βg : M → M . such that 
z
(
βg(m)

) = (αg(z)
)
(m)., z ∈ Z., m ∈ M ., g ∈ G.. 

Note that given an open set V ⊂ M . and finite G0 ⊂ G.,  if m0 ∈ V . is such that 
βg(m0) /= m0 . for all g ∈ G0 ., then there exists an open A ⊂ V ., m0 ∈ A., such that 

.βg(m) /= m for all m ∈ A, g ∈ G0, and βg(A) ∩ A = ∅. (13) 

In general, we have the following lemma.
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Lemma 2 Given a finite set G0 ⊂ G. and a non-empty open set V ⊂ M ., there 
exists a non-empty open set A ⊂ V . such that for g ∈ G0 ., either βg

ll
A

= idA . or 

βg(A) ∩ A = ∅.. In particular, we have G0 = D̃ ∪ D0 . such that 

. βg

ll
A

= idA, for g ∈ D̃, βg(A) ∩ A = ∅, for g ∈ D0 = G0 − D̃.

Moreover, if G0 . is closed for inverses, then D0 . and D̃ . are closed for inverses. 

Proof Induction on number of elements of G0 .:  if G0 = {g}., then either 
βg

ll
V

= idV ., and D̃ := G0 ., or there exists m ∈ V . with βg(m) /= m., in which case 
we can take A ⊂ V . open with βg(A) ∩ A = ∅. and D0 = G0 .. 

Assuming now that G0 = {gk : 0 ≤ k ≤ n}.,  let A' ⊂ V . be such that G0 \ {gn} =
D̃' ∪ D'

0 . with βg

ll
A' = idA' ,. for g ∈ D̃'

. and βg(A
') ∩ A' = ∅,. for g ∈ D'

0 ..  As  

above, if βgn

ll
A' = idA' .,  we  take A = A'

., D̃ = D̃' ∪ {gn}., D0 = D'
0 .. Otherwise, 

there exists m ∈ A'
.with βgn(m) /= m., in which case we can take A ⊂ A'

. open with 
βgn(A) ∩ A = ∅. and D0 = D'

0 ∪ {gn}.. 
Assuming G0 . closed for inverses, then βg

ll
A

= idA ⇔ βg−1

ll
A

= idA . and 

βg(A)∩A = ∅ ⇔ βg−1(A)∩A = ∅.,  so  also D0 . and D̃ . are closed for inverses. uu
Our goal now is to see that to prove condition (B1), it suffices to consider open 

sets of M that are fixed by a finite subset of G .

Remark 5 For z ∈ Z. and g ∈ G.,  we  have zUg = Ugα
−1
g (z) = Ug(z ◦ βg−1)..  Le  t

A ⊂ M . be open and zA ∈ Z(A) ⊂ C(M)., that is, zA . is a non-negative function, 
supported in A., with llzAll = 1..We will use the following. 

(i) If βg

ll
A

= idA ., then zAUg = UgzA ., that is, zA . and Ug . commute. (This holds 
as long as zA ∈ Z. is zero outside A..) 

(ii) If βg(A) ∩ A = ∅., then zA ◦ βg−1 . is zero on A.. In particular, if μ0 . is a state of 
B. that restricts to a pure state in A., so thatμ0|Z = mμ ∈ Z., then μ0(zAaUg) =
0.:  if mμ /∈ A. it follows from (10),  if mμ ∈ A. then 

. |μ0(zAaUg)|2 = |μ0(aUg(zA◦βg−1))|2 ≤ μ(aUgU
∗
g a∗)(zA◦βg−1)

2(mμ) = 0.

Proposition 4 Given G0 ⊂ G. finite and a non-empty open set V ⊂ M ., 
let G'

0 = {s−1t : s, t ∈ G0} = D0 ∪ D̃,. and ∅ /= A ⊂ V . be an open set such that 
βg

ll
A

= id|A . for g = s−1t ∈ D̃ ., and βg(A)∩A = ∅., for g = s−1t ∈ D0 = G'
0−D̃ ., 

s, t ∈ G0 .. Then for b =Eg∈G0
agUg ., ag ∈ A., and any zA ∈ Z(A)., we have that 

. llzAb∗bll ≥
llllllllllll
zA

⎛

⎝ã +
7

s /=t,s−1t∈D̃

α−1
s

(
a∗
s at

)
Us−1t

⎞

⎠

llllllllllll
,

with ã =Es∈G0
α−1

s

(
a∗
s as

)
..
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Note that the existence of such an open set A. and sets D0, D̃ ⊂ G. is a 
consequence of applying Lemma 2 to the finite set G'

0 = {s−1t : s, t ∈ G0}.. 
Proof Let ∅ /= V ⊂ M . be open and let b = E

g∈G0
agUg ., where we assume 

without loss of generality that G0 . is closed for inverses, so also G'
0 . is closed for 

inverses. Write G'
0 = D0 ∪ D̃ . satisfying the conditions above, with A ⊂ M . open. 

Then we can write 

. b∗b =
7

s,t∈G0

α−1
s

(
a∗
s at

)
Us−1t

= ã +
7

s /=t,s−1t∈D0

α−1
s

(
a∗
s at

)
Us−1t +

7

s /=t,s−1t∈D̃

α−1
s

(
a∗
s at

)
Us−1t .

Let 

. b̃ := ã +
7

s /=t,s−1t∈D̃

α−1
s

(
a∗
s at

)
Us−1t .

Note that b̃ . is self-adjoint since D̃ . is closed for inverses, and 

. 

(
α−1

s

(
a∗
s at

)
Us−1t

0∗ = α−1
t

(
a∗
t as

)
Ut−1s .

Consider the C∗
.-subalgebraZ0(A) ⊂ Z = C(M).of functions that are zero outside 

A. and let zA ∈ Z0(A).. Since βg

ll
A

= idA .,  for g = s−1t ∈ D̃ ., we have that 

zAUg = Ug(zA ◦ βg−1) = UgzA ., from which follows that zA . and b̃ . commute. 

In particular, zAb̃. is also self-adjoint, hence normal, so there always exists a pure 
state νB ∈ PB . such that llzAb̃ll = |νB(zAb̃)|.. We see now that we can pick such a 
νB . such that νB(zAb∗b) = νB(zAb̃)., which proves our claim since in this case 

. 
llllzAb∗b

llll ≥ |νB(zAb∗b)| = |νB(zAb̃)| = llzAb̃ll.

Consider then the C∗
.-subalgebras 

. C := alg{b̃,Z0(A), Id} ⊂ B and C̃ := alg{C,Z}.

Let zA ∈ Z(A)., that is, zA ∈ Z0(A). such that llzAll = 1., and assume zAb̃ /= 0. 
(otherwise there is nothing to prove). Since C. is a commutative C∗

.-algebra, as b̃ . 

commutes with any element of Z0(A)., there exists a pure state ν . of C. such that 

. llzAb̃ll = |ν(zAb̃)|.

Moreover, ν(zAb̃) = ν(zA)ν(b̃) /= 0.,  so ν(zA) /= 0..



M-Local Type Conditions and Local Trajectories 137

Since C ⊂ C̃. is a subalgebra and ν . is a pure state of C., there is an extension of 
ν . that is a pure state of C̃., νC̃ ∈ PC̃ ..  Let f ∈ Z. such that f zA = 0.. Then since 

zA ∈ C̃. is a central element of this subalgebra, then 

. 0 = ν
C̃ (zAf ) = ν

C̃ (zA) ν
C̃
(f )

and since ν
C̃ (zA) = ν (zA) /= 0. then ν

C̃
(f ) = 0.. Thus we have that 

. ν
C̃
(f ) = 0 for all f ∈ Z : f zA = 0.

Since C̃ ⊂ B. is a subalgebra, we can extend the pure state 
ν
C̃

. to a pure state νB ∈ PB .. Then if s−1t ∈ D0 .we have that 

. zAα−1
s

(
a∗
s at

)
Us−1t = α−1

s

(
a∗
s at

)
Us−1t

(
zA ◦ βt−1s

)

and since βg(A) ∩ A = ∅.,  for g = s−1t ∈ D0 ., we have that 

. 
(
zA ◦ βt−1s

)2
zA = 0

and so 

. νB
((

zA ◦ βt−1s

)20 = νC̃

((
zA ◦ βt−1s

)20 = 0

for s /= t . and s−1t ∈ D0 .. By the Cauchy-Schwartz inequality for states, we have 
that: 

. 

lllνB
(
zAα−1

s

(
a∗
s at

)
Us−1t

0lll
2 =
lllνB
(
α−1

s

(
a∗
s at

)
Us−1t

(
zA ◦ βt−1s

)0lll
2

≤ νB
(
α−1

s

(
a∗
s at

)
Us−1t

(
α−1

s

(
a∗
s at

)
Us−1t

0∗0
νB
((

zA ◦ βt−1s

)20 = 0.

Thus we have that 

. 
llνB
(
zAb∗b

)ll =
lllν
(
zAb̃
0lll = llzAb̃ll

and from this we conclude that llzAb∗bll ≥ llzAb̃ll.. uu
One first consequence applies when the action is topologically free, as in 

condition (A3) of Sect. 3. It follows from (13) that if (A3) holds, that is, if the action 
is topologically free, then for any open V ⊂ M ., and G0 ⊂ G. finite, we can always 
find A ⊂ V .with βg(A)∩A = ∅. for all g ∈ G0 .. Hence, in Lemma 2 we can always 
take D0 = G0 . and D̃ = ∅.. 

We obtain the following version of the result in [18] (Theorem 3.2) that 
establishes the isomorphism of B. with the crossed product. Recall that we always
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assume condition (A1), so that in particular (id, U). is a covariant representation of 
(A,G, α)., and that (C) holds if A. is M-localizable as in (9). 

Corollary 2 Assume that (A1) is satisfied and that the action is topologically free, 
in that (A3) is satisfied, then (B1) holds in B.. If moreover (C) holds for A. and the 
action α . is amenable, then id x U : A xα G → B. is an isomorphism. 

Proof Let b = Eg∈G0
agUg ., ag ∈ A., G0 . finite, and ∅ /= V ⊂ M . be open. If A. 

satisfies (C) and (A3) holds, we can take D̃ = ∅. in Proposition 4,  so  we  get  fo  r any
zA ∈ Z(A)., 

. llzAb∗bll ≥ llzAãll ,

with ã = Es∈G0
α−1

s

(
a∗
s as

)
.. We conclude that (B1) holds for b. It follows from 

Corollary 1 that if the action α . is amenable, then id x U . is an isomorphism. uu
Even if the action is not topologically free, we can still get a criterion for the 

isomorphism of B. with the crossed product to hold. The following result comes 
directly from Proposition 4, as in this case, (11) holds. 

Corollary 3 Let G0 ⊂ G. be finite, ag ∈ A., g ∈ G0 ., and ã = Eg∈G0
α−1

g (a∗
gag).. 

If for every non-empty open set V ⊂ M . such that βg

ll
V

= id|V . for g ∈ D ., with 
D ⊂ {s−1t : s, t ∈ G0}. arbitrary, there is a central element zV ∈ Z(V ). satisfying 

. 

llllllllllll
zV

⎛

⎝ã +
7

s /=t,s−1t∈D

α−1
s

(
a∗
s at

)
Us−1t

⎞

⎠

llllllllllll
≥ llzV ãll

then (B1). holds for b =EG0
agUg .. 

We arrive at condition (B2): 
Condition (B2): For any finite set D ⊂ G. and any non-empty open V ⊂ M . such 

that βg

ll
V

= id|V . for all g ∈ D ., and ag ∈ A., g ∈ D ., there exists a central element 
zV ∈ Z(V ). satisfying 

. llzV aell ≤
llllllllllll
zV

7

g∈D

agUg

llllllllllll
. (14) 

We can assume that ae . is positive and
E

g /=e∈D agUg . is self-adjoint. If (14) holds 
for b =Eg∈G0

agUg ∈ B0 ., we say that (B2) holds for b, and if it holds on a subset 
B'
0 . dense in a C

∗
.-subalgebra B' ⊂ B.we say that (B2) holds in B'

.. 
In the notation of Corollary 3, applying (B2) to the element 

.b̃ = ã +
7

s /=t,s−1t∈D

α−1
s

(
a∗
s at

)
Us−1t ,
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we obtain that (B1) holds for b =EG0
agUg .. Of course, if (B1) holds then we can 

apply it on open sets V such that βg

ll
V

= id|V . for all g ∈ D ., to obtain (B2). Note 
that such sets exist only when the action is not topologically free. 

It follows from the previous corollary that we can improve Corollary 1 to get 
conditions for the isomorphism of B = alg(A, UG). with the crossed product 
algebra. Recall that (C) means that A. is M-localizable as in (9) and that condition 
(A1) is simply that (id, U). is a covariant representation of (A,G, α)., where α . 

leaves the central subalgebra Z. invariant. 

Corollary 4 Assume that A. satisfies (C), that condition (A1) is satisfied for 
(A,G, α). and that the action α . is amenable. Then 

. (B1) ⇔ (B2) ⇔ o = id x U : Axα G → B is an isomorphism.

In the setting of arbitrary faithful representations, as in Remark 3,  if  we  are  given  
a faithful representation π : A→ B(Hπ)., with Hπ . a Hilbert space, and a covariant 
representation (π,U). of (A,G, α)., with U : G → B(Hπ). a unitary representation, 
we can replace (14) in (B2) by 

. llzV aell ≤
llllllllllll
π(zV )

7

g∈D

π(ag)Ug

llllllllllll
,

and, assuming that A. satisfies (C) and the action α . is amenable, we can conclude 
thatAxα G ∼= Bπ,U := alg(π(A), UG).. 

We now apply our results to show that if topological freeness of the action 
is not satisfied for some system (A,G, α)., it is possible to construct covariant 
representations (π,U). for which (B2) is not satisfied and so the C∗

. algebra 
alg(A, UG). is not isomorphic to the crossed product. (Note that for a commutative 
algebra, the existence of such a covariant representation follows from Theorem 2 in 
[7].) 

Example 1 LetA = C(M). for some compact M ⊂ R
N

. such that M is the closure 
of an open set and M has smooth boundary, and G be an amenable discrete group.
Let β : G × M → M . be an action by diffeomorphisms such that βe = id . and 
βgs = βgβs ., g, s ∈ G.. Assume that for some g ∈ G. where g /= e. there exists a 
non-empty open set V ⊂ M . such that 

. βg|V = id|V .

Let α : G → Aut(A). be given by αg(a) = a ◦ βg ., g ∈ G.. We claim that there 
exists a covariant representation (π,U). of (A,G, α). such that condition (B2) is not 
satisfied in B = alg(π(A), U)..
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Indeed, consider the Hilbert space given by H = L2(M). with the Lebesgue 
measure. Consider the faithful covariant representation on B(H). given by 

. [π(a)f ](x) = a(x)f (x), [Ugf ](x) = | det dβg|1/2f (βg(x)),

for a ∈ A = C(M). and f ∈ L2(M)..  Let e /= g ∈ G. and ∅ /= V ⊂ M . be such that 
βg|V = id|V ., and let zV . be a continuous non-negative function on M with compact 
support in V with llzV ll = 1.. Then since βg|V = id|V .,  we  ha  ve

. [(π(zV )Ug)f ](x) = zV (x)| det dβg|1/2f (βg(x)) = zV (x)f (x) = [π(zV )f ](x).

Thus 

. 0 = llπ(zV ) − π(zV )Ugll < llπ(zV )ll = llzV ll = 1,

and so (B2), hence also (B0), is not satisfied. Since A. is M-localizable, as it is 
commutative, and G is amenable, we conclude from Corollary 4, or directly from 
Proposition 2 (see also Remark 3), that B. is not isomorphic to the crossed product 
A xα G.. Note that this does not contradict the isomorphism theorems in [5, 18]  as  
the action α . is not topologically free, 

Although the above example shows that for such an algebra A. and action α . some 
covariant representations of (A,G, α).may not satisfy condition (B0), however it is 
possible to construct concrete representations which satisfy it. 

Example 2 Consider the C∗
.-algebraA = C(M). for some compact M ⊂ R

N
. such 

that M is the closure of an open set and M has smooth boundary. Let G = Z., 
which is amenable, and consider the action β : Z × M → M . given by βn = ϕn

., 
n ∈ Z., with ϕ . a diffeomorphism of M that fixes a non-empty open set of M .  As  i  n
Example 1, consider the action of Z. on C(M). given by αn(a) = a ◦ βn ., a ∈ A., 
n ∈ Z.. Clearly, α . is not topologically free. 

We will construct a covariant representation of (A,Z, α). that satisfies condition 
(B2). Consider the Hilbert space given by H = L2(M ×S1)., where M has the usual 
Lebesgue measure and S1

. is endowed with the normalized Lebesgue measure, so 
that it has measure 1. Consider the faithful representation π : A → B(H). and the 
unitary representation U : Z → B(H). given by 

. [π(a)f ](x, t) = a(x)f (x, t), [Unf ](x, t) = eint | det dϕn|1/2f (ϕn(x), t).

We thus obtain 

. Unπ(a)U∗
n = π(αn(a)),

and so (π,U). is a covariant representation of (A,Z, α)..
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Let G0 ⊂ Z. be finite and ∅ /= V ⊂ M . be any open set such that ϕn|V = id|V . for 
all n ∈ G0 ..  Let zV : M → R. be a continuous non-negative function with support 
in V and f ∈ L2(M × S1). be a function constant in the variable t ∈ S1

. such that 
llf llL2(M×S1) = 1.. Since ϕn|V = id|V ., we have that 

. zV (x)| det dϕn|1/2f (ϕn(x)) = zV (x)f (x),

thus for any an ∈ A., n ∈ G0 ., 

. 

llllllllllll

7

n∈G0

π(zV )π(an)Un

llllllllllll

2

B(L2(M×S1))

≥
llllllllllll

7

n∈G0

[π(zV )π(an)Un] (f )

llllllllllll

2

L2(M×S1)

=
l

M

l

S1

llllll

7

n∈G0

zV (x)eint an(x)| det dϕn|1/2f (ϕn(x))

llllll

2

dtdx

=
l

M

l

S1

llllll

7

n∈G0

zV (x)an(x)eintf (x)

llllll

2

dtdx

=
l

M

7

n∈G0

|zV (x)|2|an(x)|2|f (x)|2dx.

Let x0 ∈ V . be the maximum of the function |zV a0|.. Now take a sequence 
fk : M → R. such that llfkllL2(M×S1) = 1. and f 2

k . is such that for any function 
h ∈ C(M).,  we  have

l
M

h(x)f 2
k (x)dx → h(x0).,  as k → ∞. (for instance 

fk(x) = χB1/k(x0)∩M(x)/
/

m(B1/k(x0) ∩ M)., with m the Lebesgue measure and
B1/k(x0). the ball centered in x0 .with radius 1/k .). Thus we obtain that 

. lim
k→∞

llllllllllll

7

n∈G0

[π(zV )π(an)Un](fk)

llllllllllll

2

L2(M×S1)

=
7

n∈G0

|zV (x0)|2|an(x0)|2

≥ |zV (x0)a0(x0)|2.

We conclude that 

. 

llllllllllll

7

n∈G0

π(zV )π(an)Un

llllllllllll
B(L2(M×S1))

≥ |zV (x0)a0(x0)| = llzV a0ll,

which proves condition (B2) in B := alg(π(A), UZ).. It then follows from 
Corollary 4 that the integrated representation πxU .gives an isomorphism ofAxαZ. 

with B = alg(π(A), UZ)..
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In this example, Z. may be replaced by a generic discrete, amenable, group G, 
replacing S1

. by the compact space Ĝ., which is the Pontryagin dual of G. 

4.3 Subalgebras and the Commutative Case 

We consider here the equivalent conditions (B1) and (B2) on subalgebras of 
B = alg(A, UG).. We start with considering the class of operators with scalar 
coefficients, which, as we shall see, will be relevant in the commutative case. 

Let B̃ := alg(UG) ⊂ B. be the C∗
.-subalgebra generated by UG ., which is given 

by the closure of 

. B̃0 := B̃ ∩ B0 =
⎧
⎨

⎩

7

g∈G0

(cgI )Ug : G0 finite, cg ∈ C

⎫
⎬

⎭
.

Let b0 =Eg∈G0
(cgI )Ug .with cg ∈ C., then we can write 

. b∗
0b0 = ã0I +

7

s /=t∈G0

csctUs−1t , with ã0 :=
7

s∈G0

|cs |2 ∈ C.

Assuming ã0 > 0., condition (B1) for b0 . can be written in the following way: for 
any non-empty open set V ⊂ M ., there exists zV ∈ Z(V ). such that 

. 

llllllllllll
zV

⎛

⎝ã0 +
7

s /=t∈G0

csctUs−1t

⎞

⎠

llllllllllll
= ã0

llllllllllll
zV

⎛

⎝I +
7

s /=t∈G0

csct /ã0Us−1t

⎞

⎠

llllllllllll

≥ llzV ã0ll = ã0,

that is, condition (B1) holds in B̃ ⊂ B. if, and only if, for any finite G0 ⊂ G. and 
cg ∈ C, g ∈ G0 . and open V ⊂ M ., there exists zV ∈ Z(V ). such that 

. 

llllllllllll
zV

⎛

⎝I +
7

g∈G0

cgUg

⎞

⎠

llllllllllll
≥ llzV ll = 1.

We can write condition (B2) in a similar way. It follows from Corollary 3 that 
(B1) being satisfied in B̃. is equivalent to (B2) being satisfied in B̃.. 

Assume now A. is commutative. The point of considering the subalgebra B̃. is 
that in this case any b ∈ B0 . can be approximated by some b0 ∈ B̃0 = B̃ ∩ B0 . on 
open sets.
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Proposition 5 AssumeA = C(M). is commutative, M a compact Hausdorff space. 
Let b =Eg∈G0

agUg ., with ag ∈ A., and ã =Eg∈G0
α−1

g (a∗
gag).. Given ε > 0.,  for  

any non-empty open V ⊂ M ., and m ∈ V ., there exists b0 ∈ B̃0 . and a non-empty 
open A ⊂ V ., m ∈ A., such that 

. llzA(b∗b − b∗
0b0)ll < ε and llzA(ã − ã0)ll < ε

for any zA ∈ Z(A).with zA(m) = 1.. 

Proof Let ∅ /= V ⊂ M . be open and fix m ∈ V ..  We  ha  ve

. b∗b =
7

s,t∈G0

α−1
s

(
a∗
s at

)
Us−1t .

By continuity of the functions as ., we can take a neighborhood m ∈ A ⊂ V . small 
enough such that 

. 

lllα−1
s

(
a∗
s at

)
(x) − α−1

s

(
a∗
s at

)
(m)

lll < ε for all x ∈ A, s, t ∈ G0.

Let cs,t = α−1
s

(
a∗
s at

)
(m) ∈ C., then for any zA ∈ Z(A)., assume also zA(m) = 1., 

. 

llllllzA

(
α−1

s

(
a∗
s at

)− cs,t I
0llllll = sup

x∈A

zA(x)

lllα−1
s

(
a∗
s at

)
(x) − cs,t

lll ≤ ε.

Let b0 =Eg∈G0
ag(m)Ug . then b∗

0b0 =Es,t∈G0
cs,tUs−1t ., and 

. llzA(b∗b − b∗
0b0)ll < Kε, llzA(ã − ã0)ll < K 'ε

for some K,K ' ∈ N. so the claim follows. uu
Recall that we assume throughout that we have a covariant representation (id, U). 

of (A,G, α). with α . an action that leaves a central subalgebra Z. invariant, that is, 
that condition (A1) holds. 

Theorem 2 Let A = C(M). be commutative and assume (A1) is satisfied. If (B2) 
holds in B̃., that is, if for any finite G0 ⊂ G. and cg ∈ C, g ∈ G0 . and any non-empty 
open V satisfying βg

ll
V

= id|V . for all g ∈ G0 ., there exists zV ∈ Z(V ). such that 

.

llllllllllll
zV

⎛

⎝I +
7

g∈G0

cgUg

⎞

⎠

llllllllllll
≥ llzV ll = 1, (15) 

then (B2) holds in B.. Assuming the action α . is amenable, then idxU : AxαG → B. 

is an isomorphism.
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Proof Let b = Eg∈G0
agUg ∈ B0 ., ag ∈ A., be arbitrary and ã . be as before, then 

from the previous proposition, given ε > 0., for any open V ⊂ M . and m ∈ V ., there 
exists b0 ∈ B0 ∩ B̃. and an open A ⊂ V . such that 

. llzA(b∗
0b0)ll < llzA(b∗b)ll + ε and llzA(ã0)ll > llzA(ã)ll − ε

for any zA ∈ Z(A).. Assuming condition (15) gives that for any such open V with 
βg

ll
V

= id|V ., there is such a zA . satisfying llzAb∗
0b0ll ≥ llzAã0ll. hence 

. llzAb∗bll ≥ llzAãll − 2ε

so that (B1) holds in b, hence (B2) holds in B.. Since A. is commutative, it satisfies 
(C), hence from Corollary 1, (B0) holds and id x U : A xα G → B. is an 
isomorphism. uu

Hence, in the commutative case, we have that condition (B1), respectively, 
condition (B2), in B = alg (A, UG). is equivalent to condition (B1), respectively, 
condition (B2), in B̃ = alg(UG).. Note that this condition depends on M-localization 
and on the unitary group UG .. We will see now that under an extra condition, the 
equivalent conditions (B1) and (B2) are guaranteed just from conditions on UG .. 

Lemma 3 Let Ã ⊂ B(H). and B̃ ⊂ B(H). be commutative unital C∗
.-subalgebras 

that commute with each other, that is, for all a ∈ Ã.and b ∈ B̃ .we have ab = ba .. Let 
Ã ∼= C(X). and B̃ ∼= C(Y ). and C = alg(Ã, B̃) ∼= C(Z). and consider the induced 
maps by inclusion: 

. πX : Z → X, πY : Z → Y.

If for all 0 /= a ∈ Ã. and 0 /= b ∈ B̃ .we have 

.ab /= 0, (16) 

then for every neighborhood x ∈ V ⊂ X .we have that πY (π−1
X (V )) = Y .. 

Proof Suppose by contradiction that there exists V ⊂ X . open, x ∈ V ., such that 
πY (π−1

X (V )) /= Y .. Since X is normal (being compact and Hausdorff), we consider 
an open set x ∈ U ⊂ V . such that U ⊂ V .. By Uryshon’s lemma, there exists 
ρ ∈ Ã ∼= C(X). such that: 

. ρ(x) = 1, and ρ|X−U = 0.

We have that K = πY (π−1
X (U)) ⊂ Y . is compact, thus Y − K . is a non-empty open 

set. We consider y ∈ Y − K ., and by Uryshon’s lemma, a function g ∈ B̃ ∼= C(Y ). 

such that 

.g(y) = 1, and g|K = 0.
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Then we have that ρg = 0.:  if z ∈ Z . and πX(z) /∈ U . then ρ(z) = 0., on the other 
hand, if πX(z) ∈ U ., then πY (z) ∈ K . and so g(z) = 0.. We obtain that ρ(z)g(z) = 0. 
for every z ∈ Z ., thus ρg = 0.. This is in contradiction with (16), since ρ /= 0. and 
g /= 0.. We have then that πY (π−1

X (V )) = Y . for all open sets x ∈ V . of X, which 
concludes the proof. uu

We now have the following sufficient conditions for the isomorphism with the 
crossed product in the commutative case. Note that condition (17) below is in fact 
(B0) for B̃ = alg(UG)., so that it is equivalent to B̃ ∼= C xα G = C∗(G)., the group 
algebra. It can be regarded as a strong form of linear independence of Ug ., g ∈ G.. 

Theorem 3 Assume (A1) is satisfied and that A. is commutative. Let B̃ := alg{Ug :
g ∈ G} ⊂ B(H)., such that for all finite G0 ⊂ G., where cg ∈ C., we have 

.

llllllllllll

7

g∈G0

cgUg

llllllllllll
≥ |ce|. (17) 

Assume that for all 0 /= a ∈ A. and 0 /= b ∈ B̃.we have 

.ab /= 0, (18) 

then (B2). holds in B = alg(A, UG)..  If  the  action α . is amenable, then id x U :
Axα G → B. is an isomorphism. 

Proof By Theorem 2, it suffices to prove that given a finite set G0 ⊂ G. and an open 
set V ⊂ M . such that the action βg|V = id|V . is trivial for all g ∈ G0 ., and a function 
zV ∈ Z(V ) ⊂ A.we have 

.

llllllllllll
zV

7

g∈G0

cgUg

llllllllllll
≥ llcezV ll = |ce|. (19) 

Moreover, we only need to prove (19) for positive elements. Consider then 
u = Eg∈G0

cgUg ∈ B̃. a positive element and zV ∈ Z(V ). such that βg|V = id|V . 

for all g ∈ G0 .. 
From Remark 5, u and zV . commute. We now consider A = alg{zV , Id}. and 

B = alg{u, Id}.. We have that A. is a commutative C∗
. algebra, since it is a sub-

algebra of a commutative C∗
. algebra and B . is a commutative C∗

. algebra since it is 
generated by a positive element u. Thus we have that A ∼= C(X). and B ∼= C(Y ).. 
Since zV . commutes with u we have that C := alg{A,B} ∼= C(Z). is commutative, 
and by condition (18), since A ⊂ A. and B ⊂ B̃. for all 0 /= a ∈ A. and b ∈ B . we 
have ab /= 0.. Thus we can apply Lemma 3. We consider x ∈ V . such that 

.zV (x) = 1.
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We also consider y ∈ Y . such that 

. u(y) = llull ≥ |ce|

by Eq. (17).  For ε > 0., consider the open set V = {x' ∈ X : zV (x') > 1 − ε}.. Thus 
by Lemma 3, there exists w ∈ Z . such that πX(w) ∈ V . and πY (w) = y .. Then, with 
x' = πX(w)., 

. (zV u)(w) = zV (x')u(y) ≥ (1 − ε)|ce|.

But then, since w identifies with a pure state in C., we conclude that 

. llzV ull ≥ (zV u)(w) ≥ (1 − ε)|ce| for all ε > 0,

which yields what we wanted to prove. uu
Put in a general framework where A. is an arbitrary unital C∗

.-algebra, not 
necessarily commutative, the results in this section can be regarded as density results 
in the following way. 

Let A'
. be a C∗

.-subalgebra of A., containing 1A ., where α . also acts by Aut(A'). 
and let B' := alg(A', UG) ⊂ B., with B'

0 . the set of elements of the form E
g∈G0

cgUg ., G0 . finite, cg ∈ A'
.. The conditions in Proposition 5 can be easily 

formulated in this setting: 
For b =Eg∈G0

agUg ∈ B0 . and ã =Eg∈G0
α−1

g (a∗
gag) ∈ A.,  given ε > 0., and 

a non-empty open set V ⊂ M ., m ∈ V ., there exists b0 = Eg∈G0
cgUg ∈ B'

0 . and a 
non-empty open A ⊂ V ., such that 

.llzA(b∗b − b∗
0b0)ll < ε and llzA(ã − ã0)ll < ε (20) 

for any zA ∈ Z(A).with zA(m) = 1., where ã0 =Eg∈G0
α−1

g (c∗
gcg) ∈ A'

.. 
If condition (20) is satisfied for any b ∈ B0 ., we say that B'

. and A'
. are M-locally 

dense in B. and A., respectively. We have shown that when A. is commutative, then 
A' = C. and B' = alg(UG). are locally dense in A. and B., even though they are not 
dense with the strong operator topology. 

Of course, in this situation, the proof of Theorem 2 stands exactly in the same 
way, assuming now that (B1) holds in B'

.. (Note that if A'
. contains Z., then this 

comes down to B' ∼= A'
xα G..) 

Proposition 6 Assume (A1) is satisfied. Let A'
.be a C∗

.-subalgebra of A. containing 
the identity, where α . also acts by Aut(A')., and let B' := alg(A', UG) ⊂ B.,  such  
that B'

. and A'
. are M-locally dense subalgebras of B. and A., respectively. If (B2) 

holds in B'
., then (B2) holds in B.. If (C) holds and the action α . is amenable, then 

id x U : Axα G → B. is an isomorphism.
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As for Theorem 3, we see from the proof that, even in the non-commutative case, 
if (B0) holds in B'

., so in particular, assuming the action is amenable, B' ∼= A'
xα G., 

and if ab /= 0. for a ∈ A., b ∈ B'
., then (B1) also holds in B'

.. We then obtain: 

Theorem 4 Assume (A1) is satisfied and that the action α . is amenable. Let A'
. 

be a C∗
.-subalgebra of A. containing the identity, where α . also acts ameanably by 

Aut(A')., and let B' := alg(A', UG) ⊂ B.. Assume that B'
. and A'

. are M-locally 
dense subalgebras of B.and A., respectively, and that (B0).holds in B'

., in particular, 
B' ∼= A'

xα G.. Assume that ab /= 0. for 0 /= a ∈ A., 0 /= b ∈ B'
.. Then (B2). holds 

in B., and if (C) holds for A., then id x U : Axα G → B. is an isomorphism. 

Proof Similarly to the proof of Theorem 3, from Corollary 4 and the previous 
proposition, it suffices to check condition (B2) on B'

.. Given a finite set G0 ⊂ G. 

and an open set V ⊂ M . such that the action βg|V = id|V . is trivial for all g ∈ G0 ., 
and a function zV ∈ Z(V ) ⊂ A., we want to show that, for any positive element 
u =Eg∈G0

cgUg ∈ B'
0 ., cg ∈ A'

., 

. 

llllllllllll
zV

7

g∈G0

cgUg

llllllllllll
≥ llzV cell.

Again from Remark 5, u and zV . commute, so that we can show, using Lemma 3 and 
that, by assumption, llull ≥ llcell., that 

. llzV ull ≥ (1 − ε)llcell, for all ε > 0,

which shows that llzV ull ≥ llcell ≥ llzV cell.. In particular (B2) holds in B'
. and the 

result follows. uu

5 Back to the Local Trajectories Method 

We consider here, as in Sect. 3, the local trajectories representations and give 
alternative conditions to establish the local trajectory method, Theorem 1,  in  th  e
algebra B = alg(A, UG).. We assume, as always, that condition (A1) is satisfied, 
that is, that (id, U). is a covariant representation of (A,G, α). preserving a central 
subalgebra Z = C(M).. We will replace condition (A2) that the group G is 
amenable by the more general notion of amenability of the action α .. 

Let o. be the orbit space of the induced action β . on M . Recall that for ω ∈ o., πω . 

is a representation on B(l2(G,Hω)). such that for a ∈ A., ξ ∈ l2(G,Hω)., g, s ∈ G., 

. [πω(a)ξ ] (s) = π '
ω(α−1

s (a))(ξ(s)),
ll
πω

(
Ug

)
ξ
l
(s) = λg(ξ)(s) = ξ

(
g−1s

0
,
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where π '
ω : A → B(Hω). is π '

ω = φω ◦ ρω . with ρω = ρmω : A → A/Jmω . the 
quotient map, and φω . an isometry. 

Then πω . is defined inAxα G. as the regular representation induced by π '
ω ..  As  f  or

B = alg(A, UG)., we assume that elements b = Eg∈G0
agUg . uniquely determine 

the coefficients ag ., g ∈ G0 ., so that πω . is also well-defined in B0 .. Typically, we are 
interested in the case when B ∼= Axα G. so this condition is guaranteed. 

Throughout this section, we let π = ⊕ω∈oπω .. As a matter of terminology, we 
say that the local trajectories method works on B. if π . is well-defined and faithful in 
B.. Recall from Proposition 1 that π . is always faithful in A.. 

We have noted in Remark 1 that for the local trajectories method to work on B. it 
suffices to give conditions such that the maps 

.id xα U : Axα G → B, id xα' π(U) : π(A) xα' G → π(B) (21) 

are isomorphisms, where α'
g(π(a)) := π(Ug)π(a)π(U∗

g ) = π(UgaU∗
g ).. Note that 

π(B) ∼= alg(π(A), π(UG)).. 
The goal of this section is to apply the criteria obtained in Sect. 4 to study in 

particular the second map in (21), where we have regular representations on spaces 
of the form B(l2(G,H)).. 

We consider first the commutative case where we can use the results in Sect. 4.3. 
Let B̃0 = B̃ ∩ B0 . and B̃ = alg(UG). and consider operators of the form 

. b0 = I +
7

e /=s∈G0

csUs ∈ B̃0, with πω(b0) = I +
7

e /=s∈G0

csλs, cs ∈ C.

Then for ξ ∈ l2(G,Hω). and g ∈ G.,  we  ha  ve

. [πω(b0)(ξ)] (g) = ξ(g) +
7

g /=s∈G0

csξ(g−1s).

We have that the localized condition (B1) always holds in π(B̃0).. For that we make 
use of the following lemma. 

Lemma 4 Let ρ ∈ Z ∼= C(M). such that 0 ≤ ρ ≤ 1. and llρll = 1.. Then there exist 
ω ∈ o. and g ∈ G. such that 

.α−1
g (ρ) = 1A + Jmω . (22) 

In particular, π '
ω(α−1

g (ρ)) = I ∈ B(Hω). and [πω(ρ)ξ ](g) = ξ(g)., for any 

ξ ∈ l2(G,Hω).. Conversely, given ω ∈ o. and g ∈ G., there is ρ ∈ Z ∼= C(M). 

such that 0 ≤ ρ ≤ 1., and llρll = 1. satisfying (22). 

Proof Let m ∈ M . be such that ρ(m) = 1 = maxx∈M ρ(x).. Take the orbit ω ∈ o. 

such that m ∈ ω.,  so m = β−1
g (mω). for mω ∈ ω . and g ∈ G.. Note that α−1

g (ρ) = ρ ◦
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β−1 
g .will have its maximum in mω . since β−1

g (mω) = m. and ρ . attains its maximum 

at m. This gives that α−1
g (ρ)(mω) = 1., hence α−1

g (ρ) − 1A ∈ Jmω . and 

. π '
ω

(
α−1

g (ρ)
0

= π '
mω

(
α−1

g (ρ)
0

= π '
ω(1) = I ∈ B(Hω),

from which follows πω(ρ)η(g) = π '
ω

(
α−1

g (ρ)
0

η(g) = η(g)., for any 

η ∈ l2(G,Hω).. For the converse, let ω ∈ o. and g ∈ G. and pick any ρ ∈ Z. 

such that 0 ≤ ρ ≤ 1. and ρ(m) = 1., with m = β−1
g (mω).. uu

Proposition 7 Assume condition (A1). Let π = ⊕ω∈oπω . be the local trajectories 
representation, assumed well defined in B0 .. Then for any V ⊂ M . open and cs ∈ C., 
s ∈ G0 ⊂ G. finite, and for all zV ∈ Z(V ).we have 

. 

llllllllllll
zV π

⎛

⎝I +
7

e /=s∈G

csUs

⎞

⎠

llllllllllll
≥ 1.

In particular, (B1) holds in π(B̃0) ⊂ π(B).. 

Proof Let zV ∈ Z(V )., then since π . is an isomorphism on Z., write zV = π(ρV )., 
for ρV ∈ Z.. Then llρV ll = llπ(ρV )ll = 1. and since π . is a ∗.-homomorphism and 
zV ≥ 0.,  also ρV ≥ 0.. 

Let g ∈ G. and ω ∈ o. be as in the previous lemma applied to ρV .. Then we have 

. (πω(ρV )ξ) (g) = π '
ω

(
α−1

g (ρV )
0

(ξ(g)) = ξ(g),

for any ξ ∈ l2(G,Hω)..  Now  take ξg ∈ l2(G,Hω). such that ξg(s) = 0. for s /= g . 

and ξg(g) = u., with u ∈ Hω ., llull = 1., arbitrary. Let b0 = I +Ee /=s∈G0
csUs ∈ B̃0 .. 

It follows that 

. 
(
πω (ρV b0) ξg

)
(g) = πω(ρV )

⎛

⎝ξg(g) +
7

e /=s∈G

csξg

(
s−1g

0
⎞

⎠ = ξg(g) = u.

We have then 

.llπω(ρV b0)ll = sup
llξll=1

llπω(ρV b0)ξlll2 ≥ llπω(ρV b0)ξglll2

≥ ll(πω(ρV b0)ξg)(g)ll = llull = 1.
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Since we wrote zV = π(ρV )., we conclude that 

. 

llllllllllll
zV π

⎛

⎝I +
7

e /=s∈G

csUs

⎞

⎠

llllllllllll
= sup

ω∈o

llllllllllll
πω(ρV )πω

⎛

⎝I +
7

e /=s∈G

csUs

⎞

⎠

llllllllllll
≥ 1.

In particular, (B1) holds in π(B̃0).. uu
Assume now that A. is commutative; then both A. and π(A). satisfy the M-

localization condition (C) as in (9). Moreover, since B̃0 = B0 ∩ B̃. is M-locally 
dense in B., by Proposition 5,  also π(B̃0) = π(B0) ∩ alg(π(UG)). is M-locally 
dense in π(B)., so we have from Theorem 2 that if (B2), or equivalently, (B1), holds 
in π(B̃0). then it also holds in π(B).. In this case, using localization, it follows from 
Corollary 4 that: 

Proposition 8 Assume condition (A1) and that the action α . is amenable. Let A. be 
commutative with the local trajectories representation π = ⊕ω∈oπω . well defined 
in B0 .. Then (B1) holds in π(B). and 

. id x π(U) : π(A) xα' G → π(B) = alg(π(A), λG)

is an isomorphism. 

Following Remark 1, we conclude that, in the commutative case, for the local 
trajectories method to work, it suffices that id xα U : A xα G → B. is an 
isomorphism. From Theorem 2 we obtain then the following sufficient condition. 

Theorem 5 Let A. be commutative. Assume condition (A1) and that the action α . 

is amenable. If (B2) holds in the subalgebra B̃0 ., that is, if for any finite G0 ⊂ G. 

and cg ∈ C, g ∈ G0 . and any non-empty open set V satisfying βg

ll
V

= id|V . for all 
g ∈ G0 ., there exists zV ∈ Z(V ). such that 

. 

llllllllllll
zV

⎛

⎝I +
7

g∈G0

cgUg

⎞

⎠

llllllllllll
≥ llzV ll = 1,

then {πω}ω∈o . is a faithful family of representations of B., that is, the local 
trajectories method works on B.. 

We now show that in fact Proposition 8 still holds even if A. is not commutative, 
relying essentially on properties of regular representations. 

For elements b =Es∈G0
asUs ∈ B0 .,  we  ha  ve

. (πω (b) ξ) (g) =
7

s∈G0

(
π '

ω(α−1
g (as)

0
(ξ(s−1g))
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and with ξ ∈ l2(G,Hω). such that ξ(t) = 0. for t /= g . and ξ(g) = u., u ∈ H ., 
llull = 1., 

. (πω (b) ξ) (g) = (πω(ae)ξ)(g) =
(
π '

ω(α−1
g (ae)

0
(ξ(g))

Introducing operators jg : H → l2(G,H). and j∗
g : l2(G,H) → H ., g ∈ G., such 

that, for h ∈ H ., ξ ∈ l2(G,H)., 

.jg(h)(g) = h, jg(h)(t) = 0, t /= g, and j∗
g (ξ) = ξ(g), (23) 

we have that jg . is an isometry and lljgll = llj∗
g ll = 1., with j∗

g jg = I .. We can then 
write the equality above as 

.j∗
g πω(b)jg = π '

ω(α−1
g (ae)) in B(Hω). (24) 

We make use of the following lemma (that holds in general for regular represen-
tations, similarly to the result just after). 

Lemma 5 For each ω ∈ o., a ∈ A., 

. llπω(a)ll = sup
g∈G

llπ '
ω(α−1

g (a))llB(Hω).

Proof For each g ∈ G., we can write, as in (24), j∗
g πω(a)jg = π '

ω(α−1
g (a)).. Hence, 

since lljgll = llj∗
g ll = 1., 

. llπ '
ω(α−1

g (a))ll = llj∗
g πω(a)jgll ≤ llπω(a)ll.

It follows that 

. sup
g∈G

llπ '
ω(α−1

g (a))llB(Hω) ≤ llπω(a)ll.

For the reverse, let ξ ∈ l2(G,Hω). with llξll2 = Eg∈G llξ(g)ll2Hw
ll = 1.. Then we 

have that: 

.llπw(a)ξll2
l2(G,Hw)

=
7

g∈G

llπ '
ω(α−1

g (a))ξ(g)ll2Hω

≤
7

g∈G

llπ '
ω(α−1

g (a))llB(Hω)llξ(g)ll2Hw

≤ sup
g∈G

llπ '
ω(α−1

g (a))llB(Hω)

7

g∈G

llξ(g)ll2Hω

≤ sup
g∈G

llπ '
ω(α−1

g (a))llB(Hω).
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Taking the supremum over ξ ∈ l2(G,Hω). such that llξlll2(G,Hω) = 1.we obtain: 

. llπw(a)lll2(G,Hω) ≤ sup
g∈G

llπ '
ω(α−1

g (a))llB(Hω),

which concludes the proof. uu
A first consequence is the following version of (B0) in πω(B).. 

Proposition 9 Assume condition (A1) and that the local trajectories representation 
π = ⊕ω∈oπω . is well defined in B0 .. Then, for any finite set G0 ⊂ G. and b =E

s∈G0
asUs ., and for any orbit ω ∈ o., we have 

. llπω(b)ll ≥ llπω(ae)ll.

Proof With the notation as in (23), we have for each ω ∈ o. and all g ∈ G., 
j∗
g πω(b)jg = π '

ω(α−1
g (ae))., hence 

. llπ '
ω(α−1

g (ae))ll = llj∗
g πω(b)jgll ≤ llπω(b)ll for all g ∈ G.

Since, from Lemma 5, llπω(ae)ll = supg∈G llπ '
ω(α−1

g (ae))ll., the result follows. uu
We now show that the M-local condition (B1) holds in π(B). so the second 

isomorphism in (21) always holds, in case our algebra A. is M-localizable, that 
is, satisfies (C). 

Proposition 10 Assume condition (A1) and that the action α . is amenable. Let 
π = ⊕ω∈oπω . be the local trajectories representation, assumed well defined in B0 .. 
Then for any V ⊂ M . open and as ∈ A., s ∈ G0 ⊂ G. finite, and for all zV ∈ Z(V ). 

we have 

. 

llllllllllll
zV π

⎛

⎝ae +
7

e /=s∈G0

asUs

⎞

⎠

llllllllllll
≥ llzV π (ae)ll .

In particular, (B1) holds in π(B)., and if (C) holds for A., then 

. id x π(U) : π(A) xα' G → π(B)

is an isomorphism. 

Proof Similarly to the proof of Proposition 7, writing zV = π(ρV )., it suffices to 
prove that for any open V ⊂ M ., ρV ∈ Z(V ). and b =Es∈G0

asUs ∈ B0 .,  we  ha  ve
llπ(ρV b)ll ≥ llπ(ρV ae)ll.. This is straightforward from the previous proposition, 
since we have llπω(ρV b)ll ≥ llπω(ρV ae)ll. for all ω ∈ o.. In particular, (B1) holds in 
π(B)., and the isomorphism follows from π(A.) also satisfying (C) and Corollary 1.

uu
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It then follows again from Remark 1 that, if A. is M-localizable, then the 
local trajectories method works on B., as long as id xα U : A xα G → B. is 
an isomorphism. We then obtain the following M-localized version of the local 
trajectories method, Theorem 1. (Note that if the action is topologically free, then 
there are no open sets of fixed points, so the condition is trivially satisfied.) 

Theorem 6 Assume condition (A1) and that the action α . is amenable. If (C) holds 
for A. and the M-local condition (B2) holds in B., that is, if for every finite set 
G0 ⊂ G. and non-empty open set V ⊂ M . such that βg

ll
V

= id|V . for all g ∈ D ., 
and for ag ∈ A., there exists zV ∈ Z(V ). such that 

. 

llllllllllll
zV

7

g∈G0

agUg

llllllllllll
≥ llzV aell ,

then {πω}ω∈o . is a faithful family of representations of B., that is, the local 
trajectories method works on B.. 

Along the lines of the last results of the previous section, Theorems 3 and 4,  we  
also conclude:

Theorem 7 Let A. be commutative. Assume condition (A1) and that the action α . 

is amenable. Let B̃ := alg{Ug : g ∈ G} ⊂ B(H)., and assume that for all finite 
G0 ⊂ G., where cg ∈ C., we have 

. 

llllllllllll

7

g∈G0

cgUg

llllllllllll
≥ |ce|,

that is, B̃ ∼= C xα G = C∗(G)., the group algebra. Assume that for all 0 /= a ∈ A. 

and 0 /= b ∈ B̃.we have 

. ab /= 0.

ThenAxα G ∼= B. and {πω}ω∈o . is a faithful family of representations of B., that is, 
the local trajectories method works on B.. 

In general, if we have an isomorphism with the crossed product on M-locally 
dense subalgebras, as in (20), then: 

Theorem 8 Assume (A1) is satisfied and that the action α . is amenable. Let A'
. 

be a C∗
.-subalgebra of A. containing the identity, where α . also acts ameanably by 

Aut(A')., and let B' := alg(A', UG) ⊂ B.. Assume that B'
. and A'

. are M-locally 
dense subalgebras of B.and A., respectively, and that (B0).holds in B'

., in particular, 
B' ∼= A'

xα G..
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Assume that ab /= 0. for 0 /= a ∈ A., 0 /= b ∈ B'
.. Then if (C) holds for A.,  we  

also have B ∼= A xα G. and {πω}ω∈o . is a faithful family of representations of B., 
that is, the local trajectories method works on B.. 
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Factorisation of Symmetric Matrices and 
Applications in Gravitational Theories 

M. Cristina Câmara and Gabriel Lopes Cardoso 

To Yuri Karlovich on his 75th birthday 

Abstract We consider the canonical Wiener-Hopf factorisation of 2×2. symmetric 
matrices M. with respect to a contour r .. For the case where the quotient q of the two 
diagonal elements ofM. is a rational function, we show that due to the symmetric 
nature of the matrix M., the second column in each of the two matrix factors that 
arise in the factorisation is determined in terms of the first column in each of these 
matrix factors, by multiplication by a rational matrix, and we give a method for 
determining the second columns of these factors. We illustrate our method with two 
examples in the context of a Riemann-Hilbert approach to obtaining solutions to the 
Einstein field equations. 

1 Introduction 

Let r . be a simple closed contour in the complex plane encircling the origin and 
denote by D

+
r . and D

−
r . the interior and the exterior of r ., respectively. 

If M. is an n× n. matrix function whose elements are in L∞(r)., i.e., essentially 
bounded functions on r ., a bounded Wiener-Hopf (WH for short) factorisation of M. 

with respect to (w.r.t.) r . is a representation 

.M(τ ) =M−(τ )D(τ)M+(τ ), τ ∈ r, (1) 

where M± . and their inverses M−1± . are analytic and bounded in D
±
r . (we say that 

their elements are in H∞± ., respectively), and D(τ) = diag(τ k1 , τ k2 , . . . , τ kn). with 
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k1 ≤ k2 ≤ · · · ≤ kn, ki ∈ Z. for i = 1, 2, . . . , n.. If  ki = 0. for all i = 1, 2, . . . , n., 
then we say that 

. M(τ ) =M−(τ )M+(τ ), τ ∈ r,

is a canonical bounded WH factorisation. In what follows, we will omit the term 
‘bounded’. 

Denoting by Cμ
. the algebra of all Hölder continuous functions with exponent 

μ ∈ ]0, 1[. defined on r . [14], if M. is invertible in (Cμ)n×n
., i.e.M ∈ (Cμ)n×n

. and 
detM /= 0.on r ., then M.admits a factorisation of the form (1) withM± ∈ (C

μ
±)n×n

., 
where C

μ
± = Cμ ∩ H∞± . [14]. If the factorisation is canonical, then it is unique if 

we impose a normalising condition on one of the factors; here we will look for 
canonical WH factorisations with the factorM+ . normalised to the identity at 0, in 
which case it will be denoted by X, 

.M =M− X on r, with X(0) = I. (2) 

We will be particularly interested in 2 × 2. matrix functions M., having in view 
applications of WH factorisation to solving certain gravitational field equations. For 
these applications, M. must be a symmetric 2 × 2. matrix function 

. M =
l
a b

b d

l

with a/d ∈ R., where R. denotes the space of all rational functions without poles on 
r ., i.e. 

.
a

d
= p1

p2
=: q, (3) 

where p1 . and p2 . are polynomials and p2 . does not vanish on r ., and M. must admit 
a canonical WH factorisation. 

One may then naturally ask how all these conditions, in particular that M. 

is symmetric, are reflected in the form of the factors M± . of a canonical WH 
factorisation. 

We study this question in Sect. 2 by applying and extending an approach which 
was first presented in [8], although in a different form, and we show that there indeed 
exists a certain relation between the two columns in each of the factorsM− . and X−1

. 

(related by MX−1 = M− .), which is determined by the structure of the original 
matrix M. in terms of its symmetry and the quotient q between its diagonal elements, 
in such a way that the second column can be obtained from the first by multiplication 
by a certain rational matrix. This, on the one hand, brings out a connection between 
the form of the matrixM. that is to be factorised and a certain structure of the factors 
M± ., which we present in Theorem 1; on the other hand, it may also allow for a
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simpler determination of one of the columns in the factors and avoid repetition of 
similar calculations, as we illustrate in the examples in Sect. 3. 

The question of how to determine the factors of a (not necessarily bounded) 
canonical WH factorisation of a 2 × 2. matrix function M., M = M−M+ ., from 
a solution to the Riemann-Hilbert problemMφ+ = φ− ., where φ+ ∈ (H∞+ )2

. and 
φ− ∈ (H∞− )2

. can be taken as the first columns inM−1+ . andM− ., respectively, has 
been previously studied using different approaches. For example, using the corona 
theorem in the context of the real line, a class of matrix functions was considered in 
[6] for which a solution toMφ+ = φ− . was given and, assuming φ± . to be corona 
pairs in C

±
. [9, 15], explicit formulae for the factors in terms of these solutions were 

obtained. In [2] explicit formulae were also given, for general 2 × 2. matrices with 
determinant 1, in terms of a solution toMφ+ = φ− ., provided that φ± . are corona 
pairs, requiring however knowledge of such a solution as well as the solutions of 
two associated corona problems with data φ+ . and φ− .. 

This also naturally leads to the question of how to determine the first column 
in X−1

. and in M− .. Regarding this question, we focus here on rational matrices 
possessing a canonical WH factorisation, which are of great importance when 
considering applications in gravitational theories. Obtaining the first columns is 
equivalent to determining the (unique) solution to 

. Mφ+ = φ− on r, with φ± = (φ1±, φ2±) ∈ (
C

μ
±
)2

, φ+(0) = (1, 0).

We show that it is also possible to simplify the calculations for the first column, 
reducing the problem of analyticity of the solution to that of the first component 
φ1± . (in D

±
r .). 

We illustrate these results in Sect. 3 by applying them to solving the Einstein 
field equations by a Riemann-Hilbert approach based on [1, 3]. It is well known 
that Wiener-Hopf factorisation is very important in the study of singular integral 
equations, convolution equations and in many applications in Mathematics, Physics 
and Engineering [10, 14]. Determining explicit solutions to the Einstein field 
equations by means of a Riemann-Hilbert (RH) approach is one of the recent 
applications of WH factorisation theory. 

2 Canonical Factorisation and Structure of the Factors 

In what follows, for any algebra A, let  GA. denote the group of invertible elements 
in A. 

Let 

.M(τ ) =
l
a(τ) b(τ )

b(τ ) d(τ )

l
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with a, b, d . analytic in a neighbourhood of r ., where r . is a simple closed contour, 
be such that M. admits a canonical WH factorisation w.r.t. r . of the form (2), 

. M =M− X on r, with X(0) = I.

Then, δ = detM. also admits a canonical WH factorisation w.r.t. r ., 

.δ = δ− δ+ with δ± ∈ GC
μ
±, δ+(0) = 1. (4) 

Let 

.
a

d
= q ∈ R, q = p1

p2
, (5) 

where p1 . and p2 . are polynomials without common zeroes and such that q is 
bounded at ∞.. 

The symmetric structure of M., which will be reflected in the form of the factors 
X−1

. andM− ., can be characterised by the following relation. 

Proposition 1 Let q be defined by (5) and let 

.Q1 = diag (1,−q), Q2 = diag (q,−1). (6) 

Then 

.MQ1M = δ Q2 with δ = detM = ad − b2. (7) 

Remark 1 Note that, conversely, if M̃. is a 2 × 2. matrix 

. M̃ =
l
a b

c d

l
with a, d, ad − bc /= 0

and 

. M̃T
Q1M̃ = (det M̃)Q2

with Q1 = diag (1,−q) , Q2 = diag (q,−1). for some q, then we have that M̃T =
M̃. and q = a/d .. So the relation (7) does indeed characterise the structure of M.. 

The first columns of X−1
. and M− ., denoted f+ . and f− . respectively, are the 

unique solution to 

.Mf+ = f− with f± ∈ (
C

μ
±
)2

, f+(0) =
l

1
0

l
; (8)
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the second columns of X−1
. andM− ., denoted s+ . and s− ., respectively, constitute the 

unique solution to 

.Ms+ = s− with s± ∈ (
C

μ
±
)2

, s+(0) =
l

0
1

l
. (9) 

We therefore have that 

.M
l
f+ s+

l = l
f− s−

l
, (10) 

where 

. X−1 = l
f+ s+

l
, M− = l

f− s−
l
, X(0) = I.

To study the relation between f± . and s± . in this case, we will use the following 
results, which can be easily verified. 

Proposition 2 If A is a 2 × 2.matrix, A = [f s]., and 

. J =
l

0 −1
1 0

l
,

then 

(i) AJAT = (det A) J ., 
(ii) det A = sT Jf ., 
(iii) A−1 = −(det A)−1 JAT J . if det A /= 0.. 

Also note that, for any vector f with two components,

.f T Jf = 0. (11) 

Proposition 3 LetMf+ = f− .with M. satisfying (7). Then 

.M (JQ2f+) = JQ1f−. (12) 

Proof We have that Q2 = δ−1MQ1M., hence 

. M (JQ2f+) = δ−1MJ (MQ1M) f+ =
(
δ−1MJM

)
Q1 (Mf+) = JQ1f−,

where we used Proposition 2 (i)..   
Thus we have 

.M
l
f+ JQ2f+

l = l
f− JQ1f−

l
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and, applying determinants and using (4), we obtain 

.δ+ det
l
f+ JQ2f+

l = δ−1− det
l
f− JQ1f−

l = r1, (13) 

where r1 ∈ R., with r1 . bounded at ∞., since the left hand side of the first equality is 
meromorphic in D

+
r . and the right hand side is meromorphic in D

−
r . and bounded at 

∞.. Moreover, from (6) we see that the poles of r1 . must be those of q (see (13)), so 
we may assume that 

.r1 = p̃1

p2
, (14) 

where p̃1 . is a polynomial of degree not greater than deg(p2).. We may also assume 
that r1 . does not have zeroes on r ., since, given the analyticity of a, b, d . in a 
neighbourhood of r ., the latter can be deformed if necessary. 

Now, from (13), we have  

.δ+ det
l
f+ r−1

1 JQ2f+
l = δ−1− det

l
f− r−1

1 JQ1f−
l = 1. (15) 

On the other hand, applying determinants to (10), we obtain 

.δ+ det
l
f+ s+

l = δ−1− det
l
f− s−

l
(16) 

and, since the left hand side of (16) is in C
μ
+ ., while the right hand side is in C

μ
− ., we  

conclude that both sides are equal to a constant k = 1., taking into account that the 
left hand side must equal 1 at τ = 0.. Thus we have 

.δ+ det
l
f+ s+

l = 1 = δ−1− det
l
f− s−

l
. (17) 

Then, combining (17) with (15) gives 

. δ+ det
l
f+ s+ − r−1

1 JQ2f+
l = δ−1− det

l
f− s− − r−1

1 JQ1f−
l = 0.

It follows that 

.s+ − r−1
1 JQ2f+ = λ1 f+, . (18) 

s− − r−1 
1 JQ1f− = λ2 f−, (19) 

where λ1 . and λ2 . are functions of τ . which, due to (8), (9) and (12) must satisfy 

. λ1 = λ2 =: λ.

Proposition 4 With the notation above, λ ∈ R. and its poles are the zeroes of r1 ..
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Proof From (11) and (18), with λ1 = λ., we have that 

. 0 = sT+J s+ = λsT+Jf+ + r−1
1 sT+JJQ2f+ = λ det

l
f+ s+

l− r−1
1 sT+Q2f+

= λ δ−1+ − r−1
1 sT+Q2f+,

and hence 

.λ = δ+ r−1
1 sT+Q2f+ ∈ H∞+ + R. (20) 

On the other hand, from (11) and (19) with λ2 = λ., we get in an analogous way 

.λ = δ−1− r−1
1 sT−Q1f− ∈ H∞− + R. (21) 

It follows from (20) and (21) that λ ∈ R.. Since r1 . and q have the same denominator, 
we see that the poles of Q1 . and Q2 . are cancelled and therefore the poles of λ. are 
those of r−1

1 ., i.e., the zeroes of r1 ..   
As a consequence of the previous results, we obtain the following relation 

between the two columns of X−1
. and M− .. In what follows we use the notation 

f± = (f1±, f2±). and s± = (s1±, s2±).. 

Theorem 1 With the same notation as in Proposition 3, there exists r2 ∈ R., 
bounded at ∞., with the same poles as q, such that 

.s+ = r−1
1 (r2I+ JQ2) f+, . (22) 

s− = r−1 
1 (r2I + JQ1) f−. (23) 

Proof From (18) and (19) we have 

.s+ = r−1
1 (λr1I+ JQ2) f+, . (24) 

s− = r−1 
1 (λr1I + JQ1) f−, (25) 

and using (11) and (17), we obtain 

.λr1 = δ−1− sT−Q1f− = δ+sT+Q2f+, (26) 

so the result holds with r2 = λr1 . and r2 . is bounded at ∞., since q is bounded there.
  

We note that (22) is equivalent to 

.

l
s1+ = r−1

1 (r2f1+ + f2+) ,

s2+ = r−1
1 (r2f2+ + qf1+) ,

(27)
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and that (23) is equivalent to 

.

l
s1− = r−1

1 (r2f1− + qf2−) ,

s2− = r−1
1 (r2f2− + f1−) .

(28) 

Now we address the question of determining r2 .. It must be such that s± ., given by 

(27) and (28), are analytic in D
±
r ., s± ∈ (H∞± )2

., and s+(0) =
l

0
1

l
.; in that case s+ . 

and s− . are the second columns of X−1
. andM− ., respectively, as formulated next. 

Proposition 5 If r2 ∈ R. is such that s+ . and s− ., defined by the right hand side of 

(27) and (28), respectively, are functions in (H∞± )2
., with s+(0) =

l
0
1

l
., then s+ . and 

s− . are the second columns of X−1
. andM− ., respectively. In that case, r2 . is unique. 

Proof We have that 

. Ms+ =M
(
r−1

1 (r2I+ JQ2) f+
)
= r−1

1 (Mr2f+ +MJQ2f+)

= r−1
1 (r2f− + JQ1f−) = s−,

and since s± ∈ (H∞± )2
. with s+(0) =

l
0
1

l
., we have the second columns of X−1

. 

andM− .. Moreover, from (26) we have r2 = δ+ sT+Q2f+ ., and the uniqueness of r2 . 

follows from the uniqueness of f+ . and s+ ..   
Remark 2 Using (26), we note that r2 . can also be expressed as r2 = δ−1− sT−Q1f− .. 

Since r2 . has the form 

. r2 = R2

p2
,

where p2 . is the denominator of q as in (3) and R2 . is a polynomial of degree not 
greater than deg(p2). (since r2 . is bounded at ∞.), we only have to determine the 
coefficients of R2 ., which must be such that the zeroes of (r2I+ JQ2)f+ . cancel the 
zeroes of r1 . in D

+
r . and the zeroes of (r2I+ JQ1)f− . cancel the zeroes of r1 . in D

−
r .. 

We now present a systematic method to obtain those coefficients in the case 
where r1 . has simple or double zeroes; the method can however be generalised, 
following the same reasoning, for higher order of zeroes. 

Let each zero of r1 . be denoted by z+i . if it belongs to D
+
r ., and by z−i . if it belongs 

to D
−
r .. Imposing that (r2I + JQ2)f+ . vanishes at a zero z+i . of r1 . means that, for 

f+ = (f1+, f2+)., and r1 . given by (14), we must have  

.

l
R2(z

+
i ) f1+(z+i )+ p2(z

+
i ) f2+(z+i ) = 0,

R2(z
+
i ) f2+(z+i )+ p1(z

+
i ) f1+(z+i ) = 0.

(29)



Factorisation of Symmetric Matrices and Applications in Gravitational Theories 165

Note that, since r1 . is given by (13), we have that 

. r1 = δ+
p1 f 2

1+ − p2 f 2
2+

p2
,

so 

.p1(z
+
i ) f 2

1+(z+i ) = p2(z
+
i ) f 2

2+(z+i ), (30) 

and it follows that, since f1+ . and f2+ . cannot vanish simultaneously, 

. f2+(z+i ) = 0 =⇒ p1(z
+
i ) = 0,

f1+(z+i ) = 0 =⇒ p2(z
+
i ) = 0.

We will show that (29) reduces to just one equation, for which we consider three 
cases: 

(i) if f2+(z+i ) = 0., the first equation in (29) is equivalent to 

.R2(z
+
i ) = 0, (31) 

while the second equation is satisfied for any R2(z
+
i ).; 

(ii) if f1+(z+i ) = 0., the second equation in (29) is equivalent to (31), while the 
first equation is satisfied for any R2(z

+
i ).; 

(iii) if f1+(z+i ), f2+(z+i ) /= 0., then multiplying the second equation in (29) by 
f1+(z+i ). we get 

. R2(z
+
i ) f2+(z+i ) f1+(z+i )+ p1(z

+
i ) f 2

1+(z+i ) = 0

⇐⇒ R2(z
+
i ) f2+(z+i ) f1+(z+i )+ p2(z

+
i ) f 2

2+(z+i ) = 0

⇐⇒ f2+(z+i )
l
R2(z

+
i ) f1+(z+i )+ p2(z

+
i ) f2+(z+i )

l = 0, (32) 

which is equivalent to the first equation in (29), i.e. 

.R2(z
+
i ) f1+(z+i )+ p2(z

+
i ) f2+(z+i ) = 0. (33) 

Analogously, for f− = (f1−, f2−). and a zero z−i . of r1 ., we get 

.R2(z
−
i ) = 0, if f1−(z−i ) = 0 or f2−(z−i ) = 0, . (34) 

R2(z
− 
i )  f1−(z− i )+ p1(z

− 
i )  f2−(z− i ) = 0, if f1−(z− i ), f2−(z−i ) /= 0.

(35)
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If all the zeroes of r1 . are simple zeroes, then (31)/(33) and (34)/(35) provide 
a system of equations allowing to determine all but one coefficient of R2 .; the  
remaining coefficient is obtained from the normalising condition s1+(0) = 0.. 

Remark 3 Note that the normalising condition s1+(0) = 0. implies that s2+(0) = 1., 
as follows. First we note that 

.r1 = δ+
(
q f 2

1+ − f 2
2+

)
. (36) 

Using (27) and (36) we have 

. s2+f1+ = r−1
1

(
r2 f1+f2+ + q f 2

1+
)

= r−1
1 r2 f1+f2+ + r−1

1

(
δ−1+ r1 + f 2

2+
)

= r−1
1 (r2 f1+ + f2+) f2+ + δ−1+

= s1+f2+ + δ−1+ .

Imposing s1+(0) = 0. and using δ+(0) = 1., this yields s2+(0) = 1.. 

To extend the method presented above to the case where r1 . has double zeroes, let 
us assume that p̃1 . has a double zero at z+i ∈ D

+
r .. Using the above results, we see 

that the conditions that we have to impose on r2 . are the same as above and moreover 

. 

l
R'

2(z
+
i ) f1+(z+i )+ R2(z

+
i ) f '

1+(z+i )+ p'2(z
+
i ) f2+(z+i )+ p2(z

+
i ) f '

2+(z+i ) = 0,

R'
2(z

+
i ) f2+(z+i )+ R2(z

+
i ) f '

2+(z+i )+ p'1(z
+
i ) f1+(z+i )+ p1(z

+
i ) f '

1+(z+i ) = 0.

(37) 

To show that this pair of conditions can be reduced to one equivalent condition, we 
consider once again three cases. First, however, note that saying that p̃1 . has a double 
zero at z+i . means that (cf. (30)) 

. p'1(z
+
i ) f 2

1+(z+i )+ 2p1(z
+
i ) f '

1+(z+i ) f1+(z+i )

− p'2(z
+
i ) f 2

2+(z+i )− 2p2(z
+
i ) f '

2+(z+i ) f2+(z+i ) = 0,

i.e. 

. p'1(z
+
i ) f 2

1+(z+i )+ p1(z
+
i ) f '

1+(z+i ) f1+(z+i )

= p'2(z
+
i ) f 2

2+(z+i )− p1(z
+
i ) f '

1+(z+i ) f1+(z+i )+ 2p2(z
+
i ) f '

2+(z+i ) f2+(z+i ).

(38)
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With this in mind, 

(i) if f2+(z+i ) = 0., from (31) and the first equation in (37) we get 

.

l
R2(z

+
i ) = 0,

R'
2(z

+
i ) f1+(z+i )+ p2(z

+
i ) f '

2+(z+i ) = 0,
(39) 

while the second equation in (37) is satisfied for any R2(z
+
i ). because 

f2+(z+i ) = p1(z
+
i ) = R2(z

+
i ) = 0. and (38) implies that p'1(z

+
i ) = 0.; 

(ii) if f1+(z+i ) = 0., the equations analogously reduce to 

. 

l
R2(z

+
i ) = 0,

R'
2(z

+
i ) f2+(z+i )+ p1(z

+
i ) f '

1+(z+i ) = 0;

(iii) if f1+(z+i ), f2+(z+i ) /= 0., then multiplying the second equation in (37) by 
f1+(z+i ). we see that it is equivalent to 

. R'
2(z

+
i ) f2+(z+i ) f1+(z+i )+ p2(z

+
i ) f2+(z+i ) f '

2+(z+i )

+ p'2(z
+
i ) f 2

2+(z+i )− p1(z
+
i ) f1+(z+i ) f '

1+(z+i ) = 0, (40) 

where we used (33) and (38). Now, from  (33) and (30) we have that 

. R2(z
+
i ) f2+(z+i )+ p1(z

+
i ) f1+(z+i ) = 0,

and substituting in (40) we obtain 

. f2+(z+i )
l
R'

2(z
+
i ) f1+(z+i )+ p2(z

+
i ) f '

2+(z+i )

+p'2(z
+
i ) f2+(z+i )+ R2(z

+
i ) f '

1+(z+i )
l = 0,

which is equivalent to the first condition in (37). Therefore we find that 
imposing a double zero for p̃1 . at z+i . is equivalent to imposing, in this case, 

. 

l
R2(z

+
i ) f1+(z+i )+ p2(z

+
i ) f2+(z+i ) = 0,

R'
2(z

+
i ) f1+(z+i )+ R2(z

+
i ) f '

1+(z+i )+ (p2 f2+)' (z+i ) = 0.

Analogously, for f− = (f1−, f2−). and a double zero z−i . of r1 . in D
−
r ., we obtain 

the conditions: 

(i) if f1−(z−i ) = 0., 

.

l
R2(z

−
i ) = 0,

R'
2(z

−
i ) f2−(z−i )+ p2(z

−
i ) f '

1−(z−i ) = 0;
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(ii) if f2−(z−i ) = 0., 

. 

l
R2(z

−
i ) = 0,

R'
2(z

−
i ) f1−(z−i )+ p1(z

−
i ) f '

2−(z−i ) = 0;

(iii) if f1−(z−i ), f2−(z−i ) /= 0., 

.

l
R2(z

−
i ) f1−(z−i )+ p1(z

−
i ) f2−(z−i ) = 0,

R'
2(z

+
i ) f1−(z−i )+ R2(z

−
i ) f '

1−(z−i )+ (p1 f2−)' (z−i ) = 0.
(41) 

Proceeding analogously for every double zero of r1 ., and as in the previous step 
for every single zero of r1 ., and adding the normalising condition s1+(0) = 0., we  
obtain a linear system providing the coefficients of the numerator of r2 .. 

Remark 4 Note that this linear system is what we would have obtained had we 
only imposed that one of the components of s+ . (respectively s− .) is analytic in D

+
r . 

(respectively D
−
r .) and satisfies a certain normalising condition; the analyticity and 

normalising condition for the other component follows from there. 

We end this section with a proposition that extends this result to general 2 × 2. 

matrices M., provided they are rational. It relates the two components φ1+ . and φ2+ . 

of any solution to the Riemann-Hilbert problem of the form 

.Mφ+ = φ− on r, with φ± =
l
φ1+
φ2+

l
∈ (H∞± )2, (42) 

such as (8) and (9), in the case that M. is a rational 2×2. (not necessarily symmetric) 
matrix function 

. M =
l
q11 q12

q21 q22

l
.

From (42) we have that 

. q11φ1+ + q12φ2+ = φ1− = T1 ∈ R,

q21φ1+ + q22φ2+ = φ2− = T2 ∈ R, (43) 

where T1 . and T2 . are rational functions bounded at ∞., whose denominators are 
defined by the poles of qij . in D

+
r . (i, j = 1, 2.). We can therefore reduce the problem 

to the following case with polynomial coefficients, 

.p11φ1+ + p12φ2+ = P1,

p21φ1+ + p22φ2+ = P2,
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where pij , Pi . (i, j = 1, 2.) are polynomials. We have the following, which is a slight 
generalisation of Lemma 3.9 in [5]. 

Proposition 6 Let pij , Pi . (i, j = 1, 2.) be polynomials such that p11 p22 − p12 p21 . 

does not vanish on r .. Assume moreover that p1i , p2i . do not have common zeroes in 
D
+
r . and consider the solution 

. φ =
l
φ1

φ2

l

of the system 

.
p11 φ1 + p12 φ2 = P1

p21 φ1 + p22 φ2 = P2

l
on r. (44) 

Then, if φ1 . is analytic in D+
r ., φ2 . is also analytic in D+

r ., and vice versa. 

Proof By Cramer’s rule we have that 

. φ1 = P1 p22 − P2 p12

p11 p22 − p12 p21
.

On the other hand, from (44) we have 

.φ2 = P1 − p11 φ1

p12
= P2 − p21 φ1

p22
. (45) 

If φ1 . is analytic in D
+
r . and p12, p22 . do not have common zeroes in D

+
r ., then in the 

neighbourhood of any zero of p12 . in D
+
r . we see from the second equality in (45) 

that P2−p21 φ1
p22

. must be analytic. Thus φ2 . is analytic in D
+
r .. 

Conversely, if φ2 . is analytic in D
+
r ., it follows by an analogous argument that φ1 . 

is also analytic in D
+
r ..   

Remark 5 To obtain a solution to (8) when M. is a rational matrix, one has to solve 
(43) for the unknown scalar rational functions T1 . and T2 ., which must be determined 
such that both φ1+ . and φ2+ . belong to H∞+ .. The result given above shows that it 
suffices to determine T1 . and T2 . such that φ1+ . is analytic in D

+
r .. 

Rational matrices are of great importance in gravitational theories, yielding 
solutions to the Einstein field equations, such as the famous Schwarzschild solution 
and the non-extremal Kerr black hole, via WH factorisation, as explained in the 
next section. There are different methods to study their WH factorisation. Classical 
methods, such as those presented in [4, 12] (see also [7]), while providing conditions 
for existence and estimates for the partial indices of that factorisation, are, in 
general, computationally extremely difficult to apply in order to obtain explicit 
enough formulae for the factors allowing one to determine from these the explicit
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form of the space-time metric. This problem is aggravated in the case of monodromy 
matrices, considered in the next section, by the fact that the elements of the matrices 
depend not only on the complex variable τ . with respect to which they are rational, 
but also on several parameters in a very non-trivial way. This is true even in the case 
of apparently simple 2 × 2. monodromy matrices, such as the non-extremal Kerr 
monodromy matrix [5]. So different classes of rational matrices may need different 
factorisation techniques. The method presented here, which consists in obtaining 
first one of the columns of X−1

. and M− ., using Proposition 6, and then looking 
for a scalar rational function r2 . providing the second column by Theorem 1 and 
Proposition 2, is in general computationally simpler and can moreover be applied 
to non-rational 2 × 2. matrices. Note that, for matrices of the form considered in 
this paper, the main computational difficulties, when determining a second column 
using Theorem 1, are connected with the degree of the denominator of q (which is 
the maximum degree of the numerator of r1 ., see  (14)) and not with the number of 
poles of the elements of the matrix M.. 

3 The Einstein Field Equations and the Monodromy Matrix 

The Einstein field equations, a system of 10 nonlinear second order PDE’s in 4 
variables for the space-time metric g, relate the geometry of space-time to the 
distribution of matter and energy, described by the stress-energy-momentum tensor 
T , within it. In the following, we will assume the absence of a cosmological constant 
term in the field equations. When T = 0. in the region under consideration, the field 
equations are also referred to as the vacuum field equations. 

Obtaining exact solutions to the field equations is, in general, a non-trivial task. 
Exact solutions, which play an important role in Physics and Mathematics, can 
however be obtained under simplifying assumptions, such as symmetry conditions. 
We focus on the subspace of solutions of the field equations possessing two 
commuting isometries, so that the theory can be reduced to two dimensions using a 
well-known 2-step procedure [13], and the problem of solving the field equations is 
reduced to a system of nonlinear second order PDE’s depending on two coordinates, 
which we denote by ρ . and v, called Weyl coordinates, with ρ > 0.. We identify 
these solutions with matrix functions M(ρ, v). of class C2

., which satisfy the field 
equations 

.d (ρ * A) = 0, A = M−1dM, (46) 

where *. is the Hodge star operator, det M = 1. and M = M#
. [13]. Here #. 

denotes a certain involution called generalised transposition. When T = 0., i.e. when 
dealing with the vacuum field equations, M is a 2 × 2. matrix and #. denotes matrix 
transposition. 

Determining explicit solutions to the field equations (46) by means of a Riemann-
Hilbert (RH) approach is one of the most recent applications of WH factorisation
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theory. Here the factorisation is considered with respect to an admissible contour, 
by which we mean a closed simple contour in the complex plane, encircling the 
origin and invariant under the involution τ '−→

iλ
−λ

τ
., where λ = ±1. depending on 

the physics context. This RH approach crucially involves introducing a complex 
parameter τ ., called the spectral parameter, which is allowed to vary on an algebraic 
curve, called the spectral curve, given by the relation 

.ω = v + λ

2
ρ

λ− τ 2

τ
, τ ∈ C\{0}. (47) 

Given an n×n. matrixM(ω). with detM(ω) = 1. andM(ω) =M#(ω)., we consider 
then 

.Mρ,v(τ ) =M(ω)|
ω=v+ λ

2 ρ λ−τ2
τ

=M(v + λ

2
ρ

λ− τ 2

τ
), (48) 

which we call the monodromy matrix. 
We can now state the main theorem of [1], where it was shown that, under 

very general assumptions, the canonical WH factorisation of Mρ,v(τ ). w.r.t. an 
admissible contour r . in the τ .-complex plane, normalised at 0, determines a solution 
to the field equations (46). 

Theorem 2 ([1, Theorem 6.1]) Let the following assumptions hold: 

(1) There exists an open set S such that, for every (ρ0, v0) ∈ S ., one can find a 
simple closed contour r . in the τ .-plane, encircling the origin and invariant 
under τ '−→

iλ
−λ

τ
., such that: for all (ρ, v). in a neighbourhood of (ρ0, v0).,  the  

matrixMρ,v(τ ). given by (48), as well as its inverse, is analytic in a region O 
in the τ .-plane containing r .. We require O to be invariant under iλ ., and such 
thatM#

ρ,v(τ ) =Mρ,v(τ ). on O; 
(2) for any (ρ, v). in a neighbourhood of (ρ0, v0)., Mρ,v(τ ). admits a canonical 

Wiener-Hopf factorisation with respect to r ., 

. Mρ,v(τ ) =M−
ρ,v(τ )X(τ, ρ, v) on r,

where the “plus" factor X is normalised by

. X(0, ρ, v) = In×n

for all (ρ, v). in a region S ⊂ R
+ × R.; 

(3) the matrix function X(τ, ρ, v)., for each τ ∈ D
+
r ∪O ., and 

.M(ρ, v) := lim
τ→∞M

−
ρ,v(τ ) (49)
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are of class C2
. (w.r.t. (ρ, v).) and ∂X

∂ρ
. and ∂X

∂v
. are analytic as functions of τ . in 

D
+
r ∪O .. 

Then M(ρ, v). defined by (49) is a solution to the field equations (46). 

Note that these assumptions, which may at first seem complicated, allow in fact 
for a broad range of applicability of the results and they are easily seen to be 
satisfied in all known physically significant cases. Also note that different choices 
of the contour r . lead to different factorisations of the same monodromy matrix, 
and therefore to different solutions to the field equations originating from the same 
monodromy matrix [1]. 

To uniformise the notation, we will writeM−(τ ). instead ofM−
ρ,v(τ ).. 

We now apply the method discussed in Sect. 2 to two specific 2 × 2. symmetric 
monodromy matrices M. that possess a canonical WH factorisation. Their canonical 
factorisation yields stationary non-static solutions of the vacuum field equations. 
These solutions, which depend on parameters that introduce rotation in the space-
time geometry, are seen to be deformations of static solutions belonging to the 
known class of AIII .-metrics [1, 11]. Note that deforming a solution of the vacuum 
field equations in such a way as to obtain another solution is a non-trivial task when 
employing usual PDE methods; transformations that achieve this in the PDE context 
are sometimes called Kinnersley transformations [16, page 4]. 

3.1 An Example with Non-vanishing Component f2+ . 

Let 

. M(ω) =
⎡
⎣ c2

ω
+ s2 ω cs

(
1
ω
+ ω

)
cs

(
1
ω
+ ω

)
c2 ω + s2

ω

⎤
⎦ =

l
ã(ω) b̃(ω)

b̃(ω) d̃(ω)

l
,

where c, s ∈ C. with 

. c2 − s2 = 1.

Here we take c, s /= 0.. 
We have 

.q̃(ω) = ã(ω)

d̃(ω)
= c2 + s2 ω2

c2 ω2 + s2 (50) 

and 

.q(τ) = q̃

l
v + ρ

2

1 + τ 2

τ

l
,
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obtained from (50) by substituting the relation given in (47) with λ = −1., 

. w = v + ρ

2

1 + τ 2

τ
.

Note that 

. w = ρ

2

(τ − τ0)

τ
(τ − τ̃0),

where 

. τ0 = −v +/
v2 − ρ2

ρ
, τ̃0 = 1

τ0
= −v −/

v2 − ρ2

ρ
.

We choose an admissible contour r . such that τ0 . lies inside the contour, in which 
case τ̃0 . lies in D

−
r . [1]. 

The following useful relations will be used in determining a canonical factorisa-
tion ofMρ,v(τ ). defined by 

. Mρ,v(τ ) =M
l

v + ρ

2

1 + τ 2

τ

l

(which will simply be denoted byM(τ ). in the following): 

.

(
c2 A−1 ± s2 A

) (
s2 A−1 ± c2 A

)
− c2s2

(
A± A−1

)2 = ±1 (51) 

for any A ∈ C.. In particular, one obtains from (51) that 

. detM(τ ) = 1.

To establish the existence of a canonical factorisation for M., we first solve the 
Riemann-Hilbert problem 

.Mφ+ = φ− on r, with φ+ ∈ C
μ
+, φ− ∈ C

μ
−,0, (52) 

where C
μ
−,0 . consists of the functions in C

μ
− . vanishing at ∞.. Note that 

. w = m−m+,

where 

.m− = −ρ τ̃0

2

(τ − τ0)

τ
, m+ = τ̃0 − τ

τ̃0
, τ0 ∈ D

+
r , τ̃0 ∈ D

−
r . (53)
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From (52) we have that 

. 

⎧⎨
⎩

(
c2 m−1− m−1+ + s2 m−m+

)
φ1+ + cs

(
m−1− m−1+ +m−m+

)
φ2+ = φ1− = R1,0,

cs
(
m−1− m−1+ +m−m+

)
φ1+ +

(
c2 m−m+ + s2 m−1− m−1+

)
φ2+ = φ2− = R2,0,

(54) 

where R1,0 . and R2,0 . are rational functions vanishing at ∞. and with the same poles 
as m−,m−1− ., i.e. with simple poles at τ = 0, τ0 .. Using Cramer’s rule, we have from 
(54) that 

. φ1+ =
lllll
R1,0 cs

(
m−1− m−1+ +m−m+

)
R2,0 c2 m−m+ + s2 m−1− m−1+

lllll
=

(
R1,0 c2 − R2,0 cs

)
m−m+ +

(
R1,0 s2 − R2,0 cs

)
m−1− m−1+ , (55) 

and we look for functions R1,0, R2,0 . of the form 

. R1,0 = A1τ + A0

τ(τ − τ0)
, R2,0 = B1τ + B0

τ(τ − τ0)
,

such that φ1+ . given by (55) is analytic in D
+
r ., i.e. with a double zero at 0 for the 

numerator of the first term in (55) and a double zero at τ0 . for the second term, taking 
(53) into account. This implies that A0 = B0 = A1 = B1 = 0., so  (52) admits 
only the zero solution φ+ = φ− = 0. and we conclude that M. has a canonical 
factorisation. 

To obtain the canonical factorisation 

. M(τ ) =M−(τ )X(τ) on r, with X(0) = I,

we determine the two columns of X−1
. andM− . separately. The first columns of X−1

. 

andM− . are given by the (unique) solution to 

. M f+ = f− on r, with f± ∈ (C
μ
±)2, f+(0) = (1, 0).

Denoting f± = (f1±, f2±)., we get a system as in (54), with R1,0 . and R2,0 . replaced 
by R1 . and R2 ., respectively, where R1 . and R2 . are rational functions bounded at ∞. 

and with simple poles at 0 and τ0 ., yielding 

. f1+ =
lllll
R1 cs

(
m−1− m−1+ +m−m+

)
R2 c2 m−m+ + s2 m−1− m−1+

lllll
=

(
R1 c2 − R2 cs

)
m−m+ +

(
R1 s2 − R2 cs

)
m−1− m−1+ , . (56)
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f2+ = 
lllll 
c2 m−1− m−1+ + s2 m−m+ R1 

cs 
(
m−1− m−1+ + m−m+ 

) 
R2 

lllll 
=

(
R2 s

2 − R1 cs
) 

m−m+ +
(
R2 c

2 − R1 cs
) 

m−1 − m−1+ . (57) 

Taking the form of (56) into account, we look for α1, α2 ∈ C. such that 

. R1 c2 − R2 cs = α1 m−1− ,

R1 s2 − R2 cs = α2 m−,

which is equivalent to having 

. R1 = α1 m−1− − α2 m−,

R2 = R1 c2 − α1 m−1−
cs

= R1 s2 − α2 m−
cs

= α1 m−1− s2 − α2 m− c2

cs
. (58) 

It is easy to see that, for R1 . and R2 . given by (58), f1+ . and f2+ . given by (56) and 
(57) are analytic in D

+
r . with 

. f1+ = α1 m+ + α2 m−1+ ,

f2+ = −α2
c

s
m−1+ − α1

s

c
m+,

and from the normalising conditions f1+(0) = 1, f2+(0) = 0., we get α1 =
c2, α2 = −s2

., so that 

. f+ =
l
c2 m+ − s2 m−1+
sc

(
m−1+ −m+

)
l

, f− =
l
c2 m−1− + s2 m−
sc

(
m−1− +m−

)
l

.

The second columns in X−1
. and M− . can be determined analogously with 

different normalising conditions. However we will obtain them here using the results 
of Sect. 2, namely Theorem 1. Noting that, by (51), 

. f1+
(
c2 m−1+ − s2 m+

)
= 1 − f 2

2+,

we have that 

.r1 = q f 2
1+ − f 2

2+ =
(
q f1+ + c2 m−1+ − s2 m+

)
f1+ − 1,
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and hence 

.−
l
(q f1+ + c2 m−1+ − s2 m+)f2+

l
f1+ + f2+ = r1 (−f2+) . (59) 

Comparing (59) with the equation for s1+ . given in (27), we take  

. r2 = −(q f1+ + c2 m−1+ − s2 m+)f2+

and s1+ = −f2+ .. Using  (27) and (28), this uniquely determines s+ . and s− . to be 

. s+ =
l
sc

(
m+ −m−1+

)
c2 m−1+ − s2 m+

l
, s− =

l
sc

(
m−1− +m−

)
s2 m−1− + c2 m−

l
.

In particular we see that s1+ = −f2+ . and s1− = f2− .. 
The matrix M(ρ, v). is obtained from the matrixM− ., 

. M− =
⎡
⎣c2 m−1− + s2 m− sc

(
m−1− +m−

)
sc

(
m−1− +m−

)
s2 m−1− + c2 m−

⎤
⎦ ,

by using (49) and reads, 

. M(ρ, v) =
l
c2 f−1 + s2 f sc

(
f−1 + f

)
sc

(
f−1 + f

)
s2 f−1 + c2 f

l
,

f (ρ, v) = −ρ τ̃0

2
= 1

2

l
v +

/
v2 − ρ2

l
, (60) 

where we restrict to the region v > ρ . to ensure that we obtain a solution that is real. 
Given a matrix M(ρ, v)., it encodes a solution to the vacuum field equations, i.e. 

a space-time metric [3]. Namely, denoting the matrix elements of the matrix M by 

.M =
l
A+ B̃2

A
B̃
A

B̃
A

1
A

l
, (61) 

and defining the function B by the relation ρ * dB̃ = A2 dB ., the associated space-
time metric is given by 

.ds2
4 = −λ A (dt + B dφ)2 +A−1

(
eψ(dρ2 + λ dv2)+ ρ2dφ2

)
, (62)
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where ψ(ρ, v). is a function obtained from M(ρ, v). by integration [1, 13]. For the 
example (60) we have λ = −1. as well as *dρ = dv, *dv = dρ .. Restricting to 
region v > ρ ., we obtain the space-time metric (62) with 

. A =
1
2

(
v +/

v2 − ρ2
)

s2 + c2 1
4

(
v +/

v2 − ρ2
)2

,

B = 2s c ρτ0 = −2cs

l
v −

/
v2 − ρ2

l
,

eψ = v +/
v2 − ρ2

2
/

v2 − ρ2
.

We note that B /= 0. provided s /= 0.; in this case the metric is stationary and non-
static. When s = 0., the metric is static and describes a known metric that belongs 
to the class of AIII .-metrics [1, 11]. Thus, the stationary metric (with s /= 0.) can be 
viewed as a deformation of a static metric (with s = 0.). 

3.2 An Example with Vanishing Component f2+ . 

Now we consider 

. M(ω) =
l

1
ω

e
ω

e
ω

ω + e2

ω

l
=

l
ã(ω) b̃(ω)

b̃(ω) d̃(ω)

l
, detM(ω) = 1,

where e ∈ C.. Here we take e /= 0.. 
We have 

.q̃(ω) = ã(ω)

d̃(ω)
= 1

ω2 + e2 (63) 

and 

.q(τ) = q̃

l
v + ρ

2

1 − τ 2

τ

l
, (64) 

obtained from (63) by substituting the relation given in (47) with λ = 1., 

.w = v + ρ

2

1 − τ 2

τ
.
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Note that 

. w = −ρ

2

(τ − τ0)

τ
(τ − τ̃0),

where 

. τ0 = v −/
v2 + ρ2

ρ
, τ̃0 = − 1

τ0
= v +/

v2 + ρ2

ρ
.

We choose an admissible contour r . such that τ0 . lies inside the contour, in which 
case τ̃0 . lies in D

−
r . [1]. We define 

. m− = ρ

2
τ̃0

(τ − τ0)

τ
, m+ = τ̃0 − τ

τ̃0
, τ0 ∈ D

+
r , τ̃0 ∈ D

−
r .

and note that 

. w = m−m+.

It can be shown, as in the previous example, that the monodromy matrix 

. Mρ,v(τ ) =M
l

v + ρ

2

1 − τ 2

τ

l

possesses a canonical WH factorisation (2) w.r.t. r ., with the factors X−1
. andM− . 

possessing the following first columns (denoted by f+ . and f− ., respectively), 

. f+ =
l
f1+
f2+

l
=

l
m+
0

l
, f− =

l
f1−
f2−

l
=

l
m−1−
e m−1−

l
.

Note that f2+(τ ) = 0. and f2−(τ ) = ef1−(τ ).). 
To determine the second columns of X−1

. andM− ., we use the method described 
in Sect. 2. The second columns will be denoted by s+ . and s− ., respectively. 

First we express the rational function q in (64) as 

. q = p1(τ )

p2(τ )
,

where 

.p1(τ ) = τ 2, p2(τ ) = ρ2

4
(τ − τ0)

2(τ − τ̃0)
2 + e2τ 2. (65)
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The quantity r1 ., given in  (36), takes the form 

. r1 = p̃1

p2

with 

. p̃1 = τ 2(τ − τ̃0)
2

τ̃ 2
0

and p2 .given in (65). Both  p̃1 . and p2 . are polynomials of degree 4. p̃1 .has two double 
zeroes, one located in the interior of r . (at τ = 0.) and one located in the exterior of 
r . (at τ = τ̃0 .). 

Next, we determine the rational function r2 ., by demanding that the zeroes of 
(r2 +JQ2)f+ . cancel the zeroes of r1 . in D

+
r . and the zeroes of (r2 +JQ1)f− . cancel 

the zeroes of r1 . in D
−
r .. Using  (39) and (41), we obtain (where we use that f2+(τ ) =

0. and f2−(τ ) = ef1−(τ ).), 

.

⎧⎪⎪⎨
⎪⎪⎩

R2(0) = 0,

R'
2(0) = 0,

R2(τ̃0)+ ep1(τ̃0) = 0,

R'
2(τ̃0)+ ep'1(τ̃0) = 0.

(66) 

Now we use that R2 . is a polynomial of degree not greater than deg(p2) = 4., i.e. 

. R2(τ ) = Aτ 4 + Bτ 3 + Cτ 2 +Dτ + E,

where the constants A,B,C,D,E . are determined by the four conditions (66) as 
well as by the normalising condition s1+(0) = 0. (cf. Remark 3). Imposing the 
first two conditions in (66) gives D = E = 0., while imposing the two remaining 
conditions in (66) gives 

. B = −2A τ̃0,

C = −e + A τ̃ 2
0 . (67) 

Next we use the normalising condition s1+(0) = 0.. Using the expression for s1+ . 

given in (27) we obtain C = 0., which when combined with (67) gives 

.A = e

τ̃ 2
0

, B = −2
e

τ̃0
.
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The polynomial R2 . is therefore determined to be 

. R2 = e τ 3

/
τ

τ̃ 2
0

− 2

τ̃0

/
.

Having determined r2 . using only knowledge about the first column vectors f+ . 

and f− ., the second column vectors s+ . and s− . are uniquely determined using (27) 
and (28), 

. s+ =
l
e
(
m+ −m−1+

)
m−1+

l
, s− =

l
e m−1−

m− + e2 m−1−

l
.

The matrix M(ρ, v). is obtained from the matrixM− ., 

. M− =
l

m−1− e m−1−
e m−1− m− + e2 m−1−

l
,

by using (49) and reads, 

. M(ρ, v) =
l

f−1 e f−1

e f−1 f + e2 f−1

l
, f (ρ, v) = ρ τ̃0

2
= v +/

v2 + ρ2

2
.

Using (61) and (62) with λ = 1. as well as *dρ = −dv, *dv = dρ ., the associated 
space-time metric is given by 

. ds2
4 = −A(dt + B dφ)2 +A−1

(
eψ(dρ2 + dv2)+ ρ2dφ2

)
,

with 

. A =
1
2

(
v +/

v2 + ρ2
)

e2 + 1
4

(
v +/

v2 + ρ2
)2

,

B = 2e ρτ0 = 2e

l
v −

/
v2 + ρ2

l
,

eψ = v +/
v2 + ρ2

2
/

v2 + ρ2
.

We note that B /= 0. provided e /= 0.; as in the previous example, the metric is 
stationary. When e = 0., the metric is static and describes a known metric that 
belongs to the class of AIII .-metrics [1, 11] but is different from the AIII -metric 
mentioned in the previous subsection.
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Invertibility of Toeplitz Plus Hankel 
Operators on lp-Spaces 

Victor Didenko and Bernd Silbermann 

Dedicated to Yuri Karlovich on the occasion of his 75-th 
birthday 

Abstract The invertibility of Toeplitz plus Hankel operators T (a) + H(b)., a, b ∈
L∞

. acting on lp .-spaces is studied. If the generating functions a and b satisfy the
equation

. a(t)a(1/t) = b(t)b(1/t),

various sufficient conditions for the invertibility and one-sided invertibility of the 
operators T (a)+H(b). are obtained and the corresponding inverses are constructed. 
Necessary conditions of one-sided invertibility are also discussed. Besides, we 
suggest a generalization of the above condition for the functions a and b, which 
allows to extend the approach used to a substantially wider class of Toeplitz plus 
Hankel operators.

1 Introduction 

Let R. and C. be respectively the sets of all real and all complex numbers, T. the 
counterclockwise oriented unit circle in the complex plane C., and Lp = Lp(T). the 
complex Banach space of all Lebesgue measurable functions f on T. equipped with 
the norm 
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. llf llp :=

⎧
⎪⎪⎨

⎪⎪⎩

l
1

2π

l

T

|f (t)|p |dt |
l1/p

< ∞, if 1 ≤ p < ∞,

ess sup
t∈T

|f (t)| < ∞, if p = ∞.

Toeplitz plus Hankel operators and Wiener-Hopf plus Hankel operators arise in 
statistical mechanics, random matrix theory, scattering theory [1, 4, 16, 18–23]. The 
invertibility of such operators plays an important role in the asymptotics of Toeplitz 
plus Hankel determinants and approximation methods for related operator equations 
[3]. However, unlike the scalar Toeplitz operators, Fredholmness of Toeplitz plus 
Hankel and Wiener-Hopf plus Hankel operators does not imply their one-sided 
invertibility. Therefore, finding effective invertibility conditions and constructing 
the corresponding inverses face essential difficulties. In particular, although it is 
known that a Toeplitz plus Hankel operator T (a)+H(b). is invertible if and only if 
the so-called partial indices in the so-called special antisymmetric factorization of 
the matrix 

.V (a, b) =
l

bla−1 a − blbla−1

la−1 −la−1lb

l

(1) 

are equal to zero [14, 15], there are no methods allowing to evaluate these indices 
for general symbols a and b. Here and throughout the following we denote b y g̃ . 

the function defined by g̃(t) = g(1/t).. On the other hand, if (a, b). is a matching 
pair—i.e. if this duo satisfies the so-called matching condition 

.a(t)a(1/t) = b(t)b(1/t), t ∈ T, (2) 

the invertibility, one-sided invertibility, generalized invertibility of the operators 
T (a) + H(b). acting on classical Hardy spaces can be successfully treated and the 
corresponding inverses can be constructed—cf. [2, 6, 8, 10, 11]. It is worth noting 
that the approach employed in this situation is not related to the antisymmetric 
factorization of the matrix (1) but exploits the Wiener-Hopf factorization of 
auxiliary scalar functions associated with the symbols a and b. Moreover, in most 
cases, the corresponding inverses can be expressed in explicit form.

Passing to Toeplitz plus Hankel operators acting on the sequence spaces lp ., 
we note that the methods of [6, 8, 10, 11] do not always work even for Toeplitz 
operators. This happens because the invertibility conditions obtained there are based 
on Wiener-Hopf factorization of scalar functions in Lp

.-spaces. However, for the 
operators acting on lp .-spaces, p /= 2., such a factorization can be exploited only 
for operators with symbols which are lp .-multipliers along with their Wiener-Hopf 
factors. Nevertheless, this factorization can still be of use when studying Toeplitz 
plus Hankel operators on the spaces of sequences but additional conditions are 
needed. The corresponding approach was developed in [9] and some results of that 
work are used here when considering the invertibility of the operator T (a) + H(b).
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on lp .-spaces and constructing the corresponding inverses. Along with the one-sided 
invertibility and invertibility of Toeplitz plus Hankel operators, we also consider 
a few situations where these operators are only generalized invertible and determine 
their generalized inverses. Note that an operator B is called generalized inverse for 
the operator A if

. ABA = A.

This work is organized as follows. In Sect. 2, we recall some properties of 
Toeplitz operators acting on lp .-spaces which are needed in what follows. In Sect. 3, 
sufficient conditions for the one-sided invertibility, invertibility, and generalized 
invertibility of Toeplitz plus Hankel operators are presented and the corresponding 
inverses are constructed. The invertibility condition given in this section are based 
on the invertibility of auxiliary Toeplitz operators, called the subordinated operators, 
and are not directly associated with the properties of a Wiener-Hopf factorization 
of their generating functions—cf. Theorem 1. The formulas for the inverses of 
Toeplitz plus Hankel operators contain the inverses of the subordinated Toeplitz 
operators acting on lp .-spaces, p /= 2.. Therefore, we also recall recent results 
related to this issue. Section 4 deals with more delicate invertibility conditions for 
a special class of Toeplitz plus Hankel operators. The main feature of this class 
is that the corresponding subordinated operators, generated by the same matching 
pair on the space lp . and on the Hardy space Hq

., 1/p + 1/q = 1., should have the 
same indices. The later requirement allows to use the Wiener-Hopf factorization in 
case of Toeplitz operators acting on lp .-spaces. Consequently, we obtain necessary 
conditions for one-sided invertibility of Toeplitz plus Hankel operators and new 
sufficient conditions different from the ones in Sect. 3. In particular, we note that 
Toeplitz plus Hankel operators can be invertible even if the subordinated operators 
are only one-sided invertible from the same or from different sides. Finally, in 
conclusion we note a generalization of the condition (2) which allows to apply the 
approach used to a substantially larger class of Toeplitz plus Hankel operators. 

2 Operators on lp .-Spaces 

Let Z. and Z+ . respectively denote the sets of all integers and all non-negative 
integers. Consequently, llp =llp(Z). and lp = lp(Z+)., 1 ≤ p < ∞. are the Banach 
spaces of all sequences ξ = (ξn)n∈Z . and ξ = (ξn)n∈Z+ . of complex numbers such 
that 

.llξllp =
l

l

n

|ξn|p
l1/p

< ∞,
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where the summation is over Z. or Z+ .. In what follows, the space lp . is regarded as 
a natural subspace of llp ., and by P we denote the canonical projection fromllp . onto 
lp .. We also consider the spaces l0 . and c0 . of the sequences (ξn)n∈Z ., the first of which 
consists of all finitely supported sequences and the second one of all sequences that 
tend to zero as |n| → ∞.. 

Let F : L1(T) → c0 . refer to the Fourier transform 

. F(f ) = ( lfn)n∈Z,

where 

. lfn = 1

2π

l 2π

0
f (eiθ )e−inθ dθ

are the Fourier coefficients of the function f . Consider now a function a ∈ L1(T). 

and define a linear operator on l0 . by 

. (L(a)ξ)k :=
l

m∈Z
lak−mξm, k ∈ Z.

This operator is often called the Laurent operator generated by a. 
We say that a is a multiplier on lp . if L(a)ξ ∈ lp . for any ξ ∈ l0 . and 

.llL(a)ll := sup
lllL(a)ξllp : ξ ∈ l0(Z), llξllp = 1

l
< ∞. (3) 

If a satisfies the condition (3), then L(a). extends to a bounded linear operator on the 
space lp .. This extension is again denoted by L(a). and the set of all lp .-multipliers is 
referred to as Mp

.. Equipped with the norm llallMp := llL(a)ll., the set  Mp
. becomes 

a commutative Banach algebra. 
It is worth noting that M1

. is the Wiener algebra W = W(T). of all functions 
having absolutely convergent Fourier series, that M2 = L∞

., and that every function 
a ∈ L∞

. with bounded total variation var (a). belongs to any algebra Mp
., p ∈

(1,∞).. In particular, the sets of all trigonometric polynomials and all piecewise 
constant functions belong to all Mp

., p ∈ (1,∞)., and their closures, respectively 
denoted by Cp . and PCp ., are subalgebras of Mp

., as well. For other properties of 
multipliers, the reader can consult [5]. 

3 Invertibility: Direct Approach 

Let J be the operator defined by

.Jξ = J ((ξn)n∈Z) := (ξ−n−1)n∈Z, (ξn)n∈Z ∈llp,
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and let Q = I − P ., where I denotes the identity operator. The Toeplitz operator
T (a). and the Hankel operator H(b). generated by functions a and b are defined on
lp . (considered as a subspace of llp .) by  

. T (a) := PL(a), H(b) := PL(a)QJ.

If a, b ∈ Mp
., then T (a),H(b) : lp → lp . are bounded linear operators and if 

(ξn) ∈ lp ., then 

. T (a) : (ξj )j∈Z+ →
⎛

⎝
l

k∈Z+
laj−kξk

⎞

⎠

j∈Z+
,

H(b) : (ξj )j∈Z+ →
⎛

⎝
l

k∈Z+
lbj+k+1ξk

⎞

⎠

j∈Z+
.

As was already mentioned, we are going to study the invertibility of Toeplitz plus 
Hankel operators T (a) + H(b). the generating functions of which are connected in 
a special way. More exactly, from now on we assume that a, b ∈ Mp

. and satisfy 
the matching condition (2). In addition, assuming that a and b belong to the group
GMp

. of invertible elements in Mp
., we consider the functions 

. c := ab−1(=lbla−1), d := alb−1(= bla−1),

and note that the duo (c, d). is also a matching pair such that 

. clc = dld = 1.

This matching pair (c, d). and the Toeplitz operators T (c), T (d)., respectively called 
the subordinated pair and the subordinated operators, play an outstanding role in the 
study of Toeplitz plus Hankel operators T (a) + H(b).. In particular, the operators 
T (a)±H(b) : lp → lp ., p > 1. are both Fredholm if and only if so are the operators 
T (c). and T (d).. In what follows, any function g with the property glg = 1. is called 
the matching function. Moreover, let us agree that for a, b ∈ Mp

. all the operators 
mentioned in the corresponding statement are considered on the space lp . with the 
same index p, unless the other is specified. 

Theorem 1 Assume that a, b ∈ Mp
., p > 1. constitute a matching pair. Then: 

1. If the operators T (c). and T (d). are left-invertible, then the operator T (a)+H(b). 

is also left-invertible and one of its left-inverses has the form 

.B = T −1
l (c)

l
H(la−1)+ T (la−1)T −1

l (d)(I −H(d))
l

, (4)
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where T −1
l (c). and T −1

l (d). are any left-inverses of the operators T (c). and T (d)., 
respectively. 

2. If the operators T (c). and T (d). are right-invertible, then the operator T (a) +
H(b). is also right-invertible and one of its right-inverses has the form 

.B =
l
(I −H(lc))T −1

r (c)T (la−1)+H(a−1)
l

T −1
r (d), (5) 

where T −1
r (c).and T −1

r (d).are any right-inverses of the operators T (c).and T (d)., 
respectively. 

3. If T (c). and T (d). are respectively right- and left-invertible operators, then the 
operator T (a) + H(b). is generalized-invertible and one of its generalized-
inverses has the form 

. B = −H(lc)
l
A(I −H(d))− BH(la−1)

l

+H(a−1)D(I −H(d))+ T (a−1), (6) 

where 

.A = T −1
r (c)T (la−1)T −1

l (d), B = −T −1
r (c), D = T −1

l (d). (7) 

Proof The proofs of the representations (4) and (5) are based on the well known 
Widom identities 

.

T (ϕψ) = T (ϕ)T (ψ)+H(ϕ)H(lψ),

H(ϕψ) = T (ϕ)H(ψ)+H(ϕ)T (lψ).
(8) 

Here we only show the representation (4). The other one can be verified analogously. 
Recalling that c = ab−1 = lbla−1

. and d = alb−1 = bla−1
., we first rearrange the 

products H(d)T (a). and H(d)H(b).. Taking into account the relations (8), we write 

. H(d)T (a) = H(dla)− T (d)H(la) = H(b)− T (d)H(la),

H(d)H(b) = T (dlb)− T (d)T (lb) = T (a)− T (d)T (lb).

These representations yield 

. T (la−1)T −1
l (d) (I −H(d)) (T (a)+H(b))

= T (la−1)T −1
l (d)

l
T (a)+H(b)− l

T (a)+H(b)− T (d)H(la)− T (d)T (lb)
ll

= T (la−1)T −1
l (d)

l
T (d)T (lb)+ T (d)H(la)

l

= T (la−1)T (lb)+ T (la−1)H(la)
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=
l
T  (la−1lb)−H(la−1)H(b)

l
+

l
H(la−1la)− H(la−1)T (a)

l

=
l
T  (c)− H(la−1)H(b)

l
+

l
H(1)− H(la−1)T (a)

l

= T  (c)− H(  la−1)(T (a)+H(b)).

Therefore, 

. 

l
H(la−1)+ T (la−1)T −1

l (d)(I −H(d))
l

(T (a)+H(b)) = T (c)

and the representation (4) follows. 
The generalized invertibility of T (a)+H(b)., a, b ∈ L∞

. and the representation 
(6)–(7) have been established in [7] for Toeplitz plus Hankel operators acting on the 
classical Hardy spaces Hp

.. The corresponding proof is also valid for Toeplitz plus 
Hankel operators considered on the spaces of sequences.   
Corollary 1 If both operators T (c). and T (b). are invertible, then the operator 
T (a) + H(b). is also invertible and its inverse can be obtained from any of 
the representations (4)–(6) via replacing one-sided inverses by the corresponding 
inverses T −1(c). and T −1(d).. 

Remark 1 According to the above corollary, we can have tree differently looking 
representations for the operator (T (a) + H(b))−1

.. They can be transformed into 
each other by using the Widom identities (8). 

Remark 2 If both operators T (c). and T (d). are invertible from the same side, then 
the formula (6) can also be used for constructing the left- or right-inverse of the 
operator T (a) + H(b).. However, the operators A., B., and D. in (7) have to be 
modified—viz. the operator T −1

r (c). should be replaced by T −1
l (c). or the operator 

T −1
l (d). should be replaced by T −1

r (d).. Nevertheless, any of the representations (4) 
and (5) looks much simpler than (6). 

Theorem 1 shows that the inverses of Toeplitz plus Hankel operators are 
expressed via the inverses of Toeplitz operators. For Toeplitz operators on classical 
Hardy spaces, the inverses can be constructed by using the Wiener-Hopf factoriza-
tion of the corresponding generating functions. In lp .-spaces this scheme does not 
always work. Therefore, here we recall some results from [9] when the Wiener-Hopf 
factorization of generating functions yields an appropriate factorization of Toeplitz 
operators and efficiently construct their one-sided inverses. 

Let Hp = Hp(T). and H
p = Hp(T). denote the Hardy spaces of all functions 

f ∈ Lp
. the Fourier coefficients lf . of which vanish for all n < 0. and all n > 0., 

respectively. On the spaces Lp
., 1 < p < ∞., we consider the operators 

.Jf (t) := t−1f (t−1), Pf (t) :=
l

n∈Z+
lfnt

n,
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and the operator Q = I− P., where I. denotes the identity operator. Consequently, if 
a ∈ L∞

., then the Toeplitz and Hankel operators on the space Hp
., 1 < p < ∞. are 

respectively defined by 

. T(a)f := Paf, H(a)f := PaQJf.

The representations (4)–(6) for various types of inverses of Toeplitz plus Hankel 
operators acting on lp .-spaces are based on the one-sided inverses of Toeplitz 
operators T (c). and T (b).. For Toeplitz operators T(g)., g ∈ L∞

. considered on the 
classical Hardy spaces Hp

., their one-sided inverses can be efficiently constructed. 
More exactly, assume that T(g). is Fredholm and indT(g) = n., where 

. indT(g) = dim kerT(g)− dim kerT∗(g)

is the index of the operator T(g).. If  n ≥ 0., the operator T(g). is right invertible and 
one of its right inverses has the form 

. T−1
r (g) = T−1(tng)T(tn).

On the other hand, if n ≤ 0., then the operator T(g). is left invertible and one of its 
left inverses has the form 

. T−1
l (g) = T(tn)T−1(tng).

The problem is now reduced to the construction of the inverse operator T−1(tng).. 
This can be done by using a factorization of the function g. Recall that a function g ∈
L∞

. admits a generalized Wiener-Hopf factorization in Hp
. if it can be represented 

in the form 

.g(t) = g−(t) t−n g+(t), n ∈ Z, (9) 

where g+ ∈ Hq
., g−1+ ∈ Hp

., g− ∈ Hp ., g−1− ∈ Hq ., and the linear operator 
g−1+ Pg−1− I. defined on the set span {tk : k ∈ Z+}. can be boundedly extended 
onto the whole space Hp

.. In what follows, such a representation is simply referred 
to as a Wiener-Hopf factorization. It should be noted that the above factorization 
strongly depends on the space Hp

., but if  p and the value of g− . at z = ∞. are fixed, 
the representation (9) is unique. Accordingly, in this work we always assume that 
g−(∞) = 1.. 

Wiener-Hopf factorization is closely connected to the Fredholmness of Toeplitz 
operators acting on the Hardy spaces Hp

.. Thus the operator T(g) : Hp → Hp
. 

is Fredholm if and only if g admits the Wiener-Hopf factorization (9), cf. [5]. In 
particular, the representation (9) yields that indT(g) = n. and 

.T−1(tng) = T(g−1+ )T(g−1− ). (10)
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Consequently, if indT(g) = 0., the Toeplitz operator T(g) : Hp → Hp
. is invertible 

and its inverse can be explicitly written in the form (10). On the other hand, 
for invertible Toeplitz operators T (g). acting on sequence spaces lp ., the Wiener-
Hopf factorization (9) of the generating function g ∈ Mp

. does not automatically 
produce an explicit expression of the inverse operator T −1(g).. Nevertheless, this 
representation can still be helpful, as the following theorem shows. 

Theorem 2 (cf. [9]) Assume that g ∈ Mp
., the operator T (g) : lp → lp . is 

invertible, and let q := p/(p − 1)., i.e. 1/p + 1/q = 1.. If, in addition, the operator 
T(g). is invertible on the space Hq

., then the function g admits the Wiener-Hopf 
factorization

. g = g−g+,

in Hq
. and the inverse for the operator T (g). can be represented in the form 

.T −1(g) := T(g−1+ )T(g−1− ), (11) 

where 

. T(g−1+ ) := (lg−1
+,j−k)

∞
j,k=0, T(g−1− ) := (lg−1

−,j−k)
∞
j,k=0,

and (lg−1+,n)n∈Z . and (lg−1−,n)n∈Z . are the sequences of the Fourier coefficients of the 

functions g−1+ . and g−1− ., respectively. 

The representation (11) allows to construct one-sided inverses for Fredholm 
Toeplitz operators acting on sequence spaces lp . and, consequently, to derive 
efficient formulas for one-sided and generalized inverses of operators T (a)+H(b). 

with matching symbols a and b. However, Theorem 2 uses an important condition— 
viz. the operators T (g). and T(g). should be simultaneously invertible—viz. the 
first on the space lp . and the second on the Hardy space Hq

., 1/p + 1/q = 1.. 
This condition is, in particular, satisfied for the operators with symbols from 
decomposing subalgebras of Mp

. such as the Wiener algebra W = W(T). of 
functions with absolutely convergent Fourier series. It is also known that for 
functions g ∈ PCp ., the corresponding operators T (g) : lp → lp . and T(g) : Hq →
Hq

., 1/p + 1/q = 1. are simultaneously Fredholm and have the same indices—cf. 
[12, 13] and [17]. Therefore, if g ∈ PCp . and one of the operators mentioned is 
invertible, then so is the other. 

Thus the problem of simultaneous invertibility of the operator T (g). on lp . and 
the operator T(g). on Hq

. under the condition 1/p + 1/q = 1. could be of interest in 
both the theory of Toeplitz operators and Wiener-Hopf factorization.
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4 Invertibility: Factorization Based Approach 

Although Wiener-Hopf factorization is a convenient machinery for constructing 
the inverses of Toeplitz plus Hankel operators, the invertibility conditions in the 
previous section do not involve any factorization arguments. On the other hand, 
applying such factorizations to the corresponding operators on the Hardy spaces 
Hp

. allows to derive more subtle invertibility results. At the same time, for lp .-
spaces the factorization (9) cannot be immediately used for obtaining required 
information about the operators of interest. Therefore, here we consider a special 
class of Toeplitz plus Hankel operators. However, before we proceed, let us agree 
on the notation. First, as we already did earlier, the operators on Hardy spaces Hp

. 

will be written in boldface in contrast to the ones acting on lp .-spaces. Besides, since 
we consider operators on various Hp

.- and lp .-spaces, the index p will be sometimes 
directly incorporated in the operator notation in order to show the space where the 
corresponding operator acts. For example, Tp(g). means the Toeplitz operator T (g). 

acting on the space lp ., and Hq(g). the Hankel operator acting on the space Hq
.. From  

now on, we also presume that every time when the indices p and q appear together, 
they satisfy the relation 1/p + 1/q = 1.. 

Note that if (a, b). is a matching pair with the subordinated pair (c, d). and Tp(c). 

and Tp(d). are Fredholm, then the factorizations [6, Eqs.(3.1) and (3.7))] yield the 
Fredholmness of Tp(a) + Hp(b).. Besides, the one-sided invertibility of Tp(c)., 
Tp(d). allows to obtain various results about the invertibility of Tp(a) + Hp(b)., 
cf. Theorem 1 above. Thus the Toeplitz operators Tp(c). and Tp(d). generated by the 
pair subordinated for (a, b). are closely related to the corresponding Toeplitz plus 
Hankel operators and have to be studied in more detail. First of all, we note that c 
and d are special matching functions—viz.

. clc = 1 = dld,

and recall the properties of Toeplitz operators with such generating functions. For 
the reader’s convenience, we summarize them in the proposition below. 

Proposition 1 (cf. [6, Corollary 5.3 & Proposition 3.4], [9, Theorem 7]) Let 
g ∈ GMp

. be a matching function—i.e. glg = 1.. Then the following assertions 
hold: 

1. If the Toeplitz operator Tq(g). is Fredholm and indTq(g) = r ., then the function 
g admits a Wiener-Hopf factorization in Hq

. of the form 

.g(t) = σ (g) g+(t) t−r lg−1+ (t), g−(∞) = 1, (12) 

where g+ ∈ Hp
., g−1+ ∈ Hq

., and σ (g) = g+(0) = ±1..
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2. If the Toeplitz operator Tp(g). is invertible from the right, then the operators P±
g . 

defined by 

.P±
g := 1

2
(I ± JQgP ) (13) 

are complementary projections on the null space ker Tp(g).. 
3. Let Tp(g). and Tq(g). be right-invertible operators such that 

. indTq(g) = ind Tp(g) = r,

the function g+ . and the term σ (g). be defined as in (12), and (lg−1
+,j ). be the 

sequence of the Fourier coefficients of the function g−1+ .. Then the following sets 
B± . of sequences form bases in the image spaces im P±

g .: 

(i) If r = 2l, l ∈ N., then 

. B± :=
l
(lg−1
+,j−(l−k−1) ± σ (g)lg−1

+,j−(l+k))j∈Z+ : k = 0, · · · , l − 1
l

.

(14) 

(ii) If r = 2l + 1, l ∈ Z+ ., then 

.B± :=
l
(lg−1
+,j−(l+k) ± σ (g)lg−1

+,j−(l−k))j∈Z+ : k = 0, · · · , l
l
\ {0}. (15) 

Using the above results, we can establish sufficient and necessary conditions of 
invertibility and one-sided invertibility for a class of Toeplitz plus Hankel operators 
on lp .. More exactly, let M

p
T H (κ1, κ2). denote the set of Toeplitz plus Hankel 

operators Tp(a)+Hp(b). such that: 

1. The duo (a, b) ∈ GMp × GMp
. is a matching pair with the subordinated pair 

(c, d).. 
2. The operators Tp(c). and Tq(c). are Fredholm and 

. ind Tp(c) = indTq(c) = κ1.

3. The operators Tp(d). and Tq(d). are Fredholm and 

.ind Tp(d) = indTq(d) = κ2.



194 V. Didenko and B. Silbermann

4.1 Necessary Conditions 

Let us start with necessary conditions for the invertibility of Toeplitz plus Hankel 
operators from M

p
T H (κ1, κ2).. Note that in this section we will not directly appeal 

to the operators acting on the Hardy spaces Hq(T).. Therefore, in order to simplify 
the notation, we will write all operators without the subscript, which indicated the 
space of the operator action. 

Theorem 3 Assume that T (a) + H(b) ∈ M
p
T H (κ1, κ2).. Then the following asser-

tions hold: 

1. If T (a)+H(b). is left-invertible and T (c). is right-invertible, then 

.κ1 ≤ 1, κ2 ≤ 1. (16) 

2. If T (a)+H(b). is right-invertible and T (d). is left-invertible, then 

.κ1 ≥ −1, κ2 ≥ −1. (17) 

3. If T (a)+H(b). is invertible and both operators T (c). and T (d). are either left- or 
right-invertible or if T (c). is right-invertible and T (d). is left-invertible, then 

.|κ1| ≤ 1, |κ2| ≤ 1. (18) 

Proof We start with the assertion 1. If T (c). is right-invertible, then according to [9, 
Lemma 5], the kernel of the Toeplitz plus Hankel operator T (a) + H(b). has the 
form 

. ker(T (a)+H(b)) = ϕ(im P+
d ) + im P−

c , (19) 

where ϕ : ker T (d) → ker(T (a)+H(b)). is the injective operator defined by 

.ϕ(s) := 1

2

l
T −1

r (c)T (la−1)s − JQcPT −1
r (c)T (la−1)s + JQla−1s

l
, (20) 

and the projections P±
. are introduced in (13). Note that the relations (14), (15) 

show that if ind T (g) = 2l ., l ∈ N., then 

. dim P±
g = l (21) 

and if ind T (g) = 2l + 1., l ∈ Z+ ., then 

. dim P±
g = l + 1 ± σ (g)

2
. (22)
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Assuming that one of the indices κ1 . or κ2 . is greater than 1, we use (19), (21), (22) 
and the injectivity of the mapping ϕ . to obtain that the kernel of T (a)+H(b).contains 
a non-zero element. This contradicts the left-invertibility of the operator in question, 
so that the estimates (16) hold. 

Assuming that T (a) + H(b). is right-invertible, we note that its adjoint T (a) +
H(lb) ∈M(lq). is left-invertible. Besides, the duo (a,lb). is also a matching pair with 
the subordinated pair (d, c).. Since T (d). is right invertible, the assertion 1 yields 

. − κ2 ≤ 1, −κ1 ≤ 1,

and the estimates (18) follows. 
The remaining estimate (18) is a consequence of (19), (21), (22) and the 

assertions 1, 2.   
Consider now the case where T (c). and T (d). are respectively left- and right-

invertible operators having non-zero indices. This situation is not covered by 
Theorem 3 and should be treated separately. 

Theorem 4 Let T (a)+H(b) ∈M
p
T H (κ1, κ2). and κ1 < 0., κ2 > 0.. 

1. If the operator T (a)+H(b). is left-invertible, then: 

(i) if κ1 . is an odd number and κ2 . an even one, then κ1 + κ2 ≤ σ (c).; 
(ii) if κ1 . and κ2 . are odd numbers, then κ1 + κ2 ≤ σ (c)+ σ (d).; 

(iii) if κ1 . is an even number and κ2 . an odd one, then κ1 + κ2 ≤ σ (d).; 
(iv) if κ1 . and κ2 . are even numbers, then κ1 + κ2 ≤ 0.. 

2. If the operator T (a)+H(b). is right-invertible, then: 

(i) if κ1 . is an odd number and κ2 . an even one, then κ1 + κ2 ≥ σ (c).; 
(ii) if κ1 . and κ2 . are odd numbers, then κ1 + κ2 ≥ σ (c)+ σ (d).; 

(iii) if κ1 . is an even number and κ2 . an odd one, then κ1 + κ2 ≥ σ (d).; 
(iv) if κ1 . and κ2 . are even numbers, then κ1 + κ2 ≥ 0.. 

Proof In order to prove the necessary conditions for the one-sided invertibility of 
the operators from M

p
T H (κ1, κ2)., we need an additional characteristic for the indices 

of the subordinated operators T (c). and T (d).. Let  n and m be the integers s uch that

. 0 ≤ κ1 + 2n ≤ 1, 0 ≤ 2m− κ2 ≤ 1.

Such n and m are uniquely defined and take values 0 or 1 depending on whether the 
corresponding index κj ., j = 1, 2. is even or odd. 

Now we can exploit the kernel and co-kernel descriptions for the operators from 
M

p
T H (κ1, κ2). in the situation when the corresponding indices satisfy the condition 

κ1 < 0., κ2 > 0.. In particular, to obtain necessary conditions for the left-invertibility 
of the operator T (a)+H(b)., one can use [9, Lemma 7]. We only prove the assertion 
1(i). In this situation, we have 

.κ1 + 2n = 1, κ2 = 2m.
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Note that for the reader’s convenience, here we write the related part of [9, Lemma 7] 
in the ready-to-use form. More exactly, let c+ . be the plus factor in the Wiener-Hopf 
factorization of the subordinated function c, and {(lc−1

+,j )}. be the one-dimensional 
subspace of the space lp . generated by the sequence of the Fourier coefficients of the 
function c−1+ .. According to [9, Lemma 7] and Theorem 1, the kernel of the operator 
T (a)+H(b). can be represented in the form 

. ker(T (a)+H(b)) = T (t−n)

l
1 − σ (c)

2
{(lc−1

+,j )}+ ϕ(im P+
d )

l

. (23) 

Note that the operator ϕ . in (20) is generated by the matching pair (a, b).. The same  
representation (20) is used to determine the operator ϕ . in (23), but the matching pair 
(a, b). should be replaced by the pair (at−n, btn).. 

Consider now the subspace U of lp . defined as 

. U = 1 − σ (c)

2
{(lc−1

+,j )}+ ϕ(im P+
d )

and assume that dim U > n.. Then, there is an element u0 ∈ U ., u0 /= 0., the first n 
coordinates of which are equal to zero—i.e.

. u0 = (0, . . . , 0, ξn, ξn+1, . . .).

Consequently, the kernel of the operator T (a)+H(b).contains a non-zero element— 
viz. T (t−n)u0 ., so that T (a) + H(b). is not left-invertible. This contradicts the 
assumptions of Theorem 4. Thus, 

. n ≥ dim U.

Taking into account the definition of the numbers n,m. and the relations (21), (22), 
we write the above inequality as 

. 
1 − κ1

2
≥ 1 − σ (c)

2
+ κ2

2
,

and the assertion 1(i) follows. The three other necessary left-invertibility condi-
tions—viz. 1(ii)–1(iv), can be proven analogously. 

In order to establish necessary conditions for the right-invertibility of an operator 
T (a) + H(b). in the case κ1 < 0., κ2 > 0., we first have to describe the cokernel of 
the operator under consideration. This can be done by applying [9, Lemma 7] to the 

operator T (a)+H(lb).. After that, the proof follows the scheme above.   
Combining the two parts of Theorem 4, we arrive at necessary conditions for the 

invertibility of operators T (a)+H(b)..
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Corollary 2 Let T (a) + H(b) ∈ M
p
T H (κ1, κ2)., κ1 < 0., κ2 > 0., and the operator 

T (a)+H(b). be invertible. Then: 

1. if κ1 . is an odd number and κ2 . an even one, then κ1 + κ2 = σ (c).; 
2. if κ1 . and κ2 . are odd numbers, then κ1 + κ2 = σ (c)+ σ (d).; 
3. if κ1 . is an even number and κ2 . an odd one, then κ1 + κ2 = σ (d).; 
4. if κ1 . and κ2 . are even numbers, then κ1 + κ2 = 0.. 

4.2 Sufficient Conditions 

As was already mentioned—cf. Sect. 2, the simultaneous left- or right-invertibility 
of the subordinated operators T (c). and T (d). yields the left- or right-invertibility 
of the corresponding Toeplitz plus Hankel operator T (a) + H(b).. However, 
the operator T (a) + H(b). can be one-sided invertible or invertible even if the 
subordinated operators are not invertible from the same side. Let us note a few such 
cases. 

Theorem 5 Assume that T (a)+H(b) ∈M
p
T H (κ1, κ2).. Then: 

1. If κ2 < 0., κ1 = 1. and σ (c) = 1., then the operator T (a)+H(b). is left invertible. 
2. If κ1 > 0., κ2 = −1. and σ (d) = 1., then the operator T (a) + H(b). is right 

invertible. 
3. If κ1 = 1., κ2 = −1., and σ (c) = σ (d) = 1., then the operator T (a) + H(b). is 

invertible. 

Proof Starting with the assertion 1, we note that since the subordinated operator 
T (c). is right-invertible, the kernel of the operator T (a) + H(b). has the form (19), 
i.e. 

. ker(T (a)+H(b)) = ϕ+(im P+
d )+ im P−

c .

However, according to the assertion 3(ii) of Proposition 1, the set  im P−
c . contains 

only the zero-element, and the left-invertibility of the operator T (d). yields im P+
d =

{0}.. Thus 

. ker(T (a)+H(b)) = {0},

and the operator under consideration is left-invertible. 
As far as the assertion 2. is concerned, we first note the relation 

. coker (T (a)+H(b)) = ϕ+(im P+
c )+ im P−

d
,

which can be obtained from [9, Lemma 5] by passing to the adjoint operator. 
Consequently, following the proof of the assertion 1, one shows that 

.coker (T (a)+H(b)) = {0},



198 V. Didenko and B. Silbermann

and the assertion 2. follows. 
The assertion 3 is an obvious consequence of the statements 1. and 2.   
Let us also note another interesting situation where both subordinated operators 

are invertible from the same side, both have non-zero kernels or cokernels, but the 
corresponding Toeplitz plus Hankel operator is just invertible. 

Theorem 6 Assume that T (a)+H(b) ∈M
p
T H (κ1, κ2).. Then: 

1. If κ1 = κ2 = 1. and σ (c) = 1., σ (d) = −1., then the operator T (a) + H(b). is 
invertible. 

2. If κ1 = κ2 = −1. and σ (c) = −1., σ (d) = 1., then the operator T (a) + H(b). is 
invertible. 

Proof Since the proof of both statements is similar, we only show the assertion 1. 
If κ1 = κ2 = 1., the both subordinated operators T (c). and T (d). are right-invertible, 
and the operator T (a)+H(b). is also right invertible by assertion 2. of Theorem 1. 
The kernel of this operator has the form (19), and recalling the representations (15) 
for the basis of the image spaces of the projections P±

., we obtain that 

. ker(T (a)+H(b)) = {0},

and the operator in question is invertible.   
Remark 3 Under the conditions of Theorem 5, the inverse operator (T (a) +
H(b))−1

. can be constructed by the formulas (6)–(7). If the subordinated operators 
are as in Theorem 6, then the inverse operator can be written in the form (4) or (5), 
depending on whether T (c). and T (d). are left- or right-invertible. 

5 Conclusion: A More General Class of Symbols 

Analysing the relation (2), we note that since the symbol b is not uniquely defined by 
the operator H(b)., this identity can be replaced by another one, so that the methods 
used here can be extended to a considerably larger class of operators T (a)+H(b).. 
For example, the pair 

. a(t) = 1

2 + t
, b(t) = tn+1 + 2t + 1

t (1 + 2t)
, t ∈ T, n ∈ Z+,

does not satisfy the relation (2). However, representing b in the f orm

. b(t) = tn

1 + 2t
+ 1

t
= b0(t)+ 1

t
,

we note that 

.T (a)+H(b) = T (a)+H(b0),
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and since the pair (a, b0). already satisfies the relation (2), the methods of [6, 8, 10, 
11] can be used to study the invertibility of the operator T (a)+H(b). by replacing 
it via the operator T (A)+H(b0).. 

The above example suggests the following definition. 

Definition 1 A duo (a, b). is called the generalized matching pair if there is a 
function h ∈ H∞ . such that (a, b − h). is a matching pair. 

It should be noted that determining of whether a given duo (a, b). is a generalized 
matching pair and finding a suitable function h ∈ H∞ . is a challenging problem and 
the authors are not aware of any possible solution. Nevertheless, if such a function h 
is known and b−h.belongs to a suitable algebra Mp

., the invertibility of T (a)+H(b). 

can be studied in more detail. 
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On Pseudodifferential Operators with 
Slowly Oscillating Symbols on Variable 
Lebesgue Spaces with Khvedelidze 
Weights 

Cláudio Fernandes and Oleksiy Karlovych 

To Yuri Karlovich on the occasion of his 75th birthday 

Abstract Let p(·). be a variable exponent in the class LH ∗(R). and e . be a 
Khvedelidze weight. We prove that if a ∈ S0

1,0(R × R). slowly oscillates at infinity 
in the first variable, then the condition 

. lim
R→∞ inf|x|+|ξ |≥R

|a(x, ξ)| > 0

is sufficient for the Fredholmness of the pseudodifferential operator Op(a). on the 
weighted variable Lebesgue space Lp(·)(R, e).. 

1 Introduction and Main Results 

For a Banach space X., let  B(X). andK(X). denote the Banach algebra of all bounded 
linear operators on X. and its closed two-sided ideal of all compact linear operators 
on X., respectively. As usual, we denote by I the identity operator on X.. Recall that 
an operator A ∈ B(X). is said to be Fredholm if there is an operator B ∈ B(X). such 
that the operators AB − I . and BA− I . belong to K(X).. In that case the operator B 
is called a regularizer for the operator A .
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Let C∞
0 (R). denote the set of all infinitely differentiable functions with compact 

support. Recall that, given u ∈ C∞
0 (R)., a pseudodifferential operator Op(a). is 

formally defined by the formula 

. (Op(a)u)(x) := 1

2π

l
R

dξ

l
R

a(x, ξ)u(y)ei(x−y)ξ dy,

where the symbol a is assumed to be smooth in both the spatial variable x and 
the frequency variable ξ ., and satisfies certain growth conditions (see, e.g., [27, 
Chap. VI]). An example of symbols one might consider is the class Sm

ρ,δ(R × R)., 
introduced by Hörmander [12], consisting of a ∈ C∞(R× R). satisfying 

. |∂α
ξ ∂β

x a(x, ξ)| ≤ Cα,β(ξ )m−ρα+δβ, x, ξ ∈ R,

where m ∈ R. and 0 ≤ δ, ρ ≤ 1. and the positive constants Cα,β . depend only 
on α, β ∈ Z+ := {0, 1, 2, . . . }.. Here, as usual, ∂x := ∂/∂x ., ∂ξ := ∂/∂ξ ., and 
(ξ ) := (1 + ξ2)1/2

.. 
The aim of this paper is to initiate the study of Fredholmness of one-dimensional 

pseudodifferential operators on weighted variable Lebesgue spaces and to extend 
some results by Rabinovich and Samko [25] obtained by them in the nonweighted 
(and multidimensional) setting. 

Let p(·) : R → [1,∞]. be a measurable a.e. finite function called a variable 
exponent. By Lp(·)(R).we denote the set of all complex-valued measurable functions 
f on R. such that 

. Ip(·)(f/λ) :=
l
R

|f (x)/λ|p(x)dx < ∞

for some λ > 0.. This set becomes a Banach space when equipped with the norm 

. llf llLp(·)(R) := inf
l
λ > 0 : Ip(·)(f/λ) ≤ 1

l

(see, e.g., [6, Theorems 2.17 and 2.71]). It is easy to see that if p is constant, t hen
Lp(·)(R). is nothing but the standard Lebesgue space Lp(R).. The space Lp(·)(R). is 
referred to as a variable Lebesgue space. 

A measurable function w : R → [0,∞]. is referred to as a weight whenever 
0 < w(x) < ∞. a.e. on R.. Given a variable a.e. finite exponent p(·) : R→ [1,∞]. 
and a weight w : R → [0,∞]., we define the weighted variable exponent space 
Lp(·)(R, w). as the space of all measurable complex-valued functions f such that
f w ∈ Lp(·)(R).. The norm in this space is naturally defined by 

. llf llLp(·)(R,w) := llf wllLp(·)(R).

We will consider our problem in the context of sufficiently regular variable 
exponents p(·). and so-called Khvedelidze weights. Let us give the corresponding
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definitions. Put 

. p− := ess inf
x∈R p(x), p+ := ess sup

x∈R
p(x).

We will assume that 

.1 < p−, p+ < ∞. (1) 

Following [18, Section 1.1.1] (see also [6, Definition 2.2] and [8, Section 4.1]), a 
variable exponent p(·). is said to be locally log.-Hölder continuous if there exists a 
constant c0 ∈ (0,∞). such that 

.|p(x)− p(y)| ≤ c0

− ln |x − y| (2) 

for all x, y ∈ R. satisfying |x − y| ≤ 1/2.. A variable exponent p(·). is said to be 
log.-Hölder continuous at infinity if there exist c1 ∈ (0,∞). and p∞ ∈ (1,∞). such 
that 

. |p(x)− p∞| ≤ c1

ln(e + |x|)
for all x ∈ R.. One says that p(·). is globally log.-Hölder continuous on R. if it is 
locally log.-Hölder continuous and log.-Hölder continuous at infinity. The class of all 
globally log.-Hölder continuous variable exponents will be denoted by LH(R).. 

Further, Kokilashvili, Paatashvili, and Samko introduced a slightly stronger con-
dition than log.-Hölder continuity at infinity (see [17, inequality (2.4)]). Following 
their work, we denote by LH ∗(R). the class of all locally log.-Hölder continuous 
variable exponents p(·). such that there exist constants c2 ∈ (0,∞). and L ∈ (0,∞). 

depending on p(·). and such that 

.|p(x)− p(y)| ≤ c2

− ln |1/x − 1/y| (3) 

for all x, y ∈ R. satisfying |x|, |y| > L. and |1/x − 1/y| ≤ 1/2.. It follows from [17, 
Remark 3.1] that 

. LH ∗(R) ⊂ LH(R).

If p(·) ∈ LH ∗(R)., then the limit lim|x|→∞ p(x). exists. It will be denoted by p(∞).. 
The weights of the form 

.e(x) := |x − i|λ∞
ml l

j=1

|x − xj |λj , x ∈ R, (4)
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where x1 < . . . < xm ., λ1, . . . , λm, λ∞ ∈ R., will be called Khvedelidze 
weights. This class of weights was introduced by Khvedelidze [16], who studied the 
boundedness of the Cauchy singular integral operator on weighted Lebesgue spaces. 
For a variable exponent p(·) ∈ LH ∗(R)., the class of all Khvedelidze weights of the 
form (4) satisfying 

. 0 <
1

p(xj )
+ λj < 1 for j = 1, . . . , m, 0 <

1

p(∞)
+ λ∞ +

m7
j=1

λj < 1,

(5) 

will be denoted by Wp(·)(R).. Note that Kokilashvili, Paatashvili, and Samko [17, 
Thoerem A] proved that if p(·) ∈ LH ∗(R). and e . is a Khvedelidze weight of the 
form (4), then the Cauchy singular integral operator is bounded on Lp(·)(R, e). if 
and only if e ∈ Wp(·)(R).. 

Our first result is the following theorem on the boundedness of pseudodifferential 
operators on weighted variable Lebesgue spaces. 

Theorem 1 Let 0 < ρ ≤ 1., 0 ≤ δ < 1., and a ∈ S
ρ−1
ρ,δ (R × R).. If p(·) ∈ LH ∗(R). 

and e ∈ Wp(·)(R)., then Op(a). extends to a bounded operator on the weighted 
variable Lebesgue space Lp(·)(R, e).. 

This result follows from a combination of results obtained in [9] and [14] (see 
Sect. 3 below). 

Following [25, Definition 4.5], a symbol a ∈ Sm
1,0(R × R). is said to be slowly 

oscillating at infinity in the first variable if 

. |∂α
ξ ∂β

x a(x, ξ)| ≤ Cαβ(x)(ξ )m−α,

where 

. lim
x→∞Cαβ(x) = 0 (6) 

for each α ∈ Z+ . and each β ∈ N.. We denote by SOm
. the class of all symbols 

slowly oscillating at infinity in the first variable. Finally, we denote by SOm
0 . the set 

of all symbols a ∈ SOm
., for which (6) holds for all indices α, β ∈ Z+ .. Roughly 

speaking, allowing β = 0. in (6), one increases chances of the corresponding 
pseudodifferential operator Op(a). to be compact (cf. Proposition 2 below). The 
classes SOm

. and SOm
0 . were introduced by Grushin [11]. 

Our main result is the following sufficient condition for the Fredholmness of 
pseudodifferential operators on weighted variable Lebesgue spaces. 

Theorem 2 Suppose p(·) ∈ LH ∗(R). and e ∈ Wp(·)(R).. If a ∈ SO0
. and 

. lim
R→∞ inf|x|+|ξ |≥R

|a(x, ξ)| > 0, (7)
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then the pesudodifferential operator Op(a). is Fredholm on the weighted variable 
Lebesgue space Lp(·)(R, e).. 

This result is a weighted and one-dimensional version of the theorem by 
Rabinovich and Samko [25, Theorem 6.1] (see also [18, Theorem 10.30] and [15, 
Theorem 1.3]). 

The paper is organized as follows. In Sect. 2, we recall interpolation theorems 
for bounded and compact operators in the setting of Calderón products of Banach 
lattices. These theorems are far reaching generalizations of the Riesz-Thorin and 
Krasnosel’skii interpolation theorems. In Sect. 3, we recall the notion of a Banach 
function space and its associate space. Then we formulate the results on the 
boundedness of pseudodifferential operators on a Banach function space under the 
assumption that the Hardy-Littlewood maximal operator is bounded on the Banach 
function space and on its associate space obtained by the second author [14]. 
Finally, we recall our result with Medalha [9] saying that, under the assumptions 
p(·) ∈ LH ∗(R). and e ∈ Wp(·)(R)., the Hardy-Littlewood maximal operator is 
bounded on the Banach function space Lp(·)(R, e). and on its associate space. These 
results lead to the proof of Theorem 1. Section 4.4 is devoted to the proof of the main 
result. First, we recall two important results from [9]. The first says that the Calderón 
product Xθ ., 0 < θ < 1., of weighted variable Lebesgue spaces Lp0(·)(R, w0). 

and Lp1(R, w1). is the weighted variable Lebesgue space Lpθ (·)(R, wθ )., where 
1/pθ (·) = (1 − θ)/p0(·) + θ/p1(·). and wθ = w1−θ

0 wθ
1 .. The second result says 

that for p(·) ∈ LH ∗(R). and e ∈ Wp(·)(R). there exist p0(·) ∈ LH ∗(R). and 
θ ∈ (0, 1). such that 1/p(·) = (1 − θ)/p0(·)+ θ/2. and e0 = e1/(1−θ) ∈ Wp0(·)(R).. 
So, by using the interpolation theorem from Sect. 2, one can conclude that if an 
operator is bounded on Lp(·)(R, e). under the assumptions p(·) ∈ LH ∗(R). and 
e ∈ Wp(·)(R). and is compact on L2(R)., then it is compact on Lp(·)(R, e).. Note also  
that a similar result for Lebesgue spaces with Muckenhoupt is due to Yuri Karlovich 
[13, Corollary 4.3]. Employing the above observation and following the scheme 
proposed by Rabinovich and Samko [25, Theorem 6.1], we prove Theorem 2. 

2 Interpolation of Bounded and Compact Operators on 
Banach Lattices 

2.1 Admissible Operators 

Recall that a pair of complex Banach spaces (X0,X1). is said to be a compatible 
couple if they are continuously embedded in a single complex topological vector 
space. The set 

.X0 + X1 = {x = x0 + x1 : x0 ∈ X0, x1 ∈ X1}
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is a Banach space with respect to the norm 

. llxllX0+X1 := inf
lllx0llX0 + llx1llX1 : x = x0 + x1, x0 ∈ X0, x1 ∈ X1

l
.

Given a compatible couple (X0,X1)., a linear operator T : X0 + X1 → X0 + X1 . is 
said to be admissible if, for each i = 0, 1., the restriction of T to Xi . takes values in 
Xi . and is bounded from Xi . to Xi .. 

2.2 Banach Lattices and Their Calderón Products 

The set of all Lebesgue measurable complex-valued functions on R. is denoted by 
M(R).. Let  M0(R). be the set of all a.e. finite functions inM(R).. It is well known 
that M0(R). is a complete separable metric vector space, where for every weight 
w ∈ L1(R). such that llwllL1(R) = 1., the metric is defined by 

. dw(f, g) :=
l
R

|f (x)− g(x)|
1 + |f (x)− g(x)|w(x) dx.

The topology in M0(R). is independent of the choice of w (see, e.g., [3, Theo-
rem 1.2.1]). 

A subset X(R). ofM0(R). is said to be a Banach lattice if X(R). is a Banach space 
such that if f, g ∈ M0(R). and |f | ≤ |g|. a.e., then llf llX(R) ≤ llgllX(R) .. In view  
of [21, Chap. II, Theorem 1], a Banach lattice X(R). is continuously embedded into 
M0(R).. Hence, two Banach lattices X0(R). and X1(R). form a compatible couple. 

Fix θ ∈ (0, 1).. The Calderón product 

.Xθ (R) := (X0(R))1−θ (X1(R))θ (8) 

of Banach lattices X0(R). and X1(R). is the set of all functions f ∈M0(R). such that 

.|f | ≤ λ|f0|1−θ |f1|θ (9) 

for some λ > 0. and fi ∈ Xi (R). with llfillXi (R) ≤ 1. and i = 0, 1.. The norm in 
Xθ (R). is the infimum of all λ > 0. for which inequality (9) is fulfilled. With this 
norm Xθ (R). becomes a Banach lattice [4, p. 123]. 

2.3 Interpolation on Calderón Products 

We recall that a Banach lattice X(R). is said to have the Fatou property if for any 
sequence {fm}. of nonnegative functions in X(R). and any f ∈ M0(R). such that 
fm ↑ f . as m →∞. and supm∈N llf llX(R) < ∞., one has f ∈ X(R). and llfmllX(R) ↑
llf llX(R) . as m →∞..
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The following theorem is an extension of the classical interpolation theorems of 
Riesz-Thorin (see, e.g., [1, Chap. 4, Theorem 2.2]) and Krasnosel’skii [19] (see also  
[20, Theorem 3.19] and [13, Theorem 5.2]). 

Theorem 3 Let X0(R). and X1(R). be Banach lattices with the Fatou property, let 

. T : X0(R)+ X1(R) → X0(R)+ X1(R)

be an admissible operator, and let θ ∈ (0, 1).. 

(a) The restriction of T to the Calderón product Xθ (R). defined by (8) takes values 
in Xθ (R). and 

. llT llB(Xθ (R)) ≤ llT ll1−θ
B(X0(R))

llT llθ
B(X1(R)).

(b) If, in addition, T ∈ K(X1(R))., then T ∈ K(Xθ (R)).. 

Part (a) under stronger assumptions was obtained by Calderón [4]. For the 
present form of part (a) we refer to [23, Theorem 3.11]. Part (b) follows from [5, 
Theorem 3.1]. 

3 Boundedness of Maximal and Pseudodifferential 
Operators on Weighted Variable Lebesgue Spaces 

3.1 Banach Function Spaces 

For the set of all Lebesgue measurable complex-valued functionM(R)., consider its 
subsetM+(R). of all functions whose values lie in [0,∞].. The Lebesgue measure of 
a measurable set E ⊂ R. is denoted by |E|. and we let χE . stand for the characteristic 
function of E. 

Following [22, p. 3] and [1, Chap. 1, Definition 1.1], a mapping ρ :M+(R) →
[0,∞]. is called a Banach function norm if, for all functions f, g, fn (n ∈ N). in 
M+(R)., for all constants a ≥ 0., and for all measurable subsets E of R., the following 
properties hold: 

.(A1) ρ(f ) = 0 ⇔ f = 0 a.e., ρ(af ) = aρ(f ), ρ(f + g) ≤ ρ(f )+ ρ(g),

(A2) 0 ≤ g ≤ f a.e. ⇒ ρ(g) ≤ ρ(f ) (the lattice property),

(A3) 0 ≤ fn ↑ f a.e. ⇒ ρ(fn) ↑ ρ(f ) (the Fatou property),

(A4) E is bounded ⇒ ρ(χE) < ∞,

(A5) E is bounded ⇒
l

E

f (x) dx ≤ CEρ(f )
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with CE ∈ (0,∞). which may depend on E and ρ . but is independent of f . When 
functions differing only on a set of measure zero are identified, the set X(R). of all 
functions f ∈M(R). for which ρ(|f |) < ∞. is called a Banach function space. For 
each f ∈ X(R)., the norm of f is defined by

. llf llX(R) := ρ(|f |).

Under the natural linear space operations and under this norm, the set X(R).becomes 
a Banach space (see [22, Chap. 1, §1, Theorem 1] or [1, Chap. 1, Theorems 1.4 
and 1.6]). If ρ . is a Banach function norm, its associate norm ρ. . is defined onM+(R). 

by 

. ρ.(g) := sup

ll
R

f (x)g(x) dx : f ∈M+(R), ρ(f ) ≤ 1

l
, g ∈M+(R).

It is a Banach function norm itself (see [22, Chap. 1, §1] or [1, Chap. 1, Theo-
rem 2.2]). The Banach function space X.(R). determined by the Banach function 
norm ρ. . is called the associate space (Köthe dual) of X(R).. The associate space 
X.(R). is naturally identified with a subspace of the (Banach) dual space [X(R)]∗ .. 
Remark 1 We note that our definition of a Banach function space is slightly 
different from that found in [1, Chap. 1, Definition 1.1]. In particular, in Axioms 
(A4) and (A5) we assume that the set E is a bounded set, whereas it is sometimes 
assumed that E merely satisfies |E| < ∞.. We do this so that the weighted variable 
Lebesgue spaces satisfy Axioms (A4) and (A5). Moreover, it is well known that 
all main elements of the general theory of Banach function spaces work with (A4) 
and (A5) stated for bounded sets [22] (see also the discussion at the beginning of 
Chapter 1 on page 2 of [1]). 

3.2 Boundedness of Pseudodifferential Operators on Banach 
Function Spaces 

Given f ∈ L1
loc(R)., the Hardy-Littlewood maximal operator is defined by 

. Mf (x) := sup
Iex

1

|I|
l
I
|f (y)|dy

where the supremum is taken over all finite intervals I ⊂ R. containing x. 

Theorem 4 ([14, Theorem 1.1]) Let X(R). be a separable Banach function space 
such that the Hardy-Littlewood maximal operator M is bounded on X(R). and on 
its associate space X.(R).. If a ∈ S

ρ−1
ρ,δ (R×R). with 0 < ρ ≤ 1. and 0 ≤ δ < 1., then 

Op(a). extends to a bounded operator on X(R)..
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3.3 The Case of Weighted Variable Lebesgue Spaces 

Let p(·) : R → [1,∞]. be an a.e. finite variable exponent. We will write f ∈
L

p(·)
loc (R). if f χE ∈ Lp(·)(R). for every bounded measurable set E ⊂ R.. 

The following result is contained in [9, Theorems 2.2, 2.4, and 2.6]. 

Theorem 5 Let p(·) ∈ LH ∗(R)., e ∈ Wp(·)(R)., and let p.(·). be the variable 
exponent defined by 

. 1/p(x)+ 1/p.(x) = 1, x ∈ R.

Then 

(a) e ∈ L p(·) 
loc (R). and e−1 ∈ L

p.(·)
loc (R).; 

(b) the weighted variable Lebesgue spaces Lp(·)(R, e). and Lp.(·)(R, e−1). are 
separable and reflexive Banach function spaces; 

(c) the associate space of Lp(·)(R, e). is isomorphic to Lp.(·)(R, e−1).; 
(d) the Hardy-Littlewood maximal operator M is bounded on the weighted variable 

Lebesgue spaces Lp(·)(R, e). and Lp.(·)(R, e−1).. 

Now Theorem 1 on the boundedness of pseudodifferential operators on weighted 
variable Lebesgue spaces follows from Theorems 4 and 5. 

4 Proof of the Main Result 

4.1 Calderón Products of Weighted Variable Lebesgue Spaces 

The abstract interpolation Theorem 3 can be applied in the setting of weighted 
variable exponent spaces because the Calderón product Xθ . of weighted variable 
Lebesgue spaces Lp0(·)(R, w0). and Lp1(·)(R, w1). is a certain weighted variable 
Lebesgue space Lpθ (·)(R, wθ ). explicitly defined in the theorem below. 

Theorem 6 ([9, Theorem 3.2]) For i = 0, 1., let  pi(·). be variable exponents 
satisfying 

. 1 < (pi)−, (pi)+ < ∞

and wi . be weights satisfying wi ∈ L
pi(·)
loc (R). and w−1

i ∈ L
p.i (·)
loc (R).. For 0 < θ < 1., 

let the variable exponent pθ(·). and the weight wθ . be defined by 

.
1

pθ(x)
= 1 − θ

p0(x)
+ θ

p1(x)
, wθ (x) = w0(x)1−θw1(x)θ , x ∈ R.
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Then the Calderón product 

. Xθ :=
(
Lp0(·)(R, w0)

)1−θ (
Lp1(·)(R, w1)

)θ

of the weighted variable Lebesgue spaces Lp0(·)(R, w0).and Lp1(·)(R, w1). coincides 
with the weighted variable Lebesgue space Lpθ (·)(R, wθ ).with the equivalence of the 
norms 

. llf llXθ ≤ llf llLpθ (·)(R,wθ ) ≤ 21/(pθ )−llf llXθ , f ∈ Lpθ (·)(R, wθ ).

4.2 Perturbation of Variable Exponents and Weights 

This subsection contains results on the perturbation of variable exponents p(·). in 
the class LH ∗(R). and weights e ∈ Wp(·)(R).. These results play a crucial role in the 
proof of Theorem 2. 

Lemma 1 ([25, Corollary 2.3]) For a variable exponent p(·). satisfying (1), let  

.θp(·) := min{1, 2/p+, 2 − 2/p−}. (10) 

Then for every θ ∈ (0, θp(·))., the variable exponent p0(·). defined by 

.
1

p(x)
= 1 − θ

p0(x)
+ θ

2
, x ∈ R, (11) 

satisfies 1 < (p0)−, (p0)+ < ∞.. 

Lemma 2 ([9, Lemma 4.2]) If p(·). belongs to the class LH ∗(R). and θp(·) . is 
defined by (10), then for every θ ∈ (0, θp(·))., the variable exponent p0(·). defined 
by (11) belongs to LH ∗(R).. 

The following theorem can be viewed as a very modest attempt to extend a well-
known result on the stability of Muckenhoupt weights (see, e.g., [2, Theorem 2.31] 
or [10, Theorem 7.25]). In its spirit, it is close to the proof of [13, Corollary 5.3] 
(see also [7, Corollary 3]). 

Theorem 7 ([9, Theorem 4.3]) Let p(·) ∈ LH ∗(R). and e ∈ Wp(·)(R).. Suppose 
that θp(·) . is defined by (10). Then there exists θ∗p(·),e ∈ (0, θp(·)]. such that for every 

θ ∈ (0, θ∗p(·),e)., the weight e0 = e1/(1−θ)
. belongs to Wp0(·)(R)., where the variable 

exponent p0(·). is defined by (11). 

Note that [13, Corollary 5.3] is also true for Muckenhoupt weights w ∈ Ap . over 
R

n
.. On the other hand, the proof of Theorem 7 relies essentially on [17, Theorem A], 

a one-dimensional result. Since we do not have a multi-dimensional version of
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Theorem 7 at our disposal, in this paper we restrict ourselves to the study of one-
dimensional pseudodifferential operators. 

4.3 Calculus of Pseudodifferential Operators 

Let m ∈ Z. and OPSOm
. be the class of all pseudodifferential operators Op(a). with 

a ∈ SOm
.. By analogy with [11, Section 2] one can get the following composition 

formula (see also [24, Theorem 6.2.1] and [26, Chap. 4]). 

Proposition 1 If Op(a1) ∈ OPSOm1 . and Op(a2) ∈ OPSOm2 ., then their product 
Op(a1) Op(a2) = Op(σ ). belongs to OPSOm1+m2 . and its symbol σ . is given by 

. σ(x, ξ) = a1(x, ξ)a2(x, ξ)+ c(x, ξ), x, ξ ∈ R,

where c ∈ SO
m1+m2−1
0 .. 

Proposition 2 ([11, Theorem 3.2]) If c ∈ SO−1
0 ., then Op(c) ∈ K(L2(R)).. 

4.4 Proof of Theorem 2 

The idea of the proof is borrowed from [11, Theorem 3.4] and [25, Theorem 6.1] 
(see also [15, Section 3.3]). Let ϕ ∈ C∞

0 (R × R). be such that ϕ(x, ξ) = 1. if 
|x| + |ξ | ≤ 1. and ϕ(x, ξ) = 0. if |x| + |ξ | ≥ 2.. For  R > 0., put 

. ϕR(x, ξ) = ϕ(x/R, ξ/R), x, ξ ∈ R.

From (7) it follows that there exists an R > 0. such that 

. inf|x|+|ξ |≥R
|a(x, ξ)| > 0.

Then it is not difficult to check that 

. bR(x, ξ) :=
⎧⎨
⎩

1 − ϕR(x, ξ)

a(x, ξ)
if |x| + |ξ | ≥ R,

0 if |x| + |ξ | < R,

belongs to SO0
.. It is also clear that ϕR ∈ SO0

.. 
From Proposition 1 it follows that there exists a function c ∈ SO−1

0 . such that 

. Op(abR)− Op(a) Op(bR) = Op(c). (12)
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On the other hand, since 

. a(x, ξ)bR(x, ξ) = 1 − ϕR(x, ξ), x, ξ ∈ R,

we have 

. Op(abR) = Op(1 − ϕR) = I − Op(ϕR). (13) 

Combining (12)–(13), we get 

.I − Op(a) Op(bR) = Op(ϕR)+ Op(c) = Op(ϕR + c). (14) 

It follows from Lemma 2 and Theorem 7 that there exists θ ∈ (0, 1). such that the 
variable exponent p0(·). defined by 

. 
1

p(x)
= 1 − θ

p0(x)
+ θ

2
, x ∈ R,

belongs to LH ∗(R). and the weight 

. e0(x) := e(x)1/(1−θ), x ∈ R,

belongs to Wp0(·)(R).. We conclude from Theorem 1 that all pseudodifferential 
operators considered above are bounded on Lp0(·)(R, e0). and L2(R).. Since ϕR+c ∈
SO−1

0 ., it follows from Proposition 2 that Op(ϕR + c) ∈ K(L2(R)).. Then, by 
Theorem 3(b), Op(ϕR + c) ∈ K(Lp(·)(R, e)).. Therefore, it follows from (14) that 
Op(bR). is a right regularizer for Op(a).. Analogously it can be shown that Op(bR). 

is also a left regularizer for Op(a).. Thus Op(a). is Fredholm on Lp(·)(R, e)..   
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Abstract We study the individual behavior of the eigenvalues of the laplacian 
matrices of the cyclic graph of order n, where one edge has weight α ∈ C., with 
Re(α) > 1., and all the others have weights 1. This paper is a sequel to two previous 
ones where we considered Re(α) ∈ [0, 1]. and Re(α) < 0.. Now, we prove that 
for Re(α) > 1. and n > Re(α)/Re(α − 1)., one eigenvalue is greater than 4 while 
the others belong to [0, 4]. and are distributed as the function x l→ 4 sin2(x/2).. 
Additionally, we prove that as n tends to ∞., the outlier eigenvalue converges 
exponentially to 4Re(α)2/(2Re(α)−1).. We give exact formulas for half of the inner 
eigenvalues, while for the others we justify the convergence of Newton’s method and 
the fixed-point iteration method. We find asymptotic expansions, as n tends to ∞., 
both for the eigenvalues belonging to [0, 4]. and the outliers. We also compute the 
eigenvectors and their norms. 
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1 Introduction 

For every natural n ≥ 3. and every α . in C., we consider the n× n. complex laplacian 
matrix Lα,n . with the following structure: 

. Lα,6 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1+ α −1 0 0 0 −α

−1 2 −1 0 0 0
0 −1 2 −1 0 0
0 0 −1 2 −1 0
0 0 0 −1 2 −1

−α 0 0 0 −1 1+ α

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

If α . is real, Lα,n . is the laplacian matrix of Gα,n ., where Gα,n . is the cyclic graph of 
order n, where the edge between the vertices 1 and n weighs α ., and all other edges 
weigh 1. See [15] for the general theory on laplacian matrices. In Fig. 1, we show  
the case n = 6.. The eigenvalues and eigenvectors of Lα,n . are crucial to solve the 
heat and wave equations on Gα,n .. Moreover, matrices of the form 2In − Lα,n . are 
related to counting the paths in a cyclic graph with certain loops [5]. 

The matrices Lα,n . can be considered as tridiagonal Toeplitz matrices with 
perturbations in the corners (1, 1)., (1, n)., (n, 1). and (n, n).. They can also be viewed 
as periodic Jacobi matrices. Some matrices of these classes and their applications 
were studied in [2–4, 6–8, 10, 11, 14, 16, 17, 19–21]. 

The present paper is a continuation of [12, 13]. In [12], we proved that for every 
α . in C. the characteristic polynomial of Lα,n ., defined by Dα,n(λ) := det(λI −Lα,n)., 
equals the characteristic polynomial DRe(α),n . of LRe(α),n .. This implies that the 
eigenvalues of Lα,n . only depend on Re(α).. Therefore, to understand the behavior 
of the eigenvalues, it is sufficient to consider the case where α ∈ R. and the 
corresponding matrices Lα,n . are real and symmetric. So, for every α . in C., the  
eigenvalues of Lα,n . are real, and we enumerate them as follows: 

. λα,n,1 ≤ λα,n,2 ≤ . . . ≤ λα,n,n.

1 

23 

4 

5 6 

1 

1 

1 

1 

1 

Fig. 1 Graph Gα,6 .
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It is a very well-known fact that the eigenvalues of the n× n. tridiagonal Toeplitz 
matrix, with values−1, 2,−1. in the nonzero diagonals, are the numbers g(jπ/(n+
1))., j = 1, . . . , n., where g is defined by

.g(x) := 4 sin2 x

2
(x ∈ [0, π ]). (1) 

By the Cauchy interlacing theorem (see, e.g., [18, Theorem 4.2]), the eigenvalues 
of Lα,n . are also asymptotically distributed by g on [0, π ]., as  n tends to infinity. 
This is also a simple consequence of the theory of generalized locally Toeplitz 
sequences [9]. 

In [12], we studied the individual behavior of the eigenvalues of the matrices Lα,n . 

for α . in (0, 1).. In that case, we showed that the eigenvalues of Lα,n . belong to [0, 4].. 
We solved the characteristic equation by numerical methods and derived asymptotic 
formulas for all eigenvalues. In [13], we considered the case where α < 0.. In that 
scenery, we proved that if n > (α − 1)/α . then the minimal eigenvalue λα,n,1 . goes 
out of the interval [0, 4].; moreover, the sequence (λα,n,1)n>(α−1)/α . strictly decreases 
and converges exponentially to 4α2/(2α − 1).. 

In this paper, we consider the case where α > 1. (or, more generally, Re(α) > 1.). 
This means that the interaction between the vertices 1 and n is stronger than the 
interactions between the other neighbors in the c ycle.

It turns out that, if n is even or if n is odd and satisfies n > α/(α − 1)., then the 
maximal eigenvalue λα,n,n . is greater than 4, while the others belong to the interval 
[0, 4]. and behave similarly to the eigenvalues of Lα,n .when 0 < α < 1., as discussed 
in [12]. 

We use the phrase “inner eigenvalues” for the eigenvalues belonging to the 
clustering set [0, 4]., and “outlier eigenvalue” for the one that does not belong to 
this set. See also our general definition of outlier eigenvalue in [13]. 

We show that if α > 1., then the sequence of outlier eigenvalues (λα,n,n)n≥3 . 

converges exponentially to the number oα := 4α2/(2α − 1).. The major difference 
to the previous paper [13] is that the sequence of the outliers approaches the limit 
value from both directions: 

. sign(λα,n,n −oα) = (−1)n
l

n >
α

α − 1

l
. (2) 

The main results of this paper are stated in Sect. 2, while the majority of the 
content is dedicated to the corresponding proofs: we represent the characteristic 
polynomial in convenient forms and show the localization of the eigenvalues 
(Sect. 3), we study the asymptotic behavior of the inner eigenvalues and guarantee 
their computation with the Newton method (Sect. 4), then we focus our attention on 
the last eigenvalue λα,n,n . (Sect. 5) and analyze its asymptotic behavior separately 
for both odd (Sect. 6) and even values of n (Sect. 7). Finally, we calculate the norms 
of the eigenvectors (Sect. 8) and show some numerical experiments (Sect. 9).
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2 Main Results 

As will be stated in Proposition 3.1, for every α ∈ C. we have that Dα,n = DRe(α),n .. 
So, unless specified otherwise, we consider α > 1.. 

We begin our analysis with the localization of the eigenvalues. For this purpose, 
define 

.xα := α − 1

α
, (3) 

.oα := 4α2

2α − 1
, i.e., oα = 4

1− x2
α

. (4) 

Notice that 0 < xα < 1. and oα > 4.. Also, for every  j in {1, . . . , n}., we put 

.dn,j := (j − 1)π

n
. (5) 

Theorem 2.1 (Localization of Eigenvalues) Let n ≥ 3.. Then λα,n,1 = 0.. For every 
j with 2 ≤ j ≤ n− 1., 

. g
l
dn,j

l
< λα,n,j < g

l
dn,j+1

l
(j odd),

λα,n,j = g
l
dn,j+1

l
(j even).

Furthermore, the localization of λα,n,n . depends on n: 

(1) if n < x−1
α . and n is odd, then g(dn,n) < λα,n,n < g(π) = 4.; 

(2) if n = x−1
α . and n is odd, then λα,n,n = 4.; 

(3) if n is odd and n > x−1
α ., then 4 < λα,n,n < oα .; 

(4) if n is even, then oα < λα,n,n ≤ 4+ 2α .. 

According to Theorem 2.1, the eigenvalues λα,n,j . with even indices j do not 
depend of α .. This theorem also implies that the eigenvalues are asymptotically 
distributed as the function g on [0, π ].: 

. lim
n→∞

#
l
j ∈ {1, . . . , n} : λα,n,j ≤ u

l
n

= μ({x ∈ [0, π ] : g(x) ≤ u})
π

. (6) 

Here, μ. is the Lebesgue measure. 
Statements (3) and (4) of Theorem 2.1 mean that for n large enough, we have 

two different localizations of the largest eigenvalue λα,n,n . depending of the parity 
of n. 

If n is odd, then the outlier eigenvalues of Lα,n .and L1−α,n .are related by λα,n,n =
4−λ1−α,n,1 . (Proposition 6.1). Therefore, in the analysis of λα,n,n . for odd n, we can 
proceed very similarly to [12].
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However, for even values of n, the equation for λα,n,n . has a quite different form, 
see Theorem 2.2. 

Motivated by Theorem 2.1, we use  g defined by (1) as a change of variable in the 
characteristic equation when λα,n,j ∈ [0, 4]. and set 

.zα,n,j := ~g−1(λα,n,j ), (7) 

where ~g : [0, π ] → [0, 4]. is a restriction of g. 
To state the main equation for inner eigenvalues, we define the function 

ηα : [0, π ] → R. by 

.ηα(x) := 2 arctan
l
xα tan

x

2

l
, i.e., ηα(x) = 2 arctan

l
α − 1

α
tan

x

2

l
. (8) 

Since xα . is positive, ηα . is positive, strictly increasing and takes values on [0, π ].. 
Theorem 2.2 (Main Equation for Inner Eigenvalues) Let j be odd with 3 ≤ j ≤
n− 1.. Then the number zα,n,j . is the unique solution in [0, π ]. of the equation 

.x = dn,j + ηα(x)

n
. (9) 

The same Eq. (9) also holds for zα,n,n .,  if  n is odd and n < x−1
α .. 

Now, we need a suitable change of variable associated to λα,n,n .. Thus, define 
g+ : [0,∞) → [4,∞). by 

.g+(x) := 2+ 2 cosh(x) = 4 cosh2 x

2
= 4+ 4 sinh2 x

2
. (10) 

Let also 

.Nα := max{3, lx−1
α l + 1}. (11) 

So, if n ≥ 4. is even or n ≥ Nα . is odd, then we use (10) as a change of variable and 
put 

.sα,n := g−1+ (λα,n,n). (12) 

In Fig. 2 we have glued together g and x l→ g+(x − π). into one spline. 
Theorem 2.1 says that for every n ≥ Nα ., λα,n,n . is in a neighborhood of oα ., thus 

we define 

.ωα := g−1+ (oα) = log(2α − 1). (13)
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π 

4 

0 
λ1=0 

z2 

λ2 

z3 

λ3 

z5 

λ5 

z4 

λ4 

z6 

λ6 

z7 

λ7 

s8 

λ8 

Fig. 2 Plot of g (blue), plot of x l→ g+(x − π). (green), points zα,n,j . and sα,n ., and the  
corresponding values of λα,n,j ., for α = 3/2. and n = 8.. The red labels on the horizontal axis 
are jπ/n. 

To get the main equation for the outlier eigenvalue, we define the real-valued 
functions ψα,n . by 

. ψα,n(x) :=
l
2 arctanh

l
xα tanh nx

2

l
, if n ≥ 3, n is odd, x ∈ [0,+∞),

2 arctanh
l
xα coth nx

2

l
, if n ≥ 4, n is even, x ∈ [ωα,+∞).

(14) 

For every n ≥ 3. and every x ≥ ωα ., 

. xα coth
nx

2
< xα coth

x

2
≤ xα coth

ωα

2
= 1,

hence ψα,n . is well defined. The two cases in (14) can be joined by elevating 
tanh(nx/2). to the power (−1)n+1

.. 

Theorem 2.3 (Main Equation for the Outlier Eigenvalue) If n is odd and n >

x−1
α ., then sα,n . is the unique solution in (0, ωα). of the equation 

.x = ψα,n(x). (15) 

If n is even, then sα,n . is the unique solution in (ωα,+∞). of the Eq. (15). 

To get asymptotic expansions for the inner eigenvalues, we introduce the function 
Aα,n : [0, π ] → R. by 

.Aα,n(x) := g(x)+ gl(x)ηα(x)

n
+ gl(x)ηα(x)ηlα(x)+ 1

2gll(x)ηα(x)2

n2
.
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Then, for all n ≥ Nα . and all odd j with 3 ≤ j ≤ n− 1., we define λ
asympt
α,n,j . by 

.λ
asympt
α,n,j

:= Aα,n(dn,j ). (16) 

Theorem 2.4 (Asymptotic Expansion of Inner Eigenvalues) There exists 
C1(α) > 0. such that for every n ≥ Nα ., 

. max
3≤j≤n−1

j odd

lllλα,n,j − λ
asympt
α,n,j

lll ≤ C1(α)

n3 . (17) 

To state the asymptotic expansion for λα,n,n ., we introduce the following num-
bers: 

.

βα,1 := 16α2(α − 1)2

(2α − 1)2
, βα,2 := −64α3(α − 1)3

(2α − 1)3
,

βα,3 := 32α2(1− α)2(2α2 − 2α + 1)

(2α − 1)3
.

(18) 

Equivalently, 

.βα,1 = 16x2
α

(1− x2
α)2

, βα,2 = − 64x3
α

(1− x2
α)3

, βα,3 = 32x2
α(x2

α + 1)

(1− x2
α)3

. (19) 

Now, we define λ
asympt
α,n,n . by 

.λ
asympt
α,n,n := oα + (−1)nβα,1e

−nωα + βα,2ne−2nωα + βα,3e
−2nωα . (20) 

Of course, e−nωα . can also be written as 1/(2α − 1)n .. 

Theorem 2.5 (Asymptotic Expansion of the Last Eigenvalue) As n → ∞.,  the  
extreme eigenvalue λα,n,n . of Lα,n . converges exponentially to oα .. More precisely, 
there exists C2(α) > 0. such that for every n ≥ Nα ., 

.

lllλα,n,n − λ
asympt
α,n,n

lll ≤ C2(α)n2e−3nωα . (21) 

So, in the case when α > 1. and n is large enough, the maximal eigenvalue goes 
out of [0, 4]. and converges rapidly to the number oα > 4.. While, the rest behaves 
asymptotically as the function g on [0, π ].. The “right spectral gap” λα,n,n−λα,n,n−1 . 

converges to oα − 4.. 
Our last analysis focuses on the eigenvectors and their norms. Similarly to 

the situation with the eigenvalues, we have to separate the case λ = 0., the  
“trigonometric case” (0 < λ ≤ 4.), and the “hyperbolic case” (λ > 4.).
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Theorem 2.6 (Eigenvectors for Re(α) > 1.) Let α ∈ C.with Re(α) > 1.and n ≥ 3.. 
Then, Lα,n . has the following eigenvectors. 

1. [1,  .  .  .  , 1]T . is an eigenvector associated to the eigenvalue λα,n,1 = 0.. 
2. For every j , 2 ≤ j ≤ n− 1., the vector vα,n,j = [vα,n,j,k]nk=1 . with the following 

components is an eigenvector associated to λα,n,j .: 

.vα,n,j,k := sin(kzα,n,j )−(1−α) sin((k−1)zα,n,j )+α sin((n−k)zα,n,j ). (22) 

The same formula (22) also works for j = n.,  if  n is odd and n ≤ x−1
Re(α) .. 

3. If n is odd and n > x−1
Re(α) .,  or  n is even, then the vector vα,n,n = [vα,n,n,k]nk=1 . 

with the following components is an eigenvector associated to λα,n,n .: 

. 
vα,n,n,k := (−1)k

l
(−1)nα sinh((n− k)sα,n)+ (1− α) sinh((k − 1)sα,n)

+ sinh(ksα,n)
l
.

(23) 

Finally, to present the asymptotic behavior of the norms of the eigenvectors given 
by (22), we need the following auxiliar function: for every x in [0, π ]., we define 

. να(x) := 1− Re(α)

2
g(x)+ Re(α)

2
g(ηRe(α)(x))+ |α|2 − Re(α)

2
g(x − ηRe(α)(x)).

(24) 

Theorem 2.7 (Norms of Eigenvectors for Re(α) > 1.) Let α ∈ C.with Re(α) > 1. 

and n ≥ NRe(α) .. 

1. If j is even and 2 ≤ j ≤ n− 1., then 

.llvα,n,jll2 = |α − 1|√2n sin
jπ

2n
. (25) 

2. If j is odd and 3 ≤ j ≤ n− 1., then as n →∞. 

.llvα,n,jll2 =
l

να(dn,j )n+Oα

l
1√
n

l
, (26) 

with Oα

l
1/
√

n
l
. uniformly on j . 

3. As n →∞., 

.llvα,n,nll2 = |α|
2
√

2Re(α)(Re(α)− 1)
enωRe(α) +Oα(n). (27) 

In numerical computation of the eigenvectors, it is convenient to divide the 
expressions given in Theorem 2.6 by the norms’ approximations from Theorem 2.7.
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3 The Characteristic Polynomial and Eigenvalues’ 
Localization 

Recall that we denote the characteristic polynomial det(λI − Lα,n). by Dα,n(λ).. 
Aditionally, xα ., ωα . are defined by (3), (13). 

For every m ≥ 0., let  Tm . and Um . the m-th degree Chebyshev polynomials of the 
first and second kind, respectively. 

By cofactor expansion, it is easy to prove the following proposition. 

Proposition 3.1 (Characteristic Polynomial of Lα,n . for Complex α .) For n ≥ 3. 

and α ∈ C., 

. Dα,n(λ) = (λ− 2Re(α))Un−1

l
λ− 2

2

l

− 2Re(α)Un−2

l
λ− 2

2

l
+ 2(−1)n+1 Re(α). (28) 

Equivalently, 

.

Dα,n(λ) = Un

l
λ− 2

2

l
+ 2(1− Re(α))Un−1

l
λ− 2

2

l

+ (1− 2Re(α))Un−2

l
λ− 2

2

l
+ 2(−1)n+1 Re(α).

(29) 

The next proposition is similar to [12, Proposition 14], but here we use the change 
of variable λ = t2 . instead of λ = 4− t2 .. 

For n ≥ 3. define 

.pn(t) :=
l

Un−1(t/2), if n is even,

Tn(t/2), if n is odd,
. (30) 

qα,n(t) :=
l

(1 − α) t 2Tn

l
t 
2

l+ α t2−4 
4 Un−1

l
t 
2

l
, if n is even, 

(1− α) t 2Un−1
l

t 
2

l+ αTn

l
t
2

l
, if n is odd.

(31) 

Proposition 3.2 For every α . in R., every n ≥ 3. and every t in C., 

.Dα,n(t
2) = 4pn(t)qα,n(t). (32) 

Proof Let w = (t2 − 2)/2., i.e., t2 = 2w + 2.. Then, (28) takes the following form: 

.Dα,n(2w + 2) = 2
l
(w + 1− α)Un−1 (w)− αUn−2 (w)+ (−1)n+1α

l
. (33)
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Let n = 2m.. We apply U2m−2(w) = −U2m(w)+ 2wU2m−1(w). on (33), obtaining 

. Dα,2m(2w + 2) = 2
l
αU2m(w)+ (w + 1− α − 2αw)U2m−1(w)− α

l
.

Now, we use the identities 

. U2m−1(w) = 2Um−1(w)Tm(w),

U2m(w) = 2wUm−1(w)Tm(w)+ 2T 2
m(w)− 1,

U2m(w)− U2m−1(w)+ 1 = 2(w2 − 1)U2
m−1(w),

deriving 

. Dα,2m(2w + 2) = 4(w + 1)Um−1(w)
l
(1− α)Tm(w)+ α(w − 1)Um−1(w)

l
.

Considering the relations 

. T2m

l
t

2

l
= Tm

l
t2 − 2

2

l
, U2m+1

l
t

2

l
= tUm

l
t2 − 2

2

l
,

we obtain that the characteristic polynomial is the product of the polynomials (30) 
and (31). 

If n = 2m+ 1., the analysis is similar.   
Remark 3.3 If n ≥ 3. is odd, then the polynomial qα,n . coincides with the 
polynomial q1−α,n . written in [13]. 

We will apply the following elementary identities: 

. Tn

l
sin

x

2

l
= (−1)

n
2 cos

nx

2
, Un

l
sin

x

2

l
= (−1)

n
2
cos (n+1)x

2

cos x
2

(n is even),

(34) 

. Tn

l
sin

x

2

l
= (−1)

n−1
2 sin

nx

2
, Un

l
sin

x

2

l
= (−1)

n−1
2

sin (n+1)x
2

cos x
2

(n is odd).

(35) 

Then, using the change of variable t = 2 sin(x/2). in (30) and (31) yields 

.pn

l
2 sin

x

2

l
=

⎧⎨
⎩

(−1)
n
2+1 sin nx

2
cos x

2
, if n is even,

(−1)
n−1
2 sin nx

2 , if n is odd.
. (36)
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qα,n

l
2 sin  

x 
2

l
= 

⎧⎨ 

⎩ 
(−1) 

n 
2
l
(1− α) sin x 

2 cos 
nx 
2 + α cos x 

2 sin 
nx 
2

l
, if n is even, 

(−1) 
n−1 
2 

cos x 
2

l
(1 − α) sin x 

2 cos 
nx 
2 + α cos x

2 sin nx
2

l
, if n is odd.

(37) 

So, (32) becomes 

. Dα,n(g(x)) = (−1)n+1 4 sin x
2 sin nx

2

cos x
2

l
(1− α) cos

nx

2
+ α

sin nx
2

sin x
2

cos
x

2

l
.

(38) 

After the change of variable t = 2 cosh(x/2)., formula  (32) transforms to 

. 

Dα,n(g+(x)) = 4 cosh
x

2

sinh nx
2

sinh x
2

l
(1− α) cosh

nx

2
+ α

sinh x
2 sinh nx

2

cosh x
2

l

(n is even),

Dα,n(g+(x)) = 4 cosh
x

2
cosh

nx

2

l
(1− α)

sinh nx
2

sinh x
2

+ α
cosh nx

2

cosh x
2

l
(n is odd).

(39) 

Proposition 3.4 (Trivial Eigenvalues of Lα,n .) For every n ≥ 3. and every even j 
with 0 ≤ j ≤ n− 1., the number g(jπ/n). is an eigenvalue of Lα,n .. 

Proof These eigenvalues come from the factor pn . in the decomposition (32). 
Indeed, the change of variable λ = (2 sin(x/2))2 . yields the factor pn (2 sin(x/2)).. 
According to (36), this expression vanishes for x = 2kπ/n., where k is an integer 
and 0 ≤ k ≤ (n− 1)/2..   
Lemma 3.5 If n is even, then limt→+∞ qα,n(t) = +∞.. 

Proof From the recurrent definition of Chebyshev polynomials, the leading term of 
Tn(t/2). is (1/2)tn ., and the leading term of Un−1(t/2). is tn−1

.. Therefore, by (31), the  
leading term of qα,n(t). is (1/4)tn+1

.. So, the leading coefficient is strictly positive, 
which implies the result.   

For every j with 1 ≤ j ≤ n., we define 

.In,j :=
l

(j − 1)π

n
,
jπ

n

l
= (dn,j , dn,j+1). (40) 

Proof of Theorem 2.1 For 1 ≤ j ≤ n − 1., the proof is similar to the proof of [12, 
Theorem 1]. In particular, for odd j , we use Proposition 3.4.
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1. If n is odd and satisfies n < x−1
α ., then, using (37), it is easy to see that 

qα,n(2 sin(x/2)). changes of sign in In,n .. Indeed, qα,n(2 sin(dn,n/2)) = −1., and 

. lim
x→π− qα,n

l
2 sin

x

2

l
= −(n(1− α)+ α) = (α − 1)(n− x−1

α ).

2. If n is odd and satisfies n = x−1
α ., then qα,n(2) = (1 − α)n + α ., hence λ = 4. is 

an eigenvalue of Lα,n .. 
3. If n ≥ 3. is odd and n > x−1

α ., then qα,n(t). takes values of opposite signs at the 
ends of the interval [2, rα + r−1

α ]. where rα :=
√

2α − 1.: 

. qα,n(2) = (1− α)n+ α < 0, qα,n(rα + r−1
α ) = r2

α + 1

2
r−n
α > 0.

Then, 

. 4 < λα,n,n <

l
rα + 1

rα

l2

= oα.

4. For every even n ≥ 4., qα,n . changes its sign in the interval [rα + r−1
α ,+∞).. 

Indeed, limt→+∞ qα,n(t) = +∞. by Lemma 3.5, whereas 

. qα,n(rα + r−1
α ) = −1

4
(r2

α + 1)
l
rn+1
α + r−(n+1)

α

l
< 0.

Moreover, by the Gershgorin disks theorem (see, e.g., [18, Theorem 2.1]), the 
eigenvalues are bounded from above by 4+ 2α .. Thus, 

. oα =
l

rα + 1

rα

l2

≤ λα,n,n ≤ 4+ 2α.

Items 1, 2, and 3 could also be derived from [13, Lemmas 3.3, 3.4], taking into 
account Remark 3.3.   

4 Inner Eigenvalues 

In this section we deal with the inner eigenvalues. The proofs of the upcoming 
propositions are very similar, if not identical, to the proofs given in [12, 13]. Recall 
that xα ., ηα . are defined by (3), (8). 

Proof of Theorem 2.2 If λ ∈ (0, 4)., we use the change of variable λ = g(x)., with 
x ∈ (0, π).. So, Dα,n(g(x)). transforms into (38). Equivalently, we apply (32) with
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π 

π 

0 z3 z5 z7 π 

π 

0 z3 z5 z7 

Fig. 3 Plot of ηα . (blue) and the left-hand side of (42) (green) for α = 3/2., n = 8. (left) and α = 4., 
n = 9. (right) 

t = 2 sin(x/2).. Then, Dα,n(g(x)) = 0. reduces to qα,n(2 sin(x/2)) = 0., which is 
equivalent to 

. tan
nx

2
= xα tan

x

2
. (41) 

In particular, for odd j with 3 ≤ j ≤ n − 1., the solution zα,n,j . belonging to In,j . 

satisfies (41).   
Equation (9) from Theorem 2.2 can be rewritten in the form 

.nx − (j − 1)π = ηα(x). (42) 

Figure 3 shows ηα . and the left-hand side of (42) for a couple of examples. 
The first two derivatives of ηα . are 

.ηlα(x) = 2xα

1+ x2
α + (1− x2

α) cos(x)
, . (43) 

ηllα(x) = 2xα(1− x2 
α) sin(x) 

(1+ x2 
α + (1− x2 

α) cos(x))2
. (44) 

Proposition 4.1 and Theorem 4.2 follow directly from the properties of ηα ., similarly 
to [12, Propositions 21 and 22].
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Proposition 4.1 Each derivative of ηα . is a bounded function on (0, π).. In particu-
lar, 

. sup
0<x<π

|ηlα(x)| = x−1
α , sup

0<x<π

|ηllα(x)| ≤ x−2
α − 1

2
.

Recall that Nα . is defined by (11), and that for every j , the numbers dn,j ., zn,j . are 
defined by (5) and (7), respectively. 

Theorem 4.2 Let n ≥ Nα ., j be odd, 3 ≤ j ≤ n − 1.. Then, the function x l→
dj + ηα(x)/n. is a contraction on cl(In,j )., and its fixed point is zα,n,j .. 

In [12, Proposition 24], we proved some simple facts about the convergence of 
Newton’s method for convex functions. Now we are going to state without proofs 
some similar facts for concave functions (see also [12, Remark 27]). Assume that 
a, b ∈ R. with a < b.; f is differentiable and f l > 0. on [a, b].; there exists c in [a, b]. 
such that f (c) = 0.; y(0)

. is a point in [a, b]. and the sequence (y(m))∞m=0 . is defined 
(when possible) by the recurrence relation 

.y(m+1) = y(m) − f
l
y(m)

l

f l ly(m)
l . (45) 

Proposition 4.3 (Linear Convergence of Newton’s Method for Concave Func-
tions) If f is concave on [a, b]., a ≤ y(0) ≤ c., then y(m)

. belongs to [a, c]. for every 
m ≥ 0., the sequence (y(m))∞m=0 . increases and converges to c, with 

.c − y(m) ≤ (b − a)

l
1− f l(b)

f l(a)

lm

. (46) 

For every n ≥ 4. and every j odd with 3 ≤ j ≤ n., we define hα,n,j : cl(In,j ) →
R. by 

. hα,n,j (x) := nx − (j − 1)π − ηα(x).

Theorem 4.4 (Convergence of Newton’s Method Applied to hα,n,j .) Let n ≥ Nα ., 

j be odd, 3 ≤ j ≤ n− 1. and y
(0)
α,n,j = dn,j .. Define the sequence (y

(m)
α,n,j )

∞
m=0 . by the 

recursive formula 

.y
(m)
α,n,j

:= y
(m−1)
α,n,j −

hα,n,j

l
y

(m−1)
α,n,j

l

hlα,n,j

l
y

(m−1)
α,n,j

l (m ≥ 1). (47)
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Then (y
(m)
α,n,j )

∞
m=0 . is well defined and converges to zα,n,j ., and the convergence is at 

least linear: 

.zα,n,j − y
(m)
α,n,j ≤

π

n

l
x−2

α − 1

x−1
α n− 1

lm

. (48) 

Moreover, if n ≥ 2Nα ., then the convergence is quadratic, and 

.zα,n,j − y
(m)
α,n,j ≤

π

n

l
πx−2

α

2n2

l2m−1

. (49) 

Proof Formulas (43) and (44) for ηlα . and ηllα . imply that hlα,n,j > 0. and hllα,n,j < 0. 

on cl(In,j ).. Moreover, y
(0)
α,n,j = dn,j < zα,n,j < dn,j+1 .. So, the assumptions of 

Proposition 4.3 are satisfied. Here are rough estimates of the derivatives of hα,n,j . at 
the extremes of In,j .: 

. n− xα = hlα,n,j (0) ≥ hlα,n,j (dn,j ) ≥ hlα,n,j (dn,j+1) ≥ hlα,n,j (π) = n− 1

xα

.

Therefore, 

. 1− hlα,n,j (dn,j+1)

hlα,n,j (dn,j )
≤ 1− n− x−1

α

n− xα

= x−2
α − 1

nx−1
α − 1

,

and we obtain (48). 
Finally, if n ≥ 2Nα ., then 

. 
π

n
·

max
0≤x≤π

|hllα,n,j (x)|
2 min

0≤x≤π
|hlα,n,j (x)| ≤

π max
0≤x≤π

|ηllα(x)|

2n

l
n− max

0≤x≤π
|ηlα(x)|

l ≤ π(x−2
α − 1)

4n(n− x−1
α )

≤ πx−2
α

2n2
< 1,

which implies the quadratic convergence with upper estimate (49); see, e.g., [1, 
Sect. 2.2] or [12, Proposition 26].   
Proposition 4.5 There exists C1(α) > 0. such that for every n ≥ 3. and every j odd 
with 3 ≤ j ≤ n− 1., 

. zα,n,j = dn,j + ηα

l
dn,j

l
n

+ ηα

l
dn,j

l
ηlα

l
dn,j

l

n2 + rα,n,j ,

where |rα,n,j | ≤ C1(α)

n3 .. 

Proof of Theorem 2.4 Substituting (4.5) into g and using Taylor expansion of g 
around dn,j ., we obtain the asymptotic expansion (16) with error bound (17).   
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5 Transformation of the Characteristic Equation for the Last 
Eigenvalue 

Recall that xα ., Nα ., ωα . are defined by (3), (11), (13), respectively. 

Proof of Theorem 2.3 If λ ∈ (4,∞)., we make the change of variable λ =
g+(x). with x ∈ (0,∞).. In other words, we use (32) with t = 2 cosh(x/2).. 
Then, pn(2 cosh(x/2)) /= 0., and equation Dα,n(g+(x)) = 0. is equivalent to 
qα,n(2 cosh(x/2)) = 0., which takes the following form: 

. tanh
nx

2
= 1

xα

tanh
x

2
(n is odd), . (50) 

tanh 
nx 
2 
= xα coth 

x 
2 

(n is even). (51) 

By Theorem 2.1, if  n is odd and n > xα ., then (50) has a unique solution on (0, ωα).. 
If n is even and n ≥ 4., then (51) has a unique solution on (ωα,∞).. We apply arctanh. 

to both sides of the Eqs. (50) and (51), and rewrite them as (15).   

6 Last Eigenvalue with Odd n 

In this section, we suppose that n is odd and n ≥ Nα ., and we study the behavior of 
λα,n,n . and sα,n . which are related by (12), i.e., λα,n,n = g+(sα,n).. 

The main idea of this section is to exploit the symmetry between the last 
eigenvalue of Lα,n . and the first eigenvalue of L1−α,n .. Since α > 1., the “dual” 
parameter αl := 1 − α . satisfies αl < 0., and the matrices Lαl,n . with αl < 0. were 
studied in [13]. 

As we showed in [13, proof of Theorem 2.2], λαl,n,1 . can be computed as 
g−(sαl,n). where g−(x) := −4 sinh2(x/2). and sαl,n . is the unique solution of 

. tanh
lnx

2

l
= xαl tanh

lx

2

l
. (52) 

Proposition 6.1 Let n be odd such that n ≥ Nα .. Then λα,n,n = 4− λ1−α,n,1 .. 

Proof Let αl := 1 − α .. Notice that xαl = x−1
α .. Therefore, Eqs. (50) and (52) 

coincide. They have the same solutions: 

.sα,n = sαl,n. (53) 

Finally, 

.4− λαl,n,1 = 4− g−(sαl,n) = g+(sαl,n) = g+(sα,n) = λα,n,n.
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Let n be odd, and recall that ψα,n . is defined by (14); another useful representation 
is 

. ψα,n(x) := arctanh
l
x−1

1−α tanh
nx

2

l
.

It follows that ψα,n . equals the function ϕ1−α,n . given in [13, (2.6)]. Therefore, the 
properties of (14) and (56) are the ones developed in [13, Propostions 5.1 and 5.3]. 
In particular, the first two derivatives of ψα,n . are 

.ψ l
α,n(x) = 2nxα

(1− x2
α) cosh(nx)+ 1+ x2

α

, . (54) 

ψ ll
α,n(x) = − 2n2xα(1− x2 

α) sinh(nx) 
((1− x2 

α) cosh(nx) + 1+ x2
α)2

. (55) 

Define 

. lα,n := 2

n
arccosh

l
nxα − x2

α

1− x2
α

= 2

n
arccosh

l
nα(α − 1)− (α − 1)2

2α − 1
.

Proposition 6.2 Let n be odd such that n ≥ Nα .. Then ψα,n . has the following 
properties. 

1. ψ l
α,n > 0. and ψ ll

α,n < 0. on [0,+∞).. 
2. ψ l

α,n(lα,n) = 1.; moreover, ψ l
α,n > 1. on [0, lα,n). and ψ l

α,n < 1. on (lα,n,+∞).. 
3. limx→+∞ ψα,n(x) = ωα .. 
4. sα,n . is the unique fixed point of ψα,n . in (0,+∞).. 
5. ψα,n(x) > x . for every x in (0, lα,n].. 
6. lα,n <  ψα,n(lα,n) < sα,n .. 

For every odd n ≥ Nα ., we define fα,n : [0,+∞) → R. by 

.fα,n(x) := x − ψα,n(x) = x − 2 arctanh
l
xα tanh

nx

2

l
. (56) 

Figure 4 shows fα,n .. 
The following theorem contains more detailed information than its analog [13, 

Theorem 5.4]. 

Theorem 6.3 (Convergence of Newton’s Method Applied to fα,n . for Odd n) Let 
n ≥ Nα . and n be odd. Then the sequence (y

(m)
α,n )∞m=0 . defined by 

.y(0)
α,n := ωα, y(m)

α,n := y(m−1)
α,n −

fα,n

l
y

(m−1)
α,n

l

f l
α,n

l
y

(m−1)
α,n

l (m ≥ 1),
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ωα0 

sα,nlα,n 

Fig. 4 Plot of fα,n . (blue) and tangent line to the graph of fα,n . at lα,n . (red), for α = 3/2. and n = 7. 

takes values in [sα,n, ωα]. and converges to sα,n .. The convergence is at least linear. 
Moreover, if n is odd and large enough, then the convergence is quadratic, i.e., 

there exists Qα,n . in (0, 1/2). such that for every m ≥ 1., 

.0 ≤ y(m)
α,n − sα,n ≤ ωαQ2m−1

α,n . (57) 

Proof By Proposition 6.2, f l
α,n > 0. and f ll

α,n > 0. on [ψα,n(lα,n), ωα].. So, [13, 

Proposition 4.3] implies that the points y
(m)
α,n . belong to the segment [ψα,n(lα,n), ωα]. 

(which is contained in [sα,n, ωα].), and the convergence is at least linear. 
It is easy to see that for n large enough, the dependence n l→ lα,n . is decreasing. 

Let n0 . be such a number that lα,n ≤ lα,n0 . for every n ≥ n0 .. 
Take bα := lα,n0 .. Then for every n > n0 ., 

. lα,n < bα < sα,n < ωα.

Let Jα := [bα, ωα].. Since ψ l
α,n(bα) → 0. and supJα

|ψ ll| → 0. as n → ∞., we  
choose n1 . such that for every n > n1 ., 

. ψ l
α,n(bα) <

1

2
, sup

Jα

|ψ ll
α,n| <

1

2ωα

.

Then, for n > n1 . and for every x in Jα ., 

. 
1

2
< f l

α,n(bα) ≤ f l
α,n(x), |f ll

α,n(x)| < 1

2ωα

,

and 

.Qα,n := (ωα − bα) ·
sup
Jα

|f ll
α,n|

2 inf
Jα

|f l
α,n|

<
1

2
.
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In fact, Qα,n . tends rapidly to 0 as n tends to ∞., but we have not found simple 
estimates.   

Define 

.γ1,α := 4xα

1− x2
α

, γ2,α := 4xα(1+ x2
α)

(1− x2
α)2

. (58) 

Theorem 6.4 (Asymptotic Expansion of sα,n . Where n Is Odd) As n is odd and 
tends to infinity,

.sα,n = ωα − γ1,αe−nωα − γ 2
1,αne−2nωα + γ2,αe−2nωα +O(n2e−3nωα ). (59) 

Proof Let αl := 1− α .. In [13, Theorem 5.9], we proved that 

. sαl,n = ωαl − γ1,αle
−nωαl − γ 2

1,αlne−2nωαl + γ2,αle
−2nωαl +O(n2e−3nωαl ),

where 

. ωαl = log(1− 2αl) = log(2α − 1) = ωα, γ1,αl = γ1,α, γ2,αl = γ2,α.

Now the result follows from (53).   
The asymptotic expansion of λα,n,n . will be derived at the end of Sect. 7. 

7 Last Eigenvalue for Even n 

In this section, we study the behavior of the last eigenvalue λα,n,n . supposing that 
n is even and n ≥ 4.. More precisely, we analyze the behavior of sα,n ., defined by 
λα,n,n = g+(sα,n).. Thus, in this section we suppose that n is ev en.

Define rα := g+−1(4+ 2α) = 2 arcsinh(
√

α/2 ).. By Theorem 2.1, part 4, sα,n . is 
the unique solution of (51) in (ωα, rα).. 

Recall that ψα,n . is defined by (14): 

. ψα,n(x) = 2 arctanh
l
xα coth

nx

2

l
(x ≥ ωα).

Note that for x ≥ ωα ., 

.xα coth
nx

2
< xα coth

x

2
≤ xα coth

ωα

2
= 1,
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therefore ψα,n . is well defined. A straightforward computation gives 

.ψ l
α,n(x) = − 2nxα

(1− x2
α) cosh(nx)− 1− x2

α

, . (60) 

ψ ll
α,n(x) = 2n2xα(1− x2 

α) sinh(nx) 
((1− x2 

α) cosh(nx) − 1 − x2
α)2

. (61) 

Proposition 7.1 Let n be even such that n ≥ 4.. Then ψα,n . has the following 
properties. 

1. ψ l
α,n < 0. and ψ ll

α,n > 0. on [ωα,+∞).. So, ψα,n . is a strictly decreasing convex 
function. 

2. limx→∞ ψα,n(x) = ωα .. 
3. sα,n . is the unique fixed point of ψα,n . and ωα < sα,n < rα .. 

Proof For every x ≥ ωα ., due to the increasing property of cosh. and the condition 
n ≥ 4., 

. (1− x2
α) cosh(nx) > (1− x2

α) cosh(ωα) = (1− x2
α)

1+ x2
α

1− x2
α

= 1+ x2
α.

Hence, the denominators of the fractions in the right-hand sides of (60) and (61) are 
strictly positive, and we get statement 1. 

By definition of ωα . and xα ., 

. tanh
ωα

2
= 1− e−ωα

1+ e−ωα
= 1− 1

2α−1

1+ 1
2α−1

= α − 1

α
= xα. (62) 

This equality implies statement 2. Finally, statement 3 is consequence of Theo-
rems 2.1 and 2.3.   

We define fα,n : [ωα,∞) → R., 

.fα,n(x) := x − ψα,n(x) = x − 2 arctanh
l
xα coth

nx

2

l
. (63) 

We use the same notation fα,n . for two different functions, depending on the parity 
of n. Figure 5 shows fα,n .. 

Proposition 7.2 For every even n with n ≥ 4., f l
α,n > 1. and f ll

α,n < 0. on [ωα, rα].. 
Moreover, sα,n . is its only root in (ωα, rα).. 

Proof Follows from Proposition 7.1.   
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ωα rα 
0 

sα,n 

Fig. 5 Plot of fα,n . (blue), for α = 6/5. and n = 4. 

Theorem 7.3 (Convergence of Newton’s Method Applied to fα,n . for Even n) 
Let n ≥ Nα . be even. Then the sequence (y

(m)
α,n )∞m=0 . defined by 

. y(0)
α,n := ωα, y(m)

α,n := y(m−1)
α,n −

fα,n

l
y

(m−1)
α,n

l

f l
α,n

l
y

(m−1)
α,n

l (m ≥ 1),

takes values in [ωα, sα,n]. and converges to sα,n .. 
Moreover, if n is even and large enough, then the convergence is quadratic, i.e., 

there exists Qα,n . in (0, 1). such that for every m ≥ 1., 

.0 ≤ sα,n − ωα ≤ rαQ2m−1
α,n . (64) 

Proof By Propositions 7.2 and 4.3, the sequence (y
(m)
α,n )m≥1 . takes values in 

[ωα, sα,n]. and converges at least linearly. Define 

. Qα,n := (rα − ωα) ·
sup

[ωα,rα]
|f ll

α,n|
2 inf[ωα,rα]

|f l
α,n|

.

It follows from (61) that sup[ωα,rα] |f ll
α,n| → 0. as n →∞.. Therefore, there exists n0 . 

such that Qα,n < 1/2., for every n ≥ n0 .. In fact, Qα,n . tends rapidly to 0 as n tends 
to ∞., but we have not found simple estimates.   
Lemma 7.4 Let m, n. be even such that n > m ≥ 4.. Then sα,m > sα,n .. 

Proof Recall that sα,n . and sα,m . are the solutions of (15), respectively for n and m. 
In this lemma, we prefer to deal with the equivalent Eq. (51). Then 

. tanh
nsα,m

2
tanh

sα,m

2
> tanh

msα,m

2
tanh

sα,m

2
= α − 1

α
= tanh

nsα,n

2
tanh

sα,n

2
.
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This implies sα,m > sα,n ., since x l→ tanh nx
2 tanh x

2 . is a strictly increasing function 
on [ωα,∞)..   
Proposition 7.5 Let n be even such that n ≥ 4.. Then 

.0 ≤ sα,n − ωα ≤ C3(α)e−nωα , (65) 

where C3(α) = (4+2α)α
α−1 .. 

Proof By the mean value theorem applied to x l→ coth(x/2). on [ωα, sα,n]., there 
exists ξ ∈ (ωα, sα,n). such that 

. coth
sα,n

2
− coth

ωα

2
= − 1

2 sinh2 ξ
2

(sα,n − ωα),

i.e., 

. sα,n − ωα = 2 sinh2 ξ

2

l
coth

ωα

2
− coth

sα,n

2

l
.

Now we apply the increasing property of sinh., identity (62), and the fact that sα,n . 

satisfies (51): 

. sα,n − ωα ≤ 2 sinh2 rα

2

l
coth

ωα

2
− coth

sα,n

2

l
= 2 sinh2 rα

2

xα

l
1− tanh

nsα,n

2

l

≤ 4 cosh2 rα
2

xα

e−nsα,n ≤ 4 cosh2 rα
2

xα

e−nωα = g+(rα)

xα

e−nωα .

The last expression simplifies to C3(α)e−nωα ..   
Recall that γ1,α . and γ2,α . are defined by (58). 

Lemma 7.6 (Asymptotic Expansion of ψα,1 .) As t tends to infinity ,

.ψα,1(t) = ωα + γ1,αe−t + γ2,αe−2t +O(e−3t ). (66) 

Proof The proof is analogous to the proof of [13, Lemma 5.8]. Since coth(t/2) =
1+e−t

1−e−t ., 

. ψα,1(t) = σ(e−t ), where σ(u) := 2 arctanh

l
xα

1+ u

1− u

l
.

We start with the Taylor–Maclaurin expansion of the rational function u l→ (1 +
u)/(1− u). around 0: 

.
1+ u

1− u
= 1+ 2u

1− u
= 1+ 2u+ 2u2 +O(u3).
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Then, we apply the Taylor expansion of arctanh. around xα .: 

. arctanh(xα + y) = arctanh(xα)+ y

1− x2
α

+ xα y2

(1− x2
α)2

+O(y3).

In the last expansion, we substitute y = 2xα(u+ u2 +O(u3)). and use the relation 
O(y) = O(u).: 

. σ(u) = 2 arctanh
l
xα + 2xα(u+ u2 +O(u3))

l

= 2 arctanh(xα)+ 4xα

1− x2
α

l
u+ u2 +O(u3)

l

+ 8x3
α

(1− x2
α)2

l
u+ u2 +O(u3)

l2 +O(u3).

Simplifying and taking into account that tanh(ωα/2) = xα ., we obtain the Taylor– 
Maclaurin expansion of σ . around 0: 

. σ(u) = ωα + γ1,αu+ γ2,αu2 +O(u3).

Finally, we put u = e−t
. and obtain (66).   

Theorem 7.7 (Asymptotic Expansion of sα,n .) As n is even and tends to infinity ,

.sα,n = ωα + γ1,αe−nωα − γ 2
1,αne−2nωα + γ2,αe−2nωα +O(n2e−3nωα ). (67) 

Proof The proof is analogous to the proof of [13, Theorem 5.9]. 
By formula (65) from Proposition 7.5, we have an asymptotic expansion of sα,n . 

with one exact term: 

.sα,n = ωα +O(e−nωα ). (68) 

Therefore, 

. e−nsα,n = e−nωα+O(ne−nωα ) = e−nωα (1+O(ne−nωα )) = e−nωα +O(ne−2nωα ).

(69) 

This also implies a rough upper bound for e−nsα,n .: 

.e−nsα,n = O(e−nωα ). (70)
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The main idea of the following proof is to combine (68) with (15) and Lemma 7.6. 
We apply the asymptotic expansion (66) with two exact terms and with nsα,n . instead 
of t : 

. sα,n = ψα,n(sα,n) = ψα,1(nsα,n) = ωα + γ1,αe−nsα,n +O(e−2nsα,n).

We simplify this expression using (69) and (70): 

. sα,n = ωα + γ1,αe−nωα +O(ne−2nωα )+O(e−2nωα )

= ωα + γ1,αe−nωα +O(ne−2nωα ).

Now, we use this expansion to improve (69): 

. e−nsα,n = e−nωαe−γ1,αne−nωα+O(n2e−2nωα )

= e−nωα

l
1− γ1,αne−2nωα +O(n2e−2nωα )

l

= e−nωα − γ1,αne−2nωα +O(n2e−3nωα ).

Next, we combine this expansion with (66): 

. sα,n = ψα,n(sα,n) = ψα,1(nsα,n) = ωα + γ1,αe−nsα,n + γ2,αe−2nsα,n +O(e−3nsα,n)

= ωα + γ1,α

l
e−nωα − γ1,αne−2nωα +O(n2e−3nωα )

l

+ γ2,α

l
e−nωα − γ1,αne−2nωα +O(n2e−3nωα )

l2 +O(e−3nωα ).

Simplifying this expression we get (67).   
In the next corollary, we join the asymptotic expansions (59) and (67). 

Corollary 7.8 As n tends to infinity ,

.sα,n = ωα+(−1)nγ1,αe−nωα −γ 2
1,αne−2nωα +γ2,αe−2nωα +O(n2e−3nωα ). (71) 

Proof If n is odd, then (59) equals (71). If  n is even, then (67) equals (71).   
Proof of Theorem 2.5 We expand g+ . by Taylor formula around ωα .: 

.g+(ωα + x) = g+(ωα)+ gl+(ωα)x + gll+(ωα)

2
x2 +O(x3).
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Then we substitute the expansion (71) of sα,n . and simplify: 

. λα,n,n = g+(sα,n)

= g+
l
ωα + (−1)nγ1,αe−nωα − γ 2

1,αne−2nωα + γ2,αe−2nωα +O(n2e−3nωα )
l

= g+(ωα)+ (−1)nγ1,αgl+(ωα)e−nωα − γ 2
1,αgl+(ωα)ne−2nωα

+
l

γα,2g
l+(ωα)+ γ 2

1,αgll+(ωα)

2

l
e−2nωα +O

l
n2e−3nωα

l
.

Recall that g+(ωα) = oα .. Hence, we obtain (20) and (21), with the following 
coefficients: 

. βα,1 = gl+(ωα)γ1,α, βα,2 = −gl+(ωα)γ 2
1,α, βα,3 = gl+(ωα)γα,2 + 1

2
gll+(ωα)γ 2

1,α.

Calculate the derivatives of g+ . at ωα .: 

. gl+(ωα) = 2 sinh(ωα) = 4α(1− α)

1− 2α
= 4xα

1− x2
α

,

gll+(ωα) = 2 cosh(ωα) = 2(2α2 − 2α + 1)

2α − 1
= 2(x2

α + 1)

1− x2
α

.

Combining with formulas (58), we write βα,1 ., βα,2 ., and βα,3 . as (18) or (19).   

8 Norm of Eigenvectors 

We recall that, due to Proposition 3.1, λα,n,j = λRe(α),n,j . for every α . in C., every  
n ≥ 3. and every 1 ≤ j ≤ n.. Nevertheless, it turns out that if Im(α) /= 0., then 
the eigenvectors associated to Lα,n . usually have complex components. So, in this 
section we suppose that α . is a complex number such that Re(α) > 1.. To simplify 
subindices, we put 

. xα := xRe(α), Nα := NRe(α), ωα := ωRe(α), oα := oRe(α),

. ηα := ηRe(α), zα,n,j := zRe(α),n,j , sα,n := sRe(α),n.

Proof of Theorem 2.6 Formulas (22), (23) are consequences of [12, Proposition 8].
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Recall that να . is defined by (24). For every x in [0, π ]., we define 

. 

ξα(x) := |α − 1|2
2

g(x) cos(ηα(x))+ |α|2
2

g(ηα(x)) cos(x)

+ |α|2 − Re(α)

2
(g(x)+ g(ηα(x))− g(x + ηα(x))) .

Proposition 8.1 (Exact Formulas for the Inner Eigenvectors) Let n ≥ 3. and 
2 ≤ j ≤ n− 1..  If  j is even, then llvα,n,jll2 . is given by (25).  If  j is odd, then

.llvα,n,jll2
2 = nνα(zα,n,j )+ sin(ηα(zα,n,j ))

sin(zα,n,j )
ξα(zα,n,j ). (72) 

Proof These formulas are similar to [12, (66), (69)] and are proved in the same 
manner.   

We will use several identities for hyperbolic functions: 

. sinh(x)± sinh(y) = 2 sinh

l
x ± y

2

l
cosh

l
x ∓ y

2

l
, . (73) 

2 sinh(x) sinh(y) = cosh(x + y)− cosh(x − y), . (74) 

2 sinh2(x) = cosh(2x) − 1, . (75) 

n7
k=1 

cosh(2kx + y) = 
sinh(nx) cosh((n+ 1)x + y)

sinh(x)
. (76) 

For every n ≥ Nα ., define 

. u1(α, n) := λα,n,n

2

l
sinh(2nsα,n)

2 sinh(sα,n)
− n

l
,

u2(α, n) :=
l
2|α|2 cosh2 (n−1)sα,n

2 w(α, n), if n is even,

2|α|2 sinh2 (n−1)sα,n

2 w(α, n), if n is odd,

u3(α, n) :=
l
−4Re(α) cosh (n−1)sα,n

2 cosh nsα,n

2 cosh sα,n

2 w(α, n), if n is even,

−4Re(α) sinh (n−1)sα,n

2 sinh nsα,n

2 cosh sα,n

2 w(α, n), if n is odd,

where w(α, n) := sinh(nsα,n)

sinh(sα,n)
+ (−1)n+1n.. 

Proposition 8.2 (Exact Formula for the Norm of the Last Eigenvector) Let n ≥
Nα .. Then 

.llvα,n,nll2
2 = u1(α, n)+ u2(α, n)+ u3(α, n). (77)
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Proof Let n be even. Then, from (23) and (73), 

. vα,n,n,k = (−1)k
l
α sinh((n− k)sα,n)+ (1− α) sinh((k − 1)sα,n)+ sinh(ksα,n)

l

= (−1)k
l
sinh((k − 1)sα,n)+ sinh(ksα,n)

+α
l
sinh((n− k)sα,n)− sinh((k−1)sα,n)

ll

= (−1)k
l
2 sinh

(2k − 1)sα,n

2
cosh

sα,n

2

+2α sinh
(n+ 1− 2k)sα,n

2
cosh

(n− 1)sα,n

2

l
.

Taking the squared absolute value and applying (74) and (75), yields 

. |vα,n,n,k|2 = 4 cosh2 sα,n

2
sinh2 (2k − 1)sα,n

2

+ 4|α|2 cosh2 (n− 1)sα,n

2
sinh2 (n+ 1− 2k)sα,n

2

+ 8Re(α) cosh
(n− 1)sα,n

2
cosh

sα,n

2
×

× sinh
(n+ 1− 2k)sα,n

2
sinh

(2k − 1)sα,n

2
,

i.e., after a simplification, 

. |vα,n,n,k|2 = λα,n,n

2
(cosh(2ksα,n − sα,n)− 1)

+ 2|α|2 cosh2 (n− 1)sα,n

2
(cosh(2ksα,n − (n+ 1)sα,n)− 1)

+ 4Re(α) cosh
(n− 1)sα,n

2
cosh

sα,n

2
×

×
l
cosh

nsα,n

2
− cosh

l
2ksα,n − n+ 2

2
sα,n

ll
.

Formula (77) is obtained summing the previous expression over k, considering the 
identity (76) in each term. 

The proof is similar for odd n.   
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Lemma 8.3 As n tends to infinity ,

. u1(α, n) = Re(α)

4(Re(α)− 1)
e2nωα +O(nenωα ),

u2(α, n) = |α|2
8Re(α)(Re(α)− 1)

e2nωα +O(nenωα ),

u3(α, n) = − Re(α)

4(Re(α)− 1)
e2nωα +O(nenωα ).

Proof Proceed similarly to the proof of [13, Lemma 6.3].   
Proof of Theorem 2.7 Formulas (26), (25) follow similarly to the proofs of [13, 
(2.20), (2.21)]. To prove (27), we apply Proposition 8.2 and Lemma 8.3. Finally, we 
take the square root and obtain (25).   
Remark 8.4 Using Theorems 2.6 and 2.7, it is possible to show that for n large 
enough, the inner components of the normalized eigenvector vα,n,n/llvα,n,nll2 . are 
very small: 

. 
1

llvα,n,nll2
vα,n,n,k = Oα(e−kωα + e−(n+1−k)ωα ) = Oα(e−min{k,n+1−k}ωα ).

Figure 6 shows the components of the normalized eigenvectors vα,n,n/llvα,n,nll2 . 

for some α . and n, and Fig. 7 shows the logarithms of the absolute values of their 
components. 

1 31 

1 
2 

0 
1 32 

1 
2 

00 

Fig. 6 Components of the eigenvectors vα,n,n

llvα,n,nll2 . for α = 3
2 ., n = 31. (left) and n = 32. (right)
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1 16 31 
0 

−2 

−4 

−6 

−8 

−10 

1 16 32 
0 

−2 

−4 

−6 

−8 

−10 

Fig. 7 Values of log |wα,n,n,k |. where wα,n,n := vα,n,n

llvα,n,nll2 ., for  α = 3
2 ., n = 31. (left) and n = 32. 

(right). On the left picture, we skip the component with k = 16. because w3/2,31,31,16 . is very close 
to zero 

9 Numerical Tests 

With the help of SageMath, we have verified numerically (for many values of 
parameters) the representations (32), (39), (38) for the characteristic polynomial, 
and all the other exact formulas appearing in this paper. 

We introduce the following notation for different approximations of the eigen-
values and eigenvectors.

 λ
gen 
α,n,j . are the eigenvalues computed with machine precision ( ≈. 16 decimal 

digits), using a general eigenvalue algorithm from Sagemath. 

All other computations are performed with 3322 binary digits (≈ 1000. decimal 
digits).

 zN 
α,n,j . is the numerical solution of the equation hα,n,j (x) = 0. computed by 

Newton’s method, see Theorem 4.4.
 Similarly, sN

α,n . is the solution of fα,n(x) = 0. computed by Newton’s method, see 
Theorems 6.3 and 7.3.

 λN 
α,n,j . is computed as g(zN

α,n,j ). or g(dn,j ). or g+(sN
α,n)., depending on the case.

 λbisec 
α,n,j . is similar to λN

α,n,j ., but now we solve the corresponding equations by the 
bisection method.

 Using zbisec
α,n,j . we compute vα,n,j . by (22) and normalize it.

 Using sbisec
α,n . we compute vα,n,1 . by (23) and normalize it.

 λ
asympt 
α,n,j . is the approximation given by (16) and (21). 

We have constructed a large series of examples including all rational values α . in 
(1, 5]. with denominators ≤ 4. and all n with 3 ≤ n ≤ 256.. In all these examples, we 
have obtained 

. max
1≤j≤n

llLα,nvα,n,j − λbisec
α,n,j vα,n,jll2 < 10−994, max

1≤j≤n
|λgen

α,n,j − λbisec
α,n,j | < 10−13,
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Table 1 Values of llRasympt
α,n ll∞ . and n3llRasympt

α,n ll∞ . for some α . and n 

α = 4 /3. 
n llRasympt 

α,n ll∞ . n3llRasympt 
α,n ll∞ . 

256 4.37 × 10− 6 . 7.34× 10 1 . 
512 5.68 × 10− 7 . 7.62× 10 1 . 

1024 7.23 × 10− 8 . 7.76× 10 1 . 
2048 9.11 × 10− 9 . 7.83× 10 1 . 
4096 1.14 × 10− 9 . 7.86× 10 1 . 
8192 1.43 × 10− 10 . 7.88× 10 1 . 

α = 13 /4. 
n llRasympt 

α,n ll∞ . n3llRasympt 
α,n ll∞ . 

256 1.67× 10− 6 . 2.80× 101 . 

512 2.11× 10− 7 . 2.83× 101 . 

1024 2.64× 10− 8 . 2.84× 101 . 

2048 3.31× 10− 9 . 2.84× 101 . 

4096 4.14× 10− 10 . 2.85× 101 . 

8192 5.18× 10− 11 . 2.85× 101 . 

Table 2 Values of |Rasympt
α,n,n |. and n−2e3nωα |Rasympt

α,n,n |. for some α . and n 

α = 4 /3. 
n |Rasympt 

α,n,n |. n−2e3nωα |Rasympt 
α,n,n |. 

64 1.91 × 10−39 . 1.84 

128 2.00 × 10−81 . 1.89 

192 1.15 × 10−123 . 1.91 

256 5.23 × 10−166 . 1.92 

α = 13/ 4. 
n |Rasympt 

α,n,n |. n−2e3nωα |Rasympt 
α,n,n |. 

64 3.39 × 10−136 . 1.17× 10 3 . 
128 9.73 × 10−278 . 1.18× 10 3 . 
192 1.56 × 10−419 . 1.19× 10 3 . 
256 1.97 × 10−561 . 1.19× 10 3 . 

where vα,n,j . was the normalized eigenvector. Moreover, in all examples with n ≥
Nα ., 

. max
1≤j≤n

|λN
α,n,j − λbisec

α,n,j | < 10−997.

For testing the asymptotic formulas, we have computed the errors 

. R
asympt
α,n,j

:= λ
asympt
α,n,j − λN

α,n,j

and their maximums llRasympt
α,n ll∞ = max1≤j≤n |Rasympt

α,n,j |.. Table 1 shows that these 

errors indeed can be bounded by Oα(1/n3).. 
We have done similar tests for many other values of α . and n. Numerical 

experiments show that n3llRasympt
α,n ll∞ . are bounded by some numbers depending on 

α .. 
Since |Rasympt

α,n,j |. is smaller for the outiler eigenvalue, we show in Table 2 some 
numerical experiments for only this case. 
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On the Algebra of Singular Integral 
Operators with Almost Periodic 
Coefficients 

Oleksiy Karlovych and Márcio Valente 

To Professor Yuri Karlovich on the occasion of his 75th birthday 

Abstract Yuri Karlovich observed in the early 1990s that every Fredholm operator 
in the Banach algebra generated by the Cauchy singular integral operator S and the 
operators of multiplication by matrix-valued uniform almost periodic functions on 
the space L

p
N(R).with 1 < p < ∞. is invertible. We extend this result to the setting 

of reflexive rearrangement-invariant Banach function spaces with nontrivial Boyd 
indices. 

1 Introduction and the Main Result 

Given a Banach space X.,  let B(X). denote the Banach algebra of all bounded linear 
operators on X. and let K(X). denote the ideal of all compact operators on X..  As  
usual, A∗

. denotes the adjoint operator of A ∈ B(X).. An operator A ∈ B(X). is said 
to be Fredholm on X. if its image ImA. is closed in X. and 

. dimKerA < ∞, dim(X/ ImA) < ∞.

We denote by XN . the Banach space of all columns of height N with components i n
X.; the norm in XN . is defined by 

. ll(x1, . . . , xN)TllXN
=

l
N7

α=1
llxαll2X

)1/2

.
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Given a subalgebra B of L∞(R)., we denote by BN×N . the algebra of all N × N . 

matrices with entries in B; we equip BN×N .with the norm 

. llf llBN×N
=

llllll(fαβ)Nα,β=1
llllll

BN×N

=
⎛
⎝ N7

α,β=1
llfαβll2B

⎞
⎠

1/2

.

An almost periodic polynomial is a function of the form 

. a(x) =
m7

j=1
aj e

iλj x (x ∈ R) with aj ∈ C, λj ∈ R.

The set of all almost periodic polynomials will be denoted by AP 0
.. The algebra AP 

of the uniform almost periodic functions is defined as the closure of AP 0
. in L∞(R).. 

This definition is equivalent to Bohr’s original definition of uniform almost periodic 
functions (see, e.g., [2, Ch. 1, §5]). Another equivalent definition of uniform almost 
periodic functions was given by Bochner (see, e.g., [2, Ch. 1, §2]). 

Let X(R). be a rearrangement-invariant Banach function space with the Boyd 
indices 0 ≤ αX ≤ βX ≤ 1. (see [1, Ch. 2] and Sect. 2 below for their definition). The 
archetypical example of such spaces is the Lebesgue space Lp(R).with 1 ≤ p ≤ ∞., 
whose Boyd indices are αLp = βLp = 1/p . with the usual convention 1/∞ = 0.. 
Other interesting examples are Orlicz spaces Lo(R). and Lorentz spaces Lp,q(R). 

(see, e.g., [1, Ch. 4]). In 1967, David Boyd proved that the Cauchy singular integral 
operator 

. (Sf )(x) := lim
ε→0

1

πi

l
R\(x−ε,x+ε)

f (t)

t − x
dt

is bounded on a rearrangement-invariant Banach function space X(R). if and only if 

. 0 < αX ≤ βX < 1

(see [5] and also [1, Theorem 5.18]). In the latter case, one says that the Boyd indices 
are nontrivial. 

If a ∈ APN×N ., then the operator aI of multiplication by a is bounded on
XN(R) := [X(R)]N .. The operator S is defined on XN(R). elementwise. Let 
AN(AP, S;X(R)). denote the smallest Banach subalgebra of the Banach algebra 
B(XN(R)). that contains the operator S and the operators of multiplication aI by 
matrix-valued functions a ∈ APN×N .. 

In the early 1990s, Yuri Karlovich observed the following (cf. [8, Corollary 2]). 

Theorem 1 Let N ∈ N., 1 < p < ∞., and A ∈ AN(AP, S;Lp(R)).. Then the 
operator A is Fredholm on L

p
N(R). if and only if it is invertible on L

p
N(R).. 

We also refer to a more general result contained in [4, Corollary 18.11].
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The aim of this short paper is to extend the above result to the setting of reflexive 
rearrangement-invariant Banach function spaces with nontrivial Boyd indices. Our 
main result is the following. 

Theorem 2 (Main Result) Let N ∈ N. and let X(R). be a reflexive rearrangement-
invariant Banach function space with nontrivial Boyd indices. If an operator A 
belongs to AN(AP, S;X(R))., then A is Fredholm on XN(R). if and only if it is 
invertible on XN(R).. 

The paper is organized as follows. In Sect. 2, we recall the definitions of a Banach 
function space and its associate space, of a rearrangement-invariant Banach function 
space and its Boyd indices. In Sect. 3, we compute the limit operators (see [14, 18]) 
of the Cauchy singular integral operator, of the multiplication operator by an almost 
periodic polynomial and of compact operators on rearrangement-invariant Banach 
function spaces. Armed with these results, we prove Theorem 2 by extending the 
proof of Theorem 1 to this larger class of function spaces. We conclude our paper 
with the open question formulated in Sect. 4 concerning the possibility of extension 
of Theorem 2 to the case of the Lorentz spaces Lp,1(R). and Marcinkiewicz spaces 
Lp,∞(R). with 1 < p < ∞. (as it is well known, these spaces are nonreflexive and 
their Boyd indices are equal to 1/p .). 

2 Rearrangement-Invariant Banach Function Spaces and 
Their Boyd Indices 

2.1 Banach Function Spaces 

Denote by m and m. the Lebesgue measure on R. and R+ := [0,∞)., respectively. 
Let (S, μ). be one of the measure spaces (R,m). or (R+,m)..  The  set  of  a  ll μ.-
measurable complex-valued functions on S. is denoted byM(S, μ)..  LetM+(S, μ). 

be the subset of all functions inM(S, μ). whose values lie in [0,∞].. The measure 
and the characteristic (indicator) function of a measurable set E ⊂ S. are denoted 
by μ(E). and χE ., respectively. Following [1, Ch. 1, Definition 1.1], a mapping 
ρ : M+(S, μ) → [0,∞]. is called a Banach function norm if, for all functions 
f, g, fn (n ∈ N). in M+(S, μ)., for all constants a ≥ 0., and for all measurable 
subsets E of S., the following axioms hold: 

.(A1) ρ(f ) = 0⇔ f = 0 a.e., ρ(af ) = aρ(f ), ρ(f + g) ≤ ρ(f )+ ρ(g),

(A2) 0 ≤ g ≤ f a.e. ⇒ ρ(g) ≤ ρ(f ) (the lattice property),

(A3) 0 ≤ fn ↑ f a.e. ⇒ ρ(fn) ↑ ρ(f ) (the Fatou property),

(A4) μ(E) < ∞⇒ ρ(χE) < ∞,

(A5) μ(E) < ∞⇒
l

E

f (x) dx ≤ CEρ(f )
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with CE ∈ (0,∞)., which may depend on E and ρ . but is independent of f . When 
functions differing only on a set of measure zero are identified, the set X(S). of all 
functions f ∈ M(S, μ). for which ρ(|f |) < ∞. is called a Banach function space. 
For each f ∈ X(S)., the norm of f is defined by llf llX(S) := ρ(|f |).. Under the 
natural linear space operations and under this norm, the set X(S). becomes a Banach 
space (see [1, Ch. 1, Theorems 1.4 and 1.6]). If ρ . is a Banach function norm, its 
associate norm ρ' . is defined onM+(S, μ). by 

. ρ'(g) := sup

ll
S

f (x)g(x) dx : f ∈M+(S, μ), ρ(f ) ≤ 1

l
, g ∈M+(S, μ).

It is a Banach function norm itself [1, Ch. 1, Theorem 2.2]. The Banach function 
space X'(S). determined by the Banach function norm ρ' . is called the associate 
space (Köthe dual) of X(S).. The associate space X'(S). is naturally identified with a 
subspace of the (Banach) dual space X∗(S).. 

The following duality result is a consequence of [1, Ch. 1, Corollaries 4.3 
and 5.6]. 

Theorem 3 Let N ∈ N. and X(R). be a separable Banach function space. For 
every continuous linear functional G on XN(R). there exists a unique function 
g = (g1, . . . , gN) ∈ XN(R). such that 

.G(f ) =
N7

α=1

l
R

fα(x)gα(x)dx =: (f, g) (1) 

for all f = (f1, . . . , fN) ∈ XN(R).. Moreover, the norms ll·ll(XN (R))∗ . and ll·llX'
N (R) . 

are equivalent. 

We also note that if X(R). is reflexive, then both X(R). and X'(R). are separable 
(see [1, Ch. 1, Corollaries 4.4 and 5.6]). 

2.2 Rearrangement-Invariant Banach Function Spaces 

LetM0(S, μ). andM+
0 (S, μ). be the classes of a.e. finite functions inM(S, μ). and 

M+(S, μ)., respectively. The distribution function μf . of f ∈M0(S, μ). is given by 

. μf (λ) := μ{x ∈ S : |f (x)| > λ}, λ ≥ 0.

The non-increasing rearrangement of f ∈M0(S, μ). is the function defined by 

.f ∗(t) := inf{λ : μf (λ) ≤ t}, t ≥ 0.
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We here use the standard convention that inf∅ = +∞..  Now  le  t (S, μ), (T, ν) ∈
{(R,m), (R+,m)}.. Two functions f ∈ M0(S, μ). and g ∈ M0(T, ν). are said to be 
equimeasurable if μf (λ) = νg(λ). for all λ ≥ 0.. 

A Banach function norm ρ : M+(S, μ) → [0,∞]. is called rearrangement-
invariant if for every pair of equimeasurable functions f, g ∈ M+

0 (S, μ).,  the  
equality ρ(f ) = ρ(g).holds. In that case, the Banach function spaceX(S).generated 
by ρ . is said to be a rearrangement-invariant Banach function space (or simply 
a rearrangement-invariant space). Lebesgue spaces Lp(S)., 1 ≤ p ≤ ∞., Orlicz 
spaces Lo(S)., and Lorentz spaces Lp,q(S). are classical examples of rearrangement-
invariant Banach function spaces (see, e.g., [1] and the references therein). By [1, 
Ch. 2, Proposition 4.2], if a Banach function space X(S). is rearrangement-invariant, 
then its associate space X'(S). is also rearrangement-invariant. 

2.3 Submultiplicative Functions and Their Indices 

A measurable function e : (0,∞) → (0,∞). is said to be submultiplicative if 
e(x1x2) ≤ e(x1)e(x2). for all x1, x2 ∈ (0,∞).. The behavior of a measurable 
submultiplicative function e . in neighborhoods of zero and infinity is described by 
the quantities 

.α(e) := sup
x∈(0,1)

log e(x)

log x
= lim

x→0

log e(x)

log x
, . (2) 

β(e) := inf 
x∈(1,∞) 

log e(x) 
log x 

= lim 
x→∞ 

log e(x)

log x
, (3) 

where−∞ < α(e) ≤ β(e) < ∞. (see [12, Ch. II, Theorem 1.3]). The numbers α(e). 

and β(e). are called the lower and upper indices of the measurable submultiplicative 
function e .. 

2.4 Dilation Operators on the Luxemburg Representation and 
Boyd Indices 

Let X(R). be a rearrangement-invariant Banach function space generated by a 
rearrangement-invariant Banach function norm ρ . over (R,m).. By the Luxemburg 
representation theorem (see [1, Ch. 2, Theorem 4.10] or [16, Theorem 7.8.3]), there 
exists a unique rearrangement-invariant Banach function norm ρ . over (R+,m). such 
that 

.ρ(f ) = ρ(f ∗), f ∈M+
0 (R,m).
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The rearrangement-invariant Banach function space over (R+,m). generated by ρ . is 
denoted by X(R+). and is called the Luxemburg representation of X(R)..  For t > 0., 
let Et . be the dilation operator defined on the setM0(R+,m). by 

.(Etϕ)(s) = ϕ(ts), 0 < s < ∞. (4) 

It follows from [1, Ch. 3, Proposition 5.11] that the operators Et . are bounded on 
X(R+). for all t > 0.. The operator norm of the operator E1/t . on the Luxemburg 
representation X(R+).will be denoted by 

. h(t,X) := llE1/tllBl
X(R+)

l, t > 0.

By [1, Ch. 3, Proposition 5.11], the function h(·, X). is nondecreasing (and hence, 
measurable), submultiplicative on (0,∞)., and 

.hX(t) ≤ max{1, t}, 0 < t < ∞. (5) 

The indices of h(·, X). are called the Boyd indices [6] of the rearrangement-invariant 
Banach function space X(R). and are denoted by 

. αX := α(h(·, X)), βX := β(h(·, X)).

So, αX ≤ βX .. Equalities (2)–(3) and inequality (5) imply that the Boyd indices of 
X(R). satisfy 0 ≤ αX ., βX ≤ 1.. We refer to the survey paper [15] and the monographs 
[1, 12] for the properties of the Boyd indices of rearrangement-invariant Banach 
function spaces. 

3 Proof of the Main Result 

3.1 Injection and Surjection Moduli 

Let X. be a Banach space and A ∈ B(X).. Following [17, Sections B.3.1 and B.3.4], 
consider its injection modulus 

. J(A;X) := sup
l
c ≥ 0 : llAf llX ≥ cllf llX for all f ∈ Xl

and its surjection modulus 

.Q(A;X) := sup
l
c ≥ 0 : cBX ⊂ ABX

l
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where BX . is the closed unit ball of X.. Sometimes these characteristics are also 
called lower norms of A (see, e.g., [13, Section 1.3]). Fundamental properties of the 
injection and surjection moduli are collected in the following statements. 

Lemma 1 (See, e.g., [17, Section B.3.8]) If A ∈ B(X)., then 

. J(A;X) = Q(A∗;X∗), Q(A;X) = J(A∗;X∗).

Theorem 4 (See, e.g., [13, Theorem 1.3.2]) An operator A ∈ B(X). is invertible if 
and only if 

. J(A;X) > 0, Q(A;X) > 0.

If A is invertible, t hen

. J(A;X) = Q(A;X) = 1

llA−1llB(X)

.

3.2 Translations, Singular Integral Operators, and Their 
Adjoints 

Let X(R). be a rearrangement-invariant Banach function space. Given f ∈ X(R)., 
consider its translation by h ∈ R. defined by 

. (Thf ) := f (x + h), x ∈ R.

Since the functions f and Thf . are equimeasurable, llf llX(R) = llThf llX(R) .. So, 
the translation operator Th : f '→ Thf . is an isometry on X(R).. Moreover, it is 
invertible and its inverse is T −1

h = T−h ..  For N ∈ N. the translation operator Th . on 
XN(R). is defined elementwise. Since Theorem 3 is at our disposal, the proof of the 
following statement is straightforward. 

Lemma 2 Let N ∈ N. and X(R). be a reflexive Banach function space. If h ∈ R., 
then 

. T ∗
h = T−h ∈ B(X'

NR)).

For a ∈ L∞
N×N(R).,  le  t a∗ . denote the complex conjugate of the transpose matrix 

function aT .. 
Since Theorem 3 is available, the following lemma can be proved by literal 

repetition of the proof of [9, Lemma 3.9].
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Lemma 3 Let N ∈ N. and X(R). be a reflexive Banach function space. If a belongs 
to L∞

N×N(R)., then 

. (aI)∗ = a∗I ∈ B(X'
N(R)).

Lemma 4 Let N ∈ N..  If X(R). is a reflexive rearrangement-invariant Banach 
function space with nontrivial Boyd indices, then S∗ = S ∈ B(X'

N(R)).. 

Proof Since the operator S is defined elementwise, it is enough to prove the 
statement for N = 1.. In the latter case it follows from the duality relations 
for the Boyd indices: αX' = 1 − βX . and βX' = 1 − αX . (see [1, Ch. 3, 
Proposition 5.13]), the Lorentz-Shimogaki theorem (see [1, Ch. 3, Theorem 5.16]), 
and [10, Theorem 3.8(b)] (see also [9, Lemma 3.11]).   

3.3 Limit Operators 

The proof of our main result relies on the method of limit operators (see [3, 14, 18]). 
It is based on the observation that for a given bounded linear operator A on a Banach 
spaceX. and a cleverly chosen sequence of isometries {Vn}∞n=1 .on X., the strong limit 
of the sequence V −1

n AVn . (if it exists) preserves some important information about 
A and can be much simpler than the original operator A. This strong limit is called 
the limit operator of the operator A with respect to the sequence of isometries {Vn}.. 

Since the translation operator Th . is for every h ∈ R. an isometry on a 
rearrangement-invariant Banach function space, we will consider limit operators 
with respect to sequences of isometries {Thn}∞n=1 . for a given sequence of real 
numbers {hn}∞n=1 .. 

We start by considering limit operators of compact operators. The following 
result is a consequence of [11, Corollary 2] and [19, Lemma 1.4.6]. 

Theorem 5 Let N ∈ N. and X(R). be a reflexive rearrangement-invariant Banach 
function space. If K ∈ K(XN(R)). and {hn}∞n=1 ⊂ R. is a sequence such that hn →
+∞. as n →∞., then 

. lim
n→∞

llllllT −1
hn

KThnf

llllll
XN(R)

= 0,

for all f ∈ XN(R).. 

The following corollary of the Kronecker theorem on almost periodic functions 
(see, e.g., [4, Theorem 1.12]) will allow us to calculate limit operators of operators 
of multiplication by almost periodic polynomials.
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Lemma 5 (See [4, Lemma 10.2]) Let N ∈ N..  If a1, . . . , aM ∈ AP 0
N×N . is a finite 

collection of almost periodic polynomials, then there exists a sequence {hn}∞n=1 ⊂ R. 

such that hn →+∞. as n →∞. and 

. lim
n→∞llaj (· + hn)− aj (·)llL∞N×N (R) = 0

for all j ∈ {1, . . . ,M}.. 
For N ∈ N. and a rearrangement-invariant Banach function space X(R). with 

nontrivial Boyd indices, let A0
N(AP 0, S;X(R)). denote the nonclosed algebra 

consisting of the operators of the form 

. 
7
i∈I

ci

l
j∈J

Aij ,

where I,J ⊂ N. are finite ordered sets, ci ∈ C. for i ∈ I., and 

. Aij ∈
l
aI : a ∈ AP 0

N×N

l
∪ {S}, (i, j) ∈ I×J.

The following result is the main ingredient of the proof of Theorem 2. 

Theorem 6 Let N ∈ N. and X(R). be a reflexive rearrangement-invariant Banach 
function space with nontrivial Boyd indices. For every B ∈ A0

N(AP 0, S;X(R))., 
there exists a sequence {hn}∞n=1 ⊂ R. such that hn →+∞. as n →∞., 

. lim
n→∞

llllllT −1
hn

BThnf − Bf

llllll
XN(R)

= 0

for all f ∈ XN(R). and 

. lim
n→∞

lllllll
T −1

hn
BThn

l∗
g − B∗g

llllll
X'

N (R)
= 0

for all g ∈ X'
N(R).. 

Proof Fix B ∈ A0
N(AP 0, S;X(R)).. Taking into account that the condition 

. lim
n→∞

lllllll
T −1

hn
BThn

l
f − Bf

llllll
XN(R)

= 0, f ∈ XN(R),

is equivalent to 

. lim
n→∞

lllllll
T −1

hn
BαβThn

l
f − Bαβf

llllll
X(R)

= 0, f ∈ X(R),
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for all α, β ∈ {1, . . . , N}., it suffices to consider only the case when N = 1..  By  
definition ofA0

1(AP 0, S;X(R))., we can write 

. B =
7
i∈I

ci

l
j∈J

Ai,j .

where Ai,j = S . or Ai,j = aI . for some a ∈ AP 0
.. 

Claim 1 For every sequence {hn}∞n=1 ⊂ R., 

. lim
n→∞

lllllll
T −1

hn
SThn

l
f − Sf

llllll
X(R)

= 0, f ∈ X(R),

lim
n→∞

lllllll
T −1

hn
SThn

l∗
g − S∗g

llllll
X'(R)

= 0, g ∈ X'(R).

To see this it is enough to point out that for all h ∈ R. and f ∈ X(R)., 

. [(T −1
h STh)f ](x) = (SThf )(x − h)

= lim
ε→0

1

πi

l
R\(x−h−ε,x−h+ε)

f (t + h)

t − x + h
dt

= lim
ε→0

1

πi

l
R\(x−ε,x+ε)

f (y)

y − x
dy

= (Sf )(x).

Analogously, by making use of Lemmas 2 and 4, one can simply repeat the 
argument to prove the statement in the dual space. This proves Claim 1. 

Claim 2 For every finite sequence a1, . . . , aM ∈ AP 0
., there is a sequence 

{hn}∞n=1 ⊂ R. such that hn →+∞. as n →∞. and, for each j ∈ {1, . . . M}., 

. lim
n→∞

lllllll
T −1

hn
aj IThn

l
f − (aj I )f

llllll
X(R)

= 0, f ∈ X(R), . (6) 

lim 
n→∞

lllllll
T −1 hn 

aj IThn

l∗ 
g − (aj I )∗g

llllll
X'(R) 

= 0, g ∈ X'(R). (7) 

Consider any finite sequence a1, . . . , aM ∈ AP 0
.. By Lemma 5, there is a sequence 

{hn}∞n=1 ⊂ R. such that hn →+∞. as n →∞. and, for each j ∈ {1, . . . M}., 

. lim
n→∞

llllT−hnaj − aj

llll
L∞(R)

= 0.
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Fix f ∈ X(R).. It follows from Axiom (A2) in the definition of a Banach function 
space that 

. 

lllllll
T −1

hn
aj IThn − aj I

l
f

llllll
X(R)

= lllll
T−hnaj − aj

l
f

llll
X(R)

≤ llllT−hnaj − aj

llll
L∞(R)

llf llX(R).

Passing to the limit as n → ∞., the squeeze theorem yields (6). Equality (7) is 
proved analogously with the aid of Lemmas 2 and 3. This finishes the proof of 
Claim 2. 

Now that the auxiliary results have been established, we are ready to proceed 
with the proof. Consider the set 

. U :=
l
(i, j) ∈ I×J : Ai,j = aI for some a ∈ AP 0

l
.

If U = ∅., then the result follows immediately from Claim 1. Suppose now that 
U /= ∅.. For each (i, j) ∈ U., consider an element ai,j ∈ AP 0

. such thatAi,j = ai,j I .. 
Repeating this process, we obtain a finite sequence (ai,j )(i,j)∈U . in AP 0

.. Applying 
Claim 2 to this sequence, we find that there exists a sequence {hn}∞n=1 ⊂ R. such that 
hn →+∞. as n →∞. and, for each (i, j) ∈ U., 

. lim
n→∞

lllllll
T −1

hn
ai,j IThn

l
f − (ai,j I )f

llllll
X(R)

= 0, f ∈ X(R),

lim
n→∞

lllllll
T −1

hn
ai,j IThn

l∗
g − (ai,j I )∗g

llllll
X'(R)

= 0, g ∈ X'(R).

Combining the above remarks with Claims 1 and 2, we arrive at the conclusion that 
for all (i, j) ∈ I×J., f ∈ X(R). and g ∈ X'(R)., 

. lim
n→∞

l
T −1

hn
Ai,j Thn

l
f = Ai,j f in X(R),

lim
n→∞

l
T −1

hn
Ai,j Thn

l∗
g = A∗

i,j g in X'(R).

Faced with this, we are left with appealing to the definition of the operator B and 
the basic operations among limit operators (see, e.g., [14, Proposition 3.4] or [18, 
Proposition 1.1.2]) to get that for all f ∈ X(R). and g ∈ X'(R)., 

. lim
n→∞

l
T −1

hn
BThn

l
f = Bf in X(R),

lim
n→∞

l
T −1

hn
BThn

l∗
g = B∗g in X'(R),

which completes the proof.   
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3.4 Proof of Theorem 2 

Suppose A ∈ AN(AP, S;X(R)). is Fredholm on XN(R)..  B  y [7, Ch. XI, Theo-
rem 5.1], there exists an operator R ∈ B(XN(R))., called a regularizer of A, such 
that the operatorsK1 = I−RA. andK2 = I−AR . are compact onXN(R).. It follows 
from the definition of the algebrasAN(AP, S;X(R)). and APN×N . that there exists 
B ∈ A0

N(AP 0, S;X(R)). such that 

.llA− BllB(XN (R)) <
1

4llRllB(XN (R))

, . (8)

llA∗ − B∗llB(X'
N (R)) < 

1 

4llR∗llB(X'
N ( R))

. (9) 

By Theorem 6, there exists a sequence {hn}∞n=1 ⊂ R. such that hn → +∞. as n →
∞., 

. lim
n→∞

llllllT −1
hn

BThnf

llllll
XN(R)

= llBf llXN(R) (10) 

for all f ∈ XN(R). and 

. lim
n→∞

lllllll
T −1

hn
BThn

l∗
g

llllll
X'

N (R)
= llB∗gllX'

N (R) (11) 

for all g ∈ X'
N(R).. It follows from Theorem 5 that 

. lim
n→∞

llllllT −1
hn

K1Thnf

llllll
XN(R)

= 0 (12) 

for all f ∈ XN(R). and 

. lim
n→∞

lllllll
T −1

hn
K2Thn

l∗
g

llllll
X'

N (R)
= 0 (13) 

for all g ∈ X'
N(R).. 

Let f ∈ XN(R).. Then for every n ∈ N., 

.f = T −1
hn

Thnf = T −1
hn

(RA+K1)Thnf

= T −1
hn

(R(A− B)+ RB +K1)Thnf

=
l
T −1

hn
RThn

l l
T −1

hn
(A− B)Thn

l
f

+
l
T −1

hn
RThn

l l
T −1

hn
BThn

l
f +

l
T −1

hn
K1Thn

l
f.
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Taking into account that
llllllT ±1

hn

llllll
B(XN (R))

= 1., we obtain 

. llf llXN(R) ≤llRllB(XN (R))llA− BllB(XN (R))llf llXN(R)

+ llRllB(XN (R))

llllllT −1
hn

BThnf

llllll
XN(R)

+
llllllT −1

hn
K1Thnf

llllll
XN(R)

. (14) 

It follows from (8), (10), (12), and (14) that 

. llf llXN(R) ≤ llRllB(XN (R))llA− BllB(XN (R))llf llXN(R) + llRllB(XN (R))llBf llXN(R)

≤ 2llRllB(XN (R))llA− BllB(XN (R))llf llXN(R) + llRllB(XN (R))llAf llXN(R)

<
1

2
llf llXN(R) + llRllB(XN (R))llAf llXN(R).

Hence 

. llf llXN(R) ≤ 2llRllB(XN (R))llAf llXN(R).

This inequality implies that 

.J(A;XN(R)) ≥ 1

2llRllB(XN (R))

> 0. (15) 

Analogously, it follows from 

. I = (AR +K2)
∗ = R∗A∗ +K∗

2

and (9), (11), and (13) that 

.J(A∗;X'
N(R)) ≥ 1

2llR∗llB(X'
N (R))

> 0. (16) 

Combining (15) and (16) with Lemma 1 and Theorem 4, we conclude that the 
operator A is invertible on the space XN(R)..   

4 Open Question for the Lorentz Space Lp,1(R). and the 
Marcinkiewicz Space Lp,∞(R). 

The non-increasing rearrangement of a function f ∈M0(R,m). is defined by 

.f ∗(x) := inf{λ : mf (λ) ≤ x}, x ∈ [0,∞).
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For x ∈ (0,∞)., put 

. f ∗∗(x) = 1

x

l x

0
f ∗(y) dy.

Suppose 1 < p < ∞. and 1 ≤ q ≤ ∞.. The Lorentz space Lp,q(R). consists of all 
functions f ∈M0(R,m). for which the quantity 

. llf llLp,q =

⎧⎪⎪⎨
⎪⎪⎩

ll ∞

0

l
x1/pf ∗∗(x)

lq dx

x

l1/q

, if 1 ≤ q < ∞,

sup
0<x<∞

l
x1/pf ∗∗(x)

l
, if q = ∞,

is finite. The space Lp,∞(R). is frequently called the weak-Lp
. space or the 

Marcinkiewicz space. 
According to [1, Ch. 4, Theorem 4.6], if 1 < p < ∞. and 1 ≤ q ≤ ∞., then 

Lp,q(R). is a rearrangement-invariant Banach function space with respect to ll ·llLp,q . 

with the Boyd indices 

. αLp,q = βLp,q = 1/p.

In this case, the definition of the algebraAN(AP, S;Lp,q(R)).makes sense. 
By [1, Ch. 4, Corollary 4.8] (see also [16, Corollary 8.5.4]), the space Lp,q(R). 

is separable provided 1 < p < ∞. and 1 ≤ q < ∞.. As a result of this, it follows 
that Lp,q(R). is reflexive if 1 < p, q < ∞. (see [16, Corollary 8.5.5]). Note that 
Corollaries 8.5.4 and 8.5.5 in [16] both contain the incorrect condition 1 ≤ q ≤ ∞., 
which should be replaced by 1 ≤ q < ∞. and 1 < q < ∞., respectively. 

So, Theorem 2 immediately implies the following. 

Corollary 1 Let N ∈ N., 1 < p, q < ∞., and A ∈ AN(AP, S;Lp,q(R)).. Then the 
operator A is Fredholm on L

p,q
N (R). if and only if it is invertible on L

p,q
N (R).. 

It would be interesting to answer the following question. 

Question 1 Let N ∈ N., 1 < p < ∞. and q ∈ {1,∞}.. Is it true that every operator 
A ∈ AN(AP, S;Lp,q(R)). is Fredholm on L

p,q
N (R). if and only if it is invertible on 

L
p,q
N (R).? 

We would like to conclude this paper with the observation that if the answer to 
the above question is positive, then the corresponding proof should be different from 
the proof of Theorem 2. 

Indeed, the proof of Theorem 2 relies on Theorem 5 based on the fact that if 
X(R). is a reflexive rearrangement-invariant space, then the sequence of translation 
operators {Thn}∞n=1 . weakly converges to the zero operator on X(R). for every 
sequence {hn}∞n=1 . of real numbers such that |hn| → +∞. as n → ∞. (see 
[11, Corollary 2]). The same fact is still true for the nonreflexive separable space 
Lp,1(R). with 1 < p < ∞. (see [11, Corollary 3]). However, it is not true for the
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nonreflexive and nonseparable space Lp,∞(R). with 1 < p < ∞.: for any sequence 
{hn}∞n=1 . of real numbers such that |hn| → +∞. as n → ∞., the sequence of 
translation operators {Thn}∞n=1 . does not converge weakly to the zero operator on 
the Marcinkiewicz space Lp,∞(R). (see [11, Theorem 2(b)] with ϕ(t) = t1/p .). 
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Approximate Reconstruction of a 
One-Dimensional Parabolic Equation 
from Boundary Data 

Vladislav V. Kravchenko 

To Yuri Karlovich on the occasion of his 75th birthday 

Abstract A method for recovering the spatially-dependent coefficient q(x). in 
the parabolic equation wt − wxx + q(x)w = 0., x ∈ (0, L)., t > 0., from a 
knowledge of the boundary data w(0, t)., wx(0, t)., w(L, t). and under the condition 
w(x, 0) = 0., is developed. It is based on Neumann series of Bessel functions 
(NSBF) representations for solutions of the related Sturm-Liouville equation. With 
the aid of the Laplace transform and NSBF representations, the inverse problem 
is reduced to a system of linear algebraic equations for the NSBF coefficients. 
The coefficient q(x). is recovered from an arithmetic combination of the first two 
unknowns of this system. The approach leads to an efficient numerical algorithm. 
Numerical efficiency is illustrated by test examples. 

1 Introduction 

The problem of recovering the unknown coefficient q(x). in the parabolic equation 

.wt − wxx + q(x)w = 0 (1) 

has attracted considerable interest [2, 3, 7–11, 13–15, 17, 19, 26, 28–32] due to 
numerous applications of corresponding inverse coefficient problems in industry, 
in particular, in detecting mechanical imperfections by non-destructive testing, 
monitoring of the heat distribution in chemical reactors among many others (see, 
e.g., [13, 14, 19, 29] and references therein). Various types of initial-boundary 
conditions have been considered. In particular, inverse problems involving some 
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homogeneous boundary conditions at the endpoints of the spatial variable interval 
x ∈ (0, L). and prescribed w(x, 0). as well as w(x, T ). or w(x0, t)., where T > 0. 
and x0 . is a fixed point in the interval [0, L]., were considered, e.g., in [3, 9, 32]. 
Typically, one prescribes primary initial-boundary conditions, which would allow 
one to uniquely determine w(x, t). if q(x). were known, for example, the initial-
boundary data w(x, 0)., w(0, t). and w(L, t).. One then sets additional boundary 
conditions in order to attempt to reconstruct q(x)., and this has often been the 
flux on one of the lines x = 0. or x = L., for example, wx(0, t)..  I  n [26], in 
the case when q ∈ C1[0, L]. is real valued, it was shown that if w(x, 0) = 0., 
w(L, t) = 0. and w(0, t)., wx(0, t). are prescribed, then there is at most one solution 
pair (q(x),w(x, t)).. Additionally, we refer to [19, Sect. 4.6] and [29, Sect. 3.10] 
for the proof of the uniqueness under less restrictive conditions on a real valued 
coefficient q(x).. 

In the present work, we develop a method for solving the problem (IP1) 
consisting of recovering a complex-valued coefficient q(x) ∈ L1(0, L). under the 
condition w(x, 0) = 0. and from the prescribed w(0, t)., wx(0, t)., w(L, t)..  The  
method is based on reducing the original inverse problem to an inverse coefficient 
problem (IP2) for the Sturm-Liouville equation

. − y''(x) + q(x)y(x) = ρ2y(x), x ∈ (0, L). (2) 

Here, the potential q(x). needs to be recovered from the prescribed functions 
y(ρ, 0) = a(ρ)., y'(ρ, 0) = b(ρ). and y(ρ, L) = l(ρ)., where y(ρ, x). denotes a 
solution of (2) for a corresponding value of the complex parameter ρ .. The problem 
IP2 was studied in [25] in the case of a real valued potential (see also [12], where 
the prescribed data y(ρ, L) = l(ρ).was substituted by y'(ρ, L)+Hy(ρ,L) = l(ρ)., 
H ∈ R.), where a method for its numerical solution, based on the Neumann series 
of Bessel functions (NSBF) representations and on the reduction to a two-spectrum 
inverse problem was developed. More recently, another approach for solving IP2 
with complex-valued potentials was developed in [22], also based on the NSBF, but 
not requiring computation of the spectra. 

The problem IP2 is obtained from IP1 by applying the Laplace transform, which 
naturally leads to the equation 

. − y''(x) + q(x)y(x) = −λy(x), (3) 

where Re λ > 0., while the NSBF representations enjoy most remarkable conver-
gence properties for ρ ∈ R. in (2) or, more generally, when |Im ρ| < C ., where the 
positive constant C should not be too large. Thus, the minus sign on the right-hand 
side of (3) complicates the direct application of the approach based on the NSBF 
representations. However, we overcome this difficulty by shifting the potential in (1) 
and using corresponding properties of the Laplace transform. 

The approach developed in the present work is applicable to a large variety 
of inverse coefficient problems for partial differential equations. Its numerical 
efficiency is illustrated by numerical examples.
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2 Problem Setting 

Consider the one-dimensional parabolic equation 

.wt(x, t) − wxx(x, t) + q(x)w(x, t) = 0, 0 < x < L, t > 0, (4) 

where the coefficient q ∈ L1(0, L). is complex valued. Assume 

.w(x, 0) = 0, 0 ≤ x ≤ L. (5) 

The inverse coefficient problem (IP1) consists of recovering the coefficient q(x). 

from the prescribed functions 

.w(0, t) = α(t), wx(0, t) = β(t), w(L, t) = γ (t), t ≥ 0, (6) 

where α, β, γ ∈ L1(0,∞). are complex valued. 
Let us take the Laplace transform of (4)–(6). Denote 

. v(x, λ) = L [w(x, t)] :=
l ∞

0
w(x, t)e−λtdt,

A(λ) := v(0, λ)., B(λ) := vx(0, λ)., G(λ) := v(L, λ).. Then (4)–(6) can be written 
as 

. − v'' + q(x)v = −λv, 0 < x < L, (7) 

.v(0, λ) = A(λ), v'(0, λ) = B(λ), v(L, λ) = G(λ). (8) 

Note that A(λ)., B(λ)., G(λ). are analytic in the half-plane Re λ > 0.. Moreover, 
without loss of generality, we assume that they are analytic in a larger half-plane 
l lμ := {λ : Re λ > −μ}., where μ > 0. can be arbitrarily large. Indeed, fix μ > 0. 
and instead of Eq. (4), consider the equation 

.ut (x, t) − uxx(x, t) +~q(x)u(x, t) = 0, 0 < x < L, t > 0, (9) 

where~q(x) := q(x) + μ.. Solutions of (4) and (9) are related by 

. u(x, t) = e−μtw(x, t).

w(x, t). satisfies (4)–(6)  iff u(x, t). satisfies (9), (5), and 

.u(0, t) = ~α(t), ux(0, t) = ~β(t), u(L, t) = ~γ (t), t ≥ 0,
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where ~α ., ~β ., ~γ . are obtained from α ., β ., γ ., respectively, by multiplying them by e−μt
.. 

Thus, ~α, ~β,~γ ∈ L1(0,∞; eμt )., and their images under the Laplace transform are 
analytic functions in l lμ .. 

Thus, we consider the inverse problem of recovering a potential q(x). in (7) from 
the prescribed A(λ)., B(λ)., G(λ). in (8), which are analytic functions in the half-
plane l lμ .. 

In particular, we have that the functions A(λ)., B(λ)., G(λ). are known for λ ∈
(−μ,∞).. Thus, taking ρ = √−λ., λ ∈ (−μ,∞)., we may consider the problem 
(IP2) of recovering q(x). in the equation 

. − y'' + q(x)y = ρ2y, x ∈ (0, L) (10) 

from the knowledge of the boundary data 

.y(ρ, 0) = a(ρ), y'(ρ, 0) = b(ρ), y(ρ, L) = e(ρ), (11) 

for ρ = iτ ., τ > 0. and for ρ ∈ [0,√μ)..  Here a(ρ) := A(−ρ2)., b(ρ) := B(−ρ2)., 
e(ρ) := G(−ρ2).. 

3 Solution of Inverse Problem 

It was shown in the previous section that the inverse problem IP1 reduces to Problem 
IP2. For solving the latter, we apply the approach proposed in [22]. Here, we briefly 
describe it. We denote by ϕ(ρ, x). and S(ρ, x). the solutions of (10) satisfying the 
initial conditions 

. ϕ(ρ, 0) = 1, ϕ'(ρ, 0) = 0,

. S(ρ, 0) = 0, S'(ρ, 0) = 1.

Additionally, we denote by T (ρ, x). the solution of (10) which satisfies the initial 
conditions at x = L.: 

. T (ρ, L) = 0 and T '(ρ, L) = 1.

Note that 

.T (ρ, x) = ϕ(ρ,L)S(ρ, x) − S(ρ, L)ϕ(ρ, x). (12) 

Notice that equality (12) is nothing more than a generalization of the trigonometric 
identity 

. sin(ρ(x − L)) = cos(ρL) sin(ρx) − sin(ρL) cos(ρx),
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which arises from (12) when q ≡ 0.. 
In terms of the solutions ϕ(ρ, x).and S(ρ, x)., the solution y(ρ, x)., satisfying (10) 

and the initial conditions from (11) at the origin, has the form 

. y(ρ, x) = a(ρ)ϕ(ρ, x) + b(ρ)S(ρ, x).

Thus, the third equality in (11) leads to the following equality for the functions 
ϕ(ρ,L). and S(ρ, L).: 

.a(ρ)ϕ(ρ, L) + b(ρ)S(ρ, L) = e(ρ). (13) 

Below, we show that both ϕ(ρ,L). and S(ρ, L). can be recovered from this 
equality, considered at a sufficiently large number of points ρk .. This is the first 
step of the algorithm for solving IP2. We compute the NSBF coefficients of 
ϕ(ρ,L). and S(ρ, L)., that gives us the possibility to compute ϕ(ρ,L). and S(ρ, L). 

(approximately) for any ρ ∈ R.. 
In the second step, we use ϕ(ρ,L). and S(ρ, L). computed at a sufficiently large 

number of the points ρ ∈ R. and substitute them into the identity (12). For every 
x ∈ [0, L]., this leads to a system of linear algebraic equations for three sets of the 
NSBF coefficients corresponding to three solutions ϕ(ρ, x)., S(ρ, x). and T (ρ, x).. 
Moreover, in order to obtain q(x). we do not need the whole sets of the NSBF 
coefficients. It is worth mentioning here that the final step, the recovery of q(x)., 
depends on the NSBF that are used. The first NSBF for the solutions of (10)  were  
obtained in [24]  (see  al  so [20] and [18]). For example, for the solution ϕ(ρ, x)., that 
NSBF has the form 

. ϕ(ρ, x) = cos (ρx) +
∞7

n=0

gn(x)j2n(ρx),

where jk(z). stands for the spherical Bessel function of order k (for their definition, 
see, e.g., [1]). Here, the first NSBF coefficient has the form g0(x) = ϕ(0, x) − 1.. 
Hence, for recovering q(x)., one can take into account that ϕ''(0, x)−q(x)ϕ(0, x) =
0. and thus 

. q(x) = ϕ''(0, x)

ϕ(0, x)
= g''

0 (x)

g0(x) + 1
.

A drawback of this procedure is of course the necessity to take the second derivative 
(numerically) in the last step of the algorithm. This was one of the motivations for 
developing another NSBF representation for the solutions [22], such that allows us 
to recover q(x). from an arithmetic combination of the first two NSBF coefficients, 
without any numerical differentiation involved. The limitation of this alternative 
NSBF representation is that it is valid for the potentials from C1 [0, L]., and in 
general, it is not applicable to potentials fromL1(0, L).. This becomes clear from the 
procedure of its deduction [23]. Thus, if no additional information on the regularity
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of q(x). is available, one can apply the NSBF representations from [24] (for their 
use in inverse coefficient problems, we refer to [21] and [4–6, 12, 25]). Here, we 
proceed with the development of the method under the condition q ∈ C1 [0, L].. 

We use the following series representations for the solutions ϕ(ρ, x)., S(ρ, x). and 
T (ρ, x).. 

Theorem 1 ([22]) Let q ∈ C1 [0, L].. Then the solutions ϕ(ρ, x)., S(ρ, x). and 
T (ρ, x). of (10) admit the series representations 

.ϕ(ρ, x) = cos (ρx) + sin (ρx)

ρ
ω(x) − xj1(ρx)

ρ
q−(x) − 1

ρ2

∞7
n=1

ϕn(x)j2n(ρx), . 

(14) 

S(ρ, x) = sin (ρx) 
ρ 

+ 
ω(x) 
ρ2

(
3j1(ρx) 

ρx 
− cos (ρx)

)

+ 
q+(x) 

ρ3 (sin (ρx) − 3j1(ρx)) − 
1 

ρ3 

∞7
n= 1

σn(x)j2n+1(ρx), . (15) 

T  (ρ,  x)  = sin (ρ (x − L)) 
ρ

− 
ωL(x) 

ρ2

(
3j1(ρ (x − L)) 

ρ (x − L)
− cos (ρ (x − L))

)

+ 
q+ 
L (x) 
ρ3 (sin (ρ (x − L)) − 3j1(ρ (x − L )))

− 1

ρ3

∞7
n=1

θn(x)j2n+1(ρ (x − L)), (16) 

where jk(z). stands for the spherical Bessel function of order k (see, e.g., [1]), 

. ω(x) := 1

2

l x

0
q(s)ds, ωL(x) := 1

2

l L

x

q(s)ds,

.q±(x) := q(x) ± q(0)

4
− ω2(x)

2
, q+

L (x) := q(x) + q(L)

4
− ω2

L(x)

2
.
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For every x ∈ [0, L]., the series converge uniformly on any compact set of the 
complex plane of the variable ρ ., and for any ρ ∈ C\ {0}. the remainders of their 
partial sums admit the estimates 

. |ϕ(ρ, x) − ϕN(ρ, x)| ≤ εN(x)

|ρ|2
/
sinh(2 Im ρx)

Im ρ
,

. |S(ρ, x) − SN(ρ, x)| ≤ εN(x)

|ρ|3
/
sinh(2 Im ρx)

Im ρ
,

. |T (ρ, x) − TN(ρ, x)| ≤ εN(x)

|ρ|3
/
sinh(2 Im ρx)

Im ρ
,

where the subindex N indicates that in (14)–(16) the sum is taken up to N , and 
εN(x). is a positive function tending to zero when N → ∞.. 

Remark 1 For ρ = 0., the following equalities hold 

.ϕ(0, x) = ϕ1(0, x), S(0, x) = S1(0, x), T (0, x) = T1(0, x). (17) 

More explicit relations can be obtained by using the asymptotics of the spherical 

Bessel functions: jk(z) ∼ zk

(2k+1)!! ., when z → 0.. Equalities (17) turn into the 
formulas 

. ϕ(0, x) = 1 + xω(x) − x2

3

(
q−(x) + ϕ1(x)

5

)
,

. S(0, x) = x + 2

5
x2ω(x) − x3

15

(
q+(x) + σ1(x)

7

)
,

. T (0, x) = x − L − 2

5
(x − L)2 ωL(x) − (x − L)3

15

(
q+
L (x) + θ1(x)

7

)
.

Now, the method for recovering q(x). from the known functions (11) consists of 
two steps. First, we substitute the series representations (14) and (15) evaluated at 
x = L. into (13), which gives us the following system of linear algebraic equations 

.

/
ak sin (ρkL)

ρk

+ bk

ρ2
k

(
3j1(ρkL)

ρkL
− cos (ρkL)

)/
ω(L)

−akLj1(ρkL)

ρk

q−(L) − ak

ρ2
k

∞7
n=1

ϕn(L)j2n(ρkL)
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+ 
bk 

ρ3 
k 

(sin (ρkL) − 3j1(ρkL)) q+(L) − 
bk 

ρ3 
k 

∞7
n=1 

σn(L)j2n+1(ρkL) 

= ek − ak cos (ρkL ) − bk

ρk

sin (ρkL)

for ρk ∈ [0,√μ)., k = 1, 2, . . ...  Her  e

. ak := a(ρk), bk := b(ρk), ek := e(ρk), k = 1, 2, . . . .

This leads to a finite system of linear algebraic equations for computing the NSBF 
coefficients ω(L)., q−(L)., q+(L)., ϕn(L)., σn(L)., n = 1, . . . , N ., 

. 

/
ak sin (ρkL)

ρk

+ bk

ρ2
k

(
3j1(ρkL)

ρkL
− cos (ρkL)

)/
ω(L)

−akLj1(ρkL)

ρk

q−(L) − ak

ρ2
k

N7
n=1

ϕn(L)j2n(ρkL)

+ bk

ρ3
k

(sin (ρkL) − 3j1(ρkL)) q+(L) − bk

ρ3
k

N7
n=1

σn(L)j2n+1(ρkL)

= ek − ak cos (ρkL) − bk

ρk

sin (ρkL) (18) 

for k = 1, . . . , K .. 

Remark 2 Note that in general we consider overdetermined systems of linear 
algebraic equations with K ≥ 2N + 3.. In practice, a least-squares solution of an 
overdetermined system gives better results and allows us to make use of all available 
data, while keeping the number of the coefficients relatively small (in practice, 
N = 4. or 5 may prove sufficient). 

Remark 3 The parameter ω(L). arises as a factor in the second term of the 
asymptotics of Sturm-Liouville eigenvalues of (10). Often, numerical techniques 
for solving inverse Sturm-Liouville problems require its prior knowledge as, for 
example, in [33]  o  r [16]. Here, ω(L). is obtained immediately, directly from the 
input data of the problem, together with the parameters q−(L). and q+(L).. Their 
combination gives the values of q(x). at the end points: 

. q(0) = 2
(
q+(L) − q−(L)

)
and q(L) = 2

(
q+(L) + q−(L) + ω2(L)

0
.

(19) 

The knowledge of the coefficients ω(L)., q−(L)., q+(L)., ϕn(L)., σn(L)., n =
1, . . . , N . allows us to compute the functions ϕN(ρ,L). and SN(ρ,L). for any value
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of ρ .. Estimates from Theorem 1 show that the accuracy of the approximation of 
the exact solutions ϕ(ρ,L). and S(ρ, L). by the approximate ones ϕN(ρ,L). and 
SN(ρ,L). does not deteriorate for large values of ρ ∈ R. and even improves. 

Second, we convert the knowledge at x = L. of the solutions ϕ(ρ, x). and S(ρ, x). 

into the knowledge of q(x). on the whole interval. This is done by considering 
identity (12). We use it for constructing the main system of linear algebraic 
equations. Assume ϕ(ρ,L). and S(ρ, L). to be computed on a set of points {γk}K1

k=1 ., 
which in general may be different from {ρk}Kk=1 ., which were used in the first step. 
Denote 

.Sk := S(γk, L) and Fk := ϕ(γk, L). (20) 

Now, for all x ∈ (0, L)., substitution of the series representations (14), (15) and (16) 
into (12) leads to a system of linear algebraic equations for the functions 

. ω(x), Q(x) := q(x)

4
− ω2(x)

2
, q0 := q(0)

4
,

ωL(x)., q+
L (x). and {ϕn(x), σn(x), θn(x)}Nn=1 ., 3N + 5 ≤ K1 .: 

. Ak1(x)ω(x) + Ak2(x)Q(x) + Ak3(x)q0 + Ak4(x)ωL(x) + Ak5(x)q+
L (x)

+
N7

n=1

Bkn(x)ϕn(x) −
N7

n=1

Ckn(x)σn(x) +
N7

n=1

Dkn(x)θn(x)

= sin (γk (x − L))

γk

+ Sk cos (γkx) − Fk sin (γkx)

γk

, k = 1, . . . , K1, (21) 

where 

. Ak1(x) := −Sk sin (γkx)

γk

+ Fk

γ 2
k

(
3j1(γkx)

γkx
− cos (γkx)

)
,

. Ak2(x) := Fk

γ 3
k

(sin (γkx) − 3j1(γkx)) + Skxj1 (γkx)

γk

,

. Ak3(x) := −Skxj1 (γkx)

γk

+ Fk

γ 3
k

(sin (γkx) − 3j1(γkx)) ,

. Ak4(x) := 1

γ 2
k

(
3j1(γk (x − L))

γk (x − L)
− cos (γk (x − L))

)
,

.Ak5(x) := − 1

γ 3
k

(sin (γk (x − L)) − 3j1(γk (x − L))) ,
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. Bkn(x) := Sk

γ 2
k

j2n(γkx), Ckn(x) := Fk

γ 3
k

j2n+1(γkx),

Dkn(x) := 1

γ 3
k

j2n+1(γk (x − L)).

The potential q(x)., x ∈ (0, L). is obtained from the equality 

. q(x) = 4Q(x) + 2ω2(x).

The values q(0). and q(L). are obtained in the first step, see Remark 3. 
Thus, in order to obtain the potential q(x). at a point x ∈ (0, L)., one should solve 

consecutively two systems of linear algebraic equations: system (18) and (21). 

4 Numerical Examples 

Example 1 Let c be a positive constant. Consider the equation

. wt(x, t) − wxx(x, t) + cw(x, t) = 0, 0 < x < 1, t > 0,

subject to the conditions (5) and 

. w(0, t) = te−ct , wx(0, t) = −2

/
t

π
e−ct ,

w(1, t) = te−ct

((
1 + 1

2t

)
erfc

(
1

2
√

t

)
− 1√

πt
e− 1

4t

)
, t ≥ 0

(see [27, 1.1.1-6, Example 3]). The Laplace transform of these functions can be 
calculated explicitly, so that (8) has the form 

.A(λ) = 1

(λ + c)2
, B(λ) = − 1

(λ + c)
3
2

, G(λ) = e−√
λ+c

(λ + c)2
. (22) 

The numerical solution of the inverse problem was performed for c = π2
..  The  

values of the functions A(λ)., B(λ). and G(λ). were calculated at 101 values of λ. 

with a negative real part: λk = −ρ2
k = −(τk + 0.1i)2 ., where the numbers τk . were 

distributed uniformly from 0 to 10, and at 11 positive values, distributed uniformly 
from λ = 0.0001. to λ = 1..  The  value  of  N in (18) was chosen as N = 4.. Thus, 
ω(L)., q−(L)., q+(L). and the sets {ϕn(L)}4n=1 ., {σn(L)}4n=1 . were computed. It is 
worth mentioning that at this stage, the absolute error of the computed ω(L). was 
6.5 · 10−7

., while the absolute error of q(0). and q(L)., obtained by (19), resulted 
in 9 · 10−6

. and 2 · 10−4
., respectively. With the coefficients ω(L)., q−(L)., q+(L).
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Fig. 1 Potential from Example 1, with c = π2 ., recovered from the values of the functions A(λ)., 
B(λ). and G(λ). (22), calculated at 101 values of λ.with a negative real part: λk = −ρ2

k = −(τk +
0.1i)2 ., where the numbers τk . were distributed uniformly from 0 to 10, and at 11 positive values, 
distributed uniformly from λ = 0.0001. to λ = 1.. The maximum absolute error resulted in 2 · 10−4 . 
(at x = 1.) 

and {ϕn(L), σn(L)}4n=1 . computed in the first step, the values (20) were computed 
at 1001 points γk . logarithmically equally spaced on the segment [0.1, 1300].. These 
values were used to write the main system (21) with N = 4.. System (21)  was  
solved at 151 points xj ., uniformly distributed on the segment [0, 1]., with obvious 
simplifications at the endpoints of the segment. Figure 1 presents the recovered 
potential and the distribution of the absolute error. The maximum absolute error 
resulted in 2 · 10−4

.. 

Example 2 Consider the equation 

.wt(x, t) − wxx(x, t) +
(
x2 + c

0
w(x, t) = 0, 0 < x < 1, t > 0. (23) 

Here c is a complex number. In order to construct an exact solution, the transforma-
tion from [27, subsect. 1.3.1-1] can be used, which relates solutions of this equation 
to solutions of the heat equation uτ (z, τ ) − uzz(z, τ ) = 0.. Namely, the solutions 
of (23) have the form 

.w(x, t) = u(z, τ )e
x2
2 +(1−c)t
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with z = xe2t . and τ = 1
4

(
e4t − 1

)
., where u(z, τ ). are solutions of the heat equation. 

Now, choosing 

. u(z, τ ) = erfc

(
z

2
√

τ

)
= erfc

⎛
⎝ xe2t/(

e4t − 1
)
⎞
⎠ ,

we obtain that 

. w(x, t) = e
x2
2 +(1−c)t erfc

⎛
⎝ xe2t/(

e4t − 1
)
⎞
⎠

is a solution of (23). We have then 

. w(0, t) = e(1−c)t , wx(0, t) = − 2√
π

e(3−c)t/(
e4t − 1

)

and 

. w(1, t) = e(1−c)t+1/2 erfc

⎛
⎝ e2t/(

e4t − 1
)
⎞
⎠ .

It is not difficult to see that 

. A(λ) = L [w(0, t)] (λ) = L
/
e(1−c)t

l
(λ) = 1

λ + c − 1
,

. B(λ) = L [wx(0, t)] (λ) = −1

2

r
(

λ+c−1
4

0

r
(

λ+c+1
4

0 .

The Laplace transform G(λ). of w(1, t). was computed numerically with the aid of 
the Matlab routine ‘integral’. The values of the functionsA(λ).,B(λ).andG(λ).were 
obtained at 101 negative values of λ.distributed uniformly from λ = − (3π)2 . to λ =
−0.01. and at 101 positive values, distributed uniformly from λ = 0.0001. to λ = π2

.. 
The numerical solution of the inverse problem was performed for c = 16+ πi ..  The  
value of N in (18) was chosen as N = 4.. Thus, ω(L)., q−(L)., q+(L). and the sets 
{ϕn(L)}4n=1 ., {σn(L)}4n=1 .were computed. It is worth mentioning that at this stage the 
absolute error of the computed ω(L). was 5 · 10−7

., while the absolute error of q(0). 
and q(L)., obtained by (19), resulted in 6.6·10−6

.and 2.1·10−4
., respectively. With the 

coefficients ω(L)., q−(L)., q+(L). and {ϕn(L), σn(L)}4n=1 . computed in the first step, 
the values (20) were computed at 1001 points γk . logarithmically equally spaced
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Fig. 2 Potential from Example 2, with c = 16 + πi ., recovered from the values of the 
functions A(λ)., B(λ). and G(λ). that were obtained at 202 values of λ. distributed  in  the  interv  all− (3π)2 , π2

l
.. The maximum absolute error resulted in 2.1 · 10−4 . (at x = 1.) 

on the segment [0.1, 1300].. These values were used to write the main system (21) 
with N = 6.. System (21) was solved at 151 points xj ., uniformly distributed on 
the segment [0, 1]., with obvious simplifications at the endpoints of the segment. 
Figure 2 presents the recovered potential. The maximum absolute error resulted in 
2.1 · 10−4

. (at x = 1.). 
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Characteristic Determinants for a Second 
Order Difference Equation on the 
Half-Line Arising in Hydrodynamics 

Yuri Latushkin and Shibi Vasudevan 

To Yuri Karlovich on his seventy fifth birthday 

Abstract We study the point spectrum of a second order difference operator with 
complex potential on the half-line via Fredholm determinants of the corresponding 
Birman-Schwinger operator pencils, the Evans and the Jost functions. An applica-
tion is given to instability of a generalization of the Kolmogorov flow for the Euler 
equation of ideal fluid on the two dimensional torus. 

1 Introduction and Main Results 

In this paper we continue the work began in [38] and study the eigenvalues of the 
following boundary value problem for the second order asymptotically autonomous 
difference equation on the half-line Z+ = {0, 1, . . . }., 

.zn−1 − zn+1 + (bncn)zn = λzn, n ≥ 0, . (1) 

z−1 = 0, (2) 

where λ ∈ C. is the spectral parameter, 

.(bn)n≥0 ∈ l2(Z+;C) and (cn)n≥0 ∈ l2(Z+;C) (3) 
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are two given complex valued sequences that, in general, may depend on λ. 

holomorphically. We are seeking to characterize the values of the spectral parameter 
such that (1) and (2) has a nontrivial solution z = (zn)n≥0 ∈ l2(Z+;C)..  This  
question is important in stability issues for special steady state solutions of the two-
dimensional Euler equation, the so called generalized Kolmogorov flow, and our 
main application is a result on its instability. Specifically, in the current paper we 
define (and prove that they are being equal) four functions of the spectral parameter 
whose zeros are the eigenvalues of (1) and (2). We call the functions characteristic 
determinants. Our overall strategy is as in [38] where the full line case has been 
considered, but the treatment of the important half-line case is technically more 
challenging; in particular, in the current paper we have to prove from the outset 
for the half-line case analogs of some results obtained in [12] for the line case and 
essentially used in [38]. By reflection, analogous results hold for the equations on 
the negative half-line. 

An important particular case of (1) and (2) is the following eigenvalue problem 
for a difference equation arising in stability analysis of the generalized Kolmogorov 
flow of the Euler equation of ideal fluids on 2D torus, as seen below and considered 
in [17] and [38], 

.zn−1 − zn+1 = λzn/ρn, n ≥ 0, z−1 = 0, (4) 

where (ρn)n≥0 . is a given sequence satisfying the following conditions: 

.ρ0 < 0, ρn ∈ (0, 1), n ≥ 1, and ρn = 1+O(1/n2) as |n| → ∞. (5) 

The problem (4) is reduced to (1) and (2) by setting 

.bn = −λ
/
1− ρn/ρn and cn =

/
1− ρn. (6) 

For (4) we use continued fractions to define yet another, fifth function, also proven 
to be equal to the previous four characteristic determinants, whose zeros are the 
eigenvalues. This result, in turn, yields instability of the generalized Kolmogorov 
flow. 

It is convenient to re-write (1) and (2) as 

.
(
S − S−1 + diagn∈Z+{bncn}

)
z = λz, (7) 

where we denote by S : (zn)n≥0 l→ (0, z0, z1, . . . ). the right shift operator on 
l2(Z+;C). and by S−1 = S∗ : z l→ (z1, z2, . . . ). the left shift operator such that 
S−1S = Il2(Z+;C) ., the identity operator, while ran(SS−1) = (span{(1, 0, . . . )})⊥ .. 

By the spectral mapping theorem Spec(S− S−1) = [−2i, 2i]. since Spec(S) = {λ ∈
C : |λ| ≤ 1}., and so throughout the paper we assume that λ /∈ [−2i, 2i]. thus looking 
for the isolated eigenvalues of (1) and (2).
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Letting yn =
l

zn

zn−1

l
∈ C2 ., the problem (1) and (2) is equivalent to the following 

boundary value problem for the first order (2× 2).-system of difference equations, 

.yn+1 = A×
n yn, n ≥ 0, . (8) 

y0 ∈ ran(Q+). (9) 

Here and throughout the paper we use the following notations, 

.A×
n = A+ BnCn :=

l
bncn − λ 1

1 0

l
∈ C2×2, n ≥ 0.. (10) 

A = A(λ) =
l−λ 1 
1  0

l
,  Q+ =

l
1  0  
0  0

l
,  Q− =

l
0  0  
0  1

l
,  B  n = bnQ+, Cn = cnQ+.

(11) 

The eigenvalues of the matrix A(λ). solve the quadratic equation μ2 + λμ − 1 =
0., and so our standing assumption λ /∈ [−2i, 2i]. is equivalent to the fact that the 
eigenvalues of A(λ). are off the unit circle. We let μ+ = μ+(λ). and μ− = μ−(λ). 

denote the roots of the equation μ2 + λμ− 1 = 0. satisfying the inequalities 

. |μ+(λ)| < 1 < |μ−(λ)|

and denote by P± = P±(λ). the spectral projections for A(λ). in C2 . such that 
Spec(A(λ)

ll
ranP±) = {μ±(λ)}.. Finally, we let R+ = R+(λ). denote the projection in 

C
2
. onto ranP+ . parallel to ranQ+ ., and set R− = I2×2 − R+ .. 
The choice of the projection R+ . is important for the half-line case. Indeed, the 

constant coefficient difference equation yn+1 = Ayn . has exponential dichotomy on 
Z+ .with the dichotomy projection P+ .whose range is the uniquely determined sub-
space of the initial values of the bounded solutions to the equation. Unlike the full 
line case, the exponential dichotomy on Z+ . is not unique, but the only requirement 
on the dichotomy projection is that its range must be equal to the subspace ranP+ .. 
The choice of R+ .whose kernel is ranQ+ . as the dichotomy projection will allow us 
to satisfy the boundary condition in (2), see, e.g., formula (33) below. 

We now proceed to define our first characteristic determinant associated with (1)– 
(2). We consider the following Birman-Schwinger-type pencil of operators acting in 
l2(Z+;C)., 

.K+
λ = − diagn∈Z+{cn}(S − S−1 − λ)−1 diagn∈Z+{bn}, (12) 

analogous to Kλ . studied in [38] for the full line. By (3), the operator K+
λ . is of trace 

class and so we may define our first characteristic determinant det(I −K+
λ )..
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Next, we re-write (8) as
(
S−1−diagn∈Z+{A×

n }
)
y = 0. for y = (yn)n∈Z+ .where we 

continue to denote by S−1 . the shift acting in the space of vector valued sequences. 
We stress that the operator S−1−diagn∈Z+{A×

n }. in (8) and (9) acts from the subspace 

.l2ran(Q+)(Z+;C2) := {(yn)n≥0 ∈ l2(Z+;C2) : y0 ∈ ran(Q+)} (13) 

into l2(Z+;C2). and refer to [5] for results on equivalence of invertibility of the 
operator and dichotomy of the difference equation (8) on the half-line. We introduce 
the Birman-Schwinger-type pencil of operators acting in l2(Z+;C2)., 

.T+λ = diagn∈Z+{Cn}
(
S−1 − diagn∈Z+{A}

)−1 diagn∈Z+{Bn}, (14) 

analogous to Tλ . studied in [38] for the full line case. The operator T+λ . is of trace 
class by (3) and we define our second characteristic determinant det(I − T+λ ).. 

We now consider the (2 × 2).-matrix valued Jost solution Y+ = Y+(λ) =
(Y+

n )n≥0 ., Y+
n ∈ C2×2

.,  cf.  [12, 25, 38], defined as the matrix valued functions whose 
columns are solution to the difference equation (8) (without the boundary condition) 
satisfying 

.
llll(μ+)−n

(
Y+

n − AnR+
)ll
C
2×2 → 0 as n →+∞ and Y+

0 = Y+
0 R+. (15) 

As we will prove below, this solution is unique. Also, Y+
n = Y+

n R+ . for all n ≥ 0.. 
Using the projectionR− = R−(λ).onto ranQ+ .parallel to ranP+(λ)., analogously to 
E(λ). in [38] for the full line case, we introduce our third characteristic determinant, 
the Evans function, by the formula 

.E+(λ) = det
(
Y+
0 (λ)+ R−(λ)

)
. (16) 

We call a solution z+ = (z+n )n≥−1 . of the second order difference equation (1) 
(without the boundary condition) the Jost solution, cf. [9], provided 

.(μ+)−nz+n − 1→ 0 as n →+∞, (17) 

and denote by zr = (zrn)n≥−1 . the regular solution of the boundary value problem (1) 
and (2) satisfying the additional boundary condition zr0 = 1. (which is of course 
unique but not necessarily bounded at infinity). As in the case of the discrete 
Schrödinger equations, the Jost solution z+ = z+(λ). is unique. Introducing the 
notationW(u, v)n = (−1)n(un−1vn − unvn−1

)
., n ≥ 0., for the Wronskian of any 

two sequences u = (un)n≥−1 . and v = (vn)n≥−1 ., we note that the Wronskian of 
the solutions to (1) is n-independent, and thatW(z+, zr)0 = z+−1(λ).. We define our 
fourth characteristic determinant, the Jost function, analogously to F. from [38]  for  
the full line case,

.F+(λ) = μ+(λ)W(z+(λ), zr(λ))0, (18)
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where the scaling factor μ+(λ). is chosen such that F+(λ) = 1. provided bncn = 0. 
for n ≥ 0.when z+n = μn+ . for n ≥ −1.. 

Our fifth characteristic determinant will be defined only for the difference 
equation (4) assuming (5) and uses continued fractions; we introduce the notation 

.g+(λ) = 1

λ
ρ1
+ 1

λ
ρ2
+ . . .

. (19) 

The continued fraction converges for Re(λ) > 0. and | arg(λ)| ≤ π/2 − δ . for any 
δ ∈ (0, π/2). by the classical Van Vleck Theorem [32, Theorem 4.29] and we may 
now define our fifth function of interest by the formula, cf. G. from [38], 

.G+(λ) = μ+(λ) z+0 (λ)
(
g+(λ)+ λ/ρ0

)
, (20) 

where z+0 (λ). is the 0-th entry of the Jost solution, μ+(λ). is the eigenvalue of A(λ). 

inside of the unit disk, and g+(λ). is defined in (19), and we assume that Re(λ) > 0.. 
We are ready to formulate the main results of this paper. 

Theorem 1 Assume λ /∈ [−2i, 2i]. and that the sequences in (3) depend on 
λ. holomorphically. The functions introduced in (12), (14), (16) and (18) are 
holomorphic in λ. and equal, 

. det(I −K+
λ ) = det(I − T+λ ) = E+(λ) = F+(λ). (21) 

As a result, λ. is a simple discrete eigenvalue of (1) and (2) if and only if λ. is a zero 
of each of the functions in (21). 

Corollary 1 Assume Re(λ) > 0. and (5), and consider the difference equation (4). 
Define (bn).and (cn).by (6) and use the sequences to construct all four characteristic 
determinants in (21). Then G+(λ). defined in (20) via the continued fraction is equal 
to the functions in (21). 

We refer to [38] for a detailed discussion of the literature related to the results, 
and mention here only the following. Regarding the Birman-Schwinger operator 
pencils see [2, 8]. The papers most relevant to the current setup are [12, 25] and 
[36]. We are not aware of any literature on the Birman-Schwinger type pencils 
specific for the first order systems (1) on the half-line. For the full line case they have 
been studied in [12] which is a companion paper to [25] dealing with differential 
equations where, among many other things, the first equality in (21) was proved for 
the case of the Schrödinger differential operators. We are not aware of results of 
this sort for the difference equations of type (1) on the half-line. This equation is of 
course a particular case of eigenvalue problems for three diagonal (Jacobi) matrices, 
cf. [29, 31] and also [7, 18, 19, 30, 35, 45–47]. The dichotomies on the half-line were 
studied in great detail, see [4–6] and the references therein. Regarding the Evans
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function we refer to [34, 44] where one can find many other sources. The most 
relevant papers are again [12, 25], where, in particular, the second equality in (21) 
has been proved for quite general first order systems of difference and differential 
equations but on the full line, and so the results in the current paper for the half-line 
case seem to be new. The Evans function is a relatively new topic in the study of the 
2D-Euler-related difference equations as in (4); we are aware of only [14, 38]. The 
Jost solutions are classical [9] and so is the equality of det(I −K+

λ ). and F+ . in (21) 
for the Schrödinger case, see [33, 43] and generalizations in [24, 26]; however, it is 
quite possible that the use of the Jost solutions as well as the equality of F+ . and E+ . 

and det(I − K+
λ ). in the context of (1),  see  [38], appear to be new for the half-line 

case. Regarding continued fractions in this context see [17, 21, 32, 42, 48]. 
We now briefly discuss connections to the Euler equation again referring to [17, 

38] for more details and concentrating on just one particularly important case of 
stability of the so-called unidirectional, or generalized Kolmogorov, flow for the 
Euler equations of ideal fluid on the two dimensional torus T2 ., 

.∂to+ U · ∇o = 0, divU = 0, o = curlU, x = (x1, x2) ∈ T2, (22) 

where the two-dimensional vector U = U(x). is the velocity and the scalar o. is the 
vorticity of the fluid. The unidirectional (or generalized Kolmogorov) flow is the 
steady state solution to the Euler equations on T2 . of the form 

.o0(x) = αeip·x/2+ αe−ip·x/2 = α cos(p · x), (23) 

where p ∈ Z2\{0}. is a given vector and α ∈ R.. In particular, p = (m, 0) ∈ Z2 . for 
m ∈ N. corresponds to the classical Kolmogorov flow. It is thus a classical problem 
to study (linear) stability of the flow given by (23). To this end, using Fourier series 
o(x) = Ek∈Z2\{0} ωkeik·x . for vorticity, we rewrite (22) as a system of nonlinear 

equations for ωk ., k ∈ Z2 . as in [17, 38–40]. Linearizing this system about the 
unidirectional flow, one obtains the following operator in l2(Z2;C)., 

.L : (ωk)k∈Z2 l→
(
αβ(p,k− p)ωk−p − αβ(p,k+ p)ωk+p

)
k∈Z2 , (24) 

where the coefficients β(p,q). for p = (p1, p2)., q = (q1, q2) ∈ Z2 . are defined as 

.β(p,q) = 1

2

(llqll−2 − llpll−2)(p ∧ q), with p ∧ q := det
l p1 q1

p2 q2

l
, (25) 

for p /= 0,q /= 0., and β(p,q) = 0. otherwise. The flow (23) is called (linearly) 
unstable if the operatorL has nonimaginary spectrum.We refer to [37, 41] for results 
on stability and instability for the 2D Euler equations and related models. 

To study the spectrum of L, (see the discussion in [17, pp. 2054–2057]; see also 
[38, 39]) we decompose this operator into a sum of operators Lq ., q ∈ Z2 ., acting
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in the space l2(Z;C)., by “slicing” the grid Z2 . along lines parallel to p. such that 
Spec(L) = ∪q Spec(Lq)., where 

. Lq : (wn) l→
(
αβ(p,q+ (n− 1)p)wn−1 − αβ(p,q+ (n+ 1)p)wn+1

)
, n ∈ Z,

(26) 

and for k = q + np. from (24) we denote wn = ωq+np .. In other words, Lq =
α(S − S∗) diagn∈Z{β(p,q + np)}..  B  y (25),  if q is parallel to p. then Lq = 0. and 
thus we assume throughout that q is not parallel to p.. Moreover, since Lq . contains 
a scalar multiple α ∈ R., with no loss of generality we may rescale this operator or, 
equivalently, will assume the normalization condition α(q ∧ p)llpll−2/2 = 1.. 

The operators Lq . are classified based on the location of the line Bq = {q+ np :
n ∈ Z}. through the point q ∈ Z2 . relative to the disc of radius llpll. centered at 
zero, see, again, the discussion in [17, pp. 2054–2057]; see also [38, 39]. Spectral 
properties of the operators drastically depend on the location. For instance, if none 
of the vectors q+np., n ∈ Z., is located inside the open disc then Lq . has no unstable 
eigenvalues [39, 40]. In the current paper we consider only the case when p. and q. 

are such that 

.llqll < llpll, llq− pll = llpll and llq+ npll > llpll for all n ∈ Z \ {−1, 0}; (27) 

a typical example of this is p = (3, 1)., q = (2,−2).. This assumption corresponds 
to the case I− .described in [17], and we refer to this paper for a discussion regarding 
other possible cases. The case I+ .when −1. in (27) is replaced by +1. can be treated 
similarly to I− . while the case I0 . when llq + npll > llpll. for all n /= 0. has been 
considered in [38]. Geometrically, the case I− . and I+ . occur when one of the points 
in Bq . is inside of the open disc of radius llpll. and one of the points in Bq . is on the 
boundary of the disk while in case I0 .one point of Bq . is inside of the open disk while 
all others are outside of the closed disk. An interesting open question is to describe 
the spectrum of Lq . in the case II  when two points of Bq . are located inside of the 
open disk of radius llpll. centered at zero. 

Assuming that we are in the case I− ., that is, that (27) holds, we introduce the 
sequence ρn = 1−llpll2llq+ npll−2 ., n ∈ Z., such that the operator Lq . in (26) reads 
Lq = (S − S∗) diagn∈Z{ρn}.,  se  e (25). The eigenvalue equation for Lq . is 

.ρn−1wn−1 − ρn+1wn+1 = λwn, n ∈ Z, with (wn)n∈Z ∈ l2(Z;C). (28) 

By (27) we have ρ−1 = 0., ρ0 < 0., and ρn ∈ (0, 1). for all n ∈ Z \ {0,−1}..  In  
particular, the sequence (ρn)n≥0 . satisfies (5). Now Theorem 1 and Corollary 1 can 
be applied because the solution of (28) must be supported on Z+ . as seen in Lemma 2 
given in the next section. Theorem 1 implies the following. 

Corollary 2 Assume that a given p ∈ Z2 . is such that there exists a q ∈ Z2 . 
satisfying (27). Then the eigenvalues of Lq .with positive real parts are in one-to-one 
correspondence with zeros of each of the five functions in (21) and (20). Moreover,
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the operator Lq . from (26), and thus L fr om (24), has a positive eigenvalue. As a 
result, the unidirectional flow (23) is linearly unstable. 

The instability of the unidirectional flow in the current setting has been estab-
lished in [17, Theorem 2.9]. Nevertheless, the first assertion in Corollary 2 is 
an improvement of the part of [17, Theorem 2.9] where the correspondence was 
established between only the positive roots of the function g+(λ) + λ/ρ0 . and the 
positive eigenvalues of Lq . but under the additional assumption that the respective 
eigensequences satisfy some special property [17, Property 2.8]. By applying 
Theorem 1 in the proof of Corollary 2 we were able to show that this assumption is 
redundant. 

We conclude this section with references on the literature on stability of 
unidirectional flows. This topic is quite classical and well-studied, and we refer to 
[1, 3, 20–22, 42]. The setup used herein was also used in many papers [15, 16, 39, 40, 
48], but the closest to the current work is [17, 38]. We mention also [36] regarding 
connections to the Birman-Schwinger operators. Finally, connections between the 
Evans function and the linearization of the 2D Euler equation has been studied in a 
recent important paper [14]. 

2 Proofs 

We begin with several general comments regarding the objects introduced in the 
previous section. For a start, it is sometimes convenient to diagonalize the matrix A 
from (11). To this end we introduce matrices 

. W =
l
μ+ μ−
1 1

l
, W−1 = (μ+ − μ−)−1

l
1 −μ−
−1 μ+

l
, ~A = diag{μ+, μ−},

(29) 

so that one has, cf. (11), 

.W−1AW = ~A, W−1P±W = Q±. (30) 

We will use below the explicit formulas 

. R+ =
l
0 μ+
0 1

l
, R− =

l
1 −μ+
0 0

l
,

P+ = (μ+ − μ−)−1
l
μ+ 1
1 −μ−

l
, A−1 =

l
0 1
1 λ

l
. (31) 

The operator S − S−1 − λ. is invertible in l2(Z+;C). if and only if λ /∈ [−2i, 2i]. 
and in this case the inverse operator

(
S − S−1 − λ

)−1
. is given by the infinite matrix
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[ank]∞n,k=0 .whose entries are defined by the formula 

.ank = (μ+ − μ−)−1 ×
l

(μ−)n−k
(
1− (

μ+
μ− )n+1

)
for n ≤ k,

(μ+)n−k
(
1− (

μ+
μ− )k+1

)
for n > k.

(32) 

One can check this either directly by multiplying the respective infinite matrices and 
using the equation μ2 + λμ− 1 = 0.,  or  by  usi  ng [27, Theorem 1.1] as follows: we 
factorize S − S−1 − λ = μ−(I + μ+S−1)(I + μ−1− S). and use the Neumann series 
to obtain the inverse of each factor. 

From now on we abbreviate A = diagn∈Z+{A}.. The operator S−1 − A. acting 

from l2ranQ+(Z+;C2). into l2(Z+;C2).,  cf  . (13) and [5], is invertible if and only if 
λ /∈ [−2i, 2i]. and in this case the inverse operator (S−1 − A

)−1
. from l2(Z+;C2). 

onto l2ranQ+(Z+;C2). for u = (un)n≥0 ∈ l2(Z+;C2). is given by the formula 

. 
((

S−1 − A
)−1u
)
n
= −

+∞7

k=n

AnR−A−(k+1)uk +
n−17

k=0
AnR+A−(k+1)uk, n ≥ 0;

(33) 

here and below we always set
E−1

k=0 = 0., and so the RHS of (33) for n = 0. is a 
vector from ranR− = ranQ+ . as required in (13).  Formul  a (33) can be either taken 
from [5] or checked directly by multiplying S−1 − A. and the operator in (33) and 
taking into account that ranR+ = ranP+ . is the set of the initial data for the bounded 
on Z+ . solutions of the difference equation yn+1 = Ayn ., the projection P+ . is a 
dichotomy projection for this equation on Z+ ., and therefore the projection R+ . onto 
ranP+ . parallel to ranQ+ . is also a dichotomy projection since ranP+ ⊕ ranQ+ =
C
2
.,  cf.  [4–6] and also [10, 11]  o  r [13, Chapter 4] for discussions of dichotomies on 

the half-line. 
Formula (33) shows that the operator T+λ . in (14) is an operator with semi-

separable kernel, that is, T+λ . can be written as an infinite matrix T+λ = [Tnk]+∞n,k=0 . so 
that (T+λ u)n =E+∞

k=0 Tnkuk ., where 

. Tnk =
l
−CnA

nR−A−(k+1)Bk for 0 ≤ n ≤ k,

−CnA
nR+A−(k+1)Bk for 0 ≤ k ≤ n.

We refer to [28, Chapter IX] and [23] for a discussion of the operators with semi-
separable kernels; the results therein are used below in the proof of the second 
equality in (21). 

The matrix-valued Jost solution Y+ = (Y+
n )n≥0 . of (8) (with no boundary 

condition) is obtained as a solution to the following Volterra equation, 

.Y+
n − AnR+ = −

+∞7

k=n

An−(k+1)BkCkY
+
k , (34)
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defined first for n ≥ N . with N large enough and then extended to all of Z+ . 

as a solution to the difference equation (8) via Y+
n := (A×

n )−1Y+
n+1 . for n =

0, 1, . . . , N − 1.. The sequence (Y+
n )n≥0 . thus defined will satisfy the Volterra 

equation (34) as the following inductive step shows: Suppose we know that (34) 
holds for n = N . and that BN−1CN−1Y+

N−1 = Y+
N − AY+

N−1 .. We then use this 
and (34) with n = N . in the following calculation yielding (34) for n = N − 1., 

. AN−1R+ −
+∞7

k=N−1
A(N−1)−(k+1)BkCkY

+
k

= A−1(ANR+ −
+∞7

k=N

AN−(k+1)BkCkY
+
k − Y+

N

)+ Y+
N−1 = Y+

N−1.

Lemma 1 There is a large enough N such that Eq. (34) for n ≥ N . has a 
unique solution thus yielding the matrix-valued Jost solution Y+ = (Y+

n )n≥0 . of (8) 
satisfying (15). 

Proof We recall that |μ+| < 1. and introduce the space 

. l∞N := {u = (un)n≥N : llulll∞N := sup
{|μ+|−nllunllC2 : n ≥ N

}
< ∞}

of exponentially decaying at infinity C2 .-valued sequences on [N,+∞) ∩ Z+ ..  Le  t
TN . denote the operator on l∞N . that appears in the RHS of (34), 

.(TNu)n = −
+∞7

k=n

An−(k+1)BkCkuk, u = (un)n≥N ∈ l∞N . (35) 

Denoting qN =E+∞
n=N llBkCkllC2×2 .,  we  have qN → 0. as N →∞. by (3) and (11). 

Using (30) we have1 llAn−(k+1)ll
C
2×2 < |μ+|n−(k+1)

. for k ≥ n.. Thus, for n ≥ N ., 

. |μ+|−nll(TNu)nllC2 <
+∞7

k=n

|μ+|−n|μ+|n−(k+1)llBkCkllC2×2llukllC2 < qNllulll∞N

(36)

1 We write a < b. if a ≤ cb. for a constant c independent of any parameters contained in a and b.
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and the norm of TN . in l∞N . is dominated by qN . and therefore is less than, say, 1/2. 
provided N is large enough. Then (Y+

n )n≥N = (I−TN)−1(AnR+)n≥N . is the unique 
solution of (34) whose columns are in l∞N . and so for n ≥ N .we infer 

. |μ+|−nllY+
n − AnR+llC2×2 ≤ ll(Y+

n )n≥N − (AnR+)n≥Nlll∞N = llTN(Y+
n )n≥Nlll∞N

< qNll(Y+
n )n≥Nlll∞N = qNll(I − TN)−1(AnR+)n≥Nlll∞N

< qNll(AnR+)n≥Nlll∞N < qN

because ll(AnR+)n≥Nlll∞N < 1. since ranR+ = ranP+ .. This yields the first assertion 
in (15) while the second follows by multiplying (34) by R+ . from the right and using 
the uniqueness of the solution (Y+

n )n≥N = (Y+
n R+)n≥N ..   

Remark 1 Assertion Y+
n = Y+

n R+ .,  cf  . (15), and formula (29) for R+ . show that 
the first column of the matrix Y+

n . is zero. Since (Y+
n )n≥0 . solves the difference 

equation (8), we conclude that there is a sequence (zn)n≥−1 . that solves the difference 
equation (1) (with no boundary condition) such that 

.Y+
n =
l
0 zn

0 zn−1

l
, n ≥ 0. (37) 

Next, we proceed to discuss the Jost solution z+ = (z+n )n≥−1 . obtained as a solution 
to the following scalar Volterra equation, 

.z+n − (μ+)n = −(μ+ − μ−)−1
+∞7

k=n

bkck

(
(μ+)n−k − (μ−)n−k

)
z+k , (38) 

at first for n ≥ N .with N sufficiently large. A computation u sing (μ+)2+λμ+−1 =
0. shows that z+n . from (38) satisfy (1),  see  [29] for a similar computation. Therefore, 
the solution (z+n )n≥N . to (38) can be propagated backward as solution to (1), and thus 
z+n . can be defined for all n ≥ −1.. We now record properties of the Jost solution. 

Remark 2 The Jost solution z+(λ). is unique and holomorphic in λ.. This follows 
by a standard argument, cf. [12, 25] and the references therein, presented in [38, 
Remark 2.2] and based on passing in (38) to the new unknowns z+n /μn+ . and 
proving that the RHS of the resulting equation is a strict contraction in the space of 
exponentially decaying at infinity sequences, see the analogous proof of Lemma 1. 
As in the lemma, this yields the property (17). 

We stress that the Jost solution z+ = (z+n (λ))n≥−1 . is defined for n ≥ −1. as the 
solution of the difference equation (1), with no boundary condition (2). Theorem 1 
shows, in particular, that z+−1(λ) = 0. if and only if λ. is an eigenvalue (which is not 
surprising as in this case z+(λ). is the exponentially decaying solution to (1) that 
also satisfies the boundary condition (2)).
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Remark 3 Let us consider the difference equation (4) which is a particular case 
of (1) with bn, cn . as in (6) and ρn . satisfying (5). Then the proof of [38, Lemma 2.3] 
applies and shows that the Jost solution satisfies z+n /= 0. for all n ≥ 0.. 

Proof of Theorem 1 The three equalities in (21) are proved as follows. 

1. We prove det(I − K+
λ ) = det(I − T+λ ).. We claim that K+

λ . from (12) is the 
(1, 1).-block of the operator T+λ . from (14) in the decomposition 

. l2(Z+;C2) = ran(diag{Q+})⊕ ran(diag{Q−}),

with diag = diagZ+ ., for the projections Q± . from (11), that is, that 

. diag{Cn}(S−1 − A)−1 diag{Bn} =
l− diag{cn}(S − S−1 − λ)−1 diag{bn} 0

0 0

l
.

(39) 

Clearly, this implies the required equality. 
To begin the proof of the claim, we fix u = (un)n≥0 ∈ l2(Z+;C2). and denote 

vn =
(
diagn∈Z+{Q+}(S−1−A) diagn∈Z+{Q+}u

)
n
..  Formula  s (11) and (31) show 

that AR+ = μ+R+ . and R−A−1 = −μ+R− ., and thus (33) and (30) imply that 
vn . is equal to 

. −
+∞7

k=n

(−μ+)k+1Q+W ~AnW−1R−Q+uk +
n−17

k=0
μn+Q+R+W ~A−(k+1)W−1Q+uk.

(40) 

We now use formulas (29) and (31) to compute the matrices Q+W ., W−1R−Q+ ., 
Q+R+W ., W−1Q+ .. Plugging this into (40) and using that μ± . solve the equation 
μ2+λμ−1 = 0., after a tedious computation we conclude that the first component 
of the vector vn = Q+vn ∈ C2 . is given by the formula 

. (μ+−μ−)−1
( +∞7

k=n

(μ−)n−k
(
1− (μ+

μ−
)n+1)

zk +
n−17

k=0
(μ+)n−k

(
1− (μ+

μ−
)k+1)

zk

)
.

We now use (32) to recognize that the last expression is ((S − S−1 − λ)−1z)n . 

where zn . denote the first component of the vector un ∈ C2 ., n ≥ 0.. Multiplying 
by cn . and bn . and recalling (11) yields the required claim (39). 

2. We prove det(I − T+λ ) = E+(λ). in three steps. The first step is to show 
that it suffices to prove the equality only for finitely supported (Bn)n≥0 . and 
(Cn)n≥0 .. This is fairly standard and follows, say, as the claim in the proof of [12, 
Theorem 4.6] or the proof of [23, Theorem 4.3]: Indeed, replace Bk,Ck . in (35) 
by 1M(k)Bk ., 1M(k)Ck .where 1M . is the characteristic function of [0,M]. equals to
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one on the segment and to zero outside. As in the proof of Lemma 1, we denote 
the respective operator by T

(M)
N . and the respective matrix-valued Jost solution 

by Y+,M
.. Choosing a large N and even larger M the proof of Lemma 1 yields 

llTN−T
(M)
N llB(l∞N ) < qM+1 → 0. as M →∞. for the operator norm on l∞N .. Then 

llY+
0 − Y

+,M
0 ll

C
2×2 → 0. as in the proof of Lemma 1 and therefore E+,M(λ) →

E+(λ). as M → ∞. for the Evans function E+,M
. obtained by replacing Y+

0 . 

in (16) by Y
+,M
0 .. Analogously, let T+,M

λ . denote the operator in (14) obtained 
by replacing Bk,Ck . by 1M(k)Bk ., 1M(k)Ck .. Then (3) yields convergence of 
T+,M

λ . to T+λ . in the trace class norm and so det(I − T+,M
λ ) → det(I − T+λ ). 

as M →∞. completing the first step in the proof. From now on we thus assume 
that sequences (Bn)n≥0, (Cn)n≥0 . are finitely supported. 

The second step in the proof is a reduction of the infinite dimensional deter-
minant det(I−T+λ ). to a finite dimensional one. It follows a well established path, 
see [23–25, 28]. Multiplying the operator in the RHS of (33) by diagn∈Z+{Cn}. 
and diagk∈Z+{Bk}. and adding and subtracting E+∞

k=n CnA
nR−A−(k+1)Bkuk . to 

the result we arrive at the identity 

. T+λ = H+ +H2H3, where H+ = H0 +H1,

and we introduce notations 

. H0 = − diagn∈Z+{CnA
−1Bn}, (H1u)n = −

+∞7

k=n+1
CnA

n−(k+1)Bkuk,

(H2y)n = CnA
nR+y, H3u = R+

+∞7

k=0
A−(k+1)Bkuk

for y ∈ C2 . and u = (un)n≥0 ∈ l2(Z+;C2).. Here, the operators H0 . and H1 . in 
l2(Z+;C2). are of trace class by (3) while the operators H2 . and H3 . are of rank 
one as H2 . acts from ranR+ = ranP+ ⊂ C2 . into l2(Z+;C2). while H3 . acts 
from l2(Z+;C2). into ranR+ = ranP+ ⊂ C2 .. The diagonal operator I − H0 . is 
invertible with det(I −H0). being equal to 1 by (10) because 

. 

+∞ 

n=0
det(I+CnA

−1Bn) =
+∞ 

n=0
det(I+A−1BnCn) =

+∞ 

n=0
det(A−1) det(A+BnCn).

The operator H1 . is block-lower-triangular, and thus I − H+ . is invertible with 
det(I − H+) = 1.. Writing I − T+λ = (I − H+)

(
I − (I − H+)−1H2H3

)
. and 

changing the order of factors in the determinant, we arrive at the identity 

. det(Il2(Z+;C2) − T+λ ) = det
C
2×2

(
I2×2 −H3(I −H+)−1H2

)
(41)
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that reduces the computation of the infinite dimensional determinant for I − T+λ . 

to the finite dimensional determinant for the operator H3(I − H+)−1H2 . acting 
in ranR+ . thus completing the second step in the proof. 

The third step relates the RHS of (41) and the solution (Y+
n )n≥0 . to the Volterra 

equation (34). Indeed, for any y ∈ C2 . we let un = CnY
+
n y . and u = (un)n≥0 .. 

Multiplying (34) from the left by Cn . and applying the resulting matrices to y 
yields 

. un = CnA
nR+y −

+∞7

k=n

CnA
n−(k+1)Bkuk = (H2y)n + (H+u)n, n ∈ Z+,

or u = (I − H+)−1H2y .. Multiplying by H3 . from the left, by the definition of 
H3 ., 

. H3(I −H+)−1H2y = H3u = R+
+∞7

k=0
A−(k+1)Bkuk.

Since y is arbitrary, the respective matrices are equal, that is,

. H3(I −H+)−1H2 = R+
+∞7

k=0
A−(k+1)BkCkY

+
k .

Since Y+
n = Y+

n R+ . by (15), the last identity and formula (41) yield 

. det(I − T+λ ) = det
C
2×2

(
I2×2 − R+

+∞7

k=0
A−(k+1)BkCkY

+
k R+
)
. (42) 

Writing matrices in the block form using the direct sum decomposition C2 =
ranR+ ⊕ ranR− . gives the equality of the determinants of the following two 
matrices, 

.I2×2 −
+∞7

k=0
A−(k+1)BkCkY

+
k R+ =

l
R+ − R+

E+∞
k=0 A−(k+1)BkCkY

+
k R+ 0

−R−
E+∞

k=0 A−(k+1)BkCkY
+
k R+ R−

l
,

I2× 2−R+
+∞7

k= 0

A−(k+1)BkCkY
+
k R+

=
l
R+ −R+

E+∞
k=0 A−(k+1)BkCkY

+
k R+ 0

0 R−

l
.
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This, (34) with n = 0., and (42) show that det(I−T+λ ). is equal to the determinant 
of the matrix 

. I2×2−
+∞7

k=0
A−(k+1)BkCkY

+
k R+ = R+−

+∞7

k=0
A−(k+1)BkCkY

+
k +R− = Y+

0 +R−,

completing the proof of the equality det(I − T+λ ) = E+(λ). by (16). 
3. We prove E+(λ) = F+(λ).. Using the Jost solution (z+n )n≥−1 . and the regular 

solution satisfying zr0 = 1., we recall that W(z+, zr)0 = z+−1 . in (18).  By  
Remark 1 the solution (Y+

n )n≥0 . is of the form (37) with some (zn)n≥−1 ..  We  
claim that the solution (zn)n≥−1 . in formula (37) for Y+

n . satisfies zn = μ+z+n . 

where (z+n )n≥−1 . is the Jost solution from (38). Assuming the claim, we use 
formulas (16), (37), (31), and (18) to obtain the desired result, 

. E+(λ) = det(Y+
0 + R−) = det

l
1 −μ+ + μ+z+0
0 μ+z+−1

l
= μ+(λ)z+−1(λ) = F+(λ).

It remains to prove the claim zn = μ+z+n . in formula (37).  Usin  g (29) we 
multiply Eq. (34) by W−1

. from the left and W from the right passing to the new 
unknowns ~Y+

n . and using (29) and (zn)n≥−1 . from (37), 

. ~Y+
n = W−1Y+

n W = (μ+ − μ−)−1
l

zn − μ−zn−1 zn − μ−zn−1
−(zn − μ+zn−1) −(zn − μ+zn−1)

l
.

Noting that AnR+ = μn+R+ . by (11) and (31), and explicitly computing all 
matrices that appear in the equation for ~Y+

n ., we arrive at the following equations, 

. (μ+ − μ−)−1
(
zn − μ−zn−1

) = μn+ − (μ+ − μ−)−1
+∞7

k=n

bkckμ
n−(k+1)
+ zk,

(μ+ − μ−)−1
(− zn + μ+zn−1

) = −(μ+ − μ−)−1
+∞7

k=n

bkck

(− μ
n−(k+1)
−

)
zk.

Multiplying the first equation by μ+ .and the second by μ− .and adding the results, 

. zn = μn+1+ − (μ+ − μ−)−1
+∞7

k=n

bkck

(
μn−k+ − μn−k−

)
zk.

Divided by μ+ ., this is Eq. (38) for zn/μ+ . and the uniqueness of the solution of 
the equation yields the claim thus completing the proof of (21) in the theorem. 

4. To prove the last assertion in the theorem, we rely on the Birman-Schwinger 
principle saying that λ ∈ Spec

(
S − S−1 + diagn∈Z+{bncn}

)
. if and only if λ. is a
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zero of det(I −K+
λ ).with the same multiplicity which follows from the fact that 

the operator S − S−1 + diagn∈Z+{bncn} − λ. can be written as the product 

. 
(
S − S−1 − λ

)(
Il2(Z+;C) −

(
S − S−1 − λ

)−1 diagn∈Z+{bn} × diagn∈Z+{cn}
)

and the standard property det(I −K1×K2) = det(I −K2×K1). of the operator 
determinants. That the eigenvalues λ. are simple follows from the fact that z. is an 
eigensequence if and only if z. is proportional to z+(λ).with λ. satisfying z+−1(λ) =
0. (in other words, the dichotomy projection for (8) has rank one). 

  
Proof of Corollary 1 We follow [38] and show that F+(λ) = G+(λ). for F+ . 

from (18) and G+ . from (20). Here, we assume that Re(λ) > 0.. The function 
F+ . is holomorphic in λ. by Remark 2. The convergent continued fraction in (19) 
is holomorphic in λ. by the classical Stieltjes-Vitali Theorem [32, Theorem 4.30]. 
Thus, it is enough to show the desired equality only for λ > 0. which we 
assume from now on. We recall that z+n /= 0. for n ≥ 0. by Remark 3, introduce 
v±n = z±n−1/z±n . and re-write Eq. (4) for z± . as v+n = λ

ρn
+ 1

v+n+1
. for n ≥ 0..  The  

last formula iterated forward produces the continued fraction (19). Because the 
continued fraction converges and λ > 0., an argument from [17, pp.2063] involving 
monotonicity of the sequences formed by the odd and even truncated continued 
fractions yields v+0 = g+(λ)+ λ/ρ0 .. Therefore, 

. W(z+, zr)0 = z+−1 = z+0 v+0 = z+0 (g+(λ)+ λ/ρ0),

and the desired equality of F+ . and G+ . follows by (18) and (20).   
Lemma 2 Assume (27) and λ > 0.. Then the solutions of (28) on Z. are in one-
to-one correspondence with the l2(Z+;C).-solutions to the eigenvalue problem (4) 
given by zn = ρnwn . for n ≥ −1. and wn = 0. for n ≤ −2.. 
Proof Suppose that (wn)n∈Z . solves (28) and let zn = ρnwn . for all n ∈ Z.. Then 
z−1 = 0. since ρ−1 = 0. and the sequence (zn)n≤−1 . solves the equation 

. zn−1 − zn+1 = λzn/ρn for n ≤ −2 and z−1 = 0.

If z−2 /= 0. then the sequence (zn)n≤−2 . due to λ > 0. exponentially grows as n →
−∞. as shown in the proof of [38, Lemma 2.3] contradicting (wn)n∈Z ∈ l2(Z;C). 

in (28). So one has z−2 = 0., z−1 = 0. and, as a result, zn = 0. for all n ≤ −2..  This,  
in turn, implies that wn = 0. for all n ≤ −2.. 

Conversely, suppose that (zn)n≥0 ∈ l2(Z+)., z−1 = 0. solves (4) and let wn =
zn/ρn . for n ≥ 0., w−1 = −z0/λ., and wn = 0. for n ≤ −2.. Then (wn)n∈Z . so defined 
solves (28).   
Proof of Corollary 2 We follow the proof of [38, Corollary 1.3]. Due to Lemma 2, 
Theorem 1 yields the first assertion in the corollary. To finish the proof it suffices to
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show that there is a positive root of the function G+ . defined in (20), equivalently, 
that for some λ > 0. and g+ . defined in (19) one has −λ/ρ0 = g+(λ).. We recall 
that ρ0 < 0. and g+(λ) > 0. for λ > 0. because condition (5) holds. The proof is 
completed by using the relations limλ→0+ g+(λ) = 1. and limλ→+∞ g+(λ) = 0. 
established in [17, Lemma 2.10(4)].   
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On a Singular Integral Operator with 
Two Shifts and Conjugation 

Rui C. Marreiros 

Dedicated to Professor Yuri I. Karlovich 

Abstract On the Hilbert space ~L2(T). the singular integral operator with two shifts 

and conjugation K = P++
l

aI +
l

m
l

j=0
ajU

j
α

l

UβC

l

P− . is considered, where P± . 

are the Cauchy projectors, a, aj ., j = 0,m., are continuous functions on the unit 
circle T., Uα . and Uβ . are non-Carleman and Carleman shift operators, respectively, 
both preserving the orientation on T., and C is the operator of complex conjugation. 
An estimate for the dimension of the kernel of the operator K is obtained. We also 
consider the operator M = [aI + (a0I + a1Uα)Uγ C]P+ + P− ., where Uγ . is a 
Carleman shift operator changing the orientation on T.. 

1 Introduction 

Let T. denote the unit circle in the complex plane, T+ . and T− . denote the interior and 
the exterior ( ∞. included) of T., respectively. On the Hilbert spaceL2(T).we consider 
the singular integral operator (SIO) with Cauchy kernel, defined almost everywhere 
on T. by 

. (Sϕ)(t) = (πi)−1
l

T

ϕ(τ)(τ − t)−1dτ,
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where the integral is understood in the sense of its principal value. The operator S 
is a bounded linear involutive operator (S2 = I ., where I is the identity operator on
L2(T).). Then it is possible to define in L2(T). a pair of complementary projection 
operators, 

. P± = 1

2
(I ± S),

and to decompose L2(T) = L+
2 (T) ⊕

◦
L−
2 (T)., with L+

2 (T) = imP+ . and 
◦

L−
2 (T) =

imP− ..  We  also  set L−
2 (T) =

◦
L−
2 (T)⊕ C.. 

As usual, L∞(T). denotes the space of all essentially bounded functions on T.. 
Let us introduce the concept of matrix function generalized factorization (see, for 
instance, [2] and [16]); we say that a matrix function c ∈ Ln×n∞ (T). admits a right 
(left) generalized factorization in L2(T)., if it can be represented as 

.c = c−Ac+, (c = c+Ac−) (1) 

where 

. c±1− ∈ l

L−
2 (T)

ln×n
, c±1+ ∈ l

L+
2 (T)

ln×n
, A(t) = diag{txj },

xj ∈ Z., j = 1, n., with x1 ≥ x2 ≥ · · · ≥ xn ., and c−P+c+I . (resp., c+P+c−I .) 
represents a bounded linear operator in Ln

2(T).. The integers xj . are uniquely 
determined by the matrix function c and are called its right (left) partial indices 
and their sum x = ln

j=1 xj . is called the right (resp., left) total index. 
Any non-singular continuous matrix function c ∈ Cn×n(T). admits a generalized 

factorization (1) in L2(T). (see, for instance, the above cited [2] and [16]); for our 
purposes, it will be assumed that 

.c±1± ∈ Cn×n(T). (2) 

In this setting, left and right total indices of c coincide with the (only) left and right 
partial index of det c. and are equal to its winding number. 

Now let ω . be a homeomorphism of T. onto itself, which is differentiable on T. and 
whose derivative does not vanish there. The function ω : T → T. is called a shift 
function or simply a shift on T..  B  y

. ωk(t) ≡ ω[ωk−1(t)], ω1(t) ≡ ω(t), ω0(t) ≡ t, t ∈ T,

we denote the k-th iteration of the shift, k ≥ 2., k ∈ N.. 
A  shif  t ω . is called a (generalized) Carleman shift of order n ∈ N \ {1}. if ωn(t) ≡

t .,  but ωk(t) /≡ t . for k = 1, n− 1.. Otherwise, if ω . is not a Carleman shift, it is 
called a non-Carleman shift. In what follows we will consider three different shifts,
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i.e., ω = α, β, γ .: α . is a non-Carleman shift, β . and γ . are Carleman shifts. Let us 
concretize: 

(1) α . is the linear fractional non-Carleman shift preserving the orientation on T. 
with the only fixed point at 1, 

.α(t) = μt + ν

νt + μ
, t ∈ T, (3) 

where μ, ν ∈ C.: |μ|2 − |ν|2 = 1., |Reμ| = 1., and Imμ = −iν ..1 

The shift function α . admits the factorization 

. α(t) = α+(t)tα−(t),

where 

. α+(t) = 1

νt + μ
, α−(t) = μt + ν

t
= (α+(t))−1.

We see that the functions α±, α−1± . are analytic in T± . and continuous in the 
closure of T± ., respectively. 

(2) β . is the linear fractional Carleman shift preserving the orientation on T., 

. β(t) = t − λ

λt − 1
, t ∈ T,

where λ ∈ C\ T : |λ| < 1.. 
The shift function β . admits the factorization 

. β(t) = β+(t)tβ−(t),

where 

. β+(t) =
l

1− |λ|2
λt − 1

, β−(t) = t − λ

t
l

1− |λ|2
.

1 In general, the shift α(t). has two fixed points on T., τ1 . and τ2 ., given by the formula 

. τ1,2 = μ− μ±l

(μ+ μ)2 − 4

2ν
,

where μ, ν ∈ C.: |μ|2 − |ν|2 = 1.; obviously τ1 /= τ2 . if |Reμ| /= 1.. With |Reμ| = 1.,  an  d
Imμ = −iν ., the shift α(t). has one fixed point at 1. To this case corresponds the shift on the real 

line αr(t) = t + σ ., t ∈ ◦
R = R ∪ {∞}., σ . is a fixed real number; the shift αr(t). has the only fixed 

point at infinity.
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(3) γ . is the linear fractional Carleman shift changing the orientation on T., 

. γ (t) = t − λ

λt − 1
, t ∈ T,

where λ ∈ C\ T : |λ| > 1.. 
The shift function γ . admits the factorization 

. γ (t) = γ+(t)t−1γ−(t),

where 

. γ+(t) = t − λ

i
l

|λ|2 − 1
, γ−(t) = it

l

|λ|2 − 1

λt − 1
.

Let a, aj ., j = 0,m., be given continuous functions defined on T..  Let ~L2(T). 

denote the Hilbert space L2(T). considered over the field of real numbers. On ~L2(T)., 
associated with the shifts α ., β ., and γ ., we consider the shift operators Uα ., Uβ ., and 
Uγ ., defined by 

. (Uαϕ)(t) = α+(t)ϕ[α(t)],
(Uβϕ)(t) = −β+(t)ϕ[β(t)],
(Uγ ϕ)(t) = γ−(t)t−1ϕ[γ (t)], t ∈ T.

The shift operators Uω ., ω = α, β, γ ., satisfy the properties: 

(i) Uω . is isometric, i.e., llUωϕllL2
= llϕllL2

.; 
(ii) UαS = SU α ., UβS = SUβ ., and Uγ S = −SUγ .. 

We consider the bounded linear operator of complex conjugation C, 

. (Cϕ)(t) = t−1ϕ(t).

The operators P± ., Uα ., Uβ ., Uγ ., and C, verify the properties 

.

UαP± = P±Uα, UβP± = P±Uβ, Uγ P± = P∓Uγ ,

UαC = CUα, UβC = −CUβ, Uγ C = CUγ ,

CP± = P∓C, UαUβ = UβUα, UαUγ = Uγ Uα,

P 2± = P±, U2
β = I, U2

γ = I, C2 = I.

(4)
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In this work we will study the singular integral operators (SIOs) with two shifts 
and conjugation defined on the unit circle, 

.K = P+ +
⎡

⎣aI +
⎛

⎝

m
ll

j=0
ajU

j
α

⎞

⎠ UβC

⎤

⎦P−, (5) 

and 

.M = [aI + (a0I + a1Uα)Uγ C]P+ + P−. (6) 

The classical theory of singular integral equations and boundary value problems 
for analytic functions began with B. Riemann (1857) and had proceeded with D. 
Hilbert (1904), that, in particular established the relation of the so-called Riemann-
Hilbert problem with a Fredholm integral equation. Historically C. Haseman (1907) 
was the first to consider the boundary value problems with a shift. T. Carleman 
(1932) also studied a boundary value problems with a shift, that was later designated 
with his name. N. Vekua (1948) was the first to consider a singular integral equation 
with a general shift (in the sense, Carleman or non-Carleman shift) (see [19]  (first  
edition in 1950)). In the early 1950s, I. Vekua showed how some mathematical 
physics problems lead to the solvability of boundary value problems with shift 
(see [20] (first edition in 1959)). The Fredholm theory of SIOs with Carleman shift 
was constructed in the 1960s and the 1970s of the twentieth century essentially 
in the work of D. Kvesevala, M. Krein, I. Gohberg, N. Krupnik, N. Karapetiants, 
S. Samko, and, most importantly, G. Litvinchuk (see [14]). For the case of non-
Carleman shift, the Fredholm theory was completed in the 1980s mainly by 
Yu. Karlovich, V. Kravchenko and G. Litvinchuk (see [8]). The so-called solvability 
theory of SIO with shift (the calculation of the defect numbers, the construction of 
bases for the defect subspaces, and other spectral properties, of a given operator), is 
an ongoing work, both in the case of Carleman Shift (see [4, 6, 10, 11]), and in the 
case of non-Carleman shift (see [1, 7, 9, 17]). The solvability problem for SIO with 
non-Carleman shifts, according to G. Litvinchuk, is “. . . [a]  new  and  very  difficult 
question . . . ”  (see  [15, p. XVI]). 

In [12] we studied a generalized Riemann boundary value problem with a non-
Carleman shift and conjugation on the real line, through the study of the kernel of the 
operatorX = P++[aI+(a0I+a1Uα)C]P− . (with one shift, continuous coefficients, 
and conjugation), and in [13], the operator Yr = P+ + (aI + AC)P− ., where A =
m
l

j=0
ajU

j
α . (with iterations of one shift, continuous coefficients, and conjugation). In 

both cases, for the dimension of its kernel the following estimate was obtained: 

. dim ker Yr ≤ l(g)+max(−x1, 0)+max(−x2, 0).

We had noted that the influence of the coefficients a1, a2, . . . , am . is restricted to the 
term l(g). only; the terms x1 . and x2 . depend only on the coefficients a and a0 ..  I  n [3]
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we considered the operator Yr . on the unit circle, which we denote by Y , 

.Y = P+ + (aI + AC)P−, A =
m

ll

j=0
ajU

j
α , (7) 

and had obtained the estimate 

. dim ker Y ≤ l(f )+max(−x1, 0)+max(−x2, 0)+ 1.

We note that, besides the terms present when we had considered Y on the real 
line (i.e., Yr .), there is an extra term in the right hand side. This term, 1, appeared 
as a consequence of the weight t−1 . in the definition of the operator of complex 
conjugation, that we had treated separately. 

In the present paper we consider the SIO (5) with two shifts and conjugation 
on the unit circle (Sect. 2). We show that estimate (26) holds. We also prove that 
similar estimate (27) holds for the operator (7), improving the previous result for 
this operator. Then we consider the operator (6). We obtain estimates (33) and (34), 
with some additional conditions on the respective coefficients a, a0, a1 . (Sect. 3). 

2 On the Dimension of the Kernel of the Operator K 

In this section we present an estimate for the dimension of the kernel of the SIO (5) 
with two shifts and conjugation. 

Proposition 1 Let K1 : ~L2
2(T) → ~L2

2(T). be the SIO with shift 

. K1 = N1P+ +N2P−,

where N1 ., N2 ., are the functional operators 

. N1 =
l

I −A

0 δa(β)I

l

, N2 =
l

aI 0
δ~A −I

l

,

. A =
m

ll

j=0
ajU

j
α , ~A =

m
ll

j=0
aj (β)Uj

α , δ = β+
β
;

then 

. dim kerK = 1

2
dim kerK1. (8)
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Proof Making use of the properties (4), we obtain the following relation between 
the operators K and K1 ., similar to the Gohberg-Krupnik matrix equality (see [5]), 

. N diag{K, ~K}N−1 = K1,

where 

. ~K = P+ + (aI − AUβC)P−,

and N is the following invertible operator in ~L2
2(T). 

. N = 1√
2

l

I I

UβC −UβC

l

.

We then have 

. dim kerK + dim ker ~K = dim kerK1.

Since (iI )−1K(iI) = ~K .,  we  ha  ve

. dim kerK = dim ker ~K.

Thus 2 dim kerK = dim kerK1 ., i.e., (8) holds.   
Assume that a ∈ C(T)., a(t) /= 0., everywhere on T.. Then N1 ., N2 . are invertible 

operators, so K1 . is a Fredholm operator (see [8]). 
Let us consider the operator 

.K2 = N−1
2 K1, (9) 

where 

. N−1
2 =

l

a−1I 0
δ~Aa−1I −I

l

.

Taking into account Proposition 1 and (9) we have the following result. 

Proposition 2 Let K2 : ~L2
2(T) → ~L2

2(T). be the SIO with shift defined by 

. K2 =
2m
ll

j=0
bjU

j
αP+ + P−,

where 

.bj = diag{1,−δ}~bj , j = 0, 2m,
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with 

. ~b0 =
l

a−1 −a−1a0
−a−1a0(β) a(β)+ a−1a0a0(β)

l

,

. ~b1 =
l

0 −a−1a1
−α+a−1(α)a1(β) e1

l

,

. e1 = a−1a0(β)a1 + α+a−1(α)a0(α)a1(β),

. ~b2 =
l

0 −a−1a2
−α2+a−1(α2)a2(β) e2

l

,

. e2 = a−1a0(β)a2 + α+a−1(α)a1(β)a1(α)+ α2+a−1(α2)a2(β)a0(α2),

. . . . ,

. ~bm =
l

0 −a−1am

−αm+a−1(αm)am(β) em

l

,

. em = a−1a0(β)am + α+a−1(α)a1(β)am−1(α)+ · · · + αm+a−1(αm)am(β)a0(αm),

. ~bm+1 =
l

0 0
0 em+1

l

,

. em+1 =α+a−1(α)a1(β)am(α)+ α2+a−1(α2)a2(β)am−1(α2)

+ · · · + αm+a−1(αm)am(β)a1(αm),

. . . . ,

. ~b2m =
l

0 0
0 αm+a−1(αm)am(β)am(αm)

l

.

Then 

. dim kerK = 1

2
dim kerK2.

Let en . denote the (n× n). identity matrix and, for simplicity, e ≡ e2 .. 

Proposition 3 Let K3 : ~L4m
2 (T) → ~L4m

2 (T). be the SIO with shift 

.K3 = (c0I + c1Uα)P+ + P−, (10)
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where c0 . and c1 . are the (4m× 4m.) matrix functions 

.c0 =
l

b0 0
0 e4m−2

l

, c1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

b1 b2 · · · b2m−1 b2m

−e 0 · · · 0 0

0 −e
. . .

...
...

...
...

. . . 0 0
0 0 · · · −e 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (11) 

Then 

. dim kerK = 1

2
dim kerK3.

Proof We take into account the result formulated in [13, Proposition 2.3], on the 

real line, considering the shift αr(t) = t + σ ., t ∈ ◦
R = R ∪ {∞}., σ . is a fixed real 

number (see the footnote in the Introduction). In a similar way, on the unit circle, 
we show that 

. dim kerK3 = dim kerK2.

With Proposition 2 the result follows.   
Now we analyze the matrix function b0 . defined in Proposition 2 in more detail, 

.b0 =
l

a−1 −a−1a0
δa−1a0(β) −δ

l

a(β)+ a−1a0a0(β)
l

l

. (12) 

Note that det b0(t) /= 0. for all t ∈ T.. So the non-singular continuous matrix function 
b0 . admits a right generalized factorization (1) in L2(T)., and (2) will be assumed, 

.b0 = b−Ab+. (13) 

Proposition 4 Let a ∈ C(T)., a(t) /= 0., everywhere on T., and c1 . be the matrix 
function defined by (11). Let b0 . be the matrix function defined by (12), (13) be a 
right generalized factorization of b0 . in L2(T)., and x1 ., x2 . its right partial indices. 
Then 

. dim kerK ≤ 1

2
(dim kerK4 − 2x−1 − 2x−2 ),

where K4 : ~L4m
2 (T) → ~L4m

2 (T). is the SIO with shift 

.K4 = (I + f Uα)P+ + P−, (14)
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f is the (4m× 4m).matrix function 

.f = diag (A−1− b−1− , e4m−2)c1diag (b−1+ (α)A−1+ (α), e4m−2), (15) 

with 

. A± : A = A−A+, A± = diag (tx
±
1 , tx

±
2 ),

and 

. x±j : xj = x+j + x−j , x±j = 1

2
(xj ±

l

lxj

l

l), j = 1, 2.

Proof The operator K3 . defined by (10) admits the factorization 

.K3 = diag{b−, e4m−2}~K3[diag{b+, e4m−2}P+ + diag{b−1− , e4m−2}P−], (16) 

where 

. ~K3 =
l

diag{A, e4m−2}I + ~f Uα

l

P+ + P−,

with 

. ~f = diag{b−1− , e4m−2}c1 diag{b−1+ (α), e4m−2}.

The first and the third operators in left member of (16) are invertible, therefore 

. dim kerK3 = dim ker ~K3. (17) 

Now we consider the left invertible operators 

. K− = P+ + diag{A−, e4m−2}P−, K+ = diag{A+, e4m−2}P+ + P−,

and the operator 

. ~K4 =
l

diag{A+, e4m−2}I + diag{A−1− , e4m−2}~f Uα

ll

P+ + P−.

The following equalities hold 

.~K3K− = diag{A−, e4m−2}~K4, (18) 

.~K4 = K4K+, (19) 

where K4 . is the operator defined by (14).
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It follows from (18) that 

. dim ker ~K3 ≤ dim ker ~K4 + dim cokerK−, (20) 

and from (19) 

. dim ker ~K4 ≤ dim kerK4. (21) 

It is known that (see [18])2 

. dim cokerK− = −2x−1 − 2x−2 . (22) 

Putting together (17), (20), (21), and (22) we obtain 

. dim kerK3 ≤ dim kerK4 − 2x−1 − 2x−2 .

It is now left to apply Proposition 3.   
Thus, it remains to estimate dim kerK4 .. As usual, let σ(ξ). and llξll2 . denote the 

spectrum and the spectral norm of a matrix ξ ∈ Cn×n
., respectively. We will make 

use of some results from [9]; recall that 1 is the fixed point of the shift α . defined 
by (3). 

Lemma 1 ([9]) For every continuous matrix function ζ ∈ Cn×n(T). such that 

. σ [ζ(1)] ⊂ T+,

there exists a polynomial matrix s satisfying the conditions

. max
t∈T

l

l

ls(t)ζ(t)s−1(α(t))

l

l

l

2
< 1

and 

. P+s±1P+ = s±1P+.

Let Rζ . denote the set of all such polynomial matrices s, 

.l1(s) =
n

ll

i=1
max
j=1,n

li,j ,

2 We have “2” in the left hand side of the equality because the operator acts in the space ~L4m
2 (T).. 
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where li,j . is the degree of the element si,j (t).of the polynomial matrix s and 

.l(ζ ) = min
s∈Rζ

{l1(s)}. (23) 

Lemma 2 ([9]) Let Tζ = (I − ζUα)P+ + P− : Ln
2(T) → Ln

2(T)., where the matrix 
function ζ . satisfies the conditions of the Lemma 1, and let l(ζ ).be the number defined 
by (23) for the matrix function ζ .. Then the following estimate holds 

. dim ker Tζ ≤ l(ζ ).

Suppose now that a matrix η ∈ Cn×n(T). has the properties 

.σ [η(1)] ⊂ T−, det η(t) /= 0, ∀t ∈ T. (24) 

The non-singular continuous matrix function η . admits a right generalized factoriza-
tion (1) in L2(T)., and (2) will be assumed, 

.η = η−Aη+. (25) 

Lemma 3 ([9]) Let Tη = (I − ηUα)P+ + P− : Ln
2(T) → Ln

2(T)., where the 
matrix function η . satisfies the conditions (24), (25), and let κ1, κ2, . . . , κn . be its 
right partial indices. Let ~η = η+η−1η−1+ (α−1)., and l(~η). be the number defined 
by (23) for the function ~η .. Then the following estimate holds 

. dim ker Tη ≤ l(~η)+
ll

κj <0

l

lκj

l

l .

Proposition 5 Let the conditions of Proposition 4 be satisfied and let K4 .be the SIO 
defined by (14). Then 

. dim kerK4 ≤ 2l(f ),

where l(f ). is the number defined by (23) for the matrix function f defined by (15). 

Proof Taking into account Lemmas 1 and 2, it suffices to show that 

. σ [f (1)] ⊂ T+.

From the factorization b0 = b−Ab+ . of the matrix function b0 .,  we  ha  ve

.b0(1) = b−(1)b+(1), so b−1+ (1) = b−10 (1)b−(1).
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Now recalling (15), we can write 

. f (1) = diag{b−1− (1), e4m−2}c1(1) diag{b−1+ (1), e4m−2}

and so 

. f (1) = diag{b−1− (1), e4m−2}c1(1) diag{b−10 (1), e4m−2} diag{b−(1), e4m−2},

which means that the matrices f (1). and c1(1) diag{b−10 (1), e4m−2}. are similar. 
From here, proceeding exactly as in the proof of [13, Proposition 2.6], we show 

that all the eigenvalues of the matrix 

. c1(1) diag{b−10 (1), e4m−2} =

. =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

b1(1)b
−1
0 (1) b2(1) b3(1) · · · b2m−1(1) b2m(1)

−b−10 (1) 0 0 · · · 0 0
0 −e 0 · · · 0 0

0 0 −e
. . .

...
...

...
. . . 0 0

0 0 0 · · · −e 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

are equal to 0. Thus σ [f (1)] = {0}..   
Finally, Propositions 4 and 5 allow us to establish our main result. 

Theorem 1 Let K be the SIO with two shifts and conjugation defined by (5). Let 
a ∈ C(T)., a(t) /= 0., everywhere on T., and x1 ., x2 . be the right partial indices of the 
matrix function b0 . defined by (12). Let f be the matrix function defined by (15), and 
l(f ). be the number defined by (23) for the matrix function f . Then the following 
estimate holds 

. dim kerK ≤ l(f )+max(−x1, 0)+max(−x2, 0). (26) 

Remark 1 We note that all the results concerning the operator K , defined by (5), 
are valid for the operator Y , defined by (7), considering δ = t−1 . in Proposition 1 
and in the sequel. Therefore we can state the following result. 

Corollary 1 Let Y be the SIO with iterations of one shift and conjugation defined 
by (7). Let a ∈ C(T)., a(t) /= 0., everywhere on T., and x1 ., x2 . be the right partial 
indices of the matrix function b0 . defined by (12) with δ = t−1 .. Let f be the matrix 
function defined by (15), and l(f ). be the number defined by (23) for the matrix 
function f . Then the following estimate holds 

. dim ker Y ≤ l(f )+max(−x1, 0)+max(−x2, 0). (27)
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3 On the Dimension of the Kernel of the Operator M 

In this section we present two estimates for the dimension of the kernel of the 
SIO (6) with two shifts and conjugation. 

Proposition 6 Let M1 : ~L2
2(T) → ~L2

2(T). be the SIO with shift 

. M1 = (d0I + d1Uα)P+ + P−,

where d0 . and d1 . are the (2× 2).matrix functions 

.d0 =
l

a a0

ρ a0(γ ) ρ a(γ )

l

, (28) 

.d1 =
l

0 a1

ρ a1(γ ) 0

l

, (29) 

. ρ = −γ−(t)

tγ (t)
;

then 

. dim kerM = 1

2
dim kerM1.

Proof Making use of the properties (4), we obtain the following relation between 
the operators M and M1 ., 

. Z diag{M, ~M}Z−1 = M1,

where 

. ~M = [aI − (a0I + a1Uα)Uγ C]P+ + P+,

and Z is the following invertible operator in ~L2
2(T). 

. Z = 1√
2

l

I I

Uγ C −Uγ C

l

;

and, analogously to the proof of Proposition 1, the result follows.   
Assume that a(t) /= a0(t)., everywhere on T.. Let us analyze the matrix function 

d0 . defined by (28); note that det d0(t) /= 0. for all t ∈ T.. So the non-singular
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continuous matrix function d0 . admits a right generalized factorization (1) in L2(T)., 
and (2) will be assumed, 

.d0 = d−Ad+. (30) 

Proposition 7 Let a(t) /= a0(t)., everywhere on T., and d1 . be the matrix function 
defined by (29). Let d0 . be the matrix function defined by (28), (30) be a right 
generalized factorization of d0 . in L2(T)., and x1 ., x2 . its right partial indices. Then 

. dim kerM ≤ 1

2
(dim kerM2 − 2x−1 − 2x−2 ),

where M2 : ~L2
2(T) → ~L2

2(T). is the SIO with shift 

. M2 = (I + gUα)P+ + P−,

g is the (2× 2).matrix function 

.g = A−1− d−1− d1d
−1+ (α)A−1+ (α), (31) 

with 

. A± : A = A−A+, A± = diag (tx
±
1 , tx

±
2 ),

and 

. x±j : xj = x+j + x−j , x±j = 1

2
(xj ±

l

lxj

l

l), j = 1, 2.

Proof The proof is similar to the proof of Proposition 4, taking into account that 
the operator K4 . is defined on ~L4m

2 (T). and the operator M2 . is defined on ~L2
2(T)..   

It remains to estimate dim kerM2 .. We point out that det g(t) /= 0. for all t ∈ T., 
where g be the matrix function defined by (31). The non-singular continuous matrix 
function g admits a right generalized factorization (1) in L2(T)., and (2) will be 
assumed, 

. g = g−Ag+.

Now let us return to the matrix function d0 .defined by (28). From the factorization 
d0 = d−Ad+ . of d0 .,  we  have  a  t 1,

.d0(1) = d−(1)d+(1), so d−1+ (1) = d−10 (1)d−(1).
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Now recalling (31), we can write 

. g(1) = d−1− (1)d1(1)d
−1+ (1)

and so 

. g(1) = d−1− (1)d1(1)d
−1
0 (1)d−(1),

which means that the matrices g(1). and d1(1)d
−1
0 (1). are similar. 

The characteristic polynomial of d1(1)d
−1
0 (1). is, with z ∈ C., 

.z2 + a0(γ )a1 + a0a1(γ )

det d0
z− a1a1(γ )

det d0
. (32) 

Taking into account Lemmas 1, 2, and 3, with Propositions 6 and 7, we can write 
the following result. 

Theorem 2 Let M be the SIO with two shifts and conjugation defined by (6). Let 
a(t) /= a0(t)., everywhere on T., and x1 . and x2 . be the right partial indices of the 
matrix function d0 . defined by (28). Let κ1 . and κ2 . be the right partial indices of the 
matrix function g defined by (31). Then the following estimates hold. 

(i) Let the functions a, a0, a1 . be such that all the roots of the polynomial (32) are 
in T+ .; then 

. dim kerM ≤ l(g)+max(−x1, 0)+max(−x2, 0). (33) 

where l(g). be the number defined by (23) for the matrix function g. 
(ii) Let the functions a, a0, a1 . be such that all the roots of the polynomial (32) are 

in T− .; then 

. dim kerM ≤ l(~g)+max(−κ1, 0)+max(−κ2, 0)+max(−x1, 0)+max(−x2, 0).
(34) 

where l(~g). is the number defined by (23) for the matrix function ~g =
g+g−1g−1+ (α−1).. 

Remark 2 Theorem 2 can be formulated “ipsis verbis” on the real line, considering 

the non-Carleman shift αr(t) = t + σ ., the Carleman shift γr(t) = −t + ς ., t ∈ ◦
R =

R ∪ {∞}., σ . and ς . are fixed real numbers, and the operator of complex conjugation 
C defined by (Cϕ)(t) = ϕ(t)..  The  shift αr(t). has the only fixed point at infinity (see 
the footnote in the Introduction).
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